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Resumen

Un Algoritmo de Branch & Bound para Construir Pequeñas
Instancias de Covering Arrays Binarios de Fuerza Variable

por

Josué Emmanuel Bracho Ríos

Maestro en Ciencias del Laboratorio de Tecnologías de la Información

Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 2010

Dr. José Torres Jiménez, Director

Dr. Eduardo A. Rodríguez Tello, Co-Director

Los Covering Arrays son estructuras combinatorias ampliamente usadas en el proceso de las

pruebas de software. Un Covering Array puede ser usado como un conjunto de pruebas combinatorio

en el cual todas las combinaciones de valores de cada t columnas (donde t es el nivel de interacción)

están presentes. Los Covering Arrays son una alternativa muy útil cuando una prueba exhaustiva no

es posible [31].

En este documento se propone el desarrollo de un algoritmo completo para construir Covering

Arrays binarios de fuerza variable siempre y cuando mantengan la restricción de que el número de

símbolos por columna se encuentren balanceados. Este algoritmo, basado en la técnica de Branch &

Bound (B&B), garantiza siempre encontrar los Covering Arrays Óptimos con símbolos balanceados

si existen o probar su no existencia para casos pequeños, cuando no hay restricciones de tiempo

impuestas.

La efectividad del algoritmo de B&B propuesto es medida contra los mejores métodos completos

para resolver el problema de construcción de Covering Arrays reportados en la literatura.

En cuanto a los resultados obtenidos, nuestro algoritmo logró encontrar las mejores cotas

establecidas hasta el momento para el conjunto de instancias pequeñas tomadas de la literatura,

así como ratificar que no existe un Covering Array con un número de símbolos balanceados por

columna para otros casos. En términos del esfuerzo computacional, nuestro enfoque logró mejorar

xi



en algunos casos al algoritmo EXACT.
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Abstract

A Branch & Bound Algorithm to Construct Small Instances

of Binary Covering Arrays of Variable Strength

by

Josué Emmanuel Bracho Ríos

Master of Science in Information Technology Laboratory

Research Center for Advance Study from the National Polytechnic Institute, 2010

Dr. José Torres Jiménez, Advisor

Dr. Eduardo A. Rodríguez Tello, Co-advisor

Covering Arrays are combinatorial structures extensively used in the software testing process. A

Covering Array can be used as a combinatorial test suite in which all the combinations ofthe valúes

of every t columns (where t is the level of interaction) are listed. Covering Arrays are a very useful

alternative when exhaustive testing is not feasible [31].

ln this document the development of a complete algorithm to construct binary covering arrays

of variable strength is proposed. This algorithm, based on the Branch & Bound (B&B) technique,

guarantees always to discover optimal Covering Arrays with a balanced number of symbols per column

if they exist or prove their nonexistence for small instances, given that there are no computer time

restrictions ¡mposed.

The effectiveness ofthe proposed B&B algorithm is assessed against the best complete methods

for solving the Covering Array construction problem reported in the literature.

With respect ofthe results obtained, our algorithm was able to obtain the best results reported for

the set of small ¡nstances taken from the literature, as well as to corrobórate that there is no Covering

Array with a number of balanced symbols per column for other cases, ln terms of computational

effort, our approach was able to improve in some cases with respect to the EXACT algorithm.
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Introduction

ln this chapter we present in detail the importance of the development of this thesis,

as well as an introduction to some terminology used in this manuscript. This chapter

is divided in two main sections : research context, and goals and contributions. ln

research context some general aspects of the field, that this thesis is mainly related to,

are described in order to have a better understanding ofthe context of this work. ln the

section goals and contributions the main objective, the studies that were carried on in

order to fulfill this work and the relevance of developing this work is explained. Finally

a summary of this chapter is presented with an introduction to the next chapter of this

manuscript.

1.1 Research Context

1.1.1 Relevance of Software Testing

Within the recent years the use of software has become more and more important in our society

[49]. Most of the enterprises nowadays depends on computer software, thus a failure on it can be

1



2 1.1. Research Context

catastrophic. As mentioned in a National Institute of Standards and Technology (NIST) report, the

sales of software reached approximately $180 billion dollars generating a significant and high-paid

workforce, composed of 697,000 software engineers and 585,000 computer programmers. It shows

clearly that the software ¡ndustry is a really important part ofthe economy, moreover if the software

presents errors, millionaire losses can occur affecting the economy. According to Hartman [21], the

quality of the software relies strongly on the use of software testing.

Even though the use of software can give us a lot of benefits, an ¡nadequate software testing

process can lead to a millionaire loss, or in other cases, where the software is applied for some

machines with critical purposes, a software exception can cause more than monetary loss. An

example is the Therac 25 crash [34], where it injured many patients and caused the death of some

of them.

Figure 1.1 [36] represents a software test work-flow, in which 3 processes are shown, the informal

iteration process, the formal iteration process and the In-Stage assessment process. The actors in

the software testing process are:

• Software Developers

• Primary Developer Representative

• Testing Personnel

ln Figure 1.1 we can clearly see two stages where tests are applied to the software, first a test

is made by the local programmers, if it is not accepted, then a Test Incident Report (TIR) is made

and the necessary updates to the program are made, if it is accepted, then a second test is made

by testers outside the software development team, at this stage a TIR is also made for every test

process that fails, and a Test Completion Report (TCR) is made for each test that is marked as

ok.The acceptance test process is complete when a set of TCRs matching all tests identified in the

Acceptance Test procedures ofthe module test plan have been generated and signed.

Considering the testing process in Figure 1.1, we can see that the software test process is an

essential part for the software development process, and if the time and cost of the tests can be
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reduced, then software releases can be made quicker and with better quality.

Software Test Workílow

Developer PDR QA Testar

Producá

Suítwai»

V

Update
Software

V !

TIR

(Resolved]

DeskChec*

Software

-No-<^Pass? j>

Software

[Readyl
Select Testers

ExecuteTest

Cases

TIR

(Assigned)
-No-

No <^Pass?J>

Yes -1

Figure 1.1: A basic work-flow ofthe software testing process.

We can conclude then that the software tests are an indispensable part of the software

development process and it should not be taken lightly. Therefore, múltiple techniques for software

testing had been developed in order to improve the quality of the software, ln the next section

a general overview of the distinct types of software testing and their test design techniques are

described.



4 1.1. Research Context

1.1.2 Types of Software Testing

There are reported two main types of software testing : White-box testing and Black-box testing. The

White-box testing (a.k.a. clear box testing, glass box testing, transparent box testing, translucent

box testing or structural testing) uses an internal perspective of the system to design test cases

based on internal structure. It requires programming skills to identify all execution paths through

the software. The tester chooses test case inputs to exercise paths through the code and determines

the appropriate outputs. ln electronic hardware testing, every node in a circuit may be tested and

measured; an example is in-circuit testing (ICT).

Since the tests are based on the actual implementation, if the implementation changes, the

tests probably will need to change, too. For example ICT tests needs updates if component valúes

change, and needs a whole new test if the circuit changes. This adds financial resistance to the

change process, thus buggy products may stay buggy. Automated optical inspection (AOI) offers

similar component level correctness checking without the cost of ICT fixtures, however changes still

require test updates.

While White-box testing is applicable at the unit, integration and system levéis of the software

testing process, it is typically applied to the unit level testing. While it normally tests paths within

a unit, it can also test paths between units during integration, and between subsystems during a

system level test. Though this type of test design can uncover an overwhelming number of bugs, it

might not detect unimplemented parts of the specification or missing requirements, but one can be

sure that all paths through the test object are executed.

Typical white box test design techniques include:

• Control-Flow testing

• Data flow testing

• Branch testing

• Path testing
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Input fcHMPjli^^l Output
Blackbox

Figure 1.2: The black-box testing diagram.

On the contrary, Black-box testing takes an external perspective of the test object to derive test

cases. These tests can be functional or non-functional, though usually functional. The test designer

selects valid and invalid inputs and determines the correct output. There is no knowledge ofthe test

object's internal structure. ln Figure 1.2 a diagram ofthe Black-box testing strategy is represented.

This method of test design is applicable to all levéis of software testing: unit testing, integration

testing, functional testing, system testing and acceptance testing. The higher the level, and henee

the bigger and more complex the box, the more one is forced to use Black-box testing to simplify

the testing process. Even when this method can uncover unimplemented parts ofthe specification,

one cannot be sure that all existent paths are tested.

There are some typical Black-box testing techniques as:

• Equivalence partitioning

• Boundary valué analysis

• Decisión table testing

• Interaction testing

• State transition tables

• Use case testing

• Cross-functional testing

This thesis is mainly related with Black-box testing and more specifically with interaction testing.

ln the following subsection the general aspeets of the interaction testing, their advantages and a

general definition of system coverage are detailed.
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1.1.3 Interaction Testing

Many software systems today are built using components. Often, system faults are caused by

an unexpected interaction among these [30]. Suppose we have an e-commerce system with 4

components and 2 different valúes for each component described in Table 1.1. A desired test

will contain combinations among these parameters, such as (Firefox.Websphere,MasterCard,Db/2)

and (Firefox.Apache,MasterCard,Oracle), ln order to fully test the system we would require 24 = 16

configurations.

Client Web Server Payment Datábase

Firefox WebSphere MasterCard Db/2

IE Apache Visa Oracle

Table 1.1: System with 4 components

This may sound reasonable, but the number of necessary tests grows exponentially when the

number of components increases. Suppose we had a system with 12 possible components and four

possible settings each. We then need 412 = 16, 777, 216 test configurations. But a different approach

is to use a technique called interaction testing.

Fisher in 1926 [18] was the pioneer in the use of interaction testing. Interaction testing implements

a model-based testing approach using combinatorial design [4]. ln this approach, all í-tuples of

interactions in a system are incorporated into a test suite. ln fact, interaction testing measures

interactions rather than detecting interactions.

Interaction testing is based on the premise that many errors in software can only arise from the

interaction of two or more parameters. Some of the advantages of using this technique are :

1. Code coverage

2. Mínimum number of tests
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1.1.3.1 Code Coverage

A number of studies have investigated the application of combinatorial methods to software testing

[10]. Early research focused on pairwise testing, where all the possible interactions between two

parameters are present at least once. Some of this research were focused on the percentage of code

coverage when combinatorial methods were used [10, 17].

