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Abstract

Using periodic and anti-periodic boundary conditions, the Ince-Strutt diagram of the T -
periodic Hill equation is computed. A generalization of these two boundary conditions,
known as twisted boundary conditions, is used in order to find the parameter regions where
kT -periodic and aperiodic solutions exist. The boundary value problem associated to each
of these boundary conditions is set as a Sturm-Liouville problem, which is the eigenvalue
problem of a linear differential self-adjoint operator, whose spectra, as it is shown by the
Sturm-Liouville theory, consists of a monotonic sequence of real numbers. An arbitrary order
finite-difference scheme is proposed for the approximate solution of these Sturm-Liouville
problems. The obtained results are compared with others obtained by two other methods. An
academic example is given to show how this approach can be applied to other second order
bi-parametric periodic equations which are not on a Hill type form.





Resumen

Usando condiciones de frontera periodicas y anti-periodicas, se calcula, de forma aproximada,
el diagrama de Ince-Strutt de la ecuación de Hill de periodo T . Una generalización de estos
dos tipos de condiciones de contorno, conocida como condiciones de frontera torcidas,
es utilizada para encontrar las regiones de parámetros en las que dicha ecuación presenta
soluciones periodicas de periodo kT , donde k es un número entero positivo. La solución de
cada uno de estos problemas se define como un problema de Sturm-Liouville, que a su vez
corresponde a un problema de valores y vectores propios de un operador diferencial lineal. El
espectro de este operator, como lo prueba la teoría de Sturm-Liouville, forma una secuencia
monotonica de números reales. Se propone un esquema basado en diferencias finitas para
la solución aproximada de estos problemas. Los resultados obtenidos son comparados con
aquellos recabados por otros dos metodos. Un ejemplo académico es dado para mostrar
cómo este enfoque puede ser aplicado a ecuaciones periodicas bi-paramétricas de segundo
orden que no se encuentran en una forma de tipo Hill.
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Chapter 1

Introduction

The term Hill equation defines the class of homogeneous, linear, second order ordinary
differential equations with real, periodic coefficients [1] which can be reduced to an equation
of the form:

ÿ+h(t)y = 0, h(t) = h(t +T ). (1.1)

which can be rewritten as

ÿ+

(
a0 +

∞

∑
n=1

[
an cos

(
2nπ

T

)
+bn sin

(
2nπ

T

)])
y = 0, (1.2)

where {an} and {bn} are the Fourier coefficients of h(t). This equation received its name in
view of the important contribution made by G. W. Hill [2] to their theory while studying the
motions of the moon, although such differential equations had been investigated before by
Floquet [3], among others.

The Hill equation appears in many applications in science and engineering, where, in the
later, the phenomenon known as parametric resonance is of special interest.

Parametric resonance is the instability caused by parametric excitation, i.e. by the periodic
variation of a parameter in a dynamical system. For its study, it is common practice to work
with the bi-parametric Hill equation

ÿ+(α +β f(t))y = 0, (1.3)

where f(t) is a zero-mean function that is called the excitation function, and parameters α and
β are functions of the frequency and amplitude of the excitation. For example, in reference
[4] is given a model of a pendulum of length l, subject to parametric excitation introduced
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by l(t) = l0 + ε cos(ωt), which, after a time rescaling τ = ωt, gives rise to an equation of
the form (1.3) with f(t) = cos(t), α = ω2

0/ω2 and β = εω2
0/ω2, where ω0 =

√
g/l0 is the

natural frequency of the linearized pendulum model in the absence of parametric excitation,
g is the acceleration of gravity, and ω and ε are, respectively, the frequency and amplitude of
the parametric excitation.

Parametric excitation differs from direct forcing in that the excitation appears as the
temporal modulation of a parameter rather than as a direct additive input as in:

ÿ+αy = β f(t). (1.4)

Champneys [4] points out that an interesting contrast between these two cases arises in the
nature of the trivial response to a non-zero input. For any α and β , (1.3) admits the trivial
solution y(t)≡ 0, whereas there is no such solution to (1.4) for non-zero β . So any analysis
of a parametrically excited system should start with an analysis of the steady state y = 0.

It is usual to highlight graphically, through a bifurcation diagram known as the Ince-
Strutt diagram, the values of α and β for which the trivial solution of (1.3) is stable or
unstable, or equivalently, where solutions stay bounded or become unbounded. Figure
1.1 shows the Ince-Strutt diagram of (1.3) where f(t) = β cos(t), which is known as the
Mathieu equation. Here, painted areas are known as Arnold tongues, and are associated
with unbounded solutions, whilst white ones with bounded solutions. The boundaries of
the Arnold tongues are known as the transition curves of the system, and are associated, in
general, with unbounded solutions, excepting at points inside these curves where the width
of an Arnold tongue becomes zero for a certain value of β , as, for example, point (5,4) in
Figure 1.1. This later case is known as the phenomenon of coexistence, and the point where
this happens is called a coexistence point.

Since the solution of a time-varying equation is, in most cases, difficult to obtain, the
Arnold tongues of a dynamical system (1.3) are usually obtained through the numeric
computation of its transition curves. For this task, it is usually chosen a desired homogeneous
grid of values for β , and then, for each value on the grid, the correspondent values of α inside
the transition curves are computed. Floquet theory shows that these values of α correspond,
in fact, to those values for which a periodic solution of period T or 2T exist.

Among the classical analytic methods for the computation of the Ince-Strutt diagram
of a system is the method of infinite determinants, introduced by Hill, and the perturbation
method [5], where the approximations of the later are obtained assuming β small. On the
other hand, a classical numerical method consists the numerical computation of the state
transition matrix of the system to predict boundedness of solutions for fixed values of α and
β , a highly time consuming method.
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Figure 1.1: Ince-Strutt diagram

An interesting method was the one introduced by Jazar [6]. His approach is applicable to
a nonlinear version of the Hill equation. Moreover, his method was also shown to be useful
in finding those regions where kT -periodic solutions exists, for k ∈ N.

For smooth excitation functions, an excelent method, in the sense that it gives accurate
results in a very short time, is the one based on spectral differentiation [7]. This method
consists in approximating the linear differential operator of Hill equation:

LH =
d2

dt2 +β f(t)

through a matrix differential operator which operates on a discrete-time version of a desired
solution. This approximation is obtained by globally interpolating a periodic solution y(t)
by means of a band-limited function obtained by the discrete Fourier transform, and then
approximating ẏ and ÿ, respectively, by the first and second derivatives of the interpolant.
After obtaining the matrix differential operator approximation, the problem is turned into a
periodic boundary value problem (BVP), which is solved as the eigenvalue-eigenfunction
problem of the matrix operator. Notice that, for the discrete Fourier transform to hold,
solution y should be assumed periodic of some period.
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Floquet theory gives a justification of why the Ince-Strutt diagram of the Hill equation
can be set as a BVP. In particular, it tells us that a periodic solution of period T can be found
by solving a periodic BVP on the interval [0,T ], and a periodic solution of period 2T can
be found through an anti-periodic BVP on the same interval. These two cases are particular
cases of the fact that kT -periodic and even aperiodic solutions can be found through a twisted
BVP [15], which is the generalization of both the periodic and the anti-periodic BVP.

The Sturm-Liouville problem is that formed by the Sturm-Liouville equation:

d
dt

(
p(t)

d
dt

y
)
+q(t)y+λw(t)y = 0,

plus some special homogeneous boundary conditions (BCs), called the Sturm-Liouville BCs.
Its solution are those values of λ , called the eigenvalues of the Sturm-Liouville operator:

L=
1

w(t)

(
d
dt

(
p(t)

d
dt

)
+q(t)

)
,

which give rise to non-trivial solutions, called the associated eigenfunctions, that satisfy the
Sturm-Liouville BCs.

As the Hill equation is a special case of the Sturm-Liouville equation, for the computation
of its Ince-Strutt diagram, the chosen Sturm-Liouville BCs are the periodic and the anti-
periodic BCs. For fixed values of β , those values of λ = α inside the transition curves of
the Ince-Strutt diagram are computed through both the periodic and the anti-periodic Sturm-
Liouville problem, looking for solutions of period T and 2T , which are the eingefunctions
associated with those values of α .

The Sturm-Liouville theory gives information about the values of α inside the transition
curves of the Hill equation. These values form a real monotonic sequence, {αn} for n =

0, . . . ,∞, which, at the same time, can be decomposed into two disjoint monotonic sequences:
{1αi} for i = 0, . . . ,∞, which corresponds to values of α for which a periodic solution of
period T exist, and {2α j} for j = 1, . . . ,∞, which corresponds to values of α for which
a periodic solution of period 2T exist. By a stability analysis of the Hill equation, it can
be proven that the intervals: (1α j,

1 α j+1) and (2α j,
2 α j+1), for j = 1, . . . ,∞, correspond

to the instability intervals that form the painted regions in the Ince-Strutt diagram. The
coexistence phenomenon arises when an instability interval vanishes, i.e. when 1α j =

1 α j+1

or 2α j =
2 α j+1, which means that two periodic solutions of period T or 2T coexist at the

same point in the parameter space. In Figure 1.1, the transition curves of the cyan painted
areas correspond to parameters for which T -periodic solutions exist, whilst the transition
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curves of the blue-painted areas correspond to parameters for which 2T -periodic solutions
exist.

One of the simplest and fastest methods to find the approximate solution of Sturm-
Liouville problems is the one based on finite-differences [8], which has the great disadvantage
that only some of the computed eigenvalues are accurate enough to be practical, but has the
advantage that it does not require to solve the equation numerically, nor needs to propose a
trial function, such as in the shooting method [8] or in variational methods [9]. Approaches
that circumvent this obstacle are, for example, the ones in [10] and [11] which consist
of approximating the coefficients of the Sturm-Liouville equation by piecewise constant
functions and piecewise polinomial functions, respectively, obtaining results with a more
uniform estimation error.

For simplicity, a finite-difference scheme for the solution of the twisated Sturm-Liouville
problem is chosen, which is reviewed in Chapter 5, and is used in order to find the Ince-Strutt
diagram and lines of periodic/aperiodic solutions of various well known special cases of Hill
equation, such as Mathieu, Meissner and Lamé equation.

An academic example of a system with periodically varying moment of inertia is given
in Chapter 6 to show how this approach can be applied to a slightly more general periodic
equation than Hill equation. And finally, an example of application of Mathieu equation is
given in Chapter 7.





Chapter 2

Background

2.1 Floquet Theory

Consider the system of n linear ordinary differential equations

ẋ = A(t)x, (2.1)

where A(t) is periodic with minimal period T , i.e. T is the minimum positive number such
that A(t +T ) = A(t). These systems will be called linear periodic systems.

Theorem 2.1.1. (Floquet) [12] The state transition matrix of a linear linear periodic system
is of the form:

Φ(t, t0) = P−1(t)eR(t−t0)P(t0), (2.2)

where P(t) ∈ Rn×n is periodic of period T , and R ∈ Cn×n is a constant matrix.

