$$
x x(108187.1)
$$

Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional

Unidad Guadalajara

Identificación en Línea de Sistemas de Eventos Discretos: Fundamentos y Algoritmos para la Síntesis de Modelos en Redes de Petri

Tesis que presenta María Elena Meda Campaña

Para obtener el grado de CINVEST $\boldsymbol{1}$.V
Doctor en Ciencias DE LIBROS

En la especialidad de Ingeniería Eléctrica

CLASIF:TK165 C88MK3 2002
ADQUIS: $\frac{551-24 /}{9-\overline{K K} \cdot 2003}$
PROCED. TeN15-2003

Identificación en Línea de Sistemas de Eventos Discretos: Fundamentos y Algoritmos para la Síntesis de Modelos en Redes de Petri

Tesis de Doctorado en Ciencias Ingeniería Eléctrica

Por:

María Elena Meda Campaña
Ingeniera Industrial
Instituto Tecnológico de Culiacán
1991-1996
Maestra en Ciencias en Ingeniería Eléctrica
CINVESTAV-Unidad Guadalajara
1996-1998

Becaria del CONACyT, expediente no. 112941

Director de Tesis
Dr. Luis Ernesto López Mellado

CINVESTAV del IPN Unidad Guadalajara, Noviembre de 2002

Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional

Unidad Guadalajara

On-line Identification of Discrete Event Systems: Fundamentals and Algorithms for the Synthesis of Petri Net Models

Thesis submitted by
 María Elena Meda Campaña

For the degree of
 Doctor of Sciences

In the speciality of Electrical Engineering

On-line Identification of Discrete Event Systems: Fundamentals and Algorithms for the Synthesis of Petri Net Models

Thesis of Doctor of Sciences Electrical Engineering

By

María Elena Meda Campaña
Industrial Engineer
Instituto Tecnológico de Culiacán 1991-1996
Master of Science in Electrical Engineering CINVESTAV-Unidad Guadalajara
1996-1998

Scholarship CONACyT no. 112941

Thesis Advisor
Dr. Luis Ernesto López Mellado

Resumen

En esta tesis se presenta el problema de identificación de Sistemas de Eventos Discretos (SED), este problema consiste en determinar un modelo matemático a partir de la observación del comportamiento del sistema, el cual se describe por la evolución de sus señales de entrada y de salida. Los sistemas considerados en este trabajo son aquellos en los cuales su estado no puede ser determinado completamente a partir de la medición de su salida pero que exhiben la propiedad de evento detectabilidad por la salida. Las Redes de Petri (RP) serán el formalismo utilizado para describir un SED.

El esquema de identificación adoptado en este trabajo es un esquema pasivo en el que las señales de entrada no pueden ser manipuladas; las estrategias de identificación propuestas son adaptadas para la operación en línea calculando en forma progresiva un nuevo modelo cada vez que un nuevo comportamiento del sistema es detectado. Cada secuencia de eventos calculada a partir del comportamiento observado es analizada y si ésta aporta nueva información del sistema entonces el modelo calculado se actualiza; el comportamiento que genera el modelo actualizado es el mismo que el que ha sido observado del sistema.

El procedimiento de síntesis del modelado realiza principalmente dos tareas: el cálculo de la parte medible del sistema y la inferencia de la parte no medible, la cual está relacionada con las dependencias formadas por lugares no medibles con respecto a las transiciones calculadas. La primera tarea se hace directamente a partir de la observación de las señales de salida del sistema, mientras que la segunda es una tarea más complicada debido a que se tienen que hacer conjeturas acerca de cómo los lugares no medibles del sistema están relacionados con las transiciones, esto se determina con diferentes evoluciones del sistema. Los algoritmos propuestos para actualizar los lugares no medibles son de complejidad lineal en el número de las secuencias de transiciones calculadas. El algoritmo general, el cual incorpora todos los algoritmos de actualización, también es ejecutado en tiempo polinomial.

Este trabajo es una primera aproximación del problema de identificación en SED y éste puede ser considerado como la base de futuros trabajos en el área, posiblemente orientados a la verificación de sistemas, hardware o software; también este trabajo puede extenderse a problemas de ingenieria de reversa.

Abstract

This tesis addresses the identification problem of Discrete Event Systems (DES); it is devoted to obtain a mathematical model from the observation of the system behavior, which is described by the evolution of its input and output signals. The class of systems dealt in this work are those in which the entire state of the system cannot be determined from the measurement of its outputs, however these systems exhibiting the event-detectability property. The formalism used to describe DES are the Petri nets (PN).

The adopted identification approach is a passive one in which the input signals of the system are not manipulated; the strategies proposed are translated into procedures executed on-line, building the models progressively as new information of system behavior is detected. These models represent the observed behavior of the system and they approach asymptotically to the actual model of the system. Every sequence of events computed from the observed system behavior is analyzed and if it provides new information on the system then the computed model is updated.

The model synthesis procedure performs mainly two tasks: the computation of the measurable part of the system and the inference of the non measurable part of the system, which is related with the dependencies formed by the non measurable places with respect to the computed transitions. The first task is made directly from the observation of the output system signals, while the second task, rather difficult, derived a more detailed study about the dependencies formed by a non measurable places into a model. The proposed algorithms to updated the non measurable places are of lineal complexity in the number of the transitions computed and the transition sequences detected. The general algorithm to update a model that incorporates all the updating procedures of non measurable places is also executed in polynomial time.

This work is a first approximation of the identification problem in DES and it can be considered as a basis for future works on the matter, possibly oriented towards the verification of systems, hardware or software, or it can be extended to address problems of reverse engineering.

Agradecimientos

Al Dr. Luis Ernesto López Mellado por la dirección y apoyo recibidos, por la confianza que tuvo en mí para continuar con este trabajo, por sus consejos y por su tiempo.

A los miembros del jurado:
Dra. Ofelia Begovich,
Dra. Xiaoou Li,
Dr. Antonio Ramírez,
Dr. Alejandro Malo y
Dr. Victor Larios
por su tiempo y por sus valiosas críticas que contribuyeron a que esta tesis resultara lo mejor posible.

Al Dr. Antonio Ramírez por el tiempo extra dedicado a la revisión de mi tesis y por sus acertados comentarios.

Al Dr. Jean-Luc Koning por su amabilidad al aceptar ser revisor externo de la tesis y por sus comentarios incluidos en su reporte.

Al Dr. Mengchu Zhou por su valiosa crítica sobre mi trabajo, su amabilidad y su gran disposición para gestionar mi estancia en el Instituto de Tecnología de Nueva Jersey.

A mis profesores por los conocimientos transmitidos.
A los doctores Ofelia Begovich, Félix Ramos, Bernardino Castillo, Edgar Sánchez, Federico Sandoval, Manuel Guzmán, Deni Torres, Javier Ruiz y José Luis Leyva por su amistad y sus valiosos consejos.

A Lupita, Aracely, Aurora, Tere, Jara, Toño, Don Martín y Patricio por su amistad, amabilidad y asistencia.

A mis amigos a quienes les debo muchos momentos de alegría, de quienes aprendí muchas cosas y a los que siempre recordaré.

Amifamilia y a Santiago.

Contents

1 Introduction 1
1.1 Systems models 2
1.2 System identification 2
1.3 Discrete event systems identification 3
1.4 Thesis organization 4
2 Interpreted Petri nets 5
2.1 Introduction 6
2.2 Petri nets 6
2.2.1 State equation of a PN 8
2.2.2 Properties of PN 11
2.2.3 Live and bounded Petri nets 13
2.3 Interpreted Petri nets 13
2.3.1 Event-detectability property 16
3 Identification of DES 19
3.1 Grammatical inference 20
3.2 Learning models 21
3.3 Learning finite automata 22
3.3.1 Learning from representative samples 22
3.3.2 Learning with teachers 23
3.3.3 Learning from positive data 23
3.3.4 Hardness results 24
3.3.5 Learning from erroneous examples 25
3.4 Learning context free grammars 25
3.4.1 Learning from structural information 26
3.4.2 Reductions to finite-automata learning problems 27
3.4.3 Learning subclasses of context free grammars 28
3.5 Identification using Petri nets 29
4 On-line synthesis of PN models 31
4.1 Introduction. 32
4.2 Alternative representation of a PN structure 33
4.3 Identification problem formulation 35
4.3.1 Problem definition 35
4.3.2 Similitude function 35
4.4 Incremental modelling 37
4.4.1 Computation of measurable part: φC matrix 38
4.4.2 Condition for inferring the matrix γC 42
4.4.3 Inference of non measurable part: γC matrix 44
4.4.4 Non measurable places classification 45
4.4.5 Inference of non measurable places of class A 48
4.4.6 Inference of non measurable places of class B 60
5 Asymptotic identification algorithm 85
5.1 Introduction 86
5.2 Asymptotic identification procedure 87
5.3 Example 90
5.4 Complexity analysis 96
5.5 Completeness of the identification algorithm 97
5.6 Obtaining timed models 100
6 Identifiable DES 105
6.1 Introduction 106
6.2 Non computable structures 106
6.2.1 Specific structures 106
6.2.2 Implicit non measurable places 108
6.3 Properties of the output sequences 111
6.3.1 Reduced set of transition sequences needed in the identification procedure 112
6.4 Characterization of identifiable systems 124
6.5 Identification of non event detectable DES 124
6.5.1 Null columns in φC matrix 125
6.5.2 Equal columns in φC matrix 126
7 Conclusions 129

Chapter 1

Introduction

Inferring models from observations and studying their properties is really what science is about. The models ("hypothesis", "laws of nature", "paradigms", etc.) may be of more or less formal character, but they have the basic feature that they attempt to link observations into some pattern. System identification deals with the problem of building mathematical models of dynamical systems based on the observed behavior of the system. This thesis is devoted to the study of the identification problem of discrete event systems, a class of dynamics systems which evolve with respect to the occurrence of events instead of time. The identification strategy here introduced is named asymptotic identification and will consist in build a model for a system as it evolves.

1.1 Systems models

A system is an agent in which variables of different kinds interact and produce observable signals. The observable signals that are of interest are usually called outputs. The system is also affected by external stimuli; external signals that can be manipulated by an external agent are called inputs. Other signals are called disturbances and can be divided into those that are directly measured and those that are only observed through their influence on the output. The distinction between inputs and measured disturbances is often less important for the modelling process.
When it is dealt with a system, it is very useful to know how its variables are related to each other. Within a broad definition such an assumed relationship among observed signals it is called a model of the system. Clearly, models may come in various shapes and be phrased with varying degrees of mathematical formalism. The intended use will determine the degree of sophistication that is required to make the model purposeful.
In daily life many systems are dealt using mental models, which do not involve any mathematical formalization at all. An example of this kind of models is to drive a car.
For certain systems it is appropriated to describe their properties using numerical tables and/or plots. Such descriptions are called graphical models. Linear systems for example, can be uniquely described by their impulse or step responses or by their frequency functions. Graphical representation of these systems are widely used for various design purposes.
For more advanced applications, it may be necessary to use models that describe the relationships among the system variables in terms of mathematical expressions like difference or differential equations. This kind of models are called mathematical or analytical models. Mathematical models may be characterized by a number of adjectives (time continuous or time discrete, deterministic or stochastic, linear or non linear, etc.) meaning the type of difference or differential equation used. The use of mathematical models is inherent in all fields of engineering and physics. In fact, a major part of the engineering field deals with how to make good design based on mathematical models.

Basically, a model has to be constructed from the observed behavior of the system. The mental model of car steering dynamics, for example, is developed through driving experience. Graphical models are built from certain measurements. Mathematical models may be developed along two routes (or a combination of them). One route is to split up the system, into subsystems, whose properties are well understood from previous experience. This basically means that it is relied on earlier empirical work. These subsystems are then joined mathematically and a model of the whole system is obtained. This route is known as modelling and does not necessarily involve experimental of the actual system. The procedure of modelling is quite application dependent and often has its roots in traditional and specific techniques in a given application area. Basic techniques typically involve structuring of the process into block diagrams with blocks consisting of simple elements. The reconstruction of the system from these simple blocks is now increasingly being done by computer, resulting a software model rather than a mathematical model.

1.2 System identification

The other route to compute mathematical as well as graphical models is directly based on experimentation. Input an output signals from the system, are recorded and analyzed in order to infer a model. This route is
called system identification.
Nowadays there exist two kind of system identification methods each method is related with the available information of the system:
a) Parametric system identification. To use this method it is necessary to know the structure of the system, then the identification method consists in the estimation of its parameters. The estimators are considered from a statistic point of view. There exists a straightforward relation between the a priori information of the system and the method used to estimate the parameters. For example, to use the least square estimator it is assumed that the behavior (dynamics) of the system can be approached just with the knowledge of the system inputs and outputs, to use the Markov estimator it is required, besides the system input/output information, the covariance matrix of the noise, while to use the maximum likelihood estimator it is needed the density function of noise besides the system input/output information, etc.
b) Structural system identification. To use this method it is necessary to know the representation that it is desired to identify; it could be a transfer function or a state variable representation besides others. Also to use this approach it is required the input and output information of the system.

The system identification approach introduced in this thesis is in first instance a structural approximation in the sense that the representation of the system that we want to obtain is an interpreted Petri net, however the proposed method to compute the model is based on the behavioral information of the system, thus the model will be approaching to the actual model of the system (structurally) as new input/output information of the system is detected.

1.3 Discrete event systems identification

In essence this thesis is devoted to the study of system identification of a class of systems known as Discrete Event Systems (DES).
A DES is a system which its state space is numerable, possibly infinite. The paradigm of the difference or differential equations are not suitable to model this class of systems since their evolution is related with the occurrence of events instead of the time. The formal languages, temporal logic, minimax algebra and Petri nets are some of the formalisms used to describe this class of systems.
The problem addressed in this work is to build a model for a DES as it evolves from the observation of its input and output signals. A sequence of models is built in such way that the current model represents or describes the entire observed behavior of the system; so, every new computed model acquires more details than the previous one approaching to the actual model of the system; this strategy is called asymptotic identification [32][33][34][35]. The formalism adopted in this thesis to describe a DES is the Petri net (PN) formalisms, since PN can capture the main characteristics of this class of systems like concurrence, synchronization, causal relationships between events, mutual exclusions and decisions. Specially will be used the interpreted Petri nets (IPN) an extension to PN that relate the input and output system signals to the structure of a PN, adding to them a physical meaning.
The identification approach considered in this thesis is a passive approach, in which the model is built just from the observation of input and output system signals, the updating of a computed model (building a new one) is made when new information of the system is observed.

1.4 Thesis organization

The chapter 2 introduces the definition of the Interpreted Petri nets, the formalism used to describe DES and how they can be used in the identification problem.

Chapter 3 overviews the reported works on identification of DES including those that use PN as the model computed.

The chapter 4 introduces the problem to identify a DES just with the information of output system signals. This approach is named passive asymptotic identification. In this chapter is presented how to compute each new IPN model fulfilling that it will be more similar to the system than the previous model, this new model is built with new information of the system.

In chapter 5 it is presented the identification procedure resulting from the analysis presented in previous chapter. Also in this chapter is presented an illustrative example of the identification process.

The chapter 6 presents the conditions under which a DES can be identified. In this chapter it is introduced how need to be the input signal given to the system to allow its identification, also is presented how need to be the signals assigned to the transitions and places of the IPN representation of a DES to can be detected from the observed information of the system.

Finally the conclusions of this work are presented in chapter 7.

Chapter 2

Interpreted Petri nets

Petri nets are a graphical and mathematical modeling tool applicable to many systems, this formalism is used in this thesis to describe DES, since they are suitable to capture most of the own characteristics of the DES like concurrence, decisions, mutual exclusions, causal relationships besides others. Petri nets are also useful to analyze qualitative and quantitative properties of DES.
To describe a DES in this thesis will be used a class of Petri nets called Interpreted Petri nets, this class of nets are defined to relate the input and output system signals to a Petri net structure giving to it a physical meaning. This chapter summarizes concepts and notation of PN and IPN used in this work.

2.1 Introduction

There exists several formalisms for modelling and analyzing DES. One of these formalisms are the Petri nets (PN). PN can describe most of the own characteristics of DES such as decisions, synchronizations, mutual exclusions, concurrence, causal relationships besides others DES characteristics.
One of the advantages of the PN is that they have a mathematical and a graphical representation which made their use more friendlier. As a graphical tool PN can be used as flow charts or block diagrams. As a mathematical tool it is possible to establish a state equation governing the behavior of systems.
In this work it is used a class of PN named interpreted Petri nets (IPN). The IPN have the property to relate the input and output signals of the system to the structure of a PN giving to it a physical meaning.
In this chapter are introduced the basic concepts and properties of PN also it is introduced the definition of IPN and related concepts on DES modeling used in this work. Fine PN surveys can be found in [53][36][17].

2.2 Petri nets

A Petri net is a directed, weighted bipartite graph consisting of two kinds of nodes; the places and the transitions these items are graphically depicted as circles and bars respectively, the arcs are either from a place to a transition or from a transition to a place. Arcs are labeled with their weights (positive integers), where a k-weighted arc can be interpreted as the set of k parallel arcs. Label for unity weight are usually omitted. The formal definition of a PN is following presented.

Definition 2.1 A Petri Net structure G is a directed, weighted digraph defined by the 4-tuple $G=(P, T, F, W)$ where

- $P=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ is a finite set of elements called places,
- $T=\left\{t_{1}, t_{2}, \ldots, t_{m}\right\}$ is a finite set of elements called transitions,
- $F \subseteq\{(P \times T) \cup(T \times P)\}$ is a set of arcs (flow relation) and
- $W: F \longrightarrow\left\{\mathbb{Z}^{+}\right\}^{n}$ is a weight function.

Example. Consider the PN depicted on figure 2.1. The sets P, T and F and the function W are the following:

$$
\begin{aligned}
& P=\left\{p_{1}, p_{2}, p_{3}, p_{4}, p_{5}, p_{6}\right\} \\
& T=\left\{t_{1}, t_{2}, t_{3}, t_{4}, t_{5}\right\} \\
& \left.F=\left(p_{1}, t_{1}\right),\left(p_{2}, t_{2}\right),\left(p_{3}, t_{5}\right),\left(p_{4}, t_{3}\right),\left(p_{5}, t_{4}\right),\left(p_{6}, t_{5}\right),\left(t_{1}, p_{2}\right),\left(t_{2}, p_{3}\right),\left(t_{5}, p_{1}\right),\left(t_{3}, p_{5}\right),\left(t_{4}, p_{6}\right),\left(t_{5}, p_{4}\right)\right\} \\
& w\left(t_{5}, p_{1}\right)=2, w\left(p_{1}, t_{1}\right)=2, w\left(t_{4}, p_{6}\right)=3 \text { and } w\left(p_{6}, t_{5}\right)=3, \text { the weight of the remaining arcs is } 1 .
\end{aligned}
$$

Definition 2.2 Let G be a PN, the sets of input and output places of each transition in G and the sets of input and output transitions of each place in G are the following:

Figure 2.1: Graphical representation of a PN.
${ }^{\bullet} t=\{p \mid(p, t) \in F\}$ denotes the set of all input places of t.
$t^{\bullet}=\{p \mid(t, p) \in F\}$ denotes the set of all output places of t.

- $p=\{t \mid(t, p) \in F\}$ denotes the set of all input transitions of p.
$p^{\bullet}=\{t \mid(p, t) \in F\}$ denotes the set of all output transitions of p.
In the PN depicted on figure $2.1^{\bullet} t_{1}=p_{1}, t_{4}^{\bullet}=p_{6},{ }^{*} p_{1}=t_{5}$ and $p_{2}^{\bullet}=t_{2}$.
Definition 2.3 A transition t is called source transition if it does not have any input place, i.e. ${ }^{\bullet} t=\emptyset$.
A source transition is unconditionally enabled. The transition t_{1} of the PN depicted on figure 2.2 is a source transition.

Figure 2.2: t_{1} is a source transition.

Definition 2.4 A transition t is called sink transition if it does not have any output place, i.e. $t^{\bullet}=\emptyset$.
The firing of a sink transition remove tokens but does not produce any. The transition t_{1} of the PN depicted on figure 2.3 is a sink transition.

Figure 2.3: t_{1} is a sink transition.

Definition 2.5 A pair of a place p and a transition t is called self-loop if p is both an input and output place of t.

The place p_{1} and the transition t_{1} of the PN depicted on figure 2.4 describe a self-loop.

Figure 2.4: p_{1} and t_{1} form a self_loop.
Definition 2.6 A PN is said to be pure if it has no self loops.
The PN depicted on figure 2.5 is a non pure PN.

Figure 2.5: Non pure Petri net.

2.2.1 State equation of a PN

The behavior of a DES can be described in terms of its states and their changes, in a PN the states of a system can be represented by markings. Following are presented the basic notions and the needed concepts to describe the behavior of a DES using PN.

Incidence matrix of a Petri net

For a PN with n places and m transitions, the incidence matrix $C=\left[c_{i j}\right]$ is a $n \times m$ matrix. The entry $c_{i j}$ is defined by:

$$
c_{i j}=c_{i j}^{+}-c_{i j}^{-}
$$

where $c_{i j}^{+}=w\left(t_{j}, p_{i}\right)$ is the weight of the arc from transition t_{j} to its output place p_{i} and $c_{i j}^{-}=w\left(p_{i}, t_{j}\right)$ is the weight of the arc to the transition t_{j} from its input place p_{i}.
Notice that $c_{i j}^{-}, c_{i j}^{+}$and $c_{i j}$ represents the number of tokens removed, added and changed respectively of the place p_{j} when the transition t_{j} is fired.

Example. Consider the incidence matrix of the PN depicted on figure 2.6. The entry c_{11} is computed as $c_{11}=c_{11}^{+}-c_{11}^{-}=w\left(t_{1}, p_{1}\right)-w\left(p_{1}, t_{1}\right)=0-2=-2$, the entry c_{64} is computed as $c_{64}=c_{64}^{+}-c_{64}^{-}=w\left(t_{4}, p_{6}\right)-$ $\left(p_{6}, t_{4}\right)=3-0=3$ while the entry c_{32} is computed as $c_{32}=c_{32}^{+}-c_{32}^{-}=w\left(t_{2}, p_{3}\right)-w\left(p_{3}, t_{2}\right)=1-0=1$.

An entry $c_{i j}$ of an incidence matrix C also is denoted as $C[i, j]$.

$$
\mathrm{C}=\left[\begin{array}{rrrrr}
-2 & 0 & 0 & 0 & 2 \\
1 & -1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & -1 \\
0 & 0 & -1 & 0 & 1 \\
0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 3 & -3
\end{array}\right]
$$

Figure 2.6: Petri net with its incidence matrix

Marking of a PN

Definition 2.7 The marking (state) $M: P \longrightarrow\left\{\mathbb{Z}^{+}\right\}^{n}$ of a PN is a mapping of each place to the nonnegative integers.

By definition a marking (state) assigns to each place p a nonnegative integer k, then the place p is said to be marked with k tokens. Tokens are depicted as black dots inside a place p.
A marking M_{k} is represented by a $n \times 1$ column vector, where $n=|P|$. The i-th entry of M_{k} denoted as $M_{k}\left(p_{i}\right)$ is the number of tokens in the place p_{i} immediately after the k-th firing in some firing transition sequence.

The marking of the PN depicted on figure 2.6 is $\left[\begin{array}{cccccc}2 & 0 & 0 & 1 & 0 & 0\end{array}\right]^{T}$ since the place p_{1} and p_{3} have 2 and 1 tokens inside respectively.

Definition 2.8 A Petri Net is the pair $N=\left(G, M_{0}\right)$, where G is a $P N$ structure and M_{0} is an initial token distribution (initial marking).

The marking $\left[\begin{array}{llllll}2 & 0 & 0 & 1 & 0 & 0\end{array}\right]^{T}$ is the initial marking of the PN depicted on figure 2.6.
A marking can be represented as a i-tuple such that i is the number of marked places and the entries are the number of tokens inside the marked places. For example the initial marking of the PN depicted on figure 2.6 can be described as $M_{0}=\left[2 p_{1}, p_{4}\right]$.

Definition 2.9 The kth firing or control vector v_{k} is a $m \times 1$ column vector, where $m=|T|$. The j th entry of v_{k} is defined as $v_{k}\left(t_{j}\right)= \begin{cases}1 & \text { if } t_{j} \text { fires at the kth firing } \\ 0 & \text { otherwise }\end{cases}$
If the transition t_{3} of the PN depicted on figure 2.6 is the transition fired at the k-th firing of the PN, then $v_{k}=\left[\begin{array}{lllll}0 & 0 & 1 & 0 & 0\end{array}\right]^{T}$

Transition enabling and firing transition rules

A state or marking in a PN can change according to the following transition (firing) rule:

1. A transition t is said to be enabled if each input place p of t is marked with at least $w(p, t)$ tokens, where $w(p, t)$ is the weight of the arc from p to t.
2. An enabled transition may or may not fire (depending on whether or not the event actually take place)
3. A firing of an enabled transition t removes $w(p, t)$ tokens from each input place p of t and adds $w(t, p)$ tokens to each output place p of t, where $w(t, p)$ is the weight of the arc from t to p.

Example. Consider the IPN G depicted on figure 2.6. The enabled transitions are the transitions t_{1} and t_{3} since all their input places are marked with the required number of marks, hence these two transitions can be fired. If the transition t_{1} is fired, will be removed 2 marks from the place p_{1} and will be added one mark to the place p_{2}. The new marking reached after the firing of t_{1} will be $\left[\begin{array}{llllll}0 & 1 & 0 & 1 & 0 & 0\end{array}\right]^{T}$

State equation of a PN

Since the i th column of the incidence matrix C represents the change of marking as the result of firing the transition t_{i} then the state equation of a Petri net could be defined as:

$$
\begin{equation*}
M_{k+1}=M_{k}+C v_{k} \tag{2.1}
\end{equation*}
$$

The above equation states that if an enabled transition t_{j} is fired in a marking M_{k}, then a new marking M_{k+1} is reached. This fact can be represented as: $M_{k} \xrightarrow{t_{j}} M_{k+1}$.

Example. Consider N the PN depicted on figure 2.6, and $M_{1}=\left[\begin{array}{llllll}2 & 0 & 0 & 1 & 0 & 0\end{array}\right]^{T}$ its marking. The marking M_{2} is reached from the marking M_{1} when the transition t_{1} is fired, the computation of M_{2} using
the state equation 2.1 is as follows:

$$
\left[\begin{array}{c}
M_{1} \\
2 \\
0 \\
0 \\
1 \\
0 \\
0
\end{array}\right]+\left[\begin{array}{rrrrr}
-2 & 0 & 0 & 0 & 2 \\
1 & -1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & -1 \\
0 & 0 & -1 & 0 & 1 \\
0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 3 & -3
\end{array}\right]\left[\begin{array}{l}
v_{k} \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
M_{1} \\
2 \\
0 \\
0 \\
1 \\
0 \\
0
\end{array}\right]+\left[\begin{array}{r}
C v_{k} \\
-2 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right]=
$$

$$
\left[\begin{array}{c}
M_{2} \\
0 \\
1 \\
0 \\
1 \\
0 \\
0
\end{array}\right] .
$$

Definition 2.10 The reachability set $\mathbf{R}(N)=\left\{M_{k} \mid M_{0} \xrightarrow{\sigma} M_{k}\right\}$ of $a P N N$ is the set of all possible reachable markings from M_{0}, firing only enabled transitions.

Example. Consider N the PN depicted on figure 2.6, the reachability set of N is:
$R(N)=\left\{\left[2 p_{1}, p_{4}\right],\left[p_{2}, p_{4}\right],\left[2 p_{1}, p_{5}\right],\left[p_{3}, p_{4}\right],\left[p_{2}, p_{5}\right],\left[2 p_{1}, 3 p_{6}\right],\left[p_{3}, p_{5}\right],\left[p_{2}, 3 p_{6}\right],\left[p_{3}, 3 p_{6}\right]\right\}$.
Definition 2.11 The characteristic vector or Parikh vector of a transition sequence σ is a vector $\vec{\sigma} \in\left\{\mathcal{N}^{+}\right\}^{m}$, where $m=|T| . \vec{\sigma}(i)$ represents the number of firings of t_{i} in σ.

Example. Consider the transition sequence $\sigma_{1}=t_{1} t_{2} t_{3} t_{4} t_{5} t_{3} t_{1} t_{2}$ fired on the PN N depicted on figure 2.6, the Parikh vector of σ_{1} is $\overrightarrow{\sigma_{1}}=\left[\begin{array}{lllll}2 & 2 & 2 & 1 & 1\end{array}\right]$.

Notice that a Parikh vector does not provide information about the occurrence order of the transitions in a transition sequence.

2.2.2 Properties of PN

Figure 2.7: Petri net.
The incidence matrix C of the PN N depicted on figure 2.7 is:
$C=\left[\begin{array}{rrrrrrrrrrr}-1 & 0 & 0 & 1 & -1 & 0 & -1 & 0 & 1 & -1 & 1 \\ 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1\end{array}\right]$
Definition 2.12 A p-semiflow of a $P N N$ is a nonnegative vector Y fulfiling $Y^{T} C=0 .\langle Y\rangle=\left\{p_{i} \mid Y(i)>0\right\}$ is called the support of Y. A p-component is a subnet generated by the support of a p-semiflow Y considering also the input and output transitions of each place in $\langle Y\rangle$.

Example. The vector $Y_{1}=\left[\begin{array}{lllllllll}1 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 1\end{array}\right]$ is a p-semiflow of the PN N depicted on figure 2.7, since $Y_{1} C=0$. The support of Y_{1} is $\left\langle Y_{1}\right\rangle=\left\{p_{1}, p_{2}, p_{3}, p_{6}, p_{7}, p_{8}, p_{9}\right\}$. The subnet N_{1} generated by the p-semiflow Y_{1} is depicted on figure 2.8 .

Figure 2.8: Subnet generated by the p-semiflow Y_{1} of Q.

The other p-semiflow of N is $Y_{2}=\left[\begin{array}{lllllllll}1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1\end{array}\right]$

Proposition 2.1 Fundamental property of p-semiflows [17]. Let N be a Petri net and let Y be a p-semiflow of N. If $M_{0} \xrightarrow{\sigma} M_{k}$, then $Y M_{k}=Y M_{0}$.

Proof. Since M_{k} is reachable from M_{0} with some firing sequence σ. By the state equation $2.1, M_{k}=M_{0}+C v_{k}$. Therefore,

$$
Y M_{k}=Y M_{0}+Y C \vec{\sigma}=Y M_{0}
$$

because $Y C=0$.
A p-semiflow induces a conservative component of a PN N, implying that the number of tokens in a p-component is preserved in each marking of a PN N.

Definition 2.13 A t-semiflow of a PN N is a nonnegative vector X fulfiling $C X=0 .\langle X\rangle=\left\{t_{i} \mid X(i)>0\right\}$ is called the support of X. A t-component is a subnet generated by the support of a t-semiflow X considering also the input and output places of each transition in $\langle X\rangle$.

Example. The vector $X_{1}=\left[\begin{array}{lllllllllll}1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]^{T}$ is a t-semiflow of the PN N depicted on figure 2.7. The support of X_{1} is $\left\langle X_{1}\right\rangle=\left\{t_{1}, t_{2}, t_{3}, t_{4}\right\}$. The subnet generated by X_{1} is depicted on figure 2.9.

Figure 2.9: Subnet generated by the t-semiflow X_{1} of Q.

The remaining t-semiflows of N are: $X_{2}=\left[\begin{array}{lllllllllll}0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0\end{array}\right]^{T}$
$X_{3}=\left[\begin{array}{lllllllllll}0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0\end{array}\right]^{T}, X_{4}=\left[\begin{array}{lllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0\end{array}\right]^{T}$ and $X_{5}=$
0 0

Proposition 2.2 Fundamental property of T-semiflows [17]. Let σ be a finite transition sequence of a Petri net N which is enabled at a marking M. Then the Parikh vector $\vec{\sigma}$ is a t-semiflow of N iff $M \xrightarrow{\sigma} M$ (i.e. the occurrence of σ reproduces the marking M).

Proof. (\Rightarrow): Since σ is enabled at marking M, it is obtained that $M \xrightarrow{\sigma} M^{\prime}$ for some marking M^{\prime} By the state equation $2.1 M^{\prime}=M+C \vec{\sigma}$. As $\vec{\sigma}$ is a t-semiflow then $C \vec{\sigma}=0$ and hence $M^{\prime}=M$.
$(\Leftarrow):$ If $M \xrightarrow{\sigma} M$ then by the marking equation $C \vec{\sigma}=0$. So $\vec{\sigma}$ is a t-semiflow of N.
A t-semiflow represents the repetitive components of a Petri net N describing its cyclic behavior.

2.2.3 Live and bounded Petri nets

Two important properties of a $D E S$ are boundedness and liveness. Boundedness is often interpreted as stability and it is used to identify the existence of overflows; while, liveness means that, for every event e_{k} in a system, it is always possible to reach a state, at which e_{k} can occur. Moreover, if a $D E S$ is live then it is deadlock-free. In $P N$ terms, boundedness and liveness are defined as follows:

Definition 2.14 A place p_{i} of a $P N N$ is b-bounded, if $\forall M_{k} \in \mathbf{R}(N), M_{k}\left(p_{i}\right) \leq b$, where b is an nonnegative integer. A $P N$ is b-bounded, if all its places are b-bounded.

Definition 2.15 A transition t_{k} of $a P N N$ is said to be live if $\forall M_{j} \in \mathbf{R}(N), \exists \sigma$ such that $M_{j} \xrightarrow{\sigma} M_{r}$ and $t_{k} \in \sigma . A P N$ is live if all its transitions are live.

Another desired property of a $D E S$ is that it has a cyclic behavior. A $S E D$ has a cyclic behavior if there exists a sequence of events that allows to reach the initial state from any reachable state, it means that a task can be infinitely performed. In $P N$ terms a cyclic behavior is defined as follows.

Definition 2.16 APN N is cyclic if $\forall M \in \mathbf{R}(N), \exists \sigma$ such that $M \xrightarrow{\boldsymbol{\sigma}} M_{0}$.

2.3 Interpreted Petri nets

The formalism used in this thesis to describe DES are Interpreted Petri Nets (IPN). These nets are a particular case of PN in which the transitions and the places have a physical meaning associated, representing the input and output signals of the system.

Definition 2.17 An Interpreted Petri Net is the 5-tuple $Q=(N, \Sigma, \Phi, \lambda, \varphi)$ where

- $N=\left(G, M_{0}\right)$ is a $P N$,
- $\Sigma=\left\{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{r}\right\}$ is a finite set of elements σ_{i} called input symbols,
- $\Phi=\left\{\phi_{1}, \phi_{2}, \ldots, \phi_{p}\right\}$ is a finite set of elements ϕ_{i} called output symbols. In this work Φ is considered as the set of the nonnegative integer numbers \mathbb{Z} i.e. $\Phi=\mathbb{Z}^{+}$
- $\lambda: T \rightarrow \Sigma \cup\{\varepsilon\}$ is a function that assigns an input symbol to each transition of the net, where ε represents an internal system event. This function has the following restriction: $\forall t_{j}, t_{k} \in T, j \neq k$ if $w\left(p_{i}, t_{j}\right)=w\left(p_{i}, t_{k}\right) \neq 0$ and both $\lambda\left(t_{j}\right), \lambda\left(t_{k}\right) \neq \varepsilon$, then $\lambda\left(t_{j}\right) \neq \lambda\left(t_{k}\right)$, and
- $\varphi: \mathbf{R}(N) \rightarrow\left\{\mathbb{Z}^{+}\right\}^{q}$ is an output function; where q is the number of sensors associated to places in Q.

The marking evolution of an IPN Q evolves according to the following rules:

- A transition t_{j} is enabled at marking M_{k} iff $\forall p_{i} \in P, M_{k}\left(p_{i}\right) \geqslant w\left(p_{i}, t_{j}\right)$.
- If $\lambda\left(t_{j}\right)=a_{i} \neq \varepsilon$ is present and t_{j} is enabled, then t_{j} must fire.
- If $\lambda\left(t_{j}\right)=\varepsilon$ and t_{j} is enabled then t_{j} can be fired.

If an enabled transition t_{j} is fired in a marking M_{k}, then a new marking M_{k+1} is reached. M_{k+1} can be computed using the PN state equation: $M_{k+1}=M_{k}+C v_{j}$.

Definition 2.18 A transition $t_{i} \in T$ is said to be manipulable if $\lambda\left(t_{i}\right) \neq \varepsilon$, and non manipulable if $\lambda\left(t_{i}\right)=\varepsilon$. Non manipulable transitions represent internal events of the system.

Definition 2.19 A place $p_{i} \in P$ is said to be measurable if it has a sensor signal assigned, and non measurable otherwise. Non measurable places are depicted as dark circles.

In this work it is considered that the function $\varphi: \mathbf{R}(N) \rightarrow\left\{\mathbb{Z}^{+}\right\}^{q}$ is a linear function that can be represented as a $q \times n$ matrix $\varphi=\left[\varphi_{i j}\right]$ where n is the number of places, q is the number of measurable places, and the i-th row vector φ_{i} of φ is the transpose of the elemental vector e_{j} such that $e_{j}[i]=\left\{\begin{array}{ll}1 & \text { if } i=j \\ 0 & \text { if } i \neq j\end{array}\right.$ if p_{j} is the i-th measurable place ($\varphi_{i}=e_{j}^{T}$), according to the order given by the place labeling. This implies that p_{i} is a measurable place if there exists an elemental vector e_{j} such that $e_{j}[i]=1$ in matrix φ. Thus, a place p_{i} is measurable if the i -th column of φ matrix is a non null column $\varphi(\bullet, i) \neq 0$, and non measurable otherwise. Also, it is considered that a sensor signal assigned to any place is different to the sensor signal assigned to any other place.

The state equation can be completed as:

$$
\begin{align*}
M_{k+1} & =M_{k}+C v_{k} \tag{2.2}\\
y_{k} & =\varphi \cdot M_{k}
\end{align*}
$$

Arranging the rows of the incidence matrix C of an IPN Q in measurable and non measurable places, the C matrix can be decomposed as $C=\left[\begin{array}{c}\varphi C \\ \gamma C\end{array}\right]$, where γ is a linear function that can be represented by a $(n-q) \times n$ matrix, the i-th row vector γ_{i} of γ is the transpose of the elemental vector $e_{j}\left(e_{j}[i \neq j]=0, e_{j}[j]=1\right)$, if p_{j} is the i-th non measurable place ($\gamma_{i}=e_{j}^{T}$), according to the order given by the place labeling.

Example. Consider as a physical system the water tank depicted on figure 2.10.a, the IPN Q depicted on figure 2.10.b is an IPN model describing this system.

The manipulable transitions are the transitions t_{1} and t_{2} due to the actions $O=$ "open valve" and $C=$ "close valve" are assigned to t_{1} and t_{2} respectively. The others transitions represent the internal events of the tank and hence they are non manipulable transitions. The λ function takes the following values: $\quad \lambda\left(t_{1}\right)=O \quad \lambda\left(t_{2}\right)=C \quad \lambda\left(t_{3}\right)=\epsilon \quad \lambda\left(t_{4}\right)=\epsilon \quad \lambda\left(t_{5}\right)=\epsilon \quad \lambda\left(t_{6}\right)=\epsilon$
In this example the tank has two sensors measuring the low level (L) or high level (H) of the water in the tank, the model Q has 5 places, hence $q=2$ and $n=5$. The matrix representing the φ function is then defined as $\varphi=\left[\begin{array}{lllll}0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right]$, while the matrix representing the γ function is $\gamma=\left[\begin{array}{lllll}1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0\end{array}\right]$ Notice that the places having assigned a sensor signal are the places p_{4} and p_{5}, hence the columns 4 and 5 of the φ matrix have an one (1), indicating that p_{1} and p_{4} are measurable places.

Consider the current marking $M_{k}=\left[\begin{array}{lllll}1 & 0 & 1 & 0 & 0\end{array}\right]^{T}$ of Q. The output symbol generating Q is $\varphi M_{k}=\left[\begin{array}{l}0 \\ 0\end{array}\right]$. due to $\left[\begin{array}{lllll}0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{c}M_{k} \\ 1 \\ 0 \\ 1 \\ 0 \\ 0\end{array}\right]=\left[\begin{array}{c}\varphi M_{k} \\ 0 \\ 0\end{array}\right]$, this fact implies that the measurable places are not marked. However when the valve is open; Q could reach the marking $M_{i}=\left[\begin{array}{llll}0 & 1 & 0 & 1\end{array}\right]$, if M_{i} is reached then the output symbol generating Q will be $\varphi M_{i}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ which is computed as $\left[\begin{array}{lllll}0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{c}M_{i} \\ 0 \\ 1 \\ 0 \\ 1 \\ 0\end{array}\right]=\left[\begin{array}{c}\varphi M_{i} \\ 1 \\ 0\end{array}\right]$.
The incidence matrix of Q is $C=\left[\begin{array}{rrrrrr}1 & -1 & 0 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & -1 & 0 \\ 0 & 0 & -1 & 1 & 1 & -1 \\ 0 & 0 & 0 & -1 & 0 & 1\end{array}\right]$
The matrix $\varphi C=\left[\begin{array}{lllll}0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{rrrrrr}1 & -1 & 0 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & -1 & 0 \\ 0 & 0 & -1 & 1 & 1 & -1 \\ 0 & 0 & 0 & -1 & 0 & 1\end{array}\right]=\left[\begin{array}{rrrrrr}0 & 0 & -1 & 1 & 1 & -1 \\ 0 & 0 & 0 & -1 & 0 & 1\end{array}\right]$. Notice that φC is a submatrix of C, composed by the rows of C representing the measurable places, in this case φC is composed by the rows 4 and 5 of C because p_{4} and p_{5} are the measurable places of Q.

The matrix γC is a submatrix of C, composed by the rows of C representing the non measurable places, in this case γC is composed by the rows 1,2 and 3 of C because p_{1}, p_{2} and p_{3} are the non measurable places of Q, hence $\gamma C=\left[\begin{array}{lllll}1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0\end{array}\right]\left[\begin{array}{rrrrrr}1 & -1 & 0 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & -1 & 0 \\ 0 & 0 & -1 & 1 & 1 & -1 \\ 0 & 0 & 0 & -1 & 0 & 1\end{array}\right]=\left[\begin{array}{rrrrrr}1 & -1 & 0 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & -1 & 0\end{array}\right]$.
Consider a DES S_{f} in which all its states are completely measurable, by definition all the places of the system model Q describing S_{f} will be measurable places, hence the number q of sensors in Q is equal to n, i.e. $q=n$ (where n is the number of places of Q). It follows that for this class of systems an output symbol is an entire marking of Q since the output matrix φ is the $n \times n$ identity matrix then $\varphi M_{k}=M_{k}$ and $\varphi C=C$.

