

CloWM*)

CINVESTAV
Centro de Investigación y de Estudios Avanzados del IPN

Unidad Guadalajara

Algoritmos Adaptativos Útiles para Generar

Comportamientos en Ambientes Virtuales Dinámicos

Tesis que presenta:

FABIEL ZÚÑIGA GALLEGOS

Para obtener el grado de:

MAESTRO EN CIENCIAS

CINVESTAV
IPN

ADQUISICIÓN
DE LIBROS

En la especialidad de:

INGENIERÍA ELÉCTRICA

Guadalajara, Jal. Octubre del 2002

CINVESTAV I. P N.

SECCIÓN DE INFORMACIÓN

I DOCUMENTACIÓN

CLASIF.: ,

ADQUIS.:Tes!S-ftl/2Z.4
FECHA: 26 lAMQ - '2fl03

PROCED- ^fiu
üil'i'Qy/p-Q^

CINVESTAV
Centro de Investigación y de Estudios Avanzados del IPN

Unidad Guadalajara

Algorithms Useful to Genérate Behaviours in

Dynamic Virtual Environments

A thesis presented by
FABIEL ZÚÑIGA GALLEGOS

To obtain the degree of

MASTER IN SCIENCE

In the subject of

ELECTRICAL ENGINEERING

Guadalajara, Jal. October, 2002

•

Algoritmos Adaptativos Útiles para Generar

Comportamientos en Ambientes Virtuales Dinámicos

Tesis de Maestría en Ciencias

Ingeniería Eléctrica

Por:

Fabiel Zúñiga Gallegos

Ingeniero en Computación
Universidad de Guadalajara

Becario de CONACYT, expediente No. 157945

Director de Tesis:

Dr. Félix Francisco Ramos Corchado

CINVESTAV del IPN Unidad Guadalajara, Octubre del 2002

Adaptive Algorithms Useful to Genérate Behaviours in

Dynamic Virtual Environments

Master of Science Thesis

In Electrical Engineering

By:

Fabiel Zúñiga Gallegos

Engineer in Computer
Universidad de Guadalajara

CONACYT no. 157945

Thesis Director:

Dr. Félix Francisco Ramos Corchado

CINVESTAV del IPN Unidad Guadalajara, October, 2002

Algoritmos Adaptativos Útiles para Generar Comportamientos en

Ambientes Virtuales Dinámicos

El problema que intentamos resolver es cómo utilizar algoritmos adaptativos para

agregar comportamientos adaptativos a criaturas virtuales. Este trabajo nos perimitira

establecer la factibilidad de utilizar este tipo de algoritmos en problemas de animación.

Esto es, al final de nuestro trabajo, queremos saber si es posible a través de un

lenguaje de script y algoritmos adaptativos crear una animación con entidades

virtuales.

El trabajo que proponemos consiste en tres partes:

1) Adaptar la arquitectura GedA-3D (un trabajo anterior desarrollado por nuestro

equipo) para que sea útil en este trabajo. Entre otras adaptaciones, GeDA-3D

soportará un editor virtual creado por un miembro de nuestro equipo, y será

capaz de manejar aplicaciones móviles.

2) Implementar algunos algoritmos adaptativos en esta arquitectura. Algunos

algoritmos pertenecientes a la computación evolutiva (algoritmos genéticos y

estrategias evolutivas) serán implementados para agregar comportamiento

adaptativo a entidades virtuales que evolucionan en un ambiente específico

integrado a GeDA-3D.

3) Concluir, con nuestra experiencia, si estos algoritmos serán útiles para obtener

el objetivo final descrito anteriormente.

Adaptive Algorithms Useful to Genérate Behaviours in Dynamic
Virtual Environments

The problem we try to solve is how to use adaptive algorithms to add adaptive behavior

to virtual creatures. This work also will help us to establish the feasibility of using this

sort of algorithms in animation problem. That is, at the end, we want to know if it is

possible through a script language and adaptive algorithms créate an animation with

virtual entities.

The work we propose consists in three parts:

1) To adapt GeDA-3D architecture (a previous work developed by our team) to be

useful in this work. Among others, GeDA-3D will support a virtual editor created

also by a member of our team, and it will be able to manage mobile

applications.

2) To implement some adaptive algorithms on this architecture. Some algorithms

belonging to evolutionary computation (genetic algorithms and evolution

strategies) will be implemented to add adaptive behavior to virtual entities

evolving in a specific environment embedded into GeDA-3D.

3) To conclude, with our experience, if these algorithms will be useful for getting

our final objective described above.

gratitudes
Iwouíddks to express my thanks to myparents
'Florentino Zúñiga flrévaío andgloria gallegos
Lunafor supporting my studies. I am verygratefut
to myfatherfor havingJorcedme to continuéwith

the high schooC

I thankjmy wifeMariana <Edith LinaresHernández

for toíerating my studies.

I thankjmy adviser 'FélixFrancisco <Ramos Corchado

andConacyt, Iwas the scholar 157945.

Contents

1. Introduction

1.1. Objective i

1.2. Problem description 1

1.3. Solution proposed 2

1.4. Organization of the thesis 2

2. Fundamentáis

2.1. Objective 4

2.2. Introduction 4

2.3. Distributed systems 5

2.3.1. RMI 6

2.3.2. CORBA 6

2.4. Dependable systems 7

2.4.1. Fault tolerance systems using replicaron 8

2.5. Intelligent agents 8

2.6. Multi-Agent systems 10

2.7. Mobile agents 11

2.7.1. Mobile agent systems 13

2.7.2. Co-ordination in mobile agents 13

2.7.3. Security 13

2.7.4. Applications of mobile agent technology u

2.8. Formal methods 15

2.8.1. Petri nets 16

2.9. Conclusions 18

3. Evolutionary computation
3.1. Objective 19

3.2. Introduction 19

3.3. Evolutionary computation 20

3.4. Main paradigms 22

3.4.1. Genetic algorithms 22

3.4.2. Evolution strategies 23

3.4.3. Evolutionary programming 24

3.4.4. Genetic programming 24

3.5. Self-adaptation 25

3.6. Conclusions 26

CONTENTS H

4. Innovations to GeDA-3D

4.1. Objective 27

4.2. Introduction 27

4.3. Model architecture 28

4.4. Innovations to GeDA-3D 29

4.4.1. Community of agents 29

4.4.1.1. Coordinator 29

4.4.1.2. Application 30

4.4.1.3. Client 30

4.4.2. Architecture 30

4.4.3. Consistency service 31

4.4.4. Mobility platform 32

4.5. Conclusions 35

5. Specification of GeDA-3D's mobility
5.1. Objective 36

5.2. Introduction 36

5.3. A Petri Nets-based methodology 38

5.4. Mobility platform model 44

5.5. Mobility platform liveness proof 49

5.6. Conclusions 54

6. Adaptive behaviour in virtual entities
6.1. Objective 55

6.2. Introduction 55

6.3. Case study 56

6.4. Algorithms employed 58

6.4.1. Genetic algorithms 58

6.4.2. Evolution strategies 62

6.5. Behaviour of agents from the case study 67

6.6. Results 72

6.7. Conclusions 75

7. Conclusions

7.1 Objective 76

7.2 Results 76

7.3 Future work n

Bibliography 79

Chapter 1

Introduction

1.1 Objective

This chapter presents the problem that this work intends to contribute, thereafter, explains

the solution proposed and results expected, and finally, shows the organization of the thesis.

1 .2 Problem description

The problem we try to solve is how to use adaptive algorithms to add adaptive behavior to

virtual creatures. Those algorithms for instance: will allow virtual entities to take decisions

about different situations such as face an enemy, in the case of a game; will help a virtual

entity to plan its movements in an specific scenario to get a target, etc.

This work also will help us to establish the feasibility of using this sort of algorithms in

animation problem. That is, at the end we want to know if it is possible through a script

language and adaptive algorithms créate an animation with virtual entities.

INTRODUCTION 2

1 .3 Solution proposed

The solution we propose consists in three parts:

• To adapt GeDA-3D [TOSCANO00] architecture to be useful in this work. Among

others GeDA-3D now support a virtual editor created also by a member of our team,

it is able to manage mobile applications. The resulting architecture will be described

in chapter 4.

• To implement some adaptive algorithms on this architecture. Some algorithms

belonging to evolutionary computation will be implemented to add adaptive behavior

to virtual entities evolving in a specific environment.

• To conclude about the experiences about these algorithms for getting our final

objective described in section 1 .2.

1.4 Organization of the thesis

The description of our work is organized as follows:

1. Chapter 2 review briefly the following topics that constitute the theoretical base

concerning the first part of our work: Concepts related to Distributed Systems and

Distributed Artificial Intelligence including Mobile Agents; some technologies such as

CORBA and RMI useful to develop distributed systems; some concepts to achieve

the goal of dependability are briefly described; and finally Petri nets as a formal

method of verification are also described.

2. Chapter 3 exhibit the topics that constitute the theoretical base for the second part of

our work. Concepts related to evolutionary computation and its main paradigms:

evolution strategies, evolutionary programming, genetic algorithms and genetic

programming; and self-adaptation constituting an interesting particular research

direction.

3. Chapter 4 introduces our GeDA-3D platform useful to intégrate and manage

distributed applications. Such a platform is based on a mobile agent architecture

and has been designed specifically for the development of dynamic virtual

environments. This platform is the kernel of this project and in our specific case is

used to implement and prove the adaptive algorithms proposed.

INTRODUCTION
3

4. Chapter 5 presents a formal specification of the mobility platform incorpórate to

GeDA-3D using an extensión of Petri Nets formalism we propose, and presents a

formal verification of liveness in such a system.

5. Chapter 6 presents the evolutionary algorithms we test in this work.
Those algorithms

are the core to implement adaptive behaviors to the virtual entities participating in a

strategy game we propose as a case study. The strategy game consists of a virtual

combat environment integrated to GeDA-3D.

6. Chapter 7 concludes and present our future work.

Chapter 2

Fundamentáis

2.1 Objective

The objective of this chapter is to exhibit a survey of theoretical-topics useful for the

realization of our research, such as the paradigms of distributed systems and multi-agent

systems, and such as formal methods of verification and dependable systems.

2.2 Introduction

The core of our work lies in the multidisciplinary field of CSCW [JERRY]. ln this chapter we

describe the basic concepts of main theoretical-topics that were useful to reach the first of

our objectives, that is, the development of GeDA-3D's platform. First, is described briefly

some concepts of distributed systems, which were necessary for our research such as

CORBA, RMI, etc. ln second place is included a description of Petri nets because they were

used as a formal method for verifying our system. ln third place is given an introduction of

dependable systems to understand the form which we will implement fault tolerance. And

finally, we present concepts of intelligent agents, multi-agent systems and mobile agents

also important concepts for our work.

FUNDAMENTÁIS 5

2.3 Distributed systems

A Distributed System (DS) consists of a collection of autonomous computers interconnected

across a network and equipped with special software designed to maintain some shared

state. DS enables computers to co-ordinate their operation and to share resources of the

system (hardware, software, data), ln addition, DS provides users a perception of a single,

integrated computing facility, hiding complexities implicit in a computers interconnection.

A Distributed System intends to address six main issues:

1. Resource sharíng: Allows a number of hardware components and software entities to be

shared in the DS.

2. Openness: Extends the system by adding new resource-sharing services without

disruption or duplication of existing ones.

3. Concurrency: Since many users can invoke commands simultaneously or interact with

application programs, where many server processes are running concurrently and each of

them is responding to different requests from client processes, a DS should allow several

processes to be executed independently or in parallel.

4. Scalability: Operates effectively and efficiently at many different scales, ranging from a DS

consisting of 2-workstations and a file server to a WAN containing several hundred

workstations and may special-purpose servers.

5. Fault-tolerance: Keeping the system away from incorrect results or incomplete processing

when faults occur in hardware or software is a critical issue for the DS. Two approaches are

considered: hardware redundancy and software recovery.

6. Transparency: The DS is perceived to the user and the application programmer as a

whole rather than as a collection of disjoint components

Several techniques that allow the communication and synchronization of remote

processes within a Distributed System are available today. Two of them are described in this

work - RMI and CORBA.

FUNDAMENTALS 6

2.3.1 RMI

The Java Remote Method Invocation (RMI) [RMI1] [RMI2] is an object-oriented RPC

mechanism that allows one to invoke a method on an object that exists in another address

space (whether it is on the same machine or on a different one). More specifically, RMI

allows an object running in one Java Virtual Machine (JVM) to invoke methods of an object

running in another JVM. RMI provides remote communication between programs written in

the Java programming language.

2.3.2 CORBA

The Common Object Request Broker Architecture (CORBA) [OMG95a] [0MG95b] is an

emerging open distributed object computing infrastructure being standardized by the Object

Management Group (OMG). CORBA provides interoperability between objects in a

heterogeneous, distributed environment which is in a way transparent to the programmer.

Figure 2.1 illustrates the primary components in the OMG Reference Model architecture.

Descriptions of these components are available in [VINOSKI], here we only describe the

object services because they are related to our work.

Object Services. Domain-independent interfaces used by many distributed object programs.

For example, a service provided for the discovery of other available services is almost

always necessary regardless of the application domain. Examples of Object Services

include:

• Naming Service: Allows clients to find objects based on their ñames

• Trading Service: Allows clients to find objects based on their properties

• Lifecycle management

• Security

• Transactions

• Event notification

FUNDAMENTALS 7

APPLICATION

INTERFACES

DOMAIN

INTERFACES

COMMON

FACILITIES

t-^X^^ttJ
OBJECT REQUEST BROKER

1 1 1-
OBJECT

SERVICES

Figure 2. 1 OMG Reference Model Architecture.

2.4 Dependable systems

Hazards to systems are a fact in life and so are faults. Yet we want our systems to be

dependable. A system is dependable when it is trustworthy enough that reliance can be

placed on the service that it delivers. For a system to be dependable, it must be available

(e.g., ready for use when we need it), reliable (e.g., able to provide continuity of service while

we are using it), safe (e.g., does not have a catastrophic consequence on the environment)

and secure (e.g., able to preserve confidentiality) [HISSA].

Although these system attributes can be considered as non-related, in fact they are very

closely interdependent. For instance, a system that is not reliable is also not available (at

least when it is not operating correctly).

Achieving the goal of dependability requires effort at all phases of a system's

development. Steps must be taken at design time, implementation time, and execution time,

as well as during maintenance and enhancement. At design time, we can increase the

dependability of a system through fault avoidance techniques. At implementation time, we

can increase the dependability of the system through fault removal techniques. At execution

time, fault tolerance and fault evasión techniques are required [HISSA].

