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Resumen

Construcción de Torres de Covering Arrays

por

Idelfonso Izquierdo Márquez
Laboratorio de Tecnologías de Información, CINVESTAV-Tamaulipas

Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 2013

Dr. José Torres Jiménez, Director

Un covering array CA(N;t,k,v) es una matriz de tamaño N x k sobre el conjunto Zv =

{0, 1, ... ,v
—

1} en la cual cada submatriz de tamaño N x t contiene al menos una vez todas las

í-tuplas del conjunto Z*v. Los parámetros N y k son las dimensiones del covering array, el parámetro

v es el orden del covering array, y el parámetro t es la fuerza de cobertura de interacciones. Dado

un covering array A = CA(N\t, k,v), llamado covering array base, es posible en ocasiones generar

un covering array B — CA(Nv\t + 1, k + l,v) mediante una construcción basada en yuxtaponer

verticalmente v copias del covering array base A con algunas columnas trasladadas, y haciendo que

la columna A: H- 1 del covering array B esté conformada por N ceros, seguidos por TV unos y así hasta

terminar con N elementos iguales at)-l. El covering array B que se obtiene de esta construcción

tiene con respecto al covering array base v veces más renglones, una columna más, una unidad más

de fuerza y el mismo orden. La misma construcción que se aplicó al covering array A de fuerza t

podría aplicarse al covering array B de fuerza í + 1 (el cual sería ahora el covering array base) para

generar un covering array C = CA(Nv2;t + 2, k + 2,v) de fuerza t + 2. El proceso continuaría

extendiendo el covering array C de fuerza t + 2 a uno de fuerza í + 3, y así sucesivamente, formando

una Torre de Covering Arrays (TCA). Esta tesis tiene como objetivo demostrar que mediante la

construcción de TCAs es posible producir covering arrays de calidad competitiva con los mejores

reportados actualmente.
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Abstract

Construction of Towers of Covering Arrays

by

Idelfonso Izquierdo Márquez
Information Technology Laboratory, CINVESTAV-Tamaulipas

Research Center for Advanced Study from the National Polytechnic Institute, 2013

Dr. José Torres Jiménez, Advisor

A covering array CA(N;t,k,v) is an TV x k matrix over the set Z„ = {0, 1,. .. ,v
— 1} with the

property that every TV x t submatrix covers at least once all the í-tuples of the set Z[. The

parameters TV and k are the dimensions of the covering array, the parameter v is the order of the

covering array, and the parameter t is the strength of coverage of interactions. Given a covering array

A = CA(N\t,k,v), called the base covering array, ¡t is sometimes possible to genérate a covering

array B
— CA(Nv\ t + 1

,
k + 1

, v) of strength t + 1 by means of a construction based on juxtaposing

vertically v copies of the base covering array A with some columns translated, and doing that the

column k + 1 of the covering array B will be conformed by TV zeroes, followed by TV ones, and so on

until finish with TV elements equal to v
— 1. The covering array B obtained from this construction

has with respect to the base covering array v times more rows, one more column, one unit more of

strength and the same order. The same construction applied to the covering array A of strength t

might be applied to the covering array B of strength t + 1 (which ¡s now the base covering array) to

genérate a covering array C — CA(Nv2; t + 2, k + 2, v) of strength t + 2. The process wíll continué

extending the covering array C of strength t + 2 to a covering array of strength t + 3, and so on,

forming a Tower of Covering Arrays (TCA). This thesis has the objective of demónstrate that it is

possible to produce covering arrays of quality competítive with the currently best reported ones by

means of the construction of TCAs.

xv



Nomenclature

Acronyms

CA Covering Array
CACP Covering Array Construction Problem

CAN Covering Array Number

MCA Mixed Covering Array
OA Orthogonal Array
TCA Tower of Covering Arrays

Notation

CA(TV; t, k, v) Covering array of dimensions TV x k, order v, and strength t

CAH(t,k,v) The mínimum TV for which a covering array CA(N;t,k,v) exists

OA\(N;t,k,v) Orthogonal array of dimensions TV x k, order v, strength í, and index A

Zv The set of the ¡ntegers from 0 to v
— 1

Z\ The cartesian product of t sets equal to Zv

■k Permutation of the columns of a covering array

VA Matrix V of the covering array A

£ The construction to expand the covering arrays in the towers

© The operation of column translation by a constant valué

S Matrix or vector to transíate the columns of the base covering array



1
Introduction

This introductory chapter presents the thesis problem and the maín goals of the thesis. Section 1.1

provides a definition of the combinatoria! objects called covering arrays. Section 1.2 describes the

practical applications of the covering arrays in the design of experiments, which are the motivations

to investígate a new way to construct covering arrays. Section 1.3 presents the research problem:

the construction of towers of covering arrays; the section begins by defining the concept of tower

of covering arrays and the construction proposed to genérate them; after that, the thesis problem

is stated, followed by the research hypothesis, the general objective, and the particular objectives of

the thesis. An overview of the thesis contents is gíven in Section 1.4. Finally, Section 1.5 híghlights

the main poínts of the chapter.

1.1 Introduction

This thesis investigates a new method to construct the combinatoria! designs called covering arrays.

The covering arrays were derived from the designs known as orthogonal arrays. An orthogonal

1



2 1.1. Introduction

array OA\(N;t,k,v) is an TV x k array over the set Zv = {0, 1,. . . ,v
— 1} with the property that

every subarray of t distinct columns covers exactly A > 1 times each tupie of the set Z\. When

A = 1 it is usually omitted in the notation. Figure 1.1 shows the orthogonal array 0A2(8;2,7, 2);

in every combinatíon of t — 2 distinct columns of this orthogonal array the tupies of the set

Z2 = {0, l}2 = {(0, 0), (0, 1), (1, 0), (1, 1)} appears exactly two times.

0 0 0 0 0 0 0

1 0 0 1 1 0 1

0 1 0 1 0 1 1

0 0 1 0 1 1 1

1 1 0 0 1 1 0

1 0 1 1 0 1 0

0 1 1 1 1 0 0

1 1 1 0 0 0 1

Figure 1.1: The orthogonal array 0A2(8;2,7,2).

In an orthogonal array OA\(N\t,k,v) the parameters TV and k are the dimensions of the

orthogonal array; the parameter v is the order of the orthogonal array or the number of distinct

symbols in every column; the parameter t is the strength of coverage of ¡nteractions; and the

parameter A is the number of times that each tupie of Z\ appears ¡n every combination of t distinct

columns (for covering arrays the parameters TV, t, k, and v have the same meaning).

Much work has been done for orthogonal arrays, for example see [39] for theory and applications

of the orthogonal arrays. However, the requirement that every combination of t columns covers all

the tupies of Z\ exactly A times is too restrictive in some applications. The covering arrays are

combinational designs very similar to the orthogonal arrays; the difference is that in the covering

arrays every combination of t distinct columns covers each tupie of the set Z\ at least once. Thanks

to this relaxed requirement the covering arrays have a wider range of applications. The concept of

covering array is defined formally in the following Definition 1, which was adapted from [38]:

DEFINITION 1 Let be TV, t, k, and v four positive integers, a covering array CA(N; t, k, v) Is an

Nxk array A
= (a¿¿), 0 < i < TV- 1, 0 < j < k - 1, over Zv = {0, 1, . . .

,
v
-

1} with the property



1. Introduction 3

that for any t distinct columns 0 < cq < cx
■ ■ ■ < ct-\ < k - 1, and any member (x0, X\, . . .

, xt-\)

ofZ\,, there exists at least one row r such that £¿ = aT<Ci for all 0 < i < t — 1.

Figure 1.2 shows the covering array CA(12;3, 11,2). This covering array has TV = 12 rows and

k = 11 columns, its order is v = 2, and its strength is t — 3. Each one of the (y) = 165 subarrays

of three distinct columns covers every member of Z\ at least once. The set Z\ is equal to

Z\ = {0,1}3

= {0,l}x{0,l}x{0,l}

= {(0,0,0), (0,0,1), (0,1,0), (0,1,1), (1,0,0), (1,0,1), (1,1,0), (1,1,1)}.

*]r v 4"

0 0 0 0 0 0 0 0 0 0 0

1 1 0 1 1 0 0 1 1 0 0

0 0 0 1 1 1 0 1 0 1 1

0 1 1 1 0 1 0 0 1 0 1

1 0 1 0 1 0 0 0 1 1 1

1 1 1 0 0 1 0 1 0 1 0

0 0 1 1 0 0 1 1 1 1 0

1 0 1 1 1 1 1 0 0 0 0

0 1 0 0 1 1 1 0 1 1 0

1 1 0 1 0 0 1 0 0 1 1

1 0 0 0 0 1 1 1 1 0 1

0 1 1 0 1 0 1 1 0 0 1

Figure 1.2: The covering array CA(12;3, 11,2). In the columns marked with a down arrow the first

occurrence of each tupie of the set {0, l}3 is colored in purple.

To clarify the concept of strength of a covering array, consider the columns 0, 1, 3 of the covering

array in Figure 1.2. In the twelve rows of this group of three columns the eight tupies of the set

{0, l}3 are covered at least once. From top to bottom in the table, the first occurrence of each

tupie is colored in purple. This way, in a covering array of strength t every combination of t distinct

columns covers each tupie of the set Z\ at least once.



4 1.2. Motivations

Given the valúes of t, k, and v the problem of constructing covering arrays is the problem of

generating a covering array CA(N;t,k,v) with the mínimum number of rows TV. This problem is

very hard for general valúes of t, k, and v, so that a number of different methods has been proposed

to solve it (some of which are reviewed in Chapter 3). This thesis investigates a new method to

construct covering arrays based on the construction of Towers ofCoveringArrays (TCAs). The main

objective of this research is to prove that the TCA approach can produce covering arrays of quality

competitive with the best known covering arrays.

1.2 Motivations

Covering arrays have practical applications in the design of experiments for software and hardware

testing [37, 44]. Consider a software component with k parameters, all of which have two possible

valúes. To fully verify the proper operation of the component the 2fc combinations of valúes for the

input parameters must be checked. However, this exhaustive approach is impractical for complex

components having for example k = 30 parameters.

The alternative to the exhaustive approach is to check only the interactions of size t. In this

case a covering array of strength t can be used as a test suite, because it ensures that all possible

interactions among any t parameters are checked in the experiment. A covering array A = (a¿¿) =

CA(TV; í, k, v) is used as a test suite in the following way: the k columns represent the k factors, the

order v is the number of possible valúes for each factor, the strength t is the degree of coverage of

interactions, and the TV rows are the test cases. The z-th row (a¿io a¡,i
• • • a¿,k_i) corresponds to

the test case in which the first factor takes its valué number a¿,o, the second factor takes its valué

number a¿,i, and so on. Covering arrays with few rows are desired because the verification of all the

interactions of size t among the k parameters is done with less test cases.

In the área of software testing the covering arrays are the base of the combinatorial testing

methods [19, 35, 44]. In a serie of studies realized by the National Institute of Standards and
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Technology (NIST) in a wide range of domains, it was found that all the failures in the software

producís under study were due to interactions involving at most six parameters [45, 46, 47, 73]. This

results is not conclusive for all software producís, but it suggests that the number of parameters

involved in a failure is relatively low; therefore, testing all interactions of size t is very effective to

detect failures in the software products. Another áreas of applications of covering arrays are testing

advanced materials [14], bioinformatics [61, 63], and data compression [67].

The objective of the methods to construct covering arrays is to satisfy the coverage properties of

the covering arrays (i.e., every submatrix of t distinct columns covers at least once each tupie of Z£)

using the least possible number of rows. In general, the optimum number of rows for a covering array

of k columns, strength t, and order v is unknown; what it is generally known is the current upper

bound for a combination of k, t, and v; so, the main objective of the new methods of construction is

to improve the current upper bounds. The purpose of this thesis is to produce covering arrays that

improve or equal some current upper bounds by means of the construction of TCAs.

1.3 Thesis Problem

The problem studied in this thesis is the construction of TCAs. This section begins introducing the

concept of TCA; after that, the research problem, the research hypothesis, the general objective,

and the particular objectives of the thesis are stated.

1.3.1 Towers of Covering Arrays

A TCA is defined as follows: a TCA of height h is a succession of h+\ covering arrays Co, C\, . . .

, C/¡,

where C0 is a covering array of strength t called the base of the TCA, and for i = 1, 2, . . .

, h, Ct is

a covering array of strength t + i.

The covering arrays in a TCA are created by the iterative application of one construction that

we called £. This construction takes a base covering array CA(TV; t, k, v) of strength t, TV rows, k
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columns, and order v, and expands it to a covering array CA(Nv; t + 1, k + 1, v) of strength t + 1,

TVw rows, A: + 1 columns and, order u, by juxtaposing vertically v copies of the base covering array,

but translating the j-th column of the i-tb copy by the (i, j) entry of matrix over Zv called 5. The

column k + 1 of the covering array of strength t + 1 is conformed by TV zeroes, followed by TV ones,

a so on until finish with TV elements equal to v — 1.

The construction £ might be applied to the covering array CA(Nv; t + l,k + í,v) of strength

t + 1 to produce a covering array CA(Nv2\ t + 2,k + 2,v) of strength t + 2. The process would

continué expanding the covering array of strength t + 2 to a covering array of strength t + 3, and so

on, producing a TCA. Figure 1.3 illustrates the concept of TCAs.

Covering Array Height

CA(Nvh t + h k + h, v) h

:

CA(Nv3 t + 2, k + 3,v) 3

CA(Nv2 t + 2 k + 2,v) 2

CA(Nv; í + 1, k+l,v) 1

CA(TV; í, k, v) 0

Figure 1.3: A TCA of height h is conformed by h + 1 covering arrays of strengths í, t+ 1, . .
.,
t + h.

An important concept for describing the construction £ is the concept of translating the columns

of a covering array, which is given in Definition 2.

Definition 2 Let be A= CA(N; t, k, v) a covering array of order v, and let be Av 0 < j < k- 1,

one column of the covering array A. To transíate the column Aj by a valué c€{0,l,...,v —

1}

means to add modulo v the valué c to every element ofAj . The symbol © will be used to denote

the operation of column translation (see Figure 1.4).
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■**j \í/ c
—

/ ao,j \

\aN-ltJJ

•c —

( (ao,j + c) mod u \

(aij -I- c) mod v

^(ün-ij + c) mod vi

Figure 1.4: Translation of the column Aj by the valué ce {0, 1, . . .

,
v
- 1}.

Now, the construction to genérate a covering array of strength t + 1 from a covering array of

strength t (the construction £) is defined formally in Definition 3. Figure 1.5 shows the definition of

the construction £ in schematic form.

Definition 3 Let be A0,AU..., Ak_i the k columns of a covering array A = CA(N\ t, k, v); let

be 6 a matrix of dimensions v x k such that 60j = 0 and 5itj € {0, 1, . . .

,
v — 1} for 1 < i < v

— 1,

0 < j < k — 1; and let be X0,Xi, . . .

, X„_i the v columns of the matrix X — (xí¿) of dimensions

TV x v such that x,¿,
=

; for 0 < i < TV - 1, 0 < j < v
- 1. The construction £ to try to expand

the base covering array A of strength t to a covering array B of strength t+l consists in creating a

matrix B of sizeNvx(k + 1) composed by v blocks of size TV x (k + 1) juxtaposed vertically. The

j-th column ofthe i-th block (0 < j < k -

1, 0 < i < v
-

1) is the column j of the base covering

array translated by the entry (i,j) ofthe matrix S; the last column ofthe i-th block is the column

Xi (see Figure 1.5).

The concept of TCAs was ¡ntroduced in some way for orthogonal arrays. In the book of Hedayat,

Sloane, and Stufken [39] the theorem 2.24 says that an OA(TV; 2u, k, 2) exists if and only if an

OA(2N;2u + 1, k + 1,2) exists. The converse of this theorem is that the orthogonal array A =

OA(TV; 2u, k, 2) can be used to construct the orthogonal array B = 0A(2TV; 2u+l,k + l, 2). The

way to construct B is to place the rows of A followed by 0, together with the rows of A (the

complementary matrix of A) followed by 1, as shown next, where 0 is a constant column vector

conformed by zeroes and 1 is a constant column vector conformed by ones:

-s:
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A=(A0 Ax ... Afc_i) 6 =

( 0 0

¿1,0 ¿1,1

0 \
¿i,fc-i

\¿v-l,0 ¿v-1,1 ■ • ■ ¿ti-l,fc-l/

a:

/o i ... u
- 1\

0 1 ... v-l

Vo i

s

/ A0 © (50,o Ai © ¿o,i
A> © ¿i,o Ai © ¿14

-v

Ak-i © ¿o,fc-i -Xio \
Ak-i © ¿i,fe-i Xi

\¿o © ¿„_i,0 Ai © ¿v-1,1 . . . Afe_i © ¿„_i,fc_i Xv_i)

Figure 1.5: The construction £. The first A; columns of the z-th block of the matrix B are the

columns ofthe base covering array A translated by the valué ¿iJP and the last column ofthe block

is the column X¿.

This construction allows the generation of towers of orthogonal arrays of height h = 1, but they

only exist for v = 2 and when the strength of the orthogonal array A is even (t = 2u).

It is important to mention that the construction £ does not always produce a covering array of

strength t + 1 based on a covering array of strength t; this depends on the base covering array A

and on the matrix 5 used. In this work we want to construct TCAs in which the base covering array

can have any strength and any order; so, we check all matrices 5 that exist for the base covering

array to see if one of them produce a matrix B that is a covering array of strength t+l.

1.3.2 Problem Statement

The problem investigated in this thesis is the construction of TCAs in which the base covering array

can have any strength and any order, with the objective of generating covering arrays of quality

competitive with the best known ones.
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In this work a covering array A produced in the construction of TCAs will be considered of quality

competitive with the best known one B (which is the current upper bound) if A satisfies the coverage

properties in a smaller or equal number of rows than B.

1.3.3 Research Hypothesis

It is possible to construct TCAs of any order such that the covering arrays generated improve or

equal some of the current upper bounds.

1.3.4 General Objective

To produce covering arrays that improve or equal some ofthe current upper bounds by means ofthe

construction of TCAs

1.3.5 Particular Objectives

• To define a methodology for constructing TCAs.

• To develop the algorithms required for realizing efficiently the methodology.

• To perform a computational experimentaron with the objective of constructing TCAs with the

máximum height possible.

1.4 Thesis Contents

The thesis document is organized in six chapters; next is a brief summary of the content of each

chapter:

• Chapter 1 Introduction. The first chapter ofthe thesis is an introduction to the thesis problem:

the construction of TCAs.
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• Chapter 2 Background on Covering Arrays. The second chapter introduces some concepts

about covering arrays which are very ¡mportant for the TCA approach. They include the

coverage properties of covering arrays, isomorphism in covering arrays, and covering arrays of

mínimum rank.

• Chapter 3 State of the Art of the Construction of Covering Arrays. This chapter presents

a number of methods developed to solve the problem of constructing covering arrays. The

methods studíed were grouped ¡n four categories: exact, greedy, heurístic, and algebraíc.

• Chapter 4 Methodology to Construct the Towers of Covering Arrays. This chapter describes

the methodology followed to construct TCAs and the algorithms developed to realize the

methodology.

• Chapter 5 Computational Results. This chapters describes the computational experimentaron

done to prove the research hypothesis and the relevant results obtained.

• Chapter 6 Conclusions. The last chapter presents a summary ofthe main contributions ofthe

thesis, some directions for future work, and the final discussion of the work done.

1.5 Chapter Summary

This chapter introduced the thesis problem: the construction of TCAs. A covering array

CA(N;t,k,v) is an TV x k matrix over Zv with the property that every TV x t subarray covers

at least once the tupies in the set Z\. A TCA of height h is a succession of Ti + 1 covering arrays

Co,Ci,...,Ch, where C0 is a covering array of strength t called the base of the TCA, and for

i = 1,2, ...,h, C¡ is a covering array of strength t + i. The objective of constructing TCAs is

to obtain covering arrays of quality competitive with the best known ones. The following chapter

presents the concepts about covering arrays that are required to solve efficiently the thesis problem.



2
Background on Covering Arrays

This chapter presents some concepts about covering arrays which are very ¡mportant for the

subsequent chapters of the thesis and for the construction of TCAs. Section 2.1 explains the basic

operation of verifying if a given matrix is a covering array of a certain strength; this operation is

based in counting the number of times each í-tuple is covered in every combination of t columns.

Section 2.2 introduces the concept of isomorphism in covering arrays and the three operations from

which ¡somorphic covering arrays are derived: row permutation, column permutation, and symbol

permutation in the columns; in addition, non-isomorphic covering arrays are introduced, and it is

explained why they are ¡mportant for the construction of TCAs. Section 2.3 presents the problem of

constructing covering arrays; and Section 2.4 finalizes the chapter introducing a more general type

of covering arrays called mixed covering arrays.

11
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2.1 Verification of Covering Arrays

A covering array CA(TV; t, k, v) has (*) different submatrices of dimensions N xt, and each of them

covers the v* different tupies of the set Z\ at least once. One basic operation for covering arrays is

to verify if a given matrix is a covering array of a certain strength t.

Consider the matrix A of Figure 2.1. To be a covering array of strength t = 2 every combination

of two columns of matrix A must cover the four tupies of the set Z\ = {(0, 0), (0, 1), (1, 0), (1, 1)}

at least once. We use a matrix called V to record the number of times the í-tuples are covered in

the C¡) combinations of columns of a matrix with k columns. This matrix V has (*) rows and \L\\

columns, and ¡ts (i,j) entry is the number of times the i-th combination of columns covers the j'-th

tupie of the set Zj,. The matrix VA for the array A of Figure 2.1 is shown to the right of the same

Figure 2.1.

/I 1 1 0 1\
10 110

0 0 0 0 1

110 10

0 110 0

\0 1 1 1 1/

Figure 2.1: The matrix A and its associated matrix VA.

VA (0,0) (0,1) (1,0) (1,1)

{0,1} 2 1 2

{0,2} 2 1 2

{0,3} 1 1 2

{0,4} 2 2 1

0,2} 1 1 3

{1,3} 1 2 2

{1,4} 1 2 2

{2,3} 1 2 2

{2,4} 1 2 2

{3,4} 2 2 1

If the matrix M being checked is a covering array then its associated matrix VM does not have

any entry equal to zero, since one entry (i,j) equal to zero means that the i-th combination of

columns does not cover the j-th tupie of the set Zlv. Every entry equal to zero in the matrix VM

indicates a missing tupie in the matrix M. For the matrix A of Figure 2.1 all the elements of ¡ts

associated matrix VA are greater than zero, so the matrix A is a covering array of strength t = 2.
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2.2 Isomorphism in Covering Arrays

For the same parameters TV, k, t, and v there may exist several covering arrays with TV rows, k

columns, strength t, and order v. However, a number of these covering arrays would be equivalent

due to the existence of three symmetries in the covering arrays.

Any ofthe following three operations produces a covering array equivalent to the one over which

the operation is applied:

1. To permute the rows ofthe covering array.

2. To permute the columns of the covering array.

3. To permute the symbols in the columns of the covering array.

Furthermore, any combination of these three operations applied to a covering array produces

an equivalent covering array. The following Definition 4 introduces the concept of isomorphism in

covering arrays.

Definition 4 Two covering arrays A and B with the same parameters TV, t, k, and v are ¡somor

phic ifB can be derived from A (and vice versa) by a combination of a row permutation, a column

permutation, and a symbol permutation in a subset of columns.

For a covering array CA(N;t,k,v) of TV rows, k columns, and order v, there are TV! row

permutations, k\ column permutations, and (v\)k different combinations of symbol permutations.

The number of different combinations of symbol permutation is (v\)k because there are v\ possible

symbol permutations for each one of the k columns. The operation of symbol permutation in a

column is also referred as relabeling the column. This way, excluding itself, the number of covering

arrays which are ¡somorphic to one in particular is TV! k\ (v\)k — 1; however, some of these covering

arrays may be identical, and so the number of different ¡somorphic covering arrays may be less than

N\k\(v\)k.



14 2.2. Isomorphism in Covering Arrays

Consider the covering array A — CA(6;2,5,2) of Figure 2.2, which is the same as the covering

array A of Figure 2.1. Let us number its TV = 6 rows and ¡ts k = 5 columns sequentially starting

from zero; so, ¡ts current permutation of rows ¡s r = (0 1 2 3 4 5), and ¡ts current permutation of

columns is tt = (0 1 2 3 4).

A =

(\ 1 1 0 1\
10 110

0 0 0 0 1

110 10

0 110 0

\0 1 1 1 1/

r = (0 1 2 3 4 5)
tt = (0 1 2 3 4)
<t> = (0 0 0 0 0)

Figure 2.2: Current row permutation, column permutation, and symbol permutations ofthe covering

array A.

Moreover, let us denote ¡ts current combination of symbol permutations by <f> = (0 0 0 0 0),

where the elements of <f> are Índices of the symbol permutations for each column of A listed in

lexicographic order. For a covering array of order v there are v\ symbol permutations or relabelings

for each column, these relabelings will be represented by an ¡ndex j G {0, 1, . . . ,vl — 1} considering

the symbol permutations in lexicographic order. In this case ¡s v — 2, and therefore the 2! = 2 symbol

permutations for each column of A are in lexicographic order (0 1) and (1 0). These permutations

are indexed by 0 and 1 respectively. The symbol permutation (0 1) is the identity, that is, it ¡ndicates

to change the zeroes by zeroes and the ones by ones; the symbol permutation (1 0) ¡ndicates to

change the zeroes by ones and the ones by zeroes.

Let be r' = (3 1 2 5 4 0) another permutation of the rows of the covering array A of Figure

2.2; let be tt' = (4 2 0 3 1) another permutation of the columns of A; and let be <j>' = (0 1 0 1 0)

another combination of symbol permutations for the columns of A. Figure 2.3 shows the covering

array B resulting from applying to the covering array A the operations defined by r', n', and </>'. The

order in which these operations are applied is irrelevant for the final result. The covering array B

is ¡somorphic to A because it was derived from A by one combination of the three operations that

produce equivalent covering arrays.
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5 =

/O 1 1 0 1\
0 0 10 0

110 10

10 0 0 1

0 0 0 11

\1 0 1 1 1/

t' = (3 1 2 5 4 0)
tt' = (4 2 0 3 1)

<¿' = (01010)

Figure 2.3: The ¡somorphic covering array B produced by the application of r' , tt', and </>' to the

covering array A.

Isomorphic covering arrays are equivalent because the operations of row permutation, column

permutation, and symbol permutation do not change the coverage properties of the matrix over

which they are applied. That is, if the initial matrix is a covering array, then the matrix after the

operations is also a covering array; also, if the initial matrix has m missing tupies, then the matrix

after the operations also has m missing tupies (but not necessarily the same missing tupies).

In more formal terms, the operations of permute the rows, permute the columns, and permute the

symbols in the columns do not affect the qualitative í-independence of the columns of the covering

array over which the operations are applied:

Definition 5 Let be TV, t, and v be positive integers. t vectors u>0,u>i, . . . ,u>t-i € Z„

are qualitatively independent if for each tupie (xq,xi,. . . ,xt-i) € Z\ there is an index i €

{0, 1, . . .

,
TV— 1} such that (u/0j, u^, . . .

, uif-ij = (xq, Xi, . . .

, xt-i). A set ofvectors is qualitatively

t-independent if any t distinct vectors of the set are qualitatively independent.

The equivalence of the isomorphic covering arrays is better appreciated in the matrix V of the

covering arrays. Figure 2.4 shows the matrix Vb of the covering array B of Figure 2.3, which is

isomorphic to the covering array A of Figure 2.2. The z-th row of Vb is a permutation of the j-th

row of VA, where possibly i ^ j; moreover, every row of Va is used to derive a row of Vb and there

are not two rows of Vb derived from the same row of VA. For example, both matrices VA and Vb

have a row with one 3 and three l's (fifth row of VA and seventh row of Vb), all the other rows

have two l's and two 2's.
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VB (0,0) (0,1) (1,0) (1,1)

{0,1} 2 1 2 1

{0,2} 1 2 2 1

{0,3} 2 1 1 2

{0,4} 1 2 1 2

{1,2} 2 2 1 1

{1,3} 2 2 1 1

{1,4} 1 3 1 1

{2,3} 1 2 2 1

{2,4} 1 2 1 2

{3,4} 1 2 1 2

/O 1 1 0 1\
0 0 10 0

110 10

10 0 0 1

0 0 0 11

\1 0 1 1 1/

Figure 2.4: The matrix Vb of the covering array B.

Contrary to the isomorphic covering arrays, the non-isomorphic covering arrays are those covering

arrays which can not be transformed among them by permutations of rows, permutations of columns,

and permutation of the symbols in the columns. Figure 2.5 shows another covering array C —

CA(6; 2, 5, 2), but this covering array is non-isomorphic to the covering arrays A and B of Figure 2.2

and Figure 2.3 respectively. The matrix Ve shows that the covering array C has a different pattern

of coverage of the tupies in Z\.

/0 1 1 0 0\
11110

0 0 110

10 0 0 1

0 10 10

\0 1 1 1 1/

Figure 2.5: The covering array C is non-isomorphic with the previous covering arrays A and B.

Vc (0,0) (0,1) (1,0) (1,1)

{0,1} 3 1

{0,2} 3 1

{0,3} 3 1

{0,4} 1

{1,2} 3

{1,3} 3

{1,4} 3 1

{2,3} 1 3

{2,4} 3 1

{3,4} 3 1

This characteristic is not true in general for all the non-isomorphic covering arrays, but it is very

¡mportant for the construction of TCAs. Since some non-isomorphic covering arrays have different
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Rank:

(0,13,26,32,42,46,61,65,75)

patterns of coverage of the tupies in the set Zlv, they may produce different TCAs for the same

parameters TV, t, k, and v.

Let us introduce a very ¡mportant concept in this thesis: the rank of a covering array. The

TV rows of a covering array CA(N;t,k,v) can be considered as numbers in base v, with the most

significant digit to the left; the rank of a covering array is the ordered sequence conformed by these

TV numbers in base v; Figure 2.6 illustrates the concept of rank of a covering array.

/O 0 0 0\
0 111

0 2 2 2

10 12

112 0

12 0 1

2 0 2 1

2 10 2

\2 2 1 0/

Figure 2.6: The rank of the covering array shown in the figure is the ordered sequence (0, 13, 26,
32, 42, 46, 61, 65, 75) constructed by considering the nine rows ofthe covering array as numbers in

base three.

Let be <S the set conformed by one covering array s — CA(TV; t, k, v) and all ¡ts TV! k\ (v\)k — 1

¡somorphic covering arrays. In the set S there is a covering array s' G S that has the smallest rank

among all the covering arrays in S; this covering array s' is the covering array of mínimum rank

equivalent to s. In the following Definition 6 the concept of covering array of mínimum rank is

formally defined.

Definition 6 A covering array CA(N;t,k,v) with rank (a0,ai, . . . ,aN-i) is of mínimum rank

only ifnone of its TV! k\ (v\)k — 1 isomorphic covering arrays has a rank (60, &i, • . ■

, 6jv-i) such that

for some i € {0, . . .

