

Con i£A\

CINVESTAV
IPN

AP« UISICfiON
OE U^wHS

Centro de Investigación y de Estudios Avanzados

del Instituto Politécnico Nacional

Unidad Guadalajara

Middleware para Distribución

Adaptativa de AmbientesMultiagente

Middleware for AdaptiveMultiagent

Environment Distribution

Tesis que presenta:

Luis Alberto Muñoz Gómez

para obtener el grado de:

Maestro en Ciencias

en la especialidad de:

Ingeniería Eléctrica

Director de Tesis

Dr Félix Francisco Ramos Corchado

CINVESTAV del IPN Unidad Guadalajara, Guadalajara, Jalisco, Noviembre de 2010.

Cl_ASlFí."l£Afc>5 ,Q$ (A,

ADQUlS... '^ \ &_
FECHA.. \$>-.K^oa,\o* ¿

r.\'mi^¿. 00'

Centro de Investigación y de Estudios Avanzados

del Instituto Politécnico Nacional

Unidad Guadalajara

Middleware for Adaptive Multiagent
Environment Distribution

A thesis presented by*
Luis Alberto Muñoz Gómez

to obtain the degree of:

Master of Science

in the subject of:

Electrical Engineering

Thesis Advisor:

Dr. Félix Francisco Ramos Corchado

CINVESTAV del IPN Unidad Guadalajara, Guadalajara, Jalisco, November 2010.

Middleware para Distribución

Adaptativa de AmbientesMultiagente -

Middleware for AdaptiveMultiagent

Environment Distribution

Tesis deMaestría en Ciencias

Ingeniería Eléctrica

Por:

Luis Alberto Muñoz Gómez

Ingeniero en Computación

Universidad de Guadalajara 1998-2002

Becario de CONACYT, expediente no. 199554

Director de Tesis

Dr. Félix Francisco Ramos Corchado

CINVESTAV del IPN Unidad Guadalajara, Noviembre de 2010.

Middleware for AdaptiveMultiagent
Environment Distribution

Master of Science Thesis

In Electrical Engineering

By*
Luis Alberto Muñoz Gómez

Computer Engineer
Universidad de Guadalajara 1998-2002

Scholarship granted by CONACYT, No. 199554

Thesis Advisor:

Dr. Félix Francisco Ramos Corchado

CINVESTAV del IPN Unidad Guadalajara, November, 2010.

Resumen

La realidad virtual representa diferentes entidades que interactúan en un

ambiente para realizar alguna tarea. Cuando se implantan ambientes complejos,
se necesita distribuir el procesamiento requerido para obtener la calidad deseada,
lo mismo sucede cuando las aplicaciones son inherentemente distribuidas. En

nuestro enfoque el comportamiento de cada una de estas entidades es calculada

por un agente. Los agentes se comunican por medio de un middleware con varios

componentes. Dependiendo del tipo de aplicación que se representa, algunos de

los componentes pueden convertirse en cuello de botella, principalmente por la

comunicación generada entre los agentes. En esta tesis se propone una solución

para resolver el problema del cuello de botella al que tiende a convertirse la

entidad que representa al ambiente. En nuestro enfoque, esta entidad se compone
de un contexto que contiene información acerca del ambiente y un escenario que

es el medio donde se desabolla la escena. Durante el desarrollo de una escena,

los agentes se desenvuelven acorde a sus percepciones acerca del ambiente,

objetos y otros agentes a su alrededor. Esta entidad se convierte en cuello de

botella porque cada agente consulta al ambiente para percibir de él, y también

para notificarle cualquier intención de realizar modificaciones en su estado así

como validar en el contexto las reglas para los cambios permitidos. Esta continua

comunicación de todos los agentes con el ambiente provoca que el agente que

controla al ambiente se transforme en un cuello de botella en el sistema y, por

consiguiente, los otros agentes no puedan percibir eficazmente los cambios.

La solución propuesta en este trabajo consiste en distribuir adaptivamente el

ambiente en un conjunto de agentes ambiente. Cada uno de los agentes ambiente

representa un volumen x del ambiente y todos ellos son percibidos como una sola

entidad ante los demás agentes. Decimos que la distribución es adaptativa porque
el número de agentes que representan al ambiente es calculado en función de la

complejidad del ambiente para cada tiempo t. Si el ambiente es complejo,
entonces tendremos que el número de agentes ambiente es grande, de lo

contrario es reducido. Además, la distribución se hace en función de la

complejidad de cada región del ambiente, con lo cual tendremos más agentes
ambiente resolviendo el cuello de botella en secciones del ambiente que

contengan mayor complejidad y un menor número en las secciones con poca

complejidad. Cuando un agente ambiente decide aplicar una dicotomía porque la

complejidad aumenta, nuestra solución resuelve el problema de decidir donde

generar un nuevo agente ambiente y qué información proporcionarle; de forma

similar, si la complejidad disminuye, dos o más agentes ambiente acordarán como

fusionar su información. Dicha solución es integrada como dos módulos de la

arquitectura del proyecto GeDA-3D. Los módulos están constituidos por un

middleware con funciones de soporte para hilos y comunicación confiable y, un

conjunto de clases ambiente genéricas escritas en lenguaje Java. La decisión de

usar Java además de ser un lenguaje multiplataforma es porque el lenguaje
permite especificaciones heredables, y por tanto, reutilizables para cualquier
ambiente específico que se desee poner en escena sobre la plataforma GeDA-3D.

Abstract

Virtual reality represents different entities which interact into an environment to

carry out any task. When complex environments are implemented, we need to

distribute required processing to obtain the desired quality, the same happens
when applications are inherently distributed. ln our approach an agent calculates

each of these entities behavior. Agents communicate with each other through a

middleware with several components. Depending of the kind of virtual reality that is

represented, some components may tum into a bottleneck, mainly due to the

communication generated among agents. ln this thesis a solution is proposed to

solve the problem of the bottleneck to which the entity that represents the

environment tends to turn into. ln our approach, this entity is composed by a

context which contains information about the environment and a scenario that is

the médium for a scene development. During a scene development, agents evolve

according to their perceptions about the environment, objects and other agents
around them. This entity turns into a bottleneck because each agent consults the

environment to perceive from it, and also to notify it any intentions to carry out

modifications to its state as well as to validate in the context rules for permitted

changes. This continuous communication of all agents to the environment causes

that the agent that controls the environment turns into a bottleneck in the system

and, therefore, the other agents can not perceive changes effectively.

The proposed solution in this work consists in distributing adaptively the

environment on a set of environment agents. Each of these environment agents

represents a volume x of the environment and all of them are perceived as a single
entity by other agents. We say that distribution is adaptive because the number of

agents that represent the environment is calculated in function ofthe complexity of

the environment for each time t. lf the environment is complex, then we will have

that the number of environment agents is big, otherwise is small. Besides,
distribution is done in function of the complexity of each environment región, with

which we will have more environment agents resolving the bottleneck in sections of

the environment that contain more complexity and a smaller number in sections

with low complexity. When an environment agent decides to apply a dichotomy,
this decisión is based on an important increase of complexity it manages. Our

solution resolves the problem of deciding where to genérate a new environment

agent and what information is provided to it; in a similar way, if complexity
diminishes, two or more environment agents will agree how to fuse their

information. This solution is integrated as two modules of the GeDA-3D project
architecture. These modules are constituted by a middleware with support
functions for threads and reliable communication and, a set of generic environment

classes written in Java language. The decisión of using Java besides being a

multiplatform language is because the language lets inheritable specifications and,

therefore, reusable for any kind of specific environment that is desired to put in

scene on the GeDA-3D platform.

Acknowledgements

To God for guiding me throughout my Ufe, so curious, every step l go.

To my mother Francisca for being the best mother in the world.

To my grandmother Agustina for being the main pillar of my family and like a

second mother to me all her life.

To my father Antonio for all his support and encouragement to overeóme.

To my advisor Dr. Félix for believing in me, guiding me on this work and giving me

every opportunity so far.

To my little sister Tania for becoming the spiritual pillar of my family in the most

difficult moments.

To my little brother Alex for all his need of attention that occasionally took me from

my work and brought out my inner child.

To my aunt Ramona for her encouragement.

To my best friends Salvador, Rosalva, Mary, Sandra and José Luis for all special
moments that we have shared and that give sense to life outside home and work.

To my teachers from CINVESTAV (Doctors Ernesto López, Mario Siller, Raúl

González and Héctor Duran), who taught me interesting topics, some of which I

applied on this thesis.

To my teachers from University of Guadalajara (Aarón Jiménez, Luis Casillas,
Abelardo Gómez, Angélica Ancona, Manuel Corona and Salomón Ibarra), who

taught me interesting topics that profiled me to my M.Sc. in Engineering.

To my friends from CINVESTAV and from University of Guadalajara for all

convivial moments, from a simple nice conversation to parties and celebrations.

To my consented alumni of my Distributed Systems Workshop at the University of

Guadalajara for contríbuting to my desire in continuing being a member of the

academy.

To CINVESTAV for admitting me as a member ofits community.

To CONACYT for its support granting me the scholarship no. 199554.

I

Contents

Chapter 1 Introduction 1

1.1 Problem Description 1

1.2 Goals 3

1.3 Proposal 3

1.4 Structure of this Thesis 5

Chapter 2 Review of Related Works 7

2.1 Introduction 7

2.2 Distributed Systems 7

2.2.1 Middleware 8

2.2.2 Load Sharing and Load Balancing 9

2.2.3 Replication and Mobility 11

2.2.4 Code Migration 13

2.2.5 Distributed Shared Memory 14

2.3 Multiagent Systems 16

2.3.1 Distributed Virtual Environments 17

2.3.2 Distributed Virtual Reality Platforms 18

2.3.3 Self Organization of Multiagent Systems 20

2.4 Software Engineering 22

2.4.1 Reverse Engineering 22

2.4.2 Component Based Software Engineering 23

2.5 Summary 26

Chapter 3 Software Engineering of GeDA-3D 29

3.1 Introduction 29

II

3.2 Redocumentation of GeDA-3D 31

3.2.1 The Context Module 32

3.2.2 Virtual Environment Editor 32

3.2.3 Rendering 34

3.2.4 Scene Control 36

3.2.5 Agent Community 37

3.2.6 Agent Platform 38

3.3 Reverse Engineering of GeDA-3D 44

3.3.1 The Context Module 44

3.3.2 Virtual Environment Editor 45

3.3.3 Rendering 45

3.3.4 Scene Control and Environment Representation 46

3.3.5 Agent Architecture 46

3.3.6 Agent Platform 47

3.3.7 GeDA-3D Architecture 49

3.4 Reengineering of GeDA-3D 50

3.4.1 The Context Module 50

3.4.2 Virtual Environment Editor 51

3.4.3 Agent Community 51

3.4.4 Agent Platform 53

3.4.5 The Distributed Environment 53

3.5 Summary 54

Chapter 4 Distributed System Platform 55

4.1 Introduction 55

4.2 Architecture 56

4.3 Microkernel 57

4.4 Process and Thread Administration 61

4.5 Platform Services 63

4.5.1 Thread Management 65

4.5.2 Process Addressing 66

4.5.3 Message Passing Primitives 68

4.5.4 Message Storage and Delivering 69

lll

4.5.5 Reliability 70

4.5.6 Distributed Mutual Exclusión 71

4.5.7 Group Communication 72

4.6 Agent Platform Services 74

4.6.1 Life Cycle Management 75

4.6.2 White and Yellow Page Services 76

4.6.3 Message Transport Service 78

4.7 Summary 79

Chapter 5 Adaptive Distributed Multiagent Environment 81

5.1 Introduction 81

5.2 Architecture 82

5.3 Distributed Virtual Environment 87

5.4 Dynamic Adaptation Policies 93

5.5 Summary 99

Chapter 6 Case Study 101

6.1 Introduction 101

6.2 Prey Predator Ship Battle 102

6.2.1 lllustrating the case without using dynamic adaptation policies 102

6.2.2 Metrics without using dynamic adaptation policies 1 1 1

6.2.3 Metrics applying dynamic adaptation policies 113

6.3 Prey Predator Avatar Chasing 116

6.3.1 lllustrating the case without using dynamic adaptation policies 116

6.3.2 Metrics without using dynamic adaptation policies 126

6.3.3 Metrics applying dynamic adaptation policies 128

6.4 Prey Predator Avatar Chasing using the Scenario Descriptor 131

6.5 Summary 132

Chapter 7 Conclusions and Future Directions 133

7.1 Conclusions 133

7.2 Future Directions 137

Bibliography 141

IV

V

List of Figures

Figure 1-1. Distributing modules Scenario and Context 3

Figure 1-2. Environment Agent in charge of región r and its modules 4

Figure 1-3. The Environment divided into regions of volume x 4

Figure 2-1. A distributed system organized as middleware 8

Figure 2-2. Remote placement of work 11

Figure 2-3. Replication of an item x provided by a server to be read by a client.... 12

Figure 2-4. Alternatives to achieve code migration 13

Figure 2-5. DSM (a) Chunks of address space distributed among four machines.

(b) Situation after CPU 1 references chunk 10. (c) Situation if chunk 10 is read only
and replication is used 14

Figure 2-6. Ownership location using a central manager. (a) Four-message

protocol. (b) Three-message protocol. Extracted from [TANENBAUM] 15

Figure 2-7 Object-based distributed shared memory 16

Figure 2-8. An agent and its environment 16

Figure 2-9. Centralized and Distributed Environments (a) centralized (b)
distributed. Extracted from [ELMERHEBI] 17

Figure 2-10. RING servers (a) RING servers managing communication. (b) Cell to

cell visibility. Extracted from [FUNKHOUSER] 20

Figure 2-11. The Contract net (CNET) protocol 21

Figure 2-12. The Model-View-Controller design pattern. Extracted from [ORACLE]
25

Figure 3-1. ViSCA seen as a black box 31

Figure 3-2. Initial GeDA-3D architecture 31

Figure 3-3. Scene Descriptor 33

Figure 3-4. Display of ViSCA Render 35

Figure 3-5. Display ofAVE-3D Render 35

Figure 3-6. Graphical emotional state. (a) Fear (b) Happiness 36

Figure 3-7. Action-Reaction cycle in the Scene Control 37

Figure 3-8. GeDA-3D Agent Architecture 38

Figure 3-9. Virtual Scene Creator Architecture (ViSCA) 39

VI

Figure 3-10. FIPA Agent Abstract Architecture 39

Figure 3-11. GeDA-3D Core 40

Figure 3-12. Agent Administrator 42

Figure 3-13. Agent definition view 42

Figure 3-14. Human-Agent interaction 43

Figure 3-15. Virtual Environment Editor 45

Figure 3-16. FIPA Agent Life Cycle. Extracted from [FIPA_SPEC] 48

Figure 3-17 New GeDA-3D Architecture 51

Figure 4-1. Middleware Architecture 56

Figure 4-2. Relationship between Kernel and threads 61

Figure 4-3. Platform Services 65

Figure 4-4. Bit setting to distinguish kernel packets, process IDs and group IDs... 68

Figure 4-5. The Critical Región Coordinator 72

Figure 5-1. Distributing modules Scenario and Context 82

Figure 5-2. Environment Agent in charge of región rand its modules 83

Figure 5-3. The Environment divided into 27 cubes 83

Figure 5-4. The Scenario Module 83

Figure 5-5. The Generic Environment 84

Figure 5-6. The Generic Environment Object 85

Figure 5-7 The Cube 86

Figure 5-8. The Environment Agent 86

Figure 5-9. The Environment divided into regions of volume x 88

Figure 5-10. The Distribution Map 89

Figure 5-11. One EA administering the entire environment 90

Figure 5-12. Dichotomy process on EA-i creates EA2 90

Figure 5-13. Dichotomy process on EA2 creates EA3 90

Figure 5-14. Dichotomy process on EA2 creates EA* 91

Figure 5-15. Dichotomy process on EA-i creates EA5 91

Figure 5-16. Fusión process of EA-i with EA4 and fusión of EA2 with EA5 91

Figure 5-17. Three intentions with an increase of time of response 92

Figure 5-18. Activity diagram to determine the best partition during dichotomy
process (part 1) 96

Figure 5-19. Activity diagram to determine the best partition during dichotomy
process (part 2) 97

Figure 6-1. Start of the GeDA-3D Distributed System Platform 102

Figure 6-2. The scene and scenario descriptions for the first case study 103

Figure 6-3. The Environment Agent at the beginning of the first case study 103

Figure 6-4. The Scenario s state: atthe beginning of the first case study 104

Figure 6-5. Core in the first case study 104

Vil

Figure 6-6. The Agent Administrator of the first case study 105

Figure 6-7. Shipl atthe beginning knows 5 objects ofthe environment 105

Figure 6-8. Ship2 atthe beginning knows 5 objects of the environment 105

Figure 6-9. The scenario after 77 seconds since the beginning 106

Figure 6-10. The scenario after 274 seconds since the beginning 106

Figure 6-11. Shipl knows 12 objects ofthe environment 107

Figure 6-12. Ship2 knows 7 objects of the environment 107

Figure 6-13. The scenario after 437 seconds since the beginning 108

Figure 6-14. The scenario after 478 seconds since the beginning 108

Figure 6-15. The Environment Agent after 478 seconds since the beginning 109

Figure 6-16. Shipl reaching the goal attack 109

Figure 6-17. The scenario atthe end ofthe simulation of the first case study 110

Figure 6-18. Shipl after the end of the simulation of the first case study 110

Figure 6-19.The Environment Agent after the end of the simulation of the first case

study 111

Figure 6-20. Objects Administered using one EA in the first case study 111

Figure 6-21. Average Región Load using one EA in the first case study 112

Figure 6-22. Time of Response using one EAin the first case study 112

Figure 6-23 Percentage of Time of Service using one EA in the first case study. 113

Figure 6-24. Amount of agents using up to two EAs in the first case study 113

Figure 6-25. Objects Administered using up to two EAs in the first case study. ..114

Figure 6-26. Average Región Load using up to two EAs in the first case study. .. 1 14

Figure 6-27. Time of Response using up to two EAs in the first case study 115

Figure 6-28 Percentage of Time of Service using up to two EAs in the first case

study 115

Figure 6-29. The prototype of the Scene Descriptor versión 2 for the second case

study 116

Figure 6-30. The Environment Agent at the beginning of the first case study 117

Figure 6-31. The Scenarios state: atthe beginning ofthe second case study.... 117

Figure 6-32. Agent luis receives its goal specification 118

Figure 6-33. Agent albert receives its goal specification 118

Figure 6-34. The scenario after 40 seconds since the beginning 119

Figure 6-35. The Environment Agent after 40 seconds since the beginning 119

Figure 6-36. The scenario after 75 seconds since the beginning 120

Figure 6-37. The Environment Agent after 75 seconds since the beginning 120

Figure 6-38. Agent luis knows its position x=140, y=0, z=125 121

Figure 6-39. Agent albert knows its position x=-110, y=0, z=122 121

Figure 6-40. The scenario after 103 seconds since the beginning 122

Figure 6-41. Agent albert reached its goal 122

VIII

Figure 6-42. The scenario after 165 seconds since the beginning 123

Figure 6-43. The scenario after 188 seconds since the beginning 123

Figure 6-44. The scenario after 220 seconds since the beginning 124

Figure 6-45. The scenario after 250 seconds since the beginning 124

Figure 6-46. The Environment Agent after 250 seconds since the beginning 125

Figure 6-47. Agent luis reached its goal 125

Figure 6-48.The Environment Agent after the end ofthe simulation ofthe second

case study 126

Figure 6-49. Objects Administered using one EA in the 2nd case study 126

Figure 6-50. Average Región Load using one EA in the 2nd case study 127

Figure 6-51. Time of Response using one EA in the2nd case study 127

Figure 6-52 Percentage of Time of Service using one EA in the 2nd case study. 128

Figure 6-53. Amount of agents using up to two EAs in the 2nd case study 128

Figure 6-54. Objects Administered using up to two EAs in the 2nd case study. ..129

Figure 6-55. Average Región Load using up to two EAs in the 2nd case study... 129

Figure 6-56. Time of Response using up to two EAs in the 2nd case study 130

Figure 6-57 Percentage of Time of Service using up to two EAs in the 2nd case

study 130

Figure 6-58. The Scenario Descriptor for the third case study 131

Figure 6-59. The Scenario Descriptor after compiling the described scenario 131

Figure 6-60. The scenario atthe beginning ofthe third case study 132

IX

Glossary of Terms and Acronyms

AAG Acknowledge Action for Group
ACK Acknowledgement
ACL Agent Communication Language
ADT Abstract Data Type
AGA Agree Group Address

AMS Agent Management System
ASN Agent Service Ñame

AU Address Unknown

AUN Agent Unique Ñame

AYA Are You Alive?

CNET Contract Net

DF Directory Facilitator

DM DistributionMap
DSM Distributed Shared Memory
EA Environment Agent
EO EnvironmentObject
FGA Found Group Address

FIPA Foundation for Intelligent Physical Agents
FSA Found Service Address

GeDA-3D Generic Distributed Architecture for 3D Applications
GEO GenericEnvironmentObject
GID Group Identifier

IAA I Am Alive

IP Internet Protocol

IPR ls Platform Running
JVM Java Virtual Machine

KTK Kernel To Kernel

LCL Local Class Loaded

LGA Lookup Group Address

LIME Linda in a Mobile Environment

LLC Load Local Class

LSA Lookup Service Address

MC Module Context

MS Module Scenario

MVC Model-View-Controller

X

NKL Notify Kernel Load
0KB Operating Kernel Bye
OKP Operating Kernel Presentation

PGA Propose Group Address
PID Process Identifier

PIR Platform ls Running
PSN Process Service Ñame

PUN Process Unique Ñame

RAG Remote Action for Group
RGA Reject Group Address

RPC Remote Procedure Cali

SDE Scenario Descriptor Emulator

SID Subsystem Identifier

SPID Subsystem Process Identifier

SUN Subsystem Ñame

TA Try Again
TCP Transmission Control Protocol

UDP User Datagram Protocol

UGA Unknown Group Address

VEE Virtual Environment Editor

ViSCA Virtual Scene Creator Architecture

VR Virtual Reality
XML Extensible Markup Language

Chapter 1

Introduction

This chapter presents a summary about what this dissertation contributes with,

first describing the problem to solve and our motivation, followed by the goals to

accomplish in order to make a proposal for an Adaptive Distributed Multiagent

Environment; finally it is shown the structure ofthis thesis.

1.1 Problem Description

The problem we try to solve in this dissertation is double. The first deals with

reverse engineering our GeDA-3D architecture to obtain documentation and

software components and interfaces; the second is alleviating a problem of

bottleneck our GeDA.3D architecture has.

Virtual Reality is represented by different interacting entities allocated into an

environment, and such entities are designed to carry out some task.

ln a Multiagent System, the Environment is the entity that contains information

ofthe environments state and may also contain rules about how to modify it

Context, in our approach, is the entity that contains information about the

Environment where an agent community activity is developed. For example, the

context in the real world contains physical laws that rule our world, semantic

concepts of words, relationships between existent entities in the world, etc.

Scenario is the environment where a scene is carried out. The Environment is

represented by a Scenario and a Context together.

2

During scene development, agents evolve according to their goals and

perceptions about the environment, objects and other agents around them. This

means that each agent consults the environment to perceive from it, and also to

notify it any intentions to carry out modifications to its state, as well as to validate in

the context the rules for permitted changes.

Administration of a dynamic 3D environment is difficult because the continuous

communication of all agents to the environment; such communication may turn the

environment into a bottleneck for the whole system, because the context inside the

environment may take considerable computer resources for validation purposes,

causing the agents do not perceive changes in the environment effectively. To

alleviate this bottleneck problem, we propose to distribute the scenario and the

context adaptively into a set of agents.

GeDA-3D (Generic Distributed Architecture for 3D Applications) [RAMOS] is a

platform useful to manage distributed applications; it provides several services to

manage communication among agents and the virtual environment evolution

according to virtual objects behavior and laws ruling the interactions; it also

provides mechanisms to transíate the specification of the environment into a set of

primitive commands used for the rendering. This platform is the core in charge of

handling the scene, since its creation until its final rendering.

Around of GeDA-3D project architecture, there have been many developments,
which unfortunately have not all been integrated to the platform due to the lack of

well implemented and independent software components and interfaces, applying
software engineering methods during the construction of the software. Those

developments have been tested in an isolated manner, being the most recently
achievement the integration of three of these component, but leaving the

components with a considerable level of coupling, a minimum level of cohesión

and far from meeting the Model-View-Controller design pattern; the latter could

allow future improvements to the platform, replacement of specific modules and the

integration of new components.

Analyzing the subject system in order to solve the problem of the bottleneck we

also found that the kernel was implemented forming a mesh topology between

applications, with a connection oriented protocol from one application to each one

of the others, which causes problems to the scalability of the system and to the

agents mobility through the network; therefore it was mandatory the update of

some components, and a reengineering (reverse engineering and restructuring) of
the currently implemented software components including modifications to the

GeDA-3D architecture.

3

1.2 Goals

The first goal of this work is transforming the current platform of GeDA-3D into a

flexible and scalable platform where the previously developed applications can still

be runnable, preserving their functional requirements and expected results of

execution. The new platform design must provide all general services of a

middleware, and also satisfy the requirements to achieve distribution of a

centralized component, such as the environment ofa multiagent system.

The GeDA-3D's environment currently implants two of its modules, the scenario

(MS) and the context (MC) in a centralized manner.

The final goal is to distribute both modules through available processors (or

machines) over the network, so an entity (an agent) only represents one part of the

environment as illustrated in Figure 1-1.

=*c5¡¡¡ W£¡¡¡> 0*si MC1 J) (fMS2 MC2J) Cj^" MCn^)
Kernel Kernel

1
Kernel •> Kernel

n

Network

Centralized implementation Distributed Implementation

Figure 1-1. Distributing modules Scenario and Context

The distribution proposed must assign (computer) resources in function of the

complexity of the scenario at runtime. As the environment changes as time goes
on, such resource assignment must be done dynamically.

1.3 Proposal

ln this thesis is proposed a solution to solve the problem of the bottleneck, to

which the entity that represents the environment tends to turn into.

We propose an administration of the environment based on special agents
denominated Environment Agents. An Environment Agent is in charge of:

• receiving any agent intentions to modify the environment 's state,
• validating applicable changes into the context,
• knowing each entity relationship with others and,
• propagating all permitted changes only to agents interested in such changes

All these activities increase workload ofthe Environment Agent.

ln order to distribute load, an Environment Agent may decide to apply a

dichotomy to it, by means of cloning. lt divides its information and workload with its

4

clone agent. Vice versa, if it finds itself almost or already idle, it may decide to fuse

with another Environment Agent. This behavior is achieved in function of the

complexity of the 3D environment.

The design principie of GeDA-3D environment distribution is based on

Environment Agents representing both modules Scenario (MS) and Context (MC).
An Environment Agent (EA) is in charge of administering a región r consisting of a

MS partition and a MC cache as illustrated in Figure 1-2.

Figure 1-2. Environment Agent in charge of región r and its modules

The proposed solution in

this work consists in

distributing the environment

adaptively on a set of

Environment Agents as

illustrated in Figure 1-3.

Each Environment Agent

represents a volume x of the

environment and, all of them

are perceived as a single

entity by other agents.

We say that distribution is adaptive, because the number of agents that

represent the environment is calculated in function of the complexity of the

environment for each time t. lf the environment is complex, then we will have that

the number of EnvironmentAgents is big, otherwise is small.

More precisely, distribution is done in function of the complexity of each part (a

región r) of the environment. We will have more Environment Agents (resolving the

bottleneck) in sections of the environment that contain more complexity and, a

smaller number in sections with low complexity.

When an Environment Agent decides to apply a dichotomy (cloning itself for

another instance), this decisión is based on an important increase of complexity it

manages. Our solution resolves the problem for deciding where to genérate a new

Environment Agent and what information is provided to it; in a similar way, if

Figure 1-3. The Environment divided into regions of volume x

5

complexity diminishes, two or more Environment Agents will agree to fuse their

information.

The proposed solution is integrated as two modules of the GeDA-3D project
architecture. These modules are constituted by a middleware, with support
functions for threads and reliable communication and, a set of generic Environment

classes written in Java language. The decisión of using Java besides being a

multiplatform language is because the language lets inheritable specifications and,

therefore, reusable for any kind of specific environment that is desired to put in

scene on the GeDA-3D platform.

1 .4 Structure of this Thesis

This dissertation is organized as follows:

Chapter 2 State of the Art exhibits all fundamentáis useful for the realization of

this work, such as distributed system platforms, multiagent system environments

and software engineering.

Chapter 3 Software Engineering of GeDA-3D analyzes through re-

documentation and reverse engineering, current components developed for the

GeDA-3D project; this analysis is needed to execute a reengineering of these

components to intégrate them with the new kernel that supports the requirements
for the distributed environment.

Chapter 4 Distributed System Platform specifies the architecture and system

requirements for our distributed system platform, in order to support any distributed

application, specially a multiagent system that needs to distribute a centralized

component like the Environment.

Chapter 5 Adaptive Distributed Multiagent Environment describes our

proposal, applying techniques of distributed shared memory and load sharing, to

distribute and lócate information while executing dynamic adaptation policies at

runtime, in order to control workload for the n agents that will represent the

environment.

Chapter 6 Case Study presents graphical results and metrics of the behavior of

the implemented environment, by means of the execution of three cases and,

using all developed components for GeDA-3D integrated through the platform.

Chapter 7 Conclusions and Future Directions summarizes our thoughts about

the work done, goals achieved, improvements to the GeDA-3D architecture,
contributions to the state of the art of distributed multiagent systems and presents
ideas for future work to extend ours.

6

7

Chapter 2

Review of Related Works

ln this chapter we describe all fundamentáis useful for the realization of this

work, such as distributed system platforms, multiagent system environments and

software engineering which are strongly related to the development of the work

presented in this thesis.

2.1 Introduction

Virtual reality is the representation of an actual or fictitious evolving environment

using digital devices. Unanimated objects like tables, walls, etc. constitute the

virtual world or environment, and one or many virtual entities or avatars evolve in

order to reach one or different goals. To implement the control of virtual creatures,
or avatars, we use the agent's paradigm. Agents perceive from the environment,

and based on their goals, make a decisión about how to evolve in the environment.

Any intention is validated in the environment, and changes are propagated only to

agents that are interested in such changes. The necessity for distributing the

environment is because some agent can need high quantities of processing,
besides, applications can be distributed by nature.

2.2 Distributed Systems

A distributed system is a collection of independent computers that appears to its

users as a single coherent system [TANENBAUMSTEEN]. The definition

considers two aspects: autonomous components and that its users (people or

programs) think they are dealing with a single system. Important characteristics of
a distributed system are:

8

1) Users do not realize how the system deals with differences between

computers, how they communicate and how they organize

2) Users and applications can interact in a consistent and uniform way.

2.2.1 Middleware

ln a distributed system, a middleware may be necessary to make easier for a

developer to implement a solution. ln fact, the middleware helps to hide actual

locations, all communication details, and just providing easy primitives to use;

middleware also provides mechanisms to lócate services and manages messages

for reliable communication.

A middleware is an application running in the application layer

[TANENBAUM_STEEN], Middleware contains many general-purpose protocols, in

order to offer a single system view, supporting a programming abstraction; it masks

heterogeneous computers, operating systems, networks and programming

languages (e.g. CORBA) [COULOURIS].

Distributed systems are often organized by means of a Middleware that is

placed between the application layer and the operating system; see Figure 2-1 .

Computer 1 Computer 2 Computer 3 Computer 4
i i

Application A Application B Application C

l l

Distributed System Layer (Middleware)

Local OS 1 Local OS 2 Local OS 3 Local OS 4

Network

Figure 2-1. A distributed system organized as middleware

Middleware replaces the corresponding session and presentation layers of the

OSI model [TANENBAUM_STEEN], it is in charge of fulfill solutions to key design
issues of distributed systems [TANENBAUM] such as transparency of: access,

location, migration, relocation, replication, concurrency, parallelism, failure,

flexibility, reliability, performance and scalability.

Middleware helps to develop under client-server model, in order to avoid the

considerable overhead of the connection-oriented protocols, such as OSI or

TCP/IP Client-server model is based on a simple connectionless request/reply

protocol [TANENBAUM] (the OSI session layer).

9

Four design issues have to be considered in client-server model

[TANENBAUM].

First, the main approaches of addressing, to lookup a server via software are 1)

sparse process addresses (using broadcasting of a lookup packet) and 2) use of a

ñame server.

Second, the message-passing primitives (send and receive) may be chosen to

be blocking or nonblocking, and over an operating system that supports
multithreaded processes, the first choice is the best because it is simple to

understand, simple to implement and it does not require kernel buffers to manage.

Third, unbuffered primitives require that destination server is ready waiting for a

message, reason why it is preferable a buffered primitive using a data structure

called a mailbox, in order to avoid messages being discarded, at least as long as it

is not filled up, in such case maybe we could require keeping incoming messages,
for a little while until an appropriate receive is done shortly.