Proof. From the periodicity of the state matrix A(t), it follows that for every fundamental
matrix, X(t), there exists a nonsingular matrix, M, such that X(t +T ) = X(t)M, since X(t)
and X(t+T ) are both fundamental matrices. Then there exists R∈Cn×n, called the logarithm
of matrix M, which is not uniquely defined, such that M = eRT , and so that

X(t +T ) = X(t)eRT (2.3)

Define P(t) as

P(t) = eRtX−1(t), (2.4)
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and notice that P(t) and its inverse (which is defined for all t) are periodic with period T .
Replacing (2.4) in the definition of the state transition matrix one finally gets

Φ(t, t0) = X(t)X−1(t0)

= P−1(t)eR(t−t0)P(t0)

Theorem 2.1.2. [5] System (2.1), has at least one nontrivial complex solution, x̄(t), such
that

x̄(t +T ) = µ x̄(t), (2.5)

where µ is a constant.

Proof. Let X(t) be a fundamental matrix of (2.1). Then there exists a nonsingular matrix
M ∈ Rn×n such that: X(t +T ) = X(t)M.

Let µ be an eigenvalue of M, and let m ∈ Rn be an associated eigenvector, i.e.:

Mm = µm (2.6)

Consider the solution: x̄(t) = X(t)m. Then:

x̄(t +T ) = X(t +T )m

= X(t)Mm

= µX(t)m, (by (2.6))

= µ x̄(t)

Theorem 2.1.3. [5] Constants µ in Theorem 2.1.2 does not depend on the choice of X(t).

Proof. Take two fundamental matrices X(t) and X̂(t), and notice that they are related by
X̂(t) = X(t)C, where C ∈ Rn×n is nonsingular since their columns are a basis of the space
of solutions. Compute X̂(t +T ), an you should conclude that all matrices M that satisfy
X(t + T ) = X(t)M for arbitrary X(t) are similar to each other and thus share the same
spectrum.

After the three theorems above we can now give the following definitions:
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Definition 2.1.1. (Monodromy matrix) Matrix

M = Φ(T,0) = eRT , R ∈ Cn×n (2.7)

where Φ(t, t0) is the state transition matrix of (2.1), is called the monodromy matrix of (2.1).

The monodromy matrix of a system is the standard choice for the construction of the
state transition matrix (2.2).

Definition 2.1.2. (Floquet multipliers) The eigenvalues, µ , of M, are called the floquet
multipliers of system (2.1).

Definition 2.1.3. (Floquet solution) A solution x̄(t) of (2.1) which satisfies (2.5) is called a
Floquet solution of (2.1).

Remark 2.1.1. If the monodromy matrix M has n different eigenvalues, it is straightforward
to see that the set of Floquet solutions is linearly independent, and these solutions form a
basis of the space of solutions of (2.1). [5]

Definition 2.1.4. (Floquet exponent) Consider (2.1). A Floquet exponent ρ is any complex
constant such that

µ = eρT (2.8)

is a Floquet multiplier of the system.

Floquet exponents ρ are not uniquely defined, since

eρT = e(ρ+ j2πm)T , m ∈ Z. (2.9)

In particular, if T = 2π and µ satisfies: µ = e j2πω , then the Floquet exponents associated
with µ are:

ρm = j (ω +m) , m ∈ Z. (2.10)

For simplicity, it is common to define the Floquet exponent associated with µ as:

ρ =
1
T

ln(µ)

taking the principal value of ln(·).
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Remark 2.1.2. Choosing X(t) = Φ(t,0) in (2.4), we have that eRT = Φ(T,0) = M is the
monodromy matrix of the system. Then, from matrix function theory, Floquet exponents are
no others but the eigenvalues of the chosen R.

The previous Remark implies that matrix R is defined by the choice of Floquet exponents
or vice versa.

To conclude this section, the next theorem is a version of Theorem 2.1.2 in terms of the
previous definitions. The importance of this Theorem lies in the fact that it sets the problem
of finding Floquet solutions of a T -periodic system as a BVP.

Theorem 2.1.4. [15] Let M be the monodromy matrix of the T -periodic system (2.1), and
let µ ∈ C. Then µ is a Floquet multiplier of M if and only if there is a non-trivial (in general
complex) solution x̄ such that x̄(T ) = µ x̄(0).

Proof. Suppose M is the monodromy matrix of the system, and that µ is a Floquet multiplier,
then if x̄(0) is chosen as the eigenvector associated with µ , we have that x̄(T ) = Mx̄(0) =
µ x̄(0). Conversely, if x̄(t) is a nontrivial solution satisfying x̄(T ) = µ x̄(0) then x̄(0) is an
eigenvector of M associated with the eigenvalue µ , since it satisfies:

x̄(T ) = Mx̄(0) = µ x̄(0).

2.2 Linear Hamiltonian systems

Definition 2.2.1. A matrix A ∈ R2n×2n is called Hamiltonian if it satisfies

AT J+ JA = 0, J =

[
0 I
−I 0

]
(2.11)

A linear system

ẋ = A(t)x (2.12)

is called a linear Hamiltonian system if its state matrix A(t) is a Hamiltonian matrix.
Consider

A =

[
a b
c d

]
(2.13)
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where a,b,c,d ∈ Rn×n. Then, by (2.11), it is easy to see that A is Hamiltonian if and only if
aT +d = 0 and b and c are symmetric. In the 2×2 case, a matrix is Hamiltonian if and only
if its trace is zero. In the context of dynamical systems, a second order 1-DOF linear system
is then Hamiltonian whenever dissipation terms are being neglected.

Theorem 2.2.1. Let A be Hamiltonian. If ρ ∈ σ(A), then −ρ ∈ σ(A).

Proof. Notice J is orthogonal, i.e. J−1 = JT . Rearranging (2.11) we get

JAJT =−AT ,

then A is similar to −AT . Finally, since the spectrum of −A equals the spectrum of −AT , we
have σ(A) = σ(−A)

Definition 2.2.2. A matrix MR2n×2n is called γ-symplectic if it satisfies

MT JM = γJ. (2.14)

with constant γ ̸= 0. If γ = 1, then M is called symplectic.

Consider again (2.13), and take M = A, then it is easy to see that M is γ-symplectic if
and only if aT d − cT b = γI and aT c and bT d are symmetric. In the 2×2 case, this condition
becomes simply det(M) = γ .

Theorem 2.2.2. Let M be γ-symplectic. If µ ∈ σ(M) then γ/µ ∈ σ(M).

Proof. Since det(M) = γ , γ ̸= 0, there exists M−1. Then, from (2.14), we have

JT MT J = γM−1,

which implies σ(M) = δσ(M−1).

For a γ-symplectic matrix M ∈R2, the Theorem 2.2.2 implies that its eigenvalues, µ1, µ2,
must either be complex conjugates and lie on the circle of radius

√
δ , or be both real and

such that µ1 = γ/µ2.
The set Sp(2n,R) of symplectic matrices is a subgroup of Gl(2n,R), the group of non-

singular matrices under matrix multiplication. This means, in particular, that the product of
any two symplectic matrices is symplectic.

Now, next Theorem relates Hamiltonian systems with symplectic matrices.

Theorem 2.2.3. [16] The state transition matrix Φ(t, t0) of a linear Hamiltonian system
is symplectic ∀ t, t0 ∈ R. Conversely, if Φ(t, t0) is a continuously differentiable symplectic
matrix, then it is a state transition matrix of a linear Hamiltonian system.
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Proof. Let Φ(t, t0) be the state transition matrix of (2.12), then Φ(t0, t0) = I, which implies
ΦT (t, t0)JΦ(t, t0) = J at t = t0. Derivation with respect to time yields

d
dt

(
Φ

T (t, t0)JΦ(t, t0)
)
= Φ

T (t, t0)
(
AT J+ JA

)
Φ(t, t0) = 0

since AT J+ JA = 0 for A being Hamiltonian. Then ΦT (t, t0)JΦ(t, t0) = J ∀t, t0 ∈ R.
For the second part, notice A = Φ̇(t, t0)Φ−1(t, t0) is Hamiltonian and Φ̇(t, t0) = AΦ(t, t0).

2.3 Reducibility

A linear time-varying system

ẋ = A(t)x (2.15)

is said to be algebraically equivalent to the alternative linear time-varying system

ż = Ā(t)z (2.16)

if there exist a non-singular continuously differentiable matrix P(t), called an equivalence
transformation, such that x= P(t)z. Nevertheless, contrary to the time-invariant case, stability
properties are not preserved under equivalence transformation. In fact, any time-varying
linear system can be shown to be algebraically equivalent to a system with state matrix Ā,
where Ā is a constant arbitrary matrix. In particular, any time-varying system is algebraically
equivalent to a system with state matrix Ā = 0. To circumvent this obstacle, we can restrict
ourselves to a special kind of transformation:

Definition 2.3.1. (Lyapunov transformation) A n by n matrix P(t) is called a Lyapunov
transformation if:

• P(t) is non-singular on R

• P(t) and Ṗ(t) are continuous on R.

• P(t) and P−1 are bounded on R

Definition 2.3.2. Two systems (2.15) and (2.16) are said to be Lyapunov equivalent if they
are algebraically equivalent under a Lyapunov transformation.
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Before we introduce the definition of reducible systems, let us see that stability properties
are preserved under Lyapunov transformations.

Theorem 2.3.1. Suppose systems (2.15) and (2.16) are Lyapunov equivalent under the
Lyapunov transformation P(t), then system (2.15) is uniformly (exponentially) stable if and
only if (2.16) is uniformly (exponentially) stable.

Proof. Suppose Φx(t, t0) and Φz(t, t0) are, respectively, the state transition matrices of sys-
tems (2.15) and (2.16). Then it can be noticed that they are related by:

Φx(t, t0) = P−1(t)Φz(t, t0)P(t0)

and the rest of the proof follows easily from the fact that P(t) and P−1(t) are bounded, see
[13].

Definition 2.3.3. A time-varying linear system is called reducible, in the sense of Lyapunov,
if it is Lyapunov equivalent to a linear system with a constant state matrix.

And finally, returning to linear periodic systems:

Theorem 2.3.2. The linear periodic system (2.1) is reducible in the sense of Lyapunov.

Proof. Start by noticing that eRt in (2.2) can be regarded as the state transition matrix of the
linear system with constant state matrix

ż = Rz. (2.17)

Choose z = P(t)x, then

ż = Ṗ(t)x+P(t)ẋ

= Ṗ(t)x+P(t)A(t)x

=
(
Ṗ(t)+P(t)A(t)

)
P−1(t)z

Notice

Ṗ(t) = ReRt
Φ

−1(t,0)+ eRt
Φ̇

−1(t,0)

= ReRt
Φ

−1(t,0)− eRt
Φ

−1(t,0)Φ̇(t,0)Φ−1(t,0)

= RP(t)−P(t)A(t)
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Replacing, we finally obtain

ż =
(
Ṗ(t)+P(t)A(t)

)
P−1z

= (RP(t)−P(t)A(t)+P(t)A(t))P−1z

= Rz

Now there is only left to probe P(t) is also a Lyapunov transformation.
Remember that, in this case, P(t) and P−1(t) are periodic with period T , so it is only

necessary to analyze these matrices over the interval [0,T ]. For simplicity, choose X(t) =
Φ(t,0) in (2.4), then

P(t) = eRt
Φ

−1(t,0)

For a bounded piece-wise continuous state matrix A(t) it can be proved that the correspondent
state transition matrix, Φ(t, t0), is continuous, invertible for all t,τ ∈ R, and bounded on
every finite interval, which implies

P−1(t) = Φ(t,0)e−Rt

is bounded and continuous.

Finally, it is important to point out that, in fact, Lyapunov equivalence is an equivalence
relation. This can be easily seen after verifying that if P1 and P2 are Lyapunov transformations,
then P1P2 is also a Lyapunov transformation.



