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Resumen

Esta tesis presenta un algoritmo para el establecimiento y mantenimiento de una formación

de agentes móviles. El algoritmo propuesto está basado en auto-organización, un fenómeno

observado en la naturaleza donde la organización del sistema surge de las interacciones locales

entre los componentes del mismo. Se considera la auto-organización debido a sus propiedades
inherentes: robustez, escalabilidad y adaptabilidad.

Con el fin de establecer una formación de agentes móviles, cada agente involucrado en

el proceso de formación ejecuta el mismo algoritmo. La formación se establece como conse

cuencia de las interacciones entre los agentes. Con el algoritmo propuesto en esta tesis se

pueden obtener tres formaciones diferentes: línea, columna y cuña. Se incluye la posibilidad
de cambiar entre formaciones en tiempo de ejecución. Durante la navegación, la presencia
de obstáculos puede disminuir el avance de los robots e influenciar a la desintegración de la

formación, para resolver este problema se propone un esquema que puede ser implementado

por los robots con el fin de evitar los obstáculos.

Para llevar a cabo la auto-organización cada agente tiene conocimiento de sus vecinos,

pueden comunicarse entre ellos y las acciones realizadas por un agente provocan reacciones

en sus vecinos. Estas reacciones traen como consecuencia la auto-reconfiguración de la for

mación; de este comportamiento se obtiene un patrón de formación. Nuevos agentes pueden
ser integrados a la formación en cualquier momento. Conforme nuevos agentes se integran
se lleva a cabo un comportamiento de auto-reconfiguración para mantener balanceada la for

mación. En una formación de cuña el agente ubicado al centro de la formación actúa como

líder. Este rol es reasignado cada vez que un nuevo agente se coloca al centro de la formación.
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Abstract

This thesis presents an algorithm for establishing and maintaining a formation of mobile

agents. The proposed algorithm is based on self-organization, a phenomenon observed in

nature where system organization arises from local interactions between the system com

ponents. Self-organization is chosen by its inherent properties: robustness, scalability, and

adaptability.

In order to establish a formation of mobile agents, every agent, which is involved in the

formation process, executes the same algorithm. Formation is established as consequence

of the interactions between agents. Three different formations are obtained by the schema

proposed here: line, column, and wedge; also the possibility of switching among formations

on the fly is included. During navigation, the presence of obstacles could decrease progress of

robots and to influence the formation disintegration. To solve this problem, a simple avoiding

algorithm is performed by the robots in the formation.

For improving self-organization, agents involved in a formation have knowledge about its

neighbors. Neighbor agents can communicate with each other. The actions performed by
an agent cause reactions on its neighbors; these reactions provoke the self-reconfiguration
of the formation. A global formation pattern is obtained from this behavior. New agents

can be added to the formation at anytime. When agents are joined to the formation, a

self-reconfiguration behavior is accomplished for keeping a balanced formation. In a wedge

formation, middle agent acts as a leader. The leader role is reassigned everytime a new agent

arrives to the formation.



Acknowledgments

I would to thank to God who gave me opportunity of ending the mastery. To my family,

professors, supervisors, Conacyt, friends and classmates.

I thank my parents Tomás Sánchez Mandujano and Hortencia Acevedo Rodríguez, for

their moral support and their life long advice and teach.

I also thank my professors for guiding my learning and contributing to my professional

development.

Thanks to my supervisors Dr. Félix Ramos Corchado and Dr. Luis Ernesto López Mellado

for sharing their ideas and putting special interest in this thesis project.

Thanks to my friends and classmates for listening to me.

Thanks to Gustavo A. Torres Blanco and Salvador Jauregui Ortiz who implemented the

algorithm proposed in this thesis in NXT Robots as part of their formation in the course of

Distributed Systems at CINVESTAV.

Finally, I would to thank to Conacyt for supporting my studies.



Contents

1 Introduction 1

1.1 Problem Definition 1

1.2 Thesis objective 2

1.3 Thesis organization 2

2 Robot Formation Control 5

2.1 Introduction 5

2.2 Self-Organization in Multi-Agent Systems 6

2.3 Robot Formation Control 7

2.3.1 Control at the Dynamics Level 7

2.3.2 Control using Local Information 8

2.3.3 Control using Self-Organization 10

2.4 Discussion 10

3 An Algorithm for Agent Formation Control 13

3.1 Introduction 13

3.2 Operation 14

3.2.1 Formation Balancing 18

3.2.2 Switching between Formations 21

3.3 Algorithm Formalization 23

3.3.1 Mobile Agent State 23

3.3.2 Agent Controller 25

V



VI CONTENTS

3.4 Obstacle Avoidance 31

4 Formation Control Simulation 33

4.1 NetLogo Simulation 33

4.1.1 Scenario Description 34

4.2 Webots Simulation 34

4.2.1 Robot architecture 37

4.2.2 Scenario Description 38

4.3 NXT Robots Implementation 41

4.4 Simulation Results 45

5 Conclusions and Future Work 47

5.1 Conclusión . 47

5.2 Future Work 48

Bibliography 49



List of Tables

3.1 Actions which can be performed by the agents. . 28

3.2 Conditions for firing synchronized transitions of Petri Net, the signáis pro

duced, and the actions to be performed in order to intégrate a new agent. 29

3.3 Conditions for firing synchronized transitions of Petri Net, the signáis pro

duced, and the actions to be performed in order to balance the formation 29

3.4 Conditions for firing synchronized transitions of Petri Net, the signáis pro

duced, and the actions to be performed in order to switch between formations. 30

4.1 Qualitative comparison with related works. 45

VII



List of Figures

3.1 Black, dashed, and white agents are leaders, right followers, and left followers

respectively. 13

3.2 A free agent getting its position in a formation. 15

3.3 A free agent getting its position when the leader has a right-follower as a

neighbor. . 16

3.4 A free agent getting its position through negotiations with a rightJbllower. 16

3.5 A free agent getting its position through negotiations with a right_follower
which is not the last in the formation. 17

3.6 A free agent getting its position through negotiations with a left.follower. 18

3.7 A free agent getting its position through negotiations with a left .follower which

is not the last in the formation. 19

3.8 Process for updating the leader role. 20

3.9 Process for updating the leader role and balancing a wedge formation. 20

3.10 Process for switching between wedge and line formations. 21

3.11 Process for switching between wedge and column formations. 22

3.12 Process for switching between line and column formations. 24

3.13 PN models for the state variables. 26

4.1 a) Agents distributed randomly in the environment. b) An unbalanced wedge
formation. c) Agents in formation after balance maneuver. d) Wedge forma

tion after all agents got their position. 35

4.2 a) Switching from a wedge formation to a line. b) Agents into a line formation

after the switching process. 36

IX



X LIST OF FIGURES

4.3 a) Switching from a line formation to a wedge. b) Agents into a wedge forma

tion after the switching process.
36

4.4 Robot Architecture. 37

4.5 Robots distributed randomly in the workspace 39

4.6 Aggregation behavior. 40

4.7 A new robot being joined at the left side of the formation. 41

4.8 a) Unbalanced Formation. b) Balanced Formation. 42

4.9 a) Switching Formation from wedge to line. b) Line Formation. 43

4.10 NXT Robot Platform. 44

4.11 NXT implementation.
44



Chapter 1

Introduction

In recent years, mobile agent formations have been widely studied [10, 14, 23, 33, 2]. Efforts
for developing controllers, which allow a group of mobile agents to move from one point to

another, have been increased due their applicability in several tasks. Among applications
of mobile agent formations, those related with exploration, collaborative sensing, and task

allocation in a group of robots, have been widely approached [6, 30, 35]. However, although
several works have been proposed, they lack of scalability, robustness, or adaptability; these

properties are desirables in a group of agents exploring, sensing, or working in unknown

environments.

