

x* (nstf_. i)

CINVESTAV

BIBLIOTECA CENTRAL

SSIT000009524

ZOÓQ

CINVESTAV
IPN

ADQUISICIÓN
DE LIBROS

Centro de Investigación y de Estudios Avanzados del I.P.N.

Unidad Guadalajara

Modelado Declarativo Auxiliado por

Conocimiento - DeclarativeModeling

Based On Knowledge

Tesis que presenta:

Jaime Alberto Zaragoza Rios

para obtener el grado de:

Doctor en Ciencias

en la especialidad de:

Ingeniería Eléctrica

Directores de Tesis

Dr. Félix Francisco Ramos Corchado

M.C. Véronique Gaildrat

Guadalajara, Jalisco, Diciembre de 2009.
CENTRO DE INVESTIGACIÓN V
DE ESTUDIOS AVANZADOS DEL
INSTITUTO POLITÉCNICO

NACIONAL

COORDINACIÓN GENERAl nc

8BRV.C.OS BIBLrooiURCoV

ci_AsiF.rn£;L65.<íé .ZhlJ2&¡Á
ADQU!ü.:_ss v -bOZ. ..__«]
FECH«:__¿J, jAau«..t-2_3J__I
PROCED „SSo*,).- ZOi.____

L64éOO -voov

Centro de Investigación y de Estudios Avanzados

del I.P.N.

Unidad Guadalajara

Modelado Declarativo Auxiliado por

Conocimiento - Declarative Modeling
Based On Knowledge

A thesis presented by:
Jaime Alberto Zaragoza Rios

to obtain the degree of:

Doctor in Science

in the subject of:

Electrical Engineering

Thesis Advisors:

Dr. Félix Francisco Ramos Corchado

M. C. Véronique Gaüdrat

Guadalajara, Jalisco, December 2009.

Modelado Declarativo Auxiliado por

Conocimiento - Declarative Modeling

Based On Knowledge

Tesis de Doctorado en Ciencias

Ingeniería Eléctrica

Por:

Jaime Alberto Zaragoza Rios

Maestro en Ciencias

Centro de Investigación y de Estudios Avanzados del I.P.N.,

Unidad Guadalajara 2004-2006

Becario de CONACYT, expediente no. 190965

Directores de Tesis

Dr. Félix Francisco Ramos Corchado

M.C. Véronique Gaildrat

CINVESTAV del IPN Unidad Guadalajara, Diciembre de 2009.

Modelado Declarativo Auxiliado por

Conocimiento - Declarative Modeling

Based On Knowledge

Doctor of Science Thesis

In Electrical Engineering

By:
Jaime Alberto Zaragoza Rios

Master in Computer Science

Centro de Investigación y de Estudios Avanzados del

I.P.N., Unidad Guadalajara 2004-2006

Scholarship granted by CONACYT, No. 190965

Thesis Advisors:

Dr. Félix Francisco Ramos Corchado

Dr. Véronique Gaildrat

CINVESTAV del IPN Unidad Guadalajara, December, 2009.

Doctor in Sciences Thesis in Electrical Engineering

Presented by:

M.C. Jaime Alberto Zaragoza Rios

to obtain the degree of:

Doctor in Sciences

in the specialty of:

Electrical Engineering

Dr. Félix Francisco Ramos Corchado
Thesis Advisor

M. de C. Véronique Gaildrat
Thesis Co-Advisor

Dr. José Luis Leyva Montiel

Sinodal

Dr. Luis Ernesto Lopes Mellado

Sinodal

Dr. Juan Manuel Ramirez
Arredondo
Sinodal

Prof. Jean-Luc Koning
Sinodal

Dr. Marco Antonio Ramos Corchado
Sinodal

December 15, 2009

Acknowledgments

I would like to thank National Council on Science and Technology, CONACyT, for providing
PhD Scholarship number 1910965. This research is also partially supported by CoECyT-Jal

project No. 2008-05-97094.

I would also like to thank my thesis supervisors, Dr. Félix Francisco Ramos Corchando,
and M. de C. Véronique Gaildrat, for their valuable guidance in the completion of this

research.

Also spe:ial thanks to my co-workers from the Distributed Systems group at CINVES

TAV, as well as the people from the VORTEX Lab at IRIT, in Toulouse, France.

Dedicated to my parents, Jaime Zaragoza Infante and Margarita Rios Gonzáles.

Resumen

La tecnología moderna ha permitido la creación y representación de Mundos Virtuales y

criaturas con un alto nivel de detalle, tal que vistos en películas, a veces es difícil distinguir
cuales elementos son generados por computadora y cuales no. Así mismo, los juegos de vídeo

han alcanzado un nivel cercano al realismo fotográfico.

Sin embargo, tal tecnología está en manos de habilidosos diseñadores, artistas y progra

madores, para los cuales toma de semanas a años para obtener esos resultados.

Modelado Declarativo es un método que permite crear modelos especificando tan solo algu
nas propiedades para los componentes del mismo. Aplicado a la cración de Mundos Virtuales,
el modelado declarativo puede ser usado para construir el mundo virtual, estableciendo la

disposición de los objetos, generando el contexto necesario para incluir animación y diseño

de escena, así como generar las salidas usadas por un sistema de visualización/animación.

Este documento presenta una investigación enfocada a explorar el uso del modelado

declarativo para crear Ambientes Virtuales, usando Explotación del Conocimiento como

apoyo para el proceso y facilitar la transición del modelo de datos a una arquitectura suby

acente, que toma la tarea de animar y evolucionar la escena.

I

Summary

Modern technology has allowed the creation and presentation of Virtual Worlds and creatures

with such a high level of detail, that when used in films, sometimes is difficult to tell which

elements are computer-generated and which not. Also, videogames had reached a level cióse

to photographic realism.

However, such technology is in the hands of skillful designers, artists, and programmers,

for whom it takes from weeks to years to complete these results.

Declarative modeling is a method which allows to créate models specifying just a few

properties for the model components. Applied to Virtual World creation, declarative mod

eling can be used to construct the Virtual World, establishing the layout for the objects,

generating the necessary context to provide animation and scene design, and generating the

outputs used by a visualization/animation system.

This document presents a research devoted to explore the use of declarative modeling
for creating Virtual Environments, using Knowledge Exploitation to support the process and

ease the transition from the data model to an underlaying architecture which takes the task

of animating and evolving the scene.

II

Contents

1 Introduction 1

1.1 Introduction 2

1.2 The Problem 2

1.3 Description of Problem 3

1.4 Research Objectives . 5

2 State of the Art 7

2.1 Technical Introduction 8

2.2 Declarative modeling 9

2.2.1 Description 10

2.2.2 Generation 11

2.2.3 Look Up 13

2.3 Knowledge Management 13

2.3.1 Ontolingua 15

2.3.2 WebOnto 16

2.3.3 Protege 16

2.3.4 Web Ontology Language 16

2.4 Constraint Satisfaction Problems 17

2.4.1 Backtracking 20

2.4.2 Backmarking 20

2.4.3 Backjumping 21

2.4.4 Backjumping based on graphics 21

III

CONTENTS

2.4.5 Forward Checking

Virtual Environment

Related Works

2.6.1 WordsEye: Automatic text-to-scene conversión system

2.6.2 DEM2ONS: High Level Declarative Modeler for 3D Graph

2.6.3 Multiformes: Declarative Modeler as 3D sketch tool

2.6.4 CAPS: Constraint-based Automatic Placement System

2.6.5 ALICE

3 Proposal

3.1 Interaction Language: A Review of VEDEL

3.2 Parsing Methodology

3.3 Modeler's Architecture

3.4 Creating the Model

3.4.1 Model Data Structure

3.4.2 Modeler procedure

3.4.3 Geometrical Validation

3.5 Generation of the Outputs

3.5.1 Model-View Controller

3.6 Modifying the Model

4 Research Outcome

4.1 Virtual Environment Editor Prototypes

4.1.1 GeDA-3D Virtual Environment Editor Prototype

4.1.2 DRAMA Project Module DRAMAScéne

5 Conclusions

5.1 Conclusions

5.1.1 Future Work.

Bibliography

List of Figures

1.1 Project Overview. 4

2. 1 Fields of research. 9

2.2 Interactive process of declarative modeling. 10

2.3 Characterization for an object 12

2.4 Ontology example. 18

2.5 Different levéis of detail for avatars. 23

2.6 FL-System, City Engine and Instant Architecture 24

3.1 VEDEL examples. 31

3.2 Parsed Entry Structure 32

3.3 Modeler Architecture 33

3.4 Model Structure. 35

3.5 Collision Tags 40

3.6 Characteristic points 41

3.7 Validation volume for equation l.b 42

3.8 Special case: against 43

3.9 Special case: inside 44

4.1 Virtual Environment Editor GUI 47

4.2 Previous Prototypes: Battle of the Frogs 48

4.3 Previous Prototypes: Earlier versión of GeDA-3D 48

4.4 Example 1: Top-Down view 50

V

LET OF FEURES VI

4.5 Example 1: General View 50

4.6 Example 2: House environment 51

4.7 Example 2: House environment 52

4.8 Example 3: Detail view 53

4.9 Example 3: Top-Down View 53

4.10 Examples of DRAMAScéne Concepts 55

5.1 GEDA-3D Architecture 60

Chapter 1

Introduction

Abstract

We present the objectives for this research, the motivation that leads us to perform research

in the field of declarative modeling, the goals to be fulfilled, and the problems that must be

solved in order to reach that objective. We also expose the results of our previous research.

1

1.1. INTRODUCTION 2

1.1 Introduction

There has always been the need to represent ideas, in order to transmit, preserve, and make

them available to others. Oral language was the first method to achieve these goals, followed

by painting, and then writing. Any of these methods is enough when the ideas represented
are easy to express. However, as these ideas become more and more complex, methods to

represent them also become more and more specialized.

Fortunal <;ly, these methods can be implemented as tools. However, the complexity of

tools useful to handle the representation of complex ideas needs a learning period, going
from simply understanding the way to hold the tool properly such as pencils, to different

ways to achieve the desired results. Also, each tool can be composed of different material,
and applied in a number of ways, on different elements.

These tools have evolved through time, reaching rich versions that are implemented

through computational systems, which allow a greater flexibility in their usage, even in

ways that are not possible in the physical world using manual tools. In these ways, modern

tools allow representing almost any kind of idea, from entertainment to education, and from

visual aid to formal training. In computer science, Virtual Reality (VR) is a discipline which

is useful for representing an actual or syntetic world, and can be perceived by the users in a

variety of forms: text, sound, visuals, or even sensations.

1.2 The Problem

However, creating Virtual Worlds (VW) is a complex task carried out by a complete staff

of modelers, programmers and artists. Completing a project can take from a few days to

several years. Those projects can go from custom presentations for small-business clients

to big productions, like movies or video games. The tools needed to créate these VW have

different degrees of complexity, which forces the users to pass throug training, taking from

a few hours to several weeks. In addition, some of these tools require specialized input

hardware, that in some cases is costly and difficult to use correctly.

A final user who desires to use a VR may feel intimidated by the cost of having a staff

to develop a complex application or discouraged by the learning step necessary to obtain

satisfactory results for simple applications. Also, developers must have a certain degree of

skill or talent to créate results that approach the original idea. Thus, non-expert the users

can find it difficult to créate the VWs they intent to use and may prefer to leave the task to

experienced creators or use other options. However, final the users are the ones who really
need VR technology.

To ease the taks of creating a VW we propose the creation of a tool which will use the

1.3. DESCRIPTION OF PROBLEM 3

necessary procedures to créate such VWs, using as input only a set of properties for the world

defined by the user. The VW can later be extended to a Virtual Environment (VE), where

the entities include in the VW perform actions, display emotions, and are subject to changes
made by a set of rules established by the users.

To tackle the problem we divide the problem of using VR technology in several steps:

Creating the VW, specifying the scene, that is, the actions to take place in the VE, and

visualizing the scene. We focus just on the first two of these subproblems.

The document is organized as follows:

• Chapter 1, Introduction, presents a general view ofthe research project, and intro

duces the motivation, goals, and solutions proposed.

• Chapter 2, State of the Art, describes previous and current studies on Declarative

Modeling, geometric constraint solvers, and knowledge management, as well as some

literature on the subject.

• Chapter 3, Proposed Solution, states our approach in detail, the methods proposed
to soh <; the problem we are trying to solve, the research conducted to validate such ap

proach, and the selection of the methods that better suit the objectives of our research.

• Chapter 4, Research Outcome, presents the outcome ofthis research, the prototypes

developed.

• Chapter 5, Conclusions, raises some future objectives to be solved in future researches.

1.3 Description of Problem

This paper proposes, formalizes and implements a method creating VEs, using simple user

inputs in the form of descriptions, with a formalization cióse to natural language, and ex

ploiting knowledge to validate the statements of the input, with the objective of generating
a model of VE, and finally presents it to the users by means of a 3D viewer, an underlaying

architecture, or any desired platform.

For VE creation we understand contrut a simulated space, ruled by a set of laws (fric
tion, gravity, elasticity, etc.) where several animated and unanimated entities can dwell and

perform actions that may affect other entities and/or the environment.

Our approach uses Declarative Modeling (DM) to créate a VE. This is a very powerful

technique allowing the user to describe the scene to be designed in an intuitive manner,

by giving only some expected properties for the scenario, and letting the modeler find one

or several solutions, if any, that satisfy these properties [1]. Thus in our case, the VE is

1.3. DESCRIPTION OF PROBLEM 4

created using a natural language as a description provided by final the users. The difference

between our approach and those propoaed ¡n related researches is that we propose the use

of a Knowledge Datábase (KB) needed to validate the input and genérate the output during

the process.

