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RESUMEN 

La estimación de parámetros en el modelado de bioprocesos es una tarea difícil, debido 

a varias dificultades que incluyen: la alta variabilidad de los sistemas biológicos, las 

pocas variables que se pueden medir con exactitud, los problemas de identificabilidad 

de los modelos y el correcto diseño de los experimentos para la estimación de 

parámetros. La microrrespirometría, es decir, la respirometría aplicada en sistemas de 

múltiples microrreactores, es un nuevo método recientemente desarrollado en nuestro 

grupo de investigación en Cinvestav-IPN, que puede ayudar a superar algunas de las 

dificultades antes mencionadas. 

En esta tesis, quisimos explorar el potencial de la microrrespirometría, aplicando el 

método en varios casos de estudio en el área de tratamiento de aguas residuales. La 

caracterización de estos procesos se hizo a través de la calibración de modelos 

respirométricos específicos para cada caso. Prestamos especial atención a la estimación 

de los parámetros por el ajuste a modelos y a los problemas de identificabilidad que 

esto acarrea. Este enfoque nos permitió, entre otras cosas: establecer metodologías para 

la estimación de parámetros, evaluar las fuentes de incertidumbre del método 

microrrespirométrico y aplicar el método al estudio de otros temas de interés en el 

modelado bioprocesos. 

Se demostró que la microrrespirometría fue útil para la calibración y validación de 

modelos, para la estimación del efecto de la temperatura en parámetros cinéticos y 

estequiométricos y para el estudio de la cinética microbiana y la transferencia de masa 

en gránulos aerobios. Encontramos que el estudio de casos prácticos fue la mejor 

manera de probar el potencial de microrrespirometría y evaluar sus limitaciones. Al 

final, el uso adecuado de este método nos ayudará a mejorar nuestra comprensión de 

los procesos biológicos, simplificando la tarea de calibración de modelos y mejorando 

la aplicación de los mismos. 
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ABSTRACT 

Parameter estimation is a challenging task in bioprocess modelling, due to several 

difficulties that include: the high variability of biological systems, the few variables 

that can be accurately measured, the identifiability problems of models, and the correct 

design of experiments for parameter estimation. Microrespirometry, i.e., respirometry 

performed in microreactor systems, is a new method recently developed in our research 

group at Cinvestav-IPN, which can help to overcome some of the difficulties above 

mentioned. 

In this thesis, we wanted to explore the potential of microrespirometry, by applying the 

method in various case studies in wastewater treatment. The characterization of these 

processes was done through the calibration of typical respirometric models. We paid a 

special attention to the estimation of parameters by model fitting and to the 

identifiability issues that this entails. This approach allowed us, among others: to 

establish methodologies for the estimation of parameters, to evaluate the sources of 

uncertainty of the microrespirometric method, and to apply the method to the study of 

other topics of interest in bioprocess modelling.  

We showed that microrespirometry was useful for calibration and validation of models, 

for the estimation of the effect of temperature on kinetic and stoichiometric parameters, 

and for the study of microbial kinetics and mass transfer in aerobic granules. We found 

that the study of practical cases was the best way to test the potential of 

microrespirometry and to evaluate its limitations. In the end, the proper use of this 

method will help us to improve our understanding of biological processes by 

simplifying the model calibration task, and enhancing the application of models. 
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CHAPTER 1 

INTRODUCTION 

Bioprocesses are used in biotechnology to achieve the application of living organisms 

or their components to obtain desired products and services. These products are used 

in medicine, agriculture, food production and environmental applications.  

Bioprocesses are complex systems, which require the knowledge and application of 

multiple disciplines and several fields of engineering. Bioprocess scientists and 

engineers use knowledge to design, to develop, to maintain, to research, to improve 

and to optimize, as well as to find suitable solutions to specific problems. Many of 

these tasks are achieved by creating mathematical models, which allow to analyze and 

to test potential solutions. 

Mathematical models are the simplified representation of complex processes, and in 

biotechnology, they are specially used to describe the phenomena of substrate 

bioconversion and its relation to microbial growth, which is often called “microbial 

kinetics”. It was Jacques Monod (1949) and his famous model (Eq. (1)), who initiated 

the mathematical modelling of microbial kinetics. Monod’s model relates the microbial 

growth rate to the concentration of a single growth-controlling substrate via two 

parameters, the maximum specific growth rate (𝜇𝑚), and the half saturation constant 

(𝐾𝑆). Monod also made the link between growth and substrate consumption (𝑞𝑠), by 

using another parameter, the cell growth yield (𝑌𝑋/𝑆), which is a measure of the 

conversion efficiency of substrate into cell material (Eq. (2)). 

𝜇 =
𝜇𝑚 ∙ 𝑆

𝐾𝑆 + 𝑆
 (1) 

𝑞𝑠 =
𝜇

𝑌𝑋/𝑆
 (2) 

The study of microbial kinetics has gradually evolved since the Monod’s model, other 

models emerged, some of them as a modification of the original model by introducing 
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new terms and parameters (Kovárová-Kovar and Egli 1998). Today, kinetic models are 

the base of advanced dynamic models, which are used for the design, study, 

characterization, control, and optimization of bioprocesses. 

Models in general are made of three components, variables, constants, and parameters. 

Variables are the inputs and outputs of the model, which are related to constants and 

parameters through the structure of the model. Constants and parameters are different 

from each other; constants have always a fixed value, and parameters can change their 

value, depending on the circumstances of application of the model (Dochain and 

Vanrolleghem 2001).  

The estimation of parameter values is part of the task known as “model calibration”, 

and is a crucial step within the construction of models. Without these parameter values, 

it is impossible to apply models.  

In bioprocesses modelling, the most important parameters are those related to microbial 

kinetics, because they describe the inherent properties of the biological processes. 

However, the estimation of biokinetic parameters is a challenging area, mainly for the 

following reasons:  

(i) Working with living organisms, which change their behavior depending on 

the time and the environmental conditions; this causes a high variability of 

parameters reported in literature, even for the same microorganisms and 

substrates (Kovárová-Kovar and Egli 1998). 

 

(ii) Kinetics are poorly known, because the metabolism is a network of complex 

reactions; this causes the development of complex nonlinear models, which 

are subject to many identifiability problems. 

 

(iii) Only few variables can be measured on-line and off-line in bioprocesses, 

due to the lack or high cost of measurement methods; this makes very 

difficult to obtain reliable and reproducible experimental data for parameter 

estimation. 
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(iv) The experimental conditions used to estimate parameters have an important 

influence on the results; this causes that sometimes the estimated 

parameters do not reflect the true parameters of the process under actual 

conditions. For example, the initial substrate to biomass ratio (So/Xo) 

defines the type of parameters that we can estimate (intrinsic, defined, or 

extant; Grady et al. 1996). 

