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“‘Do you know, I always thought Unicorns were fabulous monsters, too? I never saw

one alive before!’

‘Well, now that we have seen each other’ said the unicorn, ‘if you’ll believe in me,

I’ll believe in you.’”

Lewis Carroll, Through The Looking Glass
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Resumen(English)

Unmanned aerial vehicles are starting to have a greater impact both on commercial

and in the robotic applications. The technology nowadays has made it possible to

produce aircrafts with low-cost, high processing power and longer battery duration.

In particular, inertial measurement units have decreased their cost considerably by

using more efficient algorithms to filter inexpensive sensors, thus making it easier to

stabilize a vehicle’s attitude. It has also been possible for multirotor platforms to

stabilize their velocity by using optical flow and vision algorithms. However, even

now there are few commercial sensors that measure an aircraft system’s position that

can be put inside these platforms, besides the GPS systems.

The Quadrotor platform has proven to be able to maneuver in reduced and indoors

environments, but requires its position in order to be stable. GPS signal is usually

very poor inside buildings and urban corridors, so another method is needed for

localizing the drone. Also, the vehicle can bump or even crash with the surroundings

if they are not properly mapped. Solving this simultaneous localization and mapping

problem, or SLAM, under this conditions is a necessary step in order to increase this

platform’s applications.

In this work the SLAM problem is addressed using a laser range finder sensor to

map and locate a drone in an unstructured environment using a quaternion system

model. The main advantage of this scheme is that the vehicle’s model can be seen as

an axis-angle linear representation that reduces the complexity of the calculations.

The algorithm used in this case is the extended Kalman filter, but this concept can

also be applied in other solutions of the SLAM problem.

Keywords. SLAM, EKF, KF, ROS, Quaternion, Dynamics, Hypercomplex numbers,

Sliding mode, UAV, Drones, Multirotor



Resumen

Los veh́ıculos aéreos no tripulados estan empezando a tener un mayor impacto en

aplicaciones comerciales y robóticas. Las tecnoloǵıas emergentes han permitido

producir aeronaves con un coste bajo de producción, alto poder de procesamiento y

una mayor duración de las bateŕıas. En particular, se ha reducido considerablemente

el coste de fabricación de las centrales inerciales al usar algoritmos más eficientes

para filtrar datos de sensores de bajo costo, lo que se traduce en que sea más

fácil estabilizar la orientación de veh́ıculos aéreos. También ha sido posible para

plataformas multirotoras estabilizar su velocidad traslacional al utilizar sensores de

flujo óptico y algoritmos de visión. Sin embargo, en la actualidad existen pocos

sensores comerciales que puedan medir la posición de un veh́ıculo y que sean capaces

de integrarse adentro de estas plataformas, aparte del sistema de posicionamiento

global GPS.

La plataforma cuadrirotor ha demostrado ser capaz de maniobrar en espacios re-

ducidos y hambientes cerrados, pero requiere conocer su posición aproximada para

ser estable. La señal de los sensores de GPS normalmente es muy débil dentro de

edificios y en corredores urbanos, por lo que es necesario otro método para localizar

al drone. También, el veh́ıculo puede llegar a chocar o incluso estrellarse con el propio

ambiente si es que no se tiene un mapa adecuado del mismo. Resolver este problema

de mapeo y localización simultáneos, o SLAM por sus siglas en inglés, propiciará el

desarrollo de mayores aplicaciones para la plataforma cuadrirotor.

En este trabajo el problema de SLAM se ataca usando un sensor de barrido láser

para mapear y localizar al drone en ambientes no estructurados usando un modelo

del sistema basado en cuaterniones. La principal ventaja de este esquema es que el

modelo del veh́ıculo se puede ver analizar como un sistema linear en la representación

eje-ángulo que reduce la complejidad del diseño de algoritmos de control y de



Abbreviations xv

observación. El algorimto empleado en este caso para resolver el problema de SLAM

se basa en el filtro extendido de Kalman, pero este esquema se puede aplicar también

a otros algoritmos de SLAM.

Keywords. SLAM, EKF, KF, ROS, Quaternion, Dynamics, Hypercomplex numbers,

Sliding mode, UAV, Drones, Multirotor





Chapter 1

Introduction

Unmanned aerial vehicles, commonly referred as UAVs, are a relatively new array of

aerial robotic platforms that are becoming more common. They offer more flexibility

in terms of speed and maneuverability in contrast to ground and underwater platforms.

The current technology enables them to become fully autonomous for many tasks

such as following paths, surveillance and aerial video capture. For this reason there

has been an increasing interest in using them as vehicle platforms. The increasing

popularity of UAV comes from the fact that the cost of producing and testing them

has reduced drastically in recent years. Amongst the many types of aerial platforms,

one of the most studied and used because of its simple model is the quadcopter,

which is a special form of multicopter.

Current research in UAV navigation focuses primarily on problems associated with

the interactions between the UAV and its surrounding environment. The main

advantage of aerial vehicle is their mobility, but it can be affected by external factors

that are difficult to predict and compensate. The focus of this work is on one of the

most fundamental aspects of the vehicle, its position.

As drones move through their six degrees of freedom, they need to be aware of

their surroundings in order to guarantee a safe flight. The environment can consist

of buildings, the ground, possible obstacles, even other drones. However, the real

1



Introduction 2

challenge is how to know the location of all these features in a static frame of reference

because the majority of sensors used in UAVs are relative to other types of frames and

rarely give a measurement in a global frame. One of the few sensors that can locate

an airborne drone is a GPS sensor. This sensor has good accuracy and response time

in open areas, but it can cause the UAV to become unstable if used indoors or in

closed environments because they have poor satellite reception.

Stability indoors or in areas with poor reception can be accomplished using a down-

facing camera that captures the horizontal velocity of the vehicle using an optical

flow algorithm. This method is effective to make the vehicle stay in one place, but it

cannot estimate accurately the position of the vehicle when following a path because

of the inherent drift due to the sensor’s noise. Another problem that arises when

trying to navigate is detecting and avoiding any obstacles that may be present among

the vehicle’s path. The problem involving the characterization of the environment is

referred to as mapping, while the one of determining the pose of an UAV is addressed

as localization. The problem of locating and mapping simultaneously is referred to

as SLAM and it is a very common topic in robotic research as both of them are

inherently linked.

This work presents a solution to the SLAM problem using a quadcopter platform in

unstructured environments. The sensors used in the prototype to test the SLAM

algorithm were a laser range-finder sensor, an inertial measurement unit (IMU) with

ten degrees of freedom (accelerometer, gyroscope, magnetometer and barometer) and

an optical flow sensor. The map obtained from the algorithm can be used to avoid

obstacles and, together with the position, for path planning and following.

Objectives There are many solutions to the SLAM problem in the current litera-

ture, as it is a well defined and common problem. The reason for delving deeper in

this particular subject is that more extensive research in localization and mapping

aids in making UAVs become a safer and more reliable platform. Also, SLAM

solutions are usually applied for 2D environments, while the quadcopter is a platform

that can perform this task in a 3D space.
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One of the most used solution to the SLAM problem is the Extended Kalman Filter,

or EKF, because of its simpleness and elegant solution. It has become one of the

default standards when evaluating a SLAM algorithm. One of its fundamental

weaknesses comes from the fact that the Kalman filter is designed to work with

linear systems and additional complexity and operations need to be used in order to

adapt it to non-linear systems and measurements. The SLAM solution presented in

this work uses a linear axis-angle model and an analogous quaternion model for the

attitude estimation. The use of these models reduces the complexity of the EKF and

of the operations used, making its implementation more efficient. These results are

tested on the quadrotor platform to obtain a representation of a 3D environment.





Chapter 2

Background and Related Works

In this chapter a review of the themes presented in this thesis are introduced, as

well as a presentation of the state of the art of UAVs and SLAM algorithms. It is

presented in order to show the basis on which the current work was developed and

as a reference for future works on related subjects.

2.1 Unmanned Aerial Vehicles

The most important characteristic of UAVs is that they don’t require the presence

of an on-board pilot in order to fly properly. Many definitions state UAVs as aerial

vehicles with this sole quality Nex and Remondino [2014]. For many UAV systems

the absence of a pilot seems to be the only common feature, as there are a wide

variety of forms and applications in which these vehicles can operate on this manner.

Even this attribute can be cryptic because there exist systems that can be controlled

remotely without the need of any person on-board the vehicle using a Ground Control

station (GCS) or any other kind of teleoperation, but the operator is a compulsory

requirement. Some drone configurations still need a certain degree of autonomy from

the pilot in order to even be stable, so another difference between them comes from

how much autonomy they have in the sense of what kind of orders or references they

5



Background and Related Works 6

receive from a GCS. In light of this, the most general classification of UAVs is based

on the aerodynamic configuration used, which can either be a fixed-wing aircraft or

a rotary wing model. There exists more configurations than the ones specified here,

but these are the most widely used in the UAV field.

Fixed-Wing

Fixed-wing aircraft’s most remarkable characteristic is that lift is achieved as a

consequence of the airflow passing over one or more wings that are fixed to the body

of the vehicle, hence the name. The main control input of these types of aircraft is

on the various motors that normally generate a forward thrust, and the aerodynamic

control surfaces that are attached to the aircraft.

Figure 2.1: An example of a fixed-wing aircraft. Picture taken from [Force, U.S.
Air Force]

These types of aircraft are very efficient in terms of energy consumption and are more

robust to external perturbations. However, as the lift is dependent of the forward

thrust, this means that this type of model can’t maintain sustenance at low speeds

and can’t hover. An example can be seen in Figure 2.1.
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Rotary Wing

Rotary wing aircrafts, unlike fixed-wing, create lift with the motion of a propeller

that has a fixed axis of rotation. Normally, the orientation of the thrust generated

by this rotational motion is used for both lift and propulsion, and doesn’t require

forward motion like in the case of the fixed-wing. They have more maneuverability

than fixed-wing vehicles, but at the price of more energy consumption and slower

speeds.

These aircrafts are classified according to the location on the vehicle’s fixed frame

and the quantity of rotary wings. The most common rotary model among manned

aircrafts is the classical helicopter design that uses a single rotor to achieve but lift

and thrust, and has another rotor wing for control and balance purposes. There

exists other designs that use rotary wings like Vertical Take-off and Landing (VTOL)

vehicles, but the focus nowadays is on multirotor designs.

Figure 2.2: An example of a multirotor. Picture taken from [Industries, Adafruit
Industries]

Multicopters, or multirotors, are a type of rotary wing aircraft that has more than one

rotor in various configurations. The most common type of multirotors are the ones

that have an even amount of motors with parallel thrust and counter-balancing rotary
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directions. The most simple example of this is the quadcopter, which consists of a

frame structure with four motors placed in a square shape around it. The actuators

are arranged so that two of them rotate clockwise and the other spin counter-clockwise

to control the total torque generated by the motors. Other configurations come in

different shapes, like the hexacopter and the octacopter which offer redundancy and

a more stable platform, but the most simple is the quadcopter. An example of the

latter can be seen in Figure 2.2.

Multirotors can move in all six DoF of a 3D environment, but in general they can

only remain stable in four DoF (three DoF in position and one in the yaw angle).

This is because the movements in pitch and roll are coupled with the platform’s

position.

The flexibility, low-cost and easy configuration of multicopters has made them the

focus of research in the UAV field. They offer a very solid platform from which

various applications have been developed and deployed, such as surveillance and

photography, and other tasks are in the process of research.

Current Research Topics

Research in UAVs is primarily focused in the development of new kinds of configura-

tions that can have the advantages of both kinds of platforms (rotary and fixed-wing),

the research into new forms of control and stability and the research into applications

that can be performed using UAVs. Below are listed some of the most prominent

current applications and research found in Valavanis [2008].

Fault-tolerant flight A key feature of human pilots is their ability to adapt to

drastic changes in-flight. They have the knowledge and experience to react to changes

in the vehicle’s model due to a fault. As most control strategies involve the knowledge

of even part of the UAVs model, in the presence of a fault the control law may not

be able to stabilize the system or can even make it unstable. Also, many UAVs
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configurations are not designed to be able to handle a fault, like a broken propeller

or motor, as many don’t have enough redundancy to compensate it.

A fault-tolerant flight is a combination of both a platform with redundancy together

with an automatic control that can stabilize the system and maybe make it land

whenever a fault presents itself. In Lanzon et al. [2014] a control law is designed for

quadrotor vehicles which sacrifices the controllability of the yaw state due to rotor

failure in order to allow the vehicle to use the remaining three functional rotors to

stabilize the system.

Swarm operation One or more UAVs flying together with communication amongst

them is called a swarm. The drones inside a swarm can cooperate to perform tasks

that would be either too complex or too power or time consuming for one drone

to do by itself. The challenge comes in the coordination of each of the individuals

of the swarm, knowing where all the vehicles are at a given time, avoid collisions

and planning the best path to accomplish the goal more efficiently. In Ma’sum et al.

[2013], a swarm of UAVs is proposed for the localization and tracking of objects.

UAV Manipulator A manipulator is a kind of actuator that can manipulate

objects. The most common form of manipulator is a gripper, which can take an

object in order to translate it to a different pose. Most manipulators use a kinematic

chain configuration. This type of operation is restricted to a finite area, whereas a

manipulator mounted on an UAV has a wider work space that gives it flexibility. In

Lee et al. [2013] a control law is proposed to take into account the added dynamical

complexity of the arm.

Mapping A drone offers a very flexible platform in which to perform mapping,

and the information can also be used by the vehicle. A map is a conception of the

environment that has many uses for UAVs, like localization, collision detection and

path planning. Mapping refers to the action of building a map from the information

available from the UAVs sensors. The maps conceived by an UAV can be used
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in other applications, like geological map construction or 3D reconstruction of an

environment. In Bryson et al. [2014] experimental results show that it was possible

to produce geo-referenced maps for object detection and vegetation classification.

The problem of mapping is very intimately associated with the problem of localization

in what many refer to in the literature as the SLAM problem. A solution to this is

presented in more detain on chapter ?? , and a description of the problem can be

encountered in the next section.

2.2 The SLAM Problem

In order to understand Simultaneous Localization and Mapping (SLAM), it is

necessary to separate the problem in its two parts and then fuse them as one would

usually find the situation in the application. The two parts involved are localization

and mapping.

Localization in this context is the use of sensor data that is compared against an inner

representation of the environment in order to find the best pose (translation and

attitude) estimate of the moving platform. In this case, the inner map is extremely

accurate and the sensor gives noisy data about the vehicle’s surroundings, so the pose

has to be filtered and estimated. Mapping is the action of building a representation

of the vehicle’s surroundings from sensor data using a very accurate estimate of the

platform’s pose. In this case, the noisy measurements have to be filtered with the

aid of the accurate pose in order to scan the environment.

In practice, one cannot have an accurate pose estimate nor an exact map in memory, as

the tool used for both instances is the same and has noise. Thus, the SLAM problem

can be defines as the notion of trying to determine the pose and the environment

by means of sensor data. Normally, this information comes from rangefinders or

stereoscopic vision.
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Applications of SLAM to UAVs As stated before, SLAM gives information

about the environment and where the UAV is in it. The map can be used for

trajectory planning, navigation, collision avoidance and 3D reconstruction. An

advantage of doing the map on-line is that the drone can adapt to any kind of

environment and even to changes on its surroundings, thus making the vehicle more

robust and autonomous.

The UAV’s position and attitude are mainly useful to help stabilize the drone in

position. The most used sensor to determine a vehicles position is a GPS. This

results inadequate for the stabilization of drones because of its relatively low accuracy.

UAVs tend to have a very fast reaction time, and as such, they need accurate pose

information or they could crash trying to stabilize themselves in position. SLAM can

be used as an alternative to the GPS because it gives a more accurate pose estimate.

The main disadvantage of using SLAM on a drone is the velocity of the algorithm.

Most SLAM implementations tend to be computationally intensive, because of the

type of sensors used and the calculations involved to process the information and

filter it. As of late, there has been a lot of interest on SLAM because the technology

has made it possible to give UAVs enough computational resources to handle large

quantities of information, making SLAM a more attractive option.

SLAM Diversity There are a lot of algorithms that solve the SLAM problem,

each of which uses different methods, sensors and hypothesis as they tend to be

tailored to very specific platforms and situations. However, the basic SLAM structure

tends to remain the same.

Every SLAM algorithm needs, in one form or another, a way to store and update

its map, a matching algorithm that can relate scanned data with the map, a pose

calculation method and a filter algorithm that guarantees a stable estimation.
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Map Creation and Search

There are various ways to represent a map. In SLAM, they can be divided in two:

feature-based and grid-based.

Grid-based mapping stores the information by dividing the environment state

in finite elements and assigning them to memory values. Each value in the map

represents a finite volume in reality, and its value represents the state of that finite

space in the surrounding such as occupied, or empty or even unknown. The advantage

of using this method is that every finite space in memory directly relates to a physical

object in the environment, which is easier to visualize. The main disadvantage is that

it tends to consume more memory space, and thus resources, than other methods.

