
Centro de Investigación y de Estudios Avanzados
del Instituto Politécnico Nacional

Unidad Cinvestav Tamaulipas

Clasificación de Covering Arrays

Tesis que presenta:

Idelfonso Izquierdo Marquez

Para obtener el grado de:

Doctor en Ciencias
en Ingeniería y Tecnologías

Computacionales

Director de la Tesis:
Dr. José Torres Jiménez

Cd. Victoria, Tamaulipas, México Abril, 2019

Center for Research and Advanced Studies
of the National Polytechnic Institute

Cinvestav Tamaulipas

Classification of Covering Arrays

Thesis by:

Idelfonso Izquierdo Marquez

as the fulfillment of the
requirement for the degree of:

Doctor of Science
in Engineering and Computing

Technologies

Thesis Director:
Dr. José Torres Jiménez

Cd. Victoria, Tamaulipas, México April, 2019

© Copyright by
Idelfonso Izquierdo Marquez

2019

The thesis of Idelfonso Izquierdo Marquez is approved by:

__

Dr. Héctor Hugo Avilés Arriaga

Dr. José Juan García Hernández

Dr. Ricardo Landa Becerra

Dr. Said Polanco Martagón

Dr. José Torres Jiménez, Committe Chair

Cd. Victoria, Tamaulipas, México, April 5 2019

To my parents Uriel and María Magdalena,
and to my brothers and sisters Deisy, Andy, Brenda, Noel, Elida, and Nahúm.

Acknowledgements

• I am very grateful to CINVESTAV-Tamaulipas for accepting me into its doctoral program, and
for providing me with the necessary means to complete the degree.

• I express my gratitude to CONACYT for its doctoral scholarship, which allowed me to
concentrate full-time on my research.

• I acknowledge to ABACUS-CINVESTAV and to CINVESTAV-CGSTIC for providing access to
high performance computing.

• Finally, I thank to my advisor Dr. José Torres Jiménez for his invaluable guidance and help.

Contents

Contents i

List of Figures v

List of Tables vii

List of Algorithms ix

Publications xi

Resumen xiii

Abstract xv

1 Introduction 1
1.1 Covering arrays . 2
1.2 Background on covering arrays . 5

1.2.1 Covering array number . 5
1.2.2 Isomorphisms of covering arrays . 6

1.3 Classification of covering arrays . 8
1.4 Research problem, hypothesis, and objectives . 12
1.5 Organization of the document . 14
1.6 Chapter summary . 15

2 State of the Art 17
2.1 Algebraic methods . 18

2.1.1 Case t = v = 2 . 18
2.1.2 Johnson-Entringer construction . 19
2.1.3 Binary orthogonal arrays with t+ 1 columns 20
2.1.4 Zero-Sum . 22
2.1.5 Other families of orthogonal arrays . 24

2.2 Computational methods . 24
2.2.1 Classification of 2-surjective binary codes 25
2.2.2 Classification of Latin squares . 25
2.2.3 Classification of MOLS . 27
2.2.4 Extension of CAs . 27
2.2.5 NonIsoCA algorithm . 29
2.2.6 Canonical augmentation . 31

2.3 Exact methods to construct covering arrays . 33
2.3.1 The automatic generator EXACT . 33

i

2.3.2 New backtracking algorithm . 33
2.3.3 NonIsoCA algorithm . 34
2.3.4 Constraint programming . 34
2.3.5 SAT encodings . 35

2.4 Juxtaposition of smaller objects . 35
2.5 Chapter summary . 37

3 Improved NonIsoCA Algorithm 39
3.1 Improved algorithm . 39

3.1.1 Rules for valid symbols . 40
3.1.2 Construction of covering arrays . 44
3.1.3 Simplified canonical test . 46
3.1.4 ExtendNonIsoCA algorithm . 48

3.2 Complexity of the improved algorithm . 48
3.3 Parallelization of the improved algorithm . 50

3.3.1 Parallelization strategy . 51
3.3.2 Implementation in MPI . 52

3.4 Chapter summary . 57

4 Juxtaposition of Covering Arrays 59
4.1 Structure and existence of covering arrays . 60
4.2 Classification of CAs by juxtapositions . 63

4.2.1 Strategy to generate all possible juxtapositions 63
4.2.2 Generating all juxtapositions of v non-isomorphic CAs 67
4.2.3 Canonization of covering arrays . 72

4.3 Complexity of the JuxtaposeCA algorithm . 73
4.4 Parallelization of the JuxtaposeCA algorithm . 75

4.4.1 Parallelization of the calls to generate_juxtapositions(T) 75
4.4.2 Parallelization of the permutations of columns and symbols 79

4.5 Chapter summary . 85

5 Computational Results 87
5.1 Results of the improved NonIsoCA algorithm . 87

5.1.1 Comparisons with the previous algorithm 88
5.1.2 New classification results and new CANs 89

5.2 Results of the JuxtaposeCA algorithm . 92
5.2.1 Classification of CA(32; 4, 13, 2), CA(64; 5, 14, 2), CA(128; 6, 15, 2), and

CA(256; 7, 16, 2) . 94
5.2.2 Classification of CA(52; 5, 8, 2) . 96
5.2.3 Classification of CA(54; 5, 9, 2) . 97
5.2.4 Improving the lower bound of CAN(6, 9, 2) 98
5.2.5 Results for v = 3 . 100
5.2.6 Summary of the new results . 101

ii

5.2.7 Consistency check . 103
5.3 When to use NonIsoCA or JuxtaposeCA . 103
5.4 Performance of the parallel implementations . 108

5.4.1 Parallel version of the improved NonIsoCA algorithm 108
5.4.2 Parallel versions of the JuxtaposeCA algorithm 110

5.5 Chapter summary . 112

6 Conclusions 115
6.1 Summary of the computational results . 115
6.2 Comparison with state of the art algorithms . 117
6.3 Final remarks on the new algorithms . 119
6.4 Future work . 120
6.5 Journal papers . 121

iii

List of Figures

1.1 A covering array CA(12; 3, 11, 2) . 2
1.2 A covering array CA(11; 2, 5, 3) . 3
1.3 Example of the use of CAs as test suites . 4
1.4 The canonical representatives of the three isomorphism classes of CA(6; 2, 7, 2) . . . 9

2.1 Example of the construction for t = v = 2 . 18
2.2 CAs produced by the construction of Johnson-Entringer for t = 4 20
2.3 The two OA(16; 4, 5, 2) that make a partition of the 32 binary tuples of length 5 . . 22
2.4 Example of the Zero-Sum technique to add a column to a CA(27; 3, 3, 3) 23
2.5 Example of partial arrays in the construction of the non-isomorphic CA(6; 2, 6, 2) . . 30

3.1 Examples of the applications of rules R1, R2, and R3 41
3.2 Example of the application of rule R4 . 42
3.3 Example of the application of rule R5 . 44

4.1 Structure of the covering array C = CA(11; 3, 5, 2) 61

5.1 The canonical representative of the unique isomorphism class of CA(54; 5, 9, 2) . . . 98
5.2 Execution times of the parallel NonIsoCA algorithm for CA(15; 3, 12, 2) 109
5.3 Execution times of the parallel NonIsoCA algorithm for CA(27; 4, 12, 2) 110
5.4 Execution times of the first parallel version of the JuxtaposeCA algorithm for

CA(31; 4, 13, 2) . 112
5.5 Execution times of the second parallel version of the JuxtaposeCA algorithm for

CA(340; 8, 10, 2) . 113

v

List of Tables

1.1 Families of optimal CAs with only one isomorphism class 10
1.2 Optimal CAs classified by computation, part I . 10
1.3 Optimal CAs classified by computation, part II . 11

2.1 First seven optimal and unique CAs with t = v = 2 and maximum number of columns 19
2.2 First seven optimal and unique CAs obtained with the Johnson-Entringer construction 20
2.3 First seven optimal and unique CAs of the case v = 2 and k = t+ 1 21
2.4 First seven optimal and unique CAs obtained with the Zero-Sum construction for v = 3 24
2.5 Inequivalent 2-surjective binary codes with cardinality N = 6, 7, 8 26
2.6 Main classes of Latin squares of order 1 to 10 . 27
2.7 Paratopy classes of k-MOLS(n) . 28
2.8 CAs classified by Colbourn et al. 29
2.9 CAs classified by using the NonIsoCA algorithm . 31
2.10 CAs classified by canonical augmentation . 32

5.1 Comparison between the original and the improved sequential algorithm when v = 2
and t = 2 . 89

5.2 Comparison between the original and the improved sequential algorithm for v = 2
and t = 3, 4; and for v = 3, 4 and t = 2 . 90

5.3 Optimal or unknown CAs classified by the improved sequential NonIsoCA algorithm . 91
5.4 New covering array numbers obtained with the improved sequential algorithm 92
5.5 Non-optimal CAs classified by the improved parallel NonIsoCA algorithm 93
5.6 Computations to find the value of CAN(5, 8, 2) . 96
5.7 Computations to find the value of CAN(5, 9, 2) . 97
5.8 Computations to improve the lower bound of CAN(6, 9, 2) 99
5.9 New classification results obtained with the JuxtaposeCA algorithm 102
5.10 Summary of the new CANs and of the improved lower bounds of CAN 103
5.11 Construction of known results using the JuxtaposeCA algorithm 104

vii

List of Algorithms

1 search_column(A, r) . 45
2 is_canonical(A, r) . 46
3 test_column(A, r, s) . 47
4 master() . 55
5 handle_message(message) . 55
6 slave() . 56
7 search_column(A, r) . 57

8 juxtapose_algorithm(N, k′, t′, v) . 67
9 generate_juxtapositions(T = (A0, A1, . . . , Av−1)) 70
10 add_column(i, r) . 71
11 canonize(A) . 72
12 check_column(A, s) . 73
13 master(N, k′, t′, v) . 76
14 canonize_CAs(R) . 77
15 handle_message(message) . 78
16 slave() . 79
17 add_column(i, r) . 80
18 master(N, k′, t′, v) . 81
19 generate_partitions(T) . 82
20 slave() . 83
21 generate_juxtapositions(T = (A0, A1, . . . , Av−1), PC, PS) 84
22 add_column_case2(i, r) . 86

ix

Publications

Idelfonso Izquierdo-Marquez and Jose Torres-Jimenez, New covering array numbers, Applied
Mathematics and Computation, Vol 353, 2019, pp 134-146.

Idelfonso Izquierdo-Marquez and Jose Torres-Jimenez, New optimal covering arrays using an orderly
algorithm, Discrete Mathematics, Algorithms and Applications, Vol 10, No 1, 2018, 16 pages.

Jose Torres-Jimenez, Idelfonso Izquierdo-Marquez, and Himer Avila-George, Methods to construct
uniform covering arrays, IEEE Access, accepted for publication.

Idelfonso Izquierdo-Marquez, Jose Torres-Jimenez, Brenda Acevedo-Juárez, and Himer Avila-George,
A greedy-metaheuristic 3-stage approach to construct covering arrays, Information Sciences, Vol 460-
461, 2018, pp 172-189.

Jose Torres-Jimenez and Idelfonso Izquierdo-Marquez, Covering arrays of strength three from
extended permutation vectors, Designs, Codes and Cryptography, Vol 86, No 11, 2018, pp 2629-
2643.

Jose Torres-Jimenez and Idelfonso Izquierdo-Marquez, A simulated annealing algorithm to construct
covering perfect hash families, Mathematical Problems in Engineering, Vol 2018, Article ID 1860673,
14 pages.

Himer Avila-George, Jose Torres-Jimenez, and Idelfonso Izquierdo-Marquez, Improved pairwise test
suites for non-prime-power orders, IET Software, Vol 12, No 3, 2018, pp 215-224.

Jose Torres-Jimenez, Idelfonso Izquierdo-Marquez, and Himer Avila-George, Search-based software
engineering for constructing covering arrays, IET Software, Vol 12, No 4, 2018, pp 324-332.

xi

Resumen

Clasificación de Covering Arrays

por

Idelfonso Izquierdo Marquez
Unidad Cinvestav Tamaulipas

Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 2019
Dr. José Torres Jiménez, Director

Un covering array CA(N ; t, k, v) es un arreglo de tamaño N × k sobre Zv = {0, 1, . . . , v − 1} tal

que cada subarreglo de t columnas contiene como renglón al menos una vez cada una de las t-tuplas

sobre Zv. El mínimo número de renglones para el cual existe un CA con fuerza t, k columnas, y

orden v, es el covering array number de t, k, v, y se denota por CAN(t, k, v).

Hay tres isomorfismos en los CAs: permutaciones de renglones, permutaciones de columnas, y

permutaciones de símbolos en una columna. Para valores particulares de N , t, k, v, el conjunto de

todos los covering arrays CA(N ; t, k, v) se particiona en clases de CAs isomórficos. Todos los CAs

de una clase son isomórficos entre sí, pero ningún CA de una clase es isomórfico a un CA de otra

clase. La clasificación de CAs implica la generación de un elemento de cada clase.

En esta tesis se desarrollan dos nuevos algoritmos de clasificación; el primero es una versión

mejorada de un algoritmo reportado previamente el cual sigue la estrategia de generación ordenada

de subarreglos, y el segundo se basa en yuxtaponer verticalmente v CAs de fuerza t para generar

CAs de fuerza t+ 1. Estos dos algoritmos pueden clasificar CAs más grandes que los clasificados por

algoritmos del estado del arte. Para reducir el tiempo de ejecución de los algoritmos, desarrollamos

versiones paralelas de ellos usando el modelo de paso de mensajes. Los resultados computacionales

más importantes son la clasificación de 39 nuevos CAs, el hallazgo de 19 nuevos CANs, y la mejora

de 13 cotas inferiores de CANs.

xiii

Abstract

Classification of Covering Arrays

by

Idelfonso Izquierdo Marquez
Cinvestav Tamaulipas

Center for Research and Advanced Studies of the National Polytechnic Institute, 2019
Dr. José Torres Jiménez, Advisor

A covering array CA(N ; t, k, v) is an array of size N × k over Zv = {0, 1, . . . , v− 1} such that every

subarray of t columns contains as a row each t-tuple over Zv at least once. The minimum number

of rows for which exists a CA with strength t, k columns, and order v, is the covering array number

of t, k, v, and it is denoted by CAN(t, k, v).

There are three isomorphisms in CAs: row permutations, column permutations, and symbol

permutations in a column. For particular values of N , t, k, v, the set of all covering arrays

CA(N ; t, k, v) is partitioned in classes of isomorphic CAs. All CAs in a class are isomorphic among

them, but no CA of one class is isomorphic to a CA of another class. The classification of CAs

implies the generation of one element of each class.

In this thesis there are developed two new classification algorithms; the first one is an improved

version of a previously reported algorithm which follows the strategy of orderly generation of

subarrays, and the second one is based on juxtaposing vertically v CAs of strength t to generate CAs

of strength t+ 1. These two algorithms can classify CAs larger than those classified by state of the

art algorithms. To reduce the execution time of the algorithms, we develop parallel versions of them

using the message passing model. The main computational results are the classification of 39 new

CAs, the finding of 19 new CANs, and the improvement of 13 lower bounds of CANs.

xv

1
Introduction

A covering array CA(N ; t, k, v) is an array of size N × k over Zv = {0, 1, . . . , v − 1} such that

every subarray of t columns contains as a row each t-tuple over Zv at least once; the parameter

t is called the strength of the CA. For given parameters N , t, k, v the set of all covering arrays

CA(N ; t, k, v) is partitioned in classes of isomorphic CAs. The problem of classifying CAs consists

in generating one element of each isomorphism class. In this thesis we develop two new algorithms

for the classification of CAs; the first algorithm is an improved version of a previously reported

algorithm which follows the strategy of orderly generation of subarrays, and the second algorithm is

based on juxtaposing vertically v CAs of strength t to generate CAs of strength t + 1. Section 1.1

introduces CAs and gives two examples of them. Section 1.2 provides useful background on CAs,

specially the three isomorphisms of CAs. Section 1.3 describes the classification of CAs, presents

some applications of it, and lists known classification results for optimal CAs. Section 1.4 states the

research hypothesis, the main objective, and the particular objectives of the work. Finally, Section

1.5 provides an overview of the remaining chapters.

1

2 1.1. Covering arrays

1.1 Covering arrays

Let N , t, k, v be positive integers. A covering array CA(N ; t, k, v) is an array with N rows, k

columns, and entries from the set Zv = {0, 1, . . . , v − 1}, such that every subarray of t columns

contains as a row each t-tuple over Zv at least once. So, each of the
(
k
t

)
subarrays of t columns

contains at least once each element of Ztv, which is the set of the vt tuples of length t with symbols

from Zv. The integers v and t are called respectively the order and the strength of the CA.

Figure 1.1 shows a covering array CA(12; 3, 11, 2); this CA has N = 12 rows, k = 11 columns,

order v = 2, and strength t = 3. Then, each of the
(
k
t

)
=
(
11
3

)
= 165 subarrays of t = 3 columns

contains as a row the eight 3-tuples over Z2 = {0, 1} at least once; these eight 3-tuples are the

elements of the set Z3
2 = {(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)}.

Take for example the subarray formed by the first two columns and by the fourth column; these

columns are marked with a down arrow in the figure. The first row of the subarray contains the tuple

(1, 1, 0), the second row contains the tuple (1, 0, 0), and so on. The first occurrence of the eight

3-tuples over Z2 in the above subarray is colored in purple. Some 3-tuples over Z2 occur more than

once in a subarray of 3 columns, but the requirement is that they appear at least once.

↓ ↓ ↓
1 1 0 0 1 1 0 0 1 1 1
1 0 0 0 0 0 1 1 1 0 1
1 1 1 1 1 0 0 1 1 0 0
0 1 0 1 1 1 1 1 0 0 1
1 0 1 0 1 1 1 0 0 0 0
1 0 1 1 0 1 0 1 0 1 1
0 0 0 1 0 1 0 0 1 0 0
0 1 1 0 0 1 1 1 1 1 0
0 0 0 0 1 0 0 1 0 1 0
0 0 1 1 1 0 1 0 1 1 1
0 1 1 0 0 0 0 0 0 0 1
1 1 0 1 0 0 1 0 0 1 0

Figure 1.1: A covering array CA(12; 3, 11, 2). In the columns marked with a down arrow the first
occurrence of the eight 3-tuples over Z2 = {0, 1} is colored in purple.

1. Introduction 3

If a subarray of t columns contains as a row a t-tuple x over Zv we say that the subarray covers

the tuple x. If x is not covered in the subarray then x is a missing tuple. Figure 1.2 shows a

CA(11; 2, 5, 3); in this case, each of the
(
k
t

)
=
(
5
2

)
= 10 subarrays formed by t = 2 columns covers

the nine 2-tuples over Z3 = {0, 1, 2} at least once. For example, in the subarray formed by the

second and by the last column, the first occurrence of the tuples (0, 0), (0, 1), (0, 2), (1, 0), (1, 1),

(1, 2), (2, 0), (2, 1), (2, 2) is colored in purple.

↓ ↓
0 2 0 1 0
2 0 2 1 2
1 2 0 2 2
0 2 2 0 1
2 1 0 0 0
2 0 0 2 1
0 1 2 2 2
0 0 1 0 2
1 0 2 0 0
1 1 1 1 1
2 2 1 2 0

Figure 1.2: A covering array CA(11; 2, 5, 3). In the columns marked with a down arrow the first
occurrence of the nine 2-tuples over Z3 is colored in purple.

The goal of the construction of CAs is to minimize the number of rows N . Then, for given

number of columns k, strength t, and order v, the objective is to employ as few rows as possible to

cover at least once all t-tuples over Zv in every subarray of t columns. CAs have practical applications

in several areas including GUI testing [54], fire accident reconstruction [53], testing the effects of

multiple inputs in regulating a biological system [42], clustering business process models [38], and

specially in combinatorial testing [26].

The objective of the combinatorial testing technique is to detect failures triggered by interactions

among input parameters, that is, failures triggered when some input parameters take specific values.

As an example consider the software component to set the advanced configurations of the Calendar

application of the macOS operating system, shown in Figure 1.3. To perform an exhaustive testing

4 1.1. Covering arrays

CA(6; 2, 5, 2) =


1 0 0 0 0
1 1 1 0 1
0 1 0 1 1
1 0 1 1 0
0 0 1 1 1
0 1 0 0 0


Figure 1.3: Example of the use of CAs as test suites. Every row of the CA is a test case for the five
parameters of the software component.

of this software component we require a set of 25 = 32 test cases, because there are two possible

values (unselected and selected) for each of the five parameters. If only the interactions of size t = 2

are tested, then we require six test cases because we can use the CA(6; 2, 5, 2) of the same Figure 1.3

as test suite. Every row of this CA is a test case for the five input parameters; the value “unselected”

is represented by 0 and “selected” is represented by 1. The six rows of this CA cover at least once

the four possible configurations of values (unselected, unselected), (unselected, selected), (selected,

unselected), and (selected, selected) between any two parameters. If for example a failure occurs

when parameters p0 and p4 interact, then the failure will be detected because there is at least one

test case for the four possible combinations of values between p1 and p4.

The value of the strength t modulates the coverage of interactions tested; if t is equal to the

number of parameters k then we have full coverage. A series of studies conducted by the National

Institute of Standards and Technology (NIST), in a wide range of domains, found that all failures

in the software products under study were due to interactions involving at most six parameters

[50, 28, 29, 27]. This result indicates that a failure is triggered by the interaction of a relatively

small number of parameters, and therefore testing all configurations of size t < k is an effective way

to detect failures in software products.

The construction of CAs is a broad and active field, and several works have reviewed the different

strategies to construct CAs. The works of Hartman [15] and Colbourn [8] review combinatorial and

searching techniques. Lawrence et al. [31] present a survey for binary CAs, which are CAs of order

1. Introduction 5

two. Kuliamin and Petukhov [30] summarize a large number of methods to construct CAs, and a

special characteristic of their work is the study of the complexity of the algorithms. Torres-Jimenez

and Izquierdo-Marquez [45] describe briefly some construction methods. Nie and Leung [35] study

construction methods in the context of test suite generation for combinatorial testing; also Khalsa

and Labiche [23] present the methods in the context of combinatorial testing and review methods

to construct CAs of various types, like CAs with variable strength and CAs with constraints. Finally,

the work of Zhang et al. [55] explains in great detail several techniques for constructing CAs.

1.2 Background on covering arrays

This section presents some important concepts about CAs needed in the rest of the document.

Subsection 1.2.1 introduces the concepts of minimum number of rows (CAN) and maximum number

of columns (CAK) for CAs; and Subsection 1.2.2 presents the three isomorphisms of CAs.

1.2.1 Covering array number

Given the values of the strength t, the number of columns k, and the order v, the problem of

constructing CAs consists in finding the smallest N such that there exists a CA(N ; t, k, v). This

smallest N is the covering array number of t, k, and v, which is denoted by CAN(t, k, v). Then,

CAN(t, k, v) = min{N : ∃ CA(N ; t, k, v)}.

Currently, there is no direct way to obtain CAN(t, k, v) for general values of t, k, and v. Some

relevant cases with known values of CAN(t, k, v) are these:

• CAN(t, t+ 1, 2) = 2t for each t ≥ 1.

• CAN(2, k, 2) = N , where N is the least positive integer for which
(
N−1
dN

2
e

)
≥ k [21, 24].

• CAN(t, v + 1, v) = vt for v prime-power and v > t [5].

• CAN(t, t+ 1, v) = vt for v prime-power and v ≤ t [10].

6 1.2. Background on covering arrays

• CAN(3, v + 2, v) = v3 for v = 2n [5].

• CAN(v − 1, v + 2, v) = vv−1 for v = 2n [16].

• CAN(t, t+ 2, 2) = b4
3
2tc for each t ≥ 1 [19].

Apart from these cases, only a few CANs have been found by computational search. In Chapter

2 we will review computational methods to obtain CAN values.

A CA with strength t and order v must have at least vt rows; so a trivial lower bound for the

covering array number is CAN(t, k, v) ≥ vt. Some works where CAN lower bounds are studied are

[11, 7]. Similarly, a trivial upper bound for CAN(t, k, v) is vk, which is the number of vectors of

length k over Zv. The study of theoretical upper bounds on the size of CAs focuses on determining

the value of CAN(t, k, v) as function of k for fixed t and v. Recent works on this topic are [13, 39].

The improvement of upper bounds for CAN(t, k, v) is an active research topic, motivated in part

by the reduction of the number of test cases when CAs are used as test suites. In the last years, the

Covering Array Tables [9] have been used as the main source to report improvements in the upper

bounds of covering array numbers.

Another optimality criteria for CAs is the maximum number of columns k that we can have

for fixed values of N , t, and v. The maximum number of columns k for which a CA(N ; t, k, v)

exists is denoted by CAK(N ; t, v) = max{k : ∃CA(N ; t, k, v)}. Values CAN and CAK are related:

CAN(t, k, v) = min{N : CAK(N ; t, v) ≥ k} and CAK(N ; t, v) = max{k : CAN(t, k, v) ≤ N}.

A CA can be optimal in the number of rows but be non-optimal in the number of columns; if

CAN(t, k, v) = N and CAK(N ; t, v) = k, then CA(N ; t, k, v) is optimal in both the number of rows

and the number of columns.

1.2.2 Isomorphisms of covering arrays

There are three isomorphisms of CAs:

1. Permutation of rows

1. Introduction 7

2. Permutation of columns

3. Permutation of symbols in a column

Any combination of these three operations produces an isomorphic CA. Let A = CA(4; 2, 3, 2)

be the the following CA:

A =


0 0 0

0 1 1

1 0 1

1 1 0


Now, let B be the array whose rows 0, 1, 2, 3 are respectively the rows 2, 0, 3, 1 of A. Similarly,

let C be the array whose columns 0, 1, 2 are respectively the columns 1, 2, 0 of A. Finally, let D

be the array derived from A by permuting symbols in the last column of A. These arrays B, C, D,

shown next, are isomorphic to A:

B =


1 0 1

0 0 0

1 1 0

0 1 1

 C =


0 0 0

1 1 0

0 1 1

1 0 1

 D =


0 0 1

0 1 0

1 0 0

1 1 1


We will use the symbol ' to denote isomorphism between CAs; so, B ' A, C ' A, and D ' A.

For a covering array CA(N ; t, k, v) there are N ! row permutations, k! column permutations,

and (v!)k different combinations of symbol permutations in the columns. The number of different

combinations of symbol permutation is (v!)k because there are v! possible symbol permutations for

each of the k columns. The operation of symbol permutation in a column is also called relabeling.

In this way, the number of CAs isomorphic to one in particular is N ! k! (v!)k.

Isomorphic CAs are equivalent because the operations of row permutation, column permutation,

and symbol permutation do not change the coverage properties of the matrix over which they are

applied; that is, if the initial matrix is a CA then the matrix after the operations is also a CA.

Similarly, if the initial matrix has m missing tuples, then the matrix after the operations also has m

missing tuples, although not necessarily the same missing tuples.

8 1.3. Classification of covering arrays

On the other hand, non-isomorphic CAs can not be transformed among them by permutations

of rows, columns, and symbols. For particular values of N , t, k, v, the set of all covering arrays

CA(N ; t, k, v) is partitioned in classes C0, C1, . . ., Cn−1 of isomorphic CAs, where all CAs in a class

are isomorphic among them, and no CA of one class is isomorphic to a CA of a distinct class. We

will also use the term distinct CAs to mean non-isomorphic CAs. The classification problem is the

generation of one element for each isomorphism class C0, C1, . . ., Cn−1.

In every isomorphism class C0, C1, . . ., Cn−1 we select one specific CA, the canonical one, to

be the representative of the class. For X = CA(N ; t, k, v) let λ(X) be the vector of length N · k

obtained by arranging the elements of X in column-major order. The CA X is canonical if for all

Y isomorphic to X the vector λ(X) is smaller than or equal to λ(Y) in lexicographic order. For

example, the following CA A = CA(6; 2, 7, 2) is the canonical representative of its isomorphism class:

A = CA(6; 2, 7, 2) =



0 0 0 0 0 0 0

0 0 0 1 1 1 1

0 1 1 0 0 1 1

0 1 1 1 1 0 0

1 0 1 0 1 0 1

1 1 0 1 0 1 0


In this case λ(A) = (0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1,

1, 0, 0, 1, 0, 1, 1, 0, 1, 0). For each of the 6! 7! (2!)7 CAs B = CA(6; 2, 7, 2) isomorphic to A, the

vector λ(A) is smaller than or equal to λ(B) in lexicographic order.

1.3 Classification of covering arrays

The classification problem for CAs is the problem of generating one element of each isomorphism

class in the set of all CAs with particular values of N , t, k, and v. The book of Kaski and Östergård

[20] presents general techniques for classifying combinatorial designs and error-correcting codes. One

of these techniques is orderly generation, where only the canonical representatives of the isomorphism

classes are considered in the search process, and all non-canonical elements are discarded; this is done

1. Introduction 9

to avoid the exploration of isomorphic objects. As an example of classification of CAs, Figure 1.4

shows the canonical CAs of the three isomorphism classes of CA(6; 2, 7, 2).


0 0 0 0 0 0 0
0 0 0 1 1 1 1
0 1 1 0 0 1 1
0 1 1 1 1 0 0
1 0 1 0 1 0 1
1 1 0 1 0 1 0




0 0 0 0 0 0 0
0 0 0 0 1 1 1
0 1 1 1 0 0 0
1 0 1 1 0 1 1
1 1 0 1 1 0 1
1 1 1 0 1 1 0




0 0 0 0 0 0 0
0 0 0 0 1 1 1
0 1 1 1 0 0 1
1 0 1 1 0 1 0
1 1 0 1 1 0 1
1 1 1 0 1 1 0


Figure 1.4: The canonical representatives of the three isomorphism classes of CA(6; 2, 7, 2).

Because the CAs obtained in the classification process are non-isomorphic among them, we use

the terms generation of non-isomorphic CAs or construction of non-isomorphic CAs to be equivalent

to the term classification of CAs; and if there are n isomorphism classes in the set of all CA(N ; t, k, v)

we say there are n non-isomorphic covering arrays CA(N ; t, k, v).

The classification of CAs is relevant in itself because it enables the progress of the state of the art

in the field of CAs. In addition, the classification of CAs is useful in the following practical situations:

• Generation of all CAs. Suppose C0, C1, . . . , Cn−1 are the non-isomorphic CAs for the

parameters N , t, k, v. Then, we can generate all possible CA(N ; t, k, v) by applying

the operations of row permutation, column permutation, and symbol permutation to each

C0, C1, . . . , Cn−1.

• Avoid redundant work. In many tasks all isomorphic CAs give the same result. For example,

all isomorphic CAs produce the same number of wildcards; being a wildcard an entry to which

any value can be assigned without affecting the coverage properties of the CA. In these tasks

it is enough to consider only the non-isomorphic CAs C0, C1, . . . , Cn−1.

• Find new CANs. If CA(N ; t, k, v) is known to exist and we find zero isomorphism classes

for CA(N − 1; t, k, v), then we have determined CAN(t, k, v) = N .

10 1.3. Classification of covering arrays

Table 1.1: Families of optimal CAs with only one isomorphism class.

CA Restrictions # Classes Reference
CA(N ; 2,

(
N−1
dN

2
e

)
, 2) N ≥ 4 1 [21]

CA(b4
3
2tc; t, t+ 2, 2) t ≥ 1 1 [19]

CA(2t; t, t+ 1, 2) t ≥ 1 1 [40]
CA(3t; t, t+ 1, 3) t ≥ 1 1 [17]

There are combinations of the parameters N , t, k, v for which the number of isomorphism classes

is known. When k = t and N = vt the unique solution up to isomorphisms is obtained by listing

the vt tuples of length t over Zv. So, the number of isomorphism classes for CA(vt; t, t, v) is one.

Other families of optimal CAs for which there is only one isomorphism class are given in Table 1.1.

The first column of the table shows the resulting CA, the second column indicates the restrictions

on the parameters of the CA, the third columns shows the number of isomorphism classes, and the

last column contains the references.

In addition to these infinite families of algebraic results, a number of CAs have been classified by

computation; these CAs are shown in Tables 1.2 and 1.3. The results in the tables do not include

those CAs classified by algebraic techniques.

Table 1.2: Optimal CAs classified by computation, part I.

