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Resumen

Los códigos convolucionales representan una técnica muy poderosa de codificación de

canal, ya que presentan una ganancia de codificación mayor que la de los códigos de

bloque. Un codificador convolucional introduce dependencia entre los símbolos

transmitidos, por lo que éstos no pueden ser decodificados de manera independiente, sino

que es necesario tomar en cuenta toda la secuencia recibida. El efecto de esta dependencia
es una mayor inmunidad al ruido que otras técnicas, con la desventaja de requerir un

decodificador de mayor complejidad. El algoritmo de Viterbi es un método de

decodificación de códigos convolucionales, que es óptimo en el sentido de minimizar la

probabilidad de error. Este algoritmo es conceptualmente sencillo, pero su implementación
eficiente en el sentido de área requerida y velocidad de decodificación presenta muchos

obstáculos. En esta tesis se presenta una arquitectura para la implementación en un circuito

integrado del algoritmo de Viterbi que está muy cerca del óptimo en cuanto a probabilidad
de error, requiere un área pequeña y es muy rápido, cuando se compara con otras

implementaciones existentes. Para lograr esto, el algoritmo Viterbi original fue estudiado y
modificado para disminuir el número de operaciones que realiza, la cantidad de memoria

que requiere, y para descubrir y aprovechar al máximo su paralelismo inherente.



Abstract

Convolutional codes represent a powerful channel coding technique, since they present a

coding gain larger than block codes. A convolutional coder introduces dependency among

the transmitted symbols, so these can no longer be decoded independently of each other,

and it becomes necessary to take into account the complete received symbol sequence. The

effect of this dependency is better noise immunity than other techniques, with the

disadvantage of requiring a decoder of increased complexity. The Viterbi algorithm is a

method of decoding convolutional codes, which is optimal in the sense of minimizing the

probability of error. This algorithm is conceptually simple, but its efficient implementation,
in the sense of required área and decoding rate, presents several challenges. In this thesis,

an architecture for the implementation of the Viterbi algorithm in an integrated circuit is

presented. This architecture is very cióse to the optimum in probability of error, requires a

small área and is very fast, when compared with other existing implementations. To

achieve this, the Viterbi algorithm was analyzed and modified to reduce the number of

operations it performs, the quantity of memory it requires, and to discover and seize its

inherent parallelism.
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x Introduction

1.1 Overview

This thesis consists in the study, evaluation, analysis and implementation of the

Viterbi algorithm for decoding convolutional codes. This algorithm doesn't rely on very

complex operations, but is difficult to implement because of two peculiarities: it operates on

a very large number of variables, and its complexity grows exponentially as the error-

correcting capability of the convolutional code improves.

The Viterbi algorithm has a broad range of applications; as a matter of fact, it has

equivalents in several áreas of engineering and computer science. The problem it solves is that

of finding the shortest path between two points in a given graph. In this thesis, the algorithm

is studied for a specific application: optimum decoding of convolutional codes.

Chapter 2 of this thesis is called Channel coding in communication systenik verses on

the problem of channel coding from the perspective of information theory. Convolutional

codes are studied as a solution to this problem, from which the decoding problem arises. The

Viterbi algorithm is studied in a theoretical manner, and it is shown that it decodes

convolutional codes optimally.

Chapter 3 is called The Viterbi atgorithmln this part of the thesis the Viterbi algorithm

is studied and analyzed. A number of parameters that affect its performance and behavior

(both in terms of bit error probability and algorithm complexity) are found. These effects are

analyzed using simulation, with the aim of setting the grounds for an architecture that can

be implemented in VLSI and meets the required performance criteria.

The nature of the Viterbi algorithm is such that, in order to implement it, some
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optimizations and changes must be performed on it. In order to do that, it is necessary first

to find the áreas where optimizations and changes can be made without affecting the

algorithm's performance, or where these affect it in a quantifiable, controllable way.

It is important to note that a considerable reduction of the required number of

operations per received symbol is conditio sine qua nono implement the algorithm in VLSI

with a reasonable information rate and cost.

In chapter 4,Architecture and Implementaiiopa specific application is chosen (regarding

constraint length, channel model, required performance, etcétera) and the knowledge

acquired in the previous two sections is used to design an architecture that meets the

specifications and can be implemented in VLSI.

Afterwards, a circuit based on this architecture is designed and tested. The design is

written in VHDL, and testing is done both in a simulation environment and in the

laboratory, in hardware.

A summary of the results is presented in Chapter 5; some conclusions and final

thoughts are presented in Chapter 6.

Some ancillary material is presented in the appendixes at the end of this report.

Appendix A extends on the theory of máximum likelihood decoding and the detection of

vectors in noise presented in Chapter 2. Appendix B presents some basic material on the

calculation of signal-to-noise ratio in a Communications system, which is useful to interpret

the results of the simulations realized. Appendix C contains the test plans used to verify the

C program, as weil as the implementation, both in simulation and in the laboratory.

A listing of the C program used to simúlate the Viterbi algorithm, as weil as its VHDL

implementation, are ineluded in a CD-ROM. This is because of the length of the programs,

which amount to around 50 pages. Appendix D explains the organization of thematerial on

the CD-ROM.

1.2 Objectives

This thesis pursues the following objectives:
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I. To acquire a thorough comprehension of the Viterbi algorithm and its application

in the decoding of convolutional codes

II. To analyze how the properties of the Viterbi algorithm change when the valúes of

its parameters are made to vary, and

III. To implement the algorithm in VLSI, meeting the following cost, área, and

performance specifications:

i. it must fit in an Altera FLEX10K100 EPLD

ii. it must not require any external memory

iii. it must be optimized for máximum speed (as opposed to minimum área)

iv. it must decode one symbol per clock cycle

v. it must be designed for codes of rate Vi, constraint length no less than 7

The main result of this thesis is a working VLSI architecture for Viterbi decoding of

convolutional codes that is very fast, yet meets the área and cost requirements. In order to

be able to propose such an architecture, though, the Viterbi algorithm must be thoroughly

understood. It is not sufficient to understand the mechanics, or the sequence of operations,

that the algorithm performs. It is also necessary to understand how the algorithm behaves

when it is modified in certain ways, in order to minimize its complexity while conserving

its error correcting capability.

To achievemáximum performance, the algorithm's operationsmust be performed in

parallel. The Viterbi algorithm is expressed in such a way that the operations that can be

executed in parallel are easily detected. How to implement this parallelism, and atwhat cost,

is something that must be analyzed.

The área requirements imply that the ability of the circuit to have configurable

parameters, such as generating polynomials, constraint length,memory length, etcétera, will

have the last priority.
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Zd Channel coding in

communication systems

2.1 Channel Coding

Themain objective of Communications engineering is to transmit information faster,

with fewer errors, and at a lower cost. These three objectives aremutually exclusive
- when

one is fully met, the others are not. Channel coding has to do with the objective of

transmitting with fewer errors.

Amessage transmitted through a channel, whichever it might be, suffers distortions

and modifications, which produce errors [1], [2], [3]. When a message contains redundancy

(that is, that uses more symbols than strictly required to convey its meaning), the receiver

has a better chance of reverting the effects of those distortions and modifications. The

channel coding problem is how to invent methods to créate this redundancy in such a way

that the information rate is kept as high as possible, and the probability of error is reduced

as much as possible, while the decoder is kept as simple as possible. These conditions are,

again, mutually exclusive, and when designing a communication system it is necessary to

find the best tradeoff for each particular situation.

Claude Shannon built the pillars of communication theory with his two main

theorems [21]. Shannon also established the information transmission capacity limit for

given bandwidth and power. This limit is known as "channel capacity." In his so-called

"second Shannon theorem'' or "channel coding theorem", he showed that there exist

decodable channel codes that make the probability of error as small as desired, provided the
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information rate is less than channel capacity.

Shannon showed that channel codes that reduce the probability of error as much as

desired exist, but he didn't show how to build them. The channel coding theorem is an

existence theorem, and Shannon's proof is not constructive. It has takenmany people many

years to find codes that approach the established limit.

To quantify a code' s efficiency, the difference between the signal-to-noise ratio {SNR)

needed to obtain the same bit error rate (BER) of a coded and an uncoded message is

caículated. This quantity is known as coding gain Several things should be kept in mind

when coding gain is caículated:

First, the source rate must be kept constant. In general, a more powerful code adds

more redundancy to a message, which degrades reception because the channel rate increases;

however, the added error-correcting capability of the decoder provides a net performance

improvement over uncoded transmission.

Second, it is assumed that the channel bandwidth is infinite, and that the only signal

disturbance is due to additive noise. Usually, additive white Gaussian noise is assumed.

Third, it is assumed that the same modulation scheme is used in the systems being

compared.

Fourth, it is important to realize that communication systems are usually compared

using bit-normalized signal-to-noise ratioorf/A^, instead of just signal-to-noise ratio.

(Please refer toAppendix B for further elaboration on signal-to-noise ratio). E¡/N0 is a better

measurement than SNR because it takes into account the bit rate and the bandwidth of the

system under consideration. The relation between SNR and E¡/N0 is:

Eb ST S SW

N. N. RN0 RN0W N

W_
R

where

Eh is the energy contained in the signal that corresponds to one bit;

N0 is twice the amplitude of the power spectral density of the noise, assumed

white, measured in watts per hertz;
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W is the bandwidth of the system;

S is the average modulating signal power;

T is the bit time duration;

R = 1/T is the bit rate;

N = NgW is the filtered noise power.

Themáximum coding gain achievable, according to Shannon theory, is around 1 1 .5dB.

Typical coding gains for convolutional codes are around 7dB [1].

It should be noted that coding gain can also be used to compare different codes. In this

case, it should be specified which code is being used as reference.

This is themotivation behind the whole channel coding theory. Convolutional codes

represent one of the main achievements in this field.

2.2 Convolutional codes

Convolutional codes [8] add structured redundancy to a data sequence. In a finite state

machine, the present state corresponds to the contents of the memory elements of the

machine. The next state is determined from the present state and its input. The machine's

output is a logic function of the input and its present state (or, as a particular case, of just the

present state). A convolutional coder is a state machine that takes k input bits at a time,

serially, and produces « output bits. These « output bits represent, in a way, the machine's

output as a result of the transition from one state to another. The combinational logic used

to calcúlate the output is an exclusive-or of some of the stored bits. Figure 1 shows the

diagram of a generic convolutional coder.

It is said that a convolutional coder has memory, because in order to calcúlate the «

output bits that correspond to the k input bits at any given time, it also takes into account

M-k previous input bits, which are stored in the machine's memory. M is the total amount

of memory of the coder. The number of bits stored in the machine, divided by k (M/k) is

known as the constraint lengthof the coder, and is designated by I. The rate k/n is known

as the code rat^ r. A code is commonly specified as a triplet (L, k, n).

7



_ bits

uncoded input data

convolutional coder

shift register

kL bits

combinatoria! logic

shift register

nbits

n bits

M
coded output data

Figure 1. Schematic Diagram of a Convolutional Coder

The minimum free distance dfra, of a convolutional code measures the error-

correcting capability of the code. A convolutional code can correct (dtm-1)/Z error bits within

a few constraint lengths, where a few means from 3 to 5 [1].

There are several ways to represent a convolutional coder. It can be done in schematic

form; by specifying its structure; by the logic function that calculates its output; by a state

diagram; or graphically, through a tree or trellis.

Perhaps the more straightforward way to represent a convolutional coder is through

its schematic diagram. It is convenient and simple, but its main disadvantage is that it makes

a deeper analysis of the code very difficult. Figure 2 shows a schematic for a code of rate V¿

and constraint length 3.

3



ffi
first output bit

input
bit

* °>^_ output
_ code word

V
second output bit

Figure Z.A rate Vi, L=i convolutional coder

A coder can also be succinctly represented by « generator polynomials Each

polynomial has Lk coefficients, each of valué 0 or 1. The coefficient indicates whether the

stored bit is ineluded in the XOR function that calculates the output. In turn, each

polynomial can be expressed as a connection vectorthat includes only the coefficients. For

example, the generator polynomials and their corresponding vector for the coder in figure 2

are:

Pl(D) =D2+l

p2(D)=D2+D+\

gx =[101]

g2=[lll]

The vectors can be expressed in a numerical base, eight for example, in order to have

an even briefer representation. In this example, gj would be represented as [5] and g2 as [7].

A set S of all generators can be defined, and in this case it would be S= {5,7}.

A convolutional coder is a finite state machine and as such can be represented by a

state diagram. This representation presents the coder at a higher level of abstraction,

concentrating on the function and not on the structure of the coder. From a state diagram,

it is very easy to see the relationships between the states, and the output for any given input

is readily found. Its main advantage is that some properties of the coder, like its minimum

free distance, can be obtained from this diagram. For large L (or r), however, the state diagram
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becomes impractical, due to its size.

It should be noted that, since the convolutional coder is a finite state machine, all

theory developed to analyze such circuits can also be appüed to the study of the coder.

However, such theory has been developed with emphasis on the analysis and synthesis of

digital circuits, and is not always useful from the point of view of Communications theory.

Figure 3 shows the state diagram for the example coder.

Figure 3. State diagram of example coder

So far, no representation is very good at tracking the evolution of the coder as time

passes. The tree diagram is especially useful for this purpose. It starts at the initial state of

the coder, and branches out tracing all input possibilities. To find the output and state

evolution for any input sequence, a branch in the tree is chosen at each time iteration, and

followed starting from the root.

The advantage of the tree is that it emphasizes the effect of time on the coder, adding

a dimensión that previous representations lack. However, for large L (or r), the tree grows

very quickly and is not useful beyond a few iterations. The tree for the example coder is

shown in figure 4.
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It can be seen that the tree is very regular. The same structure is repeated time after

time. This repeating structure can be identified and collapsed into what is called a trellis

diagram. It is equivalent to a tree, evolving with time; the difference is that the trellis does

not expand as time passes. As opposed to all previous representations, trellises can be

constructed for codes with large L (or r) . The trellis diagram for the example coder is shown

in figure 5.
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Figure 4- Tree diagram of example coder Figure $. Trellis diagram of example coder

A possible sequence of states in a trellis is called a path. A transition from one state

to another is called a branch.

As will be seen later, trellises are especially important for the Viterbi algorithm [4] .

Note that the evolution of the coder in time traces a path through its trellis. The task of the



Viterbi algorithm is to build a trellis for the received sequence, and then to find the most

likely path through it. The trellis is a representation that is particularly weil suited to the

decoding problem.

2.3 Decoding: the Viterbi algorithm

For a code to be useful, it must be decodable, that is, theremust be a way to estimate

the original message from the received one. There are several algorithms for convolutional

decoding: Viterbi, sequential (proposed by Wozencraft and modified by Fano), stack,

feedback, and syndrome decoding to ñame several.