1.1 Problem Definition

The problems considered in this thesis in order to contribute to the state of the art of the

robot formation control, include the possibility of that new elements can be added to the

formation at anytime, everywhere, and the shape of the formation can be reconfigured; also,
to remove the need of fixed positions for robots in formation in order to allow recovery after

fails, and to include switching formation on the fly in order to robots can be adapted to the

environment. Once all these problems are solved, a robust, scalable and adaptable algorithm
for robot formation is obtained.

A phenomenon observed in nature called Self-organization allows that complex behaviors

can be obtained through local interactions. Systems exhibiting self-organization maintain

properties of scalability, robustness and adaptability. This phenomenon has been studied

in many áreas, namely Physics, Thermodynamics, Cybernetics, Computing modeling, Eco

nomics, and Biology [5, 16, 18]. Some results in Computing modeling obtained by Reynolds

[31] show how simple rules, which control individual behavior of birds, bring as consequence

the behavior performed by a flock of birds. In this work, formations of mobile agents are
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2 CHAPTER 1. INTRODUCTION

obtained as a consequence of simple rules performed by individual agents.

Behavior of agents has been studied computationally with discrete dynamical systems

(DDS) [19, 8]. The transitions between states are interpreted as laws or rules. These rules

define the behavior of the elements of a self-organized system. Tools for modeling discrete

dynamical systems such as autómata, process algebra, Petri Nets among others allow to

verify the correct behavior of each element in the system. However, the observed behavior

of self-organization cannot be described by these transition rules. These emergent patterns

pertain to a different, complementary level of observation of the same system [29].

1.2 Thesis objective

This work addresses the problem of establishing a formation of mobile agents. Resulting
formation maintains properties of scalability, robustness, and adaptability. Self-organization

principies are used for defining simple behavior rules. These behavior rules define the con

troller for each agent. Three formations are considered: line, column, and wedge. Leader of

formation decides which formation shape is accomplished. The leader role can be played by

any agent. Agent placed in the middle of a line or wedge formation is elected as leader. The

element at front of a column formation plays the leader role. Computational complexity is

linear increased with the number of agents.

Shifting between formations gives to agents the capability of adapting the formation in

order to continué they work in changing environments. Therefore, agents in formation are

arranged according to the activities they have to perform. Shifting process is initiated by
the leader. Agents decide their position into formation according to the information received

from their neighbors. In a wedge formation, when new agents are added, the leader verifies if

a balance maneuver is required. Every time a balance maneuver is performed, the leader role

is reassigned. The agents do not have knowledge about the number of agents participating
in the formation.

A formal description of the algorithm is presented. Petri Nets are used for modeling
the agent behavior. These formalism has been elected by the clarity of graphical states

representation. Transitions between places are synchronized with external received signáis.

Considering these signáis, behavior rules can be obtained automatically from the Petri Net

model.

1.3 Thesis organization

This document is organized as follows:
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• Chapter 2. In this chapter a breve description of the more relevant works on this área

is presented.

• Chapter 3. This chapter describes the proposed algorithm and the formal description

using Petri Nets.

• Chapter 4. A case of study is described in this chapter. Two simulated environments

are considered. In the first one, the agent behaviors are modelled; in the second one, the

algorithm is performed by simulated robots. Finally, simulation results are presented.

• Chapter 5. Conclusions obtained from this research work are presented. Finally, future

work is discussed.



Chapter 2

Robot Formation Control

2.1 Introduction

Control of a group of mobile agents has received a lot of attention from the research com

munity. This is mainly due to the variety of applications that can be accomplished by

autonomous groups of mobile agents. Some examples of these applications are: distributed

task assignment, exploring unknown environments, search and rescue operations, mobile

sensing networks, and cooperative transportation. Formations provide a more rigid and reli

able structure for agents interacting in unknown and hazardous environments. It is required
that formations can be adapted to the environment as well as incorpórate new elements

without increasing the complexity of their controllers. Therefore, robustness, scalability, and

adaptability are desirable properties for formation control.

Systems exhibiting self-organization have been widely studied due their inherent prop

erties: robustness, scalability, and adaptability. The complex behavior of these systems is

obtained from local interactions between the system components. It is necessary to iden

tify appropriate self-organization principies for controlling the overall behavior of a group of

mobile agents arranged in a formation. Advantages of improving self-organization in robot

formations are: failures and unplanned behavior of individual agents not affect task comple

tion, parallelism can be exploited, and sensing can be distributed. As consequence, the cost

of constructing robots is decreased since they only perform simple tasks.

In next sections, relevant approaches proposed in this área are presented. They are

organized according to the way that the problem is addressed. First, self-organization applied
to multi-agent systems is described; next, controlling a formation by the system dynamics
is explained; then, approaches where local information is used in order to control robot

formations are studied; finally, the attempts of improving self-organization in robot formation

control are introduced.

5



6 CHAPTER 2. ROBOT FORMATION CONTROL

2.2 Self-Organization in Multi-Agent Systems

The need of controlling the behavior of agents, while scalability and robustness properties
are maintained, has brought as consequence the implementation of self-organization in multi

agent systems.

In order to explain and describe how self-organization arises in multi-agent systems,

Paranuk and Brueckner [28] showed through a model of pheromone-based behavior how

coordination can arise. They describe the system in two levéis: the macro level, which hosts

self-organization, and the micro level where a random process increases the entropy of the

elements. According entropy is increased at the micro level, it is reduced in the macro level.

Through this simulation it could be observed that the behavior of elements at macro level

depends on the entropy at micro level. A drawback of this approach is that there is no control

in the shape of the formations obtained.

A model for applying self-organization in a multi-robot system was proposed in [32]. The

model proposed here is called "Digital Hormone Model" (DHM) . This model allows a group

of mobile robots can be organized in global patterns through local interactions. The actions,

which can be performed by homogeneous cells representing mobile agents, are regulated

by hormones which are secreted by the cells. This model can be extended to mobile robots

where every robot is able to perform actions such as migration, secretion, dead among others.

The robots react to the presence of hormones according to their behavior rules; these rules

determine the actions to be accomplished by the robot. Global patterns are obtained as

a result of these behaviors. This work show how biological principies can be applied to

computational systems in order to obtain a self-organized system. However, the formation

pattern can not be controlled due the allowed actions in this work.

In earlier works, the possibility of obtaining global patterns through local interactions was

introduced; however, in those works there was no control in the obtained shape. An approach

presented in [24] allows a group of mobile robots self-organize in different polygon shapes.
For establishing a global pattern, a barycenter is determined in the group while the rest

of robots are distributed around it. In order to accomplish a regular polygon shape, many
leaders are elected; furthermore, every leader is equidistant from each other. The behavior

obtained by the rest of robots is the formation of lobes; these lobes give the shape of the

polygon. The regular polygon shape obtained depends on the established number of leaders.

A disadvantage of this work is that only polygonal shapes can be obtained.

With the idea of not only obtain regular polygon shapes, the approach proposed in [15],
permits that elements involved in the formation can be arranged in spatial patterns like

crystals. Elements involved in the formation genérate virtual springs between their neighbors.

The internal structured pattern is controlled by tuning the spring constant and the length
of the spring. The valúes assigned to these variables are determined by trial and error
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according to the desired shape and the number of elements in the formation. With this

algorithm, different shapes can be obtained.However, the main drawback consist in that the

tuning of the parameters is difficult and the time of convergence is increased with complex

shapes.

