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Controlador Adaptable Neuro-Difuso para el

Seguimiento de Trayectorias de un Veh́ıculo

Submarino Autónomo

Tesis que presenta

Jorge Said Cervantes Rojas

Para obtener el grado de

Doctor en Ciencias

En la especialidad de

Control Automático
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Abstract

The problem of control uncertain nonlinear systems is a widely studied problem in

modern control theory. This kind of problem considers parameter uncertainties, non-

modeled dynamics and external disturbances in the system structure. In this thesis

this control problem is solved applying an adaptive approach in order to identify the

uncertainties of the nonlinear system by using Takagi-Sugeno (T-S) fuzzy modeling and

differential neural network (DNN) theory. In consequence, an adaptive controller based

on neuro-fuzzy identifier of the nonlinear system can be designed. Finally in order

to validate the proposed algorithms in this study an Autonomous Underwater Vehicle

(AUV) system is used to reach a desired trajectory. In the AUV control field the

most common problems treated are: vertical and horizontal plane control, position and

attitude control, trajectory tracking and path following control. The trajectory tracking

control refers to the problem of steering a vehicle to follow a given route. In general

this problem are not easy to solve because of the highly nonlinear dynamic behaviour

of the vehicle, uncertainties in hydrodynamic coefficients and unknown disturbances

caused by ocean waves and currents.
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Resumen

El problema de controlar sistemas nolineales inciertos ha sido ampliamente estudi-

ado in la teoŕıa de control moderna. Este tipo the problema considera incertidumbres

paramétricas, dinámicas no modeladas y perturbaciones externas en la estructura del

sistema. En esta tésis este problema de control es resuelto aplicando un enfoque adapt-

able para poder identificar las incertidumbres del sistema nolineal usando modelado

difuso Takagi-Sugeno (T-S) y la teoŕıa de redes neuronales diferenciales (DNN por sus

siglas en inglés). En consecuencia, un identificador adaptable neurodifuso del sistema

nolineal puede ser diseñado. Finalmente, para poder validar los algoritmos propuestos

en esta tésis, un veh́ıculo submarino autónomo (AUV por sus siglas en inglés) es usado

para seguir una trayectoria deseada. En el campo del control de vehiculos submari-

nos los problemas mas comúnes tratados son: control en el plano vertical y horizontal,

control de posición y orientación, control de seguimiento de trayectorias y control the

seguimiento de una v́ıa. El control de seguimiento de trayectorias se refiere al prob-

lema de direccionar un veh́ıculo para seguir una ruta desada. En general este problema

no es fácil de resolver debido al comportamiento dinámico altamente nolineal del ve-

hiculo, incertidumbres en los coeficientes hidrodinámicos y perturbaciones desconocidas

causadas por olas y corrientes oceánicas.
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Introduction

The problem of control uncertain nonlinear systems is a widely studied problem in

modern control theory [Jain and Bhasin, 2015], [Esfandiari et al., 2015], [Kim, 2015],

[Buciakowski et al., 2015], [Teodorescu and Vandenplas, 2015], [Chen and Ge, 2015],

[Chen et al., 2016]. This kind of problem considers parameter uncertainties, nonmod-

eled dynamics and external disturbances in the system structure. In this thesis, this con-

trol problem is solved applying an adaptive approach in order to identify the uncertain-

ties of the nonlinear system by using Takagi-Sugeno (T-S) fuzzy modeling [Cao et al., 1997],

[Joh et al., 1998], [Li and Li, 2004], [Lin et al., 2004] and differential neural network

(DNN) theory [Chairez, 2013b], [Chairez, 2013a], [Viana and Chairez, 2010]. In conse-

quence, an adaptive controller based on neuro fuzzy-identifier of the non-linear system

can be designed. Regarding the controller robustness, this is included in the design

by considering the worst case of perturbations effect. Finally in order to validate the

proposed algorithms in this study an Autonomous Underwater Vehicle (AUV) system

is used to reach a desired trajectory.
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1.1 Motivation

The identification problem incorporated in feedback control of uncertain nonlinear sys-

tems exhibiting complex behaviour has been solved in different ways. Some of these

solutions have used artificial intelligence methods like fuzzy logic and neural networks.

Two main ideas are proposed in this work in order to solve the cited problem. First, the

control problem of the uncertain system by doing an on-line identification procedure

based on a standard T-S fuzzy inference system to approximate the uncertainties of

the nonlinear dynamics is carried out. However, the individual implementation of the

T-S systems suffers from certain drawbacks, such as the problem of finding suitable

membership functions for fuzzy systems and the corresponding set of matrices Ai, Bi

for the i − th consequent local linear system. These weaknesses can be avoided by

implementing a hybrid structure combining fuzzy and neural network approaches, the

so-called neuro-fuzzy systems. So, a second part of this work is devoted to a neuro-

fuzzy system identification methodology that implements differential neural networks

as consequences of T-S fuzzy inference rules. The DNNs substitute the local linear sys-

tems that are used in the common T-S method to approximate the uncertain nonlinear

system dynamics. In this thesis, DNNs are used to provide an effective tool for dealing

with the identification of the uncertain nonlinear system while the T-S rules is used to

provide the framework of previous knowledge of the system. The main idea is to carry

out an on-line identification process of an uncertain nonlinear system with the aim to

design a close-loop adaptive trajectory tracking controller.

1.2 Objectives

Within the scope of this investigation work the following particular objectives are stated:

• Trajectory tracking of an uncertain system using a T-S fuzzy identifier to design

a controller assuming the state is available,
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• Trajectory tracking of an uncertain system using a T-S neuro-fuzzy identifier to

design a controller assuming the state is available,

• Trajectory tracking of an uncertain system using a neuro-fuzzy identifier to design

a controller assuming the state is not available,

• Design and construction of an AUV experimental platform,

• Trajectory tracking of a 2 dimension route using the real-time AUV platform

applying a proportional derivative controller.

1.3 Antecedents of Autonomous Underwater Vehi-

cles

An autonomous underwater vehicle (AUV) is a robot which moves underwater without

an operator command. Autonomous underwater vehicles (AUVs) are equipped with an

embedded electronic system composed by a computer and an independent power source.

In the literature this type of vehicles are also known as Remotely Operated Vehicles

(ROVs), Unmanned Underwater Vehicles (UUVs), etc. The main advantage of an AUV

is that it does not need a human operator to execute underwater maneuvers. This char-

acteristic make AUVs suitable to work in conditions where humans cannot effectively

complete difficult tasks or represents dangerous risks [Smallwood and Whitcomb, 2004],

[Horgan and Toal, 2006], [Gaccia and Veruggio, 2000].

The United States Navy [Wernli, 2001] built an underwater device in the 1960’s

which was required to perform deep sea rescue and salvage operations. In the next

decade, the government and some universities performed their own research with AUVs

producing significant advances in the following years. The last AUV technology studies

motivate the oil and gas industrial sector to implement underwater vehicles for the

development of off shore oil fields [Williams, 2004]. In the 1980’s, AUVs was built to

3



dive to depths greater than the limits reached by a deep diver. However, due to a

global depression occurred in the middle of the decade that affected the oil industry

the AUV development remained without progress the following years. Once again in

the 90’s decade, a new interest arised about AUV systems in the academic research.

That was reflected in the development of new designs of AUVs by many universities.

The previous research culminated in the construction of the first commercial AUVs in

2000 [von Alt, 2003], [Blidberg, 2001]. From this moment, AUVs have been developed

rapidly [Smallwood et al., 1999], [Griffiths and Edwards, 2003]. Nowadays AUVs are

being used for a large number of applications, for example locating ship wrecks like the

Titanic [Ballard, 1987], mapping the sea floor [Tivey et al., 1998]. Other applications

consist of object tracing [Kondoa and Ura, 2004], monitoring harbours, searching for

sea mines [Willcox et al., 2001], and scientific projects [Curtin and Bellingham, 2001],

[Rife and Rock, 2002], [Lygouras et al., 1998]. Recently, battery design development

have helped to increment the time AUVs can be autonomously be sourced

[Wilson and Bales, 2006]. Also new advanced technologies have improved the efficiency

on the AUVs. From a technological point of view, the development of algorithms to

automate an underwater vehicle also have had a progress over the years.

In the AUV control field the most common problems treated are: vertical and hor-

izontal plane control, position and attitude control, trajectory tracking and path follow-

ing control [Nakamura and Savant, 1992], [Egeland and Dalsmo, 1996],

[Kinsey and Whitcomb, 2007], [Husa and Fossen, 1997], [Refsnes et al., 2008],

[Aguiar and Pascoal, 2007]. The trajectory tracking control refers to the problem of

steering a vehicle to follow a given route. In general, this problem are not easy to

solve because of the highly nonlinear dynamic behaviour of the vehicle, uncertainties

in hydrodynamic coefficients and unknown disturbances caused by ocean waves and

currents.

Recent research in order to solve the trajectory tracking problem for AUVs apply-

ing advanced control techniques has been developed, for example: sliding mode con-

4



trol [Elmokadem et al., 2015], [Joe et al., 2014], nonlinear control [Bian et al., 2010],

[He-ming et al., 2012], adaptive control [Kumar and Subudhi, 2014],

[Rezazadegan and Shojaei, 2013], neural network control [Eski and Yildirim, 2014],

[Wang and Wang, 2014], fuzzy control [Lakhekar and Waghmare, 2015],

[Raimondi and Melluso, 2010].

1.4 Contributions

In this work we deal with the problem of control uncertain nonlinear systems in order

to solve the trajectory tracking problem. This objective was achieved by combining

Takagi-Sugeno fuzzy approach and Lyapunov stability theory.

The existence of a non conventional time-varying Lyapunov function was demon-

strated in order to prove the ultimate boundedness of the tracking error between the

Takagi-Sugeno representation and a reference system.

The controller design was proposed to rely on the existence of a set of Riccati

differential equations and sufficient conditions were obtained to assure their positive

definite solutions.

In order to analyse a control problem based on output information, a T-S fuzzy

controller-observer system was studied whose solution is also based on Riccati differen-

tial equations.

A methodology to design an adaptive neuro-fuzzy scheme was proposed two accom-

plish identification and tracking control of uncertain nonlinear systems. This structure

mixed the use of differential neural networks and Takagi-Sugeno inference rules. A set

of continuous neural networks was used to approximate the dynamics of each sub-

system. A controlled Lyapunov function was proposed to prove the ultimate bounded

state equilibrium point for the tracking error dynamics. The same Lyapunov function

was used to design the laws that adjust the weights of each neural network. This

kind of solution is rarely explored and offered superior performance that linear Parallel
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Distributed Compensation controller without adaptation.

Numerical simulations was carried out considering several models of an autonomous

underwater vehicle.

A controller based output information for tracking a desired reference by an au-

tonomous underwater vehicle was designed using the backstepping approach. The yaw

rate was used to modify the x-y position of the vehicle. This controller was implemented

using the velocity displacement provided by a super-twisting observer. Applying a set

on robust exact differentiators was possible to recover the velocities using the position

information of the vehicle. Obtaining better tracking error convergence results with

less energy than a conventional PD controller.

Also, an experimental platform was built in order to validate the effectiveness of the

proposed controllers.

1.5 Structure

In Chapter 2 a methodology to design a Takagi-Sugeno tracking controller using Riccati

Differential Equations is presented. In chapter 3 a Takagi-Sugeno fuzzy control using

based on Differential Neural Networks as approximators of the uncertain nonlinear

system was introduced. In chapter 4 a methodology to design a tracking controller

using Riccati Differential Equations considering only the system output information

is designed. In chapter 5 an feedback controller using backstepping approach and a

super-twisting estimator is designed. In chapter 5 the experimental platform used for

real-time experiments was described.
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2

Autonomous underwater vehicle

modeling

This chapter is devoted to derive the AUV models used as an object of study in simu-

lation results in the following chapters. The nonlinear models are simplifications of the

general AUV model presented in [Fossen, 2002] which embrace the main nonlinearities

that describes the dynamic behaviour of a vehicle travelling underwater.

2.1 Body frame 3-DOF AUV model

The AUV shown in Fig. 3.4 is equipped with two propellers to control the vehicle in x-y

positions. In order to obtain a model of this AUV, two frames: the inertial reference

frame XI-YI , and the body frame XB-YB are defined. The origin of the body frame

is chosen as the center of gravity of the AUV. In the inertial reference frame, XB can

be regarded as longitudinal axis (from aft to fore), YB is regarded as transversal axis

(starboard direction).

7



Figure 2.1: AUV coordinate system.

The body-frame nonlinear model for an underactuated AUV in the horizontal plane

with two independent propellers is obtained by simplifying the surface vessel model

presented in [Pettersen, 1996]. It can be noticed that Fp (N) is the port thrust, Fs

is the starboard thrust (N), X = Fp + Fs (N) is the total force along XB axis and

N = (Fp − Fs)l (Nm) is the torque about ZB axis. The simplified equations of motion

are:

Mχ̇ (t) + C(χ (t))χ (t) +D(χ (t))χ (t) = τ (t)

where

M =


m11 0 0

0 m22 m23

0 m32 m33

, C(χ) =


0 0 −f (q, w)

0 0 m11p

f (q, w) −m11p 0

,

D(χ) =


−Xp 0 0

0 −Yp −Yw

0 −Nq −Nw

, τ =


τp

0

τw

,

f (q, w) = m23w+m22q, M is the inertia matrix. C(χ) is the Coriolis and centripetal

matrix. D(χ) is the damping matrix, χ = [p, q, w]> is the velocity vector. p, q are linear

velocities (m/s) in XB axis and YB axis, respectively, w is the angular velocity (rad/s)

about the vertical axis ZB, φ is the yaw angle (grades) in the inertial reference frame

8



XI − YI , τ is the force and torque vector, τp = Fp + Fs is the total force along to

XB−axis, τw = (Fp − Fs) l is the torque about ZB axis, Fp is the port thrust, Fs is

the starboard thrust, and ξ are perturbations affecting the model, for example, envi-

ronmental disturbances presented in [Fossen, 2002]. As in [Fantoni and Lozano, 2002],

[Pettersen and Nijmeijer, 1998b] and [Pettersen and Nijmeijer, 1998a], we have neglected

hydrodynamic damping (which is not essential in controlling the system), considering

that the shape of the AUV is a disc and the propellers are located at the center of

mass. In order to obtain the essential nonlinearities of the AUV, we assumed the iner-

tia matrix to be diagonal and equal to the identity matrix. Then the simplified dynamic

equations with respect to the body frame are given by

d

dt
p (t) = q (t)w (t) + τp (t) + ξ (t)

d

dt
q (t) = −p (t)w (t)

d

dt
w (t) = τw (t)

(2.1)

Also, Eq. (2.1) can be represented in a vector form

d

dt
χ (t) = f (χ (t)) +Bτ (t) + ζ (t) (2.2)

where f (χ (t)) =


q (t)w (t)

−p (t)w (t)

0

 , B =


1 0

0 0

0 1

 , ζ (t) =


ξ (t)

0

0

.
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2.2 Body frame 3-DOF AUV model with output

information

In this section the 3-DOF AUV model presented in Section 2.1 considering output

information is introduced. The differential equations are the following:

d

dt
p (t) = q (t)w (t) + τp (t) + ξ (t)

d

dt
q (t) = −p (t)w (t)

d

dt
w (t) = τw (t)

y = [q w]>

(2.3)

where y = [q, w]> is the output vector. The variables in Eq. 2.3 are the same defined

in Section 2.1. Then, Eq. (2.3) can be represented in a vector form

d

dt
χ (t) = f (χ (t)) +Bτ (t) + ζ (t)

y = Cχ
(2.4)

where C =

 0 1 0

0 0 1



2.3 Earth frame 4-DOF AUV model

In this section, the dynamic equations of motion of an AUV equipped with five pro-

pellers: port, starboard, 2× horizontal and vertical thrusters are described. The forces

and moments acting on the AUV in three dimensions and two reference frames: Earth-

fixed (XE, YE, ZE), and Body-fixed (XB, YB, ZB) are presented in Fig. 2.2.

Considering the motion of the AUV in 6-DOF, the following vector is defined

10



Figure 2.2: The underactuated AUV model in plane motion. Body-fixed [B] and Earth-
fixed [E] reference frames.

[Fossen, 2002]:

υ = [u, v, w, p, q, r]>, τ = [X, Y, Z,K,M,N ]>

where υ is the velocity vector in the Body-fixed frame; u, v and w denote linear velocities

of the AUV; p, q, r are angular velocities; τ is the vector of forces and moments acting

on the AUV in the Body-fixed frame. X, Y , Z are forces in surge, sway and heave

direction, respectively; additionally K, M , N denote torsion moments of roll, pitch and

yaw, respectively. After a regular procedure of modeling [Fossen, 2002], the nonlinear

dynamic equations to described the AUV behaviour as the solution of the second order

system is presented as:

M (η (t))
d2

dt
x (t) + C

(
η (t) ,

d

dt
η (t)

)
d

dt
η (t) +D

(
η (t) ,

d

dt
η (t)

)
d

dt
η (t) +

g (η (t)) = τ (t) + τE (t)

d

dt
η (t) = J(η (t))ν (t)

(2.5)
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where η = [x, y, z, φ, θ, ψ]> denotes the position and orientation vector with coordinates

in the Earth-fixed reference frame, x, y, z (meters) are linear positions in XE axis, YE

axis and ZE axis, respectively. φ, θ, ψ (radians) are angular positions with respect to

XE axis, YE axis and ZE axis, respectively. In Eq, (2.5), the parameter M : R6 → R6×6

is the inertia matrix including the added mass, C : R6 → R6×6 is the matrix of Coriolis

an centripetal terms including the added mass, D : R6 → R6×6 is the hydrodynamic

damping matrix and g : R6 → R6 is the forces and moments vector, J : R6 → R6×6 is

the velocity transformation between the velocity represented in Body-fixed coordinates

and the Earth-fixed coordinates. This transformation matrix is defined in the same

reference.

Then the velocity matrix transformation J (·) [Fossen, 2002] between Body-fixed

and Earth-fixed coordinate systems is

J (η2) =

 RB→E (η2) 03×3

03×3 T (η2)


where RB→E (η2) is the coordinate transformation matrix constructed by using the

yaw-pitch-roll convention, i.e., RB→E (η2) = Rz,ψRy,θRx,φ.

RB→E (η2) =


cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ

cθsψ cφcψ + sφsθsψ cφsθsψ − sφcψ

−sθ cθsφ cφcθ


and T (η2) is the angular velocity transformation between the Body-fixed and Earth-

fixed coordinate

T (η2) =


1 sφtθ cφtθ

0 cφ −sφ

0 sφ
cθ

cφ
cθ


where s(·) = sin(·), c(·) = cos(·), t(·) = tan(·).
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The disturbances affecting the model, for example, environmental disturbances pre-

sented in [Fossen, 2002, Perez, 2005], are represented by τE.

In order to apply the controller proposed in this study, the AUV dynamics can be

simplified considering the following assumptions [Fossen, 2002]:

A1. Relative low speed,

A2. AUV symmetry about the three planes,

A3. The aligning moment ensures horizontal stability, then roll and pitch movement

are neglected, i.e., φ, θ ≈ 0,

A4. The Body-fixed frame is positioned at the center of gravity, rG = [0, 0, 0]>.

Based on these assumptions, the following equations describing the movement dy-

namics of the fully actuated AUV with respect to the Earth-fixed reference frame can

be obtained.

The equation used to describe the dynamics of x is

d2

dt
x (t) = {c1 cos2 ψ (t) + c2 sin2 ψ (t)} d

dt
x (t) +

{c1 cosψ (t) sinψ (t)− c2 sinψ (t) cosψ (t)− d

dt
ψ (t)} d

dt
y (t) +

{c3[
d

dt
x (t) sinψ (t) cosψ (t)− d

dt
y (t) cos2 ψ (t)]+

c4[
d

dt
x (t) sinψ (t) cosψ (t) +

d

dt
y (t) sin2 ψ (t)]} d

dt
ψ (t) +

c5X (t) cosψ (t) + c5τE1 (t) cosψ (t)− c6τE2 (t) sinψ (t)

(2.6)

The corresponding nonlinear equation for the dynamic equation of y is given by

d2

dt
y (t) = { d

dt
ψ (t) + c1 sinψ (t) cosψ (t)− c2 cosψ (t) sinψ (t)} d

dt
x (t) +

{c1 sin2 ψ (t) + c2 cos2 ψ (t)} d
dt
y (t) +

{c3[
d

dt
x (t) sin2 ψ (t)− d

dt
y (t) sinψ (t) cosψ (t)]−

c4[
d

dt
y (t) sinψ (t) cosψ (t) +

d

dt
x (t) cos2 ψ (t)]} d

dt
ψ (t) +

c5X (t) sinψ (t) + c5τE1 (t) sinψ (t) + c6τE2 (t) cosψ (t)

(2.7)
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In the coordinate z, the nonlinear equation satisfy the following structure

d2

dt
z (t) = c7

d

dt
z (t) + c8 + c9Z (t) + c9τE3 (t) (2.8)

In the angular velocity variable ψ, the associated nonlinear equation is

d2

dt
ψ (t) = {c10[

d

dt
x (t) sinψ (t) cosψ (t)− d

dt
y (t) cos2 ψ (t)]+

c11[
d

dt
x (t) sinψ (t) cosψ (t) +

d

dt
y (t) sin2 ψ (t)]} d

dt
x (t) +

{c10[
d

dt
x (t) sin2 ψ (t)− d

dt
y (t) sinψ (t) cosψ (t)]−

c11[
d

dt
y (t) sinψ (t) cosψ (t) +

d

dt
x (t) cos2 ψ (t)]} d

dt
y (t) +

c12
d

dt
ψ (t) + c13N (t) + c13τE6 (t)

(2.9)

The nonlinear terms describing the effect of uncertainties on the AUV dynamics are:

c1 =
τDx

m−Xu̇

, c2 =
τDy

m− Yv̇
, c3 =

Yv̇ −m
m−Xu̇

,

c4 =
m−Xu̇

m− Yv̇
, c5 =

1

m−Xu̇

, c6 =
1

m− Yv̇
,

c7 =
τDz

m− Zẇ
, c8 =

FWB

m− Zẇ
, c9 =

1

m− Zẇ
,

c10 =
m− Yv̇
Iz −Nṙ

, c11 =
Xu̇ −m
Iz −Nṙ

, c12 =
τDψ

Iz −Nṙ

, c13 =
1

Iz −Nṙ

where m is the vehicle mass, FWB = W − B (N) is the difference of buoyancy (B)

and gravity (W ) forces in the ZB-axis (this AUV has positive buoyancy, i.e., B > W ),

τDx , τDy , τDz (kg/m) and τDψ (kg m2/rad2) are elements of the hydrodynamic damping

matrix, Xu̇, Yv̇, Zẇ (kg) and Nṙ (kg m2/rad) are elements of the added mass inertia

matrix and Iz is the inertial tensor about the ZB-axis.
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2.4 Fully-actuated earth frame 4-DOF AUV model

In this section a variation of the model treated in Section 2.3 adding two horizontal

thrusters are described. The forces and moments acting on the AUV in three dimensions

and two reference frames: Earth-fixed (XE, YE, ZE), and Body-fixed (XB, YB, ZB) are

presented in Fig. 2.3.

Y
B

Z
B

X
B

Y
E

Z
E

X
E

Figure 2.3: The fully actuated AUV model in plane motion. Body-fixed [B] and Earth-
fixed [E] reference frames.

