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Resumen

En esta tesis se presenta el problema de identificación de Sistemas de Eventos

Discretos (SED), este problema consiste en determinar un modelo matemático a partir
de la observación del comportamiento del sistema, el cual se describe por la

evolución de sus señales de entrada y de salida. Los sistemas considerados en este

trabajo son aquellos en los cuales su estado no puede ser determinado completamente
a partir de la medición de su salida pero que exhiben la propiedad de evento

detectabilidad por la salida. Las Redes de Petri (RP) serán el formalismo utilizado

para describir un SED.

El esquema de identificación adoptado en este trabajo es un esquema pasivo en el que
las señales de entrada no pueden ser manipuladas; las estrategias de identificación

propuestas son adaptadas para la operación en línea calculando en forma progresiva
un nuevo modelo cada vez que un nuevo comportamiento del sistema es detectado.

Cada secuencia de eventos calculada a partir del comportamiento observado es

analizada y si ésta aporta nueva información del sistema entonces el modelo

calculado se actualiza; el comportamiento que genera el modelo actualizado es el

mismo que el que ha sido observado del sistema.

El procedimiento de síntesis del modelado realiza principalmente dos tareas: el

cálculo de la parte medible del sistema y la inferencia de la parte no medible, la cual

está relacionada con las dependencias formadas por lugares no medibles con respecto
a las transiciones calculadas. La primera tarea se hace directamente a partir de la

observación de las señales de salida del sistema, mientras que la segunda es una tarea

más complicada debido a que se tienen que hacer conjeturas acerca de cómo los

lugares no medibles del sistema están relacionados con las transiciones, esto se

determina con diferentes evoluciones del sistema. Los algoritmos propuestos para

actualizar los lugares no medibles son de complejidad lineal en el número de las

secuencias de transiciones calculadas. El algoritmo general, el cual incorpora todos

los algoritmos de actualización, también es ejecutado en tiempo polinomial.

Este trabajo es una primera aproximación del problema de identificación en SED y

éste puede ser considerado como la base de futuros trabajos en el área, posiblemente
orientados a la verificación de sistemas, hardware o software; también este trabajo

puede extenderse a problemas de ingeniería de reversa.



Abstract

This tesis addresses the identification problem of Discrete Event Systems (DES); it is

devoted to obtain a mathematical model from the observation of the system behavior,

which is described by the evolution of its input and output signáis. The class of

systems dealt in this work are those in which the entire state of the system cannot be

determined from the measurement of its outputs, however these systems exhibiting
the event-detectability property. The formalism used to describe DES are the Petri

nets (PN).

The adopted identification approach is a passive one in which the input signáis of the

system are not manipulated; the strategies proposed are translated into procedures
executed on-line, building the models progressively as new information of system

behavior is detected. These models represent the observed behavior ofthe system and

they approach asymptotically to the actual model of the system. Every sequence of

events computed from the observed system behavior is analyzed and if it provides
new information on the system then the computed model is updated.

The model synthesis procedure performs mainly two tasks: the computation of the

measurable part of the system and the inference of the non measurable part of the

system, which is related with the dependencies formed by the non measurable places
with respect to the computed transitions. The first task is made directly from the

observation of the output system signáis, while the second task, rather difficult,
derived a more detailed study about the dependencies formed by a non measurable

places into a model. The proposed algorithms to updated the non measurable places
are of lineal complexity in the number of the transitions computed and the transition

sequences detected. The general algorithm to update a model that incorporates all the

updating procedures of non measurable places is also executed in polynomial time.

This work is a first approximation of the identification problem in DES and it can be

considered as a basis for future works on the matter, possibly oriented towards the

verification of systems, hardware or software, or it can be extended to address

problems of reverse engineering.
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Chapter 1

Introduction

Inferring models from observations and studying their properties is really what science is about. The models

("hypothesis", "laws of nature", "paradigms", etc.) may be of more or less formal character, but they have the

basic feature that they attempt to link observations into some pattern. System identification deals with the

problem of building mathematical models of dynamical systems based on the observed behavior of the system.

This thesis is devoted to the study of the identification problem of discrete event systems, a class of dynamics

systems which evolve with respect to the occurrence of events instead of time. The identification strategy here

introduced is named asymptotic identification and will consist in build a model for a system as it evolves.

1
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1.1 Systems models

A system is an agent in which variables of different kinds interact and produce observable signáis. The observable

signáis that are of interest are usually called outputs. The system is also affected by external stimuli; external

signáis that can be manipulated by an external agent are called inputs. Other signáis are called disturbances and

can be divided into those that are directly measured and those that are only observed through their influence on

the output. The distinction between inputs and measured disturbances is often less important for the modelling

process.

When it is dealt with a system, it is very useful to know how its variables are related to each other. Within

a broad definition such an assumed relationship among observed signáis it is called a model of the system.

Clearly, models may come in various shapes and be phrased with varying degrees of mathematical formalism.

The intended use will determine the degree of sophistication that is required to make the model purposeful.

In daily life many systems are dealt using mental models, which do not involve any mathematical formalization

at all. An example of this kind of models is to drive a car.

For certain systems it is appropriated to describe their properties using numerical tables and/or plots. Such

descriptions are called graphical models. Linear systems for example, can be uniquely described by their impulse

or step responses or by their frequency functions. Graphical representation of these systems are widely used for

various design purposes.

For more advanced applications, it may be necessary to use models that describe the relationships among the

system variables in terms of mathematical expressions like difference or differential equations. This kind of

models are called mathematical or analytical models. Mathematical models may be characterized by a number

of adjectives (time continuous or time discrete, deterministic or stochastic, linear or non linear, etc.) meaning

the type of difference or differential equation used. The use of mathematical models is inherent in all fields

of engineering and physics. In fact, a major part of the engineering field deals with how to make good design

based on mathematical models.

Basically, a model has to be constructed from the observed behavior of the system. The mental model of car

steering dynamics, for example, is developed through driving experience. Graphical models are built from certain

measurements. Mathematical models may be developed along two routes (or a combination of them). One route

is to split up the system, into subsystems, whose properties are well understood from previous experience. This

basically means that it is relied on earlier empirical work. These subsystems are then joined mathematically

and a model of the whole system is obtained. This route is known as modelling and does not necessarily involve

experimental of the actual system. The procedure of modelling is quite application dependent and often has

¡ts roots in traditional and specific techniques in a given application área. Basic techniques typically involve

structuring of the process into block diagrams with blocks consisting of simple elements. The reconstruction

of the system from these simple blocks is now increasingly being done by computer, resulting a software model

rather than a mathematical model.

1.2 System identification

The other route to compute mathematical as well as graphical models is directly based on experimentation.

Input an output signáis from the system, are recorded and analyzed in order to infer a model. This route is
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called system identification.

Nowadays there exist two kind of system identification methods each method is related with the available

information of the system:

a) Parametric system identification. To use this method it is necessary to know the structure of the system,

then the identification method consists in the estimation of its parameters. The estimators are considered

from a statistic point of view. There exists a straightforward relation between the a priori information of

the system and the method used to estimate the parameters. For example, to use the least square estimator

it is assumed that the behavior (dynamics) of the system can be approached just with the knowledge of the

system inputs and outputs, to use the Markov estimator it is required, besides the system input/output

information, the covariance matrix of the noise, while to use the máximum likelihood estimator it is needed

the density function of noise besides the system input/output information, etc.

b) Structural system identification. To use this method it is necessary to know the representation that it is

desired to identify; it could be a transfer function or a state variable representation besides others. Also

to use this approach it is required the input and output information of the system.

The system identification approach introduced in this thesis is in first instance a structural approximation in

the sense that the representation of the system that we want to obtain is an interpreted Petri net, however the

proposed method to compute the model is based on the behavioral information of the system, thus the model

will be approaching to the actual model of the system (structurally) as new input/output information of the

system is detected.

1.3 Discrete event systems identification

In essence this thesis is devoted to the study of system identification of a class of systems known as Discrete

Event Systems (DES).

A DES is a system which its state space is numerable, possibly infinite. The paradigm of the difference or

differential equations are not suitable to model this class of systems since their evolution is related with the

occurrence of events instead of the time. The formal languages, temporal logic, minimax algebra and Petri nets

are some of the formalisms used to describe this class of systems.

The problem addressed in this work is to build a model for a DES as it evolves from the observation of its

input and output signáis. A sequence of models is built in such way that the current model represents or

describes the entire observed behavior of the system; so, every new computed model acquires more details than

the previous one approaching to the actual model of the system; this strategy is called asymptotic identification

[32] [33] [34] [35] . The formalism adopted in this thesis to describe a DES is the Petri net (PN) formalisms,

since PN can capture the main characteristics of this class of systems like concurrence, synchronization, causal

relationships between events, mutual exclusions and decisions. Specially will be used the interpreted Petri nets

(IPN) an extensión to PN that relate the input and output system signáis to the structure of a PN, adding to

them a physical meaning.

The identification approach considered in this thesis is a passive approach, in which the model is built just from

the observation of input and output system signáis, the updating of a computed model (building a new one) is

made when new information of the system is observed.
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1.4 Thesis organization

The chapter 2 introduces the definition of the Interpreted Petri nets, the formalism used to describe DES

and how they can be used in the identification problem.

Chapter 3 overviews the reported works on identification ofDES including those that use PN as the model

computed.

The chapter 4 introduces the problem to identify a DES just with the information of output system signáis.

This approach is named passive asymptotic identification. In this chapter is presented how to compute

each new IPN model fulfilling that it will be more similar to the system than the previous model, this

new model is built with new information of the system.

In chapter 5 it is presented the identification procedure resulting from the analysis presented in previous

chapter. Also in this chapter is presented an illustrative example of the identification process.

The chapter 6 presents the conditions under which a DES can be identified. In this chapter it is introduced

how need to be the input signal given to the system to allow its identification, also is presented how need

to be the signáis assigned to the transitions and places of the IPN representation of a DES to can be

detected from the observed information of the system.

Finally the conclusions of this work are presented in chapter 7.



Chapter 2

Interpreted Petri nets

Petri nets are a graphical and mathematical modeling tool applicable to many systems, this formalism is used

in this thesis to describe DES, since they are suitable to capture most of the own characteristics of the DES

like concurrence, decisions, mutual exclusions, causal relationships besides others. Petri nets are also useful to

analyze qualitative and quantitative properties of DES.

To describe a DES in this thesis will be used a class of Petri nets called Interpreted Petri nets, this class of

nets are defined to relate the input and output system signáis to a Petri net structure giving to it a physical

meaning. This chapter summarizes concepts and notation of PN and IPN used in this work.

5
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2.1 Introduction

There exists several formalisms for modelling and analyzing DES. One of these formalisms are the Petri nets

(PN). PN can describe most of the own characteristics of DES such as decisions, synchronizations, mutual

exclusions, concurrence, causal relationships besides others DES characteristics.

One of the advantages of the PN is that they have a mathematical and a graphical representation which made

their usemore friendlier. As a graphical tool PN can be used as flow charts or block diagrams. As amathematical

tool it is possible to establish a state equation governing the behavior of systems.

In this work it is used a class of PN named interpreted Petri nets (IPN). The IPN have the property to relate

the input and output signáis of the system to the structure of a PN giving to it a physical meaning.

In this chapter are introduced the basic concepts and properties of PN also it is introduced the definition of

IPN and related concepts on DES modeling used in this work. Fine PN surveys can be found in [53] [36] [17].

2.2 Petri nets

A Petri net is a directed, weighted bipartite graph consisting of two kinds of nodes; the places and the transitions

these items are graphically depicted as circles and bars respectively, the ares are either from a place to a transition

or from a transition to a place. Ares are labeled with their weights (positive integers), where a k-weighted are

can be interpreted as the set of k parallel ares. Label for unity weight are usually omitted. The formal definition

of a PN is following presented.

Definition 2.1 A Petri Net structure G is a directed, weighted digraph defined by the 4-tuple G = (P,T,F, W)

where

• P = {pi,P2> ■■■,Pn} is a finite set of elements called places,

• T = {íi, ¿2, ••■> tm} is a finite set of elements called transitions,

• FC {(P x T) U (T x P)} is o set of ares (flow relation) and

• W : F —► {Z+}n is a weight function.

Example. Consider the PN depicted on figure 2.1. The sets P, T and F and the function W are the

following:

P = {Pl*P2,P3*P4,P5,P6}

T = {íl, Í2,*3.í4, *5}

F = (Pl, íl), (P2,Í2), (P3, h), (P4, <3)* (P5,Í4), (P6,Í5), (íl,P2), (Í2,P3), (Í5,Pl), (Í3-P5), {U,p&), (Í5.P4)}

wih,Pi) = 2, iu(pi,íi) = 2, w(Í4,pe) =3 and w(p6,ts) = 3, the weight ofthe remaining ares is 1.

Definition 2.2 Let G be a PN, the sets of input and output places of each transition in G and the sets of input

and output transitions of each place in G are the following:
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I Pi t, p, i. p, j

k!>M_-K>HK>[lJ

rKs)-*4K>+[K>|]-|
P, lj Ps l4 Pí "¡

Figure 2.1: Graphical representation of a PN.

•t = {p|(p, f) e F} denotes the set of all input places of t.

t" = {p|(t,p) G F) denotes the set of all output places of t.

"P = {'I (■••?) e F} denotes the set of all input transitions of p.

V* — {'l(P, 0 e F) denotes the set of all output transitions of p.

In the PN depicted on figure 2.1 *fi = pi, fj = pe, "pi = ís and p\ = ti-

Definition 2.3 A transition t is called source transition if it does not have any input place, i.e. 't = 0.

A source transition is unconditionally enabled. The transition íi of the PN depicted on figure 2.2 is a

source transition.

', Pi

^^-©

Figure 2.2: ti is a source transition.

Definition 2.4 A transition t is called sink transition if it does not have any output place, i.e. t' — 0.

The firing of a sink transition remove tokens but does not produce any. The transition í i of the PN depicted

on figure 2.3 is a sink transition.

Pi 'i

o
—

-o

Figure 2.3: íi is a sink transition.

Definition 2.5 A pair of a place p and a transition t is called self-loop if p is both an input and output place

oft.

The place pi and the transition íi of the PN depicted on figure 2.4 describe a self-loop.
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Pi •■

9 "Di

Figure 2.4: pi and íi form a self_loop.

Definition 2.6 A PN is said to be puré if it has no self loops.

The PN depicted on figure 2.5 is a non puré PN.

Figure 2.5: Non puré Petri net.

2.2.1 State equation of a PN

The behavior of a DES can be described in terms of its states and their changes, in a PN the states of a system

can be represented by markings. Following are presented the basic notions and the needed concepts to describe

the behavior of a DES using PN.

Incidence matrix of a Petri net

For a PN with n places and m transitions, the incidence matrix C = [cíj] ¡sanxm matrix. The entry c¿
• is

defined by:

°ij
—

cij
~

cij

where cj = w{tj,pj¡ is the weight of the are from transition tj to its output place p_ and c~ = w(pi t ) is the

weight of the are to the transition tj from its input place p¿.

Notice that c~
, c¡t and c¿j represents the number of tokens removed, added and changed respectively of the

place pj when the transition tj is fired.

Example. Consider the incidence matrix of the PN depicted on figure 2.6. The entry cn is computed as

cn =cíi*-cJi =w(t1,pi)-w{pi,ti) =0-2 = -2, the entry C64is computed as c64 =cj4-c¿"4 = w(í4)p6)_

(P6, Í4) = 3 — 0 = 3 while the entry C32 is computed as C32
= cJj —

cj2 = u>(Í2, P3) —

u>(p3, í2) = 1—0 = 1
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An entry oy of an incidence matrix C also is denoted as C[i, j\.

2

I P¡ i¡ \h 4 PÍ

kf>M]-K>4<>4J

r*0-HK>OH>lJn
P4 <J Ps •« P6 •!

c=

2 0 0 0 2

1 -1 0 0 0

0 1 0 0-1

0 0 -1 0 1

0 0 1 -1 0

0 0 0 3 -3

Figure 2.6: Petri net with its incidence matrix

Marking of a PN

Definition 2.7 The marking (state) M : P —► {2+}" of a PN is a mapping of each place to the nonnegative

integers.

By definition a marking (state) assigns to each place p a nonnegative integer k, then the place p is said to be

marked with it tokens. Tokens are depicted as black dots inside a place p.

A marking Mk is represented by a n x 1 column vector, where n = |P|. The i—th entry ofMk denoted as Mk(pJj

is the number of tokens in the place p. immediately after the fc—th firing in some firing transition sequence.

The marking of the PN depicted on figure 2.6 is [ 2 0 0 1 0 0 ] since the place pi and p3 have

2 and 1 tokens inside respectively.

Definition 2.8 A Petri Net is the pair N = (G, Mo), where G is a PN structure and Mq is an initial token

distribution (initial marking).

The marking [ 2 0 0 1 0 0 ] is the initial marking of the PN depicted on figure 2.6.

A marking can be represented as a i-tuple such that i is the number of marked places and the entries are the

number of tokens inside the marked places. For example the initial marking of the PN depicted on figure 2.6

can be described as Mq = [2pi,p4].

Definition 2.9 The kth firing or control vector vk is am x 1 column vector, where m = |T|. The jth entry of

'tj fires at the kth firing
otherwise

Vk is defined as Vk(t

t. nw4 j.i ./.y
vi

}) \ 0 otl

If the transition Í3 of the PN depicted on figure 2.6 is the transition fired at the k-th firing of the PN, then

11* = [ 0 0 1 0 0 ]T

Transition enabling and firing transition rules

A state or marking in a PN can change according to the following transition (firing) rule:

1. A transition í is said to be enabled if each input place p of t is marked with at least i¿*(p, í) tokens, where

w(p, t) is the weight of the are from p to t.
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2. An enabled transition may or may not fire (depending on whether or not the event actually take place)

3. A firing of an enabled transition í removes w(p, í) tokens from each input place p of í and adds w(t,p)

tokens to each output place p of í, where w(t,p) is the weight of the are from í to p.

Example. Consider the IPN G depicted on figure 2.6. The enabled transitions are the transitions íi and

Í3 since all their input places are marked with the required number of marks, henee these two transitions

can be fired. If the transition íi is fired, will be removed 2 marks from the place pi and will be added one

mark to the place p2. The new marking reached after the firing of íi will be [ 0 1 0 1 0 0 ]

State equation of a PN

Since the ¿th column of the incidence matrix C represents the change of marking as the result of firing the

transition t¡ then the state equation of a Petri net could be defined as:

Mk+i = Mk + Cvk (2.1)

The above equation states that if an enabled transition tj is fired in a marking Mk, then a new marking Mk+i

is reached. This fact can be represented as: Mk —'-* Mk+i-

Example. Consider N the PN depicted on figure 2.6, and M\ = [ 2 0 0 1 0 0 ] its marking. The

marking Mi is reached from the marking M\ when the transition t\ is fired, the computation of M? using
Aíi

2

0

0

1

0

0

the state equation 2.1 is as follows: +

-2 0 0 0 2

1 -1 0 0 0

0 1 0 0 -1

0 0 -1 0 1

0 0 1 -1 0

0 0 0 3 -3

M_ Cu*
«*.

1
"

0

'

2
' "

-2

0 1

0 0
0

0

—

1
+

0

0
0

0

0

0

M_

0

1

o

1

o

o

Definition 2.10 The reachability set R(JV) = {Mk\MQ -?-> Mk) of a PN N is the set of olí possible reachable

markings from Mr¡, firing only enabled transitions.

Example. Consider N the PN depicted on figure 2.6, the reachability set of N is:

R{N) = {[2pi,p4], [P2.P4.I [2pi,P5], [P3-P4], [P2.P5], [2pi,3p6], [P3,P5], b2*3p6], [p3> 3p6]}.

Definition 2.11 The characteristic vector or Parikh vector of a transition sequence o is a vector o* e {N+ }m

where m = |X|. o*(¿) represents the number of firings ofU in o.

Example. Consider the transition sequence o*i
= íiÍ2Í3Í4Í5í3íi*2 fired on the PN N depicted on figure

2.6, the Parikh vector of ax is W{ = [ 2 2 2 1 1 ] .

Notice that a Parikh vector does not provide information about the occurrence order of the transitions in a

transition sequence.
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2.2.2 Properties of PN

*í P6 *S

-I P7 -7

r

p- *. p-

)i-
=",0

p< •i Ps

)p-

at,,

Figure 2.7: Petri net.

The incidence matrix C of the PN N depicted on figure 2.7 is:

C =

-1 0 0 1-1 0 -1 0 1 -1

1 -1 0 0 0 0 0 0 0 0 0

0 1 0 -1 0 0 0 0 0 0 0

1 0 -1 0 0 0 0 0 0 0 0

0 0 1 -1 0 0 0 0 0 0 0

0 0 0 0 1 -1 0 0 0 0 0

0 0 0 0 0 0 1 -1 0 0 0

0 0 0 0 0 1 0 1 -1 0 0

0 0 0 0 0 0 0 0 0 1 -1

Definition 2.12 A p-semiflow of a PN N is a nonnegative vector Y fulfilling YTC = 0. (Y) = {p.|Y(¿) > 0}

is called the support of Y. A p-component is a subnet generated by the support of a p-semiflow Y considering

also the input and output transitions of each place in {Y).

Example. The vector Yi = [ 1 1 1 0 0 1 1 1 l]isa p-semiflow of the PN N depicted on

figure 2.7, since YiC = 0. The support of Yi is (Yi) = {pi,P2,P3,P6,P7,P8,P9}* The subnet Ni generated

by the p-semiflow Yi is depicted on figure 2.8.

Figure 2.8: Subnet generated by the p-semiflow Yi of Q.

The other p-semiflow of N is Y2 = [ 1 0 0 1 1 1 1 1 1 ]
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Proposition 2.1 Fundamental property of p-semiflows [17J. Let N be a Petri net and let Y be a p-semiflow of

N. IfM0 -■■■-■-

Mk, then YMk = YM0.

Proof. Since M* is reachable from Mo with some firing sequence cr. By the state equation 2.1, Mk = Mo +Cvk-

Therefore,

YMk = YM0 + YCa = YM0

because YC = 0. ■

A p-semiflow induces a conservative component of a PN N, implying that the number of tokens in a

p-component is preserved in each marking of a PN N.

Definition 2.13 A t-semiflow of a PN N is a nonnegative vector X fulfilling CX = 0. (X)
—

{ti\X(i) > 0} is

called the support ofX. A t-component is a subnet generated by the support of a t-semiflow X considering also

the input and output places of each transition in (X) .

Example. The vector Xi = [llll0000000]Tisa t-semiflow of the PN N de

picted on figure 2.7. The support of X\ is (XJ) = {íi, Í2,Í3,Í4_*- The subnet generated by Xi is depicted

on figure 2.9.

P2 <2 p-

P< <3 Ps

Figure 2.9: Subnet generated by the t-semiflow X\ of Q.

The remaining t-semiflows of N are: X2 =[ 0 0001100100]T

X3=[0 0 0 0 1 1 0 0 1 0 0]T,X,= [0 0 0 0 0 0 1 1 1 0 0]TandX5 =

[000000000 1 1]T

Proposition 2.2 Fundamental property of T-semiflows [17]. Let o be a finite transition sequence of a Petri

net N which is enabled at a marking M. Then the Parikh vector o is a t-semiflow ofN iffM -**-■-> M (i.e. the

occurrence of a reproduces the marking M).

Proof. (=*■): Since a is enabled at marking M, it is obtained that M -2-> M' for some marking M' By the

state equation 2.1 M' = M + Ca . As cr is a t-semiflow then Co = 0 and henee M' = M.

(<=): If M -?-> M then by the marking equation Ca = 0. So ct is a t-semiflow of N. m

A t-semiflow represents the repetitive components of a Petri net N describing its cyclic behavior.
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2.2.3 Live and bounded Petri nets

Two important properties of a DES are boundedness and liveness. Boundedness is often interpreted as stability

and it is used to identify the existence of overflows; while, liveness means that, for every event e* in a system,

it is always possible to reach a state, at which e* can occur. Moreover, if a DES is live then it is deadlock-free.

In PN terms, boundedness and liveness are defined as follows:

Definition 2.14 A place pi of a PN N is b-bounded, i/VMfc € R(N), Mk(j>i) < b, where b is an nonnegative

integer. A PN is b-bounded, if all its places are b-bounded.

Definition 2.15 .4 transition í* of a PN N is said to be live »/ VM* 6 R(N), 3er such that Mj
—» MT and

tk € a. A PN is live if all its transitions are live.

Another desired property of a DES is that it has a cyclic behavior. A SED has a cyclic behavior if there exists

a sequence of events that allows to reach the initial state from any reachable state, it means that a task can be

infinitely performed. In PN terms a cyclic behavior is defined as follows.

Definition 2.16 A PN N is cyclic i/VM e R(N), Ba such that M Z* M0.

2.3 Interpreted Petri nets

The formalism used in this thesis to describe DES are Interpreted Petri Nets (IPN). These nets are a particular

case of PN in which the transitions and the places have a physical meaning associated, representing the input

and output signáis of the system.

Definition 2.17 An Interpreted Petri Net is the 5-tuple Q = (_V, E, $ , A, <p) where

• N = (G, M0) is a PN,

• E = {<7i,<72,...,cr} is a finite set of elements <r¿ called input symbols,

• $ = {0j,02> ••■•$p} ** a finite set of elements <¡>i called output symbols. In this work $ is considered as

the set of the nonnegative integer numbers Z i.e. <_> = Z+

• A : T —* E U {e} is a function that assigns an input symbol to each transition of the net, where e

represents an internal system event. This function has the following restriction: Víj ,tk € T, j ^ k if

w(j>i,tj) = w(j>i,tk) ?-- 0 and both X(tj), X(tk) / e, then X(tj) =¿ X(tk), and

• tp : R(A^) —» {Z+}? is an output function; where q is the number of sensors associated to places in Q.

The marking evolution of an IPN Q evolves according to the following rules:

• A transition tj is enabled at marking Mk iff Vp¿ G P, Mk{pJ) > w(pi,tj).

• If X(tj) = Oj / e is present and tj is enabled, then tj must fire.

• If X(tj) = e and tj is enabled then tj can be fired.
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If an enabled transition tj is fired in a marking Mk, then a new marking Mk+\ is reached. Mfc+i can be

computed using the PN state equation: M^+i = Mk + Cvj.

Definition 2.18 A transition í ■

e T is said to be manipulable ifX(ti) -*¿
e, and non manipulable ¿/A(í<) = e.

Non manipulable transitions represent internal events of the system.

Definition 2.19 A place p¿ 6 P is said to be measurable if it has a sensor signal assigned, and non mea

surable otherwise. Non measurable places are depicted as dark circles.

In this work it is considered that the function xp : R(N)
—» {Z+}? is a linear function that can be represented

as a q x n matrix tp
= [tp^] where n is the number of places, q is the number of measurable places, and the

{l
jf ¿ _

j
_

-c
■

i
■ if Vj is

the ¿-th measurable place (tpi = ej), according to the order given by the place labeling. This implies that p¿

is a measurable place if there exists an elemental vector e;* such that e3 [i] = 1 in matrix tp. Thus, a place p,

is measurable if the i-th column of tp matrix is a non nuil column tp(»,i) ?■= 0, and non measurable otherwise.

Also, it is considered that a sensor signal assigned to any place is different to the sensor signal assigned to any

other place.

The state equation can be completed as:

Mk+i = Mk + Cvk (2.2)

yk
=

<p
■ Mk

Arranging the rows of the incidence matrix C of an IPN Q in measurable and non measurable places, the C

matrix can be decomposed as C =
—

, where 7 is a linear function that can be represented by a [n —

q) x n

matrix, the ¿-th row vector 7¿ of 7 is the transpose of the elemental vector e¿ [ej[i *¡¿ j] = 0, ej\j] = 1), if pj is

the ¿-th non measurable place (ji = ej), according to the order given by the place labeling.

Example. Consider as a physical system the water tank depicted on figure 2.10.a, the IPN Q depicted

on figure 2.10.6 is an IPN model describing this system.

The manipulable transitions are the transitions *i and Í2 due to the actions O ="open valve'' and

C =" cióse valve" are assigned to íi and Í2 respectively. The others transitions represent the internal

events of the tank and henee they are non manipulable transitions. The A function takes the following

valúes: A(íj) = O A(í2) = C A(í3)
-****

e A(t4) = e A(í5) = e A(í6) = e

In this example the tank has two sensors measuring the low level (L) or high level (H) of the water in the

tank, the model Q has 5 places, henee q = 2 and n = 5. The matrix representing the tp function is then de-

"10 0 0 0

0 10 0 0

_

0 0 1 0 0

Notice that the places having assigned a sensor signal are the places p4 and p5, henee the columns 4 and

5 of the tp matrix have an one (1), indicating that pi and p4 are measurable places.

fined as tp
=

0 0 0 10

0 0 0 0 1
,
while the matrix representing the 7 function is 7 =
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Consider the current marking Mk = [ 1

vMfc = due to

0 1

Mk

1

0

1

o

o

0 0 ] of Q. The output symbol generating Q is

tpMk
'

0
'

o
this fact implies that the measurable places

are not marked. However when the valve is open; Q could reach the marking M, = [ 0 1

if Mi is reached then the output symbol generating Q will be tpMi =
0

0 1 0],

which is computed as

Ai,
"

0

0 0 0 10
1

0

1
0 0 0 0 1

0

tpM¡

1

0

The incidence matrix of Q is C =

The matrix tpC =

f

0 0 0 1 0

0 0 0 0 1

-1

1

o

o

o

1

-1

o

o

o

o

o

1

-1

o

-1

1

o

o

o

o

o

o

1

-1

o

o

1

-1

o

o

o

o

-1

1

c

o

o

o

1

-1

0 0

0 0

1 0

1 -1

0 1

ifiC

0 0 -1 1 1 -1

0 0 0-10 1

Notice that tpC is a submatrix of C, composed by the rows of C representing the measurable places, in

this case tpC is composed by the rows 4 and 5 of C because P4 and ps are the measurable places of Q.

The matrix -yC is a submatrix of C, composed by the rows of C representing the non measurable places, in

this case fC is composed by the rows 1, 2 and 3 of C because p\, p% and P3 are the non measurable places of
c

T

'10 0 0

Q, henee -yC = 0 1 0 0

0 0 1 0

1 -1 0 0 0

1 1 0 0 0

0 0 1 0 -1

0 0 -1 1 1

0 0 0 -1 0

o

o

o

-1

1

->C

1 -1 0 0 0 0

1 1 0 0 0 0

0 0 1 0 -1 0

Consider a DES Sf in which all its states are completely measurable, by definition all the places of the system

model Q describing Sf will be measurable places, henee the number q of sensors in Q is equal to n, i.e. q
= n

(where n is the number of places of Q). It follows that for this class of systems an output symbol is an entire

marking of Q since the output matrix tp is the nxn identity matrix then tpMk — Mk and tpC = C.

Definition 2.20 A firing transition sequence of an IPN Q is a sequence a
= í¿íj...ífc such that Mq —*■**+ Mi —■*-*■

* • ■ Mw —

> Mx. The set of all firing sequences is called the language of Q and it is denoted as £(Q) = {a

\a = titj...tk and Mo Mj ■Mu Mx).

Definition 2.21 The input language of an IPN Q is defined as £in{Q) = {A(í.)A(í,)... A(í*)| í¡í,...í* 6 £{Q)},

while the output language of Q is defined as £0Ut(Q) = {tp(M0)tp(Mi) ■ ■ ■ tp(Mw)tp(Mx) |M0
—'-* Mi

—■-•

• ■ -Mw -^ M_ and Utj...tk G £{Q)}.
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-c£h

-&h

Figure 2.10: a) Physical system, b) IPN system model Q.

2.3.1 Event-detectability property

The property presented in this section correspond to the possibility that an event that had occurred in the

system can be detected from the knowledge of the inputs given to the system or by the observation of its output

symbols. This property was defined in [1][44].

Definition 2.22 Let Q be an IPN. Q is event-detectable if any transition firing can be uniquely determined by

the knowledge of the input given to Q and output signáis that it produces.

The following proposition provides an structural characterization of the IPN exhibiting event-detectability

property.

