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Notation

R Real numbers set
Rn Space of n-dimension vectors with entries in R.
Rn×n Space of n× n matrices with entries in R.
Re(s) Real part of an imaginary number s.
i denotes the imaginary unit.
C(1) ([a, b],Rn) Space of Rn-valued continuously differentiable functions on the interval [a, b].
PC ([a, b],Rn) Space of Rn-valued piecewise continuous functions on the interval [a, b].
PC(1) ([a, b],Rn) Space of Rn-valued piecewise continuously differentiable functions on the interval [a, b].
In Identity matrix of dimension n× n.
0n×n Zero matrix of dimension n× n.
AT Transpose of matrix A.
A > 0 Symmetric positive definite matrix A.
A ≥ 0 Symmetric positive semidefinite matrix A.
A 6> 0 Symmetric matrix A no positive definite.
A 6≥ 0 Symmetric matrix A no positive semidefinite.
λmin(A) Minimum eigenvalue of the matrix A.
λmax(A) Maximum eigenvalue of the matrix A.
[Aij ]

r
i,j Square block matrix with i-th row and j-th column element Aij

k = a, b Means that k takes all the consecutive entire values from a to b.
dre Ceil function, which maps r to the least integer greater or equal to r.
‖·‖ Euclidian norm for vectors and matrices.
‖ϕ‖h Supremum norm of the function ϕ, defined as ‖ϕ‖h = sup

θ∈[−h,0]

‖ϕ(θ)‖.

O(τ) Set defined as O(τ) := [0,∞)\{τ + ih}∞i=0, where τ ∈ R.
xt(ϕ) Restriction of the solution x(t, ϕ) to the interval [t− h, t], i.e.

xt(ϕ) : θ → x(t+ θ, ϕ), θ ∈ [−h, 0].

g(t+ 0) Evaluation of the function g at point t on the right-hand side.
g(t− 0) Evaluation of the function g at point t on the left-hand side.
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Resumen

Las dinámica de los sistemas con retardo de tipo neutral no solo depende de los estados presentes,
sino también de la razón de cambio de estados pasados. La relevancia del análisis de estabilidad de
esta clase de sistemas se debe principalmente al hecho de que son adecuados para modelar una amplia
variedad de fenómenos en diferentes campos de la ciencia y la tecnología. Entre los diferentes enfoques
existentes para estudiar la estabilidad de tales sistemas, las funcionales de Lyapunov-Krasovskii han
mostrado ser una herramienta poderosa en las últimas decadas.

En este trabajo de tesis, condiciones necesarias y suficientes de estabilidad para sistemas con re-
tardo de tipo neutral son obtenidas en el marco de trabajo de funcionales de Lyapunov-Krasovskii de
tipo completo. Las condiciones de estabilidad presentadas se distinguen por estar expresdas en térmi-
nos de la matriz de Lyapunov y por requerir solamente un número finito de operaciones matemáticas
para ser empleadas. Este resultado extiende el criterio de estabilidad de Lyapunov ampliamente cono-
cido para sistemas libres de retardos a sistemas con retardos.
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Abstract

The dynamic of neutral type time-delay systems not only depends on present states, but on past state
rates of change as well. The relevance of the stability analysis of this class of systems is mainly due to
the fact that they are suitable for modeling a wide variety of phenomena in different science and tech-
nology fields. Among the diverse approaches for studying the stability of such systems, the Lyapunov-
Krasovskii functionals have shown to be a powerful tool in the last decades.

In the present thesis work, necessary and sufficient stability conditions for time-delay systems of
neutral type are obtained in the Lyapunov-Krasovskii functionals of complete type framework. The
distinctive of the presented stability conditions are that they are given in terms of the so-called delay
Lyapunov matrix and only require a finite number of mathematical operations in order to be tested.
This result extends the well-known Lyapunov stability criterion for delay free systems to the time-delay
case.
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Introduction

In general, a physical phenomena whose dynamic depends only on the present state can be modeled
by differential equations. However, there exist dynamical systems in which its behaviour is affected
by the past. These phenomena are described by differential-difference equations, also known in the
literature as time-delay systems. There are different classes of linear differential-difference equations
depending on their structure. In order to clarify this classification, consider the equation

d

dt
(x(t) + dx(t− h)) = a0x(t) + a1x(t− h) + a2

∫ 0

−h
f(θ)x(t+ θ)dθ,

where d, a0, a1 and a2 are real numbers, f(θ), θ ∈ [−h, 0], is a continuous function and h > 0 is
the delay. If d = 0 and a2 = 0 then the differential-difference equation is of retarded type and if
d 6= 0 and a2 = 0, then it is called of neutral type. For the case in which a2 6= 0, it is said that
differential-difference equation is of distributed type.

In this thesis work, we focus on time-delay systems of neutral type. As one can see, neutral type
time-delay systems are a generalization of the retarded type ones and are characterized by the fact that
the state rate of change depends not only on present states, but also on past state rates of change, i.e.,
there exist delays in the derivatives of the dynamical equation. This special feature makes this class
of system suitable for modelling a variety of phenomena but at the same time makes its study more
complex.

Some physical phenomena that are described by differential-difference equations of neutral type
are presented next. They show their usefulness in different fields of the science and engineering.

• Passivity-based PI control. The σ-stability analysis of the proportional-integral control of a passive
linear system with delayed communication channel is addressed in Castaños et al. (2017). The
problem is stated as follows. Consider the linear system

ẋ(t) =− ax(t) + bu1(t)

y1(t) =x(t),

where u1(t) denotes the input and y1(t) the output. The next PI controller is proposed:

ż(t) =u0(t),

y0(t) =kpu0(t) + kiz(t),

where u0(t) and y0(t) are the controller input and output, respectively.

The introduction of delays in the communication channel and the application of the so-called
scattering transformation leads to the closed-loop transfer function (see Figure 1)

y1(s)

y1(s)
=

2d (kps+ ki) be
−h1s

p2(s)s2 + p1(s)s+ p0(s)
, (1)
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where d is an arbitrary parameter and

p2(s) =(1 + e−sh)d+ (1− e−sh)kp

p1(s) =(1 + e−sh)(bkp + a)d+ (1− e−sh)(bd2 + akp + ki)

p0(s) =(1 + e−sh)bkid+ (1− e−sh)aki.

We observe that the term p2 includes exponential terms, which represent delayed terms in the
time domain. It means that the stability properties of the closed-loop are determined by a
quasipolynomial of neutral type.

+-

-1

      Modi!ed 

communication 

      channel

PI controller Passive system

Figure 1: Proportional-integral control of a passive linear system. The blocks denoted by T0 and T1

correspond to the Scattering transformation.

• The Rijke tube. A general scheme of a Rijke tube, which is a tube with an embedded heat source,
is illustrated in Figure 2. The pressure is increased by the air passing through the wire mesh and
propagated along the tube, returning and affecting itself at the heating area. In other words,
the pressure at a time T is affected by itself from earlier time instants. The interest in the
study of the Rijke tube comes from the thermoacoustic instability phenomenon, arisen from the
dynamic exchange between the heat release and the pressure variations, which indeed appears
in combustors of gas turbines and aero engines.

The obtention of a model of the thermoacoustic instability phenomenon in the Rijke tube is
presented in detail in Zalluhgolu et al. (2016). The stability properties of a simplified model are
described by a quasipolynomial of the form

p(s) = p1(s)s+ p0(s)

where

p1(s) =2Abc2ρ
(
RuRde

−(hu+hd)s − 1
)
,

p0(s) =−Rda(1− γ)e−hds −Rua(γ − 1)e−hus

+RuRd (2Acρ+ aγ − a) e(−hu+hd)s + a− aγ − 2Ac21ρ.

Here, A is the tube cross-sectional area, b is the heat release time constant, c and ρ are related
to the wave speed and the air density, respectively, a represents the heat release gain, γ is the
heat capacity ratio, and Ru and Rd are the acoustic reflection coefficients. The delays hu and hd
arises from the round-trip travel times of the acoustic waves and are related with xd and xu (see



CONTENTS 3

Heat source

Pressure  

  waves

Wire 

mesh

Figure 2: Rijke tube scheme

Figure 2). One observes that the quasypolinomial p(s) is of neutral type, as the highest order
term contain an exponential function.

• Predator-prey model. The well known logistic equation, given by

ẋ(t) = rx(t)

(
1− x(t)

K

)
,

where r is the intrinsic growth rate of the specie x(t) and K is the environment capacity for
x(t), has been useful for describing the oscillation of single-species population sizes in constant
environments.

In order to obtain a better description of the physical phenomena by the model, modifications
have been carried out. Some of them are the addition of delays and a dynamic term in the
per capita growth rate. These modifications lead to the neutral time-delay logistic equation
(Gopalsamy and Zhang (1988))

ẋ(t) = rx(t)

(
1− (x(t− h) + ρẋ(t− h)

K

)
.

Inspired by the preceding equation, the following non-linear neutral type with multiple delays
predator-prey model is proposed in Kuang (1991):

ẏ(t) =ry(t)

(
1− y(t− τ) + ρẏ(t− τ)

K

)
− z(t)ρ(y(t))

ż(t) =z(t) (−α+ βρ(y(t− h))) ,

where τ and h are positive delays, α and β are positive constants, y(t) and z(t) denote the
prey and predator species, respectively and the function p(y) is known as the predator response
function. The first equation describes the interaction between the prey growth and the presence
of the predator. The second one states the growth of the predator population, obviously affected
by the prey population.

The stability problem whose relevance mainly relies on practical reasons is a shared interest in the
examples mentioned above. The knowledge of the parameters for which a system is stable provides
evident advantages for its operation, although there may be obviously other important factors, as the
well enough approximated model. In addition to the practical reasons, we must say that the complexity
in the stability study of neutral type time-delay systems makes them attractive to be studied from a
purely theoretical perspective.
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There exist diverse methods for studying the stability properties of neutral type delay systems.
Most of them have been developed first for retarded differential-difference equations, and then the no
always trivial generalization to the neutral case has been carried out. According to the used math-
ematical tools, the stability analysis methods can be classified into two approaches: frequency and
temporal.

The frequency domain techniques rely on the continuity property of the roots location with respect
to variations of system parameters. A consequence of this property are the stability/instability switches
that occur when roots are located on the imaginary axis. For neutral systems, the continuity property
of the roots depends on the stability of the difference equation. Some representative methods based
on this principle are mentioned in what follows. The well known D-subdivision method introduced
by Neimark (1949) for retarded systems can be applied to the neutral case, however, as it is shown
by Boese (1998), the difference equation stability has to be taken into account. A more geometric
perspective is used to study in detail the stability crossing curves for systems with two and three delays
in Gu et al. (2005) and Gu and Naghnaeian (2011). The so called Cluster Treatment of Characteristic
roots (CTCR) based on the Rekasius bilinear transformation is presented in Olgac and Sipahi (2004).
The extension of these results to two and three delays is addressed in Sipahi and Olgac (2006), Olgac
et al. (2008), Sipahi et al. (2010). Sweeping-test frequency by using frequency-dependent matrices
is proposed in Chen (1995) (see Chapter 2 and 3 in Gu et al. (2003) for a better explanation of this
method). A similar technique is introduced in Fu et al. (2006) with some numerical computation im-
provement. Numerical algorithms for the computation of the roots location have also been developed,
see, for instance, Michiels and Vyhlídal (2005) and Chapter 2 of Michiels and Niculescu (2014).

The time domain techniques are based on the ideas introduced by Razumikhin (1956) and Krasovskii
(1963), which extend the Lyapunov stability method for delay free differential equations. Through this
thesis work, we use the Krasovskii approach, that is based on the proposal of functionals instead of
functions. A comprehensive mathematical framework of this theory is exposed in the books Hale and
Lunel (1993) and Kolmanovskii and Myshkis (1999). The main difficult that this approach faces is the
adequate choice of the functionals. Indeed, the construction of Lyapunov-Krasovskii candidate func-
tionals have led to the obtention of sufficient stability conditions of LMI type more or less conservative
(see Chapter 5 in Niculescu (2001) and Chapter 3 in Fridman (2014) for the basic ideas). Reduction
of the conservatism has been the subject of a vast number of contributions. A recent contribution in
this direction is presented in Seuret and Gouaisbaut (2015), where an asymptotic non-conservative
set of integral inequalities is introduced to propose more suitable functionals. However, up to the best
knowledge of the author, the extension to the neutral case have not been done yet.

A systematic method for the computation of Lyapunov-Krasovskii functionals that consists in the
prescription of a negative derivative was first proposed by Castelan and Infante (1979). Decades
later, the so-called functionals of complete type were introduced. Functionals of complete type are
characterized by capturing the complete state in its derivative and by being defined by the delay
Lyapunov matrix. They were stated first by Rodriguez et al. (2004) for the one delay case and the
integration by parts of the functional obtained there allowed presenting in Kharitonov (2005), under
the differentiability assumption of the initial functions, a new expression, known as "New form for
Lyapunov functionals". The multiple delays scalar case was addressed by Velázquez-Velázquez and
Kharitonov (2009) and some elemental ideas for the multi-variable case were presented by Ochoa
et al. (2009) and Ochoa et al. (2012). For an extensive study of these functionals the reader is referred
to the book Kharitonov (2013).

The availability of the analogous of the Lyapunov matrix for neutral time-delay systems has allowed
the extension of well-known results for delay free systems to the time-delay case. See, for instance, the
estimation of exponential decay rate (Kharitonov (2005)), the computation of the critical parameters
of the system (Ochoa et al. (2013)), the introduction of a predictor control scheme for systems with
input delay (Kharitonov (2015)) and robust stability analysis (Alexandrova (2018)), just to mention a
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few.
An open problem is the extension of the stability criterion for linear systems, which is given in terms

of the positivity of the Lyapunov matrix V , solution of the Lyapunov equation ATV + V A = −W . The
analogous of this result in the time-delay case has been object of study in numerous contributions
in the last years. The first contribution in this direction was introduced by Mondié (2012), where a
stability criterion depending on the delay Lyapunov function for the retarded type scalar equation was
obtained. Multi-variable retarded and distributed type systems were addressed in Egorov and Mondié
(2014) and Cuvas and Mondié (2016), where a family of necessary stability conditions that depend on
the delay Lyapunov matrix was provided.

A first stability criterion within this approach for systems with multiple pointwise delays was pre-
sented in Egorov (2014) (see Egorov et al. (2017) for the distributed case). However, the sufficiency
part is only theoretical, as one has to make an infinite number of mathematical operations in order to
check the stability condition. In this case, adopting the terminology used in Egorov (2016), we say
that the stability criterion is infinite. A first attempt to overcome this problem was recently reported in
Egorov (2016), where a new stability criterion depending on the delay Lyapunov matrix and the fun-
damental matrix of the system is introduced. Its main distinctive feature is that it is finite, i.e., it is such
that a finite number of mathematical operations is required to test it. Nonetheless, the introduction of
the fundamental matrix may demand a greater computational effort in the test of the condition.

The relevance of the study of neutral type time-delay systems and the missing Lyapunov matrix
based stability conditions for them in the literature lead us to the main objective of this thesis work:
Obtention of a finite stability criterion uniquely given in terms of the delay Lyapunov matrix for neutral
type time-delay systems. It is worthy of mention that even for the retarded type case the same problem
has only partially solved, as the finite stability criterion introduced in Egorov (2016) also depends on
the fundamental matrix of the system.

The manuscript is organized in six chapters. In Chapter 1, some particular aspects of neutral type
time-delay systems, such as the smoothing and stability properties, that reveal the complexity in their
study, are exposed.

Chapter 2 is devoted to the introduction of basic concepts of the system, the Lyapunov-Krasovskii
functionals of complete type and the delay Lyapunov matrix. There, the introduction of a new Cauchy
formula allows the relaxation of the space of the initial functions in the computation of the "New form
for Lyapunov functionals", which is key in obtaining the subsequent results.

In Chapter 3, necessary stability conditions depending on the delay Lyapunov matrix for neutral
type systems with one delay are presented. The key components for their attainment are the relaxation
of the initial function space in the computation of the Lyapunov-Krasovskii functional of complete type
carried out in Chapter 2 and the introduction of new delay Lyapunov matrix properties. Some examples
illustrate the effectiveness of our approach and a comparison with other stability methods is discussed.

Chapter 4 is devoted to the non-trivial generalization of the one delay case results of Chapter 3 to
the multiple commensurate case. The "New form of the Lyapunov functional" for this case is presented,
up to the knowledge of the author, for the first time. We also introduce a stability equivalence between
neutral type systems and difference equations in continuous time. Although the essential ideas for
obtaining the results in this chapter are the same as those used in Chapter 3, the technical computations
are more complex.

In Chapter 5, the main result of the thesis work is addressed: finite stability criteria given in terms of
the delay Lyapunov matrix for neutral type time-delay systems with a single delay. There, two different
stability criteria are presented: one depends on the delay Lyapunov and fundamental matrices, while
the other only on the delay Lyapunov matrix. The seminal ideas of the result in this chapter are based
on the ones introduced by Egorov (2016) and Alexandrova and Zhabko (2016). Finally, conclusions
and future work are outlined in Chapter 6.

The specific contributions of this thesis work are summarized next:
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1. Computation of the functional of complete type via a new Cauchy formula for neutral type sys-
tems with single and multiple commensurate delays (Section 2.3 and Section 4.2).

2. Theorem 3.2 and Theorem 4.4: Necessary stability conditions depending on the delay Lyapunov
matrix for neutral type systems with single and multiple commensurate delays.

3. Theorem 5.3: Finite stability criterion in terms of the delay Lyapunov and fundamental matrices
for neutral type systems with single delay.

4. Theorem 5.4 and Corollary 5.1: Finite stability criterion in terms of the delay Lyapunov matrix
for neutral and retarded type systems with single delay.

We end the introductory part with a compilation of the papers derived from this work:

Journal papers:

1. A Lyapunov matrix based stability criterion for a class of time-delay systems,
Marco A. Gomez, Alexey V. Egorov and Sabine Mondié
Vestnik Sankt-Peterburgskogo Universiteta, Prikladnaya Matematika, Informatika, Protsessy Up-
ravleniya, 13(4), (2017) pp. 407–416.

2. Necessary stability conditions for neutral-type systems with multiple commensurate delays,
Marco A. Gomez, Alexey V. Egorov and Sabine Mondié
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Chapter 1

Particularities of neutral type
time-delay systems

Neutral type time-delay systems differ from the retarded type by some special features. This chapter is
dedicated to present some of these particular aspects, which indeed reveal the complexity of this class
of systems. The smoothing properties are exposed in Section 1.1. In Section 1.2, we briefly explain
the role of the difference equation stability in the study of the stability of neutral systems. Finally, the
non-equivalence between asymptotic and exponential stability is illustrated by one example in Section
1.3.

1.1 Smoothing property

Neutral type time-delay systems are known for the absence of the smoothing property. In order to
illustrate this, we first consider the retarded type equation

ẋ(t) = x(t− 1),

and the initial function given by
ϕ(t) = 1, −1 ≤ t ≤ 0.

Applying the step-by-step method (see Bellman and Cooke (1963)), one obtains, for 0 ≤ t ≤ 1,

x(t) = t,

for 1 ≤ t ≤ 2

x(t) = 1 + (t− 1) +
(t− 2)2

2
,

and by induction,

x(t) =

N∑
k=0

(t− k)k

k!
, N ≤ t ≤ N + 1, N = 0, 1, . . .

It follows from the previous equation that ẋ(t) is a continuous function except uniquely at t = 0,
(indeed, ẋ(−0) = 0 and ẋ(+0) = 1) the second derivative of x(t) is discontinuous at t = 2, the third
derivative is not continuous at t = 3, and so on. In this way, the solution x(t) becomes smoother
on every interval [Nh, (N + 1)h]. The same can be said in general for every initial function ϕ ∈
C(1) ([−1, 0],R). As shown next, this is one property that neutral type system does not have.

Consider the neutral type system
ẋ(t) = ẋ(t− 1).
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We take an arbitrary initial function ϕ ∈ C(1) ([−1, 0],R) and apply once again the step-by-step
method. For 0 ≤ t < 1, ∫ t

0

ẋ(s)ds =

∫ t

0

ẋ(s− 1)ds

x(t) = ϕ(0)− ϕ(−1) + ϕ(t− 1).

For the interval 1 ≤ t < 2, we get

x(t) = 2 (ϕ(0)− ϕ(−1)) + ϕ(t− 2).

By induction, one can obtain a general solution, which is given by

x(t) = j(ϕ(0)− ϕ(−1)) + ϕ(t− j), (j − 1) ≤ t < j, j = 1, 2, . . . .

From the previous equation, one can note that if ϕ̇(−1) 6= ϕ̇(0) is not satisfied, then the function
ẋ(t) contains discontinuity points not only at t = 0 as in the retarded type case, but also at t = j,
j = 1, 2, . . ..

1.2 Difference equation stability

As was indicated in the introduction, neutral type systems are characterized by involving a difference
equation in the derivative. For instance, consider the linear system

d

dt
(x(t)−Dx(t− h)) = A0x(t) +A1x(t− h), (1.1)

where A0, A1, D ∈ Rn×n and h is the delay. A necessary stability condition for this system is the
stability of the difference equation

x(t) = Dx(t− h).

Indeed, let sd be an eigenvalue of D. It generates a chain of eigenvalues of system (1.1) of the
form (see Chapter 12 of Bellman and Cooke (1963) or Chapter 6 of Kharitonov (2013))

sr = ŝ+ i
2rπ

h
+ ξr, r = ±1,±2, . . . ,

where ŝ is a complex number such that sd = e−ŝh and ξr → 0 as |r| → ∞. It implies that

lim
|r|→∞

Re(sr)→ Re(ŝ),

and in turn that, if |sd| > 1, system (1.1) is unstable. This fact motivates the classical Schur stability
assumption of the matrix D (i.e., that all its eigenvalues lie inside the unit circle) in the stability
analysis methods of neutral type systems.

For neutral type-delay systems with m delays the stability study of a difference equation of the form

x(t) =

m∑
i=1

Dix(t− hi), (1.2)

where Di ∈ Rn×n, has to be considered. In this case, equation (1.2) is stable if and only if (Hale and
Lunel (1993))

supRe(s) :

{
det

(
sI −

m∑
i=1

se−shiDi

)
= 0

}
< 0. (1.3)

In the next section, a consequence arising from a non exponentially stable difference equation is
illustrated by one example.
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1.3 On the exponential stability

Unlike the retarded type systems, there may exist systems of neutral type with all their characteristic
roots in the left half plane that are not exponentially stable. The following example illustrates this.

Example 1.1. (Fridman (2014), Hale and Lunel (2002)) Let the neutral system be

d

dt
(x(t) + x(t− 1)) = −x(t). (1.4)

We show first that system (1.4) has all its characteristic roots on the left half plane. The quasipolynomial
is given by

p(s) = s+ 1 + se−s,

which can be written as
p̄(s) = 1 + e−s +

1

s
. (1.5)

Observe that s = 0 is not a characteristic root. Considering the root s = α+ iβ, we get

e−αe−iω = −1− 1

α+ iω
,

and taking the module on both sides, we arrive at

e−α =

∣∣∣∣1 +
1

α+ iω

∣∣∣∣ ≥ ∣∣∣∣1 +
α

α2 + ω2

∣∣∣∣ .
For α = 0, we get the equality 1 =

∣∣∣∣1 +
1

iω

∣∣∣∣ which is not satisfied for finite ω. For α > 0, clearly

e−α �
∣∣∣∣1 +

α

α2 + ω2

∣∣∣∣ ,
which means that the characteristic roots have no positive real part. The characteristic roots of the
quasipolynomial p(s) are shown in Figure 1.1.

Real

-0.25 -0.2 -0.15 -0.1 -0.05 0

Im

-40

-20

0

20

40

Figure 1.1: Characteristic roots of system (1.4)

Notice now that the roots of the difference equation quasipolynomial

pd(sd) = 1 + e−sd ,

are given by
sdk = (2k + 1)πi, k = 0,±1,±2 . . . , (1.6)
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i.e., Re(sd) = 0.
It is well known that for real constants c1 and c2, c1 < Re(s) < c2, which implies that on this band,

the function |es| is bounded and therefore es + 1→ 0 as |s| → ∞. By equation (1.5), it means that there
is a chain of eigenvalues sk of system (1.4) and eigenvalues sdk of 1 + e−s such that sk − sdk → 0 as
k → ∞. Hence, it follows from the equality in (1.6), that system (1.4) has eigenvalues approaching to
the imaginary axis, which shows that despite its characteristic roots are in the left half plane, the system
is not exponentially stable.