The DM process is usually formed by three phases [2]:

• Description. Defines the interaction language.

• Generation. The modeler generates one or more scenes that match what the users

describe.

• Insight. Users are presented with the models, then they can choose a solution.

Figure 1.1: Project Overview.

In our previous research we focused on the Description phase of the DM technique. We

defined a latnguage centered in the creation of Virtual Scenarios (VS) and developed a tool

that can analyze the descriptions written in such language. To present a visual outcome of

the description, we used the rendering machine provided by the GeDA-3D [3] architecture,

1.4. RESEARCH OBJECTIVES 5

which also hosts the tools for evolving the scene. In addition to the language, a KB was

constructed, and used in the parser to process the terms in the description, and generated

the appropriate outputs.

Our current research is focused on the two last steps of DM. This means that once all the

possible properties to the environment and to the entities that will dwell in it are asigned,
we need to validate the positioning of each entity in the scenario. This will be conducted

over the model generated in the previous step, where a tentative positioning is conducted,

although it is not validated. The model can be processed using two tools: A Constraint

Solution Problem (CSP) Solving Algorithm or a Geometric Constraint Solver. The second

option involves the construction of a specialized tool or using a commercial product to solve

possible model conflicts. The first method implies defining and structuring a method to solve

a CSP.

While the latter option involvse using widely tested tools, the cost and the necessary

changes in the process where a great drawback. The former option allows better adaption of

tools to our project, because the KB will also contains constraint information for validating
the spatial relationships between entities and the environment.

A: lexical-syntactic parser, a model creator, an inference machine and an output generator
form the Virtual Environment Editor (VEE), our VE constructor tool. The model creator is

formed by a declarative modeler and a CSP solving algorithm, which validates the description

and generates the possible models, and allows the modification of the same.

Finally for the context constructor, we need to consider the rest of the GeDA-3D ar

chitecture [3], which includes several modules on which the modeler depends, and that are

also dependent on the modeler. The VW created through the scene editor contains all the

information necessary for the architecture to make a correct representation of the VW.

1.4 Research Objectives

We consider several objectives to be reached during the development of this research. Some

of these objectives are oriented to develop novel declarative methods for VE generation, while

others are focused on solving the problems for constructing our use case, which is a VEE

necessary to validate our proposal. We list the objectives for this research next:

• Defining a method for integrating knowledge exploitation into DM.

• Integrating the use of knowledege in a CSP solver algoritm.

• Establishing the necessary information to be included in a KB, in order to créate a

model for a VE.

1.4. RESEARCH OBJECTIVES 6

• Designing the architecture for a VEE, based on DM, which can receive an input based

on a language specifically defined for VE description.

• Including in the VEE architecture the necessary means to access a KB.

• Adding methods in the VEE architecture to allow the generation of different types of

outputs, in such a way that those outputs can be added, modified or removed without

modifying the modeler itself.

• Implementing the proposed methods for DM and CSP solving into the architecture

designed for the VEE.

• Including into the design of the VEE the necessary means to allow the creation of VE

in a number of ways, from standard input text, to haptic devices input.

• Integrating the VEE with the rest of the GeDA-3D architecture.

The final result of this research is to propose a friendly, easy to use tool based on DM for

final, non-experienced the users (Figure 1.1). Thus, it must be possible to use the solution

obtained through our method as an input of a 3D viewer, an underlying architecture, or any
desired platform.

Chapter 2

State of the Art

Abstract

In this chapter we expose the methodologies used in our research. First, we present in detail

the DM method. Next, we explore the different approaches for knowledge representation

and exploitation. Later, different methods for solving Constraint Satisfaction Problem are

presented. Finally, we take on some concepts for VR, and review current researches in the

área.

7

2.1. TECHNICAL INTRODUCTION 8

2.1 Technical Introduction

Before we start detailing the methodology used and the implementation procedure employed

for creating the Virtual Modeler (VM), we need to explain some concepts for a better under

standing of our project.

A User Interface (UI) is the aggregation of means employed by the users to interact

with a system. It provides the methods for input, allowing the manipulation of the system,

the output, or the presentation of the effects resulting of the users interaction.

The Backus-Naur Form, or BNP, is a formal way to describe formal languages. Consists

of a context free grammar to define the syntax of a programming language by using two sets

of rules: i.e., lexical rules and syntactic rules. The EBNF or Extended Backus-Naur Form is

a metasyntax notation used to express context-free, an extensión of the basic Backus-Naur

Form (BNF) metasyntax notation.

A Token is a block of text that can be categorized. This block of text can also be

known as a lexeme. Through categorization, a lexical analyzer processes lexemes an provides

meaning to them. This is known as tokenization. A token can have any kind of presentation,
as long as it is a useful part of the structured text.

An Application Programming Interface or API, is a set of standardized requesta.

In essence, it provides the methods for accessing a program services. An API is formed

by routines, data structures, object classes and/or protocols provided by libraries and/or

operating system services.

A Model-View Controller, or MVC, is a paradigm where the user inputs a model of

the external world, and the visual feedback to the users is explicitly separated and handled by
three types of objects, each of them specialized for its task. The view manages the graphical

and/or textual output, the controller interprets the inputs from the user, commanding the

model and/or the view to change as appropriate. Finally, the model manages the behavior

and data of the application domain, responds to requests for information about its state

(usually from the view), and responds to instructions to change the state (usually from the

controller) .

Inference is a particular property from KB. Is the action of extrapolating new infor

mation from current knowledge, and is a useful characteristic for validating concepts and

properties, since the the users can begin stating simple characteristics, which can be com

bined to infer complex knowledge, extending the capabilities of the system which makes use

of the KB.

The modeler was coded in the Java language, given its multi-platform capabilities and

the need for using the Protege OWL API, written in the same language. The Standard

Development Kit selected was the last one available, Java SE 6, and the coding was conducted

2.2. DECLARATIVE MODELING 9

under the Integrated Development Environment (IDE) Eclipse Ganymede.

The ontology was defined on the Protege Framework. The versión chosen was 3.2, since

later releases have compatibility issues with ontologies created by previous versions.

2.2 Declarative modeling

Declarative modeling focuses on what users want, instead of the method used to obtain the

result, or how to reach that solution. DM can be applied to a variety of problems, and

has been used in several fields such as work flow systems [4] or biosystems [5]. It can be

characterized as a multidisciplinary method, which involves several research fields, such as

virtual reality, knowledge management or artificial intelligence (figure 2.1).

Generation

Description
'

/¡p^v
•Language

•Application Domain

•User Interfaces

•Databases

Figure 2.1: Fields of research.

Since our field of interest is the generation of VS using this method, we use the DM

definition from Demetri Píemenos et al[l]:

Definition 2.1 (Declarative Modeling). A very powerful technique, allowing to describe

the scenario to be designed in an intuitive manner, by only giving some expected properties
of the scene, and letting the modeler find solutions, if any, verifying these properties.

2.2. DECLARATIVE MODELING 10

Partial

Solutions

Descriptions
Outlook

Generation

Process

Figure 2.2: Interactive process of declarative modeling.

Following this definition, we aim to provide a system allowing users to créate a VE data

model, which can then be used by an underlaying architecture to execute a simulation of a

scene. We can divide the DM process into three steps:

2.2.1 Description

During this step, the properties and relationships between entities are provided. There are

several interaction modalities, such as scripting, gestural or language interaction, as well

as multimodal options. We take the language interaction approach, since it is a direct

method, less intimidating than gestural methods (either mouse or haptic inputs), and, if

handled properly, can be cióse to natural language, allowing an easy interaction between the

modeler and the user. An important part of the description step is the semantic knowledge

management, with the objective of avoid stating all the concepts explicitly by the user. Any

ambiguity must be solved, using the specificities given in the description to fill the gaps in the

model (such as placing books on a bookshelf, or orienting the audience in a theater toward

the scenario) and obtain the context for the VE. This step defines the interaction language

and UI, so the approach must be carefully selected and specified. We present our interaction

language and UI in chapter 3.

2.2. DECLARATIVE MODELING 11

2.2.2 Generation

Generation is the search of a consistent solution, through the analysis and evaluation of the

properties stated. The properties are interpreted and solved according to a set of constraints

and are used for obtaining all possible valúes for the variables in the problem, and exploring
the solution space in order to find solutions matching with the user's requests. These solutions

can be found by definig and solving a CSP. Several methods have been used to solve CSP,

such as search trees [6] or specific procedural approach. We focus on constraint satisfaction,

where methods such Space-CSP [7], Numeric-CSP [8] or Metaheuristics ([9], [10]) have been

used. The efficiency of these methods depends on adequacy of the solving method, the

representation of constraints, the complexity of the search space, and the application domain.

To choose a method we consider four criteria: memory space, accuracy of the representation,

efficiency, and simplicity of implementation. We also consider that complete methods are

best suited to scenarios with few objects, while metaheuristic methods perform best with

numerous elements. Metaheuristics are not able to certify the optimality of the solutions

they find, while complete procedures have often proved incapable of finding solutions whose

quality is cióse to that obtained by the leading meta-heuristics particularly for real world

problems, which often attain notably high levéis of complexity [9].

Objects must be characterized in order to be represented by the constraint set (figure

2.3). In this research, the representation ofthe objects must include its position, orientation

and size, as well as relative and spatial relationship with other objects. The search space

model can be represented in several ways:

• Explicit, storing all the possible valúes. However, the increasing amount of necessary

memory is evident.

• Semi-explicit, associating an explicit representation with every variable, but using a

projection method.

• Implicit, where the description contains the representation. Memory space is constant,

however, it is requieres a test of consistency.

The constraints can be determined by properties or contextual data, implying that the

properties must correspond to constraints. Constraints can also be represented in three

levéis, depending on the complexity, number of variables, and generation approach: Implicit

(constraint is too complex), projective (using projection methods), and explicit (if constraint

is simple enough). The model is created using iterative methods, refining the solution and

satisfying the constraints at each interaction. First, the valúes for properties of the entities

are solved, then, these valúes are validated against the rest of the model. If any constraint is

violated or not satisfied, the model must be modified. Thus, the process repeats until finding
a solution or a stop condition is reached.

2.2. DECLARATIVE MODELING 12

Figure 2.3: Characterization for an object

Properties are used for three main tasks: defining the layout of the objects, partitioning

the space and build complex objects. We can also classify them in five sets:

• Basic, when they are used to set the exact object characteristics,

• Fuzzy, which allow partial, imprecise and negative descriptions,

• General, mainly concerning morphological features, positions, numbering, and appear

ance,

• Specific, assigned to predefined shape models, and

• Spatial, used to define the relative or absolute position of objects in the scenario.

2.3. KNOWLEDGE MANAGEMENT 13

2.2.3 Look Up

This allows the users to view all or part of the produced results. It can work using two

methods: presenting to the users the solutions, or just presenting the most balanced solution.

In both cases the users can decide to modify the solution and adapt it, so it comea closer

to the mental image for the VE. There are several methods for the look up, such as freeze

or comment [6], classification of solutions [2], presentation tools [11], navigation tools [12] or
incremental refinement ofthe description [13].

It is important to consider two aspects in the design of a DM: first, the interpretation of

the properties, where we should consider the translation of the properties into the constraints

set. If this is not well defined, the result will be different from the users' requests. A correct

interpretation must consider the normality of the context, this is, the normal usage for the

object, its intrinsic and deictic orientation, and the notion of a pivot element, which functions

as an orientation beacon to all the objects in the scenario.

The second aspect is the look up step, where the selection of the "good" solutions must

be carefully directed. The modeler can genérate all the solutions, but this would imply the

exploration of the whole solution space. It can select a set of representative solutions. Or it

can present only one, as long as all constraints are valid in the solution. Also, the modeler

should allow the users to modify interactively the solutions, adding new properties as the

objects aje manipulated.

2.3 Knowledge Management

Knowledge Databases can be used in a variety of áreas, from medicine [14] to genetics [15]],
and for diverse tasks such as determine non-redundant information system architectures,

support information management, enable shared understanding and communication between

different entities, or facilítate the inter-operability of diverse systems [16] [17].

As we stated in the previous section, an important part during the description step in

DM is the semantic management. In other words, how the translation between the properties

stated in the description of the modeler data structure is handled. There are many ways to

define an entity or a concept, from its physical appearance to the list of its attributes, elements

or parts. For example, a virtual human being can be semantically represented as a complete

unit, it can be described as the conjunction of several elements (head, torso, arms, legs), or

can be defined as a set of philosophical statements (self-aware, conscious, intelligent).

Many methods have been proposed to represent knowledge, such as logic, semantic net

works or rules [18]. Those methods are used in formal representation such as ontology,

description logic or logic schemes, and in diverse applications such as expert systems or

workflow applications [19]. To agree with the concept of knowledge management, we take

2.3. KNOWLEDGE MANAGEMENT 14

the description from Alavi et all [19]:

Definition 2.2 (Knowledge). Knowledge is information contained in the mind of individ

uáis (which may or may not be new, unique, useful, or accurate) related to facts, procedures,
concepts, interpretations, ideas, observations, and judgments.