Proposition 2.3 Let Q be a live IPN . Q is event-detectable if and only if

1. Vi-, tj 6 T such that X (í ■) = A (tj) or X (í.) = e it holds that tpC (•, í¿) / tpC (•, tj) and

2. Vífc eT it holds that tpC(»,tk) / "0*

Proof. The proof is sketched as follows:

(Sufficiency)

Assume that (Q,Mo) is an IPN where Vi¿, tj e T such that A (¿*) = A (tj) or A (í.) = e it holds that tpC (•, i¿) /

tpC(»,tj) and Vífc € T it holds that tpC (;tk) 5¿ Tf. Let Mm,Mn e M0 and a transition tp e T such that

Mm —■*-» Mn fire while the input symbol a is given to (Q,Mo). From state equation (2.2) yn
-

ym can be

computed as yn
-

ym
=

tp (Mn)
-

<p (Mm) = tp (Mm + C (•, fp))
-

tp (Mm) = tpC (•, íp). Since Vi* e T it holds

that tpC (•, ífc) t¿ Tf the change in the output produced by the firing of tp is not nuil, that is yn —

ym ^__ "o*

Now there are two possibilities.

1. Suppose that the input symbol is e, since Vi., tj eT such that A (í.) = A (tj) = e it holds that tpC (•, í¿) =__

tpC (•, tj) there is no transition tq e T with í, / tp such that A (í,) = e and tpC (•, í,) = tpC (•, tp). Thus,

the firing of transition tp is the only one that could produce the change yn
-

ym
= tpC (»,tp) while the

nuil input word a = e was given to the system.
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2. Suppose now that the input symbol is a **¿ e, since Vi-, tj € T such that A (i¿) = A (tj) = a (or A (ij) =

é.,A(íj) = a) it holds that tpC(»,U) **¿ <pC(*,tj) there is no transition tq € T whit í9 ^ ip such that

A (t,) = a (or A (f,) = e) and tpC (•, í9) = tpC (•, tp). Thus, the firing of transition fp is the only one that

could produce the change y„
—

ym
= tpC (•, tp) while the non-nuil input word a was given to the system.

Then, in both cases, the transition íp that fired can be uniquely determined and (Q, Mo) is event-detectable.

(Necessity) Suppose first that there exist two transitions tj, tj e T such that A (í¿) = A (íj) = a and tpC (•, U) =

tpC (*,tj) . Then for an input word a there are two transitions U,tj that may fire, therefore the input symbol

given to (Q,Mo) does not provide information to distinguish the firings of íj andíy. Since tpC (•,U) = tpC(»,tj)

the changes in the output that those firings produce are equal and no further information is provided. Therefore,

there is no way to distinguish the firings of i
- and í

j
.

Now suppose that there exist two transitions íi , fj £ T such that A(i¡) **¿e,A(í,) = e and tpC(»,ti) = ipC (•,íJ).

Assume that A (í •) = a. Then for an input word a both transitions í¿ and tj may fire, again the input symbol

does not help to distinguish the firings of í¿ and tj. If also tpC (•, í.) = tpC (•, íj) then both firings produce the

same change in the output and once more the firings of those transitions cannot be distinguished.

Finally assume that Si* e T such that tpC (•, tk) ^ 0 Then the firing of i* has no effect in the output and no

matter what is the input symbol a given to (Q,Mo) there is no way to determine if transition ífc fires.

Thus, in all those cases the firing of the transitions cannot be uniquely determined and if any of those conditions

holds (Q, Mo) is not event-detectable. ■

The first condition of proposition 2.3 states that if two transitions have the same input signal assigned then

their columns in tpC matrix must to be different to can distinguish them, while the second condition refers to

the fact that any change of marking allows to determine the occurrence of a transition.
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Chapter 3

Identification of DES

This chapter overviews the works dealing with identification of DES. First the works on grammatical inference

are summarized; then recent works that use PN as modelling formalism are presented.

19
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3.1 Grammatical inference

The identification problem ofDES addressed in this thesis is very related to the grammatical inference problem.

The grammatical inference is an inductive problem where the target domain is a formal language and the

representation class is a family of grammars. The learning or inference task consists in given a finite number

of examples of an unknown target language, identify a correct grammar for it. Grammatical inference is a

well-established research field in artificial intelligence and it dates back to the 60s. Gold [19] originated those

studies and introduced the notion of identification in the limit.

This chapter is devoted to present several results of the inference or learning problem found out in the literature.

The inference problem endose the following three elements:

1. A class fi of objects. One of the objects will be chosen, the learner will be presented information about

it, and the learner is to figure out which one it is.

2. A method of information presentation. At each time the learner receives a unit of information it which

is chosen of a set I. The method of information presentation consists in specify, for each u* e fi, which

sequences of units of information, ¿i, ¿2,* • •

,
are allowed. Let the set of allowable sequences be designated

3. A naming relation. The learner is to identify the unknown object by finding one of its ñames. A naming

relation consists of a set N of ñames and a function / which assigns an object to each ñame, / : N —► fi.

The inference problem is to determine whether there is a rule the learner can use to accomplish the following:

for any object u> e fi and for any information sequence from I°°(u): on the basis of that information sequence

the rule will be yield a ñame n of u*, that is f(n) = uj. In all works here presented it is considered as an unknown

object u, 6 fi the language that it is desired to identify.

Three variations of the identification problem are the following:

a) Identification in the limit. In this case the learner is to guess a ñame of the unknown object at each time.

It is required that there be a finite time after which the guesses are all the same and are correct.

b) Finite identification is the type of identification problem usually considered. It is best known in autómata

theory. In finite identification, the learner is to stop the presentation of information at some finite time

when it thinks it has received enough, and state the identity of the unknown object. This is not possible

unless there is some finite time at which the information distinguishes the unknown object. That is, no

other object satisfies the information.

c) Fixed-time identification. In this case the information sequence stops after some finite time which is

specified a priori and which is independent of the object being described. The learner is to then state the

identity of the unknown object.

The motivation for studying this problem is to construct a formal model of human language acquisition. Gram

matical inference is applied to natural language processing [13] [40] and computational biology [26] [50], and has
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been investigated, more or less independently, within many research fields including machine learning, computa

tional learning theory, pattern recognition, computational linguistics, neural networks, formal language theory,

information theory, and many others.

The research activities on grammatical inference have been stimulated by the new learning models proposed

recently within computational learning theory framework: the query learning model of Angluin [8] and the PAC

(probably approximately correct) learning model of Valiant [57]. These models put much more emphasis on the

computational efficiency of the inference algorithm.

This review will begin with the problem of identifying deterministic finite autómata (DFAs) from examples.

DFAs are the bottom class of formal grammars in the Chomsky hierarchy, and the problem of identifying DFAs

from examples has been studied quite extensively [7] [42], where several interesting results are presented on

the identification of DFAs: polynomial-time identification of DFAs from queries, identification of subclasses of

DFAs from positive data, computationally hardness results and identification from erroneous examples. Also it

is considered the problem of identifying context-free grammars (CFGs) because the questions of whether there

are analogous results held for context-free grammars would be more interesting and important. The results

contain identification of CFGs from examples in the form of structured strings, polynomial-time reduction to

identification of finite autómata, and efficient identifications of several subclasses of CFGs.

3.2 Learning models

Within computational learning theory, there are three major established formal models for learning from exam

ples or inductive inference: Gold's model of identification in the limit [19], the query learning model by Angluin

[9], and PAC learning model by Valiant [57]. Each model provides a learning protocol and a criterion for the

success of learning. Identification in the limit views learning as an infinite process and provides a learning model

where an infinite sequence of examples of the unknown grammar G is presented to the inference algorithm M

and the eventual or limiting behavior of the algorithm is used as the criterion of its success. A complete pre

sentation of the unknown grammar G is an infinite sequence of ordered pairs (w, l) from E* x {0, 1} such that

/ = 1 if and only if w is generated by G, and such that every string w of E* appears at least once as the first

component of some pair in the sequence, where E is the terminal alphabet. An inference algorithm M take as

input initial segments of a complete presentation of G, and outputs a next conjecture. If for every complete

presentation of the unknown grammar G, M guesses a correct grammar which is equivalent to G at some point

and never changes its guess after this, then M is said to identify G in the limit from complete presentations.

Angluin [7] has considered a learning situation in which a teacher is available to answer specific kind of queries

on the unknown grammar G. In the query learning model, a teacher is a fixed set of oracles that can answer

specific kind of queries made by the inference algorithm of the unknown grammar G. The following two types

of queries are typical:

a. Membership. The input is a string w e E* and the output is "yes" if w is generated by G and "no"

otherwise.

b. Equivalence. The input is a grammar G' and the output is "yes" if G' is equivalent to G (i.e. G' generates

the same language as G) and "no" otherwise. If the answer is no, a string w' in the symmetric difference
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of the language L(G) generated by G and the language L(G') generated by G' is returned. The string w'

is named counter example.

In this approach, an inference algorithm M runs with oracles for queries for the unknown grammar G, and

eventually halts and outputs a correct grammar in a certain finite time. An important result is that the class

of DFAs can be identified in polynomial time using equivalence queries and membership queries while it cannot

be efficiently identified from equivalence queries only [9] [4].

Valiant [57] has introduced the distribution-independent probabilistic model of learning from random examples,

which is called probably approximately correct learning (PAC learning). In PAC learning model, it is assumed

that random samples are drawn independently from the domain E* whose probability distribution D may

be arbitrary and unknown. The success of the identification is measured by two parameters: the accuracy

parameter e and the confidence parameter 6, which are given as inputs to the inference algorithm. The error of

a grammar G' with respect to the unknown grammar G is defined to be the sum of probabilities D(w) of the

strings w in the symmetric difference of L(G') and L(G) with respect to D. A successful inference algorithm is

one that with high probability (at least 1-5) finds a grammar whose error is small (less than e).

It is measured the efficiency of the inference algorithm with respect to relevant parameters: the size of the

examples and the size of the unknown grammar. The size of the example in the form of string is the length of

the string. The size of the unknown grammar is usually the number of states, in the case of finite autómata,

and the number of production rules, in the case of context free grammars.

3.3 Learning ñnite autómata

In this section, it is presented a review of several important results and useful techniques related to computation-

ally efficient identifications of deterministic finite autómata. Good references are the early work of Trakhtenbrot

and Barzdin [56], the work ofWiehagen concerning to the learnability from good examples [58], and an excellent

survey by Pitt [42].

A deterministic finite (state) automaton (DEA) is defined by a 5-tuple A = (Q,E,¿,go,P), where Q is a finite

set of states, E is an alphabet of input symbols, 6 is the state transition function defined as 6 : Q x E —> Q, qo

is the initial state, and F C Q is a set of final states. The language accepted by a DFA A is denoted by L(A).

3.3.1 Learning from representative samples

When it is needed to identify an unknown DFA A = (Q, E, 6, q0, F) from examples, useful information about

A is a representative sample S of A, that is, a finite subset of L(A) that exercises every live transition in A.

Taking the set R(S) oí all prefixes of strings in S, for every live state q of A, there must exist a string u in

R(S) such that 6(q0,u) = q. Further, for every state q and every transition 6(q,a) from q where a 6 E, there

exists a string va in R(S) such that 6(qo,v) = q and 6(q,a) = 6(q0,va) = q'. Thus, every state and transition

are represented by strings in R(S) . It remains to distinguish two states qu and qv represented by two strings in

R(S), i.e. qu
= b~(qo,u) and qv

= S(q0,v), if qu and qv are different states in A.

Angluin [10] has given an efficient procedure to solve this problem using membership queries.

Theorem 3.1 (Angluin [4]) The class of deterministic finite autómata can be identified in polynomial time

from a representative sample and using membership queries.
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3.3.2 Learning with teachers

Angluin [2] has considered a learning protocol which is based on what is called "minimally adequate teacher"

This teacher can answer two types of queries about the unknown DFA A made by an inference algorithm:

membership query and equivalence query. Angluin [9] has shown that equivalence queries compénsate for

the lack of representative samples, and presents an efficient inference algorithm for identifying DFAs using

equivalence and membership queries.

Theorem 3.2 (Angluin[9]. The class of deterministic finite autómata can be identified in polynomial time

using equivalence queries and membership queries.

The important data structure used in Angluin 's algorithm is called observation table. An observation table

is a two-dimensional matrix with rows and columns labelled by strings. The entry is 0 or 1, and the intended

interpretation is that the entry for row s and column e is equal to 1 if and only if the string s ■ e is accepted by

the unknown automaton. The rows are partitioned in two parts, the ones labelled by a non empty prefix-closed

set S of strings and the others labelled by the set S ■ E. Rows labelled by S are the candidates for states of

the automaton being constructed and rows labelled by S ■ E are used to construct the state transition function.

The columns labelled by a non empty suffix closed set E of strings play a role of witnesses to distinguish the

candidates for representing states. The observation table has S = E = {e} (the set of only the empty string)

at the beginning of learning, and is augmented as the algorithm runs. Two specific observation tables are

defined, which are closed and consistent. When an observation table fulfill that it is a closed and consistent

then a minimum DFA can be constructed in polynomial time of the size of the table which it is consistent

with the data contained in the table. The algorithm is going to find a closed, consistent observation table by

asking membership queries to fill entries. It has been shown in [9] that the algorithm ask at most 0(mn2)

membership queries and n
— 1 equivalence queries, and eventually terminates and outputs the minimum DFA

which is equivalent to the unknown DFA, where m is the máximum length of any counter example returned by

the teacher during the running algorithm and n is the number of states in the minimum DFA, equivalent to the

unknown DFA. The idea of the observation table is also related to the state characterization matrix by Gold

[20].

Yokomori [61] has studied efficient identification of non deterministic finite autómata from equivalence and

membership queries.

3.3.3 Learning from positive data

One interesting and important topic on Gold's framework of identification in the limit for language learning

is identification from positive data. A positive presentation of the unknown DFA A is any infinite sequence of

examples such that the sequence contains all and only the strings in the language L(A). Gold [19] has shown

that there is a fundamental and important difference in what could be learned from positive versus complete

presentations, and shown a negative result that no superfinite class of languages can be identified in the limit

from positive presentation. A class of language is called superfinite if it contains all the finite languages and at

least one infinite language. Since the class of regular languages is superfinite, it is needed to constrain DFAs

somehow to subclasses to establish identifiability results from positive presentation.
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The problem is to avoid overgeneralization, which means guessing a language that is a strict superset of the

unknown language. Angluin [5] has introduced a series of subclasses of DFAs, called k-reversible autómata for

k = 0, 1, 2, ... ,
and shown that the existence of characteristics samples is sufficient to identify from positive

presentation (to avoid overgeneralization) this kind of autómata. A characteristic sample of a k-reversible

automaton A is a finite sample S C L(A) such that L(A) is the smallest k-reversible language that contains

5 with respect to the set inclusión. Notice then that any characteristic sample is a representative sample for

k-reversible autómata.

Notice that a representative sample provides enough information for reconstructions of states and states tran

sitions. By using the structural properties specific to k-reversible autómata it could be accomplished the main

task of state distinctions in identifying k-reversible autómata without the use of membership queries. For ex

ample a zero-reversible automaton, is a DFA such that it has at most one final state and no two edges entering

any state are labeled with the same symbol. Given a representative sample S for the unknown zero-reversible

automaton, the prefix tree automaton A' is constructed such that it accepts the set S, and then merge the

states in A' to satisfy the conditions for zero-reversible autómata.

Theorem 3.3 (Angluin [5]. The class of k-reversible autómata, for fe = 0, 1,2 ... , can be identified in the limit

from positive presentation.

Furthermore, the inference algorithm updates a conjecture in time polynomial in the size of the inputs.

Another interesting class of DFAs which can be identified in the limit from positive presentation is the class

of strictly deterministic autómata investigated by Yokomori [62]. A strictly deterministic automaton is a DFA

such that the set of labels W for state transition edges is extended to be a finite subset of strings over E, each

edge has a unique label (no same label is attached to different edges), and for each symbol a 6 E there is at

most one label in W starting with a.

Theorem 3.4 (Yokomory [62]). The class of strictly deterministic autómata can be identified in the limit from

positive presentation.

An inference algorithm can be constructed so that it not only runs in time polynomial in m to update the

conjecture, where m is the máximum length of all positive examples provides so far, but also makes at most

a polynomial number of implicit errors of prediction in m and n, where n is the size of the unknown strictly

deterministic automaton. Pitt [42] has proposed the definition of implicit errors of prediction that after seeing

¿th example in the presentation, the inference algorithm M is said to make an implicit error of prediction at

step i if the conjecture output by M is not consistent with the (i 4* l)th example.

Other interesting topics and results on identification from positive presentation which may not be directly

related to DFAs are Angluin's characterization of identifiability from positive presentation [3], Angluin's pattern

languages [2], Koshiba's extensión to typed pattern languages [25], Shinohara's general result for identifiability

from positive presentation [52], and Oncina et Al.'s subsequential transducers [37].

3.3.4 Hardness results

There are many computationally hardness results related to identifying DFAs. Gold [20] has shown that the

problem of finding a DFA with a minimum number of states consistent with a given finite sample of positive and
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negative examples is NP-hard. This result is generally interpreted as indicating that even a very simple case of

grammatical inference, identifying DFAs from positive and negative examples, is computationally intractable.

Further, Pitt and Warmuth [43] have proven a stronger result, namely that it is NP-hard to find a DFA of

at most nU-oOiogiog" states consistent with a given finite sample of positive and negative examples for any

constant a > 0, where n is the number of states of a minimum DFA consistent with the given sample.

Angluin [10] has shown negative results for efficient identifications of various classes of grammars from equiv

alence queries only. In that work is developed useful technique of approximate fingerprints to obtain negative

results for identification from equivalence queries only. As applications of the technique has shown that there is

no polynomial time algorithm using only equivalence queries that identifies the class of DFAs, non deterministic

finite autómata, context free grammars, or disjunctive or conjunctive normal form boolean formulas.

3.3.5 Learning from erroneous examples

In practice, it is natural to assume that the example may contain some noise. There are fewer works to study

the effect of noise on learning from queries in the Valiant's probabilistic framework of PAC-learnability.

Sakakibara [47] has defined a benign model for errors in the responses to membership queries where answers to

queries are subject to random independent noise (i.e. for each query there is some independent probability to

receive an incorrect answer and these errors are not persistent), and shown that these errors can be effectively

removed by repeating the query until the confidence in the correct answer is high enough.

Ron and Rubinfeld [45] have considered a model of persistent noise in membership queries in which a fixed but

randomly chosen fraction of the membership queries are answered incorrectly but any additional query on the

same string is replied consistently with the same incorrect answer when queried again. They have shown by

modifying Angluin's algorithm (theorem 3.2) for identifying DFA's using equivalence and membership queries

that DFAs can be learned in polynomial time from membership queries with persistent noise under the uniform

distribution on inputs.

Sakakibara and Siromoney [49] have studied a noise model which specific to language learning where the examples

are corrupted by purely random errors affecting only the strings (and no labels). They have considered three

types of errors on strings, called EDIT operation errors. EDIT operations consists of insertion, deletion, and

change of a symbol in a string. They have shown efficient identification from random examples with EDIT noise

for a small subclass of regular languages defined by containment decisión lists.

3.4 Learning context free grammars

The question of weather there are analogous results for context-free grammars is interesting and important

simply because context-free grammars are more expressive than the DFA.

A context-free grammar (CFG) is defined by the quadruple G = (AT, E,P,5), where N is an alphabet of non

terminal symbols, E is an alphabet of terminal symbols such that _V n E = 0, P is a finite set of productions

rules of the form A —> a for A e N and a e (N U E)* and 5 is a special non terminal called start symbol.

The language generated by a CFG G is denoted as L(G).

Angluin [10] has shown that the whole class of CFG cannot be identified in polynomial time using equivalence

queries only. Furthermore, Angluin and Kharitonov [11] have shown that the problem of identify the class of
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CFGs from membership and equivalence queries is computationally as hard as the cryptographic problems for

which there is currently no known polynomial time algorithm (e.g., inverting RSA encryption, or factoring Blum

integers). Even the existence of these negative results, in the following sections are presented several positive

results for identifying the whole class of CFGs with additional information or identifying subclasses of CFGs

efficiently.

3.4.1 Learning from structural information

Here it is considered an identification problem for CFGs where, besides given examples, some additional in

formation is available for the inference algorithm. Useful (and maybe reasonable) information would be on

the grammatical structure of the unknown CFG. It is assumed example presentations in the form of strings

with grammatical structure. Levy and Joshi [27] have already suggested the possibility of efficient grammatical

inferences in terms of strings with grammatical structure.

A string with grammatical structure, called a structured string or a structural description (of string), is a string

with some parentheses inserted to indícate the shape of the derivation tree of a CFG, or equivalently unlabeled

derivation tree of the CFG, that is a derivation tree whose internal nodes have no labels. It is known that the

set of derivation trees of a CFG constitutes a rational set of trees, where a rational set of trees is a set of trees

which can be recognized by some tree automaton. Further, the set of unlabeled derivation trees of a CFG also

constitutes a rational set of trees. Based on these observations, the problem of identifying CFGs from structures

strings is reduced to the problem of identifying tree autómata.

Sakakibara [46] has shown by extending Angluin's inference algorithm (theorem 3.2) for DFA's to tree autómata

that the class of CFGs can be identified in polynomial time using structural membership queries and structural

equivalence queries.

Theorem 3.5 (Sakakibara [46]). The class of context free grammars can be identified in polynomial time using

structural equivalence queries and structural membership queries.

Let D(G) denotes the set of derivation trees of a CFG G and s(D(G)) denote the set of unlabeled derivation

trees (structured strings) of G. A structural membership query for a structures string ask whether it is generated

by the unknown CFG G, and a structural equivalence query returns "yes" if a queried CFG G' is structurally

equivalent to the unknown CFC G and returns "no" with a counter example otherwise, that is, a structured

string in the symmetric difference of s(D(G)) and s(D(G')).

It was presented that Angluin's algorithm for identifying DFAs uses the observation table to organize the

information about a finite collection of strings with the indication whether they are strings accepted by the

unknown DFA. For the problem to identify a CFG it is extended the observation table to the one for tree

autómata. The extended observation table has rows labelled by structures strings and columns labelled by

structures strings with a special symbol. The intended interpretation is that the entry for row s and column e

is equal to 1 if and only if the structures string of the concatenation of s and e is a structured string generated

by the unknown grammar G.

Since the class of CFGs is superfinite, Gold's negative result [19] on identifiability from positive presentation

implies that the class of CFG's cannot be identified in the limit from positive presentation. Sakakibara [48] has

demonstrated that certain information on the grammatical structure of the unknown CFG could help in the
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inference. He has shown that there exists a class of CFGs called reversible context free grammars, which can

be identified in the limit from positive presentations of structured strings, that is, all and only the unlabeled

derivation trees of the unknown CFG, and shown that the reversible CFG is a normal form for CFGs, that is,

reversible CFG can genérate all the context free languages.

A reversible context free grammar is a CFG G = (N, E, P, S) such that (1) A —► o and B —> a in P implies

that A = B and (2) A —> aB/3 and A —> aC/3 implies that B = C, where A, B and C are non termináis and

a,/3e(JVUE)*.

Theorem 3.6 (Sakakibara [48]). The class of reversible context free grammars can be identified in the limit

from positive presentation of structured strings provided such that the structured strings are generated with

respect to a reversible context free grammar for the unknown context free language.

Since the inference algorithm for reversible context free grammars is an extensión of the Angluin's inference

algorithm which identifies zero-reversible autómata (theorem 3.3), the algorithm updates a conjecture in time

polynomial in the size of the inputs. Note that the above result does not imply that the whole class of CFG

can be identified from positive presentation of structured strings.

A related early work to identify CFGs from positive presentation of structures strings is presented in [15]. In

this work it is described a constructive method for identifying a subclass of CFGs which is a different class from

reversible CFGs, from positive samples of structured strings. The defined class of CFGs describes only a subclass

on context free languages, called noncounting context free languages. Mfikinen [29] has refined Sakakibara's

inference algorithm for reversible CFGs to gain more efficiency, and also investigated a subclass of reversible

CFGs, called type invertible grammars, that can be identified from positive presentation structures strings in

linear time in the size of the inputs.

3.4.2 Reductions to finite-automata learning problems

A well-known technique often used to establish identifiability results is a reduction technique that reduces an

inference problem to some other inference problem whose result is known. Takada [55] has shown that the

inference problem for even linear grammars can be solved by reducing it to one for DFAs, and presented a

polynomial-time algorithm for the reduction. For example, the class of even linear grammars can be identified

using equivalence and membership queries in polynomial time by employing Angluin's efficient algorithm for

DFAs (theorem 3.2) via reduction.

An even linear grammar is a CFG that has productions only of the form A —» uBv or A —> w such that u

and v have the same length. A and B are nonterminals and it, v and w are strings over E. Let G = (N, E, P, S)

be an even linear grammar. It is written x => y to mean that y is derived from x applying the production ir

in P, where x, y e (N U E)* The derivation from xq to Xk obtained by applying a sequence 7
= *ti7T2 ■■■i.k of

productions is denoted by a*o =*■ Xfc. 7 is called associated word and a set of associated words is called control

set on G. The language generated by G with a control set C is defined by L(G, C) = {w e E* | S =^- w

and 7 e C}. It can be shown that there is a universal even linear grammar Gu such that for any even linear

grammar G, L(G) = L(Gu,C) for some regular control set C.

Theorem 3.7 (Takada [55]). The problem of identifying the class of even linear grammars is reduced to the

problem of identifying the class of finite autómata.
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Note that the class of even linear languages properly contains the class of regular languages and is a proper

subclass of context free languages. By iteratively applying the above reduction technique, Takada [54] has

further developed an infinite hierarchy of families languages whose identification problems are reduced to the

identification problem of DFAs.

3.4.3 Learning subclasses of context free grammars

Because the whole class of CFGs seems to be hard to be identified efficiently without any additional information,

there have been some attempts to design polynomial time algorithms for identifying subclasses of CFGs from

examples.

Ishizaka [24] has investigated a subclass of CFGs called simple deterministic grammars and gave a polynomial

time algorithm for exactly identifying it using equivalence and membership queries in terms of general CFGs.

This inference algorithm may sometimes ask equivalence query for a CFG which is not simple deterministic.

A CFG G = (N, E, P, S) in 2-standard form is called simple deterministic if A —► aa and A —*■ a/3 in P

implies that a = ¡3, where A and B are non termináis, a is terminal, and a, /3 e (N U E)*

Theorem 3.8 (Ishizaka [24])- The class of simple deterministic grammars can be identified in polynomial time

using equivalence queries and membership queries in terms of general context free grammars.

Notice that given any regular language L, the language L# is simple deterministic, where # is a special symbol

not in E. In this sense, the class of simple deterministic languages properly contains the class of regular languages.

Yokomory [60] has considered a smaller class of simple deterministic grammars with the goal of finding a

polynomial time algorithm to identify it in the limit from positive presentation. A CFG G = (N, E,P, S) in

Greibach normal form is called very simple if for each terminal symbol a in E there exists exactly one rule

production starting with o (i.e., exactly one production rule ofthe form A—► aa, where a € (ÍVUE)*). He has

shown that the class of very simple grammars can efficiently be identified in the limit from positive presentation,

and this result has provided the first instance of languages class containing non regular languages that can be

identified in the limit in polynomial time in a criterion proposed by Pitt [42], that is, the time for updating a

conjecture is bounded by a polynomial in the size of the unknown grammar and the sum of lengths of examples

provided, and the number of implicit errors of prediction made by the inference algorithm is bounded in a

polynomial in n.

Theorem 3.9 (Yokomori [60]). The class of very simple grammars can be identified in the limit from positive

presentation in polynomial time.

From this result, it immediately follows that the class of very simple grammars can be identified in polynomial

time using only equivalence queries.

Related to identification of very simple grammars, Burago [12] has investigated the structurally reversible CFGs

and shown that this class of CFG can be identified in polynomial time using equivalence queries and membership

queries. A CFG is called structurally reversible if among all non terminal strings that might derive a given

terminal string, no one is a extensión of the other. The class of structurally reversible CFGs is a subclass of

CFGs and the class of structurally context free languages properly contains the class of very simple languages.
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3.5 Identification using Petri nets

In [22] is presented an algorithm for constructing Petri net models. The specification of the system are presented

in the form of sequences of events, or concurrent languages such as partial languages. The proposed algorithm

has two phases. In the first phase, each example is given to the algorithm until the language of the target system

is identified in the form of DFA. The identified DFA has the property to be I-reversible. A DFA I-reversible has

only one initial state and only one final sate and it is invariant consistent. The meaning of invariant consistency

can be described as follows: each occurrence of events causes some change of state, and this change depends

only on which events have occurred. The I-reversible languages is a subclass of the zero-reversible languages [6].

This phase is related to the inductive inference of regular languages such as those presented in previous section.

In the second phase, the algorithm extracta the dependency relation from the language, and then guesses the

structure of a Petri net that accepts the obtained language. The running time of the first phase is bounded

by a polynomial function of given inputs. For the second phase it is presented a polynomial time algorithm

for a subclass of live and safe free choice nets. In this work it is consider the case that the target system is

represented by a safe marked net without self loops and with one final state.

In [31] is presented an identification method based on the least square estimator 0
****-

(XTX)~lXY where X

represents the inputs and Y represents the outputs of a system which is described as Ym = Xd. To describe a

PN in terms of X, Y and 0 it is considered that X = v\ and Y = AMfc = Mfc+i
—

Mt, since the state equation

of a PN can be reduced to M*+i
—M* = Cvk having the form of Ym = XO. Then using this method the relation

of the between places and transitions is founded out.

Notice that to use this method it is needed to know the number of places and transitions of the PN that it is

needed to be identified and also several evolutions of the system must to be considered in order to built the

vectors X and Y

In [30] it is presented an algorithm to identify a DES building a PN. This algorithm does not use a positive

sample of the system language, instead of the algorithm works on-line with the system processing its output

symbols and computing a new model as new information of the system is detected. The systems that could be

identified using that algorithm are those described by IPN in which the non measurable places are constrained

to have only one input and only one output transition. To preserve the firing of two concurrent transitions

computed consecutively in some evolution of the system, self-loops are added to the model which are removed

when in a posterior evolution of the system that transitions occur in different order. This work gave the basis

for the development of the work here introduced.
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Chapter 4

On-line synthesis of PN models

In this chapter it is defined the asymptotic identification problem for DES. The identification approach herein

proposed computes an IPN as the mathematical model describing the unknown DES; the construction of this

model is incrementally performed by computing a new model from new on-line measurements of the system

outputs. In this chapter are presented the strategies to update an already computed model as the system

evolves.

31
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Input signáis Output signáis

Figure 4.1: Identification scheme.

4.1 Introduction

As was introduced previously, the addressed problem in this work consists in computing a mathematical model

for a system from the knowledge of its input and output signáis. This problem is known as system identification.

The identification scheme is illustrated on figure 4.1. In this work the proposed identification scheme fits with

the following hypotheses:

Hi: The systems considered to be identified are those DES that can be described by a live, binary and cyclic

IPNQ.

H2: Q is an event-detectable IPN.

H3: The transitions of Q are not fired simultaneously and Q has not self-loops.

H4: The input and output signáis will be sequences of input and output symbols respectively.

Given the characteristics of the identification problem addressed in this work, the inference mechanism will

build the model processing the input and output signáis of the system as it evolves. The computed model will

be a live, binary, cyclic and event-detectable IPN.

In this chapter it is defined the asymptotic identification problem for DES and are described the procedures in

which the proposed identification approach to solve this problem is based. This approach mainly differs from

others identification approaches in the way of how the model of the system is computed and also in the class of

computed model describing the system. This novel identification approach proposes to compute an IPN model

describing the behavior of the unknown DES; the construction of this model is incrementally performed by

computing a new model from new on-line measurements of the system outputs. One advantage of this approach

is that it is not needed to have a priori information of the system (commonly called a positive sample of the

system) because the inference mechanism will opérate on-line processing the system information.

This chapter introduce the concepts, characterizations and procedures in which the identification approach is

supported.
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4.2 Altemative representation of a PN structure

The procedures for inferring a model Q. from the observed behavior of the system, handle a simple structural

unit called dependency. This section presents how an IPN can be represented by its dependencies.

Definition 4.1 Let Q be an IPN. Two transitions t¡ and tj of Q form a dependency [tittj] iff Bpk such that

pk 6 í* and Pk €' tj. The notation pk
= [t¡,tj] is referred to the fact that the place pk forms a dependency

between U and tj.

On figure 4.2 is depicted a dependency in which pk forms a dependency between the transitions U and tj.