1.4 Conclusion

We present some subtleties of systems of neutral type that reveal their complexity. Discontinuities
of the solution expose the careful analysis demanded for their study. It is shown that the stability
analysis requires the stability study of difference equations in continuous time, and that for some cases
exponential and asymptotic stability are not equivalent.
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Chapter 2

Preliminary concepts:
Lyapunov-Krasovskii functionals of
complete type

We consider a linear neutral type time-delay system of the form

d

dt
(x(t)−Dx(t− h)) = A0x(t) +A1x(t− h), t ≥ 0. (2.1)

The solution x(·, ϕ) of system (2.1) satisfies the following:

1. x(θ, ϕ) = ϕ(θ), θ ∈ [−h, 0].

2. It is piecewise continuous and satisfies system (2.1) on t ∈ [0,∞) almost everywhere.

3. Sewing condition: the function x(t, ϕ) − Dx(t − h, ϕ) is continuous with respect to t (right
continuous at t = 0).

For initial functions ϕ from the space PC ([−h, 0],Rn), we assume right-continuity. In this case, the
solutions are right-continuous everywhere.

The main contributions of the thesis work rely on the Lyapunov-Krasovskii functionals of complete
type framework developed in the last decade for systems of the form (2.1). In this chapter, we provide
the elemental concepts of this framework, which is used in the successive chapters. For the sake of
completeness, we include the proofs of some basic results.

The chapter is organized as follows. In the next section, we give some basic definitions concerning
to the fundamental matrix. Section 2.2 is dedicated to present the so-called delay Lyapunov matrix and
its basic properties. In Section 2.3, a new Cauchy formula that requires neither the differentiability
nor even the continuity of the initial function is introduced and used for computing the functional
of complete type. The relaxation of the space of initial functions is crucial for the obtention of the
necessary stability conditions in Chapter 3 since an important element is the choice of a particular
class of piecewise continuous initial function that depends on the fundamental matrix.

2.1 Basic definitions

A key element in the subsequent results is the fundamental matrix of system (2.1), denoted by K(t).
It is defined as follows:
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Definition 2.1 (Bellman and Cooke (1963)). The fundamental matrix K(t) satisfies the equation

d

dt
(K(t)−K(t− h)D) = K(t)A0 +K(t− h)A1, (2.2)

with the initial conditions K(θ) = 0 for θ ∈ [−h, 0), K(0) = I, and the sewing condition, i.e.,

K(t)−K(t− h)D is continuous for t > 0,

and right-continuous at t = 0.

From the Laplace transform of equation (2.2), one can see that the fundamental matrix is also a
solution of the equation

d

dt
(K(t)−DK(t− h)) = A0K(t) +A1K(t− h), t ≥ 0, a.e.

From similar arguments of those exposed in Section 1.1, the fundamental matrix includes disconti-
nuity points at t = jh, j = 0, 1, 2, . . . since K(−0) 6= K(+0). The jumps are described in the following
lemma.

Lemma 2.1 (Bellman and Cooke (1963), Kharitonov (2013)). The fundamental matrix K(t) has jumps
at points jh, j = 0, 1, 2, . . . and their size values are determined by

∆K(jh) = Dj , (2.3)

where ∆K(jh) = K(jh+ 0)−K(jh− 0).
Moreover, the value of K(t) at a discontinuity point coincides with its right-hand side, i.e.

K(jh) = K(jh+ 0).

Proof. Let us prove by induction that (2.3) holds. The case j = 0 immediately follows from the initial
condition K(0) = I. As the difference K(t)−K(t−h)D is continuous, then ∆K(t)−∆K(t−h)D = 0

for t ≥ 0. It implies that
∆K(t) = ∆K(t− h)D, (2.4)

and that for any number q > 0

∆K(qh) = Dq.

Consider t = (q + 1)h in (2.4). From the previous equality we have that

∆K((q + 1)h) = ∆K(qh)D = Dq+1.

The above equality finishes the prove.

The Cauchy formula for system (2.1) introduced in Bellman and Cooke (1963) is determined by
the fundamental matrix. We recall it in the next lemma.

Lemma 2.2 (Bellman and Cooke (1963)). Given an initial function ϕ ∈ PC(1) ([−h, 0],Rn), system
(2.1) admits the solution

x(t, ϕ) = (K(t)−K(t− h)D)ϕ(0) +

∫ 0

−h
K(t− h− θ) (Dϕ′(θ) +A1ϕ(θ)) dθ. (2.5)

Proof. Set ξ ∈ (0, t), where t > 0. Note that

J(ξ) =
∂

∂ξ
(K(t− ξ)−K(t− ξ − h)D)x(ξ, ϕ) = − (K(t− ξ)A0 +K(t− ξ − h)A1)x(ξ, ϕ)

+K(t− ξ) (Dx′(ξ − h, ϕ) +A0x(ξ, ϕ) +A1x(ξ − h, ϕ))−K(t− ξ − h)Dx′(ξ, ϕ)

= −K(t− ξ−h)A1x(ξ, ϕ) +K(t− ξ)Dx′(ξ−h, ϕ) +K(t− ξ)A1x(ξ−h, ϕ)−K(t− ξ−h)Dx′(ξ, ϕ).
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Integrating from 0 to t, we get

x(t, ϕ)− (K(t)−K(t− h)D)ϕ(0) = −
∫ t

0

K(t− ξ − h) (A1x(ξ, ϕ) +Dx′(ξ, ϕ)) dξ

+

∫ t

0

K(t− ξ) (A1x(ξ − h, ϕ) +Dx′(ξ − h, ϕ)) dξ

=

∫ 0

t

K(t− ξ − h) (A1x(ξ, ϕ) +Dx′(ξ, ϕ)) dξ +

∫ t−h

−h
K(t− ξ − h) (A1x(ξ, ϕ) +Dx′(ξ, ϕ)) dξ.

Equality (2.5) is directly deduced from the previous equation and from the fact that x(t) = ϕ(t) for
t ∈ [−h, 0] and K(θ) = 0 for θ < 0.

In what follows, we use the next definition of exponential stability.

Definition 2.2 (Bellman and Cooke (1963)). System (2.1) is said to be exponentially stable, if every
solution of the system satisfies the inequality

‖x(t, ϕ)‖ ≤ γe−σt‖ϕ‖h, t ≥ 0,

for σ > 0 and γ ≥ 1.

2.2 The delay Lyapunov matrix

Under exponential stability assumption of system (2.1), the matrix function

U(τ) =

∫ ∞
0

KT (t)WK(t+ τ)dt, τ ∈ R, (2.6)

is defined as the delay Lyapunov matrix associated with a symmetric matrix W (see Rodriguez et al.
(2004), Kharitonov (2005) and Kharitonov (2013)). The Lyapunov matrix is continuous for τ ∈ R
(Lemma 6.3 in Kharitonov (2013)), continuously differentiable on τ ∈ R\Ω, where Ω = {jh | j =

0,±1, . . .}, and satisfies the following properties:

1. Dynamic
U ′(τ)− U ′(τ − h)D = U(τ)A0 + U(τ − h)A1, τ ≥ 0, τ ∈ R\Ω. (2.7)

2. Symmetry
UT (τ) = U(−τ), τ ≥ 0. (2.8)

3. Algebraic

AT0 U(0) + U(0)A0 +AT1 U(h) + U(−h)A1

−
(
AT0 U(−h) +AT1 U(0)

)
D −DT (U(h)A0 + U(0)A1) = −W. (2.9)

The algebraic property can also be written as

−W = ∆U ′(0)−DT∆U ′(0)D, (2.10)

where ∆U ′(0) = U ′(+0)− U ′(−0).
Because of the fundamental matrix jumps at t = jh, j = 0, 1, 2, . . ., the first derivative of the delay

Lyapunov matrix is written as (Kharitonov (2005))

U ′(τ) =

∫
O(−τ)

KT (t)W
d

dτ
K(t+ τ)dt+

∞∑
j=0

KT (jh− τ)W∆K(jh), τ ∈ R\Ω. (2.11)
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An expression for the second derivative is obtained as follows. Consider first the change of variable
ξ = t+ τ in the preceding equality:

U ′(τ) =

∫
O(0)

KT (ξ − τ)W
d

dξ
K(ξ)dξ +

∞∑
j=0

KT (jh− τ)W∆K(jh), τ ∈ R\Ω.

Differentiating with respect to τ , we get

U ′′(τ) =
d

dτ

∫
O(0)

KT (ξ − τ)W
d

dξ
K(ξ)dξ +

∞∑
j=0

d

dτ
KT (jh− τ)W∆K(jh), τ ∈ R\Ω. (2.12)

The above expressions will be useful in Subsection 2.3.2.
It follows from equation (2.6) and the discontinuities of the fundamental matrix that the first

derivative of the delay Lyapunov matrix presents jumps, which are characterized in the next lemma.

Lemma 2.3 (Kharitonov (2005)). Let system (2.1) be exponentially stable. The jump size values of the
first derivative of the Lyapunov matrix U(τ) at points j = 0, 1, 2, . . ., are given by

∆U ′(jh) = ∆U ′(0)Dj , (2.13)

where ∆U ′(jh) = U ′(jh+ 0)− U ′(jh− 0).

Proof. From the algebraic property (2.10), we have that ∆U ′(0) satisfies

∆U ′(0) = −
∞∑
j=0

(
Dj
)T
WDj .

Indeed,

∆U ′(0)−DT∆U ′(0)D = −
∞∑
j=0

(
Dj
)T
WDj +

∞∑
j=0

(
Dj+1

)T
WDj+1 = −W.

Now, by equation (2.11), for l = 0, 1, 2, . . .

U ′(lh+ 0)− U ′(lh− 0) =

∞∑
j=0

(K(jh− lh− 0)−K(jh− lh+ 0))
T
W∆K(jh)

= −
∞∑
j=0

(∆K((j − l)h))
T
W∆K(jh).

Consider the change of variable k = j − l in the sum. From the fact that K(θ) = 0 for θ < 0 and
equation (2.3), we arrive at

∆U ′(lh) = −
∞∑

k=−l

∆K(kh)TW∆K((k + l)h) = −
∞∑
k=0

(Dk)TWDk+l = ∆U ′(0)Dl, l = 0, 1, . . . .

Now, let us introduce a new definition of the delay Lyapunov matrix. This definition, based on the
basic properties, allows one to avoid the assumption of the exponential stability of system (2.1).

Definition 2.3 (Kharitonov (2013)). The delay Lyapunov matrix U(τ), τ ∈ R, of system (2.1), associated
with a given symmetric matrix W , is a continuous matrix satisfying the dynamic (2.7), symmetry (2.8)
and algebraic (2.9) properties.

We enunciate the conditions under which the Lyapunov matrix exists and is unique. In order to do
this, we first remind the following definition.
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Definition 2.4 (Kharitonov (2013)). System (2.1) satisfies the Lyapunov condition if there exists ε > 0

satisfying

|s1 + s2| > ε,

i.e., if the following holds:

1. System (2.1) does not have eigenvalues s0 such that −s0 is also an eigenvalue.

2. The matrix D does not have eigenvalues sd such that s−1
d is also an eigenvalue.

Theorem 2.1. (Kharitonov (2013)) System (2.1) admits a unique Lyapunov matrix associated with a
given symmetric matrix W if and only if the Lyapunov condition holds.

The case in which the Lyapunov condition is not satisfied is recalled in the next theorem.

Theorem 2.2. (Kharitonov (2013)) If system (2.1) does not satisfy the Lyapunov condition, then there
exists a symmetric matrix W for which equation (2.7) has no solution that satisfies properties (2.8) and
(2.9).

2.3 Lyapunov-Krasovskii functional of complete type

The functional of complete type for neutral type delay systems is first introduced in Rodriguez et al.
(2004) and it is determined by

v(ϕ) = v0(ϕ) +

∫ 0

−h
ϕT (θ) (W1 + (h+ θ)W2)ϕ(θ)dθ, ϕ ∈ PC(1) ([−h, 0],Rn) , (2.14)

where

v0(ϕ) = ϕT (0)
(
U(0)−DTU(h)− U(−h)D +DTU(0)D

)
ϕ(0)

+ 2ϕT (0)

∫ 0

−h

(
U(−h− θ)−DTU(−θ)

)
(Dϕ′(θ) +A1ϕ(θ)) dθ

+

∫ 0

−h
(Dϕ′(θ1) +A1ϕ(θ1))

T
∫ 0

−h
U(θ1 − θ2) (Dϕ′(θ2) +A1ϕ(θ2)) dθ2dθ1. (2.15)

In general, the procedure for obtaining an explicit expression of the functional v0(ϕ), under the
assumption that the system is exponentially stable, consists of two steps:

1. The prescription of a negative quadratic time derivative of the functional.

2. Its integration and the substitution of the Cauchy formula (2.5).

By assuming that the initial functions belong to the space of continuous functions, i.e., ϕ ∈
C(1) ([−h, 0],Rn), and integrating by parts, the functional v0(ϕ) is transformed to the following ex-
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pression in Kharitonov (2005):

v0(ϕ) = (ϕ(0)−Dϕ(−h))
T
U(0) (ϕ(0)−Dϕ(−h))

+ 2 (ϕ(0)−Dϕ(−h))
T
∫ 0

−h
(U ′(−h− θ)D + U(−h− θ)A1)ϕ(θ)dθ

+

∫ 0

−h
ϕT (θ1)

∫ 0

−h
AT1 U(θ1 − θ2)A1ϕ(θ2)dθ2dθ1

−
∫ 0

−h
ϕT (θ1)

∫ 0

−h

(
DTU ′(θ1 − θ2)A1 −AT1 U ′(θ1 − θ2)D

)
ϕ(θ2)dθ2dθ1

−
∫ 0

−h
ϕT (θ1)DT

(∫ θ1−0

−h
U ′′(θ1 − θ2)Dϕ(θ2)dθ2 +

∫ 0

θ1+0

U ′′(θ1 − θ2)Dϕ(θ2)dθ2

)
dθ1

−
∫ 0

−h
ϕT (θ)DT∆U ′(0)Dϕ(θ)dθ. (2.16)

One observes that in (2.16) there are not derivatives on the initial functions, but there are on the delay
Lyapunov matrix. This transformed functional is called "New form of the functional" and it is key in
the obtention of the main result of Chapter 3. However, in order to use it, a relaxation of the space to
which initial functions belong is needed. The next subsections are devoted to this task.

2.3.1 A new Cauchy formula

In this section, we present a new Cauchy formula of system (2.1) given in terms of the fundamental
matrix. It is shown that this formula is a generalization of (2.5).

Theorem 2.3. Given an initial function ϕ ∈ PC ([−h, 0],Rn), the solution x(t, ϕ) of system (2.1) is
determined by

x(t, ϕ) = K(t) (ϕ(0)−Dϕ(−h)) +

∫ 0

−h
K(t− h− θ)A1ϕ(θ)dθ

+
d

dt

(∫ 0

−h
K(t− θ − h)Dϕ(θ)dθ

)
, t ≥ 0. (2.17)

Proof. We consider the term

J(ξ) = (K(t− ξ)−K(t− ξ − h)D)

∫ ξ

0

x(θ)dθ, ξ ∈ [0, t), t > 0.

Integrating system (2.1), we get the expression

x(t) =Dx(t− h) + ϕ(0)−Dϕ(−h) +A0

∫ t

0

x(θ)dθ +A1

∫ t−h

−h
x(θ)dθ, t ≥ 0.

By using (2.2) and the above equality, we get

d

dξ
J(ξ) = −K(t− ξ − h)A1

∫ ξ

0

x(θ)dθ

+K(t− ξ)
(
ϕ(0)−Dϕ(−h) +Dx(ξ − h) +A1

∫ ξ

0

x(θ − h)dθ

)
−K(t− ξ − h)Dx(ξ).

Integrating from 0 to t, we arrive at∫ t

0

x(θ)dθ = −
∫ t

0

K(t− ξ − h)A1

∫ ξ

0

x(θ)dθdξ +

∫ t

0

K(t− ξ)A1

∫ ξ

0

x(θ − h)dθdξ

−
∫ t

0

K(t− ξ − h)Dx(ξ)dξ +

∫ t

0

K(t− ξ)Dx(ξ − h)dξ +

∫ t

0

K(t− ξ) (ϕ(0)−Dϕ(−h)) dξ,
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and by the change of variables η = t−ξ−h and η = t−ξ, in the first and second integrals, respectively,
we get

−
∫ t

0

K(t− ξ − h)A1

∫ ξ

0

x(θ)dθdξ +

∫ t

0

K(t− ξ)A1

∫ ξ

0

x(θ − h)dθdξ =

= −
∫ t−h

−h

∫ t−η−h

0

K(η)A1x(θ)dθdη +

∫ t

0

∫ t−η−h

−h
K(η)A1x(θ)dθdη.

As K(η) = 0 for η < 0, the last equality yields

−
∫ t−h

−h

∫ t−η−h

0

K(η)A1x(θ)dθdη +

∫ t

0

∫ t−η−h

−h
K(η)A1x(θ)dθdη =

=

∫ t

t−h

∫ t−η−h

−h
K(η)A1ϕ(θ)dθdη +

∫ t−h

0

∫ 0

−h
K(η)A1ϕ(θ)dθdη,

hence,∫ t

0

x(θ)dθ =

∫ t

t−h

∫ t−η−h

−h
K(η)A1ϕ(θ)dθdη +

∫ t−h

0

∫ 0

−h
K(η)A1ϕ(θ)dθdη

+

∫ 0

−h
K(t− θ − h)Dϕ(θ)dθ +

∫ t

0

K(θ)dθ (ϕ(0)−Dϕ(−h)) .

Differentiating with respect to time we obtain (2.17).

We show now that in fact the Cauchy formula given in Lemma 2.2 is a special case of the one
introduced in Theorem 2.3. In order to do this consider an initial function ϕ differentiable almost
everywhere on [−h, 0] and differentiate the third term in (2.17):

d

dt

(∫ 0

−h
K(t− θ − h)Dϕ(θ)dθ

)
=− d

dt

(∫ t

t+h

K(ξ − h)Dϕ(t− ξ)dξ
)

= −K(t− h)Dϕ(0) +K(t)Dϕ(−h) +

∫ 0

−h
K(t− θ − h)Dϕ′(θ)dθ.

Substituting the preceding equality in (2.17) we arrive at the Cauchy formula (2.5).

2.3.2 Technical results

Some results that are useful in the computation of the complete type functional are in order. Let us
introduce the terms:

J1(ξ) =

∫ ∞
0

KT (t− ξ − h)W
d

dt

(∫ 0

−h
K(t− θ − h)Dϕ(θ)dθ

)
dt, (2.18)

J2 =

∫ ∞
0

d

dt

(∫ 0

−h
ϕT (θ1)DTKT (t− θ1 − h)dθ1

)
W

d

dt

(∫ 0

−h
K(t− θ2 − h)Dϕ(θ2)dθ2

)
dt. (2.19)

Observe that these terms are determined by an improper integral and the fundamental matrix of the
system. Following the definition (2.6), we prove that they can be expressed in terms of the delay
Lyapunov matrix.

Proposition 2.1. For ξ ∈ R,

J1(ξ) =

∫ 0

−h
U ′(ξ − θ)Dϕ(θ)dθ.
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Proof. We write the right hand side of (2.18) as follows:∫ ∞
0

KT (t− ξ − h)W
d

dt

(∫ 0

−h
K(t− θ − h)Dϕ(θ)dθ

)
dt =

=

∞∑
j=0

∫ (j+1)h

jh

KT (t− ξ − h)W

(
d

dt

∫ t−(j+1)h−0

−h
K(t− θ − h)Dϕ(θ)dθ

+
d

dt

∫ 0

t−(j+1)h+0

K(t− θ − h)Dϕ(θ)dθ

)
dt

=

∞∑
j=0

∫ (j+1)h

jh

KT (t− ξ − h)W

(∫ t−(j+1)h−0

−h

d

dt
K(t− θ − h)Dϕ(θ)dθ

+

∫ 0

t−(j+1)h+0

d

dt
K(t− θ − h)Dϕ(θ)dθ + ∆K(jh)Dϕ(t− (j + 1)h)

)
dt.

Then, by changing the integration order, and as

d

dt
K(t− θ − h) = − d

dθ
K(t− θ − h),

we arrive at

J1(ξ) =

∫ 0

−h

(
−
∫
O(θ)

KT (t− ξ−h)W
d

dθ
K(t−θ−h)dt+

∞∑
j=0

KT (θ+ jh− ξ)W∆K(jh)

)
Dϕ(θ)dθ.

By the change of variable η = t− ξ − h in the first integral and by using (2.11), we get

J1(ξ) =

∫ 0

−h

(
−
∫
O(θ−ξ)

KT (η)W
d

dθ
K(η + ξ − θ)dη +

∞∑
j=0

KT (θ + jh− ξ)W∆K(jh)

)
Dϕ(θ)dθ

=

∫ 0

−h
U ′(ξ − θ)Dϕ(θ)dθ.

Proposition 2.2. The following equality holds:

J2 = −
∫ 0

−h
ϕT (θ1)DT

(∫ θ1−0

−h
U ′′(θ1 − θ2)Dϕ(θ2)dθ2 +

∫ 0

θ1+0

U ′′(θ1 − θ2)Dϕ(θ2)dθ2

)
dθ1

−
∫ 0

−h
ϕT (θ)DT∆U ′(0)Dϕ(θ)dθ.

Proof. We rewrite the right hand side of the term J2 in (2.19) as follows:

J2 =

∞∑
j=0

∫ (j+1)h

jh

d

dt

(∫ 0

−h
ϕT (θ1)DTKT (t− θ1 − h)dθ1

)
W

(∫ t−(j+1)h−0

−h

d

dt
K(t−θ2−h)Dϕ(θ2)dθ2

+

∫ 0

t−(j+1)h+0

d

dt
K(t− θ2 − h)Dϕ(θ2)dθ2 + ∆K(jh)Dϕ(t− (j + 1)h)

)
dt

Changing the integration order, we get

J2 =

∫ 0

−h

∫
O(θ2)

d

dt

(∫ 0

−h
ϕT (θ1)DTKT (t−θ1− h)dθ1

)
W

d

dt
K(t− θ2 − h)Dϕ(θ2)dtdθ2

+

∫ 0

−h

∞∑
j=0

d

dt

(∫ 0

−h
ϕT (θ1)DTKT (t+ jh− θ1)dθ1

)
W∆K(jh)Dϕ(t)dt.
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Introducing the change of variable ξ = t− θ2 − h in the first term, we have

J2 =

∫ 0

−h

∫
O(0)

d

dξ

(∫ 0

−h
ϕT (θ1)DTKT (ξ + θ2 − θ1)dθ1

)
W

d

dξ
K(ξ)Dϕ(θ2)dξdθ2

+

∫ 0

−h

∞∑
j=0

d

dθ2

(∫ 0

−h
ϕT (θ1)DTKT (θ2 + jh− θ1)dθ1

)
W∆K(jh)Dϕ(θ2)dθ2

=

∫ 0

−h
ϕT (θ1)DT

∫ 0

−h

d

dθ2

(∫
O(0)

KT (ξ + θ2 − θ1)W
d

dξ
K(ξ)dξ

)
Dϕ(θ2)dθ2dθ1

+

∫ 0

−h

∞∑
j=0

∫ θ2−0

−h
ϕT (θ1)DT d

dθ2
KT (θ2 + jh− θ1)dθ1W∆K(jh)Dϕ(θ2)dθ2

+

∫ 0

−h

∞∑
j=0

∫ 0

θ2+0

ϕT (θ1)DT d

dθ2
KT (θ2 + jh− θ1)dθ1W∆K(jh)Dϕ(θ2)dθ2

+

∫ 0

−h
ϕT (θ)DT

 ∞∑
j=0

(∆K(jh))TW∆K(jh)

Dϕ(θ)dθ.

By changing the limits in the second term and applying the expressions for U ′(τ) and U ′′(τ) given by
(2.11) and (2.12), respectively, we get

J2 = −
∫ 0

−h
ϕT (θ1)DT

(∫ θ1−0

−h
U ′′(θ1 − θ2)Dϕ(θ2)dθ2 +

∫ 0

θ1+0

U ′′(θ1 − θ2)Dϕ(θ2)dθ2

)
dθ1

−
∫ 0

−h
ϕT (θ)DT∆U ′(0)Dϕ(θ)dθ.

2.3.3 Computation of the functional

In this section the transformed functional (2.16), obtained by assuming that ϕ ∈ C(1) ([−h, 0],Rn)

and integrating by parts in Kharitonov (2005), is computed directly with the Cauchy formula (2.17).
The difference in using this formula is that now the initial functions belong to the space of piecewise
continuous functions.