Fourth, reliable primitives using special types of packets to implement client-

server protocols, such as an acknowledgement (ACK) package, to notify a sender

for a received message; other packages like AYA (are you alive?), IAA (I am alive),
TA (try again) and AU (address unknown) serve to make the best effort for a

message delivering to its destination. Reliability may be provided in two variants:

request-ACK-repIy-ACK or request-repIy-ACK; the latter considers reply as and

ACK saving one packet; an acknowledgement to a request lets that a sender is

informed of message delivering faster.

ln order to obtain that a middleware supports heterogeneity, it includes a

presentation layer that is in charge of the extern data representation, packing

parameters into a message (called parameter marshalling), to carry out an RPC

(Remote Procedure Cali) [COULOURIS]

2.2.2 Load Sharing and Load Balancing

For distributed environment policies it is important the following analysis about

how and when disseminating information to interested nodes. With decisión

making is analyzed if it is appropriate to initiate migration of work from the

overloaded node or from the underloaded node.

ln order to improve performance of a distributed system, load sharing policies

attempt to assure that no node is idle while other software components wait for

service [EAGER], on the other hand load balancing algorithms strive to equalize
the workload among nodes.

10

Krueger and Livny [KRUEGER] show that load balancing strategies put much

higher resource requirements on the system than load sharing strategies, and that

these resource requirements may outweigh their potential benefits

Analysis ofAdaptive Load Sharing Algorithms, presented by [KREMIEN], shows

a method for qualitative and quantitative analysis of load sharing algorithms that

comprises the following characteristics:

a) Considering information dissemination and allocation decisión making

b) Nodes must be capable of making local decisions

c) Remote execution should be bounded and restricted to a small proportion of

system activity

Load sharing is the problem of allocation: of mapping and remapping the logical

system (running applications), to the physical system (processing nodes

interconnected by a communication network). A flexible load-sharing algorithm is

required to be general, adaptable, stable, scalable, transparent to the application,
fault tolerant, and induce minimum overhead on the system.

Qualitative analysis

ln a qualitative analysis, adaptive algorithms for load sharing comprise two main

activities: Information dissemination and decision-making (control).

Information dissemination queue length is the state metric used by the

algorithms studied [FERRARI, ZH0U87]. We have to decide whether to hold state

information regarding all nodes in the system, or only a subset; for scalability

purposes, subsets are used and criteria specification is needed; a node may

choose to request information, disseminate information or use a predictive analysis

technique (objective: minimize overhead). With state dissemination the node may

have the information available when it is needed; algorithms using periodic (choose

frequency) and event-driven (significant change) information dissemination

policies, provide comparable performance. The use without any policy of broadcast

[LIVNY, ZH0U88] or multicast [THEIMER] results in intolerable overheads.

ln decision-making, the remote placement or migration can be initiated by the

source of work (overloaded node), or the server of work (underloaded node). We

have two options: a source initiated algorithm (single request, request and reply)
and a server initiated algorithm (request and reply). Source-initiated algorithms
place much of the overhead on the overloaded nodes, whereas server-initiated

algorithms on the underloaded nodes are more stable, controlling the amount of

work requested; see Figure 2-2.

Negotiation enables poor decisions to be tolerated by inhibiting their

consequence. A bad decisión can be reversed; but when it is not possible to attach

the work to the request, the negotiation is compared with a single request protocol,
and the number of involved phases is larger requiring more delay.

11

A combination of source-initiated and server-initiated policies can give the best

results. About when decision-making should be activated we have two options:

periodic and event based. With periodic decision-making it is hard to select a

sensible time period, since it is very dependent on the loads on the system. ln

[KREMIEN] is advocated the use of a combination of both approaches, with events

as the basic method, and a lower bound periodicity selected to prevent overuse

and overload. A detailed quantitative analysis can be found at [KREMIEN].

time time

carry-on

source server

time

source

time

bring load request

Qfirm+work

server

Source initiated

single request

Server initiated

request-reply
tim

f

f+2

í+3

source

time

confirm

move wor¡< carry-on

server

time time.

accept load + work

carry-on

source server

Source initiated negotiation, Source initiated negotiation,
Without work attached with work attached

Figure 2-2. Remote placement of work

2.2.3 Replication and Mobility

Our distributed environment proposal uses copies of information provided by a

server; such server and environment agents are assumed as mobile for load

balancing policies; information stored in the server may change, so the following
paragraphs show different options we have.

Replication is the key approach to provide high availability and fault tolerance in

distributed systems, given an increasing interest to mobile computation

[COULOURIS].

Considering a hierarchical network with L levéis of location servers, and a single
server and a single client who move entirely within their location servers, let s be a

server and c be a client, and let x be an item which is written by a server s and

read by the client c, an illustration ofthis situation is shown in Figure 2-3.

12

,
Location Server

Copy ofX/ \ / \CopyofX

B-ase Station

Copy ofX l I Mobile Unit I j

Client Server

Figure 2-3. Replication of an item x provided by a server to be read by a client

According to [BADRINATH] we may have 6 kinds of replication schemes. The

first three schemes do not use a caching technique. A copy of the server data is

contained in either of the location servers or on the mobile client. ln the latter three

schemes, a copy of the data is cached at various places, and update messages to

the copy are deferred until an access of a previously invalidated data occurs. The

following are the choices:

1 . The server replicates the copy of the data at the mobile client. On each

write, the server needs to write to the copy on the mobile client. Writing

requires locating the mobile client. Reading is from a local copy on the

mobile client.

2. The replicated copy resides at the location server of the client. Thus, the

client reads from its own location server. Here, reads and writes are on

static copies. However, the copy is closer to the reader than the writer.

3. The server S has a copy of the data at its home location server Ls. The

client reads from Ls. Thus, reading and writing is on static remote copies.
4. The server S has a cached copy at its home location server. Location server

copy is invalidated upon the first write, since the last read request from the

client. Reading an invalid cache will require locating the mobile server.

However, if the cache is valid, then the read takes place from the copy at

the location server Ls-

5. A cache of the servers copy exists at the client's location server. Location

server copy is invalidated upon the first write, since the last read request
from the client. Reading an invalid cache will require locating the mobile

server. However, if the cache is valid, then the read takes place from the

copy at the location server Lc.

6. The cache is maintained at the mobile client. lf there was a read since the

last update, the server upon each write sends ¡nvalidation message to the

mobile client. lf client wants to read and the cache is invalidated, then the

mobile server is contacted to complete the read.

13

2.2.4 Code Migration

Given the fact that it is necessary to consider mobility in a distributed system,
code migration has to be applied in some form in order to move running servers or

clients from one location to another and, continué their execution at their target
machine transparently.

Code migration, in the broadest sense, deals with moving programs between

machines in order to be executed at the target. Process consists of three

segments: the code segment (instructions) the resource segment (references to

external resources) and the execution segment (state of the process)

[TANENBAUM_STEEN].

The minimum code migration is providing weak mobility; this means only

transferring the code segment and the program is started from one of several

predefined starting positions. The benefit is simplicity, only requihng making the

code portable, ln strong mobility the execution segment is transferred as well,

stopping process executions and resuming at the target; it is more general than

weak mobility but harder to implement; see Figure 2-4.

Execution in

Sender initiated
"* receiver process

/migration
\ Execution in a

sepárate process

/mobility
V Execution in

X Receiver initiated -^* receiver process

migration V Execution in a

Moblllty sepárate process
mechanism . _

A.

V Sender initiated -^
P'°cess M.grat.on

\ / migration V _

\ „ y
3 ^>» Process cloning

mobility "v

\ Receiver initiated -"" Process Migrafon

migration S,,
^» Process cloning

Figure 2-4. Alternatives to achieve code migration

Sender initiated migration is initiated at the machine where the code currently
resides, or is being executed, for example, when uploading programs to a

computer server or when sending a search program to a datábase server to

perform queries at that server. Receiver initiated migration is when the initiative is

taken by target machine, for example, java applets.

14

2.2.5 Distributed Shared Memory

Shared Memory is necessary for some algorithms to work. Our collection of

environment agents manages the representation of the environment as a shared

memory space. Without matter if required information is stored or not, in the

agent's local memory, all agents should be able to obtain information required
whoever is the owner of such information.

The scheme under the ñame distributed shared memory (DSM) [TANENBAUM]
consists in having a collection or workstations connected by a LAN and sharing a

single paged, virtual address space. ln the simplest variant, each page is present
on exactly one machine. A reference to a local page is done in hardware. An

attempt to reference a page on a different machine causes a hardware page fault,

which traps to the operating system. The operating system then sends a message

to the remote machine, which finds the needed page and sends it to the requesting

processor. The faulting instruction is then restarted; see Figure 2-5.

Shared g Ict itl address space

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

HHH

H
CPUl

1 3 H

HH
CPU 2

HHH
12 14

CPU 3

HH

CPU 4

HHH

HH
CPUl

HHH

CPU 2

HHH

HH
CPU 3

HH

CPU 4

Memory

HHH

HH

HEH

HH

HHH

HH

HH

CPU 1 CPU 2 CPU 3 CPU 4

Figure 2-5. DSM (a) Chunks of address space distributed among four machines, (b) Situation after

CPU 1 references chunk 10. (c) Situation if chunk 10 is read only and replication is used.

15

One improvement to the DSM basic system is to replícate chunks that are read-

only, for example, program text, read only constants and other read-only data

structures; such chunks may be replicated in several machines, lf not only read-

only chunks are replicated, but all chunks, when a chunk is attempted to be

modified, similarly to cache consistency protocols, we need to invalídate copies in

the other machines and then modify the local copy.

Each page in DSM must have an owner. To lócate the owner of a page one

process is designated as the page manager, which keeps track of who owns each

page. When a process, P, wants to read a page it does not have, or wants to write

a page it does not own, it sends a message to the page manager telling which

operation it wants to perform and which page. The manager then sends back a

message telling who the owner is. P now contacts the owner to get the page and/or

the ownership, as required. Four messages are needed for this protocol, as

illustrated in Figure 2-6(a). An optimization of this protocol is shown in Figure

2-6(b). Here the page manager forwards the request directly to the owner, which

then replies directly back to P, saving one message.

Page

manner

Page
manager v%

3. Request

/s*/
3. Reply

p 1. Reply

*»

Ownur p „ Owner

(al \ui

Figure 2-6. Ownership location using a central manager. (a) Four-message protocol. (b) Three-

message protocol.

The problems with DSM are choosing an appropriate page size (granularity)
and that for many applications it exhibits poor performance, as pages are hurled

back and forth across the network, for example when a page contains two global
variables, and each one is continuously used by processors in two different

machines; an intelligent compiler may do some work to reduce the problem, but not
so much in case where such variables are within an array.

Another method is not to share the entire address space, only a selected

portion of it, namely just those variables or data structures that need to be used by
more than one process. ln this model, each machine has access to a collection of

shared variables, and in most cases, considerable information about the shared

data is available, such as their types. Besides, variables may be replicated and the

problem consists in maintaining consistency of many copies. Reads can be done

locally without any network traffic, and writes can be done using a multicopy
update protocol. Such protocols are widely used in distributed data base systems.

16

Going still further, instead of just sharing variables we could share encapsulated
data types, often called objects. Each object has not only some data, but also

procedures, called methods, that act on the data. Programs may only manipúlate
an object's data by invoking its methods. Direct access to the data is not permitted.

By restricting access in this way, various new optimizations become possible. For

example, it may be possible to relax the memory consistency protocol without the

programmer even knowing it, because processes communicate by invoking
methods on shared objects; see Figure 2-7

Object

Object space

•* Process

Figure 2-7. Object-based distributed shared memory.

2.3 Multiagent Systems

Our proposal consists in providing the environment representation for a

multiagent system. The means and situations where agents access to the

environment are necessary to be considered for the distributed environment

proposal.

Multiagent systems [WOOLDRIDGE] are systems composed of múltiple

interacting elements, known as agents. An agent is a computer system situated in

some environment, and has two important capabilities:

1) Autonomous action, to decide for itself what it needs to do in order to satisfy
its design objectives; all of them on behalf of its user or owner;

2) Interacting with other agents, not simply by exchanging data, but by

engaging in analogues on the kind of social activity like: cooperation,
coordination, negotiation and the like.

An agent takes sensory input from the environment and produces output
actions that affect it. This interaction is usually an ongoing non-terminating one, as

illustrated in Figure 2-8.

Effector output

Agent Environment

Sensor input

Figure 2-8. An agent and its environment

17

Current input perceived by agent's sensors will build a set of beliefs. Agent's
behavior is determined by its beliefs. An agent will have a repertoire of actions

available to it, with which it may be able to modify the environment's state. This set

of actions represents the agent's effectoric capability (a set of effectors). The

agent's set of current beliefs will genérate desires in order to accomplish its design

objectives. An action taken by an agent according to its desires is an intention.

ln most domains of reasonable complexity, an agent will not have complete
control over its environment. lt will have at best partial control, in that it can

influence it. The possibility of failure to have the desired effect in the environment

leads to say that environments are in general assumed to be non-deterministic.

The latter captures the fact that agents have a limited "sphere of influence"

2.3.1 Distributed Virtual Environments

Migrating from a centralized representation of the environment to a distributed

one, as this thesis pursues, involves analyzing issues related to which of the

entities that represent the environment, should be notified about every change
done in the environment.

Inspired in biological systems [WEYNS], several researchers have shown that

the environment may serve as a robust, self-revising shared memory for the

agents. ln FIPA (Foundation for Intelligent Physical Agents) [WEYNS] it is

difficult to find any functionality for the environment further more in the matter of

message transport or broker based systems. According to Jacques Ferber an

environment may be represented as a monolithic system (centralized environment,

Fig 2-9(a)), or as a set of assembled cells in a network (distributed environment,

Fig. 2-9(b)) [ELMERHEBI].

(a) (b)

Figure 2-9. Centralized and Distributed Environments (a) centralized (b) distributed

18

Differences between centralized and distributed approaches are that, in a

distributed approach:

1) State of a cell depends on the others that around it;

2) Perceptions of agents go further more only one cell;

3) Every time agents move from one cell to another they must update their

links;

4) lt must be handled signal propagation over the cell net.

DIVA, presented by [VOSINAKIS] is an example of a centralized environment

that uses a world server. When an agent request an action, the world server

checks its set of laws to determine whether this action will be successfully

performed or not; in the first case updates the world data as necessary and notifies

all visual agents that a change took place, ln both cases the results are sent back

to the agent client using the agent-world communication protocol.

Odell et al. [ODELL] make a distinction between physical environment and

communication environment. Physical environment provides rules, laws and

restrictions for entities, while communication environment provides:

1) Principies and processes to support idea interchanges, and

2) Functions and structures for communication (roles, groups and

communication protocols).

Some models for interactions with the environment are:

1) Classic blackboard communication infrastructure (an intermedian/ data

repository to communicate indirectly and anonymously);

2) Tupie based interaction model: agents in Linda (a coordination language
which separates behavior, communication and synchronization)
communicate placing and removing tupies from a shared space;

3) Java spaces: transfers Linda model to a distributed one offering a possible
remote access to tuplespaces;

4) LIME (Linda in a Mobile Environment): for a mobile environment which

instead of having a centralized tuplespace, each agent maintains its own

tuplespace; the originality ofthis one is that, when agents reside in the same

host (or a connected one) their tuplespaces mix up transparently (agents
have the illusion of a tuplespace locally shared).

2.3.2 Distributed Virtual Reality Platforms

Studying already implemented platforms provides ideas based on their

experience, in order to build a platform that provides analogous characteristics and

also the specific purpose ones.

19

To get a good coherence between the states within a distributed virtual

environment, whenever a change occurs at one host it must send an update

message to other hosts; this process is the same in any host having a change.
This process must be done quickly, because the realism depends on the good

management of update messages. Besides, a participant is only interested in the

part of the virtual environment that is available to him. A great number of update

messages will cause traffic and may lead to a loss of messages or to an increase

in latency causing problems in the realism. Thus it is crucial to intégrate filtering in

distributed virtual reality applications but taking care of the fact that filtering may

elimínate update messages causing disappearance of important objects in the

scene.

The filtering technique called the Effect Management [ELMERHEBI] associates

to each object a spherical zone that reveáis the importance of the object in its

environment. The sphere is called the effect zone, which associates to entities

(active objects) a viewing zone (visual capacity) depending on the área of interest

or the aura as illustrated in previously shown Figure 2-9(a).

The latter research use Multicast because it has been proven to be a mode of

communication that suits well filtering, mainly because it saves the cost of

repetitive transfers reducing network traffic. Thus it could be possible to associate

to each object a multicast group; when an entity overlaps an object's effect zone

the entity joins the group to receive updates, but there would be a great number of

multicast groups; so they suggest dividing the space into cells and associate to

each cell a multicast group. There is still the problem about the size of the cells

because if they are small, entities will frequently join and leave groups (if they
move quickly) on the other hand if cells are large, entities will receive data that do

not interest them because of many object entities in the same área.

Thus, they propose to keep the large cells and to genérate dynamic regions

managed by a server consisting of one or many cells according to the number and

distribution of the objects and entities. Servers will manage an intra-region filtering
layer for filtering data inside its región, ln this way an entity will receive from its

server only the data that interest it. There is also an inter-region filtering layer
where servers will communicate between them via multicast delivering the data

that interest their entities; see Figure 2-9(b). As a future work they suggest a

mechanism that determines the appropriate size of effect zones, the optimal size of

cells and a technique that handles the dynamic regrouping of cells into regions.

The RING system described by [FUNKHOUSER] consists of client-server

design and implementation for a system supporting real-time visual interaction

between users in a shared 3D virtual environment. RING uses server-based

algorithms to compute potential visual interactions between entities. When an

entity changes its state, update messages are sent to workstations with entities

that can perceive the change. The RING represents a virtual environment as a set

of independent entities with a geometric description and behavior; some entities

are static and others dynamic. The interacting entities send messages to announce

20

updates to their geometry or behavior, modifications to the shared environment or

impact to other entities. Client workstations execute necessary programs to

genérate behavior for their entities. Clients in addition of managing their own

entities maintain (simplified) surrogates for some entities managed by other clients.

Communication between entities is managed by servers; clients send messages to

servers which forward them to other client and server workstations managing
entities that can possibly "see" the effects of the update. Prior to the multi-user

simulation, the shared virtual environment is partitioned into a spatial subdivisión of

cells whose boundaries are comprised of the static polygons of the virtual

environment as illustrated in Figure 2-10

Client

Client

BCD

Client

B

D

|a |b |c|

Server

.41 /

Server

\ N*(WO(|i/

Server

.Client

C

|A|B|D|

(a) (b)

Figure 2-10. RING servers (a) RING servers managing communication. (b) Cell to cell visibility

2.3.3 Self Organization of Multiagent Systems

The realization of this thesis expects that a collection of agents, working

together, represent the entire environment, decomposing the representation

problem in manageable tasks efficiently. Cooperation is mandatory for the

distributed environment administration.

Historically, most work on cooperative problem solving has made the

benevolence assumption [WOOLDRIDGE]: agents in a system implicitly share a

common goal, and thus there is no potential for conflict between them. The latter is

acceptable if all the agents in a system are designed or "owned" by the same

organization or individual. The more general área of multiagent systems has

focused on the issues associated with societies of self-interested agents which

cannot be assumed to share a common goal, as they will often be designed by
different individuáis or organizations in order to represent their interests. Despite
the potential for conflicts of interest, the agents in a multiagent system will

ultimately need to cooperate in order to achieve their goals; just as in human

societies.

21

Task sharing takes place when a problem is decomposed to smaller sub-

problems and those are allocated to different agents which may have the same or

different capabilities. ln cases where the agents are really autonomous and can

henee decline to carry out tasks (in systems that do not enjoy that benevolence

assumption), then task allocation will involve agents reaching agreements with

others.

Result sharing involves agents sharing information relevant to their sub-

problems. This information may be shared proactively (one agent sends another

agent some infonnation because it believes the other will be interested in it), or

reactively (an agent sends another information in response to a request that was

previously sent).

Contract Net Protocol

The Contract Net (CNET) protocol [SMITH77] is a high-level protocol for

achieving efficient cooperation through task sharing in networks of communicating

problem solvere; the basic metaphor is the contracting.

I have a problem

Xa, m

, x«

A A3

■*+" (a) Recognizing
A A4 the problem

-T~ (b)Task
A announcement

A (c) Bidding

r
-T" (d) Awarding
■A the contract

Figure 2-11. The Contract net (CNET) protocol

As illustrated in Figure 2-11, a node that generates a task advertises existence

of that task to other nodes in the net with a task announcement, then acts as the

manager of that task for its duration [SMITH80]. ln the absence of any information

about the specific capabilities of the other nodes in the net, the manager is forced

to issue a general broadcast to all the other nodes. Depending on the information

the manager knows about the capabilities of other nodes, it can issue a limited

broadcast or a point-to-point announcement.

22

Nodes in the net listen to the task announcements and evalúate them. When a

task to which a node is suited is found, the node submits a bid. A bid indicates the

capabilities of the bidder that are relevant to the execution of the announced task.

A manager may receive several bids; based on the information in the bids, it

selects the most appropriate nodes to execute the task. Te selection is

communicated to the successful bidders through an award message. These

selected nodes assume responsibility for execution of the task, and each is called

a contractor for that task.

2.4 Software Engineering

The evolution of a large software project requires that it is designed according
to software engineering standards. lt is a global problem that some programmers

build a solution without writing documentation, and sometimes they do not even

meet standards, which would help to the software life cycle. Frequently

programmers do not have time to comply with it; sometimes they found an easier

way, but not the best, to show expected results; sometimes we let them go before

the project manager could realize missing stuff that would interfere in future.

Reverse Engineering is necessary to fix this such problems. The following

paragraphs describe good practices for software development, expected to be

mandatory from now on for the GeDA-3D project, in order to achieve that the next

generation of programmers implement their goals adequately and of course in

time.

Forward engineering [CHIKOFSKY] is the traditional process of moving from

high-level abstractions and logical, implementation-independent designs to the

physical implementation of a system. The adjective "forward" has come to be used

where it is necessary to distinguish this process from reverse engineering. Forward

engineering follows a sequence of going from requirements through designing its

implementation.

2.4.1 Reverse Engineering

Reverse engineering [CHIKOFSKY] is the process of analyzing a subject

system to:

• identify the system's components and their interrelationships, and
• créate representations of the system at a higher level of abstraction.

Reverse engineering in and of itself does not involve changing the subject

system or creating a new system based on the reverse-engineered subject system.
lt is a process of examination, not a process of change or replication.

23

Redocumentation is the creation or revisión of a semantically equivalent

representation within the same relative abstraction level. The resulting forms of

representation are usually considered as altemative views (for example dataflow,

data structure, and control flow) intended for a human audience.

Restructuring is the transformation from one representation form to another at

the same relative abstraction level while preserving the subject system's external

behavior (functionality and semantics).

Reengineering, also known as both renovation and reclamation, is the

examination and alteration of a subject system to reconstitute it in a new form and

the subsequent implementation of the new form. Reengineering also includes

some form of reverse engineering (to achieve a more abstract description) followed

by some form of forward engineering or restructuring. This may include

modifications with respect to new requirements not met by the original system.

2.4.2 Component Based Software Engineering

The concept of reuse in the software development context was introduced by

Mcllroy almost forty years ago [PACHECO]. He proposed the creation of a

software component industry that would offer families of routines for any given job

[MCLLROY].

While opportunistic reuse (by cut and paste of code from oíd systems to new

ones) has been used by individuáis and small teams, it does not scale up well to

larger organizations and complex software systems [SCHMIDT].

Cut and paste coding is a dangerous form of reuse, in that it leads to

proliferation of code clones throughout the source code. lf a bug is found in a

portion of code which has been reused through cut and paste, or a requirement
that lead to its creation changes, then producing the required modifications in that

piece of code is expensive, as it is replicated in several different clones

[PACHECO]

A software component [SZYPERSKI] is a unit of composition with contractually
specified interfaces and explicit context dependencies only. A software component
can be deployed independently and is subject to composition by third parties. The

characteristic properties of a component are that it:

• is a unit of independent development;
• is a unit of third-party composition;
• has no (externally) observable state.

For a component to be independently deployable, it needs to be well separated
from its environment and other components. A component encapsulates ¡ts

24

constituent features; also as a unit, a component will never be deployed partially.
For a component to be composable with other components by such a third party, it

needs to be sufficiently self contained. Finally, a component should not have any

(externally) observable state so it cannot be distinguished from copies of its own.

The notions of instantiation, identity, and encapsulation lead to the notion of

objects. The characteristic properties of an object are that it:

• is a unit of instantiation, it has a unique identity;
• many have state and this can be externally observable;
• encapsulates its state and behavior.

A component is likely to act through objects and therefore would normally
consist of one or more classes of immutable prototype objects. A class can be

seen as implementing an abstract data type (ADT), with the additional properties of

inheritance and polymorphism.

The interface of a component defines the component's access points. These

points allow clients of a component, usually components themselves, to access the

services provided by the component. Normally, a component will have múltiple
interfaces corresponding to different access points.

Coupling [LARMAN] is a measure of forcé with which a class is connected to

others, with what it knows the others and uses them. A class with low (or weak)

coupling does not depend on many others ("many others" depends on the context).

Cohesión (or, more exactly, functional cohesión) is a measure of how related

and focused the responsibilities of a class are. A high cohesión characterizes

classes with responsibilities tightly related so they do not perform an excessive

work. A class with low cohesión does many things not related or an excessive

work.

Several problems can arise when applications contain a mixture of data access

code, business logic code, and presentation code [ORACLE]. Such applications
are difficult to maintain, because interdependencies between all ofthe components
cause strong ripple effects whenever a change is made anywhere. Adding new

data views often requires reimplementing or cutting and pasting business logic
code, which then requires maintenance in múltiple places. Data access code

suffers from the same problem, being cut and pasted among business logic
methods.

The Model-View-Controller (MVC) design pattern solves these problems by

decoupling data access, business logic, and data presentation and user interaction

as illustrated in Figure 2-12.

25

Figure 2-12. The Model-View-Controller design pattern

• Model - The model represents enterprise data and the business rules that

govern access to and updates of this data. Often the model serves as a

software approximation to a real-world process, so simple real-world

modeling techniques apply when defining the model.
• View The view renders the contents of a model. lt accesses enterprise

data through the model and specifies how that data should be presented. lt

is the view's responsibility to maintain consistency in its presentation when

the model changes. Using a push model, the view registers itself with the

model for change notifications, or a pulí model, where the view is

responsible for calling the model when it needs the most current data.

• Controller - The controller translates interactions with the view into actions to

be performed by the model. ln a stand-alone GUI client, user interactions

could be button clicks or menú selections, whereas in a Web application,

they appear as GET and POST HTTP requests. The actions performed by
the model include activating business processes or changing the state of the

model. Based on the user interactions and the outcome of the model

actions, the controller responds by selecting an appropriate view.

26

2.5 Summary

A distributed system appears as a single coherent system to its users. A

middleware offers a single system view running as an application on different

machines and supporting a programming abstraction. Middleware in its session

layer is in charge of: providing message-passing primitives easy to use for

programmers, locating processes, maintaining sent and received messages in

buffers, providing reliability for message delivering, and in its presentation layer
deals with heterogeneity of computers and extern data representation.

Load balancing algorithms strive to equalize workload among nodes. Load

sharing policies attempt to assure that no node is idle while other components wait

for service, mapping and remapping the logical system (running applications), to

the physical system (interconnected processing nodes). Adaptive algorithms of

load sharing comprise: information dissemination and decision-making. For

information dissemination we have to decide whether to hold state information of

all nodes in the system, or only a subset; the latter are used for scalability and a

criteria specification is needed; a node may choose to request information,
disseminate information or use a predictive analysis technique; periodic and event-

driven information dissemination provide comparable performance, ln decision-

making the migration can be initiated by the source of work (overloaded node) or

the server of work (underloaded node). With negotiation we can inhibit a bad

decisión. A combination of source-initiated and server-initiated policies can give the

best results. About when decisión making should be activated it is advocated a

combination with events as the basic method and a lower bound periodicity.

When replication of data is considering mobility of servers and clients, we have

six kinds of replication schemes; if the data is near to the client, reading operations
are faster and this is better when reads are carried out more frequently and writes.

The minimum code migration is weak mobility, consisting in transferring only the

code segment, and the program is started from one of several predefined starting

positions; the only requirement is that the code is portable.

DSM consists in having a collection of workstations sharing a single paged
virtual address space. lf a machine does not own a page that is needed, requests
the page to the owner. Some data that is needed from two or more machines might
be replicated, but not all the data. The consistency of replicated common data is

difficult and it is encouraged an object oriented paradigm so data is only
administrated by an object which encapsulates this data and through its interfaces

communicates with remote objects in order to allow data modification.

An Agent has a limited sphere of influence to modify its environment; the

information perceivable through the agent's sensors is the only that should be

notified to that agent, which will evolve in its environment carrying out intentions

through its effectors in order to modify the environment trying to reach its goals.

27

Inspired in biological systems, several researchers have shown that the

environment may serve as a shared memory for the agents. According to Jacques
Ferber an environment may be represented as a monolithic system, or as a set of

assembled cells in a network (a distributed environment).

Odell et al. make a distinction between physical environment (rules, laws,

restrictions) and communication environment (principies to support idea

interchanges and functions and structures for communication such as roles, groups
and protocols).

ln a distributed virtual environment a great number of messages will cause

traffic, and may lead to a loss of messages or to an increase of latency causing

problems in the realism. Thus it is crucial to intégrate filtering in distributed virtual

reality applications. Multicast has been proven to be a mode of communication that

suits well filtering, saving the cost of repetitive transiere reducing so network traffic.

The Contract Net protocol is a high-level protocol for efficient cooperation

through task sharing. A node that recognizes a problem announces a task to other

nodes and acts as a manager, nodes that are capable to carry out the task submit

a bid, then the manager awards the contract to one or more selected bidders.

Reverse engineering is the process of analyzing a subject system to identify the

system s components and their interrelationships in order to créate representations
of the system at a higher level of abstraction. Through re-documentation we can

restructure the system, preserving the external behavior. Finally, we can achieve

reengineering if we also include forward engineering, through modifications with

respect to new requirements not met by the original system.

A software component is a unit of composition with contractually specified
interfaces and explicit context dependencies only. The interface of a component
defines the component's access points; these points allow clients (other

components) to access the services provided by the component.

Applications are difficult to maintain if they contain a mixture of data access

code, business logic code, and presentation code; interdependencies between

components cause effects whenever a change is made anywhere. The Model-

View-Controller (MVC) design pattern solves these problems by decoupling data

access, business logic, and data presentation.

28

29

Chapter 3

Software Engineering of GeDA-3D

ln this chapter we analyze through re-documentation and reverse engineering,
current components developed for the GeDA-3D project (Generic Distributed

Architecture for 3D Applications). This analysis is needed to execute a

reengineering of these components to intégrate them with the new kernel that

supports the requirements for the distributed environment.

3.1 Introduction

The ultímate goal of the GeDA-3D project is to facilítate to inexperienced users

the description of virtual environments using a similar to natural language. These

virtual environments are intended to develop simulations based on behaviors

according to distributed artificial intelligence. Examples of simulations are: urban

traffic control, fire fighting, among many others. By a declarative description, a user

currently is able to:

1) Créate a virtual environment,

2) Specify the involved agents' attributes,

3) Assign personalities to virtual entities,

4) Specify goals to be fulfilled by the entities, and

5) Specify initial locations for every entity in the virtual world.

Zúñiga [ZÚÑIGA] and Aguirre [AGUIRRE] studied various multiagent platforms
such as Jade, Zeus, FIPA-OS, OMG MASIF Open Agent Architecture and others.

They determined that such existent works did not satisfy completely the

requirements needed for developing 3D applications based on agents. The current

requirements for the middleware are the following:

30

1) Completely distributed execution;
2) Open source;

3) FIPA compliant architecture;

4) Easy to use and extend for programmers and non programmer users;

5) Agent replication and mobility capabilities;

6) Complete and dynamic agent administration (creation, starting, stopping,
addition at runtime);

7) Agent goals setup;

8) Agent skills assignment;

9) Private agent knowledge;

10)Human-agent interaction;
1 1)Assignment of personality and emotional state to agents;

12)Environment simulation;

13)Multiple environment executing concurrently;

14)Agent assignment to each avatar (a graphical virtual entity);

15)Avatars datábase administration;

16)Environment-Render direct interaction;

17)Virtual environment colusión event handling;

18)Unified shape description of agents between render and agent private

knowledge;

19)Sensors and effectors simulation;

20)Transparent communication between all modules and all entities;

21)Scene evolution control, validating each agent intention to change virtual

world.

The platforms that approximate to these requirements (where Jade is the

closest one) should be restructured for compliance. That was the reason that led to

the development of a platform that would provide the previously listed

requirements.

