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RESUMEN

El objetivo de este trabajo es desarrollar metodologías de indentificación de

parámetros aplicadas a un servomecanismo acoplado a un amoritguador

magnetoreológico (MD), tomando en cuenta las flexibilidades. Se consideran 3 casos.

El primer caso corresponde al servomecanismo acoplado a una carga y a un MD que no

se encuentra excitado. El segundo caso es una variante del primero, con el MD

excitado con diferentes voltajes. En el tercer caso, una segunda inercia es acoplada al

servomecanismo por medio de un resorte introduciendo así flexiblidad, además el MD

se mantiene sin excitación. Se emplean dos metodologías para la identificación de

parámetros. La primera es el Método de Identificación con Filtros de Estado (SFIM),

que utiliza un algoritmo de Mínimos Cuadrados fuera de línea y genera un vector

regresor por medio de filtros lineales de estado. Por su parte, la segunda metodología

de identificación es el Método de Identificación Recursivo Algebraico (ARIM) y emplea

un vector regresor producido por medio de técnicas de cálculo operacional acopladas a

un algoritmo de Mínimo Cuadrados Recursivo. En el primer caso, el SFIM es aplicado a

un model que considera sólo la fricción viscosa mientras que el ARIM se aplica a un

modelo de cuatro parámetros. El segundo y tercer caso consideran sólo el modelo de

cuatro parámetros. Los experimentos en tiempo real del segundo caso muestran que el

modelo de cuatro parámetros coinciden con los datos experimentales sólo para valores

bajos de excitación aplicados al MD. Por otra parte, las simulaciones respaldan los

resultados de la identificación paramétrica en el tercer caso.
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ABSTRACT

The goal of this work is to develop parameter identification methodologies

applied to a servomechanism coupled to a magnetorheological damper (MD) and

considering flexibilities. Three cases are considered. The first case corresponds to the

servomechanism coupled to an inertial load and to a MD. Here, the MD is not excited.

The second case is a variant of the first case when the MD is excited through different

voltages. In the third case, a second inertial load is coupled to the servomechanism by

means of a spring, thus introducing flexibilities and the MD is not excited. Two

methodologies are employed for parameter identification. The first methodology called

the State Filter Identification Method, resorts on an off-line Least Squares algorithm,

and the corresponding regressor vector is generated by linear state filters. The second

parameter identification methodology, the Algebraic Recursive Identification Method

(ARIM), employs a regressor vector, produced by means of Operational Calculus

techniques, coupled to a Recursive Least Squares algorithm. In the first case, the SFIM

is applied to a model considering only viscous friction, and the ARIM is applied to a

four-parameter model. The second and third cases consider only the four-parameter

model. The real-time experiments in the second case shows that the four-parameter

model fits adequately the experimental data only for low excitation voltages applied to

the MD. On the other hand, numerical experiments support the parameter

identification in the third case.
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4.7 Estimates âm, b̂m, ĉm and d̂m obtained through the modified ARIM. . . . 46
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CHAPTER 1

INTRODUCTION

Nowadays, DC servomechanisms are widely chosen over other options for

robotics, control and automation, due to its low cost in comparison with alternative

technologies, its low energy consumption, and because they are easy to control and

there exist numerous controller developed by the manufacturers that are specifically

devoted to handle these devices. Because of the above, the development of industrial

applications is strongly connected to the improvement of the control of DC

servomechanisms, focused on position and speed, so that the parameter identification

takes an important place as a mean to design highly-precise control laws, able to

follow complexes motion paths and keeping the tracking error as close to zero as

possible.

The parameter identification of a servomechanism has been a subject of study

repeatedly reported in the literature [1], [2], [3] and permit the development of model-

based control laws [4], [5], [6], [7]. In the aforementioned works the identification

focuses in systems showing a rigid coupling between the servomechanism and the load,

i.e. these aproaches do not take into account flexibility. However, if the coupling is

not rigid enough, then some resonance effects could occur considerably affecting the

performance of the servomechanism [8].
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THESIS CHAPTER 1. INTRODUCTION

Literature on parameter identification of servomechanisms considering flexibility

is not abundant compared with the number of works where flexibility is ignored. The

following is a brief literature review on this subject. The reference [9] proposes the

identification of a servomechanism that drives a two-mass system, where the parameter

identification is performed in open-loop and closed-loop. The reference [10] uses the

Welch method that works in the frequency domain and utilizes an open-loop scheme.

The methods described in [11] and [12] employs the discrete-time model of a two-mass

mechanical system and the identification is carried out using open-loop and closed-loop

schemes. In the reference [13] the flexibility of the system is produced by a belt drive

transmission mechanism and the identification is achieved by means of a frequency

based method applied to a discrete-time model.

The magnetorheological dampers are devices frequently used to reduce

vibrations in electromechanical systems and are commonly applied to robot

manipulators [14], [15], servodrives [16], actuators [17], [18], [19], [20], and haptic

interfaces [21], [22], among others. In order to introduce damping, these dampers are

filled with a liquid containing magnetic particles, and one or several coils mounted

inside the damper allow applying a magnetic filed to the liquid. The coils are excited

through an electric current produced by a power amplifier fed by a voltage signal.

Increasing this signal also increases the current and the coils magnetic field, which in

turn raises the viscosity of the liquid and consequently the mechanical damping that

the damper delivers. The fact that it is easy to modulate the viscosity of

magentorheological dampers through an electric signal has been exploited for

vibration attenuation [23], for vibration control in cars [24], for producing variable

compliance in humanoid locomotion systems [18], for seismic response reduction

[25], for developing haptic interfaces [21], [22], for designing improved prosthesis

[26], among many others areas.

A review on modeling and parameter identification of magnetorheological

dampers [27] shows that these devices may exhibit a complex nonlinear behavior that
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CHAPTER 1. INTRODUCTION THESIS

may be described through simple models including the Bingham model [28], or

dynamic models like the Bouc-Wen or the Dahl models that include the hysteretic

behavior of the magnetorheological damper [29]. Even if dynamic models accurately

match experimental data compared with simple static models, they are more difficult

to identify and in some cases this complexity would not be required.

Main objectives

The closed-loop parameter identification of the model of a rotational servomechanism

for three different cases:

(1) A mechanical system composed by a servomechanism coupled to an inertial load

and to an unexcited MD.

(2) A mechanical system composed by a servomechanism coupled to an inertial load

and to an MD excited through different voltages.

(3) A mechanical system composed by a servomechanism coupled to an inertial load,

to an unexcited MD and, to a second inertial load by means of a spring.

Particular objectives

The particular objectives along this work are the following:

(a) To apply a parameterization for the model that corresponds to the first and second

cases.

(b) To develop a suitable parameterization for the model used in the third case.

(c) To propose a controller able to stabilize the system without previous knowledge on

its parameters.

(d) To apply on-line and off-line Least Square algorithms to estimate the parameters of

the systems mentioned before using the parameterizations previously obtained.
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(e) To evaluate the identification schemes proposed through numeric simulation and

real-time experiments carried out in a laboratory prototype.

The outline of the thesis is the following.

The Chapter 2 gives a complete description of the laboratory prototype used in the

real-time experiments carried out in this work.

The Chapter 3 presents two parameter identification methods based on simple

dynamic models of a servomechanism driving an inertial load with and without

engaging a magnetorheological damper, which are applied to the laboratory prototype

described in the Chapter 2 without considering the flexibility stage. The first method is

the off-line State Filters Identification Method (SFIM) and generates a regressor vector

through the use of linear state filters and only considers a model with viscous friction.

The second method resorts on algebraic techniques for generating the regressor vector

and an on-line Least Square algorithm, and the corresponding model takes into

account viscous, Coulomb friction and constant disturbances. This method is termed as

the Algebraic Recursive Identification Method (ARIM). Moreover, the chapter also

presents the outcomes of some experiments where the magnetorheological damper

attached to the servomechanism shaft is excited with several different voltages.

The Chapter 4 describes a modification that is applied to the ARIM presented in

Chapter 3 in order to identify the parameters of the whole system, which corresponds

to the third mentioned in the main objectives, i.e. when including the flexibility stage.

The Chapter 5 gives a complete review about this work, the main issues of each

one of the chapters and the results obtained throughout the simulations and the real-

time experiments. The conclusions derive of the aforementioned reviews also stand in

this chapter.
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It is worth noting that the paper:

"Juan Manuel Martin del Campo, Rubén Garrido. Parameter identification of a

servomotor equipped with a magnetorheological damper. Memorias del XVIII Congreso

Mexicano de Robótica COMROB XIX. Mazatlán, Sinaloa, 8 al 10 de Noviembre (2017):

247-252."

derived from this work received the Rafael Kelly Award for the best postgraduated

student paper. A copy of the award is shown in Appendix E.
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CHAPTER 2

EXPERIMENTAL SETUP

The prototype used in all the experiments is composed of two sections as shown in Fig.

2.1 and Fig. 2.3. Section 1 of the prototype consists of a servomotor Moog model C34-

L80-W40 [30], driven by a power amplifier Copley Controls model 432 [31], working

in current mode. Fig. 2.2 depicts the electronic diagram of the power amplifier and

Table 2.1 shows its configuration values.

An optical encoder model ST50 (E1) and its complementary tachometer model

SA-7388F-1 with 1024 PPR (Pulses Per Revolution), both from ServoTek [32], measure

the angular position and the angular velocity of the servomotor, respectively. A

magnetorheological rotary brake Lord (MD1) model MRB-2107-3 [33], is coupled

directly to the motor shaft, and a WonderBox controller (W1) Lord [34], driven by a

voltage signal in the 0V - 5V range, controls the current applied to the MD1. The

inertia J1 is fixed to the motor shaft, and the clutch 1 (C1) OGURA, model OPC20 EM

Magnetic Particle Clutch [35], allows adding an extra inertia J2 to the servomotor.
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Section 1 Section 2

Servomotor

Magnetorheological damper 1 (MD1)

Inertia 1 (J1)

Magnetorheological damper 2 (MD2)
Inertia 2 (J2)

Clutch 1 (C1)

Encoder 1 (E1)

Tachometer (T)

Encoder 2 (E2)

Inertia 4 (J4)

Spring (S)

Inertia 3 (J3)

Clutch 2 (C2)

Motor shaft

Spring shaft

Figure 2.1: Prototype sections description.

