
CENTRO DE INVESTIGACIÓN Y DE ESTUDIOS AVANZADOS

DEL INSTITUTO POLITÉCNICO NACIONAL

Unidad Zacatenco

Departamento de Control Automático

Máquinas restringidas de Boltzmann para el modelado de

sistemas no lineales

Tesis que presenta

M. en C. Erick Dasaev de la Rosa Montero

Para obtener el grado de

Doctor en Ciencias

En la especialidad de

Control Automático

Director de tesis

Dr. Wen Yu Liu

Ciudad de México Abril, 2018

Agradecimientos

Agradezco al cosmos y la casualidad el haberme jugado vertido las aleatoriedades que me permitieron

llegar a este punto.

En inteligencia artificial hay un concepto que se titula “aprendizaje por demostración”, ese paradigma

es aplicable no solo en un contexto técnico, sino que tiene su fundamentación en la forma con la cual

los seres humanos aprenden. Gracias papás por ser esa guía, por demostrarme la manera de conducirme

en este complejo mundo, porque su presencia creo un objetivo invisible que siempre quise alcanzar sin

saberlo dado que su ejemplo paso a paso me ha conducido a este momento.

También quiero dedicarle unas palabras a mi hermano Iván que simplemente ha sido mi compañero en

un sinfín de experiencias y que sin su presencia y motivación este logro habría sido imposible.

Me gustaría especialmente agradecer al Dr. Wen Yu liu. Como mi profesor y mentor, él me ha

enseñado mas de lo que le podría dar crédito utilizando estas líneas. Él me ha mostrado, con su

ejemplo, lo que un buen investigador (y ser humano) debería ser.

Le doy las gracias al Centro de Investigación y Estudios Avanzados por abrirme las puertas al mundo

de la investigación y proporcionarme los medios materiales e intelectuales que me han permitido

forjarme como investigador, así como por otorgarme el ambiente ideal en dónde pude forjar relaciones

profesionales y personales que durarán toda la vida.

Finalmente agradezco al Consejo Nacional de Ciencia y Tecnología que por medio de su Programa de

Posgrados de Calidad y la beca de manutención de doctorado que me fue otorgada me permitieron

enfocarme enteramente en mi trabajo de tesis haciendo posible la realización de un proyecto de

investigación de calidad.

Restricted Boltzmann machines for nonlinear systems modeling

by

Erick Dasaev de la Rosa Montero

Submitted to the Automatic Control Department
on April 2018, in partial ful�llment of the

requirements for the degree of
Doctor in Philosophy in Automatic Control

Abstract

Deep learning techniques have been state of the art methods during the last decade achieving
remarkable results in tasks such as hand written digits classi�cation, speech recognition
and behaviour identi�cation introducing new methods to train "deep" architectures making
possible to learn high dimensional datasets. Nevertheless, despite of the fact that they have
had great success in classi�cation problems, their usage in system identi�cation has not been
deeply explored by the arti�cial intelligence community. In this thesis, there are explored
some approaches to solve the regression problem using deep learning algorithms and it is also
explained the modi�cations that have to be done in order to handle the analog nature of the
data provided by the sampling process applied on a nonlinear system. The study is focused
on the restricted Boltzmann machines (RBMs) as they constitute the building blocks in many
deep learning variants. The main problem that an RBM presents is that it cannot handle
continuous entries as it is designed to learn a probability distribution over a binary dataset
where the allowed values for the input are only f0; 1g, this problem is handled considering
a continuous range in the input domain which changes the way the probability distribution
associated with the learning process is presented.
The modi�ed RBMs are tested along with other algorithms such as randomized learning

using the weights provided by an RBM in the hidden layer of an one-hidden-layer neural
network and a pseudoinverse computing. Furthermore, a probability based clustering method
is proposed to partition the hidden features extracted from the RBM, and then fuzzy rules
are set with the introduction of a probability measurement for each fuzzy set which gives an
extra degree of freedom to the model, making it more accurate.
Finally, it is also argued that even when RBMs have traditionally been used as a pre-

training procedure in the machine learning literature they can also be used as models which
directly learn the nonlinear system behaviour. In this case, the parameters of the RBM
are trained considering the conditional distribution of the provided dataset. Moreover, it
is proved the universal approximation capability of the RBMs over any binary conditional
distribution. The nonlinear modeling is discussed considering two cases: binary encoding for
the input for binary RBMs and continuous conditional probability transformation during the
learning process.

Research Head: Wen Yu Liu
Title: Chair, Department of Automatic Control

i

Restricted Boltzmann machines for nonlinear systems modeling

by

Erick Dasaev de la Rosa Montero

Submitted to the Automatic Control Department
on April 2018, in partial ful�llment of the

requirements for the degree of
Doctor in Philosophy in Automatic Control

Abstract

El aprendizaje profundo es un conjunto de métodos que durante la última década han tenido
buenos resultados en tareas tales como clasi�cación de caracteres a mano alzada, reconoci-
miento del habla y formación de grupos de conducta sospechosa. Estos métodos incluyen
técnicas para entrenar arquitecturas "profundas" haciendo factible aprender conjuntos de
entrenamiento con alta dimensionalidad. Sin embargo, a pesar de haber tenido un notable
éxito en tareas de clasi�cación, su uso en la identi�cación de sistemas no ha sido explorado
por la comunidad cientí�ca. En esta tesis, se analizan algunas soluciones para resolver el
problema de regresión utilizando algoritmos de aprendizaje profundo, además, se explican
las modi�caciones que deben ser efectuadas para manejar los datos analógicos obtenidos por
el proceso de muestreo aplicado en un sistema no lineal. El estudio se enfoca en las máqui-
nas restringidas de Boltzmann (RBMs por sus siglas en inglés) debido a que son el bloque
constructor de la mayoría de las variantes del aprendizaje profundo.
Las RBMs modi�cadas son probadas en conjunto con un aprendizaje aleatorio utilizando

los pesos obtenidos de la RBM en la capa oculta de una red neuronal mientras que se calcula
la solución por pseudoinversa para los pesos de la capa de salida. Además, un método de
agrupamiento probabilístico se propone para obtener las características ocultas extraídas
de la RBM y después se crean las reglas difusas con la introducción de una medición de
probabilidad para cada conjunto difuso lo que le otorga un grado de libertad adicional al
modelo haciéndolo mas preciso.
Finalmente, se argumenta que a pesar de que las RBMs han sido solo utilizadas como

procesos de preentrenamiento también pueden ser utilizadas como modelos que directamente
aprendan el comportamiento de los sistemas. En este caso, los parametros de una RBM son
entrenados considerando la distribución condicional de los datos muestreados del sistema.
También se ha probado la capacidad de aproximación universal que poseen las RBMs sobre
cualquier distribución condicional binaria. El modelado es expuesto considerando dos casos:
codi�cado binario sobre la entrada de una RBM binaria y una transformación al dominio
continuo de la probabilidad condicional.

ii

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Antecedents . 3

1.3 Contributions . 4

1.4 Structure . 5

1.5 Publications . 6

2 Deep learning 8

2.1 Neural networks . 8

2.1.1 Biological background . 8

2.1.2 Unsupervised learning and deep learning 11

2.2 Probabilistic models . 14

2.2.1 Statistical learning . 14

2.2.2 Supervised Learning and function approximation 15

2.3 Data-driven identi�cation . 16

2.3.1 Gradient descent algorithm . 16

2.3.2 Feed Forward Neural Networks . 20

2.3.3 Randomized algorithms . 22

2.3.4 An historical view of the perceptron and randomized algorithms . . . 23

2.4 Fuzzy models . 25

2.4.1 Mamdani model . 25

2.4.2 Takagi-Sugeno model . 27

2.4.3 Fuzzy logic operators . 28

2.5 Kullback�Leibler divergence . 29

iii

2.6 State of the art . 32

2.6.1 Randomized modeling, local minima and deep learning 32

2.6.2 Fuzzy logic and probability theory for system identi�cation 34

2.6.3 Deep conditional RBMs . 36

3 Restricted Boltzmann machines and randomized algorithms 38

3.1 A simple deep learning scheme for nonlinear system identi�cation 38

3.2 Nonlinear system identi�cation framework 42

3.3 Restricted Boltzmann for system identi�cation 43

3.3.1 Contrastive divergence . 44

3.3.2 Standard RBMs and their training procedure 48

3.3.3 Conditional probability transformation for non-binary values 51

3.3.4 Deep identi�cation model . 54

3.4 RBMs with randomized algorithms . 56

3.5 Simulations and comparisons . 58

4 Restricted Boltzmann machines and probabilistic fuzzy systems 70

4.1 Data-driven deep fuzzy identi�cation with restricted Boltzmann machines . . 71

4.2 Fuzzy rules extraction with probability based clustering 74

4.3 Data-Driven Fuzzy Modeling . 79

4.3.1 Randomized algorithms for membership functions training 80

4.3.2 Probability functions training . 81

4.4 Comparisons with other fuzzy modeling methods 83

5 Conditional continuous restricted Boltzmann machines 90

5.1 Universal approximation theory for conditional RBMs 92

5.2 DBM training with binary representation of input and output 101

5.3 DBM training with continuous values of input and output 105

5.4 Simulations . 110

6 Conclusions 118

iv

List of Figures

2-1 Information �ow through the brain. The information existing in an image is

detected using the retina. The shades, forms and shapes are interpreted using

areas V1, V2 and V3 . 10

2-2 The deep learning approach consists of two stages: a pretraining procedure

where the parameters are initialized and a �netuning method which uses a

supervised criteria to �nd the best parameters 12

2-3 The e¤ect of the pretraining stage. If the initial parameters are chosen ran-

domly they most likely will settle down in a local minima. The pretraining

stage helps to avoid this. 14

2-4 Gradient descent algorithm . 18

2-5 Model of a perceptron . 20

2-6 Multilayer Perceptron . 22

2-7 Membership funtions for the Mamdani model 26

2-8 A Takagi-Sugeno fuzzy model as a piece-wise linear approximation of a non-

linear system . 28

3-1 Deep identi�cation structure . 39

3-2 Flow of data of a deep training model . 40

3-3 Randomized algorithms with deep learning for nonlinear system identi�cation 43

3-4 Markov sampling in a restricted Boltzmann machine 50

3-5 Deep RBM Model . 54

3-6 Testing errors vs hidden neuron number (gas furnace) 61

3-7 Testing squared errors vs training data number (gas furnace) 61

3-8 Testing errors vs hidden neuron number (�rst-order system) 63

3-9 Squared errors vs training examples (�rst-order system) 64

v

3-10 Binary encode (DN_BI) deep learning modi�cation and the normal random-

ized algorithm. (W-H) . 66

3-11 Squared modeling errors vs training examples (W-H) 66

3-12 Training times for the gas furnace dataset with number of training examples

q = 150 . 67

3-13 Training times for the �rst order system with number of training examples

q = 180 . 68

3-14 Training times for the W-H dataset with number of training examples q = 50; 000 69

4-1 Data-driven fuzzy modeling . 71

4-2 Fuzzy rules extraction with the on-line culstering and the probability based

clustering . 78

4-3 Testing results of the gas furnace modeling. 84

4-4 Testing errors with RBMs and without RBMs 86

4-5 GAS testing error using probabilistic parameters 86

4-6 Data-driven fuzzy modeling method for the W-H data 88

4-7 Testing errors using RBM and without RBM 88

4-8 Testing errors using probabilistic parameters and standard fuzzy rules 89

5-1 Input features extraction with deep Boltzmann machines for nonlinear system

modeling . 91

5-2 Gibbs sampling for p(yjx) calculation . 104

5-3 DBM modeling using 8 bits and 4 bits encoding for the gas furnace data. . . 112

5-4 DBM modeling using continuous values for the gas furnace data. 114

5-5 Training errors with batch size of 1000 (�10�3) 115

5-6 Training errors with batch size of 500 (�10�3) 116

5-7 Training errors with batch size of 5000 (�10�3) 116

5-8 Testing error within the interval [0; 1] and batch size of 1000. 117

vi

List of Tables

2.1 Analogies between an ANN and the human brain 9

2.2 Commonly used functions for fuzzy logic operators 28

3.1 Testing results of deep learning with pseudoinverse (gas furnace) 60

3.2 Testing results of deep learning with pseudoinverse (�rst order nonlinear system) 62

3.3 Testing results of deep learning with pseudoinverse (Wiener-Hammerstein bench-

mark) . 65

3.4 Comparison of MSE error with di¤erent learning techniques over the W-H

benchmark(�10�3) . 66

4.1 Testing results of the deep fuzzy modeling (gas furnace) (�10�3) 85

4.2 Testing results of the deep fuzzy modeling (Wiener-Hammerstein benchmark)

(�10�3) . 89

5.1 Probability expressions for p(xjh) . 106

5.2 Probability expressions for p(yjh) . 107

5.3 MSEs of di¤erent identi�cation models (�10�3) 112

5.4 MSEs of di¤erent hidden layers (�10�3) . 113

5.5 MSEs of di¤erent hidden layers for WH(�10�3) 115

5.6 MSE over the WH benchmark (�10�3) . 116

vii

Acronyms
ANN Arti�cial Neural Network

BM Boltzmann Machine

BP Back Propagation

DA Denoising Autoencoders

DBN Deep Belief Network

DNN Deep Neural Network

ICA Independent Component Analysis

KL Kullback-Liebler

MLP Multilayer Perceptron

MSE Mean Square Error

PCA Principal Component Analysis

RBM Restricted Boltzmann Machine

RSE Root Square Error

SBN Sigmoid Belief Network

SDA Stacked Denoising Autoencoders

TK Takagi-Sugeno

VC Vapnik-Chervonenkis

viii

Chapter 1

Introduction

The �rst precedent of the succesful usage of deep learning techniques can be found in [27],

Hinton introduced deep belief networks (DBN) utilizing in each layer an RBM for the initial

weights selection.

The general principle of a deep architecture behavior is to guide the training of each

representation layer using unsupervised learning with a greedy-layer wise algorithm. In order

to achieve this goal, each layer is trained using an unsupervised method such as autoencoders

[5] and RBMs [27]. Although these techniques are generative models by themselves, they have

been utilized to set the initial weights of feed forward neural networks which are discriminative

models.

In the present work, there is explored the application of deep learning algorithms on

the system identi�cation task and how this application can be combined with supervised

algorithms such as gradient descent, fuzzy modeling and randomized methods.

1.1 Motivation

Neural networks use a family of statistical learning algorithms to estimate or approximate

functions or nonlinear systems. The most used neural model is the multilayer perceptron

(MLP). From universal approximation theory [20], a single hidden layer neural network can

approximate any nonlinear function to any prescribed accuracy if su¢ cient hidden neurons are

provided. However, despite of the fact that the previous statement has been proved, a formal

procedure to �nd the optimal parameters of a neural network does not exist. Many algorithms

1

have been developed to train a neural model but the gradient descent and its variants are

the most widely used methods which obtained good results in the early 1980�s. Nevertheless,

when more layers were added to the model, it was necessary to develop a method which could

cope with the new problem, this was the origin of the backpropagation algorithm which is

nothing more than the application of the chain rule over each layer of neurons. After its

initial success, the backpropagation algorithm faced the problem of gradient vanishing which

yielded into poor results in generalization performance by deep neural networks. This was a

wall that could not be overcome until Geo¤rey Hinton came up with the deep learning idea

[27].

In general, deep learning has two goals: a) it guides the weights to regions of minimal

norm and, b) it sets the weights in zones of the parameter space where the likelihood of a

global minimum is maximum [4]. The results of [23] show that the unsupervised training

can drive the neural model away from the local minima for classi�cation problems. How-

ever, deep learning methods cannot be applied to system identi�cation directly, because the

input/output values are non-binary as in classi�cation problems. Most of deep learning tech-

niques also use binary data, for example the conditional probability transformation in the

restricted Boltzmann machines needs binary values [28].

Deep learning techniques for system identi�cation can be regarded as a pre-training stage.

Only input data are used for this unsupervised learning stage [22]. The objective of this stage

is to learn the probability distribution of input data P (x): This helps to decide the condi-

tional probability distribution P (yjx); which is the objective of system identi�cation [23].

Since the unsupervised deep learning minimizes the variance and introduces bias into the

input space X, the supervised learning for X and Y can be improved. This is explained by

[4]: in the unsupervised learning stage, the input information is sent to hidden layers to con-

struct useful statistical features. This mechanism improves the corresponding input/output

representation. The input distribution P (x) appears in the hidden units via the deep learning

method.

2

1.2 Antecedents

Nonlinear systems identi�cation is a problem that has not been widely addressed by the deep

learning community, this is because of the di¤erences that this problem has respecting to

classi�cation where the number of classes is well de�ned. In an identi�cation framework the

number of possible outputs that the system can output is in�nite as its domain is continuous

within a range of possible values. This contrasts with the standard deep learning methods

which makes harder to design a transition between both tasks.

Although the di¢ culties explained previously are troublesome, the regression problem has

been tackled by deep learning methods in recent years. [9] uses deep denoising autoencoders

to create a model capable of representing the data, however, it is concluded that the encoding

stage did not help in the identi�cation task and the procedure has the problem of not dealing

with the continuous nature of the variables that describe a physical phenomenon. The prob-

lem of handling continuous values by an RBM has been addressed by [5] who de�nes Gaussian

hidden units showing good results for image classi�cation, the Gaussian units assume a gaus-

sian probability distribution over the input data which can be a extremely di¢ cult prior to

be ful�lled.

There have been also direct approximations to the problem, In [22] the normalization

factor and conditional probabilities between the hidden and visible units are changed de�ning

some domain intervals in <. After the RBM is trained using continuous values, it is used for

setting the initial weights of a gradient descent optimization obtaining good results in three

identi�cation tasks. Finally, [40], argue that an RBM can be used successfully as a stand-

alone classi�er and not only as a feature extractor. To achieve this, a conditional distribution

which models the class-data relationship is learned instead of the usual marginal distribution.

Other techniques that have addressed the nonlinear system identi�cation problem are the

randomized algorithms and fuzzy modeling. Randomized algorithms were initially proposed

in [63] and deeply studied in [33] for single hidden layer neural networks, where the hidden

weights are chosen randomly and the pseudoinverse approach (or least square method) is

applied to calculate the output weights. The advantages of using the pseudoinverse are: it

gives an optimal solution in the sense of least square and �nds the optimal weights with

minimal norm. [33] extended the above algorithms to random sampling: the hidden weights

are sampled from a continuous distribution. It shows that for the single hidden layer neural

3

network, the optimization for the hidden layer parameters does not improve the generalization

behavior signi�cantly, while updating the output weights is more e¤ective. Randomized

algorithms have been successfully applied to nonlinear system identi�cation in [70].

On the other hand both fuzzy models and probability theory can represent and process

uncertain systems e¤ectively [14]. Including probability theory in fuzzy modeling can improve

the stochastic modeling capability [30]. In [49], the probabilistic is added into the fuzzy

relation between the input space and the output space to handle the e¤ect of random noise

and stochastic uncertainties. [73] introduces probability distribution in the consequent part

of the fuzzy rules improving the fuzzy modeling.

1.3 Contributions

The contributions of this thesis are explained in detail in Chapters 3, 4 and 5, it has to be

pointed out that the contributions are divided in three approaches that were taken, a brief

summary of these contributions is presented next:

1. In this thesis, the advantages of both deep learning and randomized algorithms are

applied on nonlinear system identi�cation. The neural model has deep structure, which

increases the quantity of hidden layers and decreases the number of hidden neurons.

The complexity of the neural model does not change, while the modeling capacity

is improved. The restricted Boltzmann machines are modi�ed to train the hidden

weights with input data. Then, the randomized algorithm is used to train the output

weights. Three benchmark examples are applied to show that the randomized algorithm

with deep learning modi�cation can improve the identi�cation accuracy for nonlinear

system identi�cation. This constituted the �rst approach to deep learning in the system

identi�cation context.

2. Another approach that was taken in this thesis was to include probability theory in

fuzzy modeling due to the fact that it can improve the stochastic modeling capability

[30]. The third contribution of this thesis is to apply probability parameters to classical

fuzzy models. Deep learning is introduced in this context using an RBM as a pretraining

stage for the training samples. For the consequent part of the fuzzy rules (the output

4

weights), we use a randomized algorithm to train them. Finally, we use an optimization

method to reach maximum probability measures in each fuzzy rule.

With this work, the advantages of deep learning, probability theory, fuzzy modeling,

and randomized algorithms are exposed. We use the restricted Boltzmann machine

(RBM) and probability theory to overcome some common problems in data based

modeling methods. The RBM is modi�ed such that it can be trained with continuous

values. A probability based clustering method is proposed to partition the hidden fea-

tures computed by the RBM, and fuzzy rules are extracted adding probability measure-

ment. Moroever, an extreme learning machine and an optimization method are applied

to train the consequent part of the fuzzy rules and the probability parameters. The

proposed method is validated with two benchmark problems.

3. In Chapter 5, we �rst prove the universal approximation property of an RBM over

binary conditional distributions, then, we address two approaches that use an RBM

for system identi�cation. First, we perform an encoding procedure over the system

dataset in order to get a binary representation of the input and output vectors, with

this new binary dataset we train an RBM directly maximizing the log-likelihood of the

conditional probability (between input and output datasets) turning the RBM into a

discriminative model. The second strategy is to modify the input domain that the RBM

can handle, we just consider continuous input and output while the hidden variables

remain binary. To accomplish this task, the probability distributions of the data are

changed using integrals evaluated in the new domain. Finally, we calculate the new

conditional probability distribution and train the model to increase it. Two numerical

simulations are tested to verify our method.

1.4 Structure

The thesis is divided as follows:

� In Chapter 2, a brief introduction to deep learning is presented. It is explained which

is the new paradigm that has been taken by the machine learning community and

how it can be related with nonlinear systems identi�cation theory.

5

� Randomized algorithms are described in Chapter 3. Their advantages over other

methods are discussed and it is also explained how RBMs can be introduced and

modi�ed to �t within this framework.

� Chapter 4 describes in detail a fuzzy modeling approach where the data has been

transformed using an RBM, the defuzzi�cation process is performed adding a

probability measure to each fuzzy set.

� The conditional RBM�s universal approximation capability is proved in Chapter

5 along with the implementation of its training algorithm.

� Conclusions, insights and opportunities of improvement are discussed in Chapter

6.

1.5 Publications

International Journals

1. E. de la Rosa and W. Yu, Randomized Algorithms for Nonlinear System Identi�ca-

tion with Deep Learning Modi�cation, Information Sciences, Vol. 364, 197-212, 2016.

(Impact Factor: 3.364)

2. E. de la Rosa and W. Yu, Data-Driven Fuzzy Modeling Using Restricted Boltzmann

Machines and Probability Theory, IEEE Transaction on Systems, Man, and Cybernet-

ics: Systems (Impact factor: 1.598)

3. E. de la Rosa and W. Yu, Nonlinear system identi�cation using conditional probability,

Automatica, In Review (Impact factor: 5.451)

4. E. de la Rosa and W. Yu, Deep Boltzmann machine for nonlinear system modelling, In-

ternational Journal of Machine Learning and Cybernetics, In Review (Impact factor:

1.699)

International Conferences

1. E.de la Rosa, W.Yu, Nonlinear system identi�cation using deep learning and random-

ized algorithms, 2015 IEEE International Conference on Information and Automation

6

(ICIA 2015), Lijing, China, 274-279, 2015

2. E. de la Rosa andW. Yu, Restricted Boltzmann machine for nonlinear systemmodeling,

14th IEEE International Conference on Machine Learning and Applications (ICMLA15),

Miami, USA, 2015

3. E. de la Rosa, W. Yu, X.Li , Nonlinear system modeling with deep neural networks

and autoencoders algorithm, 2016 IEEE International Conference on Systems, Man,

and Cybernetics (SMC16), Budapest, Hungary, 2157-2162, 2016

4. E. de la Rosa, W. Yu and H. Sossa, Fuzzy Modeling from Black-Box Data with Deep

Learning Techniques, 14th International Symposium on Neural Networks (ISNN 2017),

Sapporo, Japan

5. E. de la Rosa, W. Yu, X. Li, Probability based fuzzy modeling, IEEE International

Conference on Systems, Man, and Cybernetics (SMC17), Ban¤, Canada, 1633-1638,

2017

7

Chapter 2

Deep learning

In this chapter we present a brief introduction to the deep learning framework and some of

the identi�cation techniques that are addressed in this thesis are presented. First, we explain

which were the reasons that motivated the resurgence of deep architectures in the arti�cial

intelligence (AI) community and how they have impacted the addressing of some problems,

like face recognition, natural language processing or sentiment analysis. Some parallelisms

in processes that the human brain performs in a daily basis are explained and how they can

be interpreted with computer science tools.

2.1 Neural networks

In the arti�cial intelligence framework, researchers usually look for algorithms, methods and

techniques capable of solving problems that are easily answered by a human mind. This

means that scientists and engineers try to mimic the process that our brains perform in order

to come up with a solution in di¤erent kinds of environments where the quantity of variables

is not measurable.

2.1.1 Biological background

One of the most famous mimetizations that has been carried out by the machine learning

scientists is the arti�cial neural network. Arti�cial neural networks (ANN) were originally

designed to model in some small way the functionality of the biological neural networks which

are a part of the human brain. Our brains contain about 1011 neurons. Each biological neuron

8

consists of a cell body, a collection of dendrites which bring electrochemical information into

the cell and an axon which transmits electrochemical information out of the cell.

A neuron produces an output along its axon, it �res when the collective e¤ect of its

inputs reaches a certain threshold. The axon from one neuron can in�uence the dendrites

of another neuron across junctions called synapses. Some synapses will generate a positive

e¤ect in the dendrite which encourages its neuron to �re, and others will produce a negative

e¤ect which discourages the neuron from �ring. A single neuron receives inputs from perhaps

105 synapses and the total number of synapses in our brains may be of the order of 1015. It

is still not clear exactly how our brains learn and remember but it appears to be associated

with the interconnections between the neurons (at the synapses).