Foremost, it is necessary to unify all descriptions from authors [RAMOS, PIZA,

ZÚÑIGA, AGUIRRE and MARTÍNEZ], about the components involved in the

GeDA-3D project in a single document; after that, we are going to analyze the work

done, what is expected to achieve, and finally, how to contribute to the reaching of

the ultímate goal.

The contribution that we are expecting to achieve ¡s the implementation of a

distributed environment. The following review is necessary due to the current

architectural design and implementation of GeDA-3D cannot support the

integration of a distributed environment. The environment agents will be in charge
of distributing the representation of the environment across computers and, also

distributing workload for all validations required during the evolution of a scene.

31

3.2 Redocumentation of GeDA-3D

The GeDA-3D project starts with the design of the Virtual Scene Creator

Architecture (ViSCA) proposed by Piza [PIZA] as illustrated in Figure 3-1 .

^\
.Yl* «¡3>I -ílii SiiZ C r tp ;¡ o IX

ofa t írtualsc«nt

Figure 3-1. ViSCA seen as a black box

The GeDA-3D architecture has gotten improvements since the first versión, and

the resulting work done by [ZÚÑIGA] and [AGUIRRE] is illustrated in Figure 3.2.

Vuhi.il Environment

Ediroi

Scene

Descriptor

Declarative

descnption of

the virtual

world

Lower-

level

commands!

Interpreter

Cb*-^
Basic language,
scamer and parser,

extended language

Context

Attnbutes meaning,

orientation constraints

Effect of object
interactions, natural

laws. default valúes

Virtual Object
Editor

GeDA-3D
Scene Control

Look-up Consistency

Chat

Users

Applications Security

Virtual

Objects

Primitives

to display

XML

escnption

Rendering

3D-Scene

*£>

'
1. .f***-**-**5!

Agent Control *—H Agentej

Continuous

display

^^ /-ÍJS?^T***^.

^r::r:::/
N
\

\
Agent

System
• x>

Agent
Control

Sensor Efector Agent

System
<•—**>

Agent
Control

Sensor Efector

Agent i Agent j

Behavior Behavior

G pDA-JD Client GeDA-3D Client

AfMit Coitun uuty

Figure 3-2. Initial GeDA-3D architecture

The GeDA-3D components are described below.

32

3.2.1 The Context Module

The Context gives sense to a world or environment by means of a set of

definitions. Some of these definitions concern to:

• The default display of the scene, that is, the virtual entities that characterize

an environment and that will appear since the beginning ofthe evolution;
• The set of rules restricting the execution of actions or the assignment of

goals to characters, if they are not congruent to the capacities of the

characters. For instance a worm cannot jump;
• All valid avatars that can be involved in a scene;

• The natural laws ruling the interactions taking place inside the environment.

For instance, the effect of collisions (intended or not expected) between

virtual objects, the effect of the execution of an action involving one or more

objects, gravity and restriction of áreas for some objects;
• The definition of all valid skills that can be included in a goal-specification;

The context is based on ontologies, which determine permitted actions

according to preconditions and post-conditions, so it defines rules for the scene

evolution and consequences in determined circumstances.

3.2.2 Virtual Environment Editor

The Virtual Environment Editor serves as an interface between the platform and

the user. lt provides means to a modeler to specify the physical laws governing an

environment and, to describe a virtual scene taking place in such environment.

This editor allows a user trough a declarative language to:

1) Créate a virtual environment;

2) Specify the attributes of the virtual entities or agents involved in the

described environment;

3) Assign personalities to virtual entities,

4) Specify goals to be fulfilled by the entities,

5) Specify initial locations for every entity in the virtual world

The editor also performs a lexical, syntactic and semantic analysis of a given
description in order to transíate the high-level description into a set of lower-level

commands which will be sent to the congruency analyzer to verify if the scene

description is correct or not. lf a scene is valid, commands are sent to the Scene

Control.

33

3.2.2.1 Scene Descriptor

lt allows users to easily describe virtual scenes with the help of a visual

interface and a declarative language. lt provides to scenarists high-level means to

créate virtual entities, assign goals and specify interaction rules as illustrated in

Figure 3-3.

The language used provides a set of reserved words with a predefined meaning
and usage. The scene description may also contain user-defined words, such as

identifiers, virtual object ñames, behavior ñames, attributes, intentions and

orientation constraints. The syntax of the language defines a number of

productions, which rule the way all these words can be combined together. The

language can be extended in order to allow using of a wider set of words more

appropriate to the kind of environment to be modeled, that is, it allows the definition

of more productions in terms of the existing ones.

Figure 3-3. Scene Descriptor

3.2.2.2 Interpreter

The interpreter performs the lexical, syntactic and semantic analysis of a given

description in order to transíate the high-level description into a set of lower-level

commands which are sent to the scene control. Semantic rules are defined within

the context. lf the language was extended in the context, part of the lexical and

34

syntactic analysis is performed using the rules defined in the context. The

interpreter includes a constraint solver in charge of translating all found geometric
constraints to 3D coordinates. lt resolves the actual position of the objects in the

case where the modeler provides orientation constraints.

lf the scene description is error-free, the interpreter creates an XML-based

description which may contain information to:

1) Link predefined virtual objects to the platform and add them to the scenario;

2) Specify the attributes of the virtual objects;

3) Allocate a behavior to every active virtual object. Behavior algorithms are

defined in agents previously linked to the platform;

4) Display virtual objects in a certain state, position and orientation;

5) Send the agents the goals they will try to accomplish.

3.2.3 Rendering

Rendering addresses all the issues related to 3D-graphics. lt allows the design
of virtual objects and the display of the scene.

Once a description is completely parsed, the scene descriptor sends to the

rendering module information about the entities: position, orientation and avatar

description. The avatar description includes all the graphical primitives that build up

a virtual entity.

3.2.3.1 Virtual Object Editor

Virtual Object Editor is a tool that assists to visually build virtual characters -or

creatures- from the addition and configuration of a variety of 3D geometric shapes.
These characters are also called virtual objects, which will be used eventually in a

scene description. This module also allows defining primitive actions in terms of

change of states. The architecture considers this component but it is still under

construction.

3.2.3.2 The 3D-Scene

The 3D-Scene provides a view port to display all graphical changes taking place
in the environment. lt allows users to navigate inside the graphical scenario. lt

participates in the scene evolution determining colusión events within the

environment and informing about them to agents. Also, for every object which state

is modified, this module sends the current state to agents.

This module is in charge of drawing continuously the scene. During a scene, the

module keeps receiving action requests from Scene Control.

35

Two modules have been tested, the one developed by [PIZA] (see Figure 3-4)
and the developed by [MARTÍNEZ] (see Figure 3-5).

Figure 3-4. Display of ViSCA Render

Figure 3-5. Display ofAVE-3D Render

36

The 3D-Scene also provides the mean of displaying emotional state of

characters as shown in Figure 3-6.

■*. »

Figure 3-6. Graphical emotional state. (a) Fear (b) Happiness

3.2.4 Scene Control

lt addresses all the issues related to the evolution of the scene according to the

interaction of the living virtual objects. During the scene, agents suggest the

execution of many actions, but virtual characters will not always be allowed to start

execution of every suggested action. According to the interactions rules, Scene

Control determines which actions can be carried out at certain moment (pre

conditions) and which actions should be launched as a side-effect (post

conditions). The Scene Control performs the following tasks:

1) Receives a sequence of commands in XML format for the display of the

virtual objects;

2) Receives actions from active agents;

3) Validates in context the execution of each primitive action according to the

world rules and obtains the effect; it has the capability to cancel the

execution of a single action or an action succession;

4) Manages the generic natural laws and the context-specific ones;

5) Translates the specification of the environment into a set of primitive
commands used during the rendering; such commands may be translated to

LIA [MARTÍNEZ] or another one;

Whenever a primitive action succession is finished (successfully or

prematurely), the scene control sends to the Render the required changes in the

correct order. An event launcher informs every goal fulfilled and event around that

occurred.

The Scene Control manages the scene evolution according to an Action-

Reaction model [AGUIRRE]. This model starts informing the current state of the

(a)

37

environment, then agents compute actions that are collected by the scene control,

it proceeds to validate actions and generating the corresponding reactions; once

actions and reactions are executed, all changes are informed to agents; see Figure
3-7.

Compute action

Acquire actions

Inform changes | (| Valídate actions

a^ijreactions

Execute actions

andreacuons
'^

*
Genérate reacüons

Figure 3-7. Action-Reaction cycle in the Scene Control

3.2.5 Agent Community

An agent is an autonomous process running algorithms to implement the

behavior of a virtual character. Every agent controls the behavior of an active

virtual entity to accomplish a goal-specification defined in the declarative

description according to its defined skills.

An agent receives the goal-specification assigned to its character, after that, it

resolves a set of primitive actions in order to fulfill the current goal and finally sends

to the environment such actions expecting to modify the environment state.

The environment is represented inside the scene control. The agents have

sensors and effectors being these the interface between the agent and the

environment. Agents receive the environment update through the agents' sensors,
and the agents perform actions through their effectors. Effectors send such actions

to the scene control in order to modify the environment.

The Agent Architecture illustrated in Figure 3-8 is the base for the development
of the Agents Community. Such agent architecture satisfies all needed

requirements to allow the agents behave in environments defined through a

declarative description. The architecture satisfies personality simulation, emotions,

goals administration, knowledge base and shape notion ofthe agent.

38

IiueipieKi

Goals

Spc-cifícation

i
Environment

Setisois

Kiiou!ed*ie

Base

Perjooality
! Emotional

iiaü

i
Eíícctois

Aiiiiits Admioisn iioi

z

00*1.5

Sp-ecitic*ition

Gwpll

Agent
Agen* S> ,-eüi

ln'af.tcr

Agent
Control

Posture

Deicriptor*

I t

Messaa«

Transpor,
Service

1

Figure 3-8. GeDA-3D Agent Architecture

An implementation of the Agent Architecture was provided to develop the

behaviors of the agents described in the declarative description. When the end

user intends to implement a new agent, most of the features stated in the Agent
Architecture are already available like:

• Communicating with any agent or service of GeDA-3D;
• Receiving and handling automatically goals specifications at execution time;

• Receiving automatically environment representation updates according to

the sensors defined by the agent;
• Executing actions over the environment through its effectors;
• Using any skill located stored by the Agent Administrator. Only the skills

defined to the agent at the declarative description are activated at execution

time. Skills are detailed in [ZÚÑIGA].

The interaction between all the modules previously described is illustrated in

Figure 3-9.

3.2.6 Agent Platform

The GeDA-3D platform is required to be based on FIPA Agent Abstract

Architecture [FIPA], which is explicitly neutral about how services are implemented;
see Figure 3-10.

According to [AGUIRRE], the decisión about the kind of middleware to be

implemented is a message-oriented middleware [EMMERICH]. This kind facilitates

message exchange, supports asynchronous message delivering very naturally and

also group communication. The message can be a notification about an event or a

request for a service execution from a server component. The client continúes

39

processing as soon as the middleware has taken the message. The server

responds to a client request with a reply-message containing the result.

Scene descnptor

GOL-

Interpreter

Constraint

Solver

InDeL-

Reader l'ocabulan Corstrainz

i

Event

launcher

i

P^

Scene

Control

^ «*

World

Descnptor
=^f

f 1

Avatar

Descnptor
v -

"•es.: ¡ i

Aqent 1

"

/
Rendering

Virtual

Emmez

Figure 3-9. Virtual Scene Creator Architecture (ViSCA)

Agant PlaMtorm

provides

Normative Optional

Life cycle
Management

Agent-Software

White page

Integration

service

Yellow page ^ | |
service

Human Agent

Message Transport

Interaction

service

Figure 3-10. FIPA Agent Abstract Architecture

40

The GeDA-3D Core [AGUIRRE] is an integrator and controller of modules, it

defines the way the agents interact to achieve their goals; it is the responsible to

deal with heterogeneity, providing a development environment for all modules. The

graphical interface ofthe platform, Core, is shown in Figure 3-11.

CORE GeDA 3D CINVESTAV GIIADAI AJARA VERSIÓN 1.5 -Inlxl

Platform Services Tools Help

Services Agents | Tester |

1921681 115_agent_administrator, Predator mx cinvestav geda3d agent agents geda3d Predator

1 92 1 68 1 1 1 5_agent_administrator, Prey mx .cinvestav geda3d agent agents geda3d Prey , <Ag

1 92 1 68 1 11 5_agent_administrator, Tes* mx cinvestav geda3d agent agents geda3d TestAgent

21

Execute Agent Stop Platform | Stop Agent

1 92 1 68 1 1 1 5_agent_admimstrator,Predator mx cinvestav geda3d agent agents geda3d Predator

192 1 68.1 1 1 5_agent_admmistrator,Prey mx cinvestav geda3d agent agents geda3d Prey , =*Agen

<J I -ii

Figure 3-1 1 . GeDA-3D Core

Core as a service is in charge of register, unregister and look up for available

agents handled by different Agent Administrators.

3.2.6.1 Message Transport Service

This service provides the communication infrastructure and the communication

language used among all the platform running components (services and agents).
Such components may be local to a single machine or on different machines, lt

also allows implementing negotiation protocols among agents in an easy way

[ZÚÑIGA].

lt hides the communication issues providing an easy and simple way to send

and receive messages. The messages are self-contained; the high level format

used lets precise contents specification, with which there is a minimum invasión to

41

the autonomy of each component in the system, facilitating the openness of the

project [AGUIRRE].

The messages contain two parts: the header and the ACLMessage [ZÚÑIGA].
The header of the message includes transport information used to deliver the

message to the right destination. The rest of the message represents the

information to communicate and it is specified as XML format coding a FIPA ACL

message. ACL stands for Agent Communication Language [FIPA_SPEC].

A FIPA ACL message contains a set of one or more message parameters. The

parameters needed for effective agent communication will vary according to the

situation. Specific implementations are free to include user-defined message

parameters other than the FIPA ACL message parameters. The Message

Transport Service implements the FIPA ACL message parameters allowing the

user to set user-defined ones. Agent Message Transport service allows agents to:

• Send messages to other agents;
• Receive messages from other agents;
• Broadcast;
• Include binary content (useful to send resources like files);
• Send encrypted messages;
• Receive encrypted messages;
• Encrypted Broadcast.

Agents do not need to check if they have received a message. The message is

delivered to the corresponding agent just when the message arhves.

3.2.6.2 Agent Control Service

The Agent Control (or Agent Administrator) registers in a local datábase

available agents for environments; it registers available agent skills attachable to

agents; it also launches the agents needed in the environments. Some of the tasks

this module executes are:

• Register in Core all agent definitions available locally;
• Start (actívate) all the agents a scene simulation requires;
• Receive and assign the described internal state to the agents;
• Assign the skills and personality described to agents;
• Lets add agents to its datábase, reading an XML definition;

• Link agents to avatars;
• Consult agent definitions;
• Send to agents ACL messages to achieve a human-agent interaction;
• May send a message to stop execution of an agent at any time.

42

All tasks this module performs use an Agent Control interface inside every

agent. The graphical interface of the Agent Administrator is shown in Figure 3-12;

the agent definition is shown Figure 3-13; and the mechanism to interact with the

agent is shown in Figure 3-14.

i i ■-■.?.& 1.1'

Agent DefinrtronsDir: ,Vnedia\agentdefmition5

.=jaj*j

Browse... | Update |

Avadable Agents

Predator

Prey

Test

Add Agent

Defend

Movement

Active Agents

Prey ■ Ship2

VtewC *» Definition Stop Agent Send Message

Figure 3-12. Agent Admirlistrator

■Agent üehmlion ^^■■^■■■Mft*-

Agent Defotion1-J-fl.W-I.MffllMf Jfljxj

| Update |Agent Definitions Dir:

Shipl

Active Agents

Browse..

ID:

ÜBíHH^B 1 Type:
Prey

Test

Oass:

1
primitive Actions:

Add Agent

Predator
Ipredator- Shipl
Ptey - 5Np2

View Definition Stop Agent Send Message

mx.cinvestav,geda3d. agent agents geda3-j.

Skills:

Movement

isa

Figure 3-13. Agent definition view

3.2.6.3 Other Services

ACUUA-3D conversión service: transforms ACL commands to its corresponding
LIA-3D representation [MARTÍNEZ]. Permitted actions by LIA-3D are

determined on a datábase of available actions per avatar; this datábase is

inside the AVE-3D module.

Look-up service: this service, stated in GeDA-3D architecture is in fact, the

Message Transport Service.

43

QS
^^~^Mací Message s-pnH-pr x¡

BHHHHIh
ACL Message

| Update |Agent Def inri

Active Agents

Browse. .

Encrypted:

Ava«labteA ^j„.

r

*íjent_3dmimst' i

ftev
Recetver:

Test

■

Shipl
Prey

- 5hip2

View Definition ¡ Stop Agent Send Message

Content:

Add A

Petfotmative: Wflfffl ■w

agree

cancel

f-wture

not-undeistood

propose

accept -proposal

refuse

Figure 3-14. Human-Agent interaction

Security service: this service is included in Message Transport Service giving a

choice to send, receive, or broadcast an encrypted message.

Mobility Service: this service could allow execution of a process in several

execution environments. lt could be used to share skills among agents, where

such skills would be able to be executed remotely or to be moved to the

machine where the requested agent is being executed.

Knowledge Base: it is used by agents to provide them with an initial knowledge of

the world. This allows developing behaviors focused on the goals specification
fulfillment avoiding time spent recognizing the world before trying to accomplish
the goals specification. An agent could use private and/or group knowledge; for

the latter the agent would have to subscribe to a group in order to have access

to shared knowledge.

Resource administration service: some modules require various resources stored

local or remotely. Resource registration could be a way to publish available

platform resources in the system; when a node receives a request, sends back

the required resource. So, modules may share resources like files, classes,
world definitions, images, etc.

Finally, the services Consistency, Users, Chat and Applications have not been

implemented neither formally defined.

44

3.3 Reverse Engineering of GeDA-3D

Through reverse engineering we can obtain implementation details in order to

determine the reasons because a module could be either reengineered or

replaced. Before proceeding, it is important to state some definitions according to

our approach:

Context: is the entity that contains information about the Environment. For

example, the context in the real world contains physical laws that rule our world,
semantic concepts of words, relationships between entities existent in real

world, etc.

Scenario: is the médium where a scene is carried out.

ln our approach, the Environment will be represented by a Scenario and a

Context together.

3.3.1 The Context Module

A first approach of this module was implemented by [PIZA]. Such Context was

not implemented as an autonomous module as stated in GeDA-3D initial

architecture (see Figure 3-2). The goal of Piza was satisfied, but unfortunately, the

implementation of this module was not made to be a software component with an

interface (see section 2.4.2 about component based software engineering).

The Context developed by Piza is strong coupled to the Scene Descriptor

designed also by Piza, also does not comply with the MVC design pattern. lt is very
difficult to sepárate that context for future tests. The designing of a new one is

necessary, using of course the ideas proposed by Piza.

A second approach of the Context was proposed by [ZARAGOZA] through a

module called Context Descriptor, which is used by the Virtual Environment Editor

also developed by Zaragoza. The Context Descriptor evaluates the scenario

described by the end user and if the Descriptor determines that is a valid scene

then sends it to the Rendering module.

The Context developed by Zaragoza does not comply with the MVC design
pattern because the source code is coupled with the editor, lt will take some time to

determine how to sepárate the corresponding java classes in order to comply with

the GeDA-3D architecture.

The stated responsibilities of the Context Module (see section 3.2.1) and, the
contribution this thesis pursues, the dynamic distribution of the Scenario and the

Context, lead to the forward engineer described in section 3.4.

45

3.3.2 Virtual Environment Editor

A first approach of this editor was developed by [PIZA]. As stated in section

3.3.1, this editor is strong coupled to the context, and is also coupled to the

Rendering.

During the realization of this thesis, [ZARAGOZA] designed a new Editor with

fewer responsibilities than the one by Piza, in order to accomplish with the goal,
and finally translating a valid scenario description to lower-level commands. The

graphical interface ofthe Editor developed by Zaragoza is shown in Figure 3-15.

File Tools

IOBJECT]

CenterTable Table. front Ja:, color black, cristal translucid green,

Chair JazChair. color blue. left Jaz.

Chair One. left Table. facing Jaz color green.

Chair Two. left One. facing JazChaír, color red,

Chair Three. right Two. facing One

[/OBJECT]

Environment Ent...

■""■i Virtual Environment

«-□Jaz

o- 1*****] Table

o-
--*

*| JazChaír

o-QOne

o- nTwo

o. i*-"*] Three

VE Modification ...

rnjaz north (20)

Execute Commad

Figure 3-15. Virtual Environment Editor

The scenario description is XML-based (see section 3.2.2.2). This module was

developed independently from GeDA-3D and at last was integrated to the project.

This editor only considers the description for the scenario, leaving pending
issues related to the scene description. The scene description as stated in section

3.2.2 would be in charge of describing:

1) Personalities of virtual entities and (agent behaviors),

2) Specification of goals to be fulfilled by the entities (the sketch).

3.3.3 Rendering

A first approach of the Rendering was developed by [PIZA]. Once the scenario

is displayed in the view port, this module broadcasts to agents the content of the

environment. Analogously, whenever the representation of the environment is

46

changed, the Rendering sends the update to agents. This first module is also

strong coupled to the Scene Descriptor also developed by Piza.

A second approach of the Rendering was developed by [MARTÍNEZ]. This

module was developed as a view port, independently from GeDA-3D and, at last

was integrated to the project. This Rendering was proven to satisfy its goals
through the use of agents which directly communicated with this module.

3.3.4 Scene Control and Environment Representation

This module is in charge of the scene evolution in GeDA-3D. Again, the first

approach was given by [PIZA], and this module ended strong coupled to the

Rendering module developed by also by Piza.

The environment is represented through a data structure inside the scene

control. The environment is composed by a collection of environment objects which

are the logical representation of every graphical virtual entity (avatars and objects).
Once the environment was successfully updated and changes were displayed in

the view port, a copy of each modified environment object is broadcasted to

agents.

As stated in section 3.2.4, the Scene Control interacts all the time with the

Context, validating agent actions, in order to determine the next state of the

environment.

The continuous communication of all agents to the environment may turn it into

a bottleneck for the whole system, because the context may take considerable

computer resources for validation purposes, causing the agents do not perceive

changes in the environment effectively

ln order to achieve the ultímate goal ofthis dissertation, the dynamic distribution

of the Environment (integrated by the Scenario and the Context), the scene control

and the Context should not be inside the Rendering.

3.3.5 Agent Architecture

Analyzing the implementation provided to comply with the agent architecture,
the following details were found:

1) The only mean to have an agent is inheriting from class Agent.

2) Class Agent inherits from class DimensionableObject; this means that all

agents should have a shape description; that is only visible agents;

3) Class SkilIBasedAgent, which inherits from Agent, has a method called

performAction() that is used as the effector;

47

4) The method performAction() receives an instance of class Action; then uses

the Message Transport Service to send a description of that action to Scene

Control.

5) Every Agent instance must register itself into Message Transport Service to

receive messages.

6) The sensor simulation is achieved using the Message Transport Service

through a thread that receives an ACLMessage, and then passes such

message to agent.

7) Every message incoming from the Rendering module is processed directly

by the agent.

8) The agent owns a copy of the environment representation.

Not all agents have to own a graphical representation, for example the

environment agent proposed in this dissertation exists, but it does not need a

graphical entity.

As the GeDA-3D architecture and the Agent Architecture establish, an agent
should contact directly with the environment through its sensors and effectors. The

simulation provided for the Effector is a good beginning, but on the other hand, so

using directly the Message Transport Service to sense from the environment is not

a good approximation.

Every agent should be registered since its instantiation.

Finally, the copy of the environment representation would constitute a kind of

memory about what the agent previously sensed from the environment, rather than

a knowledge base. A knowledge base would include for example, relationships
inferred from the memory.

3.3.6 Agent Platform

Analyzing the operation and implementation of the platform it was found that,

once a module is launched on a machine, no other module can use the platform in

the same machine if it was not linked to the first module.

lt is desirable that we could launch any module at any time from any machine

even if the platform is running or not. Of course, it is necessary that the object code

of the platform was available to run on the machine, lf the platform is not running in

local machine, launching a module should start the platform; otherwise the module

should link itself to the platform.

The platform does not provide multi-environment support, that is, only one

environment can be launched on the platform, because the platform only provides

agent ids for delivering a message to its destination.

48

A White Page Sen/ice (a directory of agents) is provided by Message Transport
Service through a mechanism to register agents and other services on the platform
in order to be localizable. A Yellow Page Service (a directory of services) is not

provided.

According to FIPA [FIPA_SPEC] it is normative to provide a Life Cycle
Management Service as illustrated in Figure 3-16.

W*k*Up

■*

Wall

S.UPPIVHW

4*4

Re*-***-"-!»

SutOtrxú

▼

>

A-*;rv*i

Moví

(■xaaita

t
"^

I.-J44B

V

Transí IniliatoJ *

Unkno-nm

í*tnst*r-*r
^^

Oul *•

Figure 3-16. FIPA Agent Life Cycle

The platform through Agent Administrator and Core, manages only the states

"Unknown", "Initiated" and "Active" with the corresponding transitions; see

[FIPA_SPEC] for details.

The Message Transport Service is a key component because all

communication between modules and agents depend on it. The following details

were found about this service:

1) lt uses only ServerSocket and Socket classes, which use TCP

(Transmission Control Protocol);

2) lt builds a logical mesh topology among all computers;

3) lt offers unicast and broadcast but does not offer multicast; so the platform
does not support groups of agents

4) Manages individual threads that wait for a message and once it arrives, the
thread delivers the message to the addressee (an agent or a module on the

platform)

About the use of TCP

A connection-oriented protocol, such as TCP is suitable when we need a

reliable protocol that let a flow of bytes originated in a machine is delivered without

49

errors to another machine. Not all Communications in a distributed system need to

be treated by as many layers as TCP manages.

Most of Communications in a distributed system are in local área networks,
which are very reliable. The time spent using a connection-oriented protocol is

considerable, especially if the majority of messages transmitted by agents and

Render contain less bytes than the payload (65507 bytes) available for UDP (User

Datagram Protocol) over IPv4.

UDP is useful for client-server situations and, remembering, the kind of

middleware stated in section 3.2.6 is a message oriented middleware. So, it is

preferable using the less-connection UDP protocol.

About the lack of multicast

lt is necessary the use of groups in a distributed system, especially for the

realization of the distributed environment (see chapter 5). Broadcasting involves

disturbing nodes not interested in receiving a message, which consumes

processing time. Using multicast, a message is delivered only to interested nodes.

ln the sense of providing an agent platform, it is not a good idea to broadcast a

message to all agents when we need to manage groups.

About the logical mesh topoloav

The building of a mesh in order to connect every computer to each other

attempts to system scalability, as the system increases in number of computers
and their corresponding LANs. This is the reason why it is not viable continuing

extending the current Message Transport Service.

3.3.7 GeDA-3D Architecture

Analyzing the architecture specification illustrated in Figure 3-2 (shown in next

page for comfort), and to be consistent with [FIPA_SPEC], the Agent System
should be nearer to the platform, next to the kernel, rather than in the Agent

Community.

The Agent Control interface mentioned in section 3.2.6.2 should not be only to

communicate with the Agent Control; in fact, currently it is used to receive

messages from other agents and from the Rendering; so it needs some

modification.

The Context module manages many information so there is needed to give
sense to the use of a datábase. This module can be seen as the Ontology service

described in [FIPA]. ln order to fulfill pending issues related to the scene

description, the Virtual Environment Editor should contémplate another component
in charge ofthis.

50

A good software engineering requires a match between the specification and

the implementation. Based on these facts, and the analysis presented in sections

3.3.1 to 3.3.6 and the current requirements of GeDA-3D (see section 3.1), it is

necessary a reengineer ofthe architecture as detailed in section 3.4.

Virtual Envii oiunent

Editor

Scene

Descriptor

Declarative

descnption of

the virtual

world

Lower

level

comm cu ids;

Cb.
Interpreter

Basic language,
scarmer and parser,

e --tended language

Context

Attnbutes meaning,
onentation constraints

Effect of object
interactions, natural

laws. default valúes

G<?DA-3D

Virtual Object
Editor

Agent Conuniuúty

Initial GeDA-3D Architecture

3.4 Reengineering of GeDA-3D

According to the results of the analysis of current GeDA-3D components in the

previous section, we propose the following architecture which satisfies current

requirements ofthe project, as illustrated in Figure 3-17.

Following sections detail proposed modifications to GeDA-3D modules.

3.4.1 The Context Module

We propose that the Context module, as described in section 3.2.1, also

provide the means to write and read from a datábase. Such datábase will contain

ontologies, more precisely, descriptions, laws and properties of Avatars, Objects
and Worlds.

51

Figure 3-17. New GeDA-3D Architecture

3.4.2 Virtual Environment Editor

We propose a redesigning of the Virtual Environment Editor, containing a User

Interface which gives access to a Scenario Descriptor and a Scene Descriptor.

Scenario Descriptor would be represented by the editor developed by

[ZARAGOZA] (see section 3.3.2). Scene Descriptor is now just a prototype

application which can continué execution only if receives a valid scenario

description. Scene Descriptor would be used to describe personalities of virtual

entities and specify goals to be fulfilled by the entities (the sketch).

3.4.3 Agent Community

We propose the following updates for the subcomponents of agents.

52

We propose having a collection of Sensors and Effectors linkable to agents
according to what the end user defines using Scene Descriptor. Such sensors

would filter information received from the environment according to the sensor

specification. Sensors and effectors are still under construction.

We propose turning Agent Control Interface to Listener, which remains its

responsibility as a listener thread, waiting for incoming messages from any agent
or module.

We propose that Memory manages a filtered cache of the environment

representation which is updated as the entity moves somewhere in the scenario.

Such cache would be updated by Sensors.

We propose that Knowledge represents a knowledge base which would include

relationships inferred from the memory.

We propose that Planner is in charge of determining the next moves its Avatar

should execute in the environment.

About the implementation of Agent Architecture, the class Agent that inherited

from DimensionableObject, now is called VirtualAgent. VirtualAgent inherits from

Agent. VirtualAgent owns a reference to DimensionableObject and implements an

interface corresponding to DimensionableObject methods in the purpose of code

compatibility with previously designed applications for GeDA-3D. Also,

DimensionableObject must implement its corresponding interface in order to

assure that public methods added to DimensionableObject are offered by

VirtualAgent.

All classes that inherited from Agent class, requiring shape description

capabilities, now inherit from VirtualAgent. Such reengineering is necessary to test

the agent platform with previously developed Agents and Rendering proposed by

[PI.ZA] and [ZÚÑIGA]. Details about cases of study are exposed in chapter 6.

Now that class Agent was refined we have the following contributions. Given

that every Agent should be capable of receiving a message, Agent requires that
subclasses implement the lACLMessageListener.messageReceived(ACLMessage)
method in order to process an incoming message. This is the relationship
established between GeDA-3D and the Listener in Agent illustrated in Figure 3-17.

ln section 3.2.5 we stated that an agent is an autonomous process. ln order to

comply with Agent Life Cycle as [FIPA_SPEC] recommends (see section 3.3.6), it

is necessary that class Agent implements an interface that we cali

RunnableThread. All Agents on the platform should be registered at it. Such

interface helps the platform maintain references to all threads in order to send

them a signal to stop execution when necessary. Details about process and thread

administration are exposed in chapter 4.

53

The reengineering of class Agent lets now inheriting from it and use all

predefined capabilities of agents by all kind of agents. This is very important for the

implementation of the Environment Agents that will represent the Distributed

Environment (see section 3.4.6).

3.4.4 Agent Platform

Given the scalability problem of the Message Transport Service, we propose its

replacement by a Micro Kernel which offers the same services, the same

interfaces, but using a less-connection protocol, UDP, and of course guaranteeing

message delivering. This kernel supports múltiple environments running on it. Also,

this kernel provides mechanisms to support almost all states recommended in

[FIPA_SPEC] for agent life cycle management; the exception is the Transit state.

The services provided by the platform are described below.

The Agent Management System (AMS) is in charge of registering all agents

willing to run on the platform. As [FIPA_SPEC] recommends, AMS provides a

white page service, that is, a mean to localize any agent in the platform.

The Directory Facilitator (DF) as [FIPASPEC] recommends, provides yellow

pages services to agents. Agents may register their services with the DF or query

for offered services.

The ACL Message Service is in charge of facilitating communication primitives
to agents. To use the ACL Message Service it is mandatory that the agent was

registered with the AMS previously. The tasks this module executes are the same

stated for Message Transport Service to send, receive and broadcast messages

(either encrypted or not) and include binary content (see section 3.2.6.1):

The Mobility Service provides the mechanism to achieve mobility of agents

through all machines on the platform. This service permits only weak mobility (see
section 2.2.5). lt is still under construction.

The Business Service would provide the means for establishing a negotiation

médium, available to agents for generic purposes.

Details about the Distributed System Platform design and implementation are

exposed in chapter 4.