Chapter 3

Hill equation

Consider x = [y, ẏ]T , then Hill equation (1.1) can be rewritten as follows:

ẋ = A(t)x (3.1)

with

A(t) =

[
0 1

−h(t) 0

]
(3.2)

where h(t) is periodic with minimal period T > 0.

When damping is considered, (1.1) becomes

ÿ+δ ẏ+h(t)y = 0 (3.3)

where δ > 0. Choosing again x = [y, ẏ]T , we obtain in this case

A(t) =

[
0 1

−h(t) −δ

]
. (3.4)

3.1 Preliminaries

Let us start by noticing every linear second order equation

a0(t)z̈+a1(t)ż+a2(t)z = 0 (3.5)



16 Hill equation

with a0(t)> 0, can be transformed into the form:

ÿ+q(t)y = 0 (3.6)

by the change of variable

z = yexp
(
−(1/2)

∫ t a1(τ)

a0(τ)
dτ

)
(3.7)

where

q(t) =
a2(t)
a0(t)

− 1
4

(
a1(t)
a0(t)

)2

− 1
2

d
dt

(
a1(t)
a0(t)

)

Transformation (3.6) is useful if the objective is to analyze the zeros of the solutions z(t)
of (3.5). But it does not, in general, induce a Lyapunov transformation, i.e. it does not, in
general, preserve stability properties. For example, it could happen that the dynamics of
variable y is stable, but the dynamics of variable z is unstable due to the exponential term in
(3.7). However, if coefficients ai(t) are restricted to be periodic with common period T , then
(3.5) is Lyapunov equivalent to the damped Hill equation (3.3), as we are about to prove.

Consider (3.5) with a1(t)/a0(t) bounded, periodic with period T , and continuously
differentiable. First, let us prove that a1(t)/a0(t) can be decomposed as the sum of a zero
mean value periodic solution plus a constant. Define h as

h(t) =
∫ t a1(τ)

a0(τ)
dτ,

then

h(t +T )−h(t) =
∫ x+T

x

a1(τ)

a0(τ)
dτ = c

for some constant c, since a1(t)/a0(t) is periodic.

Now define ġ(t) = a1(t)/a0(t)− c/T . Then

g(t +T )−g(t) =
∫ x+T

x

a1(τ)

a0(τ)
dτ − c = 0, ∀t.

which means that g(t) is periodic with period T .
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From the previous discussion, we can rewrite (3.5) as

z̈+
(

ḣ(t)+
c
T

)
ż+

a2(t)
a0(t)

z = 0 (3.8)

Now consider the transformation

z = yexp(−(1/2)g(t)) . (3.9)

Since g(t) is periodic, bounded and differentiable, then e−(1/2)g(t) and its inverse are bounded
and differentiable, so transformation (3.9) gives rise to the Lyapunov transformation[

z
ż

]
= P(t)

[
y
ẏ

]
(3.10)

where

P(t) = e−
1
2 g(t)

[
1 0

−1
2 ġ(t) 1

]
(3.11)

Applying this transformation to (3.8), and defining δ = c/T , we obtain the equivalent
system

ÿ+δ ẏ+q(t)y = 0 (3.12)

where

q(t) =
(

a2(t)
a0(t)

− δ

2
ġ(t)− 1

4
|ġ(t)|2 − 1

2
g̈(t)

)
(3.13)

Notice that, since g(t) is periodic with period T , then (3.13) is also periodic with the
same period, and so (3.12) is in the form of the damped Hill equation (3.3).

In conclusion, under some restrictions, an equation (3.5), with periodic coefficients, is
Lyapunov equivalent to the damped Hill equation, where the mean value of the coefficient
a1(t)/a0(t), if positive, acts as a damping coefficient, and, if negative, acts as a driving
coefficient. The case where a1(t)/a0(t) has zero mean value is the case when transformation
(3.9) equals transformation (3.7), and it induces the Lyapunov transformation (3.10).
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3.2 Periodic and aperiodic solutions

Let us start by mentioning that, contrary to the intuition, solutions of linear periodic systems
are not in general periodic. For example, take the one dimensional system

ẋ = α + sin(t)x

whose general solution is of the form:

x(t) = c1eαt−cos(t).

Periodic solutions appear only if α = 0.

Consider the linear periodic system (2.1) with monodromy matrix M. By (2.3), its state
transition matrix satisfies:

Φ(t +T, t0 +T ) = Φ(t, t0). (3.14)

Then Φ(kT,0) = Φk(T,0) = Mk.

Now suppose that x(t) is a solution of (2.1). Then x(t + kT ) can be expressed as:

x(t + kT ) = Φ(t + kT,0)x(0),
= Φ(t,0)Mkx(0)

. (3.15)

If x(t) is a Floquet solution of (2.1), then (3.15) reduces to:

x(t + kT ) = µ
kx(t). (3.16)

If µ happens to be a kth unity-root, i.e. µ satisfies: µk −1 = 0, then x(t + kT ) = x(t) ∀t ∈ R,
and the Floquet solution is periodic with period kT , although it might not be its minimum
period.

Definition 3.2.1. We say that µ is a primitive kth unity-root if it satisfies µk − 1 = 0 and
µm −1 ̸= 0 ∀m < k, with m,k ∈ N.

In other words, a unity-root is a primitive kth unity-root if it is a kth unity-root and not a
mth unity-root for any natural number m smaller than k.

Remark 3.2.1. If µ is a unity-root, then so is µ∗, since they are roots of a polynomial with
real coefficients.
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In polar form, kth unity-roots can be set as:

µp = e j2π
p
k , p ∈ {0,1 . . . ,k−1}, k ∈ N (3.17)

noticing this is not a unique representation, because µp = e j2π
p
k = e j2π( p

k +q) as e j2πq =

1 ∀q ∈ Z.

Remark 3.2.2. A complex number (3.17) is a primitive kth unity-root if and only if p and k
are coprime integers (i.e. p/k is an irreducible fraction). For example: e j2π/8 and e j2π(3/8)

are primitive 8th unity-roots, while e j2π(2/8) is not, since 2/8 = 1/4 and thus is also a 4th
unity-root.

Lemma 3.2.1. Consider the Hill equation:

ÿ+h(t)y = 0, (3.18)

where h is periodic with minimal period T > 0 and h ∈ C0. If φ is a non-trivial periodic
solution of (3.18), then its minimal period must be a multiple of T .

Proof. Suppose φ is a non-trivial periodic solution of (3.18) with minimal period aT , a ∈ R.
It will be proven that a must, in fact, be an integer.

As φ(t) it is a solution, then it satisfies:

φ̈(t)+h(t)φ(t) = 0, ∀t ∈ R, (3.19)

but because (3.19) holds ∀t, then, in particular

φ̈(t +aT )+h(t +aT )φ(t +aT ) = 0, ∀t ∈ R (3.20)

By the definition of the derivative of a function and the periodicity of φ(t), it is easy to
prove that φ̇(t +aT ) = φ̇(t) and φ̈(t +aT ) = φ̈(t), so (3.20) implies:

φ̈(t)+h(t +aT )φ(t) = 0, ∀t ∈ R (3.21)

Substracting (3.19) from (3.21) we have:

(h(t +aT )−h(t))φ(t) = 0, ∀t ∈ R (3.22)

Observe that φ(t) has zeros only at isolated values of t, since if it weren’t true, then there
would exist an interval J in which φ(t) = 0 and φ̇(t) = 0, ∀t ∈ J, which would imply, by
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uniqueness of solutions, that φ(t) = 0 ∀t ∈ R, which is a contradiction since we regarded it
as nontrivial. Then, by the continuity of h, h(t +aT ) = h(t) ∀t ∈ R, which finally implies
a ∈ Z, since T is the minimal period of h(t).

Remark 3.2.3. Condition h(t) ∈ C0 in the previous Lemma can be replaced by the weaker
condition: h ∈ PC0 and h(t +aT ) = h(t) =⇒ a ∈ Z, where PC0 is the set of piece-wise
continuous functions on R.

Corollary 3.2.1. (To Theorem 2.1.4)
Consider the T -periodic Hill equation (3.1). Let M be its monodromy matrix with Floquet

multipliers µ1 = µ∗
2 .

• a) If and only if Floquet multipliers are primitive kth unity-roots for k ≥ 3, then all the
solutions are periodic with minimal period kT .

• b) If and only if Floquet multipliers are primitive kth unity-roots with k ∈ {1,2}, there
exist at least one solution, unique up to a scale factor, with minimal period kT .

Proof. a) Start by supposing µ1, µ2 are primitive kth unity-roots such that k ≥ 3, then
µ1 ̸= µ2, so

M = Q

[
µ1 0
0 µ2

]
Q−1

which implies

Mk = Q

[
µk

1 0
0 µk

2

]
Q−1 = I

Then, for an arbitrary initial condition x(0) = x0 ∈ R2, the general solution of system
(3.1) satisfies

x(t + kT ) = Φ(t + kT,0)x0

= Φ(t + kT,T )Mx0

= Φ(t +(k−1)T,0)Mx0

...

= Φ(t,0)Mkx0

= Φ(t,0)x0 = x(t)
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Minimality of the period of the general solution x(t) is ensured by Lemma 1, since it
holds that Mk = I, Mm ̸= I, for m < k, m,k ∈ N.

For the converse, suppose all solutions of (3.1) are periodic with minimal period kT , then
any solution x(t) with arbitrary initial condition x(0) = x0 ∈ C satisfies

x(t + kT ) = Φ(t,0)Mkx0 = Φ(t,0)x0 (3.23)

so Mk = I which implies µk
1 = µk

2 = 1. Notice that minimality of k is ensured by the fact that
kT is the minimal period of x(t), and then the Floquet multipliers are primitive kth unity-roots.

b) Suppose now that µ1 and µ2 are primitive kth unity-roots where k ∈ {1,2}. In both cases
we have µ1 = µ2, then, in general:

M = Q

[
µ1 1
0 µ2

]
Q−1

and so

Mk = Q

[
µk

1 k
0 µk

2

]
Q−1

= Q

[
1 k
0 1

]
Q−1

If we choose x(0) = x0 as an eigenvector of Mk associated with µk = 1, then

x(t + kT ) = Φ(t,0)Mkx0

= Φ(t,0)x0 = x(t).

Again, minimality of the period of the solution x(t) is ensured by Lemma 1.

For the converse, suppose there exist a periodic solution x(t), with minimal period kT
and initial condition x0, such that

x(t + kT ) = Φ(t,0)Mkx0 = Φ(t,0)x0
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then 1 ∈ σ(Mk) and x0 is one of its associated eigenvectors. Since µk
1 = (µ∗

2 )
k, then µk

1 =

µk
2 = 1. Again, minimality of k is ensured by the fact that kT is the minimal period of x(t),

and then the Floquet multipliers are kth unity-roots.

3.3 Stability

Let us start by decomposing the time variable t as

t = τ + kT, k ∈ Z, τ ∈ [0,T ). (3.24)

Then the general solution of (3.1) can be set as:

x(t) = x(τ + kT ) = Φ(τ,0)Mkx(0) (3.25)

Notice that, for state matrix, A(t), bounded, the state transition matrix Φ(t, t0) is bounded
on a finite interval ([12], [14]), then boundedness of solutions of (3.1) depend exclusively on
M, in particular, on its eigenvalues.