On the other hand, Section 2 of the prototype consists of a spring and a

magnetorheological rotary brake (MD2) similar to the MD1 and also controlled by a

WonderBox controller (W2), that accomplishes the task of applying

magnetorheological damping to the spring shaft (see Fig. 2.1).
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100k
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−

SERVO
PREAMP

100pF

60.4k

1k

50k cw
LOOP
GAIN

+

− RH15

RH16

RH17

current limit
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10k

+

−

Kc

10k

CH18 RH20

4.7nF

STATUS
&

CONTROL
LOGIC

PWM
STAGE

MOSFET
"H"

BRIDGE

VOLTAGE
GAIN
KA

+15V

-15V

50k cw
BALANCE

RH9

RH14

RH10
M

KE
PI controller

KP =
RH20
10k KI =

1
(CH18)(RH20)

Figure 2.2: Electronic diagram of the Copley Controls 432 power amplifier.
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Part Function Value Units
RH9 Balance/Test 10 MΩ

RH10 Output voltage feedback open Ω
RH14 IR compensation feedback open Ω
RH15 Peak current limit 15 kΩ
RH16 Continuous current limit 15 kΩ
RH17 Peak time-limit 330 kΩ
CH18 Load inductance compensation 4.7 nF
RH20 Load inductance compensation 40.2 kΩ

Table 2.1: Power amplifier configuration.

An optical encoder USDigital (E2), model 2500-500-IE-H-D-B [36] with 2500 PPR,

measures the angular position of the spring shaft to which the inertia J3 is fixed. Inertia

J4 is also fixed to the spring shaft, however, it can be whether replaced or removed

manually. Another OGURA clutch (C2) enables coupling of Section 1 and Section 2

of the prototype. Therefore, the servomotor also drives inertia J3 and J4 through the

spring S (see Fig. 2.3).

T, E1

MD1

W1

M
J1

C1
C2

J2

MD2

E2 J4
W2

S

J3

Figure 2.3: Laboratory prototype (notation from Fig. 2.1).
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Algorithms and simulations run in a 32-bits PC Intel Core 2 Quad, over the

Windows 7 Professional operating system using Simulink-MATLAB R2011b. QUARC

2.2.1 software [37] and a Q8 Data Acquisition Board [38] inside the computer, both

from Quanser, consult data acquisition by means of the Quanser Terminal Board and

allow communication between the prototype and the coded algorithms (see Fig. 2.4).

Computer Quanser Terminal Board Galvanic Isolation

Power AmplifierPrototype

Output Control

Signals
Output Control Signals

Clutches

Position Sensors

Clutches Control Signals

Power to the Servomotor

Isolated

Control

Signal

Input Position 

Signals
Magneto-

rheological

Dampers

Magnetorheological Control Signals

Figure 2.4: Flowchart of the experimental setup.
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CHAPTER 3

PARAMETER IDENTIFICATION OF THE

PROTOTYPE WITHOUT CONSIDERING

FLEXIBILITY

3.1 Prototype Section 1 model

This chapter is devoted to the parameter identification of Section 1 of the prototype. In

this case the clutch C2 remains disengaged thus precluding the contribution of Section

2, which includes the spring S to the dynamics of Section 1. As mentioned is Chapter 2,

Section 1 of the prototype consists of a power amplifier, the magnetorheological damper

MD1, a servomotor, the inertia J1, the inertia J2 and the clutch C1.

The 2nd Newton’s law [39] states that external and internal torques acting on a

rotational system must kept in balance. Thereby, Fig. 3.1 shows the acting torques on

the Section 1 of the prototype. Note that clutches C1 and C2 remain disengaged.
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rmq̇m
bvmq̇m

Jmq̈m

τm qm

C1 off

C2 off

Figure 3.1: Mechanical system acting forces in Section 1
of the prototype.

On the other hand, the power amplifier works in current mode, so that the current

loop (see Fig. 3.2) accomplishes the task of keeping the control voltage u proportional

to the armature current Ia and consequently proportional to the electromagnetic torque

τm (see [40]), i.e.

τm = Ku(t) (3.1)

Fig. 3.2 depicts the block diagram of the power amplifier configured in current mode,

the DC servomotor and the position sensor E1. Inertia Jm is the sum of the servomotor

inertia Jser, the brass disk inertia J1 and the encoder inertia Je. Due to the high integral

gain KI of the power amplifier, the electrical time constant is much smaller that the

mechanical time constant. Therefore, the power amplifier dynamics are subsequently

ignored. The above simplification, Newton’s second law and Fig. 3.1 permit obtaining

the following model of the prototype Section 1

Jmq̈m(t) + f (q̇m(t)) = τm + τd (3.2)
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u
KE +

−

Kp

KI

s

+

+

PI controller

v
KA

Vm
+
−

1

Las+Ra

Ia

Current loopKc

KT

τm −

+
+

τd

1

Jms

f(·)
friction

Kb

q̇m 1

s

qm

Power amplifier

DC servomechanism

Motor position sensor E1

Figure 3.2: Servomotor model blocks diagram (see [1]).

Block diagram description
KE Amplifier input gain Kp Proportional gain
KI Integral gain Kc Current loop gain
KA Power amplifier gain Vm Servomotor input voltage
Ra Armature resistance La Armature inductance
KT Torque constant Kb Back EMF constant
Jm Section 1 inertia τd Amplifier parasitic disturbances
qm Servomotor angular position q̇m Servomotor angular velocity
f(·) Friction torques

Table 3.1: Notation used in Fig. 3.2.

Servomotor

MD1

Figure 3.3: MD1 and servomotor mounting.
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The term f (q̇m(t)) accounts for the servomotor and the magnetorheological

damper friction. The Bingham model for a magnetorheological damper [27] is

considered for describing the friction phenomena in the magnetorheological damper

f (q̇(t)) = fmq̇m(t) + µmsign (q̇m(t)) (3.3)

where the term fm = bvm + rm represents the motor viscous and the

magnetorheological friction coefficients respectively, and the term µm represents the

Coulomb friction coefficient. The sign(q̇m(t)) function is defined as

sign(q̇m(t)) =































1, if q̇m(t) > 0

0, if q̇m(t) = 0

−1, if q̇m(t) < 0

(3.4)

Substituting equations (3.1) and (3.3) into equation (3.2) yields

Jmq̈m(t) + fmq̇m(t) + µmsign (q̇m(t)) = Ku(t) + τd (3.5)

which has the following alternative writing

q̈m(t) = −aq̇m(t) + bu(t)− csign (q̇m(t)) + d (3.6)

where the next definitions are used

a =
fm
Jm

; b =
K

Jm
; c =

µm

Jm
; d =

τd
Jm

; K =
KEKT

Kc

14



CHAPTER 3. PARAMETER IDENTIFICATION OF THE
PROTOTYPE WITHOUT CONSIDERING FLEXIBILITY THESIS

3.2 Parameter identification

The Filter State Identification [41] (FSIM) and the Algebraic Recursive Identification

[1] (ARIM) methods furnish a way to estimate the parameters of the servomechanism

model (3.6). So as to apply the two identification methods described in the followings

sections, it is necessary to stabilize the Section 1 of the prototype through the next

Proportional Derivative (PD) controller

u(t) = Kp [qr(t)− qm(t)]−Kdq̇e(t)

q̇e(t) = γ [qm(t)− qe(t)]
(3.7)

ConstantsKp andKd correspond to the proportional and integral gains of the controller,

qr(t) is a reference used for identification purposes, q̇e(t) is an estimate of the servomotor

angular velocity q̇m(t), and γ is a positive constant.

3.2.1 Filter State Identification Method (FSIM)

This method uses a simplified version of the model (3.6) without considering the

Coulomb friction and the disturbances terms, i.e.

q̈m(t) = −aq̇m(t) + bu(t) (3.8)

Note that the only measurement available corresponds to the servomotor angular

position qm. Consequently it is not possible to produce a linear regression from model

(3.8) to estimate the unknown parameters a and b since measurements of q̇m and q̈m

are not available. To circumvent this problem, a filtered version of the model (3.8) is

obtained through linear state filters.
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Applying the Laplace transform to (3.8) produces the next equality

s2Qm(s) = −asQm(s) + bU(s) (3.9)

where Q(s) = L {qm(t)}, U(s) = L {u(t)}, and the operator L {·} corresponds to the

Laplace transform operator. Next, define the filter

F (s) =
f2

s2 + f1s+ f2
(3.10)

where the terms f1 and f2 are positive constants. Multiplying both sides of (3.9) by

F (s) leads to the next equation

F (s)s2Qm(s) = −aF (s)sQm(s) + bF (s)U(s) (3.11)

The next variables
s2Qf(s) = F (s)s2Qm(s)

sQf(s) = F (s)sQm(s)

Qf(s) = F (s)Qm(s)

Uf(s) = F (s)U(s)

(3.12)

allow writing (3.11) as follows

s2Qf (s) = −asQf (s) + bUf (s) (3.13)

Finally, applying the inverse Laplace transform to (3.13) yields

q̈f(t) = −aq̇f (t) + buf (t) (3.14)

with q̈f (t) = L
−1 {s2Qf (s)}, q̇f (t) = L

−1 {sQf(s)} and uf(t) = L
−1 {U(s)}, which are

the filtered versions of q̈m(t), q̇m(t) and u(t) respectively, and unlike to the model (3.8),

q̈f (t) and q̇f (t) are available by filtering the servomotor angular position qm(t)
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qm f2
s2 + f1s+ f2

qf qm sf2
s2 + f1s+ f2

q̇f

qm s2f2
s2 + f1s+ f2

q̈f u f2
s2 + f1s+ f2

uf

Figure 3.4: Filtering.

For applying the FSIM, the model (3.14) is written in the following regression form

zL(t) = q̈f (t)

= φL(t)
TθL

(3.15)

φL(t) = [−q̇f (t) uf(t)] ; θL = [a b]T

which is also valid at the time instants t = T, 2T, . . . , (K − 1)T,KT, . . . where T is a

sampling time period. Therefore

zL(K) = φL(K)TθL (3.16)

and the off-line Least Square algorithm is used to estimate θL. So as to apply this

method, it is necessary to sample zL(K) and the regressor vector φL(K) along K time

instants to build the following terms

AL =





























φL(1)
T

φL(2)
T

...

