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CINVESTAV DEL IPN

Abstract
Department of Automatic Control

Doctor of Science

Adaptive Sliding Mode Techniques with Aerospace Applications

by M. Sc. Sajjad Keshtkar

In this dissertation, the adaptive techniques based on sliding mode are studied to be

implemented in operation, orientation and observation of the aerospace systems. The

adaptation is directed to the observed feedback control and the chattering effect reduction

for nonlinear satellite-ground stabilization and tracking particulary for tethered satellite

systems and parabolic Cassegrian radio-telescope antennas.

The tethered satellite system is a set of spacecrafts, connected by long cables (tethers),

orbiting around the Earth. The large length, compared to conventional satellites, makes

a strong interaction of these systems with external fields of the planet through which

allows to resolve a wide range of tasks related to space exploration. The ground track-

ing task of these satellite systems is resolved by a dual reflector radio-telescopes with

movable secondary mirror which uses a Stewart platform as a positioner. The nonlinear

mathematical models of the named mechanisms are developed in the presence of external

perturbations, model uncertainty and neglected dynamics.

The unusual structure and complicity of the named mechanisms and the high accuracy

needed for their operation on leads to use a new robust and effective controllers and

observers. The set of methods developed in this work deal firstly with the adaptive

sliding mode control with the adaptation of the gain matrix providing the reduction

of undesirable chattering effect and near-singularity phenomenon while the second one

represents a feedback sliding mode controller with the observation based on high order

sliding mode. The behavior of proposed methods on the performance of the system are

obtained numerically via simulation.
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Resumen

En la tesis se estudiaron las técnicas adaptivas de control con base en modos de desliza-

miento que se aplicaron en la operación, la orientación y la observación de los sistemas

aeroespaciales. La adaptación se dirige al control retroalimentado para la estabilización

y seguimiento de un sistema no lineal satélite-tierra que incluye un sistema de satélites

atados y una antena de radiotelescopio parabólico tipo Cassegrain como su seguidor.

El sistema de satélites atados es un conjunto de naves espaciales, conectadas por cables

largos (ataduras), que orbitan alrededor de la Tierra. La longitud grande, en comparación

con los satélites convencionales, hace una fuerte interacción de estos sistemas con cam-

pos externos del planeta a través del cual permite resolver una amplia gama de tareas

relacionadas con la exploración del espacio. La tarea de seguimiento desde la Tierra para

estos sistemas de satélites se realizó mediante un radio-telescopio con doble reflector con

el reflector (espejo) secundario móvil que utiliza una plataforma de Stewart como su posi-

cionador. Los modelos matemáticos de los mecanismos nombrados han sido desarrollados

en presencia de perturbaciones externas, y dinámicas internas desconocidas.

La estructura inusual y la complicidad de los mecanismos nombrados y la alta precisión

requerida para su funcionamiento requieren una atención detallada para la elección y

diseño de controladores. Por otro lado la complejidad de los sistemas hace imposible

la medición de todos los estados, que impide el uso de un observador de estado capaz

de estimar estos estados en presencia de perturbaciones. Algunos nuevos diseños de

controladores y observadores eficaces basados en modos deslizantes han sido propuestos

para las tareas mencionadas. El conjunto de métodos desarrollados en el trabajo se tratan

en primer lugar con un control adaptable basado en modos deslizantes con la adaptación

de la matriz de ganancias que proporciona la eleminación de la singularidad del sistema

de posicionador. La segunda parte de la tesis representa la retroalimentación de un

controlador clásico basado en modos deslizantes con la observación basada en Super-

Twisting. El comportamiento de los métodos propuestos en el rendimiento del sistema

se comprobó a través de la simulación numérica.



Acknowledgements

Firstly, I would like to express my sincere gratitude to my advisor Prof. Alexander

Poznyak for the continuous support of my Ph.D study and related research, for his pa-

tience, motivation, and immense knowledge. His guidance helped me in all the time of

research and writing of this thesis. I could not have imagined having a better advisor

and mentor for my Ph.D study.

Besides my advisor, I would like to thank the rest of my thesis committee: Dr. Wen

Yu, Dr. Rafael Mart́ınez, Dr. Fernando Castaños, Dr. Alberto Luviano and Dr.

Eusebio Hernandez for their insightful comments and encouragement, but also for the

hard question which incented me to widen my research from various perspectives.

My sincere thanks also goes to my teachers, colleagues and friends in CINVESTAV and

ESIME Ticomán. Without their precious support it would not be possible to conduct

this research.

Special thank to the National Council of Science and Technology (CONACYT) of Mexico

who supported my Ph.D study and research.

Finally my deepest gratitude goes to my family for their unflagging love and unconditional

support throughout my life and my studies.

iii



Contents

Abstract i

Acknowledgements iii

Contents iv

List of Figures vii

1 Introduction 1

1.1 Control of aerospace systems . . . . . . . . . . . . . . . . . . . . . . . . . 3

Orientation . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Stabilization . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Criteria for feedback control election . . . . . . . . . . . . . . . . . . . . 5

1.3 Applications of designed controls . . . . . . . . . . . . . . . . . . . . . . 6

1.3.1 Tethered Satellite Systems . . . . . . . . . . . . . . . . . . . . . . 6

1.3.2 Radio-Telescope Subreflector . . . . . . . . . . . . . . . . . . . . . 7

1.4 Contribution of the dissertation . . . . . . . . . . . . . . . . . . . . . . . 9

2 Adaptive Sliding Mode Control 11

2.1 Adaptive and robust control with sliding mode . . . . . . . . . . . . . . . 13

2.2 Conventional Sliding Mode Design . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Adaptation Based on the “Equivalent Control” . . . . . . . . . . . . . . 19

2.3.1 Main Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.2 Adaptation procedure . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Near Singularity Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4.1 Near Singularity Analysis . . . . . . . . . . . . . . . . . . . . . . 27

Loss of freedom . . . . . . . . . . . . . . . . . . . . . . . . 27

Workspace . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Loss of control . . . . . . . . . . . . . . . . . . . . . . . . . 28

Mechanical advantage . . . . . . . . . . . . . . . . . . . . . 28

2.4.2 Regularization of SMC . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4.3 Stability analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

iv



Contents v

2.5 Solution of ODE with discontinuous right-hand side . . . . . . . . . . . . 33

2.5.1 Filippov solution for sliding mode dynamics . . . . . . . . . . . . 35

2.5.2 Utkin solution for sliding mode dynamics . . . . . . . . . . . . . . 36

3 Feedback Sliding Mode Observer-Controller 39

3.1 Feedback control design . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1.1 Velocity estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1.2 Control design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Sliding surface . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Sliding mode controller and observer adaptation . . . . . . . . . . . . . . 43

3.2.1 Resulting algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.2 Proof of the main result . . . . . . . . . . . . . . . . . . . . . . . 47

3.2.3 Optimization of the controller parameters . . . . . . . . . . . . . 51

4 Description of Mechanical Systems 54

4.1 Tethered Satellite Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.1.1 Dynamics and control of TSS . . . . . . . . . . . . . . . . . . 56

4.1.2 Model and the equations of motion . . . . . . . . . . . . . . 57

Model with bounded disturbances and uncertainties . . . . 65

4.2 Secondary Mirror of Radio-Telescope . . . . . . . . . . . . . . . . . . . . 65

4.2.1 General system description . . . . . . . . . . . . . . . . . . . . . . 67

4.2.2 Mathematical model . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2.3 Mechanism dynamics . . . . . . . . . . . . . . . . . . . . . . . . . 70

5 Numerical Simulations 73

5.1 Tethered Satellite System . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.1.1 The conventional algorithm . . . . . . . . . . . . . . . . . . . . . 73

5.1.1.1 Adaptive algorithm based on ”Equivalent Control Method” 73

5.1.2 Adaptive Sliding Mode Controller Based on Super-Twist Observer 75

5.1.3 Pareto-Optimal Adaptive SMC with SM Observer . . . . . . . . . 79

5.2 Secondary mirror of Radio-telescope . . . . . . . . . . . . . . . . . . . . . 79

5.2.1 Near-Singularity Elimination and Equivalent Control . . . . . . . 80

Equivalent sliding mode control . . . . . . . . . . . . . . . 81

5.2.2 Adaptive Sliding Mode Controller Based on Super-Twist Observer 83

6 Summary and Recommendations for Future Work 86

6.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.2 Recommendations for Future Work . . . . . . . . . . . . . . . . . . . . . 87

A Values of ai,k 89

A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89



Contents vi

B Values of gk,i and ak,i,j 90

B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

C Singular configuration 92

C.1 Grassmann geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

C.2 Variety and Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Bibliography 97

Publications 103

Accepted in indexed journals . . . . . . . . . . . . . . . . . 103

In Review . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Conference . . . . . . . . . . . . . . . . . . . . . . . . . . . 103



List of Figures

1.1 The tethered space system representation. . . . . . . . . . . . . . . . . . 7

1.2 The Radio telescope with a Cassegrain antenna. . . . . . . . . . . . . . . 8
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Chapter 1

Introduction

At the present time, there is an intense exploration of space, which is conducted on a broad

scale, including numerous flights to the Earth orbit as well as to other planets of the solar

system. There are also many experimental and perspective concepts of spacecrafts with

unusual structure and architecture, which promise an easy and cheap access to the space

and the interplanetary travels. For the successful implementation of these operations, the

orientation and stabilization of spacecrafts and their trackers are necessary and inevitable.

The solution of this task lays on the orientation and stabilization systems, the technical

and operational features of which can guarantee the success of the scientific experiments.

Thereby, reliable and effective control systems, which provide a long trouble-free operating

time, become necessary.

Control in outer space varies appreciably from the control in the terrestrial conditions.

Firstly, the conditions, existing in the space, differs the Earth by the presence of the grav-

ity, intensive radiation, rarefaction near to absolute vacuum, and, consequently, almost

the total lack of natural damping. These factors complicate the construction and ex-

ploitation of the orientation and stabilization subsystems and make their computational

and experimental modelling exceedingly difficult. Secondly, in outer space the disturb-

ing moments, acting on the spacecraft, are very small and usually there is no need to

use a large magnitude of restoring moments, produced by the control system. However,

these small disturbing moments in the condition of almost absolute vacuum and absence

of natural damping exert an essentially influence on the movement of spacecraft. This

acquires a great significance to the question of dynamic of stabilization and orientation

systems.

1
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The first spacecrafts were turning in the space, without any orientation [1, 2]. Later

spacecraft mission designs used passive spin stabilization to hold one axis relatively fixed

by spinning the spacecraft around it (usually the axis of maximum moment of inertia).

The spin stabilization was mostly used due to the limited control actuation and lack

of sophisticated computer technology to implement complex control laws. The spin-

stabilized spacecrafts are very stable but they have to be sensitively balanced and every

component has to be designed and located with spacecraft balance in mind. This can be

extremely difficult to accomplish the required accuracy. In most cases the last few weights

are added and adjusted only after actual flight hardware is delivered and installed, and

the spacecraft is experimentally spin tested. Allowances must also be made for everything

onboard that can move during flight [1].

In view of the absence of natural damping in outer space it is required to create damping

moments by artificial way with the help of a special mechanism. Actually for the orienta-

tion systems the special devices based on natural forces of circular fields, electromagnetic

and centrifugal forces among all are designed and successfully exploited. The dynamic

characteristics and precision of the spacecraft operation depends of the choice, design and

operation of these devices.

In the modern era advancements in sensors, actuators, and computer processors allow

the three-axis stabilized spacecraft designs, although spinners are still used to this day

for many missions. Attitude control law theory also has been extensively studied and

advanced, allowing for guaranteed control stability even with nonlinear attitude dynamics.

However, the control of spacecraft and its tracking devices still poses a difficult problem.

These difficulties include the highly nonlinear characteristics of the governing equations,

control rate, saturation constraints and limits, and incomplete state knowledge due to

sensor failure or omission [2].

Together with the launch of artificial satellites of earth (first on October 4 in 1957 by

URRS)the fast development the radioelectrinic–space communication initiated. The cen-

ters of space communication with unique full revolving antennas, powerful transmitters

and high–sensitive receivers, high-performance computer were built. These facilities al-

lowed to control the flight and receive the information from satellites and objects, situated

in the hundreds of million of kilometers from the Earth’s surface. At the same time the

large number of station are under construction for tracking and observing the satellites
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and the communication between terrestrial stations via satellites; the question of antenna-

installations guidance towards the satellite and practically their round-the-clock tracking

independently of meteorologic conditions transforms into a comparatively sophisticated

technical problem.

The development of radio-astronomy would not be possible without the big-area antennas

with low temperature noise. This fact forced the engineers to come up with the new

designs of antennas, new principles of reflecting surfaces, rotary supports and high-precise

automatic guidance and control systems.

The principal designation of automatic control system of antenna installations for the

space communication is to point the main maximum diagram of orientability of the an-

tenna to the given direction in the space and to move the diagram in compliance with

the real movement of satellite. In all process it is important to take into account the

deformation of the antenna construction and external perturbations.

Since the orbits of space objects or satellites, which are observed by antenna, are usually

well known, then the main working regime of the automatic control system is given by

programs. Nevertheless the modern automatic control systems must provide the search

regimes, auto-tracking, combined guidance and manual distance pointing (for example,

for the execution of works adjusting preventive repair works [3].

1.1 Control of aerospace systems

The specialists, who are working on the design of spacecraft’s control system, use two

principals in their practical works: ”orientation” and ”stabilization”, although they are

not interchangeable [1].

Orientation is a process, in the result of which the spacecraft takes a defined place

or a the sequence of defined locations in space. As a general rule, the orientation system,

by removing the initial deviation, combines the connected and base coordinate systems

together; the later is tasked by the control system on the board of aircraft and can be

realized by active or passive devices.
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Stabilization is the process of elimination of angular deviations between the con-

nected and base coordinate systems occurred during the flight. The stabilization system

gives to the spacecraft the possibility of either restoring to the initial position, damaged

by the external as well internal perturbations, or to be resistant and robust to these

perturbations.

The named control tasks can be accomplished by either open-loop or closed-loop schemes.

Open-loop schemes usually require a pre-determined pointing maneuver and are typically

determined using optimal control techniques, which involve the solution of a two-point

boundary value problem (e.g. the time optimal maneuver problem). Open-loop schemes

are sensitive to system parameter uncertainties and unexpected disturbances. Closed-

loop systems can account for parameter uncertainties and disturbances, and thus provide

a more robust design methodology [4].

For many years now, much effort has been devoted to the closed-loop design of aerospace

system controllers. In [5] a number of simple control schemes are derived using quaternion

and angular velocity (rate) feedback. Asymptotic stability is shown by using a Lyapunov

function analysis for all cases. Reference [6] expands upon these formulations by deriv-

ing simple control laws based on both a Gibbs vector parameterization and a modified

Rodrigues parametrization, each with rate feedback. Lyapunov functions are shown for

all the controllers developed in this work as well.

Other full state feedback techniques have been developed that are based on variable-

structure (sliding mode) control, which uses a feedback linearizing technique and an

additional term aimed at dealing with model uncertainty. This type of control has been

successfully applied for large angle maneuvers using a Gibbs vector parametrization,

a quaternion parametrization, and a modified Rodrigues parametrization [7]. Another

robust control scheme using a nonlinear H1 control methodology has been developed

in [8]. This scheme involves the solution of Hamilton-Jacobi-Isaacs inequalities, which

essentially determines feedback gains for the full state feedback control problem so that

the spacecraft is stabilized in the presence of uncertainties and disturbances. Robust

control can be thought of as an online policy capable of regulating aerospace systems

whose dynamics may contain bounded (in some sense) uncertainties. Such algorithm often

utilizes feedback-feed forward state-output connections to generate appropriate control

inputs so that the plant output moves along the prescribed trajectories [9].



Introduction 5

1.2 Criteria for feedback control election

We often start with a mathematical model that resembles the process of interest in a

selected domain of operation. The model may or may not be accurate in capturing

significant and other effects in the process dynamics. In order to overcome potential

modeling deficiencies, we seek a robust solution, designed based on the model, yet capable

of controlling the real process, and not just the model. We would also want a controller

whose performance ”gracefully degrades” in the presence of uncertainties. The graceful

degradation property is highly desirable, since it becomes the only assurance that the

controller would not abruptly break down, if and when the system encounters slightly

unprecedented events during its intended operation.

Embedding robustness properties into a control solution should be treated as one of the

main criteria in any design. For example, achieving closed-loop stability and tracking

performance, while providing adequate stability margins, are the main goals, especially

when dealing with very adequate aerospace systems.

