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RESUMEN

Los lenguajes de especificación basados en escenarios, como los Diagramas
de Secuencia de Mensajes (Message Sequence Charts), ITU-T MSC 2000

Z.120 (1 1/99), ofrecen un medio intuitivo y visual para describir, por ejemplo,

requerimientos de sistemas. Dichas especificaciones se enfocan en el

intercambio de mensajes entre entidades que se comunican. Se presenta un

modelo de ejecución (semántica de ejecución) a partir de una Maquina de

EjecuciónAbstracta que incluye las siguientes características: el diagrama de

secuencias básico (basic Message Sequence Chart), expresiones en línea,

diagrama de secuencia de mensajes de alto nivel y datos. La Máquina de

Ejecución Abstracta puede ser utilizada de dos maneras: como aceptor o

generador de trazas. En el primer caso, la maquina se puede usar como

probador; en el segundo caso, como componente para la generación de casos

de pruebas.
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ABSTRACT

Scenario-based specifications such as Message Sequence Charts, ITU-T MSC

2000 Z.120 (11/99), offer an intuitive and visual way of describing, for example,

requirements. Such specifications focus on message exchange among communicating
entities. We present an execution model for the Message Sequence Charts defined by
an Abstract Execution Machine (AEM) whose features include: basic MSC (bMSC),
inline expressions, High level MSC (HMSC) and data. The AEM can be used in

two different ways: Accepting or generating traces. In the former case the AEM

can be used as a tester, in the latter as component for test generator. An example
of test generation is presented.
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Chapter 1

Introduction

Formal description techniques (FDTs, i.e. LOTOS, Estelle, or SDL) frequently are

used within industry and standardization bodies to describe the functional prop

erties of communication systems (e.g. OSI or ISDN). FDT descriptions can be

simulated and the possible interactions between a system and its environment can

be generated automatically. Although test cases describe such interactions the au

tomatic generation of test cases from FDT descriptions is still an open problem.

The basic problems deal with the questions: How long is a test case? What is the

test verdict (e.g. PASS, or FAIL)! and What can be concluded from a test verdict?

Furthermore, there exists a gap between research and practical testing.

Approaches coming from research can handle systems with a small state space.

They test every state transition exactly one time. Therefore, the length of the test

cases is determined and the test verdicts are PASS and FAIL. From a PASS verdict a

behavioral equivalence between specification and implementation can be concluded.

The problems of these methods are state explosión and infinite state spaces.State

explosión oceurs because of exponential relations between a specification and its

state space. This means for example that the state space exponentially grows with

the number of processes, or with the size of buffers.

Unfortunately, FDTs forcé the description of systems with an infinite state

space. Infinite signal queues of SDL processes or unlimited data descriptions are

two examples for this. However, there can not exist test methods which guarantee

behavioral equivalence for systems with an infinite state space. Even finite state

machines which communicate by means of unbounded FIFO buffers (i.e. the base

model of SDL) are as powerful as Turing Machines for which the behavioral equiv

alence is undecidable [70]. For testing the situation is more complicated since there

is in general no knowledge about the whole implementation. Only the interactions

between an implementation and its environment are observed for a certain time.

One solution is to guarantee a finite state space by giving static restrictions to

1
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the specification. But such restrictions often are also undecidable and they do not

prevent state explosión.

Real systems are very complex. The practical procedure of writing test cases

is an intuitive and creative process which only is restricted by informal regulations.

The intuition behind a test case is reflected by the so-called test purpose. A test

purpose denotes an important part of a specification which should be tested. The

meaning of the term important part of a specification often is a philosophical prob

lem. Some people argüe that one has to select test cases which check the normal

behavior of a system (e.g. correct data transmission), since this reflects the main

purpose of a system. Other people think that one has to test the critical parts of

a specification (e.g. error handling), since in general the normal cases have been

tested thoroughly by the implementors.

Our approach does not solve the mentioned philosophical problem but it helps

to support practical testing. It combines test purposes defined by Message Sequence

Charts (MSCs) [5] in order to genérate test cases.

MSCs (cf. Figure 1.1) are a widespread means for the graphical visualization

of selected system runs of communication systems1 A test purpose can be defined

by an MSC in form of the required signal exchange. An MSC does not define

a complete test case. It does not describe the signal exchange which drives the

implementation into a state from which the MSC can be performed (preamble). It

does not define the stimuli which are necessary to drive the implementation back

into an initial state after the MSC is observed (postamble). It does not define

what to do if a signal is observed which is not defined in the MSC. There are other

áreas where the MSCs can be used: for requirement specification, simulation and

validation, test case specification, and documentation.

There are commercial and research tools that support MSCs. One example

is the Telelogic Tau Suite that supports not only MSC but also SDL (Standard De-

scription Language) and TTCN (Tree and Tabular Combined Notation). The Tau

tool is used to develop software for telecommunications and embedded applications.

The MSCs are used in this tool to capture requirements and to record traces of SDL

model simulations.

An important functionality of Tau is the ability to define and produce test

sequences. (Derived from SDL specifications). However, there is not current support
to genérate test sequences from the MSCs. The next question was stated: How can

the MSCs be used to genérate test sequences ?. The answer ofthis question requires
a long term project and a partial answer is the contribution proposed in this thesis.

There is previous work related in this field, e.g., the work developed by
Grabowski in the Test Generation from MSC [62] and some other projects related

Message Sequence Charts (MSCs) is a graphical and textual standardized language (ITU-T
MSC2000 Z.120 (11/99)).
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in the test generation using both SDL and MSC. These works are developed using

MSC'96 or previous releases. In this project MSC'2000 is used. MSC'2000 is a nat

ural continuation of the recommendation from 1996 and adds concepts for: data,

time, control flow and object orientation on MSC document [5].
This chapter introduces an example using an MSC as requirement and source

for test generation.

1.1 An introductory example

1.1.1 The MSC requirement

Assuming that we desire to build a toaster machine, we define a set of requirements.

Figure 1.1 describes one requirement (using an MSC) to be fulfill by the system.

msc START

| User ¡ j Conlrol | | llealing

Figure 1.1: Basic Message Sequence Chart.

1.1.2 The MSC meaning

Figure 1.1 describes a scenario where a toaster machine starts to work. Three

different entities, named instances, interact in the scenario: User, Control and

Heating. Each instance has three main elements, head, end and, time axis. The

instance head and instance end describe the existence of the instance, not the cre

ation or destruction of it. The arrows represent the message exchanges between

two instances, the arrow head denotes the reception and the arrow tail denotes the

sending. The set of messages is: start, start_ack, and heat. Each message arrow

represents two events: the sending and the reception. Let \m denote the send event

and ?m the receive event for message m. Figure 1.2 shows the msc START where
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the sending and receiving events are highlighted as circles.

msc START

i jjgü i Control ~| | lle.lln¿~

..i-,,. 1 ?»•■■•<

*»rt-«* Ck !,l_rl_.ck

?ho(

Figure 1.2: Bíisíc Message Sequence Chart with an explicit representation of send

and receive events.

1.1.2.1 The partial order of events

Any MSC describes a set of possible traces (sequences of events). The only charac

teristic that is consider in the MSC is the event order. For each instance the time

axis describes a total order among events called instance order. An MSC defines a

partial ordering of events composed from:

• Instance order: The events are ordered over the axis time in every instance;

there are exceptions as the coregions and inline expressions but these elements

will be explained later. For every instance we have a sequence of events built

from the instance head to the instance end. For example, instance User

has the sequence of events !start,?start_ack ,
the instance Control has

the sequence ?start, !start_ack, ¡heat, and the instance Heating has the

sequence ?heat. The nature of the sequence defines a total order over the

contained elements.

• Send receive relation: There is a one-to-one correspondence between

sending and reception of each message represented by the arrows e.g, in Figure

1.1, the event of sending message ¡start is related to the receiving event

?start. This relation can be described by a bijective function from each send

to its corresponding receive event.



The instance order, together with the send-receive relation define

a partial order2 over the events in the MSC. Let ex and e_ be two

different events, we say that ex precedes e2, denoted by ex < e2 if

• e2 and e\ belong to the same instance and e\ appears before e2.

• ei is the send event and e2 is the corresponding receive event.

1.1.2.2 The traces defined by the MSCs

One method to genérate the set of possible traces described by an MSC is computing

the transitive closure ofthe partial order. The MSC in Figure 1.1 describes the next

set of traces:

Trace l:!start, ?start, !start__ack, ?start_ack, ¡heat, ?heat

Trace 2:!start, ?start, !start_ack, ¡heat, ?start_ack, ?heat

Trace 3:!start, ?start, !start_ack, ¡heat, ?heat, ?start_ack

The set of traces can be represented by a graph (Figure 1.3).

¡start

?start

¡start ack

?start_ack ¡heat

¡heat

?heat

?start_ack

?heat

?heat

?start a<

Figure 1.3: Graph representation ofthe set of traces described by an MSC.

1.2 Testing

Testing is a method to protect users and customers against insecure, inappropriate,
or even erroneous software and hardware products. Furthermore, a thorough and
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comprehensive test gives an indication about the quality of the product. In the

telecommunication área special tests, called conformance tests, are often demanded

by the customers. Usually the conformance testing is a functional black-box testing,

i.e., a system under test (SUT) is given as a black-box and its functional behavior

is defined in terms of inputs to and corresponding outputs from the SUT.

