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List of Abreviations 
 
Here I provide a list of commonly used abreviations in the present work. This is not an exhaustive list, 
and doesn’t contain abreviations that were used only a couple times in the whole work. 
 
22G. Reads that are 21-24 nt long whose first 5’ nucleotide tends to be a guanine, these are RdRP 
products in C. elegans and close relatives. 
AAM. Alternative macrophage activation. 
Ago. Protein of the Argonaute family. 
BMDM. Bone marrow-derived macrophages. 
DE. Differential expression. 
DEA. Differential expression analysis. 
EV. Extracellular Vesicle. 
FDR. False Discovery Rate. 
Hb-sRNAs. Heligmosomoides bakeri small RNAs. 
HES. Heligmosomoides excretory-secretory product. 
IECs. Intestinal epithelial cells. 
IL. Interleukin. 
logFC. Logarithm base-2 of the fold change. 
LPS. Bacterial lipopolysaccharide. 
MDS. Multidimensional scaling. 
MHC. Major histocompatibility complex. 
miRNA. microRNA. 
Mono-P. Small RNA samples that didn’t received a phosphatase treatment prior to library construction 
and sequencing. 
Poly-P. Small RNA samples that were treated with phosphatase prior to library construction and 
sequencing. 
RdRp. RNA dependent RNA polymerase. 
RNAi. RNA interference. 
RNA-Seq. RNA sequencing. 
rRNA. Ribosomal RNA. 
sRNA. Small RNA. 
sRNA-Seq. Small RNA sequencing. 
TGF-β. Transforming growth factor beta. 
Th1. Type 1 T helper cell that promotes cell mediated immune responses. 
Th2. Type 2 T helper cell that promotes humoral immune responses. 
tRNA. Transfer RNA. 
WAGO. Worm-specific Argonaute protein. 
yRNA. Are small non-coding RNAs that are part of the human Ro60 ribonucleoprotein particle. 
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Abstract 
 
Small RNAs (sRNA) play a key role regulating target genes. Several studies have discovered that sRNAs 
may be used as communication molecules between organisms of different species. Heligmosomoides 
bakeri is a parasitic nematode that spends part of its lifecycle in the mouse intestine and can establish 
long-term infections. To do so, this nematode modulates its host immune response with a secretion called 
Heligmosomoides excretory-secretory products (HES). We have previously found extracellular vesicles 
(EVs) with immune modulatory capacity in HES. Both EVs and HES harbor sRNAs (Hb-sRNAs), but it’s 
unclear if Hb-sRNAs are relevant for infection. We know that H. bakeri EVs are capable of getting into 
mouse cells, but it is unknown if these deliver their sRNA cargo.  
 
Here we detect Hb-sRNAs in mouse cells and test whether Hb-sRNAs repress their predicted mouse 
mRNA targets. To achieve this, we first developed strategies to disentangle sRNA sequencing data 
(sRNA-Seq) from samples containing information of two interacting organisms. These strategies involved 
a combination of sRNA assembly and differential expression analysis. We applied the assembly 
approach to a diverse set of six pairs of organisms that communicate via sRNAs, representing animals, 
plants, fungi and bacteria. In all cases, sRNA assembly reduced the number of ambiguous sequences 
between host and symbionts compared to a baseline approach. Organism-of-origin determination is a 
challenging step for those reads that map perfectly to either genome.  
 
We then applied our strategies to an in vitro experiment in which we incubated intestinal epithelial cells 
and macrophages with EVs or HES. The purified RNA was divided into two, in order to sequence sRNAs 
for detecting Hb-sRNAs in host cells; and to sequence mRNAs (RNA-Seq) to assess the repression 
capacity of Hb-sRNAs on host transcripts. I was able to detect more than 16,000 Hb-sRNAs in mouse 
cells, representing 0.18% of the 8.4 M unique sequences produced by the adult nematode. The condition 
with the strongest Hb-sRNA signal was the intestinal epithelial cells with EVs. Noteworthy, I found that 
95.5%-99.6% of sRNAs reads that map to the parasite genome clearly behave as mouse sRNA genes 
according to our differential expression analysis. This indicates that mapping information alone is not 
sufficient to assign sRNA reads to an organism.  
 
I predicted host targets for the Hb-sRNAs found inside mouse cells using an end-to-end alignment 
approach to get strict predictions. I then tested for an overall effect of Hb-sRNAs on mouse transcripts 
using RNA-Seq and I was able to detect a slight effect of Hb-sRNAs on their best 384 predicted targets 
in both analyzed cell types. I also analyzed the effect of H. bakeri secretion products on host transcripts 
and found differential responses for some genes due to EVs or HES. The transcripts for interleukin 33 
(IL-33), a cytokine secreted by intestinal epithelial cells during H. bakeri infections, are repressed in 
intestinal epithelial cells with HES but not with the EV treatment. Interestingly, the IL-33 receptor is also 
repressed only with HES, but not EV treatment. We provide a valuable strategy for organism assignment 
for the sRNA species communication field. My results support an effect of Hb-sRNAs on host gene 
expression, although additional experiments are needed to test the relevance of Hb-sRNAs for the 
immune modulation activity of H. bakeri secretion products. 
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Resumen 
 
Los RNAs pequeños (sRNAs) juegan un papel clave en la regulación de sus genes blanco. 
Recientemente se ha descubierto que los sRNAs pueden fungir como agentes de comunicación entre 
organismos de diferentes especies. Heligmosomoides bakeri es un nematodo parásito que pasa parte 
de su ciclo de vida en los intestinos de ratón y puede establecer infecciones a largo plazo. Para lograrlo 
dicho nematodo modula la respuesta inmune de su hospedero mediante lo que se conoce como 
productos de excreción-secreción de Heligmosomoides (HES). Hemos encontrado previamente 
vesículas extracelulares (EVs) con capacidad inmuno-modulatoria en HES. Tanto las vesículas como 
HES tienen sRNAs (Hb-sRNAs), pero no queda claro si los Hb-sRNAs son relevantes para la infección. 
Sabemos que las vesículas de H. bakeri son capaces de entrar a células de ratón, pero desconocemos 
si son capaces de liberar sus sRNAs.  
 
En este trabajo detectamos Hb-sRNAs en células de ratón y ponemos a prueba si los Hb-sRNAs 
reprimen sus blancos predichos en mRNAs de ratón. Para ello, primero desarrollamos estrategias para 
separar datos de secuenciación de sRNAs (sRNA-Seq) de muestras que contengan información de dos 
organismos interactuando. Nuestras estrategias involucran una combinación de ensamblaje de sRNAs 
y un análisis de expresión diferencial. Nosotros evaluamos la aproximación de ensamblaje de sRNAs en 
un grupo diverso de seis pares de organismos que se comunican mediate sRNAs. En todos los casos, 
las técnicas de ensamblaje de sRNAs reducen el número de secuencias ambiguas entre el hospedero y 
su simbionte en comparación con una aproximación sin ensamblaje. La determinación del organismo de 
origen es particularmente difícil para aquellas lecturas que alinean perfectamente a ambos genomas.  
 
Posteriormente, apliqué nuestras estrategias a un experimento in vitro de células de epitelio intestinal o 
macrófagos incubadas con EVs o HES. El RNA usado para este experimento se separó en dos para 
realizar la secuenciación de sRNAs (sRNA-Seq) con el objetivo de detectar Hb-sRNAs en las células del 
hospedero, y para llevar a cabo la secuenciación de mRNAs (RNA-Seq) con el fin de evaluar la 
capacidad de represión de los Hb-sRNAs en transcritos del hospedero. Encontré más de 16,000 Hb-
sRNAs en células de ratón, lo cual representa el 0.18% de las 8.4 M de secuencias únicas producidas 
por el nematodo adulto. La condición con la señal más fuerte de Hb-sRNAs fue las células de epitelio 
intestinal con EVs. Notablemente, encontré que del 95.5%-99.6% de los sRNAs que alinean 
perfectamente al genoma del parásito se comportan como genes de ratón de acuerdo a un análisis de 
expresión diferencial. Esto nos indica que la  información de alineamientos no es suficiente para asignar 
lecturas de sRNAs a uno u otro organismo. 
 
Realicé predicciones de blancos en el hospedero para los Hb-sRNAs encontrados dentro de las células 
de ratón usando una aproximación de extremo a extremo para obtener prediciones estrictas. 
Posteriormente puse a prueba si los Hb-sRNAs tienen un efecto global en transcritos de ratón usando 
RNA-Seq. De esta manera pude detectar un efecto sutil de los Hb-sRNAs en sus mejores 384 blancos 
predichos para ambos tipos celulares. También analicé el efecto de los productos secretados de H. 
bakeri en transcritos del hospedero y encontré respuestas diferentes para algunos genes debido a EVs 
o HES. Los transcritos de la  interleucina 33 (IL-33), una citoquina secretada por las células de epitelio 
intestinal durante las infecciones de H. bakeri, se reprime debido al tratamiento con HES, pero no así 
con EVs. En este trabajo aportamos una estrategia valiosa para asignación de organismos para el campo 



 11 

de comunicación entre especies mediada por sRNAs. Mis  resultados apoyan la hipótesis de un efecto 
de los Hb-sRNAs en la expresión del hospedero, aunque se requieren experimentos adicionales para 
poner a prueba la relevancia de los Hb-sRNAs para la actividad inmuno-moduladora de los productos 
secretados de H. bakeri. 
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Preface 
 
In the Introduction I describe basic concepts required to understand my PhD work, such as RNAi, small 
RNAs (sRNAs), extracellular vesicles, communication between organisms of different species, and the 
immune system. I also introduce the parasitic nematode Heligmosomoides bakeri, our model system for 
sRNA-mediated communication. In Chapter 1 I describe strategies we developed to disentangle sRNA-
Seq data of host and pathogen interactions. In Chapter 2 I describe the application of these strategies to 
the detection of sRNAs of a nematode parasite in an in vitro mouse cell-line experiment. Chapter 1 and 
part of Chapter 2 were published in Nucleic Acids Research journal under the title “Disentangling sRNA-
Seq data to study RNA communication between species” (Bermúdez-Barrientos et al. 2020). In Chapter 
3 I predict targets for the nematode small RNAs detected in mouse cells and discuss some of the 
difficulties associated to small RNA target prediction. In Chapter 4 I assess the effect of H. bakeri 
secretion products on mouse cells and test for an effect of detected nematode small RNAs on host gene 
expression. 

Introduction 
 

RNA interference and small RNAs  
 
RNA interference (RNAi) is a biological process where double stranded RNA triggers the production of 
small RNAs that target and regulate the expression of complementary RNA transcripts. Small RNAs are 
18-30 nt RNA fragments that do not code for protein and are used as guides by an Argonaute protein to 
target a transcript in a sequence-specific manner. Other processes that involve RNAi and have been 
used in the literature include co-suppression (plants) (Napoli, Lemieux, and Jorgensen 1990), post-
transcriptional gene silencing (plants and animals such as Drosophila) (Hamilton and Baulcombe 1999) 
and quelling (fungi), a name derived from quell which refers to supression (Villalobos-Escobedo, 
Carreras-Villaseñor, and Herrera-Estrella 2016). All these processes (co-supression, post-transcriptional 
gene silencing an quelling) involve the production of sRNAs from a double stranded RNA and the 
silencing of homologous sequences. The RNA interference pathway (RNAi) has a widespread distribution 
across the eukaryote domain, although some clades such as Saccharomyces sensu stricto complex 
(fungi, Ascomycota), Ustilago (fungi, Basidiomycota), Leishmania (protozoa, trypanosomatid)  and 
Plasmodium falciparum (protozoa, Apicomplexa) have lost most or all of the RNAi machinery (Nicolas, 
Torres-Martinez, and Ruiz-Vazquez 2013).  
 
The ancestral function of the RNAi machinery was likely to protect the germline from selfish ribonucleic 
elements such as viruses and transposable elements (Obbard et al. 2009). The RNAi pathway was later 
adapted to process endogenous dsRNAs, e.g. microRNAs, and help drive organism development, by 
exaptation. Exaptation is the usage of a given structure or process for a different function or need that it 
originally evolved for, the classical example are the usage of feathers to fly when they probably originated 
to provide thermal regulation (Gould, Stephen Jay; Vrba 1982).  
 
The core enzymatic players for the RNAi pathway are RNAse III Dicer-like proteins, piwi and PAZ domain-
containing Argonaute (Ago) proteins and RNA-dependent RNA Polymerases (RdRPs) (Shabalina and 
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Koonin 2008). Argonaute and Dicer homologs show a wider distribution across eukaryotes including 
animals, plants, fungi and some protozoa. On the other hand, RdRPs are more phylogenetically 
scattered, mostly occurring in plants, but also in some nematodes, insects and fungi (Tomoyasu et al. 
2008). 
 
I will describe the RNAi pathway as it functions in animals. In RNAi, Dicer recognizes double-stranded 
RNA molecules and cleaves them into ~20 nt products that are loaded into Ago proteins. These dsRNA 
trigger molecules may originate from exogenous or endogenous sources.  
 
MicroRNAs (miRNAs) are the most famous source for endogenous dsRNA that triggers RNAi. These 
miRNAs are encoded in the genome and are transcribed by RNA polymerase II. The primary transcript 
(pri-miRNA) folds itself forming one or more hairpin structures (He and Hannon 2004). Animal miRNAs 
are first processed by Drosha, which cuts the hairpin from the pri-miRNA, which is then called the pre-
miRNA (He and Hannon 2004). Drosha processing occurs in the nucleus, and the pre-miRNA leaves the 
nucleus via Exportin 5 (He and Hannon 2004). In the cytoplasm, Dicer cleaves the pre-miRNA hairpin to 
produce a mature (guide strand) miRNA and a complementary sequence (passenger strand) (He and 
Hannon 2004). The guide strand is then loaded into an Argonaute protein (ALG-1 in C. elegans) and this 
complex is called the RNA-induced silencing complex (RISC) (He and Hannon 2004). The seed 
sequence of a miRNA corresponds to positions 2 to 8 from the 5’ end. This region is key for the RISC 
complex-target transcript interaction, especially in animals. Groups or families of miRNAs can be defined 
according to their seed sequence, and members of a family share many of their targets. Animal miRNAs 
also tend to bind to the 3’ UTR regions of target mRNAs. The most prevalent miRNA repression 
mechanism in animals is mRNA destabilization via deadenylation and subsequent mRNA decapping (66-
90% of repressive effect), while translation inhibition also contributes but to a lesser extent (Eichhorn et 
al. 2010). Destabilization or translation inhibition of the mRNA can happen even with low levels of 
sequence complementarity. In some cases, perfect sequence complementarity in the seed region may 
be enough to exert inhibition.  
 
In 2006 Craig Mello and Andrew Fire received the Nobel prize in physiology or medicine for their work 
elucidating the components of RNAi biogenesis in the model nematode Caenorhabditis elegans (Fire et 
al. 1998). I will describe some of the RNAi features for C. elegans as this nematode shares a great deal 
of its sRNA biology with Heligmosomoides bakeri, the main focus of my thesis.  
 
C. elegans is an organism that has remarkable capabilities in terms of its RNAi biology(Youngman and 
Claycomb 2014). This nematode is capable of uptaking dsRNA from its environment and silencing 
endogenous genes that are complementary to the internalized molecules (environmental RNAi) (W. M. 
Winston et al. 2007). This silencing effect may spread through different parts of the nematode body, a 
phenomenon termed systemic RNAi (W. M. Winston, Molodowitch, and Hunter 2002). Additionally, small 
initial amounts of dsRNA may trigger an organimal silencing effect, which corresponds to RNAi signal 
amplification (Fire et al. 1998). Finally, C. elegans has the potential to transfer silencing effects, guided 
by sRNAs, to its offspring through a phenomenon named transgenerational inheritance (K. C. Brown and 
Montgomery 2017). This suite of capacities can be attributed to a multitude of protein components of the 
RNAi machinery that is accompanied by a complex endogenous sRNA landscape (Kim et al. 2005).  
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Nematodes experienced an expansion of Ago proteins. For example, Caenorhabditis elegans has 25 
Argonaute proteins while humans have only 8. Out of these 25 Argonaute proteins, 18 form a distinct 
clade exclusive of nematodes, which are collectively named WAGO (worm-Argonaute) (Claycomb 2014). 
The great diversity in Argonaute proteins in nematodes has been associated with an increased diversity 
of functions for the RNAi pathway (Table 1) (Buck and Blaxter 2013). In the Background section, I will 
introduce a WAGO that is secreted by the parasitic nematode Heligmosomoides bakeri and we present 
evidence about its possible role in parasitism. 
 
ALG-1 (Argonaute plant-Like Gene) homologs are widely conserved across organisms containing the 
RNAi pathway (Tops, Plasterk, and Keiting 2006). These proteins use miRNAs as guides and participate 
in several endogenous processes such as embryonic development, metabolism and cell fate. PRG-1 
(Piwi Related Gene) binds to piRNAs and these complexes are responsible for protecting the germ line 
from transposable elements (Batista et al. 2008). HRDE-1 (Heritable RNAi Deficient) is an Argonaute 
protein that displays nuclear localization and drives transgenerational epigenetic memory (Buckley et al. 
2012). ERGO-1 (Endogenous-RNAi deficient arGOnaute) is expressed in the oogenic gonad that binds 
26G sRNAs (26 nucleotides long, starting with a G), its targets are depleted from conserved genes and 
this Ago protein presumably buffers the expression of new genes (Gent et al. 2010). CSR-1 
(Chromosome-Segregation and RNAi deficient 1) binds 22G sRNAs (described below) and its targets 
are enriched in germline-expressed genes such as those required for early developmental stages. CSR-
1 is a very interesting Ago protein as it promotes gene expression instead of repression, and it also 
participates in chromosome segregation. A current model suggests that CSR-1 and PRG-1 surveil the 
germline expression with opposite outcomes: expression for CSR-1 targets and repression for PRG-1 
targets (Almeida and Andrade-navarro 2019). 
 
Table 1. Selected examples of different functions performed by different Argonaute proteins in C. 
elegans. 

Argonaute sRNA size and 
1st nucleotide 

Function 

ALG-1 22U miRNAs binding, endogenous process regulation 
 

PRG-1 21U piRNAs binding, silencing of transposable elements in 
germ line 

HRDE-1 22G Transgenerational inheritance of germline RNAi 
ERGO-1 26G Putative buffering of expression of newly acquired genes 
CSR-1 22G Licensing of expression in germline and chromosome 

segregation 
 
C. elegans displays RNAi signal amplification. This phenomenon is initiated by primary siRNAs that are 
derived from double stranded RNA (dsRNA) and Dicer activity. Secondary siRNAs contribute to a signal 
amplification of repression (Figure 1). Secondary siRNAs are synthetized by RNA-dependent RNA 
polymerases (RdRPs) (Sijen et al. 2007). RdRPs in nematodes such as C. elegans are non-processive 
and produce short ~22 nt sRNAs that begin with a guanine (so they are known as 22G), that are loaded 
into WAGOs. As their name suggests, RdRPs synthetize RNA from another template RNA. Since this 
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synthesis is primer-independent, the first nucleotide gets incorporated directly as a triphosphate 
nucleotide, resulting in small RNAs with a 5’ tri-phosphate. Small RNA-Seq libraries that were 
phosphatase-treated will be referred as poly-P, libraries that didn’t received this phosphatase treatment 
will be referred as mono-P through this work. 

 
Figure 1. Secondary siRNAs in C. elegans contribute to the amplification of the repression signal. 

Some readers may be more familiar with plant RdRPs, and there are differences between RdRPs in 
plants and nematodes. In plants, RdRPs such as RDR6 produce a long double stranded product that is 
later processed by DCL4 (Dicer-like 4) or DCL5 into individual siRNAs. As a result of cutting a long dsRNA 
into smaller 21-24 chunks, these will have 5’ mono-phosphate ends (Z. Xie et al. 2005). 
 
In C. elegans, SID-2 (systemic RNAi defective-2) is an RNA transporter that is required for environmental 
RNAi and is expressed in the intestinal epithelium cells (W. M. Winston et al. 2007). The phylogenetic 
distribution of SID-2 is limited: it is not even present in C. briggsae (C. briggsae and C. remanei are the 
closest relatives to C. elegans) (Kiontke, Karin; Fitch 2005). SID-1 is more widely distributed, with 
homologs found in C. elegans (nematode), Diabrotica virgifera (arthropoda) (Ivashuta et al. 2015), and 
the mammalian genome (chordata) suggesting that SID-1 may have been present in the metazoan last 
common ancestor. SID-1 is an RNA transporter required for RNA movement between cells and for a 
systemic RNAi response in nematodes (W. M. Winston, Molodowitch, and Hunter 2002). H. bakeri lacks 
a SID-2 homolog, suggesting that it is unable to perform environmental RNAi, but it does contain a SID-
1 homolog (Chow et al. 2019). 
 

Extracellular RNA and vesicles 
 
Many people who have worked with RNA in the laboratory may be under the impression that this molecule 
is rather unstable, and thus unsuitable for extracellular communication. However, extracellular RNA is 
common: miRNAs have been found in all human fluids analyzed so far (Yuana, Sturk, and Nieuwland 
2013). This RNA is protected from RNAse activity by encapsulation in extracellular vesicles (EVs) and/or 
association with Argonaute proteins. In 2007, Valadi and collaborators (Valadi et al. 2007) showed that 
EVs can transfer nucleic acids between mast cells. They observed transfer of miRNAs and mRNAs, and 
the transferred mRNAs could even be translated in recipient cells. 
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Extracellular vesicles (EVs) are lipid bilayer-delimited particles that are naturally released from many 
kinds of cells but, unlike cells, cannot replicate (Witwer and Théry 2019). The study of EVs dates back to 
the early 1980’s. In 1983 Pan and Johnstone observed multivesicular bodies (MVB), structures involved 
in exosome biogenesis (Pan and Johnstone 1983). Since then, EVs have become a whole research field: 
the International Society for Extracellular Vesicles (ISEV) was founded in 2011 and the Journal of 
Extracellular Vesicles was founded in 2012. EVs have attracted so much attention that in 2012 the 
National Institutes of Health (NIH) announced a program funding EV and extracellular RNA studies: the 
Extracellular RNA communication Consortium (ERCC). 
 
There are three main classes of EVs: microvesicles, exosomes and apoptotic bodies (Table 2). Additional 
classes considered in the literature include oncosomes, exophers, exomeres, etc. These additional 
categories won’t be described or discussed further, as they are not related to my thesis. 
 
Table 2. Main extracellular vesicles properties. 

 Exosomes Ectosomes Apoptotic bodies 
Size of 

vesicles/ 
shape 

30 – 100 nm, regular 100 – 1,000 nm, irregular 50 - 5,000 nm, irregular 

Markers LAMP-1, tetraspanins, 
Alix, MHC-I, MHC-II, 

HSP70, TSG100 

Selectins, integrins, 
tissues factor and cell-

specific markers 

Histones, organelles 

Origin Endosomal 
compartments of cells 

Cell surface plasma 
membrane 

Cells which undergo 
apoptosis 

sedimentation 100,000 – 130,000 x g 16,000 – 25,000 x g 5,000 -16,000 x g 
 

Exosomes have an endosomal origin. For exosomes to exists, endosomes should form first (Kowal, 
Tkach, and Thery 2014). Endosomes are formed by plasma membrane invagination; this gives rise to an 
early endosome that will mature into multivesicular bodies (MVB) Figure 2A. MVBs typically have two 
possible fates, they either end up being degraded in a lysosome or their contents are released to the 
extracellular space by exocytosis (fusion of the MVB with the plasma membrane). Exosomes are the 
smallest EV class: their diameter ranges from 30 to 100 nm. When seen by electron microscopy, 
exosomes have a characteristic ‘saucer-like’ morphology, a flattened sphere that is limited by a lipid 
bilayer (Théry et al. 2002). Characteristic surface markers for exosomes include several members of the 
tetraspanin family such as CD9, CD63, CD81 and CD82, the major histocompatibility complexes I and II, 
integrins, the chaperone heat shock protein 70, etc (Théry et al. 2002). 
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Figure 2. Cartoons of extracellular vesicles classification. A) Exosomes, B) Ectosomes and C) Apoptotic 
bodies. MVB stands for multivesicular bodies. 

Ectosomes, also known as microvesicles or microparticles, have a plasma membrane origin. The plasma 
membrane starts budding and finally sheds into 100-1000 nm vesicles (Cocucci and Meldolesi 2015). 
Ectosomes are typically larger than exosomes, but smaller than apoptotic bodies (Figure 2B). Under 
certain stimuli, some cells release high amounts of ectosomes in a short period of time, some examples 
of these sudden releases include tissue factor secretion by platelets during coagulation as well as PC-
12 adrenal gland cell line ectosomes upon exposure to ATP (Cocucci, Racchetti, and Meldolesi 2009). 
These ectosome bursts may lead to a diminished cell size due to membrane loss, that is compensated 
by the subsequent incorporation of intracellular membrane elements to the cell membrane (Cocucci and 
Meldolesi 2015). Characteristic surface markers for microvesicles are selectins, integrins and cell-specific 
markers (Pegtel and Gould 2019).  
 
Apoptotic bodies form as part of membrane protrusions (or blebs) associated to programmed cell death. 
Apoptotic bodies are the largest of EVs with a size range between 1-5 µm; they are so big that they can 
even contain organelles Figure 2C. Other contents include genomic DNA chunks and histones, due to 
nuclear fragmentation (Atkin-smith and Poon 2016).  
 
The first evidence for the role of EVs in cell-to-cell communication comes from exosomes from antigen 
presenting cells. In 1996 a seminal study by Raposo et al. showed that EVs can be used to present 
antigens and to stimulate an immune response in vivo (G Raposo, H W Nijman, W Stoorvogel, R 
Liejendekker, C V Harding, C J Melief 1996). Additional cases for cell-to-cell communication with EVs 
include human placental trophoblasts. Here, exosomes transfer miRNAs that protect non-placental cells 
from infection by inducing autophagy in virus-infected cells (Delorme-axford et al. 2013). 
 
Melanoma tumors evade T cell surveillance by releasing exosomes that contain PD-L1 (programmed 
death-ligand 1). Exosome PD-L1 interacts with PD-1 in CD8 T cells, hindering tumor cell killing (G. Chen 
et al. 2018). This study also revealed that exosome PD-L1 levels increased with increased levels of IFN-
γ, which reflects how exosome contents may be altered with different environmental cues. 
 
EVs have several potential biomedical applications. For instance, Coakley et al. applied nematode EVs 
as a vaccination that reduced worm burden in successive infections (Coakley et al. 2017) (more details 

A) B) C) 
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in Background). EVs are also promising biomarkers for several diseases. Just to mention an example, a 
2015 study showed that exosomes containing the cell surface peptidoglycan glypican-1 are good 
biomarkers to detect early pancreatic cancer (Melo et al. 2015). The discussion of EV biomedical 
applications are beyond the scope of this work and won’t be commented further. 
 