On the other hand the aforementioned techniques all utilize full state knowledge (i.e.

orientation and rate feedback). The problem of controlling a spacecraft without full state

feedback is more complex. The basic approaches used to solve this problem can be divided

into methods which estimate the unmeasured states using a filter algorithm and methods

which develop control laws directly from output feedback. A more direct technique is

need to be developed in, which solves the orientation problem without rate knowledge.

This method should be based on a passivity approach, which replaces the rate feedback

by a nonlinear observer.

Sliding mode technique can satisfy the above listed requirements. This method [4, 10]

is a robust technique that alters the dynamics of a nonlinear system by the application

of a switching control. The feature of this approach is that it has the so called sliding

mode on the switching surface. Within the sliding mode, the system remains intensive to

parameter variation and disturbances and its trajectories lie in the switching surface. The

sliding phenomenon do not depend on the system parameters and have a stable property.

The combination of the sliding mode controller/observer presented in this work can be

the adequate feedback control for the named tasks.
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1.3 Applications of designed controls

It will be presented how to design and analyze practical control algorithms for two prac-

tical systems with nonlinear and uncertain dynamics. The application of the suggested

controllers are illustrated for the orientation of a tethered satellite system and the sub-

reflector of a radiotelescope that follows the movement of the satellites.

1.3.1 Tethered Satellite Systems

Firstly to illustrate the effectiveness of the suggested technique in outer-space conditions

consider the, so-called, Tethered Satellite System (TSS). This system consists of two or

more bodies connected with long high-strength cable accomplishing orbital flight. Teth-

ered satellite systems are not a new concept, however, and in fact have been studied since

well before the dawn of human space flight. In addition to the various theoretical studies

of TSS that have been performed in the past, a number of TSS missions have already own

in space, providing a solid foundation for the design of future missions and the further

development of the theory underlying the behavior of TSS. The concept of a TSS was

first proposed by Tsiolkovsky in 1895. In his work, Tsiolkovsky proposed a means of

generating artificial gravity that involves connecting a spacecraft to a counterweight with

a long chain and spinning the entire system. Because of its architecture (see Fig. 4.1 [11])

the TSS can offer numerous advantages comparing with the traditional space systems.

Among them we can mention: generation of artificial gravity, in-space interferometry,

orbital maneuvering of spacecraft by means of momentum transfer energy production,

propellantless launch, orbital transfer, Earth observation, deep space exploration, and

etc. [12].

The main problem discussed in this work is the spinning TSS orientation and stabilization

in the orbit. The TSS system is a highly stable but with a rough orientation facility.

Additionally it is evident that the dynamics of spinning and electrodynamic TSS can be

quite complicated and rich. The analysis and design of any TSS mission requires more

than the qualitative insights discussed thus far, and the literature contains a vast amount

of detailed analysis of various types of TSS.

The problem can be resolved by creating the desired control torque; due to the interaction

with in/out plane angles, we can achieve both high accuracy of stabilization and attitude
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Figure 1.1: The tethered space system representation.

control systems. Thus, the introduction of a system with active control points, opens up

the possibility of creating a new generation of high-precision orientation and stabilization

TSS.

1.3.2 Radio-Telescope Subreflector

The radio-telescope antenna is a device that is used to receive radio-frequency radia-

tion emitted by extraterrestrial sources and satellites. Radio telescopes vary widely, but

depending on their design they can be divided in one and dual reflector antennas. In

dual-reflector (Cassegrian) antennas a parabolic reflector is used as the mail reflector and

a hyperboloid of revolution as the sub-reflector (secondary mirror) as shown in Fig. 1.2.

This antenna has a number of advantages over a single-dish. In dual-reflector antenna

the feed can be positioned close to the primary reflector. This simplifies the supplying of

the power to the feed, shortens the length of the supply line and facilitate the mounting

of the line and the feed. Shortening the supply line leads to a reduction of the losses and

reduces the noise temperature of the power path.
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Figure 1.2: The Radio telescope with a Cassegrain antenna.

The performance of a radio telescope is limited by various factors: the accuracy of reflect-

ing surfaces that may depart from the ideal shape because of manufacturing irregularities;

the effect of wind load; thermal deformations that cause differential expansion and con-

traction; and deflections due to changes in gravitational forces as the antenna is pointed

to different parts of the sky.

In this work a Stewart platform is used to obtain desired pointing accuracy (1 arcsec)

of the subreflector (secondary mirror) in the required position and orientation. These

highly position and attitude requirements encompass six independent degrees of freedom.

The platform consists of a stationary base, the mirror mounted on a movable platform,

and six prismatic actuators. The main problem here is to design the control laws that

provides the desired positioning task in the presence of disturbances/uncertainties.
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1.4 Contribution of the dissertation

Although a great deal of research has already been conducted on the dynamics and control

of aerospace systems, there exist a number of topics that remain to be addressed. The

purpose of this dissertation is to address some of these open areas of study, and in this

section we present an overview of the original contributions made by this work.

First, the orientation tasks of a tethered satellite system and a radiotelescope subreflec-

tor are resolved using a sliding mode controller for both regulation and tracking cases.

Then, the the chattering and near-singularity problems are discussed and the elimination

approaches are shown.. An example from a real plants, the Large Millimetric Radiotele-

scope, is shown for tracking task. finally, the feedback control is discussed using a sliding

mode observer. This is followed by.

Chapter 2 is solely devoted to adaptive control method based on ”equivalent control” for

nonlinear systems with perturbations/uncertainties. The near-singularity phenomenon of

the systems is also discussed in the second section of this chapter.

Chapter 3 covers a new topic in feedback control method design with observer and con-

troller both based on sliding mode techniques in a progressive complexity. For the un-

measured state estimations the realization of a classical high-order sliding mode needs to

be designed as an adaptive one.

The mathematical model of dynamic systems to be used in positioning and orientation

tasks are then described in Chapter 4. Most of the previous research on the dynamics

of spinning TSS has used simplified system models in which the out-of-plane pendular

motion of the tether is neglected. A typical spinning TSS nominally spins in the orbit

plane, so it is reasonable to neglect the out-of-plane motion in a preliminary study of

spinning TSS dynamics; however, a complete picture of spinning TSS dynamics requires

a rigorous analysis of the out-of-plane pendular motion of the system. Such an analysis

is one of the main contributions of this work. A simplified system model is used to

study the stability of small out-of-plane pendular motion of the tether, and to determine

approximate solutions for stable out-of-plane pendular motion. These results obtained

using a simplified system model are validated using numerical solutions determined using

the top-level computational model.
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Chapter 5 is devoted to show the performance of the proposed approach through the

numerical simulations. Concluding remarks and recommendations for future work are

offered in Chapter 6.

The publications based on the research of this dissertation is devoted in the last page.



Chapter 2

Adaptive Sliding Mode Control

Control systems must provide stability and performance in the presence of model uncer-

tainty and neglected dynamics. This has proven to be a significant challenge, and as our

understanding of dynamics and control has improved, aerospace has been able to develop

new aircraft designs that are faster, have greater performance, and perform robustly in

very large flight envelopes. These advancements built upon the foundation created by

classical methods but were powered by computer-aided design tools which greatly ex-

panded the engineer’s ability to solve larger and more complex problems using advanced

techniques.

In general, designing flight control systems using conventional (classical) analytical meth-

ods involves iterative single-loop design analyses that are costly in time and manpower.

These systems were often designed by discretizing the flight envelope at specific points,

designing the control system at these points, and guaranteeing robustness to parame-

ter variations by designing large single-loop stability margins and evaluating the design

through simulation.

The control system is called adaptive, if the online information in it, in addition to the

elaboration of the control action, is used also to change the control algorithm. In the usual

(nonadaptive) control systems the current information just is used for the formation of

control action.

The adaptive controls are used, when with the help of usual systems the proposed task

can not be handled. This usually happens when the initial information about the object

11
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is not enough or during the operation the object’s characteristics changes widely in an

unexpected way.

The researches about the design of adaptive control systems began at the early 50s in

connection with the construction of the autopilots for new airplanes with wide rate of

velocity and height [1]. However, the first attempts of using the adaptive control for the

autopilot ended in failure, which led to a decrease of interest in adaptive control for some

time. After a short break, the study of adaptive control continued. Especially intensively

the theory of adaptive control was developed at the end of the last century, and while

great achievements have been achieved in this direction.

Initially the practical application of developed adaptive control algorithms were restrained

because of their complexity. However recently thanks to big capacities of actual comput-

ing devices, the adaptive control methods found a practical use in a field, as robotics,

aeronautics, energetic system and complex technological process control [13].

There are many systems in which the use of adaptive control is recommended and even

necessary. For example for in the aerospace devices like airplanes and aircrafts, their

aerodynamic characteristics depend on the velocity and the height of the plane and the

atmosphere conditions of flight. Additionally during the flight, some particular param-

eters, defining the dynamic property of the airplane, could change in ten times. In this

conditions the common autopilots can not handle the high quality control task.

The models of technological process in metallurgy, chemistry, petrochemistry are very

complex. Because of a priori information their parameters and structures are not always

available. Moreover, these parameters can change during the fluxion of of the techno-

logical process in the named areas. Therefore the common control systems in a lot of

cases can not provide a high quality, and sometimes just a simple stable control of these

process [13].

In the development of the unified regulator for a wide class of objects the parameters of

regulator can not be accurately calculated and established in advance. Therefor if these

regulators are nonadaptive, then with their use in each specific case there will be a need

for tuning. The application of adaptive regulators relieve the users from these procedures,

which allows to save the time and energy.
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In most cases the adaptive control aims to neutralize the parametric uncertainty or the

inevitable parameter changes in the object. However in some cases, particulary for con-

trolling the technological process, when hundreds of outline controllers can be presented,

the adaptive control also is used to reduce the number of design variables of manual

tuning and at the same time increase the performance and practicality of the control

system.

Summarizing, it can be proved, that the use of adaptive control allows to:

• provide the optimum behaviour of the control system in conditions of uncomplete

information;

• provide the workability of the control system in conditions of the objects with widely

changing dynamic properties;

• create a unified regulator for wide class of objects;

• reduce the systems’ design and tuning time.

2.1 Adaptive and robust control with sliding mode

The Sliding Mode Control is a very popular strategy for control of nonlinear uncertain

systems, with a very large frame of applications fields [4, 10]. Due to the use of the

discontinuous function, its main features are

• the robustness of closed-loop system

• and the finite-time convergence.

However, its design requires the knowledge of the bound on the uncertainties, which

could be, from a practical point of view, a hard task: it often follows that this bound

is overestimated, which yields excessive gain. Then, the main drawback of the sliding

mode control, the well-known chattering phenomenon, is important and could damage

actuators and systems. A first way to reduce the chattering is the use of a boundary

layer: in this case, many approaches have proposed adequate controller gains tuning. A
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second way to decrease the effect of the chattering phenomenon is the use of higher order

sliding mode controller [14–16]. However, in both these control approaches, knowledge of

the bound on the uncertainties is required. As the objective is the non-requirement of the

uncertainties bound, another way consists in using adaptive sliding mode, the goal being

to ensure a dynamic adaptation of the control gain to be as small as possible whereas

sufficient to counteract the uncertainties and perturbations.

The basic idea of the Adaptive Control Approach consists in designing the systems ex-

hibiting the same dynamic properties under uncertainty conditions based on utilization

of current information. It involves modifying the control law used by a controller to cope

with the fact that the parameters of the system being controlled are slowly time-varying

or uncertain. Even more, adaptive control implies improving dynamic characteristics

while properties of a controlled plant or environment are varying [17]. Without adap-

tation the original SMC demonstrates robustness properties with respect to parameter

variations and disturbances [10]. The first attempts to apply the ideas of adaptation in

Sliding Mode Control (SMC) were made in the 60’s (for example, see [18]): the control

efficiency was improved by changing the position or equation of the discontinuity surfaces

without any information on a plant parameters. The design idea might be formulated as

follows: if sliding mode exists, then the coefficients of switching plane can be varied to

improve the system dynamics.

However those early publications did not take into account the main obstacle for SMC

application - the chattering phenomenon which is inherent in sliding motions. This phe-

nomenon is well-known from literature on power converters and referred to as ”ripple”.

Then the efforts of the researchers were oriented to the application of adaptability prin-

ciples to reduce the effect of chattering.

Since the amplitude of chattering is proportional to discontinuity magnitude in control,

one of possible adaptation methods is related to reducing this magnitude to the minimum

admissible value dictated by the conditions for SM to exist. So, in [19] the control

gain depended on the distance of system state to a discontinuity surface. The tracks

of adaptability can be found in the first publications about variable structure systems

with SM with the control gain proportional the system state. As recalled previously, this

problem is an exciting challenge for applications given that, in many cases, gains are also

overestimated, which gives larger control magnitude and larger chattering.
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In [20] gain dynamics directly depends on the tracking error (sliding variable): the control

gain is increasing since sliding mode is not established. Once this is the case, gain

dynamics equals zero. The main drawback of this approach is the gain over-estimation

with respect to uncertainties bound. Furthermore, this approach is not directly applicable,

but requires modifications for its application to real systems: thus, the sign function is

replaced by a saturation function where the boundary layer width affects accuracy and

robustness.

Furthermore, no boundary layer width tuning methodology is provided. A method pro-

posed in [16] in order to limit the switching gain must be mentioned. The idea is based

on use of equivalent control: once sliding mode occurs, disturbance magnitude is evalu-

able and allows an adequate tuning of control gain. However, this approach requires the

knowledge of uncertainties/perturbations bounds and the use of low-pass filter, which in-

troduces signal magnitude attenuation, delay and transient behavior when disturbances

are acting. In [21] a gain-adaptation algorithm is proposed by using sliding mode dis-

turbance observer. The main drawback is that the knowledge of uncertainties bounds

is required to design observer-based controller. There exist also adaptive SMC (ASMC)

algorithms that allow adjusting dynamically the control gains without knowledge of un-

certainties/perturbations bounds. In particular, several adaptive fuzzy SMC algorithms

were proposed. However, they do not guarantee the tracking performance or overestimate

the switching control gains as in . Of course, another efficient tool to suppress chatter-

ing is the application of state observers, but for this method the plant parameters are

assumed to be known.

2.2 Conventional Sliding Mode Design

Consider the following controlled uncertain system represented by the state space equation

ẋ (t) = f (x, t) + g (x1, t)u (x, t) + ξ (x, t) (2.1)

- x (t) :=
(
x>1 (t) , x>2 (t)

)> ∈ IR2×n;

- x1 (t) , x2 (t) ∈ IRn are states of the system at time t ∈ IR+;

- u ∈ IRn is a control to be designed;
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- ξ (x, t) ∈ IRn is unmeasurable term including the external as well as internal perturba-

tions and uncertainties;

- f (x, t) ∈ IRn, g (x1, t) ∈ IRn×n are supposed to be exactly known.

‖ξ(x, t)‖ ≤ L

where L is assumed a priory.

The problem is to design a feedback control law u (x, t) that derives the states x (t)

(angular positions) to required positions and their derivatives ẋ (t) (angular velocities) to

zero i.e.,

lim
t→∞

(x1, x2, ..., xn) = x∗1, x
∗
2, ..., x

∗
n

lim
t→∞

(xn+1, xn+2, ..., x2n) = 0

The control, which we are interested in, is apparently a challenging one, since asymptotic

convergence is to be achieved in the presence of the bounded disturbance ξ(x, t). First,

let us introduce new variables σn (x) in the state space of the system, which define the

sliding surfaces

σ1 (x) := ẋ1 + c1 (x1 − x∗1) = x3 + c1 (x1 − x∗1) = 0

σ2 (x) := ẋ2 + c2x2 = x4 + c2 (x2 − x∗2) = 0
...

σn (x) := ẋn + cnxn = x2n + cn (xn − x∗n) = 0

σ (x) :=


σ1 (x)

σ2 (x)
...