1.2.1 The meaning and the representation of test cases

The method presented in this thesis is based on the assumption that an MSC

defines a specific part of a test case, the so-called test purpose. For explaining

this the meaning of the term trace and test case has to be introduced, and the

representation of test cases has to be described [63].

1.2.1.1 Traces

A trace describes the ordering of events which are performed during a system run.

An MSC is a representation of a set of traces.

1.2.1.2 An informal definition of test cases

A test case is defined in order to prove a specific test purpose. A test purpose might

be a set of events which have to be performed, or a set of states which have to be

reached by the SUT. A test case describes a set of events that can be observed by

the tester (called observables). Each observable leads to a test verdict.

The test verdicts are PASS, INCONCLUSIVEmd FAIL. PASS is given when

the test purpose is reached, FAIL is assigned when the SUT behaves in an incorrect

way and INCONCLUSIVE is given if neither FAIL ñor PASS can be assigned.
A test case can be structured into three parts which are called preamble, test

body and postamble. The test body describes observables which indicate that the

SUT behaves according to the test purpose. The preamble drives the SUT from an

initial state into a state from which the test body can be performed. The postamble
checks whether the test body ends up in the correct state after it has been performed

and drives the SUT back into an initial state from which the next test case can be

applied.

1.2.1.3 The representation of test cases

Test cases for conformance tests are usually represented by the Tree and Tabular

Combined Notation (TTCN) which is standardized by the ISO/IEC [69]. Figure 1.4

describes an example where we have a system having two interfaces, Component-A
and ComponentJB. These two components are the points where we can send or
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receive the signáis (or messages). Our test interfaces, the entities (called observation

points) that we can control to test the system are the OP_A and OP_B.

msc SETUP

1 OPA | | Component_A [ e ! | |

Setup

Synchronization
Setup

Sctup_ack

Information

Connect
Synchronization

Connect

Connect_ack

Connect ick

l^^üíil 1

Figure 1.4: Example of an MSC.

A TTCN test case for the example presented in Figure 1.4 may look like the table in

Figure 1.5. TTCN describes observables by means ofa tree notation (cf. Behavior

Description in Figure 1.5). Under this approach, we can hide the internal messages

exchanged by the Component_A and Component-B.

Test Case Dynmlc Behaviour

Test ("as* Nam.: Test Case 1

Group: Test case selup.

Purpoae: Setup Che coiukcIIoii.

Default: Unexpected Evcnb

Comments:

Na Ijbd Behaviour description Coortraln Verdkt c_

2

.1

4

5

OP_A -Setup

OP_>?Setup_ack

OP_A! Information

OP_B7Setup

OP B.Cooned

6 OP B?Conncct ark

7

8

OP_A?Connect

OP A .'Connect ack PASS

9

10

OP^Coonect

OP B7Conned ack

11 OP A ¡Connect ack PASS

12

13

14

OP_A7Connecl

OP_A ¡Connect_ack

OP_B7Connert_ack PASS

Default Dynamic Behaviour

Test Slep Nwiie: Unexpected Eveots

Group: Test case setup.

Objedive: Handle Unexpected signal.

Commen ti t

No. l.abri Behavlnur description Constrain Verdict o™,™

1

2

OP_A?OTHERWISE

OP_B?OTHERWlSB

FAIL

FAIL

Figure 1.5: TTCN test case.



8

The tree structure is determined by the ordering and the indent of the events. In

general, the same indent denotes a branching (i.e. alternative events, e.g. lines Nr.

6, 9, and 12 in Figure 1.5) and the next larger indent denotes a succeeding event

(e.g. lines Nr. 8, 11, and 14 in Figure 1.5).
Events are characterized by the involved instance (i.e. OP_A or OP_B), by its

kind (i.e. "!" denotes an output, "?" describes an input). the statement OP_A!Setup

(cf. Nr. 1 in Figure 1.5) describes the sending of Setup to the SUT by the OP.A.

TTCN allows to specify events with arbitrary messages by using the OTHERWISE

statement (e.g. OP_A?OTHERWISE in Figure 1.5).
Test verdicts are defined within a verdict column of the TTCN table. The

verdict column in Figure 1.5 (first table) only includes PASS verdicts. In this

example FAIL behavior is specified by a default behavior description which is shown

in Figure 1.5 (second table). Such defaults have to be referenced in the test case

header (cf. Default in Figure 1.5, first table).
TTCN offers much more facilities like Constraints, Labels or Timer which are

not relevant for this example. More information about TTCN can be found in [69].

1.2.2 The test case generation

In this case, assuming that an MSC specification describes a finite number of finite

traces, we can use the algorithm proposed in [62].

• An MSC describes a partial ordered set of actions. The partial order is defined

by the messages and by the order of actions along the instance axes. Based

on this information we calcúlate the sequences of actions which include the

actions of the MSC and which are consistent with the partial order defined

by the MSC. For the test case description only the actions of the testera are

of interest. Therefore in the second step we remove all actions which are not

performed by the testera (internal events) from each sequence.

a 3. MSC and TTCN are different languages with different semantics. For

TTCN some of the sequences which we generated in step 2 are redundant.

During a test run they can not be distinguished. In other words, for TTCN

several sequences are in the same equivalence class. In the third step we select

one sequence of each equivalence class.

• 4. In the fourth step the selected sequences are transformed into the TTCN

notation.
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1.2.3 The MSC2000 recommendation

In the previous section an algorithm to genérate the Test cases was presented.

this algorithm can work effectively using MSC specification which describe finite

behaviors. In Chapter 2 additional features ineluded in MSC2000 are presented, e.g.,
inline expressions and HMSCs. These elements can describe infinite and complex

behaviors.

1.3 Scope of the work

In order to compute the sequences defined by an MSC specification we proposed

an executable semantics for MSC2000. This semantics is based on an Abstract

Execution Machine (AEM). The AEM proposed can handle the inline expressions,

HMSC and data concepts ineluded in MSC2000. An important characteristic of the

AEM is the ability to genérate sequences "on the fly"

The AEM can be used in two different ways: Accepting or generating traces.

In the former case the AEM can be used as a tester, in the latter as a test generator

(simulator).
In Chapter 2 the most important features of MSC2000 are presented. Chapter

3 presents one formalization based on sequences and in Chapter 4 the Abstract

Execution Machine (AEM) is defined and its operation for basic MSC (without
inline expressions). Chapter 5 extends the AEM definition in order to handle the

inline expression. Chapter 6 extends the AEM again to handle the high level MSC

(HMSC). Chapter 7 presents an example where the AEM is utilized as engine for

test generation. Chapter 8 presents the concluding remarks and future work.



Chapter 2

The MSC2000 Standard

2 . 1 Introduction

In this chapter we shall present themost important MSC 2000 features. The features

presented are:

a The MSC basic elements, such as instances, messages, timers, conditions,

actions and coregions.

a Inline expressions.

a High level MSC.

a Data and time concepts.

2.2 Basic MSC

2.2.1 Instances

Instances are reactive entities whose communication behavior is described by the

MSCs. Within the instance body the ordering of events is specified. Each instance

can store information in local variables (called dynamic variables in MSC2000). In

stances may be created and destroyed dynamically. Figure 2.6 presents an example
where the thread instance is created and destroyed dynamically.

2.2.2 Messages

Messages are the units of information exchanged between instances. A message can

be as simple as a signal or as complex as a sophisticated data packet. Usually a

10
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msc START_SESSION

| User process | Demon ¡

____■

start r
User thread 1

st.irt ¡ick

$tarl_ack

<

user dala

process_fin.shed

____■ —L >

Figure 2.6: Message Sequence Chart showing the dynamic creation and destruction

of instances.

message consist of an identifier and zero or more data parameters. (cf. messages

enter, password, openDoor, and openDoor_ack in Figure 2.7 (a)). Two different

events are associated to the message: the send and receive events.

2.2.3 Timers

Timers are mechanisms to count time units. Each timer belongs to one instance.

Three different events are associated to the timers: timeout, setting, and stopping

the timer (Figure 2.7 (a)).

2.2.4 Conditions

Conditions are elements that can restrict or valídate the execution trace. Usually,

if the condition evaluates to true then the trace is valid, i.e., the execution can con

tinué. However, if the condition evaluates to false the execution is invalid.Conditions

may span over several instances (Figure 2.7). There are two types of conditions:

a Setting conditions.The setting conditions describe the global state of the sys
tem (as labels) and may span over several instances (Figure 2.7 (b)).

a Guarding conditions. The guard conditions are used to enable or disable

sections in inline expressions. The guarding conditions can contain predicates
associated to data in the MSC and must be local and attached to one instance

(Figure 2.7 (a)).
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msc AcceptAcces

Ukí Controller Ccntnü_Comrolla

pn»word(PP) L
T(5i)

open ta vnlioXU-eiCode)

/open - tíw\

openDocr(Doce)

1^ pwntedAcceM
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Figure 2.7: Message Sequence Chart with conditions.

2.2.5 Actions

Actions are events that can have either informal text associated to it (labels), or

formal data statements. An action describes an internal atomic activity of an in

stance. When an action contains data statements, the event modifies the state by

the evaluating each statement concurrently (Figure 2.8).