φL(K − 1)T

φL(K)T





























; ZL =





























zL(1)

zL(2)
...

zL(K − 1)

zL(K)





























(3.17)
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Hence, the estimate θ̂L of θL is given by the next expression [42]

θ̂L = (AL
TAL)

−1
AL

TZL (3.18)

Also, the system under identification must be excited by a signal with a wide

frequency spectrum to achieve that input and output as well as its corresponding

derivatives, change sufficiently in time. The conditioning κ gives a suitable way to

know how good the excitation signal applied is and is defined as

κ =
λmax (AL

TAL)

λmin (AL
TAL)

(3.19)

being λmax (AL
TAL) and λmin (AL

TAL) the largest and the smallest eigenvalues of the

matrix AL
TAL, respectively. Conditioning values closer to 1 indicate an adequate

excitation signal because both eigenvalues are about of the same magnitude order. A

good choice for the signal excitation is filtered white noise, being careful of not

applying it to the servomotor for extended periods of time in order to avoid permanent

damages.

3.2.2 Algebraic Recursive Identification Method (ARIM)

This method is based on operational calculus techniques [43] and on a recursive Least

Square algorithm (see [44] and [45]) applied to the model (3.6). According to [1],

the method is divided into two steps. In the first step the ARIM uses signals qm and u

to estimate the parameters a and b from (3.6) that correspond to the linear part of the

model.

The reference signal qr1 depicted in Fig. 3.5 is composed of a ramp an two

sinusoids and fulfills the Persistence of Excitation (PE) condition [45]. It must be

applied to the system under identification in the time interval [0, t0] to make the
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servomotor rotate only in one direction and enforce the term sign(q̇m) in the Coulomb

friction to have a constant value. This fact allows writing (3.6) as follows

q̈m(t) = −aq̇m(t) + bu(t) + v (3.20)

where v = −cmsign (q̇m(t)) + d. Note that

v =











−cm + d, if q̇m(t) > 0

cm + d, if q̇m(t) < 0
(3.21)

qr1(t)

0 t0

t

Figure 3.5: Reference signal qr1 used for â and b̂ estimation.

The next regression model is obtained for (3.6) using the operational methodology

zA(t) = θA
TφA(t) (3.22)

φA = [φ1(t) φ2(t)]
T ; θA = [a b]T

where (see Appendix B)

z(t) = aφ1(t) + bφ2(t) (3.23)
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and

z(t) = t3qm − 9
∫

t2qm + 18
∫ (2)

tqm − 6
∫ (3)

qm

φ1(t) = −
∫

t3qm + 6
∫ (2)

t2qm − 6
∫ (3)

tqm

φ2(t) =
∫ (2)

t3u− 3
∫ (3)

t2u

The operator
∫ (n) ρ(t) represents the iterated integral

∫ t
0

∫ τ1
0 . . .

∫ τn−1

0 ρ(τn)dτn . . . dτ2τ1. It

is worth pointing out that the regression model (3.22) does not contain the constant

term v appearing in (3.20), and is also valid for the time instants t = T, 2T, ..., (k −
1)T, kT, ... where T is the sampling period, i.e.

zA(kT ) = θA
TφA(kT ) (3.24)

or simply

zA(k) = θA
TφA(k) (3.25)

The regression model (3.25) allows performing the standard Least Square algorithm

(3.26) (see [44] and [45]) where the term θ̂A is an estimated of θA, P is the covariance

gain matrix and ǫ is the estimation error.

θ̂A(k) = θ̂A(k − 1) + L(k)ǫ(k)

L(k) =
P (k − 1)φA(k)

1 + φA
T(k)P (k − 1)φA(k)

P (k) = P (k − 1) +
P (k − 1)φA(k)φA

T(k)P (k − 1)

1 + φA
T(k)P (k − 1)φA(k)

ǫ(k) = zA(k)− φA
T(k)θ̂A(k − 1)

(3.26)

Moreover, the vector φA(k) satisfies the Persistence of Excitation condition [45] if

lim
k→∞

Ωk = lim
k→∞

λmin





k
∑

j=1

AA(j)



 = ∞ (3.27)

where

AA(j) = φA(j)φ
T

A(j) (3.28)
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and λmin [·] is the smallest eigenvalue operator. In the second step of identification the

estimates ĉ and d̂ are computed using the reference signal (3.29) shown in Fig. 3.6 in

the time interval [t0, tf ]

qr2 =



























m(t− t0) + qr1(t0), if t ∈ [t0, t0 + δ]

−m [t− (t0 + 2δ)] + qr1(t0), if t ∈ [t0 + δ, tf ]

(3.29)

qr2(t)

t0 t0 + δ t1

t

−mm

Figure 3.6: Reference signal qr2 used for ĉ and d̂ estimation.

The terms m > 0 and −m < 0 correspond to the slopes of the reference qr(t) and

δ = (tf − t0)/2. Thus, the following set of conditions hold at the end of the time interval

t ∈ [t0, t0 + δ] and t ∈ [t0 + δ, t0], respectively

q̇m(t) = m

sign(q̇m(t)) = 1

q̈m(t) = 0

u(t) = u+







































t ∈ [t0, t0 + δ]

q̇m(t) = −m
sign(q̇m(t)) = −1

q̈m(t) = 0

u(t) = u−







































t ∈ [t0 + δ, t0]
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using each one of the above set of conditions, model (3.6) becomes

c− d = −am+ bu+ (3.30a)

−c− d = am+ bu− (3.30b)

The corresponding estimated model for (3.30) is

ĉ− d̂ = −âm+ b̂u+ (3.31a)

−ĉ− d̂ = âm+ b̂u− (3.31b)

A mistake was found in solving of the set of equations (3.31) for ĉ and d̂ in [1], whose

amendment remains

ĉ = −âm+ b̂u+ + d̂ (3.32a)

d̂ = − b̂ [u+ + u−]

2
(3.32b)

3.3 Experimental comparison between the FSIM and

the ARIM algortihms

In order to perform parameter identification using both methods the servomotor is

controlled using the PD algorithm (3.7) tuned according to Kp = 20, Kd = 0.46,

γ = 300 and implemented using a sampling time of 0.001 s.

In the case of FSIM, the exciting signal is produced through the band-limited White

noise block from Simulink with a noise power of 0.02 and a sampling time of 100ms.

The coefficients of the filters shown in Fig. 3.4 are set to f1 = 40 and f2 = 400. Finally,

the parameter estimates are found by solving equation (3.18). On the other hand, the

ARIM employs the signal qr1 = 11t + 4 sin(0.8πt) + 0.25 sin(1.6πt) with t0 = 10 s, i.e.,
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in the time interval [0 s, 10 s]. Moreover, the solver ODE1-Euler with a fixed step size

of 0.001 s is used for implementing the regressor (3.22). The signal qr2 depicted in Fig.

3.6 is applied as reference for the PD controller (3.7) with tf = 20 s, i.e., during the

time interval [10 s, 20 s]. The covariance gain matrix and the initial estimated values are

P (0) = diag[10 000, 10 000] and θ(0) = [0, 0]T, correspondingly.

The pertinence of the estimates obtained through both algorithms is evaluated by

means of solving the tracking control problem described in the next section.

3.3.1 Model validation

In order to validate the identified parameters through the FSIM and the ARIM

algorithms, they are used for solving a trajectory tracking control problem by means of

applying the next control law to the Section 1 of the prototype

u(t) =
1

b̂

[

α2e(t) + α1ė(t) + q̈r(t) + âq̇m(t) + ĉsign (q̇m(t))− d̂
]

(3.33)

Adding and subtracting b̂u(t) to ë(t) = q̈r(t)− q̈m(t) leads to

ë(t) = q̈r(t)− q̈m(t) + b̂u(t)− b̂u(t) (3.34)

Replacing (3.6) in (3.34) yields the next error dynamics

ë(t) + α1ė(t) + α2e(t) = Φψ (3.35)

Φ =
[

â− a b̂− b ĉ− c d̂− d
]

ψ = [−q̇m(t) u(t) − sign(q̇m(t)) 1]T
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When the equation (3.35) is homogeneous the error dynamic tends to zero as long

as the real part of the roots of the characteristic polynomial associated to (3.35) lie in

the left half plane [46]. The characteristic polynomial of (3.35) is

s2 + α1s+ α2 = 0

(s+ p1) (s+ p2) = 0
(3.36)

where
α1 = p1 + p2

α2 = p1p2

(3.37)

and −p1, −p2 are the roots of (3.35). According to the Ruth-Hurwitz criterion [47] the

aforementioned condition (Re(p1), Re(p2) > 0) is fulfilled for equation (3.35) if and

only if both coefficients α1 and α2 are positives. There are two possible cases when the

right-hand side of equation (3.35) is equal to zero. The first one occurs when the vector

Φ and the vector ψ are orthogonal; i.e.

−ãq̇m(t) + b̃u(t)− c̃sign(q̇m(t)) + d̃ = 0 (3.38)

however, this condition does not happen during the experiments. For its part, the

second case occurs when the identified parameters are equal to the servomechanism

parameters. Note that the control law (3.33) seeks to cancel out the terms aq̇m(t),

csign(q̇m(t)), d and to compensate the input gain b. Hence, the tracking error converges

to a neighborhood of zero as long as the parameters estimated are close to the real

parameters.

â− a ≈ 0

b̂− b ≈ 0

ĉ− c ≈ 0

d̂− d ≈ 0







































⇒ −ãq̇m(t) + b̃u(t)− c̃sign(q̇m(t)) + d̃ ≈ 0 (3.39)
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For implementing the tracking control law (3.33) the reference signal has to be

available as well as its first and second time derivative, which are generated by means

of the filter shown in Fig. 3.7, where the terms r, qr, q̇r and q̈r represent the original

reference signal, the reference position, the reference velocity and the reference

acceleration.

r
β

s+ β
+
−

β2 +
−

q̈r

1

s

1

s

qr

q̇r

2β

β = 100

Figure 3.7: Reference generator.

The desired poles of the error dynamics (3.35) are placed at p1 = 6 and p2 = 6, so

that α1 = 12 and α2 = 36, and (3.35) satisfies the Routh- Hurwitz stability criterion. The

next MATLAB-Simulink diagram is implemented for computing the trajectory tracking

control problem that is used for assessing the pertinence of the parameters estimates

Figure 3.8: MATLAB real-time experiment diagram for implementing the
tracking control law (3.33).
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The squared error E serves as a measure of the tracking performance and is computed

as follows

E =
∫ ta

tin

e(t)2 (3.40)

with e(t) = qr(t)− qm(t), tin = 2 s, ta = 20 s and a sampling period of 0.001 s.