σn (x)

 ∈ Rn

(2.2)

Here x∗1, ..., x
∗
n are desired angular positions and c1, ..., cn are positive constants. xn+1, ..., x2n

define the angular velocities and in this chapter are assumed to be measured.
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Using the candidate Lyapunov function

V (x) :=
1

2
‖σ (x)‖2 =

1

2

[
σ2

1 (x) + σ2
2 (x) + ...+ σ2

n (x)
]

it derives to:

d

dt
V (x) = σᵀ (x) σ̇ (x) = σᵀ (x)

[
∂

∂x
σ (x)

]
ẋ (t) = σᵀ [g (x1, t)u (x, t) + h(x)]

h(x) = f (x, t) + ξ (x, t)

(2.3)

Let us design the control action as

u (x) = −k [g (x)]−1 Sign (σ (x))

Sign (σ) := (sign (σ1) , sign (σ2) , ..., sign (σn))ᵀ
(2.4)

where k > 0 and

sign (z) =


1 if z > 0

−1 if z < 0

∈
[
−1, 1

]
if z = 0

Substituting of (2.4) into (2.3) implies

d

dt
V (x) = σᵀ (x)h(x)− kσᵀ (x) Sign (σ (x))

= σᵀ (x)h(x)− k (|σ1 (x)|+ |σ2 (x)|+ ...+ |σn (x)|)

By the inequality

|σ1|+ |σ2|+ ...+ |σn| ≥
√
σ2

1 + σ2
2 + ...+ σ2

n = ‖σ‖
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we get

σᵀ (x)h(x)− k (|σ1 (x)|+ |σ2 (x)|+ ...+ |σn (x)|) ≤

‖σ (x)‖ ‖h(x)‖ − k ‖σ (x)‖ = −‖σ (x)‖ (k − ‖h(x)‖)

Finally, selecting the control gain k as

k = ‖h(x)‖+ ρ, ρ > 0

we obtain

d

dt
V (x) ≤ −ρ ‖σ (x)‖ = −ρ

√
2
√
V (x)

which leads to

2
(√

V (x(t))−
√
V (x(0))

)
≤ −ρ

√
2t

and

√
V (x(t)) ≤

√
V (x(0))− ρ√

2
t

The reaching time treach when V (x(t)) becomes to be equal to zero is

treach =

√
2

ρ

√
V (x (0)) =

1

ρ

√
σ2

1 (x (0)) + σ2
2 (x (0)) (2.5)

Consequently, a control law u(x, t) (referred to as the sliding mode controller) is given by

u(x, t) = (‖h(x)‖+ ρ) [g (x)]−1 Sign (σ (x)) , ρ > 0 (2.6)
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2.3 Adaptation Based on the “Equivalent Control”

Using this method, we want to handle simultaneously two interconnected phenomena of

application of the SMC: chattering and high activity of control action. It is well known

that the amplitude of chattering is proportional to the magnitude of a discontinuous

control.

These two problems can be handled simultaneously if the magnitude is reduced to a

minimal admissible level defined by the conditions for the sliding mode to exist. Here

the adaptation methodology, based on the equivalent control, is discussed to obtain the

minimum possible value of control. The control objective is associated with dynamic

adaptation of Sliding Mode Controllers (under known uncertainty bounds) where the

adaptation process is continued during sliding mode, using the current estimates of the

corresponding equivalent control, that leads to the minimization of chattering effect.

In the previous works, following to [19], the adaptation process with the varying mag-

nitude of the control gain terminates in the moment when the sliding mode starts. In

[22] the authors tried to continue the adaptation process during sliding mode estimating

the corresponding equivalent control. However, none of the above algorithms resulted in

minimum possible value of the discontinuous control. Finding the solution of this problem

under uncertainty conditions is the objective of this section.

2.3.1 Main Assumptions

Let us consider a nonlinear second order system1

ẋ (t) = f (x, t) + g (x1, t)u (x, t) + ξ (x, t) (2.7)

we assume that

1. the control u = u(x, t) enforces sliding mode on some surface

σ (x) = 0

1for the linear case look [23]
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and is in the following form

u(x, t) = −k (t)

(
1 + λ

√
‖x‖2 + ς

)
sign (σ (x))

λ ≥ 0, ς > 0, k (t) ∈ [µ, k+] , µ > 0

(2.8)

As one can see the control gain k (t) is a time varying function governed by the

adaptation procedure.

2. the uncertain functions f (x, t) and g (x1, t) satisfy the conditions

‖f (x, t)‖ ≤ f0 + f1 ‖x‖

0 < b0 ≤ ∇>σ (x) g (x1, t)

‖f (x, t)‖ ≤ g+, ‖∇σ (x)‖ ≤ σ+

(2.9)

Φ (x, t) :=
∇>σ (x) f (x, t)

∇>σ (x) g (x1, t)

∥∥∇>Φ (x, t)
∥∥ ≤ Φ0 + Φ1 ‖x‖

∥∥∥∥ ∂∂tΦ (x, t)

∥∥∥∥ ≤ ϕ0 + ϕ1 ‖x‖

(2.10)

All coefficients in the right-hand sides of these inequalities are constant and positive.

The function σ (x) and its time derivative

σ (x) = ∇>σ (x) f (x, t)−

∇>σ (x) f (x, t) g (x1, t) k (t)λ1sign (σ (x))

λ1 = 1 + λ
√
‖x‖2 + ς

(2.11)

should have opposite signs (σ (x)σ (x) < 0 if σ (x) 6= 0) for sliding mode to exist on

the superface σ (x) = 0. The sufficient condition for this follows from (2.9–2.11):
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σ (x) σ̇ (x) = σ (x)∇>σ (x) f (x, t)−∇>σ (x) g (x1, t) k (t)λ1 |σ (x)|

≤
[
∇>σ (x) g (x1, t)

]
|σ (x)| × [Φ (x, t)− k (t)λ1] < 0

(2.12)

The last inequality implies if the second part is negative, e.g.

Φ (x, t)− k (t)λ1 < 0

which is always hold when

λ ≥ f1/f0, µ > f0σ
+/g0, k (t) ∈

[
µ, k+

]
(2.13)

in view of the relation

|Φ (x, t)| − k (t)λ1 ≤ f0
σ+ (1 + ‖x‖ f1/f0)

g0

− µ (1 + λ ‖x‖)

To derive the sliding mode equation the function sign (σ (x)) should be replaced by

the solution of the equation σ (x) = 0 with respect to the term sign (σ (x)), called

the equivalent control̇:

[sign (σ (x))]eq :=


Φ (x, t)

k (t)λ1

if σ (x (t)) = 0

sign (σ (x)) if σ (x (t)) 6= 0

(2.14)

satisfying (in view of (2.12)) in the sliding mode (σ (x (t)) = 0)

∣∣∣[sign (σ (x))]eq

∣∣∣ < 1 (2.15)

Note that the state-depended magnitude of discontinuity is the conventional tool

to minimize chattering. Indeed, in the course of approaching the origin x = 0 it is

decreasing automatically. Similarly the term

1 + λ

√
‖x‖2 + ς
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may also affect the amplitude of chattering appearing on sliding mode phase. The

necessity of this term in (2.8) is related with the considered class of nonlinear

function satisfying

‖f (x, t)‖ ≤ f0 + f1 ‖x‖

if f1 = 0 (nonlinear function is bounded satisfying ‖f (x, t)‖ ≤ f0 ) similarly to

the example we may take λ = 0, and, in the case, the term λ1 does not affect a

chattering amplitude. It is important, that this methodology is oriented to the worst

case - sliding mode should exist for all values of unknown functions or parameters

from some range. The method of the paper guarantees the minimal magnitude for

their current values of unknown functions and parameters.

In general, we may add the term λ1 to the gain multiplying the discontinuous

function σ (x) to enforce sliding mode when f (x) is unbounded. This term in the

form ς = 0 (in the form 1 + λ ‖x‖) can solve this problem as well. However, the

adaptation algorithm implies existence of the gradient of this term, but it does not

exist for the last case.

Below we will show that in the general case the adaptation of the gain-parameter

k(t) only is sufficient to minimize the chattering effect on sliding mode phase since

the suggested ”learning law” for k(t) variation automatically takes into account the

presence of this term.

2.3.2 Adaptation procedure

ẋ (t) = f (x, t) + g (x1, t)u (x, t) + ξ (x, t) (2.16)

Consider the system (2.7). The adaptation (learning) law for the control gain k(t) can

be represented as
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k̇ (t) =


γ0k (t) Sign (θ (t))−M [k (t)− k+]+ +M [µ− k (t)]+

if 0 < µ ≤ k (t) ≤ k+

0 otherwise

(2.17)

where

θ (t) :=
∥∥∥[Sign (σt)]eq

∥∥∥− %,
% ∈

(√
2− υ,

√
2
)
, γ0, µ > 0

(2.18)

The gain k can vary in the range [µ, k+] where µ > 0 is a preselected minimal value of k,

M > ρk+, ρ > 0.

The function [z]+ represented above can be defined as

[z]+ :=

{
1 if z ≥ 0

0 if z < 0

}
, M > ρk+, ρ > 0

The vector-function v := [Sign(X(t))]eq is an average value, or a slow component of

discontinuous function Sign(x(t)) switching at high frequency and can be easily obtained

by a low pass filter, which filters out the high frequency component [24]:

µv̇ + v = Sign(σ (x))

fulfilling

v ' [Sign (σ (x))]eq

Certainly, the component values of vector v is in the range [−1, 1].

To justify the workability of the control algorithm (2.4) with the gain k (t) , given by

(2.17), notice that on the sliding surface σ (x) = 0 the ”equivalent control” (see [25]) can

be found from the equation
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σ̇ (x (t)) =

[
∂

∂x
σ (x)

]
ẋ = g (x1, t)u (x, t) + h (x) = 0

which leads to

0 = g (x1, t)u (x, t) + h (x) = −k(t) [Sign (σ (x))]eq + h (x)

and, as the result, to

[Sign (σ (x))]eq =


sign (σ1 (x))

sign (σ2 (x))
...

sign (σn (x))


eq

=
1

k(t)
h (x)

Hence, the vector [Sign (σ (x))]eq is differentiable so that

d

dt

∥∥∥[Sign (σ (x))]eq

∥∥∥ = − k̇

k2
‖h (x)‖+

1

k(t)

d

dt
‖h (x)‖

In finite time we obligatory obtain the regime when µ ≤ k (t) ≤ k+ and

k̇ = γ0k (t) sign (θ (t))

implying

d

dt

∥∥∥[Sign (σ (x (t)))]eq

∥∥∥ =
1

k(t)

[
−γ0 ‖h (x)‖ sign (θ (t)) +

d

dt
‖h (x)‖

]
(2.19)

Therefore for V (θ (t)) =
1

2
θ2 (t) we have

V̇ = θθ̇ = θ
d

dt

∥∥∥[Sign (σ (x))]eq

∥∥∥
=

1

k(t)
θ

[
−γ0 ‖h (x)‖ Sign (θ (t)) +

d

dt
‖h (x)‖

] (2.20)
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from the assumptions (1− 2) in the previous subsection one may conclude that

‖h (x)‖ ≤ h+ <∞, d

dt
‖h (x)‖ ≤ h (x)+

der <∞

Moreover, by (2.20) if θ (t0) = 0, then for any t ≥ t0 one has θ (t) = 0, k(t) ∈ [µ, k+] and

then by (2.18)

θ (t) :=
∥∥∥[Sign (σ (x))]eq

∥∥∥− % = 0

implying

∥∥∥[Sign (σ (x))]eq

∥∥∥ =
‖h (x)‖
k(t)

= %

and

‖h (x)‖
%

= k(t) ≥ µ

Hence

‖h (x)‖ ≥ %µ

and

V̇ =
1

k(t)
θ

[
−γ0 ‖h (x)‖ Sign (θ) +

d

dt
‖h (x)‖

]
≤

− 1

k(t)
γ0 ‖h (x)‖ |θ|+ 1

k(t)
|θ|h+

der ≤ −
%µ

k+
γ0 |θ|+

1

µ
|θ|h+

der =

−%µ
k+
γ0 |θ|

(
1− k+h+

der

%µ2γ0

)

Taking
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γ0 >
k+h+

der

%µ2

fulfilling

κ :=
%µ

k+
γ0

(
1− k+h+

der

%µ2γ0

)
> 0

we finally, obtain

V̇ ≤ −κ |θ| = −κ
√

2V

resulting to

V (θ (t)) = 0 for all t ≥ treach =

√
2

κ
√
V (x)

Notice that in (2.14)

|Φ (x, t)|
λ1

< k

and, moreover,

|Φ (x, t)|
λ1

≤ σ+ (f0 + f1 ‖x‖)
ho (1 + λ ‖x‖)

=

σ+ f0

ho

[
1 +

σ+
(
f−1

0 f1 − λ
)
‖x‖

1 + λ ‖x‖

]
≤ σ+ f0

ho

select in (2.17)

k+ > σ+ f0

ho

and the gain k(t) will be equal to k+ which results in the occurrence of this motion in

the surface σ (x) = 0.
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2.4 Near Singularity Problem

Here we resolve another principal problems for the realization of the sliding mode control,

which causes by the inverse of g (x1, t) (2.4) in the control action designing. Singular

configurations are particular poses of the end-effector, for which parallel robots lose their

inherent infinite rigidity, and in which the end-effector will have uncontrollable degrees

of freedom.

In this section the near-singularity condition of the platform is handled by implementation

of a new control law based on sliding mode with an inner regularization procedure. The

finite-time convergence of the closed-loop system by the designed control in the presence

of the external as well as internal disturbances/uncertainties is proved.

2.4.1 Near Singularity Analysis

Singularity is an important phenomenon in order to provide success in the motion of the

robots in terms of accomplishing the desired task. Singularity analysis of robots should

be performed before giving a task to the robot including the desired motion.

Compared with its serial counterparts, a parallel manipulator (or a closed-chain mecha-

nism or system) has a much more complex structure in terms of its kinematics, dynamics,

planning and control. In particular, the configuration space of a parallel manipulator is

not even explicitly known, it is implicitly defined by a set of constraint functions in-

troduced by the manipulator’s closure constraints. A parallel manipulator also has, in

addition to the usual end-effector singularities, different types of singularities such as

configuration space singularities and actuator singularities. Understanding the intrinsic

nature of the various types of singularities and their relations with the kinematic pa-

rameters and the configuration spaces is of ultimate importance in design, planning and

control of the system

The importance of singularities from an engineering perspective arises for several reasons

[26]:

Loss of freedom The derivative of the kinematic mapping or forward kinematics

represents the conversion of joint velocities into generalized end-effector velocities, i.e.



Adaptive Sliding Mode Control 28

linear and angular velocities. This linear transformation is generally referred to as the

manipulator Jacobian in the robotics literature. A drop in rank reduces the dimension of

the image, representing a loss of instantaneous motion for the end-effector of one or more

degrees.

Workspace When a manipulator is at a boundary point of its workspace, the manip-

ulator is necessarily at a singular point of its kinematic mapping, though the converse

is not the case. Interior components of the singular set separate regions with different

numbers or topological types of inverse kinematics. These are usually associated with a

change of posture in some component of the manipulator. Therefore knowledge of the

manipulator singularities provides valuable information about its workspace.

Loss of control A variety of control systems is used for manipulators. Rate control

systems require the end-effector to traverse a path at a fixed rate and therefore determine

the required joint velocities by means of the inverse of the derivative of the (known)

forward kinematics. Near a singularity, this matrix is ill-conditioned and either the control

algorithm fails or the joint velocities and accelerations may become unsustainably great.

Conversely, force control algorithms, well-adapted for parallel manipulators, may result

in intolerable joint forces or torques near singularities of the projection onto the joint

space.

Mechanical advantage Near a singular configuration, large movement of joint vari-

ables may result in small motion of the end-effector. Therefore there is mechanical advan-

tage that may be realised as a load-bearing capacity or as fine control of the end-effector .

Another aspect of this is in the design of mechanisms possessing trajectories with specific

singularity characteristics.

The search for singular configurations rests on the study of the singularities of the full

inverse kinematic jacobian matrix, which is usually obtained through a velocity analysis

or through an analysis of the mechanical equilibrium (see [26]). A direct analysis will thus

involve the calculation of the determinant of matrix the J−1 , which may be a complicated

task, even with symbolic computation software.

Researchers like Fichter [27] have intuitively analyzed particular cases of singularity for

the inverse jacobian matrix of a 6-degrees of freedom robot, and have obtained a certain
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number of cases. But intuition has its limits, and since the direct method is not satis-

factory, researchers have suggested methods based on the degeneracy of the screws that

are associated with the robot links [28]. These methods are equivalent to the geometric

approach that we will present, but may be more difficult to use. A preliminary result

on the geometry of the singularities was obtained by Cauchy [29]; this shows that the

singularity of an articulated octahedron could be obtained only for concave configurations
2.

Using the conventional sliding mode, the values of this matrix in the operational space

explode in the inverse calculation. It does not mean that the matrix is singular, but

the determinate of g (x1, t) on some time-intervals becomes very small and reaches the

so-called near-singularity condition, requiring the large control signals.

Near-singularity or ill-conditioned systems arise in many problems in modeling and sim-

ulation of physical, engineering, socio-economic and biological systems. These systems

are very sensitive to roundoff errors and, therefore, may pose problems during compu-

tation of the solution. During computing process, these errors induce small changes in

the coefficients which, in turn, result a large error in the solution. In [30] the well-known

modified (underrelaxed, damped) Newton method is extended in such a way as to apply

to the solution of ill-conditioned systems of nonlinear equations. In [31] the solution of

ill-conditioned systems of linear and/or non-Linear equations are tested via genetic algo-

rithms. The study of approximate input-output linearization of non-linear system with

fail to have a well defined relative degree is studied in [32]. For such systems, they pro-

vided a method for constructing approximate systems that are input-output linearizable.

