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Resumen 
 

 La protección de las estructuras civiles muy grandes y sus habitantes de desastres 
naturales como un terremoto es importante desde el punto de vista de la investigación y ha sido 
vista con gran interés a través de los años. La motivación general de este trabajo es el diseño y la 
validación de un sistema de control activo de vibración para estructuras civiles bajo el efecto del 
terremoto bidireccional, también el análisis de la velocidad del sistema. 

Las entradas sísmicas bidireccionales en los edificios inducirán vibraciones acopladas a la 
torsión de la traducción en los edificios que son más graves con graves daños estructurales y 
deben tenerse en cuenta. Es un aspecto importante del sistema de control estructural detectar la 
respuesta de la estructura continuamente y actuar superiormente para mitigar la vibración 
causada por las ondas sísmicas. Un criterio más importante al diseñar un controlador es su 
estabilidad. Todas estas cuestiones son el factor motivador de este trabajo. La primera parte de la 
tesis se centra en el modelado y control de retroalimentación de estructuras de construcción 
inelástica. Nuestra primera contribución es el diseño del algoritmo de control PD / PID. Es el 
control más simple y mejor, ya que se realiza eficazmente sin el conocimiento del modelo. En la 
segunda parte, combinamos las clásicas técnicas de control difuso PD / PID (Proporcional-
Integral-Derivativo) y tipo-2 para compensar las incertidumbres presentes en el edificio. La 
metodología para ajustar las ganancias de PD / PID se obtiene utilizando el teorema de 
estabilidad de Lyapunov y se verifica la estabilidad del sistema. El diseño de control establecido 
requiere cierto conocimiento del sistema para afinar las ganancias PD / PID. Así que en la parte 
final, sugerimos un controlador de modo deslizante discreto (FDSMC) que no necesita los 
parámetros del sistema. Generalmente, el control de tiempo discreto o control de muestreo es el 
más adecuado para el control estructural. La estabilidad del controlador propuesto se verifica 
utilizando el candidato de Lyapunov. La parte más crucial de nuestro trabajo es la capacidad de 
manejar la incertidumbre estructural mediante el esquema de adopción en línea. Como criterio 
importante, la estabilidad en lazo cerrado de nuestra metodología propuesta se expresa 
teóricamente. También hemos probado nuestros controladores para excitaciones sísmicas 
bidireccionales. La otra contribución de este trabajo de tesis es el desarrollo de un actuador 
torsional (TA) para mitigar la vibración torsional. 

En el marco de este estudio, se estableció una disposición de mesa de sacudidas de dos ejes en el 
Departamento Control Automático de CINVESTAV-IPN. El rendimiento del controlador se 
valida experimentalmente en función de las características estructurales específicas de la 
excitación y construcción, y de las incertidumbres. Se utiliza un amortiguador de masa activa 
(AMD) y el actuador de torsión (TA) para generar la fuerza requerida para minimizar las 
vibraciones. Se usaron señales de terremoto para excitar el prototipo del laboratorio. En el 
estudio experimental, los controladores propuestos proporcionaron supresión significativa de la 
vibración. 



Abstract 
 

 Safeguard of large civil structures and human residents from natural hazards such as 
earthquakes is very important from the research point of view andhave been seen with great 
interest over the years. The mainmotivation of this workis the designing and validation of 
anactive vibration control system for building structuresunder the effect of the bidirectional 
earthquake and to perform its stability analysis.  

The bidirectional seismic inputs in buildings will induce translation-torsion coupled vibrations in 
buildings which are more severe with severe structural damage and should be taken into 
consideration. It is an important aspect of the structural control system to sense the response of 
the structure continuously and performs superiorly to mitigate the vibration caused by seismic 
waves. One more important criterion while designing a controller is its stability. All these issues 
are the motivating factor of this work. The first part of the thesis focuses on the modeling and 
feedback control of inelastic building structures. Our first contribution is the design of the 
PD/PID control algorithm. It is simple and finest control as it performs effectively without the 
knowledge of the model. In the second part, we combine the classic PD/PID (Proportional-
Integral-Derivative) and type-2 fuzzy control techniques to compensate the uncertainties present 
in the building. The methodology for tuning the gains of PD/PID is obtained using Lyapunov 
stability theorem and the stability of the system is verified.  The stated control design requires 
some knowledge of the system in order to tune the PD/PID gains. So in the final part, we 
suggested a discrete sliding mode controller (FDSMC) which does not need the system 
parameters. Generally, discrete-time control or sampling control is most suited for the structural 
control. The stability of the proposed controller is verified using Lyapunov candidate. The most 
crucial part of our work is the ability to deal structural uncertainty using on-line adoption 
scheme. As an important criterion, the closed-loop stability of our proposed methodology is 
expressed theoretically. Also we have tested our controllers for bidirectional seismic excitations. 
The other contribution of this thesis work is the development of a torsional actuator (TA) in 
order to mitigate the torsional vibration. 
 
 Within the framework of this study, a two-axis shake table setup was established in the 
Control Automatic Department of CINVESTAV-IPN. The controller performance is 
experimentally validated based on the specific excitation and building structural characteristics, 
and uncertainties. An active mass damper (AMD) and the torsional actuator (TA) are used to 
generate the force required to minimize the vibrations. Earthquake signals were used to excite 
the lab prototype. In the experimental study, the proposed controllers provided significant 
vibration suppression. 
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Chapter 1

Introduction

Historic studies related to earthquakes such as in 1985 Mexico City, 1994 Northridge, 1995

Kobe, 1999 Kocaeli, 2001 Bhuj, 2008 Sichuan, 2008 Chile, and 2012 Emilia expose that

earthquakes have caused severe damage in civil structures all over the world. The process

of modi�cation or to control the building structures from severe damages has became a

salient topic in structural engineering. The control of building structures from the hazardous

earthquake waves is an area of great interest for the researchers that is growing rapidly

[40][41]. The challenging part of the job lies on the protection of super structures in the whole

of geographic locations from the seismic events thus providing a means of safer environment

for the human occupants. The extensive damages due to an earthquake can be noteworthy

and so there is utter necessity to develop an e¤ective methods for protection.

The structural control methodology and its applications during earthquakes was �rst

suggested by the researches more than a century ago. Although, Yao in 1972 [146] had

proposed the �rst idea of structural control that played a major role in the advancement

of the �eld of structural engineering, but major developments have been noticed during the

last 25 years where the structures with preventive systems have been developed. In the area

of structural design and its control, the following points should be taken care of:

� The pattern in which the ground and earthquake vibrates during earthquake.

� The design techniques of buildings to withstand earthquakes.

� Innovative strategies for the response control of building structures.

Passive and active control systems plays an important role in the response reduction

of civil engineering structures subjected to strong seismic vibrations. Passive, active and
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semi-active control systems are the most important class of structural engineering. The two

techniques that can be utilized for the control of structural vibrations are:

� Implementation of smart materials in the construction of buildings [59].

� The use of control devices like actuators, dampers and isolators in the building struc-
tures [94].

A worldwide popularity and high demand of structural control and its application had

given rise to various researches leading to the publication of many textbooks for example

[36]. [59] had suggested di¤erent types of passive, active, semi-active, and hybrid control

systems in his review paper that opens up the importance of control theory in the vibration

control of structures. [40] had focused on in depth studies about active, semi-active and

hybrid control devices along with some control strategies. The main factors a¤ecting the

performance of structural control can be categorized as

� Excitation criteria (e.g., unidirectional or bidirectional earthquake and winds).

� Structural characteristics (e.g., natural frequency, degree of freedom and nonlinearity

in structures).

� Design of the control system (e.g., devices types and quantity, device placements,

system models and control algorithm) [147].

Although the most of research has been vested on the seismic analysis considering uni-

directional seismic waves, very less researches has been conducted on bidirectional seismic

waves. The fact cannot be denied that the earthquake has indeed an arbitrary direction,

represented by a bidirectional ground movement [30][54]. The bidirectional seismic inputs in

buildings will induce translation-torsion coupled vibrations in buildings which is more severe

with severe structural damage and should be taken into consideration [154]. The intensive

research in the �eld of earthquake engineering revealed the fact that one of the prime fac-

tor of building collapse in recent times is asymmetric building structures under the grip of

bidirectional seismic ground motions [90].

The active devices are capable of adding forces onto the structures. If the control forces

for these active devices are generated by unstable controller then it may cause unusual

vibrations to the building structure thus e¤ecting the performance. So it is utter necessary

to analyze the stability of the controller. Also it is very important to study the controllers
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performance and e¤ectivity under the e¤ect of bidirectional forces. The bidirectional forces

acting on the building will result in torsion in the building which is an important area

of research and should be taken into consideration. Apart from that, the experimental

veri�cation of these controllers in mitigation of bidirectional seismic waves were not given

due consideration. Hence, the implementation of a controller will be a challenging if these

issues are not handled in an e¢ cient manner. The motivation of this work is to validate

the performance and abilities of the structural vibration control system by analyzing and

handling the above issues in an e¤ective manner.

1.1 Objectives

It is an important aspect of structural control system to sense response of the structure

continuously and give e¢ cient response in order to mitigate the vibration caused by seismic

waves. Several types of controllers were implemented to attenuate the structural vibrations

due to unidirectional earthquake. So more focus should be vested in control action involving

bidirectional forces. Torsion is an important aspect in buildings under the e¤ect of earth-

quake and needs to be dealt in e¢ cient manner. The designed controller should possess the

capability of measuring the response and act on the controller mechanism of the damper and

actuator in order to minimize the vibrations main intention is to perform the regulation of

output so as to keep the system states such as position and velocity very close to zero. An

innovative and e¢ cient control design will broaden the e¤ectiveness of the bidirectional vi-

bration mitigation. One more important criteria while designing a controller is its stability.

The controller instability will result in the unsuitable system operation and consequently

may incur signi�cant damages to the building ultimately causing harm to humans. Another

important aspect is parameter uncertainty incorporated in the buildings. So it is essential

to design an innovative controller that requires minimum system parameters. Stability and

robustness are the important criterion that should be taken into consideration while propos-

ing a high-performing controller. Finally, the performance of the proposed controller should

be veri�ed under the impact of bidirectional seismic waves.

Based on the above discussions, the objectives of this thesis can be enlisted as follows:

� A need of developing a novel mechanism to control the lateral-torsional vibration due

to bidirectional forces on the structure.

� To propose a high performance controller design that involves least information of
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structural parameters.

� Validation of the stability of proposed controller from theoretical point of view.

� To verify experimentally the performance of the proposed algorithms and to compare
the performance of the controller based on the experimental analysis in order to validate

the most superior controller for the mitigation of structural vibration.

1.2 Contributions and Signi�cance

As a result of discussions in the previous section and by giving due importance to the

objectives, our �rst contribution is the design of the PD/PID control algorithm. It is one

of the e¤ective control as it shows its e¢ ciency without the knowledge of the model. It is

simple in nature and can be incorporated with distinct physical meanings. In the second

phase of the contribution, we combine the classic PD/PID (Proportional-Integral-Derivative)

and type-2 fuzzy control techniques to handle the uncertainties present in the building. The

type-2 fuzzy system has e¤ective ways to deal with knowledge uncertainty compared with

classical type-1 fuzzy logic, because the type-2 fuzzy sets can deal uncertainties with more

parameters and more design degrees of freedom. The main parts of the controllers are PD and

PID, while the nonlinearity are compensated by the type-2 fuzzy system. So the controller

possesses the advantages of PD/PID and type-2 fuzzy techniques. A method for tuning the

fuzzy weights in order to reduce the regulation error is developed. Also the conditions for

choosing PD/PID gains are laid down. The tuning techniques are extracted using Lyapunov

stability theorem and is done to validate the stability of the entire system.

The previously mentioned control design requires the knowledge of the parameters of the

structure to some extent while tuning the PD/PID gains. So in the �nal phase, we proposed a

Fuzzy discrete sliding mode controller (FDSMC) which does not need the system parameters.

In general cases, discrete-time control or sampling control is most suited for the structural

control. The sampling period is considered to be the important feature that play signi�cant

role in the performance of the control system. The stability of the proposed controller is

veri�ed using Lyapunov candidate. The application of these controller to uncertain building

structures is widespread.

The most crucial part of our work is the ability to deal structural uncertainty using on-

line adaption scheme. Also as an important criteria, the closed-loop stability of our proposed

methodology is expressed theoretically. Also we have tested our controllers for bidirectional
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Figure 1.1: Bidirectional vibration control scheme

seismic excitations. The other contribution of this thesis work is the development of a Tor-

sional Actuator (TA) in order to attenuate the torsion vibration which is raised due to the

e¤ect of bidirectional forces on the structure. The Torsional Actuator (TA) is a disc and

motor arrangements which is placed on the centre of the structure and is controlled with the

proposed controller. An additional contribution of this thesis is the state-of-the-art review

[104], which presents a detailed review on various passive, semi-active and hybrid control

system applied to control the translation-torsion coupled response of structure under bidirec-

tional seismic events are portrayed in sequential manner. A detailed review paper is essential

to judge about the criteria of selection of dampers,actuators and controllers. On the basis

of review chapter the selection of active devices is achieved. Also PD/PID, combination of

PD/PID with fuzzy and Sliding mode controller for this work has been selected on the basis

of review chapter. So this chapter delivers a signi�cant contribution on this work. Chapter

2 depicts a version of this mentioned review. The bidirectional structure vibration control

system is expressed by Figure 1.1. Chapter 3 discusses the modeling of building structures

under the e¤ect of bidirectional seismic loadings. The active control algorithms of horizontal

and torsional actuator are also proposed. Chapter 4 elaborates the application of PD/PID

controller and its e¤ect on controlling the movement of Active mass damper (AMD) and

Torsional actuator (TA) in order to control the movement of the building under the e¤ect

of bidirectional excitations. Chapter 5 illustrates the implementation of Type-2 fuzzy to

PD/PID control to deal with the uncertainties in an e¤ective manner. Chapter 6 brings

demonstrates the application of fuzzy discrete sliding mode controller in mitigating the bidi-

rectional vibration. The �nal phase concludes with chapter 7 that summarizes the thesis,

our contributions in the �eld of structural lateral-torsional vibration control and investigates
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the successes as well as constraints of our methodologies.

1.3 Publications

Most contributions described in this thesis have appeared in various publications. Below are

the publications:

International journals

1. S. Paul, W. Yu & X. Li, �Recent Advances in Bidirectional Modeling and Structural

Control,�Shock and Vibration, vol. 2016, Article ID 6275307, 17 pages, 2016.

2. S. Paul & W. Yu, �A method for bidirectional active control of structures�, Journal of

Vibration and Control, First published date: May-16-2017.

3. S. Paul & W. Yu, �Bidirectional active control of structures with type-2 fuzzy PD and

PID�, International Journal of Systems Science. (Under Review).

4. S. Paul &W. Yu, �Discrete-time sliding mode for building structure bidirectional active

vibration control�, Transactions of the Institute of Measurement and Control. (Under

Review)

International conferences

1. S. Paul & W. Yu��Advances in Bidirectional Modeling and Structural Control, 8th

International Symposium on Resilient Control Systems, Philadelphia, USA, pp. 23-28,

2015.

2. S. Paul & W. Yu�� Stable Active Vibration Control of Building Structure Subjected

to Bidirectional Earthquake, 13th International Conference on Electrical Engineering,

Computing Science and Automatic Control (CCE16), Mexico City, Mexico, 2016.

3. S. Paul &W. Yu, Intelligent Techniques for Bidirectional Structural Health Monitoring,

5th International Conference on Mechatronics and Control Engineering (ICMCE16),

Venice, Italy, 52-56, 2016.

4. S. Paul & W. Yu, Bidirectional Fuzzy PD Control for Active Vibration Control of

Building Structure, IEEE International Conference on Industrial Technology (ICIT

2017), Toronto, ON, Canada, 2017.
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5. S. Paul & W. Yu,Type-2 fuzzy PID for active control of bidirectional structures, 14th

International Conference on Electrical Engineering, Computing Science and Automatic

Control (CCE17), Mexico City, 2017.
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Chapter 2

Vibration Control

This chapter provides an overview of control of structures under bidirectional seismic waves.

It focuses on di¤erent types of bidirectional control devices, control strategies, and bidirec-

tional sensors used in structural control systems. It also highlights the various issues like

system identi�cation techniques, the time-delay in the system, estimation of velocity and

position from acceleration signals, and optimal placement of the sensors and control devices.

The importance of control devices and its applications to minimize bidirectional vibrations

has been illustrated. Finally, the applications of structural control systems in real buildings

and their performance have been illustrated.

2.1 Structural control devices

Vibration suppression in appropriate quantity can prevent the structures from fracture or

collapse. Some devices play this suppression role to prevent the structure from damages.

The control devices, such as actuators, isolators and dampers, are installed to suppress

the external vibrations. These structural control devices are getting more popularity and

attention along with their applications in building structures. The structural control devices

for the seismic hazards can be categorized as passive, active, hybrid, and semi active [123].

In last two decades, the active, semi active and hybrid control are paid more attentions than

the passive devices [122]. The conception and characteristic of the structural control devices

for bidirectional seismic waves are illustrated below.
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2.1.1 Passive devices

A passive control device is incorporated to a structure. It modi�es the sti¤ness or the

damping of the structure in an suitable way. The passive control system does not require

an external power source for its operation. It generates control force opposite to the motion

of controlled structured system [92]. The passive systems can be divided into two basic

categories: 1) base isolation systems; 2) energy dissipation systems.

There are many passive control devices, for example viscoelastic dampers, tuned mass

dampers, frictional dampers, tuned liquid dampers, and base-isolation systems [121]. The

principal function of a passive energy dissipation system is to reduce the inelastic energy

dissipation demand on the framing system of a structure [27].

The forces of the passive control devices solely dependent on the structural motion. They

can be expressed as [147]

fi(t) = �ci _xdi(t) (2.1)

where _xdi is relative velocity across ith device, ci is the damping coe¢ cient associated with

the ith device.

Additionally we use the next section to describe some famous dampers for the bidirec-

tional control.

The tuned mass damper (TMD) is considered to be an energy dissipation system, al-

though the primitive concept of this system is not to dissipate energy. It transfers the

energy from the building structure to the tuned mass dampers (absorbers).

The basic principle of TMD is to obtain optimal damping parameters, in order to control

the displacement of an undamped system subjected to a harmonic force [53]. The coupled

lateral-torsional motions under seismic excitations are exhibited by the building structures

with intended eccentricities between their mass and sti¤ness centers.

In [35], investigation of tuned mass dampers in arrangements termed as coupled tuned

mass dampers (CTMDs) were carried out, where translational springs and viscous dampers

are used to connect mass in an eccentric manner. The CTMD works in coupled mode that

includes lateral and rotational vibration. This technology is utilized to control coupled lateral

and torsional vibrations of asymmetric buildings. The results revealed that CTMDs are more

e¤ective and robust in controlling coupled lateral and torsional vibrations of asymmetric

buildings.

In [143], Multiple tuned mass dampers(MTMDs) was proposed with distributed natural

frequencies. The several researches had been carried out to establish the e¤ectiveness of mul-
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Figure 2.1: The multiple tuned mass damper(MTMD)

tiple tuned mass dampers and it had been veri�ed that MTMDs had advantages over single

TMD. A multiple tuned mass damper(MTMD) system is shown in Figure 2.1.It consists of a

main system, which has n tuned mass dampers with di¤erent dynamic characteristics. The

main system is subjected to a lateral force. The main system and each TMD vibrate in the

lateral direction. Due to torsional coupling, the main system has torsional vibration. The

total degrees-of-freedom of the combined system is n+ 2:

Two uncoupled frequency parameters of the main system are de�ned by

wsxy =

s
Ksxy

msxy

; w� =

s
K�

msxyr2S
; J0 = msxyr

2
S;msxy =

2664
Mx 0 0

0 My 0

0 0 J0

3775 ; Ksxy =

2664
Kxx 0 �Kx�

0 Kyy Ky�

�Kx� Ky� K��

3775
(2.2)

where msxy is the mass of the main system, Ksxy is the main system lateral sti¤ness, K� and

rS are the torsional sti¤ness and radius of gyration respectively related to the main system

about the center of mass, J0 is the polar moment of inertia related to the story. Radius

of gyration refers to distribution of the components of an object around an axis. It is the

perpendicular distance from the axis of rotation to a point mass that gives an equivalent

inertia to the original object.

Tuned liquid column damper(TLCD) have uniform cross-section with U shaped tube

attached. The schematic view has been shown in Figure 2.2. The vibrational energy from

the structure is transferred to the TLCD liquid via the movement of the rigid TLCD container

thus stimulating the TLCD liquid.

In [82], the methodology of vibration control of eccentric structures using TLCD mod-
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B

L

Orifice

Figure 2.2: The tuned liquid column damper

eled as torsionally coupled multi-story shear structures which is under the grip of multi

dimensional seismic excitations has been investigated. For a multi-story eccentric model

with TLCD arrangements where O, S and M being the geometry, sti¤ness and mass centers

respectively, with:

u; v denoting �oor translational displacement along x axis and y axis respectively and

� denoting the rotational angle about vertical z axis

The equation of motion along x�direction and y�direction are illustrated by equation
(2.4) and (2.5)

mh
�h+ ch _h+ khh = ��AhBh

h
�xl + �ug � lvh(��l + ��g)

i
(2.3)

ms�s+ cs _s+ kss = ��AsBs
h
�yl + �vg + lus(��l + ��g)

i
(2.4)

where, mh = �AhLh;ms = �AsLs; ch =
1
2
�Ah�h

��� _h��� ; cs = 1
2
�As�s j _sj ; kh = 2�Ahg; ks =

2�Asg; where mh; ch and kh are the mass, damper and sti¤ness respectively of TLCD in

x�direction, ms; cs and ks are the mass, damper and sti¤ness respectively of TLCD in

y�direction.

Natural frequencies are !h =

r
kh
mh

=

r
2g

Lh
; !s =

r
ks
ms

=

r
2g

Ls
;

and � =Liquid Density,�h and �s are damping ratios related to TLCD, h and s are the

displacements of liquid in the TLCD of u and v directions.

Lh and Ls,Bh and Bs,Ah and As are the notations for length, width and cross sectional

area respectively of the liquid in two TLCDs.

Coordinate position of the TLCDs in x�direction are represented by luh and lvh: Coor-

dinate position of the TLCDs in y-direction are represented by lus and lvs:
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�ug; �vg and ��g are the ground seismic acceleration along u; v and � directions. �xl; �yl and
��l are the accelerations of the ith �oor along x; y and � directions.

The circular tuned liquid column damper (CTLCD) is shown in Figure 2.3. This advance

control device is highly responsive to the torsion. CTLCD can be applied for both torsional

vibration and torsionally coupled vibration. The e¤ectiveness of CTLCD for the structural

torsional response are studied by [56]. Stochastic vibration theory is applied to identify the

optimal parameters of CTLCD in [77].

The motion equation of CTLCD is given by [60]

�A(2H + 2�R)�h+
1

2
�A�

��� _h��� _h+ 2�Agh = �2�A�R2(�u� + �ug�) (2.5)

where R is the radius of the horizontal circular column, �u� is the structures torsional accel-

eration, �ug� is the torsional acceleration of ground motion.

In [54], a new type of control device termed as tuned liquid mass damper (TLMD)

was presented in order to control the torsional response of building structures subjected to

bidirectional earthquake waves. The mass of TLMD includes both TLCD tank and the liquid

in the tank. The sti¤ness is compensated by natural rubbers. The main working concept

of TLMD is to operate a TLCD in one direction, and run a TMD in the other orthogonal

direction, see Figure 2.4.

The sti¤ness of TMD, and the liquid high are determined as

k = m(2�fm)
2; L =

2g

(2�fL)2
(2.6)
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Figure 2.4: The tuned liquid mass damper

where m and fm are the mass and the tuned frequency in the TMD control direction, g and

fL are the gravity acceleration and the tuned frequency of TLCD.