Omura [22] showed that convolutional codes can be decoded optimally, in the

máximum likelihood sense, using the Viterbi algorithm.

Let a transmitter genérate a binary data sequence, T. This sequence is first source-

encoded to elimínate all redundancy, and then channel-encoded by a convolutional coder to

genérate a sequence, U£, out of the set of all valid sequences, U= {U1, U2, ...Uz, ...}. Note that,

if T is infinite, U has an infinite number of elements, i.e., the number of possible encoded

sequences is infinite. IfT is a finite sequence, thenU has a finite number of elements and the

convolutional coder is reduced to a block coder. Let Z be the symbol sequence received from

a channel with additive whiteGaussian noise (i.e., noise samples are independent). Then, the

receiver can estimate the transmitted encoded sequence U£ with minimum probability of

error if all the likelihood functions.P(Z | Um), where m = 1, 2, ..., z, ..., are compared and the

most likely is chosen. That is, the sequence Ux is chosen as the transmitted sequence if

P(Z|UX)= max P(Z|ir) (1)
for all m

For a code of rate l/«, the likelihood function can be expressed as:

P(Z|Um)=n P(Zt\Umi)
(2)

i=i

where Z, is the /th code word of Z, and [/'", is the /th code word of Um. A code word

corresponds to a branch in the trellis. Each code word is formed by n code symbols.
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The received code words in sequence Z come from a demodulator. The demodulator

can opérate in one of two ways. One way is to make a firm, or hard, decisión as to whether

each received code word Z; represents one of the valid code words. In this case, the output of

the demodulator is always one of the valid code words. When this kind of demodulator is

used, the decoder is called a hard-decision decoder

On the other hand, the demodulator can feed the decoder not just with a code word,

but also with a measure of confidence attached to it. This measure of confidence is related

to the position of the received vector in its decisión región. This measure of confidence is

extra information that helps the decoder to better reconstruct the received sequence. Such a

decoder is called soft-decision decoder

Normally, a soft-decision demodulator output is a «-bit word that represents 2" levéis

of confidence. Having 8 levéis of confidence (3 bits) results in a 2dB coding gainwith respect

to hard-decision decoding. An infinite number of levéis of confidence results in a 2.2dB gain.

For this reason, 8 levéis of confidence are almost always used alongwithViterbi decoding [1] .

Since soft-decision decoding doesn't add much to the algorithm's complexity, hard-decision

decoding is seldom used and will not be considered in the rest of this work.

As is seen in Eqs. (1) and (2) above, the likelihood function compares all possible

sequences Um against the received sequence Z. This function does not provide information

on the probability of error for a given symbol; it only provides a likelihood measure for a

sequence. It is possible that the most likely sequence contains several very unlikely symbols,

as long as the whole sequence remains likely.

Finally, the product in Eq. (2) can be transformed into a sum by taking the logarithms

of the individual probabilities. Note that the logarithm is a monotonically increasing

function. Doing this reduces the problem to finding Um such that

¿logP^IC/".) (3)
<=i

is maximized.

In Appendix A it is shown that the problem can be reduced to that of finding Um that

13



minimizes:

ee

X/r(Z,,[/3) (4)

where fT is a function that calculates the EucÜdean distance between Z, and l/m„ and code

words and received signáis are interpreted as vectors in a signal space.

A treüis diagram defines all possible paths that a coder can take. Each branch in the

trellis can be associated with the vector that corresponds to coder output for that branch. For

example, in the trellis in Fig. 5, the branch that goes from state ¿? to state ¿i (output 00) could

be associatedwith vector (1,1), while the branch that goes from states to state b (output 11)

could be associated with vector (-1, -1), in some signal space.

The Viterbi algorithm uses a trelüs to calcúlate the EucÜdean distance between each

branch and the received vector at each time iteration, as indicated in Eq. (4). From all the

branches that arrive at a given state, the onewithminimum distance is kept, and the others

are discarded. The branch distances for each state are then added, so the total distance for

each path is known. Then, the path with the minimum distance is chosen and decoded.

In thisway, if the trellis representation of the code is used, then the decoding problem

is reduced to finding the path through it that maximizes the likelihood function, or,

equivalently, the shortest path. TheViterbi algorithmmakes this approach feasible, in terms

of cost and decoding speed, because it finds and eliminates paths that cannot possibly be the

most likely one, even before their final likelihood is caículated. Then, themost likely path is

chosen from a reduced set of surviving paths

2.3.1 General form of the decoding problem

In a more general way, the problem at hand is that of an FSM that generates output

symbols, which are observed through a noisy médium, with the effect that some transitions

are not observed correctly. It is desired to find the most likely sequence of input symbols to

the FSM. A representation of this problem can be seen in figure 6.
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Figure 6. General form of the decoding problem

As was seen in section 2.3, the problem can also be stated as that of finding a path in

a treüis that meets a certain criterion (i.e., is the shortest). This problem has been widely

studied in several áreas of engineering and computer science, and is also known as dynamic

programming.

2.3.2 Formal definition of the Viterbi algorithm

What foüows is the formal definition of the Viterbi algorithm. The initial valué of the

different variables used is specified in its definition. The intention in the presentation of the

algorithm is to expose the operations that might be executed in paraüel asmuch as possible.

15



Definitions

Let:

R =

ru r2> h> ■■■ tne sequence of received, noisy symbols that are to be decoded

U the set of states of the convolutional coder

T a trelÜs, defined as the pair (S, gT) where

Se U x U is a set of ordered pairs (x, y), specifying that state x is connected

to state y. That is, (x, y) is a branch in the treüis

gT: S -> K is a function that takes an element of S and returns the vector

that corresponds to the output of the coder for that element. This vector

can be seen as a label associated to branch (x, y), and as such is frequently

called branch label

M a vector, where the element in position x is the accumulated distance for

the path that ends in state x. It is initialized to zero

Mjemp: a vector used to store temporal valúes, before storing them inM

D a two-dimensional arraywhere the algorithm stores the paths it creates.

Each column is a time iteration, and each row is a state. Element (w, z)

contains the previous state for state w at time iteration z. It is initiaÜzed

to zero

O is the output (decoded) sequence

¡ | is the concatenation operator. x3 | | (x2, x.) = xa, x2l x.

Algorithm: Viterbi_Theoretical(i_, U, 1)

Inputs: A sequence of noisy symbols

Output: A sequence of uncoded symbols
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Viterbi Theoretical {R, U, T)

{

// calcúlate path metrics and shortest path
/ = 0; if i counts number of symbols in R

while(! is_empty(#)) { // repeat for all symbols in R, taken in sequence

t = t + 1; // update iteration counter

r = getNext(i?); // get next element from R and remove it

for (x :x eU) { // find minimumdistance between each state in coder

// trellis and received symbol
m = infinity;
for (y : (y, x) e S) { // find minimum distance between each branch that

// ends in state x and received symbol
d = distance(r, gT(y, x)) + M(y); // dis distance between received

// symbol andthe current branch, plus
// total length of path up to state where

// current branch originates
if (d < m) {

m = d; // find and store minimum distance

o = y; // and state from which it originates

}

}

Mjempix) = m; // new path distance is m

currentjtate
= D(mitúm\im(M_temp) , t); // find shortest path (minimum

// accumulated distance)

D(x, t) = o; // store previous state in the trajectory

}

M =Mjemp; // update path distances

}

// once all elements of R have been read, identify shortest path. For each iteration, the

// previous state for each path is stored in D. Then, the path can be traced back in its

// entirety. At each iteration, the current branch can be decoded to reconstruct the

// original sequence. This process is known as traceback.

while (! .

= 0) { // traceback whole trajectory
nextjtate

= D (currentjtate, t); // find previous state

O = O \\ decode(nextjtate, currentjtate); // calcúlate the coder input symbol
// that corresponds to this branch

currentjtate
= nextjtate; // move back one step in D

t = t-\;

}

Note that, as stated previously, this algorithm stores a potentially infinite amount of
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data, and has a potentially infinite decoding delay.

The quantityd = distance (r, gT(y, x)) is the distance between the current branch label

and the received symbol. It is known as branch metric Each element stored inAi represents

the total length of the corresponding path, and is called path metric

The algorithm above has been defined as using traceback to traverse the trelüs and

decode the chosen path. It should be noted that one alternative to traceback exists. This

alternative, known as register exchange, uses a number of shift registers equal to the number

of states of the trellis [5], [9]. Each shift register /always holds the survivor sequence for

state i. To accomplish this, it is necessary to update the entire contents of every shift register

every iteration. Then, the decoded data is obtained from the output of the shift registers.

The traceback algorithm, on the other hand, uses amemory array (D, in the algorithm

above) to store pointers to the previous state. When a path is chosen, it is reconstructed by

"tracing back", from one state to the previous one.

The main disadvantage of the register exchange technique is that the wiring área

needed for updating the stored data grows very fast with the number of states of the encoder.

Another disadvantage of a register exchange implementation is that it is very difficult to

program it to work for different treüises.

For these reasons, the traceback algorithm is almost always chosen in favor of register

exchange. In this work only the traceback versión of Viterbi decoding will be studied.

2.3.3 A note on computational and memory complexity

Commonly, the time complexity of an algorithm is measured by the number of

operations it must perform, and how this number grows when the number of inputs to the

algorithm grows.

In these terms, the Viterbi algorithm is very complex. At each time iteration (every

time a new symbol arrives at the decoder), 2k paths per state must be considered, and 2Lk

states must be analyzed. For practical applications, the number of iterations per second that

the decoder must perform may vary from a few thousand to several million.

The same applies to the memory requirements. The memory to store the survivor
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paths must contain an entry per state, and a path metric per state must also be stored.

Since k and L appear as exponents, it is said that the computational complexity of the

algorithm is exponential. Every time L is increased in 1, the number of states doubles.

Likewise, every time k is increased in 1, the number of paths into each state doubles. To

illustrate, figure 7 shows how the number of operations performed by the algorithm grows

with L, while figure 8 shows the same formemory requirements. Figure 7 shows the number

of operations per decoded bit. The numbers are estimated from simulations of the algorithm,

as explained further in section 3.1.

operations per bit memory locations

Figure 7. L vs. Operations per decoded bit Figure 8. L vs. memory requirements

Note that the máximum likelihood criterion defined in Eq. (1) requires that the

sequences Z and Um are compared in their entirety, that is, that the complete sequencesmust

be compared. What this means is that the algorithm may choose the most likely path only

when aü symbols have arrived; after that, one path is chosen and decoded. In practice, this

means that impossibly large amounts of memory and decoding delay (see next section) are

required.

2.3.4 A note on decoding delay

Decoding delayis defined as the time that a decoder takes to decode a symbol after

19



it arrives at its input.

Quantifying this delay is important because certain applications are very sensitive to

it (i.e., voice), whereas others are very tolerant to it (i.e., file transfers).

TheViterbi algorithm presents a decoding delayproportional to the length of its input

sequence, because the whole sequence must be stored before decoding it. Formost practical

applications, this delay is unacceptable.

Note that, trying to avoid this limitation, an infinite sequence of data could be broken

into finite blocks, so that each block requires finite memory and delay to decode. This

approach is not always feasible, and effectively turns the convolutional encoder into a block

coder.

2.3.5 The implementable algorithm

There are three main obstacles for implementing the Viterbi algorithm as it was

described. The first is that it requires, in principie, an infinite amount ofmemory to store the

trelÜs. The second is the sheer number of operations it requires to decode a data sequence.

The third is that the path metrics will, in time, cause an overflow in the registers used to

store them.

In this section, the algorithm is modified to make it use a finite amount of memory,

D, even though the message sequence might be infinite. This change makes the algorithm

feasible, even if still it does not solve the problemsof the number of operations and the

storage of the path metrics. These problems are studied in the next chapter.

The use of a finite D is justified because it is observed that, given sufficient time, all

paths in the trellis tend to converge toward one, unique path [1], [6]. If this path can be

identified, then it can be decoded even when the complete path is not known. What is done

in the algorithm is, once D is full, the minimum distance path so far is traced back, and its

oldest branch is decoded. If D is deep enough, all paths in the trellis will converge to this

branch with high probability, and the decoded symbol will be correct.

It should be remarked that it is not possible to make the probability that the paths

will converge equal to onewith finite D.When the paths do not converge to the same branch,
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there is a probability that the wrong branch will be reached. If this happens, an error will be

made by the algorithm. Because of this situation, the implementable algorithm is not

optimum, in the sense that it has a probability of bit error, Pb, larger than that of the

theoretical algorithm.

The memory D is used in a circular manner; that is, the memory space used by the

branch just decoded is used to store the distance information of the next branch received.

Two pointers are needed to address the memory: one that points to the start, and another

that points to the end of the memory. In the algorithm, variable start is used to point at the

beginning of the treüis, and t is used to point at its end. Variable Dsize, which corresponds

to the size of memory D, is needed to wrap the pointers when they reach the end of the

memory. Carry bits are discarded.

What foüows is the algorithm modified as described above.
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Definitions

Let:

D an array as defined above, but of finite size

Dsize the number of columns of D. The number of columns corresponds to the

number of time iterations that can be stored in D

mod(x, y) a function that returns x modulus ylt is used to wrap the memory

pointers to the number of columns of D

R =

rh r2, r3, ... the sequence of received, noisy symbols that are to be decoded

U the set of states of the convolutional coder

T a trellis, defined as the pair (S, gT) where

Se U x U is a set of ordered pairs (x, y), specifying that state x is connected

to state y. That is, (x, y) is a branch in the trelÜs

gT: S -> Kis a function that takes an element of S and returns the vector

that corresponds to the output of the coder for that element. This vector

can be seen as a label associated to branch (x, y), and as such is frequently

called branch label

M a vector, where the element in position x is the accumulated distance for

the path that ends in state x. It is initialized to zero

Mjemp: a vector used to store temporal valúes, before storing them inM

D a two-dimensional array where the algorithm stores the paths it creates.

Each column is a time iteration, and each row is a state. Element (vv, z)

contains the previous state for state w at time iteration z. It is initialized

to zero

O is the output (decoded) sequence

1 1 is the concatenation operator. x3 | | (x2, x:) = x¿, x2, x.