Definition 2.20 A fring transition sequence of an IPN Q is a sequence $\sigma=t_{i} t_{j} \ldots t_{k}$ such that $M_{0} \xrightarrow{t_{2}} M_{1} \xrightarrow{t_{3}}$ $\cdots M_{w} \xrightarrow{t_{k}} M_{x}$. The set of all firing sequences is called the language of Q and it is denoted as $£(Q)=\{\sigma$ $\mid \sigma=t_{i} t_{j} \ldots t_{k}$ and $\left.M_{0} \xrightarrow{t_{i}} M_{1} \xrightarrow{t_{j}} \cdots M_{w} \xrightarrow{t_{k}} M_{x}\right\}$.

Definition 2.21 The input language of an IPN Q is defined as $£_{i n}(Q)=\left\{\lambda\left(t_{i}\right) \lambda\left(t_{j}\right) \ldots \lambda\left(t_{k}\right) \mid t_{i} t_{j} \ldots t_{k} \in \mathcal{E}(Q)\right\}$, while the output language of Q is defined as $£_{\text {out }}(Q)=\left\{\varphi\left(M_{0}\right) \varphi\left(M_{1}\right) \cdots \varphi\left(M_{w}\right) \varphi\left(M_{x}\right) \mid M_{0} \xrightarrow{t_{i}} M_{1} \xrightarrow{t_{3}}\right.$ $\cdots M_{w} \xrightarrow{t_{k}} M_{x}$ and $\left.t_{i} t_{j} \ldots t_{k} \in \mathscr{L}(Q)\right\}$.

Figure 2.10: a) Physical system, b) IPN system model Q.

2.3.1 Event-detectability property

The property presented in this section correspond to the possibility that an event that had occurred in the system can be detected from the knowledge of the inputs given to the system or by the observation of its output symbols. This property was defined in [1][44].

Definition 2.22 Let Q be an IPN. Q is event-detectable if any transition firing can be uniquely determined by the knowledge of the input given to Q and output signals that it produces.

The following proposition provides an structural characterization of the $I P N$ exhibiting event-detectability property.

Proposition 2.3 Let Q be a live IPN. Q is event-detectable if and only if

1. $\forall t_{i}, t_{j} \in T$ such that $\lambda\left(t_{i}\right)=\lambda\left(t_{j}\right)$ or $\lambda\left(t_{i}\right)=\varepsilon$ it holds that $\varphi C\left(\bullet, t_{i}\right) \neq \varphi C\left(\bullet, t_{j}\right)$ and
2. $\forall t_{k} \in T$ it holds that $\varphi C\left(\bullet, t_{k}\right) \neq \overrightarrow{0}$

Proof. The proof is sketched as follows:

(Sufficiency)

Assume that $\left(Q, \mathcal{M}_{0}\right)$ is an $I P N$ where $\forall t_{i}, t_{j} \in T$ such that $\lambda\left(t_{i}\right)=\lambda\left(t_{j}\right)$ or $\lambda\left(t_{i}\right)=\varepsilon$ it holds that $\varphi C\left(\bullet, t_{i}\right) \neq$ $\varphi C\left(\bullet, t_{j}\right)$ and $\forall t_{k} \in T$ it holds that $\varphi C\left(\bullet, t_{k}\right) \neq \overrightarrow{0}$. Let $M_{m}, M_{n} \in \mathcal{M}_{0}$ and a transition $t_{p} \in T$ such that $M_{m} \xrightarrow{t_{p}} M_{n}$ fire while the input symbol α is given to $\left(Q, \mathcal{M}_{0}\right)$. From state equation (2.2) $y_{n}-y_{m}$ can be computed as $y_{n}-y_{m}=\varphi\left(M_{n}\right)-\varphi\left(M_{m}\right)=\varphi\left(M_{m}+C\left(\bullet, t_{p}\right)\right)-\varphi\left(M_{m}\right)=\varphi C\left(\bullet, t_{p}\right)$. Since $\forall t_{k} \in T$ it holds that $\varphi C\left(\bullet, t_{k}\right) \neq \overrightarrow{0}$ the change in the output produced by the firing of t_{p} is not null, that is $y_{n}-y_{m} \neq \overrightarrow{0}$. Now there are two possibilities.

1. Suppose that the input symbol is ε, since $\forall t_{i}, t_{j} \in T$ such that $\lambda\left(t_{i}\right)=\lambda\left(t_{j}\right)=\varepsilon$ it holds that $\varphi C\left(\bullet, t_{i}\right) \neq$ $\varphi C\left(\bullet, t_{j}\right)$ there is no transition $t_{q} \in T$ with $t_{q} \neq t_{p}$ such that $\lambda\left(t_{q}\right)=\varepsilon$ and $\varphi C\left(\bullet, t_{q}\right)=\varphi C\left(\bullet, t_{p}\right)$. Thus, the firing of transition t_{p} is the only one that could produce the change $y_{n}-y_{m}=\varphi C\left(\bullet, t_{p}\right)$ while the null input word $\alpha=\varepsilon$ was given to the system.
2. Suppose now that the input symbol is $\alpha \neq \varepsilon$, since $\forall t_{i}, t_{j} \in T$ such that $\lambda\left(t_{i}\right)=\lambda\left(t_{j}\right)=\alpha$ (or $\lambda\left(t_{i}\right)=$ $\left.\varepsilon, \lambda\left(t_{j}\right)=\alpha\right)$ it holds that $\varphi C\left(\bullet, t_{i}\right) \neq \varphi C\left(\bullet, t_{j}\right)$ there is no transition $t_{q} \in T$ whit $t_{q} \neq t_{p}$ such that $\lambda\left(t_{q}\right)=\alpha\left(\right.$ or $\left.\lambda\left(t_{q}\right)=\varepsilon\right)$ and $\varphi C\left(\bullet, t_{q}\right)=\varphi C\left(\bullet, t_{p}\right)$. Thus, the firing of transition t_{p} is the only one that could produce the change $y_{n}-y_{m}=\varphi C\left(\bullet, t_{p}\right)$ while the non-null input word α was given to the system.

Then, in both cases, the transition t_{p} that fired can be uniquely determined and (Q, \mathcal{M}_{0}) is event-detectable. (Necessity) Suppose first that there exist two transitions $t_{i}, t_{j} \in T$ such that $\lambda\left(t_{i}\right)=\lambda\left(t_{j}\right)=\alpha$ and $\varphi C\left(\bullet, t_{i}\right)=$ $\varphi C\left(\bullet, t_{j}\right)$. Then for an input word α there are two transitions t_{i}, t_{j} that may fire, therefore the input symbol given to $\left(Q, \mathcal{M}_{0}\right)$ does not provide information to distinguish the firings of t_{i} and t_{j}. Since $\varphi C\left(\bullet, t_{i}\right)=\varphi C\left(\bullet, t_{j}\right)$ the changes in the output that those firings produce are equal and no further information is provided. Therefore, there is no way to distinguish the firings of t_{i} and t_{j}.
Now suppose that there exist two transitions $t_{i}, t_{j} \in T$ such that $\lambda\left(t_{i}\right) \neq \varepsilon, \lambda\left(t_{j}\right)=\varepsilon$ and $\varphi C\left(\bullet, t_{i}\right)=\varphi C\left(\bullet, t_{j}\right)$. Assume that $\lambda\left(t_{i}\right)=\alpha$. Then for an input word α both transitions t_{i} and t_{j} may fire, again the input symbol does not help to distinguish the firings of t_{i} and t_{j}. If also $\varphi C\left(\bullet, t_{i}\right)=\varphi C\left(\bullet, t_{j}\right)$ then both firings produce the same change in the output and once more the firings of those transitions cannot be distinguished.
Finally assume that $\exists t_{k} \in T$ such that $\varphi C\left(\bullet, t_{k}\right) \neq \overrightarrow{0}$ Then the firing of t_{k} has no effect in the output and no matter what is the input symbol α given to $\left(Q, \mathcal{M}_{0}\right)$ there is no way to determine if transition t_{k} fires.
Thus, in all those cases the firing of the transitions cannot be uniquely determined and if any of those conditions holds $\left(Q, \mathcal{M}_{0}\right)$ is not event-detectable.
The first condition of proposition 2.3 states that if two transitions have the same input signal assigned then their columns in φC matrix must to be different to can distinguish them, while the second condition refers to the fact that any change of marking allows to determine the occurrence of a transition.

Chapter 3

Identification of DES

This chapter overviews the works dealing with identification of DES. First the works on grammatical inference are summarized; then recent works that use PN as modelling formalism are presented.

3.1 Grammatical inference

The identification problem of DES addressed in this thesis is very related to the grammatical inference problem. The grammatical inference is an inductive problem where the target domain is a formal language and the representation class is a family of grammars. The learning or inference task consists in given a finite number of examples of an unknown target language, identify a correct grammar for it. Grammatical inference is a well-established research field in artificial intelligence and it dates back to the 60 s . Gold [19] originated those studies and introduced the notion of identification in the limit.
This chapter is devoted to present several results of the inference or learning problem found out in the literature. The inference problem enclose the following three elements:

1. A class Ω of objects. One of the objects will be chosen, the learner will be presented information about it, and the learner is to figure out which one it is.
2. A method of information presentation. At each time the learner receives a unit of information i_{t} which is chosen of a set I. The method of information presentation consists in specify, for each $\omega \in \Omega$, which sequences of units of information, i_{1}, i_{2}, \cdots, are allowed. Let the set of allowable sequences be designated $I^{\infty}(\omega)$.
3. A naming relation. The learner is to identify the unknown object by finding one of its names. A naming relation consists of a set N of names and a function f which assigns an object to each name, $f: N \longrightarrow \Omega$.

The inference problem is to determine whether there is a rule the learner can use to accomplish the following: for any object $\omega \in \Omega$ and for any information sequence from $I^{\infty}(\omega)$, on the basis of that information sequence the rule will be yield a name n of ω, that is $f(n)=\omega$. In all works here presented it is considered as an unknown object $\omega \in \Omega$ the language that it is desired to identify.
Three variations of the identification problem are the following:
a) Identification in the limit. In this case the learner is to guess a name of the unknown object at each time. It is required that there be a finite time after which the guesses are all the same and are correct.
b) Finite identification is the type of identification problem usually considered. It is best known in automata theory. In finite identification, the learner is to stop the presentation of information at some finite time when it thinks it has received enough, and state the identity of the unknown object. This is not possible unless there is some finite time at which the information distinguishes the unknown object. That is, no other object satisfies the information.
c) Fixed-time identification. In this case the information sequence stops after some finite time which is specified a priori and which is independent of the object being described. The learner is to then state the identity of the unknown object.

The motivation for studying this problem is to construct a formal model of human language acquisition. Grammatical inference is applied to natural language processing [13][40] and computational biology [26][50], and has
been investigated, more or less independently, within many research fields including machine learning, computational learning theory, pattern recognition, computational linguistics, neural networks, formal language theory, information theory, and many others.
The research activities on grammatical inference have been stimulated by the new learning models proposed recently within computational learning theory framework: the query learning model of Angluin [8] and the PAC (probably approximately correct) learning model of Valiant [57]. These models put much more emphasis on the computational efficiency of the inference algorithm.
This review will begin with the problem of identifying deterministic finite automata (DFAs) from examples. DFAs are the bottom class of formal grammars in the Chomsky hierarchy, and the problem of identifying DFAs from examples has been studied quite extensively [7][42], where several interesting results are presented on the identification of DFAs: polynomial-time identification of DFAs from queries, identification of subclasses of DFAs from positive data, computationally hardness results and identification from erroneous examples. Also it is considered the problem of identifying context-free grammars (CFGs) because the questions of whether there are analogous results held for context-free grammars would be more interesting and important. The results contain identification of CFGs from examples in the form of structured strings, polynomial-time reduction to identification of finite automata, and efficient identifications of several subclasses of CFGs.

3.2 Learning models

Within computational learning theory, there are three major established formal models for learning from examples or inductive inference: Gold's model of identification in the limit [19], the query learning model by Angluin [9], and PAC learning model by Valiant [57]. Each model provides a learning protocol and a criterion for the success of learning. Identification in the limit views learning as an infinite process and provides a learning model where an infinite sequence of examples of the unknown grammar G is presented to the inference algorithm M and the eventual or limiting behavior of the algorithm is used as the criterion of its success. A complete presentation of the unknown grammar G is an infinite sequence of ordered pairs (w, l) from $\Sigma^{*} \times\{0,1\}$ such that $l=1$ if and only if w is generated by G, and such that every string w of Σ^{*} appears at least once as the first component of some pair in the sequence, where Σ is the terminal alphabet. An inference algorithm M take as input initial segments of a complete presentation of G, and outputs a next conjecture. If for every complete presentation of the unknown grammar G, M guesses a correct grammar which is equivalent to G at some point and never changes its guess after this, then M is said to identify G in the limit from complete presentations. Angluin [7] has considered a learning situation in which a teacher is available to answer specific kind of queries on the unknown grammar G. In the query learning model, a teacher is a fixed set of oracles that can answer specific kind of queries made by the inference algorithm of the unknown grammar G. The following two types of queries are typical:
a. Membership. The input is a string $w \in \Sigma^{*}$ and the output is "yes" if w is generated by G and "no" otherwise.
b. Equivalence. The input is a grammar G^{\prime} and the output is "yes" if G^{\prime} is equivalent to G (i.e. G^{\prime} generates the same language as G) and "no" otherwise. If the answer is no, a string w^{\prime} in the symmetric difference
of the language $L(G)$ generated by G and the language $L\left(G^{\prime}\right)$ generated by G^{\prime} is returned. The string w^{\prime} is named counter example.

In this approach, an inference algorithm M runs with oracles for queries for the unknown grammar G, and eventually halts and outputs a correct grammar in a certain finite time. An important result is that the class of DFAs can be identified in polynomial time using equivalence queries and membership queries while it cannot be efficiently identified from equivalence queries only [9][4].
Valiant [57] has introduced the distribution-independent probabilistic model of learning from random examples, which is called probably approximately correct learning (PAC learning). In PAC learning model, it is assumed that random samples are drawn independently from the domain Σ^{*} whose probability distribution D may be arbitrary and unknown. The success of the identification is measured by two parameters: the accuracy parameter ε and the confidence parameter δ, which are given as inputs to the inference algorithm. The error of a grammar G^{\prime} with respect to the unknown grammar G is defined to be the sum of probabilities $D(w)$ of the strings w in the symmetric difference of $L\left(G^{\prime}\right)$ and $L(G)$ with respect to D. A successful inference algorithm is one that with high probability (at least $1-\delta$) finds a grammar whose error is small (less than ε).
It is measured the efficiency of the inference algorithm with respect to relevant parameters: the size of the examples and the size of the unknown grammar. The size of the example in the form of string is the length of the string. The size of the unknown grammar is usually the number of states, in the case of finite automata, and the number of production rules, in the case of context free grammars.

3.3 Learning finite automata

In this section, it is presented a review of several important results and useful techniques related to computationally efficient identifications of deterministic finite automata. Good references are the early work of Trakhtenbrot and Barzdin [56], the work of Wiehagen concerning to the learnability from good examples [58], and an excellent survey by Pitt [42].
A deterministic finite (state) automaton (DFA) is defined by a 5 -tuple $A=\left(Q, \Sigma, \delta, q_{0}, F\right)$, where Q is a finite set of states, Σ is an alphabet of input symbols, δ is the state transition function defined as $\delta: Q \times \Sigma \longrightarrow Q, q_{0}$ is the initial state, and $F \subseteq Q$ is a set of final states. The language accepted by a DFA A is denoted by $L(A)$.

3.3.1 Learning from representative samples

When it is needed to identify an unknown DFA $A=\left(Q, \Sigma, \delta, q_{0}, F\right)$ from examples, useful information about A is a representative sample S of A, that is, a finite subset of $L(A)$ that exercises every live transition in A. Taking the set $R(S)$ of all prefixes of strings in S, for every live state q of A, there must exist a string u in $R(S)$ such that $\delta\left(q_{0}, u\right)=q$. Further, for every state q and every transition $\delta(q, a)$ from q where $a \in \Sigma$, there exists a string $v a$ in $R(S)$ such that $\delta\left(q_{0}, v\right)=q$ and $\delta(q, a)=\delta\left(q_{0}, v a\right)=q^{\prime}$. Thus, every state and transition are represented by strings in $R(S)$. It remains to distinguish two states $q u$ and $q v$ represented by two strings in $R(S)$, i.e. $q_{u}=\delta\left(q_{0}, u\right)$ and $q_{v}=\delta\left(q_{0}, v\right)$, if q_{u} and q_{v} are different states in A.
Angluin [10] has given an efficient procedure to solve this problem using membership queries.
Theorem 3.1 (Angluin (4]) The class of deterministic finite automata can be identified in polynomial time from a representative sample and using membership queries.

3.3.2 Learning with teachers

Angluin [2] has considered a learning protocol which is based on what is called "minimally adequate teacher" This teacher can answer two types of queries about the unknown DFA A made by an inference algorithm: membership query and equivalence query. Angluin [9] has shown that equivalence queries compensate for the lack of representative samples, and presents an efficient inference algorithm for identifying DFAs using equivalence and membership queries.

Theorem 3.2 (Angluin/9]. The class of deterministic finite automata can be identified in polynomial time using equivalence queries and membership queries.

The important data structure used in Angluin's algorithm is called observation table. An observation table is a two-dimensional matrix with rows and columns labelled by strings. The entry is 0 or 1 , and the intended interpretation is that the entry for row s and column e is equal to 1 if and only if the string $s \cdot e$ is accepted by the unknown automaton. The rows are partitioned in two parts, the ones labelled by a non empty prefix-closed set S of strings and the others labelled by the set $S \cdot \Sigma$. Rows labelled by S are the candidates for states of the automaton being constructed and rows labelled by $S \cdot \Sigma$ are used to construct the state transition function. The columns labelled by a non empty suffix closed set E of strings play a role of witnesses to distinguish the candidates for representing states. The observation table has $S=E=\{\varepsilon\}$ (the set of only the empty string) at the beginning of learning, and is augmented as the algorithm runs. Two specific observation tables are defined, which are closed and consistent. When an observation table fulfill that it is a closed and consistent then a minimum DFA can be constructed in polynomial time of the size of the table which it is consistent with the data contained in the table. The algorithm is going to find a closed, consistent observation table by asking membership queries to fill entries. It has been shown in [9] that the algorithm ask at most $O\left(m n^{2}\right)$ membership queries and $n-1$ equivalence queries, and eventually terminates and outputs the minimum DFA which is equivalent to the unknown DFA, where m is the maximum length of any counter example returned by the teacher during the running algorithm and n is the number of states in the minimum DFA, equivalent to the unknown DFA. The idea of the observation table is also related to the state characterization matrix by Gold [20].
Yokomori [61] has studied efficient identification of non deterministic finite automata from equivalence and membership queries.

3.3.3 Learning from positive data

One interesting and important topic on Gold's framework of identification in the limit for language learning is identification from positive data. A positive presentation of the unknown DFA A is any infinite sequence of examples such that the sequence contains all and only the strings in the language $L(A)$. Gold [19] has shown that there is a fundamental and important difference in what could be learned from positive versus complete presentations, and shown a negative result that no superfinite class of languages can be identified in the limit from positive presentation. A class of language is called superfinite if it contains all the finite languages and at least one infinite language. Since the class of regular languages is superfinite, it is needed to constrain DFAs somehow to subclasses to establish identifiability results from positive presentation.

The problem is to avoid overgeneralization, which means guessing a language that is a strict superset of the unknown language. Angluin [5] has introduced a series of subclasses of DFAs, called k-reversible automata for $k=0,1,2, \ldots$, and shown that the existence of characteristics samples is sufficient to identify from positive presentation (to avoid overgeneralization) this kind of automata. A characteristic sample of a k-reversible automaton A is a finite sample $S \subset L(A)$ such that $L(A)$ is the smallest k-reversible language that contains S with respect to the set inclusion. Notice then that any characteristic sample is a representative sample for k -reversible automata.
Notice that a representative sample provides enough information for reconstructions of states and states transitions. By using the structural properties specific to k-reversible automata it could be accomplished the main task of state distinctions in identifying k-reversible automata without the use of membership queries. For example a zero-reversible automaton, is a DFA such that it has at most one final state and no two edges entering any state are labeled with the same symbol. Given a representative sample S for the unknown zero-reversible automaton, the prefix tree automaton A^{\prime} is constructed such that it accepts the set S, and then merge the states in A^{\prime} to satisfy the conditions for zero-reversible automata.

Theorem 3.3 (Angluin [5]. The class of k-reversible automata, for $k=0,1,2 \ldots$, can be identified in the limit from positive presentation.

Furthermore, the inference algorithm updates a conjecture in time polynomial in the size of the inputs.
Another interesting class of DFAs which can be identified in the limit from positive presentation is the class of strictly deterministic automata investigated by Yokomori [62]. A strictly deterministic automaton is a DFA such that the set of labels W for state transition edges is extended to be a finite subset of strings over Σ, each edge has a unique label (no same label is attached to different edges), and for each symbol $a \in \Sigma$ there is at most one label in W starting with a.

Theorem 3.4 (Yokomory [62]). The class of strictly deterministic automata can be identified in the limit from positive presentation.

An inference algorithm can be constructed so that it not only runs in time polynomial in m to update the conjecture, where m is the maximum length of all positive examples provides so far, but also makes at most a polynomial number of implicit errors of prediction in m and n, where n is the size of the unknown strictly deterministic automaton. Pitt [42] has proposed the definition of implicit errors of prediction that after seeing i th example in the presentation, the inference algorithm M is said to make an implicit error of prediction at step i if the conjecture output by M is not consistent with the $(i+1)$ th example.
Other interesting topics and results on identification from positive presentation which may not be directly related to DFAs are Angluin's characterization of identifiability from positive presentation [3], Angluin's pattern languages [2], Koshiba's extension to typed pattern languages [25], Shinohara's general result for identifiability from positive presentation [52], and Oncina et Al.'s subsequential transducers [37].

3.3.4 Hardness results

There are many computationally hardness results related to identifying DFAs. Gold [20] has shown that the problem of finding a DFA with a minimum number of states consistent with a given finite sample of positive and
negative examples is NP-hard. This result is generally interpreted as indicating that even a very simple case of grammatical inference, identifying DFAs from positive and negative examples, is computationally intractable. Further, Pitt and Warmuth [43] have proven a stronger result, namely that it is NP-hard to find a DFA of at most $\mathrm{n}^{(1-\alpha) \log \log n}$ states consistent with a given finite sample of positive and negative examples for any constant $\alpha>0$, where n is the number of states of a minimum DFA consistent with the given sample. Angluin [10] has shown negative results for efficient identifications of various classes of grammars from equivalence queries only. In that work is developed useful technique of approximate fingerprints to obtain negative results for identification from equivalence queries only. As applications of the technique has shown that there is no polynomial time algorithm using only equivalence queries that identifies the class of DFAs, non deterministic finite automata, context free grammars, or disjunctive or conjunctive normal form boolean formulas.

3.3.5 Learning from erroneous examples

In practice, it is natural to assume that the example may contain some noise. There are fewer works to study the effect of noise on learning from queries in the Valiant's probabilistic framework of PAC-learnability.
Sakakibara [47] has defined a benign model for errors in the responses to membership queries where answers to queries are subject to random independent noise (i.e. for each query there is some independent probability to receive an incorrect answer and these errors are not persistent), and shown that these errors can be effectively removed by repeating the query until the confidence in the correct answer is high enough.
Ron and Rubinfeld [45] have considered a model of persistent noise in membership queries in which a fixed but randomly chosen fraction of the membership queries are answered incorrectly but any additional query on the same string is replied consistently with the same incorrect answer when queried again. They have shown by modifying Angluin's algorithm (theorem 3.2) for identifying DFA's using equivalence and membership queries that DFAs can be learned in polynomial time from membership queries with persistent noise under the uniform distribution on inputs.
Sakakibara and Siromoney [49] have studied a noise model which specific to language learning where the examples are corrupted by purely random errors affecting only the strings (and no labels). They have considered three types of errors on strings, called EDIT operation errors. EDIT operations consists of insertion, deletion, and change of a symbol in a string. They have shown efficient identification from random examples with EDIT noise for a small subclass of regular languages defined by containment decision lists.

3.4 Learning context free grammars

The question of weather there are analogous results for context-free grammars is interesting and important simply because context-free grammars are more expressive than the DFA.
A context-free grammar (CFG) is defined by the quadruple $G=(N, \Sigma, P, S)$, where N is an alphabet of non terminal symbols, Σ is an alphabet of terminal symbols such that $N \cap \Sigma=\emptyset, P$ is a finite set of productions rules of the form $A \longrightarrow \alpha$ for $A \in N$ and $\alpha \in(N \cup \Sigma)^{*}$ and S is a special non terminal called start symbol. The language generated by a CFG G is denoted as $L(G)$.
Angluin [10] has shown that the whole class of CFG cannot be identified in polynomial time using equivalence queries only. Furthermore, Angluin and Kharitonov [11] have shown that the problem of identify the class of

CFGs from membership and equivalence queries is computationally as hard as the cryptographic problems for which there is currently no known polynomial time algorithm (e.g., inverting RSA encryption, or factoring Blum integers). Even the existence of these negative results, in the following sections are presented several positive results for identifying the whole class of CFGs with additional information or identifying subclasses of CFGs efficiently.

3.4.1 Learning from structural information

Here it is considered an identification problem for CFGs where, besides given examples, some additional information is available for the inference algorithm. Useful (and maybe reasonable) information would be on the grammatical structure of the unknown CFG. It is assumed example presentations in the form of strings with grammatical structure. Levy and Joshi [27] have already suggested the possibility of efficient grammatical inferences in terms of strings with grammatical structure.
A string with grammatical structure, called a structured string or a structural description (of string), is a string with some parentheses inserted to indicate the shape of the derivation tree of a CFG, or equivalently unlabeled derivation tree of the CFG, that is a derivation tree whose internal nodes have no labels. It is known that the set of derivation trees of a CFG constitutes a rational set of trees, where a rational set of trees is a set of trees which can be recognized by some tree automaton. Further, the set of unlabeled derivation trees of a CFG also constitutes a rational set of trees. Based on these observations, the problem of identifying CFGs from structures strings is reduced to the problem of identifying tree automata.
Sakakibara [46] has shown by extending Angluin's inference algorithm (theorem 3.2) for DFA's to tree automata that the class of CFGs can be identified in polynomial time using structural membership queries and structural equivalence queries.

Theorem 3.5 (Sakakibara [46]). The class of context free grammars can be identified in polynomial time using structural equivalence queries and structural membership queries.

Let $D(G)$ denotes the set of derivation trees of a CFG G and $s(D(G))$ denote the set of unlabeled derivation trees (structured strings) of G. A structural membership query for a structures string ask whether it is generated by the unknown CFG G, and a structural equivalence query returns "yes" if a queried CFG G^{\prime} is structurally equivalent to the unknown CFC G and returns "no" with a counter example otherwise, that is, a structured string in the symmetric difference of $s(D(G))$ and $s\left(D\left(G^{\prime}\right)\right)$.
It was presented that Angluin's algorithm for identifying DFAs uses the observation table to organize the information about a finite collection of strings with the indication whether they are strings accepted by the unknown DFA. For the problem to identify a CFG it is extended the observation table to the one for tree automata. The extended observation table has rows labelled by structures strings and columns labelled by structures strings with a special symbol. The intended interpretation is that the entry for row s and column e is equal to 1 if and only if the structures string of the concatenation of s and e is a structured string generated by the unknown grammar G.
Since the class of CFGs is superfinite, Gold's negative result [19] on identifiability from positive presentation implies that the class of CFG's cannot be identified in the limit from positive presentation. Sakakibara [48] has demonstrated that certain information on the grammatical structure of the unknown CFG could help in the
inference. He has shown that there exists a class of CFGs called reversible context free grammars, which can be identified in the limit from positive presentations of structured strings, that is, all and only the unlabeled derivation trees of the unknown CFG, and shown that the reversible CFG is a normal form for CFGs, that is, reversible CFG can generate all the context free languages.
A reversible context free grammar is a CFG $G=(N, \Sigma, P, S)$ such that (1) $A \longrightarrow \alpha$ and $B \longrightarrow \alpha$ in P implies that $A=B$ and (2) $A \longrightarrow \alpha B \beta$ and $A \longrightarrow \alpha C \beta$ implies that $B=C$, where A, B and C are non terminals and $\alpha, \beta \in(N \cup \Sigma)^{*}$.

Theorem 3.6 (Sakakibara (48]). The class of reversible context free grammars can be identified in the limit from positive presentation of structured strings provided such that the structured strings are generated with respect to a reversible context free grammar for the unknown context free language.

Since the inference algorithm for reversible context free grammars is an extension of the Angluin's inference algorithm which identifies zero-reversible automata (theorem 3.3), the algorithm updates a conjecture in time polynomial in the size of the inputs. Note that the above result does not imply that the whole class of CFG can be identified from positive presentation of structured strings.
A related early work to identify CFGs from positive presentation of structures strings is presented in [15]. In this work it is described a constructive method for identifying a subclass of CFGs which is a different class from reversible CFGs, from positive samples of structured strings. The defined class of CFGs describes only a subclass on context free languages, called noncounting context free languages. Mâkinen [29] has refined Sakakibara's inference algorithm for reversible CFGs to gain more efficiency, and also investigated a subclass of reversible CFGs, called type invertible grammars, that can be identified from positive presentation structures strings in linear time in the size of the inputs.

3.4.2 Reductions to finite-automata learning problems

A well-known technique often used to establish identifiability results is a reduction technique that reduces an inference problem to some other inference problem whose result is known. Takada [55] has shown that the inference problem for even linear grammars can be solved by reducing it to one for DFAs, and presented a polynomial-time algorithm for the reduction. For example, the class of even linear grammars can be identified using equivalence and membership queries in polynomial time by employing Angluin's efficient algorithm for DFAs (theorem 3.2) via reduction.
An even linear grammar is a CFG that has productions only of the form $A \longrightarrow u B v$ or $A \longrightarrow w$ such that u and v have the same length. A and B are nonterminals and u, v and w are strings over Σ. Let $G=(N, \Sigma, P, S)$ be an even linear grammar. It is written $x \xlongequal{\pi} y$ to mean that y is derived from x applying the production π in P , where $x, y \in(N \cup \Sigma)^{*}$ The derivation from x_{0} to x_{k} obtained by applying a sequence $\gamma=\pi_{1} \pi_{2} \cdots \pi_{k}$ of productions is denoted by $x_{0} \xrightarrow{\gamma} x_{k} . \gamma$ is called associated word and a set of associated words is called control set on G. The language generated by G with a control set C is defined by $L(G, C)=\left\{w \in \Sigma^{*} \mid S \xrightarrow{\gamma} w\right.$ and $\gamma \in C\}$. It can be shown that there is a universal even linear grammar G_{U} such that for any even linear grammar $G, L(G)=L\left(G_{U}, C\right)$ for some regular control set \mathbf{C}.

Theorem 3.7 (Takada [55]). The problem of identifying the class of even linear grammars is reduced to the problem of identifying the class of finite automata.

Note that the class of even linear languages properly contains the class of regular languages and is a proper subclass of context free languages. By iteratively applying the above reduction technique, Takada [54] has further developed an infinite hierarchy of families languages whose identification problems are reduced to the identification problem of DFAs.

3.4.3 Learning subclasses of context free grammars

Because the whole class of CFGs seems to be hard to be identified efficiently without any additional information, there have been some attempts to design polynomial time algorithms for identifying subclasses of CFGs from examples.
Ishizaka [24] has investigated a subclass of CFGs called simple deterministic grammars and gave a polynomial time algorithm for exactly identifying it using equivalence and membership queries in terms of general CFGs. This inference algorithm may sometimes ask equivalence query for a CFG which is not simple deterministic.
A CFG $G=(N, \Sigma, P, S)$ in 2-standard form is called simple deterministic if $A \longrightarrow a \alpha$ and $A \longrightarrow a \beta$ in P implies that $\alpha=\beta$, where A and B are non terminals, a is terminal, and $\alpha, \beta \in(N \cup \Sigma)^{*}$

Theorem 3.8 (Ishizaka [24]). The class of simple deterministic grammars can be identified in polynomial time using equivalence queries and membership queries in terms of general context free grammars.

Notice that given any regular language L, the language $L \#$ is simple deterministic, where \# is a special symbol not in Σ. In this sense, the class of simple deterministic languages properly contains the class of regular languages. Yokomory [60] has considered a smaller class of simple deterministic grammars with the goal of finding a polynomial time algorithm to identify it in the limit from positive presentation. A CFG $G=(N, \Sigma, P, S)$ in Greibach normal form is called very simple if for each terminal symbol a in Σ there exists exactly one rule production starting with a (i.e., exactly one production rule of the form $\mathrm{A} \longrightarrow a \alpha$, where $\left.\alpha \in(N \cup \Sigma)^{*}\right)$. He has shown that the class of very simple grammars can efficiently be identified in the limit from positive presentation, and this result has provided the first instance of languages class containing non regular languages that can be identified in the limit in polynomial time in a criterion proposed by Pitt [42], that is, the time for updating a conjecture is bounded by a polynomial in the size of the unknown grammar and the sum of lengths of examples provided, and the number of implicit errors of prediction made by the inference algorithm is bounded in a polynomial in n.

Theorem 3.9 (Yokomori [60]). The class of very simple grammars can be identified in the limit from positive presentation in polynomial time.

From this result, it immediately follows that the class of very simple grammars can be identified in polynomial time using only equivalence queries.
Related to identification of very simple grammars, Burago [12] has investigated the structurally reversible CFGs and shown that this class of CFG can be identified in polynomial time using equivalence queries and membership queries. A CFG is called structurally reversible if among all non terminal strings that might derive a given terminal string, no one is a extension of the other. The class of structurally reversible CFGs is a subclass of CFGs and the class of structurally context free languages properly contains the class of very simple languages.

3.5 Identification using Petri nets

In [22] is presented an algorithm for constructing Petri net models. The specification of the system are presented in the form of sequences of events, or concurrent languages such as partial languages. The proposed algorithm has two phases. In the first phase, each example is given to the algorithm until the language of the target system is identified in the form of DFA. The identified DFA has the property to be I-reversible. A DFA I-reversible has only one initial state and only one final sate and it is invariant consistent. The meaning of invariant consistency can be described as follows: each occurrence of events causes some change of state, and this change depends only on which events have occurred. The I-reversible languages is a subclass of the zero-reversible languages [6]. This phase is related to the inductive inference of regular languages such as those presented in previous section. In the second phase, the algorithm extracts the dependency relation from the language, and then guesses the structure of a Petri net that accepts the obtained language. The running time of the first phase is bounded by a polynomial function of given inputs. For the second phase it is presented a polynomial time algorithm for a subclass of live and safe free choice nets. In this work it is consider the case that the target system is represented by a safe marked net without self loops and with one final state.
In [31] is presented an identification method based on the least square estimator $\theta=\left(X^{T} X\right)^{-1} X Y$ where X represents the inputs and Y represents the outputs of a system which is described as $Y_{M}=X \theta$. To describe a PN in terms of X, Y and θ it is considered that $X=v_{k}^{T}$ and $Y=\Delta M_{k}=M_{k+1}-M_{k}$, since the state equation of a PN can be reduced to $M_{k+1}-M_{k}=C v_{k}$ having the form of $Y_{M}=X \theta$. Then using this method the relation of the between places and transitions is founded out.
Notice that to use this method it is needed to know the number of places and transitions of the PN that it is needed to be identified and also several evolutions of the system must to be considered in order to built the vectors X and Y
In [30] it is presented an algorithm to identify a DES building a PN. This algorithm does not use a positive sample of the system language, instead of the algorithm works on-line with the system processing its output symbols and computing a new model as new information of the system is detected. The systems that could be identified using that algorithm are those described by IPN in which the non measurable places are constrained to have only one input and only one output transition. To preserve the firing of two concurrent transitions computed consecutively in some evolution of the system, self-loops are added to the model which are removed when in a posterior evolution of the system that transitions occur in different order. This work gave the basis for the development of the work here introduced.

Chapter 4

On-line synthesis of PN models

In this chapter it is defined the asymptotic identification problem for DES. The identification approach herein proposed computes an IPN as the mathematical model describing the unknown DES; the construction of this model is incrementally performed by computing a new model from new on-line measurements of the system outputs. In this chapter are presented the strategies to update an already computed model as the system evolves.

Figure 4.1: Identification scheme.

4.1 Introduction

As was introduced previously, the addressed problem in this work consists in computing a mathematical model for a system from the knowledge of its input and output signals. This problem is known as system identification. The identification scheme is illustrated on figure 4.1. In this work the proposed identification scheme fits with the following hypotheses:
H_{1} : The systems considered to be identified are those DES that can be described by a live, binary and cyclic IPN Q.
$\mathrm{H}_{2}: Q$ is an event-detectable IPN.
H_{3} : The transitions of Q are not fired simultaneously and Q has not self-loops.
H_{4} : The input and output signals will be sequences of input and output symbols respectively.

Given the characteristics of the identification problem addressed in this work, the inference mechanism will build the model processing the input and output signals of the system as it evolves. The computed model will be a live, binary, cyclic and event-detectable IPN.
In this chapter it is defined the asymptotic identification problem for DES and are described the procedures in which the proposed identification approach to solve this problem is based. This approach mainly differs from others identification approaches in the way of how the model of the system is computed and also in the class of computed model describing the system. This novel identification approach proposes to compute an IPN model describing the behavior of the unknown DES; the construction of this model is incrementally performed by computing a new model from new on-line measurements of the system outputs. One advantage of this approach is that it is not needed to have a priori information of the system (commonly called a positive sample of the system) because the inference mechanism will operate on-line processing the system information.
This chapter introduce the concepts, characterizations and procedures in which the identification approach is supported.

4.2 Alternative representation of a PN structure

The procedures for inferring a model Q_{i} from the observed behavior of the system, handle a simple structural unit called dependency. This section presents how an IPN can be represented by its dependencies.

Definition 4.1 Let Q be an IPN. Two transitions t_{i} and t_{j} of Q form a dependency $\left[t_{i}, t_{j}\right]$ iff $\exists p_{k}$ such that $p_{k} \in t_{i}^{\bullet}$ and $p_{k} \in^{\bullet} t_{j}$. The notation $p_{k}=\left[t_{i}, t_{j}\right]$ is referred to the fact that the place p_{k} forms a dependency between t_{i} and t_{j}.
On figure 4.2 is depicted a dependency in which p_{k} forms a dependency between the transitions t_{i} and t_{j}.

Figure 4.2: Graphical representation of the dependency $p_{k}=\left[t_{i}, t_{j}\right]$
Notice that the place p_{k} could form more than one dependency.
Definition 4.2 If p_{k} is a measurable place, then $\left[t_{i}, t_{j}\right]$ will be called measurable dependency (MDep) and if p_{k} is a non measurable place then $\left[t_{i}, t_{j}\right]$ will be called non measurable dependency (NDep). On figure 4.3 are depicted a MDep and a NDep.

Figure 4.3: Measurable and non measurable dependencies.
The representation of a dependency $p_{k}=\left[t_{i}, t_{j}\right]$ in the incidence matrix C of Q is as follows: by definition of an incidence matrix C, p_{k} is represented by the k th row in C and t_{i} and t_{j} are represented by the i th and j th column of C, then $C[k, i]=1$ since t_{i} is an input transition of the place p_{k} and $C[k, j]=-1$ since t_{j} is an output transition of the place p_{k}.
Definition 4.3 The set of all dependencies in Q, is denoted as $\operatorname{Dep}(Q)=\operatorname{Dep}^{m}(Q) \cup \operatorname{Dep}(Q)$, where $\operatorname{Dep} p^{m}(Q)$ is the set of all MDep and $\operatorname{Dep}^{u}(Q)$ is the set of all NDep in Q. Hence, the set Dep (Q) describes also the structure of the Q in terms of its dependencies.

The set of all NDep formed with the place p_{k} will be denoted as $D e p_{p_{k}}^{u}$
Definition 4.4 a place p_{k} in an IPN Q can describe two kinds of dependencies:

1. p_{k} forms a single dependency if: $\left|\cdot p_{k}\right|=\left|p_{k}^{*}\right|=1$, where p_{k} forms just one dependency. The characteristic of this kind of dependency is that p_{k} has only one input transition t_{i} and only one output transition t_{j} and they belong to the same t-semiflows in Q.
2. p_{k} forms a complex dependency if $\left|p_{k}\right|>1$ and $\left|p_{k}^{\bullet}\right| \geq 1$ or $\left|{ }^{\circ} p_{k}\right| \geq 1$ and $\left|p_{k}^{*}\right|>1$, where pherms more than one dependency. Indeed p_{k} forms $a \times b$ dependencies, where $a=\left|p_{k}\right|$ and $b=\left|p_{k}\right|$. The main characteristic of this dependency is that p_{k} hove more than one input transitions or more that one output transitions and the transitions t_{3} and t_{3} in a dependency $\left[t_{3}, t_{3}\right]=p_{k}$ could belong to different t-semifions in \boldsymbol{Q}.

Figures 4.2 and 4.3 show single dependencies.
The dependency depicted on figure 4.4 describes a complex dependency. Notice that p_{k} has two input and also two output transitions, hence it forms 4 dependencies: $\left[t_{i}, t_{j}\right],\left[t_{i}, t_{j}\right],\left[t_{x}, t_{j}\right]$ and $\left[t_{x}, t_{j}\right]$. Consider the NDep $t_{1}, t_{j}=p_{k}$, notice that t_{i} belongs to another t semiflow in which t_{j} does not belong because p_{k} also forms the dependency ${ }^{-} t_{\mathrm{l}} \cdot \mathrm{t}_{\mathrm{y}}{ }^{+}=\boldsymbol{p}_{\mathrm{k}}$.

Figure 4.4: A complex dependency

If the place $\boldsymbol{p}_{\boldsymbol{k}}$ is a measurable place then it describes a single or a complex MDep and if $\boldsymbol{p}_{\boldsymbol{k}}$ is a non measurable place then it describes a single or a complex NDep.

A row representing a place forming a complex NDep has $a-1 \mathrm{~s}$ and $\boldsymbol{b} 1 \mathrm{~s}$.
Example. Consider the IPN Q depicted on figure 4.5. The decomposition of Q in its dependencies is the following:

MDep		
$p_{1}=\left[t_{4}, t_{1}\right]$	$p_{3}=\left[t_{2}, t_{4}\right]$	NDep

Figure 4.3: Interpreted Petri net.

Definition 4.5 Let Q be an IPN and $\sigma=t_{x} t_{a} t_{b} \cdots t_{c} t_{d} t_{y} \in \mathcal{L}(Q)$ be a firing sequence, a dependency sequence from a transition t_{x} to a transition t_{y} is defined as $D \operatorname{Seq}\left(t_{x}, t_{y}\right)=\left[t_{x}, t_{a}\right]\left[t_{a}, t_{b}\right] \cdots\left[t_{c}, t_{d}\right]\left[t_{d}, t_{y}\right]$ where each dependency $\left[t_{i}, t_{j}\right] \in \operatorname{Dep}^{m}(Q) \cup \operatorname{Dep}^{u}(Q)$.

