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“The best scientist is open to experience and begins with romance - the idea that

anything is possible.”

Ray Bradbury
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mis compañeros con los que he convivido durante estos años.

Quiero agradecer también a mis tutores, al los doctores Rogelio Lozano Leal y Pedro
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Summary

Unmanned aerial vehicles have experienced huge advances in terms of scientific

research and development, the implementation of more powerful digital electronics

have opened the application of more complex sensing techniques and control schemes,

thus permitting the conception of interesting applications.

Aerial manipulators have been proposed as an alternative to solve problems like

complex object handling in large areas, or sample recollection in exploration missions.

Some researchers have proposed mathematical models and experimental platforms

consisting on UAVs with robotic arms, but their mathematical solutions tend to be

really complex, and sometimes need difficult control schemes to properly function.

This thesis work proposes a mathematical model for a quadrotor vehicle with a

manipulator arm, based on unit quaternions and dual quaternions. The obtained

model is simpler in comparison with other works, thus permitting the application of

simple control schemes for its stabilization.

Two control laws are proposed to fully stabilize the system, The first one is based on

unit quaternions to separately stabilize the position and orientation of the vehicle,

the second one is based on dual quaternions, which make possible to stabilize

simultaneously the transformation of the UAV. The kinematic and dynamic effects of

the robotic arm are considered as dual quaternions, and the torques that it applies

on the vehicle are compensated in both of the proposed control laws.

The proposed model and control schemes are then validated with numerical simula-

tions and in experiments in a real UAV prototype, demonstrating the stability of the

platform in closed-loop system.

Key Words. Quaternion, Dynamics, Mechanical Arm, Manipulator, Dual Numbers,

UAV, Drones, Multirotor, Quadrotor



Resumen

Los veh́ıculos aéreos no tripulados han experimentado grandes avances cient́ıficos y

tecnológicos en los últimos años, la implementación de componentes electrónicos más

potentes ha permitido la aplicación de técnicas de sensado y esquemas de control

más complejos, permitiendo la concepción de aplicaciones muy interesantes.

Los manipuladores aéreos han sido propuestos como una alternativa para resolver

problemas como la manipulación de objetos en grandes áreas, o para la recolección de

muestras en misiones de exploración. Algunos investigadores han propuesto modelos

matemáticos y plataformas experimentales que consisten de veh́ıculos aéreos con

brazos robóticos, pero sus soluciones matemáticas tienden a ser muy complejas, y

tienden a necesitar esquemas de control complejos para funcionar apropiadamente.

Este trabajo de tesis propone un modelo matemático para un veh́ıculo cuadrirotor con

brazo mecánico basado en cuaterniones unitarios y cuaterniones duales. El modelo

obtenido es más simple en comparación con otros trabajos, por lo que permite la

aplicación de esquemas de control más simples para su estabilización.

Dos leyes de control son propuestas para estabilizar completamente el sistema. La

primera está basada en cuaterniones unitarios para estabilizar la posición y orientación

del veh́ıculo de manera separada, la segunda está basada en cuaterniones duales para

lograr la estabilización simultanea de la transformación del quadrirotor. Los efectos

cinemáticos y dinámicos del brazo mecánico son considerados usando cuaterniones

duales, y los pares que causan en el veh́ıculo son compensados en ambas leyes de

control.

El modelo propuesto y los esquemas de control fueron validados con simulaciones

numéricas y experimentos en un prototipo de veh́ıculo cuadrirotor, demostrando la

estabilidad de la plataforma con la implementación de las leyes de control propuestas.

Palabras Clave. Cuaterniones, Dinámica, Brazo Mecánico, Manipulador, Números

Duales, UAV, Drones, Multirotor, cuadrirotor



Chapter 1

Introduction

In the last years, unmanned aerial vehicles (UAVs) have gained popularity in many

areas including military, industry, scientific research, and even as end consumer

applications.

UAVs offer great advantages in terms of speed and maneuverability in comparison

to ground vehicles and other platforms, one of the most popular types of aerial

platforms is the quadrotor (also known as quadcopter), which consists in a simple

array of four motors and propellers. The quadrotor offers great maneuverability and

the possibility of stabilization in a given position and orientation in the space.

1.1 Current Research Topics

During the last years, many researchers have developed new designs that take

advantage of both rotary and fixed wing configurations to accomplish specific tasks

and missions.

Some applications mentioned in Valavanis [2008] and in Cariño [2015] include:

• Swarm Operation: Several UAVs flying together with mutual communication

that cooperate to perform certain tasks.

1
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• Fault-tolerant flight: The capacity of an UAV to fly in the presence of faults

using redundancy with automatic control to stabilize the system.

• SLAM: It refers “Simultaneous Location And Mapping”, when an UAV utilizes

its sensors to build a map and locate itself inside of it, see Cariño [2015].

• UAV with attached manipulator: A robotic manipulator is an actuator

that manipulates objects, the most common configuration in industry is the

robotic arm, which has a restricted workspace in a finite area. By adding

the ability to fly in a wider space, a quadrotor with an attached robotic arm

could provide much more flexibility for tasks that require movement in a more

spacious environment. Prof. Anibal Ollero from the University of Seville, and

his team (FADA-CATEC [2011]) have been working in this concept in the last

years, and have accomplished many significant advances.

1.2 Problem Statement

The possibility of manipulate or transport payloads, instruments, and other objects

using multi-rotor UAVs opens a variety of possibilities such as retrieving samples for

exploration missions, or automated building of structures.

The problem begins with the fact that the total amount of degrees of freedom (DoF)

of the system will be the sum of the DoF of the quadcopter and the robotic limb.

Although a quadrotor platform has six degrees of freedom (DoF), and it can move

trough any position in the 3-dimensional space and is able to adopt any given

orientation, only four of those DoF are stable, and two of them are unstable.

This can be seen in the simplified model for a quadrotor in terms of its mass,

orientation, and control inputs given in Castillo et al. [2006] as
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ẍ = − 1
m

sin θu1

ÿ = 1
m

cos θ sinφu1

z̈ = 1
m

cos θ cosφu1

φ̈ = τφ

θ̈ = τθ

ψ̈ = τψ

(1.1)

where θ, φ, and ψ denote the vehicle’s orientation (in terms of Euler angles), τφ, τθ, τψ,

and u1 are the control torques and throttle input respectively, and x, y and z represent

its position in the 3-D space.

Equation (1.1) shows that the equilibrium points of the system are restricted to the

conditions θ = 0 and φ = 0, this means that the vehicle can be stabilized at any

position in x, y and z as long as the conditions are respected.

By adding a 2 DoF robotic limb whose actuated axes are parallel to the θ and ψ

angles of the quadrotor, then the complete system will be completely actuated, thus

the 6 DoF of the end effector of the robotic arm will be stable.

1.3 Objectives

The main objective of this work is the modeling, control, simulation and experimental

implementation of a quadrotor vehicle with an attached manipulator arm in terms of

the position and orientation of its end actuator.

This can be divided in 6 secondary objectives:

1. Synthesize the kinematic and dynamic models for a quadrotor UAV with an

attached 2 DoF robotic limb.

2. Obtain the desired orientation and position reference for the UAV from the

desired reference of the robotic limb usind inverse kinematics.
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3. Propose a control law that stabilizes the end effector of the arm in a desired

position and orientation.

4. Corroborate the stability of the proposed control law with numeric simulations.

5. Build a quadrotor platform and a 2 DoF robotic arm that can be mounted in

the frame.

6. Corroborate the stability of the proposed control law with an experimental

validation on the proposed platform.

1.4 Methodology

Several approaches were considered to obtain the kinematic and dynamic models, it

was observed that quaternions offer a practical and mathematically simple way to

represent rotations in the 3D space, particularly dual quaternions are a convenient

tool to describe multiple and simultaneous rotations and translations.

Firstly, the quadrotor dynamic model was obtained by using the Newton-Euler

approach, and describing its rotational attitude with unit quaternions and its trans-

lational dynamics separately. A control law was proposed to exactly linearize the

system, and then to globally stabilize it. Then, it was observed that it is necessary

to apply multiple and simultaneous transformations (rotations and translations) to

describe the orientation and position of the final actuator, so the possibility of using

dual quaternions was explored.

The dynamic model of the quadrotor using dual quaternions was obtained also using

the Newton Euler approach, the kinematic and dynamic model of the complete

platform (including the robotic limb) was then obtained using also dual quaternions.

A dual quaternion regulator was then proposed to stabilize the system in position

and orientation simultaneously, an algebraic relationship between the quadrotor’s

rotational and translational dynamics was implemented to globally stabilize the

system.
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Both proposed models and control laws were simulated using Python programming

language.

Lastly, the results were validated in the experimental platform that was built in the

context of the project.

1.5 State of the Art

1.5.1 Quadrotor Systems

Quadrotors are one of the most popular platforms for UAV research due to their

mathematical simplicity, flight capabilities, and relatively low-cost implementation.

Many researchers have made important advances with quadcopters in the last years.

Castillo et al. [2006] presented an important contribution where they explained in a

didactic manner, the modeling and control for many types of UAVs including the

PVTOL, mini-helicopters, and quadrotors (among others).

In Garćıa et al. [2010] the authors propose a position stabilization method based in

vision algorithms which estimate the UAV’s position in the 3D space with respect to

a landing pad in the ground.

The main problem that needs to be resolved in any application of quadcopters is

the stabilization of the platform in both orientation and position. Many control

approaches have been proposed to solve this problem, such as simple PID controllers

as in Junior et al. [2013], others have proposed non-linear control approaches such as

Fermi Guerrero Castellanos [2013].

More complex control schemes have also been proposed such as backstepping-based

inverse optimal controls (see Wang Jian and Hongxu [2013]) among many others.

Part of this complexity is justified because the most used quadcopter model is based

on the description of its rotation using Euler angles, other approaches can be explored

such that the system’s description becomes simpler thus more easy to stabilize.
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1.5.2 Quadrotor Manipulator Systems

Because of all of the benefits and offered possibilities quadrotor manipulators have

been an important focus of interest for many researchers in the last years.

Ghadiok [2011] presented in his Masters thesis a simple gripper manipulation system

that implements autonomous indoor aerial gripping using a low-cost quadrotor. The

major challenges that this project had to overcome were the precise positioning, sens-

ing and manipulation trough the stabilization of disturbances due to the interaction

with the object. Position sensing was achieved by using Simultaneous Location and

Mapping (SLAM).

Khalifa et al. [2012] presented the modeling and control of a quadrotor platform with

a robotic manipulator, this team has presented various contributions in which they

proposed different control approaches to control their platform as shown in Khalifa

et al. [2013] and Khalifa et al. [2015].

