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México, D.F. June 2016



Thesis Advisor and Chair-

man of Department

Dr.Rogelio Lozano Leal

Thesis Reader Dr.Colunga

Gerardo Ramón Flores

Thesis Reader Dr. Salazar

Cruz Sergio Rosario

Thesis Reader Dr. Osorio

Cordero Antonio

ii



I believe in intuition and inspiration. Imagination

is more important than knowledge. For knowledge

is limited, whereas imagination embraces the entire

world, stimulating progress, giving birth to evolu-

tion. It is, strictly speaking, a real factor in scien-

tific research. - Albert Einstein
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ABSTRACT

This thesis tackles the challenges of the design, development, modeling and control of

a Quad Rotor Tail-Sitter VTOL Unmanned Aerial Vehicle (UAV) which connects the

benefits of two different types of vehicles: fixed-wing and rotary-wing UAV’s. Related

to the goal of this thesis, Solidworks and XFLR5 are used to get an understanding,

approximation analysis of the control allocation and modeling of the static forces and

moments acting on the system.

A backstepping approach is used to control the flight path angle of the vehicle, con-

sidering the nonlinear nature of the lift force. The nonlinear controller designed makes

the system reach the desired reference in flight path angle. A global stabilizing control

law is derived which is valid for all the flight path angle envelope, since it is based on a

general nonlinear model. A novel controller also presented in this work, by considering

the rigid body dynamics, the controller operates in quaternions to avoid singularities,

that are presented at some angular points. It also ensures a global stability of the vehi-

cle in its envelope flight and it allows the autonomous transition of the system without

discontinuities and switching signal for the overall system behavior.
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Chapter 1

Introduction

1.1 Background

Unmanned Aerial Vehicles (UAVs) have been employed successfully to address a large

variety applications for many years, and are getting more useful nowadays by diverse

and practicable applications, including advancements in aerodynamics, computers, and

sensor technologies, which allow the aircraft to be used increasingly in different tasks.

To refer a few, it is important recalling some applications in the area of surveillance

[2], environmental awareness [3], search and rescue operations [4], aerial robotics [5].

As these tasks get more diversified, aircraft need to be continually adapted in order

to perform multiple applications efficiently with a single air-frame. Picking a flight

platform envelops many compromises, typically aircraft are classified as conventional

aircraft or rotor craft. Normally, these classifications are chosen depending on the

assigned mission.

Typically fixed wing (conventional) aircraft have high speeds and are capable of long

flight times (good endurance), but they require large open areas (runways) for takeoff,

landing or similar tasks. However rotor craft are capable to perform vertical takeoff

and landing (VTOL) flight without the need of runways, special launch and recovery

equipment, but they are limited in endurance and speed. There have been numerous
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different methods of mixing these two styles of aircraft into a single air-frame, which

provides the most effective design. The design, analysis, control, and construction of a

Convertible UAV presents some arduous challenges, however these challenges are caused

by the configuration of the vehicle but they are not insuperable.

1.1.1 Air-frame Configuration

The air-frame configuration is the most important part of UAV’s development and

contains all the hardware and software settings for the air-frame. It describes what

hardware is required and which firmware, sensors, algorithms, etc. In the early 1950s

the development of full scale VTOL aircraft and several air-frame configurations have

been implemented over the years. A range of air-frame configuration is presented in

[6], which is available for UAV, by their method of take-off and landing, it is accessible

to set configurations into three appropriate types. These types are HTOL for aircraft

which are required to accelerate horizontally along runway or trip in order to achieve

flight speed. VTOL, these types of aircraft are those that can perform a maneuver of

takeoff and landing vertically. These configurations will be explained with more details

in this work, it is worth to say that, those three types of configurations can be divided

into a large class of aircraft:

a) HTOL horizontal take-off and landing.

b) VTOL vertical take-off and landing.

c) Hybrids which attempt to combine the attributes of both these types.

2



1.1.2 UAV’s Classification

UAVs can be classified by a wide types of features. As a numerous types of UAVs have

beeng developed and tested in the early years, there is a challenge of classifying the

new UAVs also it is laborious to develop a classification system that encompasses all of

the categories of UAVs, because of their large useful applications. In this work a simple

classification will be shown by taking each configuration of different UAVs, illustrating

their own unique pros and cons. These characteristics which presently leads to the

operator’s decision in which platform will fit best for the application. UAVs aircraft

currently boil down to two categories, fixed wing and rotary wing. As you may have

guessed each of these categories can be further broken down, for instance a fixed wing

UAV can be high wing, mid wing, low wing and flying wing, on the other hand rotary

wing can be divided in Helicopter, Cyclogyro/Cyclocopter, Autogyro, Gyrodyne, Rotor

kite, etc. UAV classification is usually determined by some criteria or features: shapes,

application, range, altitude, endurance, speed, vehicle type, size. That distinguish sev-

eral types of UAVs given rise to useful classification systems.

Fixed-Win use a set of stationary wings to generate lift and achieve flight, this kind

of air-craft has a predetermined airfoil, which makes flight realizable by generating lift

caused by the UAV’s forward airspeed. This airspeed is generated by forward thrust

usually by the means of a propeller being turned by an internal combustion engine or

an electric motor. The control of a fixed-wing is produced by the control surfaces built

into the wing itself, normally those consist of ailerons, elevators and a rudder. Which

allow the fixed-wing to freely rotate around three axes that are perpendicular to each

other and intersect at the UAV’s center of gravity.
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Fig. 1.1: RS-16 Fixed Wing UAV (American Aerospace)

Rotary Wings consist of 2 or more rotor blades that revolve around a fixed mass,

this is known as a rotor. It also come in wide range of setups as well as more unusual

like 12 and 16 rotor: one rotor or helicopter, two rotors tandem, three rotors tricopter,

four rotors quadcopter, six rotor hexacopter, eight rotors octocopter. Like fixed wing

solutions, these setups can be further broken down. For example the Y6 setup which

consists of a tricopter with twin rotors on each arm, one pointing upwards and one

pointing downwards, the X8, consists of a quadcopter with twin motors on each arm.

Again each setup has their own unique characteristic advantages and disadvantages.

Fig. 1.2: UAV NEO 600 V2 Quadcopter
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Free-Wing introduces a unique form of thrust-vectoring that creates a fundamentally

new form of flight, an aircraft that is stable in all flight modes, from full hover through

high-speed horizontal flight, even during transitions. The Free-wing Tilt-Body consist

of two innovations in one air-frame. In a brief description, the wing is placed on bearings

so that it is completely free to rotate in pitch. The fuselage itself is a lifting body, so

the result is a left/right wing pair conjoined by a cross spar passing through the lifting

body. Both the left/right wing pair and the central lifting body are free to rotate about

the span-wise shaft, free with regard to the relative wind and free with regard to each

other. [7].

Fig. 1.3: Freewing Scorpion UAV

Tilt-Wing has the special design concept that joins two completely different aircraft

types, it combines of the advantages of a common fixed-wing aircraft, regarding flight

performance and energy consumption, with the vertical take-off and landing (VTOL)

capabilities of a rotary-wing configuration [8]. But it never became a viable rotating-

wing concept to replace or surpass the capabilities of the helicopter. The idea is that

the wing can be titled from its normal flying position with the propellers providing

forward thrust, to a vertical position with the propellers providing vertical lift [7].
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Fig. 1.4: Tilt-Wing (QTW, Chiba University)

Tilt-Rotor UAV combines the advantages of vertical takeoff and landing capabilities,

inherent to the helicopter, with the rotors oriented like a helicopter [9]. With forward

flight, the wing tip-mounted rotors are progressively titled to convert the aircraft into

something that looks like a fixed-wing turboprop airplane. In this mode the tilt-rotor

is able to achieve a considerably higher flight speed and endurance than those of an

helicopter. This class of vehicle can be operated as a helicopter as well as a common

fixed-wing, which means the aircraft has the capabilities to switch between Hover-to-

Level and Level-to-Hover flights [7].

Fig. 1.5: Eagle Eye UAV (US Army)
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The Tail-Sitter is a type of VTOL aircraft that employs a configuration that appears

fairly conventional. Nevertheless, as the name insinuates, the aircraft is designed to

perform a unique flight profile of hover-to-level and level-to-hover, while using the its

tail for takeoff and landing. The same engine is used for both vertical and horizontal

flight, it is the simplest way for the VTOL maneuver since it does not need extra

actuators. Tail-Sitter has the ability to generate lift while in horizontal flight due to

its conventional wings which gives to the vehicle an added value, for a more efficient

forward flight, improved range, and longer loiter time than a conventional helicopter.

The tail-sitter design was used in several prototypes in the early 50’s, these include the

Lockheed XFV-1, and the Ryan X-13 Vertijet. These aircraft were built and tested but

never put into production [10].

Fig. 1.6: Sikorsky’s Rotor Blown Wing UAV (DARPA’S VTOL )

1.1.3 Convertible UAV’s Classification

Fixed wing conventional and hovering rotary-wing aircraft systems are the most com-

monly used. A relatively unexplored configuration is the convertible UAV tail-sitter,

7



due to the inelegant position during takeoff, hover and landing phases [11]. Generally

convertible UAVs can be classified in three main classes:

Fig. 1.7: Convertible Classification

Each of them can be sub-classified into a few sub-categories, which can be determined

by the transition mechanism and air-frame configuration. Starting from Tilt-Wing and

Tilt-Rotor, they can be categorized in convertiplane, which is a type of a convertible

aerial vehicle that takes off, cruises, hovers and lands with the aircrafts reference line

remaining horizontal (the main body configuration does not change during flight) [12].

There are some differences between of convertible aircraft, those of high-speed forward

flight ability, most of those convertible aircraft involve tilting propellers such as manned

aircrafts AV-8B Harrier[13], the new F-35 [14] and the V-22 Osprey which has two tilting

jet engines to perform the transition [15], these aircrafts were designed for specific

environment mission. Unfortunately these aircrafts, are not suitable for civilian’s use

and rescue operations. Moreover, such VTOL aircrafts, are less efficient in hover than

a conventional helicopter or a tilting-rotor aircraft of the same gross weight [7]. Further

the tilting mechanisms and control hardware increase the weight of the aircraft.

Alternatively, there has been a favorable interest, on performing the tail-sitter design

in the mid twentieth century, this configuration not only has the takeoff and landing

8



vertical flight but also has the flight forward with high speed. Nowadays in recent

research in unmanned vehicles, the tail-sitter has become a successfully platform and

numerous different configuration of airframe have been developed as well as the T-

Wing, which is one the most aged platform, shuch as: the T-wing was developed by the

University of Sydney, which has a canard wing and tandem rotors [16], wile Jane’s all the

world’s aircraft developed the Convair XF-Y1 tail-sitter [17], and US Air Force Research

Lab and AeroVironment Inc. developed SkyTote which is equipped with a coaxial

contra-rotating propeller [18]. Several successful tail-sitter UAV designs have been

instrumented in the last years, the table shows some recent designs of tail-sitter that

have been implemented in the recent years, illustrating the model, wingspan, weight,

and propulsion.

Tail-Sitter List
Manufacturer Model Winspan Weight Propulsion
Boeing Heliwing 5.2 m 544 kg Single turbojet turn-

ing two propellers
University of
Sidney

Twing 2.13 m 29.5 kg Twin 100cc gas mo-
tors and propellers

Aurora Goldeneye
50

1.37 m 8.2 kg Gas powered ducted
fan

Aerovironment Skytote 2.44 m 113.4 kg Gas coaxial counter
rotating propellers

MLB Company V-Bat 1.52 m 22.7 kg Gas powered ducted
propeller

SUPAERO Vertigo 0.65 m 1.6 kg Electric coaxial
counter-rotating
propellers

Naval Postgrad-
uate School

Archytas 4.27 m 45.4 kg Electric coaxial coun-
terrotating propellers

University of
Arizona

Mini Ver-
tigo

0.37 m 0.4 kg Gas-powered ducted
propeller

Table 1.1: Different Types of Tail-Sitter
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1.1.4 Motivation

The development of unconventional miniature tail-sitter UAVs have made major progress

to the huge improvements to fulfill the need in research area for a multi-objective. A

miniature UAV design could be used to a number of fields, such as UAV fight control

theories, electronic devices and material science. Unconventional miniature tail-sitter

UAVs have great potential to use in diverse applications for many purposes in military

and civilian operations, specially where there are severe constraint in the operating

environment. These include, search and rescue, reconnaissance, border patrol, meteo-

rological monitoring, wildfire tracking, etc.

1.1.5 Objectives

The objective of this project is to successfully modeling, control and development of

a quad-rotor tail-sitter UAV by implementing the flight properties such as helicopter

and airplane. So that the dynamics of the vehicle is divided into three modes of major

flights:

• Helicopter Mode

• Airplane Mode

• Transition Mode, which is a transitional phase between the two aforementioned

flight mode.

1. The objective of this work is firstly:

10



(a) Get the model of the Quad Rotor Tail-sitter UAV in its six degrees of free-

dom, for this purpose a similar vehicle as the Quadshot [19] has been used.