,
TV —

1} is 6¿ < a¿ and bj = üj for 0 < j < i.

Figure 2.7 shows the covering arrays of mínimum rank A*, B*, C* equivalent to the covering

arrays A, B, C ofthe Figures 2.2, 2.3, 2.5 respectively. The covering arrays A* and B* are identical
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because they are the equivalent of mínimum rank of the isomorphic covering arrays A and B. In

the other hand, the covering array C* is different from A* and B* because C is non-isomorphic to

A and B. To get the covering array of mínimum rank that is equivalent to a given covering array,

all the isomorphic covering arrays for the given one are generated, and it is taken the covering array

with the mínimum rank.

/O 1 1 0 1\ /o 1 1 0 0\

0 0 1 0 0 1 1 1 1 0

1 1 0

1 0 0

1

0

0

1
c =

0

1

0

0

1 1 0

0 0 1

0 0 0 1 1 0 1 0 1 0

\1 0 1 1 1/ vo 1 1 1 l)

/O 0 0 0 o\ /o 0 0 0 0\

0 0 0 1 1 0 0 0 1 1

0 0 1

0 1 1

0

1

1

0
c* =

0

0

0

1

1 0 1

0 0 1

1 0 1 1 0 1 0 0 0 1

\1 1 0 0 ly V 1 1 i o)

(l 1 1 0 1\
1 0 1 1 0

0 0 0 0 1

1 1 0 1 0

0 1 1 0 0

Vo 1 1 1 y

/o 0 0 0 o\

0 0 0 1 1

0 0 1 0 1

0 1 1 1 0

1 0 1 1 0

V 1 0 0 V

Figure 2.7: The covering arrays A, B, C and their equívalents of mínimum rank A*, B*, C*.

Isomorphic covering arrays determine disjoínt classes in the set of all covering arrays that exist for

the same parameters TV, t, k, and v, since any element in one class can be transformed into any other

element of the same class by permutations of rows, permutations of columns, and permutations of

symbols; but with these operations it is not possible to transform one element of one class into one

element of a different class. In Figure 2.8 the set U ¡s the set of all TV x k matrices over Z„; in

these matrices are included all the covering arrays CA(N;t,k,v). The disjoínt sets X, y, and Z

represent the classes of ¡somorphic covering arrays. The number of different classes in which the set

of all covering arrays with parameters TV, t, k, and v is partitioned ¡s equal to the number of distinct

non-isomorphic covering arrays of mínimum rank CA(N;t,k,v).
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Figure 2.8: Islands of isomorphic covering arrays in the universe of the TV x k matrices over Z„.

2.3 Construction of Covering Arrays

The covering array construction problem (CACP) consists in constructing a covering array

CA(TV;i, k, v) given the parameters í, k, and v in such a way the number of rows TV of the covering

array is minimal. The smallest TV for which a covering array exists is the covering array number

(CAN) for the parameters t, k, and v, and it is denoted by

CAN(í, k, v) = min{TV : 3 CA(TV; í, k, v)}. (2.1)

The CACP seems to be NP-complete because some related problems are; for example it is NP-

complete to determine if there exists a row r that covers at least m missing tupies in a matrix [22].

Only for a few cases the CACP is solvable in polynomial time. The case v = 2 and t = 2 was solved

by Rényi [59] for TV even, and by Katona [42] and Kleitman and Spencer [43] for all TV. The other

case solvable in polynomial time is v = pn and k = v+ 1, with p prime and n > 1, which was solved

by Bush [11]. In addition to these cases, optimal solutions are known for some combinations of í,

k, and v (see [26]); but for general valúes of í, k, and v the CACP appears to be infeasible except

when the parametert are quite small [22]. Chapter 3 is devoted to analyze some ofthe most relevant

methods to construct covering arrays.
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Let be A the set of all matrices of dimensions TV x k over the symbol set Zv = {0, 1, . . .

,
v

- 1}.

The cardinality of the set A is given by Equation (2.2).

\A\ = vNk (2.2)

In the set A are ¡ncluded all the isomorphic and non-isomorphic covering arrays CA(N;t,k,v),

as well as those matrices which are not a covering array CA(N;t,k,v). Some of these matrices do

not have any possibility of being a covering array of strength t; for example the zero matrix. In

addition, repeated rows are not desirable in covering arrays, because the main objective in the CACP

is to minímize the number of rows.

Let be B the set of all TV x k matrices over Zv without repeated rows, and such that the rows

are ¡n ascending order according to their rank; the cardinality of B is given in Equation (2.3).

l»l-(£) (-)

The search space defined by B is more accurate than the defined by A, because in B only are

included those matrices which do not have repeated rows and whose rows are in ascending order

according to their rank. The number of matrices in the set B is the number of ways of selecting TV

rows from the vk different rows of length k over Z„. Therefore, the set B will be considered as the

search space for the CACP

2.4 Mixed Covering Arrays

Both the covering arrays seen so far and the orthogonal arrays of Chapter 1 have the same number of

symbols in all their columns. Nonetheless, it is possible that each column has a different number of

symbols, i.e., a different order. The mixed covering arrays are covering arrays in which every column

may have a different order. The following definition for mixed covering arrays was taken from [21]:
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Definition 7 A mixed covering array, denoted by MCA(N; t, k, (vQ, vu..., vk-i)), is a matrix of

dimensión TV x k over v symbols, where v = Yl'jZo vi> WtA the following properties:

1. Each column j (0 < j < k —

1) only contains symbols from the set Sj, where \Sj\ = Vj.

2. Each submatrix of dimensions TV x í conformed by the columns jo, ji, ■ ■ • ,3t-u where {j0, ji,

• •
•- jt-i} C {0, 1 k —

1}, covers at least once the ]~J*~0 Vji distinct t-tupes of the set

{0, 1, . .
., vjo

-

1} x {0, 1, . . ., vál
-

1} x • • • x {0, 1 vjt_t
-

1}.

Generally, some Vj are the same, so the notation MCA(TV; t, k, (wo°,wkl,. . . ,wksSi)) ¡scommonly

used; in these notation k = £*~¿ h anc' v — Z)i=o hwi, that is, fc¿ is the number of columns

with order ti/j. Figure 2.9 shows the mixed covering array MCA(9;2,5,3223); the first two

columns of this MCA are of order three and the remaining three columns are of order two.

Every pair of columns i,j G {0,1,2,3,4}, i ^ j, covers at least once all the tupies of the set

{0,l,...,vi-l}x{0,l,...,i;i-l}.

0 0 0 0 0

1 1 0 0 0

2 2 0 0 1

0 2 0 1 0

2 1 0 1 0

1 0 0 1 1

2 0 1 0 0

0 1 1 1 1

1 2 1 1 1

Figure 2.9: The mixed covering array MCA(9;2,5, 3223). The first two columns ofthe MCA have

order three and the other three columns have order two.

Some of the methods to construct covering arrays revised in the following chapter are able to

construct both mixed covering arrays and covering arrays with columns of the same order, which

are called uniform covering arrays to distinguish them from the mixed covering arrays. The covering

arrays constructed by the TCA approach are uniform covering arrays.



22 2.5. Chapter Summary

2.5 Chapter Summary

In this chapter were introduced the concepts about covering arrays required for the construction of

TCAs. One basic operation for covering arrays is to verify if a given matrix is or not a covering array

of a certain strength t. A matrix called V is used to record the number of times the tupies of the set

Z\ are covered in the (*) combinations of t distinct columns ofthe matrix being verified. Isomorphic

covering arrays determine disjoínt classes in the set of all covering arrays that exist for the same

parameters TV, t, k, and v; sínce any element in one class can be transformed into any other element

of the same class by permutations of rows, permutations of columns, and permutations of symbols;

but with these operations it is not possible to transform one element of one class into one element

of a different class. The covering arrays in different classes are non-isomorphic among them. The

covering array construction problem (CACP) consists in constructing a covering array CA(N;t,k,v)

given the parameters t, k, and v in such a way the number of rows TV of the covering array is

minimal. The search space for the CACP is ("N), i.e., the number of ways of selecting TV different

rows from the vk rows of length k over Zv. For general valúes of t, k, and v the CACP appears

to be infeasible except when the parameters are quite small; in the next chapter are reviewed some

of the most ¡mportant methods developed to solve the CACP in an exact way or in an approximate

way.



3
State of the Art of the Construction of Covering

Arrays

Due to the difficulty of solving the problem of constructing covering arrays a number of methods

have been developed. This chapter gives a review ofthe state ofthe art ofthe methods to construct

covering arrays. The methods analyzed were grouped in four categories: exact methods (Section

3.1), greedy methods (Section 3.2), metaheuristic methods (Section 3.3), and algebraic methods

(Section 3.4). In addition to these methods Section 3.5 describes five useful operations for covering

arrays previously constructed. The chapter ends with a summary of the methods analyzed, and a

discussion of the methods with more similarity to the one proposed in this thesis: the construction

of towers of covering arrays.

23
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3.1 Exact Methods

Given the valúes k, t y v the exact methods construct a covering array CA(N;t,k,v) in which

the number of rows TV is optimal. The exact methods have techniques for accelerating the search

process, but even so they are only practical for constructing small covering arrays.

3.1.1 The Automatic Generator EXACT

Yan and Zhang developed in [74] an automatic generator of mixed covering arrays called EXACT

(EXhaustive seArch of Combinatorial Test suites). This generator works by making assignments to

the cells ofthe MCA while possible, and making backtrack when it reaches a point in which it is not

possible to complete the MCA. The algorithm incorporates some strategies to accelerate the search

process, one of which is do not explore arrays ¡somorphic to arrays previously explored. To do this, the

algorithm only considers the arrays that are lexicographically ordered both by rows and by columns.

Column relabeling is not considered by the generator, because ¡ts objective is to genérate only one

MCA for the given parameters; instead, a technique called SCEH (Sub-Combination Equalization

Heuristic) is used. The SCEH technique reduces the search space by assuming that the symbols ¡n

the columns of the MCA are balanced, Le., the symbols appear nearly the same number of times in

a column.

3.1.2 New Backtracking Algorithm

A searching algorithm to construct binary covering arrays (v = 2) of strength t and dimensions

TV x A; was given by Bracho-Rios et al. [9]. The algorithm constructs the covering arrays column by

column imposing a lexicographic ordering ofthe columns to break the column and row symmetries.

The columns to construct the covering arrays are balanced in symbols, they have [yj zeroes and

TV -

[yj ones. Before starting the search, a block of t columns is made fixed, the first TV - 2É rows
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of the block are filled with zeroes and the last 2* rows are filled with the 2* tupies of size t over

the symbol set {0, 1}. Suppose a partial solution with r columns (t < r < k) and let be l the last

column of the partial solution. To construct a covering array of strength t and r + 1 columns, the

algorithm checks all the columns /' greater than l in lexicographic order until find one which makes

a covering array of strength t with the r columns of the partial solution such that the rows and

the columns are ordered lexicographically. If no such column is found the algorithm backtracks to

column r — 1. In this work it was demonstrated that there are no solution with balanced symbols

for k = 13 and k
—

14 for strength t — 3 with TV = 15 rows. In Section 5.3 we prove that neither

is there solution for these two cases with non balanced columns.

3.1.3 Constraint Programming

Hnich et al. [40] proposed four matrix models of constraint programming to construct covering

arrays, called respectively naive matrix model, alternative matrix model, integrated matrix model,

and weakened matrix model. The naive matrix model consists in an TV x k matrix of integer variables

xT,i, l<r<N,l<i<k, such that xi¡r
= m\f the valué of the cell at row r and column i is m.

The alternative matrix model consists in an TV x (j?) matrix of compound variables yr¿, where each

compound variable represents a tupie of variables (xr^,xr¡i2, . . . ,xr>¡t) of the naive matrix model.

The integrated matrix model associates the compound variables in the alternative matrix model with

their t corresponding variables in the original matrix model by means of channeling constraints. The

weakened matrix model is a SAT encoding with several constraints omitted; this SAT encoding was

developed to take advantage of the existing SAT local search methods.

3.1.4 SAT Encodings

Lopez-Escogido et al. [50] proposed a SAT encoding similar to the Hnich's encoding to genérate

covering arrays of strength two. For each element m¿J ofthe matrix M associated with the instance



26 3.1. Exact Methods

are introduced v Boolean variables mij>x, 0
< x < v. The model of transformation uses two sets of

clauses in conjunctive normal form (z\ and z2) to ensure each element ofthe matrix M takes exactly

one valué of the alphabet {0,1,.. . ,v
-

1}; and uses a third set of clauses (z3) in non-conjunctive

normal form to guarantee the interactions among the columns of the covering array are satisfied.

The three set of clauses are the following ones:

iV-l

zi = A( V mw)
t=0 Vj,x\0<j<k,0<x<v

N-l

*2
= l\{ V {ñ^Vm-—))

¿=0 Vj,a:,!/|0<j<*:,0<x<¡/<i,

za
= f\ ( A ( V (mw A "*«.'*)))

Vx,y\0<x<y<v Vj,í|0<j<¡<fc V¿|0<t<W

Taking the conjunction of these three set of clauses gives the complete SAT formula of the

instances of covering arrays: F
= Z\ A z2 A z3.

Banbara et al. [7] give another two SAT encodings to construct covering arrays, called respectively

order encoding and mixed encoding.

3.1.5 Generation of Non-lsomorphic Covering Arrays

In a technical report Meagher [54] addressed the generation of non-isomorphic covering arrays of

strength two and order two. The objective of this work is to find all the non-isomorphic covering

arrays for given valúes of TV, k, t = 2, and v = 2. The algorithm generates the covering arrays

one column at a time from 0 columns to k columns rejecting the covering arrays which are not

of mínimum rank. The algorithm proposed can be used as an exact method to construct covering

arrays because it can be stopped as soon as the first non-isomorphic covering array for the given

parameters is constructed. The discarding of subarrays which are not of mínimum rank acts as a

pruning criteria in the exact method, because only the subarrays of mínimum rank are extended.
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3.2 Greedy Methods

For combinations of the parameters TV, t, k, and v for which the exact methods are impractical,

the searching methods to construct covering arrays can follow a greedy strategy to produce a good

solution in low time. This section reviews four of the most relevant greedy methods to construct

covering arrays.

3.2.1 The AETG System

The Automatic Efficient Test Generator (AETG system) is a generator of test suites (i.e., covering

arrays) defined by the user. In [18] was developed a new method to genérate the test suites in the

AETG system. This method starts with an empty test suite and generates one test case at a time,

until all the interactions of size t among the given parameters are covered. To obtain the following

test case the algorithm generates several candidate test cases, and the test which covers the greater

number of missing tupies is selected. A candidate test case is generated in the following way (let us

consider t — 2 for simplicity):

1. A factor / is chosen, and for this factor is selected its valué that appears in the greater number

of uncovered pairs.

2. Let be /i = /, the remaining factors are sorted randomly /i, . . .

, /*..

3. Suppose the factors f\,. ■ ■ ,fj have a valué assigned. For 1 < i < j let be Xi the valué of factor

fi. The valué xj+i for factor fj+1 ¡s selected as follows: for every valué Vj+i of factor /J+1 it

is determined the number of new pairs in the set {(/j+i = Xj+i, fi — x^} for 1 < i < j; the

valué selected for factor /J+1 is the one which appears more times in the new pairs covered.

The set of candidate test cases is obtained exploiting the randomness in the ordering of the

remaining factors in step 2, since a different factor ordering can yield a different test case.
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3.2.2 Deterministic Density Algorithm

The deterministic density algorithm (DDA) was proposed by Bryce and Colbourn in [10] as a generator

of test suites for interactions of size t — 2. One ¡mportant characteristic of this algorithm is that

it generates the test suites "one case at a time", i.e., the algorithm generates one test case ready

for use, then generates the following test case, and so on until cover all the interactions of size two

among the parameters. To construct the following test case the algorithm repeatedly fixes one level

or valué for each factor and updates the local and global densities. When all factors have been fixed

to one level the algorithm emits the test case.

The following factor to fix is the one with the largest density among the non-fixed factors. The

density ¿y for factors i and j ¡s computed as follows: (a) <5¿¿ = (rij/^max)2 'f Dotn factors have more

than one level left, where lmax is the largest cardinality of the two factors, and r¿j is the number of

missing interactions among factors i and j; (b) 6i¿ — (rij/Zmox)2 if only one factor has one level

left; (c) Óíj = 1.0 if both factors have exactly one level left and a new pair is covered; and (d)

Síj — 0 if both factors have exactly one level and no new pair is covered. The density of factor i is

the summation of the local densities over each factor j ^ i. If two or more factors have the largest

density then a factor-tie-braking rule is used; the most simple rule is to choose the smaller factor in

lexicographic order.

Having selected the factor to fix, the DDA algorithm assigns one level to it; and the level selected

is the one with largest level density. The level densities are computed for a specific level u¿ in relation

to an individual factor kj as follows: (a) S = (rij/lmax) if kj has more than one level left involved

in uncovered pairs with i¡¿; (b) 6 — 1.0 if kj has only one level left involved in uncovered pairs and

a new pair is covered; and (c) 5 = 0 if kj has only one level left involved in uncovered pairs and no

new pair is covered. Similarly to the for factor-tie-breaking rules, the most simple level-tie-breaking

rule is to select the smaller level in lexicographic order.
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3.2.3 In-Parameter-Order Algorithm

In [49] Lei and Tai introduced the In-Parameter-Order algorithm (IPO) to genérate test cases in which

all the interactions of size t among the k factors are covered. One characteristic of this algorithm

is that it expands the covering array both by rows and by columns. The IPOG algorithm [48] is a

generalizaron for í > 2 ofthe IPO algorithm, and the IPOG-F algorithm [30] is an improvement of

the IPOG algorithm.

These three algorithms share a common strategy based on using the covering array of k— 1 factors

to construct the covering array of k factors. The base of this recursive procedure is the covering

array of k = t factors, which is constructed trivially listing the í-tuples of the set {0, 1, . . .

,
v — 1}.

Once the base has been constructed the algorithm adds the factors t + 1, t + 2, . . .

,
k one at a time.

To add one factor the algorithms performs the following steps:

• Horizontal Growth. One additional column corresponding to the new factor is added; the cells

ofthe new column are filled in such a way some tupies ofthe new covering array are covered.

• Vertical Growth. New rows are added to cover the missing tupies remaining after filling the

cells of the new column.

There are several ways to implement the procedures of horizontal growth and vertical growth.

To fill the cells of the new column the IPOG algorithm processes the rows from up to down and

choose the symbol that covers the greatest number of missing tupies. In the other hand, the IPOG-F

algorithm selects in a greedy manner both the row and the symbol for the row; this examination

of all row/symbol parís gives to the IPOG-F algorithm the capacity of produce better results. The

criterion for selecting the symbol is the same as the IPOG algorithm.

The vertical growth is similar in the three algorithms (IPO, IPOG, IPOG-F), and it consists in

cover the missing tupies not covered by the horizontal growth. Given a missing tupie the algorithm

tries to accommodate it in one of the existing rows; if there is no place then a new row is added
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and the missing tupie is written in it. The k — t remaining cells in the new row are free to try to

accommodate the other missing tupies.

3.2.4 Coverage Inheritance

Calvagna and Gargantini [12] developed a new greedy algorithm to genérate MCAs of any strength.

As in the IPO algorithm, an MCA is constructed adding one parameter at a time until all the

parameters have been added.

Suppose t < k. The algorithm begins with the creation of an MCA of strength t for the first

t parameters, which is done listing the Yli=i vi tupies of the first t parameters (whose alphabet

cardinalities are vi,v2,...,vt). It is assumed that the cardinalities of the k parameters are in

descending order, so v^ > Vj if i < j. Now, suppose that the first j — 1 parameters (t < j < k)

have been added and they conform an MCA of strength t. The procedure to add the parameter j

starts by copying one column i < j in the new column j. Since v¿ > Vj the symbols s ofthe column

i such that s > Vj are mapped to a nuil symbol x in column j, while the symbols s < Vj of column

i are valid symbols for column j. A symbol x in column j ¡ndicates the cell is free to be assigned.

Since the new column j is a copy of a column i < j every subarray of t columns satisfies the

requirements to be an MCA of strength t, except the subarrays that contains both column i and

column j. This is denominated the property of coverage inheritance. The tupies not yet covered are

added to the matrix using the following procedure:

1. To initialize a set of flags, one for each cell of column j, to indícate that the cell can be freely

modífied.

2. To modify the free cells in column j to ¡ncrement the coverage with respect to the column i.

3. If the operation destroys inherited tupies, then modify the free cells in order to restore the

original coverage with column i.
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4. If there are no free cells, then new rows are added to restore a tupie.

This procedure only modifies the cells of the new column j; so the previous columns (which are

an MCA of strength t) are not modified. Both the selection ofthe column i to be copied in the new

column j and the criteria to assign the free cells are ¡mplemented following greedy strategies.

3.3 Metaheuristic Methods

Like the greedy methods, the metaheuristic approaches do not guarantee to find the mínimum number

of rows for the covering array being constructed. I practice, the metaheuristic methods give very

good results. This section describes the way ¡n which the metaheuristícs of simulated annealing,

tabú search, and genetic algorithms have been used to construct covering arrays.

3.3.1 Simulated Annealing

The technique of simulated annealing is an analogy of the process of heating and cooling the metáis

in order to obtain a strong crystalline structure. The metal is heated until it reaches the liquid

state, and after that the temperature is lowered slowly until the metal reaches its solid state again.

During the process of cooling the particles of the metal are arranged in a crystalline structure such

that the energy ofthe system is minimal [1]. The computational implementation of this technique

requires three parameters for simulating the temperature scheduling, these parameters are the initial

temperature T0, the final temperature T¡, and the cooling rate a (0 < a < 1). At the beginning,

the current temperature Tt is initialized with T0, but in the process it is repeatedly reduced using

Tt+i = aTt until it reaches ¡ts final valué T¡. To simúlate the change of states in the metal the

algorithm maintains a current state s¿ with energy 75¿. The next state Sj with energy E¡ is obtained

by perturbing the current state s¿. If the energy of the new state Sj ¡s less than the energy of s¿ then

Sj becomes the new current state; otherwise state Sj ¡s accepted with probability e~(-E^~Ei^kBTt,

where /es is the Boltzmann constant. A fourth parameter L, called the length of the Markov chain,
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defines the number of perturbations performed at the same temperature Tt. The algorithm stops ¡f

a desired solution is found, if the final temperature was reached, or if for 0 consecutive temperatures

changes the global best solution was not improved.

Covarrubias-Flores [29] proposed an algorithm of simulated annealing to construct binary covering

arrays of variable strength. The initial solution of the algorithm is generated randomly but has the

characteristic that the number of ones and zeroes are balanced in every column of the initial matrix.

The evaluation function is the number of missing tupies. The neighborhood function is composed

by two functions TV2 and TV5, the function TV2 has a utilization rate of 60% and the function TV5 has

the remaining 40%. The function TV2 consists in making randomly /3 operations of complement in

the matrix and in selecting the operation which minimizes the evaluation function; an operation of

complement changes the content of one cell from 0 to 1 and vice versa. The function TV5 randomly

selects one column j of the matrix and performs all the possible exchanges among the cells of the

column, the selected exchange is the one which minimizes the evaluation function.

Another algorithm of simulated annealing to construct binary covering arrays is proposed in

[71] by Torres-Jiménez and Rodriguez-Tello. To genérate the initial solution this algorithm uses a

heuristic consisting in filling randomly every column with TV/2 ones and TV/2 zeroes if TV is even, and

[TV/2J + 1 ones and LiV/2j zeroes if TV is odd. So, the number of ones and zeroes is different in at

most one unit in every column ofthe initial solution. Let be A the initial solution, from A is obtained

a new solution A' by means of a neighborhood function based on the functions switch(A,i, j) and

swap(A,i, j, l). The function switch(A,i, j) changes the valué of the cell (i,j) of A by a different

valué of the alphabet. The function swap(A,i, j, l) interchanges the valúes of the cells (i, j) and

(l, j) of the j-th column of A. The cost of a solution A is the number of missing tupies in A.

The parameters used in this simulated annealing algorithm were T0 = 4.0, a — 0.99, L = (Nkv)2,

Tf = 1.0 x 10~10, and 0=11. The algorithm is stopped if the current solution is a covering array,

if the final temperature was reached, or if 0 becomes 11. An improvement of this algorithm is given

by the same authors in [72].
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Avila-George et al. [3, 6] proposed three parallel approaches of simulated annealing to construct

covering arrays, denominated independent search, semi-independent search, and cooperative search.

In the independent search each processor executes its own sequential simulated annealing, the only

interaction among the processors is at the beginning when all of them receive the same initial solution,

and at the end when they all report their best solution found, in order to obtain the final best solution.

The semi-independent approach consists in dividing the Markov chains equitably among the available

processors; the processors interchange intermedíate solutions and everyone updates its current best

solution with the best of the intermedíate solutions. The cooperative approach maíntains a uníque

global best solution, which is accessible to all processors when they finish their respective Markov

chain. When a processor finishes its Markov chain it may update the global best solution, but in any

case it starts the next Markov chain with the current global best solution without waiting that the

other processors complete their chains; so not all the processors start their i-th Markov chain with

the same solution, which favors the algorithm can scape from local óptima.

3.3.2 Tabú Search

Tabú search is an optimization technique formalized by Glover in [31]. This technique owes its ñame

to a list called tabú list used to record the last movements done. The tabú list is used to avoid the

algorithm returns to a neighborhood recently explored, and it can go towards more promising zones

of the search space. Given a solution x in a neighborhood X, tabú search usually explores all the

neighborhood X in a deterministic way, which contrasts with other techniques where the exploration

of the neighborhoods is performed at random. If a solution x' better than the current solution x

is found, then x' becomes the new best current solution. In case of none solution better than the

actual is found in the neighborhood, the best solution of the neighborhood is taken as the new best

solution, inclusive if it is not better than the previous best solution; this is done to escape from local

óptima. At the end of each iteration, the tabú list is updated, and given that the size of the tabú

list is fixed, some movements are forgotten as other movements enter into the list.
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Tabú search has been applied tothe construction of covering arrays. In [66] Stardom proposed an

algorithm of tabú search which explores all the matrices in the neighborhood ofthe current solution.

The neighborhood of a matrix A is defined as the set of all the matrices than can be obtained from

A by changing the content of one random cell of A. The best element ofthe neighborhood becomes

the new best solution, without considering that it is better or worse than the current solution. The

cost of a solution is the number of missing tupies. The administraron of the tabú list is done in

the function that performs the movements; this function receives as parameters a row r, a column

c, an oíd valué i, and a new valué j, which indícate to change the content of the entry (r, c) of the

matrix from valué i to valué j. This way, for a movement with parameters (r,c,i,j) the tabú list

is reviewed to see if in the last L movements there is one with parameters (r',c',¿', j') such that

r — r', c — d
,
and either i = i' and j — f, or i — j' and j = i'; if one of these two cases occur then

the movement is forbidden because it is one of the recently done or it is the inverse of one recently

done.

Also Nurmela in [57] applied the technique of tabú search to construct covering arrays. The

algorithms starts by initializing randomly the matrix for the covering array. The cost ofthe matrix is

the number of missing tupies in the matrix. From the set of all missing tupies in the current matrix,

the algorithm selects one tupie randomly, and search the rows ofthe matrix that can cover the tupie

by modifying only one element of the row; these modifications are the movements in the current

neighborhood. The cost of these movements are computed and the algorithm selects the one with

lower cost, whenever it is not in the tabú list. In case of an empty neighborhood the algorithm

selects any row and writes the missing tupie in it.

In [32] González-Hernández et al. is presented a new algorithm of tabú search to construct MCAs

of strengths 2 through 6. In this algorithm the initial matrix M can be initialized randomly, with the

máximum Hamming distance among ¡ts rows, or with the symbols balanced in every column. The

changes in the current solution are performed by four neighborhood functions A/í, A/"2, A/3, and A/"4,

each of one has a probability valué of being applied to change the current solution. The function A/i
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performs all possible symbol changes in one cell (i,j) selected randomly; the function A/"2 performs

all possible symbol changes ¡n every cell of a column j ofthe matrix; the function A/3 performs all the

symbol changes in all the cells ofthe current solution; and finally the function A/4 writes a missing

tupie in every row of the matrix. Every movement in an application of a neighborhood function is

done independently, and it is selected the movement that minimizes the number of missing tupies.

The tabú list is composed by tupies (Aí,v,i,j,m), where M is the neighborhood function and v is

the symbol assigned to the cell mitj e M by A/-; the movements inserted in the tabú list are those

movements that produces exactly the same number l of missing tupies.

González-Hernández and Torres-Jimenenez introduced [33] a new approach of tabú search to

construct MCAs called MiTS (Mixed Tabú Search). This approach is based on using a mixture of

neighborhood functions, plus a fine tuning of the parameters for the tabú search algorithm and of

the probability valúes of applying each of the neighborhood functions. The initial solution is created

randomly or it is constructed one row at a time maximizing the Hamming distance of the new row

with respect to the previous rows in the matrix. The tabú list of the MiTS algorithm is composed

by movements (i,j,v,F) that genérate the symbol v more than once using the same neighborhood

function F in the cell (i, j) of the matrix. The evaluation function is the number of missing tupies

of the matrix. MiTS uses three neighborhood functions Fi, F2, and F3; the function Fi selects a

random position (i,j) ofthe matrix and performs all possible symbol changes in that position; the

function F2 selects a random column of the matrix and performs all symbols changes in every cell

of the column; and the function F3 performs all symbol changes in every cell of the matrix.

3.3.3 Genetic Algorithms

The genetic algorithms were introduced by Holland in [41] to understand the adaptive process ofthe

natural systems. These algorithms pertain to the class of evolutionary algorithms, which are inspired

in the biological process of the evolution of the species. The general working of these algorithms

is the following (see [68]): a population of individuáis is generated randomly, where the individuáis
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represent possible solutions to the problem and each of them has an associated valué that ¡ndicates

¡ts fitness. In every ¡teration of the algorithm the fittest individuáis are selected to be the parents

of the new generation of individuáis. The selected parents produce new individuáis by means of

variation operators like crossover and mutation. Finally a mechanism of generational replacement

determines which individuáis from parents and children pass to the next ¡teration of the algorithm.

The main characteristic of the genetic algorithms is that the crossover operator is applied to a pair of

parents to produce a pair of children, and after that a mutation operator is applied to the children.

Stardom [66] a genetic algorithm to construct covering arrays. In this algorithm the population

is a set of matrices with missing tupies; the fitness of the matrices is the number of missing tupies,

so the fittest matrices are those which have less missing tupies. To select the parents of the new

individuáis, the set S of the individuáis in the current population is divided in two groups of size

\S\/2; in each group the individuáis are sorted randomly and the í-th members of each group are

combined with the crossover operator to produce \S\ new individuáis. The crossover operator consists

in selecting a set E of coordinates (i, j) from one parent and in copying these coordinates into one

child, the remaining coordinates to complete the child are taken from the second parent. The set E

that is taken from one of the parents can be the first i complete rows, the first j complete columns,

or a block conformed by the cells in the first i rows and in the first j columns. In each case is i < TV

and j < k, where TV and k are the dimensions of the matrices in the population, in order to ensure

that the individuáis produced by the crossover operator have coordinates of both parents. After that,

the mutation operator is applied to the new |5| individuáis; this operator consists in changing the

content of one cell selected randomly by other element ofthe alphabet. Next, the mean ofthe fitness

of the \S\ parents and of the \S\ children is computed; the T matrices with a fitness smaller than

the mean pass to the next generation, plus |5|
- T matrices randomly selected from the matrices

with fitness greater than or equal to the mean.