FUNDAMENTALS 8

2.4.1 Fault tolerance systems using replication

A component is considered faulty once its behavior is no longer consistent with its

specification. There exist two representativa classes of faulty behavior:

• Byzantine failures: The component can exhibit arbitrary and malicious behavior.

• Failstop failures: ln response to a failure, the component changes to a state that

permits other components to detect that a failure has occurred and then stops.

A system consisting of a set of distinct components is t-fault tolerant if it satisfies its

specification provided that no more than f of those components becomes faulty during some

interval of interest. lt is important to notice that a t-fault tolerant system might continué to

opérate correctly even if more than t-failures occur, but correct operations cannot be

guaranteed.

Replication

[COULOURIS] establish that main motivations for replication are: performance

enhancement, enhanced availability and Fault tolerance.

When processors can experience Byzantine failures, an ensemble implementing a t-fault

tolerant service must have at least 2t+1 replica, and the output of the ensemble is the output

produced by the majority of the replicas. This is because with 2t+1 replica, the majority of the

outputs remain correct even after t failures. lf processors experience only failstop failures,

then an ensemble containing t+1 replicas suffices, and the output of the ensemble can be the

output produced by any of its members. This is because only correct outputs are produced

by fail-stop processors, and after t failures one non-faulty replica will remain among the t+1

replica.

2.5 Intelligent agents

Let's start saying that Distributed Artificial Intelligence is part of the Artificial Intelligence

devoted to the study about models of knowledge, communication and reasoning that entities

(software and animal) we cali agents need to cooperate to find the solution of a specific

problem. Now, even if today there is a regulator organization called Fipa [FIPA] for agents

like the OMG for objects, there is no definition of what an agent is. We do not want to get into

a big discussion, so we say just that an agent is an entity (animal or software) able to do a

work useful in the solution of a problem

FUNDAMENTALS 9

Agents

There exist different classifications of agents, most of them in function of their complexity and

their work. For instance, Brenner [BRENNER98] using the complexity and capabilities

propose, a classification going from reactive agents to social agents. Goodrich [GOODRICH]

classifies the agents in interface, proxies, etc. ln the rest of this work we consider the

following classification described by Russell [RUSSELL95] consisting in four types of agent:

1 . Simple reflex agents.

2. Agents that keep track of the world.

3. Goal-based agents.

4. Utility-based agents.

ln the simple reflex agent's structure, condition-action rules allow the agent to make the

connection from percept to action.

The simple reflex agent will work only if the correct decisión can be made on the basis of

the current percept. Sometimes, the sensors do not provide access to the complete state of

the world. ln such cases, the agent may need to maintain some internal state information in

order to distinguish between world states that genérate the same perceptual input but

nonetheless are significantly different. Here, "significantly different" means that different

actions are appropriate in the two states. Updating this internal state information as time

goes requires two kinds of knowledge to be encoded:

• Information about how the world evolves independently of the agent.

• Information about how the agent's own actions affect the world.

ln the structure of the agents that keep track of the world, the current percept is combined

with the oíd internal state to genérate the update description of the current state.

Knowing about the current state of the environment is not always enough to decide what

to do, together with a current state description, the agent needs some sort of goal

information, which describes situations that are desirable.

Goals alone are not really enough to genérate high-quality behavior. Goals just provide a

crude distinction between "happy" and "unhappy" states, whereas a more general

FUNDAMENTALS 10

performance measure should allow a comparison of different states (or sequences of states)

according to exactly how happy they would make the agent if they could be achieved.

Because "happy" does not sound very scientific, the customary terminology is to say that if

one world state is preferred to another, then it has higher utility for the agent.

Utility is therefore a function that maps a state onto a real number, which describes the

associated degree of happiness. The overall utility-based agent structure appears in Figure

2.2. We use rectangles to denote the current internal state of the agent's decisión process,

and ováis to represent the background information used in the process.

Figure 2.2 A complete utility-based agent

2.6 Multi-Agent systems

Because it is quite possible that an agent be unable to solve a problem, it is necessary to

créate a Multiagent Systems (MAS), that is an ensamble of agents working together to get a

comon objective. IAD is responsible to propose solutions to all the problems rise to make

cooperate a group of agents for solving a problem.

FUNDAMENTALS 11

The characteristics of MASs are that (1) each agent has incomplete information or

capabilities for solving the problem and, thus, has a limited viewpoint; (2) there is no global

system control; (3) data is decentralized; and (4) computation is asynchronous.

MAS researchers develop Communications languages, interaction protocols, and agent

architectures that facilítate the development of agent based systems. MAS researchers draw

on ideas from many disciplines outside of Al, including sociology, biology, economics,

organization and management science, and even from philosophy.

2.7 Mobile agents

Since computers where interconnected, the idea of taking advantage of these connections

emerged not only for message exchange but for entities movement. ln the early days only

single data was moved but mobility has evolved in such a way that it allows moving code and

execution control / environment.

The first stage of such evolution includes file mobility, for instance, the FTP protocol;

after that, remote procedure calis (RPC) [BIRRELL84] were introduced, where execution flow

is moved. Later, the idea of code movement arises: a process is sent to other machine

where it runs. lf we consider the mobility of more complex entities, such as active objects, an

implicit state with variable valúes has to be considered. ln addition, if an active object is in

execution, both a stack and a program counter are assigned to the object.

Agent system

An agent system is a platform that can créate, interpret, execute, transfer, and termínate

agents. Figure 2.3 shows an agent system.

A Communications infrastructure provides communication transport services (e.g.,

CORBA), naming service, and security services for an agent system.

FUNDAMENTALS 12

Operating system

Agent System

\f Agent)

Hu \-s

l_l u

Communi

Figure 2.3 An agent system.

Mobile agent

A mobile agent is not bound to the system where it begins execution. lt has the unique ability

to transport itself from one system in a network to another. The ability to travel permits a

mobile agent to move to a destination system that contains another agent with which the

agent wants to interact [OMG00]. When an agent travels, its state and code are transported

with it. ln this context, the agent state can be either its execution state, or the agent attribute

valúes that determine what to do when execution is resumed at the destination agent

system. The agent attribute valúes include the agent system state associated with the agent

(e.g., time to live).

Kinds of mobility

Two kinds of mobility have to be distinguished: weak and strong [FUGGETA98]. The former

case of mobility permits the migration of the code and the valúes of the agent variables. After

the migration the agent is re-started and the valúes of its variables are restored, but its

execution starts from the beginning or from a specific procedure (a method in the case of

objects). ln case of strong mobility, not only code is moved, but also the whole execution

state, in order to restart the execution exactly from the point where it was stopped before

migration. For example, in Java it is possible to implement a weak mobility by means of

serialising objects [SUN97][OMG00] and sending them to another Java virtual machine via

socket or RMI. ln general the operating system must provide facilities to implement strong

mobility. To implement a strong mobility of Java Threads, it is necessary to modify the JVM

code [SUN97], in order to extract the Java stack and the program counter of the thread to be

moved.

FUNDAMENTALS 13

Further, the mobility can be explicit or implicit. ln the former case, an agent asks explicitly to

change its execution environment. ln the case of implicit mobility, the execution environment

hosting decides when to move the agent; such decisión can be taken on the basis of different

needs, such as load balancing, resources retrieving or meetings request. For example, when

an agent asks to use a printer the system migrate it to the host where the printer is available.

2.7.1 Mobile agents systems

Different systems have been proposed to implement mobile agents. There is an effort to

reach standard which permits interoperability among agents of different systems [OMG00],

but, currently, most of the proposed systems are not compliant with each other. Some mobile

agents systems are: Agent-Tcl [GRAY96], Sumartra [ACHARYA97], Telescript [ODISSEY],

Odyssey [WHITE94], Jade [JADE], and Java-to-go [Ll].

2.7.2 Co-ordination in mobile agents

During their nomadic life, mobile agents need to interact with other entities in order to carry

out their jobs. ln particular, they have to interact with the local environment of each site they

arrive on, and with other agents. Therefore, for the design of mobile agents it is necessary to

consider agent-local environment coordination and inter-agents coordination.

Direct co-ordination, meeting-oriented model, blackboard-based model and linda-like

models [CABRI99] are model of agent co-ordination; each of them can be applied both to

agent-local environment and inter-agents co-ordination [CABRI99].

2.7.3 Security

A mobile agent is a foreign entity that is able to access to local resources, this imposes the

adoption of security care to defend the visited sites from malicious or bad-programmed

agents. On the other hand, programmers have to protect their agents from unknown sites

[OMG00], for example, if an agent that act as a virtual customer is in charge of visiting

different virtual shops and then choose the cheapest one, a malicious site can alter the

information about other sites to result the cheapest, even if it is not true.

Site security

The basic mechanism to support security in mobile agent systems is identification. Every

agent must be identified. The authentication follows the identification, to grant that a given

identity is true. Note that the identification and the authentication do not avoid system

FUNDAMENTALS 14

damages, but permit to identify the responsible of such damages. For example, a security

policy could isolate incoming agents and to prevent them from doing everything but exploiting

only few resources.

Agent security

Here, the security problem rises because the agent relies on resources, such memory,

network connections and CPU, which are completely handled by the hosting site. So internal

variables of the agent could be changed, results of its computation (exploiting local CPU)

could be altered; agents themselves could be modified or substituted. The solution of this

problem is subject of research.

2.7.4 Applications of mobile agent technology

Mobile agents present several advantages by rapport to non mobile agents [CABRI99]. ln

our work the two most important are: First, they contribute to a significant bandwidth save.

For instance, in applications that require a large amount of remote data, a mobile agent can

be translated to process information locally. Second, no stable connections are required to

grant the execution of applications. ln fact, an agent, after being sent, can directly opérate on

data on the remote server that host him, this means that is not required any connection. A

stable connection is requested only at the beginning, to send the agent, and at the end of the

application, to take the agent back, but it is not requested during the whole application

execution. ln order to describe the advantages of mobile agents, in the following of this

section we describe some examples of applications that can take advantages by exploiting

mobile agent technology.

• Internet information retrieval: The internet has given us the access to a large

amount of information, but due to the wide spread of such information - the search of

a particular topic can become difficult, implying a waste of time and use of bandwidth.

A mobile agent-based solution providing agents that visit servers searching for

interesting pages; this approach saves bandwidth because the only needed

Communications are those to send and receive the agent. Besides, this solution is the

only that fits well mobile computing; in fact, in a scenario where a PDA (Personal

Digital Assistant) is only occasionally connected to the internet, an user can send his

searching agent, disconnect and reconnect later, and when the agent has finished its

job then it comes back to the user to show him the results of his request. The

advantages taken by agents are particularly relevant if the user has a slow connection

FUNDAMENTALS 15

to the main network (for example, a connection to the internet via modern): in this

cases the slow connection is used only twice, limiting the time cost.

• Data processing: An example of intensive data processing is a system for retrieve

graphic information, such an application process images trying to find the required.

This sort of work is done on image databases, which different clients can access to.

ln a traditional client-server approach, the client can ask the image server for images,

which are retrieved from the server and processed locally to the client host. This

approach need of large bandwidth. ln a mobile agent approach a processing agent is

sent from the user site to the image server, where it carries out its processing job.

This approach needs only two connections, one to send the processing agent, and

one to take it back with the results of his job (for example, the references to the

images that contain the researched particular).

• Mobile computing systems: The wide spread of notebook computers and PDAs

points out the need of new paradigms for their applications. Mobile agents can be

used to model applications that reside on a PDA and use resources spread over the

network. ln fact, even if such applications do not move through networks links, they

are physically moved because the PDAs where they execute are mobile, and can be

connected to different hosts of the network which become the execution

environments of the applications.

2.8 Formal methods

Formal specification constitutes an important aspect in designing and building systems. At

design time, a model of a system is built from user specifications of such system; once this

model is probed we can pass to the implementation phase. There is a large variety of formal

methods to probé that the model designed satisfies the user requirements for instance: logic

expressions [PNUELI95], state-machines [KELLEY95], Petri nets [L0PEZ97] and process

algebra [LOGRIPPO]. Each formal method offers elements and conventions to represent the

system behavior, most of them in terms of system state, events and precedence relations

between states. Furthermore, each formal method allows, with a different degree of

ciearness and compactness, to represent behaviors such as causal relation, parallelism,

synchronization between processes whose evolution and decisions taking are both

concurrent. ln the next subsection we describe briefly Petri nets formalism because we used

it in this work.

FUNDAMENTALS 16

2.8.1 Petri nets

Petri nets are one of the most popular formal models of concurrent systems. The problem of

how analyze Petri nets - i.e., given a Petri net and a property, how to decide if the Petri nets

satisfies it or not - has been intensely studied.

The Petri net is a mathematical model of a parallel system, in the same way that the

finite automaton is a mathematical model of a sequential system. Petri nets have a faithful

and convenient graphical representation, which we will use in this informal introduction

[DESEL95].

Petri nets structure

A Petri net is a directed graph with two sorts of nodes such that there is no edge between

two nodes of the same sort. These two sorts of nodes are called places and transitions.

Places are graphically represented by circles, and transitions by boxes [DESEL95]. Figure

2.4 show the appearance of one Petri net.

(*\ P2 t2 P3 \3

PlCXw*0 1 'O
—

1

^QT^*0
—

^
—

<>—^
^-^^ P5 t4 P6 /J

Figure 2.4 A Petri net

Note that t-* has p- and p4 as input places, and p2 and p5 as output places. The number of

ares that links two nodes can be whatever; by convention, múltiple ares are graphically

denoted by a number that represents the multiplicity or weight of the are. lf all of the Petri net

ares have weight equal to one, then we cali it an ordinary Petri net, otherwise we cali it a

generalized Petri net.

FUNDAMENTALS
17

Marking of Petri nets

Petri net places can store tokens, represented by black dots. A Petri net represents a

dynamic behavior with the help of these marks. A distribution of tokens on the places of a

Petri net is called a marking, and corresponds to a state of the Petri net (actual system).

Evolution of ordinary Petri nets

The dynamic behavior of a Petri net can be described by the evolution of its tokens. A

transition of a net is enabled at a marking if all of its input places (the places from which

some edge leads to it) contain at least one token. An enabled transition can occur, and its

occurrence changes the marking of the net: it removes one token from each of the input

places of the transitions, and adds one token to each of its output places. Figure 2.5 shows

on the left a Petri net containing an enabled transition, whose occurrence changes the

marking to the one shown to the right.

ln this way, the occurrence of transitions lead, from initial marking, to a sequence of

markings of a Petri net or represented-system's states.