CA # Classes Reference
CA(6; 2, 5, 2) 7 [22]
CA(6; 2, 6, 2) 4 [22]
CA(6; 2, 7, 2) 3 [22]
CA(6; 2, 8, 2) 1 [22]
CA(6; 2, 9, 2) 1 [22]
CA(7; 2, 11, 2) 26 [22]
CA(7; 2, 12, 2) 10 [22]
CA(7; 2, 13, 2) 4 [22]
CA(7; 2, 14, 2) 1 [22]
CA(8; 2, 16, 2) 700 759 [22]
CA(8; 2, 17, 2) 579 466 [22]
CA(8; 2, 18, 2) 440 826 [22]
CA(8; 2, 19, 2) 309 338 [22]
CA(8; 2, 20, 2) 200 326 [22]

CA # Classes Reference
CA(8; 2, 21, 2) 119 752 [22]
CA(8; 2, 22, 2) 65 993 [22]
CA(8; 2, 23, 2) 33 463 [22]
CA(8; 2, 24, 2) 15 596 [22]
CA(8; 2, 25, 2) 6 704 [22]
CA(8; 2, 26, 2) 2 646 [22]
CA(8; 2, 27, 2) 977 [22]
CA(8; 2, 28, 2) 343 [22]
CA(8; 2, 29, 2) 118 [22]
CA(8; 2, 30, 2) 39 [22]
CA(8; 2, 31, 2) 15 [22]
CA(8; 2, 32, 2) 5 [22]
CA(8; 2, 33, 2) 2 [22]
CA(8; 2, 34, 2) 1 [22]

1. Introduction 11

Table 1.3: Optimal CAs classified by computation, part II.

CA # Classes Reference
CA(12; 3, 6, 2) 9 [11]
CA(12; 3, 7, 2) 2 [11]
CA(12; 3, 8, 2) 2 [11]
CA(12; 3, 9, 2) 1 [11]
CA(12; 3, 10, 2) 1 [11]
CA(12; 3, 11, 2) 1 [11]
CA(15; 3, 12, 2) 2 [46]
CA(16; 3, 13, 2) 89 [46]
CA(24; 4, 7, 2) 1 [11]
CA(24; 4, 8, 2) 1 [11]
CA(24; 4, 9, 2) 1 [11]
CA(24; 4, 10, 2) 1 [11]
CA(24; 4, 11, 2) 1 [11]
CA(24; 4, 12, 2) 1 [11]
CA(9; 2, 4, 3) 1 [11]
CA(11; 2, 5, 3) 3 [11]
CA(12; 2, 6, 3) 13 [11]
CA(12; 2, 7, 3) 1 [11]
CA(13; 2, 8, 3) 5 [46]
CA(13; 2, 9, 3) 4 [46]
CA(14; 2, 10, 3) 4 490 [25]
CA(16; 2, 3, 4) 2 [33]
CA(16; 2, 4, 4) 1 [11]
CA(16; 2, 5, 4) 1 [11]
CA(19; 2, 6, 4) 4 [25]
CA(25; 2, 3, 5) 2 [33]
CA(25; 2, 4, 5) 1 [12]
CA(25; 2, 5, 5) 1 [12]

CA # Classes Reference
CA(25; 2, 6, 5) 1 [12]
CA(29; 2, 7, 5) 281 [25]
CA(36; 2, 3, 6) 12 [33]
CA(37; 2, 4, 6) 13 [25]
CA(39; 2, 5, 6) 289 [25]
CA(49; 2, 3, 7) 147 [33]
CA(49; 2, 4, 7) 7 [12]
CA(49; 2, 5, 7) 1 [12]
CA(49; 2, 6, 7) 1 [12]
CA(49; 2, 7, 7) 1 [12]
CA(49; 2, 8, 7) 1 [12]
CA(64; 2, 3, 8) 283 657 [33]
CA(64; 2, 4, 8) 2165 [12]
CA(64; 2, 5, 8) 39 [12]
CA(64; 2, 6, 8) 1 [12]
CA(64; 2, 7, 8) 1 [12]
CA(64; 2, 8, 8) 1 [12]
CA(64; 2, 9, 8) 1 [12]
CA(81; 2, 3, 9) 19 270 853 541 [33]
CA(81; 2, 4, 9) 91 846 374 [12]
CA(81; 2, 5, 9) 371 [12]
CA(81; 2, 6, 9) 96 [12]
CA(81; 2, 7, 9) 56 [12]
CA(81; 2, 8, 9) 15 [12]
CA(81; 2, 9, 9) 11 [12]
CA(81; 2, 10, 9) 7 [12]
CA(100; 2, 3, 10) 34 817 397 894 749 939 [33]

In the results of Tables 1.2 and 1.3 we make the following observations:

• The algorithms in the references [33, 22, 12, 25] only handle strength t = 2.

• In addition [12] and [33] only consider cases where N = v2, because their purpose is to classify

Latin squares and MOLS (mutually orthogonal Latin squares).

• The algorithms of [11] and [46] can handle general values of N , t, k, v.

12 1.4. Research problem, hypothesis, and objectives

The algorithms in [33, 22, 12] only handle strength two because they were developed to classify

other combinatorial objects that are equivalent to CAs of strength two. The algorithm of [25] was

developed to classify CAs but only strength two CAs are reported. On the other hand, the algorithms

in [11, 46] can handle general values of N , t, k, v. However, the algorithm of [46], called NonIsoCA,

can construct all the results obtained with the algorithm of [11], plus other additional results. Then,

we use the algorithm of [11] as a basis to develop a more sophisticated classification algorithm in

Chapter 3. In Chapter 4 we develop another classification algorithm that is not based on a previous

one; this algorithm can also handle general values of N , t, k, v.

The algebraic and computational methods cited in Tables 1.1, 1.2, and 1.3 will be described in

more detail in Chapter 2.

1.4 Research problem, hypothesis, and objectives

The algorithms of [11] and [46] construct the non-isomorphic CAs in a similar way. Starting from a

CA with one column, more columns are added one at a time until the desired number of columns

is reached. Each added column must form a CA of strength t with the previous columns, and this

CA must be non-isomorphic to previously generated CAs with the same number of columns. The

main limitation of these two algorithms is that they test all columns lexicographically greater than

the last one in order to extend the current CA with one more column (as we will see in Chapter 2).

This limitation makes the algorithms impractical for larger instances. Our motivation is that we can

develop more efficient algorithms by using the coverage properties and the isomorphisms of CAs. So,

we can skip a candidate columns if the resulting CA will be isomorphic to a previously explored CA.

The research problem and the research hypothesis are as follows:

Research problem:

To develop classification algorithms that use the coverage properties and the isomorphisms of CAs

to make the search more efficient.

1. Introduction 13

Research hypothesis:

It is possible to develop faster algorithms for the classification of CAs by taking advantage of the

coverage properties and the isomorphisms of CAs.

The main purpose of developing new algorithms for the classification of CAs is to find new

results, i.e., to find for the first time the non-isomorphic CAs that exist for some specific values of

the parameters N , t, k, v.

General objective:

To develop new classification algorithms able to classify some CAs larger than those classified by

state of the art algorithms. Specially CAs with strength t > 2.

The particular objectives are:

1. To develop an improved version of the NonIsoCA algorithm reported in [46]. The improved

NonIsoCA algorithm should take into account the coverage properties and the isomorphisms

of CAs to reduce the number of candidate columns to extend a CA.

2. To develop an algorithm that tests all possible juxtapositions of v CAs CA(N0; t, k, v),

CA(N1; t, k, v), . . ., CA(Nv−1; t, k, v) to find all non-isomorphic CA(N ; t+ 1, k + 1, v), where

N =
∑v−1

i=0 Ni. This algorithm should be able to use the isomorphisms and the coverage

properties of CAs to avoid testing juxtapositions that are isomorphic to previously tested

juxtapositions, and to avoid testing juxtapositions with no possibilities of being a CA with

strength t+ 1 and k + 1 columns.

As we will see in Chapter 4, the central idea in the method based on juxtapositions is that we

can construct any CA with strength t + 1 and k + 1 columns by juxtaposing v CAs of strength

t and k columns, plus a column formed by v constant subcolumns. So, if we explore all possible

juxtapositions of v CAs with strength t and k columns, then we will obtain all possible CAs with

strength t+ 1 and k + 1 columns.

14 1.5. Organization of the document

1.5 Organization of the document

The thesis document has five more chapters; in the next list we give a brief summary for each of

them:

• Chapter 2 State of the Art. This chapter reviews the current methods to classify CAs, and to

classify objects equivalent to CAs of strength two. Exact methods to construct CAs are also

reviewed, as well as methods based on juxtapositions of smaller objects.

• Chapter 3 Improved NonIsoCA Algorithm. In this chapter we develop an improved version of

the NonIsoCA algorithm. The improved version is faster than the original algorithm in most

cases. To obtain the results in less time, a parallel version of the improved NonIsoCA algorithm

is developed.

• Chapter 4 Juxtaposition of Covering Arrays. This chapter describes the strategy to test all

possible ways of constructing a CA of strength t+1 and k+1 columns from the juxtapositions

of v CAs of strength t and k columns. In this case we develop one sequential version and two

parallel versions of the algorithm.

• Chapter 5 Computational Results. This chapter presents the main computational results

obtained. The chapter gives the results found by using the improved NonIsoCA algorithm,

and the results of the algorithm based on juxtapositions of CAs. The complexity of the two

algorithms is used to estimate which one will execute faster for an specific instance of the

classification problem. In addition, the performance of the parallel implementations of the

algorithms is studied.

• Chapter 6 Conclusions. The final chapter summarizes the contributions of the present work

and provides pointers for future research.

1. Introduction 15

1.6 Chapter summary

The classification problem for CAs implies the generation one element for each isomorphism class.

This problem is relevant in itself because the classification problem is very important for all

combinatorial designs, but the classification problem has also practical uses like determining new

covering array numbers by computational search.

The problem addressed in this doctoral thesis is the development of two new classification

algorithms that take advantage of the coverage properties and the isomorphisms of CAs to accelerate

the search. The first algorithm is based on a previous algorithm called NonIsoCA, and the second

algorithm is completely new. The main objective of this work is to classify some CAs larger than

those classified by state of the art algorithms.

In the next chapter we review the methods that have been developed to classify CAs, and to

construct CAs by exhaustive computational search.

2
State of the Art

This chapter reviews the methods that have been developed to classify CAs either directly or indirectly

by classifying objects equivalent to CAs. In Section 2.1 four families of optimal CAs with a unique

isomorphism class are reviewed. Section 2.2 describes computational methods to classify 2-surjective

codes, Latin squares, and mutually orthogonal Latin squares (MOLS), which are objects equivalent

to CAs of strength two; this section also reviews computational methods developed specifically to

classify CAs. Computational classification methods are related to exact methods to construct CAs,

however the objective of the construction methods is to find only one CA instead of one CA for

each isomorphism class; some exact methods for constructing CAs are reviewed in Section 2.3. The

construction of combinatorial objects by juxtapositions of smaller objects is reviewed in Section 2.4;

the classification method of Chapter 4 was inspired by the techniques described in this section.

17

18 2.1. Algebraic methods

2.1 Algebraic methods

To the best of our knowledge there are four families of CAs whose members are optimal and unique;

the term unique indicates that there is only one isomorphism class. These families are the ones given

in Table 1.1 of the previous chapter; but now they are described in more detail. Subsection 2.1.1

describes the case t = v = 2 with the maximum number of columns; Subsection 2.1.2 describes the

construction of Johnson and Entringer; Subsection 2.1.3 shows the classification of the optimal CA

with v = 2 and k = t + 1; Subsection 2.1.4 presents the Zero-Sum construction for order v = 3;

and Subsection 2.1.5 presents two families of optimal CAs whose elements are probably unique but

the number of isomorphism classes is unknown.

2.1.1 Case t = v = 2

Given N , a CA(N ; 2, k, 2) with k =
(
N−1
dN

2
e

)
columns is constructed by placing as columns the distinct

binary vectors of length N with a 0 as their first element and having dN
2
e 1’s. This number of columns

is the maximum possible. Katona [21] proved that this CA(N ; 2, k, 2) is optimal and unique.

Figure 2.1 shows an example of the construction for N = 6. In this case we have k =
(
6−1
d 6
2
e

)
=(

5
3

)
= 10. The columns of CA(6; 2, 10, 2) are the 10 binary vectors of length 6, having d6

2
e = 3 ones,

and with a zero in the first position.

CA(6; 2, 10, 2) =


0 0 0 0 0 0 0 0 0 0
1 1 1 0 1 1 0 1 0 0
1 1 0 1 1 0 1 0 1 0
1 0 1 1 0 1 1 0 0 1
0 1 1 1 0 0 0 1 1 1
0 0 0 0 1 1 1 1 1 1


Figure 2.1: Example of the construction for t = v = 2.

Table 2.1 shows the first seven members of the family CA(N ; 2,
(
N−1
dN

2
e

)
, 2). Since the CAs have

strength two the smallest value of N is four.

2. State of the Art 19

Table 2.1: First seven optimal and unique CAs with t = v = 2 and maximum number of columns.

N CA(N ; 2,
(
N−1
dN

2
e

)
, 2)

4 CA(4; 2, 3, 2)
5 CA(5; 2, 4, 2)
6 CA(6; 2, 10, 2)
7 CA(7; 2, 15, 2)
8 CA(8; 2, 35, 2)
9 CA(9; 2, 56, 2)
10 CA(10; 2, 126, 2)

From k =
((N−1)−1
dN−1

2
e

)
+ 1 to k =

(
N−1
dN

2
e

)
− 1 the covering array CA(N ; 2, k, 2) is optimal, although

it is not necessarily unique.

2.1.2 Johnson-Entringer construction

The construction of Johnson and Entringer [19] gives an optimal and unique CA(b4
3
2tc; t, t + 2, 2)

for each strength t ≥ 1. Let |u| be the weight of the binary vector u, and let k = t + 2. The 2k

binary vectors are partitioned in three sets V 0
k , V

1
k , V

2
k , where for j = 0, 1, 2 the set V j

k contains

the binary vectors u of length k such that |u| ≡ j (mod 3). The three sets V 0
k , V

1
k , V

2
k are CAs of

strength t and k = t+ 2 columns, and at least one of them has b4
3
2tc rows.

Consider for example t = 4; then k = t+2 = 6. Figure 2.2 shows the three CAs given respectively

by the sets V 0
6 , V

1
6 , V

2
6 . In this case there are 64 binary vectors of length 6, and the sets V 0

6 , V
1
6 , V

2
6

contain respectively 22, 21, and 21 vectors. The value b4
3
2tc is equal to b4

3
24c = b21.3333c = 21,

which is the number of rows of the CA(21; 4, 6, 2) given by the sets V 1
6 and V 2

6 . These two CAs are

isomorphic because there is only one isomorphism class for CA(b4
3
2tc; t, t + 2, 2). Table 2.2 shows

the first seven members of the family CA(b4
3
2tc; t, t+ 2, 2).

The method of Torres-Jimenez et al. [47] based on juxtapositions of set of vectors represented

by binomial coefficients also produces the CAs of the Johnson-Entringer construction.

20 2.1. Algebraic methods



0 0 0 0 0 0
0 0 0 1 1 1
0 0 1 0 1 1
0 0 1 1 0 1
0 0 1 1 1 0
0 1 0 0 1 1
0 1 0 1 0 1
0 1 0 1 1 0
0 1 1 0 0 1
0 1 1 0 1 0
0 1 1 1 0 0
1 0 0 0 1 1
1 0 0 1 0 1
1 0 0 1 1 0
1 0 1 0 0 1
1 0 1 0 1 0
1 0 1 1 0 0
1 1 0 0 0 1
1 1 0 0 1 0
1 1 0 1 0 0
1 1 1 0 0 0
1 1 1 1 1 1





0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 1 1 1 1
0 1 0 0 0 0
0 1 0 1 1 1
0 1 1 0 1 1
0 1 1 1 0 1
0 1 1 1 1 0
1 0 0 0 0 0
1 0 0 1 1 1
1 0 1 0 1 1
1 0 1 1 0 1
1 0 1 1 1 0
1 1 0 0 1 1
1 1 0 1 0 1
1 1 0 1 1 0
1 1 1 0 0 1
1 1 1 0 1 0
1 1 1 1 0 0





0 0 0 0 1 1
0 0 0 1 0 1
0 0 0 1 1 0
0 0 1 0 0 1
0 0 1 0 1 0
0 0 1 1 0 0
0 1 0 0 0 1
0 1 0 0 1 0
0 1 0 1 0 0
0 1 1 0 0 0
0 1 1 1 1 1
1 0 0 0 0 1
1 0 0 0 1 0
1 0 0 1 0 0
1 0 1 0 0 0
1 0 1 1 1 1
1 1 0 0 0 0
1 1 0 1 1 1
1 1 1 0 1 1
1 1 1 1 0 1
1 1 1 1 1 0



Figure 2.2: CAs produced by the construction of Johnson-Entringer for t = 4.

Table 2.2: First seven optimal and unique CAs obtained with the Johnson-Entringer construction.

t CA(b4
3
2tc; t, t+ 2, 2)

1 CA(2; 1, 3, 2)
2 CA(5; 2, 4, 2)
3 CA(10; 3, 5, 2)
4 CA(21; 4, 6, 2)
5 CA(42; 5, 7, 2)
6 CA(85; 6, 8, 2)
7 CA(170; 7, 9, 2)

2.1.3 Binary orthogonal arrays with t+ 1 columns

An orthogonal array OAλ(N ; t, k, v) is an N × k array over Zv where every subarray of t columns

covers exactly λ times each t-tuple with symbols from Zv. When the index λ is equal to 1 it is omitted

from the notation and the OA(N ; t, k, v) has N = vt rows; so it is an optimal CA(vt; t, k, v).

2. State of the Art 21

For t ≥ 1 there is only one orthogonal array OA(2t; t, t+ 1, 2) of index unity according to Seiden

a Zemach [40]. They showed that for any t ≥ 1 the set of all binary tuples of length t + 1, which

is denoted by Zt+1
2 , can be split in a unique way into two orthogonal arrays OA(2t; t, t+ 1, 2). The

partitioning of the set Zt+1
2 is done as follows: take any tuple x ∈ Zt+1

2 ; then, there are exactly 2t−1

tuples in Zt+1
2 which differ from x in a even number of positions; these 2t− 1 tuples together with x

form the first OA(2t; t, t+ 1, 2), and the other 2t tuples of Zt+1
2 form the second OA(2t; t, t+ 1, 2).

These two OA(2t; t, t+1, 2) are the only ones that can be formed with tuples from Zt+1
2 , because

in any orthogonal array with strength t and t + 1 columns any two rows differ in a even number

of positions, according to the same work [40]. Finally, the two OAs are isomorphic because we can

transform one into the other by permuting symbols in one of the t+ 1 columns and rearranging the

2t rows.

Consider the case t = 4. The set Zt+1
2 = Z5

2 contains the 32 binary 5-tuples (0, 0, 0, 0, 0),

(0, 0, 0, 0, 1), . . ., (1, 1, 1, 1, 1). Take any tuple of Z5
2, say x = (1, 1, 1, 0, 0); then, the 15 tuples of

Z5
2 that differ from x in an even number of positions form the first OA(16; 4, 5, 2), and the 16 tuples

of Z5
2 that differ from x in an odd number of positions form the second OA(16; 4, 5, 2); these two

OAs are shown in Figure 2.3. These two OA(16; 4, 5, 2) are isomorphic because we can transform the

first one into the second one by permuting symbols in any of the five columns and then rearranging

the rows of the resulting array.

Table 2.3 shows the first seven members of the family OA(2t; t, t+ 1, 2), or which it is the same

the family CA(2t; t, t+ 1, 2).

Table 2.3: First seven optimal and unique CAs of the case v = 2 and k = t+ 1.

t CA(2t; t, t+ 1, 2)
1 CA(2; 1, 2, 2)
2 CA(4; 2, 3, 2)
3 CA(8; 3, 4, 2)
4 CA(16; 4, 5, 2)
5 CA(32; 5, 6, 2)
6 CA(64; 6, 7, 2)
7 CA(128; 7, 8, 2)

22 2.1. Algebraic methods



0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 0 1 1 1
0 1 0 0 0
0 1 0 1 1
0 1 1 0 1
0 1 1 1 0
1 0 0 0 0
1 0 0 1 1
1 0 1 0 1
1 0 1 1 0
1 1 0 0 1
1 1 0 1 0
1 1 1 0 0
1 1 1 1 1





0 0 0 0 0
0 0 0 1 1
0 0 1 0 1
0 0 1 1 0
0 1 0 0 1
0 1 0 1 0
0 1 1 0 0
0 1 1 1 1
1 0 0 0 1
1 0 0 1 0
1 0 1 0 0
1 0 1 1 1
1 1 0 0 0
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0


Figure 2.3: The two OA(16; 4, 5, 2) that make a partition of the 32 binary tuples of length 5. In
each OA any two rows differ in an even number of positions.

2.1.4 Zero-Sum

The Zero-Sum technique [10] constructs an OA(vt; t, t + 1, v) from the trivial OA(vt; t, t, v) that

is generated by listing the vt tuples of length t over Zv. Each element of the new column is the

negative of the sum of the elements in the first t columns; so the sum of the t+ 1 elements in every

row is zero. When the order is two or three, the OA given by the Zero-Sum construction is unique.

For order v = 2 the Zero-Sum technique adds a parity bit to each row of CA(2t; t, t, 2), as shown

in the OA at the right in Figure 2.3 for the case t = 4. The CA(16; 4, 4, 2) is formed by the 16

binary tuples of length 4, and a CA(16; 4, 5, 2) is obtained by adding a parity bit to the 16 binary

tuples of length 4. So, the two OA(2t; t, t+ 1, 2) given by the partitioning of Seiden a Zemach [40]

are equivalent to the OA(2t; t, t+ 1, 2) given by the Zero-Sum construction.

For v = 3 the uniqueness of OA(3t; t, t + 1, 3) was proved by Hedayat et al. [17] by showing

that the element of Z3 appended to the row (x0, x1, . . . , xt−1) of X = OA(3t; t, t+ 1, 3) is given by∑t−1
i=0 cixi + c, where c0, . . . , ct−1 ∈ {1, 2} and c ∈ {0, 1, 2}. Then, without taking into account row

2. State of the Art 23

permutations, there are 3(2t) possible OA(3t; t, t+ 1, 3), and any of these OAs can be transformed

into any other OA by permutations of symbols in the columns.

Figure 2.4 shows an example of the Zero-Sum construction for v = 3 and t = 3; the elements

of the extra column of CA(27; 3, 4, 3) make zero (in modulo v = 3) the sum of the four elements of

each row of CA(27; 3, 3, 3). Table 2.4 shows the first seven members of the family CA(3t; t, t+ 1, 3).

CA(27; 3, 3, 3) =



0 0 0
0 0 1
0 0 2
0 1 0
0 1 1
0 1 2
0 2 0
0 2 1
0 2 2
1 0 0
1 0 1
1 0 2
1 1 0
1 1 1
1 1 2
1 2 0
1 2 1
1 2 2
2 0 0
2 0 1
2 0 2
2 1 0
2 1 1
2 1 2
2 2 0
2 2 1
2 2 2



CA(27; 3, 4, 3) =



0 0 0 0
0 0 1 2
0 0 2 1
0 1 0 2
0 1 1 1
0 1 2 0
0 2 0 1
0 2 1 0
0 2 2 2
1 0 0 2
1 0 1 1
1 0 2 0
1 1 0 1
1 1 1 0
1 1 2 2
1 2 0 0
1 2 1 2
1 2 2 1
2 0 0 1
2 0 1 0
2 0 2 2
2 1 0 0
2 1 1 2
2 1 2 1
2 2 0 2
2 2 1 1
2 2 2 0


Figure 2.4: Example of the Zero-Sum technique to add a column to a CA(27; 3, 3, 3).

24 2.2. Computational methods

Table 2.4: First seven optimal and unique CAs obtained with the Zero-Sum construction for v = 3.

t CA(2t; t, t+ 1, 2)
1 CA(3; 1, 2, 3)
2 CA(9; 2, 3, 3)
3 CA(27; 3, 4, 3)
4 CA(81; 4, 5, 3)
5 CA(243; 5, 6, 3)
6 CA(729; 6, 7, 3)
7 CA(2187; 7, 8, 3)

2.1.5 Other families of orthogonal arrays

To the best of our knowledge it is unknown if the Zero-Sum construction gives unique CAs for orders

v ≥ 4. So, the uniqueness of OA(vt; t, t+ 1, v) is an open question when v ≥ 4.

Another construction for OAs of index unity is the construction of Bush [5]. This construction

gives an OA(vt; t, v + 1, v) when v is prime-power and v > t; the constructed OA is not unique in

general. However there is a special case: when v is a power of two (v = 2n) and the strength is

three the construction produces an OA(v3; 3, v + 2, v). This OA has one more column than the OA

of the general case, and so it is more likely to be unique, but we do not know if the OA is unique.

Another family of OAs of index unity is the family OA(vv−1; v− 1, v+ 2, v) where v = 2n, which

is given in [16]; in this case the number of columns is also v+2. Again, to the best of our knowledge

the uniqueness of these OAs is unknown.

2.2 Computational methods

For general values of N , t, k, v, the only current way to classify CA(N ; t, k, v) is by computational

methods. These methods explore the entire search space, although they use the isomorphisms of

CAs to make cuts in the search tree. In this section we briefly review the known computational

methods. The algorithms revised in Subsections 2.2.1, 2.2.2, and 2.2.3 were developed to classify

other objects equivalent to CAs of strength two. The methods described in Subsections 2.2.4 and

2. State of the Art 25

2.2.5 can handle strengths greater than two; and the method of Subsection 2.2.6 is also general

although it has been used only for CAs of strength two.

2.2.1 Classification of 2-surjective binary codes

A v-ary code of length k is a set of vectors or codewords of length k over Zv. A code C is t-surjective

if for any t coordinates j0, j1, . . . , jt−1 and any t-tuple (x0, x1, . . . , xt−1) ∈ Ztv there is a codeword

c ∈ C such that cji = xi for 0 ≤ i ≤ t− 1. According to this definition, t-surjective codes are CAs

of strength t.

Kéri and Östergård [22] classified 2-surjective binary codes with N = 6, 7, 8 codewords and

lengths from k = 2 to k =
(
N−1
dN

2
e

)
. The classification was done by exhaustive computer search. The

numbers of inequivalent codes (non-isomorphic CAs) they computed are shown in Table 2.5.

2-surjective binary codes are CAs of strength two and order two; so the value at row k and column

N of Table 2.5 indicates the number of non-isomorphic CA(N ; 2, k, 2). For N = 6 the maximum

length of the codewords is k =
(
6−1
d 6
2
e

)
=
(
5
3

)
= 10, and similarly for N = 7, 8 the maximum number

of codewords is 15 and 36. The extremal values k =
(
N−1
dN

2
e

)
give the family of optimal and unique

CAs of Subsection 2.1.1. Not all 2-surjective codes or CAs that were classified are optimal, but the

classification of non-optimal CAs is also important.

2.2.2 Classification of Latin squares

McKay et al. [33] classified Latin squares of order 1 to 10. A Latin square L of order n is an

n × n array such that each row and each column contains a permutation of {0, 1, . . . , n − 1}.

A Latin square can be represented by an orthogonal array OA(n2; 2, 3, n) formed by the 3-tuples

{(i, j, L[i, j]) | 0 ≤ i, j ≤ n− 1}.

Two Latin squares are paratopic if their associated OAs are isomorphic. All paratopic Latin

squares form a paratopy class; paratopy classes are also called species or main classes. So, a main

class of Latin squares is an isomorphism class in the OA representation. In summary, classifying

26 2.2. Computational methods

Table 2.5: Inequivalent 2-surjective binary codes with cardinality N = 6, 7, 8 [22].

k N = 6 N = 7 N = 8
2 3 4 8
3 7 15 37
4 8 35 156
5 7 70 719
6 4 107 3 112
7 3 139 12 006
8 1 134 38 497
9 1 102 101 068
10 1 64 215 292
11 26 377 177
12 10 554 538
13 4 701 066
14 1 779 013
15 1 775 641
16 700 759
17 579 466
18 440 826
19 309 338
20 200 326
21 119 752
22 65 993
23 33 463
24 15 596
25 6 704
26 2 646
27 977
28 343
29 118
30 39
31 15
32 5
33 2
34 1
35 1

Latin squares of order v into main classes is the same as classifying OA(v2; 2, 3, v) or CA(v2; 2, 3, v).

Table 2.6 shows the number of main classes for Latin squares of order up to 10.

2. State of the Art 27

Table 2.6: Main classes of Latin squares of order 1 to 10 [33].

Order Main classes
1 1
2 1
3 1
4 2
5 2
6 12
7 147
8 283 657
9 19 270 853 541
10 34 817 397 894 749 939

2.2.3 Classification of MOLS

Two Latin squares A = (aij) and B = (bij) of order n are orthogonal if the n2 pairs (aij, bij)

are distinct. A set of Latin squares where each pair is orthogonal is called a set of mutually

orthogonal Latin squares (MOLS). A set of k MOLS L0, L1, . . . , Lk−1 of order n can be used

to construct an orthogonal array OA(n2; 2, k + 2, n) where the row (i · n) + j contains the (k + 2)-

tuple (i, j, L0[i, j], L1[i, j], . . . , Lk−1[i, j]). Two set of MOLS are paratopic if they are represented by

isomorphic OAs. Then, finding paratopy classes of k MOLS of order n, k-MOLS(n), is equivalent to

classify OA(n2; 2, k + 2, n). Sets of k-MOLS(n) for 2 ≤ n ≤ 9 were classified by Egan and Wanless

[12]. Table 2.7 shows the number of paratopy classes they found.

If n is prime-power, then the maximum number of MOLS is n − 1. In Table 2.7 we can see

that the maximum k for n = 2, 3, 4, 5, 7, 8, 9 is k = 1, 2, 3, 4, 6, 7, 8 respectively. The case n = 9

is the first one where the largest set of MOLS is not unique, since there are 7 paratopy classes of

8-MOLS(9).

2.2.4 Extension of CAs

The algorithm mentioned in Colbourn et al. [11] can handle general values of the parameters N , t,

k, and v. This algorithm constructs the non-isomorphic CA(N ; t, k, v) as follows:

28 2.2. Computational methods

Table 2.7: Paratopy classes of k-MOLS(n) [12].

n k Paratopy classes
2 1 1
3 1 1
3 2 1
4 1 2
4 2 1
4 3 1
5 1 2
5 2 1
5 3 1
5 4 1
6 1 12
7 1 147
7 2 7
7 3 1
7 4 1
7 5 1

n k Paratopy classes
7 6 1
8 1 283 657
8 2 2 165
8 3 39
8 4 1
8 5 1
8 6 1
8 7 1
9 1 19 270 853 541
9 2 91 846 374
9 3 371
9 4 96
9 5 56
9 6 15
9 7 11
9 8 7

• The set of non-isomorphic CA(N ; 1, 1, v) is constructed by an independent computer program.

• For each non-isomorphic CA(N ; 1, 1, v) all vN candidate columns are tested to see which of

them form a CA(N ; 2, 2, v). An equivalence test is performed on the CA(N ; 2, 2, v) to discard

isomorphic solutions. The process is repeated for the set of non-isomorphic CA(N ; 2, 2, v)

to obtain the non-isomorphic CA(N ; 3, 3, v); and this continues until the non-isomorphic

CA(N ; t, t, v) are obtained.

• For j = t + 1, . . . , k the set of non-isomorphic CA(N ; t, j, v) is constructed by extending

(adding a new column) each of the non-isomorphic CA(N ; t, j − 1, v).

It is not indicated which CA is taken from an isomorphism class, and also it is not described the

equivalence test that is applied to reject isomorphic solutions.

Table 2.8 lists the classified CAs. The result of zero isomorphism classes for CA(14; 3, 12, 2)

and the already known existence of CA(15; 3, 12, 2) [37], proves CAN(3, 12, 2) = 15. Similarly, the

result of zero CA(11; 2, 6, 3) implies CAN(2, 6, 3) = CAN(2, 7, 3) = 12. Finally, the nonexistence of

2. State of the Art 29

CA(12; 2, 8, 3) and the existence of CA(13; 2, 9, 3), which was constructed in [44] as an equivalent

object called transversal cover, gives CAN(2, 8, 3) = CAN(2, 9, 3) = 13.

Table 2.8: CAs classified by Colbourn et al. [11].

CA # Classes
CA(12; 3, 3, 2) 19
CA(12; 3, 4, 2) 79
CA(12; 3, 5, 2) 33
CA(12; 3, 6, 2) 9
CA(12; 3, 7, 2) 2
CA(12; 3, 8, 2) 2
CA(12; 3, 9, 2) 1
CA(12; 3, 10, 2) 1
CA(12; 3, 11, 2) 1
CA(12; 3, 12, 2) 0
CA(14; 3, 3, 2) 68
CA(14; 3, 4, 2) 657
CA(14; 3, 5, 2) 1714
CA(14; 3, 6, 2) 3376
CA(14; 3, 7, 2) 3585
CA(14; 3, 9, 2) 2395

CA # Classes
CA(14; 3, 9, 2) 1336
CA(14; 3, 10, 2) 989
CA(14; 3, 11, 2) 533
CA(14; 3, 12, 2) 0
CA(11; 2, 2, 3) 3
CA(11; 2, 3, 3) 20
CA(11; 2, 4, 3) 27
CA(11; 2, 5, 3) 3
CA(11; 2, 6, 3) 0
CA(12; 2, 2, 3) 7
CA(12; 2, 3, 3) 134
CA(12; 2, 4, 3) 987
CA(12; 2, 5, 3) 891
CA(12; 2, 6, 3) 13
CA(12; 2, 7, 3) 1
CA(12; 2, 8, 3) 0

2.2.5 NonIsoCA algorithm

The NonIsoCA algorithm of Torres-Jimenez and Izquierdo-Marquez [46] improved the algorithm of

Colbourn et al. [11] described in Subsection 2.2.4. The NonIsoCA algorithm is able to produce all

computational results of [11] plus other additional results.