For that purpose, the Quaternion and SO(3) have been studied.

(b) Design control laws to stabilize the vehicle in its three modes: hover, airplane,

and transition. The last phase is the most complex presented, the major part

of this project has been dedicated to this flight mode.

(c) Implement control laws in a previously designed platform using the autopilot

PX4.

1.1.6 Contributions

Contributions from this project are divided in four sections. First, a significant design

and analysis software proved to be a very useful tool for predicting the performance of a

miniature tail-sitter UAV, such as Solidworks and XFLR5. Second, a mold is developed

in fiberglass, for a fast production of vehicle and for a multiple reproductions. Third,

two mathematical models are presented: one for the longitudinal flight and the other

for the 6-DOF. Fourth, a control system is developed which allowed the air-plane to be

completely controlled in vertical flight while flying both in and out of ground effect.

1.1.7 Summary

Having the benefit of a single air-frame that can be operated effectively in level and ver-

tical flight, for that reason different kind of air-frame VTOL configurations are presented

early, but for the goal of this work, the tail-sitter is chosen for further development.
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Chapter 2

Modeling

2.1 Quaternion

Quaternion was first presented by William Rowan Hamilton in 1843 (19th-century)

Irish mathematician, which can be applied to mechanics in three-dimensional space.

Although the Euler angles represent a rotation by sequences rotating around three

elements denoting X, Y or Z axes, quaternion also represents a rotation by a rotational

angle around rotational axis, which is not necessary around the axes as considered in

the Euler angles. Before presenting the properties of quaternion, let us define a striking

feature of quaternion, is that, the product is noncommutative, which means that the

product of two quaternions depends on which factor is to the left of the multiplication

sign and which factor is to the right. Considering the standard orthogonal basis i, j, and

k for the R3 vector in three dimensional space are written as a triplet of real numbers

(scalar), thus the orthogonal basis are written as i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1)

that satisfy the next condition:

i2 = j2 = k2 = ijk = −1 (2.1)

A quaternion is a 4-tuple of real numbers (hyper complex number), it defines an element
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in R4, thus a quaternion can be represented by q = (q0, q1, q2, q3) where q0, q1, q2, and

q3 are simply real number or scalars, which can be defined as the sum of a scalar and

a vector as follows

q = q0 + iq1 + jq2 + kq3 = q0 + q (2.2)

where q = iq1 + jq2 + kq3 is the ordinary vector part in R3 and q0 is the scalar part of

the quaternion. Oftentimes in aerospace engineering, a special normalized quaternion

is usually used such that q0 = cos(α
2
), and q = êsin(α

2
), where ê is represented the

rotational axis, and α is the rotational angle.

The set of all quaternions with operations addition and multiplication can be defined a

circle, in other word more explicitly a non-commutative division circle, which empha-

sizes that in the set of all quaternions every non-zero quaternion has an inverse and

that quaternion products, in general, are non-commutative.

Fig. 2.1: Correspondence: Vector ←→ Quaternion[1]

As shown in fig.2.1, a pure quaternion can be defined as a quaternion, whose scalar part

is zero. From one-to-one relationship between all vectors in R3 and their corresponding

pure quaternion, the meaning of a product of a vector and a quaternion merely becomes

the quaternion product of two quaternions, one of which is a pure quaternion [1], [20].
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2.1.1 Quaternion and its properties

Equality and Addition

Let p be a quaternion, which can be defined as follow, p = p0 + ip1 + jp2 + kp3 and q

is another quaternion, then the two quaternions are equal if only if p0 = q0, p1 = q1,

p2 = q2, p3 = q3, that means they have the same rotational angle and the same rotational

axis, for the special normalized quaternion used in aerospace engineering.

The sum of two quaternions is defined as follow, p+ q = (p0 + q0) + i(p1 + q2) + j(p2 +

q2) + k(p3 + q3).

Multiplication and the Identity

As presented the standard basis in equation 2.1, which implicit in these equations

ij = i× j = k = −j × i = −ji (2.3a)

jk = j × k = i = −k × j = −kj (2.3b)

ki = k × i = j = −i× k = −ik (2.3c)

having q and p defined as before, use 2.1, and 2.3. The quaternion algebra proceeds

from these equations. The multiplication of two quaternions p and q is defined by:

p⊗ q = p0q0 − p · q + p0q + q0p + p× q (2.4)

In accordance with Hamiltons foregoing original equation, with the scalar part p0q0−p·q
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and the vector part p0q + q0p + p× q, according to [20], the quaternion multiplicative

identity has scalar part 1 and the vector part (0, 0, 0). In the theory of the rotation

sequences, quaternion multiplication can be used to represent two consecutive rotation.

p and q are two quaternions, let them be the two consecutive rotations, where p repre-

sents the first rotation and q represents the second rotation, the composed rotation is

given by r = p⊗ q.

Conjugate, Norm and Inverse

The complex conjugate of the quaternion q is denoted by

q∗ = q0 − q = q0 − iq1 − jq2 − kq3 (2.5)

it fallows that

(pq)∗ = (p⊗ q)∗ = q∗p∗ = q∗ ⊗ p∗ (2.6)

it is also easy to verify the next operation

p+ p∗ = (q0 + q) + (q0 − q) = 2q0 (2.7)

the norm of a quaternion q is denoted as ‖q‖ =
√
q∗ ⊗ q which can also be represented

and it is easy to verify that the norm satisfies as fallows

‖q‖ =
√
q2

0 + q2
1 + q2

2 + q2
3 (2.8)
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By definition of an inverse we have q−1q = q−1⊗q = 1, and qq−1 = q⊗q−1 = 1 therefore

we have q−1 ⊗ q = q ⊗ q−1 = 1

pre and post-multiplying by q∗ gives q−1qq∗ = q−1 ⊗ q ⊗ q∗ = q∗ and q∗qq−1 = q∗ ⊗ q ⊗

q−1 = q∗ which can be represented by q−1 ⊗ q ⊗ q∗ = q∗ ⊗ q ⊗ q−1 = q∗.

Since q∗ ⊗ q = q ⊗ q∗ = ‖q‖2, if q is a unit quaternion, then

q−1 =
q∗

‖q‖2 (2.9a)

q−1 =q∗ (2.9b)

To conclude with the properties fo the quaternion, it is easy to see that the norm of

the product of two quaternions p and q is the product of the individual norms because

‖p⊗ q‖2 = (p⊗ q)⊗ (p⊗ q)∗ = p⊗ q ⊗ q∗ ⊗ p∗

‖p⊗ q‖2 = p⊗ ‖q‖2 ⊗ p∗ = p⊗ p∗‖q‖2 = ‖p‖2‖q‖2. (2.10)

2.1.2 Rotation by Quaternion Operator

First, we note that any unit quaternion (normalized quaternion) q may be written as

q = q0 + q = cos(α
2
) + êsin(α

2
). That is very clear to see that a quaternion does

have the information about the rotational angle also the rotational axis. To be able

to represent consecutive rotations, it is necessary to have the product of quaternions.

Now let p = cos(β
2
) + êsin(α

2
) and q = cos(α

2
) + êsin(α

2
) from 2.4, we get

r = p⊗ q =

(
cos

(
β

2

)
+ êsin

(
β

2

))
⊗
(
cos
(α

2

)
+ êsin

(α
2

))
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r = cos

(
β

2

)
cos
(α

2

)
− êsin

(
β

2

)
· êsin

(α
2

)
+ cos

(
β

2

)
êsin

(α
2

)
+êsin

(
β

2

)
cos
(α

2

)
+ êsin

(
β

2

)
× êsin

(α
2

)
r = cos

(
β

2

)
cos
(α

2

)
−sin

(
β

2

)
sin
(α

2

)
+ê

(
sin

(
β

2

)
cos
(α

2

)
+ cos

(
β

2

)
sin
(α

2

))

r = cos

(
α + β

2

)
+ êsin

(
α + β

2

)
= cos(θ) + êsin(θ) (2.11)

where ê can be represented as ê = q
‖q‖ is the rotational axis and θ is represented

as θ = tan−1
(
‖q‖
q0

)
is the rotational angle. The previous equation 2.11, means that

the product of two quaternions represents two consecutive rotations. For any unit

quaternion and for any vector v ∈ <3, the action of a quaternion rotation operator

involves multiplication of a quaternion and a vector, in consequence the multiplication

of a quaternion and a vector should be defined. Suppose that the vector v, is a pure

quaternion which has the scalar part zero and the vector part v, that means v = 0 + v.

Fig. 2.2: Quaternion Operations on Vectors[1]

Consider v and v are interchangeable for both vector and pure quaternion. The multi-
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plication of a vector and a quaternion is defined as:

q ⊗ v = (q0 + q)⊗ (0 + v) = −q · v + q0v + q× v (2.12)

The quartenion rotation operator takes v → w, let some notations are used for this

purpose. Consider a,b and c be any three dimensional vectors.

(a× b)× c = (a · c) b− (b · c) c (2.13a)

a× (b× c) = (a · c) b− (a · b) c (2.13b)

(a× b) · a = (a× b) · b = 0 (2.13c)

Now using 2.12 and 2.13a, we obtain

w = q ⊗ v⊗ q∗ = (q0 + q)⊗ (0 + v)⊗ (q0q)

= (−q · v + q0v + q× v)⊗ (q0 − q)

= −q0 (q · v)+q0 (v · q)+(q× v)·q+(q · v) q+q2
0v+q0 (q× v)−q0 (v× q)−(q× v)×q

= (q · v) q + q2
0v + 2q0 (q× v)− (q · q) v + (v · q) q

=
(
2q2

0 − 1
)
v + 2 (q · v) q + 2q0 (q× v)

w =
(
cos
(α

2

)
− sin2

(α
2

))
v + 2 (q · v) q + 2q0 (q× v) (2.14)

Indeed, the quaternion operator can be represented explicitly by cosine matrix that
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may be probably more helpful in some cases. From 2.14, considering

2(q2
0 − 1)v =


(2q2

0 − 1) 0 0

0 (2q2
0 − 1) 0

0 0 (2q2
0 − 1)




v1

v2

v3


,

2(v · q)q =


2q2

1 2q1q2 2q1q3

2q1q2 2q2
2 2q2q3

2q1q3 2q2q3 2q2
3




v1

v2

v3


,

2q0(q × v) =


0 −2q0q3 2q0q2

2q0q3 0 −2q0q1

2q0q2 2q0q1 0




v1

v2

v3


,

we get 
w1

w2

w3

 =


2q2

0 − 1 + 2q2
1 2q1q2 − 2q0q3 2q1q3 + 2q0q2

2q1q2 + 2q0q3 2q2
2 + 2q2

0 − 1 2q2q3 − 2q0q1

2q1q3 − 2q0q2 2q2q3 + 2q0q1 2q2
3 + 2q2

0 − 1



v1

v2

v3

 (2.15)

Notice that, it is worthy in view of 2.14,that 2.15 describes a complete rotation matrix

bu using the Rodriguez formula, since they represented for quaternion rotation.

C = (q2
0 − qTq)I + 2qqT + 2q0S(q) (2.16)
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We just prove that q ⊗ v⊗ q∗, it is certainly the quaternion operator, which rotates v

and α angle around ê. And it is a linear operator since, it holds the following relation,

q ⊗ (ka + b)⊗ q∗ = kq ⊗ a⊗ q∗ ⊗ b⊗ q∗ (2.17)

that means for two vectors a,b, and a scalar k, for the prove of the equation 2.17, see

[20],p 204. Related to the rotational matrix, the inverse of the operator w = q⊗(v)⊗q∗

on v is simple and it is given by

q∗ ⊗ (w)⊗ q = q∗ ⊗ (q ⊗ (v)⊗ q∗)⊗ q

= (q∗ ⊗ q)⊗ v⊗ (q∗ ⊗ q) = v

That rotates w an angle of α around −q and brings w to v. It is simple to prove that

v = q∗ ⊗w⊗ q = (2q2
0 − 1)w + 2(q ·w)q − 2q0(q ×w) (2.18)

we have 
v1

v2

v3

 =


2q2

0 − 1 + 2q2
1 2q1q2 + 2q0q3 2q1q3 − 2q0q2

2q1q2 − 2q0q3 2q2
0 − 1 + 2q2

2 2q2q3 + 2q0q1

2q1q3 + 2q0q2 2q2q3 − 2q0q1 2q2
0 − 1 + 2q2

3



w1

w2

w3

 (2.19)

It is important to notice that, in view of (2.23), that (2.24) describes a complete rotation

matrix bu using the Rodriguez formula as follow:

R = (q2
0 − qTq)I + 2qqT − 2q0S(q) (2.20)
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2.1.3 Matrix form of quaternion production

As we have already defined before in the equation 2.4, let r = (r0, r1, r2, r3) which

represented the composed quaternion of two consecutive quaternions.

r0 = p0q0 − p1q1 − p2q2 − p3q3 (2.21a)

r1 = p0q1 + p1q0 + p2q3 − p3q2 (2.21b)

r2 = p0q2 − p1q3 + p2q0 + p3q1 (2.21c)

r3 = p0q3 + p1q2 − p2q1 + p3q0 (2.21d)

It is important to note that quaternion multiplication is non-commutative, just as

rotations are non-commutative[21].



r0

r1

r2

r3


=



p0 −p1 −p2 −p3

p1 p0 −p3 p2

p2 p3 p0 −p1

p3 −p2 p1 p0





q0

q1

q2

q3


(2.22a)



r0

r1

r2

r3


=



q0 −q1 −q2 −q3

q1 q0 q3 −q2

q2 −q3 q0 q1

q3 q2 −q1 q0





p0

p1

p2

p3


(2.22b)
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2.1.4 Quaternion Derivative

Some algebraic manipulation are required, to represent the derivative of a quaternion.