3.4.5 The Distributed Environment

The ultímate goal of this dissertation is the dynamic distribution of the

Environment (integrated by the Scenario and the Context). Based on what was

stated in section 3.3.4, it is mandatory to remove the Scene Control from the

architecture.

54

We propose that, Scene Control responsibilities (see section 3.2.4), be handled

by Environment Agents. There will be a number of environment agents

representing the environment and will control scene evolution. Particular

subcomponents of an environment agent are described below.

We propose that the Scenario Partition represents just a piece of the whole

environment representation (the data structure composed by environment objects,
described in section 3.3.4). Such piece must contain all the environment objects
needed to process intentions sent by a subset of the agents in the community.

We propose that the Context Cache represents a subset of the ontologies

managed by the Context Module. Such subset should be a copy of just the rules

needed to validate intentions and genérate corresponding environment updates.
As a cache, it should be updated if necessary when the Ontology changes.

We propose an implementation of a Shared Memory with which, an

environment agent can determine if it is able to process an agent intention or, such

intention must be forwarded to another environment agent. This memory is

necessary to obtain information about which agent manages the región of the

environment involved with the intention.

Our proposal is based on that an environment agent will be in charge of the

scene evolution of a región of the virtual environment. Once an intention is

successfully carried out by an environment agent, it sends environment updates to

agents and the corresponding primitives to display changes shown by Rendering.
Details about the design and implementation of the Distributed Environment are

exposed in chapter 5.

3.5 Summary

Re-documentation allows obtaining a compendium of the whole GeDA-3D

project, identify key ideas previously established and, understand the reason why it

is necessary, the design and implementation of a distributed environment in charge
of scene evolution.

Reverse engineering let the analysis of GeDA-3D modules related to scene

evolution. This analysis led to the identification if missing mechanisms required to

coupling the distributed environment to the GeDA-3D project.

Reengineering of GeDA-3D was made to provide the basis for building the

distributed environment. Once GeDA-3D platform was updated, it was easier the

implementation of the distributed environment, because the environment agents
now have to deal only with policies related to the environment representation and

scene evolution. All issues concerning to processes, groups, multi-environment

support and communication are delegated to the distributed system platform.

55

Chapter 4

Distributed System Platform

ln this chapter we specify the architecture and system requirements satisfied by
our new distributed system platform. This platform must provide services required
for agent platforms as recommended by FIPA, and support any distributed

application which may run on it, specially a multiagent system which needs to

distribute a centralized component like the Environment.

4.1 Introduction

ln chapter 3 we established the necessity of redesigning the GeDA-3D platform
in order to meet the requirements to support a distributed environment

representation.

We decided to use Java for the platform implementation because Java handles

transparently issues related to data representation on heterogeneous machines.

Also this paradigm allows implementing agent migration easily.

This new platform is constituted by a Microkernel and a set of services required
for distributed platforms and agent platforms. As the previous versión of the

platform (see section 3.2.6), this versión also complies with the characteristics of a

message-oriented middleware.

The main objective of the proposed platform is to develop 3D applications,
based on agent's paradigm. However, this platform is useful to support any

distributed application and, with a few extra features it is also used as an agent
platform.

56

All components of this platform are designed to comply with the Model-View-

Controller design pattern, have low coupling and high cohesión (see section 2.4.2).

4.2 Architecture

The basic Distributed System Platform architecture designed to support
distributed applications and multiagent environments is illustrated in Figure 4-1.

{ Any Client M j í Any Server N) c Any Agent I ")
i k r

Distributed

System
Platform

Kernel

k

I

J

ACL Layer

k i

r

k

V

--

■=]

I
ACL Messaging Agent Management

I. i k
.. . . 1,

> r > f y f yr i1
MIcroKemel

k

1

Critical ~\ : i

íordinator J | 1

k > k

f

r

1 r \ i1
Thread Management

L _

Addressing Storage Reliability Group Addressing i1

Figure 4-1. Middleware Architecture

The platform is distributed across available computers; each one contains an

nstance of MicroKernel which in turn contains all shown modules administering
nformation about only local processes. A process requests all type of services

through Kernel interface. Services going from to be registered in platform, till, send
and receive messages either using communication strategies point-to-point or one-

to-many.

The MicroKernel is in charge of sending and receiving all messages and,

provides all necessary interfaces to obtain platform services. The Thread

Management Module is in charge of registering all local processes and threads in

order support all needed management (transparent localization, routing of

messages, etc.). The Addressing Module looks up for destination through queering
local tables or asking all computers whenever a process (or an agent) needs to

communicate with another. The Storage Module is in charge of buffering sent and

received messages. The Reliability Module guarantees that any message sent is

received by its destination if the latter is traceable. The Group Addressing Module

57

manages group memberships for processes. The Agent Management Module is in

charge of registering all agents and associating them to a process in order to

obtain services from the platform. ACL Messaging Module is in charge of sending
and receiving ACLMessages, requesting MicroKernel send and receive messages

as necessary; it also splits and reintegrates messages if they are larger than the

máximum amount of bytes that the platform is set to receive.

4.3 Microkernel

The main component of the platform, Kernel is accessed by all modules in a

static manner, that is, there is no need to pass its pointer through method

invocations in order to be used.

ln a strict sense this Kernel is a microkernel, because, it is only in charge of: a

mechanism for process communication, a limited administration of low level

processes, basic I/O channels. We continué calling this microkernel as Kernel just

by simplicity. ln the previous versión of the platform, services required one kernel

instance for each one. ln this versión, the Kernel is launched independently of the

services; services are linked to the platform dynamically and, two or more services

share the same Kernel instance. This Kernel also complies with the four design
issues (see section 2.2.1) of the client-server model: process addressing,

message-passing primitives either blocking or non-blocking, buffering and reliability
for message delivering.

As stated in section 3.4.4, this Kernel replaces the oíd Message Transport

Service, offering more facilities than its predecessor (see section 4.5 for details). ln

this versión, the Kernel acts as a transparent bus to all processes and threads

running over it.

Any thread designed to work on the platform must be registered in order to use

the platform 's services. The register is done inheriting from class SystemThread.
The SystemThread class through its constructor invokes Kernel to request

registration of a thread. Upon the system state, the platform may or may not accept

the registration request. The system states refusing a registration request are: not

launched or shutting down.

Kernel is accessed in a static manner and its instance is managed as a

singleton. To launch an application on the platform, the main thread of the

application should cali the loadClass() method of the Kernel, providing the class

ñame of the application to be loaded (see section 4.5). lf the platform was not

already initialized on the local machine, then the first application that invokes the

Kernel on the local machine causes the platform starting and the Kernel turns

available to be used by processes. The View module of Kernel uses a push model

(see section 2.4.2) to get the system state, that is, the View module registers by
itself into kernel in order to show events occurring in Kernel. However, the Kernel

58

can run in an invisible way that is, the View of a Kernel can be not available for

final users.

Once an instance of Kernel is running on a machine it is not allowed that

another application launched another instance of Kernel. The Java singleton
mechanism applies only for a java virtual machine (JVM) context, that is, singleton

applies only to the JVM process running on the operating system. Another JVM

process may be launched on the operating system and could let another

application attempt to launch the platform and get another singleton instance of

Kernel. ln order to have only one Kernel in charge of the services on the local

machine, the Kernel launches a thread called LocalPlatformFinder which looks up

for an instance of the platform on the local machine, lf LocalPlatformFinder finds

the platform running on the local machine, ln order to allow different application run

on the same computer and keep the singleton property, lf one application wants to

start a Kernel in a computer, first the LocalPlatformFinder is launched, if it doesn't

finds a kernel, then it is allowed to start a new one and continué with following

steps. On the other hand, if it finds a running kernel, the request of starting a new

kernel is stopped and a process (the idle kernel) sequences the load of classes

needed by the second application running on the computer. Once all the classes

are loaded, the idle kernel finishes its execution.

The Kernel uses a less-connection protocol, UDP, for message transfer from

one machine to other(s). We decided this because most of Communications in a

distributed system are in local área networks, which are very reliable. The time

spent using a connection-oriented protocol is considerable, especially if the

majority of messages transmitted between processes, for communication and

coordination, contain less bytes than the payload (65507 bytes) available for UDP

over IPv4.

The platform uses a set of packets which may be sent by any Kernel when

needed and received by one or more kernels depending on the packet. Such

packets are treated with the máximum priority and are processed exclusively by a

receiver Kernel. These packets are called kernel to kernel (KTK) packets; some of

them are described below and more packets are exposed in section 4.5.

OKP (Operating Kernel Presentation): is a presentation packet to announce

another machine its kernel availability. lf a kernel receives this packet from an

unknown machine, then registers the remote machine host address (an Internet

Protocol address, IP) and sends back another OKP This packet is necessary
for decisión making when a kernel requires considering information from others.

OKB (Operating Kernel Bye): announces this kernel unavailability for future

decisión making. This is sent when a user requests this kernel to shutdown.

¡PR (ls Platform Running): asks if the platform is running on the local machine.

This packet is sent by the LocalPlatformFinder thread.

59

PIR (Platform ls Running): it is used to confirm that the platform is running on the

local machine as a reply to an IPR packet.

NKL (Notify Kernel Load): notifies the sender kernels workload for decisión

making about where to load a process. Every kernel manages a tree data

structure to determine the lowest workload machine when necessary.

LLC (Load Local Class): requests to load a class on the local machine where this

packet is received. Such class may be a process class or any other. This

packet may be sent by an idle kernel instance; if the latter happens then the

running kernel may request to load the process on another machine, trying to

balance workload.

LCL (Local Class Loaded): confirms that a class was loaded according to the

corresponding LLC packet.

To calcúlate an approximation of the load in a machine we use the following
formula criteria. Let / be the load of the machine, c be the amount of cpu used by

currently running threads, q be the queue of bytes pending to be read by

processes, w be the amount of potentially cpu required by waiting threads if any of

them wakes up after receiving work to do, and C, Q, W, A, P and K be constants

/= (C*c + Q*g + W*w)
*

A, where C=0.6, Q=0.3, W=0.1, A=1 000000 and

1 = C + Q + W, due to the load is expected as a valué from 0 to A

c = 1 - P / p, where P
= 5, P is the NORM_PRIORITY of a Java thread and,

m u

p
= max(P, X priority(M,) + £ priority(Uy)), where

/=i /=i

priority(x) e {0, 1
,
... 10}; priority(x) returns 0 if isWaiting(x) = 1

m is the amount of kernel threads,

u is the amount of user threads,

M, is a kernel thread,

Uy is a user thread and,

q
= b I A, where b is the amount of buffered bytes in Mailboxes, pending to be read

w= tl r, where

r= m + u

m u

t = Y. isWaiting(M,) + £ isWaiting(Uy), where isWaiting(x) e {0, 1}
/=1 7=1

The latter formulas are used to differentiate roughly a machine with more user

threads running than other or, a machine with higher priority threads running than

other or, a machine with more bytes pending to be read than other or, a

combination of two or more of these. The valúes for constants C, Q, W, P and the

60

valúes returnable by priority(x) are subject of a future more precise analysis in the

matter of load balancing issues.

Once a Kernel is launched, it listens for incoming messages using a reserved

port and a dedicated thread with the highest priority; before this thread keeps

listening, it launches other seven kernel threads which help it to manage main

platform issues:

• MonitorModeMessageHandler is a MessageDeliverer in charge of attending
all KTK packets, delegating them to the corresponding module in the kernel

(see section 4.5); this thread is also assigned the highest priority;
• UserModeMessageHandler is a MessageDeliverer in charge of redirecting

messages to the corresponding MailBox or memory address of a user

process; details about message storage and delivering are exposed in

section 4.5.3;

• Launcher is always waiting for incoming requests to load classes on the

kernel; requests may come from the local machine or a remote machine

willing to move its work to this machine;

• RemotePlatformFinder is in charge of sending an OKP packet as soon as

possible, and later periodically broadcasting NKL packets to other kernels.

ln this way, all kernels are aware of the others workload, and anyone can

choose the most appropriate machine to load a process; here, we apply an

information dissemination technique with a combination of a periodic and

event-driven policy (see section 2.2.2).
• ProcessDispatcher is a JobDispatcher in charge of attending processes

willing to send a message to a destination; if destination is found then

ProcessDispatcher passes the message to NetworkSender; details about

process addressing are found in section 4.5.2;

• NetworkSender is a JobDispatcher in charge of sending processes'

messages to their destination, keeping a copy of such message and

registering departure time; this is also related to message storage-delivering
and reliability services exposed in sections 4.5.4 and 4.5.5 below.

• KernelPacketSender is a JobDispatcher in charge of sending and, resending
if necessary, KTK packets which are not expected to cause a reply packet

message or, the reply packet might be delayed more than 5 seconds. This is

in order to assure that a KTK packet is received; this is needed due to the

probability of an UDP broadcast packet is not received by destinations. The

packages that are requested to be sent by this thread are OKP, OKB, PIR,

LLC, LCL (exposed previously) and, RAG and AAG (see section 4.5.7)

A JobDispatcher is a generic thread that queues messages to be processed

sequentially. The máximum time that any thread waits before resending a KTK

packet is established as 5 seconds as the worst case. The latter valué can be set

by the system administrator according to an analysis on the target network.

Some threads resend a KTK packet if the corresponding reply packet does not

arrive in 5 seconds and, if a reply arrives just after a second request was sent and

61

such second request does not cause side effects, such request is called

idempotent [TANENBAUM]. A side effect can be an inappropriate modification of

data or a second launch of a process already launched. The packets sent by
KernelPacketSender are treated as not idempotent so, if a kernel receives such

packet then registers the arrival of such packet; if a repeated packet arrives, such

packet is discarded.

The platform administrator may request Kernel to shutdown, which causes that

Kernel sends a termínate signal to all its processes. Kernel waits for all threads to

finish their execution but only for a determined time, after which Kernel is no longer
available for processes, sends them a finish signal to definitely termínate them,

then, the Kernel finishes its execution; shutdown signal applies only to the Kernel

in one machine at a time.

4.4 Process and Thread Administration

The SystemThread is the base class for inheritance if an application is willing to

run on the platform. An application may contain many threads related to Java class

Thread or Java interface Runnable. However, only a registered SystemThread can

obtain services from the platform. The relationships between main classes are

illustrated in Figure 4-2.

Thread 1> Runnable

A A
parent

0.. 1

^- child

«»*W l Ü . .

" |

MicroKerneBase
■■■■■w--*-

■SystemThreadarent ^ST
A <-** <w> 1

& ch^%i |0..
- Rumablelhread

¡j
0. .

*
^^

I 1
<<singlecon»

MicroKernel

1 1

ProcessThread SystemProcess

-4 t
■4 <<static» ■■Yocess

►

'

1<erríel

Figure 4-2. Relationship between Kernel and threads

Kernel administrates processes and threads, all threads must belong to a

process, this is mandatory, because, the process is the unit of resource

assignment. The Class SystemProcess represents a process on the platform. Any

process must own a thread and that is achieved through inheritance from class

SystemThread.

62

The constructor of SystemThread is in charge of requesting to register at kernel.

Any SystemThread may own children and so its children. The activities to be

performed by a SystemThread must be established in the run() method because

after invoking the start() method, the JVM will execute that run() method (as with

any class that inherits from Thread).

Kernel assigns a unique numeric identifier, a process identifier (PID) of eight

bytes length to every process accepted to run on the machine where it is started.

Such identifier is unique in the local machine context. The PID is used for message

transfer, placing the source PID and the destination PID in every message. Details

about message delivering are exposed in section 4.5.3 below.

The Class Kernel provides a set of static methods available by
MicroKernelBase and MicroKernel instances in order to provide a subset of public
services visible to processes.

The design illustrated in Figure 4-2 shows classes MicroKernelBase,

SystemThread and SystemProcess as abstract. MicroKernelBase is the Thread

Management module (see section 4.5.1) and the information it handles is

necessary for every one of the other modules. The class MicroKernel works as an

integrator of all modules (see section 4.5) and kernel threads (see section 4.3)

providing interfaces for all platform services. MicroKernelBase is abstract in order

to encapsulate its responsibilities, also to avoid its instantiation, and leaving its

operations easily available for MicroKernel as if they were part of the MicroKernel

source code. MicroKernelBase manages all processes and threads as

SystemThread objects. SystemThread is abstract due to the first thread of every

process to register at platform must be of class SystemProcess. SystemProcess is

abstract due to it must be in the same package as MicroKernelBase and the class

to be instantiated (class MicroKernel) is not included in the same package.

Any thread can obtain platform services' from the local machine if such thread

has a register PID in the local Kernel and the latter is operational. This means that

the Kernel could initialize and a user has not requested the shutdown for the local

kernel.

Class SystemProcess requires for its constructors to be provided with the

reference of an instance of MicroKernelBase. To do this, the constructors of class

Process request Kernel its singleton reference to use it as argument when invoking
its parent constructor. This provides an little easier way to instantiate a Process in

source code requiring only to import class Process and class Kernel instead of

being aware of details like it has to be used the method Kemel.getMicroKernel()
and the use of it every time we need to instantiate a process. The same happens
with the constructors of class ProcessThread.

Class ProcessThread is the class that represents a thread associated to a

Process on the platform. Any Process may créate ProcessThreads during the

execution of its run() method. Also a ProcessThread may be instantiated granting it

63

a reference to a SystemThread, which would be its parent. Any request of a

ProcessThread to the platform is done on behalf of its process.
When a process or a thread receive a termínate signal, they should termínate all

its children. SystemThread provides a method called terminate(), this method is

invocated when the Kernel sends a termínate signal to this thread. When

terminate() method is invoked, this method invokes the shutdown() method of itself

and, after that it requests its kernel to send the termínate signal to its children. The

shutdown() method might be overwhtten if some activities need to be performed
before the thread is unsubscribed from platform.

The inheritance mechanism is not always appropriate for some solutions, for

example, a programmer may choose to implement interface Runnable instead of

inheriting from class Thread in order program a thread in Java. Analogously, there
is available the interface RunnableThread which by the way inherits from

Runnable. A reference to a RunnableThread might be provided to constructors of a

Process and ProcessThread RunnableThread provides a method named

shutdown(). When instantiating a child class of SystemThread, it is possible to

provide a reference to a RunnableThread implementer. When the Kernel sends a

termínate signal to a SystemThread, and the method shutdown() is invocated, if

this method was not overwhtten, then it invokes the shutdown() method of the

RunnableThread if the latter was provided when instantiating the child of

SystemThread.

Every process must belong to a subsystem inside the platform. The PID is

composed by two subfields, the subsystem identifier (SID) with four bytes, and the

subsystem process identifier (SPID) in that subsystem of four bytes. The

subsystem identifier is necessary in order to providing broadcast and multicast only
for a subset of processes in such subsystem, without creating and managing a

massive multicast group for some needs. Details about process addressing are

exposed in section 4.5.2 below.

Processes may be initialized using a process service ñame (PSN), which is not

assumed to be unique for the subsystem. The 32 bit hash valué of the PSN

character sequence is used as a proposed SPID. ln case of various repeated

PSNs, it is guaranteed the assignment of a different SPID for each process.

Also processes may be initialized using a subsystem ñame (SUN), which is

treated as unique on the platform. ln this case we use a 30 bit hash valué from the

SUN character sequence due to the first two bits in the PID are reserved as

exposed in section 4.5.2 below.

4.5 Platform Services

Kernel provides a set of operations for thread management, process

addressing, peer to peer communication, group communication and message

64

buffering. For every peer to peer communication, Kernel provides a reliable

communication. The platform also provides a mechanism to log process events

and kernel events in files. All services are provided by their respective modules

(see Figure 4.3). MicroKernel provides primary operations to load and run

applications on the platform:

\oadClass: lets a thread to load a class, in the machine with the lowest workload

that the local kernel knows. This operation returns the process unique ñame of

the created process (see section 4.5.2). This method is overloaded; all methods

receive the class ñame of the class to be loaded. Some methods provides the

parameter loadOnAnyMachine which is used to specify whether no matter

which machine is chosen to load the class; the other methods assume a valué

of true; if the parameter is set as false, then the local machine is used to load

the class; the latter is useful when the user wants to load a graphical interface

in the local machine. Some methods provide parameters systemName and

processName, which are useful when the user wants to load a process in a

determined subsystem and that such process uses a determined PSN in that

subsystem (see section 4.4). Some methods provide a parameter called

extraParameter, which is used for some classes which constructor interface

expects three parameters: systemName, processName and extraParameter.

Invocations to this operation should be the only instructions of the main()
method of an application that a user wants to load on the platform; every java

application runs on a different JVM process; the user should request Kernel to

load the class of its application, otherwise if the platform is already started on

the local machine, all instances of class Process instantiated by the application,
will be loaded on another JVM process, the one where the Kernel is operating

(see section 4.3) and the application will not be able to communicate with those

loaded instances of class Process; thus, instances of Process in the JVM

process where that application is running, will not be able to receive platform
services because the kernel on that JVM process is idle.

systemExit: requests local kernel to shutdown. This operation may be inhibited

previously if a process invokes to addShutdownlnhibitor(). Then, only system
administrator could request kernel to shutdown.

addShutdownlnhibitor. requests local kernel to ignore requests to systemExit() in

order to let caller process to perform until finishes.

removeShutdownlnhibitor. requests local kernel to unsubscribe its previously
invocation to addShutdownlnhibitor().

The mobility service will provide the mechanism to achieve mobility of

processes through machines on the platform. This service would permit only weak

mobility (see section 2.2.5). Because the platform is based on Java virtual machine

facilities and the latter does not yet support strong mobility. This service depends
on Java serialization and is still under construction.

65

All modules are allocated at every running kernel so, these modules work in a

distributed manner, every one managing only local information and communicating
each module with its counterparts when necessary as exposed in following
sections.

4.5.1 Thread Management

The Thread Management Module is in charge of registering every launched

thread on the platform. As exposed in section 4.4, any process must own a unique
PID and this module owns tables that associate PIDs to Java threads and

viceversa. When registering a process, this may provide a PSN, so Thread

Management Module also owns tables to associate PIDs to PSNs. Given the fact

that any process may consist of one or more threads, this module also associates

children thread IDs to the corresponding PID in order to attribute any request
carried out by a thread to the corresponding process. This module is represented

by class MicroKernelBase (see previous Figure 4-2 and the following 4-3). The

operations available for users, provided by this module are exposed below:

MicroKerneBase
—

s
—

iJ

«s inglecon»

MicroKernel

CriticalCoordinator

Modu leAddressing

ModuleStorage

Modu leRel iabi I ity

Modu leGroupAddressing

KernelServicesForGroupAddressingAdapter

KernelServicesForRel iabi lityAdapter

KernelServicesForStorageAdapter

KernelServicesForAddressingAdapter

Figure 4-3. Platform Services

suspendThread: lets the current thread to suspend its execution until another

thread invokes method resumeThread() or the platform sends a termínate

signal to the current thread.

66

resumeThread: lets an owner of a reference to a thread, to resume the execution

of such thread, if the latter has previously invoked to suspendThread(). The
owner might be any thread or also the platform.

terminateThread: lets an owner of a reference to a thread, to send the termínate

signal to such thread, in order to finish the latter's execution. The owner might
be any thread or also the platform

interruptThread: lets an owner of a reference to a thread, to resume the execution

of such thread abnormally, because causes throwing an InterruptedException
for such thread. This is useful when a thread has previously invoked to method

wait() and there is no other way to resume its execution; for example when the

owner requests to termínate that thread. The owner might be any thread or also

the platform.

4.5.2 Process Addressing

Every message sent by the platform must contain a source field and a

destination field, each of eight bytes long. Such fields are usually used to store

PIDs (see section 4.4). Any process in the platform is addressed through the pair

machine-process (IP, PID); the IP is the address ofthe machine where the process

with such PID is running.

As exposed in section 4.4, a process may provide a PSN for its registration and,

several processes may use the same PSN. The PSN of a destination process is

usually used by a sender process when it requests its kernel to send a message to

a destination. The PSN is handled analogously as an anycast network addressing
because the "nearest" destination process to the sender is the one that will receive

the message.

A process might need to communicate with a specific destination process

instead of any of the processes using the same PSN. ln order to achieve this, each

process has a process unique ñame (PUN), unique in the entire platform. This

ñame is returned by the loadClass() method when a process requests platform to

créate another process (see beginning of section 4.5). This ñame can also be

obtained by the corresponding process through invocation of the

getProcessUniqueName() method. A process x reached by a process y using the

PSN ofx, may return its PUN in a reply message to process y, letting process y to

communicate with the same process x for later messages. The PUN of a process

is handled as a unicast addressing because there is only one process using that

PUN. A process might request to send a message using either a PSN or a PUN as

the destination. The PSN is a prefix in the PUN character sequence, so if using a

PUN the destination cannot be found then the corresponding PSN is used.

Based on the options for addressing exposed in section 2.2.1, when a process

is willing to send a message to another process, the ProcessDispatcher kernel

67

thread sends a broadcast of a lookup packet to determine the pair machine-

process ofthe destination. Such packet includes either a PSN or a PUN.

The Addressing Module in each kernel manages local processes registrations

using the Addressing Table, a hash table which supports different pair machine-

process entries for the same PSN; such table does not distinguish between a PSN

and a PUN because it uses a character sequence as the key. The Addressing
Module also sends and receives the following KTK packets to achieve the following
tasks:

LSA (Lookup Service Address): asks the receiver if it has a registered PSN or

PUN. lf the latter results affirmative, then the receiver kernel sends back a FSA

packet. The LSA packet contains also the PSN and the PID of the requester

process. lf a kernel sent a FSA, it registers both PSN and PID of the asker for

future Communications. Only if the local Addressing Table of a kernel does not

know the location of the destination process, this packet is broadcasted.

FSA (Found Service Address): confirms that the requested PSN or PUN was found

in the machine that received the LSA. lt contains the PID and the PSN or PUN

of the requested process. The receiver kernel registers the found process, in

the local Addressing Table. Many machines may respond to a LSA packet due

to the LSA is broadcasted and, many processes of the same kind of service use

the same PSN and might be all running at the same time on different machines.

ln order to lócate processes on the platform, the Addressing Module provides
the following operations:

registerAnycastService: registers a process in the local Addressing Table using the

PSN. A server process is expected to be sought, thus servers must invoke this

method in order to be found. A client process might not will to be sought, if so it

does not need to invoke this method.

deregisterAnycastService: requests to unsubscribe the PSN from the local

Addressing Table. Any other Addressing Table in a remote machine may keep

registration of such PSN. This method is automatically called in the local

machine when the corresponding process is sent a termínate signal.

registerUnicastService: registers a process in the local Addressing Table using the

PUN. The invocation to this method is optional, if the process is willing to

receive messages addressed only to it.

deregisterUnicastService: requests to unsubscribe the PUN from the Addressing
Table. Any other Addressing Table in a remote machine may keep registration

of such PUN.

getProcessName: returns the PSN provided when registering the invoker process

at the platform.

68

getProcessUniqueName: returns the PUN generated by platform for the invoker

process, which could serve to inform another process such ñame in order to

carry out unicast communication between two process. This is possible as long
as PUNs are used when invoking send() and sendNonBlocking() methods (see
section 4.5.3).

The source and destination fields of a message contain identifiers. Such

identifiers might be either PIDs or others. The sender of a message might be the

kernel or a process. The receiver of a message might be the kernel, a process, a

group of processes, or all processes. The first two bits in the destination field

determine the kind of receiver; next table resumes this information:

First two bits Receiver

00 A process

01 A group of processes

1 0 Reserved for future use, maybe for kernel processes
1 1 Kernel

Figure 4-4. Bit setting to distinguish kernel packets, process IDs and group IDs

4.5.3 Message Passing Primitives

Based on the options for message-passing primitives exposed in section 2.2.1,

Kernel provides the following primitives:

send: requests to send a message to a destination process identified either by a

PSN or a PUN. lf a PSN is used, it is carried out an anycast communication, so

destination may be to a different process of a group in different invocations;

using PUN only the specific destination receives the message. This is a

blocking primitive, that is, control is returned to the process after the message

has been successfully delivered to the destination process or also if destination

was not found. lt permits sending an array of bytes built by the process. The

array should contain all information required by destination process and,
formatted as the latter expects.

sendNonBlocking: requests to send a message to a destination process identified

either by a PSN or a PUN, where destination is reached the same way as with

send(). This is a non blocking primitive because control is returned to the

process as soon as the message is copied to the kernel 's memory space; the

latter is necessary in order to avoid that the message is accidentally corrupted
before it is sent, because sender process can instruct to modify contents of the

message just after returning from this invocation and kernel could be delayed in

sending the queue of messages. lt is common to program servers requiring that
control is returned as soon as possible in order to attend the next request

rapidly and avoid that kernel discards requests (see section 4.5.4). This

primitive as send(), also sends an array of bytes built by the sender process.

69

receive: requests to receive a message. This is a blocking primitive, that is, the

control is returned to the process after the message has been copied to the

process space. This primitive allows the receiver to receives an array of bytes
sent through send() or sendNonBlocking(). This is an overloaded method that in

conjunction with a mailbox may obtain the arrival time of the message since it

was delivered into mailbox (see section 4.5.4). There is no need to provide a

non-blocking primitive because it is a multithreaded platform and some threads

can be working while another is blocked waiting to receive.

These primitives work as long as the system is available, that is, the local kernel

has been successfully initialized (see section 4.3) and it is not currently finishing. lt

is important to clarify that these primitives obtain a pointer to an array of bytes as

parameter. The first two primitives will send every byte in a single datagram.
However Kernel is configured to receive a determined máximum amount of bytes,
so clients must be developed considering such amount in order to all data sent is

completely received.

4.5.4 Message Storage and Delivering

After a process has invoked to either send() or sendNonBlocking() (see section

4.5.3) the ProcessDispatcher kernel thread requires the Addressing Module to

determine the actual location for the destination (see section 4.5.2). When the

latter is done, then the NetworkSender kernel thread manages the message.

The NetworkSender stores a sequential counter in every message to be sent,

requests the Storage Module to keep a copy of such message and notifies the

Reliability Module (see section 4.5.5) that a message is about to be sent. Sent

messages are kept in Storage Module in case that it is needed to resend any

message.

ln order to ensure successfully the reception of a message sent by another

process, a process requires to previously invoke the receive() method. Given the

fact that a process may be occupied processing a previously received message

(see section 2.2.1) the platform provides the following operations:

createMailBox: requests to créate a MailBox, which is a "long sized" buffer inside

the Kernel in order to queue several messages to read in future. The MailBox is

fixed sized, so if it is full, does not accept new messages. Messages can be of

variable length, so the MailBox stores the size of the message followed by the

corresponding content using only the necessary space. This is an overloaded

method, if parameter usingArrivalTime is set, then MailBox also stores local

time when messages arrive; such time is provided when a process invokes

receive() method (see section 4.5.3).

removeMailBox: requests to delete the MailBox created for the caller process.

Messages remaining in MailBox are discarded.

70

When a process invokes receive() method it provides the pointer to a message

structure, the Kernel requests the Storage Module to write data in the message.

This module either keeps such pointer or if the process owns a MailBox then a

message is read and copied to the pointer. lf the process does not own a MailBox

or MailBox is empty then the invoker thread is blocked.

When a Kernel receives a message, it checks the destination field to search the

receiver process on the local machine, lf such process is found, then Kernel tries to

deliver this message to the Storage Module, otherwise sends a KTK Address

Unknown (AU) packet. lf this module cannot store that message then Kernel sends

a KTK Try Again (TA) packet to the source machine, else Kernel sends a KTK

Acknowledgement (ACK) packet. Details about the latter and more KTK packets
are exposed in section 4.5.5 below.

4.5.5 Reliability

The Reliability here described concern the sending and receiving of messages.

The Reliability Module is in charge of keeping track of every sent and received

message in order to guarantee message delivering.

The Reliability Module uses the variant request-ACK-repIy-ACK (see section

2.2.1). Whenever a message is successfully delivered to Storage Module, in any

direction ofthe communication, the receiver Kernel sends back an ACK packet and

establishes in a table of delivered messages that such message was received.

The platform does not try to identify if a message is either a request or a reply, it

only keeps track for message delivering, since a message is about to be sent, until

such message is stored in the receiver machine either into a MailBox or into the

destination process space.

Once the NetworkSender has notified the Reliability Module that a message is

about to be sent, this module activates a ChronometerACK. The latter will notify
the Reliability Module if it has not been received the corresponding ACK after a

determined elapsed time. Some other KTK packets useful during message passing
are presented in the next table:

Packet Meaning Sender machine Receiver machine

AU Address

unknown

Indicates that the

destination process was

not found in local

machine

Inhibits ChronometerACK;
requests Addressing Module to

discard the corresponding pair
machine-process; obtains from

Storage Module the originally
sent message and; requests
ProcessDispatcher to send such

message using another

71

destination with the same PSN

(again as stated in section 4.5.2).
lf an AU arrived for a PUN, then a

PSN is used for the retry.