2.2.6 Coregions

A coregion is a special mechanism introduced to describe unordered sets of events,

i.e. to remove the order described in the time axis. A coregion is part ofthe instance

axis; the events specified within that part are assumed to be unordered in time. A

coregion covere, for example, the practically important case of two or more incoming

messages where the ordering of reception may be interchanged (cf. In Figure 2.8

the reception of the messages OpenDoorBeep and grantedAcces can occur in any

order).
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Figure 2.8: Message Sequence Chart with actions.
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Figure 2.9: Elements inside Message Sequence Chart.

2.3 Inline expression

Inline expressions provide a mean to formúlate the composition ofMSCs within the

MSC language. The use of inline expressions reduces the need for several MSCs
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to describe complex behaviors. Graphically an inline expression consists of an in

line expression symbol (a box) that is attached to a number of instances (at least

one) .This inline expression symbol contains in the left-upper córner one ofthe key

words alt, par, exc, opt or loop (Figure 2.9). These keywords indicate the

composition operation that is described by the inline expression:

a Alternative composition (alt)

a Parallel composition (par)

a Iteration (loop)

a Optional composition (opt)

a Exception composition (exc)

Both alternative and parallel composition can have any finite, positive number of

inline sections (the inline section is another MSC). These sections are all drawn

inside the inline expression symbol and they are separated by a dashed vertical line

(Figure 2.4).

msc Example 1

A

t£-

T£—

1 c

message 1

msc Example2

T_^

Par y* message 1

message3

nics*apc2

(a) (b)

Figure 2.10: Example of inline expression in the Message Sequence Chart.

Figure 2.9 presents two examples containing inline expressions. In (a) the

MSC contains an alternative inline expression containing two inline sections (al

ternatives). In (b), the MSC contains a parallel inline expression with two inline

sections.
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2.3.1 Alternative composition

The alternative composition defines alternative executions of inline sections. This

means that if several inline sections are meant to be alternatives only one of them

will be executed. In the case where alternative inline sections have common pream

ble (the same set of events in all traces) the choice of which inline section will be

executed is performed after the execution of the common preamble (until one sec

tion can really be selected). Figure 2.10 (a) presents an MSC containing a common

preamble in the two inline sections. Notice that the initial set of messages is the

same in both sections.

Figure 2.11: Example of Common preamble in an inline expression.

The MSC presented in Figure 2.11 (a) can be re-drawn as (b), in this case the

common preamble is extract from the inline expression. Usually, the selection of

any alternative is indeterministic. For example the selection of one alternative in

Figure 2.11 (b) depends on the which event oceurs first (sending the message r or

sending the message t).

2.3.2 Parallel composition

The parallel composition defines the parallel execution of inline sections. This means

that all events within the parallel MSC sections will be executed, where the only

restriction that the event order within each section must be preserved (Figure 2.10

00).

2.3.3 Iteration

An inline loop expression has exactly one inline section. The keyword loop is

followed by a loop bound. This loop bound refers to the number of repetitions

of the inline section. The loop boundary, if present, indicates the minimal and
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maximal number of inline sections.

The most basic form is loop < n,m > where n and m are expressions of type

natural numbers. This means that the operand may be executed at least n times

and at most m times. The expressions may be replaced by the keyword inf, like

loop < n, inf >. This means that the loop will be executed at least n times. If the

second operand is omitted like in loop < n > it is interpreted as loop < n, n >.

Thus loop < inf > means an infinite loop. If the loop bounds are omitted like in

loop, it will be interpreted as loop < 1, inf >. If the first operand is greater than

the second one, the loop will be executed 0 times (Figure 2.12).

Figure 2.12: Example of iteration using inline expressions.

2.3.4 Optional composition

The optional composition is the same as an alternative where the second operand

is the empty inline section.

2.3.5 Exception composition

The exceptional composition is a compact way to describe exceptional cases in an

MSC. The meaning of the operator is that either the events inside the inline section
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are executed and then the MSC is finished or the events following the section are

executed. The exceptional inline expression can thus be viewed as an alternative

where the second operand is the entire rest of the MSC. All exception inline ex

pressions must be shared by all instances in the MSC. The choice of selecting the

execution of an exception may be indeterministic.

2.3.6 The guarded inline sections

The guarded sections contain an initial local condition (guard). If this condition

evaluates to false then the entire corresponding section is disabled, the condition

must be the first event in the section, and all events inside any guarded section must

be causally dependent on the guarded condition (Figure 2.13).

Figure 2.13: Example of guarded inline expressions. It is assumed that the variable

access is owned by the instance AccessSystem.
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2.4 High level MSC

The high level MSC (HMSC) provides amean to graphically define how a set ofMSC

can be combined. In Figure 2.14 a complete example of a HMSC is presented. The

example describes different scenarios for a Toaster machine, taken from [26]. The

HMSC is the diagram named msc TOASTER The HMSC is a directed graph[5]
where different types of nodes can be found, e.g., the start symbol represented by v»

connection points represented by O» aji^ MSC references represented by D. There

are also other nodes, such as conditions, end symbols, and parallel frames [5].

| Ccr-iol [ | He» log

mx. START

| U*e» | | Cotmol | | llcatog |

TOAST.ACK

rf-
«i-

m»c ERROR

I U» ~l | Control ~~] | Hfjinn |

c B)ECT

Üm | ConU-J | | Hf-img [

EJECT^DONE

Figure 2.14: Example of HMSC with all basic MSCs.

The flow lines connect the nodes in the HMSC and they indicate the sequencing that

is possible among the nodes in the HMSC (Figure 2.14). In our example, the initial

scenario that oceurs in our system is the MSC IDLE. After the occurrence of this

scenario, the MSC START follows. Following the occurrence of the MSC START,
two different alternative scenarios are possible, MSC TOAST or MSC ERROR. If

the MSC ERROR oceurs, the next available scenario is the MSC IDLE. Loops can

be also represented, the loops can be interpreted as a specification of a continuous

execution of the system. The start symbol only shows where the system can start,
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there is no additional meaning to this element. According to the recommendation

Z.120 [5], the connection points do not have meaning, they can be used to improve

the readability of the chart.

2.4.1 Weak vertical composition

Having two MSCs (top and bottom), the weak vertical composition means that all

the events in the instance A appearing in top MSC finish before any event in the

second MSC oceurs (instance A must appear in both MSCs) (Figure 2.15).

Figure 2.15: The vertical composition operation.

2.4.2 Parallel composition

The parallel composition, also called horizontal composition, means that the múl

tiple MSC "runs" in parallel. There is no restriction among the múltiples MCSs.

2.4.3 Alternative composition

The alternative composition means the choice among different scenarios. The only
additional consideration is when the alternatives have a common preamble, the

same initial behavior. According to the semantics expressed in [5] the choice of one

alternative is postponed until a real alternative is found.

2.4.4 Loops

The Loops are not explicit declared as an operation, but they can be constructed

due the fact that the HMSC is a digraph. The meaning of the loop is the resulting
ofthe vertical composition of the last node with the first node,i.e. creating the loop.
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2.4.5 MSC reference

An MSC reference is the label that is found inside the box in the HMSC. This label

denotes an MSC, an operations among MSC or a parameterized MSC.

2.5 Data

2.5.1 The data approach

The recommendation MSC2000 states the idea about the openness of the MSC

language, meaning that it is not constrained to any data particular language: The

MSC can be parameterized to any data language [5]. This means that any

complete specification will include two different languages, one for the MSC and

another for data.

2.5.2 Basic concepts

Some assumed basic elements that are ineluded in the recommendation are:

Data type: A data type defines a (possibly infinite) set of valúes. E.g, the data

type DAYS may contain the elements of the set {Mon, Tue, Wed, Thu, Fri,

Sat, Sun }

Typed variable: A typed variable is a container for a valué of a specific type.

A typed variable has a ñame, i.e., the identifier of the container, and a valué,

i.e, the actual contents of the container. The valué is referred to by using the

variable ñame, e.g., let the variable y have the valué 3 then the expression y

-I- 2 denotes the integer valué 5. There are two types of variables, static and

dynamic. The difference between them will be explained in the next sections.

Wildcard: A wildcard is a special variable used to denote a don't care valué. The

usual symbol is "_" The wildcards must be declared. A wildcard will genér

ate a set of concrete traces corresponding to each uninterpreted trace, where

each concrete trace is derived from the uninterpreted trace by substituting a

different concrete valué for the wildcard. If an expression contains múltiple

occurrences of a wildcard then each represents a different reference, so that

different concrete valúes will, in general, be substituted for each occurrence.

Pattern: A pattern consists of either a wildcard or a dynamic variable.

Expression: An expression is a data expression which may contain wildcards,

dynamic variables, and static variables.
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Binding: A binding is similar to an assignment. A bind consists of an expression

part and a pattern part that are connected by a bind symbol. The bind symbol

is :=. The example below shows equivalent left and right binding

x:=y + 3

y + 3 =: x

2.5.3 The data inside an MSC

The places where the data can be found are:

• Data parameters: The data can be present as data parameter in the sending,

reception, timer setting and instance creation event as weil as in the MSC

references. The parameters should be valid expressions in the external data

language (Figure 2.9).

• Predicates: The data can be presented in predicates inside conditions (Fig
ure 2.9).

• Action expressions: The action expressions are used to manipúlate the

valué of the dynamic variables. Depending on the external data language

different expressions can be used as actions expressions (Figure 2.9).

• Loop Inline expressions: The loop inline expressions can contain static

variables to specify the bounds of the iteration.