3.3.2 Experimental results

Table 3.2 resumes the experimental results of the parameter identification and the

performance of the model validation for both algorithms. Furthermore, the value of

the conditioning κ for the FSIM algorithm is 78.0491 which indicates that the

excitation signal chosen for identification of the linear part of the model (3.6) is

adequate.

Identification W1 Parameter identification Performance

Method Voltage (V) â b̂ ĉ d̂ E

FSIM 0 5.1791 163.7599 - - 23 504.00
ARIM 0 0.4580 170.9007 13.0808 1.8532 26.32

Table 3.2: Parameter identification results.

0 1 2 3 4 5 6 7 8 9 10

time

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
×105 Ωk

Figure 3.9: Performance of the persistence of excitation condition
for the regressor (3.22).
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Fig. 3.9 evidences that the value of Ωk (3.27) tends to infinity when k → ∞ thus

excitation signal in Fig. 3.5 and 3.6 satisfy the Persistence of Excitation condition. Fig.

3.10 and Fig. 3.11 show the parameters estimated through the ARIM. The angular

displacement measurements of the motor shaft are given in revolutions (r).

Note also that a slight difference exists between parameters â and b̂ obtained by

means of the FSIM and the ARIM algorithms. The experimental results show that the

FSIM could be affected by the contributions of Coulomb friction and constant

disturbances not considered in the model (3.14). An proper interpretation of this

behavior is the following. The system damping represented by the parameter a

increases in the FSIM algorithm to compensate for the absence of the Coulomb friction

coefficient c that is not considered in (3.14), whereas the input gain represented by the

parameter b decreases to compensate the constant disturbances d present in the

dynamics (3.2) and also not considered in (3.14). The parameters estimated through

the FSIM produce a large squared error E value compared with the value of E

produced using the parameters provided by the ARIM. The above is observed in the

tracking experiments results depicted in Fig. 3.12 and 3.13. An explanation for these

outcomes is again the fact that the identification model (3.14) used in the FSIM does

not consider Coulomb friction and constant disturbances whereas model (3.6) used in

the ARIM does consider contributions of these terms.

The FSIM algorithm could be accurate enough when the identified

servomechanism does not exhibit high Coulomb friction and constant disturbances

levels because the error produced by these terms can be efficiently counteracted

through a uncertainty observer [48] or the integral action of a Proportional Integral

Derivative (PID) [49]. The FSIM algorithm is easily computed thanks to the

components of the regressor vector φL(t) = [−q̇f (t) uf(t)] are obtained by means of

filtering the direct measurements of q(t) and u(t) from the prototype. Moreover, the

system under identification is excited with a common low-amplitude white noise

generator.
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Figure 3.10: Estimates â and b̂ obtained through the ARIM.
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Figure 3.11: Estimates ĉ and d̂ obtained through the ARIM.
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Figure 3.12: FSIM tracking performance.
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Figure 3.13: ARIM tracking performance.

On the other hand, the ARIM algorithm offers a higher accuracy because it uses a

model including Coulomb friction c and constant disturbances d parameters, as shown

in Fig. 3.13. However, it is clearly more complicated to use because the components

of the regressor vector φA = [φ1(t) φ2(t)]
T require a special parameterization (B) that

is obtained from the direct measurement of q(t) and u(t) signals. Furthermore, the

excitation signal applied during the identification is more complex, as shown in Fig. 3.5

and Fig. 3.6. In this way, the choice of an adequate method essentially depends on the

characteristics of the system under identification, the accuracy that is sought and the

resources available for the implementation of the identification procedure.
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3.4 Change of the parameters estimates due to

magnetorheological damping

As an evidence of the versatility offered by the prototype used in this work, a change

of the servomotor identified parameters is performed by means of the contribution of

the magnetorheological damper MD1. As mentioned in chapter 2 the MD1 applies a

magnetorheological damping directly to the motor shaft depending on the command

voltage applied to the Wonder Box W1 (see Appendix A)

W1

MD1

Figure 3.14: MD1 and W1 devices.

First, as it has been done so far, the inertia J2 is not added to the dynamic of the

servomotor so that the clutch C1 remains disengaged. The outcomes for several voltage

values are shown in Table 3.3 for the ARIM. For the second case, the inertia J2 is added

to the dynamic of the servomotor by engaging the clutch C2. Table 3.4 shows the results

obtained for several voltage values applied to the Wonder Box W1. Note that in both

cases the ARIM produces reasonable estimates only when the MD1 is excited at low

currents corresponding to low voltages applied to the Wonder Box W1.
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W1 PD Parameter identification Performance
Voltage Kp Kd â b̂ ĉ d̂ E

0 V 20 0.46 0.458 170.9007 13.0808 1.8532 27.24
0.2 V 21 0.46 0.4646 170.7969 13.2555 1.8021 27.32
0.4 V 22 0.46 0.4923 169.0663 18.1405 1.3225 239.49
0.6 V 24 0.48 0.6003 156.2108 19.2509 1.2920 770.44
0.7 V∗ 26 0.50 1.2435 170.4798 36.5401 2.3373 8 737.00

Table 3.3: Results of ARIM with nominal inertia for several voltage values
applied to the Wonder Box W1.

W1 PD Parameter identification Performance
Voltage Kp Kd â b̂ ĉ d̂ E

0 V 20.0 0.80 0.3020 82.3279 8.9221 0.9779 32.15
0.2 V 20.5 0.80 0.3067 82.2350 8.9384 0.9817 35.76
0.4 V 20.5 0.80 0.3149 82.1557 9.0356 0.9040 42.33
0.6 V 21.0 0.85 0.3573 82.1056 10.9133 0.8314 53.73
0.7 V∗ 22.0 0.85 0.3802 80.8019 18.9291 0.9497 404.73

Table 3.4: Results of ARIM with inertia J2 added, for several voltage values
applied to the Wonder Box W1.
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Figure 3.15: ARIM tracking performance with 0.7V excitation applied to MD1
and clutch C1 disengaged.

For the first and the second cases the squared error E remains below a value

of 300 and 45, respectively, for excitation voltages up to 0.4 V, which is the range
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where damping applied by MD1 is, roughly speaking, linear. Above this value the

squared error E increases noticeably as shown in the Fig. 3.15 that depicts the tracking

performance, the tracking error and the squared error. The above result indicates that

the Bingham friction model (3.3) does not correctly describe the behavior of the MD1

for large values of the excitation voltage.

Additionally, note that for small excitation voltage, below 0.6 V, the value of the

viscous friction coefficient in Table 3.3 is in the same range than the value of the

derivative gain Kd used in the PD controller. This fact opens the possibility of injecting

damping using the MD in a Proportional Integral Derivative (PID) controller instead of

employing a classic derivative action.

32



CHAPTER 4

PARAMETER IDENTIFICATION OF THE

PROTOTYPE CONSIDERING FLEXIBILITY

4.1 Prototype Section 1 plus Section 2 model

In this chapter the parameter identification of the whole prototype is studied, so that

the clutch C1 is engaged and the clutch C2 is engaged for adding the contribution of

the Section 2 and consequently obtaining a pair of equations coupled by means of the

torque exerted by the spring S (see Fig. 4.1). The torque τs from the coupling works as

the control signal applied to Section 2 and is described by the following equation

τs = Ks (qm(t)− qs(t)) (4.1)

where Ks, qm and qs represent the flexibility coefficient of the spring, the angular

position of the servomotor shaft and the angular position of the inertia Js, respectively

(see Fig. 2.1).
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The equation (4.2) describes the dynamics of the Section 1 of the prototype obtained

adding the torque τs to the model (3.5) due to the spring coupling

Jmq̈m(t) + fmq̇m(t) + µmsign (q̇m(t)) + τs = Ku(t) + τd (4.2)

The second equation (4.3) of the model describes the dynamics of the Section 2 of the

prototype considering the torque due to the spring S

τs = Jsq̈s + f (q̇s(t)) (4.3)

rmq̇m
bvmq̇m

Jmq̈m

τm qm

C1

C2

τs
bvsq̇s

rsq̇s Jsq̈s

qs

Figure 4.1: Mechanical system acting forces along the whole prototype.

Inertia Js is the sum of the inertias J3 and J4. The Bingham model [27] is also used

to describe the friction phenomena in the magnetorheological damper MD2. Thus the

term f (q̇s(t)) in (4.3) accounts for the mechanical and the magnetorheological friction

f (q̇s(t)) = fsq̇s(t) + µssign (q̇s(t)) (4.4)

The term fs represents the viscous and the magnetorheological viscous friction

coefficient, and the term µs represents the mechanical and the magnetorheological

Coulomb friction coefficient.
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C2 MD2

Spring

Figure 4.2: Section 2 of the prototype.

The sign(q̇s(t)) function is defined as

sign(q̇s(t)) =































1, if q̇s(t) > 0

0, if q̇s(t) = 0

−1, if q̇s(t) < 0

(4.5)

Substituting equation (4.4) into equation (4.3) yields

Jsq̈s(t) + fsq̇s(t) + µssign (q̇s(t)) = τs (4.6)

Equations (4.2) and (4.6) shape the next model for the whole prototype

Jmq̈m(t) + fmq̇m(t) + µmsign (q̇m(t)) + τs = Ku(t) + τd (4.7a)

Jsq̈s(t) + fsq̇s(t) + µssign (q̇s(t)) = τs (4.7b)

which has the following alternative writing

q̈m(t) = −amq̇m(t) + bmu(t)− cmsign (q̇m(t)) + dm − gm (qm(t)− qs(t)) (4.8a)

q̈s(t) = −asq̇s(t) + gs (qm(t)− qs(t))− cssign (q̇s(t)) (4.8b)
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with the next parameters definitions

am =
fm
Jm

; bm =
K

Jm
; cm =

µm

Jm

dm =
τd
Jm

; gm =
Ks

Jm
; as =

fs
Js

gs =
Ks

Js
; cs =

µ

Js

(4.9)

