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Resumen

Uso de Modelos Surrogados en Algoritmos Evolutivos

Multiobjetivo

por

Gerardo Montemayor García
Maestro en Ciencias del Laboratorio de Tecnologías de Información, CINVESTAV-Tamaulipas

Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 2011

Dr. Gregorio Toscano Pulido, Director

Los Algoritmos Evolutivos (AEs) son metaheuristicas inspiradas que han sido exitosamente utilizadas

para resolver problemas de optimización multiobjetivo (POMs). Cuando estos problemas son

computacionalmente costosos, pueden resultar intratables incluso por estas metaheuristicas. Por lo

tanto se necesitan estrategias adicionales con el fin de acelerar el tiempo de respuesta de los AEs. Una

estrategia comúnmente utilizada ha sido reemplazar el problema original por un modelo surrogado

(metamodelo). Sin embargo, a pesar de su éxito, muy pocas comparaciones entre modelos surrogados

han sido reportadas en la literatura especializada. En esta tesis, se compararon empíricamente

cuatro técnicas de metamodeladocon el fin de elegir el enfoque más adecuado para ser combinado

un algoritmo evolutivo multiobjetivo. Los resultados de este estudio comparativo hicieron posible

proponer un nuevo algoritmo llamado Metamodeling Assisted Subpopulation Search Algorithm

(MASSA). MASSA realiza una búsqueda en subpoblaciones, ayudada de modelos surrogados.

Los resultados indican que el enfoque propuesto necesitó un número relativamente bajo para

converger al verdadero frente de Pareto de los problemas utilizados, manifestando con esto, que

es una alternativa viable para tratar con problemas costosos de optimización multiobjetivo. Sin

embargo, este algoritmo carece de una metodología para seleccionar a priori el modelo surrogado

utilizar. Por ello, se propone una versión mejorada del MASSA que selecciona automáticamente la

técnica de metamodelado a utilizar en un momento dado: The Tune-Adaptive MetamodelingAssisted

Algorithm (TAMAAL). Los resultados indican que este último enfoque mejora tanto a MASSA, como

al NSGA-II en ocho problemas multiobjetivo tomados de la literatura especializada.
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Abstract

On the Use of Surrogated Models in Multiobjective
Evolutionary Algorithms

by

Gerardo Montemayor García
Master of Science from the Information Technology Laboratory, CINVESTAV-Tamaulipas

Research Center for Advanced Study from the National Polytechnic Institute, 2011

Dr. Gregorio Toscano Pulido, Advisor

Evolutionary Algorithms (EAs) are bioinspired metaheuristics that have been successfully applied

to solve multiobjective optimization problems (MOPs). When these problems are computationally

expensive, they can remain intractable even by these metaheuristics. Therefore, it is necessary

to employ an additional strategy in order to improve the response time of EAs when optimizing

these expensive problems. Replacing the original problem with a surrogate model has been an

usual strategy for time reduction. However, despite its success, few comparison among surrogate

models for MOPs have been reported in the specialized literature. Additionally, only few works use

simultaneously more than one surrogate model in their proposals. ln this thesis, four metamodeling

techniques were compared empiricallywith the aim to identify advantages and drawbacks of each

metamodeling technique in order to choose the most suitable approach to be combined with

multiobjective evolutionary algorithms. Results from this comparison made possible to propose a

novel algorithm called Metamodeling Assisted Subpopulation Search Algorithm (MASSA). MASSA

performs a subpopulation search enhanced by a surrogate technique. Results indicate that the

proposed approach is a viable alternative to handle expensive MOPs since it needed a low number

of evaluations in order to converge to the true Pareto front of the tested problems. However, this

algorithm lacks of a methodology to select a priori the surrogate model to be used. Therefore, an

improved versión of MASSA that can select automatically the metamodeling technique to be used

at a given time is proposed. Results indícate that the latter approach outperformed both, the former

approach and the NSGA-II on eight multiobjective problems taken from the specialized literature.
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ANOVA Analysis of Variance
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1
Introduction

1.1 Introduction

Optimization is the procedure of finding and comparing feasible solutions until no better solution can

be found [Deb, 2001]. The solutions are considered good or bad in terms of an objective, which is

often the product quality, the cost of fabrication, the shape of some structures, among other factors.

Although many applications in the field of optimization only consider a single objective, most real

world problems have different objectives that need to be optimized simultaneously
1

Therefore,

when optimizing this sort of problems, the optimum term is redefined to find a set of good trade-off

solutions where each one is an efficient solution to the problem.

Since the early 1950s, the Operations Research community has proposed several alternatives for

solving multiobjective optimization problems. However, these classical optimization methods usually

find (at most) one solution on each simulation run, moreover, when the search space is large, rugged,

1Also known as multiobjective optimization problems (MOPs).

1



2 1.2. Motivation and hypothesis

highly restricted and the functions are not differentiable, these techniques are not effective.

Evolutionary Algorithms2 are bio-inspired metaheuristics that have been successfully used to

solve such problems. The main advantage of these algorithms is their ability to find múltiple efficient

solutions in one single simulation run. Thus, EAs are an ideal alternative for solving MOPs. This

explains the high number of published and widely used approaches for multiobjective evolutionary

algorithms (MOEAs) [Coello Coello, 0 8]. The main advantage of these techniques is its ability to

find solutions cióse to the real Pareto front. However, many real world optimization problems require

a considerable number of objective function evaluations to find such solutions. Moreover, in many

cases, a single evaluation of the objective function can take considerable time to be completed.

For this reason, the EC community has adopted the use of surrogate models* to approximate

as much as possible the behavior of a expensive optimization function (f(x)), but reducing the

computational effort needed to evalúate it. However, choosing correctly the best technique for a

specific multiobjective problem is not a trivial task, since the multiobjective function is commonly

seen as a black box, and it is not known any information about this function.

1.2 Motivation and hypothesis

A wide variety of algorithms enhanced by approximation models for MOPs have been previously

proposed [Voutchkov and Keane, 2006, Emmerich et al., 2006,

Knowles, 2006, Chafekar et al., 2005, Diaz-Manriquez et al., 2011]. However, most works do not

perform a methodological comparison in order to select the most suitable surrogate model to be

combined with.

There are some works that have developed comparative studies among metamodels

[Queipo et al., 2005, Santana-Quintero et al.. 2010. Diaz-Manriquez et al., 2011]. Nevertheless,

2ln this document the term Evolutionary Algorithms (EAs) is used interchangeably with Evolutionary Computation

(EC).
3Also known as metamodels. emulators, reduced models. approximate models. and response surface models.
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most of such comparisons involve a few techniques and test problems or they select the best surrogate

model based upon just one criterion. On the other hand, none of the few works that involved

múltiple criteria studied both the effects of the dimensionality and the possibility to use different

metamodel techniques to approximate independently each of the objective functions. ln this thesis

work, four metamodeling techniques are compared: Radial Basis Functions (RBF), Support Vector

Regression (SVR), Polynomial Regression (PR) and Kriging (KRG) on different aspects such as

accuracy, robustness, efficiency, and scalability with the aim to identify advantages and drawbacks

of each metamodeling technique in order to choose the most suitable one to be combined with

multiobjectve optimization evolutionary algorithms.

This thesis work lies on surrogate models that have been used by the multiobjective evolutionary

community to speedup the convergence, but maintaining the quality of the solutions. However,

nowadays there are a few scientific efforts using simultaneously different strategies of metamodeling

techniques to solve computationally expensive MOPs. Moreover, the possibility to use different

surrogate models simultaneously in the same MOP has not been addressed previously.

Therefore, the hypothesis that support this research is:

• "lt is possible that an evolutionary algorithm enhanced by surrogated models can select a

specific metamodeling technique at a given time in order to reduce the number of fitness

function evaluations needed to produce quality results."

1.3 Objectives

1.3.1 General objective

To contribute with the state of the art with at least one approach that uses surrogate models to

enhance the convergence rate of evolutionary algorithms such that the resulting algorithms require

a lower number of fitness function evaluations in order to obtain competitive results.



4 1.4. Thesis overview

1.3.2 Particular objectives

• To decrease the number ofthe real objective-function evaluations without sacrificing the quality

ofthe algorithm.

• To contribute to the state of the art with:

- A study of the behavior of four well-known surrogate approaches when increasing the

number of variables.

- A competitive multiobjective evolutionary algorithm based on surrogate models.

1.4 Thesis overview

• ln Chapter 2 basic concepts of optimality and multiobjective optimization are firstly introduced.

After that, both multiobjective performance measures and a performance measure to assess

the accuracy of a metamodel are also explained.

• Chapter (3) introduces some Evolutionary Algorithms concepts. Then, a list of the most

representative MOEAs is given. Finally. a brief revisión of the MOEAs aided by surrogate

models state of the art is presented.

• An empirical comparative study of surrogate models for their use with MOEAs is shown in

Chapter 4. The four metamodeling techniques are evaluated using several indicators and

test problems. Moreover, two novel indicators to evalúate the quality of the application of

metamodels to multiobjective are presented.

• ln Chapter (5). the Metamodel Assisted Subpopulation-based Search Algorithm (MASSA) is

presented. Its main feature is the use of isolated subpopulations that optimize surrogated

models. The discussion of the results is given at the end of this chapter.
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• The Tune-adaptive Metamodel Assisted Algorithm (TAMAAL) is presented in Chapter 6 as

an improvement versión of MASSA. ln order to select the best metamodeling technique to be

used in a given time, an online adaptation method is presented in this chapter.

• Finally, Chapter 7 draws the main conclusions and possible future work.





Background

2.1 Introduction

This chapter begins by laying a conceptual and theoretical basis for single and multiobjective

optimization. Then, several concepts and definitions related to multiobjective optimization are

introduced. Next, a brief review of several performance measures adopted in this thesis work is

given.

2.2 Single objective optimization

Everyday problems usually involves the optimization of a single criterion. This criterion is often

referred to as product quality, fabrication cost, the shape of some structures, among others. Formally,

a generic optimization problem can be stated as:

7



8 2.2. Single objective optimization

Definition 1 (Optimization problem). To find the vector £ which minimizes1 the function f(x)

subject to the p inequality constraints:

9i(x)<0 i=l,2,...,p (2.1)

and the q equality constraints:

hj<x)=0 j
= l,2,...,q (2.2)

ln other words, the goal is to find among a subspace of Q feasible solutions. the vector x* E ü

that corresponds to the minimum valué of the objective function in the feasible región. This vector

x* is commonly called global optimum.

Definition 2 (Local minimum). Given a function / : fl C Rn i-> R, fí j- oo, a solution f° e í~l is

called local minimum point, if and only if:

Vf e Q : /(£') < /(£). such as:||x
-

x°\\ < e (2.3)

where e > 0 and the valué f(x°) > -oo is called local minimum.

Definition 3 (Global minimum). Given a function / : Q C R" i-> R, Q ^ oo, for x* e Cl the valué

/* = f(x*) > -oo is called global minimum. if and only if:

Vf €fi:/(F)</(í) (2.4)

where vector x* is a global minimum point.

Mn this thesis minimization problems are assumed without loss of generality.
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2.3 Multiobjective optimization

When a particular problem involves the simultaneous satisfaction of two or more criteria, it can be

referred to as multiobjective optimization problem. ln words, the multiobjective optimization problem

can be defined as [Osyczka, 1984]:

"find a vector of decisión variables which satisfies the constraints and optimizes a vector

function whose elements represent the objective functions. These functions form a

mathematical description of performance criteria which are usually in conflict with each

other. Henee, the term optimize means finding such a solution which would give the

valúes of all the objective functions acceptable to the decisión maker"

Definition 4 (Multiobjective Optimization Problem (MOP)). Multiobjective optimization is formally

defined as: find the decisión vector f* = \x\*,x2*,. . ,xn*] that satisfies them inequality constraints

<7z(f)<0 ¿ = l,2,...,m (2.5)

the p equality constraints

ht(x) = 0 i= 1,2,.. ,p (2.6)

and optimizes the vector function

/(í) = Lfi(x),/2(f),...)/fc(f)]T (2.7)

where f = [xi, x2, . . .
, xn*]T is the vector of decisión variables, n is the number of variables and k is

the number of objective functions. Equation (2.5) and (2.6) determine the feasible región fl C Rn

and any decisión vector f e Q defines a feasible solution of the MOP

ln other words, the goal is determine from among the set Q the particular set x* = [x\,x*2, x*k]

which yields the optimum valúes of all the objective functions. ln practice, it is rarely the case where
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there is a single point that simultaneously optimizes all the objective functions. Therefore, trade-off

solutions are sought, rather than a single solution when dealing with multiobjective optimization

problems. ln order to describe the concept of optimality in multiobjective optimization, some basic

concepts are introduced below.

Definition 5 (Pareto dominance). Let Ü,v vectors of objective valúes from feasible solutions with

I = {1,2, . .

, k). Then, a vector u dominates v (denoted by ?7 X v) if and only if ü is partially less

than v, i.e, if Vz e I.u, < uv A 3i e l\u, < v¿.

Definition 6 (Pareto optimality). A vector f* e Cl is a Pareto optimal solution if there is no other

solution y e Cl such that y < x*

Definition 7 (Pareto optimal set (PS)). The Pareto optimal set is the set of Pareto optimal solutions.

ln other words, the Pareto optimal set is formed by the corresponding decisión variables of the non

dominated solutions.

Definition 8 (Pareto front (PF)). The image of the Pareto optimal set are called Pareto front.

ln this document, PFr is used to ñame the real Pareto front2 (the optimal solutions), and PFk to

ñame the known Pareto front (the solutions found by a given algorithm).

Definition 9 (Local Pareto front). A point f
'

e Cl is said to be locally Pareto optimal if and only

if there exists an open neighborhood of f*, B(f*), such that there is no f € B(f*) f)Cl satisfying

f(x) -< f(x'). f(x*) is then called locally efficient. The image of the set of locally efficient points

is called local Pareto front.