Communication between different species via small RNAs 
 
In a perspective paper, Sarkies and Miska argued about RNA being transferred between organisms as 
a means of communication or “social RNA" (Sarkies and Miska 2013). The authors elaborated on this 
idea based on the model nematode C. elegans, the reason being that this organism is capable of taking 
up environmental dsRNA and silencing its own genes (see Introduction: RNAi and sRNAs). This capacity 
makes C. elegans an excellent model to study the function of almost any of its genes. However, it is 
intriguing that an organism would allow its own genes to become susceptible to environmentally available 
RNAs. Such susceptibility raises the question of whether this ability provides a benefit to this nematode 
in its natural environment. The authors proposed that this capacity could provide herd immunity to a 
nematode population against possible threats such as RNA viruses. The proposed model would work 
like this: if an individual C. elegans encounters a possible viral threat and triggers its own RNAi response, 
the nematode could then secrete an RNA that may initiate the same protective response across its 
neighbors. If this model does happen in nature, this would represent a case of RNAi transferred between 
organisms of the same species. 
 
Host-induced gene silencing (HIGS) consists of transgenic plants that express exogenous RNAi triggers 
that silence essential genes in pathogens. HIGS is a promising technology to protect crops against a 
wide variety of pests such as fungi, oomycetes, insects, nematodes and even parasitic plants (Nunes 
and Dean 2012). A former term to describe HIGS is Parasite-derived resistance (PDR) and its origin 
dates back to the late 1980s. The first evidence for PDR was published in 1988 and comes from tobacco 
plants expressing the capsid protein for the tobacco mosaic virus. These plants displayed a delay in viral 
disease development (Register and Beachy 1988). The fact that HIGS confers protection to plants 
against pests suggests that inter-species RNAi may occur in nature. 
 
In a seminal work led by Dr. Jin in 2013, Weiberg and collaborators reported the first case of cross-
species communication mediated by small RNAs (Weiberg et al. 2013). Botrytis cinerea is a necrotrophic 
fungus that affects around 200 plant species. Small RNAs encoded in the fungal genome reach 
Arabidopsis thaliana cells during infection, and down-regulate genes related to defense against 
pathogens. Mechanistically, B. cinerea sRNAs get loaded into the A. thaliana AGO1 protein and target 
MAP kinase genes relevant for the signaling response against infection (Weiberg et al. 2013). The three 
Botrytis sRNAs that were characterized in this study, out of potentially hundreds, were derived form fungal 
LTRs (Long Terminal Repeat), which originate from the action of transposable elements. This suggests 
that Botrytis RNAi machinery may have been exapted from an original mobile element defense system 
to a weapon used during parasitism. Repetitive elements, such as transposable elements, have been 
proposed to have an influence on the genomic architecture of fungal plant pathogens, and may associate 
with virulence genes (Möller and Stukenbrock 2017). It would be interesting to investigate the frequency 
of LTR-derived sRNAs production within the fungal kingdom, with special attention for fungal pathogens. 
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Dr. Jin’s group later reported that A. thaliana responds to Botrytis infection by producing its own EV-
loaded sRNAs (Cai et al. 2018). These A. thaliana sRNAs reach Botrytis and inhibit the expression of 
fungal genes that are involved in pathogenicity, with a bias toward vesicle trafficking pathways (7 out of 
32 target genes). Small RNA sequencing from fungal protoplasts isolated from infected tissue revealed 
42 A. thaliana sRNAs reaching fungal cells, some of them being produced from a trans-acting small 
interfering RNA (tasiRNA) plant locus. A. thaliana triple mutant dcl2/3/4 (Dicer-like proteins 2, 3 and 4) 
and single mutant rdr6 (a RdRP relevant for siRNA signal amplification) was more susceptible to B. 
cinerea infection, suggesting that the tasiRNA pathway is relevant for anti-fungal RNAi response (Cai et 
al. 2018). This is the first example of a natural case of HIGS. This case also exemplifies an evolutionary 
RNA arms-race between a pathogen and its host. 
 
In the literature, the phenomenon of a sRNA produced by an organism and repressing the expression of 
a gene of another organism has been frequently termed cross-kingdom RNAi (Weiberg, Bellinger, and 
Jin 2015). I think this term imposes a restriction in the definition, implying a long phylogenetic distance 
between the interacting organisms. I propose the term inter-species RNAi, this term describes more 
accurately some recently described interactions such as Cuscuta campestris with A. thaliana and 
parasitic nematodes infecting mammalian hosts (described below). These cases involve interactions 
within kingdoms, but between organisms belonging to different species. 
 
The 2010s witnessed the rise of the inter-species RNAi field (Weiberg et al. 2013) and the posterior 
accumulation of examples of this phenomenon. We now know that sRNA-mediated communication is a 
frequent strategy among parasites to take advantage of their hosts. In the following paragraphs, I will 
introduce some of these cases that are relevant for my PhD thesis. 
 
Cuscuta campestris is an obligate parasitic plant incapable of performing photosynthesis. In order to 
survive, C. campestris infects other plants to obtain water and nutrients using a root-like organ named 
haustorium to penetrate the xylem of its host (Kaiser et al. 2015). The haustorium allows molecular 
exchange between host and parasite, including viruses, proteins and mRNAs. Shahid and collaborators 
explored whether haustorium allows for sRNA movement between C. campestris and the model plant A. 
thaliana (Shahid et al. 2018). The authors used sRNA-Seq to characterize the sRNA populations present 
in the parasitic stem and interaction site (including the haustorium). A total of 43 miRNAs were 
upregulated in haustoria relative to parasitic stem, of these, 26 were 22 nt long miRNAs which is a less 
common size for plant miRNAs compared to 21 nt. These 22 nt miRNAs are associated with the 
production of phased secondary siRNAs (phasiRNAs). Production of phasiRNAs is triggered by a 22 nt 
miRNA guiding Argonaute-mediated slicing of a primary precursor transcript. This cleavage event recruits 
RDR6 (an RdRP) that makes the sliced mRNA double stranded, which is later processed by Dicer 
proteins into 21 (DCL4) or 24 nt (DCL5) siRNAs. The phasiRNAs receive their name after their 
characteristic 21 or 24 nt interval phased piling up when aligned to the producing locus (Fei, Xia, and 
Meyers 2013). The authors discovered that the parasitic plant miRNAs initiate a repression cascade 
dependent on host’s DCL-4 and RDR6, showing that C. campestris hijacks its host’s RNAi machinery. 
Finally, a search for potential binding sites revealed that some of the targets for C. campestris miRNAs 
are conserved in other dicots. 
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In a follow up paper, Johnson and collaborators analyzed the sRNA expression profiles of seven 
members of the Cuscuta genus in their interaction with A. thaliana (Johnson, de Pamphilis, and Axtell 
2019). The majority of haustorium-induced sRNAs were not present in more than one Cuscuta species. 
Nearly half of the C. campestris haustorium-induced sRNAs (208/408) originate from miRNA hairpins, 
and a large proportion of these C. campestris miRNAs were 22 nt long. As mentioned before, in plants 
22 nt miRNAs trigger the production of secondary siRNA accumulation which amplifies degradation of 
the targeted mRNA, analogously to what happens in C. elegans with the 22G RNAs (Fei, Xia, and Meyers 
2013). The authors then used two different techniques to detect the interaction between C. campestris 
sRNAs and A. thaliana mRNAs: secondary siRNA accumulation and degradome analysis. The 
degradome analysis recovers 5’ ends of both capped and uncapped mRNAs, and is useful to detect Ago 
slicing activity. By combining these techniques, the authors identified novel targets for C. campestris 
sRNAs, most of them in conserved protein coding genes (Johnson, de Pamphilis, and Axtell 2019). C. 
campestris sRNAs can be grouped into superfamilies that display variation in a three-nucleotide period. 
The authors propose that this nucleotide variation compensates for synonymous substitutions in host 
targets, hindering host targeting avoidance. 
 
Inter-species RNAi may also occur in bacterial-eukaryote interactions as well as mutualistic relationships. 
Ren and collaborators showed that Bradyrhizobium japonicum produces tRNA-derived sRNAs that 
influence Glycine max nodulation (Ren et al. 2019). These rhizobial tRNA-derived fragments are loaded 
into soybean AGO1, as shown by AGO1 pull down and stem-loop PCR. Some of the predicted targets 
for these bacterial sRNAs include orthologs for ROOT HAIR DIRECTIVE 3, HAIRY MERISTEM 4, and 
LEUCINE-RICH REPEAT EXTENSION-LIKE 5, which are important for root hair and plant development 
in A. thaliana. Silencing either of three selected individual tRNA-derived fragments with short tandem 
mimics resulted in reduced nodulation numbers as well as an aberrant early-stage infection in root hairs 
(Ren et al. 2019). Knockouts for the mentioned predicted targets for rhizobial tRNA-derived fragments 
promote nodulation, while overexpression of these plant mRNA targets results in nodulation inhibition. 
This is the first case of sRNA mediated communication in bacterial-legume interactions. 
 
The filarial nematode Litomosoides sigmodontis generates excretion-secretion (ES) products that can be 
collected and studied in laboratory conditions. Quintana et al discovered that this ES contains sRNAs 
that are protected from degradation, although it is unclear if this protection is due to EVs or to RNA-
protein interactions (Quintana et al. 2019). They discovered that ES is rich in tRNAs, rRNAs and contains 
miRNAs to a lesser extent, in contrast, miRNAs are more abundant than tRNAs in adult worms. 
Interestingly, 22G sRNAs are found in adult worms, but are absent from ES; this is different to ES 
products from clade V parasitic nematodes, where 22G sRNAs are the most abundant RNA class (Chow 
et al. 2019). The authors then looked for L. sigmodontis sRNAs in serum and macrophages of infected 
mongolian gerbils and found that miRNAs become the predominant RNA class detected in vivo. In 
particular, miR-92-3p and miR-71-5p are robustly detected in serum and macrophages (Quintana et al. 
2019). Let-7 is highly expressed in macrophages, but it is hard to tell if it is being produced by the rodent 
or the nematode as they have identical sequences. Further work is needed to test if L. sigmodontis 
miRNAs are functional inside macrophages. 
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The immune system 
 
The immune system represents all the different biological processes, structures and mechanisms to 
protect an organism from pathogens. This includes physical barriers such as skin, innate system 
components, as well as vertebrate’s sophisticated adaptive system (Kindt et al. 2007). Here, I will present 
a general introduction to the mammalian innate and adaptive immune systems in order to understand 
how mice usually deal with nematode infections, and the mechanisms used by the parasite 
Heligmosomoides to subvert this response. 
 
Cytokines are small proteins relevant for cellular signaling and responsible for most of the biological 
effects in the immune system (Berger 2000). The immune system response and effector cell populations 
are controlled by which combination of cytokines are present in a given tissue location. 
 

Innate immune system 
 
Macrophages are a type of leukocyte (white blood cell) that eliminate pathogens, cellular debris and 
anything that doesn’t have the characteristic proteins of a healthy cell on its surface by phagocytosis. 
Macrophage classical activation (M1) is stimulated by a cytokine called interferon gamma (IFN-γ) and 
lipopolysaccharides (LPS) that are found in the outer membrane of bacteria. Classical activation results 
in microbicidal activities and secretion of pro-inflammatory cytokines such as IL-6, TNF and IL-1ß 
(Gordon 2003). These cytokines favor activation of cellular immunity (see adaptive immune system). 
Classical activation aids fighting bacterial and viral infections. Alternative activation of macrophages (M2 
or AAM) is stimulated by IL-4 and IL-13 cytokines (Gordon 2003). AAM is the preferable way to deal with 
allergens and parasites such as gastrointestinal nematodes. 
 
Granulocytes are cells of the innate immune system that receive its name for their granules found in their 
cytoplasm. These granules harbor nitric oxide, reactive oxygen species as well as proteins relevant for 
defense such as antimicrobial peptides, acid hydrolases and lysozymes (Kindt et al. 2007). The contents 
of granules are released upon threat encounters by a process known as degranulation, the release of 
granules contents harms invading pathogens in granulocyte surroundings. Granulocytes include 
neutrophils, eosinophils and basophils (Kindt et al. 2007). Neutrophils are the most abundant granulocyte, 
representing 50-70% of the white blood cell population, these are capable of performing phagocytosis, 
degranulation and use extracellular traps to immobilize bacteria (Kolaczkowska and Kubes 2013). 
Neutrophils are the first cell to arrive to inflammation sites. Eosinophils are phagocytic cells that play a 
relevant role during multicellular parasites infections, allergic reactions and asthma. Basophils are non-
phagocytic cells that play a role during helminth infection, but can also cause pathologies during allergic 
reactions (Voehringer 2013).  
 
Mast cells are functionaly related to basophils, both cell types release histamine and cytokines such as 
IL-2, IL-3, IL-4, IL-5, IL-6, IL-9, IL-13, IL-15 and TSLP to drive immune reactions (Voehringer 2013). Mast 
cells generally have fixed locations such as connective tissue or intestinal mucosa, while basophils are 
motile.  
 



 22 

Natural killer cells (NK) are derived from a common lymphoid progenitor, this is the same cell that gives 
rise to T lymphocyte, however, NK cells do not express the T cell receptor (see below). NK are fast cell 
responders to viral infections or tumor cells, they cause the death of targeted cells by lysis or inducing 
apoptosis (Vivier et al. 2011). 
 
Dendritic cells (DC) guard and sense foreign elements and if needed, they warn T cells about possible 
infections and the nature of the threat (viral, nematode, bacterial, etc.) (Coombes and Powrie 2008). DCs 
are named after how their branched projections resemble a neuron’s dendrites. Both macrophages and 
DCs are antigen presenting cells. Macrophages and DCs express a range of receptors that are capable 
of recognizing pathogen associated molecular patterns (PAMPs). Toll-like receptors (TLRs) are a famous 
type of receptors that recognize PAMPs, a typical example is the binding of bacterial lipopolysaccharide 
(LPS) to TLR4 (Neill, Golenbock, and Bowie 2013). There are additional categories of receptors that can 
recognize PAMPs such as C-type lectin receptors. C-type lectins are a superfamily of proteins that 
recognize a wide spectrum ligands (G. D. Brown, Willment, and Whitehead 2018). They have one or 
more C-type lectin domain, and were originally named because of its capacity to bind carbohydrates in a 
Ca2+-dependent manner. However, some C-type lectin domains can recognize a wider repertoire of 
ligands, including proteins and lipids (G. D. Brown, Willment, and Whitehead 2018).   
 
Antigens are exposed portions of a molecule or epitopes that can be recognized by several components 
of the immune system such as an antibody or a T cell receptor (M. Sela 1998). Antigen presenting cells 
(APCs) take pathogen antigens and display them for recognition by T cells. Antigen presenting cells 
include dendritic cells, macrophages and B cells. These antigens are displayed in the major 
histocompatibility complex class II (MHC class II). There’s a second histocompatibility complex class I 
(MHC I), which is expressed by all nucleated cells of the body and is used to distinguish healthy from 
unhealthy cells such as cancerous or virus-infected cells (Kindt et al. 2007).  
 
Innate lymphoid cells (ILCs) are a recently discovered cell type that is particularly present below mucosal-
like tissues such as the intestinal epithelium, lungs, etc. They have some characteristics of T cells (see 
Adaptive immune system) such as being a great source of cytokines, but they lack the T cell receptor. 
ILCs can be further subdivided according to the cytokines they receive and how they act to different types 
of immune responses (Koyasu et al. 2018). 

Adaptive immune system 
 
Classically, immunity was categorized into cellular immunity and humoral immunity. These broad effects 
can be attributed to two types of lymphocytes: thymus-derived lymphocytes (T cells) and Bone marrow-
derived lymphocytes (B cells) respectively (Kindt et al. 2007). B cells are responsible for producing 
antibodies and provide humoral immunity, this protection receives its name given classical experiment 
where cell-free serum could provide protection from a pathogen. Antibodies or immunoglobulins are Y-
shaped proteins that can specifically recognize a portion of a foreign molecule (antigen) and facilitate 
recognition by other immune cells or can inactivate a potential threat by completely surrounding or 
trapping threats by gluing them to each other (opsonization). T cells express a cell surface receptor 
named T cell receptor (TCR) that is setup to recognize an antigen loaded into the MHC. T cells can be 
divided into two broad categories: CD8+ (Cellular differentiation factor 8) and CD4+ T cells. CD8+ cells 
are responsible of killing tumor cells, virus or intracellular bacteria-infected cells (cellular immunity) and 
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are called cytotoxic T cells (Tc), on the other hand CD4+ T cells are also named T helper cells (Th) (Kindt 
et al. 2007).  
 
Helper T cells (Th) are the most prolific cytokine producers. Th cells drive the immune response to 
contend with different threats by producing different cytokines, Th cells are classified according to the  
cytokines they produce into Th1, Th2, Th17 and Treg (Table 3) (Schmidt-Weber 2008). When we suffer 
an infection of intracellular pathogens such as viruses or bacteria, Th cells produce INF-gamma driving 
a Th1 response (classically termed cellular immunity). When extracellular pathogens signals warn Th 
cells, these produce IL-4, IL-5 and IL-13 cytokines that will favor a Th2 response (classicaly referred as 
humoral response). Two additional T-helper cell populations were recently discovered: Th17 and Treg 
cells, that produce tissue inflammation and immune suppression respectively. Th17 response is also 
triggered by extracellular pathogens and it is associated with the production of IL-17, IL-22 and IL-21 
(Schmidt-Weber 2008). Treg (T-regulatory) cells are associated with tolerance to self-antigens and 
harmless foreign antigens (such as food) and produce IL-10 and TGFB1 cytokines (Schmidt-Weber 
2008). Tregs actively suppress immune system activation and prevent self-reactivity, their importance is 
evidenced by the severe autoimmune syndrome immunodysregulation polyendocrinopathy enteropathy 
X-linked (IPEX), which is caused by a deficiency in Tregs production (Chatila et al. 2000). Th cells are so 
important that human immunodeficiency virus (HIV) targeting these cells results in immunodeficiency and 
renders acquired immunodeficiency syndrome (AIDS) patients susceptible to otherwise trivial infections. 
 
Table 3. Immune response categories, based on helper T cells, associated cytokines and functions. 

 
Th1 Th2 Th17 Treg 

Effective 
against 

Intracellular 
pathogens 
(viruses, bacteria) 

Extracellular 
pathogens 
(nematodes) 

Extracellular 
pathogens 
(bacteria, fungi) 

Tolerance 

cytokines Interferon gamma 
IFN-γ, IL-12  

IL-4, IL-5, IL-9, IL-13 IL-17, IL-22, IL-
21 

IL-10, TGFB1 

Effects Cellular immunity Humoral immunity, 
allergic reactions, 
eosinophilia 

Tissue 
inflammaton 

Immune 
supression 

 
When a DC processes and presents its antigen on its MHC II, it migrates to the closest lymph node in 
search for a T cell that has a TCR that matches its displayed epitope (Figure 3). T cells reside within 
lymph nodes, in particular for the intestinal immune system these are named mesenteric lymph nodes 
(MLN). When a DC finds such a naive T cell, the naive T cell becomes activated and starts replicating 
several times in a process known as clonal expansion. Clonal expansion produces memory T cells and 
effector T cells (Th and Tc). Both Th and Tc cells migrate to the site of infection to help the other immune 
system elements. Some of the activated Th cells look for a B cell that had previously recognized the 
same antigen of interest via its B cell receptor (BCR, the membranal from of antibodies), processed that 
antigen and displayed it on its surface on the MHC II (Figure 3). If the antigen on display by the B cell is 
recognized by the Th cell TCR, the interaction is further strengthened by the binding of CD40L protein 
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(on the Th membrane) with CD40 protein (on the B cell surface) (Kindt et al. 2007). As a result of this 
interaction, the B cell will clonally expand and mostly differentiate to plasma cells producing the antibody 
that recognizes the antigen of the current pathogen (Kindt et al. 2007).  

 
Figure 3. Simplified signaling interactions at the cell surface of immune system cells. TLR Toll-like 
receptor, MHC II Major Histocompatibility Complex II, TCR T cell receptor, BCR B cell receptor. CD40 
cluster of differentiation 40.   

After an immune response action, a subset of T and B cells remain as memory cells, resulting in a faster 
response in case the same threat occurs again. This is what makes people who have overcome an 
illness, or received a vaccine, immune to further exposure to the same pathogen. 
 

Heligmosomoides bakeri 
 
Heligmosomoides bakeri is a parasitic nematode that infects mice and represents a well-established 
model to study chronic nematode infections, since adult nematodes can be detected up to 46 weeks in 
the first infection (Behnke, Menge, and Noyes 2009). The parasitic nematode Nippostrongylus 
brasiliensis naturally infects rats, however, it is able to infect mice. N. brasiliensis is used as a model to 
study acute and transitive infections lasting 6-8 days post-infection (dpi) (Gerbe et al. 2016), or require 
low worm numbers to survive longer in the host (Behnke, Menge, and Noyes 2009). 
 
It is estimated that 1 out of 8 people around the world are affected by nematode intestinal parasites. 
Examples of human parasites include the filarial nematodes Onchocerca volvulus, the causal agent on 
river blindness, and Wuchereria bancrofti, one of the causal agents of elephantiasis (Paily, Hoti, and Das 
2009). These illnesses are non-lethal, however they cause a serious burden that may compromise the 
work capacity and independence of the affected individual, such as blindness or swelling of limbs. 
Additional nematodes relevant to human health include Ascaris lumbricoides, Trichinella spiralis, 
Enterobius vermicularis, Ancylostoma duodenale, Necator americanus, Strongyloides stercoralis, 
Trichuris trichiura, among others (Stepek et al. 2006). 
 
Parasitic nematodes pose a threat not only to humans, but also to livestock and plants. Haemonchus, 
Cooperia and Trichostrongylus are some of the genera found in cattle, where gastrointestinal nematode 
infections can result in reduced milk production and reduced body weight compared to antiparasitic-
treated individuals (Rodríguez-Vivas, Roger Ivan; Grisi, Laerte; Perez de León 2017). In plants, the root-
knot nematode Meloidogyne incognita has a wide range of potential hosts and causes crop losses for 
potato, sweet potato, tomato as well as other cultivars (Abad and Williamson 2010). 
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Heligmosomoides bakeri is widely used in the laboratory as a model to study chronic gastrointestinal 
worm infections such as that of the hookworm Necator americanus. A Californian strain, H. polygyrus 
bakeri is particularly attractive due to its high numbers in the laboratory model Mus musculus. 
Heligmosomoides polygyrus polygyrus is a European strain that reaches lower worm burdens than H. 
polygyrus bakeri. Heligmosomoides bakeri was previously named Nematospiroides dubius and a number 
of older papers use this nomenclature. Cable and collaborators argued that H. polygyrus bakeri and H. 
polygyrus polygyrus are different species based on comparisons of ribosomal internal spacer (ITS) and 
the mitochondrial cytochrome c oxidase I molecular markers (Cable et al. 2006). In addition, undergoing 
comparative genomic analyzes suggest that these are two different species (Blaxter, unpublished 
results), therefore, we shall refer to H. polygyrus bakeri as H. bakeri throughout the rest of this work. 
 
H. bakeri infects mice and spends part of its life cycle in its host intestine (Figure 4) (Reynolds, Filbey, 
and Maizels 2012). The eggs are excreted and hatch outside of the host, where larvae develop from L1 
until reaching infective stage L3. These L3 larvae are eaten by mice and penetrate the intestinal walls 
reaching the serosa layer within 24 hrs, where they develop to L4 and adults. Once they have reached 
adulthood by day 10 post-infection (dpi), nematodes emerge back into the intestinal lumen where they 
feed on host intestinal tissue (Bansemir and Sukhdeo 2016). Adult worms coil around the small intestine 
villi to attach themselves and mate, producing eggs that will get excreted along with the feces. 

 
Figure 4. Heligmosomoides lifecycle. 

Heligmosomoides has evolved mechanisms to evade the mammalian immune response (discussed 
below), this has resulted in primary infections being typically non-resolving, and secondary infections 
lasting months (Maizels et al. 2012). However, there’s variation in secondary infection resolution time 
depending on the mouse strain. Slow responsive mouse strains take more than 20 weeks to expel worms 
(CBA, C3H, SL and A/J strains), intermediate responsive ones take 8 to 20 weeks (C57BL/6, C57BL/10 
and 129/J strains), fast responsive strains take 6 to 8 weeks (BALB/c, DBA/2 and NIH strains), and rapid 
responsive strains take 4 to 6 weeks to get rid of worms (SJL and SWR strains) (Reynolds, Filbey, and 
Maizels 2012). 
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Immune response to Heligmosomoides 
 
The immune response to Heligmosomoides involves many different cell types, but I will describe the role 
of intestinal epithelial cells and macrophages, as these are the cell types that we studied during this 
thesis. 
 
Mammals usually contend with helminth infections through the Type 2 immune response, characterized 
by the production of IL-4, IL-5, IL-9 and IL-13 cytokines (Reynolds, Filbey, and Maizels 2012). In mouse 
strains that naturally do not expel their parasites, a Type 1 response is favored, characterized by 
production of IFN-γ and IL-12 cytokines (Artis and Grencis 2008). 
 

Intestinal epithelial cells (IECs) 
 
Intestinal epithelial cells (IECs) perform a variety of functions in response to Heligmosomoides infection. 
These range from detecting helminths, alerting immune system cells and actively participating in worm 
expulsion (Artis and Grencis 2008).   
 
It is still unclear how IECs detect the presence of nematodes in the intestinal lumen, since no nematode-
specific pattern recognition receptors have been identified to date. IECs may sense physical damage 
through damage-associated molecular patterns. Remarkably, IECs express MHC class I and II, as well 
as all the required machinery for antigen processing and presentation. However, the capacity for IECs to 
present antigens is still controversial (Artis and Grencis 2008).  
 
IECs send alerts about nematode presence by secreting IL-33, IL-25 and Thymic stromal lymphopoietin 
(TSLP) cytokines (Figure 5). IECs are a potent source for IL-33, which is considered a Type 2 immune 
response accelerator. IL-33 is constitutively expressed and can be found in the nucleus of epithelial cells 
in barrier tissues and in endothelial cells in blood vessels (Scott et al. 2018). IL-33 is released upon IEC 
necrosis and its presence is considered an alaram signal of cellular damage. In the context of the 
intestinal epithelium, IL-25 is produced by tuft cells, a subclass of IECs that display similar signaling 
pathways to those of taste buds (Nadjsombati et al. 2018). Nadjsombati and collaborators proved that 
the stimulation of the receptor SUCNR1 by succinate in tuft cells its enough to produce IL-25 
(Nadjsombati et al. 2018). TSLP synthesis is dependent on the NF-kB signaling pathway. The NF-kB 
signaling pathway is relevant to contend with nematodes, since its disruption exclusively within IECs 
resulted in defective development of Th2 cytokine production and an increased susceptibility to a 
nematode infection by Trichuris muris (Artis and Grencis 2008). 
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Figure 5. Pathways of immunity to Heligmosomoides. Adapted from (Maizels et al. 2012). 