The NonIsoCA algorithm extends a subarray A = CA(N ; t, r, v) with r < k columns

a0, a1, . . . , ar−1 by testing all columns lexicographically greater than column ar−1 until finding a

column l for which: (a) the columns a0, a1, . . . , ar−1, l form a CA(N ; t, r + 1, v) of strength t,

and (b) this CA is the canonical representative of its isomorphism class. The canonical arrays with

one column are created by a special procedure that requires a small number of computations (see

Algorithm 1 of [46]).

30 2.2. Computational methods

For example, suppose the algorithm wants to construct all non-isomorphic CA(6; 2, 6, 2), and

suppose the algorithm has constructed the canonical CA with three columns shown in Figure 2.5(a).

For each column l greater than a2 = (0 0 1 1 0 1)T the algorithm first verifies that G = (a0 a1 a2 l)

is a CA of strength t = 2, and then the algorithm tests if G is the canonical representative of its

class. If G satisfies these two conditions then the algorithm has constructed a canonical CA with

r + 1 columns, and the next step is to try to extend the array to r + 2 columns. The CA of Figure

2.5(b) shows the new column added to the CA of Figure 2.5(a).
0 0 0 ∗ ∗ ∗
0 0 0 ∗ ∗ ∗
0 1 1 ∗ ∗ ∗
1 0 1 ∗ ∗ ∗
1 1 0 ∗ ∗ ∗
1 1 1 ∗ ∗ ∗


(a)


0 0 0 0 ∗ ∗
0 0 0 0 ∗ ∗
0 1 1 1 ∗ ∗
1 0 1 1 ∗ ∗
1 1 0 1 ∗ ∗
1 1 1 0 ∗ ∗


(b)


0 0 0 0 ∗ ∗
0 0 0 1 ∗ ∗
0 1 1 0 ∗ ∗
1 0 1 0 ∗ ∗
1 1 0 1 ∗ ∗
1 1 1 1 ∗ ∗


(c)

Figure 2.5: Some steps in the construction of the non-isomorphic CA(6; 2, 6, 2): (a) a canonical CA
with three columns; (b) the first CA with four columns that is generated when the algorithm extends
the CA with three columns; and (c) the next constructed CA with four columns.

When no column l forms a canonical CA, the algorithm replaces the last column of the CA

with the next column in lexicographic order, and starts the search of the next canonical CA with r

columns. Suppose the CA of Figure 2.5(b) can not be extended to five columns; then, the algorithm

replaces column a3 with the next column greater than a3 in lexicographic order to try to find another

canonical CA with four columns; in this case the algorithms finds the CA of Figure 2.5(c).

At some point all canonical CAs with four columns will be generated and extended. At this

moment the algorithm backtracks to the third column (a2) and replaces it with the next column

greater than a2 in lexicographic order. This is done with the objective of generating the next canonical

CA with three columns, from which the search of another canonical CA with four columns will restart.

The backtracking process ends when all CAs of one column have been generated and expanded. Since

the new columns added to the CA are generated in lexicographic order, every constructed canonical

CA is different from all previously constructed canonical CAs.

2. State of the Art 31

Table 2.9 lists all classified CAs. The nonexistence of the covering arrays CA(15; 3, 13, 2),

CA(16; 3, 15, 2), and CA(13; 2, 10, 3) leads to the following results: CAN(3, 13, 2) = CAN(3, 14, 2) =

16, CAN(3, 15, 2) = CAN(3, 16, 2) = 17, and CAN(2, 10, 3) = 14.

Table 2.9: CAs classified by using the NonIsoCA algorithm [46].

CA # Classes
CA(4; 2, 2, 2) 1
CA(4; 2, 3, 2) 1
CA(5; 2, 4, 2) 1
CA(6; 2, 5, 2) 7
CA(6; 2, 6, 2) 4
CA(6; 2, 7, 2) 3
CA(6; 2, 8, 2) 1
CA(6; 2, 9, 2) 1
CA(6; 2, 10, 2) 1
CA(7; 2, 11, 2) 26
CA(7; 2, 12, 2) 10
CA(7; 2, 13, 2) 4
CA(7; 2, 14, 2) 1
CA(7; 2, 15, 2) 1
CA(8; 2, 16, 2) 700 759
CA(8; 2, 17, 2) 579 466
CA(8; 2, 18, 2) 440 826
CA(8; 2, 19, 2) 309 338
CA(8; 2, 20, 2) 200 326
CA(8; 2, 21, 2) 119 752
CA(8; 2, 22, 2) 65 993
CA(8; 2, 23, 2) 33 463
CA(8; 2, 24, 2) 15 596
CA(8; 2, 25, 2) 6 704

CA # Classes
CA(8; 2, 26, 2) 2 646
CA(8; 2, 27, 2) 977
CA(8; 2, 28, 2) 343
CA(8; 2, 29, 2) 118
CA(8; 2, 30, 2) 39
CA(8; 2, 31, 2) 15
CA(8; 2, 32, 2) 5
CA(8; 2, 33, 2) 2
CA(8; 2, 34, 2) 1
CA(8; 2, 35, 2) 1
CA(8; 3, 3, 2) 1
CA(8; 3, 4, 2) 1
CA(10; 3, 5, 2) 1
CA(12; 3, 6, 2) 9
CA(12; 3, 7, 2) 2
CA(12; 3, 8, 2) 2
CA(12; 3, 9, 2) 1
CA(12; 3, 10, 2) 1
CA(12; 3, 11, 2) 1
CA(15; 3, 12, 2) 2
CA(15; 3, 13, 2) 0
CA(16; 3, 13, 2) 89
CA(16; 3, 14, 2) 8

CA # Classes
CA(16; 3, 15, 2) 0
CA(16; 4, 4, 2) 1
CA(16; 4, 5, 2) 1
CA(21; 4, 6, 2) 1
CA(24; 4, 7, 2) 1
CA(24; 4, 8, 2) 1
CA(24; 4, 9, 2) 1
CA(24; 4, 10, 2) 1
CA(24; 4, 11, 2) 1
CA(24; 4, 12, 2) 1
CA(9; 2, 2, 3) 1
CA(9; 2, 3, 3) 1
CA(9; 2, 4, 3) 1
CA(11; 2, 5, 3) 3
CA(12; 2, 6, 3) 13
CA(12; 2, 7, 3) 1
CA(13; 2, 8, 3) 5
CA(13; 2, 9, 3) 4
CA(13; 2, 10, 3) 0
CA(16; 2, 2, 4) 1
CA(16; 2, 3, 4) 2
CA(16; 2, 4, 4) 1
CA(16; 2, 5, 4) 1

2.2.6 Canonical augmentation

The canonical augmentation technique consists in extending a CA with r < k columns in a canonical

way, rather than searching a canonical CA with r + 1 columns. In the canonical augmentation

technique the children of isomorphic parents must be isomorphic; in this case the parents have r

32 2.2. Computational methods

columns and the children have r + 1 columns. Then, if two CAs with k columns are isomorphic

then their sequence of ancestors are isomorphic. In the orderly generation technique it is possible to

have two isomorphic CAs with k columns that are not isomorphic if only the first r < k columns are

considered.

Children not satisfying the rule of canonical augmentation are rejected, i.e., they are not extended.

For children satisfying the rule of canonical augmentation an isomorph test is performed to reject all

but one of the isomorphic children. The canonical augmentation technique ensures the generation

of one CA for each isomorphism class. In the doctoral thesis of Kokkala [25] canonical augmentation

was used to classify CAs of strength two. Table 2.10 shows the classified CAs. The new classification

results established 12 new CANs: CAN(2, 7, 4) = 2, CAN(2, 5, 6) = 39, and CAN(2, k, 3) = 15 for

k = 11, . . . , 20.

Table 2.10: CAs classified by canonical augmentation [25].

CA # Classes
CA(10; 2, 4, 3) 2
CA(10; 2, 5, 3) 0
CA(11; 2, 5, 3) 3
CA(11; 2, 6, 3) 0
CA(12; 2, 6, 3) 13
CA(12; 2, 7, 3) 1
CA(12; 2, 8, 3) 0
CA(13; 2, 8, 3) 5
CA(13; 2, 9, 3) 4
CA(13; 2, 10, 3) 0
CA(14; 2, 10, 3) 4 490
CA(14; 2, 11, 3) 0

CA # Classes
CA(17; 2, 5, 4) 4
CA(17; 2, 6, 4) 0
CA(18; 2, 5, 4) 201
CA(18; 2, 6, 4) 0
CA(19; 2, 6, 4) 4
CA(19; 2, 7, 4) 0
CA(20; 2, 6, 4) 25 760
CA(20; 2, 7, 4) 0
CA(26; 2, 6, 5) 6
CA(26; 2, 7, 5) 0
CA(27; 2, 6, 5) 11 603

CA # Classes
CA(27; 2, 7, 5) 0
CA(28; 2, 6, 5) 75 720 344
CA(28; 2, 7, 5) 0
CA(29; 2, 7, 5) 281
CA(29; 2, 8, 5) 0
CA(37; 2, 4, 6) 13
CA(37; 2, 5, 6) 0
CA(38; 2, 4, 6) 8 865
CA(38; 2, 5, 6) 0
CA(39; 2, 5, 6) 289
CA(39; 2, 6, 6) 0

The improved NonIsoCA algorithm that will be studied in Chapter 3 also determined these

covering arrays numbers. The work [25] and the improved NonIsoCA algorithm were developed

independently and published at about the same time. Because both algorithms obtained the same

results we have more confidence in the accuracy of the results we have found.

2. State of the Art 33

2.3 Exact methods to construct covering arrays

Exact methods construct CAs by exhaustive search in a similar way to the computational classification

methods. Exact methods also use the isomorphisms of CAs for pruning the search space. However,

most methods only consider the row and column symmetries, and omit symbol permutations. In this

section we review some exact methods to construct CAs.

2.3.1 The automatic generator EXACT

Yan and Zhang [51] introduced an exhaustive search technique to construct CAs. The algorithm

assigns each cell of an N × k matrix until all covering conditions are satisfied. After assigning a

variable, a constraint propagation function is executed to determine if this assignment implies a value

for another variable or a contradiction. The search is accelerated by symmetry breaking techniques

and by two heuristics called respectively LNH and SCEH. The heuristic LNH uses a variable mdn to

store the largest value present in the assigned cells. The candidate values for assigning a new cell

are {0, 1, . . . ,mdn + 1}; so, values greater than mdn + 1 are not considered. The heuristic SCEH

assumes that it is always possible to find a CA where each sub-combination (or sub-tuple) of size

s occurs almost the same number of times in a subset of s columns. The authors integrated all

these techniques in a program called EXACT (EXhaustive seArch of Combinatorial Test suites). The

EXACT tool was further improved in [52].

2.3.2 New backtracking algorithm

Bracho-Rios et al. [4] introduced a searching algorithm to construct binary CAs of strength t and

dimensions N × k. The algorithm constructs the CAs column by column imposing a lexicographic

ordering of the columns to break the column and row symmetries. The columns to construct the

CAs are balanced in symbols, so the candidate columns have bN
2
c zeros and N − bN

2
c ones. Before

starting the search, a block of t columns is fixed, the first N − 2t rows of the block are filled with

34 2.3. Exact methods to construct covering arrays

zeros and the last 2t rows are filled with the 2t tuples of size t over the symbol set {0, 1}. Suppose

we have a partial solution with r columns (t ≤ r < k), and let l be the last column of the partial

solution. To construct a CA of strength t and r + 1 columns, the algorithm checks all columns l′

greater than l in lexicographic order until it finds one which makes a CA of strength t with the r

columns of the partial solution, and such that the rows and columns of the new partial solution are

sorted lexicographically. If no such column is found the algorithm backtracks to column r − 1.

2.3.3 NonIsoCA algorithm

The NonIsoCA algorithm of Torres-Jimenez and Izquierdo-Marquez [46] can also be used as an exact

method for constructing CAs. As said before, this algorithm constructs the CAs column by column

rejecting the non-canonical CAs. The objective of the algorithm is to construct all non-isomorphic

CA(N ; t, k, v), but it can be updated to finish when the first CA(N ; t, k, v) is constructed. The

action of expanding only the canonical CAs with r < k columns acts as a powerful pruning criteria.

2.3.4 Constraint programming

Hnich et al. [18] developed constraint programming models for the construction of CAs. In the first

model, called naive matrix model, a variable xri is set to m, xri = m, if the entry (r, i) of the matrix

is equal to m. Consider t = 3; to express that the tuple in row r and in columns (i, j, l) is equal to

(m,n, p) the constraint is xrijlmnp = (xri = m & xrj = n & xrl = p). The constraint that each

t-tuple must occur at least once in every subset of t columns is expressed by
∑

r xrijlmnp ≥ 1.

In the alternative matrix model a tuple of t variables of the first model is represented by a

compound variable. With t = 3, for example, the compound variable yr(i,j,l) represents the tuple of

variables (xri, xrj, xrl). The domain of a compound variable is {0, 1, . . . , vt − 1}; and the coverage

constraints require that in every subset of t columns there must be at least one compound variable

for each number from 0 to vt − 1.

The integrated model combines the variables of the two previous models. By assigning a value to

2. State of the Art 35

a compound variable, a value is designated to each variable of the naive model. Similarly, assigning

a value to a variable of the naive model reduces the domain of the compound variable.

2.3.5 SAT encodings

Lopez-Escogido et al. [32] introduced a SAT encoding for strength-two CAs. The model uses v

variables for each entry of the matrix M = (mij) used to contain the CA; if M has size N × k the

total number of variables is Nkv. Element mij gets the value 0 ≤ x < v if and only if the variable

mi,j,x is true. The clauses of the model guarantee that: (a) each element of M takes at least one

value from the set {0, 1, . . . , v−1}, (b) each element of M takes only one value, and (c) the matrix

M satisfy the coverage properties to be a CA.

The work of Ansótegui et al. [1] proposes a MAXSAT encoding for the construction of optimal

CAs. Banbara et al. [2] also developed two SAT encodings to construct CA; these encodings are

called order encoding and mixed encoding respectively.

2.4 Juxtaposition of smaller objects

There are some constructions which juxtapose smaller objects to construct larger ones. These

methods inspired the classification method we develop in Chapter 4.

In the book of Hedayat, Sloane, and Stufken [16] the theorem 2.24 says that an OA(N ; 2u, k, 2)

exists if and only if an OA(2N ; 2u+1, k+1, 2) exists. Thus, an orthogonal array A = OA(N ; 2u, k, 2)

can be used to construct B = OA(2N ; 2u + 1, k + 1, 2). The way to construct B is to place the

rows of A followed by 0, together with the rows of A (the complementary matrix of A) followed by

1, as shown next:

B =

(
A 0

A 1

)

The column vectors 0 and 1 are formed by N zeros and N ones respectively. This construction

36 2.4. Juxtaposition of smaller objects

is limited to the case v = 2 and t even.

Other objects that can be constructed by juxtapositions of smaller objects are error-correcting

codes. An (n,M, d) binary code is a set of M vectors of length n over the finite filed of order 2,

F2, called codewords, whose minimum Hamming distance is d, that is, d is the minimum distance

among any two codewords. If any linear combination of codewords is also a codeword then the code

is linear, otherwise the code is nonlinear. A code with minimum distance d can correct b(d− 1)/2c

or fewer errors. An (n,M, d) code is optimal ifM is the maximum number of codewords with length

n having minimum distance d.

Nordstrom and Robinson [36] constructed a (13, 64, 5) code by juxtaposing two Nadler codes

(12, 32, 5) [34], and by adding to this juxtaposition a column vector formed by 32 zeros and 32 ones.

After that, they repeated the process and juxtaposed two (13, 64, 5) codes to construct a (14, 128, 5)

code, and finally they took two copies of this last code to form a (15, 256, 5) code. In every case

the appropriate column of a block of zeros and a block of ones was added to the juxtaposition of

the two codes. The last constructed code, (15, 256, 5), is known as the Nordstrom-Robinson code,

and it is an optimal nonlinear code because 256 is the maximum number of codewords of length 15

having minimum mutual distance 5. This code was also discovered independently by Semakov and

Zinoviev [41].

Finally, the Tower of Covering Arrays method of [48] takes a covering array A = CA(N ; t, k, v),

called the base CA, and tries to construct a covering array B = CA(Nv; t+1, k+1, v) by juxtaposing

vertically v copies of the base CA:

B =


A 0

A′ 1
...

...

A′ v − 1


The copies A′ of the base CA A are obtained by translating the columns of A. Translating a

column of a CA with order v means to add a value a ∈ Zv to every element of the column and take

2. State of the Art 37

the modulo v of the sum in each entry. Column translation is a special case of symbol permutation

because for each column of a CA(N ; t, k, v) there are v possible column translations, but there are v!

possible permutations of symbols, which include the v possible column translations. The last column

of B is formed by v subcolumns, where for 0 ≤ i ≤ v − 1 the elements of the i-th subcolumn are

equal to i.

2.5 Chapter summary

This chapter presented a brief summary of the different methods to classify CAs or to classify objects

equivalent to CAs. The revised methods were grouped into algebraic and computational methods.

The algebraic method for the case CA(N ; 2, k, 2), the Johnson-Entringer construction, and the Zero-

Sum construction for v = 2, 3 provide infinite families of CAs which are both optimal and unique.

The first three computational methods reviewed in this chapter were developed to classify 2-surjective

codes, Latin squares, and MOLS respectively; but these objects are equivalent to CAs of strength

two. The last three computational methods which were analyzed can handle general values of N , t,

k, and v. In the next chapter we develop a new computational method that improves the NonIsoCA

algorithm revised in this chapter.

We also reviewed exact methods to construct CAs because they are similar to the computational

classification methods, since both kind of methods traverse the entire search space. Finally, we

reviewed some methods based on juxtaposing smaller objects; these methods are related to the

second classification method (developed in Chapter 4) that tests all possible juxtapositions of v CAs

of strength t to construct the non-isomorphic CAs of strength t+ 1.

3
Improved NonIsoCA Algorithm

This chapter describes an improved version of the NonIsoCA algorithm to construct non-isomorphic

CAs. The new algorithm, as the original algorithm, constructs CAs column by column rejecting the

non-canonical CAs. However, the new algorithm constructs a new column cell by cell instead of

testing all columns greater than the last one in lexicographic order. As a new column is constructed,

the improved algorithm rejects the current subarray if it does not have possibilities of being a canonical

CA of strength t. Section 3.1 presents the improved algorithm to classify CAs; Section 3.2 analyzes

the complexity of the algorithm; and Section 3.3 describes a parallel implementation of the new

algorithm.

3.1 Improved algorithm

The NonIsoCA algorithm introduced in [46] is an orderly algorithm in which the canonical

representative of an isomorphism class is the CA with the smallest lexicographic order when its

N · k elements are arranged in column-major order. The algorithm constructs the non-isomorphic

39

40 3.1. Improved algorithm

CAs one column at a time rejecting the non-canonical CAs. The result produced by this algorithm

is a list of the canonical representatives of each isomorphism class. A detailed description of this

algorithm is given in Subsection 2.2.5.

The improved algorithm is also an orderly algorithm. The improvement with regard to the original

algorithm consists in generating the new column of a CA by filling the cells of the new column from

top to bottom, instead of testing all columns greater than the last one in lexicographic order. The

allowed values for a cell in the new column depend on the values assigned to the previous cells.

3.1.1 Rules for valid symbols

Suppose the algorithm has constructed a CA with r columns A = CA(N ; t, r, v), and let c0, c1,

. . ., cN−1 be the N cells of the new column. The algorithm fills the cells of the new column from

top to bottom, i.e., from c0 to cN−1. Cells without an assigned symbol are called free cells. Before

assigning a symbol to the next free cell the algorithm first determines which symbols are valid for

the cell. A symbol is valid for the next free cell if after assigning the symbol to the cell all of the

following rules are satisfied:

R1: The array is sorted by rows and by columns.

R2: The remaining free cells in the new column are enough to satisfy the minimum number of

times that each symbol must occur in the new column.

R3: The number of occurrences of each symbol in the new column is not greater than the number

of zeros in the first column.

R4: In every combination of t columns containing the new column the number of repeated tuples

is less than or equal to the maximum allowed value.

R5: In every combination of t columns containing the new column there is at least one candidate

row to cover every tuple not yet covered.

3. Improved NonIsoCA Algorithm 41



0 0 0 0
0 0 1 1
0 1 2 2
0 2 0 0
1 0 2 ∗
1 1 0 ∗
1 1 1 ∗
1 2 2 ∗
2 0 2 ∗
2 1 0 ∗
2 2 1 ∗


(a)



0 0 0 0
0 0 1 1
0 0 2 2
0 1 0 2
0 2 1 2
1 0 0 2
1 1 1 0
1 2 2 1
2 0 1 2
2 1 2 ∗
2 2 0 ∗


(b)



0 0 0 0
0 0 1 1
0 1 2 2
0 2 0 1
1 0 2 1
1 1 0 2
1 1 1 1
1 2 2 ∗
2 0 2 ∗
2 1 0 ∗
2 2 1 ∗


(c)

Figure 3.1: Examples of the applications of rules R1, R2, and R3 for filling the next free cell (first
cell with ∗): (a) Symbols 0 and 1 do not satisfy R1; (b) Symbol 2 does not satisfy R2; and (c)
Symbol 1 does not satisfy R3.

R1 is used because one characteristic of canonical CAs is that their rows and columns are sorted

in lexicographic order. Figure 3.1(a) shows a CA(11; 2, 3, 3) and the new column being constructed;

symbols 0 and 1 are not valid for the next free cell because they will produce an array that is

unordered by columns.

R2 guarantees the occurrence of each symbol at least vt−1 times in every column of a CA, because

this is the required number of times for a CA of strength t and order v. In this way, a symbol is not

valid for the next cell to fill if the remaining number of free cells in the column is not sufficient for

each symbol to occur at least vt−1 times. Figure 3.1(b) shows another CA(11; 2, 3, 3); in this case

every symbol must occur at least vt−1 = 32−1 = 3 times in the new column. Then, symbol 2 is not

valid for the next free cell because after assigning the cell there will only be one free cell and symbols

0 and 1 will miss one occurrence.

The purpose of R3 is to avoid the generation of non-canonical CAs. Due to the isomorphisms

of CAs, any symbol in the new column can not occur more times than symbol 0 in the first column.

Suppose that the first column of a CA has n zeros and that symbol e ∈ Zv occurs n + 1 times in

the new column. By a permutation of columns it is possible to move the last column of the CA to

the first column; next, the symbols of the new first column can be permuted to transform symbol

42 3.1. Improved algorithm



0 0 0 0
0 0 1 1
0 1 2 2
0 2 0 1
1 0 2 2
1 1 0 1
1 1 1 ∗
1 2 2 ∗
2 0 2 ∗
2 1 0 ∗
2 2 1 ∗


times_covered =

1 2 1 0 1 1 0 0 0
1 1 1 0 1 1 0 1 0
1 2 0 0 1 0 0 0 2



Figure 3.2: In the left matrix, symbol 1 is not valid for the next free cell because symbol 1 does not
satisfy R4. In the right part, the current status of the times_covered matrix.

e into symbol 0; and finally, a sorting of rows will produce a CA lexicographically smaller than the

original CA. Figure 3.1(c) shows a CA(11; 2, 3, 3) extended to four columns; in the next free cell, the

symbol 1 is not valid because it has already occurred four times, which is the number of occurrences

of symbol 0 in the first column.

Rules R4 and R5 are more sophisticated. To be part of a CA of strength t and order v, the

new column plus any other t− 1 columns must cover at least once each tuple of the set Ztv. If the

array has N rows then vt of these rows will contain the first occurrence of the tuples of Ztv, and the

remaining N − vt rows will contain repeated tuples. Therefore, every combination of t columns can

have at most N −vt repeated tuples. If the assignment of symbol e ∈ Zv to the next free cell makes

the number of repeated tuples greater than N − vt, then symbol e is not valid for the next free

cell. In the example of Figure 3.2 the maximum number of repeated tuples in every combination of

t columns of CA(11; 2, 3, 3) is 2, because N − vt = 11− 32 = 2, and so every symbol that produces

three repeated tuples is invalid for the next free cell. In this way, symbol 1 is not valid because in

the combination of columns {2, 3} there are already two repeated tuples, the tuple (2, 2) and the

tuple (0, 1); if symbol 1 is assigned to the next free cell then the tuple (1, 1) will also be repeated,

making the total number of repeated tuples greater than the maximum allowed.

Let A = CA(N ; t, r, v) be the CA that is being extended to r + 1 columns. To validate R4

3. Improved NonIsoCA Algorithm 43

efficiently the algorithm uses a matrix called times_covered of dimensions
(
r
t−1

)
× vt. The i-th row

of the times_covered matrix is associated to the i-th combination of columns containing column

r, where the combinations are listed in lexicographic order. Also, the j-th column of the matrix is

associated to the j-th tuple of Ztv in lexicographic order. Therefore, the entry (i, j) times_covered

contains the number of times that the j-th tuple has been covered in the i-th combination of t

columns containing column r. The algorithm uses this matrix to determine efficiently when a symbol

causes more repeated tuples than the maximum allowed in a combination of t columns.

Figure 3.2 shows the status of the times_covered matrix for the CA at the left of the figure. In

this example r = 3, t = 2, and v = 3. The
(
r
t−1

)
combinations of t− 1 columns are {0}, {1}, {2}.

Adding the column r to these combinations gives the combinations of t columns {0, 3}, {1, 3}, {2, 3};

which are associated in order with the three rows of times_covered. Similarly, the vt = 32 = 9 tuples

of the set Z2
3 = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)} are associated in

order with the nine columns of times_covered.

The rule R5 ensures the existence of at least one free cell to cover each non-covered tuple.

Suppose that we are trying to extend A = CA(N ; t, r, v) to r+1 columns. Row i of A is a candidate

row to cover a t-tuple (x0, . . . , xt−1) in a combination of t columns {j0, . . . , jt−1 = r} containing

the column under construction r if xl = Ai,jl for 0 ≤ l ≤ t − 2. Figure 3.3 shows a CA(11; 2, 3, 3)

being extended to four columns. At the left of the figure we have the times_covered matrix, and

a matrix called total_candidates which stores at entry (i, j) the number of rows that can cover the

j-th tuple in the i-th combination of t columns involving column r. For example, the first three

elements of the first row of the total_candidates matrix are 1 because there is only one candidate

row to cover the tuples (0, 0), (0, 1), and (0, 2) in the combination of columns {0, 3} (this candidate

row is the fourth row of the CA). Therefore, symbols 0 and 1 are not valid for the next free cell

because if one of them is assigned to the cell, then there will be zero candidate rows to cover the

tuple (0, 2) in the combination of columns {0, 3}.

By rules R4 and R5 every complete new column makes a CA of strength t with the previous

column; so, it is not necessary to test if the new column forms a CA with the previous columns.

44 3.1. Improved algorithm



0 0 0 0
0 0 1 1
0 1 0 1
0 2 2 ∗
1 0 2 ∗
1 1 1 ∗
1 1 2 ∗
1 2 0 ∗
2 0 2 ∗
2 1 0 ∗
2 2 1 ∗



times_covered =

1 2 0 0 0 0 0 0 0
1 1 0 0 1 0 0 0 0
1 1 0 0 1 0 0 0 0



total_candidates =

1 1 1 4 4 4 3 3 3
2 2 2 3 3 3 3 3 3
2 2 2 2 2 2 4 4 4



Figure 3.3: In the left matrix, symbols 0 and 1 are not valid for the next free cell because they do
not satisfy R5. At the right it is shown the corresponding status of the matrices times_covered and
total_candidates.

3.1.2 Construction of covering arrays

Before filling a free cell ci the algorithm firstly determines which symbols satisfy the rules R1, R2,

R3, R4, and R5. After that, the algorithm assigns to ci its first valid symbol and advances to the

next free cell ci+1; the other valid symbols for ci will be tested later on. When all valid symbols have

been assigned to a cell, the algorithm backtracks to the previous cell and assigns to it its next valid

symbol. So, the method to construct the next column also uses backtracking. The backtracking in

the new column ends when all valid symbols have been tested in the first cell of the column.

Algorithm 1 shows the new algorithm to construct the non-isomorphic CAs for given parameters

N , t, k, v. These values are supposed to be globally accessible to the recursive function

search_column(A, r). The covering array A received by the function has r ≥ 1 columns because

there is an efficient way to determine the possible first columns of canonical CAs (see Algorithm 1

of [46]); r is also the index of the new column to construct.

The first sentence of Algorithm 1 is a call to set_symbol(symbol, A, row, column) function.

This function assigns the symbol symbol to the entry (row, column) of A, and updates the auxiliary

data structures used to compute efficiently which symbols are valid for the next cell. Similarly, the

remove_symbol(A, i, r) function deletes the current symbol in the entry (i, r) of A and undoes the

3. Improved NonIsoCA Algorithm 45

Algorithm 1: search_column(A, r)
1 set_symbol(0, A, 0, r);
2 i← 1;
3 determine_valid_symbols(A, i, r);
4 while i ≥ 1 do
5 symbol ← next_valid_symbol(A, i, r);
6 if symbol 6= −1 then
7 set_symbol(symbol , A, i, r);
8 if i = N − 1 then
9 if is_canonical(A, r) then

10 if r = k − 1 then
11 write(A);

12 else
13 search_column(A, r + 1);

14 remove_symbol(A, i, r);

15 else
16 i← i+ 1;
17 determine_valid_symbols(A, i, r);

18 else
19 i← i− 1;
20 remove_symbol(A, i, r);

changes done by set_symbol() in the auxiliary data structures. At line 4 it begins a while loop that

is executed while i ≥ 1. Inside the loop, only the cells ci for i ≥ 1 are modified; the cell c0 is set

in line 1 and it never changes its value. This is because every column c = (c0 c1 · · · cN−1)T of a

canonical CA satisfies ci ≤ i for i = 0, 1, . . . , v − 1. In line 5 the next_valid_symbol() function

stores in the variable symbol the next valid symbol for ci. On every call this function returns the

next valid symbol for ci, and when there are no more valid symbols the function returns −1.

In line 9 the is_canonical() function tests if the constructed array is the canonical representative

of its class. If the array is canonical then the algorithm checks if r is equal to k− 1; when r = k− 1

the array A has k columns and therefore a new non-isomorphic CA(N ; t, k, v) is reported in line 11. If

r < k−1 then the array A is not yet complete and the search_column() function is called recursively

to construct the next column of the CA. The is_canonical() function used by the improved algorithm

46 3.1. Improved algorithm

is a recursive version of the function with the same name reported in [46]; this recursive version is

presented in Subsection 3.1.3.

3.1.3 Simplified canonical test

The is_canonical() function of [46] uses several auxiliary structures to interleave the generation

of column permutations with the generation of symbol permutations. Because it is an iterative

function, some iterations of the main loop are for generating permutations of columns, and some

are for checking symbol permutations. To determine if a given covering array A with r columns

is the canonical representative of its class the function uses r lists, L0, L1, . . . , Lr−1, where for

0 ≤ j ≤ r − 1 list Lj stores the symbol permutations that produce an array equal to A up to j

columns; the operations of adding and removing elements from the lists can affect the running time

of the program because the is_canonical() function is called constantly.

For the improved algorithm we developed a recursive version of the is_canonical() function. In

Algorithm 2 an array called assigned of length r is initialized with false, and the helper function

test_column() of Algorithm 3 is called. To construct the arrays isomorphic to A, a global array D

is used; the columns of A are copied to the columns of D (d0, d1, . . . , dr−1) in such a way that D

gets all column and symbol permutations of A that have sense to explore.

Algorithm 2: is_canonical(A, r)
1 for i = 0, 1, . . . , r − 1 do
2 assigned[i]← false;

3 return test_column(A, r, 0);

The assigned vector is used to mark which columns of A are currently copied to a column of D.

The test_column() function is called with three parameters A, r, and s, which are respectively the

array A, the number of columns of A, and the index of the next column of D that will be filled with

a column of A. The canonical test is based on the fact that if an array with r columns is canonical

then every subarray with s ≤ r columns is also canonical.