Feature-based mapping stores features. A feature is a collection of environment

data that has a specific form, such as lines, planes, circles, etc. This kind of mapping

consumes less memory space than grid-based methods, as it only stores the minimum

data of a given feature. For example, if there was a line grid-based mapping would

store every point of the line while feature-based would only store the nearest line point.

The advantage of this method is that it consumes less resources than grid-based

mapping. The disadvantage is that not all the environment information is used, thus

reconstructing the surroundings tends to consume more resources.

Independently of the representation used, SLAM often requires through searches

through all the map information in order to be able to match the data from the

sensor with the information in the map. This process is often called matching.

Localization

The estimation of the vehicle’s pose from sensor measurements is a non-trivial

problem when dealing with a lot of information. The main approach to solve this is

as an optimization problem. The idea is to find the position and attitude that when

applied to the scanned environment points results in the best fit, that is, given a
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series of measurements li and their corresponding map feature mi, find the pose P (·)

that when applied to every li results in the closest mi.

SLAM Methods

As stated before, there are many algorithms and implementations that solve the

SLAM problem. The general idea behind a SLAM implementation has been presented

before. The following part tries to resume the most used methods to solve the SLAM

problem, but the execution varies from one platform to another. This list of methods

was compiled from the work of Oliver [2015]

EKF

The EKF is an approach that:

“Uses a series of measurements over time containing noises and inaccura-

cies and produces estimates of unknown variables that are more precise

than when based on single measurements.” Bajracharya [2014]

Techniques based on the Kalman filter are one of the most popular approaches to

SLAM. They give a way to update the internal map at the same time that it updates

the estimated pose in order to give the most statistically accurate representation of

the system and the map. It can also fuse the data from the SLAM sensor in order to

increase the accuracy, like the sensor from an IMU. It is a recursive algorithm that

takes the latest measurements to update and improve the previous state.

The Kalman filter was originally intended for linear systems, but a variant known

as the Extended Kalman Filter is more often used because it can be applied to

non-linear systems. The principle is the same as the Kalman filter, but the process to

be estimated is linearized in every step in order to account for the non-linearities. A

more thorough introduction to the KF and EKF can be found in Welch and Bishop

[2006]



Background and Related Works 14

The advantage of this filter is that it only needs the previous measurement and the

current sensor scan to work at each iteration. The main drawback is that it consumes

a lot of resources due to the matrix inverse, as well as having to update and maintain

a covariance matrix.

Rao-Blackwellized Particle Filters

Rao-Blackwellized particle filters are a way to track multiple possible solutions to

the pose and map estimates. At each time step, random possible solutions to the

state vector called particles are generated using the system’s stochastic model. As

sensor scans arrive, the generated particles are compared with the measurement

stochastic model. Particles with unlikely solutions are eliminated leaving only the

most probable solutions on each sensor update. This process is repeated indefinitely,

leaving an ever-decreasing amount of particles.

The advantage of this type of filter is that it becomes less computational expensive

over time, and estimates the best choice. The main disadvantage is that there is no

guarantee that the surviving particles are the global best, as the particles tend to

generate randomly.



Chapter 3

Model

In this chapter the mathematical model of the quadrotor is obtained and presented.

This model uses unit quaternions instead of the more commonly-used Euler angles

to describe the platform’s attitude. A brief description of quaternion algebra and its

properties are presented in appendix A. Unit quaternions, the quaternion attitude

dynamic representation, the quadcopter quaternion model and finally the quadrotor

attitude control and simulation are presented and discussed next.

3.1 Unit Quaternions.

Euler Angles are an intuitive way to view rotations in three dimensional space.

However, they are mathematically hard to work with. As the idea of an automatic

control law often demands a simple mathematical solution for achieving high update

speeds, Euler angles fall short in terms of computational simplicity compared to

other methods.

A unit quaternion is a quaternion q ∈ H whose norm is one ||q|| = 1. Unit quaternions

are a subgroup of the quaternion group. It is often the preferred way to represent

rotations in 3D space because of the advantages it has over other representations.

These are:

15
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• They use less data than rotation matrices (4 numbers instead of 9).

• They do not have singularities, as a product of a unit quaternion with any

non-null vector will always fall inside the quaternion group.

• They do not have gimball-lock effect, as any attitude can be treated such that

only one quaternion can define it. This is achieved by assuring that q0 ≥ 0.

• They are computationally more stable, as they can be normalized to reduce

numeric errors before any operations.

• Their operations are computationally simple and efficient as the quaternion

multiplication doesn’t need trigonometric functions.

An interesting property of unit quaternions is that q−1 = q∗ 6= 0. This can be seen

from equation (A.8).

Euler-Rodŕıguez Equation of Rotation.

Euler’s theorem for rigid bodies rotations implies that any rotation of a rigid body

in 3D space can be viewed as a rotation by a certain amount or angle, with respect

to a fixed axis that goes through the center (the center of mass in most cases) of a

rigid body. A rotation in R3 space can be represented as:

q ∈ H, ||q|| = 1

p ∈ R3

p′ = q−1 ⊗ p⊗ q = q∗ ⊗ p⊗ q

q := cos

(
θ

2

)
+ u sin

(
θ

2

) (3.1)

where

• p is a 3D vector in the original reference frame.

• p′ is the rotated vector p so that it is now in a new reference frame.



Model 17

• u ∈ R3 is a unit vector that represents the direction of the axis of rotation.

• θ defines the angle of rotation around the axis of rotation.

Equation (3.1) makes it possible to translate any vector from one reference frame

into another.

From the double product, it can be seen that a quaternion q gives the same rotation

as the quaternion −q. In order to avoid this duality, we can add the inequality

q0 ≥ 0, which assures us that each possible orientation of a rigid body can only relate

to one element in the subgroup of unit quaternions.

Multiple Rotations.

When a series of rotations q1, q2, . . . , qn ∈ H; ||q1|| = ||q2|| = · · · = ||qn|| = 1 ,

is applied, one after the other, using the property described in equation (A.6) (

(q ⊗ r)∗ = r∗ ⊗ q∗) , to a vector we get the following:

p′ = q∗n ⊗ (· · · ⊗ (q∗2 ⊗ (q∗1 ⊗ p⊗ q1)⊗ q2)⊗ . . . )⊗ qn
= (q∗n ⊗ · · · ⊗ q∗1)⊗ p⊗ (q1 ⊗ · · · ⊗ qn)

= q∗ ⊗ p⊗ q

(3.2)

This means that a series of rotations can be represented as a single unit quaternion

q = qn ⊗ · · · ⊗ q1

3.1.1 Unit quaternion to other representations.

Unit quaternions can be viewed or described using other means to define rotations

in 3D space. This is often useful as a more intuitive way to know the attitude of a

vehicle at a certain point. The ones we will be addressing here are rotation matrix,

Euler angles and axis-angle representations.



Model 18

Rotation Matrix.

The quaternion rotation can be represented as a rotation matrix R3×3. This matrix

can be constructed as:

Q(q) =


q20 + q21 − q22 − q23 2(q1q2 − q0q3) 2(q0q2 + q1q3)

2(q1q2 + q0q3) q20 − q21 + q22 − q23 2(q2q3 + q0q1)

2(q1q3 − q0q2) 2(q0q1 + q2q3) q20 − q21 − q22 + q23

 (3.3)

where Q(q) is orthonormal, that is, Q(q)−1 = Q(q)T and ||Q(q)|| = 1.

Euler Angles.

In order to represent quaternions in a more intuitive manner, they can be transformed

into Euler angles. Fresk and Nikolakopoulos [2013] give the following formula in

order to accomplish this:


φ

θ

ψ

 =


arctan 2 (2 (q0q1 + q2q3) , q

2
0 − q21 − q22 + q23)

arcsin (2 (q0q2 − q3q1))

arctan 2 (2 (q0q3 + q1q2) , q
2
0 + q21 − q22 − q23)

 (3.4)

Axis-Angle.

The Euler-Rodŕıguez formula (3.1) has a direct relationship between the axis of

rotation, the angle of rotation and unit quaternions. However, it is possible to express

the axis of rotation and the angle of rotation in a single vector. This representation is

called “Axis-Angle”, and will be denoted as θ ∈ R3. The magnitude of this vector

represents the angle of rotation used in (3.1), that is, ||θ|| = θ. The axis of rotation

is obtained from the normalization of this vector, that is, u =
θ

||θ||
.
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To obtain a direct relationship between the axis-angle representation and a unit

quaternion we use the quaternion logarithmic mapping. This mapping is defined as:

q ∈ H

ln q :=


||q|| = 0, ln q0

||q|| 6= 0, ln ||q||+ q

||q||
arccos

q0
||q||

||q|| = 1

ln q =
q

||q||
arccos q0

(3.5)

Using equation (3.5) and (3.1), we have the following axis-angle representation from

an unit quaternion:

θ ∈ R3; q ∈ H

θ = 2 ln q
(3.6)

where θ is the axis-angle attitude and q denotes the attitude unit quaternion.

3.1.2 Unit quaternion from other representations.

Sensors measuring orientation, such as IMU’s, may use other means to return attitude,

such as Euler angles. In order to work using quaternions, some conversions must be

defined.

Euler Angles.

Euler angles (φ,θ,ψ), by definition, are three angles that define three rotations that

give the attitude of a rigid body. These three rotations can be converted into the

following quaternions:



Model 20

qφ, qθ, qψ ∈ H ||qφ|| = ||qθ|| = ||qψ|| = 1

qφ = cos

(
φ

2

)
+ sin

(
φ

2

)
î

qθ = cos

(
θ

2

)
+ sin

(
θ

2

)
ĵ

qψ = cos

(
ψ

2

)
+ sin

(
ψ

2

)
k̂

(3.7)

Using these quaternions, and the result of equation (3.2), the equivalent quaternion

from Euler angles is:

q = qφ ⊗ qθ ⊗ qψ (3.8)

Axis-Angle.

When using an Axis-angle representation, all the relevant information to use Euler-

Rodŕıguez formula (3.1) is stored inside the axis-angle vector. In order to have a

direct relationship between a unit quaternion and the axis-angle representation, we

use the quaternion exponential mapping:

eq :=


||q|| = 0, eq0

||q|| 6= 0, e||q||
(

cos
||q||

2
+

q

||q||
sin
||q||

2

)
(3.9)

3.2 Quadcopter Dynamic Model.

A quadcopter is a kind of multirotor that has four actuators. It has four stable DoF,

but can move in all six DoF. It is completely actuated in terms of attitude, and the

translation can be changed by changing the orientation. The state vector can be

defined as:
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xquad :=
[
x y z ẋ ẏ ż q0 q1 q2 q3 ωx ωy ωz

]T
=

[
pT ṗ

T
qT ωT

]T (3.10)

where

• p =
[
x y z

]T
is the translational position vector with respect to the inertial

frame.

• ṗ =
[
ẋ ẏ ż

]T
denotes the translational velocity vector with respect to the

inertial frame.

• q =
[
q0 q1 q2 q3

]T
defines the vehicle orientation with respect to the

inertial frame, represented as a unit quaternion.

• ω =
[
ωx ωy ωz

]T
represents the rotational velocity in the body frame.

In order to simplify the dynamic model, the quadcopter is divided into two subsystems,

each one with their own dynamics and control law. The first subsystem is the

orientation and attitude dynamics system. The second subsystem is used to control

the position of the vehicle.

Quadcopter Forces. In the model it is assumed that only the motor forces act

on the platform. Aerodynamic forces like wind and ground effect forces are assumed

to be extremely small due to the relatively slow quadrotor’s speeds and because

an indoor environment is assumed. External forces like the manipulator arm’s and

gyroscopic forces are not included in this model, leaving only the effect on gravity on

the platform.

The motor forces include the torques τi that each motor has on the platform, and

the thrust that the motor’s propellers generate, which is considered as:

fi :≈ ki ω
2
i ; i : 1, 2, 3, 4 (3.11)
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where ωi is the motor angular speed and ki means the motor thrust constant.

3.2.1 Attitude Dynamics.

Quaternions are used in the modeling and control of the quadcopter because they

allow us to express the same non-linear mechanics, but in a linear way without loss

of generality. In practice, the controller works using quaternions and quaternion

operations. Figure 3.1 shows an image of the drone’s free body diagram.

Figure 3.1: Quadrotor dynamic model free body diagram in NED reference
frame. Image taken from Izaguirre-Espinosa [2015]

Quaternion Attitude Model. In order to describe a dynamic model using quater-

nions, we must first introduce the equation for quaternion kinematics for a rigid

body:
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ω ∈ R3, q ∈ H

q̇ :=
1

2
q ⊗ ω =

1

2
S ω

S :=


−q1 −q2 −q3
q0 −q3 q2

q3 q0 −q1
−q2 q1 q0


(3.12)

where

• ω = [ ωx ωy ωz ]T is the angular velocity vector.

• q represents the attitude quaternion.

This allows us to express a quadrotor dynamic model in the following way:

ω, τ ∈ R3; l =

√
L

2
, fi, τi, ki, ωMi

∈ R; q ∈ H; i = 1, 2, 3, 4

fi = ki ω
2
Mi

τ =


l (f1 + f4 − f2 − f3)

l (f1 + f2 − f3 − f4)
4∑
i=1

(−1)i+1 τi


xq att =

[
qT ωT

]T
ẋq att =

 1

2
q ⊗ ω

J−1 (τ − ω × J ω)

 =

 1

2
S ω

J−1 (τ − ω × J ω)



(3.13)

where

• xq att is the state of the vehicle’s attitude subsystem.

• τi denotes the torque of motor Mi.

• ωMi
defines the motor’s angular velocity.
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• ki represents the motor’s thrust constant.

• fi stands for the motor’s thrust.

• L specifies the distance from the center of the quadcopter to the motors Mi.

As we are assuming an X configuration, this distance is not the one used in the

torques.

• τ indicates the torque that acts on the quadrotor frame from the motors.

• J =


Jxx 0 0

0 Jyy 0

0 0 Jzz

 corresponds to the inertial matrix. As the quadcopter

is almost symmetric with respect to all of its axis, it is safe to assume its

diagonal.

Equilibrium Points. The equilibrium points are defined as the states and control

inputs x, τ where ẋ = 0. Taking this into account, the equilibrium points of the

attitude system (3.13) can be calculated when ẋq att = 0:

ẋq att =

 1

2
q ⊗ ω

J−1 (τ − ω × J ω)

 = 0

⇒ xq att =

 q
0

 , τ q att = 0

(3.14)

This means that the attitude q is constant in the absence of angular velocity and

external torques.

Linearization. The model (3.13) can be used directly for simulation and applica-

tion purposes. Nevertheless, it is difficult to design a control law because quaternions

are not an intuitive representation.

A linear control using dual quaternions is proposed in Wang and Yu [2010], we

will take this ideas to propose an algorithm using quaternions. The logarithmic
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mapping can be used to transform the quaternion part of the model into an axis-

angle representation using equation (3.6). One advantage of this, is that the angular

velocity used in the model (3.13) is also in an axis-angle representation, which means

that θ̇ = ω. This, along a cancellation of non-linear dynamics, leads to the following

linear attitude model:

xatt =
[
θ ω

]
=
[
θ θ̇

]
τ := J uatt + (ω × J ω)

ẋatt =

 θ̇

J−1 (τ − ω × J ω)

 =

 θ̇

uatt


=

 0 I3

0 0

 xatt +

 0

I3

 uatt = Aatt xatt +Batt uatt

(3.15)

Notice that the pair Aatt and Batt shows that the system (3.15) is controllable. The

linear model (3.15) is the one that’s going to be used to design the control law.

3.2.2 Translational Dynamics.

The translational system models the rest of the quadcopter dynamics. The state

variable used is xpos =
[
pT ṗ

T
]T

.

The drone’s position is controlled using the total thrust vector. This vector’s

magnitude can be obtained by adding the thrust from all the motors Ft =
4∑
i=1

fi. The

total thrust’s direction is fixed in the body frame, but is variable in the inertial frame

and can be controlled if the attitude subsystem is completely controlled. This is the

main relationship between both subsystems. The model, thus, can be described as:

ẋpos =

 ṗ

q ⊗ Ft
m
⊗ q∗ + g

 (3.16)

where
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• xpos denotes the state of the vehicle’s position subsystem.

• Ft defines the total thrust vector from the motors in the body frame.

• q represents the platform’s attitude.

• m stands for the quadcopter’s mass.

• g corresponds to the gravity’s vector in the inertial frame.

3.3 Quadrotor Control Law.

The control presented in section 3.2.1, in the linear model (3.15), is an exact lin-

earization under the assumptions that the inertial matrix J is known and there are

no external torques acting on the quadcopter. In a practical sense, this doesn’t hold

true because the inertial matrix parameters are unknown and there may be external

torques acting on the platform at any given time. In order to take into account these

interactions, the following model will be used to obtain the control law:

L1, L2 ∈ R; ξ ∈ R3; ||ξ|| < L2 + L1 ||x||

ẋ =

 0 I3

0 0

 x+

 0

I3

 (u+ ξ) = Ax+B (u+ ξ)
(3.17)

where ξ are perturbations that include the external torques τext, the term −ω × J ω

and noise. Because of the nature of these terms, the vector ξ is assumed to be

quasi-lipschitz, that is, L1, L2 ∈ R; ||ξ|| < L2 + L1 ||x||.