Tuned Liquid Column Dampers (TLCDs) are a special type of TLDs that depends on the

motion of a column of liquid in a U-tube like container to neutralize the forces acting on the

structure. The introduction of the damping factor is done in the oscillating liquid column

through an ori�ce in the liquid passage. The damping, however unlike TMDs, is amplitude

dependent, and thus the TLCD dynamics are associated with non-linearity. On the other

hand, circular Tuned Liquid Column Dampers (CTLCD) is very much active when exposed

to torsional response. As the earthquake is practically multi-dimensional, the torsionally

coupled vibration factor cannot be ignored and so CTLCD is much favored in this case.

In [43], the control performance of the novel sealed, torsional tuned liquid column gas

damper (TTLCGD) in order to minimize the coupled �exural torsional response of plan-

asymmetric buildings under the grip of seismic loads has been discussed. The analysis of

technique associated, reveals that TTLCGD is an e¤ective control device in suppressing the

time-harmonic excitation and the earthquake response.

2.1.2 Active devices

The main drawback of the passive control devices is that they cannot adapt the change of

the natural frequency caused by the structural nonlinearity and huge seismic excitations,

especially for multiple �oor buildings [40], although multiple and tuned dampers can be

applied for di¤erent frequencies.

Since 1970s, remarkable progress has been made in the �eld of active control of civil

engineering structures subjected to natural forces such as winds and earthquakes [122]. The
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active structure control modi�es the structural motion by some external forces. Topics

covered on active structural control can be found in [33]. Compared with the passive devices,

the active systems have the following advantages [121]:

1. Motion control can be achieved with greater e¤ectivity.

2. In account of ground motions, it is relatively insensitive.

3. It can be applied to the multi-hazard remission circumstances.

4. Control objectives can be selected �exibly.

In order to control actively, the external excitations and inner structural responses are

needed. These measured information are sent to the control algorithm to generate desired

control forces. So the active devices usually use displacement sensors.

The active tuned mass damper (ATMD) uses control strategy to improve the tuned

mass damper (TMD). It improves the e¤ectiveness in minimizing the structural response

[26]. As the proof of [19], the qualities of TMD can be enhanced by introducing an active

force between the structure and the TMD. ATMD methodology can be also regarded as a

modi�cation version of ATMD, robustness version of TMD.

The active controller should be able to absorb the translation-torsion coupled vibrations.

Besides the translational vibrations, the torsional vibrations under the seismic waves also

a¤ect the performance of ATMD. An asymmetric structures is under the coupled lateral�

torsional responses is discussed in [81]. The lateral displacement of asymmetric struc-

tures and the optimum parameters incorporated in ATMD are shown by a two- degree-

of-freedom(2-DoF) structure, see Figure 2.5.
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The mathematical expression of the ATMD active control force that is generated is

U(t) = �mt�xs � ct[ _xT � ( _xs + yT _�s)]� kt[xT � (xs + yT �s)] (2.7)

where, mt is the feedback gain of acceleration associated with asymmetric structure, ct is

the feedback gain of the velocity of the ATMD, kt is the feedback gain of the displacement

of the ATMD.

In [145], a new performance index for active vibration control of three-dimensional struc-

tures was proposed. To analytically proof the existence of the proposed performance index,

a six story three-dimensional structure is taken into consideration as an example with a fully

active tendon controller system implemented in one direction of the building. The building

under analysis is modeled as a structure made up of members joint by a rigid �oor diaphragm

in a manner so that it has three degrees of freedom at each �oor, lateral displacements in

two perpendicular directions and a rotation with respect to a vertical axis for the third

dimension.

2.1.3 Semi-active devices

Semi-active control devices are regarded as controllable passive devices. The main objective

of these devices is saving control resources. The actuators of the semi-active control do not

add mechanical energy to the structure directly. The power break down semi-active control

system o¤ers some degrees of protection with the help of embedded passive components.

The semi-active devices take the advantages of the passive and the active control. It

requires less power than the active control devices. They can even be operated by the battery

in the case of power failure during the seismic event [122]. They perform signi�cantly better

than passive devices. An exhaustive review on the semi-active devices is proposed in [123].

The magnetorheological (MR) damper is the most popular semi-active damping device.

It works on the magnetorheological �uid and is controlled by a magnetic �eld. Generally,

the magnetic �eld is produced by electromagnet. It requires minimal power for its operation.

The suspended minute iron particles in a base �uid are termed as MR �uids. This type of

liquids have the capability of changing from free �owing linear viscous state to semi-solid

state with controllable yield strength under a magnetic �eld.

The result of uncovering the liquid to a magnetic �eld is the particles use the form of

chains. These chains obstruct the �ow and solidi�es the �uid in a span of milliseconds. The

stress is directly proportional with the magnitude of the applied magnetic �eld [69]. The
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behavior of MR �uid can be simulated by the Bingham plastic model, which is an extension

of the Newtonian �ow. The other way of determining the behavior of MR �uid is to analyze

the yield stress of the �uid. The total stress is given by [144]

� = � ysgn( _
) + � _
 (2.8)

where � y is the yield stress induced by the magnetic �eld, _
 is the shear rate, � is the viscosity

of the �uid.

The application of MR damper to control the torsional and torsionally coupled responses

subjected to bidirectional seismic waves is investigated in [150]. The MR damper contributes

signi�cantly in the �eld of civil engineering. The simple mechanical model of MR is shown

in Figure 2.6. In [148], a prototype shear-mode MR damper is proposed.

The governing force f generated by MR device is

f = co _q + �z

_z = �
 j _qj jzj jzjn�1 � � _q jzjn + A _q
(2.9)

where q is the device displacement, z is the evolutionary variables that keeps track of the

response history dependence, 
; �; n; and A can control the linearity in the unloading and

the smoothness of the transition from the pre-yield to the post-yield region.

2.1.4 Hybrid devices

Hybrid base isolation(HBI) had been a matter of interest for a number of researchers due to

its e¤ectivity and consists of a passive base isolation system combined with a control actuator

to generate the e¤ects of the base isolation system. Several research on base isolation system
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have been carried out and installed in several structural engineering projects due to its

positive attributes like simplicity, reliability, and e¤ectiveness.

In [4], the application of Hybrid mass damper (HMD) system consisting of tuned mass

damper and active mass damper to control torsionally coupled building structures under

bidirectional seismic force was proposed. In this context, the fuzzy logic controller is used to

control the HMD system. Complex structural systems have non-linearities and uncertainties

in both the structural properties and the magnitude of the loading. Thus, it is di¢ cult to

derive and identify an appropriate and accurate dynamic model for designing the traditional

controller. An intelligent controller can be designed without specifying a very precise and

accurate dynamic model of the structure. Such an intelligent controller has been introduced,

using a fuzzy logic control system. The schematic view is shown in Figure 2.7

The equation of motion for HMD system installed in N-story building is given by equation

(2.10)

Mh�uh + Ch _uh +Khuh = �MhPh�uaN +KhPcuc (2.10)

where, the mass, damping and sti¤ness matrices of the HMD system are Mh, Ch and Kh

respectively. uh is a vector of displacements of the HMD system relative to the Nth �oor.

Ph and Pc are position vectors of the absolute acceleration of Nth �oor, �uaN and control

command vector uc, respectively

Kim and Adeli, 2005 [71] had investigated hybrid damper-TLCD control system to control

3D coupled irregular buildings subjected to bidirectional seismic waves. Simulation results

for control of two multi-story moment resisting space steel structures with vertical and plan

irregularities show clearly that the hybrid damper-TLCD control system signi�cantly reduces
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Figure 2.8: Comparision of control devices

responses of irregular buildings subjected to various earthquake ground motions as well as

increases reliability and maximum operability during power failure.

The comparison between uncontrolled, passive control, active control, semi-active control

and hybrid control devices are demonstrated by Figure 2.8 below[122]:

2.2 Vibration control

The appropriate design of a controller is utter necessary so that it can send essential control

signal to the control devices in order to reduce the structural responses. The main strategy

involved within the control scheme to prevent the collapse of building structures under bidi-

rectional seismic waves is to control the coupled translation-torsion response of the building

structures[11, 47, 87, 155]. In this section, various control strategy on the basis of various

techniques is presented. The main object of the bidirectional control is to change the cou-

pled translation-torsion response of the building structure, in order to prevent the collapse

of building under bidirectional seismic waves [118]. Robustness, fault tolerance, simplicity

and realiziablilty criteria are considered [127].

2.2.1 Time delay problem in vibration control

Time delay from the measurement to the actuator is a limit for vibration control. The

control loop includes vibration data measurement, data �ltration, control algorithm, data
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transmission, and actuation. The control loop has also phase shift by time delay [7]. The

time delay may cause instability in the closed-loop [126].

The motion equation of n-DoF structure with time delay td is

M �x(t) + C _x(t) +Kx(t) = �u(t� td)�M��xg(t) (2.11)

If td is the �xed, the Laplace form transformation is

Fd(s) = e
�std(g1s+ g2) (2.12)

A review on time-delay compensation methods can be found in [3].

2.2.2 Optimal placement

The proper placement of sensing and control devices is an important research �eld of struc-

tural control. It results the measurement and control operation e¤ectively. It also a¤ects

the controllability and observerability of the controlled system [8][100].

In [48], the location performance index of the actuator and sensor are presented, which

can be computed by the Hankel singular values 
2wz and 

2
uy

k2 =
(
2wz)

T
2uy

k
2wzkz



2uy

z (2.13)

where k is the non-negative correlation coe¢ cient, 
2wz and 

2
uy denotes the Hankel singular

values of the transfer function Gwz and Guy; u and w represents the input to the system, y

and z represents the output of the system.

In [10], the placing of the sensor at the center of mass is suggested. The proposal validated

that the center of mass may not be good for the sensor position. Arbitrary arrangement of

sensors is better subjected to bidirectional seismic motion. In [41], a detailed survey on the

optimal placement of control devices was presented. In [135], energy dissipation was utilized

to analyze the position of the controller, in order to minimize translation-torsion coupling

e¤ects. It suggests the locations which are nearby to the geometric centre of the structure

can minimize the torsional e¤ect.

2.2.3 Linear controllers

The working principle of PID controller is based on the feedback error e(t) which is otherwise

used to calculate the required control force. In case of a structural applications if the desired



2.2 Vibration control 21

state is in the equilibrium position then the reference signal is considered to be taken as

zero. The principle of PID control is to use the feedback error e(t); which is the di¤erence

between the output signal y(t) and the reference signal r(t):Once the error is calculated, the

main aim of the controller is to minimize the error for the next iteration process by carefully

manipulating the inputs. It has the following form

u(t) = K

�
e(t) +

1

Ti

Z
e(t)dt+ Td

de(t)

dt

�
: (2.14)

where K is the proportional gain, Ti is the integral time, Td is the derivative time, e(t) =

r(t)� y(t). PID control is a negative feedback algorithm. It can force e(t) to zero. It is the
most popular industrial controller.

A comparison between a sliding mode control and PID control for the structural system is

investigated by [50]. In [133], the e¤ects of measure seismic waves on a six-story asymmetric

structural model compiled with frictional dampers was investigated. The methodology deals

with the control of torsional response of asymmetric structures and to obtain a lower level

of torsional balance by arranging empirical centre of balance (ECB) of the structure at same

distance from the edges of the building plan. The axial displacement of each actuator is

controlled using a conventional PID-controller. In this research, frictional dampers proved

its e¤ectiveness of controlling lateral-torsional coupling of torsionally �exible as well as sti¤

structures.

The most important optimal controllers are the linear quadratic regulator (LQR) and

linear quadratic Gaussian (LQG) control. The equation of motion can be exhibited in the

form mentioned below-

_X = Ax+Bu (2.15)

where the state and input system matrices are A and B respectively. The LQR algorithm

calculates a control law u in the form of criteria of performance or cost function

J =

1Z
0

(xref � x(t))TQ(xref � x(t)) + u(t)TRu(t)dt (2.16)

is minimal. The design matrices Q and R takes back the compensation on the deviations

of state variables from their set point and the control actions, respectively.

The increase in elements of Q results in the increase of cost function, the compensation

associated with any track change from the desired set point of that state variable, and thus
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the speci�c control gain will be larger. The increase in R matrix results in a larger penalty

that is applied to the audacity of the control action, and the control gains are uniformly

decreased.. The feedback gain of the optimal control is computed by minimizing a cost

function J = J(z; t; u(t)) [7]

J = lim
�!�

1

�
E

�Z �

0

�
yTr Qyr + f

TRf
	
dt

�
(2.17)

In [149], a semi-active control to the coupled translational and torsional vibration of a 2-

story asymmetric building subjected to seismic excitations was presented. A LQG controller

is involved as a nominal linear controller, considering the ground acceleration with white

noise. The LQG controller is given by

�z = (A� LC)ẑ + Lym + (B � LD)fm; fc = �Kẑ (2.18)

where L is the state estimator gain matrix, K is the LQR gain matrix.

In [20], active isolation was implemented and conducted experiments in order to verify

the behavior of seismically excited buildings under multidirectional earthquake force. Ac-

tive isolation technique works in combination with base isolation system and controllable

actuators. The base isolation methodology o¤ers e¤ective approach in reducing interstory

drifts and �oor accelerations that works in phase with the adaptive nature of the active

system in order to generate higher level performance against wide range of earthquakes. In

this methodology, LQG control steps are obtained using LQR and Kalman estimator. The

optimal control gain is achieved using the following-

u(t) = �K�x(t); (2.19)

where K is optimal control gain with respect to the states of the augmented system.

In [71], the control of 3D coupled irregular buildings subjected to bidirectional seismic

waves was investigated. To �nd the optimal control forces, a wavelet based algorithm in-

volving optimal control is utilized. It has been suggested in their work that LQR or LQG

algorithm can be use as a control algorithm for the feedback controller as per the investigation

mentioned [121, 1, 25]

In [37], a sequential optimal control for serially connected isolated structure subjected to

bidirectional earthquake was suggested. Sequential control algorithm has inherent capabil-

ities to construct control objective function under bidirectional earthquake situations. The

objective function which is in quadratic form can be illustrated as in equation (2.40)
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J =

Z tf

t0

�
1

2
fX(t)gT [Q] fX(t)g+ ffc(t)gT [R] ffc(t)g

�
(2.20)

weighted matrices are Q and R represents structure response and control force.

x,y structural response is contained in X(t); t0 = control starting time, tf = control

conclusion time.

The mathematical expression of sequential optimal control is depicted by the equations

(2.21), (2.22) and (2.23)

ffc(tA)g = � [R]�1 [B]T f�(tA)g (2.21)

n
_�
o
= � [A]T f�g � [Q] fXg ; f�(tf )g = 0 (2.22)

n
_X
o
= [A] fXg+ [B] ffgc + fEg �UTg (2.23)

where tA =current time, The domain is expressed in [tA; tf ], The value of � can be

computed directly.

The result of the entire analysis was in the favor of the algorithm being not only an

e¤ective measure to control the bidirectional horizontal response of earthquake but also

reducing the isolation layer movement by large extent.

In [24], the lateral-torsional earthquake response control of two single-story asymmetric

plan buildings associated with multiple magnetorheological (MR) dampers was investigated.

The desired control forces are generated using LQR technique. The damper forces are

extracted using the method of least square minimization.

In [152], the responses related to seismic and harmonic waves for a true free-plan tall

building equipped with two tuned pendular inertial masses (TMs) and magnetorheological

(MR) dampers was investigated. The technique of LQR strategy is considered as a bench-

mark in order to compare the performance with the proposed physical controller. A 21

stories reinforced concrete structure building is investigated of typical story height of 3.6 m

with total height of 90m. In the transverse y-direction, the building being more �exible,

there is existence of lateral torsional coupling. As a result, two pendular TMs, one along the

�exible edge and one along the sti¤ edge of the building were designed and built on the 21st

story. The controller used in this investigation is quite similar to the LQR controller which

was implemented to control TM-MR damper.
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H1 control methodology has been relied as and e¤ective approach in structural vibration

control which is classi�ed as linear robust control. This scheme is unresponsive to the dis-

turbances and parametric di¤erences and so it is most preferred for multiple input multiple

output(MIMO) type structural control systems [132]. Design method of H1control system

and its e¤ectiveness was presented by [44]. The analysis was carried out on 23-storey build-

ing in Tokyo using a pair of hybrid mass dampers. Bidirectional seismic excitations was

considered during the investigation. The control technique was established by taking into

consideration x-direction and y-direction separately. The bending component of the vibra-

tion was controlled along x-direction only while along the y-direction, control of bending and

torsion are considered. The scheme of the control system is shown in Figure 2.9 and 2.10

H1control theory was applied to design the controller on the basis of reduced order model

depicted in (2.24) and (2.25)

_xr = Arxr +Bru+Drw (2.24)

y = [�1 + l�3z]
T = Crxr (2.25)

The designed controller should follow the following inequality
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where N(s) and M(s) means the transfer function from external input to control input

and from external force to output, respectively.

The controller were installed and then the vibration tests are performed. These test

results suggested that the control action generated was e¤ective and as per the design.

In [79], the use of a robust optimal H1control for the two AMD systems was elaborated.

The AMD system was placed on the top of the unsymmetrical building for the vibration

control. The building was subjected to bidirectional seismic excitations. The H1control

uses the technique of LMI-based solution blended with robustness speci�cations. In this

paper, the e¢ cient and necessary control forces are determined and then optimized using

H1control via LMI as illustrated in (2.27)

For an uncertain structural system-

(M +�M)�v + (C +�C) _v + (K +�K)v = (M +�M)Ew(t) +Bsu(t) (2.27)

where, �M;�K;�C, and �Bs are corresponding disturbances.

The bound condition satis�ed by �M; is given by, k�MM�1k 6 k�k 6 1;
Then using the above criteria, the state space equation can be written as

_Z(t) = (A+�A)Z(t) + (B +�B)u(t) +Hw(t) (2.28)
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Considering linear time invariant criteria for the above state space equation, the perfor-

mance index is given by

J =

Z 1

0

(ZT (t)QZ(t) + uT (t)Ru(t))dt (2.29)

where Q > 0 and R > 0 are weighted matrix
H1 direct output feedback control of buildings under bidirectional acceleration consid-

ering the e¤ects of soil-structure interaction was investigated by [89]. In the investigation,

the tendon displacement vector of feedback control with direct approach was found to be as

depicted by

U(t) = GY (t) (2.30)

Where, G is a time-invariant feedback gain matrix of 4xs:

H1control algorithm was used to �nd the entries of G matrix.

2.2.4 Nonlinear controllers

Sliding mode control

The sliding mode control (SMC) is designed for uncertain nonlinear systems [132]. It is e¤ec-

tive in terms of robustness against the changes in the parameters and external disturbances.

It has been successfully applied for structural control [97].

The control action of sliding mode control is

u(v̂c; t) = ueq(v̂c; t)� �sgn(�(v̂c)) (2.31)

where, ueq is the linear part of control force, �(v̂c) is the sliding surface, � is the control gain:

In [64], SMC is used to control bending and torsional vibration of a six-story �exible

structure. The controller takes into accounts two conditions:

1) controller design considering only nonlinear control inputs

The dynamic system and the switching function are given by

_x(t) = Ax(t) +Bu(t) (2.32)

y(t) = Cx(t) (2.33)
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�(t) = Sy(t) (2.34)

where S =Switching hyperplane.

The controller has the following nonlinear form

u(t) = �Knt(SCB)
�1 �(t)

k�(t)k (2.35)

also, Knt =Scalar coe¢ cient and SCB =Multiplication factor of the matrix S;C and B:

2) Controller design considering nonlinear and sub-equivalent control inputs.

The controller has the following nonlinear form

unt(t) = �Knt(SCB)
�1 �

k�k (2.36)

Also,

u = ut + unt (2.37)

The inputs of sliding mode control are designed as the combination of linear and nonlinear

inputs.

Sub-equivalent control inputs can be generated from the solo measured outputs as given

below:

ut = ueq = �keqy (2.38)

Where keq =Scalar equivalent

The important feature of SMC is robustness under the uncertainties and disturbances.

Lyapunov stability theory is implemented to prove the system stability in [97]

Neural network based structure control

A neural network (NN) is characterized by: 1) an area which consists of number of neurons

along with their interconnections and layers; 2) its technique of implementing the weights

on the connections and is termed as learning algorithm. In [49], a neural network based

emulator computes the response of a 2D frame structure involving 3-story building. The

feedforward multilayer perceptron with the backpropagation algorithm is used in [127] for

structure control. [66] presents a wavelet neural network (WNN) based active non-linear

controller for a 3D buildings subjected to seismic excitation in both x and y directions.
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The combination of NN with the classical control theory yields better control results than

conventional controllers [13, 70]. The hybrid intelligent control algorithm applied to semi-

active control of the magnetorheological (MR) damper is presented in [79]. It is subjected

to bidirectional seismic wave.

The training data for structure usually need to be normalized into [0; 1]

�Ni =
2(Ni �Ni;min)
Ni;max �Ni;min

� 1 (2.39)

where Ni is the input component, its domain is (Ni;min; Ni;max)

In [125], a direct adaptive neural controller subjected to bidirectional earthquake inputs

was presented. Both the system parameters and the nonlinear estimation of force have

uncertainties, which can be canceled by the adaptive controller.

The control law is

F
�

c (k) =
�G(z(k � 1); :::; z(k � n1); Ag(k); :::; Ag(k � n1)) = �G(V ) (2.40)

where n1 � n; �G is the mapping function, F
�
c (k) is the desired control force. NN is used

to model �G.

In [73], and [72], NN for the structural reliability analysis was utilized. In [74], a NN based

prediction scheme was proposed for the dynamic behavior of structural systems under mul-

tiple seismic excitations. The NN prediction includes two di¤erent ways: 1) A non-adaptive

scheme that uses multiple accelerometers in training NN, and utilizes for the prediction of

the structural seismic response ; 2) An adaptive scheme uses multiple accelerometers in the

training.

Fuzzy control

Linguistic criteria is an e¤ective feature of fuzzy control rules that can be easily modi�ed and

understood clearly [151]. In [4], a fuzzy logic controller with multipurpose optimal design

was proposed to drive Hybrid mass damper(HMD) for the response control of the torsionally

coupled seismically excited buildings. HMD system consists of four HMDs arranged in such

a way that this system can control the torsional mode of vibration e¤ectively in addition

to the texture modes of vibration. The design of the fuzzy logic controller(FLC) based on

the selection procedure that includes �ve membership functions for each of input variable

and seven membership function for the output variable. The input and output variables

includes acceleration and velocity in x-, y- , �-directions and control command uc respec-

tively. The input subsets are categorized as - NL=negative large; NE=negative; ZE=zero;



2.2 Vibration control 29

PO=positive and PL=positive large. The output subsets are categorized as-NL=negative

large; NE=negative; NS=negative small; ZE=zero; PS=positive small; PO=positive and

PL=positive large. In their study, bell shaped membership function have been used and is

represented by

�x =
1

1 + j(x� c)=aj2b
(2.41)

where a =half-width of the membership function at 0.5 membership grade,

b = membership function slope, c =central position of the membership function.

The minimization of structural torsion responses using semi-active dampers has been

presented by [117]. In their investigation, the MR damper is employed for the real time

control of the response of structures under seismic excitations. The methodology of fuzzy

modeling of MR dampers have been shown in [116]. In [107], supervisory fuzzy controller

was implemented to control two lower level fuzzy controllers. The weighted is determined

by

V d =
WNVN +WFVF
WN +WF

(2.42)

where WN and WF are the weighting factors, VN and VF are the command voltages.

In [2], it has been illustrated that the dynamic fuzzy wavelet NN can precisely forecast

structural displacements.

In [66], the wavelet neural network (WNN) model based active non-linear controller for

the response control of 3D buildings subjected to seismic excitation in both x and y directions

has been presented. The main aim is to control the torsional and lateral motions of 3D

irregular structures. The structural responses are predicted using a dynamic fuzzy WNN

which is a fuzzy wavlet neuroemulator. Estimation of future time steps is utter necessary

to control the structural responses e¤ectively. This method is essential in determining the

magnitude of the required control forces.

Structure control with genetic algorithm

Holland, 1975 was the �rst to propose the general scheme of Genetic algorithm (GA) uses

natural genetic theory to build an optimal search algorithm [57]. A GA can be divided into

three parts [18]

1. Code and decode the variables into the strings form.

2. Evaluating the �tness of each solution string.
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3. Evaluate strings of the next generation by applying genetic operators.

