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Low-order scaling methods for
auxiliary density functional theory

R

Esta tesis presenta la derivación e implementación de dos metodologías con bajo escala-

miento computacional usadas en el marco de la teoría del funcional de la densidad auxiliar

(ADFT).

Primero, se presenta el desarrollo e implementación de la aproximación variacional

local del intercambio exacto (LDF-EXX) para la evaluación rápida y eficiente de dicha

contribución. Esta metodología permite cálculos Hartree-Fock y cálculos con funcionales

híbridos en ADFT con rapidez extraordinaria. Aún más, la metodología LDF-EXX logra

reducir el cuello de botella computacional de aproximaciones variacionales previamente

reportadas. La metodología LDF-EXX resultante tiene una eficiencia computacional com-

parable a la teoría del funcional de la densidad de Kohn y Sham con un funcional basado

en la aproximación del gradiente generalizado.

En segundo lugar, se presenta el desarrollo e implementación de un nuevo solucionador

iterativo para el sistema de ecuaciones de respuesta que se origina en la teoría de pertur-

baciones de la densidad auxiliar (ADPT). Este nuevo método iterativo resuelve el cuello

de botella computacional de los cálculos ADPT y permite el cómputo de propiedades

de respuesta de nanosistemas, en tan solo unas horas, utilizando arquitecturas computa-

cionales modestas.

Las contribuciones alcanzadas en esta tesis abren la posibilidad de cálculos de gran es-

cala en tiempos razonables cuando se utilizan funcionales híbridos. Además, permiten el

cómputo eficiente de propiedades de respuesta de nanosistemas. El potencial de éstas dos

metodologías nuevas es demostrado a través de aplicaciones seleccionadas que incluyen

problemas químicos actuales.
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Low-order scaling methods for
auxiliary density functional theory

A

This thesis presents the derivation and implementation of two new low-order scaling

methodologies to be used in the framework of auxiliary density functional theory (ADFT).

First, we present the development and implementation of the local density fi ing exact

exchange (LDF-EXX) approach for the rapid and efficient evaluation of exact exchange.

This methodology enables Hartree-Fock and hybrid Kohn-Sham density functional the-

ory calculations with remarkable speed-ups compared to standard exact exchange im-

plementations. Furthermore, the here presented LDF-EXX methodology circumvents the

bo lenecks of former density fi ing and resolution-of-the-identity approximation to ex-

act exchange, resulting in a much faster density fi ing approach. The resulting LDF-EXX

methodology has a computational efficiency comparable to density-fi ing Kohn-Sham

density functional theory calculations performed with a generalized-gradient-approxima-

tion functional.

Second, we present the development and implementation of a new iterative solver for

the response equation system of auxiliary density perturbation theory (ADPT). This new

iterative approach resolves the current bo leneck of ADPT calculations and enables the

computation of molecular response properties of nanosystems in just a few hours on mod-

erate parallel computational architectures.

The contributions achieved in this thesis open the avenue for large-scale all-electron

calculations with hybrid functionals in reasonable timings. In addition, they enable the

very fast computation of molecular properties of nanosystems. Selected applications of

these to new methodologies to current chemical problems exhibit the potential of the here

presented low-order scaling methods.

xxi



Quantummechanics always seem to require infinitely

many dimensions; I don’t think I can cope with so

many—I’m going to have about a or so—that

ought to be enough, don’t you think?

Alan Turing

0
Introduction and Objectives

₀.₁ I

The key role of modeling, theory and computation to enable the growth of Chemistry as a

science has been recognized in the international community by the several Nobel Prizes in

Chemistry awarded to theoretical developments, the last two being awarded in and

. Most modern chemical research cannot be performed without the inclusion of some

computational component, whether it is a simple visualization of a molecule or a high-

level quantum mechanical calculation. However, the inclusion of quantum mechanical

calculations into mainstream Chemistry has not been easy or straightforward. Perhaps

because, as noted by Mulliken and Roothaan, there has been thousands of chemists that

without any invocation to electronic structure calculations gathered an enormous amount



of knowledge and built the foundations of the chemical sciences. The difficulty to merge

theory and computation into mainstream Chemistry has led to an apparent division in the

science; in words of Longuet-Higgins : “It has always seemed to me that there are three kinds

of Chemistry: experimental, theoretical and computational.”

The division that Longuet-Higgins saw in Chemistry during the ’s was not new. In

fact, it might have it’s origins some centuries ago and can be explained by the discussion

about whether a mathematical formulation of Chemistry is possible, or even desirable. For

instance, in Kant , wrote that Chemistry will never be a genuine science because it

cannot be formulated in mathematical terms;a in the early ’s Gay-Lussac believed that

“…we are perhaps not far removed from time when we shall submit the bulk of chemical phenomena

to computation.;”b and Comte argued that if mathematical doctrines would ever become

predominant in Chemistry, this would mean the rapid decline of the science.c The division

between those that wished for a mathematical theory of Chemistry and those who didn’t

remained several years more. With the advent of quantum mechanics around ’s this

debate heated up. In particular, Dirac’s statement

The general theory of quantum mechanics is now almost complete, the imperfections

that still remain being in connection with the exact fi ing in of the theory with relativ-

ity ideas. These gives rise to difficulties only when high-speed particles are involved,

aSolange als noch für die chymischen Wirkungen der Materien aufeinander kein Begriff ausgefunden
wird, der sich construieren läßt, d. i. kein Gese der Annäherung oder Entfernung der Theile angeben läßt,
nach welchem etwa in Propertionen ihrer Dichtigkeiten u. d. g. ihre Bewegungen samt ihren Folgen sich
im Raume a priori anschaulich machen und darstellen lassen (eine Forderung, die schwerlich jemals erfüllt
werden wird), so kann Chymie nichts mehr als systematische Kunst, oder Experimentallehre, niemals aber
eigentliche Wissenschaft werden, weil die Principien derselben blos empirisch sind und keine Darstellung
a priori in der Anschauung erlauben, folglich die Grundsä e chymischer Erscheinungen ihrer Möglichkeit
nach nicht im mindesten begreiflich machen, weil sie der Anwendung der Mathematik unfähig wird.

bJ’espère donner par là une preuve de ce qu’ont avancé des chimistes trés-distingues, qu’on n’est peut-
être pas éloigné de l’époque à laquelle on pourra soume re au calcul la plupart des phénomènes chimiques.

cToute tentative de faire rentrer les questions chimiques dans le domaine des doctrines mathématiques,
doit être réputée jusqu’ici, et sans doute à jamais, profondément irrationnelle, comme étant antipathique
à la nature des phénomènes…J’ai fait ressortit, dans le volume précédent, le tort général fait jusquu’ici à
la physique par l’abus de l’analyse mathématique. Mais là, il ne s’agissait que de l’usage irréfléchi d’un
instrument, qui, judicieusement dirigé, est susceptible, pour un tel ordre de recherches, d’une admirable ef-
ficacité. Ici, au contraire, on ne doit pas craindre de garantir que si, par une aberration heurusement presque
impossible, l’emploi de l’analyse mathématique acquérait jaimais, en chimie, une semblable prépondérance,
il déterminerait inévitablement, et sans aucune compensation, dans l’economie entière de ce e science, une
immense et rapide rétrogradation, en substitutant l’empire des conceptions vagues à celui des notions pos-
itives, et una facile verbiage algébrique à une laborieuse explorations des faits.



and are therefore of no importance in the consideration of atomic and molecular struc-

ture and ordinary chemical reactions, in which it is, indeed, usually sufficiently accu-

rate if one neglects relativity variation of mass with velocity and assumes only Coulomb

forces between the various electrons and the nuclei. The underlying physical laws nec-

essary for the mathematical theory of a large part of physics and the whole of chemistry

are thus completely known, and the difficulty is only that the exact application of these

equations leads to equations much too complicated to be soluble. It therefore becomes

desirable that approximate practical methods of applying quantum mechanics should

be developed, which can lead to an explanation of the main features of complex atomic

systems without too much computation.

has generated a lot of controversy. For many, Dirac’s claim is reductionist and completely

wrong. , , For many others, the statement is, as Parr and Crawford wrote: “both the hope

and despair of valence theoreticians […].” Certainly, Dirac was wrong to state that relativity

has no importance in atomic and molecular structure, but what about the mathematical

theory to describe the whole of chemistry? As Ku elnigg noted, this is a nontrivial philo-

sophical question. However, it is a fact that quantum mechanics has enabled the compu-

tation and prediction of many properties of chemical interest. According to Mulliken and

Roothaan, the slow acceptance of quantum mechanics followed from the fact that quan-

tum mechanics was not successful to make quantitative predictions because the answers

to the easy problems were already obtained in the laboratory and the more difficult prob-

lems were too complex, in terms of the mathematical analysis and the computational effort

required, for quantum mechanics to provide an answer. In Frederick Soddy’s words:

“…for the most part, chemistry is still too complicated a science for the theories to be a substitute

for the facts as any real theory should be.”

Nowadays, almost years after Mulliken’s and Roothaan’s discussion and years af-

ter Dirac’s claim, the application of quantum mechanics to complex chemical phenomena

is still a challenge. Even today, the simulation of a real chemical laboratory experiment

by quantum mechanical methods still requires vast methodological improvements. To



put this in perspective, think about the Hartree-Fock (HF) method. HF is the simplest

approach for solving the Schrödinger equation – and describes electron-electron inter-

actions within a mean-field approach. – Even this approach scales conventionally as

O(N ), where O() denotes the order of the asymptotic scaling behavior. This means that

to calculate a system times larger than a reference one, the computational time required

increases by a factor of with respect to the time needed for the smaller reference system.

The increase becomes even more dramatic if electron correlation effects, neglected in the

HF approach, are accounted for because the scaling behavior is, at least, O(N ). This was,

and still is, the reason for the excitement density functional theory (DFT) in the formu-

lation of Kohn and Sham (KS-DFT) generated in the quantum chemical community. It

incorporates electron correlation without increasing the scaling. Nevertheless, the formal

scaling of KS-DFT is still O(N ).

To illustrate how prohibitive even an O(N ) scaling is for the calculation of large sys-

tems, we can think about it in terms of “Moore’s Law”. , It is an empirical observa-

tion made by Gordon E. Moore in , co-founder of Intel Corporation and Fairchild

Semiconductor, that describes the doubling of components per integrated circuit every

two years. Moore’s Law has been astonishingly valid over the last decades. The factor

of for a -times larger system can be described as roughly , which would—with

Moore’s assumption—correspond to years of computer development. In other words,

one would need to wait years for the computers to evolve to perform an HF calculation

for a -times larger system within the same time frame as today for the reference one.

Furthermore, the increase of power consumption has led to the end of frequency (proces-

sor speed) scaling as the dominant computer architecture paradigm since the early ’s.

Moore’s law has been applicable since then by adding extra processors for parallel com-

puting. However, the potential speed-up of a parallel computing platform is not linear.

Instead, the small portion of a program that cannot be parallelized limit the overall speed-

up as given by Amdahl’s Law. If α is the fraction of running time a program spends on



non-parallelizable parts, then the maximum speed-up is

S(P) = lim
P→∞ −α

P + α
=

α
, ( )

where P is the number of processors available. If only % of the program cannot be, or

is not, parallelized, only a speed-up of can be achieved regardless of the number of

processors given to the task. This is clearly not an option for any enthusiastic researcher

a empting to grasp deeper insights into molecular processes in chemistry, biochemistry,

or material science.

The present work continues the effort of developing “desirable approximate methods […]”

that lower the computational demand of existing algorithms to make them applicable to

larger systems in reasonable time frames. In particular, a new formulation for calculating

the exact exchange contribution, which lowers the computational demand of traditional

algorithms, is presented. Exact exchange is a key ingredient for HF, post-HF, as well

as for some of the most popular Density Functional Approximations (DFA) used in DFT

calculations. In addition, a new iterative solver for Auxiliary Density Perturbation Theory

(ADPT), which enables property calculations on systems with several hundred of atoms

in just hours, is also presented.

To this end, the thesis is organized as follows. In chapter a general revision of quantum

mechanics, with a particular focus on Kohn and Sham’s formulation of Density Functional

Theory (KS-DFT), is given. Chapter presents the Auxiliary Density Functional Theory

(ADFT) formalism, a very efficient alternative to KS-DFT. In chapter , the development

of efficient algorithms for calculating exact exchange contributions in the framework of

ADFT are presented. A new iterative solver for ADPT is derived and presented in chapter

. Selected applications of the algorithms in chapters and are presented on chapter .

Finally, the last chapter summarizes the progress achieved in this PhD and suggests some

future developments that arise naturally as extension of the here presented algorithms.



₀.₂ O

The main objective of this work was to continue the efforts of developing new all-electron

first principle “desirable approximate methods […]” by the development and implementation

of two new low-order scaling methodologies. These new methodologies should allow the

computation of larger systems in reasonable time frames. In order to achieve this goal, we

proposed the following specific objectives:

. Development and implementation of a new low-order scaling exact exchange ap-

proximation.

(a) Development of the new low-order scaling exact exchange approximation.

(b) Serial and parallel implementation of the exact exchange potential.

(c) Serial and parallel implementation of the exact exchange energy gradients.

(d) Validation, benchmarking and optimization of the new exact exchange imple-

mentation.

. Development and implementation of a new low-order scaling ADPT solver.

(a) Theoretical development of the new low-order scaling ADPT solver.

(b) Serial and parallel implementation of the new ADPT solver.

(c) Validation, benchmarking and optimization of the new ADPT solver implemen-

tation.



Gar manches rechnet Erwin schon

Mit seiner Wellenfunktion.

Nur wissen möcht man gerne wohl,

Was man sich dabei vorstell’n soll.

Erwin with his psi can do

Calculations quite a few

But one thing has not been seen:

Just what does psi really mean?

Erwin Hückel

1
Quantum Chemistry Fundamentals

₁.₁ T S E

According to the postulates of quantum mechanics, the state of a system is fully described

by a function Ψ(x ,x , . . . ,xn, t). Ψ is called the wavefunction, x ,x , . . . ,xn are the spatial

and spin coordinates of particles , , . . . , n that constitute the system and t is the time

variable. The wavefunction Ψ(x ,x , . . . ,xn, t) evolves in time according to the equation

ĤΨ = iℏ
∂Ψ
∂t

( . )

Equation ( . ) is the celebrated time-dependent Schrödinger equation introduced by Erwin

Schrödinger in . – The operator Ĥ is the Hamilton operator. The time-dependent

Schrödinger equation can often be separated into equations for the time and space varia-



tion of the wavefunction. The time-independent wavefunction Ψ(x ,x , . . . ,xn), satisfies

the equation

ĤΨ = EΨ ( . )

For an isolated system withN electrons andMnuclei the explicit form of the nonrelativistic

Hamilton operator is given, in atomic units which will be used throughout this discussion,

by:

Ĥ = −
N∑
i

∇i −
M∑
A

MA
∇A +

N∑
i

N∑
j>i

| ri − rj |
−

N∑
i

M∑
A

ZA

| ri −RA |
+ ( . )

M∑
A

M∑
B>A

ZAZB

|RA −RB |

where r and R denote the spatial coordinates of the electrons and nuclei, respectively.

The atomic mass of nucleus A is MA and it’s charge ZA. The physical meaning of the

terms on the right-hand-side (rhs) of Equation ( . ) are, respectively: kinetic energy of

the N electrons, kinetic energy of the M nuclei, electrostatic repulsion energy between the

N(N− )/ electron pairs, electrostatic a raction between theN electrons and theM nuclei,

and electrostatic repulsion between the M(M− )/ nuclei pairs. It is therefore customary

to express Equation ( . ) as:

Ĥ = T̂e + T̂n + V̂ee + V̂ne + V̂nn ( . )

The term V̂ne couples electronic and nuclear motions, complicating the solution of Equa-

tion ( . ). Born and Oppenheimer showed that an effective separation of electronic and

nuclear motions can be performed without affecting the accuracy of the solution for many

cases. The separation is based on the fact that nuclei are several thousand times heavier

than electrons. In a classical dynamical sense, the electrons can be regarded as particles

that follow the nuclear motion adiabatically, meaning that they are dragged along with

the nuclei without requiring relaxation time. In terms of Equation ( . ) this means that



we can assume a quasi-separable ansa of the form

Ψ(x,R) = ΨR(x) · Θ(R) ( . )

The quantum mechanical consequence of the mass difference is that the nuclear compo-

nents of the wavefunction are much more localized in space. Thus, in a small space around

the nuclei where the nuclear wavefunction is different from zero it rises much more steeply

than the electronic one, which means that ∇AΘ(R) ≫ ∇AΨR(x), from which we may ap-

proximate

T̂nΨ(x,R) = −
M∑
A

MA

[
ΨR(x)∇AΘ(R) + ∇AΨR(x) ·∇AΘ(R) + Θ(R)∇AΨR(x)

]
( . )

≈ −ΨR(x)
M∑
A

MA
∇AΘ(R) ( . )

Substitution of Equation ( . ) into Equation ( . ) and using approximation ( . ) yields:

[T̂e + V̂ee + V̂ne]ΨR(x)

ΨR(x)
= E− [T̂N + V̂nn]Θ(R)

Θ(R)
( . )

Thus, it is clear that the left-hand-side (lhs) can only be a function of R alone

[T̂e + V̂ee + V̂ne]ΨR(x)

ΨR(x)
= E(R)

[T̂e + V̂ee + V̂ne]ΨR(x) = E(R)ΨR(x)

ĤeΨR(x) = E(R)ΨR(x) ( . )

Equation ( . ) is known as the electronic Schrödinger equation, which yield a set of or-

thonormalized eigenfunctions ΨR(x) with corresponding eigenvalues E(R). For each

solution there will be a corresponding nuclear Schrödinger equation. For the electronic



ground state, that is of importance here, the nuclear Schrödinger equation is given by:

[T̂n + V̂nn + E (R)]Θ(R) = EΘ(R)

ĤnΘ(R) = EΘ(R) ( . )

The usual procedure to solve Equation ( . ) is to solve first Equation ( . ), then substitute

the electronic energy into the nuclear Schrödinger equation and solve it.

Varying the nuclear positions maps out a multi-dimensional potential energy surface

(PES). In Born-Oppenheimer molecular dynamics (BOMD), the motions of the nuclei in

this potential are usually solved using Newtonian mechanics. Note that each electronic

state will give rise to a different PES, and that crossing between two surfaces is not allowed

by the adiabatic theorem. To simplify notation we drop the parametric dependency of

the electronic wavefunction onR from now on. Furthermore, the term V̂nn will be included

in the electronic Hamiltonian since it only adds a constant that shifts the electronic energy

as:

Ee = E + Vnn ( . )

Even with the BO approximation, the Schrödinger equation cannot be solved analytically

for a system with two or more electrons. Thus, only approximate solutions are available

for most chemical systems of interest. Several methods have been developed for this pur-

pose, themost relevant being the ones based on the Rayleigh-Ri variationalmethod. ,

The variational principle in quantum mechanics states that any approximate wavefunc-

tion will always have an energy expectation value that is above that of the ground state

energy ,

Ee[Ψt] ⩾ Ee[Ψ ] ( . )

where Ψt and Ψ denote a trial and ground state wavefunctions, respectively. In other

words, the energy expectation value of any appropriate trial wavefunction will provide

an upper bound to the exact ground state energy. The variational method allows to ap-

proximate a solution to the Schrödinger equation for many-electron systems, nevertheless,



the task is rather complicated. For an N electron system, Ψ depends on N spatial coordi-

nates, thus, even for very simple molecules the number of variables becomes large.

₁.₂ D F T

Thomas and Fermi suggested the use of the electronic density ρ(r) instead of the wavefunc-

tion Ψ(x) to calculate atomic properties. , Further works by Dirac as well as Wigner

and Sei , improved the model by introducing a local expression for the exchange

potential. Several years later, Slater introduced the idea of approximating the Fock ex-

change operator of the Hartree-Fock method by an average local potential based on the

free-electron gas model. The result was an exchange potential expressed solely in terms

of ρ(r). Further development led to the so-calledXαmethodology of Slater and Johnson.

All these methods suggested that a theory based on ρ(r) instead of Ψ(x) could actually

be accurate enough to calculate molecules. The main advantage of such a methodology

comes from the fact that the electronic density ρ(r) depends only on instead of N spatial

variables. In terms of the wavefunction, ρ(r) is defined as:

ρ(r) = N
∫

. . .

∫
|Ψ(r, r , . . . , rN)| dr dr . . .drN ( . )

Thus, the electronic density is obtained by integrating N− electrons out of the wavefunc-

tion. It represents the probability of finding an electron in position r when the other N−

electrons are in arbitrary positions. In addition of being a much more simpler mathemati-

cal entity, ρ(r) is an observable, making it more a ractive than the rather mysterious Ψ(x).

Nonetheless, all the methods lacked a mathematically rigorous foundation and some of

them failed to describe very “simple” phenomena such as chemical bonding. A rigorous

mathematical foundation for an ab initio theory based solely on ρ(r) was first given by Ho-

henberg and Kohn in , starting what we know today as Density Functional Theory.

The Hohenberg and Kohn formulation is based on two theorems:



First Hohenberg-Kohn theorem: The external potential v(r) is a unique functional of the elec-

tronic density ρ(r), apart from a trivial additive constant.

The proof for the first Hohenberg-Kohn theorem is very simple. Assume that there exist

two potentials v(r) and v′(r) differing by more than a constant and giving rise to the same

ground-state density ρ(r). Obviously, v(r) and v′(r) correspond to two different Hamilton

operators Ĥ and Ĥ′, which in turn give rise to two different wavefunctions Ψ(x) and Ψ′(x).

Because of the variational principle the following inequality, wri en in Dirac’s notation,

must hold

E = ⟨Ψ|Ĥ|Ψ⟩ ⩽ ⟨Ψ′|Ĥ|Ψ′⟩ ( . )

Assuming that the ground state is non-degenerate, the inequality strictly holds. Because

we have identical ground-state densities for the two Hamilton operators by construction,

we can rewrite Equation ( . ) as

E < ⟨Ψ′|Ĥ′|Ψ′⟩+ ⟨Ψ′|Ĥ− Ĥ′|Ψ′⟩ = E′ +

∫
[v(r)− v′(r)] ρ(r)dr ( . )

Similarly, taking Ψ(x) as the trial wavefunction for Ĥ′ yields

E′ < ⟨Ψ|Ĥ|Ψ⟩+ ⟨Ψ|Ĥ′ − Ĥ|Ψ⟩ = E +

∫
[v′(r)− v(r)] ρ(r)dr ( . )

Finally, adding Equations ( . ) and ( . ) we obtain

E + E′ < E′ + E ( . )

which is clearly a contradiction. Thus, the theorem has been proven by reductio ad absur-

dum. This contradiction confirms that, for v-representable densities, the knowledge of

the ground-state density uniquely determines the external potential of a non-degenerate

quantum mechanical system. The following mapping can be defined based on the first



Hohenberg-Kohn theorem:

ρ(r) 7→ N, v(r) 7→ Ĥ 7→ Ψ(x)[ρ] 7→ E[ρ] ( . )

Therefore, the ground-state wavefunction and the corresponding energy can be expressed

as a functional of ρ(r):

E [ρ] = F[ρ] +
∫

v(r)ρ(r)dr = ⟨Ψ [ρ]|Ĥ|Ψ [ρ]⟩ ( . )

where F[ρ] is the universal Hohenberg-Kohn functional given by

F[ρ] = ⟨Ψ |T̂e|Ψ ⟩+ ⟨Ψ |V̂ee|Ψ ⟩ ( . )

The name universal arises because F[ρ] does not depend on the external potential v(r) and,

therefore, it is a universal functional of ρ(r).

Second Hohenberg-Kohn theorem: For a positive semi-definite trial density ρt(r) that inte-

grates to the number of electrons of the system, E[ρt] ⩾ E , where E is the ground state energy of

the system.

For a trial density ρt(r) that is not the ground-state density, the first Hohenberg-Kohn

theorem states that ρt(r) corresponds to a different external potential vt(r), and, therefore,

to a different wavefunction Ψt(x). If we use ρt(r) as trial for a problem having external

potential v(r), it follows from the variational principle:

E[ρt] = F[ρt] +

∫
v(r)ρt(r)dr = ⟨Ψt|Ĥ|Ψt⟩ > E ( . )

This theorem establishes the variational principle for DFT. An electronic density different

from the non-degenerate ground-state one will provide an upper bound for the ground-

state energy of a given external potential.

More general derivations of the Hohenberg-Kohn theorems, that circumvent the v-rep-



resentable assumption and extend the applicability of DFT, have been given by Levy

with the so-called constrained-search formulation, and by Lieb with the convex-conju-

gate (Legendre transform) formulation. DFT has also been extended to excited-states in

both time-dependent – and time-independent – formulations.

If we would knew the exact universal functional F[ρ], DFT would be an exact formula-

tion. However, accurate implementations of DFT are far from easy to achieve because of

the unfortunate fact that F[ρ] is hard to approximate in a closed form. In fact, none of the

formulations of Hohenberg-Kohn, Levy or Lieb give even a hint for F[ρ]. To proceed, the

energy functional defined in Equation ( . ) can be rewri en as

E[ρ] = F[ρ] +
∫

v(r)ρ(r)dr

= T[ρ] + Vee[ρ] +
∫

v(r)ρ(r)dr

= T[ρ] + J[ρ] + Vnc
ee [ρ] +

∫
v(r)ρ(r)dr ( . )

where T[ρ] is the kinetic energy andVee[ρ] is the electron-electron interaction energy. Vee[ρ]

can be further split into a classical part, J[ρ], and a non-classical part, Vnc
ee [ρ]. The problem

with the density functional in Equation ( . ) is how to calculate T[ρ] and Vnc
ee [ρ]. The tra-

ditional Thomas-Fermi (TF) model ignores Vnc
ee [ρ] and takes T[ρ] by applying locally the

uniform electron gas (UEG) expression for the kinetic energy: ,

ETF[ρ] = TTF[ρ] + J[ρ] +
∫

v(r)ρ(r)dr ( . )

The TF model fails to predict the correct behavior for atomic densities, gives total atomic

energies to % too low and fails to predict binding of molecules. , ,

One step further was taken by Dirac who introduced Vnc
ee [ρ] as the exchange energy of

an UEG given rise to the TF-Dirac (TFD) model. However, the inclusion of exchange

did not improve the description of the density and made the calculated energies even

worse. For this reason von Weizsäcker suggested a gradient correction of TTF[ρ] which

remedies three defects of the TF and TFD models: (i) ρ(r) is finite at the nuclei, (ii) bind-



ing of atoms occurs and negative ions are stable and, (iii) ρ(r) has exponential falloff for

neutral atoms and molecules. Although the TFD-von Weizsäcker (TFDW) model shows

a qualitative improvement, it is still far from being a quantitative model to describe chem-

ical phenomena. Higher order corrections, up to fourth order, provide higher accuracy

but still describe only an average behavior of the electrons.

₁.₃ T K -S M

Kohn and Sham gave a route to overcome, at least partially, the extremely difficult task of

finding an accurate enough kinetic energy functional T[ρ]. This is based on decomposing

T[ρ] into a part that represents the kinetic energy of a non-interacting system of electrons,

Ts[ρ], and a remainder, Tc[ρ],

T[ρ] = Ts[ρ] + Tc[ρ] ( . )

The subscripts s and c stand for single-particle and correlation, respectively. In the non-

interacting system, the total kinetic energyTs[ρ] is just the sum of the single-particle kinetic

energies:

Ts[ρ] = ⟨Ψ[ρ]|T̂|Ψ[ρ]⟩

=
occ∑
i

⟨ψi|T̂|ψi⟩ ( . )

where Ψ[ρ] is the Slater determinant forming the density ρ(r), and ψi(r) are the single-

particle orbitals of the non-interacting system. Using Equations ( . ) and ( . ) we can

rewrite the energy functional as

E[ρ] = Ts[ρ] + Tc[ρ] + J[ρ] + Vnc
ee [ρ] +

∫
v(r)ρ(r)dr

= Ts[ρ] + J[ρ] + Exc[ρ] + V[ρ] ( . )

where

V[ρ] =
∫

v(r)ρ(r)dr ( . )



and Exc[ρ] is the exchange-correlation functional that contains Tc[ρ] andVnc
ee [ρ]. Equation ( . )

is formally exact but, unfortunately, Exc[ρ] remains unknown. The practical advantage of

writing the energy functional as Equation ( . ) is that Exc[ρ] is typically much smaller

than the known terms Ts[ρ], J[ρ] and V[ρ], thus, reasonably simple approximations for

Exc[ρ] may provide accurate enough results for E[ρ].

Since Ts[ρ] is not an explicit functional of ρ(r), Equation ( . ) cannot be directly mini-

mized. Kohn and Sham suggested a scheme where the minimization is carried out in an

indirect form. To this end, Kohn and Sham related the minimization condition for a fully

interacting system with that of a non-interacting system. For the fully interacting system,

the minimization condition is given by

δE[ρ]
δρ(r)

=
δTs[ρ]
δρ(r)

+
δJ[ρ]
δρ(r)

+
δExc[ρ]
δρ(r)

+
δV[ρ]
δρ(r)

≡ ( . )

The functional derivative δV[ρ]
δρ(r) yields the external potential, v; the term δJ[ρ]

δρ(r) yields the

Hartree (Coulomb) potential, vH; and, once an explicit form for Exc[ρ] is chosen, the term
δExc[ρ]
δρ(r) yields the exchange-correlation potential, vxc. Consider now a systemof non-interact-

ing particles moving in a potential vs(r). For this system, the minimization condition is

just
δEs[ρs]

δρs(r)
=

δTs[ρs]

δρs(r)
+

δVs[ρs]

δρs(r)
≡ ( . )

Comparing Equations ( . ) and ( . ) we find that both minimizations have the same

solution, ρs(r) ≡ ρ(r), if:

δVs[ρ]
δρ(r)

=
δJ[ρ]
δρ(r)

+
δExc[ρ]
δρ(r)

+
δV[ρ]
δρ(r)

( . )

i.e.

vs(r) = vH(r) + vxc(r) + v(r) ( . )

Consequently, one can calculate the density of the interacting system with external poten-

tial v(r) by solving the equations of a non-interacting system with external potential vs(r).



Figure . : Perdew’s Jacob’s Ladder of density functional approximations. Reproduced from reference [ ]
with permission from the PCCP Owner Societies.

To this end, Kohn and Sham represented the non-interacting wavefunction as a single

Slater determinant and obtained Ts[ρ] through the Kohn-Sham (KS) orbitals ψi(r) in the

same way as in Equation ( . ). Solving the set of single-particle Schrödinger equations

[
− ∇ + vs(r)

]
ψi(r) = εiψi(r) ( . )

yields orbitals that reproduce the density of the original system

ρ(r) =
N∑
i

|ψi(r)| ( . )

Since vs(r) depends on ρ(r), the problem of solving Equations ( . ), known as KS equa-

tions, is a nonlinear one. The usual way of solving this problem will be discussed in the

next chapter.

KS-DFT is astounding in its simplicity, yet it delivers, in principle, the exact density

and exact total energy of any interacting, correlated electronic system. Everything hinges



on the functional Exc[ρ] and its functional derivative vxc[ρ]. Due to the central role of

KS-DFT in electronic structure theory and material sciences , and the dependence of

KS-DFT accuracy on Exc[ρ], authors of successful exchange-correlation energy function-

als have some of the most cited papers in both physics and chemistry. , In order to give

a quick overview of existing Exc[ρ], we turn to Perdew’s Jacob’s Ladder. , Perdew pro-

posed a hierarchy of density functional approximations (DFA) for Exc[ρ] ordered by the

use of increasingly complex ingredients to construct Exc[ρ]. Figure . shows a pictorial

representation of Perdew’s Jacob’s ladder, where the lower end is the “Hartree World”

and the upper one is the “Heaven of Chemical Accuracy”. Higher levels usually—but

not always—yield more accurate results and are computationally more demanding than

the lower ones. The first rung is the Local Density Approximation (LDA) and uses only

ρ(r) as its ingredient; the second rung is the generalized gradient approximation (GGA),

which adds the density gradient, ∇ρ(r), to its ingredients; the third rung is known as

meta-GGA and adds the Laplacian of the density, ∇ ρ(r), and the kinetic energy density,

τ(r), or at least one of them, to its ingredients; the fourth rung has been named hyper-GGA

and includes the exact exchange energy density; and the fifth rung adds exact partial cor-

relation. Nowadays, several of the most popular DFAs belong to the second, third and

fourth rungs. Many highly accurate functionals are of the meta-GGA type and, thus, their

calculation is computationally expensive compared to a standard LDA or GGA functional.