Figure 2.5 A Petri net before and after the occurrence of a transition

ln the modeling of systems with Petri nets, places, transitions and tokens take a meaning in

agreement to the context of the system modeled. Places may represent resources,

operations, partial states, phases of a process. Tokens may represent the availability of

resources, execution order of operations, information transferred, etc. Transitions may

represent events, such as begin or end or both of activity, relevant information of

environment [L0PEZ97]. Therefore, the occurrence conditions of a transition are lightly alter:

a transition may occur if it is activated and the event assigned to such transition holds. A

Petri net, in which its components have a meaning associated, is called an interpreted Petri

net.

FUNDAMENTALS 18

Properties of Petri nets

We describe in this section, in an informal way, some of the properties of Petri nets (systems

modeled). Liveness and boundedness are two of the most important properties that

determine the activity of the net [L0PEZ97].

A Petri net is Uve if every transition can always occur again. More precisely, if for every

reachable marking (i.e., every marking which can be obtained from the initial marking by

successive occurrences of transitions) and every transition t it is possible to reach a marking

that enables r. Deadlock-freedom is a weaker property than liveness. A Petri net is deadlock-

free if every reachable marking enables some transition.

A Petri net is bounded if there exist a number b such that no reachable marking puts

more than b tokens in any place.

Liveness and boundedness are independent of each other. For instance, there exist

Petri nets that are live but not bounded.

2.9 Conclusions

ln this chapter, we have reviewed some basic concepts related to distributed systems,

Distributed Artificial Intelligence (intelligent agents, multi-agent systems and mobile agents),

we have introduced some useful technologies for the development of distributed systems

(CORBA, RMI) and also useful concepts in order to achieve the goal of dependability
-

especially in distributed systems. This revisión is the basis to accomplish the first part of our

work that is the implementation of GeDA-3D.

A comparison of the technologies employed is not performed in this work but in

[TOSCANO00], a previous work developed by our team.

Finally, we have described briefly Petri nets, a formal method of verification we use to verify

liveness and security of our system. ln Chapter 5 we describe the sort of Petri Net we

propose to describe easily mobility, main characteristic of our system.

Chapter 3

Evolutionary computation

3.1 Objective

The objective of this chapter is to exhibit the state of the art of evolutionary computation. As

we establish in the introduction of this document, the objective of this work is rather a

feasibility study to use the evolutionary computation to implement adaptive behaviors of

avatars in its virtual environment. This chapter resumes the work we use to implement the

behavior of the virtual entities participating in the Virtual Combat Environment of the game

we develop and describe in Chapter 6.

3.2 Introduction

Evolutionary computation techniques have received a lot of attention for the solution of

complex real-world problems such prediction, generalization, optimization, learning, games

etc. These techniques, based on the powerful principie of "survival of the fittest", model some

natural phenomena of genetic inheritance and Darwinian strife for survival; they also

constitute an interesting category of modern heuristic search. This chapter presents the main

paradigms of evolutionary algorithms: evolution strategies, evolutionary programming,

genetic algorithms and genetic programming. A particular research direction - self-

adaptation
- is discussed further in the last part of this chapter.

EVOLUTIONARY COMPUTATION 20

3.3 Evolutionary computation

The evolutionary computation techniques are stochastic algorithms whose search methods

model some natural phenomena: genetic inheritance and Darwinian strife for survival

[SCHOENAUER]. ln this section we introduce a general framework accounting as much as

possible for most of existing Evolutionary Algorithms [SCHOENAUER].

Let the search space be a metric space E, and let F be a function E -> IR called the

objective function. The problem of evolutionary optimization is to find the máximum of Fon E

(The case of minimization is easily handled by considering -F).

A population of size Pe IN is a set of P individuáis (points of £) not necessarily distinct.

This population is generally initialized randomly (at time f = 0) and uniformly on E. The

fitnesses of all individuáis are computed (on the basis of the valúes of the objective function);

a fitness valué is represented as a positive real number - the higher the number, the better

the individual. The population then undergoes a succession of generations: the process is

illustrated in Figure 3.1.

Procedure evolutionary algorithm

Begin

t <-0

initialize population

evalúate population
while (not termination-condition) do

begin

t <-t + 1

select individuáis for reproduction

apply operators

evalúate newborn offspring

replace some parents by some offspring
end

end

Figure 3. 1 Structure of an evolutionary algorithm

EVOLUTIONARY COMPUTATION 21

Several aspects of the evolutionary procedure (Figure 3.1) require additional comments:

• Statistics and stopping criterion: The simplest stopping criterion is based on the

generation counter t (or on the number of function evaluation). However, it is possible

to use more complex stopping criteria, which depends either on the evolution of the

best fitness in the population along generations (i.e. measurements of the gradient of

the gains over some number of generations), or on some measure of the diversity of

the population.

• Selection: Choice of some individuáis that will genérate offspring. Numerous

selection processes can be used, either deterministic or stochastic. All are based on

the fitness of the individuáis. Depending on the selection scheme used, some

individuáis can be selected more than once. At that point, selected individuáis give

girth to copies of themselves (clones).

• Application of evolution operators: To each one of this copies some operator(s) is

(are) applied, giving birth to one more offspring. The choice among possible operators

is stochastic, according to user-supplied probabilities. These operators are always

stochastic operators, and we usually are able to distinguish between crossover (or

recombination) and mutation operators:

- Crossover operators are operators from E* to E, i.e., some parents exchange

genetic material to build up one offspring (many authors define crossover

operators from ExE to ExE. Two parents genérate two offspring). ln most

cases, crossover involves just two parents (fc=2), however, it need not be the

case. Several authors have investigated the merits of "orgies", where more

than two parents are involved in the reproduction process [EIBEN94].

- Mutations operators are stochastic operators from E into E.

• Evaluation: Computation of the fitnesses of all newborn offspring. The fitness

measure of an individual is directly related to its objective function valué.

• Replacement: Choice of which individuáis will be part of the next generation. The

choice can be made either from the set of offspring only (in which case all parents

"die") or from both sets of offspring and parents. ln either case, the replacement

procedure can be deterministic or stochastic.

EVOLUTIONARY COMPUTATION 22

Sometimos the operators are defined on the same space as the objective function (called

phenotype space or behavioral space); in other cases, an intermedíate space is introduced

(called genotype space or representation space). The mapping from the phenotype space to

the genotype space is termed coding. The inverse mapping from the genotype space to the

phenotype space is termed decoding. Genotypes undergo evolution operators, and their

fitness is evaluated on the corresponding phenotype.

3.4 Main paradigms

There is a general "agreement" that evolutionary computation is "make up" of 4 main

branches:

• Evolution Strategies, bom in Germany in the 60's [RECHENBERG73]

[SCHWEFEL75], to deal with parameter optimization problems.

• Evolutionary Programming, a branch that appeared in California in the 60's as well,

and was first applied to Finite State Automata[FOGEL66].

• Genetic Algorithms, which emerged in Michigan in the late 60's [HOLLAND75], and

were primarily designed to optimally solve sequential decisión processes more than to

perform function optimization.

• Genetic Programming [KOZA94], at first considered a subset of genetic algorithms,

but now turning into a research field by itself, addressing the challenging problem of

employing evolution to teach computers to do things without being explicitly

programmed to do so.

3.4.1 Genetic algorithms

ln the canonical genetic algorithm (GA) [HOLLAND75] [SCHOENAUER], the genotype space

is {0, 1 }n. The phenotype space can be any space, as long as it can be coded into bitstring

genotypes. The selection scheme is a proportional selection (the best-known is the roulette

wheel selection): P random choices are made in the whole population, each individual having

a probability proportional to its fitness of being selected. The crossover operators replace a

segment of bits in the first parent string by the corresponding segment of bits from the

second parent, and the mutation operator randomly flips the bits of the parent according to a

fixed user-supplied probability. ln the replacement phase, all P offspring replace all parents.

EVOLUTIONARY COMPUTATION 23

Due to that generational replacement, the best fitness in the population can decrease: the

original GA strategy is not elitist.

ln some works [MICHALEWICS96], the genotype space can be almost any space, as

long as some crossover and mutation operators are provided. Moreover, proportional

selection has been gradually replaced by ranking selection (the selection is performed on the

rank of the individuáis rather than on their actual fitness), or tournament selection (one

selects the best individual among a uniform choice of T individuáis). Finally, most users use

the elitist variant of replacement, in which the best individual of generation t is included in

generation f+1, whenever the best fitness valué in the population decreases.

3.4.2 Evolution Strategies

The original evolution strategy (ES) algorithm (1+1)-ES [RECHENBERG73] [SCHWEFEL75]

[SCHOENAUER] handles a "population" made of a single individual given as a real valued

vector [BACK] [RUDOLPH]. This individual undergoes a Gaussian mutation: addition of zero-

mean Gaussian variable of standard deviation a. The fittest from the parent and the offspring

becomes the parent of next generation. The critical feature is the choice of parameter o:

Originally, the so-called 1/5 thumb rule was used to adjust parameter o along evolution.

Rechenberg postulated his 1/5 success rule:

The ratio of successful mutations to all mutations should be 1/S. If it is

grater than 1/5, increase the mutation variance; if it is less, decrease the

mutation variance [BACK] [RUDOLPH].

More recent ES algorithms [BACK] [RUDOLPH] are population-based algorithms, termed

(n,X)-ES or (n+A)-ES: n parents genérate X offspring (there is no selection at that level, i.e.,

every parent produces uA offspring on average).

The main operator remains mutation. When working on real-valued vectors ES generally

uses the powerful paradigm of self-adaptive mutation: the standard deviations of Gaussian

mutations are part of the individuáis, and undergo mutation as well.

The replacement step is deterministic, i.e., the best xj. individuáis become the parents of

the next generation, chosen among the \j.+\ parents plus offspring in the elitist (n+A)-ES

scheme, or among the X offspring in the non-elitist Oi,a-)-ES scheme.

EVOLUTIONARY COMPUTATION 24

3.4.3 Evolutionary programming

Originally designed to evolve finite state machines, evolutionary programming (EP)

emphasizes the phenotype space [SCHOENAUER]. As in ESs, there is no initial selection:

Every individual in the population generates one offspring. Moreover, the only evolution

operator is mutation. Finally, the best P individuáis among parents and offspring become the

parents of the next generation.

Some researchers [FOGEL55] handle any space, they still emphasize the use of

mutation as the only operator, and designed independently the self-adaptive Gaussian

deviations for real-valued variables, and now use a stochastic tournament replacement

scheme: each individual (among the 2P parents plus offspring) encounters T random

opponents, increasing its score by one point if it has better fitness. The P individuáis having

the highest scores get along to the next generation. Note that EP replacement scheme is

always elitist.

3.4.4 Genetic programming

Genetic programming is a method for evolving computer programs that first appeared as an

application of Gas [KOZA94] [SCHOENAUER] to tree-like structures. Original GP evolves

tree structures representing LISP-like S-expressions. This allows defining very easily a

closed crossover operator (by swapping sub-trees between two valid S-expressions, we

always get a valid S-expression). The usual evolution scheme is the steady state genetic

algorithm [BACK97]: a parent is selected by tournament (of size 2 to 7 typically), generates

an offspring by crossover only (the other parent is selected by tournament of usually smaller

size). The offspring is then put back in the population using a death-tournament: T individuáis

are uniformly chosen, and the one with the worse fitness gets replaced by the newborn

offspring.

Genetic programming is an extensión of the conventional genetic algorithm in which

each individual in the population is a computer program (any computer program can be

graphically depicted as a rooted point-labeled tree with ordered branches). The search space

in genetic programming is the space of all possible computer programs composed of

functions and termináis appropriate to the problem domain. The functions may be standard

arithmetic operators, standard programming operations, standard mathematical functions,

logical functions, or domain-specific functions.

EVOLUTIONARY COMPUTATION 25

3.5 Self-adaptation

As evolutionary algorithms implement the idea of evolution, and as evolution itself has

evolved to reach its current state of sophistication, it is natural to expect adaptation not to be

used only for problem solution finding, but also for algorithm tuning to a particular problem

[SCHOENAUER].

ln EAs, not only we need to choose the algorithm, representation and operators for the

problem, but we also need to chose parameter valúes and operator probabilities for the

evolutionary algorithm to find the solution and, which it also important, find it efficiently. This

is a time consuming task and a lot of effort has gone into automating this process.

Researches have used various ways of finding good valúes for the strategy parameters as

these can affect the performance of the algorithm in a significantly manner. Many researches

experimented with problems from a particular domain, tuning the strategy parameters on the

basis of such experimentation (tuning "by hand"). Later, they reported their results of

applying a particular EA to a particular problem, stating:

For these experiments, we have used the following parameters:

Population size = 80, probability of crossover = 0.7, etc.

Without much justification for the choice they made. Others researches tried to modify the

valúes of strategy parameters during the run of the algorithm; it is possible to do this by using

some (possible heuristic) rule, by taking feedback from the current state of the search, or by

employing some self-adaptive mechanism. Clearly, by changing these valúes while the

algorithm is searching for the solution of the problem, further efficiencies can be gained.

Self-adaptation, based on the evolution of evolution, was pioneered in evolution

strategies to adapt mutation parameters to suit to the problem during the run. The method

was very successful in improving the efficiency of the algorithm. This technique has been

extended to other áreas of evolutionary computation, but fixed representation, operators and

control parameters are still the norm. [HINTERDING] shows a classification of adaptation.

EVOLUTIONARY COMPUTATION 26

3.6 Conclusions

ln this chapter, we have reviewed a few basic concepts related to evolutionary computation

since they serve as a background for the second part of our work. We have introduced the

main paradigms of evolutionary computation although we used two of these paradigms in our

work, namely genetic algorithms and evolution strategies. We employed these paradigms for

the reason that they are appropriate to accomplish searches within big search spaces, and

because these paradigms impose few restrictions of mathematical type on the form of the

function that we pretend to optimize.

Chapter 4

Innovations to GeDA-3D

4.1 Objective

This chapter presents the components and main characteristics of the generic architecture

GeDA-3D, and the innovations achieved on this architecture to provide services needed by

our Virtual Editor [RAMOS02] and allow agents to work with the adaptive algorithms

proposed.

4.2 Introduction

Nowadays, several programming environments that assist the development of agent-based

applications are available. Nevertheless, issues such as graphic user- interface and

application-integration are not addressed in most of these environments. We propose a 3D-

Space platform useful to intégrate and manage distributed applications. This platform is

based on our mobile-agent architecture and has been designed specifically for the

development of dynamic virtual environments. Several real-life applications are manageable

by our platform, including: Computer Supported Cooperative Work, e-Commerce, Messaging

Service, Networked Games, training systems, etc. lt is our intend that GeDA-3D provides a

number of tools necessary to genérate and manage dynamic virtual environments. This work

is strongly based on a previous work developed by our team and described in [TOSCANO00]

[PUGA01]. Due to the nature of the applications intended to be managed by our platform,

some features were added to the architecture previously proposed, in order to provide a

INNOVATIONS TO GeDA-3D 28

certain degree of performance, flexibility, robustness and facilities for the development of

virtual environments.