In order to stabilize these perturbations the following control law is proposed:

q ∈ H; θ = 2 ln q, ω, u ∈ R3;x =
[
θ
T
ωT
]T

K1 > 0, K2 > 0 ∈ R3×6

u = −K1 x−K2 SIGN (x)

(3.18)
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Theorem 3.1. The control law (3.18) stabilizes system (3.17) in the Lyapunov sense

if there exists K1, K2 and P ∈ R6×6;P T = P > 0 such that:∣∣∣∣∣∣− [(A−BK1)
T P + P (A−BK1)

]∣∣∣∣∣∣
2 ||P || ||B||

> L1

||K2|| > L2

Proof. Substituting (3.18) into (3.17) results in:

ẋ = (A−BK1)x−B [K2 SIGN (x) + ξ]

The following Lyapunov candidate function is proposed:

P ∈ R6×6;P > 0

V (x) = xT P x
(3.19)

The pairA andB is controllable because rank
{[

B AB A2B A3B A4B A5B
]}

=

6. This means thatK1 can be selected in a way that (A−BK1)
T P+P (A−BK1) =

−Q;Q ∈ R6×6;QT = Q > 0. The derivative with respect of time of the proposed

Lyapunov function is:

V̇ (x) = 2xT P ẋ

= 2 xT P [(A−BK1)x−BK2 SIGN (x) +B ξ]

= −xT Qx+ 2xT P B [−K2 SIGN (x) + ξ]

≤ −||Q|| ||x||2 + 2 ||P || ||B||L1 ||x||2 − 2||P B|| ||K2|| ||x||+ 2||P B||L2 ||x||

The conditions ||Q|| > 2 ||P || ||B||L1,||K2|| > L2 lead to V̇ (x) < 0, which means

that the system is stable in the Lyapunov sense.
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A good initial estimate of the matrix gain K1 can be obtained using a linear quadratic

regulator. The chattering around the origin because of the SIGN function can

be eliminated by substituting SIGN(x) in (3.18) with an approximate function

TANH(x) = [tanh x1 tanhx2 ... tanhx6]
T .

Trajectory Tracking

The control presented in (3.18) stabilizes system (3.17) around the origin. In order

for the quadcopter to follow a path, the desired variables θd, θ̇d are created such that

xd =
[
θ
T

d θ̇
T

d

]T
. In the case when θd is constant, θ̇d = 0. For any other case, these

variables must be computed. With this, we have:

u = −K1 (x− xd)−K2 SIGN (x− xd) (3.20)

This represents a change in origin, which the control law will try to follow. In order to

stabilize a quadcopter in attitude and in the translational subsystems, this trajectory

needs to guarantee the stability in the translational system (3.16).

3.4 Quadrotor Simulation.

The simulations were run using the Python language with the libraries NumPy Van

Der Walt et al. [2011] SciPy Jones et al. [2001–], Control Systems Library Goppert

et al. [2014–] and MatPlotLib Hunter [2007]. The program used can be found in

appendix B

The simulated systems on Figures 3.3, 3.2 and 3.4 use the control law (3.20) in the

quaternion system (3.13).



Model 29

The used initial conditions were x0 =



0.70710678

0.09205746

−0.64440223

0.27617239

0

0

0


=



cos
π

4
0.13018891

−0.91132238

0.39056673

 sin(
π

4
)

0


.

The desired state was xd =



0.96592583

0

0

0.25881905

0


=



cos
π

12
0

0

1

 sin(
π

12
)

0


The used gain matrices were:

K1 =


100 0 0 34.6410162 0 0

0 100 0 0 34.6410162 0

0 0 31.6227766 0 0 32.6074463



K2 =


0.316227766 0 0 0.855836160 0 0

0 0.316227766 0 0 0.855836160 0

0 0 0.316227766 0 0 0.855836160



Volver a hacer las gráficas.

The state error of Figures 3.2, 3.3 and 3.4 can be seen on Figures 3.6, 3.5 and 3.7.
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Figure 3.2: Quadcopter attitude simulation with constant perturbations.

Figure 3.3: Quadcopter attitude simulation with sinusoidal perturbations.
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Figure 3.4: Quadcopter attitude simulation with random perturbations.

Figure 3.5: Quadcopter attitude errors simulation with constant perturbations.
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Figure 3.6: Quadcopter attitude error simulation with sinusoidal perturbations.

Figure 3.7: Quadcopter attitude error simulation with random perturbations.



Chapter 4

SLAM in 3D

In this chapter a quaternion observation model is used based on the model obtained

in chapter 3. This model is used to construct a Kalman filter solution for the SLAM

problem using a laser range-finder sensor, an IMU and an optical flow sensor. The

RANSAC algorithm used to obtain the features and to match them is also presented.

4.1 Features

Features are the main elements used to describe a map in the state space representa-

tion. There are many kinds of features like lines, blobs, points, circles, edges, etc.

The quality of the SLAM algorithm changes depending on the features used and

some features are easier to recognize and use depending on the type of environment

and the kind of sensor used. In order to have the best possible estimate, each feature

should have the following characteristics:

• Robustness: It should be resistant to environment and sensor noise. Although

the Kalman filter is based on the assumption of white noise, the system’s error

state covariance matrix determinant decreases more rapidly if the measurement

variance is lower.

33
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• Easy to identify: It should be easy to identify in a later measurement. The

filter assumes that each feature is correctly paired thus an error in the matching

process could result in an erroneous state prediction.

• Sufficiently large amount: There should be a sufficient amount of features to be

able to have an estimate that reduces the system’s error state covariance matrix

determinant. If too few features are used, then this determinant could increase

yielding an unstable solution. If there are too many, the system complexity

increases and the computational requirements increase.

• Use small space: as each feature is stored in memory, it’s more efficient if they

use the least possible space. This isn’t strictly necessary for the filter algorithm,

but it should be noted when implementing it.

The objective of having a SLAM algorithm in a quadcopter platform is to have an

accurate estimate of the vehicle’s position, specially in GPS denied zones. Assuming

that the most common environments where this might happen are urban corridors or

indoor, it is possible to assume that one of the most common and reliable environment

feature that will be encountered are straight walls perpendicular to the floor.

Unlike others sensors like stereoscopic cameras, laser range-finders produce very

accurate scans of a plane. Planes give very limited information about 3D environments,

so the position of the laser sensor on the drone determines what kind of information

can be obtained. In this case, the laser plane is parallel to the xy body plane so that

the sensor can give more information around the z-axis angle.

The reason for needing more information on the z-axis angle than on any other angle

also comes from the environment. The yaw angle that the IMU located on the UAV

gives relies heavily on the quality of the magnetometers measurements. Because the

proximity of buildings and structures gives errors in the readings of these kind of

sensors, the laser range-finder can compensate this noise by obtaining the yaw angle.

The rest of the readings on the IMU can be considered accurate, so the angle in the

x and y axes can be used to transform any wall encountered on the laser scans into
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a line parallel to the ground plane, assuming that the walls are perpendicular to the

floor.

Feature Detection using RANSAC

There exists many techniques for extracting lines from a series of points like the

Hough transform and the leasts squares line approximation. However, the least

squares method takes into account all the points from the laser scan and not all

those points can be considered as part of a line because more than one wall can be

seen at the same time or, even worse, the points from the laser scan could belong

to other objects that aren’t walls. In the case of the Hough transform, it is robust

enough to detect various lines but it usually uses an accumulator that tends to take

a lot of space and it is more oriented towards image manipulations. Another vision

algorithm that is robust enough to detect various lines and can be adjusted to not

use many computational resources is the RANSAC algorithm.

RANSAC is an acronym for RANdom SAmple Consensus. It is a technique used

to estimate in a robust way a data model using measurements contaminated with

outliers. In the case of the quadrotor platform, it is used to extract line parameters

from a laser scan despite the fact that some laser measurements may not correspond

to the same wall or may not even come from any wall at all. The points that make

up a line in the scan are called inliers, and the points that don’t correspond to that

line are referred to as outliers. The RANSAC algorithm tries to determine the inliers,

and builds the model parameters using them. More information can be found on

Zuliani [2009] and Civera et al. [2012].

The pseudo code of the RANSAC algorithm used can be found in Algorithm 1. When

the laser scan measurements arrive, it is assumed that they contain various lines and

outliers points.

As a line needs at least two parameters in order to be completely defined on a plane,

two random points are selected in order to construct an hypothesis. The scanned
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points are evaluated in order to see the number of points that support the hypothesis.

If the hypothesis has more points supporting it than the assumed best hypothesis,

then the new hypothesis becomes the best hypothesis. This process is repeated for

nhyp times.

The number nhyp can be obtained using the following equation:

nhyp =
log (1− p)

log (1− (1− ε)m)
(4.1)

where p is the wanted probability of finding at least one line; ε denotes the outlier

ratio with respect to the total scanned points; m represents the minimum number of

points that are considered to be a valid line (or a wall in this case).

Once the best hypothesis is obtained from the scanned points, the model parameters

are extracted using only the inliers from the best hypothesis with a leasts squares

method. From this model, the other scanned points are evaluated and possible inliers

are rescued. The final model parameters come from the clear inliers obtained from

the best hypothesis and the rescued inliers using a least squares method. All the

inliers for this model are extracted from the laser scan data until there aren’t enough

points to construct a new model or the best hypothesis didn’t turn out to have

enough points to initialize a new line model.

A single complex number can be used to store the parameters of each line, as they

have an imaginary and a real part. In this work, the real part of the complex

number represents the line’s distance from the scan origin ρFi
, and the imaginary part

represents the line’s angle with respect to the scan origin θFi
yielding Fi = ρFi

+ θFi
k̂.

The imaginary part used is the k̂ part of the quaternion imaginary vector. To convert

from this representation to the polar complex form and vice versa, the following

equations can be used:

polar{Fi} = ρFi
ek̂ θFi (4.2)

cartesian{Fi} = ρFi

(
cos θFi

+ k̂ sin θFi

)
(4.3)
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Algorithm 1 RANSAC algorithm description.

scan← new scan . new scan with model parameters and outlier points available
while scan→ points ≤ m do

Create empty bestInliers
for nhyp do

inliers← Determine the number of inliers from a random minimun set.
if inliers ≥ bestInliers then

bestInliers← inliers
end if

end for

if bestInliers ≤ m then
Break while loop . No new line was found on the remaining points

end if

clearInliersModel ← Initialize model with the best inliers found.
rescuedInliers ← See which points become inliers using the

clearInliersModel.
rescuedInliersModel ← Re-estimate the model with bestInliers and

rescuedInliers.
. Delete points that belong to the obtained model

scan← [scan− (bestInliers+ rescuedInliers)]
end while . keep trying to find lines while there are still points left

The laser scan points are projected into the ground plane using data from the IMU.

The objective of the SLAM algorithm, in this case, is to match and estimate the yaw

orientation and position in the ground’s x−y plane. A laser scan from position p ∈ C

and yaw orientation θz that hits the same wall as a stored feature Fi = ρFi
+ θFi

k̂

has parameters li = ρFi
− (Re{p} cos θFi

+ Im{p} sin θFi
) + (θFi

+ θz) k̂. This is a

non-linear measurement function, hence the need to use an EKF if this kind of

feature representation is used.

One thing to note is that this kind of method doesn’t limit itself for line-based

features. Any kind of model whose measurements can be contaminated by outliers

can be used with this algorithm.
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4.2 SLAM using Extended Kalman Filter

SLAM algorithms vary greatly depending on the kind of sensors used, the platform

they are mounted into and the environmental conditions. Each implementation

has to be tailored according to these factors. One of the standard methods used

to solve SLAM is the extended Kalman filter (EKF) because almost all forms of

maps and sensors can be adapted to it. All SLAM algorithms are compared to their

EKF equivalent in order to test their efficiency and robustness, making the EKF the

de facto SLAM solution. The filter guarantees a convergence to the real map and

position if the model’s linear approximation is accurate enough.

Kalman Filter

The Kalman filter was first described in Kalman et al. [1960], but a more detailed

introduction can be found in Welch and Bishop [1995]. The filter is a combined

predictor-corrector discrete estimator that minimizes the estimated error covariance

for a linear stochastic system. The equations that make the filter can be separated

in two different steps, the time update equations and the measurement update ones.

The filter assumes that the linear discrete system to be observed and the measurements

are both contaminated by normal noise with zero mean.The equations of the process

to be estimated are presented in the following equation:

xk = Axk−1 +B uk−1 + wk−1

zk = H xk + vk

p(w) ∼ N(0, Q); p(v) ∼ N(0, R)

xk ∈ Rn;uk ∈ Rm; zk ∈ Rl

A ∈ Rn×n;B ∈ Rn×m;H ∈ Rl×n

(4.4)
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The objective of the filter is to obtain the best possible state estimates by comparing

the system model to the actual process measurements and their parameters. In

the time update part, an a priori state estimate x̂−k and error estimate covariance

matrix P−k are obtained by propagating the previous corrected state , x̂k−1 through

the system’s model equations. In the measurements update part of the algorithm,

sensor data is used to correct the state estimate and obtain an a posteriori state

estimate x̂k and covariance error matrix Pk.

The time update equations are shown in equation (4.5), and the measurement update

equations are shown in equation (4.6).

x̂−k = A x̂k−1 +B uk

P−k = APk−1A
T +Q

(4.5)

Kk = P−k H
T
(
H P−k H

T +R
)−1

x̂k = x̂−k +Kk

(
zk −H x̂−k

)
Pk = (In −KkH)P−k

(4.6)

In the measurement update equations (4.6), the Kalman filter gain Kk determines

the effect of x̂−k and zk on x̂k.

Extended Kalman Filter

The Extended Kalman Filter (EKF) is a process estimation algorithm similar to the

KF but that can be applied to non-linear processes and/or measurements. In this

version, the estimation is linearized using a partial Taylor series expansion around the

current estimate in order to determine better estimates from the non-linear process

and measurements equations. The process to be estimated is described using the

stochastic non-linear equation (4.7).
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xk = f(xk−1, uk−1, wk−1)

zk = h(xk, vk)

p(w) ∼ N(0, Q); p(v) ∼ N(0, R)

xk ∈ Rn;uk ∈ Rm; zk ∈ Rl

(4.7)

As with the KF, the EKF a priori state estimate is based on the model without the

white noise and a linearized process noise variance is added to the a priori error

estimate covariance matrix in the time update equations (4.8). A similar linearization

is applied in the a posteriori measurements update equations (4.9).

x̂−k = f
(
x̂k−1, uk−1, 0

)
P−k = Ak Pk−1A

T
k +WkQk−1W

T
k

(4.8)

where:

• A[i,j] =
∂f[i]
∂x[j]

(
x̂k−1, uk−1, 0

)
is the Jacobian of partial derivatives of f(·) with

respect to x evaluated at the estimated point x̂k−1.

• W[i,j] =
∂f[i]
∂w[j]

(
x̂k−1, uk−1, 0

)
denotes the Jacobian of partial derivatives of f(·)

with respect to w evaluated at the estimated point x̂k−1.

Kk = P−k H
T
k

(
Hk P

−
k H

T
k + Vk Rk V

T
k

)−1
x̂k = x̂−k +Kk

[
zk − h

(
x̂−k , 0

)]
Pk = (In −KkHk)P

−
k

(4.9)

where:

• H[i,j] =
∂h[i]
∂x[j]

(
x̂−k , 0

)
corresponds to the Jacobian of partial derivatives of h(·)

with respect to x evaluated at the estimated point x̂−k .

• V[i,j] =
∂h[i]
∂v[j]

(
x̂−k , 0

)
represents the Jacobian of partial derivatives of h(·) with

respect to x evaluated at the estimated point x̂−k .
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The EKF in SLAM

SLAM can be seen as a stochastic problem in the sense that both the measurements

and the stored feature parameters have noise. The filter state contains the pose of

the vehicle and its velocity, along with all the relevant features needed to build a

map. The odometry data obtained from sensors like the IMU and the optical flow

sensor is propagated through the time update equations (4.8) and fused with the

laser measurements in equations (4.9). As more measurements keep arriving, the

estimate tends to improve the state error covariance.

Observation Model The discrete state space observation model is proposed as:

xk ∈ C4+N ; pk, Vk ∈ C; θk, ωk ∈ I; ρFi,k, θFi,k ∈ R

x ∈ C4+N ;x =
[
p V θ ω F1 · · · FN

]T
xk = f (xk−1, wk−1)

=



pk−1 + Vk−1 e
−θk−1 ∆t

Vk−1

θk−1 + ωk−1∆t

ωk−1

ρF1, k−1 + θF1, k−1k̂
...