However, the simplicity and accuracy achieved by some second rung functionals a racted

the a ention of quantum chemists to KS-DFT. Therefore, some groups are still devoted

to the development of accurate, and simple, GGA functionals. For example, the Vela-

Medel-Trickey (VMT) functional improves substantially the energetics of the widely

used Perdew-Burke-Ernzerhof (PBE) form while being as simple in form. Further im-

provements may be achieved by imposing additional physically meaningful constraints

like in the VT{ , } functional which imposes the large s constraint:

lim
s→∞

s / Fxc(ρ, s) < ∞ ( . )



where Fxc(ρ, s) is the enhancement factor and s is the dimensionless gradient. Besides en-

ergetics, this efforts have also been directed to improve the calculation of properties. In

particular, the semi-empirical functionals of Keal and Tozer KT , KT and KT , , were

developed to improve nuclear magnetic resonance (NMR) calculations without affecting

the geometrical and energetical performance. More recently, Carmona et. al developed

a GGA functional which has a correct asymptotic potential (CAP) and improves the cal-

culation of molecular polarizabilities.

The developments of these, and many other, highly accurate DFAs have enabled an ex-

ponentially growing a ention for DFT, to the point where KS-DFT is becoming the stan-

dard tool in electronic structure theory calculations.



Looking toward the future, it seems certain that colossal rewards lie

ahead from large-scale quantum-mechanical calculations of the struc-

ture of ma er.

R. S. Mulliken and C. C. J. Roothaan

2
Auxiliary Density Functional Theory

₂.₁ T LCGTO F

The KS equations, Equation ( . ), can be obtained by varying the Kohn-Sham energy

expression, Equation ( . ), subject to the orthonormality constraint

⟨ψi|ψj⟩ = δij ( . )

where δij is the Kronecker delta. In order to perform such variation it is convenient to

expand the molecular orbitals, ψi(r), in a linear combination of atomic orbitals (LCAO):

ψi(r) =
∑
µ

cµi µ(r) ( . )



Here, µ(r) represents an atomic orbital or, more general, a basis function, and cµi a molec-

ular orbital (MO) coefficient. In deMon k – the basis functions are atom-centered (con-

tracted) Gaussian type orbitals (GTO), hence the working ansa for deMon k is known as

linear combination of Gaussian type orbitals (LCGTO). An unnormalized Cartesian GTO

is given by:

µ(r) = (x− Ax)
ax (y− Ay)

ay (z− Az)
az

Kµ∑
k

dkeζk(r−A) ( . )

A basis function is completely defined by its atomic center A, its angular momentum vec-

tor a = (ax, ay, az), the degree of contraction Kµ, the contraction coefficients dk and the

orbital exponents ζk. All these parameters remain constant for a given geometry. Thus,

only the molecular orbital coefficients are the variational parameters under which mini-

mization of Equation ( . ) is performed. Using the explicit form for all the known terms

in Equation ( . ) and assuming a closed-shell system yields:

E[ρ] = −
occ∑
i

⟨ψi |∇ ψi⟩ −
∑
A

∫
ZA

| r−A |
ρ(r)dr +

∫∫
ρ(r )ρ(r )

| r − r |
dr dr + Exc[ρ] ( . )

where the upper index “occ” refers to all doubly occupied spatial orbitals in the closed-

shell system. The corresponding LCGTO expansion of the electronic density is given by

ρ(r) =
occ∑
i

|ψi | =
occ∑
i

∑
µ,ν

cµi cνi µ(r) ν(r) =
∑
µ,ν

Pµν µ(r) ν(r) ( . )

where we have introduced the density matrix, P, with elements:

Pµν =
occ∑
i

cµi cνi ( . )

Substituting Equations ( . ), ( . ) and ( . ) into Equation ( . ) yields

E[ρ] = −
∑
µ,ν

Pµν⟨µ | ∇ ν⟩ −
∑
µ,ν

∑
A

Pµν

⟨
µ
∣∣∣∣ ZA

| r−A |

∣∣∣∣ ν⟩+

∑
µ,ν

∑
σ,τ

PµνPστ

∫∫
µ(r ) ν(r ) σ(r )τ(r )

| r − r |
dr dr + Exc[ρ] ( . )



The first two-terms of Equation ( . ) represent the one-electron energy, often named the

core energy. The third term is the electronic repulsion energy, hence the integrals appear-

ing in it are named electron repulsion integrals (ERIs). To ease the notation, we introduce

the core Hamiltonian matrix, H, with elements

Hµν = − ⟨µ |∇ ν⟩ −
∑
A

⟨
µ
∣∣∣∣ ZA

| r−A |

∣∣∣∣ ν⟩ ( . )

and a shorthand notation for the ERIs

⟨µν∥στ⟩ =
∫∫

µ(r ) ν(r ) σ(r )τ(r )

| r − r |
dr dr ( . )

to rewrite Equation ( . ) as

E[ρ] =
∑
µ,ν

PµνHµν +
∑
µ,ν

∑
σ,τ

PµνPστ⟨µν∥στ⟩+ Exc[ρ] ( . )

Note that the notation for the ERIs differs from the conventional Dirac notation used for

the rest of the integrals. In the ERI notation the double vertical bar represents the two-

electron Coulomb operator /| r − r |. It also separates the functions that depend on

the electronic coordinate r (in the bra), from the functions that depend on the electronic

coordinate r (in the ket). Analog notations will be used for other types of ERIs throughout

the text. Imposing the orthonormality constraint, Equation ( . ), in the LCGTO formalism

leads to the Lagrange functional

L[ρ; c] = E[ρ]−
all∑
i,j

εij

∑
µ,ν

cµiSµνcνj − δij

 ( . )



The variation of the Lagrange functional,

∂L[ρ; c]
∂cµi

=
∂E[ρ]
∂cµi

−
occ∑
j

∑
ν

Sµνcνjεji ( . )

=
∑
ν

(
Hµν +

∑
σ,τ

Pστ⟨µν∥στ⟩+ ⟨µ|vxc |ν⟩

)
cνi −

all∑
j

∑
ν

Sµνcνjεji , ( . )

must vanish at a stationary point. To obtain these equations the variation of Exc[ρ] is per-

formed using the chain rule

∂Exc[ρ]
∂cµi

=

∫
δExc[ρ]
δρ(r)

∂ρ(r)
∂cµi

dr =
∑
ν

cνi
∫

vxc[ρ; r]µ(r) ν(r)dr ( . )

At this point it is convenient to define the KS matrix, K. This matrix represents the varia-

tion of the energy with respect to the density matrix and its elements are given by

Kµν ≡
∂E[ρ]
∂Pµν

= Hµν +
∑
σ,τ

Pστ⟨µν∥στ⟩+ ⟨µ|vxc[ρ] |ν⟩ ( . )

Substitution of Equation ( . ) into Equation ( . ) under the minimization condition yields

Kci =
all∑
j

Scjεji ( . )

Which is a generalized eigenvalue equation. There is one Equation of the form ( . ) for

each molecular orbital. Collecting all equations into a single matrix equation yields

Kc = Scε ( . )

This set of equations have the same form as the famous Roothaan-Hall (RH) equations ,

appearing in HF. Here, c = (c , c , . . . , cocc, . . . , call), is a square matrix composed from

all the occupied molecular coefficient vectors as well as the virtual molecular orbital co-

efficients vectors. It is important to note that Equation ( . ) is a nonlinear generalized

eigenvalue equation because the KS matrix depends on, at least, the occupied subspace of



c. Therefore, Equation ( . ) has to be solved iteratively starting from an educated guess

for c. It is also important to note that K is invariant under separate unitary transforma-

tions of the occupied and unoccupied subspaces of c. This property follows from the fact

that the electronic density and, hence, the density matrix are invariant under such trans-

formations

P = coccc
T
occ ( . )

= coccUoccU
T
occc

T
occ ( . )

Thus, the rotations between the occupied and the unoccupied subspaces are responsible

for the change of K between two iterations of the self-consistent field (SCF) procedure. It

follows that, at convergence, the Lagrange multiplier matrix ε must have, in general, the

following block diagonal form:

ε =

εocc

εuno

 ( . )

Furthermore, we can always choose to work in the molecular orbital representation cU

where U is a block-diagonal orthogonal matrix

U =

Uocc

Uuno

 ( . )

such that UTεU is a strictly diagonal matrix. Such molecular orbital representation is

called canonical. From now on we will assume that c are the canonical MO coefficients

and, therefore, ε is a diagonal matrix.

₂.₁.₁ C KS-DFT LCGTO

Let us now analyze the computational complexity of the RH method for solving the KS

equations in the LCGTO ansa . The computation of the full core Hamiltonian matrix H
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Figure . : Influence of the prefactor on the relative speed of algorithms with different scalings.

scales as N , where N is the number of basis functions, because there are a total of N el-

ements that need to be computed. The same scaling is observed for the computation of

the overlap matrix S. Both matrices, H and S, remain constant during the whole SCF pro-

cedure and, therefore, are computed only once and stored. The Coulomb contribution to

the KS matrix has a formal N scaling, because there are a total of N ERIs. This contribu-

tion is not constant because it depends on P. The exchange-correlation contribution has a

formal N × G scaling, where G is the number of grid points necessary for the numerical

integration needed to compute the exchange-correlation contribution.

Besides the construction of K, several matrix operations are needed in order to solve

the RH generalized eigenvalue equation. These operations have a formal scaling ofN but

can be performed, up to a certain basis set size, in a very efficient manner using optimized

computational libraries for such operations. Many of these libraries are based on the Basic

Linear Algebra Subroutines (BLAS) – and the Linear Algebra Package (LAPACK), and

are machine-specific optimized, like Intel’s Math Kernel Library (MKL) and AMD’s Core

Math Library (ACML).

The scaling prefactor is a very important aspect to take into account when the asymp-

totic region of an algorithm has not yet been reached. Figure ( . ) shows two fictitious

examples where the timings of three different modules with linear ( ), quadratic ( )

and cubic ( ) scalings are compared. In Figure ( . A) all prefactors are and the cubic

scaling module quickly becomes the most demanding task. However, if the prefactor of



this cubic module can be made very small, Figure ( . B), the cubic scaling module can

be faster than the quadratic, and even linear, modules within a certain size range. This

is the case for matrix operations performed with the Intel MKL libraries. Moreover, the

prefactor for the N Coulomb contribution, the highest scaling part of a LCGTO KS-DFT

calculation, can also be reduced to by taking into account the permutational symmetry of

the integrals. Nevertheless, even by employing the permutational symmetry of the ERIs,

the calculation of the Coulomb contribution rapidly becomes the computationally most

demanding part and other techniques are needed in order to reduce its computational

load.

₂.₂ V F C P

A very popular technique to reduce the formal scaling of computing the Coulomb poten-

tial is the so-called variational fi ing approximation. This technique was introduced by

Dunlap and co-workers, – inspired by a former work of Sambe and Felton. It became

widespread available for use since its introduction into the deMon-KS and DGauss

programs more than years ago. It is equivalent to the application of the truncated res-

olution of the identity (RI) , for Coulomb integrals used in other programs, specially

from the “wavefunction community”. An extensive review of the influence of the varia-

tional fi ing technique on electronic structure calculations can be found in references [ ]

and [ ].

The variational approximation of the Coulomb potential, as implemented in deMon k,

is based on the minimization of the error:

E =

∫∫
[ρ(r )− ρ̃(r )] [ρ(r )− ρ̃(r )]

| r − r |
dr dr ⩾ ( . )

The here appearing approximated density, ρ̃(r), is expanded as a linear combination of



primitive Hermite-Gaussian type functions (HGTFs), k̄(r):

ρ̃(r) =
∑
k̄

xk̄ k̄(r) ( . )

From now on these HGTFs will be called auxiliary functions and will be denoted by latin

le ers with a bar above them. An unnormalized auxiliary function k̄(r), centered on atom

A with exponent ζk̄ has the following form:

k̄(r) =
(

∂

∂Ax

)k̄x ( ∂

∂Ay

)k̄y ( ∂

∂Az

)k̄z
e−ζk̄(r−A) ( . )

As for the GTOs, all parameters appearing in Equation ( . ) remain constant during an

electronic structure calculation unless the geometry of the molecule is changed. In de-

Mon k the auxiliary functions are grouped in s, spd and spdfg sets sharing the same ex-

ponent within each set. , Specially developed integral recurrence relations , ensure

maximum performance in the analytic molecular integral calculations with these auxiliary

function sets. Expanding ρ(r) and ρ̃(r) in Equation ( . ) yields:

E =
∑
µ,ν

∑
σ,τ

PµνPστ⟨µν∥στ⟩ −
∑
µ,ν

∑
k̄

Pµν⟨µν∥k̄⟩xk̄ +
∑
k̄,̄l

xk̄⟨k̄∥̄l⟩x̄l ( . )

Since E is positive semi-definite, the following inequality holds:

∑
µ,ν

∑
σ,τ

PµνPστ⟨µν∥στ⟩ ⩾
∑
µ,ν

∑
k̄

Pµν⟨µν∥k̄⟩xk̄ −
∑
k̄,̄l

xk̄⟨k̄∥̄l⟩x̄l ( . )

Note that the equality holds only when ρ(r) equals ρ̃(r). Thus, any approximated den-

sity will provide a lower bound to the true Coulomb repulsion energy. In this context it

is worth to point out a common misconception in the literature regarding variationally

density fi ing. There are several works in which auxiliary function sets are “optimized”

in order to reproduce the total energy corresponding to calculations without fi ing. –

However, such an approach is as useful as optimizing basis sets to total energies for the



basis set limit. Instead, variational density fi ing approaches should be understood as

own methodologies and their quality should be judged according to their accuracy in the

calculation of relative energies, i. e. atomization energies, as it is common for basis sets.

With this in mind we now use inequality ( . ) in order to write a new variational energy

expression based on Equation ( . )

E[ρ] =
∑
µ,ν

PµνHµν +
∑
µ,ν

∑
k̄

Pµν⟨µν∥k̄⟩xk̄ −
∑
k̄,̄l

xk̄⟨k̄∥̄l⟩x̄l + Exc[ρ] ( . )

The fi ing coefficients {xk̄} are obtained from the minimization of E :

∂E
∂xm̄

= −
∑
µ,ν

Pµν⟨µν∥m̄⟩+
∑
l̄

x̄l⟨̄l∥m̄⟩ ≡ ∀ m̄ ( . )

The set of Equations ( . ) can be wri en in a more concise form as the linear equation

system

Gx = J ( . )

where

G =



⟨̄ ∥ ⟩̄ ⟨̄ ∥¯⟩ · · · ⟨̄ ∥m̄⟩

⟨¯∥ ⟩̄ ⟨¯∥¯⟩ · · · ⟨¯∥m̄⟩
... ... . . . ...

⟨m̄∥ ⟩̄ ⟨m̄∥¯⟩ · · · ⟨m̄∥m̄⟩


( . )

and

J =



∑
µ,ν

Pµν⟨µν∥ ⟩̄∑
µ,ν

Pµν⟨µν∥¯⟩

...∑
µ,ν

Pµν⟨µν∥m̄⟩


( . )

are the Coulomb matrix and Coulomb vector, respectively. The fi ing coefficients are

collected in the vector x. A straightforward solution of Equation ( . ) is obtained by the



inversion of G:

x = G− J ( . )

However, the inversion of G can be numerically unstable if large auxiliary function sets

are used. Normalization of the auxiliary functions with respect to the Coulomb norm,

⟨k̄∥k̄⟩ = ∀ k̄ ( . )

ensures certain numerical control of G, nevertheless, G can still be ill-conditioned. There-

fore, deMon k solves Equation ( . ) by means of a robust numerical solver based on a

quasi Newton method.

Once the fi ing Equation ( . ) has been solved—for a particular density—the KS ma-

trix, K, can be obtained by varying Equation ( . ) with respect to the density matrix

Kµν = Hµν +
∑
k̄

⟨µν∥k̄⟩xk̄ + ⟨µ|vxc|ν⟩ ( . )

Thus, the four-center ERI calculation has been substituted by two steps involving three-

and two-center ERIs. The first step involves the calculation of J(P) and solving Equation

( . ). The second step is the calculation of K. Note that these two steps must be per-

formed in every SCF iteration due to the dependence on P. The formal scaling for this

approach is N ×M, where M is the number of auxiliary functions. Usually M ⩽ N, thus,

the scaling can be seen as N with a prefactor larger than . As we have seen, the prefac-

tor can be made smaller by taking into account the permutational symmetry of the ERIs,

introducing a prefactor of . Furthermore, the N can be reduced by integral screening,

asymptotic expansion techniques and taking into account the set structure with common

exponents of the auxiliary functions. , , Integral screening can be further improved

by incremental building of target quantities during the SCF, e.g. for the Coulomb vector

J(I+ ), in the Ith + SCF iteration as

J(I+ ) = J(I) + ΔJ(I+ ) ( . )



where

ΔJ(I+ )

k̄ =
∑
µ,ν

ΔP(I+ )
µν ⟨µν∥k̄⟩ ( . )

and

ΔP(I+ ) = P(I+ ) −P(I) ( . )

A similar strategy can be used for the Coulomb contribution to the KS matrix by employ-

ing ΔxI+ . Since ΔPI+ and ΔxI+ tend to the null matrix and null vector, respectively, as

convergence is approaching, this technique allows to screen out a larger and larger num-

ber of integrals when the SCF reaches convergence. This leads to an algorithm where the

most expensive part, in terms of computational demand, is the calculation of the exchange-

correlation potential.

₂.₃ E -C P F D

The use of auxiliary functions for the calculation of the exchange-correlation potential has

a long history in DFT methods. , Traditionally, these methods either fit the potential

or fit the non-integral powers of ρ(r) by using a set of Cartesian GTO auxiliary functions.

The former approach is not variational and, therefore, reliable forces (and higher order

derivatives) cannot be obtained. , The la er usually needs different auxiliary function

sets for different powers of ρ(r) and its gradient, making the treatment rather cumber-

some and limited. A different approach is the direct use of the auxiliary density ρ̃(r),

obtained from the variational fi ing of the Coulomb potential, for the calculation of the

exchange-correlation energy and potentials. – The resulting approximation has been

named Auxiliary Density Functional Theory (ADFT). In ADFT it is essential that ρ̃(r)

inherits some properties of ρ(r), specifically, that ρ̃(r) ⩾ and
∫
ρ̃(r)dr = Ne. Nor-

malization to the number of electron, Ne, can be included as a constraint in the fi ing

equations, however, even without this constraint the number of electrons is conserved to

high accuracy. The introduction of the positive semi-definiteness property for ρ̃(r) is less

straightforward. Fortunately, regions where ρ̃(r) < are rather small and usually occur



when ρ(r) ≈ , therefore, screening of this points does not impact the accuracy of the

methodology.

The energy expression in ADFT takes the form:

E[ρ] =
∑
µ,ν

PµνHµν +
∑
µ,ν

∑
k̄

Pµν⟨µν∥k̄⟩ xk̄ −
∑
k̄,̄l

xk̄ ⟨k̄∥̄l⟩ x̄l + Exc[ρ̃] ( . )

In deMon k, this approach is called AUXIS and is the default method for calculating the

exchange-correlation contributions. The corresponding Kohn-Sham matrix elements are

given by:

Kµν = Hµν +
∑
k̄

⟨µν∥k̄⟩ xk̄ +
∂Exc[ρ̃]
∂Pµν

( . )

The last term of Equation ( . ) can be evaluated in a similar manner as in Equation ( . )

to yield
∂Exc[ρ̃]
∂Pµν

=

∫
δExc[ρ̃(r)]
δρ̃(r)

∂ρ̃(r)
∂Pµν

dr =
∑
k̄

∂xk̄
∂Pµν

∫
vxc[ρ̃; r] k̄(r)dr ( . )

with:

vxc[ρ̃; r] ≡
δExc[ρ̃]
δρ̃(r)

( . )

The derivatives of the Coulomb fi ing coefficients are obtained using Equations ( . ) and

( . ) to yield:
∂xk̄
∂Pµν

=
∑
l̄

G−
k̄̄l ⟨̄l∥µν⟩ ( . )

Note that G−
k̄̄l refers to the k̄, l̄ element of G− . To simplify notation, we now introduce the

exchange-correlation fi ing coefficient vector, z, with elements

zk̄ =
∑
l̄

G−
k̄̄l ⟨̄l|vxc[ρ̃]⟩ , ( . )

in order to rewrite Equation ( . ) as

Kµν = Hµν +
∑
k̄

⟨µν∥k̄⟩ (xk̄ + zk̄) ( . )



It is important to note that z is spin-dependent and accounts for the difference between the

α and β KS matrices in open-shell calculations. Also note that the set of Equations ( . )

can be formulated as an inhomogeneous equation system of the form:

Gz = L ( . )

where

L =



⟨vxc |̄ ⟩

⟨vxc|¯⟩
...

⟨vxc|m̄⟩


( . )

Domínguez-Soria et al. also proposed a pre-conditioned conjugate gradient iterative

solver for Equation ( . ) coupled to the Coulomb fi ing solver. In order to keep the

approach variational, ρ̃(r) must be taken unaltered from the solution of Equation ( . )

to calculate vxc[ρ̃]. However this is not mandatory for the calculation of the Coulomb

contribution. Therefore two sets of Coulomb fi ing coefficients x are generally available

in a deMon k calculations, one set is obtained from the solution of Equation ( . ) and

is used to calculate vxc[ρ̃], the other set results from SCF convergence and acceleration

techniques—such as auxiliary density mixing and DIIS , , —and is used to build K.

₂.₃.₁ C ADFT LCGTO

Because the approximated density is a linear combination of auxiliary functions, the den-

sity calculation at each grid point becomes linear, i. e., the numerical integration scaling

becomes M×G. Furthermore, since the auxiliary functions decay exponentially, the num-

ber of auxiliary functions with non-negligible values at each grid point are nearly con-

stant for sufficiently large systems. Therefore, only Mlocal auxiliary functions need to be

calculated for the density at each grid point. Adding one atom to the system does not

change Mlocal. As a consequence, the numerical integration scales linear in G with a con-

stant prefactor equal to Mlocal. The Coulomb contribution can be computed in an almost
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Figure . : Schematic representation of the computational scaling for the three most demanding modules
of ADFT in deMon k. XC refers to the exchange-correlation contribution.

linear scaling effort by using the double-asymptotic ERI expansion technique. More-

over, the iterative solver for both the Coulomb fi ing, Equation ( . ), and the exchange-

correlation coefficients, Equation ( . ), have a subquadratic scaling behavior. All other

calculations needed during each SCF iteration are matrix-matrix operations. The standard

recommendation is to use vendor-optimized mathematical libraries or the Automatically

Tuned Linear Algebra Software (ATLAS) for these N operations to guarantee very small

prefactors. Figure ( . ) shows a fictitious example for the computational scaling of ADFT.

In this example, the linear algebra part has a prefactor in the order of − while the (al-

most) linear scaling modules have prefactors greater than . Nowadays, the linear algebra

becomes the most dominant part in the deMon k code when N ∼ , ; this is reached

for systems with around , atoms or more.



When teaching chemistry students, I explain that

DFT is some algorithm meaning unreliable, while ab

initio is Latin for too expensive.

Kieron Burke

3
Low-Order Scaling Exact Exchange

Evaluation

The initial idea of DFT was to represent the total energy as a functional of the density,

E[ρ]. Unfortunately, the form of E[ρ] is unknown. The so far developed approximations

to E[ρ] failed, in many cases, to reproduce even the most elementary properties of quan-

tum systems. This was the reason to resort to an implicit representation of Ts in terms of

the KS orbitals. Then, only an explicit representation of Exc in terms of ρ(r) is required in

this variant of DFT. Unfortunately, the explicitly density-dependent approximations for

Exc currently available exhibit also some important deficiencies, such as the inabilities to

properly bind atomic negative ions, reproduce the London dispersion force, and describe

strongly correlated systems. , The obvious next step for an improvement is a represen-



tation of Exc, or at least Ex, in terms of the KS orbitals. The formally correct way of imple-

menting this is the so-called Optimized (Effective) Potential Method (OPM or OEP), in which

the many-body problem is approached by the simultaneous solution of the KS equations

and an integral equation which determines vxc. Unfortunately, the OPM turns out to be

computationally demanding even for rather simple orbital-dependent expressions. For

this reason, applications of orbital-dependent -functionals often rely on the so-called

generalized Kohn-Sham (GKS) or Hartree-Fock-Kohn-Sham (HFKS) approach. , This idea

was originally suggested by Kohn and Sham. The explicit Ex is known as exact exchange

(EXX) functional and is defined as

EEXX[ψ] = −
occ∑
i,j

∫∫ ψi(r )ψj(r )ψi(r )ψj(r )

| r − r |
dr dr ( . )

= −
occ∑
i,j

⟨ij∥ij⟩ ( . )

Inserting the LCGTO expansion, Equation ( . ) transforms into

EEXX = −
∑
µ,ν

∑
σ,τ

PµνPστ⟨µσ∥ντ⟩ ( . )

where we have used the definition of the closed-shell density matrix, Equation ( . ). The

total energy in an EXX only HFKS calculation, which coincides with the HF energy, is

given by

E[ρ] =
∑
µ,ν

PµνHµν +
∑
µ,ν

∑
k̄

Pµν⟨µν∥k̄⟩xk̄ −
∑
k̄,̄l

xk̄ ⟨k̄∥̄l⟩x̄l −
∑
µ,ν

∑
σ,τ

PµνPστ⟨µσ∥ντ⟩ ( . )

where the variationally fi ed Coulomb potential was used. There are two main problems

with an approach based on Equation ( . ). First, computing the EXX term introduces a

formal N scaling that renders the approach unsuitable for large systems. Second, the en-

ergy is not self-interaction free. The self-interaction arises because the variationally fi ed

Coulomb energy represents a lower bound to the real Coulomb energy. This difference,



albeit a small one, will make the potential for each particle a li le bit too a ractive.

The first problem may be tackled by noting two very important properties of the ex-

change contribution. The four-center ERIs appearing in Equation ( . ) have non-negligible

contributions only whenµ(r ) is close in space to σ(r ) and ν(r ) is close to τ(r ). In LCGTO,

this property is linked to the Gaussian Product Theorem (GPT), which states that the prod-

uct of two Gaussians is another Gaussian centered somewhere on the line between the two

original Gaussians. In the case of two spherically symmetric GTOs:

Nµ e−ζµ(r−A) Nσ e−ζσ(r−B) = NµNσ e−ξp(A−B) e−ζp(r−P) ( . )

where

ζp = ζµ + ζσ ( . )

ξp = ζµ ζσ/ζp ( . )

P = (ζµ A+ ζσB)/ζp ( . )

andNµ,Nσ are normalization constants. For our discussion, the following two facts arising

from the GPT are most important. First, the exponent of the product, ζp, is always larger

than the exponents of the two original functions. Thus the product function decays more

rapidly than the original functions. Second, the product pre-factor,

Nµ Nσ e−ξp(A−B) , ( . )

decays exponentially with the squared distance (A − B) . The GPT also holds for non-

spherically symmetric GTOs. To illustrate this further, take for example the product be-

tween two d-type functions centered on carbon atoms of the linear C H described with

a polarized valence basis set. The first column of Figure ( . ) shows the − a.u. iso-

surface of four dxy functions centered on the first four carbon atoms of the chain. The

second column shows the same isosurfaces for the products between the dxy function of



Figure . : Product of two dxy functions centered on carbon atoms of the C H . The first column shows
contour plots of the dxy functions of the first four carbon atoms in the chain. The second column shows
contour plots of the product between dxy of the first carbon atom (header) and the dxy function depicted on
the left of the product.

C —shown at the header of the second column—and the dxy functions depicted in the

corresponding row. Note that all products are more compact than the original functions

as a consequence of the larger exponent. The product between the dxy functions centered

on C and C is already below − a.u. for every point in space, and the product for the

functions centered on C and C (not shown) is already below − a.u. for all points in

space! This example clearly shows that if the centers of the two original functions, µ(r)

and σ(r), are further away from each other, then the distribution ρµσ(r) = µ(r) σ(r) will

vanish for any r. As the system size increases, the number of significant distributions

ρµσ(r) = µ(r)σ(r) approaches N from above as N becomes larger. Therefore, the num-

ber of non-negligible four center ERIs approachesN asymptotically from above. , The

EXX term has another important feature: the elements of both density matrices couple co-

ordinates of electron one (r ) with coordinates of electron two (r ). In insulating systems

Pµν has a non-negligible value only if µ(r) is close to ν(r). A direct consequence of the

GPT and the locality of P in insulating systems is that all four AOs appearing in the four-



center ERIs must be close in space. These, along with appropriate thresholding of Kµν

elements, are the fundamentals behind linear-scaling EXX algorithms like ONX , –

and LinK. ,

Despite the existence of these linear-scaling EXX algorithms, much effort has been posed

into the development of new algorithms to compute EXX. This is partially because the

linear-scaling is only achieved with respect to system size. However, computing exact ex-

change on a given system while enlarging the basis set still results in the unfavorable N

scaling. Several a empts have been made to overcome this situation. Examples are Fries-

ner’s pseudospectral method, – which involves the use of both numerical grids and

analytical two-electron integrals, and the somewhat related chain-of-spheres exchange

(COSX) developed by Neese and coworkers, – that exploits the short-range nature of

EXX by calculating this contribution via a semi-numerical integration.

Another group of algorithms aiming in the same direction are based on the approx-

imation of the orbital distribution functions ρij(r) = ψi(r)ψj(r), ρµi(r) = µ(r)ψi(r) or

ρµν(r) = µ(r)ν(r). The aim is to reduce the formal scaling in the same manner as in the

variational fi ing of the Coulomb potential. Examples are the RI-K, , – density-fi ing

(DF), Cholesky decomposition (CD) of the four-center ERI supermatrix, – atomic RI

(ARI), pair atomic RI (PARI), – concentric atomic density fi ing (CADF) and local

density-fi ing (LDF) algorithms.

In the following, we present our LDF-EXX approach, that has proven particularly

efficient and robust. , , Therefore, it can be used in DFT without compromising its

efficiency.

₃.₁ V F E E P

Similar as for the variational fi ing of the Coulomb potential, the orbital distribution ρij(r)

can be approximated as a linear combination of atom-centered auxiliary functions:

ρ̃ij(r) =
∑
k̄

xk̄ij k̄(r) ( . )



The fi ing functional is defined as

EEXX = −
occ∑
i,j

∫∫ [
ρij(r )− ρ̃ij(r )

] [
ρij(r )− ρ̃ij(r )

]
| r − r |

dr dr ( . )

As shown in Appendix A, the exact exchange fi ing functional EEXX is negative semidefi-

nite. Therefore, the fi ing procedure seeks to maximize EEXX. Due to the negative semidef-

inite nature of EEXX, the following inequality must hold

−
occ∑
i,j

⟨ij∥ij⟩ ⩽
occ∑
i,j

∑
k̄,̄l

xk̄ij⟨k̄∥̄l⟩x̄lij −
occ∑
i,j

∑
k̄

⟨ij∥k̄⟩xk̄ij ( . )

The maximization of EEXX corresponds to a minimization of the fi ed exact exchange en-

ergy given by the rhs of inequality ( . ).

Introducing the LCGTO expansion of the orbital distributions and substituting Equa-

tion ( . ) into Equation ( . ) yields

EEXX = −
occ∑
i,j

⟨ij∥ij⟩+
occ∑
i,j

⟨ij∥k̄⟩xk̄ij −
∑
k̄,̄l

xk̄ij⟨k̄∥̄l⟩x̄lij ( . )

The expansion coefficients xk̄ij are determined by the maximization condition

∂EEXX

∂xk̄ij
= ⟨ij∥k̄⟩ −

∑
l̄

x̄lij⟨̄l∥k̄⟩ ≡ ∀ k̄, i, j ( . )

From Equation ( . ) one can define a set of linear equation systems, one for each ρij dis-

tribution, which in matrix notation take the form:

Gxij = Jij ( . )



with

Jij =



⟨ij∥ ⟩̄

⟨ij∥¯⟩
...

⟨ij∥m̄⟩


( . )

After the fi ing equations have been solved, the fi ed exact exchange can be wri en in a

more compact form as

EEXX = −
occ∑
i,j

∑
k̄,̄l

xk̄ijGk̄̄lx̄lij ( . )

= −
occ∑
i,j

∑
k̄,̄l

⟨ij∥k̄⟩G−
k̄̄l ⟨̄l∥ij⟩ ( . )

= −
∑
µ,ν

∑
σ,τ

PµνPστ⟨µσ∥k̄⟩G−
k̄̄l ⟨̄l∥τν⟩ ( . )

Using either Equation ( . ) or Equation ( . ) avoids the explicit calculation of the three-

index exact exchange fi ing coefficients appearing in Equation ( . ). Note, however, that

this is the result of solving the set of Equations ( . ). If this fi ed exact exchange energy is

added to the Hartree energy with Coulomb fi ing, the self-interaction-free density fi ing

Hartree-Fock energy expression is obtained:

EHF =
∑
µ,ν

PµνHµν +
∑
k̄

∑
µ,ν

Pµν⟨µν∥k̄⟩xk̄ −
∑
k̄,̄l

xk̄Gk̄̄lx̄l

−
∑
µ,ν

∑
σ,τ

PµνPστ⟨µσ∥k̄⟩G−
k̄̄l ⟨̄l∥τν⟩ ( . )

It is important to note that EHF is self-interaction free only when the same auxiliary func-

tion set is used for both Coulomb and exact exchange fi ings. In order to show that EHF

is self-interaction free, consider the self-interaction exact exchange fi ing coefficient

xk̄ii =
∑
µ,ν

∑
l̄

G−
k̄̄l ⟨̄l∥ii⟩ ( . )



Summing over all these coefficients yields

occ∑
i

xk̄ii =
∑
µ,ν

∑
l̄

G−
k̄̄l ⟨̄l∥µν⟩Pµν = xk̄ ( . )

Thus, it follows that the self-interaction energy contained in the Coulomb fi ing coeffi-

cients is canceled by the diagonal exact exchange fi ing coefficients.