The possibility of obtaining an arbitrary shape by a swarm of mobile agents was intro

duced in [9], When an agent meets to another agent into the shape, the new agent obtains

its position performing a trilateration process. Agents, which are not in the border of the

shape, follow a gas expansión model; these agents are distributed uniformly into the shape

due to that behavior. Every agent can perceive a faulty coordinated system, so, it is possible

to recover the shape from large scale errors. Once an agent has detected a faulty coordinated

system, it moves to a correct position in order to fix its coordinates. As consequence of that

behavior, the rest of agents are dispersed uniformly until fill the shape. Although any shape

can be obtained with this approach, a disadvantage is that some agents have to maintain a

fixed position in order to keep the desired shape.

2.3 Robot Formation Control

2.3.1 Control at the Dynamics Level

One line of research for solving the problem of robot formation control is addressed at the dy
namics level. Control laws are proposed for maintaining a stable formation while a trajectory

tracking is performed. A feedback controller is designed for each robot.

A combination of path tracking approaches and virtual structure is used in [11] for defining
the formation architecture. For establishing the formation, every robot needs to follow a

reference path. The reference path of each robot is obtained from the virtual structure. A

backstepping technique is applied for fixing tracking errors. The controller is designed in

such a way that the derivative of the path parameter of every robot is saved as a control

input. This control input is used for synchronizing all the path parameters. In the schema

proposed here, the formation is maintained because every robot maintains its position into

the formation; however, the position of every robot is defined a priori according to the virtual

structure and the identifier of the robot. A disadvantage of this work is that if new elements

need to be integrated into the formation, the virtual structure has to be modified.

Instead ofmanipulating a group of mobile robots by its individual elements, the approach

proposed in [25] treats the group as a rigid body. A center of mass is obtained according
to the number of elements in the group and the formation shape. A coordinate system

based on the center of mass is described; this coordinate system determines the relative

position of each robot into the formation. The center of mass is driven according to the
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desired trajectory while every robot maintains its position into the formation. A singular

perturbation approach is performed for decoupling the dynamics of the center ofmass and the

dynamics of the group shape. The center of mass is obtained according to the configuration
space, which is obtained from the shape and the number of robots. This assumption has

the disadvantage of new elements cannot be added on the fly and the formation cannot be

changed.

A tracking controller for leader-follower schema in robot formation control is proposed
in [10]. In this work a nonlinear feedback control input is defined for velocity tracking, and

control laws are defined to maintain the distance with respect to the leader. Separation
distances are measured from the back of the leader for avoiding collisions. The leader of the

formation follows a virtual leader for trajectory tracking. Every follower needs to know the

dynamics of the leader in order to provide a valid feedback control scheme. The Cartesian

position and orientation of each robot are needed to obtain the kinematic controller. This

work only presents the control laws to maintain a position assigned in a formation. The main

drawback consist in that how the formation is established is not considered.

2.3.2 Control using Local Information

Another line of work addressed for solving the problem of robot formation control is based

on controlling the behavior of robots through local interactions. In this line, the need of

global information is reduced and in some works it is completely removed. However, in some

works, the position of the robots in the formation depends on their identifiers. When this

assumption is removed, the position of every robot is assigned by the leader.

A behavior-based approach to robot formation control is presented in [6] . Four formations
are considered: line, wedge, column, and diamond. Every robot has a position assigned in the

formation according to its identifier. To maintain the position into the formation, every robot

computes its position based on the location of the other robots. Three techniques are used

to determine the position: unit center referenced, leader referenced, and neighbor referenced.

A line from the unit center to the next navigational point determines the orientation of the

formation. The overall behavior of a robot is implemented with several motor schemes. These

motor schemes allow robots to move toward a goal location while obstacles are avoided. In

this work the position of the robots is fixed; this assumption makes difficult the recovery of

formation after that some elements fail.

In the approach proposed in [13, 14] a group of n mobile robots are arranged in formations
like column, line, diamond and wedge. Every robot has a designated neighbor to follow. One

robot is established as the conductor of the formation; this robot broadcasts the information

about the formation. Robots into the formation have knowledge about the number of robots

participating and their identifiers. The position of every robot is determined according to
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the formation shape and the robot identifier. The behavior-based controller is composed of

three concurrent behaviors: channelNListener, which receives information about other robots;

channelCListener, which receives information from the conductor; and the main behavior

composed of the get-in-place and the look-ahead sub-behaviors, which allow robots to get

their position. Although robots decide their own position into the formation, that decisión

is based on the number of robots participating and the identifiers; so, all the formation has

to be re-organized whether new elements are joined.

One of the main problems of the works mentioned before is the fixed position of the

robots into the formation. This assumption is removed in [26]. This approach maintains

simple geometric formations without centralized coordination. The formation dynamically

grows from single robots until a complex formation is obtained. Every robot is initialized with

the shape and size of the formation to be established. The controller of each robot consists of

a collection of layered behaviors; robots maintain their position into the formation through
these behaviors. In a wedge formation, the leader periodically initiates a discovery protocol
to determine the global state of the formation. Balance maneuver is performed if required.

The approach of this thesis differs from [26] in that the agents do not need to know how many

robots are in formation, and which the leader is. So, the formation algorithm proposed in

this thesis is more scalable since it is not neccesary to obtain information from all the agents

in the formation.

For determining autonomously the position of the robots into the formation,the approach

proposed in [21] allows mobile robots to get into formation by starting a discovery phase

to detect neighbor robots. The control architecture is divided in two levéis: behavior level,

which is made of behavior-producing modules allowing a robot to react to situations en

countered in the environment; and the recommendation level, which manages the different

states allowed for the control of the formation. Each robot filis an N x N matrix with the

location of participating robots; the robots obtain the location of their neighbors by rotating
on themselves. A depth first search is performed by each robot to identify its position in the

formation. The depth first search has to be performed by every robot when new robots are

added. This process has to be repeated by all the group reducing the performance of the

algorithm.

Deformation of the troop is a drawback presented in robot formation control using lo

cal information. For solving this problem, an approach for maintaining the formation using

behavior parameterization is presented [23] . For maintaining the formation, the next behav

iors are performed by every robot: reference neighbor following, limited passivity, reaching a

target position, waiting for the follower, and priority respect. Formation maintenance arises

from the combination of these behaviors. The behavior accuracy is optimized by tuning
behavior parameters. This parameterization is performed manually, so the parameters have

to be adjusted for every formation.
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2.3.3 Control using Self-Organization

In order to solve the problem of robot formation control in an elegant way with a simple reac

tive strategy, self-organization has been used for enabling largescale robot teams to arrange

themselves in geometric formations. Robustness, scalability, and adaptability are inherent

properties of the resulting complex behavior.

In [7], a set of potential functions are described for enabling a group of mobile robots to

arrange themselves in a formation while navigating to a goal in an obstacle field. According

to the shape of the formation, every robot has several local attachment sites where other

robots can be attached. The behavior of a robot is controlled by a group of motor schemes:

move to goal, avoid static obstacles, avoid robots, and maintain formation. These motor

schemes genérate movement vectors, which are summed for computing the overall movement

direction. The position of the robot is determined by building a list of all potential attachment

sites; then, an attractive vector is generated towards the closest site. In this approach, new

robots can be only integrated in free attachment sites; this thesis proposes an algorithm
where robots are integrated wherever they meet a robot belonging to the formation.

A framework where local traffic rules are encoded through artificial potentials is presented
in [22]. These artificial potentials define interactions forces between neighbors. The inter

action forces maintain the inter-vehicle spacing. For controlling the movement of vehicles

into the formation, virtual leaders are defined using local potential fields. There is no leader

among the vehicles. The position of the vehicles is not defined a priori. Schooling and flocking
maneuvers are presented for group translation and motion respectively. Switching between

formations and avoiding obstacles are not treated in this work.