Packet Meaning Sender machine Receiver machine

ACK Acknowled

gement

Indicates that a

previously received

message has been

delivered to Storage
Module successfully

Inhibits CronometerACK;

requests Storage Module to

remove the corresponding

message

TA Try again Indicates that

destination process did

not receive a message

either because it has not

invoked receive() or, its

MailBox is full or, after

receiving and AYA

Kernel determines that it

has never received the

referred message

Inhibits ChronometerACK; starts

a ChronometerTA which after a

determined time requests to

NetworkSender to send such

message; (note that destination

will be the same as before)

AYA Are you

alive?

Indicates that for a sent

message, an expected
ACK has not been

received and a

determined time

expired; the

chronometer waits for a

determined time to

receive an IAA; if no IAA

is received it assumes

to have received an AU

lf the table of delivered messages

indicates that such message was

received then an IAA is sent,

otherwise a TA is sent; if

destination is no longer running
then an AU is sent

IAA I am alive Indicates that the

corresponding message

was delivered to

Storage Module

successfully

Assumes to have received an

ACK

The basic idea of the behavior of the previous packets can be found at

[TANENBAUM], the stated differences were necessary to achieve our proposal

goals.

4.5.6 Distributed Mutual Exclusión

ln some cases of resource management and decision-making, it is necessary

the use of a mutual exclusión mechanism. The platform provides a service for

72

distributed mutual exclusión implemented based on a centralized algorithm, which
consists of managing a server instantiated only in one machine. Such server is

called CriticalCoordinator and it queues repeated requests for a list of different

resources [TANENBAUM]. This service is used to guarantee group ñame

uniqueness when creating groups (see section 4.5.7 below).

Critical Coordinator is a child class, so its parent class is useful for other

resource management necessities when another programmer inherits from that

class as illustrated in Figure 4-5. The possibilities attribute shown in Figure 4-5 are

special tickets generated to refer a granted resource, so just the owner of such

ticket is authorized to use a shared resource.

Process

I
Critica£(egbnCcnstants

*£7T7

CriticalRegionCoordinator

-criticalRegions: Hashtable<Long,Vector<String>>

-posibilities: Hasht ato le<Long, Long>

-createPosibility (in region:Long) : long

-requestCr iticalRegion(in regionID : long,

in requester :String) : long

-requestCr iticalRegion(in request : byte [] ,

out nextRegionUser ¡RString) : byte[]

-releaseCriticalRegionfin regionID: long,

in posibilityID:long,

out nextRegionUser ¡RString) : long

-releaseCriticalRegion(in request : byte [] ,

out nextRegionUser ¡RString) : byte[]

+run(): void

CriticalCoordinator

RString

■fvalue: String

Figure 4-5. The Critical Región Coordinator

4.5.7 Group Communication

The Group Addressing Module is in charge of managing all group issues. For

group communication the platform provides the following operations:

joinGroup: requests to join a process Pto a group. The invoker may be the process

P or another. The invoker process does not require being a member of such

group. The group may or may not exist already; if such group does not exist

then it is registered in the platform. lf process P does not exist, this invocation

73

does nothing. The process P may or may not be part of the same subsystem
(see section 4.4) as the invoker.

leaveGroup: requests to unsubscribe a process P from a group. The invoker may
be the process P or another. lf the process P or the group does not exist, this

invocation does nothing. lf unsubscribing process P from a group leaves the

group without members, such group is deregistered from the platform.

sendGroup: request to send a multicast to all members of a group. lt is not

necessary a receiveGroup() method, so processes receive group messages

through receive() method.

sendBroadcast requests to broadcast a message to all processes in a subsystem.
There has not been considered a reason to provide a broadcast for delivering a

message to all processes from all subsystems.

The first three of the previous primitives receive a parameter called group

ñame, which is a character sequence assumed to be unique. Process addressing
uses the source and destination fields to state the counterparts of the

communication (see section 4.5.2), so when a group is registered in the platform, it
is generated a group identifier (GID) for that group ñame. The GID must be unique
and to achieve this when creating a group, Group Addressing Module requests
CriticalCoordinator (see section 4.5.6) the resource to be the only module

determining a GID all over the platform, because there is an instance of a Group

Addressing Module in each kernel; such resource is freed once the GID was

determined. To genérate a GID or finding the GID for a given group ñame, Group

Addressing Module uses the following KTK packets:

LGA (Lookup Group Address): asks through broadcasting all machines whether

they have registered a group ñame, lf the latter results affirmative then the

receiver sends back a FGA, otherwise sends an UGA.

FGA (Found Group Address): informs the corresponding GID for a given group

ñame.

UGA (Unknown Group Address): informs that this kernel is not aware of such

group ñame existence.

PGA (Propose Group Address): proposes other kernels a random GID to be used,

expecting that such GID is not already used for another group ñame. This

packet is sent if no FGA packet was received for a given group ñame. The

receiver sends back either a RGA or an AGA.

RGA (Reject Group Address): informs that a GID proposed by a PGA is already
used for other group that this kernel is aware of its existence.

74

AGA (Agree Group Address): informs that a given GID is not known by this kernel,
so it agrees if such GID is used.

RAG (Remote Action for Group): requests the receiver to be in charge of the rest of

the required actions for joining or leaving a group due to this machine has

already accomplish its part of the required actions. The receiver sends back an

AAG.

AAG (Acknowledge Action for Group): informs the receiver that it was received a

RAG in order to free the corresponding invocation for joining or leaving a group.

After a GID for a given group ñame is determined, the PID is associated to the

GID for future requests to sendGroup() method.

Group members may be from different subsystems, so a multicast applies for

any collection of processes, where they may be members of different subsystems.

Group communication is reliable but is not ordered in time for all members of

the group. Broadcast is not reliable at the moment.

4.6 Agent Platform Services

For this platform, an agent is a computational process [FIPASPEC]
that implements the autonomous, communicating functionality of an application.

Agents communicate using an Agent Communication Language (ACL).

All platform services described in previous sections were designed to provide

generic services for any distributed application; such services can be used also for

an agent platform adding some extra features. An easier way to use the platform
for agents is provided through the called ACL Layer, which provides a repertoire of

operations for agent management and message transfer. The operations provided

by this layer are exposed in sections 4.6.2 and 4.6.3 below.

When registering an agent on the platform, it is required to provide the agent's
ñame and its corresponding environment's ñame. Based on what was established

in section 4.4 every process must belong to a subsystem inside the platform. ln the
same way, an agent must belong to an environment. According to this, we obtain a

multi-environment support when registering every agent to an environment.

Agents' behavior sending unicasts, multicasts or broadcasts in their environment

does not affect to other agents and their environments.

An extra benefit of the multi-environment support combined with the group

management as they are designed is that, we could launch múltiple environments,
and one or more agents could join groups from different environments. Thus, an

agent could receive messages from two or more environments. As an example we

75

could imagine an Alpha agent with the role of an engineer into an environment A,
which is also a playing a role of a teacher into an environment B; depending on its

sensors, effectors and messages received from other agents, this Alpha Agent
could behave as necessary in both environments.

For an agent platform in order to be [FIPA] compliant (see section 3.2.6) it is

normative that provides:

1) Life cycle management

2) White page service

3) Yellow page service

4) Message Transport Service

Details about previously listed services are exposed in following sections.

4.6.1 Life Cycle Management

Most of the agent life-cycle states [FIPA_SPEC] established in Figure 3-16

(which can be seen below for comfort) are make available through the facilities of

the Java APl for thread management, but the Transit state. The difference between

the JVM thread policy and the agent platform thread policy is that, any agent

stopped in the platform may be initiated and stopped infinite times. The latter is

possible through the creation a new Java thread for the agent when moving from

state Unknown to Initiated but using the same instance of such Agent.

The transit state as [FIPA_SPEC] establishes, is not yet supported because this

platform does not consider (at this moment) agents mobility between different

agent platforms.

76

The operations that support life cycle management are the following:

Operation owner class Operation FIPA state transition

ACL registerAgent Créate

ACL deregisterAgent Quit

SystemThread finish Destroy
ACL startAgent

startAgentListener

Invoke

Kernel/ACL suspendThread Wait

Kernel/ACL resumeThread Wake Up

Kernel/ACL interruptThread Resume/Wake Up

Thread suspend Suspend
Thread resume Resume

Details about previously listed operations are exposed in sections 4.5.1 and

4.6.2.

4.6.2 White and Yellow Page Services

FIPA establishes a module called Agent Management System (AMS)

[FIPA_SPEC] which provides a white page service, so every agent must be

registered at AMS. AMS handles all agents' unique IDs and locations. Three

modules working together across the platform provide the AMS: the Thread

Management Module (see section 4.5.1), the Addressing Module (see section

4.5.2) and the Agent Management Module; the latter is exposed below.

The Agent Management Module is in charge of mapping every agent to a

process registered at the platform. When an agent requests to register, it must

provide a RunnableThread reference (see section 4.4) and a reference to an

lACLMessageListener (see section 4.6.3). The RunnableThread reference is used

to instantiate a Process which will be registered at platform in order to such agent
be able to request platform services.

Some applications like the GeDA-3D modules: Scenario Descriptor, Scene

Descriptor, Rendering, Context (see section 3.4) residing outside the kernel, may

require using the platform to send and receive ACLMessages in order to

communicate with agents or other applications and, their design does not need an

agent. ln these cases it is available a MessageSender which would be used to

instantiate the Process to be registered at the platform. To instantiate a

MessageSender, the requester thread should not provide a RunnableThread

reference.

The operations provided by ACL Layer in order to comply with a white page
service are listed below:

77

registerAgent requests to register an agent at the platform. This method receives a

pointer to a RunnableThread which run() method would be invoked; also

receives a pointer to an lACLMessageListener. The agent's

messageReceived() method would be invoked when a message arrives for

such agent.

deregisterAgent: requests to unsubscribe the agent from the platform; this also

causes sending the termínate signal to the corresponding agent.

startAgent. requests to start the agent's thread according to JVM scheduling

policies. This method receives a pointer to a RunnableThread which must have

been used during registerAgent() invocation. Either this method or

startAgentListener() can only be invocated once.

startAgentListener. requests to start the agent's thread according to JVM

scheduling policies. This method receives a pointer to a lACLMessageListener
which must have been used during registerAgent() invocation. Either this

method or startAgentListener() can only be invocated once.

The following operations work as described in detail in section 4.5 and 4.5.1 :

getAgentName: returns the agent's ñame using Kernel.getProcessName(). We will

refer to this ñame as the Agent Service Ñame (ASN).

getAgentUniqueName: returns the agent's ñame using

Kernel.getProcessUniqueName(). We will refer to this ñame as the Agent

Unique Ñame (AUN).

loadClass: loads an application using Kernel. loadClass() and returns the AUN of

the created agent.

registerAgentUniqueNameForLookup: registers an agent using
Kernel. registerUnicastService().

systemExit requests local kernel to shutdown using Kernel. systemExit().

FIPA establishes a module called Directory Facilitator (DF) [FIPA_SPEC], which

provides a yellow page service, this is, a directory of services provided by agents.

By default, during registration of an agent (a process) at platform, platform

assumes that any agent might be a server for other agents, so we may have more

agents using the same ñame, more specifically various agents can be registered

using the same PSN (see section 4.4).

ln order to differentiate addressing an agent as a server or as an individual,

sender agent must use the AUN to communicate with a specific agent or, using the

ASN to communicate with any agent that would provide a service.

78

4.6.3 Message Transport Service

The agent platform s Message Transport Service established by [FIPA_SPEC]
is provided through the called ACL Messaging Service, which is in charge of

providing operations for agent communication.

The unit for message transfer is the class ACLMessage which complies with

FIPA ACL Message Structure Specification [FIPA_ACL]. ACLMessage provides a

repertoire of FIPA compliant performatives and some specific purpose ones.

Agents communicate through sending and receiving ACLMessages. Most

parameters contained in an ACLMessage are String types. ln order to send such

parameters through network, they are wrapped into an XML format.

An ACLMessage contains mandatory parameters used for message transfer:

sender, receiver, performative and content. Sender and receiver parameters are

intended to contain either an ASN or an AUN (see section 4.6.2). Optional

parameters are repIyTo, language, encoding, ontology, protocol, conversationld,

replyWith, inRepIyTo, repIyBy, binaryContent and arrivalTime. Parameter

binaryContent as an array of bytes lets include binary data (like files) in a message.

Parameter arrivalTime is used to set the arrival time of message when it was

stored in MailBox (see section 4.5.4).

The operations provided by ACL Layer in order to comply with a message

transport service are exposed below. The following operations work as described

in detail in section 4.5.7:

joinGroup: joins an agent to a group using Kernel.joinGroup().

leaveGroup: unsubscribes an agent from a group using Kernel. leaveGroup().

sendGroup: sends an ACLMessage as a multicast using Kernel.sendGroup().

sendBroadcast: sends an ACLMessage as a broadcast using
Kernel.sendBroadcast().

The following operations work as described in detail in section 4.5.3:

sendMessage: sends an ACLMessage using Kernel.send().

sendMessageNonBlocking: sends an ACLMessage using
Kernel. sendNonBlocking().

sendEncryptedMessage: sends an encrypted message using ACL.sendMessage().

ln order to use Kernel primitives, every message to be sent must be converted

to its corresponding array of bytes representation. To achieve this it is invoked

79

ACLMessage.toXML() method which returns an XML String wrapping all

parameters, after this such String is converted to its array of bytes representation.

Besides requesting Kernel to send a message, ACL Messaging Service

manages messages analogously to OSI Transport Layer. Considering that a kernel
is prepared to receive only a determined máximum amount of bytes per datagram
(see section 4.5.3), a message to be sent can be partitioned into fixed size packets
when necessary.

When registering an agent at platform, after creating its corresponding process,

it is also created a thread called AgentListener using the provided

lACLMessageListener reference during the registerAgent() method invocation.

lACLMessageListener is an interface that may be implemented by any class. The

implementer will receive every message that AgentListener receives.

AgentListener is a child thread of the Agent Process, in charge of requesting
Kernel creation of a MailBox (see section 4.5.4), after, this listener invokes

Kernel. receive() and for every message received it verifies if the latter is a packet
of a message. ln case of receiving a packet instead of a complete message,

listener creates a structure of the expected size for the full message and then

copies every packet received in their corresponding position of such structure.

Once all packets of a message have arrived, listener creates an ACLMessage
instance containing all parameters, binary content and optionally its arrival time if

such data was requested by the Agent when registering at platform

4.7 Summary

Kernel requires a mandatory registration of any thread that will request a

service to the platform. Thus, only registered threads are served by the platform.

Kernel uses UDP for message transfer due to that a connection-oriented

protocol is excessive to handle most coordination messages like the Kernel to

Kernel (KTK) packets (see section 4.3) and also most of messages sent by

processes and agents. Every message sent and received must be an array of

bytes.

The set of services that Kernel provides are organized in various modules:

Thread Management, Addressing, Storage, Reliability, Critical Coordinator, Group

Addressing and MicroKernel; these modules are accessed through interfaces

provided by class Kernel.

MicroKernel is in charge of sending and receiving all messages and, provides

all necessary interfaces to obtain platform services. Thread Management Module is

in charge of registering all local processes and threads in order to be localizable

and manageable. Addressing Module looks up for destination through queering

80

local tables or asking all computers whenever a process (or an agent) needs to

communicate with another. Storage Module is in charge of buffering sent and

received messages. Reliability Module guarantees that any message sent is

received by destination if the latter is findable. Group Addressing Module manages

group memberships for processes. MicroKernel is helped by various kernel threads

in order to process some KTK packets, other KTK packets are forwarded to their

respective modules.

ln order to provide services as an agent platform there are modules Agent

Management and ACL Messaging; these modules are accessed through interfaces

provided by class ACL. ACLMessages must be transformed to an array of bytes

representation to use Kernel operations for send and receive messages.

Agent Management Module is in charge of registering all agents and

associating them to a process in order to obtain services from the platform. ACL

Messaging Module is in charge of sending and receiving ACLMessages,

requesting MicroKernel send and receive messages as necessary; it also splits
and reintegrates messages if they are larger than the máximum amount of bytes
that the platform is set to receive.

81

Chapter 5

Adaptive Distributed Multiagent
Environment

ln this chapter we describe our proposal to control workload for the n agents
that will represent the distributed environment for each time t. This proposal applies

techniques of distributed shared memory and load sharing, to distribute and lócate

information while executing dynamic adaptation policies at runtime.

5.1 Introduction

Virtual Reality (VR) is represented by different interacting entities allocated into

an environment, and such entities are designed to carry out some task.

Environment in VR is the scenario where a scene takes place, ln our

implementation the Environment is the entity that contains information of the

environment's state and may also contain rules about how to modify it. Context, in

our approach, is the entity that contains information about the Environment where

an agent community activity is developed. For example, the context in the real

world contains physical laws that rule our world, semantic concepts of words,

relationships between existent entities in the world, etc. Thus the Scenario and the

Context together represents the Environment.

During scene evolution, agents evolve according to their goals and perceptions

about the environment, objects and other agents around them. This means that

each agent consults the environment to perceive from it, and also to notify it any

intentions to carry out modifications to its state, as well as to validate in the context

the rules for permitted changes.

82

Administration of a dynamic 3D environment is difficult because the continuous

communication amid all agents and the environment. This communication may turn

the environment into a bottleneck for the whole system. This, because the context

inside the environment may take considerable computer resources for validation

purposes, causing the agents do not perceive changes in the environment

effectively.

The GeDA-3D's Environment currently implants two of its modules, the

Scenario (MS) and the Context (MC) in a centralized manner.

To alleviate the bottleneck problem, we propose to distribute the scenario and

the context adaptively into a set of agents.

We propose an administration ofthe environment based on special autonomous

agents denominated Environment Agents.

The final goal is to distribute both modules through available processors (or

machines) over the network, so an entity (an agent) represents one part of the

Environment and the whole environment be represented by all entity agents as

illustrated in Figure 5-1.

Kernel Kernel -i Kernel *

Kernel,

Network

Centralized implementation Distributed Implementation

Figure 5-1 . Distributing modules Scenario and Context

The distribution proposed must assign (computer) resources in function of the

complexity of the scenario at runtime. As the environment changes as time goes
on, such resource assignment must be done dynamically. That is, when the

complexity grows, more agents must represent the Environment, vice versa, when

the complexity of the environment is reduced, the number of agents must

decrease.

5.2 Architecture

The design principie we propose for the GeDA-3D environment distribution is

based on Environment Agents representing both modules Scenario (MS) and

Context (MC). An Environment Agent (EA) is in charge of administering a región r

consisting of a MS partition and a MC cache as illustrated in Figure 5-2.

83

EAr J— -^ MSr j MCr

Figure 5-2. Environment Agent in charge of región r and its modules

Let x, y and z be integers,
the 3D environment is

composed by a set of x*y*z
cubica! spaces called cubes;
for example in Figure 5-3,

x=3, y=3 and z=3. The

position of each cube is given

by the triplet (y, x, z).

Assuming that yellow cube is

at the front of the scene then

it is located at (1, 1, 3) and

light green cube is at (3, 3, 3).

A región r is an exclusive

subset of one or more cubes,
which may or may not stand

next to the others (see section

4.3).
Figure 5-3. The Environment divided into 27 cubes

We propose that the Scenario Module contains a collection of Environment

Objects, a cubical space description and the environment's ñame as illustrated in

Figure 5-4.

GenericEnvironment

-objects : Hashtable<Str ing, GenericEnvironmentCb ject>

-space: Cube

-ñame: String

S"

Environment

Cube

-position: Point3P

-front: Point3D

-back: Point3D

GeneridEnvironmentCbject

-objectCategory: String

-objectType: String

-id: String

-space: Cube

-behavior: boolean = false

Point3D

-x: double

-y: double

- z : doub le

I
EnvironmentObject

Figure 5-4. The Scenario Module

84

We propose a class GenericEnvironment that represents a 3D environment.

This class owns the environment's ñame, is composed by a collection of

GenericEnvironmentObjects and, provides basic operations to manage any

designable environment as illustrated in Figure 5-5.

Gsner/cEnv/fvnment

-objects: Hashtable<Str ing, Gener icEnvironmentCb ject>

-space: Cube

-ñame: String

■faddObject (in obj : Gener icEnvironmentObject) : void

+getEnviroraaezitObjectClass() : Class

+getObject (in id: Str ing): Gener icEnvi ronmentObj set

•fgetObjects () : Gener icEnvironroentObject[]

+getName(): String

+getSpace() : Cube

-fremoveObject (in id: Str ing): boolean

-t-setName (in ñame: Str ing) : void

+setSpace(in iriinX: double. in maxX: double,

in minY: double, in maxY: double, in minZ : double.

in maxZ: double) : void

+toXML(): String

-i-updateObject (in obj :GenericEnvironmentObject) : Gener icEnvironmentObject

Figure 5-5. The Generic Environment

As seen in Figure 5-5, class GenericEnvironment is abstract in order to let

designing of a class Environment, stored in some package and, in charge of

specifying the details about the management of the target environment that will be

represented. Class GenericEnvironment provides two abstract methods that must

be implemented in children classes. The getEnvironmentObjectClass() method is

expected to return the specific EnvironmentObject class type that will be managed
by the target Environment; this method is necessary because GenericEnvironment

manages a collection of GenericEnvironmentObjects (see Figure 5-4) and, when

the Environment Agent receives the scenario description (see section 3.4.6), EA

loads each EnvironmentObject according to the specified Environment. The

toXML() method is expected to return an XML-based description of the scenario

and such description is dependent on the specific Environment implemented and

the Rendering Module being used (see section 3.2.3).

We propose a class GenericEnvironmentObject (GEO) that represents an

environment object in a generic environment as illustrated in Figure 5-6. We

propose that a GEO specifies an object category as one of either an Avatar or an

Object; where an Object would be a graphical virtual entity and an Avatar would be

an Object with behavior. Also a GEO specifies an object type, in order to establish
a different ñame for each type of Object or Avatar as they should look different as

graphical virtual entities. Every GEO should own a unique id in order to be

distinguished in the environment due to we may will to show two or more Objects
or Avatars of the same object type. To ease testing during simulation we use a

cubical space as the surrounding space of each environment object. Finally, due to

85

object categories may be different in future works a GEO specifies if such object
has a behavior in order to provide information about whether this object represents
an agent in the environment.

GenericEnvimnmentxQbjec t

-objectCategory: String

-objectType: String

-id: String

-space: Cube

-behavior: boolean ■ false

+collisionUith(in c:Cube): boolean

+getld() : String

-t-getObjectCategory () : String

♦getObjectType () : String

+getPosition() : Point3D

+isBehaviorAlive() : boolean

-fj-sNe-arCjíj anotherObject -.GenexicEnvirormentObject) : boolean

+setld(in id: String) : void

+setPosition(in position: Point3D) : void

-fsetBehavior (in alive:boolean) : void

+setObjectCategory (in cat:String) : void

+setObjectType (in type:String) : void

+ toXML(): Stnng

+update(in témplate: Gener icEnvironmentCb ject) : void

Figure 5-6. The Generic Environment Object

As seen in Figure 5-6 class GenericEnvironmentObject is abstract in order to

also let designing of a class EnvironmentObject, stored maybe in the same

package that class Environment and, in charge of specifying the details about the

management of the target environment object that will be represented. Class

GenericEnvironmentObject provides also two abstract methods that must be

implemented in children classes. The isNear() method is expected to return

whether the current environment object is near to another environment object; this

is useful to determine the proximity of two objects according to the implementation
of sensors and effectors (see section 3.4.3). The toXML() method is expected to

return an XML-based description of the object and such description is dependent
on the specific Environment implemented and the Rendering Module being used

(see section 3.2.3).

We propose a class Cube as illustrated in Figure 5-7. A Cube determines the

bounds of a component of the graphical environment (see previous Figure 5-3). A

Cube specifies the position of the component and its front and back bounds; where

front is expected to set the most positive valúes for coordinates x, y and z of the

component and, back is expected to set the most negative valúes. A Cube is also

useful to specify the bounds of the entire graphical environment and, to specify the

position of a graphical virtual entity inside the virtual environment and its front and

back bounds (see previous Figure 5-4).

86

Cube

-position: Point3D

-front: Point3D

-back: Point3D

+collisionlIith (in c:Cube): boolean

+contains(in point :Point3D) : boolean

+getPosition() : Point3D

+getFront(): Point3D

+getBack() : Point3D

Point3D
3
-x: double

-y: double

- z : doub le

Figure 5-7. The Cube

We propose a class EnvironmentAgent as illustrated in Figure 5-8. The

EnvironmentAgent is an Agent in charge of administering the Scenario of the

virtual environment and also in charge of validating all permitted changes to the

environment according to rules established in ContextCache.

Agent AgentListener

\
n

¡1
EnvironmentAgent

■environmentClassName : String

-groupers: HashSet<AgentGrouper>

-adaptationlnProgress : boolean = true

-agentsCreatedByThis: int • 0

^

Splitter

AgentGrouper
0

Fuser

ContextCache

EnvironmentAgentFrame
0..1

MembershipTab le

DistributionMapO

CBenericEnvironment-

I
Environment

GanericEnvironmentCbjec t

1
EnvironmentObject

t i. .

EnvironmentCube

-members : HashSet<Gener icEnvironmentOb ject>

-neighbors: HashSe t<Gener icEnvironmentCbject>

-administrator: String

Figure 5-8. The Environment Agent

87

The EA requires to be provided of the environment class ñame of the

corresponding class Environment that is going to be loaded; such data is provided
by the Virtual Environment Editor (see section 5.3).

The Context Module (see section 3.4.1) may store a huge amount of

information about rules for permitted changes to even/ object in the environment

according to each object properties and effectors. Such information is subject of

previous validations before it is published to be used by the environment.

Paying attention to the grain size of computations [TANENBAUM], if an EA

requested to the Context Module to validate each intention, this would involve

overhead of message passing through the platform, exhibiting fine-grained
parallelism. Given that not all types of objects are managed for a scene and

therefore, only a subset of the information of the Context Module is necessary and

even more, an EA will only administer one part of the entire environment. Thus, we

propose the EA owns a cached copy of such information (see section 2.2.3) in

order to exhibit coarse-grained parallelism. For every agent intention the EA

receives, the latter validates permitted changes in ContextCache. We chose a

cache instead of a replicated copy because there is no need that the EA provided
means to modify the Context information, so that information is used as read-only.

The EA is helped by groupers which are inner class ProcessThreads (see
section 4.4) in charge of requesting to subscribe or unsubscribe agents from agent

groups (see section 4.6.3) whenever the Scenario changes. Every agent group
created is registered in the MembershipTable. An agent group would be created for

every object that could be perceived through agent's sensors or was reachable

through agent's effectors. ln this proposal we use the EnvironmentObject's

isNear() method to simúlate sensors and effectors and such method tests whether

the Cubes of two EnvironmentObjects overlap.

The EA is dedicated to processing agent intentions until it reaches either an

upper or lower bound of complexity, after which it will carry out either a dichotomy

process or a fusión process respectively. The Splitter is an inner class

ProcessThread in charge of cooperating with the EA on the dichotomy process.

The Fuser is an inner class ProcessThread in charge of working on the fusión

process. The flag adaptationlnProgress is used for mutual exclusión among

threads accesing concurrently to the DistributionMap. The dichotomy and fusión

processes are exposed in section 5.4. The Environment Agent's responsibilities
and the information managed by the DistributionMap are exposed in section 5.3.

5.3 Distributed Virtual Environment

When the scene and scenario descriptions are ready in the Virtual Environment

Editor (see sections 3.2.2.1 and 3.4.2) it will request platform to load an

Environment Agent. The Virtual Environment Editor (VEE) will provide to the

88

Environment Agent the environment's ñame and specific environment class ñame

that will be used to represent the environment. Once the Environment Agent is

running, the VEE will send to it the environment description. At first, the entire

environment is represented and administered by just one Environment Agent; this

and any EA will be in charge of:

• receiving any agent intentions to modify the environment's state,
• validating applicable changes into the ContextCache,
• knowing each entity relationship with others and,

• propagating all permitted changes only to agents interested in such changes

All these activities increase workload of the Environment Agent.

ln order to distribute load, an Environment Agent may decide to apply a

dichotomy to it, by means of cloning. lt divides its information and workload with its

clone agent. Vice versa, if it finds itself almost or already idle, it may decide to fuse

with another Environment Agent. This behavior is achieved in function of the

complexity of the 3D environment.

The proposed solution in

this work consists in

distributing the environment

adaptively on a set of

Environment Agents as

illustrated in Figure 5-9.

Each Environment Agent

represents a volume x of the

environment and, all of them

are perceived as a single

entity by other agents.

Figure 5-9. The Environment divided into regions of volume x

The distribution is adaptive, because the number of agents that represent the

environment is calculated in function of the complexity of the environment for each
time t. lf the environment is complex, then we will have that the number of

Environment Agents is big, otherwise is small. Our strategy offers the mechanism

to increase or reduce the number of agents in function of the environment

complexity.

We propose measuring the complexity of the environment through the class

DistributionMap as illustrated in Figure 5-10. The DistributionMap (DM) specifies

89

the collection cubes that compose the entire environment as a 3D space. The DM

has an administrator defined as the AUN (see section 4.6.2) of the corresponding
EA. The DM establishes a default cube count for x, y and z coordinates in order to

determine the corresponding bounds of every EnvironmentCube according to

bounds specified by the target Environment.

DistributionMap

-cubes: EnvironmentCube [] [] []

-administrator: String

-cubeCountX: int ■ 3

-cubeCountY: int = 3

-cubeCountZ: int ■ 3

<r s:
PartitionTable

ObjectCubesTable
—

C~

Pcrtition A

GenericEnvironment

LoadTable

I
EnvironmentCubeRegion

1

1
Environment

GenericEnvironmentCbject

i.. L
Cube

I

5
EnvironmentObject

Point3D

EnvironmentCube

-members : HashSet<Gener icEnvironmentOb ject>

-neighbors: HashSet<Gener icEnvironmentOb ject>

-administrator: String

0..

0..*

Figure 5-10. The Distribution Map

DM represents a shared memory space to determine where all

EnvironmentObjects are located. An EnvironmentCube determines which

EnvironmentObjects are members or neighbors of the cubical space represented.
An EnvironmentObject (EO) is located in one EnvironmentCube as a member and

this is determined if the position of the EO is inside of the EnvironmentCubes

bounds, otherwise if the bounds of the EO overlap the EnvironmentCube it is

considered a neighbor. Every agent intention takes some time of response to

process it since such intention arrived to the EA's MailBox (see section 4.5.4) until

the EA sends updates to interested agents. ln order to test distribution of the

environment, an increase of complexity is declared simply if the time of response

90

Figure 5-11. One EA administering the entire environment

r

for subsequent intentions increases three consecutive times. The Strategy is as

follows:

At first, the entire environment

is represented and

administered by just one

Environment Agent as

illustrated in Figure 5-11.

From now on, let the 3D

environment be composed by
a set of x=3

*

y=3
*

z=3

cubes. The cube count for

each coordinate is determined

by the end user.

When an Environment Agent
decides to apply a dichotomy

(cloning itself for another

instance), this decisión is

based on an important
increase of complexity it

manages. Our solution

resolves the problem for

deciding where to genérate a

new Environment Agent and

what information is provided
to it. ln Figure 5-12 EAi now

administers just 8 cubes (see
also Figure 5-3).

The Environment Agent will

divide itself into sub-regions in

function of the complexity of

the environment for each time

t. The complexity is measured

according to the quantity of

interactions that are made

among entities with each

other and between them and

the environment. ln Figure
5-13 EA3 administers 9 cubes

previously administered by

EA2.

Figure 5-12. Dichotomy process on EA, creates EA2

Figure 5-13. Dichotomy process on EA2 creates EA3

91

The quantity of agents will

van/ on time according with

environment evolution. All

agents will be able to

communicate with each

others to share border

information. ln Figure 5-14

EA» administers 2 cubes

previously administered by
EA2.

Distribution is done in

function of the complexity of

each part (a región r) of the

environment. We will have

more Environment Agents

(resolving the bottleneck) in

sections of the environment

that contain more complexity

and, a smaller number in

sections with low complexity.
ln Figure 5-15 EA5

administers one cube

previously own by EA1.

Figure 5-14. Dichotomy process on EA2 creates EA4

Figure 5-15. Dichotomy process on EA, creates EA5

lf complexity of some regions
diminishes, two or more

Environment Agents will

agree to fuse their information

(see section 5.4). Thus, one

agent will represent two

regions entirely. For example
in Figure 5-16, EA-i now

represents previous EA-i and

EA» regions and, EA2

represents previous regions
EA2 and EA5. Regions do not

have to stand next to each

other.