From theses concepts, we define the knowledge needed to define an entity as a collection

of data, organized in a way that can be related with each other, and that has been formatted

in a way that can be modified, corrected and eliminated as new information appears. This is

in an analogous way to a Data Base, where the information is stored with a specific method,
formated within a layout, and presented according to the users' request. Since knowledge
can be casted by many representations, we represent knowledge as a KB, parting from the

analogy between knowledge for an entity and a Data Base.

A specific type of KB is called Ontology. From a philosophical point of view, ontology
is the explicit specification of a conceptualization: a simple and abstract view of the world

intended to be represented, with the objective to achieve some goal. For systems based on

knowledge, what
"
exists" is exactly what can be represented.

Definition 2.3 (Speech Universe). When the knowledge of a domain is represented in a

declarative formalism, the set of objects that can be represented is called Speech Universe.

The set of objects, and the relationships that can be described between them, is reflected in

the representation vocabulary used by a knowledge-based program to represent that knowl

edge [20].

A basic ontology of the real world is the relation existing amid all existing things, classified

according to the way in which they exist. That is, the way in which something has reached

the reality and the way it actually exists [21].

The systems and services based on knowledge are expensive to build, test and maintain.

A software methodology based on formal specification of shared resources, re-usable compo

nents and complementary services is required. The specifications of shared vocabularies have

an important place in the role of such methodology, because different applications require

different reasoning services, as well as special purpose language to support them.

Therefore, there are several challenges to overeóme for the development of a knowledge-

based, shared and reusable software. As conventional applications, knowledge-based sys

tems are based on heterogeneous hardware platforms, programming languages and network

protocols. However, knowledge based systems have certain special requirements for inter

operability. Such systems opérate and communicate using sentences in a formal language.

They make requests and send answers, taking "previous knowledge'" as input. As agents in

an AI distributed system, they negotiate and interchange knowledge. Communication at the

knowledge level needs conventions at the three levéis: representation language format, agents

communication protocol, and content specification of the shared knowledge [20].

2.3. KNOWLEDGE MANAGEMENT 15

Since our project deals with the creation of a scenario using only a description written

in a natural-like language, it is necessary to design the way to achieve a correct analysis of

the sentences, as well as to keep coherence in the scenario. An example of this could be the

sentence "The whale is in the living room" If we are not talking about a toy, logically, a

whale cannot live a living room; it is too big and is a sea mammal. This can be derived from

the ontology and the sentence can be marked as invalid. If the sentence is changed to "The

toy whale is in the living room'' the analysis must result correct, since a toy shaped like a

whale can be in a living room. As before, this conclusión can be derived with the help of the

ontology.

The Ontology will help us to conduct the semantic analysis of the language, since this

analysis can be reasoned using the knowledge extracted from the ontology. In the previous

example, for the word "whale" the ontology will return information that states that a whale

is a sea animal, a mammal, and that it is several meters long and is heavy. From there, it

can be reasoned that it is not correct for a whale to be placed in a living room. In the second

example, the properties for a toy allow it to exist in a living room, and the in the shape of

a toy whale. Thus, we will use the ontology to exploit knowledge and assure the semantic

coherence of the sentences in the description used for generating the VE.

Many applications and standards have been developed to créate, modify and access knowl

edge in knowledge based-form. We present some of these works, completely oriented to

ontology building, next:

2.3.1 Ontolingua

The system developed at the KSL of the Stanford University [22] consists of a server and a

representation language. The server provides an ontology repository, allowing the creation of

ontology and its modification. The ontologies in the repository can be joined or included in

a new ontology. To interact with the server the user can use any standard web browser. The

server was designed for allowing the cooperation in ontology creation, easy generation of new

ontologies by including (parts of) existing ontologies from a repository, and the possibility

of including primitives from an ontology frame. The ontologies stored in the server can be

converted to different formats to be used in other applications. This allows the use of the

Ontolingua server for creating a new ontology, export it, and then use it in CLIPS-based

application. It is also possible to import definitions from an ontology created on different

languages to the Ontolingua language. The Ontolingua server can be accessed by other

programs if they can use the ontologies stored in the Ontolingua representation language

[20].

2.3. KNOWLEDGE MANAGEMENT 16

2.3.2 WebOnto

WebOnto [23] is a platform completely accessible from the internet. It was developed by
the Knowledge Media Institute at the Open University and designed to support creation,

navigation and collaborative edition of ontologies. In particular, WebOnto was designed to

provide an interface allowing direct manipulation and that presents ontological expression

using a powerful médium. WebOnto was designed to complement the ontology discussion

tool Tadzebao. Thus, it is mainly a graphic tool oriented to construct ontologies. The lan

guage used to model the ontologies in WebOnto es OCLM (Operational Conceptual Modeling

Language), originally developed in the context ofthe VITAL project to provide modeling op
erational capabilities to the work system VITAL [24]. This tool proposes a number of useful

characteristics, like saving structure diagrams, relationships view, classes, rules, and so on,

all of them individually. Other characteristics include cooperatively working in ontologies by

drawing, and using broadcast and function reception.

2.3.3 Protege

Protege ia a multi-platform package [25], designed to build domain model ontologies, and

has been developed by the Informatics Medie Section of Stanford. It is oriented towards

assisting software developers in the creation and support of explicit domain models, and

in incorporating those models directly in software code. The Protege methodology allows

the system designer to develop software from modular components, including reusable work

frames helping to build domain models and independent problem solving methods that im

plement procedural strategies to solve tasks [26]. The Protege framework includes three main

sections: a. the Ontology Editor', used to develop the domain ontology by expanding a hi

erarchical structure and including classes, and concrete or abstract slots; b. Based on the

constructed ontology, Protege is capable of generating a Knowledge Acquisition tool to input

ontology instances. The KA tool can be adapted to the users' needs by using the "Layout"

editor; c. The last part of the program is the Layout interpreter, which reads the output of

the layout editor and shows the user an input screen with a few buttons. These buttons can

be used to make the instances for the classes and sub-classes. The whole tool is graphical,

which is friendly for non-experienced user.

2.3.4 Web Ontology Language

The Web Ontology Language is a semantic markup language designed for publishing and

sharing ontologies over the World Wide Web. It is a standard [27] that forms part of the

W3C Recommendations for the Semantic Web, and was developed by Deborah L. McGuin-

ness and Frank van Harmelen, as a vocabulary extensión of RDF (the Resource Description

2.4. CONSTRAINT SATISFACTION PROBLEMS 17

Framework) [28]. It is a language oriented to process information context for applications that
need more than just representing information for the users. Provides greater interpretability
for web content than similiar standards (XML, RDF or RDF-S), due to additional vocabulary
and formal semantics. It can be divided in three sub-languages, each more expressive than

the previous: OWL Lite, OWL DL, and OWL Full.

• OWL Lite supports primary needs for classification hierarchy and simple constraints.

• OWL DL provides máximum expressiveness, while retaining computational complete
ness.

• OWL Full presents the syntactic freedom of RDF and the máximum expressiveness,
but does not provide computational guarantees.

OWL Lite uses only some of the OWL language features has more limitations than the

others sub-languages. It allows restrictions on the use of properties by instances of a class,
a limited form of cardinality restrictions, a limited intersection constructor, and the RDF

mechanism for data valúes.

OWL DL and OWL Full use the same vocabulary, but OWL DL presents some restrictions.

OWL DL requires type separation, i.e., a class can not be an individual or a property and

can not be applied to the language elements of OWL itself.

An ontology written with OWL consists of three sets: classes, properties, and individuáis.

Each element in those classes can hold a superclass-subclass relationship. Classes define the

archetype for the concepts in the ontology, and contain a set of restrictions, which are the

constrains for the individuáis, which are the instantiations of the classes.

The properties are related to the classes, and can be classified in two types: datatype or

object, and both need a domain, the classes containing the property, and a range, that is, the

subset of valúes allowed for that property. Datatype properties are basic level valúes, such

as strings, integer or boolean valúes. Object properties indicate the relationship between

classes, and contain the list of related individuáis.

Finally, individuáis are instantiations of the classes, and contain the actual valúes for the

specific element in the ontological domain.

In figure 2.4 we present an example of an ontology created with OWL, in a graphical

form.

2.4 Constraint Satisfaction Problems

During the generation phase, verifing the location of the different objects in the scenario

is an important part of the model creation. The properties provided by the user for the

2.4. CONSTRAINT SATISFACTION PROBLEMS 18

owl:Thing

Actor

Woman

Man

Object

Dog

Environment

->

Dog_default
size

scale

position

coljags

geojags

conjags
attribute

X> GermanShepperd
HairColor

Viciousness

Keywords North

X> North default

propertyjype
attribute

cube_side

operation

Figure 2.4: Ontology example.

VE are transformed into a set of constraints, which must be verified and transformed to

assure the correct configuration of any solution. To solve any conflict between constraints,
we employ an algorithm capable of finding a configuration in the solution space for finding a

solution satisfying all constraints. An algorithms with those properties is known as Constraint

Satisfaction Problem (CSP), and is defined as follows [29]:

2.4. CONSTRAINT SATISFACTION PROBLEMS 19

Definition 2.4 (CSP Definition). A tupie < X,D,C >. where:

X = {XQ . . . Xn}, is the set of variables for the problem.
D is a domain for each variable X*.

C = {Co ■ ■ ■ Cn}, the constraints set, where each Ci specifies a subset of _Y¿ and the acceptable
valúes for that subset.

A variable X¡ is considered instanced when it has been assigned a valué from its domain

Di. Those variables which have not been assigned with any valué are called non instanced.

We also can refer to both variables as past variables and future variables, respectively. The

notation "_Y¿ = Xj" means that the variable Xi is assigned with the valué Xj. The act of the

instantiation is denoted by "_Y¿ <— __•/' The variables in a CPS are instantiated in a given

order, denoted by "X¿"

A variable is in a dead-end state, if there is no valué in its domain consistent with _-?._-. .

There are two kinds of dead-ends: leave, if there are constraints that forbid each valué in its
—#

domain, and interior, if there are some valúes making the domain compatible with X¿_i, but

the subtree with root in the variable does not have a solution.

A problem state is the assignment of valúes to one or all of the variables, from the

domain valué sets of each variable, {_Y¿ = v¿, Xj —

Vj . . .}. If an assignment does not viólate

any restriction, is called consistent or legal. A solution to a CSP is a valué assignment to all

variables in such a way that none of the constraints is violated. A problem which presents a

solution is considered satisfiable o consistent, otherwise is called unsatisfiable o inconsistent.

To solve a CSP, there can be used two approximations: search and deduction. Both are

based on the idea "divide and conquer" that is, transforming a complex problem into a

simpler one. Search generally consists of selecting an action to develop, maybe with the aid

of a heuristic, which will take us to the closest state for the intended objective. Tracking is

an example of searching for CSP. The operation is applied to the valué assignation of one

or more variables. If a variable can no longer be assigned in such way that can keep the

consistency for the solution, it reaches a dead-end, and tracking is executed.

It is a good idea to visualize a CSP as a constraint graph, the nodes corresponding to the

problem variables and the ares to restrictions. Dealing with a CSP allows to generalize the

successor function and goal test for adapting to any CSP, as well as to apply efficient and

generic heuristics to avoid including additional information or domain expertise. Also, the

graph structure can be used to simplify the solving process.

A CSP can be designed following an incremental formulation, as in standard search prob

lems, starting with an empty assignment, this is, no variables assigned yet. A successor

function will assign valúes to variables as long as there are conflicts with previously assigned

variables. A test function is designed to find a complete variable assignment, and a constant

step cost.

2.4. CONSTRAINT SATISFACTION PROBLEMS 20

The simplest case of CSP implies discrete variables and finite domains, for example, the

Boolean CSP, formed by variables that can be either true or false. For a máximum domain

size of d in any CSP, the possible number of complete assignations is 0(dn), where n is the

number of variables, in the worst case. If the domain for the discrete variables being handled

by the CSP is infinite, it is not possible to describe restrictions by enumeration of the possible
valúes combinations, but a restriction language can represent it. In the case of continuous

domains, the most common in the real world, we find that the most studied cases are linear

programming problems, which are solved in polynomial time.

The constraints can be unary, when the constrained valúes affect only one variable; binary,
when the constraint involves two variables; or higher order, implying three or more variables.

Constraints can also be absolute, meaning that the violation of any of them exeludes a

potential solution. Some CSP include preference constraints, which indicate what kind of

solution is preferred. Several methods have been proposed to solve CSP; next, we present
some of them:

2.4.1 Backtracking

The simplest algorithm for solving CSP is backtracking [30]. This algorithm starts with an

empty set of consistently assigned variables, and tries to extend it by adding new variables

and valúes for them. If the inclusión of a new variable does not viólate any constraint, the

process is repeated until all variables are included. If the newly added variable makes the

solution inconsistent, the last variable added is instantiated with a new valué. If there are

no more possible valúes for that variable, it is removed from the set and the algorithm starts

the backtracking again.

An important element of the backtracking algorithm is the review of consistencies; which

is conducted frequently, and makes an important part of the algorithm's work. The time

used to conduct this revisión is in agreement to the representation of the constraints. Those

representations can be a list of the allowed tupies to maintain the constraints free and keep

only the incompatible tupies, making use of a Boolean valúes table, or executing a procedure.

2.4.2 Backmarking

This method reduces the cost of consistency checking while backtracking is conducted [29].
It requires that the consistency review be executed in the same order, as the variables were

instantiated. Proceeding in this way, the algorithm avoids previously tested and later rejected

combinations, increasing the efficiency. However, this approach is restricted to binary CPSs

and static variable ordering.