3. Improved NonIsoCA Algorithm 47

Algorithm 3: test_column(A, r, s)
1 if s = r then
2 return true;

3 for j = 0, 1, . . . , r − 1 do
4 if assigned[j] = false then
5 assigned [j]← true;
6 foreach permutation of symbols ε do
7 ds ← aj relabeled with ε;
8 sort_rows(D, s+ 1);
9 if V (D, s+ 1) is lexicographically smaller than V (A, s+ 1) then

10 return false;

11 else if V (D, s+ 1) = V (A, s+ 1) then
12 if test_column(A, r, s+ 1) = false then
13 return false;

14 assigned [j]← false;

15 return true;

On every call, the for loop of the test_column() function iterates over the r columns of A, but

the body of the loop is executed only for the columns of A not currently assigned to a column of D.

All non-assigned columns of A are copied to column s of D to ensure the verification of all column

permutations. However, to test the v! symbol permutations in each column, every non-assigned

column of A is copied v! times, one with a distinct permutation of symbols. After a column of A

is copied to column s of D, the sort_rows() function sorts the rows of D considering only the first

s + 1 columns of D. The V (X, j) function returns the vector formed by the first j columns of the

array X arranged in column-major order. If D up to s+ 1 columns is lexicographically smaller than

A up to s + 1 columns, then the function returns false, because by adding to D the non-copied

columns of A we can obtain an array isomorphic to A and smaller than it. If D and A are equal up

to s+ 1 columns, then test_column() is called recursively to fill the column with index s+ 1 of D

with the non-assigned columns of A.

When the first s + 1 columns of D are lexicographically greater than the first s + 1 columns of

A, the test_column() function is not called recursively. All permutations of columns starting with

48 3.2. Complexity of the improved algorithm

the current one are skipped because arrays D with s+ 2, . . . , k columns will also be lexicographically

greater than the corresponding subarrays of A.

In the worst case, determining if A = CA(N ; t, k, v) is canonical takes time O(N log2N ·k!·(v!)k)

because the N ! row permutations are reduced to a row sorting done in O(N log2N).

3.1.4 ExtendNonIsoCA algorithm

We adapted the improved NonIsoCA algorithm to receive as input the set of all non-isomorphic CAs

with k columns to produce the non-isomorphic CAs with k+1 columns. We call ExtendNonIsoCA to

this adaptation of the NonIsoCA algorithm. The algorithm ExtendNonIsoCA works in the same way

as the NonIsoCA algorithm: to extend a partial subarray with k columns new column is constructed

following the rules R1 to R5 for valid symbols, and using the canonical test to discard non-canonical

CAs. The objective of the ExtendNonIsoCA algorithm is to take advantage of previous work to find

the canonical CAs with k columns.

3.2 Complexity of the improved algorithm

In this section we analyze the running time of the improved NonIsoCA algorithm to classify

CA(N ; t, k, v). To make the analysis in an easier way we will do the following simplification: in every

column each symbol of Zv = {0, 1, . . . , v − 1} occurs N/v times, i.e., the symbols are balanced in

every column.

Since the rows of canonical CAs are sorted, the first column of CA(N ; t, k, v) is formed by a

block of zeros, followed by a block of ones, and so on until ending with a block of elements equal to

v − 1. Then, by our simplification there is only one possible first column, and it is the one formed

by N/v zeros, followed by N/v ones, and so on.

For the second column onwards, the improved NonIsoCA algorithm constructs the candidate

columns cell by cell. We estimate the number of constructed candidate columns as follows: for each

j = 1, . . . , v − 1 partition column j of the CA into v contiguous blocks B0, B1, . . . , Bv−1 of N/v

3. Improved NonIsoCA Algorithm 49

rows each; so block Bi is formed by the rows with indices (N/v) · i, . . . , (N/v) · (i + 1) − 1. To

be a CA of strength t, every block Bi in the columns j = 1, . . . , k − 1 must contain at least vt−2

occurrences of each symbol of Zv. Taking our simplification one step further, we suppose that each

symbol of Zv occurs N/v2 times in each block Bi. Since N ≥ vt, the inequalities N/v ≥ vt−1 and

N/v2 ≥ vt−2 hold, and so we do not underestimate the number of occurrences of each symbol.

The number of ways to assign each block Bi is the number of permutations of N/v objects

where there are v distinct objects each repeated N/v2 times; this number is given by
(N/v)!

[(N/v2)!]v
.

Therefore, the number of candidate columns, or the number of ways to assigns the v blocks Bi, is

β =

[
(N/v)!

[(N/v2)!]v

]v
.

In general v is not a divisor of N , so we use the gamma Γ(x) function instead of the factorial

function to compute β. The gamma function is an extension of the factorial function to real numbers

and complex numbers; if n is a positive integer then Γ(n) = (n−1)!; so the argument of the gamma

function should be one unit more than the argument of the factorial function. In this way, the number

of candidate columns is O(β) where β =

[
Γ(N/v + 1)

[Γ(N/v2 + 1)]v

]v
.

The improved NonIsoCA algorithm uses backtracking to construct the non-isomorphic CAs with

k columns. So, when a non-isomorphic CA with r < k columns is found, the algorithm constructs

all O(β) candidate columns to see which of them form a canonical CA with r + 1 columns. The

candidate columns are constructed cell by cell, and for each assigned cell the five rules R1, R2, R3,

R4, R5 of Subsection 3.1.1 are verified. By rules R4 and R5 a candidate column makes a CA with the

previous columns when the N cells of the candidate column are assigned; so the CA test is not made

explicitly when the candidate column is complete, but the test is done part by part with each new

assigned cell. For simplicity in our analysis, we compute the cost of the CA test for each candidate

column as if the test is performed after filling all cells of the new column. The computational cost

of the CA test for a partial CA with r ≤ k columns is O
((
r−1
t−1

)
·Nt

)
, where

(
r−1
t−1

)
is the number of

subarrays of t columns involving the last column, and Nt is the cost of validating that each of these

subarrays covers the vt t-tuples over Zv at least once. For the canonical test the computational cost

50 3.3. Parallelization of the improved algorithm

is O(N log2N · k! · (v!)k), as we saw in Subsection 3.1.3.

If each candidate column passes both the CA test and the canonical test, then the number

of constructed candidate columns is 1 for the first column, and it is O(βj) for each column

j = 1, . . . , k − 1. However, by the isomorphisms of CAs the number of canonical CAs with r = 2

columns is O(β/[(2−1)!(v!)2−1]) = O(β/[1!(v!)1] because excluding the first column the number of

isomorphic subarrays with 1 column is 1!(v!)1, and only one of these isomorphic arrays is canonical.

For r = 3 the number of candidate columns is again β, so the algorithm constructs O(β
1!(v!)1

· β)

candidate arrays of which O(β2

1!(v!)12!(v!)2
) are canonical; in this case the 2! permutation of columns

and the (v!)2 distinct symbol relabelings are done over the last two columns of the candidate arrays

with three columns. In general for r + 1 columns we have O
(βr−1∏r−1

i=1 i!(v!)i
· β
)
candidate arrays of

which O
(βr∏r

i=1 i!(v!)i
)
are canonical.

Thus, for the last column, the number of candidate arrays is O
(βk−2∏k−2

i=1 i!(v!)i
· β
)
. This term

dominates the terms corresponding to j = 2, . . . , k−1 columns; so we remove the lower-order terms

and take the number of candidate arrays for the last column as the total number of candidate arrays

for the instance CA(N ; t, k, v).

Therefore, the approximate computational cost of the improved NonIsoCA algorithm is:

O

(
βk−1∏k−2

i=1 i!(v!)i
·
(
k − 1

t− 1

)
Nt · (N log2N)k!(v!)k

)
, where β =

[
Γ(N/v + 1)

[Γ(N/v2 + 1)]v

]v
.

3.3 Parallelization of the improved algorithm

This section describes a parallel version of the improved NonIsoCA algorithm. Subsection 3.3.1

explains the parallelization strategy, and Subsection 3.3.2 gives an implementation in MPI.

3. Improved NonIsoCA Algorithm 51

3.3.1 Parallelization strategy

The basic strategy to parallelize the construction of the non-isomorphic CAs is to create a new

execution flow every time the algorithm constructs a canonical CA with r < k columns. When the

sequential algorithm constructs a canonical CA with r columns, the next step is to search the column

r+ 1 of the CA; after some time the backtracking process reaches column r again and the algorithm

searches for the next canonical CA with r columns.

In the parallel algorithm a new thread is created when a canonical CA with r columns is

constructed. The parent thread, i.e., the thread that constructed the canonical CA with r columns,

launches a child thread whose work is to search the column r + 1 of the CA, while the work of

the parent thread is to search the next canonical CA with r columns. In the child thread the first

r columns are fixed; the algorithm never backtracks to a column index smaller than r because its

parent thread is searching the next CA with r columns.

Suppose the algorithm wants to construct all non-isomorphic covering arrays CA(6; 2, 6, 2), and

suppose the algorithm has constructed the following partial CA with three columns:



0 0 0 ∗ ∗ ∗
0 0 0 ∗ ∗ ∗
0 1 1 ∗ ∗ ∗
1 0 1 ∗ ∗ ∗
1 1 0 ∗ ∗ ∗
1 1 1 ∗ ∗ ∗


Then, the following execution flows can be done in parallel:

• The child thread takes the CA constructed by its parent thread, and tries to complete the CA

without modifying the first three columns of the CA. In this case the child thread finds the

canonical CA with four columns shown next at the right:

52 3.3. Parallelization of the improved algorithm



0 0 0 ∗ ∗ ∗
0 0 0 ∗ ∗ ∗
0 1 1 ∗ ∗ ∗
1 0 1 ∗ ∗ ∗
1 1 0 ∗ ∗ ∗
1 1 1 ∗ ∗ ∗





0 0 0 0 ∗ ∗
0 0 0 0 ∗ ∗
0 1 1 1 ∗ ∗
1 0 1 1 ∗ ∗
1 1 0 1 ∗ ∗
1 1 1 0 ∗ ∗


• Meanwhile the parent thread searches the next canonical CA with three columns. In this case

the parent thread finds the CA shown next at the right:



0 0 0 ∗ ∗ ∗
0 0 0 ∗ ∗ ∗
0 1 1 ∗ ∗ ∗
1 0 1 ∗ ∗ ∗
1 1 0 ∗ ∗ ∗
1 1 1 ∗ ∗ ∗





0 0 0 ∗ ∗ ∗
0 0 1 ∗ ∗ ∗
0 1 0 ∗ ∗ ∗
1 0 1 ∗ ∗ ∗
1 1 0 ∗ ∗ ∗
1 1 1 ∗ ∗ ∗


A child process in turn can launch another thread when a canonical CA is found. The number

of threads that can be created is the accumulated sum of all canonical partial CAs with 1 ≤ j < k

columns; for the last column of the CA no child thread is created. This number of threads can

exceed the number of available processors; and therefore sometimes it is not possible to create a

new thread when a canonical CA is found. In these cases the parent thread first searches the next

column of the CA, and later the same thread searches for the next canonical CA with r columns.

3.3.2 Implementation in MPI

The implementation in MPI of the improved algorithm to construct non-isomorphic CAs uses the

master/slaves model. Let P be the number of processes in the MPI job; the master has rank 0 and

the slaves have ranks from 1 to P − 1.

The first task done by the master process is to generate all first columns that can be part of a

canonical CA for the given parameters, and to send those first columns to the slaves. The slaves

receive the partial arrays with r = 1 columns and they start the construction of the second column

3. Improved NonIsoCA Algorithm 53

of the CA. After sending the arrays with one column to the slaves, the work of the master process

is to keep track of which slave processes are working and which ones are idle, in order to authorize

or reject the creation of a new thread when a slave finds a canonical CA.

The master stores the ranks of the idle process in a stack. Initially this stack contains the ranks of

all slaves 1, 2, . . . , P −1. When a new thread can be created, the master pops one element from the

stack and the associated slave executes the thread; when a slave process becomes idle (the thread

finalizes) its rank is pushed onto the stack.

For the communication among the processes two vectors are used, the first one is called message

and the other one is called data. The message vector can store three integers and it is used to send

a message identified by a global constant; on the other hand, data is a vector of characters of length

N · k used to send a CA with r ≤ k columns.

The three positions of message are used as follows: position 0 contains the rank of the process

sending the message; position 1 contains a global constant to identify the message; and position 2

contains an argument for the constant in position 1. The six possible values for position 1 of message

are the following ones:

• SEARCH_NEXT_COLUMN. This constant indicates to a slave process that it will receive a

partial CA, and therefore its next task is to search the next column of the partial CA. The

number of columns r of the partial CA to be received is sent in position 2 of the vector.

• REQUEST_IDLE_PROCESS. Slave processes use this constant to request to the master the

rank of an idle process.

• PROCESS_AVAILABLE. The master uses this constant to notify to a slave process the

existence of an idle process who can execute a new thread. The rank of the idle process

is sent in position 2 of message.

• PROCESS_NOT_AVAILABLE. The master uses this constant to notify to a slave process

that no process is available to create a new thread.

54 3.3. Parallelization of the improved algorithm

• THREAD_FINALIZED. A slave process uses this constant to notify the finalization of its

current task, and so it is free to receive another partial CA.

• EXIT_SLAVE. The master uses this constant to tell the slave processes that they should

finalize because the job is complete.

Algorithm 4 shows the work done by the master process. The parameters N , t, k, v are supposed

to be globally accessible to the master() function, as well as the matrix A to store the CA. The

first_column() function uses the algorithm given in [46] to generate on every call the next column that

can be the first column of a canonical CA(N ; t, k, v). If a first column was successfully generated the

function stores it in the first column of A and returns true; when all first columns have been generated

the function returns false. In the MPI functions the variable comm is the default communicator

MPI_COMM_WORLD.

The while loop of lines 3-5 is to wait for a slave process to become idle in case of the stack

of idle processes is empty. Line 4 blocks the master until some slave sends a message; when the

message is received, the handle_message() function takes the appropriate action according to the

type of the received message. Algorithm 5 implements the handle_message() function. The master

can only receive messages with THREAD_FINALIZED or with REQUEST_IDLE_PROCESS. The

action for THREAD_FINALIZED is to add the rank of the slave who sent the message to the stack

of idle processes. For REQUEST_IDLE_PROCESS the master checks if the stack of idle processes

is empty; in the positive case the master responses to the slave with PROCESS_NOT_AVAILABLE;

but in the other case the master puts in message[2] the rank of the idle process and sends to the

slave a message with PROCESS_AVAILABLE.

In lines 6-12 the master() function sends two messages to an idle slave. The first one to indicate

that an array with one column will be sent, and the second one to send the partial CA with one

column. The tags T0 and T1 are used to identify the messages.

In lines 13 to 15 the master waits for messages sent by the slaves and performs the appropriate

action for the received message. The master is in the loop of these lines while there is at least one

3. Improved NonIsoCA Algorithm 55

Algorithm 4: master()
1 stack ← {1, 2, . . . , P − 1};
2 while first_column(A) do
3 while stack_empty(stack) do
4 MPI_Recv(message, 3, MPI_INT, MPI_ANY_SOURCE, T0, comm, &stat);
5 handle_message(message);

6 slave ← pop(stack);
7 message[0] ← 0;
8 message[1] ← SEARCH_NEXT_COLUMN;
9 message[2] ← 1;

10 MPI_Send(message, 3, MPI_INT, slave, T0, comm);
11 data ← first column of A;
12 MPI_Send(data, N , MPI_CHAR, slave, T1, comm);

13 while stack_size(stack) < P − 1 do
14 MPI_Recv(message, 3, MPI_INT, MPI_ANY_SOURCE, T0, comm, &stat);
15 handle_message(message);

16 message[0] ← 0;
17 message[1] ← EXIT_SLAVE;
18 for j ← 1 to P − 1 do
19 MPI_Isend(message, 3, MPI_INT, j, T0, comm, &req);

20 MPI_Finalize();

Algorithm 5: handle_message(message)
1 source ← message[0];
2 if message[1] = THREAD_FINALIZED then
3 push(stack, source);

4 else if message[1] = REQUEST_IDLE_PROCESS then
5 message[0] ← 0;
6 if stack_empty(stack) then
7 message[1] ← PROCESS_NOT_AVAILABLE;

8 else
9 message[1] ← PROCESS_AVAILABLE;

10 message[2] ← pop(stack);

11 MPI_Send(message, 3, MPI_INT, source, source, comm);

active slave. When all slaves become idle the master sends to them a message with EXIT_SLAVE,

in lines 16-19, in order to the slaves finalize their execution.

56 3.3. Parallelization of the improved algorithm

Slave processes search the next columns of the partial CAs they receive from the master or from

other slaves. Algorithm 6 shows the slave() function executed by the slave processes. When this

function starts its execution, the MPI_Recv() function blocks the slave until another process sends

a message to it. When the received message contains SEARCH_NEXT_COLUMN the slave gets

the number of columns r of the partial CA that will be received in the next message; after that, the

second message is received and copy_columns() copies the columns stored in data to the matrix A;

finally, the search_column() function is called to start the search of the next column. If the message

that is received in line 2 contains the constant EXIT_SLAVE then the slave calls MPI_Finalize() to

finalize its execution. In lines 10-12 the slave notifies the master that it has finished the search of

the next column and it is ready to accept a new partial CA.

Algorithm 6: slave()
1 while true do
2 MPI_Recv(message, 3, MPI_INT, MPI_ANY_SOURCE, T0, comm, &stat);
3 if message[1] = SEARCH_NEXT_COLUMN then
4 r ← message[2];
5 MPI_Recv(data, N ∗ r, MPI_CHAR, MPI_ANY_SOURCE, T1, comm, &stat);
6 copy_columns(A, data, r);
7 search_column(A, r);

8 else if message[1] = EXIT_SLAVE then
9 MPI_Finalize();

10 message[0] ← rank ;
11 message[1] ← THREAD_FINALIZED;
12 MPI_Send(message, 3, MPI_INT, 0, T0, comm);

Algorithm 7 shows the search_column() function used in the parallel algorithm. This function

is almost the same as the search_column() function of Algorithm 1; however when a canonical CA

is constructed and r < k − 1 the slave sends a message to the master requesting the rank of an

idle process. If there is an idle process the slave sends to the idle process the current CA; the idle

process will try to extend the received CA to r+ 2 columns and the slave who sent the message will

search the next canonical CAs with r+ 1 columns. If there is not an idle process, then the slave calls

search_column() recursively to search the next column of the CA.

3. Improved NonIsoCA Algorithm 57

Algorithm 7: search_column(A, r)
1 set_symbol(0, A, 0, r);
2 i← 1;
3 determine_valid_symbols(A, i, r);
4 while i ≥ 1 do
5 symbol ← next_valid_symbol(A, i, r);
6 if symbol 6= −1 then
7 set_symbol(symbol , A, i, r);
8 if i = N − 1 then
9 if is_canonical(A, r) then

10 if r = k − 1 then
11 write(A);

12 else
13 message[0] ← rank ;
14 message[1] ← REQUEST_IDLE_PROCESS;;
15 MPI_Send(message, 3, MPI_INT, 0, T0, comm);
16 MPI_Recv(message, 3, MPI_INT, 0, rank, comm, &stat);
17 if message[1] = PROCESS_AVAILABLE then
18 destination ← message[2];
19 message[0] ← rank ;
20 message[1] ← SEARCH_NEXT_COLUMN;
21 message[2] ← r + 1;
22 MPI_Send(message, 3, MPI_INT, destination, T0, comm);
23 data ← (a0 a1 · · · ar);
24 MPI_Send(data, N ∗ (r + 1), MPI_CHAR, destination, T1, comm);

25 else
26 search_column(A, r + 1)

27 remove_symbol(A, i, r);

28 else
29 i← i+ 1;
30 determine_valid_symbols(A, i, r);

31 else
32 i← i− 1;
33 remove_symbol(A, i, r);

3.4 Chapter summary

An improved version of the NonIsoCA algorithm to construct non-isomorphic CAs was developed in

this chapter. As we will see in Chapter 5 the new algorithm is faster than the previous one when

58 3.4. Chapter summary

t > 2 of v > 2, and so it can handle larger instances. The improved algorithm constructs the

non-isomorphic CAs column by column, and fills the cells of the new column from top to bottom.

Before assigning a symbol to a cell, the algorithm firstly determines which symbols are valid for the

cell by using a set of five rules. These rules have the purpose of avoiding the exploration of arrays

that can not be canonical CAs. A parallel implementation of the improved NonIsoCA algorithm was

developed to reduce even further the execution time of the algorithm.

The next chapter introduces the second algorithm proposed in this thesis to classify CAs. This

algorithm performs the classification of a CA of strength t+1 by generating all possible juxtapositions

of v CAs of strength t.

4
Juxtaposition of Covering Arrays

This chapter develops a new classification algorithm that is not based on a previous algorithm.

This new algorithm constructs the non-isomorphic CA(N ; t + 1, k + 1, v) by generating all possible

juxtapositions of v CAs of strength t, k columns, and respective number of rows N0, N1, . . . , Nv−1,

where N =
∑v−1

i=0 Ni. When the juxtaposition of v CAs forms a CA(N ; t+ 1, k, v), a column formed

by Ni elements equal to i for 0 ≤ i ≤ v − 1 is added to the CA to obtain a CA(N ; t+ 1, k + 1, v).

Since the algorithm explores all possible ways of constructing CA(N ; t + 1, k + 1, v), the obtained

CAs cover all isomorphism classes. None of the constructed CA(N ; t+ 1, k+ 1, v) is canonical, and

there may be isomorphic CAs in the results. To obtain only the canonical CA of each isomorphism

class, the solutions are canonized and duplicate arrays are removed. The new classification algorithm

is called JuxtaposeCA. Section 4.1 studies the structure and the existence of CAs, which provide the

basic ideas for the JuxtaposeCA algorithm; Section 4.2 describes the JuxtaposeCA algorithm in detail;

Section 4.3 analyzes the complexity of the algorithm; and Section 4.4 provides two parallelizations

of the algorithm.

59

60 4.1. Structure and existence of covering arrays

4.1 Structure and existence of covering arrays

Colbourn et al. [11] used a technique called derivation to reduce in one unit the strength and the

number of columns of a CA. In a given CA(N ; t, k, v) take any column j and construct v arrays as

follows: for 0 ≤ i ≤ v − 1 delete column j and all rows where the element at column j is not i;

the v resulting arrays are CAs with k − 1 columns and strength t− 1; finally, take the CA with the

smallest number of rows, which has at most bN/vc rows.

Let C = CA(N ; t+ 1, k+ 1, v) be a CA with strength t+ 1 ≥ 2, and construct C ′ isomorphic to

C by reordering the rows of C so that the elements of the last column of C ′ are sorted in increasing

order. Then C ′ has the following structure, were blocks A0, A1, . . . , Av−1 are CAs of strength t and

k columns, and 0, 1, . . ., v − 1 are subcolumns of elements equal to 0, 1, . . ., v − 1 respectively:

C ′ =


A0 0

A1 1
...

...
Av−1 v − 1



Figure 4.1 shows an example where C = CA(11; 3, 5, 2). The array C ′ isomorphic to C is obtained

by permuting the rows of C in such a way that the elements of the last column are sorted. The first

four columns and the first six rows of C ′ form A0 = CA(6; 2, 4, 2), and the first four columns and

the last five rows of C ′ form A1 = CA(5; 2, 4, 2). The subcolumn 0 is formed by six zeros, and the

subcolumn 1 is formed by five ones.

We can reverse the process and construct a CA(N ; t+1, k+1, v) by juxtaposing vertically v CAs of

strength t and k columns A0 = CA(N0; t, k, v), A1 = CA(N1; t, k, v), . . ., Av−1 = CA(Nv−1; t, k, v),

where N =
∑v−1

i=0 Ni, and by adding to this juxtaposition a column (0 1 · · · v − 1)T formed by Ni

elements equal to i for 0 ≤ i ≤ v − 1. For example, if we want to construct a CA(11; 3, 5, 2), then

one possible solution is to juxtapose the CAs A0 = CA(6; 2, 4, 2) and A1 = CA(5; 2, 4, 2) shown in

Figure 4.1. This juxtaposition forms a CA(11; 3, 4, 2), and by adding to this CA the column (0 1)T

4. Juxtaposition of Covering Arrays 61

C =



0 0 0 1 1
0 0 0 0 0
0 1 0 1 0
0 1 1 1 1
1 0 0 1 0
1 1 1 1 0
0 0 1 0 1
0 1 1 0 0
1 0 1 1 1
1 0 1 0 0
1 1 0 0 1


C ′ =



0 0 0 0 0
0 1 0 1 0
0 1 1 0 0
1 0 0 1 0
1 0 1 0 0
1 1 1 1 0
0 0 0 1 1
0 0 1 0 1
0 1 1 1 1
1 0 1 1 1
1 1 0 0 1


=

(
A0 0
A1 1

)
A0 =


0 0 0 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 1 1



A1 =


0 0 0 1
0 0 1 0
0 1 1 1
1 0 1 1
1 1 0 0


Figure 4.1: Structure of the covering array C = CA(11; 3, 5, 2).

formed by 6 zeros and 5 ones we obtain a CA(11; 3, 5, 2).

Not all juxtapositions of a CA(6; 2, 4, 2) and a CA(5; 2, 4, 2), plus a column formed by 6 zeros

and 5 ones, form a CA(11; 3, 5, 2). So, to construct CA(11; 3, 5, 2) by juxtaposing a CA(6; 2, 4, 2)

and a CA(5; 2, 4, 2) we need to test all possible juxtapositions of two CAs with these sizes.

However, if CA(N ; t + 1, k + 1, v) exists then there is at least one juxtaposition of v CAs

A0 = CA(N0; t, k, v), A1 = CA(N1; t, k, v), . . ., Av−1 = CA(Nv−1; t, k, v), where N =
∑v−1

i=0 Ni,

that forms a CA(N ; t + 1, k, v), as stated in the following Theorem 4.1.1. From CA(N ; t + 1, k, v)

a CA(N ; t+ 1, k + 1, v) is obtained by appending to the first CA the column (0 1 · · · v − 1)T .

Theorem 4.1.1. CA(N ; t + 1, k + 1, v) exists if and only if there exist v covering arrays

CA(N0; t, k, v), CA(N1; t, k, v), . . ., CA(Nv−1; t, k, v), where N =
∑v−1

i=0 Ni, that juxtaposed

vertically form a CA(N ; t+ 1, k, v).

Proof. Assume C = CA(N ; t + 1, k + 1, v) exists. For 0 ≤ i ≤ v − 1 let Ni be the number of

elements equal to i in the last column of C. Construct C ′ isomorphic to C by reordering the rows

of C in such a way that the elements of the last column of C ′ are sorted in increasing order. For

0 ≤ i ≤ v − 1 let Bi be the block of the Ni rows of C ′ where the symbol in the last column is i.

Divide Bi into two blocks: Ai containing the first k columns, and i containing the last column; then

62 4.1. Structure and existence of covering arrays

C ′ has the following structure:

C ′ =


A0 0

A1 1
...

...

Av−1 v − 1


The juxtaposition of blocks A0, A1, . . . , Av−1 form a CA(N ; t+ 1, k, v) because C ′ has strength

t + 1; then, to complete the first part of the proof we need to show that blocks A0, A1, . . . , Av−1

are CAs of strength t. Index columns of C ′ starting from 0, so the last column of C ′ =

CA(N ; t+ 1, k+ 1, v) has index k. Any combination (c0, c1, . . . , ct = k) of t+ 1 columns containing

the last column of C ′ covers in block Bi all (t+ 1)-tuples of the form (x0, x1, . . . , xt−1, xt = i) over

Zv. Thus, every combination of t columns (c0, c1, . . . , ct−1) from the first k columns of C ′ covers

all t-tuples (x0, x1, . . . , xt−1) over Zv in every block Ai, and therefore Ai = CA(Ni; t, k, v).

Now, suppose there are v covering arrays A0 = CA(N0; t, k, v), A1 = CA(N1; t, k, v), . . .,

Av−1 = CA(Nv−1; t, k, v), whose vertical juxtaposition forms G = CA(N ; t + 1, k, v) of strength

t + 1, where N =
∑v−1

i=0 Ni. Let E = (0 1 · · · v − 1)T be the column formed by concatenating

vertically Ni elements equal to i for 0 ≤ i ≤ v − 1. Because every Ai is a CA of strength t, for

0 ≤ i ≤ v − 1 any subarray formed by t columns of Ai joined with i covers all (t + 1)-tuples of

the form (x0, x1, . . . , xt−1, xt = i). Then, any subarray formed by t columns of G and by column

E covers all (t + 1)-tuples over Zv. Therefore, the horizontal concatenation of G and E is a

CA(N ; t+ 1, k + 1, v).

From Theorem 4.1.1 if CA(N ; t + 1, k + 1, v) exists then it can be constructed by juxtaposing

vertically v CAs with strength t and k columns. Also, if CA(N ; t + 1, k + 1, v) does not exist then

there are no v CAs with strength t and k columns that juxtaposed vertically form a CA(N ; t+1, k, v).

Based on this theorem we developed an algorithm to classify CA(N ; t+ 1, k+ 1, v) by generating

all possible juxtapositions of v CAs with strength t and k columns. To each CA(N ; t + 1, k, v) the

column E = (0 1 · · · v − 1)T is added to form a CA(N ; t+ 1, k + 1, v). The algorithm constructs

all CA(N ; t+ 1, k+ 1, v) whose elements of the last column are sorted. The constructed CAs cover

4. Juxtaposition of Covering Arrays 63

all isomorphism classes because for any CA there is at least one isomorphic CA whose last column

is sorted. To obtain only the canonical representatives of the isomorphism classes, the CAs are

canonized and duplicates are removed. The classification algorithm based on juxtapositions of v CAs

of a smaller strength is called JuxtaposeCA algorithm.

4.2 Classification of CAs by juxtapositions

The number of possible juxtapositions of v CAs with strength t and k columns may be very large,

so the classification algorithm should be able to:

• Use the isomorphisms of CAs to avoid testing juxtapositions that will produce a result

isomorphic to the result of another juxtaposition.

• Use the coverage properties of CAs to discard juxtapositions with no possibilities of being a

CA with strength t+ 1.

Subsection 4.2.1 describes the strategies of the classification algorithm to ensure the coverage

of all possible juxtapositions of v CAs of strength t and k columns, and to skip juxtapositions

that produce isomorphic arrays. The most important step of the classification algorithm is the

generation of all possible juxtapositions that can be derived from a given tuple of v non-isomorphic

CAs of strength t and k columns. Subsection 4.2.2 presents an algorithm to perform this step; this

algorithm is able to skip a number of juxtapositions with no possibilities of being a CA of strength

t+ 1.

4.2.1 Strategy to generate all possible juxtapositions

The algorithm developed in this work to construct the non-isomorphic CA(N ; t+1, k+1, v) verifies

all possible juxtapositions of v CAs with strength t and k columns to see which of them produce a

CA(N ; t + 1, k, v). To each constructed CA(N ; t + 1, k, v) the column E = (0 1 · · · v − 1)T is

added to form a CA(N ; t+1, k+1, v). None of the resulting CA(N ; t+1, k+1, v) is canonical, and

64 4.2. Classification of CAs by juxtapositions

there may be isomorphic CAs in the results. To obtain only the canonical CA of each isomorphism

class the CA(N ; t+ 1, k + 1, v) are canonized and duplicate elements are removed.

The first step of the JuxtaposeCA algorithm is to determine the multisets Sj ={N0, N1, . . .,

Nv−1} of v elements such that Ni ≥ CAN(t, k, v) and N =
∑v−1

i=0 Ni. These multisets will be called

valid multisets. To classify for example CA(27; 3, 5, 3) we need to check all juxtapositions of three

CAs with strength two, four columns, and number of rows given by S0 = {9, 9, 9}. In this case

S0 = {9, 9, 9} is the unique valid multiset because CAN(2, 4, 3) = 9; therefore, if CA(27; 3, 5, 3)

exists, it is necessarily composed by three CA(9; 2, 4, 3). On the other hand, to classify CA(29; 3, 5, 3)

the multisets to consider are S0 = {9, 9, 11} and S1 = {9, 10, 10}, because CA(29; 3, 5, 3) can be

composed by two CAs of nine rows and one CA of eleven rows, or by one CA of nine rows and two

CAs of ten rows.

The second step of the algorithm generates the non-isomorphic CAs with strength t, k columns,

and number of rows given by a valid multiset Sj = {N0, N1, . . . , Nv−1} where N =
∑v−1

i=0 Ni. From

each non-isomorphic CA the other members of its isomorphism class will be derived by permutations

of rows, columns, and symbols. To construct the non-isomorphic CAs we can use the improved

NonIsoCA algorithm developed in Chapter 3, or any other algorithm for the same purpose.