Many studies demonstrated the effectiveness of pairwise testing in a variety of applications. But,

there is a possibility that some of the failures in a system are present when an interaction of more

than 2 parameters occurs. Based on this, how can we determine the degree of interaction of the

combinatorial object to test our system? Studies were made in order to show the percentage of

failures a real system will present when distinct levéis of interaction were used [30, 31]. The results

of these tests are summarized in Figure 1.3 and Table 1.2.

ln Figure 1.3 we can clearly see how the failure detection rate increases rapidly when the

interaction level increases. With the server application, for example, 42% ofthe failures were triggered

by only a single parameter valué, 70% by 2-way combinations, and 89% by 3-way combinations. The

detection rate curves for the other applications behave similar, reaching in some cases 100% of

detection with 4 to 6-way interactions. This means that the interaction of size six or less parameters

in these systems were causing 100% percent of the faults on the systems.

While not conclusive, these results suggest that combinatorial testing which exercises strength

interaction of size two to six can be an effective approach to software assurance.
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Figure 1.3: Fault detection at interaction levéis 1 through 6 according to the type of application

Interaction level Med Devices Browser Server NASA Datábase Network Security

1 66% 29% 42% 68% 17%

2 97% 76% 70% 93% 62%

3 99% 95% 89% 98% 87%

4 100% 97% 96% 100% 98%

5 100% 99% 96% 100% 100%

6 100% 100% 100% 100% 100%

Table 1.2: Percentage fault detection at interaction levéis 1 through 6 according to the type of

application
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1.1.3.2 Mínimum Number of Tests

Referring to the example in Table 1.1 where we have an e-commerce system with 4 components and

two different configurations for each component. ln order to fully test this system we would require

24 = 16 configurations. But, using a pairwise approach we would only need 5 tests. This pairwise

approach is presented in Table 1.3.

Client Web Server Payment Datábase

Firefox WebSphere MasterCard DB/2

Firefox Apache Visa Oracle

IE WebSphere Visa Oracle

IE Apache MasterCard Oracle

IE Apache Visa DB/2

Table 1.3: An example of a pairwise coverage

The difference in the number of tests may not sound really huge, but when the number of

components increases so does the number of tests required to make a complete test. Suppose

we had a system with 12 possible components and four possible settings each. We then need

412 = 16, 777, 216 test configurations. But, using different levéis of interactions we can clearly see

that the number of required tests are many times smaller than a full test approach. ln Table 1.4 the

number of tests required for an interaction level 2 through 6 are shown.

Interaction level Number of components Configurations per component Number of tests

2 12 4 24

3 12 4 121

4 12 4 508

5 12 4 3,064

6 12 4 14,888

Table 1.4: Number of tests required for diferent interaction levéis
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ln Table 1.4 we can observe that the number of tests when the interaction level increases,

nevertheless even when the interaction level is 6 the 14, 888 tests required are nowhere near as the

16,777,216 required to fully verify the system. Therefore, we can conclude that the advantage of

using interaction testing increases when the dimensionality ofthe problem increases as well.

1.1.3.3 Types of Combinatorial Objects

One of the combinatorial objects that can be constructed in order to perform an interaction test is

an Orthogonal Array (OA). An OA [28] is an N x k matrix with entries from a set of v distinct

symbols arranged so that, for any set of t columns of the array, each of the vl row vectors appears

equally often. The notation of an OA is as follows: OAx(N\t, k,v), where AT represents the number

of rows of the matrix. k represents the number of columns of the matrix. t represents the degree

of interaction of the parameters, and A is the number of times that each combination of size t must

appear.

Due to the excessively large number of tests that are needed when A > 1, and that there are

a lot of valúes for v and k where the OA with A = 1 does not exist, it is necessary to rely in less

restrictive structures known as: Covering Arrays.

Covering Arrays (CAs) are similar to OAs. A CA [24] of size N \s an N x k array consisting of N

vectors of length k with entries from 0, 1 v
- 1 (v is the size of the alphabet) such that every

one of the vl possible vectors of size t occurs at least once in every possible selection of t elements

from the vectors. The parameter t is referred to as the covering strength. The objective is to find

the mínimum N for which a CA(N;t,k,v) of size k exists.

The mínimum number of rows required to construct a CA for a specific valué of v, k and t is

denoted by CAN(t,k,v) [8], being this an optimal CA.

1.2 Research Goals and Contributions

The algorithms published in the literature to construct CAs can be divided in two groups, complete

and incomplete methods. Incomplete methods try to find good solutions as fast as possible, but they
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do not guarantee the optimality of the solution found. On the other hand, complete methods will

guarantee always to discover optimal solutions if they exist or prove their nonexistence given that

there are no computer time restrictions imposed.

While incomplete methods such as greedy algorithms or heuristic approaches can construct larger

instances of CAs, there are no guarantee of the quality of the solution as the solution found can be

really closer or far away of a CAN. Generating optimum CA (where N=CAN) is rea I ly important, as

it reduces the number of tests, the cost and the time expended on the software testing process. For

this reason the development of an algorithm that creates optimum CA is relevant [51]. Even though

complete methods can guarantee the optimum valué CAN, the computational effort needed grows

exponentially when the size of the problem increases, therefore, this approach is used to construct

small instances of CAs.

Even though the clear limitation of complete methods, there are recursive constructions that

use as ingredients CAs to construct larger ¡nstances, therefore if the quality of the solution for the

initial ingredient is near optimal or optimal the final solution will be good as well. These types

of constructions justifies the research of complete methods as they can guarantee to find optimal

solutions or prove their nonexistence for small instances that can then be used as ingredients of

recursive methods.

ln this work we propose to ¡mplement a complete method based on the Branch & Bound (B&B)

technique in order to construct optimal binary CA of variable strength with balanced symbols per

column. Since the whole search space to construct CAs is vNxk this B&B approach will only be

used to construct small ¡nstances.

With the aim of developing an algorithm with a good performance, several studies in different

aspects were needed. The first task was to study and implement deterministic methods reported in

the literature to construct binary covering arrays. The main goal of this task was to construct as

many CAN already reported in the literature we could so that we could find some patterns in their

structure. Secondly we studied matrix symmetries in order to reduce the search space ofthe problem

and créate some bound heuristics to improve the performance of our algorithm. Lastly, we studied

bound heuristics already published in order to measure their effectiveness in the CA construction
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problem.

Considering that the CA construction problem is known to be NP-complete [33], thus it is

unhkely to obtain optimum solutions in polynomial time. However, obtaining an optimum CA (for

small instances) is really important, as it will guarantee to minimize the number of tests needed,

reducing the time and cost of the whole software testing process. For this reason, constructing a

B&B method capable of finding a CAN, given some parameters, will prove to be very useful for

testing purposes.

1.3 Thesis Overview

This thesis is divided into 4 other chapters:

• State of the Art

• Methodology

• Experimental Results

• Conclusions and Future Works

ln the second chapter some state of the art methods for constructing CAs are reviewed. Among

them are algebraic, deterministic and non-deterministic approaches. ln the methodology chapter,

all steps that were involved in the development process of this thesis are described. ln chapter 4

experimental results using a test suite composed of 14 well known optimal binary covering arrays of

strength 3 < t < 5 taken from the literature [13, 52] are used in order to compare the behavior of

our algorithm against some methods published in the literature. ln chapter 5 the conclusions, future

works and also the contributions of this work are presented.
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1.4 Summary of the Chapter

ln this chapter a brief general context is described in order to get a better understanding of the

terminology ofthe field that this thesis work is focused on. This context is divided in 3 subsections :

relevance of software testing, types of software testing, and interaction testing. Finally the research

goals and contributions are described in terms of what is our principal objective in this work, a brief

introduction of how we solved the problem proposed in this thesis, and why the development of

this work is relevant. ln the next chapter state of the art we are going to explain in detail some

constructions that are proposed in the literature to solve the CA construction problem.



State of the art

ln this chapter the history of the CAs will be explained in detail. As well, types

of construction including, algébrate methods, polynomial methods, heuristic methods

and other methods. ln the first section of this chapter definitions and examples of

fundamental theoretical concepts are written in detail. Lastly some of the construction

methods reported in the literature for solving the covering array constructing problem

(CAC) are presented.

2.1 Definitions and Examples

2.1.1 Latin Squares

Definition A Latin Square (LS) is an n x n table filled with n different symbols in such a way that

each symbol occurs exactly once in each row and exactly once in each column.

Latin Squares are combinatorial designs very antique and vastly studied. It is believed that

Euler by 1782 was the first one to study them, and starting the XX century it was Fisher [40] who

15
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1 2 3

2 3 1

3 1 2

Table 2.1: A simple latin square example of 3 rows and 3 columns

demónstrate its utility for the control of statistical agriculture experiments and Robert Mandl in 1985

[35] applied them in software testing.

An example of a LS can be seen in Table 2.1.

The ñame Latin squares originates from Leonhard Euler, who used Latin characters as the symbols

used to construct the LS. A Latin square is said to be reduced (also, normalized or in standard form)

if its first row and first column are in natural order. For example, the Latin square in Table 2.1

is reduced because both its first row and its first column are 1,2,3 (rather than 3,1,2 or any other

order).

2.1.2 Orthogonal Latín Squares

Definition Being n a positive integer and A = [ay] and B — [6¿J] latin squares of order n. Let be

an array ofnxn with entries [(a¿J; &y]; if within this array, each of the n? pairs of symbols occurs

exactly once, then the LS A and B are orthogonal, and are denoted as: A ± B

Let us represent two LS in Table 2.2. When we list all the possible combinations we can clearly

see that all the possible n2 pairs of symbols are present without any repetition (see Table 2.3).

Table 2.2: An example of two different latin squares of 3 rows and 3 columns

(a) (b)

7 8 9

9 7 8

8 9 7

Definition A set of LS Li,L2, ..., Lm are a set of Mutually Orthogonally Latin Squares, or set of

MOLS, if for each 1 < i < j < m, L¿ and Lj are orthogonal.

The configuration of two MOLS of size 3 is presented in Table 2.3.
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1 7 28 39

29 37 1 8

38 1 9 27

Table 2.3: The configuration of two mutual orthogonally latin squares of size 3

2.1.3 Orthogonal Arrays

Definition An OA [28] is an N x k matrix with entries from a set of v distinct symbols arranged

so that, for any set of t columns of the array, each of the v* row vectors appears equally often.