2.3.1 Multiobjective techniques classification

Cohon and Marks [Cohon and Marks, 1975] proposed a classification of multiobjective optimization

approaches based on the search process and the moment when the preferences are incorporated

2The terms real Pareto front and true Pareto front are used interchangeably
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by the Decisión Maker (DM). The preferences can be incorporated before, during and after the

search process:

• A priori approaches: these approaches assume that either a certain desired achievable

goals or a certain pre-ordering of the objectives can be performed by the decisión maker

prior to the search. Among the most popular methods are: Global criterion method,

Goal Programming, Goal-Attainment Method, Lexicographic Method, Min-Max Optimization,

Multi-attribute Utility Theory, Surrogate Worth Trade-off, ELECTRE and PROMETHEE.

• A posteriori approaches: these approaches make the search process before the decisión

maker intervenes, i.e. do not require prior preference information from the DM. Some examples

are: Linear Combination of Weights and e-Constraint Method.

• Interactive approaches: intégrate search and decisions making (decide search). These

techniques normally opérate in three stages: (i) find a non-dominated solution, {ii) get the

reaction of the DM regarding this non-dominated solution, and modify the preferences of the

objectives accordingly, and (Ui) repeat the two previous steps until the DM is satisfied or

no further ¡mprovements are possible. Among the most popular methods are: Probabilistic

Trade-Off Development Method, STEP Method and Sequential Multiobjective Problem Solving

Method.

2.3.2 The goal of multiobjective optimization

Since multiobjective optimization problems can be continuous in the objective space, then, the

Pareto optimal set can be boundless. ln this sense, the decisión maker usually requires a small but

representative subset of the Pareto front. For this reason, finding a well-distributed set of solutions

along the Pareto front is the goal of a priori multiobjective optimization.

Figure 2.1 shows the example of the process of buying a vehicle. Here, the buyer tries to minimize

the cost and the instability of the vehicle. A cheap car is commonly unstable and a sport car (very
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stable) commonly is very expensive. Therefore, there are a set of trade-off solutions between cost

and stability. Such solutions are desirable for the DM (in this case the buyer), who must choose a

solution according to their budget. The squares in this figure are undesirable because for each of

them are at least another that is cheaper and more stable. Moreover, the pentagons are undesirable

because they do not belong to the representative well distributed set of solutions that could be

interesting for the buyer.
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Figure 2.1: Desirable and undesirable solutions in multiobjective optimization.

2.4 Performance measures for MOEAs

As mentioned in Section 2.3.2, both convergence and diversity are quality aspects to measure

quantitatively the effectiveness of a multiobjective algorithm. However, when comparing algorithms,

the conclusions given for one performance measure are not necessarily the same of another. For

that reason, in this thesis work two performance measures used in the multiobjective literature were

adopted One of them is a previously well-known performance measure, while the other one is
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recently proposed.

2.4.1 Hypervolume ratio (HVR)

The Hypervolume ratio (HVR) performance indicator was proposed by Li eí al. [Li et al., 2007]

as a normalizaron of Hypervolume (HV) performance indicator. The HV corresponds to the non-

overlapped volume \
'

of all the hypercubes formed by a reference point r and each solution p, in the

PFk (see Figure 2.2). The HV is defined as:

>t

HV = [jV(p,.r) (2.8)

G3Hypervolume ^3 Feasible solution space

O Known Pareto Front (PF*)

Figure 2.2: Hypervolume of PF-. solutions with a reference point r.

where // is the number of points in PFk. Therefore, a larger HV reflects better performance for a

given algorithm. ln order to have the same range of results in every test problem, the Hypervolume

ratio (HVR) is used. ln the HVR, the closeness to the PFT is always a valué between 0 (when it is

far from PF, ) and 1 (when it is over the PF,). Equation 2.9 shows the mathematical definition of

HVR.
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HV(PFk)
,

HV(PFr)
v '

where HV[PFr) represents the hypervolume ofthe real Pareto front and HV(PFk) represents

the hypervolume of the known solutions.

2.4.2 Averaged Hausdorff distance (Ap)

The concept of Generational Distance (GD) was introduced by Van Veldhuizen [Veldhuizen, 1999]

to measure how far is the known Pareto front (PF-) from the real Pareto front (PFr) (see Figure

2.3(a)). The GD performance measure is stated as follow:

*,-!(£<)
Mv

(2.10)

where n is the number of elements in the PFk and d, is the Euclidean distance between the i'h

solution in the PFk and the nearest solution in the PF, A GD closer to zero is preferred, i.e., the

shorter the GD, the better the accuracy is.

The inverted Generational Distance (IGD) uses the same concept. However, it adopts the PF,-

as the baseline solution (see Figure 2.3(b)). Thus, the IGD considers the distribution of elements

and their proximity to the PF, ,
while the GD only takes into account the closeness to the PFr (see

Figure 2.3).

The Averaged Hausdorff Distance [Ap) [Schüze et al., 2011] between PFk and PF,. is composed

of slight modifications of the GD and the IGD (CD,. and IGD,). The modifications use the power

mean of the considered distances. Thus, the GDP performance indicator is stated as follow:

IGD,, uses the same concept, but with the PF, as the baseline solution.
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A

• Real Pareto Front (PF,

O Known Pareto Front (PF*

—Distance (d,

#Ral Pareto Front (PFr)

O Known Pareto Front (PF»)

—Distance (<L\

-O

(a) Generational Distance (GD) (b) Inverted Generational Distance (IGD)

Figure 2.3: Main difference between GD and IGD.

Finally, the A;, indicator becomes the máximum of the GDf, and the IGDP:

\ = max(GD9,IGDp) (2.12)

According to the authors, slight modification of both operators (GDP and IGDP) leads to more

fair indicators. Therefore, Ap offers better metric properties than its components GD,, and IGDP

because it defines a semi-metric for all valúes of ¡> and is even a pseudo-metric in case the magnitudes

of the considered sets are bounded.

2.5 Measuring the accuracy of predictors

The 6' - metric is an indicator used in the context of statistical modeling whose main purpose is

the prediction of future outcomes on the basis of other related information [Agterberg, 1984], This

metric gives an indication of how effective a prediction might be, relative to that which could have

been derived from using the sample mean alone, ln this thesis, the G - metric is aim to measure

the accuracy of a given predictor, and it is applied to the predicted valúes obtained for each objective

of a MOP:
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ft-1-^^-^-l-JgL (2.13)
Ef=i (Vü - Vi)2 Variance

where N is the size of the validation data set, y,, is the predicted valué for the objective i on

the input j, and </,, is the real valué; y, is the mean ofthe real valúes on the objective ¡. The Mean

Square Error (MSE) measures the difference between the estimator and the real valué. The variance

describes how far the valúes lie from the mean, ln this metric, larger valúes of G are preferred since

this corresponds to a more accurate predictor. Thus, for single objective problems the G, is in the

range [0, 1]. However, for bi objective problems the accuracy is the sum G, +G'2. therefore is in the

range [0.2].



3
Multiobjective evolutionary algorithms aided by

surrogate models

3.1 Introduction

Since optimization problems are not new, it is natural to expect the existence of several optimization

techniques. However, when problems present non-differentiable functions, and large, nonlinear,

noisy and rugged search spaces, then they can become intractable by these traditional optimization

techniques. This issue motivates the use of alternative approaches.

Evolutionary Computation1 (EC) refers to a set of bio-inspired metaheuristics which have drawn

inspiration from natural evolution (Neo-Darwinism) and adaptation that have been successfully

applied to solve complex optimization problems. Neo-Darwinism asserts that the history of the vast

majority of life is fully accounted for by only a very few statistical processes acting on and within

1\n this document the term Evolutionary Computation (EC) is used interchangeably with Evolutionary Algorithms

(EAs).

17
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populations and species [Hoffman, 1989]. These processes are reproduction, mutation, competition

and selection.

EAs are population-based techniques, í.e., they opérate on a set of solutions instead of on only

one solution (as traditional optimization methods do). Each individual of its population is evaluated

on the objective function with the aim to measure ¡ts fitness. Then, a selection mechanism which

tends to preserve the fittest solutions is applied. The solutions with the best fitness valúes have the

highest probability of being recombined with other solutions in order to mix information and form

new solutions. These new solutions can compete with respect to their parents in order to have a

place in the next generation. This process is repeated until a termination criterion is reached. The

pseudo-code of an EA is shown in Algorithm 1.

Algorithm 1 General scheme of EAs.

Initialize population (individuáis) with random solutions

Evalúate the fitness of each individual

repeat

Select the parents

Apply the variation operators

Evalúate the new individuáis

Select the next generation
until A termination criterion is reached

The three main paradigms that form the Evolutionary Computation are: Evolutionary Strategies

(ES) [Rechenberg, 1965, Schwefel, 1965], Evolutionary Programming (EP) [Fogel, 1964] and Genetic

Algorithms (GA) [Holland. 1975].

3.2 Taxonomy of multiobjective evolutionary algorithms

The first indication of the possibility of using evolutionary algorithms to solve MOPs appeared in

the doctoral thesis of Rosenberg in 1967 [Rosenberg, 1967] in which, however, the algorithm was

reformulated as a problem of a single objective and it was solved with a GA.
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David Schaffer is commonly regarded as the first to design a MOEA in the mid-1980s. His

proposal was called Vector Evaluated Genetic Algorithm (VEGA) [Schaffer, 1985], consisting of a

simple AG with a modified selection mechanism.

ln the following years, there were a lot of techniques, which, as mentioned Coello

[Coello Coello, 0 8], were divided into two generations. The first generation emphasized simplicity

and among the most representative algorithms are:

• Non-dominated Sorting Genetic Algorithm (NSGA) [Srinivas and Deb, 1994].

• Niched-Pareto Genetic Algorithm (NPGA) [Horn et al., 1994].

• Multiobjective Genetic Algorithm (MOGA) [Fonseca and Fleming, 1993].

• Niched-Pareto Genetic Algorithm (NPGA 2) [Erickson et al., 2001].

While the second-generation emphasizes on efficiency, in addition this generation usually uses a

mechanism that retains the elitist non-dominated global solutions generated by the MOEA. Among

the most representative approaches in the second generation are:

• Strength Pareto Evolutionary Algorithm (SPEA) [Zitzler and Thiele, 1998].

• Strength Pareto Evolutionary Algorithm 2 (SPEA-II) [Zitzler et al., 2002].

• Pareto Archived Evolution Strategy (PAES) [Knowles and Corne, 1999].

• Non-dominated Sorting Genetic Algorithm II (NSGA-II) [Deb et al., 2000].

• Pareto Envelope-based Selection Algorithm (PESA) [Corne et al.. 2000].

• Pareto Envelope-based Selection Algorithm II (PESA-II) [Corne et al., 2001].

• Micro-Genetic Algorithm for Multiobjective Optimization (micro-GA)

[Coello Coello and Toscano Pulido, 2001].
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• Micro-Genetic Algorithm 2 (micro-GA2) [Toscano Pulido and Coello Coello, 2003].

One successfully used second-generation algorithm in multiobjective optimization is the NSGA-II.

lt remains as one of the most competitive multiobjective evolutionary algorithms known to date. A

more detailed description of the procedure of NSGA-II is provided in the next section.

3.3 A fast elitist non-dominated sorting genetic

algorithm (NSGA-II)

Since this algorithm was selected to be used as baseline in the development of the proposed

algorithms. then it is described below:

This algorithm was proposed by Deb et al. [Deb et al., 2000]. Unlike other methods,

which use only one elitist preservation strategy, the NSGA-II also uses an explicit mechanism

for preserving diversity. This algorithm has little resemblance to its predecessor (the NSGA

[Srinivas and Deb, 1994]), but the authors kept the ñame to highlight ¡ts origin. This algorithm

has a complexity 0(AIN2) with M objectives and a population size N . The different modules that

form part of the NSGA-II are briefly described below. However. for a better understanding of the

algorithm see [Deb et al., 2000].

3.3.1 A fast non-dominated sorting approach

The non-dominated sorting ranks the population in different fronts, where the first one contains only

non-dominated solutions. The second front is compound by solutions dominated only by the first

front, and so on until all solutions are sorted. An example of the non-dominated sorting is given

in Figure 3.1. Where. the solutions have a rank equal to the front they belong. For example, the

solutions from the front 1 have a rank = 1 (see [Deb et al.. 2000] for more details).
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Figure 3.1: Non-dominated sorting.

3.3.2 Crowding distance

To perform an estimation of the density of solutions surrounding a particular solution i in the

population, the average distance of two solutions on either side of solution i along each of the

objectives is taken. This quantity is called crowding distance, and serves as an estimation of the

perimeter of the cuboid formed by using the nearest neighbors as the vértices, ln Fig. 3.2, the

crowding distance ofthe ¿"' solution in its front (marked with filled circles) is the average side-length

of the cuboid (shown with dashed boxes).

3.3.3 Crowded comparison operator (-<n)

The crowded comparison operator (<n) compares two solutions and returns the winner of the

tournament. lt assumes that every solution i has two attributes:

1. A non-domination rank 7-t in the population.

2. A local crowding distance (cl,) in the population.

Based on these two attributes, it is said that i -<n j if: (7-, < r,) or (?\ - r¿ and cl, > dj).
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Figure 3.2: The crowding distance calculation.

The first condition ensures that the chosen solution lies on a better non-dominated front. While

the second untie when both solutions belong to the same non-dominated front based on their crowding

distance. The one residing in a less crowded área (with a larger crowding distance clx) will be selected.

3.3.4 The main loop

Initially, a random parent population P0 is created. Then, the population is sorted based on non-

dominance. Afterwards, each solution is assigned to a fitness (or rank) equal to its non-dominance

level (1 is the best level. 2 is the next-best level. and so on). Binary tournament selection, SBX

recombination, and polynomial mutation operators are used to créate a offspring population Q0 of

size N. Since elitism is introduced by comparing current population with previously found best non

dominated solutions, the procedure is different after the initial generation. The elitism procedure

for the t"' generation starts combining the two populations to form R, of size 2N Then. the

non-dominated sorting is used to classify the entire population R, (see Section 3.3.1). Once the

population is sorted, the new population is filled by solutions of different non-dominated fronts, one

at a time. The procedure starts with the best non-dominated front and continúes with solutions

of the second non-dominated front. and so on. Since the overall population size of R, is 2A\ not
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all fronts may be accommodated in N slots available in the new population. Therefore, the worst

fronts are deleted. When the last allowed front is being considered, there may exist more solutions

in the last front than the remaining slots in the new population. This scenario is illustrated in Figure

3.3. Instead of arbitrarily discarding some members from the last acceptable front, the solutions in

this front are sorted using the crowded comparison operator (see Section 3.3.3), such that, the best

positioned solutions will fill N individuáis.