System (2.1) is assumed to be exponentially stable. We look for a functional v0(ϕ) such that

d

dt
v0(xt(ϕ)) = −xT (t, ϕ)Wx(t, ϕ), t ≥ 0, ϕ ∈ PC ([−h, 0],Rn) , (2.20)

where the matrix W is symmetric positive definite. Integrating the above expression from 0 to T > 0,
we get

v0(xT (ϕ))− v0(ϕ) = −
∫ T

0

xT (t, ϕ)Wx(t, ϕ)dt.

As system (2.1) is exponentially stable, xT (ϕ)→ 0 when T →∞, and v0(0) = 0, we arrive at

v0(ϕ) =

∫ ∞
0

xT (t, ϕ)Wx(t, ϕ)dt, ϕ ∈ PC ([−h, 0],Rn) .
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Substituting the Cauchy formula (2.17) into the previous equation we have

v0(ϕ) = (ϕ(0)−Dϕ(−h))
T
∫ ∞

0

KT (t)WK(t)dt (ϕ(0)−Dϕ(−h))

+ 2 (ϕ(0)−Dϕ(−h))
T
∫ 0

−h

∫ ∞
0

KT (t)WK(t− θ − h)dtA1ϕ(θ)dθ

+

∫ 0

−h

∫ 0

−h
ϕT (θ1)AT1

∫ ∞
0

KT (t− θ1 − h)WK(t− θ2 − h)dtA1ϕ(θ2)dθ2dθ1

+ 2 (ϕ(0)−Dϕ(−h))
T
J1(−h) + 2

∫ 0

−h
ϕT (θ1)AT1 J1(θ1)dθ1 + J2. (2.21)

By using the expressions obtained in Proposition 2.1 and Proposition 2.2, and the definition of
the delay Lyapunov matrix (2.6) in equation (2.21), we get the same expression as (2.16), which is
rewritten in a simpler form as follows:

v0(ϕ) = (ϕ(0)−Dϕ(−h))
T
U(0) (ϕ(0)−Dϕ(−h)) + 2 (ϕ(0)−Dϕ(−h))

T
∫ 0

−h
F1(−h− θ)ϕ(θ)dθ

+

∫ 0

−h

∫ 0

−h
ϕT (θ1)F2(θ1 − θ2)ϕ(θ2)dθ2dθ1 −

∫ 0

−h
ϕT (θ)DT∆U ′(0)Dϕ(θ)dθ, ϕ ∈ PC ([−h, 0],Rn) ,

(2.22)

where

F1(τ) =

{
U(τ)A1 + U ′(τ)D, τ ∈ R\Ω,
0, τ ∈ Ω,

F2(τ) =

{
AT1 F1(τ)−DTF ′1(τ), τ ∈ R\Ω,
0, τ ∈ Ω,

(2.23)

The functional of complete type is given by (Kharitonov (2013))

v(ϕ) = v0(ϕ) +

∫ 0

−h
ϕT (θ) (W1 + (h+ θ)W2)ϕ(θ)dθ, ϕ ∈ PC ([−h, 0],Rn) , (2.24)

where v0(ϕ) is determined by (2.22). The computation of the functional is obtained under the assump-
tion of exponential stability of system (2.1). In Kharitonov (2013), it is shown that this assumption
can be dropped by using Definition 2.3 of the delay Lyapunov matrix.

We now remind the main characteristic of the functional v(ϕ), which is that under exponential
stability assumption, it satisfies a quadratic lower bound.

Theorem 2.4. (Kharitonov (2013)) Consider the constants

u0 = ‖U(0)‖ , u1 = sup
τ∈(0,h)

‖F1(τ)‖ , u2 = sup
τ∈(0,h)

‖F2(τ)‖ .

Let system (2.1) be exponentially stable, given symmetric positive definite matrices Wi, i = 0, 1, 2, and
positive numbers α1 and α2, the functional of complete type (2.24) satisfies:

α1 ‖ϕ(0)−Dϕ(−h)‖2 ≤ v(ϕ) ≤ α2 ‖ϕ‖2h , ϕ ∈ PC ([−h, 0],Rn) ,

where

α2 = u0(1 + ‖D‖)2 + 2hu1(1 + ‖D‖) + h2u2 + h

(
‖W1‖+

h

2
‖W2‖+

∥∥DT∆U ′(0)D
∥∥)

and α1 is such that the following pencil matrix is positive semidefinite

L(α1) =

(
W0 0

0 W1

)
+ α1

(
A0 +AT0 A1 −AT0 D

AT1 −DTA0 −DTA1 −AT1 D

)
.
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Proof. Consider the functional

v̂(ϕ) = v(ϕ)− α1‖ϕ(0)−Dϕ(−h)‖2.

In order to prove that the functional v satisfies a quadratic lower bound it is enough to prove that
v̂(ϕ) ≥ 0. Differentiating with respect to time, we get

d

dt
v̂(xt) = −xT (t)W0x(t)− xT (t− h)W1x(t− h)−

∫ t

t−h
xT (θ)W2x(θ)dθ

− 2α(x(t)−Dx(t− h))T (A0x(t) +A1x(t− h)) ≥ −x̂T (t)L(α)x̂(t),

where x̂T (t) =
(
xT (t) xT (t− h)

)
. As system is exponentially stable and L(α1) ≥ 0, we have

v̂(ϕ) ≥
∫ ∞

0

x̂T (t)L(α1)x̂(t)dt ≥ 0,

hence
v(ϕ) ≥ α1‖ϕ(0)−Dϕ(−h)‖2.

The upper bound is obtained by estimating the one of each term of the functional v as follows:

v(ϕ) ≤ (1 + ‖D‖)2u0‖ϕ‖2h + 2(1 + ‖D‖)u1

∫ 0

−h
‖ϕ(θ)‖dθ‖ϕ‖h + u2

∫ 0

−h

∫ 0

−h
‖ϕ(θ)‖2dθ

+ ‖DT∆U ′(0)D‖
∫ 0

−h
‖ϕ(θ)‖2dθ + ‖W1‖

∫ 0

−h
‖ϕ(θ)‖2dθ + ‖W2‖

∫ 0

−h
(h+ θ)‖ϕ(θ)‖2dθ ≤ α2‖ϕ‖2h

2.4 Conclusion

In this chapter, we provide the basic framework for our work. Elementary concepts of the fundamental
matrix and the delay Lyapunov matrix are recalled, and the functional of complete type for neutral
type delay systems is constructed without neither continuity nor differentiability assumptions on the
initial functions. The presented approach is key for the obtention of the main result in the next chapter
and sets the path for the determination of the functional corresponding to the neutral multiple delay
case in Chapter 4.
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Chapter 3

Necessary stability conditions: Single
delay case

In this chapter, we provide necessary stability conditions for neutral type delay systems of the form
(2.1). The particularity of these conditions is that, as in the delay-free case, they depend only on the
delay Lyapunov matrix.

The ideas for the attainment of these conditions are inspired by those used for the retarded type
case in Egorov and Mondié (2014), which rely on:

1. An appropriate choice for the class of piecewise initial functions depending on the fundamental
matrix.

2. The introduction of new properties of the delay Lyapunov matrix.

The result concerning the computation of the functional (2.22), which was originally proved for dif-
ferentiable initial functions, had to be relaxed in Chapter 2 because of the required piecewise initial
function in terms of the fundamental matrix. The complex nature of neutral type systems demands a
careful treatment in the proofs of the new properties of the delay Lyapunov matrix.

The chapter is organized as follows. In the next section, an auxiliary functional which is not of
complete type but it has a quadratic lower bound is introduced. The new properties of the delay
Lyapunov matrix that relates it with the fundamental matrix are given in Section 3.2. In Section 3.4,
the necessary stability conditions are stated and, in Section 3.5, they are illustrated by some examples.
Finally, we end the chapter with a comparison of the proposed approach with other stability analysis
methods and some conclusions.

3.1 An auxiliary functional

The following seminorm is considered:

‖ϕ‖H =

√
‖ϕ(0)−Dϕ(−h)‖2 +

∫ 0

−h
‖ϕ(θ)‖2dθ.

We introduce an auxiliary functional based on v0(ϕ). This functional is simpler than the one of
complete type yet it has a quadratic lower bound. It is given by

v1(ϕ) = v0(ϕ) +

∫ 0

−h
ϕT (θ)Wϕ(θ)dθ, ϕ ∈ PC ([−h, 0],Rn) , (3.1)
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where v0(ϕ) is determined by (2.22) and W > 0. In view of equation (2.20), the derivative of v1(ϕ)

along the solutions of system (2.1) is

d

dt
v1(xt(ϕ)) = −xT (t− h, ϕ)Wx(t− h, ϕ), t ≥ 0.

In the next theorem it is shown that the functional v1(ϕ) admits a quadratic lower bound.

Theorem 3.1. Let system (2.1) be exponentially stable, there exists a number β > 0 such that

v1(ϕ) ≥ β ‖ϕ‖2H , ϕ ∈ PC([−h, 0],Rn).

Proof. Since matrices Wj , j = 0, 1, 2, are positive definite and (h+ θ) ∈ [0, h] for θ ∈ [−h, 0], Theorem
2.4 implies that

v0(ϕ) +

∫ 0

−h
ϕT (θ) (W1 + hW2)ϕ(θ)dθ ≥ α1 ‖ϕ(0)−Dϕ(−h)‖2 .

Adding the term
∫ 0

−h ϕ
T (θ)W0ϕ(θ)dθ on both sides, and taking into account that W = W0 +W1 +hW2,

we get

v1(ϕ) ≥ α1 ‖ϕ(0)−Dϕ(−h)‖2 +

∫ 0

−h
ϕT (θ)W0ϕ(θ)dθ.

The result follows by setting β = min {α1, λmin(W0)} > 0.

3.2 New properties of the delay Lyapunov matrix

The new properties of the Lyapunov matrix presented below are of primary importance in obtaining
the main result in this chapter. The first one is the analogue of the dynamic property (2.7) for negative
arguments.

Lemma 3.1. For τ < 0, τ ∈ R \ Ω

U ′(τ)−DTU ′(τ + h) = −AT0 U(τ)−AT1 U(τ + h). (3.2)

Proof. From the symmetry property (2.8), we have(
U(τ)−DTU(τ + h)

)T
= U(−τ)− U(−τ − h)D,

then by equation (2.7),

d

dτ

(
U(τ)−DTU(τ + h)

)T
= − d

dτ
(U(−τ)− U(−τ − h)D)

= −U(−τ)A0 − U(−τ − h)A1, τ < 0.

Transposing both sides, we get the result in (3.2).

A general dynamic property is proved next using (2.7) and (3.2).

Lemma 3.2 (Generalized dynamic property). For τ ∈ R\Ω,

U ′(τ)− U ′(τ − h)D = U(τ)A0 + U(τ − h)A1 +KT (−τ)W. (3.3)
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Proof. Let us introduce the function

G(τ̂) =

{
−U ′(τ̂) +DTU ′(τ̂ + h)−AT0 U(τ̂)−AT1 U(τ̂ + h)−WK(τ̂), τ̂ ∈ R\Ω,
limθ→τ̂+0G(θ), τ̂ ∈ Ω.

It follows from the dynamic property for negative arguments (3.2) that G(τ̂) = 0, τ̂ < 0. Observe
that, for τ̂ = +0, by (3.2) and continuity of U(τ), τ ∈ R, G(+0) can be written as

G(+0) = −U ′(+0) +DTU ′(h+ 0) + U ′(−0)−DTU ′(h− 0)−W.

Applying equation (2.13) and algebraic property (2.10), we get G(+0) = 0.
To prove (3.3), we have to show that G(τ̂) = 0 on (0,∞). For this, observe first that for τ̂ ≥ 0,

dynamic property (2.7) implies that

G(τ̂)−G(τ̂ −h)D = −(U(τ̂)A0 +U(τ̂ −h)A1)+DT (U(τ̂ +h)A0 +U(τ̂)A1)−AT0 (U(τ̂)−U(τ̂ −h)D)

−AT1 (U(τ̂ + h)− U(τ̂)D)−W (K(τ̂)−K(τ̂ − h)D).

By definitions of U(τ) and K(τ), the previous difference is continuous on τ̂ ≥ 0 and

G′(τ̂)−G′(τ̂ − h)D = −(U ′(τ̂)A0 + U ′(τ̂ − h)A1)

+DT (U ′(τ̂ + h)A0 + U ′(τ̂)A1)−AT0 (U(τ̂)A0 + U(τ̂ − h)A1)−AT1 (U(τ̂ + h)A0 + U(τ̂)A1)

−W (K(τ̂)A0 +K(τ̂ − h)A1), τ̂ ≥ 0. (3.4)

Hence, expression in (3.4) can be rewritten as a neutral time delay system of the form

G′(τ̂)−G′(τ̂ − h)D = G(τ̂)A0 +G(τ̂ − h)A1, τ̂ ≥ 0, a.e.

As the initial condition is G(τ̂) = 0, τ̂ ∈ [−h, 0], the previous system has a unique trivial solution
G(τ̂) = 0 on τ̂ ∈ (0,∞). Thus, we have proved that G(τ̂) = 0 for τ̂ ∈ R. Finally, transposing G(τ̂) and
setting τ = −τ̂ allow to arrive at (3.3).

Lemma 3.3. For τ ≥ 0, ξ ∈ R,

U(τ + ξ) =U(ξ) (K(τ)−DK(τ − h)) +

∫ 0

−h
F1(ξ − θ − h)K(τ + θ)dθ

+

∫ 0

−τ
KT (θ − ξ)WK(θ + τ)dθ.

(3.5)

Proof. We introduce the continuous function

P (τ) = U(τ+ξ)−U(ξ) (K(τ)−DK(τ − h))−
∫ τ

τ−h
F1(τ̄−θ−h)K(θ)dθ−

∫ τ

0

KT (θ−ξ−τ)WK(θ)dθ,

which can be written, by the definition of F1(τ) in (??), as

P (τ) = U(τ + ξ)− U(ξ) (K(τ)−DK(τ − h))

−
∫ τ

τ−h
(U(ξ + τ − θ − h)A1 + U ′(ξ + τ − θ − h)D)K(θ)dθ −

∫ τ

0

KT (θ − ξ − τ)WK(θ)dθ,

In order to prove the lemma, it is enough to show that P (τ) = 0. Introduce the change of variable
ξ = τ̄ − τ :

P (τ) = U(τ̄)− U(τ̄ − τ) (K(τ)−DK(τ − h))

−
∫ τ

τ−h
(U(τ̄ − θ − h)A1 + U ′(τ̄ − θ − h)D)K(θ)dθ −

∫ τ

0

KT (θ − τ̄)WK(θ)dθ.
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By differentiating P (τ), we obtain

P ′(τ) =

(
U(τ̄ − τ)A1 + U ′(τ̄ − τ)D − U ′(τ̄ − τ)D − U(τ̄ − τ)A1

)
K(τ − h)

+

(
U ′(τ̄ − τ)− U(τ̄ − τ)A0 − U(τ̄ − τ − h)A1 − U ′(τ̄ − τ − h)D −KT (τ − τ̄)W

)
K(τ)

Clearly, the first summand is zero, while the second one is zero by equation (3.3). It implies that
P (τ) is a constant function. The result follows by the continuity of the function P and the fact that
P (0) = 0.

In what follows, a number of special cases of equation (3.5) that are instrumental in the proof of
Lemma 3.4 are presented.

Corollary 3.1. For τ ≥ 0 and ξ ≥ 0,

U(τ + ξ) = U(ξ)

(
K(τ)−DK(τ − h)

)
+

∫ 0

−h
F1(ξ − θ − h)K(τ + θ)dθ. (3.6)

Proof. The result follows from the fact that s− ξ ≥ 0 for ξ ≥ 0 and s ∈ [−τ, 0] in equation (3.5).

Corollary 3.2. For τ ≥ 0, the Cauchy formula for the Lyapunov matrix is

U(τ) = U(0)

(
K(τ)−DK(τ − h)

)
+

∫ 0

−h
F1(−θ − h)K(τ + θ)dθ. (3.7)

Corollary 3.3. For ξ ∈ (0, h) and τ ≥ 0,

U ′(τ + ξ) = U ′(ξ)

(
K(τ)−DK(τ − h)

)
+

∫ 0

−h
U ′(ξ − h− s)A1K(τ + s)ds+

∫ ξ−h−0

−h
U ′′(ξ − h− s)DK(τ + s)ds

+

∫ 0

ξ−h+0

U ′′(ξ − h− s)DK(τ + s)ds+ ∆U ′(0)DK(τ + ξ − h), a.e. (3.8)

Proof. The result is obtained by differentiating equation (3.5) with respect to ξ, and using the fact that
K(s) is continuous on s ∈ (0, h).

3.3 Bilinear functional

The result proved in Lemma 3.4 below is obtained through the above corollaries and the introduction
of the bilinear functional

z(ϕ1, ϕ2) = (ϕ1(0)−Dϕ1(−h))TU(0)(ϕ2(0)−Dϕ2(−h)) + (ϕ1(0)−Dϕ1(−h))T
∫ 0

−h
F1(−h− θ)ϕ2(θ)dθ

+

∫ 0

−h
ϕT1 (θ)FT1 (−h− θ)dθ(ϕ2(0)−Dϕ2(−h)) +

∫ 0

−h

∫ 0

−h
ϕT1 (θ1)F2(θ1 − θ2)ϕ2(θ2)dθ2dθ1

−
∫ 0

−h
ϕT1 (θ)∆U ′(0)ϕ2(θ)dθ, ϕ1, ϕ2 ∈ PC ([−h, 0],Rn) .

(3.9)

It follows directly from (2.10) that v1(ϕ) = z(ϕ,ϕ).
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Lemma 3.4. For any τ1, τ2 ∈ [0, h] and µ, η ∈ Rn,

z(K(τ1 + ·)µ,K(τ2 + ·)η) = µTU(τ2 − τ1)η.

Proof. Observe first that for τ ≥ 0 and ξ ∈ (0, h), by equations (3.6) and (3.8)

FT1 (−τ − ξ) = AT1 U(τ + ξ)−DTU ′(τ + ξ) = FT1 (−ξ)
(
K(τ)−DK(τ − h)

)
+

∫ 0

−h
F2(ξ − θ − h)K(τ + θ)dθ −DT∆U ′(0)DK(τ + ξ − h), a.e. (3.10)

Now, rewrite (3.9) as follows:

z(K(τ1 + ·)µ,K(τ2 + ·)η) =

µT
(

(K(τ1)−DK(τ1 − h))T
(
U(0)(K(τ1)−DK(τ1 − h)) +

∫ 0

−h
F1(−h− θ)K(τ2 + θ)dθ

)
+

∫ 0

−h
KT (τ1 + θ1)

(
FT1 (−h− θ1)(K(τ2)−DK(τ2 − h)) +

∫ 0

−h
F2(θ1 − θ2)K(τ2 + θ2)dθ2

)
dθ1

−
∫ 0

−h
KT (τ1 + θ)∆U ′(0)K(τ2 + θ)dθ

)
η.

By using (3.7) in the first term, and (3.10) in the second one, we get

z(K(τ1 + ·)µ,K(τ2 + ·)η) = µT
(

(K(τ1)−DK(τ1−h))TU(τ1)+

∫ 0

−h
KT (τ1 +θ1)FT1 (−τ2−h−θ1)dθ1

+

∫ 0

−h
KT (τ1 + θ)

(
DT∆U ′(0)D −∆U ′(0)

)
K(τ2 + θ)dθ

)
η.

By applying equation (2.10) in the third term,

z(K(τ1 + ·)µ,K(τ2 + ·)η) = µT
(

(K(τ1)−DK(τ1−h))TU(τ1)+

∫ 0

−h
KT (τ1 +θ1)FT1 (−τ2−h−θ1)dθ1

+

∫ 0

−h
KT (τ1 + θ)WK(τ2 + θ)dθ

)
η.

Finally, by property (3.5), we arrive at the desired result.

3.4 Necessary stability conditions

We are now ready to prove the main result of this chapter. Let us introduce the following function:

ψr(θ) =

r∑
j=1

K(τj + θ)γj , θ ∈ [−h, 0], (3.11)

where τj ∈ [0, h] and γj ∈ Rn, j = 1, r, are constant arbitrary vectors. In order to illustrate function
(3.11), we consider the particular case k(t) = e−0.5t, t ∈ [0, h], with r = 4, γ1 = γ3 = 0.5 and
γ2 = γ4 = 1. It is depicted in Figure 3.1.

The necessary stability conditions for system (2.1) are established with the help of Theorem 3.1
and Lemma 3.4.
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Figure 3.1: Particular case of function (3.11)

Theorem 3.2. If system (2.1) is exponentially stable, then

Kr(τ1, . . . , τr) > 0, (3.12)

for τk ∈ [0, h], k = 1, r, and τi 6= τj if i 6= j. Here

Kr(τ1, . . . , τr) =


U(0) U(τ2 − τ1) . . . U(τr − τ1)

UT (τ2 − τ1) U(0) . . . U(τr − τ2)
...

. . .
...

UT (τr − τ1) UT (τr − τ2) . . . U(0)

 . (3.13)

Proof. Observe that v1(ϕ) = z(ϕ,ϕ). Substituting into the bilinear functional (3.9) the particular initial
function (3.11) gives

v1(ψr) = z(ψr, ψr) =

r∑
k=1

r∑
j=1

z(K(τk + ·)γk,K(τj + ·)γj).

In view of Lemma 3.4, this is

v1(ψr) =

r∑
k=1

r∑
j=1

γTk U(τj − τk)γj .

The above can be rewritten in matrix form as

v1(ψr) = γTKr(τ1, . . . , τr)γ, (3.14)

with γ =
(
γT1 . . . γTr

)T
. From Theorem 3.1, we get

v1(ψr) = γTKr(τ1, . . . , τr)γ ≥ β ‖ψr‖2H , β > 0.

We prove now that if γ 6= 0, then ‖ψr‖H > 0. Assume that 0 = τ0 ≤ τ1 < . . . < τr and observe that
if γ 6= 0, then there is at least one vector γi 6= 0. For the case γq 6= 0 with γq+1 = . . . = γr = 0, we have

ψr(θ) = eA0(τq+θ)γq, θ ∈ [−τq,−τq + ∆q),

where ∆q = min{τq−τq−1, h}. If q = 1 and γ2 = . . . = γr = 0 with τ0 = τ1 = 0 we have ψr(0) = γ1 6= 0.
In all the cases ‖ψr‖H > 0, hence,

Kr(τ1, . . . , τr) > 0.
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As in the retarded type case in Egorov and Mondié (2015), the previous theorem enables us to
show that the maximum of the norm of the delay Lyapunov matrix is achieved at zero.

Lemma 3.5. Let the nominal system (2.1) be exponentially stable. Then

‖U(τ)‖ < ‖U(0)‖ , τ ∈ [−h, 0) ∪ (0, h].

Proof. Theorem 3.2 implies that U(0) > 0, therefore ‖U(0)‖ = λmax (U(0)) and there exists a matrix
B > 0 such that U(0) = B2, B = (U(0))1/2. From the stability condition of Theorem 3.2 we have(

B−1 0

0 B−1

)(
U(0) U(τ)

UT (τ) U(0)

)(
B−1 0

0 B−1

)
=

(
I B−1U(τ)B−1

B−1UT (τ)B−1 I

)
> 0,

which in turn implies that ∥∥B−1U(τ)B−1
∥∥ < 1.

Then,
‖U(τ)‖ =

∥∥B (B−1U(τ)B−1
)
B
∥∥ < ‖B‖2 = λmax(BTB) = ‖U(0)‖ , τ ∈ (0, h].

For τ ∈ [−h, 0) the result follows by the symmetry property (2.8).

3.5 Examples

In this section, we illustrate the stability conditions of Theorem 3.2 by some examples. The general
procedure for using this theorem is the following:

1. Compute the delay Lyapunov matrix U(τ), τ ∈ [0, h], associated with a positive definite matrix
W . This can be done by using the semianalytic method introduced in Kharitonov (2005) and
Kharitonov (2013) (see Appendix C).

2. Set an arbitrary number r and choose the parameters τi ∈ [0, h], i = 1, r.

3. Construct the corresponding matrix Kr(τ1, . . . , τr) and check if it is positive definite.

In the examples below, the stability maps in the space of parameters of some systems are con-
structed. The isolated points on the figures correspond to the points where the conditions of Theorem
3.2, evaluated at 80 × 80 points in the space of parameters, hold, and the solid lines are the stability
boundaries determined by the D-subdivision method (Neimark (1949)). Here, the delay Lyapunov
matrix is computed for W = In by using the semianalytic method.