Remark. It is important to notice that a PN has a unique dependency decomposition, then the structure of a PN can be also represented or described by its dependencies.

4.3 Identification problem formulation

The identification problem addressed in this work deals with the computation of a model for an assumed unknown system when the only available information is its observed behavior (input and output signals), this fact leads to compute the model as the system evolves, hence the identification algorithm will work on-line with it. Since it is not possible to know if the observed information is enough to compute a model describing the entire behavior of the system, then a sequence of models is computed in such way that every model in the sequence is computed when new information of the system is observed; each new model is "better" than the previous one in the sense that it is more similar to the actual model of the system. The last model in the sequence will describe at least the observed behavior of the system. The identification strategy defined in this thesis is named asymptotic identification [32][33][34][35], due to the computed model of the system converges to the actual model of the system as more information is provided by itself. Given previous statements it is formally formulated the asymptotic identification problem.

4.3.1 Problem definition

Let S_{f} be a DES that can be modeled by an IPN Q; and $\mathcal{M}=\left\{Q_{0}, Q_{1}, \ldots\right\}$ be the non empty set of all IPN. Then the asymptotic identification problem is defined as follows:

1. Select a similitude function $f:\{Q\} \times \mathcal{M} \longrightarrow \mathcal{R}^{+}$indicating the similitude between Q and $Q_{j} \in \mathcal{M} . A$ lower value of $f\left(Q, Q_{j}\right)$ indicates that Q and Q_{j} are more similar.
2. Find out a model sequence $Q_{0}, Q_{1}, \ldots, Q_{k}$, where $Q_{i} \in \mathcal{M}$ such that $f\left(Q, Q_{i}\right) \leq f\left(Q, Q_{i-1}\right)$.
3. Each model Q_{i} in the sequence will be computed as new information of the system is detected.

The notion of a model sequence indicates that the actual model of the system will be computed in an incremental way: once a new information of the system is detected, a new IPN model can be computed such that it is more approximated to the actual model of the system than its predecessor model in the sequence. Furthermore, each model in the sequence fulfills that it describes at least the observed behavior of the system at the moment of its computation. The procedures used to update each model in the sequence is presented in section 4.4.

4.3.2 Similitude function

The similitude function that estimates how much the computed model Q_{i} is approached to the actual model Q of the system S_{f} is defined as follows.

Definition 4.6 Let $\left\{\varphi C_{Q}\right\}$ be the set of columns of matrix φC of the system model $Q,\left\{\varphi C_{Q_{i}}\right\}$ be the set of columns of matrix φC of the computed model Q_{i} and, let Dep ${ }^{u}(Q)$ and Dep ${ }^{u}\left(Q_{i}\right)$ be the sets of NDep of the system Q and the identified model Q_{i} respectively. The identification error is defined as:

$$
\begin{equation*}
f\left(Q, Q_{i}\right)=\left|\left\{\varphi C_{Q}\right\}-\left\{\varphi C_{Q_{i}}\right\}\right|+\left|\operatorname{Dep}^{u}(Q)-D e p^{u}\left(Q_{i}\right)\right|+\left|D e p^{u}\left(Q_{i}\right)-D e p^{u}(Q)\right| \tag{4.1}
\end{equation*}
$$

The terms $\left|\left\{\varphi C_{Q}\right\}-\left\{\varphi C_{Q_{i}}\right\}\right|$ and $\left|D_{e p^{u}}(Q)-\operatorname{Dep}^{u}\left(Q_{i}\right)\right|$ represent the number of elements (columns of φC_{Q} and $N D e p$) of Q which are missed in the computed model Q_{i} because they are not still computed, while the term $\left|\operatorname{Dep} p^{u}\left(Q_{i}\right)-D e p^{u}(Q)\right|$ represents the wrong computed NDep in Q_{i}, these wrongly NDep are computed to preserve the behavior of Q in Q_{i}. Even a NDep $\left[t_{i}, t_{j}\right]=p_{k}$ belongs to Q, if p_{k} is not fully computed then it will be considered also as an error since it does not belong to Q; this fact is reflected in the term $\left|D e p^{u}(Q)-D e p^{u}\left(Q_{i}\right)\right|$ due to it represents the number of missed NDep of Q in Q_{i}. In this case p_{k} will not be removed in posterior steps of the identification procedure instead of it will be updated until the k-th row of $\gamma C_{Q_{i}}$ matrix belongs to γC_{Q} matrix, i.e. until all its NDep will be computed.
The last two terms of the equation 4.1 form the symmetric difference of the sets of non measurable dependencies $D e p^{u}(Q)$ and $D e p^{u}\left(Q_{i}\right)$ of the system and the model respectively, considering in this case as an error the number of missing NDep of Q in Q_{i} plus the number of NDep computed in the model Q_{i} which do not belong to Q. The symmetric difference of the set of columns of the output matrices φC_{Q} and $\varphi C_{Q_{i}}$ was not considered since, as it will be presented in section 4.4, all the computed columns in $\varphi C_{Q_{i}}$ matrix are columns of φC_{Q} matrix. Thus, for the measurable part of a system Q it is only considered as an error the number of columns of φC_{Q} matrix which are not still computed in the model Q_{i}.
The equation 4.1 determines the identification error in terms of the missed elements of Q (columns of φC and NDep) in Q_{i} and also in the number of NDep wrongly computed in Q_{i}. The error $f\left(Q, Q_{i}\right)$ will be zero when all columns of φC_{Q} and all NDep of Q be computed and the wrong NDep in Q_{i} be removed; i.e. when $C_{Q}=C_{Q_{i}}$.

Example. Consider the IPN depicted on figure 4.6.a and 4.6.b be the system Q that need to be identified and its computed model Q_{i} when the transition sequence $t_{1} t_{2} t_{3} t_{4}$ was fired respectively; then the error is $f\left(Q, Q_{i}\right)=5$, which is computed as follows:
$\left|\left\{\varphi C_{Q}\right\}-\left\{\varphi C_{Q_{i}}\right\}\right|=2 \quad$ because the transitions t_{5} and t_{6} are not computed in Q_{i},
$\left|D^{u} p^{u}(Q)-D_{e p}{ }^{u}\left(Q_{i}\right)\right|=3 \quad$ because the NDep $\left[t_{4}, t_{5}\right],\left[t_{6}, t_{5}\right]$ and $\left[t_{6}, t_{1}\right]$ are not still computed in Q_{i}.
$\left|\operatorname{Dep}^{u}\left(Q_{i}\right)-\operatorname{Dep}^{u}(Q)\right|=0 \quad$ because the computed NDep $\left[t_{2}, t_{3}\right]$ and $\left[t_{4}, t_{1}\right]$ belong to Q.
This error will decrease when the transitions t_{5} and t_{6} and the NDep $\left[t_{4}, t_{5}\right],\left[t_{6}, t_{5}\right]$ and $\left[t_{6}, t_{1}\right]$ be computed inferring completely the place p_{4} of Q.

It is important consider the following:
Even though the function f describes the computation error, it cannot be used to guide the algorithm to compute a new model since the system S_{f} is unknown, however f will be used to prove the convergence of the computed model Q_{n} to the actual model of the system Q.

Figure 4.6: a) System model Q that need to be identified. b) Computed model Q_{i} for Q when the observed behavior is the firing transition sequence $t_{1} t_{2} t_{3} t_{4}$.
\therefore Even more, the IPN model Q of a DES S_{f} is unknown in principle; the hypothesis of Q known is held just for proving the convergence of the proposed identification technique.

- For a better explanation of the identification procedure a DES S_{f} will be considered as its IPN representation Q, which also will be called system model or simply system.

4.4 Incremental modelling

The asymptotic identification problem states the computation of a sequence of models fulfilling that any model Q_{i} in this sequence is better than the previous model Q_{i-1} in the sense that Q_{i} is more approached to the actual model of the system than Q_{i-1} (problem definition, statement 2). Each model Q_{i} will be computed updating the previous computed model Q_{i-1} as new information of the system is detected (problem definition, statement 3). The proposed method to compute a model Q_{i} will consist in compute its incidence matrix. As introduced in previous chapter the incidence matrix C_{Q} of an IPN Q can be decomposed as $C_{Q}=\left[\begin{array}{c}\varphi C_{Q} \\ \gamma C_{Q}\end{array}\right]$, where φC_{Q} and γC_{Q} are the matrices representing the measurable and non measurable part of Q respectively.
The only information that it is possible to detect from direct measurement of a system model Q is its change of state over the measurable places, this leads to compute the measurable part of its transitions represented by the columns of φC matrix. However the non measurable places must to be inferred from the observed behavior of Q forming dependencies between any two transitions t_{i} and t_{j} computed consecutively represented by the columns i and j of φC matrix, thus the γC matrix will be computed by rows instead of by columns like φC matrix.
Hence the identification process will consist in compute the columns of φC_{Q} matrix and infer the rows of γC_{Q} matrix as the system evolves.

Identification considering only the output information of the system

For a clearer explanation of the identification procedure, in the remaining of this chapter will be considered that every change of state of a system model Q can be detected from its output information, hence a model Q_{i} will be built using only the output information of Q. The identification procedure will require that all columns of φC can be detected and uniquely determined from its output information. Hence in this chapter will be considered a particular case of the event detectability property presented in section 2.3 in which the events can be uniquely determined by the output information of the system.

Definition 4.7 Let Q be an IPN. Q is event-detectable by the output if every transition firing can be uniquely determined by the knowledge of its output signals.

The characterization of the event-detectability property considering only the output information of the system is that all the columns of φC matrix be non null and different from each other. This is stated in the next proposition.

Proposition 4.1 Let Q be an IPN. Q is event-detectable by the output iff:

1. $\forall t_{i} \in T$ it is fulfilled that $\varphi C \overrightarrow{t_{i}} \neq \overrightarrow{0}$ and
2. $\forall t_{i} \neq t_{j} \in T$ it holds that $\varphi C \overrightarrow{t_{i}} \neq \varphi C \overrightarrow{t_{j}}$

Proof. The proof follows from the proof of proposition 2.3. However as in this case are not considered the input signals then to distinguish any two transitions it is required that all columns of φC matrix be different from each others since in other case the transition represented by equal columns cannot be distinguished even if they have different input signal assigned.
In chapter 6 is outlined the case in which the inputs are used in the identification procedure.
This section provides the related concepts and procedures needed to compute each model in the sequence in order to identify incrementally a desired DES.

4.4.1 Computation of measurable part: φC matrix

Since a column i of the incidence matrix C_{Q} of an IPN Q represents the number of tokens removed or added from its input places to its output places respectively when the transition t_{i} is fired, then a column of C_{Q} matrix can be computed from two consecutive markings of Q.
Consider the IPN state equation $M_{k+1}=M_{k}+C v_{k}$, assume that the marking M_{k+1} is reached from M_{k} firing the transition $t_{j}, M_{k} \xrightarrow{t_{j}} M_{k+1}$, the firing vector in this case will be $v_{k}(i)=\left\{\begin{array}{ll}1 & \text { if } i=j \\ 0 & \forall i \neq j\end{array}\right.$ since only t_{j} is fired, the product $C v_{k}$ is the $j-t h$ column of C representing the transition t_{j}, this column will be represented as $C \overrightarrow{t_{j}}$. The state equation can be rewritten as $M_{k+1}=M_{k}+C \overrightarrow{t_{j}}$, thus

$$
\begin{equation*}
C \overrightarrow{t_{j}}=M_{k+1}-M_{k} \tag{4.2}
\end{equation*}
$$

Example. Consider the IPN Q depicted on figure 4.7, assume that the transition t_{1} is fired from the

Figure 4.7: IPN Q with its incidence matrix.
initial marking M_{0} reaching the marking M_{1} :
using the equation 4.2 as: matrix depicted on figure 4.7.b.
$\left[\begin{array}{l}M_{1} \\ 0 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right]-\left[\begin{array}{l}M_{0} \\ 1 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right]=\left[\begin{array}{r}C \overrightarrow{t_{1}} \\ -1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right]$. This computed column is the first column of C

The following proposition states how to compute a column of an incidence matrix C.

Proposition 4.2 Let Q be an IPN and σ_{i} and σ_{j} be any two sequences which contain the transition t_{k} such that $M_{x}^{i} \xrightarrow{t_{k}} M_{y}^{i}$ and $M_{x}^{j} \xrightarrow{t_{k}} M_{y}^{j}$, then the column $C \overrightarrow{t_{k}}$ can be computed from any two consecutive markings as $C \overrightarrow{t_{k}}=M_{y}^{i}-M_{x}^{i}=M_{y}^{j}-M_{x}^{j}$

Proof. $M_{y}^{i}=M_{x}^{i}+C \overrightarrow{t_{k}} \rightarrow M_{y}^{i}-M_{x}^{i}=C \overrightarrow{t_{k}}$ similarly $M_{y}^{j}=M_{x}^{j}+C \overrightarrow{t_{k}} \rightarrow M_{y}^{j}-M_{x}^{j}=C \overrightarrow{t_{k}}$
Hence the column k of C matrix representing the transition t_{k} can be computed as $C \overrightarrow{t_{k}}=M_{y}^{i}-M_{x}^{i}=M_{y}^{j}-M_{x}^{j}$

Consider the class of completely measurable system models (in which all the places are measurable places), then the previous proposition states a procedure to identify any model of the system model of this class since an output symbol φM_{k} of a completely measurable system model is the entire marking M_{k} of Q. However, more interesting systems for the identification problem are those in which the entire information about the system state is not accessible from its output measurement, and hence only partial information of the system state is available. The aim of this thesis is to state an identification procedure for this class of DES. The remaining of this section is devoted to compute the φC matrix of a system model Q from the observed output symbols.
By definition of the output function φ (definition 2.10), an output symbol $y_{k}=\varphi M_{k}$ (equation 2.2) is the marking of a system model Q over its measurable part, i.e. is the marking of the measurable places of Q in the marking M_{k}.

Example. Consider the IPN Q depicted on figure 4.8. The φ matrix of Q is $\varphi_{Q}=\left[\begin{array}{llllll}1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0\end{array}\right]$ Notice that there exists not any row in φ_{Q} in which there exists a 1 at positions 5 or 6 since the places p_{5} and p_{6} are non measurable places.

Figure 4.8: System model Q and its incidence matrix.
The resulting matrix φC of Q is a submatrix of C in which only are considered the rows of the measurable places. On figure 4.8 it is presented the matrix φC of the system model Q.

By definition 2.3 of the φ matrix of an IPN Q, an output symbol φM_{k} generated by Q, will be the marking M_{k} of Q considering only its measurable places.

The first output symbol φM_{0} generated by the IPN Q depicted on figure 4.8 is
$\varphi M_{0}=\left[\begin{array}{llllll}1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0\end{array}\right]\left[\begin{array}{c}M_{0} \\ 1 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right]=\left[\begin{array}{c}\varphi M_{0} \\ 1 \\ 0 \\ 1 \\ 0\end{array}\right]$. When the event related with the transition t_{1} is executed
the output symbol generated by Q is $\varphi M_{1}=\left[\begin{array}{llllll}1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0\end{array}\right]\left[\begin{array}{c}M_{1} \\ 0 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right]=\left[\begin{array}{c}\varphi M_{1} \\ 0 \\ 1 \\ 1 \\ 0\end{array}\right]$. Notice then that
φM_{0} and φM_{1} are the markings of the measurable places in the markings M_{0} and M_{1} respectively.
Based on the procedure to compute a column of the incidence matrix of a completely measurable IPN is presented how to compute the matrix φC of an IPN.

Proposition 4.3 Let Q be an event detectable IPN. Each column $\varphi\left(C \overrightarrow{t_{i}}\right)$ of the φC matrix can be computed from the output symbols of Q as $\varphi\left(C \overrightarrow{t_{i}}\right)=\varphi\left(M_{k+1}\right)-\varphi\left(M_{k}\right)$, where $\varphi\left(M_{k+1}\right)$ and $\varphi\left(M_{k}\right)$ are any two consecutive output symbols generated by Q.

Proof. The proof follows from proposition 4.2, then each column i of φC_{Q} matrix can be computed from any two consecutive output symbols $\varphi\left(M_{i}\right)$ and $\varphi\left(M_{i-1}\right)$ as follows:

Assume that M_{k} and M_{k+1} are any two consecutive markings of Q such that M_{k+1} is reached from M_{k} firing the transition t_{i}, i.e. $M_{k} \xrightarrow{t_{i}} M_{k+1}$.

$$
\begin{array}{ll}
M_{k+1}=M_{k}+C \overrightarrow{t_{i}} & \text { (state equation) } \\
\varphi\left(M_{k+1}\right)=\varphi\left(M_{k}+C \overrightarrow{t_{i}}\right) & \text { (applying } \varphi \text { to both sizes) } \\
\varphi\left(M_{k+1}\right)=\varphi\left(M_{k}\right)+\varphi\left(C \overrightarrow{t_{i}}\right) & \text { (Due to } \varphi \text { is a linear function) } \\
\varphi\left(C \overrightarrow{t_{i}}\right)=\varphi\left(M_{k+1}\right)-\varphi\left(M_{k}\right) & \text { (solving for } \left.\varphi\left(C \overrightarrow{t_{i}}\right)\right)
\end{array}
$$

where $C \vec{t}_{i}$ is the column i of C matrix representing the transition t_{i} and then $\varphi\left(C \vec{t}_{i}\right)$ is the column i of φC matrix representing the measurable part of the transition t_{i}.
Since Q is assumed to be event-detectable by the output (proposition 4.1) then all columns of φC matrix can be detected and uniquely determined as a difference of consecutive markings, due to all of them are not null and different from each other.
This proof gives a strategy to compute the measurable part (φC matrix) of an IPN Q using only its output symbols.

Proposition 4.4 Let Q be a system model and let Q_{i} be the computed model for Q. If a new column of φC matrix is computed then $\left|\left\{\varphi C_{Q}\right\}-\left\{\varphi C_{Q_{i}}\right\}\right|<\left|\left\{\varphi C_{Q}\right\}-\left\{\varphi C_{Q_{1}-1}\right\}\right|$

Proof. By proposition 4.3 each computed column $\varphi\left(C \overrightarrow{t_{j}}\right)$ belongs to φC matrix of Q, hence if $\varphi\left(C \overrightarrow{t_{j}}\right)$ is a new computed column of φC_{Q} matrix the term $\left|\left\{\varphi C_{Q}\right\}-\left\{\varphi C_{Q_{i}}\right\}\right|$ of the identification error equation 4.1 is reduced in one unit and hence $\left|\left\{\varphi C_{Q}\right\}-\left\{\varphi C_{Q_{i}}\right\}\right|<\left|\left\{\varphi C_{Q}\right\}-\left\{\varphi C_{Q_{i-1}}\right\}\right|$.

Notice that if the terms $\left|\operatorname{Dep}{ }^{u}(Q)-D e p^{u}\left(Q_{i}\right)\right|$ and $\left|D e p^{u}\left(Q_{i}\right)-D e p^{u}(Q)\right|$ remains without change i.e. the non measurable places were not modified in Q_{i} or are reduced because either a new non measurable place was correctly computed or a wrong non measurable place was removed in Q_{i} then it is fulfilled that $f\left(Q, Q_{i}\right)<$ $f\left(Q, Q_{i-1}\right)$ when a new transition is computed.

Let Q be an IPN, if there exists the following sequence of reachable markings $M_{i} \xrightarrow{t_{a}} M_{j} \cdots M_{u} \xrightarrow{t_{b}} M_{x} \xrightarrow{\boldsymbol{t}_{c}} M_{y}$ then Q could generates the output word $w_{0}=\varphi\left(M_{i}\right) \varphi\left(M_{j}\right) \cdots \varphi\left(M_{u}\right) \varphi\left(M_{x}\right) \varphi\left(M_{y}\right)$, each transition in the transition sequence $w=t_{a} \cdots t_{b} t_{c}$ generating w_{0} is computed using proposition 4.3 as: $t_{a}=\varphi\left(M_{j}\right)-\varphi\left(M_{i}\right)$, $t_{b}=\varphi\left(M_{x}\right)-\varphi\left(M_{u}\right)$ and $t_{c}=\varphi\left(M_{y}\right)-\varphi\left(M_{x}\right)$. Notice then that each transition t_{i} is a column of the matrix φC_{Q}.

Example. Consider the IPN Q depicted on figure 4.8, the IPN to be identified. The non measurable part of Q is computed following the procedure described above as:

where all the elements $\varphi\left(M_{i}\right)-\varphi\left(M_{i-1}\right)$ are the columns of the matrix φC_{Q}.

Remark. Using this approach it is not possible to detect the event $t_{j} \| t_{k}$ (the simultaneous firing of t_{j} and t_{k}); thus the detection of a multiple change in the entries of the output symbol is assumed to be caused by the firing of one transition.

Notice that each column i of φC_{Q} represents only the input and output measurable places of the transition t_{i}. The following sections are devoted to state when and how to infer the input and output non measurable places of a computed transition.

4.4.2 Condition for inferring the matrix γC

Until now a procedure to compute the φC matrix of an IPN Q has been presented. Before to define the procedure to compute the non measurable places of Q it is needed to define the conditions under which they can be computed.
Since the systems considered in this thesis are those that can be described by a live and bounded IPN, then they must exhibit a cyclic behavior. A cycle has the property to be a repetitive part of the system and hence it can be detected when a sequence of events in the system allows to reach a state (marking) previously reached. In IPN terms the t-semiflows represent the cycles of a system, due to they induce the repetitive components of an IPN. Consider the sequence of markings $M_{i} \xrightarrow{t_{x}} M_{j} \xrightarrow{t_{\nu}} \cdots \xrightarrow{t_{z}} M_{i}$ reached when each transition of the transition sequence $\sigma=t_{x} t_{y} \cdots t_{z}$ is fired, $\vec{\sigma}$ is a t-semiflow since the marking M_{i} is reached again after the firing of $\sigma=t_{x} t_{y} \cdots t_{z}$ from M_{i}.

Example. In the IPN depicted on figure 4.9 there are two cycles which are described by the t-semiflows $X_{1}=t_{1} t_{2} t_{3} t_{4} t_{5} t_{6}$ and $X_{2}=t_{7} t_{8} t_{9}$.

Figure 4.9: Petri net with two t-semiflows and four m-words.

The measurable part of an IPN Q can be computed directly from any two observed consecutive output symbols of Q as stated in proposition 4.3. However, the inference of the non measurable part of Q will be made when a t-semiflow is detected. Hence it is important to state how to detect a t-semiflow from the measurement of the output symbols of the system. Thus, the notion of a m-word is presented to specify that a possible cycle is detected by the output.

Definition 4.8 Let Q be an IPN, $w_{o}=\varphi\left(M_{i}\right) \cdots \varphi\left(M_{j}\right)$ be an output word generated by Q and $\sigma=t_{1} \cdots t_{k}$ be the firing sequence detected when w_{o} is observed, such that each transition t_{i} is computed using proposition 4.3, then σ is a m-word iff $\varphi\left(M_{i}\right)=\varphi\left(M_{j}\right)$.

By definition of t-semiflow, when a marking M_{i} in an IPN has been already reached then a t-semilflow is detected. However, it could occurs that when an output symbol is repeated the underlying firing sequence is not a t -semiflow of the IPN.

Consider the IPN Q depicted on figure 4.10. The initial marking $M_{0}=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 1\end{array}\right]$ produces the output symbol
$\varphi M_{0}=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$; applying the firing sequence $t_{1} t_{2}$ the marking $M_{i}=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 1 \\ 1\end{array}\right]$ is reached, which produces the output symbol $\varphi M_{i}=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$. According with definition 4.8 a m-word $w_{k}=t_{1} t_{2}$ is detected since $\varphi M_{0}=\varphi M_{i}$, however $M_{0} \neq M_{i}$, hence $t_{1} t_{2}$ is not a t-semiflow of Q.

Figure 4.10: IPN Q and its incidence matrix.
Notice then that a m-word is not always a t-semiflow of an IPN. However a m-word is the approximation of a t-semiflow that can be detected from the output of an IPN; indeed a m-word m_{i} of an IPN Q fulfills that $\varphi C_{Q} \bullet \overrightarrow{m_{i}}=0$.

As illustrated on figure 4.10, $\varphi C_{Q}=\left[\begin{array}{rrrrr}1 & -1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 1 \\ 0 & 0 & 0 & 1 & -1\end{array}\right]$ and $\overrightarrow{m_{i}}=\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right]$ then $\varphi C_{Q} \bullet \overrightarrow{m_{i}}=$ $\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$.
Consider again the IPN Q depicted on figure 4.9. Notice that there exist two t-semiflows in $Q: X_{1}=$ $t_{1} t_{2} t_{3} t_{4} t_{5} t_{6}$ and $X_{2}=t_{7} t_{8} t_{9}$, and four m-words $w_{1}=t_{1} t_{2}, w_{2}=t_{3} t_{4}, w_{3}=t_{5} t_{6}$ and $w_{4}=t_{7} t_{8} t_{9}$. Notice
also that X_{1} is the concatenation of the m-words w_{1}, w_{2} and w_{3} i.e., $X_{1}=w_{1} w_{2} w_{3}$, while the m-word w_{4} is a t-semiflow of $Q, X_{2}=w_{4}$.

Hence will be considered that every t-semiflow of an IPN Q have an m -word decomposition.
Remark. The m-word decomposition of a t-semiflow will depend on the allocation of the non measurable places in the underlying t-component and also in the marking of the system in which its measurement begin.

The non measurable places of a system model Q will begin to be inferred when a m-word is detected. Next are presented the procedures to infer non measurable places.

4.4.3 Inference of non measurable part: γC matrix

The computation of the non measurable places (rows of matrix γC) is not as straight as the computation of the measurable places (rows of matrix φC); since as was presented in section 4.4.1, all columns of $\varphi C_{Q_{i}}$ matrix are computed correctly and directly from the output symbols of the system, however some non measurable places need to be inferred from several evolutions of the system. The non measurable places will be computed according to: 1) preserve the firing order of the transitions in the current m-word and 2) preserve the order in which the m-words have been observed. This is to preserve in the computed model the observed behavior of the system. Hence at the beginning of the identification procedure some non measurable places could be wrongly computed, however, with new information provided by the system a wrong non measurable place will be progressively corrected yielding models that represent the observed system behavior, by this reason it was stated that a model Q_{i} for a system model Q will be computed incrementally as Q evolves.
This section is devoted to introduce the needed procedures to add, update (adding or removing input or output arcs to an already computed place or merging places) or remove NDep in order to compute a new IPN model which agrees with the observed system behavior; with these procedures the matrix γC_{Q} is inferred when a m -word is detected.
The following situations may arise when a dependency in a computed model Q_{n-1} need to be updated in order to identify a new model Q_{n}.
For each NDep $\left[t_{i}, t_{j}\right]=p_{k}$, a vector $u_{k}=\left[\begin{array}{lllllll}v_{1} & \cdots & v_{i} & \cdots & v_{j} & \cdots & v_{r}\end{array}\right]$ is computed; where r is the number of detected transitions and $v_{i}=1, v_{j}=-1$ and $v_{x}=0 \forall x \neq i, j$. In order to obtain the incidence matrix of the computed model Q_{i}, the matrix $\varphi C_{Q_{i}}\left(\cdot, t_{i}\right)$ and $u_{i j}$ vectors could be arranged as follows:

$$
C=\left[\begin{array}{ccc}
\varphi C\left(\cdot, t_{1}\right) & \cdots & \varphi C\left(\cdot, t_{r}\right) \\
& u_{j} & \\
& \vdots & \\
& u_{k} &
\end{array}\right]
$$

where the u_{i} vectors are the rows of the matrix $\gamma C_{Q_{i}}$.
The updating of a non measurable place p_{k} is made when a new NDep is computed using p_{k}, when some NDep formed with p_{k} are removed or when two places p_{i} and p_{j} are merged forming a new place p_{k}. All updating operations are performed on the incidence matrix $C_{Q_{i}}$ of the computed model Q_{i} as follows:

- If there exists a NDep $\left[t_{i}, t_{j}\right]=p_{k}$ and it is needed to form another NDep $\left[t_{x}, t_{y}\right]$ using the same non measurable place p_{k}, then an arc is added from t_{x} to p_{k} and another arc is added from p_{k} to t_{y}, while in
the incidence matrix $C_{Q_{i}}$ it will be added the elements -1 and 1 in the positions $C_{Q_{i}}[k, x]$ and $C_{Q_{i}}[k, y]$ respectively.
- If a NDep $\left[t_{i}, t_{j}\right]=p_{k}$ must to be removed and p_{k} belongs to another NDep, then the input and the output arcs of p_{k} related with t_{i} and t_{j} are removed; only in the case when p_{k} belongs to a single NDep the place p_{k} can be removed, while in the incidence matrix $C_{Q_{i}}$ the elements $C_{Q_{i}}[k, i]$ and $C_{Q_{i}}[k, j]$ are set in zero, if p_{k} belongs to only the NDep $\left[t_{i}, t_{j}\right]$ then the row k of $C_{Q_{i}}$ is removed.
- If p_{i} and p_{j} are two non measurable places to be merged, then a new non measurable place p_{k} is computed such that ${ }^{\bullet} p_{k}={ }^{\bullet} p_{i} \cup^{\bullet} p_{j}$ and $p_{k}^{\bullet}=p_{i}^{\bullet} \cup p_{j}^{\bullet}$. In the incidence matrix $C_{Q_{i}}$ the rows i and j are added forming the row k, and the rows i and j are removed from $C_{Q_{i}}$.

4.4.4 Non measurable places classification

In order to compute the matrix γC_{Q}, the non measurable places are classified according the membership of its input and output transitions of a given m -word.

Definition 4.9 Let p_{k} be a non measurable place of an IPN Q. If $\forall\left[t_{i}, t_{j}\right] \in \operatorname{Dep}_{p_{k}}^{u} t_{i}$ and t_{j} belong to the same m-word then p_{k} is a non measurable place of Class A, otherwise p_{k} is a non measurable place of Class B.

The characterization of the classes given in previous definition is given below.
Class A: The non measurable places forming NDep between transitions belonging to the same t-component which underlying t-semiflow does not have a m-word decomposition.

The underlying t-semiflows of t-components in which the places of this class belong do not have a m-word decomposition, hence when a m-word is determined is also determined an actual t-semiflow of the system model. Hence in a NDep $\left[t_{i}, t_{j}\right]=p_{k}$ such that p_{k} belongs to Class A, t_{i} and t_{j} belong to the same t -semiflow (m -word).

Two kind of non measurable places can be distinguished into this class:
A.i. The non measurable places of Class A forming a single NDep.
A.ii. The non measurable places of Class A forming a complex NDep.

These non measurable places can be computed from any two consecutive transitions t_{i}, t_{j} in a m-word w_{n} to preserve the firing order in which such transitions are computed.

An example of these classes of non measurable places is given on figure 4.11. In figure 4.11.a, the non measurable place p_{2} belongs to Class A.i, while in figure 4.11.b, the non measurable places p_{3} and p_{6} belong to Class A.ii.

Class B: The non measurable places forming NDep between transitions of different m-words.
The underlying t-semiflows of t -components in which the places of this class belong have a m-word decomposition, hence when a m-word is determined it is possible that an actual t-semiflow has not been determined. Hence in a NDep $\left[t_{i}, t_{j}\right]=p_{k}$ such that p_{k} belongs to Class B, t_{i} and t_{j} belong to different m-words.
a) Class A.i.
b) Class A.ii.

$\mathrm{w}_{1}=\mathrm{t}_{1} \mathrm{t}_{2} \mathrm{t}_{3} \mathrm{t}_{4}$

Figure 4.11: Non measurable places of Class A.

Two kind of non measurable places into this class can be distinguished:
B.i. Non measurable places of Class B forming a single NDep between transitions belonging to different m -words in a t-semiflow decomposition.
B.ii. Non measurable places of Class B forming a complex NDep
a. between transitions belonging to different m-words of the same t-semiflow decomposition.
b. between the last and the first transitions of different t-semiflows of Q .

These non measurable places are computed to preserve the occurrence order of the computed m-words concatenating the previous and the current m-words. The updating of this class of non measurable places will be made when new m-words be detected, also it is possible that as the system evolves new occurrence order of the m-words could be detected, in this case a non measurable place is updated merging the output and the input non measurable places of last and the first transitions of the previous and the current m-word respectively.

An example of non measurable belonging to these classes is given on figure 4.12. In figure 4.12.a, the non measurable places p_{1}, p_{3} and p_{5} belong to Class B.i, In figure 4.12.b, the non measurable places p_{3} and p_{6} belong to Class B.ii.a, while in figure 4.12.c, the non measurable place p_{5} belong to Class B.ii.b.
The previous classification of non measurable places is given according to the m-word decomposition of the t-semiflows into the system model Q. Thus, the Class A represents the non measurable places in which their inputs and output transitions belong to the same m-word, indeed this m-word is an actual t-semiflow of Q. The Class B represents the non measurable places in which their input and output transitions could belong to different m -words. The input and output transition of a non measurable place of Classes B.i.a and B.ii.a belong to different m-words of a same t-semiflow, while the input and output transitions of a non measurable place of Class B.ii.b are the last and the first transitions of actual t -semiflows of Q. These places are computed by sequencing the last and the first transitions of the previous and the current m -words of different t -semiflows. It is important to notice that the places belonging to subclass i are those forming single NDep, while the places belonging to subclass $i i$ are those forming complex NDep.

Figure 4.12: Non measurable places of Class B.

If two IPN have the same structure but different interpretation or initial marking then it is possible that their non measurable places do not belong to the same class.

Example. Consider the IPN Q_{1} and Q_{2} depicted on figure 4.13. Although these two IPN have the same structure, the location of their non measurable places is different. This fact leads to a different m -word decomposition of their t-semiflows. These IPN only have one t-semiflow $X_{1}=t_{1} t_{2} t_{3} t_{4}$.

Figure 4.13: Different allocation of the non measurable places in two structurally equal IPNs.

The m-word decomposition of Q_{1} is $w_{1}=t_{1} t_{2} t_{3} t_{4}$, while the m-word decomposition of Q_{2} is $w_{1}=t_{1} t_{2}$ and $w_{2}=t_{3} t_{4}$. Then the m-word decomposition of Q_{1} is not the same m-word decomposition of Q_{2} and their respective non measurable places belong to different classes:

Consider the non measurable place $p_{c}=\left[t_{2}, t_{3}\right]$ of Q_{1}; since t_{2} and t_{3} belong to the same m-word, then p_{c} belong to Class A. In turn for the non measurable place $p_{3}=\left[t_{2}, t_{3}\right]$ of Q_{2}, t_{2} and t_{3} belong to different m -words, thus p_{3} belongs to the class B.

For every subclass it is defined a procedure used to infer the non measurable places. Next are described these procedures.

4.4.5 Inference of non measurable places of class \mathbf{A}

The main features of the non measurable places belonging to this class is that their input and output transitions belong to the same m -word and this m -word is an actual t -semiflow of a system model Q, i.e. this t -semiflow is composed by only one m-word.

Inference of non measurable places of Class A.i

The places belonging to this class form a single NDep $p_{k}=\left[t_{i}, t_{j}\right]$ between two transitions t_{i} and t_{j} of a same m -word of a system model Q.
The strategy to compute these non measurable places consists in preserve the firing order of the transitions to the observed firing order in the current computed m-word w_{n} forming a NDep between any two consecutive transitions in w_{n} which are not connected.

Identification Step 4.1 Let Q be a system model, Q_{n} be the computed model for Q, $w_{n}=\cdots t_{i} t_{j} \cdots$ be the current computed m-word from the observed behavior of Q and t_{i} and t_{j} be any two consecutive transitions in w_{n}. If there exists not a dependency $\left[t_{i}, t_{j}\right]$ in Q_{n} then the non measurable place $p_{x}=\left[t_{i}, t_{j}\right]$ can be computed to preserve the firing of t_{i} before t_{j} in Q_{n}.

Proposition 4.5 Let Q be a system model. A non measurable place p_{k} of Class A.i can be computed using identification step 4.1.

Proof. A non measurable place of Class A.i fulfills that 1) it forms a single NDep i.e. p_{k} only has one input and one output transition 2) its input and output transitions belong to same m-word. A non measurable place computed using identification step 4.1 is computed between any two consecutive transitions t_{i} and t_{j} in the current computed m-word $w_{n}=\cdots t_{i} t_{j} \cdots$ such that the dependency $\left[t_{i}, t_{j}\right]$ does not exist in $\operatorname{Dep}\left(Q_{i}\right)$. If p_{k} is the computed place then $p_{k}=t_{i}^{*}=^{\bullet} t_{j}$, hence p_{k} fulfills both conditions of places belonging to Class A.i.

The underlying procedure described by identification step 4.1 is the computation of a t-component by sequencing all the non connected consecutive transitions in w_{n}, because it is assumed that a detected m -word is a t -semiflow of a system model. Indeed the last and the first transitions of w_{n} are considered as consecutive transitions. The next example illustrate this fact.

Example. Consider the IPN Q depicted on figure 4.14. Assume that the m-word $w_{1}=t_{1} t_{2} t_{3} t_{4} t_{5}$ is computed from an output sequence of Q, then the columns of φC representing each transition of w_{1} are the following: $\left[\begin{array}{l}t_{1} \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right]\left[\begin{array}{r}t_{2} \\ -1 \\ 1 \\ 0 \\ 0\end{array}\right]\left[\begin{array}{r}t_{3} \\ 0 \\ 0 \\ 1 \\ 0\end{array}\right]\left[\begin{array}{r}t_{4} \\ 0 \\ 0 \\ -1 \\ 1\end{array}\right]\left[\begin{array}{r}t_{5} \\ 0 \\ -1 \\ 0 \\ -1\end{array}\right]$. Notice that t_{2} and t_{3}, and t_{5} and t_{1} are consecutive transitions in w_{1}; however there exist not a place forming any dependency between these transitions. This fact can be detected since there exists not a row in φC matrix in which there exists 1 in the column of t_{2} and a -1 in the column of t_{3} and either there exist a row in which there exists 1 in the column of t_{5}
and a -1 in the column of t_{1}. Hence the NDep $p_{x}=\left[t_{2}, t_{3}\right]$ and $p_{y}=\left[t_{5}, t_{1}\right]$ are computed. On figure 4.15 is depicted the computed model Q_{1}.

Figure 4.14: IPN Q and its incidence matrix.

Figure 4.15: Computed model Q_{1} from the m-word $w_{1}=t_{1} t_{2} t_{3} t_{4} t_{5}$.
In previous example, the only non measurable place computed correctly is the place p_{x}, since the place p_{y} does not belong to Q, however it is computed to preserve the firing order of the transition t_{2} and t_{3} as stated in w_{1}. Notice then that p_{x} belongs to Class A.i.
It is important consider the following when a non measurable place is computed using identification step 4.1:

1. In order to identify a NDep $p_{k}=\left[t_{i}, t_{j}\right]$ of Class A.i, it is needed that the transitions t_{i} and t_{j} occurs consecutively in a m-word. For example the place p_{6} of the IPN Q depicted on figure 4.14 is a non measurable place belonging to Class A.i., however it could not be computed from w_{1} since t_{5} and t_{3} did not occur consecutively in w_{1}.

However the missing NDep $\left[t_{i}, t_{j}\right]$ will be computed when in a new m-word t_{i} and t_{j} occur consecutively.
2. Since the procedure stated in identification step 4.1 computes a t-component with the transitions of the current m -word w_{n}, if w_{n} is not a t-semiflow of Q then the NDep computed between the last and the first transitions of w_{n} is wrongly computed. However the firing order of the transitions in w_{n} is preserved. In this case the term $\left|D e p^{u}\left(Q_{i}\right)-D e p^{u}(Q)\right|$ of the identification error equation is augmented.

The wrongly NDep computed as above is removed when a future m-word is detected, computing a non measurable place of Class B.i concatenating the previous and the current m -word. The concatenation procedure is presented in next section.
3. As it is shown in figure 4.16, the transitions t_{2} and t_{3} are concurrent transitions and hence there could not exist a non measurable place constraining their firing, however at early stages of the identification process these kind of NDep need to be computed to preserve the observed behavior of the system. In this case the term $\left|D e p^{u}\left(Q_{i}\right)-D e p^{u}(Q)\right|$ of the identification error equation is augmented because the computed place does not belong to Q.

The wrongly computed NDep between concurrent transitions will be removed in a posterior stage of the identification procedure when in another m-word the concurrent transitions change its firing order. The procedure to remove this kind of NDep is presented at the end of this section.
4. Only when the input and output transitions t_{i} and t_{j} of the computed non measurable place p_{k} belong to the same m-word which is also a t-semiflow of Q the term $\left|\operatorname{Dep}^{u}(Q)-\operatorname{Dep}^{u}\left(Q_{i}\right)\right|$ of the identification error equation is reduced.

- Indeed if $p_{k}=\left[t_{i}, t_{j}\right]$ forms a single NDep then it is completely computed. However when t_{i} or t_{j} be shared transition by another t-semiflow, the computed NDep $\left[t_{i}, t_{j}\right]=p_{k}$ belongs to Q but the non measurable place p_{k} is not inferred completely. It is needed to compute another m-word (t-semiflow) to compute new NDep of the place p_{k}. In this case p_{k} is a place of Class A.ii. This procedure is presented below.

Figure 4.16: Undelying P-components of the p-semiflows $Y_{1}=[11001]$ and $Y_{2}=[00111]$ of Q.

Inference of non measurable places of Class A.ii.

If a place $p_{k}=\left[t_{i}, t_{j}\right]$ belongs to Class A.ii., then p_{k} forms a complex NDep such that t_{i} and t_{j} belong to a same t-semiflow X_{p} such that they occur consecutively in a transition sequence of a system model Q, however t_{i} or t_{j} belongs to at least another t-semiflow X_{q}. Hence the place p_{k} is a shared place at least by the underlying t -components of X_{p} and X_{q} and t_{\imath} or t_{j} are shared transition by the t-semiflows X_{p} and X_{q}.
In the IPN depicted on figure 4.17 the places p_{3} and p_{6} form NDep of class A.ii. In this example $p_{3}=$ $\left[t_{2}, t_{3}\right]=\left[t_{2}, t_{5}\right]$. The transitions t_{3} and t_{5} belong to different t-semiflows $X_{1}=\left[\begin{array}{llllllll}1 & 1 & 1 & 1 & 0 & 0 & 1 & 1\end{array}\right]^{T}$ and $X_{2}=\left[\begin{array}{llllllll}1 & 1 & 0 & 0 & 1 & 1 & 1 & 1\end{array}\right]^{T}$ respectively, however t_{2} belongs to both t-semiflows, hence it is a shared transition by X_{1} and X_{2}. Notice that the non measurable place p_{3} belongs also to the t -components related with X_{1} and X_{2}.

Figure 4.17: System model.

Figure 4.18: Non measurable places computed using Step identification 4.1.