Arti�cial neural nets try to model this low level functionality of the brain. This contrasts

with the high level symbolic reasoning in arti�cial intelligence which tries to model the high

level reasoning processes of the brain. When we think, we are conscious of manipulating

concepts to which we attach names (or symbols) but we are not conscious of the low level

electrochemical processes which are going on underneath. The argument for the neural net

approach to AI is that, if we can model the low level activities correctly, the high level

functionality may be produced as an emergent property.

A single arti�cial neuron consists of a processing element which has a number of input

connections, each with an associated weight, a transfer function which determines the output,

given the weighted sum of the inputs, and the output connection itself. An arti�cial neural

network is a network of interconnected neurons, the network may be trained by adjusting

the weights associated with the connections in the net to try and obtain the required outputs

for given inputs from a training set. It can be seen from the above that there is an analogy

between biological (human) and arti�cial neural nets. The analogy is summarized in Table

2.1.

Table 2.1: Analogies between an ANN and the human brain
Brain ANN
Neuron AN
Dendrites Combining function
Cell body Activation function
Axons Output
Synapses Weights

9

Retina

Area V1

Area V2

Area V3
Higher level visual

abstractions

Primitive shape
detectors

Edge detectors

pixels

Figure 2-1: Information �ow through the brain. The information existing in an image is
detected using the retina. The shades, forms and shapes are interpreted using areas V1, V2
and V3

As is known, ANNs have had a huge impact achieving good results in many di¤erent areas

of application [56]. However, most of the implemented ANNs are shallow (one or two layers

of representation) which not entirely relates with how a brain works. Recent studies [5] show

that the brain cannot be studied using a shallow architecture, the conclusions of that work

are summarized in 5 points.

1. Brains have a deep architecture.

2. Humans organize their ideas hierarchically through the composition of simpler ideas.

3. Insu¢ ciently deep architectures can be exponentially ine¢ cient.

4. Distributed or sparse representations are necessary to achieve true learning

5. Intermediate representations allow sharing statistical strength

One example of the deep processes that take place in our minds is shown in Figure 2-1.

There is seen how the data stored in an image travels through di¤erent representation layers

until it is �nally understood as an abstraction or idea.

Automatically, learning features of a system at multiple levels of abstraction allows a

system to learn complex functions from the sensory input. This ability is very important

when the amount of data and range of machine learning applications methods is growing.

According to [23], depth of architecture refers to the number of levels of composition

of non-linear operations represented by a given function. The brain appears to process

10

information using di¤erent stages of abstraction and representation. For example, in our

visual system the brain re�nes the shapes that are seen through several steps: edge detection,

primitive shapes, known shapes, ..., recognized object or scene.

Under this background, neural network researchers had wanted (from 1980 and onwards)

to train deep multi layer networks [6][72]. As has been explained, the backpropagation

algorithm o¤ers a solution to train multi layer models, however, it presents some problems

which could not be overcome until the year 2006, these problems are summarized in three

points.

1. Vanishing e¤ect: the backpropagation signal vanishes as it moves backwards through

the net, as consequence, the bottom layers remain almost untrained.

2. Local minima problem. The gradient descent algorithm cannot overcome the local

minima regions of the cost function.

3. Shadowing e¤ect. Having too many model parameters can produce a continuous up-

dating through the training epochs which does not converge to any solution

Because of these di¢ culties, the study of deep architectures was abandoned and research-

ers focused in only two or three layers of representation. Nevertheless, Hinton introduced in

2006 the concept of Deep Belief Networks (DBNs) [27] which is an algorithm that greedily

trains each layer at a time utilizing a restricted Boltzmann machine (RBM). In the next

section we explain how deep learning helps to overcome the historical issues that deep archi-

tectures have had achieving state of the art performance in various tasks.

2.1.2 Unsupervised learning and deep learning

Deep learning has achieved general success despite of the serious challenge of training models

with many layers of adaptive parameters. In virtually all deep learning instances, the goal

is to minimize an objective function which is a highly non-convex function of the model

parameters with the potential of many distinct local minima in the parameter space. It has

been shown that for deep architectures, the classic training schemes which rely on random

parameter initialization tend to place the parameters in regions that settle down in regions

of the hyperdimensional parameter space that give poor generalization performance as has

been frequently observed.

11

As has been said, the breakthrough to e¤ective training strategies for deep architectures

came with the algorithms for training DBNs and stacked denoising autoencoders [5] which

are all based on a similar approach: greedy layer-wise unsupervised pre-training followed by

supervised �ne-tuning.

Pretraining
(unsupervised)

Finetuning
(supervised)

Figure 2-2: The deep learning approach consists of two stages: a pretraining procedure where
the parameters are initialized and a �netuning method which uses a supervised criteria to
�nd the best parameters

Each layer is pretrained with an unsupervised learning algorithm learning, i. e., an

encoding procedure that captures the main variations of the layer�s input. This unsupervised

pre-training sets the stage for a �nal training phase where the deep architecture is �ne-

tuned with respect to a supervised training criterion with gradient-based optimization. It

is important to mentione that despite of the fact that the pretraining impact has been

measured with impressive results, the mechanisms underlying its success are not understood.

There have been some claims that try to explain why the pretraining stage works, the most

important among them are:

� Unsupervised pretraining initializes the model to a point that somehow renders the

optimization process more e¤ective achieving a lower minimum of the empirical cost

function.

� Pretraining is an unusual form of regularization which minimizes variance and intro-

duce bias towards a con�guration of the parameter space that is useful for supervised

learning.

The second perspective places unsupervised pretraining among semisupervised algorithms,

however, it is unique because it acts by de�ning a particular initialization point for stand-

ard supervised training rather than modifying the supervised objective function or imposing

constraints on the parameters throughout training. It has been suggested [9] that in highly

non-convex situations as training a deep structure, de�ning a particular initialization point

12

imposes constraints on the parameters because it speci�es which minima of the cost function

are allowed.

Standard training of deep models using gradient descent is di¢ cult. It has to be stated

why it is di¢ cult and which are the tasks that a successful algorithm has to accomplish. The

main problem is that the model parameters have strong dependencies between them which

carry several di¢ culties during training. This dependency is stronger between parameters

across layers as parameters which belong to the same layer are independent in the sense that

in a direct calculation their impact in the �nal result is independent. This problem has to

be addressed considering the next two aspects for every new algorithm that we want to use:

� Modify the lower layers in order to provide good data to the upper layers .

� Modify the upper layers to take advantage of the data delivered by the lower layers.

The second problem is easily solved using any supervised learning approach. However,

it is not well understood how the �rst problem can be addressed, moreover, a particular

di¢ culty arises when both sets of layers must be learned at the same time as the gradient of

the objective function is limited to a local measure. Furthermore, the training error cannot

show the e¤ectiveness of the lower layers training because the upper layers can over�t the

training set if they are large enough.

Now, what happens with the online gradient descent implementation? This procedure

de�nes a trajectory in the parameter space that eventually converges (i. e., it reaches a point

where the error does not improve anymore); it has been argued [23] that small perturbations

on such trajectory have a bigger e¤ect if they are applied early on.

Once the training is initialized it rapidly settles into a basin which de�nes the local min-

imum that the algorithm reaches. Early on, small perturbations allow the model parameters

to switch from a basin to a nearby one, whereas later on, it is unlikely to escape from the

basin attraction. In this sense, unsupervised pretraining interacts with the optimization pro-

cess and when the number of training examples becomes large, its positive e¤ect is seen not

only on generalization error but also on training error. An scheme of this general idea is seen

in Figure 2-3.

13

Figure 2-3: The e¤ect of the pretraining stage. If the initial parameters are chosen randomly
they most likely will settle down in a local minima. The pretraining stage helps to avoid this.

2.2 Probabilistic models

In any system identi�cation framework, the goal is to �nd an useful approximation bf(x) of
the function f(x) that underlies the predictive relationship between inputs and outputs. In

the theoretical setting of probability, it has been shown that optimizing a squared error loss

leads to the regression function f(x) = E(Y jX = x). In this case, the modeling object is to

�nd the proper probability distribution that can predict the associated system observations.

2.2.1 Statistical learning

Suppose that in fact, we have a dataset that arose from a statistical model:

Y = f(X) + " (2.1)

where the random error " has E(") = 0 and is independent of X. Note that for this

model, f(x) = E(Y jX = x), and in fact the conditional distribution P (Y jX) depends on X

only through the conditional mean f(x).

The additive error model is a useful approximation to the real behaviour of nature.

For most systems the input�output pairs (X; Y) will not have a deterministic relationship

Y = f(X). Generally, there will be other unmeasured variables that also contribute to Y ,

including measurement error. The additive model assumes that we can capture all these de-

14

partures from a deterministic relationship via the error ". For some problems a deterministic

relationship does not hold. Many of the classi�cation problems studied in machine learning

are of this form, where the learning comes from the training data that consists of examples

fx(k); g(k)g. Here the function is deterministic, and the randomness enters through the x

location of the training points.

We will see that this problem can be handled by techniques appropriate for error-based

models. The assumption in (2.1) that the errors are independent and identically distributed is

not strictly necessary, but with such a model it becomes natural to use least squares as a data

criterion for model estimation. Simple modi�cations can be made to avoid the independence

assumption; for example, we can have Var(Y jX = x) = �(x), and now both the mean and

variance depend on X. In general, the conditional distribution P (Y jX) can depend on X in

complicated ways, but the additive error model precludes these.

Additive error models are typically not used for qualitative outputs G; in this case the

target function p(X) is the conditional density P (GjX), and this is modeled directly. For

example, for two-class data, it is often reasonable to assume that the data arise from inde-

pendent binary trials, with the probability of one particular outcome being p(X), and the

other 1� p(X). Thus if Y is the 0� 1 coded version of G, then E(Y jX = x) = p(x), but the

variance depends on x as well: Var(Y jX = x) = p(x)[1� p(x)].

2.2.2 Supervised Learning and function approximation

Suppose for simplicity that the errors are additive and that the model Y = f(X) + " is

a reasonable assumption. Supervised learning attempts to learn f by example through a

teacher. One observes the system under study, both the inputs and outputs, and assembles

a training set of observations T = (x(k); y(k)), i = 1; :::; N . The observed input values of the

system x(k) are also fed into an arti�cial system, known as a learning algorithm, which also

produces outputs bf(x(k)) in response to the inputs.
The learning algorithm has the property that it can modify its input/output relationshipbf in response to di¤erences y(k)� bf(x(k)) between the original and generated outputs. This

process is known as learning by example. Upon completion of the learning process the hope

is that the arti�cial and real outputs will be close enough to be useful for all sets of inputs

likely to be encountered in practice.

15

The learning paradigm of the previous section has been the motivation for research into the

supervised learning problem in the �elds of machine learning (with analogies to human reas-

oning) and neural networks (with biological analogies to the brain). The approach taken in

applied mathematics and statistics has been from the perspective of function approximation

and estimation. Here the data pairs fx(k); y(k)g are viewed as points in a (p+1)-dimensional

Euclidean space. The function f(x) has domain equal to the p-dimensional input subspace,

and is related to the data via a model such as y(k) = f(x(k)) + "(k).

2.3 Data-driven identi�cation

In this section we explain some of the algorithms that have been used along deep learning

to identify nonlinear systems. We begin giving a brief description of the gradient descent

algorithm which is the most known algorithm that minimizes cost functions, then, we in-

troduce the multilayer perceptron which is the most famous feed forward neural network.

Finally, the reader is introduced to the fuzzy logic framework where a heuristic paradigm

commands.

2.3.1 Gradient descent algorithm

A very common problem that arises in the vast majority of machine learning problems is

the minimization of a cost function which is subject to some parameters to be tuned by a

training algorithm. The most used method to minimize the cost function is the gradient

descent algorithm or steepest descent method which is explained in this section.

The problem we are interested in solving is:

minimize f(x)

subject to x 2 <n;

where f(x) is di¤erentiable. If x = x is a given point, f(x) can be approximated by its

linear expansion

f(x+ d) � f(x) +
@f(x)T

@x
d

if d is small. Now notice that if the approximation in the above expression is good, then

16

we want to choose d so that the inner product @f(x)
T

@x
d is as small as possible. Let us normalize

d so that kdk = 1. Then among all directions d with norm kdk = 1; the direction

ed = �@f(x)
@x@f(x)@x

makes the smallest inner product with the gradient @f(x)

@x
: This fact follows from the

following inequalities:

@f(x)

@x

T

d � �
@f(x)@x

 kdk = @f(x)

@x

T

0@ �@f(x)
@x@f(x)@x

1A = �@f(x)

@x

T ed
For this reason the un-normalized direction:

d = �@f(x)
@x

is called the direction of steepest descent at the point x:

Note that d = �@f(x)
@x

is a descent direction as long as @f(x)
@x
6= 0: To see this, simple

observe that d
T @f(x)

@x
= �

�
@f(x)
@x

�T
@f(x)
@x

< 0 as long as @f(x)
@x
6= 0:

Observing this behavior, we have as consequence Algorithm 1, called the steepest descent

algorithm

Algorithm 1

1. Given x(0), set k := 0

2. d(k) := �@f(x(k))
@x

: If d(k) = 0; then stop.

3. Solve min� f(x(k)+�d(k)) for the stepsize �(k); perhaps chosen by an exact or inexact

linesearch.

4. Update with x(k + 1) = x(k) + �(k)d(k); k = k + 1. Return to Step 2.

Note from Step 3 and the fact that d(k) = �@f(x(k))
@x

is a descent direction, it follows that

f(x(k + 1)) < f(x(k)): A graphical representation of this process is shown in Figure 2-4, it

is shown how the values of x are changing towards a local minimum where eventually the

updating process will cease to work.

17

Figure 2-4: Gradient descent algorithm

The original error back-propagation algorithm implements a steepest descent method. In

each iteration, the weights of the multilayer perceptron are updated by a �xed percentage in

the negative direction. In literature, the gradient descent techniques can be summarized in

three main variants of the classic algorithm, these variants are explained next.

Batch gradient descent

Consider a training set D = fx(k)gnk=1; both statistical estimation and machine learning

consider the problem of minimizing an objective function that has the form of a sum:

J(�) =
1

n

nX
k=1

J(k;�) (2.2)

where the parameter � which minimizes J(�) is to be estimated. Each summand function

J(k;�) is typically associated with the k-th observation in the dataset (used for training).

When used to minimize the above function, a standard (or batch) gradient descent method

would perform the following iterations:

� = �� �@J(�)
@�

= �� � 1
n

nX
k=1

@J(k;�)

@�
(2.3)

where � is the learning rate. The most important feature of this variant is that the up-

18

dating process is only done once the summation of the contributions of each training example

has been calculated. In many cases, evaluating the sum-gradient may require expensive eval-

uations of the gradients from all summand functions. When the training set is enormous

and no simple formulas exist, evaluating the sums of gradients becomes very expensive, be-

cause evaluating the gradient requires evaluating all the summand functions�gradients. To

economize on the computational cost at every iteration, stochastic gradient descent samples

a subset of summand functions at every step. This is very e¤ective in the case of large-scale

machine learning problems.

Stochastic gradient descent

In stochastic (or "on-line") gradient descent, the true gradient of J(�) is approximated by a

gradient at a single example:

� = �� �@J(k;�)
@�

for k = 1; ::; n (2.4)

As the algorithm sweeps through the training set, it performs the above update for each

training example. Several passes can be made over the training set until the algorithm

converges. If this is done, the data can be shu ed for each pass to prevent cycles. Typical

implementations may use an adaptive learning rate so that the algorithm converges.

Minibatch gradient descent

A compromise between computing the true gradient and the gradient at a single example,

is to compute the gradient against more than one training example (called a mini-batch) at

each step. This can perform signi�cantly better than true stochastic gradient descent because

the code can make use of vectorization libraries rather than computing each step separately.

It may also result in smoother convergence, as the gradient computed at each step uses more

training examples.

Consider then that the training set D is divided in q disjoint subsets fH1; H2; :::; Hqg:

Each of this subsets is a minibatch, the learning rule is formulated as:

� = �� � 1
nj

X
kjx(k)2Hj

@J(k;�)

@�
for j = 1; :::; q (2.5)

19

activation
function output

Figure 2-5: Model of a perceptron

where nj is the number of elements in the minibatch Hj.

2.3.2 Feed Forward Neural Networks

The most common learning mechanism associated with all arti�cial neural networks is, by

far, the supervised paradigm. Multilayer perceptrons (MLP) are the most widely known type

of ANNs. It has been shown that they constitute universal approximators [20], both with

one hidden layer and with two hidden layers. Before describing MLPs let us describe the

single perceptron.

The Perceptron

Perceptrons were �rst introduced by Frank Rosenblatt, working at Cornell Aeronautical Labs,

intended to be computational models of the retina. The basic model is shown in Figure 2-5.

The typical application of Rosenblat was to activate an appropriate response unit for

a given input pattern or a class of patterns. For this reason, the activation function is a

threshold function. The inputs, outputs and training patterns were binary values (0 or 1).

The basic rule is to alter the value of the weights when an error exists between the network

output and the desired output. The heuristic learning rule is as follows:

Algorithm 2

1. If the input is 1 and should be 1, or if the output is 0 and should be 0, do nothing;

2. If the output is 0 and should be 1, increment all the weights in all active lines;

3. If the output is 1 and should be 0, decrement the weights in all active lines.

20

Considering a perceptron with just 1 output, the weight vector, W , is updated as:

W (k + 1) = W (k) + �W (2.6)

where �W is the change made to the weight vector, as:

�wi = �(by(k)� y(k))xi(k) (2.7)

In (2.7), � is the learning rate, by(k) and y(k) are the desired and actual output, respect-
ively, at time k; xi(k) is the i�th element of the input vector. Some variations have been

made to this simple perceptron model: First, some models do not employ a bias; the inputs

to the net may be real valued, bipolar (+1;�1), as well as binary and the outputs may be

bipolar.

Multilayer perceptrons

The error back-propagation (BP) algorithm is the best known learning algorithm for per-

forming the tuning of the MLP parameters. In fact, MLPs and the BP algorithm are so

intimately related that it is usual to �nd in the literature that this type of arti�cial neural

network is referred to as back-propagation neural network.

The MLP can be explained as the composition of nonlinear functions applied to inner

products. Its mathematical model is given by (2.8).

by (k) = ��p
�
Wp�p�1 [: : :W3�2 fW2�1 [W1x (k) + b1] + b2g+ b3 : : :+ bp�1] + bp

	
(2.8)

where by (k) 2 <m is the output of the neural model, W1 2 <l1�n; b1 2 <l1 ; W2 2 <l2�l1 ;

b2 2 <l2 ; Wp 2 <lp�lp�1 ; bp 2 <lp ; p is the number of hidden layers, li (i = 1 � � � p) are the

node numbers in each layer, �i 2 <li (i = 1 � � � p) are active vector functions, � =
h
�1 � � � �lp

i
;

� 2 <m�lp is the weight matrix of the output layer. The active functions are in sigmoid form,

�i (!j) = ai=
�
1 + e�b

T
i !j
�
� ci

where i = 1 � � � p; j = 1 � � � li; ai; bi; and ci are prior de�ned positive constants, !j are the

input variables to the sigmoid functions. A �ow chart of the MLP is seen in Figure 2-6.

21

Figure 2-6: Multilayer Perceptron

Let � represents any of the parameters that de�ne the MLP, the learning procedure

follows the same rules of gradient descent. The learning rule can be given by (2.3), (2.4)

or (2.5) depending on the type of approach we are taking. It is important to note that the

very famous backpropagation algorithm is just an application of the chain rule that allows

to calculate the term @J(k;�)
@�

when � is a parameter that does not belong to the output layer.

In this thesis we compute the gradient using a numerical package which enables us to skip

the usage of the backpropagation method.

2.3.3 Randomized algorithms

Randomized algorithms are feedforward neural networks for classi�cation or regression with

a single layer of hidden nodes, where the weights connecting inputs to hidden nodes are

randomly assigned and never updated. The weights between hidden nodes and outputs are

learned in a single step, which essentially amounts to learning a linear model.

According to their creators, these models are able to produce good generalization per-

formance and learn thousands of times faster than networks trained using backpropagation

[32].

The simplest randomized training algorithm learns a model of the form

by = ��(Wx) (2.9)

where W is the matrix of input-to-hidden-layer weights, � is some activation function,

and � is the matrix of hidden-to-output-layer weights. Algorithm 3 explains how the training

is done:

Algorithm 3

1. Fill W with Gaussian random noise;

22

2. Estimate � by least-squares �t to a matrix of response variables Y , computed using

the pseudoinverse (�)++ given a design matrix X:

W = �(WX)+Y

It is seen the incredible simplicity of the model which is the main reason that has made

this model so popular in recent years. It is important to point out that this model has received

numerous critics that emphasize the lack of proper training in the hidden layer as a weakness

that decreases the generalization capabilities of the net. However, it has been shown that the

generalization is not compromised if the random selection of the hidden weights is performed

over certain classes of probability distributions [31]. In Chapter 3 it is proposed a method

that initializes the hidden weights using a deep learning technique: the restricted Boltzmann

machine.

2.3.4 An historical view of the perceptron and randomized al-

gorithms

Rosenblat [60] stated that a MLP can enable arti�cial systems to perform human-like activit-

ies such as speaking, walking, writing and even being aware of its own existence. However, it

was shown [53] that a perceptron without hidden layers could not even handle the modeling

of the simple XOR function, this fact made researchers give up in the �eld of machine learn-

ing but as it is going be explained in this thesis, the failure exposed in [53] can be avoided

if a new architecture is introduced.

The XOR counterexample given in [53] used a feedforward network with input and output

layers but without hidden layers, this model can be empirically understood as brain which

has input layers or sensors (eyes, nose, ears,...) and output layers or actuators (muscles,

bones, ...) but it lacks of neurons. It is easily seen that this brain is an empty shell and has

no learning or cognition capabilities at all. Then, it is clear that a hidden layer is necessary

to provide a true learning system, this realization had as consequence that thousands of

researches started to look for learning algorithms capable of tuning a new set of hidden

layers. Such human e¤ort did not have good results despite of the huge number of scientists

that got involved, eventually it reached a point where some researchers began to think about

23

ways to avoid the hidden layer training by assuming that it was not necessary. Finally,

such beliefs and philosophy in both machine learning and biological learning resulted in

techniques referred as randomized algorithms, in this approach the problem of training a

MLP is addressed by considering that the existence of hidden layers is necessary to achieve

good results but their tuning is not.

Randomized algorithms represent a suite of machine learning techniques (including single

hidden feedforward networks and multilayer feedforward networks) in which hidden neurons

do not need to be tuned with the consideration of neural networks generalization theory. It

has been argued that randomized algorithms re�ect the true nature of some biological learning

mechanisms as it has been found that the stimulus propagation in some areas of the brain

cortex occurs randomly. Their universal approximation capabilities (proved for a network in

which a hidden node may be a subnetwork of several nodes with almost nonlinear piecewise

continuous neurons) was shown in [31]. Their concrete biological evidence subsequently

appears in [66].

The target of randomized algorithms is not only the single layer feedforward neural net-

works but also the generalized multilayer feedforward neural networks in which a node may

be a subnetwork consisting of other hidden nodes. The randomized algorithms framework

also covers wide types of neural networks including but not limited to sigmoid networks and

radial basis functions, it also aims to implement the �ve fundamental operations of learning

in an homogenous architecture, these operations are:

1. Compression

2. Feature learning

3. Clustering

4. Regression (modeling)

5. Classi�cation

Thus, from this point of view, the coexistence of globally structured architectures and

locally random hidden neurons happens to have fundamental learning capabilities in the

�ve tasks exposed above. This may have addressed John von Neumann�s puzzle. Biolo-

gical learning mechanisms are sophisticated, and it is believed in [31] that learning without

24

tuning hidden neurons is one of the fundamental biological learning mechanisms in many

modules of learning systems. Furthermore, random hidden neurons and random wiring are

only two speci�c implementations of such learning without tuning hidden neurons learning

mechanisms.

2.4 Fuzzy models

Th idea of a fuzzy logic was introduced by L. A. Zadeh in 1965. This concept allows imprecise

and qualitative information to be expressed and used in an exact way. It also implied a

generalization of the concept of set which was included in the more general term of fuzzy

set. This new concept o¤ered the �exibility to be able to contain with uncertainty objects

and ideas. A mathematical model which in some ways uses fuzzy sets is called a fuzzy

model. In system identi�cation, rule-based fuzzy models are usually applied. In these models,

the relationships between variables are represented by means of if-then rules with imprecise

predicates, such as:

IF heating is fast THEN temperature increase is fast

This rule de�nes in a rather qualitative way the relationship between the heating an the

temperature in a room, for instance. To make such a model operational, the meaning of the

terms high and fast must be de�ned more precisely. This is done by using fuzzy sets, i. e.,

sets where the membership is changing gradually rather than in an abrupt way. Fuzzy sets

are de�ned through their membership functions which map the elements of the considered

universe to the unit interval [0,1]. The extreme values 0 and 1 denote complete membership

and non-membership, respectively, while a degree between 0 and 1 means partial membership

in the fuzzy set. Depending on the structure of the if-then rules, two main types of fuzzy

models can be distinguished: the Mandami (or linguistic) and the Takagi-Sugeno model.

2.4.1 Mamdani model

In this model, the antecedent (if-part of the rule) and the consequent (then-part of the rule)

are fuzzy propositions:

Rj: IF x is Aj THEN y is Bj; j = 1; 2; ::; K (2.10)

25

Figure 2-7: Membership funtions for the Mamdani model

Here Aj and Bj are the antecedent and consequent linguistic terms (such as small, large,

etc.), represented by fuzzy sets, and K is the number of rules that exist in the model. The

linguistic fuzzy model is useful for representing qualitative knowledge, this is illustrated in

the following example.