The time derivative of a unit quaternion it is the vector of quaternion rates, q̇ are related

to the angular velocity[22]. Let q(t) represent the quaternion to a reference frame at

time t, and q(t + 4t) represent the quaternion to a reference frame at time t + 4t.

p(t) = cos
(4α

2

)
+ ê(t)sin

(4α
2

)
be a quaternion that brings q(t) to q(t + 4t), which

means, that p(t) is an incremental quaternion with rotational axis ê(t) and rotational

angle 4α[20].

For 4α→ 0, cos
(4α

2

)
→ 1 and sin

(4α
2

)
→ 4α

2
, thus, p(t) ≈ 1 + ê(t)4α

2

we have

q(t+4t) = q(t)⊗
(

1 + ê(t)
4t
2

)
or

q(t+4t)− q(t) = q(t)⊗
(

0 + ê(t)
4t
2

)

Divide 4t at both side and let 4t→ 0, we get

dq

dt
= q(t)⊗

(
0 +

1

2
ê(t)Ω(t)

)
= q(t)⊗

(
0 +

1

2
ω(t)

)

where Ω(t) = lim
4t→0

4α
4t

is a scalar, and ω(t) = ê(t)Ω(t) is a vector, and
(
0 + 1

2
ω(t)

)
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= 1
2

(
0 ω1 ω2 ω3

)
is a quaternion.



q̇0

q̇1

q̇2

q̇3


=

1

2



0 −ω1 −ω2 −ω3

ω1 0 ω3 −ω2

ω2 −ω3 0 ω1

ω3 ω2 −ω1 0





q0

q1

q2

q3


(2.23a)



q̇0

q̇1

q̇2

q̇3


=

1

2



q0 −q1 −q2 −q3

q1 q0 −q3 q2

q2 q3 q0 −q1

q3 −q2 q1 q0





0

ω1

ω2

ω3


(2.23b)

2.2 Spacecraft Dynamics and Modeling

The quaternion based models have numerous benefits upon the Euler angle based mod-

els. For instance, the quaternion based model is uniquely defined because it does not

depend on or (need any) rotational sequence, while a Euler angle based model can be

different for different rotational sequences. Therefore, Euler angle based models may

be error-prone if different groups of people are chosen to work on the same project

but use different rotational sequences. Another attractive feature of quaternion based

model is that a full quaternion model does not have any singular point in any rotational

sequence. Which means quaternion determine any point on the sphere and include one

extra coordinate which indicates the sense of rigid-body rotations. the are redundant

as the poles of the sphere correspond to the same physical posture of the body yet,

mathematically they used as two equilibria. But this brings especial difficulties to the
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stability analysis of attitude-controlled rigid bodies.

From what has been discussed, in practice certain control actions cause the body rotate

almost a full revolution to achieve a posture whichis close to the inertial one, i.e., to

take the longer path. From an analytic of the view-point the two equilibria must be

considered as different, hence one may not expect to achieve ”global” stability properties

in closed-loop. [23]. Therefore, quaternion model-based control design methods have

been discussed in a number of literature. In [24] and [25] for precise definitions of

stability and discussions.

In [26], Lyapunov function was used to design model-independent control law, model

dependant control law, and adaptive control law. In [27] and [28], Lyapunov Functions

were used to design control systems under the restriction of control input saturation.

Though Lyapunov function is a powerful tool in global stability analysis, obtaining a

control law and the associated Lyapunov function for the nonlinear systems is postulated

by intuition, as noted in [29]. Moreover, most of these designs focus on the global

stability and do not pay much attention on the performance of the control system. In

[30], quaternion based linear error dynamics are adapted to get desired performance

for the attitude control system using classical frequency domain methods, while in [31]

an attitude control of a micro satellite by integrator backstepping based on quaternion

feedback is presented, where the controller is shown to make the closed loop equilibrium

points asymptotic stable in the sense of Lyapunov.

The inertial frame consists of ii pointing north,ji pointing east, and ki pointing down

and is centered at an arbitrary location. The origin of the body frame is at the center of

gravity of the Vehicle and consists of ib pointing out the nose of the aircraft, jb pointing
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out the right wing, and kb pointing out the bottom of the aircraft.

2.2.1 Translational and Rotational Dynamics

It is relatively easy to study a rigid body in both kinematic and dynamics. Relating

to the rigid body motion, focus on the chasles theorem in classical mechanics [32], any

rigid motion can be totally decomposed without decoupling into a translation of the

body about the mass center [33]. We presented both the translation and rotation for a

rigid body w.r.t a fixed base coordinate frame.

Translational Dynamics

In [11] and [34], Newton’s second law equation applied to translational motion of the

aircraft takes the form:

f = m
dVg
dti

(2.24)

• The derivative of the right hand side of the equation 2.24 must be take with

respect to inertial reference frame.

• f is the sum of all external forces.

• m is the mass of the aircraft.

Using the fact that

dVg
dti

=
dVg
dtb

+ ωb/i × Vg
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performing the equation 2.24 by substituting the expression dVg
dti

, gives

f =

(
dVg
dtb

+ ωb/i × Vg
)
m (2.25)

expressing 2.25 in the body frame we have

f b =

(
dV b

g

dtb
+ ωbb/i × V b

g

)
m (2.26)

where

V b
g =


u

v

w

 ωbb/i =


p

q

r

 f b =


fx

fy

fz



Hence
dV bg
dtb

=


u̇

v̇

ẇ

 we have the following expression


u̇

v̇

ẇ

 =


rv − qw

pw − ru

qu− pv

+
1

m


fx

fy

fz

 (2.27)

For simplicity the equation 2.27 can be represented as

V̇ b
g = −ωbb/i × V b

g +
1

m
f b (2.28)

V = V b
g
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Rotational Dynamics

Applying Newton’s second law to the rate of change of angular momentum of the rigid

body, we have

M =
dh

dti
(2.29)

• h is the angular momentum vector.

• M is the sum of all external moments.

• The derivative of the right hand side of the equation 2.2.1 taken w.r.t inertial

frame.

Therefore we get

dh

dti
=
dh

dtb
+ ωb/i × h = M (2.30)

expressing in the body frame therefore we have

dhb

dtb
+ ωbb/i × hb = M b (2.31)

For a rigid body, angular momentum is defined as the product of the inertia matrix and

the angular velocity vector:

hb , Jωbb/i (2.32)

Let J be the inertia matrix of spacecraft defined by
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J =


J11 J12 J13

J21 J22 J23

J31 J32 J33

 (2.33)

Diagonal elements are called moments of inertia. Off-diagonal elements are called prod-

ucts of inertia. J determined from mass properties in CAD program or measured ex-

perimentally using a bifilar pendulum. And J is a constant matrix, because it cannot

change its values in the body frame.

J
dωbb/i
dtb

+ ωbb/i ×
(
Jωbb/i

)
= M b (2.34)

dωbb/i
dtb

= J−1
[
−ωbb/i ×

(
Jωbb/i

)
+M b

]
(2.35)

The external moment M are principally composed of disturbance torque Td due to

gravitational, aerodynamic, solar radiation and many others environmental torques in

the body frame, expressed by

Td = [Td1, Td2, Td3]T (2.36)

the control torque τ expressed by

τ = [τ1, τ2, τ3]T (2.37)
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Therefore, with ω = ωbb/i we have

ω̇ = J−1 [−ω × (Jω) + Td + τ ] (2.38)

2.2.2 Kinematic Equation

Denoting the rotational axis of a body frame relative to a reference frame by a unit

length vector ê and the rotational angle by α, the scalar component of the quaternion

q0 = cos
(
α
2

)
, the vector component of the quaternion q = êsin

(
α
2

)
= [q1, q2, q3]T ,

then the quaternion that represents the rotation of the body frame relatively to the

reference frame is expressed as follow:

q =
[
q0, qT

]T
=
[
cos
(α

2

)
, êsin

(α
2

)]T
(2.39)

the nonlinear spacecraft kinematics equations of motion can be represented by the

quaternion

 q̇ = −1
2
ω × q + 1

2
q0ω

q̇0 = −1
2
ωTq

(2.40)

It is worth mentioning that the kinematic quaternion equation can be represented in

different form.
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2.2.3 Kinematic and Dynamics of Rigid Body

In view of 2.23a and 2.23a the equation 2.40 can be written as

q̇ = Ω (ω) q (2.41)

Using the 2.28, 2.38, 2.41 we obtain

Ṗ = R (Q)V (2.42a)

V̇ = −ω × V +
1

m
f (2.42b)

Q̇ = Ω (ω) Q (2.42c)

ω̇ = J−1 [−ω × (Jω) +M ] (2.42d)

• P = [pn pe pd]
T is the inertial frame position.

• Q = [q0 q1 q2 q3]T is the quaternion representing the current attitude.

• R (Q) is the rotation matrix from the body to the inertial frame.

• V = [u v w]T is the inertial velocity expressed in the body frame coordinates.

• m is the mass, f is the total external force applied.

• ω = [p q r]T is the angular rates expressed in the body frame.

• J is the moment of inertia, and M is the net moment expressed in the body frame.
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Chapter 3

Airfoil Analysis

3.1 Introduction

This chapter makes an analysis of the airfoil that has been used for the development

of the aircraft, Although modern high-speed aircraft generally make use of advanced

supercritical airfoil, there is still a demand for information on the NACA series of airfoil

sections, which were developed over 50 years ago by the National Advisory Committee

for Aeronautics. Computer programs were developed in the early 1970s to produce the

ordinates for airfoils of any thickness, thickness distribution or camber in the NACA

airfoil series.

3.1.1 Airfoil Geometry

The NACA airfoils were designed during the period from 1929 through 1947 under the

direction of Eastman Jacobs at the NACAs Langley Field Laboratory. Most of the

airfoils were based on simple geometrical descriptions of the section shape, although

the 6 and 6A series were developed using theoretical analysis and do not have simple

shape definitions. Although a new generation of airfoils has emerged as a result of

improved understanding of airfoil performance and the ability to design new airfoils
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using computer methods, the NACA airfoils are still useful in many aerodynamic design

applications. A number of references have been included to allow the reader to study

both the older NACA literature and the new airfoil design ideas. Taken together, this

literature provides a means of obtaining a rather complete understanding of the ways

in which airfoils can be shaped to obtain desired performance characteristics.

3.1.2 NACA 4 Digit Airfoil Specification

The NACA airfoils are constructed by mixing a thickness envelope with a camber or

mean. In fact the NACA airfoil series is controlled by four digits, example NaCA 2411,

which designate the camber, position of the maximum camber and thickness. As the

NACA 2411 has beeen used, the next airfoil number is introduced: NACA MPXX.

Although the numbering system implies integer values, the equations can provide 4

digit foils for arbitrary values of M, P, and XX.

• M is the maximum camber divided by 100. In the example M = 2 so the camber

is 0.02 or 2% of the chord

• P is the position of the maximum camber divided by 10. In the example P=4 so

the maximum camber is at 0.4 or 40% of the chord.

• XX is the thickness divided by 100. In the example XX = 11 so the thickness is

0.11 or 11% of the chord.
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3.1.3 NACA 4 Digit Airfoil Calculation

The NACA airfoil section is created from a camber line and a thickness distribution

plotted perpendicular to the camber line. The equation for the camber line is split into

sections either side of the point of maximum camber position (P). In order to calculate

the position of the final airfoil envelope later the gradient of the camber line is also

required. The equations that describe this procedure are:

Camber Front (0 ≤ x < p)

yc =
M

P 2

(
2Px− x2

)
(3.1)

Camber Back (p ≤ x ≤ 1)

yc =
M

(1− P )2

(
1− 2P + 2Px− x2

)
(3.2)

Gradient Front (0 ≤ x < p)

dyc
dx

=
2M

P 2
(2P − x) (3.3)

Gradient Back (p ≤ x ≤ 1)

dyc
dx

=
2M

(1− P )2 (P − x) (3.4)

The NACA 4 digit thickness distribution is given by

yt =
T

0.2

(
a0x

0.5 + a1x+ a2x
2 + a3x

3 + a4x
4
)

(3.5)

a0 = 0.2969 a1 − 0.126
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a2 = −0.3516 a3 = 0.2834

a4 = −0.1015 or −0.1036 for closed trailing edge.