Algorithm: Viterbi_Implementable(i., U, T);

Inputs: A sequence of noisy symbols

Output: A sequence of uncoded symbols
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Viterbi_Implementable(i_, U, T)
{

start = 0; // pointer to start (oldest branch) of structure D

t = 0; // t counts number of symbols in R

while(! is_empty(i_)) { // repeat for all symbols in R, taken in sequence
t = modf. + 1, Dsize); // update iteration counter

r = getNext(i?); // get next element from R and remove it

for (x : x e U) { // find minimum distancéetween each state in coder

// trellis and received symbol
m = infinity;
for (y : (y,x) eS) { // find minimum distance between each branch that

// ends in state x and received symbol
d = distance(r, gT(y, xf) + M(y);
if (d<m){

m = d; // find and store minimum distance

o = y; // and state from which it originates
}

}

Mjemp(x) = m; // New path distance is m

currentjtate
= D(mimmum(Mjemp), t); // find shortest path

D(x, t) = o; // store previous state in the trajectory
}

M =Mjemp; // Update path distances

if (full(D)) { // if decoder memory is full
j = t ; // j points to end of D (most recent branch)

while(TRUE) { // repeat until start of D is reached

nextjtate
= D (currentjtate, f); // find next state in path

if (/' = start) { // check if oldest branch has been

// reached

O = O | | decode(nextjtate, currentjtate); // decode symbol that

// corresponds to oldest

// branch in path
start = mod(start + 1, Dsize); // update start of D

break;

}

currentjtate
= nextjtate; // move back one step in D

j
= mod(j

- 1, Dsize); // update pointer to D

}

}

}

}

This algorithm is, in principie, attainable, because it only needs a finite, constant

amount of memory.
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2.3.6 A note on coding gain

It has been mentioned that a coding gain of about 7dB was to be expectedwhen using

convolutional coding. Since, strictly speaking, the modified Viterbi algorithm is no longer

optimal (for the reasons mentioned above), some loss in coding gain is to be expected.

However, when choosing a proper valué forD (around 5L) in the algorithm above, the

performance loss is so small as to be undetectable. This happens because the probability of

choosing the correct path after about 51 iterations is very high.

In the next chapter, many of the variables affecting the algorithm are modified and

the resulting behavior quantified. It is shown that a very efficient architecture, incorporating

many changes to the algorithm, is attainable without much loss in error bit rate performance.

2.3.7 Punctured convolutional codes

A code of rate V¿ takes one bit as input and outputs two bits. However, if the coder is

modified so that every fourth output bit is not transmitted (i.e., it is deleted), then the code

has been transformed into a 2/3 code. If two out of six output bits are removed, then the code

has been transformed into a 3/4 code [26].

This technique for converting an r=l/2 code into a r^l/2 code is known as

puncturing. The bit removal is not arbitrary; it follows rules known as puncturing pattern.

This pattern must be known to the decoder. It has been shown that, in some cases, a

punctured rx code has the same performance as a non punctured r. code. The punctured code

can still be decoded by the 1/2 Viterbi decoder, provided that erasures are inserted in place of

the removed bits.

Using this technique, the rate 1/2 decoder presented in this thesis may, with the

addition of puncturing logic, be used to decode punctured convolutional codes.

2.3.8 Optimum codes

Through exhaustive, empirical searching, the best code vectors have been found for

a number of code rates and constraint lengths [2]. For 1/2, L=7 codes like the one

implemented in this thesis, the optimum connection vectors have been found to be ( 1 00 1 1 1 1 )
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and (1101101) [1]. In all simulations and results presented hereafter, a code that uses these

vectors is assumed.
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ó The Viterbi algorithm

3.1 Analysis of complexity

As mentioned previously, the time complexity of an algorithm is defined as the

number of operations it must perform. The complexity of the Viterbi algorithm grows

exponentiaüy: whenever L is increased in one, the complexity doubles.

An implementable versión of the Viterbi algorithm has already been presented.

However, the question still remains whether it can be implemented at reasonable cost, and

what speed (in decoded bits per second) it can attain. The degradation in bit error rate

performance introduced by limiting the memory size has not been quantified, either.

The algorithm's performance depends on other variables besides L; the survivor path

length and the metric storage method, for example. All these variables must be identified,

and their effect on the performance of the algorithm quantified.

The aim of this analysis is to provide information on how the algorithm can be

modified to achievemáximum bit rate, andwhat the effects are on bit error rate performance.

To carry out this analysis, a computer simulation model of the algorithm was built.

The variables to change were identified, and a simulation test plan was developed to

systematize the process. The simulation test plan is presented in Appendix C.

The complexity measurements were made taking into account that the objective is

a hardware implementation. With this in mind, three kinds of operations were identified:

•

ckp operations are those that take a clock period to complete. These operations

include every for iteration in the algorithm, and operations that involve register

transfers, or interchange of valúes between variables.

•
mem operations represent accesses to the survivor path memory

• alo operations are arithmetic or logic operations

27



The Viterbi algorithm lends itself to parallelism, at least in some parts. In this section,

however, parallelism is not considered; the concern is only to modify the algorithm in order

to reduce the number of operations that need to be performed. Paralleüsm is addressed in the

next chapter.

The analysis was made for an L=7, r=l/2 decoder, for an AWGN channel. QAM-4

modulation is assumed, with the signal constellation shown in figure 7

Results are presented in graphics or tables, as appropriate. The analysis is usually

performed for several valúes of E/N0. Reference is made also to bit error probabiüty, or Ph.

The total number of operations presented refers to the average per decoded bit. For

decoding speed calculations, a clock frequency of 25MHz is assumed.
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Figure 7- Signal constellation for QAA1-4

3.2 Variables of the algorithm

It was determined that the following variables of the algorithm can be modified:

• distance normalization method

• size of survivor path memory

• traceback method

The distance metric associated to each pathmust be stored at all times. This distance

grows constantly, and, since the registers that store it are
of finite length, theywill eventually

overflow. An overflow is to be avoided, since it will turn what was a large distance into a

very small one.
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One way to avoid overflows is through register normalization [6]. This operation

is very time consuming, since the usualway to do it is to find the smallest distance caículated

so far, and then subtract it from all registers. There are other ways to do it, which are

investigated below.

The survivor path memory length has a very clear impact on all aspects of decoding

performance. On one hand, the larger the memory, the better the possibility that aü paths

have converged to themost likely path. On the other hand, a larger thememorymeansmore

siücon área and a longer traceback operation. The objective of this part of the analysis is to

find the optimum survivor path memory length, as weü as quantifying the cost of reducing

this size.

There are, likewise, several methods to perform the traceback. The survivor path

memory can also be organized in several ways. These aspects of the algorithm are also

analyzed.

3.3 The unmodified algorithm

For comparison purposes, it is best to present first the results obtained with an

unmodified versión of the Viterbi algorithm. In order to minimize the effect of the survivor

path memory length on the results, a length of 100 was chosen. Results are presented in

figure 9 and table 1.

Just from the number of clock cycles required, it is seen that the máximum bit rate

attainable by this algorithm is about 25MHz*bit/8678 = 2.88 kilobits per second. In the best

case, when memory operations take one clock cycle, as weü as all arithmetic and logic

operations, the máximum bit rate is reduced to 2.82kbps.
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ckp mem alo

8678 164 8513

Table 1.Number of operations required for decoding
one bit

Figure 9Pbvs. ffN.

It can be seen that the number of logic or arithmetic operations performed is not very

significant. Themajor bottleneck in this algorithm is the raw number of clock cycles needed.

However, the number of memory accesses must be taken into account also, since they can

take a significant amount of time to complete, and could potentially turn into another

bottleneck.

The algorithm must be optimized to reduce these two numbers.

3.4 Distance normalization

The path metrics that are caículated by the algorithm have to be stored in registers

(the path metrics are variablesM in the algorithm Viterbi_Theoretical, described in section

3.3.2). These valúes tend to grow as time passes, causing overflows in the registers. Register

overflow causes the stored valué to be inaccurate and smaller than it was, i.e., 255+2 = 1 if

8-bit registers are used. This problem is serious because the smallest pathmetric for each state

has to be chosen at each iteration; this smallest metric cannot be found if there has been an

overflow.

Figure 10 shows how the path metric for state 0 evolves for iterations 100,000 to

101,000 of the algorithm. Simulation shows that path metrics for all states behave similarly.
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Figure 10. Path metric for iterations 100,000 to 101,000

It can be seen that the metrics grow constantly, and register overflowwül eventuaüy occur.

Several methods have been proposed to solve this problem. These methods are [6] :

Method 1: to normaüze the path metric registers every time iteration

Method 2: to normaüze the path metric registers every given number of iterations

Method 3: to use two's-complement arithmetic to avoid normalization

Method 2 can be seen as a generalization of method 1 . Both have the advantage of

keeping the path metrics within a range. One disadvantage is that, if the path metrics

diverge widely from one another, then normalization alonemight not be enough to avoid an

overflow. In general, path metric behavior is not a weil understood subject [7], except for a

few, restricted cases. Simulation has not proven to be a reliable method for estimating path

metric behavior over long periods of time. Another disadvantage is that the operations

involved (comparison and subtraction) are very expensive in terms of silicon área and time

necessary for completion.

The disadvantages of method 2 have as consequences unpredictable bursts of errors

when a register overflows, and a slowdown of the algorithm because of the time needed to

normaüze all registers. No solution has been found to the overflow problem; it can only be
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suggested to make the path metric registers large, and to normaüze often, to minimize the

probability that it happens.

TheViterbi algorithm, modified to normaüze pathmetrics according tomethod 2, can

be described as follows. Most definitions and comments have been omitted, to avoid

repetition.

Definitions

Let:

NUM be a number that indicates how often to normaüze the registers. NUM

equal to one means to normaüze every iteration

Algorithm: Viterbi_Implementable_Normaüzing(_?, U, T);

Inputs: A sequence of noisy symbols

Output: A sequence of uncoded symbols
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Viterbi_Implementable_Normalizing(i_, U, T)
{

start = 0;
_=0;
norm counter = 1;

while (! is emptj(_.)) {
t = mod(. + 1, Dsize);
r = getNext(i_);
for (x : x e U) {

m = infinity;
for (y:(y,x)eS)

{

// pointer to start (oldest branch) of structure D

// t counts number of symbols in R

// counter used to know when to normalize path
// metrics

// repeat for all symbols in R, taken in sequence
// update iteration counter

// get next element from R and remove it

// find minimum distance between each state in coder

// trellis and received symbol

// find minimum distance between each branch that

// ends in state x and received symbol

d = distance(r, gT(y, x)) + M(y);
if (d < m)
{

m = d; // find and store minimum distance

o = y; // and state from which it originates

}

if (normjounter = 0) {
m = m - minimum(AÍ);

}

// if it s time for normalization

// subtract minimum metric

}

Mjemp(x) = m; // New path distance is m

currentjtate
= D(minimum(AÍ_íem^), í); // find shortest path

D(x, t) = o; // store previous state in the trajectory
}

normjounter
= taod(normjounter + 1, NUM); // update normjounter

M = Mjemp; // Update path distances

if (full(D)) { // if decoder memory is full
j = t; // j points to end of D (most recent branch)

while(TRUE) { // repeat until start of D is reached

nextjtate
= D (currentjtate, /); // find next state in path

if (/' = start) { // check if oldest branch has been

// reached

O = O \\ decode(nextjtate, currentjtate); // decode symbol that

// corresponds to oldest

start = mod(start + 1, Dsize);
break;

}
currentjtate

= nextjtate;

j
= mod(j 1, Dsize);

// branch in path
// update start of D

// move back one step in D

// update pointer to D
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As can be seen, the algorithm requires first to find theminimum element of a vector,

and then to subtract this number from all elements of another vector. Both comparison and

subtraction, while conceptually simple, require large área in siücon and are slow.

Themethod, however, appears to be efficient, as shown in figure 1 1. This figure shows

the same path metric as figure 10, but using the normalizing algorithm shown above, with

NUM equal to one.
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Figure 11. Normalized path metric for iterations 100,000 to 101,000

The pathmetric now appears to be bounded. Simulation ofP„ vs. E/Nc shows no degradation

from that of figure 9.

The valué of variable NUM is related to the size of the registers. The larger the

registers, the longer they can be allowed to growwithout normalizing. A large valué of NUM

has some benefits regarding the time the normalization process takes, and 'úNUM is properly

chosen, no degradation in performance is observed in?,, vs. E/N. performance. Table 2 shows

the operations required per decoded symbol for NUM equal to 10. It can be seen that the

reduction in the number of operations performed is significant. It is 84% for clock periods,

and almost 86% for the arithmetic operations. Using the same criteria as before, we can

expect a decoding speed of about 16kbps, which represents an increase in a factor of 5.8 over
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the unmodified algorithm.

ckp mem alo

1363 164 1197

Table 2. Number of operations required for decoding
one bit,M/M=10

Method 3 [6] of path metric normalization is different from method 2 in that it

doesn't attempt to avoid overflows. A different method of comparison is used to determine

the smaüest path metric in spite of an overflow. Let m, and mz be two path metrics to be

compared, and DmM be the máximum difference between them. Dmax is determined

empiricaüy, by simulation. Let the path metric registers be, at least, of size ZDmax. Then, mi

is less than or equal to m2 if the most significant bit of m, m2, in two's complement

arithmetic, is equal to one; otherwise, my>mz. Following is the Viterbi algorithm modified

according to this method.

Definitions

Let:

M a vector, where the element in positionx is the accumulated distance for the

path that ends in state x. Elements ofM may not be larger than 2Dmax.M is

initialized to zero

MSB(x) a function that returns the most significant bit of binary number x

sum2c(x , y) a function that returns x+y, in 2's-complement arithmetic

Algorithm: Viterbi_Implementable_2's_complement(i., U, 7);

Inputs: A sequence of noisy symbols

Output: A sequence of uncoded symbols
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ViterbiJ-mplementable 2's_Complement(i_, U, T)
{

start = 0; // pointer to start (oldest branch) of structure D

f = 0; // t counts number of symbols in R

while(! is_empty(i_)) { // repeat for all symbols in R, taken in sequence
t = mod(t + 1, Dsize); // update iteration counter

r = getNext(i_); // get next element from R and remove it

for (x : x e U) { // find minimum distancéetween each state in coder

// trellis and received symbol
tn = 2Dmax;
for (y : (y,x) eS) { // find minimum distance between each branch that

// ends in state x and received symbol
d = mod(distance(r, gT(y, x)) + M(y), 2Dmax);
if (MSB(sum2c(¿, m)) = 1) { // if d<m

m = d; // find and store minimum distance

o = y; // and state from which it originates

}

}

Mjemp(x) = m; // New path distance is m

currentjtate
= D(minimum(M_?em/?), í); // find shortest path

D(x, t) = o; // store previous state in the trajectory
}

M =Mjemp; // Update path distances

if (full(D)) { // if decoder memory is full

j = t; // j points to end of D (most recent branch)

while(TRUE) { // repeat until start of D is reached

nextjtate
= D (currentjtate, j); // find next state in path

if (j = start) { // check if oldest branch has been

// reached

O = O | | decode(nextjtate, currentjtate); // decode symbol that

// corresponds to oldest

// branch in path
start = vCmOd(start + 1, Dsize); // update start of D

break;

}

currentjtate
= nextjtate; // move back one step in D

j = modf/ 1, Dsize); // update pointer to D

}

}

}

It should be noted that the modulus operation does not involve any real operation in

hardware. When two quantities are added, ignoring the carry bit, and the result is stored in
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a register of « bits, the quantity stored is the sum modulus 2"

This method avoids register normalization, and at the same time provides for a way

to perform the comparison operation using only arithmetic operations. Table 3 shows how

this method performs in comparison with method 2.

ckp mem alo

422 164 321

Table 3. Number of operations required for decoding
one bit, two's complement arithmetic

This method proves to be even better than method 2, with reductions of 95% in the

number of clock periods needed to decode one symbol and 96% in the number of arithmetic

operations. Now, the expected decoding speed is increased to around 43kbps, which

represents a factor of about 15 with respect to the unmodified algorithm.