Figure 5-16. Fusión process of EA! with EA4 and fusión of EA2 with EA5

92

As previously established, an increase in the complexity of the environment is

declared, if the time of response of three consecutive intentions increases. Such

increase of complexity leads to carry out a dichotomy process due to the following
situation. Suppose that any intention takes 5 units of time to be processed and,
three intentions arrive almost at the same time as illustrated in Figure 5-17

arrival of intenticn 1

f
Time ofResponse=6

0

Time

10

start processing finish processing

arr iva I of intent ion 2 Time ofResponse=11

15 20

I
0

Illllll

in ! 15

start processing finish processing

air iva I of intent icn 3 Time ofResponse=16

T
Time

20

I
0 15 20

llllllllll

5 10

start processing finish processing

Figure 5-17. Three intentions with an increase of time of response

T
Time

ln Figure 5-17 the time of response for these intentions is greater from the

target agent perspective. Thus ifthe latter situation continúes, some agents will not

receive the environment update fast enough. Due to the cases of study (see

chapter 6) available for tests, the increase of complexity is declared only

considering the increase of time of response. ln a more realistic simulation, we

could also consider the average load of the EA, the amount of administered agents
and the relationships between agents and objects.

Every EnvironmentCube specifies its administrator, so for every agent intention

that the EA receives, it verifies if such agent is a member of any EnvironmentCube

administered by the EA, otherwise the EA requests the platform to forward the

intention to the corresponding EA in charge of such agent. This activity is

analogous to distributed shared memory issues; the case when a page is

requested in the local machine and such information is not located locally (see
section 2.2.5), but instead of requesting the information, the current EA knows

which EA owns the information and, the current EA proceeds to forward the

intention.

93

An EO may be contained in one or more EnvironmentCubes, in one as a

member and in the others as a neighbor. lf an EA processes an intention that

updates one of its member EnvironmentObjects, and such EO is contained as a

neighbor of one or more EnvironmentCubes that are not administered by this EA,
then it sends an update of that EO to other Environment Agents to cause that they
also validate the intention and determine the corresponding changes in their

corresponding environment partitions. The latter is analogous with the sharing of

border information between cells (see section 2.3.1).

The time of service is the amount of time that an EA is giving service since

launched or has recently participated in a dichotomy process of a fusión process

(see section 5.4). A decrease of complexity is declared by an EA when it detects

that only the 10% of the time of service or less has been dedicated to agent
intentions. A decrease of complexity is also declared, if all of the EAs members

Environment Objects become neighbors, that is, they moved (or were moved) to

EnvironmentCubes administered by other Environment Agents long time ago.

5.4 Dynamic Adaptation Policies

Initialization process of an EA:

1. EA is instantiated.

2. EA sets its flag adaptationlnProgress as true.

3. EA requests platform to registerAgentUniqueNameForLookup() to be

localizable as a unique entity (see section 4.6.2)
4. EA joins the Environment Agent group through invoking the operation

joinGroup (see section 4.6.3).
5. EA receives environment description and optionally the shared memory

state. The first EA created for an environment will not receive a shared

memory state, because in the beginning this EA will represent the entire

environment

6. EA requests to the Context Module the necessary data related to

Environment Objects according to the received environment description,
and stores such data in the ContextCache in order to calcúlate agent
intentions consequences.

7. EA starts measuring the time of service.

8. EA sets its flag adaptationlnProgress as false.

DistributionMap is a class accessible by the threads: EA when executes

behavior(), AgentListener when executes messageReceived() and Fuser when

carries out the fusión process. Such threads right before trying to access to

DistributionMap test the flag adaptationlnProgress and suspend their execution

while that flag is true in order to guarantee mutual exclusión in the DistributionMap
for readings and writings. After the thread realizes that such flag is false it sets the

94

adaptationlnProgress flag as true. After such threads finish accessing to the

DistributionMap, they set the adaptationlnProgress flag as false.

The EA processes agent intentions sequentially as they arrive into MailBox. The

EA is processing an agent intention if and only if it could set the flag

adaptationlnProgress as true.

When an EA is launched, its AgentListener (see section 4.6.3) may invoke its

messageReceived() method, as long as the EA is registered at platform; this

method is used to receive ACLMessages from any module or agent and, to store

agent intentions into a queue in the ContextCache.

After ContextCache queues an intention, it notifies the EA. After the EA is

notified, it processes agent intentions according to rules read from the

ContextCache. The EA is initialized with the flag adaptationlnProgress set as true

(see Figure 5-8) in order to its behavior waits until the environment description is

received by the AgentListener.

For every intention the EA processes, after calculating the corresponding

change in the environment representation, it calculates the time of response of that

intention measured since such intention arrived to MailBox (see sections 4.5.4 and

4.6.3) until update messages were sent to all interested agents.

Besides, for every intention processed, the EA stores on the DistributionMap's
LoadTable for every updated object the intention time of service, measured since

that intention was obtained from the queue until update messages were sent.

Every updated object might be either a member or a neighbor of the

EnvironmentCube. The LoadTable accumulates such intention time of service to

the one previously stored if that already existed. The LoadTable s data for every

object will be considered as the object's load. The EA also stores the intention time

of service in the Fuser, in order to measure the percentage oftime of service used.

After processing every intention, the EA compares the time of response with the

previous one, and when it detects that such readings increased three consecutive

times and, if this EA administers two or more EnvironmentCubes which members

have load, then it concludes that the upper bound limit of complexity has been

reached and starts a dichotomy process.

The load of all objects is used to calcúlate complexity of different combinations

of sets of EnvironmentCubes when it is required to apply a dichotomy in order to

find a combination of two exclusive sets with the closest to equalize workload,

forming a Partition (see Figure 5-10) of two regions, which are subsets of exclusive
EnvironmentCubes (see Figure 5-3). The load of an EnvironmentCube includes

both member and neighbor objects. The load of all objects in this EA is also used

to notify other Environment Agents the average región load of this EA

accumulating the load of all objects and dividing them by the time of service.

95

After processing every intention and if a dichotomy process was not started,
then the EA verifies if the percentage of time of service is less than 10% and, if

there are more Environment Agents running then the EA concludes that it has

reached the lower bound limit and starts a fusión process. The EA also reaches the

lower bound limit when it realizes that it administers EnvironmentCubes with no

members in them for a determined period of time (which for tests such period is 60

seconds of time of service) and, that there are more Environment Agents running.

Dichotomy process (upper bound limit):

Let x and y be regions. Let EAX be the EA in charge of región x. Let a partition
be a set of Environment Cubes. At first x will exist and y will exist later.

1. EAx's behavior realizes that has reached the upper bound limit, measuring
time of responses since its instantiation or its last dichotomy process. EAx's
had previously set the flag adaptationlnProgress as true (as stated before).

2. AgentListener of EAX continúes queueing intentions into ContextCache.

3. EAx's behavior launches a thread Splitter.
4. Splitter requests platform to créate another EA. This new EA will be in

charge of región y so it will be called EAy.
5. EAy will be loaded on the machine with the lowest workload (see section

4.5.1).
6. Splitter waits to be notified of EAy's AUN (see section 4.6.2).
7. EAx's behavior determines the best partition according to the load for every

object that EAX administers.

8. EAx's behavior prepares part of an ACLMessage to be sent to EAy,
establishing the Environment Partition to be sent.

9. EAx's behavior deletes all information about the Environment Objects that

are not members neither neighbors of any of the EnvironmentCubes that

EAx's administers.

10. EAx's behavior waits until Splitter can provide EAy's AUN.

1 1.EAy carries out the initialization process described previously.
12. Splitter receives back the AUN of EAy.
13. EAx's behavior establishes in the DistributionMap that the administrator of

the second partition is the AUN received.

14.EAX serializes the shared memory state ofthe DistributionMap and stores it

as binary content in the ACLMessage to be sent.

15. EAx's requests platform to send the ACLMessage to EAy.
16.EAX sends to the Environment Agent group the update for the

DistributionMap.
17.The other Environment Agents update their corresponding DistributionMap.

18.EAX sets the flag adaptationlnProgress as false.

Any EA created after the first one will receive an environment partition, that is, a

subset ofthe Environment Objects that its creator (another EA) owned.

96

ln Figures 5-18 and 5-19 we depict the activities to determine the best partition.

D istributionMap: .dichotomy

Begin

W Créate Env ironmentCubeReg tons rl and r2 J

v
■ -

a

{ Store in

Insert all cubes .administered by EA into rl)

objectList all EnvironmentObjects that are members of the cubes administered by EA9

<■Sort objectList descending -according to load of every EO
j

r

i =r
totalLoad<-sumatoryOfLoadOf(r 1)

loadD ifferenceR 1 < -loadD ifferenceR2<-haIfload<-totalLoad/2

cube<-null

i<-0

totalObjects<-objectL ist.si2e0

~u
■<:■W bestLoadD iflfenence<-min (loadD iflferenceRl, loadd ifferenceR2)

>¿/*\cube<-null\J

(ssearch ingPart ition<-true

dcube<-r2.getMost!nfluencedNeighborCubeO¡>

D
cube!=null/\ cube==null

(obj<-objectList[i]
l cube<-getMembershipCübe(obj)

r2.conta ins (cube)

.getLoad0<ha IfLoad

(^2.add(cube)^)-^ ¡°|
loadD ifferenceR l< -abs (r 1 .getLoadOhalload)
loadD ifferenceR2 < -abs (r2 .getLosó 0-ha Ifload)

Figure 5-18. Activity diagram to determine the best partition during dichotomy process (part 1).

97

-O
loadDifferenceRl>bestLoadDifference SS loadD ifferenceR2>bestLoadDifference

false
rl.add (cube)

r2. remove (cube)
créate a new Partition with a copy of rl and r2D

add recently created Partition to a partitiionBinaryTre>ee J

(3search ingPart ition<-fa Ise

rl.getLoádQ<halfload

<Z

d

r 1 .getLoadQ> =halfLoad

remove lattest cube added

frl.add(lattestCube))-

*2)

KtotaObjects

loadD ifferenceR 1< -abs(rl .getL oadOhalfLoad)
loadD ifferenceR2 < -abs (r2 .getL oaúQ-ha IfLoad)1)

2/
i = = totalObjects

searchmgPartitionw/"^ *"\
W créate a new Partition with a copy of rl and r2 I

! search ingPartition

<=add recently created Partition to partitlIonList2)

obtain from psrtitDnBinaryTree the partition closest to equahze workload,

that is the first entry of the tree,

which contains the lowest loariDifference

i
End

Figure 5-19. Activity diagram to determine the best partition during dichotomy process (part 2).

Let w and z be regions. For every intention that EAZ receives, it verifies whether

the agent that provided the intention is one of the Environment Objects that this

EAZ administers, otherwise EAZ queries its DistributionMap to find the EAW in

charge of such agent and then requests platform to forward such intention to EAW.

Fusión process (lower bound limit):

Let p and q be regions.

1 . EAP realizes that has reached the lower bound limit. EAp's had previously
set the flag adaptationlnProgress as true (as stated before).

2. EAp's behavior launches a thread Fuser that will communicate with another

EA on behalf of EAP.
3. EAP sets the flag adaptationlnProgress as false to let Fuser access the

DistributionMap.
4. AgentListener of EAP continúes delivering agent intentions to EAp.
5. EAP continúes processing agent intentions.

6. Fuser announces (sending a group message) to other EAs its intention to

fusión with another EA, managing a Contract Net Protocol (see section

2.3.4).
7 Every one of the other Environment Agents may or may not submit a bid

indicating its región load according to the following criteria, that is analogous
to the distributed algorithm of mutual exclusión [TANENBAUM]. This

mechanism allows the fusión process be carried out by only one EA at a

time, in order to avoid two Environment Agents choosing each other to fuse

and, both disappear from de environment:

a) An EA submits its bid if it does not require to fusión with others.

b) lf an EA is executing its Contract Net Protocol and receives an announce

from another EA, then compares its AUN versus the other EA's AUN

and, if the local AUN is before the remote AUN then, then this EA sends

its bid, otherwise does not respond.

c) lf the EA sends a bid, then proceeds to cancel its fusión process and,

only after step 14 is executed, this EA could carry out a fusión process if

determines it as necessary.

8. After receiving all bids, EAP determines the EAq with the lowest región load.

9. Fuser sets the flag adaptationlnProgress as true in order to avoid that EAp's
behavior modifies the DistributionMap.

10. Fuser sends a proposal to EAq to carry out a fusión attaching its

Environment Partition, working this as a sender initiated negotiation with

work attached (see section 2.2.2).
11.When EAq receives the proposal it updates its DistributionMap and its

environment representation according to the received Environment Partition

and the shared memory state. Such proposal is always accepted.
12. After updating its environment representation, EAq sends back to EAP a

confirm message.

13. Fuser sends to the Environment Agent group the update of the

DistributionMap.
14.The other Environment Agents update their corresponding DistributionMap.
15. Fuser updates its DistributionMap establishing EAq as the new administrator

of EAp's EnvironmentCubes

16. Fuser sets the flag adaptationlnProgress as false to let EAp's behavior to

continué.

99

17EAp requests platform to forward to EAq every intention queued.
18.When EA-, receives the confirm message, it requests the platform to

deactivate its MailBox in order to do not receive more intentions.

19.Subsequent intentions that arrive to the EAp's machine will be rejected using
TA packets (see section 4.5.5).

20.When all intentions were forwarded, EAP requests platform to deregister it.

21.After EAp was deregistered, if any agent sends intentions to this EA, such

messages will be rejected using AU packets causing that the client machine

localizes another Environment Agent (see section 4.5.5).

5.5 Summary

We proposed an administration of the environment based on special
autonomous agents we cali Environment Agents. These agents represent only one

part of the Environment. To alleviate the bottleneck problem, the proposed solution

in this work distributes the environment (the scenario and the context) adaptively in

a set of Environment Agents representing both modules Scenario (MS) and

Context (MC).

Thus, an Environment Agent (EA) is in charge of administering a región r

consisting of a MS partition and a MC cache.

The Scenario Module contains a collection of Environment Objects and a

cubica! space description.

The GenericEnvironment represents a 3D environment and it is composed by a
collection of GenericEnvironmentObjects and, provides basic operations to

manage any designable environment.

The GenericEnvironmentObject (GEO) specifies an object category as one of

either an Avatar or an Object; where an Object would be a graphical virtual entity
and an Avatar would be an Object with behavior administered by an agent.

A Cube determines the bounds of a component of the graphical environment.

Each GEO belongs to one EnvironmentCube as a member and may be part of

another EnvironmentCube as a neighbor.

The EnvironmentAgent is an Agent in charge of administering the Scenario of

the virtual environment and also in charge of validating all permitted changes to the

environment according to rules established in ContextCache that is a cached copy

ofa subset ofthe Context Module information.

Each Environment Agent represents a partial volume x of the environment. All

Environment Agents administering the whole environment are perceived as a

single entity by other agents

100

An Environment Agent is dedicated to processing agent intentions. At the same
time it is aware of the upper and lower bound of complexity (computed with the

time of response and the time of service) verifying the condition of fusión or its

symmetric dichotomy.

We proposed measuring the complexity of the environment through the class

DistributionMap, which specifies the collection EnvironmentCubes that compose
the entire environment as a 3D space and stores information about the workload of

each EnvironmentObject modified as a consequence of an agent intention.

An Environment Agent may decide to apply a dichotomy process, by means of

cloning. lt divides its information and workload with its clone agent. Vice versa, if it

finds itself almost or already idle, it may decide to fuse with another Environment

Agent. This behavior is achieved in function of the complexity of the 3D

environment.

101

Chapter 6

Case Study

ln this chapter we present graphical results and metrics of the behavior of the

implemented environment, by means ofthe execution of three cases and, using all

developed components for GeDA-3D integrated through the platform.

6.1 Introduction

Given that there is no context module as a service from which receiving
information to validate intentions, we use ViSCA Render and AVE-3D Render in

order to simúlate execution time for context validation.

ln the first case study we use the ViSCA Rendering. Every agent generates
various intentions as soon as it can, according to its memory about the

environment state. The Rendering is configured to cancel the executing update on

an avatar, if another update arrives for the same avatar. The Rendering sends

updates to the Environment Agent periodically, that is, it does not send a reply to

every instruction it receives to modify the environment. This Rendering previously

managed prototype versions of the classes Environment and the Environment

Objects; such classes were reengineered according to the designed classes

GenericEnvironment and GenericEnvironmentObject (see section 5.2).

ln the second case study we use the AVE-3D Rendering. Every agent

generates sequential intentions, once the agent sent its intention, it waits until the

corresponding update arrives. We updated the AVE-3D Rendering in order to it

uses Environment and EnvironmentObject implementations to represent the virtual

environment.

102

Every simulation starts when launching the middleware for GeDA-3D in one or

more machines; see Figure 6-1 . The view for the platform is optional.

GeDA-3D Distributed System Platform

Hachint 10.0.5.206 3ho*« Woil, Loid

- | D| X|

11stID=-20

Tiying to i.,ji)i lesouice MONITOR as busy fot Hon itotModeMessageHandl et

flath ing resource MONITOR as busy tor Monit orHodeHess ageHandl es

Modul e Stosage del iver ing íot adddtess 1

Trying to mark resource MONITOR as free for KonitorModeMessageHandl er

Module Storage address 1 iesw«d

Mark ing resource MONITOR as free for HonitozHodeMessageHandl er

Trying to mark resource MONITOR as busy for MonitorModeMessageHandl er

''Uir ing for datagrajn

Marking resource MONITOR as busy for MonitorModeMessageHandl er

»»»»»Handl ing incomming message

Trying to mark resource MONITOR as free for MonitorModeMessageHandl er

Mark ing resource MONITOR as free for MonitorModeMessageHandl er

Kernel to Kernel message rece ived

Modul e Storage request ing rece tve fot addsess 1

Lj j
Lojd i:i-i-r

Figure 6-1. Start ofthe GeDA-3D Distributed System Platform

After that, the user can launch specific applications, either through the load

class button or through the operating system consolé.

6.2 Prey Predator Ship Battle

We present here the case study on the work developed by [ZÚÑIGA] [PI.ZA] and

[AGUIRRE] for GeDA-3D

6.2.1 lllustrating the case without using dynamic adaptation policies

The simulation begins writing the script for the scene description and the

scenario description using the Scene Descriptor as illustrated in Figure 6-2.

When the user presses the start button, the Environment Agent (EA) is started,
it receives the scenario description in XML format, loads the environment classes

designed to the current environment, and shows the amount of running
"Environment Agents" the amount of "administered objects" each 'objects load"

the metrics for "time of service" "percentage of time of service used" "average

región load" and the latest "time of response"; at the bottom it shows all "objects

positions" in the virtual environment, showing the content of 9 of 27 Environment

Cubes, using as rows the coordinate y and as columns the coordinate x because

the EA determined that the environment was a two dimensional arrangement

having all objects in the same coordinate z; all boxes show a label "second" which

is the reference of time according to the local machine; see Figure 6-3.

103

Scene Descriptor for GeDA-3D

Enter Scene Description:

I Load World TvoRooms

peclarations
Shipl : Imperial

Ship 2 : XWing

JBehavior
Shipl Predator

ShipZ . Prey

lArrangement

Shipl . In the left

Ship2 In the right

Sketch

Shipl chases Ship2

Shipl attacks Ship2|

nde

side

3f Left-Rc

of Right
-

om

Room

Avatars:

Rooms:

Hid*

1
Sl ar t

i Stop

Figure 6-2. The scene and scenario descriptions for the first case study.

BLrwironn-ent Agent) (10.0.5.?0b,4t*l 1686016681 361016) |n|x

Agene ID | 46116*56016661261016

Eventi Objects Load (ir. to 11 1S«C onds)

IS •*[i..ir,j** u, j * |
"ysTí* rhttil 4611686016681361020 Java thread 71 "-iicirig foi ch il di en thce-id; to finish

0bj«c« IL«Ad *l
Lef-e-RoojuVcnCol 10

:-*r--r. -l.r-.*i -1 fl 1 í ■ 16 0 lf f '■ 1
■

f 1 '.' 2 0 Java -rhiüii 71 n WAltine? É-jt twl) «« finish... Ship Z 10

¿l-r,' "Kit. !'. Ji-*. '.t-J ir, jt up 3h ip. (*3| j:- rt. i f* Righ-r-RooiV rWal 1 10

Sys-csM thc«ad 4611666016681361020 Java «ht«Ad 71 don* MiVlftf. Right-RooWlWall 1 10

lt<l_tfl»»«llHf child 3ys«*i» th.md 4611686016691361020 .Uva tht*u*l 71 Lef-c-Room/lUall 10

Sys-ee» chc*«d 4611666016661361020 Java «hs«A¿ 71 tmiihinf... R i grhc
-

R o on-/ t f C« 1 10

Sy-s-c-:». eh-cead 4611666016691361023 Java ehzc-ad 66 ls t«iiHii\«ii,g Righc-Room/ lf Col-ujwt 10

3y*-?«m rht«*d 4611666016661361023 Java cKi-a! 86 «•Ai-slngr Coi childzcn «hc«Ads «o finish Righ«B-Rooi*«/fW«ll 10

Sys-Cen thteAd 461166601666136102 5 Java shread 66 is »'*ii' im ti run() «« finish... Righe-Roonv'xj-vCol 10

Syscei- ehctAd 4611686016661361025 Java chicad 86 d«n« •■*ntirl-i. L«ffc-Pí.oi>v'rWAll 1 10

I'- t- .jir-r-t ¡r.j child 3ysc«M íhitiJ 4611666016681361025 Java <Ehx«ad 86 Shipl 10

T-t--.. chicad 4611686016681361025 Java «hi*Ad 66 finitMng. . . P i ■*)>.- -F-, .r.v'r.I.UM 10

Lef*fc-Roo.VlnCol 10

Ri-jht-Roor-v'lnCol 10

Lefe-Roowv'fWaH 10

Lef^-Ro-WrfCol 10

L* ír-F'-**í.w' 1 t'Tol -u.-r. 10

zi L«ft¡-Roo*i/nWAl 1 10

J ll ;

Second I Cllll>ll Sil—lili ■■'-. i-rr.*
-

nd | *■■-.'■ i F i
-- -

i - 1 ■■)■-■* 3*:-:cni I * T imt of Jeivic* used Second I Tim of Response

I 53727

Obiect

Ro-VColuírrvlXt-150 SO IX«31 251 1X8252 432

YJ1S2 52 |Shipl,L«f*c-Roo»p/lfColu»».,L«f-o-Roo»v'fWAll IR ighe-Pooi--*/ 1 fColijiwn.Ltf -e-Roo»*/ itCo IRi-jhe-Roow/fUall Right-RooiVrfCol

7*31 -4? |Left¡-P©WlM*ll IRijh'S-Roonv'lMAll 1 1. - t* I ■*■.■,■■• Uj ll UPigh-c-RooiVtWall

Yf-30 -150 (L«ft-Roo»i%r'lnC*>l .L-afc-Rooh/nUAll IRighc-Poo»-/ InCol .Left.-Roonv'inCol |R
■

if.- P ■■. .■ rtWa 1 1 Rijht-Roonv' mCol ,3hiP2

Figure 6-3. The Environment Agent at the beginning of the first case study.

For previous Figure 6-3 the center ofthe scenario is at (x=0, y=0, z=0). After the

Scene Descriptor sent the scenario description to the Environment Agent, it shows

104

the scenario (see Figure 6-4) and, requests platform to communicate with the Core

Module (see Figure 6-5). The Scene Descriptor requests Core to load the agents
Shipl (the blue ship) as a Predator and Ship2 (the yellow ship) as a Prey.

Figure 6-4. The Scenario's state: at the beginning of the first case study.

CORE GeDA 3D CINVESTAV GUADALAJARA VERSIÓN IJ! -|-|x|

Platform Services Tools Help

Services Agents | Tester |

10.0 5 1S0_agerit_admiriistrator;

1 0.0 5 1 50_agent_adminis1rator,

1 0.0.5.1 SO_agent_ad*Tiirn*rtraflor,

Predator mx cinvestav geda3d agent agent*: geda3d Predator ;

Prey inx cinvestav geda3d agent agents geda3d.Prey , **Agerit[

Test mx cinvestav geda3d agent agents geda3d TeslAgent ,
<f>

ll

Execute Agent Stop Plataform

Figure 6-5 Core in the first case study

The Core is in charge of locating all running Agent Administrators. An Agent
Administrator (see Figure 6-6) owns the agent definitions of all agents that can be

launched according to the kind of chosen behavior for each agent. After Core

receives the request from the Scene Descriptor, it requests the Agent Administrator

to load every requested agent and then the agents for Shipl (see Figure 6-7) and

Ship2 (see Figure 6-8) are loaded on the platform. After the EA loaded the

environment classes according to the scenario description, it request platform to

join agents Shipl and Ship2 to a group created for every object near to their

105

avatars (including the group created for their own avatars). The EA sends to all

agents only the objects that are around them and, for this case study, both ships
know about the location ofthe other in order to Shipl (the predator) chases Ship2
(the prey) and Ship2 moves from one place to another to make more difficult to be

chased and attacked. By the way Shipl uses a genetic algorithm to chase Ship2.

QgpDA 30 Agent Adm

A-***»* Defirntio-K D»: Ümed^a^definitKins

JSJXJ

Browse... Update

Avadable Agents

Predato-

Ptey

Test

Avadable Skills

Attack

Defend

Movement

Ai:hv.- Agent-;

Add A9ent | View Di Send Message I

Figure 6-6. The Agent Administrator of the first case study.

H Shipl jnjxj

4514005551524511061

i . -. '.-■■ -il id = "Chase "XAtti ibuttBXAtti ibute ñame

ACL invoking itceivc

ACL has rece ived

I know 5 objects

Le Ét -Room-' lUal 1

Le rt -Room/' 1 £Colujrff\

Ship 2

3hipl

Left-RooTr-/ ÉlOal 1

"object" valu ■ j

ACL invoking itceive

3h ípl behavior f) : Agent;
■
Shipl

*

Obiect to chase 3hip2

Sh ip 1: Movement; sk il IBehavior ()

Shipl: Movement sk il IBehavior () ;

reaching goal 'Chase'

Generating trajectory using sma

Trajectory 340 340 340 340 340

Agent position (-116.0,72.0,0.0) Agent Orientation 270.0

Figure 6-7. Shipl at the beginning knows 5 objects of the environment.

Hshipz

Agent ID 4514005551524511066

3hip2

3hip2

3hip2

Ship2

Ship2

Movement

Movement

Movement

Movement

Movement

skil IBehavi. i i i

skillBehavior() :

sk il lBehavioc()

skillB«h*viotf) .

sk il IBehavior (i :

Ex ecut ing. . .

freedom degrees 4

velocity 20.0

errorMargm 120.0

del ayExecxit ingHoveAct ion 1500

u

dtgistciing child Sy3*5e*w chtead 45J.400S551524S1.1070 Java thread 6

Ship*: Attack *-k -1 IBehavior () Eicecut ing. . .

3hip2 Attack *>k 1 1 1 Behavior () ma-** imumD íjtanceToShoot 200.0

ACL ha? receivod

I know 5 objects

B i ght-Poom/ rnCol

Ship2

Shipl
P ight-PooiVnUal 1

P i ght -Ro om/ i 'Jal 1

ACL invoking t«í*ive

Figure 6-8. Ship2 at the beginning knows 5 objects of the environment

106

All graphical interfaces but the Rendering and the Scene Descriptor are optional
to be shown.

After both agents are ready, they send the Environment Agent their intentions to

move their avatars; see Figures 6-9 and 6-10. The behavior of these agents was

implemented by [ZÚÑIGA].

Figure 6-9. The scenario after 77 seconds since the beginning.

Figure 6-10. The scenario after 274 seconds since the beginning.

107

As long as the avatars move through the environment, the Environment Agent
notifies to their corresponding agents, their current state and the state of objects
around each one as illustrated in Figures 6-11 and 6-12.

-iPlxl

Agent ID 14514005551524511061

ACL invoking receive A
ACL has rtctivtd

I know 12 obj«c*->*

ltíe-R««-/i»ill_l
Ship 2

Shipl
P ight-Room/ 1 CColux-tn

Left-Room/fUall

Right-Room/lnCol
R ight -RoW 1 Mal 1_1
Left-Room/nlBil 1

Left -Room/ rnCol

Left -Roo»/ 1 ¿Col -amn

Le f«-Room/ i f Col

Lefe-Roon/lUall

ACL invoking receive

▼

J Jl
Figure 6-11. Shipl knows 12 objects ofthe environment.

Hship2 Jnjxj

Agent ID 4514005551524511066

Ship 2

Shipl

Right-Room/nWal 1

R i ght -Ro om/ rUal 1

ACL invoking receive

ACL has receivad

I know 7 object»

R i ght -Ro oiV rnC o 1

R l ght -Room/ 1 f Col

R i ght -Room/fWall

Ship 2

Shipl

R ight -Ro om/ nTOal 1

Right -Room/ rWal 1

ACL invoking receive

11

Figure 6-12. Ship2 knows 7 objects of the environment.

The simulation continúes as illustrated in Figures 6-13 and 6-14. ln Figure 6-14

Shipl (the Predator) starts its -'attack" skill on Ship2. The metrics of the

Environment Agent at the same time of the Figure 6-14
are shown in Figure 6-1 5.

108

o o * CB

Figure 6-13. The scenario after 437 seconds since the beginning.

tt£

Figure 6-14. The scenario after 478 seconds since the beginning.

The situation reported by the agent that manages Shipl when reaches the goal
"chase" and starting reaching goal "attack' is shown in Figure 6-16. Notice in

Figure 6-15 in the box of "object positions" that Shipl and Ship2 are in the same

cube.

109

U) (nm s. :■(».. it,ubaí.uit)Í4{iuhiuii,) jnjxj

UlUtiOlUtUllIU

01 r
■ • Load (Ir. . iii .-- i.l-

11110)111

llllllll]

I lll- 11 11

l-ll"llll

121*11*11

I- 11-1111

IOIIOICI

l"ll lll-l

l"ll- 11-1

(l][OI(21

111111(21

[11(21(21

uxoim

chiici

121121(21

I

K-1SO. O, -4». 0,-5.0)

1(51 O, -49.0, -*■ Ol

1(241.0, -40. 0. -5.0)

K-150.0, -150. 0.-5.0)

1(51.0.-150.0.-5.0)

ICS*. O. -150.0. -50)

K-150.0, 52.0,5. 01

1(51. O. 55. O, 5. •)

1(252.0.52.0, 5.01

K-150.0. -49.0,5.0)

1(51. O, -4t. O, 5.0)

Kt5t.0,-4».0.5.0>

K-150.0, -150. 0.5.0)

1(51.0, -150. 0.5.0)

1(252.0,-150.0,5.0)

1(50. O,

1(251.0

1(452.0

1150.0,

1(251.0

1(452.0

1(50. O

11251.0

m'- O

1(50.0

1(251.0

1(452.0

1(50.0,

1(251.0

1(452.0

51.0,4.0)

51.0,4.0)

51.0.4.0)

50.0.4.01

-50.0,4.0)

-50.0,4.0)

152.0,14.0)

,152.0,14.0

152.0,14.0

51.0,14.0)

51.0.14.0)

51.0,14.0)

50.0,14.0)

-50.0,14.0

-50.0,14.0

IMI

II Al

ItAl

ICA1

ItAl

IEA1

lili

1 HA1

) lili

Hll

lili

IIA1

IEA1

IIIA1

)IIA1

IL.tc-Rooiv'lUall «*= (-140.0.

IRiJh«-»4,o>Vl*4lall_l « (151. C

IP.jh-j-Roo.v'EUall at (440. 0, C

IL.2t--RooWl--.Col a« (-140.0.-

IRi-the-ftooak/lrvCol av 1151.0,

I9ki|4l ae 1324.0,-116.0,0.0),

I

I

I

I

3

íL if1

Object)

L-tít-Ro**--**-*/ xnCol

Ship2

Plght-PoWiIiUll

íijhí-p-*,oi*yiiiíii_i
Left; -Po-WlMa.il

Pigh-r-Po-WiÉCíl

RÍ0h«-Ito«WlfColuM

Rijht-Roonv'ÉWal

Pi-jhr-Poom/ rnCol

L*<«-Rooin/xV«ll_l
Shipl

Righe-Roen/nUall
L«.t«-Ro»tw'lnC«l

P íghe-Pí-or-v' InCol

L«ft-Ro-WfU«ll

L-Én-p'.-'.irv' rf C-/1

L«f«-Roomr*l£Coluitv.

Leí* -Ae om/ i-tUal 1

11.1

10
—

104200

10

10

10

10

10

10

10

10

1100219

10

10

10

10

10

10

10

-f

:- .
-'■ i 1 E r*.v i t onwent Agen* 9 3 «cond Tin-e ot Secvice 1 ir. stc onda) Second .wii jj« Regio rv Load

S4204 1 | 54204 471 [54204 402

Second 1 AdBtmitc«ti4 Objec-fee Second • T ir.- ■: t Service 'i--.i Second Time of Revpo»..