Shiba et al. [64] proposed another genetic algorithm to construct test suites. The approach of

this algorithm is to genérate one test case at a time. To genérate a test case the algorithm creates
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P random candidate solutions. These candidate solutions are evolved until the best solution is not

improved in T consecutive generations. The fitness of a candidate solution S is defined as the

number of tupies not covered in the initial test but covered in S. The crossover operator consists

in exchanging with a probability of 0.5 the valúes of every position of two candidate solutions. The

mutation operator is applied after the crossover operator and it replaces the valué of one position of

the candidate solution with the valué of another position ofthe same candidate solution.

3.4 Algebraic Methods

The algebraic methods have the characteristic that in the process of the construction of the covering

array CA(TV;í, k,v) are involved formulas or operations with mathematical objects such as vectors,

finite fields, groups or another covering arrays with small valúes of t, k, v.

3.4.1 Case t — 2 and v = 2

For the case t — 2 and v — 2 there exists an algorithm that given the number of rows TV constructs

in polynomial time a covering array CA(TV; 2, k, 2) with the máximum number of columns k; the

result is an optimal covering array. This algorithm was proposed independently by Rényi [59] for TV

even, and by Katona [42] and Kleitman and Spencer [43] for all TV.

The optimal number of columns for a covering array CA(TV; 2, k, 2) of TV rows is given by the

máximum valué of k that satisfies the Inequality (3.1).

*s(V) <31)

To construct the covering array it is created a matrix of size TV x k in which all the elements of

the first rows are zero, and the remaining TV — 1 rows are filled column by column (starting from the

second row) with the (mv!) combinations of [y] ones and TV - 1 -

|"^] zeroes.
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As an example of the algorithm consider TV = 6. The máximum valué of A; that satisfies the

Inequality (3.1) is A: = 10; so a matrix of size 6 x 10 is created and ¡ts first row is filled with zeroes.

The remaining five rows are filled column by column with the (^lí) = (jj) = 10 combinations of

[|] = 3 ones and 6 — 1 —

[|] = 2 zeroes, as shown in Figure 3.1.

1 0 0 1 1 1

2 0 1 0 1 1

3 1 0 0 1 1

4 0 1 1 0 1

5 1 0 1 0 1

6 1 1 0 0 1

7 0 1 1 1 0

8 1 0 1 1 0

9 1 1 0 1 0

10 1 1 1 0 0

Figure 3.1: To the left are the 10 combinations of 3 ones and 2 zeroes and to the right is the covering

array CA(6; 2, 10, 2). The covering array is constructed filling its first row with zeroes and filling its

other five rows column by column with the 10 combinations of 3 ones y 2 zeroes.

3.4.2 The Bush's Construction

The Bush's construction [11] allows to obtain an orthogonal array OA(ut; t, v + 1, v) of índex unity

(A = 1) when the order v of the OA is prime or is a prime power, and k = v + 1.

Let be p a prime number, ¡t is defined GF(p) as the set of all the integers modulo p [8]. For

q
= pn where n is a positive integer, the elements of GF(q) can be expressed as polynomials P(x)

of degree n - 1 with coefficients in GF(p), taking every combination for the coefficients:

n-l

Pi(x) = ^airxr for z = 0,l,...,g-l (3.2)
r=0

The addition is closed in GF(q), but the multiplicaron can produce polynomials of degree greater

than n-l, which are not members of GF(q). To make the multiplication closed in GF(q) it is required

0 0 0 0 0 0 0 0 0 0

0 0 1 0 1 1 0 1 1 1

0 1 0 1 0 1 1 0 1 1

1 0 0 1 1 0 1 1 0 1

1 1 1 0 0 0 1 1 1 0

1 1 1 1 1 1 0 0 0 0
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a primitive element of GF(q) of degree less than or equal to n
- 1 to reduce the terms of degree

greater than n-l produced in the multiplicaron of two polynomials.

To construct the OA it is created a matrix with dimensions vt x (v + 1). The first v columns

of this matrix are labeled with the elements e¡ of GF(v) and the last column is labeled with oo.

In other hand, the rows of the matrix are labeled with the u* different polynomials yi
= at_ixt_1

+ at_2xt-2 + • • • + axx + a0 that can be formed with coefficients üj € GF(v). The number of

these polynomials is u* because there are v different coefficients by each one of the t terms of the

polynomial.

As an example consider v = 4 and t = 2; here v is a prime power because 4 = 22, and p = 2 and

n = 2 in the expression v = pn. This way, the OA to be created is OA(16; 2, 5, 4), since the number

of rows of the OA given by the construction is vl and the number of columns is v + 1. The field

GF(22) is conformed by the elements Ox + 0, Ox + 1, lx + 0, and íx + 1, which are the 22 different

polynomials of t — 2 terms and degree t — 1 that can be formed with coefficients in GF(2). In a

simplified way these polynomials are 0, 1, x, and x + 1, and they will be denoted by e0, ex, e2, and

e3 respectively. Since t = 2, the polynomials j/¿ used to label the rows are ofthe form y¿
=
aix + ao,

where ai, ao € GF(22) = {eo, ex, e2, e3}. For this example, the labeling of the rows and the columns

of the OA are as shown in Figure 3.2.

The cells of the OA are filled according to the next two rules, the first rule is for the first v

columns of the OA, and the second rule is for the last column of the OA:

1. To assign the valué u to every cell (i,j) with 0 < i < vl — 1 and 0 < j < v
— 1 if ^(e,) —

eu;

that is, evalúate the polynomial yi(x) with x = e¿ and determine the result in GF(v).

2. To assign the valué u to every cell (i, j) with 0 < i < vl — 1 and j — v \f eu is the main

coefficient ofthe polynomial y,(x); that is, eu = at_i in the polynomial y¿(x).

For the example of Figure 3.2 one primitive element of GF(22) is the polynomial x+ 1, and so the

terms with degree grater than 1 obtained in the evaluation ofthe polynomials y¿ will be reduced using
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eo ei e2 e3 oo

0 0 0 0 0

1 1 1 1 0

2 2 2 2 0

3 3 3 3 0

0 1 2 3 1

1 0 3 2 1

2 3 0 1 1

3 2 1 0 1

0 2 3 1 2

1 3 2 0 2

2 0 1 3 2

3 1 0 2 2

0 3 1 2 3

1 2 0 3 3

2 1 3 0 3

3 0 2 1 3

yo{x) = e0x + eQ

yi(x) = eox + e\

V2(x) —

eox -I- e2

ys(x) = eox + e3

2/4 (x) = e\X + e0

y$(x) = eix + ei

ye(x) = eix + e2

VÁX) = eix + e3

2/8 (z) = e2x + eo

2/9 (z) = e2x + ex

2/io(x) = e2x + e2

2/n (z) = e2x -I- e3

yi2(z) = e3x + e0

2/13 (x) = e3x + ei

2/i4(x) = e3x + e2

yi5(z) =
e3x + e3

Figure 3.2: OA produced by the Bush construction for v = 4 and t = 2.

this primitive element. This way, the valúes ofthe cells (i,j) in the first v = 4 columns ofthe OA are

obtained by evaluating the polynomial y¿(x) = eax + e¡, in the element ej G GF(v), 0 < a, b, j < 3.

The evaluation produces an element eu 6 GF(v) and the index u of this element will be the valué

for the cell (i,j). For example, the valué ofthe entry (11,3) is given by yn(e3) = e2e3 + e3. The

product e2e3 is equal to (x)(x + 1) = x2 + x, which using the primitive element x + 1 and taking

the modulo 2 of the coefficients is reduced to x2 4- x = (x + 1) + x = 2x + 1 = Ox + 1 = 1. The

final result is given by 1 + e3, which is equal tol + (x-)-l) = x-(-2 = x-l-0 = x. The element x is

the element e2 of GF(v), so the valué for the entry (11,3) is 2.

The most time consuming part of the construction is the evaluation of the polynomials y¿(x),

because vlv = vt+1 evaluations must be performed, one for each cell in the first v columns of the

OA. Depending on the valué of t, the evaluation of a polynomial requires several multiplications and

additions of elements of GF(v). Torres-Jiménez et al. [70] developed a method to evalúate efficiently

the polynomials y¿(x) by means of the tables of sum, logarithm and antilogarithm of GF(v). The

evaluation of a polynomial y¿ only involves accesses to these tables and sum of elements in the tables.
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3.4.3 Constant Weight Vectors

Tang and Woo [69] proposed a method to construct test cases for logic circuits based on vectors of

a particular set of weights. The weight of a vector s = (sx, s2) . . . ,s&) is defined as the sum of ¡ts

entries: w — J2u=i s<- The method constructs the test suite (the covering array) concatenating sets

of vectors ¡n which the vectors ¡n the same set have the same weight w. For v = 2 the construction

of the covering array ¡s defined by the following theorem:

Theorem 1 Given k and t, k > t, then a set T of binary vectors covers all the interactions of size

t if it contains all the binary vectors of weight w such that w =
c mod (k

— t + 1) for a constant

ce {0,1,..., k-t}.

The theorem provides the weights w of the vectors to construct the covering array. The constant

c can vary from 0 to k — t; so there are n
— k + 1 sets of weights which are a solution. To find the

solution with less number of rows, the n - k + 1 solutions are checked.

For example, let be k = 6 and t = 3. The theorem provides fc-í+l = 6-3 + l = 4 solutions

given by the set of weights obtained from the expression w
=

c mod (k
— t + 1) when c varíes from

Oto k-t = 6 — 3 = 3. The vector with less weight ¡s the vector (0, 0, 0, 0, 0, 0) whose weight is

w = 0, and the vector with greater weight is (1, 1, 1, 1, 1, 1) whose weight is w = 6. In general,

the smaller weight of a vector for a covering array with k columns and order v is w = 0, and the

greater weight is w — k(v
—

1). Table 3.1 shows the four sets of weights that are solution for k = 6

and t — 3, the last column of the table contains the total number of vectors of the covering array

obtained from the set of weights ¡n the second column.

3.4.4 Trinomial Coefficients

In [51] and [52] Martínez-Pena et al. presented a construction for ternary covering arrays (v — 3)

based on sets of rows that can be represented by trinomial coefficients. Let be a, b, c, k integers such
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c w
=

c mod (k
— t + 1) Vectors

0 {0,4} 16

1 {1,5} 12

2 {2} 15

3 {3} 20

Table 3.1: Set of weights that are a solution for k — 6, t = 3, and v — 2.

that 0 < a, b, c < k and k = a + b + c. A trinomial coefficient, denoted by (JjJ, is the coefficient

given by the following Equation (3.3):

(
k \

=
(« + b + c)\ ,

}
Va,6,Cy a!6!c!

V ;

The trinomial coefficient ( kb ) is used to represent the set of all different rows of k elements

that can be formed with a 0's, b l's, and c 2's. The number of such rows is precisely the numeric

valué of the trinomial coefficient.

For any strength t < k may be constructed a covering array of k columns by a vertical

juxtaposition of subsets of rows represented by trinomial coefficients. Like the constant weight

vectors for binary covering arrays, there are in general many combinations of trinomial coefficients

that conform a covering array of k columns and strength t. For t G {2,3,4,5} the authors derived

four direct constructions that explicitly give the trinomial coefficients to construct a covering array

of k columns and strength t € {2, 3, 4, 5}; so, there is no need to perform a search (except for a few

cases) in order to determine the combination of trinomial coefficients to produce the covering array

with mínimum number of rows. These four direct constructions are shown in Table 3.2.

For example, for t = 2 and k = 4 the covering array with less number of rows is conformed by

the trinomial coefficients ofthe first row of Table 3.2, which are (3(01), Gi3i0). (0,1,3)- The result of

concatenating these trinomial coefficients is the covering array of 3k — 12 rows CA(12; 2, 4, 3).
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Restrictions Coefficients Total rows

' = 2.*>3

{(fc-i,o,1)-(uJi,o).(o,i,ti)} ~Jk
t = 3, k > 5 { (k_101) , (fc_Mi0) , (ii0,fc_i) . (o,i,fc-i) » (i,fc-2,i) } k2 + 3k

t = 4,k>7 { (k_kJ , (0 2J_2) , (fc_2fc,2i0) , (fc_íM) , (u,t2) - GAi) } 4.5^2 - 4.5*

f =
c L.>7 I(k\(k\(k\(k\(k\(k\\ 4.5(fc-l)3-4.5(fc-l)2
o, ft ^ i

\Vfc-2,0,2/' V0,2,k-2/' V2,fc-2,0/> U-3,2,1/' V2,l,fc-3T' U,fc-3,2/ J 3

Table 3.2: Direct constructions using trinomial coefficients for í € {2,3,4,5}.

3.4.5 Cyclotomy

Colbourn in [24] presented some constructions resulting from the analysis ofthe cyclotomic matrices.

Let be q a prime power such that q
= 1 (mod v), where v is the alphabet of the covering array,

and let be x9jt)
= (x¿ : i G GF(q)) a vector of q elements of the set {0, 1, . . . ,v

- 1}. The vector

xq¡v
= (x,- : i 6 GF(q)) is constructed based on a primitive element u; of GF(q) by doing Xo

= 0

and x¿
= j mod u when ¿ = uP'for i € GF(q). The cyclotomic vector x9i„ produces the cyclotomic

matrix Aq¡v = (aitj) of size qxq making aitj = Xj-í (with j
— i computed in modulo q). Sometimes

this matrix A is a covering array of strength t: CA(q;t,q,v). The construction ensures that A\s a

covering array of strength t if q > t2v4t. In the binary case A is a covering array if q > t222t~2.

For some cases better bounds are possible. Consider v = 2, t = 2, and q
— 9; in this case

q < t222t~2 but the construction produces a covering array. To determine the cyclotomic vector x92

it is constructed the logarithm table of GF(9) = {0, 1, 2, 3, 4, 5, 6, 7, 8} = {0, 1, 2, x, x + 1, x + 2,

2x, 2x + 1, 2x + 2}, raising the element x G G/r(9) to the powers p
= 1, 2, . . .

, 8, and reducing the

powers of degree greater than 1 by substituting x2 for the primitive element x + 1 G GF(9). Table

3.3 shows the logarithm table for GF(9); the first two columns shows the computation ofthe powers

of x; and the last column ¡ndicates the exponent to which x was raised to get the element of GF(9)

that appears ¡n the third column.

Taking the modulo 2 of the logarithms 8,4,1,2,7,5,3,6 ¡n the last column of Table 3.3 are

obtained the valúes 0,0,1,0,1,1,1,0. These valúes will be the elements i — 1,2,..., 8 ofthe
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p X? GF(9) logx+i

1 X 1 8

2 x + 1 2 4

3 2x+l X 1

4 2 x+ 1 2

5 2x x + 2 7

6 2x + 2 2x 5

7 x + 2 2x + l 3

8 1 2x + 2 6

Table 3.3: Logarithm table for GF(9).

cyclotomic vector x92; the first element ofthe cyclotomic vector is x0 = 0. Therefore, the cyclotomic

matrix A$¿ — (o-tj) conformed by the rotations of the cyclotomic vector xg,2
= (0 00101110)

will be a covering array CA(9; 2, 9, 2).

3.4.6 Constructions Using Groups

Chateauneuf et al. introduced in [16] a method to construct covering arrays of strength three by

means of a group acting on a set of v symbols {0, 1, . . . ,v
—

1}. Later, Meagher and Stevens [55]

adapted this method to produce covering arrays of strength two CA(k(v
—

1) + 1; 2, k,v) by means

of a group G < Symv and a starter vector s G Zk.

The fundamental step in this method is to find a starter vector s given the group G. A vector s G

Zk is a starter vector if all the sets di,d2,..., dk-i, defined as (T¿ = {(sj,sj+i) \ j = 0, 1, . . .

,
k — 1)}

with subscripts in modulo k, have at least one element from every orbit of the group action of G on

pairs of Z„ = {0, 1, . . . ,v
-

1}.

The starter vector s is used to form a matrix M of size k x k by juxtaposing vertically the

rotations of s. After that, the group action of G over M produces v - 1 matrices of k x k; these

matrices and the vector (0 0 • • • 0) of size k are concatenated vertically to form the covering array.

The vector (0 0 • • • 0) is added to cover the tupies (0,0), since these tupies might not be covered

by the concatenation of the v
— 1 matrices.
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For example, let be t = 3, k = 5, and v = 3, a starter vector for the group G = ((1,2))

{e, (1, 2)} ¡ss = (0, 1, 1, 1, 2). With this starter vector is formed the following circulant matrix:

M =

(0 1 1 1 2\
1112 0

112 0 1

12 0 11

\2 0 1 1 1/

The elements of G acting on M produce the following two matrices, which are concatenated

vertically with the vector (0 0 0 0 0) to produce the covering array CA(11; 2, 5, 3).

NL

/0 1 1 1 2\

1112 0

112 0 1

12 0 11

\2 0 1 1 1/

Af(i>2) =

/0 2 2 2 1\

2 2 2 10

2 2 10 2

2 10 2 2

\1 0 2 2 2/

The element e is the identity, so Me is equal to M; the matrix M(i)2) is obtained by interchanging

the symbols 1 and 2 in the matrix M.

3.4.7 Roux-type Constructions

In [65] appears the following theorem taken form the doctoral thesis of G. Roux [62]:

CAN(3, 2k, 2) < CAN(3, k, 2) + CAN(2, k, 2).

The proof of this theorem is a way to construct a covering array with twice the number of columns

of its two ingredients: given the covering arrays A
= CA(TV3;3, k,2) and B — CA(N2\2,k,2) it is

possible to construct the covering array C
= CA(TV3 + N2; 3, 2k, 2) as shown next, where B is the

complementary matrix of B:

C =

A A

B B
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Chateauneuf and Kreher [15] found three generalizations of the Roux theorem, also given as

theorems. In the first two theorems it is mentioned the combinatorial object called ordered design.

An ordered design OD(t,k,v) is an array of dimensions (")í! x k on v symbols such that in every

combination of t distinct columns each í-tuple of t distinct elements is covered exactly once [15].

Theorem 2 Forv> 3, CAN{2,3k,v) < CAN(2,k,v) + v{v- 1).

Proof: Let be A = CA(N2;2,k,v), let be B = OD(2,3,v), and let be B¡ the column j of B

repeated k times. Then the following array C is a covering array CA(TV2 + v(v
—

1); 2, 3A;, v):

c=(A
A A

\Bi B2 B3

D

Theorem 3 If there is an OD(2, m, u) then forv < u and 2 < k < m, CAN(2, m(m
— í)k, v) <

CAN{2,k,v) + 2u(u-l).

Proof: Let be A = CA(N2;2,k,v), let be B = OD(2,m,it), and let be Bj the j-th column of B

repeated k times. For i = 1,. . . ,m
— 1, and subscripts in Zm, construct the next array C¿ of size

(TV2 + 2u(u
-

1)) x mk:

Ct =

(A A ■■■ A \
B\ B2 ■ ■ • Bm

\Bí+i Bi+2
■ ■ ■ Bi+m/

Then C = (ClC2
■■■ Cm-i) ¡s the covering array CA(TV2 + 2u(u

-

1); 2, m(m -

í)k, v). D

Theorem 4 CAN(3, 2k, v) < CAN(3, k, v) + (v- 1) CAN{2, k, v).

Proof: Let be A = CA{N3;3,k,v), let be B = CA{N2;2,k,v), and let be Cv the cyclic

group of permutations generated by tt = (1,2,. . . ,v). Construct the covering array C =
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CA(TV3 + (v- 1)TV2; 3, 2k, v) as follows, where B9 is the array obtained by applying the permutation

g to the symbols in B:

C =

lA A \
B B*1

B B*2

\B B""'1/

Generalizations for greater strengths and alphabets have been developed by Cohén et al. [20],

Colbourn et al. [28], and Martirosyan and van Trung [53].

3.4.8 Product of Covering Arrays of Strength Two

In [27] it is shown a procedure to multiply two covering arrays of strength two. Let be A = (dij) the

covering array CA(N;2,k,v), and let be B = (bitj) the covering array CA(M;2, l,v). The product

of A and B, denoted by A <g> B, is the matrix C — (cí¿) of size (TV + M) x kl such that:

•
c¡,(/_i)fc+s

=

ait9 para l<i<N,l<f<l, l<g<k.

•
cN+i¿f-i)k+g

= hj para l<i < M, 1< f <l, 1 < g < k.

Basically k copies ofthe covering array B are pasted to / copies ofthe covering array A, as shown

in Figure 3.3. The result of the product of A and B is the covering array C
= CA(TV + M; 2, kl, v).

3.4.9 Power of a Covering Array

In [37] Hartman presented a method to squaring the number of columns k of a covering array A =

CA(TV; t, k, v). In order to do the powering it is required an orthogonal array B = (k2; 2, T(v, t)+l, k)

with k2 rows, T(v,t) + 1 columns, strength 2, and order k. The order ofthe orthogonal array should

be k because of its elements will be used as Índices for the columns of A. T(v,t) is the Turan

number for v and t, and it denotes the máximum number of edges in a u-partite graph with t nodes.
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0-1,1 «1,2
■ • •

di,k

o2,i a2)2
■ ■ •

a2>k

0-N,l «JV,2
■ • ■

0,N,k

0,1,1 «1,2
• - -

«l,k

«2,1 «2,2
• • •

a2)¡t

«JV,1 ÜN,2
■ ■ ■

«JV.fc

Ol,l «1,2
■ ' •

«l,k

«2,1 02,2
• • •

«2,fc

«JV,1 «7V,2
" - '

«W.fc

bi,i hti
■ ■ ■

6U

&2,1 &2,1
• ' •

&2,1

bM,i bhí,i
■ ■ ■

í>aí,i

&1,2 ¿>1,2
' ' '

&1,2

^2,2 "2,2
' ' "

^2,2

b¡W,2 bu,2
' ' '

&M,2

bi,i 6i,í
■ • • í>i,í

b2,i b2¿
■ ■ ■

b2¿

bM,i bM,i
■ ■ ■

bu.i

Figure 3.3: Product ofthe covering arrays A = CA(N;2,k,v) and B = CA(M;2,Z,u). The result

is the covering array CA(TV + M; 2, kl, v).

The powering procedure consists in creating the matrix of blocks C of k2 columns and T(v, t) + 1

rows. Each element of C will contain one column of A. Let be B[i, j] the entry (i, j) of the

orthogonal array B, and let be Ai the i-th column of A. The cell (i, j) of C is the column

B\j,i] of A, i.e., C[i,j] = Ab\j,í], as shown in Figure 3.4. The result is the covering array C =

CA(N(T(v,t) + l); t,k2,v).

3.5 Manipulation of Covering Arrays

There are some useful operations that can be applied to a covering array previously constructed.

This section describes five of them: verification, maximization of constant rows, optimal reduction,

wildcard detection, and fusión.

3.5.1 Verification of Covering Arrays

As mentioned in Chapter 2 the verification of covering arrays consists in determining if a given matrix

is or not a covering array of a certain strength. This operation is based on counting the í-tuples

covered in every combination of t columns. The matrix is a covering array only if every submatrix

of t distinct columns covers each t tupie of the alphabet.
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■ T(v, í) + 1

N Ai A2 Ak

T(v,t) + 1

Figure 3.4: Construction of the array of blocks C from the columns of the covering array A and the

índices of the orthogonal array B.

To describe in a general manner the process of verifying covering arrays let us describe how to

verify mixed covering arrays. Remember that in a mixed covering array MCA(TV; t, k, v0, vv, . . .

, vk-{)

every TV x t submatrix conformed by the columns cq,ci,..., Ct-i covers at least once all the rj'lo u»

tupies of the cartesian product of the sets with v^ , vci , . . .
, vCt_1 symbols.

Avila-George [2] proposed a method to verify mixed covering arrays using a matrix called V of size

mxn, where m = (*) and n is the cardinality of the cartesian product of the i larger alphabets. The

matrix V is used to record how many times one í-tuple is covered in every combination of t columns

ofthe MCA. Let be C — {cq,Ci, . . . ,Cf_i} a set of t columns and let be S = (s0,si,. . . ,st-i) one

tupie of the columns in C. For this tupie S it is associated an entry (i, j) of the matrix V which

contains the number of times S is covered in C. The valué of i and j are given by the following

expressions, where J, is defined recursively as Jj = J¡-\
■

vCj + Sj for j > 1 and J0 = s0:
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Next is given one example of the process to verify a MCA, the example was taken from [2]. Let

be MCA(6; 2,4, 2331) the MCA to be verified; the initial matrix V for this MCA is shown to the right

in the Figure 3.5.

0 0 0 0

1 1 1 0

0 1 1 1

1 0 0 1

0 1 0 2

1 0 1 2

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

MCA^M^1) Initial matrix V

Figure 3.5: The initial matrix V for the verification of MCA(6; 2,4, 233J) is a matrix of dimensions

6x6 initialized with zeroes.

The m — 6 rows of the matrix V correspond to the (k) = (*) = 6 combinations of í = 2

columns {0,1}, {0,2}, {0,3}, {1,2}, {1,3}, and {2,3} ofthe MCA (although not in sequential

order). The alphabets ofthe k = 4 columns ofthe MCA have respectively the cardinalities 2,2,2,3;

so the number of columns of the matrix V is n = 6, since 3 and 2 are the cardinalities of the t — 2

larger alphabets.

Consider the combination of columns {0, 1}. According to the expressions in (3.4) this

combination of columns corresponds to the row i = (°) + (2) = 0 + 0 = 0 of the matrix V.

The number of í-tuples that must be covered in this combination of columns is n' = 4 because

the cardinalities of the alphabets of these two columns is 2. The tupies that must be covered in

the combination of columns {0,1} are (0,0), (0,1), (1,0), and (1,1), which are associated to the

columns 0, 1, 2, and 3 of the row 0 of the matrix V; for example, the tupie (1,0) is associated to

the column j — (1)(2) + 0 = 2. The tupies (0, 1) and (1,0) are covered two times in the columns

{0, 1}, while the tupies (0,0) and (1, 1) are covered once; so the content of row i = 0 ofthe matrix
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V is as shown in the left part of the Figure 3.6. The shaded cells in the matrices of Figure 3.6 are

the cells associated with a tupie that must be covered in the combination of columns associated with

the particular row. The matrix under verification will be an MCA only if all the shaded cells have a

valué greater than zero.

1 2 2 1 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 2 2 1 0 0

2 1 1 2 0 0

2 1 1 2 0 0

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

Matrix V after processing the columns {0, 1} Final matrix V

Figure 3.6: To the left is the matrix V after processing the combination of columns {0, 1} of

MCA(6; 2, 4, 2331). To the right is the final matrix V. The shaded cells are the cells associated with

a tupie that must be covered.

The (*) subsets of t columns can verified in parallel to reduce the time consumed by the

verification process. In [2] and [5] are proposed parallel algorithms to verify covering arrays; these

algorithms are based on dividing equitably the subset of t columns among the available processors.

In [4] is proposed the verification of covering arrays using grid computing.

3.5.2 Maximization of Constant Rows

A constant row in a covering array is a row having the same symbol in all ¡ts elements. Formally,

the i-th row of a covering array A = (oy) of dimensions TV x k is constant if aitj
—

aii0 for

J
= l,2 fc-1 [58].

By means ofthe three operations that produce isomorphic covering arrays it is possible to arrange

the symbols of the covering array in order to make constant some of its rows. If the covering array

has order v then the number of rows that can be made constant (without counting repeated rows)

is at least 1 and at most v. The lower bound is 1 because it is always possible to make constant one

row of the covering array by means of the operation of column relabeling. For example the Figure
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3.7 shows the covering array CA(5;2,4, 2) in which the row 0 is made constant by relabeling the

columns having the symbol 1 in the first row (columns 0 and 2).

0 0 0 0

0 0 1 1

0 1 0 1

1 0 0 1

1 1 1 0

1 0 1 0

1 0 0 1

1 1 1 1

0 0 1 1

0 1 0 0

CA(5; 2, 4, 2) CA(5; 2, 4, 2) with one constant row

Figure 3.7: To the left is the covering array CA(5;2,4, 2), and to the right is one covering array

isomorphic to it, in which the first row was made constant by relabeling the columns 0 and 2 of the

covering array to the left.

The constant rows are very useful for the methods of multiplicaron and power of covering arrays,

because if the covering arrays used have constant rows, then it is possible to delete some rows in the

resulting covering array. However, to get more than one constant row in a covering array is not an

easy task.

Quiz-Ramos in [58] developed four algorithms to maximize the number of constant rows in a

covering array. Three of them try to maximize the constant rows by means of permutation of rows,

permutation of columns, and permutation of symbols in the columns. But the fourth algorithm

translates the problem to the graph domain.

For the input covering array CA(N;t,k,v) it is generated a graph with TV nodes, and there is

an edge from node o to node b only if the rows a y 6 of the covering array have distinct symbols

in every one of the k columns, that is üj ^ bj for j — 0, 1, . . .

,
k - 1. Once the graph has been

created, the problem to maximize the number of constant rows is transformed to the problem of

finding the largest complete subgraph, i.e. the máximum dique problem. The rows of the covering

array represented by the nodes that conform the máximum dique have different elements in each

one of the k columns; so, these rows can be made constant by applying the operation of column

relabeling. For example, suppose that for a certain covering array of k = 7 columns and order v — 3

the máximum dique is conformed by the nodes that represent the following rows:
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a = (0 0 1 2 1 0 0)

¿ = (2101021)

c=(l 2 2 0 2 1 2)

It can be observed that in the seven columns all the symbols are different, in fact every column

is a permutation of the symbols 0, 1, and 2. Therefore, it is possible to obtain the following three

constant rows by permuting the symbols in the columns:

a = (0 00000 0)

6 =(1 1 1 1 1 1 1)

c = (2 22222 2)

3.5.3 Optimal Shortening of Covering Arrays

Given a covering array A the Optimal Shortening of Covering ARrays (ÓSCAR) problem consists in

finding a submatrix B of a determined size such that the number of missing tupies in B is minimized

[13]. Let be A a matrix that may be or not a covering array CA(N;t,k,v), and let be <5 and A

two integers such that 0 < 5 < N -vt, 0 < A < k -

t, with the condition that at least one

of them is greater than zero. The ÓSCAR problem consists in finding a submatrix B of A of size

(TV -

6) x (k
—

A) such that the number of missing tupies in B is minimal. In [13] Carrizales-

Turrubiates proved that the ÓSCAR problem is NP-Complete by reducing the MAXCOVER problem

to the ÓSCAR problem. The search space ofthe ÓSCAR problem is (Jí¡)(k\)-

The valúes S y A are respectively the number of rows and the number of columns to elimínate

from the input covering array. The domain of 5 \s {0,1, . . .