The difference respect to the model presented in Section 2.3 is we considered a fully-

actuated AUV model, that is the control vector is defined as τ = [X, Y, Z,N ]> where

Y is a force is sway direction. The same procedure to obtain the dynamic equations as

in Section 3 is carried out. The equations are the same as in the under-actuated case

of previous section, only the dynamic equations in x and y are modified as follows:

The equation used to describe the dynamics of x is
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d2

dt
x (t) = {c1 cos2 ψ (t) + c2 sin2 ψ (t)} d

dt
x (t) +

{c1 cosψ (t) sinψ (t)− c2 sinψ (t) cosψ (t)− d

dt
ψ (t)} d

dt
y (t) +

{c3[
d

dt
x (t) sinψ (t) cosψ (t)− d

dt
y (t) cos2 ψ (t)]+

c4[
d

dt
x (t) sinψ (t) cosψ (t) +

d

dt
y (t) sin2 ψ (t)]} d

dt
ψ (t) +

c5X (t) cosψ (t)− c6Y (t) sinψ (t) + c5τE1 (t) cosψ (t)− c6τE2 (t) sinψ (t)

(2.10)

The corresponding nonlinear equation for the dynamic equation of y is given by

d2

dt
y (t) = { d

dt
ψ (t) + c1 sinψ (t) cosψ (t)− c2 cosψ (t) sinψ (t)} d

dt
x (t) +

{c1 sin2 ψ (t) + c2 cos2 ψ (t)} d
dt
y (t) +

{c3[
d

dt
x (t) sin2 ψ (t)− d

dt
y (t) sinψ (t) cosψ (t)]−

c4[
d

dt
y (t) sinψ (t) cosψ (t) +

d

dt
x (t) cos2 ψ (t)]} d

dt
ψ (t) +

c5X (t) sinψ (t) + c6Y (t) cosψ (t) + c5τE1 (t) sinψ (t) + c6τE2 (t) cosψ (t)

(2.11)

2.5 Earth frame 2-DOF AUV lateral model

In this section, a simplification of the model treated in Section 2.3 considering only the

x-z movement is described. The forces acting on the AUV in two dimensions and two

reference frames: Earth-fixed (XE, ZE), and Body-fixed (XB, ZB) are presented in Fig.

2.4.

This AUV model is fully actuated, that is the control vector is defined as τ =

[X,Z]>. The dynamic equations of the AUV lateral model are The equation used to

describe the dynamics of x is

d2

dt
x (t) = c1

d

dt
x (t) + c5X (t) + c5τE1 (t) (2.12)
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XE

ZE

XB

ZB

Earth-fixed

Body-fixed

O=CG

u (surge)

w (heave)

Figure 2.4: The AUV in lateral motion. Body-fixed and Earth-fixed reference frames.

The equation used to describe the dynamics of z is

d2

dt
z (t) = c7

d

dt
z (t) + c8 + c9Z (t) + c9τE3 (t) (2.13)
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3

Takagi-Sugeno Fuzzy Controller

Design Using Riccati Differential

Equation

In this chapter, we want to design a stable T-S fuzzy control without using LMIs. The

locally linear time-invariant systems are transformed into a time-varying system. By

using matrix RDE, we prove that the trajectory tracking error of the T-S fuzzy control

is bounded. Also, for validation purposes we apply this new T-S fuzzy control to a

underwater vehicle. Comparisons with LMI method are given. Experimental results

show that this novel T-S fuzzy control has many advantages over the popular LMI

method.

3.1 Control problem statement

The T-S system may be used to approximate uncertain nonlinear systems. The class

of uncertainties may include parametric variations or nonmodeled dynamics. So, let
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consider the following uncertain nonlinear system:

d

dt
x (t) = f (x (t)) + g (x (t))u (t) + ξ (x (t) , t) , x (0) = x0, ∀t ≥ 0 (3.1)

where x ∈ Rn is the state vector, u ∈ Rm is the control vector (m < n), and

ξ : Rn+1 → Rn represents parameter variations, external perturbations, unmodeled

dynamics, etc. The uncertain nonlinear continuous functions f : Rn → Rn and

g : Rn → Rn×m each one is composed of n nonlinear functions. The function g must

satisfy ‖g(x)‖ 6= 0 for all x. This condition is sufficient to ensure controllability. If

possible, one may consider that g(x)/ ‖g(x)‖ is also known but this is not needed to

solve the controller design proposed in this study.

The specific characterization of T-S system usually requires a non standard pa-

rameter identification to get all matrices Ai and Bi. Many studies have been pro-

posed to resolve this problem but this aspect is beyond the scope of this article.

It is not easy to obtain exact nonlinear models for many complex physical systems.

The Takagi-Sugeno (T-S) model expresses the physical systems with several local mod-

els. It has been proven that any continuous nonlinear uncertain system can be repre-

sented as the following T-S fuzzy dynamic model [Cao et al., 1997], [Joh et al., 1998],

[Li and Li, 2004], [Lin et al., 2004]

Rk: IF z1 is F hk
1 and z2 is F hk

2 and · · · zv is F hk
v

THEN
d

dt
x (t) = Aix (t) +Biu (t) + f̃ i (x (t) , u (t)) + ξi (x (t) , t)

k = 1, · · · ,m, i = 1, . . . ,M

(3.2)

where Rk is the k-th fuzzy rule, m is the number of inference rules, M is the number

of local models, z = [z1, z2, . . . , zv]
> (v ≤ n) are the premise variables, F hk

j (j = 1 . . . v)

are the fuzzy sets for the premise variables zj, hk is the membership function number

for each premise variable j, The matrices Ai ∈ Rn×n and Bi ∈ Rn×l define the i-th local

T-S model and ξi : Rn+1 → Rn represents parameter variations, external perturbations
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and unmodeled dynamics for each local model. The matrices Ai ∈ Rn×n and Bi ∈ Rn×l

are designed such that the following assumption holds:

A1: The pairs (Ai, Bi), i = 1, 2 · · ·M, are controllable.

The term f̃ i (x (t) , u (t)) = f (x (t)) + g (x (t))u (t)−Aix (t)−Biu (t) is named the

modeling error for each local model.

Since the uncertain nonlinear functions f and g are assumed to be locally Lipschitz

under the admissible control u ∈ Uadm, the modeling error f̃ i (x (t) , u (t)) satisfy the

following sector conditions:

∥∥∥f̃ i (x, u)
∥∥∥2

≤ f̃ i0 + f̃ i1 ‖x‖
2 (3.3)

where f̃0, f̃1 are known finite positive scalars.

Using a fuzzy standard inference method, i.e., product inference, center-average and

singleton fuzzifier, the m T-S models, Eq. (3.2) can be rewritten as

d

dt
x (t) =

M∑
i=1

αi (x (t))
[
Aix (t) +Biu (t)

]
+

M∑
i=1

αi (x (t)) f̃ i (x (t) , u (t))

+
M∑
i=1

αi (x (t)) ξi (x (t) , t)

(3.4)

where αi (x) is defined as, αi (x) =
M∏
j=1

µij/
M∑
i=1

M∏
j=1

µij, µ
i
j is the membership functions

of the fuzzy sets F i
j . Obviously, 0 ≤ αi (x) ≤ 1,

M∑
i=1

αi (x) = 1.

If we define A (t) , A (x (t)) =
M∑
i=1

αi (x (t))Ai, B (t) , B (x (t)) =
M∑
i=1

αi (x (t))Bi,

η (x (t) , u (t)) =
M∑
i=1

αi (x (t)) f̃ i(x (t) , u (t)), ξ̄ (x (t) , t) =
M∑
i=1

αi (x (t)) ξi (x (t) , t), Eq,

(3.4) can be simplified as

d

dt
x (t) = A (t)x (t) +B (t)u (t) + η (x (t) , u (t)) + ξ̄ (x (t) , t) (3.5)

where η (x, u) is the integrated modeling error, ξ̄ (x, t) is the integrated uncertainty
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term.

Remark 1 The parameter variations and external disturbances and can be associated

only to the term ξ̄(x, t) and the unmodeled dynamics can be introduced in the modeling

error term η(x, u) which satisfies a sector boundary condition.

To establish a feasible control problem, we define an admissible control set as

Uadm =
{
u : ‖u‖2 ≤ γu1 + γu2 ‖x‖2} (3.6)

where γu1 and γu2 are positive constants. Uadm guarantees the right hand side of Eq.

(3.4) is locally Lipschitz. Obviously, the normal state feedback control satisfies γu1 = 0

and γu2 > 0.

The controller design objective is to find u ∈ Uadm, such that the trajectory tracking

error is ultimate bounded [Khalil, 2002] as

lim
t−→∞

sup ‖x (t)− xref (t)‖ ≤ βref (3.7)

where xref ∈ Rn are the reference signals and βref > o defines the quality of the

trajectory tracking control.

The desired signals are generated by a nonlinear reference model given by

d

dt
xref (t) = s (xref (t) , t) (3.8)

where xref (0) = xref,0, ∀t ≥ 0. The function s : Rn+1 → Rn is nonlinear and Lipschitz,

it satisfies

‖s (xref (t)), t)‖2 ≤ Ls ‖xref (t)‖2 , ∀t ≥ 0 (3.9)

where Ls > 0. Based on the orthogonal decomposition [Poznyak et al., 2004],
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[Polyakov and Poznyak, 2011], Eq. (3.8) can be rewritten as

s (xref (t) , t) = B (t) v (t) +B (t)⊥ r (t) (3.10)

where B⊥ is the orthogonal function of B which is selected to satisfy that ImB ⊇ Img,

and v, r ∈ Rn×1 are given by

v =
[
B>B

]−1
B>s (xref , t)

r =
[(
B⊥
)>
B⊥
]−1 (

B⊥
)>
s (xref , t)

(3.11)

Define B⊥ using the pseudo-inverse B+ in the sense of Moore-Penrose [Poznyak, 2008],

then

B⊥ = I −BB+, B+ =
(
B>B

)−1
B> (3.12)

In this work the following assumptions are considered to be satisfied:

A2: The reference xref (t) is bounded as

‖xref‖2 ≤ γref , γref > 0 (3.13)

A3: The perturbations are bounded as

‖ξ (x, t)‖2 ≤ γξ, γξ > 0 (3.14)

Considering the sector conditions in Eq. (3.3) the integrated modeling error η (x, u)

satisfies:

A4:

‖η (x, u)‖2 ≤ f0 + f1 ‖x‖2 , u ∈ Uadm (3.15)

where f0 =
M∑
i=1

f̃ i0, f1 =
M∑
i=1

f̃ i1.

23



3.2 Controller design

This work does not discuss the fuzzy modeling problem, so we are not interesting in

the minimization of the modeling error. We will design a fuzzy control such that the

tracking error in Eq. (3.7) is ultimate bounded. We use the model in Eq. (3.5) and

assumption A4.

Now we define the trajectory tracking error

∆ = x− xref (3.16)

The following theorem gives the main result of the chapter. It guarantees the track-

ing error in Eq. (3.16) is bounded. It also provides an explicit and easy design method

for the T-S fuzzy control.

Theorem 2 (Stability of the trajectory tracking error). If there exists a positive scalar

α and symmetric positive definite matrices Λi ∈ Rn×n (i = 1 · · · 4) and

|min
t
{λmin(A(t))}| > max(α) such that the following matrix RDE

[Kilicaslan and Banks, 2010] have positive definite solution:

d

dt
P (t) + P (t) Ā1 (t) + Ā>1 (t)P (t)− P (t)R1 (t)P (t) +Q1 (t) = 0 (3.17)

where P (t) = P> (t) > 0,

Ā1 (t) = A (t) +
α

2
I,

R1 (t) = 3(A (t) Λ1A
> (t) + S1 (t) Λ4S

>
1 (t) + Λ2 + Λ3),

Q1 (t) = 2λmax

(
Λ−1

2

)
f1In×n

S1 (t) = B⊥ (t)
[(
B⊥ (t)

)>
B⊥ (t)

]−1 (
B⊥ (t)

)>
,

(3.18)

f1 is defined in Eq. (3.15), B⊥ is defined in Eq. (3.12), A (t) and B (t) are defined in

24



Eq. (3.5), and In×n is the identity matrix of n × n, and the feedback control is in the

following form

u (t) = −K (t) ∆ (t) + v (t) , K (t) ∈ Rm×n,

K (t) = 2
[
B> (t)B (t)

]−1
B> (t)R1 (t)P (t)

(3.19)

where v (t) is defined in Eq. (3.11), then the trajectory tracking error ∆ satisfies

lim
t→∞

sup ‖∆ (t)‖2 ≤ β

α ∗min
t
{λmin (P (t))}

(3.20)

where

β = λmax

(
Λ−1

1

)
γref + λmax

(
Λ−1

2

)
f0 + 2λmax

(
Λ−1

2

)
f1γref + λmax

(
Λ−1

3

)
γξ+

λmax

(
Λ−1

4

)
Lsγref

f0 and f1 are defined in Eq. (3.15), γref is defined in Eq. (3.13), γξ is defined in Eq.

(3.14 ), Ls is defined in Eq. (3.9)

Proof. See Appendix A1.

Remark 3 In order to prove the stability of several linear systems Eqs. (3.2) and

(3.4) for T-S fuzzy control, there are two popular methods: common Lyapunov function

and LMI method. Both of them try to find common stability conditions for all linear

systems. This work combines all these linear system as in Eq. (3.5). However, it

becomes a time-varying linear system. We use RDE to avoid the complexity of the

common Lyapunov function method and LMI method.

3.3 On the Riccati Differential Equation solution

The T-S fuzzy controller in Eq. (3.19) needs the solution P (t) of the RDE (3.17). This

RDE has time-varying parameters, it is not easy to discuss the existence conditions for

P (t) . The following lemma shows how to use a RDE with time-invariant parameters

to decide the solution of a RDE with time-varying parameters.
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Lemma 4 Let us consider a matrix RDE with time-varying parameters and an alge-

braic Riccati equation (ARE) given by

d

dt
P (t) + A>(t)P (t) + P (t)A(t)− P (t)R(t)P (t) +Q(t) = 0

A>P2 + P2A− P2RP2 +Q = 0

(3.21)

with the initial condition

P (0) > P2 (3.22)

and with the corresponding Hamiltonians are given by

H (t) =

 Q(t) A(t)>

A(t) −R(t)

 H2 =

 Q A>

A −R


If

H2 ≥ H (t) ≥ 0 (3.23)

and the pair (A,R) is stable, i.e., ∃F : Re(λi (A− FR)) < 0, then

P (t) > P2 > 0, ∀t > 0 (3.24)

Proof. See Appendix A2.

This lemma shows that if the T-S fuzzy system is designed, such that the condition

in Eq. (3.23) is satisfied, i.e.

 Q A>

A −R

 ≥
 Q (t) Ā>(t)

Ā(t) −R(t)


where A, Q, and R are constant matrices which are chosen such that they satisfy the

following conditions 1) the pair (A,R1/2) is controllable, 2) the pair (Q1/2, A) is observ-

able. These two conditions are equivalent to the following local frequency condition
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[Willems, 1971]

A>R−1A−Q ≥ 0 (3.25)

The detailed proof of Eq. (3.25) can be found in [Osorio et al., 1997]. Then, by Lemma

1, the solution of Eq. (3.17) P (t) is not less than the solution of

A>P2 + P2A− P2RP2 +Q = 0 (3.26)

then the initial condition of Eq. (3.17) is bigger than that of Eq. (3.26). This means

if the conditions described before are fulfilled the existence condition for Theorem 1 is

always satisfied.

Remark 5 It is important to note that in Eqs. (3.17) and (3.27) P (t) is just a function

of time t because its parameters A (t) and B (t) in Eq. (3.5) also are functions of time

t. They are evaluated as functions of the trajectory of x(t) not only on the state value

(without time evolution). The RDE is a dynamic system, its input is x(t) and its state

is P (t). Given an initial condition for P (t) namely P (0), this dynamic system starts

to run. This condition has been used in the control design of time-varying systems.

Indeed, if P is proposed as a function of x, then is needed to propose a way to guarantee

the existence of a positive definite solution. This represents completely another problem

to solve. The concept of state dependent Riccati equation (SDRE) has been proposed

in different articles [Banks et al., 2007], [Xie et al., 2013], [Cimen, 2008] but it is still

evaluated on the current value of the state evaluated at a given time t
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3.4 Implementation issues

In order to implement the closed-loop system applying the proposed tracking controller

based on the RDEs on-line solution the following procedure needs to be carried out.

The schematic in Fig. 3.1 shows the architecture of the closed-loop system.

First the RDE in Eqs. (3.17) stated in Theorem 1 can be rewritten as follows:

d

dt
P (t) = P (t)R1 (t)P (t)− P (t) Ā1 − Ā>1 P (t)−Q1 (t) (3.27)

The parameters of the RDEs was chosen to fulfil the existence conditions presented

in Lemma 4.

We do not calculate the analytical solution. To solve Eq. (3.27) a simulation on

MATLAB-Simulink considering initial condition P (0) = P0 was implemented.

• The matrix
d

dt
P (t) of Eq. (3.27) is calculated using the values of A(t), B(t) which

depend on αi (x).

• P (t) are obtained by integrating Ṗ (t).

• P (t) and A(t) and B(t) are used to calculate K (t) in Eq. (3.19).

The integral operation divide the two processes in consequence there is no algebraic

loop.

Controller
RDE

Nonlinear 

System

Desired

Signals

xref(t)
+

+

-

D(t)
u(t)

P(t)

Fuzzy

Approximation

A(t),B(t)

x(t)

Figure 3.1: Closed-loop system architecture with on-line RDE.
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3.5 Numerical results

In order to validate the performance of the RDE based on T-S fuzzy control, an AUV

model in the horizontal plane is used, see Section 2.1 in Chapter 2. If one uses the

method described in Section 3.1 we can use 27 T-S fuzzy rules and four local systems

to approximate this AUV system:

Rk: IF p ∈ F hk
p and q ∈ F hk

q and w ∈ F hk
w ,

THEN
d

dt
χ (t) = Aiχ (t) +Biτ (t) + f̃ i (χ (t) , τ (t)) + ζ i (t)

(3.28)

where k = 1 · · · 27, i = 1 · · · 4, Ai ∈ R3×3 and Bi ∈ R3×2. For the fuzzification stage the

sign of the measurable variables p, q and w is chosen as the fuzzy set, and the following

three partitions are proposed: Negative (N), Zero (Z), and Positive (P ). That is,

F hk
p , F hk

q , F hk
w ∈ {N,Z, P}. The membership functions structure are selected as Fig.

3.2. Ai and Bi are chosen as linearizations of the nonlinear system in Eq. (3.1), and

they must satisfy that the RDE in Eq. (3.17) has solution. The four local systems that

were used to approximate the AUV model have the following matrices:

A1 =


0 1 1

−1 0 −2

0 0 0

 , A2 =


0 1 0.5

−1 0 −1

0 0 0

 , A3 =


0 2 0.8

−2 0 −0.5

0 0 0

 ,

A4 =


0 5.3 1.2

−5.3 0 −3.5

0 0 0

 , B1 = ... = B4 = B.

In Eq. (3.18) Λi (i = 1, · · · , 4) are chosen as identity matrices. For Eq. (3.26), A2 =

diag [−1,−1,−1] , Q2 = diag [0.2, 0.2, 0.2] , R2 = diag [1.5, 1.5, 1.5] are chosen.

Based on the planning motion method, the desired reference has the same structure

as the AUV, it satisfies s (xref ) = [2 + qrefwref ,−prefwref , 2]> .
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Figure 3.2: Membership functions structure of N, Z and P . .

With the initial conditions χ0 = [2,−2, 4]> , s (xref (0)) = [0, 0, 0]> , the final feed-

back control is stated in Eq. (3.19), here P (t) is the numerical solution of Eq. (3.27).

The norm of the time-varying controller gain K (t) is shown in Fig. 3.3. This controller

is applied to the original system in Eq. (3.1).
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Figure 3.3: Norm of the time-varying controller gain K (t) based on Riccati differential

equation.

There are several results on fuzzy control for AUV one of the most common is the

LMI method. We compare our method (RDE) with the popular LMI based T-S fuzzy
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control [Tuan et al., 2001]. LMI method has the PDC form

τ (t) = KLMI (t) ∆ (t) , KLMI (t) =
4∑
i=1

αi (t)Ki

The local gains Ki are

K1 =

 14.6662 −2.5125 7.6231

6.5240 −5.3162 9.3338

 , K2 =

 9.9085 3.6972 6.7541

5.8949 −1.3966 6.0915


K3 =

 20.8259 −11.8471 9.7919

7.4068 −8.2994 11.1741

 , K4 =

 18.3649 −9.4606 7.8695

5.7556 −7.8510 11.6351


The numerical results are shown in Fig. 3.4 and Fig. 3.5. In these figures a

comparison of the tracking of desired velocities in the XB and YB axes implementing

the proposed RDE and LMI based methods is shown. We can see that our RDE based

method needs 2 seconds to converge to the reference velocities, while the LMI based

method needs more than 7 seconds. Also LMI method cannot track the trajectory at

the beginning. The fast speed of our RDE method may come from the dynamic system

in Eq. (3.27) is more simple and faster than LMIs.

The stability analysis of T-S fuzzy system based on LMI is complex. However, it

is only an off-line and analytic task. There are also many relaxing condition for LMI

technique. In on-line case, we need to run the dynamic system in Eq. (3.27), while

the gain of LMI is fixed. For the computation speed, LMI is better than our RDE

method. However, both of them are very fast. Simulation results show our RDE has

faster convergence speed than LMI, because the feedback control gain of this work is

time-varying, which depends on the state P (t) of the dynamic system in Eq. (3.27).

P (t) needs both fuzzy model A (t) and B(t), and the state x (t) . While the feedback

control gain of LMIs only use the fuzzy model A (t) and B(t).

Although the controlled system in Eq. (3.1) is not so complex, the results of the T-S

fuzzy control are not so good as the model-based control, such as feedback linearisation.
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Figure 3.4: Tracking of the velocity in XB-axis implementing the proposed RDE and
LMI methods.

This because the fuzzy model in Eq. (3.28) is not exact model of the controlled system

Eq. (3.1).
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Figure 3.5: Tracking of the velocity in YB-axis implementing the proposed RDE and

LMI methods.
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3.6 Conclusions of the chapter

In this chapter a state feedback control was designed based on the Lyapunov stability

analysis for a T-S fuzzy system. A nonconventional Lyapunov time-varying function

was used to prove the ultimate boundedness of the tracking error between the T-S

representation of an uncertain nonlinear system and a reference system. This work

uses a RDE and a feedback controller with time-varying gain based on the solution

of a RDE to guarantee the stability of the T-S fuzzy closed-loop system. We also

propose a existence condition for the RDE. The feedback gain obtained using the LMI

technique is calculated off-line and is fixed in the closed-loop system providing an stable

behaviour. However, the LMI technique considers the worst case of the disturbance

effect in consequence the energy used to stabilize the system is the same for small

or big disturbances. Numerical simulations applying the novel controller obtained in

this study for an autonomous underwater vehicle trajectory tracking was done. These

simulations show the controller calculated with LMI technique consumes more energy

than the one using the RED based method. This fact is due to the RDE is solved

on-line providing a time-varying feeback gain which indirectly varies according to the

dynamic behaviour of the system. In consequence, superiority performance of the result

obtained here compared to the regular control design based on LMIs is demonstrated.

For a complete unknown nonlinear system, to obtain A(t) and B(t) of the T-S fuzzy

system in Eq. (3.5) needs the neural training method [W. Yu, 2004]. Also is necessary

to study the stability of neural networks and T-S fuzzy model [Li and Li, 2004]. In

Chapter 5 a methodology to avoid the necessity to find suitable A(t) and B(t) based

on a neuro-fuzzy identifier is developed. Also it is necessary to design an observer in

order to use the state information provided by the output information of the nonlinear

system. This problem is solved in Chapter 4.
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4

Fuzzy Output Feedback Controller

Design of Uncertain Nonlinear

Systems

In this chapter, an alternative methodology based on T-S fuzzy modeling is proposed

to guarantee a feasible solution of the trajectory tracking between an uncertain non-

linear perturbed system and a reference dynamics. This strategy uses the Lyapunov

formalism to provide sufficient conditions that supports the control design. This output

based controller structure uses the positive definite solution of two Riccati Differential

Equations (RDE). Based on the assumption regarding the existence of solution for

these two equations, the nonlinear system trajectories track the reference states. The

internal information (unmeasurable states) used by the controller described before is

provided by a T-S fuzzy observer of the nonlinear system. On opposite to the LMI based

methods, only two equations must be solved instead of several LMI’s. This condition

simplifies the numerical algorithm because there exist well-known conditions to ensure

their solution [Kilicaslan and Banks, 2012] and [Kilicaslan and Banks, 2010]. Ultimate
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boundedness concept [Khalil, 2002] is used to define the stability sense that governs the

tracking error.