In the research group on Environmental Bioprocesses at Cinvestav-IPN, we are 

dedicated to the development, study, implementation, and improvement of methods for 

the estimation of kinetic and stoichiometric parameters of biokinetic models, using for 

this purpose, respirometry based techniques. 

Recently, our research group developed a new method that combines respirometry with 

the use of novel miniature bioreactors, which we have called “microrespirometry”. This 

method has the potential to perform simultaneously multiple replicates of respirometric 

experiments, and can be used to improve and facilitate the parameter estimation task 

in many areas of biotechnology. 

This thesis focuses on testing the advantages and limitations of microrespirometry for 

parameter estimation, and offers guidelines to exploit its maximum potential. In 

addition, we tested its application on two topics of interest for the modeling of 

bioprocesses: the effect of temperature on kinetic parameters and the study of microbial 

kinetics in aerobic granules.  
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Respirometry 

Respirometry was first defined as the measurement of the oxygen consumption rate of 

activated sludge under well-defined experimental conditions (Spanjers et al. 1999). As 

can be deduced from the definition, this method originated in wastewater treatment 

processes. Respirometry evolved from previous methods for determination of the 

biochemical oxygen demand (BOD) in wastewater.  Respirometry uses the relations 

that exist in aerobic processes between the oxygen consumption, the substrate removal, 

and the microbial growth. Figure 1 shows a schematic representation of these 

relationships. When the substrate (electron donor) enters to the cell, it is oxidized 

through numerous metabolic reactions, its electrons flow through the electron transport 

chain, and eventually end to the oxygen (electron acceptor). Microorganisms convert 

the energy of the chemical bonds in the substrate to the high-energy phosphate bonds 

of adenosine triphosphate (ATP). This energy is used to synthesize new biomolecules 

required for cell growth. In this way, the oxygen consumption or respiration is an 

indirect indicator of the substrate uptake and the microbial growth. In respirometry, 

respiration is measured by changes in oxygen concentration in the liquid or the gas 

phase.  

 

Figure 1. The relationship between respiration, substrate uptake and microbial growth  

(modified from Spanjers et al. 1998). 
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Respirometry is performed in devices called respirometers, which are basically small 

bioreactors equipped to measure the oxygen uptake rate (OUR). The classification of 

respirometers according to the Respirometry Group Task of the International Water 

Association (IWA) can be found in Spanjers et al. (1998).  Respirometers are classified 

according to: the phase where oxygen is measured (liquid/gas), the gas operating 

conditions (flowing/static), and the liquid operating conditions (flowing/static).   

The most widely used measurement method in respirometry, is the measurement of the 

dissolved oxygen concentration (DO) in the liquid phase, which is convenient for the 

following reasons: (i) DO can be measured "in situ" and in real time with the use of a 

specific, and available and low-cost probe; (ii) DO measures can be performed with 

high sensitivity and precision (on the order of 0.01 mg L-1); (iii) DO changes are related 

to the respiration rate in any process where oxygen acts as the final electron acceptor; 

(iv) DO measured in the liquid corresponds to the total oxygen in the system, since 

intracellular oxygen is negligible,  in contrast to the measurement of other substrates. 

Respirometry has several applications, and most them, are in wastewater treatment 

processes. Among these applications, the most important are: 

• Determination of different COD fractions in wastewater (Brouwer et al. 1998; 

Mathieu and Etienne 2000). 

• Model calibration of the activated sludge models (ASM) for wastewater 

treatment (Henze et al. 2000; Petersen et al. 2003). 

• Estimation of biological activity and inhibitory effects on activated sludge 

(Guisasola et al. 2004; Kong et al. 1996). 

• Control of activated sludge processes (Copp et al. 2002; Spanjers et al. 1998). 

In respirometry, the most commonly used methods for obtaining OUR data are the 

static and the dynamic methods. Static respirometry is based on the measurement of 

the DO concentration in a non-aerated respirometer, where the OUR is measured from 

the decreasing slope of DO during the experiment. Dynamic respirometry is based on 

the measurement of DO in an aerated respirometer. When it is combined with the 

injection of substrate pulses, the method is called “dynamic pulse respirometry” and in 
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that case, the OUR is measured from the DO curve obtained during the experiment, 

called respirogram, and for the correct interpretation of the data it is necessary to 

estimate the oxygen transfer rate of the system (Ramirez-Vargas et al. 2013). 

In Figure 2, we show an example of a respirogram obtained with the dynamic pulse 

respirometric method, which was the main method used in this thesis. The general 

procedure to obtain the respirogram described in Figure 2 is as follows: (i) the biomass 

is aerated until reaching a “pseudo-stationary” state, corresponding to the endogenous 

respiration (α) (Spanjers and Vanrolleghem 1995); (ii) a pulse of known concentration 

of substrate is injected (β), and the evolution of the DO is recorded until the endogenous 

respiration state is reached again (γ).  

 

Figure 2. Example of respirogram obtained using the dynamic method  

shown as DO concentration (left) and OUR (right). 

 

The dynamical changes observed during the respirometric experiments showed in 

Figure 2, are representative of the biodegradation kinetics of the substrate injected. 

Once the experimental data are obtained, the next objective of respirometry is to 

identify a kinetic model and the parameters that describe the dynamics observed in the 

respirometer. 
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2.2 Respirometric based-models 

Respirometric models are those that describe the dynamical changes inside a 

respirometer. These models consider the respirometer as a batch reactor, where the DO 

mass balance equation in the bulk liquid of the respirometer has two components (Eq. 

(3)): the oxygen transfer rate (𝑂𝑇𝑅) and the oxygen uptake rate (𝑂𝑈𝑅). The 𝑂𝑇𝑅 is 

described by Eq. (4), where 𝐾𝐿𝑎 is the volumetric oxygen mass transfer coefficient, 𝐶∗ 

is the DO saturation concentration, and 𝐶 is the DO concentration at each instant of 

time. The 𝑂𝑈𝑅 is described by Eq. (5) and has two components: the endogenous 

oxygen uptake rate (𝑂𝑈𝑅𝑒𝑛𝑑), which is the oxygen consumption in absence of readily 

biodegradable substrate (Spanjers and Vanrolleghem 1995); and the exogenous oxygen 

uptake rate (𝑂𝑈𝑅𝑒𝑥), which is the oxygen consumption needed to degrade the amount 

of substrate injected. 