ρFN , k−1 + θFN , k−1k̂


+ wk−1

yk = h (xk, vk)

=


ρF1, k − (Re{pk} cos θF1, k + Im{pk} sin θF1, k) + θF1, kk̂ + θk

...

ρFN , k − (Re{pk} cos θFN , k + Im{pk} sin θFN , k) + θFN , kk̂ + θk

+ vk−1

(4.10)

Where:

• pk is the current position.
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• Vk is the current velocity referenced in the body frame obtained from the optical

flow sensor.

• θk is the current yaw angle.

• ωk is the current yaw angular velocity obtained from the IMU.

• ρFi,k is the ith feature distance.

• θFi,k is the ith feature angle.

The Jacobians used to build the EKF are:

Ak =



1 e−θk−1 ∆t −kVflowe−θk−1 ∆t 0 01×N

0 1 0 0 01×N

0 0 1 ∆t 01×N

0 0 0 1 01×N

0N×1 0N×1 0N×1 0N×1 IN


(4.11)

Wk = IN (4.12)

∂hi
∂Fi

= 1 +

(
Im{p−k } cos θ̂−Fi,k

−Re{p−k } sin θ̂−Fi,k

)
k̂

2
(4.13)

Hk =


−e−k̂θ̂

−
F1,k

2
0

1

2
0

∂h1
∂F1

· · · 0

...
...

...
...

...
. . .

...

−e−k̂θ̂
−
FN ,k

2
0

1

2
0 0 · · · ∂hN

∂FN

 (4.14)

Vk = IN (4.15)

Feature matching The RANSAC algorithm described in 1 uses random points

of the laser scan in order to search for possible inliers. An estimate of the form of

the features in the laser scan can be obtained using the a priori state estimate of

the EKF time update equations. This estimated features can be used to search for

the matching features models without the need of random samples. If the model
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obtained doesn’t have enough points, then it’s assumed that the feature it’s based

on isn’t visible in that moment in the laser scan. If enough points remain even after

all the features have been searched for, then random points can be used to try to

find new features in the scan.

The full SLAM algorithm is shown in Algorithm 2.

SLAM Simulation

Figures 4.1, 4.2, 4.3 and 4.4 show a simulation using The SLAM algorithm described

in 2. As can be seen in Figures 4.1 and 4.2, the wall is relatively smooth and its

shape can be seen.

In Figures 4.3 and 4.4, the trajectory of the quadcopter can be seen. The green

line represents the real trayectory traversed by the quadcopter, and the blue line

represents the SLAM estimation.

Figure 4.1: SLAM simulation with walls.
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Algorithm 2 SLAM algorithm description.

firstScan← 1 . See if it’s the first scan.
while scans are available do

scan← new scan from the laser range-finder.
qIMU ← attitude from IMU.
ωIMU ← angular velocity from IMU.
Vflow ← translational velocity in the xy plane from the optical flow sensor.
∆t← time since last iteration.
if firstScan then

groundProjection← project the points in scan to the ground plane using
qIMU

F0 ← extract the line features from groundProjection using RANSAC.

x̂0 ←
[

0 Vflow (2 ln qIMU)z k̂ (ωIMU)z k̂ F0

]T
q̂0 ← qIMU

firstScan← 0
else

. EKF time update equations using odometry data.
x̂−k = f

(
x̂k−1, Vflow, ωIMU , 0

)
Ak ← x̂k−1,∆t, Vflow
P−k = Ak Pk−1A

T
k +Q

. Feature extraction and matching.
groundProjection← project the points in scan to the ground plane using

q̂−k
Fk ← extract the line features from groundProjection using RANSAC

and the estimated features locations Fk−1 to match the features discovered. It is
assumed that features that were not matched weren’t seen in the current scan.

. EKF measurement update equations using laser data.
Hk ← Fk−1, x̂

−
k , Fk → matchedFeatures . Build Hk using only matched

features
Kk = P−k H

T
k

(
Hk P

−
k H

T
k +Rk

)−1
zk ← Fk → matchedFeatures . Build zk using only matched features
x̂k = x̂−k +Kk

[
zk − h

(
x̂−k , 0

)]
Pk = (In −KkHk)P

−
k

. Make sure that θk and ωk are only imaginary.
θk ← Im {θk} k̂
ωk ← Im {ωk} k̂

. Calculate the current attitude.

θ̂k =

 (θIMU)x
(θIMU)y
Im {θk}


q̂k ← e

θ̂k
2

. Add new features to the current state and the estimation error
covariance matrix.

x̂k ← Fk → newFeatures
Pk ← Fk → newFeatures

end if
end while
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Figure 4.2: SLAM simulation with walls.

Figure 4.3: SLAM simulation without walls.

Figure 4.4: SLAM simulation without walls.





Chapter 5

Prototype

The design and the construction of a prototype suitable to test the desired SLAM

algorithm and control law is presented in this chapter. The quadrotor is a platform

that has seen a lot of use for surveillance and reckoning operations because it

provides a very stable surface from where for cameras and other types of measurement

instruments. The quadrotor was selected for this task mainly because it presents

a very simple and reliable platform from which environment measurements can be

obtained from a laser rangefinder, or any other SLAM-capable sensor for that matter.

Also, the cost of production has decreased significantly, which means it’s more likely

to be used in a wide variety of situations and applications that could take advantage

of a SLAM algorithm.

The general characteristics of the platform used as well as a list of its parts and

their function towards generating an automated SLAM platform are presented below.

As the focus of the SLAM research is mainly concentrated in the algorithm, the

embedded system’s description is presented and analyzed in more detail.

47
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5.1 General Characteristics.

The platform was designed to be able to lift the weight of the laser rangefinder sensor,

as well as an additional kilogram in order to expand the platform’s capabilities for

future research with additional sensors or instruments.

The quadrotor’s parts are presented below.

Figure 5.1: Quadcopter prototype used.

Components.

Frame. The frame consists of various carbon fiber and aluminum parts joined

together with steel screws. It weights 280 g and has a total width and length of 550

mm.

Laser Rangefinder. The laser sensor used is a URG-04LX-UG01 from the Hokuyo

brand. Its specifications are presented in Table 5.1.
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Light source Semiconductor laser diode (λ=785nm)
Laser safety Class 1 (IEC60825-1)
Power source 5V DC ±5% (USB buspower)
Current consumption 500mA or less (Rush current 800mA)
Detection distance 20mm ∼ 4000mm

Accuracy
Distance 20mm ∼ 1000mm ±30mm
Distance 20mm ∼ 4000mm ±3% of measurement

Resolution 1 mm
Scan Angle 240◦

Angular Resolution 0.36◦

Scan Time 100msec /scan
Interface USB Version 2.0 FS mode (12Mbps)
Preservation temperature -25 ∼ 75◦C
Ambient Light Resistance 10000Lx or less
Weight Approx. 160 g
External dimension (WxDxH) 50x50x70mm

Table 5.1: Characteristics of Hokuyo Laser Sensor.

Motors, propellers and Speed Controllers. The motors used are brushless

outrunner motors. Their characteristics can be found in Table 5.2. The propellers

used were of 11 (in) in length and 4.7 (in) of pitch inclination.

KV 650 RPM/V
LiPo cells 4s
Max Surge Watts 250 W
Working current 14 A
Max Current 17 A with 10s batteries
No Load Current 0.5 A
Intenal Resistance 0.178 Ω
Number of Poles 14
Dimensions (Dia.xL) 35 x 25 mm
Shaft 4 mm
Weight 58g

Table 5.2: Motor Specifications.

The speed controllers’ specifications are listed in Table 5.3. These embedded systems’

purpose is to drive the motor’s speed to the desired setpoint in percentage.
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Current Draw 30A Continuous
Voltage Range 2-4s Lipoly
BEC 0.5A Linear
Input Freq 1KHz
Weight 26.5g
Size 50 x 25 x 11mm

Table 5.3: Speed Controller’s Specifications.

Power Source and Flight Duration. The batteries used where LiPo 4S1P (14.8

V) batteries with 3700 mAh of capacity. They have a constant discharge rate of 65C

and weight 408 g. Their dimensions are: 138 x 44 x 31mm.

The duration of a constant flight (just hovering) with these batteries and without

the laser rangefinder was of ten minutes.

External Compass. The external compass is used in order to avoid the noise

from the motors’ electromagnetic field.

Autopilot. The autopilot is an electronic card whose main function is to stabilize

the quadcopter. It includes a variety of sensors for this task such as an accelerometer,

a gyrometer, a magnetometer and a barometer. It has various communications

protocols to receive the angular or translational set points, as well as waypoints to

automatically follow a trajectory.

For safety reasons, its main set point source comes from the 2.4GHz radio receiver

as this offers the most reliable communication connection and can override any other

set point source.

The autopilot used is a commercial Gumstix AeroCore for DuoVero with GPS

platform. Its specifications are listed on Table 5.4.

Embedded Computer. The embedded computer is used in conjunction with the

autopilot. While the autopilot is used mainly for the control of the quadcopter, the
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Product Family DuoVero
Microcontroller STM32F427 CortexTM-M4 180 MHz
GPS Module UBloxTM NEO 7M GPS Receiver
Accelerometer LSM303D 6-Axis Accelerometer/Magnetometer
Gyroscope ST L3G4200D 3-Axis Gyroscope
Barometer Measurement Specialties TMMS5611 Pressure Sensor

Headers

24-pin Header for 8 x PWM-controlled Motors
20-pin Header for STM32 GPIO/Breakout
20-pin Header for 5V Power
6 × 4-pin Headers for STM32 and DuoVero Breakout
6-pin Header for STM32 SPI Breakout

USB Ports 1 x USB On-The-Go
Serial Port USB Console Port (USB-UART Bridge)
Dimensions 96.5mm x 50.1mm x 10.0mm

Table 5.4: AeroCore Autopilot Specifications.

embedded computer is used to run the SLAM algorithm without affecting the control

law’s functionality. The computer used is a DuoVero Zephyr Computer-On-Module.

Its technical specifications are listed on Table 5.5.

5.2 Embedded System Description.

The embedded system presents two main processors. The microprocessor from

the autopilot controls and assures the stability of the quadcopter. The embedded

computer, on the other hands, is tasked with running the SLAM algorithm. A serial

TTL connection between both systems is used to coordinate information between

both systems.

The autopilot transmits attitude data to the embedded computer, which uses it,

along the laser data, to perform the SLAM algorithm. The embedded computer, on

the other part, can calculate and transmit the position estimates to the autopilot,

which can be used to stabilize in position. Diagram 5.6 shows the different sensors

and the connections with both processing boards.
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Architecture

Product Family DuoVero
Central Processing Unit Texas Instruments OMAP4430 1 GHz
Processor Architecture ARM Cortex-A9
Digital Signal Processor Texas Instruments C64x DSP

Memory

RAM 1GB DDR SDRAM

Graphics
Graphics Acceleration PowerVR SGX540 with OpenGL

Connectivity

Networking 802.11b/g/n WiFi
Bluetooth 3.0
Antennas 1 x U.Fl antenna connector
Storage microSD Card Slot
Breakout 2 x 70-Pin Hirose DF40 Connectors

Audio Codec Texas Instruments TWL6040

Power

PMIC Texas Instruments TWL6030
Power Input 2.5 – 4.8 V DC

Physical Specifications

Dimensions 58mm x 17mm x 4.2mm
Weight 4.3g
Commercial Temperature Rating 0◦C – 85◦C
RoHS Compliant Yes

Table 5.5: Duovero Embedded Computer Specifications.
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Embedded Computer

Cortex-M4 Microcontroller

USB-UART
(Debug)

IMU

GPS

Motors

WifiUSB
Hokuyo

Ragefinder

RF

Receiver

Speed Controllers

Table 5.6: Hardware Connection Diagram.





Chapter 6

Experimental Results

In this chapter the results of the experiments of the quadcopter’s control law and of

the SLAM algorithm are presented. The plataform used is described in chapter 5.

6.1 Attitude Stabilization

The attitude control law (3.20) was applied in the prototype presented in chapter 5.

The parameters used in the test are shown in equation (6.1). The SIGN function

was approximated with the TANH function.

K1 =


0.35 0 0 0.08 0 0

0 0.35 0 0 0.08 0

0 0 0.2 0 0 0.2



K2 =


0.01868069 0 0 0.04637922 0 0

0 0.01868069 0 0 0.04637922 0

0 0 0 0 0 0


(6.1)

Figures 6.1 and 6.2 show the quadrotor attitude in quaternion and axis-angle repre-

sentation.
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Figure 6.1: Attitude control response when using quaternion representation.

Figure 6.2: Attitude in axis-angle representation of attitude control test.

The reference values were given manually by a RF transmitter and were saved in the

form of a desired quaternion at each time step. The generated desired trajectory,

formed with the desired quaternion at each time step, can be seen on Figure 6.3 and

in an axis-angle representation on Figure 6.4.
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Figure 6.3: Desired attitude of attitude control test in quaternion representation.

Figure 6.4: Desired attitude in axis-angle representation of attitude control test.

Figure 6.5 shows the quadrotor’s angular velocity in [rad/s]
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Figure 6.5: Angular velocity of attitude control test.

In Figure 6.6 the control inputs generated by the drone in order to follow the desired

trajectory according to the attitude control law (3.20) can be seen.

Figure 6.6: Attitude input torques in the body frame of attitude control test.

Figures 6.7, 6.8 and 6.9 display the attitude error in different representations. The

error quaternion used in figure 6.7 is obtained from the desired quaternion qd and

the current quaternion qIMU from the formula qe := qIMU ⊗ q∗d. This kind of error
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quaternion is a unit quaternion if both qIMU and qd are unti quaternions, and if

qIMU = qd the error quaternion becomes one.

The error in the axis-angle representation comes from the logarithm of the quaternion

error, along with some algebraic manipulation thanks to the logarithmic properties,

using the formula θe = 2 log (qe) = 2 log (qIMU ⊗ q∗d) = 2 log (qIMU)− 2 log (qd) =

θIMU − θd.

Figure 6.9 presents the axis-angle error using a logarithmic scale so that the smallest

values in the errors can be visible. The scale used were decibels and the data used

was the absolute value of the axis-angle error 10 log10

(
|θe|
)
.

Figure 6.7: Attitude error in representation of attitude control test.

Figure 6.8: Attitude error in axis-angle representation of attitude control test.
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Figure 6.9: Attitude error in axis-angle decibels representation of attitude control
test.

The constant lines at the beginning and at the end of the plots mark the takeoff and

the landing of the platform on the ground.

The errors in Figures : 6.7, 6.8 and 6.9 corroborate that the system error was stable

in the Lyapunov sense because it can be seen that It is bounded by a lower and

upper interval. This is also true for the angular velocity, which is bounded in terms

of the origin. It can be considered then that the quadrotor follows the commands

given by the RF transmitter within a threshold, which is exactly the purpose of the

attitude control law.

6.2 SLAM

The SLAM algorithm described in Algorithm 2 was implemented using ROS and the

python programming language. The program used can be found on appendix C.

In this test, the platform flew near the wall of a building in order to be able to locate

itself and generate a map of the surrounding are directly in front of it. Figures 6.10

and 6.11 display a point cloud representation of the generated map using rviz, which

is a robot visualization tool for ROS. The different colors represent the different
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heights of the map points. The arrow represents the final position and orientation of

the quadcopter on the map.

Figure 6.10: SLAM algorithm results map view 1

Figure 6.11: SLAM algorithm results map view 2

Figure 6.12 presents the position of the UAV with respect to the launch reference

frame. The altitude is obtained from the barometer sensor. The x and y position

are obtained using the SLAM algorithm together with the map points.
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Figure 6.12: SLAM algorithm results position

Figures 6.13 and 6.14 represent the vehicle’s attitude with respect to the local frame

in quaternion and axis-angle form, respectively.

Figure 6.13: SLAM algorithm results quaternion attitude
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Figure 6.14: SLAM algorithm results axis-angle attitude

On Figures 6.10 and 6.11, the outline of the wall of the building can be seen clearly.

There are other elements that can be seen in the figures, like some structures on the

left and right sides of the wall, and part of the ground plants.

The attitude is the result of the fusion between the IMU and the SLAM data. It

allowed to get a better measurement for the yaw angle in the absence of good

magnetometer readings because of the proximity of the building.





Chapter 7

Conclusions

A linear system model using quaternions It was showed in chapter 3 that

the attitude of a rigid body can be represented as a linear system without the use of

any kind of approximation or linearization by using the axis-angle representation. It

may be less intuitive to see the orientation of a vehicle in this way, but it is a more

efficient way to use in terms of mathematical complexity.

Control laws are always tested against linear systems because they are the most

studied type of dynamical systems in the sense of their controllability, observability

and stability analysis. One of the most common practices is to linearize the non-linear

system around an equilibrium point, thus using just a linear representation of a

region of the system instead of the whole attitude state space. The system model

presented in this work is linear in all the attitude space. The main drawback of using

this kind of representation against a linearization using Euler angles, or even rotation

matrices, is that it can increase computational complexity, requiring more operations

to be done for the same result. To solve this, another kind of representation can be

used, which involves the use of quaternions.