<¡ Pl* <¡

Figure 4.2: Graphical representation of the dependency pk
= [U,tj]

Notice that the place pk could form more than one dependency.

Definition 4.2 If pk is a measurable place, then [tutj] wül be called measurable dependency (MDep) and if

pk is a non measurable place then [t„t:] wül be called non measurable dependency (NDep). On figure 4.3 are

depicted a MDep and a NDep.

t, Pk ^ ^ x\ h

HCH H#HI

MDep NDep

Figure 4.3: Measurable and non measurable dependencies.

The representation of a dependency pk
= [í.,í¿] in the incidence matrix C of Q is as follows: by definition of

an incidence matrix C, pk is represented by the fcth row in C and t. and tj are represented by the ¿th and jth

column of C, then C[k,i] = 1 since U is an input transition of the place pk and C[k,j] = -1 since tj is an

output transition of the place pk-

Definition 4.3 The set of all dependencies in Q, is denoted as Dep(Q)
= Depm(Q)UDepu(Q), where Depm(Q)

is the set of all MDep and Depu(Q) is the set of all NDep in Q. Henee, the set Dep(Q) describes also the

structure of the Q in terms of its dependencies.

The set of all NDep formed with the place pk will be denoted as Dep%k

Definition 4.4 A place pk in an IPN Q can describe two kinds of dependencies:

1. pk forms a single dependency if: \*pk\ = \p'k\ = 1, U)here pk forms just one dependency. The characteristic

of this kind of dependency is that pk has only one input transition í; and only one output transition tj

and they belong to the same t-semiflows in Q.
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2. pt forms a complex dependency if \"pt\ > 1 and [pj| > 1 or |"p**.| > 1 and \p_\ > 1, where pk forms

more than one dependency. Indeed pt forma a xb dependencies, where a = |"pt| and b = __\- The mam

characteristic of this dependency is that p¡, hace more than one input transitions or more that one output

transitions and the transitions f
_.

and ís m a dependency [íx. t,] = p_ could belong to different t-semiflows

inQ.

Figures 4.2 and 4.3 show single dependencies.

The dependency depicted on figure 4.4 describes a complex dependency. Notice that p_ has two input and abo

two output transitions. henee it forms 4 dependencies: [t¿, t,-], fí,.í,], [ir-*,] and [tx-tj]- Consider the NDep

í. . t,
*

=

pt, notice that ti belongs to another t-semiflow in which tj does not belong because p_. also forms the

dependency í_-í9; =_p__-

N
Figure 4.4: A complex dependency

If the place pt is a measurable place then it describes a single or a complex MDep and if pt is a non

measurable place then it describes a single or a complex NDep.

A row representing a place forming a complex NDep has a
—ls and b ls.

Example. Consider the IPN Q depicted on figure 4.5. The decomposition of Q xn its dependencies is the

following:

MDep

Pi
= i%M P3

= [Í2,Í4] NDep

Pi
= fa.tsj P4

= l*i, t3] Pz
= foM

Pl
= l%,t7] P6

= ffe,Í6] P5
= |Í3,*i]

Pl
=Mi] PT

= [t7,ta] Ps
= t%M

Pl
= [Í9,í5] pg

= fas,**»]
Pl
= N-*7]

The places forming complex dependencies
are the places pL and pg.

Pi fonos "wpLnr MDep while

pg forms complex NDep.

Figure 4.5: Interpreted Petri net.
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Definition 4.5 Let Q be an IPN and a = íxt0í|> * * *

tctdtv e £(Q) be a firing sequence, a dependency sequence

from a transition tx to a transition ty is defined as DSeq(tx,tv) = [tx,í0][ía,Í6] * * * [íc, id] [■•*-!,■--.] where each

dependency [tlttj] e Depm(Q) U Depu(Q).

Remark. It is important to notice that a PN has a unique dependency decomposition, then the structure of a

PN can be also represented or described by its dependencies. ■

4.3 Identification problem formulation

The identification problem addressed in this work deals with the computation of a model for an assumed

unknown system when the only available information is its observed behavior (input and output signáis), this

fact leads to compute the model as the system evolves, henee the identification algorithm will work on-Une with

it. Since it is not possible to know if the observed information is enough to compute a model describing the

entire behavior of the system, then a sequence of models is computed in such way that every model in the

sequence is computed when new information of the system is observed; each new model is "better" than the

previous one in the sense that it is more similar to the actual model of the system. The last model in the

sequence will describe at least the observed behavior of the system. The identification strategy defined in this

thesis is named asymptotic identification [32] [33] [34] [35], due to the computed model of the system converges

to the actual model of the system as more information is provided by itself. Given previous statements it is

formally formulated the asymptotic identification problem.

4.3.1 Problem definition

Let Sf be a DES that can be modeled by an IPN Q; and M = {Qo,Qi,-} be the non empty set of all IPN.

Then the asymptotic identification problem is defined as follows:

1. Select a similitude function / : {Q} x M —> TZ+ indicating the similitude between Q and Qj € M. A

lower valué of f(Q,Qj) indicates that Q and Qj are more similar.

2. Find out a model sequence Qo,Qi,.--,Qk, where Q¿ e M such that f(Q,Qi) < f(Q,Qi-i)-

3. Each model Qi in the sequence will be computed as new information of the system is detected.

The notion of a model sequence indicates that the actual model of the system will be computed in an incremental

way: once a new information of the system is detected, a new IPN model can be computed such that it is more

approximated to the actual model of the system than its predecessor model in the sequence. Furthermore, each

model in the sequence fulfills that it describes at least the observed behavior of the system at the moment of

its computation. The procedures used to update each model in the sequence is presented in section 4.4.

4.3.2 Similitude function

The similitude function that estimates how much the computed model Q¿ is approached to the actual model Q

of the system Sf is defined as follows.
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Definition 4.6 Let {tpCcj} be the set of columns of matrix tpC of the system model Q, {tpCQ. } be the set of

columns of matrix tpC of the computed model Qi and, let Depu(Q) and Depu(Qi) be the sets of NDep of the

system Q and the identified model Qi respectively. The identification error is defined as:

f(Q, Qi) = \{<pCq)
-

{fCQi}\ + \Dep"(Q)
-

Depu(Qi)\ + |Dep*(Q.) -

Dep»(Q)\ (4.1)

The terms \{tpCc¡}
—

{tpCQ. }| and \Depu(Q) — Depu(Qi)\ represent the number of elements (columns of tpCq

and NDep) of Q which are missed in the computed model Qi because they are not still computed, while the

term \Depu(Qi)
— Depu(Q)\ represents the wrong computed NDep in Qi, these wrongly NDep are computed

to preserve the behavior of Q in Qj. Even a NDep [í.,í¿] = Pfc belongs to Q, if pk is not fully computed

then it will be considered also as an error since it does not belong to Q; this fact is reflected in the term

\Depu(Q)
— Depu(Qi)\ due to it represents the number of missed NDep of Q in Qi. In this case pk will not be

removed in posterior steps of the identification procedure instead of it will be updated until the k-th row of

"/Cqí matrix belongs to jCq matrix, i.e. until all its NDep will be computed.

The last two terms of the equation 4.1 form the symmetric difference of the sets of non measurable dependencies

Depu(Q) and Depu(Qi) ofthe system and the model respectively, considering in this case as an error the number

of missing NDep of Q in Qi plus the number of NDep computed in the model Qi which do not belong to Q.

The symmetric difference of the set of columns of the output matrices tpCc¡ and tpCQi was not considered since,

as it will be presented in section 4.4, all the computed columns in tpÜQi matrix are columns of ¡pCq matrix.

Thus, for the measurable part of a system Q it is only considered as an error the number of columns of tpCQ

matrix which are not still computed in the model Qi.

The equation 4.1 determines the identification error in terms of the missed elements of Q (columns of tpC and

NDep) in Qi and also in the number of NDep wrongly computed in Qi. The error f(Q,QJ) will be zero when all

columns of tpCQ and all NDep of Q be computed and the wrong NDep in Qi be removed; i.e. when Cq = Cq^

Example. Consider the IPN depicted on figure 4.6.a and 4.6.b be the system Q that need to be identified

and its computed model Q¿ when the transition sequence Í1Í2Í3Í4 was fired respectively; then the error is

}(Q,Qi) = 5, which is computed as follows:

|{|y*'C<?}
—

{'pCq. }| = 2 because the transitions Í5 and ts are not computed in Q¿,

\Depu(Q)
- Depu(Qi)\ = 3 because the NDep [í4, í5], [í6, í5] and [í6, íi] are not still computed in Q-.

\Depu(Qi)
— Depu(Q)\ — 0 because the computed NDep [Í2,Í3] and [í4,íi] belong to Q.

This error will decrease when the transitions í5 and te and the NDep [t4) í5], [í6,ís] and [í6, íi] be computed

inferring completely the place p\ of Q.

It is important consider the following:

Even though the function / describes the computation error, it cannot be used to guide the algorithm to

compute a new model since the system Sf is unknown, however / will be used to prove the convergence

of the computed model Qn to the actual model of the system Q.
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Figure 4.6: a) System model Q that need to be identified. b) Computed model Q, for Q when the observed

behavior is the firing transition sequence Í1Í2Í3Í4.

Even more, the IPN model Q of a DES Sf is unknown in principie; the hypothesis of Q known is held

just for proving the convergence of the proposed identification technique.

• For a better explanation of the identification procedure a DES 5/ will be considered as its IPN represen

tation Q, which also will be called system model or simply system.

4.4 Incremental modelling

The asymptotic identification problem states the computation of a sequence of models fulfilling that any model

Qi in this sequence is better than the previous model Qí-i in the sense that Qt is more approached to the actual

model ofthe system than Q,-i (problem definition, statement 2). Each model Q, will be computed updating

the previous computed model Q.-i as new information ofthe system is detected (problem definition, statement

3). The proposed method to compute a model Q, will consist in compute its incidence matrix. As introduced

tpCc¡in previous chapter the incidence matrix Cq of an IPN Q can be decomposed as Cq =
„ ,

where ¡pCq

and 7<_7q are the matrices representing the measurable and non measurable part of Q respectively.

The only information that it is possible to detect from direct measurement of a system model Q is its change

of state over the measurable places, this leads to compute the measurable part of its transitions represented by

the columns of tpC matrix. However the non measurable places must to be inferred from the observed behavior

of Q forming dependencies between any two transitions í¿ and tj computed consecutively represented by the

columns i and j of <pC matrix, thus the -yC matrix will be computed by rows instead of by columns like tpC

matrix.

Henee the identification process will consist in compute the columns of tpCQ matrix and infer the rows of jCq

matrix as the system evolves.
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Identification considering only the output information of the system

For a clearer explanation of the identification procedure, in the remaining of this chapter will be considered

that every change of state of a system model Q can be detected from its output information, henee a model Q¡

will be built using only the output information of Q. The identification procedure will require that all columns

of tpC can be detected and uniquely determined from its output information. Henee in this chapter will be

considered a particular case of the event detectability property presented in section 2.3 in which the events can

be uniquely determined by the output information of the system.

Definition 4.7 Let Q be an IPN. Q is event-detectable by the output if every transition firing can be uniquely

determined by the knowledge of its output signáis.

The characterization of the event-detectability property considering only the output information of the system

is that all the columns of tpC matrix be non nuil and different from each other. This is stated in the next

proposition.

Proposition 4.1 Let Q be an IPN. Q is event-detectable by the output iff:

1. Víj e T it is fulfilled that ipC~i¡ *¿ lf and

2. Vi •

¿tj eT it holds that tpC~t? **¿ tpCtJ

Proof. The proof follows from the proof of proposition 2.3. However as in this case are not considered the

input signáis then to distinguish any two transitions it is required that all columns of ¡pC matrix be different

from each others since in other case the transition represented by equal columns cannot be distinguished even

if they have different input signal assigned. ■

In chapter 6 is outlined the case in which the inputs are used in the identification procedure.

This section provides the related concepts and procedures needed to compute each model in the sequence in

order to identify incrementally a desired DES.

4.4.1 Computation of measurable part: tpC matrix

Since a column ¿ of the incidence matrix Cq of an IPN Q represents the number of tokens removed or added

from its input places to its output places respectively when the transition í, is fired, then a column of Cq matrix

can be computed from two consecutive markings of Q.

Consider the IPN state equation Mfc+i = Mk + Cvk, assume that the marking Mfc+i is reached from Mk firing
t

■ [ 1 if % — 4
the transition tj, Mk —*-♦ Mk+i, the firing vector in this case will be vk(i) = i -f since only tj is

fired, the product Cvk is the j
— th column of C representing the transition tj, this column will be represented

as CJ]. The state equation can be rewritten as Mfc+i = Mk + Ctj ,
thus

CtJ = Mfc+i
- Mfc (42)

Example. Consider the IPN Q depicted on figure 4.7, assume that the transition íx is fired from the
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1 0 0 0 1

1 -1 0 0 0

0 0-1 0 1

0 0 1 -1 0
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a) Interpreted Petri net Q

C=

b) Incidence matrix ofQ

Figure 4.7: IPN Q with its incidence matrix.

Mo

initial marking Mo reaching the marking M\\

using the equation 4.2 as:

matrix depicted on figure 4.7. b.

'

1 1 r
° 1

0 1

1

0

tl 1

0

0 0

0 0

M,

r o i
M0

"

1
' '

-1
"

1 0 1

1 1 0

0 0 0

0 0 0

0 0 0

7.b.

The transition íi could be computed

This computed column is the first column of C

The following proposition states how to compute a column of an incidence matrix C.

Proposition 4.2 Let Q be an IPN and ai and aj be any two sequences which contain the transition tk such

MÍ, then the column Ctk can be computed from any two consecutive markingsthat M'x

as Ctí = M¿

MJ and Mí

M¿ = M>- Mí

Proof. Mi =Mix + Ctk -*MÍ-MÍ = CIÍ similarly M¿
= Mí+C tk M¿ Mí = Cti

Henee the column k of C matrix representing the transition tk can be computed as Cífc =

M¿
—

Mx = M¿
—

Mí

Consider the class of completely measurable system models (in which all the places are measurable places), then

the previous proposition states a procedure to identify any model of the system model of this class since an

output symbol tpMk of a completely measurable system model is the entire marking Mfc of Q. However, more

interesting systems for the identification problem are those in which the entire information about the system

state is not accessible from its output measurement, and henee only partial information of the system state is

available. The aim of this thesis is to state an identification procedure for this class of DES. The remaining of

this section is devoted to compute the tpC matrix of a system model Q from the observed output symbols.

By definition of the output function tp (definition 2.10), an output symbol yk = tpMk (equation 2.2) is the

marking of a system model Q over its measurable part, i.e. is the marking of the measurable places of Q in the

marking Mfc.
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Example. Consider the IPN Q depicted on figure 4.8. The tp matrix ofQistpn =

10 0 0 0 0

0 10 0 0 0

0 0 10 0 0

_

0 0 0 1 o o

Notice that there exists not any row in tpg
in which there exists a 1 at positions 5~or 6 since the places p5

and pe are non measurable places.

c=

-1

1

0

0

0 0 0 1

-10 0 0

0-101

0 1-10

'.SU

*(pC

yc

Figure 4.8: System model Q and its incidence matrix.

The resulting matrix tpC of Q is a submatrix of C in which only are considered the rows of the measurable

places. On figure 4.8 it is presented the matrix tpC of the system model Q.

By definition 2.3 of the tp matrix of an IPN Q, an output symbol <pMk generated by Q, will be the marking Mk

of Q considering only its measurable places.

The first output symbol tpMo generated by the IPN Q depicted on figure 4.8 is

M0

tpM0 =

10 0 0 0 0

0 10 0 0 0

0 0 10 0 0

0 0 0 10 0

'

1
'

0

tpMo
'

1
'

1

0
=

0

1

0 0

When the event related with the transition f i is executed

the output symbol generated by Q is tpMi =

10 0 0 0 0

0 10 0 0 0

0 0 10 0 0

0 0 0 10 0

r o
"

i ° 1
i i

0 i

0 0

0

. Notice then that

tpMo and tpMi are the markings of the measurable places in the markings Mo and Mi respectively.

Based on the procedure to compute a column of the incidence matrix of a completely measurable IPN is

presented how to compute the matrix ¡pC of an IPN.

Proposition 4.3 Let Q be an event detectable IPN. Each column tp(Ctx ) of the tpC matrix can be computed

from the output symbols ofQ as tp(CT¡) = tp(Mk+i)-tp(Mk), where tp(Mk+i) and tp(Mk) are any two consecutive

output symbols generated by Q.

Proof. The proof follows from proposition 4.2, then each column i of tpCQ matrix can be computed from any

two consecutive output symbols tp(MJ¡ and tp(M,-i) as follows:
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Assume that Mk and Mk+i are any two consecutive markings of Q such that Mfc+i is reached from Mk firing

the transition t-, i.e.Mfc —'-* Mk+i.

Mk+i=Mk + Cti

tp(Mk+i) = tp(Mk + CV)
tp(Mk+i) = tp(Mk) + <p(CV)
tp(C~t*) = <p(Mk+1) - p(Mk)

(state equation)

(applying tp to both sizes)

(Due to tp is a linear function)

(solving for tp(C U ))

where Cí- is the column i of C matrix representing the transition t¡ and then tp(CU) is the column i oí tpC

matrix representing the measurable part of the transition fj.

Since Q is assumed to be event-detectable by the output (proposition 4.1) then all columns of tpC matrix can

be detected and uniquely determined as a difference of consecutive markings, due to all of them are not nuil

and different from each other. ■

This proof gives a strategy to compute the measurable part (tpC matrix) of an IPN Q using only its output

symbols.

Proposition 4.4 Let Q be a system model and let Qi be the computed model for Q. If a new column of tpC

matrix is computed then \{¡pCq}
—

{¡pCq. }| < |{<¿>Cq}
—

{¡pCq _i}\

Proof. By proposition 4.3 each computed column tp(Ctj ) belongs to tpC matrix of Q, henee if tp(Ctj ) is a

new computed column of ¡pCq matrix the term \{tpCq}
—

[tpCQj¡\ of the identification error equation 4.1 is

reduced in one unit and henee K^Cq}
—

{tpCQ }| < \{>pCq}
—

{<pCq _J¡\. ■

Notice that if the terms |Depu(Q) — Dep"(Qi)\ and \Depu(Qi) — _9epu(Q)| remains without change i.e. the

non measurable places were not modified in Q¿ or are reduced because either a new non measurable place was

correctly computed or a wrong non measurable place was removed in Qi then it is fulfilled that f(Q,Qi) <

}(QiQi-x) when a new transition is computed.

Let Q be an IPN, if there exists the following sequence of reachable markings M¡ —■■■-> Mj
■ ■ ■ Mu —► Mx -—■» Mv

then Q could generates the output word u>o
= tp(MJ¡tp(Mj)

■ ■

■tp(Mu)tp(Mx)tp(Mv), each transition in the

transition sequence u* = ía • • • í¡,íc generating u*o is computed using proposition 4.3 as: ta = tp(Mj)
— tp(MJ¡,

í-, = tp(Mx)
—

tp(Mu) and íc = tp(My)
—

tp(Mx). Notice then that each transition í¿ is a column of the matrix

tpCQ.

Example. Consider the IPN Q depicted on figure 4.8, the IPN to be identified. The non measurable part

of Q is computed following the procedure described above as:

V?Mi ipM_ i^Ms ipM\ <pM5 <pMi
'

i
' '

0
" '

0
" '

0
" "

0
' '

1
'

0 t*
.

1
_Í3_.

i
*2(

0 u
|

0
t5)

0

i tpM2~*pM, 1 <f>M3—T'M2 0 <pMi—ipMs 0 ¡pMs—tpM* 0 V>M_— tfiMí 1

.

° J
'

-1 0
'

0 1
'

0
'

1
'

0
'

0
'

1
'

0

1 0 -1 0 0

0 -1 0 0 1

0 1 0 -1 0

where all the elements tp(Mi)
-

tp(Mi-i) are the columns of the matrix tpCQ.
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Remark. Using this approach it is not possible to detect the event tj\\tk (the simultaneous firing of tj and ífc);

thus the detection of a múltiple change in the entries of the output symbol is assumed to be caused by the firing

of one transition. ■

Notice that each column i of <pCq represents only the input and output measurable places of the transition f¡.

The following sections are devoted to state when and how to infer the input and output non measurable places

of a computed transition.

4.4.2 Condition for inferring the matrix jC

Until now a procedure to compute the tpC matrix of an IPN Q has been presented. Before to define the

procedure to compute the non measurable places of Q it is needed to define the conditions under which they

can be computed.

Since the systems considered in this thesis are those that can be described by a live and bounded IPN, then

they must exhibit a cyclic behavior. A cycle has the property to be a repetitive part of the system and henee it

can be detected when a sequence of events in the system allows to reach a state (marking) previously reached.

In IPN terms the t-semiflows represent the cycles of a system, due to they induce the repetitive components

of an IPN. Consider the sequence of markings M¿ —■*■-» Mj
—---> * * * —'-> Mi reached when each transition of the

transition sequence a
=

txty
■ ■ ■

tz is fired, ct* is a t-semiflow since the marking M- is reached again after the

firing of a = txtv
■ ■ ■ tz from M¿.

Example. In the IPN depicted on figure 4.9 there are two cycles which are described by the t-semiflows

Xi = Í1Í2Í3Í4Í5Í6 and X2 = ht^tg.

Figure 4.9: Petri net with two t-semiflows and four m-words.

The measurable part of an IPN Q can be computed directly from any two observed consecutive output symbols

of Q as stated in proposition 4.3. However, the inference of the non measurable part of Q will be made when

a t-semiflow is detected. Henee it is important to state how to detect a t-semiflow from the measurement of

the output symbols of the system. Thus, the notion of a m-word is presented to specify that a possible cycle is

detected by the output.



4.4. INCREMENTAL MODELLING 43

Definition 4.8 Let Q be an IPN, w0 = v(M¡) * * * 'fi(Mj) be an output word generated by Q and a = ti ■ ■ -tk be

the firing sequence detected when w0 is observed, such that each transition ti is computed using proposition 4-3,

then a is a m-word iff tp(M,) = tp(Mj).

By definition of t-semiflow, when a marking M¡ in an IPN has been already reached then a t-semilflow is

detected. However, it could occurs that when an output symbol is repeated the underlying firing sequence is

not a t-semiflow of the IPN.

0

0

0

1

0

1

o

o

o

o

1

1

Consider the IPN Q depicted on figure 4.10. The initial marking Mq =

tpMo = applying the firing sequence Í1Í2 the marking M¿ =

produces the output symbol

is reached, which produces

the output symbol tpMi = According with definition 4.8 a m-word Wk
= Í1Í2 is detected since

tpMo = tpMi, however Mo ?-= M,, henee Í1Í2 is not a t-semiflow of Q.

l*€MKpMH3MH

rKpHMHHSK
t. <_

1 -1 0 0 0

0 0 -1 0 1

0

W_*

0 0

—

1

WM

-1

1 1

__,-L¿Llj

(pC

yc

Figure 4.10: IPN Q and its incidence matrix.

Notice then that a m-word is not always a t-semiflow of an IPN. However a m-word is the approximation of

a t-semiflow that can be detected from the output of an IPN; indeed a m-word m, of an IPN Q fulfills that

tpCQ • ffft=0.

As illustrated on figure 4.10, <P>Cq =

0

0

0

Consider again the IPN Q depicted on figure 4.9. Notice that there exist two t-semiflows in Q: Xi =

Í1Í2Í3Í4Í5Í6 and X2 = t7tstg, and four m-words w\ = Í1Í2, 11*2 = Í3Í4, W3
= Í5Í6 and u.4

= Í7Í8Í9- Notice

1

1 -1 0 0 0 1

0 0 -1 0 1 and ro¿ = 0 then ¡pCq • ro? =

0 0 0 1 -1 0

0
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also that Xi is the concatenation of the m-words w\, w-¿ and U13 i.e., Xi = wiw¿wz, while the m-word 11.4

is a t-semiflow of Q, X¡ = W4.

Henee will be considered that every t-semiflow of an IPN Q have an m-word decomposition.

Remark. The m-word decomposition of a t-semiflow wül depend on the allocation of the non measurable places

in the underlying t-component and also in the marking of the system in which its measurement begin. ■

The non measurable places of a system model Q will begin to be inferred when a m-word is detected. Next are

presented the procedures to infer non measurable places.

4.4.3 Inference of non measurable part: 7C matrix

The computation of the non measurable places (rows of matrix 7C) is not as straight as the computation of

the measurable places (rows ofmatrix tpC); since as was presented in section 4.4.1, all columns of tpCQi matrix

are computed correctly and directly from the output symbols of the system, however some non measurable

places need to be inferred from several evolutions of the system. The non measurable places will be computed

according to: 1) preserve the firing order of the transitions in the current m-word and 2) preserve the order

in which the m-words have been observed. This is to preserve in the computed model the observed behavior

of the system. Henee at the beginning of the identification procedure some non measurable places could be

wrongly computed, however, with new information provided by the system a wrong non measurable place will

be progressively corrected yielding models that represent the observed system behavior, by this reason it was

stated that a model Q¡ for a system model Q will be computed incrementally as Q evolves.

This section is devoted to introduce the needed procedures to add, update (adding or removing input or output

ares to an already computed place or merging places) or remove NDep in order to compute a new IPN model

which agrees with the observed system behavior; with these procedures the matrix ~/Cq is inferred when a

m-word is detected.

The following situations may arise when a dependency in a computed model Qn-i need to be updated in order

to identify a new model Qn.

For each NDep [í¡,í¿] = pk, a vector uk = [ vx
••■

-y.
■■•

v¡
■■■

vr ] is computed; where r is the

number of detected transitions and *■*• = 1, i*.- = -1 and vx = 0 Vx **¿ i,j. In order to obtain the incidence

matrix ofthe computed model Qi, the matrix tpCQ^^U) and u.j vectors could be arranged as follows:

tpC(;ti) •■■

tpC(;tr)
"

Uj
C =

uk

where the *_t¿ vectors are the rows of the matrix jCq¿ .

The updating of a non measurable place pk is made when a new NDep is computed using pk, when some NDep

formed with pk are removed or when two places p_ and pj are merged forming a new place pk. All updating

operations are performed on the incidence matrix Cqí of the computed model Q¿ as follows:

• If there exists a NDep [í-,íj] = pk and it is needed to form another NDep [tx,tv] using the same non

measurable place pk, then an are is added from fx to pk and another are is added from pk to í„, while in
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the incidence matrix Cq, it will be added the elements -1 and 1 in the positions CQ,[k,x] and CQ,[k,y]

respectively.

• If a NDep [í¿, tj] =pk must to be removed and pk belongs to another NDep, then the input and the output

ares of pk related with í • and tj are removed; only in the case when pk belongs to a single NDep the place

pk can be removed, while in the incidence matrix Cq, the elements CQ,[k, i] and CQ,[k,j] are set in zero,

if pn belongs to only the NDep [í.,í,] then the row k of Cq, is removed.

• If p¿ and pj are two non measurable places to be merged, then a new non measurable place pk is computed

such that 'pk =• pi U* Pj and pj = p* Up* . In the incidence matrix Cq, the rows i and j are added forming

the row k, and the rows ¿ and j are removed from Cq, .

AAA Non measurable places classification

In order to compute the matrix "¡Cq ,
the non measurable places are classified according the membership of its

input and output transitions of a given m-word.

Definition 4.9 Let pk be a non measurable place of an IPN Q. //V [í¿,í-i] 6 Dep" í¿ and tj belong to the

same m-word then pk is a non measurable place of Class A, otherwise pk is a non measurable place of Class B.

The characterization of the classes given in previous definition is given below.

Class A: The non measurable places forming NDep between transitions belonging to the same t-component

which underlying t-semiflow does not have a m-word decomposition.

The underlying t-semiflows of t-components in which the places of this class belong do not have a m-word

decomposition, henee when a m-word is determined is also determined an actual t-semiflow of the system

model. Henee in a NDep [íi,i¿] = pk such that pk belongs to Class A, ti and tj belong to the same

t-semiflow (m-word).

Two kind of non measurable places can be distinguished into this class:

A.i. The non measurable places of Class A forming a single NDep.

A.ii. The non measurable places of Class A forming a complex NDep.

These non measurable places can be computed from any two consecutive transitions ti, tj in a m-word wn

to preserve the firing order in which such transitions are computed.

An example of these classes of non measurable places is given on figure 4.11. In figure 4.11.a, the non measurable

place p2 belongs to Class A.i, while in figure 4.11.b, the non measurable places p3 and pr¡ belong to Class A.ii.

Class B: The non measurable places forming NDep between transitions of different m-words.

The underlying t-semiflows of t-components in which the places of this class belong have a m-word de

composition, henee when a m-word is determined it is possible that an actual t-semiflow has not been

determined. Henee in a NDep [íj,í,] = pk such that pk belongs to Class B, í¡ and tj belong to different

m-words.



46 CHAPTER 4. ON-LINE SYNTHESIS OF PN MODELS

Figure 4.11: Non measurable places of Class A.

Two kind of non measurable places into this class can be distinguished:

B.i. Non measurable places of Class B forming a single NDep between transitions belonging to different

m-words in a t-semiflow decomposition.

B.ii. Non measurable places of Class B forming a complex NDep

a. between transitions belonging to different m-words of the same t-semiflow decomposition.

b. between the last and the first transitions of different t-semiflows of Q.

These non measurable places are computed to preserve the occurrence order of the computed m-words

concatenating the previous and the current m-words. The updating of this class of non measurable places

will be made when new m-words be detected, also it is possible that as the system evolves new occurrence

order of the m-words could be detected, in this case a non measurable place is updated merging the output

and the input non measurable places of last and the first transitions of the previous and the current m-word

respectively.

An example of non measurable belonging to these classes is given on figure 4.12. In figure 4.12.a, the non

measurable places pi, p% and ps belong to Class B.i, In figure 4.12.b, the non measurable places P3 and pe

belong to Class B.ii.a, while in figure 4.12.C, the non measurable place p5 belong to Class B.ii.b.

The previous classification of non measurable places is given according to the m-word decomposition of the

t-semiflows into the system model Q. Thus, the Class A represents the non measurable places in which their

inputs and output transitions belong to the same m-word, indeed this m-word is an actual t-semiflow of Q.

The Class B represents the non measurable places in which their input and output transitions could belong to

different m-words. The input and output transition of a non measurable place of Classes B.i.a and B.ii.a belong

to different m-words of a same t-semiflow, while the input and output transitions of a non measurable place

of Class B.ii.b are the last and the first transitions of actual t-semiflows of Q. These places are computed by

sequencing the last and the first transitions of the previous and the current m-words of different t-semiflows. It

is important to notice that the places belonging to subclass ¿ are those forming single NDep, while the places

belonging to subclass ¿¿ are those forming complex NDep.
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b) Class B.ii.a.

T-semiflows

X,=t,^tjt,t7tg

X_=t,U^XrXt

a) Class B.i.

_lfc -rfl' ItO l»lf »^ «fl *>Q -tfl > -_-fc til >n

Pj Pí Pj Pí

*l=«l«2 Wj-=t3t, W,-**!,^

m-words

m|*=t,t2 mj-tjtj

m2=tjt, m4=tit(l

c) Class B.ii.b.

m2=<5<6 m.^tj

<-- '.

nV^-s

Figure 4.12: Non measurable places of Class B.

If two IPN have the same structure but different interpretation or initial marking then it is possible that their

non measurable places do not belong to the same class.

Example. Consider the IPN Qi and Q2 depicted on figure 4.13. Although these two IPN have the same

structure, the location of their non measurable places is different. This fact leads to a different m-word

decomposition of their t-semiflows. These IPN only have one t-semiflow X* = Í1Í2Í3Í4-

a) System model Q, b) System model Q2

P. Pb Pc Pj Pi P2 Pi ?*

*_x_\ j| t/^ ji fcjfc ji _f^s _n

t, t, t, t.

Figure 4.13: Different allocation ofthe non measurable places in two structurally equal IPNs.

The m-word decomposition of Qi is wi = M2Í3Í4, while the m-word decomposition of Q2 is wi = Í1Í2

and *_«2 = Í3Í4. Then the m-word decomposition of Qi is not the same m-word decomposition of Q2 and

their respective non measurable places belong to different classes:

Consider the non measurable place pc = [Í2,ís] of Q\\ since Í2 and Í3 belong to the same m-word, then pc

belong to Class A. In turn for the non measurable place P3
= [Í2,Í3¡ of Q-¿, Í2 and Í3 belong to different

m-words, thus P3 belongs to the class B.
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For every subclass it is defined a procedure used to infer the non measurable places. Next are described these

procedures.