,
N — v*} because vl is the lower bound for

the number of rowsof a covering array of strength t and order v. The domain of A is {0, 1,. . . ,k—t}

because the final matrix must have at least t columns in order to be a covering array of strength t.

The problem is finding which 5 rows and A columns to delete in order to the resulting submatrix

has the mínimum number of missing tupies.
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As an example of the ÓSCAR problem let be A = CA(6; 2, 7, 2), S = 1, and A = 3 (see Figure

3.8). So the final matrix will have TV-¿ = 6-l = 5 rows andA;-A = 7-3 = 4 columns, and it is

desíred that this matrix has the mínimum number of missing tupies. In this case there is an optimal

solution: the elimínation ofthe row 2 and ofthe columns 2, 4, 6 produces the matrix shown to the

right ofthe Figure 3.8, which is a covering array CA(5;2,4,2).

0 0 0 0 0 0 0

0 0 0 1 1 1 1

0 1 1 1 0 0 1

0 1 1 0 1 1 0

1 0 1 0 0 1 1

1 1 0 1 1 0 0

CA(6;2,7, 2) Row and columns to delete

Figure 3.8: The deletion of row 2 and columns 2, 4, 6 of the covering array CA(6; 2, 7, 2) produces
the covering array CA(5; 2, 4, 2).

In [13] are proposed twelve algorithms to solve the ÓSCAR problem, these algorithms select the

rows and the columns to elimínate following exact, greedy, or metaheuristic strategies.

3.5.4 Wildcard Detection

Sometimes a covering array has entries that can be freely modified without affecting the coverage

properties of the covering array, that is, without affecting the number of missing tupies of the array.

These entries are called wildcards and are commonly represented by the symbol *. Figure 3.9 shows

at the left the covering array CA(7;2,8, 2), and shows at right the same covering array with the

wildcards it contains.

Wildcard detection is very important for some postoptimization process for covering arrays. A

postoptimization process is a process that tries to reduce the number of rows of a given covering

array. One of these process that uses wildcards is the method of Nayeri et al. [56].

In [34] González-Hernández et al. introduced a methodology to maximize the number ofwildcards

in a covering array. This methodology is conformed by three main steps: a) to determine the tupies

0 0 0 0 0 0 0

0 0 0 1 1 1 1

0 1 1 1 0 0 1

0 1 1 0 1 1 0

1 0 1 0 0 1 1

1 1 0 1 1 0 0

0 0 0 0

0 0 1 1

0 1 0 1

1 0 0 1

1 1 1 0
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0 0 1 0 1 0 0 0

0 1 0 0 1 0 1 1

1 1 1 1 0 0 1 0

0 0 1 0 1 1 1 1

1 1 0 1 1 1 0 1

1 0 0 0 0 1 0 0

0 0 1 1 0 0 0 1

0 * 1 * 1 0 0 0

0 1 0 0 * 0 1 *

1 1 1 1 0 0 1 0

0 0 1 0 1 1 1 1

1 1 0 1 1 1 0 1

1 0 0 0 0 1 0 0

0 0 * 1 0 0 * 1

Figure 3.9: Wildcards in the covering array CA(7; 2,8, 2).

covered only once, b) to determine the unfixed symbols, and c) to enumérate all the possible wildcard

configurations.

In the first step are determined the tupies which are covered only once; for example, in the

covering array of Figure 3.9 the tupies (0,1) and (1,0) appears only once in the combination of

columns {0, 1}. The entries of the covering array associated with tupies covered only once in a

submatrix do not have chance of being wildcards, and so they are the fixed symbols of the covering

array. On the other hand, the entries of the covering array associated with tupies that are covered

more than once in a submatrix are the unfixed symbols of the covering array (second step). For the

covering array of Figure 3.9, the Figure 3.10 shows the entries associated with tupies covered only

once, and the entries (marked with U) associated with tupies covered more than once.

0 u u u 1 u u 0

0 1 0 0 u 0 1 u

1 1 1 1 0 0 1 0

0 0 1 V u 1 1 u

1 1 0 1 1 1 0 1

1 0 0 0 0 1 u 0

0 0 u 1 0 u u 1

Figure 3.10: The entries ofthe covering array CA(7;2,8,2) marked with U are the entries that may

become a wildcard.

The third step consists in an algorithm of branch and bound which maximizes the number of

wildcards in the covering array. The algorithm starts by identifying those tupies that are covered

more than once and all its occurrences are conformed by at least one entry marked with U. For



56 3.5. Manipulation of Covering Arrays

example, the tupie (0,0) is covered in rows 0 and 6 of the submatrix conformed by the columns

{0, 6}; in both rows the occurrence of the tupie is conformed by at least one entry marked with U.

Another example is the tupie (0, 1) which occurs in the rows 0, 1, and 3 ofthe submatrix conformed

by the columns {3,4}, and every of these occurrences has at least one entry marked with U.

In order to the covering array can retain its coverage properties, the algorithm fixes one occurrence

of the tupies that are covered more than once and which have at least one cell marked with U. For

example, there are two occurrences of the tupie (0,0) that have at least one entry marked with

U in the columns {0,6}; these occurrences are in rows 0 and 6. Similarly for the tupie (0,1) in

the columns {3,4} one of the occurrences in the rows 0, 1, and 3 must be fixed. After fixing one

occurrence ofthe tupie, the remaining unfixed symbols in the other occurrences become wildcards.

This way, to maximize the number of wildcards the algorithm checks all possible configurations.

3.5.5 Fusión Operator

In [23] Colbourn established the following bounds:

1. CAN(2, k, v
-

1) < CAN(2, k, v)
- 2

2. For v a prime power CAN(2, v + 1, v
—

1) < v2 — 3

And after in [26] Colbourn et al. grouped these bounds under the ñame of fusión:

!3
if t — 2, k < v + 1, v is a prime power

(3.5)

2 otherwise

The basic mechanism of the fusión operator is to obtain from a covering array A = CA(TV; t, k, v)

another covering array B — CA(M;t,k,v
-

1) of smaller size by replacing the occurrences of the

symbol v in A for symbols of the set {0, 1,. . . ,v
—

2}, and by deleting three or two rows according

the cases of expression (3.5).
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For the first case let be v a prime power and let be A the orthogonal array OA(u2; 2, v + 1, v). It

is always possible to créate a constant row in A with the symbol v — 1, by permuting the symbols in

each column of A. This constant row is deleted and the remaining occurrences of the symbol v
— 1

are replaced by symbols in {0, 1, ... ,v
—

2} (this is the covering array B). Since A is an OA, every

2-tuple is covered exactly one time in B, except the tupie (v
—

1, v — 1). By means of the procedure

described in [23] it is possible to delete another two rows of the covering array B.

In the second case one row can be deleted by making a constant row with the symbol v — 1. To

elimínate the second row, a row r is selected from the remaining TV — 1 rows and each entry (r',c),

with r' ^ r, equal to v
— 1 is replaced by the content of the entry (r, c). These replacements ensure

that each tupie ((r, c{), (r, c2)) with (r, ci) =fi v — 1 and (r, c2) ^ v
— 1 of the deleted row is covered

in other row r' ^ r.

In [60] Rodriguez-Cristerna generalized the fusión operator to MCAs constructed using greedy

methods. These MCAs have a lot of redundancy in the coverage of interactions, which means

that they have several wildcards. The approach followed was to combine the fusión operator

with the elimination of redundant interactions based on wildcard detection; this way, from a

MCA(N;t,k,(v0,vi,. . . ,vk-i)) is constructed a MCA(M;t,k, (v'^v'^. . .

, u¿-i)) such that t>¿ < v\

for 0 < i < k.

3.6 Chapter Summary

In this chapter were analyzed some of the relevant methods developed to construct covering arrays.

The methods studied were classified in four categories: exact, greedy, metaheuristic, and algebraic.

The exact methods produce optimal covering arrays, but they are practical only to genérate covering

arrays of modérate size given that all the search space is explored. The greedy methods do not

guarantee a covering array with the mínimum number of rows; their advantage is that they can

genérate covering arrays of greater size and in much less time than the exact methods. Like the
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greedy methods, the metaheuristic methods do not guarantee to find optimal covering array, but most

ofthe times they provide very good solutions. Finally, the algebraic methods have the characteristic

that in the process of constructing a covering array are used formulas and operations with other

mathematical objects; this class of methods do not perform a searching process to construct the

covering array, rather the search (if exists) is devoted to genérate the data or mathematical objects

with which the final covering array is constructed. At the end of the chapter five useful operations

for covering arrays were reviewed.

Among the methods studied, the ones with greater similarity to the method proposed in this

thesis are the Roux-type constructions (Section 3.4.7), the product of covering arrays (Section

3.4.8), and the power of a covering array (Section 3.4.9). In the TCA approach the covering arrays

are constructed by translating the columns ofthe previous covering array in the TCA, and the above

three methods use smaller covering arrays to produce the final one. The next chapter shows the way

in which the columns of a covering array of strength t are used to tray to construct a covering array

of strength t + 1.



4
Methodology to Construct the Towers of Covering

Arrays

This chapter describes the methodology proposed to construct the towers of covering arrays. The

methodology proposed was devised with the objective that the TCAs are conformed by competitive

quality covering arrays. Section 4.1 presents the general visión of the methodology, and explains

why to search for TCAs of máximum height. Section 4.2 analyzes the construction £ introduced

in Chapter 1, and shows how this construction is used to genérate the TCAs. Section 4.3 studies

the problem of generating all the non-isomorphic covering arrays of mínimum rank for a particular

combination of the parameters TV, t, k, v, in order to use these covering arrays as the bases of the

TCAs.

59
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4.1 Overview ofthe Methodology

This section presents an overview of the methodology proposed to genérate competitive quality

covering arrays through the TCA approach. Given a combination of the parameters TV, t, k, and v,

the methodology to construct the TCAs consists in the following three main steps:

1. To genérate all the non-isomorphic covering arrays of mínimum rank CA(N;t,k,v) with the

objective of using them as the bases of the TCAs.

2. To apply iteratively the construction £ to the non-isomorphic covering arrays of mínimum rank.

3. To deliver the TCA with the greatest height among all the constructed.

Figure 4.1 shows graphically the methodology proposed to solve the research problem. The

covering arrays of strength t at the base of the TCAs are the non-isomorphic covering arrays of

mínimum rank for the given parameters TV, t, k, and v. The bases are expanded iteratively by the

construction £ . For each covering array at floor j > 0 of the TCA all the possible matrix in the

following strength are generated in order to see which of them are covering arrays; these covering

arrays will conform the floor j + 1 of the TCA. After that, the construction £ ¡s applied to all the

covering arrays at floor j + 1 in order to extend the TCA to the floor j + 2. At the end of the process,

the TCA with the greatest height among all the constructed ¡s reported as the TCA of máximum

height for the parameters TV, t, k, and v.

In addition, Figure 4.2 shows a high level flow diagram of the proposed methodology. The

function nextNonlsoCAQ computes and returns the following non-isomorphic covering for the input

parameters TV, t, k, and v. If the function succeeded it returns a covering array A; and when all the

non-isomorphic covering arrays have been computed the function returns Nuil. Every non-isomorphic

base is expanded iteratively by applying to it the construction £ ; the function apply£ Iteratively ()

encapsulates this operation. If the TCA T returned by the function apply£ Iteratively () is higher
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Figure 4.1: Methodology to construct the TCAs. The covering arrays at the base of the TCAs are

non-isomorphic among them.

than the current best TCA T"\ then T becomes the new current best TCA; the function h() is used

to get the height of a TCA. Finally, the function writeQ writes the highest TCA found.

The motivation to construct TCAs of máximum height is because for TCAs of height h > 0 the

ratio between the number of rows of the last covering array in the TCA and the number of rows of

the best known covering array for the same valúes of t, k, and v decreases as h grows.

In [22] Colbourn established the following bound:

CAN{t -l,k-l,v)<— CAN{t, k, v).
v

(4.1)

Let be A = CA(TV; t, k, v) a covering array of strength t and order v, let be j any column of A,

and let be x € {0, 1, . . .

,
v

— 1} any symbol. Then the TV' x (k
—

1) subarray obtained by deleting

column j from A and keeping only those rows of A that have symbol x in column j is a covering

array B = CA(TV'; t
— l,k— l,v), where TV' is the number of occurrences of x in column j [22].

Since A is a covering array of strength t, each symbol x of column j occurs at least once in

conjunction with each (t
—

l)-tuple of the set Z^,-1; so B is a covering array of strength t — 1. Now,

consider that symbol x is the symbol with less number of occurrences in column j, then the covering

array B will have at most TV' = N/v rows. Therefore CAN(t
- l,k- l,v) < CAN(t,k,v)/v.
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TV, t, k, v

T* «- Nuil

A <- nextNonlsoCA(TV, t, k, v)

write(T*) *(^¡d)

T «- apply£lteratively(A)

T* <- T

Figure 4.2: Flow diagram of the proposed methodology.
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The Inequality 4.1 can be rewritten as follows:

CAN(t, k,v)>v- CAN(t - 1, k
-

1, v). (4.2)

Inequality (4.2) says that the number of rows of the best covering array of strength t, k columns,

and order v, is at least v times the number of rows of the best covering array of strength t
— 1, k — 1

columns, and order v. In other words, if the covering array CA(TV; t
—

1, k
—

1, v) is optimum, then

if exists the covering array CA(M; t, k, v) has at least M = Nv rows.

Figure 4.3 compares the covering arrays produced by the TCA approach with the best known

covering arrays for the same parameters t, k, and v. In the TCA approach each covering array, other

than the base, has exactly v times the number of rows of the previous covering array in the TCA;

but in the best known covering arrays it may happen that M¿ > v Mt_! for some i between 1 and h

in the Figure 4.3.

Covering array TCA Best known covering array

CA(Nvh ;t + h,k + h,v)

CA(Nv2 ;t + 2,k + 2,v)

CA(Nv t + l,k + l,v)

CA(N;t,k,v)

CA(Mh;t + h,k + h,v)

CA(M2;t + 2,k + 2,v)

CA(M1;t + l,k + l,v)

CA(M0;t,k,v)

Figure 4.3: To the left are the covering arrays obtained with the TCA approach, and to the right are

the best known covering arrays for the same parameters t, k, and v.

From the covering arrays in Figure 4.3 we have that the ratio between the number of rows ofthe

covering arrays obtained with the TCA approach and the number of rows ofthe best known covering

arrays satisfies the following inequalities:
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jv>TV,>AV>>TyV:
Afo

-

Mi
~

M2
~ ~

Mh

Therefore, as the height of a TCA increases the covering arrays obtained are more competitive

with the best known covering arrays for the same parameters t, k, and v.

In the following two sections the first two points of the proposed methodology are further

explained, but they are presented in inverted order: the construction £ is presented in Section

4.2 and the generation of the non-isomorphic bases of mínimum rank is presented in Section 4.3.

4.2 The Construction E

This section further analyzes the construction £ used to genérate the TCAs. Section 4.2.1 explains

why the construction £ can genérate (in some cases) a covering array of strength í + 1 from a

covering array of strength í; Section 4.2.2 shows an efficient way to apply the construction £ to

all matrices 6 for the base covering array; Section 4.2.3 contains the pseudocode of the algorithms

sketched in Section 4.2.2; and Section 4.2.4 describes the way in which the construction £ is applied

iteratively.

4.2.1 Strategy of the Construction S

The generation of the towers of covering arrays is done by means of the construction £. This

construction can sometimes genérate a covering array of strength t + \ from a covering array of

strength t. The construction £ was defined in Chapter 1, but we repeat its definition here:

Definition 8 Let be A0,Au . . .

, At-i the k columns of a covering array A = CA(N; t, k, v); let

be 6 a matrix of dimensions v x k such that 60¡j = 0 and Síj € {0, 1, . . .

,
v -

1} for 1 < i < v
- 1,

0 < j < k - 1; and let be X0,Xi,.. .

, Xv-\ the v columns of the matrix X = (x,;j) of dimensions

N xv such that xitj
= j for 0 < i < N - 1, 0 < j < v

- 1. The construction £ to try to expand
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the base covering array A of strength t to a covering array B of strength t+1 consists in creating a

matrix B of size Nv x (k + 1) composed by v blocks ofsize TV x (k + 1) juxtaposed vertically. The

j-th column ofthe i-th block (0 < j < k — 1, 0 < i < v
—

1) is the column j ofthe base covering

array translated by the entry (i,j) ofthe matrix S; the last column ofthe i-th block is the column

Xi. Figure 4.4 shows the definition ofthe construction £ in schematic form.

A=(A0 Ai ... 4t_i) S =

/ 0 0

¿1,0 ¿1,1

0 \

¿U-i

\5v-i,o ¿u-i.i • • • 5v-i,k-i)

X =

Í0 1 ... v-l\

0 1 ... v-1

yO 1 ... v-lj

B =

( A0® ¿o,o Ai © á0,i
-4o © ¿i,o Ai © ¿ii

Ak-i © ¿o,fc-i
Ajfc-i © ¿i,fc_i

X0 \
Xi

\A>©¿w-i,o Ai©¿v_u ... Ak-i © ¿„-i,fc-i Xv_iJ

Figure 4.4: The construction £ . The first k columns of the i-th block of the matrix B are the

columns of the base covering array A translated by the valúes at row i of matrix 6, and the last

column of the block is the column Xi.

To appreciate how the construction £ can produce a covering array of strength t + 1 from a

covering array of strength t, consider the covering array A — CA(4;2,3,2) and the matrix 5 of

Figure 4.5. The application ofthe construction £ to this base covering array A and to this matrix S

produces the covering array B
— CA(8;3,4, 2) of strength three shown in the same Figure 4.5.

Let us explain the main idea of the construction £, starting with the following Theorem 5.

Theorem 5 Let be Aj a column of a covering array ofN rows and order v, then every translation

ofAj is equivalent to one permutation of symbols in Aj.
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A =

/O 0 0\

0 1 1

1 0 1

V 1 0/

6 =
0 0 0

0 0 1
X =

/O 1\
0 1

0 1

\0 1)

B

/ 0 0 0 o\

0 1 1 0

1 0 1 0

1 1 0 0

0 0 1 1

0 1 0 1

1 0 0 1

Vi i i 1 /

Figure 4.5: The construction £ applied to the base covering array A = CA(4;2,3, 2) and to the

matrix ¿ ofthe figure, produces the covering array of strength three CA(8;3,4,2).

Proof: Let be c € Zv and let be A'j = Aj © c. Moreover, let be aj¿ the i-th element of Aj and

let be clíj the t-th element of Aj, where 0 < i < TV — 1. From the definition of the operation of

column translation (Definition 2, Chapter 1) we have a¿¿
= (ai¿ + c) mod v for i = 0, 1, . . .

,
TV — 1.

Let be aiuj,ai2j £ Aj such that cnltj = ai2¿. Then,

a'h ,j
= (a¿i.J + c) f110^ u = (ahJ + c) mocí u — a'l2,j-

So, the operation of column translation maps equal elements to the same valué. On the other

hand, any two equal elements of A'j are the image of equal elements in Af let be a'luj,a'Í2¡j G A'j

such that a{ - = a¡2j-, then (aiuj + c) mod u = (a¡2¿ + c) mod v. Since 0 < a^j, a¡2j, c < v
- 1

we have aiuj
=

a¡2j. Therefore, the translation of Aj by c G Z„ is equivalent to the following

permutation ofthe symbols in Af

0 1 ... v-1

. (0 + c) modv (l + c)mod?; ... ((v
-

1) + c) mod vj
D
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It follows from Theorem 5 that the set of columns derived from the translations of a column A¡ is

a subset of the set of columns derived from the permutation of symbols in Aj. There are v possible

operations of column translation, resulting from the translation of Aj by the valúes 0,1,.. . ,v
— 1;

and there are v\ possible permutations of symbols in Aj. So, the cardinality of set of columns derived

by permuting the symbols in A¡ is greater than or equal to the cardinality of the set of columns

derived by translating Ay, if fact, the cardinality of these sets is equal only when v = 2.

Theorem 6 Let be A a covering array CA(N; t, k, v), let be cq, cy, . . .

, Ck-i G Zv, and let be B

the matrix derived from A by translating the column Aj ofA by the valué Cj for j
= 0,1,. .. ,k — l.

Then, the matrix B is a covering array isomorphic to A.

Proof: From Theorem 5 each operation of column translation is equivalent to one symbol

permutation. Let be (¡>j G {0,1,.. . ,v\
—

1} the índex, in lexicographic order, of the symbol

permutation equivalent to the translation by Cj. This way, the matrix B can be derived from A

by applying to A the permutation of rows r = (0 1 • ■ • TV —

1), the permutation of columns

tt = (0 1 ■ • • k —

1), and the combination of symbol permutations <f> = (<f)0 <f>i ■ ■■ <j>k-i)- So, the

matrix B is a covering array isomorphic to A. O

Given a base covering array A = CA(N;t,k,v) the first k columns ofthe matrix B produced by

the construction T are formed by juxtaposing vertically v covering arrays A°, A1, . . .

,
Av~x isomorphic

to A, where each covering array Ai is derived from A by translating the columns of A by the valúes

at row i of the matrix 6. The Figure 4.6 shows this structure of the matrix B, the numbers 0, 1, . .
.,

v
— 1 in boldface represent a constant column of TV elements equal to 0, 1 v — 1 respectively.

The fact that the first k columns of each block of the matrix B are a covering array isomorphic

to A is very ¡mportant for the strategy of the construction £, because it ensures that a number of

combinations of t + 1 columns satisfy the requirements to be part of a covering array of strength

t + 1, as formalized in Theorem 7.
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í A° 0 \

A\ 1
B =

KAv~l V-ly

Figure 4.6: Structure of the matrix B produced by the construction £.

Theorem 7 In the matrix B produced by the construction £ for a given base covering array A =

CA(N;t,k,v) and a given matrix 6, every combination of t + 1 columns conformed by t columns

from the first k columns ofB and the last column ofB covers each tupie of the set Z£,+1 .

Proof: By Theorem 6 we can partition the first k columns of matrix B in v covering arrays of

strength t A0,AX, . . . ,AV~1 as shown in Figure 4.6. Every of these covering arrays covers at least

once each tupie x = (x0,xi, . . . ,xt-i) G Z*. For i = 0, 1, . . . ,v
— 1 let be Cl the matrix conformed

by appending to the covering array Ai the constant column of TV elements equal to i. This way,

every submatrix of t + 1 columns of C° conformed by t columns from the first k columns of C° and

the last column of C° covers each tupie (x0,x1, . . . ,xt_i,0) G Z£+1. Similarly, every submatrix of

t+1 columns of C1 conformed by t from the first k columns of C1 and the last column of C1 covers

each tupie (x0,xi,. . . ,xt_i, 1) G Zlv+1. The same applies for the matrices C2, . . . ,CV~X. Given that

the matrix B is conformed by juxtaposing vertically the matrices C0,Cl, . . . ,CV~1 we have that

every submatrix of t + 1 columns of B conformed by t columns from the first k columns of B and

the last column of B covers each tupie of the set Zlv+1. D

To ¡Ilústrate the Theorem 7 consider the base covering array A = CA(4; 2,3,2) and the matrix

6 of Figure 4.7. For this base covering array and this matrix 6 the construction £ produces the

matrix B to the right of the same Figure 4.7. In this case A° is the covering array derived from A

by translating the three columns of A by the valúes 0, 0, and 0 respectively; and A1 is the covering

array derived from A by translating the three columns of A by the valúes 1, 0, and 1 respectively.
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(0 0 0\
A =

0 i 1

1 0 1

V 1 V

(o o 0\

Vi o i)
B =

/ 0 0 0 0\

0 1 1 0

1 0 1 0

1 1 0 0

1 0 1 1

1 1 0 1

0 0 0 1

\ o i i 1/

Figure 4.7: Example to ¡Ilústrate the Theorem 7.

Since A ¡s a covering array of strength t = 2, every combination of two distinct columns covers

the four tupies of the set Z\ = {(0,0), (0, 1), (1,0), (1, 1)}. So, every two columns of 4° plus the

constant column of zeroes covers the tupies (0, 0, 0), (0, 1, 0), (1, 0, 0), and (1, 1, 0). Similarly, every

two columns of A1 plus the constant column of ones covers the tupies (0, 0, 1), (0, 1, 1), (1, 0, 1),

and (1, 1, 1). Therefore, every submatrix of B conformed by two of the first three columns and the

last column, covers each tupie of the set Z2. The three different submatrices of B conformed by

two of the first three columns and the last column are shown in Figure 4.8.

/ 0 0 0 o\

0 1 1 0

1 0 1 0

1 1 0 0

1 0 1 1

1 1 0 1

0 0 0 1

\ o i i 1/

/ 0 0 0 0\

0 1 1 0

1 0 1 0

1 1 0 0

1 0 1 1

1 1 0 1

0 0 0 1

\ 0 1 1 1/

/ 0.0 0 0\
0 1 1 0

1 0 1 0

1 1 0 0

1 0 1 1

1 1 0 1

0 0 0 1

\ 0 1 1 1/

Figure 4.8: The three submatrices of B conformed by two of the first three columns and by the last

column. By Theorem 7 each of these submatrices covers each tupie of Z2 at least once.

The only submatrix conformed by three columns from the first three columns of matrix B ¡s the

one shown ¡n Figure 4.8. Notice that this submatrix does not cover all the tupies of the set Z\. So,

the translation of the columns of the base covering array of strength t are done with the objective of

each submatrix of B conformed by t + 1 columns from the first k columns can be a covering array
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(0 0 0 0"

0 1 1 0

1 0 1 0

1 1 0 0

1 0 1 1

1 1 0 1

0 0 0 1

V'O 1 1 1

Figure 4.9: The only submatrix conformed by three columns from the first three columns of B.

The number of submatrices of B conformed by t columns from the first k columns and by the

last column of B is (k); by the Theorem 7 these submatrices satisfy the requirements to be part of

a covering array of strength t+1. And the number of submatrices of B conformed by t + 1 columns

from the first k columns is (t+1); for these submatrices the translation ofthe base covering array are

required in order to see if one combination of translations of columns make that these matrices also

satisfy the requirements to be part of a covering array of strength t+1.

4.2.2 Applying the Construction S to Every Matrix ó

In general, the matrix B resulting from the application of the construction £ might be or not a

covering array of strength t + 1, this depends on the base covering array and the matrix 5 used For

a covering array CA(N;t,k,v) there exist vk(-v~1'> different matrices 6 (since all the elements ofthe

first row are zero), but not all of them produce a covering array of strength t + 1; in fact, for some

covering arrays of strength t none matrix 5 produces a covering array of strength t+1; but in other

cases there are several matrix S that produce a covering array of strength t+1. So, in order to

construct TCAs with máximum height it will be necessary to check all matrices 5 for a base covering

array CA(TV; t, k, v), and to expand the matrices B for which the construction £ produces a covering

array of strength t + 1. For example, for the covering array A = CA(4;2,3,2) of Figure 4.5 there

are vkt-v'^ = 23^ = 8 different matrices 5, which are listed next, and the construction £ produces

a covering array of strength three for the matrices S1, ó2, ó4, and S7.
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xo í° ° °\ xi fo o o\
^ (0 0 0\
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/o o o\
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s =

(i i oJ;
*

=(l i ij-

Figure 4.10 shows the flow diagram of the application of the construction £ to every matrix 6

that exist for a base covering array A = CA(TV; t, k, v). The matrices 6 are generated one at a time

by means ofthe function nextMatrixDeltaQ and when all of them have been generated this function

returns Nuil. The function £() applies the construction £ to the base covering array A and to the

current matrix 6. If the resulting matrix B is a covering array then the function process() process

it. As we will see later the processing of the covering array B is the application of the construction

£ to every matrix S that exist for the new base covering array B.

Now, we analyze the computational cost of applying the construct £ to all matrices 8 for a base

covering array A = CA(TV; t, k, v). One application of the construction £ includes to créate the

matrix B and to verify if the matrix B is a covering array of strength t + 1. The time required to

créate the matrix B is linear in the size of the matrix B, i.e., 0(TVi; x (k + 1)), assuming that the

operation of column translation requires a linear time. The verification of the matrix B consists in

checking that every submatrix of t + 1 columns from the first k columns of B covers all the tupies

of the set Z*+1; remember that by Theorem 7 submatrices involving the last column of B do not

need to be checked. Each submatrix has dimensions (Nv) x (t + 1) and there are (
*

) of such

submatrices. Because of the submatrix verification is done in linear time the computational cost of

verify the matrix B is the one given in (4.4).

°{{tÍi)Nv{t+1)) (44)

Then, the cost of creating and verifying the matrix B is given by (4.5).

o(Nv(k + l)+(t^Nv(t + l)\ (4.5)
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A=CA(N;t,k,v)

S <- nextMatrixDelta()

Figure 4.10: Flow diagram of the application of the construction £ to every matrix 5 that exist for

a base covering array A = CA(N;t,k,v).
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And therefore, the application ofthe construction £ to all the u*^-1) different matrices ¿ requires

the time given in the expression (4.6).

oív^-V Nv(k+1)+Í MtVu(í + 1) (4.6)

To improve this execution time, the approach followed was to represent the matrices 6 as linear

vectors concatenating the rows ofthe matrices 6 in order, but eliminating the first row ofthe matrices

6 because all its elements are zero. Moreover, vectors 6 are not generated sequentially, but rather

they are generated in u-ary Gray code using the algorithm proposed in [36], where v is the order ofthe

base covering array. For example, the eight matrices ¿ for the base covering array A = CA(4;2,3,2)

of Figure 4.5 are represented by the following vectors ¿, Usted in the order they are generated in

v-ary Gray code:

¿° = (0 0 0), S1 = (1 0 0), ¿2 = (1 1 0), S3 = (0 l 0),

¿4 = (0 1 1), ¿5 = (1 1 1), ¿6 = (1 0 1), ¿7 = (0 0 1).

Generating the vectors ¿ in u-ary Gray code has the following advantages:

1. The application of the construction £ to all vectors <5 is accelerated notably, since the matrix

B for a vector 6 is different from the matrix B for the previous vector 6 in only one column.

2. In some circumstances the verification of the matrix B can be omitted, since there is the

assurance that the matrix B can not be a covering array of strength t + 1 based on the

verification of a previous matrix B.

Let be A = CA(N;t,k,v) the base covering array and let be ó1 = (¿o ¿i •••

¿jfe(«_i)_i) the

current vector S. The matrix B for this vector, denoted by Bs' ,
is this one:
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( A*

A) ©¿o

A0ffi¿fc

Ai

Al ffi ¿i

Ai © ¿fc+i

\A0 ffi ¿(u-2)it Ai © ¿(„_2)fc+i

Ak-i

Afe_i © 6k-i

Ak-i ffi ¿2fc-i

X0 \
Xi

X2

Ak-i ffi x(„_i)fc_i X„_i/

The following vector á, denoted as 6l+1, is equal to Sl except in one position j, 0 < j <

k(v
-

1)
- 1. So, the matrix B5'+1 can be obtained from the matrix Bs' by replacing only one entry

of the matrix B6' . If j is the position of vector 5i+1 which has changed with respect to the vector

5\ then the entry (x,y) ofthe matrix B5* that must be updated is:

(x,y) = (\j/k\ + l,j mod k). (4.7)

This entry (x,y) of the matrix Bs' is the column Ay translated by the valué 5*. (i.e., Ay ffi ¿j).