𝑑𝐶

𝑑𝑡
= 𝑂𝑇𝑅 − 𝑂𝑈𝑅 (3) 

𝑂𝑇𝑅 = 𝐾𝐿𝑎 ∙ (𝐶∗ − 𝐶) (4) 

𝑂𝑈𝑅 = 𝑂𝑈𝑅𝑒𝑛𝑑 + 𝑂𝑈𝑅𝑒𝑥 (5) 

The term 𝑂𝑈𝑅𝑒𝑥 depends on the biodegradation kinetics of the 𝑘 substrates (𝑆𝑖) present 

in the pulse injected (Eq. (6); Dochain and Vanrolleghem 2001). 

𝑂𝑈𝑅𝑒𝑥 = ∑(1 − 𝑌𝑖)𝑟𝑆𝑖

𝑘

𝑖=1

 (6) 

In Eq. (6), 𝑌𝑖 is the yield coefficient or the fraction of substrate 𝑆𝑖 that is not oxidized 

but converted into new biomass (𝑋), and 𝑟𝑆𝑖
 is the consumption rate of 𝑆𝑖. Depending 

on the case study and the objective of the model, the 𝑂𝑈𝑅𝑒𝑥 (Eq. (6)) can be related to 

the consumption of one or more substrates (𝑘 = 1, … , 𝑁). In the same batch conditions 

of the respirometric experiments, the mass balance of  𝑆𝑖 is described by Eq. (7).   
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𝑑𝑆𝑖

𝑑𝑡
= −𝑟𝑆𝑖

 (7) 

Typically, the change of the biomass concentration in respirometric experiments is 

considered negligible, i.e., 
𝑑𝑋

𝑑𝑡
= 0, because the initial ratio So/Xo is usually low, and 

the experiments are of short duration. Another useful assumption is to consider that 

oxygen consumption is only due to exogenous respiration (𝑂𝑈𝑅𝑒𝑥), i.e., the 

endogenous respiration (𝑂𝑈𝑅𝑒𝑛𝑑) is considered constant during the experiment, and 

therefore can be removed from the data or analyzed separately. 

The simplest respirometric models, also used during the development of this thesis, are 

those that consider the consumption of a single growth limiting substrate (𝑘 = 1). 

These models are useful when determining the kinetics of readily biodegradable 

substrates, and may involve different types of kinetic models, for example: 

1) Monod kinetics: 

𝑑𝑆

𝑑𝑡
= −𝑟𝑆 = −

𝜇𝑚 ∙ 𝑋

𝑌𝑋/𝑆
∙

𝑆

𝐾𝑆 + 𝑆
= −

𝑂𝑈𝑅𝑚𝑎𝑥

(1 − 𝑌𝑋/𝑆)
∙

𝑆

𝐾𝑆 + 𝑆
 (8) 

𝑂𝑈𝑅𝑒𝑥 =
𝜇𝑚 ∙ 𝑋 ∙ (1 − 𝑌𝑋/𝑆)

𝑌𝑋/𝑆
∙

𝑆

𝐾𝑆 + 𝑆
= 𝑂𝑈𝑅𝑚𝑎𝑥 ∙

𝑆

𝐾𝑆 + 𝑆
 (9) 

 

2) Haldane kinetics: 

𝑑𝑆

𝑑𝑡
= −𝑟𝑆 = −

𝜇𝑚 ∙ 𝑋

𝑌𝑋/𝑆
∙

𝑆

𝐾𝑆 + 𝑆 +
𝑆2

𝐾𝐼

= −
𝑂𝑈𝑅𝑚𝑎𝑥

(1 − 𝑌𝑋/𝑆)
∙

𝑆

𝐾𝑆 + 𝑆 +
𝑆2

𝐾𝐼

 
(10) 

𝑂𝑈𝑅𝑒𝑥 =
𝜇𝑚 ∙ 𝑋 ∙ (1 − 𝑌𝑋/𝑆)

𝑌𝑋/𝑆
∙

𝑆

𝐾𝑆 + 𝑆 +
𝑆2

𝐾𝐼

= 𝑂𝑈𝑅𝑚𝑎𝑥 ∙
𝑆

𝐾𝑆 + 𝑆 +
𝑆2

𝐾𝐼

 (11) 
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In these models, the parameters that we want to estimate with respirometric data are: 

𝜇𝑚, 𝐾𝑆 and 𝑌𝑋/𝑆 (plus 𝐾𝐼 in the Haldane case); but the success in the estimation depends 

on the method of data analysis and the identifiability problems associated to the model 

(section 2.4). Sometimes, it is useful to combine some parameters into new ones, for 

example, the parameter 𝑂𝑈𝑅𝑚𝑎𝑥 (Eq. (8-11)) that indicates the maximum oxygen 

uptake rate; this combination results in parameters that provide useful and additional 

information, but can also help us to solve certain identification problems (Dochain and 

Vanrolleghem 2001). 

 

2.2.1 Respirometry for calibration of ASM models 

To describe the removal of pollutants in wastewater by activated sludge, in some 

instances, it is convenient to have an exhaustive description of the process. The 

Activated Sludge Models (ASM) are complex models, developed by the IWA and the 

Task Group of Mathematical Modelling for Design and Operation of Biological 

Wastewater Treatment (Henze et al. 2000). The ASM models are partially structured 

models based on Monod kinetics that comprise the knowledge about the different 

components and reactions that occur in activated sludge processes. Respirometry is the 

basis of the calibration of ASM models (Petersen et al. 2003), because the respiration 

of activated sludge is affected by the concentration of aerobically biodegradable 

components, which are most of pollutants in wastewater. Parameter estimation by 

respirometry is performed using simplified versions of ASM models, considering only 

the processes and state variables that are important to the experiment (Guisasola et al. 

2005; Ordaz et al. 2012). The original ASM models include: ASM1, ASM2, ASM2d 

and ASM3, but since their publication, other ASM based models including many model 

extensions have been published. As an example, the models ASM1 and ASM3 are 

briefly described below, together with their relationship with respirometry. In this 

description, only the growth of heterotrophs based on degradation of the chemical 

oxygen demand (COD) is considered, however, both models may include the growth 

and oxygen consumption by autotrophs. 
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In Activated Sludge Model No.1 (ASM1), heterotrophic biomass uses COD in a cyclic 

reaction scheme (Henze et al. 2000). This scheme is shown in Figure 3, where readily 

biodegradable COD (SS) is consumed together with oxygen for growth of heterotrophic 

biomass (XH); decay processes produce inert suspended organic matter (XI) and feeds 

hydrolysis with slowly biodegradable COD (XS). 