Notice that as the stability condition (3.12) is only necessary, it may be satisfied for a given number
r at points where the system is actually unstable (see Example 3.3). In order to discard those points,
we use the computed stability boundaries: if regions delimited by boundaries contain loci for which the
condition test both positively and negatively (i.e., Kr > 0 and Kr 6> 0 ), the whole region is unstable.

Example 3.1. Consider the scalar neutral type equation (Kolmanovskii and Myshkis (1999)):

d

dt
(x(t)− dx(t− h)) = ax(t) + bx(t− h), h = 1. (3.15)

We illustrate first step by step the procedure mentioned at the beginning of the section. In order to do
this, we consider a = −2, b = 0 and d = −0.9.

1. Compute the delay Lyapunov function u(τ), τ ∈ [0, 1].

2. Set r = 2 with τ1 = 0 and τ2 = τ ∈ (0, h].
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3. With the Lyapunov function previously computed, construct the matrix

K2(0, τ) =

(
u(0) u(τ)

u(τ) u(0)

)
.

For instance, for τ = 0.5, this matrix takes the following numerical values:

K2(0, 0.5) =

(
0.5663 0.0214

0.0214 0.5663

)
.

One can see that it is positive definite. In order to use Theorem 3.2 one should construct the matrix
K2(0, τ) and check if it is positive definite for each τ ∈ (0, 1].

Based on the previously said, we now compute the stability map of system (3.15). The isolated points
on Figure 3.2 and Figure 3.3 correspond to the points where condition

K2(0, τ) > 0, τ ∈ (0, 1], (3.16)

holds in the space of parameters (a, b) and (b, d), respectively.

a
-4 -2 0 2 4

b

-4

-2

0

2

4

Figure 3.2: System (3.15) with d = −0.9, condition (3.16)

d
-4 -2 0 2 4

b

-4

-2

0

2

4

Figure 3.3: System (3.15) with a = −1.5, condition (3.16)
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Example 3.2. The PD control of the system described by the transfer function

H(s) =
15s2 + 3s− 20

125s3 + 70s2 + 10s+ 8
e−2s,

introduced in Méndez (2011), is described by system (2.1) with delay h = 2 and matrices

D =

0 0 0

0 0 0

0 0 − 15

125
kd

 , A0 =

 0 1 0

0 0 1

− 8

125
− 10

125
− 70

125


and

A1 =

 0 0 0

0 0 0
20

125
kp − 1

125
(3kp − 20kd) − 8

125
(15kp + 3kd)

 ,

where parameters kp and kd are the proportional and derivative gains, respectively. The points where the
condition

K2(0, τ) > 0, τ ∈ (0, 2], (3.17)

holds in the space of parameters (kp, kd) are depicted on Figure 3.4. As in Example 3.1, one observes that
the exact stability region is achieved with the tested condition.

k
p

-1 0 1 2 3

k d

-10

-5

0

5

10

Figure 3.4: Example 3.2, condition (3.17)
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Example 3.3. The σ-stability analysis of the proportional-integral control of a passive linear system leads
to studying a quasipolynomial of neutral type (Castaños et al. (2017)). Its time domain representation is
of the form (2.1), with matrices

D =

(
0 0

0 −α2

α1

)
, A0 =

1

α1

(
0 α1

−σ2α1 + σβ1 − γ1 −β1 + 2σα1

)
,

and

A1 =
1

α1

(
0 0

−σ2α2 + σβ2 − γ2 −β2 + 2σα2

)
,

where

α1 = d+ kp; γ1 = bkid+ aki;

α2 = (d− kp) eσh; γ2 = (bkid− aki)eσh;

β1 = (bkp + a) d+ bd2 + akp + ki;

β2 =
(
(bkp + a)d− bd2 − akp − ki

)
eσh.

For the parameter numerical values

a = 0.4, b = 50, h = 0.2, d = 0.8, σ = 0.3,

the stability of the difference operator imposes in the D-subdivisions the additional condition |kp| < 26.67.
The points where the condition

K2(0, τ) > 0, τ ∈ (0, 0.2], (3.18)

and condition
K3(0, τ, h) > 0, τ ∈ (0, 0.2), (3.19)

hold in the space of gains (kp, ki) are depicted on Figure 3.5 and Figure 3.6, respectively. Observe that
Figure 3.5 shows a region delimited by stability boundaries where the stability test of Theorem 3.2 gives a
positive result for some points and negative for others, thus the region is unstable.

k
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Figure 3.5: Example 3.3, condition (3.18)
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Figure 3.6: Example 3.3, condition (3.19)

3.6 Discussion

A comparison with other delay systems stability analysis methods is in order. The stability conditions
in (3.12) and the frequency domain techniques (see, for example, Neimark (1949), Olgac and Sipahi
(2004), Ochoa et al. (2013)) actually complement each other. As shown in the presented examples,
it is possible to reduce the conservatism of the necessary stability conditions (3.12) by increasing
the number r and know the exact stability zone by using the boundaries obtained via D-subdivision
method. Notice also that the test we present can substitute the root direction analysis carried out on
the stability boundaries, and the involved accounting process of the number of unstable roots of the
characteristic quasi-polynomial in each region.

Clearly, the location of the roots can also be obtained by the direct computation of the roots based
on existing numerical algorithms (see, Michiels and Vyhlídal (2005) and Chapter 2 in Michiels and
Niculescu (2014) for a brief overview of such methods). However, these two approaches in the fre-
quency domain do not provide a Lyapunov-Krasovskii functional at stable points of the space of pa-
rameters. LMI type sufficient stability conditions known to introduce conservatism (see Chapter 5 in
Niculescu (2001) and Chapter 3 in Fridman (2014)), do give a functional, but only at points where an
LMI solution is obtained.

On the contrary, at each point in the space of parameters where the stability test (3.12) of neutral
type system (2.1) is conclusive, we are able to present the functional of complete type (2.24), which is
defined by the delay Lyapunov matrix associated with the matrix W . This enables using this functional
in a variety of applications such as estimation of the region of attraction of non-linear systems (Gomez
et al. (2017)), robust stability analysis with respect to system parameters and uncertain/time-varying
delay, exponential estimates of the system response (Kharitonov (2005)), analysis of the predictor-
based control scheme for neutral type systems with input delay (Kharitonov (2015)), and so on.

3.7 Conclusion

Necessary stability conditions for neutral time-delay systems that depend exclusively on the delay
Lyapunov matrix are provided. The result is obtained by the combination of new properties of the delay
Lyapunov matrix with an appropriate choice of initial functions. The presented examples illustrate the
efficiency of this new tool for the stability analysis of systems of neutral type with a single delay.

There are two striking facts worthy of mention. The first is that the stability conditions have the
same form as those obtained for pointwise and distributed retarded systems, and the second one is the
reduction of the conservatism of the necessary stability conditions by increasing the number r. Indeed,
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the presented examples show that there are cases in which there exists a number r for which the exact
stability zone in the space of parameters can be achieved. This last observation is related to the results
of sufficiency presented in Chapter 5.
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Chapter 4

Necessary stability conditions:
Multiple commensurate delay case

Consider a neutral type delay system with multiple delays of the form

d

dt

 m∑
j=0

Djx(t− hj)

 =

m∑
j=0

Ajx(t− hj), t ≥ 0, (4.1)

where D0 = In, D1, . . . , Dm, A0, . . . Am ∈ Rn×n, 0 = h0 < h1 < . . . < hm and hj = jh for j = 0,m,
where h > 0 is the basic delay. The solution x(·, ϕ) of system (4.1) satisfies:

1. x(θ, ϕ) = ϕ(θ), θ ∈ [−mh, 0].

2. It is piecewise continuous and satisfies system (4.1) on t ∈ [0,∞) almost everywhere.

3. Sewing condition: the function
∑m
j=0Djx(t − jh, ϕ) is continuous with respect to t (right-

continuous at zero).

The initial function is considered from the space PC([−mh, 0],Rn) and it is assumed to be right-
continuous. In this case, the solution is right-continuous everywhere. We equip the space of initial
functions with the seminorm

‖ϕ‖H =

√√√√√
∥∥∥∥∥∥
m∑
j=0

Djϕ(−jh)

∥∥∥∥∥∥
2

+

∫ 0

−mh
‖ϕ(θ)‖2dθ.

In this chapter, we extend the results presented in Chapter 2 and Chapter 3 for one delay to the
multiple delay case. In the next section we provide the new Cauchy formula for systems of the form
(4.1). The Lyapunov-Krasovskii functionals of complete type as well as the definition of the delay
Lyapunov matrix are introduced in Section 4.2. Section 4.3 is devoted to the obtention of the new
properties of the delay Lyapunov matrix and their relation with a bilinear functional. The necessary
stability conditions for system (4.1) are presented in Section 4.4 and an equivalence in the stability
sense between neutral type systems and the difference equation is established in Section 4.5. Finally,
some illustrative examples ends the chapter.
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4.1 Cauchy formula

The fundamental matrix K(t) of system (4.1) is the solution of the equation

d

dt

 m∑
j=0

DjK(t− jh)

 =

m∑
j=0

AjK(t− jh), (4.2)

with the following initial conditions:

1. For θ = 0, K(θ) = In.

2. For θ < 0, K(θ) = 0.

Moreover,
m∑
j=0

DjK(t − jh) is continuous for t > 0 and right-continuous at t = 0. The matrix K(t) is

also such that

d

dt

 m∑
j=0

K(t− jh)Dj

 =

m∑
j=0

K(t− jh)Aj , a.e.

Similarly to Lemma 2.1, it follows from the sewing condition that the fundamental matrix has
discontinuities at points t = jh, j = 0, 1, . . ..

In the next lemma we state the new Cauchy formula for system (4.1) introduced for the single
delay case in Theorem 2.3.

Lemma 4.1. Given an initial function ϕ ∈ PC ([−mh, 0],Rn), the solution x(t, ϕ) of system (4.1) is

x(t, ϕ) = K(t)

m∑
j=0

Djϕ(−jh) +

m∑
j=1

∫ 0

−jh
K(t− θ − jh)Ajϕ(θ)dθ

−
m∑
j=1

d

dt

(∫ 0

−jh
K(t− θ − jh)Djϕ(θ)dθ

)
, t ≥ 0. (4.3)

Proof. Observe that the integral form of system (4.1) is given by

x(t) =

m∑
j=0

Djϕ(−jh)−
m∑
j=1

Djx(t− jh) +

m∑
j=0

Aj

∫ t

0

x(θ − jh)dθ.

Fix t > 0 and consider the term

J(ξ) =

m∑
j=0

K(t− ξ − jh)Dj

∫ ξ

0

x(θ)dθ, ξ ∈ [0, t].

Differentiating with respect to ξ on [0, t], we have

d

dξ
J(ξ) =−

m∑
j=0

K(t− jh− ξ)Aj
∫ ξ

0

x(θ)dθ +

m∑
j=0

K(t− ξ − jh)Djx(ξ)

=−
m∑
j=1

K(t− jh− ξ)Aj
∫ ξ

0

x(θ)dθ +K(t− ξ)

 m∑
j=0

Djϕ(−jh)−
m∑
j=1

Djx(ξ − jh) +

m∑
j=1

Aj

∫ ξ

0

x(θ − jh)dθ


+

m∑
j=1

K(t− ξ − jh)Djx(ξ).
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Integrating from 0 to t, we arrive at∫ t

0

d

dξ
J(ξ)dξ =−

m∑
j=1

∫ t

0

K(t− jh− ξ)Aj
∫ ξ

0

x(θ)dθdξ +

m∑
j=1

∫ t

0

K(t− ξ)Aj
∫ ξ

0

x(θ − jh)dθdξ

+

∫ t

0

K(t− ξ)

 m∑
j=0

Djϕ(−jh)−
m∑
j=1

Djx(ξ − jh)

 dξ +

m∑
j=1

∫ t

0

K(t− ξ − jh)Djx(ξ)dξ.

By changing the variables η = t− jh− ξ and η = t− ξ in the first two terms, respectively, we get

m∑
j=1

∫ −jh
t−jh

∫ t−jh−η

0

K(η)Ajx(θ)dθdη +

m∑
j=1

∫ t

0

∫ t−η

0

K(η)Ajx(θ − jh)dθdη

=

m∑
j=1

∫ t−jh

0

∫ 0

t−jh−η
K(η)Ajx(θ)dθdη +

∫ t

0

m∑
j=1

∫ t−η−jh

−jh
K(η)Ajx(θ)dθdη

=
m∑
j=1

∫ t−jh

0

∫ 0

t−jh−η
K(η)Ajx(θ)dθdη +

m∑
j=1

(∫ t−jh

0

∫ t−η−jh

−jh
K(η)Ajx(θ)dθdη +

∫ t

t−jh

∫ t−η−jh

−jh
K(η)Ajx(θ)dθdη

)

=

m∑
j=1

∫ t−jh

0

∫ 0

−jh
K(η)Ajϕ(θ)dθdη +

m∑
j=1

∫ t

t−jh

∫ t−η−jh

−jh
K(η)Ajϕ(θ)dθdη.

As
∫ t

0

d

dξ
J(ξ)dξ =

∫ t

0

x(θ)dθ, then

∫ t

0

x(θ)dθ =

m∑
j=1

∫ t−jh

0

∫ 0

−jh
K(η)Ajϕ(θ)dθdη +

m∑
j=1

∫ t

t−jh

∫ t−η−jh

−jh
K(η)Ajϕ(θ)dθdη

+

∫ t

0

K(t− ξ)

 m∑
j=0

Djϕ(−jh)−
m∑
j=1

Djx(ξ − jh)

 dξ +

m∑
j=1

∫ t

0

K(t− ξ − jh)Djx(ξ)dξ.

We obtain (4.3) by differentiating the previous expression with respect to t.

4.2 Lyapunov-Krasovskii functionals of complete type

Let us introduce the definition of the delay Lyapunov matrix.

Definition 4.1. (Ochoa et al. (2009)) The delay Lyapunov matrix U(τ), τ ∈ R, associated with a
given symmetric matrix W is a continuous matrix, continuously differentiable on R\Ω, where Ω =

{jh |j = 0,±1,±2, . . .}, and satisfies the equations

m∑
j=0

U ′(τ − jh)Dj =

m∑
j=0

U(τ − jh)Aj , τ ≥ 0, (4.4)

U(τ) = UT (−τ), (4.5)

−W =

m∑
j=0

m∑
k=0

ATj U((j − k)h)Dk +

m∑
j=0

m∑
k=0

DT
j U((j − k)h)Ak, (4.6)

called, dynamic, symmetry and algebraic properties, respectively.
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We look for a functional such that
d

dt
v0(xt(ϕ)) = −xT (t, ϕ)Wx(t, ϕ), t ≥ 0, W > 0. (4.7)

The functional v0(ϕ) is computed under the exponential stability assumption of system (4.1) and by
using the Cauchy formula (4.3) (see Gomez et al. (2016c) and Kharitonov (2013) for the one delay
case). The lengthy computations are developed in Appendix A. The computed functional is determined
by

v0(ϕ) =

m∑
j=0

m∑
k=0

ϕT (−jh)DT
j U(0)Dkϕ(−kh) + 2

m∑
j=0

m∑
k=1

ϕT (−jh)DT
j

∫ 0

−kh
F

(1)
k (−θ − kh)ϕ(θ)dθ

+

m∑
j=1

m∑
k=1

∫ 0

−jh

∫ 0

−kh
ϕT (θ1)F

(2)
jk (θ1−θ2+jh−kh)ϕ(θ2)dθ2dθ1−

m∑
j=1

m∑
k=1

∫ h

0

ϕT (θ−jh)F
(3)
jk ϕ(θ−jh)dθ,

with

F
(1)
k (τ) =

{
U(τ)Ak − U ′(τ)Dk, τ ∈ R\Ω,
0, τ ∈ Ω

F
(2)
jk (τ) =

ATj F
(1)
k (τ) +DT

j

d

dτ
F

(1)
k (τ), τ ∈ R\Ω

0, τ ∈ Ω

F
(3)
jk =

m∑
p=j

m∑
q=k

DT
p ∆U ′((k − j − q + p)h)Dq,

where ∆U ′(ξ) = U ′(ξ + 0)− U ′(ξ − 0) and

U(τ) =

∫ ∞
0

KT (t)WK(t+ τ)dt, τ ∈ R,

which satisfies Definition 4.1.
In the next theorem, we drop the exponential stability assumption of system (4.1) by using Defini-

tion 4.1. The proof is given in Appendix B.

Theorem 4.1. Let U(τ), τ ∈ R, be the delay Lyapunov matrix. The functional v0(ϕ) satisfies (4.7).

The functional of complete type is given by

v(ϕ) = v0(ϕ) +

m∑
j=1

∫ 0

−jh
ϕT (θ) (Wj + (jh+ θ)Wm+j)ϕ(θ)dθ, ϕ ∈ PC ([−mh, 0],Rn) ,

where the delay Lyapunov matrix is associated to the matrix W = W0 +
∑m
j=1 (Wj + jhWm+j). The

functional v(ϕ) satisfies

d

dt
v(xt) = −

m∑
j=0

xT (t− jh)Wjx(t− jh)−
m∑
j=1

∫ 0

−jh
xT (t+ θ)Wm+jx(t+ θ)dθ, (4.8)

and under the exponential stability assumption, it admits the quadratic lower bound given in the next
theorem.

Theorem 4.2. Let system (4.1) be exponentially stable. For given positive definite matricesWj , j = 0, 2m,
there exists a positive number α such that

v(ϕ) ≥ α

∥∥∥∥∥∥
m∑
j=0

Djϕ(−jh)

∥∥∥∥∥∥
2

, ϕ ∈ PC ([−mh, 0],Rn) .
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Proof. The proof is similar to the one for one delay case presented in Kharitonov (2013). Let us
introduce the functional

v̂(ϕ) = v(ϕ)− α̂

∥∥∥∥∥∥
m∑
j=0

Djϕ(−jh)

∥∥∥∥∥∥
2

, ϕ ∈ PC ([−mh, 0],Rn) .

By equality (4.8), we have
d

dt
v̂(xt) ≤ −χT (t)L(α̂)χ(t),

where χ(t) =
[
xT (t) xT (t− h) . . . xT (t−mh)

]T
and

L(α̂) =


W0 0 . . . 0

0 W1 . . . 0
...

. . .
...

0 0 . . . Wm

 + α̂


A0 +AT0 A1 +AT0 D1 . . . Am +AT0 Dm

DT
1 A0 +AT1 DT

1 A1 +AT1 D1 . . . DT
1 Am +AT1 Dm

...
. . .

...
DT
mA0 +ATm DT

mA1 +ATmD1 . . . DT
mAm +ATmD

T
m

 .

Observe that there exists α̂ = α > 0 such that the L(α) ≥ 0, as the first summand is positive definite.
As system (4.1) is exponentially stable,

v̂(ϕ) ≥
∫ ∞

0

χT (t)L(α)χ(t)dt ≥ 0.

The result straightforwardly follows from the above inequality.

In order to obtain the necessary stability conditions, we use a functional similar to the one in (3.1)
presented in Chapter 3 (see, Egorov and Mondié (2014) and Gomez et al. (2016b)):

v1(ϕ) = v0(ϕ) +

∫ 0

−mh
ϕT (θ)Wϕ(θ)dθ, ϕ ∈ PC ([−mh, 0],Rn) . (4.9)

From the equality
d

dt
v0(xt) = −xT (t, ϕ)Wx(t, ϕ), we have

d

dt
v1(xt) = −xT (t−mh,ϕ)Wx(t−mh,ϕ), t ≥ 0.

The functional v1 admits the following quadratic lower bound.

Theorem 4.3. Let system (4.1) be exponentially stable, then there exists a positive number β such that

v1(ϕ) ≥ β ‖ϕ‖2H , ϕ ∈ PC ([−mh, 0],Rn) .

Proof. Set β = min {α, λmin (W0)}, where α is given by Theorem 4.2. By Theorem (4.2),

v1(ϕ) = v0(ϕ) +

∫ 0

−h
ϕT (θ)(W0 +W1 + hW2)ϕ(θ)dθ ≥ α‖ϕ(0)−Dϕ(−h)‖2 +

∫ 0

−h
ϕT (θ)W0ϕ(θ)dθ,

which implies that v1(ϕ) ≥ β ‖ϕ‖2H.

4.3 Auxiliary results

In this section, we provide some auxiliary results, namely new properties of the delay Lyapunov matrix
and their relation with a bilinear functional.
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4.3.1 New properties of the delay Lyapunov function

We introduce first the dynamic property for negative arguments.

Lemma 4.2. For τ < 0, τ ∈ R\Ω,

m∑
j=0

DT
j U
′(τ + jh) = −

m∑
j=0

ATj U(τ + jh). (4.10)

Proof. From the dynamic property (4.4) and symmetry property (4.5), we have m∑
j=0

DT
j U
′(τ + jh)

T

= −
m∑
j=0

U ′(−τ − jh)Dj , τ < 0, τ ∈ R\Ω

therefore,
m∑
j=0

DT
j U
′(τ + jh) = −

m∑
j=0

ATj U(τ + jh).

Next, an alternative form of writing the algebraic property (4.6) is introduced. It is worthy of
mention that in Velázquez-Velázquez and Kharitonov (2009) this result was presented for the scalar
case under the assumption of exponential stability.

Lemma 4.3. The algebraic property (4.6) can be written as
m∑
j=0

∆U ′(−jh)Dj = −W, (4.11)

where ∆U ′(τ) = U ′(τ + 0)− U ′(τ − 0).

Proof. By continuity of the delay Lyapunov matrix, we have

m∑
j=0

∆U ′(τ − jh)Dj =

m∑
j=0

U(τ − jh+ 0)Aj −
m∑
j=0

U(τ − jh− 0)Aj = 0, τ > 0. (4.12)

By dynamic properties (4.4) and (4.10), the left hand side of algebraic property (4.6) can be written
as

m∑
j=0

(
m∑
k=0

ATk U((k − j)h)

)
Dj +

m∑
k=0

DT
k

 m∑
j=0

U((k − j)h)Aj


= −

m∑
j=0

(
m∑
k=0

DT
k U
′((k − j)h− 0)

)
Dj +

m∑
k=0

DT
k

 m∑
j=0

U ′((k − j)h+ 0)Dj


=

m∑
k=0

m∑
j=0

DT
k ∆U ′((k − j)h)Dj =

m∑
j=0

DT
0 ∆U ′(−jh)Dj .

The last equality holds true by (4.12). Taking into account that D0 = In, we finish the proof.

A generalization of the dynamic properties (4.4) and (4.10) is introduced next.

Lemma 4.4. For τ ∈ R\Ω,

m∑
j=0

U ′(τ − jh)Dj =

m∑
j=0

U(τ − jh)Aj +KT (−τ)W.
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Proof. Let us introduce the function

F (τ̂) =


m∑
j=0

DT
j U
′(τ̂ + jh) +

m∑
j=0

ATj U(τ̂ + jh) +WK(τ̂), τ̂ ∈ R\Ω,

limθ→τ̂+0 F (θ), τ ∈ Ω.

Note that F (τ̂) = 0 for τ̂ ∈ [−mh, 0) as K(θ) = 0 for θ < 0 and by the dynamic property (4.4). We
now prove that it also holds for τ̂ = 0. By continuity of U(τ), τ ∈ R,

m∑
j=0

ATj U(+0 + jh) =

m∑
j=0

ATj U(−0 + jh) = −
m∑
j=0

DT
j U
′(−0 + jh),

hence, by the preceding equation and the algebraic property (4.11),

F (0) =

m∑
j=0

DT
j U
′(+0 + jh)−

m∑
j=0

DT
j U
′(−0 + jh) +W

=

m∑
j=0

DT
j ∆U ′(jh) +W = 0.

Let us prove that
m∑
k=0

F (τ̂ − kh)Dk is continuous at every point for τ̂ > 0. Observe that

m∑
k=0

F (τ̂ − kh)Dk =

m∑
j=0

DT
j

(
m∑
k=0

U(τ̂ + jh− kh)Ak

)

+

m∑
k=0

m∑
j=0

ATj U(τ̂ + jh− kh)Dk +W

m∑
k=0

K(τ̂ − kh)Dk, τ̂ ≥ 0.

According to the definitions of the matrices K(τ) and U(τ), the above sum is continuous everywhere
on τ̂ ≥ 0. As every summand of the function F (τ̂) satisfies an equation of the form (4.4), it satisfies
the delay equation

m∑
j=0

F ′(τ̂ − jh)Dj =

m∑
j=0

F (τ̂ − jh)Aj , τ̂ ≥ 0, a.e.