The relationship between the axis-angle representation and the quaternion one was

also shown in chapter 3. The quaternion logarithmic mapping and exponential
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mapping give the basis to change from one type of model to another and vice-

versa. The axis-angle model is the one that’s used for analysis and for tests such as

controllability, stability and observability. Then, using the quaternion logarithmic

mapping and exponential mapping, this model can be changed to an analogous

quaternion model. Quaternion’s main operation is the product, which can be

programmed as a sequence of products and sums, making it more efficient in terms

of computational operations in comparison to the Euler representation, that needs to

calculate sines and cosines. They use less space than rotations matrices, as only one

quaternion is needed for the attitude in comparison to the nine data spaces needed

for rotation matrices. In addition to all this, because quaternions used for rotations

are unitary, they can be normalized to reduce numeric errors, making them more

numerically stable than both Euler angles and rotation matrices.

The combination of these two representations allows a better use of the computational

resources present on the UAV and a more elegant way to prove things in the control

field. One thing to note, however, is that control laws applying the quaternion

logarithmic mapping can have an abrupt discontinuity when generating quaternions

from Euler angles. As quaternion rotation has the property that any rotation using

quaternion q produces the same result as quaternion −q, equation (3.8) only produces

quaternions with scalar part greater or equal to zero. If only quaternions with positive

scalar part are considered in the logarithmic mapping, a discontinuity arises when

the quaternion scalar part approaches zero. In this case, the control tends to change

signs abruptly, which can destabilize the system or even make the vehicle crash. To

avoid this, the attitude data should be treated using the full quaternion space, or

the discontinuity can be detected and corrected in an heuristic way.

A sliding modes control law The physical configuration of the prototype pre-

vented the laser range finder to be mounted near the vehicle’s center of mass because

the landing gear would interfere with the laser readings. This meant that the sensor

produced an external torque on the vehicle that needed to be compensated. This

could be accomplished by using a counter weight on the quadcopter, but that would
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add mass, reduce flight time and doesn’t compensate for any dynamic torques that

may arise due to environmental conditions. The proposed solution was to make the

control law robust enough to account for these external perturbations. Theorem 3.1

shows the sufficient conditions for the control law to achieve this objective using a

sliding mode controller.

The control law can be seen as having two parts, a state feedback part and a signed

part. The state feedback part allows the control to compensate perturbations that

increase with the system state’s norm. As the state variables tends to zero, the

bounded perturbations’ effect on the system increases. The signed part is added in

order to reduce these effects on the system and to assure a finite convergence to the

sliding surface, which is the origin in this case. In the practice, however, the sign

function becomes problematic when applied directly to motors because it can reduce

its working life.

There are many kinds of methods that deal with this shattering problem. Some

of the more commonly used are: the use of a low pass filter to the output of the

control law in order to reduce the shattering effect; the use of another function that

is close enough to conserve some of the stability and convergence properties of the

sign function, but different enough to dissipate the effect of the shattering on the

system’s actuators. In this work, the approximate function used was the hyperbolic

tangent, because of its simplicity and because it doesn’t require the addition of

another dynamical system such as with the low-pass filter case would require. The

implementation then becomes much simpler and robust.

It can be seen from the results obtained in and shown in Figure 6.8 that the system

is stable in the Lyapunov sense as it was stated in Theorem 3.1. The attitude error

and the angular velocity are bounded inside a region around the origin, even with

the environment perturbations, the sensor weight and the changes in the desired

trajectory from the RF signals references. This proves that the proposed control law

is robust enough to handle the sensor weight and changes in the attitude reference,

which makes it suitable for as a platform from which SLAM can be performed.
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Yet another SLAM algorithm One of the most worrisome topics of UAVs is

their safety, as they have the capacity of unintentionally harming people or objects

with something as simple as falling onto them. As was the case with the early

automobiles and planes, research focused on these platforms can increase their safety.

In this case, SLAM research can have a direct impact on the how many persons

could get hurt by using those kinds of platforms.

SLAM has many advantages for UAVs, which include the ability to navigate in

unmapped environments, collision detection and to follow and plan trajectories. The

application of SLAM to drones is an emerging field of study because recent advances

in laser and imaging technology, as well as in the embedded circuits and computers,

has made it possible to gather enough computational power in a sufficiently small form

to be able to be used efficiently in UAVs. Yet, it is still a very resource-demanding

task which could make drones safe to use in indoors environments and tight spaces

safely. In order to solve the SLAM problem more efficiently, each SLAM algorithm

implementation tends to be tailored to the specific platform and sensors that are

used. The best configuration to each platform and sensors can only be obtained by

trying different sensor-vehicles match-ups and comparing their results. That’s one of

the main reasons of trying different kinds of configurations.

Another way to solve the SLAM problem more efficiently is by changing the algorithm

used. Almost all SLAM solutions are compared with the EKF-equivalent solution

under the same configuration and model, making the EKF the main default with

which to compare the effectiveness of any SLAM algorithm. In this work, instead of

finding a more efficient way to solve the same problem, the SLAM model is changed

and reconfigured to use complex and hyper-complex numbers (quaternions) in order

to simplify it mathematically in order to reduce the computational complexity. It is

shown with the results presented in Chapter 6 that with the new approach described

in Chapter ??, the SLAM problem can be solved using an EKF with less non-linear

terms in the Jacobians compared to a pure EKF solution, making it more simple in

mathematically and computationally. Because of the approach used, focused more in

the model, this kind of technique can be used in combination to many other more
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efficient algorithms than the pure EKF in order to increase the effectiveness even

more. Because of this, it can be safely stated that the objective of finding a more

efficient method for solving the SLAM algorithm was accomplished.

What eyes to use? The prototype used in this work was assembled and built

specifically for this work. The idea of using a laser range finder over other kinds

of sensors was for precision in the measurements. However, because of the nature

of range finder, it provides only data throughout a planed in 3D space, which has

limited data with respect to the quadcopter’s attitude and the environment because

the sensor was fixed in the body frame. An imaging sensor such as a stereoscopic

camera would have been able to provide more information about the surrounding

environment, as well as for the vehicle’s orientation. Even though laser sensors are

more accurate, in this case the EKF filter would have been able to fuse various

sensors to reduce this noise and still be able to have a wider range of information for

the SLAM problem to be solved more efficiently.

The laser range finder could have been able to provide as much information as a

camera array if it hadn’t been fixed to the body frame, or several laser sensors would

have been used. The change of orientation of the sensor would have enabled a better

reconstruction of the 3D environment and a better estimation of the drone’s attitude.

Two or more laser sensors acquiring different planes with respect to the body frame

would give enough information for the UAVs full attitude to be fully estimated in a

more precise way.

Future Work.

Research in UAVs is still a very active development field of study. One of the main

reasons is that drones represent one of the few platforms that can be used in almost

any kind of environment, so many applications and systems that were once anchored

to the ground because of the type of vehicle used or because of the cost of lifting

them, are slowly starting to take off the earth.
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A new revolution in robotics and autonomous systems is starting to brew, but it

could quickly explode if not used carefully. Every day new models of multirotors

and flying vehicles pop up on the world-wide market in a way that makes it almost

impossible for legislation and people to keep up with in order to ensure a safe use of

these vehicles.

The development of new SLAM algorithms and methods allows other kinds of research

topics to emerge. Some of these are: path planning and following; obstacle avoidance

and collision detection; object detection and manipulation and automatic take-off and

landing. SLAM allows these platform to operate in unstructured environments, so any

quadcopter application that starts without any prior knowledge of the surroundings

or that doesn’t have a good GPS signal can benefit from this implementation.



Appendix A

Quaternion Algebra

Quaternions are “hypercomplex” numbers, which means that they have three imagi-

nary parts î, ĵ, k̂ instead of one compared to complex numbers. They can be used to

describe in a very simple mathematical and computational way rotations in three-

dimensional space. When many methods use trigonometric functions, which are

non-linear and suffer from numerical inaccuracy, quaternion rotations are simple in

that they only need multiplications, divisions and sums to be implemented.

A.1 Notation.

In this work, over lined letters represent vectors in 3D space (�) ∈ R3. A quaternion is

a four tuple that belongs to the H quaternion space. It can be seen as a number that

contains one real part and three imaginary parts multiplied by their corresponding

imaginary units î, ĵ, k̂ ∈ I:

q0, q1, q2, q3 ∈ R; q ∈ H; î, ĵ, k̂ ∈ I

q := q0 + q1 î+ q2 ĵ + q3 k̂
(A.1)
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As there are three different imaginary parts, these are often viewed as a vector in R3

space. Thus, R3 space can be seen as a subspace of H space and a R3 vector can be

considered a pure imaginary quaternion.

q ∈ R3

q = q0 +


q1

q2

q3

 = q0 + q
(A.2)

A.2 Quaternion Operations.

Because of its significance, historically as well as in the definition of the quaternion

space itself, the main operation of quaternions is the multiplication. Other operations

and properties arise from this definition, like the conjugate and the norm.

Product. The quaternion product between quaternions q,p ∈ H, expressed as a

sum between a scalar real part and an imaginary vector q = q0 + q;p = p0 + p, is

defined in the following manner:

q ⊗ p := (q0 + p0 − q · p) + (q0 p+ p0 q + q × p) (A.3)

Some properties can be seen from this definition. One of the most important is that

quaternion product is not commutative. Which means that q ⊗ p 6= p⊗ q. This is

because of the same non-commutativity property of the cross product used on the

definition.

Sum. The sum of quaternions q and p is simply defined as the sum of each of its

elements, like this:
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q, r ∈ H

q + r := q0 + r0 + q + r
(A.4)

The set of all quaternions with operations addition and multiplication defines a

non-commutative division ring. See Kuipers [1999] for more information on this

matter.

Conjugate. The conjugate of quaternion q is denoted like:

q∗ := q0 − q (A.5)

The conjugate of a product of quaternions is:

(q ⊗ r)∗ = r∗ ⊗ q∗ (A.6)

This can be proven by expanding the corresponding products.

Norm. The norm of a quaternion is defined by:

||q||2 := q ⊗ q∗ = q20 + q21 + q22 + q23 (A.7)

Inverse. The quaternion product forms a closed-loop group, that is, the product

of two non-null quaternions is another quaternion. This means that for any non-null

quaternion there exists an inverse quaternion such that:
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q−1 :=
q∗

||q||
q ⊗ q−1 = q−1 ⊗ q = 1

(A.8)



Appendix B

Simulations’ Code

Attitude Control Simulations

The following code was used to generate Figures 3.3 and 3.2.

1 # −∗− coding : u t f−8 −∗−

2

3 import numpy as np

4 from numpy . l i n a l g import norm

5 from numpy import concatenate as cat , array , c r o s s

6 from c o n t r o l . matlab import l q r

7 from s c ipy . i n t e g r a t e import ode int

8 from pylab import ∗

9 from q u a t l i b r a r y import ∗

10

11 #Fina l s imu la t i on time and r e s o l u t i o n

12 t f = 2 .5 e1

13 r e s = t f ∗1 e3

14

15 #Quadrotor parameters

16 m = 1.3

17 g = 9.81

18 vg = array ( [0 ,0 ,− g ] , dtype=f loat )

19 sp = 2∗(1 .3−4∗0.065) ∗0.06∗∗2/5
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20 armxy = 4∗0 .065∗0 .2∗∗2

21 armz = 4∗0 .065∗0 .28∗∗2

22 J = np . diag ( [ sp + armxy , sp + armxy , sp + armz ] )

23 th = g∗m∗1 .5

24 tau max = 0 . 6∗0 . 3

25

26

27 #Model parameters

28 A = np . z e ro s ( ( 6 , 6 ) )

29 A[ : 3 , 3 : 6 ] = np . eye (3 )

30 B = np . z e ro s ( ( 6 , 3 ) )

31 B [ 3 : 6 , : ] = np . eye (3 )

32

33 #Get gain matr ices

34 K 1 , P, E = l q r (A,B, diag ( [ 1 e1 , 1 e1 , 1 e0 , 1 , 1 , 1 ] ) ∗1e3 , d iag ( [ 1 , 1 , 1 ] ) ∗1 e0 )

35 K 2 , P 2 , E = l q r (A,B, diag ( [ 1 , 1 , 1 , 1 , 1 , 1 ] ) ∗1e−1, d iag ( [ 1 , 1 , 1 ] ) ∗1 e0 )

36

37 #Noise parameters

38 Q = −( (A−B. dot ( K 1 ) ) . t ranspose ( ) . dot (P) + P. dot ( (A−B. dot ( K 1 ) ) ) )

39 L1 = norm(Q) /(2∗norm(P) ∗norm(B) )

40 L2 = norm( K 2 )

41

42 #I n i t i a l c ond i t i on s

43 U = [ ]

44 th 0 = np . deg2rad (90)

45 e 0 = array ( [ 1 , −7 ,3 ] , dtype=f loat )

46 e 0 /= norm( e 0 )

47 q b = e 0 ∗np . s i n ( th 0 /2)

48 x0 = array ( [ np . cos ( th 0 /2) , q b [ 0 ] , q b [ 1 ] , q b [ 2 ] , 0 , 0 , 0 ] , dtype=f loat )

49 x0 [ : 4 ] /= norm( x0 [ : 4 ] )

50 i f x0 [ 0 ] < 0 :

51 x0 [ : 4 ] ∗= −1

52

53 #Desired a t t i t u d e

54 yd = np . deg2rad (30)

55 qyd = array ( [ np . cos ( yd ) , 0 ,0 , np . s i n ( yd ) ] )

56 qyd /= norm( qyd )
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57

58 def f (x , t ) :

59 global x i

60 x = array (x , dtype=f loat )

61 q = x [ : 4 ]

62 q /= norm( q )

63 w = x [ 4 : 7 ]

64 #Ca lcu l a t e the s t a t e error

65 x e r r = cat ( ( l o g q ( mult q ( q , con j q ( qyd ) ) ) , w) )

66 #Ca lcu l a t e the con t r o l

67 tau = −K 1 . dot ( x e r r ) − K 2 . dot (np . tanh ( x e r r ) )

68 #A phy s i c a l contra in

69 tau [ np . abs ( tau ) > tau max ] = np . s i gn ( tau [ np . abs ( tau ) >

tau max ] ) ∗ tau max

70

71 #Add noi se

72 # x i = np . cos ( [ 0 . 3∗ t , 0 .5∗ t , t ] ) #S inuso i da l no i se

73 x i = ones ( ( 3 , ) ) #Constant no i se

74 x i/= norm( x i )

75 x i ∗= (L1 + L2∗norm( x e r r ) ) /(1+1e−10)

76 # x i = np . random . normal ( s i z e =(3 ,) , s c a l e = (L1 +

L2∗norm( x e r r ) ) /(1+1e−10) ) #Random noise

77

78 dx = cat ( ( 0 . 5∗ mult q (q , np . concatenate ( ( [ 0 ] ,w

) ) ) , np . l i n a l g . inv ( J ) . dot ( tau − np . c r o s s (w, J . dot (w) ) ) + x i ) )

79

80 return dx

81

82 #Finde the s o l u t i o n

83 t = np . l i n s p a c e (0 , t f , r e s )

84 y = ode int ( f , x0 , t )

85

86 #So lu t i on us ing s imple eu l e r recurs ion , in case the d e r i v a t e i s not

cont inuous because o f the no i se .