 

Figure 3. Flow of COD in ASM1 

 

A detailed description of the calibration of the ASM1 model can be found in Petersen 

et al. (2003). Most of the wastewater component concentrations of the model, including 

SS, XH and XS, can be estimated using respirometric experiments. In ASM1, there is 

only one process consuming oxygen for degradation of COD, and their kinetic and 

stoichiometric parameters are obtained by respirometry. The ASM1 model is 

considered in many cases the state-of-the-art for modelling activated sludge systems, 

and is the most used model in practice. However, it is known that this model is difficult 

to calibrate, because as shown in Figure 3, one needs to calibrate other processes that 

indirectly influence the only process that consume oxygen (Van Loosdrecht et al. 

2015).  

In contrast, the reaction scheme of Activated Sludge Model No.3 (ASM3) is shown in 

Figure 4. In ASM3 as in ASM1, readily biodegradable COD (SS) is present in the 

wastewater and is produced by hydrolysis of slowly biodegradable COD (XS). In 

ASM3, SS is first stored in the form of cell internal products (XSTO), such products 
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include poly-hydroxy-alkanoates (PHA), glycogen, etc. Once SS is depleted under feast 

conditions, XSTO is used under famine conditions for the growth of heterotrophic 

biomass (XH). An important difference with respect to ASM1, is that in ASM3 the idea 

of decay processes is replaced with endogenous respiration processes (Henze et al. 

2000).  

 

Figure 4. Flow of COD in ASM3 

 

The ASM3 model is not cyclic like ASM1 and has more oxygen entry points. This 

means that the parameters of the three processes: the rate of oxygen consumption for 

degradation or storage of SS, the rate of growth associated with degradation of XSTO, 

and the endogenous respiration, can be estimated by respirometric methods. Besides, 

due to the greater number oxygen entry points, the ASM3 model is considered easier 

to calibrate compared to the ASM1 model. In the cyclic scheme of ASM1, any change 

in the parameter values influences more the state variables compared to ASM3. Thus, 

the ASM3 model has better identification properties than the ASM1 model (Gernaey 

et al. 2004). In this thesis, for the characterization of activated sludge processes, the 

use of the ASM3 model over ASM1 was preferred because of the advantages above 

mentioned. 
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2.3 Estimation of parameters using respirometry 

There are several methods and approaches to process the data obtained from 

respirometric experiments to estimate parameters, using either DO or OUR measures. 

The most common methods for parameter estimation in respirometry are: 

1. Direct analysis or interpretation of respirograms. These methods involve the 

identification of baselines, points of inflection and area analysis of respirograms 

(Spanjers et al. 1999). This approach, for example, allows to estimate different 

waste water component concentrations, as well as stoichiometric parameters 

like substrate or storage yields (Karahan-Gül et al. 2002; Petersen et al. 2003). 

Direct methods are easy to implement, and their great advantage is that they do 

not cause parameter identifiability problems (Spanjers et al. 1999). However, 

these methods can only be applied when individual substrate components 

determine the shape of the respirograms, because these kind of respirograms 

have an easier and less ambiguous interpretation (Decubber 2014). 

 

2. Optimization by model fitting to respirograms. In this approach, numerical 

optimization methods are used to estimate the parameter values that best 

describe the experimental data of respirograms (Spanjers and Vanrolleghem 

1995). This approach allows us to estimate wastewater component 

concentrations, as well as kinetic and stoichiometric parameters, including 

maximum rates, saturation constants and stoichiometric yields (Brouwer et al. 

1998; Lagarde et al. 2005; Petersen et al. 2003). Optimization methods are the 

most used in the literature; these methods are useful for parameter estimation 

of complex models, because they allow to estimate numerous parameters and 

to make a better description of the experimental data. However, the main 

disadvantage of these methods are the identifiability problems associated with 

the large number of parameters to be estimated, of a single measured state 

variable (Checchi and Marsili-Libelli 2005). 
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3. Estimation of parameters by linearization methods. These methods take 

advantage of the similarity between model structures of the Michaelis-Menten 

model for enzyme kinetics, and the Monod model for microbial kinetics. In this 

approach, linear graphs are constructed using linearization methods commonly 

applied in enzymatic kinetics, for example, Hanes-Woolf or Lineweaver-Burk. 

The points of these graphs come from respirometric experiments at increasing 

concentrations of substrate pulses. The parameters of the Monod model, the 

maximum specific growth rate (𝜇𝑚) and the half saturation constant (𝐾𝑆) are 

estimated from the slope and the intersection of the axes of the linear graphs 

(Ramirez-Vargas et al. 2013). Linearization methods are easy to implement and 

to interpret. Another advantage of these methods is that they can be used for 

studying the effects or certain compounds, which have an unknown effect on 

the process, and that cannot be therefore added to more complex models. 

However, the main disadvantages of these methods, are the errors associated 

with the linearization methods and the limited number of parameters that can 

be estimated (Decubber 2014). In our research group at Cinvestav, these 

methods are known by the name of “pulses of increasing substrate 

concentration”, and have been successfully applied for “in situ” 

characterization of different types of bioprocesses and reactor configurations 

(Oliveira et al. 2011; Ordaz et al. 2008; Ordaz et al. 2012; Ordaz et al. 2013). 

In this thesis, we performed the estimation of parameters combining elements of the 

previously described approaches. For example, the estimation of stoichiometric yields 

was performed by direct interpretation of the respirograms area, the estimation of 

kinetic parameters was performed by model fitting to the experimental data, and pulses 

of increasing concentrations were used to obtain data to solve identifiability problems 

and perform model validation. 
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2.4 Parameter identifiability 

Parameter identifiability is one of the major concerns of parameter estimation by 

respirometric methods. This topic has been extensively studied in literature (Checchi 

and Marsili-Libelli 2005; Dochain and Vanrolleghem 2001; Petersen 2000; Sin 2004). 

The problem of identifiability is fundamental in bioprocess modelling, because of the 

nonlinear nature of microbial kinetics. The main objective of an identifiability analysis 

is to answer the following question (Dochain and Vanrolleghem 2001): 

If only certain state variables are available for measurement, given the structure of the 

model (structural identifiability) and given the quality of the experimental data 

(practical identifiability), can we estimate unique values of the model parameters? 

When structural or practical identifiability problems are present, the parameters values 

cannot be estimated or only with a large uncertainty, i.e., the estimated values are one 

among several possible solutions. 