The aim of the optimization problem is to evaluate the minimum of the performance

index,

Adaptality =

(
Jmax � J if J < Jmax

0 otherwise

)
(2.43)

The applications of the GA method to structural control are published by various re-

searchers. In [80], GA is utilized to MR dampers in the reduction of translation-torsion

coupled responses of an asymmetric structure. The experiment was carried out at the State

Key Lab of Coastal and O¤shore Engineering in Dalian University of Technology. The pa-

rameters of the multi-state control strategy (MSC) which utilizes the velocity response as

the state-switch parameter are optimized by genetic algorithm(GA) method. This MSC is

developed in the intention to control torsional seismic response of an asymmetric structure.

In their research, also the threshold vector of the MR damper is optimized using genetic

algorithm. The parameters from the velocity response and the threshold vector of the MR

damper are optimized by the GA method. In [67], a new neuro-genetic algorithm was pre-

sented to evaluate the optimal control forces for active control of 3D building structures.

It includes geometrical and material nonlinearities, coupling action between lateral and tor-

sional motions, and actuator dynamics. In this case a �oating point GA was used. The

methodology used can be categorized as follows-

i) Representation of chromosomes ,ii) initial population, iii) function related to �tness,

iv) selection function, v) genetic operator, vi) termination scheme.

In the investigation mentioned , a non uniform mutation operator applied as the genetic

operator to evaluate better solution for the new generation. It is expressed by

F
=
j =

(
Fj + (Fmax � Fj)h(g); if r1 � 0:5

Fj otherwise
; j = 1; 2; ::::; Np

)
(2.44)

where, Fj = jth variable value in the chromosomes related to current population,

F
=
j = improved value of the same variable related to the new generation,

h(g) = probability function of mutation.

The study results suggest that the new control technique e¢ ciently reduces the response

of two irregular 3D building structures under seismic inputs including structures with plan

and irregular elevation. The study results suggest that the new control technique e¢ ciently
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reduces the response of two irregular 3D building structures under seismic inputs including

structures with plan and irregular elevation.

In [66], a new non-linear control model for the active control of a 3D building structure was

developed. The optimal control forces is computed with the �oating-point GA. GA can help

to decide the positions of the control devices [150]. The coupled torsional-lateral response is

attenuated by a semi active control under bidirectional seismic input. In [78], technique of

reducing the seismic e¤ects of the spatial structures by the installation of magneto-rheological

(MR) dampers was proposed. It uses small populations to solve the optimization problem

embedded in the semi active control. GA is used to optimize dampers passive parameters

and controller gain in [12].

The concept of absorber system with multi-objective optimal design for torsionally cou-

pled earthquake excited structures is presented by [4]. It use a multi-objective version of

GA to extract the design parameters of absorber system. The two branch tournament ge-

netic algorithm as mentioned by [29] extends two branch tournament GA to three-branch

tournament GA and applies to the multi-objective optimization of the TMD system.

2.3 Summary

In this chapter, the modeling and structural control techniques of building structures sub-

jected to bidirectional earthquake is consider. The main di¤erence with normal structure

controllers, is the lateral-torsional coupled response. We discuss recent new techniques,

methodology and concepts in this areas. We focus all important results in last two decades

in the �eld of structural engineering with respect to the bidirectional earthquakes. The

important observations from this chapter are

1. Most of existing research only consider the structure control under unidirectional seis-

mic wave. This chapter explores the e¤ects of bidirectional seismic waves, which is

normal for the real earthquake.

2. Real buildings are generally asymmetric in nature to some extent. This criteria induces

lateral and torsional vibrations in combination.

3. The reduction of translational and torsional response of structures often involves the

usage of multiple dampers [83].
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4. Few research related to sliding mode control are carried out in order to reduce translation-

torsion coupled vibration with bidirectional seismic inputs.

5. In case of building structures subjected to multiple excitations, the use of online iden-

ti�cation technique is better.

6. The intelligent control like fuzzy logic is favored for the structural control, because it

does not require system information.

7. PD/PID controller are robust, fault tolerant and very easy to implement.



Chapter 3

Bidirectional Modeling of Building

Structures and Active Control

This chapter provides an overview of modeling of building structures under bidirectional

earthquakes. Structural mechanics involves the study of vibrations incorporated in struc-

tures. In order to control a structure e¤ectively, it is important to have the knowledge about

its dynamics. The control of structures are associated with the safeguard of building struc-

tures from unidirectional or bidirectional seismic forces. One of the structural design object

is to model dynamic loadings and to produce innovative approach to curb vibration. The

vibration control generates the required dynamics in the building structures within a stable

range. This control design is decided by the structure of mathematical model [42][153]. In

[59], a compact relationship between the controller and the structure model is established.

All engineering structures are composed of intrinsic mass and elastic characteristics. The

dynamic modeling has similar characteristics with the static analysis. However, the dynamic

analysis is much complex than static analysis. For example, the mass modeling technique for

the dynamic model requires an elastic model and a mass model minutely re�ned by discrete

masses [36].

3.1 Bidirectional excitation

Recent earthquakes exhibits that the bidirectional e¤ect is the main damage source of the

structural damage. The seismic analysis should consider the bidirectional excitation. The

normal method of building structure design regards the seismic response arising from the
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ground motion that acts separately in the two orthogonal directions. Generally, the earth-

quake exhibits arbitrary direction which is represented as bidirectional ground movement,

and it could reduce the participation of the traverse frames to the structure torsional and

lateral sti¤ness. A noteworthy change in the elastic torsional behavior of the building is

observed considering a non-linear behavior in the transverse frames.

The e¤ect of the magnitude of the axial forces acting in the corner columns in case of

bidirectional ground motion subjected to structures is di¤erent from that in case of uni-

directional ground motion [30]. In [131], it was suggested that for a structure exposed to

two simultaneous horizontal earthquake components, the transverse element behavior can be

nonlinear and so the contribution to the real torsional sti¤ness is smaller. In [28] the analysis

of one-story models with and without transverse elements subjected to unidirectional and

bidirectional earthquakes was presented. Their study concluded that the addition of the

transverse elements in the model signi�cantly hampers the response of the border elements

when the structure is subjected to the bidirectional seismic waves.

The analysis of real buildings suggests that it is asymmetric in nature to some degree

with a formal symmetric plan. The asymmetric nature of building will induce lateral as well

as torsional vibrations simultaneously and is termed as torsion coupling (TC) considering the

case of pure translational excitations. Soil-structure interaction(SSI) e¤ects are considered

and can be signi�cant in case of the building structures constructed on soft medium. The

e¤ects of SSI can critically modify the dynamic characteristics of a structure such as natural

frequencies, damping ratios and mode shapes [136].

The knowledge of behavior and impact of the excitation forces plays a signi�cant role

in the formulation of the building structures dynamic model. The movement of the portion

of the earth crust is termed as earthquake which is accompanied with the sudden release of

stresses. Usually the epicenters for earthquake exists less then 25 miles below the earth�s

surface and are followed by series of vibrations. The bidirectional ground forces exerting

on the building structure are shown in Figure 3.1. These forces result series of structure

vibrations.

The forces acting on the x-axis and y-axis can be illustrated by the following dynamic

equations

fx = �m�xg fy = �m�yg (3.1)

where m is the mass, �xg and �yg are the ground accelerations, caused by the seismic

waves.

The main factors of the seismic movement for the building are the amplitude (displace-
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Figure 3.1: Bidirectional ground forces exert on the building structures

ment, velocity, and acceleration), and the frequency of the ground motion. The ground

motion is complex, and the vibration frequency is time-varying. The ground motion and the

building vibration a¤ect each other, depending on the distance between the natural frequency

of the building structure and seismic motion frequency. When the seismic wave frequency

is close to the natural frequency of the building, the damages become bigger. Structure

analysis shows that the shorter the building, the higher the natural frequency. One of the

prime concern is to control the structure vibrating with respect to low frequency, because

the major part of the structure elastic energy is stored in low frequency zone [22].

3.2 Structure model under bidirectional excitation

A controllable building structure can be regarded as a planar structure on a �xed base.

The asymmetric characteristic of the building induces simultaneous lateral and torsional

vibration, known as torsion coupling (TC) [89], which are subjected to bidirectional seismic

inputs. The schematic plan view of structure involving torsion coupled(TC) is shown in

Figure 3.2. The impacts of seismic forces in x and y directions result in building oscillation

as in Figure 3.3. In includes: x oscillation, y oscillation, and the torsional oscillation de�ned

as �.

The simplest structure is a one-story under lateral translational motion at the roof level.

It is a single degree of freedom system. The motion model is [9]

m�v + c _v + kv = p(t) (3.2)
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Figure 3.2: The torsion coupled force

Simple sway oscillations Combined sway and torsional oscillations

Figure 3.3: The seismic forces result in building oscillation
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Figure 3.4: A single degree of freedom system for one-story building

where m is the mass, c is the damping, k is the sti¤ness, �v is the acceleration of the mass,

_v is the velocity of the mass relative to the base, v is the displacement, p(t) is the applied

force, see Figure 3.4.

Similarly, the equation of motion of a linear structure with n-Degree-of-Freedom (n-DOF)

can be expressed as

M �X + C _X +KX = P (t) (3.3)

whereM; C; andK 2 Rn�n are the mass, damping, and sti¤ness matrices respectively, �X; _X;
and X 2 Rn�1 are the relative acceleration, velocity, and displacement vectors respectively,
and P (t) 2 Rn�1 is the external force vector.
The technique of modeling the sti¤ness parameterK can be on the basis of either a linear

(elastic) or a nonlinear (inelastic) component [96]. The linear case means the relationship

between the lateral force and the resulting deformation is linear [23].

When both ground translation and rotation are consider, the motion equation is [21]

M �X + C _X +KX = F �MIn�ag (3.4)

where �ag represents the earthquake acceleration component, In is the system in�uence co-

e¢ cient vector, X = [xT ; yT ; �T ]T ; x = [x1; � � �xn]T , y = [y1; � � � yn]T ; � = [�1; � � � �n]T ;
In = [I1 I2 0]

T ; �ag = [�xg �yg 0]:

The mathematical analysis of the TC structure yields the following mass matrix, damping
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matrix and sti¤ness matrix

M =

2664
Mx 0nxn 0nxn

0nxn My 0nxn

0nxn 0nxn J0

3775 ; K =

2664
Kxx 0nxn �Kx�

0nxn Kyy Ky�

�Kx� Ky� K��

3775
where J0 = diag [m1r

2
1; � � �mnr

2
n], J0 is the polar moment of inertia of the story, r is the

radius of gyration of the �oor, n is the number of stories of the building, C is the damping

matrix which is proportional to mass and sti¤ness matrix by the Rayleigh method [52].

For a simple case, the mass of each �oor is concentrated at the �oor plate (N-storey shear

model). Two seismic waves are in the x direction and the y direction. Here the torsional

components are zero, see Figure 3.5. The left �gure represents 3-dimensional building struc-

tures and the right �gure exhibits the parameters of each �oor. The motion equations show

the relative displacements of the building structures with respect to the ground motions [154]

mj�xj + pj�1 � pj = �mj�xg(t)

mj�yj + qj�1 � qj = �mj�yg(t)

Jj��j + rj�1 � rj = 0
(3.5)

where xj and yjare the jth �oor displacement in x�direction and y�direction respectively,
�j is the jth �oor torsion angle relative to the ground. pj�1 and qj�1 are the jth �oor column

shear forces in x-direction and y-direction, pj and qj are the j+1th �oor column shear forces

in x�direction and y�direction respectively, rj�1is the jth �oor torque generated by the
shear forces, rj is the j+1th �oor torque, mj is the mass of the jth �oor, Jj is the rotational

inertia. In the above motion equation, the �xg(t) and �yg(t) are the ground accelerations

that strikes the building structures due to an earthquake. The total forces exerted on the

each �oor of the buildings in x�direction and y�direction are multiplied by the mass of the
building at each �oor. The torsional component of the ground acceleration are neglected

and so the right hand side of the third equation is zero. The movement of the buildings in

x�direction and y�direction that is the acceleration components are �xj and �yj respectively.
Due to the bidirectional motion of the building, there will be coupling action on the building

which give rises to the torsional motion in the building which is denoted by the component
��j:

If we only consider x-axis seismic wave, the torsion e¤ect on the building is in x�component
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Figure 3.5: 3-dimensional building structures with parameters of each �oor

[135], see Figure 3.6. The motion equations are

pj�1 = Kj(xj � xj�1) + Cj( _xj � _xj�1) +Bj(�j � �j�1) +Dj( _�j � _�j�1)
rj�1 = Bj(xj � xj�1) +Dj( _xj � _xj�1) + Ej(�j � �j�1) + Fj( _�j � _�j�1)
rj = Bj+1(xj+1 � xj) +Dj+1( _xj+1 � _xj) + Ej+1(�j+1 � �j) + Fj+1( _�j+1 � _�j)

(3.6)

where Kj =
PI

i=1K j;i; Cj =
PI

i=1C j;i; Bj =
PI

i=1Kj; ilj;i ; Dj =
PI

i=1Cj; il; Ej =PI
i=1Kj; il

2
i;j ; Fj =

PI
i=1Ci;jl

2
i;j, Kj; i and Cj; i are the sti¤ness and viscous damping

coe¢ cient respectively of the ith plane frame at the jth �oor, mj is the mass of the jth

�oor, Jj is the moment of inertia of the jth �oor, lj;i is the distance of mass centre of the

jth �oor to the ith plane frame, I is total number of plane frames. lj;i is positive if the ith

plane frame is located on the left of the mass centre, otherwise it is negative.

3.3 Bidirectional modeling for two-�oor building

The normal method of structure design regards the seismic response arising from the ground

motion that acts separately in the two orthogonal directions. Generally, the earthquake

exhibits arbitrary direction which is represented as bidirectional ground movement, and it

could reduce the participation of the traverse frames to the structure torsional and lateral

sti¤ness, see Figure 3.1.
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Figure 3.6: The torsion e¤ect on the building is in x-component
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Figure 3.7: A two-�oor building

The simplest structure is a one-story building, for one-direction it can be modeled by [5],

m�x+ c _x+ s x = fe (3.7)

where m is the mass, c is the damping coe¢ cient, s is the sti¤ness, fe is an external force

applied to the structure, and x, _x, and �x are the displacement, velocity, and acceleration,

respectively.

If the external force is in bidirectional, there are not only vibrations in X and Y axes,

but also torsion coupling. The torsional oscillation comes from the asymmetric characteristic

of the building, i.e., the physical center (cf) is di¤erent with the mass center (cm), see the

two-�oor building in Figure 3.7.

The motion of a n-�oor structure can be expressed as [23][109],

M�x+ C _x+ fs = fe (3.8)
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where x2 <n; M 2 <n�n; C 2 <n�n; fs = [fs;1 � � � fs;n] 2 <n is the structure sti¤ness force
vector, and fe 2 <n is the external force vector applied to the structure.
Also M = diag (Mx;My; Jt) 2 <(3n)�(3n); diag (�) is a diagonal matrix, Mx = My =

diag (m1 � � �mn) ; mi is the mass of the i-th �oor, Jt = diag (m1r
2
1 � � �mnr

2
n) is the polar

moment of inertia. fe = [fx; fy]
T =

2664
�Mx 0

0 �My

0 0

3775
"
ax

ay

#
where ax are ay are the acceler-

ations of the external force in X and Y directions. The displacements of the structure, with

respect to the bidirectional force fe = [fx; fy]
T ; have 3 components x = [x; y; �]T ; � is the

torsional angle.

The structure sti¤ness force fs can be modeled as a linear model or a nonlinear model.

In simple linear case

fs = Sx (3.9)

where x = [x1 � � �xn; y1 � � � yn; �1 � � � �n]T 2 <3n;

S =

2664
Sx 0 �Sx�
0 Sy Sy�

�Sx� Sy� S�

3775 ; S� =
2664
s�1 + s�2 �s�2 � � � 0 0

...
...

. . .
...

...

0 0 ::: �s�n s�n

3775 ; � = (x; y; �)
s�i = s�i + sxil

2
yi
+ syil

2
xi
; i = 1 � � �n represents �oor, s is the sti¤ness

Sx� =

2664
sx1ly1 + sx2ly2 �sx2ly2 � � � 0 0

...
...

. . .
...

...

0 0 ::: �sxnlyn sxnlyn

3775 2 <3n

Sy� =

2664
sy1lx1 + sy2lx2 �sy2lx2 � � � 0 0

...
...

. . .
...

...

0 0 ::: �synlxn synlxn

3775 2 <3n

The matrix S represents the overall sti¤ness matrix whereas the matrix S� represents

the sti¤ness matrix in x; y and � directions respectively by substituting �. Also lxi and lyi
represents the length of the structure in X-direction and Y -direction respectively, i = 1; 2.

The overall sti¤ness matrix S can be calculated by substituting Sx; Sy and S� using S� and

also by substituting Sx� and Sy�.

The damping matrix C is proportional to mass matrix M and sti¤ness matrix S

C = aM + bS
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Using Rayleigh method, represented by the equation. Therefore the damping matrix C has

the same form as of the sti¤ness matrix S; C =

2664
Cx 0 �Cx�
0 Cy Cy�

�Cx� Cy� C�

3775.
3.3.1 Non-linear sti¤ness

When the structure is under the grip of very strong force which deforms the structure beyond

its limit of linear elastic behavior, the structure sti¤ness force fs cannot be modeled as a

linear model. The behavior of the structure can be demonstrated using Bouc-Wen model.

The advantages incorporated in the Bouc�Wen model is that it can demonstrate inelastic

behavior of the structure where the strength/sti¤ness degradation can be easily incorporated.

The relationship between the forces and displacements is [75]

f�;i = ��is�ix�i + (1� ��i)s�i��i (3.10)

where � = (x; y) ; i = 1 � � �n; ��i are positive numbers.
The �rst part of (3.10) is the elastic sti¤ness, the second part is the inelastic sti¤ness.

The nonlinear function ��i is

��i =
1

��i
[A _x�i � ��i j _x�ij ja�ij

�li�1 a�iv�i + 
�i j _x�ij ja�ij
�li�1 v�ia�isign( _x�ia�i)] (3.11)

where A; ��i; 
�i; ��i; n and � are positive numbers.

��i = 1 + ��iE�i controls the sti¤ness degradation, v�i = 1 + ��iE�i controls strength

degradation. Normalized dissipated hysteretic energy is

E�i = (1� ��i)
Z t

0

_x�ia�i
��i��i

dt ��i = (��i + 
�i)
�
1

��i (3.12)

The property of passivity states that the system storage energy is always lesser than the

energy supplied. In [61], it was demonstrated that the Bouc-Wen model is considered to

be passive with respect to its energy storage. The nonlinear di¤erential equation (3.11)

is continuous and also it is dependent on time. The property of local Lipschitz is also

maintained. It can be validated that (3.11) has a unique solution on a time interval [0; t0].

In the stability analysis involved in the later part, this property will be utilized.

3.4 Active Control
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Figure 3.8: Bidirectional active control of structures

3.4.1 Active mass damper (AMD) and torsional actuator (TA)

In order to minimize the vibrations caused by the bidirectional external forces (fx and fy),

an active mass damper (AMD) and a torsional actuator (TA) are installed on the structure

as shown in Figure 3.8. The active mass damper (AMD) is placed near the mass centre of

the building. The torsional actuator (TA) is placed on the physical center of the building.

The control force are u = [ux; uy; u�]
T : Considering the building model (3.8) and the control,

the closed-loop system is

M�x+ C _x+ fs � fe = �(u� du) (3.13)

The closed loop system represented by (3.13) is the control equation that is utilized

for control and stability analysis. In the forthcoming section, this equation is subdivided

in to three components mainly X�component, Y�component and ��component and then
analysis is carried out.

where u 2 <3n is the control signals which is fed to the dampers, where dampers signi�es
active mass damper (AMD) and torsional actuator (TA) in combination, du is the damping

and friction force vector of the dampers, � is the location matrix of the dampers which is

de�ned as

�i;j =

(
1 if i = j = fl

0 otherwise
(3.14)

where 8i; j 2 f1; :::; ng; fl � f1; :::; ng; fl are the �oors on which the dampers are installed.

For a two-�oor building, � =

"
�1;1 �1;2

�2;1 �2;2

#
. If the damper is placed on the second �oor,



44 Bidirectional Modeling of Building Structures and Active Control

fl = f2g, � =
"
0 0

0 1

#
: If the damper is placed on both �rst and second �oor, fl = f1; 2g,

� =

"
1 0

0 1

#
.

If we illustrate the closed loop system mentioned by (3.13) along all three directions that

is X�direction, Y�direction and ��direction then

Mx�x+ Cx _x+ fsx � fx = �(ux � dux)
My�y + Cy _y + fsx � fy = �(uy � duy)
Jt�� + C� _� + fs� = �(u� � du�)

(3.15)

The AMD force in i-th �oor is de�ned as fi

fi = mdi( �di + �
i) (3.16)

where mdi is the mass of the AMD, �di is the acceleration of the AMD, �
i is the acceleration

of the structure along the AMD, �
i =
q
a2i;x + a

2
i;y: fi should be separated into X and Y

directions as
ui;x = fi cos' = mdi( �di cos'+ ai;x)

ui;y = fi sin' = mdi( �di sin'+ ai;y)

�
i =
ai;x
cos'

=
ai;y
sin'

�xi;x = ai;x + �di cos'

�xi;y = ai;y + �di sin'

where ' is the angle of the AMD along X-axis, �xi;x and �xi;y are the relative acceleration of

the AMD along X and Y directions. So

fi = mdi

�
�di +

ai;x
cos'

�
= mdi

�
�di +

ai;y
sin'

�
We de�ne the control force of the AMD along X and Y directions as ud = [ux; uy]

T

udi = mdi [�xi;x; �xi;y]
T

Consider the friction of the AMD,

fri;x = c _xi;x + �mdig tanh [� _xi;x]

fri;y = c _xi;y + �mdig tanh [� _xi;y]

where c; � and � are the damping coe¢ cients of the Column friction [108]. The �nal control

of the AMD is
ux = mdi�xi;x � fri;x
uy = mdi�xi;y � fri;y

(3.17)
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Using (3.15) and (3.17)

Mx�x+ Cx _x+ fsx � fx = �(mdi�xi;x � fri;x � dux)
My�y + Cy _y + fsx � fy = �(mdi�xi;y � fri;y � duy)

(3.18)

The third element of the control u = [ux; uy; u�]
T is the torsion force u�. The TA is a

rotating disc equipped with DC motor and is placed at the center of physical center, see

Figure 3.8. The control object is to decreased the torsional response of the structures due

to the bidirectional movements and the mass center and the physical center being di¤erent.

The inertia moment of TA is

Jt = mtr
2
t (3.19)

where, mt is the mass of the disc and rt is the radius of the disc. The torque � generated by

the disc is

u� = Jt(��t + ��) (3.20)

where, �� is the angular acceleration of the building, ��t is the angular acceleration of the

torsional actuator. Obviously, to decrease the torsional response, the directions of ��t and ��

should be di¤erent.

Consider the friction of the TA

frt = c _�t + Fc tanh(� _�t) (3.21)

where c is the torsional viscous friction coe¢ cient, Fc is the coulomb friction torque, tanh is

the hyperbolic tangent depending on � and motor speed. The �nal torsion control is

u� = Jt(��t + ��)� frt (3.22)

Using (3.15) and (3.22)

Jt�� + C� _� + fs� = �(Jt(��t + ��)� frt � du�) (3.23)

The main role of the AMD is to reduce the response of acceleration of building in X

and Y directions whereas the main role of the TA is to minimize the torsional e¤ect on the

building. For the closed-loop system (3.13),

du =

2664
c _xi;x + �mdig tanh [� _xi;x] = dux

c _xi;y + �mdig tanh [� _xi;y] = duy

c _�t + Fc tanh(� _�t) = du�

3775 (3.24)
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The movements of the AMD and TA are sliding in nature. The sliding mechanism of

the actuators absorb the energy from the friction. The kinetic energy is converted into

heat energy in this phenomena. So the coe¢ cients in the friction models are assumed to be

Coulomb.