87 #y = [ ]

88 #dt = t f / res

89 #for T in t :
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90 # i f T == 0:

91 # y ant = x0

92 # e l s e :

93 # y ant = f ( y ant , T)∗ dt+y ant

94 # y ant [ : 4 ] /= norm( y ant [ : 4 ] )

95 # y . append ( y ant )

96 #y = array ( y )

97

98

99 count = 0

100 #Ca lcu l a t e Euler ang l e s f o r a more i n t u i t i v e r ep r e s en t a t i on

101 q = y [ : , : 4 ]

102 e u l e r = cat ( ( np . arctan2 ( q [ : , 0 ] ∗ q [ : , 1 ] + q [ : , 2 ] ∗ q [ : , 3 ] ,

1−2∗(q [ : , 1 ] ∗ ∗ 2 + q [ : , 2 ] ∗ ∗ 2 ) ) [ None , : ] ,

103 np . a r c s i n (2∗ ( q [ : , 0 ] ∗ q [ : , 2 ] − q [ : , 3 ] ∗ q [ : , 1 ] ) ) [ None , : ] ,

104 np . arctan2 (2∗ ( q [ : , 0 ] ∗ q [ : , 3 ] + q [ : , 1 ] ∗ q [ : , 2 ] ) ,

1−2∗(q [ : , 2 ] ∗ ∗ 2 + q [ : , 3 ] ∗ ∗ 3 ) ) [ None , : ] ) , a x i s = 0)

105

106 #Plot

107 subplot ( 1 , 3 , 1 )

108 t i t l e (u” Att i tude ” )

109 x l a b e l (u”Time [ s ] ” )

110 y l a b e l (u”Angle [ degree s ] ” )

111 i f abs (np . rad2deg ( e u l e r .max( ) ) ) < 0 .1 and abs (np . rad2deg ( e u l e r .min( ) ) )

< 0 .1 :

112 ylim ( [ − 0 . 1 , 0 . 1 ] )

113 p l o t ( t , np . rad2deg ( e u l e r [ 0 , : ] ) , l a b e l=u” r o l l ” )

114 p l o t ( t , np . rad2deg ( e u l e r [ 1 , : ] ) , l a b e l=u” p i t ch ” )

115 p l o t ( t , np . rad2deg ( e u l e r [ 2 , : ] ) , l a b e l=u”yaw” )

116 g r id ( )

117 legend ( )

118

119 s u p t i t l e (u”Quadcopter Att i tude Simulat ion ” )

120

121 subplot ( 1 , 3 , 2 )

122 t i t l e (u”Angular Ve loc i ty ” )

123 x l a b e l (u”Time [ s ] ” )
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124 y l a b e l (u”Angular Ve loc i ty [ rad/ s ] ” )

125 count = 0

126 for x in y . t ranspose ( ) [ 4 : 7 ] :

127 i f abs ( x .max( ) ) < 0 .1 and abs ( x .min( ) ) < 0 . 1 :

128 ylim ( [ − 0 . 1 , 0 . 1 ] )

129 p l o t ( t , x , l a b e l=u”w” + str ( count ) )

130 count += 1

131 g r id ( )

132 legend ( )

133

134 #Reca l cu l a t e the con t r o l

135 u = [ ]

136 for x in y :

137 q = x [ : 4 ]

138 q /= norm( q )

139 w = x [ 4 : 7 ]

140 x e r r = cat ( ( l o g q ( mult q ( q , con j q ( qyd ) ) ) , w) )

141 u . append(−K 1 . dot ( x e r r ) − K 2 . dot (np . tanh ( x e r r ) ) )

142 u = np . array (u)

143

144 u [ np . abs (u) > tau max ] = np . s i gn (u [ np . abs (u) > tau max ] ) ∗ tau max

145

146 subplot ( 1 , 3 , 3 )

147 t i t l e (u” Input ” )

148 x l a b e l (u”Time [ s ] ” )

149 y l a b e l (u”Torque [N m] ” )

150 count = 0

151 for x in u . t ranspose ( ) :

152 i f abs ( x .max( ) ) < 0 .1 and abs ( x .min( ) ) < 0 . 1 :

153 ylim ( [ − 0 . 1 , 0 . 1 ] )

154 p l o t ( t , x , l a b e l=u”u” + str ( count ) )

155 count += 1

156 g r id ( )

157 legend ( )

158

159 #Plot the s t a t e error

160 f i g u r e ( )
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161 s u p t i t l e (u” State Error ” )

162

163 subplot ( 1 , 2 , 1 )

164 e r e f = array ( [ np . arctan2 ( qyd [ 0 ] ∗ qyd [ 1 ] + qyd [ 2 ] ∗ qyd [ 3 ] ,

1−2∗(qyd [ 1 ]∗∗2 + qyd [ 2 ] ∗ ∗ 2 ) ) ,

165 np . a r c s i n (2∗ ( qyd [ 0 ] ∗ qyd [ 2 ] − qyd [ 3 ] ∗ qyd [ 1 ] ) ) ,

166 np . arctan2 (2∗ ( qyd [ 0 ] ∗ qyd [ 3 ] + qyd [ 1 ] ∗ qyd [ 2 ] ) ,

1−2∗(qyd [ 2 ]∗∗2 + qyd [ 3 ] ∗ ∗ 3 ) ) ] )

167 e r r o r = cat ( ( ( e u l e r [ 0 , : ] − e r e f [ 0 ] ) [ None , : ] , ( e u l e r [ 1 , : ] −

e r e f [ 1 ] ) [ None , : ] , ( e u l e r [ 2 , : ] − e r e f [ 2 ] ) [ None , : ] ) , a x i s =0)

168 p l o t ( t , 10∗np . log10 (np . abs (np . rad2deg ( e r r o r . t ranspose ( ) [ : , 0 ] ) ) ) ,

l a b e l=u” Rol l Error ” )

169 p l o t ( t , 10∗np . log10 (np . abs (np . rad2deg ( e r r o r . t ranspose ( ) [ : , 1 ] ) ) ) ,

l a b e l=u” Pitch Error ” )

170 p l o t ( t , 10∗np . log10 (np . abs (np . rad2deg ( e r r o r . t ranspose ( ) [ : , 2 ] ) ) ) ,

l a b e l=u”Yaw Error ” )

171 x l a b e l ( ”Time [ s ] ” )

172 y l a b e l (u”10 l og 10 ( | Att i tude Error | ) [ dB( degree s ) ] ” )

173 g r id ( )

174 legend ( )

175

176 subplot ( 1 , 2 , 2 )

177 p l o t ( t , 10∗np . log10 (np . abs ( y [ : , 4 ] ) ) , l a b e l=u”w x Error ” )

178 p l o t ( t , 10∗np . log10 (np . abs ( y [ : , 5 ] ) ) , l a b e l=u”w y Error ” )

179 p l o t ( t , 10∗np . log10 (np . abs ( y [ : , 6 ] ) ) , l a b e l=u”w z Error ” )

180 x l a b e l ( ”Time [ s ] ” )

181 y l a b e l (u”10 l og 10 ( | Angular Ve loc i ty Error | ) [ dB ( rad/ s ) ] ” )

182 g r id ( )

183 legend ( )

184

185 ion ( )

186 show ( )
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Code for the Embedded Computer

Attitude Control Simulations

The following code was used to generate Figure 6.10. This file is used to produce the

ROS node used:

1 #!/ usr / b in /env python

2 import rospy

3 import sensor msgs . po in t c l oud2 as pc2

4 from rospy . numpy msg import numpy msg

5 from sensor msgs . msg import Imu , LaserScan , PointCloud2

6 from mavros extras . msg import OpticalFlowRad

7 from geometry msgs . msg import PoseStamped

8 import numpy as np

9 from SLAM import slam as slam ob

10

11 def quatRot (q , v ) : #q v qˆ∗

12 q , v = np . array (q , dtype=f loat ) , np . array (v , dtype=f loat )

13 q /= np . l i n a l g . norm( q )

14 i f len ( v . shape ) == 1 :

15 v = np . concatenate ( ( [ 0 ] , v ) )

16 else :

17 v = np . concatenate ( ( np . z e r o s ( ( 1 , v . shape [ 1 ] ) ) , v ) , a x i s =0)
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18 r = np . concatenate ((−q [ 1 : 4 ] . dot ( v [ 1 : 4 , : ] ) [ None , : ] , q [ 0 ] ∗ v [ 1 : 4 , : ] +

np . c r o s s ( q [ 1 : 4 ] , v [ 1 : 4 , : ] , a x i s = 0) ) , a x i s =0)

19 return q [ 0 ] ∗ r [ 1 : 4 , : ] − q [ 1 : 4 , None ] . dot ( r [ None , 0 , : ] ) −

np . c r o s s ( r [ 1 : 4 , : ] , q [ 1 : 4 ] , a x i s =0)

20

21 def quatMult (q , r ) :

22 q , r = np . array (q , dtype=f loat ) , np . array ( r , dtype=f loat )

23 return np . concatenate ( ( [ q [ 0 ] ∗ r [0]−q [ 1 : 4 ] . dot ( r [ 1 : 4 ] ) ] , q [ 1 : 4 ] ∗ r [ 0 ]

+ q [ 0 ] ∗ r [ 1 : 4 ] + np . c r o s s ( q [ 1 : 4 ] , r [ 1 : 4 ] ) ) )

24

25 def quat2mat ( q ) :

26 q /= np . l i n a l g . norm( q )

27 r = np . empty ( ( 3 , 3 ) )

28 r [ 0 , : ] = np . array ( [ 1 − 2∗q [ 2 ]∗∗2 − 2∗q [ 3 ] ∗ ∗ 2 , 2∗( q [ 1 ] ∗ q [ 2 ] −

q [ 3 ] ∗ q [ 0 ] ) , 2∗( q [ 1 ] ∗ q [ 3 ] + q [ 2 ] ∗ q [ 0 ] ) ] , dtype=f loat )

29 r [ 1 , : ] = np . array ( [ 2 ∗ ( q [ 1 ] ∗ q [ 2 ] + q [ 3 ] ∗ q [ 0 ] ) , 1 − 2∗q [ 1 ]∗∗2 −

2∗q [ 3 ] ∗ ∗ 2 , 2∗( q [ 2 ] ∗ q [ 3 ] + q [ 1 ] ∗ q [ 0 ] ) ] , dtype=f loat )

30 r [ 2 , : ] = np . array ( [ 2 ∗ ( q [ 1 ] ∗ q [ 3 ] − q [ 2 ] ∗ q [ 0 ] ) , 2∗( q [ 2 ] ∗ q [ 3 ] +

q [ 1 ] ∗ q [ 0 ] ) , 1 − 2∗q [ 1 ]∗∗2 − 2∗q [ 2 ]∗∗2 ] , dtype=f loat )

31 return r

32

33 def Lrot ( l i ) :

34 return np . array ( [ [ 0 . , − l i [ 0 ] , − l i [ 1 ] , − l i [ 2 ] ] ,

35 [ l i [ 0 ] , 0 . , l i [ 2 ] , − l i [ 1 ] ] ,

36 [ l i [ 1 ] , − l i [ 2 ] , 0 . , l i [ 0 ] ] ,

37 [ l i [ 2 ] , l i [ 1 ] , − l i [ 0 ] , 0 . ] ] , dtype=f loat )

38

39 def M Prot ( p i ) :

40 return np . array ( [ [ 0 . , −pi [ 0 ] , −pi [ 1 ] , −pi [ 2 ] ] ,

41 [ p i [ 0 ] , 0 . , −pi [ 2 ] , p i [ 1 ] ] ,

42 [ p i [ 1 ] , p i [ 2 ] , 0 . , −pi [ 0 ] ] ,

43 [ p i [ 2 ] , −pi [ 1 ] , p i [ 0 ] , 0 . ] ] , dtype=f loat )

44

45

46 def attUpdate ( data ) :

47 global q imu , w imu

48 q imu = np . array ( [ data . o r i e n t a t i o n .w,
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49 data . o r i e n t a t i o n . x ,

50 data . o r i e n t a t i o n . y ,

51 data . o r i e n t a t i o n . z ] )

52 q imu /= np . l i n a l g . norm( q imu )

53 w imu = np . array ( [ data . a n g u l a r v e l o c i t y . x ,

54 data . a n g u l a r v e l o c i t y . y ,

55 data . a n g u l a r v e l o c i t y . z ] , dtype=f loat )

56 # rospy . l o g i n f o ( q imu )

57

58 scanWasUpdated = False

59

60 def scanUpdate ( data ) :

61 global ranges , angles , scanWasUpdated

62 ranges = data . ranges

63 ang l e s = np . l i n s p a c e ( data . angle min , data . angle max ,

ranges . shape [ 0 ] )

64 n o t v a l i d = np . i snan ( ranges ) + np . i s i n f ( ranges )

65 ranges = ranges [ np . l o g i c a l n o t ( n o t v a l i d ) ]

66 ang l e s = ang l e s [ np . l o g i c a l n o t ( n o t v a l i d ) ]

67 scanWasUpdated = True

68 # rospy . l o g i n f o ( ranges )

69

70 velWasUpdated = False

71

72 def velUpdate ( data ) :

73 global velWasUpdated , ve l , v e lQua l i ty

74 ve l = np . array ( [ data . flow comp m x , data . flow comp m y ] )

75 ve lQua l i ty = data . q u a l i t y

76 velWasUpdated = True

77

78 a l t i t u d e = None

79 altWasUpdated = False

80

81 def altUpdate ( data ) :

82 global a l t i t u d e , altWasUpdated

83 a l t i t u d e = data . pose . p o s i t i o n . z

84 altWasUpdated = True
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85 # rospy . l o g i n f o ( a l t i t u d e )

86

87 def slam ( ) :

88 global scanWasUpdated , ranges , angles , q imu , a l t i t u d e ,

velWasUpdated , ve l , altWasUpdated , w imu

89 # I n i t i a l i z e

90 rospy . i n i t n o d e ( ’ slam ’ , anonymous=True )

91 r e s o l u t i o n = rospy . get param ( ” r e s o l u t i o n ” , 0 . 0 1 )

92 max dist = rospy . get param ( ” max dist ” , 0 . 5 )

93 f rame id = rospy . get param ( ” i n e r t i a l f r a m e i d ” , ” l o c a l o r i g i n ” )

94

95 # Subscr i b e to t o p i c s

96 rospy . Subsc r ibe r ( ”/mavros/imu/ data ” , numpy msg(Imu) , attUpdate )

97 rospy . Subsc r ibe r ( ”/ scan ” , numpy msg( LaserScan ) , scanUpdate ) ;

98 rospy . Subsc r ibe r ( ”/mavros/ o p t i c a l f l o w ” ,

numpy msg( OpticalFlowRad ) , velUpdate ) ;

99 rospy . Subsc r ibe r ( ”/mavros/ p o s i t i o n / l o c a l ” , numpy msg( PoseStamped ) ,

altUpdate ) ;

100

101 pub = rospy . Pub l i sher ( ’map ’ , PointCloud2 , q u e u e s i z e =5)

102 pose = rospy . Pub l i she r ( ’ pose ’ , PoseStamped , q u e u e s i z e =5)

103

104 ra t e = rospy . Rate (100) # 100 hz

105 x odo = np . z e r o s ( ( 6 , ) )

106 s lam scan = slam ob ( )

107 seqNum = 0

108 q hat = np . array ( [ 1 . 0 , 0 , 0 , 0 ] )

109

110 while not rospy . i s shutdown ( ) :

111 #S l i d i n g Mode Observer f o r p o s i t i o n es t imate

112 i f velWasUpdated :

113 x odo [ : 2 ] += x odo [ 3 : 5 ] ∗ 0 . 1 + 0 . 1∗ ( v e l − x odo [ 3 : 5 ] )

114 x odo [ 3 : 5 ] += 0.45825757∗ ( v e l − x odo [ 3 : 5 ] )

115 velWasUpdated = False

116 else :

117 x odo [ : 2 ] += x odo [ 3 : 5 ] ∗ 0 . 1

118 x odo [ 3 : 5 ] ∗= 0.5
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119 # rospy . l o g i n f o (” x odo : ” + s t r ( x odo ) )

120 i f altWasUpdated :

121 x odo [ 2 ] = a l t i t u d e

122 # x odo [ 5 ] += 0.45∗np . tanh ( a l t i t u d e − x odo [ 2 ] )

123 altWasUpdated = False

124

125 #Do something i f t h e r e ’ s a scan

126 i f scanWasUpdated and a l t i t u d e != None and q imu != None :

127 #check i f i t ’ s a v a l i d scan

128 i f ranges != None and ranges . shape [ 0 ] != 0 and

ranges . shape == ang l e s . shape :

129 odoData = { ’ a l t i t u d e ’ : a l t i t u d e , ’ v e l o c i t y ’ :

x odo [ 3 : 5 ] , ’ q imu ’ : q imu , ’w ’ : w imu}

130 scanData = { ’ ranges ’ : ranges , ’ ang l e s ’ : ang l e s }

131 s lam scan . updateStates ( scanData , odoData )

132 x odo [ : 3 ] = s lam scan . pose [ ’ p o s i t i o n ’ ] . copy ( )

133 q hat = slam scan . pose [ ’ a t t i t u d e ’ ]

134

135 #Pub l i sh Map t op i c

136 Map = PointCloud2 ( )

137 Map = pc2 . c r e a t e c l o ud x yz 32 (Map. header , s lam scan . mapPnts )

138 Map. header . f rame id = frame id

139 pub . pub l i sh (Map)

140 #Pub l i sh pose t o p i c

141 pose hat = PoseStamped ( )

142

143 pose hat . header . f rame id = frame id

144 pose hat . header . stamp = rospy . Time . now ( )

145 pose hat . header . seq = seqNum

146 seqNum += 1

147

148 q show = quatMult ( [ 1 , 0 , 0 , 0 ] , q hat )

149

150 pose hat . pose . o r i e n t a t i o n . x = q show [ 1 ]

151 pose hat . pose . o r i e n t a t i o n . y = q show [ 2 ]

152 pose hat . pose . o r i e n t a t i o n . z = q show [ 3 ]

153 pose hat . pose . o r i e n t a t i o n .w = q show [ 0 ]
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154

155 pose hat . pose . p o s i t i o n . x = slam scan . pose [ ’ p o s i t i o n ’ ] [ 0 ]

156 pose hat . pose . p o s i t i o n . y = slam scan . pose [ ’ p o s i t i o n ’ ] [ 1 ]

157 pose hat . pose . p o s i t i o n . z = slam scan . pose [ ’ p o s i t i o n ’ ] [ 2 ]