4.2 Parameter identification

Based on the good performance shown by the ARIM in the experiments carried out

in Section 3.3, a slight modification is performed to this method in order to identify

the parameters of the whole prototype. It is necessary to stabilize the system as it was

performed in Section ?? where the Section 1 of the prototype was stabilized by means of

the PD controller (3.7). Moreover, the signal reference signal qrf1 (see Fig. 4.5) fulfills

the Persistence of Excitation (PE) condition [45] and must be applied to the system

under identification in the time interval [0, t0]. The signal should enforce the prototype

to rotate in only one direction thus making the Coulomb friction term sign(q̇m) to have

a constant value. If the stabilizing controller fulfills this condition, then it allows writing

the model (4.8) as follows

q̈m(t) = −amq̇m(t) + bmu(t) + vm − gm (qm(t)− qs(t)) (4.10a)

q̈s(t) = −asq̇s(t) + gs (qm(t)− qs(t)) + vs (4.10b)

where vm = −cmsign (q̇m(t)) + dm satisfies

vm =











−cm + dm, q̇m(t) > 0

cm + dm, q̇m(t) < 0
(4.11)
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and vs = −cssign (q̇s(t)) satisfies

vs =











−cs, q̇s(t) > 0

cs, q̇s(t) < 0
(4.12)

A regression model for the equations set (4.10) obtained using the operational

calculus corresponds to

zm(t) = θT

mφm(t) (4.13)

φm(k) = [φ11(k) φ12(k) φ13(k)]
T θm = [am bm gm]

T

zs(t) = θT

sφs(t) (4.14)

φs(k) = [φ21(k) φ22(k)]
T θs = [as gs]

T

where (see Appendix C)

z1(t) = amφ11(t) + bmφ12(t) + gmφ13(t) (4.15)

z1(t) = t3qm − 9
∫

t2qm + 18
∫ (2)

tqm − 6
∫ (3)

qm

φ11(t) = −
∫

t3qm + 6
∫ (2)

t2qm − 6
∫ (3)

tqm

φ12(t) =
∫ (2)

t3u− 3
∫ (3)

t2u

φ13(t) = −
∫ (2)

t3qef + 3
∫ (3)

t2qef

z2(t) = asφ21(t) + gsφ22(t) (4.16)

z2(t) = t3qs − 9
∫

t2qs + 18
∫ (2)

tqs − 6
∫ (3)

qs

φ21(t) = −
∫

t3qs + 6
∫ (2)

t2qs − 6
∫ (3)

tqs

φ22(t) =
∫ (2)

t3qef − 3
∫ (3)

t2qef
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The operator
∫ (n) ρ(t) represents the iterated integral

∫ t
0

∫ τ1
0 . . .

∫ τn−1

0 ρ(τn)dτn . . . dτ2τ1.

The regression models (4.13) and (4.14) are valid for the time instants

t = T, 2T, ..., (K − 1)T,KT, ... where T is the sampling period, i.e.

z1(KT ) = θT

mφm(KT ) (4.17a)

z2(KT ) = θT

sφs(KT ) (4.17b)

or simply

z1(K) = θT

mφm(K) (4.18a)

z2(K) = θT

sφs(K) (4.18b)

On the other hand, the vector Ωi satisfies the Persistence of Excitation condition [45] if

lim
k→∞

Ωi = lim
k→∞

λmin





k
∑

j=1

Ai(j)



 = ∞ (4.19)

being

Ai(j) = φi(j)φ
T

i(j) (4.20)

where λmin [·] stands for smallest eigenvalue and the subscript i = m, s corresponds

to the regressors (4.18a) and (4.18b), respectively. Furthermore, the next standard

Recursive Least Squares algorithm (see [44] and [45]) is performed for each one of the

regression models (4.18)

θ̂i(k) = θ̂i(k − 1) + Li(k)ǫ(k)

Li(k) =
Pi(k − 1)φi(k)

1 + φT
i(k)Pi(k − 1)φ(k)

Pi(k) = Pi(k − 1) +
Pi(k − 1)φi(k)φ

T

i(k)Pi(k − 1)

1 + φT
i(k)Pi(k − 1)φi(k)

ǫi(k) = zi(k)− φT

i(k)θ̂i(k − 1)

(4.21)
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where the subscript i = m, s also corresponds to the Recursive Least Square algorithm

applied to the regressors (4.18a) and (4.18b) respectively. Moreover, the terms θ̂i are

the estimates of θi, Pi are the covariance gain matrices and ǫi are the estimation errors.

In the second step of the identification procedure the estimates ĉm, d̂m and ĉs are

computed using the reference signal qrf2 (see Fig. 4.6) during the time interval [t0, t1].

The following set of conditions hold at the end oh the time interval t ∈ [t0, t0 + δ] and

t ∈ [t0 + δ, t1] respectively

q̇m(t), q̇s(t) = m

sign (q̇m(t)) , sign (q̇s(t)) = 1

q̈m(t), q̈s(t) = 0

u(t) = u∗+

(qm(t)− qs(t)) = qef+























































t ∈ [t0, t0 + δ]

q̇m(t), q̇s(t) = −m
sign (q̇m(t)) , sign (q̇s(t)) = −1

q̈m(t), q̈d(t) = 0

u(t) = u∗
−

(qm(t)− qs(t)) = qef
−























































t ∈ [t0 + δ, t1]

Substituting each one of above cases in (4.8) produces the sets of equations

cm − dm = −amm+ bmu
∗

+ − gmqef+ (4.22a)

cs = −asm+ gsqef+ (4.22b)

and

−cm − dm = amm+ bmu
∗

−
− gmqef

−

(4.23a)

−cs = asm+ gsqef
−

(4.23b)
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Solving (4.22) and (4.23) for ĉm, d̂m and ĉs yields

ĉm = −âmm+ b̂mu
∗

+ − ĝmqef+ + d̂m (4.24a)

d̂m = −1

2

[

b̂m
Ä

u∗+ + u∗
−

ä

+ ĝm
Ä

qef+ + qef
−

ä

]

(4.24b)

ĉs = −âsm− ĝsqef
−

(4.24c)

The parameters cs and cm are obtained directly from (4.22). It is also possible to obtain

cs from (4.23) since both sets of equations describe the same model at different time

instants.

4.3 Stabilization of the system

It is necessary to stabilize the prototype without previous knowledge of its parameters in

order to apply the identification method described in Section 4.2. To this end, consider

the prototype model (4.8) and define the state variables

xT(t) = [qm(t) q̇m(t) qs(t) q̇s(t)] (4.25)

The above definitions allow writing the next state-space model

ẋ(t) = Ax(t) + bu(t) + s (4.26a)

y(t) = cx(t) (4.26b)

where

A =





















0 1 0 0

−gm −am gm 0

0 0 0 1

gs 0 −gs −as





















; b =





















0

bm

0

0





















; c =





















0

0

1

0





















T

(4.27)
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and

s =





















0

−cmsign(q̇m(t)) + dm

0

−cssign(q̇s(t))





















(4.28)

The vector s (4.28) is bounded and contains the non-linear terms in (4.8) and the

bounded disturbances acting in the linear system (4.27). The characteristic polynomial

of the matrix A is

det(sI −A) = s4 + (am + as)
3 + (gm + gs + amas)s

2 + (amgs + asgm)s

= s
î

s3 + (am + as)
2 + (gm + gs + amas)s+ amgs + asgm

ó

(4.29)

The above polynomial shows that the open-loop system is not asymptotically stable,

there exists an eigenvalue placed in s = 0 and the system is marginally stable [46].

The controllability is the ability to transfer a system from any initial state x(0) = x0 to

any desired final state x(tf ) = xf within a finite time interval, i.e. for tf < ∞ [50],

then it is necessary to make sure that the system is controllable and consequently is

able to be stabilized [51]. A linear system is controllable if and only if the associated

controllability matrix C = [B AB A2B A3B] has full-rank. Thereby, the controllability

matrix associated to the model (4.27) corresponds to

C =





















0 bm −bmam −bm(gm − am
2)

bm −bmam −bm(gm − am
2) bmam(2gm − am

2))

0 0 0 bmgs

0 0 bmgs −bmgs(am + as)





















(4.30)

and its determinant is

det(C) = bm
4gs

2 (4.31)

The value of gs depends on the spring coefficient Ks (see equations (4.9)) and the input

gain bm. The fact that they are positives constants ensures that C is a full-rank matrix
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and the system is controllable [46], which means that its stabilization is possible by

using a state-feedback control law. Stabilization of (4.27) is achieved by means of the

following parallel PD controller

u(t) = kpm [qrf(t)− qm(t)]− kdmq̇m(t) + kps [qrf(t)− qs(t)]− kdsq̇s(t) (4.32)

qrf

Reference
signal

+
− kps +

−

+
−

kpm +
−

+

+

u
bm +

+

− q̈m 1

s

q̇m

am−+
−

dm

cm

1

s

qm
+
−

Ks

τs

+
+

q̈s 1

s

q̇s

as−

−

cs

1

s

qs

kdm

kds

Parallel
PD controller

Motor system Spring system

Figure 4.3: Parallel PD controller (4.32) used for stabilizing the model (4.8).

being kpm, kdm, kps and kds positive constants. If the reference signal qrf(t) is equal to

zero then the control law (4.32) becomes

u(t) = −kpmqm(t)− kdmq̇m(t)− kpsqs(t)− kdsq̇s(t) (4.33)

which corresponds to the state-feedback control law [52]

u(t) = −KTx(t) (4.34)

with

KT = [kpm kdm kps kds] (4.35)

The results obtained throughout the stability analysis detailed in Appendix D show

that it is possible to stabilize system (4.8) using a state-feedback gain high enough.
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Therefore, by gradually increasing the feedback gains it is possible to stabilize the

system even if its parameters are unknown. So, the controller (4.32) applied to the

system (4.8) is tuned through a trial and error process. First the proportional gains kpm

and kps are increased until the system response presents oscillations and then the

derivatives gains kdm and kds are increased to reduce the overshoot. Fig. 4.4 shows the

outcome of the system stabilized through the parallel PD controller (4.32) tuned with

the gains (4.36) and using a filtered square wave as a reference.