Consider the system model Q depicted on figure 4.17, its m-words are $w_{a}=t_{1} t_{2} t_{3} t_{4} t_{7} t_{8}$ and $w_{b}=$ $t_{1} t_{2} t_{5} t_{6} t_{7} t_{8}$ which are also its t-semiflows.

- Let $p_{x}=p_{3}, t_{w}=t_{2}, t_{i}=t_{3}$ and $t_{r}=t_{5}$.

The transitions t_{2} and t_{3} are consecutive transitions in w_{a} while the transitions t_{2} and t_{5} are consecutive transitions in w_{b}. If it is used the identification step 4.1 to compute these non measurable dependencies then two non measurable places p_{i} and p_{j} are computed as depicted on figure 4.18.a. Notice that in this model t_{3} and t_{5} belongs to the same t-semiflow which is a contradiction since t_{3} belongs to w_{a} and t_{5} belongs to w_{b}, hence p_{i} and p_{j} must to be the same place.

Let $p_{y}=p_{6}, t_{j}=t_{4}, t_{s}=t_{6}$ and $t_{v}=t_{7}$.
The transitions t_{4} and t_{7} are consecutive transitions in w_{a} and the transitions t_{6} and t_{7} are consecutive transitions in w_{b}. If it is used the identification step 4.1 to compute these non measurable dependencies then two non measurable places p_{q} and p_{r} are computed as depicted on figure 4.18.b. Notice that in this model t_{4} and t_{6} belongs to the same t-semiflow which is a contradiction since t_{4} belongs to w_{a} and t_{6} belongs to w_{b}, hence p_{q} and p_{r} must to be the same place.

In order to cope with this situation it is stated how to compute a NDep using an already computed non measurable place to infer a non measurable place of Class A.ii.

Identification Step 4.2 Let Q be a system model, Q_{i} be the computed model for Q, $w_{n}=\cdots t_{i} t_{j} \cdots$ be the current computed m-word from the observed behavior of Q, and t_{i} and t_{j} be any two consecutive transitions in w_{n}. If there exists not a dependency $\left[t_{i}, t_{j}\right]$ in Q_{i} and
Case 1: there exists u NDep $\left[t_{i}, t_{k}\right]=p_{x}$ or

Case 2: there exists a NDep $\left[t_{k}, t_{j}\right]=p_{y}$
such that t_{k} does not belong to w_{n} then the NDep $\left[t_{i}, t_{j}\right]$ can be computed using an already computed place adding an arc from p_{x} to t_{j} or adding an arc from t_{i} to p_{y} for case 1 or case 2 respectively, forming the NDep $\left[t_{i}, t_{j}\right]=p_{x}$ or $\left[t_{i}, t_{j}\right]=p_{y}$.

Proposition 4.6 Let Q be a system model. A non measurable place of Class A.ii can be inferred using the identification step 4.2.

Proof. A non measurable place of Class A.ii fulfills next conditions 1) it forms a complex NDep and 2) its input and output transitions belong to the same m-word which is also a t-semiflow of Q. Using identification step 4.2 a non measurable place is updated when two transitions t_{i} and t_{j} are consecutive transitions in the current m-word w_{n}, such that there exists a NDep $\left[t_{i}, t_{k}\right]=p_{k}$ or a NDep $\left[t_{k}, t_{j}\right]=p_{y}$ in Q_{i} and t_{k} does not belong to w_{n}. This two cases are next summarized:
case 1: If the NDep $\left[t_{i}, t_{k}\right]=p_{x}$ exists in Q_{i} then an arc is added from the place $p_{x}=\left[t_{i}, t_{k}\right]$ to the transition t_{j} to compute the NDep $\left[t_{i}, t_{j}\right]=p_{x}$, the place p_{x} forms a decision between t_{j} and t_{k}, since t_{k} does not belong to w_{n} then it is possible that Q_{n} generates the m-words: w_{n} and the m -word in which t_{i} and t_{k} were consecutive transitions.
or
case 2: If the NDep $p_{y}=\left[t_{k}, t_{j}\right]$ exists in Q_{i} then an arc is added from the transition t_{i} to the place $p_{y}=\left[t_{k}, t_{j}\right]$ to compute the NDep $\left[t_{i}, t_{j}\right]=p_{y}$, the place p_{y} forms an attribution between the transitions t_{i} and t_{k}, since t_{k} does not belong to w_{n} then it is possible that Q_{n} generates the m -words: w_{n} and the m -word in which t_{k} and t_{j} were consecutive transitions.
The fact that there exist the NDep $\left[t_{i}, t_{k}\right]$ or $\left[t_{j}, t_{k}\right]$ in Q_{i} such that t_{k} does not belong to the current m-word w_{n} in which t_{i} and t_{j} are consecutive transitions, implies that there exist another m-word in which t_{i} and t_{k} or t_{k} and t_{j} are consecutive transitions fulfilling the condition that t_{i} or t_{j} are shared transitions of at least two t -semiflows while the updated non measurable place p_{x} or p_{y} is a shared place by their underlying t-components. Hence a non measurable place of Class A.ii. is inferred using identification step 4.2 as new NDep $\left[t_{i}, t_{j}\right]$ are computed adding input or output arcs to an already computed non measurable place which is an output or an input place of t_{i} or t_{j}.

The underlaying procedure of identification step 4.2 consists in compute a NDep between any two consecutive transitions using an already computed non measurable place: If there exists not a dependency $\left[t_{i}, t_{j}\right]$ between any two consecutive transitions in the current m-word w_{n} but t_{i} has an output non measurable place p_{x} or t_{j} has and input non measurable place p_{y} i.e. there exists the NDep $\left[t_{i}, t_{k}\right]=p_{x}$ or the NDep $\left[t_{k}, t_{j}\right]=p_{y}$ in the computed model Q_{i}, then the NDep $\left[t_{i}, t_{j}\right]$ need to be computed using p_{x} or p_{y}. With this new computed NDep the place p_{x} or the place p_{y} is approached to an actual place of Q and the term $\left|D e p^{u}(Q)-D e p^{u}(Q i)\right|$ of the identification error equation is reduced.
The next algorithm presents how to infer a single or a complex NDep belonging to class A.i and A.ii respectively preserving the firing order of the transitions in the current computed m -word w_{n}.

Algorithm 4.1 Computing NDep to constrain the firing onder of the transitions in the current m-word w_{n}. Inference non measurable places belonging to class A.i and A.ii.

Input: The $\operatorname{Dep}\left(Q_{n}\right)=\operatorname{Dep}\left(Q_{n-1}\right)$ set and the current computed m-word $w_{n}=t_{m} \cdots t_{n}$.
Output: an updated $\operatorname{Dep}\left(Q_{n}\right)$ set

1. If there exists not a MDep $\left[t_{n}, t_{m}\right]$ in $\operatorname{Dep}\left(Q_{n}\right)$ then
(a) add a NDep $\left[t_{n}, t_{m}\right]=p_{k}$ to $\operatorname{Dep}\left(Q_{n}\right)$ set. In this case, the new non measurable place $p_{k}=\left[t_{n}, t_{m}\right]$ must contain one token in the initial marking.
2. Let t_{i} and t_{j} any two consecutive transitions in w_{n}
3. If there exist not a dependency $\left[t_{i}, t_{j}\right]$ in $\operatorname{Dep}\left(Q_{n}\right)$ then
(a) If there exists a NDep $\left[t_{i}, t_{k}\right]=p_{x}$ and also there exists a NDep $\left[t_{k}, t_{j}\right]=p_{y}$ in $\operatorname{Dep}\left(Q_{n}\right)$ then form the NDep $\left[t_{i}, t_{j}\right]$ merging the non measurable places p_{x} and p_{y}.
(b) If there exists a NDep $\left[t_{i}, t_{k}\right]=p_{x}$ in $\operatorname{Dep}\left(Q_{n}\right)$ then add the NDep $\left[t_{i}, t_{j}\right]$ using the already computed non measurable place p_{x} such that $\left[t_{i}, t_{j}\right]=p_{x}$. (Identification step 4.2 case 1).
(c) If there exists a NDep $\left[t_{k}, t_{j}\right]=p_{y}$ in $\operatorname{Dep}\left(Q_{n}\right)$ then add the NDep $\left[t_{i}, t_{j}\right]$ using the already computed non measurable place p_{y} such that $\left[t_{i}, t_{j}\right]=p_{y}$. (Identification step 4.2 case 2).
(d) else add the NDep $\left[t_{i}, t_{j}\right]$ to $\operatorname{Dep}\left(Q_{n}\right)$. (Identification step 4.1)

A key feature of a non measurable place $p_{k}=\left[t_{i}, t_{j}\right]$ belonging to Class A is that its input and output transitions t_{i} and t_{j} belong to the same t -component. The m-word $w_{n}=\cdots t_{i} t_{j} \cdots$ in which t_{i} and t_{j} appear consecutively is also a t-semiflow of the system. The subclasses of non measurable places in Class A are the Class A.i in which p_{k} forms a single NDep implying that t_{i} and t_{j} belong to the same t-semiflow and the Class A.ii. in which p_{k} forms a complex NDep implying that t_{i} or t_{j} belongs to at least another t -semiflow and p_{k} is a shared non measurable place by more than one t-component. The procedure to compute this class of non measurable places consists in constrain the firing of any two consecutive transitions in the current computed m-word w_{n} to the order in which they are computed in w_{n} forming the t -component associated with this m -word. The non measurable places of Class A.i are computed using a new non measurable place while the non measurable places of the Class A.ii are computed using an already computed non measurable place adding input or output arcs to p_{k}.

\diamond Dealing with concurrent transitions

Parallel activities are those that can occur independently during the execution of a cycle in a DES. Concurrence of a DES can be easily expressed in terms of Petri nets. In general two transitions are said to be concurrent if one transition may fire before, after or in parallel with other transition, this occurrence is considered in a determined t-component. The transitions t_{1} and t_{3} of the IPN depicted on figure 4.16 are an example of concurrent transitions.

Case 2: there exists a NDep $\left[t_{k}, t_{j}\right]=p_{y}$
such that t_{k} does not belong to w_{n} then the NDep $\left[t_{i}, t_{j}\right]$ can be computed using an already computed place adding an arc from p_{x} to t_{j} or adding an arc from t_{i} to p_{y} for case 1 or case 2 respectively, forming the NDep $\left[t_{i}, t_{j}\right]=p_{x}$ or $\left[t_{i}, t_{j}\right]=p_{y}$.

Proposition 4.6 Let Q be a system model. A non measurable place of Class A.ii can be inferred using the identification step 4.2.

Proof. A non measurable place of Class A.ii fulfills next conditions 1) it forms a complex NDep and 2) its input and output transitions belong to the same m -word which is also a t-semiflow of Q. Using identification step 4.2 a non measurable place is updated when two transitions t_{i} and t_{j} are consecutive transitions in the current m-word w_{n}, such that there exists a NDep $\left[t_{i}, t_{k}\right]=p_{k}$ or a NDep $\left[t_{k}, t_{j}\right]=p_{y}$ in Q_{i} and t_{k} does not belong to w_{n}. This two cases are next summarized:
case 1: If the NDep $\left[t_{i}, t_{k}\right]=p_{x}$ exists in Q_{i} then an arc is added from the place $p_{x}=\left[t_{i}, t_{k}\right]$ to the transition t_{j} to compute the NDep $\left[t_{i}, t_{j}\right]=p_{x}$, the place p_{x} forms a decision between t_{j} and t_{k}, since t_{k} does not belong to w_{n} then it is possible that Q_{n} generates the m-words: w_{n} and the m -word in which t_{i} and t_{k} were consecutive transitions.
or
case 2: If the NDep $p_{y}=\left[t_{k}, t_{j}\right]$ exists in Q_{i} then an arc is added from the transition t_{i} to the place $p_{y}=\left[t_{k}, t_{j}\right]$ to compute the NDep $\left[t_{i}, t_{j}\right]=p_{y}$, the place p_{y} forms an attribution between the transitions t_{i} and t_{k}, since t_{k} does not belong to w_{n} then it is possible that Q_{n} generates the m -words: w_{n} and the m -word in which t_{k} and t_{j} were consecutive transitions.
The fact that there exist the NDep $\left[t_{i}, t_{k}\right]$ or $\left[t_{j}, t_{k}\right]$ in Q_{i} such that t_{k} does not belong to the current m-word w_{n} in which t_{i} and t_{j} are consecutive transitions, implies that there exist another m-word in which t_{i} and t_{k} or t_{k} and t_{j} are consecutive transitions fulfilling the condition that t_{i} or t_{j} are shared transitions of at least two t -semiflows while the updated non measurable place p_{x} or p_{y} is a shared place by their underlying t-components. Hence a non measurable place of Class A.ii. is inferred using identification step 4.2 as new NDep $\left[t_{i}, t_{j}\right]$ are computed adding input or output arcs to an already computed non measurable place which is an output or an input place of t_{i} or t_{j}.

The underlaying procedure of identification step 4.2 consists in compute a NDep between any two consecutive transitions using an already computed non measurable place: If there exists not a dependency $\left[t_{i}, t_{j}\right]$ between any two consecutive transitions in the current m-word w_{n} but t_{i} has an output non measurable place p_{x} or t_{j} has and input non measurable place p_{y} i.e. there exists the NDep $\left[t_{i}, t_{k}\right]=p_{x}$ or the NDep $\left[t_{k}, t_{j}\right]=p_{y}$ in the computed model Q_{i}, then the NDep $\left[t_{i}, t_{j}\right]$ need to be computed using p_{x} or p_{y}. With this new computed NDep the place p_{x} or the place p_{y} is approached to an actual place of Q and the term $\left|D e p^{u}(Q)-D e p^{u}(Q i)\right|$ of the identification error equation is reduced.
The next algorithm presents how to infer a single or a complex NDep belonging to class A.i and A.ii respectively preserving the firing order of the transitions in the current computed m-word w_{n}.

Algorithm 4.1 Computing NDep to constrain the firing order of the transitions in the current m-word w_{n}. Inference non measurable places belonging to class A.i and A.ii.

Input: The $\operatorname{Dep}\left(Q_{n}\right)=\operatorname{Dep}\left(Q_{n-1}\right)$ set and the current computed m-word $w_{n}=t_{m} \cdots t_{n}$.
Output: an updated $\operatorname{Dep}\left(Q_{n}\right)$ set

1. If there exists not a MDep $\left[t_{n}, t_{m}\right]$ in $\operatorname{Dep}\left(Q_{n}\right)$ then
(a) add a NDep $\left[t_{n}, t_{m}\right]=p_{k}$ to $\operatorname{Dep}{ }^{u}\left(Q_{n}\right)$ set. In this case, the new non measurable place $p_{k}=\left[t_{n}, t_{m}\right]$ must contain one token in the initial marking.
2. Let t_{i} and t_{j} any two consecutive transitions in w_{n}
3. If there exist not a dependency $\left[t_{i}, t_{j}\right]$ in $\operatorname{Dep}\left(Q_{n}\right)$ then
(a) If there exists a NDep $\left[t_{i}, t_{k}\right]=p_{x}$ and also there exists a NDep $\left[t_{k}, t_{j}\right]=p_{y}$ in $\operatorname{Dep}\left(Q_{n}\right)$ then form the NDep $\left[t_{i}, t_{j}\right]$ merging the non measurable places p_{x} and p_{y}.
(b) If there exists a NDep $\left[t_{i}, t_{k}\right]=p_{x}$ in $\operatorname{Dep}\left(Q_{n}\right)$ then add the NDep $\left[t_{i}, t_{j}\right]$ using the already computed non measurable place p_{x} such that $\left[t_{i}, t_{j}\right]=p_{x}$. (Identification step 4.2 case 1).
(c) If there exists a NDep $\left[t_{k}, t_{j}\right]=p_{y}$ in $\operatorname{Dep}\left(Q_{n}\right)$ then add the NDep $\left[t_{i}, t_{j}\right]$ using the already computed non measurable place p_{y} such that $\left[t_{i}, t_{j}\right]=p_{y}$. (Identification step 4.2 case 2).
(d) else add the NDep $\left[t_{i}, t_{j}\right]$ to $\operatorname{Dep}\left(Q_{n}\right)$. (Identification step 4.1)

A key feature of a non measurable place $p_{k}=\left[t_{i}, t_{j}\right]$ belonging to Class A is that its input and output transitions t_{i} and t_{j} belong to the same t-component. The m-word $w_{n}=\cdots t_{i} t_{j} \cdots$ in which t_{i} and t_{j} appear consecutively is also a t-semiflow of the system. The subclasses of non measurable places in Class A are the Class A.i in which p_{k} forms a single NDep implying that t_{i} and t_{j} belong to the same t -semiflow and the Class A.ii. in which p_{k} forms a complex NDep implying that t_{i} or t_{j} belongs to at least another t-semiflow and p_{k} is a shared non measurable place by more than one t-component. The procedure to compute this class of non measurable places consists in constrain the firing of any two consecutive transitions in the current computed m-word w_{n} to the order in which they are computed in w_{n} forming the t-component associated with this m-word. The non measurable places of Class A.i are computed using a new non measurable place while the non measurable places of the Class A.ii are computed using an already computed non measurable place adding input or output arcs to p_{k}.

\diamond Dealing with concurrent transitions

Parallel activities are those that can occur independently during the execution of a cycle in a DES. Concurrence of a DES can be easily expressed in terms of Petri nets. In general two transitions are said to be concurrent if one transition may fire before, after or in parallel with other transition, this occurrence is considered in a determined t-component. The transitions t_{1} and t_{3} of the IPN depicted on figure 4.16 are an example of concurrent transitions.

It is possible that in any m-word $w_{i}=\cdots t_{i} t_{j} \cdots$ two concurrent transitions t_{i} and t_{j} occurs consecutively, for example in the m-word $w_{1}=t_{1} t_{3} t_{2} t_{4} t_{5}$ of the same IPN t_{1} and t_{3} occurs consecutively.
At the beginning of the identification procedure it is not possible to know if any two consecutive transitions are concurrent transitions or not, then if there exists not a dependency between any two consecutive transitions t_{i} and t_{j} in the current m-word $w_{n}=\cdots t_{i} t_{j} \cdots$ and there exists not evidence that t_{j} has occurred before t_{i} in another m -word, then to constrain the firing of t_{i} before t_{j} it is computed a NDep $p_{k}=\left[t_{i}, t_{j}\right]$ as stated in identification step 4.1. If t_{i} and t_{j} are concurrent transitions then $p_{k}=\left[t_{i}, t_{j}\right]$ is a wrong NDep, i.e. this NDep does not belong to the system model to be identified. This wrong NDep will be removed when another m-word $w_{m}=\cdots t_{j} \cdots t_{i} \cdots$ in which t_{j} occurs before t_{i} is computed.
Next it is presented the definition of concurrent transitions, the needed properties to detect such transitions and the procedures to update a previous model when concurrent transitions are detected.

Definition 4.10 Let Q be an IPN and X_{k} be a t-component of Q, two transitions t_{p} and t_{q} of X_{k} are concurrent transitions if there exists two transition sequences $\sigma_{i} \neq \sigma_{j} \in £\left(X_{k}\right)$, such that $\sigma_{i}=\cdots t_{p} t_{q} \cdots$ and $\sigma_{j}=$ $\cdots t_{q} t_{p} \cdots$. If there exists two transition sequences $\sigma_{x}=\cdots t_{p} \cdots t_{q} \cdots$ and $\sigma_{y}=\cdots t_{p} \cdots t_{q} \cdots$ t t_{p} and t_{q} are considered pseudoconcurrent.

Since the two sequences $\sigma_{i} \neq \sigma_{j}$ of previous definition are sequences generated by the same t -component they fulfill that $\overrightarrow{\sigma_{i}}=\overrightarrow{\sigma_{j}}$ (i.e. they have the same characteristic vector).
The set of all concurrent transitions in an IPN Q will be denoted as $\operatorname{Concurrent}(Q)$, two concurrent transitions t_{i} and t_{j} are denoted as $c\left[t_{i}, t_{j}\right]$ which is equivalent to $c\left[t_{j}, t_{i}\right]$.
Let t_{i} and t_{j} any two consecutive transitions in the current m -word w_{n} and \mathcal{T} be the set of all computed m -words. To detect if t_{i} and t_{j} are concurrent transitions or not, it is searched if there exists a m-word $w_{k} \neq w_{n}$ such that $\overrightarrow{w_{k}}=\overrightarrow{w_{n}}$ in which t_{j} occurs before t_{i}. The existence of the m-word $w_{k}=\cdots t_{j} \cdots t_{k} \cdots$ implies that t_{i} and t_{j} are concurrent transitions (by definition 4.10). However the absence of $w_{k}=\cdots t_{j} \cdots t_{k} \cdots$ in \mathcal{T} does not implies that t_{i} and t_{j} are not concurrent, it only indicates that it has not been already computed a m-word in which t_{j} occurs before t_{i}.

Example. Consider the system model Q depicted on figure 4.19, the transitions t_{1} and t_{3} are concurrent transitions, however when Q had only generated the m-words $w_{1}=t_{1} t_{3} t_{2} t_{4} t_{5}$ and $w_{2}=t_{1} t_{2} t_{3} t_{4} t_{5}$ it is not possible to determine that t_{1} and t_{3} are concurrent transitions since from the behavior observed of Q, t_{1} occurs always before than t_{3}.

Figure 4.19: System model and its incidence matrix.

Proposition 4.7 Let Q be a system model, $w_{n}=\cdots t_{i} t_{j} \cdots$ be the current computed m-word from the last output word produced by a t-component X_{k} of Q and \mathcal{T} be the set of all computed m-words from Q. If there exist a m-word $w_{k}=\cdots t_{j} \cdots t_{i} \cdots$ in τ such that $w_{k} \neq w_{n}$ and $\overrightarrow{w_{k}}=\overrightarrow{w_{n}}$, then t_{i} and t_{j} are concurrent transitions.

Proof. By hypothesis if w_{k} exists in \mathcal{T} implies that w_{k} and w_{n} belong to the same t-component, from definition $4.10 t_{i}$ and t_{j} are concurrent transitions due to Q had produced two m-words $w_{k}=\cdots t_{j} \cdots t_{i} \cdots$ and $w_{n}=\cdots t_{i} t_{j} \cdots$ in which the transitions t_{i} and t_{j} occurs in different order.

Corollary 4.1 Let Q be a system model, Q_{i} be the computed model for Q and $w_{n}=\cdots t_{i} \cdots t_{x} \cdots$ be the current m-word computed from the last output word generated by the t-semiflow X_{k} of Q. If there exists a NDep $\left[t_{x}, t_{i}\right]$ in Q_{i}, then t_{i} and t_{x} are concurrent transitions.

Proof. By identification step 4.1 a NDep is built to form a sequence between any two consecutive transitions of a computed m-word, hence if there exists a NDep $\left[t_{x}, t_{i}\right]$ in a t-component of the computed model Q_{i} implies that from the observed behavior of Q was already computed a m-word $w^{\prime}=\cdots t_{x} t_{i} \cdots$ in which t_{x} occurs before t_{i}, by proposition $4.7 t_{i}$ and t_{x} are concurrent transitions since in the current m-word $w_{n}=\cdots t_{i} \cdots t_{x} \cdots, t_{i}$ occurs before t_{x}.

Identification Step 4.3 Let Q be an IPN, Q_{i} be the computed model for Q and t_{i} and t_{x} be any two concurrent transitions detected from the current computed m-word $w_{n}=\cdots t_{i} \cdots t_{x} \cdots$ If there exists a NDep $\left[t_{x}, t_{i}\right]$ in $\operatorname{Dep}\left(Q_{i}\right)$, then the NDep $\left[t_{x}, t_{i}\right]$ is removed from $\operatorname{Dep}\left(Q_{i}\right)$.

Proposition 4.8 Let Q be a system model and Q_{i} be the computed model for Q. If a NDep $\left[t_{x}, t_{i}\right]$ is removed using step 4.3, then the term $\left|D^{\boldsymbol{p}}{ }^{u}\left(Q_{i}\right)-\operatorname{Dep}^{u}(Q)\right|$ of the error equation 4.1 is reduced.

Proof. By corollary $4.1 t_{i}$ and t_{x} are concurrent transitions, hence they could not form any dependency and the NDep $\left[t_{x}, t_{i}\right]$ must to be removed from $\operatorname{Dep}\left(Q_{i}\right)$ as stated in identification step 4.3. Since the NDep $\left[t_{x}, t_{i}\right]$ is detected that does not belong to Q the term $\left|D e p^{u}\left(Q_{i}\right)-D e p^{u}(Q)\right|$ of the identification error is reduced after remove a NDep.

Notice that after remove in the computed model a NDep $\left[t_{i}, t_{j}\right]$ could occur that t_{i} or t_{j} remain as a sink or as a source transition respectively such that $t_{i}^{\bullet}=\emptyset$ or ${ }^{\bullet} t_{j}=\emptyset$. Assume that the NDep $\left[t_{i}, t_{j}\right]=p_{k}$ is removed from $D e p^{u}\left(Q_{n}\right)$: The transition t_{i} could become a sink transition when the only NDep formed with t_{i} is using the non measurable place p_{k} and t_{i} has not another output place. Similarly, t_{j} could become a source transition when the only NDep formed with t_{j} is using the non measurable place p_{k} and t_{j} has not another input place. Will be considered that a transition remain as a sink or as a source transition after the evaluation of all transitions in the current m-word w_{n} due to it is possible that in $w_{n} t_{i}$ has another successor transition different to t_{j} or t_{j} has another predecessor transition different to t_{i} computing a new NDep.

Example. Consider the system model Q depicted on figure 4.20.a. The model Q_{1} depicted on figure 4.20.b. is computed when the first m-word $w_{1}=t_{1} t_{2} t_{3} t_{4} t_{5}$ is detected. A NDep $\left[t_{2}, t_{3}\right]$ is computed (among others) using identification step 4.1 because to t_{2} and t_{3} are consecutive transitions in w_{1} and there exist not any dependency between these two transitions. Assume now that $w_{2}=t_{3} t_{1} t_{2} t_{4} t_{5}$ is the next m -word computed. Then the transitions t_{2} and t_{3} are determined to be concurrent transitions because t_{2}
occurs before t_{3} in w_{1} (proposition 4.7 and corollary 4.1). Since there exists a NDep $\left[t_{2}, t_{3}\right]$ in $\operatorname{Dep}\left(Q_{2}\right)$, it is removed to allow the firing of t_{3} before t_{2} as stated in w_{2} (identification step 4.3). After remove the NDep $\left[t_{2}, t_{3}\right]$ from $\operatorname{Dep}\left(Q_{2}\right), t_{2}$ remains as a sink transition and t_{3} remains as a source transition; this is illustrated on figure 4.20.c.

Figure 4.20: System model and its computed models.
However, the existence of sink or source transitions after removing a wrong NDep will depend on the computed m -words, i.e. in the observed behavior of the system, and also in how the non measurable places are allocated into the net. This fact is illustrated in the next two examples.

Example. Consider again the system model Q depicted on figure 4.20.a and its first model Q_{1} depicted on figure 4.20 .b computed when the m -word $w_{1}=t_{1} t_{2} t_{3} t_{4} t_{5}$ was detected. If the second m-word computed is $w_{2}^{\prime}=t_{3} t_{4} t_{1} t_{2} t_{5}$ (instead of $w_{2}=t_{3} t_{1} t_{2} t_{4} t_{5}$ like in previous example) then the computed model Q_{2}^{\prime} is equal to Q, because even the NDep $\left[t_{2}, t_{3}\right]$ is removed; the NDep $\left[t_{2}, t_{5}\right]$ is computed due to t_{2} and t_{5} are consecutive transitions in w_{n} and hence t_{2} does not appear as a sink transition after evaluate w_{2}^{\prime}. The NDep $\left[t_{5}, t_{3}\right]$ is computed since t_{3} and t_{5} are the first and the last transitions of w_{n} and as was stated previously they are considered as consecutive transitions, hence t_{3} does not remain as a source transition.

Example. Consider now the system model Q depicted on figure 4.21 which has the same structure as the IPN depicted on figure 4.20, however they have a different interpretation since the number and allocation of the non measurable places in these two IPN is different. The model Q_{1} depicted on figure 4.21.b is computed when the m-word $w_{1}=t_{1} t_{2} t_{3} t_{4} t_{5}$ is detected. When the m-word $w_{2}=t_{3} t_{1} t_{2} t_{4} t_{5}$ is computed it is removed the NDep $\left[t_{2}, t_{3}\right]$ since in this m-word t_{3} occurs before t_{2}, notice that t_{3} remains as a source transition as shown in the partial model Q_{2} depicted on figure 4.21.c. In this example the transition t_{2} does not remain as a sink transition as in the previous example.

In order to rebuilt the t-component associated to w_{n}, when a transition t_{i} remains as a sink or as a source transition it is needed to compute a NDep, this new NDep will be computed considering the predecessor or the successor of such a transition in the current m-word w_{n}, if t_{i} is a source or a sink transition respectively. This NDep is computed using the following identification step.

Identification Step 4.4 Let w_{n} be the current computed m-word and Q_{i} be the computed model for a system model Q,

a) System model

b) Model Q_{1}

c) Partial model of Q_{2}

Figure 4.21: System model and its computed models.

Case 1: If t_{i} remains as a sink transition in Q_{i} then a $N D e p\left[t_{i}, t_{x}\right]$ is added to Dep $\left(Q_{i}\right)$ such that t_{x} is the successor transition of t_{i} in w_{n}. If t_{i} and t_{x} are concurrent transitions then t_{x} is now taken as the next successor of t_{i} in w_{n}.
Case 2: If t_{j} remains as a source transition in Q_{i} then a NDep $\left[t_{y}, t_{j}\right]$ is added to $\operatorname{Dep}\left(Q_{i}\right)$ such that t_{y} is the predecessor transition of t_{j} in w_{n}. If t_{y} and t_{j} are concurrent transitions then t_{y} is now taken as the previous predecessor of t_{j} in w_{n}.

Proposition 4.9 Let Q be a system model, Q_{i} be the computed model for Q, w_{n} be the current computed m word and t_{i} be a sink transition or t_{j} be a source transition. If the identification step 4.4 is used to connect a sink or a source transition in Q_{i}, then it is fulfilled that the observed behavior of Q is preserved in Q_{i}.

Proof. Case 1: Since t_{i} is a sink transition implies that $t_{i}^{*}=\emptyset$, in order to compute an output non measurable place it is searched a successor t_{x} of t_{i} in w_{n}. Since t_{i} and t_{x} are consecutive transitions in w_{n} then it is possible to compute the NDep $\left[t_{i}, t_{x}\right]$, however if t_{i} and t_{x} are concurrent transitions this NDep cannot be computed because there exists another m-word in which t_{x} occurred before t_{i}; then the next successor of t_{i} in w_{n} it is chosen to form the NDep $\left[t_{i}, t_{x}\right]$. Hence when t_{i} is connected with a successor, the behavior of Q_{i} correspond to the observed behavior of Q since t_{i} has occurred before t_{x} in all the m-words computed.
Case 2: Since t_{j} is a source transition implies that ${ }^{\bullet} t_{j}=\emptyset$, in order to compute an input non measurable place it is searched a predecessor t_{y} of t_{j} in w_{n}. Since t_{y} and t_{j} are consecutive transitions in w_{n} then it is possible to compute the NDep $\left[t_{y}, t_{j}\right]$, however if t_{y} and t_{j} are concurrent transitions this NDep cannot be computed because there exists another m-word in which t_{j} occurred before t_{y}, then the previous predecessor of t_{j} in w_{n} is chosen to form the NDep $\left[t_{y}, t_{j}\right]$. Hence when t_{j} is connected with a predecessor t_{y} the behavior of Q_{i} correspond to the observed behavior of Q since t_{j} had occurred after t_{y} in all the m -words computed.

Example. Consider the partial model Q_{2} depicted on figure 4.20.c, after remove the NDep $\left[t_{2}, t_{3}\right]$ from $\operatorname{Dep}\left(Q_{2}\right), t_{2}$ remains as a sink transition and t_{3} remains as a source transition. So t_{2} need to be reconnected with its successor (identification step 4.4, case 1) in $w_{2}=t_{3} t_{1} t_{2} t_{4} t_{5}$, the successor transition of t_{2} in w_{2} is t_{4}, as t_{2} and t_{4} have not been detected to be concurrent because neither in $w_{1}=t_{1} t_{2} t_{3} t_{4} t_{5}$ nor in $w_{2}=t_{3} t_{1} t_{2} t_{4} t_{5}, t_{4}$ occurs before t_{2} (thus $\left[t_{4}, t_{2}\right]$ does not belong to Concurrent $\left(Q_{2}\right)$), then the $\operatorname{NDep}\left[t_{2}, t_{4}\right]$ could be added to $\operatorname{Dep}\left(Q_{2}\right)$ as presented in figure 4.22.a. Now the transition t_{3} need to be reconnected with its predecessor (identification step 4.4 case 2) in $w_{2}=t_{3} t_{1} t_{2} t_{4} t_{5}$, since t_{3} is the first transition in w_{2}
then its predecessor is the last transition of w_{2} due to w_{2} is assumed to be a t-semiflow, as t_{5} and t_{3} have not been detected to be concurrent transitions (proposition 4.7 and corollary 4.1), then the NDep [t_{5}, t_{3}] could be added to $\operatorname{Dep}\left(Q_{2}\right)$ as presented in figure 4.22.b. Notice that although Q_{2} is not equal to Q it can generate the m-words w_{1} and w_{2}.

Figure 4.22: Computed models.
The remaining sink or source transitions will be connected after the current m-word is evaluated by pairs of consecutive transitions detecting new NDep or detecting concurrent transitions.

Remark. Notice that if a new NDep $\left[t_{\boldsymbol{x}}, t_{y}\right]=p_{k}$ is computed such that t_{x} is the last transition of a m-word then p_{k} must be marked..

So, in previous example when the NDep $\left[t_{5}, t_{3}\right]=p_{6}$ is computed (figure 4.22.b) it is added one token to the place p_{6} because the transition t_{3} cannot be fired in Q_{2} if p_{6} is not marked.

The next algorithm removes wrongly computed NDep constraining the firing order of any two consecutive concurrent transitions and reconnecting the transitions remaining as a sink or as a source transition.

Algorithm 4.2 Procedure to update a wrong single NDep
Input: The $\operatorname{Dep}\left(Q_{n}\right)=\operatorname{Dep}\left(Q_{n-1}\right)$ set, $\operatorname{Concurrent}\left(Q_{n}\right)=\operatorname{Concurrent}\left(Q_{n-1}\right)$ and the current computed m -word $w_{n}=t_{m} \cdots t_{n}$
Output: The updated set $\operatorname{Dep}\left(Q_{n}\right)$

1. Let t_{i} and t_{j} be any two consecutive transitions in $w_{n}=t_{m} \cdots t_{n}$
(a) If there exist a NDep $\left[t_{x}, t_{i}\right]$ or $\left[t_{y}, t_{j}\right]$ (where $t_{x} \neq t_{n}$ and $t_{y} \neq t_{n}$) such that t_{x} or t_{y} occurs after t_{i} or t_{j} in the m-word $w_{n}=t_{m} \cdots t_{n}$ then remove $\left[t_{x}, t_{i}\right]$ and/or $\left[t_{y}, t_{j}\right]$ from $\operatorname{Dep} p^{u}\left(Q_{n}\right)$ and add it to Concurrent $\left(Q_{n}\right)$. (Corollary 4.1, identification step 4.3).
(b) If $\left[t_{i}, t_{j}\right] \notin \operatorname{Dep}\left(Q_{n}\right)$ and $\left[t_{j}, t_{i}\right] \notin$ Concurrent $\left(Q_{n}\right)$ then
i. If there exist a NDep $\left[t_{j}, t_{i}\right] \in \operatorname{Dep}{ }^{u}\left(Q_{n}\right)$ then remove $\left[t_{j}, t_{i}\right]$ from $\operatorname{Dep}^{u}\left(Q_{n}\right)$ and add it to Concurrent $\left(Q_{n}\right)$. (Corollary 4.1, identification step 4.3).
ii. If a m-word $w^{\prime}=\cdots t_{j} \cdots t_{i} \cdots$ in which t_{j} occurred before t_{i} has been already computed, then add $\left[t_{j}, t_{i}\right]$ to Concurrent $\left(Q_{n}\right)$. (Proposition 4.7).
iii. If there exists not a MDep $\left[t_{i}, t_{j}\right]$ in $\operatorname{Dep}\left(Q_{n}\right)$ then add the NDep $\left[t_{i}, t_{j}\right]$ to $\operatorname{Dep}\left(Q_{n}\right)$. (Identification step 4.1).
2. After remove a wrong NDep any transition t_{a} could remain as a source or as a sink transition (Identification step 4.4)
(a) If t_{a} remains as a source transition then add a NDep $\left[t_{b}, t_{a}\right]$ to $\operatorname{Dep}{ }^{u}\left(Q_{n}\right)$ such that t_{b} precedes t_{a} in the m-word w_{n}. If t_{a} is the first transition of $w_{n}=t_{m} \cdots t_{n}$ (i.e. $t_{a}=t_{m}$) then t_{b} will be the last transition of $w_{n}=t_{m} \cdots t_{n}$.
(b) If t_{a} remains as a sink transition then add a NDep $\left[t_{a}, t_{b}\right]$ to $D e p^{u}\left(Q_{n}\right)$ such that t_{b} follows t_{a} in the m-word w_{n}. If t_{a} is the last transition of $w_{n}=t_{m} \cdots t_{n}$ (i.e. $t_{a}=t_{n}$) then t_{b} will be the first transition of $w_{n}=t_{m} \cdots t_{n}\left(t_{b}=t_{m}\right)$.
(c) To form the NDep $\left[t_{b}, t_{a}\right]$ or $\left[t_{a}, t_{b}\right]$ we use the step 1 where $t_{i}=t_{b}$ and $t_{j}=t_{a}$ if t_{a} is a source transition, else in the case that t_{a} be a sink transition then $t_{i}=t_{a}$ and $t_{j}=t_{b}$. If $\left[t_{i}, t_{j}\right]$ belongs to concurrent $\left(Q_{n}\right)$ then repeat the step 2 such that $t_{b}={ }^{\bullet}\left({ }^{\bullet} t_{b}\right)$ if t_{a} is a source transition, or $t_{b}=\left(t_{b}^{\bullet}\right)^{\bullet}$ if t_{a} is a sink transition until $\left[t_{a}, t_{b}\right]$ does not belong to Concurrent $\left(Q_{n}\right)$.

Example. Consider the system model Q depicted on figure 4.23.

Figure 4.23: System model and its incidence matrix.

Let $w_{1}=t_{1} t_{3} t_{2} t_{4} t_{5}$ be the first m-word computed using proposition 4.3. The measurable part of Q computed when w_{1} is detected is depicted on figure 4.24.a. To preserve the observed behavior of the system the NDep $\left[t_{1}, t_{3}\right],\left[t_{3}, t_{2}\right],\left[t_{2}, t_{4}\right]$ and $\left[t_{4}, t_{5}\right]$ are computed according to identification step 4.1. This is illustrated in step 1.b.iii of the algorithm 4.2; the computed model Q_{1} is depicted on figure 4.24.b.

Consider $w_{2}=t_{3} t_{4} t_{1} t_{2} t_{5}$ the next m-word computed, the updating of the computed model is as follows: Evaluating the consecutive transitions t_{3} and t_{4}; since there exist the NDep $\left[t_{1}, t_{3}\right]$ and $\left[t_{2}, t_{4}\right]$ in the previous computed model Q_{1} and t_{3} occurs before t_{1} and t_{4} occurs before t_{2} in the m-word w_{2}, then t_{1} and t_{3} and t_{2} and t_{4} are concurrent transitions; hence the NDep $\left[t_{1}, t_{3}\right]$ and $\left[t_{2}, t_{4}\right]$ must be removed from $\operatorname{Dep}\left(Q_{2}\right)$ (corollary 4.1, identification step 4.3) and added to Concurrent $\left(Q_{2}\right)$; this procedure is described in step 1.a. The NDep $\left[t_{3}, t_{4}\right]$ is not added to the new model Q_{2} since there exists the MDep $\left[t_{3}, t_{4}\right]$ in $\operatorname{Dep}\left(Q_{2}\right)$ (step 1.b.iii). The following consecutive transitions in w_{2} are t_{4} and t_{1} but they are concurrent transitions because in $w_{1} t_{1}$ occurs before t_{4}, this verification is made in step 1.b.ii (based on
proposition 4.7) and then the pair $\left[t_{1}, t_{4}\right]$ is added to Concurrent $\left(Q_{2}\right)$. Since there exist not dependencies constraining the firing of t_{2} before t_{1} and in $w_{1} t_{1}$ occurs before t_{2}, where t_{1} and t_{2} are the following consecutive transitions in w_{2}, then they are not concurrent transitions however the NDep $\left[t_{1}, t_{2}\right]$ is not added to $\operatorname{Dep}\left(Q_{2}\right)$ because there exists the $\operatorname{MDep}\left[t_{1}, t_{2}\right]$ in $\operatorname{Dep}\left(Q_{2}\right)$ (step 1.b.iii). The next computation concerns to the NDep $\left[t_{2}, t_{5}\right]$ since t_{2} and t_{5} are consecutive transitions in w_{2} and they are not concurrent transitions; this procedure is specified in step 1.b.iii of the previous algorithm.

The computed model after evaluate w_{2} is depicted on figure 4.24.c. Notice that this model describes the observed behavior of the system; however in order to compute a model for the system Q, it is necessary to compute from future measurements, a m-word in which t_{2} occurs before t_{3} for example the m-word $w_{3}=t_{1} t_{2} t_{3} t_{4} t_{5}$ induces the remotion of the wrong NDep $\left[t_{3}, t_{2}\right]$.

a) Measurable part of the model Q_{1} when the m -word w_{1} is detected

b) Model Q_{1}

c) Model $Q_{2} \quad c\left[t_{1}, t_{3}\right]$

Figure 4.24: Iterations of the algorithm 4.2.

4.4.6 Inference of non measurable places of class B

The non measurable places of Class B are those in which their input and output transitions belong to different m -words, hence the procedures to compute these places consist in concatenate the current and the previous m -words forming a new t -semiflow in the computed model. Only the places belonging to the class B.i are computed directly using the concatenating procedure since they form a single NDep. Since the places of classes B.ii.a and B.ii.b form complex NDep they will be inferred when new information of the system is detected. However when the computed m-word is an actual t-semiflow of the system, the procedure proposed to update the non measurable place related with the previous and current m-word is merging two non measurable places. The places computed with the last procedure are those belonging to Class B.ii.b.
The non measurable places of Class A are inferred computing NDep between consecutive transitions t_{i}, t_{j} in the computed m-word $w_{n}=\cdots t_{i} t_{j} \cdots$ Now the procedures to infer the non measurable places of Class B will consist in compute NDep between the last and the first transitions of the previous and the current m-word. Let $w_{n-1}=t_{2} \cdots t_{j}$ and $w_{n}=t_{m} \cdots t_{n}$ be the previous and the current m-word respectively, now it is searched the existence of the NDep $\left[t_{j}, t_{m}\right]$ in the computed model Q_{i} in order to rebuilt the t-component of the system model Q.
To rebuilt the t -semiflows of a system it is defined the set $\mathcal{W}=\left\{W_{\mathrm{k}}\right\}$ containing all computed t-semiflows W_{k}; where each W_{k} is a concatenation of selected computed m-words. Notice that each W_{k} is a t-semiflow (not
necessarily elemental) at least in the φC matrix since every m-word is a t-semiflow of this matrix. Also it is defined a sequence of m-words \mathcal{T} composed by all detected m-words preserving the order in which they are computed. A computed transition will be labeled as t_{F} if it is detected to be the last transition of an actual t -semiflow of a system model Q.