Moreover, in the simultaneous Coulomb and exact exchange fi ings with a common

auxiliary function set, an advantageous error compensation occur. The error compensa-

tion arises from the fact that the total energy calculated only with the variational Coulomb

fi ing is a lower bound to the true energy, E ⩾ EDFJ, while the total energy calculated only

with the variational exact exchange fi ing correspond to an upper bound to the true en-

ergy, E ⩽ EDFK. From these inequalities follows

E− EDFK ⩽ ⩽ E− EDFJ ( . )

and further

E− EDFK ⩽ E− EDFJK ⩽ E− EDFJ ( . )

Thus, the absolute deviation from the four-center energy while performing both fi ings

simultaneously is smaller than the maximum absolute deviation of either fit alone.

The downside of the straightforward implementation of an algorithm based on Equa-

tions ( . )–( . ) is that the formal scaling still is N with respect to system size. However,

a formalN scaling is achieved with respect to the basis set size. Take for example Equation

( . ). The three-center ERIs must be computed and transformed into MO representation.

If one decides to perform the transformation for both MOs in one step, that is

⟨ij∥k̄⟩ =
∑
µ,ν

cµicνj⟨µν∥k̄⟩ ∀ i, j, k̄ , ( . )

the resulting algorithm scales as Nocc × N ×M, which can be related to an N scaling. A



more efficient algorithm arises by spli ing the ERI transformation into two steps:

⟨iν∥k̄⟩ =
∑
µ

cµi⟨µν∥k̄⟩ ∀ i, ν, k̄

⟨ij∥k̄⟩ =
∑
ν

cνj⟨iν∥k̄⟩ ∀ i, j, k̄ ( . )

The first transformation scales as Nocc × N ×M and the second as Nocc × N ×M, which

gives two N steps. Another quartic step, common to both approaches, arises from the

multiplication ∑
k̄

⟨ij∥k̄⟩G−
k̄̄l ∀ i, j, l̄ ( . )

Changing basis set keeps Nocc constant, thus, the N scaling with respect to the basis set

size. The scaling of the ERI calculation and transformation to the MO basis can be reduced

by one order of magnitude in sufficiently large systems, nevertheless, the quartic scaling

multiplication remains present. Hence, the application of DF or RI exact exchange has

historically been limited to compact systems with large basis sets. , , , ,

₃.₂ L -D -F E E

To overcome this situation, local versions of the RI and DF algorithms have been proposed

recently. These algorithms are now called ARI, PARI , and LDF. , In this section

we will present the development of an LDF-EXX algorithm which has proven to be robust

and efficient. , ,

The basis of our LDF approach is the already mentioned invariance of the Kohn-Sham

energy and the Kohn-Sham matrix to orthogonal transformations of the MOs. In this way,

the delocalized canonical MOs (CMOs) can be transformed into spatially localized MOs

(LMOs) by minimizing, or maximizing, an appropriate functional. The transformation of

CMOs into LMOs using an orthogonal matrix U is given by:

ψI(r) =
occ∑
i

UIiψi(r) ( . )



The inverse transformation is accomplished by using UT due to the properties of orthog-

onal matrices. Transforming the CMOs appearing in Equation ( . ) into LMOs yields:

EEXX = −
occ∑

I,J,K,L

occ∑
i,j

UIiUJj⟨IJ∥KL⟩UKiULj

= −
occ∑

I,J,K,L

δIK⟨IJ∥KL⟩δJL

= −
occ∑
I,J

⟨IJ∥IJ⟩ ( . )

where the capital le ers label LMOs. Equation ( . ) differs from Equation ( . ) only in the

representation of MOs used. The total EEXX remains constant, however, each individual

term of the sum may be different. The objective of using LMOs is to minimize the number

of LMO pairs that have non-negligible contributions to EEXX. This can be accomplished if

the centers of LMOs ψI(r) and ψJ(r) are far away from each other and their spatial extents

are minimized. In addition, the computation of the EXX contribution to the Kohn-Sham

matrix can also benefit from the use of LMOs. The contribution of the EXX to the Kµν

element is given by:

∂EEXX

∂Pµν
= Xµν = −

∑
σ,τ

∑
k̄,̄l

Pστ⟨µσ∥k̄⟩G−
k̄̄l ⟨̄l∥ντ⟩

= −
occ∑
i

∑
k̄,̄l

⟨iµ∥k̄⟩G−
k̄̄l ⟨̄l∥νi⟩ ( . )

where the sum over occupied orbitals can be performed with any representation of the

MOs. Irrespective from the MO representation used, non-vanishing contributions to Xµν

arise only from MOs close in space to µ(r) and ν(r). For CMOs this will be, generally, the

whole molecule, whereas for LMOs this can be much more restricted.

In order to illustrate the advantage of computing Xµν with LMOs instead of CMOs, Fig-

ure . shows the − a.u. isosurface for the products between a CMO or an LMO and

four different dxy AOs of C H . The chosen AOs are centered on C , C , C and C in

order to span the whole molecule. It can be seen that all the products of the CMO have



Figure . : Product of a canonical molecular orbital (CMO) and a localized molecular orbital (LMO) with
different atomic orbitals (AOs) of C H . The header shows the CMO and the LMO in the first and second
column, respectively. The first column shows the product of dxy AOs centered at C , C , C and C with
the CMO and the second column shows the products of the same AOs with the LMO. The molecular orbitals
are shown at − a.u. amplitudes and the products at − a.u. amplitudes.
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Figure . : Algorithmic flowchart of the LDF-EXX computation.

non-vanishing contributions, whereas the products of the LMO decay with the distance

between the LMO center and the AO. In this way, many ψi(r)µ(r) combinations can be

discarded and, consequently, the computational effort diminished. Furthermore, due to

the variational nature of the EXX fi ing, one can restrict the auxiliary functions set for

each LMO to only those around its center. Very good approximations are obtained pro-

vided that the local auxiliary function set chosen describes appropriately the Hilbert space

spanned by the non-negligible products of ψi(r). Thus, in our LDF-EXX approach each

ψi(r) has a local basis set Bi and a local auxiliary function set Ai. These local sets will be

called the local fi ing domains.

The resulting LDF-EXX algorithm is based on the same equations as DF-EXX. However,

the equations are solved using LMOs and local fi ing domains. As a consequence, a re-

duction of the computational complexity is achieved, leading to an almost linear scaling

algorithm. A simplified flowchart of the processes involved in our LDF-EXX algorithm is

shown in Figure . . In the following, each process will be discussed in detail.



₃.₂.₁ M

The MO localization is a very important step and, ultimately, determines the speed and

accuracy of the LDF-EXX algorithm. This is due to the fact that tightly localized MOs

have smaller fi ing domains. Therefore, the number of operations needed to compute X

is minimized by using tightly localized MOs. Unfortunately, the scaling of several local-

ization schemes is at least cubic. In order to overcome this disadvantage, we developed

an approach that provides tightly localized MOs without too much computation.

The first step for the MO localization is obtaining a set of MOs from the pivoted Cho-

lesky decomposition of the density matrix as proposed by Aquilante et al. The pivoted

Cholesky decomposition can be performed in a linear scaling fashion for sparse matri-

ces, nevertheless, the current implementation of deMon k uses the LAPACK subroutines

which have an N × Nocc scaling. One of the advantages of using these Cholesky MOs

is that they are already somewhat local and provide an adequate starting point for some

other localization schemes such as Foster-Boys (FB), – Edminston-Ruedenberg (ER),

or Pipek-Mezey (PM). ,

The FB localization minimizes the spatial extension of the MOs. This is equivalent to

maximize the sum of squares of distances of orbital centroids from the origin of the coor-

dinate system:

FB[ψ] =
occ∑
i

⟨i|r|i⟩ ( . )

The ER method maximizes the self-repulsion energy

ER[ψ] =
occ∑
i

⟨ii∥ii⟩ , ( . )

and the PM approach maximizes the Mulliken charge of each orbital

PM[ψ] =
occ∑
i

∑
A

⟨i|PA|i⟩ ( . )

where PA is an operator that projects onto the basis functions centered on atom A.



For our purposes, the most natural localization approach would be ER, because maxi-

mization of Equation ( . ) minimizes the exchange integrals

⟨ij∥ij⟩ ∀ i ̸= j ( . )

Unfortunately, the ER localization has a formal scaling of at least N . , Therefore, we

decided to implement the more economical FB algorithm as it is the second obvious choice

for our purpose. Several implementations of the FB localization follow the original pre-

scription of Edmiston and Ruedenberg that determines the optimum orthogonal transfor-

mation of the MOs by consecutive two by two rotations until convergence is reached. ,

For the occupied space, the FB functional usually have strong and isolated maxima and

has been successfully optimized using this method. The objective is to find the optimal

two by two rotation

ψ′
i(r) = cosγ ψi(r) + sinγ ψj(r)

ψ′
j(r) = − sinγ ψi(r) + cosγ ψj(r) ( . )

that maximizes the chosen functional. Orbital-stability conditions lead to:

cos γ = −
Aij√

Aij + Bij

, ⩽ γ <
π

( . )

where Aij and Bij are defined as:

Aij = ⟨i|r|j⟩ − (⟨i|r|i⟩ − ⟨j|r|j⟩) ( . )

Bij = ⟨i|r|j⟩ · (⟨i|r|i⟩ − ⟨j|r|j⟩) ( . )

The orbital-stability criteria also implies that

Bij = ( . )

Aij < ( . )



for all pairs of MOs. As already noted by Pipek and Mezey, this set of relations could

be satisfied if all off-diagonal matrix elements ⟨i|r|j⟩ were zero, or in other words, if the

Boys localized orbitals were all eigenfunctions of the vector operator r. Unfortunately,

the components x, y and z of r in the finite N-dimensional matrix representation of the

occupied subspace do not commute , and, consequently, the eigenvalue problem of

r cannot be solved. However, the FB localized MOs do minimize the squares of the off-

diagonal matrix elements of r. Thus, FB localization can be seen as the approximate joint

diagonalization (AJD) – of the three dipole matrices X , Y and Z .

In AJD, one seeks to minimize the sum of squares of the off-diagonal elements of all the

matrices that need to be joint diagonalized. This is accomplished also by consecutive two

by two rotations in an extended Jacobi fashion. In order to obtain the Jacobi angles for the

set of dipole matrices, we define a × real symmetric matrix G as

G =

Xii −Xjj Yii − Yjj Zii −Zjj

Xij Yij Zij



Xii −Xjj Xij

Yii − Yjj Yij

Zii −Zjj Zij

 ( . )

In terms of the previously defined quantities Aij and Bij the matrix G can be wri en as

G =

⟨i|r|j⟩ − Aij Bij

Bij ⟨i|r|j⟩

 ( . )

The Jacobi angles can now be computed in closed form as

cosγ =

√
x+

, sinγ =
y√
x+

( . )

where [x, y]T is any eigenvector with x ⩾ associated to the largest eigenvalue of G.

This particular choice constraints the rotation angle to γ ∈ [−π , π ] and leads to a locally

quadratic convergent joint diagonalization algorithm. , It is important to note that PM

localization can also be casted in terms of an AJD, however, in this case the problem con-



Table . : Maximum orbital spreads [a.u.] for Cholesky localized molecular orbitals (CLMOs) and Foster-
Boys localized molecular orbitals (FBLMOs) of coronene with increasing basis set size. Also shown are
maximum orbital spreads for canonical molecular orbitals (CMOs) and FBLMOs from the trust-region min-
imization in reference [ ].

cc-pVDZ cc-pVTZ cc-pVQZ
Occ Virt Occ Virt Occ Virt

CMO . . . . . .
CLMO . . . . . .
FBLMO . . . . . .
Ref. [ ] . . . . . .

sists of Natom matrices.

The FB implementation in deMon k performs the Jacobi rotations with the angles de-

fined by Equation ( . ), since this choice yields a much more stable algorithm. In order

to demonstrate the effectiveness of this MO localization scheme, Table . shows the max-

imum orbital spreads for different MO localization approaches for the HF wavefunction

of coronene. The orbital spread of the ith MO is defined as:

σi =
√
⟨i|r |i⟩ − ⟨i|r|i⟩ ( . )

It is a measure of the spatial extent of that orbital and thus of its locality. Coronene, also

known as superbenzene, has been chosen because it represents a non-metallic highly delo-

calized system. Table . shows that Cholesky Localized MOs (CLMOs) are weakly local-

ized Canonical MOs (CMOs). Increasing the cardinality of the Dunning basis sets results

in less local CLMOs. Nevertheless, CLMOs do represent a good starting point for the

FB localization. FB Localized MOs (FBLMOs) are much more local than both, CMOs and

CLMOs. The occupied FBLMOs maximum spread remains almost constant independent

of the cardinality of the basis set. However, the maximum spread for the unoccupied

FBLMOs deteriorates with increasing basis set size, but still remains much smaller than

for the CMOs. It is important to note that the FBLMOs obtained with the AJD algorithm

are, at worst, equally localized than the ones obtained with the more sophisticated trust-

region Newton method (TRNM) described in reference [ ]. Even more, the FBLMOs

obtained through AJD for the cc-pVQZ basis set are, markedly, more compact than those



Figure . : Most delocalized occupied and virtual HF coronene molecular orbital isosurfaces ( . a.u.).

obtained with the TRNM. This emphasize the use of CLMOs, instead of CMOs, as starting

orbitals for the FB localization procedure.

In order to relate the orbital spreads to an easily understandable picture, Figure .

shows the . a.u. isosurface for the least localized occupied and virtual FBLMOs of

coronene. These orbitals are identical to the ones presented in reference [ ] and are

typical examples of FB localized orbitals produced by mixing several σ and π MOs.

₃.₂.₂ S

Once the MOs have been localized, the next step in the LDF-EXX algorithm is the selection

of the local fi ing domains. The flowchart for the selection of the local fi ing domains is

depicted in Figure . . The first step is to calculate the atomic Löwdin populations for

each orbital. Löwdin populations are calculated from the MO coefficients corresponding

to the symmetric-orthogonalized AO basis. The Löwdin MO coefficients can be obtained

from the original ones by the transformation:

c̆ = S / c ( . )

The atomic Löwdin populations for a given orbital ψi(r) are then defined as:

qiA =
∑
µ∈A

c̆µi ( . )



Selection of Fi ing Domains

c̆ = S / c

i=

Qi = , Di = ∅
qiA =

∑
µ∈A

c̆µi , ∀ A

Qi = Qi + max
A

qiA
Di = Di ∪ {Amax}

Qi ⩾ τ qiAmax =

SB = max
µ∈B,ν∈Di

|Sµν| , ∀ B

Ai = { k̄(r) : k̄ ∈ Di }
Bi = { µ(r) : µ ∈ B ∧ SB ⩾ − }

i = Nocci = i+

Stop

no

yes

no

yes

Figure . : Flowchart for the selection of the local fi ing domains. The vector qi collects the Löwdin atomic
populations qiA for orbital ψi(r) and Amax denotes the position of the largest element of qi.



Figure . : Auxiliary functions (top, green) and basis functions (bo om, orange) fi ing domains for the least
localized FBLMO of C H .

Once all qiA’s for a given MO have been obtained, a local set of atoms, Di, is built with

those atoms with the n largest atomic populations. The number of elements n of the local

set is defined as the minimum number of atoms that achieve

Qi =
n∑
A

qiA ⩾ τ ( . )

if the populations were ordered from largest to smallest. Then, all auxiliary functions

centered on atoms in Di define the local auxiliary function set Ai. Additionally, all AOs

centered on atoms with significant overlap to any atom in Di define the local basis set

Bi. Figure . shows an actual example of atoms contributing to both Ai (green) and Bi

(orange) for the least localized FBLMO of C H and a τ = . . It can be seen that the

number of auxiliary functions in each Ai is very small as compared to the total number of

auxiliary functions of the system.

It is important to note that the Löwdin population analysis is not rotationally invariant

for Cartesian representations of basis sets. As a consequence, the selection of the fi ing

domains will not be, in general, rotationally invariant. We have not seen any problems

related to the selection of the fi ing domains probably because of the rather strict threshold

τ used in the selection. This (almost) rotational invariance property may not be shared by

other selection schemes like the one described in reference [ ], where coarser criteria are

used.



₃.₂.₃ M

The parallelization paradigm used for the LDF-EXX algorithm is based on the distribution

of the LMOs. For example, if a system contains LMOs and the calculation is performed

with CPUs, then, each CPU will calculate and transform the ERIs corresponding only

to LMOs. In order to maximize the speed-up obtained from such a parallel calculation,

all the LMOs assigned to a given CPU must be close to each other. In this way, ERIs can

be reused for several, if not all, the assigned LMOs. If the LMOs are not close to each

other, the ERIs can’t be reused and the number of floating-point operations will increase.

Furthermore, it is possible that many CPUs end up calculating the same ERIs diminishing

the parallelization efficiency.

In order to avoid such situations, the LMOs are ordered according to the spatial location

of their centroids. The ordering is performed through the octal tree algorithm, also known

as octree. The term octree is used to describe a class of hierarchical data structures whose

common property is that they are based on the principle of recursive decomposition of

space. The first node of the tree, the root, is a cube. Each node has either eight children

or no children. The eight children form a × × regular subdivision of the parent

node. A node with children is called an internal node. A node without children is called a

leaf. In Figure . , an schematic representation of a simple octree is given. The root node

contains all data and its considered to be a Level node. The root node is subdivided into

eight Level children. Six of these Level nodes are empty and are represented as non-

filled circles. Since there is no point in subdividing the empty nodes, they are classified

as leaves because they are the ending points of the tree. The remaining two Level nodes

contain some amount of data and are represented as filled circles. These nodes can either

be subdivided into eight children or be classified as leaves depending on the amount of

data contained within them. If the amount of data is greater than a predefined threshold

then the subdivision process continues and they are classified as internal nodes. This is

exactly the case depicted in Figure . , given rise to sixteen Level nodes—eight for each

one of the Level internal nodes. In the example, all of the Level nodes are leaves because
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Figure . : Schematic representation of an octree where each node is depicted as a circle. The node labeled
with an “R” is the root node, the nodes labeled with an “I” are internal nodes, and the nodes labeled with an
“L” are leaf nodes. A filled circle means that the given node contains some data, and the amount of these data
is represented by the intensity of the filling.

they are empty or contain li le amount of data. The octree generation can also be stopped

when a specified resolution is achieved independently of the amount of data remaining

in the higher level nodes. For example, in order to reach a resolution of eight levels

are required ( = ). This means that the Level nodes have a side length that is of

that of the root node. If the desired resolution is , then the octree generation is stopped

under all circumstances at Level , no ma er the amount of data present in the Level

leaf nodes.

Our octree implementation in deMon k uses both stopping criteria. The maximum

amount of LMOs centroids for each leaf node in a parallel calculation is given by:

Nleaf =

⌊
Nocc

NCPU

⌋
+ ( . )

where Nocc is the number of occupied LMOs in the system and the floor function ⌊x⌋ re-

turns the largest integer not greater than x. In the case of serial calculationsNleaf is defined

as:

Nleaf =

⌊
Nocc

Nbatch

⌋
+ ( . )

where Nbatch is the number of batches needed to calculate the exact exchange matrix X



Figure . : Octree generated for C H and CPUs. The left image shows the root node, the middle image
also shows all the generated level nodes and the right image shows, in addition, all level nodes.

due to memory restrictions. In order to avoid memory overflows, the second stopping

criteria in deMon k is a maximum number of nodes including internal and leaf nodes.

The current se ing is that no more than , nodes may be created. This number of

nodes is achieved if every node is subdivided until Level . However, in most cases several

leaf nodes are empty, allowing non-empty leaf nodes of levels greater than .

To further illustrate the algorithm, an actual octree generated for C H and CPUs

is shown in Figure . . The first step is to determine the stopping criteria for the octree

generation according to the total amount of data present and the number of CPUs in the

task. The data that needs to be distributed are the occupied LMOs of C H . According

to Equation ( . ), the maximum number of LMOs centered on a given leaf node is

Nleaf =

⌊ ⌋
+ = ( . )

The next step is to generate the root node, i. e. a cube that encloses the whole system. The

root node is shown on the leftmost image in Figure . . Since the root node contains more

LMO centers, , than the previously defined maximum, , it is subdivided into smaller

cubes. These are the Level nodes and are shown in the middle image of Figure . . Six

Level nodes are empty—the four nodes in the back and the two upper nodes in the front—

and they are classified as leaves. The remaining two Level nodes contain and LMO

centers, respectively. Since our stopping criteria has not been met, these two Level nodes

are classified as internal nodes and further subdivided (right image of Figure . ). Only

four Level nodes have LMO centers within them. These four nodes contain , ,
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Figure . : Auxiliary function center distribution (green) before and after the octree algorithm.

and LMO centers. Thus, the stopping criteria is reached for all nodes and the octree

generation is stopped. In fact, Figure . can be seen as an schematic representation of

Figure . . Each one of the four non-empty leaf nodes have LMOs centered close in space

to each other. The contributions to the exact exchange matrix X of the LMOs centered

on one non-empty leaf node are computed by one of the CPUs, maximizing the reuse of

computed ERIs.

This maximization is depicted in Figure . where the centers of the auxiliary functions

whose ERIs must be computed are shown in green for each one of the CPUs, in the C H

example, before and after the sorting algorithm. Each CPU has the same number of LMOs

assigned for both the unsorted and sorted cases. It can be seen that in the unsorted case

every CPU must address almost every auxiliary function of the molecule. After the octree

algorithm, each CPU addresses only a fraction of the auxiliary functions of the molecule.

Therefore, more three-center integrals, ⟨µν∥k̄⟩, can be reused to compute half-transformed

integrals of the type ⟨µi∥k̄⟩ appearing in Equation ( . ).

₃.₂.₄ ERI

The last step in LDF-EXX is the computation and transformation of the ERIs in order to

calculate the exact exchange matrix elements, Xµν, according to Equation ( . ). Due to

the local fi ing domains, each LMO needs the computation of only a limited amount of

AO ERIs, ⟨µν∥k̄⟩, and its corresponding transformation to ⟨µi∥k̄⟩. In order to simplify the



notation we define a new set of matrices Ei with elements:

Eµk̄,i = ⟨µi∥k̄⟩ ( . )

In general, all Ei matrices have different dimensions. In addition, each LMO has an asso-

ciated Coulomb matrix Gi. As in the previous case, the dimension of the Gi matrices can

be different. Then, the contribution of each LMO to X is given by:

Xi = −EiG
−
i ET

i ( . )

where Xi and X can have, also, different dimensionalities. This property follows from the

locality of allBi. Thus, the last step is to sum the elements ofXi into the appropriate blocks

of X. The existence of one Gi matrix for each LMO means that Nocc matrices need to be

inverted, as shown in Equation ( . ). At first glance, this seems to have a huge impact on

the computational efficiency of LDF-EXX. However, this is not the case. Since all Ai are

local, the addition of one atom to a sufficiently large system does not alter the size of the

Ai sets. Thus, even when matrix inversion has a formal Mlocal scaling, growing the system

size translates into an Nocc scaling because Mlocal remains constant. The same is true for

the computational cost of the Ei matrices.

An important property of our LDF-EXX algorithm is that, different to the PARI , and

CADF approaches, the fi ing remains negative definite. As a consequence, all Gi can

be decomposed as:

Gi = LiL
T
i ( . )

With the aid of the Cholesky vectors Li, we can transform Equation ( . ) into:

Xi = −EiZiZ
T
i E

T
i ( . )

= −HiH
T
i ( . )



where

Zi = (L−
i )T ( . )

and

Hi = EiZi ( . )

The advantage of employing Equation ( . ) instead of Equation ( . ) is that computing

the inverse of a triangular matrix is much more efficient than computing the inverse of

a general dense matrix. Moreover, the symmetric operation appearing in Equation ( . )

can be performed using less memory than the operations appearing in Equation ( . ). It

is important to note that the inverse Cholesky factors Zi can be obtained in a direct form

with the AINV algorithm, – however, this option has yet to be explored.

In this way, the scaling of the ERI part of the LDF-EXX algorithm has been reduced to

Nocc with respect to the system size and toMlocal with respect to the local auxiliary function

set size. The memory requirements of the algorithm are also reduced by the LDF-EXX

approach. In order to calculate all ERIs and obtain the X matrix, enough memory to store

all Ei matrices, the LMO coefficients c and the resulting X matrix is needed. Once all Ei

matrices are computed, a loop over the occupied LMOs is performed in order to obtain

the Xi contributions. Therefore, the memory to store one Gi matrix and one Xi matrix is

also required. Note that the memory of Gi can be reused to store Zi in the same way as the

memory of Ei can be reused to store Hi. Thus, the total memory needed is proportional

to:

T = Nlocal +Mlocal +
occ∑
i

Nlocal,i ×Mlocal,i +N +N×Nocc ( . )

Here, the terms on the rhs corresponds to Xi, Gi, all Ei, X and c, respectively. If the

available memory is not enough to hold all T real numbers, then, batching over the LMOs

occurs. The sum over all occupied orbitals in Equation ( . ) and the number of occupied

orbitals Nocc, are restricted only to those LMOs active in a given batch. As a consequence,

the memory required to calculate all quantities in a batch is decreased.



₃.₃ A E G LDF-EXX

Analytical energy derivatives with respect to nuclear positions are important quantities

for geometry optimizations, vibrational frequency analysis and BOMD simulations. The

gradient of E with respect to all nuclear displacements is a vector which collects all these

derivatives. In Cartesian coordinates, the gradient vector is given by:

g =

(
∂E
∂Ax

∂E
∂Ay

∂E
∂Az

∂E
∂Bx

∂E
∂By

∂E
∂Bz

· · ·
)T

( . )

In order to simplify the notation, we will denote the derivative of a function, f, with respect

to one of its parameters, λ, as:
∂f
∂λ

≡ f (λ) ( . )

To proceed, let us write an ADFT energy expression including both Exc and EEXX as:

E[ρ] =
∑
µ,ν

PµνHµν +
∑
µ,ν

∑
k̄

xk̄⟨k̄∥µν⟩Pµν −
∑
k̄,̄l

xk̄Gk̄̄lx̄l + Exc[ρ̃] + αEEXX ( . )

whereαdenotes the fraction ofEEXX mixed into a particular global hybrid functional. Thus,

an arbitrary component of g is given by: ,

E(λ) =
∑
µ,ν

P(λ)
µν Hµν +

∑
µ,ν

PµνH(λ)
µν +

∑
µ,ν

∑
k̄

xk̄⟨k̄∥µν⟩(λ)Pµν +

∑
µ,ν

∑
k̄

xk̄⟨k̄∥µν⟩P(λ)
µν −

∑
k̄,̄l

xk̄G
(λ)
k̄̄l x̄l + E(λ)

xc + αE(λ)
EXX ( . )

The derivatives of the elements of H, G and the three-center ERIs are obtained through

integral recurrence relations. The derivative of Exc is obtained via the chain rule and is

given by:

Exc[ρ̃](λ) =

∫
δExc[ρ̃]
δρ̃(r)

∂ρ̃(r)
∂λ

dr

=
∑
k̄

x(λ)k̄ ⟨vxc[ρ̃] | k̄⟩+
∑
k̄

xk̄⟨vxc[ρ̃] | k̄(λ)⟩ ( . )



Furthermore, the here appearing elements of x(λ) can be obtained by deriving Equation

( . ),

G(λ)x+Gx(λ) = J(λ) , ( . )

from where it follows

x(λ) = G− (J(λ) −G(λ)x
)

( . )

Substituting Equation ( . ) into Equation ( . ) yields:

Exc[ρ̃](λ) =
∑
µ,ν

∑
k̄

P(λ)
µν ⟨µν∥k̄⟩zk̄ +

∑
µ,ν

∑
k̄

Pµν⟨µν∥k̄⟩(λ)zk̄ −∑
k̄,̄l

xk̄G
(λ)
k̄̄l z̄l +

∑
k̄

xk̄⟨vxc[ρ̃] | k̄(λ)⟩ ( . )

Finally, in order to obtain E(λ)
EXX, let us rewrite EEXX as

EEXX = −
∑
µ,ν

Pµν

occ∑
i

∑
k̄

xk̄µi Jk̄νi , ( . )

where

Jk̄νi = ⟨k̄∥νi⟩ , ( . )

and

xk̄µi =
∑
l̄

G−
k̄̄l J̄lµi ( . )

Remember that in the LDF-EXX approach, the indices appearing in Equations ( . )-( . )

are restricted according to the fi ing domains of each ψi(r). The derivative of Equa-

tion ( . ) is given by:

E(λ)
EXX = −

∑
µ,ν

P(λ)
µν

occ∑
i

∑
k̄

xk̄µiJk̄νi−
∑
µ,ν

Pµν

occ∑
i

∑
k̄

x(λ)k̄µi Jk̄νi−
∑
µ,ν

Pµν

occ∑
i

∑
k̄

xk̄µiJ
(λ)
k̄νi ( . )



The derivatives of the xk̄µi fi ing coefficients can be obtained by using a modified form of

Equation ( . ) to yield

E(λ)
EXX = −

∑
µ,ν

P(λ)
µν

occ∑
i

∑
k̄

xk̄µiJk̄νi +
∑
µ,ν

Pµν

occ∑
i

∑
k̄,̄l

xk̄µiG
(λ)
k̄̄l x̄lνi −

∑
µ,ν

Pµν

occ∑
i

∑
k̄

J(λ)k̄µixk̄νi −
∑
µ,ν

Pµν

occ∑
i

∑
k̄

xk̄µiJ
(λ)
k̄νi ( . )

The last two terms of Equation ( . ) are formally equivalent, however, we kept them

explicitly separated because

P(λ)
µν =

occ∑
i

c(λ)µi cνi +
occ∑
i

cµic(λ)νi , ( . )

arises naturally from the substitution of

J(λ)k̄νi =
∑
µ

⟨k̄∥µν⟩(λ)cµi +
∑
µ

⟨k̄∥µν⟩c(λ)µi ( . )

into Equation ( . ). Thus, Equation ( . ) can be rewri en as

E(λ)
EXX =

∑
µ,ν

P(λ)
µν Xµν +

∑
k̄,̄l

Γk̄̄lG
(λ)
k̄̄l −

occ∑
i

∑
k̄

∑
σ

∑
µ,ν

Pµνxk̄µi⟨k̄∥νσ⟩(λ)cσi , ( . )

where we have defined an auxiliary matrix ΓΓΓ, with elements

Γk̄̄l =
occ∑
i

∑
µ,ν

xk̄µiPµνx̄lνi ( . )



Substituting Equations ( . ) and ( . ) into Equation ( . ) yields

E(λ) =
∑
µ,ν

KµνP(λ)
µν +

∑
µ,ν

PµνH(λ)
µν +

∑
µ,ν

∑
k̄

Pµν⟨µν∥k̄⟩(λ) (xk̄ + zk̄)−
∑
k̄,̄l

xk̄G
(λ)
k̄̄l

(
x̄l + z̄l

)
+

∑
k̄

⟨vxc|k̄(λ)⟩xk̄ + α
∑
k̄,̄l

Γk̄̄lG
(λ)
k̄̄l − α

occ∑
i

∑
k̄

∑
σ

∑
µ,ν

Pµνxk̄µi⟨k̄∥νσ⟩(λ)cσi ( . )

The last two terms of the rhs of Equation ( . ) are the only additions to the energy deriva-

tive when performing an hybrid ADFT calculation in comparison to a “pure” ADFT one.