Bothmethods share the same disadvantage: they depend on knowledge about the path

metrics behavior. This knowledge cannot be obtained, given the current state of research. The

best approach is, then, to simúlate and be conservative with the results. This problem will

be addressed further in chapter 4. Given this situation, method 3 shows much better

performance, and requires less silicon área, than method 2, and so it is the method selected

for implementation.

3.5 Survivor path memory modifications

There are two points of the Viterbi algorithm related to the survivor path memory

that can bemodified to improve the decoding speed. One is the survivor pathmemory length:

how small can it be made, so as to improve the traceback speed whilemaintaining the same,

or cióse to the same, bit-error performance1?- The other is, if it will be assumed that all the

paths will converge at some point in the survivor path memory, then it should be possible

to decode several branches beyond the point of convergence, and in this way to decode several

branches in a single traceback operation. These two points are addressed in what follows.
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3.5.1 Survivor path memory length

The method used to evalúate this aspect of the algorithm was to fix E/Ne, and find

Ph for various memory lengths. Five valúes of £/N„ were used: 1.93dB, 2.5dB, 3.1dB, 3.74dB,

and 4.44dB. These valúes correspond to noise power so2=0.8, 0.75, 0.7, 0.65, and 0.6,

respectively, for the signal shown in figure 7.

The number of operations required in each case vary, because as the memory is made

shorter, fewer memory accesses are required during traceback. However, a cost is paid in

performance, since a shortermemory lowers the probability that all pathswiü converge, and

so the probability of decoding the correct message is reduced. This is a situation where a

compromise must be made between bit-error probability and decoding speed.

Results are shown in figures 12 and 13. Survivor path memory length is caüed SPL.
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Figures 12 and 135PL vs. $ SPL vs. operations, #¡N6 = 1.9SdB

It can be seen that bit-error performance is heavily dependent on SPL for Ef/N0 =

1.93dB. It starts to degrade for SPL = 85 or so. This is to be expected, since noise power is large

compared to signal power, and this will cause many received errors. This situation slows

down path convergence. Also, it should be noted that the degradation of performance is

rather sharp from SPL less than approximately 60. After 60, the rate of degradation is slow.

On the other hand, it can be seen that the required number of clock periods, as weil

as the required number of memory accesses, have a linear dependence SPL. The number of
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memory accesses almost halves, from 164 to 84, while the number of clock periods goes from

422 to 342, a decrease of 19%. The number of arithmetic operations remains unchanged.

For£/N0 = 2.5dB, results are presented in figures 14 and 15.

Figures 14 and 1SSPL vs. f SPL vs. operations,^, = 2.5dB

Figure 14 shows that P¡, does not change significantly for SPL>70. The performance

of the algorithm degrades very rapidly for SPL<70.

On the other hand, figures 13 and 15 are identical. The number of operations required

per decoded branch are the same, regardless of the noise power. This is to be expected, as it

can be seen in the description of the algorithm that the number of operations performed do

not depend on the number of errors in the sequence. For this reason, only SPL vs. Ph results

wül be presented in what follows.

Figures 16, 17 and 18 show the results for EJN. = 3.1dB, 3.74dB, and 4.44dB,

respectively.
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Several conclusions can be drawn from these results. First, it can be seen that Ph does

not degrade slowlywith SPL; if SPL is lower than a threshold, then Pb degrades very rapidly.

Above the threshold, Pb does not improve significantly. The consequence is that it is not

feasible to tradememory for bit-error rate performance; the best course of action is to choose

SPL as cióse to the threshold as possible.

Second, the number of arithmetic or logic operations does not depend on SPL, as

expected from the algorithm. The number of clock cycles, as weü as the number ofmemory

accesses, depends linearly on SPL. Going from a memory length of 100 to a length of 20

decreases the number of clock cycles from 422 to 342 (about 19%), and the number of
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memory accesses from 164 to 84 (about 51%). The consequence is that this modification is

better for reducing the number of memory accesses than the other two types of operations.

Real Communications systems rarely opérate at Ph more than IO"3 The reason is that

even the most forgiving applications, like voice, become too unreliable to be of any use for

this quantity of errors. For the Viterbi decoder being proposed (r=l/2, L=7), Ph=10'3 is

achieved, theoreticaüy, at E¡/N0 approximately equal to 3dB.

If it is assumed that the Viterbi decoder being proposed is not going to be used in

appücations where E/N¡) is less than 3dB, then it can be concluded that the SPL used should

be around 70. If memory length is less than 70, the bit-error rate starts to degrade.

Table 4 shows the number of operations required with SPL=70.

ckp mem alo

397 139 321

Table 4.Number of operations required for decoding
one bit, SPL=70

Now, the expected bit rate is about 47kbps, which represents an improvement of

about 9% over the previous algorithm optimization (section 3.4).

3.5.2 Number of branches decoded at a time

So far, it has been assumed that, after SPL iterations of the algorithm, all paths in the

treüis converge to a branch found at the start of the trellis; that is, if all paths are traced back

SPL branches to the start of the trellis memory, all paths will arrive at the same branch.

This idea can be exploited to reduce the number of memory accesses needed per

decoded branch. If the minimum survivor path memory length, SPL, is increased by some

quantity, q, thenq+1 branches can be decoded in a single traceback operation. This is because

if all paths are assumed to converge to the same branch in a memory of length SPL, then all

paths wiü also converge to the oldest q + 1 branches in a memory of length SPL+q.

On the other hand, the main disadvantage of this approach is that, in the event that
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paths do not converge to a single branch, and the wrong branch is chosen during traceback,

then a large number of errors will occur, instead of a single one. This could cause a large

deterioration on the decoder's performance.

If an SPL of 70 is assumed, the results for Q=10, Q=20, and Q=30 are presented in

the foUowing figures and tables. In each case, the results are compared against those of the

unmodified algorithm, presented in figure 9.
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ckp mem alo

330 72 321

Table 5.Number of operations required for decoding

one bit, 5^=70, Q=10

Figure 19. %/N. vs. Pb, SPL =70, Q=10
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ckp mem alo

327 68 321

Table 6. Number of operations required for decoding

one bit, SPL=10, 0=20

Figure 20. fyN, vs. Pb, SPL =70, Q=20
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ckp mem alo

326 67 321

Table 7.Number of operations required for decoding

one bit, SPL=1Q, 0=30

Figure 21. Ij/N, vs. Pb, SPL =70, Q=30

Figures 19 to 21 show that there is almost no deviation from the optimum in

performance, especiaüy at higher signal-to-noise ratios. The average number of memory

accesses per decoded symbol, however, grows according to the formula:

mem = 64 +

(
SPL + q^ (5)

This formula tends to 64 as Q grows. 64 is the number of memory accesses required to store

the previous state addresses in the trellis, because for I=7, there are 64 states.

3.5.3 Traceback method

So far the minimum SPL has been established. It has also been found that paths can

be traced back and decoded with negligible loss in bit-error rate performance after this length.

However, it remains to be determined whether a traceback architecture allows the decoding

of one symbol per clock cycle, as required in the project objectives.

In fact, it is impossible to decode one symbol per clock cycle using traceback [9] . To

see why, let us consider the diagram of the survivor path memory shown in figure 22.

The traceback algorithm effectively divides the survivor path memory in three blocks. The

decode block (length Q) is where all paths have converged and data can be decoded. In the
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merge block (lengthM) there are a multitude of possible paths. The idea is to use traceback

in the merge block to find the initial state in the decode block, and then use traceback to

decode the path. The write block (length W) is where new paths are written.

Figure 22. Survivor Path Memory

Once the path in the decode block has been decoded, this memory área is now used

as the write block, a portion of the merge block turns into the new decode block, and so on.

The memory is used in a circular, orwrapping, way. For this reason, the decode block and the

write block must have the same length (Q=W).

The reasonwhy it is impossible to decode one symbol per clock cyclewith this scheme

is that it requires the traceback ofM+Q branches, while it outputs only Q symbols. It is

assumed that one branch can be read and another can be written per clock cycle.

Clearly, in the time it takes to read M+Q branches, the same quantity of new

branches must be written. The write área, however, has length of only Q. To avoid losing

data a mismatch between read and write rates must exist, which prevents the circuit from

decoding one symbol per clock cycle.

(To decode one symbol per clock cyclemeans that a single clock frequency is used, and

that a symbol is admitted and another decoded per clock period).
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If Q is made very large in comparison toM, then cióse to one symbol can be decoded

per clock. However, expanding Q is very costly in terms of memory área required.

There are a number of modifications that can be made to the traceback algorithm to

accommodate the decoding of one symbol per clock [5], [9], [10], [11]. All of them have one

of the foUowing disadvantages: they either require a larger survivor path memory, or they

present extra complexity requiring a large amount of silicon área.

There are threemain groups of techniques to improve the throughput of the traceback

algorithm. They are briefly explained below.

p-pointer traceback. This technique supports traceback of p paths concurrently,

where each path occupies a different section of the survivor pathmemory, and is traced using

an independent pointer. Since there is some overlap in the memory sections covered by each

pointer, then the total amount of memory required is [5]:

D= M o
2

^

2 +—
7

P-\
forp>\ (6)

To this increase in memory length, it must be added the increase in logic overhead

introduced by the múltiplememory partitions and pointers.

Hybrid pre-traceback.Thismethodworks by applying look-ahead to the traceback.

Instead of storing each branch in the survivor memory, it stores only every 8 branch, in fact

saving 5 - 1 traceback steps. It uses a register-exchange network to calcúlate the branches.

Hybrid trace-forward.Trace-forward estimates the initial state of the decode block

a priori, avoiding traceback of themerge block. To describe how itworks, it is useful to define

the taü of a survivor path. Given a time reference t
, every trellis state at time í+8 has an

associated survivor path that traces back to some state at time t. This state is referred to as

Tsm 5
. For b>M, all tails should converge to the same state, and henee any tail can be used

as an estimate of the initial state of the decode block.

The trace forward method is a recursion used to calcúlate the tails of survivor paths

at the merge block at the same time they are beingwritten to the memory. Associated with

every state in the treüis is a register, which contains the tail state for that state. The tail
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registers are initialized at time m, when the survivor paths are of length zero, and so the tail

state and the current state are the same. The initial condition of the trace-forward method

is then:

Ko - s

The trace-forwardmethod consists updating the tail register of each statewith the tail

of its predecessor state, as foüows:

rpS rpS

im,A
~~

-Va-i (7)

As an example, let us consider the following treüis:

Figure 23. An Example Trellis

Now, let us calcúlate the evolution of the tail registers. At first, they are initialized with the

current state, as foüows:

Ko = °

'■mfi
= 1

Ko = 2

'mfi
=

*

Now, observing the surviving paths in the trellis, and according to recursion (7), the tail

states for the next iteration should be:
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T° =2
1m,l *-

T\ = 0
m,\

Kx = i
m,i

7^. = 1
m.l

The taÜ state for state 0 is now 2, because (as shown in the trellis) the branch connecting

state 0 with state 2 has been chosen as the most likely. So, the taü state for the path that

ends in state 0, and has length 1, is 2.

For the rest of the iterations, the evolution of the tail registers is as follows:

C = 2 r¿ = i rM°r4 = i rm°5 = i

Ka = i t,3 = o KA = \ rm, = \

K- = o K, = i t\ = o t\ = \
Lm,2 Lm,3 m,4 m,5

Tm2 = l K, = l K, = 0 T*=l
m,¿ m,i m,4 m,5

It is seen how, for this simple example, all tails have converged to the initial state 1.

This is correct: it can be observed in the treüis that aü surviving paths start, in fact, in state

1. So, state 1 can be used as an estimate to traceback and decode whatever paths are behind

it, with confidence.

The área and memory requirements for these methods for enhancing traceback are

summarized in table 8 [5].

Architecture Memory

Size (SPL)

Relative

Área

2-pointer traceback 4M 1

3-pointer traceback 3M 1

hybrid pre-traceback 2M 0.66

hybrid trace forward 2M 0.59

Table 8. Área estimates for traceback architectures

Given that it uses less área and is conceptually very simple, the hybrid trace forward
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architecture is proposed for implementation.

3.6 Memory Organization

There are two important issues to considerwhen planning the memory organization

of the decoder. One is how the paths are going to be represented in memory; the other is how

the memory will be built to allow the trace forward algorithm to work.

3.6.1 Path representation

Survivor path memory requires a very large amount of silicon área. For a 64-state

decoder, with SPL+Q=100, the memory requirements are 200 branches times 64 states,

times 6 bits, or 76,800 bits. (6 bits are needed to address the previous state in the trellis, and

the memory required is 2_W as per Table 8). This amount prevents all FPGA, and all but the

most expensive ASIC implementations. It is clear that, in order to achieve a VLSI

implementation at a reasonable cost, a reduction in the amount of memory required is

indispensable.

(The other possibility, to use external RAM for storing the trelÜs, is expensive and

slow, and does not comply with the requirements.)

The traceback algorithm can indeed be modified to use less memory for traceback. If

the code rate is assumed to be 1/2, then it can be observed from the resulting trellis (see Figure

5) that each state leads to exactly two states, and therefore may have as predecessors only

two definite states. It would seem that only one bit should be needed to address the previous

state, because there are only two possible previous states. This bit is called decisión bit

Given the structure of convolutional encoders, it is straightforward to calcúlate the

previous state, given the current state and the decisión bit. The previous state can be

caículated as follows:

previous state = (current state« l)\\decision bit (8)

where "<<1" means left-shift, discarding the leftmost bit, and "| |" is the concatenation

operation as already defined above.

With this modification, the memory requirements are reduced
from 76,800 bits to
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12,800 bits, which makes implementation in an FPGA or small ASIC feasible. The bit-error

probabiüty is not increased because of this change, because the change only affects the way

the survivor path memory is addressed.

3.6.2 Survivor path memory blocks

In order to implement the hybrid trace forward architecture, the memory is divided

in two blocks (see Fig. 24).