4.3 Model architecture

The model of the architecture proposed by [TOSCANO00] has been thought to facilítate the

implementation of distributed systems with different nature. The architecture can be seen as

a middleware providing a number of constant features useful to develop such cooperative

systems. The design of this architecture follows the agent-oriented paradigm in order to take

advantage of multiagent systems [SYCARA98]. Thus, agents help users to manage

cooperative distributed applications.

The architecture is constituted by next community of three sorts of agents having specific

skills:

• Coordinator: take in charge of the management of the various cooperative systems

integrated with the architecture and also of the end-users connected to it.

• Control agents: represent distributed applications (services) integrated to the

architecture.

• Interaction agents: act as an interface between the architecture and the end-user,

in the form of a virtual environment.

Taking this informal specification as a basis, the Figure 4.1 illustrates the architecture, using

CORBA [OMG95a] as a means of communication.

Coordinator

CG

Interaction agents

Client, Client2

E=3
Client„

=£

CORBA

Server, Server2 Server-, Server,

Control agents

Fieure 4. 1 Architecture of GeDA-3D

INNOVATIONS TO GeDA-3D 29

4.4 Innovations to GeDA-3D

Our work intends to design and to implement a platform based on the model architecture, but

providing some enhancements needed to support and facilítate the virtual environments

development [UK][SNOWDON94][CARLSON93]. Three main innovations to GeDA-3D

include: support for mobility, splits services provided by the coordinator and support for

concurrent distributed applications.

ln this section, the new architecture is introduced, and the services provided by the

agents constituting GeDA-3D are described. Then, the functionality of two underlying

enhancements, the consistency service and the mobility platform, are analysed deeply.

4.4.1 Community of agents

The community of agents and their competencies remain the same in general terms, but new

features are added as explained lately. ln order to simplify this presentation, from now on,

control and interaction agents are called applications and clients, respectively.

4.4.1.1 Coordinator

This agent is constituted by six services running in different locations and bounded through

our transport layer. We choose distribute this agent in order to allow more services to be

easily added to the coordinator. This will enable GeDA-3D for instance to deal with dynamic

groups, if ever the service is implemented.

• Look Up: Resolves the reference of all services and applications currently available in

GeDA-3D.

• Users: Manage the operations occurring in the users' datábase and validates users

logins.

• Applications: Manage the operations occurring in the applications' datábase and

validates application's login.

• Consistency: Manages all the changes performed in the virtual environment, including

users' displacements and rotations.

• Chat: Provides point to point messaging between connected users.

INNOVATIONS TO GeDA-3D 30

• Security: Provides mechanisms to prevent GeDA-3D from intruders with knowledge of

the services references and its public methods.

4.4.1.2 Application

Any application developed on GeDA-3D should follow some defined tompiates and must

include next three main elements:

• Server: Binds the application to GeDA-3D and provides public methods.

• Mobile interface: Stands for the user interface. lt is cloned and sent to the client

requester as many times as necessary. Once in execution, the Mobile Interface

invokes server public methods.

• Host: Synchronizes with the client requester to send the mobile Interface.

4.4.1.3 Client

Provides the means for the user becomes part of the MAS implemented using GeDA-3D.

This agent allows a client take advantage of the provided services. The Client comprises

three main elements.

• Interface: Provides a shared virtual environment where connected users may perform

motions, rotations, interact with other users and launch distributed applications.

• Listener: Receives every change performed within the shared environment and

messages from other users.

• Host Synchronizes with the application provider to receive the mobile interface via a

Socket.

4.4.2. Architecture

Figure 4.2 illustrates the final architecture proposed for GeDA-3D. All the services provided

by the coordinator have a number of replicas
which depends on how critical the services are.

ln addition, both the Consistency Service and the Client Interface keep a datábase of the

virtual environment, including the state of the entities currently present; the Chat service, as

well as the Consistency Service, include a list storing the references of the Clients Listeners

in order to forward to them any changes performed in the virtual environment or in the user

messages.

INNOVATIONS TO GeDA-3D 31

Client

"^—| Applications \y

Look Up \y

Sccunty 3-

Host

Mobile

interface

Server

Application

-*► Service bounded to Corba

■*► Get all services reference

Figure 4.2 Architecture of GeDA-3D

4.4.3 Consistency service

As mentioned above, the Client provides a virtual environment, that is, a 3D-space where all

the users and applications connected to GeDA-3D meet and interact with each other in the

form of a 3D avatar. Clearly, this virtual space is common to all the users and, therefore,

every change performed by an avatar is immediately notified to the rest of the connected

users. The changes include: appearances, motions, rotations and logouts. When an avatar

enters the virtual environment (VE), an appearance is performed; the avatar is assigned a

3D-coordinate (x, y, z) and an angle between O9 and 3609. The former stands for the virtual

location of the avatar inside the VE, and the latter for its field of view. A displacement of an

avatar in the VE results in a change of its 3D-coordinate that is called a motion; similarly, a

change of direction of an avatar results in a change of its angle, called a rotation. When an

avatar leaves the VE, a logout is performed.

As mentioned above, the main responsibility of the Consistency Service (CS) is to

address all the changes performed by the avatars belonging to the VE. The operation of the

CS is: as soon as a client c is both authorized to take part of GeDA-3D and assigned a virtual

layout (avatar), a reference from its listener is sent to the CS where all the listener references

are stored. Immediately, the CS resolves a pair {3D coordinate, angle} representing a virtual

INNOVATIONS TO GeDA-3D 32

space free from collisions for the client's avatar; after that, the CS requests the appearance

of this avatar to all the clients connected (except c) and sends back the environment to c.

Whenever an avatar performs either a motion or a rotation, the new valúes are sent to the

CS, where they are broadcasted to the rest of the clients. The general operation of the CS

after changes occurred in the VE is depicted in Figure 4.3.

Client i

Interface Consistency
service

Listener

>1 f f

C 0 R B A

1 l i V V

Interface

¡ ... ¡

Interface Interface

1 ... ¡

Interface

Listener Listener Listener Listener

Client 0 Client i - 1 Client i + 1

-^ Send / receive a change in the VE

**► Broadcast a change in the VE

Client n

Figure 4.3 Consistency Service

4.4.4 Mobility platform

As mentioned above, GeDA-3D is constituted by a community of static (as apposed to

mobile) agents but also has the capability for managing mobile agents and provides the

mechanisms to support and perform with certain ease mobile applications. This new

capability of our architecture allows the users to run remote applications locally. ln this

context, a mobile agent (application) is not torced to remain in the system where it was

started; instead it has the ability to move from a system to another containing an agent or

resource to interact with [OMG00].

INNOVATIONS TO GeDA-3D 33

t : : : 1 1 1„

Applic.-itioii-
Service

'•

App Server 1 Host • 1

ir

* ■ >

>■

11

"
i <±

11

Listener | Host !!

User Interface ;;

"^ Request Application IP, given ID
• ► Request sei*vire to ApplicationHost, given App IP, User IP
= =y Move (class, instance) to^.

=*► Invoke App Server public methods

Figure 4.4 Mobility Platform

Whenever an agent travels across the GeDA-3D network, both its state and source code are

moved. The agent state includes some parameters determining which process resumes the

agent execution as soon as the application arrives to the host requester.

Figure 4.4 depicts the way GeDA-3D performs agent mobility when an application is

requested by a user. Both Client and Application agents include a service called Host that

behaves as an agent system. Our implementation of mobility follows the OMG's lineament

[OMG00]. This establishes that an agent system refers to a platform enabling agent creation,

interpretation, execution, transference and completion. Figure 4.5 shows an agent system.

Operating system

Agent System

Communication

¡nfra-itri irtí ir»

Figure 4.5 An agent system.

INNOVATIONS TO GeDA-3D 34

An agent-host system can communicate with other agent systems for agent transferring.

The set of all the agent systems is called a Región
- taken from the OMG specification.

Figure 4.6 shows the interconnection of two agent systems.

Operating system

Aaent svstem

nj
—

ru
—

Communication

infrastructure

Operating system

Aaent svstem

-i_r

MI
Communication

infrastructure

Figure 4.6 Agent systems to agent system interconnection

A Communications infrastructure provides communication transport services (e.g. CORBA),

naming service, and security services for an agent system. Serialization techniques are used

before an agent is sent across the network and deserialization when the agent is received

from the network.

The key to storing and retrieving agents is to represent the state of an agent in a

serialized form that is sufficient to reconstruct the agent. Notice that the serialized form must

be able to identify and verify the classes from which the fields were saved.

For not object-oriented agent systems, the agent state refers to the extraction of runtime

data for the agent, and the classes that refer to the code implementing the agent.

INNOVATIONS TO GeDA-3D 35

4.5 Conclusions

ln this work, a 3D-interface CORBA-based platform (GeDA-3D) useful to intégrate and

manage distributed cooperative applications from different nature and based on a mobile-

agent architecture is proposed. Through a series of libraries, this platform supports and

facilitates the development of virtual environments and mobile programming. The GeDA-3D

conception is the result of animated discussions of our team. The implementation was made

by H. Piza and me. My work was devoted mainly to implement the Mobility capability of

GeDA-3D.

Chapter 5

Specification of GeDA-3D's mobility

5.1 Objective

Present an original approach we propose to specify and verify formally GeDA-3D using an

extensión of Petri Nets.

5.2 Introduction

GeDA-3D is a distributed system, it design was made following the spiral approach proposed

by [BOEHM88]. However, we found necessary to prove formally its behaviour. After a study

of possible formal techniques available, we found that formal specification work of GeDA-3D

will be very hard. This fact makes us to propose an original approach using Petri Nets

[DESEL95] [LOPEZ97] to prove at least liveness. That is, in our case to prove that if we are

given a finite number of clients and applications connected to GeDA-3D, then its whole

operation ends successfully. To prove the latter, it suffices to model the behaviour of the

community of agents.

Particularly, we use Elementary Object Systems (EOS) [VALK1] [VALK2], an extensión

of Petri Nets. The Client and the Application have both specific behaviours and are

represented by Object Nets; the Coordinator manages every single request of the clients and

applications connected and are represented by a System Net. The model together with the

liveness and boundness proof of the coordinator and Consistency service was achieved by

H. Piza [ZÚÑIGA02], and it is included also on his thesis work [PIZA02].

SPECIFICATION OF THE GeDA-3D's MOBILITY 37

The Mobility in GeDA-3D involves next three elements depicted in Figure 5.1: a región, agent

systems and mobile agents; henee, three different levéis are necessarily considered. Since

the Valk's work [VALK1] [VALK2] provides only a 2-level abstraction, the third level can not

be modelled, therefore we propose to extend the EOS one more level. We ñame this

extensión proposed Extended Object System (ExOS). We had a big problem to prove

liveness in the mobility platform because mobile agents are represented by tokens of a net.

Therefore, when an agent transfer is performed, the token must travel from the source Petri

net (source agent system) to the destination Petri net (destination agent system). We had

also to add the rewriting rules for the highest level of the proposed extensión.

Región

ODeratino svstem

Agent System

ODeratina svstem

Agent System

ru
—

i_n
Communication

infrastructure

ODeratina svstem

Agent System

ru
—

i_n
Communication

infrastructure

~ - ■

Figure 5.1 Elements of GeDA-3D's Mobility

SPECIFICATION OF THE GeDA-3D"s MOBILITY 38

5.3 A Petri Nets-based methodology

This section presents formal definitions of the kind of Petri nets used to model our system.

We give some formal definitions of ordinary Petri nets (see chapter 2) and following the work

of Rüdiger Valk in [VALK1][VALK2], we present a formal definition of Elementary Object

Systems (an extensión of Petri Nets) with few changes. Also we provide an extensión of the

Rüdiger Valk work1.

Definition 1. Nets, pre-sets, post-sets, sub-nets

A net N is a triple(S, T, F), where S and T are two finite disjoint sets, and F is a relation on S

u T such that F n(SxS) = F n (T x T) = 0.

The elements of S are called places, and they are graphically represented by circles.

The elements of T are called transitions and they have the shape of a box. F is called the

flow relation of the net, represented by arrows from places to transitions or from transitions to

places.

Given a nodexof N,

•x = {y | (y, x) € F} is the pre-set of x

x» = (y | (x, y) e F} is the post-set of x.

The elements in the pre-set (post-set) of a place are its input (output) transitions. Similarly,

the elements in the pre-set (post-set) of a transition are its input (output) places.

A triple (S\ T, P) is a sub-net of N if: S'cS.TcT and F = F n ((S' x T) u (T x S')).

lf X is a set of elements of N, then: (S n X, T n X, F n (X x X)) is a sub-net of N, called the

sub-net of N generated by X.

Definition 2. Paths

A path Xi.... xk of a net (S, T, F) is a nonempty sequence of nodes which satisfies: (x-¡, x2)

(x*.-., xk) e F. A path x-\...xk\$ said to lead from x- to xk.

1
thanks to the help of H. Almeyda, R. Campos and E. López

SPECIFICATION OF THE GeDA-3D's MOBILITY
39

Definition 3. Connectedness

A net (S, T, F) is connected iff no two sub-nets (Si, Ti, F,) and (S2, T2, F2) with disjoint and

nonempty sets of elements satisfy Si u S2 = S, Ti u T2 = T and Fí u F2 = F A net (S, T, F) is

strongly connected if (x, y) e P, i.e., for every two nodes x, y there is a path leading from xto

y*

Definition 4. Markings, occurrence rule

A marking of a net (S, T, F) is a mapping M: S-»IN. A marking is often represented by a

vector (M(s**)...M(s„)), where s,, s2 s„ is an arbitrary fixed enumeration of S.

A place s is marked at a marking M if M(s)>0. A set of places R is marked if some place

of R is marked.

The total number of tokens in a set of places R is denoted by M(R), i.e., M(R) is the sum

of all M(s) for se R. The restriction of a marking M to a set of places R is denoted by M|R.

The nuil marking is the marking which maps every place to 0.

A marking M enables a transition f if it marks every place in »f. lf t is enabled at M, then

it can occur, and its occurrence leads to the successor marking M' (written M-> , M') which is

defined for every place s as follows:

r

M'(s) =

M(s), if s ü »t, s í t» or s e »t, set»

M(s)- 1, if se •t.st <•

M(s) + 1
,

if s e »t, s e t»

(A token is removed from each place in the pre-set of f and added to each place in the post-

set of t).