Non-dominated Crowding

sorting distance

Figure 3.3: NSGA-II procedure.

Finally, binary tournament selection, recombination, and mutation operators are used again to

créate a offspring population Qt~i, finishing the current generation.

»

3.4 Surrogate models

ln several real world optimization problems, a single evaluation of the objective function can require

long time to be evaluated. For this reason, the EC community has adopted the use metamodels

in order to approximate as much as possible the behavior of a computationally expensive function

(/(*)), but reducing the computational effort needed to evalúate it.
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A metamodel is an approximation of a simulation used to construct simpler and lower

computational cost models; if the original simulation is represented as f(x), and the surrogated

model is represented as f'(x), then, f'(x) = f(x) + e(x), where e(x) is the approximated error.

The internal behavior of f(x) is not necessary to be known (or understood), only the input/output

behavior is important2. A model is constructed based on modeling the response of the simulator

to a limited number of intelligently chosen data points. Metamodels genérate simple models that

capture relations between the relevant information of the input and output variables and not in

the underlying process. Nowadays, there are a wide variety of techniques to construct metamodels.

Among the most populars are Radial Basis Function Neural Network (RBFNN), Support Vector

Machines for Regression (SVR), Polynomial Regression (PR) and Kriging-DACE Models (KRG). For

a more complete understanding of these surrogate models, please refer to Appendix A.

3.5 State of the art

ln order to maintain the number of evaluations as low as possible, it is possible to combine the

iterative search of EAs with surrogate models, where the objective functions need to be modeled as

fitting functions through evaluated points during the optimization process. These models are used to

predict the valué of future search points. A description of several MOEAs enhanced with surrogate

models is presented below:

• ln 2005. Chafekar et al. proposed a variation of the GADO [Rasheed, 1998] enhanced with

metamodels called OEGADO [Chafekar et al., 2005]. To deal with more of one goal, the

proposed algorithm executes an independent GA on each objective, and exchange information

at certain intervals in order to find the set of trade-off solutions. Least-squares approximation

functions were used in this work. However. only this approximation method was tested. On

the other hand, since each objective function is assessed by an independent GA, then this

2what is known as behavior modeling or black box modeling
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proposal can be implemented easily in a parallel architecture. For its validation, the algorithm

was compared with respect to two MOEAs representative of the state of the art (NSGA-II and

e-MOEA). Moreover, six problems with two and three objectives with a fix number of variables

were used in order to valídate its results. The proposed approach could produce (with fewer

¡terations) a more complete and distributed Pareto front than GADO and NSGA-II.

• ln 2006, Voutchkov and Keane [Voutchkov and Keane, 2006] proposed an approach that

connect the NSGA-II with independent metamodels for each objective function. The proposed

algorithm executes the NSGA-II for several generations using the metamodel functions, after

that, the real function is used in order to perform the selection and to update the metamodels.

ln this paper, twelve response surface methods were compared (including RBF, Kriging and

PR). The main advantage of this approach is that each objective could, in theory, be modeled

by a different type of response surface method. However, no comparisons with different

metamodeling techniques on each objective were performed i.e., the user has to pre-fix which

models will be used at any given time. A study of 3 MOPs was performed. However, these

problems only were used from 2 to 10 variables.

• Emmerich et al. [Emmerich et al., 2006] proposed in 2006 a method where a new point for

evaluation is chosen based on both, ¡ts predicted valué and the confidence in such predictions.

Their approach is a modification of the NSGA-II and uses several criteria for the selection of

the points that will be evaluated in the real function. The authors compared four different

evaluation criteria in problems with two and three objectives. Moreover, six test problems

were tested using a fixed number of variables. Authors found ¡mprovements in all cases when

comparing their results with respect to those obtained by the standard NSGA-II. The proposed

algorithm depends on the confidence estimation provided by Kriging models. Thus, no other

surrogate models were tested.

• Also in 2006, Knowles proposed the Pareto Efficient Global Optimization (ParEGO)
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[Knowles, 2006] as a new alternative to the Efficient Global Optimization (EGO)

[Jones et al., 1998]. ParEGO uses an approach of Analysis and Design of Computer

Experiments (DACE) to model the objective functions. Initialization procedure uses latin

hypercube method and its learning approach uses a Gaussian process model, which is updated

after every evaluation. To créate the Pareto front, ParEGO uses a series of vectors to assign

weighted valúes to the objective functions according to their importance. On each iteration of

the algorithm, a new candidate point is determined by a procedure called expected improvement

maximization. This approach was tested on nine MOPs with 2 and 3 objectives. However, the

MOPs tested had relatively few decisión variables (from 2 to 8). Results showed that ParEGO

could reduced the number of evaluations. Furthermore, any other metamodeling technique

can not be plugged since ParEGO uses the estimated error (provided by the DACE) to select

the new points to evalúate.

• Deb and Nain proposed the NSGA-II-ANN [Deb and Nain, 2007] in 2007, where they enhanced

the NSGA-II with ANN. ln this case, they used the standard error back-propagation algorithm

with sigmoidal activation function to the approximate the problem. The main procedure

intersperses both, real function evaluations and metamodel evaluations. The NSGA-II-ANN

procedure was tested on three test problems and a couple of real-world problems. They

concluded that NSGA-II-ANN simulations could successfully save from 25% to 62% of the

evaluations needed by the original NSGA-II using a fixed number of variables. Also, in this

work, the authors compared two different training models: Incrementa! Training NN and Batch

Training NN. Results indicated that the second approach behave the best.

• ln 2008. M. Li ef al. proposed the Kriging assisted MOGA (K-MOGA) [Li et al.. 2008]. The

main feature of this algorithm is the inclusión of a method for avoiding the real simulation

where the predicted error is acceptable for a point, otherwise. the real simulation is carried out.

The metamodeling technique used in this work was Kriging. Seven numerical and engineering
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examples with different degrees of difficulty were used in the experiments. Results showed

that their proposal could reduce the number of real simulation calis. On the other hand, the

K-MOGA depends on the confidence level provided by the Kriging method. Therefore, can

not be plugged any other metamodeling technique in their proposed algorithm.

• ln 2011, Diaz-Manriquez et al. proposed a Surrogate-based Intelligent Variation Operator

(SIVO) [Diaz-Manriquez et al., 2012] for Multiobjective Optimization. The SIVO operator

starts selecting a non-dominated solution to outperform, and three new solutions are searched

trying to lócate their positions in the variable space. Therefore, a local surrogate model is

built and a new optimization algorithm is launched, which tries to find the surrogated solutions

which are closest to the three previously proposed points. The final surrogate solutions are

evaluated with the real function with the aim that the new solutions found can improve the

original ones. Moreover, the authors proved the performance of SIVO coupling it to both a

deterministic algorithm and to the NSGA-II. Only the Kriging surrogate model was used in this

work, although any other can be used. On the other hand, five problems were used in order

to prove the functionality of their proposal.

• The term Memetics Algorithms (MA) refers to: evolutionary algorithms that apply a local

search process to refine solutions (for further exploration refer to [Moscato, 2003]). Some

Memetic Multiobjective Algorithms assisted by Metamodels are also presented below:

- ln 2009, Georgopoulou and Giannakoglou [Georgopoulou and Giannakoglou, 2009]

proposed a Multiobjective Metamodel Assisted Memetic Algorithm with Strength-based

Local Refinement. ln their work, the metamodels perform a dual role (into global and

local search). During the global search a RBF approach is trained in order to predict

valúes for the children population. Then, the children population is sorted and the best

performed individuáis are re-evaluated but using the real function. Then, a local search

procedure that maximizes the strength of a solution {i.e., the number of solutions that the
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current solution dominates to.) is performed. This latter procedure uses gradient-based

descent method and it also uses the RBF approach. The candidates with higher strength

must be selected with priority for their evaluation on the real function. The authors

demonstrated the effectiveness of their algorithm in three mathematical test problems

and two engineering applications. ln this approach, the authors did not prove any other

metamodeling technique.

- ln 2010 Zapotecas and Coello [Zapotecas Martínez and Coello Coello. 2010] proposed a

multiobjective memetic algorithm that uses SVM as local search. The algorithm uses a

series of vectors to assign weighted valúes to the objective functions according to their

importance. Then the approach uses the Hooke-Jeeves method to minimize each problem

defined by the weighted vectors (evaluating in the SVM). After that, the A"-means

algorithm (with K = population size) is used to reduce the non-dominated solutions.

The authors tested it proposal on problems of modérate dimensionality (10 to 30 decisión

variables). Results indicate that the proposed approach could obtain competitive results

with respect to the NSGA-II using 1.000 evaluations of the real function.

• Since parallelization is a common strategy to tackle expensive function evaluation problems,

in EC área has emerge parallel EA (pEA) [Nowostawski and Poli, 1999]. The objective of a

pEA is to find solutions of equal or higher quality in less time than its serial counterpart. The

following proposals are examples of parallel Multiobjective Evolutionary Algorithms (pMOEAs)

enhanced by surrogate approaches:

- ln 2006, Ray and Smith proposed a Surrogate Assisted ParallelMultiobjective Evolutionary

Algorithm [Ray and Smith, 2006]. The main motivation of the authors was to build

a robust approach that maximizes the performance while minimizing the variance of

its results. The algorithm uses a neural network of radial basis functions to créate

metamodels. The algorithm was implemented on múltiple processors using a master-
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slave topology. Two design optimization problems were solved to demónstrate the

competitiveness of the algorithm. Where, the proposal demonstrates savings in the

number of real function evaluations. However, no other metamodeling techniques were

used. The algorithm was tested with a fix number of evaluations.

-

Syberfeldt et al. proposed in 2008 the MOPS-EA (Multiobjective Parallel Surrogate-

Assisted Evolutionary Algorithm) [Syberfeldt et al., 2008]. This algorithm is based on a

steady state design. lt uses a surrogate model to identify promising candidate solutions

and to filter out dominated solutions. To address the uncertainty associated with the

approximation ofthe evaluations in the surrogate model, the algorithm uses a method in

which surrogate objective valúes assigned to offspring are adjusted to consider the error

of the surrogate. An Artificial Neural Network was used as metamodeling technique.

On the other hand, the algorithm was evaluated on the ZDT benchmark functions with

competitive results comparing with a Neural Networks assisted NSGA-II. A drawback in

this paper is that the algorithm was tested with a fixed number of evaluations (3000).

Moreover, the same metamodeling technique was used for all objectives.

Despite the suggested benefits of surrogate models, little effort has been placed by the

MOEA community. Therefore, deeper theoretical and empirical studies about the behavior of the

combination of metamodels and EAs are needed. ln this direction, it is necessary to address studies

about the behavior of MOEAs enhanced with metamodels taking into account the effects of the

dimensionality. These studies will allow the designing of new metaheuristics that behave better on a

wider number of problems.



A study of surrogate models for their use with

multiobjective evolutionary algorithms

4.1 Introduction

Since surrogate models are not new, a wide variety of optimization techniques that use them

have been previously proposed [Voutchkov and Keane, 2006, Emmerich et al., 2006, Knowles, 2006,

Chafekar et al., 2005]. However, few works have performed a comparison among metamodels

in order to find the most suitable approach to be used with the application at hand. Most

of these works have focused just on single objective problems [Santana-Quintero et al., 2010,

Queipo et al., 2005. Jin et al.. 2000, Diaz-Manriquez et al., 2011], while only few works on MOPs

[Santana-Quintero et al., 2008, Fang et al., 2005]. With respect to the latter subject, Fang eí al.

[Fang et al., 2005] compared metamodels using a small number of techniques and test problems and

Santana et al. [Santana-Quintero et al., 2008] selected the best surrogate model based in just one

31
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criteria. On the other hand, most of the works ignored the effects of the dimensionality and did not

analyze the possibility to combine different techniques, in order to approximate ¡ndependently each

of the objective functions of a MOP

This chapter presents a study of surrogate models for their use with multiobjective

evolutionary algorithms, inspired by the study in single objective problems presented in

[Diaz-Manriquez et al., 2011].

The remain of this chapter is organized as follows: the methodology used is described in Section

4.2. After that, results from the application of the methodology are shown in Section 4.5. Finally,

Section 4.6 addresses conclusions from this study.

4.2 Methodology

To evalúate the performance of different techniques on MOPs, eight scalable unconstrained

continuous bi-objective test problems were selected from the specialized literature (see Appendix

B.l). Each objective of each test function will be approximated independently, such that, the first

objective will be approximated with a metamodel A and the second objective with a metamodel B,

where A and B can be any of RBF, SVR, PR or KRG.

Also, in order to allow a quantitative assessment of the performance of each metamodeling

technique, five issues were considered: accuracy, robustness, efficiency (both, for training and

prediction), scalability and the suitability to be combined with an evolutionary approach.

The methodology of this experiment is explain as follows:

• First, in order to void penalize the behavior of the metamodeling techniques adopted in this

thesis work, a parameter setting for each approach was designed (see Section 4.3).

• Then, a full factorial design of the combination of the studied approaches were perform, the

16 pairs are shown in Table 4.1
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1 2 3 i 5 <> 7 8 9 10 ii 12 13 14 15 16

Obj»<tív« 1 RBr RBF RBF RBF SVR SVR SVR SVR KRG KRG kRG kRG PR PR pft Pft

Objettivt í RBF 5VR KRG PR RBF SVR KRG PR RBF 5VR KRG PR RBF SVR KRC PR

Table 4.1: 16 different pairs of metamodeling techniques in a bi objective problem.