Kpm = 15 Kps = 21

Kdm = 13.5 Kds = 4
(4.36)

0 2 4 6 8 10 12 14 16 18 20
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Inertia Js angular position (qs)
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time
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)

Inertia J
s
 angular position (q

s
)

Figure 4.4: Simulation response of the prototype stabilized through
the controller (4.32).
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4.4 Simulation setting

The modified ARIM employs the excitation signal

qrf1 =18t+ 0.25 sin(1.7πt) + 4 sin(0.8πt)

+ 2 sin(1.2πt) + 2 sin(2πt) + 0.56R
(4.37)

that is shown in Fig. 4.5 with t0 = 10 s, i.e., during the time interval [0 s, 10 s] where

R is a Matlab Band-Limited White Noise block with a power noise of 0.56 and a sample

time of 0.1 s. The inertia values for the calculation of gm and gs are Jm = 0.5 and Js =

0.2. The solver ODE1-Euler with a fixed step size of 0.001 s is used for implementing

the regressors (4.18a) and (4.18b). The signal qrf2 depicted in Fig. 4.6 is applied to

the system with t1 = 20 s, i.e., within the time interval [10 s, 20 s]. The Least Square

algorithm (4.21) uses the covariance gain matrices Pi(0) = diag[10 000, 10 000] and the

initial estimated values θi(0) = [0, 0]T for i = m, s.

qrf1(t)

0 t0

t

Figure 4.5: Reference signal qrf1 used for âm, b̂m, ĝm, âs and ĝs estimation.
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qr2(t)

t0 t0 + δ t1

t

−mm

Figure 4.6: Reference signal qrf2 used for ĉm, d̂m and ĉs estimation.

4.5 Results

The real and the estimated parameters for simulation are shown in Table 4.1, Fig. 4.7

and Fig. 4.8. Furthermore, Fig. 4.9 and 4.10 evidence that the values of Ωm and Ωs in

(4.19) would tend to infinity when k → ∞, thus the regressors (4.18a) and (4.18b) are

likely to satisfy the Persistence of Excitation condition.

Parameter identification
Parameter Real values Estimated values % error

âm 2 1.9704 1.4799
b̂m 50 49.9562 0.0876
ĉm 10 10.2192 2.1920
d̂m 1.7 1.7239 1.4071
ĝm 26 26.0944 0.3633
âs 3 2.9866 0.4469
ĝs 65 64.9770 0.0354
ĉs 6 5.9746 0.4230

Table 4.1: Parameters estimates obtained when the Section 1 and the Section 2
of the prototype work together.
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Figure 4.7: Estimates âm, b̂m, ĉm and d̂m obtained through the modified ARIM.
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Figure 4.8: Estimates ĝm, âs, ĝs and ĉs obtained through the modified ARIM.
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Figure 4.9: Performance of the Persistence of Excitation condition (4.19)
for the regressor (4.18a).
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Figure 4.10: Performance of the Persistence of Excitation condition (4.19)
for the regressor (4.18b).

4.5.1 Remarks

The model (4.8) is obtained when the Section 1 and the Section 2 of the prototype are

engaged, adding the spring flexibility to the dynamics of the system. The stabilization of
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the system is achieved by means of the parallel PD controller (4.32), which is tuned by

means of a trial and error process. Once the system is stabilized, it is possible to apply

the identification method proposed in Section 4.2. Moreover, Table 4.1 shows that the

parametric errors stay below 2.2% for each one of the parameters, so that the modified

ARIM algorithm proposed in Section 4.2 seems to be a suitable identification method to

be applied to the laboratory prototype.
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CONCLUSIONS

Along the experiments carried out in Chapter 3 it is clear that, in the case when

the servomechanism is driving an inertia load and is coupled to a magnetorheological

damper the four-parameter model, which includes Bingham friction model, viscous

and Coulomb friction, and constant disturbances, is a meaningful more precise model

for parameter identification than the two-parameter model that only includes the

viscous friction. This statement is based on the values of the squared tracking error E

produced by the parameters obtained by means of both models, when they are used to

design a control law aimed to a trajectory tracking control problem. The experimental

results evidence that the Bingham model describes reasonably well the

magnetorheological damper friction only at low excitation voltages, up to 0.6 V. More

complicated models that include the hysteretic nature of the magnetorheological

damper friction seem necessary for describing the behavior of the MD at higher

excitation values. These could be the Bouc-Wen, the modified Bouc-Wen or the Dahl

models. However, the results presented here open the possibility of using a

magnetorheological damper at low excitation voltages for injecting damping to a

servomotor instead of using the traditional Derivative action in a Proportional Integral

Derivative (PID) controller.
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The modification proposed for the ARIM in order to identify the parameters of

the whole prototype considering the flexibility introduced by spring and without

exciting the MD, seems to be an adequate identification method since the simulation

results show that the algorithm delivers estimates parameters within a margin error of

2.2%. This fact gives a good panorama about how the modified ARIM works, so that

the next natural step would be to prove this algorithm in real-time experiments. In

order to perform the parameter identification for the whole prototype, it is stabilized

without knowledge on its parameters using a Parallel Proportional Derivative (PPD)

controller. Its tuning is accomplished by gradually increasing the control gains, and

this tuning method is supported by a stability analysis performed using the Lyapunov

second method.

Finally, this work provides a first glance of the versatility of the research areas that

can be addressed with the laboratory prototype employed in this work.

According to the comments in the preceding paragraphs, future work includes

• To identify in real-time the parameters of a hysteretic model of a

magnetorheological damper.

• To identify in real-time the parameters of the whole prototype including flexibility

torques.

• To develop a control law applied to a servomotor, endowed with a

magnetorheological damper, taking advantage of the capability of the latter to

change its friction levels by means of a control voltage.
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APPENDIX A

MAGNETORHEOLOGICAL DAMPER

Torque-current-command voltage correspondence for the magnetorheological dampers

MD1 and MD2 and the WonderBox W1 and W2

Figure 1: WonderBox current response.

Figure 2: Magnetorheological damper torque as a function of
the current.
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APPENDIX B

SYSTEM PARAMETERIZATION

The Laplace transform of (3.20) is

s2Qm(s)− sqm(0)− q̇m(0) = −a [sQm(s)− q(0)] + bU(s) +
v

s
(1)

where Qm(s) and U(s) are the Laplace transforms of qm(t) and u(t) respectively.

Multiplying equation (1) by s leads to

s3Qm(s)− s2qm(0)− sq̇m(0) = −a
î

s2Qm(s)− sq(0)
ó

+ bsU(s) + v (2)

Deriving (2) three times, the initial conditions and term v are canceled out

d3

ds3

î

s3Qm(s)
ó

= −a d
3

ds3

î

s2Qm(s)
ó

+ b
d3

ds3
[sU(s)] (3)

where:

d3

ds3

î

s3Qm(s)
ó

= s3
d3

ds3
Qm(s) + 9s2

d2

ds2
Qm(s) + 18s

d

ds
Qm(s) + 6Qm(s) (4a)

d3

ds3

î

s2Qm(s)
ó

= s2
d3

ds3
Qm(s) + 6s

d2

ds2
Qm(s) + 6

d

ds
Qm(s) (4b)

d3

ds3
[sU(s)] = s

d3

ds3
U(s) + 3

d2

ds2
U(s) (4c)

Replacing the set of equations (4) in (3) yields

s3
d3

ds3
Qm(s) + 9s2

d2

ds2
Qm(s) + 18s

d

ds
Qm(s) + 6Qm(s) =

−a
ñ

s2
d3

ds3
Qm(s) + 6s

d2

ds2
Qm(s) + 6

d

ds
Qm(s)

ô

+b

ñ

s
d3

ds3
U(s) + 3

d2

ds2
U(s)

ô

(5)
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Multiplying (5) by s−3 produces

d3

ds3
Qm(s) + 9s−1 d

2

ds2
Qm(s) + 18s−2 d

ds
Qm(s) + 6s−3Qm(s) =

−a
ñ

s−1 d
3

ds3
Qm(s) + 6s−2 d

2

ds2
Qm(s) + 6s−3 d

ds
Qm(s)

ô

+b

ñ

s−2 d
3

ds3
U(s) + 3s−3 d

2

ds2
U(s)

ô

(6)

Applying the inverse Laplace transform to equation (6) leads to obtain the next

parameterization (see [43])

z(t) = aφ1(t) + bφ2(t)

z(t) = t3qm − 9
∫

t2qm + 18
∫ (2)

tqm − 6
∫ (3)

qm

φ1(t) = −
∫

t3qm + 6
∫ (2)

t2qm − 6
∫ (3)

tqm

φ2(t) =
∫ (2)

t3u− 3
∫ (3)

t2u
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APPENDIX C

PARAMETERIZATION OF THE PROTOTYPE MODEL (4.8)

Through the application of the reference signal qrf1, the model (4.8) corresponds to

q̈m(t) = −amq̇m(t) + bmu(t) + vm − gm (qm(t)− qs(t)) (7a)

q̈s(t) = −asq̇s(t) + gs (qm(t)− qs(t)) + vs (7b)

where vm = −cmsign (q̇m(t)) + dm and vs = −cssign (q̇s(t)) satisfy

vm =











−cm + dm, q̇m(t) > 0

cm + dm, q̇m(t) < 0
(8)

vs =











−cs, q̇s(t) > 0

cs, q̇s(t) < 0
(9)

being qef (t) = qm(t)− qs(t), the Laplace transform of the set of equations (7) yields

s2Qm(s)− sqm(0)− q̇m(0) =− am [sQm(s)− qm(0)] + bmU(s)

+
vm
s

− gmQef(s) (10a)

s2Qs(s)− sqs(0)− q̇s(0) =− as [sQs(s)− qs(0)] + gsQef(s) +
vs
s

(10b)

where Qef(s), and U(s) are the Laplace transforms of qef(t) and u(t) respectively.