A marking M is called dead if it enables no transition of the net.

Definition 5. Transition occurrences and reachable markings

Let M be a marking of N. if M->*i Mi->e ■■■->-•- Mn are transitions occurrences, then a =

h,t2,...tn is an occurrence sequence leading from M to M„ and we write M-->n M„. This notion

includes the empty sequence X; we have M->x M from every marking M.

SPECIFICATION OF THE GeDA-3D's MOBILITY
40

We write M-». M', and cali M' reachable from M, if M-»0 M' for some occurrence sequence o.

The set of all markings reachable from M is denoted by [M>.

Definition 6. Net Systems, initial and reachable markings

A net system (or just system) is a pair (N.M0) where.-

• N is a connected net having at least one place and one transition, and

• M0 is a marking of N called the initial marking.

A marking is called reachable in a system if it is reachable from the initial marking.

Definition 7. Liveness and related properties.

A system is live if, for every reachable marking M and every transition f, there exists a

marking M' e [M> which enables f. lf (N, M0) is a live system, then we also say that M0 is

alive in N.

A system is deadlock-free if every reachable marking enables at least one transition; in

other words, if no dead marking can be reached from the initial marking.

Definition 8. Elementary object systems

An elementary object system is a 5-tuple EOS = (SN, ON, p, type, M) where:

• SN = (P,T,W) is a net called the system net of EOS

• ON = {ONi, ... ON„ | n > 1} is a finite set of net systems, called object systems of

EOS, denoted by ON,= (B„ E„ F,, mo!).

• p is the interaction relation defined as follows: pcTxE, where E := u{E¡ | 1 < i < n}

• type:W->{{1,2,..n}}uN

• M is a marking as defined in definition 9

Intuitively, an object net ON¡ can be moved along an arc(x, y) if íe type(x, y). Ares of type = k

e N are labeled by k e IN. They are used as in the case of the nets defined formerly. xpy

holds iff x and y are marked by the same label of the form <ij>. Next, a marking will be

defined as an assignment of a subset of the object nets together with a current marking to

the places, lt is also possible to assign a number /cof tokens.

SPECIFICATION OF THE GeDA-3D's MOBILITY 41

Definition 9. Object-marking

The set obj:={(ON¡, m¡) | 1 < i < n, m, e [m0i>} is the set of objects of the EOS. An object-

marking (O-marking) is a mapping M : P -. 20bJ u IN such that M(p) n obj / 0 =-> M(p) n IN =

0, for all p e P

Definition 10. /- components of an EOS

Let EOS = (SN, ON, p, type, M) be an elementary object system as given in definition 8, but

in some arbitrary marking M.

• The i-component (1 < /< n) of EOS is the net system SN(/) = (P, T, W(/), M0>) defined

by W(/) = {(x, y) | / e type(x, y)} and M0i(p) = 1 iff (ON/, m) e M(p). The 0-component

(zero-component) is the net SN(0) = (P, T, W(0), M-») with the are weight function

W(0)(x, y) = /rif type(x, y) = ke N and Moo(p) = ke M iff /ceM(p).

• The sub-net SN(1...n) = (P, T, W(1...n), Mi..„), where W(1...n) = u{W(/) | 1 < i< n }

and Mi..„(p) = M(p) n obj is said to be the object component.

• EOS is said to be a simple elementary object system if SN(1 ...n) is a structural state

machine and all /-components of SN are state machines.

Restriction 1. We will focus on elementary object systems where every transition t e

SN(1 ...n) has one input place.

Definition 11. Occurrence rule in elementary object systems

Let EOS = (SN, ON, p, type, M) be an elementary object system as in definition 8 and M : P

->2*'uN an O-marking and teT.ee E*.

a) Transition t eT is activated in M(denoted M->,) if tp = 0 and the following holds:

1. t is activated in the zero-component of SN (definition 1 0) (i.e. in the net part).

2. if there exists a place p e »fwhere type(p, t) = {1, 2, ... n} (for restriction 1 there exists

one at most) then there exists at least an object (ON„ m) eM(p) where le {1,2, ... n).

if t is activated, then t may occur (M-»,M') and the following marking M' is defined as

follows: with respect to the zero-components tokens are changed according to the

SPECIFICATION OF THE GeDA-3D's MOBILITY 42

ordinary Petri nets occurrence rule, ln case of a.2 (ON„ m,) is removed from p and added

to every place le t* where ie type(/, Q.

b) A pair [t, e] e T x E, with ípe is activated in M (denoted by: M -» -,, 9)) if the following holds:

1. t is activated in the zero-component of SN (definition 10) (i.e. in the net part).

2. (ON-, mj e M(p) where pe «í with type(p, f) = {1, 2, ... n) (for restriction 1 there

exists one at most).

3. Transition e is also activated for ON/ in m¡.

if [t, e] is activated, then it may occur (M—>|fi e¡ M') and the following marking M' is

defined as follows: with respect to the zero-components tokens are changed according to

the ordinary Petri nets occurrence rule, ln case of b.2 and b.3 instead of (ON/, m) the

changed object (ON/, m¡ + i) where m,-»e -tim is added to every place / e t» where / e

type(/, f) and (ON„ m,) is removed from p.

c) A transition e e E, with pe = 0 is activated in M (denoted by M->s) if for some place p e

P, the following holds: (ON„ m¡) e M(p) and m,->B mw. ln the following marking M' the

object (ON/, m,) is replaced by (ON„ m¡+ 1).

From this point, is defined the extensión of the Valk's work we propose to model formally

our architecture.

Definition 12. Extended object system

An extended object system is a tupie ExOS = (ESN, EON, o, EM, R) where:

• ESN = (P, T', W') is a net called extended system net of ExOS.

• EON = {EOSi, ... EOSm}(m > 1) is a finite set of elementary object systems, denoted

by EOS,= (SN„ ON„ p, type,, M,).

• a c T'x T is the interaction relation where T := u {T*| 1 <i<m)

• EM isa marking as defined in 13

• R is a set of rewriting rules

xoy holds iff xand yare marked by the same label of the form <ij>.

SPECIFICATION OF THE GeDA-3D's MOBILITY 43

Definition 13. Extended object-markings

Let ExOS = (ESN, EON, o, EM, R) be an extended object system and let Z = u {co-domain r

| re R). Eobj = {(SN„ M,) | 1 < /< m, M,e [M0Í>} u {(SN, M) | (SN, ON, p, type, M) e Z} is the

set of extended objects of the ExOS. An extended object-marking (EO-marking) is a mapping

EM : P'-> 2Eob|.

Definition 14. Rewriting rule

Let ExOS = (ESN, EON, o, EM, R) be an extended object system and f e T Let EOS* be

the set of all elementary object systems. A rewriting rule re R assigned to t is one of the next

three kinds of relations:

1. r: EON -> EOS*

2. r: EON x EON -> EOS*

3. r: EOS* -> EON x EON

When f occurs, the following marking EM' is defined as follows:

1. Let /(EOSi) = EOS2, then every place p e t» receives (SN2, M2) and (SN*,, Mi) is

removed from p, where p is the only input place of f.

2. Let r(EOSi, EOS2) = EOS3, and let {pi, p2} = «t (pi * p2 is not forced). (Without loss of

generality) where (SN,, M,) e ME(p,) and (SN¡>, M2) e ME(p*>), then every place pe t»

receives (SN3, M3) and (SNi, Mi) is removed from pi and (SN2, M2) is removed from

Pz*

3. Let r(EOSi) = (EOS2, EOS3), and let {p^.fh }= t» (p, * p2 is not forced). Then (without

loss of generality) pi receives (SN2, M2) and P2 receives (SN3, M3), and (SNi, Mi) is

removed from p, where p is the only input place of f.

Definition 15. Occurrence rule in extended object systems

Let ExOS = (ESN, EON, o, EM, R) be an extended object system, EM:P->2Eobi an EO-

marking, f e T', ee T,and re R assigned to t.

a) f is activated in EM(denoted by EM->() if to = 0 and r is appropriate to t, i.e. r is

defined to t (as in definition 14) and the parameters of r are satisfied by EM. lf f is

SPECIFICATION OF THE GeDA-3D's MOBILITY ^

activated, then t may occur (EM->* EM') and the following marking EM' is defined as

in definition 14.

b) A pair [f, e] e T' x T, with toe is activated in EM (denoted by: EM -*>*,, el) if in addition to

case a), e is also activated for SN, in M,. Instead of (SN,, M,) the modified object (SN,

M, + 0 where M*-»e M, + ,, is added, i.e. the following marking of SN/ is modified

according to the EOS occurrence rule, ln this case r is applied to (SN/, M/+i).

c) A transition e e T, with oe = 0 is activated in EM (denoted by: EM-»e) if for some

place p e P, both (SN,, M() e EM(p) and M*-**>8 M,+ , holds. ln the following marking

M' the object (SN,, M,) is replaced by (SN,, M,+ 1), i.e. the following marking of SN, is

changed according to the EOS occurrence rule.

Restriction 2. ln this context, a transition f is assigned an event e (possibly nuil). Therefore, f

may occur if it is activated and e holds.

5.4 Mobility model

ln this section, a formal specification and verification of the Mobility platform is performed. As

mentioned in the introduction of this chapter, the Mobility platform involves modelling a

región, a System Agent and mobile agents.

We will model the mobility platform as the región where agent systems interact. Let MP =

(ESN, EON, o, EM, R) be an extended object system that represents the mobility platform as

defined in Figure 5.2.

t7, r2(x), <¡9><i6>

Figure 5.2 Región

SPECIFICATION OF THE GeDA-3D's MOBILITY 45

Notice that R = {r0(x), r,(u,v), r2(x)}, EON = {EOSi EOSm}(m>1) and EM(p1)= u{(SN,, M,)|1

< i < m} is the initial marking. EOS¡= (SN,, ONi, pi, type,, Mi) is an elementary object system

that represents the Agent System as defined in Figure 5.3.

Figure 5.3 Agent system

ON*={ONn, ON-z.-ONini). At this point a = {(f3, t_)\ 1 < /'< m } (f3e ESN, íeeT¡), M¡(p1)= u{(ON#

m^ll <j< n¡] M<p9)=1 is the initial marking. ln Figure 5.3 (and in all figures), type(x, y) = {1,

2,..n] if the are (x, y) is thick, type(x, y) = 1 in other case. ON¡j=(B,y, E¡¡, F¡¡, mOÍ) is defined in

Figure 5.4.

Figure 5.4 Mobile Agent

At this point p = {(ti, t,,), (t2, t¡j2), (t3, t(3), (t5, t¡j5), (t7, tij6) | 1 < j < n¡ } where tijk = tk e E, e ONi, e

ON¡ e EOS¡ e EON e MP (ke {1,2,3,5,6}), m(p1)= 1 is the initial marking.

SPECIFICATION OF THE GeDA-3D's MOBILITY 46

Finally, let's define the rewriting rules R={ r0(x), n(u,v), r2(x)} of MP.

• r0(x) = x is a relation of type 1 .

• n(u, v) = x is a relation of type 2 .

• r2(x) = u,v is a relation of type 3.

The rewriting rule r0 is an identity relation. Figure 5.5 shows the consequence of applying r-*.

For simplicity, the marking and the transition labels are omitted.

ln order to understand the result of h, a new Petri Net representing the trading protocol

in the transfer process between two agent systems is depicted in Figure 5.6. The net in

Figure 5.6 is not defined formally but only used as an illustration.

Figure 5.5 Result of applying ry

SPECIFICATION OF THE GeDA-3D's MOBILITY 47

Figure 5.6 Trading protocol

The consequence of applying r* is the model resulting from the agent system to agent

system interconnection as shown in figure 4.6. Two agent systems are modeled by

negotiating the agent transfer. The agent system in Figure 5.3 is extended in a way to

accept such negotiation. Figures 5.7 and 5.8 depict such extensión for the source agent

system (the one storing the agent to migrate) and the destiny agent system.

Figure 5.7 Source agent system
Figure 5.8 Destination agent system

SPECIFICATION OF THE GeDA-3D's MOBILITY 48

Let u be a Source Agent System, v a Destiny Agent System, and N a Trading protocol; u

and v are fused into N as follows: transitions from u (or v) and N having the same ñame

become one, joining the pre-sets and the post-sets. Figure 5.9 shows how the final net is

generated (net performing the agent transfer) from u, N and v (omitting again marking and

transition labels) with no transition fusión.

The rewriting rule r¡> performs a function similar to the inverse function, i.e. r2 (h (u, v)) =

{(/, v"), where u' and v' are nets like the one in Figure 5.3, but keeping the marking that was

reached during the negotiation.

Figure 5.9 Fusión of u, N, v

The description of the events (labels) assigned to transitions are the next:

Mobile Application events:

e**: beginning of the application

es: end of the application in the host where it belongs

es: request of mobility from the application

SPECIFICATION OF THE GeDA-3D's MOBILITY 49

Source host events:

8b: destiny host is not available (mobility rejection)

e?: destiny host is available

e^: request of application transfer

e*-: connection proposal

ei4: application mobility

e15: application clonation and clone mobility

Destination host events:

eg: Application reception denied.

e10: Application reception accepted

ei2: Connection proposal rejected.

e*3: Connection proposal accepted

The mobile agents share the same initial behaviour (modeled in Figure 5.4) allowing the

mobility only once. The place pe from Figure 5.4 performs the specific behaviour of every

mobile agent and, therefore, p6 may be replaced by another Petri Net modelling the particular

behaviour of the mobile agent; with an adequate construction using the facilities provided by

the mobility platform, mobility can be reached as many times as necessary.

5.5 Mobility platform liveness proof

ln this section we prove that the mobility platform is live. The boundness prove is omitted

because is easy to see that every place of the nets are bounded except p2 in SN¡.

We prove that the mobility platform is live using coverage trees and the possible

occurrence sequences. The building of coverage trees is based on definitions given in

section 5.3.

SPECIFICATION OF THE GeDA-3D's MOBILITY 50

Proof

Assumption 1. Suppose that if tk e B¡¡ is activated in ON¡¡, then it will eventually occur, i.e., t-

and tk will be activated, where t*ptk there exist, t*eTieSN¡eEOSi and tkeB¡jeONi]eON¡eEOSi

(abusing a little of the language).

Figure 5.10 shows the ON¡¡(net of Figure 5.4) coverage tree. Note that there exist a path that

leads from m0 to the dead marking m5, only if the interaction relation <i3> ensues with SN¡.