4.1 Control problem statement

Consider the following uncertain nonlinear system:

d

dt
x (t) = f (x (t)) + g (x (t))u (t) + ξ (x (t) , t) , x (0) = x0, ∀t ≥ 0

y (t) = h (x (t))
(4.1)

where x ∈ Rn is the state vector, u ∈ Rm is the control vector (m < n), y ∈ Rp

(p < n) is the output, and ξ : Rn+1 → Rn represents either parameter variations,

external perturbations, unmodeled dynamics, etc. The uncertain nonlinear continuous

functions f : Rn → Rn and g : Rn → Rn×m each one is composed of n nonlinear

functions and h : Rn → Rp is composed of p nonlinear continuous functions. Because

of h is continuous, it is possible to recover the output information based on state

information solutions, such as state observer.

The control goal is to force the system states using the output information to track

desired signals, xref , generated by a nonlinear reference model given by

d

dt
xref (t) = s (xref (t) , t) (4.2)

where xref ∈ Rn, xref (0) = xref,0, ∀t ≥ 0. The following assumption are considered to

be satisfied:

A1: The reference xref is bounded as

‖xref‖2 ≤ γref , γref > 0 (4.3)

The function s : Rn+1 → Rn is nonlinear and Lipschitz, and considering s (0) = 0, the
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following inequality is satisfied

‖s (xref , t)‖2 ≤ Ls ‖xref‖2 (4.4)

where Ls > 0. Based on the orthogonal decomposition [Poznyak et al., 2004],

[Polyakov and Poznyak, 2011], Eq. (4.2) can be rewritten as

s (xref (t) , t) = T (t) v (t) + T (t)⊥ r (t) (4.5)

where T is selected to satisfy that ImT ⊇ Img, T
⊥ is the orthogonal function of T ,

defined as, T⊥ = In×n − TT+, and T+ =
(
T>T

)−1
T>, T+ is the pseudo-inverse of T

in the sense of Moore-Penrose [Poznyak, 2008]. Then, terms, v (t) and r (t) ∈ Rm, are

given by

v (t) =
[
T (t)> T (t)

]−1

T (t)> s (xref (t) , t)

r (t) =

[(
T (t)⊥

)>
T (t)⊥

]−1 (
T (t)⊥

)>
s (xref (t) , t)

(4.6)

A2: The term that contains uncertainties and perturbations are bounded as

‖ξ (x, t)‖2 ≤ γξ, γξ > 0 (4.7)

An admissible control set is defined as in equation 3.6. The controller design ob-

jective is ths same as the stated in 3.7. A fuzzy control based on state observation is

designed such that the trajectory tracking error in Eq. (3.7) is minimized.
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Since the T-S fuzzy model is a universal approximation function

[Takagi and Sugeno, 1985], the uncertain nonlinear system Eq. (4.1) can be represented

by M T-S fuzzy models with modeling error as follows.

Rk: IF z1 is F hk
1 and z2 is F hk

2 and · · · zv is F hk
v

Then
d

dt
x (t) = Aix (t) +Biu (t) + f̃ i(x (t) , u (t)) + ξi (x (t) , t)

y (t) = Cix (t) + h̃i(x (t))

k = 1, · · · ,m, i = 1, . . . ,M

(4.8)

where Rk is the k-th fuzzy rule, m is the number of inference rules, M is the number

of local models, z = [z1, z2, . . . , zv]
> (v ≤ n) are the premise variables, F hk

j (j = 1 . . . v)

are the fuzzy sets for the premise variables zj, hk is the membership function number

for each premise variable j. The matrices Ai ∈ Rn×n, Bi ∈ Rn×l and Ci ∈ Rp×n define

the i-th local T-S model and ξi : Rn+1 → Rn represents parameter variations, external

perturbations and unmodeled dynamics for each local model. The matrices Ai, Bi and

Ci are designed such that the following assumptions hold:

A3: The pairs (Ai, Bi), i = 1, 2 · · ·M, are controllable.

A4: The pairs (Ci, Ai), i = 1, 2 · · ·M, are observable.

The terms f̃ i (x, u) and h̃i(x, u) are the modeling errors for each local model, i.e.,

f̃ i (x, u) = f (x) + g (x)u− Aix−Biu and h̃i(x) = hi(x)− Cix.

Since the uncertain nonlinear functions f , g and h are assumed to be locally Lipschitz

under the admissible control u ∈ Uadm, the modeling errors f̃ i (x, u) and h̃i(x) satisfy

the following sector conditions:

∥∥∥f̃ i (x, u)
∥∥∥2

≤ f̃ i0 + f̃ i1 ‖x‖
2 ,

∥∥∥h̃i(x)
∥∥∥2

≤ h̃i0 + h̃i1 ‖x‖
2 (4.9)

where f̃0, f̃1, h̃0, h̃1 are known finite positive scalars.

Using a fuzzy standard inference method, i.e., product inference, center-average and
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singleton fuzzifier, the M T-S models in Eq. (4.8) can be rewritten as

d

dt
x (t) =

M∑
i=1

αi (z (t)) (Aix (t) +Biu (t)) +
M∑
i=1

αi (z (t)) f̃ i(x (t) , u (t))+

M∑
i=1

αi (z (t)) ξi (x (t) , t)

y (t) =
M∑
i=1

αi (z (t))Cix (t) +
M∑
i=1

αi (z (t)) h̃i(x (t))

(4.10)

where αi (z) is defined as αi (z) =
v∏
j=1

µij (zj) /
M∑
i=1

v∏
j=1

µij (zj) , µ
i
j (zj) is the membership

functions of the fuzzy sets F i
j . Obviously, 0 ≤ αi (z) ≤ 1,

M∑
i=1

αi (z) = 1.

The activation functions αi (·) depend on the decision vector z (t) assumed to depend

on measurable variables. It can depend on the measurable state variables, and it can

be a function of the measurable outputs of the system

Considering that A (t) =
M∑
i=1

αi (z (t))Ai, B (t) =
M∑
i=1

αi (z (t))Bi,

C (t) =
M∑
i=1

αi (z (t))Ci, η (x (t) , u (t)) =
M∑
i=1

αi (z (t)) f̃ i (x (t) , u (t)),

δ (x (t)) =
M∑
i=1

αi (z (t)) h̃i(x (t)) and ξ̄ (x (t) , t) =
M∑
i=1

αi (z (t)) ξi (x (t) , t), Eq. (4.10) can

be simplified as

d

dt
x (t) = A (t)x (t) +B (t)u (t) + η (x (t) , u (t)) + ξ̄ (x (t) , t)

y (t) = C (t)x (t) + δ (x (t))
(4.11)

where η (x, u) and δ (x) are modeling errors, ξ̄ (x, t) refers to as the external perturbation

and uncertainty term.

Considering the sector conditions in Eq. (4.9) the integrated modeling error η (x, u)

satisfies:

A5:

‖η (x, u)‖2 ≤ η0 + η1 ‖x‖2 , u ∈ Uadm (4.12)

and the integrated modeling error δ (x) satisfies:
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A6:

‖δ (x)‖2 ≤ δ0 + δ1 ‖x‖2 (4.13)

where η0 =
M∑
i=1

f̃ i0, η1 =
M∑
i=1

f̃ i1, δ0 =
M∑
i=1

h̃i0, δ1 =
M∑
i=1

h̃i1.

Remark 6 The external disturbances can be associated only to the term ξ̄(x, t) and

the unmodeled dynamics and uncertainties can be introduced in the modeling error term

η(x, u) which satisfies a sector boundary.

To achieve the solution of the trajectory tracking established in Eq. (??) all the states of

Eq. (4.11) are needed. Considering the state information of Eq. (4.11) is not available,

an observer to estimate this state is proposed. Therefore, T-S fuzzy observer that do

not depend on the estimated premise variables [Tanaka and Wang, 2001] is considered.

This observer has the following structure:

d

dt
x̂ (t) = A (t) x̂ (t) +B (t)u (t) + L (t) (y (t)− ŷ (t))

ŷ (t) = C (t) x̂ (t)
(4.14)

where A (t), B (t), C (t) are the same as in Eq. (4.11), L (t) the observation gain, and

x̂ ∈ Rn, ŷ ∈ Rp are the state and output of the observer, respectively.

4.2 Controller design

This work does not discuss the fuzzy modeling problem, so the minimization of the

fuzzy modeling error is not of interest.

The models in equations (4.11) and (4.14), and assumptions A1, A2, A3, A4, A5

and A6 are used.

Because of the state x is supposed to be not available, then an observation error

needs to be defined as

∆1 = x− x̂ (4.15)
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In order to reach a desired trajectory, a trajectory tracking error is defined as

∆2 = x̂− xref (4.16)

The following theorem gives the main result of the chapter. It guarantees that the

tracking error in Eq. (4.16) is bounded. It also provides an explicit and easy design

method for the T-S fuzzy control.

Theorem 7 (Stability of the trajectory tracking error). If there exist a positive scalar α

and symmetric positive definite matrices Λi, i = 1, . . . , 8 and

|min
t
{λmin(A(t))}| > max(α) such that the following two RDEs [Kilicaslan and Banks, 2010]

have symmetric positive definite solutions:

d

dt
P1 (t) + P1 (t) Ā (t) + Ā> (t)P1 (t)− P1 (t)R1 (t)P1 (t) + Q̃1 (t) = 0 (4.17)

d

dt
P2 (t) + P2 (t) Ā (t) + Ā> (t)P2 (t)− P2 (t)R2 (t)P2 (t) + Q̃2 (t) = 0 (4.18)

where

P1 (t) ∈ Rn×n, P2 (t) ∈ Rn×n, P1 (t) = P>1 (t) > 0, P2 (t) = P>2 (t) > 0,

Ā (t) = A (t) +
α

2
In×n, R1 (t) = L (t) Λ4L

> (t) + Λ3 + Λ6,

Q̃1 (t) = Q1 (t)− C> (t) R̄−1
1 C (t)

2
,

Q1 (t) = Λ−1
1 + 3λmax

(
Λ−1

4 + Λ−1
5

)
δ1In×n + 3λmax

(
Λ−1

6

)
η1In×n,

R2 (t) = S1 (t) Λ1S
>
1 (t) + A (t) Λ2A

> (t) + L (t) Λ5L
> (t) +

S2 (t) Λ7S
>
2 (t) + S3 (t) Λ8S

>
3 (t) ,

Q̃2 (t) = Q2 (t)− K> (t) R̄−1
2 K (t)

2
,

Q2 (t) = 3λmax

(
Λ−1

4 + Λ−1
5

)
δ1In×n + 3λmax

(
Λ−1

6

)
η1In×n,

(4.19)
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S1 (t) = L (t)C (t) ,

S2 (t) = T (t)
[
T> (t)T (t)

]−1
T> (t) ,

S3 (t) = T⊥ (t)
[(
T⊥ (t)

)>
T⊥ (t)

]−1 (
T⊥ (t)

)>
,

(4.20)

η0, η1, δ0, δ1 are defined in Eq. (4.12), T⊥ is defined in Eq. (4.5), A (t), B (t), C (t)

are defined in Eq. (4.11), In×n is the identity matrix of n× n, and the feedback control

is in the following form

u (t) = −K (t) ∆2 (t) , K (t) ∈ <m×n

K (t) = 2R̄2 (t)B> (t)P2 (t)
(4.21)

and the observation gain L (t) ∈ <n×p of the form

L (t) =
1

2
P−1

1 (t)C> (t) R̄−1
1 (t) (4.22)

where

R̄1 (t) = [C (t)L (t)]−1C (t)R1 (t)C> (t)
[
L> (t)C> (t)

]−1
,

R̄2 (t) =
[
B> (t)B (t)

]−1
B> (t)R2 (t)B (t)

[
B> (t)B (t)

]−1
,

then the trajectory tracking error ∆2 satisfies

lim
t−→∞

sup ‖∆2 (t)‖2 ≤ β

α ∗min
t
{λmin (P2 (t))}

(4.23)

where

β = λmax

(
Λ−1

2

)
γref + λmax

(
Λ−1

3

)
γξ + λmax

(
Λ−1

4

)
δ0 + 3λmax

(
Λ−1

4

)
δ1γref+

λmax

(
Λ−1

6

)
η0 + 3λmax

(
Λ−1

6

)
η1γref + λmax

(
Λ−1

5

)
δ0 + 3λmax

(
Λ−1

5

)
δ1γref+

λmax

(
Λ−1

7

)
Lsγref + λmax

(
Λ−1

8

)
Lsγref

γref is defined in Eq. (4.3), γξ is defined in Eq. (4.7), Ls is defined in Eq. (8.16).

Proof. See Appendix B.
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Remark 8 A way to relate time-varying gain K (t) calculated in this section with the

gains that stabilize each local system of Eq. (4.8 ) is using the parallel distributed

compensation (Tanaka 2001)

K (t) =
M∑
l=1

αl (z (t))Kl

That is, if K (t) is designed to stabilize the trajectory tracking error (∆2) of the

entire system and Kl, l = 1, . . . ,m− 1 are designed to stabilize its corresponding local

system, then the gain calculated as follows

KM =

K (t)−
M−1∑
l=1

αl (z (t))Kl

αM (z (t))

must stabilize the m-th local system. A similar analysis can be proposed for the

observation gain L (t).

4.3 On the Riccati Differential Equation solution

We have introduced two new lemmas (based on necessary conditions for the existence of

the solution of RDEs presented by [Kilicaslan and Banks, 2010] and [Kilicaslan and Banks, 2012])

to support when both Riccati equations (4.17) and (4.18) can have positive definite so-

lution. This lemmas proposed a RDE with a positive sign in the quadratic term, unlike

the common RDE structure. The first lemma presents necessary conditions to ensure

the existence of positive definite and continuous solution for this class of Riccati equa-

tion such as the one obtained in this chapter. The following paragraphs contains the

explanation of this lemma:

Lemma 9 Consider a linear differential equation depending on the matrix P ∈ Rn×n
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of the form

d

dt
P (t) = P (t)A (t) + A> (t)P (t) + P (t)R (t)P (t) +Q (t) (4.24)

where the coefficients A ∈ Rn×n, Q ∈ Rn×n and R ∈ Rn×n are time-varying matrices

piecewise continuous. Additionally, consider the auxiliary problem of the initial-value

problem given by

 X (t)

Y (t)

 =

 Φ̂ (t, 0)−
∫ >

0
Φ̂ (t, s)R (t) Φ̌ (s, 0) ds

(
P0 − P̄ (0)

)
P̄2 (tf ) Φ̂ (t, 0)− Y1 (t)

(
P0 − P̄ (0)

)
 (4.25)

where Y1 (t) = P̄ (tf )
∫ >

0
Φ̂ (t, s)R (t) Φ̌ (s, 0) ds+ Φ̌ (t, 0), and Φ̂ (t), Φ̌ (t) are transition

matrices of Â (t) = −A> (t) − R (t) P̄ (t) and Ǎ (t) = A> (t) + P̄ (t)R (t), respectively,

and P̄ (t) is the unique solution of solutions of equilibrium points of Eq. (4.24) corre-

sponding to A (t), R (t), and Q (t) values evaluated in the time t ∈ [0, tf ].

Then, equation (4.24) has a solution in the interval [0, tf ] if and only if X (t) is in-

vertible for all t ∈ [0, tf ]. Moreover, the resulting solution is unique and it is represented

as P (t) = Y (t)X−1 (t) where X and Y are given in Eq. (4.25).

The following Lemma introduces a constructive way to justify if the exact solution

of the Riccati equation exists.

Lemma 10 Consider the alternative representation of X

X (t) = Φ̂ (t, 0) (I −D (t))

D (t) =

∫ >
0

Φ̂−1 (s, 0)R (t) Φ̌ (s, 0) ds
(
P0 − P̄ (0)

)
(4.26)

If one of the following necessary conditions presented in [Kilicaslan and Banks, 2012]

and [Kilicaslan and Banks, 2010] is satisfied, the invertibility of D (t) in Eq. (4.26) is

ensured (then the existence of the positive definite solution of equation (4.24) is guar-
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anteed):

a) If the rank of D (t) is n ∀t ≥ 0, i.e., if the following is satisfied

∫ >
0

Φ̂−1 (s, 0)R (t) Φ̌ (s, 0) ds
(
P0 − P̄ (0)

)
< I

and there is a P̄ (t) ∈ P (t), then Eq. (4.24) has a unique solution ∀t ≥ 0. In this case,

D (t) is invertible ∀t ≥ 0.

b) If R (t) = 0, then Eq. (4.24) has a unique solution for any initial condition and

∀t ≥ 0. In this case, D (t) = I for any P̄ (t) ∈ P (t) and ∀t ≥ 0.

c) If P0 is taken as P̄ (0), then the solution of Eq. (4.24) exists ∀t ≥ 0. In this

case, D (t) = I ∀t ≥ 0.

d) If R (t) is symmetric positive (negative) semidefinite and if there exist a certain

symmetric P̄ (t) ∈ P (t) symmetric such that P0 − P̄ (t) is positive (negative) definite,

then there exists the unique solution of Eq. (4.24) ∀t ≥ 0. In this case, rank (D (t)) = n

∀t ≥ 0 [Sasagawa, 1982].

f) If a bound is introduced to the integral term of Eq. (4.26), that is

∫ >
0

∥∥∥Φ̂−1 (s, 0)
∥∥∥ ‖R (t)‖

∥∥Φ̌ (s, 0)
∥∥ ‖ds‖∥∥(P0 − P̄ (0)

)∥∥ < Z (4.27)

and there is P̄ (t) ∈ P (t), then the solution exists ∀t ≥ 0. In this case, rank (D (t)) = n

∀t ≥ 0.

The detailed proof of these two lemmas can be found in [Kilicaslan and Banks, 2012]

and [Kilicaslan and Banks, 2010]. More explicitly the necessary conditions for the exis-

tence of the solution of Eqs. (4.17) and (4.18) make use of the transition matrices Φ̂ (t),

Φ̌ (t) calculated using Â1 (t) = −Ā>1 (t)−R̄1 (t) P̄1 (t) and Ǎ1 (t) = Ā>1 (t)+P̄1 (t) R̄1 (t),

respectively, where P̄1 (t) is the unique solution of the AREs of Eq. (4.24),

0 = P̄1 (t0) Ā1 (t0) + Ā>1 (t0) P̄1 (t0) + P̄1 (t0) R̄1 (t0) P̄1 (t0) + Q̄1 (t0) , (4.28)
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These AREs are calculated corresponding to Ā1 (Hurwitz), R̄1, and Q̄1 (real symmetric

positive definite matrices) values evaluated in the time t0 ∈ [0, tf ]. Conditions for the

existence of the solutions of (4.28) are given in [Kucera, 1972]. Finally, Lemma 8

together with any of the necessary conditions in Lemma 9 is taken into account. The

same conditions apply for Eq. (4.18).

4.4 Implementation issues

In order to implement the closed-loop system applying the proposed tracking controller

based on the RDEs on-line solution the following procedure needs to be carried out.

The schematic in Fig. 5.1 shows the architecture of the closed-loop system.

First the coupled RDEs in Eqs. (4.17) and (4.18) stated in Theorem 1 can be

rewritten as follows:

d

dt
P1 (t) = −P1 (t) Ā (t)− Ā> (t)P1 (t) + P1 (t)R1 (t)P1 (t)− Q̃1 (t) (4.29)

d

dt
P2 (t) = −P2 (t) Ā (t)− Ā> (t)P2 (t) + P2 (t)R2 (t)P2 (t)− Q̃2 (t) (4.30)

The parameters of the RDEs was chosen to fulfil the existence conditions pre-

sented in Theorem 4. To solve Eqs. (4.29) and (4.30) simultaneously a simulation

on MATLAB-Simulink considering initial conditions P1,0 (0) = P1,0, P2 (0) = P2,0 was

implemented

• The matrices
d

dt
P1 (t) of Eq. (4.29) and

d

dt
P2 (t) of Eq. (4.30) are calculated

using the values of A(t), C(t) which depend on αi (x).

• P1 (t) and P2 (t) are obtained by integrating Ṗ1 (t) and Ṗ2 (t), respectively.

• P1 (t) and C(t) are used to calculate L (t) in Eq. (4.22). L (t) is introduced in

Eq. (4.29) and (4.30).
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• P1 (t) and B(t) are used to calculate K (t) in Eq. (4.21). K (t) is introduced in

Eq. (4.30).

• The observer constructed using the same A(t) and B(t) of the fuzzy approximation

provides the estimated states used in the control law calculation.

The integral operation divide the two processes in consequence there is no algebraic

loop.

Controller
RDE2

Nonlinear 

System

Desired

Signals

xref(t)
+

+

-

D2(t) u(t)

P2(t)

Fuzzy

Approximation

A(t),B(t),C(t)

y(t)

Fuzzy

Observer

+

+

-

y(t)

D1(t)

RDE1

P1(t)

x(t)

Figure 4.1: Closed-loop controller-observer system architecture based on RDEs.

4.5 Numerical results

In order to validate the performance of the RDE based on T-S fuzzy control, the

AUV model presented in Section 2.2 in Chapter 2 is used. To design the T-S fuzzy

observer for the nonlinear system in Eq.(2.3) of Section 2.2, it is necessary to probe

that the system is observable considering y = [q, w]> as the measurable output. In

consequence, the observability rank test [Hermann and Krener, 1977] must be satisfied.

The observability matrix for the nonlinear system in Eq.(2.3) is

(χ) =


1 0 0 −w −w2 0

0 0 w 0 0 −w2

0 1 q −p −2pw −2qw


>

Then, the nonlinear system is locally observable if neither w = 0 nor p = 0 or if

neither w = 0 nor q = 0 simultaneously, or if w is different from zero.

47



To approximate the AUV system Eq. (2.4) by a fuzzy system, nine T-S fuzzy rules

were used and the measurable states (q, w) are chosen as premise variables, that is,

z1 = q, z2 = w. The k-th rule is:

Rk : If q ∈ F hk
q and w ∈ F hk

w ,

Then,
d

dt
χ (t) = Aiχ (t) +Biτ (t) + f̃ i (χ (t)) + ζ i (t)

y (t) = Ciχ (t) + h̃i (χ (t))

(4.31)

where i = 1 · · · 6, k = 1 · · · 9, Ai ∈ <3×3 and Bi ∈ <3×2. For the fuzzification stage the

sign of the measurable variables q and w is chosen as the fuzzy set, and the following

three partitions are proposed: Negative (N), Zero (Z), and Positive (P ). That is,

F hk
q , F hk

w ∈ {N,Z, P}. The membership functions structure are selected as Fig. 3.2 in

Chapter 3. The matrices Ai, Bi and Ci are chosen such that RDEs in Eqs. (4.17) and

(4.18) have solution. The matrices that are used to represent the local dynamics are

A1 =


0 3 2.5

−3 0 −2

0 0 0

 , A2 =


0 1 0.5

−1 0 −1

0 0 0

, A3 =


0 2 0.8

−2 0 −0.5

0 0 0

,

A4 =


0 1.3 5.2

−1.3 0 −4.5

0 0 0

 , A5 =


0 3 2

−3 0 −4

0 0 0

, A6 =


0 1 −0.2

−1 0 0.3

0 0 0

,

B1 = ... = B6 = B, C1 = ... = C6 = C. In Eq. (4.20) Λi (i = 1, · · · , 6) are chosen

as identity matrices.