The notation of an OA is as follows: OAx(N;k,v,t), where N represents the number of rows of

the matrix. The parameter k represents the number of columns of the matrix. The parameter t

represents the degree of interaction of the parameters, and A is the number of times that each

combination of size t must appear.

The first works where combinatorial objects were applied to the designs of tests, were made

through Orthogonal Arrays in disciplines like medicine, agriculture and medicine [23]. Mandl [35]

was one of the first researchers to use OA in order to test software. He used OA to test if sorting

operators on enumeration valúes are correct even when these enumeration valúes are ASCII characters

for compilers written in ADA. He stated that the use of OA yields about as much useful information

as the exhaustive approach.

A problem with OAs is that it can lead to tests excessively large when A > 1. If there exists an

OA with ¡ndex A = 1, then this OA is optimum. Nevertheless, there are a lot of valúes for v and k

where the OA with A = 1 does not exist, because of this it is necessary to rely in a less restrictive

structure knows as: Covering Arrays.

An example of an OA2(8;5,2,2) is shown in Table 2.4.
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0 0 0 0 0

1 0 0 1 1

0 1 0 1 0

0 0 1 0 1

1 1 0 0 1

1 0 1 1 0

0 1 1 1 1

1 1 1 0 0

Table 2.4: Example of an 0^2(8;5,2,2)

ln Table 2.4 we can clearly observe how all the possible combinations of 22

{(0,0), (0,1), (1,0), (1,1)} are present exactly 2 times for every pair of columns.

So that the difference in number of tests between OAs and CAs when their columns, valúes per

columns and strength remain the same, a table with some examples of these constructions will be

presented in Table 2.5. It is important to mention that the valué of A in Table 2.5, is the mínimum

valué where an OA with the valúes k,v,t can be constructed.

k v t CA OA A

3 2 2 4 4 1

11 2 2 7 12 3

19 2 2 8 20 5

4 2 3 8 8 1

12 2 3 15 24 3

16 2 3 17 32 4

6 2 4 21 80 5

16 2 4 35 256 8

Table 2.5: Table summarízing the difference of required tests between OAs and CAs
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From Table 2.5 we can conclude that the size of OAs are greater than the size of a CA (even

more when the size of t ¡ncrease). Due to this fact in terms of software testing the CAs prove to be

an easier combinatorial object to use.

2.1.4 Covering Arrays

Definition A Covering Array CA(N; t, k, v) of size N is an N x k array consisting ofN vectors of

length k (degree) with entries from an alphabet of size v, i.e., {0, 1, . . .
,
v

—

1}, such that every

one of the vl possible vectors of size t (t-wise) occurs at least once in every possible selection of

t elements from the vectors. The parameter t is referred to as the strength or level of interaction.

The mínimum N for which a CA(N; t, k, v) exists is known as the covering array number and it is

defined according to (2.1).

CAN(¿, k, v) = min{N : 3 CA(N; t, k, v)} (2.1)

Researchers publish the best upper bound known for a specific CA. Stevens [48] made a summary

of the results of strength 2, Sloane [44] presents an excellent summary of the results published for

the CA of strength 2 and 3. Sherwood [42] maintains a web page of OA and CA constructions by

permutations groups. Lastly, Hartman [21] presents a survey for CA with an uniform alphabet or a

mixed alphabet and Colbourn maintain a webpage tih the best known solutions found [13].

A CA(N;t,k,v) can be mapped to a software test suite as follows. ln a software test we have

k components, each of these has v configurations. A test suite \s ar\ N x k array where each row

¡s a test case. Each column represents a component and the valué in the column is the particular

configuration.

Lei and Tai [33] demonstrated that the problem of generating the mínimum pairwise test set

belongs to the NP class (for non-binary alphabets). Then by reduction of the problem of vértex

cover, they proved that the pair-cover problem is NP-complete. Colbourn [14] also showed that this

problem is NP-complete by reducing it from the SAT problem.
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Even though the general problem of finding a combinatorial test suite is NP [29], there are some

¡solated cases that can be solved in polynomial time [14]:

1. When the strength is 2 (t = 2) and the alphabet is 2 (v = 2). Sloane stated that this case

was solved by Rényi with an even valué of N and by Katona independently. Then, it was

completely solved by Kleitman and Spencer for all N [44].

2. When the alphabet is a power of prime v = pa, k < (pa + 1), and pa > t. This construction

was proposed by Bush [6], he used Finite Galois Fields in order to solve this case.

An example of a CA(10,5,2,3) is shown in Table 2.6.

0 0 0 0 0

0 0 0 11

0 0 10 1

0 10 0 1

0 1110

10 0 0 1

10 110

110 10

1110 0

lllll

Table 2.6: Example of an CA(10;5,2,3)

2.1.4.1 Isomorphic Covering Arrays

Definition Two Covering Arrays are isomorphic if one Covering Array can be obtained by the

permutation of rows, columns, or symbols of the other.

There are 3 types of symmetries in a CA: row symmetry, column symmetry and symbol symmetry.

The row symmetry refers to the possibility to alter the order of the rows without affecting the CA
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properties. There are N\ possible row permutations of a CA. The column symmetry refers to

permuting columns in the CA without altering it. There exist k\ possible column permutations of

a CA. ln the same way the symbol symmetry includes all the possible permutations of symbol per

column, giving a number of (v\)k isomorphic CAs that can be constructed this way. By the previous

analysis we can conclude that there are a total of N\ x k\ x (v\)k different isomorphic CAs to one

specific CA.

An example of two isomorphic Covering Arrays:

0 0 0 0

0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0

Table 2.7: An example of a CA(5;2,4,2)

0 0 0 0

1 1 1 0

1 1 0 1

1 0 1 1

0 1 1 1

Table 2.8: An isomorphic CA(5;2,4,2) with permuted rows and columns based on table 2.7

Given a CA(N;t, k,v) permuting the rows and/or columns produces an equivalent CA [24]. The

rows represent a set of test vectors, and their order is ¡rrelevant. Permuting the columns does not

affect since every subset of t columns contains all the combinations of v* symbols.

As seen the CAs in Tables 2.7 and 2.8 are isomorphic because the second Covering Array can be

produced by changing the first and last columns and changing the second and third columns.

2.1.5 Mixed Covering Arrays

The research of Cohén et al. [11] states that frequently the number of parameters for a system is

greater equal than 80 and the valúes that each parameter can take may vary. ln order to apply a
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combinatorial test suite for this kind of system, a variation of the CA must be used. This variation

is called Mixed Covering Array. On a Mixed Covering Array (MCA) the cardinality of the alphabet

in each column may vary, it implies that the parameter v will not be a scalar number, in fact the

parameter v will be a vector that contains the cardinality of each column v0,v2, v$, ...,Vk-i-

Definition Being N, k, v, t positive integers where t < k. A Mixed Covering Array of type YI/q Ví

with strength t and size N, denoted by MCA(N; k, uto vi} t), its an array A of size N xk. Being

ii, ...,i + ÍC1, ..., k, and B a sub-array of size N x t obtained by selecting the columns ¿i..it of

the MCA. There are T\£¿ v{ distinct t-tuples that can appear as rows ofB, a MCA requires that at

least appear once.

Few is known about the minimal sizes of MCA. ln [23] Hedayat and Sloane present an study about

the MCA. Sloane et al. [45] extend such work and using linear programming they obtain mínimum

cases for orthogonal arrays. Stardom[47] and Chateauneuf [7] suggest the necessity of extending

their works about CA of uniform alphabets to MCA, but, mostly of the works reported were only

for t = 2. Recently, Moura et al. [38] reported some algebraic transformations to construct MCA.

Such transformations were limited for strength 2, but they obtained the mínimum N for cases where

k < 4 and some cases where k = 5.

The vast majority of the literature corresponding to the CA applied to the design of software

testing include methods to construct them efficiently while and with the mínimum number of rows.

An example of a MCA is presented in Table 2.9.
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0 113

0 0 0 0

0 0 10

0 0 0 4

0 12 1

0 10 2

10 2 3

10 2 2

10 0 1

0 114

112 4

112 0

10 11

10 12

110 3

Table 2.9: Example of an MCA(15;4,{22, 3\ ñ1}^)

As we can see in Table 2.9 the main difference of one MCA and one CA is that the number of

symbols per column in the MCAs may vary, while in the CAs every column has the same number of

symbols.

2.2 Covering Arrays Construction Methods

The objective of constructing a Covering Array is to minimize the number of rows with the given

parameters v,k,t. There are several ways of constructing these combinatorial objects. Although,

given the complexity ofthe problem, there are few complete methods. Most of them are incomplete

methods [52] and according to Reneé Bryce et al. [5] the incomplete methods that have been more

effective are Simulated Annealing and Tabú Search.
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Grindal et al. [20] classified the methods to construct CAs as follows:

• Non-Deterministic

— Heuristic

* Automatic Efficient Test Generator (AETG)

* Simulated Annealing (SA)

-

Bio-inspired Metaheuristics (BIM)

* Genetic Algorithm (GA)

* Ant Colony Algorithm (ACÁ)

— Random

• Deterministic

- Iterative

* Test Case Based

• Constrained Array Test System (CATS)

• Eeach Choice (EC)

• Partly Pair-Wise (PPW)

• k-bound

• Anti Random (AR)

• k-perim

• Base Choice (BC)

• All Combinations (AC)

* Parameter Based

• ln Parameter Order (IPO)

- Constructed in Polynomial Time
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* OA

* CA

The full tree from Grindal et al. [20] is shown in Figure 2.1. Some ofthe construction methods

shown in Figure 2.1 will be explained in the following sections.

Combination

Strategies

Non-deterministic Deterministic

Heuristic BIM-based Rarut Iterative PolynomiaJTime

/ \ / \ / \ IN
AETG SA GA ACÁ / N^ OA CA

Test Case Parameter

„ — •*~~^S^ based v based

PPW ¿AR\BC IPO

k-bound k-perim

Figure 2.1: Classification scheme for combination strategies for constructing covering arrays

2.2.1 Constructing Optimal Covering Arrays within Polynomial Time

The construction of optimum CA in general its an NP-Complete problem [41], nevertheless there are

2 cases for which it is possible to construct optimum cases within polynomial time:

1. When the strength \s 2 (t — 2) and the alphabet is 2 (v = 2). Sloane stated that this case

was solved by Rényi with an even valué of N and by Katona ¡ndependently. Then, it was

completely solved by Kleitman and Spencer for all N [44].