 

2.4.1 Structural identifiability 

The structural identifiability, refers to the capacity to find unique values of the 

parameters of a model, having perfect measurements, i.e., noiseless data of the 

available state variables. A simple example borrowed from MacLean (2012) can help 

to illustrate this concept: in a linear model defined by 𝑦 = (𝑎 + 2𝑏)𝑥 + 𝑐, the 

parameters 𝑎 and 𝑏 can not be distinguished from each other; the parameters (𝑎 + 2𝑏) 

and 𝑐 are structurally identifiable, but 𝑎 and 𝑏 are not identifiable because they can take 

any possible combination of values.  

A structural identifiability analysis has two objectives: first, to show if the parameters 

of a model are identifiable; and second, in the case of finding identifiability problems, 

to show if there are some subsets or combinations of the model parameters that may be 

identifiable. Several methods to test structural identifiability in linear and nonlinear 
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models can be found in literature; these methods are complex and require an advanced 

degree of math expertise, and sometimes the use of symbolic software (e.g. 

Mathematica, Maple). In this thesis, structural identifiability analyzes were beyond the 

scope of the project, but a detailed review of concepts and methods applied to 

respirometric models can be found in Dochain and Vanrolleghem (2001). 

 

2.4.2 Practical identifiability 

The practical identifiability, evaluates the information content of the available data, 

i.e., if it is possible to find unique values of the model parameters having noise 

corrupted data of the available state variables. The classical example in bioprocess is 

the Monod model (Eq. (1)), where the parameters 𝜇𝑚 and 𝐾𝑆 are usually highly 

correlated. Parameter correlation means that a change in one parameter can be 

compensated almost completely by a proportional shift in another parameter (Dochain 

and Vanrolleghem 2001); if after this shift, the fit between the model and the 

experimental data is the same, the parameters have practical identifiability problems. 

In the case of the Monod model, if only a few measurements are taken at low substrate 

concentrations, many combinations of 𝜇𝑚 and 𝐾𝑆 can fit the data, and under these 

conditions only the ratio 𝜇𝑚/𝐾𝑆 is identifiable. The objective of a practical 

identifiability analysis is to find the uncertainty of the parameter estimates, usually in 

terms of the confidence intervals. If the uncertainty of a certain parameter is large, it 

has practical identifiability problems, and therefore, its estimation cannot be relied with 

the available experimental data. 

Several methods can be found in the literature for practical identifiability and 

uncertainty analysis. These methods include Bootstrapping, the Fisher Information 

Matrix, and the Profile Likelihood (Fröhlich et al. 2014; Joshi et al. 2006; Weber et al. 

2011).  Among them, the practical identifiability analysis in respirometric models is 

often performed by means of the Fisher Information Matrix (FIM), combined with 

information of the parameter sensitivity functions. In fact, most of the information 

generated in wastewater treatment, respirometric methods, and ASM models, was 
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achieved by FIM based methods. For instance, Vanrolleghem et al. (1995) performed 

a practical identifiability analysis of the single Monod respirometric model using the 

FIM; Weijers and Vanrolleghem (1997) proposed a method for selecting the best 

identifiable parameter subsets for calibration of ASM1 model based on the FIM; later, 

Brun et al. (2002) developed a methodology for selecting the best identifiable 

parameter subsets for calibration of ASM2d, based on sensitivity functions and the 

collinearity index. In the meantime, Petersen (2000) studied how to improve 

identifiability of ASM based models combining respirometry with titrimetric methods, 

using experiments based on Optimal Experimental Design (Dochain and Vanrolleghem 

2001). 
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2.5 Microreactor systems 

Microreactor systems, also described in the literature as microbioreactors, miniature 

bioreactors or microtiter plates, are small volume devices specially designed for clonal 

selection, strain screening, and optimization of process and culture media (Isett et al. 

2007). These systems have been developed for working volumes of microliters to 

milliliters, in commercial versions ranging from 12 and 24, to 96 wells or plates in 

parallel (Duetz 2007). 

Microreactor systems were made possible thanks to the development of optical 

fluorescence quenching sensors of DO and pH (Arain et al. 2006). These sensors can 

be miniaturized and have several advantages compared to their traditional 

electrochemical counterparts. In the case of DO, for example: DO fluorescence-based 

sensors have significantly lower response times (<5s), are more stable after calibration, 

are less susceptible to interference by chemical compounds, and are more sensitive to 

low DO concentrations (Wolfbeis 2015).  

Several microreactor designs have been developed. The simplest systems require an 

external incubator to control temperature and agitation, while other more advanced 

systems have their own agitation system as well as DO, temperature, pH, and aeration 

controls (Betts and Baganz 2006). A detailed review about classification and special 

features of microreactor systems can be found in Kim et al. (2012). The current trend 

of this technology is toward more automation and even smaller reaction vessel sizes 

(Lattermann and Büchs 2015). 

Microreactors have been successfully applied for high-throughput selection of 

microbial and animal cell cultures (Chen et al. 2009; Isett et al. 2007). Moreover, a 

special attention has been paid to assessing the oxygen transfer capacity of these 

systems, which is compared to traditional lab-scale bioreactors (Funke et al. 2009; Kirk 

and Szita 2013). These features, in combination with the DO fluorescence-based 

sensors, make microreactors a very attractive system for applications in the 

measurement of the oxygen consumption in biological processes, and therefore, with 

high potential to develop respirometric techniques.  
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2.6 Microrespirometry 

Nowadays, traditional respirometric methods are well-established and have been 

extensively studied; however, these methods are still subject to some drawbacks and 

methodological limitations, which affect the accuracy and precision of parameter 

estimation. These drawbacks include: mass transfer limitations and microbial 

aggregation changes due to mixing conditions (Chu et al. 2003); high variability 

between replicates of experiments (Magbanua Jr et al. 1998); high response times in 

measurements due to the use of electrochemical DO sensors (Betancur et al. 2008); 

transient response phenomena in the experiments (Vanrolleghem et al. 2004); among 

others. Fortunately, some of these drawbacks can be overcome with the application of 

new technologies and the evolution of the respirometric methods. 