A different quadrotor platform that uses a buoyancy envelope is presented in Korpela

et al. [2012] in order to provide a better stability in the system. The team has

proposed also a complex 16 DoF manipulator which consists in multiple individual

manipulators.

Kim et al. [2013] obtained a kinematic and dynamic model using Euler angles for

a quadrotor with a two DoF robotic arm, and then stabilized the complete system

using an adaptive sliding mode controller.

Similarly, Arleo et al. [2013] proposed a kinematic and a dynamic model using Euler

angles to describe the position and orientation of the complete system. A feedback

regulator is proposed to stabilize the system.

Other works like Yang and Dongjun [2014] and Danko and Oh [2014] have explored

more ambitious propositions in which manipulators have more actuated joints, thus

adding complexity with redundant DoF.
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Orsag et al. [2011] presented a different design for the manipulator where three

2-DoF manipulators are implemented to interact with the environment using hook

ad push/pull actions on objects.

One particular work that calls special attention is the european project called ARCAS

(Aerial Robotics Cooperative Assembly System), which proposes the development

and experimental validation of a cooperative free-flying robot system for assembly

and structure construction, with a wide variety of possible applications going from

the building of platforms for evacuation of people, to the inspection and maintenance

of facilities (among many others). This project is conformed by a consortium of

european universities and research centers from France, Spain, Italy, Germany and

Switzerland, they have published more than 40 scientific articles since 2011 covering

many related topics such as mechanical design (see for example Cano [2013], ),

modeling, control, trajectory planning, optimization, and vision.

Figure 1.1: Aerial 6 DoF manipulator proposed by the ARCAS project

Many of the reviewed works have accomplished very interesting and promising results,

however, the models they proposed were usually very large, non-linear, and their

inverse kinematics were difficult to calculate, this is because the most common

approach to represent multiple rotations and translations (as when working with

robotic manipulators) is trough Euler Angles.
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1.5.3 Quaternion-based Approaches

As it will be explained in sections 2.2.1 and 2.3.1, unit quaternions offer a very

convenient way to express rotations of a rigid body, and dual quaternions expand

this advantage to simultaneous rotations and translations, see Spring [1986], Kuipers

[1999], Nojan Madinehi [2013] and Horn [1987].

Several applications of quaternions in the modeling of UAVs (particularly multicopter

platforms) have been proposed by various researchers.

For example, a linear model is obtained trough a special feedback linearization in

Long et al. [2012] where the utilized platform is an omnicopter MAV.

Alaimo et al. [2013] use unit quaternions to describe the dynamic model of a hex-

acopter, the authors use a relatively simple feedback controller to stabilize the

system.

A similar modeling approach is presented in Fresk and Nikolakopoulos [2013] where

quaternions are used to describe the dynamic model of a quadrotor. The authors

implement a proportional squared control to stabilize the attitude of the vehicle. An

LQR regulator is similarly proposed in Reyes-Valeria et al. [2013] parting from the

quaternion-based model for a quadrotor.

Our team has published a contribution where we propose the modeling and control

of a quadrotor platform using unit quaternions and a special trajectory to globally

stabilize the system (in both position and orientation), see Cariño et al. [2015].

Dual quaternions are also being studied to describe simultaneously the attitude and

position of UAVs. Zhao et al. [2014] implemented dual quaternions to control the

flight of a fixed-wing UAV.

Wang and Yu [2010] proposed a feedback linearization regulator using unit dual

quaternions, although it is not directly applicable to quadrotors, it provides a basis

to implement a simple feedback controller to globally stabilize any UAV platform.
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In Nuno and Tsiotras [2013] the authors proposed a control that simultaneously stabi-

lizes position and attitude using dual quaternions, they show that this implementation

is simple and relatively straightforward.

If the description of multiple rotations and translations is required when a quadcopter

is combined with a robotic limb, then dual quaternions seem to provide a simple

system description which simplifies modeling and control.





Chapter 2

Quaternion Modeling

Quaternions are a very useful mathematical tool for representing the rotation of a

rigid body, they have great advantages with respect to the more commonly used Euler

angles representation such as lack of discontinuities and mathematical simplicity. A

brief description of quaternion algebra is presented in section 2.2.1.

Simultaneous rotation and translation (also called transformation) can be described

using unitary quaternions if a vector in the body frame is rotated to the inertial

frame using a quaternion product. Since the objective of this work is to obtain

the model and control for a quadrotor with a robotic arm with various links, the

transformation of all of the elements of the platform would ve very complex, thus

another mathematical tool is used to simplify the modeling of the robotic arm.

Dual Quaternions are another mathematical tool used to describe the transformation

of a rigid body, they also offer mathematical simplicity, and more simple calculations

for the kinematics of robotic arms. A brief description of dual quaternion algebra is

presented in section 2.3.1.

3 sections compose this chapter; in the first one, previous work is presented, in the

next one the mathematical model of the vehicle is obtained using unitary quaternions,

in the last the model is acquired using the dual quaternion approach. Firstly the

11
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equations only consider the aerial platform, after that, the mathematical model is

completed with the inclusion of the robotic arm.

2.1 Previous Work

Many researchers have made efforts to model the dynamics of aerial vehicles, in

Castillo et al. [2006], a detailed method for modeling a quadrotor is presented using

Euler angles representation, in this book, an equivalency between quaternions and

Euler angles is presented as a mathematical tool for control design.

Not many authors have adopted the quaternion-based representation for modeling

aerial vehicles, probably because, in contrast with the Euler angles representation,

they lack of a direct intuitive visualization for the rotation.

Nevertheless, some researchers have noticed that the advantages of quaternions

overpass the disadvantages. For example, Fresk and Nikolakopoulos [2013] present a

full attitude control based on quaternions using a state feedback from the axis-angle

representation of the orientation, Alaimo et al. [2013] introduce a mathematical

model for an hexarotor vehicle using the Euler-Lagrange approach, Izaguirre-Espinosa

[2015] proposes a technique for stabilizing the position-yaw tracking of quadrotors,

although they use a traditional Euler angles representation for the vehicle’s attitude,

their control for the z axis is presented using a quaternion approach. Other con-

trol techniques such as optimal, LQR, and feedback linearization are presented in

Wang Jian and Hongxu [2013], Reyes-Valeria et al. [2013], and David J. Cappelleri

[2012].

Other authors have noticed that the dual quaternion approach can provide advantages

when stabilizing both orientation and position of a rigid body, Jin and Wang [2013]

presents an introduction to dual quaternions, and a modeling of a quadrotor UAV

using the Lagrangian formulation, Nuno and Tsiotras [2013] proposes a feedback

control without linear and angular velocity feedback using dual quaternions, and

finally, Wang and Yu [2010] propose a feedback regulator that globally stabilizes a
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fully actuated system using dual quaternions, this work can be expanded for use

with under-actuated systems (such as a quadrotor).

2.2 Model Using Unit Quaternions.

2.2.1 Quaternion Background

Quaternions are “hypercomplex” numbers, which means that they have three imagi-

nary parts î, ĵ, k̂ instead of one compared to complex numbers. They can be used to

describe in a very simple mathematical and computational way rotations in three-

dimensional space. When many methods use trigonometric functions, which are

non-linear and suffer from numerical inaccuracy, quaternion rotations are simple in

that they only need multiplications, divisions and sums to be implemented.

2.2.1.1 Notation.

In this work, over lined letters represent vectors in 3D space (�) ∈ R3. A quaternion is

a four tuple that belongs to the H quaternion space. It can be seen as a number that

contains one real part and three imaginary parts multiplied by their corresponding

imaginary units î, ĵ, k̂ ∈ I

q0, q1, q2, q3 ∈ R; q ∈ H; î, ĵ, k̂ ∈ I

q := q0 + q1 î+ q2 ĵ + q3 k̂
(2.1)

As there are three different imaginary parts, these are often viewed as a vector in R3

space. Thus, R3 space can be seen as a subspace of H space and a R3 vector can be

considered a pure imaginary quaternion.
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q ∈ R3

q = q0 +




q1

q2

q3


 = q0 + q

(2.2)

2.2.1.2 Quaternion Operations.

Because of its significance, historically as well as in the definition of the quaternion

space itself, the main operation of quaternions is the multiplication. Other operations

and properties arise from this definition, like the conjugate and the norm.

Product. The quaternion product between quaternions q,p ∈ H, expressed as a

sum between a scalar real part and an imaginary vector q = q0 + q;p = p0 + p, is

defined in the following manner

q ⊗ p := (q0 + p0 − q · p) + (q0 p+ p0 q + q × p) (2.3)

Some properties can be seen from this definition. One of the most important is that

quaternion product is not commutative. Which means that q ⊗ p 6= p⊗ q. This is

because of the same non-commutativity property of the cross product used on the

definition.

Sum. The sum of quaternions q and p is simply defined as the sum of each of its

elements, like this

q, r ∈ H

q + r := q0 + r0 + q + r
(2.4)
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The set of all quaternions with operations addition and multiplication defines a

non-commutative division ring. See Kuipers [1999] for more information on this

matter.

Conjugate. The conjugate of quaternion q is denoted by

q∗ := q0 − q (2.5)

The conjugate of a product of quaternions is

(q ⊗ r)∗ = r∗ ⊗ q∗ (2.6)

This can be proved by expanding the corresponding products.

Norm. The norm of a quaternion is defined by

||q||2 := q ⊗ q∗ = q20 + q21 + q22 + q23 (2.7)

Inverse. The quaternion product forms a closed-loop group, that is, the product

of two non-null quaternions is another quaternion. This means that for any non-null

quaternion there exists an inverse quaternion such that

q−1 :=
q∗

||q||
q ⊗ q−1 = q−1 ⊗ q = 1

(2.8)
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Derivative Let r be any given vector (quaternion with zero scalar part) fixed in

an initial reference frame . let r′ be the same vector but rotated to another reference

frame such that

r′ = q−1 ⊗ r ⊗ q (2.9)

If we differentiate (2.9), then

ṙ′ = q̇−1 ⊗ r ⊗ q + q−1 ⊗ r ⊗ q̇ (2.10)

From equations (2.9) and (2.10) we obtain

ṙ′ = q̇−1 ⊗ q ⊗ r′ + r′ ⊗ q−1 ⊗ q̇ (2.11)

Since q is a unitary quaternion, then q−1 ⊗ q = 1, and

q̇−1 ⊗ q + q−1 ⊗ q̇ = 0 (2.12)

Then it follows from (2.11) and (2.12) that

ṙ′ = r′ ⊗ q−1 ⊗ q̇ − q−1 ⊗ q̇ ⊗ r′ (2.13)

Now, the scalar part (real part) of q−1 ⊗ q̇ is

Re(q−1 ⊗ q̇) = q̇0q0 + q̇1q1 + q̇2q2 + q̇3q3 = 0

Thus, we can say that the product q−1 ⊗ q̇ is a vector (a quaternion with real part

equal to zero).
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Then, we can say that

ṙ′ = r′ ⊗ q−1 ⊗ q̇ − q−1 ⊗ q̇ ⊗ r′ = 2(q−1 ⊗ q̇)× r′ (2.14)

Since ṙ′ is the translational velocity of the vector, we can say that ṙ′ = ω × r′, where

ω is the rotational velocity of r′, thus

ω × r′ = 2(q−1 ⊗ q̇)× r′ (2.15)

Since r′ can be any vector, the expression is reduced to

ω = 2(q−1 ⊗ q̇)⇒ q̇ =
1

2
q ⊗ ω (2.16)

2.2.2 Unit Quaternions.

If the norm of q it has unitary norm ||q|| = 1, then it can be called unitary

quaternion. Unitary quaternions are often used to represent rotations in 3D space

because they offer some advantages over other methods of representation such as lack

of singularities. They do not have gimball-lock effect, and they have mathemathical

and computational simplicity because all the operations need only multiplications

and sums.