Decode Meige Wn»

Bock Sock Block

D

x
D

x e_

Tncetack < 1 I * Write

I ^ Trace fbnwrd

Figure 24. Trace Forward Memory Organization

For clarity, the memory is presented in Fig. 24 as having three blocks; however,

because the read and write rates are the same, the write block can be folded onto the decode

block, and thus the memory requirement is 2D.

The sequence of events in the memory is as described in table 10. For simpücity, the

two memory blocks have been simply labeled B1 and BZ. Each row in the table corresponds

to a change in the function of the memory blocks. The direction in which data is written or

read from the memory is indicated with arrows.

It is observed that states 4 through 7 repeat continuously; that is, time step 8 is

identical to time step 4, time step 9 to time step 5, and so on. This suggests the

implementation of the memory controller as a 4-state FSM, which will cycle the memory
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functions as described in table 9. Time steps are used to indicate the sequence of operations.

The task of each memory block, B1 andBl, is indicated. Arrows are used to indicate the order

in which memory locations are addressed; an arrow pointing left indicates increasing

addresses, and an arrow pointing right indicates decreasing addresses.

| Time Step Bl B2

1 writing data
—>

calculating tail
—>

-empty—

2 data —>

-full-

writing data
—>

calculating tail —>

3 data —>

traceback <—

writing data <—

calculating tail <
—

data —>

-full-

4 data <—

-full-

data —>

traceback <—

writing data <
—

calculating tail <
—

5 data <—

traceback —>

writing data
—>

calculating tail
—>

data <---

-full-

6 data—>

-full-

data <—

traceback —>

writing data
—>

calculating tail—>

7 data —>

traceback <—

writing data <—

calculating tail <
—

data —>

-full-

Table 9- Sequence of events in survivor path memory

The same memory block can be used to both trace back one symbol, and write the

next symbol at the same time. This requires a memory that can be read and written to at the
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same time (in the samememory location) . Mostmemories, though certainlynot all, have this

capability. In particular, synchronousmemories can be read andwritten to the same location

in the same clock cycle.

Note that data is sometimes ordered in an increasing order, and sometimes in a

decreasing order. This adds a small amount of complexity to the memory controller.

Of course, the valué of D must be chosen accordingly to what has been found about

the minimum valué of SPL in section 3.5.1.

With this memory architecture, while decisión bits are being written in the write

block, the taü of the paths is being caículated. At the same time, the decode block is being

traced back, with the previously caículated tail as starting state, and data bits are being

decoded.

3.7 Summary of results

Several modifications to the Viterbi algorithm have been proposed. These

modifications address the áreas of register normalization, survivor path storage, survivor path

memory organization, and traceback method.

Figure 20 shows a comparison between results for the algorithm without any

modifications (figure 7) and the optimized algorithm with SPL=70 and Q=20. Table 10

summarizes the algorithm complexity for each case (the optimized algorithm includes 64

extra memory accesses to account for the tail calculation). The decoding speed in the

unoptimized case has been caículated as approximately 2.8kbps, in the case when memory

accesses and arithmetic-logic operations take a clock cycle to complete. The decoding speed

of the fuüy optimized algorithm is approximately 54.5kbps. This represents an increase by

a factor of more than 19, obtained by manipulation of the algorithm, with negligible

degradation in bit-error probability.
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algorithm ckp mem alo

unmodified 8678 164 8513

optimized 326 132 321

Table 10. Number of operations requiredfor

decoding one bit, for the unmodified and the

optimized algorithms.

Of course, this decoding speed is still far from the goal of one symbol per clock cycle.

The remaining speed will have to be obtained not from changes to the algorithm per se, but

by exploiting parallelism and performing several operations concurrently. This is done in

chapter 4.

3.8 Fully optimized algorithm

The fully optimized algorithm, including all modifications made in the previous

section, is presented. This versión of the algorithm is specific for code rate r equal to 1/2.

The algorithm does not include the trace forwardmethod. However, it should be taken

into account that accesses to memory D occur as described in section 3.6.2.

Definitions

Let:

R =

ru r2, r¡, ... the sequence of received, noisy symbols that are to be decoded

U the set of states of the convolutional coder

T a trellis, defined as the pair (S, gT) where
S I U x U is a set of ordered pairs (x, y), specifying that state x is

connected to state y. That is, (x, y) is a branch in the trellis

gT: S -> R1 is a function that takes an element of S and returns the vector

that corresponds to the output of the coder for that element
M a vector, where the element in position _. is the accumulated distance for the

path that ends in state x. Elements ofAi may not be larger than 2Dmax.M is

initialized to zero

Mjemp a vector used to store temporal valúes, before storing them inM

P a vector used to store state tails. It has a row for each state in U.
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D a finite array where the algorithm stores the paths it creates. Each column
is a time iteration, and each row is a state. Element (w, z) contains the

previous state for state w at time iteration z. It is initiaÜzed to zero

O is the output (decoded) sequence
1 1 is the concatenation operator. x3 1 1 (x2, x.) = x3, x2, x.

Q a number, which indicates howmany branches are to be decoded in a single
traceback

SPL the number of columns of D. The number of columns correspond to the
number of time iterations that can be stored in D

mod(x, y) a function that returns x modulus y

MSB(x) a function that returns the most significant bit of binary number x

sum2c(x, y) a function that returns x+y, in 2's-complement arithmetic
h: (U ,B) -> U

,
where B={0,1}, is a function that takes a state of the trelÜs,

and a binary number, and returns the previous state in the treüis

Algorithm: Viterbi_Optimized(i_, U, 7);

Inputs: A sequence of noisy symbols
Output: A sequence of uncoded symbols
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Viterbi_Optimized(fl, U, T)

start = 0;
í = 0;
while(! is empty(i_)) {

t = mod~(t + 1, SPL);
r = eetNext(i_);
for (x : x e U) {

n =0;
for (y:(y,x)eS){

// pointer to start (oldest branch) of structure D

// t counts number of symbols in R

// repeat for all symbols in R, taken in sequence
// update iteration counter

// get next element from R and remove it

// find minimumdistance between each state in coder

// trellis and received symbol

}

// find minimum distance between each branch that

// ends in state x and received symbol
d„ = mod(distance(r, gT(y, x)) + M(y), 2Dmax);
n - n + 1;

// if 4<d.
// new path distance is m

// store previous state in the trajectory

// new path distance is m

// store previous state in the trajectory

// find shortest path

if (MSB(sum2c(4 d,)) = 1) {
M temp(x) = d0;
D{x, t) = 0;

}
else {
M temp(x) = dj\

Dft *) = 1;
}
currentjtate

= D(mimmum(Mjemp), t);

M =M temp; // update vath distances

if (full(D)) { // if decoder memory is full
i = SPL; // i counts number of branches processed
j
=

t; // j points to end of D (earliest branch)
whiíe(TRUE) { // repeat until start of D is reached

nextjtate
= D(currentjtate, /); // find next state in path

if (/' <Q) { // check if Q or less branches remain

O = Ó 1 1 decode(«exí_síi3íe, currentjtate); // decode symbol that
// corresponds to current

}
if (j = start) {
start = start + Q;
break;

}
currentjtate

= next state;

j = mod (/
- 1, Dsize);

i = i 1;

// branch in path

// if oldest branch in trellis reached

// update start of D and exit

// move back one step in D

// update pointer to D

// update branch counter
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T1 Implementation

In this chapter an architecture for implementing the Viterbi algorithm is proposed.

This architecture is simulated in a computer system and then implemented and verified in

a VLSI circuit.

The architecture proposed strives to meet the requirements set forth in section 1.2.

The architecture seeks to exploit paraüelism whenever possible; throughout the whole

chapter, this search for paralleÜsm wül be evident.

4.1 Architecture

The architecture proposed divides theViterbi algorithm in threemodules. Onemodule

calculates the path metrics and selects the shortest one; it is caüed the add-compare-select

(ACS) module. The second is the survivor path memory; all paths are stored here. The third

module performs the trace forward and traceback, and decodes the information.

This partition foüows directly from the algorithm. It can be observed that first

survivor paths are selected, then stored, then processed.

A block diagram of these modules is presented in figure 25.

As seen in section 3.1, it is assumed that the communication system uses OAM-4

modulation. X andY in figure 25 are 3-bit vectors that come from the system's demodulator,

which makes 3-bit soft decisions on the received OAM-4 vectors (see section 2.3) It is also

assumed that a code of rate 1/2 is used.
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Figure 25. Block Diagram of the Architecture
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4.1.1 The ACS module

The function of the ACS module is to select survivor paths and keep path metrics

updated. It produces decisión bits that are stored in the survivor path memory.

TheACS module is regarded as one of themain obstacles to achieve an efficient VLSI

implementation, and much study has been devoted to it [14], [15]. The problem is that the

ACS operation is slow, requires many gates, and needs to be executed on a large number of

states. In this section, it is explored how to design an efficient ACS module.

TheViterbi algorithm presented in chapter 3 selects, for each received symbol, and for

each trellis state, the branch that belongs to the shortest path that ends in that state. The

branches that end in each state depend on the particular convolutional coder selected.

However, it has been observed that trellises used in convolutional coding present certain of

the properties of shuffle-exchange graphs [12]. One of these properties is that a «-state

trellis can be divided in n/2 2-state trellises, known as butterflies. These structures are very

similar to those found in Fast Fourier Transform algorithms.

For example, the trellis shown in figure 5 can be divided in two butterflies as shown

in figure 26.
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Figure 26. Two butterflies

For each state, the distance between the label associated with each branch and the

received symbol (caüed branch metric; see 2.3.2) is caículated. Then, each distance is added

to the path metric for that state, and the smallest one is selected. For this reason, this

operation is known as add-compare-select (ACS).

Each destination state has two sources, and theACS operation selects one of them and

discards the other. This decisión can be represented by a "0" when one path is selected, and

by a "1" when the other is selected; the output of the ACS operation is a single bit, caüed

decisión bil; as described in section 3.6.1. The decisión bit can be made equal to the less-

significant bit of the selected source state.

The circuit that performs this operation on a single state of the trellis is called anACS

calculating circuit The circuit that operates on the whole trelüs is caüed the ACS unit

There are several ways to implement the ACS unit, with respect to the level of

parallelism desired [13], [14], [15]. In one extreme, the serial implementation oftheACS unit

comprises a singleACS calculating circuit that operates on each state in a serialmanner. This

approach requires the less área, but is the slowest. On the other hand, the parallel

implementation has as many ACS calculating circuits as there are states in the trellis, and

each state is processed independently and concurrently. This approach requires a large

amount of área, but is the fastest. There are intermedíate solutions where there are fewer

calculating circuits than states, achieving a compromise in área versus performance.
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Since the objective of this work is to concéntrate on performance, the fully parallel

implementation has been chosen; so, there is oneACS calculating circuit per treüis state. The

question remains on what is the most efficient way to design the ACS calculating circuits.

The trellis butterflies have many characteristics that help in the design of the ACS

calculating circuit. One is that the four branches of a butterfly share only two different labels;

that is, branch labels are repeated in each butterfly. Thismeans that only two branchmetrics

must be caículated per butterfly. Likewise, the same two path metrics are used to calcúlate

the shortest distance to each state. In conclusión, it can be seen that the same information

is needed in both states of the butterfly; it is only the way the information is used which

varies per state. For this reason, it is proposed that the trellis is divided up in butterflies and

one ACS calculating circuit is used per butterfly.

It can also be seen that there is no need to calcúlate the branch metrics every time a

new symbol arrives. There are only four different branch labels in the trellis. Likewise, there

are only 64 different symbols that might be received: there are 64 different valúes for two

vectors of three bits each. So, aü possible branch metrics can be caículated in advance, and

the proper result presented to each ACS calculating circuit for each received symbol. This

approach reduces complicated arithmetic circuitry to a lookup table.

As shown in Appendix A, the Euclidean metric can be substituted by the absolute

valué metric in the máximum likelihood calculations of the Viterbi algorithm, without

affecting performance. The absolute valué metric is much easier to calcúlate than the

Euclidean, and thus it is chosen for the proposed architecture. The absolute valué metric

defines the distance between the received vector (xv aj) and the branch label (yv )¿) as:

D = \xí-y\+\x2-yi\ (9)

Since both the Euclidean and the absolute valué metrics can be caículated via a lookup table

approach, themost important advantage of the absolute valuémetric is that it always returns

an integer valué, so it is not necessary to design circuitry to handle floating-point numbers.

The lookup table approach requires a memory of 212 x 4 bits: there are 212

combinations of xv x¡, yv )¿, and D is a four-bit number. Such a large memory might be
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unfeasible to implement; an alternative is to use a smaller lookup table to realize the

subtractions in Eq. (9), and implement an adder to carry out the sum.

Furthermore, it can be observed that the valúes being subtracted, (y„ y¡), are always

either "000" or "111" The valúes x, andx2 are 3-bit quantized samples from the demodulator.

Table 11 shows the possible results of the subtractions of Eq. (9).

As it is seen in table 11, the possible result of each of the subtractions in Eq. (9) is

either the received vector, or its logical negation.

X x - 000"| X- 111"

0 0 111

1 1 110

10 10 101

11 11 100

100 100 11

101 101 10

110 110 1

111 111 0

Table 11. All possible results of subtractions in Eq. (9)

The adds and comparisons needed in the ACS operation are potentiaüy slow. For this

reason, it is proposed that the ACS calculating circuit is implemented as a pipeline, where

each (slow) operation is performed in each stage. A pipelined circuit allows the processing of

one symbol per clock cycle, which is one of the requirements set forth in section 1.2.

Figure 27 shows the architecture proposed for the ACS calculating circuit. In it, the

adders with the
"

+ 1" symbol add 1 to the result, and a single inverter symbol is used to

indicate that every bit in the corresponding signal is inverted. These operations are needed

to implement the two's complement method of distance comparison described in section 3.4.

The box labeled "MSB" outputs only the most significant bit of its input.
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The subtractions being input into the circuit are those described above, in table 11.

The b„ quantity indicates whether the subtraction corresponds to the first or the second

branch in the butterfly. The quantities labeled Previous State Metric Topaná Bottom

correspond to the current path metric of the top and bottom states of the butterfly,

respectively.

The decisión bits that the circuit calculates are those described in section 3.6.1. The

decisión bit is 0 when the branch that originates in the top state has been selected, and 1

otherwise. The New Path Metricquantities are the new pathmetrics for the top and bottom

states of the butterfly, respectively. The numbers in parenthesis indicate the path that

corresponds to the newmetric; the first number indicates the statewhere the path originates

(that is, on the left-hand side of the butterfly) and the second the state where it ends (that

is, on the right-hand side). The number 1 corresponds, as before, to the top state, and 2 to the

bottom state.