Tuft cells, a low-proportion cell type in the intestinal epithelium, are key to triggering a type 2 immune 
response by sensing and alerting about infection via IL-25 cytokine production and secretion (Gerbe et 
al. 2016). N. brasiliensis infection produces an increase in tuft cell numbers measured as the number of 
tuft cells per crypt-villus. This tuft cell hyperplasia is also observed during H. bakeri infections starting at 
1.9% at a basal level, up to 6.3% at 3 dpi and even more at 10 dpi representing 8.5% of intestinal epithelial 
cells (Haber et al. 2017). A mutant mouse strain lacking tuft cells displays more N. brasiliensis worm 
burden than its wild type counterpart (Gerbe et al. 2016).  
 
IEC changes in response to nematode infection include an increased permeability due to protease 
degradation of tight junctions (Artis and Grencis 2008). Additional changes in IECs include an increase 
of goblet cell numbers termed “goblet cell hyperplasia”, which correlates with H. bakeri resistance. This 
increase in goblet cells by 10 dpi was also detected in a single-cell RNA-Seq study (Haber et al. 2017). 
Goblet cells secrete mucus and are a source for the RELM-ß cytokine, a member of the resistin-like 
family that directly affects Heligmosomoides worm feeding (Herbert et al. 2009). Normal IEC to goblet 
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cell differentiation is initiated by IL-13 sensing (Artis and Grencis 2008). IECs also produce a 
phospholipase A2, PLA2g1B, that plays a role in H. bakeri expulsion and reduces the number of luminal 
nematodes in a dose-dependent manner when externally supplied (Entwistle et al. 2017). 
 

Macrophages 
 

Macrophages are key players for an effective immune response to a second infection. This is evident as 
macrophage depletion via clodronate treatment compromises the ability to expel worms. Alternatively 
activated macrophages (AAMs) are responsible for fighting nematodes while classically activated 
macrophages deal with bacterial infections. IL-4 and IL-13 promote macrophage alternatively activation 
(M2 or AAM), while IFN-γ triggers classical macrophage activation (M1 or CAM) (Gordon 2003). AAM 
also results in increased expression of the MHC II and antigen presenting capacities for macrophages, 
which will enhance the humoral immunity. 
 
Developing nematodes (L3 to L4 stages) display low mobility, and this is the point when worms are more 
susceptible to an attack by macrophages. AAMs attack developing nematodes found in the serosa layer 
resulting in granulomas, which are foci for macrophage alternative activation and nematode killing. The 
more granulomas observed, the fewer adult worms recovered from mice. The adult worms that make it 
to the intestinal lumen are out of reach for AAMs. Granulomas form during second infections because 
AAM differentiation is induced by memory Th2 cells, resulting from a first encounter with the nematodes 
(Anthony et al. 2006). Noteworthy, the most resistant mouse strains (such as SJL) develop granulomas 
during first infections (Filbey et al. 2014). 
 
Classically activated macrophages (CAMs) express Nitric oxide synthase (iNOS), which confers 
macrophages the capacity to kill virus or bacterial infected cells with reactive oxygen species. AAMs, on 
the other hand express Arginase-1 (Arg-1). iNOS and Arg-1 compete for the same substrate L-Arginine. 
Arg-1 converts L-Arginine to L-ornithine, polyamines and urea. Arginase-1 (Arg-1) is a key enzyme to 
cope with H. bakeri challenges, as a treatment with S-(2-bronoethyl)-1-cysteine, an Arg-1 inhibitor, 
renders mice incapable of clearing secondary infections (Anthony et al. 2006). Arg-1 products may 
directly harm nematodes as worms isolated from a secondary infection have higher cytochrome oxidase 
activity, a stress-response marker, relative to primary infection worms. Importantly, this difference in 
cytochrome oxidase activity is lost with the arginase inhibitor treatment. It has also been shown that L-
ornithine or polyamines diminish larval motility in in vitro macrophages larval co-culture experiments, and 
this effect was sensitive to the Arg-1 inhibitor (Bieren et al. 2013). 
 
AAMs also display high expression of RELM-alpha and Ym-1 (Coakley et al. 2017). The RELM-alpha 
(encoded by Retnla) cytokine produced by AAMs, seems to down-regulate an exacerbated Th2 
response, as suggested by studies using Retnla−/− mice. These mice show a graver inflammation 
pathology (in liver, intestine and lungs) associated to the Th2 response than wild type mice (Nair et al. 
2009). Ym-1 is a member of a chitinase-like family but lacks any detectable chitinase activity. Some 
authors suggest a role for Ym-1 in damage repair caused by nematodes moving through intestinal tissue 
(Maizels et al. 2012).  
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Heligmosomoides excretory-secretion (HES) & immune modulation 
 
Heligmosomoides owes most of its immune evading capacities to secreted products that are collectively 
named Heligmosomoides excretion-secretion (HES). HES can be harvested and studied by removing 
adult nematodes from infected mice 14 days post infection (dpi). The collected nematodes are washed 
and maintained in serum-free medium and the first 24 hours of culture are discarded to avoid mouse 
contamination. HES is then collected from day 2 to 14 days post-harvest, with subsequent centrifugation 
and filtering to remove eggs (Johnston et al. 2015). 
 
Segura and collaborators studied the effects of HES on Dendritic Cells (DCs) in vitro. Dendritic cells are 
major contributors to presenting antigens to T cells and heavily influence the decision of the type of 
immune response to trigger. Experiments using co-cultured DCs and naive T cells revealed that HES-
treated DCs resulted in reduced production of IFN-γ (Th1 cytokine) or IL-4 (Th2 cytokine) by T cells, but 
increased IL-10 levels (Treg cytokine). This suggests that DC exposure to HES would favor Treg 
production instead of Th1 or Th2 cells and their corresponding immune responses, thus having 
immunomodulatory capacity (Segura et al. 2007). 
 
Treg cells attenuate the immune response and are part of the intestine homeostasis during food antigen 
response. Grainger and collaborators explored whether H. bakeri may exploit this T cell population in 
order to avoid expulsion. They discovered that HES can drive Th0 cells to differentiate to regulatory T 
cells (Treg) which repress Th2 response (Grainger et al. 2010). In mammals, TGF-β promotes the 
differentiation of naive T helper cells to Tregs via activation of Foxp3 transcription factor. Interestingly, 
Grainger et al. also discovered that H. bakeri secretes a TGF-β analog that drives Treg differentiation. 
They also found that Teladorsagia circumcincta, a parasite closely related to H. bakeri, also secretes a 
TGF-β mimic, but Haemonchus contortus excretion-secretion lacks such an analogous cytokine activity. 
 
Coakley et al. (Coakley et al. 2017) studied how HES inhibits both classical (Th1-driven) and alternative 
activation (Th2-driven). I will present more details of these findings in the Background section of this 
thesis, due to the particular relevance for my project. 
 
HES contains several protein components (at least 374), the most abundant of them are venom allergen-
like (VAL) family proteins with 25 representatives found in HES (Buck et al. 2014). The function of these 
proteins remains elusive although they are also present in the adult nematode surface. Hewitson et al. 
(Hewitson et al. 2013) collected L4 excretion-secretion (ES) form tissue stage larvae and compared them 
with regular HES from intestinal lumen adult nematode stage. They found 135 shared proteins between 
L4 ES, 229 adult HES exclusive proteins and 79 L4 ES exclusive proteins. They found SXC-like domain-
containing proteins, VAL family proteins and Sushi-like domain proteins (typically involved in protein-
protein interactions) among L4 enriched amino acid sequences. HES also contain sRNAs, which I will 
further discuss in the following Background section. 
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Background 
 
All three papers described in this section refer to work done in the laboratory of Dr. Amy Buck at the 
University of Edinburgh, UK, while part of the bioinformatic analyses described below were done in our 
group. 
 

H. bakeri secretes EVs that have immune-regulatory capacity and harbor sRNAs 
 
In 2014 Buck and collaborators (Buck et al. 2014) reported that Heligmosomoides HES products contain 
RNA. The most abundant sRNA class found was miRNA, with other RNA classes such as yRNAs present 
to a lesser extent. yRNAs are small non-coding RNAs that are part of the human Ro60 ribonucleoprotein 
particle. They were discovered as this complex is targeted by antibodies in some Lupus autoimmune 
syndromes. Studies later revealed that homologs for yRNAs exist in nematodes as well as in some 
bacteria (Kowalski and Krude 2015). Several secreted parasitic miRNAs such as miR-100-5p, lin-4-5p, 
miR-83a-3p, miR-263-5p, let-7a-5p, miR-79a-3p and miR-63 have identical seeds to mouse miRNAs, 
which raised the question of nematode miRNAs targeting host genes through existing target sites.  
 
They also discovered that HES contains extracellular vesicles (EVs) with a size range of 50 – 100 nm 
and have a ‘saucer-like’ morphology described previously for exosomes (Théry et al. 2002). In Buck et 
al (Buck et al. 2014) these EVs are referred to as exosomes, however additional experiments would be 
needed to prove that these EVs have an endosomal origin. As a precaution, I will refer to 
Heligmosomoides vesicles as EVs throughout this thesis. These EVs contain a WAGO protein (see 
Introduction: Small RNAs and RNAi), from now on referred to as exWAGO (excreted worm-argonaute 
protein). 
 
EVs provide protection from degradation to secreted miRNAs by encapsulation, as shown by RNase 
assays, detergent application and qPCR quantification. These EVs may originate from the nematode 
intestinal lumen as suggested by TEM microscopy images (Buck et al. 2014). Additionally, a proteome 
analysis also suggests that EVs have an intestinal origin given the presence of intestinal acid 
phosphatase family member, P-GlycoProtein related family member, Vacuolar H ATPase family 
members 15 and 16, as well as other 13 proteins that are typically present in nematode intestinal epithelial 
cells. 
 
Interestingly, H. bakeri EVs can suppress a type 2 innate immune response in vivo. To test the immune 
modulatory capacity of H. bakeri EVs, Buck et al used an asthma model in mice (Havaux et al. 2005) and 
measured the number of eosinophils in bronchoalveolar lavage upon fungal (Alternaria extract) antigen 
stimulation. A H. bakeri HES pre-treatment resulted in reduced numbers of eosinophils relative to those 
mice treated with buffer. 
 
The authors then showed that H bakeri EVs have the capacity to be internalized by mouse intestinal 
epithelial cells (a MODE-K cell line, from now on referred as IECs) by staining EVs with PKH67 cell 
membrane labelling and assessing uptake with fluorescence microscopy. They also tested if sRNAs are 
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also internalized by measuring yRNAs and miRNA-16 levels inside IECs with PCR quantifications. These 
results show that EVs are internalized by host cells and that they do deliver some of their sRNA cargo. 
 
Buck and collaborators (Buck et al. 2014) showed that IL-33R and Dusp1 are down-regulated in IECs by 
H. bakeri EV incubation. IL-33R is part of the receptor for IL-33, an alarmin cytokine involved in protection 
against multicellular parasites. Dusp1 is a regulator of MAPK signaling associated with diminishing the 
type 1 pro-inflammatory reaction to Toll like receptor (TLR) ligands. In order to associate the repression 
of these genes with parasitic miRNAs activity, the authors designed the following experiment: They used 
a vector with luciferase as a reporter that has the 3’ UTR region of the gene of interest, later cells of 
interest are transformed with a synthetic parasitic miRNA together with the reporter vector. If the synthetic 
miRNA does hinder the luciferase activity this provides evidence that the tested 3’UTR region can be 
regulated by the transformed miRNA. The authors found reduced luciferase activity for Dusp1 reporter, 
which possess 7mer binding sites for miR-200, let-7 and miR-425. However, no reduction in luciferase 
activity was observed for IL-33R, even though it contains two 7mer sites for miRNA-71. The difference in 
repression was attributed to higher conservation of Dusp1 3’UTR region relative to that of IL-33R. 
 
Finally, the authors found that there are shared parasitic miRNAs detected in intestinal cells treated with 
H. bakeri EVs and those found in mouse serum infected with Litomosoides sigmodontis. Shared miRNAs 
include miR-100, miR-71 and Bantam (miR-58), and these are implicated in pharyngeal development, 
regulation of lifespan, and developmental apoptosis processes (Buck et al. 2014). 
 
Overall, Buck et al (Buck et al. 2014) suggested that parasitic nematodes may use EV-loaded RNAs to 
modulate the mammalian immune response.  
 

H. bakeri EVs suppress macrophage activation 
 
In 2017, Coakley and collaborators (Coakley et al. 2017) reported a study on the effects of H. bakeri EVs 
on macrophages. They found higher EV internalization by bone marrow-derived macrophages (BMDM) 
than by intestinal epithelial cells. This was shown by marking vesicles with the fluorescent dye PKH67 
and measuring EV uptake using flow cytometry. Macrophage EV uptake is an active process that can be 
blocked by applying cytochalasin D, an actin remodeling inhibitor that has been used to block endocytosis 
and phagocytosis in other studies. The application of cytochalasin D greatly diminished EVs uptake by 
BMDM, revealing that this internalization requires phagocytosis (Coakley et al. 2017). 
 
EV uptake is favored when BMDM are pre-treated with IL-4/IL-13 (Th2 cytokines) and hampered with 
lipopolysaccharide pre-treatment, a trigger molecule for classical macrophage activation. Applying anti-
EV antibodies increases BMDM EV uptake and promotes EV and lysosome co-localization which 
suggests EV degradation. Importantly, in absence of EV antibodies, EV and lysosomes do not co-localize 
as much as with anti-EV treatment. This suggests that EV could potentially escape lysosome degradation 
in wild type conditions (without EV antibodies) (Coakley et al. 2017). 
 
H. bakeri EVs suppress the activation of both type 1 (classical) and type 2 (AAM) activation of 
macrophages as revealed by quantifying hallmark genes for either pathway. Chosen markers for classical 
activation include tumor necrosis factor (TNF), inducible nitric oxide synthase (iNOS), IL-6 and IL-12. 
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Tested markers for alternative activation of macrophages (AAM) include Retnla, Ym1 and arginase-1. All 
these markers are repressed upon incubation with H. bakeri HES, EVs or even supernatant (EV-depleted 
HES) relative to control conditions (Coakley et al. 2017). 
 
AAM is also associated with the expression of the ST2 subunit of the IL-33 receptor. In accordance with 
Buck et al (Buck et al. 2014), Coakley found that ST2 is repressed upon EV incubation. The repression 
of ST2 is dependent on EV internalization, as this effect was disrupted by applying cytochalasin D or EV 
antisera. Notably, type 2 activation is still suppressed via EV treatment in ST2 deficient mice, which 
suggests that there still may be other receptors implicated in type 2 response activation (Coakley et al. 
2017). 
 
Interestingly, vaccination experiments with any of the nematode secretion products, HES, EVs or 
supernatant with an adjuvant (a substance that the immune response to a vaccine) before nematode 
challenge stimulates immunity to H. bakeri (Coakley et al. 2017). This nematode secretion-based 
vaccination may have potential applications for protecting susceptible human populations from parasitic 
nematodes.  
 
Finally, Coakley and co-workers also showed that ST2-/- mice are more susceptible to Heligmosomoides 
infection, even after EV vaccination (Coakley et al. 2017). Mutant ST2-/- mice showed higher egg burden 
in feces and adult worm counts, as well as less granulomas relative to wild type mice. IL-33R defective 
mice also displayed reduced numbers or macrophages, ILC2 and Th cells in mesenteric lymph nodes 
(MLNs). 
 
It is yet to be determined if the sRNAs present in Heligmosomoides secretion products play a role in 
repressing any of the EV-downregulated genes: Retnla, Ym1 and Arg1, ST2 subunit of IL-33R, tumor 
necrosis factor (TNF), inos, IL-6 and IL-12. 
 

H. bakeri secretes an Argonaute protein that loads 22Gs that originate from repetitive 
sequences 

 
In a recent paper, we showed that exWAGO is truly vesicular and present at 3.4 (+/- 1.1) copies per EV. 
This was shown by sucrose gradient isolation of EVs, a proteinase K protection assay followed by a 
subsequent western blot assays using an exWAGO antibody. In these assays exWAGO co-purifies with 
EV fractions (Chow et al. 2019). 
 
Our collaborators in Edinburgh sequenced and assembled a new version of the H. bakeri genome. This 
allowed comparative genomics with C. elegans and other clade V nematodes. The H. bakeri genome 
contains a much larger repertoire of repetitive regions than C. elegans (Chow et al. 2019). More than half 
(58.3%) of the H. bakeri genome contains some type of repeated element, while in C. elegans it is less 
than 20%.  
  
A comparison of RNAi machinery components in clade V nematodes suggests that an expansion of 
WAGOs occurred in the Caenorhabditis clade that didn’t happen in other rhabditida members, such as 
the strongylidae family. Nearly all of the machinery for miRNA and piRNA pathways is conserved across 
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Clade V nematodes, while other siRNA pathways such as CSR-1, as well as nuclear Argonautes NRDE-
3 and HRDE-1 are absent in parasitic nematodes, including H. bakeri (Chow et al. 2019). 
 
Phylogenetic analysis of Argonautes revealed that exWAGO is highly conserved in parasite nematodes 
belonging to clade V. The gene structure (number of exons) for exWAGO is conserved across clade V 
parasites. The phylogeny structure of Argonaute proteins suggests that Caenorhabditis SAGO-1, SAGO-
2 and PPW-1 are co-orthologues of exWAGO, as these C. elegans WAGOs branch from within exWAGO. 
Interestingly, C. monodelphis, a basal species to the Caenorhabditis genus, has a clear exWAGO 
homolog (Chow et al. 2019). Further characterizations of C. monodelphis exWAGO and comparisons to 
clade V parasite homologs may reveal interesting insights about exWAGO evolution. 
 
Analysis of available RNA-Seq data revealed that exWAGO is the most expressed Argonaute protein in 
the majority of clade V parasites (Chow et al. 2019). Chow and collaborators also identified exWAGO in 
the excretory-secretory (ES) product of Nippostrongylus brasiliensis (a rat parasite affecting lungs and 
intestine). There was no evidence for any other secreted Argonaute protein in ES of H. bakeri or N. 
brasiliensis (Chow et al. 2019). 
 
Secondary 22G siRNAs are the major contributors to adult C. elegans and H. bakeri, as well as the EV 
sRNA profiles. These are produced by RNA-dependent RNA polymerases (RdRP, see Introduction), and 
have a 5’ tri-phosphate due to direct ribonucleotide triphosphate incorporation as the first building block 
during synthesis. These 22Gs were not discovered previously in Heligmosmomoides as the tri-
phosphated 5’ end impedes detection of these sRNAs in classical sRNA-Seq since only those with a 5’ 
mono-phosphate can be ligated during library preparation. To detect 22Gs a prior phosphatase treatment 
is needed that will turn 5’ polyphosphate to monophosphate and will enable adapter ligation. Adult RdRP 
siRNAs seem to have similar endogenous functions in both C. elegans and H. bakeri, as they map 
antisense to many mRNA and retrotransposons in both species. Interestingly, EV-enriched 22G tend to 
originate from repeated sequences that are Heligmosomoides specific or “novel repeats”, as well as 
transposons (1.7 and 1.9-fold enrichment, respectively, relative to adult H. bakeri 22Gs) (Chow et al. 
2019). 
 
Finally, exWAGO immunoprecipitation from both adult worms and EV show enrichment for 22G 
sequences and depletion for miRNAs and Y-RNAs. For example, miRNA-100 is depleted from the adult 
and the EV-loaded exWAGO. 
 
These recent studies provide evidence for a role of sRNAs in the immune modulation capacity of H. 
bakeri HES and EVs (Chow et al. 2019). However, these studies do not prove that sRNAs are directly 
implicated in immune suppression. Buck et al. (Buck et al. 2014) proposed miRNAs as the main 
characters driving an immunomodulatory effect, but we recently revealed that 22Gs are the main 
components of H. bakeri secreted products (Chow et al. 2019). The role for 22Gs as potential 
immunomodulatory molecules remains completely unexplored, until the present work. Here we want to 
relate the presence of H. bakeri 22G sRNAs found in it’s secretion products (HES and EVs) with down-
regulation of their potential targets in an in vitro experiments with mouse cells. 
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Chapter 1: Disentangling sRNA-Seq data to study RNA communication 
between species 

 
Most of the results presented in this chapter are part of the paper “Disentangling sRNA-Seq data to study 
RNA communication between species” published in Nucleic Acids Reseach (Bermúdez-Barrientos et al. 
2020). 
 
We will refer to pairs of interacting organisms as host-symbiont species pairs. The symbiont organism 
lives interacting with a host species in a favorable (mutualism) or unfavorable (for the host) manner 
(parasitism). We chose the term symbiont as we have representatives for both favorable and unfavorable 
interactions. 

Methods 
 
Selected experiments and reference genomes 
 
All pairs of host-symbiont species used in this work are shown in Table 5. Additional information of the 
sRNA-Seq data processing from these experiments is included in Supplementary Table 1. The 
reference genomes used are found in Supplementary Table 2. To ease finding ambiguous reads across 
both genomes, a combined reference was produced by concatenating the sequences from both genomes 
for each host-symbiont pair. Ribosomal sequences were included as an extra contig in those cases where 
they were missing. A two-word label was added to all fasta headers to readily distinguish symbiont from 
host genome sequences. All combined reference files were indexed using Bowtie-1.2.2 (B Langmead et 
al. 2009).  
 
Processing of small RNA-Seq reads 
 
We used FastQC to inspect the quality of sRNA-Seq reads from each library. We then used reaper (Davis 
et al. 2013) to trim the 3’ adapter sequence and remove low quality nucleotides with the following 
parameters: -geom no-bc, -mr-tabu 14/2/1, -3p-global 12/2/1, -3p-prefix 8/2/1, -3p-head-to-tail 1, -nnn-
check 3/5, -polya 5 -qqq-check 35/10, -tri 35. Remaining sequences shorter than 18 nt were discarded. 
When needed, reads were collapsed to unique individual sequences with counts using tally (Davis et al. 
2013). One replicate for IECs control cells (incubated for 24 hours without any nematode treatment) was 
an outlier according to PCA analysis, and it lacked a clear peak for mouse miRNAs, and was thus 
excluded from further analyses. All the other 17 IECs libraries showed a clear miRNA peak and were 
considered for further analyses. 
 
Calculations of host, symbiont and ambiguous reads 
 
All libraries were mapped to the separate host and symbiont genomes using Bowtie-1.2.2 (B Langmead 
et al. 2009) and requiring perfect end-to-end hits (-v 0). Each read was classified as: host if it only mapped 
to the host genome, symbiont if it only mapped to the symbiont reference or ambiguous if it mapped to 
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both genomes. Read length distributions showing this categorization for all symbiosis sets are shown in 
Supplementary Figure 1.   
 
Shared k-mers between genomes 
 
The fraction of shared k-mers (s) of length 12-30 in two random genomes of fixed sizes was calculated 
with the following equation: 
S = "#$

"#%"$&"#$
 

 
Where Na and Nb represents the number of k-mers in two sets of random k-mers or genomes a and b. 
Nab is the number of shared k-mers in both genomes. The values of Na, Nb and Nab were calculated 
using the theoretical approach given by (Fofanov et al. 2004). 
 
The fraction of shared k-mers between sizes 12-30 that are shared between each pair of real genomes 
was calculated using Jellyfish 2.2.10 (Marçais and Kingsford 2011). 
 
Genome-guided sRNA assembly 
 
We used ShortStack/3.8.5 (Shahid and Axtell 2014) to perform the genome-guided sRNA assembly. We 
used parameters that favor small clusters (  
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Table 4): a minimum coverage of one read, requiring 0 mismatches, using unique-mapping reads as a 
guide to assign multi-mapping reads (mmap: u), a padding value of 1, reporting all bowtie alignments 
(bowtie_m: ‘all’), and a ranmax value of 50000 to avoid losing reads mapping to multiple sites. The default 
bowtie cores and sorting memory values were also increased to improve processing time. Reads were 
aligned to the concatenated host and symbiont reference genomes mentioned above. 
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Table 4. ShortStack parameters used for genome-guided assembly 

Parameter Value Default Explanation 
ranmax 50000 3 reads with more than this number of mapping positions and no 

guidance is possible (with uniquely mapping reads) will be dropped 
and marked as unmapped 

bowtie_m ‘all’ 50 Maximum number of mapping sites to be considered for each read 
dicermin 20 21 Minimum read size range for a cluster to be considered as Dicer 

producing locus 
dicermax 24 24 Maximum read size range for a cluster to be considered as Dicer 

producing locus 
mincov 1 5 Minimum read coverage for a locus to be considered for cluster 

definition. Can also be expressed as reads per million (rpm) 
pad 1 75 Maximum nucleotide distance between two clusters to be merged into 

a single cluster 
sort_mem 40G  RAM memory used during alignment file sorting 
v 0 1 Number of maximum mismatches to allow between read and 

alignment site 
cpu 8 1 Number of cpus to use by bowtie. 

 
De novo assembly of sRNA-Seq 
 
Six popular RNA-Seq de novo assemblers were used to evaluate the de novo assembly of sRNA reads: 
Oases (Schulz et al. 2012), rnaSpades (Bushmanova et al. 2019), SOAPdeNovo-Trans (Y. Xie et al. 
2014), Tadpole, TransAbyss (Robertson et al. 2010) and Trinity (Grabherr et al. 2011). These assemblers 
were also tested using their first “k-mer extension” step: a) rnaSpades “--only-assembler”, Trans-AbySS 
“--stage contigs” and Trinity “--no_run_chrysalis”; b) the equivalent for Oases was to use contigs 
generated by velvetg, while for SOAPdenovo-Trans the -contig output file was used; c) Tadpole is a 
simple assembler that only performs k-mer extension. All the generated contigs were post-processed as 
follows: 1) all reads used to generate the assembly were aligned back to the contigs using Bowtie-1.2.2 
(-v 0), and 2) using the BAM files from these alignments, contig edges that did not have any reads 
mapping to them were trimmed. All contigs were then mapped to the concatenated reference genomes 
to decide if they were host or symbiont. 
 