158

159 pose . pub l i sh ( pose hat )

160

161 scanWasUpdated = False

162

163 # Map = pc2 . c r e a t e c l oud x y z 32 (Map. header ,

[ [ 0 , 1 , 2 ] , [ 3 , 4 , 5 ] , [ 6 , 7 , 8 ] ] )

164 # Map. header . f rame id = frame id

165 # pub . p u b l i s h (Map)

166

167 # rospy . l o g i n f o (Map)

168 ra t e . s l e e p ( )

169

170 i f name == ’ ma in ’ :

171 try :

172 slam ( )

173 except rospy . ROSInterruptException :

174 pass

The following code is used as the SLAM object that was called in the previous code:

1 # −∗− coding : u t f−8 −∗−

2

3 import numpy as np

4 from numpy import array

5 from numpy . l i n a l g import norm

6 from s c ipy . opt imize import l e a s t s q

7

8 #Define f unc t i on s f o r quatern ion opera t i ons

9

10 def l o g q ( q ) :

11 q = array (q , dtype=f loat )

12 v norm = norm( q [ 1 : 4 ] )

13 i f v norm == 0 :
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14 return array ( [ 0 , 0 , 0 ] , dtype=f loat )

15 else :

16 return np . a r c co s ( q [ 0 ] ) ∗q [ 1 : 4 ] / v norm

17

18 def exp q ( v ) :

19 v = array (v , dtype=f loat )

20 v norm = norm( v )

21 i f v norm == 0 :

22 return array ( [ 1 , 0 , 0 , 0 ] , dtype=f loat )

23 else :

24 return

np . concatenate ( ( [ np . cos ( v norm ) ] , v∗np . s i n ( v norm ) /v norm ) )

25

26 def mult q (q , r ) :

27 q , r = array (q , dtype=f loat ) , array ( r , dtype=f loat )

28 i f len ( q . shape ) == 1 and len ( r . shape ) == 1 :

29 return np . concatenate ( ( [ q [ 0 ] ∗ r [0]−q [ 1 : 4 ] . dot ( r [ 1 : 4 ] ) ] ,

q [ 0 ] ∗ r [ 1 : 4 ] + q [ 1 : 4 ] ∗ r [ 0 ] + np . c r o s s ( q [ 1 : 4 ] , r [ 1 : 4 ] ) ) )

30 e l i f len ( r . shape ) == 1 :

31 return

np . concatenate ( ( q [ : , 0 , None ]∗ r [0]−q [ : , 1 : 4 ] . dot ( r [ 1 : 4 , None ] ) ,

32 q [ : , 0 , None ]∗ r [ 1 : 4 ] + q [ : , 1 : 4 ] ∗ r [ 0 ] +

np . c r o s s ( q [ : , 1 : 4 ] , r [ 1 : 4 ] , ax i s a =1) ) , a x i s =1)

33 e l i f len ( q . shape ) == 1 :

34 return

np . concatenate ( ( q [ 0 ] ∗ r [ : , 0 , None]− r [ : , 1 : 4 ] . dot ( q [ 1 : 4 , None ] ) ,

35 q [ 0 ] ∗ r [ : , 1 : 4 ] + r [ : , 0 , None ]∗ q [ 1 : 4 ] +

np . c r o s s ( q [ 1 : 4 ] , r [ : , 1 : 4 ] , ax i sb =1) ) , a x i s =1)

36 else :

37 return

np . concatenate ( ( np . d iag ( q [ : , 0 ] ) . dot ( r [ : , 0 , None ] )−np . d iagona l ( q [ : , 1 : 4 ] . dot ( r [ : , 1 : 4 ] . t ranspose ( ) ) ) [ : , None ] ,

38 np . diag ( q [ : , 0 ] ) . dot ( r [ : , 1 : 4 ] ) +

np . diag ( r [ : , 0 ] ) . dot ( q [ : , 1 : 4 ] ) + np . c r o s s ( q [ : , 1 : 4 ] , r [ : , 1 : 4 ] ,

ax i sb =1, ax i sa =1) ) , a x i s =1)

39

40 def con j q ( q ) :

41 q = array (q , dtype=f loat )
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42 i f len ( q . shape ) == 1 :

43 return np . concatenate ( ( [ q [ 0 ] ] , −q [ 1 : 4 ] ) )

44 else :

45 return np . concatenate ( ( q [ : , 0 , None ] , −q [ : , 1 : 4 ] ) , a x i s =1)

46

47 def r o t q (q , v ) :

48 q , v = array (q , dtype=f loat ) , array (v , dtype=f loat )

49 i f len ( q . shape ) == 1 :

50 q /= norm( q )

51 else :

52 q = np . diag ( 1 . 0 / norm(q , a x i s =1) ) . dot ( q )

53 i f len ( v . shape ) == 1 :

54 v = np . concatenate ( ( [ 0 ] , v ) )

55 else :

56 v = np . concatenate ( ( np . z e r o s ( ( v . shape [ 0 ] , 1) ) , v ) , a x i s =1)

57 v p = mult q (q , mult q (v , con j q ( q ) ) )

58 i f len ( v p . shape ) == 1 :

59 return v p [ 1 : 4 ]

60 else :

61 return v p [ : , 1 : 4 ]

62

63 #Define f unc t i on s f o r SLAM opera t i ons

64

65 def d i s t a n c e f (y , i n l i n e r s ) :

66 ””” d i s t ance from l i n e to po int func t i on to minimize us ing l e a s t

squares ”””

67 theta , rho = y

68 return np . abs (np . cos ( theta ) ∗ i n l i n e r s . r e a l +

np . s i n ( theta ) ∗ i n l i n e r s . imag − rho )

69

70 def d i s t a n c e p a i r ( pair , po in t s ) :

71 ””” d i s t ance from l i n e de f ined by a pa i r o f po in t s to other

po in t s ”””

72 p1 , p2 = pa i r

73 return np . abs ( ( p2 . r e a l − p1 . r e a l ) ∗( p1 . imag − po in t s . imag ) −

( p1 . r e a l − po in t s . r e a l ) ∗( p2 . imag − p1 . imag ) ) /np . l i n a l g . norm( p2−p1 )

74
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75 def EKF( x hat minus , Ak, Pk 1 , Wk, Qk 1 , Hk, Rk , Vk, h x hat minus ,

zk ) :

76 ””” Extended Kalman F i l t e r implementation ”””

77 Pk minus = Ak . dot ( Pk 1 ) . dot (Ak . t ranspose ( ) ) +

Wk. dot ( Qk 1 ) . dot (Wk. t ranspose ( ) )

78

79 Kk = Pk minus . dot (Hk . t ranspose ( ) ) . dot (

np . l i n a l g . inv (Hk . dot ( Pk minus ) . dot (Hk . t ranspose ( ) ) +

Vk . dot (Rk) . dot (Vk . t ranspose ( ) ) ) )

80 x hat k = x hat minus + Kk. dot ( zk − h x hat minus )

81 Pk = (np . eye ( Pk minus . shape [ 0 ] ) − Kk. dot (Hk) ) . dot ( Pk minus )

82 return x hat k , Pk

83

84 def hi ( pk minus , t h e t a f i ) :

85 ””” dhi /dFi ”””

86 return 1 + ( pk minus . imag∗np . cos ( t h e t a f i ) −

pk minus . r e a l ∗np . s i n ( t h e t a f i ) ) ∗1 j /2 .0

87

88 def s c a n h i (pk , theta , Fi ) :

89 ”””Measurement model , remember that theta i s r e a l ”””

90 return Fi . r e a l − ( pk . r e a l ∗np . cos ( Fi . imag ) +

pk . imag∗np . s i n ( Fi . imag ) ) + ( Fi . imag − theta ) ∗1 j

91

92 def i n v s c a n h i (pk , theta , F i hat ) :

93 ”””Measurement model , remember that theta i s r e a l ”””

94 Th = Fi hat . imag + theta

95 return Fi hat . r e a l + ( pk . r e a l ∗np . cos (Th) + pk . imag∗np . s i n (Th) ) +

Th∗1 j

96

97 def Ak( theta k 1 , V flow , dt , N = 0) :

98 ”””Ak matrix used f o r EKF”””

99 A = np . eye (4 + N, dtype=complex)

100 A[ 0 , 1 ] = np . exp(− th e ta k 1 ∗1 j ) ∗dt

101 A[ 0 , 2 ] = −1 j ∗V flow∗np . exp(− th e ta k 1 ∗1 j ) ∗dt

102 A[ 2 , 3 ] = dt

103 return A

104
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105 def ransac ( po ints , th r e sho ld = 0 .15 , numSamples = 25) :

106 ”””Random Sample Consensus ”””

107 i f po in t s . shape [ 0 ] == 0 :

108 return None

109 i f numSamples > po in t s . shape [ 0 ] :

110 numSamples = po in t s . shape [ 0 ]

111 c h o i c e s = np . random . cho i c e ( po ints , ( numSamples /2 , 2) , Fa l se )

112 b e s t i n l i n e r s = np . empty ( ( 0 , ) )

113 for pa i r in c h o i c e s :

114 d i s t ance = d i s t a n c e p a i r ( pair , po in t s )

115 i n l i n e r s = po in t s [ d i s t anc e < th r e sho ld ]

116 i f i n l i n e r s . shape [ 0 ] > b e s t i n l i n e r s . shape [ 0 ] :

117 b e s t i n l i n e r s = i n l i n e r s . copy ( )

118

119 #I n i t i a l i z e model wi th c l e a r i n l i n e r s

120 theta , rho = l e a s t s q ( d i s t a n c e f , [ 0 , 1 ] , b e s t i n l i n e r s ) [ 0 ]

121

122 #Re−es t imate the model wi th rescued i n l i n e r s

123 nDistance = np . abs (np . cos ( theta ) ∗ po in t s . r e a l +

np . s i n ( theta ) ∗ po in t s . imag − rho )

124 theta , rho = l e a s t s q ( d i s t a n c e f , [ theta , rho ] , po in t s [ nDistance <

th r e sho ld ] ) [ 0 ]

125

126 return ( rho + theta ∗1 j , po in t s [ nDistance >= thre sho ld ] )

127

128 def ransac 1p ( points , sample , th r e sho ld = 0 .15 , minPnts = 25 ,

numSamples = 25) :

129 ”””Random Sample Consensus us ing only one po int from the EKF”””

130 i f po in t s . shape [ 0 ] == 0 :

131 return None

132 i f numSamples > po in t s . shape [ 0 ] :

133 numSamples = po in t s . shape [ 0 ]

134 c h o i c e s = np . random . cho i c e ( po ints , ( numSamples , ) , Fa l se )

135 b e s t i n l i n e r s = np . empty ( ( 0 , ) )

136 for pnt in c h o i c e s :

137 d i s t ance = d i s t a n c e p a i r ( [ pnt ,

sample . r e a l ∗np . exp ( sample . imag∗1 j ) ] , po in t s )
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138 i n l i n e r s = po in t s [ d i s t ance < th r e sho ld ]

139 i f i n l i n e r s . shape [ 0 ] > b e s t i n l i n e r s . shape [ 0 ] :

140 b e s t i n l i n e r s = i n l i n e r s . copy ( )

141

142 i f b e s t i n l i n e r s . shape [ 0 ] < minPnts :

143 return None

144

145 #I n i t i a l i z e model wi th c l e a r i n l i n e r s

146 theta , rho = l e a s t s q ( d i s t a n c e f , [ 0 , 1 ] , b e s t i n l i n e r s ) [ 0 ]

147

148 #Re−es t imate the model wi th rescued i n l i n e r s

149 nDistance = np . abs (np . cos ( theta ) ∗ po in t s . r e a l +

np . s i n ( theta ) ∗ po in t s . imag − rho )

150 theta , rho = l e a s t s q ( d i s t a n c e f , [ theta , rho ] , po in t s [ nDistance <

th r e sho ld ] ) [ 0 ]

151

152 return ( rho + theta ∗1 j , po in t s [ nDistance >= thre sho ld ] )

153

154 #Class used to implement the SLAM algor i thm

155

156 class slam ( object ) :

157 ”””A c l a s s to accomodate the slam algorithm , along with a l l i t s

s t ep s ”””

158

159 def i n i t ( s e l f ) :

160 super ( slam , s e l f ) . i n i t ( )

161 #Create and i n i t i a l i z e v a r i a b l e s

162 s e l f . f i r s t S c a n = True

163 s e l f . pose = { ’ a t t i t u d e ’ : np . array ( [ 1 . 0 , 0 , 0 , 0 ] ) ,

’ p o s i t i o n ’ : np . z e r o s ( ( 3 , ) ) }

164 s e l f . mapPnts = [ ]

165

166

167 def updateStates ( s e l f , scanData , odoData , dt = 0 . 1 ) :

168 ”””Main func t i on to use in order to update s t a t e ”””

169 s e l f . ranges = scanData [ ’ ranges ’ ]
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170 goodData = np . l o g i c a l n o t (np . l o g i c a l o r (np . i snan ( s e l f . ranges ) ,

np . i s i n f ( s e l f . ranges ) ) )

171 s e l f . ranges = s e l f . ranges [ goodData ]

172 s e l f . ang l e s = scanData [ ’ ang l e s ’ ] [ goodData ]

173 s e l f . a l t i t u d e = odoData [ ’ a l t i t u d e ’ ]

174 s e l f . v e l o c i t y = odoData [ ’ v e l o c i t y ’ ]

175 s e l f . q imu = odoData [ ’ q imu ’ ]

176 s e l f .w = odoData [ ’w ’ ]

177 s e l f . dt = dt

178

179 #Prepare update v a r i a b l e s t h a t are going to be used

180 s e l f . preUpdate ( )

181

182 #Check i f i t ’ s the f i r s t scan

183 i f s e l f . f i r s t S c a n :

184

185 #I n i t i a l i z e f e a t u r e s to t rack

186 s e l f . i n i t F e a t ( )

187

188 #I n i t i a l i z e s t a t e v ec t o r

189 s e l f . i n i t S t a t e ( )

190 else :

191 #Match f e a t u r e s in the expec ted po in t

192 s e l f . matchFeat ( )

193

194 #f ind new f e a t u r e s a f t e r the match was done

195 s e l f . newFeat ( )

196

197 #Update S ta t e

198 s e l f . updateState ( )

199

200 #Add map po in t s to the t o t a l po in t c loud map where they

shou ld be accord ing to the f i l t e r s

201 s e l f . addPnts2map ( )

202

203 #Dele te repea ted f e a t u r e s based on d i s t ance

204 s e l f . d e lFea tu r e s ( )
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205

206

207 def preUpdate ( s e l f ) :

208 ””” Prepare update v a r i a b l e s that are going to be used ”””

209

210

211 #Put a l t i t u d e in po s i t i o n

212 s e l f . pose [ ’ p o s i t i o n ’ ] [ 2 ] = s e l f . a l t i t u d e

213

214 #Pass scan to a complex r ep r e s en t a t i on

215 s e l f . complexScan = s e l f . ranges ∗np . exp ( s e l f . ang l e s ∗1 j )

216

217 #Ca lcu l a t e l i n e t h r e s h o l d wi th 3% of measured d i s t ance

218 s e l f . th r e sho ld = s e l f . ranges ∗0 .03

219

220 #I n i t i a l i z e a t t i t u d e e s t imate

221 i f s e l f . f i r s t S c a n :

222 s e l f . q hat = s e l f . q imu

223

224 #Compensate p i t c h and r o l l in scan

225 s e l f . theta xy = l o g q ( s e l f . q hat )

226 s e l f . the ta k = s e l f . theta xy [ 2 ]

227 s e l f . theta xy [ 2 ] = 0

228 q xy = exp q ( s e l f . theta xy )

229 s e l f . scanRotated = ro t q ( q xy , np . concatenate ( (

[ s e l f . complexScan . r e a l ] ,

230

[ s e l f . complexScan . imag ] ,

231

[ np . z e r o s ( ( s e l f . complexScan . shape ) ) ] ) , a x i s = 0) . t ranspose ( ) )

232

233 #Pro jec t scan in body frame to ground coord ina t e s

234 s e l f . groundScan = s e l f . scanRotated [ : , : 2 ]

235

236 #Get v e l o c i t y

237 s e l f . Vflow = s e l f . v e l o c i t y [ 0 ] + s e l f . v e l o c i t y [ 0 ] ∗ 1 j

238
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239 #Get po s i t i o n

240 s e l f . complexPos = s e l f . pose [ ’ p o s i t i o n ’ ] [ 0 ] +

s e l f . pose [ ’ p o s i t i o n ’ ] [ 1 ] ∗ 1 j

241

242 #Get angu lar v e l o c i t y

243 s e l f . w k = s e l f .w [ 2 ]

244

245

246 def i n i t F e a t ( s e l f ) :

247 ””” I n i t i a l i z e f e a t u r e s to t rack ”””

248 f e a t u r e = ransac ( s e l f . groundScan [ : , 0 ] +

s e l f . groundScan [ : , 1 ] ∗ 1 j , s e l f . thresho ld , 30 )