• After that, each combination (A, B) was executed following the steps shown below:

1. Créate a training data set with latin hypercubes [McKay et al., 1979] of size 100 (since

EAs typically handle this population size).

2. Train the two objectives using (.4, B), respectively.

3. Créate the validation data set with a latin hypercube of size 500.

4. Predict the validation data set with metamodels (A, B).

5. Compute the performance indicators for the adopted criteria (see descriptions in Section

4.4).

6. Repeat 31 times the steps 1 to 5 and compute the average.

• Perform a statistical analysis1 [Demsar, 2006] for the adopted criteria according the next steps:

1. For each pair of combinations perform the Shapiro-Wilk test to verify if both sets follow

the Gaussian distribution.

2. If both sets follow Gaussian distributions, then verify the homogeneity of their variances

using Levene test.

3. If results from both combinations fulfill the Levene test, then, apply the ANOVA test,

otherwise, Welch test is performed.

4. If Shaphiro-Wilk is not satisfied, then the non-parametric Kruskal-Wallis test is used to

compare the differences between the two sets.

1Note: For all statistical tests a confidence level of 95% was considered.
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Summary tables of results were built using this statistical analysis. ln this tables, metamodeling

techniques are compered each other (the 16 pairs of metamodeling techniques2). The tables

were filled as follows: each pair is compared with each other following the statistical analysis.

If one pair is statistically different and has a better valué for the adopted criterion at hand,

then the counter of wins is incremented in one, otherwise not increment is performed at all.

4.3 Parameter setting

KRG : Self-tuning is an important advantage of KRG method, since it can adjust its two parameters

(O's and p's). To perform this adjustment, KRG uses the máximum likelihood [Jones, 2001].

PR : PR does not need any parameter tuning at all. However, that is not the case for RBF and

SVR.

RBF : This technique needs the number of centers for the hidden layer as a parameter (this

parameter accepts valúes equal or greater than 3, therefore, this study analyzes valúes from 3

to 100).

To have a statistical validation, 31 executions for each valué ofthe parameter were executed on

five single objective test functions (Rosenbrock, Rastriging, Griewangk, Sphere, and Ackiey).

For this experiment, 100 solutions for training and other 200 solutions for prediction were used.

Since the aim is to identify if there is a single valué for the parameter that can produce an

outstanding behavior on RBF, two experiments were carry on. Both experiments will evalúate

the performance of RBF while such parameter is modified. Therefore, the performance of each

valué will be evaluated using the G performance measure. The first experiment will obtain the

best performance of RBF on each test function. The valúes that make RBF to perform the

best on each test function will be referred as Best Local Setting (BLS). The second experiment

2For reasons of space in the tables. the following abbreviations were used: A* = KRG, P ■= PR. R = RBF and

5 = SVR
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will evalúate the behavior induced by the parameter but in all the test functions. This latter

approach will be referred as Best Overall Setting (BOS). Figure 4.1 shows the results produced

by BLS and BOS using the G - Metric (see Section 2.5) for RBF. From these results. it

seems obvious that both sets behaved similar. However, for simplicity, BOS was preferred.

The valúes of the parameter obtained in the BOS for the RBF approach was: 38 centers.

SVR : For the parameter setting of this approach a methodology similar than the one used for RBF

was used. However, in this case there are three parameters than need to be fine-tune: C, 7

and c, their ranges of valúes are [2_5.215], [0.1.2] and [2_10.25], respectively. These ranges

of valúes were taken from the specialized literature. ln order to perform a methodological

comparison, a discretization of each parameter were carry on. For this sake, 20 possible valúes

uniformly spaced from each other were performed. Then, a full factorial design executing each

combination of parameters (20 x 20 x 20) with every test function adopted were performed.

Figure 4.1 shows the results produced by BLS and BOS using the G - Metric for SVR. From

these results, it seems obvious that both sets behaved similar. However, for simplicity, the

BOS was used in the rest of the experiments in this study. The SVR's BOS combination was

C = 12072.4407895, -,,
= 0.1, and e = 0.000976.

(a) BOS and BLS for RBF (b) BOS and BLS for SVR

Figure 4.1: Average accuracy with the BOS and BLS for five single objective problems.
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4.4 Adopted criteria

ln order to assess the different techniques. five different criteria were measured:

• Accuracy: is the ability of a technique to make predictions cióse to the valúes given by the

real system. ln order to assess this criterion, the G-Metric was used (see Section 2.5).

• Robustness: refers to the ability of a technique to achieve a good accuracy on different test

problems. Then, the robustness of a metamodel will be given by its average behavior for all

adopted test cases.

• Scalability: is the ability of a technique to achieve a good accuracy taking the dimensionality

into account {i.e., a metamodels is more scalable if it presents good accuracy valúes

for every problem size). To measure this criterion, the following problem sizes: v =

(2, 4, 6, 8. 10. 15, 20, 25, 50} were used.

• Efficiency:

- to train: this criterion refers to the computational effort required for the technique to

build the metamodel. For this criterion, the time needed to train a specific metamodel

with 100 solutions was measured.

- to predict: refers the computational effort required for the technique to predict responses

to new entries. For this criterion, the time needed by a particular approach to predict

500 solutions was measured.

• Suitability: this criterion is defined as the degree of difficulty needed to optimize a pair of

metamodels (using one metamodel for each objective function). For measuring this criterion,

two approaches were proposed. The first one refers to the way in which some evolutionary

multiobjective approaches (MOEAs) compare solutions. Since Pareto dominance is a common
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used approach, then, this approach was selected. Therefore, the first experiment tries to

identify which is the pair of metamodels that preserves better the dominance rank in a bi

objective function. For this purpose, the metamodels will be trained first. Then, N well

distributed points will be produced. After that, each pair of the N points will be compared

using dominance rank in both, the surrogated functions and the real system. The pair of

metamodels that preserves better the relation of Pareto dominance will be the most suitable

one. ln order to measure this criterion, the degree of ranking preservation3 (RP) is used as

the ability of the metamodels to maintain the same rank of the solutions with respect to the

original MOP. A combination of metamodels f has a perfect multiobjective RP under the

original functions / if:

{m<Ry)^F(x)<F(y))

Wx.yeF: v (f(y) * f(x) A f'(y) ■< f(x)) (4.1)

V ((/(£) ¿ f(y) A ¡(y) ¿ f(x)) A (f(x) ¿ f(y) A f(y) ¿ /'(*)))

where T is the feasible región of the problem. Therefore, this performance indicator can be

defined as follows:

RP= IE £ W'A/l
A

| (4-2)
,1=1 j=i+l /

where Ar refers to the number of solutions used to valídate the model. ln this thesis, N = 500

solutions were used for each size of all test problems. And h(i, j) is:

3The ranking preservation indicator was initially proposed in [Diaz-Manriquez et al., 2011], in order to assess the

predictions in single objective problems.



38 4.4. Adopted criteria

h(i,j)= <

if((f(i)^f(j)Af(i)^f(j))

1 v(/í#-</(0a/(j)x/(0)

V ((f(i) ¿ f(j) A /O) ¿ f(i)) A (/(i) ¿ f{j) A /><¿) ¿ /(i))))

0 otherwise

(4.3)

The second approach refers to the fact that when some MOEAs perform the optimization

process on metamodels, they commonly obtain the non-dominated solutions in the metamodel,

then, such solutions are evaluated in the real MOP. Finally, if solutions are non-dominated with

respect to an elitist population, then, they are retained, the remain solutions are discarded.

Therefore, it is necessary to know the percentage of non-dominated solutions on the real MOP

that are also non-dominated on the metamodels (dominance preservation). A combination of

metamodels /' has a perfect dominance preservation under the original functions / if:

Vi G 7 : f(x) is non-dominated A /'(£) is non-dominated (4.4)

where T is the feasible región of the problem. Therefore, the performance indicator can be

defined as follows:

(NDS
\

£ k(i) /NDS (4.5)

where NDS is the number of non-dominated solutions in the real function and h(i) is:

h(i) =
1 if((Xj is non-dominated in f) A (x. is non-dominated in /'))

0 otherwise

(4.6)
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For these performance indicators, larger valúes of RP and DP are preferred.

4.5 Results from the study

4.5.1 Accuracy, robustness and scalability

ln this thesis, problems with v < 10 are considered of low dimensionality while the rest are considered

to be of high dimensionality.

Figure 4.2 shows the results produced by the application of the G-metric to the eight test

problems. ln general, it is clear from this figure, that the worst performance approach for high

dimensional problems was (PR.PR). However, for problems ZDTl, ZDT2, ZDT3 and DTLZ7 this

pair achieved good accuracy on low dimensionality problems. Even in specific instances such as

ZDT4 where v = {2.4.6}, ZDT3 where v = {4,6} and DTLZ7 where r = {6,8.10}, (PR.PR)

this proposal had the best accuracy. Similarly, {KRG. KRG) obtained an erratic behavior for high

dimensional problems, but ¡ts general behavior was considerably better than {PR.PR). Although

the behavior of (SVR. SVR) was not good in ZDT4 and Kursawe test problems, it outperforms

the other proposals in problems ZDTl, ZDT2, DTLZl and DTLZ7. ln ZDT4 (see Figure 4.2(d))

(RBF. RBF) presented an erratic behavior. However, in the rest ofthe problems, this pair shown

a good performance.

Table 4.2 shows that (KRG. KRG) was the best pair for v = 2, Moreover, (PR.SVR) was

the pair that showed the best performance for v = {4, 6}. (PR, RBF) outperform the others when

v = 8. However, for high dimensional problems every combinations of PR obtained bad results. On

the other hand, (RBF, RBF) had good results for /• > LO. Finally, for v = {20. 25. 50} the approach

that behaved the best was (SVR. SVR). For these reasons, RBF and SVR are selected as the

most scalable techniques, since both presented their best behavior on high dimensional problems.

The worst performance for this indicator was for {PR. PR). Finally, since (RBF. RBF) was not the
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best in all test problems, but in most of them it presented a stable behavior, and SVR performed

bad in problems ZDT4, ZDT6 and KUR. RBF is said to have a slightly better robustness than

S\ R.

lt is important to note, that for some problems, the best pair of methods was composed of two

different techniques ((SVR. RBF) in ZDT3, (KRG. RBF) in ZDT4, (KRG. SVR) in ZDT6 and

(RBF. KRG) in Kursawe). These results are comprehensible since each fitness landscape in a MOP

may have a different landscape. Therefore, might be interesting for an evolutionary algorithm to use

simultaneusly different metamodeling techniques for each objective.

i/f, rt) (fí.S) [R.K) \H.P) I.S, li) IS.S) (S,l<) {S.P) (K.H) (K.S) IKK) (K.P\ (P.li) (F S) (P.K) ( P. P)

2 9 11 33 20 21 54 73 61 33 58 82 68 21 69 75 0

4 5 21 23 22 22 65 60 72 28 61 65 69 33 74 71 0

6 14 35 22 38 36 53 52 69 31 59 46 70 47 72 63 0

8 50 53 36 50 61 53 37 59 43 46 36 41 68 62 47 0

10 69 61 43 41 60 66 39 46 50 47 32 33 63 61 45 0

IS 93 90 71 3 88 86 68 3 73 75 63 3 18 18 16 0

20 91 92 68 3 91 93 71 3 68 75 59 3 18 18 18 0

25 91 92 66 3 91 95 72 3 65 76 58 3 18 18 18 0

50 87 92 64 3 91 98 70 3 64 73 54 3 18 18 16 0

tum 509 547 426 183 561 6S3 542 319 455 569 495 293 304 400 373 0

Table 4.2: Statistical results for the accuracy. For short, K = KRG, P = PR, R = RBF and

5 = SVR.

4.5.2 Efficiency

This criterion was measured using two experiments : a) the time needed to train a metamodel and

b) the time that a metamodel needs to predict solutions. Results (see Figure 4.3) indicate that RBF

and SVR required short periods of time in both, training and prediction. On the other side, PR

needed large training times, but it presented a fast prediction response. Contrary, KRG presented

the worst performance for both experiments of this performance indicator.
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(a) Time to train (b) Time to predict

Figure 4.3: Average time of execution for training (a) and prediction (b) in all the problems.

4.5.3 Suitability

An important feature of RP is that the higher its valué, the lower the probability of adding a false

optimum to the problem. This feature is an important characteristic in EAs since most of the

approaches attempt to avoid false óptima. However, in most cases, it is required to repeat the

training of the metamodels, which leads to a reduction in efficiency. lt can be seen in Table 4.3

that (KRG. KRG) outperformed the other techniques where v - 2. Also ¡t is possible to see that

when using PR in the first objective, most of the pairs produced good results for low dimensional

problems, as is easy to see in (PR.SVR), (PR.SVR), (PR.RBF) and (PR.RBF) were the

approaches outperform the others for v = {4.6,8, 10}, respectively. The best pair for v = 15 was

(RBF. RBF). Finally, when v = {20.25.50} the pair that behaved the best was (SVR. SVR).

( li. ii) /,' >' i l/í. !<) ÍR.P) (S.R) (fi.S, ! S. K , |.S' /'] {K.H) [K.S) (K.K) ih'.P) ¡r a, (£.S) [P.K) (P.P\
2 7 9 39 8 22 57 82 57 41 59 86 61 26 64 84 0

4 6 24 23 19 33 69 67 69 35 60 69 61 46 84 83 0

6 17 28 24 28 45 59 62 66 30 52 49 54 56 81 73 0

8 41 39 35 45 61 50 41 56 37 37 38 42 72 60 63 0

10 61 52 44 42 62 52 38 47 47 37 41 34 77 65 60 0

15 92 86 67 21 84 76 57 16 73 70 65 21 17 11 11 0

20 89 85 63 27 82 90 52 18 73 67 61 17 21 14 11 0

25 89 84 60 24 80 98 54 12 70 63 59 14 33 25 20 0

50 84 81 33 45 85 100 42 43 32 42 83 12 42 36 7 0

lum 486 488 388 259 i 554 651 495 384 438 487 553 316 390 440 | 412 0

Table 4.3: Statistical results for the Ranking Preservation. For short, K = KRG, P = PR,

R = RBF and S = SVR.
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Figure 4.4 shows the average results for this indicator in the eight test problems adopted. This

Figure highlights the bad performance of (PR. PR) for high dimensional problems in RP. But in low

dimensional problems this pair had an acceptable behavior. ln this performance indicator, the best

robustness behavior was for (RBF, RBF), since it obtained good results on all problems. Moreover,

(RBF. RBF) also was the most scalable pair. On the other hand, (SVR, SVR) outperformed the

other pairs in ZDTl, ZDT2. DTLZl and DTLZ7 test functions. ln ZDT3 and ZDT6, (SVR. SVR)

also obtained excellent results. However, the behavior of this pair was very poor in ZDT4 and KUR.