Disambiguation of host-symbiont mixed samples 
 
To help determine the origin of ambiguous reads (that map equally well to both genomes) we used de 
novo assembled contigs or genome-guided clusters. Clusters are defined directly on a specific genome; 
therefore, they are non-ambiguous by definition. Contigs are assembled in absence of a genome, but as 
they are longer than reads, they should be less ambiguous. We mapped contigs to genomes, first with 
Bowtie-1.2.2 (B Langmead et al. 2009) to find perfect hits, and unmapped contigs were then aligned with 
a more relaxed search with Bowtie2-2.3.3 (Ben Langmead and Salzberg 2012) allowing for a small 
number insertions, deletions and mismatches in end-to-end mode with parameters -D 15 -R 2 -N 0 -L 22 
-i S,1,1.15. For those contigs that mapped imperfectly to both genomes, the alignment with less 
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mismatches was chosen (XM:i<N> SAM optional field). We then mapped all reads to contigs or clusters. 
The following procedure was applied to both contigs and clusters. Here we will refer to them as 
assemblies. 
 
We classified all mapping reads into three sets: those that map to multiple assemblies (multi-mapping 
reads), reads that map to a single assembly (unique-mapping reads) and reads that do not align to any 
sequence. With these conditions this is a similar problem as that of assigning multi-mapping reads to 
transcript isoforms. Tools such as ERANGE (Mortazavi et al. 2008), a method developed for CAGE 
(Faulkner et al. 2008), RSEM (B. Li et al. 2010) and ShortStack (Shahid and Axtell 2014) use unique-
mapping reads as “guide” reads to assign reads that map to multiple transcripts. The core idea is that the 
proportion of  unreads is a good estimate of the proportion of multi-mapping reads produced by each 
transcript. In our implementation we first sum the counts of all uniquely mapping reads for each assembly 
across all libraries, getting global unique-mapping read counts. To use only the most informative 
assembly with global uniquely mapping read counts, we filtered the top 0.2% (we tested different 
thresholds and ~90% of multi-mapping reads can be assigned with this threshold). We later distribute 
multi-mapping reads that align to these assemblies proportionally to global uniquely mapping counts. 
Reads that map to other assemblies, as well as reads that map to ambiguous assemblies or do not map 
at all, remain ambiguous. 
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Results 
 

Species systems that exchange small RNAs included in this study 
 
For this study we considered most of the reported models to date for sRNA-mediated communication, 
listed in Table 5. These include the model plant A. thaliana infected with the fungus Botrytis cinerea or 
the parasitic plant C. campestris. The rodent Meriones unguiculatus infected with the filarial nematode 
Litomosoides sigmodontis. Also, an experiment designed through our collaboration with Amy Buck: Mus 
musculus cells treated with EVs isolated from the parasite model nematode Heligmosomoides bakeri. 
We also included one mutualism representative with the legume Glycine max nodules containing 
Bradyrhizobium japonicum. 
 
Table 5. Small RNA sequencing datasets of interacting organisms 

Host Symbiont Tissue or condition Data availability Reference 

A. thaliana Botrytis cinerea Rosette leaves: 24, 48 and 
72 hours after infection 

Sequence Read Archive: 
SRP019801. Samples: 
SRX252403, SRX252404, 
SRX252405 

(Weiberg et 
al. 2013) 

A. thaliana C. campestris A. thaliana stems 4cm above 
a C. campestris haustorium 

Sequence Read Archive: 
SRP118832. Samples: 
SRX3214812, SRX3214813  

(Shahid et 
al. 2018) 

Meriones 
unguiculatus 

Litomosoides 
sigmodontis Serum from infected gerbils 

GEO: GSE112949. Samples: 
GSM3091975, GSM3091976, 
GSM3091977, GSM3091978, 
GSM3091979 

(Quintana 
et al. 
2019) 

Mus 
musculus 

Heligmosomoides 
bakeri 

MODE-K and BMDM cell 
lines: 4 and 24 hours after 
adding EVs or total HES 

GEO: GSE124506. Samples: 
GSM3535462, GSM3535463, 
GSM3535464, GSM3535468, 
GSM3535469, GSM3535470 

This work 

Glycine max Bradyrhizobium 
japonicum 

10 and 20 days nodule 
Sequence Read Archive: 
SRP164711. Samples: 
SRR7986783, SRR7986788 

(Ren et al. 
2019) 

 
Each of these symbiosis systems presents different properties. A major difference is that there are 
samples where the actual parasite/symbiont was present during the RNA extraction procedure. In these 
samples we expect to find both the endogenous signal from each organism, as well as secreted RNAs. 
In contrast, there are samples where we expect only secretion products (excretory-secretory products) 
such as those of Litosomoides and Heligmosomoides.  
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In the A. thaliana-Botrytis system leaves were inoculated with fungal spores, this means that the fungus, 
a potential sRNA source, is found in the leaves. Here we expect a dominant host signal and perhaps a 
increasing parasite signal as the infection progresses. 
 
Axtell and collaborators C. campestris interaction libraries consists of the portion in which C. campestris 
holds and penetrates A. thaliana stems (Shahid et al. 2018). While negative controls consist of A. thaliana 
stems 4 cm above the C. campestris haustorium (root-like organs that penetrate the host plant tissue and 
may kill it) and parasite libraries consist of the C. campestris stem 4 cm below the haustorium. We will 
consider A. thaliana stems as the interaction library of interest, as those C. campestris sequences found 
here may be considered actual parasite sequences that reached this far inside A. thaliana stems.  
 
M. unguiculatus samples consist of host serum infected with L. sigmodontis. Here the filarial nematode 
is absent from samples as these filarial nematodes remain in the host’s pleural cavity and we expect to 
detect mostly excretion-secretion sRNAs. For Heligmosomoides bakeri-Mus musculus, mouse cells were 
incubated with H. bakeri EVs or HES. For both the L. sigmodontis and H. bakeri libraries the producing 
nematodes are absent from the samples. We expect the rodent samples to be similar to a needle in a 
haystack situation, where small amounts of parasitic reads are outnumbered by those of the host. 
 
The Glycine-Bradyrhizobium samples consists of nodules harboring bacteria at two different time points. 
Here, the symbiont cells are included and we expect to find some bacterial endogenous signal.  
 

Determining the amount of host, symbiont, and ambiguous reads in sRNA datasets 
 
For each organism’s system we built a mixed reference that included both host and symbiont genomes. 
Then we mapped reads between 18 and 50 nt to our merged reference and worked with only those reads 
that matched perfectly to one or more sites. We decided to keep only perfect mapping read to help guide 
the evaluation of our assembly processes: any resulting assembled sequence that doesn’t map back to 
the genome would be considered an assembly chimera. An implication for this decision is that we will 
loose potentially interesting reads, such as those that had additional nucleotides due to RNA post-
transcriptional editing, those derived from heterozygous sites in the genome, or simply those with a small 
number of sequencing errors. Preliminar explorations with adult libraries suggest that RNA post-
transcriptional editing happens in Heligmosomoides. I considered the mismatch position for all sequences 
with a single mismatch. The most abundant position for a mismatch to occur is the final 3’ position, which 
suggests that an extra nucleotide was added to these sequences at the 3’ end. I observed this effect in 
both phosphatase-untreated (mono-P) and phosphate-treated (poly-P) adult libraries and through a 
broad read size range (18 nt – 30 nt) Supplementary Figure 2. Focusing on reads 21-24 nt long, I 
observed a bias torwards uracil/thymine at the 3’ extreme for mono-P libraries, whereas, for poly-P 
libraries I found a bias torwards uracil/thymine and cytosine. It would be valuable to include pure H. bakeri 
EV libraries and Caenorhabditis libraries for further explorations to look for evidence of these 
observations in secreted products and to look for evolutionary conservation. Nevertheless, the priority for 
this part of the thesis was to propose assembly and disambiguation strategies, so the phenomenon of 
RNA editing will need to be considered in future work. 
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A read was considered to be parasitic (or mutualistic for Bradyrhizobium) if it mapped only to the symbiont 
genome, a read was considered to be a host read if it mapped only to the host genome, while reads that 
mapped equally well to host and symbiont were considered ambiguous. 
 
There are different amounts of ambiguous reads (Figure 6). For Botrytis and A. thaliana, ambiguous 
reads are more abundant at 48 and 72 hours (6.8% and 6.3% respectively) than at 24 hours (1.1%). This 
highlights the importance of sRNAs that map perfectly to both organisms, these sRNAs may be related 
to infection progression. Ambiguous reads may be a strategy for Botrytis to target genes in A. thaliana or 
these may be produced by the plant to respond to the fungal infection. It may be interesting to compare 
possible producing loci for these ambiguous sequences in the fungal and plant genome. 
 

 
Figure 6. Fraction of ambiguous and symbiont reads for interacting libraries. The name of the two 
interacting species is shown for each experiment. Each bar represents all 18-50 nt reads from one sRNA-
Seq sample, and bars are grouped by experiment. The Y-axes are independently zoomed and cut to to 
highlight the percent of symbiont (blue) and ambiguous (purple) reads. Host reads (green) always add 
up to 100%. Biological replicates are defined by “r”, while other labels are hours post infection (B. 
cinerea), hours of incubation with EVs (H. bakeri) and days of nodule (B. japonicum). 

The C. campestris - A. thaliana symbiosis system is the one with the most ambiguous reads: up to 55.3% 
of the reads map equally well to both plants. C. campestris signal ranges from 3.6% to 4.5%. This parasite 
signal is considerable given that these libraries are A. thaliana stem libraries 4 cm away from the C. 
campestris haustorium-A. thaliana stem interaction site. This suggests that C. campestris sRNAs may 
travel through A. thaliana vascular system and may reach other parts of the host plant. Ambiguous reads 
are 11- and 15-times more abundant than the unambiguous parasite reads. In their analysis of this data, 
Shahid and collaborators focused on enriched sRNAs present in interaction (C. campestris-A. thaliana) 
relative to parasite (C. campestris) libraries (Shahid et al. 2018). They did not explore possible parasite 
signal in host (A.thaliana) libraries. 
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For Meriones and Litomosoides the fraction of ambiguous reads ranges between 0.3% to 0.6% of 
mapped reads. Parasite signal in serum ranges from 1.3% to 3.4%. For this system parasite signal is 
higher than ambiguous reads. For this same data, Quintana and collaborators (Quintana et al. 2019) 
found 1.6% to 4.2% parasite signal and 0.3% to 1% ambiguous reads. There are several differences 
between our data processing and Quintana et al. that may explain these differences. Some processing 
differences include using a different reference genome, Quintana et al. used M. musculus and we used 
M. unguiculatus, we used reaper as an adapter trimming tool and Quintana et al. used cutadapt, just to 
mention a few examples. As additional context for filarial nematode sRNA data in serum, Onchocerca 
signal in serum from infected patients was between 5 and 127 reads/per million total host miRNA reads, 
which corresponds to up to 0.0127% of parasite signal (Quintana et al. 2015). 
 
For mouse cells treated with H. bakeri EVs the amount of ambiguous sequences clearly outnumbers 
those reads that map perfectly to the nematode. Ambiguous reads range between 3.9% to 5.7% while 
parasite signal reaches up to 0.9% of the total reads. Thus, ambiguous reads are around 5 times more 
abundant than nematode reads. If we were to discard all ambiguous sequences, this would mean loosing 
a substantial amount of the reads that are potentially parasitic. 
 
The system with the smallest fraction of ambiguous reads is G. max and Bradyrhizobium with 0.1% and 
0.2%. This low amount of ambiguous reads could be due to the enormous phylogenetic distance found 
between bacteria and plants. On the other hand, this pair of organisms displays the greatest symbiont 
signal with 8.9% and 18.9% of the reads mapping to the bacterium genome. This symbiont-rich signal 
could the the result of high numbers of rhizobial bacteria in soybean nodules. Notheworthy, this is the 
only mutualistic relationship studied, it would be interesting to determine if bacterial sRNA contents relate 
to the number of bacterial cells in nodules.  
 
A common practice is to discard or ignore reads that map equally well to both organisms due to the 
difficulty of determining their true origin. However, if we were to discard ambiguous sequences, we would 
be throwing away a substantial amount of data, especially for the A. thaliana-C. campestris, A. thaliana-
Botrytis, and Heligmosomoides-Mus musculus systems. It is a possibility that sRNAs relevant to the 
symbioses would be discarded. 
 

Ambiguity in host-symbiont sRNA-Seq reads is influenced by read length, genome size and 
phylogenetic distance 

 
We wanted to get more insights into the origin of ambiguous sequences in our chosen host-symbiont 
systems. Previous studies have addressed similar problems showing that read length, genome size and 
phylogenetic relationships are relevant (Fofanov et al. 2004). In this section we address these factors 
using “k-mers” (nucleotide sequences of length k) as a proxy for sRNA-Seq reads. Results of this section 
were obtained by Dr. Obed Ramírez-Sánchez, a postdoctoral researcher (2018-2020) in the Abreu-
Goodger lab. 
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Read length 
 
Read length is a key factor for k-mers to be shared between genomes. To show this we used an 
estimation of shared k-mers for two random genomes with the same sizes as the A. thaliana and Botrytis 
genomes, and calculated the fraction of shared k-mers across different values of k. The number of shared 
k-mers decreases as k increases (Figure 7A). Nearly 80% of k-mers of length 12 are shared between 
these two genomes, in stark contrast to only around 0.25% of the k-mers of length 18 being shared. Just 
by adding a single nucleotide, the chance of a k-mer being shared decreases substantially. 
 
Genome size 
 
Another factor to consider is genome size. The larger two genomes are, the more likely that they will 
share k-mers. This was tested by down-sampling B. cinerea genome to 50% or 10% of its length, and 
measuring the shared k-mers with A. thaliana. The smaller the sample the less shared k-mers (Figure 
7B). Genome size clearly affects the amount of shared k-mers. 
 
 
Phylogenetic distance 
 
Genomes are related by common ancestry. The closer two organisms are, the more k-mers they will 
share. In order to compare the effect of phylogenetic distance, but controlling for genome size which also 
affects shared k-mers, we first down sampled each genome to match the size of Bradyrhizobium 
japonicum (9.1 Mb), the smallest genome included (Figure 7C). C. campestris and A. thaliana are two 
plant genomes belonging to the eudicots clade, and are the more closely related genomes. This is 
reflected by being the two genomes that share the most k-mers. Meriones and Litomosoides are two 
animal genomes and come second in shared k-mers. A. thaliana and Botrytis and M. musculus and H. 
bakeri have similar low fractions of shared k-mers. This is expected for A. thaliana and Botrytis having a 
long diverging time, 1,576 +/- 88 Ma (Wang, Kumar, and Hedges 1999), however Heligmosomoides and 
mouse are two animal genomes and this low proportion may appear to be unexpected. We interpret that 
this low proportion is likely because the genome of Heligmosomoides is rich in repetitive sequences 
exclusive to this organism, 58.3% of its genome is composed of repetitive elements (Chow et al. 2019). 
A random sample of this nematode genome will be enriched in these unique sequences that are less 
likely to provide shared k-mers. The low amount of shared k-mers between Heligmosomoides and mouse 
reveals other relevant factors for shared-kmers such as genome composition and genome complexity, 
which will not be further explored in this thesis. Lastly, Glycine and Bradyrhizobium have the longest 
diverging time and this is reflected in the smallest proportion of shared k-mers. 
 
We calculated the real number of shared k-mers for each pair of full-length genomes with jellyfish (see 
Methods). In stark contrast with the previously mentioned down-sampling approach, H. bakeri and M. 
musculus share the highest number of k-mers  (Figure 7D). These are the two biggest genomes being 
700 Mb and 3.2 Gb, suggesting that genome size is the major determining factor for shared k-mers. 
Bradyrhizobium is by far the smallest genome (9.1 Mb size) compared, and it shares the fewest k-mers 
with its host G. max, even though the soybean genome is large (0.97 Gb). C. campestris and A. thaliana 
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come second regarding shared k-mers. Meriones and Litosomoides are in third place, and last comes A. 
thaliana and Botrytis, with relatively small genomes and large phylogenetic separation. 
 

 
Figure 7. Factors influencing the number of shared k-mers between pairs of genomes. In all figures X-
axes represent k-mer size and Y-axes represent the fraction of shared or ambiguous k-mers. A) Random 
genomes of sizes equivalent to B. cinerea and A. thaliana. B) Shared k-mers between A. thaliana genome 
and downsampling of B. cinerea genome to 50%, 10% or complete genome. C) Downsampling of all 
genomes to the B. japonicum genome size. D) Actual fractions of ambiguous k-mers in each pair of 
complete genomes. Zoomed regions cover k-mer sizes of 18-23. 

For all four factors analyzed in the current section (Figure 7), the longer the k-mers are, less likely that 
these will be shared between two organisms. This observation suggests that increasing small RNA 
sequence lengths would help diminish the fraction of ambiguous reads. One way of leaveraging this 
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observation would be to assemble small RNA sequence reads before attempting to assign them to each 
genome, and this idea will be further explored in this thesis. But, we first wondered if the ambiguous small 
RNA reads come from particular places in the genome. 
 

miRNAs, transfer and ribosomal RNAs are major contributors to ambiguous reads 
 

We wanted to better characterize the origin of ambiguous sequences. To do so we focused on the more 
recently diverged genomes of C. campestris and A. thaliana, using the sRNA-Seq data generated by 
Shahid and collaborators in Axtell’s lab (Shahid et al. 2018). We then extracted all the ambiguous 
sequences and determined their loci of origin in the A. thaliana genome, which is much better annotated 
than C. campestris (Figure 8). 
 
Plant sRNA profiles typically have peaks at 21 and 24 nucleotides, which correspond to miRNAs and 
siRNAs respectively. These characteristic peaks are not that evident in A. thaliana stem libraries. Instead, 
these libraries show an enrichment for shorter sequences and depletion of longer sequences which 
suggests some degradation of the RNA sample (Figure 8A). The 24 nt peak is more evident in all libraries 
containing C. campestris tissue. In the A. thaliana/C. campestris  libraries the 24 peak represents in 
average 21.9% of the library (Figure 8C) and in C. campestris libraries it represents 19.6% (Figure 8E). 
In contrast, in the A. thaliana stem library the 24 nt peak represents only 6.9% of all the library (Figure 
8A). In the A. thaliana/C. campestris or parasite libraries the 24 nt peak is clearer than the 21 nt peak, 
this suggests that siRNAs are the most abundant sRNA class in C. campestris. More than half (53%) A. 
thaliana stem library are ambiguous reads, while these represent only 25% in A. thaliana/C. campestris 
libraries and 20.7% in parasite libraries.  
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Figure 8. Genomic origin of ambiguous reads for A. thaliana and C. campestris samples. Each bar 
represents the sequenced reads of 18-50 nt size. Bar height represents the actual number of reads (top) 
or the fraction of reads (bottom). A), C) and E) Read mapping categories split according to read length: 
host (green), symbiont (blue) or ambiguous (purple). B), D) and F) Genomic annotation of ambiguous 
reads only: intergenic (light green), miRNA (yellow), rRNA (light purple), tRNA (red), uncharacterized 
transcribed regions (light blue) or other annotation (orange). Libraries were made from A) and B) A. 
thaliana stems above the site of primary haustoria, C) and D) A. thaliana stems with a C. campestris 
haustorium attached, and E) and F) from C. campestris stems above the site of primary haustoria. 
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We then explored the regions that produce ambiguous small RNA sequencing reads by extracting the 
annotations associated to loci producing ambiguous reads in the A. thaliana genome. We used A. 
thaliana annotation because, as it is the most intensely studied plant, we reasoned that it should have 
better annotations than C. campestris. 

Ambiguous reads from the A. thaliana stem libraries originate mostly from rRNA (91.6%), miRNA (3.2%) 
and to a lesser extent tRNA loci (2.6%). Ribosomal signal is distributed across all read lengths (Figure 
8B). This suggests that these reads may be the result of fragmentation of longer ribosomal molecules. 
As expected, miRNAs are found between 20 to 22 nucleotides, albeit at a rather slight level of detection. 
This low level of detection for miRNAs may explain why the 21 nucleotide is not that evident in Figure 
8A. Regarding other libraries, a 21 nt peak becomes evident when considering only ambiguous reads for 
the A. thaliana/C. campestris (Figure 8D) and parasite libraries (Figure 8F). The 24 nt peak is not evident 
when tracing the origin for ambiguous reads in C. campestris libraries, this suggests that siRNAs are not 
well conserved between A. thaliana and C. campestris, and thus do not form an important part of the 
ambiguous reads. There’s more miRNA signal for A. thaliana/C. campestris (13.1%) and parasite (8.8%) 
libraries than in the host library (3.2%). 
 
Shahid and collaborators focused on sRNAs enriched in the A. thaliana/C. campestris relative to C. 
campestris libraries, they found 43 miRNAs that met this criterium. One of these belongs to the conserved 
MIR164 family, the other 42 have low sequence similarity with known miRNA loci. Neither the mature nor 
the complement sequence map perfectly to the host genome. In our results, these 42 sequences should 
be found in the parasite portion of the plots (blue bars). The majority of the interaction-enriched miRNAs 
are 22-nt, and these are an uncommon size since plant miRNAs are typically 21-nt in length. Plant 22-nt 
miRNAs are associated with secondary siRNAs production that amplify the silencing signal (H. Chen et 
al. 2010). 
 
There is 22 nt miRNA signal in C. campestris-A. thaliana (14.4% of 22 nt signal) and C. campestris 
(10.7% of 22 nt signal) libraries Figure 8D and Figure 8F, and this signal is not evident in A. thaliana 
libraries (0.8% of 22 nt signal). These results suggest that these ambiguous 22 nt miRNAs are produced 
by C. campestris but can map to A. thaliana genome. These 22 nt miRNAs should not be any of those 
43 miRNAs reported by Shahid et al. as those do not map to A. thaliana and therefore are not ambiguous. 
We find conserved plant miRNAs among ambiguous reads across all A. thaliana-C. campestris libraries 
such as MIR159, MIR319a, and MIR396a. MIR159 is often among the most abuntant RNAs, it is 
expressed throughout the plant, but displays higher expression in shoot and root meristematic regions 
(Millar, Lohe, and Wong 2019). MIR319 displays lower expression than MIR159 and it is restricted to 
specific tissues and developmental stages (Y. Li et al. 2011). MIR396 has been associated with plant 
immunity regulation and fungal resistance (Soto-suárez et al. 2017). 
  
It is very notorious how a few RNA categories that represent a minimal fraction of the genomes produce 
the majority of the ambiguous sRNA reads. Ribosomal RNA loci represents 0.081% of the A. thaliana 
genome and comprises between 67.5% to 90.9% of ambiguous reads depending on the library, this 
translates to a 833 to 1,222 fold enrichment. miRNAs primary transcript loci cover 0.045% of the A. 
thaliana genome and contribute between 2% to 27% of ambiguous reads, this translates to a 44 to 600 
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fold enrichment. Finally, tRNAs comprise 0.047% of the A. thaliana genome and contribute between 2.4% 
to 4.3% of ambiguous reads, this represents a 51 to 91 fold enrichment.  
 
For many organisms, such as vertebrates, a few RNA classes contribute greatly to the sRNA 
transcriptome such as miRNAs, ribosomal RNA, tRNAs, specially in somatic tissue (Armisen et al. 2009). 
At least a fraction of these loci may be conserved through several clades. However, there are other 
organisms in which siRNAs are the dominant sRNA class instead of miRNAs, such as H. bakeri, where 
repetitive elements are a great contributor (~40% of an adult nematode library) to the sRNA transcriptome 
(Chow et al. 2019). Repetitive elements typically display faster evolution rates than housekeeping loci 
such as rRNA, tRNAs or conserved miRNAs, therefore it is less likely that repetitive elements contribute 
to the pool of ambiguous sequences. 
 
Ribosomal RNAs and transfer RNAs are most famous due to their role in protein synthesis. However, 
recent studies suggest additional functional roles for both rRNAs and tRNAs. Some examples of rRNA-
derived fragments (rRFs) have been found in human, mouse, zebrafish, plants and fungi (Lambert, 
Benmoussa, and Provost 2019). Most of the rRFs described so far are generated by RNAi machineries 
such as those involved in phasiRNAs, piRNAs or miRNAs production (Lambert, Benmoussa, and Provost 
2019). For example, mouse miR-712 is produced from the ribosomal internal transcribed spacer 2 (ITS2), 
a subset of this sequence forms a stem-loop structure that is recognized by the miRNA producer 
machinery. The inhibition of miR-712 with antisense oligos had a direct effect on plaque size in a 
atherosclerosis (arteries flow obstruction) mouse model, showing functional roles for rRFs (Son et al. 
2013). Regarding tRNAs, Chiou and collaborators discovered that activated T cells secrete EVs enriched 
with specific tRNA-derived fragments (tRFs). The enrichment for 3’ or 5’ tRFs was not evident in resting 
T cells, which suggest that activation is necessary to load these fragments into EVs. These tRFs may 
inhibit T cell activation as antisense oligos targeting these EV-enriched tRFs resulted in enhanced 
activation, although the authors do not predict targets for their tRFs (Chiou et al. 2018). Another study 
reported tRFs produced by Bradyrhizobium that get loaded in the soybean Argonaute and downregulate 
host genes resulting in nodulation modulation (Ren et al. 2019). These examples suggest that by throwing 
away rRNA and tRNA sequences we could lose some interesting sRNAs that may be important for the 
symbioses. 

To discard ambiguous miRNA sequences would be even worse. There are reports of highly conserved 
mature miRNAs that are transferred between organisms that can be identical (Buck et al. 2014). These 
could really be relevant sequences for interaction and to discard them would be neglecting part of a 
biological phenomenon. Examples of highly conserved miRNAs that can have identical sequences in 
some plants include MIR155, MIR159, MIR166, etc (Chavez-Montes et al. 2014). Examples of highly 
conserved miRNAs in animals include miR-100 and let-7, these mature sequences are identical in 
Heligmosomoides and mice (Buck et al. 2014). 

On the other hand, it is important to mention that even ultra-conserved sequences may have point 
differences either in their functional form or in a longer precursor. For example, miRNAs have a hairpin 
precursor structure from which the mature miRNA is excised. The mature sequence tends to display 
higher conservation than the other portions of the hairpin. 
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Current sequencing technologies generate sufficient depth to detect variants of sRNAs. Small RNA 
variations may arise from imperfect enzymatic activities, such as imperfect cleavage by a Dicer protein. 
For miRNAs, the mature miRNA is typically the most highly detected sRNA. However, at high sequencing 
depths other components such as the miRNA complement or fragments of the hairpin can be detected. 
Some tools, such as miRDeep2, rely on the detection of these precursors to predict novel miRNAs from 
high throughput sequencing data. 

As shown in the previous section, longer sequences are less likely to be shared between two genomes 
just by chance. If we could extend ambiguous sequences even by one or two nucleotides, we may be 
able to disambiguate them. This leads us back to the idea of assembling sRNAs in order to help 
distinguish their correct genome of origin. 
 