2. When the alphabet is a power of prime v — pQ, k ^ (pa + 1), and pa > t. This construction

was proposed by Bush [6], he used Finite Galois Fields in order to solve this case.

2.2.1.1 Case t = 2

The polynomial algorithm follow these steps: fill the first row ofthe CA with 0's, calcúlate the total

of remaining rows following the equation 2.2, the remaining l's are calculated by column, fiV/2],



26 2.2. Covering Arrays Construction Methods

the remaining O's per column are calculated N — 1 —

\N/2~], lastly the remaining rows are filled with

the combinations of l's and O's obtained within the last steps.

" ¿ (K) <">

2.2.1.2 Case where v = pa

Bush [6] proposed a theorem to develop direct constructions through OA and Galois Finite Fields.

This theorem requires that v = pa be a power of prime and (v > t), and for the case

CAN(k,v,t) = vl for every k < v + 1. When the valué of a = 1 the construction is based in

MOLS, for the cases where a > 1 the CAs are constructed using finite fields.

2.2.2 Algebraic Transformations

2.2.2.1 TConfig

Tconfig is a tool developed by Williams and Pobert [50] that employs algebraic transformations based

on OA to construct CA of strength t = 2 and uniform alphabet. It uses the philosophy of "divide

and conquer". The theory of this construction is based on the work reported in [3] where it requires

that | v | be a power of prime.

2.2.2.2 Combinatoria! Test Services

The Combinatorial Test Services (CTS) is a software library for generation and manipulation of test

cases, it was created by Hartman and Raskin [22] for testing input data or configurations. CTS

enables the user to genérate small test suites with strong coverage properties, and perform other

useful operations for the creation of systematic software test plans.

Hartman and Raskin used a set of theorems and mathematical lemmas that allows to genérate in

polynomial time distinct type of CA constructions, some of them are optimal or near optimal. They

also deal with the testing budget problem, this problem refers to the construction of a testing array
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A of size at most b having largest possible coverage measure. The CTS package first constructs a

covering array, and then orders its columns in such a way as to maximize the incremental coverage

achieved by each new column. It does not explore all possible orderings of the columns, but rather

takes a greedy approach, selecting the next column using an algorithm whose complexity is quadratic

in the number of columns.

2.2.3 Deterministic Strategies

2.2.3.1 Automatic Efficient Test Generator

The Automatic Efficient Test Generator (AETG) its a tool originally developed by the Bellcore

company (now Telecordia), that mechanically generates efficient test sets from user defined test

requirements. It is based on algorithms that uses ¡deas from statistical experimental design theory to

minimize the number of tests needed for a specific level of test coverage ofthe input test space. AETG

has been used in Bellcore for screen testing, interoperability testing and for protocol conformance

testing. Cohén et al. [11] were the first ones to publish a description of the algorithms used in the

implementation of the AETG.

ln this algorithm a CA is constructed using the technique "one row at a time". It is important

to mention that the results are not always optimal and generally the results are not obtained within

a logarithmic time.

2.2.3.2 ln Parameter Order (IPO)

ln Parameter Order (IPO) was designed by Lei and Tai [33], it is a fast pairwise testing generator, but

it does not guarantee the best solution possible. The IPO algorithm works as follows: it generates

a pairwise test of the first two parameters, then it extends the test set to genérate a pairwise test

for the first three parameters, and this loop continúes until the requested parameters are completed.

To genérate the next vectors of the CA two steps are followed:

1. Horizontal Growth, in this step different valúes that guarantee the máximum coverage between
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the test set already constructed are added in a greedy manner. It is to consider that many ties

have to be broken consistently to ensure that the resulting test set is deterministic.

2. Vertical Growth, this step covers the remaining uncovered combinations, one at a time, either

by changing an existing test or by adding a new test. When it changes an existing test it only

modifies already established don't care positions. If there are no don't care positions a new

test is added.

A don't care position is a position within the CA that can be changed for whichever valid valué

for the selected column and it will still remain as a valid CA. ln this algorithm the don't care positions

are represented with the symbol *.

This system has two options, one is to genérate a new pairwise test set without reusing an existing

test. The other option ¡nvolves keeping the existing set and genérate additional tests, if necessary,

such that the combined test set is a pairwise test. The combined set produced by the second option

may be larger than the new set produced by the first option.

ln [32] an improved versión of this algorithm called IPOG-D is presented in which problems of

strength 2 < t < 6 can be solved.

2.2.3.3 Test Case Generation

The Test Case Generation (TCG) its an algorithm developed by Tung and Aldiwan [53]. It assumes

that there is a system S with k input parameters (Fl, F2, ..., Fk). For each parameter i, 1 < i < k

there are m(i) different valúes, ViUVi2, ..., Vim{i). It is to consider that m(i) represents the size or

cardinality ofthe vector V* which it will be represented as | Vi |. The algorithm follow these 4 steps:

1. Ascendantly sort the input parameters i with respect to their cardinality | Vi | such that

I Vi |<| Vi\<\Vk\.

2. M candidates vectors are generated such that they contain the missing combinations.

3. The candidate that presents the most missing combinations is selected.



2. State of the art 29

4. The steps 1,2,3 loops until the array of vectors contains all the possible combinations of

parameters.

This algorithm can genérate CAs and MCAs of strength t — 2. Its advantage is the quickness of

the algorithm to construct test cases guaranteeing that all combinations are present. But, in [12, 53]

is indicated that TCG sometimes maintains the accuracy of AETG, but it can perform poorly with

respect to the accuracy of AETG. ln part, the fixed ordering of factors in TCG removes a degree of

freedom that AETG exploits to certain extent.

2.2.3.4 Deterministic Density Algorithm

The Deterministic Density Algorithm (DDA) developed by Bryce et al. [5] employs the technique

one test at a time improving the results obtained by other algorithms following the same technique.

The DDA constructs one row of a covering array at a time using a steepest ascent approach. Factors

are dynamically fixed one at a time in an order based on density. New rows are continually added

until all interactions have been covered.

Four decisions must be made to instantiate this prototype:

1. Factor density, the manner in which densities are computed for factors.

2. Factor tie-breaking rule, what tie-breaking is done when two or more máximum densities for

factors are equal.

3. Level density, the manner in which densities are calculated for levéis.

4. Level tie-breaking rule, what tie-breaking is done when two or more máximum densities for

levéis are equal.

The basic principie of this algorithm is to have the least repeated combinations based on a given

configurations.
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2.2.4 Non-Deterministic algorithms

2.2.4.1 Simulated Annealing

The Simulated Annealing Algorithm(SA) first instroduced by S.Kirkpatrick [26] was inspired in

statistical mechanics, in which first melting the solid and leading to its máximum energy valué

where the atoms can move freely, then cooling it slowly, so the atoms can find the best energy valué

to form a puré crystal. If there is no slow cooling factor, then the crystal may present flaws (locally

optimal structures).

This analogy can be applied in optimization problems. The solid represents the optimization

problem, the energy represents the objective function, and the optimum valué is reached by a cooling

process, in which an initial and final temperature as well as a reduction factor is previously defined.

During the algorithm, random states are evaluated, if a state has a lower energy, then it is immediately

accepted, but if an state with a higher energy is found then according to the Boltzman distribution

it will be decided if it will be accepted or rejected. By accepting states where the energy valué is

higher, the probability of getting stuck on a local optimum is minimal.

The main parameters of the Simulated Annealing algorithm are:

1. Markov Chain Length

2. Initial Temperature

3. Final Temperature

4. Cooling Factor

5. Frozen Parameter

6. Number of Total Evaluations

7. Stop Criterion

8. Perturbation Function
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The Markov Chain is a sequence of triáis, where the probability of the outcome of a given trial

depends only on the outcome of the previous trial. ln the case of SA, a trial corresponds to a move,

and the set of outcomes is given by a finite set of neighboring states. Each move depends only on

the outcome ofthe previous attempt, so the concept of Markov chains applies. Since the number of

the trial does not affect the probabilities, it is considered homogenous.[l]

The Initial Temperature is the temperature in which the SA must start, according to the

Metrópolis Monte Cario simulation mentioned in the literature it must start in a high temperature

state, and then the temperature must be lowered slowly until the final temperature is reached.

The Final Temperature is the lower bound of the temperature, when the temperature reaches

this limit the SA algorithm ends and the best valué reached is reported.

The Cooling Factor or Reduction Factor determines how slowly the temperature is lowered. If

the valué is too high, then the algorithm ends faster, but a good solution is not guaranteed. If this

valué is too low, then the algorithm could reach to a frozen state.

The Frozen parameter tells us in how many ¡terations if no solution was accepted (better or

worse) the algorithm reaches a frozen state and ends.

The Number of Evaluations determine how many evaluations the algorithm check before exiting.

Cohén et al. [9] was the first to propose the use ofthe Simulated Annealing (SA) for the covering

array constructing problem. Their results improved the best results obtained with the one test at a

time approach.

2.2.4.2 Tabú Search

Nurmela in 2004 published a work relating to the covering construction problem using Tabú Search

(TS) [39].

TS is a general search procedure for solving combinatorial optimization problems ofthe following

general type in equation 2.3:

Minimize f'(x), subject tox €E X (2.3)
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where /' is a cost function and X is a set of variable solutions. The procedure has its roots in

the intelligent problem solving approach, found in artificial intelligence[37]. ln this matter it can be

said that there is a certain learning and the search is intelligent. ln simple terms it can be said that

TS works by moving within feasible solutions and better solutions than the current solution, but to

escape from local óptima it sometimes move to worst solutions (something like the SA).

To ensure that the process does not loops within local óptima reached in a previous iteration, the

TS stores a vector of length t as a tabú list. This tabú list is represented as a determined number

of recent moves, which can not be repeated in a certain number of ¡terations.

Unfortunately, the tabú list may forbid certain moves, such as moves that lead to a better solution

than the best one found so far. To solve this an aspiration criterion is created to cancel the tabú

status of a move if it is judged to be proven useful.

Nurmela describes his implementation of Tabú Search to construct CAs as:

1. An N x k matrix M is constructed with random valúes.

2. A random combination that is not presented within M is chosen.

3. It is checked which rows requires a simple mutation from one of its elements in order to have

the combination selected previously and it is added as a part ofthe neighborhood ofthe matrix

M.