3.5 Summary

This chapter highlights the importance of modeling of building structures under bidirectional

earthquakes. It is important to have the knowledge of the model dynamics for e¤ective

implementation of the control law. In this chapter the modeling equation of the two �oor

building is extracted. Also modeling equation of the AMD and TA are laid down. The

equation of active control of both the actuator are proposed. This procedure will facilitate

the successful implementation of PD/PID control, Type-2 Fuzzy control and discrete time

sliding mode control in the forthcoming chapters.



Chapter 4

Bidirectional PD/PID Control of

Building Structures

4.1 Introduction

The role of the structural control is to minimize the vibrations of the buildings under the

e¤ect of bidirectional earthquake via an e¤ective external control force. In an active control

system it is essential to design an e¤ective control strategy, which is simple, robust, and fault

tolerant. Several attempts have been made to implement advanced controllers for the active

vibration control of structures as discussed in Chapter 2.

The Chapter 2 clearly justi�es that the control device plays a superior role in preventing

structure from damages. A good control law gives good performance of the anti-vibration.

Researchers have made several attempts to incorporate high level controllers for the active

vibration control of structures. The pole-placement H1 control with target damping ratio

is proposed by [102]. In [38], the genetic algorithm is applied to determine the feedback

control. Many optimal control algorithms are applied for the active vibration control of

structures, for example �ltered linear quadratic control [113], linear quadratic regulator [5]

and linear quadratic Gaussian control [55]. The active mass damper is widely implemented,

which utilizes the mass without spring and dashpot [19]. Due to the existence of translation-

torsion coupled vibrations with respect to the bidirectional seismic waves, in this work a

torsional actuator (TA) is utilized. It is a disc-motor device, which is incorporated in the

structure to minimize the torsional response of the building.

For real application, an e¤ective controller should be simple, robust, and fault tolerant.

The PD/PID control has been widespread applied in industrial processes. It may be the best
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control, because it shows its e¤ectivity without the knowledge of the model and also due its

simplicity as well as it is incorporated with distinct physical meanings. In [145], MR damper

is utilized in the combination with the magneto-rheological damper (MR-MD) scheme to

control a three dimensional structure from bidirectional seismic excitations. The controller

used the mechanism of PD control. It calculates the essential forces required to control the

structural vibrations. In [51], PD and PID controllers are used in the numerical simulations

to control structure under unidirectional earthquake. [98] used active tendons to control

torsionally irregular and multistory structures under the e¤ect of near fault ground motion

excitation. In their work, PID type controllers were used to generate the control signals. In

[99], various feedback control strategies in relation to active control of earthquake utilizing

PID type controllers was presented. A numerical algorithm was taken into consideration for

�nding out the parameters of PID.

The problems of existed bidirectional PD/PID control are: 1) they do not consider the

lateral-torsional control mechanism that is only horizontal actuator was used to mitigate the

lateral-torsional vibration but a combination of horizontal actuator and torsional actuator

are not implemented; 2) they do not analyze the stability of closed-loop system.

In this work, standard PD and PID control are utilized as active vibration control of the

structure in order to solve the above two problems. Initially the analysis are based on the

lateral-torsional vibration, linear and nonlinear structure sti¤ness, and the hysteresis of the

structure model under the bidirectional wave. Then the su¢ cient conditions for asymptotic

stability of the PD/PID control are validated by utilizing Lyapunov stability analysis. These

conditions are quite convenient for the designer to choose the controller gains straightaway.

An active vibration control system with two �oors equipped with a horizontal actuator and a

torsional actuator is setup in order to carry out the experimental analysis. The experimental

results using the PD and PID controller validate their e¤ectiveness and stability.

4.2 Bidirectional PD/PID control

4.2.1 Closed loop system with PD control

As PD control is very simple and robust to uncertainties, it is the most popular controller for

mechanical systems. It is the simplest controller for the structural vibration control system.

PD controller is the best choice. PD control has the following form when the horizontal
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actuator control is coupled with the torsional actuator control

u = �Kpe�Kd _e (4.1)

where e = x � xd, x = [x; y; �]T ; xd is desired reference vector, for the vibration control,

xd = 0: Kp andKd are positive-de�nite constant matrices that correspond to the proportional

and derivative gains. The PD control (4.1) for structures becomes

u = �Kpx�Kd _x (4.2)

The design of the controller are based on the suitable gain selection Kp and Kd in (4.1),

such that the closed-loop system is stable and good performances are achieved. For the

bidirectional structure control, the gains of one-�oor PD are: KP = diag (Kpx; Kpy; Kp�) 2
<6x6; Kd = diag (Kdx; Kdy; Kd�). The closed-loop system (3.13) with the PD control shown

in (4.2) is

M�x+ C _x+ Sx+ fe + �du = �(�Kpx�Kd _x) (4.3)

Here the terms (Sx+ fe + �du) can be regarded as uncertainties. In the following section,

we assume it satis�es the Lipschitz condition.

It is well known that the regulation error becomes smaller while increasing the derivative

gain. The cost of large derivative gain results in slow transient performance. Only when

derivative gain tends to in�nity, the regulation error converges to zero [76]. However it

would seem better to use a smaller derivative gain if the system contains high-frequency

noise signals.

4.2.2 Closed loop system with PID control

In the control viewpoint, the regulation error can be removed by introducing an integral

component to the PD control. PID controllers use feedback strategy and have three actions.

P action is introduced for increasing the speed of response. D action is introduced for

damping purposes. I-action is introduced for obtaining a desired steady-state response [34].

The PID control is,

u = �Kp(x� xd)�Ki

Z t

0

(x� xd)d� �Kd( _x� _xd) (4.4)

where Kp; Ki and Kd are positive de�nite, Ki is the integration gain. For the structure

control. xd = _xd = 0, (4.4) becomes

u = �Kpx�Ki

Z t

0

xd� �Kd _x (4.5)
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In order to analyze PID controller, (4.5) is expressed by

u = �Kpx�Kd _x� �
� = Ki

R t
0
xd� ; �(0) = 0

The closed-loop system (3.13) with the PID control (4.4) becomes

M�x+ C _x+ Sx+ fe + �du = �Kpxx�Kdx _x� �
_� =Kix

(4.6)

In matrix form, the closed-loop system is

d

dt

2664
�

x

_x

3775 =
2664

Kixx

_x

�M�1 (C _x+ Sx+ fe + �du +Kpxx+Kdx _x+ �)

3775 (4.7)

Unlike the H2 control [110] and optimal control [5], PD control does not need the model of

the structure. The model discussed in the above section will be used for stability analysis

in this chapter. The theory analysis of bidirectional PD control is still not appeared in

publications [51].

4.3 Stability of the bidirectional PD/PID control

4.3.1 PD control

As the combined forces generated by horizontal actuator and torsional actuator is fed to

the structure, this forces may stabilize or destabilize the structure. If the control algorithm

generates unstable signal, the horizontal actuator and torsional actuator will generate forces

that can make the structure unstable. This matter becomes more complicated for nonlinear

devices, as a bounded input signal may also make nonlinear devices to generate unstable

output.

In general cases, the structures associated with open-loop systems are asymptotically

stable. This is true for the case when there is no external force, fe = 0: The criteria is

valid in case of inelastic sti¤ness because of its BIBO stability and passivity properties. In

the event of seismic excitation the ideal active control force required for cancelling out the

vibration completely is �u = fe. But practically it is not possible because fe is not always

measurable and is much bigger than any control device force. Therefore the main intention

of the active control is to maintain the vibration as minimum as possible by mitigating
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the relative movement between the structural �oors. Normally the structural parameters

are partly known and the structure model might have embedded nonlinearity such as the

hysteresis phenomenon.

It is quite favorable to represent the closed-loop system (4.3) with PD control as

M�x+ C _x+ f = �� (Kpx+Kd _x) (4.8)

where f = fs + fe + du:

The following theorem gives the stability analysis of the PD control (4.2). To simplify the

proof, we assume that �n�n = In�n; which means that each �oor has an horizontal actuator

and a torsional actuator .

Theorem 4.1 Consider the structural system as (3.13) controlled by the PD controller as

(4.2), the closed-loop system as (4.3) is stable, provided that the control gains are positive.

The regulation errors converge to the following residual sets

Dx =

�
_x; _� j k _xk2Qx +




 _�


2
Qx
� ��fx +�2f ��fx

�
Dy =

�
_y; _� j k _yk2Qy +




 _�


2
Qy
� ��fy + �2f ��fy

�
D� =

�
_�; _x; _y j




 _�


2
Q�
+ k _xk2Q

�
+ k _yk2Q

�
� ��f� +�

�2
f ��fx + �

�2
f ��fy

� (4.9)

where ��fx � fTx ��1f fx; ��fy � fTy ��1f fy; ��f� � fT� ��1f f�; Cx +�fCx� > �fx > 0; Cy + �fCy� >
�fy > 0; C� + �

�1
f Cx� + �

�1
f Cy� > �f� > 0:

Proof. The closed-loop system (4.8) can also be represented as2664
Mx�x

My�y

Jt��

3775+
2664

Cx _x� Cx� _�
Cy _y + Cy� _�

C� _� � Cx� _x+ Cy� _y

3775+
2664
fx

fy

f�

3775 = ��
8>><>>:
2664
Kpxx

Kpyy

Kp��

3775+
2664
Kdx _x

Kdy _y

Kd�
_�

3775
9>>=>>; (4.10)

Therefore, we have three sets to represent X; Y and � directions

Mx�x+
�
Cx _x� Cx� _�

�
+ fx = ��(Kpxx+Kdx _x)

My�y +
�
Cy _y + Cy� _�

�
+ fy = ��(Kpyy +Kdy _y)

Jt�� +
�
C� _� � Cx� _x+ Cy� _y

�
+ f� = ��(Kp�� +Kd�

_�)

(4.11)

We will analyze one by one. Since the damper and actuator are placed in the second �oor,

so � = 1: If all the individual structural equations in (4.11) with PD controller are stable,
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the entire structural is stable using PD controller. For that purpose we select Lyapunov

candidate as

Vx =
1

2
_xTMx _x+

1

2
xTKpxx (4.12)

The �rst term of (4.12) signi�es the kinetic energy and the second term denotes elastic

potential energy. As Mx and Kpx are positive de�nite matrices, so Vx � 0. The derivative
of (4.12) is

_Vx = _xTMx�x+ _xTKpxx

= _xT
�
�Cx _x+Cx� _� � fx �Kpxx�Kdx _x

�
+ _xTKpxx

= � _xT (Cx +Kdx) _x+ _x
TCx� _� � _xT fx

(4.13)

Using the matrix inequality

XTY + Y TX � XT�X + Y T��1Y (4.14)

It is valid for any X; Y 2 <n�m and any 0 < � = �T 2 <n�n, we can write the scalar
variable _xTfx as

_xT fx=
1

2
_xT fx+

1

2
fTx _x � _xT�fx _x+ f

T��1fx f (4.15)

where �fx is any positive de�nite matrix. Now _x and _� are related to each other as the

vibration along x-direction will create a torsional movement � and so we suppose

_�= ��f _x (4.16)

where �f is a positive de�nite matrix. As the X component of ground acceleration will

give a torsion in the structure in anti-clockwise sense, hence we assumed the relation to be

negative. Using (4.16) in (4.13),

_Vx = � _xT (Cx +Kdx) _x��Tf _xCx� _x� _xT fx
_Vx = � _xT (Cx +�fCx� +Kdx) _x� _xT fx

We select �fx as

Cx +�fCx� > �fx > 0 (4.17)

So
_Vx � � _xT (Cxx +�fCx� +Kdx � �fx) _x+ fTx ��1fx fx (4.18)

If we choose the gain Kdx > 0, and also since �f is positive de�nite matrix,Cxx > 0; Cx� > 0

we have:
_Vx � � _xTQx _x+ ��fx � ��m (Qx) k _xk

2 + fTx �
�1
fx fx (4.19)
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where Qx = Cx + �fCx� +Kdx � �fx > 0: _Vx is therefore an ISS-Lyapunov function. Using
Theorem 1 from [120], the boundedness of fTx �

�1
fx fx � ��fx implies that the regulation error

k _xk is bounded,
k _xk2Qx > ��f _x; 8t 2 [0; T ] (4.20)

then we can conclude that _Vx < 0 when k _xk2Qx > ��f _x. From (4.16) we have

_x= ���1f _�; j _xj= ���1f
��� _���� ; j _xj j _xj = ���1f

��� _���� j _xj ; k _xk2 = ��2f



 _�


2 (4.21)

Implementing (4.21) in (4.20) we have


 _�


2
Qx
> �2f ��fx;8t 2 [0;�] (4.22)

Above condition also satisfy _Vx < 0 when



 _�


2

Qx
> �2f ��fx: Adding (4.20) and (4.22) we have

k _xk2Qx +



 _�


2

Qx
> ��fx +�

2
f ��fx;8t 2 [0; T +�] (4.23)

Now we show that the total time during which k _xk2Qx +



 _�


2

Qx
> ��fx + �

2
f ��fx is �nite. Let

Tk denotes the time interval during which k _xk2Qx +



 _�


2

Qx
> ��fx + �

2
f ��fx: k _xk

2
Qx
+



 _�


2

Qx
>

��fx + �
2
f ��fx will stay inside the circle in case k _xk

2
Qx
+



 _�


2

Qx
> ��fx + �

2
f ��fx stay outside the

circle of radius ��fx + �
2
f ��fx for �nite times and then reenter the circle. Also,

1P
k=1

Tk < 1;

since the total time k _xk2Qx +



 _�


2

Qx
> ��fx + �

2
f ��fx is �nite and

lim
k!1

Tk = 0 (4.24)

So k _xk2Qx +



 _�


2

Qx
is bounded via an invariant set argument. Also using (4.19) it can be

shown that k _xk and



 _�


 are also bounded. Let k _xk2Qx + 


 _�


2Qxdenotes the largest tracking

error during the Tk interval. Then using (4.24) and bounded k _xk2Qx +



 _�


2

Qx
imply that

lim
k!1

�
k _xk2Qx +




 _�


2
Qx
� (��fx +�2f ��fx)

�
= 0

So k _xk2Qx +



 _�


2

Qx
will converge to ��fx + �

2
f ��fx: Therefore, the derivative of regulation error

x and � converges to the residual set

_Dx =

�
_x; _� j k _xk2Qx +




 _�


2
Qx
� ��fx +�2f ��fx

�
(4.25)
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Also for k _xk2Qx > ��fx;the total time is �nite and hence Vx =
1
2
_xTMx _x+

1
2
xTKpxx is bounded,

hence the regulation error _x is bounded. Also for



 _�


2

Qx
> �2f ��fx;the total time is �nite and

hence assuming V� = 1
2
_�
T
Jt _� +

1
2
�TKp�� it can be shown to be bounded and so regulation

error _� is also bounded, _� = ��f _x and Jt = Mxr
2: Again using the Lyapunov candidate

Vy =
1
2
_yTMy _y +

1
2
yTKpyy, and using the similar sort of stability analysis we can infer that

the derivative of regulation error y and � converges to the residual set

_Dy =

�
_y; _� j k _yk2Qy +




 _�


2
Qy
� ��fy + �2f ��fy

�
(4.26)

where
_�= �f _y (4.27)

is positive due to clockwise sense

Qy = Cy + �fCy� +Kdy � �fy > 0:

For k _yk2Qy > ��fy;the total time is �nite and hence Vy =
1
2
_yTMy _y+

1
2
yTKpyy is bounded, hence

the regulation error _y is bounded. Also for



 _�


2

Qy
> �2f ��fy;the total time is �nite and hence

assuming V� = 1
2
_�
T
J0 _�+

1
2
�TKp�� it can be shown to be bounded and so regulation error _� is

also bounded, _� = �f _y and Jt =Myr
2:Using the Lyapunov candidate V� = 1

2
_�
T
J0 _�+

1
2
�TKp��,

and using the similar sort of stability analysis, we can infer that the derivative of regulation

error x; y and � converges to the residual set

_D� =

�
_�; _x; _y j




 _�


2
Q�
+ k _xk2Q

�
+ k _yk2Q

�
� ��f� +�

�2
f ��fx + �

�2
f ��fy

�
(4.28)

where, _x = ���1f _�; _y = ��1f
_�;Q� = C�+�

�1
f Cx�+�

�1
f Cy�+Kd���f� > 0: For




 _�


2
Q�
> ��f� ;the

total time is �nite and hence assuming V� = 1
2
_�
T
J0 _�+

1
2
�TKp�� it can be shown to be bounded

and so regulation error _� is also bounded. For k _xk2Q� > �
�2
f ��fx;the total time is �nite and

hence Vx = 1
2
_xTMx _x +

1
2
xTKpxx is bounded, hence the regulation error _x is bounded. For

k _yk2Q� > �
�2
f ��fy;the total time is �nite and hence Vy =

1
2
_yTMy _y+

1
2
yTKpyy is bounded, hence

the regulation error _y is bounded

4.3.2 PID control

From the above section it is clear that in order to decrease the regulation errors caused by

these uncertainties, the derivative gain Kd has to be increased, but will result in slow re-

sponse. Now we analyze the stability of the bidirectional PID control (4.5). The equilibrium
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of (4.7) is [�x; x; _x] = [�
�
x;0;0] : Since at equilibrium point x = 0 and _x = 0; the equilibrium

is [f (0) ;0;0] : In order to move the equilibrium to origin, we de�ne

�x = �x � f (0) (4.29)

The �nal closed-loop equation becomes

Mx�x+ (Cx +�fCx�) _x+ fx = �Kpxx�Kdx _x� �x + f (0)
�x = Kixx

(4.30)

In a similar manner,

My�y + (Cy + �fCy�) _y + fy = �Kpyy �Kdy _y � �y + f (0)
�y = Kiyy

J0�� +
�
C� +�

�1
f Cx� + �f

�1Cy�
�
_� + f� = �Kp�� �Kd�

_� � �� + f (0)
�� = Ki��

(4.31)

In order to analyze the stability of (4.30) and (4.31) we need the following properties.

P1. The positive de�nite matrix M =Mx =My satis�es the following condition

0 < �m(M) � kMk � �M(M) � �m

0 < �jt(Jt) � kJtk � �Jt(Jt) � �jt

where �m(M) and �M(M) are the minimum and maximum eigenvalues of the matrix M ,

respectively and �m > 0 is the upper bound, �jt(Jt) and �Jt(Jt) are the minimum and

maximum eigenvalues of the matrix Jt, respectively and �jt > 0 is the upper bound.

P2. The term f is Lipschitz over ~x and ~y

kf (~x)� f (~y)k � kf k~x� ~yk (4.32)

Most of the uncertainties are �rst-order continuous functions. Since fs; fe and du are

�rst-order continuous functions and satisfy Lipschitz condition, P2 can be established.

We calculate the lower bound of
R
f dx asZ t

0

f dx =

Z t

0

fsdx+

Z t

0

fedx+

Z t

0

du dx (4.33)

Here we de�ne the lower bound of
R t
0
fsdx as � �fs, and

R t
0
du dx as � �du:

Compared with fs and du, fe is much bigger in the case of earthquake. We de�ne the

lower bound of
R t
0
fedx as � �fe: Finally, the lower bound kfx is

kfx = � �fs � �fe � �du (4.34)

The following theorem gives the stability analysis of PID controller.
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Theorem 4.2 Consider the structural system as (3.13) controlled by the PID controller as

(4.5), the closed-loop system (4.30) and (4.31) are asymptotically stable at the equilibriums

[�x � f (0) ; x; _x]
T = 0;

�
�y � f (0) ; y; _y

�T
= 0 and

h
�� � f (0) ; �; _�

iT
= 0, provided that the

PID gains satisfy

�m (Kdx) � 1
4

q
1
3
�m (Mx)�m (Kpx)

h
1 +

kcx+�fkcx�
�M (Mx)

i
��m(Cx)� �m(�fCx�)
�M(Kix) � 1

6

q
1
3
�m (Mx)�m (Kpx)

�m(Kpx)

�M (Mx)

�m(Kpx) � 3
2
[kf + kcx + �fkcx� ]

�m (Kdy) � 1
4

q
1
3
�m (My)�m (Kpy)

h
1 +

kcy+�fkcy�
�M (My)

i
��m(Cy)� �m(�fCy�)
�M(Kiy) � 1

6

q
1
3
�m (My)�m (Kpy)

�m(Kpy)

�M (My)

�m(Kpy) � 3
2
[kf + kcy + �fkcy� ]

�jt (Kd�) � 1
4

q
1
3
�jt (Jt)�jt (Kp�)

�
1 +

kc�+�
�1
f kcx�+�f

�1kcy�
�Jt (Jt)

�
��jt(C�)� �j0(��1f Cx�)� �j0(�f�1Cy�)
�Jt(Ki�) � 1

6

q
1
3
�jt (Jt)�jt (Kp�)

�jt (Kp�)

�Jt (Jt)

�jt(Kp�) � 3
2
[kf + kc� + �

�1
f kcx� + �f

�1kcy� ]

Proof. Here the Lyapunov function is de�ned as

Vx =
1

2
_xTMx _x+

1

2
xTKpxx+

�

4
�TxK

�1
ix �x+x

T�x+
�

2
xTMx _x+

�

4
xTKdxx+

Z t

0

fdx�kfx (4.35)

where V (0) = 0: In order to show that Vx � 0, it is separated into three parts, such that

Vx = Vx1 + Vx2 + Vx3

Vx1 =
1

6
xTKpxx+

�

4
xTKdxx+

Z t

0

fdx� kfx � 0; Kpx > 0; Kdx > 0 (4.36)

Vx2 =
1
6
xTKpxx+

�
4
�TxK

�1
ix �x + x

T�x

� 1
2
1
3
�m(Kpx) kxk2 + ��m(K

�1
ix )

4
k�xk

2 � kxk k�xk
(4.37)

When � � 3
(�m(K

�1
ix )�m(Kpx))

;

Vx2 �
1

2

 r
�m(Kpx)

3
kxk �

s
3

4(�m(Kpx))
k�xk

!2
� 0 (4.38)
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and

V3x =
1

6
xTKpxx+

1

2
_xTM _x+

�

2
xTM _x (4.39)

Because

XTAX � kXk kAXk � kXk kAk kXk � �M(A) kXk2 (4.40)

when

� � 1

2

q
1
3
�m(Mx)�m(Kpx)

�M(Mx)

Vx3 � 1
2

�
1
3
�m(Kpx) kxk2 + �m(Mx) k _xk2 + ��M(Mx) kxk k _xk

�
= 1

2

�q
�m(Kpx)

3
kxk+

p
�m(Mx) k _xk

�2
� 0

(4.41)

Now we have,

1

2

q
1
3
�m(Mx)�m(Kpx)

�M(Mx)
� � � 3

(�m(K
�1
ix )�m(Kpx))

(4.42)

The derivative of (4.35) is

_Vx = _xTMx�x+ _xTKpxx+
�
2
�TxK

�1
ix �x + _xT�x

+xT�x +
�
2
_xTMx _x+

�
2
xTMx�x+ � _x

TKdxx+ _xT f
(4.43)

Using (4.14) we can write

��
2
xTCxx _x �

�

2
kcx
�
xTx+ _xT _x

�
(4.44)

���f
2
xTCx� _x �

��f
2
kcx�

�
xTx+ _xT _x

�
where kCxk � kcx.and kCx�k � kcx� : So �x = Kix, �

TK�1
ix � becomes x

T �; and xT � becomes

xTKix. Using (4.44) we have

_Vx = � _xT
�
Cx + �fCx� +Kdx � �

2
Mx � �

2
kcx �

��f
2
kcx�
�
_x

�xT
�
�
2
Kpx �Kix � �

2
kcx �

��f
2
kcx�
�
x��

2
xT [fx � f (0)] + _xTf(0)

(4.45)

Now using the Lipschitz condition (4.32)

�

2
xT [f (0)� fx] �

�

2
kf kxk2 (4.46)

��
2
xT [fx � f (0)] � xT

�

2
kfx

From (4.14),

_xTf(0) � �fT (0)��1Tf(0) (4.47)
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Using (4.46)