The figure also indicates how the circuit operations are pipelined in 3 stages. Each

clock cycle, the results caículated in one stage are passed to the next. The adders and

multiplexors of stage 3 opérate in parallel. It can be seen that the ACS operation involves a

relatively large number of sums; if no pipeÜning was used, then this circuit would impose

severe restrictions to the máximum speed attainable.
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Figure 27. ACS Calculating Circuit Architecture

Figure 28 shows a block diagram for the ACS unit. Note that the output of this circuit

is a 64-bit vector, comprising one decisión bit per state. These bits are stored in the path

memory and used to reconstruct the most likely path traversed by the convolutional coder,

as described in the next section.

61



Received

SymbolX~^

Received

Symbol Y

(vV.)

(vVi)

Cx¡VP

Partial

Branch

Metrics "=

(from
Subtract

Block)

Current

Path
_.

Metrics

(from

ohterACSs)

Partial

Branch

Metrics «•

(from
Sublract

Bbck)

Current

Path
_^

Metrics

(from
ohterACSs)

Partial

Branch

Metrics "3

(from
Subtract

Block)

Current

Path
__

Metrics

(from

ohterACSs)

Decisión

«jj&ts (to
Memory

Block)

New Path

Metrics (]to
other ACSs)

Decisión

Bits (to

Memory
Block)

New Path

Metrics (to
otherACSs)

Decisión

^.Bits (to
Memory

Block)

New Path

Metrics (to
other ACSs)

Figure 28. ACS Unit Architecture

Theway the different blocks are connected depends on the particular trellis chosen for

the convolutional coder. The trellis defines how the states are interconnected, and the ACS
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unit foüows this structure. It is interesting to note two things about this architecture. First,

decoders for different trellises can be accomplished just by changing the interconnections,

thus suggesting the idea of anACS unit that uses a switching network of sorts to implement

a decoder that is suited to any trellis.

Second, the same architecture can be used to implement decoders for any constraint

length. Since one ACS calculating circuit is used per two states of the treüis, it can be seen

that 2i-l blocks are needed, where L is the constraint length of the code. Naturally, the área

requirements grow exponentiallywith L, the circuit's structure, however, remains the same.

The resources needed for each ACS calculating circuit consist of :

•2 3-bit adders,

•8 9-bit adders,

•2 18:9 multiplexers,

•40 flip-flops to implement the pipeÜne.

These requirements are not slight, especiaüy since each of these circuits must be

repeated many times. Since, for this particular implementation, 32 ACS calculating circuits

are needed, the total resources needed for the ACS unit are:

•64 3-bit adders,

•256 9-bit adders,

•64 18:9 multiplexers,

•1280 flip-flops,

•and a significant amount of routing between elements.

The target device for this implementation, theAltera FLEX10K100, contains 5000 flip-

flops. The ACS calculating circuit is expected, then, to require about 25-30% of the available

área.

This circuit takes advantage of many characteristics of the trellis structure of

convolutional codes to decrease its área requirements. Themain characteristics, in this sense,

of this architecture, are the use of the absolute valué metric, and the avoidance of repeated

calculation of valúes that are required in different blocks. The área savings in this respect

allow a fuüy parallel, pipelined architecture that is not inherently small, but which is very
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fast.

4.1.2 Survivor Path Memory

The survivor path memory is very simple. The main aspect that deserves careful

consideration in a VLSI implementation is that the memory requires aword length of 64 bits,

which is not available in any current FPGA architecture, and can potentially be expensive in

an ASIC implementation.

The word length problem is easily solved by grouping together blocks of memory of

shorter word length. In an FPGA, however, this can be impossible because the number of

memory blocks is usually limited to a few.

One essential property that thememorymust have is that it can be read andwritten

to in a single clock cycle.Without this capability, it is impossible to decode one bit per clock

cycle, which is a requirement of this implementation.

In section 3.6.2 amemoryorganization schemewas proposed that requires two blocks

of SPLx64 bits each. Thismemory organization can be used to decode one bit per clock cycle.

In this section, it is shown how thismemorywas implementedwithin the capabilities of the

Altera FLEX10K100 FPGA.

Thememory of theAltera device is not suited to implement the memory organization

of section 3.6.2. It is not possible to read and write to the samememory location in the same

clock cycle; two clock cycles are needed in the best case.

How can this problem be solved". The short answer is that it can't be solved within

the capabilities of the target device. There are other memory organizations possible, but they

do not allow the decoding of one bit per clock cycle. It is necessary to make a compromise,

choose the second-best memory organization, and use it to demónstrate the vaüdity of the

algorithm proposed.

In section 3.6.2, it was shown how the structure of figure 24, which has three memory

blocks, can be reduced to a structure with only two blocks. It is proposed to go back to the

scheme of figure 24, which uses three memory blocks. This scheme avoids having to read and

write to the same memory location at the same time; always one block is being read while

other is being written to. This does not prevent one-cycle decoding per se, however, further
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Ümitations in Altera's memory organization do.

The Altera device has 12 memory blocks, called "embedded array blocks (EAB)", of

2048 bits each. Each EAB can be configured to have 2048x1, 1024x2, 512x4, or 256x8 words

[16]. In order to accommodate 64-bit words, it is necessary to use 8 EABs (in the 256x8

configuration). To build the three-block structure described in section 3.6.2, 24 memory

blocks would be needed; however, as mentioned, the device has only 12.

Then, the only way to implement the memory is to use eight 256x8 EABs as if they

were a large, 256x64 EAB, and to créate the three memory blocks of figure 24 (decode, merge,

and write) by partitioning the address space. Figure 29 shows how to implement this memory

organization.

Decisión Bils(0:7)

Address(0:255)

Decisión Bíis(8:15)

Decisión Bils(16:23)

Decisión Bits(24:3 1 ;

Decisión Bits(32:3 9 )

Ouiput(0:7)

Block 4

0utput(8:15)

Decisión Bits(40:47)

Decisión Bits(48:55)

Block 2 Block 6

0ulpul(16:23)

0utput(24:31)

Decisión Bits(56:65)

0_tp_t(32:39)
—

=»-

Outpul(40:47)

0ulput(48:55)

0_tput(56:63)

Figure 29- Memory Organization
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As explained above, each memory block in the figure is configured as 256x8. Thus, the

address space of this memory comprises 256 words of 64 bits each. This memory is then

divided in three blocks; each has 80 words. A memory controller alternates the function of

each block between decode, merge, and write, according to the scheme presented in table 12,

where blocks have been named B1,B2, and B3. The notation is that of table 9, where arrows

are used to indicate the ordering of data within the memory. Taü operations are done

concurrently with memory accesses, and are discussed in the next section.

The reasons to choose SPL to be 80 are that in this way, the memory can be neatly

divided in three equal blocks, and 80 has been determined in section 3.5. 1 to be a good enough

number to use.

Time

Step

Bl B2 B3

1 writing data
—> -empty- -empty—

2 data —>

-full-

writing data
—>

calculating tail of Bl

—>

-empty—

3 data —>

traceback <—

data —>

-full-

writing data
—>

calculating tail of B2
—>

4 writing data
— >

calculating tail of B3
—>

data —>

traceback <—

data —>

-full-

5 data—>

-full-

writing data
—>

calculating tail of Bl

—>

data—>

traceback <—

6 data —>

traceback <—

data —>

-full-

writing data
—>

calculating tail of B2 —>

Table 12. Sequence of operations using a 3-block memory

Note that in this memory architecture data is always ordered in increasing order, as
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opposed to the two-block architecture, where the ordering alternates between increasing and

decreasing.

Note also that time steps 4, 5, and 6 repeat indefinitely. Thus, a 3-state controller is

needed.

In conclusión, because of device limitations, it is impossible to implement a survivor

pathmemory that aüows the decoding of one bit per clock cycle. A 3-block architecture that

is feasible given the target device has been presented. This memory has to run with a clock

that is twice as fast as the rest of the circuit, because it has to execute both a read and a write

in one symbol period.

4.1.3 Traceback Unit

The traceback unit uses the data stored in the survivor path memory to reconstruct

the original path traversed by the convolutional coder in an optimal way.

As described in section 3.5.3, the actual traceback method implemented is a hybrid

traceforward method that employs tails to calcúlate the statewhere the traceback wiü start.

From table 12, it can be seen that while data is beingwritten to a block, the tail that

corresponds to that block is being caículated concurrently. The tail that is thus obtained is

then used as the starting state to traceback the data in the previous block.

The traceback is then done in two, concurrent steps. First calcúlate the tail, then use

it to traceback the previous block. Thus, there are two circuits in the traceback unit, one to

calcúlate taüs and another to reaÜze the actual traceback.

Tail calculator.This circuit is actually very straightforward, although very large in

área. There are 64 6-bit registers, numbered from 0 to 63. Each must be initialized to its

assigned number at the start of the recursion. At the end of the recursion, all registers will

contain the same number with very high probability; this number is the state where

traceback of the previous block should start from.

During the recursion, each register is loaded with the valué of one of the two registers

that are connected to it. Which valué to use depends on the decisión bit being read from the

survivor path memory. The connections between registers are defined by the trellis.
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The tail initialization, as weü as the data provided to it from the survivor path

memory, should be controlled by the survivor path memory controUer.

The architecture of the tail calculator is presented in figure 30.

Survivor

Path

Memory

z>
Controller

Initialize

Tail Calculator

decisiónbit 0

Ú
Register 0

decisión bit 1

Register 1

Register 2

Register 3

Register 0 —

Figure 30. Tail calculator architecture

Note that register 0 is connected to itself; this happens when, for a given input, the

next state of the trelÜs is equal to the present state.

It can be seen that this circuit is very simple, although, as said above, it can be very

large. The resources needed for this circuit are 64 registers of 6 bits each, for a total of 384 füp

flops, in addition to 64 2-bitmultiplexers. TheAltera device has around 5,000 füp flips, which

means that the tail calculator can take up between 5% and 10% of the total circuit área.
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Traceback circuit. The traceback circuit needs to load the caículated tail when it

starts in a register called "current staté', and then use the decisión bit associated with it to

decide which state it is connected to (the "previous staté').

previous state = (current state« \)\\decision bit

Since the trellis of a convolutional coder is a shuffle-exchange graph (section 3.6.1),

the previous state is easüy caículated by equation 8, repeated here for convenience:

The traceback unit must also decide what was the input to the convolutional coder

that produced the transition that has been selected. That is, it is known that the

convolutional coder made a transition from "previous staté to "current staté
,
but what the

convolutional decodermust ultimately calcúlate is what input would have produced such a

transition, which is equivalent to decoding. This operation is caüed decode in the algorithm

in section 3.8.

It happens that, precisely because of the shuffle-exchange structure of the treüis, the

decoded bit in each traceback iteration is equal to the most-significant bit of "current staté .

That property can be easüy inferred also from the schematic representation of a convolutional

encoder (figure 1): the onlyway that the state of a coder of Y bits is more than Y/2 is because

the bit that just entered the coder is a "1" Naturally, this is the same as saying that the

decisión bit that corresponds to the "current staté can be used as the decoded bit.

It must be taken into account that the traceback operation produces decoded bits in

the inverse order from which theywere generated. It is thus necessary to invert them again,

and this can be accomplished with a pair of shift registers. Two are needed because onemust

be used to store the output of the traceback circuit, while another outputs the inverted data

stream to the receiver.

Given these considerations, the architecture of the traceback circuit is presented in

figure 31.
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Figure 31. Traceback circuit architecture

The traceback circuit requires a 64 to 1 multiplexer and 160 (80x2) flip flops for the

output register. It is half the size of the tail calculator.

In conclusión, it is evident how the properties of the treüis structure of convolutional

codes can result in very simple and fast, if large, decoding circuits.

4.1.3 Other considerations

This architecture is fully synchronous, and thus it has all the advantages of

synchronous design [27].

This implementation needs a signal to tell it when to start processing the incoming

data stream. Another signal is used to indicate the circuit that receives the decoded output

when it can be considered valid. These have been implemented as active-high signáis.
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O Results

This chapter presents and evaluates simulation and experimental results obtainedwith

the architecture proposed in chapter 4. In simulation, it is verified that a circuit based on the

proposed architecture actually works. Experimentally, the áreas where the architecture is

evaluated are: süicon área, decoding rate, clock period, and bit-error rate performance.

5.1 Simulation results

Two circuits based in the architecture proposed above were designed and simulated.

One circuit employed the two-block memory architecture of figure 24. As explained in

chapter 4, it is not possible to implement this memory in the target device; however, it was

important to simúlate it to demónstrate, as far as possible, the validity of the concept. The

simulation results obtained with this model are exactly equal to those obtained with the

implementable 3-block memory, except for the difference in clock rate. The second circuit

designed uses a 3-block memory architecture, and thus it fits in the target device. Since this

is the circuit that was implemented, the rest of the chapter focuses on it.

The circuit was written in VHDL, synthesized and simulated with Synopsys tools,

and physical design was done with Altera's own MaxPlusII. The circuit was verified using

a simulation test plan, which is presented inAppendix C. By definition, the circuit is declared

functional when it passes all cases in the test plan.

Themost important test is the bit-error rate test. It is desired that the circuit presents

a bit-error rate performance that is very cióse to the theoretical results, and at worst similar

to those found in the C simulations of the algorithm and presented in section 3, figures 19

to 21. The circuit's simulated bit-error rate performance is presented in figure 32, where it is

compared to the unmodified algorithm as presented in section 2.3.5.
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Figure 32. Comparison between unmodified and implemented algorithms

Figure 32 shows comparable performance between the unmodified algorithm and the

implemented versión, especiallywhen E¡/N0 is larger than 3dB. The difference seen between

2dB and 3dB could be due to the fact that the hardware architecturewas simulated for fewer

bits than the original algorithm, which was coded in C, because VHDL simulation is much

slower; another possibility is that, as seen in figure 14, an SPL of 80, as implemented, is not

the best choice for anE/N. of 2.5dB, being in one extreme of the knee. As explained in section

3.5.1, however, communication systems rarely opérate below at Pb < IO"3, which is achieved

by the proposed architecture at Ei/N0 approximately equal to 3dB. Results are comparable

to those reported in the literature [17].

5.2 Experimental results

In this section, it is described how the circuit was tested in the laboratory, and the área and

speed results obtained. These results are compared to those of other reported Viterbi

implementations.
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5.2.1 Lab verification

In order to test the circuit in the lab, a scheme caüed built-in self verificatiotwas used.

It is similar to built-in self tes{27], but it exercises the circuit in functional mode instead of

test mode. That is, it is not intended to verify that the circuit has no manufacturing errors,

but rather than it is functional.