• Time constraints: The boundaries that can be imposed between two differ

ent events.

2.5.4 Dynamic and static data

There are two different sort of variables: static and dynamic
'
.

• A static variable is used to parameterize an MSC and is declared in the head

of the MSC. These variables can not be modified after the inst antiat ion of the

MSC and the scope of this variable is the MSC body.

The meaning of an MSC reference with actual parameters is cali by valué [5],
in which the parameters are substituted by the actual parameters wherever

'Tbe recommendation uses the term static data and dynamic data to denote the two types of

-variables
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they appear in its body.

Figure 2.7 presents a parameterized MSC. The static data is declared in the

head of the MSC. In the example one static variable
"

Door'' can be used to

parameterize the MSC to use different doors. The main idea of this scenario is

the description of the exchange ofmessages between a locking system and the

user. Using different concrete MSCs different scenarios can be described ( a

concrete MSCmeans that concrete valúes are assigned to the static variables).

• A dynamic variable belongs to an instance and must be declared in the MSC

Document. These variables can be modified using the binding mechanism by

events in the owning instance. These variables can be assigned and reassigned
valúes through action boxes, message and timer parameters, and in

stance creation. The valué that a dynamic variable may possess at any

point in a trace will, in general, depend upon the previous events in the trace.

Figure 2.7 presents two action boxes where the valué of the variable "open"
is changed. In the first action box the content is changed depending on the

return valué of the function 'Valid" In the second action box the valué of the

variable "open" is bound to the valué "false"

2.5.5 Data declaration

The declaration of data mostly takes place in the MSC document, the only ex

ception being static variables, which are declared in the MSC head (Figure 2.7).The

MSC document declarations include: messages and timers that have data parame

ters, dynamic variables, wildcard symbols, the data language, and data definitions.

Messages that have parameters are declared so that the type and number of pa

rameters are defined. Messages that do not have parameters need not be declared.

The data definitions consist of text in the data language that, for example, defines

structured types, constants, and functions signatures. It must provide all infor

mation required to type check and evalúate data expressions used in MSCs within

the scope of the enclosing MSC document. Figure 2.7 presents an example of data

declaration.

2.5.6 Modification of the data

The only two mechanism to manipúlate the valué of the variables are: Instantiation

and Binding.
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msedocument

Inst User variables UscrCode:intcgcr,

Inst Controller variables opeirboolean;

inst CentraLController

msg enter(¡nteger);

msg openDoor(enteger),

msg openDoor_ac_(¡ntegcr);

msg giamedAccess,

wildcard : integer.

data

open: integer -> boolean;

Figure 2.16: Example of data declaration inside an MSC document.

The instantiation mechanism, used only for static variables, oceurs when a

MSC reference contains the explicit valúes to be used in the static variables. The

binding mechanism, used only for dynamic variables, oceurs when an assignment is

found in the parameter expression of any event such as action, receive event, etc.

2.5.7 Definition of valúes of dynamic variables

The recommendation establishes the next constraint [5]:

In a defining MSC there must be no trace through an MSC in which

a variable is referenced without being defined. That is, each variable

appearing in an expression must be bound in the state used to compute

the valué ofthe expression. The only exception oceurs in the utility MSC,

references to undefined variables are permitted.

There is a special qualifier used to denote if any variable is defined in some period

of time. Figure 2.7 shows two additional action boxes, the first one contains a

def statement which is used to indicate that a variable has been assigned some

unspecified valué; it is the equivalent of a binding of a variable to a wildcard. That

is, def x is the equivalent ofx :=
_,
where _ is a wildcard. In the second action box

an undef statement is used to indicate that a variable is no longer bound, i.e. that

the variable cannot be legally referenced, or has moved out of scope.

2.5.8 Event state

An Event State is a set of bindings in the event in an execution trace. A state

associated with a current event is computed from previous states together with

the data content of that event. The previous states used to compute the new
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msc AcceptAcces(Door:integer)

User Controller LockActuator

| def UserCode |

eniei<Uw:iCode)

open := valid(UseiCodc)

■^open = Ime^

grantedAccess
openDoor_ock(Doof )

openDoor(Door)

I undef UserCode I |

'
—

1
I I open .= false I

Figure 2.17: Example of def and undef qualifier.

state depend upon the type of event, all are derived from at least the last non-

creating event executed on the same instance as the current event. In addition, for

message receiving events and for the first event on a created instance, the state of the

corresponding send or creating events is also used in the computation. Effectively,

this means that a state is maintained by each instance, and a new state is derived

from the instance's previous state together with state information passed to the

instance through messaging, or from the parent instance in the case of instance

creation (Figure 2.9).
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| undef z |

msedocument

inst A variables x.integcr;

inst 8 variables y;Íntcgcr,

inst C variables z: integer,

msg ml(integer);

msg ni2(integer, integer);

msg m3(integer,integer,inlcger);

wildcard _: integer;

Figure 2.18: Example showing some event states.
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2.5.9 Accessing variables

Because information is allowed to flow between instances via message passing and

instance creation, the state associated with each event may contain bindings to vari

ables not owned by the instance upon which the event oceurs. The rules governing
the access to the valué of variables owned by foreign instances are defined in [5,

pags. 58-59]. We can resume them: If x is not bound either in the oíd state or in

the parameter list, then the binding from the sending event can be inherited. Intu-

itively, the binding of a variable can be inherited from another instance only if the

variable is sent to the instance by appearing in a parameter's expression. However,

a binding cannot be inherited if the variable is owned and in scope by the receiving

instance, as the local binding takes precedence. Thus, the valué of a variable can

be transmitted by a chain of messages to other instances, so long as each message

explicitly references the variable in its parameter list [5].

2.5.10 Assumed data types

There are three places in the standard where the MSC language assumes the exis

tence of data types. Boolean valued expressions used in conditions, Natural number

expressions used to define loop boundaries, and Time expressions used in specifying

timing constraints.

Following the recommendation data approach, these types have to be defined

as part of the data language chosen by the users and not part of the MSC language.

2.6 Time

Time concepts are introduced into MSC to support the notion of quantified time

for the description of real-time systems with a precise meaning of the sequence of

events in time [5].
The timed interpretation of the MSC assumes the following:

• All events are instantaneous.

• Progress of time is explicitly represented using a special event which represents
the passage of time:

{e_,í_,e2,Í2, e3,í3,e4..}
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The triple (et, í_, ei) means that after the occurrence of event e\ time t\ passes
until event e-i oceurs. Events with no time delay, meaning that tn = 0, occur

simultaneously, i.e. without any delay.

• Time progress (i.e. clocking) is equal for all instances in a MSC, a global clock

is assumed [5, pag. 63].

• It is assumed that time is progressing and not stagnating. Progressing means

that after each event in a trace there is eventually a time event. Non-

stagnation means that there is an upper bound on the number of normal

events between each pair of timed events.

2.6.1 The time inside the MSC

There are three main áreas where time can be used:

• Time observation, such as the measurements.

• Timer events, such as the starting timer, stopping and timeout event.

• Time constrains, such as the time points and the time intervals.

2.6.2 Relative and absolute timing

The relative timing uses paira of events - preceding and subsequent events, where

the preceding event enables (directly or indirectly, i.e. via some intermedíate events)
the subsequent event. Relative timing can be specified by the use of arbitrary expres

sions of type Time, i.e. referencing parameters, wildcards and dynamic variables.

The concrete valué of a relative time expression is evaluated once the new state of

the event relating to this relative timing has been evaluated.

The absolute timing is used to define occurrence of events at points in time

that relate to the valué of the global clock. Absolute timing can be specified by

the use of arbitrary expressions of type Time, i.e. referencing parameters, wildcards

and dynamic variables. The concrete valúes of a time constraint are evaluated at

the start of a time interval once the new state of the event relating to the start of

the time interval has been evaluated.

2.6.3 Time points

Time points are defined by expressions of type Time. The optional absolute time

mark, "@"
,
indicates an absolute timing. The evaluation of a time point yields a

concrete quantified time. An event without time constraints can occur at any time.
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Figure 2.19: Example of relative and absolute time points.

Figure 2.10 presents an MSC where the time execution is constrained. The absolute

timing constraints, represented with the "@" symbol denotes that the execution of

this MSC must be start when the global clock starts, or the occurrence of this

scenario restart the global clock. The total time that this scenario must consume is

498 ms. There is a relative timing constrain in the MSC, the time that the sub-MSC

or MSC reference "Get-UserJD" must consume is 221 ms between the first and the

last event inside the sub MSC. The only constraint is that the execution of this

MSC must be in the period restricted by the global clock.

2.6.4 Time observations

Measurements are used to observe the delay between the enabling and occurrence

of an event (for relative timing) and to measure the absolute time of the occurrence

of an event (for absolute timing). In order to distinguish between a relative from

axi absolute measurement, different time marks (i.e. "@" for absolute and "_.'' for

relative) are used. Measurements can be tied to time intervals. For each measure

ment, a time variable has to be declared for the respective instance. Figure 2.11

presents an MSC with both relative and absolute measurements. Remember that

these measurements are stored in dynamic variables owned by one instance. In this

case, the absolute measurements are stored in the variables absl and abs2. The

relative measurements are stored in the variable rell.
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Figure 2.20: Example of relative and absolute measurements.