4. The neighborhood is evaluated in terms of missing combinations, and the matrix with the least

number of missing combinations is selected. ln case of ties a random matrix within the tied

matrices is chosen.

5. This process iterates until the cost of a matrix reaches 0.

Nurmela reported new upper bounds for CAs, but the downside of his approach was that the

time required to solve some ¡nstances, as there were some cases that required even months to finish.
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2.2.4.3 Genetic Algorithms

The Genetic Algorithms (GA) are optimization techniques first popularized by Holland [25] in 1975.

The main ¡dea in this technique is based in nature, as nature itself is an optimization process where

every creature has to evolve to reach optimum or near optimum states in order to survive. So, by

mimicking this process, individuáis in optimization problems evolve to more suitable states based on

an evaluation function in order to reach optimum or near optimal states.

Much of the terminology used in this technique is taken directly from biology. The algorithm

begins with a chromosome population of size n chosen randomly, and then it proceeds through a

sequence of generations. ln each generation a new population with a higher average and máximum

fitness than the previous ones is created using 3 distinct genetic operators. The 3 genetic operators

are:

1. Selection, in this operator some chromosomes are selected through some techniques that check

the fitness of each chromosome, where the probability to select certain chromosomes with less

fitness than the previous chromosomes selected decreseas.

2. Crossover, in this operator the population is randomly partitioned into pairs of chromosomes.

The population size n is always even, so that there can be a whole number of pairs of

chromosomes. Each chromosome is considered as a parent and both parents always give

some information to their offsprings.

3. Mutation, in this operator depending on a certain probability, an offspring mutate some of its

information depending on the mutation technique used in the algorithm.

The algorithm loops until the best solution is achieved or until the defined number of generations

is reached.

According to the results applying genetic algorithms to the covering construction problem we

can conclude that there is a lot of room to improve the GA implementations. The main issue using

population based algorithms is that each individual is considered as a matrix of size N x k, the cost
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of evaluating a matrix to be a CA is N x (*), and considering a population of size n, the whole cost

of evalúate all the population is Y^o N x (*). Considering this, the time spent only evaluating the

initial population is huge compared to TS or SA.

2.2.4.4 Ant Colony Algorithm

The Ant Colony Algorithm (ACÁ) is a meta-heuristic algorithm for the approximate solution of

combinatorial optimization problems that has been inspired by the foraging behavior of real ant

colonies proposed in 1996 by Marco Dorigo et al. [16]. The structured behavior of an ant colony

is possible by a chemical substance called pheromone, which establish the best possible route from

the colony to their food source. Real ants are capable of finding the shortest trajectory from a food

source to their nest, without using visual cues by exploiting pheromone information. While walking,

ants deposit pheromone on the ground, and follow, in probability, pheromone previously deposited

by other ants . A way ants exploit pheromone to find a shortest trajectory between two points is

shown in Figure 2.2.

d)

Figure 2.2: An example of the behavior of real ants choosing a road
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Consider Figure 2.2(a): Ants arrive at a decisión point in which they have to decide whether to

turn up or down. Since they have no clue about which is the best choice, they choose randomly. It

can be expected that 50% of the ants choose at this moment the upper road and the other 50%

choose the bottom road. Figure 2.2(b) and Figure 2.2(c) show what happens in the ¡mmediately

following instants, supposing all ants walk at approximately the same speed. The number of dashed

lines represents the amount of pheromone the ants have deposited on the ground. Since going to

the bottom is shorter than taking the upper road, more ants will be passing by the bottom road, and

therefore the amount of pheromone accumulated in the bottom road exceeds the upper one. This

event can be seen in Figure 2.2(d) as more ants will take the bottom road and in a very short time

all the ants will take the same road.

The computational method follows the ant behavior by giving more pheromone to better solutions.

Shiba et al. [43] proposed the ACÁ to genérate test cases using a "one test at a time" approach. ln

their algorithm a test case can be represented as a route from a starting point to the final objective.

A given amount of ants start their travel to the final objective. Each time an ant reach to its final

objective, it deposits a certain quantity of pheromone to each point visited. When a new ant starts,

it will prefer those points where the scent of the pheromone is stronger.

2.2.5 Other Methods

The classification proposed by Grindal et al. [20] does not include exact methods. We are enlarging

this classification by adding exact methods to the classification proposed by Grindal.

The next two constructions that are going to be described in the following sections are the EXACT

method and the constraint programming. The EXACT methods uses a backtracking algorithm to

solve the CA construction problem, while the constraint programming establishes constraints that

can be solved with a SAT solver algorithm to produce the CA.

ln terms of backtracking algorithms the most popular technique is the Branch & Bound, which

is also the technique selected to solve the CA construction problem in this work.
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2.2.5.1 Branch & Bound

A B&B algorithm maintains feasible upper and lower bounds of the problem being solved, and it

terminates with a certificate that the solution obtained is optimal [2].

A B&B implementation requires two procedures. The first one is a splitting procedure that,

given a set S of candidates, returns two or more smaller sets Si, S2, . . .

, Sw whose unión covers S.

Note that the mínimum of f(x) over a specific set S is min{xi, x2, . . .

, xw}, where each Xi is the

mínimum of f(x) within the specific set. This step is called branching, since its recursive application

defines a tree whose nodes are the subsets of S.

The second tool is a procedure that computes upper and lower bounds for the mínimum valué

of f(x) within a given subset S. This step is called bounding.

The main idea of the B&B algorithm is: if the lower bound for some tree node A is greater than

the upper bound for some other node B, then A may be safely discarded from the search. This

step is called pruning, and is usually ¡mplemented by maintaining a global variable ra that records

the mínimum upper bound seen among all subregions examíned so far. Thus, any node whose lower

bound is greater than ra can be discarded.

The recursion stops either when the current candidate set S is reduced to a single element; or

when the upper bound for set S matches the lower bound. ln this way, any element of S will be a

mínimum of the function within S.

According to Kohler et al. [27] and Smith [46] B&B methods have emerged as the principal

general method for finding optimal solutions for solving discrete optimization problems. The temporal

requirements of B&B [27] usually grows exponentially or as a high degree polynomial on the problem

size. Thus, their usefulness is limited to small sized problems.

2.2.5.2 EXACT Method

Jun Yan and Jian Zhang [51] implemented a backtracking algorithm and published a tool called

EXACT (EXhaustive seArch of Combinatorial Test suites). They applied rules in order to search only

in solutions that are ordered by row and column in order to elimínate row and column symmetríes
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so that the search space of the problem was reduced.

ln order to further reduce the search space they also used a miniblock which they define as a

mbxt sub-array, starting from the construction of a CA from a fixed space occupied by this miniblock

they theoretically reduce the search space to the Equation 2.4 if the miniblock is fixed.

(niy
(24)

They also used a novel pruning technique called SCEH (The Sub-Combination Equalization

Heuristic) in order to reduce the search space. They use this technique because they noted that for

many CA each symbol appears almost the same number of times.

ln 2008 J. Yan et al. [52] published a modification to their previously published tool EXACT. ln

this modification they added a new rule. They stated that for each two rows i,j (1 < i < mb and

j > mb) of a MCA or CA, if these two rows have the same first t valúes and Hi >iex Rjt then they

swap the two rows.

2.2.5.3 Constraint Programming

Hnich et al. [24] used a Constraint Programming (CP) approach to solve the covering test problem.

They stated that imposing a constraint that each combination of parameter valúes must appear

once will introduce a huge number of variables and reification constraints. Also they stated that the

propagation of those constraints was inefficient and ineffective.

ln order to solve some of the inefficiencies of their first proposed algorithm, they designed 3 new

¡mprovements for their previous algorithm.

ln their first improvement the constraint specifies that every number in the range 0 to 2l — 1

should be presented at least once and at most 6 — 2* + 1 times in the b test vectors in the column

corresponding to the í-tuple. This proved to be more efficient but it still has a large number of

intersections, so they proposed an Integrating Model.

ln the second improvement they merge the two models by using the variables of both approaches,

linked by channeling constraints. With this approach there was an ¡ncrease in the number of variables.
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Finally the last improvement called the weakened matrix model is a modified versión of the

integrated matrix model, it was used with a SAT local search algorithm.

ln this work they demonstrated that for modérate problem sizes their approach could find an

optimal solution, and that a local search algorithm on a SAT-encoding of the CA construction

problem can find improved solutions for somewhat larger ¡nstances. One of the advantages of their

implementation is the easy handling of side constraints, on the other hand, one of the disadvantages

is the bottleneck on the size of the problems that they are able to solve.

Even though the model created by this approach its considered a complete model, Hnich et al.

[24] used an incomplete SAT solver to construct their results. Therefore, there are no guarantee of

optimality in their work. However, if a complete SAT solver is used, this approach then transforms

into a complete method.

2.3 Summary of the Chapter

ln this chapter we explained in detail how the CAs were born, starting from latin squares,

orthogonal latin squares, mutually orthogonal latin squares, orthogonal arrays and finally reaching

the construction problem we were emphasizing on, the covering arrays. We also described in general

distinct type of constructions : polynomial constructions, algebraic transformations, deterministic

constructions, non-deterministic constructions and also some other constructions. One of the last

two constructions called the EXACT method is the one used to do a comparative analysis of our

implementation. The B&B technique used in this work is also described in general terms. ln the next

chapter we will explain in detail our proposed methodology to construct balanced binary covering

arrays of variable strength.
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ln this chapter, we present the specific details that were involved in the development of

the B8¿B proposed to construct small instances of binary CA with balanced symbols per

column. As well as step by step examples in order to have a better understanding of the

techniques used and how they work.

The first approach called a New Backtracking Algorithm (NBA) was developed and

its flowchart is presented in this chapter, the NBA was able to find the best solutions

reported in the literature, but it has the main problem of the huge time required to find

a valid configuration. The second approach called an Improved Backtracking Algorithm

(IBA) tries to overeóme the disadvantages of the NBA.

3.1 A New Backtracking Algorithm (NBA)

We can represent a CA as a 2-dimensional TV x k matrix M . Each row can be regarded as a test

case and each column represents some parameter of the system under test. Each entry in the matrix

is called a cell, and we use My to denote the cell at row i (i > 0) and column j (j > 0), i.e., the

39
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valué of parameter j in test case i.