Krishnanand and Ghose [20] present an approach where the term of "local templates" is

introduced. A local témplate is defined for every formation pattern: grid, line, and wedge.
This local témplate is maintained by every robot. The templates encode information into

múltiple sectorial regions in order to genérate virtual links between neighbors. These virtual

links are detected and followed by other robots. The parameters that influence the shape of

the formation include the distance between neighbors, and the angle between robot heading
direction and the line-of-sight. The basic formation behaviors followed by each robot to

lead to the desired global formation are: safe wandering, broadcast, sense neighbor, and

align. New elements can be added only at free attachment points, and balance maneuver of

formation is not allowed.

2.4 Discussion

After analyzing the several approaches proposed for solving the problem of robot formation,

the problems considered in this thesis in order to contribute to the state of the art of the
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robot formation control, include the possibility of that new elements can be added to the

formation at anytime, everywhere [3], and the shape of the formation can be reconfigured;

also, to remove the need of fixed positions for robots in formation in order to allow recovery

after fails, and to include switching formation on the fly in order to robots can be adapted

to the environment.

-*



Chapter 3

An Algorithm for Agent Formation
Control

3.1 Introduction

In this chapter, an algorithm for establishing a formation of mobile agents is presented.

The mobile agents are distributed randomly in an obstacle-free workspace. The agents have

knowledge neither of number of agents in formation ñor the position to follow into formation.

Every agent can communicate with its neighbors; the actions performed by an agent affects

directly to its neighbors. Considering the role and position of their neighbors, every agent

decides its role and its position. Four roles can be played by each agent: free, leader, left-

follower, and right-follower. The leader role is always performed by the agent located at the

middle of the formation, except in a column formation where the leader is at front of the

column; the role played by each agent is known only by its neighbors. Three formations

are considered: line, wedge, and column (Figure 3.1). Desired formation is obtained by the

interaction between agents whose behavior is governed by a set of rules to change their state.

Since position of agents is not fixed and not depends on the identifier, new agents can be

added at any time.

s •
@ o e
® oo#@@ o %

Figure 3.1: Black, dashed, and white agents are leaders, right followers, and left followers

respectively.
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The proposed algorithm is further described in next sections.

3.2 Operation

First problem encountered in the proposed scenario is the formation of a team of mobile

agents in a meeting point. Since there is no knowledge about the number of agents in the

scenario, the formation is configured according new elements are integrated. In order to

allow the mobility of agents in the formation, two velocities are defined, searching-velocity
and formation-velocity. The searching.velocity is adopted by free agents. This velocity
is higher than the formation.velocity. The formation.velocity is adopted by agents in the

formation. This velocity allows new elements to get their position into the formation while

the agents are in movement.

To initiate the formation, an agent is initialized with the information about the shape of

the formation and the direction to follow. This agent emits a signal, which can be detected

by other agents, while it moves to a goal. Every agent can perform one of the following roles:

• Free. An agent with this role maintains a searching.velocity while explores the envi

ronment looking for agents in a formation.

• Leader. The agent, which plays this role, identifies whether a balance maneuver is

required and it decides if a switching formation has to be accomplished.

• RighLFollower. This role is played by an agent which is located to the right with

respect to the leader.

• Left-Follower. This role is played by an agent which is located to the left with respect

to the leader.

It is assumed that the signal emitted by the agents in the formation can be detected by
all the agents who are trying to establish a formation. Once the signal is detected, the agents
tend to move towards where signal strength is higher. When a free agent finds an agent in the

formation, it starts a negotiation process in order to define its position into the formation.

The position is defined according to the role of the agent, which has been discovered, in the

formation as follows:

The agent in the formation is a leader without neighbors. In this case, the free

agent moves to the right of the leader in wedge and line formations, or behind of the leader

in a column formation. Once the agent has taken its position into the formation, it updates

its heading to the same orientation of the heading of the leader (Figure 3.2). A distance d

is maintained with respect to other agents in order to avoid collisions between agents in the
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formation and those which are being integrated. In a wedge formation, once the new agent

has taken its position, the leader goes forward d units.

P ; i -

a) wedge formation

O

é - *
Id

b) column formation

Figure 3.2: A free agent getting its position in a formation.

The agent in the formation is a leader with a right-follower as a neighbor. In

this case, before the free agent moves to the right of the leader in wedge and line formations,

or behind of the leader in a column formation, the agents, which are playing a right.follower

role, are shifted to the right or rearward according to the formation shape. On the other

hand, the leader and the left-followers will go forward d units. (Figure 3.3).

The agent in the formation is the last right .follower in the formation. When

a free agent finds to another agent in this situation, the free agent moves to the right of

the follower in wedge and line formations, or behind of the follower in a column formation.

Agents, which are located to the left of the agent which is negotiating, will go forward one

position (d units) in a wedge formation (Figure 3.4).

The agent in the formation is a right_follower but it is not the last. When a

free agent finds to another agent in this situation, before the free agent moves to the right of

the follower in wedge and line formations, or behind of the follower in a column formation,
the agents, which are playing a right_follower role and are located to the right of the agent
which is negotiating, are shifted to the right or rearward according to the shape of formation.

Agents, which are located to the left of the agent which is negotiating, will go forward one

position (d units) in a wedge formation (Figure 3.5).

The agent in the formation is the last Ieft_follower in the formation. In this

case, the free agent moves to the left of the follower in wedge and line formations, or behind

of the follower in a column formation. Agents, which are located to the right of the agent
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Figure 3.3: A free agent getting its position when the leader has a right-follower as a neighbor.
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a) wedge formation

é •

b) column formation

Figure 3.4: A free agent getting its position through negotiations with
a right-follower.
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Figure 3.5: A free agent getting its position through negotiations with a right .follower which

is not the last in the formation.
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which is negotiating, will go forward one position in a wedge formation (Figure 3.6).
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a) wedge formation
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b) line formation

Figure 3.6: A free agent getting its position through negotiations with a left.follower.

The agent in the formation is a left_follower but it is not the last. In this case,

before the free agent moves to the left of the follower in wedge and line formations, or behind

of the follower in a column formation, the agents, which are playing a left_follower role and

are located to the left of the agent which is negotiating, are shifted to the left or rearward

according to the shape of formation. Agents, which are located to the right of the agent

which is negotiating, will go forward one position in a wedge formation. (Figure 3.7).

Once the agent has reached its correct pleace and updated its heading, it changes its

search_velocity to a formation_velocity in order to move at the same velocity of the rest of

the group.

3.2.1 Formation Balancing

New agents are integrated to the formation at the place where they meet another agent in

the formation. This behavior produces a shape deformation. Therefore, the agent playing

the leader role in a line formation has to be updated; on the other hand, a balance maneuver

has to be accomplished in a wedge formation. The column formation does not suffer changes

due that new agents are integrated behind of the leader.

Every time a new agent is integrated in a line formation, a message is forwarded until the

leader receives it; once the leader has realized that a new agent has been integrated,
it updates
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Figure 3.7: A free agent getting its position through negotiations with a leftJollower which

is not the last in the formation.

its counter of left and right neighbors; if both counters are equals, they are reinitialized to

zero. If one of the counters has a difference of two with respect to the another, then a

process for updating the leader role is started. This process consists on to change the role

of the leader and ask to the corresponding neighbor be the new leader. If the counter of

left neighbors is greater than the counter of right neighbors, then the leader changes its role

to rightJollower and its left neighbor changes its role to a leader. On the other hand, if

the counter of right neighbors is greater than the counter of left neighbors, then the leader

changes its role to leftJollower and its right neighbor changes its role to a leader. Figure 3.8

illustrates this process.

For balancing a wedge formation, the same process is performed with some additions.