2.6.5 The timer

The timer is a mechanism used to measure the time. A timer is a predefined

counter, synchronized with the global dock. We can associate two different internal

variables to the timer (these are abstract variables, different to the dynamic and

static variables). The timeout variable and the counter variable, both belong to

the Time domain. The default valué for tibe timeout variable is infinite. We assume

the existence of the timers in the instances. The manipula.ion of these variables is

performed through the foUowing events (Figure 2.12):

• Starting timer event: This event denotes the timer setting, Le. set tbe

timeout variable to any value described in its parameters.

• Timeout event: This event denotes the consumption of the timer signal. Le

the counter reaches the timeout variable valué.

• Stopping timer: This event denotes the canceling of the timer.

2.6.6 Time interval

Time intervals are used to define constraints on the timing for the occurrence of

events: the delay between a pair of events can be constrained by defining a minimal

or maximal bound for the delay between the two events. A time interval does not

imply that the events must occur. The fnlfillment of a time constraint is -validated

only if the event relating to the end of that time intervals oceurs in the trace.

An MSC trace has to fulfill all its time constraints, i.e. if a trace violates a time
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Figure 2.21: Example of a Timer.

constraint the trace is illegal. Time intervals can be used for relative timing as

weil as for absolute timing. Time intervals can be specified by the use of arbitrary

expressions of type Time, i.e. referencing to parameters, wildcards, and dynamic

variables. The concrete valúes of a time constraint imposed by a time interval are

evaluated at the start of a time interval once the new state of the event relating to

the start of the time interval has been evaluated. Within a time interval, either only

relative time expressions or only absolute time expressions must be used. Either the

minimal, the maximal bound or both bounds are given. An interval must define at

least one of the two bounds. Figure 2.13 presents an MSC containing time interval

constraints. The interval denotes the máximum and minimum time that constrain

the pair of events. In the example the MSC is consistent with all the time constraints

presented.

2.7 Summary

In this chapter the most important features contained in the recommendation

MSC2000 are presented. First, the basic elements, such as instances, messages,

actions, conditions, timers and inline expressions are called basic MSC (bMSC). Sec

ond, inline expression are explained together with the meaning of each composition

operation. third, the high level MSC is explained and some elements used are intro

duced by examples. Data and time concepts (new additions to MSC2000) are pre
sented including some examples. For more information review [5, 68, 15, 21, 23, 4].
In the next chapter the MSC formalization is presented.

T% Timer Start

T X
— Timer Stop

T ^
—■*• Timrout
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Figure 2.22: Example of a time interval.



Chapter 3

Formalization

3 . 1 Introduction

In this chapter a formalization based on sequences is presented.The features ineluded

in this formalization are:

• The basic Message Sequence Chart (MSC).

• The inline expression.

• The high level MSC (HMSC).

• Data

We do not formally model timing.

3.2 Previous work

There are many works related to the formalization of the MSC. For basic MSC, there

are formalizations based on process algebra [21], Petri nets [49] and an approach

based on autómata theory and temporal logic [7]. The most extensive semantics is

based on process algebra [15, 16, 17, 18]. Other interesting semantics are given by

the autómata approach [7] and the multiset algebra approach [46].
In the formalization based on process algebra, it is very difficult to express

what a condition is, the reason is, that a condition refers rather to states not to

events. Conditions are treated as meaningless actions [21]. Petri nets are state

oriented and this allows for a natural definition of conditions. Another advantage is

that Petri nets provide different semantics for parallel composition and for alterna

tive composition. The problem with this semantics is that there are no composition

31
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operators allowing to compose different MSC. Therefore, one have to specify a MSC

as a closed system.

In general, the existing semantics do not formalize features like actions, con

ditions, etc. Additionally, none of them includes the formalization of data.

3.3 Comments about the recommendation

One possible inconsistency in the recommendation Z.120 [5] was found: the mech

anism used to modify the dynamic variables is the binding. A binding can occur

in the message parameter list as is established. However, how must this binding be

declared in the data declaration ? e.g., having the next message "open(x:=4,10)"
contains one binding. The number of data parameters is two, but how should this

message be declared ?

We assume that no bindings can appear in the message parameter list. And

we do not formalize time.

3.4 Formalization of the basic MSC

The approach followed to formalize the MSC is based on a non-visual interpretation,

as it is established in the recommendation Z.120. [5]. We follow the approach

proposed by Alur and Yannakakis [1], where they formalize the MSCs using basic

sets and functions; the HMSC is formalized using a digraph.

3.4.1 Basic elements

An MSC is formed from the following components:

• Instances: A finite set I of instances.The environment is modeled as another

instance.

• Timers: A finite set T of timers.

• Messages: A set M. of messages. A message may have data, i.e. as data

parameters.

• Expressions: A set Exp of data expressions defined by an external data

language.

3.4.2 Behavioral elements

The next elements define the behavior of the MSC
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• Events : A finite set £ of events.

• Inline expressions : A finite set T£ of inline expressions. The inline expres
sion is a multi instance meta-event1 .

• Send - receive bijection : The relation described by the interpretation asso

ciated to the messages ( sending - receiving events) is described by a bijective
function b such that each sending event is mapped to a unique receiving event,
b : S —> Ti, where S and % denote respectively the set of sending and receiv

ing events. In order to handle the instance creation, we define a Creating
-

Created bijection, that is similar to the Send - Receive Bijection.

• Coregions: A finite set C. A coregion is a multiset of events.2

• Sequence of elements Each instance is mapping to a sequence of elements,

these elements can be coregions, inline expressions or both. The total order

described by the sequence is denoted by <t- The set composed by all possible

sequences of elements is denoted by S_DQ(C U TE). Each instance owns a

sequence of elements (coregions, inline expressions or both) describing the

elements in the instance's axis time, i.e. each instance is mapped to a sequence

of coregions by the function m. m : I —> §__Q(C U IS).

3.4.3 The partial order

The combination of the previous elements presented define a partial order of events:

Partial Order 3: The local total order and the send-receive bijection, define the

relation <, known as partial order of the elements (coregions, inline expressions or

both). Let ci and o¡, two different elements (coregion or inline expression), we say
that ci precedes causaUy c_ , denoted by Ci < o¿, if

• Ci and c_ belong to the same instance, and Ci precedes in time o¿, c\ <t c_-

• ci is the sending event of the message m, and C2 is the respective receiving

event. b(c\) = c2 A b~l(c2) = C\.

'The inline expression can not be consider as an event, but its position in the sequence can be

interpreted as a meta-event.

2
A multiset is a set-like object in which order is ignored, but multiplicity is explicitly significant.

Therefore, multisets {1,2,3} and {2, 1,3} are equivalent, but {1, 1,2,3} and {1,2,3} differ.

3A relation r is a partial order on a set 5 if it has: reflexivity, antisymmetry and transitivity.
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3.5 Formalization of the inline expressions

An inline expression does not guarantee any constraint about the execution, it is

only amean to define some complex behaviors. For example, in Figure 3.23 presents
two different representations for the same MSC.

mx ExampW msc Ex»fipk-t

1 A | 1 ' 1 L - 1 A II i 1 1 c |

""«■KtA - mr...,,;* .

igtB mrssugcB
' / /

/ /
opi /'

f /'//,'/'
opt /

/

scc

memgeD mesageD

messageC
_

[j§^i5§§^.; «_ *«««__ iS*M_¡5lS^ E^'íá-§SS^^>^Í _

(a) (b)

Figure 3.23: Two different representations for the same MSC.

Basically, an inline expression contains other MSCs, i.e. at least one MSC is located

inside an inline expression. Using this fact, we say that an inline expression is a

sequence of MSCs. Every MSC inside the inline expression is called inline section,

this recursive property of the inline expression describes nested inline expressions.

Every inline expression is labeled with a compositional operation such as { par,

alt, loop, ... }.

3.6 Formalization of the high level MSC

A High level MSC, denoted by HMSC is a directed graph composed of[l]:

• Nodes: A finite set M of Nodes. There are different types of nodes:

— Control nodes : These nodes are used to represent the initial and

terminal node of the graph. The initial node is represented using the

symbol y, and the terminal using the symbol A.

- Conditions: These nodes represent global conditions of the system.

- Parallel frames: These nodes represent parallel composition of ele

ments (MSC or HMSC).
-

Reference: These nodes represent references to basic MSC (or instances

of MSC Utilities) or another HMSC.



35

- Connection points: These nodes are used to improve the readability
of the HMSC, they have no semantic interpretation.

• Labeling node function: A labeling function l that maps each node refer

ence to an MSC, a parallel frame or another HMSC.

• Edges: A set of edges that connect nodes to nodes. E C [J\f x J\f]

• Labeling operation function: A function o that maps each edge to any

operation (alternative, parallel or sequential).

There are some restrictions in the number of nodes. The number of initial nodes in

the HMSC must be one. The number of incoming arrows to an initial node must

be zero, and the number of outgoing arrows from a final node must be zero. The

formalization of some composition operations can be found in [1, 15].

3.7 Data formalization

3.7.1 Basic elements

In this section we assume that all the details related to the syntactic properties of

the data language have been solved. We assume a semantic domain S in which

the expressions will be interpreted. We assume the existence of a multiset set of

variables V and a labeling relation loe that maps variables to instances, loe : V —> I,

describing the local variables. The relation in maps variables to instances, describing

the inherited variables. The definition or indefinition of variables is denoted as a

binding, in the case of definition the binding is performed using a non-deterministic

choice operation and the indefinition operation is represented by the use of binding
to the "undefined" valué _L The set of expressions Exp contains the set of binding

expressions (B), being the strings that represent (or can represent) respectively

declarations or bindings to variables.