Given a valid multiset Sj = {N0, N1, . . . , Nv−1}, let Di (0 ≤ i ≤ v − 1) be the set of all

non-isomorphic CA(Ni; t, k, v). From the CAs in the sets Di all juxtapositions of v CAs whose

number of rows are given by Sj will be generated. In the example with S0 = {9, 9, 11}, the sets

D0 and D1 contain the non-isomorphic CA(9; 2, 4, 3), and the set D2 contains the non-isomorphic

CA(11; 2, 4, 3). Now, let Pj = {(A0, A1, . . . , Av−1) : Ai ∈ Di for 0 ≤ i ≤ v − 1)} be the Cartesian

product of the sets Di; then, Pj contains all possible ways of combining the non-isomorphic CAs

with number of rows given by Sj.

The next step of the algorithm is to check all juxtapositions that are derived from tuple of Pj.

For a tuple T = (A0, A1, . . . , Av−1) ∈ Pj let [A0;A1; · · · ;Av−1] denote the juxtaposition of the

v CAs in T . From [A0;A1; · · · ;Av−1] we will generate all arrays J = [A′r0 ;A
′
r1

; · · · ;A′rv−1
] where

each A′rs is derived from exactly one Ai ∈ T by permutations of rows, columns, and symbols in the

4. Juxtaposition of Covering Arrays 65

columns; in other words, the list of indices (r0, r1, . . . , rv−1) is a permutation π of (0, 1, . . . , v − 1),

and A′π(i) is isomorphic to Ai.

The number of arrays J that are derived from one tuple T ∈ Pj is v!
∏v−1

i=0 Ni!k!(v!)k. Each

array J is checked to see if it is a CA(N ; t+ 1, k, v). If this is the case, then CA(N ; t+ 1, k + 1, v)

exists by Theorem 4.1.1, and the CA is obtained by adding to J the column E = (0 1 · · · v − 1)T .

For each tuple of Pj all possible arrays J are generated; then, all possible juxtapositions of v CAs

with strength t, k columns, and number of rows given by a valid multiset Sj are explored. Since

this is done for every valid multiset Sj, all possible juxtapositions of v CAs with strength t and k

columns are explored.

The number of generated juxtapositions may be very large, however some juxtapositions produce

isomorphic arrays, and to accelerate the search we need to skip as many isomorphic arrays as

possible. Fortunately, the number of arrays J created from a tuple T = (A0, A1, . . . , Av−1) of

Pj can be reduced considerably. Consider the horizontal concatenation of an array J and the column

E = (0 1 · · · v − 1)T , denoted as (JE):

(JE) =


A′r0 0

A′r1 1
...

...
A′rv−1

v − 1


We can reorder the rows of (JE) so that the array derived from A0 is placed in the first rows of

(JE), the array derived from A1 is placed next, and so on. This permutation of rows produces an

array (JE)′ isomorphic to (JE), and by a permutation of symbols in the last column of (JE)′ it is

possible to transform the last column of (JE)′ in (0 1 · · · v − 1)T :

(JE) =


A′r0 0

A′r1 1
...

...
A′rv−1

v − 1

 '


A′0 l0
A′1 l1
...

...
A′v−1 lv−1

 '


A′0 0

A′1 1
...

...
A′v−1 v − 1


Therefore, the arrays J to be generated from a tuple T = (A0, A1, . . ., Av−1) of Pj are

66 4.2. Classification of CAs by juxtapositions

those arrays J = [A′0;A
′
1; · · · ;A′v−1] where for 0 ≤ i ≤ v − 1 the array A′i is derived from Ai

by permutations of rows, columns, and symbols. So, the number of arrays J is reduced from

v!
∏v−1

i=0 Ni!k!(v!)k to
∏v−1

i=0 Ni!k!(v!)k.

Another reduction in the number of arrays J = [A′0;A
′
1; · · · ;A′v−1] is possible: we can permute

the first N0 rows of J , and permute the columns and symbols in the entire array J to get an array

J ′ = [A′′0;A′′1; · · · ;A′′v−1], where A
′′
0 = A0 and A′′1, . . . , A

′′
v−1 are other CAs isomorphic to the original

arrays A1, . . . , Av−1. Thus, the following arrays are isomorphic:


A′0 0

A′1 1
...

...
A′v−1 v − 1

 '


A0 0

A′′1 1
...

...
A′′v−1 v − 1


In this way, the arrays J to be generated from a tuple T = (A0, A1, . . ., Av−1) of Pj are those

arrays J = [A0;A
′
1; · · · ;A′v−1] where A0 is fixed, and for 1 ≤ i ≤ v− 1 the array A′i is derived from

Ai by permutations of rows, columns, and symbols. Since A0 is fixed the number of arrays J is now∏v−1
i=1 Ni!k!(v!)k.

Finally, note that block A′i of J is complemented with a column vector i formed by Ni elements

equal to i. Then, any row permutation of A′i produces an array isomorphic to J . On the contrary,

column and symbol permutations in A′i do not produce in general arrays isomorphic to J . Therefore,

the only arrays A′i necessary to explore are those derived from Ai by permutations of columns and

symbols. In this way, the number of arrays J to be generated from a tuple T ∈ Pj is [k!(v!)k]v−1.

Algorithm 8 presents the JuxtaposeCA algorithm to classify CAs. The number of columns

k = k′ − 1 and the strength t = t′ − 1 of the CAs to be juxtaposed are obtained from the input

parameters k′ and t′. The generation of the valid multisets {N0, N1, . . . , Nv−1} can be accomplished

without difficulty, but it requires to know the value of CAN(t, k, v). The construction of the sets

Di requires the computation of the non-isomorphic CA(Ni; t, k, v), which as mentioned before can

be done with any classification algorithm. The key function is generate_juxtapositions(T), where

arrays J = [A0;A
′
1; · · · ;A′v−1] are generated from a tuple T of the set P ; this function will be

4. Juxtaposition of Covering Arrays 67

Algorithm 8: juxtapose_algorithm(N, k′, t′, v)

1 k ← k′ − 1;
2 t← t′ − 1;
3 S ← all multisets {N0, N1, . . . , Nv−1} such that Ni ≥ CAN(t, k, v) and N =

∑v−1
i=0 Ni;

4 R← ∅;
5 foreach S ∈ S do
6 for i = 0, . . . , v − 1 do
7 Di ← all non-isomorphic CA(Ni; t, k, v);

8 P = D0 ×D1 × · · · ×Dv−1 = {(A0, A1, . . . , Av−1) : Ai ∈ Di for 0 ≤ i ≤ v − 1)};
9 foreach T = (A0, A1, . . . , Av−1) ∈ P do

10 generate_juxtapositions(T);

11 F ← ∅;
12 foreach B ∈ R do
13 B′ ← canonize(B);
14 if B′ 6∈ F then F ← F ∪ {B′};

15 write(F);

described in Subsection 4.2.2.

The CA(N ; t + 1, k + 1, v) that are constructed by generate_juxtapositions(T) are stored in a

set R, which is initialized at line 4 with the empty set. There may be isomorphic CAs in R; then to

obtain only the non-isomorphic CA(N ; t+ 1, k+ 1, v) the CAs in R are canonized and added to the

final result set F . The canonize() function is implemented in Subsection 4.2.3.

4.2.2 Generating all juxtapositions of v non-isomorphic CAs

The crucial step of the JuxtaposeCA algorithm is to generate all arrays J = [A0;A
′
1; · · · ;A′v−1] that

can be derived from a given v-tuple of CAs T = (A0, A1, . . ., Av−1). Recall that in each J , the

array A0 is fixed, and for 1 ≤ i ≤ v− 1 the array A′i is derived from Ai by permutations of columns

and symbols. After generating an array J , the algorithm checks if J is a CA(N ; t+ 1, k, v).

This section presents an algorithm to perform this crucial step. The algorithm constructs J one

column at a time validating that each new column forms a CA of strength t + 1 with the columns

68 4.2. Classification of CAs by juxtapositions

previously added to J . This is done to avoid the exploration of arrays J with no possibilities of being

a CA(N ; t+ 1, k, v). The algorithm starts by constructing the following array J , where block A0 is

fixed, and blocks F1, . . . , Fv−1 are unassigned or free; later on these arrays will be filled with arrays

derived from A1, . . . , Av−1 by permutations of columns and symbols:

J =


A0

F1

...
Fv−1


For 1 ≤ i ≤ v− 1 let fi0 , fi1 , . . . , fik−1

be the k columns of Fi, and let ai0 , ai1 , . . ., aik−1
be the

k columns of Ai. Then, the previous array J is equivalent to this one:

J =


a00 a01 · · · a0k−1

f10 f11 · · · f1k−1

f20 f21 · · · f2k−1

...
...

fv−10 fv−11 · · · fv−1k−1


The algorithm fills column 0 in all free blocks, then it fills column 1 in all free blocks, and so on.

In this way, columns f10 , f20 , . . . , fv−10 are filled first, then columns f11 , f21 , . . . , fv−11 are filled, and

so on. When the first t + 1 columns of all free blocks have been filled or assigned, the algorithm

checks if they form a CA of strength t+ 1. Columns are indexed from 0, so the first t+ 1 columns

of J are formed by columns a00 , a01 , . . . , a0t , and by columns fi0 , fi1 , . . . , fit for 1 ≤ i ≤ v − 1.

If the first t + 1 columns of J form a CA of strength t + 1, then the algorithm advances to the

next column of the free blocks, and column f1t+1 is assigned, then column f2t+1 is assigned, and so

on until column fv−1t+1
is assigned. At this point the algorithm verifies if the current t+ 2 columns

of J form a CA of strength t + 1. In the negative case the current value of fv−1t+1
is replaced by

its next available value to see if the first t + 2 columns of J form a CA of strength t + 1. This is

done for all available values of fv−1t+1
, and when all values are checked the algorithm backtracks to

fv−2t+1
and assigns to it its next available value; in the next step the algorithm advances to fv−1t+1

4. Juxtaposition of Covering Arrays 69

to check again all its available values.

To construct all possible arrays J , the algorithm fills the free block Fi with all isomorphic CAs

derived from Ai by permutations of columns and symbols. Thus, the possible values for a column of

Fi are the columns obtained by permuting symbols in the columns of Ai; so the number of available

values for a column of Fi is (v!)k. When the first r columns of Fi have been assigned the number

of available values for fir is (v!)k−r, which are the v! relabelings of the columns of Ai not currently

assigned to one of the first r columns of Fi.

In every free block Fi the algorithm works as follows: columns of Ai are added to Fi in such a

way that fi0 gets all columns ai0 , . . . , aik−1
in order; then for a fixed value of fi0 , column fi1 gets

in order all columns of Fi distinct from the one assigned to fi0 ; and for fixed values of fi0 and fi1 ,

column fi2 gets in order all columns of Ai not currently assigned to fi0 or fi1 ; the same applies for

the other columns of Fi. In this way Fi gets all CAs derived from Ai by permutations of columns.

However, for each column permutation of Ai the JuxtaposeCA algorithm requires to test all

possible symbol permutations in the columns of Ai. Symbol permutations are integrated in the

following way: suppose that the first r columns of Fi have been assigned, and that the next free

column fir of Fi gets assigned column aij of Ai; we can consider that the current value of fir is the

identity relabeling of aij ; the next v! − 1 values to assign to fir are the other v! − 1 relabelings of

aij . When all relabelings of aij are assigned to fir , the next value for fir is the identity relabeling of

the next column of Ai that has not been assigned to fir .

The generate_juxtapositions() function of Algorithm 9 receives as parameter a v-tuple T =

(A0, A1, . . . , Av−1) of CAs. This function initializes the fixed block A0 of J , and initializes with

false the elements of a v × k matrix called assigned ; this matrix is used to record which columns

of Ai are currently assigned to a column of Fi. The last sentence of the function is a call to the

add_column() function, which fills the free blocks Fi with CAs derived from Ai by permutations of

columns and symbols. The add_column() function is called from generate_juxtapositions() with

arguments 1 and 0, because the first column to fill in the array J is column 0 of the free block F1,

or f10 .

70 4.2. Classification of CAs by juxtapositions

Algorithm 9: generate_juxtapositions(T = (A0, A1, . . . , Av−1))

1 J ← array(N, k);
2 for i = 0, . . . , N0 − 1 do
3 for j = 0, . . . , k − 1 do
4 J [i][j]← A0[i][j];

5 for i = 0, . . . , v − 1 do
6 for j = 0, . . . , k − 1 do
7 assigned [i][j]← false;

8 add_column(1, 0);

The add_column() function of Algorithm 10 receives an index i of a free block and an index

r of a column of the free block as parameters; the work of the function is to set column fir . The

variable Fi is used as an alias of the block of J where a CA derived from Ai will be placed. The

function relies on recursion to assign column 0 of every free block, then to assign column 1 of every

free block, and so on. In addition, in every free block Fi recursion allows to test in column r all

columns of Ai not currently assigned to a column of Fi; the main for loop iterates over all columns

j of Ai, but the body of the loop is executed only for those columns j for which assigned [i][j] is

equal to false. Recursion also allows to check in order the v! symbol permutations ε0, ε1, . . . , εv!−1

of the column of Ai assigned to column r of Fi. If a CA(N ; t+ 1, k, v) is constructed, then column

E is appended to it to form a covering array B = CA(N ; t+ 1, k + 1, v).

The sort_rows() function sorts the rows of B to obtain an isomorphic CA B′; finally B′ is added

to the set R if B′ is not currently in the set. The sorting of the rows of B is done because we

found experimentally that many of the arrays B = (JE) are equal after a row sorting. So, the row

sorting helps to reduce the number of isomorphic solutions in the set R. Instead of sorting the rows

of B, we could have canonized B to obtain the canonical representative of the class to which B

belongs; however, the canonization is much more costly than the row sorting. In the worst case, the

canonization of B = CA(N ; t+ 1, k + 1, v) takes time O(N log2N · (k + 1)! · (v!)k+1), and the row

sorting takes time proportional to O(N log2N).

4. Juxtaposition of Covering Arrays 71

Algorithm 10: add_column(i, r)

1 for j = 0, . . . , k − 1 do
2 if assigned[i][j] = false then
3 assigned [i][j]← true;
4 foreach permutation ε of the symbols {0, 1, . . . , v − 1} do
5 copy column j of Ai to column r of Fi and permute its symbols using ε;
6 if i = v − 1 then
7 if r < t or is_covering_array(J, r) = true then
8 if r = k − 1 then
9 B ← (JE);

10 B′ ← sort_rows(B);
11 if B′ 6∈ R then
12 R← R ∪ {B′};

13 else
14 add_column(1, r + 1);

15 else
16 add_column(i+ 1, r);

17 assigned [i][j]← false;

For a v-tuple of CAs T = (A0, A1, . . . , Av−1), Algorithm 9 and its helper function Algorithm 10

generate in the worst case [k!(v!)k]v−1 arrays J = [A0;A
′
1; · · · ;A′v−1], since array A0 is fixed and

A′1, . . . , A
′
v−1 are derived respectively from A1, . . . , Av−1 by permutations of columns and symbols.

However, the condition that every new column added to the partial array J must form a CA of

strength t + 1 with the previous columns of J reduces the number of arrays J that are explored.

For example if the condition fails at the column with index j, then in each free block Fi we skip

the remaining (k − j − 1)! permutations of columns for the free columns fij+1
, . . . , fik−1

, plus the

(v!)k−j−1 associated column relabelings.

We can see in Algorithm 10 what makes the JuxtaposeCA algorithm significantly distinct from

previous ones. The target covering array CA(N ; t+1, k+1, v) is not constructed element by element,

but subcolumn by subcolumn, where a subcolumn is a column of a CA of strength t. Nevertheless,

72 4.2. Classification of CAs by juxtapositions

our algorithm requires the construction of the non-isomorphic CAs of strength t and k columns,

which could have been constructed element by element, or by any other procedure. However, the

cost of constructing the non-isomorphic CA(Ni; t, k, v), plus the cost of exploring the juxtapositions

of v CAs derived from them by permutations of columns and symbols, is in general smaller than

the cost of constructing CA(N ; t + 1, k + 1, v) element by element (at least with the implemented

algorithms) if the number of distinct CA(Ni; t, k, v) is not very large, as we will see in Section 5.3.

4.2.3 Canonization of covering arrays

The canonize(A) function is used in Algorithm 8 to obtain the canonical CA isomorphic to A. This

function can be derived from a slight modification of the is_canonical(A, r) function of Algorithm

2. Algorithms 11 and 12 implement the canonization of a CA with size N × k and order v.

Algorithm 11: canonize(A)

1 M ← A;
2 for i = 0, 1, . . . , k − 1 do
3 assigned [i]← false;

4 check_column(A, 0);
5 return M ;

The objective is to transform A into its isomorphic CA which is canonical. In Algorithm 11 the

array M is initialized with A, but in Algorithm 12 M is updated when it is found an array D smaller

thanM . Here smaller means smaller in lexicographic order when the arrays are linearized by columns.

The V (X, r) function returns a vector of length N · r containing the elements of the first r columns

of X in column-major order.

The k elements of the assigned vector are initialized with false in Algorithm 11 to indicate that

none column of A has been copied to a column of the auxiliary array D. The k columns of the array

D are d0, d1, . . . , dk−1. Algorithm 11 calls the check_column() function with parameters A and 0

because the k columns of A will be copied to the column 0 of D one at a time. After the call to

check_column() returns, the function returns M to its caller.

4. Juxtaposition of Covering Arrays 73

Algorithm 12: check_column(A, s)
1 if s = k then
2 return;

3 for j = 0, 1, . . . , k − 1 do
4 if assigned[j] = false then
5 assigned [j]← true;
6 foreach permutation of symbols ε do
7 ds ← aj relabeled with ε;
8 sort_rows(D, s+ 1);
9 if V (D, s+ 1) is lexicographically smaller than V (M, s+ 1) then

10 copy the k − s+ 1 non-used columns of A to the last k − s+ 1 columns of D;
11 M ← D;
12 check_column(A, s+ 1);

13 else if V (D, s+ 1) = V (M, s+ 1) then
14 check_column(A, s+ 1);

15 assigned [j]← false;

When the algorithm finds an array D smaller than M up to s+ 1 columns the action is to copy

the non-assigned columns of A to D, and copy D to M . If D is smaller than or equal to M up to

s+ 1 columns, then the check_column() function is called recursively to fill the next column of the

auxiliary array D. If D is greater than M , then the function is not called recursively because the

current array D can not lead to the canonical representative of the isomorphism class of A.

The basic difference between the is_canonical(A) function of Algorithm 2 and the canonize(A)

function is the following one: the first function returns false as soon as it constructs an array D

smaller than A, but the second function copiesD toM and calls itself recursively to search for another

array D smaller than the current M . The complexity of both functions is O(N log2N · k! · (v!)k).

4.3 Complexity of the JuxtaposeCA algorithm

In an execution of the JuxtaposeCA algorithm to classify CA(N ; t+ 1, k+ 1, v) we need to known in

advance: (a) the value of CAN(t, k, v); (b) the valid multisets {N0, N1, . . . , Nv−1} such that each

74 4.3. Complexity of the JuxtaposeCA algorithm

Ni is greater than or equal to CAN(t, k, v) and N =
∑v−1

i=0 Ni; and (c) the non-isomorphic CAs that

exist for every possible number of rows Ni in a valid multiset {N0, N1, . . . , Nv−1}.

Let m = CAN(t, k, v); so mv is the number of rows that are obtained by juxtaposing v optimal

CA(m; t, k, v). If N = mv then the unique valid multiset is {N0 = m,N1 = m, . . . , Nv−1 = m}.

Otherwise, the number of valid multisets is equal to the number of partitions of the positive integer

N − mv into at most v parts, which is denoted by p(N − mv, v). The number of partitions of

N −mv into at most v parts is the number of ways in which we can distribute the extra N −mv

rows among the v CAs of size m. Each partition {x0, x1, . . . , xr−1} of N − mv, where xi > 0,

r ≤ v, and N −mv =
∑r−1

i=0 xi, generates a valid multiset {N0, N1, . . . , Nv−1} in the following way:

Ni = m+ xi if i < r, and Ni = m if i ≥ r.

For a multiset Sj = {N0j , N1j , . . . , Nv−1j} the non-isomorphic CA(N0j ; t, k, v), CA(N1j ; t, k, v),

. . ., CA(Nv−1j ; t, k, v) to be juxtaposed are stored respectively in sets D0j , D1j , . . . , Dv−1j . So, the

number of v-tuples of non-isomorphic CAs for Sj is |D0j × D1j × · · · × Dv−1j |. Thus, the total

number of v-tuples of non-isomorphic CAs to be processed by the JuxtaposeCA algorithm is:

p(N−mv, v)−1∑
j=0

|D0j ×D1j × · · · ×Dv−1j |.

Each of these v-tuples of non-isomorphic CAs is processed by the generate_juxtapositions()

function of Algorithm 9, and in the worst case each v-tuple generates [k!(v!)k]v−1 arrays J of size

N×k. For each J , a CA test is performed to determine if J is a CA(N ; t+1, k, v); this test requires

O(
(
k
t+1

)
N(t + 1)) time. The column E = (0 1 · · · v − 1)T is added to the arrays J that pass

the CA test. In the worst case each array (JE) is sorted by rows in O(N log2N) time and then

canonized in O(N log2N · (k+ 1)! · (v!)k+1) time, but the cost of the row sorting is absorbed by the

cost of the canonization. Therefore, the computational cost of the JuxtaposeCA algorithm is:

O

(p(N−v CAN(t,k,v), v)−1∑
j=0

|D0j×· · ·×Dv−1j |·[k!(v!)k]v−1·
(

k

t+ 1

)
N(t+1)·(N log2N)(k+1)!(v!)k+1

)
.

4. Juxtaposition of Covering Arrays 75

4.4 Parallelization of the JuxtaposeCA algorithm

In this section we develop two parallel implementations of the JuxtaposeCA algorithm using MPI.

The first implementation studied in Subsection 4.4.1 parallelizes the for-each loop located at line 9

of Algorithm 8. The second implementation exposed in Subsection 4.4.2 parallelizes the calls to the

add_column() function of Algorithm 10.

4.4.1 Parallelization of the calls to generate_juxtapositions(T)

The first approach to parallelize the JuxtaposeCA algorithm is to parallelize the for-each loop of line

9 of Algorithm 8. For each valid multiset {N0, N1, . . . , Nv−1}, the body of this loop is executed∏v−1
i=0 |Di| times, where |Di| is the number of non-isomorphic CA(Ni; t, k, v). If the number of valid

multisets or the number of non-isomorphic CA(Ni; t, k, v) is large, then the body of the for-each

loop, which consists in a call to generate_juxtapositions(T), is executed many times.

Algorithm 13 shows the pseudocode of the master process. In the MPI functions the variable

comm is the default communicator MPI_COMM_WORLD. The first four sentences are the same

as in Algorithm 8 to obtain the valid multisets and to initialize the set R. After that in line 5 the

stack with the ranks of idle processes is initialized. In the for-each loop of lines 10-18 the while loop

waits until there is at least one idle process; after the while loop ends, the rank of the idle process

on top of the stack is assigned to the variable slave. The message vector is used to indicate to the

slave the type of action to do; the options are TEST_JUXTAPOSITIONS, CANONIZE_CA, and

EXIT_SLAVE.

The master sends the tuple T = (A0, A1, . . ., Av−1) to a slave in two steps; in the first step

the master sends a message with TEST_JUXTAPOSITIONS to indicate to the slave that the next

message will be an array of size N · k containing the tuple T . After all tuples T for each valid

multiset have been sent to a slave, the work of the master process is to wait in the while loop of

lines 19-21 until all slaves finish the processing of the last tuple T they received.

76 4.4. Parallelization of the JuxtaposeCA algorithm

Algorithm 13: master(N, k′, t′, v)

1 k ← k′ − 1;
2 t← t′ − 1;
3 S ← all multisets {N0, N1, . . . , Nv−1} such that Ni ≥ CAN(t, k, v) and N =

∑v−1
i=0 Ni;

4 R← ∅;
5 stack ← {1, 2, . . . , P − 1};
6 foreach S ∈ S do
7 for i = 0, . . . , v − 1 do
8 Di ← all non-isomorphic CA(Ni; t, k, v);

9 P = D0 ×D1 × · · · ×Dv−1 = {(A0, A1, . . . , Av−1) : Ai ∈ Di for 0 ≤ i ≤ v − 1)};
10 foreach T = (A0, A1, . . . , Av−1) ∈ P do
11 while stack_empty(stack) do
12 MPI_Recv(message, 2, MPI_INT, MPI_ANY_SOURCE, T0, comm, &stat);
13 handle_message(message);

14 slave ← pop(stack);
15 message[0] ← TEST_JUXTAPOSITIONS;
16 copy_tuple(data, T);
17 MPI_Send(message, 1, MPI_INT, slave, T0, comm);
18 MPI_Send(data, N ∗ k, MPI_CHAR, slave, T1, comm);

19 while stack_size(stack) < P − 1 do
20 MPI_Recv(message, 2, MPI_INT, MPI_ANY_SOURCE, T0, comm, &stat);
21 handle_message(message);

22 F ← ∅;
23 canonize_CAs(R);
24 write(F);
25 message[0] ← EXIT_SLAVE;
26 for j ← 1 to P − 1 do
27 MPI_Isend(message, 1, MPI_INT, j, T0, comm, &req);

28 MPI_Finalize();

After processing all tuples T , the next step is to canonize the constructed CA(N ; t+ 1, k+ 1, v).

The canonize_CAs() function of Algorithm 14 divides the CAs in R among the slave processes; each

CA B ∈ R is sent to a slave, the slave canonizes the CA and returns the canonical CA to the master;

4. Juxtaposition of Covering Arrays 77

Algorithm 14: canonize_CAs(R)

1 foreach B ∈ R do
2 while stack_empty(stack) do
3 MPI_Recv(message, 2, MPI_INT, MPI_ANY_SOURCE, T0, comm, &stat);
4 handle_message(message);

5 slave ← pop(stack);
6 message[0] ← CANONIZE_CA;
7 copy_CA(data, B);
8 MPI_Send(message, 1, MPI_INT, slave, T0, comm);
9 MPI_Send(data, N ∗ (k + 1), MPI_CHAR, slave, T1, comm);

10 while stack_size(stack) < P − 1 do
11 MPI_Recv(message, 2, MPI_INT, MPI_ANY_SOURCE, T0, comm, &stat);
12 handle_message(message);

finally, the master stores the canonical CAs without repetitions in the final result set F . When the

CAs have been canonized the master sends the slaves a message with EXIT_SLAVE.

The handle_message() function invoked in lines 13 and 21 of Algorithm 13, and in lines 4 and

12 of Algorithm 14, is given in Algorithm 15. This function processes the messages received from

the slaves. These messages can be of three types: THREAD_FINALIZED, SOLUTION_FOUND,

or CA_CANONIZED. The action for THREAD_FINALIZED is to push onto the stack the rank

of the process who sent the message; the action for SOLUTION_FOUND is to add the received

CA(N ; t+ 1, k + 1, v) to the set R if the CA is not in the set; and the action of CA_CANONIZED

is to push onto the stack the rank of the process who sent the message, and to add the received

canonical CA to the set F .

Algorithm 16 contains the function executed by the slaves. The first sentence initializes a set R

with the empty set; this set R will store the non-repeated CA(N ; t+ 1, k+ 1, v) after a row sorting.

Then, both the master and the slaves have a set R to store the non-repeated CAs. Since there is no

communication among the slaves, they are unaware of the CA(N ; t+ 1, k+ 1, v) that are generated

in other slaves, so the master needs to filter the duplicate CAs that were generated by different

78 4.4. Parallelization of the JuxtaposeCA algorithm

Algorithm 15: handle_message(message)

1 source ← message[0];
2 if message[1] = THREAD_FINALIZED then
3 push(stack, source);

4 else if message[1] = SOLUTION_FOUND then
5 MPI_Recv(data, N ∗ (k + 1), MPI_CHAR, source, T1 , comm, &stat);
6 B ← get_CA(data);
7 if B 6∈ R then
8 R← R ∪ {B};

9 else if message[1] = CA_CANONIZED then
10 push(stack, source);
11 MPI_Recv(data, N ∗ (k + 1), MPI_CHAR, source, T1 , comm, &stat);
12 B ← get_CA(data);
13 if B 6∈ F then
14 F ← F ∪ {B};

slaves.

If the message type is TEST_JUXTAPOSITIONS, then the slave regenerates the tuple T = (A0,

A1, . . ., Av−1) from the received data in the data vector, and calls the generate_juxtapositions(T)

function to test all possible arrays J than can be derived from the CAs in T by permutations

of columns and symbols in the columns. The generate_juxtapositions() function in the slaves is

identical to the function in Algorithm 9 of the sequential algorithm. However, the add_column()

function, invoked from generate_juxtapositions(), is slightly different from the function given in

Algorithm 10. The only difference is that after adding the array B′ to the set R this array is sent to

the master to be recorded in its own set R. Algorithm 17 shows the add_column() function that is

executed by the slaves.

If the message type is CANONIZE_CA, then the slave canonizes the received CA and returns

the canonical CA to the master. If the message type is EXIT_SLAVE, then the slave calls the

MPI_finalize() function to finalize.

4. Juxtaposition of Covering Arrays 79

Algorithm 16: slave()

1 R← ∅;
2 while true do
3 MPI_Recv(message, 1, MPI_INT, 0, T0, comm, &stat);
4 if message[0] = TEST_JUXTAPOSITIONS then
5 MPI_Recv(data, N ∗ k, MPI_CHAR, 0, T1, comm, &stat);
6 get_tuple(T ,data);
7 generate_juxtapositions(T);
8 message[0] ← rank ;
9 message[1] ← THREAD_FINALIZED;

10 MPI_Send(message, 2, MPI_INT, 0, T0, comm);

11 else if message[0] = CANONIZE_CA then
12 MPI_Recv(data, N ∗ (k + 1), MPI_CHAR, 0, T1, comm, &stat);
13 get_CA(B,data);
14 B′ ← canonize(B);
15 copy_CA(data, B′);
16 message[0] ← rank ;
17 message[1] ← CA_CANONIZED;
18 MPI_Send(message, 2, MPI_INT, slave, T0, comm);
19 MPI_Send(data, N ∗ (k + 1), MPI_CHAR, slave, T1, comm);

20 else if message[0] = EXIT_SLAVE then
21 MPI_Finalize();

4.4.2 Parallelization of the permutations of columns and symbols

The second approach to parallelize the JuxtaposeCA algorithm is intended for cases where the

generate_juxtapositions(T) function is called a small number of times, but the CAs in the tuple T =

(A0, A1, . . ., Av−1) are of considerable size. There may be cases where generate_juxtapositions(T)

is called only once from Algorithm 8, but the time required by the function is long. So, in these

scenarios we want to parallelize the work done inside the function generate_juxtapositions(), i.e., to

parallelize the calls to the helper function add_column().

As mentioned before, the arrays J that are generated from a tuple T = (A0, A1, . . ., Av−1) are

80 4.4. Parallelization of the JuxtaposeCA algorithm

Algorithm 17: add_column(i, r)

1 for j = 0, . . . , k − 1 do
2 if assigned[i][j] = false then
3 assigned[i][j]← true;
4 foreach permutation ε of the symbols {0, 1, . . . , v − 1} do
5 copy column j of Ai to column r of Fi and permute its symbols using ε;
6 if i = v − 1 then
7 if r < t or is_covering_array(J, r) = true then
8 if r = k − 1 then
9 B ← (JE);

10 B′ ← sort_rows(B);
11 if B′ 6∈ R then
12 R← R ∪ {B′};
13 copy_CA(data, B′);
14 MPI_Send(data, N ∗ (k + 1), MPI_CHAR, 0, T1, comm);

15 else
16 add_column(1, r + 1);

17 else
18 add_column(i+ 1, r);

19 assigned[i][j]← false;

those arrays J = [A0;A
′
1; · · · ;A′v−1] where A0 is fixed, and for 1 ≤ i ≤ v− 1 the array A′i is derived

from Ai by permutations of columns and symbols. Thus, for the array A1 we need to generate all

k! ·(v!)k permutations of columns and symbols in the worst case, although many of them are skipped

when the algorithm finds that they do not have possibilities of being a CA of strength t+ 1.

The strategy we follow is to assign, or to make fixed, the first FIXED < k columns of the first free

block F1 of the arrays J ; this free block is used to contain the isomorphic copies of A1. Let P (n, r)

be the number of permutations of size r from n objects. We can partition the k! permutations of

columns of A1 in P (k,FIXED) chunks, where the chunks correspond to the P (k,FIXED) possible

ways to assign the first FIXED columns of F1 with FIXED columns of A1. In addition, each of

4. Juxtaposition of Covering Arrays 81

these chunks is relabeled using the (v!)FIXED possible combinations of the v! symbol relabelings

for each of the FIXED columns. Thus, the number of partitions for a given value of FIXED is

P (k, FIXED) · (v!)FIXED.