Since F (τ̂) = 0 for τ̂ ∈ [−mh, 0], then the unique solution of the previous system is the trivial one, i.e,

m∑
i=0

DT
i U
′(τ̂ + ih) +

m∑
i=0

ATi U(τ̂ + ih) +WK(τ̂) = 0.

Transposition and setting τ = −τ̂ , give the result.

Lemma 4.5. For τ ≥ 0 and ξ ∈ R,

U(τ + ξ) = U(ξ)

m∑
j=0

DjK(τ − jh) +

m∑
j=1

∫ 0

−jh
F

(1)
j (ξ− s− jh)K(τ + s)ds+

∫ 0

−τ
KT (s− ξ)WK(τ + s)ds.

(4.13)

Proof. Fix τ̄ ∈ R, and introduce the continuous function

G(τ) =U(−τ̄)− U(−τ̄ − τ)

m∑
i=0

DiK(τ − ih)−
m∑
j=1

∫ 0

−jh
F

(1)
j (−τ̄ − τ − s− jh)K(τ + s)ds

−
∫ 0

−τ
KT (s+ τ̄ + τ)WK(τ + s)ds.
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In order to prove the lemma, it is enough to show thatG(τ) = 0. By the change of variable η = s+τ

in the integral terms, we obtain

G(τ) = U(−τ̄)− U(−τ̄ − τ)

m∑
j=0

DjK(τ − jh)

−
m∑
j=1

∫ τ

τ−jh
F

(1)
j (−τ̄ − η − jh)K(η)dη −

∫ τ

0

KT (η + τ̄)WK(η)dη.

Differentiating this function and using equation (4.2), we arrive at

G′(τ) =U ′(−τ̄ − τ)

m∑
j=0

DjK(τ − jh)− U(−τ̄ − τ)

m∑
j=0

AjK(τ − jh)−
m∑
j=1

F
(1)
j (−τ̄ − τ − jh)K(τ)

+

m∑
j=1

F
(1)
j (−τ̄ − τ)K(τ − jh)−KT (τ + τ̄)WK(τ)

=

− m∑
j=0

F
(1)
j (−τ̄ − τ − jh)−KT (τ̄ + τ)W

K(τ)

+

m∑
j=1

(
U ′(−τ̄ − τ)Dj − U(−τ̄ − τ)Aj + F

(1)
j (−τ̄ − τ)

)
K(τ − jh), τ ≥ 0, τ ∈ R\Ω.

By the definition of F (1)
i and Lemma 4.4, we have that G′(τ) = 0, τ ≥ 0, τ ∈ R\Ω, which implies that

G(τ) is constant. Now, as G(0) = 0 and G is continuous, then G(τ) = 0 for τ ≥ 0 and the lemma is
proved.

Corollary 4.1. For τ ≥ 0 and ξ ≥ 0,

U(τ + ξ) = U(ξ)

m∑
j=0

DjK(τ − jh) +

m∑
j=1

∫ 0

−jh
F

(1)
j (ξ − s− jh)K(τ + s)ds. (4.14)

Corollary 4.2. For τ ≥ 0 and ξ ∈ (lh, (l + 1)h), l = 0, 1, . . .,

U ′(τ + ξ) = U ′(ξ)

m∑
j=0

DjK(τ − jh) +

m∑
j=1

j∑
p=1

∫ (1−p)h

−ph

d

dξ
F

(1)
j (ξ − s− jh)K(τ + s)ds

−
m∑
j=1

j∑
p=1

∆U ′((l + p− j)h)DjK(τ + ξ − (l + p)h), a.e. (4.15)

Proof. The next expression follows from the fact that the matrix K(t) is continuous for t ∈ (lh, (l+1)h)

and from the definition of F (1)
j :

d

dξ

∫ 0

−jh
F

(1)
j (ξ − s− jh)K(τ + s)ds

=

j∑
p=1

∫ (1−p)h

−ph

d

dξ
F

(1)
j (ξ − s− jh)K(τ + s)ds−

j∑
p=1

∆U ′((l + p− j)h)DjK(τ + ξ − (l + p)h), a.e.

Differentiating (4.14) with respect to ξ and using the previous equation, we get (4.15).
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Lemma 4.6. For τ ≥ 0 and ξ ∈ (lh, (l + 1)h), l = 0, 1, . . .,

(
F

(1)
j (−τ − ξ)

)T
=
(
F

(1)
j (−ξ)

)T m∑
k=0

DkK(τ − kh) +

m∑
k=1

∫ 0

−kh
F

(2)
jk (ξ − s− kh)K(τ + s)ds

−
m∑
k=1

k∑
q=1

DT
j ∆U ′((l + q − k)h)DkK(τ + ξ − (l + q)h), a.e. (4.16)

Proof. The result is obtained directly by applying equations (4.14) and (4.15) as follows

(F
(1)
j (−τ − ξ))T = ATj U(τ + ξ) +DT

j U
′(τ + ξ)

= (F
(1)
j (−ξ))T

m∑
k=0

DkK(τ − kh) +

m∑
k=1

∫ 0

−kh
F

(2)
jk (ξ − s− kh)K(τ + s)ds

−
m∑
k=1

k∑
q=1

DT
j ∆U ′((l + q − k)h)DkK(τ + ξ − (l + q)h), a.e.

4.3.2 Bilinear functional

Let us introduce the bilinear functional

z(ϕ1, ϕ2) =

m∑
j=0

m∑
k=0

ϕT1 (−jh)DT
j U(0)Dkϕ2(−kh) +

m∑
j=0

m∑
k=1

ϕT1 (−jh)DT
j

∫ 0

−kh
F

(1)
k (−θ − kh)ϕ2(θ)dθ

+

m∑
k=0

m∑
j=1

∫ 0

−jh
ϕT1 (θ)(F

(1)
j (−θ − jh))T dθDkϕ2(−kh)

+

m∑
j=1

m∑
k=1

∫ 0

−jh

∫ 0

−kh
ϕT1 (θ1)F

(2)
jk (θ1 − θ2 + jh− kh)ϕ2(θ2)dθ2dθ1

−
m∑
j=1

m∑
k=1

∫ h

0

ϕT1 (θ − jh)F
(3)
jk ϕ2(θ − kh)dθ +

∫ 0

−mh
ϕT1 (θ)Wϕ2(θ)dθ, ϕ1, ϕ2 ∈ PC ([−mh, 0],Rn) .

We show that for functions given in terms of the fundamental matrix the bilinear functional reduces
to a simple expression depending uniquely on the delay Lyapunov matrix.

Lemma 4.7. For τ1, τ2 ∈ [0,mh],

z(K(τ1 + ·)γ,K(τ2 + ·)η) = γTU(τ2 − τ1)η. (4.17)

Proof. Observe first that for any function ϕ,

m∑
j=1

m∑
k=1

∫ h

0

ϕ(θ − jh)F
(3)
jk ϕ(θ − kh)dθ

=

m∑
j=1

m∑
k=1

k∑
q=1

j∑
p=1

∫ (1−q)h

−qh
ϕ(θ + (q − p)h)DT

j ∆U ′((q − p− k + j)h)Dkϕ(θ)dθ. (4.18)

Consider now the functions ϕ̄1(θ) = K(τ1 + θ)γ and ϕ̄2(θ) = K(τ2 + θ)η. Substituting ϕ̄1 and ϕ̄2 and
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rearranging some terms in z(ϕ̄1, ϕ̄2), we have

z(K(τ1 + ·)γ,K(τ2 + ·)η)

= γT
( m∑
j=0

KT (τ1 − jh)DT
j

(
m∑
k=0

U(0)DkK(τ2 − kh) +

m∑
k=1

∫ 0

−kh
F

(1)
k (−θ − kh)K(τ2 + θ)dθ

)

+

m∑
j=1

j∑
p=1

∫ (1−p)h

−ph
KT (τ1 + θ1)

(
(F

(1)
j (−θ1 − jh))T

m∑
k=0

DkK(τ2 − kh)

+

m∑
k=1

∫ 0

−kh
F

(2)
jk (θ1 − θ2 + jh− kh)K(τ2 + θ2)dθ2

)
dθ1

−
m∑
j=1

m∑
k=1

∫ h

0

KT (τ1 + θ − jh)F
(3)
jk K(τ2 + θ − kh)dθ +

∫ 0

−mh
KT (τ1 + θ)WK(τ2 + θ)dθ

)
η.

Applying (4.14) in the first summand, (4.16) with ξ = θ1 + jh, l = j − p and (4.18), in the second
one, we get

z(K(τ1 + ·)γ,K(τ2 + ·)η) = γT
( m∑
j=0

KT (τ1 − jh)DT
j U(τ2)

+

m∑
j=1

j∑
p=1

∫ (1−p)h

−ph
KT (τ1 + θ1)(F

(1)
j (−τ2 − θ1 − jh))T dθ1 +

∫ 0

−mh
KT (τ1 + θ)WK(τ2 + θ)dθ

)
η,

and the result is obtained by using equation (4.13).

4.4 Necessary stability conditions for neutral type systems

We are now ready to present the necessary stability conditions for system (4.1). They are obtained
with the help of the results introduced in the previous sections.

Theorem 4.4. Let system (4.1) be exponentially stable and τk ∈ [0,mh], k = 1, r, such that τi 6= τj if
i 6= j, then

Kr(τ1, . . . , τr) > 0, (4.19)

where

Kr(τ1, . . . , τr) =


U(0) U(τ2 − τ1) . . . U(τr − τ1)

UT (τ2 − τ1) U(0) . . . U(τr − τ2)
...

. . .
...

UT (τr − τ1) UT (τr − τ2) . . . U(0)

 .

Proof. We use the same initial function as the one given by (3.11):

ψr(θ) =

r∑
j=1

K(τj + θ)γj , θ ∈ [−mh, 0],

where γj ∈ Rn, j = 1,m, are arbitrary constant vectors. Since v1(ϕ) = z(ϕ,ϕ) for every ϕ, then

v1(ψr) = z(ψr, ψr) =

r∑
k=1

r∑
j=1

z(K(τk + ·)γi,K(τj + ·)γj).
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From equality (4.17), we have

v1(ψr) =

r∑
k=1

r∑
j=1

γTi U(τj − τk)γj = γTKr(τ1, . . . , τr)γ,

where γ =
(
γT1 . . . γTr

)T
and ny Theorem 4.3, we get

v1(ψr) = γTKr(τ1, . . . , τr)γ ≥ β ‖ψr‖2H , β > 0.

Finally, we show that ‖ψr‖H 6= 0 for γ 6= 0. Assume that ‖ψr‖H = 0, by right-continuity of the initial
function ψr and the definition of ‖ · ‖H, ψr(θ) = 0, on θ ∈ [−h, 0], which contradicts to γ 6= 0. Hence,

v1(ψr) = γTKr(τ1, . . . , τr)γ > 0,

which implies
Kr(τ1, . . . , τr) > 0.

4.5 Necessary stability conditions for difference equations

The relevance of the study of the difference equation in continuous time comes from the usefulness
in modelling diverse physical phenomenons. The stability analysis of this class of equations has been
subject of many contributions.

In this section, we provide a result that allows to use the stability conditions of Theorem 4.4 to
study the stability of difference equations. Consider the equation

y(t) =

m∑
j=1

Bjy(t− hj), t ≥ 0, (4.20)

where Bj ∈ Rn×n.
We say that system (4.20) is exponentially stable if there exist µ > 0 and α > 0 such that

‖y(t, φ)‖ ≤ µe−αt sup
θ∈[−mh,0]

‖φ(θ)‖,

with φ ∈ PC ([−mh, 0],Rn).
Let us introduce the neutral type delay system

d

dt

x(t)−
m∑
j=1

Bjx(t− hj)

 = Mx(t)−M
m∑
j=1

Bjx(t− hj), (4.21)

where M ∈ Rn×n. In the next lemma, we state the relation between systems (4.20) and (4.21) in the
stability sense.

Lemma 4.8. Let matrix M be Hurwitz stable. System (4.20) is exponentially stable if and only if (4.21)
does.

Proof. The characteristic equation of system (4.21) is given by

p(s) = det

sIn − m∑
j=1

Bjse
−shj −M +M

m∑
j=1

Bje
−shj

 = det

(sIn −M)

In − m∑
j=1

Bje
−shj


= det(sIn −M) det

In − m∑
j=1

Bje
−shj

 .

This equality implies that system (4.21) is exponentially stable if and only if (4.20) is.
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Theorem 4.5. Let matrix M be Hurwitz stable. If system (4.20) is exponentially stable, then conditions
of Theorem 4.4 holds for system (4.21).

Proof. By observing that system (4.21) is a special case of (4.1), the result follows directly from Lemma
4.8.

4.6 Examples

In this section, we illustrate the necessary stability conditions stated in Theorem 4.4 by some examples.
We follow the same procedure as the presented in Section 3.5 of Chapter 3.

The delay Lyapunov matrix is computed by the semianalytic method (see, for instance, Ochoa et al.
(2009) and Appendix C) and the conditions are tested at 80 × 80 points of the space of parameters.
Some techniques introduced in Gomez et al. (2016a) that are recalled in Appendix C are used to reduce
the computational effort. In each example, the continuous lines correspond to the stability boundaries
obtained by the D-subdivision method (Neimark (1949)).

We first consider the scalar systems with three delays presented in Olgac et al. (2008). The partic-
ularity of this example is that the third delay is a sum of the other two.

Example 4.1. Let a system of the form (4.1) with scalar coefficients be

d

dt
(x(t) + 0.8x(t− η1) + 0.15x(t− η2)) = x(t)− 1.5x(t− η1) + 2x(t− η2)− 5x(t− (η1 + η2)). (4.22)

Consider condition (4.19) with r = 4:

K4(τ1, τ2, τ3, τ4) > 0, (4.23)

where τ1 = 0, τ2 = τ , τ3 =
ηmax

2
and τ4 =

ηmax
2

+ τ , with τ ∈
(

0,
ηmax

2

)
and ηmax = η1 + η2.

We compute the stability map in the space of parameters (η1, η2). In order to do this, we establish as
basic delay h = 0.01 and choose values of η1 and η2 such that η1 = jh and η2 = kh, where j, k = 0, N .
Here N = 80, i.e. the condition is tested at 80×80 points of the space of parameters. For every j, k = 0, N ,
system (4.22) can be expressed as a system of the form (4.1) with delays hj .

Figure 4.1 shows the points in the space of parameters (η1, η2), where (4.23) holds. We observe that

η
1

0 0.2 0.4 0.6 0.8

η
2

0

0.2

0.4

0.6

0.8

Figure 4.1: Example 4.1, condition (4.23)

in this case, the exact stability region is achieved.

The second example concerns a linearized neutral delay predator-prey model introduced in Kuang
(1991).
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Example 4.2. The first approximation of the model proposed in Kuang (1991) is given by a neutral
system of the form

d

dt

(
x(t) +

(
ε 0

0 0

)
x(t− η2)

)
=

(
−a −c
0 0

)
x(t) +

(
0 0

d 0

)
x(t− η1) +

(
−b 0

0 0

)
x(t− η2), (4.24)

where the parameter numerical values are considered to be

a = 2, b = 0.4, c = 1, d = 3.5, η2 = 0.5.

Let us compute the stability map in the space of parameters (η1, ε). We take h = 0.025 as the basic delay
and consider values of η1 such that η1 = jh, j = 1, N , where N = 80. In this case, the delay η2 = 20h.
For every j = 1, N , system (4.24) can be written as a system of the form (4.1).

Consider ηmax = max{η1, η2}. The points in the space of parameters (η1, ε), where

K2(0, τ) > 0, τ ∈ (0, ηmax], (4.25)

and
K4(τ1, τ2, τ3, τ4) > 0, (4.26)

with τ1 = 0, τ2 = τ , τ3 =
ηmax

2
, τ4 =

ηmax
2

+ τ , and τ ∈
(

0,
ηmax

2

)
, hold are depicted in Figures 4.2 and

4.3, respectively. This example allows us to observe that the exact stability zone in the space of parameters
is achieved by increasing the parameter r from r = 2 to r = 4.

η
1

0 0.5 1 1.5 2

ǫ

-2

-1

0

1

2

Figure 4.2: Example 4.2, condition (4.25)



48

η
1

0 0.5 1 1.5 2

ǫ

-2

-1

0

1

2

Figure 4.3: Example 4.2, condition (4.26)

The next example is taken from Rocha et al. (2016). We use Theorem 4.5 to determine the stability
map in the space of the system parameters.

Example 4.3. Let us consider the difference equation in continuous time (4.20) with h1 = 0.5, h2 = 1

and h3 = hmax = 1.5 and matrices

B1 =

(
0.3 1

−1 0.3

)
, B2 =

(
0 0.5ab2

0.2b 0

)
, B3 =

(
0.2a 0

0 0.5a2b

)
. (4.27)

In order to use Theorem 4.5, we consider a neutral type time-delay system of the form (4.21) withM = −I
and matrices Bi, i = 1, 2, 3, given by (4.27). The points where condition

K4(τ1, τ2, τ3, τ4) > 0, (4.28)

with τ1 = 0, τ2 = τ , τ3 =
hmax

2
, τ4 =

hmax
2

+ τ , and τ ∈
(

0,
hmax

2

)
, holds in the space of parameters

(a, b) are depicted on Figure 4.4. Figure 4.5 shows the points where the next condition holds:

K6(τ1, τ2, τ3, τ4, τ5, τ6) > 0, (4.29)

where τ1 = 0, τ2 = τ , τ3 =
hmax

3
, τ4 =

hmax
3

+ τ , τ5 =
2hmax

3
and τ6 =

2hmax
3

+ τ , where τ ∈(
0,
hmax

3

)
. The exact stability zone is achieved by this condition.
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a
-3 -2 -1 0 1 2 3 4 5

b
-0.5

0
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2

Figure 4.4: Example 4.3, condition (4.28).

a
-3 -2 -1 0 1 2 3 4 5
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0.5

1
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Figure 4.5: Example 4.3, condition (4.29).

4.7 Conclusion

Inspired by the ideas of Chapter 3, necessary stability conditions for neutral type systems with multiple
commensurate delays are presented. They preserve the same form as those obtained for a single delay.
The result is based on two preliminary results which are relevant in their own right: the computation
of the functional of complete type by a new Cauchy formula and the proof of new properties of the
delay Lyapunov matrix. Some examples show the efficiency of this new approach in assessing the
stability of neutral type systems with multiple delays.

Additionally, the stability equivalence between a particular neutral type system and difference equa-
tion in continuous time is obtained. This result suggests the application of stability tools known for
neutral type systems, particularly the necessary conditions presented in this contribution, to the stabil-
ity analysis of difference equations.
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Chapter 5

Necessary and sufficient stability
conditions: Single delay case

In this chapter, we present two different finite stability criteria for neutral type systems with single
delay, which are, analogously to the delay free case, given in terms of the positivity of a matrix that de-
pends on the delay Lyapunov matrix. Their main characteristic is that a finite number of mathematical
operations are needed to be tested.

The result is obtained by following similar arguments to the used in the retarded type case by
Egorov (2016): Inspired by the recent work presented by Alexandrova and Zhabko (2016), we use ini-
tial functions from a compact set and approximate them by functions of the form (3.11), which were
used for obtaining the necessary stability conditions in Chapter 3. Then, an estimate of the approxi-
mation error is computed and employed in order to get a finite number of mathematical operations in
the criteria.

The chapter is organized as follows. In Section 5.1 some basic facts on the system are reminded for
the convenience of the reader. Quadratic upper and lower bounds for the functional v1 introduced in
Chapter 3 are provided in Section 5.2. In Section 5.3 some auxiliary results related to the compact set
previously mentioned are presented. The main results of the chapter are introduced in Section 5.4 and
Section 5.5: finite stability criteria given in terms of the delay Lyapunov matrix. They are illustrated
by some academic examples in Section 5.6 and their differences are discussed in Section 5.7. Finally,
the chapter ends with some final remarks.

5.1 Basic facts on the system

For the convenience of the reader, throughout the chapter, we recall some elements previously pre-
sented. We consider the system introduced in Chapter 3:

d

dt
(x(t)−Dx(t− h)) = A0x(t) +A1x(t− h), (5.1)

where A0, A1 and D are matrices in Rn×n, and h > 0 is the delay.

5.1.1 Fundamental matrix

The fundamental matrix K(t) of system (5.1) satisfies the equation

d

dt
(K(t)−DK(t− h)) = A0K(t) +A1K(t− h), (5.2)
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with the initial condition K(t) = In for t = 0 and K(t) = 0 for t < 0. Lemma 2.1 states that the
fundamental matrix has jumps at t = jh, j = 0, 1, 2, . . ., i.e.,

∆K(jh) = Dj , j = 0, 1, 2 . . . ,

and that the value of the fundamental matrix at points t = jh, coincides with the right-hand side value,
i.e. K(jh) = K(jh+ 0).

From the previously recalled, it follows that, for t ∈ [0, h], the fundamental matrix is given by

K(t) =

{
eA0t, t ∈ [0, h),

eA0h +D t = h.
(5.3)

5.1.2 Schur stability

Next, we introduce a formal definition of stability of matrix D.

Definition 5.1. (Niculescu (2001)) We say that matrix D is Schur stable if all its eigenvalues are inside
the unit circle.

As was shown in Chapter 1, the stability of matrix D is a necessary stability condition for the
stability of neutral type systems. Indeed, a well-known assumption in the stability study of system
(5.1) is the Schur stability of matrix D (see, for instance, Hale and Lunel (1993) and Fridman (2014)).
An upper estimate of the norm of this matrix is required in the subsequent results and one way for
computing it is given in the next lemma.

Lemma 5.1 (Kharitonov et al. (2006)). A Schur stable matrix D admits the following upper bound:

‖Dk‖ ≤ dρk,

with ρ ∈ (0, 1) and d =

√
λmax(Q)

λmin(Q)
, where Q ∈ Rn×n is a positive definite matrix solution of

DTQD − ρ2Q < 0.

5.1.3 Spectral abscissa

Let s ∈ C be an eigenvalue of system (5.1). The spectral abscissa of system (5.1) is defined as (Michiels
and Niculescu (2014)):

c = sup
{
Re(s)|det(sIn −De−shs−A0 −A1e

−sh) = 0
}
.

The following lemma provides an estimate of c.

Lemma 5.2. Assume that matrix D is Schur stable. Every eigenvalue s ∈ C of system (5.1) satisfies

Re(s) ≤ d

1− ρ
(‖A0‖+ ‖A1‖) ,

where d and ρ are determined by Lemma 5.1.

Proof. If Re(s) ≤ 0, the upper bound obviously holds. Let s be an eigenvalue of system (5.1) with
Re(s) > 0 and consider its corresponding eigenvector c ∈ Cn. The following equality holds:

s
(
In − e−shD

)
c =

(
A0 +A1e

−sh) c. (5.4)
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As matrix D is Schur stable, the inverse of the matrix In−e−shD exists. Indeed, since every eigenvalue
of the matrix D is inside the unit circle, then

det
(
In − e−shD

)
= det

(
e−sh(eshIn −D)

)
= e−nsh det

(
eshIn −D

)
6= 0.

Notice that
‖c‖ ≤ ‖(In − e−shD)−1‖‖(In − e−shD)c‖,

therefore, from equation (5.4),

|s|‖c‖
‖(In − e−shD)−1‖

≤ |s|‖(In − e−shD)c‖ ≤ (‖A0‖+ ‖A1‖) ‖c‖,

which implies that
|s| ≤ (‖A0‖+ ‖A1‖) ‖(In − e−shD)−1‖.

We now estimate the multiplier of the previous expression. Consider the following equality:

(In − e−shD)−1 = In +

∞∑
k=1

e−kshDk.

As |e−ksh| < 1 and by Lemma 5.1, ‖Dk‖ ≤ dρk, we get,

‖(In − e−shD)−1‖ =

∥∥∥∥∥
∞∑
k=0

e−kshDk

∥∥∥∥∥ ≤
∞∑
k=0

dρk =
d

1− ρ
,

hence
Re(s) ≤ |s| ≤ d

1− ρ
(‖A0‖+ ‖A1‖) .