_Vx = � _xT
�
Cx + �fCx� +Kdx � �

2
Mx � �

2
kcx �

��f
2
kcx�
�
_x

�xT
�
�
2
Kpx �Kix � �

2
kcxx �

��f
2
kcx� � �

2
kf
�
x+ _xTf(0)

(4.48)

(4.48) becomes

_Vx � � _xT
�
�m(Cx) + �m(�fCx�) + �m(Kdx)� �

2
�M(Mx)� �

2
kcx �

��f
2
kcx�
�
_x

�xT
�
�
2
�m(Kpx)� �M(Kix)� �

2
kcxx �

��f
2
kcx� � �

2
kf
�
x

(4.49)

So _Vx � 0; kxk minimizes if two conditions are met: 1) �m(Cx) + �m(�fCx�) + �m(Kdx) �
�
2
[�M(Mx) + kcx + �fkcx� ]; 2) �m(Kpx) � 2

�
�M(Kix) + kcx +

��f
2
kcx� + kf : Now using (4.42)

and �m
�
K�1
ix

�
= 1

�M (Kix)
, we have

�m (Kdx) �
1

4

r
1

3
�m (Mx)�m (Kpx)

�
1 +

kcx + �fkcx�
�M (Mx)

�
� �m(Cx)� �m(�fCx�) (4.50)

again 2
�
�M(Kix) =

2
3
�m(Kpx): Hence,

�M(Kix) �
1

6

r
1

3
�m (Mx)�m (Kpx)

�m(Kpx)

�M (Mx)
(4.51)

Also

�m(Kpx) �
3

2
[kf + kcx + �fkcx� ] (4.52)

By the Lyapunov function

Vy =
1

2
_yTMy _y+

1

2
yTKpyy+

�

4
�TyK

�1
iy �y+y

T�y+
�

2
yTMy _y+

�

4
yTKdyy+

Z t

0

fdy�kfy (4.53)

Similarly we can prove, Vy � 0 and thus using stability analysis criteria we can prove _Vy � 0
if

�m (Kdy) � 1
4

q
1
3
�m (My)�m (Kpy)

h
1 +

kcy+�fkcy�
�M (My)

i
� �m(Cy)� �m(�fCy�)

�M(Kiy) � 1
6

q
1
3
�m (My)�m (Kpy)

�m(Kpy)

�M (My)

�m(Kpy) � 3
2
[kf + kcy + �fkcy� ]

(4.54)

From Lyapunov function

V� =
1

2
_�
T
J0 _� +

1

2
�TKp�� +

�

4
��K�1

i� �� + �
T�� +

�

2
�TJ0 _� +

�

4
�TKdy� +

Z t

0

fd� � kf� (4.55)
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Similarly we can prove, V� � 0: Thus we can prove _V� � 0; k�k decreases if

�jt (Kd�) � 1
4

q
1
3
�jt (Jt)�jt (Kp�)

�
1 +

kc�+�
�1
f kcx�+�f

�1kcy�
�Jt (Jt)

� �jt(C�)� �jt(��1f Cx�)� �jt(�f�1Cy�)
�

�Jt(Ki�) � 1
6

q
1
3
�jt (Jt)�jt (Kp�)

�jt (Kp�)

�Jt (Jt)

�j0(Kp�) � 3
2
[kf + kc�� + �

�1
f kcx� + �f

�1kcy� ]

(4.56)

The above theorems suggest that the closed loop system is asymptotically stable. But

we cannot decide on the global stability of the closed loop system. This is due to the fact

that the hysteresis property is associated with the sti¤ness of the structure. The hysteresis

output depends on the deformation factor all time. This deformation behaves according to

the application or removal of forces. So the deformation are not same before and after the

application of forces and hence the equilibrium position is also not static. Therefore the

equilibrium position before and after the earthquake are not same. The stable point get

shifted after an earthquake event.

Let us consider a ball of radius & in the three dimensional space. This three dimensional

space is represented byX-component, Y -component and ��component. The ball center is at
origin of the state space system where: _Vx � 0; _Vy � 0; _V� � 0: The origin of the closed loop
systems represented by (4.39), (4.40) and (4.41) are stable equilibrium. Now we will prove

for the asymptotic stability of the origin. For that we use La Salle´s theorem by de�ning

the term �x;�y and ��as follows:

�x =
n
�zx(t) =

�
xT ; _xT ; �Tx

�T 2 <3n : _Vx = 0o ; �x 2 <n; x = 0 2 <n; _x = 0 2 <n
�y =

n
�zy(t) =

�
yT ; _yT ; �Ty

�T 2 <3n : _Vy = 0o ; �y 2 <n; y = 0 2 <n; _y = 0 2 <n
�� =

�
�z�(t) =

h
�T ; _�

T
; �T�

iT
2 <3n : _V� = 0

�
; �� 2 <n; � = 0 2 <n; _� = 0 2 <n

(4.57)

Using (4.54) and substituting x = 0 and _x = 0, we have _Vx = 0. Similar analysis with

y = 0 and _y = 0 and also � = 0 and _� = 0 will yield _Vy = 0 and _V� = 0. Similarly these

conditions hold good for _x = 0; _y = 0 and _� = 0 for all t � 0:Therefore �zx(t), �zy(t) and �z�(t)
belongs to �x, �y and �� respectively. Also, imparting these conditions to (4.39), (4.40)

and (4.41) we have: _�x = 0, _�y = 0 and _�� = 0:Also, �x = 0, �y = 0 and �� = 0 for all t � 0:
So �zx(t) is the only initial condition in �x, �zy(t) is the only initial condition in �y and �z�(t)

is the only initial condition in ��. Therefore, origin is asymptotically stable according to La

Salle´s theorem.
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Figure 4.1: Placement of AMD and TA

4.4 Experimental comparison results

In order to analyze and validate the bidirectional PD/PID controllers, a two-�oor structure is

designed and constructed as mentioned in the section experimental set up.. This structure is

then mounted on the shake table to carry out the experimental analysis which is illustrated

using Figure 8.7. The bidirectional shake table uses two Quanser one degree of freedom

(I-40), which move in X and Y directions.

The AMD and TA are placed on the second �oor of the structure. The total moving

mass of the horizontal actuator and torsional actuator are taken to be the 5% of the total

mass of the structure. The eccentricity of the physical center are 16 cm from X-direction

and 27 cm from Y-direction. The eccentricity of the mass center are 15 cm from X-direction

and 11 cm from Y-direction. The TA is placed on the physical center whereas the AMD is

placed on the mass center. The position of the AMD and the TA can be seen in Figure 4.1

The entire programming is carried out using the Matlab and Simulink version R2011a.

The Simulink programs is used to generate the control actions for AMD and TA as well as for

the movement of shake table. For creating a synchronization between Matlab and Quanser

devices, Quarc accelerate design version 2.3.603 is installed. The control actions between the

computer and the dampers are synchronized using RT-DAC/USB data acquisition board.

The link between Simulink and RT-DAC/USB is achieved using RT CON toolbox which

is provided with the hardware RT-DAC/USB. All the control actions were employed at a

sampling frequency of 1 kHz. The biaxial accelerometers (XL403A) are mounted on each

�oor.

The acceleration of ground �oor is subtracted from �rst �oor acceleration and second

�oor acceleration respectively, to get the relative value of the acceleration. A numerical
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integrator is used to compute the velocity and position from the accelerometer signal [129].

The displacement of the �oors are calculated using an accelerometer. Since the accelerom-

eter used is a bidirectional one, the acceleration are obtained along X-component and Y-

component. These accelerations along X-component and Y- component are integrated to

extract velocity in the �rst instance and again integrated to extract positions in the next

instance. Although after each integration, �lter is used for the correction of signals. An

o¤set cancellation �lter (OCF) is proposed, which completely removes the DC components

present in the accelerometer output. In order to avoid the drift caused by low frequency noise

signals, a special high-pass �lter is used. A frequency-domain method is used to estimate the

low frequency noise components present in the accelerometer output. The high-pass �lter is

designed o­ ine according to these noise components. Since the OCF reduces the number of

high-pass �ltering stages, there is less phase error. The numerical integrator combines the

OCF and a highpass �lter.

There is no angular sensor to calculate the angular acceleration of the structure. The

angular accelerations are calculated by

��1 = �
�
C�01+C�02
m1r21

�
_�1 +

�
C�02
m1r21

�
_�2 �

�
K�01+K�02

m1r21

�
�1 +

�
K�02

m1r21

�
�2

+
�
Cx1 ly1+Cx2 ly2

m1r21

�
_x1 �

�
Cx2 ly2
m1r21

�
_x2 +

�
Kx1 ly1+Kx2 ly2

m1r21

�
x1 �

�
Kx2 ly2
m1r21

�
x2

�
�
Cy1 lx1+Cy2 lx2

m1r21

�
_y1 +

�
Cy2 lx2
m1r21

�
_y2 �

�
Ky1 lx1+Ky2 lx2

m1r21

�
y1 +

�
Ky2 lx2
m1r21

�
y2

(4.58)

��2 = �
�
C�02
m2r22

�
_�1 �

�
C�02
m2r22

�
_�2 +

�
K�02

m2r22

�
�1 �

�
K�02

m2r22

�
�2

+
�
Cx2 ly2
m2r22

�
_x1 +

�
Cx2 ly2
m2r22

�
_x2 �

�
Kx2 ly2
m2r22

�
x1 +

�
Kx2 ly2
m2r22

�
x2

+
�
Cy2 lx2
m2r22

�
_y1 �

�
Cy2 lx2
m2r22

�
_y2 �

�
Ky2 lx2
m2r22

�
y1 �

�
Ky2 lx2
m2r22

�
y2

(4.59)

where ��1 and ��2 are the angular accelerations of the �rst and the second �oor, Ci; li ; mi; and

ri are structural parameters of the building. They are identi�ed by the least square algo-

rithm [130]. The identi�cation process is achieved by identifying the ratio of the parameters

corresponding to the mass, damping and sti¤ness of a building excited by a seismic activity.

The algorithm is based on a parametrization combined with the Recursive Least Square

Method with forgetting factor. The algorithm is a real time that identi�es the parameters

of a building model using acceleration measurements of the �oors and the ground.

The structural parameters of the two-�oor building are identi�ed and fed into the algo-

rithms along with the values of positions and velocities for the calculation of the angular

accelerations. The velocities and positions _x1; _y1; _x2; _y2 and x1; y1; x2; y2 extracted from the

acceleration signals are substituted in the (4.58) and (4.59) to obtain the angular accelera-
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tions of ground and top �oor. The angular velocities and angular positions _�1; _�2 and �1; �2
are obtained from angular accelerations ��1 and ��2 by using the same numerical integrator.

The theorems of this paper provide su¢ cient conditions for the minimal values of the

proportional and derivative gains as well as maximum values of the integral gains. For the

sake of carrying out a relevant comparison between the PD and PID controller, it is desirable

to use same proportional and derivative gains.

In this paper, the PD/PID gains are chosen so as to ensure satisfactory performance as

well as within the range speci�ed by the stability theory analysis. The following PD gains

are used for the control design:

�m (Mx) = 10; �m(kcx) = 20; �m(kcx�) = 8; �m (My) = 10; �m(kcy) = 22

�m(kcy�) = 6; �jt (J0) = 5; �m(kc�) = 21; �m(kcx�) = 8; �m(kcy�) = 6; kf = 700
(4.60)

From Theorem 2, we use the following PID gains

�m(Kpx) � 1092; �m (Kdx) � 55; �M(Kix) � 2324; �m(Kpy) � 1092
�m (Kdy) � 55; �M(Kiy) � 2324; �j0(Kp�) � 1102; �j0 (Kd�) � 85; �J0(Ki�) � 3563

Kpx = 1800; Kpy = 2000; Kp� = 2200; Kdx = 160

Kdy = 220; Kd� = 300; Kix = 2000; Kiy = 2300; Ki� = 3500

(4.61)

Here the proportional and derivative gains are the same as the PD gains in (4.60).

The performance validation of these controllers are implemented by the vibration control

with respect to the seismic execution on the prototype. Northridge earthquake signal is used

to vibrate the shake table. The magnitude 6:7Mw earthquake that occurred near Northridge,

California on 17th January, 1994 produced an extensive set of strong-motion recordings.

The epicenter is located about 32km nortwest of Los Angeles in the densely populated San

Fernando Valley. Analysis by the USGS and Caltech indicates that the earthquake had a

thrust mechanism on a fault plane striking N600W and dipping 35 � 450S: The estimated
location and magnitude of the Northridge earthquake are:

Epicenter: 34:2090N; 118:5410W: Focal Depth: 19km (Caltech/USGS). Origin Time:

12 : 30 : 55:4; 17January1994UTC(4:30AM;PST ):Magnitude: 6:7Mw (Caltech).

The duration of the strong shaking is about 10s to 15s. The peak vertical acceleration

is about two-thirds of the peak horizontal. The displacement of the Northridge earthquake

is scaled from 16:92cm to 1:50cm, whereas the time is scaled from 39:98s to 11:91s. This is

done to suit the experimental conditions as the maximum allowed movement of the shake

table from the reference point on the either side is 2 cm. So considering the maximum limit
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Figure 4.2: PD control of the second �oor in X-direction
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Figure 4.3: PD control of the second �oor in Y -direction

of movement, the time is scaled to match the experimental analysis. The control object is

to minimize the relative displacement of each �oor in bidirection.

The comparisons in the bidirectional PD and PID vibration controllers are carried out

considering three cases: 1) without any active control (No Control); 2) with the torsional

actuator ; 3) with both the horizontal actuator and the torsional actuator (AMD+TA). The

vibration reductions are in three directions: X�direction, Y�direction and �-direction.
The average vibration displacement are calculated by the mean squared error as

MSE =
1

N

NX
k=1

x (k)2

where x (k) is the displacement of the �oor, N is the total data number.
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Figure 4.4: PD control of the second �oor in �-direction
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Figure 4.5: PID control of the second �oor in X-direction
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Figure 4.6: PID control of the second �oor in Y -direction
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Figure 4.7: PID control of the second �oor in �-direction
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The comparison results of the average vibration displacement are shown in Table 1 -

Table 3. Here # sign indicate decrease.

Table 1. Average vibration displacement by AMD+TA

PD control % # error PID control % # error No control

X-direction 0:2987 60:2 0:2373 68:5 0:7514

Y -direction 0:0719 45:53 0:0783 59:3 0:1320

�-direction 0:0696 40:8 0:0611 47:6 0:1174

Table 2. Average vibration displacement with PD control

with AMD % # error with TA % # error No control

X-direction 0:4832 35:7 0:5802 22:78 0:7514

Y -direction 0:0981 25:68 0:1012 23:3 0:1320

�-direction 0:0902 23:1 0:0801 31:7 0:1174

Table 3. Average vibration displacement with PID control

with AMD % # error with TA % # error No control

X-direction 0:3632 51:6 0:4911 34:6 0:7514

Y -direction 0:0849 35:6 0:0969 26:5 0:1320

�-direction 0:0811 30:8 0:0713 40:0 0:1174

Figure 4.2 - Figure 4.4 displays the action of the PD control to curb the vibration along

X�direction, Y�direction and �-direction. Table 1 - Table 3 represents the quantita-

tive analysis of vibration control with both the actuators using PD/PID control along

X�direction, Y�direction and �-direction. If we analyze Figure 4.2 - Figure 4.4 as well

as Table 1 and Table 2, it can be observed that horizontal actuator performs good in the

vibration control along X�direction and Y�direction but fails to mitigate vibration to
suitable extent along the �-direction. But if we analyze the behavior of torsional actuator,

it can be observed that torsional actuator performs superiorly in mitigating the vibration

along �-direction but fails to attenuate vibration to acceptable extent along X�direction
and Y�direction. When horizontal actuator and torsional actuator acts simultaneously,
it is observed that the results of vibration attenuation is much better along X�direction,
Y�direction and �-direction. The main reason behind this is that superior vibration control
is achieved in combination as respective actuators performs well in their assigned zones.

Figure 4.5 - Figure 4.7 displays the action of the PID control to curb the vibration along
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X�direction, Y�direction and �-direction. The analysis of PID control from Table 1 and

Table 3 reveals that PID controller performs much better than PD controller in control-

ling vibration along X�direction, Y�direction and �-direction. The behavior of horizontal
actuator and torsional actuator with PID controller follows the same pattern as with the

PD controller and it can be observed from the Figures and quantitative analysis that com-

bined action of the actuators achieves high vibration attenuation. Figure 4.8 and Figure

4.9 represents the control signal of PD control and PID control respectively.

4.5 Summary

In this chapter, a two-�oor structure associated with one horizontal actuator and one tor-

sional actuator for active vibration control is proposed. The theoretical contribution is the

stability analysis for the bidirectional PD/PID control. The su¢ cient conditions of stability

are extracted in order to tune the PD/PID gains. The two theorems stated in this chapter

validates the conditions which are su¢ cient for selecting the minimum values of the propor-

tional and derivative gains. Also the minimum values of the integral gains are extracted on

the basis of the Theorem 2. The range of the proportional, derivative and integral gains are

speci�ed using the Lyapunov stability theorem and is assured that on the basis of the selected

gains, the controller performs in the superior manner. It is observable that both PD and

PID controllers work well with horizontal actuator and torsional actuator. The experimental

results shows that the PID controller is better than the PD controller in minimizing the vi-

bration in all three directions. By comparing the quantitative analysis as displayed by Table

1-Table 3, it can be concluded that the PID controller in combination with both horizontal

actuator and torsional actuator are considered to be the most e¢ cient in mitigation of vibra-

tion alongX�direction, Y�direction and �-direction. The use of Torsional actuator facilities
the torsional vibration attenuation but it fails to attenuate vibration along X-direction and

Y -direction to considerable extent with PD controller, but when PID controller is used the

vibration control using torsional actuator along X-direction and Y -direction is much bet-

ter. The vibration attenuations along X-direction and Y -direction are e¤ectively achieved

by horizontal actuator but it fails to attenuate vibration considerably along �-direction with

PD controller in comparison with PID controller. As we can see from the quantitative analy-

sis that with PID controller, the mitigation of vibration along �-direction with horizontal

actuator is slightly better. Further works on the design of torsional actuator is needed so

that it can minimize the vibrations to suitable extent along all three directions.



Chapter 5

Bidirectional Type-2 Fuzzy PD/PID

Control of Building Structures

Fuzzy logic has obtained many attentions in control of structure because of its simple nature,

robustness and nonlinear mapping capability [22]. [107] presents a numerical study to show

the e¤ectiveness of a supervisory fuzzy logic controller for seismic response control of an eight

story base isolated structure e¤ected by translation-torsional motion. The combination of

fuzzy logic and PD control has more degrees of freedom to tune the mass damper for the

structure vibration [50]. In [103], a fuzzy supervisory method is used for the active control

of building structures. In [32], the semi-active control of building under the earthquake is

implemented with the concept of fuzzi�cation related to MR damper characteristics. The

concept of optimal fuzzy control is utilized to the structure under the seismic forces in

[39]. An optimal fuzzy control for suppressing vibration of buildings by utilizing magneto-

rheological (MR) dampers is proposed in [6]. Fuzzy control with hybrid mass damper for

the torsionally couple problem is discussed in [4].

The concept of type-2 fuzzy sets has been presented in [86]. The type-2 fuzzy system

has e¤ective ways to deal with knowledge uncertainty compared with classical type-1 fuzzy

logic, because the type-2 fuzzy sets can deal uncertainties with more parameters and more

design degrees of freedom [112]. A simpli�ed type-2 fuzzy system can be applied in the

real-time application [88]. For the vibration control of single degree of freedom, [115] uses

active tuned mass damper and type-2 fuzzy control. In [15], a semi-active tuned mass

damper combined with adaptive magnetorheological damper are utilized, the type-1 and

type-2 fuzzy controllers are implemented.

In this chapter, we will use the type-2 fuzzy control to compensate the regulation errors of



70 Bidirectional Type-2 Fuzzy PD/PID Control of Building Structures

PD and PID controllers. The main parts of the controllers are PD and PID, while the nonlin-

earity are compensated by the type-2 fuzzy system. We use a disc with motor arrangement

as the torsional actuator to minimize the torsional response of the building. The su¢ cient

conditions for asymptotic stability of PD/PID with type-2 fuzzy system are validated. The

conditions are quite convenient for the design of the controller gains. An active vibration

control system is designed with two �oor building structure equipped with AMD and TA .

The experimental results are obtained by using the type-2 fuzzy PD/PID controllers. Com-

pared to the other active vibration controllers, our type-2 Fuzzy PD/PID controllers do not

have big derivative and integral gains. So the results of our active controllers are much better

than the others.

5.1 PD control with type-2 fuzzy compensation

The horizontal actuator (AMD) and torsional actuator (TA) are placed on the structure in

the similar manner as mentioned in chapter 3. All the dynamic equations related to AMD

and TA are also mentioned in chapter 3. The closed-loop system (3.13) with the control u

is

M�x+ C _x+ Sx+ fe + �du = �(�Kpx�Kd _x) (5.1)

The active vibration control of the building structure can be regarded as the regulation

problem with zero reference,

u = �Kpx�Kd _x (5.2)

where x = [x; y; �]T de�ned as in (3.8). Here the reference xd = _xd = 0; the regulation error

e=x� xd = x, Kp and Kd are positive-de�nite constant matrices that correspond to the

proportional and derivative gains. The closed-loop system with the PD control is

M�x(t) + C _x(t) + F = �� (Kpx+Kd _x) (5.3)

where F is the uncertainty,

F = Sx+ fe + �du = [fx; fy; f�]
T (5.4)

Since F is unknown, we use a fuzzy system to approximate it. Compared with normal fuzzy

sets, type-2 fuzzy sets can model easily for big magnitude uncertainties with less fuzzy rules.

The membership functions of type-2 fuzzy systems are not longer the crisp values , they are

in the interval of [0; 1] [86][112].
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A generic fuzzy model for the uncertainty F in i-th �oor is provided by a collection of p

fuzzy rules for x; y; and �

Ri: IF (xi is A1i) and (yi is A2i) and (�i is A3i) and ( _xi is A4i) and ( _yi is A5i)

and
�
_�i is A6i

�
THEN (fx is B1i) and (fy is B2i) and (f� is B3i)

(5.5)

where A1i � � � ; A6i, B1i; B3i; B3i are type-2 fuzzy sets. The type-2 fuzzy set A with the

membership function GA is de�ned as

A = f(x; &); GA(x; &) j 8x�R; 8&�Mx � [0; 1]g (5.6)

where & is an auxiliary variable, 0 6 GA(x; &) 6 1; Mx is the primary membership function.

For the type-2 fuzzy set A,

A =

Z
x�X

Z
&�Mx

GA(x; &)=(x; &)

The integral
R
of the classical fuzzy set becomes the sum

P
.

The upper and lower membership functions are de�ned as GuA(x1; &) and G
l
A(x; &): They

describe the upper and lower bounds of the uncertainties. For i-th rule and the point x1;

the crisp input is fuzzi�ed in the interval of [f li (x1); f
u
i (x1)];

fui (x1) = G
u
A1i
(x1; &) �GuA2i(x1; &) �G

u
A3i
(x1; &)

f li (x1) = G
l
A1i
(x1; &) �GlA2i(x1; &) �G

l
A3i
(x1; &)

(5.7)

where � denote t-norm operator, it can be the minimization.