In this respect, “microrespirometry” is a relatively new method developed in our 

research group at Cinvestav-IPN. Basically, microrespirometry is a respirometry based 

method performed in microreactor systems, transforming traditional respirometry into 

a high-throughput method. The idea behind microrespirometry is to perform multiple 

simultaneous respirometric experiments, not only by multiplying the number of 

replicates but also the quantity and quality of the data available for parameter 

estimation. The study of microrespirometry in our research group started with the 

characterization of two different microreactor systems: 

On one hand, Esquivel-Rios et al. (2014b) performed the characterization of an 

unbaffled 24-well (2.5 mL) microreactor system (PreSens, Mexico). This system 

requires an external incubator to achieve the agitation that causes the transfer of oxygen 

in the medium, and to maintain the temperature condition. These authors determined 

that the oxygen mass transfer capacity of the system, in terms of 𝐾𝐿a, ranged from 2.2 

to 48.0 h−1 under different operating conditions (liquid volume, agitation speed and 

number of glass beads used as stirrers). 

On the other hand, Ramirez-Vargas et al. (2014) performed the characterization of a 

24-well (10 mL) microreactor system (Micro-24 System, Pall Corporation, USA). This 

system is more specialized, and includes control and monitoring of pH, temperature, 
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DO, agitation and aeration. These authors determined that the oxygen mass transfer 

was characterized by 𝐾𝐿𝑎 values ranging from 9 to 80 h−1. This range was obtained by 

testing several features and operating conditions: 2 types of cassette and 3 types of cap 

designs, liquid volume, temperature, aeration rate and agitation speed. 

Microrespirometry has many advantages over traditional respirometry, for example: 

the volume of sample required to perform the experiments is smaller; the number of 

simultaneous experimental replicates increases drastically; the quality of experimental 

data increases due to the use of better DO sensors; the oxygen mass transfer can be 

controlled in the same range as in traditional respirometers without the use of 

mechanical stirrers; and the number of experimental conditions that can be tested in 

one single experiment reduces the experimental effort. 

However, together with these attractive advantages, there are also certain challenges 

that must be overcome before the use of microrespirometry can be extended. For 

example:  

(i) New approaches for the treatment of the large amount of data that must be 

developed. 

(ii) The positive or negative impact of the large amount of data available for 

parameter estimation must be assessed. 

(iii) The experimental methodologies for the collection of data with this method 

must be standardized. 

(iv) The impact of typical parameter estimation problems, like identifiably, must 

be evaluated. 

(v) The impact of new sources of uncertainty in the parameter estimates must 

be evaluated. 
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2.7. Applications of microrespirometry 

Some authors have measured the OUR in microreactor systems to monitor the 

respiratory activity of microbial cultures (Arain et al. 2006; Puskeiler et al. 2005). 

However, to the best of our knowledge, only in our research group the DO data 

produced by microreactors have been used for the estimation of kinetic and 

stoichiometric parameters. For instance: Esquivel-Rios et al. (2014b) developed a 

microrespirometric method based on linearization of the Monod model to estimate the 

parameters 𝜇𝑚, 𝐾𝑆 and 𝑌𝑋/𝑆 in heterotrophic and autotrophic cultures; Ramirez-Vargas 

et al. (2014) showed that a microreactor system was suitable for the measurement of 

OUR and the acquisition of data with potential use for parameter estimation by model 

fitting; and Esquivel-Rios et al. (2014a) characterized the inhibition by heavy metals 

(copper and zinc) on activated sludge, by evaluating the effect of different 

concentrations of these metals and other parameters on the kinetic parameters of the 

Monod model. 

Potential applications of microrespirometry include many possibilities in various areas 

of biotechnology, as there is still many cases where model calibration is required. In 

this thesis, we selected two applications: the effect of temperature on kinetic parameters 

and the study of microbial kinetics of aerobic granules; the relevance of these topics is 

detailed in the following sections. 

 

2.7.1 Effect of temperature on kinetic parameters 

Temperature is the environmental factor that most affects the rate of biochemical 

reactions, and therefore, it also affects the metabolism and the growth rate of 

microorganisms on a macroscale. In biotechnology, temperature is of practical 

importance for the control of bioprocesses and the safe handling of products in the food 

industry (Rosso et al. 1993).  
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In terms of models, the effect of temperature is reflected by changes in the values of 

the model parameters. These changes have been extensively described for the 

parameter 𝜇𝑚 of the Monod model, used to reflect changes in the growth rate, and for 

which several models have been developed (see Table I of paper IV for details). 

However, there is a lack of information and reliable data on the effect of temperature 

on other kinetic parameters, including the parameter 𝐾𝑆 of the Monod model, the 

stoichiometric parameter 𝑌𝑋/𝑆, and especially in parameters of other kinetic models. 

This lack of information and data is mainly due to the difficulties of parameter 

estimation, which could be partially solved with the use of better experimental 

methods. 

Due to the characteristics of microrespirometry, which includes the possibility of 

performing simultaneous experiments at different experimental conditions, the 

evaluation of the effect of temperature on kinetic parameters is one of the most obvious 

applications, considering the significant saving of time and resources. 

Our research on this subject began in the work of the master’s thesis (Vital-Jacome 

2013). In that work, we estimated the effect of temperature on the kinetic parameters 

of the Monod model (𝜇𝑚, 𝐾𝑆, 𝑌𝑋/𝑆) for activated sludge and a nitrifying consortium; 

however, no attention was paid to the possible identifiability problems of the model, 

and how these problems could affect the trends of the parameters that we observed. 

Therefore, a more rigorous analysis considering all these omissions and testing more 

complex models would be useful. 

 

2.7.2 Microbial kinetics of aerobic granules 

Aerobic granules are defined as aggregates or biofilms of microbial origin, which do 

not coagulate under reduced hydrodynamic shear, and which settle significantly faster 

than activated sludge flocs (de Kreuk et al. 2007). Aerobic granules are one of the most 

promising technologies for the treatment of wastewater from municipal and industrial 

sources, as well as several organic toxic compounds and emerging contaminants (Adav 
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et al. 2008; Sarma et al. 2017). Because of their compact structure, these aggregates 

have many advantages compared to traditional processes of activated sludge flocs, for 

example: aerobic granules have better settle-ability, higher biomass retention, higher 

ability to resist high organic loading rates, and higher tolerance to toxicity (Adav et al. 

2008). 

Mathematical modelling of aerobic granular sludge has proven to be very useful to 

study these complex biofilm systems (Ni and Yu 2010). The bioconversion processes 

in the granules are determined by concentration gradients of oxygen and diverse 

substrates, which can be simulated using models. These models also require the 

estimation of kinetic parameters, and because of the aerobic nature of the granules, 

respirometric based methods can be useful for accomplishing this task. 