Therefore, in the matrix T3á'+1 the entry (x,y) must be replaced by Ay ffi¿*+1. By doing only this

change the matrix Bs'+1 is obtained from the matrix Bs' .

Now, suppose the matrix Bs* was checked to see if it is a covering array of strength t + 1

and the result was false because the submatrix conformed by the £ + 1 columns Bf^Bf^, . . .,Bft

does not cover all the tupies of Z[+1. As before, let be j the position of the vector 5t+1 that is

different from the previous vector 6\ and let be y
= j mod k. If y </■ {l0,h, ■ ■ ■ ,/J then the

matrix Bs'+1 can not be a covering array of strength t+1 because its submatrix conformed by

the columns T3fo'+1 , Bf'^1 ,... , Bft+1 is identical to the submatrix of B¡1 conformed by the columns

Bf,Bf¡, ..., Bff, and this submatrix does not cover all the tupies of Zlv+1.

For example, consider the base covering array A = CA(5;2,4,2) of Figure 4.11. Let be

6 = (1 0 1 0) the current vector 5. The matrix B resulting from the application of the construction

£ to the base covering array A and to the vector 6 = (1 0 1 0) is the one shown to the right of the

Figure 4.11.
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A =

/O 0 0 0\
0 0 11

0 10 1

10 0 1

\1 1 1 0/

Bs =

/ 0 0 0 0 o\

0 0 11 0

0 10 1 0

10 0 1 0

1110 0

10 10 1

10 0 1 1

1111 1

0 0 11 1

V o i o o 1/

Figure 4.11: The matrix Bs for the vector ¿ = (1010).

The vector 6' that follows the current vector S = (1 0 1 0) in u-ary Gray code is ¿' = (1 0 1 1).

Since these vectors are different in the third position their respective matrices B are different in the

third column. Substituting k = 4 and j = 3 in expression (4.7), the column y of the copy x of the

base covering array that must be updated is:

(x,y) = (\j/k\ + 1, j mod k) = (L3/4J + 1, 3 mod 4) = (1,3)

So, the elements of matrix B to be updated are the elements in the column y
= 3 of the copy

x = 1 of the base covering array. These elements are shaded in the matrices B for the vectors

¿ = (1 0 1 0) and ¿' = ( 1 0 1 1) shown in the Figure 4.12.

Bs =

/ 0 0 0 0 o\

0 0 11 0

0 10 1 0

10 0 1 0

1110 0

10 10 1

10 0 1 1

1111 1

0 0 1 .\Ü> 1

V o i oo 1/

Bs
'

=

/ 0 0 0 0 o\

0 0 11 0

0 10 1 0

10 0 1 0

1110 0

10 11 1

10 0 0 1

1110 1

0 0 10 1

^0101 1/

Figure 4.12: The matrices B for the vectors S = (1 0 1 0) and ¿' = ( 1 0 1 1).
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In other hand, the matrix B5 for the vector 5 = (1 0 1 0) is not a covering array of strength

t + 1 = 3, because the combination of columns {0,1,2} does not cover the tupies (0,1,1) and

(1, 1,0). So, the matrix Bs' can not be a covering array of strength t = 3 because ¡ts columns 0, 1,

2 are identical to the columns 0, 1, 2 of the matrix Bs. Figure 4.13 shows the submatrix conformed

by the columns 0, 1, and 2 in both matrices Bs and Bs' .

(0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

1 0 0 1 0

1 1 1 0 0

1 0 1 1 1

1 0 0 0 1

1 1 1 0 1

0 0 1 0 1

\o 1 0 1 1

(0 0 0 0 0'

0 0 1 1 0

0 1 0 1 0

1 0 0 1 0

1 1 1 0 0

1 0 1 0 1

1 0 0 1 1

1 1 1 1 1

0 0 1 1 1

lo 1 0 0 1

Figure 4.13: The submatrix conformed by the columns 0, 1, and 2 in the matrices Bs and B6' .

Following this approach the cost of generating the matrices B is 0(Nv x (k + 1)) for the first

vector 5, and O(N) for all the other vectors 5. So, the cost of generating the matrices B for all

vectors 6 is:

0{Nv{k + 1) + Niv^-V -

1)) (4.8)

The number of times the verification of the matrix B is omitted depends on the base covering

array. The worst case is the same: 0(vk^v~^ (t*j) TVt>(í + 1)), but it is very improbable that this

case occurs. In Chapter 5 this cost is estimated empirically.

4.2.3 Algorithms for the Construction S

In this section are described the algorithms to apply the construction £ to every vector <5 for a

base covering array CA(TV; t, k, v). Algorithm 1 is the main algorithm for the implementation of the

construction £; it receives as input data the base covering array A = CA(N;t,k,v) and applies the
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construction £ to each one ofthe u*^"-1) vectors ¿. In lines 1-4 the algorithm declares the next four

auxiliary arrays:

• B, the matrix of dimensions Nv x (k + 1) to store the result of the application of the

construction £.

• ¿, a vector of k elements to store the current vector S.

• S, a vector of k elements used to genérate the vectors ¿ in v-ary Gray code.

• D, a vector to store the first combination of t + 1 columns of matrix B which does not cover

all the tupies of the set Z^+1.

Algorithm 1 app\y_£(A,N,t,k,v)

Require: the base covering array A = CA(N,t,k,v)
Ensure: the application of the construction £ to every vector S for the base covering array A

1: B is a matrix of dimensions Nv x (k + 1)
2: 6 is a vector of A; elements to store the Gray code

3: S is a vector of A; elements to store +1 or
— 1 for each element of 6

4: D is a vector of t + 1 elements

5: initialize_matrix_B(A, B, TV, k)
6: initialize_ vector_ delta(6, S, k)
7: D[0] +--1
8: i <- 0

9: while i t¿ — 1 do

10: apply
_

vector
_ delta(A, TV, k, B, S, i)

ll: if is_ covering_ array(B, t,v,i,D) then

12: {do something with the new covering array B of strength t+1}
13: end if

14: i +- next_ vector_ delta(S, S,v,k)
15: end while

In lines 5-7 these arrays are initialized. The function initialize_matrix_B(), implemented

in Algorithm 2, is called in line 5 to initialize the matrix B; next in line 6 the function

¡nitialize_vector_delta(), implemented in Algorithm 3, is called to genérate the first vector 5; and
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in line 7 the first position of vector D is set to —1, where -1 is an invalid column index used to

signal that vector D currently does not contain a valid combination of t+1 columns of matrix B.

In line 8 the variable i is set to 0, this variable is updated in line 14 with the valué returned by

the function next_vector_delta() implemented in Algorithm 4. The while loop of line 9 is executed

while this variable i is distinct of — 1. In line 10 the current vector S is applied to the matrix B

(Algorithm 5) to produce the matrix B for the current vector S. Next, in line 11 the matrix B is

verified to see if it is a covering array of strength t + 1 (Algorithm 6). In case of the matrix B is

a covering array of strength t+1, the comment in line 12 will be replaced by a recursive cali of

the same function apply_£() in order to apply the construction £ to the new base covering array

B; this operation will be explained in more detail in Section 4.2.4. In line 14 the invocation of

the function next_vector_delta() updates the vector 5 with the following vector in u-ary Gray code

and returns the index i modified in vector S. When all vectors 5 have been generated, the function

next_vector_delta() returns —1 as the modified index in order to break the while loop of line 9.

Algorithm 2 initializes the matrix B. The initialization of the matrix B consists in filling its first

k columns with v exact copies of the base covering array A = CA(TV; t, k, v); also, the last column is

filled with TV zeroes, followed by TV ones, and so on until finish with TV elements equal to v
— 1. The

initialization of the matrix B is done only one time, before enter into the while loop of Algorithm

1; the resulting matrix B corresponds to the vector 6 in which all its elements are equal to 0.

Vectors 5 are generated in v-ary Gray code using the algorithm developed in [36]. In Algorithm

3 the vector 5 and its auxiliary vector S are initialized. Next, in Algorithm 4 the following vector 5

in u-ary Gray code is computed following the algorithm described in [36]. In each cali, he function

next_vector_delta() computes the following vector 6 in v-ary Gray code and returns the index i

modified to obtain the current vector 6. If the returned valué is distinct of -1 then the vector 6

is valid, so the construction £ can be applied with this vector 6. When all vectors S have been

generated, the function returns -1 as the changed index to finalize the while loop of Algorithm 1.
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Algorithm 2 initialize_matrix_JB(>l, B, TV, k)

Require: the covering array A = CA(TV;í, k,v), the matrix B

Ensure: the initialization of the matrix B

1 for l = 0 to v
— 1 do

2 {set the first k columns of the Z-th copy}
3 for i <- 0 to TV - 1 do

4 for j <- 0 to k - 1 do

5 B[l*N + i][j}+-A[i]lj}
6 end for

7 end for

8 {set the last column of the Z-th copy}
9 for i = 0 to TV - 1 do

10 B[l * N + i][k] <^ l

11 end for

12 end for

The function apply_vector_delta() implemented in Algorithm 5 obtains the matrix B for the

current vector 6. To do this, the function updates the column of the matrix B affected by the index

changed in vector ¿. Let be i de index changed in vector 8, then the column of matrix B that must

be updated is c = i mod k, and the copy ofthe base covering array to be updated is [i/k\ + 1 (see

expression 4.7). Since the base covering array has TV rows, the elements of the column c of matrix

B to be updated are the elements from the row start = ( [i/k\ * TV) + TV to the row start + TV - 1.

The for loop in line 5 of Algorithm 5 replaces these elements by the column c of the base covering

array translated by the valué S[i], where i is the index of the element modified in vector 5.

Algorithm 3 initialize_vector_delta((5, S, k)

Require: the vector 6, the vector S, the number of columns k of the base covering array

Ensure: the initialization of vectors ¿ and S

1: for i <- 0 to k - 1 do

2: ¿[i] <- 0

3: S\i] <r- 1

4: end for
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Algorithm 4 next_vector_delta(¿, S, v, k)

Require: the vector 8, the vector S, the order v, and the number of columns k ofthe base covering

array

Ensure: the next vector 8 in v-ary Gray code

1: i +- k- 1

2: j <- S[k
-

1] + S[k
-

1]
3: while (j >vorj<0) and (i ^ —

1) do
4: S\i] <- -S\i]
5: i +- i — 1

6: if i t¿
— 1 then

7: J <- <5[z] + 5[t]
8: end if

9: end while

10: if i ,¿-1 then

11: ¿[i] +- j
12: end if

13: return i

Algorithm 5 apply_vector_delta(j4,TV, k, B,8, i)

Require: the base covering array A = CA(N;t,k,v), the matrix B, the vector 8, the index i

modified in vector 8

Ensure: the matrix B for the current vector 8

1: start i- ([i/k\ * TV) + TV

2: end <- start + TV - 1

3: c <— i mod /c

4: Z<-0

5: for j <r- start to end do

6: B[;][c] <- (i4[Z][c] + ¿[i]) mod w

7: Z <- Z + 1

8: end for

Finally, Algorithm 6 implements the function is_covering_array() to verify if the matrix B for

the current vector 8 is a covering array of strength í + 1. The strategy of this function is to check

that every combination of t + 1 columns from the first k columns covers all the tupies of the set

Z^+1 at least once. By theorem 7 the combinations of columns involving the last column of matrix

B do not require to be verified. The verification can be skipped when the vector D contains a valid
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combination of t + 1 columns and the column recently updated in matrix B is not in vector D,

because in this case the matrix B does not have any possibility of being a covering array of strength

t + 1.

The function is_covering_array() receives the index i returned by the function

next_vector_delta(). With this valué i the function computes the index j of the column of matrix

B that was updated by the function apply_vector_delta(). If j is not in D then the matrix B is

not a covering array of strength t + 1 and the function is_covering_array() returns false in line 4.

If j is one of the columns stored in vector D, then the function performs a normal verification of

the matrix B. When in line 9 it is found a combination C of t + 1 columns with missing tupies,

the combination C is stored in vector D and the verification is stopped because the matrix B is

not a covering array of strength t+1. In case of every combination of t + 1 columns covers all the

tupies of the set Zj,+1 the matrix B is a covering array of strength t + 1, so the first element of

vector D is set to — 1 in order to perform a normal verification in the following cali to the function

is_ covering_ arrayQ.

4.2.4 Iterative Application of the Construction 8

In Algorithm 1 was not defined the action to perform when the matrix B is a covering array of

strength t + 1. The application of the construction £ to all vectors 8 can genérate several covering

arrays of strength t+1 based on a covering array of strength t; and the construction £ should be

applied to all of them as defined in the methodology to construct the TCAs (Section 4.1).

Therefore, the function apply_£() implemented in Algorithm 1 should be called recursively in

order to apply the construction £ to the covering arrays in the previous floor of the TCA. Algorithm

7 shows the recursive ¡mplementation ofthe function apply_£(), this implementation requires a set

of auxiliary arrays B, 8, S, and D for each floor of the TCA, so we use the following arrays:

• Tower, an array of matrices, its content is the current TCA.
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Algorithm 6 is_covering_array(T3,í,i;,i, D)

Require: the matrix B of size Nv x (k + 1), the index i changed in vector 8, and vector D

Ensure: true if matrix B is a covering array of strength t+1 and false otherwise

2

3

4

5

6

7

8

9:

10

11

12

13

14

15

16

j 4— i mod k

if D[0] ± -1 then

if the the column index j is not in D then

return false {matrix B can not be a covering array}
end if

else

{to perform a normal verification of the matrix B}
for all combinations of t + 1 columns C from the first k columns do

if columns C[0], C[l], . . .

, C[t] do not cover all the tupies in the set Z*+1 then

D 4- C {save this combination of columns in vector D}
return false {B is not a covering array}

end if

end for

D[0] < 1 {¡ndicates to perform a normal verification in the next cali}
return true

end if

• BestTower, an array of matrices, its content is the best (the highest) TCA found until now.

• A, an array of vectors, it contains a vector 8 for each floor of the TCA.

• Sign, an array of vectors, they are used to genérate the vectors 8.

• Comb, an array of vectors, a vector for each floor to store one combination of columns which

does not meet the requirements to be a covering array.

Algorithm 7 uses global variable h* to store the máximum height reached until now. Initially

h* is equal to 0, but it is incremented each time a new best height h is reached. Notice that the

parameter h for the function apply_£_rec() is the height to tray to reach, so the global variable h*

is updated only when h > h*
,
also the best tower found is updated in this case (line 7). The way

in which Algorithm 7 is implemented allows the iterative application of the construction £ to all the

covering arrays in the TCA derived from the input covering array of strength t.
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Algorithm 7 apply_£_rec(>l,TV,t,fc,T;,/i)

Require: the base covering array A = CA(N,t,k,v) and the height h to try to reach

Ensure: the application of the construction £ to every vector 8 for the base covering array A

1: B 4- Tower[h]
2: 8 4- A[h]
3: S 4- Sign[h]
4: D 4- Comb[h]
5: if h > h* then

6: h* 4- h

7: BestTower 4— Tower

8: end if

9: initialize_matrix_ B(A, B,N,k)
10: initialize_ vector_ delta(8, S, k)
11: D[0] 4- -1
12: i 4- 0

13: while i t¿ — 1 do

14: apply_ vector_ delta(A, TV, k, B, 8, i)
15: if is_covering_array(B,t,v,i, D) then
16: apply_£_rec(B, Nv, t + 1, k + 1, v, h + 1)
17: end if

18: i 4- next_ vector_ delta(8, S,v,k)
19: end while

In the final program the input covering array of strength t for the function apply_£_rec() will

be a non-isomorphic covering array of mínimum rank for the parameters TV, t, k, and v. Therefore,

the methodology proposed will be implemented by calling the function apply_£_rec() for every

non-isomorphic covering array of mínimum rank CA(TV, t, k, v), as explained ¡n Figure 4.1 of Section

4.1.

4.3 Non-lsomorphic Bases

The first step in the methodology proposed to construct the TCAs is the construction of all the non-

isomorphic covering arrays for the given parameters TV, t, k, and v. The objective of this is to use the

non-isomorphic covering arrays as the bases of the TCAs, in order to ensure the construction of the
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TCA with the greatest height, but without exploring all the equivalent bases. Section 4.3.1 proves

that only the non-isomorphic covering arrays need to be checked as the bases of the TCAs; Section

4.3.2 to Section 4.3.5 describe the algorithm developed in this thesis to genérate the non-isomorphic

covering arrays.

4.3.1 Bases for the Towers

As was said in Chapter 2 there may be several covering arrays for the same parameters TV, t, k,

and v, some of which are isomorphic among them, while others are non-isomorphic among them.

Isomorphic covering arrays have equivalent coverage properties, and in this section it is proved that

this equivalence implies that all the isomorphic covering arrays produce TCAs with equal máximum

height.

Consider the following isomorphic covering arrays Ai and A2 with parameters TV = 6, k = 5,

t = 2, and v = 2; these covering arrays are isomorphic because A2 can be derived from Ai by means

ofthe row permutation r = (3 1 2 5 4 0), the column permutation n = (4 2 0 3 1), and the column

relabeling <f> = (0 1 0 1 0):

Ai =

/l 1 1 0 1\
10 110

0 0 0 0 1

110 10

0 110 0

\0 1 1 1 1/

/0 1 1 0 1\
0 0 10 0

110 10

10 0 0 1

0 0 0 11

\1 0 1 1 1)

Now we apply the construction £ to every vector 8 for the covering arrays Ai and A2, and record

the number of missing tupies in every matrix B resulting from the application ofthe construction £ .

Table 4.1 contains the results obtained.

Let be Imiss(x) a function that applies the construction £ to every vector 8 for the covering array

x and returns a list ofthe number of missing tupies in the matrix B for each vector 8. For examples:

lmiss(A1 ) = (24, 10, 9, 10, 4, 8, 4, 9, 9, 4, 4, 4, 4, 8, 4, 9, 4, 8, 12, 8, 4, 0, 4, 4, 4, 8, 12, 8, 9, 12, 9, 10)
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Ai A2
Vector 8 Missing tupies in Bs Missing tupies in Bs

(00000 24 24

(00001, 10 9

(00011, 9 4

(oooi o; 10 10

(ooii o; 4 9

(o o 1 1 1; 8 8

(ooio i; 4 4

(o o i o o; 9 10

(o 1 1 o o; 9 4

(0110 1] 4 4

(01111) 4 4

(01110) 4 8

(0101 0) 4 4

(01011) 8 4

(01001) 4 9

(0100 0) 9 9

(110 0 0) 4 4

(1100 1) 8 4

(110 11) 12 4

(110 10) 8 8

(1111 0) 4 12

(11111) 0 0

(1110 1) 4 4

(1110 0) 4 8

(10 100) 4 9

(10 10 1) 8 8

(10111) 12 12

(10 110) 8 12

(100 10) 9 9

(100 11) 12 8

(1000 1) 9 4

(100 0 0) 10 10

Table 4.1: Number of missing tupies in matrix B when the construction £ is applied to each vector

¿ for the covering arrays Ai and A2.
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lmiss(A2) = (24, 9, 4, 10, 9, 8, 4, 10, 4, 4, 4, 8, 4, 4, 9, 9, 4, 4, 4, 8, 12, 0, 4, 8, 9, 8, 12, 12, 9, 8, 4, 10)

We notice that Imiss(Ai) is a permutation of lmiss(A2), and we claim that this is true for any

pair of isomorphic covering arrays. To prove empirically this asseveration we developed a program

that takes a covering array A = CA(TV; t, k, v) and computes Imiss(A); next, for every covering array

A' isomorphic to A the program computes Imiss(A') and checks if it is a permutation of Imiss(A).

One way to check if Imiss(A') is a permutation of Imiss(A) is to sort the lists and compare them

entry by entry. We execute this program with a number of covering arrays A
= CA(TV; t, k, v); in all

cases the list of any covering array isomorphic to A was a permutation of Imiss(A).

Besides we found another ¡mportant property of the isomorphic covering arrays: suppose the

construction £ produces a covering array of strength t + 1 when applied to a covering array A of

strength t and to a particular vector ¿; then for the same vector 8 the construction £ produces a

covering array of strength t + 1 for any covering array ¡somorphic to A. Thereby, it is sufficient to

check only one of the TV! fe! (v\)k isomorphic covering arrays as the base of the TCA, because they

all produce TCAs with the same máximum height.

For non-isomorphic covering arrays the lists of the number of missing tupies are not in general

a permutation of each other. For example, the next covering array A3 is another covering array for

TV = 6, k = 5, t = 2, and v = 2, but it is non-isomorphic to the coverings arrays Ai and A2:

(1 0 1 0 0\

10 10 1

110 10
3~

0 0 0 10

0 1111

\0 1 0 0 1/

The list of the number of missing tupies for this covering arrays is lmiss(A3) = (26,12,5,

10,9,4,5,10,6,10,12,8,6,10,5,10,9,4,12,8,4,8,12,8,6,10,12,8,6,10,5,10), which is not a

permutation of /m/'ss(,4i) or lmiss(A2). In addition, the construction £ does not produce any

covering array of strength í + 1 for this covering array A3, as it does for the covering arrays Ai
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and A2. Therefore, we need to prove as the base of the TCA one element of each group of non-

isomorphic covering arrays in order to construct the highest TCA. In Chapter 2 was viewed that

the covering arrays of minimum rank can be used as the representative elements of the classes of

isomorphic covering arrays. The following section starts the description of the algorithm developed

in this thesis to genérate all the non-isomorphic covering arrays of minimum rank that exist for a

given combination of the parameters TV, í, k, and v.

4.3.2 The NonlsoCA Algorithm

We developed an algorithm called NonlsoCA to genérate all the non-isomorphic covering arrays of

minimum rank for the parameters TV, t, k, and v. The strategy of the NonlsoCA algorithm is to

construct the covering arrays column by column (from 1 column to k columns) restricting column i to

be smaller than column j in lexicographic order if i < j. The columns are generated in this manner

because we are looking for covering arrays of minimum rank, and one property of these covering

arrays is that their rows and their columns are increasingly ordered in lexicographic order. So, the

arrays whose columns are not in lexicographic order can not be of minimum rank, and therefore the

algorithm avoids to genérate such arrays.

The algorithm starts the construction of the non-isomorphic covering arrays of k columns with

the construction ofthe first column. In order to be the first column of a covering array of minimum

rank a column c must satisfy the following properties, suppose order v:

• The column c is conformed by a block of 6o zeroes, followed by a block of bi ones, and so on

until finish with a block of bv-i elements equal to v
— 1.

• bi > vl~l for i = 0, 1, ... ,v — 1, where t is the strength of the covering arrays.

• h > bi+i for i = 0, 1, . . .

,
v

— 2.

For example, suppose TV = 8, k = 6, t = 2, and v = 2; then uí_1 = 22_1 = 2, and so there

must be at least two occurrences of each symbol 0 and 1 in the first column of the covering arrays
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of minimum rank. The only three columns that satisfy the above requirements are these ones, where

the super-index T means transpose:

(0 0 0 0 0 0 1 1)T

(0 0 0 0 0 1 1 1)T

(0 0 0 0 1 1 1 1)T

The reason for the above three rules for the first column of a covering array of minimum rank is

that in other case (i.e., some ofthe rules are not satisfied) there exists a column relabeling (symbol

permutation) followed by a row sorting that produces a column of a smaller rank. For example, the

column (0001111 1)T can not be the first column of covering array of minimum rank for TV = 8,

k = 6, t = 2, v = 2, because the symbol permutation (1 0), which means to replace the zeroes by

ones and the ones by zeroes, followed by a row sorting gives the column (0000011 1)T, which

has a smaller rank.

Algorithm 8 implements the function first_column() that generates the first columns of the

covering arrays of minimum rank. The function receives the column c of size TV to store the result,

the parameters TV, í, v, and a vector called q of size v used to store at position i the number of

occurrences of symbol i in column c. Initially q[0] = -1 to recognize the first time the function

first_column() is called. The return valué ofthe function is true if a column c was constructed and

false if all columns c of minimum rank have been constructed.

The function first_column() is conformed by the ¡f-else sentence at lines 1-27, the if sentence

at lines 28-35, and the return sentence at line 36. The if-else sentence obtains the valúes of the

vector q of size v, where q[i] is the number of occurrences of symbol i in column c; this way the

column c will be conformed by q[0] zeroes, followed by q[l] ones, and so on until finish with q[v
-

1]

elements equal to v
— 1. If a valid column c was found then the variable found is set to true, and

the if sentence of lines 28-35 filis the column c according to the valúes in vector q.

In the first cali to the function first_column() the valué of q[0) is equal to -1, so the if part of

the ¡f-else sentence is executed. For a covering array with parameters TV, k, t, v each symbol of Z„
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Algorithm 8 first_column(c, TV, t, v, q)

Require: the column c; the parameters TV, í, v; and the vector q
Ensure: true if one column c of minimum rank was constructed; false otherwise

if q[Q] = -i then

q[i] 4-vt~1 fori = l,2...,v~l

q{0]4-N-(q[l] + q[2] + -.. + q[v-l})
found 4- true

else

found 4— false; i 4— 0

while i < v
— 1 and found = false do

if Q[i] >q[i + l] + 2 then

q[i + 1] 4- q[i + 1] + 1

q\j] 4- q[i + 1} for j = 1,2, ... ,i

q[0]<-N~(q[l]+q[2] + .-- + q[v-l])
found 4— true

end if

i 4-i+l

end while

if found = false then

Í4-0

while i < v
— 2 and found = false do

if exists j > i + 2 s.t. q[i] -q[i+l] = 1, q\j-l] -q[j] = 1, q[i+l] = • • • = ib'-1] then

q[i] 4- q[i] - 1

q\J] <- 9lí] + i

found 4- true

end if

Í4-Í + 1

end while

end if

end if

if found then

Z<-0

for i 4- 0 to v
— 1 do

for j 4- 1 to <?[¿] do

c[Z] «- ¿; Z ^- Z + 1

end for

end for

end if

return found
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occurs at least ví_1 times in every column; so the fist column c of minimum rank is that column in

which the symbols 1,2, .. . ,v— 1 occur exactly u£_1 times and the symbol 0 occurs TV —

\(v — l)i>í_1]

times; this is what the operations in lines 2-3 do. In the subsequent calis the valué of q[0] is distinct

of —1, so the else part at line 5 is executed to genérate the other columns c of minimum rank.

These columns c are given by one of the following two operations:

1. To search sequentially if the there exists an index i such that q[i] > q[i + 1] + 2; if such index

exists then:

• increment q[i + 1] in one unit;

• make q\j] equal to the updated valué of q[i + 1] for j = 1,. . . ,i; and

. makeg[0] = TV-Er=i^]-

2. If none index i was found in the previous operation, then to search sequentially if there exists

a pair of Índices i and j such that j > i + 2, q[i]
—

q[i + 1] = 1, q[j
—

1]
—

q\j] = 1, and

q[i + 1] = q[i + 2] = • • • = q\j
—

1]; if such índices exist then:

• decrement the valué of q[i] ¡n one unit; and

• increment the valué of q\j] in one unit.

To exemplify the operations consider TV = 20, t = 2, and v = 4. In this case uí_1 = 42_1 = 4;

so each symbol 0, 1, 2, 3 must appear at least 4 times in the column c. The first column c of

minimum rank has exactly four occurrences of the symbols 1, 2, 3; and 20 —

4(3) = 8 occurrences

of the symbol 0; this column and the current vector q are shown in the first row of Table 4.2. From

this column the operation 1 is applied three times to obtain another three columns c. Finally, the

operation 2 is applied to obtain the last column c that can be the first column of a covering array of

minimum rank.

Now that we have a way to construct the first column of the covering arrays of minimum rank,

the Algorithm 9 shows the NonlsoCA algorithm. In lines 1-2 the algorithm declares the matrix A
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Column c Vector q Operation

(0 000000011112222333 3)T (8,4,4,4)
(0 000000111112222333 3)T (7,5,4,4) 1: i = 0

(0 000001111112222333 3)T (6,6,4,4) 1: i = 0

(0 000001111122222333 3)T (6,5,5,4) 1: i = 1

(0 00001 1 1 1 1222223333 3)T (5,5,5,5) 2: i = 0, j = 3

Table 4.2: Columns of minimum rank for TV = 20, í = 2, and v = 4; the third column describes the

rule applied to the vector q of the second column.

to store the covering arrays and the auxiliary vector q to compute the first columns of the covering

arrays. The k columns of A are denoted by A0, Ai, . . .

, Ak_i. The while loop of line 3 is executed

for every column of minimum rank that the function first_column() constructs.

Algorithm 9 NonlsoCA(TV,f,/c,u)

Require: the parameters TV, í, k, v

Ensure: the construction ofthe non-isomorphic covering arrays of minimum rank CA(N;t,k,v)

1: A is a matrix of size TV x k; ¡ts columns are A0, . . .

, Ak_i

2: q ¡s a vector of v elements with q[0] =
— 1

3: while first_column(AQ,N,t,v,q) do

4: Ai 4- A0

5: r 4- 1

6: while r > 1 do

7: if extend(A, r) then

8: if is_minimum(A,r + 1) then

9: if r + 1 = k then

10: write(A,r + 1)
ll: else

12: r 4-r +1

13: Ar 4- Ar-i

14: end if

15: end if

16: else

17: r 4- r -1

18: end if

19: end while

20: end while
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The central part of the NonlsoCA algorithm is the backtracking process to extend the covering

arrays from 1 column to k columns; this process is done in the while loop of lines 6-19. This loop

is executed while the current number of columns r ofthe current covering array of minimum rank is

greater than or equal to 1. We describe the backtracking process next: suppose the algorithm has

constructed a covering array of minimum rank with r columns Aq, Ai, . .
., Ar-i, where 1 < r < k.

To extend this covering array to r + 1 columns the algorithm checks in column Ar all the columns

lexicographically greater than A--1. until one of the following two cases occur:

1. A column conforming a covering array (not necessarily of minimum rank) with the first r

columns was found.

2. All the columns greater than AT_i were checked and none of them conformed a covering array

with the first r columns.

In the first case the covering array of r + 1 columns (Ao Ai ■■■ Ar^i Ar) is tested for minimum

rank (Algorithm 11 or Algorithm 12). If it is of minimum rank then the algorithm has constructed a

covering array of minimum rank with r + 1 columns, and the extensión process tries to expand this

covering array to r + 2 columns. But if the covering array is not of minimum rank it is rejected and

the extensión process to r + 1 columns is executed again, continuing from the last column checked

in the previous cali. If none column produces a covering array of r + 1 columns, the algorithm

decrements r in one unit (backtracks) in order to try to genérate another covering array of minimum

rank with r columns, which perhaps can be extended to r + 1 columns.