Multiplying the set of equations (10) by s leads to

s3Qm(s)− s2qm(0)− sq̇m(0) =− am
î

s2Qm(s)− sqm(0)
ó

+ bmsU(s)

+ vm − gmsQef (s) (11a)

s3Qs(s)− s2qs(0)− sq̇s(0) =− as
î

s2Qs(s)− sqs(0)
ó

+ gssQef(s) + vs (11b)

58



APPENDIX C THESIS

The initial conditions and the terms vm and vs are canceled out as follows

d3

ds3

î

s3Qm(s)
ó

= −am
d3

ds3

î

s2Qm(s)
ó

+ bm
d3

ds3
[sU(s)]− gm

d3

ds3
[sQef(s)] (12a)

d3

ds3

î

s3Qs(s)
ó

= −as
d3

ds3

î

s2Qs(s)
ó

+ gs
d3

ds3
[sQef (s)] (12b)

Each term of (12a) is equal to

d3

ds3

î

s3Qm(s)
ó

= s3
d3

ds3
Qm(s) + 9s2

d2

ds2
Qm(s) + 18s

d

ds
Qm(s) + 6Qm(s) (13a)

d3

ds3

î

s2Qm(s)
ó

= s2
d3

ds3
Qm(s) + 6s

d2

ds2
Qm(s) + 6

d

ds
Qm(s) (13b)

d3

ds3
[sU(s)] = s

d3

ds3
U(s) + 3

d2

ds2
U(s) (13c)

d3

ds3
[sQef (s)] = s

d3

ds3
Qef(s) + 3

d2

ds2
Qef(s) (13d)

and each term of (12b) is equal to

d3

ds3

î

s3Qs(s)
ó

= s3
d3

ds3
Qs(s) + 9s2

d2

ds2
Qs(s) + 18s

d

ds
Qs(s) + 6Qs(s) (14a)

d3

ds3

î

s2Qs(s)
ó

= s2
d3

ds3
Qs(s) + 6s

d2

ds2
Qs(s) + 6

d

ds
Qs(s) (14b)

d3

ds3
[sQef(s)] = s

d3

ds3
Qef (s) + 3

d2

ds2
Qef(s) (14c)

Replacing the set of equations (13) into equation (12a) yields

s3
d3

ds3
Qm(s) + 9s2

d2

ds2
Qm(s) + 18s

d

ds
Qm(s) + 6Qm(s) =

−am
ñ

s2
d3

ds3
Qm(s) + 6s

d2

ds2
Qm(s) + 6

d

ds
Qm(s)

ô

+bm

ñ

s
d3

ds3
U(s) + 3

d2

ds2
U(s)

ô

−gm
ñ

s
d3

ds3
Qef(s) + 3

d2

ds2
Qef(s)

ô

(15)
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and replacing the set of equations (14) into equation (12b) produces

s3
d3

ds3
Qs(s) + 9s2

d2

ds2
Qs(s) + 18s

d

ds
Qs(s) + 6Qs(s) =

−as
ñ

s2
d3

ds3
Qs(s) + 6s

d2

ds2
Qs(s) + 6

d

ds
Qs(s)

ô

+gs

ñ

s
d3

ds3
Qef(s) + 3

d2

ds2
Qef(s)

ô

(16)

Multiplying (15) and (16) by s−3 and applying the inverse Laplace Transform leads to

the next parameterization

z1(t) = amφ11(t) + bmφ12(t) + gmφ13(t) (17)

z1(t) = t3qm − 9
∫

t2qm + 18
∫ (2)

tqm − 6
∫ (3)

qm

φ11(t) = −
∫

t3qm + 6
∫ (2)

t2qm − 6
∫ (3)

tqm

φ12(t) =
∫ (2)

t3u− 3
∫ (3)

t2u

φ13(t) = −
∫ (2)

t3qef + 3
∫ (3)

t2qef

z2(t) = asφ21(t) + gsφ22(t) (18)

z2(t) = t3qs − 9
∫

t2qs + 18
∫ (2)

tqs − 6
∫ (3)

qs

φ21(t) = −
∫

t3qs + 6
∫ (2)

t2qs − 6
∫ (3)

tqs

φ22(t) =
∫ (2)

t3qef − 3
∫ (3)

t2qef

The operator
∫ (n) ρ(t) represents the iterated integral

∫ t
0

∫ τ1
0 . . .

∫ τn−1

0 ρ(τn)dτn . . . dτ2τ1.
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APPENDIX D

STABILITY ANALYSIS OF THE PROTOTYPE MODEL (4.8) UNDER

STATE FEEDBACK

The model of the whole prototype (4.26) is reproduce here

ẋ(t) = Ax(t) + bu(t) + s (19)

Consider the model (19) without disturbances. Since it has been shown that it is

controllable, then there exists a transformation T such that x(t) = T x̄(t).

Consequently, this fact allows writing (19) without disturbances as follows

˙̄x(t) = Āx(t) + b̄u(t) (20)

where

Ā = T−1AT =





















0 1 0 0

0 0 1 0

0 0 0 1

−ā4 −ā3 −ā2 −ā1





















; b̄ = T−1b =





















0

0

0

1





















Define the following state feedback

u = −K̄Tx̄(t)

K̄T =
î

k̄4 k̄3 k̄2 k̄1
ó

(21)

Substituting (21) into (20) yields

˙̄x(t) =
Ä

Ā− b̄K̄T
ä

x̄(t) (22)
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Note that

−b̄K̄T =





















0 0 0 0

0 0 0 0

0 0 0 0

−k̄4 −k̄3 −k̄2 k̄1





















(23)

On the other hand, matrix Ā is decomposed as

Ā =





















0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0





















+





















0 0 0 0

0 0 0 0

0 0 0 0

−ā4 −ā3 −ā2 −ā1





















(24)

Using (23) and (24) produces the next alternative writing for ĀLC = Ā− b̄K̄T

ĀLC = Ā1 + E (25)

with

Ā1 =





















0 1 0 0

0 0 1 0

0 0 0 1

−k̄4 −k̄3 −k̄2 −k̄1





















; E =





















0 0 0 0

0 0 0 0

0 0 0 0

−ā4 −ā3 −ā2 −ā1





















(26)

Note that Ā1 is Hurwitz stable if its characteristic polynomial

s4 + k1s
3 + k2s

2 + k3s+ k4 = 0 (27)

has roots with negative real part. Moreover, if Ā1 is Hurwitz stable, then it fulfills the

Lyapunov equation

Ā1P1 + P1Ā1 = −2I (28)
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with P1 = P T

1 > 0 and I ∈ R
4×4 is the identity matrix. Let λi

Ä

Ā1

ä

an eigenvalue of Ā1

and R
Ä

λi
Ä

Ā1

ää

the real part of λi
Ä

Ā1

ä

. Then

µ1 ,
1

λmax(P1)
= −δ (29)

where λmax(P1) stands for the largest eigenvalue of A1 and

δ = max
i

î

R
Ä

λi
Ä

Ā1

ääó

< 0 (30)

further details are found in [53]. The Euclidean norm of Ā1 is defined as

∥

∥

∥Ā1

∥

∥

∥ =

Ã

4
∑

i=1

k̄2i + 3 (31)

The magnitude of
∥

∥

∥Ā1

∥

∥

∥ grows as the feedback gains increases. Likewise, the Euclidean

norm of E is defined as

‖E‖ =

Ã

4
∑

i=1

ā2i (32)

Finally, the Euclidean norm of Ā1 satisfies [54]

∣

∣

∣R
Ä

λi
Ä

Ā1

ää

∣

∣

∣ ≤
∣

∣

∣λi
Ä

Ā1

ä

∣

∣

∣ ≤
∥

∥

∥Ā1

∥

∥

∥ (33)

which allows writing (30) as

µ1 ,
1

λmax (P1)
= −δ ≤

∥

∥

∥Ā1

∥

∥

∥ =

…

∥

∥

∥k̄
∥

∥

∥

2
+ 3 ≤

∥

∥

∥k̄
∥

∥

∥+
√
3 (34)

The aforementioned results will be used in the next stability analysis. Consider the

following Lyapunov Function candidate

V (t) = x̄T(t)P1x̄(t) (35)
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taking the time derivative of (32) and substituting the next representation of (22)

˙̄x(t) =
Ä

Ā1 + E
ä

x̄(t) (36)

produces

V̇ (t) = ˙̄xT(t)P1x̄(t) + x̄T(t)P1 ˙̄x(t)

= x̄T(t)ĀT

1P1x̄(t) + x̄T(t)ETP1x̄(t) + x̄T(t)P1Ā1x̄(t) + x̄T(t)P1Ex̄(t)

= x̄T(t)
Ä

ĀT

1P1 + P1Ā1

ä

x̄(t) + 2x̄T(t)P1Ex̄(t)

(37)

Substituting (28) yields

V̇ (t) = −2x̄T(t)x̄(t) + 2x̄T(t)P1Ex̄(t) (38)

Consider the next inequality

2x̄T(t)P1Ex̄(t) ≤ λmax(P1) ‖E‖ ‖x̄‖2 (t) (39)

It allows obtaining an upper bound for (38)

V̇ (t) ≤ −2‖x̄(t)‖2 (1− λmax(P1) ‖E‖) (40)

Hence, the system (36) is asymptotically stable provided that

1 > λmax(P1) ‖E‖ (41)

The above condition is equivalent to

‖E‖ ≤ 1

λmax(P1)
≤

∥

∥

∥k̄
∥

∥

∥ +
√
3 (42)

where inequality (34) has been used. Thereby, the closed-loop system (36) is
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asymptotically stable provided that

‖E‖ −
√
3 ≤

∥

∥

∥k̄
∥

∥

∥ (43)

Note that matrix E is unknown, therefore, inequality (43) is fulfilled if the norm
∥

∥

∥k̄
∥

∥

∥ is

high enough.

If matrix E is known beforehand it is not difficult to establish a lower bound for
∥

∥

∥k̄
∥

∥

∥

fulfilling (43). However, this matrix is poorly or completely unknown in practice, so that

the inequality (43) ensures that it is possible in practice to find values of feedback gains

high-enough to stabilize the closed-loop system. This argument supports the method

used to tune the parallel PD controller (4.32) in Section 4.3. On the other hand, a

similar analysis in the perturbed case, i.e. when vector s in (19) is taken into account

will show that equilibrium point remains stable.

It is also worth nothing that control law (21) is expressed in the original

coordinates as
u = −K̄x̄(t)

= −K̄T−1x(t)

= −Kx(t)

(44)
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APPENDIX E

RAFAEL KELLY AWARD

Figure 3: Rafael Kelly Acknowledgment

66



REFERENCES

[1] R. Garrido and A. Concha, “An algebraic recursive method for parameter
identification of a servo model,” IEEE/ASME Transactions on Mechatronics, vol. 18,
no. 5, pp. 1572–1580, 2013.

[2] R. Garrido and R. Miranda, “Dc servomechanism parameter identification: A
closed loop input error approach,” ISA transactions, vol. 51, no. 1, pp. 42–49,
2012.

[3] R. Garrido and A. Concha, “Inertia and friction estimation of a velocity-controlled
servo using position measurements,” IEEE Transactions on industrial electronics,
vol. 61, no. 9, pp. 4759–4770, 2014.

[4] A. Ramírez, R. Garrido, and S. Mondié, “Velocity control of servo systems using
an integral retarded algorithm,” ISA transactions, vol. 58, pp. 357–366, 2015.

[5] C. Aguilar-Ibañez, R. Garrido-Moctezuma, and J. Davila, “Output feedback
trajectory stabilization of the uncertainty dc servomechanism system,” ISA
transactions, vol. 51, no. 6, pp. 801–807, 2012.