2.4.2 Regularization of SMC

Consider the system (2.7)

ẋ (t) = f (x, t) + g (x1, t)u (x, t) + ξ (x, t) (2.21)

Here

2To see the geometry analysis of the singularities see 5
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g (x1) gᵀ (x1) > 0 for all x1 ∈ Rn

but det [g (x1) gᵀ (x1)] may be very close to zero provoking the near-singularity effect

during the SMC realization. The problem is to design a feedback control law u (x) that

derives the angular positions to desired values, that are the cartesian coordinate and

angular positions of the moving platform x∗:

lim
t→∞

x(t) = x∗

First, let us introduce new variable vector σ (δ) in the state space of the system, named

sliding surfaces

σ = Cδ1 + δ2, C = diag {C1...C6} , Ci > 0 (2.22)

where

δ = x− x∗ =

(
δ1

δ2

)
, δ1, δ2 ∈ Rn

For the system (2.21), the control signal

ut = −gᵀ
(
ggᵀ + ε2I

)−1 [(
ξ+ + ρ

)
Sign (σ) + Cδ2 + f (x, t)

]
(2.23)

Sign (σ) = (sign (σ1) , ..., sign (σn))ᵀ

sign (z) =


1 if z > 0

−1 if z < 0

∈
[
−1, 1

]
if z = 0

avoids the near-singularity problem and provides the desired behavior σ = 0 (2.22) in

finite time. Let T be an orthogonal matrix transforming ggᵀ to the diagonal form, i.e.,
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T ᵀGGᵀT = Λ, T ᵀT = TT ᵀ = I

Then

ggᵀ (ggᵀ + εI)−1 = (ggᵀ + εI − εI) (ggᵀ + εI)−1 =

I − ε (ggᵀ + εI)−1 = I − ε [TT ᵀ (ggᵀ + εI)TT ᵀ]−1 =

I − ε [T ((T ᵀggᵀT + εI))T ᵀ]−1 = I − [T (Λ + εI)T ᵀ]−1 =

I − εT (Λ + εI)−1 T ᵀ = I − T



ε

λ1 + ε
0 · · · 0

0
. . . 0

0 0 · · · ε

λn + ε

T
ᵀ = I − Ξ (ε)

Then the closed-loop system becomes

δ̇1 = δ2

δ̇2 = f (x, t)− [I − Ξ (ε)] [(η+ + ρ) Sign (σt) + Cδ2 + f (x, t)] + ξ (x, t)

(2.24)

where 0 < ε� 1 and

Ξ (ε) := T


ε

λ1 + ε
0 · · · 0

0
...

. . . 0
...

0 0 · · · ε

λn + ε

T ᵀ

‖Ξ (ε)‖ ≤ max
i=1,n

ε

λi + ε
=

ε

min
i=1,n

λi + ε
= m (ε)

(2.25)
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2.4.3 Stability analysis

Using the candidate of the Lyapunov function V (t) = 1
2
‖σ (δ (t))‖2 it drives to

V̇ = σ>σ̇ = σ>(Cδ̇1 + δ̇2) =

σ> (Cδ2 + F − [I − Ξ (ε)] [kSign (σt) + Cδ2 + F ] + ξ)

Denoting

η = Ξ (ε) (kSign (σt) + Cδ2 + F ) + ξ

we derive

V̇ = −k
6∑
i=1

|σi|+ σ>η ≤ −k ‖σ‖+ ‖σ‖ ‖η‖

≤ −‖σ‖
(
k [1− 6m (ε)]−m (ε)

(
Cδ+

2 + F
)
− ξ+

) (2.26)

Taking the control gain k as

k =
m (ε)

(
Cδ+

2 + F
)

+ ξ+ + ρ

[1− 6m (ε)]

for small enough ε it follows

k = ξ+ + ρ+O (ε) > ξ+ + ρ, ρ > 0

Then (2.26) becomes

V̇ ≤ −ρ ‖σ‖ = −ρ
√

2V

implying for a given V0
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0 ≤
√
V ≤

√
V0 −

ρ√
2
t

Hence after

tf = ‖σ‖ /ρ

it will result to V (t) = 0 for all t ≥ tf .

2.5 Solution of ODE with discontinuous right-hand

side

As is known, a solution of the differential equation

dx

dt
= f(t, x)

with a continuous right-hand side is a function x(t), which has a derivative and satisfies

this equation everywhere on a given interval. This definition is not, however, valid for

differential equations with discontinuous right-hand sides. As can be seen in the sliding

mode the sign has the following characteristics:

x = sign (t). For t < 0 we have x = −1, the solution being given by x = −t + c1; for

t > 0 we have x = 1, the solution being x = t+ c2 (Fig. 2.1).

Proceeding from the requirement of solution continuity for t = 0, we obtain

x(0) = lim
t→−0

(−t+ c1) = lim
t→+0

(t+ c2) x(0) = c1 = c2

Consequently the solution is expressed by the formula x(t) = |t| + c. For t = 0 the

derivative ẋ (t) does not exist.

Thus, the consideration of differential equations with discontinuous righthand side re-

quires a generalization of the concept of solution. In cases where the right-hand side of
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the equation ẋ = f(t, x) is continuous in x and discontinuous only in t, it usually proves

possible to generalize the concept of solution using only a mathematical argument. In

cases where the right-hand side of the equation is discontinuous in x, such simple math-

ematical arguments are often insufficient. Then the solution is defined by means of a

limiting process taking into account the physical meaning of a given problem.

The generalization of the concept of solution must necessarily meet the following require-

ments:

1) For differential equations with a continuous right-hand side the definition of a solution

must be equivalent to the usual one.

2) For the equation ẋ = f(t) the solutions must be the functions x(t) =
∫
f(t)dt+ c only.

3) Under any initial data x(t0) = x0 in a given region of the solution must exist (at least

for t > t0) and continue to the boundary of this region or to infinity, i.e. (t, x) → 0.

4) The definition of a solution must serve as a description of a fairly wide class of processes

in physical systems. In order that equations with discontinuous right-hand sides be

investigated by the well-known methods, the following conditions should also be satisfied:

5) The limit of a uniformly convergent sequence of solutions must be a solution.

6) Under the commonly-used changes of variables a solution must be transformed into a

solution.

Many results from the theory of differential equations have already been extended (some-

times with necessary alterations) to differential equations with discontinuous right-hand

sides. Such equations are usually analyzed by the same methods as differential equations

with continuous right-hand sides.

Filippov and Utkin (see [33], [10]) have proposed two different approaches to define the

solution of these dynamical systems. In case of linear systems, these two approaches are

equivalent, but in case of nonlinear systems, the ways to extend the vector field on the

sliding surface is generally different.
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Figure 2.1: The solution of ẋ = sign(t)

2.5.1 Filippov solution for sliding mode dynamics

Consider the discontinuous differential system:

ẋ(t) = f(x(t)) =

{
f1(x(t)) , h(x) < 0

f2(x(t)) , h(x) > 0
, x(0) = x0 ∈ Rn (2.27)

Above, and henceforth, we suppose that the state space <n is split into two subspaces∑
1 and

∑
2 by a surface such that Rn =

∑
1 ∪
∑
∪
∑

2.
∑

is defined by the scalar event

function h : Rn → R, so that the subspaces
∑

1 and
∑

2, and the
∑

, are characterized

as

∑
1 = {x ∈ Rn |h (x) < 0}∑
2 = {x ∈ Rn |h (x) > 0}∑
= {x ∈ Rn |h (x) = 0}

(2.28)

We will also assume throughout that the gradient ∇h(x) 6= 0 at all x ∈
∑

, and write

n(x) = ∇h(x)
‖∇h(x)‖ for the unit normal to

∑
.

In (2.27), the right-hand side f(x) can be assumed to be smooth on
∑

1 and
∑

2 separately,

but it is usually discontinuous across
∑

. More precisely, we will assume that f1 is Ck;

k ≥ 2, on
∑

1 ∪
∑

and f2 is Ck; k ≥ 2 on
∑

2 ∪
∑

.

As long as x 6= 2, (2.27) is a standard differential equation. The interesting case is when

x ∈
∑

. In this case, if the condition
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[
n>(x)f1(x)

]
> 0 and

[
n>(x)f2(x)

]
< 0 (2.29)

is satisfied at x ∈
∑

, then one has so-called (attractive) sliding motion on
∑

. Filippov

defines this sliding motion as the solution of the differential system

ẋ(t) =


f1(x(t)) , h(x) < 0

fF (x(t)) , h(x) = 0

f2(x(t)) , h(x) > 0

(2.30)

where the vector field on the surface is taken to be in the convex hull co(f1, f2) of f1, f2,

that is:

fF (x) = [$f2 (x) + (1−$) f1 (x)] , x ∈
∑

,

and $(x) ∈ [0; 1] chosen so that n>(x)fF (x) = 0, that is

$(x) =
n>(x)f1(x)

n>(x) (f1(x)− f2(x))
(2.31)

We remark that Filippov’s construction defines the vector field on the sliding surface as

that vector in co(f1, f2) which is tangent to
∑

.

We stress that there is one unknown in Filippov’s contraction, the scalar valued$ function

in (2.31).

2.5.2 Utkin solution for sliding mode dynamics

To introduce Utkin’s approach, we need to consider a system of the type (2.27), with

additional control variables. To be precise, we consider the system

ẋ = f (x, u) where

{
u (x) = u1 (x) when h (x) < 0

u (x) = u2 (x) when h (x) > 0
(2.32)

where u1 and u2 are Ck functions of x defined on
∑

1 ∪
∑

and
∑

2 ∪
∑

, respectively, and

taking values in Rp. Notice that the system in (2.32) has the same functional form of f ,
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and discontinuity in the vector field arises because of the discontinuous control. Again,

the interest is in the case of attracting sliding motion, when x ∈
∑

: [n>(x)f(x;u1(x))]

> 0 and [n>(x)f(x;u2(x))] < 0.

The problem can be trivially recast in the form of (2.27). In fact, letting f1(x) = f(x;u1)

and f2(x) = f(x;u2), one obtains a system formally of the form (2.27). So doing, the

Filippov extension in the case of sliding motion will be the same as before, that is:

ẋ =


f1 (x) = f (x, u1 (x)) , h (x) < 0

fF (x) , h (x) = 0

f2 (x) = f (x, u2 (x)) , h (x) > 0

(2.33)

where

fF (x) = [$f (x, u2 (x))] + (1−$) f (x, u1 (x)) (2.34)

and $ is such that n>(x)fF (x) = 0 , as in (2.31).

On the other hand, Utkin (see [10]) proposed a different way to deal with this problem,

the equivalent control approach. For sliding motion (that is, for x ∈
∑

), he proposes to

take the vector field obtained by choosing f(x, u) so that f(x, u) will lie in the tangent

plane to
∑

at x. Formally, Utkin’s construction is as follows:

ẋ =


f1 (x) = f (x, u1 (x)) , h (x) < 0

fU (x) = f (x, ueq (x)) , h (x) = 0

f2 (x) = f (x, u2 (x)) , h (x) > 0

(2.35)

where the equivalent control ueq must be chosen so that f(x, ueq(x)) lies in the tangent

plane to
∑

at x : n>(x)f(x, ueq(x)) = 0. In general (i.e., when u ∈ Rp, p > 1), this is an

underdetermined system. Utkin’s approach is to choose ueq in the convex hull of u1 and

u2:

ueq (x) = $u2 (x) + (1−$)u1 (x) (2.36)

and $ ∈ [0; 1] is chosen so that (this is a nonlinear system to be solved)

n>(x)fU (x) = 0
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Figure 2.2: Filippov’s and Utkin’s approach.

So, there is one unknown in Utkin’s construction, the scalar valued function in (2.36)

which must be found by solving a (single) nonlinear equation.

Utkin’s approach is geometrically different from Filippov’s approach. Among the vectors

in {f(x;u) |u = co(u1, u2)}, Utkin takes the one tangent to at x (see Figure 2.2). In

general, Filippov’s and Utkin’s vector are different. They coincide directionally in case

the convex hull is a straight line, and also in magnitude when f is linear with respect to

the control u.



Chapter 3

Feedback Sliding Mode

Observer-Controller

In this chapter an implementation of the proposed adaptive type of high order sliding

mode controller-observer help us to provide a high performance nonlinear feedback control

for the system manipulation in presence of unmodelled dynamics and perturbations. The

novelly observer for velocity estimation is designed on the base of the classical second-

order (super-twist) algorithm [34]. This observer provides a high accuracy of estimate

the velocity values of the system guarantying the convergence of the state error estimates

and tracking this error into a small zone containing the origin. To orient the system in

presence of unmodelled dynamics and perturbations and in order to achieve chattering

attenuation a high efficiency adaptive sliding mode controller is used [25, 34, 35].

In this chapter

• The SM controller, which uses the state estimates obtained on-line by the adaptive

Super-Twisting observer, is presented.

• The gain parameters k = k (x̂, t) of the controller as well as λ = λ (x̂, t) of the

observer are admitted to be time-varying and depending on available current mea-

surements. In view of that the considered controller is referred to as an adaptive

one.

39
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• It is shown that the deviations of the generated state estimates from real state

values together with a distance of the closed-loop system trajectories to a desired

sliding surface reach the, so-called, µ-zone around the origin in finite time.

• It is shown that µ-zone may be done as small as we wish by the corresponding reg-

ularizing parameters selection (fulfilling some constrains) of the adaptation mecha-

nism.

• It is shown that the initial values of the observer should not be so far from the

real states of the dynamic plant; this admissible zone for initial estimates value is

calculated analytically.

• The application of the suggested controller is illustrated by the orientation of a

tethered satellite system in a required position. The presented simulation results

demonstrate very high efficiency of the suggested approach.

3.1 Feedback control design

The designed control law provides the desired performance of the corresponding nonlinear

model in the presence of disturbances/uncertainties. This work deals with a new adap-

tive SMC feedback design when the angular velocities are not measured directly and are

estimated on-line by the second-order Sliding Mode (SM) observer. Such approach for

designing of orientation control can reduce the cost of the controlled system, avoid the

fragility of angular velocity sensors, and eliminate the difficulty of the sensors installation

in the satellite system. However, due to the high-order multiple variables and nonlin-

earity of the considered system, the estimation of angular velocities in the presence of

disturbances and uncertainties still remains very challenging.

Recently the design of such observers for nonlinear systems has received a great deal of

attention: the standard Luenberger [36, 37] ,the SM observers [34, 38, 39], the extended

Kalman filter [40, 41] andH∞ observers [42]. Among them, adaptive SM observers provide

an attractive technology due to its robustness against disturbances, parameter deviations

and measurement noise [34]. The SM observers found a wide use in different fields. Some

works [43–45] propose the adaptive SM observer for sensorless induction motor drive. In

[38] the adaptive SM observer - controller system was proposed for the induction machine

control design under unknown parameters and partial state variable information.
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The papers [39, 46] consider the application of a particular SM observer to the problem of

fault detection and isolation. In [47] the fault detection and estimation issues for a class of

nonlinear systems with uncertainty were considered based on the equivalent output error

injection approach. There the particular design of SM observer was presented where

its parameters satisfy some LMI constraint. In [48] the authors proposed a feedback

linearization-based controller with a high-order SM observer running parallel and applied

to a quadrotor unmanned aerial vehicle. The high-order SM observer works as an observer

and estimator of the effect of the external disturbances such as wind and noise.

The problem treated in this section can be described as follows:

- first, estimate on-line unknown variables

- second, use these estimates to design a SM controller.

The parameters of the controller as well as the observer are admitted to be time-varying

and depending on available current measurements.

Consider the state space representation in the vector form:

ẋ1 (t) = x2 (t)

ẋ2 (t) = f (x, t) + g (x1, t)u (x, t) + ξ (x, t)

y (t) = x1 (t)

(3.1)

- x1 (t) , x2 (t) ∈ IRn are the state of the system at time t ∈ IR+;

- x (t) :=
(
x>1 (t) , x>2 (t)

)> ∈ IR2n;

- y (t) ∈ IRn is a measurable output at time t ≥ 0;

- u (x, t) ∈ IRn is a control to be designed;

- ξ (x, t) ∈ IRn is unmeasurable term including the external as well as internal perturba-

tions and uncertainties;

- f (x, t) ∈ IRn, g (x1, t) ∈ IRn×n.