We apply an exhaustive search technique to this problem. Our algorithm is based on the Branch

& Bound technique. The main algorithm can be described as an iterative procedure as follows.

For a given matrix N x k, and a strength t, we construct the first element l belonging to the set

of all possible columns with [yj zeros and it is inserted in the first column of the partial solution

M. Then the next element Zj_i -I- 1 is constructed and if the row i is smaller than the row i + 1

and it is a partial CA then the element is inserted, otherwise it tries with the next element. If no

elements could be inserted in the current column of M, it backtracks to the last column inserted

and tries to insert a new element. When A; columns are inserted then the procedure finishes and the

CA is generated. A flow chart of this algorithm is shown in Figure 3.1.

3.2 Techniques for Improving the Efficiency of the Search

The worst time complexity of the naive exhaustive search for CA(N, k,v, t) is shown in (3.1).

This worst time complexity can be greatly reduced by eliminating all the possible isomorphic CAs.

There are 3 types of symmetries in a CA: row symmetry, column symmetry and symbol symmetry.

The row symmetry refers to the possibility to alter the order of the rows without affecting the

CA properties. There are N\ possible row permutations of a CA. The column symmetry refers to

permuting columns in the CA without altering it. There exist k\ possible column permutations of

a CA. ln the same way the symbol symmetry includes all the possible permutations of symbol per

column, giving a number of (v\)k isomorphic CAs that can be constructed this way. By the previous

analysis we can conclude that there are a total of N\ x k\ x (v\)k number of symmetries in a CA.

An example of two isomorphic CAs is shown in Table 3.1.

The covering array in Table 3.1(d) can be produced by the following steps over
the covering array

in Table 3.1(a): exchanging the symbols of the first column (Table 3.1(b)), then exchanging the
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Table 3.1: An example of how to construct isomorphic covering arrays

(a) (b) (c) (d)

0 0 0 0

0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0

1 0 0 0

1 1 1 1

0 0 1 1

0 1 0 1

0 1 1 0

1 1 1 1

1 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 1 1 1

1 0 0 0

0 0 1 1

0 1 1 0

0 1 0 1

first and second rows (Table 3.1(c)), finally exchanging the third and fourth columns.

The searching of only non-isomorphic CAs can significantly reduce the search space, symmetry

breaking techniques have been previously applied in order to elimínate the row and column symmetries

in [52] by Yan and Zhang. However, they only proposed an approach to elimínate row and column

symmetries, and the symbol symmetries were not ¡ncluded. ln the following sections we will describe

the symmetry breaking techniques that we applied within our backtracking algorithm to search only

over the non-isomorphic CAs.

3.2.1 Symmetry Breaking Techniques

ln order to elimínate the row and column symmetries in our new backtracking algorithm the constraint

that within the current partial solution M the column j must be smaller than the column j + 1, and

the row i must be smaller than the row i + 1.

As we have mentioned above a CA(N;t,k,v) has N\ x k\ row and column symmetries. This

generates an exponential number of isomorphic CAs. Adding the constraints mentioned above we

elimínate all those symmetries and reduce considerably the search space. Another advantage of this

symmetry breaking technique ¡s that we do not need to verify that the columns are ordered, we

only need to verify that the rows are still ordered as we insert new columns. This is because we are

generating an ordered set of columns such that the column l is always smaller than the column 1+ 1.

Moreover, we propose a new way of breaking the symbol symmetry in CAs. We have observed,

from previously experimentation, that near-optimal CAs have columns where the number of O's and

l's are balanced or near balanced. For this reason we impose the restriction that through the whole
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process the symbols in the CAs columns must be balanced. ln the case where N is not even, the

number of O's must be exactly |_f J and the number of l's |_f J + 1- As long as we know this

is the first work in which the symbol symmetry breaking is used. ln Table 3.2 an example of our

construction is shown.

Table 3.2: Example of the current partial solution M

l Z + l 1 + 2 Z + 3

0 0 0 0

0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0

after inserting 4 columns

ln Table 3.2 we can see clearly that the next column generated is automatically lexicographically

greater than the previous one, so we do not need to verify for the column symmetry breaking rule.

Even though that in Table 3.2 the rows are ordered as well, it does not happen in general so we

still have to check that the rows remain ordered for each element that we try to insert in the partial

solution M.

An example of invalid moves where the rows in the partial solution M does not necessarily are

ordered is shown in Table 3.3

The Table 3.3 (a) its the first matrix accepted, as we can see it is balanced in number of symbols

per column, and it is lexicographically ordered by columns and rows. But if we observe the Table 3.3

(b) and Table 3.3 (c), those two configurations are not valid as the rows are not lexicographically

ordered. Is not until the move to Table 3.3 (d) that the rows are lexicographically ordered and the

algorithm can continué to the next step the Partial t-Wise Verification.

3.2.2 Partial t-Wise Verification

Since a CA of strength t - 1 is present within a CA of strength t we can bound the search space

more quickly and efficiently if we partially verify for a CA instead of waiting until all k columns are

inserted. We can test the first t- 1 columns with strength i, where i is the current element inserted.
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and when i is greater or equal to t then is tested with strength t. It is important to remark that a

complete CA verification is more expensive in terms of time,1 than making the partial evaluations

described above due to the intrinsic characteristics of the backtracking algorithm.

A detailed example of partial t-wise verification is presented in Table 3.4.

From Table 3.4 we can make the following observations: in this example the objective is to find

a CA(8;4,2,3), but the next valid moves from Table 3.4 (a) through Table 3.4 (c) when applying

the partial t-wise verification the 4'/i column does not produce a valid CA. It is not until the matrix

reaches the configuration seen in Table 3.4 (d) that the matrix M produces the CA(8;4,2,3).

3.2.3 Fixed Block

The search space of this algorithm can be greatly reduced if we use a Fixed Block (FB). We define

a FB as matrix of size N and length t in which the first [(JV~"
^
j rows are filled with O's, then a

CA of strength t, k = t and N = v* is inserted. This CA can be easily generated (in polynomial

time) by creating all the v* binary numbers and listing them in order. An example of a CA(8;3,3,2)

is shown in Table 3.5. Finally, the last \^N~V '~\ rows are filled with l's. It can be easily verified that

in a FB the rows and columns are already lexicographically ordered. This FB is construct in this way

in order to preserve the symmetry breaking rules proposed in Sect. 3.2.1 and is used to initialize our

algorithm as shown in Figure 3.1.

This type of construction has its advantages and disadvantages, some of them are:

• Advantages

1. The search space its reduced as it only checks balanced CAs.

2. The matrices are strictly lexicographically ordered by row and column.

3. It is partially verified to be a CA to reduce the computational effort.

4. The CAs are evaluated in an incremental way.

• Disadvantages

^he computational complexity of making a full verification of a CA(N;t,k,v) is TV x (f)
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1. For every new column inserted it need to verify if the new column meet the ordered by

row criteria.

2. The FB its not the best initialization possible so it has to backtrack most ofthe times to

the first t columns.

ln order to elimínate these disadvantages we proposed a new construction inspired by a work of

Karen Meagher, this construction will guarantee to construct matrices ordered by row and column

automatically. The objective to introduce this construction is to rid of the time validating if the

matrix is still ordered by row.

3.3 Improved Backtracking Algorithm (IBA)

The first step in the IBA is to identify new rules in order to apply valid symbol changes without

altering the lexicographically ordered properties of the matrix.

Below is an example ofthe initialization in order to search a CA(12,11,3,2), as proposed in section

3.2.3 the first 3 columns are constructed as seen in Table 3.6.

The first step is to divide in blocks of equal and different rows. This will help to do symbol

changes without altering the lexicographically ordered properties. ln this algorithm an equal counter

starting with 1 will represent all the first block of equal rows, after a different row is reached the

counter is increased and the algorithm continúes. For a row that has no equal rows it is represented

with O's. Table 3.7 represent a matrix with the equal counter (ECM) for each column.

After creating the matrix of equal counters a simple rule applies. Within a block of equal rows

there can not be a 0 after a 1, this will guarantee that the rows will remain ordered. Now in order to

guarantee the lexicographically ordered by column rule, the only valid moves are to try to move the

last 0 in a column to the next valid position below it. ln order to genérate the next possible column,

the first step is to copy the i — 1 column into the i column. After copying it we try to move the

last 0, if it can not be moved, then the next 0 is searched and tried to moved, and if no O's can be

moved then it backtracks to the last column, this process ¡terates until a valid column is reached.
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ln Table 3.8 the next valid move for the 4th column is detailed in these steps: it first copies the

3rd column to the next column, then in the current column the last zero is tried to push downwards

following the structure in Table 3.7 in order to maintain a matrix lexicographically ordered by row

and column.

As we can see maintaining these simple rules we can make direct movements that guarantee that

the matrix is lexicographically sorted by rows and columns. Adding the previous techniques described

in section 3.2 is not complicated as the construction is still generated column by column and the

partial t-wise verification still applies. The previous example in fact has the columns balanced and if

the algorithm is followed, the number of O's and l's will remain the same for each column.

Even though it is really simple to follow these rules, there are two different cases and a special

case that needs to always be verified in order to guarantee that the full search space is verified in

order to assure that our algorithm is complete. This two cases and the special case will be described

in the following sections.

3.4 Special Cases for the IBA

There are two cases that can occur when creating the next valid move via the structure ofthe equal

counters. The first case is when the 0 selected of an specific column belongs to a block of equal

rows. The second case is the opposite when the 0 that is going to be moved corresponds to a block

of different rows.

Using the structure of equal counters in Table 3.7 an example of the two cases will be explained

in detail. ln the first case when the 0 to be moved belongs to a block of equal rows, in order to

move it to the next valid position, it needs to be verified that its final destination corresponds to a

block of a different enumeration of the structure of equal counters. If there is no valid move, the

next 0 in the column is selected. This process ¡terates until a valid move is reached or until there

are no O's that can be moved.

An example where the 0 corresponds to a block of equal rows and it can not be moved is shown

in Table 3.9. Refer to Table 3.7 to check the valúes of the equal counters. ln this example we can
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see that in Table 3.9 (a) the last zero is in italic, and it corresponds to a block of equal rows and

there is no group with a different enumeration below it, this can be checked in the structure of equal

counters in Table 3.7. Since the last zero can not be moved, the next zero is marked in bold font.