In the same manner as in “pure” ADFT, the derivative of P can be eliminated by means of

the Roothaan-Hall equations ( . ) and the orthonormality constraint, Equation ( . ). First,

note that the first term of the rhs of Equation ( . ) can be wri en as

∑
µ,ν

KµνP(λ)
µν =

occ∑
i

∑
µ,ν

c(λ)µi Kµνcνi +
occ∑
i

∑
µ,ν

cµiKµνc(λ)νi

=
occ∑
i

∑
µ,ν

c(λ)µi Kµνcνi ( . )

Moreover, substitution of Equation ( . ) into Equation ( . ) yields

∑
µ,ν

KµνP(λ)
µν =

occ∑
i

∑
µ,ν

c(λ)µi Sµνcνiεi ( . )

The derivative of the orthonormality constraint,

∑
µ,ν

c(λ)µi Sµνcνj +
∑
µ,ν

cµiS(λ)
µν cνj +

∑
µ,ν

cµiSµνc(λ)νj = ∀ i, j , ( . )



allows the elimination of the derivatives of the MO coefficients by substitution of the iden-

tity

−
∑
µ,ν

cµiS(λ)
µν cνi =

∑
µ,ν

c(λ)µi Sµνcνi +
∑
µ,ν

cµiSµνc(λ)νi

=
∑
µ,ν

c(λ)µi Sµνcνi , ( . )

into Equation ( . ):

∑
µ,ν

KµνP(λ)
µν = −

occ∑
i

∑
µ,ν

cµiS(λ)
µν cνiεi

= −
∑
µ,ν

WµνS(λ)
µν , ( . )

where Wµν, an element of the closed-shell energy-weighted density matrix, is defined as:

Wµν =
occ∑
i

εicµicνi ( . )

By substituting Equation ( . ) into Equation ( . ), an expression for calculating an ele-

ment of g without the need of derivatives of the density matrix or the MO coefficients is

obtained:

E(λ) = −
∑
µ,ν

WµνS(λ)
µν +

∑
µ,ν

PµνH(λ)
µν +

∑
µ,ν

∑
k̄

Pµν⟨µν∥k̄⟩(λ) (xk̄ + zk̄)−
∑
k̄,̄l

xk̄G
(λ)
k̄̄l

(
x̄l + z̄l

)
+

∑
k̄

⟨vxc[ρ̃] | k̄(λ)⟩xk̄ + α
∑
k̄,̄l

Γk̄̄lG
(λ)
k̄̄l − α

occ∑
i

∑
k̄

∑
σ

∑
µ,ν

Pµνxk̄µi⟨k̄∥νσ⟩(λ)cσi ( . )

As already noted, the additional terms appearing in an hybrid ADFT calculation are the

last two terms of Equation ( . ). All other terms are already coded into deMon k and

their implementation will not be further discussed. For a competent discussion of the cal-

culations of these terms we refer the interested reader to references [ ] and [ ]. The
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Figure . : Algorithmic flowchart for the calculation of the LDF-EXX gradient.



terms characteristic to EXX gradients are calculated according to the algorithmic flowchart

depicted in Figure ( . ). Note that all steps until the calculation of the Ei matrices are

also performed during each SCF iteration, therefore, the same subroutines are used for

these steps. After all Ei matrices have been computed, the auxiliary matrix ΓΓΓ and the

transformed LDF-EXX fi ing coefficients yi are obtained according to the algorithm rep-

resented in Figure . . As in the SCF, the Zi matrices are obtained by inversion of a Cho-

lesky factor of each Gi. Then, the half-transformed LDF-EXX coefficients xi are obtained

as:

xi = G−
i ET

i = ZiZ
T
i E

T
i ( . )

For this transformation, the memory of each Ei can be reused for each xi. The next step is

to transform the xi coefficients to MO representation according to

γk̄ij =
∑
µ∈Bi

xk̄µicµj ∀ k̄ ∈ Ai ∧ j ⩽ Nocc ( . )

Thus, a new field with dimensions Mlocal ×Nocc is needed. This field is immediately used

to obtain the corresponding contribution to ΓΓΓ as

ΓΓΓi =
occ∑
j

γk̄ijγl̄ij ∀ k̄, l̄ ∈ Ai ( . )

Note that in Equation ( . ), only a submatrix ΓΓΓi is obtained, and the elements of this

submatrix have to be summed into the appropriate blocks of the full ΓΓΓ matrix. In order

to store ΓΓΓi, the memory of Zi is reused. Furthermore, only a given column of ΓΓΓ is read

and wri en at a time, thus avoiding the allocation of a full M field. For the efficient

calculation of the last term in Equation ( . ) we introduce new auxiliary coefficients yk̄σi

and yk̄σν defined as:

yk̄σi =
occ∑
j

γk̄ij cσj ∀ k̄ ∈ Ai ∧ σ ∈ Bi ( . )

and

yk̄σν =
occ∑
i

yk̄νicσi ( . )
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Figure . : Flowchart for the calculation of the LDF-EXX gradient auxiliary matrices.



The auxiliary coefficients yk̄σν can be directly contracted with the ERI derivatives appearing

in the last term of Equation ( . ). Thus, the calculation of this term becomes:

occ∑
i

∑
k̄

∑
σ

∑
µ,ν

Pµνxk̄µi⟨k̄∥σν⟩(λ)cσi =
∑
k̄

∑
σ,ν

yk̄σν⟨k̄∥σν⟩(λ) ( . )

The memory needed to store all yi coefficients is reused from the one used to store all xi

coefficients. The flowchart depicted in Figure . shows the steps performed to compute

ΓΓΓ and the auxiliary coefficients yi. The direct sum

ΓΓΓ = ΓΓΓ ⊕ ΓΓΓi ( . )

appearing in Figure . means that the calculatedΓΓΓi is summed into the appropriate blocks

ofΓΓΓ. As already mentioned, ΓΓΓ is updated vector by vector and stored on disk. On the other

hand, all yi coefficients are kept in memory, transformed into shell blocks to yield yk̄σν and

contracted with the corresponding shell blocks of ERI derivatives ⟨k̄∥σν⟩(λ).

In terms of memory, only one additional temporary field, with dimension Mlocal ×Nocc,

needs to be allocated. The advantage is that no Nlocal and N fields, for the local contribu-

tion of the EXX matrix Xi and the EXX matrix X, respectively, are needed. Therefore, the

memory needed for the LDF-EXX gradients is given by:

T = Mlocal,i +Nocc ×Mlocal,i +
occ∑
i

Nlocal,i ×Mlocal,i +N×Nocc ( . )

If the memory is not sufficient to store all quantities, then the calculation is split into

batches over the occupied LMOs, in an analog manner as for the LDF-EXX potential com-

putation. In this case the loop over all occupied orbitals appearing in Figure ( . ) is re-

stricted to only those LMOs active in a given batch. Thus, only a subset of the yk̄σi co-

efficients and Γi matrices are computed. The contraction of the contribution to the yk̄σν

coefficients with the ERI derivatives is done in each batch. Differently, the contraction

of ΓΓΓ with G(λ) is performed after all ΓΓΓi contributions are summed, i.e. at the end of all



batches.

The parallelization of the LDF-EXX gradients is performed exactly as for the LDF-EXX

potential. The LMOs are distributed among all cores. Moreover, the octree algorithm is

also employed to maximize the reuse of three-center ERIs. When memory is not suffi-

cient batching also occurs. Thus, it can be seen that the LDF-EXX gradient computation

is consistent with the LDF-EXX potential one, up to the point that the same batching and

parallelization paradigms are used.

₃.₄ V B

₃.₄.₁ V

In order to validate our LDF-EXX approach, we compare standard heats of formation,

ΔH K
f , obtained for the B LYP, PBE , , and M - X DFAs and the HF method, em-

ploying the LDF-EXX algorithm and the standard four-center ERI exact exchange imple-

mented in NWChem, with available experimental data. Note that the hybrid GGAs,

B LYP and PBE , are implemented in both hybrid ADFT and DF-DFT versions. However,

the hybrid meta-GGA can only be implemented for the DF-DFT approach due to the ex-

plicit dependence on the KS-MOs via the kinetic energy density, τ(r). The corresponding

energy expressions are given by:

EB LYP
xc = . ELYP

c + . EVWN
c + . EDirac

x + . ΔEB
x + . EEXX ( . )

EPBE
xc = EPBE

c + . EPBE
x + . EEXX ( . )

EM − X
xc = EM − X

c + EM − X
x + . EEXX ( . )

Here Δ means that only the “non-local” part of the Becke exchange functional is used.

It is important to note that the implementation of the M correlation functionals differ

slightly from the ones proposed in reference [ ] by modifying the self-correlation cor-

rection term inside the VS (VSXC) , contribution and the M part, as suggested by

Gräfenstein et al. This modification avoids a singularity occurring in the equal-spin part



of the correlation energy, leaving the total energy values essentially unchanged. As men-

tioned in reference [ ], a similar modification can also be used in the PKZB , and

TPSS meta-GGA functionals.

Standard heats of formation were obtained by the method proposed by Curtiss et al.

for the molecules of the G / test set, , using the Def -TZVPP basis set in spheri-

cal representation and the B LYP/ - G( df,p) optimized geometries. Geometries, zero-

point energy corrections and enthalpy corrections at K were obtained at the B LYP/ -

G( df,p) level of theory using Gaussian . In short, in order to calculate ΔH K
f for a

general molecule with formula AxByCz, the following steps must be performed:

. Calculate the zero-point corrected atomization energy D as:

D (AxByCz) =
(
xEe(A) + yEe(B) + zEe(C)

)
− Ee(AxByCz) + Ezpe(AxByCz) ( . )

. Calculate the enthalpy of formation at K as:

ΔH K
f (AxByCz) =

(
xΔH K

f (A) + yΔH K
f (B) + zΔH K

f (C)
)
−D (AxByCz) ( . )

. Calculate ΔH K
f as:

ΔH K
f (AxByCz) =ΔH K

f (AxByCz) +H K(AxByCz)−H K(AxByCz)−

x
(
H K(A)−H K(A)

)
− y
(
H K(B)−H K(B)

)
−

z
(
H K(C)−H K(C)

) ( . )

In the above scheme, ΔH K
f (X) and H K(X) − H K(X) for a given atom X is taken from

reference [ ]. Table . shows mean deviations (MD), mean absolute deviations (MAD)

and maximum absolute deviations (MaxAD), in kcal/mol, of the calculated HF and ex-

perimental ΔH K
f . Three different HF approaches were used for this purpose. The

first approach, labeled as NWChem, is the standard four-center HF implementation of

NWChem and is included as reference. The second and third approaches use the LDF-



Table . : Errors for Hartree-Fock standard heats of formation [kcal/mol] with respect to experiment. All
quantities were calculated with the Def -TZVPP basis set in spherical representation. The NWChem column
refers to a standard four-center HF implementation. The A */A * uses the GEN-A * auxiliary function set
for both the SCF and the final energy calculation, whereas the A /A * calculations were performed with the
GEN-A for the SCF and the GEN-A * auxiliary function set for the final energy calculation. See text for
more details.

NWChem A */A * A /A *
MD . . .

MAD . . .
MaxAD . . .

EXX algorithm and differ only in the auxiliary function set used. The results shown in the

column “A */A *” were obtained by using the GEN-A * auxiliary function set. In the

case of the “A /A *” approach, the wavefunction was obtained with the GEN-A auxil-

iary function set and an additional non-self-consistent energy calculation was performed

using the GEN-A * auxiliary function set. The results shown in Table . demonstrates

that the LDF-EXX HF approach is almost indistinguishable to a standard four-center HF

implementation in terms of accuracy achieved with an appropriate auxiliary function set.

Furthermore, even the GEN-A auxiliary function set provides accurate enough HF MOs.

This follows from the fact that the A /A * approach gives results within . kcal/mol of the

A */A * approach, even though the A /A * energy is non-self-consistent. The individual

ΔH K
f for the molecules of the G / test set are listed in Table B. of Appendix B. It

is important to note that, in the case of the A */A * approach, ΔH K
f deviations for the

Si-containing molecules are specific for the basis set used (Def -TZVPP) and are due to

the automatically generated auxiliary function set. These deviations vanish when using,

for example, the more systematically augmented Dunning basis sets.



Table . : Errors [kcal/mol] for hybrid DFT standard heats of formation employing the Def -TZVPP basis set in spherical representation. MD is the mean
deviation, MAD is the mean absolute deviation and MaxAD is the maximum absolute deviation. See Table . for the used abbreviations.

B LYP PBE M - X
NWChem A */A * A /A * NWChem A */A * A /A * NWChem A */A * A /A *

MD . . . − . − . − . − . − . − .
MAD . . . . . . . . .

MaxAD . . . . . . . . .



The ΔH K
f for the full G / test set were also computed for three hybrid DFAs: B LYP,

PBE and M - X. Table . shows MD, MAD and MaxAD for these hybrid DFAs as im-

plemented in deMon k. Note that B LYP and PBE results were obtained with the ADFT

methodology, whereas the M - X were obtained with the DF-DFT one. Since the fraction

of EXX mixed in these three hybrid DFAs is rather small—see Equations ( . )-( . )—the

major differences between NWChem and deMon k results arise from the different DFT

methodologies employed. In particular, Table . shows that B LYP is not as well suited

for ADFT calculations as for DFT, and that PBE is be er suited for ADFT calculations

than for DFT ones.

In addition to ΔH K
f , we also compared chemical reaction barrier heights calculated

with our LDF-EXX algorithm. For this purpose, the HTBH / and NHTBH / data-

bases were employed. – The HTBH database contains hydrogen transfer reactions

with values for the forward and reverse classical reactions barrier heights. The NHTBH

database contains reactions, including heavy-atom transfer, bimolecular nucleophilic

substitution, association, and unimolecular reactions. The “best estimates” provided in

the Minnesota databases are used as experimental references for the validation. All cal-

culations were performed with the spherical representation of the Def -TZVPP basis set

and with the structures optimized at the QCISD/MG level. Table . shows MADs of

the three hybrid DFAs for the chemical reaction barrier heights. Note that ADFT results

are consistently be er than their DFT counterparts. Furthermore, the A /A * approach

gives more accurate results than the A */A *. This result is counter-intuitive, given that

the GEN-A * set is larger than the GEN-A set, however, it is a direct consequence of

ill-conditioned G matrices. These ill-conditioned matrices are more likely to occur when

a calculation is performed with very large auxiliary functions sets, such as the GEN-A *

set. Clearly, these validation calculations indicate that the solution method for the fi ing

equation system, Equation ( . ), must be revisited if accuracies below kcal/mol should

be addressed. However, this is outside the scope of this work.



Table . : Mean absolute errors [kcal/mol] for hybrid DFT chemical reaction barrier heights employing the Def -TZVPP basis set in spherical representation.
See Table . for the used abbreviations.

B LYP PBE M - X
NWChem A */A * A /A * NWChem A */A * A /A * NWChem A */A * A /A *

HTBH forward . . . . . . . . .
HTBH backward . . . . . . . . .
NHTBH forward . . . . . . . . .

NHTBH backward . . . . . . . . .



The results of the M - X DFA are also interesting. Remember that the M - X imple-

mentation in deMon k is a slightly modified form of the original M - X functional. Nev-

ertheless, the results of a standard implementation of this functional using four-center

ERIs are almost identical to the DF-DFT results obtained with deMon k. We have also

tested the adaptive grid accuracy for the M - X chemical reaction barrier heights since it

has been reported that reaction energies obtained with meta-GGAs may be very sensitive

to the integration grid employed, specially for the M functional family. Therefore, we

performed additional calculations with the M - X functional and the FINE adaptive grid

of deMon k, yielding essentially the same results as the ones reported in Table . .

In summary, the LDF-EXX approach is almost indistinguishable to standard four-center

EXX implementations for computing thermochemical data with either HF or hybrid DFAs.

Furthermore, chemical reaction barrier heights are consistently be er for all hybrid DFAs

and the LDF-EXX ADFT method, especially with the non-self-consistent A /A * approach.

Finally, the modified version of the M suite implemented in deMon k is very stable and

yields accurate results with the default grid se ings of the program.

A remarkable feature of these results is that neither the GEN-A nor the GEN-A * aux-

iliary functions sets were developed for the variational approximation of exact exchange.

Yet, their performance can be compared to the rather large auxiliary function sets devel-

oped by Weigend and specifically designed to fit the exact exchange. , Furthermore,

the GEN-A and GEN-A * auxiliary functions sets are automatically generated and can

adapt to whichever basis set is employed.

₃.₄.₂ V

The LDF-EXX energy gradients were validated by optimizing the molecules of the

G / molecular test set. The optimizations were performed with the Def -TZVPP basis

set using either the standard HF implementation of NWChem or the LDF-EXX HF imple-

mentation of deMon k. Both codes used their default se ings for SCF and optimization

convergence criteria. Table . shows MD, MAD and MaxAD for all bond lengths and

bond angles of the full G / set. For this purpose, we defined a bond between two atoms



Table . : Deviation of bond lengths and bond angles of LDF-EXX with respect to standard HF. See Table
. for the used abbreviations.

Bonds [pm] Angles [°]
A */A * A /A * A */A * A /A *

MD . . . .
MAD . . . .

MaxAD . . . .

when their distance was smaller than times the sum of their covalent radii. Moreover,

bond angles were defined only for bonded triads. With these definitions, the results pre-

sented in Table . correspond to bond lengths and bond angles. As Table .

shows the GEN-A */GEN-A * approach yields optimized geometrical parameters that

are basically indistinguishable from a standard four-center HF implementation. Excellent

results can also be obtained with the GEN-A /GEN-A * approach, with a MAD of only

. pm. Only bonds, of the compared, deviated more than pm and involved either

S or Cl atoms. The largest deviation was in the Cl−N bond present in nitrosyl chloride

(ClNO), which was . pm shorter than the NWChem reference. This underlines the ex-

cellent cost-performance ratio that can be obtained with the GEN-A /GEN-A * LDF-EXX

approach even when, as already mentioned, neither the GEN-A nor GEN-A * auxiliary

functions sets were developed to fit exact exchange.

₃.₄.₃ T

In order to demonstrate the computational performance of the LDF-EXX approach, we

compared the average time needed to compute the Fock, or KS, matrix in one SCF cycle

for three hydrocarbon systems with different dimensionalities. All timings reported in

this section were obtained on an Intel® Xeon® X processor with a clock rate of .

GHz and GB of memory, unless otherwise stated. As one-dimensional systems we used

linear alkane chains, C nH n+ , with ⩽ n ⩽ . Thus, carbon atoms are added to the

chain by each increase of n. The geometrical parameters that define the chains are given in

Table . . The average time, in minutes, for one Fock matrix build (EXX and Coulomb) us-

ing the - G** basis set , is shown in Figure . . The results are compared with two



Table . : Geometrical parameters of the linear alkane chains.

Parameter Value Units
C-C . Å
C-H . Å
∠ C-C-C . ◦

∠ C-C-H . ◦

∠ C-C-C-C . ◦

Number of carbon atoms
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Figure . : Fock matrix build average timings [min] for linear alkane chains employing the - G** basis
set. LinK refers to the default HF implementation in GAMESS, QFMM refers to the GAMESS HF
implementation using the quantum fast multipole method to calculate Coulomb interactions, A */A *
refers to the LDF-EXX implementation in deMon k using the GEN-A */GEN-A * approach, and A /A *

refers to the LDF-EXX implementation in deMon k using the GEN-A /GEN-A * approach.

different four-center HF implementations of GAMESS. The data labeled “LinK” refer to

the default HF GAMESS implementation which uses the LinK algorithm , to compute

the exchange contribution; the timings labeled “QFMM” were obtained using the quan-

tum fast multipole method also implemented in GAMESS – to calculate the Coulomb

contribution and the LinK algorithm for the exchange part; the two remaining data sets,

“A /A *” and “A */A *”, refer to timings obtained with the LDF-EXX algorithm for the ex-

act exchange contribution and the double asymptotic expansion for the Coulomb part. It

is evident that the LDF-EXX HF method implemented in deMon k is faster than any of the



HF methodologies implemented in GAMESS. For the C H chain, LDF-EXX achieves al-

ready a speed-up of one order of magnitude with respect to the standard HF implementa-

tion of GAMESS. Even when compared to the combined QFMM+LinK methodology, LDF-

EXX is . × faster with the GEN-A */GEN-A * approach and . × faster with the GEN-

A /GEN-A * approach. It is important to note that the timings of the GEN-A /GEN-A *

approach include the contribution of the final non-self-consistent energy calculation with

the GEN-A * auxiliary function set. Furthermore, the LDF-EXX algorithm implemented

in deMon k builds the full exchange contribution each cycle, thus, only the Coulomb part

takes advantage of the incremental building discussed in Sections . and . . In contrast,

both HF implementations in GAMESS take advantage of the incremental building of the

Fock matrix for both exchange and Coulomb contributions. It is also worth noting that

the total energy difference between the HF solutions of the two codes did not exceed .

kcal/mol for C H when comparing the GEN-A */GEN-A * approach.

Changing the basis set from - G** to cc-pVTZ results in a marked increase of the

speed-up factor. Taking as example the C H chain, the speed-up factor changed from

. × to . × when comparing the timings of the GEN-A */GEN-A * with the LinK ap-

proach. In fact, convergence of the HF wavefunction is achieved within min with the

LDF-EXX algorithm, which is half of the time needed to complete one SCF iteration with

GAMESS! This is inline with the previous discussion about the scaling with respect to

the basis set size, namely, the Mlocal scaling for LDF-EXX compared to the N scaling

of a standard HF implementation. Note that the comparison is not with respect to the

faster QFMM+LinK method because the requested memory for this approach ( . GB)

exceeded the computational resources assigned. Moreover, the size of the molecule is not

big enough to notice a significant difference between LinK and QFMM+LinK (see Figure

. ).

Timings of the LDF-EXX energy gradients were also compared to the standard HF

implementation and the linear scaling QFMM+LinK HF implementations of GAMESS.

Figure . shows timings to compute the complete HF energy gradient (one electron,

Coulomb and exchange) employing the - G** basis set. Again the improved perfor-
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Figure . : Timings [min] for the full HF energy gradient of linear alkane chains employing the - G**
basis set. LinK refers to the default HF implementation in GAMESS, QFMM refers to the GAMESS
HF implementation using the quantum fast multipole method to calculate Coulomb interactions, A */A *

refers to the LDF-EXX implementation in deMon k using the GEN-A */GEN-A * approach, and A /A *
refers to the LDF-EXX implementation in deMon k using the GEN-A /GEN-A * approach.

mance of our new LDF-EXX algorithm is clearly visible.

Noticing such huge speed-up factors of LDF-EXX with respect to traditional HF im-

plementations, we decided to perform the comparisons of two-dimensional and three-

dimensional systems with respect to the computationallymore efficient DF-DFT and ADFT

approaches. As two-dimensional systems, we used saturated graphite sheets, C n H n,

with ⩽ n ⩽ . Figure . shows the average time to compute one SCF iteration of

LDF-EXX HF in comparison with the corresponding times for DF-DFT PBE and ADFT

PBE calculations on these systems. As Figure . shows, LDF-EXX HF and DF-DFT GGA

calculations need almost the same time for one SCF iteration. In contrast, the ADFT ap-

proach achieves an almost linear scaling behavior very soon, and keeps far apart from

the other two methodologies with increasing system sizes. It is important to note that the

times shown in Figure . do not include the final LDF-EXX energy calculation. Besides

benchmarking the computational efficiency of the LDF-EXX algorithm, saturated graphite

sheets also test the MO localization algorithm because they are highly delocalized systems.
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Figure . : Fock and Kohn-Sham matrix build average timings [min] for saturated graphite sheets em-
ploying the - G** basis set. EXX refers to the LDF-EXX HF calculations using the GEN-A */GEN-A *
approach, DF-DFT refers to the DF-DFT PBE calculations, and ADFT refers to the ADFT PBE calcu-
lations.

The MO localization algorithm took no more than seconds per iteration in the largest

system, C H . This represent less than % of the total computational time.

Finally, saturated diamond unit cells C n H n , with ⩽ n ⩽ , were used to benchmark

three-dimensional systems. These systems have n diamond unit cells in each Cartesian

direction. Figure . shows the average time needed for one SCF iteration for LDF-EXX

HF, DF-DFT PBE and ADFT PBE calculations on these systems. The results are similar to

the ones for the saturated graphite sheets in Figure . . As expected, ADFT calculations

are much faster than LDF-EXX HF or DF-DFT ones. However, one important difference

with respect to Figure . arises: the LDF-EXX HF calculations are always faster than

DF-DFT ones!

In conclusion, LDF-EXX calculations show, by and large, the same computational effi-

ciency as DF-DFT ones with a GGA-type functional. Furthermore, LDF-EXX can achieve

speed-ups of to orders of magnitude with respect to traditional four-center implementa-

tions even with basis sets as small as the double-ζ - G**. With larger basis sets this differ-

ence becomes even larger. Thus, our new LDF-EXX algorithm can be straightforward used



Number of carbon atoms

W
al

lc
lo

ck
tim

e
[m

in
]

EXX
DF-DFT
ADFT

Figure . : Fock and Kohn-Sham matrix build average timings [min] for saturated diamond unit cells
employing the - G** basis set. EXX refers to the LDF-EXX HF calculations using the GEN-A */GEN-
A * approach, DF-DFT refers to the DF-DFT PBE calculations, and ADFT refers to the ADFT PBE
calculations.

for hybrid DF-DFT calculations with a minimum impact on the scaling of this methodol-

ogy. On the other hand, LDF-EXX will still be the computational bo leneck in ADFT

hybrid calculations. A possibility to overcome this computational bo leneck is the com-

bination of LDF-EXX with the so-called Auxiliary Density Matrix Method (ADMM). ,

The working formulas for such a combination are presented in section . . of this thesis.

₃.₄.₄ P

The parallelization of the code was benchmarked with the same one-, two- and three-

dimensional systems with and without the octree sorting algorithm. The wall clock time

needed to build one EXX contribution with , , , and CPUs is shown in Figure . .

The benchmarked systems were the linear alkane chain C H , the saturated graphite

sheet C H and the saturated diamond C H employing the - G** and the GEN-

A /GEN-A * approach. As Figure . shows, the use of the octree algorithm to sort the

LMOs among the CPUs makes a huge impact on the efficiency of the LDF-EXX algorithm
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Figure . : Influence of the octree algorithm on the average time to build one EXX contribution in parallel
for one-, two- and three-dimensional systems. Plot A shows the time [s] for the linear alkane chain C H .
Plot B shows the time [min] for the saturated graphite sheet C H . Plot C shows the time [min] for the
saturated diamond C H . All calculations employed the - G** basis set and the GEN-A /GEN-A *
approach.



parallelization, specially for the one-dimensional systems. For this case, the sorting algo-

rithm can speed-up the parallelization of the code almost by a factor of for small number

of processor count. The octree algorithm has also a positive impact on the efficiency of the

LDF-EXX parallelization for two-dimensional and three-dimensional systems. However,

as Figure . B shows, the time to build one EXX potential for the two-dimensional satu-

rated graphite sheets is less accelerated by the sorting algorithm. This behavior is a con-

sequence of the extension of LMOs, which are less local in conjugated systems compared

to non-conjugated ones. The three-dimensional saturated diamond unit cells corroborate

this observation. Figure . C shows that the boost achieved by the octree sorting algo-

rithm is intermediate between the one-dimensional and three-dimensional cases.

It is important to note that the time needed to sort the LMOs is negligible (around s for

these systems) and, therefore, LMOs are always sorted. Also note that when NCPU ⩾ Nocc

the sorting algorithm is not needed.



I would like to emphasize strongly me belief that the

era of computing chemists, when hundreds if not thou-

sands of chemists will go to the computing machine

instead of the laboratory for increasingly many facets

of chemical information, is already at hand. There is

only one obstacle, namely that someone must pay for

the computing time.

R. S. Mulliken

4
Low-Order Scaling Response Property

Evaluation

Many molecular properties can be calculated as the derivative of the total energy with

respect to internal or external perturbations. These properties are often observables and,

therefore, permit the direct measurement of the molecular electronic structure response

to a given perturbation. For this reason they are often named response properties. The

connection between energy derivatives and molecular properties can be best seen by ex-

panding the energetic response in a Taylor series around the perturbations. Thus, the

perturbed energy can be wri en as:

E(λ) = E +
dE
dλ

∣∣∣∣
λ=

λ+
d E
dλ

∣∣∣∣
λ=

λ + · · · ( . )



where E is the unperturbed reference energy and λ is used to denote a perturbation. Such

perturbations can be electromagnetic fields, external charge distributions or nuclear dis-

placements, to name a few. There is a vast number of response properties that are of

interest to various research fields. Many of them correspond to second- and higher-order

derivatives of the energy and, therefore, these properties depend on the response of the

density matrix P. In quantum chemistry, this response can be obtained either from the

response of the molecular orbitals or directly from the response of the density matrix. The

former yields the so-called Coupled-Perturbed SCF (CPSCF) methods. – that reduce

to the Coupled-Perturbed Kohn-Sham (CPKS) approach in the framework of Kohn-Sham

DFT. The la er is the starting point for McWeeny’s self-consistent perturbation (SCP) the-

ory. – Unfortunately, the CPKS equation system possesses a very large dimension and

the SCP problem can become rather difficult to converge. Therefore, many recent devel-

opments in molecular response theory have been aimed in developing new algorithms

that can circumvent these problems. – All these methods have to solve a nonlinear

equation system and, thus, rely on iterative solvers. Noniterative molecular response al-

gorithms have also been developed, – among which Auxiliary Density Perturbation

Theory (ADPT) is a prominent example. , ,

₄.₁ A D P T

The basic idea of ADPT is to develop the molecular response through the auxiliary den-

sity instead of the orbital density. As a consequence, the response of the density matrix

elements is substituted by the response of the Coulomb and exchange-correlation fi ing

coefficients. For the detailed derivation of the static and frequency-dependent ADPT equa-

tions we refer the interested reader to references [ ], [ ], [ ] and [ ]. Here, we

will take only the results for the linear response and perturbation-independent basis set

as an example.