Instead of changing only the role of agents, a displacement is accomplished in order to

reconfigure the shape of the formation. If the counter of left neighbors is greater than the

counter of right neighbors, before updating the roles as mentioned before, all the agents

playing a leftJollower role will go forward two positions (one position is equivalent to go

forward a distance d). On the other hand, if the counter of right neighbors is greater than

the counter of left neighbors, then all the agents playing a rightJollower role will go forward

two positions. Figure 3.9 illustrates this process. *,
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Figure 3.8: Process for updating the leader role.
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Figure 3.9: Process for updating the leader role and balancing a wedge formation.
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3.2.2 Switching between Formations

During navigation in hazardous and unknown environments, the possibility of adapting the

formation to the environment by switching between formations brings as consequence a robust

and adaptable behavior group; this behavior allows the completion of the task assigned to the

agents. In this thesis the possibility of changing between line, wedge, and column formation

is presented. When an instruction, which indicates the formation to perform, is received,
the switching process is initiated by the leader; the autonomous decisión of changing the

formation according to the environment is not included; however, it is considered as future

work.

In order to switch from a wedge formation to a line formation, the leader starts the

process by sending a message to its neighbors for going forward a distance d. The neighbors,
which receive this messages, increase the distance by d units and send the message again to

their left or right neighbors according to the role of the agent which sends the message. An

agent, which is playing a rightJollower role, sends the message to its right neighbor, while

an agent, which is playing a leftJollower role, sends the message to its left neighbor. A

representation of this process is shown in Figure 3.10a. For switching from a line formation

to a wedge formation, the process described above is performed, but instead of going forward,
the agents stop during the time needed for advance the assigned distance according to the

formation velocity (Figure 3.10b).
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a) wedge to line
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b) line to wedge

Figure 3.10: Process for switching between wedge and line formations.
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To switch from a wedge formation to a column formation two distances are transmited,
one for stopping and the other for moving to the left or to the right. The leader sends a

message to its right neighbor with both distances initialized to d; the message sent to the

left neighbor initializes the distance for stopping to 0 and the distance for moving to d units.

The agents, which receive this message, increase the distance by d units. Agents which are

playing a rightJollower role move to the left, while agents which are playing a leftJollower

role move to the right (Figure 3.11a).

For switching from a column formation to a wedge formation two distances are trans

mitted, one for going forward and the another for moving to the left or to the right. Both

distances are initialized to 0. A counter is added to the message in order to determine which

agents move to left and which agents move to right. The counter is increased every time it is

forwarded. If the module two of the counter received by the agent is 0, then the distance for

going forward is increased by d units and the agent moves to the right. On the other hand,
if the module two of the counter received is different to 0, then the distance for moving to a

side is increased by d units and the agent moves to the left (Figure 3.11b).
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b) column to wedge

Figure 3.11: Process for switching between wedge and column formations.

In order to switch from a line formation to a column formation two distance valúes are
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transmitted. The first indicates how long time the agent has to stop its movement. Second

valué indicates the distance to be travelled by the agent. The sent valúes are initialized

by the leader. Both valúes are initialized to d for the left followers; for right followers the

stop valué is initialized to 2d and the movement valué is initialized to d. The stop valué is

increased by d units for every agent, and the movement valué is increased by 2d units. Right

followers move to the left and left followers move to the right. This process is illustrated in

Figure 3.12a.

To switch from a column formation to a line formation two distance valúes are transmited.

The first indicates the distance to be travelled to the leader direction. Second valué indicates

the distance to be travelled to the left or to the right. Both valúes are initialized by the

leader to d. A counter is added to the message in order to determine which agents move to

left and which agents move to right. The counter is increased every time it is forwarded. If

the module two of the counter received by the agent is 0, then the distance for going forward

is increased by d units, and the distance for move to a side is not increased; in this case, the

agent moves to the right. On the other hand, if the module two of the counter received is

different to 0, then the distance for moving to a side, and the distance for going forward are

increased by d units; in this case, the agent moves to the left (Figure 3.12b).

3.3 Algorithm Formalization

In the previous section, an informal description of the proposed algorithm was presented.
In this section a formal description is presented using Petri Nets. A model for the agent

controller is proposed. This model describes the variable states, which are synchronized
between them, for representing the global status of every agent. JFurthermore, how simple
rules can be obtained from this model is described.

3.3.1 Mobile Agent State

For representing the state of the agent and external signáis, six state variables are defined:

formation, role, status.ofJormation, alignment, role_of_neighbor, and balance.

Formation (F). This variable represents three possible states which represent the for

mation being performed: line, wedge, or column. When a switching formation process is

performed the valué of this variable is updated.

Role (R). This variable maintains the information about the role being played by an

agent, leader or follower. When an agent gets into formation, it updates its role to follower.

During a balance maneuver, agent role can be updated.

Status_ofJormation (SF). This variable indicates if the agent has been included in a
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Figure 3.12: Process for switching between line and column formations.
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formation or whether is still free. Agent in a free status looks for agents which have part of

a formation. When two free agents met, they consider other agent as an obstacle and try to

avoiding it in order to look for an agent in formation.

Alignment (A). A follower agent is identified as right or left follower according to its

position within the formation. When a balance maneuver is performed, if the agent is a

leader or a left follower with a neighbor as leader, then this variable is updated.

Role_of_neighbor (RN). This variable represents the role of the neighbor located ahead

the agent; i.e. for an agent with a left alignment this information corresponds to right

neighbor. This information is used to identify the role to be taken when a balance maneuver

is performed.

Balance (B). This variable is modified only by a leader agent; The leader stores the

information needed to know when a formation is unbalanced and for determining which side

has more elements. The status of this variable is changed every time new agents are added

into the formation.

3.3.2 Agent Controller

Every agent has an integrated controller, which gives the possibility of reacting to the events

and signáis detected by the agent from the environment or from other agents. This controller

is the same for all the agents which are participating in the formation process. The interac

tions between agents give as a result the complex behavior induced by the state variables of

the agents.The agent controller, which is presented here, is defined as follows:

SYSTEM.COMPONENTS = {agent_controller}. The state variables described above

(F, R, SF, A, RN, and B) will describe the global state of the agent. The sets {wedge,
line, column}, {leader, follower}, {free, injormation,} , {right, left}, {leader, follower}, and

{balanced, semLbalanced, righLunbalanced, left-unbalanced} are the valúes that the state

variables F, R, SF, A, RN, and B can take, respectively. In order to obtain the initial

marking, it is assumed that the initial state for the system is F = wedge, R = leader, SF =

free, A = right, RN = leader, and B = balanced. For the agent, which is initialized with the

information about the shape of the formation and the direction to follow, the variable SF

is initialized with the information valué, and the variable F is initialized according to the

shape of formation to establish. The PN modules obtained are depicted in Figure 3.13.

The set of rules is straightforward derived from the PN model obtained from the syn

chronous composition of the PN models representing every state variable. Transitions labels

declare that those transitions having the same symbolic label must be synchronized, i.e,

merged; transitions that have more than one label must be replicated for synchronizing. For

the sake of readability, the implicit composition is expressed by the labeling. Each rule is
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Figure 3.13: PN models for the state variables.
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then built from each transition; the condition part includes a combination of state variables

valúes, given by the enabling marking, and the detection of a pertinent input signal; the ac

tion part consist of the generation of an output signal to the agent neighbors, the execution

of an action (optionally), and the updating (given by the firing transition mechanism) of the

involved state variables. The actions which can be performed by the agents are described

in Table 3.1. For the stated problem Table 3.2 includes the signáis associated to labels of

the PN model for intégrate a new agent into a formation. Table 3.3 includes the signáis
associated to labels of the PN model for balancing and updating the leader role. Table 3.4

includes the signáis for switching between formations.

B, C, and D-agents represent signáis emitted by an agent with a global status described

as follows: B-agent, signal emitted by an agent defined as leader; C-agent, signal emitted

by an agent defined as right follower; D-agent, signal emitted by an agent defined as left

follower.

In order to maintain communication with its neighbors, every agent stores the address of

its left and right neighbor in the LeftN and RightN variables, respectively. The direction to

follow is stored in the Heading variable.