This method requires two additional tables, Mi¡v used to register the first variable with

2.4. CONSTRAINT SATISFACTION PROBLEMS 21

a failed consistency check Xi = xv. If X¿ —

xv is consistent with the previous variables,

M',„ = i. Li records the first variable that has changed its valué since MiiV was assigned for

Xi with any valué v from its domain. If MiiV < Li, the variable pointed by Mi¡v has not

changed and Xt = xv will fail when being checked against Xmví, therefore the consistency
check is not required and xv can be rejected. If MitV > Liy Xí = xv is consistent with all the

variables before X¿, and those consistency checks can be avoided.

2.4.3 Backjumping

This is proposed as a way for reducing the amount of trashing, which is the act of finding the

same dead-end several times [31]. This algorithm is capable of "jumping from a dead-end

to a previous variable that causes the dead-end with its current instantiation. A variable

causes a dead-end, if in conjunction with zero or more variables preceding it in the ordering
are instantiated in such way that a restriction will not allow the assignment of valúes to the

variable in conflict.

An array J¿, i < 1 < n is used to find variables that cause dead-ends. J_ stores the last

variable test for consistency with some valué from _Y¿. If _Y¿ does not get into a dead-end,

then Ji = i — 1. If Xi is inconsistent, then each valué in _9¿ was tested for consistency with

the past variables until an instatiation failed to pass test, Ji contains the index of the variable

inconsistent for some valué in Z)¿. Is important that the consistency review of instantiated

variables be in the same order as the instantiation. If Xi is in a dead-end, we can guarantee

that conducting the tracking between Xji+i and _-*_",__ will be unprofitable, since the cause

of the dead-end in Xi is not marked. The partial instantiation Xji will cause that any valué

for Xi generates a dead-end on some restriction, so modifying the valúes after Xj_ will not

solve the dead-end.

2.4.4 Backjumping based on graphics

This method is another variation of backtracking. It jumps over variables as a response to a

dead-end [32]. Unlike backjumping, which only responds to leave dead-ends. Backjumping

based on graphics can respond to previous dead-ends. In order to accomplish this, it reviews

the set of parents Pi for the dead-end variable _Y¿, where a parent of Xi is any variable

connected to X{ through the constraint graph and precedes Xi in the instantiation order.

If Xi is a dead-end variable, the algorithm jumps to the last variable in the set of parents.

If Xi is in a previous dead-end, the new set is formed gy the unión of the parent set of Xi

and those from the dead-end variable found after Xi in the search tree. The algorithm then

jumps to the last variable of the inducted set _7¿. The algorithm requires to update J¿ after

every unsuccessful inconsistency review, requiring up to 0(n2) space and 0(ec) time, where

2.5. VIRTUAL ENVIRONMENT 22

c is the number of constraints and e is the máximum number of variables for each constraint.

The other disadvantage of using the parents is using less refined data of the causes of the

dead-end.

2.4.5 Forward Checking

Foward Chekcing is a variation of backtracking, which acts by instantiating a variable and

removing any conflicting valué in the domains of future variables. This algorithm rejects any
valué that can lead to the removal of the last valué in the domain of future variables. The

valúes are not removed permanently, but stored in the set D' . which contains the narrowed

domains. The action of removing valúes from D' is called filtering [33].

The algorithm works filling D' with all the compatible valúes from each domain for each

variable, and continúes looking for at least one compatible valué for D'cur with future variables.
It is not necessary to review previous variables, since D'cur only contains compatible valúes

with Xcur-i.

Most methods malee decisions on how the variables have been instantiated, and then

modify valúes to continué searching for solutions. We know part of the solution space at the

beginning of the search, having access to information of possible positions, relations that can

be or not be changed, as well as ranges of correct valúes for the variables. Directed methods

such as backjumping based on graphics or forward checking suit our needs better, since the

inclusión ofmethaeuristics based on knowledge can lead to quicker solution finding, dead-end

solving, and corrections in the search direction.

2.5 Virtual Environment

One of the best definitions for VR we have found is "Virtual Reality is a way for humans

to visualize, manipúlate and interact with computers with extremely complex data" [34].
Visualization means that the user can perceive the outputs generated by the computer. This

means, the actions achieved in the world represented inside the computer. The perception

can be visual, auditory, sensory or a combination of these. The world being represented can

be a CAD model, a scientific simulation, or the view of a datábase. Interaction means that

such world can evolve autonomously, be means of either the objects inside the world or the

properties of the world itself. This interaction triggers the evolution (animation), through
some process, of either physic simulations or simple animation scripts [35].

In a VW we found entities that dwell inside it, which are named commonly avatars.

Avatars represent animated entities having complex behavior, for instance animáis (persons
or other type), or other imaginary animated creatures. The avatars can perform a variety of

2.5. VIRTUAL ENVIRONMENT 23

actions, according to the world they have been put in, as well as represent human emotions

(p6],[37]) and perform varied behaviors [38]. Those avatars have different levéis of complexity
and detail, depending on the overall representation of the world-taking place. We can take

as an example a person: in simple simulations, it is not needed great details of the body, for

instance the skin, the hair, the face details are represented by very simple models (Figure

2.5). In contrast for movies, a virtual character must have a high level of detail (a detailed

face, modeling individual hairs). The level of detail comes at computational cost. Currently
several methods are used to provide better levéis of representation in real time, such as ray

tracing or bump-mapping [39].

Figure 2.5: Different levéis of detail for avatars.

Among some of the applications for VE we can find: the creation of VW for video games,

where the player can travel through different environmental settings, interact with diverse

characters and perform a set of actions. In movies, VW are used to re-create ancient worlds,

fantasy settings or impossible situations. VE are abo used in applications such as architecture

[40] or city-planning [41] [42], as well as for applications such as story telling [43], as a support

method in surgery and medical education [44] or as educative tools.

2.6. RELATED WORKS 24

2.6 Related Works

Several works have exploited the methodology of DM. Before commencing the review of some

of them, it is necessary to state that since we are focusing on using DM to créate VEs, all the

works presented in this document are also oriented towards the creation of virtual 3D models.

In these works one of the problems solved is validating the disposition of the objects that

conform the VW using diverse techniques, whereas other modelers focus on validating other

aspects of themodel, such as congruency or efficiency (Repast Symphony System [45], Joseph
System [46]). Of the two tasks, the most demanding in computing processing is validating
the correct positioning and orientation.

Some of the reviewed works focus on architectural or urban design, such as FL-System [40].
This system is focused on the generation of complex city models, parting from a specialized

grammar, and using a variant of the Lindenmayer System [47], called Functional L-System,
replacing the generation of terminal symbols by generic objects. It uses VRML97 to visualize

the models, and works generating individual buildings and then incrementally working the

rest of the city block, and later the entire city.

CityEngine [41] is a system capable of generating a complete city model, using small sets

of statistical and geographical data, contained in geographical maps (elevation, land, water

maps) and socio-statistical maps (population maps, zoning maps). It works creating a first

layer of roads, using L-Systems, and then creating city blocks. The final step is the generation
of geometry and visualization, using first a real time render, and then a raytracer.

Wonka et al. in [48] presents a method for automatic architecture modeling, usesing a

spatial attribute design grammar, or split grammar as input for the user. The input is used

to créate a 3D layout which is the base fbr the building in creation. The facade is created

next, splitting it into structural elements at the level of individual parts (windows, cornices,

etc). The resulting model is shown to users through a real-time render.

Figure 2.6: FL-System, City Engine and Instant Architecture

None of the previous presented works is oriented toward creating a model of a VE, but

2.6. RELATED WORKS 25

just a 3D model of a description, composed in all the cases by a specific grammar, either raw

geographical data, architectural designs or three-dimensional design data. These projects
do not allow any kind of interaction with the environment, due to completely automated

model generation. In those works, once the VW is generated, it is not possible to interact it

beyond positioning the camera. If ane modification is needed, it is mandatory to modify the

description in order to change the output of the system. Other works are oriented to créate

VS, where different elements are positioned in the VW, and their properties can be modified.

In the next subsections we will review some of them.

2.6.1 WordsEye: Automatic text-to-scene conversión system

Bob Coyne and Richard Asproad at the AT&T laboratories developed WordsEye [49]. This

system allows the generation of a 3D scenario from a description written on natural language,
for instance: "the bird is in the birdcage. The birdcage is on the chair" The text is initially
marked and analyzed using part-of-speech taggers and statistical analyzers. The output
of this process is an analysis tree, which represents the structure of the sentence. Next,
a depictor (low level graphic representation) is assigned to each semantic element. Those

depictors are modified to match with the poses and actions described in the text, through
inverse kinematics. After that, the implicit and conflicted constraints of the depictors are

solved. Each depictor is then applied, while keeping its constraints, to incrementally build

the scene. The final step includes adding the background environment, the terrain plañe, the

lights, and the camera. Then, the scene is rendered and presented to users. Ifthe text includes

some abstractions or descriptions that does not contain physical properties or relations, the

system employs several techniques, like textualization, emblematization, characterization,

lateralization, or personification. This system accomplishes the text-to-scene conversión by

using statistical methods and constraints solvers, and also has a variety of techniques to

represent certain expressions. However, the scenes are presented in static form, and the user

has no interaction with the representation.

2.6.2 DEM2ONS: High Level Declarative Modeler for 3D Graphic Applications

DEM2ONS has been designed by Ghassan Kwaiter et all [50] offering to the users the pos

sibility to easily construct 3D scenarios in natural way and with a high level of abstraction.

Two parts constitute it: a modal interface and, the 3D scene modeler. The modal interface

allows the users to communicate with the system. It uses simultaneously several combined

methods provided by different input modules (data globes, speech recognition systems, space-

ball, mouse). The syntactic analysis and Dedicated Interface modules analyze and control

the low-level events to transform them in normalized events. DEM2ONS uses ÓRANOS

as 3D scene modeler, a constraint solver designed with several characteristics allowing the

2.6. RELATED WORKS 26

expansión of DM applications, like generality, breakup prevention and dynamic constraint

solving. The GUI (Graphic User Interface) is based upon the Open Inventor Toolkit [51] and
Motif library [52]. These two modules render the objects, and provide support to present the
menus and tabs. DEM2ONS allows the user to interact with the objects in the scene. Also,
it solves any constraint problem, but only allows static objects, with no avatar support.

2.6.3 Multiformes: Declarative Modeler as 3D sketch tool

William Ruchaud et al. presents Multiformes [53], a general purpose DM, specially designed
for 3D scenario sketches. As any DM, the work over the scenario with MultiFormes is

handled essentially through a description (the way the user inputs all of the scenario geometric
characteristics of the elements, and the relationships between them). The most important
feature in MultiFormes is the ability to automatically explore all the possible variations

in a scena.:o. Unlike most of the existent sketch systems, Multiformes does not present

only one interpretation of each imprecise property. Starting with a single description, the

designer c__n obtain several variations of the same scenario as a result. This can lead the

users to choose a variation not considered previously. A constraint solver supports this

process. The description of the scenario includes two sets: the geometric objects set presents
in the scenario, and the set of existent relationships between the geometric sets. To allow the

progressive refinement of the scenario, MultiFormes uses hierarchical approximations for the

scenario modeling. Following this approach, a scenario can be incrementally described at

different levéis of detail. Thanks to its constraint solver, MultiFormes is capable of exploring

diverse vari-ttions of sketch, satisfying the same description.

The geometric restriction solver is the core of the system and is used to créate a hier-

archically decomposed scenario. Even when this system obtains its solutions in incremental

ways, and is capable of solving the constraints requested by the user, the system requires

the list of actions needed to construct the scenario. This requirement makes the use of the

system restrictive.

2.6.4 CAPS: Constraint-based Automatic Placement System

Ken Xu, et al. presents CAPS [54], that is a positioning system based on restrictions. It

makes possible modeling big and complex scenarios, using a set of intuitive positioning re

strictions that allow manipulation of several objects simultaneously. It also employs semantic

techniques for the positioning of the objects, using concepts such as fragility, usability or in

teraction between the objects. The system uses pseudo-physics to assure that the positioning

is physically stable. CAPS uses input methods with high levéis of freedom, such as Space Ball

or Data Glove. The positioning of the object is executed one at the time. Allows direct inter

action with the objects, keeping the relationships between them by means of pseudo-physics

2.6. RELATED WORKS 27

or grouping. These methods and the tools integrated into this system make it a design tool,

mainly oriented towards scenario visualization, with no capabilities for self-evolution.

2.6.5 ALICE

This is a tool for describing the time-based and interactive behavior of 3D objects, developed
at the Carnegie Mellon University [55]. Described by its authors as "a 3D interactive, anima

tion, programming environment for building VW, designed for novices" provides a creation

environment where users can créate, use, and animate 3D objects to genérate animations.

The users aelect an object from a 3D datábase and then arranges its position in the world.

After the object has been positioned, the user can select primitive methods, which send

messages to the object. These methods are arranged to form program sentences which are

interpreted by a Python Interpreter, which works as a scripting service. The system uses

Microsoft ■? D Retained Mode (D3DRM) to render the scene. Users can add new content

and metho ;s, since the system supports many 3D modelling formats. This project focuses

on educati< -aal/instructional áreas, but still focusing on programming paradigms. The users

need to ac..vely créate the scenario, and specify the scene using a programming-like tool.

Also, the software does not make any context verification.

Chapter 3

Proposal

Abstract

This section is devoted to explain the approach taken to solve problems posed by the inclusión

of knowledge in DM. Also, a detailed explanation of the procedure and the methodology is

presented.