From (3.24), t → ∞ ⇐⇒ k → ∞. Next, as Φ(τ,0) is bounded for τ ∈ [0,T ), for stability
purposes, we analyze only the case where τ = 0. Then boundedness of the solutions of the
linear periodic system (3.1) is equivalent to boundedness of the solutions of the discrete-time
system:

xk+1 = Mxk, (3.26)

whose general solution is:

xk = Mkx0, (3.27)

where xk = x(kT ).
From the previous discussion, the trivial solution of (3.1) is:

• asymptotically stable ⇐⇒ σ(M)⊂ D̊ , {s ∈ C : |s|< 1}.

• stable ⇐⇒ σ(M)⊂ D̄ , {s ∈ C : |s| ≤ 1}, and every µ ∈ σ(M) such that |µ|= 1, is
a simple root of the minimal polynomial of M.

• unstable ⇐⇒ exists at least one µ ∈ σ(M) such that either |µ|> 1 or |µ|= 1 and is
a multiple root of the minimal polynomial of M.
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Now, since system (3.1) is linear hamiltonian, its state transition matrix is symplectic, i.e.
det(M) = µ1µ2 = 1. Thus the characteristic equation of M is:

µ
2 − tr(M)+1 = 0 (3.28)

whose roots are

µ1,2 =
tr(M)±

√
|tr(M)|2 −4
2

(3.29)

Finally, from (3.29) we can see that the stability of (3.1) depends on the values of tr(M),
were we distinguish three cases:

• For |tr(M)|= 2, we are at the boundary case where the Floquet multipliers are µ1 =

µ2 = ±1, i.e. are real and repeated on the unit circle, then solutions are in general
unbounded.

• For |tr(M)|< 2, Floquet multipliers are different, complex conjugate, and lie on the
unit circle, then solutions are bounded.

• For |tr(M)| > 2, Floquet multipliers are different, real, and |µ1| < 1 =⇒ |µ2| > 1
since µ1µ2 = 1, then solutions are unbounded.

These three cases mean that solutions can either be bounded or unbounded. Asymptotic
stability cannot occur for the Hill equation (3.1).

Notice from the definition of M that tr(M) = y1(T )+ ẏ2(T ), where y1(t), y2(t) are the
solutions of (1.1) that satisfy the initial conditions: y1(0) = 1, ẏ1(0) = 0, y2(0) = 0, ẏ2(0) = 1.
If we consider the vector of parameters p for the Hill equation, from the theorem of continuity
with respect to parameters [19], we can take tr(M) = fun(p), where fun(p) is a function that
varies continuously with respect to continuous changes in the parameters p.

The case of our interest will be |tr(M)|= 2, or equivalently, µ1 = µ2 =±1. Notice that
µ = 1 = e j2π and µ = −1 = e j2π

1
2 , then, by the theory presented in the previous section,

finding the regions in the parameter space where periodic solutions of minimal period T or
2T exist, means finding the transition curves of the Ince-Strutt diagram of the Hill equation.

3.3.1 Damping

Consider the damped Hill equation (3.3). In state space form, with state variable x = [y, ẏ],
its state matrix is (3.4).
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The system defined by (3.3) and the state matrix (3.4) is not linear Hamiltonian. Never-
theless, by the Jacobi-Liouville-Abel Theorem [13], it can be proven that the monodromy
matrix M of (3.3) satisfies

det(M) = e−δT = γ

which implies that M is γ-symplectic. Since δ > 0, then γ < 1, and the Floquet multipliers
of (3.3) may lie inside the unit circle. This means that, contrary to the undamped case,
asymptotic stability is possible. To prove this, notice that the characteristic polynomial of M
is

µ
2 − tr(M)µ + γ = 0

which implies

µ1,2 =
tr(M)±

√
|tr(M)|2 −4γ

2

3.4 Reducibility

In section (2.1) it was mentioned that the Floquet exponents of an linear periodic system
(2.1) are the eigenvalues of a matrix R ∈ Cn×n in (2.2). This is because the matrix natural
logarithm is not unique, even in the real case, since I = e0 = e2πJ , where

J =

[
0 1
−1 0

]

Take T = 2π and let M be the monodromy matrix of (3.1). Let µ1, µ∗
2 be the Floquet

exponents of the system. If, for simplicity, we take µ1 ̸= µ2, then, from (2.7), we can define
R such that

σ(R) = {ln(µ1), ln(µ2)}= {ρ1,ρ2}

taking ρi as the principal value of ln(µi).

Since M is symplectic, µ1 = 1/µ2, and ρ1 = −ρ2. We can distinguish two interesting
cases:

Suppose that the Floquet multipliers of the system lie on the unit circle and are such that
the Floquet exponents can be chosen as ρ1,2 =± jω, ω ∈ (0,π). Then matrix R from (2.7)
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is chosen as

R = Q−1

[
0 ω

−ω 0

]
Q

and the Monodromy matrix of the system can be set as

M = e2πR = Q−1exp

(
2π

[
0 ω

−ω 0

])
Q,

= Q−1exp

(
2π

[
0 ω

−ω 0

]
+2πm

[
0 1
−1 0

])
Q, m ∈ Z

= Q−1exp

(
2π

[
0 ω +m

−(ω +m) 0

])
Q

since

eC = eC+2πJ

for any matrix C ∈ C2×2, and

J =

[
0 1
−1 0

]

The previous discussion implies that (3.1) is Lyapunov equivalent to not only a particular
R, but to an infinite set of matrices {Rm}, given by

Rm = Q−1

[
0 ω +m

−(ω +m) 0

]
Q, m ∈ Z

Notice that matrices Rm are equivalent to harmonic oscillators with natural frequencies from
the set {ωm | ωm = ω +m, m ∈ Z}. Moreover, by transitivity, the Hill equation is Lyapunov
equivalent to an infinite set of harmonic oscillators.

If µ1,µ2 lie off the unit circle, then we can set ρ1 = ρ ∈ R, ρ ̸= 0, and

R = Q−1

[
ρ 0
0 −ρ

]
Q

which means that the Hill equation is, in this case, Lyapunov equivalent to a linear system
with a saddle instability at the trivial solution.
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3.5 Coexistence

Consider Hill equation. According to Corollary 3.2.1, if Floquet multipliers are µ1,2 = 1 (re-
spectively, µ1,2 =−1), then, in general, there will be only one linearly independent T -periodic
solution (respectively, 2T -periodic solution), since the Jordan form of the monodromy matrix
M (respectively, M2) is, in general, triangular. Whenever two linearly independent T -periodic
(2T -periodic) solutions exist for a certain point (α,β ) in the parameter space, then these two
solutions are said to coexist, and we will say that (α,β ) is a point of coexistence.

3.5.1 Lamé equation

The Lamé equation is a particular case of the Hill equation:

ÿ+
(
α +β (β +1)γsn2(t)

)
y = 0 (3.30)

where sn(t) is a Jacobi elliptic function, and γ is its modulus [17]. For t ∈ R, function sn(t)
is periodic with period 2K, where

K =
∫

π/2

0

dτ√
1− γ sin2(τ)

The interesting phenomenon that appears in the Lamé equation is summarized in the
following Theorem:

Theorem 3.5.1. [1] If and only if β is an integer can periodic solutions of period 2K or 4K
in the Lamé equation coexist. If m is defined by m = β when β is a non-negative integer and
by m =−β −1 when β is a negative integer, then Lamé equation will have at most m+1
intervals of instability, including the zeroth interval which starts at α =−∞.

The proof of this theorem can be found on [1]. In summary, Theorem 3.5.1 says that the
Lamé equation has only a finite number of instability intervals for integer values of β .



Chapter 4

Sturm-Liouville theory

This section summaries important facts and results on Sturm-Liouville theory, which can be
applied to the problem of finding the Ince-Strutt diagram of the Hill equation.

4.1 Sturm-Liouville equation

The self-adjoint equation:

d
dt

(
p(t)

dy
dt

)
+q(t)y+λw(t)y = 0, (4.1)

defined on an interval [a,b], is called the Sturm-Liouville equation if

• p(t), ṗ(t), q(t), w(t) are real and continuous on [a,b].

• p(t)> 0 and w(t)> 0 on [a,b].

• λ is an arbitrary parameter.

In order to see how many equations can be set into an equation of the form (4.1), consider
the second order differential equation

a0(t)ÿ+a1(t)ẏ+(λ +a2(t))y = 0. (4.2)

which, considering a0(t)> 0, can be rewritten as

ÿ+
a1(t)
a0(t)

ẏ+
λ +a2(t)

a0(t)
y = 0. (4.3)
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Notice that the Sturm-Liouville equation (4.1) can be set as

ÿ+
ṗ(t)
p(t)

ẏ+
λw(t)+q(t)

p(t)
y = 0. (4.4)

Comparing coefficients in (4.3) and (4.4) we obtain

ṗ(t)
p(t)

=
a1(t)
a0(t)

which by integration yields

p(t) = cexp
(∫ t a1(τ)

a0(τ)
dτ

)
(4.5)

with c an arbitrary constant.

On the other hand, from

λ +a2(t)
a0(t)

=
λw(t)+q(t)

p(t)

we obtain that

w(t) =
p(t)
a0(t)

(4.6)

q(t) = p(t)
a2(t)
a0(t)

(4.7)

From the foregoing equation, (4.2) can be set into the Sturm-Liouville framework by
only requiring ai(t) to be such that p(t), r(t) and q(t) satisfy the restrictions given for (4.1).
Notice that constant c in (4.5) can be set into any convenient value.

4.2 Sturm-Liouville BCs

Consider the set of homogeneous BCs

L [y] =

{
L1[y]
L2[y]

}
=

{
a1y(a)+a2ẏ(a)+b1y(b)+b2ẏ(b)
c1y(a)+ c2ẏ(a)+d1y(b)+d2ẏ(b)

}
=

{
0
0

}
(4.8)
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Definition 4.2.1. Let f (t) and g(t) be two arbitrary functions that satisfy some given BCs
such as (4.8), defined on [a,b]. If those functions also satisfy Green’s formula:[

p(t)
(

f ∗(t)
dg
dt

−g(t)
d f ∗

dt

)]b

t=a
= 0, (4.9)

where ∗ denotes complex conjugation, then those homogeneous BCs are called the Sturm-
Liouville BCs [18].

4.2.1 Twisted, periodic and anti-periodic BCs

Twisted BCs are defined as follows [15]:

y(a) = µy(b)
ẏ(a) = µ ẏ(b)
p(a) = p(b)

µ ∈ C, |µ|= 1

(4.10)

When µ = 1, these conditions become the so called periodic BCs, and if µ =−1, they
are called anti-periodic BCs. Then twisted BCs can be regarded as a generalization of these
two sets of BCs.

Let f , g be two functions that satisfy the twisted BCs, and let c1, c2 ∈C be two arbitrary
constants. Then

c1 f (a)+ c2g(a) = µ[c1 f (b)+ c2g(b)]

c1 ḟ (a)+ c2ġ(a) = µ[c1 ḟ (b)+ c2ġ(b)]

so, these BCs are homogeneous.