First the T-S observer in (4.14) is implemented to estimate the unknown state p (t) of

the AUV dynamics with τp (t) = 0.1 sin (0.55t), τw (t) = 0.3 sin (t) and initial conditions

χ0 = [−1 0 1]>, χ̂0 = [0 0 0]>. In Fig. 4.2 the AUV trajectories against its estimates

are shown

It can be seen the state p (t) was closely reconstructed, however, it is important to

note that this state reconstruction represents a difficult task because the T-S observer
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Figure 4.2: T-S observer estimation p (t) vs AUV trayectories.

also carry on the identification of the AUV dynamics simultaneously. Also, it is observed

the states that are measurable q (t) and w (t) was exactly reconstructed.

Now the controller in Eq. (4.21) and observer in Eq. (4.22) is implemented to reach a

trajectory tracking of a reference dynamics, considering estimation of p (t). Based on the

motion planning method [Latombe, 1991], the dynamics of desired reference is chosen

with the same structure as the AUV, it satisfies

s (χref (t)) = [2 + qref (t)wref (t) , − pref (t)wref (t) , 2]>. Considering the initial con-

ditions χ0 = [2 0 0]>, χ̂0 = [0 0 0]>, χref,0 = [0 0 0]>.

The time-varying feedback control gain K (t) and the time-varying observer gain

L (t) are shown in Fig. 4.3

The control signals applied to the AUV system are shown in Fig. 4.4.

In Fig. 4.5 the reference states, the trajectories of the closed-loop system using the

reconstructed states by the T-S observer, and the estimated states are shown.
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Figure 4.3: Norm of the time-varying controller and observer gains based on Riccati
differential equation.

It can be seen that the state estimation is sufficient for the AUV closed-loop system

to reach a trajectory tracking. It is observed the trajectories converges in approximately

2.0 seconds to the reference states.

The norm of estimation error ∆1 and tracking error ∆2 are shown in Fig. ??. It

can be seen that these errors belongs to a bounded region.

Now the proposed RDE based method was compared with the popular LMI based T-

S fuzzy controller-observer. The LMI method use the PDC structure, so the controller

has the form

τ (t) = KLMI (t) ∆ (t) , KLMI (t) =
6∑
i=1

αi (t)Ki

where K1 =

 10.0630 −4.9061 5.2125

2.9012 −5.6406 7.9370

, K2 =

 8.9048 −15.9718 3.4094

3.0900 −18.0274 9.0952

,

K3 =

 11.5463 −14.1915 2.1965

1.7997 −5.2276 6.4537

, K4 =

 6.5180 −1.0180 6.9890

1.5872 −7.1081 11.4820

,
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Figure 4.4: Control signals, τp (t) (force in the x-axis) and τw (t) (torque respect to the
z-axis).

K5 =

 8.1665 −1.2125 4.8885

2.8753 −5.5906 9.8335

, K6 =

 11.3898 −30.4775 −1.8273

−2.0187 11.7284 6.6102


and, the observer gain has the form

LLMI (t) =
6∑
i=1

αi (t)Li

where

L1 =

 −11.0000 13.0000 0

2.5000 −2.0000 5.0000


>

, L2 =

 −41.0000 13.0000 0

0.5000 −2.0000 5.0000


>

,

L3 =

 −19.0000 13.0000 0

0.8000 −0.5000 5.0000


>

, L4 =

 −31.0077 13.0000 0

5.2000 −4.5000 5.0000


>

,

L5 =

 −11.0000 13.0000 0

2.0000 −4.0000 5.0000


>

, L6 =

 −41.0000 13.0000 0

−0.2000 0.3000 5.0000


>

The simulation results are shown in Fig. 4.6. As can be seen the RDE based method

has a norm of the trajectory tracking error less than the LMI based method.
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Figure 4.5: Trajectory tracking of the AUV implementing a controller using measurable
states and p (t) estimate, observed states and reference states.
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4.6 Conclusions of the chapter

A state feedback control and an state observer were designed in this study based on

the Lyapunov stability analysis for a T-S fuzzy system considering an incomplete state

information. The approximation of the uncertain nonlinear dynamics by the T-S fuzzy

system results in a linear time-varying system. In consequence a nonconventional Lya-

punov time-varying function was used to prove the ultimate boundedness of the track-

ing error between this linear time-varying system T-S and a reference system. The

controller design was supported on the existence of two time-varying matrix RDEs.

Sufficient conditions were obtained to characterize the positiveness of solutions for the

RDEs. The controller-observer gains depend on the solution of the RDEs positive defi-

nite solutions. A set of numerical simulations using an AUV mathematical model with

respect to rigid body-fixed frame was carried out in order to follow desired linear veloc-

ities. Also the simulations showed how to implement the results obtained in this study

as well as the superiority of the result obtained here compared to the regular control

design based on LMIs. The advantage of the proposed method with respect to the LMI

method is that the calculation of the controller-observed gains are performed on-line

while the T-S fuzzy system evolves, unlike the gains obtained using the LMI method

calculated off-line.
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5

Takagi-Sugeno Fuzzy Control using

Differential Neural Networks

In this chapter, an alternative methodology based on a neuro-fuzzy system is proposed

to guarantee feasible solutions to accomplish two goals: a) a non-parametric identifica-

tion used to approximate an uncertain nonlinear perturbed system by a T-S DNN identi-

fier, and b) design an automatic controller that must solve the trajectory tracking prob-

lem based on the identifier trajectories. In this study, we are using the Lyapunov for-

malism to provide sufficient conditions that supports the control design. The controller

structure uses the positive definite solution of two Riccati Differential Equations (RDE).

Based on the assumption regarding the existence of solution for these two equations, the

uncertain nonlinear system states are identified by the estimated system trajectories.

On opposite to the method proposed in [Chairez, 2013b], only two RDE equations must

be solved instead of several algebraic Riccati equations (ARE). The RDE methodology

simplifies the numerical algorithm because there exist well-known conditions to ensure

their solution [Kilicaslan and Banks, 2012], [Kilicaslan and Banks, 2010]. Also, these

RDEs are solved on-line because their solution depends on the states that evolve through
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time, unlike the AREs in [Chairez, 2013b], [Chairez, 2013a], [Viana and Chairez, 2010]

that are solved off-line. In order to solve the DNN problem it is necessary to implement

two learning levels. First, a primary approximation of the nominal dynamics weight

matrix W
[i,j]
0 is obtained by an off-line learning method. Then, an identification of the

DNN nominal dynamics that represent the nonlinear system considering the approxima-

tion of W
[i,j]
0 obtained in the off-line level is carried out by the on-line identifier system.

However, the methodology proposed in this chapter suppose that the off-line weight

matrix W
[i,j]
0 is known. This off-line weight matrix can be obtained using the learning

algorithm proposed in [Chairez, 2009]. Ultimate boundedness concept [Khalil, 2002] is

used to define the stability sense that governs the identification and trajectory tracking

errors.

5.1 Continuous neuro-fuzzy identifier

Consider an uncertain nonlinear system of order 2n, that is

d

dt
xa (t) = xb (t)

d

dt
xb (t) = f (x (t)) + g (xa (t))u (t) + ξ (x (t) , t)

(5.1)

where xa ∈ Rn, xa = [x1, x2, . . . , xn]> is the position vector and xb ∈ Rn,

xb = [xn+1, xn+2, . . . , x2n]> is the velocity vector. Both vectors compose the state vector

x =
[
x>a , x

>
b

]>
. Let X be an universe of discourse equivalent to x ∈ X ⊆ R2n. The

bounded function u ∈ Rm is the control function. Throughout this study, we assume

the state x is available.

The nonlinear continuous functions f : R2n → Rn and g : Rn → Rn×m (m < n)

each one is composed of n nonlinear functions that describe the system dynamics.

In this study the structure of the function g is supposed to be known. The term

ξ : Rn+1 → Rn represents either parameter variations, external perturbations, unmod-

eled dynamics, etc. We propose an important assumption: the uncertainties ξ (x, t)
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satisfy the inequality

‖ξ (x, t)‖2 ≤ γ0 + γ1 ‖x‖2 , γ0, γ1 ∈ R+, ∀t ≥ 0 (5.2)

Then if we consider the space domain of x can be partitioned in N subregions then

Eq. (5.1) can be expressed for each region as follows

d

dt
xa (t) = xb (t)

d

dt
xb (t) = f [i] (x (t)) + g (xa (t))u (t) + ξ[i] (x (t) , t)

i = 1, . . . ,N

(5.3)

Therefore, the system dynamics in each region (Eq. (5.3)) may be captured by a

set of fuzzy implications that characterizes local relations in the state space using the

T-S inference method [Tanaka and Wang, 2001] as follows:

Ri
j :IF x1 is M

[i]
1,qj

and IF x2 is M
[i]
2,qj

and . . . and IF xn is M
[i]
n,qj

THEN
d

dt
xa (t) = xb (t)

d

dt
xb (t) = f [i,j] (x (t))

j = 1, . . . , R

(5.4)

where Ri
j is the j-th fuzzy rule, R is the number of inference rules, i determines the

subregion, xa = [x1, x2, . . . , xn]T are the premise variables (position vector), M
[i]
r,qj (r =

1 . . . n) are the fuzzy sets for the premise variables xj, qj is the membership function

number for each premise variable r.

Remark 11 In the case treated here due to the assumption that g (·) is known, it is

not necessary to approximate it.

The system description presented in Eq. (5.4) is a class of system interpolator. This

interpolation is run by the state values, xa, and determine the contribution of each

subsystem in the final state dynamics. Therefore, a system constructed as the weighted
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contribution of all subsystems f [i,j] (x) (some of which will not contribute all the time)

is derived. The individual functions f [i,j] (x) can be any of the elements included in

the set f [i,j] (x) ∈ F (x), where F
(
x[i]
)

contains a maximum of R selectable systems

(in general, there are much fewer systems than segmentations produced by the space

partition
[
M

[i]
1,qj
,M

[i]
2,qj
, . . . ,M

[i]
n,qj

]
). Most existing results regarding this class of fuzzy

model have been used to express the local information of each fuzzy implication (rule)

by a linear system. The overall fuzzy model of the system is achieved by fuzzy blending

of the linear models as

f [i,j] (x) = A[i,j]
a xa + A

[i,j]
b xb + f̃ [i,j] (x) (5.5)

where f̃ [i,j] (x) = f [i,j] (x) − A
[i,j]
a xa − A

[i,j]
b xb. The matrices A

[i,j]
a , A

[i,j]
b ∈ Rn×n are

selected in such a way that they are within a subspace X [j] defined by X [j] := M
[i]
1,qj
∩

M
[i]
2,qj
∩ . . .∩M [i]

n,qj . Therefore, the trajectories belonging to submanifold X [j] are X [j] :={
x ∈ Rn|xl ∈M [i]

l,qj

}
, where xl is the lth component of x. The fuzzy sets M

[i]
r,qj , r = 1, n

define the membership functions. If we consider the usual linear system decomposition

in Eq. (5.5), the representation given in the last equation yields to the following multi-

model system or T-S system for Eq. (5.3):

d

dt
xa (t) =

R∑
j=1

α[i,j] (t)xb (t)

d

dt
xb (t) =

R∑
j=1

α[i,j] (t)
[
A[i,j]
a xa (t) +A

[i,j]
b xb (t)

]
+ g (xa (t))u (t) +

R∑
j=1

α[i,j] (t) f̃ [i,j] (x (t) , u (t)) +
R∑
j=1

α[i,j] (t) ξ[i,j] (x (t) , t)

(5.6)

where
R∑
j=1

α[i,j] (t) f̃ [i,j] (x, u) is the modeling error produced by the fuzzy approximation.

The value of α[i,j] depends on the construction method selected for the fuzzy system.

For example, if a singleton fuzzifier with a product inference and a weighted average
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deffuzifier is used, we have

α[i,j] = µ[i,j]

(
R∑
k=1

µ[i,k]

)−1

, µ[i,j] =
R∏
p=1

µ[i,j]
p , µ[i,j]

p := µ[i,j]
p (xp) (5.7)

where µ
[i,j]
p is the membership degree of xp in the fuzzy set M

[i]
p,qj (j = 1, . . . , R). In

this area, two important elements have not been discussed in depth: (a) how to select

the matrices A
[i,j]
a and A

[i,j]
b in such a way that the system approximation within each

subspace X [j] is acceptable (the error is small or even zero); and (b) what happens in

the interface between X [j] and X [k] (for j 6= k). In many references there are small

jumps in the frontier between subspaces. This effect is observed when linear controllers

or observers are used for the class of general T-S systems of the form given in Eq. (5.6).

Based on these natural weakness in classical T-S fuzzy systems, truly adaptive

algorithms can be applied to achieve a good approximation of Eq. (5.3). Therefore,

applying a combined scheme composed by a T-S decomposition with a set of R DNNs

approximating each subsystem f [i,j] (xa, xb) seems to be a promising alternative for

a better approximation of the uncertain system. This construction based on several

continuous neural networks is an interesting method for improving the approximation

produced by the adaptive scheme presented here. This methodology covers the classic

single DNN approximation, but also increases the class of nonlinear systems that can

be analysed using the DNN scheme.
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5.1.1 Neuro-fuzzy identifier using DNN approximation

Considering the neural network approximation capability stated in the Stone-Weierstrass

and Kolmogorov theorems [Cotter, 1990] the nonlinear functions f (·, ·) in Eq. (5.3) can

always be represented as a composition of nominal systems f
[i,j]
0 : R2n → Rn and their

corresponding modeling errors f̃ [i,j] : R2n → Rn. Then, Eq. (5.3) can be expressed as

d

dt
xa (t) =

R∑
j=1

α[i,j] (t)xb (t)

d

dt
xb (t) =

R∑
j=1

α[i,j] (t) f
[i,j]
0

(
x (t) |W [i,j]

0

)
+ g (xa (t))u (t) +

R∑
j=1

α[i,j] (t) f̃ [i,j] (x (t)) +

R∑
j=1

α[i,j] (t) ξ[i,j] (x (t) , t)

(5.8)

where

f̃ [i,j] (x) = f [i,j] (x)− f [i,j]
0

(
x|W [i,j]

0

)
In this case the so-called nominal dynamics is selected as a DNN dynamics. Here,

the set of parameters W
[i,j]
0 should be adjusted to obtain the best possible matching

between the nominal dynamics f
[i,j]
0 and nonlinear dynamics f [i,j].

Considering that each individual nonlinear dynamic f
[i,j]
0

(
x|W [i,j]

0

)
is locally Lips-

chitz within each subsystem and under that class of admissible controls u, the following

upper bound for modeling error f̃ [i,j] (x) can be derived:

∥∥∥f̃ [i,j] (x)
∥∥∥2

≤ f̃
[i,j]
0 + f̃

[i,j]
1 ‖x‖2 , f̃

[i,j]
0 , f̃

[i,j]
1 ∈ R+, f̃

[i,j]
0 , f̃

[i,j]
1 <∞, (5.9)

Then,

∥∥∥f̃ [i,j] (x)
∥∥∥2

≤ f̃
[i,j]
0 + 2f̃

[i,j]
1 ‖xa‖2 + 2f̃

[i,j]
1 ‖xb‖2 (5.10)
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Remark 12 The external disturbances can be associated only to the term ξ(x, t) and

the unmodeled dynamics and uncertainties can be introduced in the modeling error term

f̃(x, u) which satisfies a sector boundary condition.

According to the DNN approach [Poznyak et al., 2001], the nominal dynamics in

Eq. (5.8) for each subsystem is selected as

f
[i,j]
0

(
x|W [i,j]

0

)
:= A

[i,j]
1 xa + A

[i,j]
2 xb +W

[i,j]
0 σ (x) (5.11)

where A
[i,j]
1 , A

[i,j]
2 ∈ Rn×n, W

[i,j]
0 ∈ Rn×p, σ (x) ∈ Rp. This structure has been tested

for the design of adaptive observers and controllers [Chairez, 2009]. In Eq. (5.11) the

vector of parameters W
[i,j]
0 is assumed to be unknown but constant. Therefore, the

problem of approximation can be understood in the sense of finding the structure of

f̂ [i,j]
(
x̂ (t) |W [i,j] (t)

)
working together with a special adaptive law for W [i,j] (t). Here,

x̂ ∈ R2n, x̂ =
[
x̂>a , x̂

>
b

]>
, x̂a, x̂b ∈ Rn represents the state vector of the dynamic approx-

imation, namely the adaptive identifier. The special law for W [i,j] (t) should depend

on the identification error, that is the difference between the uncertain system and

the adaptive identifier. The structure of such an approximation can be presented in a

general form as

d

dt
x̂a (t) =

R∑
j=1

α[i,j] (t) x̂b (t)

d

dt
x̂b (t) =

R∑
j=1

α[i,j] (t) f̂ [i,j]
(
x̂ (t) |W [i,j] (t)

)
+ g (xa (t))u (t)

d

dt
W [i,j] (t) = Θ[i,j]

(
W [i,j] (t) , x (t) , x̂ (t)

)
(5.12)

Remark 13 Many DNNs are used to locally approximate the uncertain nonlinear sys-

tem because using only one DNN makes difficult to approximate the entire nonlinear

system behaviour including fast changes in the nonlinear system, which can generate

oscillations during the identification process.
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Remark 14 It is possible to consider g (x) is uncertain in order and identify it using a

DNN as well. However, during the identification process of this function, it is possible

this approximation can reach values near to zero leading to a loss of controllability of the

system. So, it would be necessary to apply certain restrictions in the synaptic weights

of the DNN to avoid this situation.

The set of functions Θ[i,j] (·) are called the learning or adaptive algorithms for ad-

justing the DNN weights and are designed using the second Lyapunov method. Fol-

lowing the nominal structure introduced in Eq. (5.11), the set of nonlinear functions

f̂ [i,j]
(
x̂|W [i,j]

)
may be defined as an off-line system composed of the control independent

dynamic part by a combination of Hurwitz fixed matrices A
[i,j]
1 , A

[i,j]
2 ∈ Rn×n (selected

by the designer) and a nonlinear part approximated by time-varying parameters W [i,j]

with a sigmoid multiplier. The complete structure of the approximation system is

f̂ [i,j]
(
x̂[i]|W [i,j]

)
:= A

[i,j]
1 x̂[i]

a + A
[i,j]
2 x̂

[i]
b +W [i,j]σ

(
x̂[i]
)

(5.13)

In reality, the control actions are used just to develop a well-posed identification

scheme. Therefore, without loss of generality, the admissible set of controls can be

defined as

Uadm :=
{
u : ‖u‖2 ≤ γu1 + γu2 ‖∆id‖2} . (5.14)

where ∆id := x− x̂ is the identification error.

The control functions that we proposed must satisfy the restriction in Eq. (5.14),

e.g., feedback controllers based on the identified states. It is clear that the class of

external functions must be useful to fulfil the persistent excitation condition required

to solve the identification problem. This assumption implies the possibility of using

a DNN for each domain and to obtain enough information to achieve a good non-

parametric approximation.
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The activation sector function σ (·) are usually constructed as a sigmoid function,

σk (x) := ak

(
1 + bke

−C>x
)−1

, k = 1, p (5.15)

where the parameters ak, bk and C = [c1 . . . c2n]> are positive. There are some alterna-

tives for adjusting these parameters, but for simplicity they were adjusted by trial and

error. This function satisfy the following sector condition:

‖σ̃ (x, x̂)‖2 ≤ Lσ ‖∆id‖2
Λσ

(5.16)

where

σ̃ (x, x̂) = σ (x)− σ (x̂) (5.17)

and is globally bounded on Rn, that is, ‖σ (·)‖ ≤ σ+. Lσ is a known positive constant

and Λσ ∈ Rn×n, Λσ = (Λσ)> > 0. In Eq. (5.13), the constant parameters A
[i,j]
1 , A

[i,j]
2

and the time-varying parameters W [i,j] should be properly adjusted to guarantee a good

state approximation.

The function σ (·) : Rn → Rp is nonlinear and Lipschitz, and considering σ (0) = 0,

the following inequality is satisfied

‖σ (x̂)‖2 ≤ L̄σ ‖x̂‖2 (5.18)

where L̄σ > 0. Then,

‖σ (x̂)‖2 ≤ 2L̄σ ‖x̂a‖2 + 2L̄σ ‖x̂b‖2 (5.19)
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5.1.2 Identifier structure

For the identifier structure described in Eq. (5.13), the dynamics may be expressed as

d

dt
x̂a (t) =

R∑
j=1

α[i,j] (t) x̂b (t)

d

dt
x̂b (t) =

R∑
j=1

α[i,j] (t)
[
A

[i,j]
1 x̂a (t) + A

[i,j]
2 x̂b (t) +W [i,j] (t)σ (x̂ (t))

]
+ g (xa (t))u (t)

(5.20)

The main goal behind application of this identifier can be stated in the following manner.

Problem. For the uncertain nonlinear system of Eq. (5.3), the value of matrices

A
[i,j]
1 , A

[i,j]
2 must be selected and a set of nonlinear adaptive producers Θ[i,j] must be

designed to adjust the time-varying parameters W [i,j] (t),

d

dt
W [i,j] (t) = Θ[i,j]

(
W [i,j] (t) ,∆id (t)

)
, W [i,j] (0) is fixed (5.21)

are fixed in such a way that estimation of the upper bound of the identification error ∆id

do not diverge. We use a practical stability framework to show that lim sup
t→∞

‖∆id (t)‖ ≤

ρ. Moreover, we have to demonstrate that in the absence of external signals considered

as noise and of modeling inaccuracies, the error ∆id must converge to zero asymptoti-

cally. The proposed identifier requires a set of assumptions introduced here.

The class of functions f [i,j] : R2n → Rn and g[i,j] : R2n → Rn×n are Lipschitz

continuous in x ∈ X; that is, for all x, y ∈ X there exist constants L
[i]
f , L

[i]
g such that

∥∥f [i,j] (x)− f [i,j] (y)
∥∥ ≤ L

[i,j]
f ‖x− y‖ ,

∥∥g[i] (x)− g[i] (y)
∥∥ ≤ L[i]

g ‖x− y‖ (5.22)

where x, y ∈ R2n, 0 < L
[i]
f , L

[i]
g <∞. The signals

∥∥ξ[i,j] (x, t)
∥∥2 ≤ γξ, γξ ∈ R+, ∀i ∈ [1,M ] , j ∈ [1, R] , ∀t ≥ 0 (5.23)
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In this work one level training strategy of DNN identifiers is implemented. In this

case we suppose that the matrix W
[i,j]
0 of the nominal system in Eq. (5.11) can be

obtained by an off-line training through a new weight matrix W
[i,j]
to (t), for example

using the learning process proposed in [Chairez, 2009]. We suppose that W
[i,j]
0 is well

characterized by W
[i,j]
to (t) such that the error W

[i,j]
0 −W [i,j]

to (t) is bounded by some scalar

ε. Considering that W
[i,j]
to (t) is known an on-line training of the weight matrix W [i,j] (t)

is developed. This on-line training is used to identify the dynamic of the uncertain

system (5.8) by the identifier in Eq. (5.20).

5.2 Trajectory tracking problem

This section states the trajectory tracking problem of desired signals by the uncer-

tain nonlinear system using the information provided by the identifier proposed in the

previous section as well as the conditions of the desired signals need to fulfil.

Statement. For the uncertain nonlinear system the goal is to force its states to

track desired signals using the estimated states provided by the neuro-fuzzy identifier

proposed in Section 2, i.e., starting from any reachable local arbitrary point in the

space, the system must asymptotically converge to the desired trajectory. In other

words, the identifier trajectory should coincide with the desired one as close as it is

possible, i.e., the tracking errors ∆tr between the identifier trajectories and desired

positions should be zero when possible but if not, the tracking error should be bounded

with an upper bound characterized by the effect of perturbations and uncertainties,

namely lim sup
t→∞

‖∆tr‖ ≤ β, ∆tr = x̂− xref where xref is the desired trajectory.