Consider the next algorithm to relate the previous model with the current computed m-word.

Algorithm 4.3 Initialization

Input: The previous and the current computed m-words $w_{n-1}=t_{i} \cdots t_{j}$ and $w_{n}=t_{m} \ldots t_{n}$ respectively and the set of computed t-semiflows \mathcal{W}.
Output: None

1. If w_{n} has been already computed
(a) If w_{n} is the first m-word of any W_{i} then
i. If t_{j} is not marked as t_{F} then mark t_{j} as t_{F} which implies that w_{n-1} is the last t -semiflow (m -word) of some W_{i} in which w_{n-1} belongs
ii. $W_{k+1}=w_{n}$.
iii. Restart the algorithm with a new m-word
(b) If there exists a NDep $\left[t_{j}, t_{m}\right]$ then
i. $W_{k}=W_{k} w_{n}$.
ii. Restart the algorithm with a new m-word
2. If t_{j} is marked as t_{F} and w_{n} is computed by first time, then remove the NDep $\left[t_{n}, t_{m}\right]$ and form the NDep $\left[t_{n}, t_{m}\right]={ }^{\bullet} t_{i}$, where t_{i} is the first transition of W_{j} where w_{n-1} belongs. $W_{k+1}=w_{n}$.
3. If $w_{n}=t_{m} \cdots t_{n}$ is a new m-word and there exists a NDep $\left[t_{j}, t_{m}\right]$ and $t_{j} \notin w_{n}$ then $W_{k}=W_{k} w_{n}$.

Inference of non measurable places of Class B.i

A non measurable place $p_{k}=\left[t_{i}, t_{j}\right]$ of Class B.i form a single NDep and its input and output transition belong to different m-words $w_{a}=\cdots t_{i}$ and $w_{b}=t_{j} \cdots$ respectively such that w_{a} and w_{b} are m-words of a same t-semiflow in Q, i.e. there exists a t-semiflow X_{k} in Q such that $X_{k}=\cdots w_{a} w_{b} \cdots$, notice then that t_{i} and t_{j} are consecutive transitions in the transition sequence generated by X_{k}.
The IPN depicted on figure 4.25 has only one t-semiflow X_{i}, the m-word decomposition of X_{i} is $w_{1}=t_{1} t_{2}$, $w_{2}=t_{3} t_{4}$ and $w_{3}=t_{5} t_{6}$, an example of a place belonging to this class is the place $p_{x}=\left[t_{6}, t_{1}\right]$ since t_{6} belongs to w_{3} and t_{1} belongs to w_{1}; indeed all the non measurable places in this IPN are places belonging to the class B.i.

The procedure to compute the non measurable places of Class B.i from the detected information of the system is concatenating the previous and the current m-word forming a t-semiflow in the computed model since it is assumed that the t -semiflows of the systems have a m-word decomposition.

Identification Step 4.5 Let Q be a system model, Q_{i} be the computed model for Q and $w_{n-1}=t_{i} \cdots t_{j}$ and $w_{n}=t_{m} \cdots t_{n}$ be the previous and the current computed m-words. If there exists not a NDep $\left[t_{j}, t_{m}\right]$ in Dep ${ }^{u}\left(Q_{i}\right)$ then add the non measurable place $p_{k}=\left[t_{j}, t_{m}\right]$ to Dep Q_{i} and concatenate w_{n} to the t-semiflow W_{i} which w_{n-1} belongs such that $W_{i}=W_{i} w_{n}$.

Proposition 4.10 Let Q be a system model. A non measurable place of Class B.i, can be computed using identification step 4.5.

Proof. Let p_{k} be a non measurable place of Class B.i, then p_{k} belongs to a t-component X_{q} such that its underlying t -semiflow have a m-word decomposition $\cdots w_{a} w_{b} \cdots$ and p_{k} only form a single NDep $\left[t_{j}, t_{m}\right]$ such that t_{j} is the last transition of a m-word different to the m -word in which t_{m} is the first transition. Let w_{a} and w_{b} be the previous and the current m-words computed $w_{n-1}=t_{i} \cdots t_{j}$ and $w_{n}=t_{m} \cdots t_{n}$ respectively, then when w_{n-1} and w_{n} are concatenated as stated in identification step 4.5 a non measurable of class B.i. is computed.
The computed t-semiflow W_{i} using identification step 4.5 will be an actual t-semiflow of Q if w_{n} is the last m -word in the m -word decomposition of a t-semiflow X_{j} of Q. Then the only non measurable places computed correctly are those places forming dependencies between m-words belonging to an actual t-semiflow of the system, an example of this class of places are the places p_{x}, p_{y} and p_{z} of the PN depicted on figure 4.25 .
The computed t-semiflows W_{i} of a model Q_{i} are approaching to the actual t-semiflows of a system Q as new m -words are detected.

Example. Consider the system model Q depicted on figure 4.25.

Figure 4.25: System model Q.

When the transitions t_{1} and t_{2} are fired it is detected a m-word $w_{1}=t_{1} t_{2}$ using the procedure to constrain the firing order of the transitions computed to the order stated in w_{1} illustrated in algorithm 4.1 it is computed the model Q_{1}, depicted on figure 4.26.

Figure 4.26: Computed model Q_{1} for the detected m -word $w_{1}=t_{1} t_{2}$.

Notice that the NDep $p_{a}=\left[t_{2}, t_{1}\right]$ does not exists in Q however the model Q_{1} describes the observed behavior of Q. This wrong NDep is computed since the computed m-word w_{1} is not a t-semiflow of Q. The t -semiflow computed associated with w_{1} is $W_{1}=w_{1}$

Assume that the transitions t_{3} and t_{4} are fired in Q, then the computed m-word is $w_{2}=t_{3} t_{4}$. The computed t -component associated to this m -word is depicted on figure 4.27.

Figure 4.27: Computed t-component for w_{2}.

Using the identification step 4.5 to concatenate the previous and the current computed m-word, the correctly computed non measurable place is the place p_{y} since its input and output transitions t_{2} and t_{3} respectively are the last and the first transitions of different m-words of a same m-word decomposition of a t-semiflow. Since w_{1} and w_{2} were concatenated then the computed t-component in Q_{2} is $W_{1}=w_{1} w_{2}$. The model for the observed behavior is the model Q_{2} depicted on figure 4.28 .

When the m-word $w_{3}=t_{5} t_{6}$ is detected the computed t -semiflow of the computed model Q_{3} will be $W_{1}=w_{1} w_{2} w_{3}$ at this moment an actual t-semiflow of Q is computed.

Figure 4.28: Computed model Q_{2} for the observed output words $w_{1}=t_{1} t_{2}$ and $w_{2}=t_{3} t_{4}$.
Then, the first approach to compute an actual t-semiflow of a system model, is concatenating the previous and the current computed m-words $w_{n-1}=t_{i} \cdots t_{j}$ and $w_{n}=t_{m} \cdots t_{n}$ respectively, in the computed model Q_{n} when there exists not a NDep $\left[t_{j}, t_{m}\right]$ in $\operatorname{Dep}\left(Q_{n}\right)$ and t_{m} has not an input measurable place. Using identification step 4.5 the non measurable places p_{y} and p_{x} that relates the transitions t_{j} and t_{m} and the transitions t_{n} and t_{i} respectively forming a new t-semiflow in Q_{n} are computed.

It is important consider the following:
If a non measurable place forms a complex NDep between transitions of different m-words then to infer it, is needed that all the m-words of the t-components in which p_{k} belongs have been computed, this kind of places belong to Class B.ii.a.

Also it is possible that an actual t-semiflow be concatenated wrongly in the cases where w_{n-1} or w_{n} be an actual t -semiflow of a system model Q, in this case the wrongly computed NDep will be updated when
it is observed that w_{n-1} and w_{n} occur in a non consecutively form in a future evolution of Q, then the place forming the NDep $\left[t_{j}, t_{m}\right]$ between w_{n-1} and w_{n} will be computed merging the places t_{j}^{\bullet} and ${ }^{\bullet} t_{m}$ computing hence the non measurable places of Class B.ii.b.

Inference of non measurable places of Class B.ii.a

The non measurable places of Class B.ii.a form a complex NDep $p_{k}=\left[t_{i}, t_{j}\right]$ such that t_{i} and t_{j} belong to different m-words $w_{a}=\cdots t_{i}$ and $w_{b}=t_{j} \cdots$ respectively, and w_{a} and w_{b} are m-words of a same m-word decomposition of a t -semiflow in Q, i.e. there exists a t -semiflow X_{k} in Q such that a sequence generated by a X_{k} is $X_{k}=\cdots w_{a} w_{b} \cdots$, notice then that t_{i} and t_{j} are consecutive transitions in X_{k}. However a difference of the Class B.i, w_{a} or w_{b} belongs also to another t-semiflow X_{j}.

Example. Consider again the system model depicted on figure 4.17 but now assume that the place p_{1} is also a non measurable place, such system structure with the new interpretation is depicted on figure 4.29.

Figure 4.29: System model.

For this new system model Q it could be computed four m-words: $w_{1}=t_{1} t_{2}, w_{2}=t_{3} t_{4}, w_{3}=t_{7} t_{8}$ and $w_{4}=t_{5} t_{6}$. The place p_{3} belongs to the class B.ii.a since it forms a complex NDep $p_{3}=\left[t_{2}, t_{3}\right]=\left[t_{2}, t_{5}\right]$ and the input and output transitions of p_{k} belong to different m-words: in $\left[t_{2}, t_{3}\right] t_{2}$ belongs to w_{1} and t_{3} belong to w_{2}, while in $\left[t_{2}, t_{5}\right] t_{2}$ belongs to w_{1} and t_{5} belongs to w_{4}. The place p_{6} belongs also to the class B.ii.a, however the place p_{1} belongs to the class B.i due to it forms a single NDep between transitions of different m -words of a same t -semiflow. Notice that the m -words w_{1} and w_{3} belong to both t -semiflows of $Q: X_{1}=t_{1} t_{2} t_{3} t_{4} t_{7} t_{8}$ and $X_{2}=t_{1} t_{2} t_{5} t_{6} t_{7} t_{8}$

Notice that the transitions t_{2} and t_{3}, and t_{2} and t_{5} are not shared transitions in any m-word, thus the identification step 4.2 cannot be used to compute the non measurable place p_{3}. Also to compute the non measurable place p_{6} using identification step 4.2 , the transitions t_{4} and t_{7}, and t_{6} and t_{7} must to be shared transitions in any m -word and it is not the case.
The NDep belonging to Class B.ii.a can be computed using next identification step.
Identification Step 4.6 Let Q be a system model, Q_{i} be the computed model for Q, $w_{n-1}=t_{2} \cdots t_{j}$ and $w_{n}=t_{m} \cdots t_{n}$ be the previous and the current computed m-words, $W_{j} \in \mathcal{W}$ be the computed t-semiflow in where w_{n-1} belongs and $W_{k} \in \mathcal{W}$ be the current computed t-semiflow.

Case 1: Selection. If w_{n-1} belongs to W_{k} and also to another $W_{j} \neq W_{k}$ and w_{n} is computed by first time then, based on identification step 4.2 case 1 , to form the NDep $\left[t_{j}, t_{m}\right]$ it is needed to add an arc from p_{x} to t_{m} and to form the NDep $\left[t_{n}, t_{y}\right]$, where t_{y} is the first transition of W_{j}, it suffices to add an arc from t_{n} to ${ }^{\bullet} t_{y}$. The current compute t-semiflow is updated as $W_{k}=W_{k} w_{n}$.
Case 2: Attribution. If w_{n} belongs to another $W_{j} \neq W_{k}$ and w_{n-1} belongs only to W_{k} then, there must exist a NDep $\left[t_{k}, t_{m}\right]=p_{y}$, remove the arc from t_{j} to ${ }^{\bullet} t_{y}$, where t_{y} is the first transition of W_{k}, to form the NDep $\left[t_{j}, t_{m}\right]$ based on identification step 4.2 case 2 it is only need to add an arc from t_{j} to p_{y}. The current compute t-semiflow is updated as $W_{k}=W_{k} w_{n}$.
Notice that in both cases t_{k} belongs to another m-word $w_{a} \neq w_{n}$
Proposition 4.11 Let Q be a system model. Using identification step 4.6, a non measurable place of Class B.ii.a can be inferred.

Proof. Case 1: Selection. Since w_{n-1} belongs besides to W_{k} to another $W_{j} \neq W_{k}$ implies that there exists a NDep $\left[t_{j}, t_{k}\right]=p_{x}$, notice that t_{j} and t_{m} are consecutive transitions in the t-semiflow in which w_{n-1} and w_{n} belongs, hence based on proposition 4.2 case 1 , the computation of the NDep $\left[t_{j}, t_{m}\right]=p_{x}$ using the already computed non measurable place $p_{x}=\left[t_{j}, t_{k}\right]$ forms a decision place between the transitions t_{k} and t_{m}. Since also is computed the NDep $\left[t_{n}, t_{y}\right]$ then a t-semiflow is computed in Q_{n}, this t-semiflow is $W_{k}=W_{k} w_{n}$.
Case 2: Attribution. Since w_{n} belongs to another $W_{j} \neq W_{k}$ then there must exist a NDep $\left[t_{k}, t_{m}\right]=p_{y}$, notice that t_{j} and t_{m} are consecutive transitions in the t-semiflow in which w_{n-1} and w_{n} belongs, hence based on proposition 4.2 case 2, the computation of the NDep $\left[t_{j}, t_{m}\right]=p_{y}$ using the already computed non measurable place $p_{x}=\left[t_{k}, t_{m}\right]$ forms an attribution place between the transitions t_{k} and t_{m}. Since w_{n-1} belongs to W_{k} and w_{n} is concatenated with w_{n-1}, when the NDep $\left[t_{j}, t_{m}\right]$ is formed also is computed the NDep $\left[t_{n}, t_{y}\right]$ and a t-semiflow is computed in Q_{n}, this t-semiflow is $W_{k}=W_{k} w_{n}$.
Notice that in Q_{n} the t-semiflows W_{k} and W_{j} can be executed. Since the computed places p_{x} and p_{y} forms a complex NDep and t_{j} and t_{m} belongs to different m-words of the computed t -semiflow W_{k} then using identification step 4.6 the decision and the attribution non measurable places of Class B.ii.a can be inferred.

Example. Consider the system model depicted on figure 4.29.
Let $w_{1}=t_{1} t_{2}, w_{2}=t_{3} t_{4}$ and $w_{3}=t_{7} t_{8}$ be the computed m-words in the order $\mathcal{T}=w_{1} w_{2} w_{3}$. The computed model for this observed behavior was computed concatenating any two consecutive m-words (identification step 4.5), it is depicted on figure 4.30.

The t-semiflow computed is $W_{1}=w_{1} w_{2} w_{3}$.

The next computed m-word is $w_{1}, \mathcal{T}=w_{1} w_{2} w_{3} w_{1}$. Since w_{1} is an already computed m-word and it is the first m -word of W_{1} then $W_{2}=w_{1}$ implying that the m -word w_{1} could belong to another t -semiflow of the system. t_{8} is marked as t_{F} implying that another m-word could not be concatenated with w_{3}. This is made using algorithm 4.3.

The next m-word computed is $w_{4}=t_{5} t_{6}, \mathcal{T}=w_{1} w_{2} w_{3} w_{1} w_{4}$. The t -component associated with this m -word is computed using the algorithm 4.1 , it is depicted on figure 4.31 .

Figure 4.30: Computed model Q_{1}.

Figure 4.31: Computed t-component associated with $w_{4}=t_{5} t_{6}$.

In order to concatenate this component with the previous model is used the case 1 of the identification step 4.6. The computed model Q_{2} is depicted on figure 4.32.

Figure 4.32: Computed model Q_{2}.
$W_{2}=w_{1} w_{4}$. Notice that W_{2} is a t-semiflow in Q_{2}, and that Q_{2} describes the observed behavior.
The next m -word computed is $w_{3}=t_{7} t_{8}, \mathcal{T}=w_{1} w_{2} w_{3} w_{1} w_{4} w_{3}$. Since w_{3} is an already computed m -word and it is not the first m-word of some t -semiflow W_{x} in Q_{2} (verification using algorithm 4.3) then it suffices to concatenate w_{3} with the previous m-word w_{4}. To do that is used case 2 of identification step 4.6. The resulting model Q_{3} is the same as the system model depicted on figure 4.29 and $W_{2}=w_{1} w_{4} w_{3}$.

Notice that the t-semiflows W_{1} and W_{2} of the computed model are the same t-semiflows of the system model Q, hence the computed model Q_{3} describes the entire behavior of Q.

Inference of non measurable places of Class B.ii.b

A non measurable place p_{k} that belongs to Class B.ii.b, forms complex NDep such that each transition t_{i} and t_{j} of a NDep $\left[t_{i}, t_{j}\right]=p_{k}$ are the last and the first transitions of a t-semiflow of a system model Q . The inference of these non measurable places can be made using a procedure based on next proposition.

Proposition 4.12 Let Q be an IPN and let $K_{i}=t_{i} \cdots t_{j}, K_{j}=t_{k} \cdots t_{l}$ and $K_{m}=t_{m} \cdots t_{n}$ be three t-semiflows of Q, if there exist two transition sequences $\sigma_{i}=K_{i} K_{j} K_{m}$ and $\sigma_{j}=K_{i} K_{m}$ in Q (σ_{i} and σ_{j} are also t-semiflows) then there exists a place $p_{x}=t_{j}^{\boldsymbol{0}}=^{\bullet} t_{k}={ }^{\bullet} t_{m}=t_{\boldsymbol{i}}^{\boldsymbol{\bullet}}$.

Proof. If σ_{i} can be generated by Q then there exists two dependencies $\left[t_{j}, t_{k}\right]=p_{i}$, and $\left[t_{l}, t_{m}\right]=p_{j}$ hence $t_{j}^{\bullet}={ }^{\bullet} t_{k}=p_{i}$ and $t_{i}^{\bullet}={ }^{*} t_{m}=p_{j}$. As σ_{j} also can be generated by Q then t_{k} and t_{m} are in conflict due to after the firing of t_{j} either t_{k} can be fired in the transition sequence σ_{i} or t_{m} can be fired in the transition sequence σ_{j} then there exist a decision place in Q such that ${ }^{\bullet} t_{k}={ }^{\bullet} t_{m}$, since ${ }^{\bullet} t_{k}=p_{i}$ and ${ }^{\bullet} t_{m}=p_{j}$ then there exists a place $p_{x}=p_{i} \cup p_{j}$ such that $p_{x}=t_{j}^{\bullet}=^{\bullet} t_{k}={ }^{\bullet} t_{m}=t_{i}^{\bullet}$.

Example. Consider the system model Q depicted on figure 4.33. The transition sequences stated in the above proposition could be $\sigma_{i}=\overbrace{t_{1} t_{2} t_{3} t_{4} t_{5} t_{6}}^{K_{i}}$ Kid $_{j}^{K_{m}}, \overbrace{t_{1} t_{2} t_{5} t_{6}}^{K_{i}}$, notice that these two sequences can be generated by Q. Since $t_{i}=t_{1}, t_{j}=t_{2}, t_{k}=t_{3}, t_{l}=t_{4}, t_{m}=t_{5}$ and $t_{n}=t_{6}$ then the place p_{x} of Q fulfills previous proposition due to $p_{x}=t_{2}^{\bullet}={ }^{\bullet} t_{3}={ }^{\bullet} t_{5}=t_{4}^{\bullet}$

Figure 4.33: System model Q.

The places belonging to the class B.ii.b are computed when some non measurable places are merged. The selected places to be merged are those sequencing m-words, since as stated in the identification step 4.1 , the other non measurable places are those belonging to the same m-word, hence they are computed correctly.

Identification Step 4.7 Let Q_{i} be the computed model for a system model $Q, w_{n-1}=t_{i} \cdots t_{j}$ and $w_{n}=$ $t_{m} \cdots t_{n}$ be the previous and the current computed m-words respectively. If there exists a $\operatorname{DSeq}\left(t_{j}, t_{m}\right)$ in Q_{i} then the NDep $p_{k}=\left[t_{j}, t_{m}\right]$ is computed merging the places t_{j}^{\bullet} and ${ }^{\bullet} t_{m}$.

Proposition 4.13 Let Q be a system model. A non measurable place of Class B.ii.b can be inferred using identification step 4.7.

Proof. If there exists a $D \operatorname{Seq}\left(t_{j}, t_{m}\right)$ in Q_{i} implies that there exists a m-word sequence $W_{p}=w_{n-1} w_{j} w_{n} \cdots$. Since w_{n-1} and w_{n} are also consecutive m-words then there exists a m-word sequence $W_{q}=w_{n-1} w_{n}$. If W_{p} and W_{q} are the transition sequences stated in proposition 4.12 then there must exist a place $p_{x}=t_{j}^{\bullet}={ }^{\bullet} t_{k}={ }^{\bullet} t_{m}=t_{l}^{\bullet}$ in Q allowing that the sequences W_{p} and W_{q} can be generated. Let t_{k} and t_{l} be the first and the last transitions of w_{j}, from sequence W_{p} it is detected that $t_{j}^{\bullet}=\left[t_{j}, t_{k}\right]$ and ${ }^{\bullet} t_{m}=\left[t_{l}, t_{m}\right]$, then merging the places t_{j}^{\bullet} and ${ }^{\bullet} t_{m}$ the non measurable place p_{k} is computed and indeed the NDep $\left[t_{j}, t_{m}\right]$.

If p_{k} belongs to Class B.ii.b its input and output transitions correspond to actual t-semiflows of Q then using identification step 4.7 the non measurable places of Class B.ii.b can be inferred.

The procedures for merging places computes a decision place allowing the firing of the m -words in the order as they are observed. The merged places are those allowing to form the NDep $\left[t_{j}, t_{m}\right]$ between the previous and the current computed m-words w_{n-1} and w_{n} respectively such that t_{j} is the last transition of w_{n-1} and t_{m} is the first transition of w_{n}.

Identification Step 4.8 Let Q_{i} be the computed model after merge the non measurable places t_{j}^{\bullet} and ${ }^{\bullet} t_{m}$ as stated in previous propositions, \mathcal{W} be the set of all computed t-semiflows and w_{j} be the t-semiflow formed when t_{j}^{\bullet} and ${ }^{\bullet} t_{m}$ of the sequence $w_{n-1} w_{j} w_{n}$ were merged. After merge t_{j}^{\bullet} and ${ }^{\bullet} t_{m}$ all the t-semiflows $W_{i} \in \mathcal{W}$ of Q_{i} which contain the transitions of w_{j} are updated as follows: $W_{i}=W_{i} / w_{j}$ (where W_{i} / w_{j} means that w_{j} is removed from $\left.W_{i}\right), W_{k+1}=w_{j}$, where k is the subindex of the current computed t-semiflow and if there exists a t-semiflow W_{x} in Q_{i} in which w_{n-1} belongs but no w_{n} then $W_{x}=W_{x} w_{n}$.

Proposition 4.14 Let Q_{i} be the computed model after merge two places, using identification step 4.8 the t semiflows of Q_{i} can be updated.

Proof. Consider the m-word sequence $w_{n-1} w_{j} w_{n}$, notice that after merge the places t_{j}^{\bullet} and ${ }^{\bullet} t_{m} w_{j}$ becomes a t-semiflow in Q_{i} since the computed non measurable place p_{x} forms the NDep $\left[t_{l}, t_{k}\right]$ (by identification step 4.7), where t_{k} and t_{l} are the first and the last transitions of w_{j}, then w_{j} is a new computed t -semiflow in Q_{i}, hence $W_{k+1}=w_{j}$.
Let W_{i} be any t-semiflow in \mathcal{W} containing w_{j}, as w_{j} is a new t-semiflow then W_{i} forms a t-semiflow without the transitions of w_{j} due to the computed place p_{k} forms the NDep $\left[t_{j}, t_{m}\right]$ (by identification step 4.7), hence each t-semiflow W_{i} containing w_{j} will be updated as W_{i} / w_{j} implying that w_{j} is removed from each W_{i}. Assume that W_{x} contains the m-word w_{n-1}, when the places t_{j}^{\bullet} and ${ }^{\bullet} t_{m}$ are merged the NDep $\left[t_{j}, t_{m}\right]$ is formed such that t_{j} is the last transition of w_{n-1} and t_{m} is the first transition of w_{n} (as stated in identification step 4.7), then also is formed the t -semiflow $W_{x}=W_{x} w_{n}$. Hence using identification step 4.8 the t -semiflows of the computed model Q_{i} are updated.

Corollary 4.2 Let Q_{i} be the computed model after merge the places t_{j}^{\bullet} and ${ }^{\bullet} t_{m}$ as stated in identification step 4.7. Then the last transition t_{l} of w_{j} is detected as a final transition of some t-semiflow of the system model Q.

Proof. Since t_{l} is the last transition of w_{j} then another m-word cannot be concatenated with w_{j}, due to Q can generate the transition sequence $w_{n-1} w_{j} w_{n}$ and $w_{n-1} w_{n}$ implying that t_{l} is the last transition of a m-word decomposition of an actual t-semiflow of Q.
The transitions detected as final transitions are labeled as t_{F}, implying that they are the last transitions of a t-semiflow in the system Q, this label is needed to avoid the concatenation of consecutive m-words forming a wrong NDep in the computed model Q_{i}.

Example. Consider the IPN Q depicted on figure 4.34. The m-words of Q are: $w_{1}=t_{1} t_{2}, w_{2}=t_{3} t_{4}$, $w_{3}=t_{5} t_{6}, w_{4}=t_{7} t_{8}$ and $w_{5}=t_{9} t_{10}$.

Figure 4.34: System model without shared transitions by any t-semiflow.

Assume that were computed the next sequence of m-words $\mathcal{T}=w_{1} w_{2} w_{3} w_{4} w_{5}$, then using the concatenating procedure (identification step 4.5), the model Q_{i} depicted on figure 4.35 is computed. The t-semiflow of Q_{i} is $W_{1}=w_{1} w_{2} w_{3} w_{4} w_{5}$

Figure 4.35: Computed model Q_{i}.

The fully identified non measurable place is the place p_{b} since it belong to the class B.i. All the NDep computed exists in the model, however the places forming these NDep does not belong to Q; these non measurable places will be updated in posterior observations of the system behavior.

Now consider the observation of $w_{4}=t_{7} t_{8}$ as the current m-word $w_{n}=t_{m} \cdots t_{n}$, hence $w_{5}=t_{9} t_{10}$ is the previous computed m-word $w_{n-1}=t_{i} \cdots t_{j}$, then $\mathcal{T}=w_{1} w_{2} w_{3} w_{4} w_{5} w_{4} . \quad W_{p}=w_{5} w_{1} w_{2} w_{3} w_{4}$ and W_{9} $W_{q}=w_{5} w_{4}$ Notice that in the computed model Q_{i} there exists a $\operatorname{DSeq}\left(t_{10}, t_{7}\right)=\overbrace{t_{9} t_{10} t_{1} t_{2} t_{3} t_{4} t_{5} t_{6} t_{7} t_{8}}$; in this case $w_{j}=w_{1} w_{2} w_{3}$, the transitions t_{j}, t_{k}, t_{l} and t_{m} are the following: $t_{j}=t_{10}, t_{k}=t_{1}, t_{l}=t_{6}$ and $t_{m}=t_{7}$

Merging the places $t_{j}^{\bullet}=t_{10}^{\bullet}$ and ${ }^{\bullet} t_{m}={ }^{\bullet} t_{7}$, the model Q_{j} depicted on figure 4.36 is computed.

Figure 4.36: Computed model Q_{j}.

The place p_{x} fulfill the conditions of proposition 4.12, since $p_{x}=\left[t_{10}, t_{7}\right]=\left[t_{6}, t_{7}\right]=\left[t_{6}, t_{1}\right]=\left[t_{10}, t_{1}\right]$ then $p_{x}={ }^{\bullet} t_{7}={ }^{\bullet} t_{1}=t_{10}^{\bullet}=t_{6}^{\bullet}$ and hence $p_{x}={ }^{\bullet} t_{m}={ }^{\bullet} t_{k}=t_{j}^{\bullet}=t_{l}^{\bullet}$. Hence the NDep $\left[t_{j}, t_{m}\right]=\left[t_{10}, t_{7}\right]$ is computed.

The new t-semiflows computed are $W_{2}=w_{j}=w_{1} w_{2} w_{3}$ and $W_{1}=W_{1} / w_{j}=w_{4} w_{5}$. (Corollary 4.8).
The final transitions t_{l} and t_{j} (corollary 4.2) are t_{6} and t_{10} respectively since t_{6} is the last transition of $w_{j}=w_{1} w_{2} w_{3}$ and t_{10} is the last transition of W_{1}.

The next identification step states how to compute the NDep $\left[t_{j}, t_{m}\right]$ to concatenate the previous and the current m-words w_{n-1} and w_{n} respectively, when w_{n} is a new m-word and t_{j} is marked as t_{F}.

Identification Step 4.9 Let Q_{i} be the computed model for a system model $Q, w_{n-1}=t_{i} \cdots t_{j}$ and $w_{n}=$ $t_{m} \cdots t_{n}$ be the previous and the current computed m-words such that w_{n} is a new m-word. If t_{j} is labeled as t_{F} and w_{n} is a new computed m-word then form the NDep $\left[t_{n}, t_{m}\right]=t_{j}^{\bullet}$, where t_{i} is the first transition of W_{j} in which w_{n-1} belongs.

Proposition 4.15 Let Q be a system model and Q_{i} be the computed model for Q, then using identification step 4.9 a non measurable place of Class B.ii.b can be inferred.

Proof. Since w_{n} is a new m-word then does not exists the transition sequence $D S e q\left(t_{j}, t_{m}\right)$ in Q and then the identification step 4.7 cannot be used to compute the NDep $\left[t_{j}, t_{m}\right]$ relating the previous model with the current computed m-word. Since t_{j} is labeled as t_{F}, then the current m -word cannot be concatenated with the previous model using identification step 4.5 because t_{j} is detected as the last transition of an actual t-semiflow of Q. Notice that when the NDep $\left[t_{n}, t_{m}\right]=t_{j}^{*}$ is computed as stated in identification step 4.9, the NDep $\left[t_{j}, t_{m}\right]$ also is formed relating the current m -word w_{n} with the transitions of w_{n-1} in Q_{i}. Hence t_{j}^{\bullet} forms the NDep between transitions of different m -words of different t-semiflows. Since w_{n} is added to Q_{i} as a new t-semiflow, then a new t-semiflow $W_{k+1}=w_{n}$ is computed in Q_{i}.

Example. Consider again the model system depicted on figure 4.34.
Let $\mathcal{T}=w_{1} w_{4} w_{5}$ be the sequence of m -words computed, the model Q_{i} is depicted on figure 4.37.

Figure 4.37: Computed model Q_{i}.

The computed t-semiflow of Q_{i} is $W_{1}=w_{1} w_{4} w_{5}$.
Let $w_{1}=t_{1} t_{2}$ be the next m-word computed, $\mathcal{T}=w_{1} w_{4} w_{5} w_{1}$. As w_{1} is the first m-word of a t-semiflow of Q, then $W_{2}=w_{1}$ and t_{10} is marked as t_{F} (corollary 4.2). And as there exists the $\operatorname{NDep}\left[t_{j}, t_{m}\right]=\left[t_{10}, t_{1}\right]$, then there is nothing to update in Q_{i}. Algorithm 4.3.

Let $w_{5}=t_{9} t_{10}$ be the next m-word computed, $\tau=w_{1} w_{4} w_{5} w_{1} w_{5}$. Hence $w_{1}=t_{1} t_{2}$ and $w_{5}=t_{9} t_{10}$ are the previous and the current m-words w_{n-1} and w_{n} respectively. Since there exists a $\operatorname{DSeq}\left(t_{2}, t_{9}\right)=$ $\overbrace{w_{1}}^{w_{n-1} \underbrace{w_{j}}_{w_{4}} \underbrace{w_{n}}_{w_{5}}}$
$\overbrace{t_{1} t_{2}} t_{7} t_{8} t_{9} t_{10}$ in Q_{i}, then the NDep $\left[t_{j}, t_{m}\right]=\left[t_{2}, t_{9}\right]$ can be computed merging the places t_{2}^{*} and ${ }^{\bullet} t_{9}$ as stated in identification step 4.7. The computed model Q_{2} is depicted on figure 4.38.

Figure 4.38: Computed model Q_{i}.
The t-semiflows of Q_{2} are $W_{1}=W_{1} / w_{j}=w_{1} w_{5}=W_{2}=W_{2} w_{5}$ and $W_{3}=w_{j}=w_{4}, W_{1}=W_{2}$ since in previous model $W_{2}=w_{1}$. (Corollary 4.8). And t_{7} is marked as t_{F} (corollary 4.2).

Let $w_{2}=t_{3} t_{4}$ be the current computed m-word. Now $w_{5}=w_{n-1}$ and $w_{2}=w_{n}$ are the previous and the current computed m-words respectively. As w_{2} is a new m-word and $t_{j}=t_{10}$ is marked as t_{F} then the NDep $\left[t_{j}, t_{m}\right]=\left[t_{10}, t_{4}\right]$ cannot be computed concatenating the previous and the current m-word using identification step 4.5; instead of this, it is used the proposition 4.9, such that $\left[t_{4}, t_{3}\right]=t_{10}^{*}$. The updated model Q_{i} is depicted on figure 4.39. The new t-semiflow computed in Q_{i} is $W_{4}=w_{2}$.

Figure 4.39: Computed model Q_{i}

Notice that the following m -word produced by the system must be $w_{3}=t_{5} t_{6}$ since it belong to the same m word decomposition as w_{2}. Let w_{3} be the current computed m-word. The procedure to compute the NDep $\left[t_{j}, t_{m}\right]$ is concatenating w_{3} with the transitions of w_{2} in the computed model Q_{i}. The identification step 4.5 is used to concatenate w_{2} with w_{3} since w_{3} is a new m-word and there exists not a $\operatorname{DSeq}\left(t_{j}=t_{4}, t_{m}=t_{5}\right)$ and t_{4} is not marked as t_{F}. The computed model Q_{i} is depicted on figure 4.40 .

The updated t-semiflow in Q_{i} is $W_{4}=W_{4} w_{3}$

Figure 4.40: Computed model Q_{i}.
If the next m-word computed is $w_{5}=t_{9} t_{10}$, then the places t_{6}^{\bullet} and ${ }^{\bullet} t_{9}$ are merged since w_{3} and w_{5} are the previous and the current m-words w_{n-1} and w_{n} respectively and there exists a m-word sequence $w_{3} w_{1} w_{5}$. The updating of the t-semiflows of Q_{i} after merge t_{6}^{\bullet} and ${ }^{\bullet} t_{9}$ is $W_{1}=W_{2}=w_{5}, W_{3}=w_{4}, W_{4}=w_{2} w_{3}$ and $W_{5}=w_{1}$, notice that these t -semiflows are the t -semiflows of the system model Q depicted on figure 4.34, hence the computed model Q_{i} generates the entire behavior of Q.

The next algorithm computes non measurable places of Class B preserving the order in which the m-words have been computed.

Algorithm 4.4 Computing non measurable places of Class B

Input: The $\operatorname{Dep}\left(Q_{n}\right)=\operatorname{Dep}\left(Q_{n-1}\right)$ set, the previous and the current computed m-words $w_{n-1}=t_{i} \cdots t_{j}$ $w_{n}=t_{m} \cdots t_{n}$, the set of all computed t-semiflows \mathcal{W}. The current t-semiflow is $W_{k} \in \mathcal{W}$
Output: a model Q_{n} in which non measurable places of Class B are computed, also a t-semiflow W_{i} in φC

1. SELECTION. If w_{n-1} belongs to W_{k} and also to another $W_{j} \neq W_{k}$ and w_{n} is computed by first time then
(a) Since w_{n-1} belongs to another $W_{j} \neq W_{k}$ this implies that there exists a NDep $\left[t_{j}, t_{k}\right]=p_{x}$ such that t_{k} does not belong to w_{n}. Remove the NDep $\left[t_{n}, t_{m}\right]$. To form the NDep $\left[t_{j}, t_{m}\right]$ based on identification step 4.2 case 1 , it is needed to add an arc from p_{x} to t_{m} and to form the NDep $\left[t_{n}, t_{y}\right]$, where t_{y} is the first transition of W_{j}, it is needed to add an arc from t_{n} to ${ }^{\circ} t_{y}$.
(b) $W_{k}=W_{k} w_{n}$.
(Identification step 4.6 Case 1).
2. ATTRIBUTION. If w_{n} belongs to another $W_{j} \neq W_{k}$ and w_{n-1} belongs to W_{k} then
(a) Since w_{n} belongs to another $W_{j} \neq W_{k}$ then there must exist a NDep $\left[t_{k}, t_{m}\right]=p_{y}$, such that t_{k} does not belong to w_{n}. Remove the arc from t_{j} to ${ }^{\bullet} t_{y}$, where t_{y} is the first transition of W_{k}. To form the NDep $\left[t_{j}, t_{m}\right]$ based on identification step 4.2 case 2 it is only needed to add an arc from t_{j} to p_{y}.
(b) $W_{k}=W_{k} w_{n}$.
(Identification step 4.6 Case 2).
3. MERGING. If there exists a $\operatorname{DSeq}\left(t_{j}, t_{m}\right)$

Case a. $w_{n}=w_{n-1}$
If t_{l} forms a complex NDep, where t_{l} is the last transition of w_{j} and w_{j} is the transition sequence $\operatorname{DSeq}\left(t_{j}, t_{m}\right)$ without considering t_{j} and t_{m}, then remove the NDep $\left[t_{j}, t_{\boldsymbol{x}}\right]$, where $t_{\boldsymbol{x}}$ is the first transition of W_{k} and form the NDep $\left[t_{j}, t_{m}\right]=t_{l}$. Make $W_{k}=w_{n}$.
else if merge the non measurable places t_{j}^{\bullet} and ${ }^{\bullet} t_{m}$ as stated in Case b.ii
Case b. w_{n-1} and w_{n} belong to the same computed t-semiflow W_{k}
(a) i. If w_{n} occurs before w_{n-1} in W_{k} then
a. Remove the NDep $\left[t_{j}, t_{k}\right]$ and add the NDep $\left[t_{j}, t_{m}\right]={ }^{\bullet} t_{m}$ and the NDep $\left[t_{n}, t_{k}\right]=t_{n}^{\bullet}$ to $\operatorname{Dep}\left(Q_{n}\right)$ and mark t_{n}^{\bullet}.
b. The t-semiflows are updated as $W_{k}=w_{j} w_{n}$ and $W_{k+1}=w_{q} w_{n}-1 w_{n}$, where w_{j} is the transition sequence $D S e q\left(t_{j}, t_{m}\right)$ without considering transitions t_{j} and t_{m} and wq is the transition sequence $D \operatorname{Seq}\left(t_{n}, t_{i}\right)$ without considering the transitions t_{n} and t_{i}.
ii. Else if w_{n} occurs after w_{n-1} in W_{k} then
a. Merge $t_{j}^{\boldsymbol{\bullet}}$ and ${ }^{\bullet} t_{m}$ to compute a complex NDep. (Proposition 4.12). If $t_{j}^{\boldsymbol{\bullet}}$ or ${ }^{\bullet} t_{m}$ is marked then the new computed non measurable place is also marked.
b. Mark as t_{F} the last transition of w_{j}, where w_{j} is the transition sequence $\operatorname{DSeq}\left(t_{j}, t_{m}\right)$ without considering t_{j} and t_{m}.
c. The t-semiflows of Q_{n} are updated as follows: $W_{i}=W_{i} / w_{j}$ and $W_{k+1}=w_{j}$. (Identification step 4.8).
(Identification step 4.7).
Case c. w_{n-1} and w_{n} belong to different computed t-semiflows
(a) i. If t_{l} and t_{m} are the last and the first transition of consecutive computed m-words, where t_{l} is the last transition of the transition sequence $D S e q\left(t_{j}, t_{m}\right)$ then merge the places t_{j}^{\bullet} and ${ }^{\bullet} t_{m}$ following step Case b.ii.
ii. Else if t_{l} and t_{m} are not the last and the first transition of consecutive computed m-words then
a. Remove the arc form t_{l}^{\bullet} to t_{i} and the NDep $\left[t_{j}, t_{k}\right]$ where t_{k} is the first transition of $D S e p\left(t_{j}, t_{m}\right)$.
b. Compute the NDep $\left[t_{l}, t_{i}\right]=p_{x}$ such as p_{x} is a new non measurable place and the NDep $\left[t_{j}, t_{k}\right]={ }^{\bullet} t_{m}$.
c. The computed t-semiflows are updated as follows: $\forall W i$ such that $w_{n} \in W_{i}, W_{i}=w_{i} w_{n-1}$ and $W_{k}=W_{k} / w_{n-1}$ and $W_{k}=W_{k} w_{n-1}$.
4. CONCATENATION. w_{n} is a new m-word
a. If the last transition of W_{k} is not marked as t_{F}
i. Remove the NDep $\left[t_{n}, t_{m}\right]$ and the NDep $\left[t_{y}, t_{x}\right]$, such that t_{x} and t_{y} are the first and the last transitions of W_{k} respectively.
ii. Compute the NDep $\left[t_{n}, t_{x}\right]=p_{k}$, if t_{x} has an input non measurable place then $p_{k}={ }^{\bullet} t_{x}$ else p_{k} is a new non measurable place and p_{k} will be marked.
iii. compute the NDep $\left[t_{y}, t_{m}\right]=p_{k}$, if t_{j} has an input non measurable place then $p_{k}=t_{j}^{\bullet}$ else p_{k} is a new non measurable place.
iv. $W_{k}=W_{k} w_{n}$

Identification step 4.5 .

b. Else if the last transition of W_{k} is marked as t_{F}
(a) Remove the NDep $\left[t_{n}, t_{m}\right]$ and form the NDep $\left[t_{n}, t_{m}\right]={ }^{\bullet} t_{i}$, where t_{i} is the first transition of W_{j} where w_{n-1} belongs.
(b) $W_{k+1}=w_{n}$

Identification step 4.9.