Small RNA sequencing assembly 

Most efforts regarding the assembly of RNA molecules have focused on messenger RNAs. Tools such 
as Cufflinks (Trapnell et al. 2010) and Stringtie (Pertea et al. 2015) perform mRNA assembly by first 
aligning reads to a genome sequence. On the other hand, there are tools for de novo mRNA assembly 
such as Trinity, SOAPdenovo and Trans-ABysSS. Previous efforts for sRNA assembly include the 
detection of viruses in sweetpotato in 2012 by Kashif and collaborators (Kashif et al. 2012) and the 
genome assembly of a bell pepper endornavirus by Sela and collaborators (N. Sela, Luria, and 
Dombrovsky 2012). Kashif and collaborators used velvet to assemble reads of lengths 21-24 nt, the 
assembled contigs were used to retrieve NCBI sequences via BLAST searches. The viral sequences 
retrieved were then used as references to align sRNA reads with MAQ and to build assemblies with these 
mappings. This combined strategy of de novo and genome-guided assemblies led to the identification of 
six different viruses from a RNA pool of 11 sweetpotato plants (Kashif et al. 2012). Sela and collaborators 
used BFAST to align reads to a reference viral genome, achieving 100% base coverage in this genome-
guided approach (N. Sela, Luria, and Dombrovsky 2012).  

Genome-guided assembly tools for sRNAs include segmentSeq (Hardcastle, Kelly, and Baulcombe 
2012), the UEA sRNA workbench (Stocks et al. 2018) and ShortStack (Shahid and Axtell 2014). These 
tools define the boundaries of loci that produce sRNAs in a genome. We will refer to the results of these 
tools as genome-guided assemblies or simply clusters through the rest of this work. We used ShortStack 
to define and quantify genome-guided assemblies. ShortStack offers several advantages over other tools 
for sRNA annotation: with a single command it aligns reads to the reference genome, and defines, 
quantifies and gathers useful information about each cluster. ShortStack internaly uses ViennaRNA tools 
to test for hairpin folding capacity of miRNA candidate clusters. Shortack outputs several useful files such 
as an output table that can be directly used for differential expression analysis (Counts.txt), another table 
(Results.txt) that contains extensive information about each cluster, such as location, length, strand, the 
most abundant read for each cluster, complexity and a score for repeated arrangement of aligned small 
RNAs “phasing”. SegmentSeq provides cluster quantifications and report strand of clusters, but lacks 
several useful descriptions such as sRNA sizes in cluster, major read in each cluster and completely 
lacks any secondary structure utility. The UEA sRNA workbench provides several tools to analyze sRNA-
Seq data, however to achieve the same functionality as ShortStack it needs to combine several of its 
tools such as SiLoCo for sRNA cluster definition, quantification, strand and repetitiveness descriptions; 
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ta-siRNA to test  phasing in clusters and miRCat for miRNA annotation. The UEA sRNA workbench uses 
a graphical user interphase which is not appropriate for high performance cluster computing. Some of 
their tools have some functionality restrictions, for example SiLoCo accepts only full-length perfect 
matches to define clusters, while ShortStack allows for 1 or 2 mismatches. Additionaly, SiLoCo cluster 
quantifications are normalized by default, while ShortStack reports raw counts which are preferable for 
differential expression analysis tools such as edgeR or DESeq2. 

There might be scenarios where a reference genome is not available for a symbiosis system or the 
genome quality is deficient. In these cases, a de novo sRNA assembly would be an attractive alternative 
to genome-guided assembly, or even the only possibility.  

In our group, Obed Ramírez-Sánchez tested 6 tools for de novo assembly: Oases, rnaSpades, 
SOAPdenovo, Tadpole, Trans-ABySS and Trinity-inchworm. Throughout this work, we will refer to the 
results that he obtained as de novo assemblies or simply contigs. Trinity-inchworm performed well in 
extensive testing such as percent of contigs mapping to genome, reads re-mapping to assembled 
contigs, etc. and was chosen as the de novo tool used in this work (Supplementary Figure 3). 

sRNA assembly decreased the number of ambiguous reads for all symbiosis pair datasets 

We consider ambiguous reads as those that map equally well to the host or symbiont genome. Reads 
mapping to more than one assembled sequence is a similar problem to that of reads mapping to different 
isoforms or gene paralogs. This is a problem that has been addressed previously by tools such as 
ERANGE (Mortazavi et al. 2008), RSEM (B. Li et al. 2010) and ShortStack (Shahid and Axtell 2014). 
These programs assume that the proportion of mapping reads to a single location can be used to estimate 
the number of ambiguous reads to distribute to each multimapping loci. We implemented the same 
principle to assign multimapping reads to a probable producing locus in the host or symbiont genome 
(see Methods). We applied this idea to both genome-guided (clusters) and de novo assemblies (contigs). 
Many ambiguous reads were successfully assigned with either assembly strategy (Figure 9). For the A. 
thaliana - B. cinerea pair, 4.9% of the reads are ambiguous in the unassembled approach, and were 
reduced to 0.04% for contigs and to 0.2% for clusters. Ambiguous reads for the A. thaliana - C. campestris 
system are 53.5% for reads, 24.5% for contigs and 51.4% for clusters. For the M. unguiculatus – L. 
sigmodontis pair ambiguous reads are 0.4% with the unassembled approach, 0.03% for contigs, and 
0.2% for clusters. For M. musculus and H. bakeri ambiguous reads are 4.7% for unassembled reads, 
0.04% for contigs and 0.03% for clusters. For G. max and B. japonicum these are 0.2% for reads, 0.3% 
for contigs, and 0% for clusters. In some cases, the percentage of ambiguous reads for the de novo 
assembly is lower than the genome-guided assembly. This could happen if multiple similar clusters could 
produce a sRNA while a single contig would condense this information for the de novo assembly. In a 
previous effort with reads in the 18-32 nt range clusters outperformed contigs in all cases, this also 
stresses that contigs assembly benefited from including longer sequences (here we used sequences up 
to 50 nt long). In almost all cases assemblies performed better than unassembled reads, with a single 
exception for G. max – B. japonicum where unassembled reads had 0.2% relative to 0.3% ambiguous 
reads for contigs. 

Regarding parasite fractions, for A. thaliana and B. cinerea the percentage of parasite signal are very 
similar for our three approaches, 5.9% for reads 5.9% for contigs and 6.1% for clusters. For the A. thaliana 
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and C. campestris pair we have 4.2% for reads and an increase with both assembly strategies 28% for 
contigs and 14.1% for clusters. For M. unguiculatus and L. sigmodontis the numbers are similar with 
2.2% for reads, 2.3% for contigs and 2.3% clusters. For M. musculus and H. bakeri the smallest fraction 
of parasite signal is for unsassembled reads with 0.6%, this increased a bit to 0.9% with contigs and 
increased up to 2% with clusters. Finally, for G. max and B. japonicum we have even more parasite signal 
for reads 13.7% than for contigs 12.8%, and similar signal to that of clusters (13.9%). Further work would 
be necessary to try to relate these differences in parasite or ambiguous reads signal to particular loci in 
each symbiotic pair. 

 

Figure 9. Fraction of ambiguous reads with and without assembly. The name of the two interacting 
species is shown for each experiment above the sets of three bars. All 18–50 nt reads were classified 
and the percent of each category were averaged across each experiment's samples. The first bar of each 
group represents unassembled reads, the second de novo contigs, the third genome-guided clusters. 
The Y-axes are independently zoomed and cut to highlight the percent of symbiont (blue) and ambiguous 
(purple) reads. Host reads (green) always represent the remainder of 100%. 

It is worth mentioning that ShortStack can reduce ambiguous reads to 0%, however, its multi-mapping 
reads distribution becomes arbitrary for the last assigned reads. As previously mentioned, ShortStack 
uses uniquely mapping reads as “guides” to distribute multi-mapping reads. However, there may be some 
multi-mapping reads that do not have uniquely mapping reads in their surroundings. ShortStack 
distributes these reads randomly among the multiple mapping sites and by doing so reduces ambiguous 
reads to 0%. Our approach is more conservative, we also make use of uniquely mapping reads as guides 
but, when there’s no possible guidance for organism ambiguous reads, these are reported as ambiguous 
instead of randomly distributing them. Our ambiguous reads distribution approach also allows for fairer 
comparisons between genome-guided and de novo assemblies. Otherwise ambiguous reads for 
genome-guided assembly would always be 0% and higher for the de novo assembly strategy.  
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In this chapter we used assembly strategies to determine the origin of reads for sRNA-Seq libraries of 
mixed organisms. In chapter 2 we apply a genome-guided assembly strategy and a differential 
expression analysis to identify H. bakeri sRNAs in mouse cells.  

Conclusions 
 
For some symbiotic pair datasets ambiguous reads are quite abundant and can even outnumber the 
parasite signal, stressing the need to make use of these reads and to avoid discarding them. 
 
The number of shared k-mers between two genomes is influenced by read length, genome size and 
phylogenetic distance. Shorter reads may map simply by chance, as read length increases this probability 
decreases. Bigger genomes may result in more shared k-mers and hence more random mappings than 
smaller genomes. Phylogenetic distance is also a relevant factor, two genomes belonging to recently 
diverged lineages share more k-mers than two genomes of lineages that diverged a long time ago. 
Additional factors influencing shared k-mers include genome complexity and repetitive elements, further 
work is needed to explore the contribution of these two factors. 
 
High levels of ambiguity in host-parasite sRNA-Seq reads is caused by conserved sequences like 
ribosomal, transfer and miRNAs in the A. thaliana – C. campestris symbiotic pair. 
 
Both genome-guided and de novo assembly approaches reduce ambiguity of host-symbiont sRNA-Seq 
reads. The de novo approach is an attractive option for organisms that do not have a genome assembly. 

We designed a strategy to disentangle mixed sRNA-Seq data of two or more organisms and tested it on 
five different pairs of interacting organisms. 

Perspectives 
 

1. A description of 3’-added nucleotides across all available H. bakeri libraries, this would provide 
evidence for possible sRNA editing. If we find editing evidence, then we could then ask if editing 
happens under specific conditions such as HES, EVs or infection, or if it is a generalized 
phenomenon in this parasitic nematode. 

2. Explore the source of ambiguous reads for the other host-symbiont species pairs: Botrytis cinerea 
- A. thaliana, Litomosoides sigmodontis - Meriones unguiculatus, Bradyrhizobium japonicum - 
Glycine max. This would allow us to verify that the same type of highly conserved non-coding 
RNA loci (rRNA, miRNA, tRNA) contribute substantially to ambiguous reads for pairs of species 
at diverse phylogenetic distances. Alternatively, we might discover new reasons for higher than 
expected ambiguity. 

3. To explore loci contribution of rRNA, miRNA and tRNA to ambiguous sequences. Based on our 
results it is unlikely that these three RNA classes contribute equally to the pool of ambiguous 
sequences, and within each category some loci may contribute more than others.  
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4. Explore if any rRNA or tRNA has read pileups that would suggest they may be loaded into an 
Argonaute protein, this would reveal unexplored Ago-loaded sRNA classes for most of these host-
symbiont pairs. 
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Chapter 2: Detection of Heligmosomoides bakeri sRNAs in mouse cells 
 

Methods 
 
All experimental procedures were performed by Dr. Franklin Chow, a postdoctoral researcher (2015-
2018) in the lab of our collaborator Dr. Amy Buck at the University of Edinburgh, UK. 
 
H. bakeri life cycle and EV isolation 
 
Mice of the CBA x C57BL/6 F1 (CBF1) line were infected with 400 L3 H. bakeri larvae by gavage (force-
feeding, through a tube leading down the throat to the stomach). Adult nematodes were collected from 
the small intestine 14 days post infection (dpi). These nematodes were washed and maintained in serum-
free media as previously reported (Johnston et al. 2015). EVs were collected from the adult worm’s 
culture media from 24-92 hours post-harvest from the mouse (the first 24 hours collected media was 
excluded to reduce host contamination). Eggs were removed by centrifugation at 400 g and the 
supernatant was then filtered through 0.22 µm syringe filter (Millipore) followed by ultracentrifugation at 
100,000 g for 2 hrs in polyallomer tubes at 4 °C in an SW40 rotor (Beckman Coulter). Pelleted material 
was washed two times in filtered PBS at 100,000 g for 2 hrs and re-suspended in PBS. The pelleted H. 
bakeri EVs, were quantified with Qubit Protein Assay Kit (Thermo Fisher), on a Qubit 3.0.  
 
Mouse cells uptake assays 
 
Intestinal epithelial cells (MODE-K, from now on referred as IECs) and bone marrow-derived 
macrophages (BMDM) were maintained as reported previously (Vidal et al. 1993). Uptake experiments 
were done with 2.5 µg EVs or 25 µg HES (EVs represent <10% of HES) per 50,000 cells for 4 and 24 
hrs at 37 °C in a 5% CO2 incubator. H. bakeri EV-untreated cells served as controls for the two incubation 
times. Cells were washed with PBS buffer before RNA extraction with a miRNAeasy mini kit (Qiagen), 
according to manufacturer’s instructions. Three biological replicates were generated per condition. The 
RNA integrity number was assessed with the Agilent RNA 6000 Pico Kit on an Agilent 2100 Bioanalyzer. 
As a control for endogenous uptake 2.5 µg of IECs exosomes were applied to BMDM. 
 
Table 6. Mouse cell libraries used to sequence small RNAs. Libraries marked with an asterisk (24 hrs 
libraries) were additionally subjected to RNA-Seq (see Chapter 4). 

# Cell type Treatment 
Incubation 
time hrs # Cell type Treatment 

Incubation 
time hrs 

1 BMDM No treatment 4 13* BMDM No treatment 24 

2 BMDM No treatment 4 14* BMDM No treatment 24 

3 BMDM No treatment 4 15* BMDM No treatment 24 
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4 BMDM 2.5µg H. bakeri EVs 4 16 BMDM 2.5µg H. bakeri EVs 24 

5 BMDM 2.5µg H. bakeri EVs 4 17 BMDM 2.5µg H. bakeri EVs 24 

6 BMDM 2.5µg H. bakeri EVs 4 18 BMDM 2.5µg H. bakeri EVs  24 

7 BMDM 25µg total HES 4 19* BMDM 25µg total HES 24 

8 BMDM 25µg total HES 4 20* BMDM 25µg total HES 24 

9 BMDM 25µg total HES 4 21* BMDM 25µg total HES 24 

10 BMDM 2.5µg IECs exosomes 4 22 BMDM 2.5µg IECs exosomes 24 

11 BMDM 2.5µg IECs exosomes 4 23 BMDM 2.5µg IECs exosomes 24 

12 BMDM 22.5µg IECs exosomes 4 24 BMDM 2.5µg IECs exosomes 24 

        

# Cell type Treatment 
Incubation 
time hrs # Cell type Treatment 

Incubation 
time hrs 

25 IECs No treatment 4 34 IECs No treatment 24 

26 IECs No treatment 4 35* IECs No treatment 24 

27 IECs No treatment 4 36* IECs No treatment 24 

28 IECs 2.5µg H. bakeri EVs 4 37* IECs 2.5µg H. bakeri EVs 24 

29 IECs 2.5µg H. bakeri EVs 4 38* IECs 2.5µg H. bakeri EVs 24 

30 IECs 2.5µg H. bakeri EVs 4 39* IECs 2.5µg H. bakeri EVs 24 

31 IECs 25µg total HES 4 40* IECs 25µg total HES 24 

32 IECs 25µg total HES 4 41* IECs 25µg total HES 24 

33 IECs 25µg total HES 4 42* IECs 25µg total HES 24 

 
Small RNA library preparation and sequencing 
 
Total RNA samples were treated with RNA 5’ polyphosphatase (Epicenter) according to manufacturer’s 
instructions, before library preparation. Libraries for sRNA sequencing were constructed using CleanTag 
sRNA library preparation kit following manufacturer’s instructions. For all samples 1:2 dilutions of both 
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adapters were used with 18 amplification cycles (TriLink Biotechnologies). Libraries of 140-170 bp length 
were size-selected and sequenced on an Illumina HiSeq 2500 in high-output mode with v4 chemistry and 
50 bp single end reads, by Edinburgh Genomics at the University of Edinburgh (Edinburgh, UK). This 
insert size was chosen to focus on the small interfering guides of exWAGO, the only secreted Argonaute 
protein detected within Heligmosomoides EVs to date (Chow et al. 2019).  
 
Genome-guided assembly 
 
We used ShortStack 3.8.5 (Axtell 2013) to define and quantify the sRNA producing regions (clusters) of 
a mixed reference genome including M. musculus and H. bakeri. I included all libraries described in Table 
6, with the exception of libraries M_HES_4_3 and M_neg_24_1 as these didn’t showed the characteristic 
22U miRNA peak. We also included adult and pure EV libraries in their polyphosphatase-treated and 
untreated versions in our genome-assembly to be able to compare cluster expression in mouse cells to 
these libraries. I used the following ShortStack parameters bowtie_m: all, dicermax: 24 dicermin: 20, 
foldsize: 300, mincov: 1, mismatches: 1, mmap: u, pad: 1 and ranmax: 50000. These parameters favor 
the definition of short clusters relative to those defined in (Chow et al. 2019).   
 
Differential expression analysis 
 
To perform differential expression analyzes, we used the ShortStack output file Counts.txt. In this file 
rows represent clusters and columns correspond to libraries, and each cell harbors the number of times 
a sequence occurs in a given library. We discarded unmapped reads found in Counts.txt before testing 
for differential expression. 
 
Differential expression analyzes were done using the edgeR package (McCarthy, Chen, and Smyth 
2012). Lowly expressed features (individual sequences, de novo assembled contigs or genome-guided 
assembled clusters) were filtered; only those that had at least one count per million in at least two libraries 
were kept. EV-treated or HES-treated IECs or BMDM libraries were compared with untreated control 
libraries, regardless of the incubation time (4 or 24 hrs). We performed two separate analyses for IECs 
and BMDM. To find differentially expressed features, a generalized linear model (GLM) likelihood ratio 
test was used, always fixing the common dispersion to 1.626, which was estimated for unassembled 
individual sequences. This allowed a fairer comparison between the three levels of assembly. False 
discovery rate (FDR) was calculated and features that mapped to the nematode, had an FDR < 0.1 and 
a positive log fold-change were considered up-regulated (Up) Heligmosomoides sRNAs. 
 
Defining sRNA classes by length and first nucleotide 
 
The first nucleotide and length of each sequence mapping to the genome-guided clusters was calculated 
using custom R scripts and the Rsamtools 2.2.3 package (http://bioconductor.org/packages/Rsamtools). 
Reads between 21-24 nucleotides and beginning with a Guanine were classified as “22G”. Reads 
between 21-24 nucleotides and beginning with a Thymine were classified as “22U”. These criteria were 
set by observing the properties of pure EV and IECs libraries (Figure 15). 
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Extracting individual sequences from differentially expressed H. bakeri clusters 
 
To get the read sequences from clusters we generated a list of all upregulated H. bakeri clusters in any 
contrast. With this list we extracted all reads that were assigned to these clusters according to ShortStack 
merged_alignments.bam BAM file with Rsamtools, considering only libraries that should have H. bakeri 
signal (EV or HES treated). 
 
Genomic origin for H. bakeri sRNAs 
 
We used a hierarchical annotation of the H. bakeri genome, where every nucleotide is assigned to a 
single genomic region category such as rRNA, tRNA, coding exon, intron, repetitive sequence, etc. As a 
simplification, only the annotation associated to the middle nucleotide of each read was considered. To 
find overlaps between mapping reads and annotations, these two sources of information were loaded in 
R using the genomicRanges package (Lawrence et al. 2013). Overlaps were found with the findOverlaps 
function with select argument “all”, along with a condition to stop if any of the reads overlapped more than 
one feature.  
 
Expression comparison of H. bakeri detected clusters in mouse 
 
To generate the expression comparison plots, we calculated average counts per million (cpm) for all 
clusters (mouse and nematode) before differential expression (and low expression filter) with edgeR cpm 
function (M. D. Robinson, McCarthy, and Smyth 2009). Then, we compared the expression of all H. bakeri 
clusters between treatments with a Shiny app (C. Winston et al. 2020) that we developed, by choosing 
pairs of columns to display from the H. bakeri cpm matrix. 
 
Genome features visualization 
 
Cluster and annotation coordinates were loaded to Integrative Genomics Viewer (IGV) ver. 2.5.2. (J. T. 
Robinson et al. 2011)  

Results and discussion 
 
We know that H. bakeri vesicles can be internalized by mouse cells (Buck et al. 2014)(Coakley et al. 
2017), but we didn’t know if the sRNA is released from EVs inside the host cells. On the other hand, we 
also don’t know if HES sRNAs may also produce a detectable signal inside mouse cells. The main 
objective of the current chapter and the following experiment was to detect and quantify internalized H. 
bakeri sRNAs (Hb-sRNAs) in mouse cells. In Chapter 3 we predict targets in the host transcriptome for 
those nematode sequences detected in mouse cells in the current chapter. In Chapter 4 we test for a 
regulatory effect of these Hb-sRNAs on host transcripts. 

To analyze mouse cells treated with nematode secretions using sRNA sequencing data we chose a 
genome-guided sRNA assembly approach that is similar (but not exactly the same) to that described in 
Chapter 1, along with a differential expression analysis of identified sRNA producing regions (termed 
clusters throughout this chapter). It is worth mentioning that the results presented in this and following 



 58 

chapters are independent to those generated for Chapter 1, which were published in (Bermúdez-
Barrientos et al. 2020).  

Our experimental design 
 
The experiments were performed by the group of our collaborator Dr. Amy Buck. Parasite treatments 
were H. bakeri vesicles (EV), total secretion (HES) or no treatment (see Methods for further details). Two 
incubation times were used: 4 and 24 hours, as we don’t know the dynamics of EV internalization. Two 
different cell types were used: mouse intestinal epithelial cells (IECs) using MODE-K cell line (Vidal et al. 
1993) and mouse bone marrow-derived macrophages (BMDM). IECs were shown previously to be able 
to internalize Heligmosomoides EVs (Buck et al. 2014). BMDM were included as our collaborators 
showed that these cells take up EVs more efficiently than IECs and Heligmosomoides EVs suppress 
macrophage alternative activation (AAM) in BMDM (Coakley et al. 2017). As a control to account for 
endogenous vesicle treatment, BMDM were incubated with IECs exosomes. After incubation, cells were 
washed with a buffer solution to remove superficially associated but not internalized vesicles (see 
Methods). A total of 42 libraries were generated and subjected to sRNA sequencing (Table 6). 

Our clusters 
 
When constructing our clusters, we included H. bakeri adult and EV libraries in their mono-P and poly-P 
versions with the aim of making our mouse cells clusters comparable with these nematode libraries. A 
drawback of our cluster search is that our clusters won’t be directly comparable with those described 
previously by our group (Chow et al. 2019). However, our previous clusters were too long, which can 
result in combining sRNA producing regions that may overlap distinct genomic features. We chose 
parameters that favor shorter clusters and by doing so, we aimed to minimize the chances of mixing 
clusters that overlap with different genomic features. 

Our cluster definition process resulted in 4.4 M clusters, 1.6 M (37.4%) of these belong to mouse and 2.7 
M (62.6%) belong to H. bakeri.  
 
The longest H. bakeri cluster is Cluster_2777500 which is 7 kb long, and it overlaps a DNA transposon 
hAT Tip100 (forward strand) that appears to have a LINE BovB retrotransposon (reverse strand) 
interrupting it. Its most abundant read is a 22G, which suggests that these mobile elements may be 
silenced by the WAGO RNAi pathway (Figure 10). 
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Figure 10. Cluster_2777500 is the longest Heligmosomoides cluster. A) Chow 2019 clusters, B) clusters 
constructed in this work, C) repeat masker annotation. Right pointing arrows denote forward chain 
features, left pointing arrows denote reverse chain features. 

The longest cluster in mouse is Cluster_1602271 which is found in the mitochondrial genome. This cluster 
is 3.1 kb long and overlaps with a portion of a mitochondrial rRNA, NADH dehydrogenases 1 and 2 and 
three tRNAs. The reason that this cluster overlaps six genomic elements could be that the mitochondrial 
genome is highly compact. 
 
Regarding expression levels, the highest expressed nematode cluster is Cluster_4387540, this cluster is 
293 nt long and overlaps with the gene HPOL_0002297601 and a ncRNA annotated by Rfam as CeN72 
(Figure 11). These ncRNAs have been found in C. elegans and closely related genomes. Noteworthy, 7 
out of 12 (58%) H. bakeri CeN72 elements are located in this scaffold. These ncRNAs display a 
characteristic modification 2,2,7-trimethylguanosine (TMG), this modification was used to experimentally 
validate CeN72 RNAs by combining TMG targeting antibodies and RNA arrays (Jia et al. 2007). 
Cluster_4387540 displays higher expression in mono-P vs poly-P libraries and its most abundant read is 
30 nt long.  

 
Figure 11. Cluster_4387540 region and annotations. A) Chow 2019 clusters, B) clusters constructed in 
this work, C) repeat masker annotation, D) Wormbase parasite annotations. Right pointing arrows denote 
forward chain features, left pointing arrows denote reverse chain features. 
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The most highly expressed cluster in mouse is Cluster_761871. This 47 nt cluster overlaps a 5.8S rRNA 
gene. This is an expected result as rRNA comprises a major portion of a cell’s total RNA. 
 
With our clusters defined, we proceeded to a differential expression analysis that would help us detect 
H. bakeri sRNA clusters under a statistical framework. 

 
Differential expression analysis aids detection of parasite sRNAs in mouse cells 

 
With our experimental design, multiple comparisons or contrasts are possible. These contrasts result in 
different numbers of detected upregulated H. bakeri clusters, that are summarized in (Table 7). We 
expect the nematode signal in cells to increase upon treatment with the secretion product, for this reason 
we will only focus in H. bakeri up-regulated (Up) clusters and ignore non-differentially expressed clusters 
and downregulated clusters, which we will refer collectively as non-Up clusters. We detected a total of 
306 distinct Heligmosomoides clusters in mouse cells with all different comparisons. 
 