Algorithm 18 shows the function that is executed by the master process. At line 11, the

generate_partitions(T) function is invoked to generate the P (k,FIXED) · (v!)FIXED partitions of

the arrays J that can be generated from a tuple T = (A0, A1, . . . , Av−1). The rest of the

master() function is equal to the function with the same name in Algorithm 13; also the functions

handle_message() and canonize_CAs() are the same as in the first parallel approach (previous

subsection).

Algorithm 18: master(N, k′, t′, v)

1 k ← k′ − 1;
2 t← t′ − 1;
3 S ← all multisets {N0, N1, . . . , Nv−1} such that Ni ≥ CAN(t, k, v) and N =

∑v−1
i=0 Ni;

4 R← ∅;
5 stack ← {1, 2, . . . , P − 1};
6 foreach S ∈ S do
7 for i = 0, . . . , v − 1 do
8 Di ← all non-isomorphic CA(Ni; t, k, v);

9 P = D0 ×D1 × · · · ×Dv−1 = {(A0, A1, . . . , Av−1) : Ai ∈ Di for 0 ≤ i ≤ v − 1)};
10 foreach T = (A0, A1, . . . , Av−1) ∈ P do
11 generate_partitions(T);

12 while stack_size(stack) < P − 1 do
13 MPI_Recv(message, 2, MPI_INT, MPI_ANY_SOURCE, T0, comm, &stat);
14 handle_message(message);

15 F ← ∅;
16 canonize_CAs(R);
17 write(F);
18 message[0] ← EXIT_SLAVE;
19 for j ← 1 to P − 1 do
20 MPI_Isend(message, 1, MPI_INT, j, T0, comm, &req);

21 MPI_Finalize();

82 4.4. Parallelization of the JuxtaposeCA algorithm

The generate_partitions(T) function is given in Algorithm 19; the work of this function is

the creation of the partitions to process the tuple T . The PC vector contains a permutation of

size FIXED from the k column indices of A1. For each permutation of columns PC the v!FIXED

possible relabelings PS for the FIXED columns are generated. Every position of PS stores the

index of a permutation of Zv stored in a table called PERM_SYMB_TABLE; this table contains

the v! permutations of Zv. The permutation ε at index i of PERM_SYMB_TABLE represents

the permutation
(

0 1 ··· v−1
ε[0] ε[1] ··· ε[v−1]

)
. The vectors PC and PS are sent in the message vector of size

2 ∗ FIXED + 1.

Algorithm 19: generate_partitions(T)

1 foreach permutation PC of size FIXED from {0, 1, . . . , k} do
2 foreach of the v!FIXED possible independent relabeling PS of the columns in PC do
3 while stack_empty(stack) do
4 MPI_Recv(message, 2, MPI_INT, MPI_ANY_SOURCE, T0, comm, &stat);
5 handle_message(message);

6 slave ← pop(stack);
7 message[0] ← TEST_JUXTAPOSITIONS;
8 copy PC into message from position 1 to position FIXED;
9 copy PS into message from position FIXED + 1 to position 2 ∗ FIXED;

10 copy_tuple(data, T);
11 MPI_Send(message, 2 ∗ FIXED + 1, MPI_INT, slave, T0, comm);
12 MPI_Send(data, N ∗ k, MPI_CHAR, slave, T1, comm);

The slave() function is shown in Algorithm 20. If the message type is TEST_JUXTAPOSITIONS,

then the function retrieves in its local vectors PC and PS the corresponding vectors sent by

the master process. After that, the slave receives the tuple T of non-isomorphic CAs and calls

generate_juxtapositions() with arguments T , PC, and PS. If the message type is CANONIZE_CA,

the slave canonizes the received CA and returns the canonical CA to the master. If the message

type is EXIT_SLAVE, the slave calls MPI_Finalize() to finish.

In the sequential algorithm and in the first parallel approach, the add_column(i, r) function is

4. Juxtaposition of Covering Arrays 83

Algorithm 20: slave()

1 R← ∅;
2 while true do
3 MPI_Recv(message, 2 ∗ FIXED + 1, MPI_INT, 0, T0, comm, &stat);
4 if message[0] = TEST_JUXTAPOSITIONS then
5 PC ← values in message from position 1 to position FIXED;
6 PS ← values in message from position FIXED + 1 to position 2 ∗ FIXED;
7 MPI_Recv(data, N ∗ k, MPI_CHAR, 0, T1, comm, &stat);
8 get_tuple(T ,data);
9 generate_juxtapositions(T, PC, PS);

10 message[0] ← rank ;
11 message[1] ← THREAD_FINALIZED;
12 MPI_Send(message, 2, MPI_INT, 0, T0, comm);

13 else if message[0] = CANONIZE_CA then
14 MPI_Recv(data, N ∗ (k + 1), MPI_CHAR, 0, T1, comm, &stat);
15 get_CA(B,data);
16 B′ ← canonize(B);
17 copy_CA(data, B′);
18 message[0] ← rank ;
19 message[1] ← CA_CANONIZED;
20 MPI_Send(message, 2, MPI_INT, slave, T0, comm);
21 MPI_Send(data, N ∗ (k + 1), MPI_CHAR, slave, T1, comm);

22 else if message[0] = EXIT_SLAVE then
23 MPI_Finalize();

called by generate_juxtapositions() with arguments i = 1 and r = 0 because the next column to fill

is the column 0 of the first free block. However, in the second parallel approach the arguments are:

• i = 1 and r = FIXED, if v = 2

• i = 2 and r = 0, if v > 2

The generate_juxtapositions(T) function is given in Algorithm 21. Besides the tuple T , this

function receives the partial permutation of columns PC, and the permutation of symbols PS for the

84 4.4. Parallelization of the JuxtaposeCA algorithm

Algorithm 21: generate_juxtapositions(T = (A0, A1, . . . , Av−1), PC, PS)

1 J ← array(N, k);
2 for i = 0, . . . , N0 − 1 do
3 for j = 0, . . . , k − 1 do
4 J [i][j]← A0[i][j];

5 for i = 0, . . . , v − 1 do
6 for j = 0, . . . , k − 1 do
7 assigned [i][j]← false;

8 p← N0;
9 for j = 0, . . . ,FIXED− 1 do

10 c← PC[j];
11 ε← PERM_SYMB_TABLE[PS [j]];
12 for i = 0, . . . , N1 − 1 do
13 J [p+ i][j]← ε[A1[i][c]];

14 assigned [1][c]← true;

15 if v = 2 then
16 add_column(1,FIXED);

17 else
18 add_column_case2(2, 0);

first FIXED columns. The first 7 lines of this function are equal to the first 7 lines of the function

with the same name in Algorithm 9. In line 8 the variable p gets the index of the first row of the

block F1, and the for loop at lines 9-14 copies the FIXED columns of A1 whose indices are in PC to

the first FIXED columns of the free block F1; the columns copied are relabeled using the relabeling

stored in the corresponding position of the PS vector.

If v = 2 the function add_column() of Algorithm 17 is called with parameters 1 and FIXED,

because the next subcolumn to fill in the array J is the subcolumn at index FIXED of block 1. If

v > 2 the add_column_case2() function of Algorithm 22 is called. This function is divided into two

parts; the first part is the if block from lines 1 to 11, and the second part is the else block from lines

12 to 31. The second part is exactly the same as the whole add_column() function of Algorithm

17. The first part handles the case i = 1, which is the case when the next column to fill r is in the

4. Juxtaposition of Covering Arrays 85

first free block F1; this part is subdivided into two subcases: (a) r < FIXED and (b) r ≥ FIXED.

When r < FIXED the action is to advance to the next free block because the column r in the first

free block is fixed. If r ≥ FIXED then the function tests in column r all columns of A1 not currently

assigned to a column of the block F1, together with its associated symbol relabelings. Notice that

because v > 2 the first part of the function does not handle the case i = v − 1.

The performance of the two parallel versions are compared against the performance of the

sequential version in Section 5.4.

4.5 Chapter summary

This chapter presented a new algorithm called JuxtaposeCA to classify CA(N ; t+1, k+1, v) by testing

all possible juxtapositions of v CAs of strength t. The JuxtaposeCA algorithm is able to discard a

number of juxtapositions because either they will produce arrays isomorphic to other juxtapositions

or because they can not be a CA of strength t+1. The algorithm generates CAs from all isomorphism

classes because all possible ways of constructing CA(N ; t + 1, k + 1, v) are explored. However, the

CA(N ; t+ 1, k + 1, v) are not canonical and there may be isomorphic CAs in the results. To obtain

only the canonical CA of each isomorphism class, the constructed CA(N ; t+1, k+1, v) are canonized

and duplicate elements are removed.

We provided two parallel versions of the JuxtaposeCA algorithm using MPI. The first version is

intended for cases where the number of v-tuples of non-isomorphic CAs to be juxtaposed is large;

and the second version is intended for cases where the number of v-tuples of non-isomorphic CAs is

small but the time required to process each v-tuple of CAs is long.

In the next chapter, the computational results that were obtained with the algorithms developed

in this chapter and in Chapter 3 are given.

86 4.5. Chapter summary

Algorithm 22: add_column_case2(i, r)

1 if i = 1 then
2 if r < FIXED then
3 add_column_case2(i+ 1, r);

4 else
5 for j = 0, . . . , k − 1 do
6 if assigned[i][j] = false then
7 assigned [i][j]← true;
8 foreach permutation ε of the symbols {0, 1, . . . , v − 1} do
9 copy column j of Ai to column r of Fi and permute its symbols using ε;

10 add_column_case2(i+ 1, r);

11 assigned [i][j]← false;

12 else
13 for j = 0, . . . , k − 1 do
14 if assigned[i][j] = false then
15 assigned [i][j]← true;
16 foreach permutation ε of the symbols {0, 1, . . . , v − 1} do
17 copy column j of Ai to column r of Fi and permute its symbols using ε;
18 if i = v − 1 then
19 if r < t or is_covering_array(J, r) = true then
20 if r = k − 1 then
21 B ← (JE);
22 B′ ← sort_rows(B);
23 if B′ 6∈ R then
24 R← R ∪ {B′};
25 copy_CA(data, B′);
26 MPI_Send(data, N ∗ (k + 1), MPI_CHAR, 0, T1, comm);

27 else
28 add_column_case2(1, r + 1);

29 else
30 add_column_case2(i+ 1, r);

31 assigned [i][j]← false;

5
Computational Results

This chapter presents the main computational results that were obtained by using the two new

classification algorithms. The computational results of interest are new CAs classified, new CANs,

and improvements in the lower bounds of CANs. Section 5.1 shows the results obtained with the

improved NonIsoCA algorithm; and Section 5.2 presents the results obtained with the JuxtaposeCA

algorithm. Section 5.3 analyzes when it is more appropriate to use the improved NonIsoCA algorithm

or to use the JuxtaposeCA algorithm. Finally, Section 5.4 studies the performance of the parallel

implementations of the NonIsoCA algorithm and of the JuxtaposeCA algorithm.

5.1 Results of the improved NonIsoCA algorithm

This section presents the results that were obtained with the improved NonIsoCA algorithm.

Subsection 5.1.1 starts by comparing the execution time of the improved sequential algorithm against

the execution time of the previous algorithm of [46] for some CAs. Subsection 5.1.2 shows the new

results resulting from the executions of the sequential and the parallel NonIsoCA algorithms.

87

88 5.1. Results of the improved NonIsoCA algorithm

5.1.1 Comparisons with the previous algorithm

We compare the performance of the improved sequential algorithm to construct non-isomorphic CAs

against the performance of the original algorithm developed in [46]. The execution times of the

original algorithm were taken from tables 2, 3, and 4 of [46]. Both algorithms were implemented in

C language, compiled with GCC using the optimization flag -O3, and executed in processors AMD

Opteron™ 6274 at 2.2 GHz.

In general, the improved sequential algorithm outperforms the original algorithm, but there are

some cases in which the original algorithm performs better. The most remarkable of these cases

is v = t = 2. Table 5.1 shows a comparison between the execution times of both algorithms for

v = t = 2 and 2 ≤ k ≤ 20. When v = 2 and t = 2 there are few invalid symbols in the new column

being constructed because of the following two reasons: (1) v = 2 implies that the probability of

passing rules R1, R2, and R3 is high, because there are only two symbols 0 and 1; (2) t = 2 implies

that there are few combinations of columns involving the current column under construction, and so

rules R4 and R5 are satisfied most of the times. Therefore, the cost of verifying the five rules for

valid symbols is greater than the cost of processing all candidate columns, as the original algorithm

does.

However, when v > 2 or t > 2 the improved sequential algorithm is faster than the original one,

as shown in Table 5.2, except in the first two instances of the table. The bigger improvements were

for the cases N = 16, 13 ≤ k ≤ 15, t = 3, v = 2, where the execution time was reduced from

about one thousand hours to approximately one hundred and thirty hours; and for the cases N = 24,

7 ≤ k ≤ 12, t = 4, v = 2, where the execution time was improved from more than fifty hours to

less than 73 seconds.

It is worth to mention that with regard to the number of non-isomorphic CAs the improved

sequential algorithm produced exactly the same results as the original algorithm; and the results

of both algorithms are consistent with the results of the algorithms studied in Chapter 2. Also

the results for the instances CA(N ; 2, k, 2) where N = 6 and 6 ≤ k ≤ 10 (shown in Table

5. Computational Results 89

Table 5.1: Comparison between the original and the improved sequential algorithm when v = 2 and
t = 2. The abbreviations for time units are µs for microseconds, s for seconds, and h for hours.

CA # Classes Original Algorithm Improved Algorithm
CA(4; 2, 2, 2) 1 50.00 µs 0.001 s
CA(4; 2, 3, 2) 1 85.00 µs 0.002 s
CA(5; 2, 4, 2) 1 197.00 µs 0.003 s
CA(6; 2, 5, 2) 7 0.003 s 0.004 s
CA(6; 2, 6, 2) 4 0.006 s 0.008 s
CA(6; 2, 7, 2) 3 0.009 s 0.013 s
CA(6; 2, 8, 2) 1 0.012 s 0.018 s
CA(6; 2, 9, 2) 1 0.015 s 0.020 s
CA(6; 2, 10, 2) 1 0.025 s 0.034 s
CA(7; 2, 11, 2) 26 0.279 s 0.420 s
CA(7; 2, 12, 2) 10 0.308 s 0.472 s
CA(7; 2, 13, 2) 4 0.329 s 0.500 s
CA(7; 2, 14, 2) 1 0.347 s 0.530 s
CA(7; 2, 15, 2) 1 0.373 s 0.570 s
CA(8; 2, 16, 2) 700 759 0.90 h 2.17 h
CA(8; 2, 17, 2) 579 466 1.32 s 4.84 h
CA(8; 2, 18, 2) 440 826 1.88 h 7.10 h
CA(8; 2, 19, 2) 309 338 2.46 h 9.73 h
CA(8; 2, 20, 2) 200 326 3.12 h 12.52 h

5.1), and for the instances CA(12; 3, k, 2) where 6 ≤ k ≤ 11 (shown in Table 5.2), match the

number of non-equivalent CAs found by Choi et al. [7] for the same instances. So, the results of

the improved sequential NonIsoCA algorithm are consistent with the already known results. The

instances presented in Table 5.2 are the ones with v > 2 or t > 2 for which the original algorithm

was executed due to time constraints.

5.1.2 New classification results and new CANs

The improved sequential algorithm is able to process instances which are larger than the ones

processed by the original algorithm. The main objective is to classify CAs whose optimality is

known, or to classify CAs to determine if they exist or not. A secondary objective is to classify

non-optimal CAs with the purpose of using the obtained non-isomorphic CAs in the JuxtaposeCA

90 5.1. Results of the improved NonIsoCA algorithm

Table 5.2: Comparison between the original and the improved sequential algorithm for v = 2 and
t = 3, 4; and for v = 3, 4 and t = 2.

CA # Classes Original Algorithm Improved Algorithm
CA(8; 3, 3, 2) 1 358.000 µs 0.001 s
CA(8; 3, 4, 2) 1 666.000 µs 0.002 s
CA(10; 3, 5, 2) 1 0.012 s 0.005 s
CA(12; 3, 6, 2) 9 0.337 s 0.062 s
CA(12; 3, 7, 2) 2 0.353 s 0.078 s
CA(12; 3, 8, 2) 2 0.372 s 0.133 s
CA(12; 3, 9, 2) 1 0.436 s 0.226 s
CA(12; 3, 10, 2) 1 0.539 s 0.482 s
CA(12; 3, 11, 2) 1 0.851 s 1.088 s
CA(15; 3, 12, 2) 2 1.260 h 0.443 h
CA(15; 3, 13, 2) 0 1.390 h 0.443 h
CA(16; 3, 13, 2) 89 937.680 h 129.879 h
CA(16; 3, 14, 2) 8 978.420 h 130.512 h
CA(16; 3, 15, 2) 0 1 052.650 h 130.573 h
CA(16; 4, 4, 2) 1 0.127 s 0.004 s
CA(16; 4, 5, 2) 1 0.158 s 0.189 s
CA(21; 4, 6, 2) 1 694.600 s 0.346 s
CA(24; 4, 7, 2) 1 51.860 h 19.269 s
CA(24; 4, 8, 2) 1 52.070 h 19.746 s
CA(24; 4, 9, 2) 1 52.880 h 21.890 s
CA(24; 4, 10, 2) 1 53.090 h 28.810 s
CA(24; 4, 11, 2) 1 53.190 h 39.045 s
CA(24; 4, 12, 2) 1 53.390 h 72.846 s
CA(9; 2, 2, 3) 1 0.002 s 0.001 s
CA(9; 2, 3, 3) 1 0.003 s 0.002 s
CA(9; 2, 4, 3) 1 0.006 s 0.011 s
CA(11; 2, 5, 3) 3 1.780 s 0.028 s
CA(12; 2, 6, 3) 13 240.150 s 1.535 s
CA(12; 2, 7, 3) 1 252.380 s 1.520 s
CA(13; 2, 8, 3) 5 4.010 h 0.364 h
CA(13; 2, 9, 3) 4 4.020 h 0.368 h
CA(13; 2, 10, 3) 0 4.140 h 0.368 h
CA(16; 2, 2, 4) 1 145.970 s 0.003 s
CA(16; 2, 3, 4) 2 215.040 s 0.228 s
CA(16; 2, 4, 4) 1 347.520 s 0.699 s
CA(16; 2, 5, 4) 1 629.660 s 2.216 s

5. Computational Results 91

Table 5.3: Optimal or unknown CAs classified by the improved sequential NonIsoCA algorithm.

CA # Classes
CA(14; 2, 10, 3) 4 490
CA(14; 2, 11, 3) 0
CA(33; 3, 5, 3) 1
CA(33; 3, 6, 3) 1
CA(19; 2, 6, 4) 4
CA(19; 2, 7, 4) 0
CA(20; 2, 7, 4) 0
CA(37; 2, 4, 6) 13
CA(37; 2, 5, 6) 0
CA(38; 2, 5, 6) 0

algorithm. The results that were obtained for the main objective are shown in Table 5.3. Except for

the three instances with v = t = 3, all these classification results were also obtained independently

by Kokkala [25]. Based on the values of v and t the results of Table 5.3 are divided into four subsets:

• v = 3 and t = 2. In this case there are two instances: N = 14 and k = 10, and N = 14

and k = 11. The CA(14; 2, 10, 3) is known to exist [37], but the number of non-isomorphic

CAs for this instance was unknown. The improved sequential algorithm found 4,990 non-

isomorphic CA(14; 2, 10, 3). For the second instance the number of isomorphism classes was

zero, so CA(14; 2, 11, 3) does not exist. The nonexistence of CA(14; 2, 11, 3) and the existence

of CA(15; 2, 20, 3) [37] implies CAN(2, k, 3) = 15 for 11 ≤ k ≤ 20. Finally, the optimality

of CA(15; 2, 13, 3) and the existence of CA(45; 3, 14, 3) [9] implies CAN(3, 14, 3) = 45 due to

the inequality CAN(t, k, v) ≤ bCAN(t+ 1, k + 1, v)/vc [11]. All these new CANs are listed in

Table 5.4.

• v = 3 and t = 3. The two CAs of this case are known to be optimal, but the number of

isomorphism classes was unknown.

• v = 4 and t = 2. The CA(19; 2, 6, 4) is known to be optimal [11]. However, for k = 7

the current upper bound is 21 [44] and the current lower bound is 19 [11]. The improved

92 5.2. Results of the JuxtaposeCA algorithm

Table 5.4: New covering array numbers obtained with the improved sequential algorithm.

Previous result New result
14 ≤ CAN(2, 11, 3) ≤ 15 CAN(2, 11, 3) = 15
14 ≤ CAN(2, 12, 3) ≤ 15 CAN(2, 12, 3) = 15
14 ≤ CAN(2, 13, 3) ≤ 15 CAN(2, 13, 3) = 15
14 ≤ CAN(2, 14, 3) ≤ 15 CAN(2, 14, 3) = 15
14 ≤ CAN(2, 15, 3) ≤ 15 CAN(2, 15, 3) = 15
14 ≤ CAN(2, 16, 3) ≤ 15 CAN(2, 16, 3) = 15
14 ≤ CAN(2, 17, 3) ≤ 15 CAN(2, 17, 3) = 15
14 ≤ CAN(2, 18, 3) ≤ 15 CAN(2, 18, 3) = 15
14 ≤ CAN(2, 19, 3) ≤ 15 CAN(2, 19, 3) = 15
14 ≤ CAN(2, 20, 3) ≤ 15 CAN(2, 20, 3) = 15
42 ≤ CAN(3, 14, 3) ≤ 45 CAN(3, 14, 3) = 45
19 ≤ CAN(2, 7, 4) ≤ 21 CAN(2, 7, 4) = 21
37 ≤ CAN(2, 5, 6) ≤ 39 CAN(2, 5, 6) = 39

sequential algorithm found zero non-isomorphic CAs for k = 7 and N ∈ {19, 20}; therefore,

CAN(2, 7, 4) = 21.

• v = 6 and t = 2. The instance CA(37; 2, 4, 6) is optimal [11]. For k = 5 the current upper

bound is 39 [37] and the current lower bound is 37 [11]. The result of zero non-isomorphic

CAs for N ∈ {37, 38} implies CAN(2, 5, 6) = 39.

Table 5.5 shows the non-optimal CAs which were classified using the improved parallel NonIsoCA

algorithm. The objectives of classifying these CAs is to use the obtained non-isomorphic CAs in

the executions of the JuxtaposeCA algorithm, and to have a record of the number of isomorphism

classes to validate future algorithms. The results in the table are used in the next section to obtain

the computational results of the JuxtaposeCA algorithm.

5.2 Results of the JuxtaposeCA algorithm

This section presents the main computational results which were obtained with the JuxtaposeCA

algorithm. Subsection 5.2.1 describes the process to classify the covering arrays CA(32; 4, 13, 2),

5. Computational Results 93

Table 5.5: Non-optimal CAs classified by the improved parallel NonIsoCA algorithm.

CA # Classes
CA(17; 3, 12, 2) 3 238 165 485
CA(25; 4, 7, 2) 6
CA(26; 4, 7, 2) 228
CA(27; 4, 7, 2) 13 012
CA(28; 4, 7, 2) 919 874
CA(29; 4, 7, 2) 58 488 647
CA(30; 4, 7, 2) 3 177 398 378
CA(25; 4, 8, 2) 7
CA(26; 4, 8, 2) 195
CA(27; 4, 8, 2) 9 045
CA(28; 4, 8, 2) 522 573
CA(29; 4, 8, 2) 27 826 894
CA(30; 4, 8, 2) 1 374 716 212

CA(64; 5, 14, 2), CA(128; 6, 15, 2), and CA(256; 7, 16, 2). Subsection 5.2.2 shows the steps to

classify CA(52; 5, 8, 2), and Subsection 5.2.3 gives the computations to obtain the non-isomorphic

CA(54; 5, 9, 2). Subsection 5.2.4 presents the experimentation done to improve the lower bound

of CAN(6, 9, 2) from 96 to 107; and Subsection 5.2.5 shows the computational experimentation

to improve the lower bounds of CAN(3, 7, 3), CAN(3, 9, 3), and CAN(4, 7, 3). Subsection 5.2.6

summarizes all new results that were found. Finally, Subsection 5.2.7 performs a consistency check

for the JuxtaposeCA algorithm.

The parallel versions of the JuxtaposeCA algorithm are used only in Subsection 5.2.1, in all other

subsections the sequential version is used.

In some subsections we use the improved parallel NonIsoCA algorithm to generate the non-

isomorphic CAs used by the JuxtaposeCA algorithm. In these subsections we refer the improved

parallel NonIsoCA algorithm simply as the NonIsoCA algorithm, so we omit the words “improved”

and “parallel”.

94 5.2. Results of the JuxtaposeCA algorithm

5.2.1 Classification of CA(32; 4, 13, 2), CA(64; 5, 14, 2), CA(128; 6, 15, 2),

and CA(256; 7, 16, 2)

The current lower bound of CAN(4, 13, 2) is 30 [11], and its current upper bound is 32 [49].

In this section we prove the nonexistence of CA(30; 4, 13, 2) and CA(31; 4, 13, 2), and therefore

CAN(4, 13, 2) = 32. In addition we found that there is only one CA(32; 4, 13, 2) up to isomorphisms;

so this CA is both optimal and unique.

From Theorem 4.1.1 if CA(30; 4, 13, 2) exists, then there exist two covering arrays

CA(N0; 3, 12, 2) and CA(N1; 3, 12, 2) such that N0 + N1 = 30, and their vertical juxtaposition

forms a CA of strength four. Now, the only possibility for the values of N0 and N1 is N0 = N1 = 15

because CAN(3, 12, 2) = 15 [11]; so the unique valid multiset in this case is {15, 15}. The NonIsoCA

algorithm gives two distinct CA(15; 3, 12, 2), and when using these CAs the sequential JuxtaposeCA

algorithm did not find a CA(30; 4, 13, 2).

Similarly, to construct CA(31; 4, 13, 2) the unique valid multiset is {15, 16}. The sequential

JuxtaposeCA algorithm tested the juxtapositions of the two non-isomorphic CA(15; 3, 12, 2) with

the 44,291 non-isomorphic CA(16; 3, 12, 2) reported by the NonIsoCA algorithm. Also in this case

no CA(31; 4, 13, 2) was found. Therefore, CA(32; 4, 13, 2) is optimal, and CAN(4, 13, 2) = 32.

The covering array CA(32; 4, 13, 2) is also optimal in the number of columns. The value

CAN(3, 13, 2) = 16 was proved in [46]; so, the only valid multiset to construct a CA(32; 4, 14, 2)

is {16, 16}. The NonIsoCA reported 89 distinct CA(16; 3, 13, 2), and when using these CAs the

sequential JuxtaposeCA algorithm did not find a CA(32; 4, 14, 2), which implies CAK(32; 4, 2) = 13,

where CAK(N ; t, v) denotes the maximum value of k for which exists a CA(N ; t, k, v).

The new covering array number CAN(4, 13, 2) = 32 has important consequences. In [48] it

was reported a Tower of Covering Arrays (TCA) beginning with CA(8; 2, 11, 2) and ending at

CA(256; 7, 16, 2). A TCA is a succession of CAs where the first one is CA(N ; t, k, v) and the i-

th CA (i > 0) has Nvi rows, k + i columns, strength t+ i, and order v. The complete TCA of [48]

is this:

5. Computational Results 95

CA(8; 2, 11, 2), CA(16; 3, 12, 2), CA(32; 4, 13, 2), CA(64; 5, 14, 2), CA(128; 6, 15, 2),

CA(256; 7, 16, 2).

The first two CAs of the tower are not optimal because CAN(2, 11, 2) = 7 and CAN(3, 12, 2)

= 15. However, from CAN(4, 13, 2) = 32 we have CAN(5, 14, 2) = 64, CAN(6, 15, 2) = 128, and

CAN(7, 16, 2) = 256, due to the inequality CAN(t + 1, k + 1, 2) ≥ 2CAN(t, k, 2) [31], which says

the optimal CA with k+ 1 columns and strength t+ 1 has at least two times the number of rows of

the optimal CA with k columns and strength t. In a TCA with v = 2 every CA, other than the first

one, has exactly two times the number of rows of the previous CA, and so if the i-th CA is optimal

then the j-th CAs, j > i, are also optimal.

Now, we construct the non-isomorphic CA(32; 4, 13, 2). In this case there are two valid

multisets {15, 17} and {16, 16}. For {15, 17} we juxtaposed the 2 non-isomorphic CA(15; 3, 12, 2)

with the 3,238,165,485 non-isomorphic CA(17; 3, 12, 2) reported by the NonIsoCA algorithm

and none CA(32; 4, 13, 2) was constructed. For {16, 16} the juxtaposition of the 44,291 non-

isomorphic CA(16; 3, 12, 2) with themselves produced only one distinct CA(32; 4, 13, 2). Then, all

CA(32; 4, 13, 2) are isomorphic among them. In this case we used the first parallel version of the

JuxtaposeCA algorithm (Subsection 4.4.1) since the number of non-isomorphic CAs CA(N0; 3, 12, 2)

and CA(N1; 3, 12, 2) that were juxtaposed is large.

Taking advantage of the uniqueness of CA(32; 4, 13, 2) we executed the second parallel version

of the JuxtaposeCA algorithm (Subsection 4.4.2) to find the number of distinct CA(64; 5, 14, 2), and

the result was only one non-isomorphic CA(64; 5, 14, 2). In a similar way, the second parallel version

of the JuxtaposeCA algorithm found that CA(128; 6, 15, 2) and CA(256; 7, 16, 2) are also unique.

In Section 2.4 we mentioned the construction of a (13, 64, 5) code by juxtaposing two Nadler

codes (12, 32, 5) done by Nordstrom and Robinson [36]. After that, they repeated the process

and juxtaposed two (13, 64, 5) codes to construct a (14, 128, 5) code, and finally they took two

copies of this last code to form a (15, 256, 5) code. The extended versions of these four codes

are the (13, 32, 6), (14, 64, 6), (15, 128, 6), (16, 256, 6) codes. These four codes are optimal and

96 5.2. Results of the JuxtaposeCA algorithm

unique; their optimality was proven in [3], the uniqueness of the first three codes was proven in

[14], and the uniqueness of the last one was shown in [43]. We found that these four codes are

equivalent respectively to the covering arrays CA(32; 4, 13, 2), CA(64; 5, 14, 2), CA(128; 6, 15, 2),

CA(256; 7, 16, 2). In each case we validate that the code is a CA of the alleged strength, and that

the rows of the CA have minimum mutual distance 6.

5.2.2 Classification of CA(52; 5, 8, 2)

CAN(5, 8, 2) is the first element of the class CAN(t, t+3, 2) whose exact value is unknown; its current

status is 48 ≤ CAN(5, 8, 2) ≤ 52 [11, 49]. To find CAN(5, 8, 2) we need to check the juxtapositions

of the non-isomorphic CA(N0; 4, 7, 2) with the non-isomorphic CA(N1; 4, 7, 2) for N0 + N1 ∈ {48,

49, 50, 51, 52}. Since CAN(4, 7, 2) = 24 we have N0, N1 ≥ 24. The first step is to search a CA

with 48 rows, if it does not exist the next step is to search a CA with 49 rows, and so on.

As shown in Subtable 5.6(a) there is only one non-isomorphic CA(24; 4, 7, 2). Subtable 5.6(b)

shows that no CA(48; 5, 8, 2) was constructed from the juxtaposition of the unique CA(24; 4, 7, 2)

with itself. This result is consistent with the demonstration of the nonexistence of CA(48; 5, 13, 2)

done in [7].

Now, to search if CA(49; 5, 8, 2) exists, we need to juxtapose the non-isomorphic CA(24; 4, 7, 2)

with the non-isomorphic CA(25; 4, 7, 2). There is only one CA(24; 4, 7, 2), and for CA(25; 4, 7, 2) the

NonIsoCA algorithm reported 6 distinct CAs. When using these CAs the sequential JuxtaposeCA

Table 5.6: Computations to find the value of CAN(5, 8, 2). (a) Number of non-isomorphic
CA(M ; 4, 7, 2) forM = 24, 25, 26, 27, 28. (b) Number of non-isomorphic CA(N ; 5, 8, 2) constructed
by juxtaposing CA(N0; 4, 7, 2) and CA(N1; 4, 7, 2), where N = N0 +N1 and 48 ≤ N ≤ 52.