From the PN model presented above, the labelling synchronization, and the input sig

náis, behavior rules can be generated. These rules allow to the agent for deciding the actions

to perform. This interaction between agents brings as a result the desired global behav-

ior(formation shape assigned) in the group of mobile agents. As an example, three rules

obtained following the previous procedure are included below.

If ( Answer C-Agent hh SF = free )

{

R = follower

SF = in-formation

RN = follower

LeftN = messageAddress

RightN = RightN-Received

Move(Right)

// Send parameters: Signal, dest_address,left_neighbor,

// right_neighbor, formation-direction

Send(L-Forward, LeftN, LeftN, RightN, Heading )

Send(R-Move, RightN, LeftN, RightN, Heading)

}
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Table 3.1: Actions which can be performed by the agents.
Action Description

A++ Increase the distance of A in d units

A+2 Increase the distance of A in 2d units

B+ Increase the distance of B in d units if C mod 2 != 0

B++ Increase the distance of B in d units

C++ Increase the counter in 1 unit

B Broadcast the output signal
SB Send the output signal to both neighbors
SA Send the output signal to the address of the input signal

SL Send the output signal to the left neighbor
SR Send the output signal to the right neighbor
MCB Move until cover the distance received in B,

to the right if C mod 2 = or to the left in other case

ML Move to the left

MLB Move to the left until cover the distance received in B

MR Move to the right
MRB Move to the right until cover the distance received in B

F Go forward one position

F2 Go forward two positions
FA Go forward until cover the distance received in A

WA Wait the time corresponding to go forward until cover the distance A

LNLN Store the address received in the ln variable as left neighbor
LNSA Store the address of the input signal as left neighbor
RNRN Store the address received in the rn variable as right neighbor
RNSA Store the address of the input signal as right neighbor

SBFD Send to both neighbors the distance to go forward initialized to d

SRC Send to the right neighbor a counter initialized to C

SRC1 Send to the right neighbor a counter initialized to 1

SRFA Send to the right neighbor the distance to go forward initialized to A

SRFD Send to the right neighbor the distance to go forward initialized to d

SRMB Send to the right neighbor the distance to move initialized to B

SRMD Send to the right neighbor the distance to move initialized to d

SRWO Send to the right neighbor the distance to wait initialized to 0

SRW2D Send to the right neighbor the distance to wait initialized to 2d

SRWA Send to the right neighbor the distance to wait initialized to A

SRWD Send to the right neighbor the distance to wait initialized to d

SLFA Send to the left neighbor the distance to go forward initialized to A

SLMB Send to the left neighbor the distance to move initialized to B

SLMD Send to the left neighbor the distance to move initialized to d

SLWO Send to the left neighbor the distance to wait initialized to 0

SLWA Send to the left neighbor the distance to wait initialized to A

SLWD Send to the left neighbor the distance to wait initialized to d



3.3. ALGORITHM FORMALIZATION 29

Table 3.2: Conditions for firing synchronized transitions of Petri Net, the signáis produced,
and the actions to be performed in order to intégrate a new agent.

Input signal Firing label Output signal Actions

Discovered agent b Request information B

Request information c Answer B-agent SA

Request information d Answer C-agent SA

Request information e Answer D-agent SA

Answer B-agent f L-forward, R-move LNSA, RNRN, MR, SL, SR

Answer C-agent g L-forward, R-move LNSA, RNRN, MR, SL, SR

Answer D-agent h R-forward, L-move RNSA, LNLN, ML, SR, SL

L-forward ij.o L-forward F, RNSA, SL

R-forward l,m ,p R-forward F, LNSA, SR

L-forward q L-forward F, RNSA, SL

R-forward q R-forward F, LNSA, SR

R-move s R-move MR, LNSA, SR

L-move t L-move ML, RNSA, SL

Table 3.3: Conditions for firing synchronized transitions of Petri Net, the signáis produced,
and the. actions to be performed in order to balance the formation.

Input signal Firing label Output signal Actions

None k R-Balance SR

None n L-Balance SL

R-Balance V R-Balance F2, SR

R-Balance u R-Balance, LR-Update F2, SR, SB

L-Balance X L-Balance F2, SL

L-Balance w L-Balance, LR-Update F2, SL, SB

LR-Update y Update SR

LR-Update z Update SL

Update r None None
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Table 3.4: Conditions for firing synchronized transitions of Petri Net, the signáis produced,
and the actions to be performed in order to switch between formations.

Input signal Firing label Output signal Actions

W-Switch al W-Switch SB, SBFD

W-Switch a2 W-Switch SB, SRWO, SRMD, SRC1

W-Switch a3 W-Switch SR, WA, A++, SRWA

W-Switch a4 W-Switch SR, WA, MCB, A++, B+,

C++, SRWA, SRMB, SRC

W-Switch a5 W-Switch SL, WA, A++, SRWA

C-Switch a6 C-Switch SB, SLWD, SLMD, SRW2D, SRMD

C-Switch a7 C-Switch SB, SLWO, SLMD, SRWD, SRMD

C-Switch a8 C-Switch SR, WA, MLB, A+2, B++, SRWA, SRMB

C-Switch a9 C-Switch SR, WA, MLB, A++, B++, SRWA, SRMB

C-Switch bl C-Switch SL, WA, MRB, A+2, B++, SLWA, SLMB

C-Switch b2 C-Switch SL, WA, MRB, A++, B++, SLWA, SLMB

L-Switch b3 L-Switch SB, SBFD

L-Switch b4 L-Switch SB, SRFD, SRMD, SRC1

L-Switch b5 L-Switch SR, FA, A++, SRFA

JL-Switch b6 L-Switch SR, FA, MCB, A++, B+

C++, SRFA, SRMB, SRC

L-Switch b7 L-Switch SL, FA, A++, SLFA

If ( R-Balance hh RN = follower )

{

Forward(2d)

// Send parameters: Signal, dest_address,left Jieighbor,

// right_neighbor, formation_direction

Send(_.-_.a.ance, RightN, LeftN, RightN, Heaxling )

}

If ( R-Balance hh R = follower hh A = right hh SF = injormation hh B = balanced

hh F = wedge)

{

F = line

Forward(A)

A++

SendDistance(RightN, A)

// Send parameters: Signal, dest_address,left_neighbor,
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// right-neighbor, formation.direction

Send(L-Switch, RightN, LeftN, RightN, Heading )

}

Agents can detect all the signáis produced by their neighbors; these signáis can be repre

sented in a binary format requiring four bits for representing all the signáis; thus, they are

transmitted in a message or in another signaling method that could be decoded by agents.

Furthermore, every agent maintains information about the orientation to follow and the ad

dress to communicate with its left and right neighbors. this information is transmitted and

updated every time new agents are integrated into formation. Orientation of the formation

is defined by the agent defined as the initial leader, and this is maintained by all new agents,

which receive it from their neighbors.

3.4 Obstacle Avoidance

Although switching between formations gives a desirable adaptability to the formation of

agents, it is unavoidable to find a diversity of obstacles in the environment, which could

decrease the performance of the agent when they are accomplishing an assigned task. Several

works have been proposed for solving the problem of avoiding obstacles when a mobile robot

navigates towards a goal. Some works, which could be integrated to the agents which are

performing the algorithm proposed here, are described in [27, 17, 12, 4]. Any of these

algorithms can be applied because the controller only reacts to specific signáis described

above, then an obstacle avoidance algorithm can be performed in parallel.

However, while an agent is performing an obstacle avoidance algorithm, the contact with

its neighbors is lost. If the obstacle is not avoided in a threshold time t, or if after evading
the obstacle is not possible for the agent to recover its position into the formation, then

the agent is reinitialized to a free state. In this state, agents again look for agents in a

formation. In order to recover the position of the agent into the formation the following

process is performed.