4.4.5 Inference of non measurable places of class A

The main features of the non measurable places belonging to this class is that their input and output transitions

belong to the same m-word and this m-word is an actual t-semiflow of a system model Q, i.e. this t-semiflow is

composed by only one m-word.

Inference of non measurable places of Class A.i

The places belonging to this class form a single NDep pk
= [ti, tj] between two transitions ti and tj of a same

m-word of a system model Q.

The strategy to compute these non measurable places consists in preserve the firing order of the transitions to

the observed firing order in the current computed m-word wn forming a NDep between any two consecutive

transitions in wn which are not connected.

Identification Step 4.1 Let Q be a system model, Qn be the computed model for Q, wn = • • •

t¡tj
■ •■ be the

current computed m-word from the observed behavior of Q and ti and tj be any two consecutive transitions in

wn. If there exists not a dependency [U,tj] in Qn then the non measurable place px = [í¿,íj] can be computed to

preserve the firing ofti before tj in Qn.

Proposition 4.5 Let Q be a system model. A non measurable place pk of Class A.i can be computed using

identification step 4-1 ■

Proof. A non measurable place of Class A.i fulfills that 1) it forms a single NDep i.e. pk only has one input

and one output transition 2) its input and output transitions belong to same m-word. A non measurable place

computed using identification step 4.1 is computed between any two consecutive transitions íj and tj in the

current computed m-word wn
= ■■

-titj
■ ■ ■ such that the dependency [í-,í¿] does not exist in Dep(QJj. If pk is

the computed place then pk
= t' =' tj, henee pk fulfills both conditions of places belonging to Class A.i. ■

The underlying procedure described by identification step 4.1 is the computation of a t-component by sequencing

all the non connected consecutive transitions in wn, because it is assumed that a detected m-word is a t-semiflow

of a system model. Indeed the last and the first transitions of wn are considered as consecutive transitions. The

next example illustrate this fact.

Example. Consider the IPN Q depicted on figure 4.14. Assume that the m-word n-j = Í1Í2Í3Í4Í5 is

computed from an output sequence of Q, then the columns of tpC representing each transition of i_*i are
Éi ¿2 ¿3

_

l4
_

¿5

the following:

1 -1 0 0 0

0 1 0 0 -1

0 0 1 -1 0

0 0 0 1 -1

Notice that í2 and í3, and f5 and i-,are consecutive

transitions in u*i ; however there exist not a place forming any dependency between these transitions. This

fact can be detected since there exists not a row in tpC matrix in which there exists 1 in the column of

Í2 and a
- 1 in the column of Í3 and either there exist a row in which there exists 1 in the column of t5
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and a -1 in the column of ti. Henee the NDep px
= [Í2,Í3] and p„=[Í5,íi] are computed. On figure 4.15

is depicted the computed model Q\.

Pj 'i Pi "i P¡

■ --fc I fl I fX I fl IO I

"• '\r*\J *ü *\-s*

'W 'u^\J^u*\J^
P. -) Pj U Pi 'j

1 -1 0 0 0

0 1 0 0 -1

0 0 1 -1 0

0 0 0 1 -1

•cpC

YC

Figure 4.14: IPN Q and its incidence matrix.

P, 'i Pi -i Pj

Py -3 Pj <4 P4

1 -1 0 0 0

0 1 0 0 -1

0 0 1 -1 0

0 0 0 1 -1

•<PCQ,

YC0l

Figure 4.15: Computed model Qi from the m-word wi
= íiÍ2Í3Í4¿5.

In previous example, the only non measurable place computed correctly is the place px, since the place p„ does

not belong to Q, however it is computed to preserve the firing order of the transition Í2 and Í3 as stated in wi.

Notice then that px belongs to Class A.¿.

It is important consider the following when a non measurable place is computed using identification step 4.1:

1. In order to identify a NDep p*
= [t¿,í¿] of Class A.i, it is needed that the transitions íj and tj occurs

consecutively in a m-word. For example the place pe of the IPN Q depicted on figure 4.14 is a non

measurable place belonging to Class A.i., however it could not be computed from u*i since Í5 and Í3 did

not occur consecutively in uii .

However the missing NDep [íj,t-] will be computed when in a new m-word t, and tj occur consecu

tively.

2. Since the procedure stated in identification step 4.1 computes a t-component with the transitions of the

current m-word wn, if wn is not a t-semiflow of Q then the NDep computed between the last and the first

transitions of wn is wrongly computed. However the firing order of the transitions in wn is preserved. In

this case the term \Depu(Q,)
— Depu(Q)\ ofthe identification error equation is augmented.

The wrongly NDep computed as above is removed when a future m-word is detected, computing a non

measurable place of Class B.i concatenating the previous and the current m-word. The concatenation

procedure is presented in next section.
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3. As it is shown in figure 4.16, the transitions í2 and í3 are concurrent transitions and henee there could not

exist a non measurable place constraining their firing, however at early stages of the identification process

these kind of NDep need to be computed to preserve the observed behavior of the system. In this case

the term |£>ep"(<2j)
-

Depu(Q)\ of the identification error equation is augmented because the computed

place does not belong to Q.

The wrongly computed NDep between concurrent transitions will be removed in a posterior stage

of the identification procedure when in another m-word the concurrent transitions change its firing

order. The procedure to remove this kind of NDep is presented at the end of this section.

4. Only when the input and output transitions íj and tj of the computed non measurable place pk belong

to the same m-word which is also a t-semiflow of Q the term \Depu(Q) — Dep"(Qj)| of the identification

error equation is reduced.

• Indeed if pk = [íj,í*] forms a single NDep then it is completely computed. However when íj or tj be

shared transition by another t-semiflow, the computed NDep [U,tj] = pk belongs to Q but the non

measurable place pfc is not inferred completely. It is needed to compute another m-word (t-semiflow)

to compute new NDep of the place pfc. In this case pk is a place of Class A.ii. This procedure is

presented below.

Pj 'l Pl *2 P2

i _é i n ih i n ih i o

Pí lJ Pj *4 P4 *5

1 -1 0 0 0

0 1 0 0-1

0 0 1 -1 0

0 0 0 1 -1

*(pC

yc

Ps 'i Pi h Pi h

Pí h Pj <4 Pi ':

P-component Y,

P-componcnt Y2

Model system Q P-components ofQ

Figure 4.16: Undelying P-components of the p-semiflows Yx = [11001] and Y2 = [00111] of Q.

Inference of non measurable places of Class A.ii.

If a place pk = [íj, tj] belongs to Class A.ii., then pk forms a complex NDep such that í¿ and tj belong to a same

t-semiflow Xp such that they occur consecutively in a transition sequence of a system model Q, however íj or

tj belongs to at least another t-semiflow Xq. Henee the place pk is a shared place at least by the underlying

t-components of Xp and Xq and t, or tj are shared transition by the t-semiflows Xp and Xq.

In the IPN depicted on figure 4.17 the places p3 and p6 form NDep of class A.ii. In this example p3
=

[h,tj] = [Í2,Í5]- The transitions í3 and í5 belong to different t-semiflows Xx = [ 1 1 1 1 0 0 1 1 1T

and X. = [11001111] respectively, however t2 belongs to both t-semiflows, henee it is a

shared transition by Xi and Xi- Notice that the non measurable place p3 belongs also to the t-components

related with X\ and Xi-
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6 ^P6 P7

Figure 4.17: System model.

Figure 4.18: Non measurable places computed using Step identification 4.1.

Consider the system model Q depicted on figure 4.17, its m-words are wa
= Í1Í2Í3Í4Í7Í8 and to*, =

íiÍ2Í5*6Í7Í8 which are also its t-semiflows.

• Let px = P3, tw = Í2, íj = Í3 and ír = Í5.

The transitions f2 and Í3 are consecutive transitions in wa while the transitions Í2 and Í5 are consecutive

transitions in u**,. If it is used the identification step 4.1 to compute these non measurable dependencies

then two non measurable places p¡ and pj are computed as depicted on figure 4.18.a. Notice that in this

model Í3 and Í5 belongs to the same t-semiflow which is a contradiction since Í3 belongs to wa and Í5

belongs to u**,, henee pj and pj must to be the same place.

Let py
=

pe, íj
= Í4, ta = Í6 and tv = ty.

The transitions Í4 and Í7 are consecutive transitions in wa and the transitions Í6 and tj are consecutive

transitions in tí**,. If it is used the identification step 4.1 to compute these non measurable dependencies

then two non measurable places pq and pT are computed as depicted on figure 4.18.b. Notice that in this

model í4 and Í6 belongs to the same t-semiflow which is a contradiction since Í4 belongs to wa and te

belongs to u/j,, henee pq and pr must to be the same place.

In order to cope with this situation it is stated how to compute a NDep using an already computed non

measurable place to infer a non measurable place of Class A.ii.

Identification Step 4.2 Leí Q be a system model, Qi be the computed model for Q, wn = ■ ■ ■

Utj
■ ■ ■ be the

current computed m-word from the observed behavior of Q, and t¡ and tj be any two consecutive transitions in

**/*„. If there exists not a dependency [ti,tj] in Q, and

Case 1: there exists u NDep [íj,ífc] = px or



52 CHAPTER 4. ON-LINE SYNTHESIS OF PNMODELS

Case 2: there exists a NDep \tk,tj] = pv

such that tk does not belong to wn then the NDep [ti,tj] can be computed using an already computed place

adding an are from px to tj or adding an are from ti to py for case 1 or case 2 respectively, forming the NDep

[ti,tj] =px or [U,tj] =pv.

Proposition 4.6 Leí Q be a system model. A non measurable place of Class A.ii can be inferred using the

identification step 4-2-

Proof. A non measurable place of Class A.ii fulfills next conditions 1) it forms a complex NDep and 2) its

input and output transitions belong to the same m-word which is also a t-semiflow of Q. Using identification

step 4.2 a non measurable place is updated when two transitions í¡ and tj are consecutive transitions in the

current m-word wn, such that there exists a NDep [íj,ífc] = p* or a NDep [tk,tj] = p¡, in Qi and ífc does not

belong to wn. This two cases are next summarized:

case 1: If the NDep [íj, ífc] = px exists in Qj then an are is added from the place px = [ti, tk] to the transition tj

to compute the NDep [t¡, tj] = px, the place px forms a decisión between tj and ífc, since ífc does not belong to

wn then it is possible that Qn generates the m-words: u*„ and the m-word in which íj and ífc were consecutive

transitions.

or

case 2: If the NDep py
= [tk,tj] exists in Qi then an are is added from the transition íj to the place py

= [tk,tj]

to compute the NDep [íj.íj] = py, the place py forms an attribution between the transitions íj and ífc, since ífc

does not belong to wn then it is possible that Qn generates the m-words: wn and the m-word in which tk and

tj were consecutive transitions.

The fact that there exist the NDep [íj,ífc] or [í¿,ífc] in Qi such that tk does not belong to the current m-word

wn in which í¡ and tj are consecutive transitions, implies that there exist another m-word in which íj and ífc or

ífc and tj are consecutive transitions fulfilling the condition that íj or tj are shared transitions of at least two

t-semiflows while the updated non measurable place px or py is a shared place by their underlying t-components.

Henee a non measurable place of Class A.ii. is inferred using identification step 4.2 as new NDep [fj,í,] are

computed adding input or output ares to an already computed non measurable place which is an output or an

input place of íj or tj . ■

The underlaying procedure of identification step 4.2 consists in compute a NDep between any two consecutive

transitions using an already computed non measurable place: If there exists not a dependency [U,tj] between

any two consecutive transitions in the current m-word wn but íj has an output non measurable place px or tj

has and input non measurable place py i.e. there exists the NDep [íj, ífc] = px or the NDep [ífc, tj] = py in the

computed model <2¿, then the NDep [íj, tj] need to be computed using px or py. With this new computed NDep

the place px or the place py is approached to an actual place of Q and the term ]Depu(Q) —

Depu(Q¿)| of the

identification error equation is reduced.

The next algorithm presents how to infer a single or a complex NDep belonging to class A.i and A.ii respectively

preserving the firing order of the transitions in the current computed m-word wn.
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Algorithm 4.1 Computing NDep to constrain the firing order of the transitions in the current m-word wn.

Inference non measurable places belonging to class A.i and A.ii.

Input: The Dep(Q„) = Dep(Q„_i) set and the current computed m-word wn
= tm ■ ■ ■ f„.

Output: an updated Dep(Qn) set

1. If there exists not a MDep [í„,ím] in Dep(Qn) then

(a) add a NDep [tn,tm] = pk to Depu(Qn) set. In this case, the new non measurable place pk = [tn,tm]

must contain one token in the initial marking.

2. Let tj and tj any two consecutive transitions in wn

3. If there exist not a dependency [íj,t¿] in Dep(Qn) then

(a) If there exists a NDep [U,tk] = px and also there exists a NDep [tk,tj] = Py in Dep(Qn) then form

the NDep [U,tj] merging the non measurable places px and p„.

(b) If there exists a NDep [íj, tk] = px in Dep(Qn) then add the NDep [íj, í,] using the already computed

non measurable place px such that [U,tj] = px- (Identification step 4.2 case 1).

(c) If there exists a NDep [tk, tj] = py in Dep(Qn) then add the NDep [íj, tj] using the already computed

non measurable place pv such that [tj,í,] = p„. (Identification step 4.2 case 2).

(d) else add the NDep [U,tj] to Dep(Qn). (Identification step 4.1)

A key feature of a non measurable place pk
= [t, , tj] belonging to Class A is that its input and output transitions

ti and tj belong to the same t-component.
The m-word wn

= ■ ■ ■

Mj
• • • ¡» which í¿ and tj appear consecutively

is also a t-semiflow of the system. The subclasses of non measurable places in Class A are the Class A.i in

which pfc forms a single NDep implying that í¡ and tj belong to the same t-semiflow and the Class A.ii. in

which p* forms a complex NDep implying that í
■

or tj belongs to at least another t-semiflow
and pfc is a shared

non measurable place by more than one t-component. The procedure to compute this class of non measurable

places consists in constrain the firing of any two consecutive transitions in the current computed m-word w„ to

the order in which they are computed in wn forming the t-component associated with this m-word. The non

measurable places of Class A.i are computed using a new non measurable place while the non measurable places

of the Class A.ii are computed using an already computed non measurable place adding input or output ares

top*.

0 Dealing with concurrent transitions

Parallel activities are those that can occur independently during the execution of a cycle in a DES. Concurrence

of a DES can be easily expressed in terms of Petri nets. In general two transitions are said to be concurrent

if one transition may fire before, after or in parallel with other transition, this occurrence is considered in

a determined t-component. The transitions t\ and f3 of the IPN depicted on figure 4.16 are an example of

concurrent transitions.
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Case 2: there exists a NDep [tk, tj] = py

such that tk does not belong to wn then the NDep [U,tj] can be computed using an already computed place

adding an are from px to tj or adding an are from ti to pv for case 1 or case 2 respectively, forming the NDep

[íj, tj] = px or [ti, tj] = py.

Proposition 4.6 Leí Q be a system model. A non measurable place of Class A.ii can be inferred using the

identification step 4-2.

Proof. A non measurable place of Class A.ii fulfills next conditions 1) it forms a complex NDep and 2) its

input and output transitions belong to the same m-word which is also a t-semiflow of Q. Using identification

step 4.2 a non measurable place is updated when two transitions íj and tj are consecutive transitions in the

current m-word wn, such that there exists a NDep [fj,ífc] = Pk or a NDep [ífc,í¿] = py in Qi and í* does not

belong to «*„. This two cases are next summarized:

case 1: If the NDep [íj, í*] = px exists in Qj then an are is added from the place px = [íj, í*] to the transition tj

to compute the NDep [íj, tj] = px, the place px forms a decisión between tj and tk, since ífc does not belong to

wn then it is possible that Qn generates the m-words: wn and the m-word in which íj and tk were consecutive

transitions.

or

case 2: If the NDep py = [ífc, íj] exists in Q¡ then an are is added from the transition íj to the place pv = [tk,tj]
to compute the NDep [íj,íj] = pv, the place py forms an attribution between the transitions íj and tk, since ífc

does not belong to wn then it is possible that Qn generates the m-words: wn and the m-word in which tk and

tj were consecutive transitions.

The fact that there exist the NDep [íj,ífc] or [íj.ífc] in Qi such that í* does not belong to the current m-word

wn in which íj and tj are consecutive transitions, implies that there exist another m-word in which íj and ífc or

ífc and tj are consecutive transitions fulfilling the condition that íj or tj are shared transitions of at least two

t-semiflows while the updated non measurable place px or p¡, is a shared place by their underlying t-components.

Henee a non measurable place of Class A.ii. is inferred using identification step 4.2 as new NDep [íj,íj] are

computed adding input or output ares to an already computed non measurable place which is an output or an

input place of í¡ or tj . m

The underlaying procedure of identification step 4.2 consists in compute a NDep between any two consecutive

transitions using an already computed non measurable place: If there exists not a dependency [U,tj] between

any two consecutive transitions in the current m-word wn but íj has an output non measurable place px or tj

has and input non measurable place py i.e. there exists the NDep [íj,ífc] = px or the NDep [tk,tj] = py in the

computed model Qj, then the NDep [íj, tj] need to be computed using px or py. With this new computed NDep

the place px or the place py is approached to an actual place of Q and the term |Depu(Q) —

Depu(Q¿)| of the

identification error equation is reduced.

The next algorithm presents how to infer a single or a complex NDep belonging to class A.i and A.ii respectively

preserving the firing order of the transitions in the current computed m-word wn.
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Algorithm 4.1 Computing NDep to constrain the firing order of the transitions in the current m-word wn.

Inference non measurable places belonging to class A.i and A.ii.

Input: The Dep(Qn) = Dep(Qn_i) set and the current computed m-word w„ = ím • • • í„.

Output: an updated Dep(Qn) set

1. If there exists not a MDep [fn,ím] in Dep(Qn) then

(a) add a NDep [t„,ím] =Pk to Depu(Qn) set. In this case, the new non measurable place pk = [ín,ím]

must contain one token in the initial marking.

2. Let íj and tj any two consecutive transitions in wn

3. If there exist not a dependency [U,tj] in Dep(Qn) then

(a) If there exists a NDep [íj, ífc] = px and also there exists a NDep [ífc, tj] = py in Dep(Qn) then form

the NDep [íj, tj] merging the non measurable places px and py.

(b) If there exists a NDep [íj, ífc] = px in Dep(Qn) then add the NDep [íj, íj] using the already computed

non measurable place px such that [íj,íj] = px. (Identification step 4.2 case 1).

(c) If there exists a NDep [ífc, tj] = py in Dep(Qn) then add the NDep [íj, íj] using the already computed

non measurable place py such that [íj,íj] = pv- (Identification step 4.2 case 2).

(d) else add the NDep [tj,fj] to Dep(Qn). (Identification step 4.1)

A key feature of a non measurable place pk = [ti , íj] belonging to Class A is that its input and output transitions

íj and í* belong to the same t-component. The m-word wn =
■ ■ ■

íjíj
• • ■ in which íj and íj appear consecutively

is also a t-semiflow of the system. The subclasses of non measurable places in Class A are the Class A.i in

which p* forms a single NDep implying that íj and íj belong to the same t-semiflow and the Class A.ii. in

which p* forms a complex NDep implying that í j or tj belongs to at least another t-semiflow and pk is a shared

non measurable place by more than one t-component. The procedure to compute this class of non measurable

places consists in constrain the firing of any two consecutive transitions in the current computed m-word wn to

the order in which they are computed in wn forming the t-component associated with this m-word. The non

measurable places of Class A.i are computed using a new non measurable place while the non measurable places

of the Class A.ii are computed using an already computed non measurable place adding input or output ares

top*.

0 Dealing with concurrent transitions

Parallel activities are those that can occur independently during the execution of a cycle in a DES. Concurrence

of a DES can be easily expressed in terms of Petri nets. In general two transitions are said to be concurrent

if one transition may fire before, after or in parallel with other transition, this occurrence is considered in

a determined t-component. The transitions íj and Í3 of the IPN depicted on figure 4.16 are an example of

concurrent transitions.
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It is possible that in any m-word ui¡
= ■ ■ ■

íjíj
• • ■ two concurrent transitions íj and íj occurs consecutively,

for

example in the m-word *u*i = Í1Í3Í2Í4Í5 of the same IPN fi and Í3 occurs consecutively.

At the beginning of the identification procedure it is not possible to know if any two consecutive transitions are

concurrent transitions or not, then if there exists not a dependency between any two consecutive transitions

í, and íj in the current m-word wn
= ■ ■ ■

íjíj
• • • and there exists not evidence that íj has occurred before íj

in another m-word, then to constrain the firing of íj before íj it is computed a NDep pk
= [íj, íj] as stated in

identification step 4.1. If íj and íj are concurrent transitions then pk
= [íj,íj] is a wrong NDep, i.e. this NDep

does not belong to the system model to be identified. This wrong NDep will be removed when another m-word

wm = • ■ ■

íj
• ■ • íj ■ • • in which íj occurs before íj is computed.

Next it is presented the definition of concurrent transitions, the needed properties to detect such transitions

and the procedures to update a previous model when concurrent transitions are detected.

Definition 4.10 Leí Q be an IPN and Xk be a t-component ofQ, two transitions tp and tq ofXk are concurrent

transitions if there exists two transition sequences a¡
**¿

o¡ 6 £(Xk), such that ai = ■■■tptq--- and aj
=

• * •

í,fp
• ■ ■ If there exists two transition sequences ax

= • ■ ■

tp
■ * ■

tq
■ ■ ■ and ay

= ■ • •

tp
■ ■ ■

tq
■ ■ •

íp and tq are

considered pseudoconcurrent.

Since the two sequences ai
**¿
aj of previous definition are sequences generated by the same t-component they

fulfill that a¡ = Wj (i.e. they have the same characteristic vector).

The set of all concurrent transitions in an IPN Q will be denoted as Concurrent(Q), two concurrent transitions

í¡ and íj are denoted as c[íj,íj] which is equivalent to c[íj,íj].

Let íj and tj any two consecutive transitions in the current m-word wn and T be the set of all computed

m-words. To detect if í¡ and f
j
are concurrent transitions or not, it is searched if there exists a m-word wk -*¿ wn

such that Wk
= ü£ in which íj occurs before íj. The existence of the m-word wk

= • ■ ■

tj
• • ■ tk ■ ■ ■

implies that

íj and íj are concurrent transitions (by definition 4.10). However the absence of Wk =
• • ■

tj
■ • • tk ■ • ■ in T does

not implies that íj and íj are not concurrent, it only indicates that it has not been already computed a m-word

in which tj occurs before íj.

Example. Consider the system model Q depicted on figure 4.19, the transitions íi and Í3 are concurrent

transitions, however when Q had only generated the m-words t_*i = íiÍ3Í2Í4Í5 and w-¡ = Í1Í2Í3Í4Í5 it is not

possible to determine that íi and ¿3 are concurrent transitions since from the behavior observed of Q, íi

occurs always before than Í3.

•2

-3 *4 ':

-10 0 0 1
-\

1-1 0 0 0

0 0-1 0 1

0 0 1-10 -.

x_W______W\ }

>-(pC

yc

Figure 4.19: System model and its incidence matrix.



4.4. INCREMENTAL MODELLING 55

Proposition 4.7 Leí Q be a system model, wn = * * *

Utj
■■■ be the current computed m-word from the last

output word produced by a t-component Xk ofQ and T be the set of all computed m-words from Q. If there exist

a m-word wk =
• • • tt • • ■ tf • • • inT such that wk **¿ wn and wí = iüít, then íj and tj are concurrent transitions.

Proof. By hypothesis if u*fc exists in T implies that Wk and wn belong to the same t-component, from

definition 4.10 íj and tj are concurrent transitions due to Q had produced two m-words wk =
• ■ ■

íj
* * • íj ■ • • and

wn =
• • ■

íjíj
• ■ ■ in which the transitions íj and íj occurs in different order. ■

Corollary 4.1 Let Q be a system model, Qi be the computed model for Q and wn = • • -U ■ ■ -tx • ■ ■ be the

current m-word computed from the last output word generated by the t-semiflow Xk ofQ. If there exists a NDep

[íx,íi] tn Qj, then ti and tx are concurrent transitions.

Proof. By identification step 4.1 a NDep is built to form a sequence between any two consecutive transitions

of a computed m-word, henee if there exists a NDep [t»,fj] in a t-component of the computed model Qj implies

that from the observed behavior of Q was already computed a m-word -*•/'■=•-■ txt¡ ■ ■ ■ in which tx occurs before

íj, by proposition 4.7 íj and tx are concurrent transitions since in the current m-word wn =
■ ■ • íj • • • tx ■ ■ ■

, ti

occurs before tx. ■

Identification Step 4.3 Leí Q be an IPN, Qi be the computed model for Q and íj and tx be any two concurrent

transitions detected from the current computed m-word wn =
• • • tj ■ • • tx • • • If there exists a NDep [íz, íj] in

Dep(Qi), then the NDep [tx,ti] is removed from Dep(QJ¡.

Proposition 4.8 Leí Q be a system model and Qi be the computed model for Q. If a NDep [tx,ti] is removed

using step 4-3, then the term ]Depu(Qi)
—

_Depu(Q)| of the error equation 4-1 is reduced.

Proof. By corollary 4.1 íj and tx are concurrent transitions, henee they could not form any dependency and

the NDep \tx,U] must to be removed from Dep(Qi) as stated in identification step 4.3. Since the NDep [íj,íj]

is detected that does not belong to Q the term |Dep"(Qj)
—

Depu(Q)| ofthe identification error is reduced after

remove a NDep. ■

Notice that after remove in the computed model a NDep [íj, tj] could occur that íj or íj remain as a sink or as

a source transition respectively such that í* = 0 or 'tj = 0. Assume that the NDep [í¡, íj] = pk is removed from

Depu(Qn) : The transition íj could become a sink transition when the only NDep formed with tj is using the

non measurable place pk and íj has not another output place. Similarly, íj could become a source transition

when the only NDep formed with íj is using the non measurable place pk and íj has not another input place.

Will be considered that a transition remain as a sink or as a source transition after the evaluation of all

transitions in the current m-word wn due to it is possible that in wn íj has another successor transition different

to tj or íj has another predecessor transition different to íj computing a new NDep.

Example. Consider the system model Q depicted on figure 4.20.a. The model Qi depicted on figure

4.20.b. is computed when the first m-word wi = íiÍ2Í3Í4Ís is detected. A NDep [Í2,Í3] is computed

(among others) using identification step 4.1 because to t^ and tz are consecutive transitions in *u*i and

there exist not any dependency between these two transitions. Assume now that wi = Í3Í1Í2Í4Í5 is the next

m-word computed. Then the transitions Í2 and Í3 are determined to be concurrent transitions because Í2
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occurs before Í3 in wi (proposition 4.7 and corollary 4.1). Since there exists a NDep [Í2,Í3] in Dep(Q2),

it is removed to allow the firing of Í3 before Í2 as stated in w2 (identification step 4.3). After remove the

NDep [Í2,Í3] from Dep(QJ), ti remains as a sink transition and Í3 remains as a source transition; this is

illustrated on figure 4.20.C.

P4 t, p, ^ p, t,

L**-A-Jl-*rWl-*A-fc.
PW **Lr*vJ PU *W *

Ps h P2 *4 Pj

a) System model

wl=W3Vs

P4 <i Pi -2

L^#-HK>H)
i_áx% i-fl xx»T^ Jl >r^i é

*3 Pl U Pj

b) Model Q,

W^t.tjt^s

P4 *l Pl «2

L>#-HX>0

■3 P2 *4 Pj

c) Partial model ofQ2

Figure 4.20: System model and its computed models.

However, the existence of sink or source transitions after removing a wrong NDep will depend on the computed

m-words, i.e. in the observed behavior of the system, and also in how the non measurable places are allocated

into the net. This fact is illustrated in the next two examples.

Example. Consider again the system model Q depicted on figure 4.20.a and its first model Qi depicted

on figure 4.20.b computed when the m-word uii = Í1Í2Í3Í4Í5 was detected. If the second m-word computed

is w'2 = Í3Í4Í1Í2Í5 (instead of w2 = Í3Í1Í2Í4Í5 like in previous example) then the computed model Q2 is

equal to Q, because even the NDep [Í2,Í3] is removed; the NDep [Í2,ís] is computed due to Í2 and Í5 are

consecutive transitions in wn and henee Í2 does not appear as a sink transition after evalúate w'2. The

NDep [Í5 , Í3] is computed since ¿3 and Í5 are the first and the last transitions of w„ and as was stated

previously they are considered as consecutive transitions, henee Í3 does not remain as a source transition.

Example. Consider now the system model Q depicted on figure 4.21 which has the same structure as the

IPN depicted on figure 4.20, however they have a different interpretation since the number and allocation

of the non measurable places in these two IPN is different. The model Qi depicted on figure 4.21.b is

computed when the m-word wi
= Í1Í2Í3Í4Í5 is detected. When the m-word w2 = Í3Í1Í2Í4Í5 is computed

it is removed the NDep [Í2,Í3] since in this m-word Í3 occurs before Í2, notice that Í3 remains as a source

transition as shown in the partial model Q2 depicted on figure 4.21.C. In this example the transition Í2

does not remain as a sink transition as in the previous example.

In order to rebuilt the t-component associated to wn, when a transition tt remains as a sink or as a source

transition it is needed to compute a NDep, this new NDep will be computed considering the predecessor or the

successor of such a transition in the current m-word wn, if í, is a source or a sink transition respectively. This

NDep is computed using the following identification step.

Identification Step 4.4 Let wn be the current computed m-word and Qi be the computed model for a system

model Q,
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Figure 4.21: System model and its computed models.

Case 1: If ti remains as a sink transition in Qi then a NDep [tj,í_.] is added to Dep(QJ) such that tx is the

successor transition o/íj in wn. Ifti and tx are concurrent transitions then tx is now taken as the next successor

ofU in wn.

Case 2: If tj remains as a source transition in Qi then a NDep [í-,,íj] is added to Dep(QJ) such that ty is the

predecessor transition of tj in wn. Ifty and tj are concurrent transitions then ty is now taken as the previous

predecessor of tj in wn.

Proposition 4.9 Leí Q be a system model, Qi be the computed model for Q, wn be the current computed m-

word and í, be a sink transition or tj be a source transition. If the identification step 4-4 is used to connect a

sink or a source transition in Qi, then it is fulfilled that the observed behavior of Q is preserved in Qi.

Proof. Case 1: Since U is a sink transition implies that í* = 0, in order to compute an output non measurable

place it is searched a successor tx of íj in wn. Since í, and tx are consecutive transitions in wn then it is possible

to compute the NDep [íj,íx], however if íj and tx are concurrent transitions this NDep cannot be computed

because there exists another m-word in which tx occurred before íj; then the next successor of íj in wn it is

chosen to form the NDep [í,,íx]. Henee when íj is connected with a successor, the behavior of Qj correspond

to the observed behavior of Q since í, has occurred before tx in all the m-words computed.

Case 2: Since íj is a source transition implies that 'tj = 0, in order to compute an input non measurable place

it is searched a predecessor tv of tj in wn. Since ty and tj are consecutive transitions in wn then it is possible

to compute the NDep [ív,íj], however if ty and tj are concurrent transitions this NDep cannot be computed

because there exists another m-word in which tj occurred before ív, then the previous predecessor of tj in wn is

chosen to form the NDep [ív, tj]. Henee when íj is connected with a predecessor ty the behavior of Qj correspond

to the observed behavior of Q since tj had occurred after ty in all the m-words computed. ■

Example. Consider the partial model Q2 depicted on figure 4.20.C, after remove the NDep [Í2,Í3] from

Dep(Q2),t2 remains as a sink transition and Í3 remains as a source transition. So Í2 need to be reconnected

with its successor (identification step 4.4, case 1) in w2
= Í3Í1Í2Í4Í5, the successor transition of Í2 in w2

is Í4, as í2 and Í4 have not been detected to be concurrent because neither in u*i
= Í1Í2Í3Í4Í5 ñor in

■u>2 = *3fiÍ2Í4Í5, Í4 occurs before Í2 (thus [f4, t2\ does not belong to Concurrent(Q2)), then the NDep [Í2, Í4]

could be added to Dep(Q2) as presented in figure 4.22.a. Now the transition Í3 need to be reconnected

with its predecessor (identification step 4.4 case 2) in w2 = Í3Í1Í2Í4Í5, since í3 is the first transition in w2
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then its predecessor is the last transition of w2 due to w2 is assumed to be a t-semiflow, as fs and Í3 have

not been detected to be concurrent transitions (proposition 4.7 and corollary 4.1), then the NDep [ís,Í3]

could be added to L>ep(Q2) as presented in figure 4.22.b. Notice that although Q2 is not equal to Q it

can genérate the m-words *u*i and w2.