Notice that in the model (3.1) only the half of coordinates (x1 (t)) are available in time.
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3.1.1 Velocity estimation

To estimate the non-measurable coordinate x2 (t) in (3.1) we apply a popular second-order

sliding mode (super-twisting ) observer [34]:

·
x̂1 = x̂2 + λ ‖y − x̂1‖1/2 Sign (y − x̂1)

·
x̂2 = f (x, t) + g (x̂, t)u+ αSign (y − x̂1)

(3.2)

where the scalar positive parameters α and λ are assumed to be constant in the original

publications. The vector function Sign (z) is defined as follows

Sign (z) := (sign (z1) , ..., sign (zn))>

sign (zi) :=


1 if zi > 0

−1 if zi < 0

∈ [−1, 1] if zi = 0

(3.3)

Define the new variable e := (x− x̂) which characterizes the error of estimated state and

is governed by the following equations:

·
e1 = e2 − λ ‖e1‖1/2 Sign (e1)

·
e2 = fe (t, x1, x2, x̂2)− αSign (e1)

(3.4)

where

fe (t, x1, x2, x̂2) = f (x, t) + ξ (x, t) (3.5)

describes unmodelled dynamics and external perturbation effects. Obviously, it is un-

measurable. Notice that vector

e1 = x1 − x̂1 = y − x̂1 (3.6)

is measurable and available in time.
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3.1.2 Control design

Sliding surface The problem which we are interested in is to design a feedback control

law u (x̂, t) that derives the states x (t) of the systems to desired values. i.e.,

lim
t→∞

x1 = x∗1, lim
t→∞

x2 = 0

These requirements may be expressed in another way using Sliding Mode Approach. To

do that let us introduce new variable σ (x) in the state space of the system, defining the

”ideal” sliding surface [10]:

σ (x) := ẋ1 + C (x1 − x∗1) = x2 + C (x1 − x∗1) = 0 (3.7)

where x∗1 is desired state value and C = diag(c1,c2, ..., cn) is a diagonal matrix with

positive elements. Arriving to this surface making σ (x (t))→ 0 when t→∞, the system

will slide to the origin with exponential rate.

3.2 Sliding mode controller and observer adaptation

For the following ideal sliding surfaces:

σ (x) = [σ1 (x̂) , ..., σn (x̂)]>

Sign (σ (x̂)) = [sign (σ1 (x̂)) , ..., sign (σn (x̂))]>

σi (x̂) = x̂2,i + ci
(
x̂1,i − x∗1,i

)
, i = 1, ..., n

(3.8)

we need to define the positive adaptation parameters

k (x̂, t) , λ (x̂, t) , α (x̂, t) (3.9)

which provide the attainment in a finite time.
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To resolve this problem we propose an adaptive sliding mode controller u (x̂, t) as

follows

u (x̂, t) = −k (x̂, t) [g (x̂, t)]−1 Sign (σ (x̂)) (3.10)

where the state estimates x̂ are generated by the observer (3.2) with varying parameters:

·
x̂1 = x̂2 + λ (x̂, t) ‖y − x̂1‖1/2 Sign (y − x̂1)

·
x̂2 = f (x̂, t) + g (x̂, t)u+ α (x̂, t) Sign (y − x̂1)

(3.11)

3.2.1 Resulting algorithms

If under the assumptions that f (x, t) and g (x, t) are Lipschitzian with respect to the

first argument and measurable on t the adaptive parameters k = k (x̂, e1, t) (3.9) in the

controller (3.10) and λ (x̂, t) , α (x̂, t) in the observer (3.11) are designed as

k = k (x̂, e1, t) := (p0)−1 (ρ+κ (x̂, e1, t) + γ
√

p0
2

)
, ρ ≥

√
p0
2

κ (x̂, e1, t) :=
∥∥∥f (x̂, t) + αSign (e1) + C

[
x̂2 + λ ‖e1‖1/2 Sign (e1)

]∥∥∥
 (3.12)

and

λ (x̂, t) :=


η1(γ)+

√
p1
2

p1
√
‖e1‖

if
√
‖e1‖ ≥ ε > 0

η1(γ)+
√

p1
2

p1ε
if

√
‖e1‖ < ε

α (x̂, t) := α > 0


(3.13)

then we may guarantee that the ”storage” function
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V (t) := V (σ (x̂ (t)) , e1 (t) , e2 (t)) = p0
2
‖σ (x̂ (t))‖2 + p1

2
‖e1 (t)‖2 + p2

2
‖e2 (t)‖2

p0, p1, p2 > 0 and p0 + p1 + p2 = 1

(3.14)

approaches to µ-zone in the finite time tf , that is, for all t ≥ tf = γ−1
√

2W (0) we have

W (t) :=
[√

V (t)− µ
]2

+
= 0 (3.15)

where

η0 (α) := p2e
+
2

(
α
√
n+
√

2ξ+ +
√

2Lfe
+
2

)
+γ
√

p2
2

η1 (γ) := γ
√

p1
2

+
(
p1 +

√
2Lfp2

)
e+

2 , γ > 1

e+
2 =

2c√
b2 + 4ac+ b

=
2√(

b

c

)2

+ 4
a

c
+
b

c

=

2√√√√√
 √

2
(γ−1)

√
p1+

 2
√

Lf

(γ−1)
+

(α
√
2n+2ξ+)

(γ−1)ε
10
27

 p2√
p1

2

+
216
√

Lf

(γ−1)10ε

p2

p1

+
√
2

(γ−1)

√
p1+

 2
√

Lf

(γ−1)
+

(α
√
2n+2ξ+)

(γ−1)ε
10
27

 p2√
p1

F1 (p1) :=
√
p1r1 +

p2√
p1

r2 +

√(
√
p1r1 +

p2√
p1

r2

)2

+
p2

p1

r3

(3.16)

where
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r1 =

√
2

(γ − 1)

r2 =
2
√
Lf

(γ − 1)
+

(
α
√

2n+2ξ+
)

(γ − 1) ε10
27

r3 =
216
√
Lf

(γ − 1) 10ε

and

µ0 := 2
F1

[√
2Lfp2

2
F1

+ p2

(
α
√
n+
√

2ξ+
)]

+ γε
√

210
27

√
p1

µ1 (ε) :=
√

p2
2

+ ε10
27

(
p1 +

√
2Lfp2

)
µ := µ0

(
α, γ, e+

2

)
+ µ1 (ε) e+

2 = F2

2

F1

[√
2Lfp2

2

F2

+ p2

(
α
√
n+
√

2ξ+
)]

+
γε
√

210

27

√
p1+

r4 +
r5

F1

+
r6

F2
1

(3.17)

where

r4 =
γε
√

210

27

√
p1

r5 = 2
[
p2

(
α
√
n+
√

2ξ+
)

+
√

p2
2

+ ε10
27

(
p1 +

√
2Lfp2

)]
r6 = 4

√
2Lfp2

and

The initial values of the observer x̂2 (t0) should not be so far from the real values x2 (t0)

thus fulfilling
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‖x2 (t0)− x̂2 (t0)‖ ≤ e+
2

3.2.2 Proof of the main result

A) Calculating the time derivative of the storage function (3.14) on the trajectories of

the considered dynamics we get (omitting the arguments dependence)

V̇ = p0σ (x̂)> σ̇ (x̂) + p1e
ᵀ
1ė1 + p2e

ᵀ
2ė2 = p0σ (x̂)>

(
d
dt
x̂2 + C d

dt
x̂1

)
+ p1e

ᵀ
1

[
e2 − λ ‖e1‖1/2 Sign (e1)

]
+ p2e

ᵀ
2 [Fe − αSign (e1)] ≤ −kp0σ (x̂)> Sign (σ (x̂)) +

p0σ (x̂)>
[
f (x̂, t) + αSign (e1) + c1

(
x̂2 + λ ‖e1‖1/2 Sign (e1)

)]
+

p1e
ᵀ
1e2 − λp1 ‖e1‖3/2 +

√
2p2 ‖e2‖

(√
Lf ‖e‖+ ξ+

)
+ αp2

√
n ‖e2‖

which leads to

V̇ ≤ ‖σ (x̂)‖ [−kp0 + κ (x̂, e1, t)]− λp1 ‖e1‖3/2 +

‖e2‖
[
p1 ‖e1‖+

√
2p2

√
Lf (‖e1‖+ ‖e2‖) + p2

(
α
√
n+
√

2ξ+
)]

where

κ (x̂, e1, t) :=
∥∥∥f (x̂, t) + αSign (e1) + C

[
x̂2 + λ ‖e1‖1/2 Sign (e1)

]∥∥∥
Adding and subtracting the term

γ
[√

p0/2 ‖σ (x̂ (t))‖+
√
p1/2 ‖e1 (t)‖+

√
p2/2 ‖e2 (t)‖

]
which is more or equal to γ

√
V (γ > 0) , we derive
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V̇ ≤ −γ
√
V + ‖σ (x̂)‖

[
−kp0+κ (x̂, e1, t) + γ

√
p0
2

]
−‖e1‖

(
λp1

√
‖e1‖−γ

√
p1
2

)
+ ‖e2‖

[
p1 ‖e1‖+p2

√
2Lf (‖e1‖+ ‖e2‖) +p2

(
α
√
n+
√

2ξ+
)

+γ
√

p2
2

]
If in time t ≥ 0 we may guarantee that

‖e2 (t)‖ ≤ e+
2 (3.18)

then from the last inequality we obtain

V̇ ≤ −γ
√
V − ‖σ (x̂)‖

[
−kp0+κ (x̂, e1, t) + γ

√
p0
2

]
−‖e1‖

[
λp1

√
‖e1‖−η1

(
γ, e+

2

)]
+η0

(
α, e+

2

) (3.19)

with

η0

(
α, e+

2

)
:= e+

2

[√
2Lfp2e

+
2 + p2

(
α
√
n+
√

2ξ+
)]

η1

(
γ, e+

2

)
:=
(
p1 +

√
2Lfp2

)
e+

2 −γ
√

p1
2

(3.20)

Taking ρ > 0 and defining k = k (x̂, e1, t) as in (3.12), from (3.19) we obtain

V̇ ≤ −γ
√
V − ρ ‖σ (x̂)‖

−‖e1‖
[
λp1

√
‖e1‖−η1

(
γ, e+

2

)]
+η0

(
α, e+

2

) (3.21)

where η0 (α) and η1 (γ) are defined in (3.20). Introduce the Lyapunov function

W :=
[√

V − µ
]2

+
, µ > 0 (3.22)

for which (in view of (3.21)) we have
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Ẇ = dW
dV
V̇ = −γ

[√
V − µ

]
+

+ 1√
V

[√
V − µ

]
+
×

[
−ρ ‖σ (x̂)‖−‖e1‖λp1

√
‖e1‖+ ‖e1‖ η1

(
γ, e+

2

)
+η0

(
α, e+

2

)] (3.23)

Let us try to select positive λ,α, ρ, µ such that

Φ :=
[√

V − µ
]

+

[
−ρ ‖σ (x̂)‖−‖e1‖λp1

√
‖e1‖

+ ‖e1‖ η1

(
γ, e+

2

)
+η0

(
α, e+

2

)]
≤ 0

(3.24)

If ρ ≥
√
p0/2, then ρ ‖σ (x̂)‖+

√
p1/2 ‖e1 (t)‖+

√
p2/2 ‖e2 (t)‖ ≥

√
V

and

Φ ≤ −
√
V
[
− [µ]+−

(
η0+

√
p2/2e

+
2 + ‖e1‖

(
η1+

√
p2/2− λp1

√
‖e1‖

))]
(3.25)

Select λ as follows

λ =


η1(γ,e+2 )+

√
p1/2

p1
√
‖e1‖

if
√
‖e1‖ ≥ ε > 0

η1(γ,e+2 )+
√
p1/2

p1ε
if

√
‖e1‖ < ε

(3.26)

Then

‖e1‖
(
η1

(
γ, e+

2

)
+
√
p1/2− λp1

√
‖e1‖

)
=

0 if
√
‖e1‖ ≥ ε

‖e1‖
(
η1

(
γ, e+

2

)
+
√
p1/2

)(
1−

√
‖e1‖/ε

)
if
√
‖e1‖ < ε

Taking into account that x− x3/2 ≤ 10/27 for all x ≥ 0 with x = ‖e1‖ we obtain
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‖e1‖
(
η1

(
γ, e+

2

)
+
√
p1/2

)(
1−

√
‖e1‖/ε

)
≤ ε10/27

(
η1

(
γ, e+

2

)
+
√
p1/2

)
which by (3.5) implies

Φ ≤ −
[√

V−µ
]

+

[√
V−

(
η0

(
α, e+

2

)
+
√
p1/2e

+

2 + ε10/27
(
η1

(
γ, e+

2

)
+
√
p1/2

))]

Taking µ as in (20) the last inequality becomes

Φ ≤ −
[√

V−µ
]

+

[√
V−µ

]
= −

[√
V−µ

]2

+
≤ 0

fulfilling (3.24). Based on (3.23) we get

Ẇ ≤ −γ
[√

V − µ
]

+
= −γ

√
W (3.27)

implying Wt = 0 for all t ≥ tf = 2γ−1
√
W (0).

B) To complete the proof we need to show that if (3.18) is fulfilled in time t0, it will be

valid for any other time more than t0. By (3.27) we have

√
W (t0 + ∆t) ≤

√
W (t0)− γ∆t/2

or, equivalently,

[√
V (t0 + ∆t)− µ

]
+
≤
[√

V (t0)−µ
]

+
−γ/2∆t <

[√
V (t0)− µ

]
+

a) If
√
V (t0) ≤ µ we have

√
V (t0 + ∆t) ≤ µ for any small ∆t > 0 and, as the result,

‖e2 (t0 + ∆t)‖ ≤
√

2/p2

√
V (t0 + ∆t) ≤

√
2/p2

[
µ0

(
α, γ, e+

2

)
+ µ1 (ε) e+

2

]
To fulfill
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√
2/p2

[
µ0

(
α, γ, e+

2

)
+ µ1 (ε) e+

2

]
:= e+

2

it is sufficient to realize

√
2Lfp2

(
e+

2

)2
+
[
ε10

27

(
p1 +

√
2Lfp2

)
+ p2

(
α
√
n+
√

2ξ+
)]
e+

2 = (γ − 1) ε10
27

√
p1
2

selecting e+
2 as in (3.16). This means that for t0 = 0 the initial values of the observer

should satisfies ‖x2 (t0)− x̂2 (t0)‖ ≤ e+
2 .

b) If
√
V (t) > µ, then

√
p2
2
‖e2 (t+ ∆t)‖≤

√
V (t+ ∆t)≤

√
V (t)−γ

2
∆t <

√
V (t)

and one can take

e+
2 :=

√
2
p2
V (0) ≤

√(
p0
p2
‖σ (x̂ (0))‖2 +p1

p2
‖e1 (0)‖2 +

(
e+

2

)2
)

which is valid for any e+
2 . This means that the selection of e+

2 as in (3.16) covers both

cases a) and b). Theorem is proven.

3.2.3 Optimization of the controller parameters

The control algorithm (3.12) contains three free parameters p0, p1, p2 which should be

selected in such a way that the resulting behavior would be as better as possible. Without

loss of generality we may select the parameters p0, p1 and p2 of the controller as follows

p0 + p1 + p2 = 1

implying

p2 = 1− p1 − p0 (3.28)
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Indeed, since

arg min
u∈Uadm

V = arg min
u∈Uadm

1

p0 + p1 + p2

V

the multiplication of the function V by any positive constant does not change the optimal

control parameters. If we fix the value p0 ∈ (0, 1), then in view of (3.28) we have only

one free parameters p1 ∈ (0, 1) which should be selected to fulfill the following optimality

requirements:

1) to make the ”workability zone” e+
2 =

2

F1 (p1)
as much as possible which corresponds

to the minimization of the function

F1 (p1) :=
√
p1r1 +

1− p1 − p0√
p1

r2+√(
√
p1r1 +

1− p1 − p0√
p1

r2

)2

+
1− p1 − p0

p1

r3 → min
p1∈(0,1)

2) to make the convergence zone µ minimal possible one which corresponds to the

minimization of the function

µ = F2 (p1) := r1 +
r2

F1 (p1)
+

r3

F2
1 (p1)

→ min
p1∈(0,1)

One can see that we deal with the multi-functional optimization problem

F1 (p1)→ min
p1∈(0,1)

F2 (p1)→ min
p1∈(0,1)

and it is clear that simultanious optimization two different functions by the same argu-

ments p1 is impossible. That’s why we need to apply the, so-called, ”Pareto-set approach”

[49]. A standard technique for generating the Pareto set in multicriteria optimization

problems is to minimize (convex) weighted sums of the different objectives for various

different settings of the weights. Pareto efficiency, or Pareto optimality, is a state of allo-

cation of resources in which it is impossible to make any one individual better off without

making at least one individual worse off. The term is named after Vilfredo Pareto (1848–

1923), an Italian engineer and economist who used the concept in his studies of economic

efficiency and income distribution. Many real-world problems involve simultaneous opti-

mization of several incommensurable and often competing objectives. Usually, there is
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Figure 3.1: The set of Pareto optimal points.

no single optimal solution, but rather a set of alternative solutions. These solutions are

optimal in the wider sense that no other solutions in the search space are superior to

them when all objectives are considered. They are known as Pareto-optimal solutions.