The Viterbi architecture presented here is rather simple in the sense that it has only

one mode of operation. It cannot be configured to do different things. For this reason, it is

easy to design a circuit that can be used to test the decoder. The scheme proposed is shown

in figure 33.

Success

Pseudo-

Random

Number

Generator

Ski Coder
->

Error

Insertion
->-

Viterbi

Decoder

Error

Counter
—->■

Figure 33. Built-in Self Verification Scheme

In this scheme, a pseudorandom number generator is used as a data source. Another

block inserís errors at a controlled rate, simulating a channel, and feeds the corrupted data

to the Viterbi decoder. The decoder will correct some of the errors; howmany depends on the

insertion rate, and can be determined by simulation. An error counter is used to check that

the error rate at the output of the decoder is exactly that predicted by simulation, in which

case it determines that the circuit is functionally correct. The proposed architecture was

tested successfully, using this scheme, in the laboratory, at the clock rate described below.

5.2.2 Área resources used

The implementation proposed fits in the target device, where it uses 92% of the
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available resources. The numbers reported byAltera's EDA tools are summarized in table 13.

Memory Bits Used % Memory Used Logic Cells Used % Logic Cells Used

15360 62% 4603 92%

Table 13. Resources used by the circuit

These numbers include the testing circuit described above, which take up about 10%

of the área. The circuit had to be synthesizedwith área optimizations in order to make it fit

in the FPGA. This had the side-effect of reducing the operating speed. In the end, however,

the objective of fitting it in the desired FPGA was achieved.

5.2.3 Decoding rate and clock period

With the circuit optimized for área, as described above, themáximum clock frequency

achieved was 8MHz. Given the FPGA memory limitation described in section 4.1.2, the

máximum bit rate achieved is 4Mbps. Given that the memory limitation is inherent to the

FPGA, and not to the proposed architecture, the objective of decoding one bit per clock cycle

is considered achieved.

5.2.4 Decoding delay

Decoding delay is defined as the number of clock cycles that it takes to decode one

symbol, from the moment it is sampled at the input of the circuit until the decoded symbol

appears in the circuit's outputs. The circuit's delay is 384 clock cycles, or 96us at 4MHz.

Therewas not a goal to achieve regarding decoding delay; however, the delay obtained is very

good for most applications.

5.3 Comparison with other implementations

The implementation proposed in this thesis is comparedwith the architectures offered

by Qualcomm [17], by Motorola [18], by Mentor Graphics [19], and with the architecture

reported by the Jet Propulsión Laboratory [28].
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Qualcomm offers a chip tailored for satellite Communications, and it has been

available since 1998.Motorola offers a high-performance vector parallel processing expansión

to their PowerPC microprocessor (called AltiVec), and they offer a computer program that

implements the Viterbi algorithm on that architecture. Mentor Graphics offers an

inteüectual-property core, which can be implemented in any technology. IBM Corp. offers

a chip based on this core [20]. Finally, the JPL Viterbi decoder is used to allow reliable

Communications with space probes carrying out missions in deep space.

Unfortunately, not aü vendors provide complete information about their products,

making the comparison difficult. Table 14 summarizes the information available.

Code Rate. Most Viterbi decoders have a code rate of 1/2. The reasons are, most

probably, that it is the easier code rate to implement, and at the same time aüows for

decoding of a large number of punctured codes. Only the JPL implementation has a different

code rate, 1/6, given the enormous error-correcting requirements of deep space

Communications.

Constraint length.Most Viterbi decoders have a code rate of 7. Only the Motorola

implementation has a smaüer constraint length, 5, and the JPL implementation has a

constraint length of 15.

Decoding Rate. Decoding rate varies widely between different Viterbi decoders,

ranging from 4Mbps to 85Mbps. The architecture proposed in this thesis is severely

hampered by the technology used; the Altera FlexlOKlOO FPGA is more than six years oíd,

and, in synthesis, the design had to be heavily optimized for área instead of speed to make

it fit in the device. It is probable that, with adequate technology (for example, 0.35u CMOS)

the proposed architecture would reach between 300Mbps and 500Mbps.

Clocks per decoded symboI.The ability to decode one symbol per clock is a good

measure of the efficiency of an architecture, because it means that it cannot be optimized

further, except to increase its clock period or to decrease its área. Of the architectures being

compared, only Qualcomm and the one proposed here achieve this goal.

Área. Área requirements for the different architectures varywidely. All the hardware-

based implementations, except the JPL one, fit very comfortably in any current gate-array
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ASIC.

Fabrication Technology. Fabrication technology is a very important factor when

comparing architecture implementations, because an inferior architecture can perform better

than a superior one given sufficiently better technology. The ideal would be to compare all

the architectures when implementedwith the same technology; however, this is not possible.

Decoding Delay.The decoding delay can play an important role in communication

systems that depend on latency, such as voice communication. The decoding delay of the

architectures being compared is unknown except for the Qualcomm decoder, which appears

to bemore than two times better than the proposed architecture. The decoding delay depends

on the length of the path memory, because the traceback operation generates a sequence of

bits that is in inverse orderwith respect to the original sequence; this sequencemust be stored

and then output in reverse order. The reason the observed delay is so high in the proposed

architecture is thememory limitation described in section 4.1.2;when usedwith synchronous

memory the delay is reduced to 192, which compares weü with the Qualcomm delay,

especiaüy since the Qualcomm device has a shorter path memory (96 states vs. 120 states).

Single chip solutionlor cost reasons, it could be desirable to have a solution that

fits in a single chip. Here, the JPL and Motorola implementations do not fare very weü, and

their solutions can be very costly.

As can be seen, it is very difficult to draw definitive conclusions onwhich architecture

is best. There are, however, two reasons why it might be argued that the architecture

proposed in this work is, in several ways, superior to other offerings.

One reason is the simplified and heavily pipelinedACS calculating circuit. This circuit

alone might explain the área difference between Mentor Graphics' architecture and the one

proposed. Also, it is evident from the descriptions in [18] and [19] that Motorola and Mentor

use path normalization (section 3.4) instead of the 2's-complement method. In chapter 3 it

was shown how the 2's-complement method is vastly superior to path normalization.

The second reason is that the competition seems to be using traceback instead of the

hybrid trace-forward method proposed here. As has been shown, it is not possible to achieve

máximum efficiency (one decoded symbol per cycle) with conventional traceback. (The
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Qualcomm chip does decode one symbol per cycle, but it is not clear from the information

available why they are limited to 30Mbps).

Other advantages of the proposed architecture are that changing it to be used for larger

constraint lengths is trivial, and implies a change in size, but not a change in decoding speed;

also, it is suitable to be used as a core, integrated in a more complex circuit, because it would

use only about lmm2 of área in current fabrication technologies.
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O Conclusions

6.1 Review of objectives

The objectives of this thesis were met. Summarizing,

•the Viterbi algorithm was simplified and adapted to a VLSI implementation with

negÜgible loss of decoding performance,

•the ACS operation was pipelined and simpüfied, which resulted in better circuit

performance,

• the hybrid traceforwardmethodwas implemented and tested, offering the possibüity

of one-clock per symbol performance,

•the architecture was tested successfully both in simulation and in the laboratory,

meeting aü área and speed requirements, and

•the results are better, or comparable to, other reported results.

Stating the Viterbi algorithm as was done in chapters 2 and 3 of this thesis can be

considered a relevant contribution, since it had not been reported in this way before. All the

opportunities to do parallel operations, and tomanipúlate the algorithm to better suit a VLSI

implementation, are revealed in this way.

6.2 Future work

There are many aspects of channel decoding that must be addressed in a

communication system; this architecture deals with symbol decoding, but neglects other

problems such as symbol synchronization, bit-error rate monitoring, and configurability.

Punctured codes are an especially important application of convolutional codes, and the

architecture proposed here can be used to decode them, but not without extra functionality.

To offer a truly complete, useful solution for channel decoding, a circuit must include

79



all of these functions.

The existence of better decoding techniques, of further refinements in the

simplification or the paraüeüzation of the Viterbi algorithm, are of course not ruled out. It

is possible, for example, to increase the data rate by using several decoders in parallel. These,

and others not yet foreseen, routes remain to be explored.

6.3 Final remarks

It has shown in this thesis how a complex algorithm can be broken down into parts,

simplified, adapted, parallelized, and in general converted to a form that is suitable for VLSI

implementation, fast, and very cióse in performance to the original one.

There are two apparently unrelated fields in Communications engineering. One field,

the scientific, is more academic. Here new algorithms and theories are invented. However,

as can be corroborated by reading most current text books, people working in this field are

satisfied by showing, at some abstract level, that their new algorithm, equation or theory is

correct, in some sense.

The technical field, however, is more preoccupied with bringing solutions to those

who need them. Technical engineers work at a more concrete level, where ideas are valued

by very concrete parameters like time-to-market, economic and technical feasibility, and

resources needed to bring the idea to reality.

This thesis happily founds itself, not by accident, between these two fields, showing

that, in fact, they are interrelated and interdependent. An algorithm can be beautiful, elegant,

and efficientwhen seen from a certain perspective; however, if it can't be used to bring better

solutions to those in need for them, then, from this different perspective, it is a very poor

algorithm indeed.

Both perspectives are valid and in some way the same: it is often seen that the

algorithms that the human sense of aesthetics finds most beautiful are thosewith better and

more efficient implementations. How to go from one side - the beautiful idea - to the other -

a good implementation - is not always trivial, however, and those working on this problem

need to have research papers and textbooks in one hand and aworkstation, soldering iron and
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wires in the other. One foot in the academia and another where products are made and sold.

For those who work as interpreters between these two fields, as this thesis shows,

there are some very pleasant rewards waiting.
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Appendix A

In this appendix, the role of Euclidean distance in the calculation of the likelihood

ratios of equations (2) and (3) is explained, justifying equation (4). It is also why the

EucÜdean distance has been substituted by the absolute valué distance.

The foUowing argument follows [25] closely. Consider the followingCommunications

system:

Messages
Source

t

:>

Finite

State

Machine

u

Transmitter

{ti} fo, {*}
{P(ti)}

)¿ >
- Receiver

1
>

n
' Pz|s

The message source producesmessages t, out of a possible set {í,}, eachwith probabiÜty P(í,).

Each message is independent of all others. The message source produces a sequence of

messages caüed T. Each message enters a finite statemachine, producing a transition, labeled

u
,
out of a finite set of transitions {«,}. The sequence of transitions produced by the sequence

T is called U. The sequence U is a set of dependent symbols; the dependency has been

introduced by the state machine. Then, a transmitter (modulator) maps each symbol u to a

vector s, out of a finite set of vectors {sj. The sequence of transmitted vectors is called S.

These vectors are contaminated by additive noise. Noise has a density function p„, and each

noise sample n is independent. The sequence of noise samples is called N. The channel is

defined by the set of conditional density functions {pz(z | s=s¡)}, denoted, for brevity, pz¡s.

The receiver observes a sequence Z of vectors with noise, and from it, must estimate

the sequence T that was originally transmitted. The estimated sequence is called T To

estimate T, the receiver first makes an estimate of the sequence of transmitted signáis, S', and

from it the estimates U' and T can be univocally (and trivially) recovered. A rule must be

devised for the receiver to assign to each received sequence Z one of the possible transmitted

sequences S, with minimum probability of error. Such a receiver is called the optimum
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receiver.

Let it be assumed that the received sequence Z equals .R.The probability of correct

decisión is maximized by mapping R into the sequence S, for which the a posteriori

probabiüty is máximum; that is, if Z=R is observed, then the receiver estimate S' should be

set to S,„ if and only if

P(Sm\Z=R)>P(Sj\Z=R) Vjir-m (A.l)

That is, the probability of every possible sequence S„ given that Z=R, is caículated, and the

S¡ with largest probability is chosen. If several sequences have the same probability, one is

chosen at random.

Using the mixed form of the Bayes rule, Eq. A.1 can be expressed as

PÁX.Sm)P(Sm) P¿B\SJ)PjSJ)

pz(R) p¿R)
J

Since the denominator is common to both terms, the inequality can be reduced to

pz(R\Sm)P(SJ> p^RlSjWSj) Vy * m (A.2)

In communication theory, it is often assumed that the message source is source-

encoded, which yields a sequence T of independent and equally probable messages. In

convolutional coding the finite-state machine does not have an arbitrary structure, but rather

regular structure called de Bruijn. This causes that all sequences S are equally probable.

The decisión rule of the receiver is, then, to assign S'
= Sm when

is máximum. Eq. A.3 is commonly called a likelihood function.

It is observed that the received sequence Z is equal to the noise sequence N plus the

transmitted vector sequence S; that is,

z7
=

s, + n
.
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where z-, s¡, and n¡ are the /-th elements of the sequences Z, S, and N, respectively. This

implies that Z=R when S, was transmitted if and only if N=R-S¡. Then, the conditional

density functions pz]s are given by

Pz(R\S¡)=pn(R-Si\S¡)
In most cases, speciaüy those where convolutional codes are used, the noise is statistically

independent of the transmitted vectors; that is,

Pn\>
=

Pn

and

pn(R-Si\Si)=Pn(R-S¡)
The expression pB(R

- S,) is the Ükelihood function that must be maximimized over i

In the case studied in this thesis, the noise is assumed to be zero-meanwhite Gaussian

noise with probability density function

/>.(«) =
1

(2ltOz)
2\k/2 exp

1
k

2ct
fi* )

(A.4)

where k is the number of elements in each vector (that is, their dimensión) and a¡ are the

elements of vector a. Since the square of the length of a vector is given by

k

a = a
•

a -1°)
j=i

then Eq. A.4 can be written as

/>.(») =
1

( i \i\
-a

(2ro2)
i/2 exp

2a'

(A.5)

Substituting the likelihood function in Eq. A.5, it can be seen that the optimum

receiver sets S'=S,„ when

-|ft-s.|

, 2a2 (A.6)

is máximum for i=m. Maximizing Eq. A.6 is equivalent to minimizing
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\R - S.
I2 (A.7)

R and § are sequences with elements {rv %, ..., £> and {s;i, si2, ..., sífc}, respectively, and

corresponding elements are subtracted, so theminimization rule can be expressed as choosing

Sm as the receiver estimate if and only if

X \TJ - SJ2 (A-8)

over the length of the sequences R and S¡, is minimum. It is recognized that |rj-sm/| is the

Euclidean distance between vectors f and smj.

It is interesting to observe how the optimum decisión rule as expressed in Eq. A.8 is

different from the casewhen independent vectors are transmitted. In the case of independent

vectors, the vector that is closer in Euclidean distance to the one received is chosen as

estimate. In the case of dependent vectors, the aggregated distance of a sequence of vectors

must be minimized. This means that, for particular elements of the sequence, the optimum

rule for independent vectors might not apply, that is, vectors that are not the closest to the

received one might be chosen. The overall result, however, is improved error performance.