28

3.1. INTERACTION LANGUAGE: A REVIEW OF VEDEL 29

3.1 Interaction Language: A Review of VEDEL

To allow interaction between the modeler and the user, is necessary an interface that allows

easy specification of the desired properties for the model intended. There are different in

put methods, but we choose to let the user express himselft in a natural-like language the

characteristics of the VE.

Our objective in defining a declarative method to describe a vs was to provide users a

structured, easy to follow method to compose the description of a scenario, in the form of a

declarative scripting language, which we called Virtual Environment Description Language,
or VEDEL [56] that is a tag language. A description in VEDEL is composed by three sections,
each of them devoted to describe one of the three possible types of elements in the VE: the

Environment, that is, the general settings for the scenario; Actors or avatars, which are

those entities capable of perform and react to actions, display emotions, represent behaviors,

and react to the changes in the environment and other entities; and Objects, entities that

can be subjected to actions, but cannot act on their own. Each section is delimited by section

tags, which start with a keyword for that section (ENV, ACT, or OBJ) respectively enclosed

in brackets ([]). A slash (/) before the keyword makes the tag cióse a section.

The sections are composed by sentences, each of them formed by comma-separated state

ments, and ended by a dot ("."). The first statement must be a concept word, this is, a word

that explicitly defines the idea that will be represented, followed by a single-word proper

ñame for that entity, which must be unique for every entity (the environment does not need

a proper ñame), which can be of any length and can use special symbols. The rest of the

sentence is composed by the entity properties, which must begin with the property ñame,

followed by the valúes for that specific property. Numeric valúes must be enclosed in paren-

thesis, and it is possible to define specific ranges by enclosing the valúes in brackets ({ }), and

separated by commas. This last option is a technical feature of the lexical-syntactic parser,

and its use is not intended for final users.

The basic structure of a description composed in VEDEL follows the pattern:

3.1. INTERACTION LANGUAGE: A REVIEW OF VEDEL 30

" *

[ENV]
' '

Environment keyword, [environment settings] ,
' * "

"[/ENV]"
' *

[ACTOR]
' '

{ Actor Class, [Actor Identifier], [Actor Properties],
* * "

}

"

[/ACTOR]"
" *

[OBJECT]
' '

{ Object Class, [Object Identifier], [Object Properties], %X" }

"[/OBJECT]"

The revised formal Description Structure is defined as follows:

Description ::= environment, actors, objects;

environment ::•= "[ENV]" environment sentence "[/ENV]";
actors ::= "[ACT]" [{ actor sentence }] "[/ACT]";

objects ::= "[OBJ]" [{ object sentence }] "[/OBJ]";
environment sentence ::= environment class, [environment properties], dot;

actor sentence ::= entity class, [actor properties], dot;

object sentence ::= entity class, [object properties], dot;

properties ::= { separator, properties };
environment class ::= entity class;

entity class ::= class, [identifier];
environment properties ::= { characteristic };
actor properties ::= { comma, characteristic | property | position };

object properties ::= { comma, characteristic | position };

characteristic ::•= class, valué;

position ::— class, [[number], identifier];

property ::= class, [valué];
class ::= word;

valué ::= word | number | range;
identifier ::= letter — digit, [{ letter | digit | special symbol }];

word ::= { letter };
number ::= "(" [minus], { digit }, [dot { digit }] ")";

letter ::= "A" to "Z" | "a" to "z";

digit ::= "0" to "9";

special symbol ::= "@" | minus | "_";

minus ::= "-'';
« >*

.

comma ::= , ,

dot := "-";

range :— "f" number | word [{ comma, number | word }] "g";

3.2. PARSING METHODOLOGY 31

[ENV] [ENV]
House, night, rain. Farm, day, hot.

[/ENV]

"

[/ENV]

[ACTOR] [ACTOR]
Man Albert, oíd, sit FrontCouch, reading to- Man Albert, cióse BigTree.

dayNewspaper. Woman Beth, sit PícknickTable, talking Car-

Woman Beth, oíd, sit RockingChair, knitting. rie.

[/ACTOR] C'arrie, sit PícknickTable, next Beth, talking

[OBJECT] Beth.

FrontCouch, left FirePlace. [/ACTOR]
Chair RockingChair. [OBJECT]

Paper todayNewspaper . Table PicknickTable .

[/OBJECT] [/OBJECT]

Figure 3.1: VEDEL examples.

A description can contain any number of sentences per section; the number of properties

allowed per sentence is only restricted to the number of properties associated with the entry

of the entity in the KB. The lexical-syntactic parsing method is presented in depth the next

section.

3.2 Parsing Methodology

Descriptions given by the user are analyzed by a lexical-syntactic parser, which is a state

machine that searches for invalid characters, and verifies if descriptions are composed fol

lowing the rules established by the language definition. It also formats the entry into a data

structure, which the model creator can use.

The first step is searching for tokens, individual words which are strings of characters

delimited by a space, a comma, a dot, or a carriage return. Then, the syntactic analyzer sets

the token to a data structure designed to allow easy exploration by the model creator (figure

3.2). This data structure is a hierarchical tree, with branches which start with entity class

and the unique ñame of the entity, if it founded. The leaves are filled with the properties

requested for that entity, starting whit the ñame of the property, and followed by the valúes

requested for that particular attribute. When a dot is found, the newly parsed sentence is

stored and the process continúes in the next sentence. If the following token is a section tag,

the parser verifies tag parity, then proceeds the analysis of the next section or reports the

corresponding error state. The parser reports any error to the Error Manager, and discards

the faulty token, statement, sentence, or section. When the closing objects sections tags is

3.3. MODELÉR'S ARCHITECTURE 32

reached, or when the end of the description string is found, the parser ends its task, and

sends the parsed entry and the error report to the next module, where the modeling process

continúes, the necessary actions are taken in order to complete the process and, the user is

informed with the errors found so far.

<EnvironmentClass>

<Env¡ronment Property_l>

L
<Property Valué 1>

<Environment Property_2>

<PropertyValué 1>

<PropertyValué 2>

!

<Entity_n>

Figure 3.2: Parsed Entry Structure

The parser has been designed, so individual sentences or even individual statements can

be sent for verification and conversión, allowing to modify the model previously constructed,

by adding, deleting, or changing the attributes
for new or existing entities.

3.3 Modeler's Architecture

The modeler is composed by five modules, as shown in figure 3.3. The Lexical-Syntactic

Module was explained in the previous section (3.2), while the rest of the modules is presented

3.3. MODELER'S ARCHITECTURE 33

in depth in the following sections. This section highlights the functioning of the modeler and
resumes briefly each module.

[Input: VEDEL
«description»

Lexical-Syntactic

Parser

«parsed Input»

«concept data >**^4_4-**^'-'
Model Creator

«validated solution»

Inference

Function «final solutions»

CSP Algorithm

i

«inferred knowledge»

Output

Generation

Knowledge

Base
_

«requested 3utputs»

r 1

Outputs

Figure 3.3: Modeler Architecture

Model Creator

The Model Creator receives the parsed entry to proceed with the generation of a model

satisfying the constraints stated in the description. It makes use of the inference module, and

formats the information obtained through it to genérate the model. The modeler also creates

a list of entities in the environment and their dependencies, so the positioning process can use

this information in order to facilítate the task. It also does collision verification in order to

solve conflicts involving the geomerty of the entities intersecting each other, and positioning

validation, to assure the positition of the entity corresponds to description constraints.

Inference Module

The inference machine access the KB to gather the necessitated data contained within

it. It uses the OWL API to obtain specific knowledge, and formats the data so the modeler

can use the valúes during the model creation. It also validate the semantic valúes of the

constraints, as well as the overall composition of the description.

3.4. CREATING THE MODEL 34

CSP Algorithm

This module solves the conflicts that arise from the positioning of the elements in the sce
nario. The CSP Algorithm verifies the model for detecting: collisions, incorrect positioning,
or invalid disposition of the elements, to correct any conflict found. It returns a valid model

to the Model Creator, or the list of unsolved conflicts.

Output generator

The requested outputs are generated by a Model-View Controller, which receives the

model created by the Model Creator to genérate the outputs to be used by the underlaying
architecture. The templates are formated accordingly to the needs of the architecture or the

systems that the model will use.

3.4 Creating the Model

Once the description has been analyzed and the model creator received the output from the

lexical-syntactic parser, the actual creation of the model begins. This creation starts with

a default-valued initial model, which we called the zero-state model. This model is refined

progressively to finally obtain a model which contains all the valúes requested by the users

and also satisfies the constraints, explicit or implicitly, requested by the users.

3.4.1 Model Data Structure

The obtained model is basically a hierarchical structure. The top elements correspond to

the class of the entities, which are obtained from the KB. The leaves on the same level

correspond to the unique ñame, that is, the type of entity (environment, actor or object),
and its properties. The structure representing the environment model is presented in figure
3.4.

The classes defining the root branches in the model are Environment, Avatar and Actor.

The Environment contains the details for the setting of the scenario, as well as the laws that

will rule the entities in it. The information contained in the highest level correspond simply
to environment size and descriptor, all the rules and properties of the environment are stored

in the leaves of the sub-tree with root on the entry Environment. Avatar corresponds to the

basic information regarding the entity, or the "default" entity, which can be viewed as the base

model for all the entities of the same type. Example: a "man" avatar contains information

about the conformation of a human, i.e., arms, head, legs, as well as the properties for the

entity, such as hair, skin color, stamina, mood, with all of them having specific valúes set in

the KB. Also, this class can be used to control the number of avatars of the same type, so

the modeler can set the individual ñames for those entities without a specific identifier. The

3.4. CREATING THE MODEL 35

Model Environment
1 Laws

Actions

Properties
- Ñame

- Valúes

Avatars

************ Laws

Actions

■

-, ¡

Actor

Ñame

-Type
Id

Section

Position

- Orientation

Dimensions

- Collision Tags
Zone Tags
Charac. Points

Properties

Emotions

Properties

Figure 3.4: Model Structure.

elements of this class are used as a témplate; this means that all of the properties for new

entities are copied from the valúes stored in this branch. Finally, the last branch contains

the avatars instantiations, the Actor class instances, where details for each entity are stored.

Those details include properties such as size, scale, position, initial action or validation tags.

These valúes are stored as basic data types, since this branch is accessed by other modules

of the architecture.

3.4.2 Modeler procedure

The modeler explores the parsed entry, queering the inference machine for every term found,

with the exception of individual identifiers or numerical valúes. The information provided

3.4. CREATING THE MODEL 36

by the inference machine is processed and stored in the corresponding sections of the model,

keeping the linguistic terms for later references or validation procedures during the direct

modification of the model. The modeler also conducts the semantic validation using the KB,

dropping the valúes, terms or concepts found to be invalid or out of context.

Knowledge Exploitation

The Knowledge Base holds four basic classes: Actors, Environment, Keywords and

Objects. Each of these classes contains all the entities that can be represented, either by

the underlying architecture, or by any external software. For each class there must be at least

one individual, named as the class, and followed by the ".default" suffix. Individuáis are

the instantiations of the classes, and contain all the data accessed by the inference module.

Each individual contains several mandatory properties such as size, position, entity de

scriptor, concept ranges, and validation tags. The environment must at least contain proper

ties for size, and descriptor (an embedded description that will represent the environment).
Actor and Objects must contain properties for size, initial position, collision tags, charac

teristic points, and attributes. Actors also must contain the action to be performed by the

entity if not action is explicitly or implicitly stated. Actors without a default action are set

to idle at the begining of the scene. Finally, Keywords must include valué ranges, property

type, and operation type. The modeler to validate properties uses this information.

Knowledge bases can contain two properties types: Object and Datatype. Object prop

erties express relations amid the elements in the KB. This type of property is used by the

modeler to extract information about the valúes allowed for each property, as well as for

formatting data for the model data structure. They are also used to determine the semantic

validity of statements made in description. Datatype contains raw valúes that define con

cepts. These valúes can be: character strings, numerical, date, or Boolean valúes, which are

stored at the end of the modeling process in the data structure. The Output Generator or

the underlying architecture accesses this information.

The inference machine starts queering the KB for a particular concept. If the information

exists, then it subtracts the information regarding the type of concept, and proceeds to

explore the valúes stored for that particular entry. If the valúes are found to be object type,

the inference process continúes deeper, subtracting valúes for objects referenced, and then

exploring the valúes stored for each of these, until a raw datatype valué is found. To exemplify

this process, consider the following request: "Chair, color white. The "color'' property

must be first a valid characteristic for the entity Chair, which is verified when the inference

function subtracts the valúes for the avatar. Then the inference machine continúes looking

for possible valúes that can be assigned to the property of the entity. If any of the valúes

correspond to the request made, the inference machine then proceeds to obtain the valué

3.4. CREATING THE MODEL 37

assigned to the concept, in this case, "white" The inference machine then subtracts the

datatype valué named RGB stored in the individual "white"
,
and passes the raw valué stored

as the character string "1 1 1" to the modeler, which uses it to créate a leave for the entity
in the model.

Depending on the concept being processed, the inference module also conducís conversions

between datatypes. For example, the Keyword individual for "left" contains the property

range, which expresses the valúes to be used to set the position of an entity. The valué is

stored as a character string in the KB, for instance, as "{ 30,0,0 }" This valué cannot be

used directly by the modeler, which requires a float-type array. Thus, the inference module

conducís the conversión from string to array, and returns it to the modeler.