But <¡3> in SN¡ is assigned to t3eT¡, which when it occurs it misses the token. But this token is

ONy for definition. Therefore, we can think ON¡* as if it had a life cycle, which finalizes when

the interaction relation <i3> ensues. Therefore, if assumption 1 holds, then we can say ONy is

dead-lock free, even, it is like a life net during its life cycle.

Figure 5.10 ON-- coverage tree

SPECIFICATION OF THE GeDA-3D's MOBILITY 51

Now, we prove that the nets SNi e EOSi are live and that the assumption 1 holds.

Assumption 2. Suppose that if tk is activated in SNi(where tk e Tj and tk e o), then it will

eventually occur, i.e., t* will be activated, where t-crtk exists and tjeT'e ESN (abusing a little of

the language).

We will make a few simple assumptions, which do not affect the system proof, because

of the particular interaction between the entities that constitute it. The main objective of the

following assumptions is to reduce the coverage trees.

1. Suppose that a transition t with an event e = nuil occurs immediately when it is

activated.

2. We consider nets SN¡ where |M0i(p1)| = 1 (with only one object ON, in p1).

3. Let EOSf (SN¡, ON¡, p¡, type¡, M¡) be an elementary object system and let ON¡¡ =

Mo¡(p1). There will exist only one copy of ON¡, in SN¡. This is possible and doesn't

affect the system proof because an agent system can compute the transfer of only

one mobile agent at the same time.

Figure 5.11 shows the SN¡(net of Figure 5.3) coverage tree. When SN¡ reaches the marking

M5, then it is sure that the net SN, exists, where SN, represents the destiny agent system (in

this case SN, represents the source agent system). Therefore, it waits for the r, result (ne R).

The consequence of applying r* to two agent systems is the model resulting from the

agent system to agent system interconnection; this is shown in Figure 4.6 and modeled in

Figure 5.5. This last Figure model two agent systems negotiating the agent transfer.

Therefore, two coverage trees are fused too.

During the negotiation of the agent transfer, the marking of ON, has few changes (and

so it has a small interaction relation), therefore, now we show the possible occurrence

sequences instead of the new coverage tree.

Figure 5.12 shows the possible occurrence sequences (of the new net generated by r**)

from M5. The marking shown under a transition (transition that produces such marking) of an

occurrence sequence, is the marking of the sub-net generated by the nodes of the net shown

in Figure 5.3.

SPECIFICATION OF THE GeDA-3D's MOBILITY 52

Pi P2 Ps P9 Pío Pn P12

y, nio-j) 0 (ON¡j, m2ij) 0 0 10) M*

Figure 5.11 SN¡ coverage tree

ln the case 1 of the Figure 5.12, when transition tu occurs, the rewriting rule r¡> also occurs,

and the net SN¡ returns to the marking M2¡. The marking of SN- is any from Figure 5.11. ln

case 2, when transition t26 occurs, the rewriting rule r¡> also occurs, and SN, returns to the

initial marking M0¡ and the marking of SN* is M'-, where M'-(pk) = Mq¡(pk), k e P -

p¡> (P is the set

of places in SN-), where Mqj is any from Figure 5.11, and M'j(p¡») = Mq¡(pk)u(ON¡*, m4¡j). This

signifies that the mobile agent ON¡¡ migrates from SN, to SN-. Cases 3 and 4 are similar to

case 2.

Thus, it is easy to see that SN is live in all cases, representing the source agent system and

representing the destination agent system. Therefore, if assumption 2 holds, we can say that

SN, is live.

SPECIFICATION OF THE GeDA-3D's MOBILITY

1) tg ta) Í21 tío tu

<¡6>|
M2¡

2)tg t20 Í22 ti2 tl3 t23 (t24 ti 4 tl3 t23)'° Í25 tis ti6 tig t26

,1<¡7> 1 l<i8>
Moí M'j

M6¡

(ON-j, moij) 0 (ON-j, m3ij) 0 0 0 0

3)tg t20 t22 ti2 ti3 t23 (t24 tu ti 3 123)" t25 tis ti7 tía tig t26

1'
,<l7>

M6¡

<l7>

M7¡

li"
<lg>

M2¡ M'j

(ONjj, moij) 0 (0% m3ij) 0 0 0 0

4)tg t20 t22 ti2 ti3 Í23 (t24 tu ti3 123)™ t25 tis ti7 tig ti8 t26

1
<l7>

M6¡
M8¡

ll-
<lg>

M2¡ M'j

(ONij.moij) 0 0 10 0 0

Figure 5. 12 Possible occurrence sequences
from M5

SPECIFICATION OF THE GeDA-3D's MOBILITY 54

We can see that the interaction relations in ON, are possible in the occurrence sequences

shown in Figure 5.12. Therefore, if assumption 2 holds, then assumption 1 holds too.

Now, we prove that MP is live and that assumption 2 holds. We can see that every

rewriting rule re R assigned to a transition f eT' is appropriate, and ESN is live and bounded

in its structure. Therefore, to conclude it is necessary to prove that assumption 2 holds.

The unique interaction relation sequence in ESN is: <¡io> <¡g> <¡e>- This sequence is possible

in every SN,. Therefore, the assumption 2 holds.

5.6 Conclusions

ln this chapter, we have proved that the Mobility of GeDA-3D we propose is a live system

using an extensión we propose of Petri Nets.

Chapter 6

Adaptive behaviour in virtual entities

6.1 Objective

This chapter presents the evolutionary algorithms and adaptive behaviors that are proposed,

those are used for the virtual entities participating on a strategy game (Virtual Combat

Environment) that was implemented and successfully embedded into GeDA-3D.

6.2 Introduction

We propose some evolutionary algorithms which are employed to assign adaptive behaviors

to virtual entities. We employed evolutionary algorithms belonging to two of the main

paradigms in evolutionary computation: Genetic algorithms and evolution strategies. Each of

these paradigms was originated independently and they have different motivations. These

algorithms imítate the principies of natural evolution as a method to solve parameter

optimization problems.

We employed these paradigms for the reason that they are appropriate to accomplish

searches within big search spaces, and because they impose few restrictions of

mathematical type on the form of the function that we pretend to optimize. Moreover, the

application of these algorithms (case of study) fulfills the following characteristics:

ADAPTIVE BEHAVIOUR IN VIRTUAL ENTITIES 56

• The search space (i.e., possible solutions) is limited.

• lt is possible to define an objective function.

• lt is possible to define a fitness function in the case of genetic algorithms.

• lt is possible to encode the solutions in a correct form.

The case of study is a strategy game that was integrated to GeDA-3D and it consists of a set

of virtual entities participating in a dynamic environment. The virtual entities have an adaptive

behavior that is especially govemed by one of the evolutionary algorithms proposed. ln

section 6.3 we describe what is involved on the case of study. ln section 6.4 we introduce

and carefully describe the evolutionary algorithms employed, and in section 6.5 we describe

how such algorithms are employed by the virtual entities in the case of study. ln section 6.6

we show some results obtained in the run of those evolutionary algorithms.

6.3 Case of study

A virtual editor capable to genérate one kind of environment was implemented and

successfully embedded into GeDA-3D. Such a editor generates a virtual combat

environment ant it allows users to assign a specific adaptive behavior to the virtual entities

participating in the combat. As a consequence, these entities perform changes to the

environment, and therefore, we have entities participating in a dynamic environment.

The game consists of a Virtual Combat Environment(VCE) where a number of

empires fight against each other for power. Every empire is constituted by a set of soldiers

and miners commanded by a king, each having a virtual representation in the VCE. The

characteristics of the game are explained below.

• The entities (agents) participating in the VCE are capable of performing the following

actions:

o King : Nothing, creates an agent (soldier or miner), moves or changes the

empire strategy.

o Soldier. Nothing, moves, attacks or defends himself from a near enemy.

o Miner. Nothing, moves or extracts gold.

ADAPTIVE BEHAVIOUR IN VIRTUAL ENTITIES 57

• The VCE contains certain amount of gold (located at different áreas into the

environment), trees and big rocks (in addition to the participant agents).

• Every unit of gold extracted is used to add a new agent to the empire.

• A miner is capable of extracting a unit of gold located by his side.

• A soldier is capable of attacking an enemy located by his side.

• The agents can not move over the trees and rocks.

• The agents spend the same time executing any action except for the action of

moving.

• The agents travel at different constant speeds: A soldier is faster than a miner, and a

miner is faster than a king.

• The game is divided by execution cycles, where every agent may perform at most

one action.

• When the king is attacked, the agents commanded by him can no longer perform

actions.

• The game is over as soon as only one king is left alive.

• lf one soldier attacks an enemy miner (or king), then the miner (or king) dies.

• lf one soldier attacks an enemy soldier who:

o attacks him back, then both soldiers die.

o moves to another place, then the enemy dies.

o defends himself from him, then no one die.

o defends himself from another soldier, then the enemy dies.

o performs no actions, then the enemy dies.

ADAPTIVE BEHAVIOUR IN VIRTUAL ENTITIES 58

6.4 Algorithms employed

We employed adaptive algorithms belonging to the paradigms of Genetic algorithms and

evolution strategies. ln this section, we introduce and carefully describe the algorithms

employed.

First, a short introduction to the basic terminology concerning the parameter

optimization problem is given. The overall goal of a parameter optimization problem f : Mq

Rn —> R, M * 0, where / is called the objective function, is to find a vector x* ■= Wsuch that:

Vx e M : f(x) > /(x*) = /*. where f* is called a global minimum; x* is the minimum location

(point or set). M={xe Rn | g,\(x) > 0 Vj e {1 q}} is the set of feasible points for a problem

with inequality constraints g.¡ : IR" —> IR.

Since max{ f(x) } = -min{ -f(x) }, the restriction to minimization is taken without loss of

generality. ln general the optimization problem is complicated by the existence of non-linear

objective functions with múltiple local óptima. A local minimum f = f(%') is defined as: 3co > 0

VXG A*f;||x- X'H <<*>=>/* -S/GC).

Even if there is only one local optimum, it may be difficult to find a path towards it in

case of discontinuities in the objective function or its derivatives.

6.4.1 Genetic algorithms

Genetic algorithms (GAs) are adaptive methods which may be used to solve search and

optimization problems. A genetic algorithm transforms a population (set) of individual objects

(chromosomes), each with an associated fitness valué, into a new generation of the

population using the Darwinian principie of reproduction and survival of the fittest and it

analogs naturally occurring genetic operations such as crossover (sexual recombination) and

mutation.

Each individual in the population represents a possible solution to a given problem.

The genetic algorithm attempts to find a very good (or the best) solution to the problem by

genetically breeding the population of individuáis over a series of generations.

The algorithm is started with a set of solutions (represented by chromosomes) called

a population. Solutions from one population are taken and used to form a new population.

This is motivated by a hope, that the new population will be better than the oíd one. Solutions

ADAPTIVE BEHAVIOUR IN VIRTUAL ENTITIES 59

which are selected to form new solutions (offspring) are selected according to their fitness -

the more the suitable they are, then the more the chances that they have to reproduce. This

process is repeated until some condition (for example number of populations or improvement

of the best solution) is satisfied. Figure 6.1 shows the basic genetic algorithm.

1. [Start IGenerate random population of n chromosomes (suitable solutions for the problem)
2. [Loop] Iteraively perform the following substeps on the population until the termination

criterion has been satisfied:

a. [Fitness] Assign a fitness valué to each individual in the population using the fitness

measure.

b. [New population] Créate a new population of chromosomes by applying the following
three genetic operations. The genetic operations are applied to individual in the

population chosen with a probability based on fitness.

i. [Selection] Reproduce an existing individual by copying it into the new

population.

ii. [Recombination] With a recombination probability cross over the parents to

form a new offspring (children). If no crossover was performed, offspring is

an exact copy of parents. The offspring take the place of their parents into the

new population.

iii. [Mutation] With a mutation probability mutate new offspring at each locus

(position in chromosome).

3. [Solution]The chromosome that is identifíed by the method of result designation (e.g., the

best-so-far individual) is designated as the result of genetic algorithm for the run. The result

may represent a solution (for an approximate solution) to the problem.

Figure 6. 1 The basic genetic algorithm

The GA can be described as the following 10-tuple:

GA = (/>°, p, pr, pm; F, s, r, m;f, g, T)

where

p° = («i° ap°) e I" population I = IR"

p e M number of individuáis

Pf e IR recombination probability

pm e IR mutation probability

F I->IR Fitness function

s IP->I" selection operator

r IXI-> Ixl recombination operator

m I->I mutation operator

ADAPTIVE BEHAVIOUR IN VIRTUAL ENTITIES 60

/ Rn->R

gj • Rn-»R

T I"->{0,1}

objective function

constraint function j e {1,...,q)

termination criterion

/--"denotes the initial population consisting of a set of initial chromosomes. Chromosomes are

selected from the population to be parents to crossover. According to Darwin's evolution

theory the best ones should survive and créate a new offspring. There are several methods

to select the best chromosomes, for example roulette wheel selection, Boltzman selection,

tournament selection, rank selection, steady state selection and many others[OBITK098].

After that, the selection operator selects individuáis to become the members of the next

generation:

PM = s(P<)

s{a¡) = true if F(a¡) > X. where X is a random number.

Note that an individual may be selected more than once (s : lp -. l^- The recombination

operator selects genes from parent chromosomes and creates a new offspring.

r(a¡\ a¡) = a'l , a'¡ € Rn X IRn

<C
t Ja,\,k<

a''k=^a/k,k>

, jVk,k<
"/■<=1aA,k>

r
Vie{l,..,n}

<C
Vi6{l,..,n)

Where C is a randomly crossover point. The mutation operator is applied to all components

of the object parameter a¡. According to the biological observation that offsprings are similar

to their parents and that smaller changes occur more often than larger ones.

Mutation is realized in the following way:

a\) = a \

a ¡k
= ^

'

a'¡k 1 pm > Cik a C2k ^ '/2

a'¡\ + 1, pm > Clk a C2k > Vi
V' € {1'-n}

a/k else

ADAPTIVE BEHAVIOUR IN VIRTUAL ENTITIES 61

Where C1k and C2k are two random numbers and they are sampled anew for each component

Ofa"tlk*

Figure 6.2 shows the algorithm previously defined

t<-0;

initialize P° <- {a-0 ap°)e V ; such that Vj : g¡ (ffi°) > 0;

while termination criterion not fulfilled do

begin

select PM := s(P):
i«-0;

while(i < p) do

begin
X = random;

for(/*-0; ./</-■ ; <-;+1)

begin
lfMa/)) then i++;

if(i = /7) break;
end

end

recombine/,,+1;
forí/'-M); ;' < p; j i- j+2)

begin

\X{pr > random)
begin
C <- random(n);

'•(«*'. -%+i);
end

end

mutate I* : a'V =m(a\)

t<-t + 1;

end

Figure 6.2 Genetic Algorithm

ADAPTIVE BEHAVIOUR IN VIRTUAL ENTITIES 62

6.4.2 Evolution Strategies

We employed two kind of algorithms belonging to the evolution strategies: the two-

membered ES ((1+1 -ES)) algorithm and multimembered ES algorithms ((¿i+X)-ES and (ja, X)-

ES)[BACK].