According to McWeeny’s SCP method, an element of the dynamic first-order perturbed



density matrix is given by

P(λ)
µν (ω) =

occ∑
i

uno∑
a

K(λ)
ia (ω)

εi − εa − ω
cµicνa +

occ∑
i

uno∑
a

K(λ)
ia (ω)

εi − εa + ω
cµacνi ( . )

where K(λ)(ω) is the perturbed Kohn-Sham matrix in MO representation. An element of

K(λ)(ω) is obtained according to

K(λ)
ia (ω) =

∑
µ,ν

cµiK(λ)
µν (ω)cνa ( . )

The perturbed ADFT Kohn-Sham matrix elements are given by:

K(λ)
µν (ω) = H(λ)

µν +
∑
k̄

⟨µν∥k̄⟩
[
x(λ)k̄ (ω) + z(λ)k̄ (ω)

]
( . )

The here appearing perturbed core-Hamiltonian, H(λ), depends on the particular pertur-

bation being studied. Independent of the form of H(λ), the perturbed fi ing coefficients

x(λ) and z(λ) must be computed in order to obtainP(λ). To this end, ADPT takes advantage

of the perturbed Coulomb fi ing equations which, for perturbation-independent auxiliary

function sets, take the form

∑
l̄

Gk̄̄lx
(λ)
l̄ (ω) =

∑
µ,ν

⟨k̄∥µν⟩P(λ)
µν (ω) ( . )

Equations ( . ) and ( . ) can be combined into a single one. Multiplying Equation ( . ) by

⟨µν∥k̄⟩ and summing over all AO pairs yields

∑
µ,ν

P(λ)
µν (ω)⟨µν∥k̄⟩ =

∑
µ,ν

occ∑
i

uno∑
a

K(λ)
ia (ω)

ωia − ω
cµicνa⟨µν∥k̄⟩+

∑
µ,ν

occ∑
i

uno∑
a

K(λ)
ia (ω)

ωia + ω
cνicµa⟨µν∥k̄⟩ ( . )

where we have introducedωia ≡ εi−εa. The rhs of Equation ( . ) can be further simplified



by performing the sum over the AOs and using the permutational symmetry of the ERIs:

∑
µ,ν

P(λ)
µν (ω)⟨µν∥k̄⟩ =

occ∑
i

uno∑
a

K(λ)
ia (ω)

ωia

ωia − ω
⟨ia∥k̄⟩ ( . )

Substituting the rhs of Equation ( . ) into the rhs of Equation ( . ) yields

∑
l̄

Gk̄̄lx
(λ)
l̄ (ω) =

occ∑
i

uno∑
a

K(λ)
ia (ω)

ωia

ωia − ω
⟨ia∥k̄⟩ ( . )

To proceed further, the perturbed Kohn-Sham matrixKKK(ω) appearing in Equation ( . ) is

expanded:

∑
l̄

Gk̄̄lx
(λ)
l̄ (ω) =

occ∑
i

uno∑
a

H(λ)
ia

ωia

ωia − ω
⟨ia∥k̄⟩+

∑
l̄

occ∑
i

uno∑
a

[
x(λ)l̄ (ω) + z(λ)l̄ (ω)

]
⟨̄l∥ia⟩ ωia

ωia − ω
⟨ia∥k̄⟩ ( . )

Collecting all terms that depend on the perturbed fi ing coefficients transforms Equation

( . ) into: ∑
l̄

Gk̄̄lx
(λ)
l̄ (ω)−

∑
l̄

Ak̄̄l(ω)
[
x(λ)l̄ (ω) + z(λ)l̄ (ω)

]
= b(λ)k̄ (ω) ( . )

where

Ak̄̄l(ω) =
occ∑
i

occ∑
a

⟨k̄∥ia⟩ ωia

ωia − ω
⟨ia∥̄l⟩ ( . )

is an element of the Coulomb response matrix A(ω), and

b(λ)k̄ (ω) =
occ∑
i

uno∑
a

H(λ)
ia

ωia

ωia − ω
⟨ia∥k̄⟩ ( . )

is an element of the perturbation vector b(λ)(ω). Finally, the perturbed exchange-correla-

tion coefficients are obtained from Equation ( . ) as:

z(λ)(ω) = G− L(λ)(ω) ( . )



with

L(λ)
k̄ (ω) =

∫∫
δvxc[ρ̃](r )
δρ̃(r )

k̄(r ) ρ̃(λ)(r ,ω)dr dr

=
∑
l̄

x(λ)l̄ (ω)
∫∫

fxc[ρ̃](r , r ) k̄(r ) l̄(r )dr dr

=
∑
l̄

x(λ)l̄ (ω)⟨ l̄ | fxc[ρ̃] | k̄ ⟩ ( . )

In Equation ( . ), we used the following definition for the adiabatic exchange-correlation

kernel:

fxc[ρ̃](r , r ) ≡ δ Exc[ρ̃]
δρ̃(r ) δρ̃(r )

( . )

The adiabatic kernel is, formally, nonlocal in space but local in time, i.e. frequency inde-

pendent. For local and semilocal functionals the kernel further simplifies to: ,

fxc[ρ̃](r , r ) = fxc[ρ̃](r , r )δ(r − r ) ( . )

For the case of LDA DFAs, this approximation is known as the Adiabatic Local Density

Approximation (ALDA). , Substitution of Equations ( . ) and ( . ) into Equation ( . )

yields the following linear equation system for x(λ)(ω):

[
G−A(ω)

(
E+G− F

)]
x(λ)(ω) = b(λ)(ω)

R(ω)x(λ)(ω) = b(λ)(ω) ( . )

where an element of the kernel matrix, F is given by:

Fk̄̄l = ⟨ k̄ | fxc[ρ̃] | l̄ ⟩ ( . )

Different to CPKS, Equation ( . ) can be solved by the explicit inversion of the ADPT

response matrix, R(ω), because the dimension of the problem is reduced from (Nocc ×

Nuno) × (Nocc × Nuno) in CPKS to M × M in ADPT. This procedure, however, is prone to

numerical instabilities that can be encountered during the matrix inversion. Therefore,



this step is performed based on the singular value decomposition (SVD) of the response

matrix. It is important to note that even when the matrices G, A(ω) and F are symmetric

matrices, the full response matrix is generally not symmetric. Thus, the SVD of R(ω) is

carried out by the eigenvalue decomposition (EVD) of R(ω) [R(ω)]T or its transpose. The

disadvantage of this step is that if R(ω) is ill-conditioned, then R(ω) [R(ω)]T will be even

worse conditioned. In order to avoid such problem, one can try to obtain an explicitly

symmetric form of Equation ( . ) and perform the SVD over this symmetric matrix. It is

straightforward to show that introducing the identity

E = G− A(ω)A(ω)− G ( . )

into Equation ( . ) yields an equivalent symmetric problem with the form

R(ω)G− A(ω)y(λ)(ω) = b(λ)(ω)[
A(ω)−A(ω)G− A(ω)−A(ω)G− FG− A(ω)

]
y(λ)(ω) = b(λ)(ω) ( . )

where

y(λ)(ω) = A(ω)− Gx(λ)(ω) ( . )

For ease of notation, we will denote this symmetric matrix as R′(ω). Equation ( . ) still

can have some numerical issues despite being a real and symmetric linear equation sys-

tem. Let us illustrate most of the problems encountered while solving the ADPT equation

system. Figure . shows a color map of the difference, in a.u., between R(ω) and [R(ω)]T

for one water molecule described at the VWN/DZVP/GEN-A level of theory. If R(ω)

would be symmetric, then the color map shown in Figure . would be a blank square.

However, it can be seen that R(ω) is not symmetric even for this very simple system. In

order to obtain a direct solution of the ADPT response equations, either Equation ( . ) or

Equation ( . ) must be solved. The numerical stability of any of these methods will be

governed by the condition number, κ, of the corresponding matrix. If the spectral norm
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Figure . : Color map showing the difference [a.u.] between the ADPT response matrix and its transpose
for one water molecule at the VWN/DZVP/GEN-A level of theory.

is chosen, then κ can be computed as

κ(A) =
σmax(A)

σmin(A)
( . )

for any arbitrary matrix A. Here, σmax(A) and σmin(A) denote the largest and smallest sin-

gular values of matrix A, respectively. By definition, singular values are positive semidef-

inite. All nonzero singular values correspond to the positive square roots of the nonzero

eigenvalues of AAT and ATA. The utility of defining the condition number κ in terms

of singular values is that every real matrix has a real decomposition of the formA = UΣΣΣVT

where U and V are orthogonal matrices and ΣΣΣ is a rectangular diagonal matrix that col-

lects all singular values.

In order to gain insight into the numerical stability of solving the ADPT equation system,

it is instructive to plot all singular values of the matrices R(ω), R′(ω) and R(ω) [R(ω)]T.

Figure . shows a plot of the singular values of all these matrices on a logarithmic scale.

From this figure follows that the symmetric approach has the worst condition number,

. Then, R(ω) [R(ω)]T follows relatively close with a condition number of around .

Finally, the original matrix has a condition number of around . Thus, it is preferable to



−

−

−

−

−

n

Si
ng

ul
ar

Va
lu

e

R(ω)
R′(ω)

R(ω) [R(ω)]T

Figure . : Singular values of the ADPT response matrix and the corresponding symmetrized response
matrices for one water molecule employing the VWN/DZVP/GEN-A level of theory.

avoid any of the modifications to the original matrix in order to ensure the best numerical

stability a ainable for the solution of the ADPT equation system. Furthermore, the condi-

tion number worsens with increasing system size. When using the VWN/DZVP/GEN-A

level of theory, the condition number of the ADPT response matrix R(ω) for the C H

linear alkane chain is around × , the corresponding one for the C H chain is around

× and the one for C H is × . We note that the default method to solve the ADPT

response equation system in deMon k prior to this work was to obtain R(ω)− as:

R(ω)− = [R(ω)]T
(
R(ω) [R(ω)]T

)−
( . )

The numerical stability was controlled by the SVD of R(ω) [R(ω)]T.

Besides these numerical instabilities, solving either Equation ( . ) or ( . ) can become

computationally demanding. Most evident is the M scaling for the matrix diagonaliza-

tion needed for the SVD. However, the real bo leneck of ADPT arises in the actual com-

putation of R(ω). In order to obtain the ADPT response matrix, four different matrices

must be computed: G, G− , A(ω) and F. When the ADPT module is called, the matrix G
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Figure . : Wall clock times of the principal ADPT modules for the polarizability calculations of linear
alkane chains. The VWN/DZVP/GEN-A level of theory was used. See text for more details. A small offset
was introduced to F for visibility.

and its inverse are already computed and stored. The computation of the kernel matrix, F,

involves a numerical integration which scales as Mlocal ×G. Finally, computation of A(ω)

involves three quartic-scaling steps: the first one is anM×N ×Nocc scaling step that trans-

forms the three-center ERIs from ⟨k̄∥µν⟩ to ⟨k̄∥iν⟩, the second one is an M×N×Nocc×Nuno

scaling step that transforms ⟨k̄∥iν⟩ into ⟨k̄∥ia⟩, and the third involves the contraction of the

ERIs over the MO indices. Thus, the ADPT scaling is dominated by the computation of

the Coulomb response matrix which represents its computational bo leneck. To illustrate

this, static polarizability calculations for linear alkane chains with up to carbon atoms

were performed. In this case, the VWN/DZVP/GEN-A level of theory was used. The

calculations were performed on a single Intel® Xeon® X @ . GHz processor with

GB of allocatable memory. Figure . shows the wall clock time needed to compute F,

A(ω) and all other steps involved in the calculation of the polarizability tensor ααα. It can

be seen that the computation of the kernel matrix possesses almost linear scaling behav-

ior. This linear scaling is due to the fact that Mlocal remains constant and, thus, this part of

the code scales only with the number of grid points G. In contrast, the A(ω) calculation



possesses a quartic scaling and, thus, quickly becomes the bo leneck for the polarizability

tensor calculation. It is evident that if ADPT is to be used to describe response properties

of nanosystems a new way for solving the response equation system is needed.

The explicit computation of all matrices involved in the response equation system can

be avoided if an iterative procedure is used to obtain x(λ)(ω). In this way, only the action

of R(ω) on a trial vector is required. Along this line, an iterative solver for the ADPT

response equation system is presented in the following section. The newly developed

iterative solver allows the reduction of the computational scaling of the algorithm and

works directly on R(ω), avoiding the ill-conditioned matrices R′(ω) and R(ω) [R(ω)]T.

₄.₂ I S ADPT E

It is widely known that the solution of very large linear equation systems can be achieved

in the most efficient and stable form by iterative methods. This is, in part, because the

coefficient matrix is used only to compute its action on a given vector. In this form, the

elements of the matrix do not need to be available at all times, saving a huge amount of

memory. It is therefore convenient to derive an iterative algorithm that avoids the explicit

calculation of the Coulomb matrix A(ω), the current bo leneck of ADPT. To this end, we

now analyze how to compute the action of the response matrix on a trial vector p in the

most efficient manner. It is evident that such an action can be divided into three: the action

of G, the action of G− F and the action of A(ω).

The action of G on a trial vector is extensively used in the Coulomb solver proposed by

Domínguez-Soria et al. The complexity of this step has a formal M scaling, but it can

be further lowered by means of the double-asymptotic ERI expansion.

The action of G− F on the trial vector p can be subdivided into two steps. The result of

the first one is the kernel vector f with elements:

fk̄ =
∑
l̄

⟨ k̄ | fxc | l̄ ⟩p̄l

= ⟨ k̄ | fxc | p ⟩ ( . )



where p(r) is obtained as

p(r) =
∑
k̄

pk̄k̄(r) ( . )

The value of p(r) at every grid point is obtained in an analog way as for the auxiliary

density, thus, it possesses an Mlocal ×G scaling. The evaluation of the vector f can also be

performed with an Mlocal × G scaling, since f is obtained as:

fk̄ =
G∑
g

wg · k̄(rg) · fxc[ρ̃(rg)] · p(rg) ( . )

Thus, only Mlocal contributions to f are computed at every grid point. In the second step, f

is transformed with the inverse Coulomb matrix. In order to perform this transformation,

G− is read from disk. An alternative option is to solve, by means of the preconditioned

conjugate gradient solver used to obtain z, the linear equation system:

Gf ′ = f ( . )

This avoids the need for an explicit G− matrix for ADPT (see also section . . ). Finally,

the action of A(ω) on p yields a vector a(ω) with elements

ak̄(ω) =
∑
l̄

Ak̄̄l(ω) p̄l ( . )

Substituting Equation ( . ) into Equation ( . ) yields

ak̄(ω) =
∑
l̄

occ∑
i

uno∑
a

⟨k̄∥ia⟩ ωia

ωia − ω
⟨ia∥̄l⟩p̄l ( . )

Introducing the LCGTO expansion, Equation ( . ) transforms into

ak̄(ω) =
∑
σ,τ

⟨k̄∥στ⟩
occ∑
i

uno∑
a

cσicτa
ωia

ωia − ω
∑
µ,ν

cµicνa
∑
l̄

⟨µν∥̄l⟩p̄l ( . )

where we have ordered the summations according to the discussion of the following indi-



vidual steps.

The last sum on the rhs of Equation ( . ) is arithmetically equivalent to the one used

to obtain the Kohn-Sham matrix in the ADFT direct SCF approach. , Thus, the same

subroutines, with the appropriate input fields, can be used. The formal scaling of this step

is N ×M, but it can be further reduced by integral screening and the double asymptotic

ERI expansion. Performing the sum for all AO pairs defines a new matrixQwith elements

Qµν =
∑
k̄

⟨µν∥k̄⟩pk̄ ( . )

Substituting Equation ( . ) into Equation ( . ) yields

ak̄(ω) =
∑
σ,τ

⟨k̄∥στ⟩
occ∑
i

uno∑
a

cσicτa
ωia

ωia − ω
∑
µ,ν

cµicνaQµν ( . )

The next step is the transformation of the matrix Q into its MO representation, namely,

QQQ = cTocc Qcuno ( . )

which can be decomposed as two matrix-matrix multiplications, one withN ×Nocc scaling

and the other with N × Nocc × Nuno scaling. These two cubic steps are performed with

optimized BLAS subroutines. This ensures near peak performance and, therefore, the

cubic scaling can be hidden for most system sizes. Afterwards,QQQ is scaled with the orbital

energies to yield a new matrix whose elements are given by

Q′
ia(ω) = Qia

ωia

ωia − ω
( . )

This transformation has an Nocc × Nuno scaling. With these steps Equation ( . ) is trans-

formed into:

ak̄(ω) =
∑
σ,τ

⟨k̄∥στ⟩
occ∑
i

uno∑
a

cσicτaQ′
ia(ω) ( . )



The next step is the back-transformation ofQQQ′(ω) into AO representation according to

T(ω) = coccQQQ′(ω)cTuno ( . )

which can be performed in an equivalent way as discussed for Equation ( . ). Finally, an

element of the resulting a(ω) vector is computed as:

ak̄(ω) =
∑
σ,τ

⟨k̄∥στ⟩Tστ(ω) ( . )

This last step is almost arithmetic equivalent to the computation of the Coulomb vector J,

Equation ( . ). However, note that T(ω) is not a symmetric matrix. Thus, care must be

taken when re-using the subroutines for computing J. Besides this small technical detail,

this last step preserves the M×N formal scaling and can also take advantage of integral

screening and the double asymptotic ERI expansion.

In summary, we have shown that the action of R(ω) can be decomposed into several

steps which do not exceed a formal cubic scaling. The calculation of the kernel vector f

exhibits a linear scaling and three other steps show, at worst, quadratic scalings, namely

the computation of Gp, G− f , and QQQ′(ω). Two other steps, the formation of Q and a(ω)

can be computed with subquadratic scaling by using integral screening and the double

asymptotic ERI expansion. Finally, the two remaining steps involve four cubic scaling

matrix-matrix multiplications that benefit from a very low prefactor by using optimized

BLAS subroutines and, consequently, remain “hidden” for a wide range of system sizes

before becoming the computational bo leneck.

In addition to the reduction of the computational complexity, the iterative solver also

achieves a reduction in the memory demand for the perturbation calculation. Explicit

construction of the Coulomb response matrix A(ω) requires sufficient memory to store

M × Nocc × Nuno real numbers, many times forcing its computation to be performed in

batches. With the new solver, two N × N matrices and few M-dimensional vectors are

needed. In fact, the small amount of memory required by the iterative ADPT solver allows



the storage of near-field ERIs in memory. As a consequence, the mixed SCF paradigm,

where near-field ERIs are stored in memory and far-field ERIs are recalculated as needed,

becomes also applicable for the ADPT solver.

In the previous paragraphs, we have shown that the iterative solution of the ADPT

response equation not only reduces the formal scaling of the algorithm, but also allows

the usage of highly efficient algorithms to compute the computationally most-demanding

tasks, i.e., optimized BLAS subroutines for matrix-matrix multiplications and an analog

of the mixed SCF scheme for the ERI calculation. However, given that the ADPT response

matrix R(ω) is not symmetric, special solvers must be used. Traditional algorithms de-

veloped for these type of equation systems include BiCG, BiCGSTAB, CGS, QMR

and GMRES. Some of them lack the desirable global residual minimization properties

or require the storage of a large number of basis vectors. Moreover, BiCG, BiCGSTAB and

CGS work with the “squared” linear system in order to deal with a symmetric matrix. As

we have seen, working with the squared system might introduce severe numerical insta-

bilities to the algorithm. As an alternative, a new class of efficient nonsymmetric iterative

solvers have been introduced on the basis of the Eirola-Nevanlinna (EN) algorithm. –

It has been shown that the EN algorithm performs equally well as the more traditional

GMRES approach. One advantage of the EN algorithm is that it improves an approx-

imate inverse coefficient matrix each iteration. This property is particularly important

when dealing with several perturbations because the improved R(ω)− can be used as a

preconditioner for subsequent response equation systems. In the following subsection

we will give a brief description of the EN algorithm and its implementation in the ADPT

response branch of deMon k.

₄.₂.₁ E -N

In , Eirola and Nevanlinna proposed an iterative algorithm to solve nonsymmetric

linear equation systems which is accelerated via rank-one updates of an approximate in-

verse coefficient matrix. Figure . shows the original EN algorithm, EN , which has

been rewri en in terms of the ADPT response equation system. To simplify the notation,



: procedure EN₁
: Initialization: x(λ), H arbitrary, r = b(λ) −Rx

(λ)

: for j = , n do
: if ∥rj∥∞ ≤ τ then
: Exit
: end if
: uj = Hj(E−RHj)rj
: vj = |Ruj|

(E−HT
j R

T)Ruj

: Hj+ = Hj + ujv
T
j

: x
(λ)
j+ = x

(λ)
j +Hj+ rj

: rj+ = b(λ) −Rx
(λ)
j+

: end for
: end procedure

Figure . : Original Eirola-Nevanlinna algorithm EN . The matrix R is the coefficient matrix, H is an
approximation to the inverse coefficient matrix and x

(λ) is a guess for the solution vector.

theω dependency of vectors and matrices will be dropped in this subsection. H is a guess

to the inverse response matrix and x
(λ) is a guess for the perturbed fi ing coefficients. The

algorithm starts by calculating the residual r = b(λ) − Rx
(λ) and improves x

(λ)
j on each

iteration by minimization of the residual. In exact arithmetic the EN algorithm yields the

solution in at most M steps, for an M ×M linear equation system, under the assumption

that all Hj are nonsingular. The disadvantage of the EN algorithm is that the action of

R on different vectors has to be computed four times. An alternative algorithm, devel-

oped for situations where it is more convenient to calculate a linear combination of j +

vectors instead of multiplying a vector by R, was also given in the original EN paper

and we will call it EN . For stability reasons, Vuik and van der Vorst proposed a slight

modification of the EN algorithm based on the modified Gram-Schmidt orthogonaliza-

tion and a scaling invariant approach. , Figure . shows the EN algorithm including

the modifications of Vuik and van der Vorst. Only two actions of the ADPT response

matrix are needed per iteration of the EN algorithm, making it computationally more

efficient than EN . In EN , however, the updates to the approximate inverse are not per-

formed explicitly. Instead, the action of the updates are carried through the vectors c and

u. Other modifications of the EN algorithm have also been suggested, – but the here

presented EN algorithm requires one action of R less than these modified algorithms. In



: procedure EN₂
: Initialization: x(λ), H arbitrary, r = b(λ) −Rx

(λ)

: for j = , n do
: if ∥rj∥∞ ≤ τ then
: Exit
: end if
: γ =

rTj H
TRTrj

rTj H
TRTRH rj

: ξξξ = rj − γRH rj
: ηηη = γH rj
: for m = , j− do
: α = cTmξξξ
: ξξξ = ξξξ− αcm
: ηηη = ηηη+ αum
: end for
: cj = RH ξξξ
: uj = H ξξξ
: for m = , j− do
: β = −cTmcj
: cj = cj + βcm
: uj = uj + βum
: end for
: cj =

cj
∥cj∥

: uj =
uj

∥cj∥

: x
(λ)
j+ = x

(λ)
j + ηηη+ ujc

T
j ξξξj

: rj+ = ξξξj − cjc
T
j ξξξj

: end for
: end procedure

Figure . : Modified Eirola-Nevanlinna algorithm, EN , based on a modified Gram-Schmidt orthogonaliza-
tion and designed to be scaling invariant. The matrix R is the coefficient matrix, H is an approximation to
the inverse coefficient matrix and x

(λ) is a guess for the solution vector.



order to avoid memory overflows a restarted version of the EN algorithm, that drops all

c and u vectors after r iterations, is the one actually implemented in deMon k. Since all

iterative ADPT calculations performed so far have converged in iteration or less, r was

set to . This choice of r allows more flexibility for hard-cases and keeps the memory

demand fixed.

A very important choice to be made is that of H , i.e., the guess for R− . The only

condition imposed by the algorithm is that H has to be nonsingular. The identity matrix,

E, is a valid guess, however, choosing H = E has led to non-converging cases. As a

consequence, we decided to use H = G− as guess. This choice is motivated by several

observations. First, G− is formally a nonsingular matrix. Second, the Coulomb matrix

appears in the definition ofR, thus,R− can be obtained as a perturbation toG− according

to the Woodbury formula. , Third, se ingH = G− ensures the solution of the zeroth-

order approximation to Equation ( . ), i.e. the solution to:

Gx(λ) = b(λ) ( . )

Note that Equation ( . ) can also be used to obtain an SCP solution but previous tests

have shown that convergence is very problematic. Therefore, we decided to use the EN

algorithm with H = G− because it combines the reduced dimensionality obtained in

Equation ( . ) with a very robust numerical solver.

₄.₃ V B

₄.₃.₁ V

In order to validate our new iterative procedure, we compared static and dynamic polar-

izabilities of small molecules obtained with the direct and the new iterative solver. The ex-

perimental geometries were used for this comparison. In addition, the DFT-optimized

valence triple-ζ plus polarization (TZVP) basis sets augmented by field-induced polar-

ization (FIP) functions were employed. These TZVP-FIP basis sets are described in detail



in references [ ], [ ] and [ ]. The reported mean polarizabilities are calculated from

the diagonal elements of the polarizability tensor as

ᾱ(ω) =
[
α(ω)xx + α(ω)yy + α(ω)zz

]
( . )

The corresponding polarizability anisotropies are calculated in the principal axes system

of the polarizability tensor according to

|Δα(ω)| =
[(
α(ω)xx − α(ω)yy

)
+ (α(ω)xx − α(ω)zz) +

(
α(ω)yy − α(ω)zz

) ]
( . )

Table . shows static polarizabilities and polarizability anisotropies [a.u.] obtained from

the direct and iterative solution of the ADPT equations. We included experimental re-

sults as reference but will not further discuss them here because ADPT accuracy has been

extensively discussed in the literature. , Instead, we focus on the comparison of the

results obtained with the two different solvers for the ADPT equation system. The agree-

ment between direct and iterative solutions is almost perfect with a maximum absolute

deviation of . a.u. for ᾱ(ω) and . a.u. for |Δα(ω)|. Further tightening of the con-

vergence criteria does not change these results. Dynamic polarizabilities, listed in Table

. , show exactly the same behavior. The small differences arise from the SVD performed

in the direct solution of the ADPT response equation system. These results demonstrate

that the iterative solver does not alter the previously reported accuracy of ADPT. Further-

more, it is expected that x(λ) contains less numerical noise since the SVD step has been

completely eliminated. It is also important to mention that each perturbation converged

in less than five iterations, demonstrating that the chosen EN algorithm in combination

with the G− start guess is well suited for solving the ADPT response equation system. To

further demonstrate the suitability of the EN algorithm, we computed the polarizability

dispersion for the Li atom. These calculations were performed with the objective to test

the performance of the iterative algorithm near excitation poles, where the polarizability

diverges towards ±∞. Figure . shows the polarizability dispersion of the lithium atom



Table . : Comparison of static LDA polarizabilities [a.u.] and polarizability anisotropies [a.u.] of small
molecules obtained with the direct and iterative solver for the ADPT equation system. For comparison, the
available experimental data are listed, too. For all molecules, the experimental geometries are used.

Molecule
Direct Iterative Expt.

ᾱ |Δα| ᾱ |Δα| ᾱ |Δα|

HF . . . . . b . c

CH . . . d

C H . . . . . d . e

CH F . . a . . a . d . f

HCl . a . . a . . g . h

H S . . a . . a . i . j

CH F . . a . . a . d . h

OCS . . . . . d . e

SO . . . . . k . k

CHF . . a . . a . d . f

CF . . . d

CS . . . . . d . e

a Calculated dynamic values at experimental λ.
b Static value from refractive index dispersion (Ref. ).
c Static value from molecular beam electric resonance (Ref. ).
d Static value from refractive index dispersion (Ref. ).
e Deduced from static estimates of Ref. .
f Dynamic values at λ = . nm (Ref. ).
g Depolarized light sca ering at λ = . nm (Ref. ).
h Static value from molecular beam electric resonance (Ref. ).
i Extrapolated static value from dispersion dynamic mean polar-

izability (Ref. ).
j Dynamic value at λ = . nm from Kerr effect (Ref. ).
k Static value from refractive index and Rayleigh sca ering disper-

sion (Ref. ).



Table . : Dynamic LDA polarizabilities [a.u.] and polarizability anisotropies [a.u.] of small molecules
obtained with the direct and iterative solver for the ADPT equation system. For comparison, the available
experimental data are listed, too. For all molecules, the experimental geometries are used.

Molecule
Direct Iterative Expt.

ᾱ |Δα| ᾱ |Δα| ᾱ |Δα|

NH . . . . . a . a

H O . . . . . b . b

N . . . . . a . a

CO . . . . . a . a

NO . . . . . a . a

O . . . . . a . a

N O . . . . . a . a

CO . . . . . a . a

Cl . . . . . a . a

C H . . . . . a . a

C H . . . . . a . a

C H . . . . . a . c

a Depolarized light sca ering at λ = . nm (Ref. ).
b Depolarized ratio from Rayleigh sca ering at λ = . nm (Ref.

).
c Depolarized light sca ering at λ = . nm (Ref. ).
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Figure . : Polarizability dispersion for the Li atom at the PBE/aug-cc-pVTZ/GEN-A * level of theory. The
green point near the center of the image demonstrates the odd behavior of the direct solver when |ω−ωia| <

− a.u. for this system. A small offset of a.u. was included to aid the visibility.

obtained with the PBE/aug-cc-pVTZ/GEN-A * level of theory. It can be seen that both

solvers, direct and iterative, overlap for almost all points. The only difference is found for

the closest point to the pole (green point of Figure . ). The average polarizability obtained

with the direct approach is around a.u., while the corresponding iterative average po-

larizability is above , a.u.! Thus, the direct solution shows an odd behavior very

close to the singularity. This kind of odd behavior of the direct solver is also seen in the

polarizability anisotropy which can be as large as a.u. with the direct approach. For the

Li atom this anisotropy should be of course zero by symmetry and, therefore, this large

values arise from numerical instabilities in the direct approach. In contrast, the iterative

polarizability anisotropy does not exceed . a.u. for any point calculated with the itera-

tive approach.

In summary, we have shown that the here presented ADPT iterative solver provides the

same results as the traditional ADPT solver for both static and dynamic polarizabilities.

Furthermore, we also demonstrated that the iterative solver is numerically more stable

near excitation poles than the traditional ADPT solver.



₄.₃.₂ B

In order to test the real computational complexity of the code, static polarizability calcu-

lations for linear alkane chains with up to carbon atoms, at the VWN/DZVP/GEN-A

level of theory, were performed. A single Intel® Xeon® X @ . GHz processor with

a maximum of GB of allocatable memory was used for all calculations. Figure . shows

the wall clock time needed to obtain the full polarizability tensor using the direct and the

iterative ADPT solvers. The polarizability module in deMon k performs the following

steps:

. If requested, rotate the molecule and the converged MOs to orientation.

. Compute G and its inverse G− .

. Solve Coulomb fi ing equation system to obtain x.

. Build the perturbation vectors b(λ)(ω).

. Solve the response equation system to obtain x(λ)(ω) and calculates z(λ)(ω).

. Build the perturbed density matrices P(λ)(ω).

. Calculate the polarizability tensor elements as αλη(ω) =
∑
µ,ν

P(λ)
µν (ω)⟨µ |rη ν ⟩.

The difference between the direct and iterative solvers lies only in step . For the direct

solver, step can be further divided as:

. Solves the response equation system to obtain x(λ)(ω) and calculates z(λ)(ω).

(a) Build the Coulomb response matrix A(ω).

(b) Build the exchange-correlation kernel matrix F.

(c) Build the ADPT response matrix R(ω) = G−A(ω)
(
E−G− F

)
.

(d) Obtain R(ω)− = R(ω)T
(
R(ω)R(ω)T

)− .

(e) Obtain x(λ)(ω) = R(ω)− b(λ)(ω).
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Figure . : Timings [min] for serial static polarizability tensor calculations of linear alkane chains with the
direct and iterative ADPT solvers. The VWN/DZVP/GEN-A level of theory was employed.

(f) Obtain z(λ)(ω) = G− Fx(λ)(ω).

In the case of the iterative solver, the EN algorithm is used in step to directly obtain

x(λ)(ω). The perturbed exchange-correlation fi ing coefficients are then obtained by com-

puting the action of F on x(λ)(ω) and, subsequently, the action of G− on the resulting

vector. As can be seen from Figure . , the direct and iterative solvers show similar per-

formance until the carbon alkane chain. However, for larger alkane chains the quartic

scaling of the explicit building of the Coulomb response matrix A(ω) (see also Figure . )

in the direct solver becomes dominant, rendering this approach no longer competitive

with the iterative solver. The iterative solver is already × faster than the direct one for

the C H chain, and achieves a × speed-up for the largest alkane chain tested. This

means that the polarizability of the C H alkane can be obtained within min with the

iterative solver instead of . h with the direct one! The average polarizability obtained

with both solvers differ by less than . %, , . a.u. vs. , . a.u., for the direct and

iterative solvers, respectively.

To further analyze the scaling behavior of the most time-consuming steps involved in
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Figure . : Average time [s] needed for each module in one iteration of the EN ADPT solver. The data
labeled as f refer to Equation ( . ); Q →QQQ → T refers to the matrix-matrix multiplication steps described
in Equations ( . )-( . ); Q refers to Equation ( . ); and a(ω) refers to Equation ( . ). As benchmark
systems the same linear alkane chains as in Figure . are used.

the iterative solution to the ADPT response equations system, Figure . depicts timings

[s] for the individual steps of one EN iteration. Note that all these steps are related to the

calculation of the action of R(ω) on some trial vectors, and that two of such actions are

needed in each EN iteration. The most time-demanding steps involve the calculation and

contraction of the three-center ERIs, namely, the computation of the matrix Q (Equation

. ) and the vector a(ω) (Equation . ). These steps represent % of the total time of

the EN solver for the C H chain. Note that the double asymptotic ERI expansion is

already used here. The other two remaining steps have very low computational demand

for these systems. The action of the kernel matrix to obtain f (Equation . ) represents

only % of the total iterative algorithm time. Finally, the matrix-matrix multiplications

appearing in Equations ( . )-( . ) represent only % of the total time. The remaining

% is distributed among all other matrix-vector and vector-vector operations appearing

in Figure . . It is important to note that matrix-matrix multiplications are obtained with

the standard cubic scaling algorithm implemented in the BLAS subroutines. As a con-

sequence, these steps will eventually become the most computationally demanding ones.
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Figure . : Performance comparison [min] between the standard and mixed ADPT iterative solvers. As
benchmark systems the same linear alkane chains as in Figure . are used.

An alternative to overcome the cubic scaling is the introduction of the Laplace transform of

the energy denominator of Equation ( . ) and the additional implementation of a sparse

matrix-matrix multiplication for the resulting scaled density matrices. This alternative

has yet to be explored but is kept as a perspective to develop a fully linear-scaling ADPT

approach.

Another advantage of the iterative ADPT solver is its low-memory demand compared

to that of the direct solver. As already mentioned, this opens up the possibility to store all

near-field ERIs and recompute only the far-field ones by the double asymptotic expansion

in each EN iteration. This new mixed ERIs ADPT approach has a direct influence on the

most time-demanding parts of the ADPT iterative solver. Usage of the mixed ADPT ap-

proach introduces an additional speed-up factor of for the ADPT iterative solver. This is

shown in Figure . where the performance of the standard ADPT iterative solver is com-

pared to the one of the mixed ADPT iterative solver. The speed-up achieved by the mixed

ADPT iterative solver should be more important for situations where many iterations are

needed to achieve convergence or when more equations systems have to be solved, for

example, in the computation of nuclear displacements or nuclear spin-spin coupling con-



stants.

The new ADPT iterative solver has also been parallelized. The parallelization also takes

advantage of the low memory-demand of the iterative solver, consequently, architectures

with a moderate amount of memory per processor, i.e. GB, can be efficiently used. This

is particularly important for the step that substitutes the calculation of the full exchange-

correlation kernel matrix, F. When the ADPT direct solver is invoked in parallel mode, all

processors allocate the full M F matrix and calculate the contribution from a distributed

set of grid points. This matrix can be allocated by all processors simultaneously only

when M ⩽ , in a GB/processor architecture. In contrast, the ADPT iterative solver

makes no use of M matrices. The scalability of the parallel version of the ADPT iterative

solver was tested by performing static polarizability calculations on the C fullerene at

the VWN/DZVP/GEN-A level of theory. All calculations were performed on the West-

Grid of Compute Canada using , , , and nodes composed of Intel® Xeon® E

@ . GHz processors. Each one of these nodes has GB of memory per core, for a total of

GB per node. This calculation employed more than , basis functions and almost

, auxiliary functions. Therefore, a direct ADPT calculations of this system cannot

be performed on this computational architecture. Figure . depicts the wall clock time

[h] for solving the ADPT response equation system and to calculate the full polarizability

tensor. Note that the ADPT iterative solver and all other steps needed to obtain the po-

larizability tensor are very well parallelized. Also note that the time needed to solve the

ADPT response equation system was less than hours with nodes. Even more, with

nodes the total calculation time, including SCF and ADPT, is less than hours! Another

important result obtained for the C , and also for C , is that the computation is still

dominated by the calculation of the ERIs. Therefore, the cubic scaling steps that remain

in the iterative ADPT solver have still a minor impact for these system sizes.