3.7.2 State

We need to define the notion of state. A state gives a snapshot of all variables

involved in the MSC. A state consist of:

• A set of defined variables V, V C V.

• A valuation function (p : V —> S, giving the valúes of the variables. The set

of all valuation functions is called <_■. The interpretation of the wildcard in

the context of this valuation function is defined as a non-deterministic choice,
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meaning that assuming that the wildcard has a specific data type, then the

non-deterministic choice select any valué from the valúes described by the

corresponding data type, we denote the non-deterministic choice as x :£ A,
where x is the valué taken from the set A.

Additional to the previous elements, we need a set of functions to interpret the

various elements:

• For bindings: A set B' C B for each set of variables V, giving the set of

bindings that may actually be used, given that only variables in V are defined,
and state transition function r : $ x B —> $. r(ip, b) denotes the new event

state the MSC turns into when binding b is executed in the event state (V, <p).
Note that r(<p, b) needs only be defined when b 6 B', where V is the set of

variables on which <p is defined.

• For expressions: A set Ex C Exp for each set of variables V, giving the set

of expressions that may actually be used, given that only variables in V are

defined and an interpretation function Iv : Ex —> S, where V is the set of all

variables on which (p is defined. Iv(x) gives the valué that x is interpreted to.

• For local variables in any expression: l : Exp xI-> V(V) giving the the local

variables appearing in any expression in some instance.

• For inherited variables in any expression: i : Exp xl-, V(V) giving the

inherited variables appearing in any expression in some instance.

3.7.3 General semantics

In an event state (V, <p) all expressions must be in Ex an all bindings in B' Provided

one uses variables with a well-defined scope, this can be checked statically. The types

of events that can change the state are: The action, receiving, setting timer, timeout

and instance creation event. The semantics associated to the modification of the

event state is similar for all of them. If the MSC is in a state (V, (p), all events such

as action(a,i) or receive(m,i,j) have in the "label" (i.e. a for action and m for a

message) part expressions, which must be in Ex. The semantics for such events are

equal to the semantics of (i, receive, I,p(m), i, j) and (i, action, Iv(a)). However, if

there is any explicit binding, such that m € B or a € B, this causes that the event

state changes from (V, (p) to (V, r(ip, a)) or (y,r((p, m)).
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3.8 Summary

This chapter presents a simple formalization based on sets, relations and functions

for some features ineluded in MSC2000. First, the basic sets are presented. Second,

the most important elements are presented: the bijective function and the sequences

of events for each instance; these two elements define the partial order over the set

of events. Third, the possible approach to formalize inline expression is mentioned.

Fourth, the formalization for the HMSC is presented and is based on previous work

[1]. Finally, data concepts are formalized using the previous work proposed in

[68, 23]. Timing is not formalized.

In the next chapter the executable semantics is defined using an Abstract

Execution Machine. Only the AEM for bMSC is presented.



Chapter 4

Execution model for the basic

MSC

4.1 Introduction

In this chapter the execution model for the basic MSC is presented. The approach
followed to model the execution of the MSC was the utilization of an Abstract

Execution Machine (AEM). This AEM can be used in two different ways: as an

Acceptor or Generator. The AEM works as an Acceptor when is used to verify if a

trace met the corresponding specification (MSCs). The AEM works as a Generator

when the AEM is used to genérate set of traces based on a specification.

4.2 B.asic concepts

4.2.1 Event structure

The Event Structure £$ is a vector of sequences. The elements of the sequences are

coregions and inline expressions. This structure represents the set of sequences of

coregions as is presented in Figure 4.24.
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EventStructure
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Figure 4.24: Visualization of the Event Structure.
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4.2.2 Instance reference

An instance reference is a structure composed of a pointer and an event multiset.

The instance reference is used as pointer over the sequence of elements in the Event

Structure (MSC). Every instance reference is associated to one instance. The in

stance reference works as a head over the sequence and reads and stores the content

of the current element in the sequence.

4.3 Abstract execution machine

The Abstract Execution Machine is a set of structures and rules used to genérate or

accept traces defined by an MSC. The AEM is composed of the next components:

• Control reference: A set Cref of instance references, this set is similar to

the set of heads used in a multi-tape Turing Machine.

• Event memory: A set Me of events. This set is used to keep some historie

knowledge of the execution.

• Data space: A set Dspace ofMSC variables. This component will be explained
in the next sections.

• Operational rules: A set O of operational rules that define the AEM be

havior.

A graphical representation of the AEM and the event structure is presented in

Figure 4.25.

4.3.1 Event memory

The Event MemoryMs is a multiset of events. The Event Memory is used to record

some historical information about the execution of the AEM.

4.3.2 The enabling predicate

The next table presents the description of the enabling predicate.



Figure 4.25: The AEM and the event structure.

Event type Condition description

Receiving The corresponding sending event is located in the

Event Memory, i.e., the corresponding sending event

has occurred.

Time out The timer counter has reached the timeout valué. The

time predicate is associated to the timed semantics of

the MSCs.

Created instance The corresponding creating instance event is located

in the Event Memory

Creating instance This event is always enabled.

Sending This event is always enabled.

Stopping Instance This event is always enabled.

Condition This event is always enabled.

Action This event is always enabled.

Setting timer This event is always enabled.

Stopping timer This event is always enabled.

Table 4.1: Description of the enabling predicate .
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4.3.3 The action operation

The action operation defines the set of actions must be performed when an event

oceurs:

Event Actions description

Sending Copy the event in the Event Memory.

Receiving Remove the event from the Event Memory
and update the set of variables (operation

update).

Action Update the local set of variables (opera
tion update).

Setting timer Start the timer and update the set of vari

ables (operation update).

Stopping timer Stop the timer

Timeout Update the local bindings (operation up

date).

Creating instance Copy the event in the Event Memory.

Created instance Remove the corresponding creating event

from the Event Memory and update the

set of variables (operation update).

Stopping instance Remove the event reference.

Condition If the condition evaluation is false, then

stop the the execution1

Table 4.2: Description of the action operation.

4.3.4 Operational rules

Let be ev any event in any instance reference and let ref be any reference in the

AEM, then
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Rule Rule description

Event execution If an event is enabled, then perform the corresponding
action.

Computing

progress

If there is any instance reference that is empty, then

move to the next element in the corresponding se

quence.

Table 4.3: The AEM operational rules.

4.4 Example: The AEM operation without data

Figure 4.26 presents an example of execution using the AEM. The header of the

table has the following columns:

• A, B and C denote instance references in the AEM.

• R(A), R(B) and R(C): denote elements in the instance references.

• Enabled : denotes the set of enabled events.

• Selected: denotes the event which actually oceurs.

msc ExampleAEM
A B C

1 II II 1

Al

A2

111
> Bl

<3>-
B3

B4

c

a -

.

b
"

Cl

B5

d
CJM

INSTANCE A

INSTANCE B

INSTANCE C

A B C R(A) R(B) R(C) Enabled Selected

0 Al Bl Cl m! m? a? b! m! b! mi

1 A2 Bl Cl c? m? a? b! m? b! m?

2 A2 B2 Cl c? C a? b! C b! b!

3 A2 B2 Cl c? C a? C C

4 A2 B3 Cl c? a! a? a! a!

5 A2 B4 Cl c? b? a? a? a?

6 A2 B4 C2 c? b? d? b? b?

7 A2 B5 C2 c? c! d? c! c!

8 A2 B6 C2 c? d! d? c? d! c?

9 B6 C2 d! d? d! d!

10 C2 d? d? d?

11

Figure 4.26: MSC Example.
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4.4.1 Data space

The data space is a set of tupies < v,i,j,s > called MSC variables, where v is the

variable, i is the owner instance, j is the instance which manipúlate the variable,
and s is the variable state (defined or undefined). The two instances are used to

distinguish between local or inherited variable.

4.4.2 The genérate/accept function

If the approach selected is as Acceptor then the accept function fill the wildcards

with the valúes provided in the input event (the event accepted). If the approach
selected is as Generator, the function will select any random (indeterministic choice)
valué from the corresponding data type.

4.4.3 Snapshot

A Snapshot is a set of MSC variables. A snapshot is used to copy the variables

(bindings) that are explicitly or implicitly referenced in the parameter expressions

of some events. This snapshot is associated to the sending and creating event when

is located in the Event Memory. The other events do not require temporal storage
due to the fact that the snapshot is not required when the data modification is

performed.

4.4.4 The update action

The update(ev) action performs the actions performed to update the data space.

1. Extract the explicit bindings (local variables).

2. Update all local bindings.

3. If the event is a creating event, then update the creating and the created event

state.

4. If the event is a sending event then créate a snapshot and store it in the event

memory.

5. Add or update the inherited variables referenced in the parameter expression.

4.5 Example: The AEM operation with data

In this section an example of execution using an MSC specification including data

is presented. The headers of tables 4.4 and 4.5 have the following columns:
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• A, B and C: denote instance references.

• R(A), R(B) and R(C): denote the elements in the instance reference.

• Enabled : denotes the set of enabled events.

• Selected: denotes the "real" event.