[6] R. Villafuerte, S. Mondié, and R. Garrido, “Tuning of proportional retarded
controllers: Theory and experiments,” IEEE Transactions on Control Systems
Technology, vol. 21, no. 3, pp. 983–990, 2013.

[7] A. Ramírez, S. Mondié, R. Garrido, and R. Sipahi, “Design of proportional-
integral-retarded (pir) controllers for second-order lti systems,” IEEE Transactions
on Automatic Control, vol. 61, no. 6, pp. 1688–1693, 2016.

[8] G. Ellis, Control system design guide: using your computer to understand and
diagnose feedback controllers. Butterworth-Heinemann, 2012.

[9] I. Eker, “Experimental on-line identification of an electromechanical system,” ISA
transactions, vol. 43, no. 1, pp. 13–22, 2004.

[10] S. Villwock and M. Pacas, “Application of the welch-method for the identification of
two-and three-mass-systems,” IEEE Transactions on Industrial Electronics, vol. 55,
no. 1, pp. 457–466, 2008.

67



THESIS APPENDIX E

[11] S. E. Saarakkala, T. Leppinen, M. Hinkkanen, and J. Luomi, “Parameter estimation
of two-mass mechanical loads in electric drives,” in Advanced Motion Control
(AMC), 2012 12th IEEE International Workshop on, pp. 1–6, IEEE, 2012.

[12] S. E. Saarakkala and M. Hinkkanen, “Identification of two-mass mechanical
systems using torque excitation: Design and experimental evaluation,” IEEE
Transactions on industry applications, vol. 51, no. 5, pp. 4180–4189, 2015.

[13] N. Nevaranta, J. Parkkinen, T. Lindh, M. Niemelä, O. Pyrhönen, and J. Pyrhönen,
“Online estimation of linear tooth belt drive system parameters,” IEEE Transactions
on Industrial Electronics, vol. 62, no. 11, pp. 7214–7223, 2015.

[14] A. S. Shafer and M. R. Kermani, “On the feasibility and suitability of mr
fluid clutches in human-friendly manipulators,” IEEE/ASME Transactions on
Mechatronics, vol. 16, no. 6, pp. 1073–1082, 2011.

[15] T. Majima, S. Nagai, H. Tomori, and T. Nakamura, “Development of 1-dof
manipulator with variable rheological joint for instantaneous force,” in Journal
of Physics: Conference Series, vol. 412, p. 012048, IOP Publishing, 2013.

[16] A. Milecki and D. Sedziak, “The use of magnetorheological fluid dampers to reduce
servo drive velocity jumps due to load changes,” Journal of intelligent material
systems and structures, vol. 16, no. 6, pp. 501–510, 2005.

[17] C.-M. Chew, G.-S. Hong, and W. Zhou, “Series damper actuator system based on
mr fluid damper,” Robotica, vol. 24, no. 6, pp. 699–710, 2006.

[18] E. Garcia, J. C. Arévalo, G. Muñoz, and P. Gonzalez-de Santos, “Combining
series elastic actuation and magneto-rheological damping for the control of agile
locomotion,” Robotics and Autonomous Systems, vol. 59, no. 10, pp. 827–839,
2011.

[19] Z. Li, Z. Wu, and J. Cui, “Vibration suppression for scara robot with
magnetorhelogical damper by using switching control,” in Information and
Automation (ICIA), 2014 IEEE International Conference on, pp. 730–735, IEEE,
2014.

[20] M. Cinq-Mars and H. Gurocak, “Pneumatic cylinder with magnetorheological
brake using serpentine and helix flux guide as a linear hybrid actuator for haptics,”
Journal of Intelligent Material Systems and Structures, vol. 28, no. 10, pp. 1303–
1321, 2017.

[21] N. Najmaei, M. R. Kermani, and R. V. Patel, “Suitability of small-scale
magnetorheological fluid-based clutches in haptic interfaces for improved
performance,” IEEE/ASME Transactions on Mechatronics, vol. 20, no. 4, pp. 1863–
1874, 2015.

[22] O. Baser and M. A. Demiray, “Selection and implementation of optimal
magnetorheological brake design for a variable impedance exoskeleton robot
joint,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of
Mechanical Engineering Science, vol. 231, no. 5, pp. 941–960, 2017.

68



APPENDIX E THESIS

[23] L.-H. Zong, X.-L. Gong, S.-H. Xuan, and C.-Y. Guo, “Semi-active h∞ control of
high-speed railway vehicle suspension with magnetorheological dampers,” Vehicle
System Dynamics, vol. 51, no. 5, pp. 600–626, 2013.

[24] P. Krauze and J. Kasprzyk, “Vibration control in quarter-car model with
magnetorheological dampers using fxlms algorithm with preview,” in Control
Conference (ECC), 2014 European, pp. 1005–1010, IEEE, 2014.

[25] S. Dyke, B. Spencer Jr, M. Sain, and J. Carlson, “Modeling and control of
magnetorheological dampers for seismic response reduction,” Smart materials and
structures, vol. 5, no. 5, p. 565, 1996.

[26] Q. Fu, D.-H. Wang, L. Xu, and G. Yuan, “A magnetorheological damper-based
prosthetic knee (mrpk) and sliding mode tracking control method for an mrpk-
based lower limb prosthesis,” Smart Materials and Structures, vol. 26, no. 4,
p. 045030, 2017.

[27] D. Wang and W. H. Liao, “Magnetorheological fluid dampers: a review of
parametric modelling,” Smart materials and structures, vol. 20, no. 2, p. 023001,
2011.

[28] R. Stanway, J. Sproston, and N. Stevens, “Non-linear modelling of an electro-
rheological vibration damper,” Journal of Electrostatics, vol. 20, no. 2, pp. 167–
184, 1987.

[29] M. Ismail, F. Ikhouane, and J. Rodellar, “The hysteresis bouc-wen model, a survey,”
Archives of Computational Methods in Engineering, vol. 16, no. 2, pp. 161–188,
2009.

[30] G. Moog Components, “Permanents Magnet DC Motors.” http://www.moog.
om/


ontent/dam/moog/literature/MCG/mo
23series.pdf, 2016. [Online; accessed
10-December-2016].

[31] C. Copley Control, “DC Brush Servo Amplifiers.” http://www.
opley
ontrols.


om/Motion/pdf/412.pdf, 2017. [Online; accessed 24-February-2017].

[32] C. US Digital, “E3 Optical Kit Encoder.” http://
dn.usdigital.
om/assets/

datasheets/E3_datasheet.pdf?k=636251417279640657, 2017. [Online;
accessed 21-February-2017].

[33] C. Lord, “LORD TFD Steer-by-wire.” http://www.lordmrstore.
om/

_literature_192930/LORD_SBW_Data_Sheet, 2017. [Online; accessed 21-
February-2017].

[34] C. Lord, “LORD Wonder Box.” http://www.lordmrstore.
om/

lord-mr-produ
ts/wonder-box-devi
e-
ontroller-kit, 2017. [Online;
accessed 21-February-2017].

[35] C. Ogura Industrial, “Electro Magnetic Clutches and Brakes.” http:

//ogura-
lut
h.
om/downloads/marketbro
hures/Industrial_Bro
hure.pdf,
2017. [Online; accessed 21-February-2017].

69



THESIS APPENDIX E

[36] C. ServoTek Products, “SD Tachometer Generatos.” http://www.
mggroup.
om.

au/pdfs/PowerTransmission/CatalogTa
ho%27s.pdf, 2017. [Online; accessed
21-February-2017].

[37] I. Quanser, “QUARC R© Real-Time Control Software.” http://www.quanser.
om/

Produ
ts/quar
, 2016. [Online; accessed 10-December-2016].

[38] I. Quanser, “Q8 Data Adquisition Board.” http://www.quanser.
om/produ
ts/q8,
2016. [Online; accessed 10-December-2016].

[39] K. Ogata and G. L. P. Sánchez, Dinámica de sistemas. Prentice-Hall
Hispanoamericana, 1987.

[40] A. C. Sánchez, Identificación de Sistemas Mecánicos y Biológicos. PhD thesis, DCA
- CINVESTAV, Av. Instituto Politécnico Nacional 2508, Gustavo A. Madero, San
Pedro Zacatenco, 07360 Ciudad de México, CDMX, 8 2013.

[41] L. Ljung, “Consistency of the least-squares identification method,” IEEE
Transactions on Automatic Control, vol. 21, no. 5, pp. 779–781, 1976.

[42] R. Isermann and M. Münchhof, Identification of Dynamic Systems: An Introduction
with Applications. Springer Publishing Company, Incorporated, 2014.

[43] G. Mamani, J. Becedas, V. Feliu-Batlle, and H. Sira-Ramírez, “Open-and
closed-loop algebraic identification method for adaptive control of dc motors,”
International journal of adaptive control and signal processing, vol. 23, no. 12,
p. 1097, 2009.

[44] S. J. Miller, “The method of least squares,” Mathematics Department Brown
University, pp. 1–7, 2006.

[45] G. C. Goodwin and K. S. Sin, Adaptive filtering prediction and control. Courier
Corporation, 2014.

[46] T. Kailath, Linear systems, vol. 156. Prentice-Hall Englewood Cliffs, NJ, 1980.

[47] A. Hurwitz, “Ueber die bedingungen, unter welchen eine gleichung nur wurzeln
mit negativen reellen theilen besitzt,” Mathematische Annalen, vol. 46, no. 2,
pp. 273–284, 1895.

[48] S. K. Korovin and V. V. Fomichev, State observers for linear systems with uncertainty,
vol. 51. Walter de Gruyter, 2009.

[49] K. J. Åström and T. Hägglund, PID controllers: theory, design, and tuning, vol. 2.
Isa Research Triangle Park, NC, 1995.

[50] J. C. Willems and J. W. Polderman, Introduction to mathematical systems theory: a
behavioral approach, vol. 26. Springer Science & Business Media, 2013.

[51] J. Zabczyk, Mathematical control theory: an introduction. Springer Science &
Business Media, 2009.

70



APPENDIX E THESIS

[52] C. L. Phillips and R. D. Habor, Feedback Control Systems. Simon & Schuster, 3rd ed.,
1995.

[53] R. Patel and M. Toda, “Quantitative measures of robustness for multivariable
systems,” in Joint Automatic Control Conference, no. 17, p. 35, 1980.

[54] P. Lancaster and M. Tismenetsky, The theory of matrices: with applications. Elsevier,
1985.

71