Consider a qualitative description of the relationship between the oxygen supply to a gas

burner x and its heating power y:

R1: IF O2 �ow rate is Low THEN heating power is Low

R2: IF O2 �ow rate is OK THEN heating power is OK

R3: IF O2 �ow rate is High THEN heating power is Low

The meaning of the linguistic terms {Low, OK, High} and {Low, High} is de�ned by

membership functions such as the ones depicted in Figure 2-7. Membership functions can be

de�ned by the model developer based on prior knowledge or by using data (in this example,

the membership functions and their domains are selected arbitrarily).

The meaning of the linguistic terms is, of course, not universally given. In this example,

the de�nition of the fuzzy set OK, for instance, may depend on the �ow-rate of the fuel gas,

the type of burner, etc. When input-output data of the system under study are available,

the membership functions can be constructed or adjusted automatically, as discussed later

on. Note, however, that the qualitative relationship given by the rules is usually expected to

be valid for a range of conditions.

26

2.4.2 Takagi-Sugeno model

The Mamdani model is typically used in knowledge-based (expert) systems. In data-driven

identi�cation, the model due to Takagi and Sugeno has become popular. In this model,

the antecedent is de�ned in the same way as above, while the consequent is an a¢ ne linear

function of the input variables:

Rj: IF x is Aj THEN yj = aTj x+ bj; j = 1; 2; ::; K (2.11)

where aj is the consequent parameter vector and bj is a scalar o¤set. This model combines

a linguistic description with standard functional regression: the antecedents describe fuzzy

regions in the input space in which the consequent functions are valid- The output y is

computed by taking the weighted average of the individual rules�contributions:

y =

PK
j=1 �

j(x)yjPK
j=1 �

j(x)
=

PK
j=1 �

j(x)(aTj x+ bj)PK
j=1 �

j(x)

where �j(x) is the degree of ful�llment of the j-th rule. For the rule (2.11), �j(x) = �Aj(x),

but it can also be a more complicated expression, as shown later on. The antecedent fuzzy

sets are usually de�ned to describe distinct, partly overlapping regions in the input space.

The parameters aj(x) are then (approximate) local linear models of the considered nonlinear

system. The TS model can thus be regarded as a smooth piece-wise linear approximation

of a nonlinear function or a parameter-scheduling model. Note that the antecedent and

consequent variables may be di¤erent. This is illustrated by the next example:

Consider a static characteristic of an actuator with a dead-zone and a non-symmetrical

response for positive and negative inputs. Such a system can conveniently be represented

by a TS model with three rules each covering a subset of the operating domain that can be

approximated by a local linear model, see Figure 2-8.

The corresponding rules are given next:

R1: IF u is Negative THEN y1 = a1x� b1

R2: IF u is Zero THEN y2 = a2x� b2

R3: IF u is Positive THEN y3 = a3x� b3

As the consequent parameters are �rst-order polynomials in the input variables, the model

27

Figure 2-8: A Takagi-Sugeno fuzzy model as a piece-wise linear approximation of a nonlinear
system

(2.11) is in the literature also called the �rst-order TS model. This is in order to distinguish

it from the zero-order TS model whose consequents are simply constants.

Rj: IF x is Aj THEN yj = bj; j = 1; 2; ::; K (2.12)

2.4.3 Fuzzy logic operators

In fuzzy systems with multiple inputs, the antecedent proposition is usually represented as

a combination of terms with univariate membership functions, by using logic operators and

(conjuction), or (disjunction) and not (complement). In fuzzy set theory, several families of

operators have been introduced for these logical connectives. Table 2.2 shows the two most

common ones.

Table 2.2: Commonly used functions for fuzzy logic operators
A and B A or B not A

Zadeh min(�A; �B) max(�A; �B) 1� �A
probabilistic �A � �B �A + �B � �A � �B 1� �A

As an example, consider the commonly used conjunctive form of the antecedent, which

is given by:

Rj: IF x1 is A
j
1 and x2 is A

j
2 and � � � xm (k) is Ajm THEN yj = aTj x+ bj

28

with the degree of ful�llment

�j(x) = min
�
�Aj1

(x1); �Aj2
(x2); :::; �Ajm (xm)

�
or

�j(x) = �Aj1
(x1) � �Aj2 (x2); :::; �Ajm (xm)

for the minimum and product conjunction operators, respectively. The complete set of

rules divides the input domain into a lattice of overlapping axis-parallel hyperboxes. Each

of these hyperboxes is a Cartesian product intersection of the corresponding univariate fuzzy

set.

2.5 Kullback�Leibler divergence

The Kullback�Leibler divergence (also called relative entropy) is a measure of how one prob-

ability distribution diverges from a second, expected probability distribution. In the simple

case, a Kullback�Leibler divergence of 0 indicates that we can expect similar, if not the same,

behavior of two di¤erent distributions, while a Kullback�Leibler divergence of 1 indicates that

the two distributions behave in such a di¤erent manner that the expectation given the �rst

distribution approaches zero.

De�nition

Consider two discrete probability distributions P and Q, the Kullback-Leibler divergence

from Q to P is de�ned to be

DKL(P jjQ) = �
X
i

P (i) log
Q(i)

P (i)
(2.13)

which is equivalent to

DKL(P jjQ) =
X
i

P (i) log
P (i)

Q(i)
(2.14)

In other words, it is the expectation of the logarithmic di¤erence between the probabilities

29

P and Q, where the expectation is taken using the probabilities P: the Kullback-Leibler diver-

gence is de�ned only if for all i, Q(i) = 0 implies P (i) = 0 (absolute continuity). Whenever

P (i) is zero the contribution of the i-th term is interpreted as zero because limx!0 log(x) = 0:

For distributions P and Q of a continuous random variable, the Kullback-Leibler diver-

gence is de�ned to be the integral:

DKL(P jjQ) =
1Z

�1

p(x) log
p(x)

q(x)
dx; (2.15)

where p and q denote the densities of P and Q.

More generally, if P and Q are probability measures over a set X, and P is absolutely

continuous with respect to Q, then the Kullback-Leibler divergence from Q to P is de�ned

as

DKL(P jjQ) =
Z
X

log
dP

dQ
dP; (2.16)

where dP
dQ
is the Radon-Nikodym derivative of P with respect to Q, and provided the

expression on the right-hand side exists. Equivalently, this can be written as

DKL(P jjQ) =
Z
X

log

�
dP

dQ

�
dP

dQ
dQ; (2.17)

which is the entropy of P relative to Q: Continuing in this case, if � is any measure on

X for which p = dP
d�
and q = dQ

d�
exist (meaning that p and q are absolutely continuous with

respect to �) then the Kullback-Leibler divergence from Q to P is given as

DKL(P jjQ) =
Z
X

p log
p

q
d�; (2.18)

The logarithms in these formula are taken to base 2 if information is measured in units of

bits, or to base e if information is measured in nats. Most formulas involving the Kullback-

Leibler divergence hold regardless of the base of the logarithm.

30

Motivation

In information theory, the Kraft�McMillan theorem establishes that any directly decodable

coding scheme for coding a message to identify one value xi out of a set of possibilities X

can be seen as representing an implicit probability distribution q(xi) = 2�li over X, where

li is the length of the code for xi in bits. Therefore, the Kullback�Leibler divergence can be

interpreted as the expected extra message-length per datum that must be communicated if

a code that is optimal for a given (wrong) distribution Q is used, compared to using a code

based on the true distribution P .

DKL(P jjQ) = �
X
x

p(x) log q(x) +
X
x

p(x) log p(x) (2.19)

= H(P;Q)�H(P)

where H(P;Q) is the cross entropy of P and Q, and H(P) is the entropy of P .

Properties

1. The Kullback-Leibler divergence is always non-negative, DKL(P jjQ) � 0; a result

known as Gibb�s inequality, DKL(P jjQ) zero if and only if P = Q almost everywhere.

2. The Kullback-Leibler divergence remains well-de�ned for continuous distributions, and

furthermore is invariant under parameter transformations. For example, if a trans-

formation is made from variable x to variable y(x), then, since P (x)dx = P (y)dy and

Q(x)dx = Q(y)dy the Kullback-Leibler divergence may be written:

DKL(P jjQ) =

Z xb

xa

P (x) log

�
P (x)

Q(x)

�
dx (2.20)

=

Z yb

ya

P (y) log

�
P (y)dy=dx

Q(y)dy=dx

�
dy

=

Z yb

ya

P (y) log

�
P (y)

Q(y)

�
dy

where ya = y(xa) and yb = y(xb):

31

The Kullback-Leibler divergence is additive for independent distributions in much the

same way as Shannon entropy. If P1; P2 are independent distributions, with the joint distri-

bution P (x; y) = P1(x)P2(y); and Q, Q1, Q2 likewise, then

DKL(P jjQ) = DKL(P1jjQ1) +DKL(P2jjQ2) (2.21)

The Kullback-Leibler divergence DKL(P jjQ) is convex in the pair of probability mass

functions (p; q), i.e. if (p1; q1) and (p2; q2) are two pairs of probability mass functions, then

DKL(�p1 + (1� �)p2jj�q1 + (1� �)q2) (2.22)

� �DKL(p1jjq1) + (1� �)DKL(p2jjq2)

for 0 � � � 1:

2.6 State of the art

Several works have been done regarding deep learning, randomized algorithms and probab-

ilistic methods, a brief summary is presented in the following.

2.6.1 Randomized modeling, local minima and deep learning

As has been said, randomized algorithms have been initially proposed in [63] and deeply

studied in [33] for single hidden layer neural networks, where the hidden weights are chosen

randomly and the pseudoinverse approach (or least square method) is applied to calculate the

output weights. The advantages of using the pseudoinverse are: it gives an optimal solution

in the sense of least square and �nds the optimal weights with minimal norm. [33] extended

the above algorithms to random sampling: the hidden weights are sampled from a continuous

distribution. It shows that for the single hidden layer neural network, the optimization for

the hidden layer parameters does not improve the generalization behavior signi�cantly, while

updating the output weights is more e¤ective. Randomized algorithms have been successfully

applied to nonlinear system identi�cation in [70].

32

The parameter identi�cation of neural models is usually addressed by some gradient des-

cent variants, e.g., the least squares algorithm, back-propagation, and Levenberg-Marquardt

method. Even though these methods have been widely used, they may converge very slowly

and have the local minima problem [34]. Since the identi�cation error space is unknown, the

neural model can be settled down in a local minimum easily if the initial weights of the neural

model are not suitable [26]. There are some techniques to overcome the local minima in the

error space and to force the neural model near the global minimum, such as noise-shaping

modi�cation for the gradient descent algorithm [12], adding momentum term [52], and com-

bining nonlinear clustering [49]. These algorithms modify the gradient descent algorithms to

avoid the local minima problem, but they do not solve the key problem of the local minima:

wrong initial weights.

The pseudoinverse approach of the randomized algorithm can solve the local minima

problem without considering the hidden weights [2]. By the sensitivity ratio analysis, [65]

gives a method to calculate the initial weights of a recurrent neural network. In [76], the

initial weights are obtained by �nding the support vectors of the input data. However, the

above papers do not consider one important issue: the initial hidden weights depend on the

statistical features of the input data [33].

In general, a deep neural network has the same structure as a MLP where the depth of the

neural network is de�ned as the number of hidden layers [4]. In order to be considered deep,

a structure has to have at least two hidden layers [4], this depth usually gives the network

the advantage of needing fewer neurons (or weights) than a shallow MLP [28]. However,

increasing the number of hidden layers causes exponentially increasing model complexity and

requires more training examples [23]. On the other hand, restricted Boltzmann machines [28]

use energy-based learning models whose training process is unsupervised, i.e., it uses input

information.

Deep learning has two goals: a) it guides the weights to regions of minimal norm, and b)

it sets the weights in zones of the parameter space where the likelihood of a global minimum

is maximum [4]. The results of [23] show that the unsupervised training can drive the

neural model away from the local minima for classi�cation problems. However, deep learning

methods cannot be applied to system identi�cation directly, because the input/output values

are non-binary as in classi�cation problems. Most of deep learning techniques also use binary

33

data, for example the conditional probability transformation in the restricted Boltzmann

machines needs binary values [28].

Deep learning techniques for system identi�cation can be regarded as a pre-training stage

where only input data are used. The objective of this stage is to learn the probability distri-

bution of the input data P (x): This helps to decide the conditional probability distribution

P (yjx); which is the objective of system identi�cation [23]. Since the unsupervised deep

learning minimizes the variance and introduces bias into the input space X, the supervised

learning for X and Y can be improved. This is explained by [4]: in the unsupervised learning

stage, the input information is sent to hidden layers to construct useful statistical features.

This mechanism improves the corresponding input/output representation. The input distri-

bution P (x) appears in the hidden units via the deep learning method.

In this thesis, we take both advantages of the deep learning and the randomized algorithm

for nonlinear system identi�cation. We modify the learning rule of a special kind of restricted

Boltzmann machine to train the hidden weights with input data. Then we use the randomized

algorithm to train the output weights. Three benchmark examples are applied to show that

the randomized algorithm with deep learning modi�cation can improve the identi�cation

accuracy for nonlinear system identi�cation.

2.6.2 Fuzzy logic and probability theory for system identi�cation

A fuzzy model can approximate a large class of nonlinear systems, while keeping linguistic

propositions of human thinking [79]. Moreover, a fuzzy model can be regarded as an universal

estimator as it can approximate any nonlinear function to any prescribed accuracy, provided

that su¢ cient fuzzy rules are available [11][48]. It is often claimed that fuzzy models are more

robust than nonfuzzy methods against the sensitivity of variations of the data, or varying

dynamics of nonlinear systems [38].

Data-driven fuzzy modeling uses observed data to construct a fuzzy model automatically.

It needs two processes: 1) extracting suitable fuzzy rules from the data and deriving a fuzzy

model; 2) updating the parameters of the fuzzy model with the data. The �rst process is

called structure identi�cation while the second process is called parameter identi�cation. The

key problem of the structure identi�cation is the extraction of the fuzzy rules. The fuzzy

rules can be obtained from mechanistic prior knowledge of nonlinear systems [45], from the

34

knowledge of experts [11], or from data [48][80]. However, it is di¢ cult to obtain mechanistic

prior knowledge for many nonlinear processes, and the expert method needs the un-bias

criterion and the trial-and-error technique [58], which can only be applied o¤-line. The data-

driven fuzzy modeling is very e¤ective to identify a wide class of complex nonlinear systems

when we have no complete model information, or even when we consider the nonlinear system

as a black box [57].

Extraction of fuzzy rules from the input/output data usually uses the partition method,

which is also called fuzzy grid [41]. Many data clustering methods are applied for structure

identi�cation, such as fuzzy C-means clustering [54], mountain clustering [54], and subtractive

clustering [16]. These approaches require that the data is ready before the modeling. On-

line clustering with a recursively calculated spatial proximity measure is given in [3]. The

combination of on-line clustering and genetic algorithms for fuzzy systems is proposed in

[36]. In [77] the input space is automatically partitioned into fuzzy subsets by adaptive

resonance theory. Besides these clustering approaches, fuzzy rule extraction can also be

realized by neural networks [76], genetic algorithms [58], singular-value decomposition [15]

and support vector machines [19]. These data based clustering methods do not use the

probability distribution information of the data.

In the sense of probability theory, the object of system modeling is to obtain a conditional

probability distribution P (yjx) [23], where x is the input and y is the output. Recent results

show that deep learning techniques can learn the probability distribution P (x) of the input

space with an unsupervised learning method. [4] shows that in the unsupervised learning

stage, the input information is sent to hidden layers to construct useful statistical features.

This mechanism improves the corresponding input/output representation while the input

distribution P (x) appears in the hidden units via the deep learning method.

As seen in Chapter 3, RBMs [28] are main deep learning methods that use energy-based

learning models. It has been shown that they can be used as nonlinear transformations

which extract useful features from the input data that are more suitable for classi�cation or

regression tasks than the raw data themselves. Moreover, fuzzy modeling can be improved if

the input data is transformed �rst (using RBMs) instead of being presented directly to the

regression model. In this thesis, we �rst measure the bene�ts of using an unsupervised stage

as an entry process for fuzzy modeling.

35

Both fuzzy models and probability theory can represent and process uncertain data ef-

fectively [14]. The dynamics and uncertainty of the data set in many cases have probabilistic

nature [25]. The clustering methods discussed above partition the data directly by calcu-

lating Euclidean distances. These clusters do not include the distribution properties of the

input/output data. They also do not scale well with large datasets due to the quadratic com-

putational complexity of calculating all the pair-wise distances [47]. The clustering methods

based on probability theory and statistical models are more powerful for big and uncertain

data [24]. On the other hand, we use a restricted Boltzmann machine (RBM) to obtain the

hidden features of the joint vectorial space of the input/output pairs. The data obtained

from the RBM used for clustering are in the form of probability distributions. The second

contribution of this thesis is that a probability based clustering method is proposed to extract

fuzzy rules.

Including probability theory in fuzzy modeling can improve the stochastic modeling cap-

ability [30]. In [49], the probabilistic nature is added into the fuzzy relation between the

input space and the output space to handle the e¤ect of random noise and stochastic uncer-

tainties. [73] introduces a probability distribution in the consequent part of the fuzzy rules

improving the fuzzy classi�ers. In this thesis, we introduce a probability parameter in each

fuzzy rule. This idea comes from the Z-number [78], where a probability measure is included

into the fuzzy number to make the decision fruitful based on human knowledge. The third

modi�cation proposed in this work is that we apply probability parameters to classical fuzzy

model and train these parameters.

2.6.3 Deep conditional RBMs

The most popular deep learning models are the well known deep belief networks (DBN) [27],

convolutional neural networks (CNN) [43], and deep Boltzmann machines (DBM) [62]. By

using a deep structure, feature extraction, unsupervised learning, and probabilistic analysis,

these models successfully solve many problems in machine learning. Unlike a DBN whose top

two layers are restricted Boltzmann machines, a DBM uses a restricted Boltzmann machine

in its whole net, so the inference and training of a DBM are in both directions. These allow

the DBM to extract features from the ambiguous and complex input better than DBNs and

CNNs. However, the training of DBMs is more di¢ cult and slow than the one used by DBNs

36

and CNNs [61]

DBMs are generative energy based models. They learn the probability distribution of

the input data through the usage of latent or hidden variables. The latent variables capture

features of the data, which helps DBMs to obtain better representations of the empirical

distribution. A DBM can be used as a stand-alone classi�er, not only as feature extractor

[40]. [44] shows that with su¢ cient hidden nodes a DBM can approximate any marginal

distribution with any desired accuracy. A DBM is a very successful method for feature

extractions from image and text data. It is also an excellent pre-training tool to set the

initial parameters for discriminative models [23]. These two properties of DBMs have been

widely used for solving classi�cation problems in the past years [28].

DBMs as predictive models, are also applied for data regression and time series modeling

[80]. The time series are the input to the DBM and the output of the DBM is the predicted

values of the time series. Since the hidden and visible units of the DBM are binary, the pre-

diction results for continuous values are not satis�ed [39]. [59] uses denoising autoencoders to

pre-train the model. The prediction results are better than no pre-training learning methods.

However, [9] points out that the denoising autoencoder may not improve prediction results

if the time series is not su¢ ciently large.

There are two correlation time series in system identi�cation, named input x and output

y: In the sense of probability theory, the objective of system identi�cation is to �nd the best

conditional probability distribution P (yjx) [51]. As shown in [27][5], a DBM can learn the

probability distribution among the input data, and obtain their hidden features. The time

series modeling only for output y does not give the dynamic properties between the input

x and the output y: Recent results show that deep learning techniques can be applied for

nonlinear system modeling by learning the probability distribution of the input space [22].

The unsupervised learning is used to obtain the input features and send them to hidden

layers. This mechanism improves the corresponding input/output representation, i.e., the

modeling accuracy can be improved.

37

Chapter 3

Restricted Boltzmann machines and

randomized algorithms

Restricted Boltzmann machines are the main building block of deep architectures, they are

used as a pretraining stage of each hidden layer during the training of a MLP, however,

they are modeling architectures by themselves which encourage their usage along with other

techniques like randomized algorithms, fuzzy modeling or as stand alone structures. In this

chapter, we �rst introduce the reader to the randomized algorithms framework presenting the

history behind their emergence and the advantages they o¤er, then a formal de�nition of sys-

tem identi�cation and restricted Boltzmann machines is given. Finally, both algorithms are

used together to create a modeling environment that takes the best from the two paradigms.

3.1 A simple deep learning scheme for nonlinear sys-

tem identi�cation

As explained in previous sections, deep learning has many advantages over the algorithms

that perform on shallow architectures. In this section we present a simple approach that

takes advantages of the pretraining stage in order to get a good model for nonlinear system

identi�cation. We use the ideas presented in [22] which serve as a starting point to understand

how deep learning can be used. Consider the scheme shown in Figure 3-1, it represents the

classical approach to model a nonlinear system. The input is presented to both: the proposed

model and the real system in order to get their respective outputs. Once the outputs are

38

Figure 3-1: Deep identi�cation structure

calculated, the error is measured substracting both quantities; an estimate of the system

performance is obtained using the error information over several training examples. With

the gathered information the model parameters are updated to �t better on the data.

The approach presented in Figure 3-1 is not exclusive of deep architectures, it constitutes

the general approach that is used for almost every nonlinear system model (support vector

machines, neural networks, state space models, ...). However, what makes deep learning

di¤erent is the presence of a pretraining stage, usually, the regression process consists on a

supervised learning method where the model parameters are chosen randomly at �rst, then

the parameters are updated following a learning rule that tries to minimize a cost function

which depends on the error obtained by the model. The approach taken in [22] di¤ers in the

sense that it incorporates two new stages as shown in Figure 3-2.

The system identi�cation algorithm is split into four stages: random hyperparameter

selection, pretraining stage, supervised stage and testing. A brief description of each stage

is given next, it is not given a formal de�nition as the purpose of this text is only to present

the framework in where this thesis was developed.

1. Hyperparameter selection: When a certain regression model is chosen to learn the

behavior of a system, a number of priors have to be assumed. In the case of a deep

neural network these priors are gathered in what is called the hyperparameter set, this

set includes parameters as:

(a) Number of layers.

(b) Number of neurons in each layer.

(c) Activation functions in each layer.

39

Figure 3-2: Flow of data of a deep training model

(d) Output function .

(e) Learning rates for pretraining and �ne tuning procedures.

(f) Number of epochs.

(g) Batch size (if stochastic gradient descent is applied).

(h) Early stopping threshold.

These parameters are usually chosen using the developer criteria as there are not ana-

lytical methods to select the best ones. One simple approach is to prove all possible

combinations of hyperparameters using a grid search, this kind of approximation is an

exhaustive one because it takes into account every plausible value for each hyperpara-

meter until it �nally �nds the optimal hyperparameter set. Although the grid search

�nds out the best solution, it is intractable when the number of hyperparameters to

choose is high as the addition of a new hyperparameter increases exponentially the

number of alternatives. To overcome this bottle neck, [7] has shown that a random

search can achieve the same performance while only using some samples of the whole

40

sampling space. Once a set of hyperparameters is selected, the pretraining stage is

implemented.

2. Pretraining stage. As it has been discussed, it consists on an unsupervised learning

algorithm that is greedily applied to each layer of the net. The goal of the pretraining

is to guide the weights to regions of the parameter space where they are more likely to

achieve a better local minimum during the supervised training. Usually the unsuper-

vised algorithm tries to train the layers as associative memories or encoders. The most

important algorithms are restricted Boltzmann machines and denoising autoencoders.

(a) Restricted Boltzmann machines: They are energy models that have an associated

energy measure that has to be decreased by the training process. Their structure is

divided in two: hidden units and visible units. Their architecture and functioning

is explained later in this thesis.

(b) Denoising autoencoders: They basically are one-layer neural networks whose out-

put is their input. They are trained to reconstruct a noisy input, historically they

have been used due to their simpler structure that constrasts with the probability

scheme presented by the RBMs, a simple utilization of this algorithm for system

identi�cation can be found in [22].

3. Supervised stage: After the pretraining stage is �nished and the initial weights are

chosen, a supervised criteria is applied over the training set. The stochastic gradient

descent and its variants are the most common methods to train deep neural models,

in particular, backpropagation is used to train them because it allows to transmit

the gradient e¤ect through the network layers. In addition, early stopping criteria is

sometimes used to avoid over�tting.

4. Testing: The �nal model is tested using a test dataset. The �nal performance of the

model is usually measured utilizing the average squared error.

The above four points constitute a traditional deep learning modeling structure which is

deeply analyzed in [22]. In this thesis we explore alternatives in the usage of deep learning

combining it with other algorithms taking the best from each one. In the next chapters, deep

41

learning has been used along randomized algorithms, fuzzy modeling and as a stand alone

procedure to identify nonlinear behaviors.