For example, suppose that for TV = 6, k = 7, t = 2, v = 2, the algorithm has constructed the

following covering array of minimum rank with r = 3 columns:

/O 0 0 * * * *\

0 0 0 * * * *

0 i 1 * * * *

0 i 1 * * * *

1 0 1 * * * *

^110****/
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In this subarray the algorithm checks all columns lexicographically greater than the last one until:

1. It finds a column that conforms a covering array with the first r = 3 columns. The following

step in this case is to verify if the covering array of r
= 4 columns is of minimum rank, and in

affirmative case the algorithm tries to extend this covering array to r
= 5 columns.

2. It determines that it is not possible to extend the covering array. In this case the last column of

the subarray is removed, and the algorithm tries to genérate another covering array of minimum

rank with r = 3 columns.

In line 7 of Algorithm 9 the function exteno'() tries to extend the current covering array of r

columns to r + 1 columns. The candidate columns for position r are the columns lexicographically

greater than AT_i, so the column Ar_i is copied into column Ar before starting the search ofthe

column Ar (line 4 and line 13). The valué returned by the function extend() is true if the extensión

process success, and it is false otherwise. When the function returns true it is checked if the covering

array of r + 1 columns is of minimum rank (line 8). If it is not of minimum rank the algorithm tries

to genérate another covering array with r+í columns; but in other case the algorithm checks if the

number of columns is equal to k. In the affirmative case a new non-isomorphic covering array of

minimum rank CA(N;t,k,v) has been constructed, so it is reported by the function writeQ in line

10; but in other case (i.e., r+ 1 < k) the valué of r is incremented in one unit because the number

of columns ofthe current subarray is now r + 1. When the function extendQ returns false the valué

of r is decremented in one unit, or in other words, the algorithm backtracks to column r — 1; when

r becomes zero the current ¡teration of the while loop of lines 6-19 finalizes.

The hard work ofthe NonlsoCA algorithm ¡s done by the functions extend() and is_minimum().

The function extend() is described in Section 4.3.3, and the function is_minimum() is described in

Section 4.3.4.
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4.3.3 Extensión of the Covering Arrays

For each candidate column AT the function extendsQ checks if the array (Aq Ai • ■ • Ar_i Ar) is

a covering array of strength t. But since (A0 Ai ■ ■ ■

Ar_i) is a covering array of strength t, the

algorithm only needs to check that every subarray conformed by AT and t — 1 columns from the

columns AQ,Ai, . . . ,Ar_i covers each í-tuple of Z*. The number of such subarrays is (tIx). which

is smaller than (r^1), the number of subarrays that would be checked no taking advantage of the

fact that the first r columns of A are a covering array of strength t.

In addition, the verification of the array (A0 Ai ■ • • AT_i AT) should be done only for the

candidate columns that really have possibilities to conform a covering array of strength t with the

previous r columns. In a covering array of strength í and order v each symbol 0, 1, . . .

,
v

— 1 occurs

at least uí_1 times in every column of the covering array; so the algorithm performs the verification

only for the candidate columns in which the symbols in Zv occur at least u*-1 times.

Another restriction for the candidate columns Ar is possible given that we are constructing

covering arrays of minimum rank: in a covering array of minimum rank every column c has the

following characteristic:

c[i] <i for i — 0, 1, . . .

,
v

— 1

This way, when it is detected a position 0 < i < v
— 1 such that c[i] > i we can skip all the

columns until the column equal to c[i
-

1] incremented in one unit and c\j] = 0 for j > i. For

example when the extendQ function reaches the next column for TV = 16 and v = 4:

(0 03000000000000 0)T

All the columns until (0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0)T can be skipped because they can not be

part of a covering array of minimum rank. Notice that in this column the content ofthe position i
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is less than or equal to i for i = 0, 1,2,3. The operation of skipping columns can be chained; for

example when the extensión process reaches the column:

(0 13000000000000 0)T

The algorithm detects that the content of the position 2 is greater than 2, so it ¡ncrements the

position 1 in one unit and writes zeroes in all the positions j > 2. The results is the column:

(0 20000000000000 0)T

But in this column the content ofthe position 1 is greater than 1, so the content ofthe position

0 is incremented in one unit and a zero is placed in the positions j > 1. The results is:

(1 00000000000000 0)T

In this column the content of the position 0 is greater than 0, so there are no more columns to

check and the extendQ function returns false.

The reason to impose c[i] < i for i = 0, 1, . . . ,v
— 1 is that in other case there exists a symbol

permutation (relabeling) of column c that produces a column d of a smaller rank. For example

consider v = 3, Table 4.3 shows in its first column all possible combinations for the first v = 3

elements of column c. In the second columns it is shown a symbol permutation of the symbols

in c such that the resulting column d, shown in the third column of the table, has a rank smaller

than or equal to the rank of c. A symbol permutation (x y z) ¡ndicates to replace in column c the

occurrences of 0 by x, the occurrences of 1 by y, and the occurrences of 2 by z. It can be noted

that the first v = 3 elements of every column d satisfies c'[i] < i for i = 0, 1, 2.

All this facts are very ¡mportant for the efficient ¡mplementation of the extendQ function, given

in Algorithm 10. This algorithm is conformed by a while loop that is executed until a return
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First 3 elements Symbol First 3 elements

of column c permutation of column d

(0 0 0) (0 12 (0 0 0)

(0 0 1) (0 12 ) (0 0 1)
(0 0 2) (0 2 1,) (0 0 1)
(0 10) (0 1 2;) (0 10)
(0 1 1) (0 12') (0 1 1)
(0 1 2) (0 1 2, (012)
(0 2 0) (0 2i; (0 1 0)
(0 2 1) (0 2i; (0 12)

(0 2 2) (0 2i; (01 1)
(10 0) (10 2; (0 1 1)
(10 1) (10 2; (0 10)

(10 2) (10 2; (0 12)

(1 10) (10 2; (0 0 1)

(1 1 1) (10 2; (0 0 0)

(1 12) (2 01] (0 0 1)
(12 0) (2 0 1] (0 12)

(12 1) (2 0 1] (0 10)

(1 2 2) (2 0 1] (0 11)
(2 0 0) (1 2 0] (0 11)
(2 0 1) (12 0] (0 12)
(2 0 2) (12 0] (0 1 0)
(2 10) (2 10] (012)
(2 1 1) (2 10) (01 1)

(2 1 2) (2 10] (0 10)

(2 2 0) (12 0) (0 0 1)

(2 2 1) (2 10) (0 0 1)

(2 2 2) (1 2 0) (0 0 0)

Table 4.3: All possible combinations for the first 3 positions of a column of order v = 3. The second

column of the table shows the symbol permutations used to relabel c and produce d.

sentence ¡s executed in line 20 or ¡n line 26; in the first case the valué false is returned because all

the candidate columns for position r were explored and none of them made a covering array with

the previous columns; in the second case the valué true is returned because it was found a column

for position r that conformed a covering array of r + 1 columns.

The first sentence inside the while loop is the computation of the following column in



4. Methodology to Construct the Towers of Covering Arrays 97

Algorithm 10 extender, u,t)

Require: the current covering array A of r — 1 columns; the valúes r, v, t

Ensure: true if A was extended to r + 1 columns; false otherwise

l : while true do

2 AT 4- AT + 1, where AT + 1 is the column following Ar in lexicographic order

3 i 4-V-2

4 while i > 0 and Ar[i] < i do

5 i 4- i — 1

6 end while

7 if i > 0 then

8 Ar[i] 4- 0
9 i 4—i — l;

10 while i > 0 do

11 Ar[i] 4- Ar[i] + 1

12 if Ar[i] > i then

13 Ar[i] 4- 0
14 i 4- i — 1

15 else

16 break

17 end if

18 end while

19 if i < 0 then

20 return false

21 end if

22 end if

23 if every symbol in Zv occurs at least uí_1 times in Ar then

24 t' 4— min(r, t)
25 if the array (AQ • • ■ Ar) is a covering array of strength t' then

26 return true

27 end if

28 end if

29 end while

lexicographic order; for this operation we use the notation AT + 1. In lines 3 to 6 it is checked

if there is one position 0 < i < v
— 1 whose content is greater than i. In the affirmative case, the

index of this position is the valué of the variable i, this variable is initialized with v
— 2 in line 3 and

it is updated in line 5; also in this case the valué of the variable i will be greater than or equal to

zero after the while loop of lines 4-6, and so the if sentence of lines 7-22 is executed. If there is not
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an index 0 < i < v
— 1 such that Ar[i] > i for the current column Ar then the valué ofthe variable

i will be -1 after the while loop of lines +6, and the if sentence of line 7 will not be executed.

Lines 8-18 implements the mechanism to adjust the column in order to the position i contains a

symbol less than or equal to i. In case of this adjustment sets the content of the variable i to — 1

the if sentence of lines 19-21 returns false to the caller.

If the current column Ar satisfies the requirement that Ar[i] < i for i = 0, 1, . . . ,v
— 1 the

control flow of the extendQ function reaches the line 23. In this line it is checked if each symbol

of Zv occurs at least vt_1 times in AT. If it is not the case the current ¡teration of the outer while

loop finalizes and a new ¡teration starts at line 2 with the computation of the column Ar + 1. But

in case of each symbol of the alphabet occurs at least vt_1 times in Ar, then it is checked if the

subarray (A0 Ai ■ ■ ■ AT) is a covering array of strength t', where t' is the minimum between r and

t. \f r > t then the subarray is checked to see if it is a covering array of strength t, but \f r < t

then it is checked if the subarray of r columns is a covering array of strength r, since in other case

its columns can not be part of a covering array of strength t > r.

4.3.4 Minimum Rank Test

For a covering array A with TV rows and r columns a naive algorithm to verify if A is of minimum rank

has to check, in the worst case, all the TV! r! (v\)r
— 1 covering arrays isomorphic to A. Algorithm

11 implements the naive verification of minimum rank. This algorithm checks all the (v\)r column

relabelings for each one ofthe r! column permutations, and the TV! row permutations for each column

relabeling. The covering array A' in the if sentence of line 4 is the covering array derived from A by

a particular column permutation, a particular combination of symbol permutations, and a particular

row permutation.

Let be C the covering array derived from A (the covering array under testing) by a particular

column permutation and a particular column relabeling of the column permutation; for this covering

array C the naive algorithm checks the TV! permutations of rows. However, it is not necessary
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Algorithm 11 is_minimum(i4)

Require: one covering array A

Ensure: true if A is of minimum rank; false otherwise

2

3

4

5

6

7

8

9

10

for all permutations of columns do

for all permutations of symbols in the columns do

for all permutations of rows do

if rank(A') < rank(A) then

return false

end if

end for

end for

end for

return true

to check all of them because the row permutation that produces the covering array of minimum

rank is that one in which the rows of C are lexicographically ordered. Therefore, to find the best

permutation of rows, the rows of C must be sorted lexicographically. Moreover, sometimes it will

not be necessary to sort all the TV rows of C in order to determine if A is of minimum rank. By using

an ascending sorting algorithm over the rows of C it can be concluded that A is not of minimum

rank as soon as one row of C is lexicographically smaller than the corresponding row of A. This

way, the TV! permutations of rows are reduced to one row sorting done in 0(N2) time.

With this improvement the permutations of rows have a fixed cost of 0(N2), so we only

concéntrate in checking the column relabelings and the column permutations. These two symmetries

are checked jointly by taking advantage of the fact that a covering array A of r column is a covering

array of minimum rank if and only if each subarray of A conformed by its first s = 1, 2, . . .

,
r columns

is also a covering array of minimum rank; if the first 5 columns of A are not of minimum rank then

A is not of minimum rank.

In what follows we assume the existence of the function rank(x), which computes the rank of the

covering array x. In Definition 9 we define the result of comparing the rank of two covering arrays.

Definition 9 Let be x and y two covering arrays with dimensions N x k over Zv, and let be
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rank(x) = (x0,xi,... ,xN-i) and rank(y) = (¡/o,¡/i,- • • ,1/jv-i)- Then:

• rank(x) is equal to rank(y) iffxi = yt for i = 0, 1, . . .

,
TV — 1.

• rank(x) is smaller than rank(y) iff there exists an index 0 < i < N — 1 such that x¿ < y¿

and Xj
=

yj for j < i.

• rank(x) is greater than rank(y) iff there exists an index 0 < i < TV — 1 such that x¿ > y¿

and Xj
=

yj for j < i.

We add one parameter to the rankQ function to indícate how many columns ofthe covering array

to take into account for computíng the rank. So, rank(x, s) computes the rank of the covering array

x consideríng only the first s columns of x. If x has r columns, the valúes of rank(x, 1), rank(x,2),

. .
., rank(x,r) will be different. This is done to allow the comparison of the ranks of two covering

arrays x and y with the same number of rows and order but with different number of columns.

The strategy followed by this smarter algorithm consists in constructing the permutations of

columns one column at a time and checking the v\ relabelings for the new column appended to the

permutation of columns. Let be A0,Ai,...,A-i the r columns of the covering array under testing

A, and let be e0, £i, . . .

, e»!-i the v\ relabelings for one column of A, where relabeling e* corresponds

to the i-th permutation of the symbols 0, 1, . . . ,v
— 1 in lexicographic order. Relabeling one column

Aj using Si
= (eio e¿1

• ■ • e^) implies, for each u € Zv, to replace the occurrences ofthe symbol u

in Aj by the symbol eiu. For example consider v = 3; Table 4.4 shows the 3! = 6 possible relabelings

for each column of a covering array of order three; to relabel the column j of a covering array of

order v — 3 according to £4 implies to replace in column 3 the 0's by 2's, the l's by 0's, and the 2's

by l's.

The current permutation of columns ir will be represented by a list of índices 0 < j < r
— 1,

where 7r¿ = 3 means that column Aj is the i-th column ofthe covering array resultíng from permutíng

the columns of A according to tt. At the beginning of the process tt is empty, tt = (), and since
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A has r columns there are r possible columns to append to the permutation tt. The order in

which 7r is expanded is controlled by a permutation p
= (p0 pi

• ■ ■ pT-i) of the column Índices

0, 1, . . . ,r
- 1, where r is the number of columns of A. Thereby, the first partial permutation of

columns is tt = (tt0) = (p0).

Let be D the covering array conformed by the columns of A taken in the order in which its

Índices are in n (at the beginníng D = (Apo)). Over the last column of D the v\ distinct relabelings

£o,£i, • ■ • ,£v<-i start to be performed sequentially. After each relabeling, the rows of D are sorted

and the rank of D is compared with the rank of the first s columns of A, where s is the number

of columns of the covering array D. The purpose of these comparisons ¡s to check if the first s

columns of A are a of minimum rank. There are three possible results for each relabeling e¿ of the

last column of D:

1. rank(D) < rank(A,s). In this case A is not of minimum rank because its first s columns are

not of minimum rank, so the verification process terminates.

2. rank(D) — rank(A, s). Relabeling e¿ is appended to a list Ls_i of the relabelings of column

tts-i that produce a covering array D with rank equal to the rank of the first s columns of A.

3. rank(D) > rank(A,s). Relabeling e¡ is not stored in the list Ls_i.

As soon as one relabeling produces rank(D) < rank(A, s) the verification process concludes that

A is not of minimum rank. If no such relabeling exists then all the v\ relabelings are performed

Relabeling Symbol Permutation

(0 12)

(0 2 1)

(10 2)

(12 0)

(2 0 1)

(2 10)

Table 4.4: The 3! = 6 possible relabelings for a column of a covering array of order v — 3.

eo

£l

£2

£3

£4

£5
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because with s columns is not possible to determine if A is of minimum rank. The relabelings which

produce rank(D) = rank(A, s) are stored because for each of them all the possible expansions of

the current permutation of columns tt must be checked to determine if A is of minimum rank. The

algorithm employs r lists L0, Li LT-i to store respectively the relabelings of the columns tt0,

tti 7Tr_i for which rank(D) = rank(A,s).

Consider the initial permutation of columns tt = (tt0) = (p0) and suppose that the cardinality

ofthe list L0, denoted as \L0\, is greater than zero; so there was at least one relabeling for column

tt0 which makes rank(D) — rank(A, 1). Let be L0 — (£o)£i> • • ■ >en0-i)' wnere e° denotes the i-th

relabeling stored in L0 and n0
= |L0|. For each relabeling e° the current permutation of columns

tt = (po) is expanded to the permutations of columns (po pi), (po p2) (po pr-i). as shown in

the search tree of Figure 4.14.

PO Pl
■■

Pr-1

p2 •■• Pt-i
■' '

P2 ■■■ Pr-1

Figure 4.14: Search tree to verify if a covering array is of minimum rank. For all relabelings of the

column pj that make rank(B) — rank(A, s) all the possible following columns are checked.

On the other hand, suppose that rank(D) > rank{A, 1) for all the v\ relabelings of column p0,
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then |L0| = 0. In this case, we do not expand the permutation of columns tt = (p0) anymore

because all the permutations starting with column p0, tt
= (p0 * * ■ ■ ■ *), will produce an array D

with a rank greater than the rank of A up to s = 1 columns. As a consequence, a great number of

permutations of columns, plus their associated column relabelings are not checked (a pruning in the

search tree of Figure 4.14).

The search tree of Figure 4.14 is explored in a depth-first search manner; that is, the algorithm

expands one permutation of s columns to s + 1, s + 2, . . . columns before than considering the other

permutations of s columns. In the same way, the algorithm considers a relabeling e{ of column ttj

only after all the permutations of columns have been checked for the relabeling e\_v At each time

of the process, the first s — 1 columns of the covering array D, which are D0, Di, ... , D3_2, are

relabeled according to one relabeling ofthe lists LQ, Lx La_2 respectively. In every node ofthe

search three is done the operation of row sorting, which is equivalent to the TV! permutation of rows;

so the search tree contemplates the three symmetries of the covering arrays.

Retaking the example for the initial permutation of columns tt = (p0), suppose that \L0\ > 0 and

that the algorithm expands the permutation tt to the first permutation with two columns tt = (pQ px).

In the following list are described the steps done to explore the search tree of Figure 4.14:

• The relabeling e% is applied to column ttq
=

p0, and the v\ relabelings are preformed over the

column recently added 7Ti
=

pi without modifying column tt0.

• As done for column tt0
—

p0, if one relabeling of 7Ti
=

pi makes rank(D) < rank(A,2),

then A is not of minimum rank because ¡ts subarray (Ao Ai) is not of minimum rank. If all

the relabelings produce rank(D) > rank(A,2), then the permutation (pQ pi) is not expanded

any more and the process continúes with the permutation of columns (p0 ^2)- If rank(D) =

rank(A, 2) for some relabelings of pi, then these relabelings are stored in the list Zq as shown

in Figure 4.15.

• If \Li\ > 0 then the algorithm tries to expand the current permutation of columns tt — (p0 pi)
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to s = 3 columns. The algorithm relabels columns D0 and Di according to the first relabelings

in L0 and Lx, which are e% and e¿ respectively. With D0 and Di fixed, the next step is to

append the column 7r2 = p2 to the permutation tt and perform the v\ relabelings over 7r2.

• Suppose that rank(D) > rank(A,3) for all relabelings of column 7r2
=

p2, then the permutation

tt — (p0 pi p2) is truncated and the algorithm takes the following candidate column p3 as the

new column for 7r2; so the current permutation of columns is now tt = (p0 pi p3), and the v\

relabelings are performed over 7r2
=

p3. The same is done for the other candidate columns

Pi,P5, ■ ■ ■ ,Pr-i- After exhausting the search for relabeling e¿ of column 7Ti = p\, the algorithm

takes the following relabeling in column Li (which is e\) and applies it to Di.

• With column Di relabeled according to e\ the algorithm again tries to expand the permutation

tt to s — 3 columns by checking the columns p2,p3, . .

., pT-i as candidates for the third column

ofthe permutation. The same is repeated for the relabelings £2,£3,. . . ,£^_i.

• At this point only the permutation tt = (p0 pi) has been checked, so the process continúes

with the permutation tt — (po p2). Over the last column added, 7Ti = p2, the ?;! relabelings

are performed, and those producing rank(D) = rank(A,2) are stored in the list L\. So the

content ofthe list Li varíes depending ofthe current relabeling for column tt0 and ofthe current

column 7Ti. For the new relabelings in list Lx the process to expand the current permutation

Lo Li L2 LT-i

£0 4

Sl el

£n0-l
Pi
em-i

Figure 4.15: Lo and Li store respectively the relabelings of the columns tt0 and tti that make

rank(D) = rank(A,s). The relabelings in Li are dependent ofthe current relabeling of column tt0.
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of columns to s = 3 columns is done as explained before.

• When all the permutations for s = 2 columns (p0 pi), (po P2). • •
■. (po Pr-i) are checked, the

subtree for the first relabeling of column irQ has been exhausted. To continué, the following

relabeling in list Lo. which is e\, is applied to column 7To, and the entire process is repeated.

That is, all the permutations tt with s = 2 columns (p0 pi), (po p2) (po Pr-i) are checked,

but now the column 7r0 = po is relabeled according to e°.

• After repeating the process for the subsequent relabelings in L0, £2, £°, . .
., £°0_i, the first

column of the permutation 7To
=

po ¡s changed to 7r0
=

pi. Now, the entire process done for

tt = (po) is repeated for tt = (pi); for example if at least one relabeling for the current column

7r0 makes rank(D) = rank(A, 1), then the current permutation tt — (px) is extended to all the

permutations with s — 2 columns (pi p0), (pi p2), ■ • ■

, (pi Pr-i)- In the subsequent steps 7r0

gets the columns p2, p3 pr-i- And when all the relabelings for 7To = pr_i are checked the

verification process finishes.

The search tree for the verification process may be very large, but in the worst case it checks

the (v\)r column relabelings for each one of the r! column permutations, as done by the naive

verification algorithm (Algorithm 11), but has the advantage of reducing the TV! row permutations

to a sorting ofthe rows done in 0(N2). Furthermore, any time a relabeling for column ttj produces

rank(D) < rank(A,s), the verification process terminates and reports that A is not of minimum

rank because its first s columns are not of minimum rank. In other case, it will be uncommon that

all relabelings for column ttj produce rank(D) — rank(A,s), and therefore some relabelings for the

current permutation of columns are not explored. But the major time savings occur when rank(D)

> rank(A, s) for the v\ relabelings of the column recently added to the current permutation of

columns, because in this case a large portion ofthe tree may be pruned. Anyway, the worst case of

the algorithm is 0(N2 k\ (v\)k).

Algorithm 12 implements this smarter verification algorithm. The algorithm is controlled by the
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Algorithm 12 is_minimum(A,r)

Require: one covering array A with r columns

Ensure: true if A is of minimum rank; false otherwise

p 4- a permutation of the symbol set {0, 1, . . . ,v
- 1} to define the order of expansión

TT4-()
L0, Li, . . .

, Lr_i are empty lists

S4-0

replace_column 4— true

while s > 0 do

if replace_column then

tts 4- next_candidate_column(p, s)
D 4- column_permutation(A, tt)
for all relabelings e of the last column of D do

sort_rows(D)
if rank(D) < rank(A, s) then

return false

else if rank(D) = rank(A, s) then

append(Ls,e)
end if

end for

end if

if \LS\ > 0 then

e 4- remove_first(Ls)

relabel_ column(D, s, e)

sort_rows(D)

replace_column 4— true

S 4- S + l

else

if remains_candidate_columns(p,s) then

replace_column 4- true

else

replace_column 4— false

s 4- s
- 1

end ¡f

end if

end while

return true

while loop of line 6. The algorithm expands and reduces the current permutation of columns tt

until an array D with smaller rank than A is found, or until the search tree is exhausted. Within the
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while loop there are two main parts, the if sentence of lines 7-18 and the if-else sentence of lines

19-32. The boolean variable replace_column controls the execution of the sentences in the if of

line 7. Each time the variable replace_column is true the following candidate column for position

s of tt is added to the current permutation of columns, the v\ relabelings are performed over it, and

those producing rank(D) — rank(A, s) are stored in the list La.

The if part ofthe if-else sentence in line 19 is executed for each relabeling e G Ls; in this block

of sentences the last column of array D is relabeled with each of the relabelings in Ls (one at a

time), the valué of s is incremented in one unit, and the variable replace_column is set to true

in order to check the first candidate column for position s + 1 in the next ¡teration of the while

loop. The function remove_first() deletes and returns the first element of the list Ls received as

a parameter. When all relabelings in list Ls are checked, the else block in line 25 is executed. In

this block is asked if there are more candidate columns for the current position s; in the affirmative

case the variable replace_column is set to true; but in other case all the candidate columns have

been checked, and so the variable replace_column is set to false, and the algorithm backtracks

to column s
— 1. When replace_column is false the current column in tts is not replaced in the

current ¡teration of the while loop; instead, the following relabeling for that column ¡s checked ¡n

the if part of the if-else sentence of line 19.

4.3.5 Examples of Non-lsomorphic Covering Arrays

As an example ofthe non-isomorphic covering arrays generated by the NonlsoCA algorithm consider

the three covering arrays of Figure 4.16. These are all the non-isomorphic covering arrays of minimum

rank for TV = 6, k = 7, t — 2, and v — 2. Any other covering array for such parameters is ¡somorphic

to exactly one of these covering arrays. Therefore, it ¡s sufficient to check only these three covering

arrays as base of the TCA to guarantee the construction of the highest TCA.

Figure 4.17 shows another example of non-isomorphic covering arrays. In this case TV = 6, k = 5,

t = 2, and v = 2. Table 4.5 shows the cardinality of the seven classes in which the set of all covering
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Figure 4.16: The three non-isomorphic covering arrays of minimum rank CA(6;2,7, 2). Any other

covering array for TV = 6, k = 7, t = 2, and v — 2, is isomorphic to exactly one of these arrays.

arrays CA(6;2,5,2) is partitioned. The representative of minimum rank of these classes are the

covering arrays A,B,...,G of Figure 4.17.

A =

{0 0 0 0 0\
0 0 0 11

0 0 10 1

0 10 0 1

10 0 0 1

\l 1 1 1 0/

/0 0 0 0 0\
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0 1110

10 110
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/0 0 0 0 0\
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0 1111
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D
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0 1110

10 10 0

Vi i o i i/

E =

/O 0 0 0 0\
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0 1110

10 110

110 11

Vi i i o i/
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110 10
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G =

/O 0 0 0 0\
0 0 0 11

0 110 0

10 10 1

110 11

Vi i i i o/

Figure 4.17: The seven non-isomorphic covering arrays of minimum rank CA(6;2,5, 2).

4.4 Chapter Summary

In this chapter was described the methodology proposed to construct the TCAs given a combination

of the parameters TV, t, k, and v, and also were described the algorithms to efficiently ¡mplement

the methodology. The methodology consists in the following three main steps: (1) to genérate

all the non-isomorphic covering arrays of minimum rank CA(N;t,k,v) with the objective of using
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Class Representative Distinct

of minimum rank elements

1 A 23,040

2 B 230,400

3 C 172,800

4 D 691,200

5 E 345,600

6 F 345,600

7 G 276,480

Table 4.5: Cardinality ofthe seven classes of isomorphic covering arrays in the universe ofthe 6x5

matrices over {0, 1}. The representative of minimum rank of the classes are the covering arrays

A,B,...,G of Figure 4.17.

these arrays as the bases of the TCAs; (2) to apply iteratively the construction £ to each one of

the above covering arrays; and (3) to take at the end of the process the TCA with the greatest

height among all the constructed in the process. The motivation to genérate TCAs of máximum

height is that the more greater the height of the TCA the more competitive are the covering arrays

in the TCA. To genérate the TCAs the construction £ is applied to every matrix 8 for the base

covering array; the computational work required for this operation can be reduced if the matrices

8 are represented as linear vectors and if these vectors are generated in u-ary Gray code. Finally,

the algorithm to genérate the non-isomorphic bases constructs the non-isomorphic covering arrays

extending the current subarray one column at a time, discarding the arrays which are not of minimum

rank; every time a subarray with k columns is constructed the algorithm reports a new non-isomorphic

covering array for the input parameters TV, t, k, and v. The next chapter shows the computational

results for the methodology developed in this chapter.
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Computational Results

This chapter presents the relevant results of the proposed approach to construct covering arrays.

Section 5.1 introduces a very ¡mportant result of this thesis: the infinite TCAs, which are TCAs that

can grow infinitely. To construct TCAs other than the infinite ones we perform a computational

search taking into account the combinations of the valúes of TV, í, k, and v for which it was

possible to construct the non-isomorphic bases CA(N;t,k,v); Section 5.2 describes the relevant

TCAs constructed in the computational experimentaron, Le., the TCAs conformed by covering

arrays that improve or equal a current upper bound. In addition to the construction of TCAs, a

computational experimentation for the NonlsoCA algorithm was performed in Section 5.3; the most

¡mportant result of this experimentation was the determination ofthe exact valué of five lower bounds

which had not been found before neither by computational search ñor by algebraic analysis. Finally,

Section 5.4 provides an empirical estimation of the execution time of the functions apply_£Q and

is_minimum() introduced in Chapter 4.

111
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5.1 Infinite Towers

An infinite TCA is a TCA that can grow ¡nfinitely, or in other words it is always possible to extend

the top of the TCA to a covering array with one more unit of strength using the construction £.

To see how this is possible, let us introduce the covering arrays of strength one: a covering array

CA(TV; l,k,v) of strength í = 1 is a matrix that contains in every column the symbols 0, 1,... ,v— 1

at least once. For example the next covering array CA(4; 1,2,4) is a covering of strength t = 1.

CA(4; 1,2,4)

/O 0\
1 1

2 2

V3 3)

A covering array of strength t = 1 can have any number of columns k > 1, with the condition

that every column contains the symbols 0, 1, ... ,v
- 1 at least once. If the order is v then the

optimal number of rows TV for a covering array of strength t — 1 is TV = v; in this case every column

is a permutation of the symbol set Zv = {0,1,. . . ,v
-

1}. For the infinite TCAs of this section

the bases are optimal covering arrays of strength í = 1 and k = 2 columns, like the covering array

CA(4; 1,2,4) previously shown. This way, for any order v > 2 the bases ofthe infinite TCAs are of

the form CA(u; 1,2, v).

To extend the covering array CA(u; 1, 2, v) of strength í = 1 to a covering array of strength í = 2

the normal procedure will apply the construction £ to all vectors 8 of length k(v
—

1) = 2(v
—

1),

generated in u-ary Gray code, until find one vector 8 that produces a covering array CA(v2; 2, 3, v) of

strength t = 2. However, it is not necessary to genérate all vectors 8, because for any covering array

CA(vt;t,t + l,v) of strength t in an infinite tower, there exists one vector 8 that always produce a

covering array CA(ut+1;í + l,í + 2,v) of strength t + 1. This vector 8 of length k(v -

1), where

k = t + 1, is the vector 8 in which its i-th element <5¿, 0 < i < k(v
- 1)

- 1, is equal to:
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6i=<
\i/k] if i + 1 = 0 (mod k)

0 otherwise

(5.1)

For example, the vector 8 to expand the covering array CA(4; 1,2,4) of strength t = 1 to a

covering array CA(16; 2,3,4) of strength t = 2 is the vector ¿ = (010203). This covering array

CA(16;2,3,4) of strength í = 2 is shown next:

CA(16;2,3,4)

/O 0 0\

1 1 0

2 2 0

3 3 0

0 1 1

1 2 1

2 3 1

3 0 1

0 2 2

1 3 2

2 0 2

3 1 2

0 3 3

1 0 3

2 1 3

\3 2 3)

Taking this covering array of strength t = 2 as the base covering array, the vector 8 that produces

a covering array of strength t — 3, according to (5.1), is the vector ¿=(001002003), and the

covering array produced is CA(64; 3,4,4). Table 5.1 shows the first 10 covering arrays in the infinite

TCA for v — 4. To the right of each covering array is the vector 8 for which the construction £

produces the covering array to the left. As another example of infinite TCA the Table 5.2 shows the

first 10 covering arrays of the infinite TCA for v = 2; in this case only the last column of the base

covering array is translated to produce the following covering array of the TCA.