Table 7. Summary of differential expression analysis results 

Contrast up Hb 
clusters 

Up 
Mm+Hb 
clusters 

% Hb 
up 

clusters 

up DE 
Hb 

counts 

non-DE 
Hb 

clusters 
IECs_EV_vs_no_treatment 301 310 97.1 70,222 4,158 
IECs_EV_vs_no_treatment_4hrs 201 204 98.5 63,431 4,254 
IECs_EV_vs_no_treatment_24hrs 101 104 97.1 51,686 4,357 
IECs_HES_vs_no_treatment 143 149 96.0 57,903 4,316 
IECs_HES_vs_no_treatment_4hrs 84 86 97.7 56,535 4,376 
IECs_HES_vs_no_treatment_24hrs 58 62 93.5 47,225 4,399 
BMDM_EV_vs_no_treatment 29 50 58.0 29,597 3,001 
BMDM_EV_vs_no_treatment_4hrs 6 10 60.0 27,884 3,030 
BMDM_EV_vs_no_treatment_24hrs 12 25 48.0 28,686 3,019 
BMDM_HES_vs_no_treatment 22 73 30.1 3,657 3,005 
BMDM_HES_vs_no_treatment_4hrs 6 11 54.5 2,085 3,030 
BMDM_HES_vs_no_treatment_24hrs 5 81 6.2 27,683 3,015 
BMDM_exo_vs_no_treatment 1 6 16.7 26,492 3,035 

 
Using IECs we are able to detect a greater number of Heligmosomoides clusters than with BMDM. The 
number of detected clusters ranges between 58 and 301 for IECs while the number of clusters for BMDM 
ranges only between 5 and 29. The endogenous uptake control for BMDM incubated with IECs exosomes 
detects only 1 H. bakeri cluster. This result contrasts to EV uptake reported by Coakley and collaborators 
(Coakley et al. 2017), where our collaborators reported higher EV uptake by BMDM and RAW 
macrophages than by IECs intestinal epithelial cells. Some scenarios that may explain this are: (1) 
macrophages internalize more H. bakeri EVs and degrade internalized Hb-sRNAs more effectively than 
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IECs. (2) Hb-sRNAs action also results in their degradation and then we are not able to see them in 
BMDM, in this scenario we would expect a stronger repression effect in BMDM relative to IECs. 
 
The EV treatment (301, 201, 101 clusters) gives a greater number of clusters in IECs than the HES 
treatment (143, 84, 58). The number of detected clusters even doubles with EV relative to incubation with 
HES. This also means that fewer micrograms of EV (2.5 µg) are required to detect Hb-sRNAs in IECs 
relative to HES (25 µg). The BMDM EV treatment allowed the detection of slightly more H. bakeri clusters 
(29, 6, 12) than the HES treatment (22, 6, 5). 
 
We considered the percentage of H. bakeri clusters found among up-regulated clusters (Hb + Mm) as a 
way of measuring the strength of nematode signal. In this comparison a higher H. bakeri percentage of 
the total of up-regulated clusters relates to more parasite signal for a particular treatment or contrast. We 
were able to detect a higher percentage of H. bakeri clusters in up-regulated clusters for IECs (ranging 
between 93.5% to 98.5% of total up-reg clusters host + parasite) than for BMDM ranging from 6.2% (HES 
treatment at 24 hrs) up to 60% (EV treatment at 4 hrs) (Table 7). This suggests that our nematode 
treatments have a greater effect on mouse sRNA populations of BMDM relative to IECs, which results in 
more host upregulated sRNAs in BMDM. 
 
We also noticed that there’s a higher percentage of nematode clusters in IECs EV treatment (97.1, 98.5%, 
97.1%) than in HES treatment (96%, 97.7%, 93.5%). This result also holds for BMDM, this line also 
shows a higher percentage of parasitic clusters in EV (58%, 60%, 48%) than in HES treatment (30%, 
54%, 6.2%). This suggests that HES treatment results in more host sRNAs being upregulated than EV 
treatment. 
 
We detected more sRNA clusters in IECs at 4 hr relative to 24 hr, being 201 vs 101 clusters for early and 
late incubation respectively for EV and 84 vs 58 clusters for HES treatment. This shows that Hb-sRNAs 
signal decreases, but does not completely disappears after 24 hours in the intestinal epithelial cells. 
 
We also detected higher percentages of H. bakeri clusters contribution to up-regulated clusters in 4 hours 
relative to 24 hours. In IECs with EV treatment at 4 hours the percentage of parasite up-regulated clusters 
is 98.5% while being 97.1% at 24 hrs, although this difference is quite small. In HES-treated IECs the 
percentage of up-regulated clusters is 97% at 4 hrs and 93.5% at 24 hrs. Regarding BMDM, with EV 
treatment the percentage of nematode up-regulated clusters is 60% at 4 hrs and 48% at 24 hrs. This 
effect is more dramatic for HES-treated BMDM, in this scenario the percentage of parasite clusters is 
54.5% at 4 hrs and this drops to only 6.2% at 24 hrs. This suggests that at 24 hours there are more host 
sRNA loci responding to nematode secreted components than at 4 hours, this effect was more subtle for 
IECs than for BMDM and seems to be more dramatic for HES than for EVs. 
 
IECs with EVs provides the highest number of counts for Heligmosomoides with 70,222. The lowest 
number of counts is given by BMDM incubated with HES at 4 hrs with only 2,085 read counts. In general, 
we detected higher parasite counts in IECs than in BMDM. 
 
To explore if different clusters are detected in different cell types or treatments, we built a Venn diagram 
with those two contrasts that retrieved the most clusters for each cell type (BMDM with HES, BMDM with 
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EVs, IECs with HES and IECs with EVs), these results are shown in Figure 12. A total of 18 clusters 
(5.8% of all DE-detected H. bakeri clusters) were found in both cell types and in both treatments (EVs or 
total HES). A total of 158 clusters (51.6%) were exclusively found in IECs with EVs and 115 (37.5%) 
clusters were found also in IECs with HES. Macrophages contributed with few exclusive clusters. Only 
one cluster, Cluster_4048248, was exclusively found in BMDM treated with EVs and only three clusters, 
Cluster_4387540, Cluster_4200193 and Cluster_3414970, were exclusively identified in BMDM with 
HES treatment. This also reveals that most of the Hb-clusters detected in BMDM were also detected in 
IECs. 
 

 
Figure 12. Venn diagram of the H. bakeri clusters detected in each differential expression comparison. 
Diagrams sections are colored on a red gradient according to the number of clusters within. 

We will focus on some of the most interesting comparisons, the differential expression analysis (DEA) 
corresponding to IECs and BMDM cells each treated with EV or HES irrespective of time. All 13 DEA 
figures are available in the supplementary material (Supplementary Figure 4). 
 
What we see in the following plots is a representation of all sRNA clusters for M. musculus and H. bakeri 
with each dot representing a sRNA cluster (Figure 13). We have four cluster categories, first we have 
clusters belonging to mouse or nematode, that are further divided into up-regulated clusters due secretion 
treatment (Up) and those clusters that are not up-regulated (non-Up). This last category includes both 
clusters that do not show any evidence of differential expression, and clusters that are down-regulated. 
We decided to ignore down-regulated clusters as our main focus is to detect Heligmosomoides clusters 
and these should be among up-regulated features. 
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Figure 13. Mean abundance plots with organism mapping information for mouse cells incubated with 
Heligmosomoides EVs or HES. The X axis represents clusters expression in log2 CPM scale. The Y axis 
represents fold change ratio between compared treatments in log2 scale. Each dot represents a cluster 
for either H. bakeri (Hb, blue dots) or M. musculus (Mm, green dots). Upregulated clusters are colored in 
a dark tone and non-upregulated clusters are colored in light tone. In the legend, clust are the number of 
distinct clusters, counts are the number of reads mapping to these sequences. A) IECs with HES, B) 
IECs with EVs, C) BMDM with HES and D) BMDM with EVs. In all cases nematode-treated libraries were 
compared to control untreated libraries. Only clusters with one CPM in at least two libraries were included 
in the analysis. We used a FDR of 0.1. 

A) B) 

C) D) 
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The parasite signal is found in the top portion of these figures. In IECs the nematode signal has a shape 
similar to that of the tip of a pickaxe, formed by dark blue circles, that extends beyond the bulk of light-
colored clusters that do not have enough evidence for differential expression (DE). This peak is wider for 
HES (146 clusters) and narrower for EV (306 clusters) in intestinal epithelial cells, this difference could 
be due to higher clusters expression variance among HES-treated replicates than that of EV-treated 
ones. In BMDM, this nematode signal tip is not as clear for HES as it is for EV treatment, in both cases I 
found less signal than that of IECs, that involves a difference of an order of magnitude of fewer detected 
clusters. 
 
Some of the DE clusters display higher levels of expression and lower fold change increase, these are 
the result of the FDR making a curved cut along the tested clusters. It is possible that some of these 
clusters belong to the host as these are also expressed without the nematode secretion treatment, as 
evidenced by less dramatic fold changes.  
 
An evident result from these figures is the great number clusters that were assigned to H. bakeri and lack 
evidence for differential expression in these analyses (80% to 97.1%, Figure 13, light blue clusters). The 
proportion of clusters that do not show differential expression is 1,440 out of 1,586 clusters (90.7%) in 
IECs with HES treatment, 1,277 out of 1,583 (80.6%) clusters  in IECs with EVs, 658 out of 677 (97.1%) 
in BMDM incubated with HES and 654 out of 677 (96.6%) for BMDM with EV treatment. The properties 
of these upregulated and non-upregulated clusters will be discussed later. 
 
A subtle but noticeable effect is found when comparing IECs and BMDM figures, there seem to be 
differences in the relative positions of the distribution of nematode clusters with respect to those of the 
host. The nematode clusters distribution seems to be skewed towards positive fold changes in IECs. 
Another plausible scenario, and not mutually exclusive to the previous one, may be that more sRNA loci 
would become activated upon external stimuli (herein EV or HES) in BMDM. An interesting comparison 
for this discussion is that of IECs exosomes being applied to BMDM as a negative control for H. bakeri 
signal. In this MA plot we may see that the upper part of the plot corresponding to mouse clusters is wider 
than that of the lower portion, which could be explained by mouse sRNA responding to endogenous 
exosomes being produced by another cell type. We also know that in this exosome treatment setting no 
nematode secretion was applied, so all apparent parasitic genome mapping reads are false positives. It 
is worth mentioning that, in this case, the fold change distribution of nematode clusters signal is near to 
symmetrical (Figure 14), which suggests that the asymmetries of nematode signal distributions in BMDM 
with either EVs or HES holds some true parasitic clusters. 
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Figure 14. Fold change distributions for differential expression analyses with nematode secretions (EV 
or HES) or intestinal epithelial cells exosomes as a negative control. Dashed lines represent means for 
each contrast. 

In the following sections of this chapter, we will compare the properties of the two different sets of clusters 
for Heligmosomoides, those that are upregulated (Up) and those that are not upregulated upon parasitic 
stimuli (non-Up). 

Validation of differentially expressed parasitic sRNAs 
 
The sRNA profiles obtained from pure Heligmosomoides and M. musculus samples differ greatly (Figure 
15). RdRP products (22G reads) are the dominant class of Heligmosomoides libraries (92% of EV 
libraries are 22G considering a 21-24 nt range), while miRNAs (22U reads) are the dominant class in the 
Mus musculus sRNA profile (79.1% are 22U, considering a 21-24 nt range). A 22G-rich profile is more 
likely to be found in H. bakeri libraries than in those produced by M. musculus. We can take advantage 
of these differences and use them as a fingerprint (sRNA class fingerprint) to distinguish nematode from 
host sequences in samples containing material from both organisms. 
 

 
Figure 15. Small RNA class fingerprint obtained from pure H. bakeri vesicles or M. musculus IECs. First 
nucleotide preference for A) polyphosphatase-treated H. bakeri vesicles, and M. musculus IECs libraries 
at B) 4 hours and C) 24 hrs incubation without treatment. The y-axis represents the count average across 
replicate libraries. 
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We took our two sets of upregulated (Up) and non-upregulated (non-Up) Heligmosomoides clusters 
defined according to our differential expression analysis. We then compared the length distribution and 
the first nucleotide (sRNA class fingerprint) from all the reads that mapped to these two sets of clusters 
(Figure 16). 
 
This information is represented in Figure 16. In a multi-panel figure organized as a matrix with rows and 
columns (Figure 16). The sRNA class fingerprint for both IECs with HES (70.9% of 22Gs) and EV (75.2% 
of 22Gs) treatments looks very similar to the profile of pure H. bakeri EVs (75% of 22Gs) (Figure 16 A 
and B). On the other hand, non-upregulated sRNA profile in IECs is enriched with 22U sRNAs (40.6% 
for HES and 40.5% for EV) as well as shorter 18 and 19 nt reads. Upon considering mapping location, 
the 22U sRNAs in non-Up are mostly ultra-conserved miRNAs such as let-7a-5p, miR-100-5p and miR-
9a-5p. 
 
Reads mapping to up-regulated H. bakeri clusters in BMDM with HES treatment somehow resembles 
the sRNA profile of pure EV libraries (43.5% vs 75%), but it is a bit noisier, there are considerable amounts 
of 20 nt reads that begin with an adenosine (Figure 16D). Regarding BMDM with EVs, the up-regulated 
signal is dominated by short (18-20 nt) sequences that begin with a cytosine, however a smaller 
distribution of 22G is evident (12.9%), this suggests that we were able to detect true parasitic signal even 
in these conditions (Figure 16C). This 22G signal is not evident in macrophages treated with IECs 
exosomes (Figure 16E), where we only see reads 18-20 nt and these are enriched for cytosine, this also 
suggests that the short cytosine reads from BMDM with EVs is host signal. Non-upregulated nematode 
reads in both BMDM contrasts also contain 22U signal from the same three miRNAs previously 
mentioned (let-7a-5p, miR-100-5p and miR-9a-5p), and an additional U rich peak at 19 nt reads. 
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Figure 16. Small RNA class fingerprints obtained from reads mapping to upregulated (top half) or non-
upregulated (bottom half) H. bakeri clusters detected in Mus musculus cells. Each column corresponds 
to a different comparison, A) IECs + EV, B) IECs + HES, C) BMDM + EV, D) BMDM + HES, E) BMDM + 
IEC exosomes. Small RNAs from upregulated H. bakeri clusters are found in the first row, sRNAs from 
non-upregulated H. bakeri clusters are found in the second row. Each column represents a different 
comparison, the first column represents IECs with HES-treatment, the second represents IECs with EVs, 
the third corresponds to BMDM incubated with HES, finally the fourth column represents EV-treated 
BMDM. 

We find short H. bakeri reads signal in both upreg and non-upreg sets from BMDM. Could this suggest 
that Heligmosomoides sRNAs are being degraded in macrophages? These shorter reads are not evident 
in IECs. To assess this question it would be valuable to check if the shorter sequences detected are 
trimmed versions of longer reads found in the BMDM libraries and absent from parasite untreated 
libraries. 
 
We conclude that the sRNA class fingerprint is consistent with up-regulated clusters reads being 
produced by H. bakeri, giving us confidence that our detected nematode reads are truly parasitic. 
 

Genomic origin of H. bakeri sRNAs detected in mouse cells 
 
We were curious about the nature of the H. bakeri loci that produced the nematode sRNAs signal 
detected in mouse cells. We extracted the annotation for each read assigned to the Heligmosomoides 
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genome and did this for upregulated and non-upregulated nematode clusters as two different sets, in a 
very similar way that we did for the first nucleotide and read length analysis. We then compared these 
two profiles to the genomic origin profile of the pure EV libraries. 

For simplicity, I will only show the genomic origin profiles for four DEA contrasts, the full genomic profiles 
for all comparisons are available in the supplementary material (Supplementary Figure 5). 

We used the same genomic feature summary scheme as that used in (Chow et al. 2019) with rRNAs, 
miRNAs, tRNAs, yRNAs, mRNA sense, mRNA antisense, introns as well as some additional categories 
that I will explain a little more. Retroelements represent retrotransposons such as LINES, transposons 
represent DNA mobile elements, simple repeats include micro-satellites and low complexity sequences 
and novel repeats are repetitive sequences that are unique to the H. bakeri genome. Finally, other ncRNA 
includes piRNAs, snRNAs, snoRNAs, as well as other non-coding RNAs contained in the Rfam database. 

The genomic profiles of the H. bakeri clusters discovered in treated IECs somehow resemble the profile 
of pure EV libraries, and this similarity is present in both EV and HES treatments (Figure 17A&B). Both 
profiles consist of 31% of reads originating from intergenic regions, 18% from novel repeats, 12% from 
transposons, 10%-11% from introns, between 10-12% from retroelements, 9% antisense to mRNA and 
only 3% of miRNA contribution. HES treatment is different in that we detected 6.9% yRNA signal which 
is not evident in EVs and miRNAs decrease from 3% to 0.8% in HES. Buck et al. identified a strong yRNA 
signal in the supernatant and low yRNA signal in EVs (Buck et al. 2014), our results are consistent with 
this previous report since supernatant is basically a EV-depleted HES. 

The average phosphatase treated H. bakeri EV libraries are composed of 22.2% retroelements, 15% 
novel repeats, 10.8% transposons, 10.6% introns, only 2.7% of miRNA, and 26.84% reads mapping to 
intergenic regions. Retroelements are sub-represented in up-regulated sequences in treated IECs, here 
they comprise only 10-12% while in pure EV they can reach up to 22.2%, being the most abundant 
genomic category. The novel repeats category increases from 15% in EVs to 18% inside treated IECs, 
transposons also increase from 10.8% to 12%. Finally, the percentage of intergenic reads increases from 
26.8% to 31% inside IECs. 

miRNAs are the major contributor for non-up-regulated nematode-mapping reads in IECs comprising 47-
51%. Introns are the second most abundant category for this set with 12-16%, and rRNA comes third 
with 12%.  

In the genomic origin profile of BMDM incubated with HES (Figure 17C), we find yRNAs as the most 
abundant category with 20%, in second place we find rRNA with 16%, in third come novel repeats with 
11%, then introns with 10% and so on. The presence of miRNAs is not even evident in the figure. The 
major differences between the profiles of up-regulated reads with HES and EV profiles is the over-
representation of yRNAs and rRNAs in HES, and the under-representation of the three most abundant 
EV categories: retroelements (22% in EVs, <10% in BMDM with HES), novel repeats (15% in EVs, 11.2% 
in BMDM) and transposons (10.8% in EVs, 4.9% HES in BMDM). As above, this result agrees with yRNAs 
detection by Buck et al. (Buck et al. 2014), therefore we detect yRNAs signal in HES treatments 
regardless of the cell type (IECs or BMDM).  
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The genomic profile corresponding to BMDM with EV treatment shows an aberrant behavior in 
comparison with the rest of the profiles with parasite treatment shown here (Figure 17D), it consists of 
84-92% antisense to mRNA, ~3% novel repeats, 1-2% retroelements. The BMDM with EV profile is 
similar to that of our control treatment for endogenous exome uptake, BMDM with IECs exosomes 
(Figure 17E).This profile is composed by 100% reads that are antisense to mRNAs although there was 
only one up-regulated cluster missasigned to H. bakeri in this comparison. The resemblance between 
BMDM with EVs and BMDM with exo suggests that there is low parasite signal in the EV treatment for 
macrophages and that the sole up-regulated cluster missasigned in the exosome contrast is also present 
in BMDM with EVs. We would expect that the signal present in BMDM with EVs originating from novel 
repeats, retroelements and transposons corresponds to a minority of expected 22G sRNA class 
fingerprint (Figure 16). This could be demonstrated if we build figures similar to those of Figure 16 but 
containing genomic origin for reads instead of the first nucleotide. 

The genomic profile of non-upregulated H. bakeri clusters in BMDM cells consist of 30-33% introns, 29-
31% miRNAs and 20% rRNAs as the three major categories. The profiles are almost identical for HES, 
EVs or IECs exosome-treated macrophages, we even detect signal from H. bakeri novel repeats in the 
exosome contrast despite being a negative control. This again raises concerns of merely using mapping 
information to assign reads to an organism. The finding of miRNAs and rRNAs could be expected given 
their high degree of evolutionary conservation, however no direct explanation is apparent for the intronic 
regions being this abundant between nematode and mouse macrophages. Further explorations would 
be needed in order to explain the abundance of intron mapping reads. 
 
It is worth mentioning that the genomic profiles of non-Up H. bakeri sRNAs may still contain true parasitic 
signal, since the methods we use are designed to limit the rate of false discoveries, at the expense of 
increasing the false negative results. This is a compromise that needs to be taken in any statistical 
analysis. 
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Figure 17. Genomic origin profile for H. bakeri clusters detected in Mus musculus cells. The results for 
four differential expression comparisons are shown A), B), C), D) and E), each one represented by a pair 
of columns for upregulated (left) or non-upregulated (right) reads mapping to H. bakeri clusters. F) The 
genomic profile for polyphosphatase-treated EV libraries for adult and EVs are shown as a reference. 

With these results, we have shown that the reads associated to up-regulated nematode clusters have 
properties that are similar to those sRNAs produced by H. bakeri. To consider 22G sRNAs seems to be 
a good indicator of H. bakeri signal (Figure 16). With this in mind, we revisited our differential expression 
analysis shown in Figure 13. This time we show only H. bakeri clusters and highlight 22Gs over those 
belonging to 22U and other clusters (Figure 18). One of the first things that caught our attention was that 
some of the Up-detected clusters (yellow circles) appear to be longer than non-Up ones (yellow triangles), 
longer clusters may be translated into increased statistical power, and thus detectability. Secondly, in all 
cases, the top half of the plots (positive logFC) has more 22G clusters than the lower half of the plots 
(negative logFC). This effect also involves those clusters that do not pass the differential expression 
threshold (FDR <= 0.1, represented by yellow triangles). From these observations, we conclude that our 
306 H. bakeri Up clusters and their associated 15,133 sequences are high-quality but conservative 
results (there’s evidence for H. bakeri sRNA clusters that didn’t pass the stastistical threshold) of the total 
parasite signal inside mouse cells.  
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Figure 18. Mean abundance plots for H. bakeri clusters. 22G clusters are shown in yellow, 22U clusters 
are shown in red, other clusters are shown in grey. Those clusters with an FDR ≤ 0.1 are shown as 
circles, cluster that do not pass this threshold are shown as triangles. In all cases the size of the point 
reflects the size of the cluster. 

Comparison of H. bakeri detected clusters in mouse cells 
 
Our experimental design allows us to ask multiple questions that are of interest such as: do we detect 
the same clusters in intestinal epithelial cells (IECs) and in macrophages (BMDM)? Do we detect different 
sRNAs in EV vs HES treatment? Do we see changes in sRNAs that are influenced by early (4 hrs) and 
late (24 hrs) incubation times?  
 
The next figures compare Heligmosomoides cluster expression between different libraries. We classified 
clusters as 22G (yellow), 22U (red) or other (grey) depending on its most abundant read. We also use 
the size of dots to represent the length of sRNA producing clusters, therefore bigger dots represent longer 
clusters. In the following plots when there is good correlation between the expression of clusters between 

B)  A)  
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two libraries, clusters are found near the plot diagonal. Taking this to the extreme, if we compare the 
expression levels of a library with itself, all clusters will be aligned into a single diagonal line starting from 
the bottom left to the top right part of the plot. Thus, deviations from the diagonal tell us about clusters 
that are expressed to higher or lower levels in a library relative to another.  
 
And what happens when a cluster is expressed in a library but expressed to very low or null levels in 
another one? In these cases, differences in cluster expression are represented by deviations from the 
diagonal, in the most extreme case of null expression, this cluster will appear along the axis where it is 
expressed and with low or null CPMs for the other library. This is precisely what happens when comparing 
BMDM treated with IECs exosomes vs BMDM treated with H. bakeri EVs. 22G clusters (yellow) are found 
near the X axis, which corresponds to the EV-treated libraries. As we have previously shown, mouse 
cells produce few 22G (Figure 19), which results in low or null expression for these clusters in exosome 
treated libraries, this is in accordance with IECs exosomes being a negative control treatment for 
nematode signal. 

 
Figure 19. Heligmosomoides cluster expression comparison for EV-treated BMDM libraries (X axis) and 
IECs exosome-treated BMDM libraries (Y axis). Each dot represents a sRNA producing cluster that are 
color coded according to the major read classification 22G are yellow, 22U are red and other are grey. 
The size of the dot reflects the size of the cluster. X and Y axes show log2 CPM clusters expression 
levels. 
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Figure 20. Heligmosomoides cluster expression comparison for libraries from EV-treated mouse cells (X 
axis) and EV pure libraries (Y axis). Each dot represents a sRNA producing cluster. Clusters are color 
coded according to the major read classification 22G are yellow, 22U are red and other are grey. The 
size of the dot reflects the size of the cluster. The first row of figures includes IEC libraries, the second 
row includes BMDM libraries. The first and second columns of figures include 4 and 24 hr respectively. 
X and Y axes show log2 CPM clusters expression levels. 

Our decision to include pure EV libraries in the process of cluster construction allows us to compare those 
clusters detected in mouse cells with their expression in pure EV libraries. 
 
When comparing detected clusters in EV-treated cells vs pure EVs, we observe two main clusters 
populations separated by a gap. Those clusters categorized as 22G are located on the top left part of the 
plot, smaller clusters categorized as other are located on the middle part of the plot (Figure 20). This 
segregation pattern may be explained by two possibilities, the first one is that the 22G population is the 
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true H. bakeri signal and those clusters located in the middle of the plot are the host noise (wrongly 
mapping to the nematode genome). The second possibility is that the middle cluster population may be 
true nematode clusters signal that comprises mainly 5’ monophosphate sRNAs that are present in a 
smaller proportion in poly-P EVs. In support of this second possibility, we observe a similar two 
populations distribution pattern when comparing EV poly-P and EV mono-P libraries (Figure 21).  

 
Figure 21. Heligmosomoides clusters expression comparison for phosphatase-untreated EV libraries (X 
axis) and phosphatase-treated EV libraries (Y axis). Each dot represents a sRNA-producing cluster. 
Clusters are color coded according to the major read classification 22G are yellow, 22U are red and other 
are grey. The size of the dot reflects the size of the cluster. X and Y axes show log2 CPM clusters 
expression levels. 
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Figure 22. Heligmosomoides cluster expression comparison for IECs (X axis) and BMDM libraries (Y 
axis). Each dot represents a sRNA producing cluster that are color coded according to the major read 
classification 22G are yellow, 22U are red and other are grey. The size of the dot reflects the size of the 
cluster. The first row of figures includes HES libraries, the second row includes EV libraries. The first 
and second columns of figures include 4 and 24 hr respectively. X and Y axes show log2 CPM clusters 
expression levels. 

Regarding IECs (X axis) vs BMDM (Y axis) comparisons (Figure 22), we noticed that 22G clusters 
(yellow) are biased to the lower side of the plot, below the diagonal line. This means that upon treatment 
there is higher expression of 22G clusters in IECs relative to BMDM. This is in accordance with a stronger 
signal detected in IECs vs BMDM (Figure 12 and Figure 13). Nevertheless, the pattern suggests that 
there is simply a difference in the level of detection inside BMDM and not a major difference regarding 
which clusters can be internalized by both types of cells. 
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Figure 23. Heligmosomoides cluster expression comparison for HES (X axis) and EV libraries (Y axis). 
Each dot represents a sRNA producing cluster that are color coded according to the major read 
classification 22G are yellow, 22U are red and other are grey. The size of the dot reflects the size of the 
cluster. The first row of figures includes BMDM libraries, the second row includes IECs libraries. The first 
and second columns of figures include 4 and 24 hr respectively. X and Y axes show log2 CPM clusters 
expression levels. 