The concept has applications in academic fields such as economics, engineering, and the

life sciences [50].

In our case the Pareto set looks as in the Fig.3.1.

It this figure

P is the Pareto set,

Futop =

(
min

p1∈(0,1)
F1 (p1) , min

p1∈(0,1)
F2 (p1)

)
is the utopia point,

πP {Futop} is the projection of the utopia point Futop to the pareto set.

Definition. The parameters p∗1 and p∗2, corresponding to the point πP {Futop} on the

Pareto set, we will referred to as the optimal parameters of the control algorithm.



Chapter 4

Description of Mechanical Systems

4.1 Tethered Satellite Systems

Traditionally launch vehicles are used for the delivery of a payload from Earth to a

desired orbit. In recent decades, several alternative delivery schemes were suggested.

Their main goal is to reduce the cost of delivery operation by refusing to use the last

stage of the launch vehicle or totally ignore the usage of carrier rockets. Recently many

works discussing several methods of transfer of payload into a higher orbit using TSS’s

were published [12].

They consist of two or more bodies connected with long high-strength tethers accomplish-

ing orbital flight ability to transfer energy and momentum from one object to another,

and, as a result, they can be used to provide space propulsion without consuming pro-

pellant.

TSS varies from traditional spacecraft with three main features. The first is a large

length providing a stable orientation that is aligned along the local vertical in orbit and

on the ends of the system and creates a small artificial gravity. The second feature is

a changeable configuration flexibility: the ability to change the length of the cables for

the realization of different operations. This allows adjusting the relative position and

orientation of devices, attaching and detaching objects from tethers, moving payloads

along the tether, etc. The third difference is the active interaction of the conductive

tether with the external environment, primarily with the magnetic field of the Earth and

54
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the ionosphere, allowing TSS to work in different operation regimes like generator, motor,

electricity transmission and radiative modes. Creation of carbon nano-tubes (a material

with the strength of two times more than steel with five times lower specific gravity)

provides realization of projects until recently had seemed fantastic [51].

The most ambitious and unwieldy project for payload delivery to orbits is the space

elevator, which consists in a TSS that connects the Earth’s surface with the space station

located in the geostationary orbit. The centrifugal force ensures the stability of the

structure. The payload delivers to an orbit by moving along the tether lift [12]. More

realistic are the concepts of space escalator and momentum exchange tether. The escalator

is a radially oriented TSS constantly in an orbit. The concept is to bring off the satellite

into low orbit, where attaches to the lower end of the escalator, then special lifter attracts

it along tether to other top. There the satellite undocks and continues its mission in higher

orbit. In momentum exchange TTS as in the previous method, we should firstly transport

the payload from the ground to some intermediate point in the upper atmosphere. There,

instead of escalator, we use an orbiting spinning TSS. The difference is that rotating TSS

catches a payload in a low Earth orbit, carries it for a short time, and then throws it into

a higher energy orbit. These systems minimize, and perhaps, even eliminate, the use of

rockets for Earth-to-orbit launch of satellite payloads and even passengers [52].

Recently, a combined concept of Momentum eXchange and Electrodynamic Reboost,

named MXER, was proposed for propellantless orbital transfer. To provide the tether

facility to boost multiple payloads, TSS has electrodynamic reboosting system that gives

TSS the capability to restore its orbital energy and momentum after each payload transfer

operation. The idea is to generate thrust through electrodynamic interactions of tether

facility with a portion of the conducting wire with the Earth’s magnetic field. By properly

controlling the tether current during an orbit, the tether facility can reboost itself to its

original orbit [52].

The main problems discussed in this paper is the TSS orientation in the orbit. Rotating

TSS is a highly stable but with a rough orientation facility. The perturbation on main

space station and payload can be so great that the implementation of such projects

becomes meaningless. The incorrect orientation of the TSS at the time of catching or

tossing a payload can cause that TSS/payload rendezvous may never happen or the

payload will pass to incorrect orbit or trajectory. However, creating the desired control

torque due to the interaction with in/out plane angles, we can achieve both high accuracy
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of stabilization and attitude control systems. Thus, the introduction of a system with

active control points opens up the possibility of creating a new generation of high-precision

orientation and stabilization TSS.

4.1.1 Dynamics and control of TSS

Generally speaking, the dynamics and control of any TSS are quite complex. Because

of their overall flexibility, the tethers are strongly susceptible to undergoing a compli-

cated set of librations and vibrations when they are placed into a space environment and

coupled with flexible satellites. The problem becomes even more challenging when the

deployment and retrieval parts of a TSS mission are taken into consideration because the

liberations and vibrations of tether can grow dramatically due to the effect of the Coriolis

accelerations.

Over the past decades, numerous studies have been made to gain an insight into the

complex dynamics and control of TSSs based on a great variety of models. The simplest,

but reasonable model for a TSS is composed of a group of massive bodies connected by

massless tethers, with the attitude dynamics of satellites and tether flexibility neglected,

and often referred to as a ”dumbbell” system when only two massive bodies are involved.

The oscillatory motions of a tether can be exploited for swing-up or spin-up in some

scenarios, for example, for rotating tethered formation flying. However, if not carefully

controlled, the motions with large amplitudes may result in an excessively high tensional

stress beyond the strength of tether material and may lead to the failure of a whole

TSS. In addition to the considerations for safety, the performance requirements in TSS

missions are often quite demanding from a viewpoint of control. For example, in the

case of space interferometry applications, the tethered satellites must act as a single

unit with precise relative position, and need to be accurately pointed towards the same

inertial target while keeping a precise relative attitude for the purpose of optical beam

transmission. Furthermore, the establishment of engineering feasibility is usually only

the baseline requirement for the control of a TSS, in which high performance is essential

to ensure the mission success. However, it is a fundamental, but open problem in control

theory to synthesize the nonlinear optimal control for such a complex system. It is also

necessary to notice that one peculiarity of controlling a TSS is how to apply the control

action to the system. Even though the control action can be realized through thrusters,

a simple but effective way is to realize the control by adequately adjusting the tether
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tension, the tether length, the attachment position (offset) or the combinations of those

parameters. These approaches are permitted by the TSS configuration but not feasible

with other satellites [53].

4.1.2 Model and the equations of motion

As one can see from Fig. 4.1, the rocket or hypersonic airplane brings the payload to

circular low earth orbit. Then, a special grapple assembly in the lower part of the rotating

TSS in a perigee of the elliptical equatorial Earth orbit catches the payload. After the

capture, TSS and grapple assembly lift the payload away from the previous orbit and

continue their rotation around the boost facility mass center, which is now in a more

circular orbit. The grapple and payload continues rotating until their highest altitude at

the point where the payload must be tossed into a desired higher orbits or transfer orbit

to other planets. The payload’s inertial velocity has now increased by approximately

twice difference between the orbiting facility’s average velocity and the payload’s inertial

velocity. In other words, the basic idea is to boost one body into a higher orbit at the cost

of deboosting the other through the momentum exchange and transfer of orbital energy

between [54].

In this article, we analyze the rotating TSS orientation before and after payload’s ren-

dezvous. Tether/payload rendezvous in MXER is based on the concept of matching the

position and velocity of the tether tip and the payload at one point in time and space.

Unlike the traditional vehicles, where the rendezvous operations take place over span

times of several minutes to several hours at very low relative velocity, the rendezvous and

mating of the tether tip and the payload happens nearly instantaneously, and must be

tolerant to very small velocity and position errors.

The ideal zero-relative error case is probably impossible in practice. So the tether tip must

be equipped with a catch mechanism that can tolerate some level of positional and velocity

error. But, these systems just allow some small tolerances. With active orientation

method rotation around the mass center with desired angular velocities, we will get bigger

tolerance limits, making the rendezvous windows bigger, and the operation realization

more realistic. This active control can be made by a combination of electrodynamic

tether/ chemical rocket, with the tether providing electric power and the rocket providing

thrust to compensate the magnetic drag on the tether. It turns out that this combination
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Figure 4.1: The Momentum-eXchenge concept illustration.

is more mass fuel-efficient than using the rocket fuel to directly generate power in a fuel

cell.

We consider TSS, which consists of

- a carrier satellite mass M with the principal axes of inertia which does not coincide

with the center of mass of TSS;

- a tether length l and mas ml;

- and the docking module mass md without and m with the attached payload.

Because of big mass value of the carrier satellite and the tether comparing to the second

end-body, we use md = m. In this work, we consider that both carrier satellite and

payload are solid bodies. The TSS has two motions: rotation of mass center C around

elliptical orbit and rotating motion around the mass center with a constant controlled

value. We assume that variations in the orbit of the system are negligible, such that the

system mass center C follows an unperturbed elliptical orbit. Lastly, we assume that the

effects of the elastic vibrations of the tether are negligible and model the TSS as a rigid

rod.
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Figure 4.2: Orbital system coordinates.

The position of TSS relative to its mass center can be defined by fixed coordinate system

Oxyz and base coordinate system Ox0y0z0. The fixed coordinate system (see Fig. 4.2)

participates in the rotation of TSS relative to its main axis (axis of spinning). For

determination of angular positions, we introduce semi-fixed coordinate system Ox′y′z′,

that does not participate in spinning.

Coordinate origin of these systems take place in the inertia center Fig. 4.3 a. The axes of

the fixed coordinates system Oxyz coincide with the system’s main inertial axes before

its turning and are oriented such that the axis Oz is directed along the longitudinal axes

of the system, and the axes Ox and Oy lie in the control surfaces of starting position

of the launcher rocket. The axes of the semi-fixed coordinate system Ox′y′z′ after an

initial orientation of TSS on orbit and before start of rotating matches with axes of base

reference system. As for the base reference system, we take an orbital system, the Oy-

axis of which coincides with current vertical and points upwards, and Ox-axis in the

plane of orbit and directed toward the movement of TSS. The Oz-axis of this system is

perpendicular to the orbital plane and completes first two axes to the right coordinate

system.

Angular position of TSS relative the to axes of orbital coordinate system is defined with

three angles:pitch γ, yaw β and roll α. The angle γ describes deviation of the projection

of Ox-axis on the orbit plane relative to the plane of actual horizon. The angle β defines
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Figure 4.3: Angular deviations and velocities.

the deviation of the axis Ox relative to the orbit plane and α describes the deviation of

the longitudinal axis Oz relative to the plane of actual horizon (see Fig. 4.3 a).

In our study, the angle γ does not have a practical importance because of independent

spinning around center of mass in orbital plane that can be controlled by a proper control

method. So we just focus on the orientation of the system around the angles α and β

Fig. 4.3 a. These angles define the projection deviation of the main system axis Ox′ on

the actual horizon plane relative to the axis Oy0 (in plane angle) and deviation of the

main axis relative to this plane(out plane angle).

Considering that TSS does not have any moveable mass or any liquid filler material,

the projection of angular velocities on the axis of fixed coordinate system Ox, Oy, Oz

(quasi-velocities) Fig. 4.3 b can be presented in the form:

ω̄ =


α̇ + (γ̇ − ω0) sin β

β̇ cosα + (γ̇ − ω0) cos β sinα

(γ̇ − ω0) cos β cosα− β̇ sinα





Chapter 4. Mechanical Systems 61

where ω̄ =
(
ωx ωy ωz

)ᵀ
is the vector of instantaneous angular velocities and ω0 =

−
√
µp

r2
is the orbital angular velocity. Here µ, p and r are parameters of the orbit [2] .

Following the procedure of Lagrangian formalism, we consider the kinetic energy of the

system given by

T =
1

2
Mt ‖v̄CI‖2 +

1

2
〈ω̄, Iω̄〉

where

- Mt is the total mass of TSS,

- v̄CI is the absolute velocity of the center of inertia (mass),

- I is the tensor of inertia of TSS with respect to its center of mass.

The norm of the velocity of mass center vCI (in Keplerian elliptical motion without

perturbations) can be expressed as [2]

‖v̄CI‖2 = µ

(
2

r
− 1

a

)

where µ, r, a are parameters of the orbit. As the result

TCI = Mtµ

(
2

r
− 1

a

)
, Mt := (mSS +mSB +mTh) /2

The tensor of the total inertial moment in fact is the sum of three components

I = ICS+ISB+ITh

where ICS, ISB and ITh are known tensors of inertia of the corresponding carrier satellite,

second end body and the tether. Assuming the symmetrically of the orbit station, we

may represent I as



Chapter 4. Mechanical Systems 62

I =


Is 0 0

0 Iy 0

0 0 Is


Because the constant spinning motion is around the axis z, we assume that γ̇ = const.

Denoting

ωz := (γ̇ − ω0)

we can represent the kinetic energy of the TSS rotation with respect to de mass center

as follows:

1
2
〈ω̄, Iω̄〉 = 1

2


α̇ + ωz sin β

β̇ cosα + ωz cos β sinα

ωz cos β cosα− β̇ sinα


>

×


Is 0 0

0 Iy 0

0 0 Is




α̇ + ωz sin β

β̇ cosα + ωz cos β sinα

ωz cos β cosα− β̇ sinα

 =

1
2

 [
Is
(
α̇2+ω2

z sin2 β + α̇ωz sin β
)

+
(
Iy cos2 α + Is sin2 α

)(
β̇2+ω2

z cos2 β
)

+ β̇ωz cos β cosα sinα (Iy − Is)
] 

So, the total kinetic energy T is

T =
1

2

[
Is
(
α̇2 + ω2

z sin2 β + α̇ωz sin β
)

+
(
Iy cos2 α + Is sin2 α

) (
β̇2 + ω2

z cos2 β
)]

+
1

4
β̇ωz cosx2 sin 2x1 (Iy − Is) +Mtµ

(
2

r
− 1

a

) (4.1)

The potential energy of the system is the sum of the energies of the carrier satellite, the

tether and the second end body [2] :
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Π = ΠSS + ΠTh + ΠSB

where

ΠCS =
3µ

2r3
(IxCS − IyCS) cos2 β

ΠSB =
3µ

2r3
(IxSB − IySB) cos2 β

ΠTh = −µ
r

+
µMl2

2r3
(1− cos2 α)

Here IxCS, IyCS, IxSB, and IySB are the projections of inertial moment of the carrier

satellite and the second end body on the axes x′ and y′. As a result, we have

Π =
3µ

2r3
(IxSS + IxSB − IySB − IySS) cos2 β − µ

r
+
µMl2

2r3

(
1− cos2 α

)
(4.2)

Denote for simplicity

IΠ := IxSS + IxSB − IySB − IySS

Combination (4.1) and (4.2) allow us to obtain the Lagrange’s function L = T − Π:

L =
1

2

[
Is
(
α̇2 + ω2

z sin2 β + α̇ωz sin β
)

+
(
Iy cos2 α + Is sin2 α

) (
β̇2 + ω2

z cos2 β
)]

+

1

4
β̇ωz cosx2 sin 2x1 (Iy − Is) +Mµ

(
2

r
− 1

a

)
− 3µ

2r3
cos2 βIΠ −

µ

r
+
µMl2

2r3
(1− cos2 α)

The corresponding Lagrange equations are:

d

dt

∂L

∂ẋj
− ∂L

∂xj
= τj, j = 1, 2

x1 = α , x2 = β

describing the dynamic of the system under the consideration, and can be expressed in

the following format:
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ẍ+D−1 (x)C (x, ẋ) ẋ+D−1 (x)G (x) = D−1 (x) τ

x :=
(
x1 x2

)>
, τ :=

(
τ1 τ2

)>
Here

D (x) :=

(
Is 0

0 Iy cos2 x1 + Is sin2 x1

)

C (x, ẋ) :=

 0
1

2
ωz (Iy − Is) cosx2 cos 2x1 + ẋ2 sin 2x1 (Is − Iy)

1

2
Isωz sinx2 Iy cos2 x1 + Is sin2 x1 − 1

2
ωz sinx2 sin 2x1 (Iy − Is)



G (x) :=


sin 2x1 (Is − Iy)ω2

z cosx2 + µMl2

r3
sinx1 + Is

4
ωz cosx2

1
4
ωz cosx2 sin 2x1 (Iy − Is) + 3µ

2r3
sin 2x2IΠ

+1
2
ω2
z sinx2

[
Is sinx2−

(
Iy cos2 x1+Is sin2 x1

)]


We can rewrite the system in the ”state-space form” as

ẋ1 = x3

ẋ2 = x4(
ẋ3

ẋ4

)
= −D−1 (x1, x2)C (x1, x2, x3, x4)

(
x3

x4

)
−D−1 (x1, x2)G (x1, x2) +D−1 (x1, x2) τ

or, in the matrix form

Ẋ = AX +Bu + h

X := (xᵀ
1,x

ᵀ
2)ᵀ , x1 := (x1, x2)ᵀ

x2 := (x3, x4)ᵀ , u := (τ1, τ2)ᵀ

(4.3)

where
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A =

[
02×2 I2×2

02×2 −D−1 (x1)C (x)

]

B =

[
02×2

I2×2

]
D−1 (x1)

h = −

(
02×1

D−1 (x1)G (x1)

)

The components of the control vector u := (τ1, τ2)ᵀ are torques created by a combination

of electrodynamic tether/ chemical rocket.