(a) Non-iso CA(M ; 4, 7, 2)
M # Classes
24 1
25 6
26 228
27 13 012
28 919 874

(b) Non-iso CA(N ; 5, 8, 2)
N Multisets {N0, N1} # Classes
48 {24, 24} 0
49 {24, 25} 0
50 {24, 26}, {25, 25} 0
51 {24, 27}, {25, 26} 0
52 {24, 28}, {25, 27}, {26, 26} 8

5. Computational Results 97

algorithm did not find a CA(49; 5, 8, 2). The same strategy is repeated to determine the existence

of CA(50; 5, 8, 2), CA(51; 5, 8, 2), and CA(52; 5, 8, 2). From the results in Subtable 5.6(b) we have

CAN(5, 8, 2) = 52, and there are eight non-isomorphic CA(52; 5, 8, 2).

5.2.3 Classification of CA(54; 5, 9, 2)

For CAN(5, 9, 2) the current lower bound is 52 (Subsection 5.2.2) and the current upper bound is

54 [49]. Then, to determine the exact value of CAN(5, 9, 2) we need to check if there is a CA

with 52 or 53 rows. Subtable 5.7(a) shows the number of non-isomorphic CA(M ; 4, 8, 2) that were

generated by the NonIsoCA algorithm forM = 24, . . . , 30. These CAs are used to search for the non-

isomorphic CA(N ; 5, 9, 2) with N = 52, 53, 54. Subtable 5.7(b) shows the valid multisets {N0, N1}

and the number of non-isomorphic CAs constructed for each N ∈ {52, 53, 54}. From the results we

have CAN(5, 9, 2) = 54, and there is only one distinct CA(54; 5, 9, 2), which is shown in Figure 5.1

(transposed).

The execution of the ExtendNonIsoCA algorithm of Subsection 3.1.4 with the unique

CA(54; 5, 9, 2) produced zero CA(54; 5, 10, 2); then, CAK(54; 5, 2) = 9. This result improves from

52 to 55 the lower bounds of CAN(5, 10, 2), CAN(5, 11, 2), CAN(5, 12, 2), and CAN(5, 13, 2), taken

from [11].

Table 5.7: Computations to find the value of CAN(5, 9, 2). (a) Number of non-isomorphic
CA(M ; 4, 8, 2) for M = 24, . . . , 30. (b) Number of non-isomorphic CA(N ; 5, 9, 2) constructed by
juxtaposing CA(N0; 4, 8, 2) and CA(N1; 4, 8, 2), where N = N0 +N1 and 52 ≤ N ≤ 54.

(a) Non-iso CA(M ; 4, 8, 2)
M # Classes
24 1
25 7
26 195
27 9 045
28 522 573
29 27 826 894
30 1 374 716 212

(b) Non-iso CA(N ; 5, 9, 2)
N Multisets {N0, N1} # Classes
52 {24, 28}, {25, 27}, {26, 26} 0
53 {24, 29}, {25, 28}, {26, 27} 0
54 {24, 30}, {25, 29}, {26, 28}, {27, 27} 1

98 5.2. Results of the JuxtaposeCA algorithm



0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 1 1 1
0 0 0 0 0 1 0 1 1 0 1 1 0 0 1 0 1 1 0 0 1 0 0 1 0 1 1 0 1 1 0 0 1 0 0 1 0 1 1 0 0 1 0 1 1 0 1 1 0 0 1 1 1 1
0 0 0 1 1 0 0 0 1 0 0 1 0 1 1 0 0 1 0 1 1 1 1 0 0 0 1 0 0 1 1 1 0 0 1 1 0 0 1 0 1 1 0 0 1 0 0 1 1 1 0 1 1 1
0 0 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 0 0 0 1 0 0 1 1 0 1 0 0 1 1 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 0 1 1 0 1 1
0 1 0 0 1 0 0 1 0 0 1 0 1 0 1 0 0 1 1 1 0 1 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1 0 1 1 0 0 0 1 1 1 0 1 0 1 1 1 0 1
0 1 1 1 0 1 1 0 0 1 1 0 0 1 1 1 0 1 1 0 1 1 0 0 0 1 0 1 0 1 0 1 1 0 0 1 1 0 0 0 1 0 0 1 0 1 1 0 1 0 0 0 0 1


Figure 5.1: The canonical representative of the unique isomorphism class of CA(54; 5, 9, 2).

5.2.4 Improving the lower bound of CAN(6, 9, 2)

The next CAN of the class CAN(t, t + 3, 2) to be determined is CAN(6, 9, 2). Its current status is

96 ≤ CAN(6, 9, 2) ≤ 108 [11, 9]. However, from CAN(5, 8, 2) = 52 (Subsection 5.2.2) and from

the inequality CAN(t + 1, k + 1, 2) ≥ 2CAN(t, k, 2) we have CAN(6, 9, 2) ≥ 104. Therefore, the

new lower bound of CAN(6, 9, 2) is 104, but we can further improve this lower bound by using the

JuxtaposeCA algorithm.

Firstly, the juxtapositions of the 8 non-isomorphic CA(52; 5, 8, 2) that were found in Subsection

5.2.2 with themselves do not produce a CA(104; 6, 9, 2); therefore CAN(6, 9, 2) ≥ 105.

To determine the existence of CA(105; 6, 9, 2) we need to test the juxtaposition of the non-

isomorphic CA(52; 5, 8, 2) with the non-isomorphic CA(53; 5, 8, 2). But to obtain the non-isomorphic

CA(53; 5, 8, 2) we need to juxtapose CA(N0; 4, 7, 2) and CA(N1; 4, 7, 2) where N0 + N1 = 53.

Previously, in Subsection 5.2.2, the non-isomorphic CA(M ; 4, 7, 2) for M = 24, . . . , 28 were

listed; and in addition the NonIsoCA algorithm reported 58,488,647 distinct CA(29; 4, 7, 2) and

3,177,398,378 distinct CA(30; 4, 7, 2), as shown in Subtable 5.8(a). Subtable 5.8(b) shows the

multisets for N = 53 and the number of non-isomorphic CA(53; 5, 8, 2) constructed by the sequential

JuxtaposeCA algorithm; in this case there are 213 distinct CA(53; 5, 8, 2). Subtable 5.8(c) shows

the result of juxtaposing the non-isomorphic CA(52; 5, 8, 2) with the non-isomorphic CA(53; 5, 8, 2)

5. Computational Results 99

Table 5.8: Computations to improve the lower bound of CAN(6, 9, 2). (a) Number of non-isomorphic
CA(M ; 4, 7, 2) for M = 29, 30. (b) Number of non-isomorphic CA(N ; 5, 8, 2) constructed by
juxtaposing CA(N0; 4, 7, 2) and CA(N1; 4, 7, 2), where N = N0+N1 and 53 ≤ N ≤ 54. (c) Number
of non-isomorphic CA(L; 6, 9, 2) constructed by juxtaposing CA(L0; 5, 8, 2) and CA(L1; 5, 8, 2), with
L = L0 + L1 and 104 ≤ L ≤ 106.

(a) Non-iso CA(M ; 4, 7, 2)
M # Classes
29 58 488 647
30 3 177 398 378

(b) Non-iso CA(N ; 5, 8, 2)
N Multisets {N0, N1} # Classes
53 {24, 29}, {25, 28}, {26, 27} 213
54 {24, 30}, {25, 29}, {26, 28}, {27, 27} 20 450

(c) Non-iso CA(L; 6, 9, 2)
L Multisets {L0, L1} # Classes
104 {52, 52} 0
105 {52, 53} 0
106 {52, 54}, {53, 53} 0

to try to construct CA(105; 6, 9, 2). No CA(105; 6, 9, 2) was generated, then CAN(6, 9, 2) ≥ 106.

Note that we are using the non-isomorphic CAs that were generated by the JuxtaposeCA algorithm

in another execution of it, because from the non-isomorphic CAs with t = 4 and k = 7 the non-

isomorphic CAs with t = 5 and k = 8 are constructed, and these last CAs are used to search for the

non-isomorphic CAs with t = 6 and k = 9.

Now, to determine if CA(106; 6, 9, 2) exists we first compute the valid multisets {L0, L1} such

that the juxtaposition of CA(L0; 5, 8, 2) and CA(L1; 5, 8, 2) might produce CA(106; 6, 9, 2). In

this case there are two possibilities: {52, 54} and {53, 53}. The non-isomorphic CA(52; 5, 8, 2)

and CA(53; 5, 8, 2) have been constructed previously, but it remains to construct the distinct

CA(54; 5, 8, 2). To do this, we juxtapose the non-isomorphic CA(N0; 4, 7, 2) with the non-isomorphic

CA(N1; 4, 7, 2) where N0 + N1 = 54. Subtable 5.8(a) shows that there are 3,177,398,378 distinct

CA(30; 4, 7, 2). Subtable 5.8(b) shows the results of juxtaposing CA(N0; 4, 7, 2) and CA(N1; 4, 7, 2)

where N0 + N1 = 54; in total there are 20,450 distinct CA(54; 5, 8, 2). Subtable 5.8(c) contains

the result of juxtaposing the distinct CA(52; 5, 8, 2) with the distinct CA(54; 5, 8, 2), and the distinct

CA(53; 5, 8, 2) with themselves. No CA(106; 6, 9, 2) was generated, thus CAN(6, 9, 2) ≥ 107.

It was not possible to determine the existence of CA(107; 6, 9, 2) due to the huge computational

100 5.2. Results of the JuxtaposeCA algorithm

time required to construct the non-isomorphic CA(55; 5, 8, 2). However, the result CAN(6, 9, 2) ≥

107 improves the lower bounds of CAN(t, t + 3, 2) for 7 ≤ t ≤ 11; their old and new values are

shown next, old values were taken from [11]:

CAN(t, k, v) Previous value New value
CAN(7, 10, 2) 192 214

CAN(8, 11, 2) 385 428

CAN(9, 12, 2) 770 856

CAN(10, 13, 2) 1540 1712

CAN(11, 14, 2) 3080 3424

5.2.5 Results for v = 3

This section presents the computational results that were obtained for CAs with order v = 3. The

results are given in a list format. Lower and upper bounds were taken respectively from [11] and [9]:

• There is a unique CA(33; 3, 6, 3). This CA is known to be optimal [6], but we prove its

uniqueness. Since CAN(2, 5, 3) = 11, the only valid multiset to construct CA(33; 3, 6, 3) is

{11, 11, 11}. The NonIsoCA algorithm reported 3 non-isomorphic CA(11; 2, 5, 3), and when

using these CAs the sequential JuxtaposeCA algorithm constructed only one CA(33; 3, 6, 3),

which is shown next (transposed):



0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2

0 0 0 0 1 1 1 1 2 2 2 0 0 0 0 1 1 1 2 2 2 2 0 0 0 1 1 1 1 2 2 2 2

0 0 1 2 0 1 1 2 0 1 2 0 1 2 2 0 1 2 0 1 1 2 0 1 2 0 1 2 2 0 0 1 2

0 1 0 2 2 1 2 0 2 0 1 2 1 0 1 0 1 2 1 0 2 2 1 2 0 1 0 1 2 0 2 1 0

0 1 2 1 2 0 1 0 0 1 2 2 1 2 0 1 2 0 0 0 2 1 2 0 1 0 2 1 2 2 1 1 0

0 1 2 2 1 2 0 1 2 1 0 0 0 1 2 2 1 0 1 0 2 1 2 1 0 0 0 1 2 1 0 2 2



• Nonexistence of CA(99; 4, 7, 3). The current status of CAN(4, 7, 3) is 99 ≤ CAN(4, 7, 3) ≤

123. Using the unique CA(33; 3, 6, 3) the sequential JuxtaposeCA algorithm determined the

nonexistence of CA(99; 4, 7, 3). Therefore, 100 ≤ CAN(4, 7, 3) ≤ 123.

5. Computational Results 101

• Nonexistence of CA(36; 3, 7, 3). Currently 36 ≤ CAN(3, 7, 3) ≤ 39. Since CAN(2, 6, 3) = 12,

the only way to form a CA(36; 3, 7, 3) is by juxtaposing three CA(12; 2, 6, 3). There are 13

non-isomorphic CA(12; 2, 6, 3) [11], and by using them the sequential JuxtaposeCA algorithm

did not find a CA(36; 3, 7, 3). Thus, 37 ≤ CAN(3, 7, 3) ≤ 39.

• Nonexistence of CA(39; 3, 9, 3). The current lower bound of CAN(3, 9, 3) is 39 and its current

upper bound is 45. Because CAN(2, 8, 3) = 13 the only possibility to form a CA(39; 3, 9, 3) is

to juxtapose three CA(13; 2, 8, 3). The number of non-isomorphic CA(13; 2, 8, 3) is five [46],

and by using these CAs the sequential JuxtaposeCA algorithm searched for CA(39; 3, 9, 3) but

no such CA was found. Therefore, 40 ≤ CAN(3, 9, 3) ≤ 45.

5.2.6 Summary of the new results

Now we present a summary of the results achieved by the JuxtaposeCA algorithm. Among the results

there are new classification results, new CANs, and improvements in the lower bounds of some CANs.

The new classification results are listed in Table 5.9, and the new CANs and the improved lower

bounds of CAN are given in Table 5.10.

The first two columns of Table 5.9 show the CAs that were classified and the number of

isomorphism classes; the columns with headers A0 and A1 contain the CAs which were juxtaposed

to try to construct the CA in the first column of the table; finally, the fourth and the sixth column

contains respectively the number of non-isomorphic CAs that exist for the CAs in the columns A0

and A1.

Other classification results are the classification of the non-optimal CAs of Subtable 5.8(b). These

CAs are CA(53; 5, 8, 2) for which there are 213 classes, and CA(54; 5, 8, 2) for which there are 20,450

classes.

102 5.2. Results of the JuxtaposeCA algorithm

Table 5.9: New classification results obtained with the JuxtaposeCA algorithm.

CA classified # Classes A0 # Classes A1 # Classes
CA(30; 4, 13, 2) 0 CA(15; 3, 12, 2) 2 CA(15; 3, 12, 2) 2

CA(31; 4, 13, 2) 0 CA(15; 3, 12, 2) 2 CA(16; 3, 12, 2) 44 291

CA(32; 4, 13, 2) 1 CA(15; 3, 12, 2) 2 CA(17; 3, 12, 2) 3 238 165 485
CA(16; 3, 12, 2) 44 291 CA(16; 3, 12, 2) 44 291

CA(64; 5, 14, 2) 1 CA(32; 4, 13, 2) 1 CA(32; 4, 13, 2) 1

CA(128; 6, 15, 2) 1 CA(64; 5, 14, 2) 1 CA(64; 5, 14, 2) 1

CA(256; 7, 16, 2) 1 CA(128; 6, 15, 2) 1 CA(128; 6, 15, 2) 1

CA(48; 5, 8, 2) 0 CA(24; 4, 7, 2) 1 CA(24; 4, 7, 2) 1

CA(49; 5, 8, 2) 0 CA(24; 4, 7, 2) 1 CA(25; 4, 7, 2) 6

CA(50; 5, 8, 2) 0 CA(24; 4, 7, 2) 1 CA(26; 4, 7, 2) 228
CA(25; 4, 7, 2) 6 CA(25; 4, 7, 2) 6

CA(51; 5, 8, 2) 0 CA(24; 4, 7, 2) 1 CA(27; 4, 7, 2) 13 012
CA(25; 4, 7, 2) 6 CA(26; 4, 7, 2) 228

CA(52; 5, 8, 2) 8
CA(24; 4, 7, 2) 1 CA(28; 4, 7, 2) 919 874
CA(25; 4, 7, 2) 6 CA(27; 4, 7, 2) 13 012
CA(26; 4, 7, 2) 228 CA(26; 4, 7, 2) 228

CA(52; 5, 9, 2) 0
CA(24; 4, 8, 2) 1 CA(28; 4, 8, 2) 522 573
CA(25; 4, 8, 2) 7 CA(27; 4, 8, 2) 9 045
CA(26; 4, 8, 2) 195 CA(26; 4, 8, 2) 195

CA(53; 5, 9, 2) 0
CA(24; 4, 8, 2) 1 CA(29; 4, 8, 2) 27 826 894
CA(25; 4, 8, 2) 7 CA(28; 4, 8, 2) 522 573
CA(26; 4, 8, 2) 195 CA(27; 4, 8, 2) 9 045

CA(54; 5, 9, 2) 1

CA(24; 4, 8, 2) 1 CA(30; 4, 8, 2) 1 374 716 212
CA(25; 4, 8, 2) 7 CA(29; 4, 8, 2) 27 826 894
CA(26; 4, 8, 2) 195 CA(28; 4, 8, 2) 522 573
CA(27; 4, 8, 2) 9 045 CA(27; 4, 8, 2) 9 045

5. Computational Results 103

Table 5.10: Summary of the new CANs and of the improved lower bounds of CAN. (a) The new
covering array numbers. (b) The improved lower bounds of CAN.

(a)
CAN(t, k, v) = N
CAN(4, 13, 2) = 32
CAN(5, 14, 2) = 64
CAN(6, 15, 2) = 128
CAN(7, 16, 2) = 256
CAN(5, 8, 2) = 52
CAN(5, 9, 2) = 54

(b)
CAN(t, k, v) ≥ LB
CAN(5, 10, 2) ≥ 55
CAN(5, 11, 2) ≥ 55
CAN(5, 12, 2) ≥ 55
CAN(5, 13, 2) ≥ 55
CAN(6, 9, 2) ≥ 107
CAN(7, 10, 2) ≥ 214
CAN(8, 11, 2) ≥ 428
CAN(9, 12, 2) ≥ 856
CAN(10, 13, 2) ≥ 1712
CAN(11, 14, 2) ≥ 3424
CAN(4, 7, 3) ≥ 100
CAN(3, 7, 3) ≥ 37
CAN(3, 9, 3) ≥ 40

5.2.7 Consistency check

As a way to doubly validate the results of the JuxtaposeCA algorithm, we constructed the non-

isomorphic CAs for some known optimal cases of order v = 2 and strengths t = 3, 4. The idea is

to compare the results of the JuxtaposeCA algorithm with the results of the NonIsoCA algorithm of

Chapter 3 to see if they are equal. For both strengths we constructed the non-isomorphic CAs up to

k = 12 columns. The obtained results are shown in Table 5.11; A0 and A1 are the two CAs which

were juxtaposed to construct the CA in the first column. We can verify that the results in the first

two columns of the table match the results of the NonIsoCA algorithm given in Chapter 3.

5.3 When to use NonIsoCA or JuxtaposeCA

In the computational results shown in the previous sections we can see that the JuxtaposeCA

algorithm was used to classify the larger instances. The largest instance which was processed by

the JuxtaposeCA algorithm is CA(256; 7, 16, 2), while the larger instances processed by the improved

104 5.3. When to use NonIsoCA or JuxtaposeCA

Table 5.11: Construction of known results using the JuxtaposeCA algorithm.

Constructed CA # Classes A0 # Classes A1 # Classes
CA(8; 3, 3, 2) 1 CA(4; 2, 2, 2) 1 CA(4; 2, 2, 2) 1
CA(8; 3, 4, 2) 1 CA(4; 2, 3, 2) 1 CA(4; 2, 3, 2) 1
CA(10; 3, 5, 2) 1 CA(5; 2, 4, 2) 1 CA(5; 2, 4, 2) 1
CA(12; 3, 6, 2) 9 CA(6; 2, 5, 2) 7 CA(6; 2, 5, 2) 7
CA(12; 3, 7, 2) 2 CA(6; 2, 6, 2) 4 CA(6; 2, 6, 2) 4
CA(12; 3, 8, 2) 2 CA(6; 2, 7, 2) 3 CA(6; 2, 7, 2) 3
CA(12; 3, 9, 2) 1 CA(6; 2, 8, 2) 1 CA(6; 2, 8, 2) 1
CA(12; 3, 10, 2) 1 CA(6; 2, 9, 2) 1 CA(6; 2, 9, 2) 1
CA(12; 3, 11, 2) 1 CA(6; 2, 10, 2) 1 CA(6; 2, 10, 2) 1
CA(15; 3, 12, 2) 2 CA(7; 2, 11, 2) 26 CA(8; 2, 11, 2) 377 177
CA(16; 4, 4, 2) 1 CA(8; 3, 3, 2) 1 CA(8; 3, 3, 2) 1
CA(16; 4, 5, 2) 1 CA(8; 3, 4, 2) 1 CA(8; 3, 4, 2) 1
CA(21; 4, 6, 2) 1 CA(10; 3, 5, 2) 1 CA(11; 3, 5, 2) 4
CA(24; 4, 7, 2) 1 CA(12; 3, 6, 2) 9 CA(12; 3, 6, 2) 9
CA(24; 4, 8, 2) 1 CA(12; 3, 7, 2) 2 CA(12; 3, 7, 2) 2
CA(24; 4, 9, 2) 1 CA(12; 3, 8, 2) 2 CA(12; 3, 8, 2) 2
CA(24; 4, 10, 2) 1 CA(12; 3, 9, 2) 1 CA(12; 3, 9, 2) 1
CA(24; 4, 11, 2) 1 CA(12; 3, 10, 2) 1 CA(12; 3, 10, 2) 1
CA(24; 4, 12, 2) 1 CA(12; 3, 11, 2) 1 CA(12; 3, 11, 2) 1

NonIsoCA algorithm were CA(30; 4, 8, 2) and CA(38; 2, 5, 6); the difference in size is clear. The

advantage of the JuxtaposeCA algorithm over the NonIsoCA algorithm is due to the first algorithm

works with subcolumns of non-isomorphic CAs of a smaller strength, while the second algorithm

constructs the CAs basically cell by cell. However, many of the new results of the JuxtaposeCA

algorithm were obtained by using the non-isomorphic CAs found by the NonIsoCA algorithm.

In this section we compare the execution times of the sequential versions of the NonIsoCA

algorithm and the JuxtaposeCA algorithm. Firstly, we describe in detail the execution times of both

algorithms for the instances CA(30; 4, 13, 2), CA(31; 4, 13, 2), and CA(16; 3, 12, 2), and then we

employ the formulas obtained in the complexity analysis of the algorithms to compute the approximate

number of operations done by them for the instances CA(31; 4, 13, 2) and CA(16; 3, 12, 2).

The instance CA(30; 4, 13, 2) classified in Subsection 5.2.1 required the juxtaposition of the two

CA(15; 3, 12, 2) with themselves. The improved NonIsoCA algorithm found these two CAs in 0.44

5. Computational Results 105

hours; but the JuxtaposeCA algorithm required only 3 seconds to process the four tuples T = (A0, A1)

where both A0 and A1 are any of the two non-isomorphic CA(15; 3, 12, 2). Thus, the total time

to determine the nonexistence of CA(30; 4, 13, 2) was about 0.44 hours. On the other hand, we

attempted to classify CA(30; 4, 13, 2) using the NonIsoCA algorithm, but we aborted the search after

20 days because based on the partial results we estimated that the execution would not end soon.

Similarly for the instance CA(31; 4, 13, 2) we could not execute the NonIsoCA algorithm due to

time constraints; so the solution was to use the JuxtaposeCA algorithm. To classify this instance the

JuxtaposeCA algorithm juxtaposed the two distinct CA(15; 3, 12, 2) with the 44,291 non-isomorphic

CA(16; 3, 12, 2). The time required to process the 2 · 44,291 = 88,582 tuples T = (A0, A1), where

A0 is a non-isomorphic CA(15; 3, 12, 2) and A1 is a non-isomorphic CA(16; 3, 12, 2), was about

16 hours. Now, the time required by the NonIsoCA algorithm to construct the non-isomorphic

CA(16; 3, 12, 2) was approximately 128 hours; so the total time to classify CA(31; 4, 13, 2) was

0.44 + 128 + 16 = 144.44 hours. We do not attempt to execute the NonIsoCA algorithm to classify

CA(31; 4, 13, 2) because it will take too much time.

In general the execution time of the NonIsoCA algorithm for an instance CA(N ; t, k, v) is much

larger than the execution time for the instance with one less row CA(N−1; t, k, v); an example of this

situation is given by the times required to classify CA(15; 3, 12, 2) and CA(16; 3, 12, 2). In addition

the number of non-isomorphic CAs increases considerably from CA(N − 1; t, k, v) to CA(N ; t, k, v);

examples of this fact are the classification results given in Table 5.5.

In the process of classifying CA(31; 4, 13, 2) almost all execution time was consumed in

constructing the 44,291 non-isomorphic CA(16; 3, 12, 2). We could use the JuxtaposeCA algorithm to

construct these CAs; however, in this case the JuxtaposeCA algorithm is not the best option because

there are too many non-isomorphic CAs with strength t = 2 and k = 11 columns to be juxtaposed.

Since CAN(2, 11, 2) = 7, we can construct a CA(16; 3, 12, 2) by juxtaposing a CA(7; 2, 11, 2) and a

CA(9; 2, 11, 2), or by juxtaposing two CA(8; 2, 11, 2). The number of non-isomorphic CA(7; 2, 11, 2)

is only 26, but there are 377,177 non-isomorphic CA(8; 2, 11, 2), and 2,148,812,219 non-isomorphic

CA(9; 2, 11, 2). Thus, the number of tuples T = (A0, A1) to be processed by the JuxtaposeCA

106 5.3. When to use NonIsoCA or JuxtaposeCA

algorithm is (26)(2,148,812,219) + 377,1772.

We make an estimation of the time to process the 377,1772 tuples T = (A0, A1) where both A0

and A1 are a non-isomorphic CA(8; 2, 11, 2) as follows: we take the first 1,000 distinct CA(8; 2, 11, 2)

and call the generate_juxtapositions(T) function of Algorithm 8 1,0002 times to process the tuples

T = (A0, A1) obtained from these 1,000 non-isomorphic CAs. The execution time for the 1,0002

tuples was 860 seconds; then, an approximation of the time needed to juxtapose the 377,177

non-isomorphic CA(8; 2, 11, 2) with themselves is (377,1772/1,0002) · 860 = 142,262.48 · 860 =

122,345,740.82 seconds, which is a little more than 1,416 days.

In general, if the number of tuples T = (A0, A1, . . . , Av−1) to be processed is very large, then

the JuxtaposeCA algorithm would not be the best option to classify CA(N ; t, k, v), and we should

use the NonIsoCA algorithm instead. On the other hand, if the number of tuples T is small, then

with high probability the JuxtaposeCA algorithm will perform better than the NonIsoCA algorithm.

For example, the classification of CA(64; 5, 14, 2) was possible due to the fact that the number

of tuples T to be juxtaposed is just 1; in this case the only way to construct CA(64; 5, 14, 2)

is by juxtaposing two CA(32; 4, 13, 2), and there is a unique CA(32; 4, 13, 2). The JuxtaposeCA

algorithm took only 189 seconds to classify CA(64; 5, 14, 2), of which 53 seconds were consumed by

the generate_juxtapositions() function, and 136 seconds were required to canonize the three CAs

generated by the above function. For this instance the NonIsoCA algorithm would take an impractical

amount of time.

We can also have an idea of the execution times of the algorithms by using the formulas of their

computational complexity. From Section 3.2 the computational cost of the improved NonIsoCA

algorithm for CA(N ; t, k, v) is:

O

(
βk−1∏k−2

i=1 i!(v!)i
·
(
k − 1

t− 1

)
Nt · (N log2N)k!(v!)k

)
, where β =

[
Γ(N/v + 1)

[Γ(N/v2 + 1)]v

]v
.

And from Section 4.3 the computational cost of the JuxtaposeCA algorithm for CA(N ; t+ 1, k+

1, v) is:

5. Computational Results 107

O

(p(N−v CAN(t,k,v), v)−1∑
j=0

|D0j×· · ·×Dv−1j |·[k!(v!)k]v−1·
(

k

t+ 1

)
N(t+1)·(N log2N)(k+1)!(v!)k+1

)
.

For the instance CA(31; 4, 13, 2) the estimated number of operations performed by the algorithms

is computed as follows:

• NonIsoCA:

β =

[
Γ(N/v + 1)

[Γ(N/v2 + 1)]v

]v
=

[
Γ(16.5)

[Γ(8.75)]2

]2
= (9241.43)2 = 85404049.13

βk−1∏k−2
i=1 i!(v!)i

=
(85404049.13)12∏11

i=1 i!(v!)i
=

1.50571× 1095

1.96119× 1055
= 7.67755× 1039

(
k − 1

t− 1

)
Nt =

(
12

3

)
(31)(4) = 27280

(N log2N) k! (v!)k = (31 log2 31) 13! (2!)13 = 7.83439× 1015

The product of the last three results is 1.64086× 1060.

• JuxtaposeCA: In this case k = 12 and t = 3 in the following formulas:

p(N−v CAN(t,k,v), v)−1∑
j=0

|D0j × · · · ×Dv−1j | = 2(44291) = 88582

[k!(v!)k]v−1 = [12!(2!)12]1 = 12!(212) = 1.96199× 1012(
k

t+ 1

)
N(t+ 1) =

(
12

4

)
(31)(4) = 61380

(N log2N) (k + 1)! (v!)k+1 = (31 log2 31) 13! (2!)13 = 7.83439× 1015

The product of the four results is 8.35746× 1037.

Then, the estimated number of operations for the NonIsoCA algorithm is greater than the

estimated number of operations for the JuxtaposeCA algorithm. Of course, the complexity analysis is

approximate and based on certain simplifications which do not take into account the pruning criteria

108 5.4. Performance of the parallel implementations

to avoid the generation of all possible columns and the testing of all possible column permutations and

symbol relabelings in the case of the NonIsoCA algorithm, and the pruning criteria to not generate all

arrays J in the JuxtaposeCA algorithm. For this particular instance, CA(31; 4, 13, 2), the estimated

number of operations for the algorithms is congruent with the computational experimentation,

because the JuxtaposeCA algorithm is faster than the NonIsoCA algorithm in this case.

Now we repeat the exercise for the instance CA(16; 3, 12, 2). In the computational

experimentation the NonIsoCA algorithm was faster than the JuxtaposeCA algorithm. The results

using the formulas for the complexity of the algorithms are:

• For the NonIsoCA algorithm the estimated number of operations is 5.40262× 1013.

• For the JuxtaposeCA algorithm the estimated number of operations is 1.6108× 1040.

Also in this case the theoretical analysis matches the result of the computational experimentation

with regard to which algorithm performs less operations. Thus, we can use the formulas derived from

our complexity analysis to estimate approximately which algorithm is more appropriate for a particular

instance of the classification problem.

5.4 Performance of the parallel implementations

This section studies the performance of the parallel implementations of the NonIsoCA algorithm and

of the JuxtaposeCA algorithm. Subsection 5.4.1 analyzes the performance of the parallel version of

the NonIsoCA algorithm developed in Section 3.3; and Subsection 5.4.2 analyzes the performance

of the two parallel implementations of the JuxtaposeCA algorithm developed in Section 4.4.

5.4.1 Parallel version of the improved NonIsoCA algorithm

In the parallel version of the NonIsoCA algorithm a new execution flow can be created when a slave

process constructs a canonical CA with r < k columns. The new execution flow is created only if

5. Computational Results 109

there is an available slave. In this case the slave that creates the CA sends it to the available slave,

and the next two actions are executed in parallel: (a) the slave that constructed the canonical CA

with r < k columns searches the next canonical CA with r columns, and (b) the available slave

searches canonical CAs with r + 1 columns based on the received CA with r columns.

Depending on the covering array CA(N ; t, k, v) being classified, the number of requests for an

available slave may be very large. In these situations the master process becomes a bottleneck

because the slaves are constantly asking for an available slave. When a slave process requests an

available slave, the first slave remains blocked until the master responds to it. The total number of

requests sent to the master by all slaves is the number of non-isomorphic CAs with r = 2, 3, . . . , k−1

columns, because a request is sent every time a canonical CA with 2 ≤ r ≤ k− 1 columns is found.

To evaluate the performance of the parallel implementation of the NonIsoCA algorithm we execute

it with two instances: CA(15; 3, 12, 2) and CA(27; 4, 12, 2). The execution time of the sequential

algorithm for these two instances was 1,594 and 3,627 seconds respectively. We executed the

parallel algorithm using P = 4, 8, 12, 16, 20, 24, 28 processors. Figure 5.2 shows the execution times

in seconds for the instance CA(15; 3, 12, 2), and Figure 5.3 shows the results for CA(27; 4, 12, 2).

The speedup S = Ts/Tp is the ratio between the execution time of the sequential algorithm Ts

Processors Time Speedup Efficiency
4 634 2.44 0.61
8 298 5.19 0.64
12 185 8.37 0.69
16 140 11.06 0.69
20 98 15.80 0.79
24 89 17.40 0.72
28 77 20.11 0.71

0 4 8 12 16 20 24 28
0

4

8

12

16

20

24

28

Processors

Sp
ee
du

p

Figure 5.2: Execution times of the parallel NonIsoCA algorithm for CA(15; 3, 12, 2).