For all l rules, type-2 fuzzy inference engine aggregates with the fuzzi�ed inputs and

infers another type-2 fuzzy set,

GO(y) = tx�X [GA(x) uGB(x; y)] (5.8)

We use the type-reduction method to convert GO(y) into type-1 fuzzy set. This technique

captures more information about rule uncertainties than does the defuzzi�ed value (a crisp

number), and seems to be as fundamental to the design of fuzzy logic systems that include

linguistic uncertainties (that translate into rule uncertainties) as variance is to the mean

in case of probabilistic uncertainties. The centroids associated with type-2 fuzzy sets are

calculated. For i-th rule, the centroid of j-the output fuzzy rule (5.5) is yij = [yilj; y
i
rj], y

i
lj

and yirj are the most left and right points. The type-2 fuzzy sets are reduced to the type-1

fuzzy set with the interval [yilj; y
i
rj]: The most popular technique for type-reducing an interval
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type-2 fuzzy set is the Karnik�Mendel (KM) iterative procedure [68]. The outcome of type-

reduction of an interval type-2 fuzzy set is an interval type-1 set considering the criteria that

the centroid is placed between the two endpoints. The iterative methodology is a superior

technique in order to �nd these endpoints. The centroid of the type-1 set is considered to be

the centre of this interval. Mendel [95] laid down the main design criteria in consideration to

type-2 uncertainty measurement as when all sources of uncertainty disappear, a type-2 fuzzy

logic systemmust reduce to a comparable type-1 fuzzy logic system. This proposed statement

is valid throughout. So it is valid from the proposed statement that is no uncertainty

associated with a type-1 fuzzy set, and therefore the mentioned measures of uncertainty for

type-1 fuzzy sets [138] cannot be measuring uncertainty instead they are measuring separate

aspect of the type-1 set to be mentioned as vagueness.

For all p rules

ylj =

Pp
i=1 f

i
l y
i
ljPp

i=1 f
i
l

; yrj =

Pp
i=1 f

i
ry
i
rjPp

i=1 f
i
r

(5.9)

where f il and f
i
r are the �ring strengths associated with y

i
lj and y

i
rj of i-th rule. By the

minimization and maximization operation, ylj and yrj can be expressed as

ylj =

Pp
i=1 f

i
ljylj +

Pp
i=1 f

i
rjylkPq

i=1 f
i
r +

Pq
i=1 f

i
l

; yrj =

Pp
i=1 f

i
ljyrj +

Pp
i=1 f

i
rjyrkPq

i=1 f
i
r +

Pq
i=1 f

i
l

(5.10)

where qilj =
f ilPq

i=1 f
i
r+
Pq
i=1 f

i
l
; qirj =

f irPq
i=1 f

i
r+
Pq
i=1 f

i
l
: By singleton fuzzi�er, the jth output of the

fuzzy logic system can be expressed as

f̂j =
yrj + ylj
2

=
1

2

�
(�Trj(z)wrj(z) + �

T
l (z)wlj(z)

�
(5.11)

where j = 1; 2; 3: wrj is the point at which �Brj = 1; wlj is the point at which �Blj = 1;

z =
h
x; y; �; _x; _y; _�

iT
: In matrix form, the estimation of the uncertainty F is

F̂ =
1

2

�
�Tr (z)Wr(z) + �

T
l (z)Wl(z)

�
(5.12)

where F̂ =
h
f̂1; f̂2; f̂3

i
= [f̂x; f̂y; f̂�]

T :

PD control with type-2 fuzzy compensation is

u = �Kpx�Kd _x�
1

2
�Tr (z)Wr(z)�

1

2
�Tl (z)Wl(z) (5.13)
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The new closed-loop system is2664
Mx�x

My�y

Jt��

3775+
2664

Cx _x� Cx� _�
Cy _y + Cy� _�

C� _� � Cx� _x+ Cy� _y

3775+
2664
fx

fy

f�

3775
= ��

2664
Kpxx

Kpyy

Kp��

3775� �
2664
Kdx _x

Kdy _y

Kd�
_�

3775� 1
2
�

2664
�Tr (zx)wr(zx) + �

T
l (zx)wl(zx)

�Tr (zy)wr(zy) + �
T
l (zy)wl(zy)

�Tr (z�)wr(z�) + �
T
l (z�)wl(z�)

3775
(5.14)

where Kpx; Kdx; Kpy; Kdy; Kp�; Kd� are the gains considering X�component, Y�component
and ��component respectively.
Because the three components, x; y and �; has the same form, in the following stability

analysis, we only discuss X�component. Y�component and ��component have similar
results. In order to simplify the controller, we let � = I:

Because Kpxx + Kdx _x = Kx (�x+ _x), � is the positive de�nite matrix, Kx� = Kpx;

Kx = Kdx; we de�ne an auxiliary variable rx as

rx = _x+ �x (5.15)

So

ux = �Kxrx�
1

2
�Tr (zx)wr(zx)�

1

2
�Tl (zx)wl(zx) (5.16)

where zx = (x; _x): The closed-loop system of X�component becomes

Mx�x+ Cx _x� Cx� _� + fx = ux (5.17)

The X-component also gives the torsion in the structure,

_� = ��f _x (5.18)

(5.17) becomes

Mx�x+ Cx _x+ �fCx� _x+ fx = ux (5.19)

Because Mx _rx =Mx(�x+ � _x) , using (5.19) we have

Mx _rx + Cxrx + �fCx�rx = ux +�fx (5.20)

where �fx =Mx� _x+ Cx�x+ �fCx��x� fx.
With Stone-Weierstrass theorem [16], �fx can be estimated by the type-2 fuzzy system

(5.12) as

�fx =
1

2
�Tr (zx)w

�
r(zx) +

1

2
�Tl (zx)w

�
l (zx) + �x (5.21)
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where �x is the modeling error, w�r and w
�
l are unknown optimal weights. We assumed it is

bounded as

�Tx�
�1
� �x � ��x (5.22)

where �� is a known positive de�nite matrix.

With the type-2 fuzzy PD control (5.16), the closed-loop system (5.20) becomes

Mx _rx + Cxrx + �fCx�rx = �Kxrx�
1

2
�Tr (zx) ~wr(zx)�

1

2
�Tl (zx) ~wl(zx) + �x (5.23)

where ~wr = wr � w�r ; ~wl = wl � w�l :
The following theorem gives the stability analysis of type-2 fuzzy PD control (5.13) with

a gradient descent algorithms for wr(zx) and wl(zx):The major advantage of this method is

that fuzzy rules or membership functions can be learned without changing the form of the

fuzzy rule table used in usual fuzzy controls, so that the case of weak-�ring can be avoided

well, which is di¤erent from the conventional learning algorithm.

Theorem 5.1 Consider the structural system (5.1) controlled by the type-2 fuzzy PD con-

troller as (5.16), if the gain satis�es

Kx > �� (5.24)

�� is de�ned in (5.22), the fuzzy system is updated as

d
dt
wr(zx) = �[kwrTx �Tr (zx)]T

d
dt
wl(zx) = �[kwrTx �Tl (zx)]T

(5.25)

kw > 0; then the �lter regulation errors rx and r� converges to the residual sets

Dx =
�
rxj krxk2���x

	
D� =

�
r�j kr�k2��2f ��x

	 (5.26)

��x is de�ned in (5.22).

Proof. SinceMx and � are positive de�nite matrices, let us consider Lyapunov candidate

Vx for the X�component

Vx =
1

2
rTxMxrx +

1

4
trx[ ~w

T
r (zx)k

�1
w ~wr(zx)] +

1

4
trx[ ~w

T
l (zx)k

�1
w ~wl(zx)] (5.27)

Using (5.23) and rTx
�
_Mx � 2Cx

�
rx = 0; the derivative of (5.27) is

_Vx = �rTxKxrx�1
2
rTx �

T
r (zx) ~wr(zx)� 1

2
rTx �

T
l (zx) ~wl(zx) + r

T
x �x � rTx�fCx�rx

+1
2
trx[ ~w

T
r (zx)k

�1
w

d
dt
~wr(zx)] +

1
2
trx[ ~w

T
l (zx)k

�1
w

d
dt
~wl(zx)]

(5.28)
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Using the updating law (5.25), and

1
2
trx[ ~w

T
r (zx)k

�1
w

d
dt
~wr(zx)]� 1

2
rTx �

T
l (zx) ~wl(zx) = 0

1
2
trx[ ~w

T
l (zx)k

�1
w

d
dt
~wl(zx)]� 1

2
rTx �

T
l (zx) ~wl(zx) = 0

(5.28) becomes
_Vx = �rTxKxrx + r

T
x �x � rTx�fCx�rx (5.29)

Now let us consider matrix inequality as follows

XTY + Y TX � XT�X + Y T��1Y (5.30)

for all X; Y 2 Rn; 0 < � = �T : From (5.22), rTx �x can be estimated as

rTx �x � rTx��rx + �Tx��1� �x � rTx��rx + ��x (5.31)

where �� > 0: Since �fCx� > 0; (5.29) is

_Vx � �rTx (Kx + �fCx� � ��)rx + �Tx��1� �x
� �rTx (Kx � ��)rx + �Tx��1� �x

(5.32)

We can choose the gain of the PD control (5.16), such that (5.24) is established, then

_Vx � �krxk
2

K1
+ ��x (5.33)

whereK1 = Kx���:Vx is considered to be ISS-Lyapunov function. In this case, rx = _x+�x is

bounded when �x is bounded by ��x [120]. Because
R T
0
_Vx = VT �V0 � �

R T
0
rTxKxrxdt+��xT;

lim
T!1

1

T

Z T

0

krxk
2

K1
dt � ��x

Since _x = ���1f _� and jrxj = ���1f jr�j ; the �lter regulation error for � can be

r� = _� + �� (5.34)

So
_Vx � �kr�k

2

K2
+ ��x (5.35)

where K2 = �
�2
f K1: So r� = _� + �� is bounded, and

lim
T!1

1

T

Z T

0

kr�k
2

K1
dt � �2f ��x (5.36)

They are (5.26).
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Remark 5.1 Compared with the fuzzy compensation (5.13), the advantage of adaptive fuzzy

compensation (5.23) is that we do not need to be concerned about the big compensation error

in equation (5.21), which results from a poor membership function selection. The gradient

algorithms (5.25) ensures that the membership functions wr(zx) and wl(zx) are updated such

that the regulation errors rx and r� are reduced. The above theorem also guarantees the

updating algorithms are stable. It is well known that the regulation error becomes smaller

while increasing the derivative gain. The cost of large derivative gain results in slow transient

performance. Only when derivative gain tends to in�nity, the regulation error converges to

zero [76] . However it would seem better to use a smaller derivative gain if the system

contains high-frequency noise signals. In order to decrease the steady state errors caused by

these uncertainties, the derivative gain Kd has to be increased. The transient performances

are worsen, for example the response becomes slow.

5.2 PID control with type-2 fuzzy compensation

The utilization of fuzzy compensation results in the decrease of regulation error as mentioned

in Theorem 1. Considering the control theory, the steady state error can be removed to more

extent by introducing an integral component to the PD control. PID controllers use feedback

strategy and have three actions: P action is introduced for increasing the speed of response;

D action is introduced for damping purposes; I action is introduced for obtaining a desired

steady-state response. Considering the e¤ect of all three components of control, the control

law is PID control

u = �Kpx�Ki

Z t

0

xd� �Kd _x (5.37)

whereKp; Ki andKd are positive de�nite, Ki is the integration gain, for the structure control

considering the reference xd = _xd = 0:

A big integration gain causes unacceptable transient performances and stability problems.

Same as of type-2 fuzzy PD control, a type-2 fuzzy compensator for PID control can be

applied. PID control with type-2 fuzzy control is

u = �Kpx�Ki

Z t

0

xd� �Kd _x�
1

2
�Tr (z)Ŵr(z)�

1

2
�Tl (z)Ŵl(z) (5.38)

Similar with PD control, we only consider the X�component (5.19),

ux = �Kpxx�Kdx _x�Kix

Z t

0

xd��1
2
�Tr (zx)wr(zx)�

1

2
�Tl (zx)wl(zx) (5.39)
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In matrix form, (5.19) is

d

dt

2664
sx

x

_x

3775 =
2664

Kixx

_x

�Mx(Cx _x+ �fCx� _x+ fx � ux)

3775 (5.40)

where sx is auxiliary variable.

By using (5.21), the closed loop systems is

Mx�x+ (Cx + �fCx�) _x+
1
2
�Tr (zx)w

�
r(zx) +

1
2
�Tl (zx)w

�
l (zx) + �x

= �Kpxx�Kdx _x� sx�1
2
�Tr (zx) ~wr(zx)� 1

2
�Tl (zx) ~wl(zx)

(5.41)

The equilibrium of (5.40) is [sx; x; _x] = [s�x; 0; 0] : Since at equilibrium point x = 0 and _x = 0;

the equilibrium is [�x(0); 0; 0] : In order to move the equilibrium to origin, we de�ne

~sx = sx � �x (0) (5.42)

where �x is the unknown modeling error. The closed loop system becomes

Mx�x+ (Cx + �fCx�) _x+
1
2
�Tr (zx)w

�
r(zx) +

1
2
�Tl (zx)w

�
l (zx) + �x

= �Kpxx�Kdx _x� ~sx�1
2
�Tr (zx) ~wr(zx)� 1

2
�Tl (zx) ~wl(zx) + �x (0)

d
dt
~sx = Kixx

(5.43)

where ~wr = wr � w�r ; ~wl = wl � w�l :
For the dynamics (3.13) in chapter 3, we need the following properties to prove stability

of fuzzy PID control.

P1. The positive de�nite matrix Mx satis�es the following condition

0 < �m(Mx) � kMxk � �M(Mx) � �m (5.44)

where �m(Mx) and �M(Mx) are the minimum and maximum eigenvalues of the matrix Mx,

respectively and �m > 0 is the upper bound

P2. The modeling error �x is Lipschitz over x1 and x2

k�x(x1)� �x(x2)k � k�x kx1 � x2k (5.45)

where k�x is the Lipschitz constant. Most of the uncertainties are �rst-order continuous

functions. Since fsx; fxe and dux are �rst-order continuous functions and satisfy Lipschitz

condition, P2 can be established.
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Now we calculate the lower bound of the modeling error
R
�xdx,Z t

0

�xdx =

Z t

0

fsxdx+

Z t

0

fxedx+

Z t

0

duxdx�
1

2

Z t

0

�Tr (zx)wr(zx)dx�
1

2

Z t

0

�Tl (zx)wl(zx)

(5.46)

Here we de�ne the lower bound of
R t
0
fsxdx as �fsx;

R t
0
fxedx as �fxe and

R t
0
dux dx as �dux:

Compared with fsx and dux, fxe is much bigger in the case of earthquake. Since �
T
r (zx) and

�Tl (zx) are Gaussian function,
1
2

R t
0
�Tr (zx)wr(zx)dx =

Wr(z)
4

p
� erf(z) and1

2

R t
0
�Tl (zx)wl(zx) =

Wl(z)
4

p
� erf(z)

k�x = � �fsx � �fxe � �dux �
Wr(z)

4

p
� � Wl(z)

4

p
� (5.47)

Here �x (0) is considered to be zero as it is concerned to building structures.

The following theorem gives the stability analysis of type-2 fuzzy PID controller (5.39).

Theorem 5.2 Consider the structural system as (5.1) controlled by the type-2 fuzzy PID

controller as (5.39), the closed-loop system (5.41) is asymptotically stable at the equilibriums

[sx � �x (0) ; x; _x]T = 0

if the PID control gains satisfy

�m(Kpx) � 3
2
[k�x + �M(Cx) + �M(�fCx�)]

�M(Kix) � 1
6

q
1
3
�m (Mx)�m (Kpx)

�m(Kpx)

�M (Mx)

�m (Kdx) � 1
4

q
1
3
�m (Mx)�m (Kpx)

h
1 +

�M (Cx)+�M (�fCx�)

�M (Mx)

i
� �m(Cx)� �m(�fCx�)

(5.48)

where kw is positive de�nite matrix, �x > 0 is a design parameter, �m(M) and �M(M) are

the minimum and maximum eigenvalues of the matrix M: The updating law for the type-2

fuzzy compensator is
d
dt
wr(zx) = �[kw( _x+ �x

2
x)T�Tr (zx)]

T

d
dt
wl(zx) = �[kw( _x+ �x

2
x)T�Tl (zx)]

T
(5.49)

Proof. Here the Lyapunov candidate is de�ned as

V = 1
2
_xTMx _x+

1
2
xTKpxx+

�x
4
�̂
T

xK
�1
ix �̂x + x

T �̂x +
�x
2
xTMx _x+

�x
4
xTKdxx

+
R t
0
�xdx� k�x + 1

4
trx[ ~w

T
r (zx)k

�1
w ~wr(zx)] +

1
4
trx[ ~w

T
l (zx)k

�1
w ~wl(zx)]

(5.50)

where V (0) = 0: In order to show that V � 0, V is separated into three parts, such that

V = V1 + V2 + V3

V1 =
1
6
xTKpxx+

�x
4
xTKdxx+

R t
0
�xdx� k�x

+1
4
trx[ ~w

T
r (zx)k

�1
w ~wr(zx)] +

1
4
trx[ ~w

T
l (zx)k

�1
w ~wl(zx)] � 0;

Kpx > 0; Kdx > 0

(5.51)
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V2 =
1
6
xTKpxx+

�x
4
�̂
T

xK
�1
ix �̂x + x

T �̂x

� 1
2
1
3
�m(Kpx) kxk2 + �x�m(K

�1
ix )

4
ksxk2 � kxk ksxk

(5.52)

When �x � 3
(�m(K

�1
ix )�m(Kpx))

;

V2 �
1

2

 r
�m(Kpx)

3
kxk �

s
3

4(�m(Kpx))
ksxk

!2
� 0 (5.53)

and

V3x =
1

6
xTKpxx+

1

2
_xTM _x+

�x
2
xTM _x (5.54)

Because

Y TAX � kY k kAXk � kY k kAk kXk � �M(A) kY k kXk (5.55)

when

�x �
1

2

q
1
3
�m(Mx)�m(Kpx)

�M(Mx)

V3 � 1
2

�
1
3
�m(Kpx) kxk2 + �m(Mx) k _xk2 + 2�x�M(Mx) kxk k _xk

�
= 1

2

�q
�m(Kpx)

3
kxk+

p
�m(Mx) k _xk

�2
� 0

(5.56)

Now we have,

1

2

q
1
3
�m(Mx)�m(Kpx)

�M(Mx)
� �x �

3

(�m(K
�1
ix )�m(Kpx))

(5.57)

The derivative of (5.50) is

_V = _xT [�Cx _x� �fCx� _x�Kdx _x+ �x (0)] +
�x
2
sTxK

�1
ix sx + x

T sx

+�x
2
_xTMx _x+

�x
2
xT [�Cx _x� �fCx� _x�Kpxx� �x � sx + �x (0)]

�1
2
~wr(zx)[( _x+

�x
2
x)T�Tr (zx)]� 1

2
~wl(zx)[( _x+

�x
2
x)T�Tl (zx)]

+1
2
trx[

d
dt
~wTr (zx)k

�1
w ~wr(zx)] +

1
2
trx[

d
dt
~wTl (zx)k

�1
w ~wl(zx)]

(5.58)

Using the updating law (5.49),

1
2
trx[

d
dt
~wTr (zx)k

�1
w ~wr(zx)]� 1

2
~wr(zx)[( _x+

�x
2
x)T�Tr (zx)] = 0

1
2
trx[

d
dt
~wTl (zx)k

�1
w ~wl(zx)]� 1

2
~wl(zx)[( _x+

�x
2
x)T�Tl (zx)] = 0

(5.58) becomes

_V = _xT [�Cx _x� �fCx� _x�Kdx _x+ �x (0)] +
�x
2
�̂
T

xK
�1
ix �̂x + x

T �̂x

+�x
2
_xTMx _x+

�x
2
xT [�Cx _x� �fCx� _x�Kpxx� �x � �̂x + �x (0)]

(5.59)



80 Bidirectional Type-2 Fuzzy PD/PID Control of Building Structures

Now using the property XTY + Y TX � XT�X + Y T��1Y

��x
2
xTCx _x � �x

2
�M(Cx)

�
xTx+ _xT _x

�
��x�f

2
xTCx� _x � �x

2
�M(�fCx�)

�
xTx+ _xT _x

� (5.60)

where kCxk � kcx.and kCx�k � kcx� : So sx = Kix, sTxK
�1
ix sx becomes x

T sx; and xT sx becomes

xTKix. have Now using the Lipschitz condition (5.45)

�x
2
xT [�x (0)� �x] �

�x
2
k�x kxk

2 (5.61)

From (5.60) and (5.61)

_V = � _xT
�
Cx + �fCx� +Kdx � �x

2
Mx � �x

2
�M(Cx)� �x

2
�M(�fCx�)

�
_x

�xT
��x
2
Kpx �Kix � �x

2
k�x �

�x
2
�M(Cx)� �x

2
�M(�fCx�)

�
x

(5.62)

Using (5.44), (5.62) becomes

_V � � _xT
�
�m(Cx) + �m(�fCx�) + �m(Kdx)� �x

2
�M(Mx)� �x

2
�M(Cx)� �x

2
�M(�fCx�)

�
_x

�xT
��x
2
�m(Kpx)� �M(Kix)� �x

2
k�x �

�x
2
�M(Cx)� �x

2
�M(�fCx�)

�
x

(5.63)

So _Vx � 0; kxk minimizes if two conditions are met: 1) �m(Cx) + �m(�fCx�) + �m(Kdx) �
�x
2
[�M(Mx)+�M(Cx)+�M(�fCx�)]; 2) �m(Kpx) � 2

�x
�M(Kix)+k�x+�M(Cx)+�M(�fCx�):

Now using (5.57) and �m
�
K�1
ix

�
= 1

�M (Kix)
, we have

�m (Kdx) � 1
4

q
1
3
�m (Mx)�m (Kpx)

h
1 +

�M (Cx)+�M (�fCx�)

�M (Mx)

i
� �m(Cx)� �m(�fCx�) (5.64)

again 2


�M(Kix) =

2
3
�m(Kpx): Hence,

�M(Kix) �
1

6

r
1

3
�m (Mx)�m (Kpx)

�m(Kpx)

�M (Mx)
(5.65)

Also

�m(Kpx) �
3

2
[k�x + �M(Cx) + �M(�fCx�)] (5.66)

Let us assume that there prevails a ball of radius & in the three dimensional space. This

three dimensional space is represented by x-component, y-component and ��component.
The ball center is at origin of the state space system where: _Vx � 0; _Vy � 0; _V� � 0: The

origin of the closed loop systems represented by (5.43) is stable equilibrium. Similarly the

closed loop system along other components will be in stable equilibrium. Now we will prove
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for the asymptotic stability of the origin. For that we use La Salle´s theorem by de�ning

the term �x;�y and �� as follows:

�x =
n
zx(t) =

�
xT ; _xT ; �Tx

�T 2 <3n : _Vx = 0o ; �x 2 <n; x = 0 2 <n; _x = 0 2 <n
�y =

n
zy(t) =

�
yT ; _yT ; �Ty

�T 2 <3n : _Vy = 0o ; �y 2 <n; y = 0 2 <n; _y = 0 2 <n
�� =

�
z�(t) =

h
�T ; _�

T
; �T�

iT
2 <3n : _V� = 0

�
; �� 2 <n; � = 0 2 <n; _� = 0 2 <n

(5.67)

Using (5.58) and substituting x = 0 and _x = 0, we have _Vx = 0. Similar analysis with y = 0

and _y = 0 and also � = 0 and _� = 0 will yield _Vy = 0 and _V� = 0. Similarly these conditions

hold good for _x = 0; _y = 0 and _� = 0 for all t � 0:Therefore zx(t), zy(t) and z�(t) belongs
to �x, �y and �� respectively. Also, imparting these conditions to (5.43) we have: _�x = 0,
_�y = 0 and _�� = 0:Also, �x = 0, �y = 0 and �� = 0 for all t � 0: So zx(t) is the only initial
condition in �x, zy(t) is the only initial condition in �y and z�(t) is the only initial condition

in ��. Therefore, origin is asymptotically stable according to La Salle´s theorem. Now

for global stability of the closed loop system mentioned by (5.43), the following conditions

needs to be met: limx
t!1(t) = 0; when the initial condition of [x; _x; �x] is inside of �x:

limy
t!1(t) = 0; when the initial condition of

�
y; _y; �y

�
is inside of �y: lim

�
t!1(t) = 0; when

the initial condition of
h
�; _�; ��

i
is inside of ��

5.3 Experimental results

In order to analyze and validate the bidirectional type-2 fuzzy PD and PID controllers, a

two-�oor building structure is designed and constructed. The detailed of the structure and

the placements of actuators are mentioned in chapter 3.