Model with bounded disturbances and uncertainties Under the presence of

external disturbances and internal model-uncertainties, the mathematical model see Eq.

(4.3), considered above, becomes as follows:

Ẋ = AX +Bu + h+ f(X, t) (4.4)

where the vector f(X, t) characterizes the joint effect of external disturbances and internal

model-uncertainties, and is supposed to be bounded, i.e., for all X ∈ R4 and all t ≥ 0

‖f(X, t)‖ ≤ L

where L is assumed to be known a priory.

4.2 Secondary Mirror of Radio-Telescope

The radio-telescope antenna is a device that is used to receive radio-frequency radiation

emitted by extraterrestrial sources and satellites. Because radio wavelengths are much

longer than those of visible light, radio telescopes must be very large in order to attain

the resolution of optical telescopes. Radio telescopes vary widely, but depending on

their design they can be divided in one and dual reflector antennas. In dual-reflector
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(Cassegrian) antennas a parabolic reflector is used as the mail reflector and a hyperboloid

of revolution as the sub-reflector (secondary mirror) as shown in Fig. 1.2.

Because radio wavelengths are much longer than those of visible light, radio telescopes

must be very large in order to attain the resolution of optical telescopes. The first

radio telescope, built in 1937 by Grote Reber of Wheaton, Ill., U.S., was a steerable

paraboloid–i.e., a device with a parabolically shaped reflector, dubbed the ”dish”, that

focuses the incoming radio waves onto a small pickup antenna, or ”feed.” Radio telescopes

vary widely, but they all have two basic components: (1) a large radio antenna and

(2) a radiometer or radio receiver. The sensitivity of a radio telescope–i.e., the ability

to measure weak sources of radio emission-depends on the area and efficiency of the

antenna, the sensitivity of the radio receiver used to amplify and detect the signals,

and the duration of the observation. For broadband continuum emission the sensitivity

also depends on the receiver bandwidth. Because some astronomical radio sources are

extremely weak, radio telescopes are usually very large and only the most sensitive radio

receivers are used. Moreover, weak cosmic signals can be easily masked by terrestrial

radio interference, and great effort is taken to protect radio telescopes from man-made

interference.

The performance of the radiotelescope could be improved considerably using thedual

reflector antennas. In dual-reflector (Cassegrian) antennas a parabolic reflector is used as

the mail reflector and a hyperboloid of revolution as the sub-reflector (secondary mirror)

as shown in Fig. (1.2).

In this work a Stewart platform is used to obtain desired pointing accuracy (1 arcsec)

of a secondary mirror in the required position and orientation. These highly position

and attitude requirements encompass six independent degrees of freedom. Usually, the

tracker is supported by the telescope structure at the nominal position of half the radius

of curvature of the primary reflector. The telescope structure supports all the interfaces

of the tracker to the rest of the telescope system. These manipulators have attracted

much attention from researchers in a large number of applications, such as machine tools,

underwater exploration, aviation rescue operations , aircraft simulators, telescopes and

orthopedic surgery (see [55–60]).

The platform is permanently under the action of harsh environmental conditions and par-

asitic dynamics, on the other hand there is always a discrepancy between the actual plant

dynamics and its mathematical model used for the controller design. The performance
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of a radio telescope is limited by various factors: the accuracy of a reflecting surface that

may depart from the ideal shape because of manufacturing irregularities; the effect of

wind load; thermal deformations that cause differential expansion and contraction; and

deflections due to changes in gravitational forces as the antenna is pointed to different

parts of the sky. Designing the control laws that provide the desired closed-loop system

performance in the presence of these disturbances/uncertainties is a very challenging task

for a control engineer. Primary success applications of Stewart platform were expounded

which include kinematics, mechanic structure and primary control strategies (Robust PID

control [61], inverse dynamics control [62], neuro-fuzzy control [63]) at present.

In this dissertation a new sliding mode algorithm is proposed to control the system. The

sliding mode structure does not require dynamic modelling of the manipulator; the bounds

of the model parameters are sufficient to construct the controller. The previous works

which used the sliding mode for the manipulator are based of the linear Newton-Euler

dynamic equations [64] and with estimation of inverse kinematics of platform [65].

The direct application of the lagrangian dynamic formulation, together with the space

state representation in this work, results in a convenient and compact algorithmic de-

scription of the manipulator equations of motion. The algorithm is expressed by matrix

operations and facilities both analysis and control implementation giving the complete

representation of the mechanism performance. However the implementation of sliding

mode to this system causes a near-singularity phenomena, provoking the increasing of

the values of control signals. This problem is resolved by a new design of sliding mode

control. This proposed controller provides the positioning of the secondary mirror of a

radio-telescopes in presence of unmodelled dynamics and perturbations. The chattering

reduction is handled by an adaptive type of sliding mode based on equivalent control.

This methodology is associated with dynamic adaptation of sliding mode controllers (un-

der known uncertainty bounds) where the adaptation process is continued during sliding

mode, using the current estimates of the corresponding equivalent control (see [25]), that

leads to minimization of chattering effect.

4.2.1 General system description

The figure 4.4 illustrates the example of secondary mirror of a radio-telescope mounted

on a GSM. This device is designed to be installed on the Large Millimeter Telescope
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Figure 4.4: Secondary mirror of radio-telescope antenna with hexapod positioner.

[66]. The secondary mirror with aim of this device must keep the focus length with

high position and orientation accuracy. The platform consists of a stationary base, the

mirror mounted on a movable platform, and six prismatic actuators (screw joint). The

mirror placed on the top platform can be moved in the six degrees of freedom: the three

linear movements x, y, z and the three rotations pitch, roll and yaw. The actuators are

connected by spherical joints to the base and via Hooke’s joints to the moving platform.

4.2.2 Mathematical model

The simplified kinematic model of the proposed GSM is derived as in figure 4.5. Let the

support legs AiBi, i = 1, 6 consist of upper and lower parts, connected as translational

kinematic pair, fixed to the moving platform in the points Bi through universal Hooke’s

joints, and to the base platform in the points Ai via spherical joints. Each leg AiBi has

length li and is inclined by the angle γi.

Let fix the coordinate system AXY Z with the base platform such that origin A coincides

with the mass center of base, AX -axis passes through the joint A3, AY is pointed by
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Figure 4.5: Kinematic geometry of the hexapod with 6 dof.

the normal to the base and the AZ generates a right system with two previous axes.

Similarly we fix Bxyz coordinate system with the moving platform. The position of the

joints A1, A6 and B1, B6 in coordinate system AXY Z define by next vectors.

Āi= (Ai,1, Ai,2, Ai3) , B̄i= (Bi,1, Bi,2, Bi3) , i =1, 6 (4.5)

The position of the moving platform respect to the base defines by Euler angles ϕ1, ϕ2

and ϕ3 (Fig. 4.6) and the vector B̄ = (XB, YB, ZB).

The geometrical correlation between the coordinate systems AXY Z and Bxyz obtains

by the homogeneous transformation matrix TH
1:

TH =


a1,1 a1,2 a1,3 XB

a2,1 a2,2 a2,3 YB

a3,1 a3,2 a3,3 ZB

0 0 0 1


Accordingly, the position of the joint Bi, in the coordinate system AXY Z defines as:

1Find the values of ai,i in Appendix A
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Figure 4.6: Coordinate system representation of Euler angles.

B̄i = TH [Bi,1, Bi,2, Bi,3, 1]> (4.6)

From (4.5) and (4.6) it follows, that the generalized coordinate li, as a function of the

magnitudes XB, YB, ZB, ϕ1, ϕ2, ϕ3 defines by the expression

li =

√∑
j

(
Ai,j − B̄i

)2
, j = 1, 2, 3

4.2.3 Mechanism dynamics

For the formation of dynamic equations of the platform we use the second order Lagrange

equations

d

dt

∂T

∂q̇i
− ∂T

∂qi
= Q

i
, i = 1, .., 6 (4.7)

where

- T is the general kinetic energy of the system



Chapter 4. Mechanical Systems 71

Figure 4.7: External forces acting on the platform.

- Q
i

are the generalized forces corresponding to the i-th coordinate

- qi are the generalized coordinates:

q1 = XB, q2 = YB, q3 = ZB, q4 = ϕ1, q5 = ϕ2, q6 = ϕ3

Neglecting mass of the legs, the kinetic energy of the system can be expressed as

T =
1

2

[
M
(
Ẋ2
B + Ẏ 2

B + Ż2
B

)
+ Jxϕ̇

2
1 + Jyϕ̇

2
2 + Jzϕ̇

2
3

]
(4.8)

where M is the mass of platform and Jx,y,z are inertial moments around the corresponding

axes. The generalized forces acting on the system as in Fig. 4.7 determine as:

Q1=
6∑
i=1

Fi cos γi,1 Q2=− P +
6∑
i=1

Fi cos γi,2 Q3=
6∑
i=1

Fi cos γi,3

Q4=
6∑
i=1

Fi
3∑
j=1

(ai,j,1 cos γi,j) Q5=
6∑
i=1

Fi
3∑
j=1

(ai,j,2 cos γi,j) Q6=
6∑
i=1

Fi
3∑
j=1

(ai,j,3 cos γi,j)

Here Fi represents the forces acting on the linear actuators and P = Mg. Let’s rewrite

the system by new variables: the coordinates and velocities of the point B as

XB= x1 YB= x2 Zb= x3

ϕ1= x4 ϕ2= x5 ϕ3= x6

angles and angular velocities of the point B as



Chapter 4. Mechanical Systems 72

ẊB= x7 ẎB= x8 Żb= x9

ϕ̇1= x10 ϕ̇2= x11 ϕ̇3= x12

and finally the control signals generated by actuators as

ui = Fi, i = 1, 6

The state space representation in the vector form is:

Ẋ1 (t) = X2 (t)

Ẋ2 (t) = f +G (X1, t)u+ ξ (X, t)

y (t) = X1 (t)

(4.9)

- X1 (t) , X2 (t) ∈ IR6 are the state of the system at time t ∈ IR+;

- X (t) :=
(
X>1 (t) , X>2 (t)

)> ∈ IR12;

- y (t) ∈ IR6 is a measurable output at time t ≥ 0;

- u ∈ IR6 is a control to be designed;

- ξ (x, t) ∈ IR6 is unmeasurable term including the external as well as internal perturba-

tions and uncertainties;

- f = (0,−Mg, 0, 0, 0, 0)>

- G ∈ IR6×6 = [gk,i](k, i = 6) is supposed to be exactly known 2.

Notice that in the model (4.9) only the half of coordinates (X1 (t)) are available in time3.

2Find values gk,i in appendix B
3More detailed mathematical modelling can be found in [67]
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Numerical Simulations

Different simulations are carried out in this section to prove the effectiveness of the

designed approaches. Firstly for an orientation and stabilization tasks of tethered satellite

system and then by applying the controller and observer to the radiotelescope subreflector.

5.1 Tethered Satellite System

5.1.1 The conventional algorithm

Fig. 5.1 illustrates the finite time convergence of the state variables to the desired states

in the presence of the external bounded disturbance (here we took f = sin(10x)).

As we can see from Fig. 5.2 the zoomed portion of the phase portrait illustrates the

zigzag motion of small amplitude and high frequency that control signals exhibit while in

the sliding mode.

5.1.1.1 Adaptive algorithm based on ”Equivalent Control Method”

To demonstrate the properties of the adaptation procedure, another simulation was per-

formed with the following parameters:

73
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Figure 5.1: States evaluation under SMC.
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Figure 5.2: Control signals in conventional SMC.

γ0 = 3, µ = 0.04, α = 0.95

k+
1 = 10, k+

2 = 1, k1,2(0) = 2.8

One can see that the control signals have the chattering phenomenon with amplitudes

much smaller than the conventional control.

Here is clearly (see Fig. 5.2 and Fig. 5.4) that gain parameter k(t), defining the chattering

amplitude in the sliding mode (after the reaching time treach ), continues decreasing

attaining after 0, 3 sec. and follows the amplitude of the external perturbation signal f .
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Figure 5.3: States variables in Equivalent Control method.
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Figure 5.4: Control signals under the adaptive gain-learning

Notice that, in the simulation with lower frequencies, the chattering effect improvement

for adaptive sliding mode control may attach ten times with respect to the standard SMC.

5.1.2 Adaptive Sliding Mode Controller Based on Super-Twist

Observer

The parameters, participating in the controller realization, are given in Table 1.

Table 1. Numerical values of the parameters in the suggested control scheme.
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p0 = 0, 2 c2 = 6 Lf = 20 γ = 90 µ = 3.98× 1014 x∗1[rad] = 5

p1 = 1 ε = 1 ξ+ = 10 l [m] = 2000 M [kg] = 2000 x∗2[rad] = 0

p2 = 1 α = 200 n = 2 Is[kg ·m2] = 5000 ωz [rad/s] = 2 x∗3[rad/s] = 0

c1 = 0, 1 e+
2 = 40 Lg = g+

−1 = 1 Iy[kg ·m2] = 3000 r [m] = 2× 106 x∗4[rad/s] = 0

From the figures 5.5 and 5.6 one can see the behavior of the real states X and Ẋ of the

controlled tethered system closed by the suggested adaptive SM controller based on the

angular velocities estimation. Practically in 2.0 seconds the controlled variables reach

the desired values. The angular position as well as their derivative estimates show quick

approachment to the real values.
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Figure 5.5: The comparison of angular positions between estimated and real values.

As it was expected, the control actions attains their their behavior at fast rate corre-

sponding to the desired regular regime: u1 obtains the constant value and u2 enters into

”chattering regime” around zero value (see Fig. 5.7).

Fig. 5.8 depicts the behavior of two sliding surfaces σ1(X(t)) and σ2(X(t)) which prac-

tically in 2.0 seconds obtain 0-values that corresponds the ”beginning” of the sliding

process.

Finally, Fig. 5.9 illustrates the time-variations of the adaptive control parameters k =

k (x̂ (t) , t) , λ = λ (x̂ (t) , t) providing the desired dynamics of the considered closed-loop

system.
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Figure 5.6: Angular velocities and their estimates.
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Figure 5.7: Control signals representation.

Comparing the suggested adaptive SM observer with a standard differentiator containing

a preliminary smoothing (low-pass filtering) in the input, one can observe in Fig. 5.6 that

with an essential noise term the standard technique applying to the considered example

becomes practically unworkable. Fig. 5.10 show that the control, corresponding the

standard low-pass filtering with differentiation, never reaches the ”chattering regime”.
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Figure 5.8: Two sliding surfaces σ1(X(t)) and σ2(X(t)).
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Figure 5.9: The comportment of the adapted parameters k and λ.

This explicitly demonstrates that the behavior of the close-loop system with classical

control is too far from desired one.
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Figure 5.10: Control signals for classical differentiator with preliminary low-pass
filtering.

5.1.3 Pareto-Optimal Adaptive SMC with SM Observer

The results of the subsection 2.5, could be proved as well. For that we use the Pareto-

optimal parameters:

Table 2. Numerical values of the parameters in the Pareto-optimal control

p0 = 0, 2 ε = 0.5 α = 50

p1opt = 0.1040 ξ+ = 10 γ = 70

p2opt = 0.6960 Lf = 20

The comparison of figures (5.11) and (5.12) demonstrates the improvement of adaptive

control by the Pareto optimization method. On one hand the state tracking time has

been reduced and on the other hand the chattering effect of the sliding observer has been

reduced.

5.2 Secondary mirror of Radio-telescope

We begin with the simulation of the system by applying a simple PID controller. As

it was expected, Fig. 5.13 demonstrates that this method can not come up successfully
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Figure 5.11: States tracking in conventional control.
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Figure 5.12: States tracking with Pareto-optimization control.

with the control task of the system. The adaptive version of PID control based on Neural

idea [68] handles better this task (see figure 5.14). On one hand this is because of the

additional external perturbation injected to the system and on the other hand because

of near-singularity condition of the matrix G (X).