This zero corresponds to a group of different rows and there is no restriction to move it, so the next

valid move can be seen in Table 3.9 (b). It is important to mention that both cases were covered in

this example, as the zero in bold font was in a group of different rows.

The special case mentioned at the beginning of this section needs to be checked every time a

zero that is not in the last position is moved, ln order to check within all the search space of the

problem to guarantee that this algorithm remains as a complete method, every time a zero is moved

two steps are followed : first if the position of the original zero is part of a block of equal rows, all

the rows below that belongs to the same block are filled with l's, then all the zeros below the initial

position of the zero moved below need to be rearranged such that after the last symbol 1 inserted

the remaining zeros must be listed subsequently, after there are no zeros remaining the column is

filled with l's.

An example of this special case where the selected zero belongs to a block of different rows is

shown in Table 3.10.

As seen in Table 3.10 (a) the last two zeros in italic can not be moved, the zero in bold font is

the one selected instead and it belongs to a group of different rows. Note that in Table 3.10 (b) the

position of the zero in bold font of Table 3.10 (a) is changed to 1 and below this position are the 3

remaining O's in italic. The remaining positions ofthe column were filled with l's. After doing these

steps we can clearly observe that the partial solution M is still lexicographically ordered by row and

column.

The next example will involve the special case where the selected zero belongs to a block of equal

rows. This example will be shown in Table 3.11.

As seen in Table 3.11 (a) the last four zeros in italic can not be moved, the zero in bold font is

the one selected instead and it belongs to a group of equal rows. Note that in Table 3.11 (b) the

position ofthe zero in bold font of Table 3.11 (a), and because it belongs to a block of equal rows,

the row below it was filled with l's. Then the remaining five O's in italic were added. The remaining
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positions ofthe column were filled with l's. After doing these steps we can clearly observe that the

partial solution M is still lexicographically ordered by row and column.

After seeing these examples, a flowchart of the improved versión of the algorithm is shown in

Figure 3.2.

The main difference in the IBA and the NBA is very clear seeing the flowcharts of Figure 3.1

and Figure 3.2, the loops made in the NBA until a valid matrix M were removed in the IBA with

the construction of a matrix of equal counters (ECM). And the computational time expended in

updating the ECM is of order O(N).

3.5 Summary of the Chapter

ln this chapter we explained that our goal in this methodology was to search within the non-isomorphic

search space of covering arrays. We explained the techniques used to develop the NBA and also the

new methodology proposed to develop the IBA. Two flow charts showing the description of each

algorithm were shown in order to give a general idea of our implementation and also some examples

of our constructions were presented step by step. ln the next chapter the computational results for

both the NBA and the IBA will be given in detail.
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r n

Genérate the subset of

all the columns with

LfJ zeros-

I

Construct a

Block, curr=t.

Fixed

E

Insert the column l + 1

in position curr in the

matrix M.

curr=curr-|-l.

Backtrack to the last

column. curr=curr-l.

Figure 3.1: Flow chart of the new backtracking algorithm.
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Table 3.3: Example of invalid moves in the partial solution M when the rows does not remain ordered

(a) (b) (c)

l l + l 1 + 2 1 + 3

0 0 0 0

0 0 0 0

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

0 0 0

0 1 1

1 0 1

1 1 1

1 1 1

1 1 0

/ i + 1 1 + 2 1 + 3

0 0 0 0

0 0 0 0

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

0 0 0

0 1 1

1 0 1

1 1 1

1 1 0

1 1 1

l i + 1 1 + 2 Z + 3

0 0 0 0

0 0 0 0

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

0 0 0

0 1 1

1 0 1

1 1 0

1 1 1

1 1 1

(d)

l i + 1 i + 2 Í + 3

0 0 0 0

0 0 0 0

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

0 0 1

0 1 0

1 0 0

1 1 1

1 1 1

1 1 1



50 3.5. Summary of the Chapter

Table 3.4: Example of backtracks when the current column in the partial solution M is not a covering

array

(a) (b) (c)

l i + 1 1 + 2 i + 3

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 0

l i + 1 i + 2 i + 3

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

l i + 1 i + 2 i + 3

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 0

(d)

i i + 1 i + 2 i + 3

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

Table 3.5: A CA(8;3,3,2) example.
0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1
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0 0 0

0 0 0

0 0 0

0 0 1

0 1 0

0 1 1

0 0

0 1

1 0

1 1

1 1

1 1

Table 3.6: Example ofthe initialization ofthe IBA using a CA(12;3,3,2).

1 1

1 1

1 1

1 0

2 0

2 0

2 3 0

2 3 0

2 4 0

2 4 2

2 4 2

2 4 2

Table 3.7: The scheme of the equal counters of table 3.6.
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Table 3.8: Next valid move for the 4t/l column ofthe partial solution M

(a) (b)

0 0 0 0

0 0 0 0

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

0 0 0

0 1 1

1 0 1

1 1 0

1 1 1

1 1 1

0 0 0 0

0 0 0 0

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

0 0 0

0 1 1

1 0 0

1 1 1

1 1 1

1 1 1

Table 3.9: Next valid move for the 4th column ofthe partial solution M when the 0 corresponds to

a block of equal rows

(a) (b)

0 0 0 0

0 0 0 0

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

0 0 1

0 1 1

1 0 0

1 1 0

1 1 1

1 1 1

0 0 0 0

0 0 0 0

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

0 0 1

0 1 0

1 0 1

1 1 0

1 1 1

1 1 1
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Table 3.10: Next valid move for the 4th column of the partial solution M when the zero moved is

not the last one and belongs to a block of different rows

(a) (b)

0 0 0 0

0 0 0 0

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

0 0 1

0 1 1

1 0 1

1 1 0

1 1 0

1 1 1

0 0 0 0

0 0 0 0

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

0 0 0

0 1 0

1 0 1

1 1 1

1 1 1

1 1 1

Table 3.11: Next valid move for the 4th column of the partial solution M when the zero moved is

not the last one and belongs to a block of equal rows

(a) (b)

0 0 0 0

0 0 0 1

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 0

0 0 0

0 1 0

1 0 1

1 1 1

1 1 1

1 1 1

0 0 0 0

0 0 0 0

0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 1

0 0 1

0 1 1

1 0 0

1 1 0

1 1 0

1 1 0
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Construct

a Fixed Block, curr=t
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Insert the column i + 1

in position curr in the

matrix M and update

the ECM.

curr=curr+l.

Backtrack to the last

column. curr=curr-l.

Figure 3.2: Flow chart of the improved backtracking algorithm.



4
Experimental Results

This chapter will present some comparisons between methods published to construct CAs

in the literature and our algorithms proposed in Chapter 3. A table and a graph detailing

the results are included in each one of the tests performed. The comparative criteria

used was the one commonly used in the literature the best N, and for cases where the

best N was achieved for both algorithms, we used as a criteria the computational effort

expended in order to reach the solution.

4.1 Computational Results

4.1.1 Test Instances

ln this chapter, we present a set of experiments used to evalúate the performance of the 2 proposed

algorithms from Chapter 3. The algorithms were coded in C and compiled with gcc without

optimization flags. They were run sequentially into a CPU Intel Core 2 Dúo at 1.5 GHz, 2 GB

of RAM with Linux operating system.

The test suite used for the experimentation is composed of 14 well known binary covering arrays
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of strength 3 < t < 5 taken from the literature [13, 52].

4.1.2 Comparative Criteria

The main criterion used for the comparison is the same as the one commonly used in the literature:

the best size N found (smaller valúes are better) given fixed valúes for k, t, and v. When both

algorithms reached the best N reported in the literature, the next criteria used is the computational

effort. The timing of the algorithms were taken using the UNIX command time.

4.1.3 Comparison Between NBA and EXACT

The purpose of this experimentation is to carry out a performance comparison of the upper bounds

achieved by our NBA with respect to those produced by the EXACT procedure [52]. For this

comparison we have obtained the EXACT algorithm from the authors. Both algorithms were run in

the computational platform described at the beginning ofthe chapter.

Table 4.1 displays the detailed computational results produced by this experiment. The first two

columns in the table indícate the degree k, and strength t of the instance. Columns 3 and 5 show

the best solution N found by B&B and the EXACT algorithms, while columns 4 and 6 depict the

computational time T, in seconds, expended to find those solutions.

Table 4.1: Performance comparison between NBA and EXACT.

t

NBA EXACT

k N T N T

4 3 8 0.005 8 0.021

5 3 10 0.005 10 0.021

6 3 12 0.008 12 0.023

7 3 12 0.018 12 0.024

8 3 12 0.033 12 0.023

9 3 12 0.973 12 0.022

10 3 12 0.999 12 0.041

11 3 12 0.985 12 0.280

12* 3 15 1090.800 15 1100.400

5 4 16 0.020 16 0.038

6 4 21 95.920 21 0.266

6 5 32 102.000 32 0.025

Average 107.64 91.76
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Figure 4.1: Graphic of performance between NBA and EXACT

From the data presented in Table 4.1 we can make the following main observations. First, the

solution quality attained by the NBA is very competitive with respect to that produced by the state-

of-the-art procedure EXACT. ln fact, it is able to consistently equal the best-known solutions attained

by the EXACT method (see columns 3 and 5). Secondly, regarding the computational effort, one

observes that in this experiment the EXACT algorithm consumes slightly more computational time

than B&B for 6 out 12 benchmark instances (shown in boldface in column 4).

We would like to point out that the ¡nstance marked with a star in Table 4.1 was particularly

difficult to obtain using the EXACT algorithm. We have tried many different valúes for the parameter

SCEH (Sub-Combination Equalization Heuristic), and only using a valué of 1 the EXACT tool was

able to find this ¡nstance consuming more CPU time than our NBA algorithm. For the rest of the

experiments we have used the default parameter valúes recommended by the authors.

A graphic showing the performance of both algorithms in a logarithmic scale and for strength

t = 3 is presented in Figure 4.1.

We can conclude with respect ofthe results shown in Figure 4.1, that our NBA performed better
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against the EXACT algorithm in smaller ¡nstances, but when the instances started to grow as seen

in Table 4.1, the EXACT algorithm outperformed our NBA.

4.1.4 Comparison Between our IBA and the Exact

Considering the last results we developed a new versión ofthe algorithm described in the last chapter.

The purpose of this experiment is to carry out a performance comparison between the improved

versión of our backtracking algorithm (IBA) and the EXACT procedure [52]. We will make the same

comparisons as in Table 4.1 using the same architecture described in the beginning of this chapter.