Since all the modeling process is based on the exploitation of the KB, the data stored

can lead to unexpected or invalid valúes, from the users' perspective expected results, so

management of information should be left to a system administrator or an experienced user.

Initial Model

The modeler starts with an empty model, which is updated as the parsed entry is evaluated.

The first element to be updated is the environment. The modeler request the inference ma

chine for the default valúes for the environment where the scenario must be constructed and

which are used to créate a temporary leave. This leave is updated first with the instructions

set for the environment, and later with the user's requests. When the environment has been

fully processed, it is assigned to the model.

The scenario can contain several zones, which have no visual representation, but are still

used for referencing specific áreas in the environment as referents for absolute positioning.

These áreas can be landmarks, specific delimitations inside the environment, walls, used to

define the limits for landmarks, and doors which indicate the zones that allow the entities

to pass from one zone to another. It is during the initial model generation where these

zones are established, thus gives the rest of the entities the referencing points for proposing

a positioning.

The procedure for the entities differs in one step. When the modeler finds an actor or

object type entity, a search for the corresponding avatar is conducted. Ifthe avatar is already

stored in the model, the process to update the valúes for the properties is started, using a

copy of the avatar as témplate for the current entity. If the avatar is not found, the modeler

requests information for that specific entity type, and stores the corresponding avatar in the

model, creates a témplate copy, updates it with the user's request, and adds the new actor

to the model.

The next step is to gather information to position the entities in the scenario, and the

relations between them. The parsed entry is queried to subtract the entities, which are stored

3.4. CREATING THE MODEL 38

in a FIFO list. When a new element is entered in the list, all the entities that have some

relation with it are reviewed, and the entities that in turn hold a relation with the current

are reviewed. This recursive process allows the modeler to set those entities which have

dependencies on them, which we called pivots, first and later add the elements that make

reference to these pivots.

Any error found during the creation of the model is reported to the Error Manager, which

stores the corresponding error data and provides the corresponding course of action to solve

the error state and continué. If the modeler is set to stop when finding an error, the process

is halted and the error presented to the user. Otherwise, the process continúes, and the list

of errors is presented at the end of the modeling procedure.

Properties Valúes Assignment

As presented in section 3.4.2, an entry in the KB for any entity contains linguistic terms as

well as raw data type terms, and the relations with other elements in the KB. The conversión

works over the non-type terms to convert them to basic raw data valúes. This convertion is

made so that the final output can be read by the other modules in the architecture, adapted
to their own input languages, or to créate output files readable by 3D render machines.

When the Inference Machine is processing and needs a property concept, the KB is queried

for the term, and the raw information is in turn processed. If any of these raw data items is

a ünguistic term, it is processed, and the cycle continúes until the low-level data types are

obtained.

The valúes stated for the properties in the description are first validated against the

restrictions set in the KB, then converted in the case of linguistic terms. Any inconsistence

found during this process is reported to the Error Manager, which decides if the property

can be removed or must be set to a default valué.

Some of these data items, such as "furniture" for the environments, or previously gen

erated VEs, can be VEDEL sentences or statements, which are processed by the Lexical-

Semantic parser to include objects belonging to the environment or the entities. These items

do not disrupt the generation process, since they are processed after the parent entity is

completed. In this way, it is not necessary to extend the positioning list to include these new

elements, since the parent acts as pivot element in turn.

The raw valúes obtained from linguistic terms are returned to the model creator, which

assigns them to the entity in creation, and then continúes with the following property. Once

all properties have been validated, the modeler adds the entity to the model, and continúes

with the model generation task if it is needed.

3.4. CREATING THE MODEL 39

3.4.3 Geometrical Validation

Once all data properties have been processed, the modeler continúes with the process for

verifying the positioning of all elements. This is handled by a CSP algorithm, which uses the

collision and positioning tags to solve conflicts or invalid positions.

Each entity in the VE is represented as a set X{ = {P¿, Oi} Sí}, where P{ = {xi,yi,z_},Oi =

{on, Pi, 7;}, Si = {Sxí, Syi, Szí}\/Xí G X, corresponding to position, orientation and scale for

that entity.

Default position corresponds to the VE's center, this is, {0, 0,0}. Each entity starts with
a position corresponding to the VE center at the first modeling steps. If a specific position is

requested, the model creator sends a query the to Inference Function, which returns a vector

V — {x, y, z), corresponding to the request. V can be either an absolute position, or a point
in relation with another entity or environment component. In that case, V is calculated as

Rot(V - (X(P) * X(S)),X(0)), where Rot() is a rotation function on X(0).

The CSP used by the modeler is defined .as follows:

• The set of variables X = {Xi,X2, ■ ■ -Xn} composed by the entities in the scenario,

Xi — {Xi U{C°i> Chi}}, where Coi — {Spi,Sp2, . . .

, Spn} representing a set of collision

tags assigned to the entity, where V-Sp 6 Coí, Spi = {Spxi, 5py¿, Spzi, Spr_}, and Chi =

{Pei,Pe2, . . .

, Pen} corresponds to a set of characteristic points for the entity, where

yPe e Chi, Peí = {Pexi, Peyi, Pez_}.

The domains for the variables are defined as follows D(P.) = [—oo, oo], D(0_) — [0, 2tt],

D(Si = [0, oo], D(Coí) = [-oo, oo] and D(Ch_) =* [-oo, oo]V_Y¿ G X

The constrains set is formed by the following equations:

(xi
- x2f X (yi

- y2)2 X (zi - z2)2 -

(n + r2) < tx (1.a)

í)\(^)Y2z = h (1.b)

(¿HiHí)2-1^ M

Thresholds í-., t2 and t3, {ti,t2,t3} G 3?, are valúes set by the system administrator. These

valúes allow modifying the strictness for the constraints. Each collision tags set is stored in

the KB as a vector, which represents the position and radius for the sphere.

The second set of characteristic points is based on the geometry of the entity, selected if

they help to represent the contour of the entity, or correspond to a peculiar feature. These

3.4. CREATING THE MODEL

Figure 3.5: Collision Tags

points are used along equations l.b and l.c to verify positioning. Both collision and charac

teristic points set are updated as the entity moves or rotates, using the Rot() function. The
radius of collision tags is also modified when the entity is scaled up or down.

The constraints are satisfied if:

1. Be (Xi,Xj) € X, constraint 1.a is satisfied «■■-► Ci{Spm,Xj(Spn)) < íi.VSp € X(Co)itj.

2. Be Xi an entity whose position was calculated as P(X_) = F(V,Xj), constraint l.b is

satisfied «*-*■ C2(_Den, X_¡) < t2,VPe e X(Ch)t.

3. BeAj an entity with a position calculated as P(X_) = F(V, Xj) and P(Xi)-P(Xj) < i,
constraint l.c is satisfied <*-> Cz(Ph,Xj) < í3, where Ph C C7i,VPe € X(Ch)i, and

0 < dn< 1, dn € {dx, dy, dz}.

4. Be Xi an entity with a position set as P(X_) = V constraint l.c is satified «-*

Cs(Pe„, Env(S)) < .3,VPe e X(Ch)i, where Env(S) is the environment or área mea-

sures.

A verification is taken previously to search fbr collisions: if the euclidean distance between

two entities is less or equal to the sum of the diagonal of a box formed by the dimensions of

each entity, collision verification is carried out. This can be defined as follows:

3.4. CREATING THE MODEL 41

Figure 3.6: Characteristic points

Be Xi,Xj 6 X, collision verification is executed if

^(W,) - x,-(Px))2 x (x_(py)
-

Xj(py)f < y]x_(sxy +MSy)* + y/Xj(sxY +Xj(svy

When a colusión occurs, there are two routes of action:

1. If one of the entities is a pivot, this is, is set to an absolute position, such as north,

south or east, the other is moved in a perpendicular line described from the center of

the pivot entity and with a magnitude equal to the outcome of equation 1.a.

2. If none of the entities is a pivot, one or both entities are moved in a perpendicular lines

described form both entity center, and with a magnitude equal to half of the outcome

of equation 1.a.

The second option necessitates carrying some verification before making any change in

the position of the entity. First, if both entities in collision make reference to the same entity,

an algorithm similar to the one used by the FL-Systems is employed to set the new position

for each entity, making use of equation Lb to validate these new positions. If the entities are

unrelated, the one with the smaller volume is moved first, since smaller elements are more

likely to be set in valid positions.

In some special cases, the tags assigned to a concept correspond to áreas on the entity,

for example, the over keyword. When the system deals with those cases, the system admin

istrator can set the number or even the exact characteristic points that should be inside that

volume, so the position can be declared valid. The equation l.c is used in those cases.

When it is required that the entity be positioned inside another, or in a specific geographic

location, the volume generated hy equation l.c is used to match most or all of the space.

3.4. CREATING THE MODEL 42

Figure 3.7: Validation volume for equation l.b

lm these cases, the system administrator can also set the characteristic points that must be

contained for the position to be valid.

Previous modifications are conducted on the entities that. can renrawmt. nones, iisiner a
JL *. I _*

specialized module in the architecture. This module, called the Planning Module, part ofthe

research presented in [37], uses a self-conscious entity to modify the entity elements in order
to represent the desired pose. Sitting, running or holding is computed bymeans of knowledge
which describes the skeleton of the entity, and can be applied to any entity that hold the

same structure. This structure can be modified to represent the lack of any extremity or

element, allowing characteristics such as limping or lacking one arm. The modifications .are

carried out through synergy movements and using the KB to verify the new pose.

After all collisions have been solved, the CSP continúes its work to verify if the new

position of the entities is valid. If it verified that the entities current position passed test

using constraint equations l.b and l.c. If that is truth, the process ends and the user is

informed. Furthermore, the previous position of the entities is recorded, and the process

continúes. When the CSP faüs in a dead end, the recorded positions are used to créate a new

state, and continué the constraint solving process. Ifthe dead end cannot be solved, previous
model valúes are used, moving the pivot entities if needed, and then verifying the new state.

The previous positions are also used to determine if the new positions computed are forming

3.5. GENERATION OF THE OUTPUTS 43

Figure 3.8: Special case: against

a cluster, and then compute a new position far away from it, thus preventing faüing into

local mínima, where apparently there are no solutions, or local máxima, solutions with stiff

constraint valúes, which does not allow further modifications and lead to dead ends for other

entities. Other methods used to find solutions are: the total re-arrangement of the entities,

rotate an entity that is being referenced by other entity in conflict, or dropping some of the

entities.

If the CSP can not find a solution, an error state is raised, and the modeler can either

stop the process and present the error status to the user, or can drop the violating entities

(to elimínate the conflicts) and continué, presenting an error report at the end of the process.

3.5 Generation of the Outputs

When the Model Creator has finished constructing the model, the next step is to créate the

output that will be sent to the underlying architecture. This step is carried out by a MVC

(Model-View Controller), which pre-process a series of tompiates, and then receives the model

to fill the tompiates with model valúes.

3.5.1 Model-View ControUer

A Model- View Controllers allows easy translation from data structures to file or character

stream outputs. It was choose to ease commimication between the VEE and the rest of

3.5. GENERATION OF THE OUTPUTS 44

Figure 3.9: Special case: inside

the modules in the architecture. Each module requires a specific portion of the information

stored in the model, and each of the modules has its own input language. It would have

been difficult it the modeler had created, generated and maintained these inputs by itself.

Instead, the MVC uses a series of tompiates to créate the outputs, using the KB to till any

additional request. This method also allows to modify the type, quantity and destination of

each of these outputs.

3.6. MODIFYING THE MODEL 45

3.6 Modifying the Model

Once the modeler has shown the users one or several of the possible solutions for the descrip
tion, direct modifications over the scenario can be made. This is handled through specific
commands written in a syntax similar to VEDEL, but with a few modifications. The basic

structure of a modification commands is:

<command Xentity identifier xarguments . . . >

arguments ::= [<new position >] | [<modifier >]

A command corresponds to either position (command M) or properties (command C). The
command is sent to the model, which then takes the necessary actions to ensure its execution.

If the modified model fails any of the construction validations, the model is returned to its

previous state, and the error is reported to the user.

To comply the modifications with the model, an interface that directly modifies the model

was implemented. This is simply a VEDEL translator; the parser processes. The translator

receives the command that is translated into a VEDEL-compli.ant sentence. Then, the parsed
command is sent to the Model Creator module, which carries out the same verifications made

for verifying the model during its creation. If the new model is tested as valid, a new output

is created and sent for processing.

Chapter 4

Resaaidi Outrrme

A b stract

W e piEssnt the results obtained from two di erent prototypes, as well as acm e ob^rvatbns

m ade during the course ofthe research .

46

4.1. VW1VAL ENVWONMENT EDITOR PROTOrYPES 47

4.1 Virtual Environment Editor Prototypes

During the course of the research, the methodologies proposed where applied in the imple
mentation of a VEE, based on DM. This VEE receives a description written on the VEDEL

specification and then proceeds to genérate the model, presenting the output, if successful,
in a X3D-compliant viewer.

This prototype was developed in the Java language, using the OWL Protege API and the

FreeMarker library, for access to KBs and using MVC methods. So far, our focus has been

on modeler functionality, rather than final-user interface. Therefore the GUI for the VEE is

still in early development, but is fully functional (figure 5.1).

The selected MVC was Freemaker [57], versión 2.3.15, a "témplate engine" This is a

tool that creates a text output based on tompiates, programmed in Java and with a Java

API. Although FreeMarker has some programming capabilities, it is not a fully programming

language, akin to PHP, but more a data display generator. This first study case uses X3D-

fbrmated tompiates that genérate an output that can be viewed using any VRML97 or X3D

compliant viewer.