2.2.2.1 Euler-Rodŕıguez Equation of Rotation.

Euler stated in his theorem for rotation of rigid bodies that any rotation of a rigid

body can be expressed as a rotation with respect to a fixed axis and a certain amount

or angle. This rotation in a 3D space can be represented using unitary quaternions

as
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p′ = q−1 ⊗ p⊗ q = q∗ ⊗ p⊗ q

q := cos

(
θ

2

)
+ u sin

(
θ

2

)
(2.17)

where p ∈ R3 is a 3D vector in the original reference frame, p′ represents the same

vector as p but now with respect to a new reference frame. u ∈ R3 means the

direction of the axis of rotation. θ defines the angle of rotation around the axis of

rotation.

In equation (2.17), it can be seen that a double quaternion product can be used to

rotate any vector from one reference frame into another, and this rotation does not

affect the vector’s magnitude.

It can be seen that a quaternion q gives the same rotation as the quaternion −q. If

we imagine the fixed axis ū, it can be easily seen that two rotation magnitudes with

respect to this axis can translate to the same orientation, those are θ and −2π + θ

since q = cos

(
θ

2

)
+u sin

(
θ

2

)
and −q = cos

(−2π + θ

2

)
+u sin

(−2π + θ

2

)
. This

duality can be used to assure that the rotation is applied with the smallest magnitude

as possible.

2.2.2.2 Axis-Angle representation

From the Euler-Rodŕıguez formula (2.17) it is possible to obtain a direct relationship

between the so called “Axis-Angle” representation and unit quaternions for certain

rotation in order to express the rotation as a single vector θ ∈ R3, with ||θ|| = θ

representing the rotational magnitude and u =
θ

||θ||
. This representation gives a

more intuitive way to understand the rotation of the rigid body.

This relationship can be represented by the quaternion logarithmic mapping, which

is given by
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ln q :=





ln q0 , if ||q|| = 0

ln ||q||+ q

||q|| arccos
q0
||q|| , if ||q|| 6= 0

||q|| = 1

ln q =
q

||q|| arccos q0

(2.18)

It can be seen that if we are working only with unitary quaternions (||q|| = 1), then

the logarithmic mapping is reduced to

ln q =
q

||q|| arccos q0 (2.19)

Using equation (2.19) and (2.17), we have the following axis-angle representation

from an unit quaternion

θ = 2 ln q (2.20)

The inverse relationship that can return a quaternion from its axis angle representation

is called quaternion exponential mapping, it can be said that this is the inverse of

the quaternion logarithmic mapping

eq :=





||q|| = 0, eq0

||q|| 6= 0, e||q||
(

cos
||q||

2
+

q

||q|| sin
||q||

2

)
(2.21)

2.2.3 Quadcopter Dynamic Model.

A quadcopter can be considered as a rigid body that has 6 DoF, but only four of

them are stable, this is because the platform can not move in the orientation states

without affecting its position.
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The force that the motors apply to the vehicle with respect to the body reference

frame can only act in the z axis, but its orientation in the inertial frame can be

changed by controlling the orientation of the platform.

Figure 2.1: Quadrotor body diagram. Image taken from Izaguirre-Espinosa
[2015]

It is important to note that the forces and torques that the motors apply to the body

are given by

fi = ki ω
2
Mi

τ =




l (f1 + f4 − f2 − f3)
l (f1 + f2 − f3 − f4)

4∑
i=1

(−1)i+1 τi




(2.22)

where ω, τ ∈ R3 define the angular velocity and the applied torque respectively,

l =
L√
2

, L means the distance between the vehicle’s center of mass and any motor

(the platform is supposed to be symmetrical), fi, τi, ki, ωMi
∈ R, i = 1, 2, 3, 4 represent

the force, torque, aerodynamic constant, and angular velocity of each one of the four

motors.
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As any rigid body, the state vector of the quadrotor can be expressed in terms of its

position and its orientation as

xquad :=
[
pT ṗT qT ωT

]T
(2.23)

where

• p =
[
x y z

]T
is the translational position in the inertial frame.

• ṗ =
[
ẋ ẏ ż

]T
denotes the translational velocity vector.

• q = q0 +
[
q1 q2 q3

]T
defines the vehicle orientation with respect to the

inertial frame, represented as a unit quaternion.

• ω =
[
ωx ωy ωz

]T
represents the rotational velocity in the body frame.

Therefore, the dynamic model can be separated into two subsystems, the first one

corresponds to the rotational and the second one to the translational dynamics.

2.2.3.1 Quaternion Rotational Model.

The state vector for the rotational dynamics must be defined

xrot :=
[
qT ωT

]T
(2.24)

The rotational dynamical model is obtained by the differentiation of q in equation

(2.16)

ẋrot =


 q̇

ω̇


 =




1
2
q ⊗ ω

J−1 (τ − ω × J ω)


 (2.25)

where J represents the inertia matrix, ω̇ is obtained from Newton-Euler equations of

motion, see Goldstein [1962]. τ ∈ R3 defines the vector that contains the torques



Quaternion Modeling 22

applied to the body, these torques are the sum of the control input torques and the

external torques. Then we can say that τ = τu + τext.

Since this work consists in the addition of a robotic arm to the quadcopter, we can

say that τext represents the torques that the arm apply to the vehicle.

Equilibrium Points. Equilibrium points are defined as a constant solution to a

differential equation, in order to find an equilibrium point, it is necessary to find the

states and control inputs x∗, τ ∗ where ẋ = 0.

Taking this into account, the equilibrium points of the attitude system (2.25) can be

calculated when ẋrot = 0, thus it follows that

⇒ x∗rot =


 q∗

0


 , τ ∗ = 0 (2.26)

This corroborates the intuitive approach for finding the equilibrium points; when

the vehicle’s orientation is constant, the torques and the angular velocities must be

equal to zero.

2.2.3.2 Quadcopter Translational Dynamics.

The state variable for the translational model is given by

xpos =
[
pT ṗT

]T
(2.27)

According to Newton’s equations, the total force that acts on the body in the inertial

frame can be obtained multiplying the acceleration and the mass (note that Ft is

expressed in the body frame)

q ⊗ Ft ⊗ q∗ = mp̈⇒ p̈ = Ft
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The total force that acts on the vehicle consists on the sum of the control force Fu,

and the external forces Fext expresed by Ft = Fu + Fext.

Since the quadrotor is a under-actuated system, the only force in the body reference

frame that can be used to control the platform is the trust force vector Fu, in this

case Fext corresponds to the gravity force, which acts with respect to the inertial

frame, thus

ẋpos =


 ṗ

p̈


 =


 ṗ

q ⊗ Fu
m
⊗ q∗ + g


 (2.28)

with

Fu =

[
0 0

4∑
i=1

fi

]T
(2.29)

where m stands for the quadcopter’s mass, and g =
[

0 0 g
]T

corresponds to the

gravity’s vector in the inertial frame.

Joining models (2.25) and (2.28), as shown in the derivate of the state from equation

(2.23), the complete model for the quadrotor is obtained

ẋquad =
d

dt




p

ṗ

q

ω




=




ṗ

q ⊗ Fu
m
⊗ q∗ + g

1
2
q ⊗ ω

J−1 (τ − ω × J ω)




(2.30)

Since the thrust vector is fixed in the body frame, and the attitude is variable

according to equation (2.25), then the position can be controlled using the attitude

subsystem, thus the platform can be globally stabilized.

2.2.4 Quadrotor with Jointed Arm Effects

We already know that τext represents the torques that the arm apply to the vehicle,

we consider that the robotic arm has two links, the first one is constant, and goes
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from the center of mass of the vehicle. The second one has two rotational axises that

rotate between the x and y axis of the vehicle reference frame.

From this statement, we can say that equation (2.31) is true, where τc is the torque

that the constant link causes to the vehicle, and τb is the torque caused by the

rotational link.

τext = τc + τb (2.31)

The first torque is given by the product τ = r × F , which says that any torque can

be calculated using the cross product between the force that causes it, and the radius

from the point where F is applied, and the rotational center, thus

τc = rcv ×mc~gv + Jcωv

where rcv is the constant distance from the center of mass of the quadrotor, to the

center of rotation of the arm’s first motor, mc is the mass of the link, Jc is its inertia

matrix, and ~gv is the gravity acceleration vector in the vehicle’s reference frame.

ḡv = q∗v ⊗ ḡ ⊗ qv

So the final expression for τc becomes

τc = rcv ×mc[q
∗
v ⊗ ~g ⊗ qv] + Jcωv (2.32)

The second torque is similarly given by

τb = rbvt ×mb~gv + Jb(ωv + ωb)

where rbvt is the total distance from the center of mass of the quadrotor to the center

of mass of the second link, and is given by rbvt = rc + rbv, and ωb is the angular
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velocity with respect to the first motor of the arm, mb is the mass of the link, and Jb

is it’s inertia matrix.

rbv represents the position of the center of mass of the arm with respect to its first

articulation, in the vehicle’s reference frame

rbv = qb ⊗ rb ⊗ q∗b

where qb represents the rotation of the arm with respect to the body frame.