■3 P2 [4 P3

a) Partial model Q2 b) Model Q2

Figure 4.22: Computed models.

The remaining sink or source transitions will be connected after the current m-word is evaluated by pairs of

consecutive transitions detecting new NDep or detecting concurrent transitions.

Remark. Notice that if a new NDep [íz,ív] = Pk is computed such that tx is the last transition of a m-word

then pk must be marked.. ■

So, in previous example when the NDep [Í5,Í3] = pe is computed (figure 4.22.b) it is added one token to

the place pe because the transition Í3 cannot be fired in Q2 if pe is not marked.

The next algorithm removes wrongly computed NDep constraining the firing order of any two consecutive

concurrent transitions and reconnecting the transitions remaining as a sink or as a source transition.

Algorithm 4.2 Procedure to update a wrong single NDep

Input: The Dep(Qn) = Dep(Qn-i) set, Concurrent(Qn) = Ccmcurrent(Qn-i) and the current computed

m-word wn = tm • ■ • tn

Output: The updated set Dep(Qn)

1. Let íj and tj be any two consecutive transitions in wn = tm **n

(a) If there exist a NDep [tx, íj] or [tv,tj] (where tx / ín and ty / í„) such that tx or ty occurs after í,

or íj in the m-word t»„ = tm ■ ■ ■ tn then remove [fx,íj] and/or [ty, tj] from Depu(Qn) and add it to

Concurrent(Qn). (Corollary 4.1, identification step 4.3).

(b) If [fj,íj] xf. Dep(Qn) and [íj,í¡] tf Concurrent(Qn) then

i. If there exist a NDep [íj,íj] e Depu(Qn) then remove [íj,íj] from Depu(Qn) and add it to

Concurrent(Qn). (Corollary 4.1, identification step 4.3).

ii. If a m-word w' = ■ ■ ■

tj
■ ■ ■ tj

■ • • in which tj occurred before íj has been already computed, then

add [íj, í¿] to Concurrent(Qn). (Proposition 4.7).
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iii. If there exists not a MDep [U,tj] in Dep(Qn) then add the NDep [íj,íj] to Dep(Qn). (Identifi

cation step 4.1).

2. After remove a wrong NDep any transition ta could remain as a source or as a sink transition (Identification

step 4.4)

(a) If í0 remains as a source transition then add a NDep [f*,, ta] to Depu(Qn) such that i¡, precedes í0 in

the m-word wn. If íQ is the first transition of u>„ = tm ■ ■ -tn (i.e. ta = tm ) then í¡, will be the last

transition of w„ = tm- ■ -t„.

(b) If ta remains as a sink transition then add a NDep [ía, í&] to Depu(Qn) such that t¡, follows ta in

the m-word wn. If í0 is the last transition of wn =¡ tm • • ■ t„ (i.e. ta = ín ) then t<, will be the first

transition of wn = tm- ■ tn (tj = ím).

(c) To form the NDep [í_,,t0] or [ta, *&] we use the step 1 where íj = t¡, and íj = ta if ta is a source

transition, else in the case that ta be a sink transition then íj = ta and íj
= tt,. If [íj,íj] belongs to

concurrent(Qn) then repeat the step 2 such that i¿, =* ('ti,) if ta is a source transition, or f¡, = (í¿)*

if ta is a sink transition until [ía, í*,] does not belong to Concurrent(Qn).

Example. Consider the system model Q depicted on figure 4.23.

t, t4 t.
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Figure 4.23: System model and its incidence matrix.

Let u*! = ÍJÍ3Í2Í4Í5 be the first m-word computed using proposition 4.3. The measurable part of Q

computed when ti*i is detected is depicted on figure 4.24.a. To preserve the observed behavior of the

system the NDep [ti, ¿3], ¡Í3,Í2], [Í2,Í4] and [Í4, Í5] are computed according to identification step 4.1. This

is illustrated in step 1.b.iii of the algorithm 4.2; the computed model Qi is depicted on figure 4.24.b.

Consider w2 = Í3Í4Í1Í2Í5 the next m-word computed, the updating of the computed model is as follows:

Evaluating the consecutive transitions Í3 and Í4; since there exist the NDep [ti, 13] and [*2,Í4] in the

previous computed model Qi and Í3 occurs before í¡ and Í4 occurs before Í2 in the m-word w2, then

íi and Í3 and Í2 and Í4 are concurrent transitions; henee the NDep [ti,í3] and [Í2,Í4] must be removed

from Dep(Q2) (corollary 4.1, identification step 4.3) and added to Concurrent(Q2); this procedure is

described in step La. The NDep [í3 , í4] is not added to the new model Q2 since there exists the MDep

[Í3,Í4¡ in Dep(Q2) (step 1.b.iii). The following consecutive transitions in w2 are í4 and íi but they are

concurrent transitions because in *x*i íi occurs before Í4, this verification is made in step l.b.ii (based on
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proposition 4.7) and then the pair [íi, Í4] is added to Concurrent(Q2). Since there exist not dependencies

constraining the firing of Í2 before fi and in u*i íi occurs before Í2, where íx and Í2 are the following

consecutive transitions in w2 ,
then they are not concurrent transitions however the NDep [ti , Í2] is not

added to Dep(Q2) because there exists the MDep [íi,Í2] in Dep(Q2) (step l.b.iii). The next computation

concerns to the NDep [Í2,ís] since Í2 and Í5 are consecutive transitions in w2 and they are not concurrent

transitions; this procedure is specified in step l.b.iii of the previous algorithm.

The computed model after evalúate w2 is depicted on figure 4.24.a Notice that this model describes the

observed behavior of the system; however in order to compute a model for the system Q, it is necessary

to compute from future measurements, a m-word in which Í2 occurs before Í3 for example the m-word

w3
= Í1Í2Í3Í4Í5 induces the remotion of the wrong NDep [Í3,Í2]-

Wl='lW4*5

L^)-4>(pH

a) Measurable part ofthe model Q,
when the m-word w. is detected

wl=t1t3t2t4t5

b) Model Q,

w2=t3t4t,t2t5

c) Model Q2 C[t..t3]

C[t2,t4]

Figure 4.24: Iterations of the algorithm 4.2.

4.4.6 Inference of non measurable places of class B

The non measurable places of Class B are those in which their input and output transitions belong to different

m-words, henee the procedures to compute these places consist in concaténate the current and the previous

m-words forming a new t-semiflow in the computed model. Only the places belonging to the class B.i are

computed directly using the concatenating procedure since they form a single NDep. Since the places of classes

B.ii.a and B.ii.b form complex NDep they will be inferred when new information of the system is detected.

However when the computed m-word is an actual t-semiflow of the system, the procedure proposed to update

the non measurable place related with the previous and current m-word is merging two non measurable places.

The places computed with the last procedure are those belonging to Class B.ii.b.

The non measurable places of Class A are inferred computing NDep between consecutive transitions íj, t2 in

the computed m-word wn
= ■ ■■

t¿j
■ ■ ■ Now the procedures to infer the non measurable places of Class B will

consist in compute NDep between the last and the first transitions of the previous and the current m-word.

Let wn-i = í, • ■ •

íj and wn
= tm ■ ■ ■ tn be the previous and the current m-word respectively, now it is searched

the existence of the NDep [íj , ím] in the computed model Qj in order to rebuilt the t-component of the system

model Q.

To rebuilt the t-semiflows of a system it is defined the set W = {W^} containing all computed t-semiflows Wk;

where each Wk is a concatenation of selected computed m-words. Notice that each Wk is a t-semiflow (not
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necessarily elemental) at least in the tpC matrix since every m-word is a t-semiflow of this matrix. Also it is

defined a sequence of m-words T composed by all detected m-words preserving the order in which they are

computed. A computed transition will be labeled as tp if it is detected to be the last transition of an actual

t-semiflow of a system model Q.

Consider the next algorithm to relate the previous model with the current computed m-word.

Algorithm 4.3 Initialization

Input: The previous and the current computed m-words uin_i = tj • ■ •

íj and wn = ím...í„ respectively and the

set of computed t-semiflows W.

Output: None

1. If w„ has been already computed

(a) If wn is the first m-word of any W¡ then

i. If íj is not marked as tp then mark íj as tp which implies that u*n-i is the last t-semiflow

(m-word) of some Wi in which t¿i„_i belongs

ü- Wk+i = wn.

iii. Restart the algorithm with a new m-word

(b) If there exists a NDep [íj, fm] then

i. Wk = Wkwn.

ii. Restart the algorithm with a new m-word

2. If íj is marked as í_-> and wn is computed by first time, then remove the NDep [í„, ím] and form the NDep

[tn, tm] = 'U, where íj is the first transition of Wj where wn_i belongs. Wfc+i = wn.

3. If wn = tm ■ - ■ tn is a new m-word and there exists a NDep [íj, ím] and íj f wn then Wk=WkWn.

Inference of non measurable places of Class B.i

A non measurable place pk = [íj,íj] of Class B.i form a single NDep and its input and output transition belong

to different m-words wa
= ■ • ■ íj and u>t = í

j
■ ■ ■

respectively such that wa and w¡, are m-words of a same

t-semiflow in Q, i.e. there exists a t-semiflow Xk in Q such that Xk = • • •

wawi¡
■ • •

,
notice then that íj and íj

are consecutive transitions in the transition sequence generated by Xk ■

The IPN depicted on figure 4.25 has only one t-semiflow Xj, the m-word decomposition of Xi is iui = Í1Í2,

w2 = Í3Í4 and IU3
= Í5Í6, an example of a place belonging to this class is the place px = [Í6,íi] since Í6 belongs

to u*3 and ti belongs to w1 ; indeed all the non measurable places in this IPN are places belonging to the class

B.i.

The procedure to compute the non measurable places of Class B.i from the detected information ofthe system

is concatenating the previous and the current m-word forming a t-semiflow in the computed model since it is

assumed that the t-semiflows of the systems have a m-word decomposition.
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Identification Step 4.5 Leí Q be a system model, Q¡ be the computed model for Q and *iun_i
= í¡ • • ■

íj and

vjn = tm--tn be the previous and the current computed m-words. If there exists not a NDep [tj , tm] in Depu(Qi)
then add the non measurable place pk = [tj, tm] to Dep Qi and concaténate wn to the t-semiflow Wi which iun-i

belongs such that Wi = WiWn.

Proposition 4.10 Leí Q be a system model. A non measurable place of Class B.i, can be computed using

identification step 4-5.

Proof. Let pk be a non measurable place of Class B.i, then pk belongs to a t-component Xq such that its

underlying t-semiflow have a m-word decomposition ■ •

-wawi,
■ ■ ■ and pk only form a single NDep [íj,ím] such

that íj is the last transition of a m-word different to the m-word in which tm is the first transition. Let wa

and wt be the previous and the current m-words computed u*n_i = í¡ • ■

*íj and wn = tm ■ ■ ■ tn respectively,

then when wn-i and wn are concatenated as stated in identification step 4.5 a non measurable of class B.i. is

computed. ■

The computed t-semiflow W¡ using identification step 4.5 will be an actual t-semiflow of Q if wn is the last

m-word in the m-word decomposition of a t-semiflow Xj of Q. Then the only non measurable places computed

correctly are those places forming dependencies between m-words belonging to an actual t-semiflow of the

system, an example of this class of places are the places px, py and pz of the PN depicted on figure 4.25.

The computed t-semiflows Wi of a model Qj are approaching to the actual t-semiflows of a system Q as new

m-words are detected.

Example. Consider the system model Q depicted on figure 4.25.

^#nk>4-«4<>ih#4<>ÍH
?. Pi p, p* p, pj

Figure 4.25: System model Q.

When the transitions íi and Í2 are fired it is detected a m-word «i = íií2 using the procedure to constrain

the firing order of the transitions computed to the order stated in ií*i illustrated in algorithm 4.1 it is

computed the model Qi, depicted on figure 4.26.

p. Pl

Figure 4.26: Computed model Qi for the detected m-word tui
= tit2.

Notice that the NDep pa
= [Í2,íi] does not exists in Q however the model Qi describes the observed

behavior of Q. This wrong NDep is computed since the computed m-word w\ is not a t-semiflow of Q.

The t-semiflow computed associated with t¿*i is Wi = u>i
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Assume that the transitions Í3 and Í4 are fired in Q, then the computed m-word is w2
= Í3Í4. The

computed t-component associated to this m-word is depicted on figure 4.27.

w--*j*.

L§4o4J

Figure 4.27: Computed t-component for w2.

Using the identification step 4.5 to concaténate the previous and the current computed m-word, the

correctly computed non measurable place is the place pv since its input and output transitions t2 and í3

respectively are the last and the first transitions of different m-words of a same m-word decomposition of

a t-semiflow. Since u*i and w2 were concatenated then the computed t-component in Q2 is Wi = wiw2.

The model for the observed behavior is the model Q2 depicted on figure 4.28.

When the m-word w$
= Í5Í6 is detected the computed t-semiflow of the computed model Q3 will be

Wi = W1W2W3 at this moment an actual t-semiflow of Q is computed.

w,-***,*, wa-v,

p, p, ph P2

W[=w|wJ

I _n ¡rj -n >ám -ri tí~^ iri -jé '

Figure 4.28: Computed model Q2 for the observed output words u*i
= tiÍ2 and w2

= Í3Í4-

Then, the first approach to compute an actual t-semiflow of a system model, is concatenating the previous and

the current computed m-words *¡4Vn_i =» t¿ ■ • •

tj and w„ = ím • • • tn respectively, in the computed model Qn when

there exists not a NDep [íj,ím] in Depu(Qn) and tm has not an input measurable place. Using identification

step 4.5 the non measurable places pv and px that relates the transitions tj and ím and the transitions tn and

íi respectively forming a new t-semiflow in Qn are computed.

It is important consider the following:

If a non measurable place forms a complex NDep between transitions of different m-words then to infer

it, is needed that all the m-words of the t-components in which pk belongs have been computed, this kind

of places belong to Class B.ii.a.

Also it is possible that an actual t-semiflow be concatenated wrongly in the cases where u>n_i or wn be

an actual t-semiflow of a system model Q, in this case the wrongly computed NDep will be updated when
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it is observed that tün_i and wn occur in a non consecutively form in a future evolution of Q, then the

place forming the NDep [íj,ím] between *_(■„_-. and wn will be computed merging the places t'j and *ím

computing henee the non measurable places of Class B.ii.b.

Inference of non measurable places of Class B.ii.a

The non measurable places of Class B.ii.a form a complex NDep pk
= [t„tj] such that tj and íj belong to

different m-words wa = ■ ■ -t¡ and ui-, = fj
• • ■ respectively, and wa and m**, are m-words of a same m-word

decomposition of a t-semiflow in Q, i.e. there exists a t-semiflow Xk in Q such that a sequence generated by a

Xk is Xk = ■ ■ ■

wawi,
• ■ ■

,
notice then that íj and íj are consecutive transitions in Xk- However a difference of

the Class B.i, wa or w¡, belongs also to another t-semiflow Xj.

Example. Consider again the system model depicted on figure 4.17 but now assume that the place pi is

also a non measurable place, such system structure with the new interpretation is depicted on figure 4.29.

T-semiflows

X|=tlt2*3*4t7t_

X2=t|t2t*t6t7t8

m-words

mi=<i-2 ttij-^tg

012=13^ m4=t5te,

Figure 4.29: System model.

For this new system model Q it could be computed four m—words: *u*i
= tií2, u¡i = Í3Í4, w^ = tyt% and

wi
= Í5Í6- The place P3 belongs to the class B.ii.a since it forms a complex NDep P3

= [Í2,Í3] = [Í2, ts]

and the input and output transitions of pk belong to different m-words: in [Í2,Í3] Í2 belongs to «i and Í3

belong to w2, while in [Í2, Í5] Í2 belongs to wi and Í5 belongs to tí*4. The place pe belongs also to the class

B.ii.a, however the place pi belongs to the class B.i due to it forms a single NDep between transitions of

different m-words of a same t-semiflow. Notice that the m-words uii and 1/.3 belong to both t-semiflows

of Q : Xi = Í1Í2Í3Í4Í7Í8 and X2 = tiÍ2Í5Í6Í7Í8

Notice that the transitions Í2 and Í3, and Í2 and Í5 are not shared transitions in any m-word, thus the identifi

cation step 4.2 cannot be used to compute the non measurable place P3. Also to compute the non measurable

place pe using identification step 4.2, the transitions Í4 and Í7, and Í6 and Í7 must to be shared transitions in

any m-word and it is not the case.

The NDep belonging to Class B.ii.a can be computed using next identification step.

Identification Step 4.6 Let Q be a system model, Qt be the computed model for Q, u.n_i = t,--tj and

wn
= tm---tn be the previous and the current computed m-words, W¡ 6 W be the computed t-semiflow in where

wn_i belongs and Wk 6 W be the current computed t-semiflow.
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Case 1: Selection. //iu„-i belongs to Wk and also to another Wj **<= Wk and wn is computed by first time then,

based on identification step 4-2 case 1, to form the NDep [íj,ím] it is needed to add an are from px to tm and

to form the NDep [tn,tv], where ty is the first transition of Wj, it suffices to add an are from tn to 'ty. The

current compute t-semiflow is updated as Wk = WkWn.

Case 2: Attrihution. If wn belongs to another Wj / Wk and uin_i belongs only to Wk then, there must exist

a NDep [tk, tm] = py, remove the are from tj to 'ty, where ty is the first transition of Wk, to form the NDep

[íj,ím] based on identification step 4-2 case 2 it is only need to add an are from tj to py. The current compute

t-semiflow is updated as Wk = WkWn.

Notice that in both cases tk belongs to another m-word wa / wn

Proposition 4.11 Let Q be a system model. Using identification step 4-6, a non measurable place of Class

B.ii. a can be inferred.

Proof. Case 1: Selection. Since u.n_i belongs besides to Wk to another Wj **¿ Wk implies that there exists a

NDep [íj,íjt] = px, notice that íj and ím are consecutive transitions in the t-semiflow in which wn-i and wn

belongs, henee based on proposition 4.2 case 1, the computation of the NDep [íj,ím] = Px using the already

computed non measurable place px = [tj,tk] forms a decisión place between the transitions í* and ím. Since

also is computed the NDep [ín,ty] then a t-semiflow is computed in Qn, this t-semiflow is Wk = WkWn.

Case 2: Attribution. Since **-*„ belongs to another Wj ^ Wk then there must exist a NDep [ífc,ím] =py, notice

that tj and ím are consecutive transitions in the t-semiflow in which u>n-i and wn belongs, henee based on

proposition 4.2 case 2, the computation of the NDep [íj, ím] = py using the already computed non measurable

place px
= [ífc,ím] forms an attribution place between the transitions ífc and ím. Since wn-i belongs to Wk

and wn is concatenated with wn-i, when the NDep [íj,ím] is formed also is computed the NDep [ín,íy] and a

t-semiflow is computed in Q„, this t-semiflow is Wk = Wkwn.

Notice that in Qn the t-semiflows Wk and Wj can be executed. Since the computed places px and py forms a

complex NDep and íj and tm belongs to different m-words of the computed t-semiflow Wk then using identifi

cation step 4.6 the decisión and the attribution non measurable places of Class B.ii.a can be inferred. ■

Example. Consider the system model depicted on figure 4.29.

Let wi = tit2, w2 = Í3Í4 and W3
= Í7Íg be the computed m-words in the order T =

u*iu*2U>3. The

computed model for this observed behavior was computed concatenating any two consecutive m-words

(identification step 4.5), it is depicted on figure 4.30.

The t-semiflow computed is Wi = wiw2w¡.

The next computed m-word is w\, T =
wiw2w¡wi. Since tui is an already computed m-word and it is

the first m-word of Wi then W2 = uii implying that the m-word u>i could belong to another t-semiflow of

the system. ís is marked as tp implying that another m-word could not be concatenated with W3. This

is made using algorithm 4.3.

The next m-word computed is 11*4 = Í5Í6, T =

*_.iu,2U'3"x>iu,4. The t-component associated with this

m-word is computed using the algorithm 4.1, it is depicted on figure 4.31.
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Figure 4.30: Computed model Q\.

U0-HHO-HH

Figure 4.31: Computed t-component associated with u.4 = Í5Í6.

In order to concaténate this component with the previous model is used the case 1 of the identification

step 4.6. The computed model Q2 is depicted on figure 4.32.

■lh-4-OHF-

^N^O^
Ps

,*> Pa

Figure 4.32: Computed model Q2.

W2 = tuiwj. Notice that W2 is a t-semiflow in Q2, and that Q2 describes the observed behavior.

The next m-word computed is W3
= Í7Íg, T =

u)ii_;2Ui3*u;i*u,4Ui3. Since w3 is an already computed m-word

and it is not the first m-word of some t-semiflow Wx in Q2 (verification using algorithm 4.3) then it suffices

to concaténate W3 with the previous m-word 11*4. To do that is used case 2 of identification step 4.6. The

resulting model Q3 is the same as the system model depicted on figure 4.29 and W2 = wiw^wz-

Notice that the t-semiflows Wi and W2 of the computed model are the same t-semiflows of the system

model Q, henee the computed model Q3 describes the entire behavior of Q.

Inference of non measurable places of Class B.ii.b

A non measurable place pk that belongs to Class B.ii.b, forms complex NDep such that each transition íj and íj

of a NDep [t,, íj] = p*. are the last and the first transitions of a t-semiflow of a system model Q. The inference

of these non measurable places can be made using a procedure based on next proposition.
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Proposition 4.12 Leí Q be an IPN and let Kt = tj * •

-tj, Kj =tk-
■ -t¡ and Km = ím • • • í„ be three t-semiflows

ofQ, if there exist two transition sequences <Tj = KiKjKm and Oj
= K¡Km in Q (ai and aj are also t-semiflows)

then there exists a place px = í* =* tk =' tm = t'.

Proof. If ffj can be generated by Q then there exists two dependencies [íj,ífc] = Pi, and [í*,ím] = Pj henee

fj =• tfc = pi and t* =' tm =

pj. As <Tj also can be generated by Q then tk and ím are in conflict due to after

the firing of íj either ífc can be fired in the transition sequence a i or ím can be fired in the transition sequence

Oj then there exist a decisión place in Q such that *ífc
*■*■*•

ím, since *tk =

p¡ and 'tm =

pj then there exists a

place px = pi U Pj such that px
=

t'j
=* ífc =* ím = tf . ■

Example. Consider the system model Q depicted on figure 4.33. The transition sequences stated in the

K, Kj Km K, Km

above proposition could be <tj = tiÍ2Í3Í4Í5Í6 and aj
= tit2t¡te, notice that these two sequences can be

generated by Q. Since tj = íj, tj
= t2, tk = í3, í. = í4, tm = t5 and ín = t6 then the place px of Q fulfills

previous proposition due to px
= t2 =' t¡ =' t$ = t\

Figure 4.33: System model Q.

The places belonging to the class B.ii.b are computed when some non measurable places are merged. The

selected places to be merged are those sequencing m-words, since as stated in the identification step 4.1, the

other non measurable places are those belonging to the same m-word, henee they are computed correctly.

Identification Step 4.7 Leí Qj be the computed model for a system model Q, uin-i = U'Mtj and wn =

tm- ■ -tn be the previous and the current computed m-words respectively. If there exists a DSeq(tj , ím) in Qi

then the NDep pk
= [tj,tm] is computed merging the places t'j and *tm.

Proposition 4.13 Leí Q be a system model. A non measurable place of Class B.ii.b can be inferred using

identification step 4-7.

Proof. If there exists a DSeq(tj,tm) in Qj implies that there exists a m-word sequence Wp = wn-iWjWn

Since ií*n_i and wn are also consecutive m-words then there exists a m-word sequence Wq = wn-iwn. If Wp and

Wq are the transition sequences stated in proposition 4.12 then there must exist a place px = t'j
=' tk =' ím = t*

in Q allowing that the sequences Wp and Wq can be generated. Let ífc and í¡ be the first and the last transitions

of uij, from sequence Wp it is detected that í* = [tj,tk] and 'tm = [í-,ím], then merging the places tj and 'tm

the non measurable place pk is computed and indeed the NDep [tj , tm].
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If pt belongs to Class B.ii.b its input and output transitions correspond to actual t-semiflows of Q then using

identification step 4.7 the non measurable places of Class B.ii.b can be inferred. ■

The procedures for merging places computes a decisión place allowing the firing of the m-words in the order as

they are observed. The merged places are those allowing to form the NDep [íj,ím] between the previous and

the current computed m-words wn-i and wn respectively such that íj is the last transition of u*„_i and tm is

the first transition of wn.

Identification Step 4.8 Leí Qj be the computed model after merge the non measurable places t' and 'tm as

stated in previous propositions, W be the set of all computed t-semiflows and Wj be the t-semiflow formed when

t'j and 'tm of the sequence wn-iWjWn were merged. After merge t'j and *tm all the t-semiflows Wi € W of

Qi which contain the transitions of Wj are updated as follows: Wi = Wí/wj (where Wí/wj means that Wj is

removed from Wi), Wk+i —

Wj, where k is the subindex of the current computed t-semiflow and if there exists

a t-semiflow Wx in Q¡ in which ti>n_i belongs but no wn then Wx = Wxwn.

Proposition 4.14 Leí Qj be the computed model after merge two places, using identification step 4-8 the t-

semiflows ofQi can be updated.

Proof. Consider the m-word sequence w„-iWjWn, notice that after merge the places t* and *tm Wj becomes

a t-semiflow in Q¡ since the computed non measurable place px forms the NDep [t¡,tk] (by identification step

4.7), where ífc and í¡ are the first and the last transitions of Wj, then Wj is a new computed t-semiflow in Q¡,

henee Wk+i = Wj.

Let Wi be any t-semiflow in W containing Wj ,
as Wj is a new t-semiflow then Wi forms a t-semiflow without the

transitions of Wj due to the computed place pk forms the NDep [tj* , Ít^] (by identification step 4.7), henee each

t-semiflow Wi containing Wj will be updated as Wí/wj implying that Wj is removed from each Wj. Assume that

Wx contains the m-word wn_ j, when the places t'j and 'tm are merged the NDep [íj,ím] is formed such that

íj is the last transition of uin_i and tm is the first transition of wn (as stated in identification step 4.7), then

also is formed the t-semiflow Wx = Wxwn. Henee using identification step 4.8 the t-semiflows of the computed

model Qj are updated. ■

Corollary 4.2 Leí Qj be the computed model after merge the places t'j and 'tm as stated in identification step

4.1. Then the last transition t¡ ofwj is detected as a final transition of some t-semiflow ofthe system model Q.

Proof. Since í¡ is the last transition of Wj then another m-word cannot be concatenated with Wj, due to Q

can genérate the transition sequence tt*n_ii_.ji_*n and wn-iwn implying that í* is the last transition of a m-word

decomposition of an actual t-semiflow of Q. ■

The transitions detected as final transitions are labeled as tp, implying that they are the last transitions of a

t-semiflow in the system Q, this label is needed to avoid the concatenation of consecutive m-words forming a

wrong NDep in the computed model Q¡.

Example Consider the IPN Q depicted on figure 4.34. The m-words of Q are: u*i = *it2, w2 = í3f4,

u>3 = Í5Í6, m = Í7Í8 and w5
= ígíi0.
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m,=t,t2

ms=t,t1( m2=t3t4 m3=t5t6

Figure 4.34: System model without shared transitions by any t-semiflow.

Assume that were computed the next sequence of m-words T =
wiw2w3W4We, then using the concatenating

procedure (identification step 4.5), the model Q¡ depicted on figure 4.35 is computed. The t-semiflow of

Q, ÍS W\ = WiW2W3WiWs

X\ P3

>^ iíi *r\ *.n >-_-_i ifi *cj nfi háx\ ji xt/~\ ji i-_--i ji x*r\ »n »am ji >o ji

Figure 4.35: Computed model Q¿.

The fully identified non measurable place is the place p¡, since it belong to the class B.i. All the NDep

computed exists in the model, however the places forming these NDep does not belong to Q; these non

measurable places will be updated in posterior observations of the system behavior.

Now consider the observation of W4
= tjtg as the current m-word wn

= ím ■ • *tn, henee u.5
= í-.tio is

the previous computed m-word u*n_i
=

ti---tj, then T =
wiw2wzW4W¡W4. Wp = u.5 t_*i 11*2 ii>3 11*4 and

"4*r»— 1 W, W-¿ *-"3 Uí„

Wq =
u*5U-4 Notice that in the computed model Q, there exists a DSeq(tio,tr) = tgí*oíiÍ2 Í3Í4 Í5Í6Í7Í8;

in this case w3
=
wiw2W3, the transitions í,, tk, ti and ím are the following: tj = í_o, t* = ti, ti = te and

tm = tj

Merging the places í* = t\0 and 'tm =' t-¡, the model Qj depicted on figure 4.36 is computed.

Figure 4.36: Computed model Qj.
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The place pz fulfill the conditions of proposition 4.12, since px = [íi0,t7] = [í6,t7] = [í6,ti] = [íio,íi] tnen

Px -' t7 =' íi = t!„ = t'6 and henee px
=' tm =' tk=t' =fl. Henee the NDep [tj,tm] = [íio,Í7] is

computed.

The new t-semiflows computed are W2 = w-¡= wiw2wz and W\ = Wi/wj = u>4U*6. (Corollary 4.8).

The final transitions í¡ and tj (corollary 4.2) are te and íio respectively since Í6 is the last transition of

uij
= wiw2w$ and íio is the last transition of W\.

The next identification step states how to compute the NDep [íj,ím] to concaténate the previous and the

current m-words u;n_i and wn respectively, when wn is a new m-word and íj is marked as tp.

Identification Step 4.9 Leí Qj be the computed model for a system model Q, iun_i = íj • • •

íj and wn =

tm- ■ -tn be the previous and the current computed m-words such that wn is a new m-word. Iftj is labeled as tp

and wn is a new computed m-word then form the NDep [tn,tm] = t'j, where t, is the first transition of Wj in

which u*n_i belongs.

Proposition 4.15 Let Q be a system model and Qi be the computed model for Q, then using identification step

4-9 a non measurable place of Class B.ii.b can be inferred.

Proof. Since wn is a new m-word then does not exists the transition sequence DSeq(tj,tm) in Q and then

the identification step 4.7 cannot be used to compute the NDep [íj,fm] relating the previous model with the

current computed m-word. Since tj is labeled as tp, then the current m-word cannot be concatenated with the

previous model using identification step 4.5 because tj is detected as the last transition of an actual t-semiflow

of Q. Notice that when the NDep [ín, tm] = t' is computed as stated in identification step 4.9, the NDep [íj, ím]

also is formed relating the current m-word wn with the transitions of u*„_i in Qt. Henee tj forms the NDep

between transitions of different m-words of different t-semiflows. Since wn is added to Qj as a new t-semiflow,

then a new t-semiflow Wk+\ = wn is computed in Qj. ■

Example. Consider again the model system depicted on figure 4.34.

Let T =
u*iu*4U*5 be the sequence of m-words computed, the model Qj is depicted on figure 4.37.

Pl P4 Ps

<l <2 *7 *. '. ',0

Figure 4.37: Computed model Q,.

The computed t-semiflow of Q, is Wi = wiw^we.

Let u*i = Í1Í2 be the next m-word computed, T =
wiu^u'swi. As u*i is the first m-word of a t-semiflow ofQ,

then W2 = wx and í*o is marked as tp (corollary 4.2). And as there exists the NDep [tj,tm] = [tío, ti], then

there is nothing to update in Qj. Algorithm 4.3.
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Let u>5
= Í9Íio be the next m-word computed, T =

ui1ui4u.5i_.1u-5. Henee u*i = Í1Í2 and w$
= ígíio are

the previous and the current m-words u*„-i and u*„ respectively. Since there exists a DSeq(t2,tg) =
U>,>-1 Wj U*„

l_*_ UI4 Wft

ti*2 Í7Í8Í9Í10 in Qi, then the NDep [íj,ím] = [t2, tg] can be computed merging the places t2 and 'fg as

stated in identification step 4.7. The computed model Q2 is depicted on figure 4.38.