5«04 18 |54204 40 1 54204 1031

Object Pos i«iom

R44WC44l4H4iMXt-150_50 1X151251 |Xf252_452
Vf 15252 ILalc-Roo-v ltColuan.L.te-Root^ll'all IRijhe-RooM>l ÍCol---4«4,L«f-: -Í..4V tf Col Itl jht-RooW tUal 1 .íl jh-r-RooiV t f Col

**fSl_-49 IL.Ítr-RooWlUail IRi .jh*- -Poot^ Ibll _l,L«íc-Poo4V illal 1 _1 IR 431.4: -R00V i'Jall

50_-150 IL«ít-Roo.Vl4*CM .Leír-RooWnUall IRi jhe-Poo,*' lr.Col . L<f*--Roo*r/ rnCol
"

I 9hlpl,R lorhc-PooiV nUal 1 ,R4o;M;-Poo4^ tnCol , Shif.*

Figure 6-15. The Environment Agent after 478 seconds since the beginning.

H Shipl jnj_xj

Agent ID 4514005551524511061

U
ACL invoking zec«iv«

Shipl beh jv i oí i i Ag-tnt 'Shipl' ccaching goal 'Attack'

Object to attack 3hip2

3hi.pl Attack: sk il IBehavior () : : «n«myld 3hip2

Shipl- Attack: sk il lBthavioc (J : : SKoot ing 3hip2

LsJ A

Figure 6-16. Shipl reaching the goal attack.

The situation after no agent carries out any intention, that is, the end of the

simulation is shown in Figures 6-17 and 6-18.

110

o o ±_ _± EB

Figure 6-17. The scenario at the end ofthe simulation ofthe first case study.

i ¿*E -ini x|

Agent: ID : I 451400 S5S1S245 11061

ACL invoking receive

»»»»»Terminat ing sk il 1 wk . c investav. geda3d. agent .skill.skill

3hipl: tíh-iviori i : : Goal Attack reached

Shipl. Attack: sk il IBehavior f) : Terroinated. . .

3

<L J
Figure 6-1 8. Shipl after the end of the simulation of the first case study.

Finally the Environment Agent shows the environment state excluding Ship2
from the "Objects Load" table and from the "Object Positions"; notice that current

metrics decreased in the boxes "Time of service used" and "Average Región
Load" The latter situation would lead to a fusión if there were more than one

Environment Agents representing the environment (see section 6.2.3).

111

Rtnvironnirnt Agent -) (l mi \ .*l)'..4i,l Iblll.nibtHI lt, inn.■¡■■a

Second | Cnv n«MMnt Agenci

401106601666 136 1016

-lalxi

EvtMI 0b]«ct» Lo*d (in xm 11 isecon düj

ACL invoking Eeceive

^1 54262

Object |Loid
J

Lef -3-Rooti-*/ cnCol 10

ACL invok ing eeceive

ACL h-i» n;i ived

Righe-Roo-nt/cUall

Right-Room/lUall 1

10

10

ACL invoking eeceive Lef«-Roofn/lW*H

R 1ght -Roon-/ 1 í C o 1

10

10

ACL invoking eeceive

ACL h-es eeceived

Right -Room/ 1 fColunrvIO

Right-Reom/CtiUll 10

ACL invoking eeceive

ACL h-es eeceived

Right-RooW enCol

Le£c-Rooir/tV-tll 1

10

10

ACL invoking Eeceive Shipl 1110469

ACL invoking tece ive

ACL h*e ecceived

ACL invoking eeceive

Right-Room/nUill

Left-Room/lnCol

R ight -Ro onJ 1 nC o 1

Left-Room/fUall

10

10

10

10

ACL h«9 ceceivcd Left-Room/eíCol 10

ACL invoking eeceive

J ±r

Left-Rooir/1 ¿Col -unan

Left-Roon/nU-il 1

10

10

d
Second I T mi o£ 3«evice I ln ve conde) Second I Aves «ge Pegí

54262 1

Second I .-. b KM---:- l i]- j-

| 54262 555

Second | * Tim* oC Seivice Tn.i* of Ptspo

Object Pos it ions

ReWColwr.lXf-15050 |Xj51_251
Vf 152_52 ILttft-RooWKColu.wt.LeCt-RooM/.tV'll IR i ght -Roo»/ 1 <C<> 1 u******. L t fr -Po-W e*Co

Vf 51_-4Í iL-tr-F-.n MUll |Right-Reo.V 1»U1 l_l,Le£t-Roo.V eWal 1_

Vf -50_- 150 |Left -Roow'lnCol ,Lef«-Poom/nW*n |Righ«-Roon-/lnCol ,Le£t-Room/ rnCol

IX*252_452 1

|Rtght-Roo*-/eW*ll ,Right-Roonv* tíCol |

1 |Righe~RooW eQUI 1 1

1Shipl,Righc-Roov/nWAl t ,Righ*-Roo.W enCol 1

15

179 -

Figure 6-1 9.The Environment Agent after the end of the simulation of the first case study.

6.2.2 Metrics without using dynamic adaptation policies

This simulation began after 53727 seconds since the beginning of the day (see

Figure 6-3) taking the local machine time. This suits well when we use more than

one machine and are willing to compare in the same graphic (see section 6.2.3).

During this simulation we have only one Environment Agent (EA).

Objects Administered by Ihe Environment /Agent

ln Figure 6-20

we depict the

amount of objects
administered by
the EA. At the

beginning of the

simulation the EA

administers 18

objects and, after

Shipl attacked

Ship2, the latter

disappeared of the

environment and

EAi notifies that

176

177

176 ■

administers

objects.

17

-B 175

174

173

172

17 1 -

17

EA, i

■ •

:
*

: : :

1

" ' '

' 1 ' •

j
i

; ; ; ¡ ; ;

iiii ¡J i i

5 37 5 3B 5 39 5 4 5 41 5 42

Local Machine Time in Seconds

5 43 5 44

10<

Figure 6-20. Objects Administered using one EA in the first case study.

112

ln Figure 6-21

we depict the

average región
load of the EA.

The load of an

object is the

amount of time of

service dedicated

to process the

intention of an

agent that causes

modifications to

such object.

450

400

350

xn 300
■o

« 250
***■ •t*""*'

1 200

T3

B
°

150

100

50

Avenge Región Load ofthe Envitonment Agent

*¡ ■;■ t i -~rr¡y\ l.t-ti'. n-l. .■»-'-'

...«.^.y...
-jj*......,,..*. f

■! I---!- '- J j. 1 :

537 5.3B 5 39 5 4 5 41 5.42

Local Machine Time m Seconds

543 544

k 10

Figure 6-21 . Average Región Load using one EA in the first case study.

The load of the región administered by the EA is the sum of the accumulated

loads of all objects that are either members or neighbors of the región (see section

5.4). After an object disappeared ofthe environment, the average región load does

not count the removed object's load, as if such object never existed.

ln Figure 6-22

we depict the time

of response for the

processed

intentions, such

time is counted

since intention

arrived to MailBox

until the EA

finished

processing the

intention. lf such

time increases

considerably, this

would cause the

starting of a

dichotomy process

(see section

6.2.3).

6000 r

500D

4000

3000

Time of Response for Processed Intentions

cc

*5 2000 h

1000

5 38 5 39 5 4 5 41 5 42

Local Machine r-me in Seconds

543 544

xo"

Figure 6-22. Time of Response using one EA in the first case study.

113

ln Figure 6-23

we depict the

percentage of time

of service that the

EA dedicated to

process agent
intentions. After

Shipl reached its

"attack goal", the

latter and Ship2
did not send

intentions to the

Environment

Agent anymore

and, its

percentage of time

of service

decreased.

40r

3€

X'

20

15

Percentage of Time of Service Used for Intentions

ir;

\ 1 JÜ
■IP i \ EA, :

\ Jr i rr"\

:±i! ;
JLi i
L ! !

i |

/
7 [

1 i i ¡ i

;37 5 38 5 39 5 4 5 41 5.42

Local Machine Time in Seconds

5 43 544

10*

Figure 6-23 Percentage of Time of Service using one EA in the first case

study.

6.2.3 Metrics applying dynamic adaptation policies

ln Figure 6-24

we depict the

amount of agents

running during this

simulation. Notice

that EAi shows a

delay in notifying
that it has applied
a dichotomy

process when

there are two

Environment

Agents. After

approximately 60

seconds a fusión

process is started

and EA-i sends its

information to EA2

which continúes

attending the

entire

environment.

■y

2

I 9

Amount of Agents Dunng Simulation

i
!

i —

<■*■ i
EA, 1i

I 5

I 7

16

| ! ! ¡ <

lili

i 1 : i :

14

13

12

¡

i

i

i i i i

i 1 1 ¡ i i i 1

7 45 7 455 7 46 7 465 7 47 7 475 7 48 7 485

Local Machine Time m Seconds

7 49 7 495 7 5

k 10*

Figure 6-24. Amount of agents using up to two EAs in the first case study.

114

ln Figure 6-25

we depict the

amount of objects
administered by
the EAs. At the

beginning of the

simulation the EAi

administers 18

objects. After the

dichotomy

process, EA-i

administers 2

objects and EA2

administers 16

objects. At every

moment the sum

of all objects
administered by
the two EAs is 18.

IS

16

14 •-

12

10 -

5 -

Objects Administered by the Environment Agent

■EA,

E*2

l _i_ _1_ _1_

'45 7 455 7 46 7.465 7 47 7 475 7 48 7 485

Local Machine Time m Seconds

7 49 7 495 7 5

-10*

Figure 6-25. Objects Administered using up to two EAs in the first case

study.

ln the previous Figure 6-25, after some elapsed time, EAi reports that it

administers only one Environment Object and EA2 administers 17 objects. This

situation happened because at time 74623 the object Shipl moved from the región
administered by EA-i to the región of EA2. Sometime after 74623, EA2 stopped

notifying EA-i about Shipl movements because no part of Shipl was occupying the

región of EA-i. After time 74667 EA1 carried out a fusión process with EA2. After

Shipl attacked Ship2, the latter disappeared of the environment at time 7491 1 .

ln Figure 6-26

we depict the

average región
load of the EAs.

Comparing this

Figure with 6-21 is

notable that the

load of around 400

milliseconds was

shared among the

two Environment

Agents, being the

máximum around

200 milliseconds.

250 r

,Average Región Load ofthe Environment Agent

200

TV".

100 li

_L iii

EA,

J J

7 45 7 455 7 46 7 465 7 47 7 475 7 48 7 485

Local Machine T,me n Seconds

7 49 7 495 7 5

«10*

Figure 6-26. Average Región Load using up to two EAs in the first case

study.

115

ln Figure 6-27

we depict the time

of response for the

processed
intentions of the

EAs. At time

74613 such time

increased three

consecutive times

and, caused the

starting of a

dichotomy process

(see also previous

figures 6-24, 6-25

and 6-26). This

figure shows a

pending problem
to be solved.

18000

Time d Response for Processed intentions

16000 ilillll! EA, i

• i I
*

'. \ '.
*

.» unm

'

Response
in

Millisecond i

¡

i

-

i

C UUUU

E

►3 inm

_

•

|| INM

9.
¡ iELj>/^^¿í^v^u-^ í

iS 7 455 7 46 7 466 7 47 7 475 7 48 7 485 7 49 7 495 7

Local Machine Tune m Seconds
«10

Figure 6-27. Time of Response using up to two EAs in the first case

study.

ln the previous Figure 6-27 the setting up of a new EA, until it is ready to

process the first intention, delays a considerable time due to two factors: messages
from this agent are at the moment treated as ordinary messages, that is, its

messages have to wait until other queued processes' messages are sent; the

same happens with group management issues requested by the second EA, the

CriticalCoordinator process is used for mutual exclusión during group creations

and group joins and, its messages are also treated as ordinary (see section 7.2).
ln Figure 6-28

we depict the

percentage of time

of service of the

EAs. After Shipl
moved from

Región 1 to

Región 2 the

percentage of EAi

decreased causing
a fusión process.

After Shipl
reached its "'attack

goal", the latter

and Ship2 did not

send intentions to

EA2 and, its

percentage of time

of service also

decreased.

Percentage of Time of Serwct Used for Intentions

20 -

15 -

10

1

r

EA,

E*2

7 45 7 455 7 46 7 465 7 47 7 475 7 48 7 485

Local Machine Time m Seconds

7 49 7 495 7 5

» 10*

Figure 6-28 Percentage of Time of Service using up to two EAs in the first

case study.

116

Comparing the previous Figure 6-28 with 6-23, it is also notable that the

percentage of time of service dedicated by these two Environment Agents was

divided almost to half.

6.3 Prey Predator Avatar Chasing

We present here the case study of the work developed by [MARTÍNEZ] for the

GeDA-3D Rendering using our Middleware. This Rendering is in charge of

receiving and interpreting lower level commands that receives in XML format in

order to display the graphical state of an avatar or an object in the environment.

6.3.1 lllustrating the case without using dynamic adaptation policies

ln the first case study both Rendering and Scene Descriptor were written as a

single high coupled application displaying the scenario after interpreting the scene

and scenario script. The second case of study begins using an agent called

Scenario Descriptor Emulator (SDE) which in fact emulates the out of the Scenario

Descriptor in order to avoid using such program that at the moment of these tests

was still under construction. An advance in the deployment of the Scenario

Descriptor is exposed in section 6.4.

When SDE runs, it sends an XML description to the Scene Descriptor V2

illustrated in Figure 6-29. The latter is a prototype of the interface to be provided to

solely write the script for the scene, separated from the interface dedicated to the

scenario description (see section 3.4.2).

= ' Scene Descriptor V2 -inix

Envixoron-ent

Room

*

BoKavioz

luis : Seiicht £

albert rinde z

Sketch

luis finds soxneone

-alb-ert finds someone

▼

jj J~
"tilt

Figure 6-29. The prototype of the Scene Descriptor versión 2 for the second case study.

When the user presses the start button, this Scene Descriptor requests the

platform to launch the Environment Agent (EA) for this environment and, the

agents luis of class Searcher and albert of class Finder. After the EA is launched,
SDE sends to the EA the scenario description in XML format.

When the EA receives the scenario description sends it to the Rendering, loads

the environment classes designed to the current environment and, shows the

117

amount of running "Environment Agents", the amount of "administered objects"
each "objects load" the metrics for "time of service", "percentage of time of service

used", "average región load" and the latest "time of response" and at the bottom it

shows all "objects positions" in the virtual environment; see Figures 6-30 and 6-31.

Htliviioliiiiei.(Agpnl) (IO.O..S.?Or.,4t'(IbUbOIbbHI Jb 1(111-) -|D|X|

U6H-.'f01í6íl)-1016

Tven*:» n-
■)-■■■

- Load (in Mili i seconds)

¿ini *k. . . J 55485 J
Syst*» rhtead «lltaíPlf6fll)610i0 Java rhte-id 46 done wtttivf. Object; ILoadl

D«[íji!ttimg child Sy*««» thread 461158601656136X020 Java thread 46 íltíit 10 |

Sysee» «htead 4611666016661361020 Jeve «hiead 46 £ini*hin-y ■ . . Uis 10 I

a<jei\« Imi registered in -jiomp 1 uiaQAvatat tome one 10 1

ACL invoking ttciive

Systei. thiead 461.L666016661361021 Jwi thread 52 i* t « ti»inae ir.j

Sysfe-ue thread 4611566016661361021 Java rhr-ad 52 waiting fox children rhrea-i- eo f mi-h

Systei-. thread 4611686016661361021 Java thread 52 i> «a ¿«ing for ion() «o finUh...

Systei* chxead 4611686015661361021 Java thread 52 done etaieing.

Der «f ist«t ir\g child Syiej» thit-id 4611666016661361021 Java thread 52

Sy-eve» thread 4611666015661361021 Java tht«id 52 f inivhing. . .

■tendee confirmad env i * ej-ijMntj load

il J zl
Second I Cnvit>>iuMnt Agent* Second I Time of Secvice (in s-econdv) Second | ■■.'.■■(■ij- Fe g ion Load

[55485 20

Second I ', Time of Sezvice used

35455 1

Second I -.L'. it, i -- -

1 • i 'ij*
•■

155485 0

Second I Time of Reípons

| 5548 S

■ÍT"" Pemti

I 55485

33493

II»' C 44 4-11mlM-lSO SO 1X9-43 31IZI52 1321

21-130 -

SOIalb.c-: 1 ll-ii** 1

lf-49 31 1 1 1 1

»S2 132 IS 01446 444444 1 1 1

Figure 6-30. The Environment Agent at the beginning of the first case study.

DGDDaDDDOaDD AVI*3D DDDQDDaDDDan SJJSJ

i #

118

For previous Figure 6-30, "Object positions" shows the content of 9 of 27

Environment Cubes, using as rows the coordinate z and as columns the coordinate
x because the EA determined that this environment was a two dimensional

arrangement having all objects in the same coordinate y. The center of the

scenario is at (x=0, y=0, z=0). All boxes ofthe EAs interface show a label "second"

which is the reference of time according to the local machine

ln previous Figure 6-31 six boxes appear as part of the environment and this

room is surrounded by four walls. The graphical interface of the EA (see previous

Figure 6-30) shows only three objects unlike the first case study (see previous

Figure 6-3). This situation is because the AVE-3D Rendering manages some

objects as part of the environment description; these objects are present in the

environment and might hinder the agents' behavior as its avatar moves inside the

scenario. ln this case study, when an avatar is near to any of those objects, the

Rendering notifies the EA a colusión event between the avatar and the

environment in order the EA notifies such event to the corresponding agent of such

avatar.

After Scene Descriptor V2 requested the platform to launch agents for luis (see

Figure 6-32) and albert (see Figure 6-33) such agents are loaded on the platform.
After each agent is loaded on the platform, the Scene Descriptor is notified of such

event and sends to the corresponding agent the goal specification according to the

sketch (see previous Figure 6-29 and Figures 6-32 and 6-33).

injxj

Agent 'ID .

38617459406S9470963

ACL invoking receive -* j
ACL has rece ived

Hess age vendes: Environment; Agent_=)_(10 . 0 . 5 . 206 , 46 116 360166 8136 1

Process ing pecfoim-it ive : update -environment

Update environment

ACL invoh ing receive

ACL has received

Message sender . Scene Descr iptor

Process ing per format ive: set-goals-specification

ACL invoking receive

Figure 6-32. Agent luis receives its goal specification.

^mjj<j

Agent ID 4611686017012208752

3ACL invok ing rece ive

ACL has rece ived

Message sender Environment Agent_=)_(10. 0. 5.206, 46 116860 16 68 1361

Process ing per format ive : update -environment

Update environment

ACL invok ing rece ive

ACL has rec* ived

Message sender ¡ Scene Descr iptor

Process ing per format ive : set-goals-specification

ACL invok ing rece ive

Figure 6-33. Agent albert receives its goal specification.

All graphical interfaces but the Rendering and the Scene Descriptor are optional
to be shown.

119

After the EA loaded the environment classes, it request platform to join agents
luis and albert to a group created for every object near to their avatars (including
the group created for their own avatars). The EA sends to all agents only the

objects that are around them. After both agents are ready, they send to the EA
their intentions to move their avatars; see Figures 6-34 and 6-35. Agent luis
controls the white skin male avatar and, agent albert controls the 2nd male avatar.

JnjxJ
l l ■' I : jr_(Jl M.!l . *¥l-3D:..IÜIJUünUIjLin:JU

Figure 6-34. The scenario after 40 seconds since the beginning.

Ulnviro-vnent A<jení. =)_(I0.0.5.?06,»61l6860l6b81 36101b) __i__J__J

46 11««601668 13610 16

tv'"" Objects Load (in Mili iseconds)

0,51.0,152.01 ItAl 1

12 1101 121 l(-130. 0.-13O. 0.52. 01

12 II 11 12 II (-49.0, -130. 0,32.01

1
'

II 'II. 1 1(52.0,-130.0,32.01

1

K-50. 0,-50. 0,152. 01 ItAl 1

1(51. 0,-30. 0.152. 0) ItAl 1

11132.0,-30.0,152.01 ItAl |

-d 55504

Object ILoadf

albeEt 114001

luis 11436)

J

ACL has eeceived

9 orne one I " J

ACL ir.v 4if,i receive

«1 1 r d
nd | Cr.-.- i i r.i ,- t.- ■

jT.'r Second [Tim oí Suvict Un Jicanisl Second | Ave i j j- í *

i i . r. Load

Isssos i

Second | -. Ii. i -. l -■- - r - i Objecti

Ís5505 -1"

Second I • Time of Service used Time of I - -j
■* r- -

1 55505 3

Object Pos it ion»

55504

KoWColQMfV IXI-1S0 SOIXf 42 511X132 152 1

ZÍ-150 -S0| 1 1 1

21-49 51 Jl be« 1 lluis 1

ZÍ52_152 4 4144 0144 1 1 1

Figure 6-35. The Environment Agent after 40 seconds since the beginning.

120

ln Figure 6-35, the graphical interface of the EA shows in the Object Positions

área the current locations of avatars luis, albert and someone (the female). Another

update is shown in Figures 6-36 and 6-37

DrjDDDGDDDDOa AVE-3D DDDDaDODDDnD -inlxl

Figure 6-36. The scenario after 75 seconds since the beginning.

HEnvironment Agent_=)_(10.0.S._0B,46l I6B60I66813610 SJxJ

46 116-5601668 1361016

Events Objects Load (ir. mili isa :onds)

.0,51.0) EA1 | J 55541 J
(11(01(11 (-150. 0,-49. 0,-43.0» K-50. 0,51. 0,51.0) IEA1 Object (Loadl

111(11(11 (-49-0,-41). 0,-49.0) 1(51.0,51.0,51.0) IEÁ1 alb.tr (58591

111(21(11 (52.0,-49.0,-49.0) 1(152.0,51.0,51.0) IEA1 luis 160141

121(01111 (-150.0,-150.0,-49.0) | (-50.0,-50.0, 51.0) |EA1 someone |0 |

12)111111 (-49.0,-150.0,-49.0) 1(51.0,-50.0,51.0) |EA1

121(21(1) (52.0,-150.0,-49.0) 1(152.0,-50.0,51.0) ICA1

101101(2] (-150.0,52.0,52.0) K-50. 0,152. 0,152.0) IEA1

(01(11(2) (-49.0,52.0,52.0) 1(51.0,152.0,152.0) IEA1

(01(21121 152.0,52.0,52.0) 1(152. 0,152.0, .152.0) IEA1

(11(01(21 (-150.0,-49.0,52.0) |(-50. 0,51-0, 152.0) |EA1 someone at (-60. 0,0.0, 90.-.

(11111(21 (-49.0,-49.0,52.0) 1(51.0,51.0,152.0) IEA1

(11(21(2) (52.0,-49.0,52.0) 1(152.0,51.0,152.0) |EA1 luis «c (140.0,0.0,125.49'.

(21(01(21 (-150.0,-150.0,52.0) K-50. 0,-50.0, JJ2.0) IEA1

(21(11(21 (-49.0,-150.0,52.0) 1(51.0,-50.0,152.0) IEA1

121(21(21 (52.0,-150.0,52.0) 1(152.0,-50.0,152.0) IEA1

«1 1 r zl
3econd | En Second | Time of 3ecv-.ce | in seconds) Second | Average Cegion Load

55541 1

Second I Administered Objects

155541

Second I of Service

|55541 158

Second | Time of Pespo

55541

Object Po

5 5 541

Row/ColumnlXjf 150 -50 IXf u 511X152 152 1

2Í-150 -50| 1 1

2Í-49 Sl 1 1 1

2#52_1<2 leoíncone alt -tT | Huís

Figure 6-37. The Environment Agent after 75 seconds since the beginning.

121

For this case study, none of the agents knows about the location of the others.

The behavior of agents luis and albert was predefined and the avatar named

someone does not move. The behavior of agent luis consists in walking forward

until it collisions to either a wall or a box, then turns to the right 90 degrees, then
walks forward one step and turns again to the right 90 degrees, then it continúes

walking forward; one time the avatar of luis turns to the right and the other to the

left until a colusión with the avatar of someone occurs; such event makes the

behavior of luis to stop its execution. The behavior of agent albert is analogous to
luis' but albert first turns to the left instead of to the right.

ln previous Figures 6-34 and 6-36 the avatars of luis and albert show graphical
emotional state. When such agents start walking forward they set its state as

"happy" and when a colusión of an avatar with a box or a wall occurs, its agent

changes its state to "fear" and so on. For this simulation, no emotional state affects

agents' behavior.

As long as the avatars move through the environment, the Environment Agent
notifies to their corresponding agents, their current state and the state of objects
around each one as illustrated in Figures 6-38 and 6-39.

JnJül

Agent: ID 3661745940699470963

L has rece iv- i

Message íendti Er.vitoiu.ient Agen*_*-***-)_(10 . 0 . 5.206,461166601668

Process ing p«i£c[7nat ive : up da* e
-

«nv i lonment-object

Decoding XHL of Env i coronen*Object . Avatar

pos i* ion=(140. 0,0. 0,125. 4977111816 4062}

Behavior cont ínutl

ACL invok ing cece ive

Collision occuced. . .

ACL has rece ived

Message sender. Env i coronen* Agen*_=)_(10. 0 . 5 . 206, 46 116860166 8136 J

Process ing per format ive: updat e
-

env i ronwent"object

Decoding XUL of Env i coronen*Object Avatar

pos it i on=(140 . 0 , 0 . 0 , 12 5 . 49771118164062)

Behavior cont inues

ACL invok ing rece ive

Figure 6-38. Agent luis knows its position x=140, y=0, z=125.

"3

H albert ISJxJ

Agent ID 4611686017012208752

invok ing rece ive

Collision occuced...

ACL has cece iv«d

Me 3 s age sender. Env ir oronen* Agen*_a)__(10

Processing perf ocmat ive : inform

Behavior con* mués

ACL invok ing rece ive

Tilait ing por position update

ACL has rece ived

Message sender: Envicoronent Agent_=}_(10

Pcocess ing per forma* ive upda*e-env i coronen*- object

Decoding XKL of EnvicoronentOb jec* Ava*ar

position=(-110.0,0.0,122. 39806365966797)

Behavior cont inues

ACL invok ing cece ive

Figure 6-39. Agent albert knows its position x=-1 1 0, y=0, z= 1 22.

3

0.5.206, 46116S60166f.i:6 1

0. 5. 206, 46 116660 lí 66 13 61

122

The simulation continúes as illustrated

reaches its goal as illustrated in Figure 6-41.

in Figure 6-40 where agent albert

QDDDDDDDDDOD AVf'JBaDDDPDDODOQD -IQI xj

Figure 6-40. The scenario after 103 seconds since the beginning.

-inlxl

Agen* ID : 4611686017012208752

Message sender: Environment Agen*_=)_(10 . 0 . 5 . 206 , 4611686016661361 ■*. |
Pcocessing pecf ocma* ive : inform

Behavioc con* inues

ACL invoking receive

Waiting por pos i* ion upda*e

ACL has rece ived

Message sender : Env i coronen* Agen*_=)_(10 . 0 . 5 . 2 06 , 46116 66016661361

Process ing per forma* ive : update -env i coronen* "obiect

Decoding XUL of EnvironmentObject. Avatac

pos i*ion=(-59. 40077209472656, 0.0, 115. 3981704711914)

Behavior cont inues

ACL invoking receive

Coil ision occuced. . .

Obiect 0: albert

Object 1: someone

Change
- > Coil ision flag: false

End of behavioc

Figure 6-41 . Agent albert reached its goal.

The simulation continúes as illustrated in Figures 6-42 to 6-44.

123

□DOOOGDOOOD O AVI 3D i -IQ|X|

Figure 6-42. The scenario after 165 seconds since the beginning.

DDOaanDOODDD AW 30 DnDDDDnDDDCn _mi*l

*

Figure 6-43. The scenario after 188 seconds since the beginning.

124

.i.i.i.i.i.i.i.ui.i.i.rv.A.i.i.i-ii.i-ii.i.i.i.i-iiti-ii .JE)*]

Figure 6-44. The scenario after 220 seconds since the beginning.

J.I.I.M.I.I.I.IV.J-.I.I.I.M.I.I.I.M.Ill.l ^JfljxJ

i

Figure 6-45. The scenario after 250 seconds since the beginning.

The metrics of the Environment Agent at the same time of the Figure 6-45 are

shown in Figure 6-46.

The situation reported by agent luis when it reaches ¡ts goal is shown in Figure 6-

47.

125

'.ronn-ent Aurnt -) (I0.0.5.?(>b, Ibl I.ilít.llIhMll Jfcluif. -iDlxl

Uíiice-foieeeiiíioií

Ob^-tces Load (in mil 1 iseconds (

"3
IO] IZ] 1 1|

I II I 01 1 11

.1)111111

1111-1111

121(01111

12111)11)

1-1U1 1 11

1
■' 1 l ■■ 1 1 - 1

HMI lll- 1

1'''1UI1. 1

t 11 101 [C 1

111111121

[11121121

1*11011*1

l-ll 111.1

I2I[2)(21

1(52. O. 51. O. -49. 01

1.-150.0,-49.0,-49.0)

K-49.0,-49.0,-49.0)

1(51. 0, -49. 0. -49. O)

K-150.0, -150. O , -49.0)

K-49.0,-150.0,-49.0)

1152.0,-150.0,-49.0)

K-150.0, 52. 0, 52.0)

K-49.0,S2.0,5t.O)

1(52.0.52.0,52.0)

K-150.0, -49. 0, 11.0)

K-49.0,-49.0,52.01

1(52.0,-49.0,52.0)

K-150.0. -150. 0, 52. 0)

K -49.0. -ISO. c. «: 01

1(52. O, -150. 0,52.0)

I

11152.0

K-50. 0

1(51.0,

1(152.0

K-50. 0

1(51.0,

1(152.0

K-10.0

1151. O

I (152 . O

K-50. 0

1(51.0

1(152.0

K-50. 0

1(51.0,

1(152.0

,152.0,51.0)

51.0,51.0)

51.0.51.01

51.0,51.0)

-50.0,51.01

50.0,51.01

-50.0,51.0)

,152.0,152.0

152.0,152.0)

,152.0,152.0

,51.0,152.0)

Sl.0,152.0)

51.0,152.0)

-50.0,152.0

50.0,152.0)

-50.0,152.0

IEA1

IEA1

IEA1

IEM.

IEA1

ItAl

ICA1

1IEA1

IEA1

IIIA1

IEA1

IEA1

IEA1

I IEA1

IEA1

1 IEA1

"3
luí» ae |-S4.4990»82»'73)3!

»»M»nt -te I -60.0,0.0, 90. C

r

5571.5

Object; ILoad I

lb*x« 110157 1

luis 131544)

*om«ont|0 |

Sec end I Er-ivicoiMM-tn-r .**. i-
■ *■ - Second I Tim* of Seivice fin seconds) Second I v.-i-ir Región Load

|S5716 ¿50

Second I 1 T .*-.- ot Sesvice used

J557U 166

"* *. vr.-i I Tum of Response

55716 1

Second I .- i> .
-■--—-- i Ob^ec-r»

T>55116 3

Ofc-)*.C*- P«5 14: 4*14-4

55*115

■K.-4VC4J1-1W4IZI-150-50 IXf-49_51IXfS2 152 1

tf-150_-50l I I I

Zf-49 51 ll-4ir | | |

2f52 152 l»04M«4-44). jlb.tt I . I

Figure 6-46. The Environment Agent after 250 seconds since the beginning.

S luis jnjxj

Agen*" ID 38S1745S40699470963

7]Message sender: Envir oronent Agent_=)_(10 . 0 . 5 . 206, 4611686016681361

Processing per format ive : inform

Behav i ■■■ r cont inues

ACL invoking receive

Ida i ting por position update

ACL has rece ived

Message sender Environment Agent_-)_(10 . 0 . 5 . 206, 4611686016681361

Process ing per format ive update -environment -object

Decod ing XKL of EnvironmentObject Avatar

pos ition=(-54. 499088287353516,0.0,64. 4986343383789)

Behavior cont inues

ACL invok ing receive

Col] ision oceured. . .

Object 0. luis

Object -L: someone

Change > Collision flag. false

End of behavior

Figure 6-47. Agent luis reached its goal.

The metrics of the Environment Agent after no agent carries out any intention,

that is, the end of the simulation is shown in Figures 6-48. Also the percentage of

time of service of the EA begins to decrement. The latter situation would lead to a

fusión if there were more than one Environment Agents representing the

environment (see section 6.3.3).

126

finv.ronnienl Aq**nt_=) (lÜ.0.S.20b,161 lf*8601b*)Bl ¡6lnib)

A-jene ID j 461166-601666136 1016

-101*1

Objects Load I tn mili Lsecond*)

~n
i ni") i n

iiiiiim

[11(21111

I2II0H11

[21(11(11

[21121111

[01(01121

[01(11121

[01121121

[11101121

(11(1)121

[1112)121

[2H01I21

[21111121

121121(21

I ("150.

K-49.0

1(52.0,

I (-150.