• The constants a0 to a4 are for a 20% thick airfoil. The expression T
0.2

adjusts the

constants to the required thickness.

• At the trailing edge (x = 1) there is a finite thickness of 0.0021 chord width for a

20% airfoil. If a closed trailing edge is required the value of a4 can be adjusted.

• The value of yt is a half thickness and needs to be applied both sides of the camber

line

Using the equations above, for a given value of x it is possible to calculate the camber

line position yc, the gradient of the camber line and the thickness. Which means, The

NACA airfoils are constructed by combining a thickness envelope with a camber or

mean line. Then the position of the upper and lower surface can be then calculated

perpendicularly to the camber line.

θ = atan
dyc
dx

Upper Surface:

xu = xc − ytsin(θ) (3.6a)

yu = yc + ytcos(θ) (3.6b)
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Lower Surface:

xl = xc + ytsin(θ) (3.7a)

yl = yc − ytcos(θ) (3.7b)

The most obvious way to plot the airfoil is to iterate through equally spaced values of

x calculating the upper and lower surface coordinates. While this works, the points are

more widely spaced around the leading edge where the curvature is greatest and flat

sections can be seen on the plots. To group the points at the ends of the airfoil sections

a cosine spacing is used with uniform increments of β.

x = 1−cos(β)
2

where 0 ≤ β ≤ π.

3.1.4 NACA 4-Digit-Series Airfoils

The traditional NACA airfoil designations are shorthand codes representing the essen-

tial elements (such as thickness-chord ratio, camber, design lift coefficient) controlling

the shape of a profile generated within a given airfoil type. Thus, for example the

NACA 4-digit series airfoil is specified by a 4-digit code of the form pmxx, where p

and m represent positions reserved for specification of the camber and xx allows for

specification of the thickness-chord ratio as a percentage, that is, ”pm12” designates a

12-percent-thick (t/c = 0.12) 4-digit airfoil. According to [35] Symmetric airfoils in the

4-digit-series family are designated by a 4-digit number of the form NACA 00xx. The

first two digits indicate a symmetric airfoil; the second two, the thickness-chord ratio.

Ordinates for the NACA 4-digit airfoil family [36] are described by an equation of the

form:
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y

c
= a0

(x
c

)1/2

+ a1

(x
c

)
+ a2

(x
c

)2

+ a3

(x
c

)3

+ a4

(x
c

)4

(3.8)

From the following boundary conditions the constant
(
t
c

= 0.20
)

were calculated in the

equation.

Maximum Ordinate:

x
c

= 0.30 y
c

= 0.10 dy
dx

= 0

Ordinate at Trailing Edge:

x
c

= 1.0 y
c

= 0.002

magnitude of Trailing Edge Angle:

x
c

= 1.0 | dy
dx
| = 0.234

Nose Shape:

x
c

= 0.10 y
c

= 0.078

To obtain ordinates for airfoils in the family with a thickness other than 20 percent, the

ordinates for the model with a thickness-chord ratio of 0.20 are multiplied by the ratio

(t/c)/0.20. The leading-edge radius of this family is defined as the radius of curvature

of the basic equation evaluated at x/c = 0. Because of the term a0(x/c)1/2 in the

equation, the radius of curvature is finite at x/c = 0 and can be shown to be

Rle =
a2

0

2

(
t/c

0.20

)2

(3.9)
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by considering the limit as x approaches to zero of the standard expression for radius

of curvature:

R =
(1 + (dy/dx)2)

3/2

d2y/dx2
(3.10)

The desired thickness-chord ratio is very important to the computer program to define

an airfoil in this family. One might expect that this leading-edge radius R(0), found

in the limit as to depend only on the a0 term of the defining equation, would also be

the minimum radius on the profile curve. This is not true in general, for the NACA

0020 airfoil, for example, a slightly smaller radius (R = 0.0435 as compared to R(0) =

0.044075) is found in the vicinity of x = 0.00025

3.1.5 NACA 4-Digit-Modified-Series airfoils

The 4-digit-modified-series airfoils are designated by a 4-digit number followed by a

dash and a 2-digit number (such as NACA 0012-63). The first two digits are zero

for a symmetrical airfoil and the second two digits indicate the thickness-chord ratio.

The first digit after the dash is a leading-edge-radius index number, and the second

is the location of maximum thickness in tenths of chord aft of the leading edge. The

design equation for the 4-digit-series airfoil family was modified [37] so that the same

basic shape was retained but variations in leading-edge radius and chordwise location

of maximum thickness could be made. Ordinates for these airfoils are determined from

the following equations 3.10.

From the leading edge to the maximum thickness, and

y

c
= d0 + d1

(
1− x

c

)
+ d2

(
1− x

c

)2

+ d3

(
1− x

c

)3

(3.11)
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from the maximum thickness to trailing edge.

The constants in these equations can be calculated from the following boundary condi-

tions (for t
c

= 0.20):

Maximum Ordinate:

x
c

= m y
c

= 0.10 dy
dx

= 0

Leading-Edge Radius:

x
c

= 0 R =
a20
2

Radius of curvature at maximum thickness:

R =
(1−m)2

2d1 (1−m)− 0.588
(3.12)

Ordinate at Trailing Edge:

x
c

= 1.0 dy
dx

= d0 = 0.002

Magnitude of Trailing-Edge Angle:

x
c

= 1.0 dy
dx

= d1 = f(m)

Then,the maximum ordinate, slope, and radius of curvature of the two portions of the

surface match at x/c = m. The values of d1 were chosen, as stated in [37], to avoid

reversals of curvature and are given in the following table:

By using these constraints, equations were written for each of the constants (except

a0 and d1) in the equation for the airfoil family and are included in the computer

program. As in the 4-digit-series airfoil family, ordinates vary linearly with variations
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m d1

0.2 0.200
0.3 0.234
0.4 0.135
0.5 0.465
0.6 0.700

Table 3.1: Reversal of Curvature

in thickness-chord ratio and any desired thickness shape can be obtained by scaling

the design ordinates by the ratio of the desired thickness-chord ratio to the design

thickness-chord ratio. The leading-edge index is an arbitrary number assigned to the

leading-edge radius in reference 4 and is proportional to a0. The relationship between

leading-edge radius Rle and index number I is as follows:

Rle = 0.5

(
0.2969

t/c

0.2

I

6

)2

(3.13)

Thus, an index of 0 indicates a sharp leading edge (radius of zero) and an index of 6

corresponds to a0 = 0.2969, the normal design value for the 20 percent-thick 4-digit

airfoil. A value of leading-edge index of 9 for a three times normal leading-edge radius

was arbitrarily assigned in [37]

3.2 2D, 3D Analysis

For 2D, 3D analysis the application XFLR5 was used, this program was created by

Mark Drela as a design tool for the Daedalus project at MIT (Massachusetts Institute

of Technology) in the 80s. The XFLR5 allows us to analyze the profiles, wings, planes

and airfoils, operating at low Reynolds numbers, and it facilitates the work with graphic
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design. Application XFLR5 was used to calculate aerodynamic coefficients and stability

metrics.

2D analysis is based on analyzing a NACA profile, then, using the so-called ”Batch

analisys”, which allows us to obtain a polar curves, with these graphs and other data

the analysis of complete airfoil can be studied.

3D analysis is the analysis of the wing or hydrofoil full rudder, with its endless profiles,

and can also obtain polar and graphics. In short, it is not possible to work in 3D without

going through 2D. That is, after making the analysis of the profiles (2D) is when we

can work with the three dimensions (3D) to study the behavior of the plane, hydrofoil

or airfoil. In this work the 3D analysis is not going to take into account, because a wing

is set of several profiles, is like analyzing a set of profiles.

3.2.1 Reynolds Concept

The Reynolds number is a dimensionless quantity that lets us know when a fluid passes

from laminar to turbulent flow. This number relates the density, viscosity, speed and a

typical dimension in a dimensionless expression, which interpose in numerous problems

of fluid dynamics. The Reynolds number is defined below.

Re =
ρvL

µ
=

vL

ν
(3.14)

where:

v is the maximum velocity of the object relative to the fluid (SI units: m/s).

L is a characteristic linear dimension, (travelled length of the fluid; hydraulic diameter
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when dealing with river systems) (m).

µ is the dynamic viscosity of the fluid (Pa · s or N · s/m2 or kg/(m · s)).

ν is the kinematic viscosity (ν = µ/ρ)(m2/s)).

ρ is the density of the fluid (kg/m).

When choosing the profiles, the program indicates, at which point the boundary layer

is clear and we can choose where that happens, besides being able to select whether the

analysis takes into account the viscosity or not.

Normalized Reynolds

Most operations performed in XFLR5 are in Cartesian coordinates (X, Y ). The coeffi-

cients CL, CD, CM are obtained by normalizing forces and moments with the dynamic

pressure of the free stream (the rope reference is supposed to be the unit). Similarly,

the Reynolds number Re is defined by the velocity and viscosity of the free stream and

involves rope unit:

CL = L
q

, CD = D
q

CM = M
q

, q̄ = 1
2
ρv2

The Reynolds number that used by XFLR5 in 2D profiles analysis and for the wind

tunnels, experiences are always the same. For this dimensionless value, the rope ref-

erence is required, as for profiles is the rope and for wings is the aerodynamic mean

chord.

Also in the engineering literature where it is necessary to calculate the values of frictional

resistance (e.g. Cf vs Re for flat plate or tube) is often used the Reynolds number. Both

Reynolds as the Mach number are dimensionless.
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For the analysis of the profiles that were used in this project can be found in [19],

since the idea of the first part of this work is based on the reconstruction of the vehicle

mentioned in the cited reference with a rigid and very light materials such as carbon

fiber.

3.3 Aerodynamic Forces

Almost all of aerial vehicles belong to two mainly classes fixed-wing vehicles, or rotary-

wing vehicles. The first class is basically composed of airplanes. In this case, weight is

compensated for by lift forces acting essentially on the wings, and propulsion is used

to counteract drag forces associated with large air velocities. The second class contains

several types of systems, like helicopters, ducted fans, quad-rotors, etc. In this case, lift

forces are usually not preponderant and the thrust force, produced by one or several

propellers, has also to compensate for the vehicle’s weight.

There is a strong latent advantage on bringing control techniques related to airplanes

an VTOLs. For the dependence of aerodynamic forces, there exist a major difficulty

for the control of winged system, so-called angle of attack. To illustrates the usefulness

concepts we focus on [38].

3.3.1 Background

Notation

• G represents the body’s center of mas, m is the mas of the vehicle, and J is the

vehicle’s inertia matrix, both are assumed to be constant.
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• I = {O;~ıo, ~o, ~ko} is a fixed inertial frame with respect to (w.r.t) which the vehi-

cle’s absolute pose is measured. B = {G;~ı,~,~k} is a frame attached to the body.

The vector veck is parallel to the thrust force axis. Which leaves two possibles

and opposite directions for this vector the direction here can be chosen(~k pointing

downward nominally) is consistent with the convention used for VTOL vehicles.

• The vector of coordinates of G in the fixed frame basis I can be denoted as

x = (x1, x2, x3)T . Therefore,
−→
OG =

(
~ıo, ~o, ~ko

)
x. The vector of coordinates

associated with linear velocity of G w.r.t. I is denoted as ẋ = (ẋ1, ẋ2, ẋ3)T and

as v = (v1, v2, v3)T when expressed in the basis of B which means d
dt

−→
OG = ~v =(

~ıo, ~o, ~ko

)
ẋ =

(
~ı,~,~k

)
v.

• The body-fixed frame orientation B w.r.t the inertial frame I can be represented

by the rotation matrix R.The column vectors of R correspond to the vectors of

coordinates of ~ı, ~, ~k expressed in the basis of I.

• The angular velocity vector of the body-fixed frame B, relative to the fixed frame

I, expressed in B ca be denoted as ω = (ω1, ω2, ω3)T

• The fluid velocity w.r.t. the fixed frame I is denoted as ~vf =
(
~ıo, ~o, ~ko

)
ẋf =(

~ı,~,~k
)
vf .