Figure 4.38: Computed model Q,.

The t-semiflows of Q2 are Wi = Wi/wj = u^us
= W2 = W2w$ and W¡ = Wj

=

u*4, Wi = W2 since in

previous model W2 = v>\. (Corollary 4.8). And í7 is marked as tp (corollary 4.2).

Let w2 = t^t^ be the current computed m-word. Now w¡
=
wn-i and w2

=

wn are the previous and the

current computed m-words respectively. As u>2 is a new m-word and t,
= tío is marked as tp then the

NDep [tj,ím] = [í_o,Í4] cannot be computed concatenating the previous and the current m-word using

identification step 4.5; instead of this, it is used the proposition 4.9, such that [Í4,Í3] = í*0. The updated

model Qi is depicted on figure 4.39. The new t-semiflow computed in Q¡ is Wi = w2.

Figure 4.39: Computed model Qj

Notice that the following m-word produced by the system must be u*3
= Í5Í6 since it belong to the same m-

word decomposition as w2- Let UI3 be the current computed m-word. The procedure to compute the NDep

[tj, tm] is concatenating W3 with the transitions of u'2 in the computed model Qj. The identification step 4.5

is used to concaténate u*2 with u*3 since UJ3 is a new m-word and there exists not a DSeq(tj = Í4, ím = Í5)

and f4 is not marked as tp. The computed model Qj is depicted on figure 4.40.

The updated t-semiflow in Qj is W\ = W-u*3
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Figure 4.40: Computed model Qj.

If the next m-word computed is u*5
= tgtio, then the places tg and *tg are merged since u*3 and w¡ are the

previous and the current m-words u*n_i and wn respectively and there exists a m-word sequence ui3U>iu;5.

The updating of the t-semiflows of Qj after merge íj and *íg is Wi = W2 = w$, W3 = UI4, W4 = u*2UJ3

and W5 = wi ,
notice that these t-semiflows are the t-semiflows of the system model Q depicted on figure

4.34, henee the computed model Qj generates the entire behavior of Q.

The next algorithm computes non measurable places of Class B preserving the order in which the m-words have

been computed.

Algorithm 4.4 Computing non measurable places of Class B

Input: The Dep(Qn) = L>ep(Qn_i) set, the previous and the current computed m-words u*n_i
= íj***í,

u}n
= tm ■ ■ ■

ín, the set of all computed t-semiflows VV. The current t-semiflow is Wk e VV

Output: a model Qn in which non measurable places of Class B are computed, also a t-semiflow Wt in tpC

1. SELECTION. If u*n_i belongs to Wk and also to another Wj *•<= Wk and u*„ is computed by first time

then

(a) Since u*n_! belongs to another Wj **¿ Wk this implies that there exists a NDep [tj,tk] = px such that

ífc does not belong to wn. Remove the NDep [tn, tm]. To form the NDep [tj , ím] based on identification

step 4.2 case 1, it is needed to add an are from px to tm and to form the NDep [ín,í-/), where ív is

the first transition of Wj, it is needed to add an are from tn to 'ty.

(b) Wk = Wkwn.

(Identification step 4.6 Case 1).

2. ATTRIBUTION. If wn belongs to another Wj -jí Wk and u*„_i belongs to Wk then
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(a) Since w„ belongs to another Wj *¡¿ Wk then there must exist a NDep [t*, ím] = p„, such that tk does

not belong to wn. Remove the are from tj to *<„, where t-, is the first transition of Wk. To form the

NDep [tj, ím) based on identification step 4.2 case 2 it is only needed to add an are from tj to py.

(b) Wk = Wkwn.

(Identification step 4.6 Case 2).

3. MERGING. If there exists a DSeq(tj,tm)

Case a. wn = u*„__

If t' forms a complex NDep, where t* is the last transition of Wj and Wj is the transition sequence

DSeq(tj,tm) without considering tj and tm, then remove the NDep [tj,ti], where tx is the first

transition of Wk and form the NDep [íj, tm] = í*. Make Wk = wn.

else if merge the non measurable places t'j and 'tm as stated in Case b.ii

Case b. u*n_i and wn belong to the same computed t-semiflow Wk

(a) i. If u;n occurs before u*„_i in Wk then

a. Remove the NDep [tj,tk] and add the NDep [íj,ím] =* tm and the NDep [í„,íjt] = í* to

Dep(Qn) and mark í*.

b. The t-semiflows are updated as Wk =

WjWn and Wfc+i = wqwn
—

lwn, where Wj is the

transition sequence DSeq(tj,tm) without considering transitions íj and tm and wq is the

transition sequence DSeq(tn,ti) without considering the transitions t„ and tj.

ii. Else if wn occurs after u>n_i in Wk then

a. Merge í* and *ím to compute a complex NDep. (Proposition 4.12). If t'j or *tm is marked

then the new computed non measurable place is also marked.

b. Mark as tp the last transition of Wj ,
where Wj is the transition sequence DSeq(tj, tm) without

considering íj and ím.

c. The t-semiflows of Qn are updated as follows: Wi = Wí/wj and Wjt+i = uij. (Identification

step 4.8).

(Identification step 4.7).

Case c. U)n_i and wn belong to different computed t-semiflows

(a) i. If íj and tm are the last and the first transition of consecutive computed m-words, where í* is the

last transition ofthe transition sequence DSeq(tj, tm) then merge the places t* and *ím following

step Case b.ii.

ii. Else if í¡ and ím are not the last and the first transition of consecutive computed m-words then

a. Remove the are form í* to íj and the NDep [íj,ífc] where ífc is the first transition of

DSep(tj,tm).
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b. Compute the NDep [í(,íj] = px such as px is a new non measurable place and the NDep

[tjytk] =' tm.

c. The computed t-semiflows are updated as follows: VW¿ such that u*n e Wi, Wi = u>jU*„_i

and Wk = Wk/wn-i and Wk = Wkwn-i.

4. CONCATENATION. w„ is a new m-word

a. If the last transition of Wk is not marked as tp

i. Remove the NDep [ín,tm] and the NDep [ty,tx], such that tx and ty are the first and the last

transitions of Wk respectively.

ii. Compute the NDep [ín,íx] = pk, if tx has an input non measurable place then pk
=' tx else pk is a

new non measurable place and pk will be marked.

iii. compute the NDep [íj,,tm] = p*, if íj has an input non measurable place then pk
= t' else pk is a

new non measurable place.

iv. Wk = Wkwn

Identification step 4.5.

b. Else if the last transition of Wk is marked as tp

(a) Remove the NDep [tn,í---i] and form the NDep [t„,ím] = "t¡, where íj is the first transition of Wj

where u*n_i belongs.

(b) Wk+i = wn

Identification step 4.9.

In a non measurable dependency pk
= [íj,íj] of Class B íj and íj may belong to different m-words. In the case

that p* belongs to Class B.i.a or Class B.ii.a, íj and f
j belong to different m-words of a same t-semiflow X, while

in the case that pk belongs to Class B.ii.b, íj and f
j
are the last and the first transition of an actual t-semiflow of

the system. The non measurable places of Class B.i forms a single NDep and they are computed concatenating

the previous and the current computed m-words uin_i and wn respectively. The non measurable places of Class

B.ii.a form complex NDep, as well as the non measurable places of Class B.i; these non measurable places are

computed concatenating previous and current m-words, however in this case the concatenation is made with an

already computed non measurable place. The non measurable places of Class B.ii.b, also forms complex NDep,

however these places are computed merging the output non measurable place ofthe last transition of uin_! with

the input non measurable place of the first transition of wn.

These places cannot be computed directly when a m-word is computed even if all m-words have been computed,

they must be inferred as more information of the system is detected in terms of the occurrence order of the

m-words.

Using the strategies provided by propositions previously introduced, it can be computed models describing the

behavior of DES that exhibit certain behavior such as decisions, synchronizations and concurrence. Then it is
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possible to compute marked graphs, states machines, free choice, and simple Petri nets as a model for a DES.

However, there exist specific structures that cannot be computed,
this problem is addressed in section 6.2.

0 Concurrent-independent transitions

There exist also another kind of relationship between places and transitions describing more general PN than

the PN that can be identified using the procedures previously introduced.

In an ordinary PN there is no restriction on how the places and transitions are related. However it can be

distinguished two subclasses of ordinary PN according to how the transitions of each t-semiflow are related with

the transitions of another t-semiflow in the ordinary PN.

Definition 4.11 Let Q be an IPN, two transitions t¡ and tj are independent transitions if
the firing ofU is not

constrained to the firing of tj and viceverse.

The set of all independent transitions in an IPN Q will be denoted as Independent(Q), two independent

transitions íj, tj are denoted as ¿[íj,tj] which is equivalent to ¿[íj,íj].

Proposition 4.16 Leí Q be an IPN and í¿ and tj be any two transitions ofQ. IfU and tj belong to different

t-semiflows then íj and tj are independent transitions.

Proof. The proof follows from definition 4.11. ■

Proposition 4.17 Leí Q be an IPN and U and tj be any two transitions ofQ. If

a) U and tj are concurrent transitions belonging
to the same t-semiflow Xi and

b) t, belongs to another t-semiflow Xj such that tj does not belong to Xj, ort¡ belongs to another t-semiflow

Xk in which ti does not belong

then U and tj are independent transitions.

Proof. Notice that if tj and tj belongs to a t-semiflow Xi and tj (íj) belongs to another t-semiflow Xj (Xk)

in which íj (tj) does not appear, then by definition 4.11 íj and íj are independent transitions
since there exists

at least one t-semiflow Xj (Xk) in which the firing of tj (tj) is not constrained to the firing of íj (íj). However

if í. and íj fulfill only the condition b íj and tj could be dependent transitions in the case where tj or tj are

shared by two or more t-semiflows since they always would occur in the same order. ■

Example. Even the transitions tn and t12 of the PN depicted on figure 4.41.a belong to the same

t-semiflow Xi = t8tgtiotnti2 and ti2 belongs also to another t-semiflow X2 = í8Í9Íi2ti3Íi4, these two

transitions do not fulfill the condition o of proposition 4.17 since they are consecutive transitions, i.e. they

are not concurrent transitions and henee they are not independent transitions. The transitions í2 and

tío of the PN depicted on figure 4.41.b fulfill both conditions of proposition 4.17, since there exists a t-

semiflow Xt = t2t3tstet7tatiotn in which they are concurrent transition and there exist another
t-semiflow

Xj = tit2t3t4t6t7 in which tío does not belong and also another t-semiflow Xk = tet7t9tiotnti2 in which

t2 does not belong, henee í2 and íio are independent transitions.
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Figure 4.41: a) Ordinary PN fulfilling only condition b of proposition 4.17. b) Ordinary PN fulfilling both

conditions of proposition 4.17.

The ordinary PN fulfilling conditions a and b of proposition 4.17, have transitions which are both concurrent

and independent; this is the class of ordinary PN studied in this section, since for the ordinary PN defined in

proposition 4.16, a combination of procedures presented in previous section can be used to identify them.

Proposition 4.18 Leí Q be a system model, Qn be the computed model for Q, wn = í__ • • ■

ty be the current

m-word computed from the last output word generated by Q, and ti and tj be any two consecutive transitions

in wn. If ti and í, are independent transitions and there exists not a dependency [í¡,tj] in Dep(Qn), then the

NDep [íj,tj] = Pfc is not added to Dep(Qn), where pk is a new non measurable place as stated in identification

step 4-1-

Proof. Since íj and íj are independent transitions, the NDep [tj,íj] = pk cannot not be added to Dep(Qn)

because it would not allow the firing of tj without the firing of t. which contradicts the definition of independent

transitions. ■

Previous proposition states that it is not possible to add a new non measurable place to form a NDep between

any two independent transitions. Next two procedures state when it is possible to compute a NDep formed

with this kind of transitions.

Identification Step 4.10 Leí Q be a system model, Qn be the computed model for Q, wn = ■ ■ ■

titj -be the

m-word computed from the last output sequence produced by Q, and t, and tj be any two independent consecutive

transitions in wn. If there exists not a dependency [ti,tj] in Dep(Qn) and there exists a NDep [t,,tk] = Pk in

Dep(Qn) such that tk does not belong to wn then the NDep [t„tj] = Pk uiill be added to Dep(Qn).

By proposition 4.18, a NDep [íj, íj] cannot be computed using a new non measurable place when two consecutive

transitions t, and t3 are independent transitions. However, if there exists a NDep [íj,tfc] = pk in Dep(Qn) it

can be computed the NDep [íj,tj] using the same non measurable place Pk, forming a decisión between tk and

tj. Since tj and tk belong to different t-semiflows w„ =
■ ■ ■

íjíj
* ■ • can be generated by Qn because when t, is
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fired the place pk is marked and as tj is fired after íj in wn =
■ • •

tjtj
■ • ■

, then the marks into the place pk are

removed. Notice that if tk belongs to wn
= • ■ ■

íjíj
• • • and the NDep [U,tj] = pk is added to Dep(Qn) then the

model Qn will not be live since after the firing of í j , tj or ífc could be fired and henee the firing of tj disables the

firing of tk or the firing of t* disables tj according which is the first fired transition, not allowing the occurrence

of the sequence wn =
• • •

tjtj
* * * in Q„.

The above identification step states that a NDep [tj , tj] can be computed, where tj and tj are any two consecutive

independent transitions in the current computed m-word w„; just in the case íj has an output non measurable

place t' = [fj,tfc] and tk does not belong to wn.

Identification Step 4.11 Let Q be a system model, Qn be the computed model for Q, wn = • ■ •

íjíj
• • • be the

m-word computed from the last output sequence produced by Q and t¡ and tj be any two independent consecutive

transitions in wn. If there exists not a dependency [íj, íj] in Dep(Qn) and there exists a NDep [tfc,íj] = Pfc in

Dep(Qn) such that tk does not belong to wn
= • • •

íjíj
• • *

. then a NDep [tj, tj] = Pk will be added to Dep(Qn).

By identification step 4.18, a NDep [tj,tj] cannot be computed using a new non measurable place when two

consecutive transitions tj and tj are independent transitions. However, if there exists a NDep [ífc,íj] = Pk in

Dep(Qn) it can be computed the NDep [íj,tj] using the same non measurable place p*_, forming an attribution

between tk and tj. Since tj and í* belong to different t-semiflows wn =
■ ■ ■

íjíj
• • • can be generated by Qn due to

when tj is fired the place pk is marked and as íj is fired after tj in wn
= ■ ■ ■

íjíj
■ ■ • then the place pk is unmarked

and henee never could be more than one mark into the place p*. Notice that if ífc belongs to wn
= • • ■

tjíj
• ■ ■

and the NDep [íj, íj] = Pk is added to Dep(Qn), then w¿ would not be a t-semiflow in Qn due to each transition

íj and ífc add one mark to p* when they are fired, henee after the firing of tj one mark remains into p¿; this

leads to the situation in which after the firing of all transitions in u*„, Qn reaches a marking which is different

to the marking in which the first transition of wn was fired.

The above identification step states that a NDep [tj, íj] can be computed, where tj and íj are any two consecutive

independent transitions in the current computed m-word wn; just in the case íj has an input non measurable

place 'tj = [ífc,íj] and ífc does not belong to wn.

The next algorithm presents how to detect independent transitions and how they can form a complex NDep.

Algorithm 4.5 Computing complex NDep for independent transitions

Input: L>ep(Qn_i), the current m-word u*n = tm ■ ■ *ín and the set of computed t-semiflows VV.

Output: The model Qn describing the observed behavior of a system model Q

1. Dep(Qn) = Dep(Qn_i)

2. If there exists a t-semiflow Xj in Qn fulfilling that ü£ = Xj then update the possible wrong single NDep

computed. Algorithm 4.2.

3. Let íj and íj be any two consecutive transitions in wn = ím ■ • • ín

4. If there exist a NDep [íx,íj] and/or [ív,íj] such that tx and ty are computed after íj and tj respectively in

Vn = tm ■ ■ ■ tn, then remove this NDep from Dep(Qn) and add [tx, íj] and/or [ív, íj] to Concurrent(Qn).
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5. If a NDep is removed from Dep(Qn) then two cases could arise for any transition t :

(a) If tx remains as a source transition, then add a NDep [ty,t_] to Depu(Qn) such that tv is the prede

cessor of tx in the previous m-word in which the transitions of the removed NDep were consecutive

(or in the current m-word wn in the case that this step had been reached from step 7).

(b) If tx remains as a sink transition then add a NDep [tx,ty] to Depu(Qn) such that t„ is the successor

of tx in the previous m-word in which the transitions of the removed NDep were consecutive (or in

the current m-word wn in the case that this step had been reached from step 7).

It is possible that the transition ty, predecessor or the successor respectively of tx in m-word be

concurrent or independent with í_. :

i. If [í_.,íj,] e Concurrent(Qn) then select the following predecessor or successor of tx in wn i.e.

ty =" (*'--/) or •**■/
=

(*»)" respectively until the NDep [txty] f Concurrent(Qn) or ty does not

appear before tx in wn and then add the NDep [ty,tx] or [tx,ty] to concurrent(Qn).

ii. If [tx,ty] e Independent(Qn) then select the following predecessor or successor of tx in wn i.e.

ty —' (*■*-.) or ty = (tl)' respectively until the NDep [txtv] £ Independent(Qn) and then go to

step 6 such that íj = tx and íj = ty if tx is a sink transition or tj = ty and tj = tx if tx is a

source transition. If [tx,ty] is added to independet(Qn) set then select the following predecessor

or successor of tx i.e. í„ =• ('í,,) or ty = (t')m respectively and repeat this step.

Else use the algorithm 4.6 to reconnect the removed ares verifying only the remaining input place

ofis.

6. If [íj,íj] f. Dep(Qn) and [íj,íj] ^ Concurrent(Qn) U Independent(Qn) then

(a) If [íj,tj] ^ Independent(Qn) but they fulfill the conditions of independence (Definition 4.11 and

Proposition 4.17) then

i. If í¡ has an output non measurable place pk forming the NDep [íj, ífc] = pk

if íA is not a transition of wn then add the NDep [tÍ3 tj] = pk to Dep(Qn) and also add [tj, ífc]
and [íj,í/b] to Independent(Qn).

else add [tfc, tj] to Independent(Qn)

(Identification step 4.10).

ii. If tj has an input non measurable place pk forming the NDep [ífc, íj] = pk

if ífc is not a transition of wn then add the NDep [í¡ , tj] = pk to Dep(Qn) and also add [ífc, íj]
and [ífc,íj] to Independent(Qn)

else add [tfc,íj] to Independent(Qn)

(Identification step 4.11).

(b) Ifthe NDep [íj, íj] was not added to Dep(Qn) in step 6.a.i or 6.a.ii then add [U,tj] to Independent(Qn).

Else add the NDep [íj,íj] to Dep(Qn). (Proposition 4.1).

7. If after evalúate u*n = • • •

íjí,
• ■ • remain source or sink transitions in Qn then go to step 5.a or 5.b

respectively for each source or sink transition.
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8. Use the algorithm 4.6 to verify that every non measurable place be correctly connected allowing that all

transition sequences computed from the output of the system can be generated by Qn.

When an are is removed (step 4 of the above algorithm) to form the t-semiflow computed from the last output

word observed could be possible that others t-semiflows be disconnected. The next procedure is useful to verify

that in the updated model Qn all the computed t-semiflows are correctly connected.

Algorithm 4.6 Checking the t-semiflows ofQn.

Input: The 7Cq„ matrix and the set of computed t-semiflows W.

Output: The updated (if it is necessary) model Qn.

1. Multiply each row rj of the matrix fCQn by all the computed t-semiflows Wk €W

2. If any row rj of 7Cq_. does not fulfill that r?
■ Wk = 0 for some t-semiflow Wk then

(a) Select the last m-word a such that o* € Wk

(b) Detect the column k of -yCQn, in which there exists a data in the row r¡ making that rj • Wk **£ 0

case 1 yCQn (i, k) = 1 : this implies that a —1 is missed in the row t*j, then

1. Add a —1 in the position 7C,Qr.(¿,m), where m is the column representing the transition fm

of Q„ such that tm is a successor of tk in the m-word a

2. If [ífc,ím] £ Dep(Qn) or [t/t, i™] 6 Concurrent(Qn) U Independent(Qn) then make tm =

(t^)' (the successor of ím in a) and repeat this step until [ífc,ím] f Dep(Qn) or [ífc,ím] f

Concurrent(Qn) U Independent(Qn)

case 2 iCq„(í, k) =
— 1 : this implies that a 1 is missed in the row r¿.

1. Add a 1 in the position 7Cq„(¿, ra), where ra is the column representing the transition tn of

Qn such that ín is a predecessor of ífc in the m-word a

2. If [ín,tfc] € Dep(Qn) or [tn,tk] € Concurrent(Qn)LI Independent(Qn) then make fn =' (mtn)

and repeat this step until [tn,tk] f Dep(Qn) or [ín,tfc] £ amcurrent(Qn)\Jindependent(Qn)

Notice that when it is added a -lor a 1 as stated in steps 2.b case 1 and 2.b case 2 it

is computed a NDep [tfc,tm] or [í„,ífc] respectively, this new NDep need to be computed

according to step 5 of algorithm 4.5, where íj = ífc and tj = ím or íj = í„ and íj
= ífc, if it

is used the step 2.c or the step 2.d respectively.

Notice that this algorithm only perform the test over the non measurable places of Qn since the measurable

places are computed correctly (Proposition 4.3) from the output of the system, henee the algorithm 4.6 check

that every row in iCq^ matrix multiplied by all the computed t-semiflows be equal to zero to guarantee that

each non measurable place is connected correctly in every t-semiflow, if this condition is not fulfilled in some

row rj for some t-semiflow Xk then a one (1) or a minus one (-1) is added in the position (i,j) of the matrix

7<-7(3n ,
where j is the column representing the transition in which the t-semiflow is not satisfied by the place ¿,

according if íj is a predecessor or a successor of the transition ím € Xk appearing in the row t*j respectively.

The addition of a one (1) or a minus (-1) to the jCq„ matrix is an input or an output are respectively of the

non measurable place p¡.
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*|--*J-4*6*7 M,t5 t,,*,*,.- .,„.,,
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a) System model b) T-components

Figure 4.42: System model and its t-components.

Example. Consider the system model Q depicted on figure 4.42.a; the next table summarizes the steps

of algorithm 4.5 to update the non measurable places of each model computed to identify Q.

m-word

1 Wi=tit6t2t3t7t4

2 W2=t5t2tiot6t3tnt7t8

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

t5t2

t2tio

tlot6

t6Í3

t3tll

tnÍ7

t7Í8

tío

til

W3=tgt6tiot7tnti2

tgt6

Í6tio

tlot7

t7tn

tllti2

identification step

Algorithm 4.5

5

Proposition 4.3

4 5.a.i and 6.a.ii

c[í2,í6] NDep [t5,t2] and ¿[íi,t5], ¿[fi,Í2]
6.b-¿[í2,íio]
6.a.ii-NDep [íio,Í6] and ¿[ti, te], ¿[ti-tio]
6.b- ¿[Í6,Í3]
6.a.i- ¿[tn,Í7] and 6.b- [Í3,ín]
[tii,t7¡e Independent(Qn)
6ai- NDep [í7,í8] and ¿[Í4,Í7],¿[Í4,Í8]
7-5aii-6- NDep [ís,í10]
7-5bü-6- NDep [íu,í8]
Proposition 4.3

4-c[t6,ti0] and 6.a.ii.- NDep [íg,í6] and ¿[íi,íg]
[t6,tio]G Concurrent(Qn)
6.b- ¿[íio,t7]

[ín,Í7] £ Independent(Qn)
6.a.i-NDep [ín,íi2] and ¿[í8,íii], [ís.tu]
7 using the algorithm 4.6

The updated model Qn

Figure

4.43.1

4.43.2

4.43.3 and 4.44.4

4.44.5

4.44.6

4.45.7

4.45.8

4.45.9

4.46.10

4.46.11

4.47.12

4.47.13

A new IPN model is computed when the current m-word is completely evaluated by the algorithm henee

the IPN model sequence stated in section 4.3 for the system model Q depicted on figure 4.42 is composed by

the models 1, 8 and 13 depicted on figures 4.43, 4.45 and 4.47 respectively, which were computed when the

m-words u>_, w2 and u>3 were processed respectively by algorithm 4.5. Notice that each one of these models

describe the observed behavior of the system, however the last computed model is not equal to Q, this implies

that it is needed to obtain more information from Q to update the wrong NDep computed. Notice that with

new m-words in which the transitions occurs in different order than in previous m-words computed, the wrong
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Step 6
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Computation of w2

'l l2

3 *s*t
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Mx ¿,„
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Figure 4.43: Computed models.
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Figure 4.44: Computed models.
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Computation of w3

Figure 4.45: Computed models.
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computed NDep will be removed and also will be updated some computed NDep building then a new model

approaching to the real model of the system, this procedure is stated on step 2 of algorithm 4.5.



CHAPTER 4. ON-LINE SYNTHESIS OF PNMODELS



Chapter 5

Asymptotic identification algorithm

Based on procedures to update a computed model, in this chapter is presented the asymptotic identification

algorithm that computes a new IPN model when new information of the system is detected. Each model is

computed as the system evolves and it is fulfilled that the current model is more approached to the actual model

of the system than the previous computed model.

85
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5.1 Introduction

The previous chapter presented the procedures to update a model when a m-word is computed. Based on the

analysis of model updating, the aim of this chapter is to present the complete identification process to compute

a new model Q¡ when new information of the system model Q is provided.

Also, here is stated that when a new model Q_ is computed updating the previous computed model Q¿_i

using the proposed identification process it is fulfilled that f(Q,Qi) < f(Q,Qi-i), implying that Q¡ is better

approached to Q than Q¿_i. Both, identification process and convergence criterion are presented in a theorem.

The information provided by the system is represented by the m-words computed. As new information is

considered:

1. A new computed m-word

2. A new occurrence order of the transitions in a m-word

3. A new occurrence order of the computed m-words

The next algorithm summarizes the identification process.

Algorithm 5.1 Asymptotic identification approach

1. Read the output symbol tp(Mn) generated by the system Q.

2. Detect the output word o. = tp(Mi)tp(Mk) ■ ■ ■

tp(Mj), such that tp(Mi) = ¡p(Mj). (Definition 4.8).

3. For any two consecutive output symbols compute a transition í¡ = tp(Mi)
—

tp(Mi-J). (Proposition 4.3).

4. Compute the m-word u;¿
=

í¿íj
■ • ■

adding each computed transition in the step above. (Proposition 4.3).

5. Compute the non measurable places. (Identification Step 4.1)

(a) to constrain the firing order of the transitions in u*. to the order in which they were computed

(b) to compute the t-component associated with u*¿.

6. Infer an actual t-semiflow Wi of Q concatenating the previous and the current m-words uin_i and wn,

due to it is possible that the computed m-word u*¿ in step 4 could not be a t-semiflow of Q. Identification

step 4.5.

7. Observe the next output word On and compute its associated m-word wn. (Definition 4.8 and Proposition

4.3).

8. Update the computed IPN model (computing a new model) with the information provided by the m-word

uin, allowing the firing of all computed m-words Wj. (Identification step 4.2, algorithm 4.1, identification

step 4.3, algorithm 4.2, algorithm 4.6, identification step 4.7, algorithm 4.5, identification step 4.10

identification step 4.11, algorithm 4.5).

(a) computing new measurable places and transitions
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(b) removing or adding NDep

i. updating the computed actual t-semiflows

5.2 Asymptotic identification procedure

Theorem 5.1 Let Q be a system model and Qn_i be the proposed model for Q when the m-word uin_i was

computed. If wn is the current computed m-word then a new model Qn can be computed updating the previous

model Qn_! such that f(Q,Qn) < /(Q,Qn-i) is fulfilled.

Proof. Let f(Q,Qn) = \{tpCQ}-{tpCQn}\+ \Dep'i(Q)-Depu(Qn)\+\Depu(Qi)-Depu(Q)[ be the identification

error of the computed model Qn with respect to the system model Q. At the beginning of the identification

procedure the identification error is bounded by the number of columns of the tpC matrix of Q and the number

of NDep of Q, then the initial error when the computed model is Qo = 0 is defined as:

/(q,Qo) = h><?q}|+ £ ai*bi (51)

VPíZ-iCq

The term JZ °' * *>' is the number of all NDep of Q, where a1 is the number of input transitions of the non

vp. 6*rC0

measurable place p¡ and b' is the number of output transitions of the non measurable place p¿, notice then that

\Dep"(Q)\= £ a' *bi.

*P¡ £~lCQ

The equation 5.1 represents the number of elements of Q in terms of columns of tpC matrix and NDep of Q

that are missed in the computed model. Since Qo = 0 then the term |Depu(Qo)
—

Z?epu(Q)| = 0. Henee it is

considered as initial error the number of all elements of Q.

Let W = {Wi} be the set of computed t-semiflows when the xth m-word is computed, such that every Wj is

a concatenation of some selected 7ra-words.

Let T be the set of all computed m-words; initially T «—0

Let Ccmcurrent(Qn) be the set of all computed concurrent transitions; initially Concurrent(Qo)*—0

Let Independent(Qn) be the set of all computed independent transitions; initially Independent(Qo)*—0

A transition í¿ will be marked as tF when is detected that it is the last transition of any t-semiflow of the

system Q.

Let k be the subindex of the t-semiflows on W. k>— 1.

By induction on the number x of computed m-words, it is presented how the xth IPN model is computed

• Let x = 1.

1. Computing the tpC matrix representing the measurable part (measurable places) of Qi. Use proposition

4.3 to compute the first m-word wi = t\t2...tr.
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2. T<-TU{u*i}

3. Computing the jC matrix representing the non measurable part (non measurable places) of Q.

(a) Constrain the firing order of the transitions in u*i using algorithm 4.1

4. Wk — wi.

• A new model Qi is determined, where the incidence matrix of Qi is Cq1 computed as illustrated in

identification step 4.1.

• The error f(Q,Qi) fulfills that f(Q, Qi) < f(Q, Q0) since it is ensured that the columns <pC(-, í¿) exist in

the system by proposition 4.3. So f(Q, Qi) = (\{tpCQ}\
-

\{tpCQj }|) < (\{tpCQ}\ + \Dep(Q)\)
*-***

f(Q, Q0),

assuming in the worst case that no one of the computed NDep is correct.

By the induction hypothesis, Vx < ra, f(Q,Qx) < f(Q,Qx-i).

Let x = ra. Updating the model using the current computed m-word wn

1. Let Dep(Qn) = Dep(Qn_i) and Qn = Q„_!

2. Compute the ra — th m-word wn = tm ■ ■ ■ tn. Proposition 4.3

3. T<-Tl>{wn}

Inferring the non measurable places of Q the yC matrix representing the non measurable part (non mea

surable places) of Q.

4. Let u>„_i —ti---tj and wn = tm...tn be the previous and the current computed m-words.

Case 1: wn is an already computed m-word

(a) If u*„ is the first m-word of any Wi e W then

i. If tj is not marked as tp then mark t* as tp which implies that u>n_i is the last m-word of some

Wi G >V in which wn_i belongs.

ü* Wk+i =wn.

iii. Restart the algorithm. Compute the next m-word

(b) else if there exists a NDep [tj , tm] then

i. Wk = Wkwn.

ii. Restart the algorithm. Compute the next m-word

Case 2: wn = tm • ■ • ín is a new m-word.

Case a: All or some columns of wn are computed by first time

(a) If there exists not independent transitions. (Definition 4.11 and Proposition 4.17)
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i. Compute NDep to preserve the firing order of the transitions in wn using algorithm 4.1. Com

puting places belonging to the classes A.i and A.ii respectively.

else use algorithm 4.5 to preserve the firing of consecutive transitions which are detected as indepen

dent transitions.

Case b: All transitions of u*n have been already computed

(a) If u>„ 6 Wi and there exists a Wj / Wi such that W = Wj and wn = tm...í„ is different of any

wt of Wj then: Use the algorithm 4.2 to detect the concurrent transitions and to remove the

wrong NDep computed in the model Qn .

(b) If w„ £ Wx and Wx is a subset of a t-semiflow Wy such that wn is different of any wt of Wy then

replace Wx by W¿ and Wv by Wj and use the algorithm 4.2 to detect the concurrent transitions

and to remove the wrong NDep computed in the model Qn.