3.2 Nonlinear system identi�cation framework

Consider the following unknown discrete-time nonlinear system

�x(k + 1) = f [�x (k) ; u (k)] ; y(k) = g [�x (k)] (3.1)

where u (k) 2 <u is the input vector, �x (k) 2 <x is an internal state vector, and y (k) 2 <m

is the output vector. f and g are general nonlinear smooth functions f; g 2 C1. Denoting

Y (k) =
�
yT (k) ; yT (k + 1) ; � � � yT (k + n� 1)

�T
; U(k) =

�
uT (k) ; uT (k + 1) ; � � �uT (k + n� 2)

�T
;

if @Y
@�x
is non-singular at �x = 0; U = 0; this leads to the following NARMA model

y(k) = � [x (k)] (3.2)

where

x (k) = [yT (k � 1) ; yT (k � 2) ; � � �uT (k) ; uT (k � 1) ; � � �]T

� (�) is an unknown nonlinear di¤erence equation representing the plant dynamics, u (k) and

y (k) are measurable scalar input and output. The nonlinear system (3.2) is a NARMA

model. We can also regard the input of the nonlinear system as x (k) = [x1 � � �xn]T 2 <n;

and the output as y(k) 2 <m

Now we use the MLP given by (2.8) to identify the unknown nonlinear system (3.2)

>From the Stone-Weierstrass theorem, if the number of nodes of a one hidden layer neural

network is large enough, the neural model can approximate the nonlinear function � to any

degree of accuracy for all x (k) : In this chapter, instead of increasing the number of nodes

li of the single hidden layer, we increase the layer number p. We use a deep structure, i.e.,

p � 2 (at least 2 hidden layers); for the multilayer neural model (2.8), such that we can use

some existing deep learning techniques for system identi�cation.

The object of the neural identi�cation is to �nd a suitable structure (number of layers

p; number of nodes in each layer li), the weights W1 � � �Wp, and �; such that the neural

42

Figure 3-3: Randomized algorithms with deep learning for nonlinear system identi�cation

identi�cation error

e (k) = by (k)� y (k) (3.3)

is minimized.

The randomized algorithms [33] use random weights in the single hidden layer (they use

p = 1) to avoid the problems of many supervised learning procedures, such as gradient descent

and Hessian methods. In this chapter, we use the input data and an RBM as a unsupervised

learning method, i.e., deep learning, to solve the same problems of the neural modeling. We

will show that the randomized algorithm with a deep learning modi�cation can improve the

modeling accuracy e¤ectively. The neural modeling structure using randomized algorithms

and deep learning techniques is shown in Figure 3-3, where ' denotes the parameters of each

layer W and b. In the following sections, we will show how to use the restricted Boltzmann

machines to �nd the structure and the initial weights W1 � � �Wp with input data.

3.3 Restricted Boltzmann for system identi�cation

Having random weights in the hidden layers of a MLP can be useful because in this way, the

learning procedure can be focused in tuning the output layer. Nevertheless, random selection

may not be the best con�guration as shown in this chapter, we use the input x (k) in (2.8)

43

to construct better hidden weights.

The restricted Boltzmann machine (RBM) is a deep learning method [28], which trains the

weights under a probability distribution by using only the input dataset. The goal of an RBM

is to create a stochastic machine capable of reconstructing the input x from a distribution

P (x), which denotes the reconstruction probability of x. The RBM training process tries to

maximize P (x) along all training examples, this reconstruction algorithm can be applied to

all hidden layers of (2.8) in order to set good initial weights for the supervised training stage

[28].

In this section, we present a formal de�nition for a restricted Boltzmann machine as

an energy based model. The training procedure which is an application of the stochastic

gradient descent algorithm is developed along with a modi�cation for the handling of non-

binary inputs.

3.3.1 Contrastive divergence

In order to apply gradient descent over an energy based function we need to �nd a way to

�nd the expectation of our distribution, we �rst explain contrastive divergence (CD) as an

approximate Maximum-Likelihhod (ML) learning algorithm that was proposed by Geo¤rey

Hinton. Suppose we would like to model the probability distribution of a data point x using

a function of the form f(x; �); where � is a vector of model parameters. The probability of

x; p(x; �) must integrate to 1 over all x, therefore:

p(x; �) =
1

Z(�)
f(x; �) (3.4)

where Z(�), known as the partition function, is de�ned as

Z(�) =

Z
f(x; �)dx (3.5)

The model parameters �; are learned by maximizing the probability of a training set of

data, X=x1;:::;K ; given as

p(X;�) =

KY
k=1

1

Z(�)
f(xk; �) (3.6)

44

or, equivalently, by by minimizing the negative log of p(X;�), denoted E(X;�), which

we shall call the energy:

E(X;�) = logZ(�)� 1

K

KX
k=1

log f(xk; �) (3.7)

First, choose the probability model function, f(x; �); to be the pdf of a normal distir-

bution N(x;�; �); so that � = f�; �g. The integral of the pdf is 1, so that logZ(�) = 0.

Di¤erentiating equation 3.7 with respect to � is the mean of the training data X, and a sim-

ilar calculation with respect to � shows that the optimal � is the square root of the variance

of the training data.

Sometimes, as in this case, a method exists that can exactly minimize the particular

energy function. Now let choose the probability model function f(x; �); to be the sum of N

normal distributions, so that � =
�
�1;:::;K ; �1;:::;K

	
and

f(x; �) =
NX
i=1

N(x;�i; �i) (3.8)

This is equivalent to a sum of experts or mixture model, with equal weights on all the

experts; having di¤erent weights is a trivial extension to the model. Again using the fact that

a normal distribution integrates to 1, we can see from equation 3.8 that logZ(�) = logN:

However, now di¤erentiating equation 3.7 with respect to each of the model parameters

produces equations dependent on other model parameters, so we cannot calculate the optimal

model parameters straight o¤. Instead we can use the partial di¤erential equations and a

gradient descent method with line search to �nd a local minimum of energy in the parameter

space.

Choose the probability model function f(x; �); to be the product of N normal distribu-

tions, so that

f(x; �) =

NX
i=1

N(x;�i; �i) (3.9)

This is equivalent to a product of experts model. The partition function, Z(�), is now

no longer a constant. We can see this by considering a model consisting of two normal

distributions, both with � = 1: If �1 = �1 and �2 = 1 then Z(�) = 0; while if �1 = �2

45

then Z(�) = 1
2

p
�:

While it is possible, in this case, to compute the partition function exactly given �,

suppose that the integration part is not algebraically tractable (as will be tha case with other

probability model functions). In this case we would need to use a numerical integration in

parameter space, and use a gradient descent method to �nd a local minimum. For high

dimensional data spaces the integration time is crippling, and a high-dimensional parameter

space compounds this problem. This leads to a situation where a situation where we are

trying to minimize an energy function that we cannot evaluate.

Even though we cannot evaluate the energy function itself, CD provides a way to estimate

the gradient of the energy function. CD e¤ectively gives us a sense of balance, by taking very

small steps in the direction of steepest gradient we can then �nd a local minimum.

As explained, CD estimates the energy function�s gradient, given a set of model paramet-

ers, �, and the training data, X. We derive the partial derivative of Equation 3.7:

@E(X;�)

@�
=

@ logZ(�)

@�
� 1

K

KX
i=1

@ log f(xi; �)

@�
(3.10)

=
@ logZ(�)

@�
� EX

�
@ log f(xi; �)

@�

�

where EX (�) is the expectation of � given the data distribution X.

The �rst term on the right-hand side comes from the partition function, Z(�), which, as

Equation 3.5 shows, involves an integration over x: Substituting this in, we get

46

@ logZ(�)

@�
=

1

Z(�)

@ logZ(�)

@�
(3.11)

=
1

Z(�)

@

@�

Z
f(x; �)dx

=
1

Z(�)

Z
@f(x; �)

@�
dx

=
1

Z(�)

Z
f(x; �)

@ log f(x; �)

@�
dx

=

Z
p(x; �)

@ log f(x; �)

@�
dx

= Ep(x;�)

�
@ log f(x; �)

@�

�

As discussed, this integration is generally algebraically intractable. However, in the form

of Equation 3.11, it is clear that it can be numerically approximated by drawing samples

from the proposed distribution, p(x; �):

Samples cannot be drawn directly from p(x; �) as we do not know the value of the partition

function, but we can use many cycles of Markov Chain Monte Carlo (MCMC) sampling

to transform the training data (drawn from the target distribution) into data drawn from

the proposed distribution. This is possible as the transfromation only involves calculating

tha ratio of two probabilities, p(x0; �)=p(x; �); so the partition function cancles out. Xn

represents the training data transformed using n cycles of MCMC, such that X0 � X. Putting

this back into Equation 3.10, we get:

@E(X;�)

@�
= EX1

�
@ log f(x; �)

@�

�
� EX0

�
@ log f(x; �)

@�

�
(3.12)

We still have a computational hurdle to overcome, i.e., the several MCMC bucles required

to compute an accurate gradient will take a long time. Hinton�s assertion was that only a few

MCMC cycles would be needed to calculate an approximate gradient. The intuition behind

this is that after a few iterations the data will have moved from the target distribution towards

the proposed distribution, and so give an idea in which direction the proposed distribution

should move to better model the training data. Empirically, Hinton has found that even 1

cycle of MCMC is su¢ cient for the algorithm to converge to the ML answer.

47

�t+1 = �t + �

�
EX0

�
@ log f(x; �)

@�

�
� EX1

�
@ log f(x; �)

@�

��
(3.13)

As such, bearing in mind that we wish to minimize the energy function, the parameter

update equation may be written as Equation 3.13 where � is the step size factor, which should

be chosen experimentally, based on convergence time and stability.

3.3.2 Standard RBMs and their training procedure

An RBM is an energy-based model, which is de�ned by a probability distribution. This prob-

ability distribution depends on the current con�guration (or energy) of the model. Consider

a training example x(k) (for simplicity denoted as x), the training goal is to maximize the

following probability function of the model,

P (x) =
X
h

P (x; h) =
X
h

e�E(x;h)

Z
(3.14)

where x is the input to the model, h is the hidden representation, Z is a partition function

de�ned as Z =
P

h

P
x e

�E(x;h); and P (x) is the probability distribution of x: E(x; h) is the

energy function which is de�ned by

E (x; h) = �cTx� bTh� hTWx (3.15)

In (3.14),
P

h and
P

x denote the sums of over all possible values of h and x . They are

tractable when the input and hidden spaces are discrete (or binary). In continuous spaces,

the summations become integrals that have to be evaluated. For identi�cation purposes, W

and b can be regarded as the weights and bias of some layer i in (2.8), and c is a bias vector

of appropriate dimension. In this way, x represents the input of layer i with size li�1; and

h 2 <li is the hidden representation. W is called the hidden layer weigths, b and c are called

visible and hidden bias respectively.

In order to maximize P (x) with respect to the weights, we have to rede�ne P (x): The

probability distribution of such a model is given by the following concept of free energy

z(x) = � log
X
h

e�E(x;h) (3.16)

48

With this de�nition, (3.14) becomes

P (x) =
e�z(x)

Z
; Z =

X
x

e�z(x) (3.17)

Let expand x as x = [x1 � � �xt � � �xli�1]T with t = 1; 2; :::; li�1 and h = [h1 � � �hs � � �hli]T with

s = 1; 2; :::; li. Substituting (3.15) into (3.16), the free energy becomes

z(x) = �cTx�
liX
s=1

log
X
hs

ehs(bs+Wsx) (3.18)

In (3.18), W has been divided as W =
�
WT
1 � � �WT

s � � �WT
li

�T
; s = 1; :::; li; where Ws are row

vectors of size li�1: In some simple cases, such as classi�cation and dimensionality reduction,

xt takes binary values, i.e., xt 2 f0; 1g ; and the binary hidden units are hs 2 f0; 1g : The

probabilistic version of the neural model becomes

P (hs = 1jx)s=1���li = � [Wsx+ bs]

P (xt = 1jh)t=1���li�1 = �
�
W T
t h+ ct

� (3.19)

where Wt is the t-th column of W and � is the sigmoid function �(x) = 1=(1 + e�x). Here

the hidden units and the visible units are conditionally independent. So the conditional

probabilities of them are

P (hjx) =
Q

s=1���li
P (hsjx)

P (xjh) =
Q

t=1���li�1
P (xtjh)

The free energy for binary visible and hidden units becomes

z(x) = �cTx�
liX
s=1

log
�
1 + e(bs+Wsx)

�
(3.20)

We introduce the learning rate �1 > 0: The weights and biases of RBM are updated using

the gradient descent algorithm which will minimize the function � logP (x),

� (k + 1) = � (k)� �1
@ � logP (x)

@� (k)
(3.21)

where � denotes the updated parameters, which can be Ws;t, bs or ct, t = 1; :::; li�1, s =

49

1x

11 ,cW T

Model 1

2x

nx

1h

2h

1l
h

11,bW

Visible unit Hidden unit

Figure 3-4: Markov sampling in a restricted Boltzmann machine

1; :::; li. If we denote z as the reconstruction of x; z is sampled from the RBM,
P

z indicates

a sum along the entire sampling space of z. The log-likelihood gradient with respect to � is

@ logP (x)

@� (k)
=
X
z

P (z)
@z(z)
@� (k)

� @z(x)
@� (k)

In this section, we estimate
P

z P (z)
@z(z)
@�(k)

with a set S which includes s �nite samples

[28] among the probability distribution. Considering each sample with equal probability 1=s;

we get X
z

P (z)
@z(z)
@� (k)

t
1

s

X
z2S

@z(z)
@� (k)

Here the samples S are obtained with a Monte Carlo algorithm with contrastive divergence

[1]. The approximation capability is improved when the number of hidden units increases

[23]. Figure 3-4 shows the �rst layer of a deep RBM based model. The transformation (3.19)

is repeated s times, which generates s samples for the learning process, see Figure 3-4.

A sample z from a training example x using a k�steps sampling process of the Monte

Carlo chain is obtained using Algorithm 4:

Algorithm 4

1. Calculate P (hjx) using the current W and b.

2. Sample h using the conditional distribution P (hjx):

3. Calculate P (xjh) using the current W and c.

50

4. Sample z using the conditional distribution P (xjh):

5. Repeat steps 1-4 k times using the new sample z obtained in step 4, and the the new

x in step 1. After k times, we get a sample z for the set S.

After s sampling processes, the samples S and the input x(k) are used to update the

parameters W; b and c: Then a new training example x(k + 1) is presented to the model.

One training epoch consists of q examples:

For an RBM model we can calculate the hidden representation h(k) associated with the

input x(k). It is convenient to compute it as the conditional probabilities of the distribution

z(k). Similarly with a MLP model, the hidden representation of the Model 1 in Figure 3-4,

which is directly associated with the input x(k), is calculated by

h1 (k) = �1 [W1x (k) + b1]

This is the input of Model 2 in Figure 3-5.

3.3.3 Conditional probability transformation for non-binary val-

ues

For nonlinear system identi�cation, the visible units cannot be binary values, thus, the con-

ditional probability transformation cannot always be the form of (3.19). We consider three

domains for the input x (k): 1) interval [0;1); for unbounded positive inputs; 2) [0; 1]; for

normalized inputs; and 3)[��; �]; for bounded inputs.

1) The visible and hidden units are in the interval [0;1):

The conditional probability for the energy function of the model (3.14) is

P (xijh) =
e(W

T
t h+ct)xtR

xt
e(W

T
t h+ct)xtdxt

(3.22)

If xt (k) 2 (�1;1), the integral term has an algebraic form that does not converge. Let

denote

at(h) =WT
t h+ ct (3.23)

where at is the term applied to the visible units, see Figure 3-4. If the terms xt (k) are

51

non-negative, xt (k) 2 [0;1); (3.22) becomes

P (xtjh) =
eatxtR1

0
eatxtdxt

=
eatxt

1
at
eatxtj10

(3.24)

(3.24) has �nite value if at (h) < 0; 8h. The conditional probability distribution is

P (xtjh) = �at (h) eat(h)xt > 0 (3.25)

The visible units which have a probability distribution as (3.25) are called exponential units.

In order to perform the sampling process, we need to calculate the cumulative probability

distribution PC(xtjh):

PC(xtjh) =
Z xt

0

P (xtjh)dxi =
Z xt

0

� ateatxtdxt = 1� eatxt (3.26)

So PC(xtjh) always increases. The sampling process is possible by using the inverse function

of cumulative probability P�1C ,

zt (k) =
ln (1� PC)

ai
(3.27)

If o (k) is a value from a sampling process on a uniform distribution, then we can associate

it with the cumulative density value PC . The value of the corresponding visible unit is

zt (k) =
ln (1� o (k))

at
(3.28)

The expected value according to the distribution P (xtjh) is

E[xt] =

Z 1

0

P (xtjh)xtdxt = �at
Z 1

0

eatxtxtdxt = �
1

at(h)
(3.29)

2) The visible and hidden units are in the interval [0; 1]

The positive range [0;1) is not needed most of the time as physical systems are always

constrained in some sense. We use a normalization method to force the input to �t in [0; 1]:

The probability distribution is also bounded. (3.22) is

P (xtjh) =
eatxtR 1

0
eatxtdxt

=
eatxt

1
at
eatxtj10

=
ate

atxt

eat � 1 (3.30)

52

To use the Gibbs sampling process, the conditional probability PC(xtjh) is computed

PC(xtjh) =
Z xt

0

P (xtjh)dxt =
at

eat � 1

Z xt

0

eatxtdxt =
eatxt � 1
eat � 1 (3.31)

This leads to

zt (k) =
log [1 + PC(e

at � 1)]
at

With a sample unit from the uniform distribution o (k), the new value zt (k) with respect to

PC is

zt (k) =
log [1 + o (k) (eat � 1)]

at
(3.32)

Finally the expected value of the distribution is calculated as

E[xt] =

Z 1

0

P (xtjh)xtdxt =
at

eat � 1

Z 1

0

eatxtxtdxt =
1

1� e�at �
1

at
(3.33)

3) The visible and hidden units are in the interval [��; �]

If the input set x (k) can be positive and negative, we de�ne the operating interval as

[��; �] for each visible unit. In this case the conditional probability is truncated exponential.

(3.22) transforms into

P (xtjh) =
eatxtR �

�� e
atxtdxt

=
eatxt

1
at
eatxtj���

=
ate

atxt

eat� � e�at� (3.34)

The cumulative probability distribution is

PC(xtjh) =
Z xt

��
P (xtjh)dxt =

at
eat� � e�at�

Z xt

��
eatxtdxt =

eatxt � e�at�
eat� � e�at� (3.35)

The sampling process that uses the inverse function of PC and o (k) in the uniform distribution

is

zt (k) =
log
�
e�at� + o (k)

�
eat� � e�at�

��
at

(3.36)

The expected value of this distribution is

E[xt] =

Z �

��
P (xtjh)xtdxt =

at
eat� � e�at�

Z �

��
eatxtxtdxt = �

eat� + e�at�

eat� � e�at� �
1

at
(3.37)

53

11,bW
)(1 kh)(kx

)(1 kz11 ,cW T

() ()qbqW 11 ,
)(1 kh

22 ,bW
)(2 kh)(1 kh

)(2 kz

() ()qbqW 22 ,
)(2 kh

Model 1

Model 2

Model p

)(),(11 qcqW T

)(),(22 qcqW T

22 ,cW T

Figure 3-5: Deep RBM Model

3.3.4 Deep identi�cation model

The unsupervised training for the deep RBM model is described in Algorithm 5:

Algorithm 5

1. The input and the hidden representation of the �rst model are x (k) 2 <n and h1 (k) 2

<l1 : We use q data to train the weights of the �rst model W1 2 <l1�n; b1 2 <l1 ; and

c1 2 <n:

2. After the �rst model is trained, their weights are �xed. The code or hidden represent-

ation of the �rst model is computed with �xed weights to generate q examples, which

are the input of the second model.

3. The second model is trained using as input h1 (k) 2 <l1 and it generates the hidden

representation h2 (k) 2 <l2 ; which is the input of the third model:

4. Then we train the third model, we keep repeating the procedure until all p models are

trained. This training process is shown in Figure 3-5.

54

The RBM model in Figure 3-5 has a structure similar to that of the neural identi�cation

model (2.8). It uses input the x (k) to update the model, while the identi�cation model (2.8)

uses the output y (k) to train its weights.

Now, there are two options: 1) Consider the weightsW1 � � �Wp obtained from the pretrain-

ing process as initial values, and use the supervised learning to train both hidden weights

W1 � � �Wp and the output weight �; or 2) Use randomized algorithms to keep W1 � � �Wp

unchanged, and only train the output weight �:

For the �rst choice, we use the following square error

 (k) = ky (k)� ŷ (k)k2 (3.38)

where y (k) is the output of the unknown plant (3.2), ŷ (k) is the output of the neural model

(2.8). The weights Wi and � are updated by

Wi (k + 1) = Wi (k)� �2
@
 (k)

@Wi (k)
; i = 1 � � � p (3.39)

where �2 > 0 is the learning rate of the supervised learning, k = 1; 2 � � � q; q is the number of

training examples, Wi(0) = Wi (q) ; Wi (q) are the �nal trained weights of the unsupervised

stage model.

By the studies of [33] and [63], if the Moore-Penrose inverse is applied into the output

layer, a training procedure in the hidden layers may worsen the modeling results by some

supervised learning problems. Problems as over�tting and shadowing may also appear.

Noise (or disturbance) is an important issue in the system identi�cation context, an

external disturbance can be regarded as measurement noise or/and input noise. Within the

deep learning environment, the input noises are included feedforward through each layer

while the output noise (measurement noise) is enlarged due to the backpropagation of the

identi�cation error. This also a¤ects the modeling accuracy.

In this chapter, we use the second choice, the weights of the hidden layers W1 � � �Wp are

not changed after they have been pretrained. Only the weights � in the output layer are

trained by the randomized algorithm as in [33].

55

3.4 RBMs with randomized algorithms

We rewrite the neural model (2.8) as the following form

by (k) = �� (k) (3.40)

where � (k) = �p
�
Wp�p�1 [: : :W3�2 fW2�1 [W1x (k) + b1] + b2g+ b3 : : :+ bp�1] + bp

	
: � (k)

has been determined by RBMs. (3.40) is a linear-in-parameters system in the form of y = Ax:

Here A may be singular and/or be not square, the solution x can be solved by the Moore-

Penrose generalized inverse, which is de�ned as follows.

De�nition 6 The matrix A+ 2 <n�m is the Moore-Penrose generalized inverse of A 2 <m�n

if

AA+A = A; A+AA+ = A+;
�
AA+

�T
= AA+;

�
A+A

�T
= A+A (3.41)

In particular, when A has full column rank,

A+ =
�
ATA

��1
AT (3.42)

When A has full row rank

A+ = AT
�
AAT

��1
(3.43)

De�nition 7 x0 2 <n is said to be a minimum norm least-squares solution of the linear

system y = Ax if

kx0k � kxk ; 8x 2 fx : kAx� yk � kAz � yk ;8z 2 <ng (3.44)

where y 2 <m:

For a linear system y = Ax, x0 is a least-squares solution if

kAx0 � yk = min
x
kAx� yk (3.45)

where k�k is a norm in Euclidean space. If By is a minimum norm least-squares solution of

the linear system y = Ax; then it is necessary and su¢ cient that B = A+. Here A+ is the

Moore-Penrose generalized inverse of matrix A, which is de�ned in (3.41).

56

For our identi�cation model, Wi and bi in � (k) are �xed. The goal of the training

algorithm is to �nd � such that the following cost function is minimized

J =
X
k

ky (k)� by (k)k2 (3.46)

The training data are y (k) and � (k), k = 1; 2 � � � q, q is the total training data number. In

the best case, J = 0, then by (k) = y (k) = �� (k) for all k: Considering the entire training

set,

Ŷ =
h
ŷ (1) ŷ (2) � � � ŷ (q)

i
=
h
�� (1) �� (2) � � � �� (q)

i
= �	 (3.47)

where 	 = [� (1) ;� (2) ; � � � ;� (q)] : Or in another form:

Y =
h
y (1) y (2) � � � y (q)

i
=
h
�� (1) + e(1) �� (2) + e(2) � � � �� (q) + e(q)

i
Y = �	+ E (3.48)

where e (k) is the modeling error e(k) = y (k) � by (k), and E = [e (1) ; e (2) ; � � � ; e (q)] : To

obtain min
�
J; we need @J

@�
= 0: From (3.43)

�� = Y	T
�
		T

��1
= Y	+ (3.49)

So �� can minimize the index J in (3.46).

Since �� is one of the least-squares solutions of the system Y = �	 + E, it reaches the

smallest approximation error on the training dataset, and it is unique. The solution �� has

the smallest norm for a least-squares solution of Y = �	: [63] shows that for feedforward

networks, small norm of the weights is more important than the number of nodes to obtain

small generalization error. Since the norms of the hidden weights which are generated by

deep learning are small [4], the combination of deep learning and least-squares can provide

good generalization performance.

The �nal training procedure follow Algorithm 8:

Algorithm 8

1. Construct a deep neural model (2.8) with p � 2:

57

2. Use the input data and the deep learning algorithm to train the hidden weightsW1 � � �Wp

3. Calculate the output weight �� in (3.49) with 	 in (3.47)

In order to obtain good approximation capability, the distributions of the random hidden

weights and biases should be de�ned in advance [33]. Arbitrary assignment of the hidden

weights may lead to poor performances. The deep learning technique discussed in this thesis

can be regarded as an alternative method to �nd the distributions of the hidden weights of

the randomized algorithm. The restricted Boltzmann machines (RBM) for random hidden

weights works as Algorithm 9:

Algorithm 9

1. The hidden weights are randomly assigned in [�1; 1] :

2. An RBM is applied to learn the probability distribution of the input P (x) : This in-

formation is sent to the hidden layers.

3. The visible units of RBM are encoded into three types: [0; 1] ; [0;1); and [�d; d] ;

d 6= 1:

4. The conditional distribution of the hidden weights and biases are updated by Monte

Carlos algorithm.

The deep learning technique provides a possible selection manner of hidden weights for

randomized algorithms with the distribution of the input data. After the RBM pre-training,

the hidden weights are not longer in [�1; 1] : The examples in the next section show how the

hidden weights are expanded from [�1; 1] by di¤erent input distributions, and the identi�c-

ation errors are in�uenced by these areas.

3.5 Simulations and comparisons

In this section, we use three benchmark examples to show the e¤ectiveness of the combination

of deep learning techniques and randomized algorithms for nonlinear system identi�cation.