110 5.4. Performance of the parallel implementations

Processors Time Speedup Efficiency
4 1 586 2.28 0.57
8 652 5.56 0.69
12 427 8.49 0.70
16 335 10.82 0.67
20 263 13.79 0.68
24 226 16.04 0.66
28 174 20.84 0.74

0 4 8 12 16 20 24 28
0

4

8

12

16

20

24

28

Processors
Sp

ee
du

p
Figure 5.3: Execution times of the parallel NonIsoCA algorithm for CA(27; 4, 12, 2).

and the execution time of the parallel algorithm with P processors Tp; if the program scales linearly

then the speedup is equal to the number of processors (S = P). The speedup in the two instances

is sublinear due to the cost of the communications, but it increases as the number of processors

increases; so, for these instances and up to 28 processors the performance of the parallel algorithm

is good. We also need to take into account that the master process does not participate actively

(only at the beginning) in the construction of the non-isomorphic CAs; and therefore the maximum

speedup we can obtain is P − 1.

To quantify in a better way the performance of the parallel algorithm we compute the parallel

efficiency E = S/P , which is the ratio of speedup to the number of processors. The efficiency

measures the percentage of utilization of a processor; if the program scales linearly then S = P

and the efficiency is 1. For the instance CA(15; 3, 12, 2) the efficiency of the parallel algorithm lies

between 0.61 and 0.79; and for CA(27; 4, 12, 2) the efficiency lies between 0.57 and 0.74.

5.4.2 Parallel versions of the JuxtaposeCA algorithm

For the JuxtaposeCA algorithm we developed two parallel implementations. The first implementation

divides the tuples T = (A0, A1, . . . , Av−1) to be processed among the available processors. The

5. Computational Results 111

partitioning of the tuples T is not static because the master sends a tuple to a slave as soon as the

slave becomes idle.

The second implementation partitions the permutations of columns and symbols for the first

free block in the arrays J = [A0, A
′
1, . . . , A

′
v−1] to be generated from a tuple T into P (k,FIXED) ·

(v!)FIXED = k!
(k−FIXED)!

· (v!)FIXED partitions, where FIXED ∈ {1, . . . , k−1} is the number of columns

assigned directly; the other k − FIXED columns of the first free block (the block that will contain a

copy of A1) are assigned in the normal way by testing all non-assigned columns of A1 relabeled with

the distinct v! relabelings.

We tested the first parallel implementation of the JuxtaposeCA algorithm with the instance

CA(31; 4, 13, 2). In Subsection 5.2.1 we found that this CA does not exist. The process to prove

this fact was to juxtapose the 2 non-isomorphic CA(15; 3, 12, 2) with the 44,291 non-isomorphic

CA(16; 3, 12, 2); so the total number of tuples T = (A0, A1), where A0 = CA(15; 3, 12, 2) and

A1 = CA(16; 3, 12, 2), is 2 ·44,291 = 88,582. This number of tuples is much larger than the number

of processors we have at our disposal; so we classify CA(31; 4, 13, 2) using the first parallel version

of the JuxtaposeCA algorithm. The obtained results for P = 4, 8, 12, 16, 20, 24, 28 processors are

shown in Figure 5.4. The sequential algorithm took about 74,716 seconds, which is 20.75 hours.

The speedup is almost linear if we consider that only P−1 processors do the job of generating the

arrays J derived from a tuple of non-isomorphic CAs T = (A0, A1). The smaller efficiency is when

P = 4, and the larger efficiency is 0.89 for P = 12, 16. For this parallel algorithm the speedup and

the efficiency are better than the parallel NonIsoCA algorithm because there is no communication

among the slave processes. In addition, for this particular instance the master process is not saturated

with messages from the slaves because the only messages that are received by the master are those

sent by the slaves when they have finished the processing of a tuple T . For other instances, the

slaves can also send to the master the CAs they constructed.

The performance of the second parallel implementation of the JuxtaposeCA algorithm was

analyzed by processing the instance CA(340; 8, 10, 2). Since CAN(7, 9, 2) = 170 the only way to

construct CA(340; 8, 10, 2) is by juxtaposing two CA(170; 7, 9, 2). However, this last CA is unique

112 5.5. Chapter summary

Processors Time Speedup Efficiency
4 25 024 2.98 0.74
8 10 714 6.97 0.87
12 6 920 10.79 0.89
16 5 221 14.31 0.89
20 4 215 17.72 0.88
24 3 505 21.31 0.88
28 3 044 24.54 0.87

0 4 8 12 16 20 24 28
0

4

8

12

16

20

24

28

Processors
Sp

ee
du

p
Figure 5.4: Execution times of the first parallel version of the JuxtaposeCA algorithm for
CA(31; 4, 13, 2).

up to isomorphisms [19]; then, the number of tuples T = (A0, A1) to be juxtaposed is just 1. In

this tuple both A0 and A1 are the canonical representative of the unique class for CA(170; 7, 9, 2).

Therefore, in this case the first parallel version of Juxtapose CA is not helpful because the number

of tuples T is not large; in fact, the execution time of the first parallel version will be longer than

the execution time of the sequential version due to the communication overhead. Thus, the second

parallel implementation is the most suitable version for the instance CA(340; 8, 10, 2).

From [19] we know that CA(340; 8, 10, 2) does not exist because CAN(8, 10, 2) = 341.

Figure 5.5 shows the results for the second parallel version of the JuxtaposeCA algorithm when

P = 4, 8, 12, 16, 20, 24, 28 processors are used. The execution time of the sequential algorithm

was 335 seconds. For this instance we used FIXED = 3, and so the number of partitions is

9!
(9−3)! · 2

3 = 504 · 8 = 4,032. The efficiency for this instance lies between 0.67 and 0.79.

5.5 Chapter summary

This chapter presented the computational results that were obtained with the improved NonIsoCA

algorithm and with the JuxtaposeCA algorithm. We classified optimal CAs, non-optimal CAs, and

5. Computational Results 113

Processors Time Speedup Efficiency
4 123 2.72 0.68
8 62 5.40 0.67
12 40 8.37 0.69
16 28 11.96 0.74
20 21 15.95 0.79
24 18 18.61 0.77
28 15 22.33 0.79

0 4 8 12 16 20 24 28
0

4

8

12

16

20

24

28

Processors

Sp
ee
du

p
Figure 5.5: Execution times of the second parallel version of the JuxtaposeCA algorithm for
CA(340; 8, 10, 2).

CAs whose existence or nonexistence was unknown. Some nonexistence results lead to new covering

array numbers: if we know the existence of CA(N ; t, k, v), and if we find zero isomorphism classes

for CA(N − 1; t, k, v), then we conclude that CA(N ; t, k, v) is optimal and so CAN(t, k, v) = N .

Other classification results imply improvements on the lower bound of some CANs. In addition, this

chapter presented the results of evaluating the performance of the parallel implementations of the

algorithms.

The next chapter summarizes the computational results of the two new classification algorithms,

gives some conclusions of the work, and provides pointers for futre research.

6
Conclusions

This chapter ends the thesis document. Section 6.1 summarizes the main computational results;

Section 6.2 compares the results of our two algorithms against the results of the state of the art

algorithms; Section 6.3 gives some final remarks on the new classification algorithms; Section 6.4

states some ideas worth to be investigated in the future to improve the performance of the algorithms;

and Section 6.5 lists the written journal papers.

6.1 Summary of the computational results

In this thesis we developed two new algorithms to classify CAs: the improved NonIsoCA algorithm

and the JuxtaposeCA algorithm. For the improved NonIsoCA algorithm we developed one sequential

version and one parallel version, and for the JuxtaposeCA algorithm we developed one sequential

version and two parallel versions. The computational results that were obtained by using these

algorithms were presented in Chapter 5. The relevant results are the classification of new CAs, the

finding of exact values of CAN(t, k, v), and the improvement of lower bounds of CAN(t, k, v).

115

116 6.1. Summary of the computational results

For the improved NonIsoCA algorithm the main results are:

• the classification of 23 CAs

• the finding of 13 exact values of CAN

These results are given in the following two tables:

CA # Classes
CA(14; 2, 10, 3) 4 490
CA(14; 2, 11, 3) 0
CA(33; 3, 5, 3) 1
CA(33; 3, 6, 3) 1
CA(19; 2, 6, 4) 4
CA(19; 2, 7, 4) 0
CA(20; 2, 7, 4) 0
CA(37; 2, 4, 6) 13
CA(37; 2, 5, 6) 0
CA(38; 2, 5, 6) 0
CA(17; 3, 12, 2) 3 238 165 485
CA(25; 4, 7, 2) 6
CA(26; 4, 7, 2) 228
CA(27; 4, 7, 2) 13 012
CA(28; 4, 7, 2) 919 874
CA(29; 4, 7, 2) 58 488 647
CA(30; 4, 7, 2) 3 177 398 378
CA(25; 4, 8, 2) 7
CA(26; 4, 8, 2) 195
CA(27; 4, 8, 2) 9 045
CA(28; 4, 8, 2) 522 573
CA(29; 4, 8, 2) 27 826 894
CA(30; 4, 8, 2) 1 374 716 212

CAN(t, k, v) = N
CAN(2, 11, 3) = 15
CAN(2, 12, 3) = 15
CAN(2, 13, 3) = 15
CAN(2, 14, 3) = 15
CAN(2, 15, 3) = 15
CAN(2, 16, 3) = 15
CAN(2, 17, 3) = 15
CAN(2, 18, 3) = 15
CAN(2, 19, 3) = 15
CAN(2, 20, 3) = 15
CAN(3, 14, 3) = 45
CAN(2, 7, 4) = 21
CAN(2, 5, 6) = 39

The larger instances for the distinct combinations of v and t are CA(14; 2, 11, 3), CA(33; 3, 6, 3),

CA(20; 2, 7, 4), CA(38; 2, 5, 6), CA(17; 3, 12, 2), and CA(30; 4, 8, 2).

For the JuxtaposeCA algorithm the new results are:

• the classification of 16 CAs

• the finding of 6 exact values of CAN

6. Conclusions 117

• the improvement of 13 lower bounds of CAN

These results are given in the following three tables:

CA # Classes
CA(30; 4, 13, 2) 0
CA(31; 4, 13, 2) 0
CA(32; 4, 13, 2) 1
CA(64; 5, 14, 2) 1
CA(128; 6, 15, 2) 1
CA(256; 7, 16, 2) 1
CA(48; 5, 8, 2) 0
CA(49; 5, 8, 2) 0
CA(50; 5, 8, 2) 0
CA(51; 5, 8, 2) 0
CA(52; 5, 8, 2) 8
CA(52; 5, 9, 2) 0
CA(53; 5, 9, 2) 0
CA(54; 5, 9, 2) 1
CA(53; 5, 8, 2) 213
CA(54; 5, 8, 2) 20 450

CAN(t, k, v) = N
CAN(4, 13, 2) = 32
CAN(5, 14, 2) = 64
CAN(6, 15, 2) = 128
CAN(7, 16, 2) = 256
CAN(5, 8, 2) = 52
CAN(5, 9, 2) = 54

CAN(t, k, v) ≥ LB
CAN(5, 10, 2) ≥ 55
CAN(5, 11, 2) ≥ 55
CAN(5, 12, 2) ≥ 55
CAN(5, 13, 2) ≥ 55
CAN(6, 9, 2) ≥ 107
CAN(7, 10, 2) ≥ 214
CAN(8, 11, 2) ≥ 428
CAN(9, 12, 2) ≥ 856
CAN(10, 13, 2) ≥ 1712
CAN(11, 14, 2) ≥ 3424
CAN(4, 7, 3) ≥ 100
CAN(3, 7, 3) ≥ 37
CAN(3, 9, 3) ≥ 40

In this case, the largest processed CA was by far CA(256; 7, 16, 2).

In total, we obtained 71 new results by using the two classification algorithms that were developed

in this work.

6.2 Comparison with state of the art algorithms

To the best of our knowledge we have included in this thesis all known classification results for

CAs. We do not reproduced all of them in this work because of time constraints, but the cases

we reproduced matched the already known results. In Subsection 5.2.7 we performed a consistency

check for the JuxtaposeCA algorithm; the objective was to reproduce some results obtained previously

with the improved NonIsoCA algorithm; in all test cases the results of the JuxtaposeCA algorithm

matched the results of the NonIsoCA algorithm. These facts give us confidence in the validity of the

new results that are reported in this work.

118 6.2. Comparison with state of the art algorithms

In Chapter 2 we described six computational methods for the classification of CAs, or for the

classification of objects equivalent to CAs of strength two. These methods are the following ones:

1. Classification of 2-surjective binary codes [22].

2. Classification of Latin squares [33].

3. Classification of MOLS [12].

4. Extension of CAs [11].

5. NonIsoCA algorithm [46].

6. Canonical augmentation [25].

By using the improved NonIsoCA algorithm we reproduced successfully all results of the works

1, 4, and 5. For the works 2 and 3 we only reproduced the results up to order v = 6. The work 2

reports the classification of Latin squares up to order 10, and the work 3 reports the classification

of MOLS up to order 9. Finally, for the work 6 we reproduced almost all results, except for the

instances CA(29; 2, 7, 5), CA(29; 2, 8, 5), CA(39; 2, 5, 6), and CA(39; 2, 6, 6).

For order v = 2 and strengths t = 3, 4, 5, 6, 7 our algorithms improved the results of the state of

the art, with regard to the size of the classified CAs. The next table shows a comparison between

the larger binary CAs that have been classified by state of the art algorithms and by our algorithms:

t Largest CA in the state of the art Largest CA in our algorithms
3 CA(16; 3, 15, 2) CA(17; 3, 12, 2)
4 CA(24; 4, 12, 2) CA(32; 4, 13, 2)
5 − CA(64; 5, 14, 2)
6 − CA(128; 6, 15, 2)
7 − CA(256; 7, 16, 2)

To the best of our knowledge, no CA of strength t ∈ {5, 6, 7} had been classified by computation

until now. By using the JuxtaposeCA algorithm we classified ten CAs of strength 5, one CA of

6. Conclusions 119

strength 6, and one CA of strength 7. So, these twelve CAs are the first ones with strength

t ∈ {5, 6, 7} whose classification was done through computation.

We can summarize our contributions to the state of the art as follows: for strengths t > 2 our

new algorithms reproduced correctly all known results and found new ones; then, our new algorithms

currently hold the record for CAs with strength t > 2.

6.3 Final remarks on the new algorithms

The improved NonIsoCA algorithm outperforms the original NonIsoCA algorithm when t > 2 or

v > 2. The construction of the new column by means of backtracking allows to skip a number

of candidate columns with no possibilities of making a CA of strength t with the current columns.

Due to this, the execution time of the algorithm is reduced; in some cases, the execution time was

reduced from several hours to a few seconds. When v = 2 and t = 2 the probability of passing the

rules R1 to R5 is high because there are few symbols and there are few subarrays of t columns that

contain the column being constructed; so the cost of checking the five rules is greater than the cost

of processing all candidate columns, as the original NonIsoCA algorithm does.

The JuxtaposeCA algorithm works very differently than previous algorithms, because the non-

isomorphic CAs are constructed subcolumn by subcolumn instead of cell by cell. The subcolumns

are not arbitrary but columns of CAs with one less unit of strength, and this reduces considerably

the search space. However, the search space is still large and we need to use the isomorphisms and

the coverage properties of CAs to make cuts in the search space. The two key reductions are the

following ones:

• By the isomorphisms of CAs the arrays J that we need to construct from a tuple

T = (A0, A1, . . . , Av−1) are only those arrays J = [A0, A
′
1, . . . , A

′
v−1] where A0 is fixed

and A′1, . . . , A
′
v−1 are derived from A1, . . . , Av−1 by column permutations and by symbol

permutations. So, we do not consider row permutations to derive the arrays A′i.

120 6.4. Future work

• By the coverage properties of CAs we can skip some column and symbol permutations in the

construction of the arrays A′i. The array J is constructed one column at a time and we can

stop its construction if the current subarray is not a CA of strength t+1. Thus, not all column

and symbol permutations are explored to construct the arrays A′i.

Without these pruning criteria the JuxtaposeCA algorithm would take an impractical amount of

time for the new CAs that were classified in this thesis.

In general, the JuxtaposeCA algorithm is faster than the NonIsoCA algorithm. However, if the

number of tuples of non-isomorphic CAs T = (A0, A1, . . . , Av−1) to be processed is very large, then

we should use the NonIsoCA algorithm instead. We can take a subset of the tuples T and construct

all possible juxtapositions from these tuples to estimate the execution time of the JuxtaposeCA

algorithm. If the number of tuples T is small, then with high probability the JuxtaposeCA algorithm

will perform better than the NonIsoCA algorithm. We can also estimate the execution times of these

two algorithms by using the formulas of their computational complexity.

6.4 Future work

In many instances the main limitation of the JuxtaposeCA algorithm is the huge number of

tuples T = (A0, A1, . . . , Av−1) to be processed. For example, in Subsection 5.2.4 we could not

classify CA(107; 6, 9, 2) because we could not construct all non-isomorphic CA(55; 5, 8, 2). To

classify this last CA it would be necessary to test all juxtapositions of A0 = CA(N0; 4, 7, 2) and

A1 = CA(N0; 4, 7, 2), where N0, N1 ≥ 24 and N0 + N1 = 55. The most unbalanced multiset is

{24, 31}. The CA(24; 4, 7, 2) is unique, but for CA(31; 4, 7, 2) there are a lot of non-isomorphic CAs,

certainly more than 3,177,398,378, which is the number of distinct CA(30; 4, 7, 2).

In the computational experimentation we noticed that the most unbalanced multisets produce

less CAs of strength t + 1 than the more balanced multisets; so in the above example we expect

more solutions for the multiset {27, 28} than for the multiset {26, 29}, and more solutions for this

last multiset than for the multisets {25, 30} and {24, 31}.

6. Conclusions 121

If we can prove that the number of solutions for a multiset {a, b} is always smaller than or equal

to the number of solutions for a multiset {c, d} whenever |b − a| > |c − d|, then we can skip the

juxtapositions for {a, b} if the number of solutions for {c, d} is zero. This will reduce the execution

time of the JuxtaposeCA algorithm because the most unbalanced multisets are commonly the most

costly to process. Thus, a future line of investigation is to determine formally if this empirical

observation is always true.

With regard to the improved NonIsoCA algorithm we think there are more rules to constraint the

valid values for the unassigned cells of the new column. So, a future work is to investigate if we can

reduce even more the number of candidate columns to extend the current CA.

Another possible improvement is to find a way to parallelize the canonize(A) function developed

in Subsection 4.2.3. This function computes the canonical CA isomorphic to A. The complexity of

this function is O(N log2N · k! · (v!)k) for a CA(N ; t, k, v) because the N ! row permutations are

reduced to a row sorting done in O(N log2N); so the execution time grows faster when the number

of columns increases. For the instance CA(256; 7, 16, 2) the sequential algorithm takes more than 24

hours. However, the canonization algorithm we have developed seems inherently sequential. Then,

we need to design a smart strategy to parallelize the algorithm, or to design another canonization

algorithm easier to parallelize.

6.5 Journal papers

We have written eight journal papers related to the work done in this thesis. In the first paper of the

following list we report the sequential version of the JuxtaposeCA algorithm; and in the second paper

we report the sequential version of the improved NonIsoCA algorithm. The remaining six papers are

not directly related to the thesis problem, but we have included them because they were written

during the doctoral program, at the time the objective of the thesis was to improve current upper

bounds of CANs.

1. Idelfonso Izquierdo-Marquez and Jose Torres-Jimenez, New covering array numbers, Applied

122 6.5. Journal papers

Mathematics and Computation, Vol 353, 2019, pp 134-146.

2. Idelfonso Izquierdo-Marquez and Jose Torres-Jimenez, New optimal covering arrays using an

orderly algorithm, Discrete Mathematics, Algorithms and Applications, Vol 10, No 1, 2018, 16

pages.

3. Jose Torres-Jimenez, Idelfonso Izquierdo-Marquez, and Himer Avila-George, Methods to

construct uniform covering arrays, IEEE Access, accepted for publication.

4. Idelfonso Izquierdo-Marquez, Jose Torres-Jimenez, Brenda Acevedo-Juárez, and Himer Avila-

George, A greedy-metaheuristic 3-stage approach to construct covering arrays, Information

Sciences, Vol 460-461, 2018, pp 172-189.

5. Jose Torres-Jimenez and Idelfonso Izquierdo-Marquez, Covering arrays of strength three from

extended permutation vectors, Designs, Codes and Cryptography, Vol 86, No 11, 2018, pp

2629-2643.

6. Jose Torres-Jimenez and Idelfonso Izquierdo-Marquez, A simulated annealing algorithm to

construct covering perfect hash families, Mathematical Problems in Engineering, Vol 2018,

Article ID 1860673, 14 pages.

7. Himer Avila-George, Jose Torres-Jimenez, and Idelfonso Izquierdo-Marquez, Improved pairwise

test suites for non-prime-power orders, IET Software, Vol 12, No 3, 2018, pp 215-224.

8. Jose Torres-Jimenez, Idelfonso Izquierdo-Marquez, and Himer Avila-George, Search-based

software engineering for constructing covering arrays, IET Software, Vol 12, No 4, 2018, pp

324-332.

Bibliography

[1] Ansótegui, C., Izquierdo, I., Manyà, F., and Torres-Jiménez, J. (2013). A max-sat-based approach

to constructing optimal covering arrays. In Gibert, K., Botti, V., and Reig-Bolaño, R., editors,

Artificial Intelligence Research and Development, volume 256 of Frontiers in Artificial Intelligence

and Applications, pages 51–59. IOS Press BV, Amsterdam, Netherlands.

[2] Banbara, M., Matsunaka, H., Tamura, N., and Inoue, K. (2010). Generating combinatorial test

cases by efficient sat encodings suitable for cdcl sat solvers. In Proceedings of the 17th international

conference on Logic for programming, artificial intelligence, and reasoning, LPAR’10, pages 112–

126. Springer-Verlag, Berlin, Heidelberg.

[3] Best, M., Brouwer, A., MacWilliams, F., Odlyzko, A., and Sloane, N. (1978). Bounds for binary

codes of length less than 25. IEEE Transactions on Information Theory, 24(1):81–93.

[4] Bracho-Rios, J., Torres-Jimenez, J., and Rodriguez-Tello, E. (2009). A new backtracking

algorithm for constructing binary covering arrays of variable strength. In Aguirre, A. H., Borja,

R. M., and García, C. A. R., editors, MICAI 2009: Advances in Artificial Intelligence, volume 5845

of Lecture Notes in Computer Science, pages 397–407, Berlin, Heidelberg. Springer-Verlang.

[5] Bush, K. (1952). Orthogonal arrays of index unity. Annals of Mathematical Statistics, 23(3):426–

434.

[6] Chateauneuf, M. A., Colbourn, C. J., and Kreher, D. L. (1999). Covering arrays of strength

three. Des. Codes Cryptogr., 16(3):235–242.

[7] Choi, S., Kim, H. K., and Oh, D. Y. (2012). Structures and lower bounds for binary covering

arrays. Discrete Mathematics, 312(19):2958 – 2968.

123

124 BIBLIOGRAPHY

[8] Colbourn, C. J. (2004). Combinatorial aspects of covering arrays. Le Matematiche (Catania),

58:121–167.

[9] Colbourn, C. J. (2017). Covering array tables for t = 2, 3, 4, 5, 6. last time accessed on december

6, 2017.

[10] Colbourn, C. J. and Dinitz, J. H. (1996). The CRC Handbook of Combinatorial Designs. CRC

press. ISBN 1-58488-506-8.

[11] Colbourn, C. J., Kéri, G., Soriano, P. P. R., and Schlage-Puchta, J. C. (2010). Covering

and radius-covering arrays: Constructions and classification. Discrete Applied Mathematics,

158(11):1158–1180.

[12] Egan, J. and Wanless, I. M. (2016). Enumeration of mols of small order. Mathematics of

Computation, 85(298):799–824.

[13] Francetić, N. and Stevens, B. (2017). Asymptotic size of covering arrays: An application of

entropy compression. Journal of Combinatorial Designs, 25(6):243–257.

[14] Goethals, J.-M. (1977). The extended nadler code is unique (corresp.). IEEE Transactions on

Information Theory, 23(1):132–135.

[15] Hartman, A. (2005). Software and hardware testing using combinatorial covering suites. In

Golumbic, M. C. and Hartman, I. B.-A., editors, Graph Theory, Combinatorics and Algorithms,

volume 34 of Operations Research/Computer Science Interfaces Series, pages 237–266. Springer

US.

[16] Hedayat, A. S., Sloane, N. J. A., and Stufken, J. (1999). Orthogonal Arrays. Springer-Verlag

New York. ISBN 978-1-4612-7158-1.

[17] Hedayat, S., Stufken, J., and Su, G. (1997). On the construction and existence of orthogonal

arrays with three levels and indexes 1 and 2. The Annals of Statistics, 25(5):2044–2053.

BIBLIOGRAPHY 125

[18] Hnich, B., Prestwich, S. D., Selensky, E., and Smith, B. M. (2006). Constraint models for the

covering test problem. Constraints, 11(2-3):199–219.

[19] Johnson, K. A. and Entringer, R. (1989). Largest induced subgraphs of the n-cube that contain

no 4-cycles. Journal of Combinatorial Theory, Series B, 46(3):346–355.

[20] Kaski, P. and Östergård, P. R. J. (2006). Classification Algorithms for Codes and Designs.

Springer-Verlag, Berlin, Heidelberg. ISBN 978-3-540-28990-6.

[21] Katona, G. O. H. (1973). Two applications (for search theory and truth functions) of sperner

type theorems. Periodica Mathematica Hungarica, 3(1-2):19–26.

[22] Kéri, G. and Östergård, P. R. (2007). Further results on the covering radius of small codes.

Discrete Mathematics, 307(1):69–77.

[23] Khalsa, S. K. and Labiche, Y. (2014). An orchestrated survey of available algorithms and tools

for combinatorial testing. In 2014 IEEE 25th International Symposium on Software Reliability

Engineering, pages 323–334.

[24] Kleitman, D. J. and Spencer, J. (1973). Families of k-independent sets. Discrete Mathematics,

6(3):255–262.

[25] Kokkala, J. I. (2017). Computational Methods for Classification of Codes. PhD thesis, Aalto

University, Department of Communications and Networking, Espoo, Finland.

[26] Kuhn, D. R., Kacker, R. N., and Lei, Y. (2010). Practical combinatorial testing. Technical

report, National Institute of Standards & Technology, Gaithersburg, MD, United States.

[27] Kuhn, D. R. and Okum, V. (2006). Pseudo-exhaustive testing for software. In Proceedings of the

30th Annual IEEE/NASA Software Engineering Workshop, SEW ’06, pages 153–158, Washington,

DC, USA. IEEE Computer Society.

126 BIBLIOGRAPHY

[28] Kuhn, D. R. and Reilly, M. J. (2002). An investigation of the applicability of design of

experiments to software testing. In Proceedings of the 27th Annual NASA Goddard Software

Engineering Workshop (SEW-27’02), SEW ’02, pages 91–95, Washington, DC, USA. IEEE

Computer Society.

[29] Kuhn, D. R., Wallace, D. R., and Gallo, Jr., A. M. (2004). Software fault interactions and

implications for software testing. IEEE Trans. Softw. Eng., 30(6):418–421.

[30] Kuliamin, V. V. and Petukhov, A. A. (2011). A survey of methods for constructing covering

arrays. Programming and Computer Software, 37(3):121–146.

[31] Lawrence, J., Kacker, R. N., Lei, Y., Kuhn, D. R., and Forbes, M. (2011). A survey of binary

covering arrays. Electron. J. Combin., 18(1):P84.

[32] Lopez-Escogido, D., Torres-Jimenez, J., Rodriguez-Tello, E., and Rangel-Valdez, N. (2008).

Strength two covering arrays construction using a sat representation. In MICAI 2008: Advances in

Artificial Intelligence, volume 5317 of Lecture Notes in Computer Science, pages 44–53. Springer

Berlin / Heidelberg.

[33] McKay, B. D., Meynert, A., and Myrvold, W. (2006). Small latin squares, quasigroups, and

loops. Journal of Combinatorial Designs, 15(2):98–119.

[34] Nadler, M. (1962). A 32-point n=12, d=5 code (corresp.). IRE Transactions on Information

Theory, 8(1):58–58.

[35] Nie, C. and Leung, H. (2011). A survey of combinatorial testing. ACM Comput. Surv.,

43(2):11:1–11:29.

[36] Nordstrom, A. W. and Robinson, J. P. (1967). An optimum nonlinear code. Information and

Control, 11(5):613–616.

BIBLIOGRAPHY 127

[37] Nurmela, K. J. (2004). Upper bounds for covering arrays by tabu search. Discrete Applied

Mathematics, 138(1-2):143–152.

[38] Ordoñez, H., Torres-Jimenez, J., Ordoñez, A., and Cobos, C. (2017). Clustering business process

models based on multimodal search and covering arrays. In Pichardo-Lagunas, O. and Miranda-

Jiménez, S., editors, Advances in Soft Computing: 15th Mexican International Conference on

Artificial Intelligence, MICAI 2016, Cancún, Mexico, October 23–28, 2016, Proceedings, Part II,

pages 317–328. Springer International Publishing, Cham.

[39] Sarkar, K. and Colbourn, C. J. (2017). Upper bounds on the size of covering arrays. SIAM

Journal on Discrete Mathematics, 31(2):1277–1293.

[40] Seiden, E. and Zemach, R. (1966). On orthogonal arrays. The Annals of Mathematical Statistics,

37(5):1355–1370.

[41] Semakov, N. V. and Zinoviev, V. A. (1969). Complete and quasi-complete balanced codes.

Problems of Information Transmission, 5(2):14–18.

[42] Shasha, D. E., Kouranov, A. Y., Lejay, L. V., Chou, M. F., and Coruzzi, G. M. (2001). Using

combinatorial design to study regulation by multiple input signals. a tool for parsimony in the

post-genomics era. Plant Physiology, 127(4):1590–1594.

[43] Snover, S. L. (1973). The uniqueness of the Nordstrom-Robinson and the Golay binary codes.

PhD thesis, Michigan State University, Department of Mathematics, Michigan, United States.

[44] Stevens, B. (1998). Transversal Covers and Packings. PhD thesis, University of Toronto,

Department of Mathematics, Toronto, Ontario, Canada.

[45] Torres-Jimenez, J. and Izquierdo-Marquez, I. (2013). Survey of covering arrays. In Symbolic

and Numeric Algorithms for Scientific Computing (SYNASC), 2013 15th International Symposium

on, pages 20–27.

128 BIBLIOGRAPHY

[46] Torres-Jimenez, J. and Izquierdo-Marquez, I. (2016). Construction of non-isomorphic covering

arrays. Discrete Mathematics, Algorithms and Applications, 08(02):1650033.

[47] Torres-Jimenez, J., Izquierdo-Marquez, I., Gonzalez-Gomez, A., and Avila-George, H. (2015a).

A branch & bound algorithm to derive a direct construction for binary covering arrays. In Sidorov,

G. and Galicia-Haro, N. S., editors, Advances in Artificial Intelligence and Soft Computing:

14th Mexican International Conference on Artificial Intelligence, MICAI 2015, Cuernavaca,

Morelos, Mexico, October 25-31, 2015, Proceedings, Part I, pages 158–177. Springer International

Publishing, Cham.

[48] Torres-Jimenez, J., Izquierdo-Marquez, I., Kacker, R. N., and Kuhn, D. R. (2015b). Tower of

covering arrays. Discrete Applied Mathematics, 190-191:141–146.

[49] Torres-Jimenez, J. and Rodriguez-Tello, E. (2012). New bounds for binary covering arrays using

simulated annealing. Information Sciences, 185(1):137 – 152.

[50] Wallace, D. R. and Kuhn, D. R. (2001). Failure modes in medical device software: an analysis

of 15 years of recall data. In ACS/ IEEE International Conference on Computer Systems and

Applications, pages 301–311.

[51] Yan, J. and Zhang, J. (2006). Backtracking algorithms and search heuristics to generate

test suites for combinatorial testing. In Proceedings of the 30th Annual International Computer

Software and Applications Conference - Volume 01, COMPSAC ’06, pages 385–394, Washington,

DC, USA. IEEE Computer Society.

[52] Yan, J. and Zhang, J. (2008). A backtracking search tool for constructing combinatorial test

suites. Journal of Systems and Software, 81(10):1681–1693.

[53] Yang, P., Tan, X., Sun, H., Chen, D., and Li, C. (2011). Fire accident reconstruction based

BIBLIOGRAPHY 129

on les field model by using orthogonal experimental design method. Advances in Engineering

Software, 42(11):954 – 962.

[54] Yuan, X., Cohen, M. B., and Memon, A. M. (2011). Gui interaction testing: Incorporating

event context. IEEE Transactions on Software Engineering, 37(4):559–574.

[55] Zhang, J., Zhang, Z., and Ma, F. (2014). Automatic Generation of Combinatorial Test Data.

Springer Publishing Company, Incorporated. ISBN 978-3-662-43428-4.