• The airspeed ~va of the body is the difference between the velocity of G and the

fluid velocity, thus ~va = ~v − ~vf , with vector of coordinates is ẋaẋ − ẋf which

expressed in the basis of the fixed frame I, and va = v − vf which expressed in

the basis of the fixed frame B, which means ~va =
(
~ıo, ~o, ~ko

)
ẋa =

(
~ı,~,~k

)
va.
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3.3.2 Modeling of Aerodynamic Forces

Lift and Drag Forces Models

To illustrate the models of lift and drag forces, we focus on [39], [40], a functional

model of aerodynamic forces from [41] ruling the interactions between a solid body and

the surrounding fluid is yonder the authors domain expertise, that spatial integration

of these equations over the shape of an object does not yield closed-form expressions

except in very specific cases. in spite of the delicate and complex issues associated with

turbulent flows a side effect of which is the well known stall phenomenon for which

no general complete theory exists to our knowledge. A different route has proposed

by combining a well-accepted general expression of the intensity of aerodynamic forces

with geometric considerations based on the body’s symmetry properties. Let ~FD and

~FL represent the drag and lift components respectively of the ~Fa

~Fa := ~FD + ~FL (3.15)

by definition, ~FL orthogonal to ~va and ~FD parallel to ~va. A pair of angle are also

considered (α, β) which characterizing the orientation of ~va w.r.t the body frame. The

Buckingham π−theorem [42] asserts that the intensity of the static aerodynamic force

varies like the square of the air speed |~va| multiplied by a dimensionless function C(·)

depending on the Reynolds number Re , the Mach number M , and (α, β).

ka :=
ρΣ

2
, |~Fa| = ka|~va|2C (Re,M, α, β) (3.16)
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ρ the free stream air density, and Σ the area germane to the given body shape. Then,

assuming that the direction of ~Fa depends upon the airspeed magnitude |~va| via the

C(·) function variables (Re,M) only and that, this force does not depend(s) upon the

angular velocity ~ω, this theorem in turn implies the existence of two dimensionless

functions CD(·) and CL(·), and of a unit vector-valued function ~r(·) characterizing the

direction of the lift force w.r.t the body frame:

|~FL| = ka|~va|CL (Re,M, α, β)~r (α, β)× ~va (3.17a)

|~FD| = −ka|~va|CD (Re,M, α, β)~va (3.17b)

~r (α, β) · ~va = 0 (3.17c)

In literature of aerodynamics CD(∈ R+) and CL(∈ R) are called the aerodynamic char-

acteristics of the body, and also the drag coefficient and lift coefficient respectively. In

this work, our objective is to reach these aerodynamics coefficients, for that reason the

proposition 2 in the [39]. Which can be defined by

CD (α) = c0 + 2c1sin
2 (α)

CL (α) = c1sin (2α)
(3.18)

with c0 and c1 two real number.
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Chapter 4

Control Designs

The development and use of dynamical systems is very important in control Designs,

and which describes the system by mathematical representations. These mathematical

representations can be used in control designs to study the behavior of the systems. The

goal of the control designs is to design a such control’s law to control a system, so-called

plant, a general idea of a system can be represented as in figure 5.1, so its controlled

variable follows a desired control signal, which may be a constant or variable value, to

be realizable a controller is designed, which monitors the output and compares it with

the reference. The error signal is the difference between actual and desired output, is

applied as feedback to the input of the system, to bring the actual output closer to the

reference.

Fig. 4.1: Plant
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4.1 Longitudinal Flight Dynamics Control

In many literature of flight dynamic, the flight control designs are considered that the

aircraft dynamic to be linear at some point flight conditions such as [50]. This section

discuss the problem of controlling a type of vehicle tail-sitter by exploring its nonlinear-

ity dynamics. Therefore this section will be focus in a such control law that guarantee

stability and can be reached a certain given reference. To achieve this objective the

control technique back-stepping [51] will be applied and comparing to other control

technique such as feedback linearization, back-stepping presents more flexible way to

deal with the nonlinearity, a Lyapunov stability will be used to analyze the stability of

the system. In [52] a contraction-based backstepping nonlinear control technique was

proposed, which synthesis technique utilizes both the recursive nature of backstepping

control and of contraction analysis and results in a contracting closed-loop dynam-

ics, with exponential stability. While in [53] Backstepping controller is used for the

construction of a globally stabilizing controller with a number of free parameters and

implemented a controller with an internal loop controls involving the pitch rate of the

aircraft and an external loop which includes angle of attack, path angle and pitch angle.
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4.1.1 Aircraft Model

The equation of motion of the aircraft longitudinal dynamic take the form [54]

V̇T =
1

m
(FT cosα−D −mgsinγ) (4.1a)

α̇ =
1

mVT
(−FT sinα− L+mgcos(γ)) + q (4.1b)

θ̇ = q (4.1c)

q̇ =
M (δe)

Iy
(4.1d)

Let [VT γ θ q]
T ∈ R4 be the state vector, in this section the objective is to use the

alternative model flight-path angle as a state variable in place of the angle of attack

[55]. Where VT is the aerodynamic speed, γ is the flight path angle, θ is the pitch angle,

q is the pitch angular velocity. α = θ − γ is the angle of attack, now let [FT δe]
T ∈ R2

be the control input vector, FT is the engine thrust force, δe in our case represents the

deflections of the control surfaces.

V̇T =
1

m
(−D + FT cosα−mgsinγ) (4.2a)

γ̇ =
1

mVT
(L+ FT sinα−mgcos(γ)) (4.2b)

θ̇ = q (4.2c)

q̇ =
M (δe)

Iy
(4.2d)

m and Iy are the mass and the inertia, while D, L and M (δe) are the aerodynamics

forces lift, drag and pitch moment respectively as shown in the figure 5.2

In several literature the aerodynamic forces and moments are expressed by their non-
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Fig. 4.2: Longitudinal Aircraft Illustration

dimensional coefficients, as follow:

L =
1

2
ρV 2

T SCL, D =
1

2
ρV 2

T SCD, M =
1

2
ρV 2

T Sc̄Cm (4.3)

where ρ is the air density, S is the wing platform area, c̄ is the mean aerodynamic chord

and and CL, CD, Cm are the lift, drag and pitch moment coefficients, in [56] CD, CL

can be expressed as:

CD = CD0 + k1CL + k2C
2
L (4.4a)

Cm = Cm0 + αCmα + qCmq + δeCmδ (4.4b)

CD0 , k1, k2, Cm0 , Cmα Cmq and Cmδe are the aircraft aerodynamic coefficients.
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4.1.2 Flight Path Angle Control Design

The idea is based on the design for flight pah angle control, such as the system can seek

a given reference γr

Assumption 1 The following assumptions and simplification as illustrated in [57]:

1. The lift force coefficient, CL, is assumed to be a function of α.

2. The time derivatives of the aircraft speed and altitude are neglected.

3. The flight path angle gamma,is assumed to be equal to the path angle reference

γr, γ = γr therefore cosγ = cosγr, this means γ̇ is a function of α = θ − γ.

For our objective a subsystem of the 5.2 was considered from 5.5a to 5.7b

γ̇ =
1

mVT
(L (α) + FT sinα−mgcos(γr)) (4.5a)

θ̇ = q (4.5b)

q̇ =
M (δe)

Iy
(4.5c)

To achieve the objective of this control we have defined new variables such as the origin

becomes the desired equilibrium point.

z1 = γ − γr (4.6a)

z2 = θ − (γr + α0) (4.6b)

z3 = q (4.6c)
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ψ (z2 − z2) = ψ (α− α0) =
1

mVT
(L (α) + FT sinα−mgcos(γr))

through γ̇ = ψ (0) = 0, at the stable state the angle of attack is α0, the function

(α− α0)ψ (α) > 0 α 6= 0. The equations 5.6a to 5.6c can be writing in their

dynamic form:

ż1 = γ̇ = ψ (z2 − z1) (4.7a)

ż2 = q = z3 (4.7b)

ż3 = q̇ = u. (4.7c)

The main idea of the change of variables is to make z2 = 0, while it considered as a

virtual control to stabilize ż1, since it reached we have ż1 = ψ (−z1)

Step 1: Firstly, regarding the equation 5.7a is stabilized using the z2 as the virtual

control input. Introducing the control error 5.6a its derivation is given by

ż1 = ψ (α− α0) (4.8)

by considering a constant reference value, now defining the Control Lyapunov Function

(CLF)as:

W1 =
1

2
z2

1

now we determined the derivative of the (CFL) as follow
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Ẇ1 = z1ż1

Ẇ1 = z1ψ (α− α0)⇔ z1ψ (z2 − z1)

Ẇ1 = z1ψ (θ − z1 − γr − α0)

Ẇ1 = z1ψ (− (1 + k1) z1 + θ − γr − α0 + k1z1)

To reach the stability of the subsystem we proposed a desired θd such as

θd = γr + α0 − k1z1 (4.9)

hence Ẇ1 is negative definite ∀ k1 > −1

Ẇ1 = z1ψ (− (1 + k1) z1) z1 6= 0

Step 2: Now, let’s introducing a new the variable from the equation 5.9.

z2 = θ − θd = θ − γr − α0 + k1z1

For contentiousness a new variable has defined

ς = − (1 + k1) z1 + z2
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since the this variable has been defined, the equations 5.7a and 5.7b can be written as

ż1 = ψ (ς) (4.10a)

ż2 = k1ψ + q (4.10b)

Now extra term will be added to give an extra degree of freedom to the system F (ς)

it must be positive definite and radially unbounded, this function was introduced in

[58] to avoid the cancellation of term ψ (ς) for this reason a more flexible Lyapunov

Function is consider by adding that function.

W2 = k2W1 +
1

2
z2

2 + F (ς)

Differentiating W2 we obtain

Ẇ2 = k2z1ψ (ς) + z2 (q + k1ψ (ς)) + F ′ (ς) (−ψ (ς) + q)

Ẇ2 = (k2z1 + k1z2 − F ′ (ς))ψ (ς) + (z2 + F ′ (ς)) q (4.11)

Now a new stabilizing function independently of ψ (ς) is required, taking

qd = −k3z2 k3 > 0 (4.12a)

F ′ (ς) = k4ψ (ς) F (0) k4 > 0 (4.12b)
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then the equation 5.11 becomes

Ẇ2 = (k2z1 + (k1 − k3k4) z2)ψ (ς)− k4ψ (ς)2 − k3z
2
2

the next variable has been proposed such as Ẇ2 can be negative definite

k2 = − (1 + k1) (k1 − k3k4) k3k4 > k1 (4.13)

hence Ẇ2 becomes

Ẇ2 = − (k1 − k3k4) ςψ (ς)− k4ψ (ς)2 − k3z
2
2

Step 3: Finally the third error is introduced

z3 = q − qd = q + k3z2

updating the system description we obtained

ż1 = ψ (ς) (4.14a)

ż2 = z3 − k3z2 + k1ψ (ς) (4.14b)

ż3 = u+ k3 (z3 − k3z2 + k1ψ (ς)) (4.14c)

A new Lyapunov Function is introduced by introducing a penalizing term.

W3 = k5W2 +
1

2
z2

3 k5 > 0
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the W3 time derivative is computed.

Ẇ3 = k5

(
(k1 − k3k4) ςψ (ς)− k4ψ (ς)2 − k3z

2
2 + z3 (z2 + k4ψ (ς))

)
+ z3 (u+ k3 (z3 − k3z2 + k1ψ (ς)))

Ẇ3 6 −k3k5ψ
2 (ς)− k3k5z

2
2 + z3

(
u+ k3z3 +

(
k5 − k2

3

)
z2 + (k1k3 + k4k5)ψ (ς)

)
to cancel the cross product we selected k5 = k2

3 we have

Ẇ3 6 −k3k5ψ
2 (ς)− k3k5z

2
2 + z3 (u+ k3z3 + (k1k3 + k4k5)ψ (ς))

Now the control input has proposed as fallow

u = −k6z3 = −k6 (q + k3 (θ + k1 (γ − γr)− γr − α0)) k6 > k3 (4.15)

such that Ẇ3 becomes negative definite and can be written as

Ẇ3 ≤ −k2
3k4ψ

2 (ς)− k3
3z

2
2 − (k6 − k3) z2

3 +
(
k1k3 + k2

3k4

)
z3ψ (ς)

As we can see Ẇ3 is not completely negative definite as we expected, only the first

three term on the right hand side are beneficial for this reason we complete it with the

squares.

Ẇ3 ≤ −k3
3z

2
2 − (k6 − k3)

(
z3 −

k1k3 + k2
3k4

2 (k6 − k3)
ψ (ς)

)2

−
(
z3 −

k1k3 + k2
3k4

2 (k6 − k3)

)
ψ (ς)2

Ẇ3 becomes negative definite since ψ2 (ς) coefficient is negative, which can be proved
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since.

k6 > k3

(
1 +

(k1 + k3k4)2

4k3k4

)
(4.16)

k4 is chosen to minimize this lower limit under the constraints that k4 > 0, k3k4 > k1

and for k1 ≤ 0, (k1 + k3k4) is chosen arbitrarily small, hence the equations 5.16 becomes

k6 > k3

Using the backstepping approach the system 5.5 changed into 5.14, by implementing

an extra term and latter the control law has shown 5.15 to be globally stabilizing since

the system presented a nonlinear nature.