5. Validating the order in which wn has occurred with respect to the others computed m-words to rebuilt

the real t-semiflows of Q. Using algorithm 4.4.

A new model Q„ is determined: the matrix <pC is computed in step 2 while the matrix 7C is computed

incrementally from step 4 to step 5.

When new transitions are computed the term ]{<pCq}
—

{<pCq„}| is reduced while when new NDep are

computed the term |Dep"(Q)
—

Depu(Qn)| is reduced, however when a computed NDep does not belong

to Q the term |_Dep"(Qn)
—

Dep(Q)| increases.

There exist two cases in where the number |_9epu(Qn)
—

_Depu(Q)| is increased:

Case 1. When consecutive transitions in a m-word are concurrent transitions and a NDep between them

is (wrongly) computed.

In this case the total number of wrong computed NDep is bounded by:

J2((c'-l)*di) + (cT-l) (5.2)
VT,

where T¿ is a component of Q having concurrent transitions, c1 is the number of p-components of T¿ and

di is the greater number of transitions in any p-component of T¿ . The number of wrongly computed NDep

of this case can remain even if a new m-word is computed, this number will be reduced when m-words of

the same t-component Tj are computed.

Case 2. When the current m-word wn is concatenated with previous m-word uin_i and wn is not the

last m-word of the m-word decomposition of its underlaying t-semiflow.

In this case the term |_Dep"(Qn)
—

Depu(Q)| is increased in one unity since the NDep [ín,t..] computed

between the last transition of wn and the first transition ofthe computed t-semiflow in which uj„_i belongs

tn and ty respectively does not belong to Q.
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Henee, the worst case considered is when the current m-word *■_.„ has concurrent transitions and it is not

the last m-word of its underlying t-semiflow.

The greater number of wrong computed NDep when a new m-word is computed is bounded by:

((é
— l)*d') + (d' — 1) + 1. However the valué of this term never makes that the global error be greater than

the identification error of previous model because 1) the number of computed transitions of a m-word is

greater than the number ofthe NDep that can be wrongly computed i.e. [((c' — 1) *d') + (d1
—

1)] < (c*d)

and 2) the wrongly computed NDep [tn,tx] is removed when the next m-word is computed.

Thus, the error fulfills that f(Q,Qn) __. /(Q,Qn-i) and the theorem holds.

5.3 Example

Consider the system model Q depicted on figure 5.1 the system to be identified. The next table summarizes

the steps of the identification procedure to build the system model. Figures from 5.2 to 5.13 show the succesive

computed models.

Output word

1. wi = epie

2. u*2
=

ep2e

3. w3
=

ep4e

4. u>4 = ep3e

5. u>5
=

ep5e

6. w6
=

ep6e

7. w7
=

ep-je

8. wi — ePie

9. u*2 = ep2t

10.
P3

W3-4 = 6P3
„

P3<-
Pi

11. Wj
=

ep7C

12. u*8
=

ep8e

13. u*9 = ep9e

14. wio
=

epne

15. wj
=

ep-jt

16. ui8
=

ep8e

17. »n =

epioe

18. fio
=

epue

19. wi
=

ePi£

20.

m_word

mi
= íií2

m2 = í3í4

ra»3
= Í6Í7

rai4
= Í5Í8

rai5
= Í9Í10

me
= tutu

m-r = Í13Í14

rail
= tiÍ2

rai2 = Í3Í4

rai3_4
= Í5Í6Í7Í8

rai7
= Í13Í14

rai8
= Í15ÍI6

mg
= Í17ÍI8

raiio
= Í21Í22

rn-j
= Í13Í14

m&
= ti5Íi6

rain
= Í19Í20

raiio
— ¿21*22

raii
= tiÍ2

Identification step

(Theorem 5.1)
4 Case 2-Case a 5.2

a) 4 Case 2-Case a, b) 5-4 5.3

a) 4 Case 2-Case a, b) 5-4

a) 4 Case 2-Case a, b) 5-4 5.4

a) 4 Case 2-Case a, b) 5-4

a) 4 Case 2-Case a, b) 5-4

a) 4 Case 2-Case a, b) 5-4 5.5

4 Case 1-a

4 Case 1-b

Figure

4 Case 2-Case b-a 5.6

5-3 5.7

Case 2-Case a and 5-5 5.8

Case 2-Case a and 5-4

Case 2-Case a and 5-4 5.9

Case 2-Case a and 5-3 5.10

Case 1-a

Case 2-Case a and 5-1 5.11

Case 2-Case a and 5-1 5.12

Case 1-a

P2
^2-3-4

=

e?2
' "

P2e/P3<5 m2_3-4
= t3tet7ti/t5ts Case I-Case b

P4
5.13

For these output words observed, the computed model is equal to the system.
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Figure 5.1: IPN model ofthe system.

m,*=t,t,

W,=m,

concurrent

Figure 5.2: Computed model for the first observed ouput word W\.

mj»!,!,

¡X^P

I, t

JKeHH-F-y9
HF

W|=m,m2

Figure 5.3: Computed model when the output word W2 is observed.



92 CHAPTER 5. ASYMPTOTIC IDENTIFICATION ALGORITHM

R£h4*é

Figure 5.4: Computed model when the output words u>3 and w¿ were observed.

«4 t,

•./'Jív^
W|—m-irij m ■nijin.* m()m*-

tf
concurrent

Figure 5.5: Computed model when the ouput words u>5, wq and Wj were observed.

W]=m|m*-m1m4nism6m7

W2=ni| m2m3.4

concurrent [5,7] [6,5]

Figure 5.6: Computed model when the output words tt^, w2 and 103-4 were observed.
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W^m-mim-im^m***

W*¡*=m- m-im^ity
W 3=1115 m6

contradictory [5,7] [6,5]

Figure 5.7: Computed model when the output word w7 is observed.

m p]j~>(^~*_\

W| -ni| n^ni} m_i m7

Wj=ni| nv m-u n>7

W3=mim6

W4=m8

*f=tMt|Z
concurrent [5,7] [6,5]

Figure 5.8: Computed model when the output word tüg was observed.
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-(P9><
ni tr\_i ru af*"*
t__ t2,

'"I
<lí 'is

W
|
—

m
| m*-m*.m,,m7

W2=ni* m3 nv-,^ ni7

W3=ms m6

•f='l4',2
concurrent [5,7] [6,5]

Figure 5.9: Computed model when the output words wg and uijo were observed.

W,=m7

W,=m,

Wj=n*i5 m6

W4=mKm, ml0

Ws=nri|m2m3m4

«TWl2*t8
concun*ent [5,7] [6,5]

[H#-MHSHH
t, 'lO 'll 'l!

Figure 5.10: Computed model when the output word UI7 is observed.
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¿-•ÍmSMF

hi

W,=m.

W_=m,

W,=iri5m,

w4=n*_ nn, m,_

W^m, m-nrijm,

W6=n*Bmn

<V='|4. <i*. i.
concunent [5,7] [6.5]

l__ '31

_u _ kl

l-ff»-®

/ . i

tu '"■

"W*
'.6 '15

fa 1»

®-»0-*#-{K£MH
t, ku 'n '12

Figure 5.11: Computed model when the output word w% and wn were observed.

w,=m.

W,=m7

W,=*7i, m6

W4—m,m, m¡_

W,=w,W2W,w,

W6=m,mMni10

concuiTent [5,7] [6,5]

Figure 5.12: Computed model when the output word u*io was observed.

W,=m,

Wj***-*--,
W1=msm(,

W4=n*ll m, *Ti|0

WJ=m|m2*TiJni4

W6=m)(m|| ml(,

W7=m1m2.,_l

'r'i«. '12. t.. '22
concurrent [5,7] [6,5] [4,6]

«> «10 'n '12

Figure 5.13: Computed model when the output words u*i and ^2-3-4 were observed.
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5.4 Complexity analysis

Let Q be a system model and Q¿ be the computed model from the observed behavior of Q. Next the complexity

of each procedure needed to compute a new model are presented.

1. To compute a model first is needed to compute the current m-word uin. The complexity of this procedure

is linear in the number of the output symbols observed, due to each transition t ■ of u>„ is computed from

any two consecutive output symbols tp(M¡-i) and tp(Mi) as t¿ = tp(Mi)
—

tp(Mi-i). Proposition 4.3.

2. Once wn is computed it is classified as "new'' or as ''already computed" The procedure to detect if w„

is new or it is already computed is linear in the number of m-words computed.

3. When a new m-word is processed two cases are considered : Case 1) when all transitions of wn or some

of them are new transitions, and Case 2) when all transitions of wn were already computed in another

m-word wm, however the order in which they were computed is different. In this case implies that there

exists a m-word wm ^ wn such that tü^. = wn' indicating that there exists concurrent transitions. The

procedure to detect ifwn is of Case 1 or Case 2 is linear in J2 |T¡ | where |T¡ | is the number of transitions
Vi_i¡6T

ofthe m-word u*¿.

Case 1: In this case it is computed the associated t-component of u>n, forming NDep [í*,í,] between

consecutive transitions í¿ and tj of wn such that [í.,í¿] does not belong to Dep(QJ). This NDep can

be computed using a new non measurable place or using an already non measurable place. A new

non measurable place will be added in the case that there exists not a NDep [íj, í *.] or a NDep [í*, tj]
in Dep(Q¡) such that í¿ and tj are not independent transitions. Computing the NDep [U,tj] is an

unitary operation.

(a) Detecting if [U,tj] does not belong to Dep(Qi) has complexity linear in the number of depen

dencies (MDep and NDep) of Q¡ .

(b) Detecting that í¿ and tj are not independent transition. To detect that í¡ and tj are independent

transitions it is searched that there exists a t-semiflow in which f_ has occurred but not tj and

also find out a t-semiflow in which tj has occurred but not í¿. The complexity of this procedure

is linear in the order of 52 l-^l where |Tj| is the number of transitions of the m-word w¡ and
vw.eT

T is the set of all computed m-words.

(c) Detect that if í¡ has an output non measurable place or if tj has an input non measurable place.

This procedure consists on find out a NDep [ti,tk] or a NDep [tk,tj] in Depu(Qi). Its complexity
is linear in the number of NDep in Depu(Qi).

Case 2: In this case it is needed to remove the wrong NDep formed between concurrent transitions. The

procedure to remove wrong NDep is an unitary operation. Let í¿ and tj be consecutive transition in

wn, the procedure to detect the wrong NDep consist in determine if there exists a NDep [í_.,í¿] or

[tj,,íj] such that tx and or ív occurs after í¿ and í, respectively in u*„. This procedure is linear in the

number of NDep in _Depu(Q¡).
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In both cases w„ need to be concatenated with the previous m-word u/n_i to preserve the firing order of

the m-words. Since in the case 2 all transitions have been already computed then it is possible that uin-i

and uin are already concatenated. Then to concaténate ui„_i with wn it is searched that:

(a) the NDep [tj, ím] does not exist in Dep(QJ¡, where t¿ is the last transition ofwn-i and tm is the first

transition of wn. This searching is of linear complexity in the number of NDep in _Depu(Qj). If the

NDep [íj , ím] does not exists in Qj then the m-word u*„_i and

(b) the last transition of u*„_i is not marked as tp. This procedure is linear in the number of marked

transition as tf .

4. If wn is an already computed m-word then it is needed to verify that the computed model Qi preserve the

order in which the m-words are computed. Let uin_i = U ■ ■ ■

tj and u*„
= ím • • • ín be the current and the

previous computed m-words. Since wn is an already computed m-word then it is possible that it occurs

in different order than the order in which it was previously computed, then to verify that in Q¿ wn can

occur as it has been observed it is searched the relation with the previous computed m-word u/n_i :

(a) If there exists the NDep [í,, fm] in Depu(Qi) then implies that wn has occurred in the same order

than its previous computation and henee the model Q¡ remains without change. The procedure to

find out the NDep [í,,tm] has linear complexity in the number of NDep in _Depu(Q¿).

(b) However if there exists not a NDep [t_¡,í.n] in Q¿, then implies that now wn has occurred in different

order than its previous computation. To compute the NDep [íj, ím] to preserve the behavior of Q

in Qi, it is needed to merge í* and *ím. This procedure is linear in the number of the NDep in

Depu(Qi).

From previous analysis can be stated that the procedure to update a model is of polynomial complexity given

by the number of transitions of the current computed m-word, the number of m-words computed and also in

the number of computed dependencies. However to compute an actual model Qn for a system model Q it is

required that:

1. all the m-words of Q be computed and

2. the m-words be computed in a right order to update correctly the current model.

This requirements makes that the identification problem have the form of a non deterministic polynomial (NP)

problem, since even the updating of a model is made in polynomial time, the process to obtain the good m-words

in the right sequences in the right order can be viewed as a non deterministic process, this fact is illustrated on

figure.5.14.

5.5 Completeness of the identification algorithm

This section is devoted to the study of the completeness of the identification procedure presented in this work.

The strategy adopted for updating a model Q. depends on how the current computed m-word u*„ is related with

the previous computed m-word u>n_i in other evolutions of the system model Q. The number of relationships
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Non deterministic

process

Figure 5.14: Complexity of the identification problem.

between wn and u>n_i is reduced and there exists a procedure to obtain a new model Q¿+i. Thus it is possible

to state the following proposition.

Proposition 5.1 The identification algorithm of theorem 5.1 is complete.

Proof. Let Q be a system model, Q_ be the computed model and u-n_i and wn be the previous and the current

computed m-words. The possible cases in which wn may be related with u>n_i can be determined and there

exists a procedure to update Q¿ when wn is computed according to previous evolutions of Q. The table depicted

on figure 5.15 summarizes the relations between u*n_i and wn.

1 . w, ts i new m-word

Computed Example Procedure
Class ofnon

measurable place

w»-l a. One» or consecutively w¿%
Concatenation

4.a
B.i otB.ü-b

b. Severa] times WQW&,
Selection

1
B.iU

c. Consecutively W.W.W,
Concatenation

4.b
B.ii.b

2. n?, is «n dieady computed m-woíd

Computed Example Pioceduie
Class ofnon

measurable place

w»-l a. Once WaMJVf.W^W»
Attribution

2
B.U.8

b. Several times
t. In Une carne

order ™WlWr
--

ii. In another

order w.w,-t*fw.*-vf
Merging

3.b
B.ii.b

c. Consecutively w4vnw,wa
-

3. >v*
=

■*, w.w.
Merging

3a
Bii.b

Figure 5.15: Situations of un_i with respect to wn.
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Since it is considered the order in which the m-words can be computed, the non measurable places related

with these situations are the non measurable places of Class B, indeed the procedures stated in table 5.15 are

the procedures of algorithm 4.4. The non measurable places of Class A are computed when a new m-word is

detected. ■
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5.6 Obtaining timed models

This section deals with the computation of timed models for DES in which all places of the system model Q

are measurable. Here, it is presented the procedure to compute the durations of the activities of the system.

Each marking M. has associated a time a¡ being the instant in which M¡ is detected, i.e. the firing instant of

the transition tj that leads to M¡. Now, an output symbol wo will be considered as the pair [tp(Mi),oti], where

tp(Mi) is the output generated by the system and cti is the instant in which it was generated.

The time elapse aPk of each place pk will be computed as:

Qp*
= ak

~

a°p*

where a°k is the instant in which pk is marked and a¿t is the time in which pk is unmarked. Then a°k =
a.

if pk is marked in M¿ and a* =

aj if pk is unmarked in Mj . This time elapse is the duration of the activity

described by the place pk- Each computed time aPk is stored in the set dPk ,
this set will contain all the durations

computed for the place pk.

The time associated to each place pk can be computed as the average of the times in dPk or can be computed

using a distribution function.

The next algorithm computes an IPN for a DES from the observation of its output symbols and computes the

set of durations tPk associated to each place pk.

Algorithm 5.2 Computing a timed IPN model for a DES.

Input: GQ„_l,tPk

Output: The updated timed model Qn

1. Cq„ = Cq„_,

2. tp(M) = tp(M0), i = 1

3. for k = 1 * ■ ■ n (n is the number of places)

(a) If tp(M(pk)) = 1 then a°k = a0

4. while there exists a marking tp(M,) J= tp(M) until ¡p(MJ) = tp(M0)

For k = 1 • • • n (n is the number of places)

(a) If tp(Mi-i(pk)) = 0 and tp(Mi(pk)) = 1 then a°k = a¡

(b) If tp(M,-i(pk)) = 1 and tp(Mi(pk)) = 0 then

= a.

ii. aPk
= afpk

-

a°p¡¡
iii. add apk to dPk

iv. reset a°pk, a!Pk and aPi
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Figure 5.16: System model

(c) Computing a column of the incidence matrix C(«, ífc) = tp (Mi)
—

tp (M)

(d) If C(»,tk) does not exists in Cq then add it to Cq

(e) tp(M) = tp(M,)

(i) i = i + l

Theorem 5.2 Let Q be a fully observable IPN and Q„_i be the proposed model for Q. If wn is the current

m-word then a model Qn can be buüt using the algorithm 5.2 such that f(Q, Qn) < f(Q, Qn-i)*

Proof. Since Q is a completely measurable IPN, then Q has not non measurable places, henee the term

\Depu(Q)
—

Depu(Qn)\ is zero. Thus the error equation 4.1 is reduced to f(Q, Qn) = \{tpCQ}
—

{ipCq„}\. Since

the algorithm in the step 4.b computes a column of tpCQn then \{>pCq}
—

{tpCQn}\ < ]{tpCo)
—

{vC,q„__,}|

in the case when C(»,tJ) is a new transition or \{<pCq}
—

{tpCQn}\ = \{<pCq}
—

{vCq_._,}| in the case when

C(»,tk) is an already computed transition, thus it is fulfilled that f(Q,Qn) ___/(Q*Qn-i)- ■

The algorithm 5.2 can be used on-line with the system; its programming is straightforward quickly. The

complexity of this algorithm is linear.

Notice that every time a t-semiflow is detected (step 4 of the algorithm) a new model Qi is computed.

Example. Consider Q the system model depicted on figure 5.16 to be identified. The identification steps

when the t-semiflow Xi = [11100000000] is detected, are presented in figure

5.17. At this moment the model Qi depicted in figure 5.18 is identified.

The time elapses computed for the places in the occurrence of Xi are aPl
= 2, aPl

= 3 and aPl
= 4.

The identification steps when the t-semiflow X2 = [ 0 0 0 1 1 1 1 1 1 1 1 l] is de

tected, are summarized in figures 5.19, 5.20 and 5.21.

The structure ofthe IPN depicted on figure 5.16 has been computed since all its transitions were computed.

The associated durations of the places in the occurrence of Xi and X2 are the following dpi = {2,5},

dPl = {3}, dP3 = {4}, dPi = {6}, <¿P5 = {2}, dp6 = {8}, dP7 = {3}, d» = {10}, dPo = {4}, dPl0 = {3} and

¿pu = {3}*
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Figure 5.19: Identification steps when the t-semiflow X2 is evaluated.
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Chapter 6

Identifiable DES

This chapter studies the conditions for a system to be identifiable. It includes a description of the structures

which cannot be computed using the proposed algorithms, then it is analyzed when non measurable places

cannot be computed. A characterization of the sequences allowing to compute all the dependencies of the

model is proposed. Finally, an analysis of the influence of event detectability property for identification is

presented.

105
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6.1 Introduction

The procedure presented in the previous chapter allows obtaining a Petri net model for an unknown DES. Even

if the hypothesis of event detectability is not fulfilled (actually it cannot be determined on an actual unknown

system), the obtained model represents the observed behavior ofthe system; the on-line approach supports the

updating of the inferred model if a "new'' behavior is observed. Nevertheless it is interesting to analyze the

conditions in which a DES can be fully identified by the measurement of its outputs; besides to provide a better

understanding of the problem, some results can be useful for addressing other problems.

First at all one must to state which specific structures cannot be detected, such as the self-loops and others that

concern the placement of the non measurable places. Furthermore it is important to know the characteristics of

the output sequences that guarantee that the whole behavior of a system has been exhibited allowing to compute

tpC matrix and to infer 7C matrix; one of them is event-detectability by the output, a starting hypothesis.

6.2 Non computable structures

This section presents several structures that cannot be computed using the proposed algorithms and discuss

this characteristic. First, specific structures are analyzed, then the analysis of implicit non measurable places

is presented.

6.2.1 Specific structures

0 Simultaneous transition firing

Claim 6.1 Let Q be an IPN and ti and tj be any transitions ofQ that can be enabled simultaneously. IfU and

tj are fired simultaneously then their firing is detected as the firing of only one transition.

Proof. As presented in proposition 4.2, a transition tk is computed as the difference of consecutive markings

Mk+\
—

Mk, however notice that a change of marking can be generated by the firing of several transitions.

Thus, the difference of consecutive markings Mk+i
— Mk only represents the relation of which places must to

be dismarked and which places must to be marked to reach Mk+i from Mk- Henee Mk+i
— Mk is the sum

of the columns of C matrix representing the transitions fired from Mk leading to reach Mk+i. In the case

that Mk+i is reached with the firing of only one transition tk then Mk+i
— Mk represents the column k of C

matrix representing t/.. In the identification procedure it is not possible to determine if a change of marking

is generated by the firing of one or several transitions because the system is unknown and by difference of

consecutive markings the simultaneous firing of í¡ and tj (í.||íj) will be considered as the firing of only one

transition. ■

Previous proposition is illustrated in figure 6.1. If the transitions í¡ and t2 are fired simultaneously in the PN

depicted on figure 6.1.a, then will be computed the transition íi_2 of the PN depicted on figure 6.1.b. The

computed model considering also that ti and t2 are not fired simultaneously is depicted on figure 6.1.c.

0 Self loops

Claim 6.2 Let Q be an IPN. A self-loop formed with the place p. and the transition tj cannot be computed.
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PiQ (JP4

a) Simultaneous enabling b) Computed transition from

simultaneuos firing

c) Computed model

Figure 6.1: Simultaneous firing.

Proof. The proof follows from the fact that a self-loop cannot be described by the incidence matrix of a PN.

An element cy of C is computed as c¡j
= c¡t- —

cj" such that cj is the weight of the are from tj to p¡ and c~- is

the weight of the are to the transition tj from the place p¡ . Since p¡ is an output place of U then c+ = 1 and

since tj is an input transition of pi then c~, = 1, henee c¿j
= cfj

— c~¿ = 0 and then the relationship between pi

and tj and viceverse cannot be represented in the incidence matrix of Q and henee it is not possible compute a

self-loop. ■

The situation stated in previous proposition is illustrated in figure 6.2; the dependency [Í2,Í2] is not computed.

P2

Pj

a) Self-loop

*9*-T* c=í>P'(r)

b) Computed model

Figure 6.2: PN with a self-loop.

0 Mutual exclusión

The PN depicted on figure 6.3 is an example of a mutual exclusión scheme. In such model the processes 1 and

2 are executed in parallel sharing the resource r, the place pr represents this shared resource. The activities a

and b represented by the places p„ and pi, respectively, require the resource r, once the transition ta is fired the

activity a is performed and the activity b can be performed when the activity a is finished and the resource r is

released. A similar situation can be found when the transition í-, is fired, i.e. when r is assigned to the activity

b. Notice then that the activities a and b cannot be executed simultaneously. This structure can be computed

using the proposed algorithm when pr is a measurable place. Unfortunately when pr is a non measurable place

it cannot be computed.
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Process 1

Process 2

Figure 6.3: Mutual exclusión scheme.

Claim 6.3 Let Q be an IPN and let pT be a place ofQ describing a shared resource. IfpT is a non measurable

place then it cannot be computed.

Proof. The places describing shared resources are included in mutual exclusions schemes. Henee, consider that

Q describes two concurrent processes: proc A and proc B which share the resource r described by the place

pr. Consider also that Ta = {íai , t<_2 , ía3 ,

• • • ,tam) are the transitions of proc A that cannot be executed in

parallel with respect to the transitions of proc B, while TB = {t^ , íé2, í¡>a ,
■ • -

, Í6„ } are the transitions of proc B

that cannot be executed in parallel with respect to the transitions of the proc A, because its related activities

are those requiring the resource r. Since the resource r can be assigned to each process without any order then

in a evolution <7i when r is assigned to proc A before to proc B of Q the transitions í0l , ta„ , í03 ,

■ ■ ■

, tam of

proc A occur before the transitions ífc. ,
í *,., , í¿,3 ,

* * ■

,
íbn of proc B, while in another evolution a2 of Q, r could be

assigned to proc B before to proc A and henee in a2 the transitions í¿,. ,
í *,., , t*,3 ,

■ ■ •

, ítr. of proc B occur before

to the transitions ía, ,
f
a2 , í_t3 ,

■ ■ ■

, íam of proc A.

Notice that o*i *= • • •

tai
■ ■ ■

tam
■ ■ ■

tbl
■ ■ ■ tbn ■ ■ • and a2

= * ■ ■

í6l
■ • • t¡,_. • ■ ■

tai
■ ■ ■

tam
■ ■ • and henee the place pr

cannot be computed because if a NDep is computed to preserve the firing order of the transitions of proc A

before the transitions of proc B when <Ti is detected then it will be removed with the detection of a2. ■

6.2.2 Implicit non measurable places

The identification problem is related with the inference of the non measurable places of the system model Q.

This inference is made by sequencing consecutive transitions and/or consecutive m-words, when new information

of the system is obtained; then it is needed to remove, merge, or add new non measurable places in order to allow

the firing of all computed m-words. However not all the non measurable places of the system can be computed

since the information of the measurable places is enough to preserve the order in which the transitions are

computed in a m_word.

Consider the system model Q depicted on figure 6.4.a, notice that there exists two t-semiflows represented by

the vectors [ 1 1 0 0 1 ] and [ 0 0 1 1 1 ]T; their associated t-components are depicted on figure
6.4.b.

The next situations show how this system is identified when different places on the net are assumed to be non

measurable places.
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V

—

►©—

►©-*

[I I 00 l]T [00 I 1 l]T

T-components

Figure 6.4: a) System model Q. b) T-components of Q

Case 1 Consider the system of figure 6.4.a, where the place ps is a non measurable place as depicted on

figure 6.5.a. When the output word wi

1 0 0 1

0 0 0 0

0 1 0 0

0 1 1 0

is observed, the m-word mj = tiÍ2Í5

is computed using proposition 4.3. Using the identification theorem 5.1 the only NDep computed is

Ps
= [Í2> ís] since for another pair of consecutive transitions t¿ and tj there exists a MDep px

= [t,, tj], i.e.

Pi — [Í5.Í1] ant-t P3 = [ti,Í2J- The computed model for this output word is depicted on figure 6.5.b. When

the output word w2
=

1 0 0 1

0 1 0 0

0 0 0 0

0 0 1 0

is observed, the m—word m2
= Í3Í4Í5 is computed

using proposition 4.3. Using the identification theorem 5.1 no one NDep is computed since for any two

consecutive transitions t, and t-, in the m-word m2 there exists a MDep px
= [íi,í¡¡], i.e., pi = [ts,Í3],

P2
*-= [Í3i Í4] and P4

= [Í4,ís]. The computed model for these output words is depicted on figure 6.5.a

►©-*
—►©—4

■A

a) IPN syslcm
b) IPN computed when the output word

w, is generated by the system

c) IPN computed when the output

words w, and w, are generated by
Ihc syslcm

Figure 6.5: IPN system and the computed models when the ouput words w\ and wi are generated by the

system.
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J

b t4
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,

t> t_

a) IPN system
b) IPN computed when the output word w,
is generated by the system

c) IPN computed when the output words w,

and w2 are generated by the system.

Figure 6.6: IPN system and the computed models when the ouput words u*i and w2 are generated by the

system.

The computed model for the system depicted on figure 6.5 is not live. In this case the place p$ could not

be computed correctly since there is no information to form the NDep [Í3,Í5] = p¡.

Case 2 Consider the same system 6.4.a where p4 and p¡ are non measurable places as depicted on figure

6.6.a. When the output word wi =

1 0 0 1

0 0 0 0

0 1 0 0

is observed, the m-word mi = ¿1*2*5

is computed using proposition 4.3. Using the identification theorem 5.1 the only NDep computed is

Ps
= [Í2, Í5] since for another pair of consecutive transitions i • and tj there exists a MDep px = [í¿, tj], i.e.

Pi
= [Í5.Í1] and P3

= [ti,Í2]- The computed model for this output word is depicted on figure 6.6.b. When

the output word w2
=

1 0 0 1

0 1 0 0

0 0 0 0

is observed, the m-word m2
= t3t4t¡ is computed using

the proposition 4.3. Using the identification theorem 5.1 the only NDep computed is p4 = [Í4,ís] since

for another pair of consecutive transitions there exists a MDep, i.e. pi = [te,t3] and P2
= [Í3, Í4]. However

as Í5 is a shared transition by the two t-semiflows, then the non measurable places p4 and ps must be the

same by identification step 4.2 case 2. The computed model for this output word is depicted on figure

6.6.C. Notice that the ares (ti,p4) and (Í3.P5) could not be computed and henee the places p4 and p5

could not be identified correctly.

The computed model 6.6.c describes the same behavior as the target system depicted on figure 6.6.a, however

this model is different to the system model Q, the difference can be found in the jC matrix of the system and

the model.

In both cases the non measurable places could not be computed correctly since the dependencies formed by the

measurable places is enough to preserve the order in which the transitions were computed. Notice that the non

measurable places in the systems above are implicit places. This fact lead to the following proposition.

Proposition 6.1 Let pi be an implicit place of an IPN Q describing a DES, if Pi is a non measurable place

then it cannot be computed.

Proof. As stated in [53], if p¿ is an implicit place implies that: 1) its marking can be computed from the

marking of others places and 2) never is the place avoiding the firing of its output transitions. This last
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condition implies that if there exists a dependency [tx, tv] = p¿ also there exists a dependence transition sequence

B = [fx, tr][tr, tj] ■ • • [tu, tv] and ty cannot be fired until the firing of all the transitions of B, henee the only

NDep that could be computed related with tx and tv are [tx,tT] = pa and/or [tu,ty] = pT in the case where pa

and/or pr be non measurable places, and then p- cannot be computed. ■

Proposition 6.2 A DES described by an IPN Q in which some transition need to be fired simultaneously or Q

contains self-loops, non measurable places describing shared resources or implicit non measurable places cannot

be fully identified.

Proof. The proof follows from claims 6.1, 6.2 and 6.3 and proposition 6.1. ■

6.3 Properties of the output sequences

In order to compute a model Q¿ for a system model Q it is needed that the observed behavior of Q be enough

to detect all the transitions and places of Q.

Since the identification procedure is directly related with the computed transition sequences, in this section is

presented which are the transition sequences needed to identify a DES.

As introduced in previous chapter the difficulty to identify a model system Q lays on the inference of its non

measurable places, i.e. in the inference of its 7C matrix. Basically, there exists two main problems that must

to be solved to compute the -yC matrix:

1. Distinguish which transitions are concurrent transitions.

As introduced in chapter 4, to detect if any two transitions t¿ and tj are concurrent it is needed to compute

transition sequences in which t¿ and tj occur in different order, in transition sequences generated by the

same t-component of Q. If from the observed behavior of Q it is not possible to distinguish that two

transitions t¿ and tj are concurrent then it is possible that there exists in the computed model Q¿ a NDep

[U,tj] that does not belong to Q.

2. Determine how the non measurable places of Q are connected.

The procedures to infer the non measurable places show the importance to observe several occurrences of

a same transition sequence (m-word) in order to extract the exact information of how the transitions of a

m-word are connected and also to determine how the m-words are related with each other; this is due to

the non measurable places are computed to preserve the firing order of the transitions in a m-word and

also to preserve the occurrence order of the m-words in which they have occurred. If the non measurable

places are not computed correctly then the t-components of Q are not rebuilt correctly causing that the

computed model Q¡ does not genérate the complete behavior of Q.

Notice that the possibility to solve these problems depends on the transition sequences fired in Q : if it is possible

to determine the dependency relation between places and transitions from the computed transition sequences,

then a correct model Q¿ for Q could be computed. Thus, if the entire behavior of Q is observed then a correct

model for Q is computed since the entire dependency relation of Q could be detected. However it is possible to

characterize a reduced set of transition sequences that allows to extract the entire information of the relation
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dependency between transitions and places of Q. The analysis to find out these transition sequences is based

on the t-component decomposition of Q.