In summary, the ADPT iterative solver is well suited for serial as well as parallel cal-

culations, reduces the formal scaling to N × Nocc and achieves almost linear scaling for

systems with hundreds of atoms. As a consequence, the ADPT iterative solver allows the

computation of polarizabilities of nanosystems in just hours. Extension to other molec-
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Figure . : Scalability of the ADPT iterative solver tested by calculating the full polarizability tensor of the
C fullerene at the VWN/DZVP/GEN-A level of theory. The wall clock time [h] vs. the number of cores
in the parallel calculation is depicted.

ular response properties, like higher-order polarizabilities and nuclear displacements, is

straightforward and its currently under investigation in our laboratory.
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5
Applications

₅.₁ T E E -E S M C

Atomic clusters and small nanoparticles are recognized as distinct physical objects with

their own properties. This became most clear by the experimental discovery of the elec-

tronic shell structure in alkali metal clusters. – With this discovery an emphasis was

put on the quantized delocalization of valence electrons in the mean field created by the

metal ions. – This behavior suggests the jellium model, which is defined by a Hamil-

tonian that treats the valence electrons as usual but the ionic cores as a uniform positively

charged background. The model leads to a description of the electron density in terms of

“Cluster Orbitals” (CO) that extend over the entire cluster. Most interesting, these “Cluster

Orbitals” can also be found in canonical Kohn-Sham calculations. –



In the spherical jellium model, the ionic background density is that of a uniformly

charged sphere. If the electron density is also assumed to be spherical, the COs will have

good angular momentum quantum numbers l,m and their angular parts can be wri en

in terms of spherical harmonics. This gives rise to electronic shells very much as in the

atomic case. The most prominent “magic numbers” observed in mass abundances, ioniza-

tion potentials and electron affinities correspond to the filling of major spherical shells and

are, in general, correctly reproduced for alkali metals and some noble metals. – , –

In the monoelectronic case the quantum energies are given by

Enl =

(
n+ l+

)
ℏω . ( . )

Therefore, each level is separated from the next one by the same energy difference. As

a consequence of Equation ( . ) each level has a constant n + l value and is nmax-fold

degenerate, where nmax is the maximum n appearing in the level. The energetic sequence

is

( S ) ( P ) ( D S ) ( F P ) ( G D S )

For many-electron systems one has to consider additionally the potential from the pres-

ence of other electrons, which leads to the energetic spli ing of the degenerate levels. For

higher levels, the energetic differences of shells with different angular quantum numbers

become so large that the energetic sequence is affected, e.g. the H shell ( n + l = ) is

lower in energy than the S shell ( n+ l = ). The modified energetic sequence is

S P D S F P G D H S F . . .

If the assumption of a uniformly positively charged background is lifted, additional split-

ting must occur for F and higher CO shells, due to the finite point group symmetry of

the actual cluster. Most recently, this effect has been observed in the Na + cluster and

is depicted in Figure . for the icosahedral point group symmetry. In many cases this

subshell spli ing is overlaid by Jahn-Teller distortions. As a consequence, low-spin
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Figure . : Electronic shell structure of the spherical jellium model with an harmonic potential. In the spher-
ical monoelectronic case the energy levels have a constant n+ l value. When electron-electron interaction
appears the spherical energy levels split. These many-electron levels are, in turn, further split due to the
finite point group symmetry of a given cluster.



configurations (singlets or doublets) are the ground-states of small simple metal clusters.

In contrast, some mixed metal clusters have strong spin magnetic moments and have va-

lence electron configurations similar to Mn and Cr. , These very stable high-spin metal

clusters can have potential applications in spintronic devices, where information is stored

via electron spins rather than charges.

Different to mixedmetal clusters, it is unclear if high-spin configurations of simple metal

clusters can become relevant. In particular, we seek if these high-spin simple metal clus-

ters provide explanations to more recent experimental features that cannot be fully ex-

plained by electronic shell closing effects. A prominent example are the trends in the

melting temperatures of small sodium clusters. , ,

Therefore, a systematic study of small simple metal clusters in high-spin configurations

is presented, where all the calculated high-spin states correspond to electronic configura-

tions where subshell closing of a spin manifold occurs.

₅.₁.₁ S

Surprisingly, the trends in the melting temperature of small sodium clusters cannot be

straightforwardly explained by their electronic shell structure. In particular, the relative

high melting temperature of Na + around K is not obviously related to its electronic

shell structure. , The valence electron of Na + give rise to the following electronic

configuration

S P D S F P G

Thus, electrons are missing for closing the G shell, which occurs in Na +. This is in com-

plete agreement with the abundance of cationic sodium clusters in mass spectra, where

a pronounced peak for Na + is observed. This enhanced stability, however, does not cor-

respond to a higher melting temperature. Instead, the less stable Na + cluster shows a

considerably higher melting temperature than the more stable Na + cluster. In order to

explain this discrepancy the concept of geometrical shell closing has been introduced. In

the particular case of Na + a closed-shell icosahedron is assumed based on the comparison



of the measured photoelectron spectra and the calculated density of states. However,

a closed-shell Na + cluster will undergo Jahn-Teller distortion. Figure . shows that for

an icosahedral cluster the G shell is split into a five-fold degenerated hg subshell and a

four-fold degenerated gg subshell. In fact, the fourteen electrons on the G shell can be

arranged as (hg) (gg) , where the α and β spin manifolds of the hg subshell are closed

and only the α manifold of the gg subshell is closed. This, of course, will favor a perfectly

icosahedral quintet state. A fundamental question then arises. Can the subshell closing

of only one spin manifold explain the discrepancy between the magic numbers in cluster

melting and cluster abundance in mass spectrometry? In order to gain insight into this

question we searched high-spin configurations of small sodium clusters, up to Na +, were

shell or subshell closing of a spin manifold occurs. We will devote particular a ention to

Na + to try to explain the discrepancy in the magic numbers.

The equilibrium geometries of small sodium clusters have been extensively studied

with different theoretical methods. For example, Martins, Bu et and Car studied sodium

clusters Nan and Na+n with n ⩽ and n = by means of the local spin density approxi-

mation and a pseudopotential approximation to treat core electrons. Röthlisberger and

Andreoni also studied small sodium clusters within the local spin density approximation

and employing pseudopotentials. , More recently, Solov’yov, Solov’yov and Greiner

used the B LYP DFA to find the equilibrium geometries of neutral and singly charged

sodium clusters consisting of up to atoms. Furthermore, Aguado and Kostko stud-

ied the equilibrium geometries of neutral and anionic sodium clusters with up to atoms

based on global minima found with the Gupta potential. The ground-state geometries

of these studies were used to compare how relevant a given high-spin configuration might

be. The study begins by comparing the energies obtained at the PBE/DZVP/GEN-A level

theory. Further computations with the hybrid DFA PBE are then presented for the most

relevant cases.

According to the jellium energy levels for many-electron systems, shown in Figure . ,

the first high-spin configuration with a closed subshell corresponds to the five-electron

configuration S P . This configuration is possible only for tetrahedral or cubic symme-
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Figure . : Optimized structures of Na – (top), Na (middle) and Na + (bo om). The left column shows the
high-spin structure while the right column shows the corresponding ground states. The relative stabilities
[kcal/mol] of the high-spin clusters at the PBE/DZVP/GEN-A level of theory are shown below the structure.
Bonds are drawn between all nearest neighbors.

try with three-fold degeneracies. Thus, Na – , Na and Na + clusters in Td, Td and Oh sym-

metry, respectively, were investigated. Figure . shows the optimized structures of these

clusters along with the corresponding ground states. Also shown in Figure . are the

relative stabilities [kcal/mol] of the high-spin quartets. None of the quartet clusters were

the ground-states, however, both Na – and Na + clusters are within kcal/mol from their

corresponding ground-states.

The next high-spin configuration occurs for a Td symmetry with (a ) (t ) (e) triplet

configuration, where the D shell is split into two subshells with e and t irreducible rep-

resentations. This Td symmetry and electron count can be realized with the Na cluster,

shown in Figure . . However, the calculation predicts the S shell to be below of the

D shell leading to an electronic (a ) (t ) (a ) (e) configuration. As a consequence, the

Na triplet state lies around kcal/mol above the almost degenerated D d and C singlet



ground-states.

An eleven electron quartet in Oh symmetry follows. The Na + cluster can be arranged

into a cuboctahedron, shown in Figure . , with an empty center to fulfill the symmetry

and electron count requirements. The expected electronic configuration, (a g) (t u) (t g) ,

is in fact obtained. However, this hollow geometry lies around kcal/mol above the C v

doublet ground state.

The thirteen electron Na – cluster can be arranged into an icosahedron where each one

of the sodium atoms occupies a vertex position. The D shell does not split in icosahedral

symmetry, therefore, the thirteen electrons can be configured into a sextet as S P D .

However, the Na – icosahedron is a hollow structure. Similar to the Na + cuboctahedron,

this vacancy diminishes significantly the stability of the cluster. The ground-state Na –

doublet was obtained by re-optimizing the Na neutral cluster described in reference [ ].

The structures of the Na – icosahedral sextet and the re-optimized doublet are shown in

Figure . . Due to the vacancy, the Na – sextet turned out to be kcal/mol less stable

than the low-spin Na – cluster.

A very similar Ih structure, having the same electron configuration as Na – , can be

obtained by placing one extra sodium atom in the center of the icosahedron. This neu-

tral Na sextet is, so far, the most relevant high-spin configuration found in the series.

Although it is not the ground-state, it is just . kcal/mol less stable than the C global min-

imum reported in reference [ ] and . kcal/mol less stable than another C structure

obtained by re-optimization of the minimum reported in reference [ ]. Given the small

energetical difference, and the high degeneracy of a sextet state, the icosahedral Na clus-

ter could explain why the measured dipole moment of the thirteen atom sodium cluster

essentially vanishes. Furthermore, this very small energetical difference should enable

the detection of the Na in a molecular beam through a Stern-Gerlach experiment. Un-

fortunately, no reference to Stern-Gerlach experiments performed on Na clusters was

found in the literature. Figure . shows the structures of the icosahedral Na cluster and

the minimum structures reported in references [ ] and [ ]. Solov’yov’s structure re-

semble two interpenetrating icosahedra, while Aguado’s structure is closer to a capped
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Figure . : Optimized structures of Na (top), Na + (middle) and Na – (bo om). The left column shows the
high-spin structure while the right column shows the corresponding ground states. The relative stabilities
[kcal/mol] of the high-spin clusters at the PBE/DZVP/GEN-A level of theory are shown below the structure.
Bonds are drawn between all nearest neighbors.



tetrahedron. The COs of the icosahdral Na are shown in Figure . . Note that both α

and β spin manifolds completely fill the S and P shells, however, only the α manifold

closes the D shell.

From now on, we search only for structures without vacancies. This restriction fol-

lows from the fact that smaller hollow structures in high-spin configurations are at least

kcal/mol less stable than other low-spin minima found. Unfortunately, other Td and

Oh high-spin structures did not follow the energetic ordering of the the spherical jellium

model and resulted to be rather unstable. For example, the Na Oh cluster in a quartet

state is less stable than the C doublet ground-state by more than kcal/mol.

Two more clusters, with Ih symmetry and possible high-spin configurations remain in

our investigated series. The first one is the Na neutral cluster, which can adopt an

(ag) (t u) (hg) (ag) (t u) (gu) (t u) (hg)

configuration. This configuration results from the spli ing of the G shell into hg and gg

subshells. Theαmanifold of the hg subshell is then completely filled. This icosahedral clus-

ter is constructed on top of the Na Ih one, where the second icosahedral shell takes the

anti-Mackay positions and has a rhombic triacontahedron shape. In fact, this high-spin

icosahedral cluster is the most stable Na cluster around the rhombic triacontahedron

structure. The Na sextet is around kcal/mol more stable than both slightly distorted

doublet and quartet clusters. The structures for the Na sextet and doublet are shown in

Figure . . The quartet geometry is essentially the same as the doublet one. Also shown in

Figure . are two other doublet cluster geometries. One based on an incomplete second

icosahedral Mackay shell and the other one obtained by re-optimizing the global mini-

mum reported in reference [ ]. It is interesting to note that the Na sextet is also more

stable than the incomplete Mackay shell structure. However, the re-optimized Na clus-

ter turned out to be more stable than the high-spin Na by almost kcal/mol. This neutral

Na sextet may also be detected in a molecular beam by Stern-Gerlach-type deflection but,

again, no reference has been found for this experiment.
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Figure . : Optimized Na clusters. The icosahedral Na sextet cluster is shown at the top, the re-optimized
doublet from reference [ ] is shown at the middle and the one from reference [ ] at the bo om. Relative
stabilities [kcal/mol] at the PBE/DZVP/GEN-A level of theory are shown below each structure. Bonds are
drawn between all nearest neighbors.
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Figure . : Cluster orbitals of the icosahedral Na cluster. The sodium atoms are shown as orange spheres.

The last cluster studied is the already mentioned Na + cluster in Ih symmetry. Its va-

lence electrons can be configured as

(ag) (t u) (hg) (ag) (t u) (gu) (t u) (hg) (gg)

which results from the spli ing of the G shell. The electron configuration is very simi-

lar to the previously discussed Na example. In this case, the β manifold also fills the

hg subshell. The four remaining electrons of Na + close the α gg subshell. This icosahe-

dral cluster is the most prominent example in the series because all calculations establish

an Ih structure as the most stable one. Different to the singlet case, the high-spin quin-

tet configuration given above provides a very stable electronic environment that avoids

any Jahn-Teller distortion. In fact, we have found that the quintet configuration is the

ground state of the Na + cluster. It is . kcal/mol and . kcal/mol more stable than the

slightly distorted triplet and singlet states. Although the relative stabilities of the low-spin

configurations do not automatically discard them, the high-spin state can further be re-

lated to other experimental data. One of the most important ones is the comparison of the

measured photoelectron spectra with the calculated density of states (DOS). The com-
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Figure . : Optimized Na clusters. The icosahedral Na sextet is shown at the top and its first icosahedral
shell is highlighted in blue. The upper middle image shows theCi Na doublet structure. The lower middle
image shows the Na doublet cluster which was built by removing atoms of the atom icosahedral
structure. Finally, the global minimum structure is shown at the bo om. Relative stabilities [kcal/mol] at
the PBE/DZVP/GEN-A level of theory are shown below each structure. Bonds are drawn to highlight the
structure elements of these clusters.



parison between the calculated density of states of the singlet and quintet Na + and the

measured photoelectron spectra is shown in Figure . . The subshell closing of the quintet

yields a characteristic shoulder in the frontier orbital DOS at around - . eV. This shoulder

is due to the half occupation of the G gg subshell by the α-spin manifold. Therefore, this

shoulder is absent in the singlet DOS. This qualitative difference may bridge directly to ex-

periment, because DOS structures are often reproduced by photoelectron spectra. In fact,

the experimental photoelectron spectrum of Na +, shown as the top image of Figure . ,

possesses a narrow peak for the valence electrons with a characteristic shoulder, just like

our quintet DOS. The structure of the photoelectron spectrum has been used as an argu-

ment for the spherical geometry of the cluster. Here, we suggest that the high-spin quintet

structure is responsible for the shoulder in the photoelectron spectrum. The gg subshell

closing stabilizes the high-spin quintet state and avoids Jahn-Teller distortions of the clus-

ter. What remains to be seen is how this stabilization of the highly symmetric Ih structure

by subshell closing influences the cluster dynamics. As previously mentioned, the trends

on the melting temperatures of sodium clusters cannot be straightforwardly explain by

shell closing arguments. Although it has been argued that the geometrical shell closing is

responsible for the maxima of melting temperatures, there has not been an explanation as

to why the melting temperature of Na + is considerably larger than that of the next icosa-

hedral cluster, Na +, or the Na + cluster with a completely filled G shell. Further studies

of the stability of the quintet Na + cluster through Born-Oppenheimer molecular dynam-

ics indeed confirm that the subshell closing affects the dynamics of Na + and predicts a

higher melting temperature.

Including exact exchange, through the PBE hybrid DFA, introduces important changes

in the relative stability of the high-spin clusters. The relative energy between the Na

doublet of reference [ ] and that of reference [ ] changes from . kcal/mol with

PBE to . kcal/mol with PBE . However, the relative energy between the doublet ground-

state and the high-spin sextet reduces from . kcal/mol with PBE to only . kcal/mol with

PBE . Different to PBE, the hybrid PBE predicts that the high-spin sextet is the second

most stable structure. Furthermore, PBE also increases the distance of the surface Na



Figure . : Comparison of the measured photoelectron spectra (top) and the calculated density of states
of the singlet (middle) and quintet (bo om) Na + cluster. The photoelectron spectra is a reprinted figure
with permission from [G. Wrigge, M. Astruc Haffmann and B. v. Issendorff, Phys. Rev. A, , , ]
Copyright by the American Physical Society.



Table . : Geometrical parameters and relative energies of the icosahedral sodium clusters employing the
PBE and PBE functionals. Calculations were performed with the DZVP basis and GEN-A auxiliary func-
tion set. Hybrid calculations used the GEN-A /GEN-A * approach. The distance to the center of mass, rCOM,
for each type of nonredundant sodium atom is given in Å and the relative energy, ΔE, of the high-spin icosa-
hedral cluster with respect to the ground state is given in kcal/mol.

PBE PBE
Na Na Na + Na Na Na +

rCOM

. . . .

. . . . . .

. . . .

ΔE . . . . . .

atoms to the center of the icosahedron by pm.

A similar effect is also seen for the icosahedral Na cluster. In this case, the hybrid PBE

predicts that the high-spin sextet is only . kcal/mol less stable than the doublet ground-

state. Thus, this high-spin structure may also contribute to the measured dipole moment

and photoelectron spectra. The distance to the center of the cluster for the three nonredun-

dant sodium atoms (which are not located at the center themselves) is also elongated with

PBE . The first icosahedral shell is the least affected being shifted only by pm. The two

kinds of surface atoms in the second icosahedral shell are pm and pm farther away to

the center compared to their PBE counterparts.

The PBE functional affects the energetics of the Na + icosahedral cluster much less than

that of Na and Na . In fact, PBE predicts that the quintet is . kcal/mol more stable than

the triplet and . kcal/mol more stable than the singlet. This means that PBE stabilizes

the high-spin quintet by . kcal/mol compared to PBE. The optimized geometry of the

icosahedral Na + quintet with PBE follows the same trend as for the smaller ichosahedral

clusters. The distance to the center of the first icosahedral shell is pm larger with PBE

compared to PBE. Also, the distance to the center for the second icosahedral shell atoms

are pm and pm larger with PBE . Table . summarizes the above discussed results by

comparing the optimized geometrical parameters [Å] and relative energies [kcal/mol] of

the high-spin icosahedral sodium clusters with both PBE and PBE . Note that Na and



Na are (hg) sextets and Na + is a (gg) quintet. Unexpectedly, the inclusion of exact ex-

change stabilized the high-spin configurations of the three icosahedral clusters compared

to PBE. This effect has already been observed in transition metal complexes, mostly in-

volving iron, where the high-spin stabilization depended linearly on the percentage of

exact exchange used in hybrid functionals. , Reiher et al. reparametrized the B LYP

hybrid functional to reproduce the experimental spin-state energetics. They found that a

% mixing of exact exchange was optimal. It is thus instructive to think that the energet-

ical results obtained with PBE and PBE provide bounds for the real spin-state energetics

of these clusters. Therefore, we can clearly state that the Na + quintet is the ground state.

Furthermore, the Na cluster should also be considered for the correct description of the

experimental data available.

In summary, we have found that spin quenching does occur for small sodium clusters.

However, all three high-spin icosahedral sodium clusters, Na , Na and Na +, should be

considered for the correct description of experimental features. We suggest that subshell

closing is an important mechanism to be considered for the stability of high-spin metal

clusters. In particular, the subshell closing occurring in the Na + cluster stabilizes the

icosahedral structure predicted by photoelectron spectroscopy. Furthermore, the sub-

shell closing mechanism might be responsible for the unusually high melting temperature

of the Na + cluster. The subshell closing might also be important for the future search of

magnetic superatoms and magnetic metal clusters with potential applications in spin-

tronics.

₅.₁.₂ C

The study of high-spin copper clusters is interesting in many respects. Different to the

sodium atom, the presence of d orbitals near the valence s-electron introduces some di-

rectionality in the bonds formed in the cluster. Therefore, it is surprising that canonical

Kohn-Sham calculations also predict the COs obtained with the jellium model. Further-

more, the copper clusters are much more stable than their sodium counterparts. As a

consequence, copper clusters are more likely to be found in real life applications. In par-



Table . : Geometrical parameters and relative energies of the icosahedral copper clusters described with
PBE and PBE . Calculations were performed with the DZVP basis and GEN-A auxiliary function set. Hy-
brid calculations used the GEN-A /GEN-A * approach. The distance to the center of mass, rCOM, for each
type of nonredundant copper atom is given in Å and the relative energy, ΔE, of the high-spin icosahedral
cluster with respect to the ground state is given in kcal/mol.

PBE PBE
Cu Cu Cu + Cu Cu Cu +

rCOM

. . . .

. . . . . .

. . . .

ΔE . . . . . .

ticular, high-spin clusters can be ideal for molecular electronic devices, as the coupling

could be altered by charging or weak fields.

Therefore, it is important to establish if the subshell closing mechanism plays the same

crucial role in determining the stability of high-spin copper clusters as in the sodium case.

To this end, we focused on the same icosahedral arrangements than the ones obtained for

Na , Na and Na +. The same levels of theory, PBE/DZVP/GEN-A and PBE /DZVP

with the GEN-A /GEN-A * approach, were used. These results are summarized in Table

. . Inclusion of exact exchange also stabilizes the high-spin states of the copper clusters.

However, Cu and Cu are more than two times less stable than their sodium counter-

parts. The same degree of stabilization as in the sodium cluster case is obtained with the

PBE hybrid functional for the Cu + high-spin cation, namely, . kcal/mol compared to

the PBE results. Based on these results we can clearly state that the high-spin configura-

tions of Cu and Cu do not play an important role for the description of measured quan-

tities. However, it is important to note that the high-spin Cu + quintet is also predicted to

be the ground-state. In this case, PBE predicts that the quintet Cu + is . kcal/mol more

stable than the triplet and . kcal/mol more stable than the singlet. On the other hand,

PBE predicts the quintet to be . kcal/mol more stable than the triplet and . kcal/mol

more stable than the singlet. This result encourages further research on magnetic clusters

made from simple metals, as they could be incorporated more easily into real life applica-



tions.

Different to the sodium clusters case, exact exchange made the copper clusters a li le

bit more compact. The hybrid PBE predicts that the icosahedral shell of Cu is pm

closer to the center compared to the PBE result. The same is true for the first icosahedral

shells of the Cu and Cu + clusters. Furthermore, the second icosahedral shell gets also

compacted when exact exchange is included.

In summary, the subshell closing stabilization mechanism is also present in copper clus-

ters. This shows that high-spin cluster configurations should not be neglected in further

research, in particular those involving the closure of shells and subshells. Further work to

gain insights into the dynamical stabilization of the subshell closing is also being carried

out in our laboratory.

₅.₂ T A DFT T M C

Predicting chemical bonding within organic compounds is relatively straightforward. This

picture changes dramatically when turning to transitionmetal compounds, specially when

dealing with metal atoms having partially filled d-shells. DFT has become the preferred

method for electronic structure theory because its cost scales more favorably with system

size than does the cost of correlated wavefunction methods, and yet it competes well in ac-

curacy. The advantages of DFT are specially important for transition metals. The reason

for this is electron correlation. Due to the partially filled d shells and nearly degenerate

(n + )s and nd shells, systems containing transition metals often have many low-lying

nearly degenerate states. The correlation effects on geometries, densities and energies,

due to the near-degeneracy, can be very large. Furche and Perdew showed that GGAs

and meta-GGAs functionals yield geometries that are in very good agreement to experi-

mental gas phase structures for dmetals. In the same study, they argued against the use

of hybrid functionals because the more strongly correlated the system, the less exact ex-

change is needed for its accurate description. One of the best DFT descriptions obtained

so far for d transition metal clusters was presented by Calaminici et al. by employing DFT



optimized basis sets. The use of optimized basis sets was also emphasized for transition

metal carbonyls by showing that double-ζ optimized basis sets can outperform the larger

correlation consistent triple- and quadruple-ζ basis sets.

However, some problems remain that affect the accuracy of DFT despite the active re-

search and development of new exchange and correlation DFAs. In short, two main

problems have been identified. First, pure dispersion interactions are not well reproduced

with many functionals and, second, Coulomb self-interaction is not correctly canceled out

by the exchange DFAs leading to overstabilization where delocalized electrons and low-

spin configurations occur. On the other hand, inclusion of exact exchange through hybrid

functionals overstabilizes high-spin states. , , ,

Despite the issues remaining with DFT, it still yields more accurate results than other

high-level correlated ab initio methods like CCSD(T) for transition metal compounds.

Nevertheless, most theoretical studies on transition metal compounds have relied on small

basis sets or introduced frozen-core approximations to alleviate the computational com-

plexity of the computation. In this study, we take advantage of the low computational

complexity of ADFT and LDF-EXX hybrid ADFT methods to employ the augmented corre-

lation-consistent basis sets proposed by Dunning, , – withdouble-, triple- and quadru-

ple-ζ quality. Standard ADFT calculations are performed with the widely used PBE func-

tional and the GEN-A auxiliary function set, whereas hybrid ADFT calculations used the

PBE functional and the GEN-A /GEN-A * approach.

Figure . shows the geometrical parameters used to compare the influence of both the

basis set and exact exchange. In particular, we will focus on metal-carbon bond distances

and the deviation of the hydrogen atoms from the plane of the aromatic rings, where ap-

plicable. Experimental structures used for comparison were, preferably, from gas-phase

data and can be found in references [ – ]. Table . lists bond lengths [Å] and

angles [°] for the sixteen transition metal compounds studied. To ease the notation we

will call the aug-cc-pVXZ basis set XZ only. Note that going from DZ to TZ and QZ can

show sometimes an oscillatory behavior. For instance, the Ti−C bond length in Ti(CH )

changes from . Å with DZ to . Å with TZ and goes back to . Å with QZ.



Table . : Bond distances [Å] and bond angles [°] of selected transition metal organometallic compounds.
Experimental structures were taken from references [ – ]. Cb stands for η -cyclobutadiene, Cp for
η -cyclopentadienyl and Bz for η -benzene substituents.

Molecule Point Structural PBE PBE Expt.Group Parameter DZ TZ QZ DZ TZ QZ

Ti(CH ) Td

r(TiC) . . . . . . .
r(CH) . . . . . .
∠(HCH) . . . . . .

TiCl CH C v

r(TiC) . . . . . . .
r(TiCl) . . . . . . .
r(CH) . . . . . . .
∠(ClTiCl) . . . . . . .
∠(HCH) . . . . . . .

TiCp Cl C

r(TiCp) . . . . . .
r(TiC) . . . . . . .
r(CC) . . . . . . .
r(CH) . . . . . . .
r(TiCl) . . . . . . .
∠(CpTiCp) . . . . . . .
∠(ClTiCl) . . . . . . .
∠(α) . . . . . . .

CrBz(CO ) C v

r(CrBz) . . . . . .
r(CrCBz) . . . . . . .
r(CC) . . . . . . .
r(CH) . . . . . .
r(CrCCO) . . . . . . .
r(CO) . . . . . .
∠(CCrCCO) . . . . . . .
∠(α) . . . . . .

CrCp D h

r(CrCp) . . . . . . .
r(CrC) . . . . . . .
r(CC) . . . . . . .
r(CH) . . . . . . .
∠(α) . . . . . . .

CrBz D h

r(CrBz) . . . . . . .
r(CrC) . . . . . . .
r(CC) . . . . . . .
r(CH) . . . . . . .
∠(α) . . . . . . .



Table . : continued

Molecule Point Structural PBE PBE Expt.Group Parameter DZ TZ QZ DZ TZ QZ

MnCp(CO) Cs

r(MnCp) . . . . . .
r(MnCCp) . . . . . . .
r(CC) . . . . . . .
r(CH) . . . . . .
r(MnCCO) . . . . . . .
r(CO) . . . . . . .
∠(CMnCCO) . . . . . .
∠(α) . . . . . .

MnCp D h

r(MnCp) . . . . . . .
r(MnC) . . . . . . .
r(CC) . . . . . . .
r(CH) . . . . . . .
∠(α) - . - . - . - . - . - .

FeEt(CO) C v

r(FeEt) . . . . . . .
r(FeC) . . . . . . .
r(CC) . . . . . . .
r(CH) . . . . . . .
r(FeCax) . . . . . . .
r(FeCeq) . . . . . . .
r(CO) . . . . . . .
∠(CaxFeCax) . . . . . .
∠(CeqFeCeq) . . . . . . .
∠(HCH) . . . . . .
∠(α) - . - . - . - . - . - .

FeCb(CO) Cs

r(FeCb) . . . . . .
r(FeC) . . . . . . .
r(C−C) . . . . . . .
r(C−−C) . . . . . . .
r(CH) . . . . . .
r(FeCCO) . . . . . . .
r(CO) . . . . . . .
∠(CFeCCO) . . . . . . .
∠(α) - . - . - . - . - . - .

FeCp D h

r(FeCp) . . . . . . .
r(FeC) . . . . . . .
r(CC) . . . . . . .
r(CH) . . . . . . .
∠(α) . . . . . . .



Table . : continued

Molecule Point Structural PBE PBE Expt.Group Parameter DZ TZ QZ DZ TZ QZ

CoCp(CO) Cs

r(CoCp) . . . . . .
r(CoCCp) . . . . . . .
r(CC) . . . . . . .
r(CH) . . . . . . .
r(CoCCO) . . . . . . .
r(CO) . . . . . . .
∠(CCoCCO) . . . . . . .
∠(α) . . . . . .

NiCp(NO) C v

r(NiCp) . . . . . .
r(NiC) . . . . . . .
r(CC) . . . . . . .
r(CH) . . . . . .
r(NiN) . . . . . . .
r(NO) . . . . . . .
∠(α) . . . . . .

NiCp D h

r(NiCp) . . . . . . .
r(NiC) . . . . . . .
r(CC) . . . . . . .
r(CH) . . . . . . .
∠(α) . . . . . . .

Zn(CH ) D d

r(ZnC) . . . . . . .
r(CH) . . . . . . .
∠(HCH) . . . . . . .

ZnCp(CH ) Cs

r(ZnCp) . . . . . . .
r(ZnC) . . . . . . .
r(CC) . . . . . . .
r(CH) . . . . . . .
r(ZnCMe) . . . . . . .
r(CHMe) . . . . . . .
∠(HCH) . . . . . .
∠(α) . . . . . .



rM−Cp

∡α

rC−C

rC−H

rM−C

Figure . : Top and side views of a generic metal sandwich complex. The side view shows the geometrical
parameters being compared in this study. In particular, the angle αmeasures the deviation of the hydrogens
from the plane of the aromatic ring. As indicated by the arrow, positive values refer to bending towards the
metal atom.

Table . : Mean absolute deviations [pm] of relevant bond lengths of transition metal organometallic com-
pounds.

Structural PBE PBE
Parameter DZ TZ QZ DZ TZ QZ

r(M−X) . . . . . .
r(M−Cp) . . . . . .

These oscillations are usually rather small. By and large, PBE performs rather good to

describe the geometries of these complex systems. The structures obtained with PBE are

slightly worse than those of PBE. However, some particular cases should be noted. These

cases will be discussed taking into account the mean absolute deviations (MAD) for the

M−C, M−N and M−Cl bonds and the M−Cp distances shown in Table . . Note that

increasing the basis set size improves the PBE M−X and M−Cp distances, however, an

important deterioration is seen for the M−Cp distance when increasing the basis set size,

from DZ to TZ, with PBE . This deterioration is caused by the very poor description of the

Cr−Cp distance with the PBE functional. This distance is either pm too short with the

DZ basis or pm too long with the TZ basis. A pm accuracy is recovered with the very

large QZ basis set. All other M−Cp PBE distances are predicted within pm accuracy.