Now, replacing f and g in (4.9) we get

p(a)
[

f ∗(a)ġ(a)−g(a) ḟ ∗(a)
]
− p(b)

[
f ∗(b)ġ(b)−g(b) ḟ ∗(b)

]
=

p(b)
[

f ∗(a)ġ(a)−g(a) ḟ ∗(a)− f ∗(b)ġ(b)+g(b) ḟ ∗(b)
]
=

p(b)
[
µ
∗ f ∗(b)(µ ġ(b))−µg(b)(µ∗ ḟ ∗(b))− f ∗(b)ġ(b)+g(b) ḟ ∗(b)

]
= 0

since p(a) = p(b) and µµ∗ = |µ|2 = 1. Then twisted BCs are Sturm-Liouville BCs.
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4.3 Sturm-Liouville problem

Consider (4.1) and some Sturm-Liouville BCs. The Sturm-Liouville problem associated
with these BCs is to find values for λ such that there exists a non-trivial solution ϕ of (4.1)
which satisfies the Sturm-Liouville BCs. These values of λ correspond to the eigenvalues of
a linear differential operator, and those non-trivial solutions are its associated eigenfunctions.

4.3.1 Linear space of the Sturm-Liouville problem

Let L2 = L2[a,b,r(t)] be the space of quadratically integrable functions in [a,b] with weight-
ing function w(t), defined over the complex numbers, i.e. f ∈ L2 if

∫ b

a
w(t)| f (t)|2dt < ∞

The subspace L2
SL = L2

SL[a,b,r(t)] of L2 is defined by restricting every function in L2
SL

to satisfy the homogeneous Sturm-Liouville BCs. The fact that these conditions are homo-
geneous is what allows L2

SL to be a subspace of L2. Using Dirac’s notation [18], denote the
elements ϕ of L2

SL by |ϕ⟩.
Define the inner product in L2

SL as:

⟨ f |g⟩,
∫ b

a
w(t) f ∗(t)g(t)dt, (4.11)

and the induced norm:

∥ f∥, ⟨ f | f ⟩
1
2 , (4.12)

4.3.2 Sturm-Liouville operator

The Sturm-Liouville operator is defined as the linear differential operator:

L=
1

w(t)
d
dt

(
p(t)

d
dt

)
+

q(t)
w(t)

, (4.13)

where w(t), p(t) and q(t) satisfy the conditions given for the Sturm-Liouville equation (4.1).

In terms of the operator L, we can rewrite (4.1) as:

Ly+λy = 0. (4.14)
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Then the Sturm-Liouville problem is equivalent to finding the eigenvalues λ of the linear
operator L and its associated eigenfunctions.

Theorem 4.3.1. [18] L is self-adjoint on the linear space L2
SL, i.e. it satisfies:

⟨ f ,Lg⟩= ⟨g,L f ⟩∗ , (4.15)

for all f ,g ∈ L2
SL.

Proof. Let f ,g ∈ L2
SL. By the definition of the scalar product:

⟨ f ,Lg⟩=
∫ b

a
r(t) f ∗(t)Lg(t)dt

=
∫ b

a
f ∗(t)

d
dt

(
p(t)

d
dt

g(t)
)

dt +
∫ b

a
f ∗(t)q(t)g(t)dt

where by integration by parts

∫ b

a
f ∗(t)

d
dt

(
p(t)

d
dt

g(t)
)

dt =
[

f ∗(t)p(t)
d
dt

g(t)
]b

a
−
∫ b

a
p(t)

d
dt

g(t)
d
dt

f ∗(t)dt

Similarly we can find

⟨g,L f ⟩∗ =
[

g(t)p(t)
d
dt

f ∗(t)
]b

a
−
∫ b

a
p(t)

d
dt

f ∗(t)
d
dt

g(t)dt +
∫ b

a
g(t)q(t) f ∗(t)dt

which finally gives us Green’s formula:

⟨ f ,Lg⟩−⟨g,L f ⟩∗ =
[

p(t)
(

f ∗(t)
dg
dt

−g(t)
d f ∗

dt

)]b

a
= 0. (4.16)

since, by definition, every function in L2
SL satisfy the Sturm-Liouville BCs and so (4.16).

The next theorem states some implication of the self-adjoint nature of the L operator

Theorem 4.3.2. [18] Let L be a self-adjoint linear differential operator. Then

• If λ ∈ σ(L) then λ ∈ R.

• Eigenfunctions associated with different eigenvalues are orthogonal.

Proof. Let λn and λm be two eigenvalues of L with respective associated eigenfunctions ϕn

and ϕm. Then

⟨ϕn|L|ϕm⟩= λm ⟨ϕn|ϕm⟩



32 Sturm-Liouville theory

and similarly

⟨ϕm|L|ϕn⟩∗ = λ
∗
n ⟨ϕm|ϕn⟩∗ = λ

∗
n ⟨ϕn|ϕm⟩

By assumption ⟨ϕn|L|ϕm⟩−⟨ϕm|L|ϕn⟩∗ = 0 so we get

(λm −λ
∗
n )⟨ϕn|ϕm⟩= 0 (4.17)

Since eigenfunctions are, by definition, non-trivial, if m = n then λm = λ ∗
m which implies

λm ∈ R. On the other hand, if m ̸= n, then ⟨ϕn|ϕm⟩ = 0 which means ϕm and ϕn are
orthogonal.

4.3.3 Periodic and antiperiodic Sturm-Liouville problem

The periodic (respectively, anti-periodic) Sturm-Liouville problem is given by the Sturm-
Liouville equation (4.1) plus the periodic (respectively, anti-periodic) Sturm-Liouville BCs,
defined by (4.10) where µ = 1 (respectively, −1).

Theorem 4.3.3. [19] The eigenvalues of the periodic and antiperiodic Sturm-Liouville
problem, respectively λi and λ̄i, are real and produce sequences such that:

−∞ < λ0 < λ̄1 ≤ λ̄2 < λ1 ≤ λ2 < λ̄3 ≤ λ̄4 < λ3 ≤ λ4 < .. . ,

where the eigenvalue λ0 is never degenerate. If λ2m+1 < λ2m+2 (or λ̄2m+1 < λ̄2m+2) for some
m ≥ 0, then there exists an eigenfunction for each of these two eigenvalues. If λ2m+1 =

λ2m+2 (or λ̄2m+1 = λ̄2m+2), then there are two linearly independent eigenfunctions for this
degenerate eigenvalue.

Proof. Let φ and ψ be the solutions of (4.1) which satisfy

φ(0,λ ) = ψ̇(0,λ ) = 1
φ̇(0,λ ) = ψ(0,λ ) = 0

(4.18)

Choosing z = [y, py] as a state variable, the resulting linear system is linear Hamiltonian
and its state transition matrix is symplectic, which means

p(t)
[
φ(t,λ )ψ̇(t,λ )− φ̇(t,λ )ψ(t,λ )

]
= 1 (4.19)
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For a solution satisfying the periodic BCs to exist, it is necessary and sufficient the
existence of two constants c1 and c2 such that

c1[φ(b,λ )−1]+ c2ψ(b,λ ) = 0
c1φ̇(b,λ )+ c2[ψ̇(b,λ )−1] = 0

(4.20)

Rearranging (4.20) we get[
(φ(b,λ )−1) ψ(b,λ )

φ̇(b,λ ) (ψ̇(b,λ )−1)

][
c1

c2

]
= 0.

Then, a necessary and sufficient condition for (4.20) to have a non-trivial solution is that

φ(b,λ )ψ̇(b,λ )− φ̇(b,λ )φ(b,λ )−φ(b,λ )− ψ̇(b,λ )+1 = 0 (4.21)

Without loss of generality, we can scale p(t) such that, at the boundaries, p(a) = p(b) = 1,
by (4.19). Therefore condition (4.21) becomes

fun(λ ) = φ(b,λ )+ ψ̇(b,λ ) = 2 (4.22)

Similarly, the condition for a non-trivial solution of the anti-periodic Sturm-Liouville
problem is

fun(λ ) = φ(b,λ )+ ˙b,λ =−2 (4.23)

It should be clear to this point that the values of λ that satisfy (4.22) (respectively (4.23))
are the eigenvalues of the periodic (respectively anti-periodic) Sturm-Liouville problem.

By the Theorem of continuity with respect to parameters, fun(λ ) is continuous, but it is
also an entire function (Theorem 8.4 [19]).

The remain of the proof is a direct result of the following Lema.

Lemma 4.3.1. [19] Consider (4.1) with the BCs

y(a) = y(b) = 0

There exist a constant ϑ0 such that the eingenvalues µi of this problem can be arranged as

ϑ0 < µ0 < µ1 < µ2 < .. .
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and

fun(ϑ0)≥ 2, fun(µ2i)≤−2, fun(µ2i+1)≥ 2 (4.24)

for i = 0,1, . . . .

If fun(λ ) = 2 (respectively −2) for some λ ̸= µi, then λ is a simple eigenvalue of the
periodic Sturm-Liouville problem (respectively the anti-periodic Sturm-Liouville problem),
and such λ also satisfies

dfun
dλ

< 0i f λ < µ0 (4.25)

(−1)i dfun
dλ

> 0i f µi < λ < µi+1 (4.26)

On the other hand, if fun(µ2i+1) = 2 and dfun/dλ ̸= 0 at λ = µ2i+1, then µ2i+1 is a
simple eigenvalue of the periodic Sturm-Liouville problem. If fun(µ2i+1) = 2 and dfun/dλ =

0 at λ = µ2i+1, then µ2i+1 has two linearly independent eigenfunctions, and, moreover

d2fun
dλ 2 (µ2i+1)< 0 (4.27)

A similar argument holds for that case fun(λ ) =−2. In this case, (4.27) changes sign.

Notice that equations (4.25), (4.26) and (4.27) ensure that the eigenvalues of the periodic
and anti-periodic Sturm-Liouville problem to are pair-wise isolated between each other
whenever i ̸= 0.

4.3.4 Twisted Sturm-Liouville problem

The twisted Sturm-Liouville problem is that formed by the Sturm-Liouville equation (4.1),
and the twisted Sturm-Liouville BCs, defined by (4.10).

Corollary 4.3.1. [to Theorem 4.3.3] If we take λ̂i, i = 1,2, . . . , as the eigenvalues for the
twisted BVP with Im(µ) ̸= 0, then these eigenvalues form a sequence that can be arranged
with the eigenvalues of the periodic and anti-periodic Sturm-Liouville problem as:

−∞ < λ0 < λ̂1 < λ̄1 ≤ λ̄2 < λ̂2 < λ1 ≤ λ2 < λ̂3 < λ̄3 ≤ λ̄4 < λ̂4 < λ3 ≤ λ4 < .. . (4.28)
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Proof. Following the same reasoning as in the previous theorem, the necessary and sufficient
condition for the existence of a solution that satisfy the twisted BCs is:

µ
2 − (φ(b,λ )+ ψ̇(b,λ ))µ +1 = 0

which yields

fun(λ ) = 2Re(µ).

noticing |2Re(µ)|< 2 since Im(µ) ̸= 0.
From (4.25) and (4.26), function fun(λ ) is monotonically increasing when |fun(λ )|< 2.

This property and the continuity of fun(λ ) ensures the fact that the eigenvalues λ̂i exist and
are isolated points in R producing a sequence that can be arranged as in (4.28).