The nonlinear reference model is given by

d

dt
xref,a (t) = xref,b (t) ,

d

dt
xref,b (t) = sb (xref,b (t) , t) , ∀t ≥ 0

(5.24)

where xref,a, xref,b ∈ Rn and the function sb (·, ·) : Rn+1 → Rn is nonlinear and Lipschitz,
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satisfying

‖sb (xref,b)‖2 ≤ Ls,b ‖xref,a‖2 , Ls,b > 0 (5.25)

The references xref,a, xref,b are bounded by design

‖xref,a‖2 ≤ γref,a, ‖xref,b‖2 ≤ γref,b, γref,a, γref,b > 0 (5.26)

5.3 Identification and trajectory tracking conver-

gence

The following theorem describes the performance of the identification algorithm and

the trajectory tracking based on DNN methodology. Also, in order to assure the T-S

system do not turn unstable the following must be satisfied:

Theorem 15 (Stability of the identification and trajectory tracking errors). Assume

that the upper bounds given in Eqs. (5.16) and (5.23) are satisfied. Consider the

application of the DNN identifier presented in (Eq. (5.13)) adjusted by the adaptive

law presented in (5.32). If there exist a positive scalar αB and matrices Λi = (Λi)
> >

0, r = 1 . . . 9, Λ1, Λ3 ∈ R2n×2n, Λ4, Λ5, Λ6, Λ7,Λ8,Λ9 ∈ Rn×n, Λ2 ∈ Rp×p and

|min
t
{λmin(A(t))}| > max(αB) such that the following Riccati differential equations

(RDE) [Kilicaslan and Banks, 2010] have symmetric positive solutions:

Ric(P1 (t)) =
d

dt
P1 (t)+P1 (t) Ā1 (t)+ Ā>1 (t)P1 (t)+P1 (t) R̄1 (t)P1 (t)+ Q̄1 (t) (5.27)

Ric(P2 (t)) =
d

dt
P2 (t)+P2 (t) Ā2 (t)+ Ā>2 (t)P2 (t)+P2 (t) R̄2 (t)P2 (t)+ Q̄2 (t) (5.28)

where

Ā1 (t) = A (t) +
αB
2
I2n×2n, Ā2 (t) = A (t)− B1Ktr +

αB
2
I2n×2n
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A (t) =


0n×n

R∑
j=1

α[i,j] (t) In×n

R∑
j=1

α[i,j] (t)A
[i,j]
1

R∑
j=1

α[i,j] (t)A
[i,j]
2

 , B1=

 0n×n

In×n

 , B2=

 In×n

0n×n



R1 = B1

R∑
j=1

α
[i,j]
B (t)W

[i,j]
0 Λ2

R∑
s=1

α
[i,s]
B (t)

[
W

[i,s]
0

]>
1
BT1 + Λ3 + B1Λ4B>1 + B1Λ5 (t)B>1

R2 = Λ1 + B2 (Λ6 + Λ7)B>2 + B1

R∑
j=1

α[i,j] (t)A
[i,j]
1 Λ8

R∑
j=1

α[i,j] (t)
(
A

[i,j]
1

)>
B>1 +

B1

R∑
j=1

α[i,j] (t)A
[i,j]
2 Λ8

R∑
j=1

α[i,j] (t)
(
A

[i,j]
2

)>
B>1 + B1Λ9B>1

Q1 = K>idBT1 Λ−1
1 B1Kid+λmax

(
Λ−1

2

)
LσΛσ+2

R∑
j=1

α[i,j] (t)
R∑
s=1

α[i,s] (t)λmax

{(
Λj,s

4

)−1
}
f̃

[i,j]
1 I2n×2n

Q2 =
R∑
j=1

α[i,j] (t)
R∑
s=1

α[i,s] (t)
(

2ε1λmax

(
Λ−1

3

)
L̄σ + 4f̃

[i,j]
1 λmax

{(
Λj,s

4

)−1
})

I2n×2n

Then the control law

u (t) = g> (xa (t))
(
g (xa (t)) g> (xa (t))

)−1×(
−

R∑
j=1

α[i,j] (t)W [i,j] (t)σ (x̂ (t))−Kid∆id (t)−Ktr∆tr (t)

)
,

Kid = [Kp,id, Kd,id] ∈ Rn×2n, Ktr = [Kp,tr, Kd,tr] ∈ Rn×2n, Kp,id, Kd,id, Kp,tr, Kd,tr ∈ Rn×n

(5.29)

forces that:

a) The identification error ∆id := x − x̂ is ultimate bounded [Khalil, 2002] in the

following sense

lim
t→∞

sup ‖∆id (t)‖2 ≤ δ

min
t≥0
{λmin (P1 (t))}

(5.30)

and
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b) The trajectory tracking error ∆tr := x̂ − xref is also ultimate bounded, with a

bound given by

lim
t→∞

sup ‖∆tr (t)‖2 ≤ δ

min
t≥0
{λmin (P2 (t))}

(5.31)

where δ =

(
2

R∑
j=1

(
kj
)−1

ε+
β

αB

)
, αB is a positive scalar and

β =
R∑
j=1

α[i,j] (t)
R∑
s=1

α[i,s] (t) (2ε1λmax

(
Λ−1

3

)
L̄>σ γref + f̃

[i,j]
0 λmax

{(
Λj,s

4

)−1
}

+

4
(
λmax

{(
Λj,s

4

)−1
}
f̃

[i,j]
1 γref + λmax

{(
Λj,s

5

)−1
}
γξ

)
+ λmax

{
Λ−1

6

}
γref,b)+

λmax

{
Λ−1

7

}
γref,b + λmax

{
Λ−1

8

}
γref,a + λmax

{
Λ−1

8

}
γref,b + λmax

{
Λ−1

9

}
Ls,bγref,b

In×n and I2n×2n are identity matrices of n× n and 2n× 2n.

Here min
t
{λmin (P1 (t))} and min

t
{λmin (P2 (t))} are the minimum eigenvalues of the

matrices P1 (t) and P2 (t) along the time, respectively.

Proof. The full proof is given in Appendix C.

Necessary conditions that ensure the solution of the RDEs (5.27) and (5.28) are

presented in Section 5.

Remark 16 The size of the region of convergence for the errors is determined by the

solution of Eq. (5.27) for the identification and the solution of Eq. (5.27) for the

trajectory tracking, respectively.

Remark 17 The RDE structure proposed in this work make use of a more general con-

cept than the one presented in optimal control theory. There exist literature that intro-

duce the concept of RDEs as a general problem [Reid, 1972], [Crouch and Pavon, 1987],

[Kilicaslan and Banks, 2010] with some particular applications as: transmission line

phenomena, theory of noise and random processes, variational theory, optimal control

theory, diffusion problems and invariant embedding. The following theorem make use

of two RDE based on the work presented by [Kilicaslan and Banks, 2010].
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5.4 Learning laws for the identifier

This section describes the learning laws structure as well as the identification. The

quality of the identification algorithm is characterized by the region where the identifi-

cation error converges. The theorem described in this section gives sufficient conditions

and depends on the existence of the positive definite matrix as solution of a Riccati

Differential Equation (RDE). The last subsection discusses the conditions for ensuring

the existence of such positive definite matrix.

For this class of adaptive identifier, the following nonlinear weight-updating law

is suggested. The structure given in the following equations was derived using the

Lyapunov method for practical stability analysis. These laws are:

d

dt
W [i,j] (t) = Θ[i,j]

(
W̃ [i,j] (t) ,∆b (t) , P2 (t)

)
,

Θ[i,j]
(
W̃ [i,j] (t) ,∆id (t) , P2 (t)

)
=

1

2
kjα[i,j] (t)B>1 P1 (t) ∆id (t)σ> (x̂ (t)) +

αB
2
W̃ [i,j] (t) ,

P2 (t) = P>2 (t) > 0, W̃ [i,j] (t) := W
[i,j]
to (t)−W [i,j] (t) , kj ∈ R+.

(5.32)

Here P1 (t) is the positive definite solution matrix of the RDE defined in Theorem 1

(Eq. (5.27)).

5.5 On the Riccati Differential Equation solution

In order to guarantee the existence of the positive definite solution of the RDEs (5.27)

and (5.28) we use the lemmas presented in Section 3 in Chapter 5. This lemma presents

the necessary conditions to ensure the existence of positive definite and continuous

solution for the class of Riccati equation such as the one obtained in the chapter.

Once the RDEs matrices considered in this study have fulfilled the existence con-

ditions they can be solved on-line by using the information from the system that is

needed in the time varying piecewise continuous functions included in the chapter and

defined by the matrices Q̄1, Q̄2, R̄1 and , R̄2. One may notice that Ā1 and Ā2 depend
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only fuzzy membership values and the proposed matrices A1 and A2, then they can be

calculated on-line. Similar conditions arise when the matricesQ̄1 and Q̄2 are evaluated

but the upper bounds for perturbations/uncertainties should be calculated a priori.

Lambda matrices can also be determined a priori and they can be used in the on-line

evaluation of Q̄1, Q̄2. In the case of R̄1 and R̄2, there is the necessity of introducing

W
[i,s]
0 but instead of th ese matrices, one may use their corresponding upper values

that were assumed to be known. Maybe this is the most challenging issue in evaluating

the controller proposed in this study but similar problems have been solved using a

numerical strategy equivalent to the one considered in this study. For example In view

of parameters W
[i,s]
0 is a linear term multiplying the activation functions, the matrix

leastmean square algorithm [Ljung, 1999], [Kunusch, 2003], [Poznyak et al., ] can be

applied as an off-line training stage.

5.6 Implementation issues

In order to implement the identification and trajectory tracking tasks the following

process needs to be carried out. The schematic in Fig. 5.1 shows the architecture of

the closed-loop system.

1.- Integrating the RDE in Eq. (5.27) to obtain P1 (t),

2.- Substitute P1 (t) on the learning laws (5.32) of the DNNs to obtain W [i,j] (t).

3.- Implement the neuro-fuzzy identifier using the weights W [i,j] (t) and identification

error ∆id.

4.- Compute the neuro-fuzzy control law using the weights W [i,j] (t), the identifica-

tion error ∆id and the tracking error ∆tr.
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Figure 5.1: Closed-loop system architecture with learning capability and neuro-fuzzy
controller.

5.7 Numerical results

In order to validate the effectiveness of the controller proposed in this chapter we use

the model of a fully actuated AUV presented in Section 2.4. Considering the state

variables x1 = x, x2 = y, x3 = z, x4 = ψ, x5 =
d

dt
x, x6 =

d

dt
y,x7 =

d

dt
z, x8 =

d

dt
ψ the

system (2.10)-(2.9) can be rewritten with the structure of Eq. (5.1), that is

d

dt
ηa (t) = ηb (t)

d

dt
ηb (t) = f (η (t)) + g (ηa (t))u (t) + ξ (η (t) , t)

(5.33)

where ηa =

[
x1 x2 x3 x4

]>
, ηb =

[
x5 x6 x7 x8

]>
, η =

[
η>a , η

>
b

]>
,

u =

[
X Y Z N

]>
, f (η) =

[
f1 (η) f2 (η) f3 (η) f4 (η)

]>
,

f1 (η) = {c1 cos2 x4 + c2 sin2 x4}x5 + {c1 cosx4 sinx4 − c2 sinx4 cosx4 − x8}x6+

{c3 [x5 sinx4 cosx4 − x6 cos2 x4] + c4

[
x5 sinx4 cosx4 + x6 sin2 x4

]
}x8+

,

f2 (η) = {x8 + c1 sinx4 cosx4 − c2 cosx4 sinx4}x5 + {c1 sin2 x4 + c2 cos2 x4}x6+

{c3

[
x5 sin2 x4 − x6 sinx4 cosx4

]
− c4 [x6 sinx4 cosx4 + x5 cos2 x4]}x8

,
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f3 (η) = c7x7 + c8,

f4 (η) = {c10 [x5 sinx4 cosx4 − x6 cos2 x4 + x7] + c11

[
x5 sinx4 cosx4 + x6 sin2 x4

]
}x5+

{c10

[
x5 sin2 x4 − x6 sinx4 cosx4

]
− c11 [x6 sinx4 cosx4 + x5 cos2 x4]}x6 + c12x8

,

g (ηa) =



c5 cosx4 −c6 sinx4 0 0

c5 sinx4 c6 cosx4 0 0

0 0 c9 0

0 0 0 c13


,

ξ (ηa, t) =



c5 cosx4τE1 (t)− c6 sinx4τE2 (t)

c5 sinx4τE1 (t) + c6 cosx4τE2 (t)

c9τE3 (t)

c13τE6 (t)


It may be noticed that the AUV system considered here is fully actuated (m = n),

so it represents a particular case of the nonlinear system in Eq. (5.1). Also, in order to

known the complete structure of g (ηa (t)) the parameters c5, c6, c9 and c13 are supposed

to be known.

2m

2m

2m

POS2,z

POS1,z

POS1,x
POS2,x

POS1,y

POS2,y

Figure 5.2: Partition of the AUV movement space.
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In order to represent the dynamics of the AUV using the T-S structure, it is con-

sidered that the AUV moves inside a three dimension space represented by a cube of

2 meters × 2 meters. This space is partitioned in eight cubes as is shown in Fig. 5.2.

Then, for the fuzzification stage the position vector xa = [x1, x2,x3]> is chosen as the

fuzzy set, and the following two partitions corresponding to each cube are proposed:

Position 1 (POS1) and Position 2 (POS2). The membership functions structure of

POS1, POS2 are selected as in Fig. 6.10 by trial and error. In consequence, it is

necessary to propose eight rules to represent the AUV dynamics when it is located in

each cube, as follows:

Rj :IF x1 is POSs,x1 and IF x2 is POSs,x2 and IF x3 is POSs,x3

THEN
d

dt
x̂a (t) = x̂b (t)

d

dt
x̂b (t) = A

[j]
1 x̂a (t) + A

[j]
2 x̂b (t) +W [j] (t)σ (x̂ (t))

j = 1 . . . 8, s = 1, 2

, (5.34)

1m 2m0m

1POS POS

x
i

ai( )x
i

1 2

Figure 5.3: Membership functions structure.

The system parameters for a typical AUV, used for simulation purposes, are given

by m = 4.28 kg, Xu̇ = 0.5 kg/s, Yv̇ = 0.22 kg/s, Zẇ = 0.3 kg/s, Nṙ = 0.4 kgm2/s,

τDx = τDy = τDz = τDψ = −0.05, Iz = 0.04, FWB = 0.
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The environmental disturbances are proposed as the following wave profile [Perez, 2005]:

τE1 = τE2 = τE3 = τE6 = sin (0.1t) + 3 sin
(

0.8t+
π

2

)
+ 1.5 sin (0.5t) + 0.8 sin (0.4t) .

The desired three dimension (X-Y-Z) path to solve for the trajectory tracking prob-

lem is the one shown in Fig. 5.4. First, the AUV immerses from the water surface (blue

point) performing a constant velocity circular path of radius 1 meter (blue arrows) to

reach 0.5 meters depth staying there approximately 20 seconds (magenta point). Then,

the AUV returns to the surface following the same circular path (green arrows) until

reaching the water surface (green point). In order to describe the path in Fig. 5.4, the

desired paths for each state must be:

xref (t) = sin (0.5t) , yref (t) = cos (0.5t) ,

zref (t) = 0.5

(
1

1 + e−(t−6)
− 1

)
− 0.5

(
1

1 + e−(t−24)
− 1

)
.

(5.35)
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Figure 5.4: Three dimension desired path.
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The initial conditions are: x (0) = 0, y (0) = 1, z (0) = 0, ψ (0) = 0.

The controller gains used are:

Kp,tr = diag (19680, 16400, 13119, 2880),

Kd,tr = diag (0.0196, 0.0164, 0.013119, 0.0028),

Kp,id = Kd,id = diag (65.595, 49.195, 98.395,−24.005).

The inference matrices used to define the contribution given by the first three DNN

identifiers are:

A
[1]
1 = diag (−50,−75,−100,−150), A

[1]
2 = diag (−150,−100,−50,−125),

A
[2]
1 = diag (−50,−75,−100,−200), A

[2]
2 = diag (−150,−100,−50,−225),

A
[3]
1 = diag (−50,−75,−100,−125), A

[3]
2 = diag (−150,−100,−50,−65).

These matrices were defined using previous knowledge on the system dynamics. For

the other identifiers, similar matrices were calculated using a similar procedure. The

sigmoid function considered is: σl (xl) = 2/(1 + exp(−2xl)) − 0.5, where xl is the l-th

component of xb. The gains for the learning laws of the eight DNNs are: k1 = . . . =

k8 = 50. The off-line weight matrices considered are: W
[1]
to = . . . = W

[8]
to = I4×4.

The values of the constants used to solve the RDE stated in Eq. (28) used in the

control algorithm are the following

Lσ = 0.000001, f̃
[i,j]
1 = 0.000001 (5.36)

The values of the constants that participates in the boundary term β (page 12) are the

following:

γref,a = 2.25, Ls,b = 0 (5.37)

and are obtained as follows. In view of the reference vector satisfies

xref,a =

[
xref , yref , zref

]
(5.38)
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We know that |sin(0.5t)| ≤ 1, |cos(0.5t)| ≤ 1,∣∣[0.5/(1 + e−(t−6))− 0.5−
(
0.5/(1 + e−(t−24))− 0.5

)∣∣ ≤ 0.5.

Then, ‖xref,a (t)‖2 ≤ 1 + 1 + 0.25 ≤ 2.25. That is, γref,a = 2.25. On the other hand,

in the particular case of the AUV simulation the function sb (·) in Eq. (26) does not

depend explicitly on xref,b (t) only depends on time, so the boundary defined in Eq.

(26) is Ls,b ≡ 0.

Concerning the constant values ε1, L̄σand f̃
[i,j]
1 , they participate in the RDE in

Eq. (29). It is important to note that is not necessary to solve this equation for the

simulation implementation. This equation is part of the theoretical proof that ensures

the convergence of the trajectory tracking error. Even so, this equation was solved

using the following constant values:

ε1 = 1, L̄σ = 0.000001, f̃
[i,j]
1 = 0.000001 (5.39)

In order to proposed a challenging comparison between a classical controller such

as the T-S form and the controller proposed in this study, the stable matrices Ā[j] were

determined by trial and error in order to approximate as much as possible the behaviour

of the nonlinear uncertain system. Then, any knowledge of the nonlinear system are

being used which is a less restrictive condition than the one assumed in this study.

76



0 5 10 15 20 25 30 35

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x 1

 

 

reference
Neuro−fuzzy
T−S

1 1.5 2 2.5 3
0.7

0.8

0.9

1

Zoom

(a)

0 5 10 15 20 25 30 35

−1

−0.5

0

0.5

1

x 2

 

 

reference
Neuro−fuzzy
T−S

9 9.5 10 10.5
0.8

0.85

0.9

0.95

1

1.05
Zoom

(b)

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

time (s)

x 3

 

 

reference
Neuro−fuzzy
T−S

(c)

Figure 5.5: Comparison of states trajectories obtained when PDC controller compared

with the adaptive controller proposed in this study
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The matrix B[j] was obtained by linearising the nonlinear section associated to the

input g(xa) around the operating point x4 = 0. Then a feedback control that stabilizes

each linear system is calculated using the pole placement technique. Now with these

gains, we can construct a Parallel Distributed Compensator (PDC)

[Takagi and Sugeno, 1985] based on the T-S fuzzy modeling strategy. The PDC has

the following form

u (t) = K (t) ∆tr (t) , K (t) =
8∑
i=1

αi (t)Ki (5.40)

where ∆tr is the tracking error. Based on the PDC design, we proposed a comparison

between the trajectories produced by implementing the controller proposed in our study

and the one proposed in Eq. (5.40). An additional comparison was done considering

the energy needed to enforce the tracking of the three individual coordinates. The

figure 5.5-a demonstrates the tracking comparison between the proposed neuro-fuzzy

controller and a common PDC fuzzy controller in the coordinate x while figure 5.5-b

demonstrates the same comparison considering the coordinate y.
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Figure 5.6: Identification error (top) and Trajectory tracking error (bottom).
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These comparisons showed that the neuro-fuzzy controller proposed in our study

tracks smoothly the reference trajectories with less relevant oscillations around the

references. In comparison the common fuzzy controller follows the references but with

a greater oscillation obtaining a worse tracking result. The effect of this oscillations

promotes a relevant miss tracking of the reference trajectory in z coordinate by using

the fuzzy controller as shown in figure 5.5-c.

In Fig. 5.6, the norm of the identification and trajectory tracking errors are shown.

It is important to emphasize that the identification error converges almost to the origin

in approximately 7 seconds. The approximated trajectories are suitable to define a

trajectory tracking for the AUV. It can be seen that the tracking error converge to

region of acceptable size near to the origin, that is, the identified trajectories reach the

desired signals. An additional comparison was done considering the energy needed to

enforce the tracking of the three individual coordinates. Figure 5.7 demonstrates the

effective controller needed to enforce the tracking. One may notice that bigger energy

is needed in the PDC and worse tracking performance was attained.
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Figure 5.7: Forces in surge (top), sway (midst) and heave (bottom) direction.
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From the results showed in Fig. 5.7, it is found that the controller proposed in this

study (defined by the forces in surge, sway and heave directions) solves the tracking

trajectory problem using the identified states of the AUV nonlinear system under the

presence of disturbances. Also, the same figure shows the comparison of the norm for

tracking errors gotten in each coordinate (x, y, z). This last result confirms the better

result enforced by the controller developed in this study.

In Fig. 5.8 shows the performance of the Frobenius norm of the first two weight

matrices. These weight matrices can be able to adapt according to the AUV behavior

changes during the on-line learning process.

An integral comparison of controllers performance for the three dimension desired

path tracking realized by the AUV was depicted in Fig. 5.9. For visualization pur-

poses the AUV movement is separated in two stages. This comparison confirmed that

better tracking using the controller designed in this study than the common T-S fuzzy

controller was obtained even when the AUV system modified its z coordinate in two dif-

ferent directions (form top to bottom and bottom to high). Moreover, no high frequency

oscillations were observed on the trajectories executed by the AUV system.

A number of simulation results have shown that the proposed control scheme per-

forms well in terms of smooth transient response, quick convergence of tracking errors

near to the origin, and robustness, even in the case of disturbed conditions.

5.8 Conclusions of the chapter

In this work a neuro-fuzzy scheme was developed to accomplish two goals: identification

and control of uncertain nonlinear systems. This scheme mixed the use of DNNs to

approximate the local dynamics of the nonlinear system in a certain region determined

by a set of T-S rules. This two goals was solved using the solution of two RDEs

calculated on-line. This fact differs from the existing works that solve AREs. The

main contribution of this study was to propose a methodology to design an adaptive
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parallel distributed controller used to solve a trajectory tracking problem. A set of

continuous neural networks was used to approximate the dynamics of each subsystem

needed in the controller. The rule needed to select what subset of systems approximated

by the neural networks must be considered in the controller execution. A controlled

Lyapunov function was proposed to prove the existence of an ultimate bounded stable

equilibrium point for the tracking error dynamics. The same Lyapunov function was

used to design the laws that adjusted the weights in each neural network. This kind

of solution has been rarely explored and the solution attained in this study offered

superior performance that usual linear PDC working without adaptation. In summary,

the identification and control algorithm sre designed for running on-line to makes it

adaptable in the sense of the system dynamics changes allowing to obtain a suitable

identification for the trajectory tracking purpose. Simulation results using an AUV

system validate the algorithm designed by tracking a three-dimension desired path.

5.9 Future work

We can propose a methodology based on a separation of the AUV’s model into two parts:

the first one is a known nominal model and the second one is a model with parameter

uncertainties. A similar procedure developed in this chapter can be implemented to

deal with this problem. Also, in order to have a complete control system a neuro-fuzzy

observer can be designed. This observer has the aim to estimate the state information

from the AUV system output. In consequence, we may have a closed-loop control

system composed by an identification, estimation and trajectory control parts.