 
When comparing EV vs HES treatments we noticed that there’s a bias for 22G clusters to have higher 
counts in EV relative to HES, since 22G clusters tend to be located in the upper side of the plot (Figure 
23). This could be due EV providing a higher concentration of 22G H. bakeri reads than HES in IECs 
(Figure 16). This bias is also present in macrophages but is more subtle. 
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Figure 24. Heligmosomoides cluster expression comparison for 4 hr (X axis) and 24 hr libraries (Y axis). 
Each dot represents a sRNA producing cluster that are color coded according to the major read 
classification 22G are yellow, 22U are red and other are grey. The size of the dot reflects the size of the 
cluster. The first row of figures includes IECs libraries, the second row includes BMDM libraries. The first 
and second columns of figures include EV and HES respectively. X and Y axes show log2 CPM clusters 
expression levels. 

When comparing the two incubation times (4 and 24 hours) we can see that 22Gs tend to be found below 
the diagonal for IECs with EV treatment (Figure 24), although the separation from the diagonal is smaller 
than for any of the previous comparisons. This indicates that there’s stronger 22Gs signal at an early 
incubation time with EV. On the other hand, this effect is not evident for IECs that received the HES 
treatment. Regarding macrophages, BMDM with EV 22G signal seems to be slightly biased to 24 hrs 
rather than 4 hrs, this effect is not evident with HES treatment, although it may be worth doing a statistical 
test rather than a visual inspection. This apparent higher 22G signal at 24 hrs sounds counterintuitive, I 
would expect Hb-sRNAs to dimish, or remain at similar levels. This observation requires validation with 
experimental approaches such as qPCR quantification of selected Hb-sRNAs. 
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Conclusions 

I was able to detect Heligmosomoides signal in mouse cells using a genome-guided assembly combined 
with a differential expression analysis. This strategy yielded 306 H. bakeri clusters that are associated to 
15,133 different sRNA sequences. Our detected H. bakeri sRNAs have clear nematode properties such 
as H. bakeri genome-mapping, upregulation upon H. bakeri treatment (Figure 13), 22G enrichment 
(Figure 16) and similar genome origin to that of pure nematode EV (Figure 17). The detection of high-
confidence H. bakeri sRNAs is a key step in determining if these foreign sRNAs exert a function in host 
cells. 

We detected more nematode signal in intestinal epithelial cells (IECs) than in macrophages (BMDM). But 
in general, it is not apparent that specific sRNAs are only able to enter IECs. If sequencing depth of 
BMDM were to be increased, we would expect the same sRNAs to be detected in both cell types. EV-
treatment contributed a greater number of H. bakeri clusters than HES, although HES treatment recovers 
yRNA mapping reads than are absent from EVs (Figure 17). 

Our results demonstrate that just relying on mapping information for sRNA-Seq data may result in wrong 
organism assignment (Figure 13). Ultra-conserved miRNAs such as let-7, miR-9a and miR-100 are a 
main source for Heligmosomoides assigned reads that do not show up-regulation, and are thus likely to 
contain a large amount of reads that in reality originate from the mouse genome.  

Perspectives 
 

• Investigate if there’s evidence for expression of H. bakeri CeN72 elements in mouse cells, as the 
top  expressed H. bakeri cluster ovelapped one of these elements. We know that this cluster is 
enriched in mono-P vs poly-P libraries, we could additionally check if CeN72 elements are 
differentially expressed in EVs relative to adult. 

• Explore if there’s evidence for degradation of Hb-sRNAs in macrophages. A first step for this 
would be to investigate if smaller sequences found in macrophages are subsets of longer Hb-
sRNAs detected. 

• Explore the cellular fate of EVs in macrophages and IECs with pure EVs and with total HES. Are 
EVs (and their Hb-sRNAs) degraded by macrophages? 

• As I detected more 22Gs signal in macrophages at 24 hrs than 4 hrs, it may be woth to investigate 
if there is any evidence for Hb-sRNAs amplification in mouse cells. 

• Investigate which are the most highly expressed yRNA and miRNA clusters detected in mouse 
cells and predict targets for these separately from 22G targets. The rationale behind this is that 
we know that 22Gs tend to be loaded into WAGO proteins, but yRNAs and miRNAs tend to be 
enriched in polyphosphatase-untreated libraries (mono-P), suggesting that they may be loaded 
into other Argonaute proteins (miRNAs tend to be loaded into ALG-1 in C. elegans). 

• Explore which host miRNAs are differentially expressed due to HES or EV treatments in IECs or 
macrophages. In this work I focused in detecting Hb-sRNAs, thus host miRNAs are an unexplored 
field for this dataset. Changes in endogenous miRNAs could also be a valuable control when 
assesing the effect of sRNAs in host transcripts. 
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Chapter 3: Predicted host targets for Heligmosomoides bakeri sRNAs 
 
In Chapter 1 we developed strategies to determine producing organism for sRNA-Seq data, in Chapter 
2 we applied these strategies to detect nematode sequences inside mouse cells. In this chapter we 
predict host targets for those H. bakeri sRNAs found in Chapter 2.  
 

Methods 
 
Non-redundant Hb-sRNAs 
 
We produced a set of non-redundant Hb-sRNAs using the generalized Levenshtein edit distance 
(Levenshtein 1966) implemented in the adist R function. This function calculates the edit distance 
between two sequences, and we used an edit distance threshold of 2 to consider to sRNAs as redundant. 
We also set a higher priority for sequences that display higher expression to those that are lowly 
expressed, this is done by using higher expressed sequences as references and removing those 
sequences that are similar according to an edit distance of <= 2. 
 
To extract all Hb-sRNAs that matched seq5_x385 we used grep -B 1 command line instruction, these 
Hb-sRNAs were aligned with muscle v3.8.31 and visualized with jalview 2.11.1.0 (Waterhouse et al. 
2009) (see Results and discussion).   
 
End-to-end Hb-sRNAs target predictions in host genes 
 
End-to-end target predictions for the 8,501 non-redundant Hb-sRNAs were done using TargetFinder 
version 19.02.2015 (Fahlgren and Carrington, n.d.) and a penalty score threshold of 8. TargetFinder 
works with a penalization scoring scheme. Perfect complementarity between a sRNA and its target would 
result in a score of 0. Mismatches and single nucleotide gaps are given a penalty of +1, G:U interactions 
are given a penalty of +0.5, penalty scores are doubled between positions 2-13 in order to give a higher 
priority for the seed region. We used the whole mouse transcriptome for target predictions, regardless of 
the transcript biotype. Transcriptome data was downloaded with the biomaRt 2.42.1 R package (Durinck 
et al. 2005). TargetFinder predictions in table format were loaded into R to perform further explorations 
discussed in this chapter. 
 
Reward summed score 
 
We transformed TargetFinder penalty scores to a score that could be summed to better reflect a transcript 
being targeted by multiple Hb-sRNAs. We inverted TargetFinder’s penalty score, considering a 0-penalty 
score as a “reward score” of 6 and a penalty score of 6 as a reward score of 0. For this summed score 
we didn’t consider sites with a penalty score above 6. 
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Results and discussion 
 
Those 306 detected parasite clusters found in Chapter 2 correspond to 16,889 unique H. bakeri sRNA 
sequences in the 18 to 30 nucleotide range (Figure 25A). At first glance, this profile is 22G rich which is 
in accordance with it’s H. bakeri origin, however, when we consider the expression levels for each 
sequence (Figure 25B), it becomes obvious that there are 18 to 20 nt sequences begining with a cytosine 
that are quite abundant. These 18-20 C sequences are not found in typical pure EV or adult nematode 
libraries (Chow et al. 2019), so we decided to narrow the size range before making target predictions. 
Therefore, we kept 15,133 unique sequences in a 20 to 26 nucleotide size range. This size range 
encompasses that of sequences known to be loaded onto Argonaute proteins. 
 

 
Figure 25. Small RNA first nucleotide profile for A) unique sequences and B) unique sequences with 
expression for sequences detected in mouse cells.  

I decided to name the Hb-sRNAs according to their expression level. In this naming scheme seq1_x3092 
is the top expressed individual sequence out of all 15,133 Hb-sRNAs with 3092 reads across all libraries 
with EVs or HES. Seq2_x1400 is the second most expressed sequence with 1400 reads and so on. 
 

Reducing redundant targets 
 
We found 15,133 sequences in mouse cells treated with H. bakeri secretion products (see Chapter 2), 
however, some of these sequences are essentially identical such as extension variants or sequences 
that differ by just a few nucleotides.  
 
As an example, there are 38 sequences that share the same 20 nt with seq5_x385 (Figure 26A). 
Sequence seq23_x118 contains an extra G on its 3’ end, while sequence seq3638_x5 contains an extra 
C at that end. It is very likely that if we predict targets for all these 38 sequences most of them would 
share the same target transcripts, especially since they share the seed region that contributes most to 
the score. Many of these redundant sequences might be derived from the same nematode locus, with 
differences probably arising due to enzymatic activity variation or by editing at the 3’ end. 

A) B) 
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Figure 26. Example of redundant sequences. A) H. bakeri sRNAs sharing the same sequence as 
seq5_x385,  B) Output of non-redundant sequences for seq5_x385.  

Redundant sequences may bias our tests for target down-regulation (see Chapter 4). Nearly identical 
Hb-sRNAs binding sites would be counted as independent binding sites in target transcripts, and would 
result in inflated metrics that aim to consider multiple binding sites (see reward summed score below). 
We filtered redundant sequences with an R script using the adist function (see Methods). Our script gives 
priority to higher expressed sequences over lower expressed ones. As an example, of the 37 Hb-sRNAs 
that share the same sequence as seq5_x385, only two remained: seq10_x254 and seq8_x284 (Figure 
26B). All results described from this point on were produced using this set of non-redundant sequences. 
We initially had 15,133 unique Hb-sRNAs and ended up with 8,501 non-redundant sequences (61% of 
the original sequences and 70.6% of the original expression).  

There are alternatives to our edit distance approach, for example Cd-hit-est is a program that groups 
similar sequences and returns a representative one for each group. We didn’t use cd-hit-est as this 
program keeps the longest sequence as representative of each cluster, and this is not convenient for 

A) 

B) 
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target predictions as some sequence length may be longer than the size of Argonaute-loaded sRNAs. 
My approach gives preference to expression rather than sequence length. 
 
A caveat to our strategy for reducing redundant sequences is that our editing distance method does not 
differentiate between seed regions and other portions of the sRNA. This deviates from known biology 
given that the seed region is of uttermost importance for the interaction of a sRNA-loaded Argonaute 
protein and its targets. 
 
It’s worth mentioning that there are differences in expression levels for our Hb-sRNAs, the most highly 
expressed one has 3,092 read counts, on the other hand, there are 1739 (20.4%) out of the 8,501 non-
redundant Hb-sRNAs that have only one read count. This also highlights the impact and success of the 
assembly strategy, there’s simply no way that such lowly expressed sequences would have been 
detected as differentially expressed with a non-assembled, individual-sequence approach. 
 

End-to-end Hb-sRNAs target prediction in host 
 
The objective for this chapter was to perform target predictions on the host transcriptome for those Hb-
sRNAs detected in mouse cells in Chapter 2. A question that soon comes to mind is which transcripts 
may be the targets for our Hb-sRNAs? And, how many targets are there? It would be of little use to say 
that the whole mouse transcriptome may be targeted by Hb-sRNAs, on the other hand, we may not 
expect that only a couple host genes are being regulated by our set of thousands of Hb-sRNAs. The 
number of targets may lay in between these extremes with hundreds or perhaps thousands of host 
targets. 
 
There are clusters that were detected in a particular condition and go undetected in another. There’s 
evidence that there’s parasite signal in BMDM despite low numbers of Hb Up-regulated clusters (Figure 
18). Therefore, we predicted targets for all Hb-sRNAs associated to the universe of Hb Up-regulated 
clusters detected in any of the performed DEA contrasts, independently of whether any cluster was 
detected only in IECs or BMDM or only with one of the nematode treatments (EVs or HES). 
 
We performed target predictions for only 8,501 non-redundant Hb-sRNAs using TargetFinder on the 
mouse transcriptome (see Methods). In order to explore the number of mouse targets we described how 
the penalty score influences the number of Hb-sRNAs that have at least one predicted binding site, the 
number of host target genes found and the median number of Hb-sRNAs binding sites for targeted 
transcripts. We described these parameters varying the penalty score from 0 (perfect complementarity) 
to 8 (a very lax penalty score). For this description we focused on the protein coding transcripts and used 
the longest transcript variant for each gene. 
 
There’s only one Hb-sRNA that displays perfect sequence complementarity with its target (penalty score 
0). So, at a penalty score 0 we have one Hb-sRNA and one targeted gene (  
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Table 8). Seq5874_x4 binds to the Ssh2 slingshot protein phosphatase 2, a gene implicated in actin 
cytoskeleton organization according to its GO terms. 
 
With a penalty score of 1 there are 12 Hb-sRNAs that target 11 genes, this implies that one of these 
genes is targeted by more than one Hb-sRNA. Both seq558_x16 and seq5874_x4 target the previously 
mentioned Ssh2 phosphatase. Penalty scores of 0, 0.5, 1 and 1.5 yield almost exclusively one to one 
Hb-sRNA-transcript interactions. At a penalty score of 2, the same sRNAs start to target multiple genes 
as 154 Hb-sRNAs target 183 mouse genes. 
 
With a penalty score of 4 almost half of the mouse genes (10,393, 47.8%) are targets for 4,086 Hb-
sRNAs (48% of the Hb-sRNAs used for target prediction). It is worth mentioning that 4 is the default 
penalty score used by TargetFinder and this is a recommended threshold according to the authors to 
predict miRNA targets in plant genomes, where high-complementarity is required to cleave the target 
RNA molecule. This is also the threshold that has been used by other studies (Srivastava et al. 2014). 
Relaxing the penalty score to 5.5 results in 93% of the Hb-sRNAs having a target and 98.4% of the mouse 
genes being targeted. 
 
I was curious to know if all Hb-sRNAs have at least one host target transcript. With our most lax penalty 
score threshold (penalty score 8) only six out of the 8,501 Hb-sRNAs don’t have any host target. 
 
Another thing we explored was the median number of Hb-sRNA binding sites per targeted transcript in 
order to describe how commonly are mouse transcripts targeted by multiple Hb-sRNAs. From 0 till 4 
penalty scores, the median of Hb-sRNA binding sites per targeted transcript holds at 1. From 4 onwards 
we observed increasing numbers that resemble a 2-based exponential growth, with 2 sites for a 4.5 
penalty core, 4 sites for 5 penalty score, 9 sites for 5.5 and so on. This trend holds till penalty score 7.5 
where we observe 101 median sites per targeted transcript, were we would expect 128. This deviation is 
even wider for the penalty score 8, as we would expect 256 binding sites and we observe just 141. We 
expect this reduction simply reflects a limit imposed by the length of the mouse transcripts. Further work 
is needed to explore if this observation has any biological implication such as Hb-sRNA binding site 
saturation. 
 
We had a deeper look at the number of Hb-sRNA binding sites per targeted transcript for the 
recommended penalty score threshold 4. With a penalty score of 4, half of the targeted transcripts have 
1 site, the third quartile of targeted transcripts corresponds to 2 sites and the maximum number of sites 
with this threshold is 19 sites for the gene D10Wsu102e “DNA segment expressed” by Wayne State 
University. Gene D10Wsu102e has a transcript length of 123,179 nt, it is the longest transcript considered 
in this exploration and unfortunately doesn’t have any particular functional annotation with the exception 
of a Pfam domain of unknown function PF15370. 
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Table 8. TargetFinder penalty score influence on the number of Hb-sRNAs having a target, the number 
of host gene target genes and the median number of Hb-sRNA binding sites per targeted transcripts. 

Penalty 
score 

Number of 
Hb-sRNAs 

Number of 
gene targets 

Fraction of  
Hb-sRNAs 

Fraction of 
genes targets 

Median sites 
per transcript 

2^x 

0 1 1 0.00012 4.60E-05 1 NA 
0.5 1 1 0.00012 4.60E-05 1 NA 

1 11 10 0.0013 0.00046 1 NA 
1.5 31 33 0.0036 0.00152 1 NA 

2 154 183 0.018 0.00841 1 NA 
2.5 430 556 0.051 0.0256 1 NA 

3 1,150 1,891 0.14 0.0869 1 NA 
3.5 2,290 4,745 0.27 0.218 1 NA 

4 4,086 10,393 0.48 0.478 1 1 
4.5 5,765 16,139 0.68 0.742 2 2 

5 7,110 20,042 0.84 0.921 4 4 
5.5 7,917 21,400 0.93 0.984 9 8 

6 8,292 21,686 0.98 0.997 20 16 
6.5 8,419 21,731 0.99 0.999 37 32 

7 8,466 21,746 1 1 65 64 
7.5 8,488 21,750 1 1 101 128 

8 8,495 21,754 1 1 141 256 
 

We found a positive relationship between transcript length (log scale) and the number of predicted Hb-
sRNAs binding sites (log scale) Figure 27. Therefore, longer transcripts tend to have more Hb-sRNAS 
binding sites than shorter transcripts. Here I only show results for penalty score 4, but figures for penalty 
scores 4, 5, 6, 7 and 8 are available in the supplementary material (Supplementary Figure 6). At penalty 
score 4 there are 10,393 mouse target transcripts for the Hb-sRNAs. The highest density of data occurs 
at 1 targeting sites with a transcript length between 3,500 and 4,500 nt. Some examples of outlier 
transcripts that display more targeting sites than the bulk of transcripts include Gm4559 with 4 targeting 
sites and a transcript length of 600nt and a GO term annotation of keratin filament, mitochondrially 
encoded NADH dehydrogenase 2 with 4 sites on a 1,038 nt transcript, involved in cell respiration. Txndc2, 
thioredoxin domain containing 2 with 5 sites and a length of 1,861 nt. Another example is the membrane 
bound vomeronasal 2, receptor 105 which has 11 sites and a transcript length of 9,899 nt. This is not an 
extensive list of outliers; these are some examples based on an interactive plot exploration. 
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Figure 27. Relationship between host transcript length and number of predicted Hb-sRNAs binding 
sites. 

By taking only the top 5% expressed Hb-sRNAs, we found genes of interest such as IL-33R. This receptor 
was previously reported by Buck et al. to be downregulated in IECs incubated with EVs (Buck et al. 2014). 
IL-33R is a predicted target for 9 independent Hb-sRNAs with a penalty score of 5 or less. If we extend 
the penalty score to 8, we find 19 different Hb-sRNAs targeting IL-33R just between positions 1950 – 
2050 of the transcript (Figure 28). However, this finding may be due to 92.1% of the mouse genes being 
targeted at penalty score 5 with the whole set of Hb-sRNAs. Further explorations of mouse gene targeting 
coverage are needed with the top 5% expressed Hb-sRNAs to test the significance of this result. 
 

 
Figure 28. IL-33R (ENSMUSG00000026069), (ENSMUST00000053043). Low scoring Hb-sRNA binding 
sites. The coding region is shown in blue; the predicted Hb-sRNA binding sites are shown in black. 
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So far, we have only considered individual target sites for transcripts. We would also like to have a way 
to prioritize predicted targets that have multiple Hb-sRNAs binding sites over those that have fewer sites. 
A very simple approach to consider the number of target sites and the degree of sequence 
complementarity would be to simply sum the targeting sites scores. However, there’s a problem with 
summing TargetFinder’s scores, as these are penalty scores their sum doesn’t reflect contribution. For 
example, the penalty score 0 reflects perfect complementarity between a sRNA and its target but adding 
0 plus 0 give us a total of 0, which wouldn’t reflect on a transcript having two perfect scoring sites relative 
to another one having just one. We decided to transform such scores so that these differences may be 
evident, we achieve this by transforming penalty scores to reward scores and to sum all the reward scores 
for each transcript, we call this number the “Reward summed score” (see Methods). 
 
The reward summed score follows a very similar trend to that of the target binding sites in terms of how 
they are both influenced by the transcript length (Figure 29). This is expected, as the reward summed 
score depends heavily on the number of target binding sites. Again, we show only the figure with penalty 
score 4 as representative and the plots for penalty scores 4, 5, 6, 7 and 8 are available in the 
supplementary material (Supplementary Figure 7). Some outliers for the reward summed score include 
Gm4559 (also found as an outlier according to number of Hb-sRNA sites and transcript length) with a 
reward summed score of 3, CD209g antigen with a 1169 transcript length and a reward summed score 
of 4, phosphoenolpyruvate carboxykinase 2 with a transcript length of 4,625 and a reward summed score 
of 10.5, protein phosphatase methylesterase 1 which transcript is 2,772 nt long and its reward summed 
score is 10. 
 

 
Figure 29. Relationship between host transcript length and target reward summed score. 

As we are interested in immune system-related targets for Hb-sRNAs, I generate a separate plot 
highlighting the reward summed score for transcripts with the immune system process Gene Ontology 
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annotation (GO:0002376) Figure 30. An interactive version for this plot is available in the Supplementary 
Material. Top immune system process targets include: RUN domain and cysteine-rich domain containing 
Beclin 1-interacting protein (Rubcn or 1700021K19Rik), eomesodermin, phosphoprotein associated with 
glycosphingolipid microdomains 1 (Pag1), cytotoxic and regulatory T cell molecule (Crtam) and CD274 
antigen also known as programmed death-ligand 1 (Cd274 or PD-L1). I also highlighted Interleukins and 
interleukin receptors, Toll-like receptors and Arginases given their relevant role in immune system 
reactions.  

 
Figure 30. Relationship between host transcript length and target reward summed score for Immune 
system process genes at penalty score 4. 

Rubcn is annotated as an autophagy-related protein according to Gene Ontology, it contains several Hb-
sRNA binding sites with low penalty score Figure 31. Its lowest penalty score predicted binding sites are 
found within its coding region. 
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Figure 31. Rubcn (ENSMUSG00000035629), (ENSMUST00000089684). Low scoring Hb-sRNA 
binding sites. The coding region is shown in blue; the predicted Hb-sRNA binding sites are shown in 
black. 

Conclusions 
 
The end-to-end host target predictions for our set of non-redundant Hb-sRNAs reaches 47.8% of mouse 
protein coding genes according to TargetFinder authors’ recommended parameters. However, host 
target coverage is highly sensitive to variations in the chosen penalty score, reaching more than 90% 
coverage with just a small increase in this threshold.  
 
The excessive targeting issue is likely due to the high number of Hb-sRNAs used for target prediction. 
We predicted targets for thousands of Hb-sRNAs (8,501) despite applying a reduction based on 
sequence similarity. Importantly, we observed stark contrasts in Hb-sRNAs expression levels that may 
be relevant to prioritize Hb-sRNAs predictions for downstream analyses. 
 

Perspectives 
 

1. Describe the occurrence of Hb-sRNAs binding sites in different transcript regions of protein-
coding genes: 5’UTR, CDS, 3’UTR. We know that endogenous miRNAs have a preference to 
target 3’UTRs and somewhat CDS, so any preference for the Hb-sRNAs could reflect on their 
unique biology. 

2. Fit a model that relates transcript length with reward summed score and to search for outliers. We 
would like to derive a score that is less biased due to the length of the transcript. 

3. Explore which high penalty scores lack biological significance. Is a penalty score of 8 still worth 
working with? Use a miRNA-transcript example and check the penalty score of a seed-only 
alignment. Nevertheless, for many of these refinements, it would be useful to have positive and 
negative controls of true Hb-sRNA targets with experimental validation. 
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4. Explore the possibility of predicting target sites on both transcript strands and to use the reverse-
complement strand predictions as a negative control in further analyses. 

5. Seed-based target predictions with TargetScan. We have some preliminary results, but these 
predictions quickly cover an even higher percent of the mouse transcriptome. Thus, it will be 
highly important to have controls as well as to validate how to consider a transcript targeted by 
multiple Hb-sRNAs. 

6. To explore the length and targeting score relationship for genes involved in the immune response 
and search for high score outliers to prioritize Hb-sRNAs regulated genes. 



 90 

Chapter 4: Assesing the effect of nematode secretion on mouse cells and 
testing for downregulation of predicted targets for Heligmosomoides sRNAs 

 
In this last chapter we explore the effect of HES or EVs on mouse cells, using measurements obtained 
by RNA-Seq. We then test if there’s any effect of the H. bakeri sRNAs present in the nematode material 
being applied, according to those we detected in Chapter 2 and our target predictions made in Chapter 
3. 

Methods 
 
In order to design our RNA-Seq experiment, we had to select certain samples to focus on, since we had 
too many in our initial sRNA-Seq experiment to be cost effective. We focused on BMDM treated with 
HES and IECs incubated with HES or EVs. The reason for choosing IECs with EVs for RNA-Seq was 
that in this condition we detected the highest Hb-sRNAs signal (Chapter 2). We chose HES treatments 
for both cell types as some of the immunosuppression effects previously reported are stronger using HES 
that only EVs or supernatant (Buck AH. personal communication). The reason to choose 24 hours was 
that 4 hours was probably too early to detect an effect on mouse cells. The chosen libraries from which 
mRNA was sequenced are shown with asterisks in Table 6. 
 
We used two different methodological procedures, a genome-based approach and a transcriptome-
based approach (see Methods). Aligning reads to the reference mouse genome, we will refer to this as 
a genome-based approach from now on, and by doing pseudoalignment quantification of mouse 
transcripts expression, that we will refer to as transcriptome-based approach. Both approaches converge 
to a gene counts table and to a differential expression analysis in search for an effect of HES or EV 
treatment on host cells. True biological effects should be robust and detected by either methodological 
approach. 
 
Read quality and adapter trimming 
 
We performed quality analyses with fastqc version 0.11.2 (Andrews 2010) before and after adapter 
trimming. We removed the adapters and filtered low quality sequences with Trimmomatic version 0.32 
(Bolger, Lohse, and Usadel 2014) using the following parameters: ILLUMINACLIP:TruSeq3-
PE.fa:2:30:10, LEADING:3, TRAILING:3, SLIDINGWINDOW:4:15 and MINLEN:36. 
 