In a non measurable dependency $p_{k}=\left[t_{i}, t_{j}\right]$ of Class $\mathrm{B} t_{i}$ and t_{j} may belong to different m -words. In the case that p_{k} belongs to Class B.i.a or Class B.ii.a, t_{i} and t_{j} belong to different m-words of a same t -semiflow X, while in the case that p_{k} belongs to Class B.ii.b, t_{i} and t_{j} are the last and the first transition of an actual t-semiflow of the system. The non measurable places of Class B.i forms a single NDep and they are computed concatenating the previous and the current computed m-words w_{n-1} and w_{n} respectively. The non measurable places of Class B.ii.a form complex NDep, as well as the non measurable places of Class B.i; these non measurable places are computed concatenating previous and current m-words, however in this case the concatenation is made with an already computed non measurable place. The non measurable places of Class B.ii.b, also forms complex NDep, however these places are computed merging the output non measurable place of the last transition of w_{n-1} with the input non measurable place of the first transition of w_{n}.
These places cannot be computed directly when a m -word is computed even if all m -words have been computed, they must be inferred as more information of the system is detected in terms of the occurrence order of the m-words.

Using the strategies provided by propositions previously introduced, it can be computed models describing the behavior of DES that exhibit certain behavior such as decisions, synchronizations and concurrence. Then it is
possible to compute marked graphs, states machines, free choice, and simple Petri nets as a model for a DES. However, there exist specific structures that cannot be computed, this problem is addressed in section 6.2.

\diamond Concurrent-independent transitions

There exist also another kind of relationship between places and transitions describing more general PN than the PN that can be identified using the procedures previously introduced.
In an ordinary PN there is no restriction on how the places and transitions are related. However it can be distinguished two subclasses of ordinary PN according to how the transitions of each t-semiflow are related with the transitions of another t -semiflow in the ordinary PN.

Definition 4.11 Let Q be an IPN, two transitions t_{i} and t_{j} are independent transitions if the firing of t_{i} is not constrained to the firing of t_{j} and viceverse.

The set of all independent transitions in an IPN Q will be denoted as Independent (Q), two independent transitions t_{i}, t_{j} are denoted as $i\left[t_{i}, t_{j}\right]$ which is equivalent to $i\left[t_{j}, t_{i}\right]$.
Proposition 4.16 Let Q be an IPN and t_{i} and t_{j} be any two transitions of Q. If t_{i} and t_{j} belong to different t-semiflows then t_{i} and t_{j} are independent transitions.

Proof. The proof follows from definition 4.11.
Proposition 4.17 Let Q be an IPN and t_{i} and t_{j} be any two transitions of Q. If
a) t_{i} and t_{j} are concurrent transitions belonging to the same t-semiflow X_{i} and
b) t_{i} belongs to another t-semiflow X_{j} such that t_{j} does not belong to X_{j}, or t_{j} belongs to another t-semiflow X_{k} in which t_{i} does not belong
then t_{i} and t_{j} are independent transitions.
Proof. Notice that if t_{i} and t_{j} belongs to a t-semiflow X_{i} and $t_{i}\left(t_{j}\right)$ belongs to another t-semiflow $X_{j}\left(X_{k}\right)$ in which $t_{j}\left(t_{i}\right)$ does not appear, then by definition $4.11 t_{i}$ and t_{j} are independent transitions since there exists at least one t-semiflow $X_{j}\left(X_{k}\right)$ in which the firing of $t_{i}\left(t_{j}\right)$ is not constrained to the firing of $t_{j}\left(t_{i}\right)$. However if t_{i} and t_{j} fulfill only the condition $\mathbf{b} t_{i}$ and t_{j} could be dependent transitions in the case where t_{i} or t_{j} are shared by two or more t -semiflows since they always would occur in the same order.

Example. Even the transitions t_{11} and t_{12} of the PN depicted on figure 4.41.a belong to the same t-semiflow $X_{1}=t_{8} t_{9} t_{10} t_{11} t_{12}$ and t_{12} belongs also to another t-semiflow $X_{2}=t_{8} t_{9} t_{12} t_{13} t_{14}$, these two transitions do not fulfill the condition a of proposition 4.17 since they are consecutive transitions, i.e. they are not concurrent transitions and hence they are not independent transitions. The transitions t_{2} and t_{10} of the PN depicted on figure 4.41.b fulfill both conditions of proposition 4.17, since there exists a tsemiflow $X_{i}=t_{2} t_{3} t_{5} t_{6} t_{7} t_{8} t_{10} t_{11}$ in which they are concurrent transition and there exist another t-semiflow $X_{j}=t_{1} t_{2} t_{3} t_{4} t_{6} t_{7}$ in which t_{10} does not belong and also another t -semiflow $X_{k}=t_{6} t_{7} t_{9} t_{10} t_{11} t_{12}$ in which t_{2} does not belong, hence t_{2} and t_{10} are independent transitions.

Figure 4.41: a) Ordinary PN fulfilling only condition b of proposition 4.17. b) Ordinary PN fulfilling both conditions of proposition 4.17.

The ordinary PN fulfilling conditions a and b of proposition 4.17, have transitions which are both concurrent and independent; this is the class of ordinary PN studied in this section, since for the ordinary PN defined in proposition 4.16, a combination of procedures presented in previous section can be used to identify them.

Proposition 4.18 Let Q be a system model, Q_{n} be the computed model for $Q, w_{n}=t_{x} \cdots t_{y}$ be the current m-word computed from the last output word generated by Q, and t_{i} and t_{j} be any two consecutive transitions in w_{n}. If t_{i} and t_{j} are independent transitions and there exists not a dependency $\left[t_{i}, t_{j}\right]$ in $\operatorname{Dep}\left(Q_{n}\right)$, then the NDep $\left[t_{i}, t_{j}\right]=p_{k}$ is not added to $\operatorname{Dep}\left(Q_{n}\right)$, where p_{k} is a new non measurable place as stated in identification step 4.1.

Proof. Since t_{i} and t_{j} are independent transitions, the NDep $\left[t_{i}, t_{j}\right]=p_{k}$ cannot not be added to $\operatorname{Dep}\left(Q_{n}\right)$ because it would not allow the firing of t_{j} without the firing of t_{i} which contradicts the definition of independent transitions.
Previous proposition states that it is not possible to add a new non measurable place to form a NDep between any two independent transitions. Next two procedures state when it is possible to compute a NDep formed with this kind of transitions.

Identification Step 4.10 Let Q be a system model, Q_{n} be the computed model for Q, $w_{n}=\cdots t_{i} t_{j} \cdots$ be the m-word computed from the last output sequence produced by Q, and t_{i} and t_{j} be any two independent consecutive transitions in w_{n}. If there exists not a dependency $\left[t_{i}, t_{j}\right]$ in Dep $\left(Q_{n}\right)$ and there exists a NDep $\left[t_{i}, t_{k}\right]=p_{k}$ in $\operatorname{Dep}\left(Q_{n}\right)$ such that t_{k} does not belong to w_{n} then the NDep $\left[t_{i}, t_{j}\right]=p_{k}$ will be added to Dep $\left(Q_{n}\right)$.

By proposition 4.18, a NDep $\left[t_{i}, t_{j}\right]$ cannot be computed using a new non measurable place when two consecutive transitions t_{2} and t_{j} are independent transitions. However, if there exists a NDep $\left[t_{i}, t_{k}\right]=p_{k}$ in $\operatorname{Dep}\left(Q_{n}\right)$ it can be computed the NDep $\left[t_{i}, t_{j}\right]$ using the same non measurable place p_{k}, forming a decision between t_{k} and t_{j}. Since t_{j} and t_{k} belong to different t-semiflows $w_{n}=\cdots t_{i} t_{j} \cdots$ can be generated by Q_{n} because when t_{i} is
fired the place p_{k} is marked and as t_{j} is fired after t_{i} in $w_{n}=\cdots t_{i} t_{j} \cdots$, then the marks into the place p_{k} are removed. Notice that if t_{k} belongs to $w_{n}=\cdots t_{i} t_{j} \cdots$ and the NDep $\left[t_{i}, t_{j}\right]=p_{k}$ is added to $\operatorname{Dep}\left(Q_{n}\right)$ then the model Q_{n} will not be live since after the firing of t_{i}, t_{j} or t_{k} could be fired and hence the firing of t_{j} disables the firing of t_{k} or the firing of t_{k} disables t_{j} according which is the first fired transition, not allowing the occurrence of the sequence $w_{n}=\cdots t_{i} t_{j} \cdots$ in Q_{n}.
The above identification step states that a NDep $\left[t_{i}, t_{j}\right]$ can be computed, where t_{i} and t_{j} are any two consecutive independent transitions in the current computed m-word w_{n}; just in the case t_{i} has an output non measurable place $t_{i}^{\bullet}=\left[t_{i}, t_{k}\right]$ and t_{k} does not belong to w_{n}.

Identification Step 4.11 Let Q be a system model, Q_{n} be the computed model for Q, $w_{n}=\cdots t_{i} t_{j} \cdots$ be the m-word computed from the last output sequence produced by Q and t_{i} and t_{j} be any two independent consecutive transitions in w_{n}. If there exists not a dependency $\left[t_{i}, t_{j}\right]$ in Dep $\left(Q_{n}\right)$ and there exists a NDep $\left[t_{k}, t_{j}\right]=p_{k}$ in $\operatorname{Dep}\left(Q_{n}\right)$ such that t_{k} does not belong to $w_{n}=\cdots t_{i} t_{j} \cdots$, then a $N D e p\left[t_{i}, t_{j}\right]=p_{k}$ will be added to Dep $\left(Q_{n}\right)$.

By identification step 4.18, a NDep $\left[t_{i}, t_{j}\right]$ cannot be computed using a new non measurable place when two consecutive transitions t_{i} and t_{j} are independent transitions. However, if there exists a NDep $\left[t_{k}, t_{j}\right]=p_{k}$ in $\operatorname{Dep}\left(Q_{n}\right)$ it can be computed the NDep $\left[t_{i}, t_{j}\right]$ using the same non measurable place p_{k}, forming an attribution between t_{k} and t_{i}. Since t_{j} and t_{k} belong to different t-semiflows $w_{n}=\cdots t_{i} t_{j} \cdots$ can be generated by Q_{n} due to when t_{i} is fired the place p_{k} is marked and as t_{j} is fired after t_{i} in $w_{n}=\cdots t_{i} t_{j} \cdots$ then the place p_{k} is unmarked and hence never could be more than one mark into the place p_{k}. Notice that if t_{k} belongs to $w_{n}=\cdots t_{i} t_{j} \cdots$ and the $\operatorname{NDep}\left[t_{i}, t_{j}\right]=p_{k}$ is added to $\operatorname{Dep}\left(Q_{n}\right)$, then $\overrightarrow{w_{n}}$ would not be a t-semiflow in Q_{n} due to each transition t_{i} and t_{k} add one mark to p_{k} when they are fired, hence after the firing of t_{j} one mark remains into p_{k}; this leads to the situation in which after the firing of all transitions in w_{n}, Q_{n} reaches a marking which is different to the marking in which the first transition of w_{n} was fired.
The above identification step states that a NDep $\left[t_{i}, t_{j}\right]$ can be computed, where t_{i} and t_{j} are any two consecutive independent transitions in the current computed m-word w_{n}; just in the case t_{j} has an input non measurable place ${ }^{\bullet} t_{j}=\left[t_{k}, t_{j}\right]$ and t_{k} does not belong to w_{n}.
The next algorithm presents how to detect independent transitions and how they can form a complex NDep.
Algorithm 4.5 Computing complex NDep for independent transitions

Input: $\operatorname{Dep}\left(Q_{n-1}\right)$, the current m-word $w_{n}=t_{m} \cdots t_{n}$ and the set of computed t-semiflows \mathcal{W}.
Output: The model Q_{n} describing the observed behavior of a system model Q

1. $\operatorname{Dep}\left(Q_{n}\right)=\operatorname{Dep}\left(Q_{n-1}\right)$
2. If there exists a t-semiflow X_{j} in Q_{n} fulfilling that $\overrightarrow{w_{n}}=X_{j}$ then update the possible wrong single NDep computed. Algorithm 4.2.
3. Let t_{i} and t_{j} be any two consecutive transitions in $w_{n}=t_{m} \cdots t_{n}$
4. If there exist a NDep $\left[t_{x}, t_{i}\right]$ and/or $\left[t_{y}, t_{j}\right]$ such that t_{x} and t_{y} are computed after t_{i} and t_{j} respectively in $w_{n}=t_{m} \cdots t_{n}$, then remove this NDep from $\operatorname{Dep}\left(Q_{n}\right)$ and add $\left[t_{x}, t_{i}\right]$ and/or $\left[t_{y}, t_{j}\right]$ to Concurrent $\left(Q_{n}\right)$.
5. If a NDep is removed from $\operatorname{Dep}\left(Q_{n}\right)$ then two cases could arise for any transition $t_{\boldsymbol{x}}$:
(a) If t_{x} remains as a source transition, then add a NDep $\left[t_{y}, t_{x}\right]$ to $D e p^{u}\left(Q_{n}\right)$ such that t_{y} is the predecessor of t_{x} in the previous m-word in which the transitions of the removed NDep were consecutive (or in the current m -word w_{n} in the case that this step had been reached from step 7).
(b) If t_{x} remains as a sink transition then add a NDep $\left[t_{x}, t_{y}\right]$ to $\operatorname{Dep}{ }^{u}\left(Q_{n}\right)$ such that t_{y} is the successor of t_{x} in the previous m-word in which the transitions of the removed NDep were consecutive (or in the current m -word w_{n} in the case that this step had been reached from step 7).
It is possible that the transition t_{y}, predecessor or the successor respectively of t_{x} in m-word be concurrent or independent with t_{x} :
i. If $\left[t_{x}, t_{y}\right] \in$ Concurrent $\left(Q_{n}\right)$ then select the following predecessor or successor of t_{x} in w_{n} i.e. $t_{y}={ }^{\bullet}\left({ }^{\bullet} t_{y}\right)$ or $t_{y}=\left(t_{y}^{\bullet}\right)^{\bullet}$ respectively until the NDep $\left[t_{x}, t_{y}\right] \notin$ Concurrent $\left(Q_{n}\right)$ or t_{y} does not appear before t_{x} in w_{n} and then add the NDep $\left[t_{y}, t_{x}\right]$ or $\left[t_{x}, t_{y}\right]$ to concurrent $\left(Q_{n}\right)$.
ii. If $\left[t_{x}, t_{y}\right] \in \operatorname{Independent}\left(Q_{n}\right)$ then select the following predecessor or successor of t_{x} in w_{n} i.e. $t_{y}={ }^{\bullet}\left({ }^{\bullet} t_{y}\right)$ or $t_{y}=\left(t_{y}^{\bullet}\right)^{\bullet}$ respectively until the NDep $\left[t_{x}, t_{y}\right] \notin \operatorname{Independent}\left(Q_{n}\right)$ and then go to step 6 such that $t_{i}=t_{x}$ and $t_{j}=t_{y}$ if t_{x} is a sink transition or $t_{i}=t_{y}$ and $t_{j}=t_{x}$ if t_{x} is a source transition. If $\left[t_{x}, t_{y}\right]$ is added to independet $\left(Q_{n}\right)$ set then select the following predecessor or successor of t_{x} i.e. $t_{y}={ }^{\bullet}\left({ }^{\bullet} t_{y}\right)$ or $t_{y}=\left(t_{y}^{\bullet}\right)^{\bullet}$ respectively and repeat this step.
Else use the algorithm 4.6 to reconnect the removed arcs verifying only the remaining input place of t_{x}.
6. If $\left[t_{i}, t_{j}\right] \notin \operatorname{Dep}\left(Q_{n}\right)$ and $\left[t_{i}, t_{j}\right] \notin$ Concurrent $\left(Q_{n}\right) \cup$ Independent $\left(Q_{n}\right)$ then
(a) If $\left[t_{i}, t_{j}\right] \notin$ Independent $\left(Q_{n}\right)$ but they fulfill the conditions of independence (Definition 4.11 and Proposition 4.17) then
i. If t_{i} has an output non measurable place p_{k} forming the NDep $\left[t_{i}, t_{k}\right]=p_{k}$ if t_{k} is not a transition of w_{n} then add the NDep $\left[t_{i}, t_{j}\right]=p_{k}$ to $\operatorname{Dep}\left(Q_{n}\right)$ and also add $\left[t_{i}, t_{k}\right]$ and $\left[t_{j}, t_{k}\right]$ to Independent $\left(Q_{n}\right)$. else add $\left[t_{k}, t_{j}\right]$ to Independent $\left(Q_{n}\right)$
(Identification step 4.10).
ii. If t_{j} has an input non measurable place p_{k} forming the NDep $\left[t_{k}, t_{j}\right]=p_{k}$ if t_{k} is not a transition of w_{n} then add the NDep $\left[t_{i}, t_{j}\right]=p_{k}$ to $\operatorname{Dep}\left(Q_{n}\right)$ and also add $\left[t_{k}, t_{i}\right]$ and $\left[t_{k}, t_{j}\right]$ to Independent $\left(Q_{n}\right)$ else add $\left[t_{k}, t_{i}\right]$ to Independent $\left(Q_{n}\right)$
(Identification step 4.11).
(b) If the NDep $\left[t_{i}, t_{j}\right]$ was not added to $\operatorname{Dep}\left(Q_{n}\right)$ in step 6.a.i or 6.a.ii then add $\left[t_{i}, t_{j}\right]$ to Independent $\left(Q_{n}\right)$.

Else add the NDep $\left[t_{i}, t_{j}\right]$ to $\operatorname{Dep}\left(Q_{n}\right)$. (Proposition 4.1).
7. If after evaluate $w_{n}=\cdots t_{i} t_{j} \cdots$ remain source or sink transitions in Q_{n} then go to step 5.a or $5 . \mathrm{b}$ respectively for each source or sink transition.
8. Use the algorithm 4.6 to verify that every non measurable place be correctly connected allowing that all transition sequences computed from the output of the system can be generated by Q_{n}.

When an arc is removed (step 4 of the above algorithm) to form the t-semiflow computed from the last output word observed could be possible that others t-semiflows be disconnected. The next procedure is useful to verify that in the updated model Q_{n} all the computed t-semiflows are correctly connected.

Algorithm 4.6 Checking the t-semiflows of Q_{n}.

Input: The $\gamma C_{Q_{n}}$ matrix and the set of computed t-semiflows \mathcal{W}.
Output: The updated (if it is necessary) model Q_{n}.

1. Multiply each row r_{i} of the matrix $\gamma C_{Q_{n}}$ by all the computed t-semiflows $W_{k} \in \mathcal{W}$
2. If any row r_{i} of $\gamma C_{Q_{n}}$ does not fulfill that $\overrightarrow{r_{i}} \cdot W_{k}=0$ for some t-semiflow W_{k} then
(a) Select the last m-word σ such that $\vec{\sigma} \in W_{k}$
(b) Detect the column k of $\gamma C Q_{n}$, in which there exists a data in the row r_{i} making that $r_{i} \cdot W_{k} \neq 0$ case $1 \gamma C_{Q_{n}}(i, k)=1$: this implies that a -1 is missed in the row r_{i}, then
3. Add a -1 in the position $\gamma C_{Q_{n}}(i, m)$, where m is the column representing the transition t_{m} of Q_{n} such that t_{m} is a successor of t_{k} in the m-word σ
4. If $\left[t_{k}, t_{m}\right] \in \operatorname{Dep}\left(Q_{n}\right)$ or $\left[t_{k}, t_{m}\right] \in \operatorname{Concurrent}\left(Q_{n}\right) \cup \operatorname{Independent}\left(Q_{n}\right)$ then make $t_{m}=$ $\left(t_{m}^{\bullet}\right)^{\bullet}$ (the successor of t_{m} in σ) and repeat this step until $\left[t_{k}, t_{m}\right] \notin \operatorname{Dep}\left(Q_{n}\right)$ or $\left[t_{k}, t_{m}\right] \notin$ Concurrent $\left(Q_{n}\right) \cup$ Independent $\left(Q_{n}\right)$
case $2 \gamma C_{Q_{n}}(i, k)=-1$: this implies that a 1 is missed in the row r_{i}.
5. Add a 1 in the position $\gamma C_{Q_{n}}(i, n)$, where n is the column representing the transition t_{n} of Q_{n} such that t_{n} is a predecessor of t_{k} in the m-word σ
6. If $\left[t_{n}, t_{k}\right] \in \operatorname{Dep}\left(Q_{n}\right)$ or $\left[t_{n}, t_{k}\right] \in \operatorname{Concurrent}\left(Q_{n}\right) \cup \operatorname{Independent}\left(Q_{n}\right)$ then make $t_{n}={ }^{\bullet}\left({ }^{\bullet} t_{n}\right)$ and repeat this step until $\left[t_{n}, t_{k}\right] \notin \operatorname{Dep}\left(Q_{n}\right)$ or $\left[t_{n}, t_{k}\right] \notin \operatorname{concurrent}\left(Q_{n}\right) \cup$ independent $\left(Q_{n}\right)$ Notice that when it is added a -1or a 1 as stated in steps 2.b case 1 and 2.b case 2 it is computed a NDep $\left[t_{k}, t_{m}\right]$ or $\left[t_{n}, t_{k}\right]$ respectively, this new NDep need to be computed according to step 5 of algorithm 4.5 , where $t_{i}=t_{k}$ and $t_{j}=t_{m}$ or $t_{i}=t_{n}$ and $t_{j}=t_{k}$, if it is used the step 2.c or the step $2 . \mathrm{d}$ respectively.

Notice that this algorithm only perform the test over the non measurable places of Q_{n} since the measurable places are computed correctly (Proposition 4.3) from the output of the system, hence the algorithm 4.6 check that every row in $\gamma C_{Q_{n}}$ matrix multiplied by all the computed t -semiflows be equal to zero to guarantee that each non measurable place is connected correctly in every t-semiflow, if this condition is not fulfilled in some row r_{i} for some t-semiflow X_{k} then a one (1) or a minus one (-1) is added in the position (i, j) of the matrix $\gamma C_{Q_{n}}$, where j is the column representing the transition in which the t-semiflow is not satisfied by the place i, according if t_{j} is a predecessor or a successor of the transition $t_{m} \in X_{k}$ appearing in the row r_{i} respectively. The addition of a one (1) or a minus (-1) to the $\gamma C_{Q_{n}}$ matrix is an input or an output arc respectively of the non measurable place p_{i}.

Figure 4.42: System model and its t-components.
Example. Consider the system model Q depicted on figure 4.42.a; the next table summarizes the steps of algorithm 4.5 to update the non measurable places of each model computed to identify Q.

m-word	identification step Algorithm 4.5	Figure
$\mathrm{w}_{1}=\mathrm{t}_{1} \mathrm{t}_{6} \mathrm{t}_{2} \mathrm{t}_{3} \mathrm{t}_{7} \mathrm{t}_{4}$	5	4.43 .1
$\mathrm{w}_{2}=\mathrm{t}_{5} \mathrm{t}_{2} \mathrm{t}_{10} \mathrm{t}_{6} \mathrm{t}_{3} \mathrm{t}_{11} \mathrm{t}_{7} \mathrm{t}_{8}$	Proposition 4.3	4.43.2
$\mathrm{t}_{5} \mathrm{t}_{2}$	$\begin{array}{ll} 4 & \text { 5.a.i and 6.a.ii } \\ c\left[t_{2}, t_{6}\right] & \text { NDep }\left[\mathrm{t}_{5}, \mathrm{t}_{2}\right] \text { and } i\left[t_{1}, t_{5}\right], i\left[t_{1}, t_{2}\right] \end{array}$	4.43.3 and 4.44.4
$\mathrm{t}_{2} \mathrm{t}_{10}$	6.b- $i\left[t_{2}, t_{10}\right]$	
$\mathrm{t}_{10} \mathrm{t}_{6}$	6.a.ii-NDep $\left[t_{10}, t_{6}\right]$ and $i\left[t_{1}, t_{6}\right], i\left[t_{1}, t_{10}\right]$	4.44.5
$\mathrm{t}_{6} \mathrm{t}_{3}$	6.b- $i\left[t_{6}, t_{3}\right]$	
$\mathrm{t}_{3} \mathrm{t}_{11}$	6.a.i- $i\left[t_{11}, t_{7}\right]$ and 6.b- $\left[t_{3}, t_{11}\right]$	
$\mathrm{t}_{11} \mathrm{t}_{7}$	$\left[\mathrm{t}_{11}, \mathrm{t}_{7}\right] \in$ Independent $\left(Q_{n}\right)$	
$\mathrm{t}_{7} \mathrm{t}_{8}$	6ai- NDep [$\left.t_{7}, t_{8}\right]$ and $i\left[t_{4}, t_{7}\right], i\left[t_{4}, t_{8}\right]$	4.44 .6
t_{10}	7-5aii-6- NDep [t_{5}, t_{10}]	4.45.7
t_{11}	7-5bii-6- NDep $\left[t_{11}, t_{8}\right]$	4.45 .8
$\mathrm{w}_{3}=\mathrm{t}_{9} \mathrm{t}_{6} \mathrm{t}_{10} \mathrm{t}_{7} \mathrm{t}_{11} \mathrm{t}_{12}$	Proposition 4.3	4.45 .9
$\mathrm{t}_{9} \mathrm{t}_{6}$	$4-\mathrm{c}\left[\mathrm{t}_{6}, \mathrm{t}_{10}\right]$ and 6.a.ii.- NDep $\left[t_{9}, t_{6}\right]$ and $i\left[t_{1}, t_{9}\right]$	4.46 .10
$\mathrm{t}_{6} \mathrm{t}_{10}$	$\left[\mathrm{t}_{6}, \mathrm{t}_{10}\right]$] Concurrent $\left(Q_{n}\right)$	
$\mathrm{t}_{10} \mathrm{t}_{7}$	6.b- $i\left[t_{10}, t_{7}\right]$	
$\mathrm{t}_{7} \mathrm{t}_{11}$	$\left[t_{11}, t_{7}\right] \in \operatorname{Independent}\left(Q_{n}\right)$	
$t_{11} t_{12}$	6.a.i-NDep $\left[t_{11}, t_{12}\right]$ and $i\left[t_{8}, t_{11}\right],\left[t_{8}, t_{12}\right]$	4.46 .11
	7 using the algorithm 4.6	4.47.12
	The updated model Q_{n}	4.47.13

A new IPN model is computed when the current m-word is completely evaluated by the algorithm, hence the IPN model sequence stated in section 4.3 for the system model Q depicted on figure 4.42 is composed by the models 1,8 and 13 depicted on figures $4.43,4.45$ and 4.47 respectively, which were computed when the m -words w_{1}, w_{2} and w_{3} were processed respectively by algorithm 4.5 . Notice that each one of these models describe the observed behavior of the system, however the last computed model is not equal to Q, this implies that it is needed to obtain more information from Q to update the wrong NDep computed. Notice that with new m-words in which the transitions occurs in different order than in previous m-words computed, the wrong

Figure 4.43: Computed models.

Figure 4.44: Computed models.

Figure 4.45: Computed models.

Steps 4 and 6aii

Figure 4.46: Computed models.

Step 7

Figure 4.47: Computed model.
computed NDep will be removed and also will be updated some computed NDep building then a new model approaching to the real model of the system, this procedure is stated on step 2 of algorithm 4.5.

Chapter 5

Asymptotic identification algorithm

Based on procedures to update a computed model, in this chapter is presented the asymptotic identification algorithm that computes a new IPN model when new information of the system is detected. Each model is computed as the system evolves and it is fulfilled that the current model is more approached to the actual model of the system than the previous computed model.

5.1 Introduction

The previous chapter presented the procedures to update a model when a m-word is computed. Based on the analysis of model updating, the aim of this chapter is to present the complete identification process to compute a new model Q_{i} when new information of the system model Q is provided.
Also, here is stated that when a new model Q_{i} is computed updating the previous computed model Q_{i-1} using the proposed identification process it is fulfilled that $f\left(Q, Q_{i}\right) \leq f\left(Q, Q_{i-1}\right)$, implying that Q_{i} is better approached to Q than Q_{i-1}. Both, identification process and convergence criterion are presented in a theorem. The information provided by the system is represented by the m-words computed. As new information is considered:

1. A new computed m-word
2. A new occurrence order of the transitions in a m-word
3. A new occurrence order of the computed m-words

The next algorithm summarizes the identification process.

Algorithm 5.1 Asymptotic identification approach

1. Read the output symbol $\varphi\left(M_{n}\right)$ generated by the system Q.
2. Detect the output word $o_{i}=\varphi\left(M_{i}\right) \varphi\left(M_{k}\right) \cdots \varphi\left(M_{j}\right)$, such that $\varphi\left(M_{i}\right)=\varphi\left(M_{j}\right)$. (Definition 4.8).
3. For any two consecutive output symbols compute a transition $t_{i}=\varphi\left(M_{i}\right)-\varphi\left(M_{i-1}\right)$. (Proposition 4.3).
4. Compute the m -word $w_{i}=t_{i} t_{j} \cdots$ adding each computed transition in the step above. (Proposition 4.3).
5. Compute the non measurable places. (Identification Step 4.1)
(a) to constrain the firing order of the transitions in w_{i} to the order in which they were computed
(b) to compute the t -component associated with w_{i}.
6. Infer an actual t-semiflow W_{i} of Q concatenating the previous and the current m-words w_{n-1} and w_{n}, due to it is possible that the computed m -word w_{i} in step 4 could not be a t -semiflow of Q. Identification step 4.5.
7. Observe the next output word O_{n} and compute its associated m-word w_{n}. (Definition 4.8 and Proposition 4.3).
8. Update the computed IPN model (computing a new model) with the information provided by the m-word w_{n}, allowing the firing of all computed m-words w_{j}. (Identification step 4.2, algorithm 4.1, identification step 4.3, algorithm 4.2, algorithm 4.6, identification step 4.7, algorithm 4.5, identification step 4.10, identification step 4.11, algorithm 4.5).
(a) computing new measurable places and transitions
(b) removing or adding NDep
i. updating the computed actual t-semiflows

5.2 Asymptotic identification procedure

Theorem 5.1 Let Q be a system model and Q_{n-1} be the proposed model for Q when the m-word w_{n-1} was computed. If w_{n} is the current computed m-word then a new model Q_{n} can be computed updating the previous model Q_{n-1} such that $f\left(Q, Q_{n}\right) \leq f\left(Q, Q_{n-1}\right)$ is fulfilled.

Proof. Let $f\left(Q, Q_{n}\right)=\left|\left\{\varphi C_{Q}\right\}-\left\{\varphi C_{Q_{n}}\right\}\right|+\left|\operatorname{Dep}^{u}(Q)-D e p^{u}\left(Q_{n}\right)\right|+\left|D e p^{u}\left(Q_{i}\right)-D e p^{u}(Q)\right|$ be the identification error of the computed model Q_{n} with respect to the system model Q. At the beginning of the identification procedure the identification error is bounded by the number of columns of the φC matrix of Q and the number of NDep of Q, then the initial error when the computed model is $Q_{0}=\emptyset$ is defined as:

$$
\begin{equation*}
f\left(Q, Q_{0}\right)=\left|\left\{\varphi C_{Q}\right\}\right|+\sum_{\forall p_{i} \in \gamma C_{Q}} a^{i} * b^{i} \tag{5.1}
\end{equation*}
$$

The term $\sum_{\forall p_{i} \in \gamma C_{Q}} a^{i} * b^{i}$ is the number of all NDep of Q, where a^{i} is the number of input transitions of the non measurable place p_{i} and b^{i} is the number of output transitions of the non measurable place p_{i}, notice then that $\left|D e p^{u}(Q)\right|=\sum_{\forall p_{i} \in \gamma C_{Q}} a^{i} * b^{i}$.
The equation 5.1 represents the number of elements of Q in terms of columns of φC matrix and NDep of Q that are missed in the computed model. Since $Q_{0}=\emptyset$ then the term $\left|D e p^{u}\left(Q_{0}\right)-\operatorname{Dep}^{u}(Q)\right|=0$. Hence it is considered as initial error the number of all elements of Q.

Let $\mathcal{W}=\left\{W_{i}\right\}$ be the set of computed t -semiflows when the x th m-word is computed, such that every W_{j} is a concatenation of some selected m-words.

Let \mathcal{T} be the set of all computed m-words; initially $\mathcal{T} \leftarrow \emptyset$
Let Concurrent $\left(Q_{n}\right)$ be the set of all computed concurrent transitions; initially Concurrent $\left(Q_{0}\right) \leftarrow \emptyset$
Let Independent $\left(Q_{n}\right)$ be the set of all computed independent transitions; initially Independent $\left(Q_{0}\right) \leftarrow \emptyset$
A transition t_{i} will be marked as t_{F} when is detected that it is the last transition of any t-semiflow of the system Q.

Let k be the subindex of the t-semiflows on $\mathcal{W} . k \leftarrow 1$.
By induction on the number x of computed m-words, it is presented how the x th IPN model is computed

- Let $x=1$.

1. Computing the φC matrix representing the measurable part (measurable places) of Q_{1}. Use proposition 4.3 to compute the first m-word $w_{1}=t_{1} t_{2} \ldots t_{r}$.
2. $\mathcal{T} \leftarrow \mathcal{T} \cup\left\{w_{1}\right\}$
3. Computing the γC matrix representing the non measurable part (non measurable places) of Q.
(a) Constrain the firing order of the transitions in w_{1} using algorithm 4.1
4. $W_{k}=w_{1}$.

- A new model Q_{1} is determined, where the incidence matrix of Q_{1} is $C_{Q_{1}}$ computed as illustrated in identification step 4.1.
- The error $f\left(Q, Q_{1}\right)$ fulfills that $f\left(Q, Q_{1}\right) \leq f\left(Q, Q_{0}\right)$ since it is ensured that the columns $\varphi C\left(\cdot, t_{i}\right)$ exist in the system by proposition 4.3. So $f\left(Q, Q_{1}\right)=\left(\left|\left\{\varphi C_{Q}\right\}\right|-\left|\left\{\varphi C_{Q_{1}}\right\}\right|\right)<\left(\left|\left\{\varphi C_{Q}\right\}\right|+|\operatorname{Dep}(Q)|\right)=f\left(Q, Q_{0}\right)$, assuming in the worst case that no one of the computed NDep is correct.

By the induction hypothesis, $\forall x<n, f\left(Q, Q_{x}\right) \leq f\left(Q, Q_{x-1}\right)$.
Let $x=n$. Updating the model using the current computed m-word w_{n}

1. Let $\operatorname{Dep}\left(Q_{n}\right)=\operatorname{Dep}\left(Q_{n-1}\right)$ and $Q_{n}=Q_{n-1}$
2. Compute the $n-t h \mathrm{~m}$-word $w_{n}=t_{m} \cdots t_{n}$. Proposition 4.3
3. $\mathcal{T} \leftarrow \mathcal{T} \cup\left\{w_{n}\right\}$

Inferring the non measurable places of Q the γC matrix representing the non measurable part (non measurable places) of Q.
4. Let $w_{n-1}=t_{i} \cdots t_{j}$ and $w_{n}=t_{m} \ldots t_{n}$ be the previous and the current computed m-words.

Case 1: w_{n} is an already computed m-word
(a) If w_{n} is the first m-word of any $W_{i} \in \mathcal{W}$ then
i. If t_{j} is not marked as t_{F} then mark t_{j} as t_{F} which implies that w_{n-1} is the last m-word of some $W_{i} \in \mathcal{W}$ in which w_{n-1} belongs.
ii. $W_{k+1}=w_{n}$.
iii. Restart the algorithm. Compute the next m-word
(b) else if there exists a NDep $\left[t_{j}, t_{m}\right]$ then
i. $W_{k}=W_{k} w_{n}$.
ii. Restart the algorithm. Compute the next m-word

Case 2: $w_{n}=t_{m} \cdots t_{n}$ is a new m-word.
Case a: All or some columns of w_{n} are computed by first time
(a) If there exists not independent transitions. (Definition 4.11 and Proposition 4.17)
i. Compute NDep to preserve the firing order of the transitions in w_{n} using algorithm 4.1. Computing places belonging to the classes A.i and A.ii respectively.
else use algorithm 4.5 to preserve the firing of consecutive transitions which are detected as independent transitions.

Case b: All transitions of w_{n} have been already computed
(a) If $w_{n} \in W_{i}$ and there exists a $W_{j} \neq W_{i}$ such that $\overrightarrow{W_{i}}=\overrightarrow{W_{j}}$ and $w_{n}=t_{m} \ldots t_{n}$ is different of any w_{t} of W_{j} then: Use the algorithm 4.2 to detect the concurrent transitions and to remove the wrong NDep computed in the model Q_{n}.
(b) If $w_{n} \in W_{x}$ and W_{x} is a subset of a t-semiflow W_{y} such that w_{n} is different of any w_{t} of W_{y} then replace W_{x} by W_{i} and W_{y} by W_{j} and use the algorithm 4.2 to detect the concurrent transitions and to remove the wrong NDep computed in the model Q_{n}.
5. Validating the order in which w_{n} has occurred with respect to the others computed m-words to rebuilt the real t -semiflows of Q. Using algorithm 4.4.

A new model Q_{n} is determined: the matrix φC is computed in step 2 while the matrix γC is computed incrementally from step 4 to step 5 .

When new transitions are computed the term $\left|\left\{\varphi C_{Q}\right\}-\left\{\varphi C_{Q_{n}}\right\}\right|$ is reduced while when new NDep are computed the term $\left|\operatorname{Dep}{ }^{u}(Q)-D e p^{u}\left(Q_{n}\right)\right|$ is reduced, however when a computed NDep does not belong to Q the term $\left|\operatorname{Dep}^{u}\left(Q_{n}\right)-\operatorname{Dep}(Q)\right|$ increases.

There exist two cases in where the number $\left|\operatorname{Dep}^{u}\left(Q_{n}\right)-\operatorname{Dep}(Q)\right|$ is increased:
Case 1. When consecutive transitions in a m-word are concurrent transitions and a NDep between them is (wrongly) computed.

In this case the total number of wrong computed NDep is bounded by:

$$
\begin{equation*}
\sum_{\forall T_{i}}\left(\left(c^{i}-1\right) * d^{i}\right)+\left(d^{i}-1\right) \tag{5.2}
\end{equation*}
$$

where T_{i} is a component of Q having concurrent transitions, c^{i} is the number of p-components of T_{i} and d_{i} is the greater number of transitions in any p-component of T_{i}. The number of wrongly computed NDep of this case can remain even if a new m-word is computed, this number will be reduced when m-words of the same t-component T_{i} are computed.

Case 2. When the current m-word w_{n} is concatenated with previous m-word w_{n-1} and w_{n} is not the last m -word of the m -word decomposition of its underlaying t -semiflow.

In this case the term $\left|\operatorname{Dep}^{u}\left(Q_{n}\right)-D e p^{u}(Q)\right|$ is increased in one unity since the NDep $\left[t_{n}, t_{x}\right]$ computed between the last transition of w_{n} and the first transition of the computed t -semiflow in which w_{n-1} belongs t_{n} and t_{y} respectively does not belong to Q.

Hence, the worst case considered is when the current m-word w_{n} has concurrent transitions and it is not the last m -word of its underlying t -semiflow.

The greater number of wrong computed NDep when a new m-word is computed is bounded by:
$\left(\left(c^{i}-1\right) * d^{i}\right)+\left(d^{i}-1\right)+1$. However the value of this term never makes that the global error be greater than the identification error of previous model because 1) the number of computed transitions of a m-word is greater than the number of the NDep that can be wrongly computed i.e. $\left[\left(\left(c^{i}-1\right) * d^{i}\right)+\left(d^{i}-1\right)\right]<(c * d)$ and 2) the wrongly computed NDep $\left[t_{n}, t_{x}\right]$ is removed when the next m-word is computed.

Thus, the error fulfills that $f\left(Q, Q_{n}\right) \leq f\left(Q, Q_{n-1}\right)$ and the theorem holds.

5.3 Example

Consider the system model Q depicted on figure 5.1 the system to be identified. The next table summarizes the steps of the identification procedure to build the system model. Figures from 5.2 to 5.13 show the succesive computed models.

	Output word	m_word	Identification step (Theorem 5.1)	Figure
1.	$w_{1}=\epsilon p_{1} \epsilon$	$m_{1}=t_{1} t_{2}$	4 Case 2-Case a	5.2
2.	$w_{2}=\epsilon p_{2} \epsilon$	$m_{2}=t_{3} t_{4}$	a) 4 Case 2-Case a, b) 5-4	5.3
3.	$w_{3}=\epsilon p_{4} \epsilon$	$m_{3}=t_{6} t_{7}$	a) 4 Case 2-Case a, b) 5-4	
4.	$w_{4}=\epsilon p_{3} \epsilon$	$m_{4}=t_{5} t_{8}$	a) 4 Case 2-Case a, b) 5-4	5.4
5.	$w_{5}=\epsilon p_{5} \epsilon$	$m_{5}=t_{9} t_{10}$	a) 4 Case 2-Case a, b) 5-4	
6.	$w_{6}=\epsilon p_{6} \epsilon$	$m_{6}=t_{11} t_{12}$	a) 4 Case 2-Case a, b) 5-4	
7.	$w_{7}=\epsilon p_{7} \epsilon$	$m_{7}=t_{13} t_{14}$	a) 4 Case 2-Case a, b) 5-4	5.5
8.	$w_{1}=\epsilon p_{1} \epsilon$	$m_{1}=t_{1} t_{2}$	4 Case 1-a	
9.	$w_{2}=\epsilon p_{2} \epsilon$	$m_{2}=t_{3} t_{4}$	4 Case 1-b	
10.	$w_{3-4}=\epsilon p_{3}{ }_{p_{4}}^{p_{3}} p_{3} \epsilon$	$m_{3-4}=t_{5} t_{6} t_{7} t_{8}$	4 Case 2-Case b-a	5.6
11.	$w_{7}=\epsilon p_{7} \epsilon$	$m_{7}=t_{13} t_{14}$	5-3	5.7
12.	$w_{8}=\epsilon p_{8} \epsilon$	$m_{8}=t_{15} t_{16}$	Case 2-Case a and 5-5	5.8
13.	$w_{9}=\epsilon p_{9} \epsilon$	$m_{9}=t_{17} t_{18}$	Case 2-Case a and 5-4	
14.	$w_{10}=\epsilon p_{11} \epsilon$	$m_{10}=t_{21} t_{22}$	Case 2-Case a and 5-4	5.9
15.	$w_{7}=\epsilon p_{7} \epsilon$	$m_{7}=t_{13} t_{14}$	Case 2-Case a and 5-3	5.10
16.	$w_{8}=\epsilon p_{8} \epsilon$	$m_{8}=t_{15} t_{16}$	Case 1-a	
17.	$w_{11}=\epsilon p_{10} \epsilon$	$m_{11}=t_{19} t_{20}$	Case 2-Case a and 5-1	5.11
18.	$w_{10}=\epsilon p_{11} \epsilon$	$m_{10}=t_{21} t_{22}$	Case 2-Case a and 5-1	5.12
19.	$w_{1}=\epsilon p_{1} \epsilon$	$m_{1}=t_{1} t_{2}$	Case 1-a	
	$w_{2-3-4}=\epsilon p_{2}{ }_{p_{4}}^{p_{2}} p_{2} \epsilon / p_{3} \epsilon$	$m_{2-3-4}=t_{3} t_{6} t_{7} t_{4} / t_{5} t_{8}$	Case 1-Case b	5.13

For these output words observed, the computed model is equal to the system.