Some important deviations, common to both PBE and PBE , should also be noted. The



most important one is the Co−CCO bond distance in CoCp(CO) , which is predicted to

be pm too large with both functionals and all basis sets! The experimental reference for

this structure comes from gas-phase electron diffraction, and the authors already noted

that this Co−C bond was unusually short. Consequently, the experimental C−O bond

length is elongated and the predicted bond lengths turned out to be pm too short for

PBE and pm too short for PBE . Another important deviation occurs for the Zn−CMe

bond length in the methyl(cyclopentadienyl)zinc complex. Both PBE and PBE predict

elongated bonds deviating by up to pm from the gas-phase experimental measurement.

The consistency between PBE and PBE bond lengths, along with some large deviations

in the experimental measurements (see for example [ ] and [ ]) suggest that some of

these experimental measures should be revisited.

The bending of the hydrogen atoms out of the plane of the aromatic rings are almost

equally well described with PBE and PBE . Again, the largest difference is obtained for

chromocene with more than ° deviation from the experimental measurement. The C−C

and C−H bonds are consistently shorter, by pm, with PBE than with PBE. The shorten-

ing of these bonds makes the PBE predictions worse. The same is true for carbonyl C−O

bonds and the nitrosyl N−O bond, where the bonds are shortened by almost pm.

Altogether, PBE and PBE describe the structural parameters of the here studied orga-

nometallic compounds reasonably well if large basis sets are used, as the here employed

aug-cc-pVQZ basis. Structural details are qualitatively correct, as shown by the α bending

angles in Table . . Nevertheless, unexpected deviations may occur as discussed above.

Another important aspect we studied on these compounds are spin-state spli ings. Es-

pecially large differences between PBE and its hybrid PBE can be found for chromocene,

manganocene and nickelocene for these energy spli ings. Table . lists relative energies

[kcal/mol] for a low-spin, an intermediate-spin and a high-spin configuration for each of

these metallocenes. For chromocene, PBE and PBE predict triplet ground states with all

basis sets employed. However, with PBE the spli ing between the ground-state triplet

and the quintet vanishes with DZ, is only . kcal/mol with TZ and . kcal/mol with QZ.

In contrast, the PBE spli ing is more than kcal/mol for all basis sets. A similar behavior



Table . : Relative energies [kcal/mol] of different spin states of chromocene, manganocene and nickelocene.
Calculations were performed with PBE and PBE and the aug-cc-pVXZ basis set (X = D,T,Q). For PBE
calculations, the GEN-A /GEN-A * approach was used.

Molecule PBE PBE
DZ TZ QZ DZ TZ QZ

CrCp . . . . . .
CrCp . . . . . .
CrCp . . . . . .

MnCp . . . . . .
MnCp . . . . . .
MnCp . . . . . .

NiCp . . . . . .
NiCp . . . . . .
NiCp . . . . . .

is seen also for nickelocene, where both PBE and PBE predict triplet ground-states. The

difference arises in the singlet-triplet spli ing. Similar to chromocene, PBE stabilizes the

high-spin state by around kcal/mol.

For manganocene, PBE and PBE predict different ground-states with rather large sepa-

rations from other spin multiplicities. In this case, PBE favors the low-spin doublet state by

more than kcal/mol while PBE favors the sextet state by more than kcal/mol. This dif-

ference has already been documented between the OPTX-PBE “pure”- and B LYP hybrid-

functionals and has been used to tune hybrid functionals for metallic systems. , It has

been pointed out that Mn complexes have low crossover energy barriers between several

electronic states. Photoelectronic, electron paramagnetic resonance and gas-phase struc-

ture determination have shown the presence of spin equilibrium in manganocene and

dimethylmanganocene with E g and A g as the only well-defined identified states. –

However the doublet E g state is favored at very low-temperatures (below K) by about

. kcal/mol. , , The here presented results are gas-phase K calculations therefore,

the correct spin-state description is obtained by the “pure” functional PBE. It is important

to note, however, that the structural parameters presented in Table . correspond to the

high-spin sextet because the electron diffraction experiment was measured at around

°C, where a : mixture of sextet and doublet manganocene is present. ,



In summary, the “pure” DFT description outperforms the hybrid one for the here stud-

ied organometallic compounds, even when the very large aug-cc-pVQZ basis sets was

employed. PBE geometries are almost at basis set convergence, however, the relative en-

ergies can still vary up to kcal/mol when going from aug-cc-pVTZ to aug-cc-PVQZ. Our

results discourage the use of hybrid functionals for the calculation of transition metal sys-

tems even if only one metal atom is present! PBE bond lengths showed unexpected dete-

rioration with increasing basis set size and the spin-state spli ings are even qualitatively

not reliable. Furthermore, we would like to emphasize that tuning the amount of exact ex-

change present in hybrid functionals to obtain the correct spin-state spli ing will certainly

alter, usually for worse, its performance for other properties. An alternative approach

could be the optimization of the Dunning basis sets for “pure” DFT functionals.

₅.₃ S P G F : W

The study of size-dependent properties of nanoparticles has become a frontier line of

research in nanoscience. In particular, the study of the electric-dipole polarizability of

giant fullerenes has a racted considerable a ention. , – Unlike most nanoparticles,

fullerenes are distinctly different in that they have all the atoms on the surface whereas

solid spherical nanoparticles have only roughly N / atoms on the surface. , This fea-

ture results in a rapid increase in their volume as the number of atoms increases. As the

electric-dipole polarizability is proportional to volume, fullerenes are most suitable for

investigating quantum size effects manifested in polarizability.

Several studies on fullerene polarizability have been based on classical models or have

employed drastic approximations. The results of these models, however, show rather

large variance. For example, the predictions for the C polarizability vary from a.u.

(Pariser-Parr-Pople model ) over a.u. (Penn model-linear response theory ) and

up to a.u. (tight binding ).

In this section, we present first-principle static and dynamic polarizabilities of icosahe-

dral fullerenes, ranging from C to C , obtained with Auxiliary Density Perturbation



Theory (ADPT). These calculations provide an accurate description of the electronic struc-

ture since they are based on all-electron first-principles density functional theory. It is

important to note that the only assumption made is that the vibronic contributions are

negligible, thus, only the electronic part is shown. This is different to previous studies

where, in addition, some other approximate techniques have been invoked to lower the

computational complexity of the linear response. ,

The selected methodology was VWN/DZVP/GEN-A since it has demonstrated good

performance to accuracy ratio. , This basis and auxiliary function set combination re-

sults in more than , basis functions and , auxiliary functions for the fullerene.

It is important to note that no simplification due to symmetry has been used. Therefore,

the iterative ADPT solver can be used for other nonsymmetric systems with the same com-

putational efficiency. Optimized geometries, at the same level of theory, were used for all

fullerenes. , The optimized structures are shown in Figure . with the view aligned

along one of the C axes. All twelve five-membered rings are colored in red in order to aid

the view to distinguish the vertices of the icosahedron. Note that C and C have rather

spherical shapes but the larger fullerenes have clearly polyhedrical shapes. At some point,

the icosahedral faces will be so large that they will basically behave as graphene sheets.

As a consequence, the specific polarizability (per carbon atom) of these giant fullerenes

should be that of the graphene. Here, we a empt to find, by an all-electron first princi-

ples calculation, at which size the polyhedral faces can be rendered as graphene sheets.

Table . lists the obtained ADPT static polarizabilities [a.u.] along with previous re-

sults obtained in the literature. , – The semiempirical PPP approach clearly under-

estimates the polarizability of the larger fullerenes. It is interesting to note that for C

the PPP polarizability is only % that of VWN/DZVP/GEN-A . Furthermore, Ruiz et

al. obtained that the PPP polarizabilities are % that of a spherical conducting shell.

Therefore, the all-electron ADPT results predict that the giant fullerenes behave almost as

spherical conducting shells starting from C . The sum-over-states polarizabilities, cor-

rected by random phase approximation (SOS-RPA), are in very good agreement to the

VWN/DZVP/GEN-A for all the series. The same is true for the PBE /SVPD polarizabil-



Figure . : Optimized structures of the calculated icosahedral fullerenes. Geometries were optimized at
the VWN/DZVP/GEN-A level of theory without any simplification due to symmetry. The view is aligned
along one of the C axes and all twelve five-membered rings are colored in red to facilitate the identification
of the vertices of the icosahedron.



Table . : Static average polarizability [a.u.] of icosahedral fullerenes with different methodologies. The
Parriser-Parr-Pole (PPP) results were taken from reference [ ]. Classical Penn model results were taken
from reference [ ]. The sum-over-states results corrected by random phase approximation (SOS-RPA)
were taken from reference [ ]. PBE refers to the hybrid PBE /SVPD results from reference [ ]. The last
two columns are results obtained with the ADPT VWN/DZVP/GEN-A methodology solving the response
equations with the direct [ , ] and iterative solver, respectively.

Molecule PPP Penn SOS-RPA PBE Direct Iterative
C
C
C
C
C
C

ities, except for C , where PBE /SVPD severely underestimates the average polarizabil-

ity. This underestimation led Rappoport and Furche to state that there is a minimum in

the average polarizability per carbon atom in the icosahedral fullerene series. Figure

. shows that no such minimum is found by ADPT, neither with the direct nor the it-

erative solvers. This agrees with the SOS-RPA results reported in reference [ ]. Both

PBE /SVPD and VWN/DZVP/GEN-A specific polarizabilities (per atom) exhibit a nega-

tive curvature possibly indicating a saturation for larger icosahedral fullerenes. In order

to obtain the asymptotic polarizability per atom, we fi ed the ADPT data to an asymptotic

model, yielding

α/N = . + .
(

− e− . ×N) ( . )

as the best fit. Using Equation ( . ) we get an asymptotic limit of . a.u. per carbon atom.

If the same trend is followed by larger fullerenes, the C would a ain an specific polar-

izability only . a.u. smaller than the asymptotic limit. It is important to mention that

Gueorguiev et al. already suggested that quantum size effects should be present, at least,

until C . This statement was based on the ratio of the static polarizability calculated

with a quantum mechanical approach and that of a classical model.

Dynamical polarizabilities are much less studied than their static counterparts. Here we

compare calculated and experimental dynamical polarizabilities of C . Furthermore, we

present as a showcase application dynamical polarizabilities of the two largest fullerees,
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Figure . : Specific polarizability (per carbon atom) of icosahedral fullerenes from C to C . PBE results
are taken from reference [ ]. VWN results were obtained with the new ADPT iterative solver. The solid
line was obtained by fi ing the VWN data to an asymptotic model. See text for more details.

C and C . Figure . shows the excellent agreement of ADPT dynamical polarizability

for C compared to available experimental data. – This is inline with previous reports

of our group concerning the accuracy of ADPT dynamical polarizabilities. ,

The specific (per carbon atom) dynamical polarizabilities of C and C are shown in

Figure . . To the best of our knowledge, this is the first report of all-electron dynamical

polarizabilities of such giant fullerenes. Note that the range for the y-axis in Figure . is

so large because the most energetic wavelength used, nm, is close to the first excitation

pole of C and is behind the first excitation pole of C . This explains the jump of the

specific polarizability of C to very large values and the sharp reduction of the specific

polarizability of C .

In summary, we provide ADPT static polarizabilities for icosahedral fullerenes from

C to C . Our results follow closely those reported for the SOS-RPA method and do

not show the minimum in the specific polarizability for C previously reported in ref-

erence [ ]. In fact, the specific polarizability of giant fullerenes grows monotonically,

although with a negative curvature, suggesting a saturation for larger systems. Fi ing the
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of theory.



calculated ADPT static polarizabilities to an asymptotic model predicts that saturation is

achieved already for C with a polarizability close to . a.u. per carbon atom. Further-

more, C ADPT dynamical polarizabilities are in excellent agreement with experimental

ones. Thus, the EN iterative solver does not alter the ADPT accuracy for the calculated

dynamical polarizabilities. , Finally, the first all-electron dynamical polarizability cal-

culations for C and C were presented. The dynamical polarizabilities were obtained

for six different laser wavelengths, one of which is very close to the first excitation pole

of C and is beyond the first pole of C . It is important to note that these results were

obtained without the inclusion of simplifications due to the icosahedral symmetry of the

systems. As a consequence, ADPT can now be used to predict molecular response prop-

erties for nanosystems with many thousands of basis and auxiliary functions.



6
Conclusions and Perspectives

₆.₁ C

Quantum mechanics has enabled the computation and prediction of many chemical prop-

erties of interest. However, the simulation of “real life” chemical problems is still out of

our reach. Therefore, the main objective of this work was to develop new approximate

methods for applying quantum mechanics to more complex atomic and molecular sys-

tems at a first-principle level of theory.

In this respect, we have shown the development and application of such approximate

methods for two typical quantum chemical applications. On one hand, we developed

a low-scaling methodology for the computation of exact exchange, which we called lo-

cal density fi ing exact exchange (LDF-EXX) , , that can be used in molecular energy



calculations and structure optimizations. On the other hand, we developed a low-scaling

algorithm for the solution of the response equation system arising in auxiliary density per-

turbation theory (ADPT) , for the calculation of molecular response properties. The

resulting methodology is based on the Eirola-Nevanlinna algorithm and has proven to

be robust and efficient.

The LDF-EXX methodology extends and improves previous efforts to reduce the com-

putational complexity for calculating exact exchange. , – Ultimately, this develop-

ment resulted in the implementation of hybrid functionals in deMon k and opened

the possibility to extend deMon k’s capabilities beyond density functional theory (DFT).

The performance achieved by LDF-EXX is based on an efficient molecular orbital local-

ization algorithm and on the use of very simple auxiliary function sets. To this end, we

have substituted the standard Jacobi-sweep-based localization proposed many years ago

by Edminston and Ruedenberg by the more efficient approximate joint diagonalization

(AJD) approach. – The usefulness of the new AJD-based localization approach is not

limited to LDF-EXX but can be used in other quantum chemical methodologies too, like

the Individual Gauge for Localized Orbital approach for the computation of nuclear mag-

netic resonance shielding tensors. Different to other approximate exact exchange algo-

rithms, LDF-EXX was validated with the relatively simple GEN-An and GEN-An* auxil-

iary function sets. These auxiliary function sets yielded kcal/mol accuracies for heats

of formation and chemical reaction barrier heights. Furthermore, the GEN-An set showed

remarkable speed-ups compared to standard electron repulsion integral calculations and

also to conventional density fi ing and resolution-of-the-identity implementations.

Although LDF-EXX achieves the above mentioned remarkable performance, this is only

a minor step forward for the application of quantum mechanical methods to the mathe-

matical description of “…the whole of chemistry […].” To this end, implementation of LDF-

EXX on new architectures, like hybrid CPU-GPU computational clusters, can improve

the size-range where LDF-EXX is applicable. However, this new implementation should

solve some of the remaining issues with the here presented LDF-EXX implementation.

Although the LDF-EXX can be used with success for non-insulators, like sodium and cop-



per clusters, the AJD localization algorithm struggles to optimize the objective functional.

Moreover, the presented parallelization is far from being adequate for massive parallel

high-performance computing environments.

The new ADPT iterative solver also shows remarkable performance. This advance is

of great importance for the direct comparison between theory and experiment and the

prediction of new material properties. With this approach, molecular property calcula-

tions of nanosystems can be performed in just a few hours. Thus, systematic screening

of molecular databases with a first-principle methodology becomes feasible. The main

advantage of the ADPT iterative solver is that it can be straightforward extended for the

computation of other molecular response properties, like static and dynamic hyperpolar-

izabilities and Fukui functions, to name a few. The ADPT iterative solver has also

great potential to be used in the calculation of analytic second derivatives in ADFT, which

are currently under development in our laboratory.

One important aspect of the ADPT iterative solver is that, besides lowering the compu-

tational complexity, it also diminishes the memory demand of the code. Therefore, the

computations can be performed on modest and economical computational architectures.

This low memory demand has also enabled the use of a mixed ADPT approach, which is

an analog of the mixed self-consistent-field procedure developed in our group. Further-

more, this diminished memory requirements can be useful for a GPU version of deMon k,

too.

Both of these low-order scaling methods were applied to chemical problems of current

interest. First, we studied the effect of EXX on the electronic structure of sodium and

copper clusters. We established the subshell closing of a spin-manifold as an important

stabilizing mechanism for high-spin clusters. In particular, high-spin configurations of

icosahedral Na , Na and Na + clusters were found to be remarkably stable. For Na

it was found that the D cluster shell was closed by the α-manifold. The PBE results pre-

dicts the sextet Na to be only kcal/mol less stable than the ground state. Furthermore,

inclusion of EXX, via the PBE functional, reduces this energy difference further, making

the sextet only kcal/mol less stable than the ground state. A similar situation occurs for



Na . In this case, the predicted electronic configuration,

S P D S F P G ,

allowed an stable sextet configuration due to the spli ing of the G shell into hg and gg

subshells with five- and four-fold degeneracies. Thus, the hg subshell was also closed by

the α-manifold. The PBE functional predicts this sextet to be kcal/mol less stable than

the ground state. Again, EXX stabilized the sextet and predicts it to be only . kcal/mol

less stable than the doublet. Both of the sextet neutral cluster, Na and Na , are predicted

to be sufficiently stable to be detected by Stern-Gerlach-type experiments. Unfortunately,

no reference to an experimental result for this cluster sizes was found in the literature.

The Na + cluster is a special case. Both PBE and PBE predict that the high-spin quintet

is the ground state. In this case, inclusion of EXX added an extra . kcal/mol stabilization.

The stability of the quintet is explained by its electronic configuration,

S P D S F P G ,

that indicates the complete closure of the hg subshell by both, α- and β-spin, manifolds

and the closure of the gg subshell by the α-manifold. The calculated density of states of

the quintet Na + cluster shows a characteristic shoulder, due to the gg subshell closing

by only one spin manifold. This shoulder is also seen in the experimentally measured

photoelectron spectrum of the Na + cluster, supporting our finding of a quintet ground

state. The proposed subshell closing mechanism could provide an explanation as to why

the melting temperature of the Na + cation is abnormally high , . Further studies in

our group confirmed that the subshell closing mechanism indeed affects the dynamical

behavior of Na + and predicts the melting temperature to be above K.

The subshell closing mechanism was also studied in icosahedral copper clusters. It was

shown that also for these clusters it can be an important stabilizing mechanism. Differ-

ent to the sodium case, the Cu and Cu sextets are far less stable as compared to their



corresponding low-spin ground states. However, the Cu + quintet was also found to be

the ground state for copper. This suggests that subshell closing may be an important

mechanism for simple metal cluster stabilization, independent of the nature of the cluster.

Indeed, this could lead to “real life” applications. Unlike sodium clusters, copper clus-

ters could provide the first stable magnetic cluster to be applied in the emerging field of

spintronics.

We also studied the effect of exact exchange and basis set size on the quality of the

description of transition metal complexes. To this end, we used the PBE and PBE func-

tionals with the augmented correlation consistent basis sets of Dunning. We found that

PBE results improve systematically with increasing basis set size. However, this was not

the case for PBE , were we found a poorer description of the bond lengths using the aug-

cc-pVTZ than with the aug-cc-pVDZ basis. We also encountered some other issues due

to the inclusion of EXX for the description of these complexes. In particular, C−H, C−O

and N−O bond lengths became shorter for all basis sets. In addition, the spin-state split-

tings can be qualitatively changed by hybrid functionals. Specifically, the PBE functional

overstabilizes high-spin configurations and incorrectly predicts a sextet ground state for

manganocene at K. Therefore, we advocate the use of “pure” DFT functionals for calcu-

lation of the transition metal compounds, even if only one transition metal atom is in the

system.

Finally, the static and dynamic polarizabilities of giant icosahedral fullerenes were also

studied. We found that the specific polarizability (per carbon atom) increases monoton-

ically with the system size and that a previously reported minimum for C does not

exist. We also predicted that, starting with the C icosahedral fullerene, the specific

polarizability will achieve its asymptotic maximum at around . a.u. per carbon atom.

Interestingly, it was previously predicted that quantum-size effects should be observed,

at least, until C . We also presented, to the best of our knowledge, the first all-electron

dynamical polarizability calculation for C and C . We predict that the usual laser used

for this measurements, nm, will provide an energy very close to the first excitation

pole of both C and C . For the C this energy will be below the first pole, provoking



a huge increase in the specific polarizability. On the other hand, the laser energy will be

above the first excitation pole of C and a steep decrease in the specific polarizability

should be observed.

Vast improvements are still needed for real chemical simulations. Both LDF-EXX and

the new ADPT iterative solver contribute to this ultimate goal. The advancement made is

just a step of an interstellar journey. Nevertheless, I think that quantum chemical calcula-

tions will, step by step, achieve Dirac’s vision and provide answers to the real and complex

problems as described by Mulliken and Roothaan. In other words, we will build, step by

step, the snare that will some day catch the sun:

Through all the ages of history there were men to whom this whisper had come of hidden

things about them. They could no longer lead ordinary lives nor content themselves

with the common things of this world once they had heard this voice. And mostly

they believed not only that all this world was as it were a painted curtain before things

unguessed at, but that these secrets were Power. Hitherto Power had come to men by

chance, but now there were these seekers seeking, seeking among rare and curious and

perplexing objects, sometimes finding some odd utilisable thing, sometimes deceiving

themselves with fancied discovery, sometimes pretending to find. The world of every

day laughed at these eccentric beings, or found them annoying and ill-treated them,

or was seized with fear and made saints and sorcerers and warlocks of them, or with

covetousness and entertained them hopefully; but for the greater part heeded them not

at all. Yet they were of the blood of him who had first dreamt of a acking the mam-

moth; every one of them was of his blood and descent; and the thing they sought, all

unwi ingly, was the snare that will some day catch the sun.

(The World Set Free, H. G. Wells)



₆.₂ F W

₆.₂.₁ E -N C

The partition of the electron repulsion integrals (ERIs) into near-field and far-field has

led to the proposal of the mixed SCF scheme. In this approach, all near-field ERIs are

stored in memory and only the far-field ERIs are recomputed in each SCF step employ-

ing fast asymptotic expansions. The mixed SCF scheme solves the ERI bo leneck of

ADFT. New computational bo lenecks then appear. On one hand, the numerical inte-

gration of the exchange-correlation potential, even though performed with the linear ex-

panded auxiliary density, appears again as a time consuming step. On the other, linear

algebra tasks are more and more dominating the CPU time consumption of ADFT calcula-

tions. Whereas the numerical integration of the exchange-correlation potential is already

addressed by a more aggressive grid point screening, li le has been done so far for the

linear algebra tasks beyond the use of highly optimized external linear algebra libraries.

In particular, matrix diagonalization consumes already for medium sized systems a large

portion of the computational time in ADFT calculations.

The largest matrix that has currently to be diagonalized is the Coulomb matrix G. This

diagonalization, used for the singular value decomposition (SVD) ofG, can be completely

avoided if a sufficiently robust numerical solver is employed. The Eirola-Nevanlinna (EN)

solver, applied to the ADPT response equation system, has shown to yield results in per-

fect agreement to those obtained by the SVD of the response matrix. Moreover, excellent

convergence has been observed with the G− start guess. Therefore, we propose the use

of the EN algorithm for the solution of the fi ing equation system

Gx = J ( . )

The guess for the inverse of G can either be the identity matrix or can be obtained through

a low-cost approach, like the approximate inverse (AINV) from Benzi and Tuma. –

AINV is based on the pivoted inverse Cholesky decomposition of the matrix. It is very



efficient and can be easily parallelized. If the EN algorithm proves to be robust enough, an

SVD-free deMon k version can be achieved. This will reduce the linear algebra bo leneck

of current ADFT calculations in deMon k.

₆.₂.₂ A D M M

As concluded in section . . the LDF-EXX will represent the computational bo leneck

in ADFT hybrid calculations. To circumvent this bo leneck we propose a new algorithm

that combines LDF-EXX with the Auxiliary Density Matrix Method (ADMM) , from

the literature. Note that ADMM is only intended for hybrid DFT calculations. In ADMM

the exact exchange energy, K(P), is split into two parts. The first part, k(p), represents

the exact exchange energy calculated with a smaller secondary basis set. The second part,

X(P)− x(p), is a correction term evaluated by DFT exchange energies in the primary and

secondary basis set, respectively. Thus, the ADMM exact exchange energy contribution

to a hybrid functional is given by:

K(P) = k(p) + X(P)− x(p) ( . )

The here appearing density matrices, P and p, are calculated from the primary and sec-

ondary basis set, respectively. In fact, p is obtained by projection of P on the smaller

secondary basis set. In the original ADMM implementations , only projection of the

basis set is possible. However, when combining ADMM with LDF-EXX two possible pro-

jection choices arise. Either the primary basis set or the primary auxiliary function set

can be projected. The former choice provides the greatest reduction of the computational

scaling for the computation of the three-center ERIs. The la er will provide the greatest

reduction for the calculation and inversion of all charge density ERI matricesGi needed in

LDF-EXX. Because the three-center ERI computation and transformation is the bo leneck

of LDF-EXX calculations, projection of the primary basis set will result in the computation-

ally most efficient algorithm. Therefore, we suggest this approach for the combination of

LDF-EXX with ADMM.



In order to project the primary basis set, we follow the ADMM approximation of

Guidon et al. In ADMM the projection is based on a least-squares fi ing of the pro-

jected MOs, ψ̌i(r), obtained by minimizing

W =
occ∑
i

⟨ψi(r)− ψ̌i(r) |ψi(r)− ψ̌i(r) ⟩ ( . )

with respect to the projected MO coefficients. Expansion of the expectation value in Equa-

tion ( . ) yields

W =
occ∑
i

⟨ψi |ψi ⟩ − ⟨ψi | ψ̌i ⟩+ ⟨ ψ̌i | ψ̌i ⟩ ( . )

Equation ( . ) can be rewri en in matrix notation as:

W = CTSC− cTQC+ cTsc ( . )

where the columns of C and c contain the MO coefficients of the primary and secondary

basis, respectively. The corresponding overlap matrices for these basis sets are denoted

by S and s. The matrix Q is the mixed overlap matrix between the secondary and primary

basis sets. Variation of Equation ( . ) with respect to the MO coefficients of the secondary

basis yields

∂W
∂cαi

= −
∑
µ

QαµCµi +
∑
β

sαβcβi ≡ ∀ α ∧ i ⩽ Nocc ( . )

where α and β label AOs of the secondary basis. From Equation ( . ) follows:

cβi =
∑
α

∑
µ

s−βαQαµCµi ∀ β ∧ i ⩽ Nocc ( . )

We can recast this set of equations into matrix notation as

c = s− QC = TC ( . )



where T = s− Q is the transformation matrix from the primary MOs to the secondary

MOs. The projected density matrix is obtained using the projected MO coefficients of

Equation ( . ):

p = ccT = TPTT ( . )

The ADMM-EXX energy, K, is computed fromP and p according to Equation ( . ). Differ-

ent projection strategies that preserve either the normalization or the orthonormalization

of the MOs have also been proposed, , but we will focus here on the above described

unconstrained projection.

The corresponding contribution of the ADMM-EXX to an element of the Kohn-Sham

matrix is given by:

Kµν =
∂X
∂Pµν

+
∑
α,β

(
∂k
∂pαβ

− ∂x
∂pαβ

)
∂pαβ
∂Pµν

( . )

The first term of the rhs of Equation ( . ) is just the contribution to the Kohn-Sham matrix

from the chosen correction exchange functional evaluated with the primary density. The

first term inside the parenthesis is an element of the LDF-EXX contribution to the Kohn-

Sham matrix, Equation ( . ), evaluated with the secondary basis, i.e.

k =
occ∑
i

eiZiZ
T
i e

T
i ( . )

where an element of the ERI matrix ei is given by:

eαk̄,i = ⟨αi∥k̄⟩ ( . )

The second term inside the parenthesis is the contribution to the Kohn-Sham matrix from

the exchange DFA evaluated with the secondary density calculated from the projected

density matrix p. Finally, the partial derivative of an element of the projected density

matrix with respect to an element of the primary density matrix can be easily obtained

from Equation ( . ) as
∂pαβ
∂Pµν

= TαµTβν ( . )



Thus, the ADMM-LDF-EXX contribution to the Kohn-Sham matrix is given by:

K = X+TT (k− x)T ( . )

Here X and x are the contribution of the mapping exchange potential evaluated with the

primary and secondary densities, respectively, and k is the exact exchange potential evalu-

ated with the secondary basis. Note that the auxiliary density, ρ̃(r), has yet not been intro-

duced. Therefore, Equations ( . )-( . ) constitute the working equations for the ADMM-

LDF-EXX approach within the DF-DFT method. We have previously seen that LDF-EXX

HF calculations are as fast as DF-DFT GGA ones. As a consequence, ADMM-LDF-EXX

might be even counterproductive, i.e. slowing down DF-DFT hybrid computations be-

cause of the two additional numerical integrations needed! This situation can be alleviated

with the ADFT methodology, where the numerical calculation of the exchange functionals

are performed with the auxiliary density and, therefore, are far less demanding.

T ADMM-LDF-EXX A ADFT

The above presented ADMM-LDF-EXX approach can be straightforward incorporated

into the ADFT methodology. The main difference to conventional ADFT arises from the

fact that a secondary auxiliary density, ρ̌(r), must be obtained by the variational fi ing of

the secondary density. Thus, a new fi ing equation system,

Gx̌ = J̌ , ( . )

must be solved. Note that the same auxiliary function set is used for the primary and

secondary variational density fi ing. In Equation ( . ), the Coulomb vector J̌ is defined



as

J̌ =



∑
α,β
⟨̄ ∥αβ⟩pαβ∑

α,β
⟨¯∥αβ⟩pαβ

...∑
α,β
⟨m̄∥αβ⟩pαβ


( . )

Once Equation ( . ) has been solved, the computation of x(p) is carried out according to:

x(p) = Ex[ρ̌] ( . )

Finally, the contribution of the ADMM-EXX to an element of the Kohn-Sham matrix is

obtained as:

Kµν =
∑
k̄

⟨µν∥k̄⟩zk̄ +
∑
α,β

Tαµ

(
kαβ −

∑
k̄

⟨αβ∥k̄⟩žk̄

)
Tβν ( . )

where

žk̄ =
∑
k̄,̄l

G−
k̄̄l ⟨ l̄ | vxc[ρ̌] ⟩ ( . )

When using ADFT with the ADMM-LDF-EXX approach, two additional ERI computa-

tions, building J̌ and computing K, and two additional numerical integrations must be

performed. The ERI computations can be performed very efficiently by employing the

double-asymptotic ERI expansion and an incremental building of the contributions. As

already noted, the numerical integrations of DFAs are performed with the use of auxiliary

densities and, therefore, are not too demanding.

A ADFT G ADMM-LDF-EXX

The ADMM-LDF-EXX approach introduces four new contributions to ADFT gradients.

First, the contribution from X[ρ̃]; second, the contribution from x[ρ̌]; third, the contribu-

tion from k(p); and fourth, the contribution from the projection. The first contribution

is obtained using Equation ( . ) without modifications. The second contribution, corre-



sponding to x[ρ̌], is given by

Ex[ρ̌](λ) =

∫
δEx[ρ̌]
δρ̌(r)

∂ρ̌(r)
∂λ

dr

=
∑
k̄

x̌(λ)k̄ ⟨vxc[ρ̌] | k̄ ⟩+
∑
k̄

x̌k̄⟨vxc[ρ̌] | k̄(λ) ⟩ ( . )

The derivatives of the secondary fi ing coefficients, x̌, can be obtained by deriving Equa-

tion ( . ), from where it follows

Ex[ρ̌](λ) =
∑
α,β

∑
k̄

p(λ)αβ ⟨αβ∥k̄⟩žk̄ +
∑
α,β

∑
k̄

pαβ⟨αβ∥k̄⟩(λ)žk̄ −∑
k̄,̄l

x̌k̄Gk̄̄lž̄l +
∑
k̄

x̌k̄⟨vxc[ρ̌] | k̄(λ) ⟩ ( . )

which is equivalent to Equation ( . ) evaluated with the secondary basis and the sec-

ondary quantities p, x̌, and ž. For the third contribution, corresponding to k(p), an equiv-

alent to Equation ( . ) is obtained, namely

k(λ) =
∑
α,β

p(λ)αβ kαβ +
∑
k̄,̄l

Γ̌k̄̄lG
(λ)
k̄̄l −

occ∑
i

∑
k̄

∑
α,β

∑
γ

pαβx̌k̄αi⟨k̄∥βγ⟩(λ)cγi ( . )

Only p(λ) remains to be evaluated. Deriving Equation ( . ) yields

p(λ) = T(λ)PTT +TP(λ)TT +TP
(
TT)(λ) ( . )

The here appearing transformation matrix derivatives are given as:

T(λ) =
(
s−
)(λ)

Q+ s− Q(λ)

= −s− s(λ)s− Q+ s− Q(λ) ( . )

To proceed we collect the terms involving p(λ)αβ of Equations ( . ) and ( . ) and introduce

xαβ ≡
∑
k̄

⟨αβ∥k̄⟩žk̄ ( . )



to ease the notation. The calculation of the other terms in Equations ( . ) and ( . ) is

straightforward according to the discussion in section . and, therefore, will not be fur-

ther discussed here. Thus, we find by substituting Equation ( . ) into the difference of

these two terms:

∑
α,β

(
kαβ − xαβ

)
p(λ)αβ =

∑
µ,ν

∑
α,β

(
kαβ − xαβ

)
T(λ)
αµ PµνTβν +∑

µ,ν

∑
α,β

(
kαβ − xαβ

)
TαµP(λ)

µν Tβν ( . )

The second term of the rhs of Equation ( . ) along with the first term of the rhs of Equation

( . ) can be immediately recognized as

∑
µ,ν

KµνP(λ)
µν ( . )

which can just be absorbed in the Pulay forces. The remaining first term of the rhs of

Equation ( . ) can be evaluated by substituting Equation ( . ) into it, yielding

∑
µ,ν

∑
α,β

(
kαβ − xαβ

)
T(λ)
αµ PµνTβν = −

∑
µ,ν

∑
α,β

∑
γ,δ

(
kαβ − xαβ

)
s−αγs

(λ)
γδ TδµPµνTβν +∑

µ,ν

∑
α,β

∑
γ

(
kαβ − xαβ

)
s−αγQ(λ)

γµ PµνTβν ( . )

which can be rewri en as

∑
µ,ν

∑
α,β

(
kαβ − xαβ

)
T(λ)
αµ PµνTβν = −

∑
α,β

wαβs(λ)αβ +
∑
α

∑
µ

W̌αµQ(λ)
αµ ( . )

where we introduced the generalized energy-weighted density matrices

w = s− (k− x)p ( . )

W̌ = s− (k− x)TP ( . )



In summary, only two subroutines must be added to the code. One that builds the general-

ized energy-weighted density matrices, w and W̌, and another one that contracts W̌ with

the mixed-overlap derivatives Q(λ). The remaining contributions can be obtained by call-

ing the same subroutines programmed for the LDF-EXX gradient within ADFT, provided

that they are fed with the appropriate quantities—primary or secondary.