(1+1) -ES

The two-membered ES is a simple mutation-selection scheme. lt is based upon a population

consisting of a one parent individual (a real-valued vector), and one descendant, created by

means of adding normally distributed random numbers. The better from both individuáis then

serves as the ancestor of the following generation. Such a (1+1)-ES can be described as the

following 8-tuple:

(1+1)-ES = (P0,m,i,cd,cI,/,g,7)

where

(xü, aü) e I population I = IRn x Rn

m : I-»I mutation operator

s : IxI->I selection operator

cd, c, e IR step-size control

/ : Rn-HR objective function

Si ■ Rn-HR constraint function j e {1,. -*q}

T Ixl->{0,1} termination criterion

P° denotes the initial population consisting of a single parent which produces, by means of

mutation, a single offspring resulting in:

P*
• t

ax

, t

<Z2

(«zV, a'z') e I X I

Pl = (*\°l)

m(Pt) = (x,x, ax)

ADAPTIVE BEHAVIOUR IN VIRTUAL ENTITIES 63

The mutation operator is applied to all the components of the object parameter x\ According

to the biological observation that offsprings are similar to their parents and that smaller

changes occur more often than larger ones, mutation is realizad by normally distributed

random numbers:

x'» = x' + No(o')

where N0 denotes a vector of independent Gaussian random numbers with zero mean and

standard deviations o/ (i = 1,...,n). For theoretical considerations, all components of o' e R

are identical, i.e., Vy{1,..,n} : o/ =0/ =: o. The selection operator then determines the fitter

individual to become the parent of the next generation:

PM = s(P') = <

a'¿ if f(x') < f[¿) a &(x'1) > 0 V/e {1 q}

aV =Pl else

ln the case of minimization, the iteration process Px -> PM stops when the termination

criterion T(a\\ az) = 1 holds. Function T depends on the implementation and may utilize

elapsed CPU time, elapsed number of generations, absolute or relative progress per

generation etc. ln our implementation T utilizes elapsed number of generations.

Although, in general, problems of interest may have different characteristics, the

following heuristic often helps to dynamically adjust o'. Henee, the mutation operator m is

extended by the following equation(see Rechenberg 1/5 rule in chapter 3):

"

cwd if Ps' < 1/5

j+" \ c-a' if ps' >l/5

a1 if ps' = 1/5

Where p,' is the frequency of successful mutations, measured for example over intervals of

10n triáis. Schwefel [SCHWEFEL81] gives reasons to use the factors cd = 0.82 and c¡ =

1/0.82 for the adjustment, which should take place every n mutations. Note that m consists of

a random (definition of m) and a deterministic component (extensión of m), now.

ADAPTIVE BEHAVIOUR IN VIRTUAL ENTITIES 64

Figure 6.3 shows the algorithm previously defined:

t<-0;

initialize P° <- {x0}; such that V; .• g¡ (x°) > 0;

while termination criterion not fulfilled do

begin

mutate Px : x'' = x' + N

where

Ni = 1/sqrt(2ji) expí-ftXrXjb)2)^1);
x,b=0 and o are mean and standard deviation, respectively.
X is a vector of random numbers.

evalúate Px:j\x\f(x")\
select PM from Px:

if f[x') < jXx) a &(x") > 0 Vje {1 q} then

else

t+-t+1;

x,+1 <- x"

x,+1 «- X*

end

Figure 6.3 Algorithm (1+1)-ES

(ji + \)-ES

As the nomenclature (jj, + A.)-ES suggests, ¡x parents produce X offsprings which are reduced

again to the fi parents of the next generation. ln (ji + X)-ES all population undergo selection.

(fi, *)-ES --= (P°, fl, X; r, m, s; Aa,/,s ,7)

where

F° = (a.° O el" population I = IR" x Rn

M e M number of parents

X e IN number of offspring (X > ¡j.)

r I"-** I recombination operator

m I->I mutation operator

s I"+x --> I" selection operator

ADAPTIVE BEHAVIOUR IN VIRTUAL ENTITIES 65

Ao e R step-size meta-control

/ Rn -+ R objective function

g¡ Rn -+ R constraint function j e {1 q}

T ^-►{O.l} termination criterion

With the introduction of n parents instead of only one, the imitation of sexual reproduction is

possible, which is provided by the additional recombination operator r:

riP*) = a' = (x', o') e I, x' e Rn, o' e IR"

Vie {l,..,n}
, \x>,itX<Vi

*■ =

I xw , X > Yi

,_ faiti,X<
CTi ~

1ob,i,X>
<V2

Vl
Vie{l,..,n}

Where a =(xa, oa), b =(xb, ob) e I are two parents intemally chosen by r. By convention, all

parents in a population have the same mating probabilities, i.e., the parents a and b are

determined by uniform random numbers. X denotes a uniform random variable on the

interval [0, 1], and it is sampled anew for each component of the vectors x' and a'.

o' is incorporated into the genetic information of an individual <z-' = (x', o1) e I and is

not controlled by some meta-level algorithm like the 1/5 success rule anymore.

Consequently, it is subject to recombination and mutation as well. Those individuáis with

better adjusted strategy parameters are expected to perform better (better parameter

settings will emerge by means of self-adaptation). As a result, the mutation operator not only

works on x' but also on o'.

lt

a,
= dñ

m(a'it) = a"} = (x"\ o'")

O'" = o'' exp N0(Ao)

x'" = x" + N0(o"')

ADAPTIVE BEHAVIOUR IN VIRTUAL ENTITIES 66

The selection operator s removes the X -

/i individuáis with least fit from the offspring an the fi

parents in the population.

P* = («Y ■ «V- «'A» ■•■

- «V+x) = (*.' , a¿, rn(r(P\) , m(r(P\))

PM = íí/»'*) such as V ft'¡+1 = (x, O) -,3 a'/= (x', o') :/(x') </(x)

Figure 6.4 shows the algorithm previously defined:

t<-0;

initialize P° <- {ai0,..., afie I"; such that V; .* g¡ (x¡°) > 0;

while termination criterion not fulfilled do

begin

recombine Px : a\x= r(Px) Vk e {1,.., X};

mutate Px : a\x = m(a\x)
where

a"¡' = a'i'exp (1/sqrt(2*r) exp(-((X¡-X¡b)2)/2Aa));
x"1 = x'1 + N

where Ni = 1/sqrt(2*r) exp(-((Xi-X¡b)2)/2a"¡1);
X,b=0 and a", are mean and standard deviation, respectively.

X is a vector of random numbers.

evalúate P'x : = { a",* a.'\x};

{/(x'V) y(x'V)};
select PM := s(Fx):
t*-t + 1;

end

Figure 6.4 Algorithm (1+1)-ES

AOMPTIVE BB1AVIOURm vrnniM.BfimES 67

6.5 Behavior of agents from the case of study

The etSor is in charge of modfymg the VCE accowftng to the actions performed by the

agents. ln every cycle. the VCE state «s seni to al the agents by the eoüo-n these agents in

tum. send back an action (posstty nuT» to be cfcsptayed in the VCE. ■' vaid As soon as the

edtor recciwos al toe aubme», a new cyde begins. This is flusbated in Figure 6-5.

Aoní reserved

Fi>vc63 OpamtamafAeeámnr

There are some importan! characterisbes of the case of study to be considered to design toe

adaptive behaviors:

• The state of the environment at time t may be rffferent at time t+1. Therefore, an

agent's plan consisting of a sequence of actions must be abte to change dynamicafy.

• The agents own actions affect the environment and the environment evotves

independentíy of the agenL

• The environment is accessabte. Le., the agent has access to the complete state of the

enwonmenL

• The environment is deáermnesíic. Le., the next state of the environment is comptetety

determined by the current stale and the action selected by the agents.

ADAPTIVE BEHAVIOUR IN VIRTUAL ENTITIES 68

A part of the behavior of each agent is completely deterministic because of the

characteristics of the environment. And a part of the behavior of each agent can be resolved

by evolutionary computation.

Evolutionary algorithms are employed to genérate trajectories which are based in the

strategy proposed by the king. A trajectory consists of a sequence of movement actions.

There exists only three strategies: to attack, to flee and to extract.

To attack. ln soldiers, the evolutionary algorithm generates a trajectory that leads from the

agent's position to the enemy-king's position; in miners it generates a trajectory that leads

from the agent's position to a place where there is gold (in this case, the evolutionary

algorithm is used as a search algorithm too), ln some cases, in soldiers, the evolutionary

algorithms genérate trajectories to make an ambush, i.e., surround a enemy.

To flee: ln miners, the evolutionary algorithm generates a trajectory that leads from the

agent's position to the empire's position; in soldiers it generates a trajectory that leads from

the agent's position to the king's position (in this case, the soldiers try to protect the king).

To extract. ln miners, the evolutionary algorithm generates a trajectory that leads from the

agent's position to a place where there is gold (avoiding enemy's soldiers); in soldiers, the

evolutionary algorithm generates a trajectory that leads from the agent's position to a miner's

position (a soldier follows a miner to protect him).

The best trajectory is the shortest one, in which there are not obstacles in its route.

We consider as obstacles the gold, trees, big rocks and the agents. Note that agents are

mobile obstacles.

The king changes the strategy in base of some parameters: approximate number of

enemy soldiers and miners, number of soldiers and miners of the same empire (friends),

position of the enemy agents (this may guess the enemy's strategy) and the approximate

quantity of gold in the environment. The change of the strategy is obtained from an

evolutionary algorithm too. Such algorithm calculates each of these parameters and

calculates the best strategy.

Figures 6.6, 6.7 and 6.8 show the behavior of the agents participating in the game. All agents

belonging to the same empire have an adaptive behavior that is especially govemed by one

of the proposed evolutionary algorithms.

ADAPTIVE BEHAVIOUR IN VIRTUAL ENTITIES 69

4 Start V

no / Near\yes

enemy.

Get the best strategy to

this moment

Get the best option to

créate an agent

Créate an agent

Get the best movement

toflee

Execute such a

movement

Figure 6.6 Behavior of the King

ln each cycle (time t) of the game, the algorithm begins at the start point. ln Figure 6.6, the

evolutionary algorithms are used to determine the best movement of the king when an

enemy is near, to determine the best strategy at time t and to determine the best option to

créate an agent: miner or soldier (in base of the same parameters as in the change of

strategy). Note that the change strategy is an action that does not spend execution time.

ADAPTIVE BEHAVIOUR IN VIRTUAL ENTITIES 70

Get the best movement

toflee

Execute such a

movement

ye*5 ><. \ no
Near enemy

Extract gold

Get the best movement

to reach at the empire

Get the best movement

to reach a place with gold

Execute such a

movement

Execute such a

movement

Figure 6.7 Behavior of a miner

ln Figure 6.7, as in Figure 6.6, the evolutionary algorithms are used to determine the best

movement of the miner when an enemy is near, to determine the best movement to arrive at

a place where there is gold and to determine the best movement to arrive in the empire.

ADAPTIVE BEHAVIOUR IN VIRTUAL ENTITIES 71

Start

Get the best movement to catch

up with the enemy king

Execute such a

movement

Get the best movement to catch

up with such an agent

Execute such a

movement

Request help

Execute a plan's
action

Defend myself

Get the best movement

to reach the empire

Execute such a

movement

Get the best movement to catch

up with the nearest miner agent

not protected

Execute such a

movement

Get the best

movement to

follow it

Execute such

a movement

Figure 6.8 Behavior of a soldier

ADAPTIVE BEHAVIOUR IN VIRTUAL ENTITIES 72

ln Figure 6.8, as in Figure 6.6 and Figure 6.7, the evolutionary algorithms are used to

determine the best movements.

As we cited above, there are mobile obstacles (the agents) and therefore, the best

trajectory generated by an algorithm at time t may not be the best at time t+1 . Therefore, the

behavior of the agents calculates the best trajectory at each time and the agent adapts to the

new changes.

6.6 Results

The algorithm described above was proved (with few changes) to genérate trajectories in

environments with extreme circumstances, i.e., environments with static obstacles that may

not appear in the game. The mobile obstacles are not a problem if the algorithms opérate in

a good form in those extreme circumstances.

The possible agent's movements are depicted in Figure 6.9. The solutions were

encoded into a sequence of integers from 0 to 7, and the individuáis in the evolutionary

algorithms are vectors of such integers.

N

E7-*—Agent
—►s w

6
5

s

Figure 6.9 Possible agent's movements

The select movement does not depend of the angle of visión of the agent. The mutation

operator was extended to increment or decrement the length of an individual and, like this, to

allow to bring it near to its destination. lf the mutation increments the length of an individual, it

adds c movements to the trajectory (where c is a constant); if the mutation decrements the

length of an individual, it removes c movements from the trajectory. Figure 6.10 shows some

results obtained in the run of the three evolutionary algorithms. Each algorithm generates

similar results. The differences are the following:

ADAPTIVE BEHAVIOUR IN VIRTUAL ENTITIES 73

• The genetic algorithm operated in a good manner on all cases, because the algorithm

is elitist and there are several individual per generation. For these experiments, we

have used the following parameters:

o population size = 50

o initial length of individuáis = 2

o probability of crossover = 0.8

o probability of mutation = 0.04

o constant of increment/decrement in the length of individuáis c = 1

o máximum of generations = 200

• The (1+1)-ES is the fastest one and it operated in a good manner but it had its

problems in cases b, c, d and e with c = 1 and initial length of individuáis = 2,

because, although it is elitist, there is only one individual per generation. This

provokes that it difficult surround big obstacles (the algorithm falls easily in local

mínimums). The problem is solved with a higher constant c or employing some self-

adaptive mechanism. This algorithm is elitist by definition. For this experiments, we

have used the following parameters:

o initial length of individuáis = 2 (10 in the cases b, c, d, and e).

o máximum of generations = 10000

• The (pi + Á)-ES is the slowest but operated in a good manner, similar to genetic

algorithms. The difference with the genetic algorithm is that it always maintains the

best ¡x individuáis. This algorithm is elitist by definition too. For this experiments, we

have used the following parameters:

o initial length of individuáis = 2

o máximum of generations = 500

o ¿i
= 20

o X = 30

ADAPTIVE BEHAVIOUR IN VIRTUAL ENTITIES 74

(a) (b)

on-pi-i

■
•

•

♦•••#*

destiny

/

(O (d)

(e) (fí

Figure 6.10 A few obtained results

ADAPTIVE BEHAVIOUR IN VIRTUAL ENTITIES 75

6.7 Conclusions

ln this chapter we have employed evolutionary algorithms to provide agents with adaptive

behavior. These agents are virtual entities participating in a virtual combat environment that

runs in the GEDA-3D platform. The algorithms that we have used belong to two of the main

paradigms in evolutionary computation: Genetic algorithms and evolution strategies. We also

implemented the algorithm (jx , X)-ES that belongs to evolution strategies, but for the cases in

which we considered the algorithm the obtained results were not satisfactory because the

algorithm is not elitist.