Figure 5.1: IPN model of the system.

Figure 5.2: Computed model for the first observed ouput word w_{1}.
a) $m_{2}=t_{3} 4$

b)

$W_{1}=m_{1} \mathrm{~m}_{2}$
concurrent

Figure 5.3: Computed model when the output word w_{2} is observed.

Figure 5.4: Computed model when the output words w_{3} and w_{4} were observed.

Figure 5.5: Computed model when the ouput words w_{5}, w_{6} and w_{7} were observed.

Figure 5.6: Computed model when the output words w_{1}, w_{2} and w_{3-4} were observed.

Figure 5.7: Computed model when the output word w_{7} is observed.
a)

Figure 5.8: Computed model when the output word w_{8} was observed.

Figure 5.9: Computed model when the output words w_{9} and w_{10} were observed.

Figure 5.10: Computed model when the output word w_{7} is observed.
a)

b)

Figure 5.11: Computed model when the output word w_{8} and w_{11} were observed.

Figure 5.12: Computed model when the output word w_{10} was observed.

Figure 5.13: Computed model when the output words w_{1} and w_{2-3-4} were observed.

5.4 Complexity analysis

Let Q be a system model and Q_{i} be the computed model from the observed behavior of Q. Next the complexity of each procedure needed to compute a new model are presented.

1. To compute a model first is needed to compute the current m-word w_{n}. The complexity of this procedure is linear in the number of the output symbols observed, due to each transition t_{i} of w_{n} is computed from any two consecutive output symbols $\varphi\left(M_{i-1}\right)$ and $\varphi\left(M_{i}\right)$ as $t_{i}=\varphi\left(M_{i}\right)-\varphi\left(M_{i-1}\right)$. Proposition 4.3.
2. Once w_{n} is computed it is classified as "new" or as "already computed" The procedure to detect if w_{n} is new or it is already computed is linear in the number of m-words computed.
3. When a new m-word is processed two cases are considered : Case 1) when all transitions of w_{n} or some of them are new transitions, and Case 2) when all transitions of w_{n} were already computed in another m -word w_{m}, however the order in which they were computed is different. In this case implies that there exists a m-word $w_{m} \neq w_{n}$ such that $\overrightarrow{w_{m}}=\overrightarrow{w_{n}}$ indicating that there exists concurrent transitions. The procedure to detect if w_{n} is of Case 1 or Case 2 is linear in $\sum_{\forall w_{i} \in T}\left|T_{i}\right|$ where $\left|T_{i}\right|$ is the number of transitions of the m-word w_{i}.

Case 1: In this case it is computed the associated t-component of w_{n}, forming NDep $\left[t_{i}, t_{j}\right]$ between consecutive transitions t_{i} and t_{j} of w_{n} such that $\left[t_{i}, t_{j}\right]$ does not belong to $\operatorname{Dep}\left(Q_{i}\right)$. This NDep can be computed using a new non measurable place or using an already non measurable place. A new non measurable place will be added in the case that there exists not a NDep $\left[t_{i}, t_{k}\right]$ or a NDep $\left[t_{k}, t_{j}\right]$ in $\operatorname{Dep}\left(Q_{i}\right)$ such that t_{i} and t_{j} are not independent transitions. Computing the NDep $\left[t_{i}, t_{j}\right]$ is an unitary operation.
(a) Detecting if $\left[t_{i}, t_{j}\right]$ does not belong to $\operatorname{Dep}\left(Q_{i}\right)$ has complexity linear in the number of dependencies (MDep and NDep) of Q_{i}.
(b) Detecting that t_{i} and t_{j} are not independent transition. To detect that t_{i} and t_{j} are independent transitions it is searched that there exists a t-semiflow in which t_{i} has occurred but not t_{j} and also find out a t -semiflow in which t_{j} has occurred but not t_{i}. The complexity of this procedure is linear in the order of $\sum_{\forall w_{i} \in \mathcal{T}}\left|T_{i}\right|$ where $\left|T_{i}\right|$ is the number of transitions of the m-word w_{i} and τ is the set of all computed m-words.
(c) Detect that if t_{i} has an output non measurable place or if t_{j} has an input non measurable place. This procedure consists on find out a NDep $\left[t_{i}, t_{k}\right]$ or a NDep $\left[t_{k}, t_{j}\right]$ in $D e p^{u}\left(Q_{i}\right)$. Its complexity is linear in the number of NDep in $\operatorname{Dep}^{u}\left(Q_{i}\right)$.

Case 2: In this case it is needed to remove the wrong NDep formed between concurrent transitions. The procedure to remove wrong NDep is an unitary operation. Let t_{i} and t_{j} be consecutive transition in w_{n}, the procedure to detect the wrong NDep consist in determine if there exists a NDep $\left[t_{x}, t_{i}\right]$ or [t_{y}, t_{j}] such that t_{x} and or t_{y} occurs after t_{i} and t_{j} respectively in w_{n}. This procedure is linear in the number of NDep in $\operatorname{Dep}^{u}\left(Q_{i}\right)$.

In both cases w_{n} need to be concatenated with the previous m-word w_{n-1} to preserve the firing order of the m -words. Since in the case 2 all transitions have been already computed then it is possible that w_{n-1} and w_{n} are already concatenated. Then to concatenate w_{n-1} with w_{n} it is searched that:
(a) the NDep $\left[t_{j}, t_{m}\right]$ does not exist in $\operatorname{Dep}\left(Q_{i}\right)$, where t_{j} is the last transition of w_{n-1} and t_{m} is the first transition of w_{n}. This searching is of linear complexity in the number of NDep in $\operatorname{Dep}{ }^{u}\left(Q_{i}\right)$. If the NDep $\left[t_{j}, t_{m}\right]$ does not exists in Q_{i} then the m-word w_{n-1} and
(b) the last transition of w_{n-1} is not marked as t_{F}. This procedure is linear in the number of marked transition as t_{F}.
4. If w_{n} is an already computed m-word then it is needed to verify that the computed model Q_{i} preserve the order in which the m-words are computed. Let $w_{n-1}=t_{i} \cdots t_{j}$ and $w_{n}=t_{m} \cdots t_{n}$ be the current and the previous computed m-words. Since w_{n} is an already computed m -word then it is possible that it occurs in different order than the order in which it was previously computed, then to verify that in $Q_{i} w_{n}$ can occur as it has been observed it is searched the relation with the previous computed m-word w_{n-1} :
(a) If there exists the NDep $\left[t_{j}, t_{m}\right]$ in $D e p^{u}\left(Q_{i}\right)$ then implies that w_{n} has occurred in the same order than its previous computation and hence the model Q_{i} remains without change. The procedure to find out the NDep $\left[t_{j}, t_{m}\right]$ has linear complexity in the number of NDep in $\operatorname{Dep}{ }^{u}\left(Q_{i}\right)$.
(b) However if there exists not a NDep $\left[t_{j}, t_{m}\right]$ in Q_{i}, then implies that now w_{n} has occurred in different order than its previous computation. To compute the NDep $\left[t_{j}, t_{m}\right]$ to preserve the behavior of Q in Q_{i}, it is needed to merge t_{j}^{\bullet} and ${ }^{\bullet} t_{m}$. This procedure is linear in the number of the NDep in $D e p^{u}(Q i)$.

From previous analysis can be stated that the procedure to update a model is of polynomial complexity given by the number of transitions of the current computed m-word, the number of m-words computed and also in the number of computed dependencies. However to compute an actual model Q_{n} for a system model Q it is required that:

1. all the m-words of Q be computed and
2. the m-words be computed in a right order to update correctly the current model.

This requirements makes that the identification problem have the form of a non deterministic polynomial (NP) problem, since even the updating of a model is made in polynomial time, the process to obtain the good m-words in the right sequences in the right order can be viewed as a non deterministic process, this fact is illustrated on figure.5.14.

5.5 Completeness of the identification algorithm

This section is devoted to the study of the completeness of the identification procedure presented in this work. The strategy adopted for updating a model Q_{i} depends on how the current computed m-word w_{n} is related with the previous computed m-word w_{n-1} in other evolutions of the system model Q. The number of relationships

Figure 5.14: Complexity of the identification problem.
between w_{n} and w_{n-1} is reduced and there exists a procedure to obtain a new model Q_{i+1}. Thus it is possible to state the following proposition.

Proposition 5.1 The identification algorithm of theorem 5.1 is complete.
Proof. Let Q be a system model, Q_{i} be the computed model and w_{n-1} and w_{n} be the previous and the current computed m-words. The possible cases in which w_{n} may be related with w_{n-1} can be determined and there exists a procedure to update Q_{i} when w_{n} is computed according to previous evolutions of Q. The table depicted on figure 5.15 summarizes the relations between w_{n-1} and w_{n}.

1. Wx is a new m-word					
	Computed		Example	Procedurs	Class of non measurable plact
w_{n-1}	a. Once or consecutively		$\mathrm{w}_{2} \mathrm{~W}_{3}$	$\begin{gathered} \hline \text { Concatenation } \\ \text { 4.a } \\ \hline \end{gathered}$	B.i ox B.iib
	b. Several times		$w_{a} w_{b} w_{a} w_{c}$	Selection 1	B.iie
	c. Consocutively		$\mathrm{Wra}_{a} \mathrm{~W}_{a} \mathrm{WH}_{\mathrm{b}}$	$\begin{gathered} \text { Concatenation } \\ 4.6 \end{gathered}$	B.ii.b
2. w_{x} is an already computed m-word					
	Computed		Example	Procedure	Class of non measurable place
${ }^{2 \times n-1}$	a. Once		$w_{a} w_{4} w_{a} w_{6} w_{b}$	Attribution 2	B.iie
	b. Several times	i. In the same order		----	
		$\begin{gathered} \text { ii. In another } \\ \text { order } \end{gathered}$	$W_{a} W_{d} W_{c} W_{a} W_{c}$	$\begin{gathered} \text { Merging } \\ \text { 3.b } \\ \hline \end{gathered}$	B.ii.b
	c. Consecutively		$w_{a} w_{4} w_{3} w_{a}$	--	
3. $r_{n-1}=w_{x}$			$W_{a} W_{a}$	Merging $3 \mathrm{a}$	Bii.b

Figure 5.15: Situations of w_{n-1} with respect to w_{n}.

Since it is considered the order in which the m-words can be computed, the non measurable places related with these situations are the non measurable places of Class B, indeed the procedures stated in table 5.15 are the procedures of algorithm 4.4. The non measurable places of Class A are computed when a new m-word is detected.

5.6 Obtaining timed models

This section deals with the computation of timed models for DES in which all places of the system model Q are measurable. Here, it is presented the procedure to compute the durations of the activities of the system.
Each marking M_{i} has associated a time α_{i} being the instant in which M_{i} is detected, i.e. the firing instant of the transition t_{j} that leads to M_{i}. Now, an output symbol ω_{0} will be considered as the pair [$\varphi\left(M_{i}\right), \alpha_{i}$], where $\varphi\left(M_{i}\right)$ is the output generated by the system and α_{i} is the instant in which it was generated.
The time elapse $\alpha_{p_{k}}$ of each place p_{k} will be computed as:

$$
\alpha_{p_{k}}=\alpha_{p_{k}}^{f}-\alpha_{p_{k}}^{0}
$$

where $\alpha_{p_{k}}^{0}$ is the instant in which p_{k} is marked and $\alpha_{p_{k}}^{f}$ is the time in which p_{k} is unmarked. Then $\alpha_{p_{k}}^{0}=\alpha_{i}$ if p_{k} is marked in M_{i} and $\alpha_{p_{k}}^{f}=\alpha_{j}$ if p_{k} is unmarked in M_{j}. This time elapse is the duration of the activity described by the place p_{k}. Each computed time $\alpha_{p_{k}}$ is stored in the set $d_{p_{k}}$, this set will contain all the durations computed for the place p_{k}.
The time associated to each place p_{k} can be computed as the average of the times in $d_{p_{k}}$ or can be computed using a distribution function.
The next algorithm computes an IPN for a DES from the observation of its output symbols and computes the set of durations $t_{p_{k}}$ associated to each place p_{k}.

Algorithm 5.2 Computing a timed IPN model for a DES.

Input: $C_{Q_{n-1}}, t_{p_{k}}$
Output: The updated timed model Q_{n}

1. $C_{Q_{n}}=C_{Q_{n-1}}$
2. $\varphi(M)=\varphi\left(M_{0}\right), i=1$
3. for $k=1 \cdots n$ (n is the number of places)
(a) If $\varphi\left(M\left(p_{k}\right)\right)=1$ then $\alpha_{p_{k}}^{0}=\alpha_{0}$
4. while there exists a marking $\varphi\left(M_{i}\right) \neq \varphi(M)$ until $\varphi\left(M_{i}\right)=\varphi\left(M_{0}\right)$

For $k=1 \cdots n$ (n is the number of places)
(a) If $\varphi\left(M_{i-1}\left(p_{k}\right)\right)=0$ and $\varphi\left(M_{i}\left(p_{k}\right)\right)=1$ then $\alpha_{p_{k}}^{0}=\alpha_{i}$
(b) If $\varphi\left(M_{\imath-1}\left(p_{k}\right)\right)=1$ and $\varphi\left(M_{i}\left(p_{k}\right)\right)=0$ then
i. $\alpha_{p_{k}}^{f}=\alpha_{i}$
ii. $\alpha_{p_{k}}=\alpha_{p_{k}}^{f}-\alpha_{p_{k}}^{0}$
iii. add αp_{k} to $d_{p_{k}}$
iv. reset $\alpha_{p_{k}}^{0}, \alpha_{p_{k}}^{f}$ and $\alpha_{p_{k}}$

Figure 5.16: System model
(c) Computing a column of the incidence matrix $C\left(\bullet, t_{k}\right)=\varphi\left(M_{i}\right)-\varphi(M)$
(d) If $C\left(\bullet, t_{k}\right)$ does not exists in C_{Q} then add it to C_{Q}
(e) $\varphi(M)=\varphi\left(M_{i}\right)$
(f) $i=i+1$

Theorem 5.2 Let Q be a fully observable IPN and Q_{n-1} be the proposed model for Q. If w_{n} is the current m-word then a model Q_{n} can be built using the algorithm 5.2 such that $f\left(Q, Q_{n}\right) \leq f\left(Q, Q_{n-1}\right)$.

Proof. Since Q is a completely measurable IPN, then Q has not non measurable places, hence the term $\left|\operatorname{Dep}^{u}(Q)-\operatorname{Dep}^{u}\left(Q_{n}\right)\right|$ is zero. Thus the error equation 4.1 is reduced to $f\left(Q, Q_{n}\right)=\left|\left\{\varphi C_{Q}\right\}-\left\{\varphi C_{Q_{n}}\right\}\right|$. Since the algorithm in the step 4.b computes a column of $\varphi C_{Q_{n}}$ then $\left|\left\{\varphi C_{Q}\right\}-\left\{\varphi C_{Q_{n}}\right\}\right|<\left|\left\{\varphi C_{Q}\right\}-\left\{\varphi C_{Q_{n-1}}\right\}\right|$ in the case when $C\left(\bullet, t_{k}\right)$ is a new transition or $\left|\left\{\varphi C_{Q}\right\}-\left\{\varphi C_{Q_{n}}\right\}\right|=\left|\left\{\varphi C_{Q}\right\}-\left\{\varphi C_{Q_{n-1}}\right\}\right|$ in the case when $C\left(\bullet, t_{k}\right)$ is an already computed transition, thus it is fulfilled that $f\left(Q, Q_{n}\right) \leq f\left(Q, Q_{n-1}\right)$.
The algorithm 5.2 can be used on-line with the system; its programming is straightforward quickly. The complexity of this algorithm is linear.
Notice that every time a t-semiflow is detected (step 4 of the algorithm) a new model Q_{i} is computed.
Example. Consider Q the system model depicted on figure 5.16 to be identified. The identification steps when the t-semiflow $X_{1}=\left[\begin{array}{lllllllllll}1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]^{T}$ is detected, are presented in figure 5.17. At this moment the model Q_{1} depicted in figure 5.18 is identified.

The time elapses computed for the places in the occurrence of X_{1} are $\alpha_{p_{1}}=2, \alpha_{p_{1}}=3$ and $\alpha_{p_{1}}=4$.
The identification steps when the t-semiflow $X_{2}=\left[\begin{array}{llllllllllll}0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}\right]^{T}$ is detected, are summarized in figures 5.19, 5.20 and 5.21.

The structure of the IPN depicted on figure 5.16 has been computed since all its transitions were computed. The associated durations of the places in the occurrence of X_{1} and X_{2} are the following $d_{p_{1}}=\{2,5\}$, $d_{p_{2}}=\{3\}, d_{p_{3}}=\{4\}, d_{p_{4}}=\{6\}, d_{p_{5}}=\{2\}, d_{p_{6}}=\{8\}, d_{p_{7}}=\{3\}, d_{p_{8}}=\{10\}, d_{p_{9}}=\{4\}, d_{p_{10}}=\{3\}$ and $d_{p_{11}}=\{3\}$.

Figure 5.17: Evaluation of the first observed t -semiflow.

Figure 5.18: Computed model Q_{1}.

Figure 5.20: Identification steps.

$\sigma_{Q_{n}}=\left\{\sigma\left(\bullet, t_{1}\right), \sigma\left(\bullet, t_{2}\right), \sigma\left(\bullet, t_{3}\right), \sigma\left(\bullet, t_{4}\right)\right.$, $C\left(\bullet, t_{t}\right), \sigma\left(\bullet, t_{t^{\prime}}\right), C$
$\left.C\left(\bullet, t_{p}\right), \sigma\left(\bullet, t_{10}\right)\right\}$

Figure 5.21: Identification steps.

Chapter 6

Identifiable DES

This chapter studies the conditions for a system to be identifiable. It includes a description of the structures which cannot be computed using the proposed algorithms, then it is analyzed when non measurable places cannot be computed. A characterization of the sequences allowing to compute all the dependencies of the model is proposed. Finally, an analysis of the influence of event detectability property for identification is presented.

6.1 Introduction

The procedure presented in the previous chapter allows obtaining a Petri net model for an unknown DES. Even if the hypothesis of event detectability is not fulfilled (actually it cannot be determined on an actual unknown system), the obtained model represents the observed behavior of the system; the on-line approach supports the updating of the inferred model if a "new" behavior is observed. Nevertheless it is interesting to analyze the conditions in which a DES can be fully identified by the measurement of its outputs; besides to provide a better understanding of the problem, some results can be useful for addressing other problems.
First at all one must to state which specific structures cannot be detected, such as the self-loops and others that concern the placement of the non measurable places. Furthermore it is important to know the characteristics of the output sequences that guarantee that the whole behavior of a system has been exhibited allowing to compute φC matrix and to infer γC matrix; one of them is event-detectability by the output, a starting hypothesis.

6.2 Non computable structures

This section presents several structures that cannot be computed using the proposed algorithms and discuss this characteristic. First, specific structures are analyzed, then the analysis of implicit non measurable places is presented.

6.2.1 Specific structures

\diamond Simultaneous transition firing

Claim 6.1 Let Q be an IPN and t_{i} and t_{j} be any transitions of Q that can be enabled simultaneously. If t_{i} and t_{j} are fired simultaneously then their firing is detected as the firing of only one transition.

Proof. As presented in proposition 4.2, a transition t_{k} is computed as the difference of consecutive markings $M_{k+1}-M_{k}$, however notice that a change of marking can be generated by the firing of several transitions. Thus, the difference of consecutive markings $M_{k+1}-M_{k}$ only represents the relation of which places must to be dismarked and which places must to be marked to reach M_{k+1} from M_{k}. Hence $M_{k+1}-M_{k}$ is the sum of the columns of C matrix representing the transitions fired from M_{k} leading to reach M_{k+1}. In the case that M_{k+1} is reached with the firing of only one transition t_{k} then $M_{k+1}-M_{k}$ represents the column k of C matrix representing t_{k}. In the identification procedure it is not possible to determine if a change of marking is generated by the firing of one or several transitions because the system is unknown and by difference of consecutive markings the simultaneous firing of t_{i} and $t_{j}\left(t_{i} \| t_{j}\right)$ will be considered as the firing of only one transition.
Previous proposition is illustrated in figure 6.1. If the transitions t_{1} and t_{2} are fired simultaneously in the PN depicted on figure 6.1.a, then will be computed the transition t_{1-2} of the PN depicted on figure 6.1.b. The computed model considering also that t_{1} and t_{2} are not fired simultaneously is depicted on figure 6.1.c.

\diamond Self loops

Claim 6.2 Let Q be an IPN. A self-loop formed with the place p_{i} and the transition t_{j} cannot be computed.

a) Simultaneous enabling

b) Computed transition from simultaneuos firing

c) Computed model

Figure 6.1: Simultaneous firing.

Proof. The proof follows from the fact that a self-loop cannot be described by the incidence matrix of a PN. An element $c_{i j}$ of C is computed as $c_{i j}=c_{i j}^{+}-c_{i j}^{-}$such that $c_{i j}^{+}$is the weight of the arc from t_{j} to p_{i} and $c_{i j}^{-}$is the weight of the arc to the transition t_{j} from the place p_{i}. Since p_{i} is an output place of t_{i} then $c_{i j}^{+}=1$ and since t_{j} is an input transition of p_{i} then $c_{i j}^{-}=1$, hence $c_{i j}=c_{i j}^{+}-c_{i j}^{-}=0$ and then the relationship between p_{i} and t_{j} and viceverse cannot be represented in the incidence matrix of Q and hence it is not possible compute a self-loop.
The situation stated in previous proposition is illustrated in figure 6.2 ; the dependency $\left[t_{2}, t_{2}\right]$ is not computed.

Figure 6.2: PN with a self-loop.

\diamond Mutual exclusion

The PN depicted on figure 6.3 is an example of a mutual exclusion scheme. In such model the processes 1 and 2 are executed in parallel sharing the resource r, the place p_{r} represents this shared resource. The activities a and b represented by the places p_{a} and p_{b} respectively, require the resource r, once the transition t_{a} is fired the activity a is performed and the activity b can be performed when the activity a is finished and the resource r is released. A similar situation can be found when the transition t_{b} is fired, i.e. when r is assigned to the activity b. Notice then that the activities a and b cannot be executed simultaneously. This structure can be computed using the proposed algorithm when p_{r} is a measurable place. Unfortunately when p_{r} is a non measurable place it cannot be computed.

Process 1

Process 2

Figure 6.3: Mutual exclusion scheme.

Claim 6.3 Let Q be an IPN and let p_{r} be a place of Q describing a shared resource. If p_{r} is a non measurable place then it cannot be computed.

Proof. The places describing shared resources are included in mutual exclusions schemes. Hence, consider that Q describes two concurrent processes: proc A and proc B which share the resource r described by the place p_{r}. Consider also that $T_{A}=\left\{t_{a_{1}}, t_{a_{2}}, t_{a_{3}}, \cdots, t_{a_{m}}\right\}$ are the transitions of proc A that cannot be executed in parallel with respect to the transitions of proc B , while $T_{B}=\left\{t_{b_{1}}, t_{b_{2}}, t_{b_{3}}, \cdots, t_{b_{n}}\right\}$ are the transitions of proc B that cannot be executed in parallel with respect to the transitions of the proc A , because its related activities are those requiring the resource r. Since the resource r can be assigned to each process without any order then in a evolution σ_{1} when r is assigned to proc A before to proc B of Q the transitions $t_{a_{1}}, t_{a_{2}}, t_{a_{3}}, \cdots, t_{a_{m}}$ of proc A occur before the transitions $t_{b_{1}}, t_{b_{2}}, t_{b_{3}}, \cdots, t_{b_{n}}$ of proc B , while in another evolution σ_{2} of Q, r could be assigned to proc B before to proc A and hence in σ_{2} the transitions $t_{b_{1}}, t_{b_{2}}, t_{b_{3}}, \cdots, t_{b_{n}}$ of proc B occur before to the transitions $t_{a_{1}}, t_{a_{2}}, t_{a_{3}}, \cdots, t_{a_{m}}$ of proc A.
Notice that $\sigma_{1}=\cdots t_{a_{1}} \cdots t_{a_{m}} \cdots t_{b_{1}} \cdots t_{b_{n}} \cdots$ and $\sigma_{2}=\cdots t_{b_{1}} \cdots t_{b_{n}} \cdots t_{a_{1}} \cdots t_{a_{m}} \cdots$ and hence the place p_{r} cannot be computed because if a NDep is computed to preserve the firing order of the transitions of proc A before the transitions of proc B when σ_{1} is detected then it will be removed with the detection of σ_{2}.

6.2.2 Implicit non measurable places

The identification problem is related with the inference of the non measurable places of the system model Q. This inference is made by sequencing consecutive transitions and/or consecutive m-words, when new information of the system is obtained; then it is needed to remove, merge, or add new non measurable places in order to allow the firing of all computed m-words. However not all the non measurable places of the system can be computed since the information of the measurable places is enough to preserve the order in which the transitions are computed in a m_word.
Consider the system model Q depicted on figure 6.4.a, notice that there exists two t-semiflows represented by the vectors $\left[\begin{array}{lllll}1 & 1 & 0 & 0 & 1\end{array}\right]^{T}$ and $\left[\begin{array}{ccccc}0 & 0 & 1 & 1 & 1\end{array}\right]^{T}$; their associated t-components are depicted on figure 6.4.b.

The next situations show how this system is identified when different places on the net are assumed to be non measurable places.
a)

b)

Figure 6.4: a) System model Q. b) T-components of Q

- Case 1 Consider the system of figure 6.4.a, where the place p_{5} is a non measurable place as depicted on figure 6.5.a. When the output word $w_{1}=\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right]\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 1\end{array}\right]\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right]\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right]$ is observed, the m-word $m_{1}=t_{1} t_{2} t_{5}$ is computed using proposition 4.3. Using the identification theorem 5.1 the only NDep computed is $p_{5}=\left[t_{2}, t_{5}\right]$ since for another pair of consecutive transitions t_{i} and t_{j} there exists a MDep $p_{x}=\left[t_{i}, t_{j}\right]$, i.e. $p_{1}=\left[t_{5}, t_{1}\right]$ and $p_{3}=\left[t_{1}, t_{2}\right]$. The computed model for this output word is depicted on figure 6.5.b. When the output word $w_{2}=\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right]\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right]\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right]\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right]$ is observed, the m-word $m_{2}=t_{3} t_{4} t_{5}$ is computed using proposition 4.3. Using the identification theorem 5.1 no one NDep is computed since for any two consecutive transitions t_{i} and t_{j} in the m-word m_{2} there exists a MDep $p_{x}=\left[t_{i}, t_{j}\right]$, i.e., $p_{1}=\left[t_{5}, t_{3}\right]$, $p_{2}=\left[t_{3}, t_{4}\right]$ and $p_{4}=\left[t_{4}, t_{5}\right]$. The computed model for these output words is depicted on figure 6.5.c.

Figure 6.5: IPN system and the computed models when the ouput words w_{1} and w_{2} are generated by the system.

Figure 6.6: IPN system and the computed models when the ouput words w_{1} and w_{2} are generated by the system.

The computed model for the system depicted on figure 6.5 is not live. In this case the place p_{5} could not be computed correctly since there is no information to form the NDep $\left[t_{3}, t_{5}\right]=p_{5}$.

Case 2 Consider the same system 6.4.a where p_{4} and p_{5} are non measurable places as depicted on figure 6.6.a. When the output word $w_{1}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ is observed, the m-word $m_{1}=t_{1} t_{2} t_{5}$ is computed using proposition 4.3. Using the identification theorem 5.1 the only NDep computed is $p_{5}=\left[t_{2}, t_{5}\right]$ since for another pair of consecutive transitions t_{i} and t_{j} there exists a MDep $p_{x}=\left[t_{i}, t_{j}\right]$, i.e. $p_{1}=\left[t_{5}, t_{1}\right]$ and $p_{3}=\left[t_{1}, t_{2}\right]$. The computed model for this output word is depicted on figure 6.6.b. When the output word $w_{2}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ is observed, the m-word $m_{2}=t_{3} t_{4} t_{5}$ is computed using the proposition 4.3. Using the identification theorem 5.1 the only NDep computed is $p_{4}=\left[t_{4}, t_{5}\right]$ since for another pair of consecutive transitions there exists a MDep, i.e. $p_{1}=\left[t_{5}, t_{3}\right]$ and $p_{2}=\left[t_{3}, t_{4}\right]$. However as t_{5} is a shared transition by the two t-semiflows, then the non measurable places p_{4} and p_{5} must be the same by identification step 4.2 case 2 . The computed model for this output word is depicted on figure 6.6.c. Notice that the arcs $\left(t_{1}, p_{4}\right)$ and $\left(t_{3}, p_{5}\right)$ could not be computed and hence the places p_{4} and p_{5} could not be identified correctly.

The computed model 6.6.c describes the same behavior as the target system depicted on figure 6.6.a, however this model is different to the system model Q, the difference can be found in the γC matrix of the system and the model.
In both cases the non measurable places could not be computed correctly since the dependencies formed by the measurable places is enough to preserve the order in which the transitions were computed. Notice that the non measurable places in the systems above are implicit places. This fact lead to the following proposition.

Proposition 6.1 Let p_{i} be an implicit place of an IPN Q describing a DES, if p_{i} is a non measurable place then it cannot be computed.

Proof. As stated in [53], if p_{i} is an implicit place implies that: 1) its marking can be computed from the marking of others places and 2) never is the place avoiding the firing of its output transitions. This last
condition implies that if there exists a dependency $\left[t_{x}, t_{y}\right]=p_{i}$ also there exists a dependence transition sequence $B=\left[t_{x}, t_{r}\right]\left[t_{r}, t_{s}\right] \cdots\left[t_{u}, t_{y}\right]$ and t_{ν} cannot be fired until the firing of all the transitions of B, hence the only NDep that could be computed related with t_{x} and t_{y} are $\left[t_{x}, t_{r}\right]=p_{s}$ and/or $\left[t_{u}, t_{y}\right]=p_{r}$ in the case where p_{s} and/or p_{r} be non measurable places, and then p_{i} cannot be computed.

Proposition 6.2 A DES described by an IPNQ in which some transition need to be fired simultaneously or Q contains self-loops, non measurable places describing shared resources or implicit non measurable places cannot be fully identified.

Proof. The proof follows from claims 6.1, 6.2 and 6.3 and proposition 6.1.

6.3 Properties of the output sequences

In order to compute a model Q_{i} for a system model Q it is needed that the observed behavior of Q be enough to detect all the transitions and places of Q.
Since the identification procedure is directly related with the computed transition sequences, in this section is presented which are the transition sequences needed to identify a DES.
As introduced in previous chapter the difficulty to identify a model system Q lays on the inference of its non measurable places, i.e. in the inference of its γC matrix. Basically, there exists two main problems that must to be solved to compute the γC matrix:

1. Distinguish which transitions are concurrent transitions.

As introduced in chapter 4 , to detect if any two transitions t_{i} and t_{j} are concurrent it is needed to compute transition sequences in which t_{i} and t_{j} occur in different order, in transition sequences generated by the same t-component of Q. If from the observed behavior of Q it is not possible to distinguish that two transitions t_{i} and t_{j} are concurrent then it is possible that there exists in the computed model Q_{i} a NDep $\left[t_{i}, t_{j}\right]$ that does not belong to Q.
2. Determine how the non measurable places of Q are connected.

The procedures to infer the non measurable places show the importance to observe several occurrences of a same transition sequence (m -word) in order to extract the exact information of how the transitions of a m -word are connected and also to determine how the m-words are related with each other; this is due to the non measurable places are computed to preserve the firing order of the transitions in a m-word and also to preserve the occurrence order of the m-words in which they have occurred. If the non measurable places are not computed correctly then the t-components of Q are not rebuilt correctly causing that the computed model Q_{i} does not generate the complete behavior of Q.

Notice that the possibility to solve these problems depends on the transition sequences fired in Q : if it is possible to determine the dependency relation between places and transitions from the computed transition sequences, then a correct model Q_{i} for Q could be computed. Thus, if the entire behavior of Q is observed then a correct model for Q is computed since the entire dependency relation of Q could be detected. However it is possible to characterize a reduced set of transition sequences that allows to extract the entire information of the relation
dependency between transitions and places of Q. The analysis to find out these transition sequences is based on the t-component decomposition of Q.

6.3.1 Reduced set of transition sequences needed in the identification procedure

Let Q be a system model and let X be the set of all t-components of Q, in order to detect what is the relation between the transitions of Q (i.e. to identify what kind of dependency they are forming), the t-components of X must to be "stimulated" in two ways: 1) in a particular way: for determining how the transitions of a t-component X_{i} are related (if they are sequential or concurrent) and 2) in a general way: for detecting what is the relation of a t-component with respect to the others t-components of the system model Q.
The reduced set of transition sequences needed in the identification procedure allows to find out the entire dependency relation between the transitions of Q.

\bigcirc Individual analysis of a t-component

A t-component could be of sequential or concurrent nature, depending how its transitions are related. If a tcomponent X_{i} is of sequential nature then its transitions are dependent since they represent causal relationships. In this class of t-components there exists only one possible transition sequence in which the transitions can be fired. However if a t-component X_{i} is of concurrent nature, some transitions could occur in different order with respect to another transitions in X_{i}. In this class of t-components there could exist several transition sequences. As a t-component X_{i} is also a net, then it could be decomposed on its p-components (the conservative part of X_{i}). Let Y^{i} be the set of all p-components of X_{i}; by definition the transitions in a p-component are dependent i.e. that there exists a specific order in which they can occur, hence if the t-component X_{i} only has one p-component then X_{i} only can generate one transition sequence, however if X_{i} has more than one p-component then it could generate more than one transition sequence since the transition belonging to different p-components could be concurrent.
These two facts are illustrated below.

Example. Consider the t-components of a system model depicted on figure 6.7. Let X_{1} be the tcomponent composed by the transitions of the t-semiflow $\overrightarrow{X_{1}}=t_{9} t_{10} t_{13} t_{14}, X_{2}$ be the t-component composed by the transitions of the t-semiflow $\overrightarrow{X_{2}}=t_{11} t_{12} t_{13} t_{14}$, and X_{3} be the t-component composed by the transitions of the t-semiflow $\overrightarrow{X_{3}}=t_{1} t_{2} t_{3} t_{4} t_{5} t_{6} t_{7} t_{8}$. These components are depicted separately on figures 6.8.a, 6.8.b and 6.8.c respectively.

The t-components X_{1} and X_{2} have only one p-component Y_{1}^{1} and Y_{1}^{2}, which are the same that their t-components X_{1} and X_{2}, hence the only possible transition sequence generated by X_{1} is $\sigma_{1}=t_{9} t_{10} t_{13} t_{14}$, while the only transition sequence generated by X_{2} is $\sigma_{2}=t_{11} t_{12} t_{13} t_{14}$. The t-component X_{3} has two p-components: Y_{1}^{3} generated by the places of the p-semiflow $\overrightarrow{Y_{1}^{3}}=p_{1} p_{2} p_{3} p_{4} p_{8} p_{9}$ and $\overrightarrow{Y_{2}^{3}}=p_{1} p_{5} p_{6} p_{7} p_{8} p_{9}$, these p-components are depicted on figure 6.9. Notice then that X_{3} can generate the following 6 transition sequences: $\sigma_{3}=t_{1} t_{2} t_{3} t_{4} t_{5} t_{6} t_{7} t_{8}, \sigma_{4}=t_{1} t_{4} t_{5} t_{2} t_{3} t_{6} t_{7} t_{8}, \sigma_{5}=t_{1} t_{2} t_{4} t_{3} t_{5} t_{6} t_{7} t_{8}, \sigma_{6}=t_{1} t_{4} t_{2} t_{5} t_{3} t_{6} t_{7} t_{8}, \sigma_{7}=$ $t_{1} t_{2} t_{4} t_{5} t_{3} t_{6} t_{7} t_{8}, \sigma_{8}=t_{1} t_{4} t_{2} t_{3} t_{5} t_{6} t_{7} t_{8}$.

From previous example it is possible to conclude that

Figure 6.7: System model Q
a) T-component X_{1}

b) T-component X_{2}

Figure 6.8: T-components of the system model Q depicted on figure 6.7.

1. the t-components having more than one p-component could generate more than one transition sequences and
2. the concurrent transitions belongs to different p-components

However if any two transitions belongs to different p-components it does not implies that they are concurrent transitions.

Example. Consider the t-component X_{1} depicted on figure 6.10, it has tree p-components: Y_{1}^{1} generated by the p-semiflow $\overrightarrow{Y_{1}^{1}}=p_{1} p_{2} p_{3} p_{4}, Y_{2}^{1}$ generated by the p-semiflow $\overrightarrow{Y_{2}^{1}}=p_{5} p_{6} p_{7} p_{8}$ and Y_{3}^{1} generated by the p-semiflow $\overrightarrow{Y_{3}^{1}}=p_{2} p_{3} p_{4} p_{6} p_{7} p_{8} p_{9} p_{10}$. These p-components are depicted on figures 6.11.a, 6.11.b and 6.11.c respectively. Notice that the transitions t_{1} and t_{5} belong two different p-components Y_{1}^{1} and Y_{2}^{1} respectively, however they are not concurrent transitions since either t_{1} occurs before t_{5} or t_{5} occurs before t_{1} depending on the initial marking of X_{1}. Given the initial marking of this example t_{1} occurs before t_{5}, hence X_{1} can only generate the transition sequence $\sigma_{1}=t_{1} t_{2} t_{3} t_{4} t_{5}$.
This is related with the fact that there exists a p-component in X_{1} containing both transitions, this p-component is $\overrightarrow{Y_{3}^{1}}$ (figure 6.11.c).

b)

Figure 6.9: P-components of the t-component X_{3} depicted on figure 6.8.c.

Figure 6.10: T-component X_{1}.
Then it is possible to state that two transitions t_{i} and t_{j} belonging to a t-component X_{i} are concurrent if they belong to different p-components and there exist not another p-component containing them; otherwise case t_{i} and t_{j} will be dependent transitions. Also, the number of transitions sequences generated by a t-component depend on how the transitions in a p-component are related with the transitions of another p-component of X_{i}. In order to detect that any two transitions t_{i}, t_{j} are concurrent there must exist at least two sequences σ_{1} and σ_{2} generated by the same t-component X_{i} such that t_{i} occurs before t_{j} in σ_{1} and t_{j} occurs before t_{i} in σ_{2}. Based on the fact that the concurrent transitions belong to different p-components of X_{i}, the next procedure is introduced to find out the transition sequences σ_{1} and σ_{2}.

Algorithm 6.1 Extracting the dependency relation between transitions of a same t-component X_{i}
Inputs: The p-components of X_{i}
Output: The transition sequences σ_{1} and σ_{2}

1. Enumerate the p-components of X_{i}
2. Compute σ_{1} as the firing of the transitions of each p -component following the enumeration.
3. Compute σ_{2} as the firing of the transitions of each p-component following the reverse order of the enumeration.
4. If any transition t_{x} cannot be fired in the $i t h \mathbf{p}_{-}$component then fire the transitions of the \mathbf{p}-component $i+1$ or $i-1$ (depending of which transition sequence is being computed) until t_{x} can be fired.
a)

b)

c)

Figure 6.11: P-components of the t-component X_{1} depicted on figure 6.10.

Notice that even the t-component X_{i} would have more than two p-components, the number of transition sequences computed using algorithm 6.1 always will be two: σ_{1} and σ_{2}.

Example. Consider the t-component X_{i} depicted on figure 6.12. In order to compute the transition sequences σ_{1} and σ_{2}, consider only the p-components Y_{1}^{i}, Y_{2}^{i} and Y_{3}^{i} generated by the p-semiflows: $\overrightarrow{Y_{1}^{i}}=$ $p_{1} p_{2} p_{3} p_{4}, \overrightarrow{Y_{2}^{2}}=p_{5} p_{6} p_{7} p_{8}$ and $\overrightarrow{Y_{3}^{2}}=p_{9} p_{10} p_{11} p_{12}$ respectively. Assume that the enumeration of the $\mathrm{p}-$ components is the same as the order in which they are presented. As stated in step 2 of the algorithm 6.1 the transition sequence σ_{1} is computed firing the transitions of Y_{1}^{i} before the transitions of Y_{2}^{i}, firing the transitions of Y_{2}^{i} before the transitions of Y_{3}^{i} and finally firing the transition of Y_{3}^{i} whenever is possible. To fire t_{1} it is needed to fire the transition t_{4}, then t_{4} is the first transition fired, following with the transitions of Y_{1}^{i} the transitions t_{1}, t_{2} and t_{3} can be fired without the firing of transitions belonging to another p component. The next transitions that need to be fired are the transitions of the p-component Y_{2}^{i}, since the transition t_{4} was already fired then the transitions t_{5} and t_{6} are fired; notice that the transition t_{5} can be fired because the transition t_{3} was already fired. Next, the transitions of Y_{3}^{i} are fired: the transitions t_{7}, t_{8}, t_{9} can be fired without restrictions; finally the transition t_{10} is fired. Hence the first transition sequence is $\sigma_{1}=t_{4} t_{1} t_{2} t_{3} t_{5} t_{6} t_{7} t_{8} t_{9} t_{10}$.

The transition sequence σ_{2} is computed as stated in the step 3 of the algorithm 6.1 firing the transitions of Y_{3}^{i} before the transitions of Y_{2}^{i}, firing the transitions of Y_{2}^{i} before the transitions of Y_{1}^{i} and finally firing the transitions of $Y_{1}{ }^{i}$ whenever is possible. The transitions t_{7}, t_{8} and t_{9} can be fired before any other transition belonging to other p-component, the next transitions to be fired are the transitions of $Y_{2}^{i}: t_{4}$ can be fired but not the transition t_{5} since the transition t_{3} must be fired before t_{5}, then the transitions t_{1}, t_{2} and t_{3} are fired before t_{5}; next the transition t_{6} can be fired. Notice that all the transitions of Y_{1}^{i} were already fired then it is needed to fire the transition t_{10}. Hence, the second transition sequence is

Figure 6.12: T-component X_{i}.
$\sigma_{2}=t_{7} t_{8} t_{9} t_{4} t_{1} t_{2} t_{3} t_{5} t_{6} t_{10}$.
Notice that in previous example to compute the transition sequences σ_{1} and σ_{2} were not used all the pcomponents of X_{i} The p-components selected were those forming the minimum set covering all the transitions of X_{i}. The other p-components are those describing the possible order in which the transitions can occur. Then the computation of these transition sequences is related to the problem to find out the minimum set of p-components covering all the transitions of X_{i}.
Since the transitions shared by p-components are sequential transitions it is needed to focus on the segments of a t-component in which the transitions could occur in different order.
The analysis to determine the minimum set of p -components covering all the transitions of a t-component X_{i} is based on the decomposition of a t-component X_{i} in its fork-joint subnets $t_{j}-t_{k}$ for each pair of fork-joint transitions t_{j} and t_{k}.
There could exists several kind of subnets generated by a pair of fork-joint transitions depending on how the external transition of this pair are related. Here will be considered those pairs such that if they are merged, all the transitions in the resulting net remain connected.