5.2 Functional v1

The following key functional was introduced in Chapter 3:

v1(ϕ) = v0(ϕ) +

∫ 0

−h
ϕT (θ)Wϕ(θ)dθ, W > 0, ϕ ∈ PC ([−h, 0],Rn) , (5.5)

where v0(ϕ), given by equation (2.22), is determined by the delay Lyapunov matrix associated with
the matrix W . The derivative of the functional v1(ϕ) along the solutions of the system is

d

dt
v1(xt(ϕ)) = −xT (t− h, ϕ)Wx(t− h, ϕ), ϕ ∈ PC ([−h, 0],Rn) . (5.6)

We also recall the bilinear functional introduced in Chapter 3:

z(ϕ1, ϕ2) = (ϕ1(0)−Dϕ1(−h))
T
U(0) (ϕ2(0)−Dϕ2(−h))+(ϕ1(0)−Dϕ1(−h))

T
∫ 0

−h
F1(−h−θ)ϕ2(θ)dθ

+

∫ 0

−h
ϕT1 (θ)FT1 (−h− θ)dθ (ϕ2(0)−Dϕ2(−h)) +

∫ 0

−h

∫ 0

−h
ϕT1 (θ1)F2(θ1 − θ2)ϕ2(θ2)dθ2dθ1

−
∫ 0

−h
ϕT1 (θ)∆U ′(0)ϕ2(θ)dθ, ϕ1, ϕ2 ∈ PC ([−h, 0],Rn) , (5.7)

We provide next an upper bound for the previously mentioned functionals.



54

Lemma 5.3. For any ϕ1, ϕ2 ∈ PC ([−h, 0],Rn),

|v1(ϕ)| ≤ β2‖ϕ‖2h,
|z(ϕ1, ϕ2)| ≤ β2‖ϕ1‖h‖ϕ2‖h,

where
β2 = (1 + ‖D‖)2 ‖U(0)‖+ 2h (1 + ‖D‖) f1 + h2f2 + h‖∆U ′(0)‖,

with

f1 = sup
τ∈(0,h)

‖F1(τ)‖, f2 = sup
τ∈(0,h)

‖F2(τ)‖.

Proof. We estimate an upper bound of each term of the bilinear functional (5.7) as follows. For the
first term, we have:∣∣∣(ϕ1(0)−Dϕ1(−h))

T
U(0) (ϕ2(0)−Dϕ2(−h))

∣∣∣ ≤ (1 + ‖D‖)2 ‖U(0)‖‖ϕ1‖h‖ϕ2‖h.

The next two summands are bounded by the same estimate:∣∣∣∣(ϕ1(0)−Dϕ1(−h))
T
∫ 0

−h
F1(−h− θ)ϕ2(θ)dθ

∣∣∣∣ ≤ f1(1 + ‖D‖)h‖ϕ1‖h‖ϕ2‖h

∣∣∣∣∫ 0

−h
ϕT1 (θ)FT1 (−h− θ)dθ (ϕ2(0)−Dϕ2(−h))

∣∣∣∣ ≤ f1(1 + ‖D‖)h‖ϕ1‖h‖ϕ2‖h.

For the double integral term, we get,∣∣∣∣∫ 0

−h

∫ 0

−h
ϕT1 (θ1)F2(θ1 − θ2)ϕ2(θ2)dθ2dθ1

∣∣∣∣ ≤ h2f2‖ϕ1‖h‖ϕ2‖h.

Finally, the last term is bounded as∣∣∣∣∫ 0

−h
ϕT1 (θ)∆U ′(0)ϕ2(θ)dθ

∣∣∣∣ ≤ h‖∆U ′(0)‖‖ϕ1‖h‖ϕ2‖h.

The upper bound for the bilinear functional z(·, ·) and v1(·) directly follows from the previous estimates
and from the equality v1(ϕ) = z(ϕ,ϕ), respectively.

In the next theorem, it is shown that the functional v1(ϕ) satisfies a quadratic lower bound of the
form v1(ϕ) ≥ β1‖ϕ(0) − Dϕ(−h)‖2 and that one can estimate the number β1 > 0 when system is
stable.

Theorem 5.1. Assume that matrix D is Schur stable. System (5.1) is exponentially stable if and only if
the Lyapunov condition holds and for a number β1 > 0,

v1(ϕ) ≥ β1 ‖ϕ(0)−Dϕ(−h)‖2 , ϕ ∈ PC ([−h, 0],Rn) . (5.8)

Furthermore, if system (5.1) is exponentially stable,

v1(ϕ) ≥ β?A ‖ϕ(0)−Dϕ(−h)‖2 , ϕ ∈ PC ([−h, 0],Rn) ,

where β?A =
β

2
and β > 0 is such that

P (β) =

(
W 0

0 W

)
+ β

(
AT0 +A0 −AT0 D +A1

−DTA0 +AT1 −AT1 D −DTA1

)
≥ 0. (5.9)
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Proof. Necessity: Consider the functional

ṽ1(ϕ) = v1(ϕ)− 1

2

∫ 0

−h
ϕT (θ)Wϕ(θ)dθ − β

2
‖ϕ(0)−Dϕ(−h)‖2.

Differentiating this functional with respect to the time, we obtain

d

dt
ṽ1(xt) =− xT (t− h)Wx(t− h)− 1

2
xT (t)Wx(t) +

1

2
xT (t− h)Wx(t− h)

− β (A0x(t) +A1x(t− h))
T

(x(t)−Dx(t− h))

= −1

2
x̂T (t)P (β)x̂(t),

where x̂(t) =
(
x(t)T xT (t− h)

)T
. As system (5.1) is stable, x(t)→ 0 as t→∞, and

lim
t→∞

∫ t

0

d

ds
ṽ1(xs)ds = −ṽ1(ϕ),

hence,

ṽ1(ϕ) = lim
t→∞

∫ t

0

1

2
x̂T (s)P (β)x̂(s)ds ≥ 0,

which implies that

v1(ϕ) ≥ 1

2

∫ 0

−h
ϕT (θ)Wϕ(θ)dθ +

β

2
‖ϕ(0)−Dϕ(−h)‖2 ≥ β

2
‖ϕ(0)−Dϕ(−h)‖2.

Sufficiency: Because of equation (5.6),

v1(ϕ) ≥ v1(xt) ≥ β1 ‖x(t, ϕ)−Dx(t− h, ϕ)‖2 . (5.10)

By Lemma 5.3, there is a number β2 > 0 such that v1(ϕ) ≤ β2 ‖ϕ‖2h, then

β1 ‖x(t, ϕ)−Dx(t− h, ϕ)‖2 ≤ v1(ϕ) ≤ β2 ‖ϕ‖2h ,

and therefore

‖x(t, ϕ)−Dx(t− h, ϕ)‖ ≤

√
β2

β1
‖ϕ‖h .

It implies that
x(t, ϕ) = Dx(t− h, ϕ) + ξ(t),

where ξ is such that

‖ξ(t)‖ ≤

√
β2

β1
‖ϕ‖h , t ≥ 0.

By iterating k − 1 times the previous equation, for t ∈ [(k − 1)h, kh), we get

x(t, ϕ) = Dkx(t− kh, ϕ) +

k−1∑
j=0

Djξ(t− jh).

As matrix D is Schur stable, by Lemma 5.1, there exist d ≥ 1 and ρ ∈ (0, 1) such that
∥∥Dk

∥∥ ≤ dρk.
Then,

‖x(t, ϕ)‖ ≤

dρk +

k−1∑
j=0

dρj

√
β2

β1

 ‖ϕ‖h , t ≥ 0.
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Therefore,

‖x(t, ϕ)‖ ≤ d

1− ρ

√
β2

β1
‖ϕ‖h, t ≥ 0,

which means that system (5.1) is stable in the Lyapunov sense. In addition, the stability is exponential
because the Lyapunov condition holds.

Remark 5.1. Since the greater the number β?A is, the less computational effort (see Theorem 5.3), we take
β as the first value for which the determinant of the matrix P (β) is zero.

5.3 Auxiliary results

We define the set of initial functions

S :=
{
ϕ ∈ C(1) ([−h, 0],Rn)

∣∣∣‖ϕ‖h = ‖ϕ(0)‖ = 1, ‖ϕ′‖ ≤ µM
}
,

with M = ‖A0‖+ ‖A1‖ and µ =
d

1− ρ
, where the numbers d and ρ are given by Lemma 5.1.

We present some auxiliary results related to the set S that are key in the attainment of the stability
conditions in Section 5.4 and Section 5.5. We introduce first a stability condition in terms of the
functional (5.5) for initial functions from the set S and then, we show that any arbitrary function that
belongs to the set S can be approximated by a function of the form (3.11).

5.3.1 Sufficient stability condition in terms of the functional v1

The next lemma is useful for proving the main theorem of this section.

Lemma 5.4. Let E1 and E2 be real matrices in Rn×n. If det(E1 + iE2) = 0, then there exist two vectors
c1 and c2 such that

1. (E1 + iE2)(c1 + ic2) = 0.

2. ‖c1‖ = 1.

3. ‖c2‖ ≤ 1.

4. cT1 c2 = 0.

Proof. Since det(E1 + iE2) = 0, there exists a complex vector ξ1 + iξ2 6= 0 such that

(E1 + iE2) (ξ1 + iξ2) = 0.

Introduce now the following vectors

ĉ1 =ξ1 + bξ2

ĉ2 =− bξ1 + ξ2,

where b is a real number, and observe that

(E1 + iE2) (ĉ1 + iĉ2) = 0.

Consider the product
ĉT1 ĉ2 = (1− b2)ξT1 ξ2 − b

(
‖ξ1‖2 − ‖ξ2‖2

)
.
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If ξT1 ξ2 = 0, we set b = 0, otherwise, we take any real solution of the following quadratic equation,
which always has two:

b2 + b
‖ξ1‖2 − ‖ξ2‖2

ξT1 ξ2
− 1 = 0.

In both cases, we get ĉT1 ĉ2 = 0. Now, at least one of the vectors ĉ1 and ĉ2 is nonzero and the desired
vectors c1 and c2 can be constructed as follows: if ‖ĉ1‖ ≥ ‖ĉ2‖, we have

c1 =
ĉ1
‖ĉ1‖

, c2 =
ĉ2
‖ĉ1‖

,

and if ‖ĉ1‖ < ‖ĉ2‖,

c1 =
ĉ2
‖ĉ2‖

, c2 = − ĉ1
‖ĉ2‖

.

The basic idea of the following result is borrowed from Alexandrova and Zhabko (2016).

Theorem 5.2. Assume that matrix D is Schur stable. System (5.1) is exponentially stable if the Lyapunov
condition holds and there exists β1 > 0 such that for any initial function ϕ ∈ S

v1(ϕ) ≥ β1. (5.11)

Proof. Assume by contradiction that system (5.1) is not exponentially stable but the Lyapunov condi-
tion and inequality (5.11) hold. It means that there exists an eigenvalue s = α + iβ with α > 0, and
two vectors c1, c2 ∈ Rn that satisfy conditions of Lemma 5.4 such that

x(t, ϕ) = eαtφ(t), φ(t) = cos (βt) c1 − sin (βt) c2, t ∈ (−∞,∞), (5.12)

is a solution of system (5.1). The initial function corresponding to solution (5.12) is given by

ϕ(θ) = x(θ, ϕ), θ ∈ [−h, 0].

Let us prove first that ϕ ∈ S. By Lemma 5.4, notice that ‖ϕ(0)‖ = 1 and ‖φ(t)‖2 = cos2(βt)‖c1‖2 +

sin2(βt)‖c2‖2 ≤ 1. The last inequality implies that max
t∈R
‖φ(t)‖ = 1, hence

‖x(t)‖ = eαt ‖φ(t)‖ ≤ ‖ϕ(0)‖ = 1, t ≤ 0,

and particularly ‖x(θ)‖ = ‖ϕ(θ)‖ ≤ 1 for θ ∈ [−h, 0]. Now, since x(t, ϕ) satisfies (5.1) for t ∈ (−∞,∞),
we have

‖ẋ(t)−Dẋ(t− h)‖ ≤ ‖A0‖ ‖x(t)‖+ ‖A1‖ ‖x(t− h)‖ ≤M, t ≤ 0.

The previous expression means that there is a function ξ that satisfies ‖ξ(t)‖ ≤M for t ≤ 0 and

y(t) = Dy(t− h) + ξ(t), (5.13)

where y(t) = ẋ(t). Notice that

y(t) =

∞∑
j=0

Djξ(t− jh)

satisfies (5.13). Indeed, by substituting it into (5.13) we get

y(t)−Dy(t−h) =

∞∑
j=0

Djξ(t−jh)−
∞∑
j=0

D(j+1)ξ(t−(j+1)h) =

∞∑
j=0

Djξ(t−jh)−
∞∑
j=1

Djξ(t−jh) = ξ(t).
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As matrix D is Schur stable, the sum converges and, by Lemma 5.1, there are constants ρ ∈ (0, 1) and
d ≥ 1 such that

∥∥Dj
∥∥ ≤ dρj . Then, we obtain

‖y(t)‖ ≤
∞∑
j=0

dρjM = µM, t ≤ 0.

From the previous inequality we arrive at

‖ϕ′(θ)‖ = ‖y(θ)‖ ≤ µM, θ ∈ [−h, 0].

Now, from equation equation (5.6),

v1(ϕ) = v1(xT ) +

∫ T−h

−h
xT (t, ϕ)Wx(t, ϕ)dt, W > 0, (5.14)

where T = 2π/β if β 6= 0, and T = 1 if β = 0. Since T is the period of the function φ(t), we have
x(T + θ) = eαTϕ(θ) and

v1(xT (ϕ)) = e2αT v1(ϕ),

which implies that,

v1(ϕ) = − 1

e2αT − 1

∫ T−h

−h
xT (t, ϕs)Wx(t, ϕs)dt ≤ −

λmin(W )

e2αT − 1

∫ T−h

−h
‖x(t)‖2dt

By Lemma 5.4,∫ T−h

−h
‖x(t)‖2dt =

∫ T−h

−h
e2αt

(
cos2(βt)‖c1‖2 + sin2(βt)‖c2‖2

)
dt ≥

∫ T−h

−h
e2αt cos2(βt)dt

=
e−2αh

(
e2αT − 1

)
4α

(
cos2(βh) +

(α cos(βh)− β sin(βh))
2

α2 + β2

)

Therefore,

v1(ϕ) ≤ −λmin(W )e−2αh

4α

(
cos2(βh) +

(α cos(βh)− β sin(βh))
2

α2 + β2

)
.

The previous inequality contradicts the assumption and ends the proof.

5.3.2 Approximation of the set S
The function

ψr(θ) =

r∑
j=1

K(τj + θ)γj , (5.15)

previously introduced in (3.11), has played a key role in the obtention of the necessary stability con-
ditions in Chapter 3 and Chapter 4. In this section, we show that it is possible to approximate any
function from the set S by a function of the form (5.15).

In order to do this, we construct the function ψr in (5.15) as suggested by Egorov (2016) for the
retarded type case:

1. Set τj = (j − 1)δr, where δr =
h

r − 1
and r ≥ 2.

2. Choose vectors γj , j = 1, r, such that

ψr(−τj) = ϕ(−τj). (5.16)



59

An estimate of the error Rr = ϕ−ψr considering the function ψr constructed by the above steps is
given in the next lemma.

Lemma 5.5. For every ϕ ∈ S
‖Rr‖h = ‖ϕ− ψr‖h ≤ εr, (5.17)

where

εr =
(µM + L)eLh

1/δr + L
,

and L is the Lipschitz constant of K(t) on t ∈ (0, h), i.e., it is such that ‖K ′(t)‖ ≤ L.

Proof. By equation (5.16), in particular Rr(−τj) = ϕ(−τj)− ψr(−τj) = 0, hence,

‖Rr‖h = sup
θ∈[−h,0]

‖ϕ(θ)− ψr(θ)‖ = max
j∈{2,...,r}

sup
θ∈(−τj ,−τj−1)

‖ϕ(θ)− ψr(θ)‖.

As ‖ϕ′(θ)‖ ≤ µM , then

‖ϕ(θ)− ϕ(−τj)‖ ≤ µM(θ + τj), θ ∈ (−τj ,−τj−1). (5.18)

Observe that ‖K ′(t)‖ ≤ L, for t ∈ (0, h), implies that

‖K(t1)−K(t2)‖ ≤ L|t1 − t2|, t1, t2 ∈ (0, h). (5.19)

Now, take a number j ∈ {2, . . . , r}. From expressions (5.16), (5.18) and (5.19), we obtain the next
sequence of inequalities:

‖ϕ(θ)− ψr(θ)‖ =‖ϕ(θ)− ϕ(−τj) + ψr(−τj)− ψr(θ)‖
≤‖ϕ(θ)− ϕ(−τj)‖+ ‖ψr(−τj)− ψr(θ)‖

≤µM(θ + τj) +

r∑
k=j

‖K(τk − τj)−K(τk + θ)‖‖γk‖

≤ (τj + θ)

µM + L

r∑
k=j

‖γk‖

 , θ ∈ (−τj ,−τj−1).

We look for an upper bound estimate of ‖γk‖. By equation (5.16), we have

‖γr‖ = ‖ϕ(−τr)‖ ≤ ‖ϕ(0)‖ = 1,

and
r∑
k=j

K(τk − τj)γk = γj +

r∑
k=j+1

K(τk − τj)γk = ϕ(−τj), j = 2, r − 1.

In view of the previous equality, we obtain

‖γj‖ =

∥∥∥∥∥∥ϕ(−τj)−
r∑

k=j+1

K(τk − τj)γk

∥∥∥∥∥∥
=

∥∥∥∥∥∥ϕ(−τj)− ϕ(−τj+1) + ψr(−τj+1)−
r∑

k=j+1

K(τk − τj)γk

∥∥∥∥∥∥
≤‖ϕ(−τj)− ϕ(−τj+1)‖+

r∑
k=j+1

‖K(τk − τj+1)−K(τk − τj)‖ ‖γk‖

≤µMδr + Lδr

r∑
k=j+1

‖γk‖.
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Using the preceding inequality, one can prove by induction that

‖γj‖ ≤ δr (µM + L) (1 + δrL)
r−j−1

, j = 2, r − 1,

therefore,

µM + L

r∑
k=2

‖γk‖ ≤ µM + Lδr (µM + L)

r−1∑
k=2

(1 + δr)
r−k−1

+ L.

Expanding the sum and rearranging terms in the right hand side, we arrive at

µM + L

r∑
k=2

‖γk‖ ≤ (µM + L) (1 + Lδr)
r−2

.

Finally, since (τi + θ) ≤ δr for θ ∈ (−τi,−τi−1), we have

‖Rr‖h ≤ max
j∈{2,...,r}

sup
θ∈(−τj ,−τj−1)

µM + L

r∑
k=j

‖γk‖

 (τj + θ)

≤

(
µM + L

r∑
k=2

‖γk‖

)
δr ≤ (µM + L) (1 + Lδr)

r−2
δr

=
δr(µM + L)

1 + Lδr

(
1 +

Lh

r − 1

)r−1

≤ (µM + L)eLh

1/δr + L
.

Remark 5.2. The estimate of the supremum norm of the error Rr is of the same form as the one obtained
in Egorov (2016) for the retarded type case, except for the term µ, which indeed is related with the matrix
D.

5.4 Fundamental and Lyapunov matrices based stability criterion

As in Subsection 5.3.2, we consider

τj = (j − 1)δr, j = 1, r, r ≥ 2, (5.20)

and the matrices with constant coefficients

Kr = [U(τj − τk)]
r
k,j=1 =

[
U

(
j − k
r − 1

h

)]r
k,j=1

,

and

Ar =


KT (τ1)K(τ1) KT (τ1)K(τ2) . . . KT (τ1)K(τr − 0)

KT (τ2)K(τ1) KT (τ2)K(τ2) . . . KT (τ2)K(τr − 0)
...

. . .
...

KT (τr − 0)K(τ1) KT (τr − 0)K(τ2) . . . KT (τr − 0)K(τr − 0)

 .

Henceforth, we assume that K1 = U(0). We recall that, from equality (3.14),

v1(ψr) = γTKrγ,

with γ =
(
γT1 . . . γTr

)T
.

In the next theorem, we provide a stability criterion for the particular case in which ‖D‖ < 1, which
is based on the delay Lyapunov matrix and the fundamental matrix of the system.
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Theorem 5.3. Assume that matrix D satisfies ‖D‖ < 1. System (5.1) is exponentially stable if and only
if the Lyapunov condition and the following hold:

KrA − β1ArA > 0, (5.21)

where
rA = 1 +

⌈
eLhh (µM + L)

(
αA +

√
αA(αA + 1)

)
− Lh

⌉
, (5.22)

with αA =
β2

β1(1− ‖D‖)2
. Here, β1 ∈ (0, β?A) and β2 is given by Lemma 5.3.

Proof. Necessity: Consider the function (5.15). By the initial conditions of the fundamental matrix and
from the fact that τrA = τr = h, the following chain of equalities holds for every γj ∈ Rn, j = 1, rA:

ψrA(0)−DψrA(−h) =

rA∑
j=1

K(τj)γj −D
rA∑
j=1

K(τj − h)γj =

rA∑
j=1

K(τj)γj −DK(τrA − h)γrA

=

rA−1∑
j=1

K(τj)γj +K(h)γrA −DγrA =

rA−1∑
j=1

K(τj)γj +K(h− 0)γrA ,

which implies that
‖ψrA(0)−DψrA(−h)‖2 = γTArAγ,

where γ =
(
γT1 . . . γTr

)T
. By Theorem 5.1 and the previous identity, we have, for every γ ∈ RnrA

such that γTArAγ > 0,

γTKrAγ−β1γ
TArAγ = v1(ψrA)−β1‖ψrA(0)−DψrA(−h)‖2 > v1(ψrA)−β?A‖ψrA(0)−DψrA(−h)‖2 ≥ 0.

For the case in which γTArAγ = 0, γ 6= 0, the inequality γTKrAγ − β1γ
TArAγ > 0 remains true, since

from Theorem 3.2, for every number rA, KrA > 0.
Sufficiency: Consider a function ϕ ∈ S and RrA = ϕ− ψrA . Observe that

v1(ϕ) = z(ψrA +RrA , ψrA +RrA)

= z(ψrA , ψrA) + 2z(ψrA , RrA) + z(RrA , RrA)

= v1(ψrA) + 2z(ϕ,RrA)− v1(RrA).

By construction, ψrA(0) = ϕ(0), ψrA(−h) = ϕ(−h) and ‖ϕ‖h = 1, hence, from Lemma 5.3 and the fact
that ‖D‖ < 1, we get

v1(ϕ) =v1(ψrA)− β1‖ψrA(0)−DψrA(−h)‖2 + β1‖ϕ(0)−Dϕ(−h)‖2 + 2z(ϕ,RrA)− v1(RrA)

≥v1(ψrA)− β1‖ψrA(0)−DψrA(−h)‖2 + β1(1− ‖D‖)2‖ϕ‖2h − 2β2‖RrA‖h − β2‖RrA‖2h
=v1(ψrA)− β1‖ψrA(0)−DψrA(−h)‖2 + β1(1− ‖D‖)2 − 2β2‖RrA‖h − β2‖RrA‖2h.

For a number rA given by (5.22), it follows from Lemma 5.5 that

‖RrA‖h ≤
(µM + L)eLhh

rA − 1 + Lh
≤ β̄1

β2 +
√
β2(β2 + β̄1)

,

where β̄1 = (1− ‖D‖)2β1. From the above inequality, we have

β̄1 − 2β2‖RrA‖h − β2‖RrA‖2h ≥ 0.

Indeed,

β̄1 − 2β2‖RrA‖h − β2‖RrA‖2h ≥

≥ 1

(β2 +
√
β2(β2 + β̄1))2

(
β̄1

(
β2 +

√
β2(β2 + β̄1)

)2

− 2β2β̄1

(
β2 +

√
β2(β2 + β̄1)

)
− β2β̄

2
1

)
= 0
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Therefore,

v1(ϕ) ≥ v1(ψrA)− β1‖ψrA(0)−DψrA(−h)‖2 = γTKrAγ − β1γ
TArAγ ≥ λmin (KrA − β1ArA) ‖γ‖2.

Notice that, as 1 = ‖ψrA(0)‖2 = γT
[
KT (τi)K(τj)

]rA
i,j=1

γ,

1 ≤ λmax

([
KT (τi)K(τj)

]rA
i,j=1

)
‖γ‖2, (5.23)

which implies that there exists a number γ̃ > 0 such that ‖γ‖ ≥ γ̃, and in turn that

v1(ϕ) ≥ β̃,

with β̃ = λmin (KrA − β1ArA) γ̃2 > 0. By Theorem 5.2 and the previous inequality, we conclude that
system (5.1) is exponentially stable.