This comparison is presented in Table 4.2 and we can make the following main observations. First,

the solution quality attained by the improved versión of the backtracking algorithm still obtain the

best results achieved by our initial algorithm and the EXACT.

Secondly, in terms of computational effort, we can clearly observe that this versión ofthe algorithm

outperforms our first algorithm the NBA and also consumed slightly less computational time in more

cases than the EXACT algorithm. ln fact, EXACT produces CAs using in average 86.596% more

computational resources than our improved versión of the algorithm.

Table 4.2: Performance comparison between the improved B&B and EXACT.

t

IBA EXACT

k N T N T

4 3 8 0.004 8 0.021

5 3 10 0.004 10 0.021

6 3 12 0.005 12 0.023

7 3 12 0.012 12 0.024

8 3 12 0.012 12 0.023

9 3 12 0.420 12 0.022

10 3 12 0.200 12 0.041

11 3 12 0.104 12 0.280

12* 3 15 17.145 15 1100.400

5 4 16 0.003 16 0.038

6 4 21 44.067 21 0.266

6 5 32 0.003 32 0.025

Average 5.164 91.760

A graphic showing the performance of both the IBA and the EXACT algorithms in a logarithmic

scale for strength t = 3 is presented in Figure 4.2.
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Figure 4.2: Graphic of performance between IBA and EXACT

We can conclude with respect of the results shown in Figure 4.2, that the overall performance of

our IBA was better compared to the performance ofthe EXACT, but there are some peaks in Figure

4.2 that reflect some ¡nstances that were harder to solve.

4.1.5 Comparison Between IBA and IPOG-F

ln a third experiment we have carried out a performance comparison of the upper bounds achieved

by our IBA with respect to those produced by the state-of-the-art procedure called IPOG-F [19].

Table 4.3 presents the computational results produced by this comparison. Columns 1 and 2

indícate indicates the degree k, and strength t of the instance. The best solution N found by our

B&B algorithm is depicted in column 3, while that reached by the IPOG-F algorithm is presented

in column 4. Finally, the difference (AN) between the best result produced by our IBA algorithm

compared to that achieved by IPOG-F is shown in the last column.

From Table 4.3 we can clearly observe that in this experiment the IPOG-F procedure [19]

consistently returns poorer quality solutions than our IBA. Indeed, IPOG-F produces covering arrays
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Table 4.3: Performance comparison between the algorithms IBA and IPOG-F.

t

N

IBA

Time

k IBA IPOG-F AN IPOG-F

4 3 8 9 -1 0.004 1.724

5 3 10 11 -1 0.004 1.560

6 3 12 14 -2 0.005 1.623

7 3 12 16 -4 0.012 1.568

8 3 12 17 -5 0.012 1.720

9 3 12 17 -5 0.420 1.672

10 3 12 18 -6 0.200 1.487

11 3 12 18 -6 0.104 1.750

12 3 15 19 -4 17.45 1.764

13 3 16 20 -4 975.91 1.875

5 4 16 22 -6 0.003 1.280

6 4 21 26 -5 44.067 1.393

7 4 24 32 -8 1350.267 1.446

6 5 32 42 -10 0.003 1.487

Average 15.29 20.07 -4.79

which are in average 31.26% worst than those constructed with B&B.

A graphic showing the performance of both the IBA and the IPOG-F algorithms in terms of

solution quality and for strength t = 3 is presented in Figure 4.3.

Figure 4.3 shows how the performance in terms of the solution quality. Our IBA can find the

best solutions reported in the literature, while the IPOG-F algorithm in some ¡nstances was really far

away from the best solution.

4.1.6 Comparison Between NBA and IBA

The purpose of this experiment is to carry out a performance comparison between the improved

versión of our backtracking algorithm (IBA) and the first approach called (NBA). We will make the

same comparisons as in Table 4.1 using the same architecture described in the beginning of this

chapter. This comparison is presented in Table 4.4 and we can make the following main observation.

ln terms of computational effort, we can clearly observe that this versión ofthe algorithm outperforms

our initial versión the NBA algorithm. ln fact, NBA produces CAs using in average 102.476% more

computational resources than our improved versión of the algorithm.

A graphic showing the performance of both the IBA and the NBA algorithms in a logarithmic
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Figure 4.3: Graphic of performance between IBA and IPOG-F

scale and for strength t — 3 is presented in Figure 4.4.

We can conclude with respect of the results shown in Figure 4.4, that our IBA outperform our

first approach of the backtracking algorithm.

4.1.7 Comparison Against the Best Known Solutions

With respect to the quality of the solution Colbourn et al. [15] has recently written an article that

establishes upper and lower bounds and in some cases the CAN for múltiple alphabets and strength.

Regarding our work the results for binary alphabet reported by Colbourn et al. [15] will be shown in

Table 4.5 and also our best TV found with our program will be presented in the table as well.

What we can see in Table 4.5 is that in all the cases where the optimum vale was imposed, our

B&B reached the same result as Colbourn et al. [13], and for the case where k = 13 and k = 14 for

strength 3, the optimum vale oscillates between 15 and 16, but our B&B could not found a results

with N = 15, but it could find a result with AT = 16. With this result we can state that there is no

balanced CA(15, 13,3,2) or CA(15, 13,3,2) and with great probability the optimum case \s N = 16.
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Table 4.4: Performance comparison between tile IBA and the NBA.

t

IBA NBA

k N T N T

4 3 8 0.004 8 0.005

5 3 10 0.004 10 0.005

6 3 12 0.005 12 0.008

7 3 12 0.012 12 0.0018

8 3 12 0.012 12 0.033

9 3 12 0.420 12 0.0973

10 3 12 0.200 12 0.0999

11 3 12 0.104 12 0.985

12* 3 15 17.145 15 1090.800

5 4 16 0.003 16 0.020

6 4 21 44.067 21 95.920

6 5 32 0.003 32 102.000

Average 5.164 107.564

4.2 Summary of the Chapter

ln this chapter the experiments with our first versión and improved versión of the algorithm (NBA

and IBA) were performed. We assessed our algorithms against the results ofthe EXACT algorithm

and the famous IPOG-F algorithm, our proposed methodology proved to be very competitive in

terms of quality of solution and computational time. Comparing our algorithms against the IPOG-F

algorithm, the quality of the solution achieved with our algorithm were in most of the cases better.

Lastly, we compare our NBA algorithm against our IBA with good results, proving the fact that for

all the ¡nstances our IBA performed better than our NBA. The last section showed a comparison of

the best known solutions for various strengths and in all of them we achieved the same results. And

an important fact was that we demónstrate that there were no balanced solution for A; = 13 and

k = 14 for strength t = 3 with N = 15. ln the next chapter we will discuss in detail our work, and

also point out our limitations and future work.
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Figure 4.4: Graphic of performance between IBA and NBA

k t Colbourn B&B

3 3 8 8

4 3 8 8

5 3 10 10

6 3 12 12

7 3 12 12

8 3 12 12

9 3 12 12

10 3 12 12

11 3 12 12

12 3 15 15

13 3 15-16 16

14 3 15-16 16

4 4 16 16

5 4 16 16

6 4 21 21

7 4 24 24

5 5 32 32

6 5 32 32

Table 4.5: Lower and upper bounds for binary alphabet



Conclusions and Future work

ln previous chapters we have described the development of the proposed methodology,

its implementation, and the results obtained with the algorithm proposed. This final

chapter contains a general summary of the work presented previously, a brief discussion

about the methodology, the difficulties in its development, and its limitations. ln the

last section some lines of future work are suggested related to our approach.

5.1 Summary of the Thesis

We proposed a new backtracking algorithm the NBA that implements some symmetry breaking

techniques to reduce efficiently the search space. Additionally, we have presented a new technique

for breaking the symbol symmetry which allow to reduce considerably the size of the search space

as well as an algorithm to construct automatically lexicographically ordered matrices by rows and

columns (IBA). Experimental comparisons
were performed and they show that our IBA is able to

match some ofthe best-known solutions for small ¡nstances of binary CAs, expending in some cases

less computational time compared to another existent backtracking algorithm called EXACT. We
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have also carried out a comparison ofthe upper bounds achieved by our backtracking algorithm with

respect to those produced by a state-of-the-art procedure called IPOG-F. ln this comparison the

results obtained by our backtracking algorithm, in terms of solution quality, are better than those

achieved by IPOG-F for all the studied ¡nstances. Finding optimum solutions for the CA construction

problem in order to construct economical sized test-suites for software interaction testing is a very

challenging problem. We hope that the work reported in this thesis could shed useful light on some

important aspects that must be considered when solving this interesting problem. We also expect

the results shown in this work incite more research on this topic. For instance, one fruitful possibility

for future research is the design of new pruning heuristics in order to have the possibility to genérate

larger ¡nstances of CAs.

5.2 Discussion of the Methodology

The key aspects of this work are: 1) the rules in order to efficiently construct balanced and

lexicographically ordered matrices, and 2) the guarantee to find a covering array or prove their

nonexistence.

Our proposal has some advantages and disadvantages, among them:

• Advantages:

1. It efficiently generates balanced and ordered matrices without the need to verify if its still

ordered every time there are some changes in the symbols.

2. It partially verifies for covering arrays.

• Disadvantages:

1. It can not work with larger scale cases given that the search space grows exponentially.

2. It is not always the best initialization.
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5.3 Challenges Confronted in the Development of this

Thesis

During the development of the proposed methodology, we face up to some difficulties, among them:

• The construction of the algorithm to guarantee the construction of automatically

lexicographically ordered matrices by rows and columns.

• Finding rules to efficiently break the symbol, row and column symmetry.

5.4 Scope of the Proposed Approach

The major research limitations are:

• Even though the search space its reduced, being an exact method requires much computational

time, therefore generating larger instances can be done if there is no time restrictions imposed.

5.5 Future work

ln this section, we describe some lines of future work and we present some preliminary ideas about

how they can be tackled.

1. Improvement ofthe current methodology. The following issues must be considered:

• Finding new pruning techniques that can be added in order to reduce the search space

to construct larger ¡nstances or valídate its optimality.

• Genérate an efficiently initial solution, such that no relevant search space has been skipped

and can continué to be called a complete method.

• Perform a mathematical theorem in order to prove that there is always a with balanced

symbols per column.
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