Finally, (KRG. KRG) had acceptable results with few variables, as is easy to see in ZDT4, ZDT6

and KUR, where the technique helped to achieve the best results despite their high dimensionality.

Results from Dominance Preservation (DP) (see Table 4.4) indicate that it differ slightly from

the conclusions obtained with RP. Here, (PR. KRG) produced the best results for v = 2. Moreover,

the best pair of techniques when v = {4,6,8.10} was (PR.SVR). Finally, for high dimensional

problems, combinations of SVR and RBF were the techniques that perform the best.

(/?,/?) (Ft.S) (R.K) ITi P) (SX) (S.S) (S.K) (5. P) (K.H) (K. S) (h.K) [h'-P) (P.R) (P.Sl [P,K) (PX)
2 7 17 23 15 22 51 61 47 26 54 59 52 25 51 65 0

4 3 21 13 15 23 60 51 54 7 44 21 39 32 71 64 0

6 3 23 9 22 25 49 33 54 11 30 17 30 47 71 64 0

8 9 20 7 22 32 49 25 55 13 31 15 28 58 68 51 0

10 23 34 11 33 34 48 17 49 21 30 12 27 68 70 46 0

15 63 58 36 6 72 60 36 19 55 49 26 8 24 20 5 0

20 61 66 28 19 57 65 34 12 50 45 16 7 33 32 4 0

25 70 56 28 9 58 67 34 11 60 40 12 10 29 33 8 0

50 59 73 12 12 63 89 3 16 9 34 36 29 41 36 26 0

tumi 298 368 167 153 386 538 294 317 252 357 214 230 357 452 323 0

Table 4.4: Statistical results for the Dominance Preservation. For short, K = KRG, P = PR,

R = RBF and S = SVR.

Figure 4.5 shows the average results for DP in the eight test problems adopted. As in the case of

RP, the pair that performed the worst for DP in high dimensional problems was (PR. PR). However,

this pair presented an acceptable behavior in some problems when v < 10. Again, the most scalable

and the most robust pair was (RBF. RBF). On the other hand, the pair (SVR,SVR) reached

the best results on ZDTl, ZDT2, ZDT3 and DTLZl. However, this pair again was the one that
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performed the worst in ZDT4 and KUR. The pair (KRG. KRG) alone was not successful, but

combining it with another metamodeling technique achieved good results. That is the case for KUR

and ZDT6 problems.

4.6 Conclusions from the study

The purpose of the current study was to compare metamodeling techniques and evalúate them under

múltiple aspects in order identify their suitability to be used with MOEAs. The study presented in

this chapter has provided results about the performance of PR, KRG, RBF and SVR techniques in

several test problems with different features.

From the results derived on this study, it is possible to conclude that the best approaches to be

used in problem sizes < G, are KRG or SVR, If the problem size is greater than G but lower than

15, then KRG, or RBF can be used. Moreover, if the problem size is equal or greater than 15,

then. the most obvious technique to be used is SVR. Nevertheless, a combination of two different

metamodels often remain over using a single metamodel for both objectives.

With respect to efficiency, RBF and SVR were the approaches with an outstanding performance.

However, PR also obtained a good efficiency when predicting new solutions. The worst behavior

on this criterion was presented by KRG, since it obtained the worst times on both, training and

predicting.

An important issue is that if DP = 1, all non-dominated solutions in the artificial function will

be also non-dominated in the real function. ln addition, it should be noted that not necessarily the

best accurate metamodel can produce the best results in the optimization process. Therefore, from

this results, SVR presented the best results among the four approaches tested.
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5
The Metamodel Assisted Subpopulation-based

Search Algorithm (MASSA)

5.1 Introduction

The aim of metamodels is to perform similar than the real system but with a lower computational

effort. Therefore. when optimizing expensive objective functions, these metamodels can accelerate

the response time of EAs with the replacement of function evaluations.

Perhaps the most direct method for using a metamodel with EAs, would be créate a metamodel

with a fixed number of pre-tested solutions and optimize the metamodel using an evolutionary

algorithm. Nonetheless, a metamodel is less accurate in less populated regions, so if there are not

enough samples in the regions where the optimum is, this metamodel may not get the desired results.

Another common approach to use a metamodel is to intersperse its use with the real objective

function, and using the new real evaluated solutions for feedback the metamodel, improving its



48 5.2. Initialization of the population

accuracy.

The latter scheme is the one used in this thesis work. ln this chapter the Metamodel Assisted

Subpopulation-based Search Algorithm (MASSA) is proposed. This algorithm was built taking ¡nto

account the conclusions derived in Chapter 4, where no one metamodeling technique outperform the

others in all cases. Therefore, the proposal approach should be flexible to use any surrogate model.

The basis goal of MASSA is to perform exploitation in a certain región with a low number of

evaluations. Therefore, the aim of this chapter is to describe the main components of MASSA. A

general illustration about how the algorithm works is shown in Figure 5.1.

5.2 Initialization of the population

Evolutionary algorithms usually feed their initial population with randomly-generated solutions. Also,

metamodels require a proper distribution of points such that ¡ts accuracy can be good. ln this

sense, Koehler and Owen [McKay et al., 1979] described three methods for selecting valúes of input

variables. The Latin hypercube method (LHS) was the approach with the best results among the

proved. Therefore, this algorithm was adopted in this thesis work to créate an initial global population

(Po) of size N.

5.3 Select exploitable áreas

Since the aim ofthe proposed approach is to diminish the computational effort, then, special attention

was placed on the selection of promissory regions. Therefore, a supopulation scheme was adopted

in order to improve the focus on special regions.

Also the use of subpopulations prevents the whole algorithm to get trapped in local óptima, since

in case that one subpopulation get trapped, the other subpopulations are able to continué the search

independently.
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Figure 5.1: Diagram that illustrates the way in which MASSA works.

This approach clusters the main population using the K-means algorithm [MacQueen. 1967] in

the variable decisión space (see Figure 5.2). If a cluster has promissory solutions, then it is selected

to become a subpopulation to perform exploitation, otherwise the cluster is discarded.

The A promissory solutions are chosen according to the crowded comparison operator

[Deb et al., 2000]. This procedure will ensure the selection of non-dominated solutions well

distributed on the known Pareto front. The A solutions are considered as indicators of promising
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was used on the search space (a), however the solutions do not necessarily have to be clustered in

the objective space (b).

regions (exploitable áreas).

An example of exploitable áreas selection is shown in Figure 5.3. Here, three clusters using

A'-means (A' = 3) were used. Moreover, three promising individuáis (A = 3) were selected. The

cluster 1 ("squares") was selected once. Moreover, the cluster 2 ("diamonds") was selected twice.

This achievement means that exploitation process is performed two times in the "diamonds" región.

However. the cluster 3 ("stars") was not selected. then, no exploitation process will be held in the

"stars" región.

5.4 Exploit a reduced área using a subpopulation

Once identified the promising regions, an independent exploitation process will be held on each

subpopulation 5,. This process begins by improving the knowledge ofthe subpopulation. Then, the

metamodel is trained and then optimized, the best individuáis found by the optimization process

will be evaluated in the real function and added to the main population. A more detailed of these

processes description is given below:
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Figure 5.3: Selecting exploitable áreas.

5.4.1 Improving the knowledge

This process refers to popúlate an specific área with additional solutions which are cióse to the

subpopulation at hand. With this, the knowledge of a supopulation is enriched with additional data

(previously stored and evaluated in the real MOP).

For this process, a box constraint is created around the exploitation área 7Z,. Such a box refers

to an extensión of 10% (see Figure 5.4) on the current search space of the exploitation área. This

operation looks for a wider opening on the search, such that better results are obtained. For this

sake, an external archive £ (see Figure 5.5(a)) that contains solutions evaluated in past generations

is used. Then, a new subpopulation Qi is filled using Si |J {solutions of E inside 7£t} (an example

can be devised in Figure 5.5(b)). The way in which £ is managed is explained below:

5.4.1.1 £ delimitation

At beginning of MASSA, the external archive (£) is filled with the same solutions than the population

P. Furthermore, this archive is feeded each time that an individual is evaluated in the real function.

Nevertheless, since the memory ofthe computer is limited, the size of this external file is fixed. Then,
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since it is important to maintain a fixed size for this external archive, two methods were tested to

perform this operation, the £—methods. The first £—method (+E1) will to remove older individuáis

(those who exceed the máximum capacity of £). The second £ — method (+E2) will maintain a

distributed population using the A'-means algorithm. ln this way, this algorithm is executed with K

= {the máximum capacity of £}. Afterwards, for each centroid its nearest solution is associated (no

solution and no centroid are selected more than once). Then, the associated solutions are retained

while the others are deleted from this archive.
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Figure 5.4: With the box constraints Tt, MASSA delimit the región around the cluster that will be

refilled with oíd information to enrich the knowledge for training f'(x).

5.4.2 Training and optimizing the metamodels

First, the surrogate models f'(x) are created using the Q, solutions (one metamodel for each

objective). For this operation, any metamodeling technique can be used.
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lower right córner oí TZi).

lt is important to comment that both Qx solutions and 7£, constraints are used only for training

f'.(x). ln further process will not be taken into account.

Now, the metamodels f[(x) can be exploited using the subpopulation Si. This process could be

performed with any multiobjective optimization algorithm. ln this case, the NSGA-II is used and it

is executed for a few ¡terations.

Although in the MASSA the error in the predictions is an important factor, there is not a strong

effect in the results. Since if the use of f¡(x) in the current generation had a big error, there will

exist more stored solutions in £, helping to reduce the error in the long run.

5.4.3 Choosing and evaluating the best individuáis

After apply the surrogated NSGA-II using subpopulation 5¡ as input, the best solutions (T,) will be

selected and evaluated in the real f(x). The T, solutions are chosen using the crowded comparison

operator (a small |r,| is recommended). If a solution of F, is ¡nto V or £ then it ¡s deleted from

T,, otherwise it is evaluated in f(x) (see Figure 5.6 to devise an example) and added to the main
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population P and the external archive £.
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Figure 5.6: ln this example the filled points are the result of the optimization of metamodels using
the NSGA-II and Si. That process has a cost of only four evaluations in the real function.

5.5 Preserving diversity

Since the population tends to converge fastly, then a variation operator is needed. ln this case.

a real-parameter mutation operator is chosen as source of diversity in P For this stage, the best

solutions fí from P are mutated. Then, these solutions are evaluated in real system and added to

both, the main population and the external archive. Therefore, the size of P now is approximately

Ar + (|A| x |r.|) + |Q| (since some solutions were deleted from T,).
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5.6 Reducing the population size

Finally, in order to maintain a fixed population size, the solutions in P are ranked with the crowded

comparison operator. The best A^ solutions are kept.

5.7 Settings used

Parameters used in this thesis were tuning as follows:

• Initial size of P (N): 100 individuáis.

• Máximum size of £ (msE): 300 individuáis1

• Size of A (A): 5 individuáis.

• Size of T. (->): 4 individuáis.

• Size of Q (u;): 5 individuáis.

• Number of demes (A): 5.

• NSGA-II parameters: the proposed by the original NSGA-II [Deb et al., 2000].

• Termination criterion: until to exceed 2000 evaluations in f(x).

• Combination of metamodeling techniques (M): the same metamodeling technique was

used for all objectives. For example, if SVR is chosen, then the combination in a problem with

three objectives is AI <- (SVR. SVR. SVR).

l\£\ = 300 was used since the time required to train a metamodel (especially PR and KRG) with many solutions

is very large. For more accurate results a larger |f| is recommended.
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5.8 Results from the MASSA

Results may vary depending on the metamodeling technique in use. Therefore, in order to construct

the metamodels2 RBF, SVR, KRG and PR were explored.

Since the external archive is an important issue on MASSA, then both approaches for this subject

were studied. Additionally, the performance of the algorithm itself but without any archive approach

is revised. Nomenclature for these approaches are +E1 for the first method, +E2 for the second

and —E for the approach that does not use any external archive.

Moreover. the MASSA is compared with respect to the NSGA-II. The implementation of NSGA-II

used in this thesis work is available for download from Deb's KanGAL web page3, and the default

settings were used with this EA:

• Population size: 100

• Máximum generations: 20

• Crossover probability: 0.9

• Real-value mutation probability: 1/number of dimensions

• Real-value SBX parameter: 15 for ZDT's, 15 for DTLZ's and 10 for KUR.

• Real-value mutation parameter: 20 for ZDT's, 20 for DTLZ's and 10 for KUR.

The MASSA was tuned to perform 2000 real function evaluations (as the same was perform for

the NSGA). Moreover, in order to analyze the behavior of both algorithms, the statistics for 500,

1000 and 1500 evaluations were also computed.

2Metamodels settings are the same explained in Chapter 4. Nevertheless. the number of centers in the RBF was

changed to [(subpopulation size)/2] since it was not possible to use the 38 centers obtained in Chapter 4 in all cases

(since the subpopulation size may be less than 3S).

3http://www.iitk.ac.in/kangal
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Box-plots were selected for results presentation since they show different descriptive measures.