In Section 4.1 it was mentioned that the increment in the number of rows in the covering arrays

of a TCA is the minimum possible if the base covering array is optimal. For the infinite TCAs we
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Covering Arrays Vectors 8

CA(1048576;10,11,4)
CA(262144;9,10,4)
CA(65536;8,9,4)
CA(16384;7,8,4)

CA(4096; 6, 7, 4)

CA(1024;5,6,4)

CA(256;4,5,4)
CA(64;3,4,4)

CA(16;2,3,4)

CA(4; 1,2,4)

(0 0000000010000000002000000000 3)

(0 0000000100000000200000000 3)

(0 0000001000000020000000 3)

(0 0000010000002000000 3)

(0 0000100000200000 3)

(0 0001000020000 3)

(0 0010002000 3)

(001002003)

(010203)

Table 5.1: Infinite tower for v — 4.

Covering Arrays Vectors 8

CA(1024;10,11,2)

CA(512;9,10,2)

CA(256;8,9,2)

CA(128;7,8,2)

CA(64;6,7,2)

CA(32;5,6,2)

CA(16;4,5,2)

CA(8;3,4,2)
CA(4;2,3,2)

CA(2;1,2,2)

(0 00000000 1)

(0 0000000 1)

(0000000 1)

(0000001)

(00000 1)

(00001)

(0 0 0 1)

(0 0 1)

(0 1)

Table 5.2: Infinite tower for v = 2.
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have that the base covering array of strength t — 1 is optimal; so for each v > 2 the infinite TCA

of order v is composed by an infinite number of optimal covering arrays.

Some coverings arrays in the infinite TCAs are also the best known ones with respect to the

number of columns. One covering array that is optimum in the number of rows is not necessarily

optimum in the number of columns. For example the covering array CA(9;2,3,3), which is the

second member of the infinite TCA for v — 3, is optimal with respect to the number of rows,

because there not exists a covering array with TV < 9 rows for t — 2, k — 3, and v — 3. However,

this covering array is not the best known with respect to the number of columns, because there

exists the covering array CA(9;2,4, 3), which has one more column. Next are given the covering

arrays of strength 2 < t < 6 in the infinite TCAs for 2 < v < 25 that equal a best known covering

arrays with respect to the number of columns. The current best known covering arrays were taken

from the covering arrays tables at [25]:

CA(4;2,3,2),

CA(32;5,6,2),

CA(81;4,5,3),

CA(256;4,5,4)

CA(3125;5,6,5),

CA(216;3,4,6),

CA(46656;6,7,6),

CA(100000;5,6,10),

CA(248832;5,6,12),

CA(38416;4,5,14),

CA(50625;4,5,15),

CA(5832;3,4,18),

CA(34012224;6,7,18),

CA(64000000; 6, 7, 20),

CA(85766121;6,7,21),

CA(5153632;5,6,22),

CA(7962624;5,6,24),

CA(8;3,4,2),

CA(64;6,7,2),

CA(243;5,6,3),

CA(1024;5,6,4),

CA(15625;6,7,5),

CA(1296;4,5,6),

CA(1000;3,4,10),

CA(1000000;6,7,10),

CA(2985984;6,7,12),

CA(537824;5,6,14),

CA(759375;5,6,15),

CA(104976;4,5,18),

CA(160000;4,5,20),

CA(194481;4,5,21),

CA(10648;3,4,22),

CA(113379904;6,7,22),

CA(191102976;6,7,24).

CA(16;4,5,2),

CA(27;3,4,3),

CA(729;6,7,3),

CA(4096;6,7,4),

CA(36;2,3,6),

CA(7776;5,6,6),

CA(10000;4,5,10),

CA(20736;4,5,12),

CA(2744;3,4,14),

CA(7529536;6,7,14),

CA(11390625;6,7,15),

CA(1889568;5,6,18),

CA(3200000;5,6,20),

CA(4084101;5,6,21),

CA(234256;4,5,22),

CA(331776;4,5,24),
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5.2 TCAs from Non-lsomorphic Bases

This section describes the computational experimentation done to prove the methodology developed

in Chapter 4 and the relevant TCAs constructed. Section 5.2.1 shows the combinations of the

parameters TV, t, k, and v for the computational experimentation; Section 5.2.2 describe the TCAs

that allow the improvement of a current upper bound; and Section 5.2.3 describes the TCAs that

allow to equal one or more current upper bounds.

5.2.1 Computational Experimentation

The algorithms developed in Chapter 4 were coded in two programs in standard C. The first program

implements the NonlsoCA algorithm to genérate all the non-isomorphic covering arrays of minimum

rank CA(N;t,k,v). The second program implements the iterative application of the construction

£ to genérate the TCAs. The first program was named NonlsoCA. c and the second program was

named TCA.c.

The program NonlsoCA. c receives as input parameters one combination ofthe parameters TV, t,

k, and v. With these parameters the program NonlsoCA. c generates the non-isomorphic covering

arrays of minimum rank CA(N;t,k,v) and writes them into an output file named N*k*t*v*.txt,

where each * is replaced by the particular valué of TV, t, k, and v respectively. The NonlsoCA. c

program is invoked in the following way:

./NonlsoCA -S <rows> -k <colains> -t <strength> -v <order>

An example oí a real ¡nvocation is:

./NonlsoCA -N 6 -k 7 -t 2 -v 2

The results for this ¡nvocation is the output file N6k7t2v2.txt, whose content is:

N 6, k 7, t 2, v 2

0 15 51 60 85 106
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0 7 56 91 109 118

0 7 57 90 109 118

The first line of the file shows the valué of the input parameters separated by commas. The

remaining lines are the rank ofthe non-isomorphic covering arrays found, one covering array per line.

Since we know the order and the number of columns ofthe covering arrays, it is possible to get the

final matrices from their ranks.

The program TCA.c takes the output file ofthe program NonlsoCA. c and executes the function

apply_£_rec() (Algorithm 7, Section 4.2.4) over each covering array in the file. The covering arrays

in the file are read one at a time, converted to their matrix form, and expanded iteratively by means

of the construction £. The filename of the file with the non-isomorphic bases is the only parameter

for the program TCA.c:

./TCA -file <f ilename >

In the following ¡nvocation, the program TCA.c receives the ñame of a file generated by the

program NonlsoCA. c when it is executed with the parameters TV = 6, k — 7, t — 2, and v = 2:

./TCA -file N6k7t2v2.txt

The output of the program TCA.c is a file with the TCA of greatest height constructed in

the execution. Both programs NonlsoCA. c and TCA.c were compiled with GCC 4.4.6 using the

optimization flag -03, and executed sequentially in 256 processors AMD Opteron™ 6274 (1.4 GHz)

ofthe hybrid supercomputing cluster "Xiuhcoatl" at CINVESTAV.

Next are given the 315 combinations of parameters TV, t, k, and v executed in the computational

experimentation, together with the height (denoted as Max h) of the greatest TCA constructed for

each parameter combination. The valúes for the parameters TV, t, k, and v were selected based

on the viability in terms of the execution time of using the NonlsoCA algorithm to construct all

non-isomorphic bases for the given parameters:
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N t k v Max h

4 2 2 2 10

4 2 3 2 10

5 2 2 2 10

5 2 3 2 10

5 2 4 2 1

6 2 2 2 10

6 2 3 2 10

6 2 4 2 1

6 2 5 2 1

6 2 6 2 0

6 2 7 2 0

6 2 8 2 0

6 2 9 2 0

6 2 10 2 0

7 2 2 2 10

7 2 3 2 10

7 2 4 2 5

7 2 5 2 5

7 2 6 2 1

7 2 7 2 1

7 2 8 2 0

7 2 9 2 0

7 2 10 2 0

7 2 11 2 0

7 2 12 2 0

8 2 2 2 10

8 2 3 2 10

8 2 4 2 10

8 2 5 2 5

8 2 6 2 5

8 2 7 2 5

8 2 8 2 5

8 2 9 2 5

8 2 10 2 5

8 2 11 2 5

8 2 12 2 0

9 ? 2 2 10

TV t k v Max h

9 2 3 2 10

9 2 4 2 10

9 2 5 2 5

9 2 6 2 5

9 2 7 2 5

9 2 8 2 5

9 2 9 2 5

9 2 10 2 5

9 2 11 2 5

9 2 12 2 0

10 2 2 2 10

10 2 3 2 10

10 2 4 2 10

10 2 5 2 10

10 2 6 2 5

10 2 7 2 5

10 2 8 2 5

10 2 9 2 5

10 2 10 2 5

10 2 11 2 5

10 2 12 2 1

10 2 13 2 0

11 2 2 2 10

11 2 3 2 10

11 2 4 2 10

11 2 5 2 10

11 2 6 2 5

11 2 7 2 5

11 2 8 2 5

11 2 9 2 5

11 2 10 2 5

11 2 11 2 5

11 2 12 2 1

11 2 13 2 0

12 2 2 2 10

12 2 3 2 10

12 2 4 2 10
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TV t k v Max h

12 2 5 2 10

12 2 6 2 5

12 2 7 2 5

12 2 8 2 5

12 2 9 2 5

12 2 10 2 5

12 2 11 2 5

12 2 12 2 1

12 2 13 2 1

13 2 2 2 10

13 2 3 2 10

13 2 4 2 10

13 2 5 2 10

13 2 6 2 5

13 2 7 2 5

13 2 8 2 5

13 2 9 2 5

13 2 10 2 5

13 2 11 2 5

13 2 12 2 1

13 2 13 2 1

14 2 2 2 10

14 2 3 2 10

14 2 4 2 10

14 2 5 2 10

14 2 6 2 5

14 2 7 2 5

14 2 8 2 5

14 2 9 2 5

14 2 10 2 5

14 2 11 2 5

14 2 12 2 1

14 2 13 2 1

15 2 2 2 10

15 2 3 2 10

15 2 4 2 10

15 2 5 2 10

N t k v Max h

15 2 6 2 5

15 2 7 2 5

15 2 8 2 5

15 2 9 2 5

15 2 10 2 5

15 2 11 2 5

15 2 12 2 1

15 2 13 2 1

16 2 2 2 10

16 2 3 2 10

16 2 4 2 10

16 2 5 2 10

16 2 6 2 5

16 2 7 2 5

17 2 2 2 10

17 2 3 2 10

17 2 4 2 10

17 2 5 2 10

17 2 6 2 5

17 2 7 2 5

18 2 2 2 10

18 2 3 2 10

18 2 4 2 10

18 2 5 2 10

18 2 6 2 5

18 2 7 2 5

19 2 2 2 10

19 2 3 2 10

19 2 4 2 10

19 2 5 2 10

19 2 6 2 5

19 2 7 2 5

20 2 2 2 10

20 2 3 2 10

20 2 4 2 10

20 2 5 2 10

20 2 6 2 5
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TV t k V Max

20 2 7 2 5

21 2 2 2 10

21 2 3 2 10

21 2 4 2 10

21 2 5 2 10

21 2 6 2 5

21 2 7 2 5

8 3 3 2 10

8 3 4 2 10

9 3 3 2 10

9 3 4 2 10

10 3 3 2 10

10 3 4 2 10

10 3 5 2 0

11 3 3 2 10

11 3 4 2 10

11 3 5 2 1

12 3 3 2 10

12 3 4 2 10

12 3 5 2 2

12 3 6 2 1

12 3 7 2 1

12 3 8 2 1

12 3 9 2 1

12 3 10 2 1

12 3 11 2 1

13 3 3 2 10

13 3 4 2 10

13 3 5 2 2

13 3 6 2 1

13 3 7 2 1

13 3 8 2 1

13 3 9 2 1

13 3 10 2 1

13 3 11 2 1

14 3 3 2 10

14 3 4 2 10

N t k v Max h

14 3 5 2 4

14 3 6 2 4

14 3 7 2 1

14 3 8 2 1

14 3 9 2 1

14 3 10 2 1

14 3 11 2 1

15 3 3 2 10

15 3 4 2 10

15 3 5 2 10

15 3 6 2 4

15 3 7 2 1

15 3 8 2 1

15 3 9 2 1

15 3 10 2 1

15 3 11 2 1

15 3 12 2 0

16 3 3 2 10

16 3 4 2 10

16 3 5 2 10

16 3 6 2 8

16 3 7 2 4

16 4 4 2 10

16 4 5 2 10

17 4 4 2 10

17 4 5 2 10

18 4 4 2 10

18 4 5 2 10

19 4 4 2 10

19 4 5 2 10

20 4 4 2 10

20 4 5 2 10

21 4 4 2 10

21 4 5 2 10

21 4 6 2 1

22 4 4 2 10

22 4 5 2 10
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N t k v Max h

22 4 6 2 1

23 4 4 2 10

23 4 5 2 10

23 4 6 2 1

24 4 4 2 10

24 4 5 2 10

24 4 6 2 1

24 4 7 2 0

24 4 8 2 0

24 4 9 2 0

24 4 10 2 0

24 4 11 2 0

24 4 12 2 0

9 2 2 3 10

9 2 3 3 10

9 2 4 3 0

10 2 2 3 10

10 2 3 3 10

10 2 4 3 0

11 2 2 3 10

11 2 3 3 10

11 2 4 3 1

11 2 5 3 1

12 2 2 3 10

12 2 3 3 10

12 2 4 3 1

12 2 5 3 1

12 2 6 3 0

12 2 7 3 0

13 2 2 3 10

13 2 3 3 10

13 2 4 3 3

13 2 5 3 1

13 2 6 3 0

13 2 7 3 0

14 2 2 3 10

14 2 3 3 10

TV t k v Max h

14 2 4 3 3

14 2 5 3 1

14 2 6 3 0

14 2 7 3 0

15 2 2 3 10

15 2 3 3 10

15 2 4 3 3

15 2 5 3 3

15 2 6 3 0

15 2 7 3 0

16 2 2 3 10

16 2 3 3 10

16 2 4 3 3

16 2 5 3 3

16 2 6 3 1

16 2 7 3 0

17 2 2 3 10

17 2 3 3 10

17 2 4 3 3

17 2 5 3 3

17 2 6 3 1

17 2 7 3 0

18 2 2 3 10

18 2 3 3 10

18 2 4 3 3

18 2 5 3 3

18 2 6 3 1

18 2 7 3 0

16 2 2 4 10

16 2 3 4 5

16 2 4 4 0

16 2 5 4 0

17 2 2 4 10

17 2 3 4 5

17 2 4 4 0

17 2 5 4 0

18 2 2 4 10
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TV t k t; Max h

18 2 3 4 5

18 2 4 4 1

18 2 5 4 0

19 2 2 4 10

19 2 3 4 5

19 2 4 4 1

19 2 5 4 0

20 2 2 4 10

20 2 3 4 5

20 2 4 4 1

TV t k v Max /i

20 2 5 4 0

21 2 2 4 10

21 2 3 4 5

21 2 4 4 1

21 2 5 4 0

22 2 2 4 10

22 2 3 4 5

22 2 4 4 1

22 2 5 4 0

In Section 5.2.2 we show in more detail the TCAs of height greater than zero having at least one

covering array that improve a current upper bound; and in Section 5.2.3 we show the TCAs of height

greater that zero conformed by one or more covering arrays that equal a current upper bound.

5.2.2 Upper Bounds Improved

This section presents the TCAs that allow the improvement of a current upper bound. In total eleven

current upper bounds were improved. Next are listed the TCAs that made possible the improvement:

• For t = 7, k = 10, and v — 2, the number of rows was lowered from TV = 274 to

TV = 224, which is an improvement of 50 rows. The base for the TCA which made possible

this improvement is the following covering array CA(7; 2, 5, 2):

CA(7;2,5,2) =

/0 0 0 0 0\
0 0 0 11

0 0 10 1

0 10 0 1

0 1110

10 0 10

Vl 1 1 0 1/

From this covering array the iterative application of the construction £ produces the TCA of

height 5 shown in the left part of the next table:
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TCA Vector 8 Height Best Known CA Reference

CA(224; 7, 10, 2) (000001101) 5 CA(274; 7, 10, 2) [26]

CA(112;6,9,2) (01100010) 4 CA(108;6,9,2) [25]

CA(56;5,8,2) (0011010) 3 CA(52;5,8,2) [25]

CA(28;4,7,2) (000 111) 2 CA(24;4,7,2) [25]

CA(14;3,6,2) (1100 1) 1 CA(12;3,6,2) [25]

CA(7;2,5,2) - 0 CA(6;2,5,2) [25]

In the right part of the table are the best known covering arrays reported for the same

parameters t, k, and v ofthe covering arrays in the TCA at the left ofthe table. The column

"Vector 8" shows the vector 8 for which the construction £ produced the covering array to

the left, using the covering array in the row below as the base covering array. For example,

with the base covering array CA(7;2,5,2) and the vector 8 = (1 1 0 0 1) the construction £

produces the covering array CA(14;3,6,2). The character "-" in the last rows ¡ndicates that

the base covering array was not generated by the construction £.

The reference [25] is the covering array tables maintained by C. J. Colbourn at http://www.

public.asu.edu/~ccolbou/src/tabby/catable.html. The reference [26] contains the

current upper bound for several combinations of í, k, and v. In these references is indicated

the particular method used to construct the best known covering arrays.

• For í = 7, k = 11, and v = 2, the number of rows was lowered from TV = 386 to TV = 256, an

improvement of 130 rows. The base covering array for the TCA that allow this improvement

is the next covering array CA(8;2,6,2):

CA(8;2,6,2) =

/0 0 0 0 0 0\
0 0 0 0 0 1

0 0 1110

0 10 110

0 110 11

0 1110 1

10 0 111

Vi i i o o o/
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And this is the table with the TCA:

TCA Vector 8 Height Best Known CA Reference

CA(256;7,11,2) (0000001101) 5 CA(386;7,11,2) [26]

CA(128;6,10,2) (011001100) 4 CA(118;6,10,2) [25]

CA(64;5,9,2) (00110010) 3 CA(54;5,9,2) [25]

CA(32;4,8,2) (0001111) 2 CA(24;4,8,2) [25]

CA(16;3,7,2) (1100 11) 1 CA(12;3,7,2) [25]

CA(8;2,6,2)
- 0 CA(6;2,6,2) [25]

• For t = 7, k = 12, and v — 2, the number of rows was lowered from TV = 506 to TV = 256,

an improvement of 250 rows. These are the base covering array CA(8; 2, 7, 2) and the TCA:

CA(8;2,7,2) =

(0 0 0 0 0 0 o\

0 0 0 0 0 1 1

0 0 1 1 1 0 0

0 1 0 1 1 0 1

0 1 1 0 1 1 0

0 1 1 1 0 1 1

1 0 0 1 1 1 0

V 1 1 0 0 0 1/

TCA Vector 8 Height Best Known CA Reference

CA(256;7, 12,2)

CA(128;6,11,2)

CA(64;5,10,2)

CA(32;4,9,2)

CA(16;3,8,2)

CA(8;2,7,2)

(000000 1110 1)

(0110011100)

(001101010)

(00011111)

(110 0 10 0)

5

4

3

2

1

0

CA(506;7, 12,2) [26]

CA(118;6,11,2) [25]

CA(56;5,10,2) [25]

CA(24;4,9,2) [25]

CA(12;3,8,2) [25]

CA(6;2,7,2) [25]

• For t = 7, k = 13, and v = 2, the number of rows was lowered from TV = 634 to TV = 256,

an improvement of 378 rows. Here is the base covering array CA(8;2,8,2) and the TCA:
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/O 0 0 0 0 0 0 0\

0 0 0 0 0 1 1 1

0 0 11 1 0 0 0

CA(8;2,8,2) =
0 10 1

0 110

1

1

0 1 1

1 0 1

0 111 0 1 1 0

10 0 1 1 1 0 1

Vi 1 1 0 0 0 1 0/

TCA Vector 8 Height

CA(256; 7, 13, 2)

CA(128;6,12,2)

CA(64;5,11,2)

CA(32;4,10,2)

CA(16;3,9,2)

CA(8;2,8,2)

(00000011110 1)

(01100111100)

(0011010110)

(000111101)

(1100 100 1)

5

4

3

2

1

0

Best Known CA Reference

CA(634; 7, 13, 2) [26]

CA(128; 6, 12, 2) [25]

CA(64;5,11,2) [25]

CA(24;4,10,2) [25]

CA(12;3,9,2) [25]

CA(6;2,8,2) [25]

• For t = 7, k = 14, and v = 2, the number of rows was lowered from TV = 762 to TV = 256,

an improvement of 506 rows. Below is the base covering array CA(8;2,9,2) and the TCA

constructed from this base covering array:

CA(8;2,9,2) =

/o 0 0 0 0 0 0 0 0\

0 0 0 0 0 1 1 1 1

0 0 1 1 1 0 0 0 1

0 1 0 1 1 0 1 1 0

0 1 1 0 1 1 0 1 0

0 1 1 1 0 1 1 0 1

1 0 0 1 1 1 0 1 1

Vi 1 1 0 0 0 1 o o)

TCA Vector 8 Height Best Known CA Reference

CA(256;7,14,2)

CA(128;6,13,2)

CA(64;5,12,2)

CA(32;4,11,2)

CA(16;3,10,2)

CA(8;2,9,2)

(0000 001111101)

(011001110100)

(00110101110)

(0001111011)

(110010011)

5 CA(762; 7, 14, 2) [26]
4 CA(128;6,13,2) [25]
3 CA(64;5,12,2) [25]
2 CA(24;4,11,2) [25]
1 CA(12;3,10,2) [25]
0 CA(6;2,9,2) [25]
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• For t = 7, k — 15, and v — 2, the number of rows was lowered from TV > 762 to TV = 256.

The exact current bound for these valúes of t, k, v is not given explicitly in [26], but it must

be greater than or equal to 762, which is the current upper bound for t = 7, k = 14, and

v = 2. This follows from the inequality CAH(t,k,v) > CAN(t,k
- l,v). These are the base

covering array CA(8; 2, 10, 2) and the TCA:

(0 00000000 0\

0 0 0 0 0 11111

0 0 1110 0 0 11

CA(8;2,10,2) =
0 10 110 110 0

0 110 110 10 1

0 1110 110 10

10 0 1110 110

\i i i o o o i o o y

TCA Vector 8 Height Best Known CA Reference

CA(256;7,15,2)

CA(128;6,14,2)

CA(64;5,13,2)

CA(32;4,12,2)

CA(16;3,11,2)

CA(8;2,10,2)

(00000011111101)

(0110011100100)

(001101011110)

(00011110101)

(1100100111)

5

4

3

2

1

0

CA(> 762; 7, 15, 2) [26]

CA(128;6,14,2) [25]

CA(64; 5, 13, 2) [25]

CA(24;4,12,2) [25]

CA(12;3,11,2) [25]

CA(6;2,10,2) [25]

• For t = 7, k — 16, and v = 2, the number of rows was lowered from TV > 762 to TV = 256.

Here is the base covering array CA(8; 2, 11, 2) and the TCA:

CA(8;2,11,2) =

(0 000000000 0\
0 0 0 0 0 111111

0 0 1110 0 0 111

0 10 110 110 0 1

0 110 110 10 10

0 1110 110 10 0

10 0 1110 110 0

Vi 1 1 0 0 0 1 0 0 1 1)
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TCA Vector 8 Height Best Known CA Reference

CA(256; 7, 16, 2)

CA(128;6,15,2)

CA(64; 5, 14, 2)

CA(32;4,13,2)

CA(16;3,12,2)

CA(8;2,11,2)

(0 0000011110110 1)

(01100111001100)

(0011010111010)

(000111101011)

(11001001111)

5

4

3

2

1

0

CA(> 762; 7, 16, 2) [26]

CA(128;6,15,2) [25]

CA(64; 5, 14, 2) [25]

CA(32;4,13,2) [25]

CA(15;3,12,2) [25]

CA(7;2,11,2) [25]

• The last TCA of in this section allows the improvement of the current upper bound for

{í = 8, fe = 11, v = 2}, {t = 9,k = 12,v = 2}, {í = 10,Jfc = 13, v = 2}, and

{í = 11, k = 14, v = 2}. These are the base covering array and the TCA:

CA(16;3,6,2) =

(0 0 0 0 0 o\
0 0 0 0 1 1

0 0 0 1 0 1

0 0 1 0 1 0

0 0 1 1 0 0

0 0 1 1 1 1

0 1 0 0 1 0

0 1 0 1 0 0

0 1 0 1 1 1

0 1 1 0 0 1

1 0 0 0 1 0

1 0 0 1 0 0

1 0 0 1 1 1

1 0 1 0 0 1

1 1 0 0 0 1

V 1 1 1 1 oy

TCA Vector 8 Height Best Known CA Reference

CA(4096;11,14,2)

CA(2048;10,13,2)

CA(1024;9,12,2)

CA(512;8,11,2)

CA(256;7,10,2)

CA(128;6,9,2)

CA(64;5,8,2)

CA(32;4,7,2)
CA(16;3,6,2)

(0000001111110) 8

(000000000111) 7

(0 000110000 1) 6

(0000011111) 5

(001100110) 4

(00011111) 3

(110000 1) 2

(011111) 1

0

CA(5190;11,14,2) [26]

CA(2491;10,13,2) [26]

CA(1230;9,12,2) [26]
CA(563;8,11,2) [26]
CA(274; 7, 10, 2) [25]

CA(108;6,9,2) [25]

CA(52;5,8,2) [25]
CA(24;4,7,2) [25]

CA(12;3,6,2) [25]
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Notice that the covering array CA(256; 7, 10,2) at height 4 ¡mproves the current upper bound

for {t = 7,k = 10,v = 2}; however the covering array CA(224; 7, 10, 2) at height 5 of

the first TCA given in this section is a better improvement of the current upper bound for

{t = 7,k= 10,« = 2}.

Table 5.13 summarizes the current upper bounds improved by means of the TCAs described in

this section.

t k V Previous TV New TV

7 10 2 274 224

7 11 2 386 256

7 12 2 506 256

7 13 2 634 256

7 14 2 762 256

7 15 2 >762 256

7 16 2 >762 256

8 11 2 563 512

9 12 2 1230 1024

10 13 2 2491 2048

11 14 2 5190 4096

Table 5.13: Upper bounds improved.

5.2.3 Upper Bounds Equaled

The TCAs presented in the previous section also contains some covering arrays that equal a current

upper bound. Next are listed the covering arrays members of the TCAs of Section 5.2.2 that equal

a current upper bound:

CA(64;5,11,2), CA(128;6, 12,2), CA(64;5, 12,2),

CA(128;6,13,2), CA(64;5, 13,2), CA(128; 6, 14,2),

CA(32;4,13,2), CA(64;5, 14,2), CA(128; 6, 15,2).
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In addition to the TCAs of the previous section, there were constructed other TCAs whose

covering array at the top equals a current upper bound. These TCAs are given in the following list.