5.2.1 Near-Singularity Elimination and Equivalent Control

As one can see from the Fig 5.15, applying the conventional SMC to the platform system

(4.9) provokes a huge control signals, do to the near singularity proporties of the matrix

G (X). The proposed regulizated control however (2.23) provides a significant improve-

ment of control signal behaviour. The figure 5.16 shows the stabilization of the control

signals and the near-singularity elimination.
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Figure 5.13: States evaluation under PID control.
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Figure 5.14: States evaluation under Adaptive PID control.

Figures 5.17 and 5.18 illustrate the finite time convergence of the state variables and their

derivatives to the desired magnitudes in the presence of the external bounded disturbance

all states reach the desired values approximately after 5 seconds.

Equivalent sliding mode control To demonstrate the properties of the adaptation

procedure for chattering reduction, another simulation was performed with the following

parameters:

γ0 = 3, µ = 0.04, α = 0.95

k+
1 = 10, k+

2 = 1, k1,2(0) = 2.8
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Figure 5.15: Control signals with original matrix G.

0 1 2 3 4 5 6 7 8 9 10
−25

−20

−15

−10

−5

0

5

10

15

20

Time, s

C
on

tr
ol

 s
ig

na
ls

 U

 

 u1

u2

u3

u4

u5

u6

Figure 5.16: The normalized control signals with G1.

One can see that the control signals have the chattering phenomena with amplitudes

much smaller than the conventional control.

It can be clearly seen ( Fig. 5.16 and Fig. 5.19) that gain parameter k(t), defining

the chattering amplitude in the sliding mode (after the reaching time treach ), continues

decreasing attaining after 0, 3 sec. and follows the amplitude of the external perturbation

signal f . Notice that, in the simulation with lower frequencies, the chattering effect

improvement for adaptive sliding mode control may attach ten times with respect to the

standard SMC.
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Figure 5.17: States evaluation under SMC.
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Figure 5.18: States Ẋ evaluation under SMC.

5.2.2 Adaptive Sliding Mode Controller Based on Super-Twist

Observer

From the figures 5.20 and 5.21 one can see the behavior of the real states X and Ẋ

of the stewart platform orientation controlled by the suggested adaptive Sliding Mode

Controller based on the velocities estimation. Practically in 6.0 seconds the controlled

variables reach the desired values. The coordinates as well as their derivative estimates

show quick approachment to the real values.

As it was expected, the control actions attains their their behavior at fast rate corre-

sponding to the desired regime: (see Fig. 5.22).



Chapter 5. Numerical Simulations 84

0 1 2 3 4 5 6 7 8 9 10
−20

−15

−10

−5

0

5

10

15

20

Time, s

C
on

tr
ol

 s
ig

na
ls

 U

 

 u1

u2

u3

u4

u5

u6

Figure 5.19: Control signals under filtered sliding mode control.
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Figure 5.20: Lineal and angular coordinates.
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Figure 5.21: The comparison of Angular velocities and their estimates (every color
represents one state and its estimation).
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Figure 5.22: Control signals representation.



Chapter 6

Summary and Recommendations for

Future Work

Tethered satellite systems have a great deal of potential for a wide range of future space-

based applications. Although a great deal of research has already been conducted on the

dynamics and control of TSS and its tracking, there remain a number of open areas of

study that must be addressed before TSS can be widely put to use. The objective of the

work presented in this dissertation is to address several of these open areas of study, and in

the process identify new avenues down which TSS dynamics and control research should

progress. The original contributions provided by this dissertation are summarized below,

and we also present recommendations for future work on TSS dynamics and control.

6.1 Summary of Contributions

The description, design and performance of Stewart manipulator tethered satellite sys-

tems (TSS) was studied. The rendezvous of rotating TSS and payload that should be

tossed into higher orbit was considered as a tracking problem. An adaptation methodol-

ogy was used to find the control gain of a sliding-mode control providing the minimization

of the chattering effect. The application of this methodology to the conventional control

enables reducing of the control action magnitude to smaller value along with a finite-time

convergence.
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The characteristics of this six degree of freedom platform applied for the orientation

of an radio telescope sub-reflector were also studied and the mathematical model was

described. The new sliding mode control design was used to control the system in presence

of unmodelled dynamics and perturbations and eliminate the near-singularity properties

of the model. The stability analyse and the performance of the controller were studied.

The same equivalent control technique was used to reduce the chattering effects.

Then We presented a new approach to the SMC-designing which uses the state estimates,

obtained on-line by the Super-Twist observer. The parameter of the controller and the

observer may be time-varying and depending on available current measurements. The

problem of the Gough-Stewart Platform orientation in a required positions considered

and numerically resolved showing very high efficiency of the suggested approach.

The numerical examples clearly illustrated the positive effect of the gain-coefficient adap-

tation in both contoller and observer.

6.2 Recommendations for Future Work

The work presented in this dissertation addresses only a handful of the open areas of

research in TSS dynamics and control. Many issues have yet to be adequately addressed,

and the work in this dissertation raises several new questions on its own. In this section,

we make recommendations for ways in which the work presented in this dissertation can

be extended in future TSS dynamics and control research.

The first way in which the work in this dissertation can be extended is to refine the top-

level system model. Despite the fact that the system model presented is taken as the top-

level system model, it contains several assumptions about the physical system that could

be relaxed to make the model a better abstraction of reality. Most of these assumptions

are related to the physical environment in which the TSS operates; recall that the only

external forces acting on the system in the top-level system model are the gravitational

force of the central body and the electrodynamic force. Other external forces, such as

atmospheric drag and solar radiation pressure, could be added to the model, along with

other effects like thermal expansion of the tether due to crossings between shadow and

sunlight. The gravitational and electrodynamic force models can themselves be extended

by using higherorder spherical harmonic expansions of the gravitational and magnetic
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fields of the central body. Modeling all of these external forces would make the top-level

system model a better representation of an actual TSS, and would therefore provide an

even better substitute for experimental data until it can be collected.

The fact that experimental data from an actual TSS is not readily available does not mean

that data cannot be collected to validate some aspects of the system model. For example,

the string model for the tether can be applied to any type of vibrating string, not just a

TSS. would greatly enhance the level of confidence in modeling of TSS dynamics.

One significant way in which the control analysis presented can be extended is to per-

form a more thorough controllability analysis of the system for the case in which the

electrodynamic force is the only control input. It may be possible to perform certain

types of control maneuvers using only the electrodynamic force, and knowing these ma-

neuvers could prove useful because they would require no propellant. Along the same

lines, it would be useful to determine optimal control laws that minimize the total control

input required to control the pendular motion, thereby minimizing the required propel-

lant. Both open- and closed-loop optimal control laws could be developed. Some hybrid

control strategy could be developed that uses a combination of electrodynamic forcing

and thrusters on the end bodies. The electrodynamic force could be used as the only

control input for times when the pendular motion can be controlled adequately using

only the electrodynamic force, and thrusters on the end bodies could be employed only

in situations for which they are needed to make the system controllable. One final way

in which the control analysis presented can be extended is to include the orbital motion

in the system model and determine methods of controlling the orbital motion and the

motion of the tether simultaneously, perhaps using only the electrodynamic force.



Appendix A

Values of ai,k

A Values of ai,k.

a1,1 = cosϕ1 cosϕ3− sinϕ1 cosϕ2 cosϕ3

a1,2 = sinϕ1 cosϕ3+ cosϕ1 cosϕ2 sinϕ3

a1,3= sinϕ2 sinϕ3

a2,1= − cosϕ1 sinϕ3− sinϕ1 cosϕ2 cosϕ3

a2,2= − sinϕ1 sinϕ3+ cosϕ1 cosϕ2 cosϕ3

a2,3= sinϕ2 cosϕ3

a3,1= sinϕ1 sinϕ2

a3,2= − cosϕ1 sinϕ2

a3,3= cosϕ2
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Values of gk,i and ak,i,j

B Values of gk,i and ak,i,j.

g1i = M−1 cos γi,1; g2i = M−1 cos γi,2; g3i = M−1 cos γi,3

g4i = J−1
x (ai,1,1 cos γi,1 + ai,1,2 cos γi,2 + ai,1,3 cos γi,3)

g5i = J−1
y (ai,2,1 cos γi,1 + ai,2,2 cos γi,2 + ai,2,3 cos γi,3)

g6i = J−1
z (ai,2,1 cos γi,1 + ai,3,2 cos γi,2 + ai,3,3 cos γi,3)

where γi,k is the angle between AiBi and the axes AX, AY and AZ define as:

cos γi,j = cos γi,j (XB, YB, ZB, ϕ1,2,3) =
B̄i−Ai,j√∑
j
(Ai,j−B̄i)

2

and
ai,1,1 = Bi,1 (− sinϕ1 cosϕ3 − cosϕ1 cosϕ2 cosϕ3)

+Bi,2 (cosϕ1 cosϕ3 − sinϕ1 cosϕ2 sinϕ3)

ai,1,2 = Bi,1 sinϕ1 cosϕ2 cosϕ3

−Bi,2 cosϕ1 sinϕ2 sinϕ3 +Bi,3 cosϕ2 sinϕ3

ai,1,3 = Bi,1 (sinϕ1 cosϕ2 sinϕ3 − cosϕ1 sinϕ3) +Bi,2

(cosϕ1 cosϕ2 cosϕ3 − sinϕ1 sinϕ3) +Bi,3 sinϕ2 cosϕ3
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ai,2,1 = Bi,1 (sinϕ1 sinϕ3 − cosϕ1 cosϕ2 cosϕ3)

−Bi,2 (cosϕ1 sinϕ3 + sinϕ1 cosϕ2 cosϕ3)

ai,2,2 = Bi,1 sinϕ1 sinϕ2 cosϕ3−
Bi,2 cosϕ1 sinϕ2 cosϕ3 +Bi,3 cosϕ2 cosϕ3

ai,2,3 = Bi,1 (sinϕ1 cosϕ2 sinϕ3 − cosϕ1 cosϕ3)−Bi,2

(sinϕ1 cosϕ3 + cosϕ1 cosϕ2 sinϕ3)−Bi,3 sinϕ2 sinϕ3

ai,3,1 = −Bi,2 sinϕ1 sinϕ2

ai,3,2 = cosϕ2 (Bi,1 cosϕ3 −Bi,2 cosϕ1)−Bi,3 sinϕ2

ai,3,2 = −Bi,1 sinϕ2 sinϕ3

.



Appendix C

Singular configuration

C.1 Grassmann geometry

We recall the definition of a Plucker vector for a line; for two points M1, M2 on the line

and a reference point O, the Plucker vector, of dimension 6, is [26]

Pr = [M1M2, OM1 ×OM2] = [M1M2,M2M1 ×OM2] = [p, q]

A line is represented by any vector λPr where λ is an arbitrary non-zero scalar. A 6-

dimensional vector will represent a line if p.q = 0 and q is not the zero vector. Two lines

with Plucker vectors P 1
r = [p1, q1], P 2

r = [p2, q2] intersect if and only if p1.q2 + q1.p2 = 0.

Plucker vectors with p = 0 do not represent real lines and are associated with a line at

infinity. All lines at infinity belong to a plane, the plane at infinity. A point may also

be represented by the Plucker coordinates (U3b1, r) so that its coordinates are r/U3b1.

If U3b1 = 0, then the point is at infinity, and a point (0, r) at infinity is on the line at

infinity (0, q) if and only if r.q = 0. Consequently a point at infinity that belongs to the

two lines at infinity (0, s1), (0, s2) has coordinates (0, s1× s2).

The representation of a line by its Plucker coordinates is redundant because the dimension

of this vector is 6, although only 4 parameters are needed to define a line. This redundancy
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may be decreased by introducing the normalized Plucker vector Prn defined by:

Prn =

[
M1M2

‖M1M2‖
,
OM1 ×OM2

‖M1M2‖

]

The columns of the full inverse kinematic jacobian matrices of most parallel robots are

constructed from the Plucker vectors, normalized or not, of lines associated with links

of the manipulator. The singularity of this matrix therefore means that there will be a

linear dependence between these vectors. If n Plucker vectors are linearly independent,

they will span a variety with dimensionn ≤ 6; if some of them are linearly dependent,

the dimension of the variety will be less than n. H. Grassmann (1809-1877) showed that

linear dependence of Plucker vectors induced geometric relations between the associated

lines, so that a set of n Plucker vectors creates a variety with dimension m < n. He

established the geometrical conditions on a set of n+ 1 lines so that the induced variety

has dimension n.

Grassmann’s geometrical conditions allows us to design an algorithm for finding the

singular configurations of any type of parallel robot whose full inverse kinematic jacobian

consists of Plucker vectors. We will consider all sets of n lines that are associated with

the vectors, and then determine what should be the pose of the moving platform so that

the n lines satisfy one of the geometrical conditions which ensure that they span a variety

of dimension n− 1, thereby leading to a singularity of the robot.

C.2 Variety and Geometry

We now list the geometric conditions that ensure that the dimension of the variety

spanned by a set of n + 1 Plucker vectors is n, for each possible dimension n of the

variety. Note that we will often mention the case of intersecting lines; these include

parallel lines, which intersect at infinity.

We shall start with the dimensions going from 1 to 3 (figure C.1); for the variety of

dimension 1 (called a point) there is just one Plucker vector and one line. A variety of

dimension 2, called a line, may be constituted either by two Plucker vectors for which

the associated lines are skew, i.e. they do not intersect and they are not parallel, or be

spanned by more than two Plucker vectors if the lines that are associated with the vectors
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form a planar pencil of lines, i.e. they are coplanar and possess a common point (possibly

at infinity, to cover the case of coplanar parallel lines).

Figure C.1: Grassmann varieties of dimension 1,2,3.

A variety of dimension 3, called a plane, is the set of lines F that are dependent upon 3

lines F1,F2,F3. It is possible to show that all the points belonging to the lines F lie on a

quadric surface Q. This quadric degenerates to a pair of planes P1,P2 if any two of the

three lines F1,F2,F3 intersect.

- condition 3d: all the lines are coplanar, but do not constitute a planar pencil of lines;

F1,F2,F3 are coplanar and P1,P2 are coincident .

- condition 3c: all the lines possess a common point, but they are not coplanar; F1,F2,F3

intersect at the same point, possibly at infinity (this covers the case of parallel lines).

- condition 3b: all the lines belong to the union of two planar pencils of non coplanar

lines that have a line L in common; F2,F3 intersect at a point p, and L intersects F1 at

a. Two different cases may occur:

• P1,P2 are distinct and intersect along the line L. The set of dependent lines are the

lines in P1 that go through a, and the lines in P2 that go through p

• P1,P2 are distinct and parallel. This occurs if two of the lines Fiare parallel; L is a line

at infinity, and the set of dependent lines are two planes of parallel lines

- condition 3a: all the lines belong to a regulus; F1,F2,F3 are skew

Condition 3a must be explained in more detail. Consider three pairwise skew lines in

space. The lines which intersect all three of these skew lines define a set, called a regulus.
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This set of lines, the regulus, constitutes a surface, a hyperboloid; the three skew lines

are said to be the generators or transversal of the surface. In 1645, Sir Christopher Wren

showed that apart from the regulus, a second set of lines generates the same hyperboloid;

this second set is called the complementary regulus. The hyperboloid therefore is a surface

that is doubly ruled. The lines of the reguli possess an interesting characteristic: all the

lines of a regulus intersect all the lines of the other regulus and none of its own regulus.

Figure C.2: Grassmann varieties with dimension 4 and 5. The varieties are generated
by the thin lines.

We now list the geometrical conditions that characterize the varieties of dimension 4 and

5 (figure C.2). A variety if dimension 4, called a congruence, corresponds to a set of lines

which satisfies one of the following 4 conditions:

- condition 4d: all the lines lie in a plane or meet a common point that lies within this

plane. This is a degenerate congruence.

- condition 4c: all the lines belong to the union of three planar pencils of lines, in different

planes, but which have a common line. This is a parabolic congruence.

- condition 4b: all the lines intersect two given skew lines. This is a hyperbolic congruence.

- condition 4a: the variety is spanned by 4 skew lines such that none of these lines

intersects the regulus that is generated by the other three. This is an elliptic congruence.

A variety C of dimension 5, called a linear complex, is defined by two 3-dimensional

vectors (c, c̄) as the set of lines L with Plucker coordinates (l, l̄) such that c̄.l + c̄.l = 0.

The complex may be

-singular (5b) if c̄.c = 0. All the lines of the complex intersect the line with Plucker

coordinates (c, c̄).

- general or non singular (5a) if c̄.c 6= 0
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The degree of freedom associated with a linear complex is a screw motion with axis

defined by the line with Plucker vector (c, c− pc)/ ‖c‖, where p = c.c/ ‖c‖ is the pitch of

the motion. All coplanar lines of a non singular complex are in a plane that is normal

to the helical motion at a point, and intersect this point, thereby constituting a planar

pencil of lines.
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