The relative acceleration in the second �oor is subtracted by the ground �oor acceleration.

Numerical integrators are used to compute the velocity and position from the accelerometer

signal. Since there is not angular sensor, the angular accelerations are calculated by (4.58)

and (4.59) mentioned in chapter 3,where ��1 and ��2 are the angular accelerations of the �rst

and the second �oor.

The theorems of this paper give the su¢ cient conditions of the minimal proportional and

derivative gains and maximum integral gain. To compare with the other algorithm in the

same condition, all PID gains are the same. The upper bounds and lower bounds of the
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structure model are

�M (Mx) = 10; �M (My) = 10

�m(kcx) = 20; �m(kcx�) = 8�m(kcy) = 22; �m(kcy�) = 6

�jt (J0) = 5; �m(kc�) = 21; �m(kcx�) = 8; �m(kcy�) = 6

(5.68)

k�x is e¤ected by the external force F: The maximum force to actuate the building struc-

ture prototype during experiment is 300N . Therefore we select k�x = 400: Y�component
and ��component are extracted with the similar method. For X�component, ranges of the
PID gains are

�m(Kpx) � 1247; �m (Kdx) � 50; �M(Kix) � 2677; �m(Kpy) � 1247
�m (Kdy) � 50; �M(Kiy) � 2677; �j0(Kp�) � 1431; �j0 (Kd�) � 75; �J0(Ki�) � 3789

(5.69)

We �rst use type-2 fuzzy logic system toolbox [128] to design the type-2 fuzzy system. Due

to its iterative nature, the computational cost of the calculation of the type-2 fuzzy system

output is big [140]. In order to tackle with this situations, several TR methods have been

proposed for reducing the computational cost of the type-2 fuzzy inference mechanism. The

Karnik�Mendel (KM) algorithms are iterative procedures widely used in fuzzy logic theory.

They are known to converge monotonically and super exponentially fast; however, several

(usually two to six) iterations are still needed before convergence occurs [138].Wu categorized

the TR methods as Enhancements to the KMs, which improved the computational cost

of the KM, and Alternative TR methods, which are closed-form approximations to the

KM algorithm [141]. KM method is most popular due its novelty and adaptiveness [137].

The type reduction and the defuzzi�cation methods supported by type-2 fuzzy logic system

toolbox are 1) Karnik-Mendel Algorithm (KM). 2) Enhanced KM Algorithm (EKM). 3)

Iterative Algorithm with Stop Condition (IASC). 4) Enhanced IASC (EIASC). 5) Enhanced

Opposite Direction Searching Algorithm (EODS). 6) Wu-Mendel Uncertainty Bound Method

(WM). 7) Nie-Tan Method (NT). 8) Begian-Melek-Mendel Method (BMM). In type-2 fuzzy

logic system toolbox, it is possible to state the antecedent MFs with the MF types that

already prevail in the Matlab Fuzzy Logic Toolbox. Hence, it is feasible to implement the

Matlab functions of LMF and UMF in a same pattern. But there is an additional parameter

associated to each type of MFs that illustrates the height of the corresponding MF. For

example, a triangle MF is stated having the parameters lt2; ct2; rt2; ht2 which de�nes the left

point, the center point, right point and the height of the MF, respectively. The parameter ht2
is generally utilized to develop FOU in the type-2 fuzzy systems, most speci�cally in type-2

fuzzy controller design. In the analysis, Karnik-Mendel method (Liang & Mendel, 2002)
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Figure 5.1: Upper and lower limits of Gaussian membership functions

is utilized to defuzzify the type-2 fuzzy system. The control performance is evaluated to

minimize the relative displacement of each �oor of the building. The membership functions

are Gaussian functions and they are designed by the method of [50], see Figure 5.1, where

mfU and mfL are the upper and lower membership functions. The advantages of Gaussian

membership functions are it is simpler in design because they are easier to represent and

optimize, always continuous, and faster for small rule bases . Gaussian type-2 fuzzy logic

systems are faster than the corresponding trapezoidal type-2 fuzzy logic systems when the

same number of MFs and the same type-reduction and defuzzi�cation method are used.

Since small rulebases are usually used in practice, Gaussian type-2 fuzzy logic systems seem

more favorable in terms of computational cost [139]. For the �oor position and velocity,

we use three linguistic variables and three membership functions, they are normalized in

[�1;1]. Karnik-Mendel method [86] is utilized to defuzzify the type-2 fuzzy system. For
the formulation of type-2 fuzzy rules, the FIS variables selected as input variables (position

error and velocity error) and output variable (control force). IF-THEN rules are applied. IF

and AND conditions are applied between position error and velocity error, whereas THEN

conditions gives the required control force. Considering X�component, �fteen fuzzy rules
are applied. Also for Y�component and ��component, similar set of �fteen fuzzy rules
are applied respectively. We �nd �fteen fuzzy rules are su¢ cient to maintain minimum

regulation errors. For design purpose, we choose �x = 6. We also �nd that for the type-1

fuzzy, at least nine fuzzy rules are needed to have the similar regulation errors as the type-2

fuzzy system.
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Figure 5.2: PD control in X�direction

The signal to the shake table is the Northridge earthquake. The displacement is scaled

from 16:92cm to 1:50cm, the time is scaled from 40 seconds to 12 seconds. The control

object is to minimize the relative displacement of each �oor in bidirection. From (5.69), the

PID control gains are

Kpx = 1800; Kpy = 2000; Kp� = 2200;

Kdx = 160; Kdy = 220; Kd� = 300; Kix = 2000; Kiy = 2300; Ki� = 3500
(5.70)

The PD control gains areKpx = 1800; Kpy = 2000; Kp� = 2200; Kdx = 160Kdy = 220; Kd� =

300

We compare our control with classical PD/PID, type-1 fuzzy PD/PID in three cases:

1) without any active control (No Control); 2) with the torsional actuator (TA); 3) with

both the active mass damper and the torsional actuator (AMD+TA). The results of these

controllers are shown in Figure 5.2 - Figure 5.7. The control signals of type-2 fuzzy PD and

PID are displayed in Figure 5.8 and Figure 5.9. We de�ne the average vibration displacement

asMSE = 1
N

PN
k=1 x (k)

2, x (k) is the displacement of the �oor, N is the total data number.

The comparison results of the average vibration displacement are shown in Table 1-Table 9.
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Figure 5.3: PID control in X�direction
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Figure 5.4: Type-1 fuzzy PD control in X�direction
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Figure 5.5: Type-1 fuzzy PID control in X�direction
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Figure 5.6: Type-2 fuzzy PD control in X�direction
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Figure 5.7: Type-2 fuzzy PID control in X�direction
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Figure 5.8: Control of type-2 fuzzy PD
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Figure 5.9: Control of type-2 fuzzy PID

Here # sign indicate decrease.

Table 1. Average vibration displacement by AMD+TA

PD control % # error PID control % # error No control

X-direction 0:2987 60:2 0:2373 68:5 0:7514

Y -direction 0:0719 45:53 0:0783 59:3 0:1320

�-direction 0:0696 40:8 0:0611 47:6 0:1174

Table 2. Average vibration displacement with PD control

with AMD % # error with TA % # error No control

X-direction 0:4832 35:7 0:5802 22:78 0:7514

Y -direction 0:0981 25:68 0:1012 23:3 0:1320

�-direction 0:0902 23:1 0:0801 31:7 0:1174

Table 3. Average vibration displacement with PID control

with AMD % # error with TA % # error No control

X-direction 0:3632 51:6 0:4911 34:6 0:7514

Y -direction 0:0849 35:6 0:0969 26:5 0:1320

�-direction 0:0811 30:8 0:0713 40:0 0:1174
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Table 4. Average vibration displacement by AMD+TA

Type-1 Fuzzy PD % # error Type-1 Fuzzy PID % # error No control

X-direction 0:1843 75:4 0:1590 78:8 0:7514

Y -direction 0:0531 60:0 0:0488 63:3 0:1320

�-direction 0:0578 50:7 0:0423 63:9 0:1174

Table 5. Average vibration displacement with Type-1 Fuzzy PD control

with AMD % # error with TA % # error No control

X-direction 0:2121 71:7 0:3398 54:7 0:7514

Y -direction 0:0633 52:4 0:0733 44:5 0:1320

�-direction 0:0820 30:1 0:0674 42:6 0:1174

Table 6. Average vibration displacement with Type-1 Fuzzy PID control

with AMD % # error with TA % # error No control

X-direction 0:1944 74:1 0:2416 67:8 0:7514

Y -direction 0:0581 55:9 0:0634 51:96 0:1320

�-direction 0:0711 40:0 0:0481 59:1 0:1174

Table 7. Average vibration displacement by AMD+TA

Type-2 Fuzzy PD % # error Type-2 Fuzzy PID % # error
X-direction 0:1348 82:1 0:1121 85:1

Y -direction 0:0320 75:7 0:0299 77:3

�-direction 0:0395 66:35 0:0278 76:3

No control

0:7514

0:1320

0:1174

Table 8. Average vibration displacement with Type-2 Fuzzy PD control

with AMD % # error with TA % # error No control

X-direction 0:1693 77:4 0:2339 68:8 0:7514

Y -direction 0:0433 67:1 0:0670 49:2 0:1320

�-direction 0:0489 58:3 0:0396 66:2 0:1174

Table 9. Average vibration displacement with Type-2 Fuzzy PID control

with AMD % # error with TA % # error No control

X-direction 0:1575 79:1 0:2080 72:3 0:7514

Y -direction 0:0389 70:5 0:0584 55:7 0:1320

�-direction 0:0431 63:2 0:0371 68:3 0:1174
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We can see that all PD/PID, type-1 fuzzy PD/PID and type-2 fuzzy PD/PID controllers

works well with AMD and TA, because both horizontal actuator and torsional actuator act

simultaneously. The vibration attenuations along X-direction and Y -direction are much

better than �-direction, because the active vibration control is achieved by the position

of the actuator and the torque direction of the actuator. PID controller is better than

PD to minimize the vibration in all three directions. The active control of structures can

be improved by adding the fuzzy compensation. The type-2 fuzzy controller is capable of

providing more vibration attenuation than the type-1 fuzzy controller. The best results are

the type-2 fuzzy PID control.

5.4 Summary

In this chapter, type-2 Fuzzy PD and PID control for building structures with AMD and tor-

sional actuator are proposed. By utilizing Lyapunov theory, su¢ cient conditions of stability

are extracted to tune PD/PID gains. The mentioned methodology is successfully imple-

mented to a two-story building prototype. The experimental results show that the type-2

fuzzy PD/PID controllers work better than type-1 fuzzy PD/PID for the horizontal actuator

and torsional actuator.



Chapter 6

Discrete Time Sliding Mode Control

of Building Structures

6.1 Introduction

Active vibration control of building structures under earthquake loadings is a popular �eld

among civil and mechanical engineers. Di¤erent control devices and algorithms were pro-

posed and implemented in the last few decades [59][105]. One of the main challenges in the

structural control design is the presence of uncertainties in the building structures, especially

in parametric level. Robust control is a well-established technique, which can deal with these

uncertainties and disturbances present in the real systems like the building structures.

Research reveals that sliding mode control (SMC) is considered to be an e¤ective robust

control strategy for uncertain systems. The sliding mode control (SMC) is designed for

uncertain nonlinear systems [132]. It is very much e¤ective in terms of robustness against

the changes in the parameters and external disturbances. It has been successfully applied for

structural control [97]. In [64], SMC is used to control bending and torsional vibration of

a six-story �exible structure. Soleymani et.al in his work demonstrated new robust control

system for an active tuned mass damper (AMD) implemented in a high-rise building. The

controller is a blended innovation of two-loop sliding model controller with a dynamic state

predictor [119]. In [93], an active vibration control for a two storeyed �exible structure

was proposed where the sliding mode controller is designed utilizing LQR approach in order

to validate stable motion while undergoing sliding. An approach related to adaptive fuzzy

sliding mode in order to eliminate the damage of the nonlinear structure was suggested by

[31]
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The implementation of digital computers and samplers in the �eld of control systems has

popularized the research of discrete time systems. A necessary and su¢ cient condition for

discrete time sliding motion is suggested by Sarpturk et al. (1987) as follows [111]

j S(k + 1) j<j S(k) j

One more important condition for discrete-time sliding mode with the consideration that

sliding hyperplane S(k) = 0 ,should satisfy [14]

j S(k) j< g

where the parameters g > 0 is termed as quasi-sliding mode band width. However, owing

to a �nite sampling frequency characteristic in discrete-time systems, the system states can

only be expected to approach the selected sliding surface and remain around it, instead

of remaining on the surface when the system undergoes external disturbances. Therefore,

the so-called quasi-sliding-mode (QSM) concept was introduced and discussed in discrete-

time systems [14] [65]. A brief summary is given here. The system states are required to

monotonically approach the sliding surface until they enter the vicinity of the surface, and

they then remain inside. The vicinity of the sliding surface is called a quasi-sliding-mode

band (QSMB). Under this QSM de�nition, it is noted that the system states are not required

to cross the sliding surface, as in the de�nition given by Gao et al. [46]. The undesirable

chattering and high-frequency switching between di¤erent values of the control signal are

avoided. Since its state does not have to cross the sliding hyperplane in each control step,

the control strategy can be linear and, consequently, the undesirable chattering is avoided.

The strategies guarantee improved robustness, faster transient response, and better steady-

state accuracy of the controlled system [14].

In general cases, discrete-time control or sampling control is most suited for the structural

control. The sampling period is considered to be the important feature that play signi�cant

role in the performance of the control system. In [91], a discrete-time variable structure

control strategies on the basis of discrete reaching law method in order to minimizing the

dynamic responses of seismically excited structures was suggested. A time delayed discrete-

time variable structure control method in order to mitigate vibration in the linear structures

was proposed by [17]. A novel discrete-time variable structure control method in combina-

tion with fuzzy adaptive regulation for seismically excited linear structure with the intention

of subsiding heavy chattering e¤ect was presented by [84]. In [85], a new discrete-time vari-

able structure control method incorporated with discrete-time composite reaching law was

proposed for vibration attenuation in seismically-excited linear structure.
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In this chapter, we present a fuzzy discrete sliding mode control (FDSMC) for the mini-

mization of structural vibration along all three components under the e¤ect of bidirectional

earthquake forces. The analysis is based on the lateral-torsional vibration under the bidirec-

tional waves. Also in order to reduce chattering, the suggested discrete-time sliding mode

control with time-varying gain is e¤ective. We prove that the closed-loop system with slid-

ing mode control and fuzzy identi�er are uniformly stable by utilizing Lyapunov stability

theorem. The experimental results and analysis using the FDSMC validate its e¤ective-

ness and stability. Finally the results are compared with standard discrete sliding mode

controller(DSMC) and PID controller to verify the superior performance of FDSMC in

mitigating the earthquake vibrations.

6.2 Discrete time model of building structure

The continuous time model of n��oor building structure under bidirectional external forces
is

M�x(t) + C _x(t) + Fs (x) + fe(t) = �u(t) (6.1)

where x 2 <3n; x = [x1 � � �xn; y1 � � � yn; �1 � � � �n]T ; x is the displacement, M 2 <3n�3n

is the mass; C 2 <3n�3n the damping coe¢ cient; Fs = [fs;1 � � � fs;n] 2 <3n is the structure
sti¤ness force vector, and fe 2 <3n is the bidirectional external force applied to the structure,
fe = [fx; fy; 0 � � � 0]T , u 2 <3n is the control signals which is fed to the dampers.
The structure sti¤ness can be model as

Fs(x) = fs(x) + �du (6.2)

where fs(x) is the structure sti¤ness force, it can an be modeled as a linear model fs = Kx;

or a nonlinear model, du is the damping and friction force vector of the dampers.

We de�ne z1 (t) = x and z2 (t) = _x , the model (6.1) can be transformed into the following

state space model
_Z(t) =Az(t)+Bu(t)+Fs(z) + fe(t) (6.3)

where z(t) =

"
z1(t)

z2(t)

#
; A=

"
0 0

0 �M�1C

#
; B=

"
0

M�1�

#
; Fs(z) = M�1Fs(z); fe(t) =

M�1fe(t):

Fs(x) and fe(t) can be regarded as the uncertainty parts of the linear system _Z=Az+Bu.

Clearly, in absence of the external forces, the building structure is stable. So it is reasonable



94 Discrete Time Sliding Mode Control of Building Structures

to assume that Fs(z) is bounded, kFs(z)k 6 ds: The external forces are bounded, kfe(t)k 6
de:

In order to discreteize the continuos time model, we assume that the control force and

the external forces are constant during the sampling period T , i.e.,

u(t) =u(kT ); fe(t) = fe(kT ); kT6t6 (k + 1)T

The discrete time model of (6.1) is [91],

z(k + 1) =Ad+Bdu(k)+Fds [z(k)] +fde(k) (6.4)

where z(k) is a state vector, Ad is a state matrix, Ad = eAT , Bd is the input vector, Bd =�Z
eA�d�

�
B; u(k) is a scalar input, Fds(k) is the model uncertainty matrix and fde(k) is the

excitation. Since Ad and Bd are unknown, (6.4) is written as the following general nonlinear

model

z(k + 1) = f [z(k)] + g [z(k)]u(k) + d [z(k)] (6.5)

where f [z(k)] = Adz(k); g [z(k)] = �i;jBd; d [z(k)] = Fds [z(k)] +fde(k); � is de�ned as the

location matrix of the dampers,

�i;j =

(
1 if i = j = s

0 otherwise
(6.6)

where 8i; j 2 f1; :::; ng; s � f1; :::; ng; s are the �oors on which the dampers are installed.

For a two-�oor building, � =

"
�1;1 �1;2

�2;1 �2;2

#
. If the damper is placed on the second �oor,

� =

"
0 0

0 1

#
:

6.3 Fuzzy modeling of structure

We use the following fuzzy system to modeling the unknown nonlinear functions f [z(k)] ;

g [z(k)] and d [z(k)] in (6.5). The unknown nonlinear functions f and g are approximated as

f [z(k)] + d [z(k)] = f̂ + �f

g [z(k)] = ĝ + �g
(6.7)

where �f and �g are the modeling errors, f̂ and ĝ are the estimations of f [z(k)] + d [z(k)]

and g [z(k)] ;
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We use the following fuzzy system to model f [z(k)] ; g [z(k)] and d [z(k)]. For p � th
fuzzy rules for f [z(k)] ; g [z(k)] and d [z(k)]

Ri: IF (xi is A1i) and (yi is A2i) and (�i is A3i) and ( _xi is A4i) and ( _yi is A5i)

and
�
_�i is A6i

�
THEN f [z(k)] + d [z(k)] is B1i

(6.8)

Ri: IF (xi is A1i) and (yi is A2i) and (�i is A3i) and ( _xi is A4i) and ( _yi is A5i)

and
�
_�i is A6i

�
THEN g [z(k)] is B2i

(6.9)

where A1i � � � ; A6i, B1i; B3i; B3i are the fuzzy sets.

Now by product inference, center-average defuzzi�cation, and a singleton fuzzi�er, the

output of the fuzzy logic system can be expressed as [134]

F̂ p =
(
Pl

i=1wpi[�
n
j=1�Aji ])

(
Pl

i=1[�
n
j=1�Aji ])

=
lX
i=1

wpi�i (6.10)

where �Aji is the membership functions of the fuzzy sets Aji; wpi is the point at which

��ji = 1;if we de�ne

�i =
�nj=1�AjiPl
i=1�

n
j=1�Aji

(6.11)

The Gaussian functions are chosen as the membership functions as follows

�Aji = exp

�
�(xj � cji)

2

�2ji

�
(6.12)

where cji and �ji are the mean and variance of the Gaussian function, respectively. In the

matrix form, (6.10) can be expressed as

F̂ p = w(k)�[z(k)] (6.13)

where

w(k) =

2666664
w11(k) w1l(k)

. . .
. . .

wm1(k) wml(k)

3777775 �Rm�l

also �[z(k)] = [�1:::::::::::::�l]�Rl�1: Now using (6.13) and since f̂ and ĝ are the estimations

of f [z(k)] + d [z(k)] and g [z(k)] then

f̂ = wf (k)�f [z(k)]

ĝ = wg(k)�g[z(k)]
(6.14)
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According to the Stone-Weierstrass Theorem [16] the unknown nonlinear functions f and g

are approximated as
f = w�f (k)�f [z(k)] + �f

g = w�g(k)�g[z(k)] + �g
(6.15)

The nonlinear system (6.5) can be modeled with fuzzy system as

�ẑ(k + 1) = f̂ [z(k)] + ĝ [z(k)]u(k) (6.16)

where � is a positive constant and � > 1 which is a design parameter.

We de�ne the modeling error as

ei(k + 1) = ẑ(k + 1)� z(k + 1) (6.17)

and
~f = f̂ � f [z(k)]� d [z(k)]
~g = ĝ � g [z(k)]

(6.18)

Now from (6.5), the nonlinear model can be represented in the fuzzy form as follows

�z(k + 1) =
�
w�f (k)�f [z(k)] + �f

�
+
�
w�g(k)�g[z(k)] + �g

�
u(k)

�z(k + 1) = w�f (k)�f [z(k)] + w
�
g(k)�g[z(k)]u(k) + �f + �gu(k)

(6.19)

Now from the Taylor series formula we have for n variables

f(x1; ::::; xn) =
1X
j=0

24 1
j!

 
nX
k=1

(xk � ak)
@

@�xk

!j
f(�x1; ::::; �xn)

35 �x1 = x1:::::�xn = xn (6.20)

Now applying the Taylor series to the smooth functions f̂ and ĝ we have

f̂ = w�f (k)�f [z(k)] + [wf (k)� w�f (k)] @f̂
@[wf (k)]

+Rf

f̂ = wf (k)�f [z(k)] +Rf
(6.21)

ĝ = w�g(k)�g[z(k)] + [wg(k)� w�g(k)] @ĝ
@[wg(k)]

+Rg

ĝ = wg(k)�g[z(k)] +Rg
(6.22)

where @f̂
@[wf (k)]

= �f [z(k)] and
@ĝ

@[wg(k)]
= �g[z(k)]. Also Rf and Rg are the remainders of the

Taylor formula. Now using (6.18) we can demonstrate

~f = (wf (k)� w�f (k))�f [z(k)] + (Rf � �f )
~f = ~wf (k)�f [z(k)] + �f

(6.23)
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~g = (wg(k)� w�g(k))�g[z(k)] + (Rg � �g)
~g = ~wg(k)�g[z(k)] + �g

(6.24)

where ~wf (k) = wf (k) � w�f (k); ~wg(k) = wg(k) � w�g(k); �f = Rf � �f and �g = Rg � �g:The
error dynamics can be expressed using (6.16) and (6.19) as

�ei(k + 1) = ~wf (k)�f [z(k)] + ~wg(k)�g[z(k)]u(k) + �f + �gu(k) (6.25)

In sake of assuring stability of identi�cation and non-singularity in the controller, the fol-

lowing updating laws are implemented

�wf (k) = ��(k)�f [z(k)]eTi (k)
�wg(k) = ��(k)u(k)�g[z(k)]eTi (k)

(6.26)

Theorem 6.1 If we use fuzzy model (6.16) to identify nonlinear system (6.5) having the

updating law given by (6.26), then the identi�cation error ei(k) is bounded and it satisfy the

following relation

lim
k!1

k ei(k) k2=
k ��(k) k2 [1 + �(k)]
1 + (1� �(k))�(k) (6.27)

provided the dead zone guarantees � k ei(k + 1) k>k ei(k) kand 0 < �(k) < 1; �(k) � 0:

Proof. We select the following Lyapunov candidate function V (k) as

V (k) = tr[ ewTf (k) ewf (k)] + tr[ ewTg (k) ewg(k]
=
Pn

i=1 ewf (k)2 +Pn
i=1 ewg(k)2

=k ewf (k) k2 + k ewg(k) k2 (6.28)

Now we know �V (k) = V (k + 1)� V (k): Using this and (6.28)

�V (k) = [k ewf (k + 1) k2 � k ewf (k) k2] + [k ewg(k + 1) k2 � k ewg(k) k2] (6.29)

Now from the updating law (6.28) ewf (k+1)� ewf (k) = ��(k)�f [z(k)]eTi (k) and ewg(k+1)�ewg(k) = ��(k)u(k)�g[z(k)]eTi (k); also from (6.29)

�V (k) = [k ewf (k)� �(k)�f [z(k)]eTi (k) k2 � k ewf (k) k2]
+[k ewg(k)� �(k)u(k)�g[z(k)]eTi (k) k2 � k ewg(k) k2]
= �2(k) k ei(k) k2 [k �f [z(k)] k2 + k �g[z(k)]u(k) k2]

�2�(k) k eTi (k) k [k ewf (k)�f [z(k)] k + k ewg(k)�g[z(k)]u(k) k]
(6.30)
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Now using (6.25)

�V (k) = �2(k) k ei(k) k2 [k �f [z(k)] k2 + k �g[z(k)]u(k) k2]
�2�(k) k eTi (k) k [�ei(k + 1)� �f � �gu(k)]

= �2(k) k ei(k) k2 [k �f [z(k)] k2 + k �g[z(k)]u(k) k2]
�2�(k) k eTi (k) k � k ei(k + 1) k +2�(k) k eTi (k) k [�f + �gu(k)]

(6.31)

Now let �(k) =k �f [z(k)] k2 + k �g[z(k)]u(k) k2; �(k) = �f + �gu(k) where �(k) � 0; 0 <

�(k) < 1 and if � k ei(k + 1) k>k ei(k) k then

�V (k) � �2�(k) k ei(k) k2 +�2(k) k ei(k) k2 �(k)
+2�(k) k eTi (k)�(k) k

�V (k) � �2�(k) k ei(k) k2 +�2(k) k ei(k) k2 �(k)
+�(k) k eTi (k) k2 +�(k) k �(k) k2

�V (k) � ��(k)[k ei(k) k2 f1� �(k)�(k)g+ k �(k) k2]

(6.32)

Now Let us consider

�(k) =
�(k)

1 + �(k)
; �(k) > 0; �(k) > 0 (6.33)

Also the modeling error �(k) has the term input in it. This modeling error is considered to

be bounded as follows

k �(k) k2�k ��(k) k2 (6.34)

Now using the conditions (6.33) and (6.34) we can express (6.32) as

�V (k) � � �(k)

1 + �(k)

�
k ei(k) k2

�
1 + (1� �(k))�(k)

1 + �(k)

�
� k ��(k) k2

�
(6.35)

Now if k ei(k) k2� k��(k)k2[1+�(k)]
1+(1��(k))�(k) then �V (k) � 0 with the condition that the dead zone

satisfy � k ei(k + 1) k>k ei(k) k; 0 < �(k) < 1:If � is selected too much big then the dead
zone becomes small. Hence we can conclude that V (k) is bounded. Also if �(k) = 0; then

from (6.26) it is evident that the weights are not changed and hence they are bounded.