Remark 5.3. For the sake of illustration, some particular cases of the stability criterion (5.21) are con-
sidered next . If rA = 2,

K2 − β1A2 =

(
U(0) U(h)

UT (h) U(0)

)
− β1

(
In K(h− 0)

KT (h− 0) KT (h− 0)K(h− 0)

)
> 0,

if rA = 3,

K3 − β1A3 =

=

 U(0) U
(
h
2

)
U(h)

UT
(
h
2

)
U(0) U

(
h
2

)
UT (h) UT

(
h
2

)
U(0)

− β1

 In K
(
h
2

)
K(h− 0)

KT
(
h
2

)
KT

(
h
2

)
K
(
h
2

)
KT

(
h
2

)
K(h− 0)

KT (h− 0) KT (h− 0)K
(
h
2

)
KT (h− 0)K(h− 0)

 > 0,

and so on.

5.5 Lyapunov matrix based stability criterion

In this section, we provide a new stability criterion that, unlike the one presented in Section 5.4, is
given uniquely in terms of the delay Lyapunov matrix and does not require the assumption ‖D‖ < 1.
The cornerstone of the new stability criterion is the following instability result.

Lemma 5.6. Assume that matrix D is Schur stable. If system (5.1) is unstable, there exists ϕ ∈ S such
that

v1(ϕ) ≤ −β?,

with

β? =
λmin(W )

4µM
e−2µMh cos2(bh),

where b exists and is unique on
(

0,
π

2h

)
, and satisfies

1− µM√
(µM)2 + b2

− cos2(bh) = 0.

Proof. As system (5.1) is unstable, there exists an eigenvalue s = α + iβ with α > 0 and β ≥ 0, and
two vectors c1, c2 ∈ Rn that fulfill the conditions of Lemma 5.4 such that the following expression is a
solution of system (5.1):

x(t, ϕ) = eαtφ(t), φ(t) = cosβtc1 − sinβtc2, t ∈ (−∞,∞), (5.24)
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which corresponds to the initial function

ϕ(θ) = x(θ, ϕ), θ ∈ [−h, 0].

Notice that the same solution is used in the proof of Theorem 5.2. There, it is shown that ϕ ∈ S and
that

v1(ϕ) ≤ −λmin(W )e−2αh

4α
f(β),

where

f(β) = cos2(βh) +
(α cos(βh)− β sin(βh))

2

α2 + β2

=1 +
α

α2 + β2
(α cos(2βh)− β sin(2βh)) .

We focus now on providing a lower bound different from zero for the function f(β). Notice first that

f(β) ≥ cos2(βh), β ≥ 0,

and that, since α ≤ d

1− ρ
(‖A0‖+ ‖A1‖) = µM by Lemma 5.2,

f(β) =1 +
α√

α2 + β2

(
α√

α2 + β2
cos(2βh)− β√

α2 + β2
sin(2βh)

)

≥1− α√
α2 + β2

≥ 1− µM√
(µM)2 + β2

, β ≥ 0.

In particular,
f(β) ≥ cos2(bh), 0 ≤ β ≤ b < π

2h
,

and
f(β) ≥ 1− µM√

(µM)2 + b2
, β ≥ b > 0

As
1− µM√

(µM)2 + b2
− cos2(bh) = 0,

we have
cos2(bh) = 1− µM√

(µM)2 + b2
,

hence
f(β) ≥ cos2(bh), β ≥ 0.

Since
g(β) = 1− µM√

(µM)2 + β2
− cos2(βh), β ∈

(
0,
π

2h

)
,

is an increasing function, and

g(0) = −1 and g
( π

2h

)
= 1−

(
1 +

(
π

2hµM

)2
)−1/2

> 0,

the number b on (0, π/2h) such that g(b) = 0 exists and is unique. Therefore, from the previously
obtained and the fact that 0 < α ≤ µM , we get the desired result:

v1(ϕ) ≤ −λmin(W )e−2αh

4α
f(β) ≤ −λmin(W )e−2µMh

4µM
cos2(bh) = −β?.
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We are now ready to present the main result of this section. We consider the same block matrix Kr
introduced in Section 5.4.

Theorem 5.4. Assume that matrix D is Schur stable. System (5.1) is exponentially stable if and only if
the Lyapunov condition and the following hold:

Kr > 0, (5.25)

where
r = 1 +

⌈
eLhh (µM + L)

(
α? +

√
α?(α? + 1)

)
− Lh

⌉
, (5.26)

with α? =
β2

β?
. Here, β? is determined by Lemma 5.6 and β2 is given by Lemma 5.3.

Proof. The necessity directly follows from Theorem 3.2. In order to prove the sufficiency, we assume
by contradiction that system (5.1) is unstable but the Lyapunov condition and the conditions of the
theorem hold. Similarly to the proof of sufficiency of Theorem 5.3, consider ϕ ∈ S and Rr = ϕ − ψr,
then

v1(ϕ) = v1(Rr + ψr) = v1(ψr) + 2z(ϕ,Rr)− v1(Rr).

By Lemma 5.3 and Lemma 5.6,

v1(ψr) = v1(ϕ)− 2z(ϕ,Rr) + v1(Rr)

≤ −β∗ + 2β2‖Rr‖h + β2‖Rr‖2h.

By using Lemma 5.5 and considering the number r given by (5.26), we have that

‖Rr‖h ≤
(µM + L)eLh

1/δr + L
≤ β?√

β2(β2 + β?) + β2

,

which implies that
−β? + 2β2‖Rr‖h + β2‖Rr‖2h ≤ 0.

In fact,

− β? + 2β2‖Rr‖h + β2‖Rr‖2h ≤

≤ 1

(β2 +
√
β2(β2 + β?))2

(
−β?

(
β2 +

√
β2(β2 + β?)

)2

+ 2β2β
?
(
β2 +

√
β2(β2 + β?)

)
+ β2(β?)2

)
= 0

Finally, from the previous inequality, we get

v1(ψr) = γTKrγ ≤ 0.

The obtained contradiction finishes the proof.

Remark 5.4. If r = 2,

K2 =

(
U(0) U(h)

UT (h) U(0)

)
> 0,

if r = 3,

K3 =

 U(0) U
(
h
2

)
U(h)

UT
(
h
2

)
U(0) U

(
h
2

)
UT (h) UT

(
h
2

)
U(0)

 > 0,

if r = 4,

K4 =


U(0) U

(
h
3

)
U
(

2h
3

)
U(h)

UT
(
h
3

)
U(0) U

(
h
3

)
U
(

2h
3

)
UT

(
2h
3

)
UT

(
h
3

)
U(0) U

(
h
3

)
UT (h) UT

(
2h
3

)
UT

(
h
3

)
U (0)

 > 0.
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The stability criterion given in Theorem 5.4 remains true for the case in which D = 0n×n, i.e., for
retarded type systems. It is worthy of mention that even for the retarded type case no finite stability
criterion depending uniquely on the delay Lyapunov matrix has been presented in the literature until
now. The result is stated in the next corollary.

Corollary 5.1. The system
ẋ(t) = A0x(t) +A1x(t− h)

is exponentially stable if and only if the Lyapunov condition and the condition (5.25) hold, with µ = 1.

Remark 5.5. Notice that the numbers rA and r, which depend on the parameters of the system, determine
the size of the matrices KrA − β1ArA and Kr , respectively. In both cases, the numbers rA and r decrease
(or increase) as the delay does. For h = 0, rA = 1 and r = 1, and the Lyapunov matrix stability criterion
for delay free systems is recovered, i.e., K1 = U(0) > 0.

5.6 Examples

In this section, a couple of academic examples illustrate the stability criteria previously introduced.
We compute the delay Lyapunov matrix U(τ) associated with the matrix W = In via the semianalytic
method. The stability tests are corroborated by the spectral abscissa computed via the QPmR (Quasi-
Polynomial Mapping Based Rootfinder) algorithm introduced in Vyhlídal and Zítek (2009).

The general procedure in order to use Theorem 5.3 for the stability study of systems of the form
(5.1), is basically the same as the one required to use Theorem 5.4. Indeed, notice that, although the
the numbers rA and r are different, their formulae have the same form. The procedure is summarized
next:

1. Compute the delay Lyapunov matrix U(τ), τ ∈ [0, h], associated with a positive definite matrix
W .

2. Compute the number rA (or number r) according to formula (5.22) (formula (5.26)). Number
β?A in (5.22) and β? in (5.26) are computed from Theorem 5.1 and Lemma 5.6, respectively.
The rest of the parameters in both cases are obtained in the same way: number β2 is computed
from Lemma 5.3, number µ = d/(1− ρ) is calculated by the LMI of Lemma 5.1 and the Lipschitz
constant L of the fundamental matrix can be estimated from equation (5.3) by L = ‖A0‖e‖A0‖h.

3. Construct the block matrices KrA (or Kr) and ArA with the previously computed delay Lyapunov
matrix U(τ), τ ∈ [0, h], and with the expression for the fundamental matrix given by equation
(5.3), respectively.

4. Check positivity of the matrix KrA − β1ArA (or Kr).

Example 5.1. We analyze system (5.1) with delay h = 1 and matrices

D =

(
0 0

0 0.1

)
, A0 =

(
−0.1 0

0 p

)
, A1 =

(
−0.2 0.1

0.1 0

)
, (5.27)

for two different values of the parameter p ∈ R. The parameters to be calculated in order to use Theorems
5.3 and 5.4 are shown next. For p = −0.2,

β?A = 1.14, β? = 0.0881 β2 = 6.6450 , µ = 1.1292, M = 0.4414, L = 0.2443,

and for p = 0.1,

β?A = 1.435, β? = 0.1621, β2 = 7.4615 , µ = 1.1292, M = 0.3414, L = 0.3414.
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Table 5.1: Stability test of system (5.27)
Parameter p Number rA Number r λmin (KrA − β1ArA) λmin(Kr) Spectral abscissa
p = −0.2 rA = 15 r = 145 0.0181 0.0017 −0.0518

p = 0.1 rA = 9 r = 53 −54.7716 −239.2499 0.1968

Table 5.1 shows the computed number rA and r for system (5.27), and the minimum eigenvalue of the
symmetric matrix KrA − β1ArA and Kr. According to the obtained results, it follows from Theorems 5.3
and 5.4 that system (5.27) is exponentially stable for p = −0.2 and unstable for p = 0.1.

Example 5.2. We consider now a system of the form (5.1) of dimension n = 3 with matrices

D =

0 0 0

0 0.1 0

0 0 −0.05

 , A0 =

 0 0.5 0

0 0 0.5

−0.05 −0.1 p

 , A1 =

 0 0. 0

0 0 0

−0.01 −0.05 −0.07

 , (5.28)

where p is an arbitrary real number. We study the stability of the system for different values of (p, h). The
numerical values to be calculated in order to use Theorems 5.3 and 5.4 for different system parameter
values are shown below. For (p, h) = (−0.3, 0.2),

β?A = 0.545, β? = 0.1752, β2 = 167.4706 , M = 0.6788, L = 0.6667,

for (p, h) = (0.1, 0.2),

β?A = 0.7850, β? = 0.2077, β2 = 14.6523, M = 0.6064, L = 0.5767,

and for (p, h) = (0.1, 0.5),

β?A = 0.7850, β? = 0.1047, β2 = 14.8688, M = 0.6064, L = 0.6741.

As there is no change in matrix D, the number µ = 1.1292 remains equal in all cases. Notice that the
increase of the delay impacts on the value of β?, but not on β?A. This shows that the number r is doubly
affected by the delay in comparison with rA.

In Table 5.2, the computed numbers rA and r for different parameters of system (5.28) are shown.
There, one can observe that the numbers r and rA increase as the delay h does. By Theorems 5.3 and
5.4 one can conclude that system (5.28) is exponentially stable for (p, h) = (−0.3, 0.2) and unstable for
(p, h) = (0.1, 0.2) and (p, h) = (0.1, 0.5).

Table 5.2: Stability test of system (5.28)
Parameters (p, h) Number rA Number r λmin (KrA − β1ArA) λmin(Kr) Spectral abscissa

(−0.3, 0.2) rA = 1268 r = 3133 3.9× 10−5 1.5× 10−5 −0.0380

(0.1, 0.2) rA = 68 r = 202 −839.17 −2.3× 103 0.0926

(0.1, 0.5) rA = 92 r = 543 −1.08× 103 −5.9× 103 0.0978

5.7 Discussion

There are basically two differences between the stability criterion of Theorem 5.3 and Theorem 5.4.
The first and most obvious one is that the stability condition of Theorem 5.3 is given in terms not only
of the delay Lyapunov matrix, but of the fundamental matrix as well. The second difference consists
in the computation of the numbers rA (formula (5.22)) and r (formula (5.26)). Both formulae have
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the same form, however, the numbers αA and α? are computed by using β?A in equation (5.22) and
β? in equation (5.26), respectively. This detail impact in the number of operations required in each
criterion, indeed, the examples presented in the above section show that rA < r, which means that the
dimension of the required matrix to be tested in Theorem 5.3 is less than the one in Theorem 5.4.

Up to our knowledge, Theorem 5.3 and Theorem 5.4 introduced here are the only stability criteria
for neutral type systems existing within the time-domain approach literature. The LMI approach only
provides sufficient stability conditions, and although the introduced conservatism can be reduced by
increasing the numerical complexity (see, for instance, Seuret and Gouaisbaut (2015)), up to our
knowledge there are no theoretical results about the necessity. The finite stability criteria of Theorems
5.3 and 5.4 and the LMI type sufficient stability conditions contrast in the fact that the first requires
an algorithm to compute the delay Lyapunov matrix and the second demands to use an optimization
software. Another difference is that in the stability criteria introduced here, the numerical complexity
not only depends on the dimension of the system, as is in the LMI type stability conditions, but also on
the numerical values of the system parameters (see Remark 5.5).

5.8 Conclusions

Finite stability criteria, which generalize the well-known Lyapunov based stability conditions for delay
free systems, are provided. They are given in terms of the positivity of a block matrix determined by
the delay Lyapunov matrix. Although the dimension of the block matrix tends to be very large, a fact
of major theoretical significance is that the new stability conditions only require a finite number of
mathematical operations.
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Chapter 6

Conclusions and future work

A new tool for the stability analysis of neutral type time-delay systems is presented. The main contri-
butions of this work are listed next:

1. A new approach for the computation of the Lyapunov-Krasovskii functional of complete type is
proposed. It is based on a new Cauchy formula and its main characteristic is that it does not
require the differentiability of the initial functions assumption.

2. A family of necessary stability conditions for neutral type systems with one delay are obtained.
The particularity of these conditions is that they depend exclusively on the delay Lyapunov ma-
trix. The obtention of the result is based on the relaxation of the differentiability of the initial
functions assumption in the computation of the Lyapunov-Krasovskii functional of complete type
and the introduction of new properties of the delay Lyapunov matrix. A number of examples
illustrate how they can be used with frequency domain tools in order to study the stability of
neutral type systems. A notable fact is that these stability conditions preserve the same form as
those for pointwise and distributed retarded systems.

3. The results obtained for neutral type systems with one delay are extended to the multiple delay
case. This extension involves the computation of the Lyapunov-Krasovskii functional of complete
type for the multivariable case, which had not been presented in the literature until now. A
number of illustrative examples that are known to be challenging by their multiple delay nature
shows the efficiency of these conditions.

4. Finite stability criteria for neutral type systems with a single delay are provided. The main
hallmarks is that they are given in terms of the positivity of a block matrix constructed with the
delay Lyapunov matrix and that only require a finite number of mathematical operations to be
tested.

The following is considered as future work:

1. Reduction of the conservatism in the estimates involved in the computation of the numbers rA
in Theorem 5.3 and r in Theorem 5.4.

2. Extension of the stability criteria of Theorem 5.3 and Theorem 5.4 to the multiple delay case.

3. Dropping the assumption ‖D‖ < 1 in the stability criteria of Theorem 5.3.
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Appendix A

Computation of the functional v0

In order to compute the functional v0 we assume that system (4.1) is exponentially stable. Then, the
delay Lyapunov matrix can be written as

U(τ) =

∫ ∞
0

KT (t)WK(t+ τ)dt.

First and second derivative of the delay Lyapunov matrix are given by

U ′(τ) =

∫
O(−τ)

KT (t)W
d

dτ
K(t+ τ)dt+

∞∑
l=0

KT (lh− τ)W∆K(lh), τ ∈ R\Ω, (A.1)

U ′′(τ) =
d

dτ

(∫
O(0)

KT (ξ − τ)W
d

dξ
K(ξ)dξ +

∞∑
l=0

KT (lh− τ)W∆K(lh)

)
, τ ∈ R\Ω. (A.2)

The following equality is useful in what follows. For t ∈ [lh, (l + 1)h], l = 0, 1, . . .,

d

dt

∫ 0

−ih
K(t− θ − ih)Diϕ(θ)dθ

=

i∑
p=1

∫ (1−p)h

−ph
θ 6=t−(l+p)h

d

dt
K(t− θ − ih)Diϕ(θ)dθ +

i∑
p=1

∆K((l + p− i)h)Diϕ(t− (l + p)h). (A.3)

Before computing the functional v0, we first present two useful equalities in the next propositions. Let
us introduce the terms

J
(1)
ij (ξ) =

∫ ∞
0

KT (t− ξ − ih)W
d

dt

(∫ 0

−jh
K(t− θ − jh)Djϕ(θ)dθ

)
dt, i = 0,m, j = 1,m

J
(2)
ij =

∫ ∞
0

d

dt

(∫ 0

−ih
K(t− θ1 − ih)Diϕ(θ1)dθ1

)T
W

(∫ 0

−jh
K(t− θ2 − jh)Djϕ(θ2)dθ2

)
dt, i, j = 1,m

Proposition A.1. For ξ ∈ [−mh, 0],

J
(1)
ij (ξ) =

j∑
q=1

∫ (1−q)h

−qh
U ′(ξ − θ + ih− jh)Diϕ(θ)dθ, i = 0,m, j = 1,m. (A.4)
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Proof. Note first that
∫ ∞

0

f(s)ds =

∞∑
l=0

∫ (l+1)h

lh

f(s)ds. By (A.3), we have

J
(1)
ij (ξ) =

∞∑
l=0

∫ (l+1)h

lh

KT (t− ξ − ih)W

×
j∑
q=1

 ∫ (1−q)h

−qh
θ 6=t−(l+q)h

d

dt
K(t− θ − jh)Djϕ(θ)dθ + ∆K((l + q − j)h)Djϕ(t− (l + q)h)

 dt

Change of the integration order yields

J
(1)
ij (ξ) =

j∑
q=1

∫ (1−q)h

−qh

∫
O(θ)

KT (t− ξ − ih)W
d

dt
K(t− θ − jh)dtDjϕ(θ)dθ

+

j∑
q=1

∞∑
l=0

∫ (l+1)h

lh

KT (t− ξ − ih)W∆K((l + q − j)h)Djϕ(t− (l + p)h)dt.

By applying the change of variable η = t − ξ − ih in the first term, and θ = t − (l + q)h in the second
one, we obtain

J
(1)
ij (ξ) =

j∑
q=1

∫ (1−q)h

−qh

∫
O(θ−ξ)

KT (η)W
d

dη
K(η + ξ − θ + ih− jh)dηDjϕ(θ)dθ

+

j∑
q=1

∞∑
l=0

∫ (1−q)h

−qh
KT (θ − ξ + (l + q)h− ih)W∆K((l + q − j)h)Djϕ(θ)dθ.

Now, we change the variable of the sum over the index l as follows. Set k = l+ q− j, and as q− j ≤ 0,
we get

J
(1)
ij (ξ) =

j∑
q=1

∫ (1−q)h

−qh

∫
O(θ−ξ)

KT (η)W
d

dη
K(η + ξ − θ + ih− jh)dηDjϕ(θ)dθ

+

j∑
q=1

∫ (1−q)h

−qh

∞∑
k=0

KT (kh+ θ − ξ + jh− ih)W∆K(kh)Djϕ(θ)dθ.

Applying (A.1) we observe that the previous expression is equal to

J
(1)
ij (ξ) =

j∑
q=1

∫ (1−q)h

−qh
U ′(ξ − θ + ih− jh)Djϕ(θ)dθ,

which ends the proof.

Proposition A.2. For i, j = 1,m,

J
(2)
ij =

i∑
p=1

j∑
q=1

∫ (1−q)h

−qh

∫ (1−p)h

−ph
θ1 6=θ2+(q−p)h

ϕT (θ1)DT
i U
′′(θ1 − θ2 + ih− jh)Djϕ(θ2)dθ2dθ1

−
j∑
q=1

i∑
p=1

∫ (1−q)h

−qh
ϕT (θ + (q − p)h)DT

i ∆U ′((q − p− j + i)h)Djϕ(θ)dθ (A.5)
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Proof. Applying equation (A.3), the right hand side of (A.5) can be written as

J
(2)
ij =

∞∑
l=0

∫ (l+1)h

lh

d

dt

(∫ 0

−ih
K(t− θ1 − ih)Diϕ(θ1)dθ1

)T
W

( j∑
q=1

∫ (1−q)h

−qh
θ2 6=t−(l+q)h

d

dt
K(t−θ2−jh)Djϕ(θ2)dθ2

+

j∑
q=1

∆K((l + q − j)h)Djϕ(t− (l + q)h)

)
dt

By changing the integration order we have

J
(2)
ij =

j∑
q=1

∫ (1−q)h

−qh

∫
O(θ2)

d

dt

(∫ 0

−ih
K(t− θ1 − ih)Diϕ(θ1)dθ1

)T
W

d

dt
K(t− θ2 − jh)dtDjϕ(θ2)dθ2

+
∞∑
l=0

j∑
q=1

∫ (l+1)h

lh

d

dt

(∫ 0

−ih
K(t− θ1 − ih)Diϕ(θ1)dθ1

)T
W∆K((l + q − j)h)Djϕ(t− (l + q)h)dt

Consider the change of variable η = t− θ2 − jh in the first summand:

J
(21)
ij =

j∑
q=1

∫ (1−q)h

−qh

∫
O(0)

d

dη

(∫ 0

−ih
ϕT (θ1)DT

i K
T (η + θ2 − θ1 + jh− ih)dθ1

)
W

d

dη
K(η)dηDjϕ(θ2)dθ2

=

j∑
q=1

∫ (1−q)h

−qh

∫
O(0)

d

dθ2

(∫ 0

−ih
ϕT (θ1)DT

i K
T (η + θ2 − θ1 + jh− ih)dθ1

)
W

d

dη
K(η)dηDjϕ(θ2)dθ2

=

∫ 0

−ih

j∑
q=1

∫ (1−q)h

−qh
ϕT (θ1)DT

i

d

dθ2

(∫
O(0)

KT (η + θ2 − θ1 + jh− ih)W
d

dη
K(η)dη

)
Djϕ(θ2)dθ2dθ1

(A.6)

Applying equation (A.3) to the second summand of J (2)
ij , we get

J
(22)
ij =

i∑
p=1

j∑
q=1

∞∑
l=0

∫ (l+1)h

lh

∫ (1−p)h

−ph
θ1 6=t−(l+p)h

ϕT (θ1)DT
i

d

dt
KT (t−θ1−ih)dθ1W∆K((l+q−j)h)Djϕ(t−(l+q)h)dt

+

j∑
q=1

i∑
p=1

∞∑
l=0

∫ (l+1)h

lh

ϕT (t− (l + p)h)DT
i ∆KT ((l + p− i)h)W∆K((l + q − j)h)Djϕ(t− (l + q)h)dt

By the change of variable θ2 = t − (l + q)h in the first term and θ = t − (l + q)h in the second one of
J

(22)
ij , we arrive at

J
(22)
ij =

i∑
p=1

j∑
q=1

∞∑
l=0

∫ (1−q)h

−qh

∫ (1−p)h

−ph
θ1 6=θ2+(q−p)h

ϕT (θ1)DT
i

d

dθ2
KT (θ2−θ1+lh+qh−ih)W∆K((l+q−j)h)Djϕ(θ2)dθ1dθ2

+

i∑
p=1

j∑
q=1

∞∑
l=0

∫ (1−q)h

−qh
ϕT (θ + (q − p)h)DT

i ∆KT ((l + p− i)h)W∆K((l + q − j)h)Djϕ(θ)dθ
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Finally, change of variable k = l + q − j over the index l allows to arrive at

J
(22)
ij =

i∑
p=1

j∑
q=1

∞∑
k=0

∫ (1−q)h

−qh

∫ (1−p)h

−ph
θ1 6=θ2+(q−p)h

ϕT (θ1)DT
i

d

dθ2
KT (θ2−θ1+kh+jh−ih)W∆K(kh)Djϕ(θ2)dθ1dθ2

+

j∑
q=1

i∑
p=1

∞∑
k=0

∫ (1−q)h

−qh
ϕT (θ + (q − p)h)DT

i ∆KT ((k − q + p+ j − i)h)W∆K(kh)Djϕ(θ)dθ

By using (A.2), and the identity ∆U ′(jh) = −
∞∑
k=0

∆KT ((k − j)h)W∆K(kh) we arrive at the result:

J
(21)
ij + J

(22)
ij =

i∑
p=1

j∑
q=1

∫ (1−q)h

−qh

∫ (1−p)h

−ph
θ1 6=θ2+(q−p)h

ϕT (θ1)DT
i U
′′(θ1 − θ2 + ih− jh)Djϕ(θ2)dθ2dθ1

−
j∑
q=1

i∑
p=1

∫ (1−q)h

−qh
ϕT (θ + (q − p)h)DT

i ∆U ′((q − p− j + i)h)Djϕ(θ)dθ

We look for a functional such that
d

dt
v0(xt(ϕ)) = −xT (t, ϕ)Wx(t, ϕ), t ≥ 0, W > 0. (A.7)

By integrating the preceding equation, it follows by the exponential stability assumption on system
(4.1) that

v0(ϕ) =

∫ ∞
0

xT (t, ϕ)Wx(t, ϕ)dt, t ≥ 0.