• Loc(A), Loc(B) and Loc(C) denotes the local variables of each instance.

• In(A), In(B) and In(C) denotes the inherited variables of each instance.

msc ExampleAEM
A

___

Al

1 c
tn

VIIA2-0,

varAl - 10

A

H C

varBl- 33

B

3(varA_,v_-Al,J B3

b(varA2,v>rBl)

INSTANCE A

m!

DATA DECLARATION
action A

a(v_TA2,varAl_)! msedocument ExampieAEM;

inst A variables varAl, varA2:integer;
inst B variables varBl; integer,

instC;

msg bu

msg a(imeger,integer,in teger);

msg bfintcger.integer);

wüdcaid _: integer.

INSTANCE B

m?

action B

a(varA2,varAl,J?

b(v_tA2,v_rBl)!

INSTANCE C

b(v_rA_,vi__I)7

Figure 4.27: MSC example with data.

4.6 Summary

In this chapter the AEM definition is presented. The AEM is works based on

rules and predicates. Two important rules are defined: the event execution and

computing progress rules. In the first part the data is not consider and one execution

example is provided. In the second part the data is ineluded and the corresponding
execution example is presented.

In the next chapter the AEM is extended to handle inline expressions.
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Step A B C R(A) R(B) R(C) Enabled Selected

0 Al Bl Cl m! m? b? m! m!

1 A2 Bl Cl A m? b? m?,A m?

2 A2 B2 Cl A B b? B,A A

3 A3 B2 Cl a! B b? B, a! a!

4 B2 Cl B b? B B

5 B3 Cl a? b? a? a?

6 B4 Cl b! b? b! b!

7 Cl b? b? b?

8

Table 4.4: AEM execution with data.

T Loc(A) Loc(B) Loc(C) In(A) In(B) In(C)

0 varAl=X,

VUA2-1

varBl—X

1 varAl_l,

varA2=J_

v_rBl=X

2 varAl = 10,

varA2=0

v_rBl=X

3 varAl = 10,
varA2=0

v_rBI=X

* varAl= 10,

v_rA2—0

varBl m 33

5 varAl=10,

varA2=0

varBl = 33 varAl= 10,
varA2=0

« WAle-10,

varA2=0

varBl = 33 varAl-elO,
varA2=0

7 varAl=10,

varA2_:0

varBl =33 varAl= 10,
varA2=0

varA2—0,

varBl=33

8 varAl = 10,

varA2=0

varBl =33 varAl=10,

varA2=0

varA2=0,
varBl=33

Table 4.5: AEM execution using the MSC with data, this table only describes event

states.



Chapter 5

Execution model for the basic

MSC with inline expressions

5 . 1 Introduction

Using the formalization presented in Chapter 3, the inline expression is another

element in the sequence of events owned by some instance. The inline expression

is composed of sections. Every section is an MSC. The approach followed is based

on the idea of multitasking. Every section is interpreted as a new set of instance

re/erence(threads) in the AEM. However, we need to include more information in

order to describe the semantics of all types of inline expressions. The Figure 5.28

shows a representation of this approach.
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Figure 5.28: The interpretation of the inline expression.

Figure 5.28 shows an MSC containing two inline expressions. The corresponding

send and receive events of each message are denoted by circles. Next to the MSC
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the sequence-based interpretation is presented. The first instance contains just two

events: the sending event (!ml) and the inline expression (iel). The inline expression
iel contains two sections; each section contains two and three events respectively.

Using this approach nested inline expression can be described.

5.2 The extended instance reference

5.2.1 The instance reference state

The instance referencemay be in one of the following states (Figure 5.29):

• Sleeping. The instance reference is created, but it can not run.

• Running. The instance reference is being executed.

• Waiting. The instance reference is waiting to be awake.

• Terminated. The instance reference has finished execution.

dispatch

Figure 5.29: The instance reference states.

5.2.2 The instance reference counter

In order to handle loop inline expression all instance references have a counter, i.e.

an integer variable associate to each of them.
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5.2.3 Decisión set

The common behavior (Figure 5.30) in the alternative inline expressions is han-

dled by the AEM using a decisión set. The decisión set is composed of instance

references tupies denoting disjoint alternatives among instance references.

Figure 5.30: Example of common preamble between two alternatives in the MSC.

5.2.4 The instance reference relationships

In order to organize the set of instance references we define a set of additional

concepts that are interpreted as relations.

• A set of instance references are brothers if they are at the same level. For

example, all initial instance references in any MSC are brothers. The set

of new instance references that are created when the AEM find an inline

expression are brothers among them.

• A set of instance references are children if they have the same "father",

meaning the same instance reference that dispatches them.

Figure 5.31 shows an example of these concepts.

5.2.5 The inline expression activation

The inline expression activation is similar to the procedure used to créate new

threads in the programming languages. Figure 5.32 presents the approach used to

represent the different "threads" ( instance references) that are activated in inline

expressions.
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Inttuice reference

The instance references 1,2,3 are brothers.

The instance references 1.1, 1.2, 1.3 are brothers.

The instance references 3.1, 3.2, 3.3 .are brothers.

The instance reference 1 is the father of 1.1, 1.2 and 1.3

The instance reference 3 is the father of 3.1, 3.2 and 3.3 .

The instance reference 3.1 is the father of 3.1.1

Figure 5.31: The relations among instance references.

This activation is denoted by the operation activóte and is defined by the next

steps:

If the instance reference is the first referenced instance reaching the

inline expression:

1. For every instance contained in all inline section a new instance reference is

created, the initial state of these instance reference is SIeeping.

2. The new instance reference created having the same instance as the current

instance reference is dispatched.

3. The current instance reference state changes to waiting.

4. Depending on the inline expression label, the next set of actions is performed:

If the inline expression is an alternative, then add a new decisión set using
all new instance references created.
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______

Figure 5.32: The inline expression activation in the AEM.

If the inline expression is an optional inline expression, then add a new

decisión set using all new instance references created.

If the inline expression is an exception then add a new decisión set using

them and the current instance reference.

If the inline expression is either parallel or loop then do nothing.

Otherwise:

1. The instance references that already exists ( children and being in sleeping

state) are dispatched.

2. The current instance reference state changes to waiting.

5.2.6 Inline expression counter set

In order to control the execution of the loop, we define a tupie called inline ex

pression counter, < ie, v, s >, where ie denotes inline expression, v the valué of the

máximum counter and s denotes the state { free, locked }. The set of inline expres
sion counters is called inline expression counter set. The reason of using this set is

the control among the iterations performed by each instance. The states denotes

the moment where any instance locks the loop to an specific valué.
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5.2.7 The operation clean

This operation removes elements from the Decisión set and terminates instance ref
erences. This operation is used to allow the execution of instance referenceswhen

they are selected by the event (in the case of alternative inline expression for exam

ple). Let be ev any event that oceurs:

1. Compute all instance references that own this event.

2. Compute all decisión tupies (from the decisión set) that have any ofthe instance

references computed in the step 1.

3. Every instance reference and its corresponding brothers that are in any set

found in step 2 and do not own the event ev must be terminated. (This step
removes the unselected alternatives).

4. Update the corresponding decisión tupie. If there are any set containing only one

element, then it must be removed, otherwise just remove the corresponding

instance references.

5. If there is any loop involved, then lock the corresponding inline expression

counter.

5.2.8 The operation stopExec

This operation stops (removes) the instance references related to any event in a

condition. It means that the instance reference related with a guard is stopped. This

operation terminates all related instance reference to any condition that evaluates

to false (The brothers are terminated).

5.2.9 The operation evalLoop

This operation performs the following actions: Let be top the máximum valué asso

ciated to the corresponding inline expression, max and min the corresponding loop

bounds and c the instance reference counter.

1. Increment the instance reference counter.

2. If the operation is restricted, (c < min A c < top) then actívate the inline

expression.

3. If the operation is not restricted, (c > min A c < max A topisnotlock)\/ then

créate a new instance referenceand add a new decisión set.
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5.2.10 The extended action operation

The action operation defines the set of actions must be performed when an event

oceurs:

Event Actions description

Sending Copy the event in the Event Memory.

Receiving Remove the event from the Event Memory and update
the set of variables.

Action Update the local set of variables (operation update).

Setting timer Start the timer and update the set of variables (oper
ation update).

Stopping timer Stop the timer

Timeout Update the locad bindings (operation update).

Creating instance Copy the event in the Event Memory.

Created instance Remove the corresponding creating event from the

Event Memory and update the set of variables (op
eration update).

Stopping instance Remove the event reference.

Condition If the condition evaluation is false, then stop the the

execution1

Inline Expression Actívate the inline expression (operation actívate)

Table 5.6: Description of the extended action operation.

5.2.11 The extended operational rules

Let ev be any event in any instance references and let ref be any reference in, then
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Rule Description

Event execution Ifan event is enabled, then performs the corresponding
action.

Computing progress If there is any instance reference that is empty and

running, then move to the next element in the corre

sponding sequence.

Awakening instance ref
erences

If there is any instance reference that has no children

and the corresponding inline expression is not a loop
then the instance reference is awaken.

If there is any instance reference that has no children

and the corresponding inline expression is a loop then

perform the operation evalLoop

Terminating instance

reference

lf the sequence has no elements then the instance

reference is terminated.

Table 5.7: The AEM extended operational rules.