58

Gas furnace data

The gas furnace dataset is a commonly used benchmark [10]. The input u (k) is the �ow rate

of the methane gas, while the output y (k) is the concentration of CO2 in the gas mixture

under a steady air supply. The dataset has 296 samples at a �xed interval of 9 seconds. [10]

used a time-series based approach to develop a linear model while [67] and [75] used this

dataset to evaluate their fuzzy modeling methods.

In this example, we use the same data structure as [67][75], the recursive input data for

the model is X(k) = [y(k � 1); � � � y(k � 4); u(k); � � �u(k � 5)]T ; the model output is ŷ(k):

200 samples are applied for training. In order to use a restricted Boltzmann machine, the

training values of X(k) and y are normalized to match the conditions of (3.50). The gas

furnace dataset has the form of (3.2) with n = 10; m = 1:

We use three types of restricted Boltzmann machine. The input x (k) data are encoded

into: 1) binary input (DN_BI); 2) in the interval [0; 1] (DN_NO); 3) in the interval [�1; 1]

(DN_NE). For the interval [0; 1]; x(k) is normalized as

x (k) =
X (k)�mink fX (k)g

max fX (k)g �mink fX (k)g
(3.50)

We use 200 data to train the deep learning model. The structure parameters of the

neural model, layer number p and node number of each layer li (i = 1 � � � p), are obtained

by the random search method [7]. The results have shown that choosing 2 hidden layers

(p = 2) and li = 20 (i = 1; 2), the model has an optimal con�guration. The training rate

for the restricted Boltzmann machine in (3.21) is �1 = 0:1: The initial hidden weights of the

restricted Boltzmann machine are selected in [�1;+1] randomly. Table 3.1 shows how the

restricted Boltzmann machines change the distributions of the hidden weights from [�1; 1]

to the other zones.

We de�ne the squared error as

E =
1

N
�Nk=1e

2(k); N = 1 � � � 96 (3.51)

The testing squared errors and the hidden weight distributions of the four models are shown

in Table 3.1. 200 samples are used for training; li = 20; and N = 96 in (3.51).

59

Table 3.1: Testing results of deep learning with pseudoinverse (gas furnace)
DN_BI DN_NO DN_NE Random

Testing squared errors (�10�4) 3:217 16:573 0:778 133:318
Hidden weight distributions [�0:493; 0:951] [�1:21; 0:61] [�0:316; 2:279] [�1; 1]

For this particular model, the deep learning modi�cation decreases the modeling error

almost 100 times by changing the hidden weight distributions from [�1; 1] to [�0:316; 2:279],

here the input data are encoded in the interval [�1; 1] (DN_NE).

The next experiment is to �nd general performance with respect to the change of the

number of hidden neurons li in (2.8). The training data size is 200; the testing data size

is 96: The testing results are shown in Figure 3-6. Both, randomized algorithm with deep

learning modi�cation and normal randomized algorithm improve the identi�cation accuracy

when the hidden node number is less than 25: Figure 3-6 shows that the randomized algorithm

has a worst performance when the hidden node number is between 25 and 30; while the three

deep learning methods have better performances when the hidden node number increases.

When the input data are in the interval [0; 1] (DN_NO), the deep leaning technique cannot

improve the randomized algorithm e¤ectively with a small hidden node number (less than

10). So the [0; 1] encode method is not suitable for nonlinear system identi�cation. However,

when the input data are encoded as binary (DN_BI) or in the interval [�1; 1] (DN_NE),

deep learning can improve the randomized algorithm dramatically. As [28] states, RBM

increases the likelihood of the output weights by using the input data.

The last experiment shows the relation of the training data number and the modeling

error. The hidden node number is �xed as li = 20: The training data size is changed from

50 to 250: The simulation results are shown Figure 3-7. The deep learning modi�cations

have better testing results, while the best one is DN_NE. This experiment shows the feature

extraction capability of deep learning.

This improvement is more clear when the hidden node number li is increased. Even the

[0; 1] code (DN_NO) is better than the normal randomized algorithm. We can conclude that

the pre-training stage is very e¤ective for nonlinear system identi�cation.

60

15 20 25 30 35 40
0

1

2

3

4

5

6

7

8

9

10
x 103

Hidden layer number

S
qu

ar
ed

 e
rro

r

DN_BI
DN_NO
DN_NE
Random

Figure 3-6: Testing errors vs hidden neuron number (gas furnace)

60 80 100 120 140 160 180 200 220 240
0

0.005

0.01

0.015

0.02

0.025

Number of training examples

S
qu

ar
ed

 e
rro

r

DN_BI
DN_NO
DN_NE
Random

Figure 3-7: Testing squared errors vs training data number (gas furnace)

61

First order nonlinear system

This benchmark example was proposed in [56]. It is a simple nonlinear system,

y(k + 1) =
y(k)

1 + y2(k)
+ u3(k) (3.52)

where u(k) is a periodic input, which has di¤erent form in the training and the testing

processes

u(k) = A sin

�
�k

50

�
+B sin

�
�k

20

�
(3.53)

In the training stage, A = B = 1: In the testing stage, A = 0:9; B = 1:1:

The unknown nonlinear system (3.52) has the form of (3.2). �x (k) = [y(k); u (k)]T ; n = 2;

m = 1: The values of x and y are normalized to match the conditions of the restricted

Boltzmann machine (3.50). The deep learning model is shown in Figure 3-5 and (2.8). Here

we use two hidden layers p = 2: Similar with the gas furnace, we also use three types of

encode methods for input data: DN_BI, DN_NO and DN_NE.

Similar with the above example, the initial hidden weights of the restricted Boltzmann

machine are selected in [�1;+1] randomly. Table 3.2 shows the testing squared errors and

the hidden weight distributions of these models. Here the training data are 120 examples

and the hidden node number is li = 15:

Table 3.2: Testing results of deep learning with pseudoinverse (�rst order nonlinear system)
DN_BI DN_NO DN_NE Random

Testing squared errors (�10�3) 8:9 10:5 9:7 12:4
Hidden weight distributions [�0:369; 0:453] [�1:387; 2:295] [�0:137; 1:354] [�1; 1]

For this example we have the same conclusion as the gas furnace dataset. However, the

binary encode method (DN_BI) for the input data is the best.

Then, we show the e¤ectiveness of the hidden neuron number. They are drawn from the

interval 10 � li � 30: We use 80 data (q = 80) for training, and 100 samples (N = 100)

for testing. The squared errors de�ned as (3.51) are shown in Figure 3-8. When the hidden

nodes increase, the modeling errors become smaller, because the deep learning needs su¢ cient

parameters to learn the probability distribution of the input. We can see that all encode

62

10 12 14 16 18 20 22 24 26 28 30
0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

Hidden layer number

S
qu

ar
ed

 e
rro

r

DN_BI
DN_NO
DN_NE
Random

Figure 3-8: Testing errors vs hidden neuron number (�rst-order system)

methods of the deep learning modi�cation are better than normal randomized algorithm

(Random) for this example. This can be explained that the deep learning can guide the

weights of the hidden layers into better regions of the parameter space with input data.

Finally, we use experiments to show the in�uence of the number of training examples.

The number of training data is drawn from 80 to 200: The hidden node numbers are �xed in

li = 15; i = 1; 2: Figure 3-9 shows the squared modelling error. We see that when the training

data number is near 160; the normal randomized algorithm (Random) is better than the deep

learning modi�cation, because the self nature of the random selection can obtain good initial

weights in some cases. Otherwise, the deep learning modi�cation improves identi�cation

accuracy because it forces the neural model to a better parameter space region, and extracts

enough features from the input.

Wiener-Hammerstein benchmark

A Wiener-Hammerstein system is a series connection of three parts: a linear system, a static

nonlinearity and another linear system. The data of the Wiener-Hammerstein benchmark is

generated from an electrical circuit which consists on three cascade blocks [64]. There is not

direct measurement of the static nonlinearity, because it is located between two unknown

63

80 90 100 110 120 130 140 150 160 170 180

0.005

0.01

0.015

0.02

Number of training examples

S
qu

ar
ed

 e
rro

r

DN_BI
DN_NO
DN_NE
Random

Figure 3-9: Squared errors vs training examples (�rst-order system)

linear dynamic systems.

The benchmark dataset consists of 188; 000 input/output pairs. This dataset is divided

in two parts [29]: 100; 000 sample pairs are for the training stage and 88; 000 samples are for

testing. Let u(k) be the input and y (k) be the output. We de�ne the recursive input vector to

the model as X(k) = [y(k � 1) � � � y(k � 4) u(k) � � �u(k � 5)]T : So the Wiener-Hammerstein

benchmark is

y (k) = f [y(k � 1) � � � y(k � 4) u(k) � � �u(k � 5)] (3.54)

Similar to the above two examples, X(k) and y (k) are also normalized as (3.50).

In this example, the deep learning modi�cation has the same structure as normal ran-

domized algorithms, i.e., both of them have one hidden layer. We �rst test how the hidden

node number a¤ects the modeling error. The hidden node number l1 is chosen from 100 to

500:

In this example, the input x (k) data are coded into: 1) binary input (DN_BI); 2) in

the interval [0; 1] (DN_NO). The interval [�1; 1] (DN_NE) for input data does not work

well and is not reported. Table 3.3 shows the testing squared errors and the hidden weight

distributions of these three models. Here, the training data are 50; 000 and the hidden node

number is li = 500:

64

Table 3.3: Testing results of deep learning with pseudoinverse (Wiener-Hammerstein bench-
mark)

DN_BI DN_NO Random
Testing squared errors (�10�3) 2:639 2:819 2:724
Hidden weight distributions [�0:639; 0:621] [�0:071; 0:003] [�1; 1]

We can see that the normal randomized algorithm (Random) is better in generalization

results than the input encode method (DN_NO). For this example, the deep learning does not

improve modeling accuracy with a good margin. It seems that the hidden weight distribution

[�1; 1] is suitable for the Wiener-Hammerstein benchmark problem.

The binary encode (DN_BI) has good modeling performance for this benchmark. Figure

3-10 gives the comparison results of the binary encoding (DN_BI) and the randomized

algorithm. When the hidden nodes are chosen from 100 to 200; both models perform well

for the Wiener-Hammerstein benchmark. After that, the deep learning modi�cation is better

because it needs more parameters to learn the probability distribution of the input. When

the hidden nodes are 400; the deep learning modi�cation becomes worse, this indicates that

an over�tting problem of the neural model is happening.

Then we show how the number of training samples in�uences the modeling errors. The

training examples are chosen between 10; 000 and 100; 000: The hidden nodes are �xed in

500: The squared modeling errors with respect to di¤erent training examples are shown in

Figure 3-11. We can see that the errors decrease when the number of training examples

increases for both methods. In the most cases, the deep learning modi�cation is better.

Finally we compare these methods with a support vector machine (SVM) [21] and mul-

tilayer perceptrons with gradient learning algorithm (MLP) [56]. We use three types of

kernels for SVMs: linear kernel (SVM-L), polynomial kernel (SVM-P), and radial basis func-

tion (SVM-R). In order to work well, the input recursive vector is modi�ed as X(k) =

[y(k � 1) � � � y(k � 10) u(k) � � �u(k � 5)]T : The squared modeling errors are shown in Table

3.4.

Compared with MLPs and SVMs, the normal randomized algorithm (Random) is much

better for this benchmark, and deep learning can improve the modeling accuracy further.

65

Table 3.4: Comparison of MSE error with di¤erent learning techniques over the W-H
benchmark(�10�3)

MLP SVM-L SVM-P SVM-R DN_BI Random
56:03 43:01 6:01 4:71 2:65 2:82

100 150 200 250 300 350 400 450 500
2.58

2.6

2.62

2.64

2.66

2.68

2.7

2.72

2.74
x 103

Hidden layer number

Sq
ua

red
 er

ror

DN_BI
Random

Figure 3-10: Binary encode (DN_BI) deep learning modi�cation and the normal randomized
algorithm. (W-H)

1 2 3 4 5 6 7 8 9 10

x 104

2.4

2.5

2.6

2.7

2.8

2.9

3

3.1

3.2

3.3

3.4
x 103

Number of training examples

Sq
ua

red
 er

ror

DN_BI
Random

Figure 3-11: Squared modeling errors vs training examples (W-H)

66

10 15 20 25 30 35 40
0

0.01

0.02

0.03

0.04

0.05

Hidden nodes per layer

Ti
m

e
(s

ec
on

ds
)

RBM Pretraining
Pseudoinverse
DNN

Figure 3-12: Training times for the gas furnace dataset with number of training examples
q = 150

Computational complexity

The above three examples show that the identi�cation accuracy increases with more hid-

den nodes and training examples. However, these also increases the training time of the

neural models. Obviously, the computational complexity increases with the deep learning

modi�cations, especially for online applications.

Both, random algorithms and deep learning techniques are batch processes. They cannot

be applied for online updating for every input/output. Figure 3-12 shows the training time of

the gas furnace for di¤erent hidden nodes. Here DNN is the total training time, DNN=RBM

pretraining+Pseudoinverse. The training time of the deep learning modi�cation (RBM pre-

training) is signi�cantly higher than the randomized algorithm (Pseudoinverse). One reason

is that the input data are have higher dimensionality than the output, and RBM pretraining

only uses input data. The training time is also a¤ected by the other pre-training parameters,

such as the number of epochs, learning rate, and stopping criterion.

For the second example, we obtain similar results, see Figure 3-13. Here the hidden layer

number is p = 2. The pre-training time is similar as the one used in the Example 1, because

the training number is similar. The computational time of DNN does not increase, because

the size of the weight matrix � is the same.

For Example 3, the deep model just has one hidden layer p = 1: So the structure of

the deep learning modi�cation is the same as the randomized algorithm. The training time

67

12 14 16 18 20 22 24 26
0

0.005

0.01

0.015

0.02

0.025

0.03

Hidden nodes per layer

Ti
m

e
(s

ec
on

ds
)

RBM Pretraining
Pseudoinverse
DNN

Figure 3-13: Training times for the �rst order system with number of training examples
q = 180

is shown in Figure 3-14. We need more training time for this Wiener-Hammerstein model,

because the training dataset has 50; 000 examples. When there are not many hidden nodes

(less than 400), the training time of the deep learning modi�cation does not increase, while

the modeling accuracy is improved signi�cantly.

>From the above three experiments, we see that the training time of the deep learning

modi�cation does not increase drastically for the randomized algorithm. Although adding

the pre-training stage in the randomized algorithm increases computational complexity, the

identi�cation accuracy is improved, and the testing time for all methods is almost the same.

68

100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

50

60

70

Hidden nodes per layer

Ti
m

e
(s

ec
on

ds
)

RBM Pretraining
Pseudoinverse
DNN

Figure 3-14: Training times for theW-H dataset with number of training examples q = 50; 000

69

Chapter 4

Restricted Boltzmann machines and

probabilistic fuzzy systems

In chapter 3, we have shown the e¤ectiveness of deep learning when used with other methods

for nonlinear system identi�cation. The improvements can be explained analyzing the e¤ects

that the pretraining stage has over the identi�cation model. These e¤ects can be surveyed

as:

1. RBMs guide the model parameters to regions of the con�guration space where the

model is more likely to reach a good local minimum.

2. The pretraining stage takes advantage of the statistical information that is hidden in

the training data, it modi�es the weights of the model to learn this variational features.

3. Unsupervised learning acts as a preprocessing stage where the training data is trans-

formed into an encoded representation (in the case of an RBM this code corresponds

to the hidden units). This code can be used by the output layer in the sense that it

contains features of the input data that can be easily interpreted by a learning system.

The third e¤ect is specially observed if we think about 	 in (3.48) as a vector that

contains features that the hidden layers have extracted from the input data. In this sense,

deep learning helps to get meaningful features from the training dataset that can be used

during the �ne tuning stage. The success of the deep learning algorithms has been reported

in Chapter 3 where the pretrained models surpassed the non-pretrained ones when both of

them used as �nal layer a linear model which was solved �nding the least square solution.

70

After RBMs have proved to be helpful in the identi�cation framework, we explore, in this

chapter, the consequences of having the data pretraining stage when using other identi�cation

algorithms such as fuzzy logic.

In order to use RBMs along with fuzzy rules we need to calculate the consequent part

of the fuzzy model (the output weights). We simply apply the pseudoinverse calculation

exposed in Section 3.4. In order to accomplish that, we consider the probability distributions

computed by the RBMs as the hidden weights of a randomized model (the premise part of

the fuzzy rules). In this sense, we interpret the fuzzy modeling as a randomized algorithm

where the techniques used to train the second can also be implemented. Finally, we use

an optimization method to reach maximum probability measures in each fuzzy rule. The

proposed data-driven fuzzy modeling process is shown in Figure 4-1.

Nonlinear System

System structure
Structure
identification

Parameters
identification

Restricted Boltzmann machines

()ku ()ky

1++= yu nnn

() () () ()yu nkykynkuku −−− ,...1,...,...

() ()khkh m,...1

Probability based clustering

Fuzzy rules with probability (A,B,P)

Randomized algorithmProbability function training

()ky()kŷ()kΦ

Fuzzy model

()kΦ

P j
iA

µ jB
µ

K

Figure 4-1: Data-driven fuzzy modeling

4.1 Data-driven deep fuzzy identi�cation with restric-

ted Boltzmann machines

In this chapter we aim again to identify a similar plant than the one described in (3.2). This

plant can describe a wide family of discrete nonlinear systems whose behavior depends on

previous states of their output. In this case we explicitly indicate the form of the input vector

71

in (4.1).

x (k) = [y (k � 1) ; y (k � 2) ; � � � y (k � ny) ; u (k) ; u (k � 1) ; � � �u (k � nu)]T (4.1)

where u (k) and y (k) are the measurable scalar input and output of the nonlinear plant, ny

and nu correspond to the system order (or delays), x (k) 2 <n can be regarded as a new

input to the nonlinear function f (�) ; with n = ny + nu + 1:

The objective of the fuzzy modeling is to use the input and output data set [y (k) ;x (k)]

(or [y (k) ; u (k)]) of the nonlinear system (3.2), and construct a fuzzy model

ŷ(k) = Ffuzz [x (k) ; k]

such that ŷ(k)! y(k); here ŷ(k) is the output of the fuzzy model Ffuzz [�] :

This data-driven modeling scheme needs two basic processes: structure identi�cation and

parameter identi�cation. The structure identi�cation consists in partitioning the input and

output data of the nonlinear system and extract fuzzy rules.

As shown in Chapter 3, an RBM can learn the probability distribution among the input

data, and obtain their hidden features which dramatically improves the performance of a

regression model.

In this chapter of the thesis, we �rst use an RBM to transfer the input data to their

feature space, and obtain the hidden features of the input. The RBM transformation allows

us to model the system in the probability theory frame, such that the model is not sensitive

to the noises and disturbances.

Consider an RBM as presented in Section 3.3. The input data of the RBM is x (k) =

[x1 � � �xn] and the hidden output of the RBM is �h =
�
�h1 � � � �hm

�
: In this chapter we consider

a stand-alone RBM instead of a cascade (as proposed previously) where n is the dimension

of the input and m is the dimension of the hidden layer. If t = 1; :::;m and s = 1; :::; n; the

t� th hidden node and the s� th visible node are sampled using the conditional distribution

given by (3.19).

It is observed that we have changed the variable h into �h: This modi�cation was made

in order to allow us to use h to represent another aspect of the RBM. Then, we de�ne the

72

probability vector h as

h =
�
p
�
�h1 = 1 j x

�
� � � p

�
�hm = 1 j x

��
= [h1 � � �hm]

In this sense, we are considering the probability measures as the new output of the model,

this is done because the sampling process takes away meaningful data from the probability

vector, thus, instead of taking an already decided vector, we use the vector from where it was

drawn from. The standard RBM model requires that both �hs and xt to be binary values but,

for nonlinear system identi�cation, the visible units x cannot be binary values. The solution

that we used to overcome this problem is presented as follows:

Consider the RBM parameters gathered as � = [V; b; c] where V is the weight matrix

between the input and hidden layers, b is the bias that interacts with the raw input and c is

the hidden bias that works to sample new visible vectors from the learned distribution.

We have said that nonlinear system identi�cation demands that the RBM is capable of

dealing with continuous valued input. Following that thinking, we use the modi�ed RBM

whose conditional probability distribution PC(xtjh) is given by (3.30) which makes the strong

assumption that x is normalized.

When xt 2 [0; 1]; from (3.31), the probability distribution with at = V T
t h+ ct is,

P (xtj�h) =
ate

atxt

eat � 1 (4.2)

And from (3.31) the cumulative conditional probability from where a sampling process can

be made is computed by

PC(xtj�h) =
eatxt � 1
eat � 1 (4.3)

We use the data set, x (k) 2 D1 (training set); k = 1 � � �M; to train the RBM. The training

procedure obeys the same steps given by Algorithm 4 and the gradient descent minimization

in (3.21).

After the RBM is trained, the parameters � are �xed. Then we use another data set,

x (k) 2 D2, k = 1 � � � q; to compute the data-driven fuzzy modeling where q is the number of

training examples. Now the RBM transforms the input data into their hidden feature space.

It is a common practice that the dataset D1 and D2 are the same as they share the same

statistical properties, this is done in order to take full advantage of the deep learning encoding

73

that the RBM is performing. Nevertheless, this practice (although it seems to be convenient)

have some �aws because of the lack of representativeness that the datasets present when they

try to provide the model with su¢ cient statistical information.

Once the RBM has been trained we perform a probabilistic clustering method Because

the features of the input data are in the form of probability distributions, we use the following

probability based clustering method to obtain the fuzzy rules.

4.2 Fuzzy rules extraction with probability based clus-

tering

The input data x (k) 2 D2 are mapped to the hidden features H = fh(k)gqk=1 by the trained

RBM. We assume that each sample h(k) belongs to a speci�c cluster whose labels are given

by L = fl(k)gqk=1, l(k) 2 f1; :::; Kg; where K is the number of clusters. The object of the

probability based clustering is to �nd the correlation between the input instances and their

respective cluster parameters. The higher correlation between an instance and a cluster, the

more possible it will be assigned to that cluster. We use the following objective function,

which is similar as [24],

P (L; f�jgKj=1jH) _ p(L)

"
NY
k=1

p(h(k)j�l(k))
#

KY
j=1

p(�j) (4.4)

where p(L) is the marginal clustering distribution probability, �j are the clustering model

parameters, p(h(k)j�l(k)) is the likelihood of the hidden code h(k); �l(k) is the cluster parameter;

p(�j) is the Gaussian prior for all �j with j = 1:::K:

The parameters f�jgKj=1 are estimated by the following Gibbs sampling with respect to the

label l(k) and hidden feature h(k): Given the set of codesH = fh(k)gqk=1 and its cluster labels

L; the Gibbs sampling allow us to obtain samples from the conditional probability distribution

while keeping other variables �xed. So for each label l(k), the conditional posterior is

p
�
l(k) = jjl(�k);h(k); f�jgKj=1; �; ; �

�
_ p [l(k) = jjl(�k); �;] p [h(k)j�j] (4.5)

where l(�k) denotes all other indices but k:

74

p [l(k) = jjl(�k); �] is determined by a Chinese restaurant process with concentration

parameter � and discount parameter . The probability of each cluster given by the Chinese

restaurant process is calculated as follows: suppose that we have K di¤erent clusters at time

k + 1, then h(k) would be assigned at an empty new cluster GK+1 with probability
 +K�
k+

.

For an existing cluster Gj with nj existing elements, the probability is
nj��
k+

:

p(h(k)j�j) is the likelihood of the current instance k and h(k) in its cluster. It is directly

proportional to the correlation between h(k) and �j. It can be calculated as h(k)T �j: Taking

into account a weight penalization � k�jk2, it can also be calculated as

p(h(k)j�j) _ exp(h(k)T �j � � k�jk2) (4.6)

where � is a penalization constant to control the weights size, � k�jk2 represents the maximum

margin to separate clusters [24].

(4.6) is regarded as a set of exponential functions, which have similar statistical properties.

Substituting the assumption (4.5) into (4.6),

p
�
l(k) = jjl(�k);h(k); f�jgKj=1; �; �

�
_ p [l(k) = jjl(�k); �] exp(h(k)T �j � � k�jk2) (4.7)

A larger correlation between h(k) and �j indicates a higher probability that h(k) belongs

to cluster Gj. If the probability is less than a probability threshold, a new virtual cluster

GK+1 with random parameters �K+1 is generated, K = K + 1:

h(k) is assigned into this new cluster. The probability of a new cluster is calculated by

the Chinese restaurant process. The correlation is calculated by (4.7): �K+1 is drawn from a

multi-variate t-distribution. So the clustering object is to maximize (4.4) as

max

(
p(L)

"
NY
k=1

p(h(k)j�l(k))
#

KY
j=1

p(�j)

)
(4.8)

The probabilities p(�j) are calculated by the following maximum margin learning rule. The

maximum margin learning rule uses the passive aggressive algorithm (PA) to update the

cluster parameters [18]. At time k; the label l(k) is determined by the Gibbs sampling

process described in (4.7).

We concatenate the cluster parameters f�jgKj=1 as a vector� = [�1; :::; �K]; or�l(k) = �l(k).