Then, substitution of Cauchy formula (2.17) yields

v0(ϕ) =

m∑
i=0

m∑
j=0

ϕT (−ih)DT
i

∫ ∞
0

KT (t)WK(t)dtDjϕ(−jh)

+ 2

m∑
i=0

m∑
j=1

ϕT (−ih)DT
i

(∫ ∞
0

KT (t)W

∫ 0

−jh
K(t− θ − jh)Aiϕ(θ)dθdt− Jij(−ih)

)

+

m∑
i=1

m∑
j=1

∫ ∞
0

∫ 0

−ih
ϕT (θ1)ATi

(∫ 0

−jh
KT (t− θ1 − ih)WK(t− θ2 − jh)Ajϕ(θ2)dθ2 − Jij(θ1)

)
dθ1dt

−
m∑
i=1

m∑
j=1

∫ 0

−jh
JTij(θ)Ajϕ(θ)dθ +

m∑
i=1

m∑
j=1

J
(2)
ij .

By using (A.4) and (A.5) we arrive at

v0(ϕ) =

m∑
i=0

m∑
j=0

ϕT (−ih)DT
i U(0)Djϕ(−jh)

+ 2

m∑
i=0

m∑
j=1

j∑
q=1

ϕT (−ih)DT
i

∫ (1−q)h

−qh
(U(−θ − jh)Aj − U ′(−θ − jh)Dj)ϕ(θ)dθ

+

m∑
i=1

m∑
j=1

j∑
q=1

∫ 0

−ih
ϕT (θ1)ATi

∫ (1−q)h

−qh
(U(θ1 − θ2 + ih− jh)Aj − U ′(θ1 − θ2 − jh+ ih)Dj)ϕ(θ2)dθ2dθ1
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+

m∑
i=1

m∑
j=1

j∑
q=1

∫ (1−q)h

−qh

∫ 0

−ih
ϕT (θ1)DT

i U
′(θ1 − θ2 − jh+ ih)Ajϕ(θ2)dθ2dθ1

+

m∑
i=1

m∑
j=1

i∑
p=1

j∑
q=1

∫ (1−q)h

−qh

∫ (1−p)h

−ph
θ1 6=θ2+(q−p)h

ϕT (θ1)DT
i U
′′(θ1 − θ2 + ih− jh)Djϕ(θ2)dθ2dθ1

−
m∑
i=1

m∑
j=1

j∑
q=1

i∑
p=1

∫ (1−q)h

−qh
ϕT (θ + (q − p)h)DT

i ∆U ′((q − p− j + i)h)Djϕ(θ)dθ.

Applying definitions of the functions F (1)
j and F (2)

ij we get

v0(ϕ) =

m∑
i=0

m∑
j=0

ϕT (−ih)DT
i U(0)Djϕ(−jh) + 2

m∑
i=0

m∑
j=1

ϕT (−ih)DT
i

∫ 0

−jh
F

(1)
j (−θ − jh)ϕ(θ)dθ

+

m∑
i=1

m∑
j=1

∫ 0

−ih

∫ 0

−jh
ϕT (θ1)F

(2)
ij (θ1 − θ2 + ih− jh)ϕ(θ2)dθ2dθ1

−
m∑
i=1

m∑
j=1

j∑
q=1

i∑
p=1

∫ (1−q)h

−qh
ϕT (θ + (q − p)h)DT

i ∆U ′((q − p− j + i)h)Djϕ(θ)dθ
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Appendix B

Proof of Theorem 4.1

In order to prove Theorem 4.1, we introduce first the following useful properties:

(i) For τ ≥ 0

m∑
j=0

F
(1)
j (τ − jh) = 0. (B.1)

(ii) For τ < 0

m∑
i=0

F
(2)
ij (τ + ih) = 0, j = 1,m. (B.2)

Equation (B.1) follows directly from the dynamic property (4.4). We prove (B.2). From the dy-
namic property (4.4) and symmetry property (4.5),

−ATj
m∑
i=0

U ′(−τ − ih)Di −DT
j

m∑
i=0

U ′′(−τ − ih)Di =

= −ATj
m∑
i=0

U(−τ − ih)Ai −DT
j

m∑
i=0

U ′(−τ − ih)Ai, τ < 0.

Transposing both sides yields

m∑
i=0

DT
i

d

dτ
F

(1)
j (τ + ih) = −

m∑
i=0

ATi F
(1)
j (τ + ih),

which implies that

m∑
i=0

(
DT
i

d

dτ
F

(1)
j (τ + ih) +ATi F

(1)
j (τ + ih)

)
= 0, τ < 0.

Consider now the functional v0:

v0(xt) = v
(1)
0 (t) + v

(2)
0 (t) + v

(3)
0 (t) + v

(4)
0 (t),
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where

v
(1)
0 (t) =

m∑
i=0

m∑
j=0

xT (t− ih)DT
i U(0)Djx(t− jh),

v
(2)
0 (t) =2

m∑
i=0

m∑
j=1

xT (t− ih)DT
i

∫ 0

−jh
F

(1)
j (−θ − jh)x(t+ θ)dθ,

v
(3)
0 (t) =

m∑
i=1

m∑
j=1

∫ 0

−ih

∫ 0

−jh
xT (t+ θ1)F

(2)
ij (θ1 − θ2 + ih− jh)x(t+ θ2)dθ2dθ1,

v
(4)
0 (t) =−

m∑
i=1

m∑
j=1

∫ h

0

xT (t+ θ − ih)F
(3)
ij x(t+ θ − jh)dθ.

We differentiate each term:

d

dt
v

(1)
0 (t) = 2

m∑
i=0

m∑
j=0

xT (t− ih)DT
i U(0)Ajx(t− jh).

Before differentiating the second one, we compute the next derivative:

d

dt

(∫ t

t−jh
F

(1)
j (t− θ − jh)x(θ)dθ

)
=

j∑
q=1

d

dt

(∫ t−(q−1)h−0

t−qh+0

F
(1)
j (t− θ − jh)x(θ)dθ

)

=

j∑
q=1

F
(1)
j ((q−j−1)h+0)x(t−(q−1)h)−

j∑
q=1

F
(1)
j ((q−j)h−0)x(t−qh)+

∫ t

t−jh

d

dt
F

(1)
j (t−θ−jh)x(θ)dθ.

The non-integral terms are grouped as follows:

j−1∑
q=0

F
(1)
j ((q − j)h+ 0)x(t− qh)−

j∑
q=1

F
(1)
j ((q − j)h− 0)x(t− qh)

= F
(1)
j (−jh+ 0)x(t)− F (1)

j (+0)x(t− jh) +

j∑
q=1

∆F
(1)
j ((q − j)h)x(t− qh)

= F
(1)
j (−jh+ 0)x(t)− F (1)

j (+0)x(t− jh)−
j∑
q=1

∆U ′((q − j)h)Djx(t− qh).
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Returning to the derivative of v(2)
0 :

d

dt
v

(2)
0 (t) = 2

m∑
i=0

m∑
j=1

xT (t− ih)ATi

∫ t

t−jh
F

(1)
j (−θ − jh)x(θ)dθ

+ 2

m∑
i=0

m∑
j=1

xT (t− ih)DT
i

d

dt

(∫ t

t−jh
F

(1)
j (t− θ − jh)x(θ)dθ

)

= 2

m∑
i=0

xT (t−ih)DT
i

 m∑
j=1

F
(1)
j (−jh+ 0)x(t)−

m∑
j=1

F
(1)
j (+0)x(t− jh)−

m∑
j=1

j∑
q=1

∆U ′((q − j)h)Djx(t− qh)


+2

m∑
i=0

m∑
j=1

xT (t−ih)ATi

∫ t

t−jh
F

(1)
j (t−θ−jh)x(θ)dθ+2

m∑
i=0

m∑
j=1

xT (t−ih)DT
i

∫ t

t−jh
t−θ∈R\Ω

d

dt
F

(1)
j (t−θ−jh)x(θ)dθ

= 2

m∑
i=0

m∑
j=1

xT (t− ih)DT
i

F (1)
j (−jh+ 0)x(t)− F (1)

j (+0)x(t− jh)−
m∑
q=j

∆U ′((j − q)h)Dqx(t− jh)


+ 2

m∑
i=0

m∑
j=1

xT (t− ih)

∫ t

t−jh
F

(2)
ij (t− θ − jh)x(θ)dθ.

Now, we differentiate the term v
(3)
0 :

d

dt
v

(3)
0 =

m∑
i=1

m∑
j=1

d

dt

(∫ t

t−ih

∫ t

t−jh
xT (θ1)F

(2)
ij (θ1 − θ2 + ih− jh)x(θ2)dθ2dθ1

)

=

m∑
i=1

m∑
j=1

∫ t

t−jh
xT (t)F

(2)
ij (t− θ2 + ih− jh)x(θ2)dθ2−

m∑
i=1

m∑
j=1

∫ t

t−jh
xT (t− ih)F

(2)
ij (t− θ2− jh)x(θ2)dθ2

+

m∑
i=1

m∑
j=1

∫ t

t−ih
xT (θ1)F

(2)
ij (θ1 − t+ ih− jh)x(t)dθ1 −

m∑
i=1

m∑
j=1

∫ t

t−ih
xT (θ1)F

(2)
ij (θ1 − t+ ih)x(t− jh)dθ1

= 2

m∑
i=1

m∑
j=1

∫ t

t−jh
xT (t)F

(2)
ij (t− θ+ ih− jh)x(θ)dθ− 2

m∑
i=1

m∑
j=1

∫ t

t−jh
xT (t− ih)F

(2)
ij (t− θ− jh)x(θ)dθ.

Finally,

d

dt
v

(4)
0 (t) = −

m∑
i=1

m∑
j=1

d

dt

(∫ t+h

t

xT (θ − ih)F
(3)
ij x(θ − jh)dθ

)

= −
m∑
i=1

m∑
j=1

xT (t− (i− 1)h)F
(3)
ij x(t− (j − 1)h)) +

m∑
i=1

m∑
j=1

xT (t− ih)F
(3)
ij x(t− jh)

= −
m−1∑
i=0

m−1∑
j=0

xT (t− ih)F
(3)
i+1,j+1x(t− jh) +

m∑
i=1

m∑
j=1

xT (t− ih)F
(3)
ij x(t− jh)

=

m∑
i=0

m∑
j=0

xT (t− ih)
(
F

(3)
ij − F

(3)
i+1,j+1

)
x(t− jh)−

m∑
i=0

xT (t− ih)F
(3)
i,0 x(t)−

m∑
j=1

xT (t)F
(3)
0j x(t− jh)

under the assumption that F (3)
ij = 0, if i or j is equal tom+1. By definition of F (3)

ij and properties (4.11)
and (4.12),

F
(3)
0j = −WDj , j = 0,m.
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Hence,

d

dt
v

(4)
0 (t) =

m∑
i=0

m∑
j=0

xT (t− ih)
(
F

(3)
ij − F

(3)
i+1,j+1

)
x(t− jh)− xT (t)Wx(t) + 2xT (t)W

m∑
j=0

Djx(t− jh)

= 2

m∑
i=0

m∑
j=0

xT (t− ih)DT
i

(
m∑
q=j

∆U ′((j − q)h)Dq

)
x(t− jh)

−
m∑
i=0

m∑
j=0

xT (t− ih)DT
i ∆U ′(0)Djx(t− jh)− xT (t)Wx(t) + 2xT (t)W

m∑
j=0

Djx(t− jh).

The sum of the preceding derivatives can be grouped in integral and non-integral terms, denoted
by IT and NIT , respectively:

d

dt
v0(xt) = IT +NIT.

Let us prove first that IT = 0. We have that IT is given by

IT = 2

m∑
i=0

m∑
j=1

xT (t− ih)

∫ t

t−jh
F

(2)
ij (t− θ − jh)x(θ)dθ

+ 2

m∑
i=1

m∑
j=1

xT (t)

∫ t

t−jh
F

(2)
ij (t− θ + ih− jh)x(θ)dθ − 2

m∑
i=1

m∑
j=1

xT (t− ih)

∫ t

t−jh
F

(2)
ij (t− θ − jh)x(θ)dθ

= 2

m∑
j=1

xT (t)

∫ t

t−jh
F

(2)
0j (t− θ − jh)x(θ)dθ + 2

m∑
i=1

m∑
j=1

xT (t)

∫ t

t−jh
F

(2)
ij (t− θ + ih− jh)x(θ)dθ

= 2

m∑
i=0

m∑
j=1

xT (t)

∫ t

t−jh
F

(2)
ij (t− θ + ih− jh)x(θ)dθ.

By equality (B.2), we get IT = 0.
We now address the term NIT . It is determined by

NIT = 2

m∑
i=0

m∑
j=0

xT (t− ih)DT
i U(0)Ajx(t− jh)

+ 2

m∑
i=0

m∑
j=1

xT (t− ih)DT
i

F (1)
j (−jh+ 0)x(t)− F (1)

j (+0)x(t− jh)−
m∑
q=j

∆U ′((j − q)h)Dqx(t− jh)


+ 2

m∑
i=0

m∑
j=0

xT (t− ih)DT
i

(
m∑
q=j

∆U ′((j − q)h)Dq

)
x(t− jh)

−
m∑
i=0

m∑
j=0

xT (t− ih)DT
i ∆U ′(0)Djx(t− jh)− xT (t)Wx(t) + 2xT (t)W

m∑
j=0

Djx(t− jh)

= −xT (t)Wx(t) + 2xT (t)W

m∑
j=0

Djx(t− jh) + 2

m∑
i=0

m∑
j=0

xT (t− ih)DT
i U(0)Ajx(t− jh)

+ 2

m∑
i=0

m∑
j=1

xT (t− ih)DT
i

(
F

(1)
j (−jh+ 0)x(t)− F (1)

j (+0)x(t− jh)
)

+ 2

m∑
i=0

xT (t− ih)DT
i

(
m∑
q=0

∆U ′(−qh)Dq

)
x(t)−

m∑
i=0

m∑
j=0

xT (t− ih)DT
i ∆U ′(0)Djx(t− jh).
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By property (4.11),

NIT = −xT (t)Wx(t) + 2

m∑
i=0

m∑
j=0

xT (t− ih)DT
i U(0)Ajx(t− jh)

+2

m∑
i=0

m∑
j=0

xT (t−ih)DT
i

(
F

(1)
j (−jh+ 0)x(t)− F (1)

j (+0)x(t− jh)
)
−

m∑
i=0

m∑
j=0

xT (t−ih)DT
i ∆U ′(0)Djx(t−jh).

From equality (B.1), we finally get

NIT = −xT (t)Wx(t) +

m∑
i=0

m∑
j=0

xT (t− ih)DT
i

(
2U(0)Aj − 2F

(1)
j (+0)−∆U ′(0)Dj

)
x(t− jh)

= −xT (t)Wx(t) +

m∑
i=0

m∑
j=0

xT (t− ih)
(
DT
i U
′(+0)Dj +DT

i U
′(−0)Dj

)
x(t− jh) = −xT (t)Wx(t).
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Appendix C

Computation of the delay Lyapunov
matrix

We remind the semianalytic procedure for the computation of the delay Lyapunov matrix for systems
of neutral type with commensurate delays and provide some techniques for reducing the computation
effort in testing the stability conditions presented in Chapter 4. Let us consider a system of the form
(4.1).

We introduce some notation. Let B and C be real matrices of arbitrary dimension. The Kronecker
product B ⊗ C is defined by

B ⊗ C =

 b11C . . . b1nC
...

. . .
...

bm1C . . . bmnC

 ,

and the product denoted by B ◦ C as

B ◦ C =



bT1 c11 . . . bT1 c1n
...

. . .
...

bT1 cm1 . . . bT1 cmn
...

. . .
...

bTmc11 . . . bTmc1n
...

. . .
...

bTmcm1 . . . bTmcmn


.

The next properties hold:
vec(BXC) =

(
CT ⊗B

)
vec(X), (C.1)

and
vec(BXC) = (B ◦ C) vec(X), (C.2)

where X is a matrix of compatible dimensions with B and C, and vec(·) represents the vectorization
of a matrix.

C.1 Semianalityc procedure

Let us introduce the following auxiliary matrices:

Xj(ξ) = U(ξ + jh), ξ ∈ [0, h], j = −m, . . . , 0,m− 1. (C.3)
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Proposition C.1. The auxiliary matrices (C.3) satisfy the next system
m∑
i=0

X ′j−i(ξ)Di =

m∑
i=0

Xj−i(ξ)Ai, j = 0,m− 1, ξ ∈ (0, h),

m∑
i=0

DT
i X
′
i+j(ξ) =−

m∑
i=0

ATi Xi+j(ξ), j = −m,−1, ξ ∈ (0, h),

(C.4)

with the boundary conditions

Xj+1(0) = Xj(h), j = −m,m− 2,

−W =

m∑
i=0

(
DT
i X0(0)Ai +ATi X0(0)Di

)
+

m−1∑
i=0

m∑
j=i+1

(
DT
j Xj−i−1(h)Ai +DT

i X
T
j−i−1(h)Aj

+ATi X
T
j−i−1(h)Dj +ATj Xj−i−1(h)Di

)
.

(C.5)

Proof. From the dynamic property (4.4), we have that
m∑
i=0

X ′j−i(ξ)Di =

m∑
i=0

U ′(ξ + (j − i)h)Di =
m∑
i=0

U(ξ + (j − i)h)Ai, j = 0,m− 1, ξ ∈ (0, h).

By the dynamic property (4.10),
m∑
i=0

DT
i X
′
i+j(ξ) =

m∑
i=0

DT
i U
′(ξ + (i+ j)h) = −

m∑
i=0

ATi U(ξ + (i+ j)h), j = −m,−1, ξ ∈ (0, h).

The first boundary condition in (C.5) directly follows from the symmetric property (4.5) and the second
one from the algebraic property (4.6).

In order to solve system (C.4) with boundary conditions (C.5), we vectorize the system. Let us
consider the vector

XT (ξ) =
[
vecT (Xm−1(ξ)) . . . vecT (X−m(ξ))

]
.

Using (C.1) and (C.2), the dynamic system (C.4) can be written as follows:

L1X
′(ξ) = L2X(ξ), ξ ∈ (0, h), (C.6)

where

L1 =



D̄0 D̄1 . . . D̄m 0 . . . 0 0

0 D̄0 . . . D̄m−1 D̄m . . . 0 0
...

...
. . .

...
...

. . .
...

...
0 0 . . . 0 0 . . . D̄m−1 D̄m

D̃0 D̃1 . . . D̃m 0 . . . 0 0

0 D̃0 . . . D̃m−1 D̃m . . . 0 0
...

...
. . .

...
...

. . .
...

...
0 0 . . . 0 0 . . . D̃m−1 D̃m


and

L2 =



Ā0 Ā1 . . . Ām 0 . . . 0 0

0 Ā0 . . . Ām−1 D̄m . . . 0 0
...

...
. . .

...
...

. . .
...

...
0 0 . . . 0 0 . . . Ām−1 Ām
Ã0 Ã1 . . . Ãm 0 . . . 0 0

0 Ã0 . . . Ãm−1 Ãm . . . 0 0
...

...
. . .

...
...

. . .
...

...
0 0 . . . 0 0 . . . Ãm−1 Ãm
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with D̄i = DT
i ⊗ I, Āi = ATi ⊗ I, D̃i = −I ⊗DT

i and Ãi = −I ⊗ ATi . The dimension of the system is
of 2mn2 × 2mn2. The boundary conditions (C.5) can be expressed, after vectorization, as

MX(0) +NX(h) = −Wv, (C.7)

where Wv is the vectorization of W , and matrices M and N are defined as follows:

M =

(
M11 0(2m−1)n2×n2

M21 0n2×n2

)
, N =

(
0(2m−1)n2×n2 N12

H0,m N22

)
,

with M11 = −N12 = I(2m−1)n2 ,

M21 =
(
0n2×(m−1)n2 G 0n2×(m−1)n2

)
,

N22 =

(
1∑
i=0

Hi,i+(m−1)

2∑
i=0

Hi,i+(m−2) . . .

m−1∑
i=0

Hi,i+1 0n2×mn2

)
.

Here,

G =

m∑
i=0

((
ATi ⊗DT

i

)
+
(
DT
i ⊗ATi

))
, and

Hi,j =
(
ATi ⊗DT

j

)
+
(
ATi ◦Aj

)
+
(
ATi ◦Dj

)
+
(
DT
i ⊗ATj

)
From (C.6), we have that

X(ξ) = eLξX(0), ξ ∈ [0, h],

where L = L−1
1 L2. Invertibility justification of matrix L1 can be found in Gohberg and Lerer (1976).

The initial condition X(0) is determined by the previous equation and (C.7) as follows:

X(0) = (M +NeLh)−1Wv.

Having a solution for X, by the definition of the matrices Xj , we have a solution for the matrix
U(τ), τ ∈ [−mh,mh].

C.2 Reduction of the computational effort: two delays case

In this section, we present some techniques that reduce the computational effort in testing the stability
conditions presented in Chapter 4, when the chart is obtained for more than one delay as parameters,
which is a more challenging case. We present here the ideas for two delays systems of the form:

d

dt

 2∑
j=0

Djx(t− hj)

 =

2∑
j=0

Ajx(t− hj), t ≥ 0.

Organize the scanning for a delay free system (C.4)-(C.5) of smaller dimension:

1. Take N + 1 equidistant points with the same step ∆ on each axis.

2. Set a counter for every axis, this is hj1 = j∆, and hi2 = i∆, i, j = 0, N . Set the basic delay as
h = gcd(i, j)∆.

3. Compute the values m1 = hj1/h and m2 = hi2/h. The dimension of the delay free system is 2mn2,
where m = max {m1,m2}.
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4. Obtain the Lyapunov matrix through the auxiliary matrices Xj for the particular case of two
delays:

Xj(ξ) = U(ξ + jh), ξ ∈ [0, h], j = −m,m− 1.

with derivatives, for j ≥ 0,

d

dξ
(Xj(ξ) +D1Xj−m1

(ξ) +D2Xj−m2
(ξ)) =Xj(ξ)A0 +Xj−m1

(ξ)A1 +Xj−m2
(ξ)A2,

and for j < 0,

d

dξ

(
X ′j(ξ) +DT

1 Xj+m1(ξ) +DT
2 Xj+m2(ξ)

)
= −AT0 Xj(ξ)−AT1 Xj+m1(ξ)−AT2 Xj+m2(ξ).

The boundary conditions are

Xj+1(0) = Xj(h), j = −m,m− 2,

−W =

2∑
i=0

(
DT
i X0(0)Ai +ATi X0(0)Di

)
+

1∑
i=0

2∑
j=i+1

(
DT
j Xmj−mi−1(h)Ai +DT

i X
T
mj−mi−1(h)Aj +ATi X

T
mj−mi−1(h)Dj +ATj Xmj−mi−1(h)Di

)
.

This procedure minimizes the dimension of the delay free system. Indeed, the natural choice h = ∆

gives a delay free system of dimension 2n2N for every pair of values h1 and h2, which implies a greater
computational effort. For example, when h1 = 8∆ and h2 = 12∆, it is clearly better to have a delay
free of dimension 2× 3× n2 than of 2× 12× n2.

Additionally, notice that for two particular values of h1 and h2, the form of the delay free system
(C.4)-(C.5) is the same for every pair of values ih1, ih2, i = 1, 2, ... in the space of parameters. The
computation of matrix exponentials are reduced by using the fact that

eLih =
(
eLh
)i
, i = 1, 2, ...