6.3.1 Reduced set of transition sequences needed in the identification procedure

Let Q be a system model and let X be the set of all t-components of Q, in order to detect what is the relation

between the transitions of Q (i.e. to identify what kind of dependency they are forming), the t-components

of X must to be "stimulated" in two ways: 1) in a particular way: for determining how the transitions of a

t-component Xi are related (if they are sequential or concurrent) and 2) in a general way: for detecting what

is the relation of a t-component with respect to the others t-components of the system model Q.

The reduced set of transition sequences needed in the identification procedure allows to find out the entire

dependency relation between the transitions of Q.

0Individual analysis of a t-component

A t-component could be of sequential or concurrent nature, depending how its transitions are related. If a t-

component _Y¿ is of sequential nature then its transitions are dependent since they represent causal relationships.

In this class of t-components there exists only one possible transition sequence in which the transitions can be

fired. However if a t-component _Y¡ is of concurrent nature, some transitions could occur in different order with

respect to another transitions in Xi. In this class of t-components there could exist several transition sequences.

As a t-component _Y¡ is also a net, then it could be decomposed on its p-components (the conservative part of

Xi). Let Y* be the set of all p-components ofXí; by definition the transitions in a p-component are dependent i.e.

that there exists a specific order in which they can occur, henee if the t-component Xi only has one p-component

then Xi only can genérate one transition sequence, however if Xi has more than one p-component then it could

genérate more than one transition sequence since the transition belonging to different p-components could be

concurrent.

These two faets are illustrated below.

Example. Consider the t-components of a system model depicted on figure 6.7. Let Xi be the t-

component composed by the transitions of the t-semiflow Xi = tgtioíist^, X2 be the t-component com

posed by the transitions ofthe t-semiflow X2 = íníi2Íi3íi4- and X3 be the t-component composed by the

transitions of the t-semiflow X3 = tit2t3titt,tet-rt&. These components are depicted separately on figures

6.8.a, 6.8.b and 6.8.C respectively.

The t-components Xi and X2 have only one p-component Y* and Y"]2, which are the same that their

t-components Xi and X2l henee the only possible transition sequence generated by Xi is ai = Í9Íioti3Íi4,

while the only transition sequence generated by X2 is a2 = íníi2Íi3ÍH* The t-component X3 has two

p-components: Y,3 generated by the places of the p-semiflow Yf = P1P2P3P4P8P9 and Yj = piPspeP7PsP9,

these p-components are depicted on figure 6.9. Notice then that X3 can genérate the following 6 transition

Sequences: a3
= íit2Í3t4Í5Í6Í7t8* °~4

= *1Í4*5*2*3*6*7<8*i °~b
= Í1Í2Í4Í3Í5Í6Í7Í8> <T6 — ílt4Í2t5t3Í6t7Í8, 07 **■*-

M2*4*5*3*6*7%! °~&
~

tl*4*2*3*S*6Í7*S-

From previous example it is possible to conclude that
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Figure 6.7: System model Q
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Figure 6.8: T-components of the system model Q depicted on figure 6.7.

1. the t-components having more than one p-component could genérate more than one transition sequences

and

2. the concurrent transitions belongs to different p-components

However if any two transitions belongs to different p-components it does not implies that they are concurrent

transitions.

Example. Consider the t-component Xi depicted on figure 6.10, it has tree p-components: Yj1 generated

by the p-semiflow Y} = P1P2P3P4, Y2 generated by the p-semiflow Yj = P5P6P7P8 and Y3 generated by

the p-semiflow Y¡ = P2P3P4P6P7P8P9P10* These p-components are depicted on figures 6.11.a, 6.11.b and

6.11.c respectively. Notice that the transitions ti and ts belong two different p-components Yj1 and Y2

respectively, however they are not concurrent transitions since either ti occurs before ts or ts occurs before

ti depending on the initial marking of Xi. Given the initial marking of this example ti occurs before Í5,

henee Xi can only genérate the transition sequence <7i
= ¿1*2*3*4*5*

This is related with the fact that there exists a p-component in Xi containing both transitions, this

p-component is Y3 (figure 6.11.c).
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Figure 6.9: P-components of the t-component X3 depicted on figure 6.8.C.

Pi f P* Pi P<
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Figure 6.10: T-component Xi.

Then it is possible to state that two transitions t¿ and tj belonging to a t-component Xi are concurrent if they

belong to different p-components and there exist not another p-component containing them; otherwise case í¡

and tj will be dependent transitions. Also, the number of transitions sequences generated by a t-component

depend on how the transitions in a p-component are related with the transitions of another p-component of Xi.

In order to detect that any two transitions í¿, tj are concurrent there must exist at least two sequences cri and

(72 generated by the same t-component Xi such that í¿ occurs before tj in uiand tj occurs before t¿ in a2.

Based on the fact that the concurrent transitions belong to different p-components of Xi, the next procedure is

introduced to find out the transition sequences tri and a2.

Algorithm 6.1 Extracting the dependency relation between transitions of a same t-component Xi

Inputs: The p-components of _Y¿

Output: The transition sequences <7i and a2

1. Enumérate the p-components of Xi

2. Compute cri as the firing of the transitions of each p-compohent following the enumeration.

3. Compute <72 as the firing of the transitions of each p-component following the reverse order of the enu

meration.

4. If any transition tx cannot be fired in the ith p_component then fire the transitions of the p-component

i + 1 or i — 1 (depending of which transition sequence is being computed) until tx can be fired.
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Figure 6.11: P-components of the t-component Xi depicted on figure 6.10.

Notice that even the t-component _Y¿ would have more than two p-components, the number of transition

sequences computed using algorithm 6.1 always will be two: Cti and a2 .

Example. Consider the t-component Xi depicted on figure 6.12. In order to compute the transition

sequences ai and a2, consider only the p-components Y{ , Y2 and Y3 generated by the p-semiflows: YJ =
—*■ —

.

P1P2P3P41 Y2 =

pspeprps and Y3 =

P9P10P11P12 respectively. Assume that the enumeration of the p-

components is the same as the order in which they are presented. As stated in step 2 of the algorithm 6.1

the transition sequence cti is computed firing the transitions of Yj* before the transitions of Y2 , firing the

transitions of Y2 before the transitions of Y3 and finally firing the transition of Y3'whenever is possible. To

fire ti it is needed to fire the transition Í4, then t4 is the first transition fired, following with the transitions

of Yj the transitions íi, Í2 and Í3 can be fired without the firing of transitions belonging to another p-

component. The next transitions that need to be fired are the transitions of the p-component Y2 ,
since

the transition Í4 was already fired then the transitions Í5 and te are fired; notice that the transition Í5 can

be fired because the transition Í3 was already fired. Next, the transitions of Y3 are fired: the transitions

Í7, ís, íg can be fired without restrictions; finally the transition tío is fired. Henee the first transition

sequence is <Ti
= Í4Íit2Í3Í5Í6t7t8*9*io*

The transition sequence 02 is computed as stated in the step 3 of the algorithm 6.1 firing the transitions

of Y3* before the transitions of Y2 , firing the transitions of Y2 before the transitions of Y{ and finally firing

the transitions of Y{ whenever is possible. The transitions t7, í8 and íg can be fired before any other

transition belonging to other p-component, the next transitions to be fired are the transitions of Y2: í4

can be fired but not the transition ts since the transition Í3 must be fired before Í5, then the transitions

ti, Í2 and Í3 are fired before ts; next the transition te can be fired. Notice that all the transitions of YJ

were already fired then it is needed to fire the transition íiq. Henee, the second transition sequence is
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Figure 6.12: T-component _Y¿.

a2
= Í7Í8Í9t4tlÍ2Í3*5Í6Íl0*

Notice that in previous example to compute the transition sequences <7i and a2 were not used all the p-

components of Xi The p-components selected were those forming the minimum set covering all the transitions

of Xi. The other p-components are those describing the possible order in which the transitions can occur.

Then the computation of these transition sequences is related to the problem to find out the minimum set of

p-components covering all the transitions of X¿.

Since the transitions shared by p-components are sequential transitions it is needed to focus on the segments of

a t-component in which the transitions could occur in different order.

The analysis to determine the minimum set of p-components covering all the transitions of a t-component Xi

is based on the decomposition of a t-component Xi in its fork-joint subnets tj
—

tk for each pair of fork-joint

transitions tj and tk.

There could exists several kind of subnets generated by a pair of fork-joint transitions depending on how the

external transition of this pair are related. Here will be considered those pairs such that if they are merged, all

the transitions in the resulting net remain connected.

Example. Consider the t-component depicted on figure 6.13. The first pair of fork-joint transitions

detected is the pair t3
—

íig. Inside of this pair there exists the pairs: Í5
—

íio, ti2
—

Í17, Í12 —

tío and

*3
—

Í17, however the only pair considered is the pair Í5
—

tío since if the transition ts and tío are merged

the transitions remain connected. However for the others pairs this is not possible: consider the pair

Í12
-

ti7 if they are merged, the transitions í4 and tu result in disconnected transitions. These facts are

illustrated on figures 6.14.a and 6.14.b respectively.

A procedure to select the p-components containing disjoint transitions between the pairs fork-joint, is given

below:
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Figure 6.14: Merging fork-joint transitions.

Algorithm 6.2 Computing the minimum set of p-components of a t-component X, covering all transition of

1. Detect the subnets í¿
—

tj delimited by the fork-joint transitions t¡ and tj in Xi

2. If a subnet í,
—

tj contains another subnet tx
—

ty then assume that tx
—

ty is just a transition inside of

t, -

t3 and select the p-components containing the disjoint transitions in t,
-

tj, next select from those

p-components including tx
—

ty, the p-components in which the transitions of tx
—

ty are disjoint.

else select the p-components with disjoint transitions in í,
—

tj

Example. Consider again the t-component Xi depicted on figure 6.13. The transitions of each p-

component of X. are presented in the next table.
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P-components Transitions

Yj* ti Í2 Í3 Í4 Í5 *6 *7 *10 *ii Í18 tig Í20

Y2 ti Í2 Í3 Í4 Í5 ts tg tío til Í18 Í19 Í20

Y3 íl Í2 Í3 *12 *13 *14 *15 *16 *17 tl8 Íl9 *20

Yl ti t2 Í3 Í4 Í5 te Í7 Í10 *17 Í18 tig Í20

Y¿ íi Í2 Í3 Í4 *5 *8 Í9 Í10 *17 Íl8 Íl9 *20

Y¿ h t2 t3 Í12 ís te t-; íio tu tis íig Í20

Yj ti t2 t3 Í12 Í5 Í8 Í9 ÍIO *17 Í18 Í19 Í20

Yg íl Í2 Í3 Í12 Í5 Í6 *7 ÍIO tl7 Í18 Íl9 Í20

Yg ti t2 t3 Í12 Í5 Í8 Í9 *10 *17 *18 *19 *20

The subnet Í3
—

íig is the first subnet detected, this subnet includes the subnet Í5
—

íio, then this

transitions are merged resulting the t-component depicted on figure 6.14.a. The p-components having

disjoint transitions in t3
—

tía are the p-components YJ, Y2 and Y)1. Notice that YJ and Y2' are same p-

component in the t-component where the transitions Í5 and tío were merged (figure 6.14.a) by this reason

these two p-components are considered.

Considering this enumeration the transitions sequences ai and a2 computed using algorithm 6.1 are the

following:

(Ti = íiÍ2Í3Í4Íl2Í5Í6*7t8Í9*10*llíl3Íl4Íl5Íl6tl7Íl8Íl9Í20

a2 = ílÍ2Í3Íl2tl3Íl4Íl5Íl6Í4Í5Í8Í9*6Í7Íl0*17tllíl8Íl9*20

Proposition 6.3 Let Xi be a t-component of an IPN Q. The transition sequences ai and a2 computed using

algorithm 6.1 allows to determine which transitions are concurrent transitions.

Proof. By construction of ai and a2, if í¿ and tj are concurrent transition in Xi then in any of these transition

sequences tj occurs before tj and in the other tj occurs before í
• because they belong to different p-components

ofX¿. ■

^Global analysis of t-components of the system model

In previous section it was studied the relation between transitions of a same t-component, now it is important to

determine the correct relation between the t-components of a system model Q to compute correctly the places

forming complex NDep in Q; the single NDep are computed correctly when two transitions occurs consecutively.

During the identification process it could happen that:

1. some NDep formed with a non measurable place p*. ofQ has not been computed, resulting a non measurable

place computed incompletely in the model Q¿ because even the NDep computed belong to Q this place is

not a place of Q since are missed some ls or -ls in the row i of the incidence matrix of Q¿.

2. the m-words which are actual t-semiflows of the system are concatenated with the previous m-word leading

to compute a wrong non measurable place since it does not belong to Q.

The solution of both problems is related with the information provided by the system, i.e. with the computed

transitions sequences. Consider that wn is the current computed m-word. In the first case the missed NDep

has not been computed because some m-words sharing transitions with m-words already computed have not
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been detected. Then it is needed to compute the transition sequence related with the missed m-words. While

in the second case it is needed that in a posterior evolution of Q, wn occurs before u*„_i to compute the NDep

indicating that after u>n_i, wn can occur, and also that w„ can occur without the occurrence of uin_i since wn

is an actual t-semiflow of Q.

The non measurable places related with these problems belong to the class B.ii.a and B.ii.b respectively.

The reduced set of transition sequences needed to identify the non measurable places of the classes A.i, A.ii

and B.i is formed by sequences in which each transition is fired once. However for the non measurable places of

classes B.ii.a and B.ii.b, the reduced set of transition sequences required to identify such places is that in which

is enough to compute all the t-components of Q.

Considering X the set of t-components of Q, one transition sequence allowing the detection of the t-components

could be: XiX2 ■ ■ ■ XnXnXn~\ ■ ■ ■ X2Xi, where each X, is a t-component of Q. Notice that in this sequence

each t-component evolves in different order with respect to the others t-components of Q.

Example. Consider the system model Q depicted on figure 6.15. Since the t-semiflows of Q are

the same as its m-words, then a reduced transition sequence XiX2 ■ ■ ■ XnXnXn-i ■ ■ ■ X2Xi of Q is

wiw2w3wxW4W3w2wi. On figures 6.16, 6.17, 6.18 and 6.19 are depicted the models computed when the

m-words of in the reduced transition sequence are computed. The model of Q is computed after the

m_word 1x12 is already computed.

W3=t5l6 w,=t,t2

r{ík>¿
t, t.

k t,

Von-
t. t4

w4=t7t8 W2=t3t4

Figure 6.15: System model Q.

a)W, b) W, W2

A-HHO-H éH]-<>K]->#-HH<>-4J

Figure 6.16: Computed models when the m_words wi and W2 were computed.

• The reduced transition sequence is computed with the following algorithm.

Algorithm 6.3 Computing the reduced set of transition sequences needed to identify a system model Q
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c) W, W,W3

■i h -3 U t5 t6

Figure 6.17: Computed model when the m_word w3 is computed.

d) W, W2W3W4

4-H]-<>-K_-+0^^^
t. ti t, t. t, tfi t, t,

Figure 6.18: Model computed when the m_word W4 is computed.

Input: The set of t-components of Q.

Output: The reduced set of transition sequences needed to identify a model system Q

1. Compute the transition sequences a\ and a\ using algorithm 6.1 for each t-component X. of Q.

2. Then the sequence XiX2 • • ■ XnXnXn_i ■ ■ • X2Xi will be equal to a\a\ ■ ■ ■ a^a^a2~l ■ ■ ■ a\a\

Then, the reduced set of transition sequences needed to identify a system model denoted as TSeq is

TQtír. rr^rr^ rrn r-n rr^l— 1 -.2_.l
i oeq

—

a^i
• ■ ■

íTj a2 a2
• • ■

172^2

This transition sequence provides the needed information to detect the concurrent transitions and the non

measurable places.

Proposition 6.4 Leí Q be a system model, the set TSeq allows to determine the relation of the transitions of

each t-component Xi of Q and also the inference of the non measurable places.

Proof. Since in TSeq are considered the sequences a\ and a\ of each t-component X¿ then the relation between

transitions of each t-component can be determined, this follows from proposition 6.3. Notice also that in TSeq,

each t-component occurs in different order with respect to the others t-components Q, allowing to update the

NDeps formed sequencing consecutive m-words. ■

Proposition 6.5 Leí Q be a system model and S = X.o-JX.<rfX. * * ■ X.-rJxVí.X.cr^X. * ■ • Xlo^X^X. be a

transition sequence computed from the observed behavior ofQ, where Xi is any t-component ofQ. Then S has

the same property than TSeq.

Proof. Since in S is preserved the occurrence order of the t-components in TSeq then in S the transitions of

a t-component occurs in different order and also all the transitions of any t-component occur before and after

the transitions of the others t-components allowing the detection of all dependencies of Q. ■
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e)W,W2W,W4W4 O W, WjWjW.W^W,

Figure 6.19: Computed model for the sequence wiW2W3w4w4.

However it is possible that another set of transition sequences not including TSeq allows to compute a cor

rect model for Q, implying that a combination of the transition sequences in this set also provide the entire

information about the dependency relation of the transitions in Q.

Example. Consider the system model Q depicted on figure 6.20. The TSeq of Q is TSeq = aia2, where

■Tj = íiÍ2*3*4*5 and a2
= Í3Í4Í1Í2Í5 are the transition sequences computed using algorithm 6.1. With

TSeq a model for Q could be computed since the concurrent transitions occur in different order. However

consider the set of transition sequences STSeq =

aaa¡,ac where aa
= tit2t3t4tz,, a¡,

= tit3tit2tr, and

ac
= *3ÍiÍ2Í4Í5. Notice that the sequences of STSeq also allow to compute a model for Q. The transitions

*i and t4 are concurrent transitions, however it could seem that they are dependent transitions since in

the transitions sequences of STSeq t4 appears always after *i, however notice that a dependence between

ti and t4 never is computed since they never occur consecutively.

Pl 'l P2 l! Pl

P4 *i Pí '4 p_ t.

Figure 6.20: System model Q.

If the input signal given to a system model Q is not an excitation persistent input signal then it could occur

that:

1. Some t-component is not excited at all

In this case neither the columns of the tpC matrix related with the transitions of this t-component ñor the

rows of fC matrix related with the non measurable places of this t-component can be computed because

it is not observed the behavior generated by this cycle.

Example. Consider the system model Q depicted on figure 6.21. Assume that the input signal

allows to genérate the transition sequences wi
= t7íg, w2

= Í9Í10, wz
= *n*i2. "-2

= Í9Í10 and
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Figure 6.21: System model Q.

Wi
= Í13Í14. The computed model is depicted on figure 6.22. Even the computed model generates

the observed behavior of Q (figure 6.21), the model is not complete since the input signal did not

excite the t-component containing the transitions ti, t2, t3, t4, Í5 and te-

Figure 6.22: Computed model.

2. A t-component is partially excited.

In this case some NDep have not been computed since a t-component that shares transitions with an

already computed t-component has not been computed.

Example. Consider the system depicted on figure 6.21. Assume that the next sequence of m-words

has been detected: wx
= tií2*4*3*5*6» w_

= *i*4*5*2*3*6. w3 = Íi3*i4. «4 = Í7Í8, w$ = Í9Í10, w3 =

Í13Í14- Then the computed model is depicted on figure 6.23. Notice that the non measurable places pi

and pg are not computed correctly since the transition sequence of the t-component Xk = Í11Í12Í9Í10

has not been computed.

3. Not all the t-components are excited correctly

In this case it is possible that all the columns of tpC matrix can be computed (if they were computed at

least once), however it could occur that some non measurable places are computed wrongly because the
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t. Pn '-

<I0 Pío ■i _x_/^
M

Figure 6.23: Computed model.

information captured from the evolution of the system is not enough to remove, update or compute a new

NDep.

Example. Consider again the system model Q depicted on figure 6.21. Assume that the input

signal allows to compute the next sequence of m-words: u*i
= tiÍ2*4*3*s*65 u>2

= *13Í14, u-3 = t7tg,

wA = tgtio, m-5
= ÍHÍ12, wt = Í9Í10 and w3

= Í7Í8. The computed model is depicted on figure 6.24.

Notice that this model describes the observed behavior of Q.

Figure 6.24: Computed model.

Even the matrix tpC is computed correctly due to all transitions of the system model were fired, it

could occurs that some non measurable places are wrongly computed. These non measurable places

are described below.

a. The non measurable places forming NDep between concurrent transitions such as the places forming

the NDep [Í2,Í4], [Í4,Í3] and [Í3,ts] in the computed model depicted on figure 6.24. This occurs

because it has not been computed another m-word wx such that the concurrent transitions occur in

different order, if the m-word wx
= ¿1*4*5*2*3*6 is computed then this wrong NDep will be removed.

b. The non measurable places concatenating t-components of Q that forms only one t-component in the

computed model. In this example, the t-component Xk = ti3Íi4 has not been connected correctly,

notice that the place 't^ does not belong to Q. This occurs because it has not been computed the

m-word w2 before the m-word wi .
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6.4 Characterization of identifiable systems

Definition 6.1 A DES is said to be identifiable by the output iff all the internal changes performed into the sys

tem are detected through the outputs and the measured output sequences are enough to compute all dependencies

and to remove all the NDep wrongly inferred.

This definition involves the topics addressed in previous discussions; the internal changes can be detected

through the output if the hypothesis H2 and H3 stated in section 4.1 hold and there are not non-computable

structures as described in section 6.2. The second condition refers to the sequences allowing to compute correctly

all the measurable and non-measurable dependencies and to eliminate all the wrong NDep inferred during the

identification process. This way it is immediate to state the following characterization.

Proposition 6.6 If a system model Q is identifiable then a) Q is event-detectable by the output b) no transitions

ofQ are fired simultaneously, Q does not contain sdf-loops and neither non measurable places describing shared

resources ñor non measurable implicit places exist in Q, and c) the computed transition sequence detected from

the behavior ofQ is S = Xia\%a\% • ■ ■ XjffJ^crpta-^X. • • ■ x\a22%a\%

Proof. a) Follows from hypothesis of work H2 and from proposition 4.1. b) Follows from hypothesis of work

H3 and from proposition 6.2 and c) Follows from proposition 6.5. ■

The previous proposition provides only sufficient conditions for identifiable DES. A complete characterization

could be possible if one could characterize all the non-computable structures concerning the placement of non

measurable places. This a difficult issue that deserves a more long and depth study on redundancy of the

structures (such as implicit non measurable places).

6.5 Identification of non event detectable DES

As presented in chapter 4 the first stage of the identification procedure is to compute the measurable part of

the system model Q as it is evolving, the measurable part is represented by the tpC matrix of Q, each column of

this matrix is computed from any two consecutive output symbols generated by Q as stated in proposition 4.3.

However it is possible that some transitions have not effect over the measurable places and henee there could

not be detected any change of state at the output of Q and henee those transitions cannot be computed from

the output of Q, also it is possible that some transitions have the same measurable part being impossible to

distinguish them from the output. Henee, for the identification procedure it is desirable that each transition in

the system model Q be distinguishable from another transition from the output information of Q. The condition

under which it is possible to detect and distinguish any transition of a system model Q is that it fulfills the

event-detectability property introduced in [1].

Definition 6.2 Leí Q be an IPN. Q is event-detectable iff all columns oftpCQ matrix are not nuil and different

from each other.

As stated in previous definition, there exist two cases for a system model Q does not fulfill the event-detectability

property: case 1) that there exists a nuil column in tpCQ or case 2) that two or more columns in ¡pCq be equal.

A deeper analysis of these two cases are presented below.
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6.5.1 Nuil columns in xpC matrix

The incidence matrix C of an IPN Q describes the relation between the places and the transitions of Q. Thus

the elements in the incidence matrix have the following meaning:

(—1
p¡ is an input place of tj, and henee tj removes marks from pi

1 Pi is an output place of tj, and henee the firing of tj add marks to p¡

0 pi and f
j are not related, and henee tj does not affect the marking of pi

Assume that there exists a nuil column i in tpC, i.e. tpC[k,i] = 0 for every non measurable place pk of Q, then

the firing of the transition t • has no effect over the measurable places of Q since í • does not remove or add

marks to some measurable place.

The effect produced by a nuil column i of the tpC matrix in the identification problem is that the transition

U represented by that column cannot be computed using the output information of Q. This claim is based on

the fact that a transition is computed from the output symbols of Q as the difference of any two consecutive

output symbols (proposition 4.3), however if the firing of a transition í¿ from a marking Mk has no effect over

the measurable places, then its firing does not modify the output since the output symbol generated by the

reached marking Mk+i is the same as the output symbol generated by the marking Mk-

Consider that the transition í¿ of Q fulfills tpCU = 0, i.e. i is a nuil column of tpC matrix, and Mk —

-* Mk+i-

In order to compute the transition ti as tpC íj = tpMk+i
—

tpMk notice that:

Mk+i = Mk + CU (state equation)

tpMk+i = tp(Mk *+* Cti) (applying tp to both sides)

tpMk+i = tpMk + tpCU (since tp is linear)

tpMk+i = tpMk (since Cti = 0)

Then the transition U cannot be computed from the output symbols of Q since it is not detected any change of

marking in Q due to tpMk+i = <pMk i.e. the observed output symbol generated by the marking reached with

the firing of í¿ is the same as the output symbol generated by the previous marking

generated output symbol is tpMi =

since no measurable place is marked in Mq.

due to the new marked place is ps and it is a non measurable

Example. Consider the system model depicted on figure 6.25. The output symbol generated by the initial

[ 0
"

marking M0 =[ 0 0 0 10 1 ]
T
of Q is tpM0 = 0

L ° .

Assume that the transition íi is fired; then Q reaches the marking Mi = [0 0 0 0 1 l] The
"

0

"

0

_

o
_

place. Notice that tpMo = tpMi then it is not possible to detect that a change of state had occurred in Q

from its output symbols. Notice also that the column 1 of the tpC matrix depicted on figure 6.25 is a nuil

column and henee ti does not add or remove marks from the measurable places of Q.

• The computed model in this case will be as that depicted on figure 6.26.

By previous illustration it is possible to state that if there exists a nuil column in the tpC matrix of a model

system Q then:

• there exist at least two consecutive markings generating the same output symbol since the transition

represented by the nuil column has no effect over the measurable places, like the markings Mo and _Vf¡ of

previous example due to Mo —'-* Mi and tpMo = tpMi
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P* -1 Ps -2 Pl <:

'>#>D»-*-»»K>»

*__ tn xhT^t >f1>f^i »
rw rxT*\j^\rpyJ^ .

ps t, p2 t4 p3
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0 1 0 0 -1

0 0 1 -1 0

0 0 0 1 -1

0 0

fifi

J YC

Figure 6.25: System model Q.

t- Pi

*-^-4oi

l3 P2 l4 Pj

Model Q¡

Figure 6.26: Computed model for the system model Q depicted on figure 6.25.

all the input and output places of the transition í. represented by the nuil column in tpC matrix are non

measurable places.

M'j. In

6.5.2 Equal columns in tpC matrix

If there exist two or more columns j and k in the tpC matrix of a system model Q such that they are equal

columns, i.e. tpCtj = tpCtk, implies that the firing of tj and the firing of tk have the same effect over the

measurable places of Q. The effect caused by this problem in the identification procedure is that these two

transitions will be considered as the same transition due to they cannot be distinguished from the output of Q.

Consider that tpC í ■

= tpCtj ,
i.e. i and j are equal columns in tpC matrix, and M¿ —■-» M[ and AL

order to compute the transitions t¡ and tj from the output symbols notice that:

Mí = Mi + CV

M¡
= Mj + CJ]

<pM[ = tp(Mi + Cti)

tpM'j
= tp(M} + Cti)

tpM¡ = tpMi + tpCV

tpM'j = tpM3 + tpCVj
tpM'i

-

tpM{ - tpM'j
-

tpMj (since Ct¡ = CTj)

Then the transitions í, and í, cannot be distinguished from the output symbols since tpM¡
-

tpMt = tpM'j
-

tpMj,

i.e. they are computed as the same transition.

Example. Consider the system model Q depicted on figure 6.27. The t-components of Q are depicted

on figure 6.28. The generated output symbols by the t-component Xi of Q when the transitions ti,

(state equation)

(applying tp to both sizes)

(since tp is linear)

*2 and Í5 are fired are: and the m-word computed from this output symbols
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C=

10 0 1-1

0 1 10-1 J-cpi

yc

Figure 6.27: System model Q with equal columns in tpC matrix.

T-component X, T-component X2

Figure 6.28: T-components of the system model Q depicted on figure 6.27.

is t__i

tl

1

0

ti
'

0

1

ti
'

-1

-1
,
the computed model for this m-word is depicted on figure 6.29.a. The t-

component X2 of Q generates the following output symbols

Í3, Í4 and ts are fired, the m-word computed is w2 =

0

0

u

1

0

0

1

1

1
when the transitions

-1

-1
Notice that ¡pCt3 = tpCt2 and

ípCti = ¡pCJi Since ui]
= ti*2Í5 then w2

= ¿2*1*5. The computed model is depicted on figure 6.29.b.

Based on previous analysis it can be stated that if a system model Q does not fullfil the event detectability

property, then the correct structure of Q cannot be computed using only its output information since a) the

'1 Pi

l2 P2 *S •2 P2 t

a) Model Q, b) Model Q2

Figure 6.29: Computed models Qi and Q2 for the m-words w-. and w2 respectively.
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transitions cannot be detected (in the case that ¡pCq has a nuil column) or b) some transitions cannot be

distinguished and considered as the same transition (in the case that ¡pCq have repeated columns). However,

notice that in both cases the computed models describe the behavior of the system models.



Chapter 7

Conclusions

The work herein presented addresses the identification problem of DES; it is devoted to obtain a mathematical

model from the observation of the system behavior, which is described by the evolution of its input and output

signáis. The class of systems dealt in this work are those in which not all the states of the system can be

determined from the measurement of its outputs, however these systems can be described by IPN exhibiting

the event-detectability property.

The adopted identification approach is a passive one (in which the input signáis of the system are not ma

nipulated) and the strategies proposed are translated into procedures executed on-line, building the models

progressively. These models represent the observed behavior of the system and they approach asymptotically

to the actual model of the system. Every sequence of events is analyzed and if it provides new information on

the system then the computed model is updated.

The strategy of the identification procedure is suggested by the cyclic behavior of live and bounded systems.

It is based on the reconstruction of the t-components of the system model, by processing the cyclic sequences

of transitions computed from the observed output symbols (m-words). During the on-line operation of the

identification process, the m-words are computed and then the new model is built adding, removing, or updating

non measurable places.

The model synthesis procedure performs mainly two tasks: the computation of the measurable part of the

system and the inference of the non measurable part of the system, which is related with the dependencies

formed by the non measurable places with respect to the computed transitions. The first task is made directly

from the observation of the output system signáis, while the second task, rather difficult, derived a more detailed

study about the dependencies formed by a non measurable places into a model. The proposed algorithms to

updated the non measurable places are of linear complexity in the number of the transitions computed and the

m-words detected. The general algorithm to update a model that incorporates all the updating procedures of

non measurable places is also executed in polynomial time.

Although the execution of the identification procedure is efficient, the convergence to the actual system model

using the passive approach depends on the evolution of the system itself. If the system evolution presents

sequences that include a persistent excitation sequence then the model is fast computed, otherwise it is needed

to wait until the system exhibits such behavior; however in each evolution the identification procedure gener

ates a model describing the observed system behavior. The identification problem is complex by nature; the

expectation of a certain order of the transition sequences can be seen as a non deterministic problem of m-words

129
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generation; then the identification problem of DES belongs to the class of NP problems. This inconvenient is

partially overéame by the on-line operation of the identification procedure as the system evolves, because the

computed model describes the observed behavior; also because the behavior of a system is not always chaotic

or biased and its activity sequences are presented in a reasonable time elapse.

Another identification approach that it is not considered in this thesis to dismiss the complexity problem is the

active identification approach, in which it is possible to manipúlate the input signáis of the system to validate

the computed model. This procedure would consist in capture the observed behavior of the system in a model

computed using the passive approach, then commute to the active operation applying sequences that allow to

validate the computed dependencies formed with non measurable places.

An approach more realistic than the black box approximation is one in which it is considered the existence

of a legacy system for which there exists available information, the problem in this case is to characterize the

situations or structures that must to have the available information that helps the validation of some computed

dependencies in the on-line identification procedure.

This work is a first approximation of the identification problem in DES and it can be considered as a basis for

future works on the matter, possibly oriented towards the verification of systems, hardware or software, or it

can be extended to address problems of reverse engineering.
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