The neuro-fuzzy observer approximates the right hand side of the uncertain nonlin-

ear system, and at the same time estimates the unmeasurable states of this approxima-

tion. So these two tasks, estimation and identification, need to be carried out during

an on-line process in order to calculate the stabilizing control law. This closed-loop

system structure represents a more challenging problem.
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Alternatively, we can use a robust exact differentiator to estimate the unmeasur-

able states of a nonlinear identified system using the neuro-fuzzy identification process.

Then, identification and estimation are performed using two different structures. More-

over, it is known that an sliding mode observer converges in finite time horizon. The

previous considerations leads us to think that the implementation of this algorithm

seems to be easier than the neuro-fuzzy observer for control purposes.
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6

Trajectory tracking of a real AUV

6.1 AUV platform

To demonstrate the feasibility of the developed controller in Chapter 5, it was applied

to an experimental platform shown in Figs. 6.1 and 6.2, this is an AUV developed at

UMI-LAFMIA Laboratory at the Research and Advanced Studies Center of the Na-

tional Polytechnic Institute in Mexico (CINVESTAV). The AUV measures 430mm x

230mm x 200mm and approximately weights 4.22 kg. Two battery tubes are attached

to its bottom. An acrylic tube to contain the electronic system is located at the fore-

front of the structure. The platform includes an internal computer system connected to

an external computer, this configuration is shown in Fig. 6.6. The external computer

is a laptop with Microsoft Windows operating system. The internal computer system

consists of an electronic (controller) board (Fig. 6.4 ) that integrates: power stages, an

electronic speed controller (ESC) for each thruster, and an ATmega2560 AVR microcon-

troller. The AUV is equipped with three T100 Blue Robotics brushless thrusters (Fig.

6.3): port and starboard thrusters located at the bottom of the vehicle and a vertical

thruster located at the center of gravity of the vehicle as shown in Fig. 6.2. The AUV is
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Figure 6.1: Experimental platform.

equipped with two sensors: An inertial measurement unit (IMU) Invesense MPU-9150

to measure the orientation (heading) of the AUV and a pressure sensor Measurement

Specialities MS5803-14B to measure the depth the vehicle is located underwater (Fig.

6.5).
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Thruster
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Tubes

Top View
Side View

Bottom View

2
0
0
 m

m

Figure 6.2: Mechanical structure of the AUV.
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Figure 6.3: Thruster T100.

The ATmega2560 carries out the data aquisition from the sensors via I2C commu-

nication protocol and provides PWM signals to move the thrusters. In the external

computer we use a real-time interface developed on MATLAB-Simulink. The external

computer communicates with the electronic board via a full duplex serial communica-

tion protocol (using the same serial port). That is, MATLAB receives the sensor data

from the Arduino Mega and sends the control signal converted as cycle duties to the

thrusters.

Figure 6.4: Controller board.
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Figure 6.5: IMU (left) and pressure (right) sensors.

In order to extend the communication distance and use a lightweight communica-

tion cable between the external and internal computers two communication protocol

conversion stages are implemented to convert from serial protocol (15 meters) to Eth-

ernet protocol (100 meters) and then to a power line communication (PLC) protocol

(300 meters). The PLC protocol uses electrical wiring (two cables) to simultaneously

carry both data and direct current (DC) electric power. The devices implemented are:

a serial UART to Ethernet converter USR-TCP232-T and a powerline mini adapter

Tenda P200.
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Figure 6.6: System configuration of the AUV platform.
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6.2 Real-time experimentation interface

In order to realize the experimentation tests with the AUV platform a real-time interface

shown in Fig. 6.7 was developed using MATLAB-Simulink. This interface implements

a serial send-receive communication and the computation of the control signal. In the

”Serial Receive” block we acquire the sensor data frame (depth and heading) from the

ATmega. The sensor data is used to compute the control signal traduced as a PMW

cycle duty. In the ”Serial Send” block we send the PWM cycle duty frame to move

the thrusters to the ATmega. A camera is used to visualize the movement of the AUV

inside the tank (top-right). Also a plot of the vehicle trajectory and the desired signal

is shown (bottom-right).

Figure 6.7: Real-time interface in MATLAB-Simulink.
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6.3 Problem statement

This section is focused in the application of the controller developed in Chapter 5 in

order to control the movement of the experimental AUV platform described in Section

5.1. The objective is to move the AUV inside a tank of dimensions 180 cm x 80 cm x 50

cm. However, due to the movement restrictions given by the limited space of the tank

the vehicle is not be able to move in y axis only in x and z axes. Then, the problem is

reduced to track a smooth trajectory in the x− z plane by the AUV. Also, the position

of the center of gravity of the vehicle cannot reach the entire space in the tank because

the dimensions of its structure, so the real movement space in the x-z plane is 132 cm

x 52 cm as is shown in Fig. 6.8.

z

x 132 cm

52 cm

Figure 6.8: AUV movement space inside the tank.

In order to describe the model that characterizes the AUV lateral movement (x-z)

dynamics the 6-DOF AUV model is reduced to obtain a 2-DOF model described in

Section 2.5 in Chapter 2. Considering the state variables x1 = x, x2 = z, x3 =
d

dt
x,

x4 =
d

dt
z the system (??)-(??) can be rewritten as follows

d

dt
ηa (t) = ηb (t)

d

dt
ηb (t) = f (η (t)) + g (ηa (t)) τ0 (t) + ξE (ηa (t) , t)

where

ηa = [x1 x2]> , ηb = [x3 x4]> , η =
[
η>a η>b

]>
, τ0 = [X Z]> ,
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f (η) = [f1 (η) f2 (η)]> , f1 (η) = c1x3, f2 (η) = c7x4 + c8

g (ηa) = diag(c5, c9), ξE (ηa, t) = [c5τE1 (t) c9τE2 (t)]>

It may be noticed that the AUV system considered here is fully actuated (m = n),

so it represents a particular case of the nonlinear system in Eq. (5.1). Also, in order

to known the complete structure of g (ηa) the parameters c5 and c9 are supposed to be

known.

POS1,x POS2,x

POS1,z

POS2,z

132 cm

5
2
 c

m

Figure 6.9: Partition of the tank space.

In order to represent the dynamics of the AUV using the T-S structure, it is con-

sidered that the AUV moves inside the region previously described. This space is

partitioned in four squares as shown in Fig. 6.9. Then, for the fuzzification stage the

1m 2m0m

1POS POS

x

ai( )x

1 2

0.66m 1.32m

a

(a) Functions for x axis

1m 2m0m
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z

ai( )z

1 2

0.26m 0.52m

a

(b) Functions for z axis

Figure 6.10: Membership functions structure.

position vector xa = [x1, x2]> is chosen as the fuzzy set, and the following two partitions

corresponding to each square are proposed: Position 1 (POS1) and Position 2 (POS2).
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The membership functions structure of POS1, POS2 are selected by trial and error as

in Fig. 6.10 (a) for x-axis and Fig. 6.10 (b) for z-axis. In consequence, it is necessary

to propose four rules to represent the AUV dynamics when it is located in each square,

as follows:

Rj :IF x1 is POSs,x1 and IF x2 is POSs,x2

THEN
d

dt
x̂a (t) = x̂b (t)

d

dt
x̂b (t) = A

[j]
1 x̂a (t) + A

[j]
2 x̂b (t) +W [j] (t)σ (x̂ (t))

j = 1 . . . 4, s = 1, 2

, (6.1)

The system parameters and the environmental disturbances are proposed as in Sec-

tion 5.7.

z

x 132 cm

52 cm

45 cm

120 cm

Figure 6.11: Two dimension desired path inside the tank.

The desired two dimension (x-z) path to solve for the trajectory tracking problem

is the one shown in Fig. 6.11. First, the AUV immerses from the water surface (green

point) following a sigmoid reference (blue arrows) to reach 0.4 meters depth staying in

this reference approximately 15 seconds. Then, the AUV returns to the surface following

the same sigmoid path until reaching the water surface (magenta point). In order to

describe the path in Fig. 6.11, the desired trajectory are proposed as a composition of

sigmoid functions [Cruz et al., 2014].
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The references signals for each state are:

xref (t) = 1.2

(
1

1 + e−0.15(t−20)
− 1

)
,

zref (t) = 0.4

(
1

1 + e−(t−10)
− 1

)
− 0.4

(
1

1 + e−(t−30)
− 1

)
.

(6.2)

6.4 On the controller realization

The main drawback of the proposed controller designed in Chapter 5 is the necessity of

measuring linear velocities of the AUV. This vehicle is not equipped with a sensor that

can measure these velocities. Therefore, a sliding mode super-twisting algorithm (STA)

is applied as a robust exact differentiator (RED) to estimate d
dt
x, d

dt
z velocities from

given AUV positions x and z. This estimator is used due to the well-known character-

istic that a robust exact differentiator (RED) based on STA converges in finite time.

This property allow us to use the estimated states in the controller structure with-

out the necessity of solving a controller-observer system, i.e., the separation principle

holds. The STA implemented in this work has a different structure to the one presented

in [Levant, 2002, Levant, 2007, Davila et al., 2005], because it uses a sigmoid function

instead of a sign function. This STA has the following structure [Chairez, 2015]:

γ̇1 (t) = γ2 (t) + k1 |eγ (t)|1/2 s (eγ (t))

γ̇2 (t) = k2s (eγ (t))
(6.3)

where eγ = xmes − γ1 , xmes is the measurable variable (in this case the linear positions

x and z), s (eγ) is a sigmoid function defined as s (eγ) =
(
2/
(
1 + e−beγ

))
− 1, and k1,

k2 are positive constants.
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6.5 Numerical results

The initial conditions are:

x (0) , z (0) = 0, d
dt
x (0) , d

dt
z (0) = 0, x̂ (0) , ẑ (0) = 0, d

dt
x̂ (0) , d

dt
ẑ (0) = 0.

The controller gains used are:

Kp,tr = diag (17712, 41000), Kd,tr = diag (19.68, 16.40),

Kp,id = diag (500, 500), Kd,id = diag (60, 60).
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Figure 6.12: Tracking in x-axis (top) and z-axis (bottom) obtained with the adaptive
controller.

The inference matrices used to define the contribution given by the four DNN identifiers

are: A
[1]
1 = diag (−50,−75), A

[1]
2 = diag (−150,−100), A

[2]
1 = diag (−75,−125),

A
[2]
2 = diag (−100,−25), A

[3]
1 = diag (−100,−65), A

[3]
2 = diag (−150,−110),

A
[4]
1 = diag (−100,−25), A

[4]
2 = diag (−150,−110). The sigmoid activation function

considered is: σl (xl) = 2/(1 + exp(−2xl)) − 0.5, where xl is the l-th component of

velocity vector xb.
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Figure 6.13: Two dimension trajectory performed by the controlled AUV system.

The initial conditions for the learning laws are: W
[i]
o = diag{300, 300}, i = 1 . . . 4.

The gains for the learning laws are: k1 = . . . = k4 = 500. The off-line weight matrices

considered are: W
[i]
to = diag{30, 30}, i = 1 . . . 4. The values of the constants used to

solve the corresponding RDE are the same as in Section 5.7. The values of the gains of

the super-twisting REDs are: k1,x = k1,z = 85, k2,x = k2,z = 60.

In Fig. 6.12, the tracking of the desired position by the controlled AUV system in

each axis x and z is depicted. It can be seen that the AUV trajectories in the x and z

axis reach the reference ones in approximately 5 seconds for the x position and almost

instantly for the z position, performing an acceptable convergence behaviour.

In Fig. 6.13, the trajectories of the controlled AUV in the x− z plane is depicted.

The identification result of the AUV system can be observed by means of analysing

the converge of the square norm of the identification error to a region near to the origin

shown in Fig. 6.23 (top). Also the square norm of the tracking error converges to a

region near to the origin that is depicted in Fig. 6.23 (bottom), confirming that the

system have an acceptable response tracking the desired position .

The square norm of the control laws applied to the system are shown in Fig. 6.24.

This control laws represent the forces in the surge X and heave Z directions.

In Fig. 6.16 the performance of the Frobenius norm of the first two weight matrices
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Figure 6.14: Identification error (top) and Trajectory tracking error (bottom).

is shown. These weight matrices can be able to adapt according to the AUV behavior

changes during the on-line learning process.

The linear velocities in x and y axis estimated using the super-twisting algorithm

are shown in Figs. 6.17 and 6.18. It can be seen that the velocity estimates converges

very fast to the real velocities in approximately 0.01 seconds.
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Figure 6.17: Estimation of linear velocity in x-axis by the STA.
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Figure 6.15: Forces in surge (top) and heave (bottom) direction.
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Figure 6.18: Estimation of linear velocity in z-axis by the STA.
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Figure 6.16: Frobenius norm of the weight matrices W [1] of the DNN1 (top) and W [2]

of the DNN2 (bottom).

6.6 Experimental results

In this section the trajectory tracking problem proposed in section 6.2 is solved by

applying a proportional derivative (PD) controller for the real AUV platform. These

controllers have the form:

X = Kp,x∆x +Kp,x
d

dt
∆x (6.4)

Z = Kp,z∆z +Kp,z
d

dt
∆z (6.5)

where ∆x = xref−x and ∆z = zref−z. The controller uses in the proportional part the

AUV x and z positions. The z position is obtained from the pressure sensor, however

the AUV is not equipped with any sensor to measure the x position. In general the

problem to determine the AUV position underwater represents a great challenge. 7

98



Figure 6.19: Location of the camera.

Centroid

Figure 6.20: Centroid of the red area in the AUV.

In order to overcome this problem a vision algorithm in MATLAB-Simulink using a

camera located in front of the tank was implemented to determine the AUV x position

as shown in Fig. 6.19. This algorithm detects a red area in the AUV and calculate

the centroid position of this area as shown in Fig. 6.20. On the other hand, the linear

velocities d
dt
x and d

dt
z used in the derivative part was obtained by differentiating the x

and z positions obtained from the sensors using a second order STA structure.

The experimentation procedure was divided in two stages:

• The first experiment consist of controlling each one of the axis (x and z) separately

without the influence of the other in order to perform a 1-D trajectory by the

AUV.

• In the second part both controllers acting in each axis was applied to the AUV

to perform a 2-D trajectory
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6.6.1 Independent tracking control of x and z axes

In this subsection are described the AUV experiments when the vehicle perform 1-D

trajectory in the x and z axis separately. The gains of the PD controllers used in the

experiment selected by trial and error was: Kp,x = 0.7, Kd,x = 0.1 for the x axis and

Kp,z = 2.7, Kd,x = 0.05 for the z axis.

Figure 6.21: Thrust versus PWM input to ESC.

The controller provides a duty cycle in microseconds necessary to move the brushless

thrusters used in the vehicle. A graph that relates the thrust versus the PWM input

applied to the ESC is shown in Fig. 6.21. From this graph the following can be implied:

• Values above 1500 make the motor to turn rigth (submerge).

• Values below 1500 make the motor to turn left (surface).

• A value of 1500 makes the motor to stop.

As can be seen in Fig. 6.21 the thrusters present a dead-zone nonlinerity that

impact tha way the thruster behave when a PMW is applied to it. This dead-zone

is approximately between of 1498 and 1550 PWM values where the thrusters do not

move. In consequence some constants determined experimentally was added to the
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PWM signals provided by the controller to overcome this phenomena in order to have an

effective PWM signal to move the thrusters. These constants was selected as c1,x = 51

and c2,x = 12 for the tracking in x axis and c1,z = 55 and c2,z = 2 for the tracking in z

axis.
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Figure 6.22: Real-time tracking in x-axis (top) and z-axis (bottom) obtained with the

PD controller.

The values of the gains of the super-twisting REDs was: k1,x = k1,z = c, k2,x =

k2,z = 1.5c1/2, c = 2.5. The gains was selected comparing the linear velocities provided

by the STA with those provided by an Euler differentiator. The desired paths are the

same as those considered in the Section 6.5.

In Fig. 6.22, the real-time trajectories in x and z axes described by the AUV are

shown. It can be seen that the real AUV trajectory oscillates around the desired signals.

This oscillations generated are due to the perturbations the AUV is subject. (the source

cable attached to the AUV, the water waves inside the tank and the vehicle making

contact with the tank walls).
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Figure 6.23: Mean-square errors in the x axis (top) and z axis (bottom).
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Figure 6.24: PWM control signals applied to the horizontal (top) and vertical (bottom)

thrusters.

The errors remains in a region near to zero due the disturbances affecting the vehicle

movement as shown in Fig. 6.23. The main disturbances in the experiment was the

source cable attached to the vehicle (acting as a spring), the water waves produced by

the thrusters and the vehicle making contact with the tank walls.
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Figure 6.25: Estimation of linear velocities in the x-axis (top) and in the z-axis (bottom)

by the STA.

On the other hand, the control signal represent the PWM signals applied to the

thrusters in order to move the vehicle to follow the desired trajectory. In Fig. 6.24, it

can be seen that the values of the PWM signals necessary to correct the error position

represent PWM value variations in a small interval.

In Fig. 6.25, the linear velocities obtained by the STA are shown. These velocities

was obtained by filtering the x and z position measurements before applying the RDE

and then applying a second filtering in the output of the RDE.

6.6.2 Dependent tracking control of x and z axes

Unlike the previous subsection here we consider the control of the AUV in the x-z

plane to perform a 2-D trajectory. The gains of the PD controllers used in this part

was: Kp,x = 0.1, Kd,x = 0.5 for the x axis and Kp,z = 3.5, Kd,x = 0.05 for the z

axis. The constants to to avoid the thrusters dead-zone was selected as c1,x = 51 and

c2,x = 12 for the x axis and c1,z = 55 and c2,z = 2 for the z axis.
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Figure 6.26: Real-time tracking in x-axis (top) and z-axis (bottom) obtained with the

PD controller.

In Fig. 6.26 the real-time trajectories in x and z axes described by the AUV acting

at the same time are shown. It can be seen that both AUV trajectories present a greater

deviation to the desired signal unlike the AUV tracking in Fig. 6.22.
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Figure 6.27: Mean-square errors in the x axis (top) and z axis (bottom).
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This due to the x and z axes present a coupled behaviour, that is when the vehicle

moves forward or backward there exist small displacements upwards or downwards,

also when the vehicle moves upward or downward there exist displacements forwards

or downwards. Despite this phenomena the vehicle performs an acceptable trajectory

tracking.
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Figure 6.28: PWM control signals applied to the horizontal (top) and vertical (bottom)

thrusters.

In consequence of the greater deviation of the AUV trajectories to the desired ones

the mean square error is greater than the error depicted in Fig. 6.23, even so the error

remains bounded but in a greater region.

The controllers signals in Fig. 6.28 required to correct the position error of the AUV

in x and z are still small variations of the PWM signal.

Also the STA provides a similar estimation of the linear velocities as the ones ob-

tained in the previous subsection.
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Figure 6.29: Estimation of linear velocities in the x-axis (top) and in the z-axis (bottom)

by the STA.

6.7 Conclusions of the chapter

In this chapter the problem of tracking a desired trajectory using the neuro-fuzzy con-

troller designed in Chapter 5 was solved for a particular case of an AUV moving inside

a tank of limited space. Due to this fact the problem was reduced to follow a trajectory

in the x-z plane by considering a lateral AUV model. The linear velocities used in the

controller was provided by a set of RDEs based on the STA. Some numerical results

showed the controller is capable to stabilize the tracking errors in a region near to

the origin obtaining as a result a good tracking of the desired sigmoid-based functions

proposed as desired signals. Also, experimental results was obtained using the real

AUV platform described in Section 6.1 implementing a real-time interface designed on

MATLAB-Simulink. The experiments was divided in two stages. First, a PD controller

to control each axis in one dimension was used. Then, the PD controllers in both axis

was implemented at the same time to perform a 2-D trajectory tracking. The z posi-

tion was determined by a pressure sensor. However determine the x position represent
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a problem even more difficult to resolve. To overcome this problem implementing a

vision algorithm was implemented to obtain the x position. This task was done by

acquiring an image from a camera in front of the tank. The linear velocities in x-z axis

used in the controller was provided by the STA since the x and z positions. The same

sigmoid functions used in the numerical results was proposed as desired signals. The

PD controller showed an acceptable performance tracking x and z desired positions,

separately. On the other hand, when both controllers were applied to the AUV at the

same time to perform a 2-D trajectory the position error increases in each axis because

of the interaction of both controllers acting together. However, the controller objective

was reached despite of all the perturbations affecting the real AUV while is moving

underwater.
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7

General conclusions

In this thesis work a state feedback control and an state observer were designed in this

study based on the Lyapunov stability analysis for a T-S fuzzy system. A Lyapunov

time-varying function was used to prove the ultimate boundedness of the tracking error.

The controller design was supported on the existence of two time-varying matrix RDEs.

Numerical simulations showed the superiority of the result obtained compared to the

regular control design based on LMIs.

A neuro-fuzzy scheme was developed to identify and control the AUV uncertain

nonlinear system. This scheme mixed the use of DNNs to approximate the local dy-

namics of the nonlinear system in a certain region determined by a set of T-S rules. This

two goals was solved using the solution of two RDEs calculated on-line. A Lyapunov

function was proposed to prove the existence of an ultimate bounded for the tracking

error and to design the laws that adjusted the weights in each neural network. An con-

trol algorithms are adaptable in the sense of the system dynamics changes. Simulation

results using an AUV system showed superiority compared to standard fuzzy control

by tracking a three-dimension desired path.

The problem to follow a trajectory in the x-z plane by AUV model using the neuro-
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fuzzy controller was carried out. The linear velocities was provided by a set of RDEs

based on the STA. Numerical results showed a good tracking of the desired sigmoid-

based functions. Experimental results applying a PD controller with STA showed an

acceptable performance tracking x and z desired positions, separately. When x and

z are controlled at the same time to perform the position error increases in each axis

because of the interaction of both controllers acting together. The controller objective

was reached despite of all the perturbations affecting AUV while is moving underwater.
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Appendix A1

Proof. In order to prove the tracking error is bounded, we use the following Lyapunov

function

V (∆, t) = ∆>P (t)∆ (8.1)

where P (t) is a time-variant positive definite matrix, P (t) = P> (t) > 0. From Eq.