On each box, the central mark is the median, the edges ofthe box are the 25"' and 75"' percentiles,

the whiskers extend to the most extreme data points not considered outliers, and outliers are plotted

individually. The size of the box indicates the variability of the algorithm. The smaller the box, the

more robust the algorithm is. Due space limitations, in box-plot images the following abbreviations

were used: R = RBF, S = SVR, K = KRG and P = PR. For example, the MASSA with

RBF as metamodel, which do not uses the external file solutions is abbreviated as M + R-E and the

MASSA with SVR as metamodel which uses the +E2 method is abbreviated as M+S+E2.

ln this section, the box-plot figures are divided in 13 columns. The first one is for the NSGA-II

results. The following four refer to those approaches that do not use the external archive. (M+R-E,

M+S-E, M+K-E and M+P-E). While, the next four refer to the approaches that use the first external

archive method (M+R+El, M+S+El, M+K+El and M+P+El). And, the last four columns involve

the approaches that use the second external archive method (M+R+E2, M+S+E2, M+K+E2 and

M+P+E2).

Additionally, in order to provide more confidence results, summary tables were build using the

statistical analysis [Demsar, 2006]. These tables are also split in 13 columns with the same order

than the box-plot images (using the same abbreviations). ln these tables, each approach is compared

with respect to 12 remaining. The methodology to fill these tables is described as follows: On each

comparison, one point is added at the pair that remains winner (in case of tie, no points are added).

This analysis was performed for each number of evaluations used (this is shown in the rows). Then,

a cell contains the number of times that an approach (column) outperformed the others 12 in a

specific number of evaluations (row).

For ZDTl test function, both Ap and HVR performance indicators show that the best

metamodeling technique was SVR. Where there are no significant differences among M+S-E,

M+S+El and M+S+E2 (see Figure 5.7). However, in statistical tables it can be seen that M+S+El

is slightly better than M+S+E2 and M+S-E in Ap with 1000 evaluations. Finally, it is possible
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observe observed that whatever versión of the MASSA with RBF and SVR outperformed the NSGA-

II. Actually, the NSGA-II was the worst algorithm for this problem, followed by the M+P-E.
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Figure 5.7: A„ and HVR box-plots and statistical summary for ZDTl test problem.
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Figure 5.8 shows a similar behavior for ZDT2, where SVR is again the best metamodeling

technique in both A,, and HVR. Actually, significant differences are not visible in the box-plots.

However, tables show that M+S-E and M+S+E2 had the best results in A;„ and M+S+E2 was

slightly better in HVR. As in ZDTl, 500 evaluations of any MASSA with SVR are better than 2000

evaluations in the NSGA-II. Actually, the NSGA-II did not outperform any other algorithm on any

number of evaluations.

Once again, SVR was the best metamodeling technique for ZDT3 test problem in both, Ap and

HVR (see Figure 5.9). There are no visible differences among M+S-E, M+S+El and M+S+E2.

Nevertheless, in statistical tables it is possible to observe that M+S-E and M+S+E2 were slightly

better than M+S+El. As in ZDTl and ZDT2, 500 evaluations of MASSA variations with SVR were

better than the NSGA-II (even with 2000 evaluations). Again, the worst algorithm in this problem

was the NSGA-II, followed by the M+P-E.

Figure 5.10 shows that KRG was outstanding metamodeling technique for ZDT4, for both, Ap

and HVR. However, visible differences in the box-plots are shown, since the best algorithm here

was M+K+El, which is confirmed by the summary tables. ln this problem, the improvement

to the NSGA-II was small compared to the previous problems. Nevertheless, 500 evaluations of

M+K+El are comparable with 1500 evaluations of the NSGA-II in Ay, performance measures, and

1000 evaluations of M+K+El are better than 2000 evaluations in the NSGA-II in HVR. ln this

problem the worst algorithm was M+P-E, followed by the NSGA-II.

Figure 5.11 shows the results in ZDT6 test function. Here. all MASSA versions with RBF, SVR

and KRG are outperform the NSGA-II. Statistical tables show that in A,, indicator with 500 and 1000

evaluations the best algorithm was M+K+El, but with 1500 and 2000 the outstanding approach was

M+R+E2. Moreover, in HVR with 500, 1000 and 1500 evaluations the best performance approach

was M+K+El, who tied with M+K+E2 in 2000 evaluations. The worst algorithm in this problem

was the NSGA-II on both, HVR and A,, indicators.

For DTLZl test function KRG was the metamodeling technique that perform the best. While in
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Figure 5.8: A,, and HVR box-plots and statistical summary for ZDT2 test problem.

both, Ap and HVR indicators there was no appreciable differences among M+K-E, M+K+El and

M +K+E2 (see Figure 5.12). Nevertheless, the statistical summary shows that M+K+E2 was the
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Figure 5.9: Ap and HVR box-plots and statistical summary for ZDT3 test problem.

best for all number of evaluations. However, on this time the worst results were for the algorithms

composed by SVR and PR.
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Figure 5.10: A,, and HVR box-plots and statistical summary for ZDT4 test problem.

Figure 5.13 shows the box-plots results for the three objective DTLZ7 test function for A,, and

HVR. ln this problem, SVR had the best results over all techniques. Where there is no appreciable
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Figure 5.11: A,, and HVR box-plots and statistical summary for ZDT6 test problem.

differences among M+S-E, M+S+El and M+S+E2. However, summary tables shows a tie in AJt

for 500 and 1000 evaluations among these three algorithms. But in 1500 and 2000 evaluations
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Figure 5.12: A,, and HVR box-plots and statistical summary for DTLZl test problem.

M+S+El was the approach with the best performance. Finally. in HVR also shows a tie in 500,

l(i(i() and 1500 evaluations, and M+S+E2 was the best in 2000. ln this problem, the M+ P-E was
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the worst in the HVR performance indicator while the NSGA-II was the worst in A;, performance

indicator.
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Figure 5.13: Ap and HVR box-plots and statistical summary for DTLZ7 test problem.
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Figure 5.14 shows the behavior in KUR test function with both, Ap and HVR. ln this problem

KRG and RBF were the best metamodeling techniques. Nevertheless, the differences are unclear in

the box-plot. ln this sense, in statistical tables it is possible to observe that the best algorithm in A/(

and HVR with 500 evaluations was M+K+E2. ln addition, with 1000 or more evaluations M+R-E

and M+R+E2 were the winners in Afl, and M+R+E2 was the best in HVR. ln this problem, 500

evaluations in M+R+E2 are equal to or better than 1500 evaluations in the NSGA-II. However, the

worst results were for the algorithms that used SVR and PR.

Finally, Table 5.1 summarizes the number of times an algorithm outperforms the others. From

this table, it is easy to identify that the best metamodeling technique was SVR, since it obtained

good results in -E, +E1 and +£2. However, SVR is not very robust, since it had very bad results

in some problems such as DTLZl and KUR. On the other hand, this table also shows that the use

of an archive improves the overall performance of the algorithm. ln this sense, the best method was

+E2 with 48 points, followed by +E1 with 40 and last -E with 31.

Evals \
Ul

3
+

2

Ul

+

2

Ul
1

tt

+

2

Ul
1

a

+

2

+
ce

+

2

1+
2

fl
+
tt

+

2

c
+
a.

+

2

ir
+
ce

+

2
+

2

Cl
+
tt

+

2

fl
+
c

+

2

ZDTl 0 0 7 0 0 0 8 0 0 1 7 0 0

ZDT2 0 0 7 0 0 0 5 0 0 0 8 0 0

ZDT3 0 0 7 0 0 0 4 0 0 0 3 0 0

ZDT4 0 0 0 0 0 0 0 8 2 0 0 2 2

ZDT6 0 0 0 0 0 0 0 6 0 2 0 1 0

DTLZl 0 0 1 0 0 0 0 0 0 0 0 8 0

DTLZ7 0 0 5 0 0 0 7 0 0 0 0 6 0

KUR 0 4 0 0 0 0 0 0 0 5 0 3 0

Total by algorithm 0 4 27 0 0 0 24 14 2 8 18 20 2

Total by £ - metfwa
'

31 40 48

Table 5.1: Summary table for the MASSA on the eight test problems.
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5.9 Conclusions

This chapter has provided results about the suitability of PR, KRG, RBF and SVR techniques to be

combined with a MOEA. The resulting approach was called MASSA.

An important issue is that the right selection of a metamodeling technique can help to reduce

the number of evaluations. ln problems ZDTl, ZDT2, ZDT3 and DTLZ7, SVR had excellent results

improving clearly the others (the NSGA-II is included), Similarly, KRG was specially usefull in ZDT4,

ZDT6 and DTLZl test problems. Finally RBF outperformed the others in KUR test problem.

Therefore, the robustness of any versión of MASSA is low, since excellent results showed with

a metamodeling technique on a specific test problem do not guarantee good results in other test

problem, For example, as mentioned above SVR had excellent results in four different test problems.

However, in DTLZl it showed the worst performance.

ln this sense, it would be interesting to perform an online-adaptation of MASSA, such that the

algorithm itself can identify the best metamodeling technique to be used at any given moment. This

is the ¡dea behind the Tune-adaptive Metamodeling Assisted Algorithm (TAMAAL), which will be

discussed in Chapter 6.

Finally, the use of the £ archive is convenient, because both, +E2 and +£T methods showed

better results than —E.
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The Tune-adaptive Metamodel Assisted Algorithm

(TAMAAL)

6.1 Introduction

Results from Chapters 4 and 5 suggest that there is not a single metamodeling technique that

outperform the others on all test problems. ln this sense, the Tune-adaptive Metamodel Assisted

Algorithm (TAMAAL) is proposed as an improved versión of MASSA.

Unlike MASSA, TAMAAL performs an online adaptation on the selection of metamodels that are

improving each subpopulation. This mechanism finds the best surrogate technique to be used at a

given time in a given problem.

The way in which the TAMAAL finds the best surrogate model is through a tournament

selection among the four metamodeling techniques. For this purpose, three different approaches

were evaluated.
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• G-metric tournament

• Ranking preservation tournament

• Dominance preservation tournament

A detailed description of such approaches is given below.

6.2 G-metric, DP and RP tournaments

Given a subpopulation Q,, the procedure to perform a tournament is as follows: First, Qt is split

in both, a testing set ((10% of |Q¿|) + 1) and a training set ((90% of |Q,|)
-

1). Afterwards. the

training set is used to train the four metamodeling techniques on each objective (4 training processes

for each objective). Then, the prediction of each individual is performed using the testing set on

each objective with the four metamodeling techniques (4 prediction processes for each objective).

Additionally, a full factorial design of the prediction processes is performed. The full factorial gives

4* different combinations of metamodels (CX,C2 ,C4k) all of them of size k. For example, a

bi-objective problem (k = 2) has 42 different combinations of size 2 ((RBF, RBF), (RBF, SVR),

(RBF, KRG). (RBF, PR). (SVR. RBF), . .
, (PR, KRG) and (PR, PR)). where (RBF. SVR)

means that the first objective of the function is predicted with RBF and the second one is predicted

with SVR. For each combination, the selected indicator (G-metric, DP or RP) is calculated. Then,

the combination of metamodels that wins the tournament (the one with the highest valué of the

adopted indicator) is chosen to perform the surrogated optimization process in the Q, subpopulation.

6.3 Settings used

Parameters used in this algorithm were tuning as used in MASSA, with the following differences.

• Al is not an input parameter because it is computed automatically.
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• Type of tournament to do {T)\ any of G-metric, RP or DP.

6.4 Results from the TAMAAL

Since the £ - methods (+E1 and +2J2) achieved good results in the MASSA, then, this methods

were adopted in order to perform the comparison of results. Moreover, results from NSGA-II are

shown again with the purpose of compare this proposal with respect to an algorithm representative

of the state of the art. Box-plots and the statistical analysis for each test function similar to the

ones presented in Chapter 5 are used to valídate the results.

Due space limitations, abbreviations for the box-plot images and statistical tables were used.

For example, the TAMAAL with G-metric as tournament method which uses the +E2 external

file method is abbreviated as T+G+E2. Then, the TAMAAL with ranking preservation (RP) as

tournament method and +£"1 as £ — method is abbreviated as T+RP+E1.

The box-plot figures and statistical tables are divided in 8 columns. The first one is for the

NSGA-II. The next one is for the best versión of MASSA for the problem at hand with a specific

metric. Last six are T+G+El, T+RP+E1, T+DP+E1, T+G+E2, T+RP+E2 and T+DP+E2.

ln addition to the box-plot figures and statistical tables, a new kind of figures is introduced in this

chapter. These figures try to highlight the way in which the TAMAAL was selecting the combination

of metamodels (Al) at any given time, ln these figures the averages of 31 runs were plotted. ln

each run were performed 10 samples. The first sample was taken between [100. 200] evaluations, the

second one was between [200.300], and so on until sample between 1900.2000] evaluations. The

graph shows four lines which correspond to the four metamodeling techniques adopted in this thesis

work. A fifth line is also shown. This line indicates total of tournaments performed.

Figure 6.1 shows the results obtained by the eight algorithms in ZDTl test function. Here, any

TAMAAL versión was better than the NSGA-II in both, A,, and HVR indicators. The differences

with the winner MASSA versión (M+S+El) is not easily visible. Nevertheless, in the statistical
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summary shown in Figure 6.1, it is possible to see that T+RP+E2 outperforms the others for Ap,

while T+G+E2 obtained the second place. Moreover, in HVR the best algorithm was T+G+E2.

Afterwards, in this problem the £ - method that performed the best was +E2 in both indicators,

while the best approach for tournament was the RP in Ap and the G-metric in HVR. Figure 6.2

shows the behavior of the tournaments performed with the algorithm T+G+E2. lt can be seen

that in the first objective SVR lie near to the TOTAL line, which means that it won almost all the

tournaments. These technique was selected from the beginning to the end consistently. ln the second

objective SVR also was the technique that outperforms the others most of times. Nevertheless, in

this objective RBF behaves well in some tournaments, especially when the number of evaluations

were increased.
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Figure 6.1: A;> and HVR box-plots and statistical summary for ZDTl test problem.