EH* Iools

IOBJECT]

CenterTable Table. front Jai. color black, cristal translucid green.

Chair JazChair. color blue. left Jaz.

Chair One. left Table. facing Jaz. color green.

Chair Two. left One. facing JazChair, color red.

Chair Three. nght Two. facing One.

[/OBJECT]

Environment Ent..

Resuft
Compile

Process completed

-

virtual Environment

rjjaz

o- r-**| Table

o-r**| JazChair

^[3
One

o.Q
Two

c_ r-1* Three

VE Modification .

mjaz north (20)

Execute Commad

Figure 4.1: Virtual Environment Editor GUI

The KB used by this first prototype contains several entries for environments, actors,

objects and keywords, and is an extensión of the KB used for the prototype presented in the

previous research ([56]), as presented in figure 4.2. This was a work based on the GeDA-3D

prototype developed by Gutiérrez [58].

4.1. VIRTUAL ENVIRONMENT EDITOR PROTOTYPES 48

Mh __■• W tw m l«t

RMJH

■J

Ka

pxmjt

■*-—•■—»-

Figure 4.2: Previous Prototypes: Battle of the Frogs

W-

Figure 4.3: Previous Prototypes: Earlier versión of GeDA-3D

This first use case was a prototype for the GeDA-3D kernel, which used an earlier versión

of the modeler to model the initial state of the simulation, which also included the emotional

machine by Razo [36]. This earlier basic modeler allowed to initialize the actors valúes, as

well as setting it emotional behavior.

A second prototype was developed, in order to test the functionality of the earlier GeDA-

3D kernel, the VEE and the Render Module, a work by Matinez [59]. This prototype sent tbe

final output for both the kernel and the render module, which presented a limited amount of

entities, letring us prove also some of the expectations for the architecture (figure 4.3).

lilis carlier prototypes where the basis for the current efforts, from which we obtained

some models presented next.

4. 1 . VIRTUAL ENVIRONMENT EDITOR PROTOTYPES 49

4.1.1 GeDA-3D Virtual Environment Editor Prototype

Example 1:

[ENV]

room.

[/ENV]

[ACTOR]

ManSuit, left one, facing Table.

woman, right one, facing Table.

[/ACTOR]

[OBJECT]

bookshelf, againts NorthWall.

CenterTable Table, color black, cristal translucid gray.

Sofá one, behind Table.

Sofá 2, left Table, facing Table.

Sofá tri, right Table, facing Table.

Chair One, behind (2) ManSuitO, color green, facing ManSuitO.

Chair Two, behind (0) womanO, color red, facing womanO.

Puff seat, front Table, color black.

[/OBJECT]

4.1. VIRTUAL ENVIRONMENT EDITOR PROTOTYPES 50

TWF '____

1 1 I

Figure 4.4: Example 1: Top-Down view

Figure 4.5: Example 1: General View

i.l. VIRTUAL ENVIRONMENT EDITOR PROTOTYPES 51

Example 2:

[ENV]

house.

[/ENV]

[ACTOR]

ManSuit, anywhere Kitchen.

woman, anywhere Carden.

[/ACTOR]

[OBJECT]

CanterTabie Tabla, color black, cristal translucid gray, front (50) bedO.

[/OBJECT]

Figure 4.6: Example 2: House environment

4.1. VIRTUAL ENVIRONMENT EDITOR PROTOTYPES

Figure 4.7: Example 2: House environment

[ENV]

forest .

[/ENV]

[ACTOR]

Knight One, i.enter

Knight, near One.

Knight, near One.

Knight, near One.

[/ACTOR]

[OBJECT]

[/OBJECT]

4.1. VW1VAL ENV1RONMENT EDITOR PROTOTYPES 53

Figure 4.8: Example 3: Detail view

0

Figure 4.9: Example 3: Top-Down View

4.1.2 DRAMA Project Module DRAMAScéne

As part of the collaboration with the Instituí de Recherche en Infomatique de Toulouse,
lKi'l', we adapted part oftteVÜE to form part of the DRAMA Proiect [60].

4.1. VIRTUAL ENVIRONMENT EDITOR PROTOTYPES 54

DRAMA is a multimodule project, consisting of DRAMATexte, a tool for indexing the-

atrical texts, highlighting the most important elements for the director or the scenarist, and

DRAMAScéne, a set-in-scene visualization tool, which allows the theater company to work

on a possible view for the play.

Both modules work together in the following way: first, the system receives a theatrical

piece as input, and then analizes it and tags all the characteristical elements, such as dialogues
or introductions. The user then can add new tags, which will help to make a full indexation

for the non-explicit elements in the play, such as movement, mood or ilumination. The

indexed text is then used to genérate an entry for the DRAMAScéne module, in which a DM

takes the ta^ of creating the visual representation for the play, and later allowing the user

to modify the proposed visualization.

The DM is based on our own VEE, being the main difference the concepts stored in the

KB. For this project, strong emphasis was made on the context for the model. Context plays
an important role since depending on the type, era or style of the play, the model changes

significantly. For example, whereas a modern play involves the actors making direct eye

contact during dialogues, the style of older plays involve the actor addressing the audience

all the time. Technology available in the era for the play is also taken into account the, as

well as costumes and props.

In figure 4.10, we present some examples of models obtained through this variation of our

VEE.

4.1. VIRTUAL ENVIRONMENT EDITOR PROTOTYPES 55

Figure 4.10: Examples of DRAMAScéne Concepts

Chapter 5

Conclusions

Abstract

The last section of this documents presents the conclusions draw form the work and makes

a comparison with other works. Finally, the future assets to be covered are presented.

56

5.1. CONCLUSIONS 57

5.1 Conclusions

Through the study of the available literature from related works, both on DM and in knowl

edge management, we can point several features that distinguish our research from others.

First, most of the proposed input methods make use on specialized hardware, which can be

intimidating for the non-experienced user, whereas we propose a direct method, which is

also structured to aid in the composition of the scenario, supports both complex and simple
entries. Also, they are based on the use of the mouse, which is a useful tool in 2D environ

ments, but requires certain learning stepd to be used on 3D environments. Two researchrd

propose using declarative methods: WordsEye and CAPS. WordsEyes relay on direct human

language, using complex parsing methods to obtain the semantic tree used to construct the

VS, leading to over-simplistic compositions in order to genérate the desired output, although

making it more natural to users, the web nature of the system does not allow to extend

the existing object datábase, and even when several techniques are used to provide a visual

representation of unknown concepts, the system does not make any semantic verification for

the congruency of the scenario, so illogical or non-realistic situations can be created. Finally,

the static output does not allow for any further interaction, and the system does not provide

a method for further use of the model, that is, does not let the scenario develop into a scene,

and does not provide interaction between the user and the entities created.

CAPS uses a specialized constraint declaration to construct the scenario, which is not fully

presented in the literature, focusing only on the placement of objects, leaving their physical

characteristic completely out of any modification. Also, the system uses a direct interaction

method with the user: an object being placed highlights the possible surfaces that can be

occupied, making the modeling process mechanic and allowing for non-logical positions, if

that is the users' desire. It uses direct tags for allowing the placement of objects in cases

such as "over" or "inside'' but restricted to Boolean tags, which makes the positioning of

new objects or incomplete entries difficult. Finally, the modeling process ends when all of

the objects have been placed, without providing any methods for interaction between objects

or with users.

Other projects, such as DEM2ONS, CityEngine or FL-System, are completely based on

using specialized data or input methods, and provide static visualizations of the scenarios

described by the users' input. Again, none of these researches deal with post-modeling tasks

such as entity interaction, environment development, or the user's external input.

Our research not only focuses on the generation of a VS, that is, the positioning of elements

inside the VW, but it also provides grounds for modifying most of the aspects for the scenario

and the entities, either as characteristics visible through graphic representation, as well as

implicit properties that can modify the way the entity behaves during the simulation run, in

the form of a context associated with the model.

5.1. CONCLUSIONS 58

We do not only crate the visual representation for the users' input. We also verify its con

gruency, and adapt the non-explicit valúes, based on a semantic-base (our main contribution
of our proposal KB), to find conflicts, solve them, and only after this process has finished,
then proceed with the visualization and animation of the world envisioned in the users' mind.

None of the researches reviewed during the first phases deal with internal representation for

the entities, or the rules of the worlds. The conjunction of these two parts, the visual output
and the implicit representation for both the world and the entities, can work to créate the

simulation of a complex VE.

Our research showed, as in the figures presented in the previous sub-chapter, that a

knowledge-based modeler could successfully construct a model that represents a VW, begin

ning with the description written on a near-natural language. This model can be integrated
into the KB to be used further in the construction of more complex worlds, which can be

assigned with new or complementary rules. Also, the rules dictating the construction and

evolution of the VW can be modified according to the users' needs, by adjusting some val

úes in the KB, or modifying the output-generation templates. This allows recreating almost

any possible environment, with the only restriction that the elements, setting, and rules for

that particular representation exist in both the KB and a 3D model datábase, and also, by

stating the necessary information in the KB, the modeler can retrieve and even genérate the

necessary data to allow the evolution of the VE. In fact, that data must include the rules of

the world, the entity behaviors, the relationship among entities or the valúes for the entity

internal properties.

5.1 CONCLUSIONS

Environment Navigation Viewer/Rendei]Based
|

Visible

after

render CO

¡8 >< ^ Viewer
/Render

Based >« 2

Editing Tools >- S5 > >< ^ 2 2 rZ

Creates Scenes > 2 rZ rZ ^ £ 2 £

á
0

• i—«

CO
• t—*

fe

£
0

ü

OJ

ft
>.

H
-u

tí
ft
HJ

tí

O Múltiple

output

MVC

Based
OJ

bl

es

|

-U

CO

IH
OJ

tí
OJ

Q
co

!h

OJ

tí
OJ

Q
co

S-4

OJ

tí
OJ

Oí

Q
co

r-

■

s

> Rendered

Im

ages

Ih

OJ

-o
■tí
OJ

Pí

Q
co

ro

V
Sh

3

ce

En

HJ

u

cu Modeling Type Declarative (CSP) Decleirative (Múltiple methods) Declarative (CSP) Semantic Techniques, Pseudo- physics

T3
OJ

a
CQ

¿
OJ
co Context

Free

L-System Extended
L-

Systems

co

B
QJ

CO

¡>*.
CO

1

XI

0
(H

Dh

OJ

ft

+*>

i—i VEDEL

Descrip

tion Description
in

nat

ural

language

C/J
H->

tí
ft

.tí

JJ

[ft
HJ Specialized

Gram

mar

HH

P

Ü
o

Ití

(h

O Specialized

Gram

mar Statistical
and

geo

graphical
data

"Íh
eS

i
Ih

O
HJ

"ft
co

OJ
•■—>

o
Ih

Ph

>

Q
CO

<
O
OJ

o

OJ

>.

a

-o
¡H

1

co

O

w

p

co

Oh

<¡
O

ü
1—1

<

S
■4-3

CO
1

XI

IX

OJ

tí

'Sb
tí

W

¡>»

ü Instant

Architec

ture

5.1. CONCLUSIONS 60

5.1.1 Future Work

Several aspects must be explored in the interest of extending the reach of this research. For

instance, to extend, updating and upgrading the databases, both the KB and the 3D object
datábase must be a main objective for future researches, including a method for finding both

characteristic points and the collision tags.

The other important aspect is the fully integration of the VEE with the rest of the GeDA-

3D architecture, including updating the modeling process to support future movement and

perception sub-modules inside the agents in charge of providing environmental self-evolution,

as well as interacting with the parser module and agent community during the animation

process.Finally, several arrangements can be made to the GUI for the VEE, to provide the

user with a list of all the possible environments and entities available, as well as their must

representative properties.

Figure 5.1: GEDA-3D Architecture

This task would help the research by:

• Allowing to design and créate new use cases, giving the oportunity to verfiy novel

concepts and the reach of the module.

• Ease the resources needed to créate the model, increasing the efficiency of the modeling

tool.

5.1. CONCLUSIONS 61

• Provide the necessary methods to explore VE self-evolution, and test the context-

generation capabilities.

• Cover all possible aspects of DM, providing support for unspecified request and regional
or local linguistic accidents.

• Present a refined GUI to final users, easing the interaction and providing end-user

oriented features such as VE saving, on-the-fly rendering, online interaction and sharing,
and end-user technical support.

Being part of the GeDA-3D project, this research is included as a module in the general
architecture. This module, named the Virtual Editor, also includes a Scene Editor and the

Context Descriptor. The module sends messages through the kernel during modeling time to

several other modules (Planing Module, Agents Module), and sends custom-formated outputs
to the rest of the architecture when the model has been approved by the user.

Bibliography

[1] Demitri Píemenos, Georges Miaoulis, and Nikos Vassilas. Machine learning for a gen

eral purpose declarative scene modeller. In International Conference GraphiCon'2002,

Nizhny Novgorod (Russia), September 15-21, 2002.

[2] Véronique Gaildrat. Declarative modelling of virtual environment, overview of issues

and applications. In International Conference on Computer Graphics and Artificial In

telligence (3IA), Athénes, Gréce, volume 10, pages 5-15. Laboratoire XLIM Université

de Limoges, may 2007.

[3] Félix Ramos, Fabiel Zúñiga, and Hugo I. Piza. A 3D-space platform for distributed

applications management. International Symposium and School on Advanced Distributed

Systems 2002. Guadalajara, Jal., México, November 2002.