Chapter 7

Conclusions

7.1 Objective

ln this chapter we summarizes the results obtained in this work and present some ideas we

got that will help to address the future work to get our final objective described at the

beginning of this thesis.

7.2 Results

• We have enhanced a 3D-Space platform useful to intégrate and manage distributed

applications
- GeDA-3D.

• We have created a basic mobility platform that is part of GeDA-3D.

• We have extend the work of Rüdiger Valk in [VALK1][VALK2], and with this little

extensión we have achieve a formal specification of the mobility platform incorpórate

to GeDA-3D and we have achieved a formal verification of liveness in such system.

• We have created the means to intégrate a distributed application in GeDA-3D.

• We implement a case study and we have integrated it in GeDA-3D.

CONCLUSIONS 77

• We add adaptive behaviors to the agents participating in the case study, based them

on three evolutionary algorithms belonging to two of the main paradigms in

evolutionary computation: genetic algorithms and evolution strategies.

• We have proved the search subject is feasible to continué in a doctórate work.

7.3 Future work

Next we describe future work we propose to follow to get our main objective described at the

beginning of this work, that is, créate animation of virtual entities using adaptive algorithms.

Let describe a división of this work:

1. Describe and implement a platform useful to implement distributed applications

where a 3D interface will be useful. This stage begins with the work of María

Eugenia [PUGA] and Silvia Toscano [TOSCANO00] ex members of our team.

Their main contributions were: the study of technologies necessitated to

implement our platform, describe and implement a prototype of our platform

GeDA-3D. Most of the time we have we devoted to implement a robust platform

from this work and implement also different services not provided but necessitated

to implement the sort of application we are interested in. There are still a work

must be done along all the development using GeDA-3D and it is, the

maintenance and implementation of new services for instance physical devices

useful to implement immersive virtual reality, surely I will be involved in this part of

work. Once, the architecture implemented next works can be started in parallel.

2. The study and implementation of a distributed editor of 3D-scenarios where

autonomous entities can evolve. The leader of this part is Ivan Piza1 member of

our team.

3. Find the appropriate algorithms for helping autonomous virtual entities to evolve in

its environment. The solutions for this part of the project constitute the objective of

my present work. The next step will be the addressed toward: first, to compare the

performance of these algorithms; start an study for establishing how useful are

these algorithms to improve the performance of virtual entities trying to get an

objective, for instance to plan a displacement, to solve non considered situations,

CONCLUSIONS 78

etc. ln the second part we must be able to propose our implementation of agents

in a real application, such as a virtual eco-system.

4. Animation of virtual entities is another part of this project; this part is quite related

with the part described in point number 3. The main objective is to study and

propose new adaptive algorithms to help a virtual entity to evolve physically in

order to get an animation. Let explain with an avatar representing a human been,

our objective is to use adaptive algorithms to help the avatar in its process to

change form a position a to a position b. The adaptive algorithm will help the

avatar for solving specific problems for instance how to go through a reduced

space, change the position of the leg of the avatar if there are some problems like

objects along the trajectory described by the leg to change its position. My

intention is to work with the person or persons working on this problem.

5. Another problem we are interested to solve is how to address the evolution of the

virtual entities in order to get an animation. The idea of our team is créate a like

script language, similar to that used by a real actor. This document will be

described in a very high level language and will allow any user to créate an

animation.

1
The e-mail of Ivan is hpiza@gdl.cinvestav.mx

BIBLIOGRAPHY

[ACHARYA97JA. Acharya, M. Ranganathan, J. Saltz. "Sumatra: a language for resource

aware mobile programs" Mobile object systems, Lecture Notes in Computer Science, No

1222, Springer Verlag(D), pp. 111-130, February 1997.

[BACK] Thomas Back, Frank Hoffmeister, Hans-Paul Schwefel. "A Survey of Evolution

Strategies". University of Dortmund. Department of Computer Science XI. Germany.

[BACK97] T Back, D. Fogel and Z. Michalewicz. "Handbook of Evolutionary Computation".
Oxford University Press, New York, February 1997

[BIRRELL84] A. D. Birrell e B. J. Nelson, "Implementing Remote Procedure Cali?, ACM

Trans. On Computer Systems, vol. 2, pp. 39-59, February 1 984.

[BOEHM88] B. Boehm. "A spiral model for software development and enhancemenf.

Computer, vol 21. Mayo 1998, págs 61-72.

[BRENNER98] W. Brenner, R. Zarnekow, and H. Wittig. "Intelligent Software Agenté".

Springer, 1998.

[CABRI99] G. Cabri, L. Leonardi, F. Zambonelli. "Mobile Agents Technology: Current Trends

and Perspectives". Dipartimento di Dcienze dell' Ingegneria
- Universitá di Modena, 1999.

[CARLSON93] C. Carlsson and O. Hagsand, "DIVE A Platform for Multi-User Virtual

Environments, Computers and Graphics 17(6), 1993

[CORBA] The ORBACUS Home Page", http://www.ooc.com/ob/, Object-Oriented Concepts,
Inc.

[COULOURIS96] George Coulouris. Jean Dollimore. Tim Kindberg. Distribuited Systems

Concepts and Design. Addison Wesley 1996.

[DALE97] Jonathan Dale & David O DeRoure. "A Mobile Agent Architecture for Distributed

Information Management". University of Southampton. March 1 997.

[DESEL95] Jórg Desel, Javier Esparza. Free Choice Petri Nets. Cambridge University Press

1995.

[EIBEN94] A. E. Eiben, P.-E. Raue, and Zs. Ruttkay. "Genetic Algorithms with Multi-parent
Recombination". Proceedings of the third International Conference on Parallel Problem

Solving from Nature(PPSN). New York, 1994.

[FIPA] The Foundation for Intelligent Physical Agents. http://www.fipa.org/.

[FOGEL55] D. B. Fogel. "Evolutionary Computation. Toward a New Philosophy of Machine

Intelligence". IEEE Press, Piscataway, NJ, 1995.

[FOGEL66] L. J. Fogel, A. J. Owens and M. J. Walsh. "Artificial Intelligence through Simulated

Evolution". New York. 1966.

BIBUOGRAPHY 80

[FUGGETA98] A. Fuggeta, G. Píceo, G. Vigna. "Understanding Code Mobility". IEEE

Transactions on Software Engineering, vol 24, No. 5, pp. 352-361, may 1998.

[HARRISON95] Harrison, C.G., Chess, DM & Kershenbaum. "Mobile Agents: Are they a good
idea?" IBM Research Report, IBM Research División, 1995.

[HINTERDING] Robert Hinterding, Zbigniew Michalewics, and Agosten E. Eiben. "Adaptation
in Evolutionary Computation: A Survey".

[HISSA]'Conceptual Framework for System Fault Tolerance".

http://hissa.ncsl.nist.go/chissa/SEI_framework/

[HOLLAND75] J. H. Holland. "Adaptation in Natural and Artificial SystemsT. University of

Michigan Press, Ann Arbor, 1975.

[HYACINTH96] Hyacinth S. Mwana. "Software agents: An overview". Intelligent Systems
Research. AA&T, BT Laboratories, 1996.

[JADE] 'Java Agent DEvekjpment Framework". http://iade.cselt.it/.

[JERRY] 'Trabajo cooperativo asistido por computadora".
htto7/isdate.com/iern//VR/WhatlsVR/framesAVhatlsVR4.1 .html &

httD^/isdale.com/ierrv/VR/techReview.html.

[KELLEY95] Dean Kelley. 'Teoría de autómatas y lenguajes formales. 1 995

[KNABE] Federíck Knabe P. "An Overview of Mobile Agents Programming" Universidad

Católica de Chile, Casilla 306, Santiago 22, Chile.

[KOZA94] J. R. Koza. "Genetic Programming: On the programming of computers bymeans of

Natural Evolution". MIT Press, Massachusetts, 1 994.

[Ll] W. Li, D. G. Messerschmitt. "Itinerative Computing Using Java".

http://ptolemv.eecs.berkelev.edu/dam/iavatools/iava-to-Qo.

[LOGRIPPO] L Logríppo, M. Faci, M. Haj-Hussein. "An Introdiction to LOTOS: Learning by

Examples". University of Ottawa. Protocols research group. Department of computer science.

[LOPEZ97] Ernesto López Mellado. Introducción a las Redes de Petri. Universidad Autónoma

de Nuevo León. Octubre 1997.

[MICHALEWICS96] A. Michalewics. "Genetic Algorithms + Data Structures = Evolution

Programé". Springer Verlag, New York, 1996.

[MULLENDER95] Sape Mullender. Distributed Systems. AddisonWesley 1995.

[OBITK098] Marek Obitko "Genetic Algorithms". Czech Technical University. September
1998. http://cs.felk.cvut.cz/-xobitko/aa/.

[ODISSEY] "GeneralMagic OdisseyPage". http://genmagic.com/agents/odissey.html

[OMG95a] Common Obiect Request Broker Archictecture. OMG, July, 1995.

[OMG95b] Common Obiect Services Specification. OMG 95-3-31, 1995

[OMGOO] Mobile Agent Facility Specification. January 2000. OMG Specifications.

80

BIBLIOGRAPHY 81

[PIZA02] Huga I. Piza, Félix F. Ramos. "A Virtual Editor for GeDASD". Multi-Agent Systems

Development Group. Centro de Investigación y de Estudios Avanzados del Instituto

Politécnico Nacional Guadalajara, Jal., México. 2002

[PNUELI95] Amir Pnueli, Zohar Manna. "Temporal Verification of Reactive Systems". 1995

[RAMOS02] Fabiel Zúñiga, Huga I. Piza, Félix F. Ramos. "A 3D-Space Platform forDistributed

Applications Management. Multi-Agent Systems Development Group. Centro de Investigación
y de Estudios Avanzados del Instituto Politécnico Nacional Guadalajara, Jal., México. 2002

[RECHENBERG73] Ingo Rechenberg. "Evolutionsstrategie: Optimierung technischer Systeme
nach Prinzipien der biologischen Evolution". Frommann Holzboog Verlag, Stuttgart, 1973.

[RMI1] Java Remote Method Invocation (RMI). http://iava.sun.com/products/idk/rmi/index.html.

[RMI2] Java RMI Tutorial. http://www.ccs.neu.edu/home/kenb/com3337/rmi_tut.html.

[RUDOLPH] Thomas Back, Gunter Rudolph, Hans-Paul Schwefel. "Evolutionary Programming
and Evolution Strategies: Similarities and Differences". University of Dortmund. Department of

Computer Science XI. Germany.

[RUSELL95] Stuart Rusell & Peter Norving. "Artificial Intelligence a Modern Aproach". Prentice

Hall, 1995.

[SCHOENAUER] Marc Schoenauer, Zbigniew Michalewicz. "Evolutionary Computation".
Control and cybernetics 26(3) pp 307-338.

[SCHWEFEL75] Hans-Paul Schwefel. "Evolutionsstrategie und numerische Optimierung"
Dissertation, Technische Universitát Berlín, May 1975.

[SCHWEFEL81] Hans-Paul Schwefel. "Numerical Optimization of Computer Modelé". Wiley,
Chichester, 1981.

[SNOWDON94] "The AVIARY Distributed Virtual Environment", David Snowdon and Adrián

West. The 2nd UK VR-SIG conference, 1st December 1994, Theale, UK.

[SUN96] "The Java Virtual Machine", Sun Microsystems White Paper, Sun Microsystems,
1996.

[SUN97] "Remote Method Invocationf, Sun Microsystems White Paper, Sun Microsystems,
1997.

[SYCARA98] Katia P Sycara. "Multiagent systems". American association for artificial

intelligence. Summer 1998.

[TOSCANO00] Silvia Toscano G. "Ambiente Genérico Virtual Distribuido". Cinvestav

Guadalajara. Septiembre 2000.

[UK] "Distributed Virtual Reality Systems".
httD://www.doc.ic.ac.uk/-np2/virtual realitv/distributed.html

[VALK1] Rüdiger Valk. "Petri nets as token objects: An introduction to elementary object".
Universitát Hamburg, Fachbereich Informatic.

81

BIBLIOGRAPHY 82

[VALK2] Rüdiger Valk. "Concurrency in Communicating Object Petri nets" Universitát

Hamburg, Fachbereich Informatic.

[VINOSKI] Steve Vinoski. CORBA: Intearatina Diverse Applications Within Distributed

Heterooeneous Environments. IEEE CommunicationsMagazine, February, 1 997.

[WHITE94] J. E. White. "Telescript Technology: the foundation for the electronic marketplace".
White paper, General Magic, Inc, 1994.

[ZÚÑIGA02] Fabiel Zúñiga, Huga I. Piza, Félix F. Ramos. "Specification and liveness proof of
GeDA-3D Using Petri Nets". Multi-Agent Systems Development Group. Centro de

Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Guadalajara, Jal.,
México. 2002

82

Centro de Investigación y de Estudios Avanzados del IPN

Unidad Guadalajara

El Jurado designado por la Unidad Guadalajara del Centro de Investigación y de Estudios

Avanzados del Instituto Politécnico Nacional, aprobó la tesis: Adaptive Algorithms Useful to

Genérate Behaviours in Dynamic Virtual Environments, del(a) C. Fabiel ZÚÑIGA GALLEGOS el

día 1 de Octubre de 2002 .

DR. LUIS ERNESTO LÓPEZ

MELLADO

INVESTIGADOR CINVESTAV 3A

CINVESTAV GDL

GUADALAJARA

DR. FEL*

RAMOS CORC

INVESTIGADOR CINVES

2A

CINVESTAV GDL

GUADALAJARA

DR. VÍCTOR MANUEL LARIOS

ROSILLO

INVESTIGADOR TITULAR

UNIVERSIDAD DE

GUADALAJARA

ZAPOPAN