It was desired to investígate if the Euclideanmetric could be replaced by a metric that

is easier to calcúlate in hardware. The absolute-value metric, also known as theManhattan,

city-block, or taxi-driver metric, was the ideal candidate, given its simplicity. As shown in

chapter 4, the use of this metric leads to simplification of the ACS circuit.

The absolute-value distance between two vectors, x and y with k elements each, is

defined as

k

M

where the double bars indicate absolute valué.

In order to change the metric used, it must be shown that the change will not affect

the outcome of the minimization in Eq. A.8; that is, if a certain vector
is chosen when the

86



Euclidean metric is used, the same vector should be chosen when using the absolute-value

metric; otherwise, a different sequence S¡ will be chosen as most likely.

Extensive testingwas performed to show that the change ofmetric did not affect the

performance of the decoder. Simulations were done with decoders of constraint length L=4

and L = 7, withf/JV,, ranging from ldB to 6dB. In no case a difference in performance between

decoders using the two metrics was found.

This, however, does not constitute a rigorous proof that the metrics are

interchangeable for the Viterbi decoders investigated. A proof is needed because it is known

that, given vectors x, y, and r, the distance between x and r could be smaller than that

between y and r under one metric, but larger under the other.

A rigorous proof is not complete at this time; a strategy that might lead to it is given.

The problem can be formulated in the foUowing way. First, the treüis is divided in sections

Figure A.l.A section of the trellis

as depicted in figure A.1; the path lengths up to each state are labeled L, and L^,, and the

vectors associated with each branch are x and y. For each section of the trelüs, and for each

received vector r, the Viterbi algorithm calculates the distances

Pl = Ll + (rl-xl)2 + (r2-x2)2

P2 = L2 + (ri-y]f + (r2-y2)2

and chooses the smaüer. Here, the received vector r is compared against the vectors associated

with each branch, x and y. What needs to be proven is that, when replacing the squared

Euclidean distancewith the absolute-value metric, the same branch will be chosen; this can

be expressed as requiring proof that:
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L, + (r1-x1) +(r2-x2f>

Li + (n ~ ft) + (r2 - y2f
O (A.9a)

4 + |k-ft|+|k-ftll
and

(A.9b)

Ll + (rl-xl) +(r2-x2) =

k + (ri-y.) +(r2~y2)
<=>

A + lk - *il+lk - *2| =

4+lh-ftl+lk-ftl
where the double bars indicate absolute valué.

It should be realized that, in the Viterbi implementation used, vectors x, y, and r

cannot take arbitrary valúes. They are two-dimensional vectors, and the only valúes they can

take are:

x,y£{(0,0),(0,7),(7,0),(7,7)}
0 <

r¡
< 7

The strategy suggested is to prove equation A.9 holds for L1=L2=0, and then use induction

to prove they hold for all valúes of L. and l^.

That Eq. A.9 holds for L< = l^= 0 has been proven by exhaustively testing every possible

combination of x, y, and r. There are 64*4=256 possible combinations, and Eq. A.9 holds for

all of them.

The proof for general L[ and L¡ remains to be done.
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Appendix B

What is the meaning of E¡/Nt How is it calculated¿ What is it used for¿ These

questions are answered in this appendix.

In the study of channel codes, it is often assumed that the channel disturbs the

transmitted signal through additive white Gaussian noise. Such a channel is usually referred

to as the AWGN channel. The average power of white Gaussian noise is infinite; its power

spectral density is a constant, usually called NJ2, and it has zero mean [24].

Since the average power of noise in theAWGN channel is infinite, itmight be assumed

that it would be impossible to transmit any signal at all. However, although the average

power ofwhite Gaussian noise is indeed infinite, only the portion of the noise that is found

in the same frequency band as the transmitted signal affects it. From a geometric perspective

[1, 25], white Gaussian noise has infinite dimensions; however, when affecting a signal, only

those dimensions that correspond to the signal being affected are taken into account. AU the

other noise dimensions are irrelevant, which explains why transmission in the AWGN

channel is possible.

Digital modulation can be very concisely described as the mapping of binary words

to signal pulses. Digital receivers opérate by trying to detect if one of the signal pulses known

to be produced by the transmitter is present at their input. This is different to the approach

in analog transmission, where the shape of the signal must be recovered. The reception

problem consists in designing a receiver that maximizes the signal-to-noise ratio at its output

(or, equivalently [24, 2], that minimizes the average probability of error).

Such a receiver is called the optimum receiver. The optimum receiver is divided in two

parts: the demodulator,whose function is to try to find the signal pulse in the received signal,

and a decisión device that, according to certain criteria, decides whether the signal pulse was

present or not.

There are two solutions to this problem, and both are equivalent, in the sense that the
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average probabiüty of error is the same for both. When trying tomaximize the signal-to-noise

ratio at the output of the receiver, the optimum receiver takes the form of a matched filter

plus a decisión device; when trying to minimize the average probability of error, the

correlation receiver is found. Both are shown in figure B.l.

Sample
att = T

x(t)
Matched

Filter

~y8

Decisión

Device

Ify(T)> threshold,

signal s(t) is present.

Threshold

o

P*
Decisión

Device

If threshold is

exceeded, s(t) is present

Threshold

(b)

Figure B.1. (a) The matched filter receiver; (b) the correlation receiver

The matched-filter implementation can be described as follows. Let h(t) be the impulse

response of a linear time-invariant filter with transfer function H(f), and s„(_ ) and n0(t) the

signal and noise components of the filter output produced by the input signal component s (í)

and the input noise component w(t), respectively, as shown in figure B.2. It can be shown

that the filter impulse response hopl(t) that maximizes the signal-to-noise ratio at its output

is

KJt)
\s(T-t} 0<t<T

opt
0, otherwise

where T is the period of the signal pulse s(t). A filter with impulse response hopl (t) is known
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as amatched filter to the signal s (/), and its output at time t = T hasmáximum signal-to-noise

ratio.

s(t) or zero volts .

x(t)
Linear

time-invariant

receiver

m OUtpUt

w(t)

Gaussian noise

Figure B.2 Signal and noise components of the input of a receiver

The signal-to-noise ratio at the output of a matched filter can be found to be

2E

where E is the energy of the signal pulse, or

E = ¡ s2(t)dt

This result is very important because it establishes that the specific waveform of the

signal pulse s(t) is irrelevant to the SNR obtained; only its energy is important. That is, aü

signáis that have the same energy are equally effective at combating the effect of white noise

with an optimum receiver. It is also important to note that energy signal and power spectral

ampÜtude of noise are the only two factors that are involved in evaluating the bit-error-rate

performance of a receiver.

After the matched filter, a decisión device decides whether the signal pulse was

actuaüy present or not, based on the amplitude of the matched filter output at time t=T.

When several different signal pulses are used to transmit different binary words, it is

necessary to use a matched filter per pulse, operating in parallel. The decisión device then
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proceeds to select the signal pulse that corresponds to the matched filterwith larger output

at time t=T, after weighing all outputs by a factor that depends on the probability of each

binary word [2].

When using convolutional codes, the optimum decisión device takes the form of the

Viterbi decoder [22].

Different modulation schemes have different average probabilities of error for a given

signal energy. For M-ary modulation, where a single signal pulse carries 2M bits of

information, it's better to consider the energy carried per bit instead of per pulse. The energy

per bit is defined as

m--b
M

The E¡/N0 needed to achieve a given probability of error is a figure commonly used to compare

the probability ofbit error of different modulation schemes or the error-correcting capabilities

of different channel codes [1], [2]. This is because

... two systems that use an unequal number of symbols may be compared

meaningfully only if they use the same amount of energy to transmit each bit of

information. It is the total amount of energy needed to transmit the complete

message that represents the cost of the transmission, not the amount of energy

needed to transmit a particular symbol satisfactorily. Accordingly, in comparing the

different data transmission systems, we will use, as the basis of our comparison, the

probability of symbol error expressed as a function of the signal energy per bit-to-

average noise power per unit bandwidth ratio; that is E/Nc [24, p. 586].

It is very common to study and simúlate communication systems using the geometric

representation of signáis, instead of waveforms [1],[ 2], [23], [25]. It is possible to find the

energy per bit from the signal vectors just as it is possible to find it from the pulse waveform.

If a signal pulse s(t) is represented by vector [ai} a2, ..., a„] in a n-dimensional orthonormal
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signal space, then its energy is given by

i

This aüows the calculation of the signal pulse energywithout knowledge of the signal

waveform. In the specific case of the QAM modulation used in this thesis, where the

transmitted signal is represented by the four vectors [1,1], [1,-1], [-1,1] and [-1,-1], the signal

energy is equal to 2, which means that the energy per bit Eb equals 1.
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Appendix C

This appendix contains the test plans used to verify that the implementations

presented in this thesis actually work as required.

The test methodology for the implementation was to test each module separately,

then test its interfaces, and then test blocks composed of several modules, untü the higher-

level module was tested. Then, a black-box approach to testingwas used, where the top-level

module was testedwithout regard for its internal building blocks (except when an error was

found).

For brevity, only the black-box tests are ineluded in this appendix. These tests are

what ultimately determines if the circuit as a whole works or not. They are, therefore, the

most important tests.

Themethodology is to run a predefíned set of tests, and check that the circuit's output

is correct. For simulation, a test bench capable of executing the test cases was used. For

testing the physical implementation, functional test circuitrywas ineluded in the device, and

the tests were run automatically. In this way, the circuit itself can determine if it is

performing satisfactorily or not.

The circuit implemented has only one function: to decode a 1/2, L=7 convolutional

code. It has no configuration options, or gives any status, or is programmable in any way.

Because of this, verification concentrates on two aspects: one, that the circuit can decode a

variety of different patterns, and two, that the measured Pb vs. I¡/N. is comparable to that

reported in the Üterature.

Simulation Test Plan

The simulation test plan is a table of cases that must be run. Columns represent

different E/N. levéis, while rows represent different patterns. In each table cell the expected

Pb is Usted. The test plan is complete when the circuit presents the expected Pb for all cases

Usted (see Table C.l).
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There are two important things to consider when running the test cases described

above: how long to run the simulation, and how to compare the results obtainedwith those

in the literature.

NormaUy, a simulation needs to be run for approximately 10* 1/Pb bits before results

can be considered reUable [23] . While testing the Viterbi implementation, it was found that

this number of bits is insufficient to obtain a figure for Pb that can be considered reliable,

because a small change in the length of the simulation produced a relatively large change in

the measured probability of error. For this reason, the decisión was made to run the

simulation for at least 100*l/Pb, which produces more reliable results. The consequence of

doing this is that simulation time grows very large for large signal-to-noise ratios.

Most books on digital Communications report E,/N0 vs. Pb for L=7, r=l/2

convolutional codes. However, Et/N0 vs. Pb is presented as a graph, which is fine for getting

a feel for the behavior of the code or for comparison with other codes, but not for getting

accurate Pb figures for a given E,/N0. This makes it extremely difficult to compare the results

presented in this thesis with those reported in the literature with a high degree of precisión.

To make matters worse, it is frequently not reported what modulation scheme was used to

obtain the results claimed (in this thesis, QAM modulation has been used because it suits

codes of rate 1/2 veryweü, and because it makes good use of the available bandwidth). The

consequence of this situation is that results presented are considered valid because they are

very similar to those found in the literature.

Physical implementation test plan

To test the physical implementation of the Viterbi algorithm, a circuit was designed

to genérate a data sequence with errors in it, and another circuit to count howmany errors

the Viterbi circuit was able to correct. Figure C.2 shows a block diagram of how this is done.

The physical implementation has several pins used to control the testing process. The

"test" input pin forces a circuit reset, and connects the inputs of the Viterbi decoder to the

test data sequence. During the test, the output pin "test_in_progress" is set to 1. When the

test is complete, the pin "test_complete" is set to 1, and, if the test was successful, the pin

"test successful" is also set to 1.
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The test produces a data sequence of 524,000 bits, and 694 errors are expected. If

exactly 694 errors are detected after 524,000 bits have been decoded, then the test is declared

successful.

The data sequence used is a 220-l sequence like the one used in simulation. In order

to insert errors more or less independently,whenever the seven less significant bits of the data

generator are equal to zero the output of the generator is inverted. This converts the additive

white Gaussian noise channel assumed in the theoretical development of maximum-

Ukelihood decoding to an approximately equivalent binary channel.

clock
^.

reset ^

Test

Generator Viterbi

Decoder

Decoded
"

Data

data —

test _

->
Test

Analyzer

--» test_in_progress

> testcomplete
—>-test_success

Figure C.2 Test Circuits

The Test Generator block in figure C.2 produces an encoded, noisy sequence for the Viterbi

decoder; it also reproduces the original data sequence, which is compared with the decoded

sequence by the Test Analyzer block.
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Appendix D

This appendix describes the contents of the accompanyingCD-ROM. The directory structure

of the CD-ROM is:

\ CCode

| --VHDL Code

| —- Testbench

| -— Other Implementations

| -— source_ff

|— source_altera_l block

The C Code directory contains the C code used to simúlate the Viterbi algorithm in

a PC. Themain fue is caüed viterbi.c, which includes two other files, definic.c and funcextr.c.

viterbi.c aüows running the algorithm several times in a single run, with varying noise power

and SPL, and storing the results in a file in Matlab format. definic.c includes all variable

definitions. funcextr.c performs several extra functions, like calculating the Euclidean distance

between two vectors. These files were compiled with Borland C+ + compiler versión 4.

The VHDL Code directory contains the actual circuit that was implemented and

tested. The design's hierarchy is shown in figure D.l.

The Testbench directory contains three VHDL files that were used to simúlate the

Viterbi circuit. The file infosource.vhd simulates an information source, a convolutional

coder, a modulator, the additive white Gaussian noise channel, and a soft demodulator. The

sink.vhd file compares the output of the Viterbi decoder with the original data source and

calculates how many errors there are. The file testbed.vhd connects all circuits together for

simulation.
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acs
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acs
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Altera

memory

Figure D.1. Design Hierarchy

Each block in the figure above has a corresponding VHDL file.

The Other Implementations directory contains two alternative implementations of

the algorithm that cannot be fit into the Altera device used, but are interesting and worth

presenting. The source_ff directory contains an implementation that uses flip-flops instead

of RAM memory. This implementation is very fast, but takes up a large amount of área. If

área is not a concern, this implementation should be chosen over the one presented above.

The source_altera_l block directory contains an implementation using a hypothetical

RAM block that is truly synchronous (not Üke the ones currently offered by Altera; see

Chapter 4). If such amemory ever becomes available fromAltera, this source should be used,

as it twice as fast as the one presented above. This implementation should be easy to convert

to other FPGA technologies that offer this kind of memory.
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