The results for ZDT2 test function are shown in Figure 6.3. From this figure, it can be seen

that the NSGA-II results were outperformed by the results from the other algorithms. As can be

appreciate in the statistical tables, the winner in A;, was T+G+E2. Nevertheless, T+RP+E2 also
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Num imi ol -i..".'ii. ■"■ NumtMi oí ovolunl un*

Figure 6.2: Behavior ofthe TAMAAL using the G-metric and the +E2 method (T+G+E2) in ZDTl.

had outstanding results. While in HVR, these both algorithms behaved similarly. Then, for this

problem best £ — method was +E2 in both indicators, while the best tournament method was the

G-metric in A,, and the G-metric and RP for HVR. The behavior of the tournaments performed with

the T+G+E2 algorithm are shown in Figure 6.4. Here, SVR also was the most selected technique in

both objectives, winning almost all the tournaments. ln fact, SVR was selected from the beginning

to the end consistently in both objectives.

Once again, in ZDT3 test problem all TAMAAL versions outperform the NSGA-II in both, A;)

and HVR indicators (see Figure 6.5). For this problem, T+G+El was the best performance approach

¡n Ap, while M+S-E obtained the best results for HVR. The best performance approach in HVR

performance measure was T+RP+E1, while the most used were the G-metric for A7, and for RP in

HVR. Therefore, the RP in the tournaments figures is shown (see Figure 6.6). Where SVR again

was the winner in almost all the tournaments (the SVR line is cióse to the TOTAL line). These

technique was selected from the beginning to the end consistently in both objectives.

For ZDT4 test function the best algorithm was T+G+El in both, Ap and HVR performance

indicators (see Figure 6.7). And once again, the algorithm that behave the worst in this test function

was the NSGA-II in both indicators. Afterwards, the +E\ and the G-metric were the best approaches

in this test problem (see Figure 6.8). lt is obvious from this figure that KRG was the most selected

approach in the second objective. However, in the first objective is more complicated. On the
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Figure 6.3: Ap and HVR box-plots and statistical summary for ZDT2 test problem.
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Figure 6.4: Behavior of the TAMAAL using the G-metric and the + £"2 method (T+G+E2) in ZDT2.

first evaluations both, KRG and PR were selected. But exceeding 1100 evaluations SVR was the

preferred. This interesting behavior can be the reason ofthe excellent results in this problem.

Clearly, in ZDT6 the NSGA-II produced the worst results in both. A,, and HVR (see box-plot of

Figure 6.9). ln this problem, no differences of the versión winner of MASSA compared to TAMAAL

versions are visible in the box-plots However, the MASSA versión had the best results over all
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algorithms (see tables on Figure 6.9). Moreover, the best tournament method was the G-metric in

both problems, and the best £ - methods were +E2 in A,,, and +E1 in HVR, although this last

approach was only slightly superior than -\-E2. Since T+G+E2 is the had the best compromise, then

results from this approach are shown in Figure 6.10. ln objective 1, the surrogated method most

used was KRG, although SVR also was used by a considerable number of tournaments. By contrast,
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in the objective 2 the preferred technique was SVR, and KRG was the second place.

Figure 6.11 shows the results for the DTLZl test function (according to A,, and HVR performance

measures). ln this problem, the MASSA versión M+K+E2 had the best results over all algorithms.

The differences between the NSGA-II and the TAMAAL versions are so small that it was not possible

to identify who was the best in the box-plots. These results are reinforced in the statistical tables,
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since from this tables it is clear that algorithms that performed worst were T+G+El, T+DP+E1

and T+DP+E2. Furthermore. both indicators show that the best tournament method was RP, and

the best £ - method was +E2, then results from this approach are shown in Figure 6.12. Such a

figure shows that the preferred metamodeling technique at early evaluations was KRG, but in the
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subsequent evaluations both approaches behaved similar: SVR and KRG.
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Figure 6.12: Behavior of the TAMAAL using the RP and the +£2 method (T+RP+E2) in DTLZl.

ln DTLZ7 test problem, results from TAMAAL and MASSA were outstanding, while NSGA-II

behaved the worst as is easy to see in Figure 6.13. If statistical tables were analyzed, it is easy to

find that here the differences between MASSA and TAMAAL are small. However, in A;. the best

approach was the MASSA versión M+S+El. but T+G+El and T+RP+E1 were very cióse, ln HVR
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there was a tie among M+S+E2, T+G+El, T+DP+E1 and T+DP+E2. Taking ¡nto account both

indicators, it can be say that the best combination of methods was the G-metric and +E1. Then,

in Figure 6.14 the behavior of T+G+El in the tournament selection is shown. From this figure, it

is easy to see that SVR was the preferred approach in all the objectives.
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Figure 6.13: A;, and HVR box-plots and statistical summary for DTLZ7 test problem.
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Finally, Figure 6.15 show the results for KUR test function in both, A/( and HVR. lt is clear
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that every versión of TAMAAL outperformed the NSGA-II. Nevertheless, in box-plots can not see

differences regarding to the winner versión of the MASSA, but statistical tables show that the

T+G+E2 outperform the others in 500 evaluations. However, the MASSA versión was the winner

in 1000, 1500 and 2000 evaluations. The T+G+E2 is shown in the tournament behavior figures

because this algorithm was the best versión of TAMAAL (see Figure 6.16). ln this sense, in the

beginning of the search, KRG was the most selected in both objectives, but in the long run SVR was

the preferred approach.
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Finally, Table 6.1 summarizes the results of the four different number of evaluations and the two

indicators, showing the number of the times that an algorithm outperform the others. This table

shows that the best £ - method was the +E2 with a score of 46, followed by the +E1 with a

score of 40. The best tournament selection method was the G-metric (in both +£"1 and +£"2).

Nevertheless, in some cases if the best versions of MASSA is chosen manually, this will be better than

the TAMAAL. However, the best surrogated technique to be used in a given problem is not possible
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Figure 6.16: Behavior of the TAMAAL using the G-metric and the +E2 method (T+G+E2) in

KUR.

to know a-priori. ln this way, the T+G+E2 approach was chosen as the representative versión ofthe

TAMAAL, which was the most robust algorithm.
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DTLZl 0 8 0 0 0 0 0 0

DTLZ7 0 8 7 5 4 5 2 4

KUR 0 6 0 0 0 2 0 0

Total by algorithm 0 43 23 10 7 23 13 10

Total by £ - im-ihod. 40 46

Table 6.1: Summary table for the TAMAAL on the eight test problems.

6.5 TAMAAL conclusions

This chapter introduced the Tune-adaptive Metamodel Assisted Algorithm, which is an improved

versión of the MASSA.
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Three methods were tested in order to select a surrogated method at a given moment, The

G-metric approach, the Ranking Preservation and Dominance Preservation. Results indicate that

the G-metric tournament approach produced the best performance among all, and +E2 method

was the best versión. Therefore, T+G+E2 was chosen to be the representative versión of TAMAAL

algorithm.

Furthermore, results also show that the online-adaptation proposal was successful applied, since

it allowed TAMAAL to have outstanding results. This approach will be specially useful in real world

problems, since the shape of the landscape is not known a priori. Moreover, the objectives of a MOP

can have a different landscapes, such that, use sepárate algorithms is a competitive advantage. Such

is the case of ZDT4 problem, where in the second objective the most selected surrogated technique

was KRG, while in the first objective SVR was the preferred metamodel.
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Conclusions and future work

7.1 Conclusions

Results indicate that metamodeling techniques can improve the performance of evolutionary

algorithms. However, the selection of the surrogate algorithm plays a key role on the success of the

collaboration. ln this thesis, four different techniques to approximate functions were studied: Radial

Basis Functions (RBF), Support Vector Regression (SVR), Kriging-DACE (KRG) and Polynomial

Regression (PR). The main conclusions derived from this study are:

• RBF is a good approach to approximate MOPs, since it showed robust behavior on most of

the test problems adopted. This approach bshave remarkably well with high dimensionality.

• SVR was the method with the best accuracy in many test problems. However, its robustness

was affected by the lack of capacity to approximate a few problems.

• Results from KRG method indicate that this approach presents a poor scalability, since its
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performance become severely diminished with the increment in the number of decisión variables.

However, this method behaved very well when problems with 10 dimensions o less were used.

• PR method obtained the worst results for scalability proposes, since it only could behave

moderately acceptable when optimizing problems with less than 10 variables.

Due to the nature of multiobjective optimization, it was possible to evalúate a method for

approximating functions not only for ¡ts accuracy, but also using alternative techniques such as

Ranking Preservation and Dominance Preservation.

Moreover, identify áreas where is worth that the surrogate algorithm perform the exploitation is

an important issue. These áreas should be modeled accurately using well-distributed solutions (since

the metamodel is not reliable in poor populated áreas).

The preliminary study made possible to propose the Metamodel Assisted Subpopulation-based

Search Algorithm (MASSA). Results from this algorithm show that previous evaluated solutions

strength the knowledge of the current population and improve the accuracy of metamodeling

techniques. Two different methods were tested in order to identify the best approach to maintain

previous solutions in the archive (the £). The first approach removes the oldest solutions when the

£ is full, while the second method retains those solutions better distributed throughout the variable

space. Results indicate that the latter method prevailed.

Furthermore, as long as the metamodeling technique is right chosen, it is possible to reduce the

number of evaluations in the real function. However, this is not a task that can be performed by

hand, since when optimizing real world problems the shape of the fitness landscape is not known

apriom.

An important observation when comparing different metamodeling techniques, is that there

is not a single approach that outperform the others for all test functions. Therefore, a scheme

for the automatic selection of the metamodel to be used at any given time was needed. The

Tune-adaptive Metamodel Assisted Algorithm tries to solve this requirement (TAMAAL). TAMAAL
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implement a tournament in order to select the best of four methods for constructing metamodels.

The selected method is responsible for the prediction the valúes of individuáis in the surrogated

process. Three tournament methods were tested (through the G-metric, Dominance Preservation

and Ranking Preservation). For this experiment, results indicate that the G-metric perform the best.

The proposed TAMAAL approach could reduced the number of evaluations required to achieve

the Pareto front in the eight test problems (ZDTl-4, ZDT6. DTLZl, DTLZ7 and KUR).

7.2 Limitations and future work

There are some ideas that for time limitations were not completed:

• An obvious limitation in these proposals is that there is not any explicit mechanism for handle

constraints. Therefore, this is an extensión needed.

• Another major limitation of MASSA and TAMAAL is the response time. That is, the time

to train metamodeling techniques (specifically KRG and PR) is very large, specially when the

number of dimensions is high. Therefore, it is necessary to evalúate other approaches to

approximate functions.

• Moreover, an área in which evolutionary computing research have supported to speed

the response time on problems whose objective functions are computationally expensive is

parallelization. Due the way that MASSA and TAMAAL are built, both can easily take

advantage of parallel architecture. Therefore a parallel implementation is suggested.

• ln literature there is not any research that studied metamodeling techniques when the number

of objectives is raised. Therefore, a study covering this issue could be very useful in the

multiobjective optimization área.

• The set of problems chosen to evalúate the proposals of this thesis do not include

computationally expensive objective functions. ln this sense, it would be interesting to conduct
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a study with real world problems with expensive objective functions that allow to observe the

efficiency of the proposed approaches.



A
Metamodeling techniques

Below, a brief description of the most popular techniques to construct metamodels is presented.

A.l Kriging

Kriging is a spatial prediction method based on the mean squared error (MSE) minimization. Design

and Analysis of Computer Experiments (DACE) is a parametric regression model developed by Sacks

et al. [Sacks et al., 1989] that emerged as an extensión of the Kriging method to handle more than

two objectives.

Suppose that a deterministic function of k variables has to be evaluated in n points. ln Kriging

method, it is assumed that the correlation between errors is related to the distance between the

corresponding points, i.e., assuming that the function that has been modeled is continuous, the real

valúes in the points x, and Xj (y(x,) y y(fj)) tend to be cióse if the distance ||x, — x¿\\ is small. This

can be modeled statistically saying that the random variables ((x*0) and e(x<-')) are highly correlated

if ||x*, —

Xj || is small. Thus, it is assumed that the correlation between two random variables is:
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corr(e(f(0)>e(f(j))) = expl-d^,^)] (A.l)

where the distance cí(x<,).if(-')) is:

k

Y, ftJ xf
- x^ f (6h > 0)Ph € [1, 2]) (A.2)

This correlation function have the property that if the point &l) = x^J\ then the correlation is 1.

Similarly, when \\x^l) — x^W —

> oo, the correlation tends to zero. The 0,, parameter determines how

fast the correlation falls when moving to the h'h direction. Larger valúes of 9h are used to model

functions that are highly active in the hth variable. For such variables, function valúes can change

quickly even at small distances. The pi, determines the smoothness of the function in h'h direction.

Valúes of p,t closer to 2 help to smooth the function, while valúes closer to 0 make it more rough.

The Kriging method needs 2A- + 2 parameters (p,cr2,$i, . . . ,6k and pl. . . . ,pk), which describe

how the objective function typically behaves. An advantage in this technique is that the 2A- + 2

parameters can be estimated choosing those parameters that maximize the following likelihood

function of the observed data:

\ , (i7-íp)'K-l(y-lu), ,A-rt

(27r)"/2(a2)"/2det(R)1'2 2cr2

Note that Equation A.3 involves a vector y
= (y{lK. .. ,y{n)) of observed valúes and another

n x 1 vector of ones 1. Note also that it is involved a correlation matrix R, which denotes a n x n

matrix whose valué (i, j) is awT(c(£t<,),e(¿ü))). This matrix involves the 2k + 2 parameters.

ln practice it is more convenient to choose the model parameters by maximizing the log-likelihood

function;

-

-log(o-)
- -/oj (dct R) —_ (A.4)

Setting the derivatives of this expression with respect to // and o1 to zero and solving, the optimal

valúes of cr2 and p can be expressed as functions of R:
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. l'R-V
P
=

=

i'R-n

« 2
o~ =

(y-íp)'K-Hy--í»

(A.5)

(A.6)
n

Substituting Equations (A.5) and (A.6) into Equation (A.4) the so-called concentrated log-

likelihood function is derived. Ignoring constant terms, the concentrated log-likelihood function is:

-^log(o-2)-^log(detR) (A.7)

The concentrated log-likelihood function depends only on R and, henee, on the correlation

parameters 8's and p's. ln practice, this is the function that is maximized to obtain estimates of Bh

and ph (h = 1 ,lc).