4.1.3 Surface Deflection

This section is focus on the issue of reaching the control of surface deflections δ, which

will produce the desired pitching moment M . Derivation of the control law that have

been found in equation 5.15 is regarding the angular pitch acceleration q̇ as a variable

of control. As we have already demonstrated in 5.5c the control law can be represented

as follow:

q̇ = u =
M (δe)

Iy
(4.17)

with the control law can be transformed into

Iyu = β
(
Cm0 + αCmα + qCmq + δeCmδ

)
where β = 1

2
ρV 2

T Sc̄ with that the control of surface deflection is obtained

δe =
1

Cmδ

(
Iyu

β
−
(
Cm0 + αCmα + qCmq

))
(4.18)
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4.2 Quaternion Based Trajectory Tracking Control

Regarding to the translational kinematic in equation 2.42, relative velocity and relative

acceleration between rigid bodies in motion have introduced, and in particular the Cori-

olis acceleration. Considering the second subsystem in the equation 2.42, the attitude

of a rigid body can be described by different representations, some of which are given

in this section, and the attitude control consists in achieving any rigid-body orientation

relative to a fixed frame, independently of that attached to the body itself. The best

manner to explain the kinematics and dynamics is to consider the attitude of a satellite

relative to the Earth.

4.2.1 Rotation Matrix

As in [59] a rotation matrix R describing the orientation of frame F1 with respect to

frame F2 consists of the projection of the axes of F1 onto F2 . The column vectors of R

represent the coordinates of the axes of F1 described in F2 . Since the axes of F1 and

F2 are usually unit vectors, the rotation matrix contains only cosine terms and is called

the direction cosine matrix. Also, since the axes of reference frames are orthonormal,

the rotation matrix is orthogonal and belongs to the set

SO (3) := {R ∈ R3x3 | det (R) = 1,RRT = RTR = I3} (4.19)

Where I3 denotes the identity matrix and inverse R−1 = RT . The set SO(3) give a

unique and nonsigular representation of the attitude and generally referred to as the

rotation space.
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A rotation matrix is usually used to map vector coordinates from one frame to another

frame. Let R ∈ SO(3) describe the rotation from frame F1 to frame F2. If the

coordinates of a vector in F1 is denoted by x1, then the coordinates of this vector in

frame F2 is denoted by x2 , given by

x2 = Rx1 (4.20)

The above property can be applied to the case of several frames, leading to the compo-

sition of rotations, which is obtained by the noncommutative multiplication appropriate

rotation matrices.

4.2.2 Axis-Angle Parameterization

The relative orientation of two reference frames can always be expressed by a single

rotation about a given normalized vector by a given rotation angle. Let ê ∈ R3 denote

a unit vector, and θ denote the angle of rotation about ê. Then the corresponding

rotation matrix R(θ, ê) ∈ SO(3) is given by the following formula:

R (θ, ê) = I3 − sin (θ) S (ê) + (1− cos (θ)) S (ê)2 . (4.21)

where S(x) is the skew symmetric matrix associated to x = [x1, x2, x3]T ∈ R3 given by

S (x) =


0 −x3 x2

x3 0 −x1

−x2 x1 0

 ∈ R3x3 (4.22)
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Satisfying S (x) := x× y, where x,y, and the ”×” denotes the vector cross product.

4.2.3 Unit Quaternion

The unit quaternion is defined as a four-element representation of the attitude, denoted

by

Q =

q

η

 ∈ Q (4.23)

where q ∈ R3, η ∈ R and Q is set of unit quaternion represented as

Q = {Q ∈ R4 | |Q| = 1} (4.24)

The unit quaternion is usually considered as an axis representation. In fact the rotation

by an angle θ about an arbitrary unit-length vector ê ∈ R3 can be described by the unit

quaternion

Q =

ê sin (θ/2)

cos (θ/2)

 (4.25)

where η = cos (θ/2) ∈ R is the scalar part and q = ê sin (θ/2) ∈ R3 is the vector part.

Through a transformation that provides a rotation matrix associated to the unit quater-

nion Q, that brings the inertial frame into the body frame can be obtained through the

Rodriguez formula as
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R =
(
η2 − qTq

)
I3 + 2qqT − 2ηS (q) (4.26)

Q forms a group with quaternion multiplication, which is distributive and associative,

but not commutative. To define this operation, consider two unit quaternion.

Q1 =

q1

η1

, Q2 =

q2

η2


The difference between two posture is given by the quaternion product, denoted by

Q1 ⊗Q2 ∈ Q

Q1 ⊗Q2 =

η1q2 + η2q1 + S (q1) q2

η1η2 − qT1 q2

 (4.27)

The multiplication of quaternion can be denoted by Q1 ⊗Q2 = Q3, and the rotation

matrix associated to Q3 is obtained as R (Q3) = R (Q2) R (Q1). The inverse attitude

is performed by the inverse conjugated

Q̄ = Q−1 = [−qT η]T ∈ Q (4.28)

Recalling That Q and −Q represent the same physical attitude however, the two pos-

tures differ mathematically by 2π rotation an arbitrary axis. As a consequence, the

mathematical model has two equilibria and this must be considered in stability study.
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Rodrigues Parameters

The Rodrigues vector is another representation of the attitude and is derived from the

definition of the unit quaternion Q in 5.25 as [60]

ϕ :=
1

η
q = ê tan (θ/2) (4.29)

where the three elements of ϕ are known as the Rodrigues parameters. The rotation

matrix relative to ϕ can be obtained from 5.26 as in [60]

Q =
1√

1 + |ϕ|2

ϕ
1

 (4.30)

The Rodrigues parameters representation uses only three elements and hence is minimal.

However, the Rodrigues vector cannot be used to represent rotations through ±π, which

correspond to η = 0. A different but related representation to the Rodrigues parameters

is the modified Rodrigues parameters (MRP) representation. The Modified Rodrigues

parameters are the elements of the vector ϕ̄ defined as

ϕ̄ :=
1

1 + η
q = ê tan (θ/4) (4.31)

The modified Rodrigues parameterization shares many characteristics with the rota-

tion vector parametrization, including the occurrence of discontinuous jumps in the

parameter space when incrementing the rotation.

It is clear that the MRP representation of the attitude is also minimal; however, the
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modified Rodrigues vector is not defined for η = −1. This indicates that the singularity

has moved to ±2π as compared to the Rodrigues vector.

Kinematics and Dynamics Representation

The time derivative of the rotation matrix can be determined as

Ṙ (Q) = −S (ω) R (Q) (4.32)

where S (·) is the skew symmetric matrix, for our purpose we represented the kinematic

differential equation of the rigid body attitude as follow

Q̇ =
1

2
T (Q)ω (4.33)

Where T (Q) is given by

T (Q) =

ηI3 + S (q)

−qT

 (4.34)

Which satisfies T (Q)T T (Q) = I3, therefore, the inverse kinematic problem can be

solved as

ω = 2T (Q)T Q̇ (4.35)

Regarding the the rigid body model 2.42, the rotational Dynamics can be rewritten as
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Q̇ =
1

2
T (Q)ω (4.36a)

Jω̇ = τ − S (ω) Jω (4.36b)

4.2.4 Quaternion Attitude Error Dynamics

The attitude control goal is based on making the actual attitude converge towards to

the unit quaternion representing the desired attitude of the vehicle Qd, which satisfying

the kinematic equation.

Q̇ = T (Qd)ωd (4.37)

The desired attitude Qd, the desired angular velocity ωd and the desired angular accel-

eration ω̇d are all bounded functions. The desired reference is such that the quaternion

errors satisfy the quaternion constraint q̃T q̃ = 1− η̃2

Provided that the aircraft desired attitude Qd is determined, we defined the attitude

tracking error, describing the discrepancy between the vehicle’s attitude and its desired

attitude,given by

Q̃ = Q−1
d ⊗Q (4.38)

namely Q̃ =
(
q̃T , η̃

)T
with η̃ ∈ [−1, 1] by definition, governed by the unit-quaternion

dynamics.
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˙̃q =
1

2

(
η̃I3 + S (q̃)

)
ω̃ ˙̃η = −1

2
qT ω̃ (4.39)

ω̃ = ω −R(Q̃)ωd (4.40)

The control goal is to steer q̃(t) to zero, with respect to the quaternion constraint, η̃

must converge to +1 or −1.

where ω̃ is the angular velocity error vector and R(Q̃) is the rotation matrix related to

Q̃, and given by R(Q̃) = R(Q)R(Qd)
T

we can see that the attitude tracking is achieve when Q coincides with Qd due redun-

dancy of the quaternion coordinate has two equlibria, which represent by Q̃ = (0T3 , ±1)T

and ω̃ = 03 with 03 =col[0, 0, 0].

For the purpose of analysis we translate the problem of stabilizing an equilibrium to

that of stabilizing the origin. For this reason the attitude error vector is defined Q̃± =

[qT , 1± η̃]T . The kinematic related to the attitude error can be expressed as

˙̃Q± =
1

2
T(Q̃±)ω̃ (4.41)

where

T(Q̃±) =

η̃I3 + S(q̃)

±q̃T


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4.2.5 Backstepping Control

To solve the problem of designing a globally asymptotically stabilizing control law

for the identity element of SO (3), the rigid body dynamics 2.42 is presented by two

subsystem, taking the first one with the force as the control input and considering the

rotational dynamics 5.36 with unit quaternion representation choosing ω as the virtual

control, and Qd desired attitude to be known and design a control input such that the

error attitude q̃ converge asymptotically to zero, and the attitude quaternion follows

the desired attitude.

Position Control: Based on the rotational dynamics 5.36 with unit quaternion.

Ṗ = R(Q)V (4.42)

with R(Q) = I3 + 2ηS(q) + 2S(q)2, and for a unit-quaternion, we have q = [0 0 0]T

Ṗ = I3V (4.43)

where I3 is the identity matrix, we obtain

Ṗ = V (4.44)

Now for the position control let V be the virtual input for 5.44, which brings the

subsystem to the stability. The goal of this control is to make the position of the

vehicle converge to the desired position, and the desired continuous signal Pd(t) and

Ṗd(t) are given. For this it is necessary to define a signal Vdt that brings the P (t) to the
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desired position Pd(t), therefore the positions tracking error dynamics are represented

as:

˙̃P = Ṗ − Ṗd (4.45)

with the position and velocity tracking error P̃ = P − Pd, Ṽ = V − Vd

Let the Lyapunov Function Candidate (LFC) be

W1 =
1

2
P̃ T P̃ (4.46)

The time derivative of w1 along the solution of position error

Ẇ1 =
1

2
P̃ T (Ṽ + Vd − Ṗd) (4.47)

with V = Ṽ + Vd and Vd = −KpP̃ + Ṗd

Ẇ1 = −P̃ TKpP̃ + P̃ T Ṽ (4.48)

Velocity Control: Now in the first subsystem, the dynamics acceleration is considered,

by considering that the Coriolis acceleration is also significant in high-speed flight; it is

zero for an aircraft flying due North or South at the equator and reaches its maximum

value at the poles or for flight due East or West at any latitude. Its significance can be

estimated by equating its value to the centripetal acceleration, in low, constant-altitude

flight, at 45 deg latitude [55], to achieve the goal of the control and for our benefit we

considered that the Coriolis acceleration is zero. In this fact the acceleration of the
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system is rewritten as

V̇ = gê− F

m
RQT ê (4.49)

where m and g are the aircraft mass and the gravitational acceleration, ê = [0 0 ]T

is the basis vector.