Parameters estimated in biofilm systems can be divided into two categories: intrinsic 

parameters, if they are obtained by minimizing mass transfer resistance; and apparent 

parameters, when mass transfer resistance affects their estimation. The intrinsic kinetic 

parameters are the true parameter values, which should be used in biofilm models based 

on diffusion and reaction. The apparent kinetic parameters are the observed parameter 

values, which encompass both the biological reaction and the internal/external mass 

transfer in a biofilm. 

Other useful parameters that can be estimated for biofilms are the effectiveness factor 

(𝜂), defined by Eq. (12), and the Thiele (𝜙) modulus, defined by Eq. (13) (Liu et al. 

2005). These parameters, which derived from models used in chemical engineering to 

describe diffusion and reaction in porous catalyst particles, provide valuable 

information in the design of biofilm processes. Typically, 𝜂 is a measure of the effective 

usage of the catalyst particle space (Álvarez-Ramírez et al. 2005), and can be calculated 

as a function of 𝜙.  

𝜂 =
𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 𝑤𝑖𝑡ℎ 𝑚𝑎𝑠𝑠 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑚𝑎𝑠𝑠 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑐𝑒
 (12) 
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𝜙 =
𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 𝑎𝑡 𝑡ℎ𝑒 𝑠𝑢𝑟𝑓𝑎𝑐𝑒

𝐷𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑡ℎ𝑒 𝑏𝑖𝑜𝑓𝑖𝑙𝑚
 (13) 

Unfortunately, in the modeling of aerobic granules, much attention has been paid to the 

development of models but little attention has been paid to the estimation of kinetic 

parameters, among other reasons, due to the difficulties of their estimation. Therefore, 

an approach to this problem based on microrespirometry may be useful. 
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CHAPTER 3 

PROBLEM STATEMENT 

Parameter estimation is a crucial task of model calibration, and is essential for the 

construction of models in bioprocesses. However, in biological systems, there are many 

difficulties that limit the reliable estimation of kinetic and stoichiometric parameters. 

At lab-scale, the development and further improvement of the existing experimental 

methods can help to overcome these difficulties, facilitating, and improving the 

accuracy of parameter estimation. 

In this context, in our research group at Cinvestav-IPN, we developed a high quality 

and high throughput method, which combines the use of novel microreactor 

technologies and respirometry based methods for parameter estimation. This method, 

called “microrespirometry”, allows to perform multiple simultaneous respirometric 

experiments, saving time, resources and improving the quality and quantity of the 

experimental data. We recently applied microrespirometry for the estimation of the 

kinetic parameters of the classical Monod model by linearization methods; however, 

the full potential of this method has not been exploited yet. 

Reaching this potential will provide us with a powerful tool for the estimation of kinetic 

parameters in bioprocesses. However, we must solve some of the new challenges 

related to the application of microrespirometry. For that reason, in this thesis we 

developed a study applying microrespirometry in various case studies, with the aim of 

explore the potential of this method for the characterization of bioprocesses. For the 

first time, we assessed a methodology for parameter estimation by model fitting; we 

considered the problems of identifiability and evaluated the impact of other possible 

sources of parameter uncertainty. In addition, we applied the microrespirometric 

method in two relevant topics: the estimation of the effect of temperature on kinetic 

parameters and the estimation of kinetic parameters on aerobic granules. The results of 

this thesis will provide valuable information for the use of microrespirometry and the 

modelling of bioprocesses. 
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CHAPTER 4 

OBJECTIVES AND HYPOTHESIS 

3.1 General objective 

To explore the potential of microrespirometry for the characterization of bioprocesses, 

by applying this method in various case studies for the estimation of kinetic and 

stoichiometric parameters of biokinetic models. 

 

3.2 Specific objectives 

To achieve the general objective, this thesis was divided into the following specific 

objectives: 

1. To establish the methodology for data analysis, parameter estimation and 

minimization of parameter uncertainties. 

 

2. To characterize the effect of temperature on kinetic parameters of the 

ASM3 model in activated sludge processes, by applying 

microrespirometry in combination with identifiability analysis. 

 

3. To characterize the microbial kinetics and mass transfer phenomena in 

aerobic granules degrading 4-cholorophenol, by applying 

microrespirometry for the estimation of kinetic parameters. 
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3.3 Hypothesis 

To address the objectives previously mentioned, we defined the following hypotheses 

(each one related to one of the corresponding papers): 

 

1. In microrespirometry, parameter estimation is affected by several sources of 

uncertainty, which can be measured and minimized (paper I). 

 

2. Microrespirometric data from pulses of increasing concentrations can be used 

for calibration and validation of activated sludge models (paper II). 

 

3. The temperature effect on the parameters of the ASM3 model can be 

determined by a combination of identifiability analysis and microrespirometry 

experiments (paper III). 

 

4. The intrinsic parameters, the apparent parameters and the effectiveness factor 

of aerobic granules degrading 4-chlorophenol can be estimated using data from 

the microrespirometry method (paper IV). 

 

5. The effectiveness factor in aerobic granules with substrate inhibition kinetics 

can be predicted by its relationship with the Thiele modulus (paper V). 

 

6. The bacterial community structure in a SBR degrading 4-chlorophenol will 

specialize after the formation of aerobic granules by changes in the operating 

conditions (paper VI). 
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CHAPTER 5 

RESULTS AND DISCUSSION 

In this thesis, we applied microrespirometry for the characterization of bioprocesses 

related to wastewater treatment. The results of these studies are found in the following 

publications, which are the main products of this thesis: 

 

In paper I, we used microrespirometry to characterize two wastewater processes: the 

aerobic degradation of 4-chlorophenol by acclimated sludge, and synthetic wastewater 

treatment by activated sludge. We estimated the parameters of a Haldane model and a 

modified ASM3 model by model fitting. For data analysis, we defined two different 

approaches for parameter estimation: mean parameters (MP) and multiple replicate 

parameters (MRP). In addition, we evaluated the impact of the main sources of 

parameter uncertainty: measurement errors, number of replicates, and parameter 

correlations. In the paper, we compared between MP and MRP, and discussed the best 

way to reduce the uncertainty of the parameter estimates. 