75

If we de�ne the concatenating vector � [h(k); l(k)] where the l(k) � th element is set to be

h(k); while the others are set to be vectors 0 we calculate at time k the margin vector �(k)

as:

M [�(k); (h(k); l(k))] = �(t) � � [h(k); l(k)]��(k) � �
h
h(k);bl(k)i (4.9)

where bl(k) is the prediction label from the model and h(k),

bl(k) = argmax
j
h(k)T �j (4.10)

The updating process is designed to optimize the following objective function

�(k + 1) = argmin�
1
2
k���(k)k2 + C�

Subject to: l2 [�; (h(k); l(k))] � �
(4.11)

where C > 0 is a penalty constant, � is the threshold of the hinge-loss function, l2 [�] is the

hinge-loss function de�ned by

l2 [�(k); (h(k); l(k))] =

8<: 0 if M [�(k); (h(k); l(k))] � 1

1�M [�(k); (h(k); l(k))] otherwise
(4.12)

where M [�] is the margin function (4.9):

Using the passive aggressive algorithm [18], the parameters are updated as

�l(k)(k + 1) = �l(k)(k) + �(k)h(k)

�
bl(k)(k + 1) = �bl(k)(k)� �(k)h(k) (4.13)

where �(k) = minfC; hl[�(k);(h(k);l(k))]kh(k)k2 g.

For each iteration k, �k is estimated by (4.13), (4.12), and (4.9), such that the maximum

margin increases. This probability based clustering is similar to the nonparametric maximum

margin clustering [24]. However, the goal in this thesis is to identify a nonlinear system which

leads to a time series clustering algorithm that can be applied on-line.

After the training set D2 has been divided, we have K di¤erent clusters Gj; j = 1 � � �K:

76

We assign one fuzzy rule for each cluster Gj as

Rj: IF h1 (k) is A
j
1 and h2 (k) is A

j
2 and � � � hm (k) is Ajm THEN y (k) is Bj (4.14)

where Aj1 ; � � �Ajm and Bj are standard fuzzy sets, they are represented by the following

Gaussian membership functions

�Ajs [hs (k)] = exp

� [hs (k)� cjs]

2

�2js

!
(4.15)

where k = 1 � � � q; s = 1 � � �m; j = 1 � � �K:

By using product inference, center-average and singleton fuzzi�er, the output of the fuzzy

system is expressed as [74]

ŷ (k) =

KX
j=1

wj

"
mY
s=1

�Ajs

#!
=

KX
j=1

"
mY
s=1

�Ajs

#!
(4.16)

where wj is the point at which �Bj = 1. If we de�ne �j =
mQ
s=1

�Aji
=

KP
j=1

mQ
s=1

�Ajs ; (4.16) can be

expressed in matrix form

ŷ (k) =W (k) � [h (k)] (4.17)

with parametersW (k) = [w1 � � �wK] and data vector � [h (k)] = [�1 � � ��K]
T :

From the restricted Boltzmann machine, we obtain the hidden features hs (k) and their

dimension m: From the probability based clustering, we obtain the fuzzy rule number K

and the data distributions. So the structure of the fuzzy model is ready. The fuzzy rules

extraction with the on-line clustering and the probability based clustering is shown in Figure

4-2.

The probability based clustering not only gives the distribution of the data hs (k), but also

provides the relations of the data in probability forms. The fuzzy rule (4.14) only represents

the data distribution. In order to include the �exibility of this probability relation in the

77

Time(k)

Time(k)

Nonlinear
System()ku

1−z

()unku −

()1−ky

()ynky −

()ky

()ky

()kx1

cV T ,

()kx2

()kxn

()kh1

()kh2

()khm

bV ,

Visible
unit

Hidden
unit

()kh1

()kh2

1p

2p

3p()1
2

1
1 ,cc

()3
2

3
1 ,cc

()2
2

2
1 ,cc

Fuzzy rule 1 Fuzzy rule 3

Fuzzy rule 2

()ky

()ku

k1−k

k1−k

Restricted Boltzmann machines
Probability based clustering

Online clustering

Figure 4-2: Fuzzy rules extraction with the on-line culstering and the probability based
clustering

data, we assign probability factors pj;i into each rule (4.14) as

Rj: IF h1 (k) is A
j
1 and h2 (k) is A

j
2 and � � � hm (k) is Ajn THEN

y (k) is B1 with prob. pj;1 and

y (k) is B2 with prob. pj;2 and

:::

y (k) is BK with prob. pj;K

(4.18)

where pj;i � 0,
PK

i=1 pj;i = 1 with i; j = 1; :::; K. This means the consequent y (k) is

established in the probability given by pj;i: So the fuzzy set of the consequent, Bj; must

satisfy

p(Bjjh(k)) =
KX
i=1

�i [h (k)] pi;j (4.19)

78

4.3 Data-Driven Fuzzy Modeling

The fuzzy model of the probability based fuzzy rules is not longer (4.17). We use the fol-

lowing process to extract the fuzzy model from the feature space h(k): �j [h (k)] in (4.19),

it can be regarded as a normalized vectorial membership function of h (k) to the fuzzy sets

Aj1; A
j
2; � � � ; Ajm, p(yjh(k)) is calculated by

p(yjh(k)) =
KX
j=1

p(yjBj)p(Bjjh(k)) (4.20)

where p(yjBj) is estimated as

p(yjBj) =
�Bj(y)R
�Bj(y)dy

(4.21)

This is a probability measurement of the membership function �Bj : The output of the prob-

ability based fuzzy model is

by (k) = E(yjh(k)) = Z yp(yjh(k))dy =
KX
j=1

p(Bjjh(k))E(yjBj) (4.22)

where E(yjBj) =
R
y�

Bj
(y)dyR

�Bj(y)dy
: The last term is just the centroid of the fuzzy set Bj:

Compared with the standard fuzzy model (4.17), where wj is the point at which �Bj = 1,

(4.22) can be formed as

by (k) = KX
j=1

wjp(B
jjh(k)) =

KX
j=1

KX
i=1

�i [h (k)] pi;jwj (4.23)

or

ŷ (k) =W (k) � [h (k)] (4.24)

where the parameterW (k) = [w1 � � �wK] and the data vector is given by

� [h (k)] =

"
KX
i=1

�i [h (k)] pi;1j � � � j
KX
i=1

�i [h (k)] pi;K

#T

79

4.3.1 Randomized algorithms for membership functions training

For the probability based fuzzy model (4.24), � [h (k)] is determined by a restricted Boltzmann

machine and probability based clustering as we presented above. (4.24) is a linear-in-

parameter system, the parameterW (k) may be singular and/or be not square, the solution

can be solved by the Moore-Penrose generalized inverse as explained in Section 3.4. The

pseudoinverse calculation is performed as follows:

For a linear system ŷ (k) =W�,W0 is a least-squares solution if

kW0�� y (k)k = min
W
kW�� y (k)k (4.25)

where k�k is a norm in Euclidean space. If By is a minimum norm least-squares solution of

the linear system ŷ =W�; then it is necessary and su¢ cient that B = �+. Here �+ is the

Moore-Penrose generalized inverse of matrix �, which is de�ned in (3.41).

For our fuzzy model, the goal of the training algorithm is to �nd the parameter W (k)

such that the following cost function is minimized

J =
X
k

ky (k)� by (k)k2 (4.26)

where 	 = [� (1) ;� (2) ; � � � ;� (q)] : Or in another form:

Y =
h
y (1) y (2) � � � y (N)

i
=
h
W� (1) + e(1) W� (2) + e(2) � � � W� (N) + e(N)

i
(4.27)

Y =W	+ E (4.28)

where e (k) is the modeling error e(k) = y (k) � by (k), and E = [e (1) ; e (2) ; � � � ; e (N)] :

To obtain min
�
J; we need @J

@W
= 0: From (3.43)

W� = Y	T
�
		T

��1
= Y	+ (4.29)

SoW� can minimize the index J in (4.26).

SinceW� is one of the least-squares solutions of the system Y =W	+E, it reaches the

80

smallest approximation error on the training dataset, and it is unique. The solutionW� has

the smallest norm for a least-squares solution of Y =W	: [63] shows that for feedforward

networks, small norm of the weights is more important than the number of nodes to obtain

a small generalization error.

Although random weights in the hidden layers are better than backpropagation training

in many cases, sometimes random weights may lead to poor performances [33]. The restricted

Boltzmann machine and the probability based clustering provide possible selection manners

of hidden weights with the distribution of the input data. The distributions of the random

hidden weights are de�ned in advance to improve the modeling accuracy.

For the fuzzy model, the premise membership functions Aj1 ; � � �Ajm are given by the

probability based clustering. Ajs is in the form of a Gaussian function (4.15). Its two

parameters cjs and �js are determined as:

� The terms cjs are selected as equal as the center of each cluster

� The parameters �js are assigned randomly in(0; 1)

As we do not have the values of pj;i we cannot calculateW . We set the parameters pj;i = 1

for i = j and pj;i = 0 for i 6= j which reduces the probabilistic model (4.18) into the model

(4.14). With this consideration we can compute W: The next section shows how to estimate

the probability parameters pj;i.

4.3.2 Probability functions training

The purpose of training the probabilities pj;i of each fuzzy rule (4.18) is to maximize the

likelihood of the desired output with respect to its input. From (4.19) and (4.20), the

parameters pi;j satisfy

p(yjh (k)) =
KX
j=1

p(yjBj)
KX
i=1

�i [h (k)] pi;j (4.30)

Because pi;K = 1�
PK�1

j=1 pi;j;

p(yjh (k)) =
K�1X
j=1

p(yjBj)

KX
i=1

�i [h (k)] pi;j + p(yjBK)

KX
i=1

�i [h (k)]

1�

K�1X
j=1

pi;j

!
(4.31)

81

Then the global log-likelihood function of the training set D such that fh (k) ; y(k)g 2 D is

L(D;P) = log
�QN

k=1 p(y(k)jh (k))
�
=
PN

k=1 log p(y(k)jh (k))

=
PN

k=1 log

24 PK�1
j=1 p(yjBj)

PK
i=1 �i [h (k)] pi;j+

p(yjBK)
PK

i=1 �i [h (k)]
�
1�

PK�1
j=1 pi;j

�
35

where P is a K �K dimension matrix which contains the probability parameters pj;i;

P =

26664
p1;1 � � � p1;K
...

. . .
...

pK;1 � � � pK;K

37775 (4.32)

The fuzzy set Bj has the form of a Gaussian function (4.15) with cj = wj,

�Bj (y(k)) = exp

�(y(k)� cj)

2

�2
Bj

!

By using
R
�Bj(y)dy =

p
��Bj , we can evaluate p(y(k)jBi):

In order to obtain P; we need to solve the following minimization problem8<: minP f�L(D;P)g

Subject to pi;j > 08 i; j and
PK�1

j=1 pi;j � 1
(4.33)

Here we do not use the last column pi;K of P; because it is calculated as a consequence of the

rest of the values of P:

The minimization (4.33) can be formed into the following linear programming program

as 8<: minPv �L(D;Pv)

Subject APv � b and lb � Pv
(4.34)

where
Pv = [p1; � � � ; pK�1j � � � jpK ; � � � ; pK;K�1]T

A =

26666664

�!
1
�!
0 � � � �!0

�!
0
�!
1 � � � �!0

...
...

. . .
...

�!
0
�!
0 � � � �!1

37777775

82

�!
0 ,
�!
1 2 RK�1 are row vectors with

�!
0 = [0:::0] and

�!
1 = [1:::1], lb; b 2 RK�1 such that

b = [1:::1]T and lb = [0:::0]T : The minimization problem of (4.33) is solved by a standard

linear programming toolbox of Matlab.

4.4 Comparisons with other fuzzy modeling methods

In this section, we use two benchmark examples to show the e¤ectiveness of our data-driven

fuzzy modeling method which combines restricted Boltzmann machines, probability based

clustering, and probability fuzzy rules.

Gas furnace fuzzy modeling

We use the same dataset as in Section 3.5. Here we aim to identify the next general model:

y(k) = f [y(k � 1); : : : ; y(k � ny); u(k); : : : ; u(k � nu)] = f [x (k)]

where ny and nu are the regression delays for input and output.

Here, we also use the random search method [7][17] to decide the best ny and nu: The

regression delays are assumed in the interval [1; 10]; the training data are 200 examples while

the rest are used for validation. Finally, we have ny = 4; nu = 5:

The dataset is �rst normalized using (3.50) for comparison purposes. In this example,

the data-driven fuzzy modeling has the following four steps:

1. Features extraction. The normalized input data are sent to an RBM: The contrastive

divergence uses 1-step Gibbs sampling and 10 training epochs, the learning rate is

� = 0:2. After the training, the parameters of the RBM V and b are then used to

compute the hidden representation of the model (h). The number of hidden units is

chosen as ny +nu+1; such that the hidden and the visible unit numbers are the same.

2. Clustering. After the features are extracted by the RBM, we used the probability based

clustering. The hyper parameters are chosen as � = 0:8, = 10; � = 5 and C = 0:001:

Here � and determine the probabilities which are obtained by the Chinese restaurant

process. � is close to 1: When increases, the number of clusters K also grows. The

penalization parameter � decreases the probability of the cluster, while keeps k�jk2 low

83

0 10 20 30 40 50 60 70 80 90
0.2

0.4

0.6

0.8

1

1.2
Testing output

Instances

O
ut

pu
t

System output
Estimated output

Figure 4-3: Testing results of the gas furnace modeling.

. In our experiments, the probability based clustering divided the dataset h(k) into 10

clusters. Without the RBM, the same clustering method extracts 12 clusters from the

original data x(k).

3. Membership functions training. In order to improve modeling accuracy, the member-

ship functions of the fuzzy model are updated with the input and output data. The

centers of the membership function are the cluster centers which are obtained in Step

2. The parameters W are computed using the ELM approach (we calculate the pseu-

doinverse using a vector which contains the parameters �).

4. Probability training. Once the minimization problem is set, The probability parameters

pi;j are estimated by the standard linear programming toolbox, "fmincon" and "sqp".

The initial value of the matrix P is the identity matrix IK ; i. e., we start from a

standard fuzzy rule and the probability parameters are introduced to minimize the

possibility of the modeling error procedure.

In order to test the generalization capabilities of our model, we use the remaining 96 data

for testing after the training phase is �nished. The �nal testing results are shown in Figure

4-3.

We compared our method with the following three fuzzy modeling algorithms:

84

1. Adaptive fuzzy modeling approach (ANFIS) [74]. It may be the most popular fuzzy

modeling method. In this experiment, we also use 8 fuzzy rules. The Gaussian mem-

bership functions are selected randomly at �rst.

2. Fuzzy modeling via online clustering [36][71][3]. Here we do not consider the temporal

interval problem [77] and use all data to train each group. All thresholds for the output

and the input are 1:5. Finally ,we obtain �ve fuzzy rules.

3. Fuzzy logic with data clustering [54][16]. It is another popular fuzzy modeling method.

In this comparison, only the input is partitioned. With the threshold 1:0, we have 15

groups in the input space. So 15 fuzzy rules are constructed.

The root mean square (RMS) testing error for each method is RMS1 = 0:019 (our fuzzy

modeling with RBMs), RMS2 = 0:031 (fuzzy modeling with clustering) and RMS3 = 0:09

(ANFIS).

In order to show the e¤ectiveness of the hidden feature extraction with RBMs, we compare

the testing error of the h(k) clustering after RBMs and the x(k) clustering without RBMs.

Figure 4-4 gives these testing errors.

It is observed that the clustering procedure using the features from the RBM gives better

representation for the input data. Once the fuzzy rules are trained, the hidden features can

be observed by the RBM, and the probabilistic fuzzy model improves the modeling accuracy.

Now, we discuss how the probability parameters work in the consequences of the fuzzy

rules (4.18). Figure 4-5 shows the training errors with standard fuzzy rules and probabilistic

fuzzy rules. We see that the probabilistic parameters give more freedom and robustness to

adjust the model with the data, the testing errors decrease most of time.

The mean square errors (MSE) while using RBMs for the clustering and probability

parameters of the fuzzy rules are given in Table 4.1. We see how the use of each stage clearly

helps with the decreasing of the testing error.

Table 4.1: Testing results of the deep fuzzy modeling (gas furnace) (�10�3)
Training Testing
No RBM RBM No RBM RBM

Standard fuzzy rule 5:10 3:35 26:2 23:7
Probabilistic fuzzy rule 3:25 3:11 22:5 19:3

85

0 10 20 30 40 50 60 70 80 90 100
0.1

0.05

0

0.05

0.1

0.15

0.2

0.25
Testing error

Instances

Er
ror

h(k) clustering
x(k) clustering

Figure 4-4: Testing errors with RBMs and without RBMs

0 10 20 30 40 50 60 70 80 90 100
0.1

0.05

0

0.05

0.1

0.15

0.2

0.25
Testing error

Instances

Er
ror

Fuzzy modeling with probability
Standard fuzzy modeling

Figure 4-5: GAS testing error using probabilistic parameters

86

Wiener-Hammerstein benchmark fuzzy modeling

We use the same benchmark that was used in Section 3.5. Let u(k) be the input and y (k) be

the output. We de�ne the recursive input vector of the model as x(k) = [y(k � 1) � � � y(k � ny) u(k) � � �u(k � nu)]T :

So the Wiener-Hammerstein benchmark is

y (k) = f [y(k � 1) � � � y(k � ny) u(k) � � �u(k � nu)] (4.35)

Similar as the previous example, u(k) and y (k) are also normalized. The delays ny and nu

are drawn again from a uniform interval [1; 10]: The fuzzy modeling process also has the

following four steps:

1. Features extraction. We also train the RBM with contrastive divergence with 1-step

Gibbs sampling and 10 training epochs. The learning rate is � = 0:1. Due to the

quantity of data, we utilize a smaller learning rate. The number of hidden units is also

chosen as ny + nu + 1.

2. Clustering. We set � = 0:95, = 100; � = 5 and C = 0:001. � and determine the

probability given by the Chinese restaurant process, � is chosen close to 1 to ensure

that a big number of clusters are created, also increases to accomplish the same

objective. The hidden feature h(k) is divided into 13 clusters, while the original data

x(k) is partitioned into 11 clusters.

3. Membership functions training. The parameters W are again computed using the

pseudoinverse approach.

4. Probability training. We used Matlab functions: fmincon and sqp, to compute the

parameters pi;j. P is initialized as IK :

Our data-driven fuzzy modeling method for the W-H data is shown in Figure 4-6. To see

how the RBM helps to decrease the modeling error, Figure 4-7 shows the testing errors for

x(k) and h(k) clustering. We can see that clustering directly over x(k) gives a good testing

performance but its MSE is greater.

87

1500 1550 1600 1650 1700 1750 1800
0.4

0.45

0.5

0.55

0.6

0.65
Testing output

Instances

O
ut

pu
t

System output
Estimated output

Figure 4-6: Data-driven fuzzy modeling method for the W-H data

1500 1550 1600 1650 1700 1750 1800
0

0.005

0.01

0.015

0.02

0.025

0.03
Testing error

Instances

Er
ror

h(k) clustering
x(k) clustering

Figure 4-7: Testing errors using RBM and without RBM

88

1500 1550 1600 1650 1700 1750 1800
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018
Testing error

Instances

Er
ror

Fuzzy modeling with probability
Standard fuzzy modeling

Figure 4-8: Testing errors using probabilistic parameters and standard fuzzy rules

Figure 4-8 shows the e¤ect of the fuzzy probability parameters pi;j. We see that as the

number of clusters K increased the computational time of the model decreased, this is due

to the linear programming method for calculation of P . The MSE decreases when we use

probabilistic fuzzy rules.

By combining restricted Boltzmann machines and probability theory, our data-driven

fuzzy modeling method has outstanding properties, see Table 4.2.

Table 4.2: Testing results of the deep fuzzy modeling (Wiener-Hammerstein benchmark)
(�10�3)

Training Testing
No RBM RBM No RBM RBM

Standard fuzzy rule 18:9 17:7 26:4 22:8
Probabilistic fuzzy rule 16:2 14:1 23:6 19:3

We �nd that the modeling accuracy of the W-H benchmark does not improve so much as

the gas furnace by using the probabilistic tuning. While the RBM gives better results when

more data are available.

89

Chapter 5

Conditional continuous restricted

Boltzmann machines

In this chapter, the conditional probability distributions that exist between the system input

and output are modeled using an RBM based framework, we extent the RBM modeling to

capabilities beyond the reach of the simple hidden-visible units relationship. We prove that

DBMs have the desired universal approximation property with binary conditional distribu-

tions of the input and output data. In order to identify dynamic systems with DBMs, we

modify the DBM on two ways. First, we perform an encoding procedure over the continuous

input and output to get a binary representation of the input and output vectors. Then, we

design a probability gradient algorithm to train the weights of the DBM in order to max-

imize the log-likelihood of the conditional probability between the input and output. The

second method consists in modifying the variable domain such that input and output data

are continuous, while the hidden variables remain binary. The probability distributions are

changed by using integral evaluation in the new variable domain. The comparisons on these

two methods and with the other normal nonlinear modeling methods are carried out with

two benchmark problems.

For an known discrete-time nonlinear system, we use the representation described by (3.1)

and (4.1) where we described the general form of the following three models introduced in

90

()kx1

11 ,cW T

()kx2

()kxn

()kh1

()kh2

()khm

11,bW

l
T

l cW ,

()kh1

()kh2

()khm

ll bW ,()ku

1−z

()ky

()kx

()kx1

()kx2

()kxn

Figure 5-1: Input features extraction with deep Boltzmann machines for nonlinear system
modeling

[56]

y(k) =

nyX
i=1

aiy (k � i) + [u (k) ; � � �u (k � nu)]

y(k) = ' [y (k � 1) ; � � � y (k � ny)] +
nuX
i=1

biu (k � i)

y(k) = ' [y (k � 1) ; � � � y (k � ny)] + [u (k) ; � � �u (k � nu)]

where ' (�) and (�) are unknown nonlinear functions, ai and bi are unknown coe¢ cients.

At time k; there are two time series: the input series fu (1) ; � � � ; u (k)g ; and the output

series fy (1) ; � � � ; y (k)g : The objective of system modeling is to use these input and output

series, to construct a model ŷ(k) = F [x (k) ; k] ; such that ŷ(k) ! y(k); where ŷ(k) is the

output of the model F [�] :

A DBM can be regarded as a stochastic arti�cial neural network, which is made of several

restricted Boltzmann machines (RBMs), see Fig.5-1. We will �rst use DBMs to extract the

features from the input data x (k) which are combined by some output y (k) and control u (k)

as in (4.1). The DBMs allow us to identify the nonlinear system (??) within the probability

theory frame, such that the models are not sensitive to noise and disturbances. Then, we

will model the system by using the conditional distribution p [y (k) jx (k)] :

The modeling capability with RBMs is the basic issue for nonlinear system identi�ca-

tion. The following theorem states the universal approximation capability of a DBM, i.e., if

the number of hidden units of a DBM is enough, that DBM can model any discriminative

distribution p [y (k) jx (k)].

In order to prove the universal approximation of DBMs for dynamic system identi�cation,

91

we need to encode the input variable x. The binary assumption , x 2 f0; 1g ; makes the

probability calculation of a DBM simple. Almost all classi�cation tasks with DBMs use

binary values. However, the visible units x in nonlinear systems do not have binary values in

general. In [22], we change the DBM�s structure, such that we can calculate the probability

of the control u (k) and the output y (k). In this chapter, we use a simpler method, we use

a binary encoding method to transform the continuous values into binary ones f0; 1g :

We �rst encode y (k) into a binary representation with a resolution of m bits. This means

that y (k) is encoded into 2m di¤erent levels. These levels represent the range from 0 to 1

(binary 0 to 2m� 1) with a step of 1=(2m� 1): Similarly, the control u (k) is encoded into 2m

di¤erent levels. So
x 2 <n �! x 2 f0; 1gr

y 2 < �! y 2 f0; 1gm
(5.1)

where r = n�m: The hidden variables are assumed to be binary. With this encoding stage

�nished we are ready to develop the universal approximation properties of the RBMs .

5.1 Universal approximation theory for conditional RBMs

We �rst will show how an RBM can approximate any marginal binary distribution p(x); we

based our results in part on the work of [44]. The �nal goal is to demonstrate that an RBM

can model any binary conditional probability distribution p(yjx). The next lemma works as

a preliminary result that will lead to our �nal objective.

Lemma 10 Let p(x) be the distribution over binary vectors x; obtained with an RBM R(p)

and let p(w;c) be the distribution obtained when adding a hidden unit with weights w and bias

c to R(p). Then 8p(x);8w 2 Rd; p(x) = p(w;�1)

Proof. Denoting eh =
24 h

hn+1

35 ; fW =

24 W

wT

35 and eC =

24 C

c

35 where wT denotes the
tranpose of w and introducing z(x; h) = exp

�
hTWx+BTx+ CTh

�
, we can express p(x; h)

and p(w;c)(x;eh) as follows:

92

p(x; h) / z(x; h) (5.2)

p(w;c)(x;eh) / exp
�fhTfWx+BTx+ fCTeh�

/ z(x; h) exp(hn+1w
Tx+ chn+1)

If c = �1, p(w;c)(v;eh) = 0 if hn+1 = 1. Thus, we can discard the terms where hn+1 = 1;
keeping only those where hn+1 = 0. Marginalizing over the hidden units, we have:

p(x) =

P
h z(x; h)P

h(0);x0 z(x
0; h(0))

(5.3)

p(w;�1)(x) =

Peh z(x; h) exp(hn+1wTx+ chn+1)Pgh(0);x0 z(x0; h(0)) exp(h(0)n+1wTx+ ch
(0)
n+1)

=

P
h z(x; h) exp(0)P

h(0);x0 z(x
0; h(0)) exp(0)

= p(x)

Theorem 11 If p(x) 6= p0(x), there exists a pair (w; c) such that KL(p0(x)jjp(w;c)(x)) <

KL(p0(x)jjp(x))

Proof. Expanding the expression of p(w;c)(x) and regrouping the terms similar to the

expression of p(x); we get:

p(w;c)(x) =

Peh exp(hTWx+ hn+1w
Tx+BTx+ CTh + chn+1)Pgh(0);x0 exp(h(0)TWx0 + h(0)Tn+1wx

0 +BTx0 + CTh(0) + ch
(0)
n+1)

(5.4)

=

P
h z(x; h)(1 + exp(w

Tx+ c))P
h(0);x0 z(x

0; h(0))(1 + exp(wTx0 + c))

=
(1 + exp(wTx+ c))

P
h z(x; h)P

x0;h(0)(1 + exp(w
Tx0 + c))z(x0; h(0))

Therefore, we have:

93

KL(p0jjp(w;c)) =
X
x

p0(x) log p0(x)�
X
x

p0(x) log pw;c(x) (5.5)

= �H(p0(x))�
X
x

p0(x) log

(1 + exp(wTx+ c))

P
h z(x; h)P

x0;h(0)(1 + exp(w
Tx0 + c))z(x0; h(0))

!
= �H(p0(x))�

X
x

p0(x) log(1 + exp(w
Tx+ c))�

X
x

p0(x) log
X
h

z(x; h)

+
X
x

p0(x) log

0@ X
x0;h(0)

(1 + exp(wTx0 + c))z(x0; h(0))

1A
Assuming wTx+c is a very large negative value for all x, we can make a Taylor expansion

of the �rst and the last term. The �rst term becomes

X
x

p0(x) log(1 + exp(w
Tx+ c)) =

X
x

p0(x) exp(w
Tx+ c) + oc!�1(exp(c))

and the last term becomes

 X
x

p0(x)

!
log

0@ X
x0;h(0)

(1 + exp(wTx0 + c))z(x0; h(0))

1A
= log

0@ X
x0;h(0)

z(x0; h(0))

1A+ log 1 + Px0;h(0) exp(w
Tx0 + c)z(x0; h(0))P

x0;h(0) z(x
0; h(0))

!