Chapter 5

The Sturm-Liouville problem and the
Hill equation

Consider the Hill equation (1.3). This equation is in the form of the Sturm-Liouville equation
by choosing p(t) = 1, w(t) = 1, q(t) = β f(t), λ = α , and the Sturm-Liouville operator:

LH =
d2

dt2 +β f(t) (5.1)

Since, in this case, p(t) is constant, obviously p(0) = p(T ). Consequently, the conditions
for the twisted Sturm-Liouville problem on [0, T ] are fulfilled for a suitable choice of µ .
Moreover, since (1.3) is periodic with period T , then, by Theorem 2.1.4, and for a fixed value
of β , the twisted Sturm-Liouville problem can be used in order to find those values of α for
which µ is a Floquet multiplier of (1.3). The transition curves of the Hill equation can be
computed by solving the periodic and the anti-periodic Sturm-Liouville problems, which
are particular cases of the twisted Sturm-Liouville problem, in which µ = 1 and µ = −1,
respectively.

For an approximated solution of the twisted Sturm-Liouville problem, the next section
shows an arbitrary order finite-difference scheme [8].

5.1 Finite difference scheme for the twisted Sturm-Liouville
problem

Consider the uniform partition:

tk = kh, k ∈ Z, (5.2)
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where

h =
T
N
,

and N is a fixed natural number.

Take y ∈ L2
SL, and define ηk = y(tk). Using a centered finite difference scheme [8], we

can approximate ẏ(tk) and ÿ(tk) respectively as

η̇k =
n

∑
i=1

ci(ηk+i −ηk−i) (5.3)

and

η̈k = d0ηk +
n

∑
i=1

di(ηk+i +ηk−i) (5.4)

where n defines the order of the error O(h2n). Coefficients ci and di are, respectively, the
finite difference coefficients for the first and second derivative approximation.

For example, it can easily be seen that, for n= 1, c1 = 1/(2h), d0 =−2/h2, and d1 = 1/h2,
result in

η̇k =
ηk+1 −ηk−1

2h

η̈k =
ηk+1 −2ηk +ηk−1

h2

Using (5.3) and (5.4), we can replace (4.14) by its approximation

rkLhηk +Λrkηk = 0, k = 0,1, . . . ,N (5.5)

where Λ is an approximation of λ , and

rkLhηk = pkη̈k + ṗkη̇k +qkuk

= pk

(
d0ηk +

n

∑
i=1

di(ηk+i +ηk−i)

)
+ ṗk

n

∑
i=1

ci(ηk+i −ηk−i)+qkηk

=
n

∑
i=1

(pkdi − ṗkci)ηk−i +(pkd0 +qk)ηk +
n

∑
i=1

(pkdi + ṗkci)ηk+i

=
n

∑
i=1

a(k, i)ηk−i +b(k)ηk +
n

∑
i=1

c(k, i)ηk+i
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where

b(k) = pkd0 +qk

a(k, i) =

{
pkdi − ṗkci, if 1 ≤ i ≤ n

0, otherwise

c(k, i) =

{
pkdi + ṗkci, if 1 ≤ i ≤ n

0, otherwise

Defining the discrete-time state variable ξk = (ηk−n,ηk−n+1, . . . ,ηk+n−1)
T ∈R2n we can

set (5.5) in the discrete-time state form

ξk+1 = Akξk, Ak+N = Ak. (5.6)

The state transition matrix Φ(k,k0) of a discrete-time linear system is, in general, defined
only for k ≥ k0 as

Φ(k,k0) =

{
Ak−1Ak−2 . . .Ak0 if k > k0

I if k = k0

where k0 defines the initial time. And, as Ak is periodic with period N, we have Φ(k0,k) =
Φ−1(k,k0).

After the last discussion, it should be easy to see that the discrete-time version of the
twisted BCs (4.10) in a finite difference framework, are

η j+N = µη j, j = 0,1, . . . ,2n−1 (5.7)

noticing that, by uniqueness of solutions, these conditions are equivalent to

η j+N = µη j, j = 0,1, . . . ,N −1

and, by Φ(k+N,k0 +N) = Φ(k,k0), this is also equivalent to

ηk+N = µηk, ∀k ∈ Z.
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Finally, introducing the N-dimensional vector

η =


η0

η1
...

ηN−1

 ,

we can synthesize the finite-difference twisted Sturm-Liouville problem formed by (5.5) and
(5.7) through the matrix equation

Lη +ΛRη = 0 (5.8)

where

L =



b(0) c(0,1) c(0,2) . . . µ∗a(0,3) µ∗a(0,2) µ∗a(0,1)
a(1,1) b(1) c(1,1) . . . µ∗a(1,4) µ∗a(1,3) µ∗a(1,2)
a(2,2) a(2,1) b(2) . . . µ∗a(2,5) µ∗a(2,4) µ∗a(2,3)

...
...

... . . . ...
...

...
µc(N −3,3) µc(N −3,4) µc(N −3,5) . . . b(N −3) c(N −3,1) c(N −3,2)
µc(N −2,2) µc(N −2,3) µc(N −2,4) . . . a(N −2,1) b(N −2) c(N −2,1)
µc(N −1,1) µc(N −1,2) µc(N −1,3) . . . a(N −1,2) a(N −1,1) b(N −1)


(5.9)

noticing |µ|= 1, =⇒ 1/µ = µ∗, and

R =


r0 0 . . . 0 0
0 r1 . . . 0 0
...

... . . . ...
...

0 0 . . . rN−2 0
0 0 . . . 0 rN−1

= diag(ri), i = 0,1, . . . ,N −1. (5.10)

Thus, with this framework, we are approximating the infinite-dimensional twisted Sturm-
Liouville problem by the generalized eigenvalue-eigenfunction problem of matrices (5.9)
and (5.10).

An algorithm to obtain the arbitrary order finite-difference coefficients is found in [20].
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5.2 Stability chart

In Chapter 3, it was shown how Floquet multipliers of (1.3) are related with the stability of
its trivial solution. Specifically, it was shown a conjugate pair of complex Floquet multipliers
lying on the unit circle, mean, in general, bounded solutions; and, on the other hand, a real
pair correspond, in general, to unbounded solutions (see Section 3.4). By these facts, Floquet
multipliers µ1,2 = 1 and µ1,2 =−1 play an important role since they may or not correspond
to bounded solutions, depending on the geometric multiplicity of µ .

Consider (1.3). For a fixed value of β , values of α for which Floquet multipliers are both
1 (respectively, −1) can be found by solving the periodic (respectively, anti-periodic) Sturm-
Liouville problem. By Theorem 4.3.3, these values of α produce an increasing sequence of
real numbers. By continuity with respect to parameters, if β is varied monotonically and
continuously from β0 to βn, where β0 < βn, and if the periodic Sturm-Liouville problem
is solved for each β ∈ [β0,βn], the result can be depicted as lines in the parameter space
α −β . These lines separate stable and unstable regions and are called transition curves. The
graphical depiction of these boundaries is what is known as the Ince-Strutt diagram of the
Hill equation.

To identify stable and unstable parameter regions, remember that stability can also be set
as a function of the trace of the monodromy matrix, tr(M), and noticing that, in this case,
fun(λ ) = fun(α) = tr(M) (see Theorem 4.3.3). Notice |tr(M)| ≥ 2 whenever α ∈ [λi,λi+1]

or α ∈ [λ̄i, λ̄i+1], for i = 1,2, . . . , where {λi} and {λ̄i} are, respectively, the eigenvalues of the
periodic and anti-periodic Sturm-Liouville problems. Then this intervals define the instability
intervals, i.e. regions of parameters for unbounded solutions.

As an example, consider (1.3) with f(t) = cos(t). This equation is known as the Mathieu
equation. Its stability chart, obtained by the finite difference scheme for the twisted Sturm-
Liouville problem using periodic and anti-periodic BCs, is shown in Figure 5.1. For its
computation, values of β are taken from a uniform grid of finite number of values in the
interval [0, 8]. As cos(t +π) =−cos(t), and by the fact that the Hill equation, if stable, is
uniformly stable, then the stability chart of the Mathieu equation is symmetric with respect
to the α-axis. White areas are stable parameter regions, i.e. regions of parameters for which
solutions are bounded. Painted areas are unstable parameter regions. Borders for blue-painted
areas (respectively, cyan-painted areas) were found by solving the periodic (respectively,
anti-periodic) Sturm-Liouville problem.

Another important case of the Hill equation is the one with f(t) = sign(cos(t)), which
results in the Meissner equation. Its stability chart, obtained by the finite difference scheme,
is shown in Figure 5.2. Again, it is symmetric with respect to the α-axis. The interesting fact
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Figure 5.1: Stability chart of the Mathieu equation

about this particular equation is that its state transition matrix, and therefore its monodromy
matrix, can be computed analytically since f(t) is piece-wise constant.

Finally, Figure 5.3 shows the stability chart of the Hill equation with

f(t) =
d
q

(
f̄(t)−m

)
(5.11)

where

f̄(t) =
1

(1.1+ cos(t))
,

m is the mean value of f̄(t), and q and d are, respectively, the norm of (f̄(t)−m) and the
norm of sign(cos(t)) in L2, the space of square integrable functions. The resultant function,
f(t), has zero mean value, and, moreover, has the same energy of sign(cos(t)), i.e. the same
L2 norm, which makes the stability chart of this equation suitable for comparison with the
one corresponding to the Meissner equation. Notice that, in this case, there is no θ such that
f(t +θ) =−f(t), and its stability chart is not symmetric with respect to the α-axis.
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Figure 5.2: Stability chart of the Meissner equation

Figure 5.3: Stability chart of the Hill equation with f(t) = d
q

(
1

(1.1+cos(t)) −m
)
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5.3 Splitting lines

In [6], G. N. Jazar was able to compute those regions in the parameter space where kπ

periodic solutions exist using its energy-rate splitting chart algorithm on a π-periodic Mathieu
equation. He called this curves splitting lines, arguing that these lines split each stable region.
For this same reason, we shall borrow this name and use it to refer us to lines where periodic
and aperiodic solutions exist inside stable zones of parameters.

Section 3.2 gives an explanation of Jazar’s results. There is proven that at least one
kT -periodic solution exist if and only if the Floquet multipliers of the Hill equation are kth
unity-roots. And this, in fact, gives an extension of Jazar’s results, since then: aperiodic
solutions exist if and only if, the Floquet multipliers are not kth unity-roots for any k ∈ N.
For T = 2π , these this result can be rewritten as: at least one kT -periodic solution exist if
and only if the imaginary part of a Floquet exponent of the Hill equation is a rational number.

One interesting phenomenon about kT -periodic solutions was pointed out by Rodriguez
and Collado in [21]. They showed that, for the Hill equation with T = 2π and the splitting
line associated with Floquet exponents: ρ1,2 =±i/k, all solutions of the non-homogeneous
Hill equation, with parameters in the splitting line, become unbounded by the addition of a

forcing input of the form: u(t) =
n
∑

i=1
cos(t/ki), where there is at least one 1 ≤ j ≤ n such that

k j = k. Moreover, they showed that this phenomenom can arise in several splitting lines at
the same time by the same input, provided there is a ki associated with each line. Contrary to
the stability chart, these unstable lines of parameters vanish with the addition of damping,
although, as in the harmonic oscillator case, near those parameters, solutions may still show
high amplitude oscillations. Rodriguez and Collado named the unstable splitting lines as
resonance lines.

5.3.1 Splitting lines of periodic solutions

Consider again the Mathieu equation. Figure 5.4 shows a pair of lines inside each stable
zone corresponding to a parameter configuration for 10π-periodic solutions. For parameters
inside the solid lines, Floquet multipliers are µ1,2 = e± j2π/5, whereas for the dashed lines
µ1,2 = e± j2π(2/5). Since, for both cases, Floquet multipliers are primitive 5th unity-roots,
solutions at these parameter configurations are 5T = 10π periodic. Figure 5.5 shows a
numerical solution corresponding a point inside a dashed line. Red dashed lines are drawn at
t = 10π and t = 20π to highlight its periodicity.
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Figure 5.4: Stability chart of the Mathieu equation with splitting lines correspondent to
10π-periodic solutions.