K-49.0

1(52.0

I (-150

K-49.0

1(52.0,

I (-150

K-49.0

1(52.0,

I (-150

K-49.0

1(52.0

0,-49.0,-49.01

-49.0,-49.01

49.0,-49.0)

,-150.0,-49.0)

-150.0,-49.0)

-150.0,-49.0)

0,52.0,52.0)

52.0,52.0)

52.0,52.01

0,-49.0,52.0)

,-49.0,52.0)

49.0,52.0)

0,-150.0,52.0)

,-150.0,52.01

-150.0,52.0)

K-50.0

1(51.0

1(152.0

K-50.0

1(51.0,

II 152 . 0

K-50.0

1(51.0

I (152 . 0

K-50.0

1(51.0

1(152.0

K-50.0

1(51.0,

1(152.0

51.0,51.0)

51.0,51.0)

,51.0,51.0)

-50.0,51.0)

50.0.51.0)

-50.0,51.0)

,152.0,152.0)

152.0.152.0)

152.0.152.0)

51.0,152.0)

51.0,152.01

,51.0,152.0)

,-50.0,152.0)

50.0,152.0)

,-50.0,152.0)

IEA1

IEA1

IEA1

I C.l

IEA1

IEA1

lE'.l

IEA1

I E .- 1

IEA1

IEA1

IEA1

IEA1

IEA1

lE'.l

d 55748

Object ILoad |

alb«E« 1101571

lui» 13X232 1

ton* 10 |

■

t--. one ■i' (-60 . 0 , 0 . 0 , 90 . E

± r
S«ce.i4d I Er.v4io4*íi«r44- Agenta '-; ..!,.i | Tl,.,- o£ ¡CEVI'l (4I\ --■ í.l- '■'. . r.x I Avexa-ie . . 1 1 r. 1 ¿i

55*145 1

3«cond | ■ !..■
-' -

.
- ■! 0b3«ces

55748 292

Second I • Tim. oí 3ceV.c. uvod

55746 150

Second I Time i í. •, ...
--

55745 3

Cifc^ect Positlínj

55745

RoW Col 44444-4 IX#-150_- 50

2f-150_-S0l
-*»-49 51 I

IXf-49 511X152 1521

2SS2_152 Isoneone, jlbeicluis I I I

Figure 6-48.The Environment Agent after the end of the simulation of the second case study.

6.3.2 Metrics without using dynamic adaptation policies

This simulation began after 55485 seconds since the beginning of the day (see

Figure 6-3) taking the local machine time. This suits well when we use more than

one machine and are willing to compare in the same graphic (see section 6.3.3).

During this simulation we have only one Environment Agent (EA).

ln Figure 6-49

we depict the

amount of objects
administered by
the EA. ln this

case study no

object is removed

from the

environment,

unlike the first

case study (see

Figure 6-20).

33

35

34

Ü 32

O

"5 3

| 28

2.6

2-,

5 545

Objects Administered by the Environment Agent

1 i ; ;
—

EA*. :

1 : i i :

¡ i i i i i

:

¡

i i : i i i

: ! ! ! ! !

¡
: : : :

■

i lili!

5 55 5.555 5 56 5 565 5 57

Local Machine Time .n Seconds

5 575 558

10*

Figure 6-49. Objects Administered using one EA in the 2nd case study.

127

ln Figure 6-50

we depict the

average región
load of the EA.

The load of an

object is the

amount of time of

service dedicated

to process the

intention of an

agent that causes

modifications to

such object.

ia:

160

140

<■> 120
*o
C

| 100

I
£ 80

•o
-T*

■3 60

iv.

20

Average Región Load ofthe Environment Agent
...

J_

5 545 5 55 5 555 5 56 5 565 5 57

Local Machine Time in Seconds

5 575 558

IO4

Figure 6-50. Average Región Load using one EA in the 2nd case study

The load of the región administered by the EA is the sum of the accumulated

loads of all objects that are either members or neighbors of the región (see section

5.4). ln this case study no object is removed from the environment, thus the load

caused by agent albert is still counted even after such agent reached its goal. At

time 55718 agent luis reached its goal too.

ln Figure 6-51

we depict the time

of response for the

processed

intentions, such

time is counted

since intention

arrived to MailBox

until the EA

finished

processing the

intention. lf such

time increases

considerably, this

would cause the

starting of a

dichotomy process

(see section

6.3.3).

1800 r

1603 -

U00 -

S 1200 ■

S 1GCO

Time oí Response for Processed Intentions

5 555 5 56 5 565 5 57

Local Machine Time in Second9

558

10"

Figure 6-51. Time of Response using one EA in the 2nd case study.

128

ln Figure 6-52

we depict the

percentage of time

of service that the

EA dedicated to

process agent
intentions. After

both agents luis

and albert reached

their goals, they
did not send

intentions to the

Environment

Agent anymore

and, its

percentage of time

of service

decreased.

Percentage of Time of Service Used for Intentions

5 565 5 56 5 565 5 57

Local Machine Time m Seconds

558

10"

Figure 6-52 Percentage of Time of Service using one EA in the 2nd case

study.

6.3.3 Metrics applying dynamic adaptation policies

ln Figure 6-53

we depict the

amount of agents

running during this

simulation. Two

EAs are running
after EAi has

applied a

dichotomy

process. After

approximately 60

seconds a fusión

process is started

and EA-i sends its

information to EA2

which continúes

attending the

entire

environment.

2r

13*

I 5

17

16

I Y

I 4

1.3

1.2

I 1

Amount ofAgents Ounng Simulation

i : : : : : EAi i

e/s :i ; ; ; ;

i iiiiii;

i :::::::

I ;

:
::;:::

¡llill

i i iiii i i
1

6 385 6 39 6 395 6 4 6 405 6 41 6 415 6 42

Local Machine Time 'n Seconds

6 425 6 43 6 435

IO4

Figure 6-53. Amount of agents using up to two EAs in the 2nd case study.

129

ln Figure 6-54

we depict the

amount of objects
administered by
the EAs. At the

beginning of the

simulation the EAi

administers 3

objects. After the

dichotomy

process, EAi

administers 2

objects and EA2

administers 1

object. At every

moment the sum

of all objects
administered by
the two EAs is 3.

3- _

Objects Administered by the Erwironmt nt Agent

2 r'

i i
EA, i

EA, i

«
2

I
'M
O

0 15

e

0

1
,

i i

j i i i

i

05

0

i i i i

i i i i i
6 385 639 6 395 64 6405 6 41 6 415 6 42 6 425 6.43 6 435

Local Machine Time in Seconds
x 10

Figure 6-54. Objects Administered using up to two EAs in the 2nd case

study.

ln Figure 6-54, after some elapsed time, EA2 reports that it administers no

Environment Object and EA-i administers 3 objects. This situation happened
because at time 63983 the avatar of luis moved from the región administered by

EA2 to the región of EA-i. After time 63983, EA-i stopped notifying EA2 about luis'

movements because no part of luis was occupying the región of EA2. After time

64012 EA-i carried out a fusión process with EA2.

ln Figure 6-55

we depict the

average región
load of the EAs.

Comparing this

Figure with 6-50 is

notable that the

load of around 180

milliseconds was

shared among the

two Environment

Agents, being the

máximum around

95 milliseconds.

6 385

4*werage Región Load ofthe Environment Agent

EA,

i i

6 395 6 405 6 41 6 415 6 42

Local Machine Time in Seconds

6 425 6 43 6 435

Figure 6-55. Average Región Load using up to two EAs in the 2nd case

study.

130

ln Figure 6-56

we depict the time

of response for the

processed
intentions of the

EAs. At time

63948 such time

increased three

consecutive times

and, caused the

starting of a

dichotomy process

(see also previous

Figures 6-53, 6-54

and 6-55). This

Figure shows a

pending problem
to be solved.

-mm

Time a Response for Piocessed Intentions

350Q

:

EA, :

'■'.'.:

3000

2500

2000

1500

1000

500

n

\ i
-

\ i i i :- i

1 r
iii:

r
U\,—J

""

N
i i i

6 385 6 39 6 395 6 4 6 405 6 41 6 415 6 42

Local Machine Time m Seconds

6 425 6 43 6 435

k 10"

Figure 6-56. Time of Response using up to two EAs in the 2nd case

study.

The previous Figure 6-56 shows slightly the pending problem to be solved

described in section 6.2.3 about Figure 6-27

ln Figure 6-57

we depict the

percentage of time

of service of the

EAs. ln this case

study, after the

dichotomy process

EA-, neither EA2

were cióse to 10%

and, at time 64012

EA-i decided to

carry out a fusión

with EA2. After luis

reached its goal,

EA2 did not

received intentions

anymore and, its

percentage of time

of service also

decreased.

Percentage ot Time oi Sen/ice Used for Intentions

5 385 6 4 6 405 6 41 6 415 6 42

Local Macnine Tme >n Seconds

6 425 6 43 6 435

-10*

Figure 6-57 Percentage of Time of Service using up to two EAs in the 2nd

case study.

Comparing the previous Figure 6-57 with 6-52, it is also notable that the

percentage of time of service dedicated by these two Environment Agents was

divided to less than half.

131

6.4 Prey Predator Avatar Chasing using the Scenario Descriptor

We present here the case study on the work developed about the Scenario

Descriptor by [ZARAGOZA] with the Rendering of [MARTÍNEZ] for GeDA-3D. ln

this case there are more box type objects besides the boxes already included in

the environment as described in previous section 6.3; see Figures 6-58 and 6-59.

Rvnlii.il liiviruiiiiii-iil fditor 10 - NrwOi's* ini.mu JSJxj
frte Tools

|ENV]

cuarto

l/ENVl

1ACT0R]

HombreEKp.esiones someone, center

HombreExpiesiones luis, len someone

HombreExpresiones albert, right someone

|/ACTOR|

IOBJECT)

¡/OBJECT]

Environment Entities

Result

0 Virtual Environment

VE Modification Commads

-Commad-

Execute Commad

Figure 6-58. The Scenario Descriptor for the third case study.

Mili.'NHi.'IIHi'.
File iimis

«nt Editor 1 .0 - New Descnptiun ^jnj_xj

(ENV)

cuarto

[/ENV]

(ACTORI

HombreEípresiones someone, center

HombreErpresiones luis, left sorneone

HombreEi-presiones albert, right someone

I/ACTOR]

IOBJECT]

I/06JECT]

Environment Entities

~1 Virtual Environment

°-
>__ caiaO

°- I~1ca¡a2

<>-C3Caia2
o- [^Caia3
o- C^ caial
o- f~1Caia5

°- C3 someone

«-□luis
o- C^albert

Result
Compile

Process completed

VE Modification Commads

--Commad--

Execute Commad

Figure 6-59. The Scenario Descriptor after compiling the described scenario.

132

At the moment of this writing this Scenario Descriptor only supports one type of
avatar of the collection provided by AVE-3D. The evolution of the scene is

analogous to the previous case study with a difference on the type of avatars used

and the objects included as illustrated in Figure 6-60.

Figure 6-60. The scenario at the beginning of the third case study.

6.5 Summary

ln the first case study we used the ViSCA Rendering and the Scene Descriptor

developed by [PIZA] and the agents and skills developed by [ZÚÑIGA]; such

agents executed a dynamic behavior, one acting as a predator and the other as a

prey. This environment consisted of 18 objects. The predator kept pursuing the

pray, using a genetic algorithm, until it was cióse enough to the prey and then it

attacked the prey. The prey requested intentions to the environment until was

attacked by the predator.

ln the second case study we used the AVE-3D Rendering developed by

[MARTÍNEZ] and a couple of agents that walked through the environment in a

predefined way, turning to the left or the right when found an obstacle, and

continué executing until they reached their objective.

ln the first two cases we showed the environment running and using the

Environment Agent to request it to carry out intentions. We showed the expected

graphical results of execution. We depicted in charts the metrics of the execution

reported by the Environment Agents showing the amount of agents running at

every time and the objects they administered at every moment. We also depicted
the dichotomy process and the fusión process being started when the

corresponding EA determined that it reached either its upper or lower bound limit.

133

Chapter 7

Conclusions and Future Directions

ln this last chapter we summarize our thoughts about the work done, goals
achieved, improvements to the GeDA-3D architecture and contributions to the

state of the art of distributed multi-agent systems; finally we present ideas for future
work.

7.1 Conclusions

The first goal of this work was, transforming the platform of GeDA-3D into a

flexible and scalable platform to run different types of 3D applications, while the

previously developed applications can still be runnable, preserving their functional

requirements and expected results of execution.

The transformation was necessary in order to satisfy requirements to achieve

distribution of a centralized component, such as the environment of a multiagent

system. The characteristics of the new architecture for GeDA-3D are the following:

1 . The proposed platform is flexible, because:

a) Every Kernel is only in charge of: a mechanism for process

communication, a limited administration of low level processes, and

basic I/O channels;

b) All modules, processes and agents may be linked to the Kernel in

runtime.

2. The proposed platform is scalable, because:

a) Every Kernel is in charge of only the processes and threads started on it;

b) All kernels are aware of the others workload;

c) Processes are loaded in the machine with the lowest workload.

134

d) Adding another machine will lead to load processes preferably in that

machine due to that is the one with the lowest workload.

3. The proposed platform provides all general services of a middleware,

presenting a set of operations for thread management, process addressing,

peer to peer communication, group communication and message buffering
easy to use for programmers.

4. The platform services are provided through the MicroKernel and its attached

modules for Thread Management, Process Addressing, Message Storage-

Delivering, Reliability, Distributed Mutual Exclusión and Group Addressing,
which have high cohesión by themselves and are weakly coupled with the

MicroKernel.

5. The Thread Management Module working together with the Process

Addressing Module made easier the implementation of the Agent

Management System that is in charge of providing a white page service.

That is because it was only needed the implementation of the Agent

Management Module, in charge of managing a few agents' issues and,

using the operations provided by the first two modules to provide the

complete service.

6. The use of the ASN and the AUN for agents, managed both by the Agent

Management System made easier the implementation of the Directory
Facilitator, because every agent is registered as a server using an ASN and

optionally may request to register as an individual using its AUN.

7. The Message Storage-Delivering, Reliability, Distributed Mutual Exclusión

and Group Addressing Modules made easier the implementation of the ACL

Message Service. That ís because the latter is only in charge of providing
the standardization of ACLMessages content, treat messages analogously
to the OSI transport layer and, providing each agent with a Listener thread

to receive ACLMessages.
8. After the MicroKernel substituted the oíd Message Transport Service of the

previous versión, the previously developed applications can still be runnable

including their expected results.

The distribution of a centralized component is achieved through providing the

following facilities:

1 . Addressing of every process in the system using its Process Service Ñame

(PSN) by default, that is, if there are various processes that can provide the

same service, any of them is eligible to execute a required task.
2. The creation of a Process Unique Ñame (PUN) permits processes to

communicate just with the process that owns that PUN if the latter is the

best eligible option to provide a required service. The latter two are provided

by the Addressing Module.

3. Group management lets various processes to join a group in the system and

then, receive messages from the others in order to synchronize their

activities. This is provided by the Group Addressing Module.

4. Given that all instances of Kernel in different machines notify the others its

workload, if a specific process requires distributing its workload with a new

135

process, then when requesting to load a new process, it is chosen the

machine with the lowest workload and, the performance of the service is

improved. This is provided by the MicroKernel through the PlatformFinder.
5. A mechanism to store messages until they are successfully delivered

permits to obtain a message and if necessary resend such message to

another destination; the latter is provided by the Storage Module.

6. Reliable communication permits doing the best effort to localize a

destination and deliver a message as long as an appropriate destination is

traceable; the latter is provided through the Reliability Module.

7 Given that a PUN is an extensión of a PSN, if a process P is member of a

group of processes that use the same PSN and, a process Q sends

messages to P using a PUN, when P is no longer providing service the

Kernel retries delivering the message using the corresponding PSN.

The final goal of distributing adaptively multiagent environments was met as

follows:

1 . We use special agents named Environment Agents as a set of one or more

agents that represent the entire environment as a unit.

2. An Environment Agent (EA) only represents one part of the environment.

3. The Scenario Module (MS) manages a collection of Environment Objects

and, it is eventually partitioned producing an Environment Partition that

consists in a subset of such objects.
4. The Context Module is expected to be used (see section 7.2) as the source

for a cached copy called ContextCache which contains part of the

information ofthe Context Module.

5. The modules Scenario (MS) and Context (MC) were distributed through
available processors (or machines) over the network being allocated their

corresponding partitions and caches in different Environment Agents.
6. Every EA owns an Environment Partition and a ContextCache and a

DistributionMap.
7. The DistributionMap is used as a shared memory for all the Environment

Agents.
8. Every EA uses its DistributionMap to know which Environment Agent is in

charge of which región of the environment in order to communicate with the

appropriate agent when necessary.
9. The EA also uses the DistributionMap to know if it is required to send to

other Environment Agents a message regarding an Environment Object

which is on the border of two regions.
10.The distribution ofthe modules MS and MC through available processors is

achieved through exploiting the platform services for distribution of a

centralized component described above.

Finally, the compliance of the requirements for the middleware is detailed in the

following table:

136

Requirement Satisfied through Details in

1 Completely distributed execution Middleware Chapter 4

2 Open source Source code Chapters 3, 4, 5 and

[RAMOS, PI.ZA,

ZÚÑIGA, AGUIRRE,

MARTÍNEZ, and

ZARAGOZA]

3 FIPA compliant architecture Middleware Chapter 4

4 Easy to use and extend for

programmers and non

programmer users

Scenario

Descriptor and

Scene Descriptor

Chapter 3 and

[ZARAGOZA]

5 Agent replication and mobility

capabilities

Pending Chapter 3

6 Complete and dynamic agent
administration (creation, starting,

stopping, addition at runtime)

Agent
Administrator

Chapter 3 and

[ZÚÑIGA]

7 Agent goals setup Scene Descriptor Chapter 3 and [PIZA]
8 Agent skills assignment Scene Descriptor

and Agent
Administrator

Chapter 3, [PIZA and

ZÚÑIGA]

9 Private agent knowledge Agent
Architecture

Chapter 3 and

[ZÚÑIGA]
10 Human-agent interaction Agent

Administrator

Chapter 3 and

[ZÚÑIGA]
11 Assignment of personality and

emotional state to agents

Scene Descriptor

Agent
Architecture

Chapter 3, [PIZA, and

ZÚÑIGA]

12 Environment simulation Environment

Agents

Chapter 5

13 Múltiple environment executing

concurrently

Middleware Chapter 4

14 Agent assignment to each avatar

(a graphical virtual entity)

Scene Descriptor Chapter 3 and [PIZA]

15 Avatars datábase administration Agent
Administrator

Chapter 3 and

[ZÚÑIGA]
16 Environment-Render direct

interaction

Environment

Agents and

Rendering

Chapter 5 and

[MARTÍNEZ]

17 Virtual environment colusión event

handling

Rendering [PIZA] and

[MARTÍNEZ]

18 Unified shape description of

agents between render and agent

private knowledge

Agent
Architecture

Chapter 3, [PIZA and

ZÚÑIGA]

19 Sensors and effectors simulation Agent
Architecture

Chapter 3

137

Requirement Satisfied through Details in

20 Transparent communication

between all modules and all

entities

Middleware Chapter 4

21 Scene evolution control, validating
each agent intention to change
virtual world

Environment

Agents

Chapter 5

The proposed reengineering of GeDA-3D architecture was the key to provide
the basis for building the distributed environment. Once GeDA-3D platform was

updated, it was easier the implementation ofthe distributed environment, because

the environment agents now have to deal only with policies related to the

environment representation and scene evolution. All issues concerning to

processes, groups, multi-environment support and communication were delegated
to the distributed system platform.

7.2 Future Directions

As future work we propose the following ideas:

1. The platform could implement the mobility service, through weak mobility

using java serialization, to move a process from one machine to another,

loading only the state of variables in the process and, restarting the process
on the target machine in one of a predefined set of states.

2. The platform could use network multicast for group messages, in order to

interrupt only to the appropriate machines when sending messages.
3. The platform could provide guarantee delivering messages in order of time

to all group members.

4. The platform could provide a more precise calculation of workload of

machines. For instance considering: processes other than the JVM running

the GeDA-3D platform, implementation details of the JVM about thread

priority, etc.

5. The platform could provide dedicated communication channels, for critical

services that should respond with the highest speed. An example is the

case when the Group Addressing Module requires that the Critical

Coordinator process grants the permission to créate a group. Every process

in the platform receives a message after Kernel has delivered messages

that arrived before for other processes. The Kernel sends the message of a

process after it has sent all messages from other processes that requested

to do so before. So, to receive and send a message, the Critical Coordinator

has to wait until the other processes have been attended and, group

management is frequently used by the Environment Agents during scene

evolution. The same situation occurs for messages sent among

Environment Agents for coordination issues during fusión and dichotomy

processes. Also the Environment Agents working together with distributed

Rendering modules might require such dedicated communication channels.

6. The platform could provide a mechanism in the Addressing Module in

charge of providing the forwarding of messages delivered to a process P to

another process Q that uses the same PSN and, causing that future

messages sent by the process S were sent preferably to process Q instead

of process P.

7. Analogously to Web Services, the platform could provide a service where

processes would register some of their operations. Such operations would

be used hiding details of knowledge of PSNs. An extensión would apply for

the yellow page service of the Directory Facilitator in the case of services

provided by agents.
8. The platform could provide a better human agent interaction interface

analogous to the script in the Scene Descriptor in order to communicate with

the agent and suggest it actions to do.

9. The Context Module could be implemented as an independent entity apart
from the Virtual Environment Editor. This would involve the analysis of both

the Virtual Environment Editor to decouple the instructions in charge of

validating rules on objects, including such instructions in the Context Module

and, extend such rules to include the effect of object interactions.

10. The ContextCache could really serve as a cached copy of information stored

in the Context Module and, communicate to it in order to bring from it all

information related to the Environment Objects administered by the

Environment Agent.
11. Every Environment Agent could have a redundant running copy of itself for

robustness purposes and such copy should receive all intentions that the

original received.

12.The Environment Agent could calcúlate the appropriate size of the

Environment Cubes to be administered according to the size ofthe Scenario

and the initial arrangement ofthe Environment Objects in the Scenario.

13. The Environment Agent could administer a dynamic size of Environment

Cubes instead of the initial fixed sized cubes, that is, resizing a subset of

cubes allocated in the same pair of coordinates, for example, for all the

Environment Cubes which center was at the same x and y coordinate resize

their width in the z coordinate.

14.The Environment Agent could request platform to send a termínate signal to

an agent that controls an avatar which has been removed from the

environment. For instance in the case study with two ships, the termínate

signal is necessary because an agent could behave as an orphan, that is,
the agent could waste cpu time and cause the sending of intentions to the

Environment Agent about an avatar that no longer exists.

15.The criteria used by the Environment Agent for the dichotomy process could

be refined. For that, the EA could also consider the load of its machine, the

average load of the EA, the amount of administered objects, the

relationships between agents and objects, etc.

139

16.The Environment Agent could consider agent interactions with a subset of

objects, in order to group them in the same región when it is required to

carry out a dichotomy process.
17.Once sensors and effectors were provided to ordinary agents, the

Environment Agent could use the agent sensors and effectors to determine

the proximity among such agent and other agents or objects around it

instead of the calculation of proximity using the center of objects currently
used.

18.Only when an entity (an object or agent) is near to an agent, the

Environment Agent sends update messages to such agent about that entity.
When an agent moves away from such entity and the agent cannot sense

the entity, the entity's state and position remain in the agent's memory. The

Environment Agent could be aware of each agent memory in order to

refresh the memory of the agent when such agent comes back to the same

place of the environment and such entity was moved from its original

position. For example, an agent could sense the presence of cookies in a

table in the kitchen in a time t-i but, at this moment is not interested in eating
cookies and decides to leave the kitchen, in a time t2 the agent gets hungry
and decides to come back to the kitchen expecting to find cookies according
to its memory, which has not been refreshed because the agent is far from

the cookies and, in a time t3 when the agent is near enough to sense the

cookies, the Environment Agent could refresh the agents memory informing
that such cookies no longer exist, at least in the position the agent expected.

19.When the amount of created groups for every object sensed by agents was

too high, the Environment Agent could administer a common memory for

various agents, arranging the amount of groups to handle for notifying

updates to the environment.

20. ln a determined environment design, some agents could send to the

Environment Agent a lot of intentions too simple that just disturb the

management of computer resources from the Environment Agent. The

Environment Agent is designed to be in charge of validating rapidly even

complex intentions that would take enough computer resources. The

platform implementation could be improved considering this situation. The

latter would be important in order to avoid all Kernels sending excessive

messages to the network that cause a fine-grained parallelism

[TANENBAUM]. Such improvement would help to avoid network

dependency, because now an Ethernet could turn into a bottleneck.

21.The platform could be used for simulation of real life problems like: urban

traffic control, fire fighting, etc.

141

Bibliography

[AGUIRRE]

[BADRINATH]

[CHIKOFSKY]

[COULOURIS]

[EAGER]

[ELMERHEBI]

[EMMERICH]

[FERRARI]

[FIPA]

[FIPA_ACL]

[FIPA_SPEC]

Alonso Aguirre G. "Núcleo de GeDA-3D" Master thesis,

February 2007.
B. R. Badrinath and T. Imielinski. "Replication and

Mobility' Department of Computer Science, Rutgers

University.

Chikofsky, E.J.; J.H. Cross II. "Reverse Engineering and

Design Recovery: A Taxonomy" IEEE Software January
1990 pp. 14-1 5.

George Coulouris. "Distributed Systems, Concepts and

Design" University of London and Cambrigde University,
2001.

D. L. Eager, E. D. Lazowska, and J. Zahorjan, "Adaptive
load sharing in homogeneous distributed system" IEEE

Transactions on Software Engineering, vol. 12 no. 5, pp.

662-675, May 1986.

Souad Elmerhebi, Patrice Torguet, Nancy Rodríguez,
Jean-Pierre Jessel. "The Effect Management in

Distributed Virtual Environments" IRIT - Institut de

Recherche en Informatique de Toulouse, France.

Wolfgang Emmerich, "Software Engineering and

Middleware: A Roadmap" International Conference on

Software Engineering, Limerick, Ireland, Pages: 117

129 ISBN:1-581 13-253-0 2000.

D. Ferrari and S. Zhou. "A load index for dynamic load

balancing" Proc. Fail Joint Computer Conf., Dallas, TX,

ACM-IEEE, Nov. 1986, pp. 684-690.

The Foundation for Intelligent Physical Agents.
http://www.fipa.org/

FIPA ACL Message Structure Specification
http://www.fipa.orq/specs/fipa00061/SC00061G.html

FIPA Agent Management Specification. Foundation for

Intelligent Physical Agents, 2000.

http://www.fipa.org/specs/fipa00023/

142

[FUNKHOUSER]

[KREMIEN]

[KRUEGER]

[LARMAN]

[LIVNY]

[MARTÍNEZ]

[MCLLROY]

[ODELL]

[ORACLE]

[PACHECO]

[PIZA]

[RAMOS]

[SCHMIDT]

Thomas Funkhouser. "RING: A Client-Server System for

Multi-User Virtual Environments" AT&T Laboratories,
NJ.

Orly Kremien, Jeff Kramer. "Methodical Analysis of

Adaptive Load Sharing Algorithms" IEEE Transactions

on Parallel and Distributed Systems, Vol 3, No. 6,
November 1992.

P Krueger and M. Livny. "The diverse objectives of

distributed scheduling policies" in Proc. IEEE Int. Conf

DCS, IEEE, 1987, pp. 242-249.

Craig Larman. "UML and Patterns" Prentice Hall

Pearson.

M. Livny and M. Melman. "Load balancing in

homogeneous broadcast distributed systems" Proc.

Conf. Performance, ACM, 1982, pp. 47-55.

Alma Verónica Martínez González. "Lenguaje para

Animación de Criaturas Virtuales" Master thesis, August
2005.

M. D. Mcllroy. "Mass Produced Software Components"
ln P Naur & B. Randell, editors, Software Engineering,

Report on a conference by the NATO Science

Committee. NATO Scientific Affairs División, Brussels,

Belgium, pp. 138-150., volume 1, pages 138-150. NATO

Science Committee, Garmisch, Germany, 1969.

Odell, J., Parunak, H.V.D., Fleischer, M., Breuckner, S.:

"Modeling Agents and their Environment" Agent-
Oriented Software Engineering lll, Giunchiglia, F., Odell,

J., Weiss, G. (eds.) Lecture Notes in Computer Science,
Vol. 2585. Springer-Verlag, Berlin Heidelberg New York

(2002).
http ://www.oracle .com/technetwork/java/mvc-

140477.html.

Miguel Carlos Pacheco Alfonso Gouláo; "Component-
Based Software Engineering: a Quantitative Approach"
PhD thesis, 2008.

H. Ivan Piza D. "Describing Interactions in Virtual

Scenes Using a Declarative Description" PhD thesis,

July 2007.

Félix F Ramos, Fabiel Zúñiga, H. Iván Piza. A 3D-

Space Platform for Distributed Applications

Management, ln proceedings of ISSADS 2002.

(International Symposium of Advanced Distributed

Systems). Guadalajara, Jal., Mex. November 2002.

pp.66-77 ISBN 970-27-0358-1.

Douglas O Schmidt. "Why Software Reuse has Failed

and How to Make lt Work for You" C++ Report, vol. 11,

no. 1, 1999.

143

[SMITH77]

[SMITH80]

[SZYPERSKI]

[TANENBAUM]

|TANENBAUM_STEEN]

[THEIMER]

[VOSINAKIS]

[WEYNS]

[WOOLDRIDGE]

[ZARAGOZA]

[ZHOU87]

[ZHOU88]

[ZÚÑIGA]

Smith R.G. "The CONTRACT NET: a formalism for the

control of distributed problem solving" Proceedings of

the 5th International Joint Conference on Artificial

Intelligence (IJCAI-77),Cambridge, MA, 1977.

Smith R.G. "A framework for Distributed Problem

Solving" UMI Research Press 1980.

Clemens Szyperski. "Component Software Beyond

Object-Oriented Programming" 2nd ed. Addison-Wesley
/ ACM Press.

Andrew S. Tanenbaum. "Distributed Operating Systems"
1st ed.. Vrije Universiteit Amsterdam The Netherlands,

1995.

Andrew S. Tanenbaum, Maarten Van Steen. "Distributed

Systems, Principies and Paradigms" 2nd ed. Upper
Saddle River, New Jersey, Prentice Hall, 2007

M. M. Theimer and K. A. Lantz. "Finding idle machines in

a workstation-based distributed system" IEEE Trans.

Software Engineering, vol. 15, no. 11, pp. 1444-1458,
Nov. 1989.

S. Vosinakis, G. Anastassakis, T. Panayiotopoulos.
"DIVA: Distributed Intelligent Virtual Agents" Knowledge

Engineering Laboratory, Department of Informatics,

University of Piraeus, Greece.

Danny Weynsl, H. Van Dyke Parunak2, Fabien Michel3,

Tom Holvoetl, and Jacques Ferber3. "Environments for

Multiagent Systems State-of-the-Art and Research

Challenges" 1) AgentWise, DistriNet, K.U.Leuven, B-

3001 Leuven, Belgium; 2) Altarum Institute, Ann Arbor,

MI 48105-1579, USA; 3) LIRMM, CNRS, Montpellier,
34392 Montpellier Cedex 5, France.

Michael Wooldridge. "An Introduction to Multiagent

Systems" Department of Computer Science, University
of Liverpool, UK. John Wiley & Sons, LTD 2004.

Jaime A. Zaragoza R. "Declarative Modeling Based on

Knowledge" PhD thesis, December 2009.

S. Zhou. "An experimental assessment of resource

queue lengths as load Índices" Proc. USEN IX Winter

Conf, Washington, DC, Jan. 1987, pp. 73-82.

S. Zhou. "A trace-driven simulation study of dynamic
load balancing" IEEE Trans. Software Engineering, vol.

14, no. 9, pp. 1327-1341, Sept. 1988.

Fabiel Zúñiga G. "Suitable Behaviors in Dynamic Virtual

Environments' PhD thesis, June 2007

CENTRO DE INVESTIGACIÓN Y DE ESTUDIOS AVANZADOS DEL I.P.N.

UNIDAD GUADALAJARA
"2010, Año de la Patria, Bicentenario del Inicio de la Independencia

y Centenario del Inicio de la Revolución"

El Jurado designado por la Unidad Guadalajara del Centro de Investigación y de

Estudios Avanzados del Instituto Politécnico Nacional aprobó la tesis

Middleware para Distribución Adaptativa de Ambientes Multiagente
- Middleware for Adaptive Multiagent Environment Distribution

del (la) C.

Luis Alberto MUÑOZ GÓMEZ

el día 29 de Noviembre de 2010.

Dr. Luis Ernesto López Mellado Dr. Félix FranciscoBamds Corchado

Investigador CINVESTAV 3B Investigadct^WESTAV 3A

CINVESTAV Unidad Guadalajara CINVESTAV Unidad Guadalajara

Dr. Mario Ángel Siller González

Pico

Investigador CINVESTAV 2A

CINVESTAV Unidad Guadalajara