= log

0@ X
x0;h(0)

z(x0; h(0))

1A+ Px0;h(0) exp(w
Tx0 + c)z(x0; h(0))P

x0;h(0) z(x
0; h(0))

+ oc!�1(exp(c))

But

P
x0;h(0) exp(w

Tx0 + c)z(x0; h(0))P
x0;h(0) z(x

0; h(0))
=

X
x

exp(wTx+ c)

P
h(0) z(x; h

(0))P
x0;h(0) z(x

0; h(0))

=
X
x

exp(wTx+ c)p(w;�1)(x)

=
X
x

exp(wTx+ c)p(x)

94

Putting all terms back together, we have

KL(p0(x)jjp(w;c)(x)) = �H(p0)�
X
x

p0(x) exp(w
Tx+ c) +

X
x

exp(wTx+ c) + oc!�1(exp(c))(5.6)

�
X
x

p0(x) log

 X
h

z(x; h)

!
+ log

0@ X
x0;h(0)

z(x0; h(0))

1A
= KL(p0(x)jjp(x)) +

X
x

exp(wTx+ c)(p(x)� p0(x)) + oc!�1(exp(c))

Finally, we have

KL(p0jjpw;c)�KL(p0jjp) = exp(c)
X
x

exp(wTx)(p(x)� p0(x)) + oc!�1(exp(c)) (5.7)

The question now becomes: can we �nd a w such that
P

x exp(w
Tx)(p(x) � p0(x)) is

negative?

As p0(x) 6= p(x), there is a bx such that p(bx) < p0(bx): Then there exists a positive scalar a
such that bw = a

�bx� 1
2
e
�
(with e = [1:::1]T) yields

P
x exp(bwTx)(p(x)� p0(x)) < 0. Indeed,

for x 6= bx, we have
exp(bwTx)
exp(bwTbx) = exp(bwT (x�bx)) (5.8)

= exp(a

�bx� 1
2
e

�T
(x�bx))

= exp

a
X
i

�bxi � 1
2

�
(xi�bxi)!

For i such that xi�bxi > 0, we have xi = 1 and bxi = 0: Thus, bxi � 1
2
= �1

2
and the

term inside the exponential is negative (since a is positive). For i such that xi�bxi < 0,

we have xi= 0 and bxi = 1: Thus, bxi � 1
2
= 1

2
and the term inside the exponential is also

negative. Furthermore, the terms come close to 0 as a goes to in�nity. Since the sum can be

decomposed as

95

X
x

exp(bwTx)(p(x)� p0(x)) = exp(bwTbx) X
x

exp(bwTx)
exp(bwTbx)(p(x)� p0(x))

!
(5.9)

= exp(bwTbx)
0@p(bx)� p0(bx) +X

x6=bx
exp(b!Tx)
exp(b!Tbx)(p(x)� p0(x))

1A
we have

X
x

exp(bwTx)(p(x)� p0(x))~a!+1 exp(bwTbx)(p(bx)� p0(bx)) > 0: (5.10)

Therefore, there is a value ba such that, if a > ba; Px exp(w
Tx)(p(x) � p0(x)) > 0: This

concludes the proof.

Using the above, we obtain the main theorem:

Theorem 12 Let p0 be an arbitrary distribution over f0; 1gn and let Rp be an RBM with

marginal distribution p(x) over the visible units such that KL(p0jjp) > 0. Then there ex-

ists an RBM Rp(w;c) composed of Rp and an additional hidden unit with parameters (w; c)

whose marginal distribution p(w;c) over the visible units achieves KL(p0(x)jjp(w;c)(x)) <

KL(p0(x)jjp(x)):

Proof. Choose a bx such that p(bx) < p0(bx). Pick bw = a
�bx� 1

2
e
�
with a large enough

and c such that wTx + c is a large enough negative value for all x. Then adding a hidden

unit parameters (bw;c) gives the desired result.
The next theorem is for the limit case when the number of hidden units is very large, so

that we can represent any discrete distribution exactly.

Theorem 13 Any distribution over f0; 1gn can be approximated arbitrarily well (in the sense

of the KL divergence) with an RBM with k + 1 hidden units where k is the number of input

vectors whose probability is not 0.

Proof. In the previous proof, we had

p(w;c)(x) =
(1 + exp(wTx+ c))

P
h z(x; h)P

x0;h(0)(1 + exp(w
Tx0 + c))z(x0; h(0))

(5.11)

96

Let ex be an arbitrary x and bw de�ned in the same way as before, i.e. bw = a
�ex� 1

2

�
:

Now de�ne bc = � bwTex+ � with � 2 R: We have:

lim
a!1

1 + exp(bwTx+ bc) = 1 for x 6= ex (5.12)

1 + exp(bwTx+ bc) = 1 + exp(�)

Thus, we can see that, for x 6= ex:

lim
a!1

p(bw;bc)(v) =

P
h z(x; h)P

x0 6=ex;h(0) z(x0; h(0)) +Ph(0)(1 + exp(bwTex+ bc))z(ex; h(0)) (5.13)

=

P
h z(v; h)P

x0;h(0) z(x
0; h(0)) +

P
h(0) exp(�)z(ex; h(0))

=

P
h z(x; h)P

x0;h(0) z(x
0; h(0))

1

1 + exp(�)
P
h(0)

z(ex;h(0))P
x0;h(0)

z(x0;h(0))

Remembering p(x) =
P
h z(x;h)P

x0;h(0)
z(x0;h(0))

, we have for x 6= ex
lim
a!1

p(bw;bc)(x) = p(x)

1 + exp(�)p(ex) (5.14)

Similarly, we can see that

lim
a!1

p(bw;bc)(ex) = [1 + exp(�)] p(ex)
1 + exp(�)p(ex) (5.15)

Depending on the value of �, one can see that adding a hidden unit allows one to increase

the probability of an arbitrary ex and to uniformly decrease the probability of every other x
by a multiplicative factor. However, one can also see that, if p(ex) = 0; then p(bw;bc) (ex) = 0 for
all �.

We can therefore build the desired RBM as follows. Let us index the x�s over the integers

from 1 to 2n and sort them such that

p0(xk+1) = ::: = p0(x2n) = 0 < p0(x1) � p0(x2) � ::: � p0(xk) (5.16)

97

Let us denote pi the distribution of an RBM with i hidden units. We start with and RBM

whose weights and biases are all equal to 0. The marginal distribution over the visible units

induced by that RBM is the uniform distirbution. Thus,

p0(x1) = ::: = p0(x2n) = 2
�n (5.17)

We de�ne w1 = a1(x1 � 1
2
) and c1 = �wT1 x1 + �1:

As shown before, we now have:

lim
a1!+1

p1(x1) =
[1 + exp(�1)] 2

�n

1 + exp(�1)2�n
(5.18)

lim
a1!+1

p1(xi) =
2�n

1 + exp(�1)2�n
8i � 2

As we can see, we can set p1(x1) to a value arbitrarily close to 1, with a uniform distribu-

tion over x1; :::;x2n : Then, we can choose �2 such that
p2(x2)
p2(x1)

= p(x2)
p(x1)

: This is possible since we

can arbitrarily increase p2(x2) while multiplying the other probabilities by a constant factor

and since p(x2)
p(x1)

� p1(x2)
p1(x1)

: We can continue the procedure until pk(xk): The ratio
pi(xj)

pix(j�1)
does

not depend on the value of i as long i > j: (because at each such step i; the two probabilities

are multiplied by the same factor). We will then have

pk(xk)

pk(xk�1)
=

p(xk)

p(xk�1)
; :::;

pk(x2)

pk(x1)
=
p(x2)

p(x1)
(5.19)

pk(xk+1) = ::: = pk(x2n)

From that, we can deduce pk(x1) = �kp(x1); :::; p
k(xk) = �kp(xk) with �k = 1 � (2n �

k)pk(x2n)

We also have pk(x1)
pk(x2n)

= p1(x1)
p1(x2n)

= 1 + exp(�1):

Thus, pk(x1) = p(x1)[1� (2n � k)pk(x2n)] = (1 + exp(�1))pk(x2n):

Resolving the above equations, we have

98

pk(xi) =
p(x1)

1 + exp(�1) + p(x1)(2n � k)
for i > k (5.20)

pk(xi) = p(xi)
1 + exp(�1)

1 + exp(�1) + p(x1)(2n � k)
for i > k

Making a Taylor expansion to the �rst order of KL(pjjpk) when �1 goes to in�nity, we

have

KL(p(x)jjpk(x)) =
X
i

p(xi)
(2n � k)p(xi)
1 + exp(�1)

+ o(exp(��1))!�1!1 0 (5.21)

This concludes the proof. This set of lemmas and theorems have concluded that an

RBM can e¤ectively represent any kind of marginal probability distribution p(x): However,

the marginal distributions are not suitable for system modeling, they are good from the

perspective of generative models but when a discriminative task has to be carried out, one

may want to make use of the input x in order to estimate the output y: Using the previous

results we can �nally state the main Theorem of this section.

Theorem 14 Any conditional distribution p [y (k) jx (k)] over f0; 1gm � f0; 1gr can be ap-

proximated arbitrarily well in the sense of the Kullback-Leibler divergence by an DBM with

r0 � m0 + 1 hidden units, where r0 and m0 are the number of di¤erent inputs and outputs

respectively, such that the pair (x; y) has a probability p(x; y) greater than 0.

Proof. For each RBM, the training object is

minKL (pjjq)! max
X

log p (x) (5.22)

where KL (pjjq) is the the Kullback-Liebler divergence, which is the distance from the RBM

probability distribution p(x) to the probability distribution q (x). It is

KL (pjjq) =
X
x

q (x) log
q (x)

p (x)
(5.23)

Any marginal probability distribution p(x) over f0; 1gr can be approximated arbitrarily well

in the sense of the Kullback-Leibler divergence (5.23) by an RBM with k + 1 hidden units,

99

where k is the number of input vectors whose probability is not 0; the proof can be found

[44]. So an RBM with enough hidden units can model any given marginal probability dis-

tribution p(x). Consider a well known nonlinear system which can be represented by a

binary conditional distribution p(yjx); the vectors x and y take values from the �nite sets

fx1; :::;xk;:::;xr0g and fy1; :::; yl;:::; ym0g respectively. The distribution has probability meas-

ures p(yljxk); for each pair (xk, yl), with k = 1; :::; r0 and l = 1; :::m0. It is also known that

the conditional probability of each pair is

p(yljxk) =
p(xk; yl)

p(xk)
=

p(xk; yl)P
j p(xk; yj)

(5.24)

From (5.24) we have

p(yljxk)
X
j 6=l

p(xk; yj) + [p(yljxk)� 1] p(xk; yl) = 0 (5.25)

Since we know the value of every term p(yljxk); we can form r0 � m0 equations with the

same form of (5.25) with di¤erent indexes k and l. These linear equations can be solved,

and the solutions are p(xk; yl): That leads to the desired conditional distribution p(yjx).

With each p(xk; yl); we have created a distribution that contains the original conditional

distribution p(yjx). Finally we consider the pair (xk; yl) as a single random variable zkl; such

that p(zkl) = p(xk; yl): As stated in [44], we can construct an DBM with r0 �m0 + 1 hidden

units, which models the distribution given by p(zkl).

Thus, a DBM can model any marginal distribution p(x) with x 2 f0; 1gr being a binary

vector. It is similar to the universal approximation theory of neural networks [20][32].

Input features extraction

The training process of the DBMs is as follows: 1) The training data and the hidden repres-

entation of the �rst RBM are x (k) 2 <n and h1 (k) 2 <l1 :We use q data to train the weights

of the �rst model W1 2 <l1�n; b1 2 <l1 ; and c1 2 <n: 2) After the �rst model is trained,

their weights are �xed. The code or hidden representation of the �rst model is computed

with �xed weights to generate q examples, which are the input to the second model. 3) The

second model is trained using as input h1 (k) 2 <l1 and it generates the hidden representation

h2 (k) 2 <l2 ; which is the input of the third model. 4) Then we train the third model, until

100

all l models are trained. This training process is shown in Fig.3-5.

For each RBM, the training object is (5.22). The Kullback-Liebler divergence (5.23) is

[1]

KL (p; q) =
X
x

q (x) log q (x)�
X
x

q (x) log p (x)

The training process for each RBM is carried out utilizing the procedure shown in section

3.3.

5.2 DBM training with binary representation of input

and output

The DBM training method discussed in the previous section can generate the probability

distribution and extract the features of x (k) for system identi�cation. This method is widely

applied in classi�cation and regression tasks [27][28]. Although x (k) includes the input

u (k) and the output y (k) ; the probability distribution of x (k) does not lead directly to the

conditional probability distribution p [y (k) jx (k)]) which is the system modeling goal.

In this session we use the inherent conditional distribution p [y (k) jx (k)] of the data

to train the DBMs for nonlinear system modeling. The conditional distribution will be

calculated from the joint distribution of the inputs x (k) and associated output y (k). This

idea has been applied in classi�cation task in [40].

Joint distribution for DBM training

Consider a training set denoted as D = fx(k); y(k)g; here x(k) and y(k) are the k-th training

input vector and output respectively. In this session, we encode x(k) and y(k) into binary

representations with resolutions of r bits andm bits respectively, see (5.1). After the encoding

we have x(k) 2 <r, y(k) 2 <m. The loss function of the DBM training is de�ned as

Jc(D) = �
DX
k

logp [x(k); y(k)] (5.26)

The training object is as (5.22): minD Jc(D).

101

The DBM model gives the joint probability distribution between the observed variables

fx;yg and the hidden features h 2 <s; see Fig.5-1. The joint probability is also an energy

function
p(x; y; h) _ e�E(x;y;h)

E(x; y; h) = �hTWx� bTx� cTh�DTy � hTV y
(5.27)

We de�ne the model parameters as � = fW; b; c;D; V g. By the binary encoding (5.1), the

conditional distributions of x are

p(xjh) =
Y
i

p(xijh)

p(xi = 1jh) = sign
�
bi +

P
jWjihj

� (5.28)

where sign(�) is the sign function. The conditional distributions of y are

p(yjh) =
Y
�

p(y�jh)

p(y� = 1jh) = sign
�
D� +

P
j Vj�hj

� (5.29)

Clearly, h is the key variable that captures the relationship between x and y. The

inverse relationship is

p(hjx; y) =
Y
j

p(hjjx; y)

p(hj = 1jx; y) = sign (cj +
P

� Vj�y� +
P

iWji�xi)

(5.30)

In order to minimize the loss function (5.26), the gradient of Jc(D) with respect to the

parameters � is
@logp[x(k);y(k)]

@�
= �Ehjx(k);y(k)

h
@E(x(k);y(k);h)

@�

i
+Ex;y;h

h
@E(x;y;h)

@�

i (5.31)

where � 2 � = fW; b; c;D; V g : Each parameter, W; b; c;D; and V; should be applied to

(5.31).

To calculate the gradient (5.31), the standard stochastic gradient descent approach can

be implemented [4]. The computation of the exact value of (5.31) is not tractable and we

use the contrastive divergence (CD) method in order to infer it. This estimation replaces the

expectation with a sample from a kG- steps Gibbs sampling process. This process is initiated

102

by considering the training examples fx(k); y(k)g as the initial state of the visible variables.

Then, we can choose kG = 1 to improve the training speed with a small bias during the whole

learning process.

Conditional distribution for DBM training

The joint distribution p(x; y) of the DBM can be used to predict the system output by

giving speci�ed input data, such as time series regression. However, for dynamic system

identi�cation, the conditional distribution p(yjx) is needed. As shown in Theorem 1, there

always exists a DBM which can represent the conditional distribution over a given training

set fx(k);y(k)g in binary units.

The loss function of the conditional distribution p(yjx) is de�ned as

Jo(D) = �
DX
k

logp (y(k)jx(k)) (5.32)

The object of the dynamic system identi�cation with DBMs is

argmax
�

"
DX
k

logp (y(k)jx(k))
#

or argmin
�
Jo(D) (5.33)

Since Jo uses the conditional distribution, the training algorithm is di¤erent than Jc in (5.26)

that uses the joint distribution.

The conditional probability p(yjx) is also an energy function. From (5.27), it is calculated

by

p(yjx) = p(x;y)

p(x)
=

X
h

e�E(x;y;h)X
y;h

e�E(x;y;h)
(5.34)

So we can directly increase the conditional probability along the data distribution by in-

creasing the value of p(yjx) for each instance. To accomplish this, the negative log-likelihood

should be minimized by a stochastic gradient descent variant. Because

� log p(yjx) = log p(x)� log p(x;y) (5.35)

103

),|(yxhP

)|,(hyxP

)|,(xhyP

),|(hyxP

)(),(kykx)(kx

))(),(|(kykxhE))(|,(kxhyE

Figure 5-2: Gibbs sampling for p(yjx) calculation

Considering the instance k; for [x(k); y(k)] we have

� log p [x(k); y(k)] = log
P

y;h e
�E[x(k);y(k);h]

� log
P

h e
�E[x(k);y(k);h]

(5.36)

Then, the gradient of the negative log-likelihood with respect to the parameter � is

�@ log p[y(k)jx(k)]
@�

=
P
h e

�E[x(k);y(k);h] @E[x(k);y(k);h]
@�P

h e
�E(x(k);y(k);h)

�
P
y;h e

�E[x(k);y(k);h] @E[x(k);y(k);h]
@�P

y;h e
�E[x(k);y(k);h]

(5.37)

In the form of mathematical expectation,

�@logp[y(k)jx(k)]
@�

= Ehj(x(k);y(k))

h
@E(x(k);y(k);h)

@�

i
�E(y;h)jx(k))

h
@E(x(k);y;h)

@�

i (5.38)

Both probability expectations of (5.38) can be computed using Gibbs sampling and the con-

trastive divergence (CD). The CD algorithm can be done for the �rst term using alternation

sampling processes over the distributions (5.30), (5.28) and (5.29) respectively.

However, there are not compact expressions for p [hj(x(k); y(k)] and p [(y;h)jx(k)] : Both of

them are needed for the second term of (5.38). The big number of output elements makes the

gradient computation intractable. We use CD algorithm to approximate the gradient with

only one iteration (kG = 1):The sampling process is explained in Fig. 5-2. The estimation

results are satis�ed by the conditional distribution calculations.

In order to implement the CD algorithm for E(y;h)jx(k))
h
@E(x(k);y;h)

@�

i
; we need to calculate

104

p [(y;h)jx(k)] as follows:
p [(y;h)jx(k)] = e�E(x(k);y;h)P

y;h e
�E(x(k);y;h)

= eh
TWx(k)+bT x(k)+cT h+dy+hT V yP

y;h e
hTWx(k)+bT x(k)+cT h+dy+hT V ydy

(5.39)

The calculation of (5.39) is expensive, because it requires to calculate more than 2m+l possible

values. However, it is tractable for system identi�cation. After this distribution is obtained,

we just should sample all possible values for y and h.

Once p [(y;h)jx(k)] is calculated, we need to �nd an expression for p [xj(y;h)] to complete

the Gibbs sampling,

p [xj(y;h)] = p(x;y;h)

p(y;h)
=
Y
i

p(�xijh) (5.40)

(5.40) is calculated with (5.28).

The training algorithm for the conditional distribution is

� (k + 1) = � (k)� �@logp (yjx)
@�

(5.41)

where � > 0 is the training factor, � 2 � = fW; b; c; d; V g ; @logp(yjx)
@�

is calculated by (5.38).

5.3 DBM training with continuous values of input and

output

In order to model nonlinear systems with continuous values, we use the binary encoding

method to calculate the conditional distribution p (yjx) for the DBM model. However, the

training data are enlarged dramatically, for example the dimension of x(k) increases from

n to 2n�r. In this session, we modify the learning algorithm of RBMs, such that nonlinear

system can be modeled by DBM with continuous values.

In order to train the parameters in (5.41), we need to calculate the following six conditional

probabilities

105

Probability of x given h

The conditional probability of x (k) 2 <n given h (k) 2 <s does not have explicit expression

from the input and output domains,

p(xjh) = p(x;h)
p(h)

=
R
�y p(x;h;�y)d�yR

�y

R
�x p(�x;h;�y)d�xd�y

=
R
�y e

hTWx+bT x+cT h+DT �y+hT V �yd�yR
�y

R
�x e

hTW�x+bT �x+cT h+DT �y+hT V �yd�xd�y

= eh
TWx+bT xR

�x e
hTW�x+bT �xd�x

=
Q

i p(�xijh)

where �h, �y and �x denote the silent variables h, y and x; which will be used for integral

evaluations along the domain of the hidden, output and input vectors respectively.

p(xijh) =
exi(bi+

P
j wjihj)R

�xi
e�xi(bi+

P
j wjihj)d�xi

(5.42)

Now we explore di¤erent cases for the domain of xi, we study three intervals: [0;1) ; [0; 1]

and [��; �] where � 2 <+:

For the case of xi 2 [0;1) ; if we de�ne �i(h) = bi +
P

j wjihj; then we can directly

evaluate the integral taking into account that �i(h) < 0; 8h:

In order to ensure that the integral converges, the evaluations of the three cases are

presented in Table 5.1.

Table 5.1: Probability expressions for p(xjh)
Indicator/Interval [0;1) [0; 1] [��; �]

p(xijh) ��ie�ixi �ie
�ixi

e�i�1
�ie

�ixi

e��i�e���i
Pc(xijh) 1� e�ixi e�ixi�1

e�i�1
e�ixi�e���i
e��i�e���i

E [xijh] � 1
�i

1
1�e��i �

1
�i

� e
��i+e���i
e��i�e���i �

1
�i

106

Probability of y given h

After we have p(xjh); we need an expression for p(yjh): We follow a similar procedure using

the general formula of p(yjh); and evaluate the integral for di¤erent intervals as follows

p(yjh) = p(y;h)
p(h)

=

R
�xi
p(x;h;�y)d�xR

�y

R
�x p(�x;h;�y)d�xd�y

=

R
�xi
eh
TWx+bT x+cT h+DT �y+hT V �yd�yR

�y

R
�x e

hTW�x+bT �x+cT h+DT �y+hT V �yd�xd�y

= eh
T V y+DT yR

�y e
hT V �y+dT �yd�y

=
Q

� p(y�jh)

(5.43)

where

p(yjh) = e(h
TV+D)yR

�y
e(hTV 0+D)�yd�y

(5.44)

If we de�ne (h) = hTV +D; the evaluations of p(yjh) are presented in Table 5.2:

Table 5.2: Probability expressions for p(yjh)
Indicator/Interval [0;1) [0; 1] [��; �]

p(yjh) �ey ey

e�1
ey

e��e��

Pc(yjh) 1� ey ey�1
e�1

ey�e��
e��e��

E [yjh] � 1

1
1�e� �

1

� e
�+e��

e��e�� �
1

In this chapter, we only deal with the case where the entries of x and y belong to the

same domain.

Probability of h given x and y

We let the hidden units have binary values, while x and y have continuous values. So p(hjx; y)

is

p(hjx; y) = p(x;y;h)

p(x;y)
=
Y
j

p(hjjx;y)

and

p(hj = 1jx;y) = sign
 X

i

wji�xi + vjy + cj

!
where vj denotes the j-th element of the vector V . Obviously, no any modi�cation is needed

for this conditional probability for the continuous visible units.