The items of the list are the parameters TV, t, k, and v of the covering arrays at the base of the

TCAs. We use the current upper bounds at [25] for comparison:

• TV = 5, fc = 4, í = 2, u = 2

/O 0 0 0\
0 0 11

CA(5;2,4,2) = 0 10 1

10 0 1

\l 1 1 0)

TCA Vector 8 Height Best Known CA Reference

CA(10;3,5,2) (1111) 1 CA(10;3,5,2) [25]

CA(5;2,4,2)
- 0 CA(5;2,4,2) [25]

• TV = 6, k = 5, t = 2,v = 2

CA(6;2,5,2) =

(0
0

0

0

1

l1

0 0 0 0\

0 0 11

0 10 1

10 0 1

0 0 0 1

1 1 1 o)

TCA Vector 8 Height Best Known CA Reference

CA(12;3,6,2)

CA(6;2,5,2)

(11111) 1

0

CA(12;3,6

CA(6;2,5,

,2)

2)

[25]

[25]
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• TV = 12, k = 6, í = 3, v = 2

(® 0 0 0 0 o\

0 0 0 0 0 1

0 0 1 1 1 0

0 1 0 1 1 0

0 1 1 0 1 1

CA(12;3,6,2) =
0

1

1

0

1 1

0 1

0

1

1

1

1 0 1 0 1 0

1 0 1 1 0 1

1 1 0 0 1 1

1 1 0 1 0 0

V 1 1 0 0 v)

TCA Vector 8 Height Best Known CA Reference

CA(24;4,7,2) (lililí) 1 CA(24;4,7,2) [25]

CA(12;3,6,2)
- 0 CA(12;3,6,2) [25]

• TV = 12, k = 7, t = 3, v = 2

(0 0 0 0 0 0 0\

0 0 0 0 0 1 1

0 0 1 1 1 0 0

0 1 0 1 1 0 1

0 1 1 0 1 1 0

CA(12;3,7,2) =
0

1

1

0

1

0

1

1

0 1

1 1

1

1

1 0 1 0 1 0 1

1 0 1 1 0 1 0

1 1 0 0 1 1 0

1 1 0 1 0 0 0

V 1 1 0 0 0 y

TCA Vector 8 Height Best Known CA Reference

CA(24;4,8,2) (1111111) 1 CA(24;4,8,2) [25]

CA(12;3,7,2)
- 0 CA(12;3,7,2 ) [25]
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• TV = 12, k = 8, í = 3, v = 2

CA(12;3,8,2) =

f° 0 0 0 0 0 0 0\

0 0 0 0 0 1 1 1

0 0 1 1 1 0 0 0

0 1 0 1 1 0 1 1

0 1 1 0 1 1 0 1

0 1 1 1 0 1 1 0

1 0 0 1 1 1 1 0

1 0 1 0 1 0 1 1

1 0 1 1 0 1 0 1

1 1 0 0 1 1 0 0

1 1 0 1 0 0 0 1

u 1 1 0 0 0 1 0/

TCA Vector 8 Height Best Known CA Reference

CA(24;4,9,2)

CA(12;3,8,2)

(11111111) CA(24;4,9,2)

CA(12;3,8,2)

[25]

[25]

• TV= 12, k = 9, f = 3, v = 2

CA(12;3,9,2) =

/O 0000000 0\
0 0 0 0 0 1111

0 0 1110 0 0 1

0 1 0 1 1 0 1 1 0

0 1 1 0 1 1 0 1 0

0 1 1 1 0 1 1 0 1

1 0 0 1 1 1 1 0 0

1 0 1 0 1 0 1 1 1

1 0 1 1 0 1 0 1 0

110 0 110 0 1

110 10 0 0 11

Vi 1 1 0 0 0 1 0 0/

TCA Vector 8 Height Best Known CA Reference

CA(24;4,10,2) (111111111) 1

CA(12;3,9,2)
- 0

CA(24;4,10,2) [25]

CA(12;3,9,2) [25]
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• TV = 12, k = 10, t = 3, v = 2

CA(12;3,10,2)

/O 00000000 0\
0 0 0 0 0 11111

0 0 1110 0 0 11

0 10 110 110 0

0 110 110 10 1

0 1110 110 10

10 0 11110 0 1

1 0 1

1 0 1

0 10 1

10 10

1 1 o

1 o o

110 0 110 0 10

110 10 0 0 111

Vi 1 1 0 0 0 1 0 0 1)

TCA Vector 8 Height Best Known CA Reference

CA(24;4, 11,2) (1111111111) 1

CA(12;3,10,2)
- O

CA(24;4,11,2) [25]

CA(12;3,10,2) [25]

• TV = 12, k = 11, í = 3, v = 2

CA(12;3,11,2)

/O 000000000 0\
0 0 0 0 0 111111

0 0 1110 0 0 111

0 10 110 110 0 1

0 110 110 10 10

0 1110 110 10 0

10 0 11110 0 10

10 10 10 1110 0

10 110 10 10 0 1

110 0 110 0 10 1

110 10 0 0 1110

Vi 1 1 o O O 1 O O 1 1/

TCA Vector 8 Height Best Known CA Reference

CA(24;4,12,2)

CA(12;3,11,2)

(11111111111) 1

O

CA(24;4,12,2)

CA(12;3,11,2)

[25]

[25]
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• TV = 21, fc = 6,í = 4, v = 2

(0 0 0 0 0 0\
0 0 0 0 1 1

0 0 0 1 0 1

0 0 1 0 1 0

0 0 1 1 0 0

0 0 1 1 1 1

0 1 0 0 1 0

0 1 0 1 0 0

0 1 0 1 1 1

0 1 1 0 0 1

CA(21;4,6,2) = 0 1 1 1 1 0

1 0 0 0 1 0

1 0 0 1 0 0

1 0 0 1 1 1

1 0 1 0 0 1

1 0 1 1 1 0

1 1 0 0 0 1

1 1 0 1 1 0

1 1 1 0 0 0

1 1 1 0 1 1

V1 1 1 1 0 V

TCA Vector 8 H eight Best Known CA Reference

CA(42;5,7,2) (lililí) 1 CA(42;5,7,2) [25]

CA(21;4,6,2)
- 0 CA(23L;4,6,:2) [25]
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N = ll,k = 5,t = 2,v = 3

(0 0 () 0 0\

0 0 ] 1 1

0 1 () 2 2

0 2 I! 1 2

1 0 S! 2 1

CA(11;2,5,3) = 1

1

1

2

2

^2

1 1

1 I

2 (

0 í

1 (

2 ]

. 0 2

! 1 0

) 0 1

! 0 2

) 1 1

i 2 OJ

TCA Vector 8 Height Best Known CA Reference

CA(33;3,6,3) (12 1112 1222) 1 CA(33; 3, 6, 3) [25]

CA(11;2,5,3)
- 0 CA(11;2,5,3) [25]

• TV = 13, jfc = 4, í = 2, v = 3

CA(13; 2,4,3) =

/O 0 0 0\
0 0 11

0 0 2 2

0 10 1

0 1

0 1

0 2

1

2

0

1 0 0

1 1

2 2

0 2

1 0

2 1

2

0

2

2

0

1

1

2

0/

TCA Vector 8 Height Best Known CA Reference

CA(351;5,7,3)

CA(117;4,6,3)

CA(39;3,5,3)

CA(13;2,4,3)

(012 1212020 11)

(122202 102 2)

(00 12 00 2 1)

CA(351;5,7,3) [25]

CA(111;4,6,3) [25]

CA(33; 3, 5, 3) [25]

CA(9;2,4,3) [25]
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• TV = 15, k = 5, í = 2, v = 3

^ 0 0 0 o\
0 0 0 1 1

0 0 0 2 2

0 0 1 0 1

0 1 0 1 2

0 1 1 2 0

0 1 2 0 1

CA(15;2,5,3) = 0

0

2

2

1

2

1 2

2 0

1 0 1 0 2

1 1 2 2 1

1 2 0 1 0

2 0 2 1 2

2 1 0 2 0

V2 2 1 0 1)

TCA Vector 8 Height Best Known CA Reference

CA(405;5,8,3)

CA(135;4,7,3)

CA(45;3,6,3)

CA(15;2,5,3)

(0 000122222002 2)

(0 1120202210 1)

(1222221111)

3

2

1

0

CA(405;5,8,3)

CA(123;4,7,3)

CA(33;3,6,3)

CA(11;2,5,3)

[25]

[25]

[25]

[25]

The following are the covering arrays in the TCAs presented in this section that equal a current

upper bound:

CA(5;2,4,2),

CA(12;3,6,2),

CA(24;4,8,2),

CA(12;3,9,2),

CA(24;4,11,2),

CA(21;4,6,2),

CA(33;3,6,3),

CA(10;3,5,3),

CA(24;4,7,2),

CA(12;3,8,2),

CA(24;4,10,2),

CA(12;3,11,2),

CA(42;5,7,2),

CA(351;5,7,3),

CA(6;2,5,2),

CA(12;3,7,2),

CA(24;4,9,2),

CA(12;3,10,2),

CA(24;4,12,2),

CA(11;2,5,3),

CA(405;5,8,3).
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5.3 Computational Results for the NonlsoCA Algorithm

The algorithm to genérate the non-isomorphic bases solves the problem of generating all the non-

isomorphic covering arrays of minimum rank that exist for a particular combination ofthe parameters

TV, t, k, and v, that define a covering array. This a very hard problem, because all the search space

ofthe CACP problem (Section 2.3) must be explored in order to find all the non-isomorphic covering

arrays.

For this reason, we perform a sepárate computational experimentation for the NonlsoCA

algorithm. This experimentation only took into account combinations of the parameters TV, t,

k, and v in which either TV is optimal with respect to t, k, and v, or it is unknown if a covering array

with TV rows exists for the parameters t, k, and v.

Table 5.14 shows the computational results of the NonlsoCA algorithm for covering arrays of

strength two and order two with TV = 4,5,6,7,8 rows. From left to right the first four columns of

the table are the parameters TV, k, t, and v; the fifth column is the approximate cardinality of search

space given by Equation (2.3) of Section 2.3; the sixth column is the number of non-isomorphic

covering arrays that exist for the parameters in columns 1-4; and the seventh column is the time

required by the NonlsoCA algorithm to genérate the non-isomorphic covering arrays. The CPU time

is reported using the following abbreviations for time units: ps for microsecond, s for second, and h

for hour.

For binary covering arrays of strength tree and strength four we compute the non-isomorphic

arrays up to k = 15 columns for strength three, and up to k = 12 columns for strength four; the

results obtained are shown in Table 5.15. For the orders v = 3 and v = 4 we compute the non-

isomorphic covering arrays of strength two up to k = 10 columns for order three, and up to k = 5

columns for order four; the results are shown in Table 5.16.

The shaded rows in Tables 5.15 and 5.16 shows that none non-isomorphic covering array exists for

the parameter combinations {TV = 15, í = 3, k = 13, t; = 2}, {TV = 16, í = 3, k = 15, v - 2), and
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TV k t v Search

4 2 2 2 1.00 x

4 3 2 2 7.00 x

5 4 2 2 4.36 x

6 5 2 2 9.06 x

6 6 2 2 7.49 x

6 7 2 2 5.42 x

6 8 2 2 3.68 x

6 9 2 2 2.42 x

6 10 2 2 1.57 x

7 11 2 2 2.96 x

7 12 2 2 3.81 x

7 13 2 2 4.89 x

7 14 2 2 6.27 x

7 15 2 2 8.04 x

8 16 2 2 8.43 x

8 17 2 2 2.16 x

8 18 2 2 5.53 x

8 19 2 2 1.41 x

8 20 2 2 3.62 x

8 21 2 2 9.27 x

8 22 2 2 2.37 x

8 23 2 2 6.08 x

8 24 2 2 1.55 x

8 25 2 2 3.98 x

8 26 2 2 1.02 x

8 27 2 2 2.61 x

8 28 2 2 6.68 x

8 29 2 2 1.71 x

8 30 2 2 4.38 x

8 31 2 2 1.12 x

8 32 2 2 2.87 x

8 33 2 2 7.35 x

8 34 2 2 1.88 x

8 35 2 2 4.81 x

Space Non-isomorphic CAs CPU Time

10° 1 50.00 ps

101 1 85.00 ps

103 1 197.00 ps

105 7 0.003 s

107 4 0.006 s

109 3 0.009 s

1011 1 0.012 s

1013 1 0.015 5

1015 1 0.025 s

1019 26 0.279 s

1021 10 0.308 s

1023 4 0.329 s

1025 1 0.347 s

1027 1 0.373 s

1033 700,759 0.90 h

1036 579,466 1.32 h

1038 440,826 1.88 h

1041 309,338 2.46 h

1043 200,326 3.12 h

1045 119,752 3.78 h

1048 65,993 4.32 h

1050 33,463 4.68 h

1053 15,596 4.95 h

1055 6,704 5.03 h

1058 2,646 5.25 h

1060 977 5.31 h

1062 343 5.38 h

1065 118 5.38 h

1067 39 5.39 h

1070 15 5.39 h

1072 5 5.41 h

1074 2 5.43 h

1077 1 5.48 h

1079 1 5.51 h

Table 5.14: Results for k = 2, 3, . . .

,
35 for binary covering arrays of strength two.
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TV k t V Search Space Non-isomorphic CAs CPU Time

8 3 3 2 1.00 x 10° 1 358.00 ps

8 4 3 2 1.28 x 104 1 666.00 ps

10 5 3 2 6.45 x 107 1 0.012 s

12 6 3 2 3.28 x 1012 9 0.337 s

12 7 3 2 2.37 x 1016 2 0.353 s

12 8 3 2 1.27 x 1020 2 0.372 s

12 9 3 2 5.94 x 1023 1 0.436 s

12 10 3 2 2.60 x 1027 1 0.539 s

12 11 3 2 1.10 x 1031 1 0.851 s

15 12 3 2 1.14 x 1042 2 1.26 h

15 13 3 2 3.79 x 1046 0 1.39 h

16 13 3 2 1.93 x 1049 89 937.68 h

16 14 3 2 1.27 x 1054 8 978.42 h

16 15 3 2 8.41 x 1058 0 1,052.65 h

16 4 4 2 1.00 x 10° 1 0.127 s

16 5 4 2 6.01 x 108 1 0.158 s

21 6 4 2 4.11 x 1016 1 694.60 s

24 7 4 2 6.03 x 1025 1 51.86 h

24 8 4 2 3.32 x 1033 1 52.07 h

24 9 4 2 9.81 x 1040 1 52.88 h

24 10 4 2 2.17 x 1048 1 53.09 h

24 11 4 2 4.17 x 1055 1 53.19 h

24 12 4 2 7.49 x 1062 1 53.39 h

Table 5.15: Results for binary covering arrays of strength three and strength four.

{TV = 13, í = 2, k — 10, v — 3}. After exploring all the search space the NonlsoCA algorithm does

not find any non-isomorphic covering array of minimum rank for the above parameter combinations;

this implies that none covering array for these parameters exists.

The non-existence of a covering array for these parameter combinations had not been proved

before. The previous results for these parameters combinations were the following ones:

• For t = 3, k = 13, and v = 2, Colbourn et al. [26] established that 15 < CAN(3, 13,2) < 16.

• For t = 3, k = 15, and v = 2, Choi et al. [17] established that CAN(3, 15,2) > 15.
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TV k t í; Search Space Non-isomorphic CAs CPU Time

9 2 2 3 1.00 x 10° 1 0.002 s

9 3 2 3 4.68 x 106 1 0.003 s

9 4 2 3 2.60 x 10" 1 0.006 s

11 5 2 3 3.47 x 1018 3 1.78 s

12 6 2 3 4.29 x 1025 13 240.15 s

12 7 2 3 2.42 x 1031 1 252.38 s

13 8 2 3 6.62 x 1039 5 4.01 h

13 9 2 3 1.06 x 1046 4 4.02 h

13 10 2 3 1.70 x 1052 0 4.14 h

16 2 2 4 1.00 x 10° 1 145.97 s

16 3 2 4 4.88 x 1014 2 215.04 s

16 4 2 4 1.00 x 1025 1 347.52 s

16 5 2 4 6.20 x 1034 1 629.66 s

Table 5.16: Results for covering arrays of orders three and four.

• For í = 2, k = 10, and v = 3, Colbourn et al. [26] established that 13 < CAN(2, 10,3) < 14.

This way, we conclude that CAN(3,13,2) = 16, CAN(3,15,2) = 17, and CAN(2,10,3) = 14.

Moreover, from the tables of covering arrays at [25] we know the existence of the covering arrays

CA(16; 3, 14, 2) and CA(17; 3, 16, 2). So, given the optimality of the covering arrays CA(16; 3, 13, 2)

and CA(17;3, 15,2) we have that the covering arrays CA(16;3, 14,2) and CA(17;3, 16,2) are also

optimal. Table 5.17 summarizes these ¡mportant results obtained with the NonlsoCA algorithm.

The non-existence of the covering array CA(15;3, 13, 2) was validated by running the order

encoding and the mixed encoding of Bambara et al. [7] for this instance. The result ofthe two runs

Previous result Reference New result

15 < CAN(3,13,2) < 16 [26] CAN(3,13,2) = 16

15 < CAN(3,14,2) < 16 [26] CAN(3,14,2) = 16

CAN(3,15,2) > 15 [17] CAN(3,15,2) = 17

CAN(3,16,2) > 15 [17] CAN(3,16,2) = 17

13 < CAN(3,10,2) <14 [26] CAN(2,10,3) = 14

Table 5.17: Optimal covering array numbers determined with the NonlsoCA algorithm.
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was UNSATISFIABLE, meaning that it was not possible to construct the covering array. The SAT

solver used was GLUEMINISAT 2.2.5.

The results ¡n Table 5.17 are a very ¡mportant contribution of this thesis because the exact lower

bound for the five cases ¡n the table had not been determined before by any other means.

5.4 Computational Analysis ofthe Functions apply_S()

and is_minimum()

In Section 4.2.2 was proposed to genérate the vectors 8 in u-ary Gray code in order to apply efficiently

the construction £ to these vectors 8. The function apply_£(), given in Algorithm 1 of Chapter 4,

implements this operation; but its execution time could not determined analytically, since the number

of times the verification of the matrix B produced by the construction £ is omitted depends largely

on the base covering array.

Something similar occurs for the function is_minimumQ to verify if a covering arrays is of

minimum rank, given in Algorithm 12 of Chapter 4, where the number of column permutations and

column relabelings pruned of the search tree depends on the covering array being verified. So, the

objective of this section is to analyze the computational work done by the functions apply_£Q and

is_minimum() for a number of input covering arrays.

5.4.1 Analysis of the Function apply_£()

Without taking advantage of the generation of the vectors 8 in v-ary Gray code, the computational

cost of applying the construction £ to the vfc(v-1) vectors 8 that exist for a base covering array

CA(TV; t, k, v) is the next one:

O (vk{v~V Nv(k + 1) + (
k \ Nv(t + 1) J

. (5.2)
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Which is the cost of creating the ufc("_1) matrices B of dimensions Nvx(k + 1) and of verifying

if they are covering arrays of strength t + 1. By generating the vectors 8 in u-ary Gray code the cost

of creating the matrices B is reduced from 0(vk(v~V[Nv(k + 1)]) to 0(Nv(k+l) + N[vk(-v-^ - 1]),

because only the first matrix B is generated in 0(Nv[k + 1]) time, while the remaining vk^v~^ — 1

matrices B are generated in O(N) time.

In addition, if the vectors 8 are generated in u-ary Gray code then the verification of some matrices

B can be omitted. Let be a the number of matrices B verified when the construction £ is applied

to all vectors 8, and let be /3 the number of matrices B for which the verification is omitted. Then

the execution time to verify if the ufc("_1) matrices B of dimensions Nv x (k + 1) are covering arrays

of strength í + 1 is:

°(a(í + l)iV?;(í+1) + /3(í + 1))' (5'3)

Where the second term f3(t + 1) is the cost of checking if the vector D of size t + 1, used in the

Algorithm 6 of Chapter 4, contains the index of the column updated to produce the matrix B for

the current vector 8.

Table 5.18 shows how many times the verification process is permored for a set of 20 covering

arrays. The first column of the table is the base covering array CA(TV; í, k, v), the second columns is

the number of vectors 8 for the base covering array, the third columns is the number of matrices B

for which the verification process was performed, the fourth column is the number of matrices B for

which the verification was omitted, and the last column is the percentage of the verifications, i.e.,

(ajvk[v-i)) * loo.

In the table we can notice that the greater percentage of verifications occur for the matrices with

a small number of columns, say k < 8, because there is more chance that the updated column of

matrix B is one ofthe columns whose índices are in vector D. For greater valúes of k, say k > 9, the

number of matrices B verified is much smaller than the number of matrices B whose verification is
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CA(N;t,k,v) vk(v~í) Verified Omitted Percentage of verifications

CA(6;2,5,2) 32 18 14 56.25%

CA(6;2,7,2) 128 19 109 14.84%

CA(6;2,10,2) 1,024 23 1,001 2.25%

CA(7;2,11,2) 2,048 31 2,017 1.51%

CA(7;2,15,2) 32,768 45 32,723 0.14%

CA(8;2,11,2) 2,048 30 2,018 1.46%

CA(8;2,16,2) 65,536 119 65,417 0.18%

CA(8; 2, 20, 2) 1,048,576 122 1,048,454 0.01%

CA(9;2,13,2) 8,192 194 7,998 2.37%

CA(10;3,5,2) 32 24 8 75.00%

CA(12;3,7,2) 128 30 98 23.44%

CA(12;3,11,2) 2,048 48 2,000 2.34%

CA(15;3,12,2) 4,096 61 4,035 1.49%

CA(24;4,10,2) 1,024 68 956 6.64%

CA(24; 4, 12, 2) 4,096 81 4,015 1.98%

CA(9;2,4,3) 6561 4637 1924 70.68%

CA(11;2,5,3) 59,049 12,522 46,527 21.21%

CA(12;2,7,3) 4,782,969 115,957 4,667,012 2.42%

CA(13;2,9,3) 387,420,489 1,514,159 385,906,330 0.39%

CA(16;2,5,4) 1,073,741,824 184,673,582 889,068,242 17.20%

Table 5.18: Percentage of verifications of the matrices B.

omitted. Therefore the generation ofthe vectors 8 in u-ary Gray code allows ¡mportant time savings

when the construction £ is applied to all the vectors 8 for a base covering array, and specially for

k > 9 the number of matrices B verified is a small percentage of the total number of the matrices

B.

5.4.2 Analysis ofthe Function is_minimum()

The smarter verification of minimum rank implement given in Algorithm 12 has a worst case running

time of 0(TV2 A;! (v\k)) to verify if a covering array CA(TV; t, k, v) is of minimum rank. However, it is

very improbable that all the (v !)fc relabelings are required for each one ofthe A;! column permutations.

To estímate the execution time of this algorithm we count the number of times 7 the function
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sort_rows() is called in Algorithm 12. In the worst case 7 will be equal to A;! (v\)k; but in general

not all column permutations are of minimum rank, and also not all the relabelings for a column

permutation are of minimum rank.

The verification of minimum rank requires more work when the covering array tested is one

of mínimum rank; so we only consider covering arrays of mínimum rank to test the function

is_minimum(). Table 5.19 shows the number of times the function sort_rows() of Algorithm 12 is

called for 20 different covering arrays of minimum rank; the first column of the table is the covering

array verified, the second column contains the product ofthe A;! permutations of columns by the (v\)k

distinct columns relabelings that exist for each column permutation; and the third column shows the

number of times the function sort_rows() is called.

CA(N;t,k,v) k\(v\)k Calis to sort_rows()

CA(6;2,5,2) 3.84 x 103 119

CA(6;2,7,2) 6.45 x 105 3,028

CA(6;2,10,2) 3.71 x 109 38,740

CA(7;2,11,2) 8.17 x 1010 5,629

CA(7;2,15,2) 4.28 x 1016 80,865

CA(8;2,11,2) 8.17 x 1010 514

CA(8;2,16,2) 1.37 x 1018 1,715

CA(8;2,20,2) 2.55 x 1024 80,334

CA(9; 2, 13, 2) 5.10 x 1013 676

CA(10;3,5,2) 3.84 x 103 1,700

CA(12;3,7,2) 6.45 x 105 17,644

CA(12;3,11,2) 8.17 x 1010 575,124

CA(15;3,12,2) 1.96 x 1012 5,574

CA(24;4,10,2) 3.71 x 109 1,985,080

CA(24;4,12,2) 1.96 x 1012 13,803,024

CA(9;2,4,3) 3.11 x 104 9,120

CA(11;2,5,3) 9.33 x 105 1,304

CA(12;2,7,3) 1.41 x 109 9,942

CA(13;2,9,3) 3.65 x 1012 7,632

CA(16;2,5,4) 9.55 x 108 1,278,960

Table 5.19: Number of times the function sort_rows() is called in Algorithm 12.
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From the results of Table 5.19 we can say that the number of isomorphic covering arrays checked

¡n order to determine if a covering array A is of minimum rank is very small with respect to the total

number of covering arrays isomorphic to A; even if A is of minimum rank.

5.5 Chapter Summary

In this chapter were given the ¡mportant computational results for the construction of TCAs. We

found that for every order v > 2 there exists an infinite TCA of order v conformed by covering arrays

that have an optimal number of rows with respect to the other three parameters; moreover, a number

ofthe covering arrays in the infinite TCAs are also optimal or equal to the best known covering arrays

with respect to the number of columns. An extensive computational experimentation was done in this

thesis to construct TCAs other than the infinite ones; the ¡nstances executed in the computational

experimentation included covering arrays of order v — 2, 3, 4. As a result we obtain seven TCAs that

¡mproves seven current bounds, and also we found another twelve TCAs that equal some current

bounds. Other very ¡mportant computational results of this thesis is the verification ofthe optimality

of five covering arrays through the NonlsoCA algorithm; the optimality of these covering arrays had

not been proved before by any other mean. Finally, we prove computationally that the optimizations

discussed in Chapter 4 for the functions apply_£() and is_minimum() allow substantial time savings

in the application of the construction £ to each vector <5 and in the verification of minimum rank.

The following chapter summarizes all the ¡mportant results obtained from the construction of towers

of covering arrays.
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Conclusions

This chapter finalizes the thesis document. Section 6.1 summarizes the main contributions of the

thesis; Section 6.2 provides some directions for further research; and Section 6.3 provides a final

discussion of the work done in this thesis.

6.1 Main Contributions

In this thesis was explored a new way to construct the combinatorial designs called covering arrays.

The proposed method consists in the construction of towers of covering arrays (TCAs); where a TCA

of height h as a succession of h + 1 covering arrays CQ, G\, . . .

, Ch, in which the covering array C0

is of strength t, and for i = 1,2,. . . ,h, Ci'\s a covering array of strength t + i.

The TCAs are generated by means of the construction £. From a base covering array

CA(N;t,k,v) of strength í, TV rows, k columns, and order v, the construction £ can sometimes

genérate a covering array CA(Nv; t + l,k+ l,v) of strength t+1, Nv rows, A; + 1 columns, and

order v. The basic idea ofthe construction £ is to juxtapose vertically v copies ofthe base covering

145
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array translating the j-th column of the i-th copy by a valué <5¿j € {0, 1, . . . ,v
—

1}. The column

k + 1 of the covering array of strength í + 1 is conformed by TV zeroes, followed by TV ones, and so

on until finish with TV elements equal to v — 1. The construction £ can be applied to the covering

array of strength í + 1 to genérate a covering array of strength í + 3, and so on, forming a TCA.

Next are summarized the main contributions derived from the construction of TCAs:

• A new way to construct covering arrays based on the construction of TCAs.

• A methodology to construct efficiently the TCAs.

• The identification of infinite TCAs for any order v > 2 conformed by optimal covering arrays.

In addition, the following covering arrays equal the best known covering arrays with respect to

the number of columns in the range 2 < t < 6 and 2 < v < 25:

CA(4;2,3,2),

CA(32;5,6,2),

CA(81;4,5,3),

CA(256;4,5,4),

CA(3125;5,6,5),

CA(216;3,4,6),

CA(46656;6,7,6),

CA(100000;5,6,10),

CA(248832;5,6,12),

CA(38416;4,5, 14),

CA(50625;4,5,15),

CA(5832;3,4,18),

CA(34012224;6,7,18),

CA(64000000;6,7,20),

CA(85766121;6,7,21),

CA(5153632;5,6,22),

CA(7962624;5,6,24),

CA(8;3,4,2),

CA(64;6,7,2),

CA(243;5,6,3),

CA(1024;5,6,4),

CA(15625;6,7,5),

CA(1296;4,5,6),

CA(1000;3,4,10),

CA(1000000;6,7,10),

CA(2985984;6,7,12),

CA(537824;5,6,14),

CA(759375;5,6,15),

CA(104976;4,5,18),

CA(160000;4,5,20),

CA(194481;4,5,21),

CA(10648;3,4,22),

CA(113379904;6,7,22),

CA(191102976;6,7,24).

CA(16;4,5,2),

CA(27;3,4,3),

CA(729;6,7,3),

CA(4096;6,7,4),

CA(36;2,3,6),

CA(7776;5,6,6),

CA(10000;4,5,10),

CA(20736;4,5,12),

CA(2744;3,4,14),

CA(7529536;6,7,14),

CA(11390625;6,7,15),

CA(1889568;5,6,18),

CA(3200000;5,6,20),

CA(4084101;5,6,21),

CA(234256;4,5,22),

CA(331776;4,5,24),

• A set of TCAs conformed by covering arrays of quality competitive with the best known ones.

The following table shows the upper bounds improved by means of the construction of TCAs:
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í k V Previous TV New TV

7 10 2 274 224

7 11 2 386 256

7 12 2 506 256

7 13 2 634 256

7 14 2 762 256

7 15 2 >762 256

7 16 2 >762 256

8 11 2 563 512

9 12 2 1230 1024

10 13 2 2491 2048

11 14 2 5190 4096

And these are the covering arrays that equal a current upper bound:

CA(64;5,11,2), CA(128;6,12,2), CA(64;5,12,2),

CA(128;6,13,2), CA(64;5,13,2), CA(128;6,14,2),

CA(32;4,13,2), CA(64;5,14,2), CA(128;6,15,2),

CA(5;2,4,2), CA(10;3,5,3), CA(6;2,5,2),

CA(12;3,6,2), CA(24;4,7,2), CA(12;3,7,2),

CA(24;4,8,2), CA(12;3,8,2), CA(24;4,9,2),

CA(12;3,9,2), CA(24;4,10,2), CA(12;3,10,2),

CA(24;4,11,2), CA(12;3,11,2), CA(24;4,12,2),

CA(21;4,6,2), CA(42;5,7,2), CA(11;2,5,3),

CA(33;3,6,3), CA(351;5,7,3), CA(405;5,8,3),

• An algorithm, called NonlsoCA, to solve the problem of generating all the non-isomorphic

covering arrays of minimum rank that exist for a combination of the parameters TV, í, A;, v.

• The NonlsoCA algorithm can be used as an exact method to construct covering arrays by

terminating the algorithm as soon as it finds the first non-isomorphic covering array of minimum

rank for the input parameters TV, í, A:, and v.

• The determinaron ofthe exact valué ofthe following covering arrays numbers, which had not

been found before neither by computational search ñor by algebraic analysis:
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CAN(3,13,2) = 16

CAN(3,14,2) = 16

CAN(3,15,2) = 17

CAN(3,16,2) = 17

CAN(2,10,3) = 14

In [26] the lower bounds for CAN(3, 13,2), CAN(3, 14,2), and CAN(2, 10,2) were established

to be grater than or equal 15, 15, and 13 respectively; but we determine that the exact lower

bound for these covering array numbers is 16, 16, and 14 respectively. Similarly, in [17] the

lower bounds for CAN(3, 15, 2) and CAN(3, 16, 2) were established to be greater than or equal

to 15 and 15 respectively, but we found that the exact lower bound for these two cases is 17.

6.2 Future Work

The methodology proposed in this thesis is not the only approach to construct TCAs, ñor the

algorithms given here are the only way to ¡mplement that methodology. In the next list are given

some directions for further research:

• To parallelize the algorithm to genérate the non-isomorphic bases, and the algorithm to apply

the construction £ to the base covering arrays, in order to accelerate the construction of the

TCAs. This would make possible to consider greater valúes of TV, í, A;, and v.

• When a TCA can not be extended to the next strength is because none of the matrices B

produced by the application of the construction £ was a covering array. However, some of

these matrices B could by cióse to be a covering array. Whereby, in some cases, the best of

the matrices B could be a very good initial solution for a metaheuristic method to construct

covering arrays.

• The construction £ defined in this thesis is based on translating the columns of the base

covering array, but the operation of column translation is not the only operation that can be
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applied to construct the next covering array of the TCA. For example, the copies of the base

covering array could be constituted by permutations ofthe columns ofthe base covering array;

in this case the vectors 8 would contain a permutation of the índices of the columns of the

base covering array, rather than constant valúes to transíate the columns. Furthermore, the

two approaches might be combíned, that is, the columns of the base covering array might

be permuted and translated by a constant valué at the same time. Further operations and

combinations of operations may be defined.

6.3 Final Discussion

One characteristic of the TCAs is that the number of rows of the covering array of strength í + 1

is exactly v times the number of rows of the covering array of strength t (the previous covering

array in the TCA), where v is the order of the covering arrays in the TCA. This characteristic is

very important because the ratio between the number of rows of the covering arrays in the TCA is

constant, and this does not occur in the best known covering arrays for the same valúes of t, A;, and

v, of the covering arrays in a TCA. This implies that it is necessary to extend the TCAs to their

máximum height possible, because the possibility of obtaining a competitive covering array increases

as the height of a TCA increases; this conclusión was derived analytically in Chapter 4 and proved

experimentally in Chapter 5.

The construction of TCAs of máximum height requires to solve efficiently two problems:

1. To genérate all the non-isomorphic covering arrays of minimum rank for a combination ofthe

parameters TV, í, k, and v, in order to check each of them as the base of the TCA.

2. To apply the construction £ to all the vk^-1] vectors 8 that exist for a base covering array

CA(N;t,k,v).

The solution to the first problem was the NonlsoCA algorithm, and for the second problem we
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follow an efficient strategy consisting in generating the vectors 8 in u-ary Gray code.

Each part ofthe methodology contributed to the viability ofthe TCA approach, because without

generating and extending all the non-isomorphic bases it would not be possible to construct TCAs

of máximum height, and without TCAs of máximum height it would not be possible to obtain

competitive covering arrays. The same is true if not all vectors 8 would have been checked for a

base covering array.
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