Therefore V (k) is bounded.

6.4 Sliding mode control

We de�ne the control error as

e (k) = zd(k)� z(k) = �z(k)
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where zd(k) is the desired reference vector, for the vibration control, zd(k) = 0:

We propose a novel quasi-sliding mode controller in (6.5) as

u(k) =
1

ĝ
f�f̂ +KTe(k) + �sign [s(k)]g (6.36)

where e(k) = [e(k + 1� n) � � � e(k)]T ; K = [kn � � � k1]T 2 Rnx1 which is selected such that
the polynomial �n +

p
2k1�

n�1 + � � � + 2n2 kn is stable, s(k) is switching function which is
de�ned as

s(k) = e(k) +KTe(k � 1) (6.37)

Theorem 6.2 If the gain � of the discrete-time sliding mode controller (6.36) satis�es

� � �H

kKk (6.38)

where H is the upper bound of the modeling error, � is the design parameter of the fuzzy

model (6.16), K satis�es the polynomial

�n +
p
2k1�

n�1 + � � �+ 2n2 kn

is stable, then the closed-loop system with sliding mode control and fuzzy identi�er is uni-

formly stable and the upper bound of the tracking error satis�es

lim
k!1

1

T

TX
k=1

ke(k)k � kPk
�min (Q)

�
1 +

�H

�

�
(6.39)

where P and Q are given in (6.45).

Proof. We �rst prove that the switching function s(k) is bounded. From (6.5), (6.16)

and (6.19), the modeling error satis�es

�ei(k + 1) = ef + egu(k) (6.40)

Substitute the control (6.36) into the plant (6.5), the closed-loop system is

z(k + 1) = bf � ef + bg�egbg [� bf +KTe(k) + �sign [s(k)]]

= � ef(k) +KT e(k) + �sign [s(k)]� eg(k)u(k)
The switching function (6.37) is

s(k + 1) = e(k + 1) +KTe(k)

= �z(k + 1) +KTe(k)
(6.41)
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Using (6.36)

e(k + 1) +KTe(k) = ��sign [s(k)] + ef(k) + eg(k)u(k)
Use (6.40),

s(k + 1) = ��sign [s(k)] + �ei(k + 1) (6.42)

Since jsign [s(k)]j � 1 and jei(k + 1)j � H

js(k + 1)j � � + �H (6.43)

Because e(k) = [e(k � n+ 1) � � � e(k)]T ; and e(k + 1) = �KTe(k) + s(k + 1),

e(k + 1) = Ae(k) +Bs(k + 1) (6.44)

where A =

266666664

0 1 0 � � � 0

0 0 1 � � � 0
...

. . .
...

0 � � � � � � 0 1

�kn � � � � � � � � � �k1

377777775
2 Rnxn; B = [0; � � � 0; 1]T 2 Rnx1. Because

det (sI � �A) = �nkn + �
n�1kn�1s + � � � + �k1sn�1 + sn [58], we select K = [k1 � � � kn]T

such that
p
2A is stable (� =

p
2). A stable

p
2A can make the following Lyapunov equa-

tion have positive de�nite solutions for P and Q

2ATPA� P = �Q (6.45)

where P = P T > 0; Q = QT > 0:

De�ne the following Lyapunov function

V (k) =
1

�2
eT (k)Pe(k) (6.46)

where P is a solution of (6.45). Using (6.44) we calculate �V (k)

�V (k) = 1
�2
eT (k + 1)Pe(k + 1)� 1

�2
eT (k)Pe(k)

= 1
�2
eT (k)

�
ATPA� P

�
e(k) + 2

�2
eT (k)ATPBs(k + 1) + 1

�2
BTPBs2(k + 1)

We de�ne K1 = [1; k1 � � � kn]T ; from (6.41) s(k + 1) = KT
1 e(k + 1); s(k) = KT

1 e(k): From

(6.45) and s(k + 1) = ��sign [s(k)] + �ei(k + 1), kAk = kBk = 1; and using (6.43)

�V (k) � � 1

�2
ke(k)k2Q �

2 [� kK1k � �H]
�2

kPk ke(k)k+ kPk
�
1 +

�H

�

�2
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From condition (6.38)

�V (k) � � 1

�2
ke(k)k2Q + kPk

�
1 +

�H

�

�2
From [63] we known V (k) is bounded, so e(k) is bounded. Summarizing from 1 to T and

using that V (T ) > 0 and that V (1) is a constant:

V (T )� V (1) �
TX
k=1

��min (Q) eT (k)e(k) + kPk
�
1 + �H

�

�2
lim
T!1

1
T

TX
k=1

�min (Q) e
T (k)e(k) � lim

T!1
1
T

�
V (1) + kPk

�
1 + �H

�

�2�
thus (6.39) is satis�ed. By the de�nition e(k) = [e(k � n+ 1) � � � e(k)]T we have that the
tracking error e(k) is bounded.

6.5 Experimental Results

The proposed Fuzzy Discrete Sliding mode control(FDSMC), standard discrete sliding mode

control(DSMC) and Discrete PID controller are compared. For PID Controller gains selected

are as follows

Kpx = 1800; Kpy = 2000; Kp� = 2200; Kdx = 160

Kdy = 220; Kd� = 300; Kix = 2000; Kiy = 2300; Ki� = 3500

All these controllers are designed to work within the range of AMD and TA. For DSMC

and FDSMC. The value of � are chosen to be � = 3 for the AMD and � = 0:17 for the

TA. The conditions for the selecting the values of � are from the viewpoint of Theorem.

2. These parameters are selected in such a way that satisfactory chattering and vibration

attenuation are achieved. The performance validation of these controllers are implemented

by the vibration control with respect to the seismic execution on the prototype. The value

of �(k) is chosen to be 0:9. The position and velocity inputs related to the fuzzy systems are

normalized in such a manner that z(k) 2 [�1; 1]: Number of experiments carried out reveals
that 6 rules for f̂ and 4 rules for ĝ are su¢ cient to sustain minimal regulation errors. The

Gaussian membership function is utilized for this operation. Three membership function

are used to extract the linguistic variables from the �oor position and velocity. As both the

dampers are placed on the second �oor, so the position and velocity data from the second

�oor are utilized. The vibration of the shake table uses the Northridge earthquake signal.
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Figure 6.1: PID control of the second �oor in the X direction.
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Figure 6.2: PID control of the second �oor in the Y direction.
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Figure 6.3: PID control of the second �oor in the � direction.
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Figure 6.4: Discrete sliding mode control of the second �oor in the X direction.
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Figure 6.5: Discrete sliding mode control of the second �oor in the Y direction.
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Figure 6.6: Discrete sliding mode control of the second �oor in the � direction.
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Figure 6.7: Fuzzy discrete sliding mode control of the second �oor in the X direction.
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Figure 6.8: Fuzzy discrete sliding mode control of the second �oor in the Y direction.
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Figure 6.9: Fuzzy discrete sliding mode control of the second �oor in the � direction.
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Figure 6.10: Control signal of discrete sliding mode control
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Figure 6.11: Control signal of fuzzy discrete sliding mode control

We compare our controllers in three cases: 1) without any active control (No Control);

2) with the torsion actuator (TA); 3) with both the active mass damper and the torsion

actuator (AMD+TA). Figure 6.1 - Figure 6.9 displays the action of the PID control, DSMC

and FDSMC to curb the vibration along X�direction, Y�direction and �-direction. The
control signal of DSMC and FDSMC are displayed in the Figure 6.10 and Figure 6.11

respectively. For clarity of the results, the vibration responses are displayed for the period

of 4s to 10s;whereas the control signals are scaled from the time period of 4s to 8s. The

average vibration displacement are calculated by the mean squared error as

MSE =
1

N

NX
k=1

x (k)2

where x (k) is the displacement of the �oor, N is the total data number.

Table 1 - Table 4 represents the quantitative analysis of vibration control alongX�direction,
Y�direction and �-direction. Here # sign indicate decrease.

Table 1. Average vibration displacement by AMD+TA

PID control % # error DSMC % # error FDSMC % # error No control

X-direction 0:2216 70:5 0:1854 75:3 0:1545 79:4 0:7514

Y -direction 0:0648 50:9 0:0436 66:9 0:0388 70:6 0:1320

�-direction 0:0588 49:9 0:0402 65:7 0:0312 73:4 0:1174
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Table 2. Average vibration displacement with PID control

with AMD % # error with TA % # error No control

X-direction 0:2937 60:9 0:4501 40:9 0:7514

Y -direction 0:0760 44:6 0:0838 36:5 0:1320

�-direction 0:0713 39:2 0:0593 49:4 0:1174

Table 3. Average vibration displacement with DSMC

with AMD % # error with TA % # error No control

X-direction 0:2388 68:2 0:4118 45:2 0:7514

Y -direction 0:0577 56:2 0:0779 40:9 0:1320

�-direction 0:0637 45:7 0:0429 63:4 0:1174

Table 4. Average vibration displacement with FDSMC

with AMD % # error with TA % # error No control

X-direction 0:1995 73:4 0:3847 48:8 0:7514

Y -direction 0:0511 61:2 0:0715 45:8 0:1320

�-direction 0:0599 48:9 0:0399 66:1 0:1174

It is observed from the results that PID controller has slower response time in comparison

to the FDSMC. We can see that all PID, DSMC and FDSMC controllers gives e¢ cient

performance with AMD and TA, because both horizontal actuator and torsional actuator

act simultaneously. The vibration attenuations along X-direction and Y -direction are much

better than �-direction, because the active vibration control is achieved by the position of

the actuator and the torque direction of the actuator. FDSMC controller is better than both

PID and DSMC controllers in the vibration attenuation in all three directions. The active

control of structures is improved by adding the fuzzy compensation.

6.6 Summary

In this chapter, the equation of motion related to the controlled building structures is con-

verted into the form of discrete-time control system. The discrete sliding mode control along

with fuzzy control techniques are blended to achieve superior vibration control considering

bidirectional seismic forces. In the control signal (6.36), the time varying gain helps reducing

the chattering better in comparison to the standard DSMC. A two-�oor structure associ-

ated with one horizontal actuator and one torsional actuator for active vibration control
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is proposed. The stability of the proposed controller has been established using Lyapunov

stability theory. The theoretical analysis shows the e¤ectivity of the proposed controllers.

The experimental results show that PID, DSMC and FDSMC controllers works well with

horizontal actuator and torsional actuator. The FDSMC controller in combination with

both horizontal actuator and torsional actuator are considered to be the most e¢ cient in

mitigation of vibration along X-direction, Y�direction, and ��direction.
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Chapter 7

Conclusions

There has been a large amount of increased research in structural vibration control in the past

few decades. A number of control algorithms and devices have been applied to the structural

control applications. Linear controllers were found to be simple and e¤ective. More advanced

controllers have improved the performance and robustness. Even though this �eld is well

developed, there is still room for further research considering lateral-torsional vibration.

In this thesis, an active vibration control system for building structures was developed.

Three di¤erent control algorithms were developed for the structure vibration attenuation.

In the �rst case, classical PD/PID control techniques were used to mitigate the vibration of

the structure under the bidirectional forces. The stability of the controller is validated using

Lyapunov candidate. In the second phase, the PD/PID control is combined with type-2

fuzzy. The PD/PID control is used to generate the control signal to attenuate the vibration

and the type-2 fuzzy logic is used to compensate the uncertain nonlinear e¤ects present in

the system. The PD/PID gains are selected such that the system is stable in Lyapunov

sense. An adaptive technique was developed for tuning the fuzzy weights to minimize the

regulation error. This controller shows very good vibration attenuation capability. However,

its design needs some level of system knowledge. As a result another controller has been

proposed, which can work with a parametrically uncertain system. Here the popular sliding

mode controller has been used. So a novel fuzzy discrete sliding mode controller (FDSMC)

is proposed in order to attenuate structural vibration along all three components under

the grip of bidirectional earthquake forces. The analysis is based on the lateral-torsional

vibration under the bidirectional waves. The proposed fuzzy discrete-time sliding mode

control (FDSMC) also facilities in reducing chattering due to its time-varying gain. We

prove that the closed-loop system with sliding mode control and fuzzy identi�er are uniformly
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stable by utilizing Lyapunov stability theorem. The proposed algorithms were experimentally

veri�ed in a lab prototype. Also the controllers, especially the FDSMC, can function with

nonlinear and uncertain systems like the real building.

From the experimental analysis, it has been observed that type-2 fuzzy PID controller

outperformed all other controllers. But the computational cost of the controller was big.

PD/PID controller also successfully attenuated the building vibration. So the PD/PID

controller is highly recommended due to its simple nature. The nature of movement of sliding

mode controller is similar to that of structural movement. So this type of controller can be

e¤ectively use for vibration mitigation which is evident from the experimental results. So

from computational cost and performance point of view, the discrete sliding mode controller

is considered to be the most reliable one. The development of novel torsional actuator o¤ers

the superior mitigation of vibration along � component which a signi�cant contribution in the

area of torsional vibration mitigation. Its is observed that both horizontal actuator(AMD)

and torsional actuator (TA) in combination works e¤ectively and o¤ers e¢ cient vibration

control.



Chapter 8

Appendix: Experimental Setup

The experimental setup was established to carry out necessary experiments. The main

components of the experimental set up are listed as follows

8.1 Shake Table I-40

The Shake Table I-40 (STI-40) (Quanser made) system is illustrated in Figure 8.1, where two

shake table are used to generate bidirectional motion. A heavy load, bench-scale, single-axis

shaker, this table features a wide surface that can easily hold a number of structures and

accommodate complex as well as simple experiments. These factors, along with its convenient

portability, make the Shake Table particularly useful in teaching and research labs. It�s ideal

for research purposes because it is easy to use, accessible, and portable. It can accurately

mimic seismic activity and test building seismic performance. QUARC�s open architecture

control software, working with MATLAB/Simulink, makes it easy to control several tables at

the same time. Flexibility is high due to various integral components. The stage is mounted

on a high-quality, low backlash linear guide with a total travel of 40:0mm (i.e., 20:0mm)

and is driven using a ball-screw drive mechanism. Using the high torque direct drive motor,

the stage loaded with a 1:5kg mass can be accelerated up to 1:0g (i.e., 9:81m=s2). The high-

resolution encoder enables the system to obtain a linear stage position resolution of 1:22m.

The main devices needed to run the shake table is a power ampli�er (e.g., VoltPAQ), a data

acquisition (DAQ) device (e.g., Quanser Q2-USB), and a PC running the QUARC control

software. This system can be used to simulate earthquakes. The dimensions of the top

stage is 43:2� 10:2cm2. The DC motor used for the Shake Table I-40 is the Magmotor S23
Brushed Servo Motor with a stack length of 100. The linear position of the stage is obtained
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Figure 8.1: Bidirectional shake table arrangement

using a high-resolution rotary optical encoder coupled to the linear screw of the linear guide.

Speci�cally, it is a US Digital E3-2048-250-N-H-D-B encoder. When used in quadrature

mode, the encoder outputs 8192 counts per revolution of the shaft. Using this encoder, the

e¤ective linear position resolution of the top stage is 1:22m. The top stage of the Shake

Table I-40 is mounted on the Misumi LX3010C-B1-T3056.4-150 single-axis actuator. It is

a covered single-axis linear guide with a rail length of 150mm and has a lead-screw pitch

of 10mm. The Left or Right limit switch gets triggered when the top stage moves close to

the left or right mechanical range. These sensors are used to stop the controller when the

table exceeds its stroke. They are also used to calibrate the stage to its center, mid-stroke

position [114].

8.2 VoltPAQ-X2 ampli�er

The VoltPAQ (Quanser made) is a linear power ampli�er designed to run Quanser exper-

iments. The ampli�er has been illustrated in the Figure 8.2. The VoltPAQ-X2 can power

two loads. The VoltPAQs replaces the UPM line of power ampli�ers. Every VoltPAQ-X2

consists of the following components and features:

1. Ampli�er capable of supplying around 24V and 4A continuous per channel.

2. Current sensing capability for each channel.

3. User ability to enable/disable individual ampli�ers.

4. Automatic thermal shut-down to prevent damage to ampli�er.

5. Over-heating/over-current fault indication output.

6. E-stop.
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Figure 8.2: VoltPAQ-X2 ampli�er

Ampli�er Speci�cations Value are listed as:

Output voltage no load: �23:3V to +21:8V; 2A load:�22:3V to +20:8V;continuous cur-
rent output per channel � 4A;voltage gain 3V=V;current Sense 1A=V;ampli�er command

voltage range � 10V [101]

8.3 Q2 USB data acquisition device

Quanser ground-breaking USB data acquisition technology delivers reliable real-time per-

formance via a USB interface. Q2-USB data acquisition device o¤ers an extensive range of

hardware features and software support capabilities. Quanser DAQ technology combined

with standard connector interfaces ensure easy and quick access to signals. With low I/O

conversion times and easy connectivity, the Q2-USB is ideal for teaching control concepts,

as you can achieve up to 2kHz closed-loop control rate. This control rate is superior to any

other commercially available USB-DAQ technology. When combined with Quanser power

ampli�er and control design software, the Q2-USB provides a convenient rapid prototyping

and Hardware-In-The-Loop (HIL) development environment. With a wide range of inputs

and outputs, you can easily connect and control a variety of devices instrumented with ana-

log and digital sensors, including encoders - all with one board. A Q2-USB is shown in

Figure 8.3. The main features of Q2 USB are [106]

1. Optimized for real-time control performance with Quanser QUARC and RCP Toolkit

control software or custom code.

2. USB 2.0 high-speed interface.

3. Compatible with Windows 7.
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Figure 8.3: Q2-USB data acquisition

4. Multiple Q2-USB units can be used simultaneously.

5. Robust metal data acquisition device case.

8.4 Inteco RT-DAC/USB

The RT-DAC/USB2 is a multifunction analog and digital I/O board dedicated to real-

time data acquisition and control in the Windows 95/98/NT/2000/XP environments. The

board contains a Xilinx FPGA chip. All boards are built as the OMNI version. It means

the boards can be recon�gured to introduce a new functionality of all inputs and outputs

without any hardware modi�cation. The default con�guration of the FPGA chip accepts

signals from incremental encoders and generates PWM outputs, typical for mechatronic

control applications and is equipped with the general purpose digital input/outputs (GPIO),

A/D and D/A converters, timers, counters, frequency meters and chronometers [62]. The

RT-DAC/USB is illustrated in Figure 8.4

The RT-DAC/USB2 setup contains:

� RT-DAC/USB2 board.

� Two 40-pin ribbon cables (only one cable when the digital version is distributed ).

� USB cable.

� 9V-12V DC / 4W stabilized power supply.

The block diagram of the RT-DAC/USB2 board is shown in Figure 8.5
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Figure 8.4: RT-DAC/USB

Figure 8.5: Block diagram of RT-DAC/USB2
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Figure 8.6: Biaxial accelerometer

8.5 Biaxial XL403A accelerometer

Measurement Specialities XL403A biaxial analog accelerometer have the temperature work-

ing range of �40�C to+85�C and o¤ers high precise measurements. The outputs are DC

coupled. The other attributes are it is fully scaled,temperature compensated and referenced.

The improved accuracy are achieved by minimizing the variations between temperature and

aging e¤ects. A view of biaxial accelerometer is shown in Figure 8.6. The important features

of these type of accelerometer are [142].

� High precision and linearity considering vast range of temperature.

� Meant for rugged and tough environment.

� Small size.

� Built in power supply regulation feature.

� Instillation is easy.

8.6 Two �oor structure

The two �oor structure is displayed in Figure 8.7 . The material of the structure is stainless

steel. The length of the �oors in X and Y directions are 54 cm and 32 cm respectively. The

total height of the structure from the shake table is 120 cm having a distance gap of 60 cm

each between ground �oor, �rst �oor and second �oor respectively. The weight of each �oor

is 3:5Kg: Both the actuator are placed on the top �oor.
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Figure 8.7: Two �oor structure on bidirectional shake table

8.7 Horizontal actuator (AMD)

Active mass damper (AMD) is used for lateral vibration attenuation. AMD is a linear servo

actuator (STB1108, Copley Controls Corp). The total length of the actuator is 34 cm. The

schematic view of the AMD can be seen in Figure 8.8. ServoTube delivers the speed of a

belt-drive system with the clean reliability of a linear forcer at a price unprecedented in the

industry. Familiar form factor, integral position feedback and large air gap make installa-

tion simple. The ServoTube forcer components consist of an IP67 rated forcer and a sealed

stainless steel thrust rod enclosing rare-earth magnets. Four models deliver a continuous

force range of 9~27N (2~6lb) with peak forces up to 92N (21lb). A range of Thrust Rods

are available for travel lengths up to 372mm. The patented magnetic design of ServoTube

generates 12micron repeatability and 350micron accuracy from a non-contact, integral posi-

tion sensor. No external encoder is required. Position output is industry standard 1V pk-pk

sin/cos signals. The tubular forcer has superior thermal e¢ ciency, radiating heat uniformly.

High duty cycles are possible without the need for forcer-air or water cooling [124].

8.8 Torsional actuator (TA)

Torsional actuator is a circular disc which is used for torsional vibration attenuation. The

torsional actuator power is provided by 5V DC motor. The disc is made of aluminum which

is of diameter 30 cm. The schematic view of TA with motor can be seen in Figure 8.9.
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Figure 8.8: Horizontal Actuator (AMD)

Figure 8.9: Torsional actuator with motor
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