ADMM

After the general theory for ADFT ADMM-LDF-EXX calculations has been derived, the

basis set mapping and the influence of the exchange correction functional was studied. To

this end HF ΔH K
f for the full G / molecular test set were computed and compared to

the corresponding LDF-EXX results. Merlot et al. have already shown that there is no sin-

gle exchange functional and secondary basis set combination that performs equally well

for every primary basis set and molecule. Thus, we decided to test the KT exchange

functional along with the - G , secondary basis set because this combination was

the best to approximate the B LYP cc-pVTZ results in reference [ ]. In addition, we

also probed the recently developed CAP exchange functional because its potential de-

cays asymptotically like the EXX potential. Finally the EV exchange functional was

also tested because it reproduces the optimized effective potential of noble gases. To in-

vestigate the influence of the secondary basis set we also used the DFT optimized DZVP

basis. , The Def -TZVPP basis was always used as primary basis set along with the

GEN-A * auxiliary function set.

Individual ΔH K
f for the molecules of the G / test set are shown in Table B.

of Appendix B. Table . lists a summary of these results in terms of MADs, MDs and

MaxADs for the ADMM-LDF-EXX calculated ΔH K
f with respect to the corresponding

LDF-EXX HF reference ones. The KT functional shows the best performance among the

three exchange functional when the - G secondary basis is used. However, it shows

the largest deviations when DZVP is used as secondary basis. Of the other two exchange

functionals, CAP shows the best performance for both secondary basis sets. This result

was expected due to the asymptotic properties of the CAP potential which EV and KT



Table . : Deviations [kcal/mol] of ADMM-LDF-EXX HF standard heats of formation with respect to LDF-
EXX HF ones. See text for details.

CAP EV KT
- G
MD . . .

MAD . . .
MaxAD . . .

DZVP
MD − . . .

MAD − . . .
MaxAD − . − . − .

do not possess. It is also worth noting that the mapping compared HF and not hybrid

calculations, as has been the usual case. , In this way, any effect of the ADMM approach

will not be hidden by the small fraction of EXX generally mixed into hybrid DFAs. When

using the ADMM approach for hybrid ADFT calculations, the deviations shown in Table

. are expected to decrease, at least, by the same fraction as EXX is mixed into a given

hybrid.

According to these results, the ADMM-LDF-EXX approach is a very promising method-

ology that can overcome the computational bo leneck of hybrid ADFT calculations. Fur-

thermore, the CAP exchange functional is the best choice to perform the ADMM mapping.

However, a thorough validation for several hybrid functionals has yet to be performed.

This validation must include relative energy comparisons, such as ΔH K
f and chemical

reaction barrier heights, as well as optimized geometry comparisons. This validation is

very important to ensure that ADMM-LDF-EXX does not change the overall shape of the

potential energy surface and, therefore, to establish if ADMM-LDF-EXX can be used for

BOMD calculations. If ADMM-LDF-EXX is shown to be accurate enough, then it is also

useful to benchmark its performance for one-, two- and three-dimensional systems. These

benchmarks are very useful to tune the programming and achieve the best performance

of the code. In this way, ADMM-LDF-EXX can be used for hybrid ADFT calculations with

small impact on the very well-known ADFT performance.



₆.₂.₃ P -H -F M M ₂

The excellent performance achieved by our LDF-EXX algorithm encourages the develop-

ment of post-Hartree-Fock methods based on the same philosophy. These so-called local

correlation methods have been available since many years. – Many of them are based

on the orbital invariant formulation of Møller-Plesset perturbation theory proposed by

Saebø and Pulay. , In particular, Werner, Schü and coworkers have provided very

significant contributions to the local correlation method. They have achieved linear or

near linear scaling for LMP , , LCCSD , and LCCSD(T), – where L means that

the method is formulated in terms of localized orbitals. Furthermore, local density-fi ing

MP (LDF-MP ) have also been successfully applied by them. ,

A different approach towards local electron correlation methods is based on the Laplace

transform of the energy denominators. – It has also been extended for the density-

fi ing approach with localized molecular orbitals. , The Pulay and Saebø’s methodol-

ogy needs the solution of a linear equation system because the first-order amplitudes no

longer decouple. In comparison, Almlöf’s Laplace transform technique needs a numerical

integration of the Laplace integral, although it has been shown that it requires only a few

quadrature points.

The LDF-MP envisioned for deMon k is based on the same principles than the here

presented LDF-EXX. Particularly important is the use of the GEN-An auxiliary function

sets to ensure the maximum performance a ainable. In order to use localized molecular

orbitals, it will rely on the elimination of the energy denominators by a Laplace transform,

as suggested by Häser and Almlöf. , We also propose the implementation of the scaled

opposite-spin (SOS) variant , because it is a more efficient approach to calculate the

second-order correlation energies. In SOS-MP , the second-order correction to the energy

is given by:

ESOS-MP = .

α∑
i,a

β∑
j,b

⟨ia∥jb⟩
Δab

ij
= . EOS ( . )



where i, j label occupied molecular orbitals (MOs), a, b label unoccupied MOs and

Δab
ij = εa + εb − εi − εj ( . )

The spin-dependence of the opposite-spin contribution has been transferred to the sum

limits. Despite of its simpler form, the SOS-MP version improves both the relative en-

ergies as well as the gradients. Introducing the Laplace transform of the denominator

yields:

EOS =
α∑
i,a

β∑
j,b

⟨ia∥jb⟩
∞∫
e−Δab

ij t dt ( . )

where t is the Laplace variable. By solving the Laplace integral with a numerical quadra-

ture, Equation ( . ) can be approximated as:

EOS ≈
∑
q

wq

α∑
i,a

β∑
j,b

⟨ia∥jb⟩ e−Δab
ij tq ( . )

The orbital energies appearing in the exponential can be factored out and included directly

into the definition of the MOs. In this way, each quadrature point will have its own set of

MOs defined as:

ψI(r) = ψi(r)e
εi tq/

ψA(r) = ψa(r)e
−εa tq/ ( . )

The SOS-MP energy can now be wri en in terms of the newly transformed MOs as:

EOS ≈
∑
q

wq

α∑
I,A

β∑
J,B

⟨IA∥JB⟩ ( . )

The advantage of using Equation ( . ) is that it is invariant under unitary transformation

of the new set of MOs. As a consequence, localized MOs (LMOs) can be used and the

orbital products (transition densities) can be restricted to only the spatially close ones.

Furthermore, these orbital products can be variationally fi ed to a linear combination of



auxiliary functions, exactly in the same way as it was done for the LDF-EXX. In this case,

the transition densities are approximated as:

ρIA(r) ≈
∑
k̄

xk̄IAk̄(r) ( . )

The fi ing coefficients are obtained by the minimization of the error in the Coulomb metric,

in an analog manner to Equation ( . ). Thus, we find for the fi ing coefficients:

xk̄IA =
∑
l̄

⟨k̄∥̄l⟩− ⟨̄l∥IA⟩ ( . )

As in LDF-EXX, the auxiliary functions can also be restricted to only those close in space

to ψI(r) and ψA(r). Using Equations ( . ) and ( . ) we can rewrite the SOS-MP energy

as:

EOS ≈
∑
q

wq

α∑
I,A

β∑
J,B

∑
k̄,̄l

BIA
k̄ BJB

k̄ B
IA
l̄ BJB

l̄ ( . )

with

BIA
k̄ =

∑
l̄

⟨IA∥̄l⟩⟨̄l∥k̄⟩− / ( . )

In order to further simplify Equation ( . ) we introduce a new pair of matrices Xα and

Xβ defined as:

Xα
k̄̄l =

α∑
I,A

BIA
k̄ BIA

l̄ ( . )

Xβ
k̄̄l =

β∑
J,B

BJB
k̄ B

JB
l̄ ( . )

Substituting the definition of the X matrices into Equation ( . ) yields

EOS ≈
∑
q

wq
∑
k̄,̄l

Xα
k̄̄lX

β
k̄̄l ( . )

We thus see that the equations arising in our proposed SOS-MP methodology share some

common features to both LDF-EXX and ADPT. The same algorithms for orbital localiza-



tion and space subdivision (octree) can boost the performance of this SOS-MP approach.

Furthermore, the X matrices can be built with the same subroutines as the ones used to

compute the Coulomb response matrix A. As a result, we expect that a very efficient SOS-

MP algorithm can be implemented in deMon k. This algorithm can be accelerated by a

GPU implementation similar to reference [ ].

Other highly-correlated approaches may follow this MP proposal, leading to local

coupled-clusters and configuration interaction algorithms. In addition, electron propa-

gator methods can also be programmed with this philosophy in mind. ,

₆.₂.₄ A

In the following, we will enumerate some of the additional future works that could follow

the here presented developments.

. Introduction of Benzi and Tuma approximate inverse (AINV) – algorithm for the

direct computation of the inverse Cholsesky factors in LDF-EXX.

. Improvement of the LDF-EXX parallelization by employing the octree algorithm

with more resolution. The parallelization approach may also be revisited and be

completely changed from the current molecular orbital partition to an atomic orbital

partition.

. Development of a second-order orbital localization approach to find a more appro-

priate set of localized orbitals for both LDF-EXX and the above presented local SOS-

MP approach.

. Introduction of the range-separated Coulomb operator for the implementation of

range-separated hybrid functionals.

. Introduction of the Laplace transform for the ω
ω −ωia

factor appearing in the ADPT it-

erative solver. In this way, the energy denominator disappears and the intermediate

transformation to molecular orbital representation can be avoided. Furthermore, the



introduction of sparse matrix-matrix multiplication subroutines can render a truly

linear-scaling APDT approach.



A
Negative definiteness of EEXX

We wish to show that the exact exchange fi ing functional

E = −
occ∑
i,j

∫∫ [
ρij(r )− ρ̃ij(r )

] [
ρij(r )− ρ̃ij(r )

]
| r − r |

dr dr (A. )

is negative semidefinite. If we write ρij(r )− ρ̃ij(r ) = Fij(r ), the fi ing functional may be

rewri en in the form

E = −
occ∑
i,j

∫∫ Fij(r )Fij(r )

| r − r |
dr dr (A. )

We may now define a potential as

φij(r ) =

∫ Fij(r )

| r − r |
dr (A. )



Taking the Laplacian, with respect to the coordinates r , on both sides of Equation (A. )

yields:

∇r φij(r ) =

∫
| r − r |

∇r Fij(r )dr +

∫
∇r Fij(r ) ·∇r | r − r |

dr +∫
Fij(r )∇r | r − r |

dr (A. )

Since Fij(r ) does not depend on r the first two terms on the rhs of Equation (A. ) van-

ish. Thus, the only term remaining involves the Laplacian of the Coulomb operator. It is

straightforward to show that

∇r | r − r |
= ∀ r ̸= r . (A. )

However, this result does not hold for r = r , as indicated in Equation (A. ), because the

derivatives are undefined at these points. Instead, the Laplacian of the Coulomb operator

at these singularities is given by

∇r | r − r |
= − π ∀ r = r , (A. )

from where it follows

∇r | r − r |
= − πδ(r − r ) (A. )

Using Equation (A. ) we can transform Equation (A. ) into

∇r φij(r ) = − π
∫

Fij(r )δ(r − r )dr

= − πFij(r ) (A. )

We may now use Equations (A. ) and (A. ) to rewrite the exact exchange fi ing functional

in the form

E =
π

occ∑
i,j

∫
φij(r)∇ φij(r)dr (A. )



where we have dropped the subindeces for the coordinate of integration and derivation.

We now use the vector identity

∇ · (φ∇ψ) = φ∇ ψ+∇φ ·∇ψ (A. )

which holds for any pair of functions. Hence, we are left with

E =
π

occ∑
i,j

∫
∇ ·

[
φij(r)∇φij(r)

]
dr −

π

occ∑
i,j

∫
∇φij(r) ·∇φij(r)dr (A. )

Applying the divergence theorem to the first term of the rhs of Equation (A. ) yields a

surface integral over an enclosing infinite sphere:

E =
π

occ∑
i,j

∮
S

[
φij(r)∇φij(r)

]
· n dS−

π

occ∑
i,j

∫
∇φij(r) ·∇φij(r)dr (A. )

Assuming that the potentials and their gradients will vanish at infinity, the surface integral

will vanish, which results in

E = −
π

occ∑
i,j

∫
|∇φij(r)| dr (A. )

Since the integral of a square is necessarily positive then the sum appearing in Equation

(A. ) is positive definite. Thus, it follows that E is negative semidefinite, vanishing only

when ρij(r) = ρ̃ij(r) for every point in space.

Note that the only assumption made is that φij(r) must vanish at infinity, which holds

for any Gaussian type orbital. This result was previously derived by Slater in Appendix

of Reference .



B
Validation Tables



Table B. : Hartree-Fock standard heats of formation [kcal/mol] for the neutral molecules of the G / test set. B LYP/ - G( df,p)
optimized geometries and the Def -TZVPP basis set in spherical representation were used in all calculations. A */A * calculations
were performed with the GEN-A * auxiliary function set for both the SCF and the final energy calculation, whereas the A /A * were
perfomed with the GEN-A auxiliary function set for the SCF and the GEN-A * auxiliary function set for the final energy calculation.

Molecule NWChem A */A * A /A * Expt.

LiH . . . .

BeH . . . .

CH . . . .

CH ( B ) . . . .

CH ( A ) . . . .

CH . . . .

CH . . . − .

NH . . . .

NH ( B ) . . . .

NH . . . − .

OH . . . .

H O . . . − .

HF − . − . − . − .

SiH ( A ) . . . .

SiH ( B ) . . . .

SiH . . . .

SiH . . . .

PH . . . .

PH . . . .

H S . . . − .

HCl . . . − .

Li . . . .

LiF − . − . − . − .

HC−−−CH . . . .

H C−−CH . . . .

H C−CH . . . − .

CN . . . .

HCN . . . .

CO . . . − .

HCO . . . .

H CO . . . − .

CH OH . . . − .

N . . . .

H NNH . . . .

NO . . . .

O . . . .

H O . . . − .

F . . . .

CO . . . − .

Na . . . .

Si . . . .

P . . . .

S . . . .

Cl . . . .

NaCl − . − . − . − .

SiO . . . − .

CS . . . .

SO . . . .

ClO . . . .



Table B. : (continued)

Molecule NWChem A */A * A /A * Expt.

ClF . . . − .

Si H . . . .

CH Cl . . . − .

H C−SH . . . − .

HOCl . . . − .

SO . . . − .

BF − . − . − . − .

BCl − . − . − . − .

AlF − . − . − . − .

AlCl − . − . − . − .

CF − . − . − . − .

CCl . . . − .

OCS . . . − .

CS . . . .

F CO . . . − .

SiF − . − . − . − .

SiCl − . − . − . − .

NNO . . . .

ClNO . . . .

NF . . . − .

PF − . − . − . − .

O . . . .

F O . . . .

ClF . . . − .

F C−−CF . . . − .

Cl C−−CCl . . . − .

F C−CN . . . − .

HC−−−C−CH . . . .

H C−−C−−CH . . . .

C H (cyclopropene) . . . .

H C−−CH−CH . . . .

C H (cyclopropane) . . . .

CH −CH −CH . . . − .

C H (Z- , -butadiene) . . . .

C H ( -butyne) . . . .

C H (methylenecyclopropane) . . . .

C H (bicyclo[ . . ]butane) . . . .

C H (cyclobutene) . . . .

C H (cyclobutane) . . . .

C H (isobutene) . . . − .

C H (trans butane) . . . − .

C H (isobutane) . . . − .

C H (spiropentane) . . . .

C H (benzene) . . . .

CH F . . . − .

CHF − . − . − . − .

CH Cl . . . − .

CHCl . . . − .

CH NH . . . − .

CH CN . . . .

CH NO (nitromethane) . . . − .



Table B. : (continued)

Molecule NWChem A */A * A /A * Expt.

CH ONO (methyl nitrite) . . . − .

CH SiH . . . − .

HCO H . . . − .

HCO CH . . . − .

CH CONH . . . − .

C H N (aziridine) . . . .

NCCN (cyanogen) . . . .

NH(CH ) . . . − .

CH CH NH . . . − .

H C−−C−−O (ketene) . . . − .

C H O (oxirane) . . . − .

CH CHO . . . − .

O−−CH−CH−−O . . . − .

CH CH OH . . . − .

(CH ) O . . . − .

C H S (thiooxirane) . . . .

(CH ) S−−O . . . − .

CH CH SH . . . − .

(CH ) S . . . − .

H C−−CHF . . . − .

CH CH Cl . . . − .

H C−−CHCl . . . .

H C−−CHCN . . . .

(CH ) C−−O . . . − .

CH CO H . . . − .

CH CFO . . . − .

CH COCl . . . − .

CH CH CH Cl . . . − .

(CH ) CHOH . . . − .

CH −O−CH CH . . . − .

(CH ) N . . . − .

C H O (furan) . . . − .

C H S (thiophene) . . . .

C H N (pyrrole) . . . .

C H N (pyridine) . . . .

H . . . .

SH . . . .

C−−−CH . . . .

HC−−CH ( A′) . . . .

CH C−−O ( A′) . . . − .

CH −OH ( A) . . . − .

CH O ( A′) . . . .

CH CH O ( A′′) . . . − .

CH S ( A′) . . . .

CH CH ( A′) . . . .

(CH ) CH ( A′) . . . .

C(CH ) . . . .

NO ( A ) . . . .

CH CH−−C−−CH . . . .

C H (isoprene) . . . .

C H (cyclopentane twist) . . . − .



Table B. : (continued)

Molecule NWChem A */A * A /A * Expt.

C H (n-pentane) . . . − .

C(CH ) (neopentane) . . . − .

C H ( , -cyclohexadiene) . . . .

C H ( , -cyclohexadiene) . . . .

C H (cyclohexane chair) . . . − .

C H (n-hexane) . . . − .

C H ( -methylpentane) . . . − .

C H −CH (toluene) . . . .

C H (n-heptane) . . . − .

C H (cyclooctatetraene) . . . .

C H (n-octane) . . . − .

C H (naphtalene) . . . .

C H (azulene) . . . .

CH CO CH (Z-methylacetate) . . . − .

(CH ) COH (t-butanol) . . . − .

C H NH (aniline) . . . .

C H OH (phenol) . . . − .

C H O (divinyl ether) . . . − .

C H O (tetrahydrofuran) . . . − .

C H O (cyclopentanone) . . . − .

C H O (benzoquinone) . . . − .

C H N (pyrimidine) . . . .

(CH ) SO . . . − .

C H Cl (chlorobenzene) . . . .

NC(CH ) CN (succinonitrile) . . . .

C H N (pyrazine) . . . .

C H O ( -butyn- -one) . . . .

C H O (E-crotonaldehyde) . . . − .

C H O (acetic anhydride) . . . − .

C H S ( , -dihydrothiophene) . . . .

(CH ) CHCN . . . .

C H O (methyl ethyl ketone) . . . − .

(CH ) CHCHO . . . − .

C H O ( , -dioxane) . . . − .

C H S (tetrahydrothiophene) . . . − .

(CH ) CCl . . . − .

C H Cl (n-butyl chloride) . . . − .

C H N (tetrahydropyrrole) . . . − .

C H NO ( -nitrobutane) . . . − .

(CH CH ) O . . . − .

CH CH(OCH ) (dimethyl acetal) . . . − .

(CH ) CSH . . . − .

C H S (diethyl disulfide) . . . − .

(CH ) CNH . . . − .

(CH ) Si . . . − .

C H S ( -methyl thiophene) . . . .

C H N (N-methyl pyrrole) . . . .

C H O (tetrahydropyran) . . . − .

(CH CH ) C−−O . . . − .

C H O (isopropyl acetate) . . . − .

C H S (tetrahydrothiopyran) . . . − .



Table B. : (continued)

Molecule NWChem A */A * A /A * Expt.

C H N (piperidine) . . . − .

C H O (t-butyl methyl ether) . . . − .

C H F ( , -difluorobenzene) . . . − .

C H F ( , -difluorobenzene) . . . − .

C H F (fluorobenzene) . . . − .

C H O (diisopropyl ether) . . . − .

PF − . − . − . − .

SF − . − . − . − .

P . . . .

SO . . . − .

SCl . . . − .

POCl . . . − .

PCl . . . − .

Cl O S . . . − .

PCl . . . − .

Cl S . . . − .

SiCl ( A ) . . . − .

CF Cl − . − . − . − .

C F − . − . − . − .

CF . . . − .

C H (phenyl radical) . . . .

M.D. . . .

M.A.D. . . .

Max. Dev. . . .



Table B. : ADMM Hartree-Fock standard heats of formation [kcal/mol] for the neutral molecules of the G / test set. B LYP/ - G( df,p) optimized geometries, the Def -TZVPP basis set
in spherical representation and the GEN-A */GEN-A * approach were used in all calculations.

Molecule LDF-EXX CAP - G KT - G EV - G CAP DZVP KT DZVP EV DZVP Expt.

LiH . . . . . . . .

BeH . . . . . . . .

CH . . . . . . . .

CH ( B ) . . . . . . . .

CH ( A ) . . . . . . . .

CH . . . . . . . .

CH . . . . . . . − .

NH . . . . . . . .

NH ( B ) . . . . . . . .

NH . . . . . . . − .

OH . . . . . . . .

H O . . . . . . . − .

HF − . − . − . − . − . − . − . − .

SiH ( A ) . . . . . . . .

SiH ( B ) . . . . . . . .

SiH . . . . . . . .

SiH . . . . . . . .

PH . . . . . . . .

PH . . . . . . . .

H S . . . . . . . − .

HCl . . . . . . . − .

Li . . . . . . . .

LiF − . − . − . − . − . − . − . − .

HC−−−CH . . . . . . . .

H C−−CH . . . . . . . .

H C−CH . . . . . . . − .

CN . . . . . . . .

HCN . . . . . . . .

CO . . . . . . . − .

HCO . . . . . . . .

H CO . . . . . . . − .

CH OH . . . . . . . − .

N . . . . . . . .



Table B. : (continued)

Molecule LDF-EXX CAP - G KT - G EV - G CAP DZVP KT DZVP EV DZVP Expt.

H NNH . . . . . . . .

NO . . . . . . . .

O . . . . . . . .

H O . . . . . . . − .

F . . . . . . . .

CO . . . . . . . − .

Na . . . . . . . .

Si . . . . . . . .

P . . . . . . . .

S . . . . . . . .

Cl . . . . . . . .

NaCl − . − . − . − . − . − . − . − .

SiO . . . . . . . − .

CS . . . . . . . .

SO . . . . . . . .

ClO . . . . . . . .

ClF . . . . . . . − .

Si H . . . . . . . .

CH Cl . . . . . . . − .

H C−SH . . . . . . . − .

HOCl . . . . . . . − .

SO . . . . . . . − .

BF − . − . − . − . − . − . − . − .

BCl − . . − . − . − . − . − . − .

AlF − . − . − . − . − . − . − . − .

AlCl − . − . − . − . − . − . − . − .

CF − . − . − . − . − . − . − . − .

CCl . . . . . . . − .

OCS . . . . . . . − .

CS . . . . . . . .

F CO . . . . . . . − .

SiF − . − . − . − . − . − . − . − .

SiCl − . − . − . − . − . − . − . − .

NNO . . . . . . . .



Table B. : (continued)

Molecule LDF-EXX CAP - G KT - G EV - G CAP DZVP KT DZVP EV DZVP Expt.

ClNO . . . . . . . .

NF . . . . . . . − .

PF − . − . − . − . − . − . − . − .

O . . . . . . . .

F O . . . . . . . .

ClF . . . . . . . − .

F C−−CF . . . . . . . − .

Cl C−−CCl . . . . . . . − .

F C−CN . . . . . . . − .

HC−−−C−CH . . . . . . . .

H C−−C−−CH . . . . . . . .

C H (cyclopropene) . . . . . . . .

H C−−CH−CH . . . . . . . .

C H (cyclopropane) . . . . . . . .

CH −CH −CH . . . . . . . − .

C H (Z- , -butadiene) . . . . . . . .

C H ( -butyne) . . . . . . . .

C H (methylenecyclopropane) . . . . . . . .

C H (bicyclo[ . . ]butane) . . . . . . . .

C H (cyclobutene) . . . . . . . .

C H (cyclobutane) . . . . . . . .

C H (isobutene) . . . . . . . − .

C H (trans butane) . . . . . . . − .

C H (isobutane) . . . . . . . − .

C H (spiropentane) . . . . . . . .

C H (benzene) . . . . . . . .

CH F . . . . . . . − .

CHF − . − . − . . − . − . − . − .

CH Cl . . . . . . . − .

CHCl . . . . . . . − .

CH NH . . . . . . . − .

CH CN . . . . . . . .

CH NO (nitromethane) . . . . . . . − .

CH ONO (methyl nitrite) . . . . . . . − .



Table B. : (continued)

Molecule LDF-EXX CAP - G KT - G EV - G CAP DZVP KT DZVP EV DZVP Expt.

CH SiH . . . . . . . − .

HCO H . . . . . . . − .

HCO CH . . . . . . . − .

CH CONH . . . . . . . − .

C H N (aziridine) . . . . . . . .

NCCN (cyanogen) . . . . . . . .

NH(CH ) . . . . . . . − .

CH CH NH . . . . . . . − .

H C−−C−−O (ketene) . . . . . . . − .

C H O (oxirane) . . . . . . . − .

CH CHO . . . . . . . − .

O−−CH−CH−−O . . . . . . . − .

CH CH OH . . . . . . . − .

(CH ) O . . . . . . . − .

C H S (thiooxirane) . . . . . . . .

(CH ) S−−O . . . . . . . − .

CH CH SH . . . . . . . − .

(CH ) S . . . . . . . − .

H C−−CHF . . . . . . . − .

CH CH Cl . . . . . . . − .

H C−−CHCl . . . . . . . .

H C−−CHCN . . . . . . . .

(CH ) C−−O . . . . . . . − .

CH CO H . . . . . . . − .

CH CFO . . . . . . . − .

CH COCl . . . . . . . − .

CH CH CH Cl . . . . . . . − .

(CH ) CHOH . . . . . . . − .

CH −O−CH CH . . . . . . . − .

(CH ) N . . . . . . . − .

C H O (furan) . . . . . . . − .

C H S (thiophene) . . . . . . . .

C H N (pyrrole) . . . . . . . .

C H N (pyridine) . . . . . . . .



Table B. : (continued)

Molecule LDF-EXX CAP - G KT - G EV - G CAP DZVP KT DZVP EV DZVP Expt.

H . . . . . . . .

SH . . . . . . . .

C−−−CH . . . . . . . .

HC−−CH ( A′) . . . . . . . .

CH C−−O ( A′) . . . . . . . − .

CH −OH ( A) . . . . . . . − .

CH O ( A′) . . . . . . . .

CH CH O ( A′′) . . . . . . . − .

CH S ( A′) . . . . . . . .

CH CH ( A′) . . . . . . . .

(CH ) CH ( A′) . . . . . . . .

C(CH ) . . . . . . . .

NO ( A ) . . . . . . . .

CH CH−−C−−CH . . . . . . . .

C H (isoprene) . . . . . . . .

C H (cyclopentane twist) . . . . . . . − .

C H (n-pentane) . . . . . . . − .

C(CH ) (neopentane) . . . . . . . − .

C H ( , -cyclohexadiene) . . . . . . . .

C H ( , -cyclohexadiene) . . . . . . . .

C H (cyclohexane chair) . . . . . . . − .

C H (n-hexane) . . . . . . . − .

C H ( -methylpentane) . . . . . . . − .

C H −CH (toluene) . . . . . . . .

C H (n-heptane) . . . . . . . − .

C H (cyclooctatetraene) . . . . . . . .

C H (n-octane) . . . . . . . − .

C H (naphtalene) . . . . . . . .

C H (azulene) . . . . . . . .

CH CO CH (Z-methylacetate) . . . . . . . − .

(CH ) COH (t-butanol) . . . . . . . − .

C H NH (aniline) . . . . . . . .

C H OH (phenol) . . . . . . . − .

C H O (divinyl ether) . . . . . . . − .



Table B. : (continued)

Molecule LDF-EXX CAP - G KT - G EV - G CAP DZVP KT DZVP EV DZVP Expt.

C H O (tetrahydrofuran) . . . . . . . − .

C H O (cyclopentanone) . . . . . . . − .

C H O (benzoquinone) . . . . . . . − .

C H N (pyrimidine) . . . . . . . .

(CH ) SO . . . . . . . − .

C H Cl (chlorobenzene) . . . . . . . .

NC(CH ) CN (succinonitrile) . . . . . . . .

C H N (pyrazine) . . . . . . . .

C H O ( -butyn- -one) . . . . . . . .

C H O (E-crotonaldehyde) . . . . . . . − .

C H O (acetic anhydride) . . . . . . . − .

C H S ( , -dihydrothiophene) . . . . . . . .

(CH ) CHCN . . . . . . . .

C H O (methyl ethyl ketone) . . . . . . . − .

(CH ) CHCHO . . . . . . . − .

C H O ( , -dioxane) . . . . . . . − .

C H S (tetrahydrothiophene) . . . . . . . − .

(CH ) CCl . . . . . . . − .

C H Cl (n-butyl chloride) . . . . . . . − .

C H N (tetrahydropyrrole) . . . . . . . − .

C H NO ( -nitrobutane) . . . . . . . − .

(CH CH ) O . . . . . . . − .

CH CH(OCH ) (dimethyl acetal) . . . . . . . − .

(CH ) CSH . . . . . . . − .

C H S (diethyl disulfide) . . . . . . . − .

(CH ) CNH . . . . . . . − .

(CH ) Si . . . . . . . − .

C H S ( -methyl thiophene) . . . . . . . .

C H N (N-methyl pyrrole) . . . . . . . .

C H O (tetrahydropyran) . . . . . . . − .

(CH CH ) C−−O . . . . . . . − .

C H O (isopropyl acetate) . . . . . . . − .

C H S (tetrahydrothiopyran) . . . . . . . − .

C H N (piperidine) . . . . . . . − .



Table B. : (continued)

Molecule LDF-EXX CAP - G KT - G EV - G CAP DZVP KT DZVP EV DZVP Expt.

C H O (t-butyl methyl ether) . . . . . . . − .

C H F ( , -difluorobenzene) . . . . . . . − .

C H F ( , -difluorobenzene) . . . . . . . − .

C H F (fluorobenzene) . . . . . . . − .

C H O (diisopropyl ether) . . . . . . . − .

PF − . − . − . − . − . − . − . − .

SF − . − . − . . − . − . − . − .

P . . . . . . . .

SO . . . . . . . − .

SCl . . . . . . . − .

POCl . . . . . . . − .

PCl . . . . . . . − .

Cl O S . . . . . . . − .

PCl . . . . . . . − .

Cl S . . . . . . . − .

SiCl ( A ) . . . . . . . − .

CF Cl − . . . . − . − . − . − .

C F − . − . − . . − . − . − . − .

CF . . . . . . . − .

C H (phenyl radical) . . . . . . . .

M.D. . . . . . . .

M.A.D. . . . . . . .

Max. Dev. . . . . . . .
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