Gene expression quantification 

 
We had two different approaches for gene expression quantification: a genome-based approach and a 
transcriptome-based approach. The reason for using these two approaches is that we wanted to look for 
robust gene expression differences, and these should be present in both quantification methodologies. 
For the genome-based approach, we used the splice-aware aligner STAR version 2.7.0f (Dobin et al. 
2013). To count the reads associated to genes we used featureCounts (Liao, Smyth, and Shi 2014) 
function which is part of the Rsubread package (version 1.34.2). We provided the GTF file with 
annotations and turned on the flag isPairedEnd. We obtained the GTF file with Mus musculus gene 
annotations from Ensembl release 96 (Yates et al. 2020). For the transcriptome-based approach we used 
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salmon version 0.11.3 (Patro et al. 2017). We then used tximport version 1.8.0 (Soneson et al. 2015) to 
map the resulting transcript quantifications at the gene level. 
 
Differential expression analysis 
 
I divided the differential expression analyses (DEAs) according to cell type: Bone marrow-derived 
macrophages (BMDM) and intestinal epithelial mouse cells (IECs). Differential expression (DE) analysis 
was done using the edgeR package in R (M. D. Robinson, McCarthy, and Smyth 2009). A gene was 
considered for DE analysis if at least one library had 0.5 counts per million reads. This allowed us to 
consider genes with low-expression that might still be potential targets. 
 
The comparisons of interest are the following to test that Hb-sRNAs do affect transcription of mouse 
genes and to asses the effects of H. bakeri products on these mouse cells: 

- BMDM HES-treated vs BMDM untreated (DEA I) 
- IECs HES-treated vs IECs untreated (DEA II) 
- IECs vesicle-treated vs IECs untreated (DEA III) 

 
Differential expression analyzes were done using the edgeR package. Lowly expressed host genes were 
filtered; only those that had at least 0.5 count per million in any of the libraries were kept. We used the 
method of trimmed mean of M-values (M. D. Robinson and Oshlack 2010) to calculate normalization 
factors to deal with different library sizes, using the calcNormFactors function (M. D. Robinson and 
Oshlack 2010). Then the common, trended and tagwise dispersions were estimated using the function 
estimateDisp (Phipson et al. 2016). Differential expression was determined using the “Generalized linear 
model likelihood ratio” test (McCarthy, Chen, and Smyth 2012) with the function glmLRT. We considered 
a false discovery rate (FDR) < 0.01 to define differentially expressed genes. 
 
Test for downregulation of Hb-sRNAs target predictions in host 
 
I took 5%, 10% or 25% of the highest expressed and lowest expressed Hb-sRNAs that had predicted 
targets from the total of 8,495. Then, I calculated a reward summed score for targets of these two sets of 
Hb-sRNAs with different penalty score thresholds 3, 4, 5 and 6. We then removed overlaps between 
highly and lowly expressed Hb-sRNAs. We then divided the predictions into best and worst predictions 
by taking 25% top targets and 25% bottom targets from a data frame that was ordered from highest to 
lowest reward summed score, this with the aim to evaluate if different reward summed score values were 
related to more or less repression of targets. We then compared the fold change distributions for mouse 
targets of the following different sets:  

- highly expressed Hb-sRNAs best target predictions,  
- highly expressed Hb-sRNAs worst predictions,  
- lowly expressed Hb-sRNAs best predictions  
- lowly expressed Hb-sRNAs worst predictions 
- non-targets for a given penalty score threshold.  

 
Fold change distributions were compared with the Mann-Whitney test implemented in the wilcox.test in 
the R stats package (Bauer 1972). 



 92 

Results and discussion 
 

Effects of HES and EVs on mouse cells 
 
To assess the effects of HES and EVs on mouse cells, we sequenced 14 samples out of 42 libraries 
included in our sRNA-Seq experimental design (see Methods). I used two different approaches to analyze 
this RNA-Seq data, a genome-based and a transcriptome-based approaches (see Methods). In the 
genome-based approach, more than 80% of the aligned reads were assigned to a feature. Between 8% 
to 13% of reads did not overlap any feature, and 5% were ambiguous between two or more features 
(Supplementary Figure 8). On average, 90% of the assigned reads overlap with protein coding genes. 
Between 5-7% of the assigned reads overlap with processed pseudogenes. The rest of the reads overlap 
with other biotype categories (Supplementary Figure 9). In the transcriptome-based approach we get 
an average mapping rate of 87% to protein coding transcripts.  
 
As part of the quality control for mouse RNA-Seq we produced a multidimensional scaling plot (MDS). 
MDS analysis is a technique used to reduce the multidimensional nature of thousands of genes to be 
able to represent this information in a two-dimensional plot. The distance between points in the resulting 
plot represents differences in the gene expression profile of libraries. Libraries that appear closer in an 
MDS plot are more similar than libraries that are plotted farther from each other. We expect replicate 
libraries to cluster together and libraries with different treatments to separate from each other.  
 
According to the MDS plot including both BMDM and IECs, the first dimension separates these cell types, 
the second-dimension separates HES-treated from untreated BMDM libraries. All the IEC libraries cluster 
together and it is hard to tell if their distribution of secretion and control libraries is appropriate (Figure 
32A). For this reason we made MDS plots for BMDM and IECs separately. For BMDM the first dimension 
separates BMDM HES-treated from BMDM untreated libraries. The second dimension separates 
B_HES_24_2 from B_HES_24_1 and B_HES_24_3 (Figure 32B). The libraries separate appropriately 
to perform a differential expression analysis and compare the effect of HES incubation relative to 
untreated libraries.  
 
Regarding the IECs MDS plot, the first dimension locates IECs HES-treated at the leftmost part of the 
plot, IECs vesicle-treated appear in the middle and MODE-untreated libraries appear on the right 
extreme. This distribution of libraries suggests that the effect of EVs on IECs gene expression is more 
subtle than that of HES treatment. This effect is evident on both genome-based and transcriptome-based 
approaches (Supplementary Figure 10). The second-dimension places IECs vesicle-treated on top, and 
HES-treated cells and control libraries below (Figure 32C). MDS plots revealed appropriate separation 
of treatments and grouping of replicate libraries, therefore we proceeded with differential expression 
analyses. 
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Figure 32. Multidimensional scaling plot for mouse cells treated with Heligmosomoides secretion 
products. A) BMDM + IECs B) BMDM C) IECs. In all cases we used the top 10% variable genes. 
Replicates are colored the same. 

A summary for the number of differentially expressed genes across our three comparisons is found in 
Table 9. EVs exert the most subtle effect on IECs with only 16.8% changing significantly, in contrast HES 
incubation causes ~35.3% of genes to be either up or downregulated. In BMDM HES causes ~18.2% of 
genes to be differentially expressed. Interestingly, there’s a slight bias to downregulation for IECs treated 
with EVs (up/down ratios: 7.6% to 9.2%, and 10.8% to 15.2%). This downregulation bias does not occur 
in IECs incubated with HES. This effect is evident regardless of the methodology used for the analyses. 
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Table 9. Summary of differentially expressed mouse genes with different tools. 
 Genome-based approach Transcriptome-based approach 
 STAR software Salmon software 

BMDM HES   
Upregulated 1,574 (12.2%) 1,142 (8.1%) 
Non-differentially expressed 10,498 (81.6%) 11,995 (85.3%) 
Downregulated 778 (6.0%) 919 (6.5%) 

IECs HES   
Upregulated 2,320 (18.2%) 1,902 (13.7%) 
Non-differentially expressed 8,225 (64.6%) 10,268 (74.0%) 
Downregulated 2,176 (17.1%) 1,702 (12.2%) 

IECs EVs   
Upregulated 978 (7.6%) 536 (3.8%) 
Non-differentially expressed 10,563 (83.0%) 12,471 (89.9%) 
Downregulated 1,180 (9.2%) 865 (6.2%) 

 
When I looked at the fold change and expression patterns, I noticed that for both cell types there are 
genes that weren’t expressed and were turned on when exposed to Heligmosomoides secretions. This 
is represented in our MA plots as lines of genes with high positive logFC values that separate from the 
rest of the genes in the shape of distinct diagonals (Figure 33). 
  



 95 

 

 

 
Figure 33. Mean abundance plots for mouse cells with Heligmosomoides secretion products. A) IECs 
HES vs control IECs. B) BMDM HES vs control BMDM. C) IECs vesicle vs control IECs. X axis represents 
average log2 counts per million. Y axis shows log2 fold change. Differentially expressed sRNAs are shown 
in red with an FDR <= 0.1. 

Macrophages response to HES 
 
For macrophages, the first thing I looked at was if there were any differences in the three typical markers 
for macrophage alternative activation: Resistin-like alpha (Retnla), Arginase-1 and chitinase-like 3 
(Chil3/Ym-1). These three genes display high expression in BMDM with > 10 log2CPM. Retnla is 
repressed due to HES in macrophages, but not Arg-1 nor Chil3 (Figure 33). This result differs from 
previous observations by Coakley and collaborators, where they reported that Heligmosomoides HES, 
vesicles or even the supernatant suppressed the expression of these same genes (Coakley et al. 2017). 
However, a key difference between the current and Coakley experiments is that she added IL-4 and IL-
13, which are Th2 and AAM trigger cytokines. We didn’t add IL-4 nor IL-13, and therefore there’s no 
trigger for AAM in our experimental setting. What we would see in our experiment is the isolated response 
from macrophages or IECs to H. bakeri secretions. 

A) B) 

C) 
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Macrophages also upregulate mucin 2 transcript due HES treatment, but its expression is not apparent 
in IECs (Figure 33). Mucins are high molecular weight and glycosylated proteins produced by epithelial 
tissues in most animals. The gel-forming mucin 2 is particularly abundant in gut, where it is secreted into 
the intestinal lumen by goblet cells (Johansson and Hansson 2016). The absence of expression of mucin 
2 for IECs may suggest that goblet cells are the dominant source for this protein, and that enterocyte 
contribution is modest. The upregulation of mucin 2 in macrophages still needs an answer, it is unclear 
to which degree macrophages secreted products reach the intestinal lumen.  
 
As we are dealing with EVs and macrophages, I was curious to understand if the process of phagocytosis 
was affected. We had a look at the phagosome KEGG pathway and overlaid the HES-treated 
macrophages gene DEA fold change information (Figure 34). Major histocompatibility complex I and II 
were upregulated, as well as some phagocytosis promoting receptors such as Toll-like receptor 2 and 
CD14. Some downregulated genes that caught my attention were Rab5, Rab7, and RILP (Rab interacting 
lysosomal protein) as these proteins are relevant for intracellular vesicular trafficking. Rab5 is involved in 
early endosome generation and Rab7 is involved in late endosome maturation and targeting endosomes 
to the lysosome for degradation with the aid of RILP (Guerra and Bucci 2016). A closer inspection 
revealed that in this figure Rab7 condenses fold-change information for Rab7 and Rab7b. Rab7b is the 
protein that is truly down-regulated due to HES treatment in macrophages (log2FC -2.22, FDR 3.7x10-19). 
If H. bakeri EVs were to have an effect on macrophages it may be important for them to avoid degradation 
by the lysosome. In fact, Coakley observed higher EVs and lysosomes co-localization in macrophages 
when anti-EV serum (containing antibodies) was applied to macrophages, and less co-localization when 
this serum was absent (Coakley et al. 2017). This suggests that at least a portion of EVs may be able to 
escape lysosome-mediated degradation. It would be interesting to determine if the downregulation of 
Rab7b, RILP or Rab5 in macrophages would result in reduced EV targeting to lysosomes by a co-
localization experiment. 
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Figure 34. Phagosome pathway in BMDM treated with HES vs no treatment. Yellow-colored genes are 
downregulated, green-colored genes are upregulated, grey-colored genes do not show differential 
expression and white colors are absent from the differential expression analysis. 

Intestinal epithelial cells response to HES or EVs 
 
IECs turn on the AAM classical markers chitinase-like 3 and resistin-like alpha genes, as well as 
upregulate Arginase-1. These AAM markers, as well as three chains (H2-Ab1, H2-Aa and H2-Eb1) of the 
major histocompatibility complex II (MHC II), are found in the “turned on due to secretion” gene line for 
IECs (Figure 33). The expression of MHC II by IECs has been reported previously (Vidal et al. 1993), 
although some authors still question the capacity for IECs to present antigens.  
 
The secretion of resistin-like alpha by IECs has been previously shown to attract eosinophils in vitro 
(Munitz et al. 2008). In the same study, intraperitoneal injection of Relm-alpha and posterior differential 
cell analysis resulted in an increase of neutrophils, eosinophils and lymphocytes (Munitz et al. 2008). 
IECs secretion of Relm-alpha may be a chemotaxis signal for myeloid cells upon H. bakeri infection. 
 
Sutherland etl al. (Sutherland et al. 2018) reported the expression of Chil3 in lung epithelial cells, to the 
best of my knowledge there are no reports of Chil3 expression in IECs. Chil3 may also be a 
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chemoattractant signal for eosinophils as previously shown by Owhashi and collaborators (Owhashi, 
Arita, and Hayai 2000). 
 
Talavera et al. (Talavera et al. 2017) reported the upregulation of iNOS and Arginase II (but not Arginase 
I) in a rat IEC line upon exposure to LPS. They found that Arginase II inhibition resulted in increased 
apoptosis levels in the cell culture, presumably due to NO production. In the context of my results, 
Arginase I may have a role in producing ornithine, which has been shown to reduce H. bakeri larval 
mobility in vitro (Bieren et al. 2013). Further experiments may reveal if ornithine also affects adult 
nematodes. 
 
IECs secrete cytokines such as IL-33, IL-25 and thymic stromal lymphopoietin (TSLP) to warn immune 
system cells about nematode infection (Maizels et al. 2012). We found that the IL-33 is repressed more 
than fourfold in IECs due HES (log2FC 2.11, FDR 2.4x10-37), but shows no statistical difference in EV 
treatment (log2FC 0.202, FDR 0.22) (Figure 35). TSLP doesn’t respond to either secretion treatment 
(log2FC 0.07, FDR 0.88 for HES, log2FC 0.1, FDR 0.8 for EV). We didn’t find any evidence of expression 
for IL-25 in IECs nor BMDM. It is interesting to speculate if tuft cells may be the primary source for IL-25 
during gastrointestinal parasites infection (Gerbe et al. 2016), and if the gross population of intestinal 
epithelium cells may contribute in a limited fashion to the IL-25 pool. If this turns to be true, then I propose 
that tuft cells may be an attractive cell type to look for cell surface receptors that may detect 
gastrointestinal parasites. 

 
Figure 35. Influence of Heligmosomoides secretion products on the expression of intestinal epithelial cell 
selected cytokines. Nematode treated libraries are shown as blue boxes and control untreated libraries 
are shown in grey. M stands for IECs, HES stands for Heligmosomoides excretion-secretion product, neg 
stands for negative control, untreated library and EV stands for extracellular vesicles. The expression for 
IL-33 and TSLP are shown in purple and green respectively. 

The IL-33 receptor ST2 subunit (Il1rl1) is repressed due HES in both macrophages (log2FC -3.52, FDR 
1.29x10-40) and intestinal epithelial cells (log2FC -1.62, FDR 3.6x10-90) (Figure 36). This repression is not 
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evident in EV-treated IECs (log2FC -0.135, FDR 0.18) and, unfortunately, we lack EV-treated 
macrophages libraries to know if EVs influences the expression of this receptor in BMDM. 
 

 
Figure 36. Interleukin 33 receptor expression is repressed in the HES treatment both in BMDM (B) and 
IECs (M). 

I didn’t find evidence of expression for other nematode-relevant genes such as: resistin-like beta (Retnlb), 
a protein reported to be produced by intestinal epithelial cells (specially goblet cells) and to directly affect 
nematode feeding (Herbert et al. 2009). Pla2g1b is an epithelial cell-derived lysophospholipase that is 
relevant to clear Heligmosomoides secondary infections (Entwistle et al. 2017). Pla2g1b was lost during 
the low expression filtering before the differential expression analysis.  
 

Are H. bakeri small RNAs responsible for HES or EV effects? 
 
Here we tested if the H. bakeri sRNAs present in HES or EVs have any influence on mouse cells gene 
expression due to binding to potential targets. To achieve this goal, we used the Hb-sRNAs detected in 
Chapter 2, the target predictions made in Chapter 3 and the differential expression results described in 
the previous section of this chapter. 
 
Most sRNAs decrease the expression levels of their direct transcript targets. Therefore, we would expect 
Hb-sRNAs to repress mouse transcripts and this would be reflected in RNA-Seq reads count difference 
(fold change) between secretion-treated and untreated libraries (Figure 37). If this scenario occurs for 
many Hb-sRNAs, then the fold change distribution for targets should be biased relative to the fold change 
distribution of non-target transcripts towards more negative fold change values. We will refer to this fold 
change distribution bias as repression during the rest of this work. We will use cumulative distributions to 
present the results for this test, as these representations facilitate comparisons between two or more 
distributions. In cumulative distribution plots, the distribution of target genes should be shifted to negative 
fold change values (left part of the plot) relative to non-targets. 
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We compared fold change (logFC) distributions for five different sets: best targets or worst targets for 
highly expressed Hb-sRNAs (h-Hb-sRNAs), best or worst targets for lowly expressed Hb-sRNAs (l-Hb-
sRNAs) and non-targets (see Methods). These sets were defined according to Hb-sRNA expression and 
the summed reward score (see Methods). We expect to find the highest repression signal for the best 
targets of the highly expressed Hb-sRNAs, a more subtle effect for the remaining three target sets. We 
would also expect any target set to display more repression than the non-targets set. 
 

 
Figure 37. Strategy to test for an overall repression effect for H. bakeri sRNAs (Hb-sRNAs) in mouse 
cells. A) Hb-sRNAs treatment would reduce expression of targets in mouse. B) Repression is associated 
with negative fold change. C) An overall repression effect for Hb-sRNA targets would bias the fold change 
distribution of targets relative to non-targets. D) Cumulative distributions ease comparison of two or more 
sets. 

In BMDM with HES, the best targets for highly expressed Hb-sRNAs are biased to more negative logFC 
values than worst targets for this same set of sRNAs (p-value = 5.2x10-07). Top targets for highly 
expressed Hb-sRNAs also display more repression than non-targets (p-value = 1x10-13) (Figure 38A). 
We also see a shift in the distribution of best targets for lowly expressed Hb-sRNAs, this shift is not 
present in the worst predictions. This bias is what we would expect if Hb-sRNAs would have a repression 
effect on the best host targets, the effect is subtle but enough to be detected by statistical tests. 
 

A) 

B) 

C) D) 



 101 

We know that longer transcripts tend to have more predicted Hb-sRNAs binding sites and hence, better 
reward summed scores (Figure 29). When we look at the length distributions of these five different sets, 
we find that best predictions tend to have slighter longer transcripts than worst predictions, and any of 
these target sets tends to have longer transcripts than non targets (Figure 38B). This suggests that the 
repression effect is not due to longer transcript lengths for the best targets of highly expressed Hb-sRNAs, 
as these have a similar length distribution to that of the best predictions for lowly expressed Hb-sRNAs. 
These observations for transcript lengths distribution apply to all three contrasts. 
 
For IECs with HES treatment top targets for h-Hb-sRNAs have a shifted logFC distribution to negative 
values than worst targets (p-value = 4x10-04) or non-targets (p-value = 2.3x10-08). The best predictions 
for l-Hb-sRNAs show a similar bias that suggests repression, this bias is nor present in the l-Hb-sRNAs 
worst targets (Figure 38C). We observe a similar effect on IECs treated with EVs (Figure 38E), best 
targets for h-Hb-sRNAs are biased towards negative fold change values relative to h-Hbs-RNAs worst 
targets (p-value = 1.8x10-08) or relative to non-targets (p-value = 7x10-13). Again, we observe a shift for 
the best predictions of l-Hb-sRNAs relative to their worst predictions or non-targets. We found very similar 
results with the transcriptome-based approach (Supplementary Figure 11). 
 
I next wanted to know the identity of these h-Hb-sRNAs targets that behave as expected. We have 536 
targets in macrophages and 538 targets in IECs with HES or EVs (Figure 39). The union of these biased 
best targets results in 722 unique genes, 372 (51.5%) of them are shared among the three comparisons, 
121 (16.7%) are exclusive for the macrophage contrast, 38 (5.2%) are exclusive for IECs with HES and 
45 (6.2%) are exclusive for EV-treated IECs. Among the best targets present in all comparisons we found 
slingshot protein phosphatase 2 (Ssh2), this was also the only mouse transcript that had a perfect 
complementary binding site to an Hb-sRNA (Chapter 3). We also find Interleukin-1 receptor-associated 
kinase 2 (Irak2), a kinase involved in Toll-like receptor signaling. According to Maizels lab, Irak2 transcript 
levels are reduced in Dendritic cells incubated with HES (Kemter 2016, PhD thesis dissertation). 
 
During the search for an effect of Hb-sRNAs, we noticed a transcript length bias in IECs DE analyses 
(Figure 40). Longer transcripts tend to be upregulated relative to all transcripts, additionally, shortest 
transcripts have a slight tendency towards repression compared to all transcripts. These length biases 
are found in IECs with HES and IECs with EVs, but not in BMDM with HES. We still don’t know the 
possible source of this length bias. This length bias can be a confounding factor in our tests for target 
effects. 
 
These results suggest that there may be a down-regulation of the best target predictions for our Hb-
sRNAs targets relative to worst predictions or non-targets in both cell types (BMDM or IECs) and with 
either nematode secretion product (EV or HES). This downregulation signal is supported by two different 
gene quantification strategies: genome-based with STAR and transcriptome-based with salmon 
(Supplementary Figure 12). However, to be completely convinced that this repression signal is true we 
would like to have additional controls, such as target predictions for permuted Hb-sRNA sequences as 
an additional negative control, as well as qPCR validation for selected targets. 
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Figure 38. Cumulative distribution comparison between highly expressed H. bakeri sRNAs (Hb-sRNAs) best 
targets (dark green), worst targets (light green), lowly expressed Hb-sRNAs best targets (dark blue), worst 
targets (light blue) and non-targets (grey) for Hb-sRNAs in mouse. A) BMDM + HES C) IECs + HES D) IECs 
+ vesicle. The shown p-values are the result of a Mann-Whitney test between best vs worst targets and top 
vs non-targets. B), D) and F) Transcript length distributions for the same sets shown in each left panel. 

A) B)

C) D)

E) F)
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Figure 39. Comparison of best predicted targets for highly expressed H. bakeri sRNAs detected in cells.  

We used different penalty score thresholds (3, 4, 5 and 6), as well as different portions of the highest and 
lowest expressed Hb-sRNAs (5%, 10% 25%) in order to look for a repression signal. The figures for all 
these results can be found in the supplementary material (Supplementary Figure 12). Some 
combinations of parameters yield repression signal while others don’t. In general, the penalty score 4 
threshold provides repression signal for the best h-Hb-sRNA targets for macrophages or IECs (HES or 
EVs), regardless of the fraction of highest expressed Hb-sRNAs (5%, 10% or 25%). However higher or 
lower penalty scores result in variation of repression signal, which raises questions about the appropriate 
parameters to perform these analyses. There’s still room for improvement for repression signal search, 
such as varying the fraction of best and worst predictions, as we used a fixed top and bottom 25% to set 
best and worst predictions. 
 
The repression signal that we detect is subtle. In fact, it is so subtle that we had to use statistics in order 
to evaluate its significance, and we had to test different sets of parameters (penalty score, fraction of 
highly and lowly expressed Hb-sRNAs) in order to find it. It is completely valid to question the biological 
significance of this repression signal: would this subtle repression for many targets make any difference 
for H. bakeri in vivo? Maybe a slight repression for many targets does make a difference, as an 
expression buffer effect has been proposed for some miRNAs (Guo et al. 2010). 
 
The high sRNA complexity of HES and EV contents can hinder the assessment of Hb-sRNAs relevance. 
It may be the case that there are only a few Hb-sRNAs that are critical for an immuno-modulatory effect, 
but this signal could be diluted due to the high numbers of unique Hb-sRNAs. We detected more than 
16K sequences in mouse cells and this might still be an underestimation. Finally, there may be more 
relevant factors for infection other than Hb-sRNAs, such as a reported TGF-β analog inducing Treg 
differentiation (Grainger et al. 2010), or some other protein or lipid present in HES or EVs. A relevant 
additional example with immunomodulation is that of Osbourn et. al. (Osbourn et al. 2017). In this study, 
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researchers found a secreted protein present in HES, H. polygyrus Alarmin Release Inhibitor (HpARI), 
that binds to IL-33 cytokine and inhibits its binding with the IL-33 receptor. HpARI contains three Sushi 
domains (PFAM00084), typically involved in protein-protein interaction. However, the activity of HpARI 
may not easily explain our observation of IL-33 transcript decrease (Figure 35), so there’s room for Hb-
sRNAs to perform this drop of transcript level. 
 

 

 
Figure 40. IECs differential expression analyzes have transcript lengths biases. Fold change comparison 
between 1200 longest (blue), 1200 shortest transcripts (red) and all transcripts length distributions. A) 
BMDM with HES. B) IECs with HES. C) IECs with vesicle (EVs). 

Conclusions 
 
HES treatment results in downregulation of proteins implicated in intracellular vesicular trafficking in 
macrophages such as Rab7b and RILP. The downregulation of these components may have implications 
such as inhibiting H. bakeri EVs lysosome degradation, further work is need to test these speculations.  
 

A) 

B) C) 
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We identified differential gene responses in macrophages and intestinal epithelial cells to HES or EVs, 
as was the case of IL-33 and its receptor, which were repressed by HES but not EV treatment. To the 
best of my knowledge, this would be the first observation of differential effects of HES and EVs into 
relevant genes for infection. Further work is needed in order to determine which components of HES are 
responsible for the downregulation of IL-33 and IL-33R transcripts. 
 
We detected a subtle, but detectable, effect for HES and EV H. bakeri sRNAs in macrophages and 
intestinal epithelial cells. Splitting our Hb-sRNAs and target predictions into four different sets allowed us 
to relate the repression effects due to target prediction score and to Hb-sRNA expression. Additional 
controls such as Hb-sRNAs permutations and target prediction would rule out nucleotide compositional 
effects.  

Perspectives 
 

1. Include additional controls in our search for downregulation of Hb-sRNA targets. Two additional 
negative controls could be: First make Hb-sRNAs sequence permutations and perform target 
predictions on the transcriptome. Second, make target predictions on both strands of transcripts, 
the predictions made on the reverse-complement strand would still follow the trend reported in 
Chapter 3 of longer transcripts having more binding sites, but for most genes the reverse-
complement strand will not be transcribed, or at least not to high enough levels. 
 

2. Choose the best Hb-sRNAs candidates for individual experimental validation. A viable 
experimental approach would be to load exWAGO with some of our preferred Hb-sRNAs and 
transfect mouse cells to test for repression of their predicted targets via qPCR or RNA-Seq. 

 
3. In vivo isolation from infected mice to rule out if the effect we found are exclusive of in vitro cell 

cultures. 
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