249 s e l f . f e a t u r e s = [ f e a t u r e [ 0 ] ]

250 s e l f . f e a tu r e sPs = [ 1 e−15∗(1+1 j ) ]

251 for i in range (5 ) :

252 f e a t u r e = ransac ( f e a t u r e [ 1 ] , np . abs ( f e a t u r e [ 1 ] ) ∗0 .03 , 30 )

253 i f f e a t u r e [ 1 ] . shape [ 0 ] < 25 :

254 break

255 s e l f . f e a t u r e s . append ( f e a t u r e [ 0 ] )

256 s e l f . f e a tu r e sPs . append (1 e−15∗(1+1 j ) )

257 s e l f . candidateFeat = [ ]

258

259 def i n i t S t a t e ( s e l f ) :

260 ””” I n i t i a l i z e f i l t e r matr i ce s ”””

261

262 #I n t i t i a l i z e matr ices

263 s e l f . Qpos = np . diag ( [ 1 e−8∗(1+1 j ) , 0 .14603663104771147 +

0.15593997684852676 j , 1e−8, 0 .0038932125628785971 ] )

264 s e l f . Ppos = s e l f . Qpos . copy ( )

265 for P in s e l f . f e a tu r e sPs :

266 s e l f . Ppos = np . diag ( np . concatenate ( ( s e l f . Ppos . d iagona l ( ) ,

[ 1 e−8∗(1+1 j ) ] ) ) )

267 #Change f i r s t scan v a r i a b l e

268 s e l f . f i r s t S c a n = False

269

270 #Create map po in t s

271 s e l f . mapPnts = np . empty ( ( 0 , 3 ) )
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272

273 def matchFeat ( s e l f ) :

274 ’ ’ ’ Match f e a t u r e s in the expected po in t s ’ ’ ’

275 #Pass f e a t u r e s to body frame

276 fBody = s c a n h i ( s e l f . complexPos , s e l f . theta k ,

np . array ( s e l f . f e a t u r e s ) )

277

278 #Search f o r f e a t u r e s in l a s e r scan us ing 1−po in t ransac

279 s e l f . z k = [ ]

280 po in t s = s e l f . groundScan . copy ( )

281 po in t s = po in t s [ : , 0 ] + po in t s [ : , 1 ] ∗ 1 j

282 for pnt in fBody :

283 f e a t = ransac 1p ( points , pnt )

284 i f f e a t :

285 s e l f . z k . append ( f e a t [ 0 ] )

286 po in t s = f e a t [ 1 ]

287 else :

288 s e l f . z k . append (None )

289 s e l f . remainingPnts = po in t s

290

291 def newFeat ( s e l f ) :

292 ’ ’ ’ f i n d new f e a t u r e s a f t e r the match was done ’ ’ ’

293 #Try to match p o s s i b l e new f e a t u r e s

294 fBody = s c a n h i ( s e l f . complexPos , s e l f . theta k ,

np . array ( s e l f . candidateFeat ) )

295

296 #Search f o r p o s s i b l e new f e a t u r e s in l a s e r scan us ing 1−po in t

ransac and add them to s t a t e v a r i a b l e s

297 po in t s = s e l f . remainingPnts . copy ( )

298 i f po in t s . shape [ 0 ] > 25 :

299 for pnt in fBody :

300 f e a t = ransac 1p ( points , pnt , np . abs ( po in t s ) ∗0 .03 )

301 i f f e a t :

302 s e l f . f e a t u r e s . append ( i n v s c a n h i ( s e l f . complexPos ,

s e l f . theta k , f e a t [ 0 ] ) )

303 s e l f . z k . append ( f e a t [ 0 ] )

304 s e l f . f e a tu r e sPs . append (1 e−8∗(1+1 j ) )



Duovero Code. Code for the Embedded Computer 96

305 s e l f . Ppos = np . diag (

np . concatenate ( ( s e l f . Ppos . d iagona l ( ) , [ 1 e−8∗(1+1 j ) ] ) ) )

306 po in t s = f e a t [ 1 ]

307 s e l f . remainingPnts = po in t s

308

309 #F i l l new candida te f e a t u r e s wi th remaining po in t s

310 i f po in t s . shape [ 0 ] > 25 :

311 s e l f . candidateFeat = [ ]

312 for i in range (5 ) :

313 f e a t u r e = ransac ( po ints , np . abs ( po in t s ) ∗0 .03 , 30 )

314 s e l f . candidateFeat . append ( i n v s c a n h i ( s e l f . complexPos ,

s e l f . theta k , f e a t u r e [ 0 ] ) )

315 i f f e a t u r e [ 1 ] . shape [ 0 ] < 25 :

316 break

317

318 def updateState ( s e l f ) :

319 ’ ’ ’ Update State us ing EKF:

320 x hat minus , Ak, Pk 1 , Wk, Qk 1 , Hk, Rk , Vk, h x hat minus ,

zk ’ ’ ’

321 #Create s t a t e v ec t o r

322 x hat minus = np . concatenate ( ( [ s e l f . complexPos +

s e l f . Vflow∗ s e l f . dt ,

323 s e l f . Vflow ,

324 s e l f . the ta k ∗1 j +

s e l f . w k∗1 j ∗ s e l f . dt ,

325 s e l f . w k∗1 j ] , s e l f . f e a t u r e s ) )

326

327 A = Ak( s e l f . theta k , s e l f . Vflow , s e l f . dt , len ( s e l f . f e a t u r e s ) )

328

329 #Create Hk

330 Hk = np . empty ((0 ,4+ len ( s e l f . f e a t u r e s ) ) )

331 h x hat minus = np . empty ( ( 0 , ) )

332 Zk = [ ]

333 numMeas = 0

334 for zk , f ea ture , i in zip ( s e l f . z k , s e l f . f e a tu r e s ,

range ( len ( s e l f . f e a t u r e s ) ) ) :

335 i f zk :
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336 hf = np . z e ro s ( ( len ( s e l f . f e a t u r e s ) , ) , dtype=complex)

337 hf [ i ] = hi ( s e l f . complexPos , f e a t u r e . imag )

338 Hk = np . append (Hk,

[ np . concatenate (([−np . exp(− f e a t u r e . imag∗1 j ) ∗0 . 5 , 0 , 0 . 5 , 0 ] ,

h f ) ) ] , a x i s =0)

339

340 h x hat minus = np . append ( h x hat minus ,

s c a n h i ( s e l f . complexPos , s e l f . theta k , f e a t u r e ) )

341 Zk . append ( zk )

342 numMeas += 1

343

344 Qk = np . diag ( np . concatenate ( ( s e l f . Qpos . d iagona l ( ) ,

s e l f . f e a t u r e s ) ) )

345

346 Rk = np . eye (numMeas , dtype=complex ) ∗0.03∗∗2

347

348 s e l f . x hat , s e l f . Ppos = EKF( x hat minus , A, s e l f . Ppos ,

np . eye (4+ len ( s e l f . f e a t u r e s ) , dtype=complex ) , Qk, Hk, Rk , np . eye (

numMeas , dtype=complex ) , h x hat minus , Zk )

349 s e l f . x hat [ 2 ] = s e l f . x hat [ 2 ] . imag∗1 j

350 s e l f . x hat [ 3 ] = s e l f . x hat [ 3 ] . imag∗1 j

351 print ( s e l f . x hat )

352 print ( ’ \n ’ )

353 s e l f . pose [ ’ p o s i t i o n ’ ] [ 0 ] = s e l f . x hat [ 0 ] . r e a l

354 s e l f . pose [ ’ p o s i t i o n ’ ] [ 1 ] = s e l f . x hat [ 0 ] . imag

355 s e l f . theta xy [ 2 ] = s e l f . x hat [ 2 ] . imag/2

356 s e l f . pose [ ’ a t t i t u d e ’ ] = exp q ( s e l f . theta xy )

357 s e l f . q hat = s e l f . pose [ ’ a t t i t u d e ’ ]

358

359

360 def addPnts2map ( s e l f ) :

361 ’ ’ ’Add scan po in t s to the t o t a l po int c loud map where they

should be accord ing to the f i l t e r s .

362 This i s j u s t f o r v i s u a l i z a t i o n purposes . ’ ’ ’

363

364 #Compensate r o t a t i on in scan with new a t t i t u d e es t imate



Duovero Code. Code for the Embedded Computer 98

365 scanRotated = ro t q ( s e l f . q hat , np . concatenate ( (

[ s e l f . complexScan . r e a l ] ,

366

[ s e l f . complexScan . imag ] ,

367

[ np . z e r o s ( ( s e l f . complexScan . shape ) ) ] ) , a x i s = 0) . t ranspose ( ) )

368

369 #Pass scan to i n e r t i a l frame

370 s c a n 2 I n e r t i a l = scanRotated + np . t i l e ( s e l f . pose [ ’ p o s i t i o n ’ ] ,

( scanRotated . shape [ 0 ] , 1 ) )

371

372 s e l f . mapPnts = np . append ( s e l f . mapPnts , s c a n 2 I n e r t i a l , a x i s =0)

373

374 def de lFea tu r e s ( s e l f ) :

375 ’ ’ ’ De lete repeated f e a t u r e s based on d i s t anc e . ’ ’ ’

376 # tag2de l = np . z e ros ( ( l en ( s e l f . f e a t u r e s ) + 4) , dtype=boo l )

377 # for i in range ( l en ( s e l f . f e a t u r e s ) ) :

378 # for j in range ( i + 1 , l en ( s e l f . f e a t u r e s ) ) :

379 # i f

np . abs ( s e l f . f e a t u r e s [ i ] . r e a l ∗np . exp ( s e l f . f e a t u r e s [ i ]∗1 j ) −

s e l f . f e a t u r e s [ j ] . r e a l ∗np . exp ( s e l f . f e a t u r e s [ j ]∗1 j ) ) < 0 . 15 :

380 # tag2de l [ j +2 ,0] = True

381 # tag2de l [ j +2 ,1] = True

382

383 # tag2de l = np . z e ros ( ( s e l f . f e a t u r e s . shape [ 0 ] + 2 ,2) , d type=boo l )

384 # for i in range ( s e l f . f e a t u r e s . shape [ 0 ] ) :

385 # for j in range ( i + 1 , s e l f . f e a t u r e s . shape [ 0 ] ) :

386 # i f np . l i n a l g . norm( s e l f . f e a t u r e s [ i ] −

s e l f . f e a t u r e s [ j ] ) < 0 . 2 :

387 # tag2de l [ j +2 ,0] = True

388 # tag2de l [ j +2 ,1] = True

389 # s e l f . f e a t u r e s = s e l f . f e a t u r e s [ np . l o g i c a l n o t ( t a g 2d e l [ 2 : , 0 ] ) ]

390 # s e l f . Ppos = s e l f . Ppos [ np . l o g i c a l n o t ( t a g 2d e l . f l a t t e n () ) , : ] [ : ,

np . l o g i c a l n o t ( t a g 2d e l . f l a t t e n () ) ]

391

392 i f name == ’ ma in ’ :
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393 lase rData = np . concatenate ( ( np . l i n s p a c e (−5+0j , −5+5j ,

170) , np . l i n s p a c e (−5+5j , 5+5j , 172) , np . l i n s p a c e (5+5 j , 5+0j , 170) ) )

394 scanData = { ’ ranges ’ : np . abs ( la se rData ) , ’ ang l e s ’ :

np . ang le ( la se rData ) }

395 odoData = { ’ a l t i t u d e ’ : 0 . 5 , ’ v e l o c i t y ’ : [ 0 , 0 ] ,

’ q imu ’ : np . array ( [ 1 . 0 , 0 , 0 , 0 ] ) , ’w ’ : np . array ( [ 0 . 0 , 0 , 0 ] ) , ’ dt ’ : 0 . 1 }

396 t = slam ( )

397 t . updateStates ( scanData , odoData )

398 t . updateStates ( scanData , odoData )

399 t . updateStates ( scanData , odoData )





Bibliography

Francesco Nex and Fabio Remondino. Uav for 3d mapping applications: a review.

Applied Geomatics, 6(1):1–15, 2014.

U.S. Air Force. U.S. Air Force air force photos. URL http://www.af.mil/News/

Photos.aspx?igphoto=2000546848.

Adafruit Industries. 3dr iris - autonomous multicopter -. URL https://www.flickr.

com/photos/adafruit/10578616775/.

Stefan Winkvist. Low computational SLAM for an autonomous indoor aerial inspec-

tion vehicle. PhD thesis, University of Warwick, 2013.

Kimon P Valavanis. Advances in unmanned aerial vehicles: state of the art and the

road to autonomy, volume 33. Springer Science & Business Media, 2008.

Alexander Lanzon, Alessandro Freddi, and Sauro Longhi. Flight control of a quadrotor

vehicle subsequent to a rotor failure. Journal of Guidance, Control, and Dynamics,

37(2):580–591, 2014.

M Anwar Ma’sum, Grafika Jati, M Kholid Arrofi, Adi Wibowo, Petrus Mursanto,

and Wisnu Jatmiko. Autonomous quadcopter swarm robots for object localization

and tracking. In Micro-NanoMechatronics and Human Science (MHS), 2013

International Symposium on, pages 1–6. IEEE, 2013.

Min-Fan Ricky Lee, Fu Hsin Steven Chiu, and Chen Zhuo. 6 dof manipulator design

for maneuvering autonomous aerial mobile robot. In System Integration (SII),

2013 IEEE/SICE International Symposium on, pages 173–178. IEEE, 2013.

101

http://www.af.mil/News/Photos.aspx?igphoto=2000546848
http://www.af.mil/News/Photos.aspx?igphoto=2000546848
https://www.flickr.com/photos/adafruit/10578616775/
https://www.flickr.com/photos/adafruit/10578616775/


Bibliography 102

Mitch Bryson, Alistair Reid, Calvin Hung, Fabio Tozeto Ramos, and Salah Sukkarieh.

Cost-effective mapping using unmanned aerial vehicles in ecology monitoring

applications. In Experimental Robotics, pages 509–523. Springer, 2014.

Robert Oliver. Robot Localization using Unconventional Sensors. PhD thesis, 2015.

Suraj Bajracharya. Breezyslam: A simple, efficient, cross-platform python package

for simultaneous localization and mapping (thesis). 2014.

Greg Welch and Gary Bishop. An introduction to the kalman filter. University of

North Carolina: Chapel Hill, North Carolina, US, 2006.

Jack B Kuipers. Quaternions and rotation sequences, volume 66. Princeton university

press Princeton, 1999.

Simon L Altmann. Hamilton, rodrigues, and the quaternion scandal. Mathematics

Magazine, pages 291–308, 1989.

Berthold KP Horn. Closed-form solution of absolute orientation using unit quater-

nions. JOSA A, 4(4):629–642, 1987.

Emil Fresk and George Nikolakopoulos. Full quaternion based attitude control for a

quadrotor. In Control Conference (ECC), 2013 European, pages 3864–3869. IEEE,

2013.

Carlos Izaguirre-Espinosa. Position–yaw tracking of quadrotors. Journal of Dynamic

Systems, Measurement, and Control, 137:061011–1, 2015.

Xiangke Wang and Changbin Yu. Feedback linearization regulator with coupled

attitude and translation dynamics based on unit dual quaternion. In Intelligent

Control (ISIC), 2010 IEEE International Symposium on, pages 2380–2384. IEEE,

2010.

Herbert Goldstein. Classical mechanics, volume 4. Pearson Education India, 1962.

A Alaimo, V Artale, C Milazzo, A Ricciardello, and L Trefiletti. Mathematical

modeling and control of a hexacopter. In Unmanned Aircraft Systems (ICUAS),

2013 International Conference on, pages 1043–1050. IEEE, 2013.



Bibliography 103

Pedro Castillo Garcia, Rogelio Lozano, and Alejandro Enrique Dzul. Modelling and

control of mini-flying machines. Springer Science & Business Media, 2006.

Katsuhiko Ogata and Yanjuan Yang. Modern control engineering. 1970.

Jean-Jacques E Slotine, Weiping Li, et al. Applied nonlinear control, volume 199.

Prentice-Hall Englewood Cliffs, NJ, 1991.

Stefan Van Der Walt, S Chris Colbert, and Gael Varoquaux. The numpy array: a

structure for efficient numerical computation. Computing in Science & Engineering,

13(2):22–30, 2011.

Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open source scientific tools

for Python, 2001–. URL http://www.scipy.org/. [Online; accessed 2015-02-05].

James Goppert et al. Python control systems library, 2014–. URL http://

sourceforge.net/projects/python-control/. [Online; accessed 2015-02-05].

John D Hunter. Matplotlib: A 2d graphics environment. Computing in science and

engineering, 9(3):90–95, 2007.

Marco Zuliani. Ransac for dummies. With examples using the RANSAC toolbox for

Matlab and more, 2009.

Javier Civera, Andrew J Davison, and José Maŕıa Mart́ınez Montiel. 1-point ransac.
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