Representing the acceleration dynamics in function of error we have

˙̃V = gê− F

m
RQT ê− V̇d (4.50)

F
m
RQT ê = σ where σ̃ = σ − σd

˙̃V = gê− (σ̃ + σd)− V̇d (4.51)

for the extraction force, we used the process as in [61]. Now let the Lyapunov Function

Candidate be

W2 = W1 +
1

2
Ṽ T Ṽ (4.52)

The time derivative of W2 is represented as follow

Ẇ2 = Ẇ1 +
1

2
Ṽ T (gê− (σ̃ + σd)− V̇d) (4.53)

Taking σd = KvṼ + gê+ P̃ − V̇d, that yields
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Ẇ2 = −P̃ TKpP̃ − Ṽ TKvṼ − Ṽ T σ̃ (4.54)

Attitude Control: Regarding the attitude error dynamics, for our purpose the angular

velocity error has defined as presented:

ω̃ =

ω −R(Q̃)ωd if there exist any rotation

ω − ωr perfect set point
(4.55a)

Considering the error quaternion constraint, Lyapunov Function Candidate (LFC) is

chosen as

W3 = (1− sgn(η̃)η̃)2 + q̃T q̃ = 2(1− sgn(η̃)η̃) (4.56)

for more simplicity S̃ = sgn(η̃) and the signum function is used to define a nonzero as

sgn(η̃) =

−1 η̃ < 0

1 η̃ ≥ 0
(4.57)

is a hybrid variable used in [62] to avoid the singularity when η̃ = 0, rewritten the LFC

as follow

W3 = 2(1− S̃η̃) (4.58)

The time derivative of W3

68



Ẇ3 = −2S̃ ˙̃η (4.59)

Substituting the ˙̃η, we have

Ẇ3 = S̃q̃T ω̃ (4.60)

Substituting the ω̃, we get

Ẇ3 = S̃q̃T (ω −R(Q̃)ωd) (4.61)

In a perfect set point the angular velocity can be shown as ω = ω̃− ωr, in view of that

analysis the time derivative of Ww can change into

Ẇ3 = S̃q̃T (ω̃ + ωr −R(Q̃)ωd) (4.62)

with σ̃ = Γq̃ and ϑ = Fc
m

we have

σ̃ = ϑR(q)ê− σd (4.63)

σ̃ = ϑ (R(q)−R(qd)) ê (4.64)

using the fact that R(q) = R(q̃)R(qd)

σ̃ = ϑ (R(q̃)R(qd)−R(qd)) ê (4.65)
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σ̃ = ϑ (R(q̃)− I3)R(qd)ê (4.66)

σ̃ = 2ϑ
(
−η̃S(q̃) + S2(q̃)

)
R(qd)ê (4.67)

σ̃ = 2ϑ (η̃I3 − S(q̃)) S(R(qd)ê)q̃ (4.68)

such that Γ(q̃,qd, Fc) = 2ϑ (η̃I3 − S(q̃)) S(R(qd)ê)

σ̃ = Γ(q̃,qd, Fc)q̃ (4.69)

with ωr as virtual control, that brings the system to stability, therefore it defined as

ωr = −S̃Kq q̃ + R(Q̃)ωd + ΓT q̃ (4.70)

Ẇ3 becomes

Ẇ3 = −P̃ TKpP̃ − Ṽ TKvṼ − q̃TKqq̃ + S̃q̃T ω̃ (4.71)

with S̃2 = 1

Angular Velocity Control: The idea is to a τ that make the actual angular velocity

ω reaches the reference angular velocity ωr, taking the subsystem 5.36b we get

J( ˙̃ω + ω̇r) = τ − s(ω̃ + ωr)J(ω̃ + ωr) (4.72)
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Using the cross product properties (b× a = −a× b), we have

J ˙̃ω = τ + J(ω̃ × (ω̃ + ωr) + ωr)− Jω̇r (4.73)

J ˙̃ω = τ + Jω̃(ω̃ + ωr) + s(Jωr)(ω̃ + ωr)− Jω̇r (4.74)

J ˙̃ω = τ + s(Jω̃)(ω̃ + ωr) + s(Jωr)(ω̃ + ωr)− Jω̇r (4.75)

For more simplicity J ˙̃ω is changed into

J ˙̃ω = τ + Σ(ω̃, ωr)ω̃ + φ(ωr, ˙̃ωr)− s(ωr)Jω̃ (4.76)

Σ(ω̃, ωr) = s(Jω̃) + s(Jωr) (4.77a)

φ(ωr, ˙̃ωr) = s(Jωr)ωr − Jω̇r (4.77b)

Taking a second Lyapunov Function Candidate

W4 = W3 +
1

2
ω̃TJω̃ (4.78)

the time derivative of the second LFC is shown as

Ẇ4 = Ẇ3 +
1

2
ω̃TJ ˙̃ω (4.79)
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therefore we get

Ẇ4 = Ẇ3 +
1

2
ω̃T (τ + Σ(ω̃, ωr)ω̃ + φ(ωr, ˙̃ωr)− s(ωr)Jω̃) (4.80)

Choosing the control input as

τ = −Kωω̃ − S̃q̃ + s(ωr)Jω̃ − φ(ωr, ˙̃ωr) (4.81)

notice that by the properties of cross product ω̃TΣ(ω̃, ωr)ω̃ = 0, which yields Ẇ4 to

becomes a negative definite function such that

Ẇ4 = −P̃ TKpP̃ − Ṽ TKvṼ − q̃TKqq̃− ω̃TKωω̃ < 0 (4.82)

In this work the procedure and proof of the W4 switch, in [63] is used.

4.2.6 Transitions Control

To change between hover and level flight modes, it is required to implement the tran-

sitional maneuvers, which are broken down into parts, such that one control mode is

executed at a time. Stall is avoided, throughout the maneuvers. During the actual

transition, only pitch rotations are performed from hover to level flight and vice versa.

The methodology was not designed to optimize altitude deviation. Results from actual

transitions performed in simulation and hardware are given to validate the methods

presented.
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Hover-to-Level Flight

Hover-to-level flight transitions are executed in two scenarios. In the first scenario, the

aircraft rolls to align its underside with the direction of the desired way-point path by

considering that the roll and yaw angle are set to zero. For a such rotation the desired

quaternion is performed by the Euler’s angle. Since the error between the quaternion

and desired quaternion is reached a considerable point, the second scenario is executed.

The actual transition occurs, where the desired quaternion converges to the set path,

resulting in a pitch forward to level flight rotation. Throughout the entire transition

maneuver, throttle is set full to increase airspeed and avoid stall conditions.

Level-to-Hover Flight

Level-to-hover flight transitions are performed in the same way. As the vehicle is reach-

ing to a hover way-point, the normal level flight controller is employed. When the

distance to the desired point is reduced below a predetermined value, the transition

is initiated. In the first scenario, the aircraft is pitched up to a vertical orientation,

such that the underside points in the direction of the heading that was measured before

the rotation was executed (by the another function such as illustrated in the following

equation) [64]. Once this is accomplished, the second scenario begins wherein the vehi-

cle rotates to the vertical quaternion and finally, the normal hover position controller is

implemented. Throughout this maneuver, throttle is set from the altitude hover control

method. Because the approach speed of the aircraft is relatively large and the pull-up

maneuver is executed quickly, aircraft stall is not of significant concern.
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
φ

θ

ψ

 =


0

π
2
− e−t

0

 (4.83)


φ

θ

ψ

 =


0

π
2
− tan−1(t)

0

 (4.84)

Now the desired quatenion is performed by the Euler’s angle reference given.

Qd =



cos(φ/2) ∗ cos(θ/2) ∗ cos(ψ/2) + sin(φ/2) ∗ sin(θ/2) ∗ sin(ψ/2)

sin(φ/2) ∗ cos(θ/2) ∗ cos(ψ/2)− cos(φ/2) ∗ sin(θ/2) ∗ sin(ψ/2)

cos(φ/2) ∗ sin(θ/2) ∗ cos(ψ/2) + sin(φ/2) ∗ cos(θ/2) ∗ sin(ψ/2)

cos(φ/2) ∗ cos(θ/2) ∗ sin(ψ/2)− sin(φ/2) ∗ sin(θ/2) ∗ cos(ψ/2)


(4.85)

Note that, for the hover flight mode and transition mode two desired quaternions have

implemented, the first one is executed when the vehicle is in the hover flight mode

while the second one takes part when the vehicle is switching to level flight and the

same desired quaternions are also used in level to hover mode by taking the inverse of

the second one.
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Chapter 5

Simulations

5.1 Longitudinal Simulations

To illustrate the behavior of the proposed flight path angle control laws, implemented

through the backstepping control laws, the control system contains a control allocator,

distributing the desired aerodynamic moment to the control surfaces. For flight path

angle γ control, integral control is also included to achieve set-point regulation despite

model errors.

we illustrate through simulation results of the controllers developed for a Quad Rotor

Tail-Sitter UAV. The system’s equations of motion of the aircraft longitudinal dynamic

by equations 5.1c -5.1d, with a constant parameter of thrust and numerical coefficients

CL , CD are obtained. The physical parameters are: ρ = 1.2Kg/m3 which supposed

to be calculated online, as the density of wind is depend on the temperature and other

factors, but in this work we use a constant value for a realistic simulation, m = 3kg is

the mass of the vehicle, and for our purpose we used a constant thrust FT = 15N , to

150N .

Fig. , shows the time evolution of the flight path angle γ response compared to its

reference linear response also shows time evolution of the angle of attack α response.
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(a) Flight Path Angle

(b) Angle of Attack

Fig. 5.1: Path and Attack
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Figure 6.2, shows the control signal, aileron deflection δe and the time evolution of pitch

acceleration q̇.

(a) Aileron Deflection

(b) Angular Pitch Acceleration

Fig. 5.2: Aileron Deflection and Angular Pitch Acceleration

Figure 6.3, shows the time evolution of pitch rate θ̇ and the pitch angles q̇.
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(a) Pitch Rate of Longitudinal Dynamic

(b) Pitch Angle of Longitudinal Dynamic

Fig. 5.3: Pitch Rate and Pitch Angle
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5.2 Quaternion Based Trajectory Tracking

All simulations have been carried out on the nonlinear vehicle model presented in [59],

with the back-stepping controller are presented to illustrate the effectiveness of the

proposed control scheme. The aircraft model has considered as a rigid body of mass

m = 3.5kg, with inertial matrix J = diag(col(0.13, 0.10, 0.04))kgm2. The simulation

parameters has presented in the following table.

Simulation parameters
P(0) (2,−6, 9)
V(0) (0, 0, 0)
Q(0) (0, 0, 0, 1)
ω(0) (0, 0, 0)
Kp 0.5
Kv 0.05
g 9.8

Table 5.1: Simulation Prameters

Vd = −KpP̃ + Ṗd
σd = KvṼ + gê+ P̃ − V̇d

ωr = −S̃Kq q̃ + R(Q̃)ωd + ΓT q̃

τ = −Kωω̃ − S̃q̃ + s(ωr)Jω̃ − φ(ωr, ˙̃ωr)

Table 5.2: Control Signal

Translational Simulations

The desired tracking in this simulation is a position tracking given by Pd = [cos(0.1t+

2) sin(0.1t + 2.4) sin(0.1t)cos(0.1t)]Tm. The following figure plotted the three compo-

nents of the position and the velocity tracking errors.

79



(a) Position Tracking Error

(b) Velocity Tracking Error

Fig. 5.4: Roll and Yaw Transition
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Rotational Simulations

In vehicle orientation, attitude determination is very important for two reason, firstly

control engineers need to know if the spacecraft attitude is in the right attitude, sec-

ondly, it is necessary to know if the spacecraft is not in the perfect position, the attitude

information will be compared automatically with the desired attitude, and the error in-

formation is then used to calculate how much action is needed for each actuator to bring

the spacecraft to the desired attitude. A simulation is presented to study contrasting

the proposed hybrid control scheme, where two equilibrium are considered, one of them

is chosen a priory, assuming that the controller is hybrid, and a switching technique is

introduced to determine the reference equilibrium with the sign of η̃ is constant for all

t.

Figure 6.5 illustrates the three components of the attitude of the aircraft using the

switching technique, where the first plot shows a switching to −1, while the second

one illustrates a switching to +1. Comparing these two plots, we noticed that there

exist a change in the attitude of the vehicle, which means, when the switch is switching

to negative o positive value, that causes the components vector of the attitude of the

vehicle converge to that value while the scalar part is not affected by sign of the desired

value and also illustrates the actual angular velocity of the aircraft.
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(a) Quaternion Hybrid (plus)

(b) Quaternion Hybrid (minus)

(c) Angular Velocity

Fig. 5.5: Quaternion Error Hybrid (minus)
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(a) Quaternion Error Hybrid (plus)

(b) Quaternion Error Hybrid (minus)

(c) Angular Error Velocity

Fig. 5.6: Quaternion Error Hybrid (minus)
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Notice that, these two plots of attitude errors are illustrated clearly the presence of

the switching technique, where in the first plot the scalar part is switching to −1

while in the second plot the scalar is switching to +1. It is clear that from the actual

angular velocity, angular velocity error and component vector of attitude error figure

that asymptotic convergence to zero is guaranteed after a few seconds.

Fig. 5.7: Euler Angles

In the fig. 6.7 we also illustrated a simulation of the Euler angles, which can be compared

with the the actual attitude of the aircraft by choosing the desired attitude to be the

current attitude. It is important to notice that the roll and yaw angle are converge to

a desired value but the pitch angle is converge to zero, which can be interpreted that

the aircraft is on the vertical takeoff or landing.

Transition Simulations

Attitude simulation results of the transition methods presented previously are illus-

trated in Figure 6.8. In Hover-to-level transition, a heading rotation of 90 degrees

occurs from 0.5 to 1 seconds. The pitch forward to level flight then can be stated up
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from 1.0 second. The level-to-hover flight transition approaches the desired hover point

from π/2, so no heading rotation is required as illustrated in the figure 6.9, only a

pitch-up maneuver.

(a) Pitch Transition

(b) Inverse Pitch Transition

Fig. 5.8: Roll and Yaw Transition

Roll and Yaw are considered to be zero during the maneuver transition, it is clear to

see that only pitch is required for this task. Notice that the hover-to-level maneuver

is faster than the level-to-hover maneuver since the position of the tail-sitter is more
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awkward.

(a) Roll Transition

(b) Yaw Transition

Fig. 5.9: Roll and Yaw Transition

5.2.1 Experimental Results

In this section some experimental data from flights performed are shown, which are

implemented by a PID control, we have used this type of control because it is easier to

handle in the PX4 firmware than backstepping one, since a backstepping technique is
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required more information about the vehicle.