So the final expression for τb comes to

τb = (qb ⊗ rb ⊗ q∗b + rc)×mb~gv + Jb(ωv + ωb) (2.33)

2.3 Model Using Dual Quaternions.

2.3.1 Quaternion Background

2.3.1.1 Dual Numbers.

A dual number is defined as

a, b ∈ R, ε 6= 0, ε2 = 0

â = a+ εb
(2.34)

Where the hat â denotes that â is a dual number, which consists in a real part (a)

and a dual part (b)

2.3.1.2 Dual Vectors.

Dual Vectors are a generalization of dual numbers where both real and dual parts

are n-dimensional vectors. In this work, we will use three-dimensional vectors when

referring to dual vectors.
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Dot-Product for Dual Vectors Definition: Let ˆ̄v = v̄r + v̄dε and ˆ̄k = k̄r + k̄dε

be dual vectors with v̄r, v̄d, k̄r, k̄d ∈ R3, then its dot product is given by

ˆ̄k · ˆ̄v = Krv̄r +Kdv̄dε (2.35)

Where Kr and Kd are diagonal matrices with 3 × 3 shape with diagonal entries

kr1, kr2, kr3 and kd1, kd2, kd3 respectively.

2.3.1.3 Dual Quaternions.

Dual quaternions are dual numbers with both real and dual parts given by quaternions,

i.e. q̂ = qr + qdε, with qr, qd ∈ H.

Some of the most important operations for dual quaternions are

Sum Let q̂1 and q̂2 be dual quaternions, then

q̂1 + q̂2 = q1r + q2r + [q1d + q2d] ε (2.36)

Product The multiplication between dual quaternions is defined as

q̂1 ⊗ q̂2 = q1r ⊗ q2r + [q1r ⊗ q2d + q1d ⊗ q2r] ε (2.37)

Norm The norm of a dual quaternion is defined as

||q̂||2 = q̂ ⊗ q̂∗ (2.38)

Note that if ||q̂||2 = 1 + 0ε, then q̂ is called a unit dual quaternion.

Conjugation The conjugation of a dual quaternion is defined as

q̂∗ = q∗r + q∗dε (2.39)
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Since in this work we are dealing only with unit dual quaternions, then we can say

that q̂∗ = q̂−1

Logarithmic Mapping The multiplication between dual quaternions is defined

as

ln q̂ =
1

2
(θ̄ + TBε), (2.40)

where θ̄ = 2 ln q is given by a quaternion logarithmic mapping.

This operation is commonly used to transform between a dual quaternion and its

axis-angle-translation equivalence Wang and Yu [2010].

Dual Quaternion Derivate When a dual quaternion is representing a simulta-

neous rotation and translation, it is defined as

q̂ , q + q⊗T
2
ε , q ∈ H, T ∈ R3 (2.41)

Where q represents the orientation of the body, and T represents its position with

respect to the body frame.

The derivate of equation (2.41) given as

˙̂q = q̇ +
1

2

[
q̇ ⊗ T + q ⊗ Ṫ

]
ε (2.42)

Applying the quaternion derivative from equation (2.16)

˙̂q =
1

2
q ⊗ ω +

[
1

4
q ⊗ ω ⊗ T +

1

2
q ⊗ Ṫ

]
ε (2.43)

Applying the property from equation (A.1) we obtain that

˙̂q =
1

2
q ⊗ ω +

[
1

2
q ⊗ (ω × T ) +

1

4
q ⊗ T ⊗ ω +

1

2
q ⊗ Ṫ

]
ε (2.44)
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Factorizing

˙̂q =
1

2

(
q +

q ⊗ T
2

ε

)
⊗
(
ω + [ω × TB + ṪB]ε

)
(2.45)

Let’s define

ξ̂ , ω + [ω × TB + ṪB]ε (2.46)

where ξ̂ is the twist dual vector (combination of angular and translational velocities).

Finally, we obtain the final expression for the derivate of a dual quaternion

˙̂q =
1

2
q̂ ⊗ ξ̂ (2.47)

2.3.2 Unit Dual Quaternions.

Let q̂ be a dual quaternion given by

q̂ = q +
q ⊗ TB

2
ε (2.48)

where q is the unit quaternion that defines the attitude of the body, TB is the

translation vector with respect to the body frame (also a quaternion with real part

equal to zero), and ε2 = 0, ε 6= 0.

If q̂ is a unit dual quaternion, then it can be used to describe simultaneously, the

rotation and translation of the body with respect to the inertial frame.

Some advantages of using this representation, contrary to the separated rotational

and translational sub-models, is that it is possible to describe various rotations and

translations using only dual quaternion products, thus providing computational and

mathematical simplicity to the model and the control algorithms.

2.3.2.1 Dual Quaternion Logarithmic Mapping

In section 2.3.1, it is shown that there exists a direct relationship between the “Axis-

Angle-Translation” notation and a dual quaternion trough the Logarithmic mapping
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ln q̂ = 1
2
(θ̄ + TBε) in equation (2.40).

This representation offers a more intuitive way to understand the transformation

(simultaneous rotation and translation for a rigid body with respect of two reference

frames).

2.3.3 Quadcopter Dual Quaternion Kinematics.

As done when modeling the vehicle with unit quaternions, it is considered that the

quadrotor is a rigid body with 6 DoF and is under-actuated as shown in equations

(2.22) and (2.29).

The state vector of the quadrotor can be expressed in terms of its orientation, position,

and twist as

x :=


q̂
ξ̂


 =


 q + q⊗T

2
ε

ω + [ω × T + Ṫ ]ε


 (2.49)

where

• T =
[
x y z

]T
is the translational position in the body frame.

• Ṫ =
[
ẋ ẏ ż

]T
denotes the translational velocity vector in the body frame.

• q = q0 +
[
q1 q2 q3

]T
defines the vehicle orientation with respect to the

inertial frame, represented as a unit quaternion.

• ω =
[
ωx ωy ωz

]T
represents the rotational velocity in the body frame.

2.3.4 Quadcopter Dual Quaternion Dynamic Model.

The dynamic model of a quadcopter using Newton-Euler approach with dual quater-

nions is described in Wang and Yu [2010] as follows
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Remember that rotational dynamics of a rigid body is given by

Jω̇ + ω × (Jω) = τ (2.50)

According to Newton’s equations of motion, the translational dynamic of a rigid

body relative to its body frame is

mT̈ = F (2.51)

Differentiating equation (2.46), it can be obtained that

˙̂
ξ = ω̇ + [ω̇ × TB + ω × ṪB + T̈B]ε (2.52)

Substituting equations (2.50) and (2.51) in equation (2.52), the dynamic model is

obtained

x =


q̂
ξ̂


 , ẋ =




˙̂q

˙̂
ξ


 =




1
2
q̂ ⊗ ξ̂
F̂ + û


 (2.53)

where 



F̂ = a+ (a× TB + ω × ṪB)ε

û = J−1τ + [J−1τ × TB +m−1F ]ε

a = −J−1(ω × Jω)

(2.54)

The relationships between the input torques and forces are




Fth

τux

τuy

τuz




=




4∑
i=1

ki ω
2
i

l (k1 ω
2
1 − k2 ω2

2 − k3 ω2
3 + k4 ω

2
4)

l (k1 ω
2
1 + k2 ω

2
2 − k3 ω2

3 − k4 ω2
4)

4∑
i=1

τi (−1)i




(2.55)

where ki ω
2
i defines the thrust of the propeller of motor i with respect to its angular

velocity ωi, l is the distance from the center of mass to the motor axis of action and

τi denotes the torque of motor i.
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Equilibrium Points. In order to find the equilibrium points, it is necessary to

find the states and control inputs x∗, û∗ where ẋ = 0.

Taking this into account, the equilibrium points are

⇒ x∗ =


q̂
∗

0̂


 =


q
∗ + q∗⊗T ∗

2
ε

0̂


 , û∗ = 0̂




⇒ F = 0⇒ Fu = −Fext
⇒ τ = 0⇒ τu = −τext

(2.56)

This corroborates the intuitive approach for finding the equilibrium points; the

platform will stay still at any position and orientation in space, as long as its angular

velocity, and translational velocity equal to zero, and also as long as the control

forces and torques counteract the external ones.

2.3.5 Quadrotor with Jointed Arm Model

Once both models were stated and tested, it was seen that dual quaternions offer more

advantages when it comes to modeling for robotic arms, since their mathematical

operations make it simpler when applying multiple rotations and translations.

The problem is stated as a robotic arm with three imaginary links, as shown in figure

2.2. The position and orientation of the final gripper can be obtained by combining

rotations and translations from the inertial frame to the final actuator, all by using

dual quaternions, being

• q̂v the dual quaternion that describes transformation from the inertial frame to

the quadrotor’s reference frame.

• q̂c the constant dual quaternion that describes transformation from the quadro-

tor’s reference frame to the first articulation of the robotic arm.

• q̂b the dual quaternion that describes transformation from the first articulation

of the robotic arm to the final actuator.
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Figure 2.2: Complete platform seen as a robotic arm with seven DoF

The following assumptions are done

• The center of mass of the quadrotor is located in the geometrical origin of the

vehicle’s reference frame

• The link corresponding to q̂c has no mass since it is considered inside of the

quadrotor.

• The center of mass of the robotic arm is located in its ending (this is acceptable,

since the gripper is made of metal, and the other pieces are made of plastic or

carbon fiber)

2.3.5.1 Multiple Transformations

Consider three dual quaternions that describe three simultaneous rotations and

translations

q̂1 = q1 +
q1 ⊗ TB1

2
ε , q̂2 = q2 +

q2 ⊗ TB2

2
ε , q̂3 = q3 +

q3 ⊗ TB3

2
ε
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where q̂1 describes the simultaneous rotation and translation from the inertial frame

to a first body frame, q̂2 describes the rotation and translation from the first body

frame to a second body frame, and q̂3 from the second body frame to a third body

frame.

The final transformation from the inertial frame to the third body frame (with respect

to the third body’s reference frame) is given by

q̂total = q̂1 ⊗ q̂2 ⊗ q̂3 (2.57)

2.3.5.2 Complete Dynamic Model

Using the quadrotor dynamical model in equation (2.53) we define

x ,




q̂v

ξ̂v

q̂f

ξ̂f



⇒ ẋ =




˙̂qv
˙̂
ξv

˙̂qf
˙̂
ξf




=




1
2
q̂v ⊗ ξ̂v
F̂v + ûv

1
2
q̂f ⊗ ξ̂f
F̂f + ûf




(2.58)

where q̂v describes the transformation of the quadrotor platform, q̂f describes the

transformation of the final actuator, and ξ̂v and ξ̂f are their respective twists, with

q̂f = q̂v ⊗ q̂c ⊗ q̂b (2.59)

In order to obtain the detailed model, the Newton-Euler approach is used in each

link.

Quadrotor Imaginary Link

For the first link, the resolution for ˙̂qv is trivial, since equations (2.53) and (2.54)

already describe it.
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


˙̂qv
˙̂
ξv


 =




1
2
q̂v ⊗ ξ̂v
F̂v + ûv


 (2.60)

with

ξ̂v = ωv + [ωv × Tv + Ṫv]ε

where ωv is the angular velocity vector with respect of the vehicle’s reference frame,

Tv is its position, and.