Figure 5.5: 10π-periodic solution of the Mathieu equation for initial condition x(0) = [1,0]T

and computed parameters α = 2.821159061221791 and β = 2 for Floquet multipliers µ1,2 =

e± j2π(2/5).
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Figure 5.6: Stability chart of the Mathieu equation with splitting lines correspondent to
aperiodic solutions.

5.3.2 Splitting lines of aperiodic bounded solutions

Figure 5.6 shows the stability chart of the Mathieu equation with a pair of lines inside each
stable region. Dashed lines correspond to Floquet multipliers µ1,2 = e± j2π2

and solid lines
with µ1,2 = e± j2π

√
2. This means the imaginary part of Floquet exponents are irrational

numbers and, therefore, they correspond to aperiodic solutions. Figure 5.7 shows a numerical
solution correspondent to a point inside a dashed line. This solution seem to repeat itself
at t = 14π , which is consistent with the fact that a rational approximation of π is 22/7.
Nevertheless, a careful look at the trajectory inside the blue circles shows this solution is not
periodic with period 14π .

5.3.3 Linear resonance

The reason behind the phenomenon of resonance or unstable splitting lines, is due to the fact
that Hill’s equation, at a stable parameter configuration, is Lyapunov equivalent to an infinite
set of harmonic oscillators (as it was shown in Section 3.4). In fact, we shall show examples
of how linear resonance may occur even at splitting lines correspondent to aperiodic solutions,
and the number of resonant frequencies for this lines is non unique.
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Figure 5.7: Aperiodic solution of the Mathieu equation for initial condition x(t) = [1, 0]T

and computed parameters α = 1.781357855842370 and β = 2 for Floquet multipliers µ1,2 =

e± j2π2
.
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Figure 5.8: Resonant aperiodic solution of Mathieu’s equation with forcing input
u(t) = cos(

√
2t), initial condition x(t) = [0.05, 0]T , and computed parameters α =

2.787354403706198 and β = 2 for Floquet multipliers µ1,2 = e± j2π
√

2.

Figures 5.8 and 5.8 show, respectively, numerical solutions of the non-homogeneous
Mathieu’s equation with forcing inputs u(t) = cos(

√
2t) and u(t) = cos((

√
2+1)t). Values

of α and β for this solutions correspond to a point inside a solid line in Figure 5.6, i.e.,
to a line of aperiodic solutions. These solutions imply that linear resonance may occur at
aperiodic splitting lines and also that they may be unstabilized by more than one resonance
frequency.

5.4 Addition of damping

Consider the damped Hill equation:

ÿ+δ ẏ+(α +β f (t))y = 0.

with δ > 0. By (4.5), (4.6) and (4.7), this equation can be set on a Sturm-Liouville form
choosing p(t) = eδ t , w(t) = eδ t , q(t) = β f(t)eδ t , λ = α . Since p(0) ̸= p(T ), the Sturm-
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Figure 5.9: Resonant aperiodic solution of Mathieu’s equation with forcing input
u(t) = cos((

√
2 + 1)t), initial condition x(t) = [0.05, 0]T , and computed parameters

α = 2.787354403706198 and β = 2 for Floquet multipliers µ1,2 = e± j2π
√

2.
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Figure 5.10: Stability charts of damped Mathieu’s equation for three different damping
coefficient values

Liouville operator

d
dt

(
eδ t d

dt

)
+β f (t)eδ t

is not self-adjoint in L2
SL. This implies that the values of α that solve the twisted Sturm-

Liouville problem for this equation will not form a sequence of real numbers. Instead, only a
finite number of values will be real.

The stability chart of this equation can be obtained as the generalized eigenvalue problem
of matrices (5.9) and (5.10).

Figure 5.10 shows the stability chart of the damped Mathieu equation for three different
values of the damping coefficient δ . It can be noticed that Arnold tongues appear to lift from
the α-axis.

5.5 Lamé equation

The Lamé equation is defined as

ÿ+
(
ᾱ −β (β +1)γsn2(t)

)
y = 0 (5.12)
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Figure 5.11: Ince-Strutt diagram of the Lamé equation

where sn(t) is a Jacobi elliptic function with γ as its modulus. For t ∈ R, the period of sn2(t)
is 2K, where K is given by

K =
∫

π/2

0

dτ√
1− γ sin2(τ)

.

Obviously, sn2(t), as it is non-trivial, has a non zero mean value m. Then, it can be
set as sn2(t) = h(t)+m, where h(t) is a 2K-periodic function of zero mean value. Setting
α = ᾱ −β (β +1)γm, we can rewrite (5.12) as

ÿ+(α −β (β +1)γh(t))y = 0. (5.13)

Figure 5.11 shows the stability chart of Lamé’s equation (5.13), with γ = 0.999. As
stated in Theorem 3.5.1, coexistence points arise at integer values of β , and, moreover, the
number of instability intervals at these values is finite.

Notice that β = 0 and β = −1 make the time-varying term vanish, so the Ince-Strutt
diagram is not symmetric with respect to the α-axis. Nevertheless, for b ∈ R, both β = b
and β =−b−1 satisfy β (β +1) = b(b+1), then the Ince-Strutt diagram is symmetric with
respect to an horizontal axis drawn at β =−0.5.



52 The Sturm-Liouville problem and the Hill equation

Figure 5.12: Diagram obtained by solving the periodic and the anti-periodic Sturm-Liouville
problems for the quasi-periodic Hill equation (5.14), for f(t) = cos(t)+0.2sin(2πt).

5.6 Quasi-periodic Hill equation

Consider

ÿ+(α +β f(t))y = 0 (5.14)

where f(t) = f(ω1t,ω2t), where ω1 and ω2 are rationally independent, i.e. there is no rational
number q ∈Q such that ω1 = qω2. This implies f(t) is not periodic of any period.

Since (5.14) is not a periodic linear differential equation, then Floquet theory does not
apply and we can not get information about stability from it. Nevertheless, since the twisted
Sturm-Liouville problem does not require the periodicity property of the q(t) coefficient in
the Sturm-Liouville equation, we can still obtain a sequence of real values of α , for a fixed
β , such that a solution of (5.14) satisfies the twisted BCs.

In particular, choosing f(t) = cos(t)+ 0.2sin(2πt), we can obtain the diagram shown
in Figure 5.12 by solving the periodic and the anti-periodic Sturm-Liouville problems for
(5.14), for the cyan-colored areas and the blue-colored areas, respectively. However, this
diagram has no stability interpretation as in the case of the Ince-Strutt diagram of the Hill
equation, nor its borders can be related with periodic solutions of period T and 2T .
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Figure 5.13: Superimposition of the diagrams in Figures 5.12 and 5.1.

Figure 5.13 shows the superimposed diagrams of 5.12, in blue, at the front-ground, and
5.1, in red, at the back-ground, where the intersection of these two diagrams is shown in
purple.

5.7 Comparative study

In order to compare the accuracy of the finite-difference approach with the results obtained
by Jazar [6] and the spectral methods [7], consider the Mathieu equation:

ÿ+(α +2β cos(2t))y = 0. (5.15)

Tables 5.1 and 5.2 show, respectively, the first five values of α for the Ince-Strutt diagram
of the Mathieu equation obtained by the spectral method, using N = 50, and Jazar’s algorithm.
Tables 5.3 and 5.4, on the other hand, show some computed values of the Ince-Strutt diagram
of the Mathieu equation using the finite-difference approach, with, respectively, n = 2 and
n = 4, and both N = 300. Figures 5.14 and 5.15 show, respectively, the Ince-Strutt diagrams
correspondent to Tables 5.1 and 5.3. No difference can be appreciated between the two
charts.
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Figure 5.14: Ince-Strutt diagram of the Mathieu equation correspondent to Table 5.1

Figure 5.15: Ince-Strutt diagram of the Mathieu equation correspondent to Table 5.3



5.7 Comparative study 55

Table 5.1: Some values of the Ince-Strutt diagram obtained using the spectral method
algorithm

β α0 α1 α2 α3 α4

0 0 1 1 4 4

1 -0.455138604 -0.110248816 1.859108072 3.917024772 4.371300982

3 -2.834391889 -2.785379699 2.519039087 3.276921969 6.045196852

5 -5.800046020 -5.790080598 1.858187541 2.099460445 7.449109739

8 -10.606729235 -10.605368138 -0.435943601 -0.389361770 8.115238830

14 -20.776055312 -20.776000421 -6.893400533 -6.890700676 5.736312349

20 -31.313390070 -31.313386166 -14.491301425 -14.491063255 1.154282885

28 -45.673369639 -45.673369448 -25.561747094 -25.561732907 -6.588062973

32 -52.942222963 -52.942222914 -31.365154447 -31.365150511 -10.914353386

36 -60.255567891 -60.255567877 -37.302639122 -37.302637954 -15.466770336

Table 5.2: Some values of the Ince-Strutt diagram of the Mathieu equation obtained by Jazar
β α0 α1 α2 α3 α4

0 0 1 1 4 4

1 -0.455138604 -0.110249001 1.8591084 3.9170245 4.3713010

3 -2.834391889 -2.7853799 2.5190390 3.2769217 6.0451972

5 -5.800046020 -5.7900808 1.858187541 2.0994601 7.4491094

8 -10.606729235 -10.6053683 -0.435943601 -0.3893621 8.11523883

14 -20.776055312 -20.7760006 -6.893400533 -6.890701 5.736312349

20 -31.313390070 -31.3133864 -14.491301425 -14.4910636 1.154228590

28 -45.673369663 -45.673369545 -25.561747709 -25.5617332 -6.588062973

32 -52.942222964 -52.942222939 -31.365154448 -31.3651508 -10.914353387

36 -60.255567891 -60.2555681 -37.302639123 -37.3026383 -15.466770337
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Table 5.3: Some values of the Ince-Strutt diagram of the Mathieu equation obtained using
the finite-difference scheme with N = 300 and n = 2

β α0 α1 α2 α3 α4

0 0 1 1 4 4

1 -0.4551386050 -0.1102488183 1.8591080704 3.9170247607 4.3713009713

3 -2.834391897 -2.785379707 2.519039060 3.276921928 6.045196809

5 -5.800046038 -5.790080616 1.858187458 2.099460351 7.449109598

8 -10.60672927 -10.60536817 -0.435943806 -0.3893619812 8.115238355

14 -20.77605540 -20.77600051 -6.893401075 -6.890701220 5.736310792

20 -31.31339023 -31.31338632 -14.49130240 -14.49106423 1.154279908

28 -45.67336990 -45.67336971 -25.56174878 -25.56173459 -6.588068291

32 -52.94222329 -52.94222324 -31.36515654 -31.36515260 -10.91436005

36 -60.25556828 -60.25556827 -37.30264165 -37.30264048 -15.46677844

Table 5.4: Some values of the Ince-Strutt diagram obtained using the finite-difference scheme
with N = 300 and n = 5

β α0 α1 α2 α3 α4

0 0 1 1 4 4

1 -0.4551386041 -0.1102488170 1.859108072 3.917024772 4.371300982

3 -2.834391889 -2.785379699 2.519039087 3.276921969 6.045196852

5 -5.800046020 -5.790080598 1.858187541 2.099460445 7.449109739

8 -10.60672923 -10.60536813 -0.4359436013 -0.3893617702 8.115238830

14 -20.77605531 -20.77600042 -6.893400533 -6.890700676 5.736312349

20 -31.313390070 -31.313386166 -14.491301425 -14.491063255 1.1542828852

28 -45.673369639 -45.673369448 -25.561747094 -25.561732907 -6.5880629730

32 -52.942222963 -52.942222914 -31.365154447 -31.365150511 -10.914353386

36 -60.255567891 -60.255567877 -37.302639122 -37.302637954 -15.466770336



Chapter 6

A mechanical system with periodically
varying moment of inertia

This chapter shows an example of a mechanical system with periodically time-varying
moment of inertia [22], as the one shown in Figure 6.1. This system is modeled by a linear
periodic second order ordinary differential equation, which can be seen as an equation of the
Sturm-Liouville type. A bifurcation diagram, highlighting the stable and unstable parameter
values in the parameter space α −β , will be computed using the finite difference method
described in Chapter 5.