(a) Attitude Quaternion Graphic

(b) VTOL

Fig. 5.10: Quaternion and Transition mode
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(a) Pitch

(b) Roll

(c) Yaw

Fig. 5.11: Euler’s Angles
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(a) Pitch Rate

(b) Roll Rate

(c) Yaw Rate

Fig. 5.12: Euler Rate
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Chapter 6

Design Process

6.1 Introduction

This chapter describes the design process used to develop the air-frame configuration of

the tail-sitter UAV, also presented a flight controller with its peripherals and a overview

of the tail-sitter manufactured. Which are explained in more detail in the next sections.

6.2 The Design Process

The design process used throughout this project is begun with the establishment of the

key design requirements and specifications for the UAV. A design concept was proposed

and then scored based on the established specifications. Finally, simulation of flight

testing was done to determine whether the design actually fulfilled the specifications.

6.2.1 Prototype Design

The process of design and developing the tail-sitter UAV began with the specification

of key design requirements and parameters based on the Quadshot UAV [19]. These

requirements and parameters quantify the objective stated in the previous chapters,
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which was to design, build, and fly the smallest useful tail-sitter UAV to date. Specifi-

cally, the vehicle was designed to be able to achieve the hover-to-level flight transition,

level-to-hover flight transition and perform a mission, then return home and land ver-

tically. The concept is studied with detailed of previous tail-sitter aircraft illustrated

in table 1.1, specifically in the Quadshot, is a full-scale manned aircraft and smaller

UAVs, which was studied to develop a knowledge of previous projects. The tail-sitter

was design and a fluid analysis was done, using the SolidWorks and Ansys.

(a) Front View (b) Lateral View

Fig. 6.1: Tail-Sitter.

6.2.2 Manufacturing Analysis

Composites are, by definition, materials consisting of two or more materials which to-

gether produce beneficial properties that cannot be attained with any of the constituents

alone. One of the most common examples, fiber-reinforced composite materials con-

sist of high strength and high modulus fibers in a matrix material. Reinforced steel

bars embedded in concrete provide an example of fiber-reinforced composites [43]. In

these composites, the function of the fibers is carrying the load exerted on the compos-

ite structure, and providing stiffness, strength, thermal stability and other structural
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properties. Matrix material carries out several functions in a composite structure, some

which are binding the fibers together and transferring the load to the fibers, and pro-

viding protection to reinforcing fibers against chemical attack, mechanical damage and

other environmental effects like moisture, humidity, etc [44].Composites have unique

advantages over monolithic materials, such as high strength, high stiffness, long fatigue

life, low density, and adaptability to the intended function of the structure[45].

They offer further improvements in corrosion resistance, wear resistance, appearance,

temperature-dependent behavior, thermal stability, thermal insulation, thermal conduc-

tivity, and acoustic insulation. The basis that makes the composites to have superior

structural performance stands on their high specific strength (strength to density ratio)

and high specific stiffness (modulus to density ratio) and the anisotropic and heteroge-

neous character of the material.

The anisotropic and heterogeneous character also provides freedom to design a structure

with optimum configuration for serving a specific function [46]. The following figure

illustrates the mold design, which is divided in two parts, the cavity and the core.

Molding

Building a UAV wing out of composite materials is one of the main part of this work.

The composite wing is manufactured using cavity and core molds manually without the

vacuum bagging technique. In the following sections of this chapter detailed descriptions

of manufacturing process is available. The manufacturing of the cavity and core molds

of the wing is explained. Finally, the manufacturing of the wing structure is elucidated

in this section.
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(a) Cavity (b) Core

(c) Mold

Fig. 6.2: Mold Design.
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As it mentioned previously in this section, a composites materials is a mixing of a

variety of materials, also included a kind of chemical material that is applied to the tool

surface for preventing the sticking of the laminate to the mold surface. to manufacture

the tail-sitter, it is required a process to bring out the mold, for this reason a list of the

materials that have been used for this work has shown in the next table.

Table 6.1: List of Materials.

Materials Quantities

Release Agent 4100 700 g.
Release Film 900 g.

Sponge Application 4 pc.
Tooling Gel Coat 2 kg.

Paintbrushes 8 pc.
Acetone 4 L.

Bast Cloth 1 kg.
Catalyst K-2000 250 g.
Fiberglass Mat 6 kg.

Coremat Xi 3mm or 5mm 6 m2.
Polyester Resin 6 kg.

Roller Washers 3/4× 3” 2 pc.
Tooling Gel Coat Calibrator 1 pc.

MDF, Triply Wood 55× 40 cm 4 pc.
Wood Strips 55× 5cm 8 pc.

35× 5cm 8 pc.

a) Cutting the wood in the shape of the piece.

b) Stick the piece to the cut wood and Fill up the edge of the piece with clay, stick to

the wood base.

c) Clean up the wood and the piece with the bast cloth.

d) With the bast cloth, apply the release agent 4100 over the surface about 3 times.
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e) With the Paintbrushes, apply the release film over the surface about 3 times.

f) Now, apply the tooling gel coat over the surface about 3 times. (to determine the

thickness of the tooling gel coat the following formula is used ((55×40)×0.11)/2 =

110 g )(Catalyst K-2000 also used in this process, it depends on how fast do you

want the tooling gel coat dries.)

g) For our purpose we used 500 g of Polyester Resin, we also used the catalyst K-2000

to this process for a fast dry. (The same process has used to mold the wing of the

tail-sitter)

(a) Pylon (b) Pylon stocked to the wood

(c) Pylon with Tooling Gel Coat (d) Applying the Fiber glass

Fig. 6.3: Mold
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(a) Front View (b) Back View

(c) Complete Mold (d) Wing

Fig. 6.4: Fiberglass Mold
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6.3 Flight Controller Selection

To choose a flight controller for flying an aircraft, it depends on what firmware that is

going to be used, and it is also very important to know what will be the application, for

our mission we have used the PX4, which fits better on the pixhawk flight controller.

First it is important to say there exist three architectures of the pixhawk flight controller.

The first architecture created was named Pixhawk v1 which had a two components

PX4FMU+PX4IO. There was a second architecture created named Pixhawk v2, this

architecture combines the PX4FMU and PX4IO in one hardware controller, in this

work this architecture are used to development the application of the tail-sitter, as

shown in the following figure. Just recently a third generation of architecture was

released, referred as FMUv4 and PixRacer is the first board with this architecture, this

architecture is in making. This section provides high level information about how to

power Pixhawk and connect its most important peripherals.

6.3.1 Specifications

Processor

• 32bit STM32F427 Cortex M4 core with FPU

• 168 MHz

• 256 KB RAM

• 2 MB Flash

• 32 bit STM32F103 failsafe co-processor
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Sensors

• ST Micro L3GD20H 16 bit gyroscope

• ST Micro LSM303D 14 bit accelerometer / magnetometer

• Invensense MPU 6000 3-axis accelerometer/gyroscope

• MEAS MS5611 baromete

Interfaces

• 5x UART (serial ports), one high-power capable, 2x with HW flow control

• 2x CAN (one with internal 3.3V transceiver, one on expansion connector)

• Spektrum DSM / DSM2 / DSM-X Satellite compatible input

• Futaba S.BUS compatible input and output

• PPM sum signal input

• RSSI (PWM or voltage) input

• I2C

• SPI

• 3.3 and 6.6V ADC inputs

• Internal microUSB port and external microUSB port extension

Power System and Protection
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• Ideal diode controller with automatic failover

• Servo rail high-power (max. 10V) and high-current (10A+) ready

• All peripheral outputs over-current protected, all inputs ESD protected

Fig. 6.5: Pixhawk connection
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Airspeed Sensor

It features a Measurement Specialties 4525DO sensor, with 1 psi measurement range

(roughly up to 100 m/s or 360 km/h or 223 mp/h). Its resolution of 0.84 Pa is quite

good, and delivered as 14 bit data from a 24 bit delta-sigma ADC. It also measures tem-

perature to allow to calculate true airspeed from indicated airspeed using the MS5611

static pressure sensor on Pixhawk. As the temperature is not influenced by the heat of

nearby processing components, it is much closer to the air temperature than with the

previous analog sensor setup. It comes with M3 / 6-32 mounting holes. It is supported

on all PX4 autopilot generation boards [47], [48].

(a) PX4 Airspeed (b) Pitot Tube (Airspeed)

Fig. 6.6: Tail-Sitter.

Remote Control Input

Pixhawk is compatible with PPM remote control (RC) receivers, Futaba S.Bus re-

ceivers, and Spektrum DSM,DSM2, and DSM-X Satellite receivers. For traditional

single-wire-per-channel (PWM) receivers a PPM encoder can be used to convert the

receiver outputs to PPM-SUM. Information about compatible receivers and how they

are connected can be found in Compatible RC Transmitter and Receiver Systems (Pix-
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hawk/PX4).

Fig. 6.7: DX8 Spektrum

6.4 System Overview

In this section, the vehicle system has presented with more detail including the electronic

components, the system was designed for a restraint combination of motors and elevons

to control it, in its whole flight envelope. Thus the vehicle was predefined for a certain

electronic components, since the development of the tail-sitter, that has proposed in

this work, it is not concluded because of some factors, we have integrated the pixhawk

autopilot electronic to verify the control that has proposed lately. As it can be shown

the proposed design does not require additional hardware for the transition maneuver,

as presented the tilt rotors in [49], it is other type of configuration transition maneuver.

This type of configuration has a high cost and complexity mechanical system while in

the figuration proposed in this work, allows having a low cost and complexity mechanical

system, but its maneuver transition, it is more complicated than the tilt-rotors.
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Actuators

The system is constituted of a wing with four brushless motors and two servo for

actuating the elevons. All actuators are directly connected to Pulse Width Modulation

(PWM)output channels of the autopilot. The PWM signal used is the standard protocol

for commanding actuators in RC transmitter application which enables the use of low

cost off-the-shelf motors controllers and servos. The standard frequency of the PWM

command signal in RC transmitter application from px4 is 50HZ for controlling the

servos this frequency is sufficient but for motors controller is not sufficient, as RC

motor controllers in px accept frequency up to 400Hz thus the motor controllers are

updated at this rate.

Wing

It is also included an electronic box, which has divided in two parts, one for the batteries

and the other one for the electronic components as illustrated in the figure 4.8, whole

the system has mass m = 1kg. The main wing of the system is a 1m span and 0.1625m

average chord platform, the system uses four propellers for its propulsion (208×114mm),

(8× 4.5)

Avionics

The vehicle avionics are based on the pixhawk, and several sensors that integrated

in the hardware have been used in order to estimate the vehicle posture and enable

its automatic control, such as: The Inertial Measurement Unit (IMU) with integrated

3 axis accelerometer and the gyroscope to measure the accelerations and the angular
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velocities which are acting on the vehicle, a magnetometer to measure the magnetic flux.

a GPS module for position updating, a barometer to asses the atmospheric pressure

and a differential pressure sensor to calculate the velocity of the air-stream. All the

information gathered from the sensors is then used to estimate the pose, using the

Extended Kalman Filter (EKF).

(a) Peripherals Connection (b) Electronic Box

(c) Hardware Configuration

Fig. 6.8: System Overview.

Flight Envelope

In the following figure, the typical flight envelope has shown, where the vehicle has

for mission, hover-to-level and vice versa flight. When the vehicle is about to take off,

the propellers point upwards which allows the tail-sitter to hover. Subsequently, the

transition gets triggered and the whole vehicle pitches to 90o forward to get the hover-
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to-level flight, the lift is now produced by the aerodynamic effects of the wing instead

of the propellers, which allows decreasing the power consumption, once the vehicles

reaches the desired landing point, now pitching up 90o and then the vehicle is getting

the level-to-hover flight. An illustration of the flight envelope of the tail-sitter is shown

the following figure.

Fig. 6.9: Flight Envelope
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Chapter 7

Conclusion

The aim of this thesis was to obtain the 6-DOF model and longitudinal dynamics of

a Quad-Rotor Tail-sitter UAV using quaternion approaches, designed control laws to

stabilize the vehicle in its three phases and implemented the control laws on a platform

using autopilot px4.

In this thesis, we have investigated about of different UAVs classifications especially on

convertibles UAVs of which our work is focused on the tail-sitter. And for modeling,

the quaternion approches have been studied, where the 6-DOF and the Longitudinal

Dynamics are obtained, we also presented an Airfoil Analysis by comparing a 4-digits

series airfoils with a 4-digits Modified series airfoils it is worth to clarify that we have

also studied the Aerodynamic forces, The Airfoils analysis was done to help us build

a suitable prototype, which was built using composite materials and finally we have

presented the control designs using backstepping approaches, as Backstepping deals

explicitly with stability, through the construction of a Lyapunov function for the closed

loop system along with the construction of the control law itself.

It is important to illustrate that, as our model is completely a nonlinear system for

this reason we have used backstepping designs which is focused on utilizing useful

nonlinearities rather than cancelling them, the resulting closed loop systems are not

linear, this means we have more information about vehicle and that the aircraft response

to the pilot inputs will not be independent of the angle of attack.
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