F̂v = av + (av × Tv + ωv × Ṫv)ε
ûv = J−1v τv + [J−1v τv × Tv +m−1v Fv]ε

av = −J−1v (ωv × Jvωv)
,

where Jv is the inertia matrix of the aerial platform, τv = τv−u + τv−ext is the sum of

the torques that act on the vehicle, and Fv = Fv−u + Fv−ext corresponds to the sum

of the forces.

Robotic Arm’s Link

In this subsection, for the sake of simplicity, we will consider a simpler notation for

quaternion products, that means that q̂a ⊗ q̂b is equivalent to q̂aq̂b, and qa ⊗ qb is

equivalent to qaqb.

For q̂f , we can obtain from equation (2.59) that

q̂f =

(
qv +

1

2
qvTvε

)(
q0 +

1

2
q0Tcε

)(
qb +

qb ⊗ Tb
2

ε

)
, (2.61)

Then expanding the product

q̂f = qvqb +
1

2
[qvqbTb + qv(Tc + Tv)qb] ε (2.62)

The inverse of q̂f will be needed later

q̂∗f = q∗bq
∗
v −

1

2
[Tbq

∗
bq
∗
v + q∗b(Tc + Tv)q

∗
v] ε (2.63)
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Differentiating (2.62) the derivate of the first state is obtained

˙̂qf = q̇vqb +qvq̇b +
1

2
q̇vqbTbε+

1

2
qvq̇bTbε+

1

2
qvqbṪbε+

1

2
q̇v(Tc +Tv)qbε+

1

2
qvṪvqbε

+
1

2
qv(Tc + Tv)q̇bε

= q̇vqb+qvq̇b+
1

2

[
q̇vqbTb + qvq̇bTb + qvqbṪb + q̇v(Tc + Tv)qb + qvṪvqb + qv(Tc + Tv)q̇b

]
ε

(2.64)

We know that the differentiate of any dual quaternion that expresses a transformation

is given by equation (2.47), thus the derivate of (2.62) is given by

˙̂qf =
1

2
q̂f ξ̂f ⇒ ξ̂f = 2q̂∗f ˙̂qf (2.65)

Substituting (2.62) and (2.64) to (2.65) a larger expression for ξ̂f is obtained

ξ̂f = 2
(
q∗bq

∗
v − 1

2
[Tbq

∗
bq
∗
v + q∗b(Tc + Tv)q

∗
v] ε
) (

q̇vqb + qvq̇b + 1
2

[q̇vqbTb

+qvq̇bTb + qvqbṪb + q̇v(Tc + Tv)qb + qvṪvqb + qv(Tc + Tv)q̇b

]
ε
)

= 2q∗bq
∗
v(q̇vqb + qvq̇b)− [Tbq

∗
bq
∗
v + q∗b(Tc + Tv)q

∗
v] q̇vqbε− [Tbq

∗
b

+q∗b(Tc + Tv)] q̇bε+
[
q∗bq

∗
vq̇vqbTb + q∗b q̇bTb + Ṫb + q∗bq

∗
vq̇v(Tc + Tv)qb

+q∗b Ṫvqb + q∗b(Tc + Tv)q̇b

]
ε

(2.66)

Applying now the derivate of a unit quaternion from equation (2.16)

ξ̂f = q∗bωvqb + ωb +
1

2
[−Tb × q∗bωvqb − q∗b(Tc + Tv)× ωvqb − Tb × ωb

+ q∗bωvqb × Tb + ωb × Tb + Ṫb + q∗bωv × (Tc + Tv)qb + 2q∗b Ṫvqb]ε

Applying the properties from equations (A.6) and (A.1)

ξ̂f = q∗bωvqb+ωb+

[
ωb × Tb + q∗bωvqb × Tb + q∗bωv × (Tc + Tv)qb + q∗b Ṫvqb +

1

2
Ṫb

]
ε
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In our prototype, the length of the robotic arm Tb is constant, thus the vector Ṫb is

zero

ξ̂f = q∗bωvqb + ωb +
[
ωb × Tb + q∗bωvqb × Tb + q∗bωv × (Tc + Tv)qb + q∗b Ṫvqb

]
ε

(2.67)

Differentiating now equation (2.67)

˙̂
ξf = q̇∗bωvqb + q∗b ω̇vqb + q∗bωvq̇b + ω̇b + [ω̇b × Tb + q̇∗bωvqb × Tb

+q∗b ω̇vqb × Tb + q∗bωvq̇b × Tb + q̇∗bωv × (Tc + Tv)qb + q∗b ω̇v × (Tc + Tv)qb

+q∗bωv × Ṫvqb + q∗bωv × (Tc + Tv)q̇b + q̇∗b Ṫvqb + q∗b T̈vqb + q∗b Ṫvq̇b

]
ε

(2.68)

The expressions for the derivate of the orientation of the arm and the vehicle, and

their derivates are q̇b = 1
2
qbωb, q̇

∗
b = −1

2
ωbq

∗
b , q̇v = 1

2
qvωv, and q̇∗v = −1

2
ωvq

∗
v, thus

˙̂
ξf = −1

2
ωb × q∗bωvqb + q∗b ω̇vqb + 1

2
q∗bωvqb × ωb + ω̇b

+
[
ω̇b × Tb − 1

2
ωb × q∗bωvqb × Tb + q∗b ω̇vqb × Tb + 1

2
q∗bωvqb × ωb × Tb

−1
2
ωb × q∗bωv × (Tc + Tv)qb + q∗b ω̇v × (Tc + Tv)qb + q∗bωv × Ṫvqb

+1
2
q∗bωv × (Tc + Tv)qbωb − 1

2
ωb × q∗b Ṫvqb + q∗b T̈vqb + 1

2
q∗b Ṫvqb × ωb

]
ε

(2.69)

Now applying property from equation (A.6)

˙̂
ξf = q∗bωvqb × ωb + q∗b ω̇vqb + ω̇b

+
[
ω̇b × Tb + q∗bωvqb × ωb × Tb + q∗b

(
ω̇v × (Tc + Tv) + ωv × Ṫv

)
qb

+q∗bωv × (Tc + Tv)qb × ωb + q∗b Ṫvqb × ωb + q∗b T̈vqb + q∗b ω̇vqb × Tb
]
ε

(2.70)

Separating now the components for the angular acceleration of the final actuator

from equation (2.70), the following expression is defined

ω̇f , q∗bωvqb × ωb + q∗b ω̇vqb + ω̇b (2.71)
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Then, equation (2.70) is reduced to

˙̂
ξf = ω̇f +

[
ω̇f × Tb + q∗b

(
ωv × (Tc + Tv) + Ṫv

)
qb × ωb

+q∗b

(
T̈v + ω̇v × (Tc + Tv) + ωv × Ṫv

)
qb

]
ε (2.72)

Now, the components of the translational acceleration are separated, thus defining

T̈f , q∗b

(
T̈v + ω̇v × (Tc + Tv) + ωv × Ṫv

)
qb (2.73)

Finally, the final expression for the derivate of the second state is given by

˙̂
ξf = ω̇f +

[
ω̇f × Tb + q∗b

(
ωv × (Tc + Tv) + Ṫv

)
qb × ωb + T̈f

]
ε (2.74)





Chapter 3

Quaternion Control

After the two versions of the model were presented, two control laws are now proposed

to stabilize the system in a desired position, two sections compose this chapter, the

first one is an exact linearization that stabilizes the orientation of the vehicle, then a

trajectory is calculated to stabilize its position, the second one is a feedback regulator

that simultaneously stabilizes the vehicle in position and orientation using dual

quaternions, a trajectory is also calculated to stabilize the position by modifying the

orientation.

3.1 Unit Quaternion Control

For the first control approach a special feedback is stated such that the non-linear

model of the quadrotor becomes linear, in this section the robotic arm is considered

as an external torque such that it can be compensated.

39
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3.1.1 Attitude algorithm

From and using the logarithmic mapping from (2.20), the rotational dynamic model

of the quadrotor from (2.25) can be expressed as

xatt =


 θ̄
ω


 ⇒ ẋatt =


 ω

J−1 (τ − ω × J ω)


 (3.1)

The objective is to force the system to have a linear behavior, thus we propose a

virtual control such that this can be accomplished

τ = J u+ ω × J ω (3.2)

being u the new control input, then (3.1) yields

ẋatt = Axatt +Bu (3.3)

with A =


 0 I3

0 0


, and B =


 0

I3


.

Remember that τ = τu + τext, so the torques that the motors have to apply to the

vehicle are

τu = J u+ ω × J ω − τext (3.4)

3.1.1.1 State Feedback Control

Proposing the following control law

u = −Kattxatt (3.5)

where Katt > 0 denotes the feedback gains, thus equation (3.3) becomes a closed-loop

system

ẋatt = Axatt −BKattxatt (3.6)
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Therefore, if the gain matrix Katt is selected such that the eigenvalues of A−BKatt

have all negative real parts, then system (2.25) (and its equivalence (3.1)) becomes

exponentially stable, and converges asymptotically to the origin.

3.1.1.2 Error Stabilization

The quaternion error is defined as follows

qe = q ⊗ q∗d (3.7)

Note that if q → qd, then q ' qd ⊗ q∗d = q0, where q0 = 1 + [0 0 0]T .

Hence, if the control law is implemented using the quaternion error as

u = −Kattxatt−e (3.8)

where

xatt−e =
[

(2 ln qd)
T ωTe

]T
, ωe =

d

dt
2 ln qd (3.9)

then, the orientation will converge asymptotically to the desired reference

xatt−e → 0̄ ⇒ qe → q0 ⇒ q → qd

3.1.1.3 Robotic Arm Effects

From equation (2.33) the torques that the robotic arm produce on the platform can

be calculated. and incorporated in equation (3.4) as

τu = J u+ ω × J ω − (qb ⊗ rb ⊗ q∗b + rc)×mb~gv − Jb(ωv + ωb) (3.10)
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3.1.2 Position Strategy

Rewriting equation (2.28), we have that

ẋpos =


 ṗ

p̈


 =


 ṗ

q ⊗ Fu
m
⊗ q∗ + g


 (3.11)

3.1.2.1 Feedback Linearization

Define

up = q ⊗ Fu
m
⊗ q∗ (3.12)

The following exact linearization is proposed

up = upos − g (3.13)

with upos denoting the new control input.

Then rewriting (2.28) we have

ẋpos =


 0 I3

0 0


xpos +


 0

I3


upos

= Apos xpos +Bpos upos

(3.14)

3.1.2.2 State Feedback Control

Proposing the following control law that uses the position error to stabilize the

system in a desired reference

upos = −Kpos (xpos − xposd) (3.15)

with xposd as the desired position state, then this controller exponentially stabilizes

subsystem (3.14) if the gain matrix Kpos is selected such that the eigenvalues of
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Apos −BposKpos have all negative real parts.