[4] Dirk Fahland. Towards analyzing declarative workflows. In Autonomous and Adap

tive Web Services, number 07061 in Dagstuhl Seminar Proceedings. Internationales

Begegnungs- und Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl, Ger

many, 2007.

[5] Antoine Spicher and Olivier Michel. Declarative modeling of a neural-like process.

Biosystems, 87(2-3):281
-

288, 2007.

[6] Dimitri Píemenos. Using artificial intelligence techniques in computer graphics. In

GraphiCon, 2000.

[7] Olivier Le Roux, Véronique Gaildrat, and Rene Caubet. Design of a new constraints

solvers for 3d declarative modeling. In International Conference on Computer Graph

ics and Artificial Intelligence (SIA), Limoges, 03/05/200-04/05/200, pages 75-87, may

2000.

[8] Olivier Le Roux, Véronique Gaildrat, and Rene Caubet. Using constraint satisfaction

techniques in declarative modeling. In Geometric Modeling Techniques, Applications,

Systems and Tools, pages 1-20. Kluwer Academic Publishers, 2004.

62

BIBLIOGRAPHY 63

[9] Mathieu Larive, Olivier Le Roux, and Véronique Gaildrat. Using Meta-Heuristics for

Constraint-Based 3D Objects Layout. In International Conference on Computer Graph
ics and Artificial Intelligence (SIA), Limoges, France, 12/05/04-13/05/04, pages 11-23,
maY 2004.

[10] Stéphane Sanchez, Olivier Le Roux, H. Luga, and Véronique Gaildrat. Constraint-Based

3D-Object Layout using a Genetic Algorithm. In International Conference on Computer
Graphics and Artificial Intelligence (3IA), Limoges, 14/05/2003-15/05/2003, may 2003.

[11] Ghassan Kwaiter, Véronique Gaildrat, and Rene Caubet. Controlling object natural

behaviors with a 3d declarative modeler. In Computer Graphics International, pages
248-, 1998.

[12] Pierre Barral, Guillaume Dorme, and Dimitri Píemenos. Visual understanding of a scene

by automatic movement of a camera. In GraphiCon, 1999.

[13] Olivier Le Roux, Véronique Gaildrat, and Rene Caubet. Using constraint propagation
and domain reduction for the generation phase in declarative modeling. In IV '01:

Proceedings of the Fifth International Conference on Information Visualisation, page
117. IEEE Computer Society, 2001.

[14] A. Winter, A. Strübing, L. 181er, B. Brigl, and R. Haux. Ontology-b.ased assessment

of functional redundancy in health information systems. Lecture Notes in Computer

Science, 5421:213 -

226, 2009.

[15] Véronique Giudicelli and Marie-Paule Lefranc. Ontology for immunogenetics: The

IMGT-ONTOLOGY. Bioinformatics, 15(12):1047-1054, 1999.

[16] Mike Uschold, Mike Uschold, Michael Grüninger, and Michael Gruninger. Ontologies:

Principies, methods and applications. Knowledge Engineering Review, 11:93-136, 1996.

[17] Gutiérrez-García J. Octavio, Koning Jean-Luc, and Ramos-Corchado Félix F. An obli

gation approach for exception handling in interaction protocols. In Workshop on Logics

for Intelligent Agents and Multi-Agent Systems (WLIAMAS 2009) at IEEE/WIC/ACM
International Joint Conference on Web Intelligence and Intelligent Agent Technology

WI-IAT'09, Milán, Italy, September 2009. IEEE CS Press.

[18] Stephan Grimmp, Pascal Hitzler, and Andreas Abecker. Knowledge representation and

ontologies logic, ontologies and semantic web languages. draft, 2006.

[19] Maryam Alavi and Dorothy E. Leidner. Review: Knowledge management and knowledge

management systems: Conceptual foundations and research issues. MIS Quarterly,

25(1):107-136, 2001.

BIBLIOGRAPHY 64

[20

[21

Thomas R. Gruber. A translation approach to portable ontology specifications. Knowl.

Acquis, 5(2):199-220, June 1993.

Phillip Breay. The social ontology of virtual environments criticisms and reconstruc

tions. The American Journal of Economics and Sociology, 62(l):269-282, January 2003.

[22] A. Farquhar, R. Fikes, and J. Rice. The ontolingua server: A tool for collaborative

ontology construction. Technical report, Knowledge Systems Laboratory, Stanford Uni

versity, 1996.

[23] John Domínguez. Tadzebao and webonto: Discussing, browsing, and editing ontologies
on the web. In In Proceedings of the Eleventh Workshop on Knowledge Acquisition,

Modeling and Management, KAW'98, Banff, Canadá, April 1998.

[24] E. Mot i. Reusable Components for Knowledge Modelling: Case Studies in Parametric

Design Problem Solving. IOS Press, Amsterdam, The Netherlands, The Netherlands,
1999.

[25] W. E: Grosso, H. Eriksson, R. W. Fergerson, J. H. Gennari, S. W. Tu, and M. A.

Musen. Knowledge modeling at the millennium (the design and evolution of protege-

2000). Technical report, Stanford Medical Informatics, 1998.

[26] Henrik Eriksson, Yuval Shahar, Samson W. Tu, Ángel R. Puerta, and Mark A. Musen.

Task modeling with reusable problem-solving methods. Artificial Intelligence, 79(2) :293-

326, 1995.

[27] Deborah L. McGuinness and Frank van Harmelen. OWL Web Ontology Language

Overview. W3C recommendation, World Wide Web Consortium, February 2004.

http://www.w3.org/TR/2004/REC-owl-features-20040210/.

[28] Graham Klyne and Jeremy J. Carroll. Resource Description Framework (RDF): Con

cepts and Abstract Syntax. W3C recommendation, World Wide Web Consortium,

February 2004. http://www.w3.org/TR/2004/REC-rfd-concepts-20040210/.

[29] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Pearson

Education, 2003.

[30] Solomon W. Golomb and Leonard D. Baumert. Backtrack programming. J. ACM,

12(4):516-524, 1965.

[31] John Gary Gaschnig. Performance measurement and analysis of certain search algo

rithms. PhD thesis, Carnegie-Mellon Univ. Pittsburgh Pa. Dept. Of Computer Science,

1979.

BIBLIOGRAPHY 65

[32] Riña Dechter. Enhancement schemes for constraint processing: backjumping, learning,
and cutset decomposition. Artif. Intell., 41(3):273-312, 1990.

[33] Robert M. Haralick and Gordon L. Elliott: Increasing tree search efficiency for constraint

satisfaction problems. Artif. Intell., 14(3):263-313, 1980.

[34] Steve Aukstakalnism and David Blatner. Silicon Mirage, The Art and Science of Virtual

Reality. Peachpit Press, Berkeley, CA, USA, 1992.

[35] Jerry Isadle. What is virtual reality?, a web-based introduction. WebPage, 1998.

http://vr.isdale.eom/WhatIsVR/frames/WhatIsVR4.l.html, Last visited 06/14/2007.

[36] Luis Alfonso Razo Ruvalcaba. Algoritmos de comportamiento y personalidad para

agentes emocionales. Master's thesis, Centro de Investigación y de Estudios Avanza

dos del IPN, Unidad Guadalajara, 2007.

[37] Orozco H. R., Ramos F., Zaragoza J., and D. Thalmann. Frontiers in Artificial Intelli

gence and Applications (Advances in Technological Applications of Logical and Intelligent

Systems), volume 186, chapter Avatars Animation Using Reinforcement Learning in 3D

Distributed Dynamic Virtual Environments, pages 67-84. IOS Press, Washington, DC,

2009.

[38] Philippe Codognet. Declarative behaviors for virtual creatures. In SIGGRAPH '99:

ACM SIGGRAPH 99 Conference abstracts and applications, page 237. ACM, 1999.

[39] Samuel R. Buss. SD Computer Graphics: A Mathematical Introduction with OpenGL.

Cambridge University Press, 2003.

[40] Jean-Eudes Marvie, Julien Perret, and Kadi Bouatouch. The fl-system: a functional

1-system for procedural geometric modeling. The Visual Computer, 21(5):329-339, jun

2005.

[41] Yoav I. H. Parish and Pascal Müller. Procedural modeling of cities. In SIGGRAPH

'01: Proceedings of the 28th annual conference on Computer graphics and interactive

techniques, pages 301-308, New York, NY, USA, 2001. ACM.

[42] Mathieu Larive, Yann Dupuy, and Véronique Gaildrat. Automatic generation of urban

zones. In WSCG (Short Papers), pages 9-12, 2005.

[43] Stefan Góbel, Oliver Schneider, Ido Iurgel, Axel Feix, Christian Knópfle, and Alexander

Rettig. Virtual human: Storytelling
and computer graphics for a virtual human platform.

Lecture Notes In Computer Science, pages 79-88, 2004.

[441 Riva G. Application of virtual reality in medicine. Methods of information in medicine,

5(5):524-534, October 2003.

BIBLIOGRAPHY 66

[45] M. J. North, T. R. Howe, N. T. Collier, and J. R. Vos. A Declarative Model Assembly

Infrastructure for Verification and Validation, pages 129-140. Springer Japan, 2007.

[46] R. Raymond Lang. A declarative model for simple narratives. In Proceedings of the

AAAI Fail Symposium on Narrative Intelligence, pages 134-141. AAAI Press, 1999.

[47] P. Prusinkiewicz and Aristid Lindenmayer. The algorithmic beauty of plants. Springer-

Verlag New York, Inc., 1990.

[48] Peter Wonka, Michael Wimmer, Francois Sillion, and William Ribarsky. Instant archi

tecture. ACM Transactions on Graphics, 22(4):669-677, july 2003.

[49] Bob Coyne and Richard Sproat. Wordseye: An automatic text-to-scene conversión

system. In SIGGRAPH '01: Proceedings of the 28th annual conference on Computer

graphics and interactive techniques, pages 487-496. AT&T Labs Research, 2001.

[50] G. Kwaiter, V Gaildrat, and R. Caubet. Dem2ons: A high level declarative modeler

for 3D graphics applications. In Proceedings of the International Conference on Imaging

Science Systems and Technology, CISST'97, pages 149-154, 1997.

[51] Issn x, D. Wang, D. Wang, I. Hermán, I. Hermán, G. J. Reynolds, and G. J. Reynolds.

The open inventor toolkit and the premo standard, 1997.

[52] "The Open Group" Motif 2.1-programmer's guide, 1997.

[53] William Ruchaud and Dimitri Plemeno. Multiformes: A declarative modeller as a 3D

scene sketching tool. In ICCVG, 2002.

[54] Ken Xu. Constraint-based automatic placement for scene composition. In In Graphics

Interface, pages 25-34, 2002.

[55] Stephen Cooper, Wanda Dann, and Randy Pausch. Teaching objects-first in intro-

ductory computer science. In SIGCSE '03: Proceedings of the 34th SIGCSE technical

symposium on Computer science education, pages 191-195, New York, NY, USA, 2003.

ACM.

[56] Jaime Alberto Zaragoza Rios. Representation and exploitation of knowledge for the

description phase in declarative modeling of virtual environments. Master's thesis, Cen

tro de Investigación y de Estudios Avanzados del Intituto Politécnico Nacional, Unidad

Guadalajara, Guadalajara, México, 2006.

[57] Mike Bayer Benjamín Geer. Freemarker: Java témplate engine libray. webpage, decem

ber 2008.

BIBLIOGRAPHY 67

[58] Alonso Gutiérrez Aguirre. Núcleo geda-3D. Master's thesis, Centro de Investigación y

de Estudios Avanzados del IPN, Unidad Guadalajara, 2007.

[59] Alma Verónica Martínez González. Lenguaje para animación de creaturas virtuales.

Master's thesis, Centro de Investigación y de Estudios Avanzados del IPN, Unidad

Guadalajara, 2005.

[60] Andriamarozakaniaina T., Pouget M., Zaragoza J., and Gaildrat V Dramatexte: in-

dexation et base de connnaissances. Premier Colloque international sur la notation

informatique du personnage, may 16-17, 2008, Toulouse, France. Publishing pending.

CENTRO DE INVESTIGACIÓN Y DE ESTUDIOS AVANZADOS DEL IPN.

UNIDAD GUADALAJARA

El Jurado designado por la Unidad Guadalajara del Centro de Investigación y de

Estudios Avanzados del Instituto Politécnico Nacional aprobó la tesis

Modelado Declarativo Auxiliado por Conocimiento
- Declarative

Modeling Based On Knowledge

del (la)
Jaime Alberto ZARAGOZA RIOS

el día 15 de Diciembre de 2009.

Dr. Juan Manuel RamírezArredondbí

Investigador CINVESTAV 3C I
CINVESTAV Unidad Guadalajara

a.
Dr. José]

Investigador CINVESTAV 3B

CINVESTAV Unidad Guadalajara

Dr./Luis Ernesto López Mellado

Investigador CINVESTAV 3B

CINVESTAV Unidad Guadalajara

Dr. Jéan-Luc Koning

Vice President of International

Relations

Grenoble Institute ofTechnology

Dr. Félix Franjjs^PRamos Corchado

Investigador CINVE¡5<*EAy 3A
CINVESTAV Unidad Guadalaiara

M.C. Véronique Gaildrat

Maestra de Conferencias

Institute deRechearche en

Informatique de Toulouse, Toulouse

Francia

ronioRaAos Corchado

fesor Investigador
Universidad Autónoma del Estado de México