6.1 Linear model

Consider the system shown in Figure 6.1. It consists on a massless elastic shaft, with stiffness
c, driving a rigid disk, with moment of inertia J0, in which, at the same time, there are two
massess m, symmetrically placed, and moving along its radius according to the motion law:

r(ωτ,β ) = r0 +β f(ωτ).

where r0 is the nominal distance of the masses from the vertical axis of the shaft. Here, β and
ω are, respectively, the excitation amplitude and frequency, and f(τ) is a twice continuously
differentiable periodic function of period 2π with zero mean value.

The total moment of inertia of the system is

J(ωτ,β ) = J0 +2m(r0 +β f(ωτ))2 . (6.1)
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Figure 6.1: Elastic shaft with a rigid disk with two radially moving masses. (image borrowed
from [22])

If J0 is large enough, we can neglect the dissipation term, and the equation of motion is then:

d
dτ

(J(ωτ,β )
d

dτ
θ)+ cθ = 0 (6.2)

where θ is the twisting angle of the disc with respect to the shaft axis.

6.2 Bifurcation diagram

Define t = ωτ , so

d
dτ

= ω
d
dt
.

Then (6.2) boils down into

ω
2 d

dt

(
J(t,β )

d
dt

θ

)
+ cθ = 0.

Define

α =
c

bω2 ,

where

b = (J0 +2mr2
0),
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Figure 6.2: Bifurcation diagram for the elastic shaft system.

to obtain

d
dt

(
J(t,β )

b
d
dt

θ

)
+αθ = 0. (6.3)

Set f(t) = cos(t), m = 10, r0 = 10, J0 = 100. Figure 6.2 shows the bifurcation diagram
depicting the stable (white) and unstable (painted) parameter regions for (6.3). The borders
of the cyan-painted areas correspond to parameters where a 2π-periodic solution exist, and
the borders of the blue-painted areas correspond to parameters where a 4π-periodic solution
exist. The diagram was computed using the finite-difference solution method for the periodic
and anti-periodic Sturm-Liouville problems, for the blue-painted areas and cyan painted
areas, respectively, choosing: λ = α , w(t) = 1, q(t) = 0, and p(t) = p(t,β ) = J(t,β )/b.

The point p0 = (0.176867620295921, 3), highlighted with a red dot in Figure 6.2, lies
at a transition curve where a periodic solution of period 4π exists. Figures 6.3 and 6.4
show, respectively, numerical solutions for points p1 = (0.1775, 3) and p2 = (0.175, 3) for
initial condition x(t) = [1, 0]T . As expected, solution for point p1 is unbounded and grows
exponentially, while for point p2 it remains bounded.
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Figure 6.3: Unbounded solution for the elastic shaft system.

Figure 6.4: Bounded solution for the elastic shaft system.



Chapter 7

An aplication of the Mathieu equation

7.1 Quadrupole mass filter

The quadrupole mass filter is the main device inside the quadrupole mass spectrometer. This
filter consist of four metal rods arranged as in Fig. 7.1. An electric potential φ0(t)/2 is
applied to the pair of horizontally opposing rods, and −φ0(t)/2 to the vertically opposing
rods, where φ(t) =U +V cos(ωt). The motion of an ion passing through the rods is modeled
by two decoupled Mathieu equations. From the Ince-Strutt diagram of these equations, a
pass-band filter is designed. Only ions which have a mass to charge radio, within a narrow
interval of values, called a stable interval of mass to charge ratios, pass all the way through
the filter, while the others either collide to the electrodes or exit laterally. The principle of
operation of this filter can be applied to other devices such as the ion trap. The theory of both
the filter and the trap devices is found in [23].

For mass spectrometry, ions are obtained by an ionization process applied on a sample of
the substance to be analyzed, and they are passed between the filter rods by means of a ion
accelerator. A scanning process is executed through a wide range of mass to charge ratios. A
detector measures the electrical signal generated by the ions that were able to pass all the
way through the filter, which finally allows to plot the mass spectrum of the substance.

7.1.1 Ion equations of motion

Consider an electric field

E =−∂φ

∂u

where φ(t,u) ∈ R is the potential at any point u = [x,y,z]T within the field.
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Figure 7.1: Schematic of the quadrupole ion mass spectrometer (image borrowed and
modified from [23]).

For a quadrupole field, the potential φ is

φ =
φ0

2r2
0

(
σxx2 +σyy2 +σzz2) (7.1)

where φ0 is the electric potential applied to the electrodes, r0 is half the distance between
each opposite rod, and σx, σy and σz are weighting constants. Fig. 7.2 shows the ideal shape
of the electrodes in order to obtain (7.1).

From Gauss’ law, the quadrupole electric field satisfies

div(E) = 0,

where div is the divergence operator, since the charge density is null inside the quadrupole
filter, then

div
(

∂φ

∂u

)
= 0 (7.2)

which is Laplace equation.

In order to satisfy (7.2), the weighting constants must satisfy σx +σy +σz = 0. For the
mass filter: σx =−σy = 1, σz = 0, whilst for the quadrupole ion trap: σx = σy = 1, σz =−2.

The field E in a quadrupole device is uncoupled so that the forces in the three coordinate
directions may be determined separately. The force, Fx, in the x direction, experienced by an
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Figure 7.2: Ideal shaped electrodes for the potential (7.1) (image borrowed from [23]).

Figure 7.3: Equipotential lines for a quadrupole field with the potential (7.1) (image borrowed
from [23]).



64 An aplication of the Mathieu equation

ion of mass m and charge q at any point within a quadrupole field is then

Fx = max = m
d2x
dt2 = qE =−q

∂φ

∂x
(7.3)

where ax is the acceleration of the ion in the x-direction.
From (7.3) and (7.1), the equations of motion of an ion passing through the quadrupole

filter are

d2x
dt2 +

qφ0

mr2
0

x = 0

d2y
dt2 − qφ0

mr2
0

y = 0

d2z
dt2 = 0

If φ0(t) =U , a positive D.C. voltage, then the motion of an ion (cation) at the x direction
will be stable, and unstable at the y direction. But, if instead φ0 = U +V cos(ωt), with
U > 0, V > 0, then the equations of motion in the x and y directions become the Mathieu
equations

d2x
dτ2 +(α +2β cos(2τ))x = 0 (7.4)

d2y
dτ2 − (α +2β cos(2τ))y = 0 (7.5)

where τ = ωt/2, α = 4qU/(mr2
0ω2), β = 2qV/(mr2

0ω2).
Figure 7.4 shows the superimposed Ince-Strutt diagrams of the equations of motion (7.5)

(in red, at the background) and (7.4) (in blue). Both Ince-Strutt diagrams are symmetric with
respect to the β axis. White areas correspond to stable parameter regions for both the x and
y directions. The larger white region in Figure 7.4 will be called, in the following, as the
operating region of the filter.

7.1.2 Filtering principle

Notice that β/α =V/(2U). For fixed values of ω , U and V , all ions with the same mass-to-
charge ratio correspond to the same point in the α −β plane, and the variation of mass-to-
charge ratio, produced by the different ions passing between the electrodes of the filter, move
the parameters α and β of the equations of motion along the line of slope V/(2U), called
the operating line of the filter, shown as a dashed line in Figure 7.5. Only those ions whose
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Figure 7.4: Ince-Strutt diagram of the quadrupole mass filter

mass-to-charge ratio sets α and β inside the operating region are allowed to pass all the way
through the filter. Thus the section of the operating line passing through the operating region
of the filter determines the interval of stable mass-to-charge ratio values.

The resolution of the filter is determined by the value of V/(2U). A smaller value of
V/(2U), so that the operating line still passes through the operating region, makes a smaller
interval of values of mass-to-charge ratio to correspond to stable ion trajectories.

For the scanning process (once the desired resolution is chosen), the modification of the
magnitude of V and U , so that its ratio stays constant, changes the limits of the interval of
mass-to-charge ratio values inside the operating region. For example, if V and U are both
simultaneously doubled, the new stable mass-to-charge ratio interval contains the values of
the old interval but doubled.
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Figure 7.5: Filter calibration line



Chapter 8

Conclusions and future work

8.1 Conclusions

For a fixed value of β , it was shown that those values of α , for which a constant µ ∈ C,
|µ| = 1, is a Floquet multiplier of the Hill equation (1.3), can be computed by solving
a twisted Sturm-Liouville problem, whose solutions form a monotonic sequence of real
numbers. And from this fact:

• Particular cases of the twisted BCs, for which µ = 1 and µ = −1, called periodic
and anti-periodic BCs, respectively, allowed us to find the Ince-Strutt diagram of the
Hill equation in the standard form (1.3). Some numerical results, obtained using a
finite-difference solution scheme, were presented, and showed six to eight digits of
precision when compared with the ones obtained by the spectral differentiation method
and Jazar’s algorithm.

• The twisted Sturm-Liouville problem, for which Im(µ) ̸= 0, was shown useful in
order to compute all the splitting lines lying inside the stable regions of parameters,
including those associated with aperiodic solutions. Thus, through the solution of a
twisted Sturm-Liouville problem, one is able to obtain more information about the
behavior of the solutions inside the stable regions of parameters of an Ince-Strutt
diagram than that obtained by Jazar’s method or the spectral differentiation method.

• Since the Hill equation can be regarded as a particular case of the Sturm-Liouville
equation, the Floquet theory and the solution of the periodic and the anti-periodic
Sturm-Liouville problems can be used in order to find the bifurcation diagram of a
bi-parametric linear periodic second order ordinary differential equation that is not on
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a Hill type form, such as the one that models the motion of a mechanical system with
periodically time-varying moment of inertia.

• Since the Floquet theory, and hence Floquet multipliers, are not defined for the quasi-
periodic Hill equation, the transition curves of this equation, if exist, can not be related
with the periodic or the anti-periodic Sturm-Liouville problem.

8.2 Future work

• The presented finite-difference scheme could be upgraded in order to compute the
principal resonance tongues of the multiple degree of freedom Hill equation [22]. And
it could be possible that there exist some particular equations for which the twisted
BVP is applicable for the computation of its combination resonance tongues.

• The effect of small perturbations, in the Hamiltonian of the Hill equation, on the
long time behavior of its bounded solutions should be studied in order to judge its
applicability and to enrich its understanding.
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