3.1.3 Attitude Trajectory

The quadrotor is an under-actuated system, and the only force that can be applied

to stabilize the vehicle is Fu, which can only act in the z-axis of the body frame,

according with equation (2.29).

Notice that the quaternion norm is ||q|| = 1 thus, the direction of the input vector

up = q⊗ Fu
m
⊗ q∗ depends exclusively on the vehicle’s orientation, and its magnitude

depends entirely of the magnitude of the vector Fu

m
, which is also a control input of

the quadcopter.

Notice that the orientation of the vehicle is completely actuated, then the position

of the quadrotor with respect to the inertial frame can be controlled by defining a

trajectory for its orientation.

If up is the force in the inertial frame that stabilizes the system (2.28) at the desired

position, then there exists a rotation qd that makes the vector Fu coincide with up

in the inertial frame.

The algebraic relationship between Fu, qd, and up is

q′d = (b · up + ||up||) + b× up
qd =

q′d
||q′d||

Fu = b ||up||m

(3.16)

where b = [0 0 1]T is a unitary vector denoting the axis in which the thrust acts in

the body frame.

The angular velocity trajectory can be obtained by differentiating the desired orien-

tation

ωd =
d

dt
(2 ln qd) (3.17)
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Therefore, the quaternion error is calculated using (3.16), following equation (3.7),

and then implemented in the attitude algorithm such that q u qd, which implies

that up u q ⊗ Fu
m
⊗ q∗ and then, the model (2.28) is stabilized alongside with the

model (2.25).

3.2 Dual Quaternion Control

Unit quaternions provide a simple way of stabilizing the platform, but when the

references of the quadrotor depend on the orientation and position of the robotic

arm, the calculations become more complex.

It was shown in section 2.3 that dual quaternions are a simpler way to deal with

multiple rotations and translations, thus a control scheme that stabilizes the system

using dual quaternions is needed.

The effects of the robotic arm are included such that the transformation of the

quadrotor vehicle depends on the references of the final actuator. The dynamic

effects are included as external torques and forces.

3.2.1 Proposed Control Law

A control law is proposed such that the sub-system
˙̂
ξ = F̂ + û from equation (2.53)

is exactly linearized

û = 2k̂p · ln q̂ + k̂v · ξ̂ − F̂ (3.18)

where k̂p = k̄pr + k̄pdε and k̂v = k̄vr + k̄vdε are dual vectors that contain the control

gains with k̄pr, k̄pd, k̄vr, k̄vd ∈ R3.

Theorem 1: The control law (3.18) in (2.53) assures that the dual quaternion

q̂ converges asymptotically to the identity dual quaternion q̂0 = 1 + [0, 0, 0]T +
[
0 + [0, 0, 0]T

]
ε, using appropriate k̂p and k̂v.
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Proof: Substituting (3.18) in (2.53)




˙̂q

˙̂
ξ


 =




1
2
q̂ ⊗ ξ̂

2k̂p · ln q̂ + k̂v · ξ




rewriting the
˙̂
ξ dynamics

˙̂
ξ = 2k̂p · ln q̂ + k̂v · ξ̂ (3.19)

Applying the definition of the logarythmic mapping and the twist to (3.19), we obtain

˙̂
ξ = k̂p · (θ̄ + Tε) + k̂v · (ω + [ω × T + Ṫ ]ε) (3.20)

If we compare (3.20) with (2.52), it can be seen (using the dual vector dot-product)

that the rotational acceleration is given by

ω̇ = Kprθ̄ +Kvrω (3.21)

and the translational acceleration by

T̈ = KpdT +Kvd(ω × T + Ṫ )− (ω̇ × T + ω × Ṫ ), (3.22)

where Kpr, Kpd, Kvr, Kvd ∈ R3×3 are the diagonal matrices of k̄pr, k̄pd, k̄vr and k̄vd

respectively.

Taking in account that ω = ˙̄θ, then we obtain the following equation for the rotational

acceleration

¨̄θ −Kvr
˙̄θ −Kprθ̄ = 0 (3.23)

Using Laplace transformation, we can obtain the following expression

Θ̄1s
2 −KvrΘ̄s−KprΘ̄ = 0

s2 −Kvrs−Kpr = 0 (3.24)
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If k̄vr and k̄pr are selected such that the roots of (3.24) are defined negative, then θ̄1

as well as ω1, and ω̇1 will converge to zero asymptotically.

We can now gather all the forces that are originated from the rotational velocity and

acceleration defining

F (ω, ω̇) = −Kvd(ω × T ) + ω̇ × T + ω × Ṫ (3.25)

It was already proved that θ̄, ω, and ω̇ converge asymptotically to zero, then this

implies that when t→∞, then F (ω1, ω̇1)→ 0.

Then, there is a finite time such that equation (3.25) will be so small that can be

neglected, and equation (3.22) could be reduced to

T̈ = KpdT +KvdṪ (3.26)

Using Laplace transform, we obtain the following polynomial

Ts2 −KvdTs−KpdT = 0

s2 −Kvds−Kpd = 0 (3.27)

If k̄vd and k̄pd are elected such that the roots of (3.27) are defined negative, then T

as well as Ṫ , and T̈ converge to zero asymptotically. �

3.2.2 Application in a Quadrotor Platform

It is known that quadrotors are under-actuated systems, although the input torques

can act over the three axises (x, y, z), the input forces are considered to only act in

the z axis, see equation (2.55), for this reason, the control law proposed in (3.18) can

not be implemented directly in our vehicle.
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It is important to design a dual quaternion based control that can be implemented

in our quadrotor platform. A trajectory for the attitude must be calculated using a

relationship between a desired force in the inertial frame and a reference in orientation.

Substituting the description of the twist from (2.46) in (3.18)

û = 2k̂p · ln q̂ + k̂v · (ω + [ω × T + Ṫ ]ε)− F̂
= J−1τ + [J−1τ × T +m−1F ]ε

(3.28)

Then

k̂p · (θ̄ + Tε) + k̂v · (ω + [ω × T + Ṫ ]ε)− a− (a× T + ω × Ṫ )ε

= J−1τ + [J−11 τ × T +m−1F1]ε

Kprθ̄ +KpdTε+Kvrω +Kvd[ω × T + Ṫ ]ε− a− (a× T + ω1 × Ṫ )ε

= J−1τ + [J−1τ × T +m−1F ]ε (3.29)

Separating the real and dual parts from (3.29) we obtain the expressions for the

input torques and forces

τ = τu + τext = J(Kprθ̄ +Kvrω − a)

τu = J(Kprθ̄ +Kvrω − a)− τext
(3.30)

remember that τext can be obtained from equation (2.33).

F = Fu + Fext

= m
(
KpdT +Kvd[ω × T + Ṫ ]− (a1 × T + ω1 × Ṫ )− J−11 τ1 × T

)

Fu = m
(
KpdT +Kvd[ω × T + Ṫ ]− (a1 × T + ω1 × Ṫ )− J−11 τ1 × T

)
− Fext

(3.31)

Equation (3.30) determines the torques that are applied as an input by the control

law. As it was shown, there is a finite time when the angular velocity and acceleration

can be neglected because when t → ∞, then θ̄ → 0, ω → 0, ω̇ → 0, and τ1 → 0 y
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a→ 0. Then equation (3.31) can be reduced to

Fu = m
(
KpdT +Kvd[ω × T + Ṫ ]− (a1 × T + ω1 × Ṫ )

)
− Fext (3.32)

In the case of a quadrotor platform, it can be considered that Fext is the gravity

force in the body reference given by Fext = mq∗ ⊗ ḡ ⊗ q, thus

Fu = m
(
KpdT +Kvd[ω × T + Ṫ ]− (a1 × T + ω1 × Ṫ )

)
−mq∗ ⊗ ḡ ⊗ q (3.33)

It is important to note that the desired control force that is necessary to move the

body to the desired reference is given in equation (3.33) and is referenced to the

body frame. This force can be expressed in the inertial frame by defining

FuI , q ⊗ Fu ⊗ q∗ (3.34)

3.2.2.1 Error Stabilization

The quaternion error is defined as follows

q̂e = q̂ ⊗ q̂∗d = qe +
qe ⊗ Te

2
ε (3.35)

where

q̂ = q +
q ⊗ T

2
ε , q̂d = qd +

qd ⊗ Td
2

ε

being qd the desired attitude, and Td the desired position in the body frame, then

q̂e =
(
q + q⊗T

2
ε
)
⊗
(
qd + qd⊗Td

2
ε
)∗

=
(
q + q⊗T

2
ε
)
⊗
(
q∗d −

Td⊗q∗
d

2
ε
)

=
(
q ⊗ q∗d +

q⊗(T−Td)⊗q∗
d

2
ε
)
⇒ Te = qd ⊗ (T − Td)⊗ q∗d

(3.36)

Note that if q̂ → q̂d, then q → qd, and T → Td, thus q̂ ' q̂d ⊗ q̂∗d = q̂0, where

q̂0 = 1 + [0 0 0]T +
[
0 + [0 0 0]T

]
ε. Therefore, if the control law from equation
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(3.18) is implemented using the dual quaternion error as

û = 2k̂p · ln q̂e + k̂v · ξ̂e − F̂ (3.37)

with

ξ̂e = ωe + [ωe × Te + Ṫe]ε

Then the error will converge to q̂0, thus the transformation will converge asymptoti-

cally to the desired reference q̂d.

3.2.3 Trajectory Calculation

We have already discussed that the quadrotor is an under-actuated system, the

trajectory from equation (3.16) must be calculated to fully stabilize the system.

If FuI is the force in the inertial frame that stabilizes the system (2.28) at the desired

position, then there exists a trajectory qd that makes the vector Fth from equation

(2.55) coincide with up in the inertial frame.

Following the algebraic relationship from equation (3.16), we obtain

q′d = (b · FuI + ||FuI ||) + b× FuI
qd =

q′d
||q′d||

Fth = b ||FuI ||

(3.38)

and in consequence

ωd =
d

dt
(2 ln qd) (3.39)

Therefore, the quaternion error is calculated using (3.38), following equation (3.35),

and then implemented in the control law from (3.18) such that q̂ u q̂d, which implies

that FuI u q ⊗ Fth
m
⊗ q∗, thus the model (2.53) converges asymptotically to the

desired position Td with orientation q = q0.
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3.2.4 Definition of the References

One of the objectives of this work is to obtain a control scheme where the final effector

of the robotic arm stabilizes in a desired position and orientation, this transformation

can be given as a dual quaternion

q̂fd = qfd +
qfd ⊗ Tfd

2
ε (3.40)

Where the position is given in the body reference frame as Tfd = 0+[pfd−x, pfd−y, pfd−z]T

and qfd = qxy ⊗ qz is the desired orientation of the gripper.

qxy represents the desired orientation in the x and y axises, and qz gives the orientation

around the z axis.