At the moment to start the obstacle avoidance process, the agent stores the forma-

tion_velocity fv and the direction of the formation a. A timer ti is started. Every time

the agent changes its direction with a deviation of ±5 degrees, the new direction /. , and the

velocity v are stored, and a timer c is initialized. When the direction is changed again, the

timer is stopped and the distance d is calculated:

d = v
*
c

then, the components of the vector obtained are computed,
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vx
= d

*
eos/?

vy
= d *

sin/5"

and stored in a matrix

vectors [i] [0] = vx

vectors[i] [1] = vy

Once the obstacle has been avoided, the components of the vector, which indicates the

distance and the direction that the agent should have followed whether the obstacle does not

exist, are obtained

d = fv *
ti

ovx
= d

*
cos a

ovy
= d *

sin a

then, the sum of the stored vectors is computed

tvx = J27=o vectors[i][0]

tyy = Yli=ovect°rs [*]£■■]

Finally, in order to recover the position of the agent, a vector of movement is obtained

from the difference between the sum of the stored vectors (tv) and the original vector (ov).

mvx
=

ovx
—

tvx

mVy
=

OVy
—

tVy

mv= ^/mvl + mv'*

0 = arctan(muj//mv-)

Once the agent moves the distance computed (mv) in the direction obtained, the obstacle

avoidance process is finished.



Chapter 4

Formation Control Simulation

For validating the proposed algorithm, which was described in the previous chapter, two

simulated scenarios have been implemented. First, a simulation was implemented in NetLogo

[34] for evaluating the global behavior obtained from the interactions between agents. Second,

a simulation was implemented in Webots [1] in order to evalúate the capability of mobile

robots to perform a group formation.

Initally, a workspace is created and all the robots/agents are randomly distributed in the

workspace. Every robot has a controller which is constructed based on the rules provided by
the Petri net model and the tables described in chapter 3. Since the robots share no global
coordinate system, their position in the formation is determined from the actual position of

their neighbors.

Through these simulations, it can be observed how the desired formation is established

due the interactions of agents. The simulation of agents does not consider the physical
restrictions of movements, only behavior is considered. In the case of the' simulated robots, a

robot architecture is defined and a minimal set of sensors is specified in order to perform the

actions which are required to get a position into the formation, to balance the formation, or

to switch between formations. Both scenarios and the results obtained are described in the

next sections.

4.1 NetLogo Simulation

NetLogo is a simulator for modeling and simulating natural and social phenomena. Global

behaviors obtained by local interactions can be simulated through this simulator. In order

to observe how the rules, which were described in previous sections, bring as consequence of

interactions the desired formation of mobile agents, a simulation scenario is implemented.
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In this simulation only the behavior, which is obtained from the rules, is evaluated; the

actions needed for getting the position into the formation are assumed to be perfectly executed
due the nature of the simulator. It can be observed how the agents in a wedge formation

perform a balance maneuver every time new agents are integrated and the formation shape
is unbalanced. It is possible to observe how the process of switching between formations is

accomplished. The scenario used for this purpose is presented below.

4.1.1 Scenario Description

Simulation was performed with 11 agents establishing a wedge formation. Initially all agents
are distributed randomly in the environment, and a initial point for starting the formation is

represented by a black cell (Figure 4.1). When an agent detects the initial point, it establishes

its role to leader. According new agents find a robot into formation, they are integrated to

the group. The position of the new agent is determined by the actual state of its neighbor.
If the agent in the formation is to the right, then the new agent will be joined to the right.
On the other hand, if the agent in the formation is to the left, then the new agent will be

joined to the left. Since agents can be integrated to the left or to the right of the formation,
the shape of the formation could be unbalanced. An unbalanced formation is illustrated in

Figure 4.1b.

A leaders verifies if formation is unbalanced every time new agents are added into forma

tion. When an unbalanced formation is detected, a balance maneuver is performed. The role

of the agents is updated after a balance maneuver is performed. A wedge formation after

balance maneuver is shown in Figure 4.1c. After a while, all the agents get into formation.

Balance maneuvers required during that process are performed in order to maintain the shape
of formation. If new agents appear, they can be joined to the formation without problems.
Final configuration of wedge formation is illustrated in Figure 4.1d.

At any time, the leader can decide to switch the actual formation to another shape
allowed (wedge, column, line). A signal is emitted to its neighbors in order to cause a

switching formation. A message indicating the distance to travel and/or the time to wait

is sent. That information is forwarded to the neighbors of the agent. The results obtained

frpom this behavior are illustrated in Figure 4.2. The behavior of switching from a line to a

wedge is shown in Figure 4.3.

4.2 Webots Simulation

In order to evalúate the behavior obtained from the algorithm proposed here in mobile robots,
a simulation was performed in Webots. This simulator allows to créate robots with the shape
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Figure 4.1: a) Agents distributed randomly in the environment. b) An unbalanced wedge

formation. c) Agents in formation after balance maneuver. d) Wedge formation after all

agents got their position.
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Figure 4.2: a) Switching from a wedge formation to a line. b) Agents into a line formation

after the switching process.

Figure 4.3: a) Switching from a line formation to a wedge. b) Agents into a wedge formation

after the switching process.
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and sensors needed for performing an especific task. With this simulator, it is possible to

evalúate the behavior of robots with physical restrictions, where sensors have to be used in

order to obtain information from the environment and react to it.

In this simulation, the actions needed in order to get a position into the formation are

solved according to the sensors used in the model of robots here proposed. One of the

advantages of the algorithm here proposed, is the flexibility to solve the physical problems
for moving a robot to an assigned position according to the capabilities of the robot. While

the rules of behavior are followed, the robots will be able to establish the assigned formation.

4.2.1 Robot architecture

Each robot has been designed to provide features of basic mobility, obstacle sensing, and

local interactions. The number of sensors used in these robots are the minimal sensors

needed in order to achieve the formation task with the algorithm proposed here. However,
the algorithm presented only defines the actions to be followed by every robot in order to

obtain the formation; so the way how this actions are performed depends on the hardware

platform used. An illustration of a robot is shown in Figure 4.4.

Infrared Sensor

Ultrasonic Sensors Radio Transmitter

Figure 4.4: Robot Architecture.

The mobile platform is built around a circular base, and moves on two wheels that are

independently driven. Robots have to be equipped with sensors to detect obstacles and

beacons for robot search. Two ultrasonic sensors are arranged at the front of the robot.

While the robot goes forward, the ultrasonic sensors allow a robot to avoid obstacles. An

infrared sensor is fixed at every side of the robot. These sensors are used to achieve alignment
between neighboring robots. A radio transmitter for sending and receiving messages is set
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at the top of the robot. The signal strength of the radio transmitter from these sensor are

used in order to invoke aggregation behavior.

The issues that a robot has to solve for getting its position in the formation are described

below:

• Find a robot. Robots in formation send HELLO messages periodically. These messages
are received by free robots. When a HELLO message is received, the robot detects the

received signal strength. If the current strength is higher than the signal strength of the

last message, then the robot follows the same course; however, if the signal strength is

lower than the signal strength of the last message, then the robot tries to found another

direction until a higher signal strength is detected. Through this behavior, the robots

tend to move toward the robots who are in the formation.

• Align with the neighbor. At the moment of a free robot is near of a robot in the forma

tion, the free robot initiates a message interchange in order to determine the position
that the robot has to take in the formation. To determine the current robot position
with respect to the neighbor in the formation, the ultrasonic sensors and the robot

orientation are used. A rotation is performed by the robot until its ultrasonic sensors

detect an object within a threshold distance. The current position (left, right, back,

front) of the free robot is determined based on the orientation of the neighbor robot

and the orientation of the free robot. Once the robot position has been determined,

the free robot aligns with the neighbor using the infrared sensors.