Once found the 2A- valúes that maximize the likelihood function, it is possible to predict the valué

of a point x' without having to evalúate in the original function. This is done as follows:

y(¿*) = A + í'Rr1^- T/i) (A.8)

where element i of f is r^x") = co7'r(e(x*),e(x(i))).

Readers interested in a more detailed explanation of the Kriging method may consult

[Sacks et al., 1989, Jones, 2001].

A.2 Radial basis functions neural networks

Artificial Neural Networks (ANN) or simply Neural Networks (NN) represent a simplified approach

to model biological neural systems. The NN are based on learning the characteristics of the samples

of the input space which stores in its structure. The procedure by which the network is capable of

learning is called training or learning algorithm.

Brommhead and Lowe [Broomhead, 1988] were the first in explore the radial basis functions
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(RBF) as activation functions in NN. However, the current topology of a Radial Basis Function

Neural Network (RBFNN) was exposed in the work of Poggio and Girosi [Poggio and Girosi, 1989].

The RBFNN has an architecture without feedback and a single hidden layer (as shown in Figure A.l).

The number of nodes in the input layer is equal to k independent variables of the problem. The

hidden layer consists of m neurons with RBFs 0, as activation functions, whose connections with

the input nodes encode the centers of the RBFs. Thus. the definition of the weights of the hidden

layer can be seen intuitively as the position of nodes in the space of input data. The r neurons in

the output layer just perform a weighted sum of the activations of the hidden layer, with weights

defined by the vector w.

Figure A.l: Three layer topology of a RBF

The RBF's output can be obtained with the expression shown in Equation A.9:

DJ

y(n) = w0 + ^2WiMn), (A-9)
i=i

where w0 ¡s the bias of the output layer and o, is the radial basis function, which is usually the

Gaussian function.

ln the algorithm 2, the outline to implement a classical RBF is shown. This approach has two

initial parameters. First, the number of centers in the hidden layer and second the location of each

center.

To determine the width o1 of the RBF, it is possible to use the average distance to the p nearest

neighbors, defined as:
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Algorithm 2 Outline of RBF algorithm
l: Select the initial number of centers.

2: Select the location of each center.

3: For each input vector input/center calcúlate the activation valué.

4: Once the activation valúes were calculated for each input vector, calcúlate the weights of the

connections between the hidden layer and output layer using a supervised learning method.

5: Calcúlate the weighted sum defined in Equation (A.9).

X l-±\\c - c,]¡
H

>=1

(A.10)

where C}(j — 1. . . . ,p) are the p centers closer to the corresponding center Cz. For purposes of

this thesis a valué of p = 2 is used.

ln the second phase of training. a supervised learning method is used to calcúlate the weights

of the connections between hidden and output layers. The pseudo- inverse matrix method is used in

this thesis. This method provides a direct solution to the optimization problem and is given by the

following matrix expression:

W = G+S = (GlG)~lGl S (A.H)

where W is the weighted and bias matrix of the RBF, of size (m + 1) x r, such that:

/

W =

U'2l t¿'22

y Ul U2

W\r

ur

G is a matrix of size N x (m + 1) containing the activations of hidden neurons for the samples

of the input space:
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G =

( Cfc(l) 02(1) ••• Wl) 1 \

<t>_{2) <h(2) ■■■ <pm(2) 1

V 4>x{N) 4>2(N) ■ ■ ■ 4>m(N) 1 j

where 0,(n) is the activation of hidden neuron, i, for the input sample x(n); and 5 is the desired

output matrix of size N x r:

S =

í si(l) s2(l)

sx(2) 52(2)

Sr(l) ^

Sr{2)

\ ai{N) so(N) ■■■ sr(N) J

where s¡(n) is the coordínate / of the desired output for the input sample x(n).

A.3 Polynomial regression

The regression analysis is a methodology that studies the quantitative association between a function

of interest / and N'bf basis functions z}, where there are N» sample valúes of the function of interest

/, for a set of basis functions zf For each observation i a linear equation is formulated:

Nav

/,(z) = Y, &*?' + *u E^) = °< V&) = ^ (A.12)

7=1

where the errors e, are considered independent with expected valué equal to zero. variance cj-,

and NBF = (k + i)(fc + 2)/2.

ln the case of a second order polynomial, the response to the k input variables can be seen as:

k k

y(x) = 3o +Y ij'Xt +SS >j'Jx>xJ (A.13)
i=i 1=1 j=\

where 8 is unknown. However, the set of equations specified in (A.12) can be expressed in matrix
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form as:

y
= X/3-re,E(£i) = 0,V(et) = *21 (A.14)

where X is an Ns x NBf matrix of basis functions with the design variable valúes for sampled

points. Solving 3 through the pseudo-inverse matrix method:

íl=(XTXyxXry (A.15)

Thus, substituting the coefficients of the vector 3 of Equation (A.15) in Equation (A. 13) the

approximate response valué for a not evaluated vector x is obtained.

A.4 Support vector machines for regression

Support vector machines (SVMs) were introduced by Vladimir Vapnik et al. in

[Cortes and Vapnik, 1995]. SVMs are supervised learning methods that analyze data and recognize

patterns. The standard SVM takes a set of input data and predicts, for each given input, which

possible classes it corresponds. The SVM are inspired from statistical learning theories, and its major

advantage is that there is not local minimum during learning and the generalization error does not

depend on the dimensions of the space. SVMs can also be applied to regression problems by the

introduction of an alternative loss function [Gunn, 1998]. A widely used loss function is e — SVR,

whose goal is to find a function f(x) that has at most e deviation from the corresponding targets y,

for all the training data and at the same time is as fíat as possible.

Consider the problem of approximating the set of data with a linear function,

f(x) = (w, x) + b with w € X. 6 e R (A. 16)

the formulation of the regression problem is given by:
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(A.17)

minimize (i|M|2 iCEt, (6+íf))
t

y,
-

(w,Xi) -b < £ + £.

subject to < (w,Xi)+b-yi < e + $

where C is a pre-specified valué and £,£* are slack variables representing upper and lower

constraints on the outputs of the system.



B
Test functions

To evalúate the performance ofthe proposals, eight scalable unconstrained global multiobjective test

problems were selected from the specialized literature taking into account both, the number of local

minima and the shape of the Pareto front, containing characteristics that are representative of what

can be considered as "difficult" in multiobjective optimization problems:

• Zitzler-Deb-Thiele test suite [Zitzler et al., 2000]: ZDTl, ZDT2, ZDT3, ZDT4 and ZDT6.

• Two Deb-Thiele-Laumanns-Zitzler test functions [Deb et al., 2002]: DTLZl and DTLZ7.

• The Kursawe test function [Kursawe, 1991]: KUR.

The eight test functions are to be minimized. KUR and the ZDTs test functions are scalable

in the design variable space, and DTLZs functions are also scalable in the objective function space.

These functions were selected taking into account the number of local minima and the shape of

the Pareto front, characteristics that are representative of what can be considered as "difficult" in

multiobjective optimization. A brief description of the eight functions is given below.

For each test function a summary of the main characteristics, the formal definition of the function,

and a figure of the true Pareto front as well as 30, 000 random solutions are presented.

95
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B.l ZDTl

This test function was proposed by Zitzler et al in [Zitzler et al., 2000], lt is a uni-modal bi-objective

test function, the shape of the Pareto front is convex, and ¡ts range of valúes are in [0. 1]. The formal

definition of the test problem is presented in Equation B.l. Figure B.l shows the graphical results

produced by 30. 000 randomly generated solutions (with circles) and the true Pareto front (shown in

stars),

fi(x)=xl

f2(x)=g(:r)xh(fl(x).(J(.r))

such as: (B.l)

i=2

h(fi.g..r) = 1- y/Mx)/g(x)

B.2 ZDT2

This unimodal test function was proposed by Zitzler et al in [Zitzler et al., 2000]. Its range of valúes

are in the domain ¡o. 1]. The formal definition of functions is presented in Equation B.2. Figure B.l

shows the graphical results produced by 30.000 randomly generated solutions (with circles) and the

true Pareto front (shown in stars).

• 3eal Panto l'Ont

3COM tUMtorr- solul.QfK

Figure B.l: Real Pareto front of the ZDTl test

function and 30. 000 random solutions.
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fi(x) = .r,

f2(x) = g(x)xh(fl(x).g(x))

such as: (B.2)

i -2

h(fug,£) = l-(/i (x)/gm2

B.3 ZDT3

The ZDT3 function [Zitzler et al., 2000] is uni-modal in the first objective and multi-modal in the

second objective. Its true Pareto front consists of five disconnected convex parts as is easy to see

in Figure B.3. This figure also shows 30.000 randomly generated solutions (plotted in circles). Its

range of valúes are also in the domain [0, 1], Its formal definition is presented in Equation B.3.

B.4 ZDT4

t The ZDT4 test function [Zitzler et al., 2000] is uni-modal in the first objective and multi-modal

in the second one. lt has a convex and continuous Pareto front, and its range of valúes are in the

domain [0,1], Moreover, this function have 219 local Pareto fronts. ln Equation B.4, the formal

definition is shown. ln this test function. the random solutions are far from the real Pareto front

(see Figure B.4). For this reason, a zoom at solutions belonging to the real Pareto front is included

in the bottom right side of that image.

o i 1 1 1 r » 1 i t i

• Rea) •■ ■i'.vn trotil

30000 r»ndorr aoluliorj

Figure B.2: Real Pareto front of the ZDT2 test

function and 30,000 random solutions.
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fi(x) = -Vi

h(x) = g(x) x h(}\ (x)..fJ(x))

such as:

9
"

g(x) = 1 + V x,
n

— 1 ¿—'

hUx.g,i) = \-y/jx{£)lg{T)-

(h(x)/g(x))sin(lV,Th(x))

(B.3)

fi(x) =x¡

f2(x)=g(x)xh(fA-r).g(r))

such as:

g(x) = l + 10(n- D + ^(.
<-2

h(J\.g.x) = \- vfAx)/g(f

(B.4)

Figure B.4: Real Pareto front of the ZDT4 test

function and 30, 000 random solutions.

B.5 ZDT6

The ZDT6 test function is multi-modal in both objectives, its shape on the objective space is convex

as is easy to see in Figure B.5. This figure also shows 30.000 randomly generated points. Its range

of valúes are in the domain 0, lj. The formal definition is presented in Equation B.5.

Hfa! Pa'fllo fiont

30000 randon «olutcnj

>
C' 02 03 0* 05 O.fi 07 08 03 I

Figure B.3: Real Pareto front of the ZDT3 test

function and 30, 000 random solutions.

r'; - 10ro.s(47rx,))
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f\(x) = 1 —

exp( —<lx\)shib(6irxi

f2(x-) = g(x)xhU\(x).g(x))

such as:

0.25

M/1.5..D = l-(/1(f)/í;(.r))2

(B.5)

B.6 Kursawe

Figure B.5: Real Pareto front of the ZDT6 test

function and 30. 000 random solutions.

The bi-objective Kursawe function (KUR) has a disconnected Pareto front with four parts (see Figure

B.6). lt is uni-modal in the first objective and multi-modal in the second one. Its range of valúes

are in the domain [0, 1]. ln Equation B.6, the formal definition is presented.

n-1

/i(2) - X;-10exjr°-V*?+<H
r=i

n- I

/2(x) = £(|x/8 + 5s¿n(x?))
1=1

(B.6)

1
• Raal F>«r»lolrcrl

3DDCO rjndd'íi UfatKMU 1

«fcillaÉÉ
-

.X'rídÉ ■fe'

■jÉl
H.'

, '.'.•¡Sg

nPSPI
r

\¿ x%z«s»^7 \*

Figure B.6: Real Pareto front of the KUR test

function and 30.000 random solutions.
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B.7 DTLZl

ln addition to being scalable in the number of variables, the DTLZ family is also scalable in the space

of objective functions. DTLZl test function was proposed by Deb et al in [Deb et al., 2002]. The

test problem presents a big search space and ll5 - 1 local attractors. therefore (it is multi-modal in

all objectives). Its range of valúes are also in the domain [0. 1], and the formal definition is presented

in Equation B.7. The initial random solutions are far from the real Pareto front, for this reason a

zoom at solutions belonging to the real Pareto front is included in the bottom right side ofthe image

(see Figure B.7).

A'-l

fi(x) = 0.5(1 + g(x))(\[ x,)
i=i

K - k

A-=2:K-i(.r) = 0.5(1 + g(x))( ] [ x, )

i=i

(1 -xK-k+l)

fK(x)= 0.5(1+ g{S)){l-Xi)

such as:

H0

454 L
• fl»al Pa/tfíetforc

301X10 tanden ictotioni

3:C

mmrk '
10G HÉ&**
25C

150

,/(.,-) = l00[(n
- Al + 1)+

n

Y ((«, - 0.5)2 -

cos(207r(s,
-

0.5)))]

(B.7)

i=K Figure B.7: Real Pareto front of the DTLZl test

function and 30. 000 random solutions.

B.8 DTLZ7

The DTLZ7 test function proposed by Deb et al in [Deb et al., 2002] has several disconnected Pareto

optimal regions (see Figure B.8). lt is uni-modal in the first objective and multi-modal in the second

one. Its range of valúes are in the domain [0, 1]. The formal definition is presented in Equation B.8.
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fk=l K-\(x) —

Xm

fK(x) = (l + g(x))

K-l a r ,^

i=l

io! '(l + sin(3nf,(x)))
V 1 + 9(x)

such as

)

g(x) = 1 +
n
- Al + 1 5>

i=A'

(B.8)

Figure B.8: Real Pareto front of the DTLZ7 test

function and 30. 000 random solutions.
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