Note that qxy depends only on the inclination of the robotic arm because the

quadrotor needs to be stabilized in its equilibrium point with respect to the x and y

axes, thus

qxy =




qxy0

qxy1

qxy2

qxy3




=




cos(||θxy||/2)

ē0 sin(||θxy||/2)

ē1 sin(||θxy||/2)

0




ē ∈ R3 denotes the orientation given as a unit vector

ē =




ē0

ē1

ē2


 =




θx

θy

θz


 , ||ē|| = 1

where θx and θy are references which values are between -1 and 1, and θz = 0
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θxy ∈ R3 is a vector that represents the desired orientation in axis-angle representation,

and is given by

θxy =




θxαmaxx

θyαmaxy

θzαmaxz


 ,

where αmaxx , αmaxy , and αmaxz are the maximum angles that the arm can be rotated.

Similarly, the quaternion reference for the z axis is defined as

qz =




qz0

qz1

qz2

qz3




=




cos(θz)

0

0

sin(θz)




(3.41)

where θz is the desired angle for the final effector around the z axis.

3.2.4.1 Inverse Kinematics

In order to stabilize the system, the desired transformation for the vehicle must be

defined, this is accomplished by taking the reference of the final efector q̂fd, and

using inverse kinematics to obtain the respective reference for the quadrotor q̂vd.

From equation (2.59), the transformation of the vehicle can be obtained with

q̂v = q̂f ⊗ q̂∗b ⊗ q̂∗c (3.42)

If q̂f is replaced with q̂fd from equation (3.40), then the reference for the quadrotor

platform is given by

q̂vd = q̂fd ⊗ q̂∗b ⊗ q̂∗c (3.43)

with

q̂vd = qvd +
qvd ⊗ Tvd

2
ε. (3.44)
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As it was before stated the vehicle’s orientation must be stabilized in a trajectory

defined in equation (3.38), but this orientation doesn’t give a reference around the z

axis because this angle does not affect the direction of the force FuI .

Let qz be a quaternion that defines the desired angle to be rotated around the z axis,

then the reference qd given by the trajectory is completed with qz using a quaternion

product as

qvd = qd ⊗ qz (3.45)

The reference for the orientation of the mechanical arm is given by

qbd = qxz ,

Thus the reference is calculated using equation (3.42), then qvd is replaced using

(3.45), and then the error is calculated using equation (3.35)



Chapter 4

Numeric Validation

Systems proposed in chapter 2 (equations (2.53), and (2.60)) were simulated in order

to validate the closed-loop system stability, using the Python programming language,

along with the SciPy, NumPy, and Python Systems Control libraries, see Jones et al.

[2001], Van Der Walt et al. [2011], and Goppert et al. [2014]. The quadrotor models

(2.30) and (2.53) were simulated by integrating numerically ẋ using SciPy’s integrate

function for a period of ten and five seconds respectively.

4.1 Unit Quaternion Control Simulations

The control inputs (3.5) and (3.15) were implemented using Katt and Kpos, which

were determined using a linear quadratic regulator using the function lqr() included

in the python control library. The results of this simulations were presented by our

team in Cariño et al. [2015]

53
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Katt =




100 0 0 14.142 0 0

0 100 0 0 14.142 0

0 0 3.16e− 6 0 0 2.51e− 3




Kpos =




3.1622 0 0 2.7063 0 0

0 3.1622 0 0 2.7063 0

0 0 3.1622 0 0 2.7063




The quaternion operations were previously defined using NumPy’s vector and cross

products, and then included in a custom library. The parameters used were the

following.

J =




0.0118976 0 0

0 0.0118976 0

0 0 0.0218816




p0 =
[

1 2 0
]T

ṗ0 =
[

0 0 0
]T

ω0 =
[

0 0 0
]T

pd =
[

1 2 0
]T

ṗd =
[

0 0 0
]T

m = 1.3 kg

4.1.1 Attitude Stabilization

The first simulation was defined to stabilize the attitude of the quadrotor. Figures

4.1 and 4.2 show the stabilization of the vehicle states, for example in Figure 4.1,

it can be seen that the quaternion stabilizes in the equilibrium point. Similarly, in
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Figure 4.2 we can observe that the angular velocities converge to zero. This means

that the vehicle will converge exponentially to a given orientation and stay still in it.

A trajectory is calculated from the position control (see section 4.1.2) qd comes from

the position control, the desired attitude is illustrated withqd in Figure 4.3. Figure

4.4 illustrates the behavior of the quaternion error. Since the quaternion error is

defined as qe = q ⊗ q−1d , so in this case the attitude (q) converges to the desired

trajectory (qd), making the error q converge to the unit quaternion.

On the other hand, Figure 4.5 depicts the angular velocity errors in a logarithmic

scale, it can be seen that the angular velocity converges to zero at an infinite time,

since the error values approach to −∞, and the inverse of the logarithmic scale

e−∞ → 0. In practical terms it can be considered that the system’s angular velocity

really converges to zero.
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Figure 4.1: Quadcopter attitude (q).
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Figure 4.2: Quadcopter rotational velocity ω.
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Figure 4.3: Quadcopter attitude reference (qd).
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4.1.2 Translational Stabilization

An initial position p0 = [1, 2, 0] was given, then a desired equilibrium point pd =

[0, 0, 1] was proposed as a reference to globally stabilize the system.

Figures 4.6 and 4.7 show that the system’s position exponentially converges from

the initial condition p0 to the reference pd.

Figures 4.8 and 4.9 introduce the translational error in a logarithmic scale, we can

see that it converges to zero in an infinite time. This error is insignificant in practical

terms.

The resulting error is used to calculate the attitude reference trajectory shown before

in section 4.1.1, see Figure 4.3. In Figure 4.9 the translational velocity errors in a

logarithmic scale are depicted, here it can be seen that the angular velocity converges

to zero at an infinite time. In practical terms it can be considered that the system’s

0 2 4 6 8 10

Time [s]

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Q
ua

te
rn

io
n

E
rr

or

qerror,0

qerror,1

qerror,2

qerror,3

Figure 4.4: Quadcopter attitude error (qe).
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Figure 4.5: Quadcopter attitude velocity error (ωe).

0 2 4 6 8 10

Time [s]

−0.5

0.0

0.5

1.0

1.5

2.0

Po
si

tio
n

[m
]

p0

p1

p2

Figure 4.6: Quadcopter translational position (p).
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angular velocity really converges to zero. Figure 4.10 shows the system inputs τux,

τuy, and τuz, notice that they converge to zero when the system stabilizes.
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Figure 4.7: Quadcopter translational velocity (ṗ).
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Figure 4.9: Quadcopter translational velocity error.
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Figure 4.8: Quadcopter translational position error.



Numeric Validation 61

0 2 4 6 8 10

Time [s]

−0.20

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20
C

on
tro

lI
np

ut
To

rq
ue

s
[N

m
]

τux

τuy

τuz

Figure 4.10: Quadcopter input.
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4.2 Dual Quaternion Control Simulations

Before the platform with the robotic arm is simulated, the control law from equation

(3.18) was numerically validated considering only the quadcopter vehicle. The control

gains k̂p and k̂v were selected in base of matrices Katt and Kpos, and making some

empirical modifications

k̂p =




100

100

3.16


+




3.1622

3.1622

3.1622


 ε , k̂v =




14.142

14.142

2.51


+




2.7063

2.7063

2.7063


 ε (4.1)

The dual quaternion operations were previously defined using NumPy’s vector and

cross products, and then included in a custom library. The vehicle’s parameters and

initial values q̂ini were considered as

J =




0.0118976 0 0

0 0.0118976 0

0 0 0.0218816




q̂ini = qini +
qini ⊗ Tini

2
ε

qini =
1 +

[
0 0 π

10

]T

norm

(
1 +

[
0 0 π

10

]T)

Tini =
[

1 1 1
]T

Ṫini =
[

0 0 0
]T

ωini =
[

0 0 0
]T

Td =
[

0 0 0
]T

Ṫd =
[

0 0 0
]T

m = 1.3 kg
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4.2.1 Dual Quaternion Stabilization

The results of the simulation were divided in order to understand them in a more intu-

itive manner, the attitude and the position were extracted from the dual quaternion

and plotted to better understand the behavior of the quadrotor.

An initial position Tini was given, then a desired equilibrium point Td was proposed

as a reference to globally stabilize the system. Figures 4.11 and 4.12 show that the

system’s position exponentially converges from the initial condition to the reference.
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Figure 4.11: Quadcopter translational position (p) using dual quaternions.
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Figure 4.12: Quadcopter translational velocity (ṗ) using dual quaternions.
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Figure 4.13: Quadcopter translational position error using dual quaternions.
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The resulting error is used to calculate the attitude reference trajectory qd shown

before in section 4.3.1, see Figure 4.14. Figure 4.15 shows the system inputs τux, τuy,

and τuz, notice that they converge to zero when the system stabilizes in the desired

trajectory.

It can be seen in Figure 4.16 that the quaternion stabilizes in the equilibrium point q0.

Similarly, Figure 4.17 shows that the angular velocities converge to zero. This means

that the vehicle follows the trajectory qd complimented with the desired reference

around the ”z” axis, thus stabilizing the dual quaternion to the equilibrium point.

Figures 4.18 and 4.19 show the attitude and angular velocity errors respectively. It

can be seen that qe converges to the unit quaternion while ωe stabilizes in zero.
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Figure 4.14: Quadcopter attitude reference (qd) using dual quaternions.
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Figure 4.15: Quadcopter input using dual quaternions
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Figure 4.16: Quadcopter attitude (q) using dual quaternions.
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Figure 4.17: Quadcopter rotational velocity ω using dual quaternions.
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Figure 4.18: Quadcopter attitude error (qe) using dual quaternions.
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Figure 4.19: Quadcopter attitude velocity error (ωe) using dual quaternions.

4.3 Quadrotor with Robotic Arm Simulations

The robotic arm effects were incorporated to the simulation, a desired reference for

the final effector q̂f was given as a dual quaternion, the reference for the quadrotor

platform was calculated using equation (3.42). The torques that the arm cause on

the vehicle were compensated using equation (2.33) to calculate the external torques

of equation (3.30).

This simulation used the same values for k̂p and k̂v as well as for the vehicle’s

parameters as in section 4.2, the same custom library was also used in this simulation.