Example. Consider the t-component depicted on figure 6.13. The first pair of fork-joint transitions detected is the pair $t_{3}-t_{18}$. Inside of this pair there exists the pairs: $t_{5}-t_{10}, t_{12}-t_{17}, t_{12}-t_{10}$ and $t_{3}-t_{17}$, however the only pair considered is the pair $t_{5}-t_{10}$ since if the transition t_{5} and t_{10} are merged the transitions remain connected. However for the others pairs this is not possible: consider the pair $t_{12}-t_{17}$ if they are merged, the transitions t_{4} and t_{11} result in disconnected transitions. These facts are illustrated on figures 6.14.a and 6.14.b respectively.

A procedure to select the p-components containing disjoint transitions between the pairs fork-joint, is given below:

Figure 6.13: T-component X_{i}
a)

b)

Figure 6.14: Merging fork-joint transitions.

Algorithm 6.2 Computing the minimum set of p-components of a t-component X_{i} covering all transition of X_{i}

1. Detect the subnets $t_{i}-t_{j}$ delimited by the fork-joint transitions t_{i} and t_{j} in X_{i}
2. If a subnet $t_{i}-t_{j}$ contains another subnet $t_{x}-t_{y}$ then assume that $t_{x}-t_{y}$ is just a transition inside of $t_{i}-t_{j}$ and select the p-components containing the disjoint transitions in $t_{i}-t_{j}$, next select from those p -components including $t_{x}-t_{y}$, the p-components in which the transitions of $t_{x}-t_{y}$ are disjoint. else select the p-components with disjoint transitions in $t_{i}-t_{j}$

Example. Consider again the t-component X_{i} depicted on figure 6.13. The transitions of each pcomponent of X_{i} are presented in the next table.

P-components	Transitions
Y_{1}^{i}	$t_{1} t_{2} t_{3} t_{4} t_{5} t_{6} t_{7} t_{10} t_{11} t_{18} t_{19} t_{20}$
Y_{2}^{i}	$t_{1} t_{2} t_{3} t_{4} t_{5} t_{8} t_{9} t_{10} t_{11} t_{18} t_{19} t_{20}$
Y_{3}^{i}	$t_{1} t_{2} t_{3} t_{12} t_{13} t_{14} t_{15} t_{16} t_{17} t_{18} t_{19} t_{20}$
Y_{4}^{i}	$t_{1} t_{2} t_{3} t_{4} t_{5} t_{6} t_{7} t_{10} t_{17} t_{18} t_{19} t_{20}$
Y_{5}^{i}	$t_{1} t_{2} t_{3} t_{4} t_{5} t_{8} t_{9} t_{10} t_{17} t_{18} t_{19} t_{20}$
Y_{6}^{i}	$t_{1} t_{2} t_{3} t_{12} t_{5} t_{6} t_{7} t_{10} t_{11} t_{18} t_{19} t_{20}$
Y_{7}^{i}	$t_{1} t_{2} t_{3} t_{12} t_{5} t_{8} t_{9} t_{10} t_{17} t_{18} t_{19} t_{20}$
Y_{8}^{i}	$t_{1} t_{2} t_{3} t_{12} t_{5} t_{6} t_{7} t_{10} t_{17} t_{18} t_{19} t_{20}$
Y_{9}^{i}	$t_{1} t_{2} t_{3} t_{12} t_{5} t_{8} t_{9} t_{10} t_{17} t_{18} t_{19} t_{20}$

The subnet $t_{3}-t_{18}$ is the first subnet detected, this subnet includes the subnet $t_{5}-t_{10}$, then this transitions are merged resulting the t-component depicted on figure 6.14.a. The p-components having disjoint transitions in $t_{3}-t_{18}$ are the p-components Y_{1}^{i}, Y_{2}^{i} and Y_{3}^{i}. Notice that Y_{1}^{i} and Y_{2}^{i} are same pcomponent in the t-component where the transitions t_{5} and t_{10} were merged (figure 6.14.a) by this reason these two p-components are considered.

Considering this enumeration the transitions sequences σ_{1} and σ_{2} computed using algorithm 6.1 are the following:

$$
\begin{aligned}
& \sigma_{1}=t_{1} t_{2} t_{3} t_{4} t_{12} t_{5} t_{6} t_{7} t_{8} t_{9} t_{10} t_{11} t_{13} t_{14} t_{15} t_{16} t_{17} t_{18} t_{19} t_{20} \\
& \sigma_{2}=t_{1} t_{2} t_{3} t_{12} t_{13} t_{14} t_{15} t_{16} t_{4} t_{5} t_{8} t_{9} t_{6} t_{7} t_{10} t_{17} t_{11} t_{18} t_{19} t_{20}
\end{aligned}
$$

Proposition 6.3 Let X_{i} be a t-component of an IPN Q. The transition sequences σ_{1} and σ_{2} computed using algorithm 6.1 allows to determine which transitions are concurrent transitions.

Proof. By construction of σ_{1} and σ_{2}, if t_{i} and t_{j} are concurrent transition in X_{i} then in any of these transition sequences t_{i} occurs before t_{j} and in the other t_{j} occurs before t_{i} because they belong to different p-components of X_{i}.

\diamond Global analysis of \mathbf{t}-components of the system model

In previous section it was studied the relation between transitions of a same t-component, now it is important to determine the correct relation between the t-components of a system model Q to compute correctly the places forming complex NDep in Q; the single NDep are computed correctly when two transitions occurs consecutively. During the identification process it could happen that:

1. some NDep formed with a non measurable place p_{k} of Q has not been computed, resulting a non measurable place computed incompletely in the model Q_{i} because even the NDep computed belong to Q this place is not a place of Q since are missed some 1 s or -1 s in the row i of the incidence matrix of Q_{i}.
2. the m-words which are actual t-semiflows of the system are concatenated with the previous m-word leading to compute a wrong non measurable place since it does not belong to Q.

The solution of both problems is related with the information provided by the system, i.e. with the computed transitions sequences. Consider that w_{n} is the current computed m-word. In the first case the missed NDep has not been computed because some m-words sharing transitions with m-words already computed have not
been detected. Then it is needed to compute the transition sequence related with the missed m-words. While in the second case it is needed that in a posterior evolution of Q, w_{n} occurs before w_{n-1} to compute the NDep indicating that after w_{n-1}, w_{n} can occur, and also that w_{n} can occur without the occurrence of w_{n-1} since w_{n} is an actual t-semiflow of Q.
The non measurable places related with these problems belong to the class B.ii.a and B.ii.b respectively.
The reduced set of transition sequences needed to identify the non measurable places of the classes A.i, A.ii and B.i is formed by sequences in which each transition is fired once. However for the non measurable places of classes B.ii.a and B.ii.b, the reduced set of transition sequences required to identify such places is that in which is enough to compute all the t-components of Q.
Considering X the set of t -components of Q, one transition sequence allowing the detection of the t -components could be: $\overrightarrow{X_{1}} \overrightarrow{X_{2}} \cdots \overrightarrow{X_{n}} \overrightarrow{X_{n}} \overrightarrow{X_{n-1}} \cdots \overrightarrow{X_{2}} \overrightarrow{X_{1}}$, where each X_{i} is a t-component of Q. Notice that in this sequence each t-component evolves in different order with respect to the others t-components of Q.

Example. Consider the system model Q depicted on figure 6.15. Since the t -semiflows of Q are the same as its m-words, then a reduced transition sequence $\overrightarrow{X_{1}} \overrightarrow{X_{2}} \cdots \overrightarrow{X_{n}} \overrightarrow{X_{n}} \overrightarrow{X_{n-1}} \cdots \overrightarrow{X_{2}} \overrightarrow{X_{1}}$ of Q is $w_{1} w_{2} w_{3} w_{4} w_{4} w_{3} w_{2} w_{1}$. On figures $6.16,6.17,6.18$ and 6.19 are depicted the models computed when the m -words of in the reduced transition sequence are computed. The model of Q is computed after the m_{-}word w_{2} is already computed.

Figure 6.15: System model Q.

Figure 6.16: Computed models when the m_{-}words w_{1} and w_{2} were computed.

- The reduced transition sequence is computed with the following algorithm.

Algorithm 6.3 Computing the reduced set of transition sequences needed to identify a system model Q

$$
\text { c) } W_{1} W_{2} W_{3}
$$

Figure 6.17: Computed model when the m_{-}word w_{3} is computed.
d) $W_{1} W_{2} W_{3} W_{4}$

Figure 6.18: Model computed when the m_{-}word w_{4} is computed.

Input: The set of t -components of Q.
Output: The reduced set of transition sequences needed to identify a model system Q

1. Compute the transition sequences σ_{1}^{i} and σ_{2}^{i} using algorithm 6.1 for each t-component X_{i} of Q.
2. Then the sequence $\overrightarrow{X_{1}} \overrightarrow{X_{2}} \cdots \overrightarrow{X_{n}} \overrightarrow{X_{n}} \overrightarrow{X_{n-1}} \cdots \overrightarrow{X_{2}} \overrightarrow{X_{1}}$ will be equal to $\sigma_{1}^{1} \sigma_{1}^{2} \cdots \sigma_{1}^{n} \sigma_{2}^{n} \sigma_{2}^{n-1} \cdots \sigma_{2}^{2} \sigma_{2}^{1}$

Then, the reduced set of transition sequences needed to identify a system model denoted as TSeq is

$$
T S e q=\sigma_{1}^{1} \sigma_{1}^{2} \cdots \sigma_{1}^{n} \sigma_{2}^{n} \sigma_{2}^{n-1} \cdots \sigma_{2}^{2} \sigma_{2}^{1}
$$

This transition sequence provides the needed information to detect the concurrent transitions and the non measurable places.

Proposition 6.4 Let Q be a system model, the set TSeq allows to determine the relation of the transitions of each t-component X_{i} of Q and also the inference of the non measurable places.

Proof. Since in TSeq are considered the sequences σ_{1}^{i} and σ_{2}^{i} of each t -component X_{i} then the relation between transitions of each t-component can be determined, this follows from proposition 6.3. Notice also that in TSeq, each t-component occurs in different order with respect to the others t-components Q, allowing to update the NDeps formed sequencing consecutive m-words.

Proposition 6.5 Let Q be a system model and $S=\overrightarrow{X_{i}} \sigma_{1}^{1} \overrightarrow{X_{i}} \sigma_{1}^{2} \overrightarrow{X_{i}} \cdots \overrightarrow{X_{2}} \sigma_{1}^{n} \overrightarrow{X_{i}} \sigma_{2}^{n} \overrightarrow{X_{i}} \sigma_{2}^{n-1} \overrightarrow{X_{i}} \cdots \overrightarrow{X_{i}} \sigma_{2}^{2} \overrightarrow{X_{i}} \sigma_{2}^{1} \overrightarrow{X_{i}}$ be a transition sequence computed from the observed behavior of Q, where X_{i} is any t-component of Q. Then S has the same property than TSeq.

Proof. Since in S is preserved the occurrence order of the t-components in TSeq then in S the transitions of a t-component occurs in different order and also all the transitions of any t-component occur before and after the transitions of the others t-components allowing the detection of all dependencies of Q.

Figure 6.19: Computed model for the sequence $w_{1} w_{2} w_{3} w_{4} w_{4}$.

However it is possible that another set of transition sequences not including TSeq allows to compute a correct model for Q, implying that a combination of the transition sequences in this set also provide the entire information about the dependency relation of the transitions in Q.

Example. Consider the system model Q depicted on figure 6.20. The $T S e q$ of Q is $T S e q=\sigma_{1} \sigma_{2}$, where $\sigma_{1}=t_{1} t_{2} t_{3} t_{4} t_{5}$ and $\sigma_{2}=t_{3} t_{4} t_{1} t_{2} t_{5}$ are the transition sequences computed using algorithm 6.1. With TSeq a model for Q could be computed since the concurrent transitions occur in different order. However consider the set of transition sequences $S T$ Seq $=\sigma_{a} \sigma_{b} \sigma_{c}$ where $\sigma_{a}=t_{1} t_{2} t_{3} t_{4} t_{5}, \sigma_{b}=t_{1} t_{3} t_{4} t_{2} t_{5}$ and $\sigma_{c}=t_{3} t_{1} t_{2} t_{4} t_{5}$. Notice that the sequences of $S T S e q$ also allow to compute a model for Q. The transitions t_{1} and t_{4} are concurrent transitions, however it could seem that they are dependent transitions since in the transitions sequences of STSeq t_{4} appears always after t_{1}, however notice that a dependence between t_{1} and t_{4} never is computed since they never occur consecutively.

Figure 6.20: System model Q.
If the input signal given to a system model Q is not an excitation persistent input signal then it could occur that:

1. Some t -component is not excited at all

In this case neither the columns of the φC matrix related with the transitions of this t-component nor the rows of γC matrix related with the non measurable places of this t-component can be computed because it is not observed the behavior generated by this cycle.

Example. Consider the system model Q depicted on figure 6.21. Assume that the input signal allows to generate the transition sequences $w_{1}=t_{7} t_{8}, w_{2}=t_{9} t_{10}, w_{3}=t_{11} t_{12}, w_{2}=t_{9} t_{10}$ and

Figure 6.21: System model Q.
$w_{4}=t_{13} t_{14}$. The computed model is depicted on figure 6.22. Even the computed model generates the observed behavior of Q (figure 6.21), the model is not complete since the input signal did not excite the t -component containing the transitions $t_{1}, t_{2}, t_{3}, t_{4}, t_{5}$ and t_{6}.

Figure 6.22: Computed model.
2. A t-component is partially excited.

In this case some NDep have not been computed since a t-component that shares transitions with an already computed t-component has not been computed.

Example. Consider the system depicted on figure 6.21. Assume that the next sequence of m -words has been detected: $w_{1}=t_{1} t_{2} t_{4} t_{3} t_{5} t_{6}, w_{2}=t_{1} t_{4} t_{5} t_{2} t_{3} t_{6}, w_{3}=t_{13} t_{14}, w_{4}=t_{7} t_{8}, w_{5}=t_{9} t_{10}, w_{3}=$ $t_{13} t_{14}$. Then the computed model is depicted on figure 6.23. Notice that the non measurable places p_{1} and p_{9} are not computed correctly since the transition sequence of the t-component $X_{k}=t_{11} t_{12} t_{9} t_{10}$ has not been computed.
3. Not all the t -components are excited correctly

In this case it is possible that all the columns of φC matrix can be computed (if they were computed at least once), however it could occur that some non measurable places are computed wrongly because the

Figure 6.23: Computed model.
information captured from the evolution of the system is not enough to remove, update or compute a new NDep.

Example. Consider again the system model Q depicted on figure 6.21. Assume that the input signal allows to compute the next sequence of m -words: $w_{1}=t_{1} t_{2} t_{4} t_{3} t_{5} t_{6}, w_{2}=t_{13} t_{14}, w_{3}=t_{7} t_{8}$, $w_{4}=t_{9} t_{10}, w_{5}=t_{11} t_{12}, w_{4}=t_{9} t_{10}$ and $w_{3}=t_{7} t_{8}$. The computed model is depicted on figure 6.24. Notice that this model describes the observed behavior of Q.

Figure 6.24: Computed model.

Even the matrix φC is computed correctly due to all transitions of the system model were fired, it could occurs that some non measurable places are wrongly computed. These non measurable places are described below.
a. The non measurable places forming NDep between concurrent transitions such as the places forming the NDep $\left[t_{2}, t_{4}\right],\left[t_{4}, t_{3}\right]$ and $\left[t_{3}, t_{5}\right]$ in the computed model depicted on figure 6.24. This occurs because it has not been computed another m-word w_{x} such that the concurrent transitions occur in different order, if the m-word $w_{x}=t_{1} t_{4} t_{5} t_{2} t_{3} t_{6}$ is computed then this wrong NDep will be removed.
b. The non measurable places concatenating t-components of Q that forms only one t-component in the computed model. In this example, the t-component $X_{k}=t_{13} t_{14}$ has not been connected correctly, notice that the place ${ }^{\bullet} t_{13}$ does not belong to Q. This occurs because it has not been computed the m -word w_{2} before the m-word w_{1}.

6.4 Characterization of identifiable systems

Definition 6.1 A DES is said to be identifiable by the output iff all the internal changes performed into the system are detected through the outputs and the measured output sequences are enough to compute all dependencies and to remove all the NDep wrongly inferred.

This definition involves the topics addressed in previous discussions; the internal changes can be detected through the output if the hypothesis H_{2} and H_{3} stated in section 4.1 hold and there are not non-computable structures as described in section 6.2. The second condition refers to the sequences allowing to compute correctly all the measurable and non-measurable dependencies and to eliminate all the wrong NDep inferred during the identification process. This way it is immediate to state the following characterization.

Proposition 6.6 If a system model Q is identifiable then a) Q is event-detectable by the output b) no transitions of Q are fired simultaneously, Q does not contain self-loops and neither non measurable places describing shared resources nor non measurable implicit places exist in Q, and c) the computed transition sequence detected from the behavior of Q is $S=\overrightarrow{X_{i}} \sigma_{1}^{1} \overrightarrow{X_{i}} \sigma_{1}^{2} \overrightarrow{X_{i}} \cdots \overrightarrow{X_{i}} \sigma_{1}^{n} \overrightarrow{X_{i}} \sigma_{2}^{n} \overrightarrow{X_{i}} \sigma_{2}^{n-1} \overrightarrow{X_{i}} \cdots \overrightarrow{X_{i}} \sigma_{2}^{2} \overrightarrow{X_{i}} \sigma_{2}^{1} \overrightarrow{X_{i}}$

Proof. a) Follows from hypothesis of work H_{2} and from proposition 4.1. b) Follows from hypothesis of work H_{3} and from proposition 6.2 and c) Follows from proposition 6.5.

The previous proposition provides only sufficient conditions for identifiable DES. A complete characterization could be possible if one could characterize all the non-computable structures concerning the placement of non measurable places. This a difficult issue that deserves a more long and depth study on redundancy of the structures (such as implicit non measurable places).

6.5 Identification of non event detectable DES

As presented in chapter 4 the first stage of the identification procedure is to compute the measurable part of the system model Q as it is evolving, the measurable part is represented by the φC matrix of Q, each column of this matrix is computed from any two consecutive output symbols generated by Q as stated in proposition 4.3. However it is possible that some transitions have not effect over the measurable places and hence there could not be detected any change of state at the output of Q and hence those transitions cannot be computed from the output of Q, also it is possible that some transitions have the same measurable part being impossible to distinguish them from the output. Hence, for the identification procedure it is desirable that each transition in the system model Q be distinguishable from another transition from the output information of Q. The condition under which it is possible to detect and distinguish any transition of a system model Q is that it fulfills the event-detectability property introduced in [1].

Definition 6.2 Let Q be an IPN. Q is event-detectable iff all columns of φC_{Q} matrix are not null and different from each other.

As stated in previous definition, there exist two cases for a system model Q does not fulfill the event-detectability property: case 1) that there exists a null column in φC_{Q} or case 2) that two or more columns in φC_{Q} be equal. A deeper analysis of these two cases are presented below.

6.5.1 Null columns in φC matrix

The incidence matrix C of an IPN Q describes the relation between the places and the transitions of Q. Thus the elements in the incidence matrix have the following meaning:
$C[i, j]=\left\{\begin{aligned}-1 & p_{i} \text { is an input place of } t_{j}, \text { and hence } t_{j} \text { removes marks from } p_{i} \\ 1 & p_{i} \text { is an output place of } t_{j}, \text { and hence the firing of } t_{j} \text { add marks to } p_{i} \\ 0 & p_{i} \text { and } t_{j} \text { are not related, and hence } t_{j} \text { does not affect the marking of } p_{i}\end{aligned}\right.$
Assume that there exists a null column i in φC, i.e. $\varphi C[k, i]=0$ for every non measurable place p_{k} of Q, then the firing of the transition t_{i} has no effect over the measurable places of Q since t_{i} does not remove or add marks to some measurable place.
The effect produced by a null column i of the φC matrix in the identification problem is that the transition t_{i} represented by that column cannot be computed using the output information of Q. This claim is based on the fact that a transition is computed from the output symbols of Q as the difference of any two consecutive output symbols (proposition 4.3), however if the firing of a transition t_{i} from a marking M_{k} has no effect over the measurable places, then its firing does not modify the output since the output symbol generated by the reached marking M_{k+1} is the same as the output symbol generated by the marking M_{k}.
Consider that the transition t_{i} of Q fulfills $\varphi C \overrightarrow{t_{i}}=0$, i.e. i is a null column of φC matrix, and $M_{k} \xrightarrow{t_{i}} M_{k+1}$. In order to compute the transition t_{i} as $\varphi C \overrightarrow{t_{i}}=\varphi M_{k+1}-\varphi M_{k}$ notice that:

$$
\begin{array}{ll}
M_{k+1}=M_{k}+C \vec{t}_{i} & \text { (state equation) } \\
\varphi M_{k+1}=\varphi\left(M_{k}+C \vec{t}_{i}\right) & \text { (applying } \varphi \text { to both sides) } \\
\varphi M_{k+1}=\varphi M_{k}+\varphi C \overrightarrow{t_{i}} & \text { (since } \varphi \text { is linear) } \\
\varphi M_{k+1}=\varphi M_{k} & \text { (since } C \vec{t}_{i}=0 \text {) }
\end{array}
$$

Then the transition t_{i} cannot be computed from the output symbols of Q since it is not detected any change of marking in Q due to $\varphi M_{k+1}=\varphi M_{k}$ i.e. the observed output symbol generated by the marking reached with the firing of t_{i} is the same as the output symbol generated by the previous marking

Example. Consider the system model depicted on figure 6.25. The output symbol generated by the initial marking $M_{0}=\left[\begin{array}{llllll}0 & 0 & 0 & 1 & 0 & 1\end{array}\right]^{T}$ of Q is $\varphi M_{0}=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$ since no measurable place is marked in M_{0}. Assume that the transition t_{1} is fired; then Q reaches the marking $M_{1}=\left[\begin{array}{cccccc}0 & 0 & 0 & 0 & 1 & 1\end{array}\right]^{T}$ The generated output symbol is $\varphi M_{1}=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$ due to the new marked place is p_{5} and it is a non measurable place. Notice that $\varphi M_{0}=\varphi M_{1}$ then it is not possible to detect that a change of state had occurred in Q from its output symbols. Notice also that the column 1 of the φC matrix depicted on figure 6.25 is a null column and hence t_{1} does not add or remove marks from the measurable places of Q.

- The computed model in this case will be as that depicted on figure 6.26.

By previous illustration it is possible to state that if there exists a null column in the φC matrix of a model system Q then:

- there exist at least two consecutive markings generating the same output symbol since the transition represented by the null column has no effect over the measurable places, like the markings M_{0} and M_{1} of previous example due to $M_{0} \xrightarrow{t_{1}} M_{1}$ and $\varphi M_{0}=\varphi M_{1}$

Figure 6.25: System model Q.

Model Q_{i}

Figure 6.26: Computed model for the system model Q depicted on figure 6.25.
all the input and output places of the transition t_{i} represented by the null column in φC matrix are non measurable places.

6.5.2 Equal columns in φC matrix

If there exist two or more columns j and k in the φC matrix of a system model Q such that they are equal columns, i.e. $\varphi C \overrightarrow{t_{j}}=\varphi C \overrightarrow{t_{k}}$, implies that the firing of t_{j} and the firing of t_{k} have the same effect over the measurable places of Q. The effect caused by this problem in the identification procedure is that these two transitions will be considered as the same transition due to they cannot be distinguished from the output of Q. Consider that $\varphi C \overrightarrow{t_{i}}=\varphi C \overrightarrow{t_{j}}$, i.e. i and j are equal columns in φC matrix, and $M_{i} \xrightarrow{t_{i}} M_{i}^{\prime}$ and $M_{j} \xrightarrow{t_{j}} M_{j}^{\prime}$. In order to compute the transitions t_{i} and t_{j} from the output symbols notice that:

$$
\begin{array}{ll}
M_{i}^{\prime}=M_{i}+C \overrightarrow{t_{2}} & \text { (state equation) } \\
M_{j}^{\prime}=M_{j}+C t_{j} & \\
\varphi M_{i}^{\prime}=\varphi\left(M_{i}+C \overrightarrow{t_{i}}\right) & \text { (applying } \varphi \text { to both } \\
\varphi M_{j}^{\prime}=\varphi\left(M_{j}+C \overrightarrow{t_{j}}\right) & \\
\varphi M_{i}^{\prime}=\varphi M_{i}+\varphi C \overrightarrow{t_{i}} & \text { (since } \varphi \text { is linear) } \\
\varphi M_{j}^{\prime}=\varphi M_{j}+\varphi C \overrightarrow{t_{j}} & \text { (since } C \overrightarrow{t_{i}}=C \overrightarrow{t_{j}} \text {) } \\
\varphi M_{i}^{\prime}-\varphi M_{i}=\varphi M_{j}^{\prime}-\varphi M_{j} &
\end{array}
$$

Then the transitions t_{2} and t_{j} cannot be distinguished from the output symbols since $\varphi M_{i}^{\prime \prime}-\varphi M_{i}=\varphi M_{j}^{C t_{j}}-\varphi M_{j}$, i.e. they are computed as the same transition.

Example. Consider the system model Q depicted on figure 6.27. The t-components of Q are depicted on figure 6.28. The generated output symbols by the t-component X_{1} of Q when the transitions t_{1}, t_{2} and t_{5} are fired are: $\left[\begin{array}{l}0 \\ 0\end{array}\right]\left[\begin{array}{l}1 \\ 0\end{array}\right]\left[\begin{array}{l}1 \\ 1\end{array}\right]\left[\begin{array}{l}0 \\ 0\end{array}\right]$ and the m-word computed from this output symbols

Figure 6.27: System model Q with equal columns in φC matrix.

Figure 6.28: T-components of the system model Q depicted on figure 6.27.
is $w_{1}=\left[\begin{array}{c}t_{1} \\ 1 \\ 0\end{array}\right]\left[\begin{array}{c}t_{2} \\ 0 \\ 1\end{array}\right]\left[\begin{array}{c}t_{5} \\ -1 \\ -1\end{array}\right]$, the computed model for this m-word is depicted on figure 6.29.a. The t component X_{2} of Q generates the following output symbols $\left[\begin{array}{l}0 \\ 0\end{array}\right]\left[\begin{array}{l}0 \\ 1\end{array}\right]\left[\begin{array}{l}1 \\ 1\end{array}\right]\left[\begin{array}{l}0 \\ 0\end{array}\right]$ when the transitions t_{3}, t_{4} and t_{5} are fired, the m-word computed is $w_{2}=\left[\begin{array}{c}t_{3} \\ 0 \\ 1\end{array}\right]\left[\begin{array}{c}t_{4} \\ 1 \\ 0\end{array}\right]\left[\begin{array}{c}t_{5} \\ -1 \\ -1\end{array}\right]$. Notice that $\varphi C \overrightarrow{t_{3}}=\varphi C \overrightarrow{t_{2}}$ and $\varphi C \overrightarrow{t_{4}}=\varphi C \overrightarrow{t_{1}}$. Since $w_{1}=t_{1} t_{2} t_{5}$ then $w_{2}=t_{2} t_{1} t_{5}$. The computed model is depicted on figure 6.29.b.

Based on previous analysis it can be stated that if a system model Q does not fullfil the event detectability property, then the correct structure of Q cannot be computed using only its output information since a) the

a) Model Q_{1}

b) Model Q_{2}

Figure 6.29: Computed models Q_{1} and Q_{2} for the m-words w_{1} and w_{2} respectively.
transitions cannot be detected (in the case that φC_{Q} has a null column) or b) some transitions cannot be distinguished and considered as the same transition (in the case that φC_{Q} have repeated columns). However, notice that in both cases the computed models describe the behavior of the system models.

Chapter 7

Conclusions

The work herein presented addresses the identification problem of DES; it is devoted to obtain a mathematical model from the observation of the system behavior, which is described by the evolution of its input and output signals. The class of systems dealt in this work are those in which not all the states of the system can be determined from the measurement of its outputs, however these systems can be described by IPN exhibiting the event-detectability property.
The adopted identification approach is a passive one (in which the input signals of the system are not manipulated) and the strategies proposed are translated into procedures executed on-line, building the models progressively. These models represent the observed behavior of the system and they approach asymptotically to the actual model of the system. Every sequence of events is analyzed and if it provides new information on the system then the computed model is updated.
The strategy of the identification procedure is suggested by the cyclic behavior of live and bounded systems. It is based on the reconstruction of the t-components of the system model, by processing the cyclic sequences of transitions computed from the observed output symbols (m-words). During the on-line operation of the identification process, the m-words are computed and then the new model is built adding, removing, or updating non measurable places.
The model synthesis procedure performs mainly two tasks: the computation of the measurable part of the system and the inference of the non measurable part of the system, which is related with the dependencies formed by the non measurable places with respect to the computed transitions. The first task is made directly from the observation of the output system signals, while the second task, rather difficult, derived a more detailed study about the dependencies formed by a non measurable places into a model. The proposed algorithms to updated the non measurable places are of linear complexity in the number of the transitions computed and the m-words detected. The general algorithm to update a model that incorporates all the updating procedures of non measurable places is also executed in polynomial time.
Although the execution of the identification procedure is efficient, the convergence to the actual system model using the passive approach depends on the evolution of the system itself. If the system evolution presents sequences that include a persistent excitation sequence then the model is fast computed, otherwise it is needed to wait until the system exhibits such behavior; however in each evolution the identification procedure generates a model describing the observed system behavior. The identification problem is complex by nature; the expectation of a certain order of the transition sequences can be seen as a non deterministic problem of m-words
generation; then the identification problem of DES belongs to the class of NP problems. This inconvenient is partially overcame by the on-line operation of the identification procedure as the system evolves, because the computed model describes the observed behavior; also because the behavior of a system is not always chaotic or biased and its activity sequences are presented in a reasonable time elapse.
Another identification approach that it is not considered in this thesis to dismiss the complexity problem is the active identification approach, in which it is possible to manipulate the input signals of the system to validate the computed model. This procedure would consist in capture the observed behavior of the system in a model computed using the passive approach, then commute to the active operation applying sequences that allow to validate the computed dependencies formed with non measurable places.
An approach more realistic than the black box approximation is one in which it is considered the existence of a legacy system for which there exists available information, the problem in this case is to characterize the situations or structures that must to have the available information that helps the validation of some computed dependencies in the on-line identification procedure.
This work is a first approximation of the identification problem in DES and it can be considered as a basis for future works on the matter, possibly oriented towards the verification of systems, hardware or software, or it can be extended to address problems of reverse engineering.

Bibliography

[1] L. Aguirre, A. Ramírez \& O. Begovich. Design of Asymptotic Observers for Discrete Event Systems. Proceedings of the IASTED International Conference on Intelligent Systems and Control. Santa Barbara Ca., USA 1999.
[2] D. Angluin. Finding Patterns Common to a Set of Strings. Journal of Computational System Science. Vol. 21, pp. 46-62. 1980.
[3] D. Angluin. Inductive Inference of Formal Languages from Positive Data. Information and Control. Vol. 45, pp. 117-135. 1980.
[4] D. Angluin. A Note on the Number of Queries Needed to Identify Regular Languages. Information Control. Vol. 51, pp. 76-87. 1981.
[5] D. Angluin. Inference of Reversible Languages. Journal of the ACM. Vol. 29, pp. 741-765. 1982.
[6] D. Angluin. Inference of Reversible Languages. Journal of the Association for Computing Machinery, Vol. 29, No. 3, pp. 741-765, July 1982.
[7] D. Angluin and C.H. Smith. Inductive Inference: Theory and Methods. ACM Comput. Surveys. Vol 15, pp 237-269. 1983..
[8] D. Angluin. Learning regular sets from Queries and Counter-Examples. Inform. Comput. Vol 75, pp. 87-106. 1987.
[9] D. Angluin. Queries and Concept of Learning. Machine Learning. Vol. 2, pp. 319-342. 1988.
[10] D. Angluin. Negative Results for Equivalence Queries. Machine Learning. Vol. 5, pp. 121-150. 1990.
[11] D. Angluin and M. Kharitonov. When won't membership queries help?. 23th Annual ACM Symposium on Theory of Computing, ACM Press, New York. pp 444-454. 1991.
[12] A. Burago. Learning Structurally Reversible Context-Free Grammars form Queries and Counter examples in Polynomial Time. 6th Workshop on Computational Learning Theory, ACM Press, New York. pp. 140146. 1994.
[13] R.C. Carrasco, J. Oncina. Proc. International Coll. on Grammatical Inference (ICGI-94). Lecture Notes in Artificial Intelligence, Vol. 862, Springer, Berlin, 1994.
[14] Chen, Chi-Tsong. Linear System Theory and Design. Harcourt Brace Jovanovich Inc. Sanders College Publishing. 1970.
[15] S. Crespi-Reghizzi, An effective model for grammar inference, Information Processing Letters, Vol. 71, pp. 236-245, Amsterdam, 1972.
[16] C.A. De-Jesús and A. Ramírez-Treviño. Controller and Observer Synthesis in Discrete Event Systems Using Stability Concepts. 2001 IEEE International Conference on Systems, Man \& Cybernetics, pp 664-668,Tucson Arizona USA, October 2001.
[17] J. Esparza and J. Desel. Free Choice Petri Nets. Cambridge University Press 1995.
[18] A.F. Fahmy and A.W. Biermann. Synthesis of Real Time Acceptors. Symbolic Computing Journal. Vol. 15, pp. 807-842. 1993.
[19] E.M. Gold. Language Identification in the Limit. Information and Control, Vol. 10, pp. 447-474. 1967.
[20] E. M. Gold. Complexity of Automaton Identification from Given Data. Information and Control, Vol. 37, pp. 302-320. 1978.
[21] A. Guia. Petri Nets as Discrete Event Models for Supervisory Control. Ph. D. thesis, Rensselaer Polytechnic Institute. Troy, New York, 1992.
[22] K. Hiraishi. Construction of Safe Petri Nets by Presenting Firing Sequences. Lectures Notes in Computer Sciences, 616, pp. 244-262. 1992.
[23] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages and Computation. AddisonWesley Publishing Company. 1979.
[24] H. Ishizaka. Polynomial Time Learnability of Simple Deterministic Languages. Machine Learning. Vol. 5, pp. 151-164. 1990.
[25] T. Koshiba, Typed Pattern Languages and their Learnability. Proceedings of the 2nd European Conference on Computational Learning Theory. Lectures Notes in Artificial Intelligence. Vol. 904, pp. 367-379. Springer,Berlin. 1995.
[26] A. Krogh, M. Brown, I.S. Mian, K. Sjölander and D. Haussler. Hidden Markov model in Computational Biology: Applications to Protein modeling, Journal of Molecular Biology, vol. 235 (1994) pp 1501-1531.
[27] L.S. Levy and A.K. Joshi. Skeletal structural descriptions. Information and Control. Vol. 39, pp. 192-211. 1978.
[28] Yong Li and W.M. Wonham. Controllability and Observability in the state-feedback Control of DiscreteEvent Systems. Proceedings of the 27th Conference on Decision and Control. Austin, Texas, pp. 203-208, December 1988.
[29] E. Mäkinen. On Structural Grammatical Inference Problem for some Classes of Context-Free Grammars. Information Processing Letters. Vol. 42, pp. 193-199. 1992.
[30] M.E.Meda, A. Ramfrez and A. Malo. Identification in Discrete Event Systems. IEEE-Systems Man and Cybernetics Conference, San Diego Ca., USA, pp. 740-745. October 1998.
[31] M.E. Meda, DES identification using Interpreted Petri nets, International Symposium on Robotics and Automation, pp 353-357. December 1998.
[32] M.E. Meda-Campaña, A. Ramírez-Treviño and E. López-Mellado. Dynamical local properties for estimation and control of discrete event systems modeled by interpreted Petri. 2000 IEEE International Conference on Systems, Man and Cybernetics. Nashville TN, USA, pp 2150-2155. October 2000.
[33] M.E. Meda-Campaña, A. Ramírez-Treviño and E. López-Mellado. Asymptotic Identification for DES. IEEE International Conference on Decision and Control. Sydney, Australia. pp 2266-2271. December 2000.
[34] M.E. Meda-Campaña and E. López-Mellado. A passive method for on-line identification of Discrete Event Systems. IEEE International Conference on Decision and Control. pp 4990-4995 Orlando Fl. USA. December 2001.
[35] M.E. Meda-Campaña and E. L6́pez-Mellado. 41th IEEE International Conference on Decision and Control. Las Vegas, Nevada. USA. December 2002.
[36] T. Murata. Petri nets: Properties, Analysis and Applications. Proceedings of the IEEE, Vol. 77, No. 4, pp. 541-580, 1989.
[37] J. Oncina, P. Garcia and E. Vidal. Learning subsequential Transducers for Pattern Recognition Interpretation Tasks. IEEE Transactions, Pattern Analysis Machine Intelligence. Vol. 15, pp. 448-458. 1993.
[38] Cüneyt M. Özveren and Alan S. Willsky. Observability of Discrete Event Dynamic Systems. IEEE Transactions on Automatic Control, Vol. 35, No. 7, pp. 797-806, July 1990.
[39] K.M. Passino, A.N. Michel and P.J. Antsaklis. Stability analysis of a class of discrete event systems. IEEE Transactions On Automatic Control, Vol. 39, No. 2, pp. 269-279, 1994.
[40] F. Pereira and Y. Schabes. Inside-outside reestimation for Partially bracketed corpora. Proc. Ann. Meting of the Association for Computational Linguistics, pp. 128-135. 1992.
[41] J.L. Peterson. Petri net theory and the modelling of systems, Prentice hall inc., Englewood Clifs, New Jersey 07632.
[42] L. Pitt. Inductive Inference, DFAs, and Computational Complexity. AII-89 Workshop on Analogical and Inductive Inference. Lecture Notes in Computer Science. Vol. 397, pp. 18-44. Springer, Berlin. 1989.
[43] L. Pitt and M.K. Warmuth. The Minimum Consistent DFA Problem Cannot Be Approximated within any Polynomial. ACM Symposium on Theory of Computing, ACM Press, New York, 1989.
[44] A. Ramírez-Treviño, I. Rivera-Rangel and E. López-Mellado. Observer Design for Discrete Event Systems Modeled by Interpreted Petri Nets. IEEE-International Conference on Robotics and Automation, San Francisco Ca., USA, pp 2871-2876, April 2000.
[45] D. Ron and R. Rubinfeld. Learning Fallible Deterministic Finite Automata, Machine Learning. Vol. 18, pp, 149-185. 1995.
[46] Y. Sakakibara. Learning Context-Free Grammars from Structural Data in Polynomial Time. Theoretical Computing Science. Vol. 76, pp. 223-242. 1990.
[47] Y. Sakakibara, On learning from queries and counter examples in the presence of noise, Information Processing Letters, Vol. 37, pp. 279-284, 1991.
[48] Y. Sakakibara. Efficient Learning of Context-Free Grammars from Structural Examples. Information and Computing. Vol. 97, pp. 23-60. 1992.
[49] Y. Sakakibara and R. Siromoney. A Noise Model on Learning Sets of Strings. 5th Workshop on Computational Learning Theory, ACM Press, New York. pp. 295-302. 1992.
[50] Y. Sakakibara, M. Brown, R. Hughey, I.S. Mian, K. Sjolander, R.C. Underwood and D. Haussler. Stochastic Context Free Grammars for tRNA Modeling, Nucleic Acids Res. vol. 22, pp 5112-5120. 1994.
[51] Y. Sakakibara. Recent Advances of Grammatical Inference. Theoretical Computer Science. Vol. 185, pp. 15-45. 1997.
[52] T. Shinohara, Rich Classes Inferable from Positive Data: Length-Bounded Elementary Formal Systems. Information and Computation. Vol. 108, pp. 175-186. 1994.
[53] M. Silva. Las Redes de Petri: en la Automatica y la Informatica. Editorial AC. 1985.
[54] Y. Takada. A Hierarchy of Languages Families Learnable by Regular Languages Learners. Information and Computing Vol. 123, pp. 138-145. 1995.
[55] Y. Takada. Grammatical Inference for Even Linear Languages Based on Control Sets. Information Processing Letters. Vol. 28, pp. 193-199. 1998.
[56] B.A. Trakhtenbrot and J. Barzdin. Finite Automata Behavior and Synthesis. Fundamental Studies in Computer Science, North-Holland, Amsterdam, 1973.
[57] L.G. Valiant. A theory of the Learnable. Comm. ACM. Vol. 27, pp1134-1142. 1984.
[58] R. Wiehagen. From Inductive inference to Algorithmic Learning Theory. New Generation Computation. Vol 12, pp 321-335. 1994
[59] W. M. Wonham. Notes on Control of Discrete-Event Systems. Systems Control Group, Dept. of Electrical \& Computer Engineering. University of Toronto, 1996-97.
[60] T. Yokomori. Polynomial-Time Learning of Very Simple Grammars from Positive Data. 4th Workshop On Computational Learning Theory. pp. 213-227. 1991.
[61] T. Yokomori. Learning Non Deterministic Finite Automata from Queries and Counter examples. Machine Intelligence. Vol. 13. Oxford University Press, pp. 169-189. 1994.
[62] T. Yokomori. On Polynomial-Time Learnability in the Limit of Strictly Deterministic Automata. Machine Learning. Vol. 19, pp. 153-179. 1995.

CENTRO DE INVESTIGACION Y DE ESTUDIOS AVANZADOS DEL IPN UNIDAD GUADALAJARA

El Jurado designado por la Unidad Guadalajara del Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, aprobó la tesis titulada: "Identificación en Línea de Sistemas de Eventos Discretos: Fundamentos y Algoritmos para la Síntesis de Modelos en Redes de Petri", que presentó María Elena MEDA CAMPAÑA el día 22 de Noviembre de 2002.

Investigador CINVESTAV 3A
CINVESTAV Unidad Guadalajara Guadalajara, Jal.

Dr. Antonio RAMÍREZ TREVIÑO
Investigador CINVESTAV 2A
CINVESTAV Unidad Guadalajara Guadalajara, Jal.

Dr. Alejandro Justo MALO TAMAYO
Investigador CINVESTAV 2A
CINVESTAV-México
México, D.F

Dra. Xiaoou LI
Investigador CINVESTAV 3A
CINVESTAV-México
México, D.F.

$\overline{\mathrm{Dr}}$. Victor Manuel LARIOS ROSILLO
Investigador Titular
CUCEA
Universidad de Guadalajara
Zapopan, Jal.