(3.10), Eq. (3.5) and Eq. (3.16), the dynamic of the tracking error ∆ is

d

dt
∆ (t) = A (t)x (t) +B (t) [u (t)− v (t)]−B⊥ (t) r (t) +

η (x (t) , u (t)) + ξ (x (t) , t)

(8.2)

Using Eq. (8.2), the derivative of the Lyapunov function in Eq. (8.1) is

d

dt
V (t) = ∆>(t)

d

dt
P (t)∆(t) + 2∆> (t)P (t)A (t)x (t) +

2∆> (t)P (t)B (t)u (t) + 2∆> (t)P (t) η (x (t) , u (t)) +

2∆> (t)P (t) ξ (x (t) , t)− 2∆> (t)P (t)B⊥ (t) r (t)

(8.3)

Using x = ∆ + xref and Eq. (3.19), Eq. (8.3) becomes

d

dt
V (t) = ∆>(t)

d

dt
P (t)∆(t) + ∆> (t) {P (t) [A (t)−B (t)K (t)]+

[A (t)−B (t)K (t)]>P (t)}∆ (t) + 2∆> (t)P (t)A (t)xref (t) +

2∆> (t)P (t) η (x (t) , u (t)) + 2∆> (t)P (t) ξ (x (t) , t)−

2∆> (t)P (t)B⊥ (t) r (t)

(8.4)
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For any matrices X, Y ∈ Rm×n, they satisfy the following inequality [Poznyak, 2008],

X>Y + Y >X ≤ X>ΛX + Y >Λ−1Y (8.5)

where Λ is a positive definite matrix, Λ = Λ> > 0. Now we apply this inequality to the

term 2∆> (t)P (t)A (t)xref (t),

2∆> (t)P (t)A (t)xref (t) ≤ ∆> (t)P (t)A (t) Λ1A
> (t)P (t) ∆ (t) +

λmax

(
Λ−1

1

)
γref

(8.6)

The other cross terms have similar relations. The derivative of the Lyapunov function

Eq. (8.4) becomes

d

dt
V (t) ≤ ∆> (t) { d

dt
P (t) + P (t) [A (t)−B (t)K (t)]+

[A (t)−B (t)K (t)]>P (t)}∆ (t) + P (t) [A (t) Λ1A
> (t) + Λ2 + Λ3]P (t) +

2λmax

(
Λ−1

2

)
f1 ∗ In×n}∆ (t) + λmax

(
Λ−1

1

)
γref + λmax

(
Λ−1

2

)
f0+

2λmax

(
Λ−1

2

)
f1γref + λmax

(
Λ−1

3

)
γξ − 2∆> (t)P (t)B⊥ (t) r (t)

(8.7)

Adding and subtracting the term αV = α∆>P∆ to Eq. (8.7), and using Eqs. (3.11),

(8.7) becomes

d

dt
V (t) ≤ ∆> (t) { d

dt
P (t) + P (t) [A (t)−B (t)K (t) +

α

2
I]+

[A (t)−B (t)K (t) +
α

2
I]>P (t)}∆ (t) + P (t) [A (t) Λ1A

> (t) +

Λ2 + Λ3]P (t) + 2λmax

(
Λ−1

2

)
f1 ∗ In×n}∆ (t)− αV (t) + λmax

(
Λ−1

1

)
γref+

λmax

(
Λ−1

2

)
f0 + 2λmax

(
Λ−1

2

)
f1γref + λmax

(
Λ−1

3

)
γξ−

2∆> (t)P (t)S1 (t) s (xref (t))

(8.8)
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where S1 (t) is defined in theorem 1 statement. Applying Eq. (8.5) to

−2∆> (t)P (t)S1 (t) s (xref (t)),

−2∆> (t)P (t)S1 (t) s (xref , t) ≤ ∆> (t)P (t)S1Λ5S
>
1 P (t) ∆ (t) +

λmax

(
Λ−1

5

)
Lγref

(8.9)

Under the assumption on s (xref (t) , t) in Eq. (3.8), and s (xref,0, 0) = 0,

‖s (xref (t) , t)‖2 ≤ Lsγref (8.10)

So Eq. (8.8) becomes

d

dt
V (t) ≤ ∆> (t)L (t) ∆ (t)− αV + β (8.11)

where α > 0, β > 0,

L (t) =
d

dt
P (t) + P (t)A1 (t) + A>1 (t)P (t) + P (t)R1 (t)P (t) +Q1 (t) (8.12)

where A1 (t) = A (t) − B (t)K (t) + α
2
, R1 (t) and Q1 (t) are defined in Eq. (3.18). In

order to obtain feedback control in Eq. (3.19), the definition Ā1 (t) = A (t)+ α
2
I is used,

Lt =
d

dt
P (t) + P (t) Ā1 (t) + Ā>1 (t)P (t)− P (t)R1 (t)P (t) +Q1 (t)−

P (t)B (t)K (t)−K> (t)B> (t)P (t) + 2P (t)R1 (t)P (t)
(8.13)

Eq. (8.13) can be formed into the following form

L (t) = L̄ (t) +
(√

2P (t)B (t) R̄
1/2
1 (t)−G (t)

)
(√

2P (t)B (t) R̄
1/2
1 (t)−G (t)

)> (8.14)
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where G (t) =
K> (t) R̄

−1/2
1√

2
and

L̄ (t) =
d

dt
P (t) + P (t) Ā1 + Ā>1 P (t)− P (t)R1 (t)P (t) +Q1 (t)−

K> (t) R̄−1
1 (t)K (t)

2

(8.15)

where R1 (t) = B (t) R̄1B
> (t) . To assure L (t) = 0, L̄ (t) = 0 is needed and

K (t) = 2R̄1 (t)B> (t)P (t) (8.16)

Substitute (8.16) into (8.15) and use R1 (t) = B (t) R̄1B
> (t) to get

L̄ (t) =
d

dt
P (t) + P (t) Ā1 + Ā>1 P (t)− P (t) R̂1 (t)P (t) +Q1 (t) (8.17)

where R̂1 (t) = 3R1 (t). The conditions L (t) = 0 and Eq. (3.9) are Eqs. (3.17) and

(3.19). So L (t) = 0 ∀t ≥ 0, Eq. (8.11) becomes

V (t) ≤ −αV (t) + β (8.18)

Using the comparison principle to solve the differential inequality in Eq. (8.18),

V (t) ≤ e−αtV (0) +
β

α

(
1− e−αt

)
. (8.19)

The inequality in Eq. (8.19) means

lim
t→∞

supV (t) ≤ β

α

According to the concept of ultimate boundedness (based on limit superior operation)

theory [Khalil, 2002], after finite time t, the tracking error ∆ (t) remains in a bounded

region defined in Eq. (3.20).
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Appendix A2

Let us define e (t) = P (t)−P2. Using condition (3.23), the definition H =

 H11 H12

H21 H22


and rewriting Riccati equations (3.21) in the Hamiltonian form as

− d

dt
P (t) =

[
I P (t)

]
H (t)

 I

P (t)


0 =

[
I P2

]
H2

 I

P2


the following can be derived:

− d

dt
e (t) =

[
I e (t) + P2

]
H (t)

 I

e (t) + P2

 ≤

[[
I e (t)

]
+

[
0 P2

]]
H2


 I

e (t)

+

 I

P2


 =

(
A> + P2R

)
e (t) + e (t) (A−RP2)− e (t)Re (t) = L (t)−Q (0)

where

L (t) =
(
A> − P2R

)
e (t) + e (t) (A−RP2)− e (t)Re (t) +Q (0)
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Based on Theorem 3 of [Wimmer, 1985], the term
(
A> − P2R

)
is stable when (A,R)

is stabilizable. From (3.22), e (0) > 0. By Lemma 1 of [Wimmer, 1985], there exit

Q (0) > 0 such that L (0) = 0. This leads to

d

dt
e (t) ≥ Q (0) > 0.

Taking into account that the solution of the RDE with time-varying parameters

continuous in time is also a continuous function. The conclusion is that for time t = 0,

there exists a ε > 0 such that

Q (τ) > 0 ∀τ ∈ [t, t+ ε] .

As a result,

e (t+ ε) = e (t) +
∫ t+ε
t

d

dt
e (τ) dτ ≥ e (t) +

∫ t+ε
t

Q (0) dτ ≥ e (t) +Q (0) ε > 0

that yields to

P (τ) > P2 ∀τ ∈ [0, ε]

Iterating this procedure for the next time interval [ε, 2ε] , the final result in (3.24) is

obtained.
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Appendix B

Proof. In order to prove the tracking error is bounded, the following Lyapunov function

is used

V (∆1,∆2, t) = ∆>1 P1(t)∆1 + ∆>2 P2(t)∆2 (8.20)

where P1(t), P2(t) are defined in Theorem 1 statement. From Eqs. (4.5), (4.11) and

(4.16), the dynamic of the observation error ∆1 is

d

dt
∆1 (t) = [A (t)− L (t)C (t)] ∆1 (t) + η (x (t) , u (t)) + ξ (x (t) , t)− L (t) δ (x (t))

(8.21)

Also from Eqs. (4.11), (4.14) and (4.15), the tracking error is governed by the following

dynamics

d

dt
∆2 (t) = [A (t)− L (t)C (t)] x̂ (t) +B (t)u (t) + L (t)C (t)x (t) +

L (t) δ (x (t))− T (t) v (t)− T⊥ (t) r (t)
(8.22)

Using Eqs. (8.21) and (8.22), the derivative of the Lyapunov function in Eq. (8.20) is

d

dt
V (t) = 2∆>1 P1(t) [A (t)− L (t)C (t)] ∆1 (t) +

2∆>1 P1(t)η (x (t) , u (t)) + 2∆>1 P1(t)ξ̄ (x (t) , t)− 2∆>1 P1(t)L (t) δ (x (t)) +

2∆>2 P2(t) [A (t)− L (t)C (t)] x̂ (t) + 2∆>2 P2(t)B (t)u (t) +

2∆>2 P2(t)L (t)C (t)x (t)− 2∆>2 P2(t)T (t) v (t) + 2∆>2 P2(t)L (t) δ (x (t))−

2∆>2 P2(t)T⊥ (t) r (t) + ∆>1 (t)
d

dt
P1 (t) ∆1 (t) + ∆>2 (t)

d

dt
P2 (t) ∆2 (t)

(8.23)
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Then, applying the time-varying gain feedback control of Eq. (4.21), using x = ∆1 +

∆2 +xref and x̂ = ∆2 +xref , and substituting Eq. (4.6), the differential equation (8.23)

becomes

d

dt
V (t) = ∆>1 (t) { d

dt
P1 (t) + P1(t) [A (t)− L (t)C (t)] +

[A (t)− L (t)C (t)]> P1(t)}∆1 (t) + ∆>2 (t) { d
dt
P2 (t) +

P2(t) [A (t)−B (t)K (t)] + [A (t)−B (t)K (t)]> P2(t)}∆2 (t) +

2∆>2 (t)P2(t)L (t)C (t) ∆1 (t) + 2∆>2 (t)P2(t)A (t)xref (t) +

2∆>1 (t)P1(t)ξ̄ (x (t) , t) + 2∆>1 (t)P1(t)η (x (t) , u (t))−

2∆>1 (t)P1(t)L (t) δ (x (t)) + 2∆>2 (t)P2(t)L (t) δ (x (t))−

2∆>2 (t)P2(t)T (t)
[
T> (t)T (t)

]−1
T> (t) s (xref , t)−

2∆>2 (t)P2(t)T⊥ (t)
[(
T⊥ (t)

)>
T⊥ (t)

]−1 (
T⊥ (t)

)>
s (xref , t)

(8.24)

Considering that for any matrices X, Y ∈ Rm×n, they satisfy the following inequality

[Poznyak, 2008]

X>Y + Y >X ≤ X>ΛX + Y >Λ−1Y (8.25)

where Λ is a positive definite matrix, Λ = Λ> > 0, Λ ∈ Rn×n.

Now the inequality in Eq. (8.25) is applied to the term, yielding to

−2∆>2 (t)P2 (t)T (t)
[
T> (t)T (t)

]−1
T> (t) s (xref (t) , t),

−2∆>2 (t)P2 (t)T (t)
[
T> (t)T (t)

]−1
T> (t) s (xref (t) , t) ≤

∆>2 (t)P2 (t)S2 (t) Λ7S
>
2 (t)P2 (t) ∆2 (t) + λmax

(
Λ−1

7

)
‖s (xref (t) , t)‖2

(8.26)

where S2 (t) = T (t)
[
T> (t)T (t)

]−1
T> (t). Under the assumption that s (xref (t) , t) in

Eq. (4.2) is Lipschitz and using Eq. (4.3) the following inequality is satisfied

‖s (xref (t) , t)‖2 ≤ Lsγref (8.27)
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Then, Eq. (8.26) results in

−2∆>2 (t)P2 (t)T (t)
[
T> (t)T (t)

]−1
T> (t) s (xref (t) , t) ≤

∆>2 (t)P2 (t)S2 (t) Λ7S
>
2 (t)P2 (t) ∆2 (t) + λmax

(
Λ−1

7

)
Lsγref

(8.28)

The other crossed terms have similar relations. Then, Eq. (8.24) results in

d

dt
V (t) ≤ ∆>1 (t) { d

dt
P1 (t) + P1(t) [A (t)− L (t)C (t)] +

[A (t)− L (t)C (t)]> P1(t) + P1(t)
[
L (t) Λ4L

> (t) + Λ3 + Λ6

]
P1(t)+

Λ−1
1 + 3λmax

(
Λ−1

4

)
δ1In×n + 3λmax

(
Λ−1

6

)
η1In×n+

3λmax

(
Λ−1

5

)
δ1In×n}∆1 (t) + ∆>2 (t) { d

dt
P2 (t) + P2(t)[A (t)−

B (t)K (t)] + [A (t)−B (t)K (t)]> P2(t)+

P2(t)[S1 (t) Λ1S
>
1 (t) + A (t) Λ2A

> (t) + L (t) Λ5L
> (t) +

S2 (t) Λ7S
>
2 (t) + S3 (t) Λ8S

>
3 (t)]P2(t)+

3λmax

(
Λ−1

4

)
δ1In×n + 3λmax

(
Λ−1

6

)
η1In×n+

3λmax

(
Λ−1

5

)
δ1In×n}∆2 (t) + β

(8.29)

where β is defined in Eq. (7) Adding and subtracting the term αV , Eq. (8.29) becomes

d

dt
V (t) ≤ ∆>1 (t)L1 (t) ∆1 (t) + ∆>2 (t)L2 (t) ∆2 (t)− αV (t) + β (8.30)

where

L1 (t) =
d

dt
P1 (t) + P1 (t)A1 (t) + A>1 (t)P1 (t) + P1 (t)R1 (t)P1 (t) +Q1 (t) (8.31)

L2 (t) =
d

dt
P2 (t) + P2 (t)A2 (t) + A>2 (t)P2 (t) + P2 (t)R2 (t)P2 (t) +Q2 (t) (8.32)

where A1 (t) = A (t)− L (t)C (t) +
α

2
In×n, A2 (t) = A (t)−B (t)K (t) +

α

2
In×n, R1 (t),

R2 (t), Q1 (t), Q2 (t) and α is defined in 4.17 and 4.18.
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In order to obtain the feedback control gain and observer gain in Eqs. (4.21) and

(4.22), the definition Ā (t) = A (t) +
α

2
In×n is used, then

L1 (t) =
d

dt
P1 (t) + P1 (t) Ā (t) + Ā> (t)P1 (t)− P1 (t)R1 (t)P1 (t)

+Q1 (t)− P1 (t)L (t)C (t)− C> (t)L> (t)P1 (t) + 2P1 (t)R1 (t)P1 (t)
(8.33)

L2 (t) =
d

dt
P2 (t) + P2 (t) Ā (t) + Ā> (t)P2 (t)− P2 (t)R2 (t)P2 (t) +

Q2 (t)− P2 (t)B (t)K (t)−K> (t)B> (t)P2 (t) + 2P2 (t)R2 (t)P2 (t)
(8.34)

Eqs. (8.33) and (8.34) can be rewritten into the following form

L1 (t) = L̄1 (t) +
(√

2P1 (t)L (t) R̄
1/2
1 (t)−G1 (t)

)
(√

2P1 (t)L (t) R̄
1/2
1 (t)−G1 (t)

)> (8.35)

L2 (t) = L̄2 (t) +
(√

2P2 (t)B (t) R̄
1/2
2 (t)−G2 (t)

)
(√

2P2 (t)B (t) R̄
1/2
2 (t)−G2 (t)

)> (8.36)

where G1 (t) =
C> (t) R̄

−1/2
2 (t)√
2

, G2 (t) =
K> (t) R̄

−1/2
2 (t)√
2

and

L̄1 (t) =
d

dt
P1 (t) + P1 (t) Ā (t) + Ā> (t)P1 (t)− P1 (t)R1 (t)P1 (t) +

Q1 (t)− C> (t) R̄−1
1 (t)C (t)

2

(8.37)

L̄2 (t) =
d

dt
P2 (t) + P2 (t) Ā (t) + Ā> (t)P2 (t)− P2 (t)R2 (t)P2 (t) +

Q2 (t)− K> (t) R̄−1
2 (t)K (t)

2

(8.38)

whereR1 (t) = L (t) R̄1 (t)L> (t) andR2 (t) = B (t) R̄2 (t)B> (t) . To assure that L1 (t) =

0, the following must satisfy: L̄1 (t) = 0 and K (t) satisfying Eq. (4.22). Also to assure

that L2 (t) = 0, the following must satisfy: L̄2 (t) = 0 and L (t) satisfying Eq. (4.22).
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Therefore, if L1 (t) = 0, L2 (t) = 0 ∀t ≥ 0, then Eq. (8.30) becomes

d

dt
V (t) ≤ −αV (t) + β (8.39)

Using the comparison method [Khalil, 2002] to solve the differential inequality in Eq.

(8.39), one gets

V (t) ≤ e−αtV (0) +
β

α

(
1− e−αt

)
. (8.40)

Then Eq. (8.40) means

lim
t→∞

supV (t) ≤ β

α

According to the concept of ultimate boundedness [Khalil, 2002], after some time t, the

tracking error ∆2 (t) remains in a region defined in Eq. (4.23). �

Remark 18 The ultimate boundedness concept [Khalil, 2002] considers that the origin

x = 0 may not be an equilibrium point of the perturbed system (4.1), i.e., ξ̄(0, t) =

0. So we cannot study stability of the origin as an equilibrium point, nor should we

expect the solution of the perturbed system to approach the origin as t → ∞. The best

we can hope for is that if the perturbation term ξ̄(x, t) is small in some sense, then

x(t) − xref (t) is ultimately bounded by a small bound; that is, ‖x(t)− xref (t)‖ will be

small for sufficiently large t.

Remark 19 In order to prove the stability of several linear systems (??) and (4.10) for

T-S fuzzy control, there are two popular methods: common Lyapunov function and LMI

method. Both of them try to find common stability conditions for all linear systems.

This work combines all these linear systems as in Eq. (4.11). Then, it becomes into

a linear time-varying system. RDE avoid the solution complexity when the common

Lyapunov functions method and LMI method are used.
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Appendix C

Proof. Considering the following time-varying Lyapunov function

V
(
∆id,∆tr, x̂,W

[i,j]
err , t

)
= ∆>idP1 (t) ∆id + ∆>trP2 (t) ∆tr+

R∑
j=1

tr
{(
kj
)−1 [

W [i,j]
err

]>
W [i,j]
err

} (8.41)

where ∆tr = x̂ − xref , xref =

[
xref,a xref,b

]>
, are the trajectory tracking errors,

W
[i,j]
err is the difference between the weight matrices W

[i,j]
0 of the nominal system and

W [i,j] of the identifier system, i.e., W
[i,j]
err = W

[i,j]
0 −W [i,j].

Analysing the term
[
W

[i,j]
err

]>
W

[i,j]
err of Eq. (8.41) the following is obtained

[
W

[i,j]
err

]>
W

[i,j]
err =

([
W

[i,j]
0 −W [i,j]

to (t)
]

+
[
W

[i,j]
to (t)−W [i,j] (t)

])>([
W

[i,j]
0 −W [i,j]

to (t)
]

+
[
W

[i,j]
to (t)−W [i,j] (t)

])
<

2
[
W

[i,j]
0 −W [i,j]

to (t)
]> [

W
[i,j]
0 −W [i,j]

to (t)
]

+ 2
[
W̃ [i,j] (t)

]>
W̃ [i,j] (t)

where W̃ [i,j] = W
[i,j]
to −W [i,j] is the error between W [i,j] of the identifier and a known

matrix W
[i,j]
to obtained in the off-line training. Then,

tr

{
(kj)

−1
[
W

[i,j]
err

]>
W

[i,j]
err

}
<

2tr

{
(kj)

−1
[
W

[i,j]
0 −W [i,j]

to (t)
]> [

W
[i,j]
0 −W [i,j]

to (t)
]}

+

2tr

{
(kj)

−1
[
W̃ [i,j] (t)

]>
W̃ [i,j] (t)

}
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Since
[
W

[i,j]
0 −W [i,j]

to

]> [
W

[i,j]
0 −W [i,j]

to

]
≤ εIp×p, where Ip×p is an identity matrix of

p× p, then

tr
{(
kj
)−1 [

W [i,j]
err

]>
W [i,j]
err

}
≤ 2

(
kj
)−1

ε+ 2tr

{(
kj
)−1
[
W̃ [i,j] (t)

]>
W̃ [i,j] (t)

}

Then the Lyapunov function (Eq. (8.41)) can be bounded as

V
(

∆, x̂, W̃ [i,j], t
)
≤ 2

R∑
j=1

(
kj
)−1

ε+ V id
(

∆, x̂, W̃ [i,j], t
)

(8.42)

where

V id
(

∆, x̂, W̃ [i,j], t
)

= ∆>idP1 (t) ∆id + ∆>trP2 (t) ∆tr+

2
R∑
j=1

tr

{(
kj
)−1
[
W̃ [i,j]

]>
W̃ [i,j]

} (8.43)

From Eqs. (5.8), (5.11) and (5.20), the dynamic of the state estimation errors ∆id,a =

xa − x̂a, ∆id,b = xb − x̂b are governed by the following ODEs:

d

dt
∆id,a (t) =

R∑
j=1

α[i,j] (t) [xb (t)− x̂b (t)]

d

dt
∆id,b (t) =

R∑
j=1

α[i,j] (t)
(
A

[i,j]
1 xa (t) + A

[i,j]
2 xb (t) +W

[i,j]
0 σ (xa (t) , xb (t))

)
+

R∑
j=1

α[i,j] (t) f̃ [i,j] (x (t)) +
R∑
j=1

α[i,j] (t) ξ[i,j] (x (t) , t)−

R∑
j=1

α[i,j] (t)
[
A

[i,j]
1 x̂a (t) + A

[i,j]
2 x̂b (t) +W [i,j] (t)σ (x̂ (t))

]
(8.44)
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Using ∆id,a = xa − x̂a, ∆id,b = xb − x̂b as well as (5.17) and then adding the

terms
R∑
j=1

α[i,j] (t)W
[i,j]
0 σ (x̂ (t)) −

R∑
j=1

α[i,j] (t)W
[i,j]
0 σ (x̂ (t)) and −

R∑
j=1

W
[i,j]
t0 (t)σ(x̂(t))

+
∑R

j=1W
[i,j]
t0 (t)σ(x̂(t)). Eq. (8.44) results in

d

dt
∆id,a (t) =

R∑
j=1

α[i,j] (t) ∆id,b (t)

d

dt
∆id,b (t) =

R∑
j=1

α[i,j] (t)A
[i,j]
1 ∆id,a (t) +

R∑
j=1

α[i,j] (t)A
[i,j]
2 ∆id,b (t) +

R∑
j=1

α[i,j] (t)W
[i,j]
0 (t) σ̃ (x (t) , x̂ (t)) +

R∑
j=1

α[i,j] (t)
[
W

[i,j]
0 −W [i,j]

to (t)
]
σ (x̂ (t)) +

R∑
j=1

α[i,j] (t) W̃ [i,j] (t)σ (x̂ (t)) +
R∑
j=1

α[i,j] (t) f̃ [i,j] (x (t)) +

R∑
j=1

α[i,j] (t) ξ[i,j] (x (t) , t)

(8.45)

From Eqs. (5.8), (5.11) and (5.20), the dynamic of the state estimation errors

∆tr,a = x̂a − xref,a, ∆tr,b = x̂b − xref,b is governed by the following ODEs:

d

dt
∆tr,a =

R∑
j=1

α[i,j] (t) ∆tr,b (t) +
R∑
j=1

α[i,j] (t)xref,b (t)− sa (xref (t) , t)

d

dt
∆tr,b =

R∑
j=1

α[i,j] (t)
[
A

[i,j]
1 ∆tr,a (t) + A

[i,j]
2 ∆tr,b (t)

]
+

R∑
j=1

α[i,j] (t)W [i,j] (t)σ (x̂ (t)) + g (xa (t))u (t) +

R∑
j=1

α[i,j] (t)
[
A

[i,j]
1 xref,a (t) + A

[i,j]
2 xref,b (t)

]
− sb (xref (t) , t)

(8.46)
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Considering ∆id =
[
∆>id,a,∆

>
id,b

]>
, ∆tr =

[
∆>tr,a,∆

>
tr,b

]>
Eqs. (8.45) and (8.46) can

be rewritten as follows

d

dt
∆id (t) = A (t) ∆id (t) + B1Γ1 (x (t) , x̂ (t)) + B1Ξ1 (x (t) , x̂ (t)) (8.47)

d

dt
∆tr (t) = A (t) ∆tr (t) + B1Γ2 (x (t) , x̂ (t) , u (t)) + B2Ξ2 (x (t) , x̂ (t)) +

B1Ξ3 (x (t) , x̂ (t))