Numeric Validation 69

J =




0.0118976 0 0

0 0.0118976 0

0 0 0.0218816




q̂ini = qini +
qini ⊗ Tini

2
ε

qini =
1 +

[
0 0 π

10

]T

norm

(
1 +

[
0 0 π

10

]T)

Tini =
[

0 0 0
]T

Ṫini =
[

0 0 0
]T

ωini =
[

0 0 0
]T

Tfd−I =
[

0.5 0.5 0.5
]T

Ṫfd =
[

0 0 0
]T

m = 1.3 kg

mb = 0.2kg (4.2)

4.3.1 Dual Quaternion Stabilization

In order to better understand the behavior of the system, the plots corresponding to

the quadrotor’s orientation and position are firstly presented, then the graphs that

describe the orientation and position of the end effector are shown.

It is supposed that the end effector begins the simulation in a point given by q̂ini,

then a desired equilibrium point q̂fd was proposed following equation (3.40), as a

reference to globally stabilize the system in a desired position in the inertial frame

Tfd−I , considering that the orientation of the vehicle will follow a rotation given in

axis-angle representation by θ̄b = [π/4,−π/4, π/10]T . Using the inverse kinematics

obtained from equation (3.43) and (3.44), a position reference shown in Figure 4.20

is calculated for the quadrotor vehicle.
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Figure 4.20: Quadcopter translational position (T ), with arm effects.
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Figure 4.21: Quadcopter translational velocity (Ṫ ), with arm effects.
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Figure 4.23 displays the trajectory calculated with the position error, this reference

is used in the control law to calculate the input torques τux, τuy, and τuz shown in

Figure 4.24.

It can be seen in Figure 4.25 that the quaternion stabilizes in the equilibrium point

qd, in which the vehicle’s only rotation is around the z axis. Figure 4.26 shows

that the angular velocities converge to zero. This means that the vehicle follows

the trajectory qd complimented with the desired reference around the z axis, thus

stabilizing the dual quaternion to the equilibrium point.

Figures 4.27 and 4.28 show the attitude and angular velocity errors respectively. It

can be seen that qe converges to the unit quaternion while ωe stabilizes in zero.

Finally, Figures 4.29, 4.30 and 4.31 represent respectively the orientation quaternion

and final position (in the body and inertial frame) of the end effector.
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Figure 4.22: Quadcopter translational position error, with arm effects.
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Figure 4.23: Quadcopter attitude reference (qd) using dual quaternions.
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Figure 4.24: Quadcopter input using dual quaternions
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Figure 4.25: Quadcopter attitude (q), with arm effects.
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Figure 4.26: Quadcopter rotational velocity ω, with arm effects.
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It can be seen that at the final dual quaternion q̂f , which is composed by the final

rotation qf and translation Tf , the position and orientation of the end effector

converge asymptotically to the desired reference.
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Figure 4.27: Quadcopter attitude error (qe), with arm effects.
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Figure 4.28: Quadcopter attitude velocity error (ωe), with arm effects.
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Figure 4.29: Attitude quaternion for the robotic arm (qb).
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Figure 4.30: Final position for the end effector (Tf ) in the body frame.
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Figure 4.31: Final position for the end effector (Tf−I) in the inertial frame.



Chapter 5

Experimental Validation

The proposed control scheme was implemented in a quadrotor UAV platform. First, a

control law to stabilize the vehicle’s orientation using unit quaternions was validated,

then the dual quaternion controller was implemented.

The dynamic effects of the robotic arm were calculated using equation (3.10) while

the position and orientation reference for the quadcopter was computed using inverse

kinematics from equation (3.42).

5.1 System Description

The proposed quadrotor UAV was built in the UMI-LAFMIA laboratory with the

following technical description:

• Carbon fiber structure.

• 4 brushless motors with 14 poles each.

• 4 ESC speed controllers with 10 A capacity.

• 2.4 GHz Radio transmitter-receiver.

• 4 cell Li-Po battery with 5000 mAh charge capacity.

77
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• 32 bits Pixhawk micro-computer for flight control.

– Built-in accelerometers, gyroscopes, magnetometer, and barometer.

– Arducopter firmware.

• PX4-Flow (optical flow) sensor.

Figure 5.1: Proposed quadrotor platform

Figure 5.1 shows the quadrotor platform that was used to validate the proposed

control schemes before the robotic arm was taken into account.

Using direct measures and some estimations from a CAD software, and considering the

mechanical properties of the main components of the UAV, the following parameters

were obtained:

mv = 1.3kg

Jv =




0.010334 0 0

0 0.010322 0

0 0 0.016985



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5.1.1 Robotic Arm Description

The robotic arm was based on metal gear digital servo motors, alongside a 2 DoF

Robot arm with gripper and included servos.

(a) TGY-8103 servomotor (b) 2 DoF gripper

Figure 5.2: Mechanical actuators used in the robotic arm

One link was required to unite the mechanical actuator, the pieces that compose this

link were designed using a CAD software, and built in a 3D printer.

Figure 5.3: CAD sketch of the quadcopter with its robotic arm
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Taking direct measures, and based on the CAD tools from the mechanical design,

the following parameters for the robotic arm were obtained.

mc = 0.109kg , Jc =




0.002245 0 0

0 0.000467 0

0 0 0.001923




mb = 0.210kg , Jb =




0.004050 0 0

0 0.000103 0

0 0 0.004055




Figure 5.4: Quadrotor UAV with robotic arm
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5.2 Experimental Results

Three different experiments were made in order to validate each proposed scheme.

Firstly, the control law stated in equation (3.8) was implemented without considering

the robotic arm effects (considering τext = [0, 0, 0]T ). Then the robotic arm effects

were added following equation (2.31) to verify that the vehicle remains stable to the

disturbances. Lastly, the control law from equation (3.30) based on dual quaternions

was implemented to validate the position strategy.

5.2.1 Orientation Experiments

The resulting plots corresponding to the experiments that exclude the arm effects.

The atitude, orientation reference (given by the radio controller), attitude error,

angular velocity and input torques of the first flight test are shown in Figures 5.5 -

5.9.
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Figure 5.5: Quadrotor’s attitude
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Figure 5.6: Quadrotor’s attitude reference
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Figure 5.7: Quadrotor’s attitude error
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Figure 5.8: Quadrotor’s angular velocity
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Figure 5.9: Quadrotor’s input torques
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5.2.2 Orientation Experiments With Robotic Arm

In this second experiment the vehicle’s atitude, orientation reference (given by the

radio controller), attitude error, angular velocity and input torques are shown in

Figures 5.10, 5.11, 5.12, 5.13, and 5.15.

In this case the effects of the robotic arm are considered, thus its orientation and

torques are shown in Figures 5.14 and 5.15.
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Figure 5.10: Quadrotor’s attitude
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Figure 5.11: Quadrotor’s attitude reference
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Figure 5.12: Quadrotor’s attitude error
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Figure 5.13: Robotic arm’s torques
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Figure 5.14: Robotic arm’s orientation
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Figure 5.15: Quadrotor’s external torques

5.2.3 Position Experiments

In the last experiment the global stabilization of the vehicle is achieved by imple-

menting the dual quaternion based control law. The following graphs present the

vehicle’s position, attitude, orientation trajectory, attitude error, angular velocity

and input torques in Figures 5.16 - 5.21.

In this experiment the robotic arm’s torques were considered and displayed in Figure

5.22, and the orientation of the end effector is shown in Figure 5.23.

The vehicle was set to stabilize its linear velocity to zero, a better sensing technique is

needed to make a feedback in position for the x and w axes such as SLAM algorithms,

or Opti-Track cameras. The radio controller was used only to elevate the vehicle to

the desired altitude and to start the control law.
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Figure 5.16: Quadrotor’s position
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Figure 5.17: Quadrotor’s orientation
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Figure 5.18: Quadrotor’s orientation trajectory
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Figure 5.19: Quadrotor’s orientation error
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Figure 5.20: Quadrotor’s rotational velocity
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Figure 5.21: Quadrotor’s input torques
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Figure 5.22: External torques caused by the robotic arm
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Figure 5.23: End effector’s orientation





Chapter 6

Conclusions and Future Work

Quadrotor manipulators are platforms that promise many opportunities for scientific

research, and applications in civil, commercial, and industrial fields.

This thesis work proposed a model to describe the kinematics and dynamics of a

6 DoF aerial manipulator using a quadrotor UAV and a 2 DoF robotic arm, unit

quaternions and dual quaternions were proposed as tools to describe the orientation

and position of the vehicle, the arm, and the end effector.

Quaternions turned to be a very useful tool to achieve a mathematically simple

model, that can be exactly linearized, and stabilized with simple feedback control

laws.

Dual quaternions offered a simple way to express multiple transformations by using

only quaternion products and sums, this simplified the calculations for the inverse

kinematics required to determine the position and orientation references for the

quadrotor and the 2 DoF robotic limb.

The 2 DoF robot arm was sufficient to prove this concept and to compensate the

limitations of the quadcopter UAV, but certain applications may require more complex

actuators and more articulations. Dual quaternions could simplify the modeling

and control of larger robotic limbs, such that the multiple transformation can be

expressed as simple products between dual quaternions and vectors.
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The proposed control laws were tested in simulations and experiments, they shown a

very good performance considering their relative simplicity.

6.1 Future work

Some obstacles were found during the development of this project, more research is

needed to obtain a more robust platform. Some opportunities of improvement were

found that can lead to more scientific work of our team.

1. Implementation of better measurements of position

• SLAM techniques to locate the vehicle in the 3D space.

• Artificial vision to locate a target or an objective

• Estimator-observer schemes to have better approximations of the position

measurements

2. Proposition of adaptable control laws to estimate the change of mass and inertia

at the moment of grabbing an object with the gripper.

3. Robust control laws to obtain a better resistance against non considered

disturbances.

4. Cooperative algorithms to achieve certain tasks such as complex object manip-

ulation or construction.



Appendix A

Mathematical Proofs

A.1 Property 1.

v1 × v2 = 1
2
(v1 ⊗ v2 − v2 ⊗ v1) , v1, v2 ∈ R3 (A.1)

A.1.1 Proof:

Since we know that:

v1 ⊗ v2 = −v1 · v2 + v1 × v2 (A.2)

v2 ⊗ v1 = −v2 · v1 + v2 × v1 (A.3)

Thus:

v1 × v2 =
1

2
(−v1 · v2 + v1 × v2 + v2 · v1 − v2 × v1) (A.4)

v1 × v2 =
1

2
(v1 × v2 − v2 × v1) (A.5)

It is well known that

− v2 × v1 = v1 × v2 (A.6)
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Because of property (A.6), we demonstrate the equality:

1

2
(v1 × v2 − v2 × v1) =

1

2
(v1 × v2 + v1 × v2) = v1 × v2 � (A.7)
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