• Move to left. When a robot has to move to the left and it is not the current position
of the robot, it moves around the neighbor robot until the left position is reached. At

this point, the robot moves away a distance d in order to maintain the shape of the

formation.

• Move to right. When a robot has to move to the right and it is not the current position
of the robot, it moves around the neighbor robot until the right position is reached. At

this point, the robot moves away a distance d in order to maintain the shape of the

formation.

4.2.2 Scenario Description

A set of seven robots were distributed randomly in a workspace of size 2m x 2m. A wedge
formation is perfomed. Once the formation is established, the leader initiates a switching

process in order to establish a line formation. Initially, a robot is defined as a leader. The

rest of robots are distributed randomly in the environment (Figure 4.5).
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t
Initial Leader

Figure 4.5: Robots distributed randomly in the workspace
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The robots, which are in the formation, periodically send HELLO messages for allowing
that free robots detect the formation. When a free robot receives a HELLO message, this

robot tends to move toward the group of robots in the formation. When HELLO messages

are not received, the free robot does not move. This aggregation behavior is illustrated in

Figure 4.6.

Figure 4.6: Aggregation behavior.

In the behaviors described above, a free robot interacts with a robot in the formation for

determining its position. In a wedge formation, when the free robot meets a leader, then

the free robot moves to the right. The right neighbors of the new robot go forward while

the left neighbors move to the right. The same actions are performed when the robot in the

formation is a right follower. On the other hand, if the free robot meets a left follower, then

the free robot moves to the left. The right neighbors of the new robot go forward while the

left neighbors move to the left. A robot being joined at the left side of the formation is shown

in Figure 4.7.

Every time a new robot is added, a message is forwarded until the leader receives it. The

leader maintains a count of new robots integrated in the left and the right sides. When the

leader detects that there are two more robots in a side than the number of new robots in

the other side, a balance maneuver is initiated and the leader role is reassigned. This role

is assigned to the new robot in the middle of the formation. This process is illustrated in

Figure 4.8.

In order to give to the formation the capability of adapting to the environment conditions

or adapting to perform a certain task, the algorithm proposed allows to the leader to initiate
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Ci

Go Forward

Figure 4.7: A new robot being joined at the left side of the formation.

a switching formation process. The action to be performed by every robot depend on the

state ofthe robot. Possible actions were described in chapter 3. Figure 4.9 shows how a group

of robots arranged in a wedge formation switch the current formation to a line formation.

4.3 NXT Robots Implementation

For solving the problem of robot formation control with real robots, the Lego Mindostorms

NXT Robots were used. Each robot has been designed to provide bas_c mobility and local

interactions. Every robot is equipped with a compass sensor (the orientation of the robot is

determined by this sensor), and a ultrasonic sensor (it helps to determine the distance with

respect to other robots). In order to communicate between robots, the Bluetooth devices

integrated in the robots are used. Two wheels with a radius of 56mm are used for allowing
the robot to move in the environment. A third wheel of 24mm is used only for providing

stability to the robot. A photograph of a robot is shown in Figure 4.10.

The wedge-formation algorithm is tested with a set of four robots. Among a series of

experiments, several stages in the process of group formation task were described; in this

stage, the actions performed by the robots can be observed. Figure 4.11 shows the snapshots
taken of the experiment.
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Figure 4.8: a) Unbalanced Formation. b) Balanced Formation.
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Figure 4.9: a) Switching Formation from wedge to line. b) Line Formation.
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Figure 4.10: NXT Robot Platform.

¡L¡v_J lí

Figure 4.11: NXT implementation.
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4.4 Simulation Results

Among a series of simulations that were conducted using NetLogo and Webots, it could be

observed several stages of the self-organizing process in order to obtain the formation of the

mobile robots. These stages include the initial step ofthe process, new robots being integrated
in a formation, the balance maneuver, and finally the switching formation process. Through
these simulations it can be observed how the local interactions between robots bring as a

result the formation of the robots. According new robots are integrated in the formation, the

formation is unbalanced. Then a balance maneuver is performed and the formation recovers

its shape.

In order to compare the results obtained in this work with related works, the qualitative

aspects of behaviors implemented in every work are considered. The quantitative aspects

are not considered due that they depend on the hardware characteristics of robots used in

every implementation. Furthermore, the algorithm proposed can be implemented in any

platform which could be capable of performs the actions described in this work. The way

on that actions are performed depends on the hardware characteristics, which can be elected

according to the tasks to be accomplished. In this work, the actions are performed according
to the robot platform presented here.

Table 4.1: Qualitative comparison with related works.

Approach Position determined by Get the formation at

At the dynamics level Keep only robot position

Using local information Leader Target assigned by the leader

Using local templates Neighbor state Free atachment points

Using self-organization principies Neighbor State neighbor location

Approach Balance Maneuver Switching between Formations

At the dynamics level Keep only robot position

Using local information Allowed Not allowed

Using local templates Not allowed Not allowed

Using self-organization principies Allowed Allowed

The works, which address the problem at the dynamics level, provide algorithms for

keeping only the robot position. They do not consider the process to establish a formation

before a robot knows its position. On the other hand, works using local information provide a

solution for establishing a formation, but it is based on a little amount of global information,

or exists a robot which decides the position ofthe other robots in the formation; furthermore,
to switch between formations is not allowed. The approach, which uses local templates, avoids

the use of global information. The formation is obtained through local interactions; however,
balance maneuver and to switch between formations are not allowed.

The algorithm proposed here is extend for solving the drawbacks presented in the works
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described above, while this algorithm considers self-organization principies in order to provide
a scalable and adaptable approach.



Chapter 5

Conclusions and Future Work

5.1 Conclusión

In this thesis an algorithm for robot formation was presented. This algorithm is based on

self-organization principies. The global behavior (robot formation) is obtained from local

interactions. Every robot decides its position in the formation according to the information

received from the neighbor robots. Furthermore, the robots do not have knowledge about

the number of robots arranged into the formation. Since the robot behaviors depend on the

state of the robot, new robots can be integrated to the formation without increasing the

complexity of the algorithm; so, the algorithm presented maintains the scalability property.

The algorithm has a linear complexity.

The formation is balanced when it is needed due to the insertion of new robots into

the formation. The leader role is reassigned every time a balance maneuver is performed.

Switching between formations gives the adaptability property to the group of robots arranged

in the formation. With this behavior, robots can adapt to the environment conditions. The

leader initiates the balance maneuver and the switching formation process. It is not yet

decided autonomously by the robot when a switching process is required.

A Petri net model was presented for modeling the state of the robot. The behavior can

be obtained autonomously from this model according to the messages received by the robot.

The behavior resulting from the interactions between neighbors was simulated in NetLogo.

The actions needed to get a position in the formation by a robot were described using

Webots simulator. A robot architecture was proposed in order to achieve the required tasks.

architecture was proposed in order to achieve the required tasks. architecture was proposed

in order to achieve the required tasks. It was demonstrated through simulations how the

robots, performing simple rules and local interactions, produce a desired global behavior.
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5.2 Future Work

Several topics briefly mentioned in the text deserve further attention:

• In this work, the switching process is initiated by the leader when it is manually indi

cated. The algorithm devised here can be extended in order to decide autonomously
when a switching process is required. This decisión can be taken by considering the

conditions of the environment or the task to be accomplished.

• As mentioned before, the Petri net can be used to auto-generate the code needed to

perform the robot actions according to the received messages and the current status of

the robot controller. This extensión to the algorithm will provide a higher adaptability.

• In order to créate a robust structure, an algorithm of obstacle avoidance, and algorithms
for maintaining a distance with respect to other neighbors while the robots are moving,
have to be integrated to the algorithm devised here.
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