(8.48)

where

A (t) =


0n×n

R∑
j=1

α[i,j] (t) In×n

R∑
j=1

α[i,j] (t)A
[i,j]
1

R∑
j=1

α[i,j] (t)A
[i,j]
2

 , B1 =

 0n×n

In×n

 , B2 =

 In×n

0n×n


Γ1(x, x̂, t) =

R∑
j=1

α[i,j] (t)W
[i,j]
0 (t) σ̃ (x, x̂) +

R∑
j=1

α[i,j] (t)
[
W

[i,j]
0 −W [i,j]

to (t)
]
σ (x̂) +

R∑
j=1

α[i,j] (t) W̃ [i,j] (t)σ (x̂) ,

Γ2(x, x̂, t) =
R∑
j=1

α[i,j] (t)W [i,j] (t)σ (x̂) + g (xa)u (t) ,

Ξ1(x, x̂, t) =
R∑
j=1

α[i,j] (t) f̃ [i,j] (x) +
R∑
j=1

α[i,j] (t) ξ[i,j] (x, t)

Ξ2(x, x̂, t) =
R∑
j=1

α[i,j] (t)xref,b − sa (xref , t)

Ξ3(x, x̂, t) =
R∑
j=1

α[i,j] (t)
[
A

[i,j]
1 xref,a + A

[i,j]
2 xref,b

]
− sb (xref , t)

The time derivative of the Lyapunov function defined in Eq. (8.43) satisfies

d

dt
V id (t) = 2∆>id (t)P1 (t)

d

dt
∆id (t) + 2∆>tr (t)P2 (t)

d

dt
∆tr (t) +

∆>id (t)
d

dt
P1 (t) ∆id (t) + ∆>tr (t)

d

dt
P2 (t) ∆tr (t)−

4
R∑
j=1

tr

{(
kj
)−1
[
W̃ [i,j] (t)

]> d

dt
W [i,j] (t)

} (8.49)
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Substituting Eqs. (8.47) and (8.48) yields to

d

dt
V id (t) = 2∆>id (t)P1 (t)A (t) ∆id (t) + 2∆>id (t)P1 (t)B1Γ1(x (t) , x̂ (t) )+

2∆>id (t)P1 (t)B1Ξ1(x (t) , x̂ (t) )+2∆>tr (t)P2 (t)A (t) ∆tr (t) +

2∆>tr (t)P2 (t)B1Γ2(x (t) , x̂ (t) , u(t))+2∆>tr (t)P2 (t)B2Ξ2(x (t) , x̂ (t) )+

2∆>tr (t)P2 (t)B1Ξ3(x (t) , x̂ (t) )+∆>id (t)
d

dt
P1 (t) ∆id (t) +

∆>tr (t)
d

dt
P2 (t) ∆tr (t)− 4

R∑
j=1

tr

{(
kj
)−1
[
W̃ [i,j] (t)

]> d

dt
W [i,j] (t)

}
(8.50)

In order to cancel the known terms and the uncertain system to track the reference

states the control law in Eq. (5.29) is proposed. The control law in Eq. (5.29) is

suggested with a structure to cancel the not invertible function g (xa (t)). Substituting

Eq. (5.29) to Eq. (8.50) we obtain

d

dt
V id (t) = 2∆>id (t)P1 (t)A (t) ∆id (t) + 2∆>id (t)P1 (t)B1Γ1(x (t) , x̂ (t) )

2∆>id (t)P1 (t)B1Ξ1(x (t) , x̂ (t) )+2∆>tr (t)P2 (t) (A (t)− B1Ktr) ∆tr (t)−

2∆>tr (t)P2 (t)B1Kid∆id (t) +2∆>tr (t)P2 (t)B2Ξ2(x (t) , x̂ (t) )+

2∆>tr (t)P2 (t)B1Ξ3(x (t) , x̂ (t) ) + ∆>id (t)
d

dt
P1 (t) ∆id (t) +

∆>tr (t)
d

dt
P2 (t) ∆tr (t)− 4

R∑
j=1

tr

{(
kj
)−1
[
W̃ [i,j] (t)

]> d

dt
W [i,j] (t)

}
(8.51)

Considering that for any matrices X, Y ∈ Rm×n, they satisfy the following inequality

[Poznyak, 2008]

X>Y + Y >X ≤ X>ΛX + Y >Λ−1Y (8.52)

where Λ is a positive definite matrix, Λ = Λ> > 0, Λ ∈ Rn×n. Applying the inequality

in (8.52) to one of the cross terms of Eq. (8.51) we have

−2∆>tr (t)P2 (t)B1Kid∆id (t) ≤ ∆>tr (t)P2 (t) Λ1P2 (t) ∆tr (t) +

∆>id (t)K>trB>1 Λ−1
1 B1Kid∆id (t)

(8.53)
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where Λ1 ∈ R2n×2n.

Applying the same procedure to the rest of the crossterms the Eq. (8.51) and adding

and substracting the term αBV
id , Eq. (8.51) can be bounded as follows

d

dt
V id (t) ≤ ∆>id (t)Ric(P1 (t))∆id (t) + ∆>tr (t)Ric(P2 (t))∆tr (t)

−αBV id (t) + β + 2∆>id (t)P1 (t)B1

R∑
j=1

α[i,j] (t) W̃ [i,j] (t)σ (x̂ (t))−

4
R∑
j=1

tr

{(
kj
)−1
[
W̃ [i,j] (t)

]> d

dt
W [i,j] (t)

}
+ 2αB

R∑
j=1

tr

{(
kj
)−1
[
W̃ [i,j]

]>
W̃ [i,j]

}

where αB is a known positive scalar and β is defined in Theorem 1. The RDEs

Ric(P1 (t)) and Ric(P2 (t)) are defined in Theorem 1 (Eqs (5.27) and (5.28)).

Considering that x>y = tr
{
yx>

}
= tr

{
xy>

}
where x, y ∈ Rn, then the term

2∆>id (t)P1 (t)B1

R∑
j=1

α[i,j] (t) W̃ [i,j] (t)σ (x̂ (t)) can be rewritten as

2∆>id (t)P1 (t)B1

R∑
j=1

α[i,j] (t) W̃ [i,j] (t)σ (x̂ (t)) =

2
R∑
j=1

tr

{[
W̃ [i,j] (t)

]>
α[i,j] (t)B>1 P1 (t) ∆id (t)σ> (x̂ (t))

}

Then,

d

dt
V id (t) ≤ ∆>id (t)Ric(P1 (t))∆id (t) + ∆>tr (t)Ric(P2 (t))∆tr (t)− αBV id (t) + β+

4
R∑
j=1

tr{
[
W̃ [i,j] (t)

]>
[
1

2
α[i,j] (t)B>1 P1 (t) ∆id (t)σ> (x̂ (t))−

(kj)
−1 d

dt
W [i,j] (t) +

αB
2

(kj)
−1
W̃ [i,j] (t)]}
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Taking equal zero the term

1

2
α[i,j] (t)B>1 P1 (t) ∆id (t)σ> (x̂ (t))−

(
kj
)−1 d

dt
W [i,j] (t) +

αB
2

(
kj
)−1

W̃ [i,j] (t) = 0

Therefore, the following learning law is obtained

d

dt
W [i,j] (t) =

1

2
kjα[i,j] (t)B>1 P1 (t) ∆id (t)σ> (x̂ (t)) +

αB
2
W̃ [i,j] (t)

Since both RDEs (5.27) and (5.28) admit positive definite solutions, P1 (t) and P2 (t),

under adaptive weight adjustment law in Eq. (5.32) we obtain

d

dt
V id (t) ≤ −αBV id (t) + β, then, lim

t→∞
supV id (t) ≤ β

αB
. Considering the following

lim
t→∞

supV (t) ≤ 2
R∑
j=1

(
kj
)−1

ε+ lim
t→∞

supV id (t) ≤ 2
R∑
j=1

(
kj
)−1

ε+
β

αB
(8.54)

It follows from the result presented in Eq. (8.54) that

min
t
{λmin (P1 (t))} ‖∆id (t)‖2 ≤

min
t
{λmin (P1 (t))} ‖∆id (t)‖2 + min

t
{λmin (P2 (t))} ‖∆tr (t)‖2 +

R∑
j=1

tr
{(
kj
)−1 [

W [i,j]
err (t)

]>
W [i,j]
err (t)

}
≤ V (t) ≤ 2

R∑
j=1

(
kj
)−1

ε+ V id (t)

(8.55)

Eq. (8.55) implies

‖∆id (t)‖2 ≤

2
R∑
j=1

(
kj
)−1

ε+ V id (t)

min
t
{λmin (P1 (t))}

, ‖∆tr (t)‖2 ≤

2
R∑
j=1

(
kj
)−1

ε+ V id (t)

min
t
{λmin (P2 (t))}

Finally, applying the concept of ultimate boundedness [Khalil, 2002], the identification

and tracking errors are bounded as in Theorem 1 (Eqs. (5.30) and (5.31)).
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Appendix D

Output Feedback Tracking Controller Design using

Backstepping

Also as a result of the doctorate work a paper that proposed a controller to follow

a trajectory by an AUV was developed for the American Control Conference 2016.

Unlike other recent studies in the literature where it is common to use a backstepping

algorithm directly on the nonlinear model of the AUV system, the strategy proposed in

this work linearises the AUV dynamics applying a kind of nonlinear transformation and

a subsystem decomposition. Particularly with regard to the methodology presented in

[Repoulias and Papadopoulos, 2006], the work presented here differs in the way the lin-

earisation is applied. In [Repoulias and Papadopoulos, 2006] a linearisation controller

is design in order to obtain a quasi-linear AUV system and consequently a backstep-

ping algorithm is implemented. On the other hand, in the present work we linearise

the AUV system through the implementation of the backstepping concept in order to

reduce the AUV system to a stable linear dynamics. Also, its important to note that

most approaches used in the literature use the dynamic model with respect to Body-

fixed reference frame, unlike the present work where the controller was designed with

respect to the Earth-fixed reference frame. This condition makes possible to obtain a

three dimensional location of the AUV. Therefore, the implementation of the common

trajectory planning method is avoided.

In general, in order to find a feasible control law it is necessary to have the entire state

vector available or at least an estimation. In the AUV control area this issue has been
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treated in many different ways [Pettersen and Nijmeijer, 1999b],

[Pettersen and Nijmeijer, 1999a], [Refsnes et al., 2006], [Pettersen and Egeland, 1996].

Additionally, in control theory the sliding mode super-twisting structure has been used

as a state observer [Floquet and Barbot, 2005], [Salgado et al., 2011], [Davila et al., 2005].

In particular in [Benallegue et al., 2007], [Madani and Benallegue, 2007], a sliding mode

observer to approximate unknown quadrotor linear velocities and disturbances is im-

plemented. However, in the work presented here the unknown variables, i.e., the lin-

ear velocities of the AUV are estimated using a Robust Exact Differentiator (RED)

[Chairez, 2015] where the usual sign function is substituted by a sigmoid one.

This work is organized accordingly to the following structure: Section II describes

the class of AUV system used in this study. Section III present the problem statement

where the objective of the automatic controller is stated. Section IV is devoted to the

design of the aforementioned controller using the mixed output based backstepping form

as well as the robust design. Section V shows the results of some numerical simulations

where the controller proposed in this study was evaluated. Section VI closes the chapter

with some final remarks.

Problem Statement

In this work, the main idea is to perform a trajectory tracking by an AUV, i.e.,

starting from any arbitrary point in the vehicle movement space, the AUV must asymp-

totically converge to the desired trajectory. In other words, the AUV trajectory should

match with the desired route as close as possible, i.e., the tracking errors between the

positions of the desired and actual trajectories should be bounded with an upper bound

characterized by the effect of perturbations, namely

lim sup
t→∞

∥∥η(t)− ηd(t)
∥∥ ≤ β, β > 0

ηd =

[
xd, yd, zd, φd, θd, ψd

]>
is the position and orientation vector of the de-
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sired trajectory; xd, yd, zd are the coordinates of the desired position, and φd, θd, ψd

are orientations in the desired longitudinal, transversal and vertical axes, respectively.

Also, ηd is assumed to be twice differentiable. It is important to note that for a real

AUV the vector η can be measured using some specialized sensors, for example, the

AUV can be equipped with echosounders or sonars to determine the x and y positions,

a pressure sensor to determine the z position, and magnetometers to determine the φ,

θ, ψ positions. The main problem here is to determine linear velocities ẋ, ẏ, ż, because,

there is no sensor that provides these measurements easily and cheaply. So, the solution

is to implement some kind of estimator to obtain these variables with the purpose of

using them as part of the control algorithm. Despite de presence of non-holonomic

constraints in the AUV movement the controller proposed in this study introduces a

different scheme to solve the trajectory tracking problem, i.e., the non-holonomic con-

straints are considered in the AUV dynamic model.

Control Design

In this section, a methodology that combines a backstepping control and a feedback

linearisation method is proposed. In addition, the unknown variables, i.e., the linear

velocities of the AUV are estimated using a novel super-twisting sliding mode like

structure.

Backstepping and feedback Linearisation Control Laws

To solve the control problem stated in Section II, a backstepping control strategy

in combination with a feedback linearisation is used, that is, the nonlinear system is

separated into three subsystems. The first one considers the specific dynamics of x− y

using ψ̇ as virtual input, the second one considers the control of ψ̇ to track the virtual

controller obtained in the analysis of the first subsystem and finally, the third subsystem

is formed only by the dynamic system of z.

Then, applying the concept of backstepping a virtual control is supposed to be

available in order to use a feedback linearisation to stabilize the error dynamics of x−y
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subsystem through the ψ dynamics. The methodology proposed below considers that

the AUV model is not affected by disturbances and all the uncertainties are supposed

to be known. Also, we consider the assumption of having the complete state vector

available.

First, an analysis of the AUV system in the horizontal plane (See Fig. (2.1) presented

in Section 2.1) is carried out. We omitted arguments of t to simplify the readability.

Rewriting the x and y dynamics of model presented in Eqs. (2.10) and (2.11) of

Section 2.3, it follows

 ẍ

ÿ

=

 f1 (ψ, ẋ, ẏ)

f2 (ψ, ẋ, ẏ)

+

 g1,ψ (ψ, ẋ, ẏ) g1,X(ψ)

g2,ψ (ψ, ẋ, ẏ) g2,X(ψ)


 ψ̇

X

 (8.56)

According to the problem statement described in Section III the trajectory tracking

errors in x, y and z are defined as ex = x−xd, ey = y−yd and ez = z−zd, respectively.

Then, the tracking error dynamics of ex and ey, using the expression in Eq. (8.56), is

governed by the following differential equations

 ëx

ëy

 =

 f1 (ψ, ẋ, ẏ)

f2 (ψ, ẋ, ẏ)

+

 g1,ψ (ψ, ẋ, ẏ) g1,X(ψ)

g2,ψ (ψ, ẋ, ẏ) g2,X(ψ)


 ψ̇

X

−
 ẍd

ÿd

 (8.57)

Next, using the idea of backstepping method [Khalil, 2002], the angular velocity ψ̇ is

considered as a virtual control V1. So, the resultant control vector of the extended

system is defined as V = [V1, X]>. In order to stabilize the tracking error vector exy =

[ex, ey]
> a control law via a partial (just for x and y dynamics) feedback linearisation

[Khalil, 2002] can be implemented considering the assumption stated in Eqs. (2.7) and

(2.8) presented in Section 2.3 are known, that is

V = G−1


 ẍd-f1 (ψ, ẋ, ẏ)

ÿd-f2 (ψ, ẋ, ẏ)

 -Kp,xy

 ex

ey

 -Kd,xy

 ėx

ėy


 (8.58)
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where the state dependent matrix G is given by

G :=

 g1,ψ (ψ, ẋ, ẏ) g1,X(ψ)

g2,ψ (ψ, ẋ, ẏ) g2,X(ψ)

 ,
The controller presented in Eq. (8.58) seems to be a kind of output-based active dis-

turbance Proportional Derivative (PD) rejection form. Considering the specific struc-

ture of the elements included in the matrix G, it cannot be inverted only in the case

when both velocities ẋ and ẏ are simultaneously zero. This situation only occurs when

the AUV stops completely which is not a reachable situation (by the non-holonomic

constrain) during the tracking trajectory problem. Both parameters Kp,xy, Kd,xy are

positive scalars and represent the proportional and derivative gains, respectively, of

the PD controller. The closed-loop system for ex and ey are ëx = −Kp,xyex −Kd,xyėx,

ëy = −Kp,xyey−Kd,xyėx which are asymptotically stable, i.e., ex(t), ey(t)→ 0 as t→∞

by the gain selection proposed above. Finally, the next step of the control procedure

is to introduce a new error defined as eV 1 = ψ̇ − V1. This error is introduced to force

the angular velocity ψ̇ to behave as the virtual control V1. Its dynamic equation is

described by

ėV 1 = f4

(
ψ, ψ̇, ẋ, ẏ, ż

)
+ g4,NN − V̇1 (8.59)

Then, the control input N to stabilize eV 1 is proposed as follows

N = g−1
4,N(V̇1 − f4(ψ, ψ̇, ẋ, ẏ, ż)−KV 1eV 1) (8.60)

where KV 1 ∈ R+ is the proportional gain of the stable dynamics. The term g4,N is a non-

zero constant defined in Eq. (2.10) presented in Section 2.3, therefore it is invertible.

The closed-loop system for eV 1 is ėV 1 = −KV 1eV 1, then, the error eV 1 is asymptotically

stable, i.e., eV 1(t) → 0 as t → ∞. This controller is realizable considering that g4,N

is invertible because it is constant and different from zero. In this case the controlled
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variable is the angular velocity ψ̇.

On the other hand, since the z dynamics in Eq. (2.6) presented in Section 2.3 is

partially decoupled from the other system dynamics it can be stabilized separately. The

error dynamics ez is described by

ëz = f3(ż) + g3,ZZ − z̈d (8.61)

So, the control input Z, representing the vertical thrust, is proposed as a common

feedback linearisation as follows

Z = g−1
3,Z

(
z̈d − f3(ż)−Kp,zez −Kd,z ėz

)
(8.62)

where Kp,z, Kd,z ∈ R+ are the proportional and derivative gains, respectively, of the

stable dynamics. The term g3,Z is a non-zero constant defined in Eq. (2.9) presented in

Section 2.3, therefore it is invertible. The closed-loop system is ëz = −Kp,zez −Kd,z ėz,

then the error ez is asymptotically stable, i.e., ez(t) → 0 as t→∞. Finally, the vector

e =

[
ex ey ez

]>
converges to zero.

On the controller realization

The main drawback of the proposed controller designed in section IV is the necessity

of measuring linear velocities of the AUV. This vehicle is not equipped with a sensor

that can measure these velocities. Then, a sliding mode estimator with a super-twisting

structure is applied to estimate ẋ, ẏ and ż. This observer is used due to the well-known

characteristic that a RED based on super-twisting like converges in finite time. This

property allow us to use the estimated states in the controller designed in Section 4

without the necessity of solving a controller-observer system, i.e., the separation prin-

ciple holds. The super-twisting estimator implemented in this work has a different

structure to the one presented in [Levant, 2002, Levant, 2007], because it uses a sig-

moid function instead of sign function. This sliding mode estimator has the following
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structure [Chairez, 2015]:

γ̇1 (t) = γ2 (t) + k1 |eγ (t)|1/2 s (eγ (t))

γ̇2 (t) = k2s (eγ (t))
(8.63)

where eγ = xmes − γ1 , xmes is the measurable variable (in this case linear positions x,

y and z) and s (eγ) is a sigmoid function defined as s (eγ) =
(
2/
(
1 + e−beγ

))
− 1. In

the case of the angular velocity ψ̇, it can be obtained by a gyroscope sensor integrated

with the AUV.

Simulation Results

To demonstrate the performance of the proposed output based controller, the AUV

model presented in Section 2.3 in Chapter 2 was used. The controller was also evaluated

with different reference trajectories. In order to probe the effectiveness of the control

law proposed in Eq. (8.58), it is applied to the AUV system in Eq. (8.56) that is affected

by disturbances. The disturbed dynamic equations of trajectory tracking errors in the

three coordinates are

ėx = −Kp,xyex −Kd,xyėx + g1,E1(ψ)τE1 + g1,E2(ψ)τE2

ėy = −Kp,xyey −Kd,xyėy + g2,E1(ψ)τE1 + g2,E2(ψ)τE2

ëz = −Kp,zez −Kd,z ėz + g3,E3τE3
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Figure 8.1: RED d
dt
x velocity estimation.

In the case of the virtual controller, the error dynamics satisfies the following non-

linear differential equation ėV 1 = −KV 1eV 1 + g4,E6τE6 .
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Figure 8.3: Tracking errors with disturbances for circular tracking.

The various system parameters for a typical AUV, used for simulation purposes,

are given by m = 4.28 kg, Xu̇ = 0.5 kg/s, Yv̇ = 0.22 kg/s, Zẇ = 0.3 kg/s, Nṙ = 0.4
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Figure 8.2: AUV reference (dotted line) and actual trayectory (solid line) with distur-
bances for circular tracking.

kgm2/s,, τDx , τDy , τDz , τDψ = 0.3, Iz = 0.04, FWB = 41.95, and the disturbances are

considered as τE1 , τE2 , τE3 , τE6 = 0.001 sin (0.1t). The desired trajectory considered here

is a constant velocity circular trajectory, that is, xd = 50 sin (0.1t), yd = 50 cos (0.1t).

The desired z position is a constant depth of zd = 2.5. The initial conditions are:

x (0) = 1.5, y (0) = 1.2, z (0) = 0, ψ (0) = π/2, xp (0) = 2, yp (0) = 3, zp (0) = 4,

ψ (0) = 0.5. It is ensured that the derivatives of at least second order of xd, yd, zd, ψd

exist. The controller gains used are: Kp,xy = 15, Kd,xy = 16, KV 1 = 1000, Kp,z = 20,

Kd,z = 16. From results depicted in Fig. 8.1, it can be seen the estimation of the linear

velocity ẋ by the RED proposed in Section IV. The circular tracking simulation results

are presented in Fig. 8.2. In Figure 8.3, the trajectory tracking errors after 10 seconds

are shown to converge to an acceptable region near the origin. And the z error position

goes to zero at approximately 2 seconds. From the results showed in Figure 8.4, it

is found that the control solves the tracking trajectory problem even in the disturbed
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condition, that is under the presence of disturbances.

Figure 8.4: Control signals: Virtual control V1, total surge thrust X, yaw torque N ,
heave thrust Z for circular tracking.

A number of simulation results have shown that the proposed control scheme per-

forms well in terms of smooth transient response, quick convergence of tracking errors

near to the origin, and robustness, even in the case of disturbed conditions. Figure

8.5 demonstrates the tracking between the spiral reference trajectories and the x − y

coordinates displayed in the phase-plane, that is, xd = t sin (0.1t), yd = t cos (0.1t). The

initial conditions are: the same as in the circular reference. The controller gains used

are: Kp,xy = 10, Kd,xy = 8, KV 1 = 1000.

Conclusions

This study showed the design of an automatic control to solve the tracking trajec-

tory problem of an AUV using only the output information. The AUV position was

supplied to a set of RED to recover the displacement velocity. The information pro-

vided by these differentiators was injected into the controller structure that satisfied a

backstepping-like form. Taking into account the finite-time convergence characteristic
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Figure 8.5: AUV reference (dotted line) and actual trajectory (solid line) with distur-
bances for spiral tracking.

of the super twisting algorithm, the separation principle is fulfilled and there is no the

necessity to make a closed-loop stability analysis. The first element of the controller,

the angular velocity with respect to the z-coordinate, is considered as virtual controller.

Then, this velocity modify the x − y displacement to track a given smooth reference

path. The controller developed in this study showed acceptable performance compared

to the regular solutions found in the literature accordingly to the numerical simula-

tions developed in this study. This comparison was done assuming the same available

information for reported controllers and one obtained in this study.
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