 

In paper II, first, we selected an identifiable parameter subset of the ASM3 model 

based on previously published methods (Brun et al. 2002). Then, we used data 

generated by microrespirometry from pulses of different substrate concentrations, and 

performed the calibration and validation of the model. After analyzing the data, we 

found significant modelling limitations of the ASM3 model, and proposed a multi-

response approach to overcome these issues. This paper is not ready for publication; it 

will be enriched with data from other activated sludge processes used in the research 

group, with the aim of having more experimental evidence to generalize the 

conclusions. However, the data analysis strategy that we developed in this paper was 

of great importance, because it was the basis of the strategy used in paper III. 
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In paper III, we addressed the effect of temperature with a rigorous analysis, 

considering the identifiability problems of the ASM3 model, and we carried out a 

model calibration and validation at each experimental condition. For this, we used the 

strategy developed in paper II (parameter subset selection plus model calibration and 

validation), to estimate the kinetic and stoichiometric parameters of the ASM3 model 

at different temperature conditions (20-38 °C). We discussed the effect of temperature 

on the selected parameters and their possible implications. In addition, we performed 

simulations of a continuous stirred thank reactor (CSRT) considering the ASM3 model 

calibrated by temperature, and discussed the possible implications for reactor 

operation. This paper is in the final stages of review, almost ready to be submitted. 

 

In this thesis, we paid special attention to the reliability of the parameter estimates. For 

that reason, we performed practical identifiability analyses using previous methods 

described in literature, based on the FIM and parameter sensitivity functions. In paper 

I and V, the FIM was used to determine the confidence intervals of the estimated 

parameters, in paper II and III, the methodology proposed by Brun et al. (2002) was 

used to find identifiable parameter subsets, and the FIM to determine the confidence 

intervals. 

 

In paper IV, we applied microrespirometry on an aerobic granular sludge degrading 

4-chlorophenol (4-CP). We followed the granulation process on a Sequencing Batch 

Reactor feeding with 4-CP as sole carbon source. Besides some typical analyses as 

granule size, volatile suspended solids, and organic removal rate, we followed the 

changes of the intrinsic and apparent kinetic parameters of a Haldane model during the 

granulation process. Finally, we proposed an innovative approach to use data of the 

oxygen uptake rate of granules and disaggregated granules, to estimate the 

effectiveness factor as a function of the substrate concentration. 
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Paper V is a personal contribution to the understanding of kinetics and mass transfer 

on aerobic granules. This paper is in preparation for publication, and still needs some 

peer review. In this paper, I presented the calibration of a biofilm model using Haldane 

kinetics for aerobic granules degrading organic toxic pollutants. The model was 

calibrated using data from microrespirometric experiments. The calibrated model 

allowed the simulation of respirograms obtained with granular biomass, and it was used 

to evaluate the impact of particle size on the estimation of apparent parameters. 

Besides, I presented a generalization of the model that allows the prediction of the 

effectiveness factor based on the evaluation of the Thiele modulus and some 

dimensionless parameters. The results of this study have implications for the 

understanding and design of aerobic granular systems. 

 

Paper VI resulted from collaboration with the research group of Dr. Luc Dendooven 

(Cinvestav-IPN). For this paper, we took several samples during the operation of the 

Sequencing Batch Reactor with aerobic granules degrading 4-chlorophenol, previously 

studied in paper IV. The new objective was to evaluate the changes of the microbial 

populations during the granulation process. Dr. Dendooven and his team performed the 

molecular biology experiments and the special data analysis needed for this paper. 
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CHAPTER 6 

CONCLUSIONS 

In paper I, we showed that the best way to analyze microrespirometric data, is to 

combine the information of all replicate experiments at the same time (MRP approach), 

in a single optimization step to estimate the model parameters; and to performed the 

FIM analysis for the same approach to determine the confidence intervals. We also 

showed that the replicates of the experiments in the microreactor system are completely 

reproducible and that only 5 replicates are enough for reliable parameter estimation. 

 

We demonstrated in paper II that in one single experiment in microreactors, we can 

produce enough information to perform model calibration and still have enough 

information for a preliminary validation of the model. This is convenient for the saving 

of time and resources and can help us to identify modeling limitations, as we found for 

the ASM3 model.  

 

The effect of temperature on kinetic parameters can be determined by 

microrespirometry using a very simple experimental design (paper III). A convenient 

strategy to calibrate the effect of temperature on models, is by preselecting an 

identifiable parameter subset and determining the effect of temperature only on the 

parameters of that subset. In the ASM3 model, some of the kinetic parameters followed 

a typical bell curve as a function of temperature, while other kinetic parameters did not 

follow a clear trend. Meanwhile, temperature did not significantly affect the 

stoichiometric parameters. Knowing the effect of temperature on the model parameters, 

can help us to have a better prediction and control of the operation of bioprocesses. 
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Microrespirometry can be used to estimate intrinsic and apparent kinetic parameters in 

aerobic granular processes. The parameters change significantly during the formation 

of aerobic granules. The strategy that we proposed in paper IV, which is based on the 

measurement of oxygen uptake rates, is useful for the estimation of the effectiveness 

factor of aerobic granules.  

 

Apparent parameters describing aerobic granules with Haldane kinetics are strongly 

affected by mass transfer limitations. These effects can be modeled using the approach 

that we proposed in paper V, plus microrespirometry data for model calibration. The 

theoretical approach that we developed for the prediction of the effectiveness factor, 

has important implications for the understanding and design of aerobic granular 

systems. 

 

Finally, the general conclusion of this thesis, is that microrespirometry is a powerful 

method for the estimation of parameters of biokinetic models, specially, when it is 

combined with the rest of the knowledge gained through many years of experience in 

parameter estimation. The proper use of microrespirometric methods will help us to 

improve our understanding of biological processes, and it will facilitate significantly 

the model calibration task in biotechnology. 
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CHAPTER 7 

FUTURE RESEARCH 

Future research on the topics addressed in this thesis should include: 

1. Other case studies. Microrespirometry should not only be applied to wastewater 

treatment processes, but also to other areas of biotechnology where an 

important improvement in model calibration is needed. 

 

2. Other models. When working with other case studies we must use other models. 

The strategies followed to estimate the parameters of other models will change 

the current ways to use microrespirometry. 

 

3. Other methods. The knowledge gained from working with ASM models in 

literature is extensive, and there are other methods that can help to reduce 

practical identifiability problems in model calibration. Microrespirometry can 

benefit from the application of such methods; for example, the combination 

with titrimetric measures and the optimal experimental design methods 

(Petersen 2000), or other methods for selecting identifiable parameter subsets 

(Ruano et al. 2007). 

 

4. Other sensors. The current trend of technology is the miniaturization of sensors, 

thus new sensors can be part of the future designs of microreactor systems. The 

estimation of biokinetic parameters will benefit greatly from having 

information from other variables measured online and accurately. 

 

In the end, we should state that extending its application to other practical cases, is the 

only way we can assess the scope and limitations of microrespirometry. 
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