5.3 Ex-ample: The AEM operation with inline ex

pressions

IA _5 K

1 1 1 1 1 ]

___/
loop<2; 7 a
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e

f
*"

ra ra
>[___

Event Structure

Figure 5.33: Example MSC with inline expressions and the corresponding Event

Structure.

Figure 5.34 presents the corresponding instance references and its execution. the

top of the figure presents the structure associated to the instance references.
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Figure 5.34: Execution example.

5.4 Summary

This chapter presents the extended AEM handling inline expressions. The exten

sions proposed can handle almost all sort of inline expressions. It is important to

notice that some cases can lead to undecidable problems.
In the first part the extensions proposed to the AEM: the structures to handle

the common preamble problem, the loops, etc, and a new set of predicates and

operations. The operational rules are extended with two more rules: the awakening
and the termínation rule. An execution example is presented.

The next chapter introduces one approach to handle the High level MSC

(HMSC).



Chapter 6

Execution model for the HMSC

6.1 Introduction

This chapter presents the execution model for the High level MSC (HMSC). The ex

ecution model is based on an extensión ofthe previous Abstract Execution Machine.

The approach is similar to the one used to handle the inline expressions.

6.2 Approach

The approach used to handle the HMSC is assuming a strong
l
vertical composition.

We need to use this approach since the weak vertical composition can lead to un

desired results. An example of a HMSC is presented in Figure 6.35. The instances

involved in each node are presented. Assuming the weak vertical composition, there

is not an initial scenario (MSC), the initial scenario is split in many "initial scenar

ios"
,
the example shows the "real" initial set of scenarios composed of the MSCs A,

B and E, the reason is based on the meaning of the weak vertical composition [5] .

This situation can be handled, using the strong vertical composition, where all events

in the first MSC precede the events in the second MSC. Assuming this composition

the execution is isolated in just one node (with exception of the alternative and

parallel operations).

'In the strong vertical composition the restrictions applies to the entire MSC, i.e., all events in

the first MSC must occur before any event in the second MSC.
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Figure 6.35: A HMSC and the instances presented in some nodes.

6.3 The new elements in the AEM

6.3.1 The node reference

A node reference is similar to an instance reference. The set of possible states is the

same. The only difference is the object referenced: the instance reference points to

elements in any sequence and the node reference points to nodes in the digraph.

The relations that the node reference can have are: fatherhood and childhood.

The fatherhood relation is extended to either node reference or instance reference.

The only one constraint is that an instance reference can not be father of any node

reference.

6.3.2 The extended clean operation

This operation removes elements from the decisión set and terminates instance

reference. This operation is used to allow the execution of instance references when

they are selected by some event (in the case of alternative inline expression for

example). Let ev be any event that really happens:

1. Compute all instance references owning the event ev.

2. compute all decisión tupies that have any of the instance references generated
in step 1.
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3. Each instance reference and its corresponding brothers that are in any tupie

found in step 2 and do not own the event ev must be terminated. (This step
removes the unselected alternatives).

4. Update the corresponding decisión set. If there is any tupie containing only

one element, then this tupie must be removed, otherwise just remove the

corresponding elements in the tupie.

5. If there is any loop involved in the decisión set, then lock the corresponding

inline expression counter. Meaning that the instance references related in

the inline expression must perform this number of loops. In some sense, this

counter denotes the compromised iterations.

6.3.3 The extended operation rules

Let ev be any event in any instance references and let ref be any reference in, then

Rule Description

Event execution Ifan event is enabled, then performs the corresponding

action.

Computing progress If there is any instance reference that is empty and

running, then move to the next element in the corre

sponding sequence.

Awakening instance ref

erences

If there is any instance reference that has no children

and the corresponding inline expression is not a loop
then the instance reference is awaken.

If there is any instance reference that has no children

and the corresponding inline expression is a loop then

perform the operation evalLoop

Terminating instance

reference

If the sequence has no elements then the instance

reference is terminated.

Executing node refer

ence

If there is no child instance references then move to

the next node in the digraph and créate all the corre

sponding children.

Table 6.8: The extended AEM operation rules.
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6.4 The operation of the AEM with HMSC

Figure 6.36 and 6.37 present how the node reference and instance reference are

visualized in the execution of the HMSC. Figure 6.36 presents the case where a node

is reached and the node reference activates the instance reference corresponding to

the instances referenced in the MSCs node. Figure 6.37 presents the case where an

alternative is reached. The way to handle the decisión is similar to the one used to

handle alternative inline expressions.

|l l| Node reference

huttmce reference

Figure 6.36: Example of the AEM and HMSC (initial step).

■ Y
í Decisión l I A 1

<a <b v

\\ \\ Node reference

Instance reference

Figure 6.37: Example of the AEM and HMSC (alternative).
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6.5 Summary

In this chapter the AEM is extended to handle the HMSC. The approach followed

is based on the utilization of the graph proposed in the formalization. There is

one constraint, the vertical composition assumed is the strong, the weak vertical

composition can lead to undesired behavior. Usually, the designer does not use the

HMSC thinking in the weak vertical composition.
In the next chapter one application (main motivation) of this work is pre

sented.



Chapter 7

Applications

7.1 Introduction

In this chapter two different applications are explained. However, the obvious uti

lization as simulator is implicit in both applications. First, the AEM function as

acceptor is described: the AEM can be used as validator. Second, the AEM func

tions as generator is described. Additionally, it is presented how this application

can help to the test generation.

7.2 The AEM as acceptor

This application can be used to build validator tools1 For example, the AEM can

be used to valídate if an execution performed by the implemented system fulfills

the MSC specification (requirements). Figure 7.38 presents the main idea of this

approach. The AEM reads as input the MSC specification and it simulates the

environment (external signáis provides to the system). The AEM needs an adaptor

(a module used to transíate the signáis -electrical, mechanical, etc.- to any signal

that can be read by the AEM. In any moment, if any signal or message is different to

the signal expected, according to the specification, the AEM can stop the validation

process and show a special message. In this case, the AEM shall genérate some

signáis (messages) in order to start the execution, but this situation may not occur.

The validation is performed between the requirements and the implemented system.
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Figure 7.38: The AEM as acceptor.

7.3 The AEM as generator

In this application, motivation for this work, the AEM can be used to help the test

generation from MSC requirements. the algorithm proposed to the test generation
is the same algorithm presented in Chapter 1 [62]:

1 . An MSC describes a partial ordered set of actions. The partial order is defined

by the messages and by the order of actions along the instance axes. Based

on this information we calcúlate the sequences of actions which include the

actions of the MSC and which are consistent with the partial order defined by

the MSC.

2. For the test case description only the actions of the testera are of interest.

Therefore in the second step we remove all actions which are not performed

by the testera from each sequence.

3. MSC and TTCN are different languages with different semantics. For TTCN

some of the sequences which we generated in step 2 are redundant. During

a test run they can not be distinguished. In other words, for TTCN several

sequences are in the same equivalence class. In the third step we select one

sequence of each equivalence class.

4. In the fourth step the selected sequences are transformed into the TTCN nota

tion.

There are some issues to consider in order to genérate test cases (TTCN):

• We should include additional information in the MSC specification to denote

the verdict assigned to the occurrence of some events. The current MSC

language does not include any extensión. However, there are some works that

can help to solve this problems: the lived sequence charts (LSC) developed by

Damn and Harel [2] . This extensión proposes the inclusión of "temperatures"

to denote if any part in the MSC must oceurs at least once (existenciality) or

always in all executions (universality).
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• We shall state that an MSC requirement is NOT a Test Case, and one of

the principies for that is that an MSC describes the different possibilities of

the system, and the test cases describes a particular case (sometimes critical

scenarios).

However, some problems can be solved using heuristics or pragmatic approaches to

handle this problem. There are works related to the practical approaches to develop
test cases using MSC and SDL [67]. Figure 7.39 presents the approach proposed to

genérate test cases, using an heuristic component to handle the problems mentioned

together with the AEM the test cases may be generated. This is an interesting line

to research in the future.

Figure 7.39: The AEM as generator.

7.4 Summary

This chapter presents two possible application áreas where the AEM can be used.

Some issues related to the test generation are discussed.

Heuristic

Agent

Test

Cases



Chapter 8

Conclusions

In this thesis we have given an introduction of the new features presented in

MSC2000. In chapter 1 the general approach to the test generation using MSC

are explained. This chapter also contains an informal explanation of the meaning of

the MSC. The most important features in MSC2000 have been explained in Chapter
2.

In Chapter 3, a formal description for MSC2000, based on sequences and

bijective functions, is presented. Some comments about possible inconsistencies in

the recommendation are presented.
In Chapter 4, the execution model for the basic MSC is presented. The model

is described using &nAbstract Execution Machine. This model includes the data

concepts proposed in [5] with some restrictions. Two examples are presented.

In Chapter 5, the AEM is extended to handle inline expressions. the ap

proach followed is based on threads concepts. Chapter 6 extends the AEM to

handle HMSC, handling strong vertical composition instead of the weak vertical

composition proposed in the recommendation.

There are two possible ways to use the AEM, as an acceptor or generator. In

Chapter 7 a discussion of the applications of the AEM is presented. The AEM can

be used to genérate the sequences needed to the generation of test cases (TTCN)
from an MSC specification. Some considerations about the size and possible infinite

number of traces is presented.

During the project, some scripts were implemented in order to show the ap

proach followed.
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