107

Probability of y given x

When we consider the scalar case for y;the bias variable D becomes a real number, and the

weight matrix V is a real valued vector. We do the same procedure as in the previous steps,

p(yjx) = p(x;y)
p(x)

=
P

�h p(x;y;
�h)R

�y

P
�h p(x;�y;

�h)d�y

=
P

�h e
�hTWx+bT x+cT �h+dy+�hT V yR

�y

P
�h e

hTWx+bT x+cT �h+d�y+�hT V �yd�y

(5.45)

Using Fubini�s Theorem, the integral and the sum are interchangeable. We then evaluate the

sums on the numerator and denominator de�ning the term:

� j(x; y) =
X
i

wji�xi + vjy + cj (5.46)

and substituting it in (5.45),

p(yjx) =
edy
Q

j

�
1 + e�j(x;y)

�R
�y
ed�y
Q

j

�
1 + e�j(x;�y)

�
d�y

(5.47)

Probability of (y; h) given x

The second term of the negative log-likelihood can be computed as

p [(y;h)jx(k)] = e�E(x(k);�y;
�h)P

�y;�h e
�E(x(k);�y;�h)

= eh
TWx(k)+bT x(k)+cT h+dy+hT V yR

�y

P
�h e

h0TWx(k)+bT x(k)+cT �h+d�y+h0T V �yd�y

(5.48)

The numerator can be easily computed but the integral in the denominator needs to be

expanded in the following. First, we use the de�nition (5.46) of � j(x(k); �y),Z
�y

ed�y
Y
j

�
1 + e�j(x(k);�y)

�
d�y (5.49)

In order to �nd a closed form of the solution of the integral, we de�ne z = f� 1;� 2; :::; �ng

which yields to the incomplete power set P (z): It is incomplete, because the empty set

is not included in P (z). If P (z) = fPz1; Pz2; :::g, the elements Pzi contain all possible

combinations of any length of elements � j. The �nite product
Q

j

�
1 + e�j(x(k);�y)

�
can be

108

expressed as Y
j

(1 + e�j) = 1 +
X
Pzi

e
P
� (5.50)

where is an index for � ; which takes values such that � 2 Pzi. The integral then becomes

R
�y
ed�y
�
1 +

P
Pzi

e
P
�(x(k);�y)

�
d�yR

�y

�
ed�y +

P
Pzi

ed�y+
P
�(x(k);�y)

�
d�y

(5.51)

Because � j =
P

iwji�xi + vjy + cj; we can de�ne the vector wj = [wj1:::wjl] : So � j = wjx +

vjy + cj. Considering this expression for � j; the value of the integral is

Z
�y

0@ed�y +X
Pzi

e
P
wx(k)+ce(d+

P
v)�y

1A d�y (5.52)

The same intervals, as in the previous sections (5.53), (5.54) and (5.55), are studied for y;

� Interval [0;1)

� 1
D
�
X
Pzi

1

D +
P
v
e
P
wx(k)+c (5.53)

� Interval [0; 1]
1

d

�
eD � 1

�
+
X
Pzi

e
P
wx(k)+c

F +
P
v

�
eD+

P
v � 1

�
(5.54)

� Interval [��; �]
1
d

�
eD� � e�D�

�
+
P

Pzi
e
P
wx(k)+c

D+
P
v

�
e(D+

P
v)� � e�(D+

P
v)�
� (5.55)

The sum
P

Pzi
is performed along the elements of the power set which is computational

expensive. The number of elements is 2n; which represents all possible combinations. For

system identi�cation, the number of visible and hidden units is no so big, so the procedure

becomes tractable.

Probability of x given (y;h)

We have shown that p [xj(y;h)] =
Q

i p(xijh): In the intervals [0;1) ; [0; 1] and [��; �] ; we

get the same expressions presented in Table 1 for p(xjh). We use the following algorithm to

109

calculate p [xj(y;h)] :

The complete algorithm is shown as follows:

Algorithm 15 1.- For each training pair (x(k); y(k)) and with learning rate �

2. We enter into a Gibbs sampling step.

Positive phase

3.- Assign the �rst values y0a = y(k) and x0a x(k)

4.- Sample h0a from p(hjx0a; y0a)

5.- Assign x0b = x(k)

6.- Sample y0b; h0b from p(y; hjx0b)

Negative phase

7.- Sample y1a from p(yjh0a) and x1a and p(xjh0a)

8.- Sample h1a from p(hjx1a; y1a)

9.- Sample x1b from p(xjy0b; h0b) and y1b; h1b from p(y; hjx1b)

Update

10 .- Apply the learning rule

� = �� �
�
@

@�
E
�
x0a; y0a; h0a

�
� @

@�
E
�
x0b; y0b; h0b

��

5.4 Simulations

Gas furnace data set

One of the most utilized benchmark examples in system identi�cation is the famous gas

furnace data from the Box-Jenkins textbook [10]. In this example, the air and methane are

mixed to create gas mixture which contains carbon dioxide. The control u(k) of the system

is methane gas, while the output y(k) is CO2 concentration. The gas furnace are sampled

continuously in 9 second intervals. The data set is composed by 296 successive pairs of

[u(k); y(k)], where u(k) = 0:6� 0:4z(k):

The model of the gas furnace is

y(k) = f [y(k � 1); : : : ; y(k � ny); u(k); : : : ; u(k � nu)]

= f [x(k)]
(5.56)

110

where the regression steps ny and nu are 5 and 1: 200 samples are used as training data, the

rest 96 samples are the testing. The stopping criteria is not used to train the RBMs. The

random search method [7] is applied to determine the structure parameters of the DBM. and

each layer size li (i = 1 � � � p), is obtained by the random search method [7]. The search range

of the layer number l is 10 � l � 3; the node number p is 40 � p � 5: We choose l = 3 and

p = 20: The following steps are applied in dynamic system identi�cation using RBMs and

conditional distribution:

A) Normalization: the data are normalized into the interval [0; 1] using

x (k) =
x (k)�mink fx (k)g

max fx (k)g �mink fx (k)g
; y =

y � ymax
ymin � ymax

(5.57)

the formula (5.57)

B) Coding: after the data has been normalized, we code them into a binary representation.

In our experiments we used two resolutions, 4 bits and 8 bits, for x and y. The input number

is ny + nu = 6. The resolutions of the input are 24 and 48; x 2 <24 or <48; and y2 <4 or <8.

This new training dataset is used to train the discriminative DBM to obtain the conditional

probability p(yjx).

C) Training: the conditional DBM is trained using the coded dataset, the step number

of the Gibbs sampling is kG = 1; the learning rate is � = 0:001. Stochastic gradient descent

(5.41) is applied over the dataset. The algorithm has 100 training epochs.

D) Decoding: in the testing phase, the output of the neural model is taken from the

probability distribution p(yjx); which is learned from the DBM conditional probability. The

output data are sampled from p(yjx) and decoded to continuous equivalent values.

The testing results are displayed in Fig. 5-3. For 4 bits and 8 bits encoding, the mean

squared errors (MSE) are 11:3�10�3 and 8:2�10�3. For this example the binary encoding has

good approximation results. The high precise encoding helps to improve the model accuracy.

However, adding one bit in the encoding procedure immediately doubles the computation

time.

In order to show the advantages of using Boltzmann machines and conditional distribu-

tions, we added noises to the raw dataset, to show the robust and the noise resistance of our

111

Figure 5-3: DBM modeling using 8 bits and 4 bits encoding for the gas furnace data.

models compared with standard neural network models,

x(k) = x(k) + 0:2z(k) (5.58)

where z(k) 2 N(0; 0:01); N(0; 0:01) is a normal distribution with 0 average and 0:01 standard

deviation. The comparison results are shown in Table 5.3.

Table 5.3: MSEs of di¤erent identi�cation models (�10�3)
MLP SVM-L SVM-P SVM-R 4 bits 8 bits
30:03 41:01 11:7 14:70 9:54 8:05

Here MLP is the multilayer perceptrons which have the same structure as our DBM,

the learning algorithm is the usual backpropagation. SVM-L is the support vector machine

(SVM) with linear kernel. SVM-P is the SVM with polynomial kernel. SVM-R is the SVM

radial basis function kernel.

It can be seen that our models, 4 bits and 8 bits encoding DBMs, have distinctive advant-

ages over the noises and disturbances in dynamic system identi�cation. The main reason is

that we model the probability distributions of the input and output, the noises and outliers

in the data do not a¤ect the conditional distributions signi�cantly.

Another advantage of our models is the feature extraction by the unsupervised learning,

112

which is applied in most deep learning methods. The following experiments show the impact

of the feature extraction in the DBM and conditional distribution. We use the same noisy

input (5.58) and output data as before. The l RBMs are trained in sequence as presented in

Fig. 3-5. Here we try l = 1; 2; 3; 4; to show the impact of each layer. The results are given in

Table 5.4.

Table 5.4: MSEs of di¤erent hidden layers (�10�3)
MSE 1 layer 2 layers 3 layers 4 layers
4 bits 11:62 10:36 9:54 15:67
8 bits 8:61 8:21 8:05 9:75

By adding the new feature extraction layer, the MSE drops signi�cantly. If the hidden

layer number is more than 3; the MSE becomes worse. This means that it is no longer

necessary to add a new layer to extract more system information.

Now we use the continuous valued algorithm for the gas dataset. The training data are

the same noisy input (5.58). We use a three layered DBM, l = 3; see Fig. 3-5. For the two

hidden layers, the training parameters are kG = 1; �1 = 0:001; and 200 training epochs for

each layer. For the output layer, we use the coded features h3 with kG = 1 and � = 0:001;

and 100 training epochs.

The testing MSE is 8:05� 10�3; which is better than the error obtained with the binary

encoding method, this happened because it provides more information on real axis than the

encoding procedure. The modeling results are shown in Fig. 5-4. There are fewer nodes

because the size of the input vector is dramatically decreased without the encoding.

Wiener-Hammerstein benchmark

Wiener-Hammerstein systems [64] have a static nonlinearity surrounded by two unknown

dynamic systems. Instead of a direct measurement, the samples are taken from the output of

the three systems as a whole. The signal-to-noise ratio in the benchmark has big nonlinear

behavior. It is a good case of study to test nonlinear system modeling techniques.

The benchmark dataset consists in 188; 000 input/output pairs. This dataset is divided

in two parts: 100; 000 sample pairs are for training and 88; 000 samples are for testing. Let

113

Figure 5-4: DBM modeling using continuous values for the gas furnace data.

u(k) be the control and y (k) be the output. We de�ne the recursive input vector to the

model as x(k) = [y(k � 1) � � � y(k � ny) u(k) � � �u(k � nu)]T ; ny = 10 and nu = 5.

Similar as the previous example, the random search method is used to obtain the DBM

structure, here the layer number 20 � l � 2; the node number 70 � p � 10: This intervals

are wider than the previous example, because we have more data to work. We have l = 5 and

p = 50: We normalize the data to �t into the [0; 1] interval. The DBM is trained using the

real valued data set, the step number of the Gibbs sampling is kG = 1 while the the learning

rate is � = 0:001. Stochastic batch gradient descent is applied over the dataset following

Algorithm 1. It has 10 training epochs. The 100; 000 sample pairs are divided into batch

packages, all packages have the same size. We compare the following four types calculation

methods of the probability distributions: binary, in the interval [0;1); in the interval [0; 1);

and in the interval [��; �] with 1 � � > 0:

We �rst show how the batch size a¤ects the training. Fig. 5-5 shows the training per-

formance with a batch size of 1000. The training error is high for the �rst 60 batches, then

it decreases as more training samples are presented. The DBM cannot model the probability

distribution properly with a few samples. Fig. 5-6 shows a batch size of 500: No remarkable

changes appear, but there are small error increases during the training. When the batch size

is increased to 5000, the �uctuations on the training error vanish, the interval [��; �] becomes

unstable, see Fig. 5-7. Large batch size can a¤ect the distribution learning in the sense that

some particular training samples mislead the results. The binary DBM can work, but the

114

Figure 5-5: Training errors with batch size of 1000 (�10�3)

MSE is high as 15:2�10�3: The interval [��; �] also works, but its performance o¤ers almost

twice the error. The interval [0;1) shows instability in all the experiments, which has the

same problems as in our previous observations [?]. The problem may come from the integral

convergence. The interval [0; 1] is the best. For this example, we use the continuous valued

method within the interval [0; 1]; the batch size is 1000.

The testing result is shown in Fig.5-8 and the testing error MSE is 5:6� 10�3.

Table 5.5. shows how the hidden features extraction a¤ect and improve the identi�cation

accuracy for this benchmark problem. To see the noise in�uence, we also add noise as (5.58).

Here l = 4 and p = 50; kG = 1; �1 = 0:001, 200 training epochs per each hidden layer, 10

training epochs for the output layer, the interval is [0; 1), the batch size is 1000.

Table 5.5: MSEs of di¤erent hidden layers for WH(�10�3)
MSE 1 layer 2 layers 3 layers 4 layers
Without noise 5:6 4:8 4:5 6:2
With noise 6:1 5:3 4:7 6:3

As the gas furnace dataset, adding new layers to the feature extractor improves the model

accuracy by eliminating the noise in�uence of the data. We can see that even for the best

result obtained by the SVM-R, our DBM is more tolerant than others with respect to big

uncertainties.

115

Figure 5-6: Training errors with batch size of 500 (�10�3)

Figure 5-7: Training errors with batch size of 5000 (�10�3)

Table 5.6: MSE over the WH benchmark (�10�3)
MLP SVM-L SVM-P SVM-R DBM
56:03 43:01 8:01 5:71 4:70

116

Figure 5-8: Testing error within the interval [0; 1] and batch size of 1000.

117

Chapter 6

Conclusions

Deep learning has solved many of the problems that deep architectures had in the past The

main advantage that deep architectures possess is the ability to represent complex models

using fewer parameters, this feature is possible because having many layers of representation

allows the model to represent high nonlinear functions compactly. It is not then surprisingly

that deep architectures have become the state of the art techniques in many machine learning

disciplines.

In this thesis, we have increased the reach that deep learning has by addressing the

nonlinear system identi�cation problem. We have not only shown how to use RBMs and

pretraining stages to achieve better testing results but we have also used deep learning along

with other famous identi�cation techniques such as fuzzy logic and randomized algorithms.

In this chapter, it is presented the �nal remarks about the work that has been carried out.

About deep learning and randomized algorithms

Randomized algorithms usually rely on the usage of random selection of parameters in the

hidden layer, it has also been argued that this random assignment does not decrease the

generalization capabilities of the model, however, we have shown that the performance of

an arbitrarily selection can be easily surpassed if an RBM is chosen as a pretraining stage

that �nds suitable hidden weights. This is not an unexpected result because (as has been

discussed before) random initialization of parameters usually leads to poor generalization

performance due to the presence of local minima, therefore, using an RBM helps to move

the minimization problem to a region where reaching a good local minimum is feasible for

118

the supervised training algorithm (in this case the pseudoinverse calculation). Moreover,

we have shown that RBMs can be easily modi�ed when the nature of the system input

is continuous, this is achieved by considering a new domain in the input space that was

calculated through its probability measure. With this modi�cation an RBM is then capable

of handling continuous values such as the ones that a nonlinear system produces.

A point that should be unlighted is that not all available domains of the system input

worked. The solution of the normalization integral is not guaranteed for every possible

domain which helps to explain why some of them failed to decrease the identi�cation error.

In conclusion, the right domain have to be chosen according to the system nature with the

only restriction that it should be restricted and bounded.

About fuzzy modeling with deep learning and probability theory

It has been shown that standard fuzzy modeling can be easily improved if the input is con-

ditionated before entering to the model. This conditioning was performed using an RBM, as

has been said, it can extract useful features from the dataset that give meaningful inform-

ation of the probability space from where the training examples where sampled. Then, it

was proved that a probabilistic clustering method outperforms classic k-means and c-means,

it seems that the features delivered by the RBM can be fully utilized by the probabilistic

clustering method which come up with clusters that entirely represent the information ex-

tracted from the dataset. These clusters are more useful that the ones delivered by other

clustering methods as their accuracy error suggest. Finally, it was also viewed that giving

another degree of freedom to a fuzzy model can improve its e¢ ciency, introducing a new set

of probabilistic parameters allowed the model to overcome di¢ culties such as the multiple

selection of fuzzy sets and the modeling of high variant datasets.

About conditional continuous RBMs

RBMs were proven to be conditional universal approximators that can model any conditional

probability distribution if su¢ cient units are providen. It was also shown that binary RBMs

can also deal with the identi�cation problem if the data are encoded into binary represent-

ations (with any desire accuracy) before enter the model, this is done utilizing conditional

RBMs that maximizes directly the conditional probability p(xjy) which transforms the RBMs

119

into self-contained identi�cation models. Moreover, conditional RBMs were also changed to

deal with continuous entries which was solved by evaluating the normalization integral, this

transformation achieved good testing results but with a high computational cost that grows

exponentially when the number inputs increases.

Future work

Several opportunity areas were found while writing this thesis, as deep learning continues

being the state of the art techniques in the machine learning community the next problems

should be solved:

� There has not been done any research about the Vapnik-Chervonenkis (VC) dimensions

of the deep learning algorithms. This research could help to understand the underlying

mechanisms that are behind the generalization improvement caused by a pretraining

stage. VC-dimensions would also give precise measurements of the deep learning bound-

aries as it would o¤er a theoretical framework where deep learning could be studied

and analyzed.

� An universal approximation property for RBMs is provided in this thesis, however, it

only works for binary conditional distributions. Amore general universal approximation

conjecture should be proved, this property would give certainty to researchers when

RBMs are used to model data distributions.

� The RBMs used in this text made use of what is called a Boltzmann distribution, other

distributions should be explored. It is possible that the election of the right distribution

is one of the main factors to achieve a low testing error.

� In this thesis we only used simple stochastic gradient descent to train the RBMs, how-

ever there exist other methods that should be tested. These methods include Hessian

techniques, regularization, early stopping and cross-validation criteria.

� A nonlinear system is of course a dynamic one that can be represented using a dif-

ferential equation (continuous case) or a equation in di¤erences (discrete case). These

representations are not included in the deep learning environment which suggests that

120

deep learning should be ampli�ed including ideas such as deep recurrent neural net-

works or deep dynamic neural models. These additions would make possible to predict

better the behavior of a system given that their respective natures could be represented

with more precision.

121

Bibliography

[1] D. H. Ackley, G. E. Hinton, and T. J. Sejnowski, A learning algorithm for boltzmann

machines, Cognitive Science, 9 (1985) 147-169.

[2] M. Alhamdoosh, D.Wang, Fast decorrelated neural network ensembles with random

weights, Information Sciences, 264 (2014) 104-117.

[3] P.Angelov, An approach for fuzzy rule-base adaptation using on-line clustering, Inter-

national Journal of Approximate Reasoning, Vol.35, No.3,275-289, 2004.

[4] Y. Bengio and O. Delalleau, Justifying and generalizing contrastive divergence, Neural

Computation, 21 (6) (2009) 1601-1621.

[5] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, Greedy layer-wise training of

deep networks, Advances in Neural Information Processing Systems (NIPS�06), pp. 153-

160, MIT Press, 2007.

[6] Y. Bengio and Y. LeCun, Scaling learning algorithms towards AI, Large Scale Kernel

Machines, MIT Press, 2007.

[7] J. Bergstra, Y. Bengio, Random Search for Hyper-Parameter Optimization, Journal of

Machine Learning Research, (2011) 281-305.

[8] G. Box, G. Jenkins, G. Reinsel, Time Series Analysis: Forecasting and Control, 4th Ed,

Wiley, 2008.

[9] E. Busseti, I. Osband and S. Wong, Deep learning for time series modeling, CS 229

Technical Report, Stanford University, 2012

[10] G. Box, G. Jenkins, G. Reinsel, Time Series Analysis: Forecasting and Control, 4th Ed,

Wiley, 2008.

122

[11] M.Brown, C.J.Harris, Neurofuzzy Adaptive Modelling and Control, Prentice Hall: New

York , 1994.

[12] S. Chakrabartty, ; R. K. Shaga, K. Aono, Noise-Shaping Gradient Descent-Based Online

Adaptation Algorithms for Digital Calibration of Analog Circuits, IEEE Transactions

on Neural Networks and Learning Systems, 24 (4) (2013) 554-565.

[13] S. Chen and S.A. Billings, Neural networks for nonlinear system modelling and identi-

�cation, International Journal of Control, 1992, 56(2), pp. 319-346.

[14] P.Chen, C.Y.Zhang, L.Chen, M.Gan , Fuzzy Restricted Boltzmann Machine for the

Enhancement of Deep Learning, IEEE Transactions on Fuzzy Systems, Vol.23, No.6,

pp.2163-2173, 2015.

[15] J-H. Chiang, P-Y. Hao, Support Vector Learning Mechanism for Fuzzy Rule-Based

Modeling: A New Approach, IEEE Transactions on Fuzzy Systems, Vol. 12, No. 1,

2004.

[16] S.L.Chiu, Fuzzy Model Identi�cation based on cluster estimation, Journal of Intelligent

and Fuzzy Systems, Vol.2, No.3, 1994.

[17] R. Collobert and J. Weston, A uni�ed architecture for natural language processing: Deep

neural networks with multitask learning, 25th International Conference on Machine

Learning, pp. 160-167, ACM, 2008.

[18] Crammer, K., Dekel, O., Keshet, J., Shalev-Shwartz, S., Singer, Y., Online passive-

aggressive algorithms, JMLR pp. 551-585, 2006

[19] N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector Machines: Cam-

bridge Univ. Press, 2000.

[20] G.Cybenko, Approximation by Superposition of Sigmoidal Activation Function,

Math.Control, Sig Syst, Vol.2, 303-314, 1989

[21] K. De Brabanter, P. Dreesen, P. Karsmakers, K. Pelckmans, J. De Brabanter, J.A.K.

Suykens and B. DeMoor, Fixed-size LS-SVM applied to theWiener-Hammerstein bench-

mark, In Proceedings of the 15th IFAC Symposium on System Identi�cation, (2009)

826-831.

123

[22] E. de la Rosa, Deep learning for nonlinear systems identi�ca-

tion (Masters dissertation), CINVESTAV-IPN, 2014, Retrieved from

http://www.ctrl.cinvestav.mx/~yuw/pdf/MaTesER.pdf

[23] D. Erhan, Y. Bengio, A. Courville, P. A. Manzagol, P.Vincent, Why Does Unsupervised

Pre-training Help Deep Learning?, Journal of Machine Learning Research, 11 (2010)

625-660.

[24] G. Chen, Deep learning with nonparametric clustering, arXiv:1501.03084, 2015

[25] X.Gu, F-L.Chung, Hi.Ishibuchi, S.Wang, Imbalanced TSK Fuzzy Classi�er by Cross-

Class Bayesian Fuzzy Clustering and Imbalance Learning, IEEE Transactions on Sys-

tems, Man, and Cybernetics: Systems, DOI: 10.1109/TSMC.2016.2598270, 2016.

[26] S.Haykin, Neural Networks- A Comprehensive Foundation, Macmillan College Publ. Co.,

New York, 1994.

[27] G. E. Hinton, S. Osindero, and Y. Teh, A fast learning algorithm for deep belief nets,

Neural Computation, vol. 18, pp. 1527-1554, 2006.

[28] G. E. Hinton and T. J. Sejnowski, Learning and relearning in Boltzmann machines,

Parallel Distributed Processing: Explorations in the Microstructure of Cognition. Volume

1: Foundations, Cambridge, MA: MIT Press, (1986) 282-317.

[29] H. Hjalmarsson,C.R.Rojas, D.E.Rivera, System identi�cation: A Wiener-Hammerstein

benchmark, Control Engineering Practice, 20 (2012) 1095-1096,

[30] C-H.Hu, X-S.Si, J-B.Yang, Z-J.Zhou, Online Updating With a Probability-Based Pre-

diction Model Using Expectation Maximization Algorithm for Reliability Forecasting,

IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans,

Volume: 41, Issue: 6, Pages: 1268 - 127, 2011

[31] G.B. Huang, L. Chen, and C. K. Siew, Universal approximation using incremental feed-

forward networks with arbitrary input weights, Technical Report ICIS/46/2003, (School

of Electrical and Electronic Engineering, Nanyang Technological University, Singapore),

2003.

124

[32] G-B.Huang, Q-Y.Zhu, C-K.Siew, Extreme learning machine: theory and applications,

Neurocomputing, vol. 70, no.1, pp.489-501, 2006.

[33] B. Igelnik and Y-H.Pao, Stochastic Choice of Basis Functions in Adaptive Function

Approximation and the Functional-Link Net, IEEE Transactions on Neural Networks,

6 (2) (1995) 1320-1329.

[34] S. Jagannathan and F. L. Lewis, Identi�cation of Nonlinear Dynamical Systems Using

Multilayered Neural Networks, Automatica, 32 (12) (1996) 1707-1712.

[35] J. S. Jang, ANFIS: Adaptive-network-based fuzzy inference system, IEEE Transactions

on Systems, Man and Cybernetics, 23 (1993) 665�685.

[36] C.F.Juang, Combination of on-line clustering and Q-value based GA for reinforcement

fuzzy system design, IEEE Transactions on Fuzzy Systems, Vol.13, No.3, 289- 302, 2005

[37] X.Jin, J.Shao, X.Zhang, W.An, R.Malekian, Modeling of nonlinear system based on

deep learning framework, Nonlinear Dynamics, Volume 84, Issue 3, pp 1327-1340, 2016

[38] M.Kumar, A.Insan, N.Stoll, K.Thurow, R.Stoll, Stochastic Fuzzy Modeling for Ear Ima-

ging Based Child Identi�cation, IEEE Transactions on Systems, Man, and Cybernetics:

Systems, Volume: 46, Issue: 9 Pages: 1265 - 1278, 2016.

[39] M. Längkvist, L. Karlsson, and A. Lout�. A review of unsupervised feature learning and

deep learning for time-series modeling. Pattern Recognition Letters 42: 11-24. 2014.

[40] H. Larochelle and Y. Bengio, Classi�cation using discriminative restricted Boltzmann

machines, Proceedings of the 25th International Conference on Machine Learning, 536-

543, 2008

[41] H.K.Lam, Design of stable fuzzy controller for non-linear systems subject to imperfect

premise matching based on grid-point approach, IET Control Theory & Applications,

Vol.4 , No.12, 2770-2780, 2010

[42] Y.LeCun, Y.Bengio, G. E.Hinton, Deep learning, Nature, 521 (7553): 436-444, 2015

[43] Y. LeCun, L.Bottou, Y.Bengio, and P.Ha¤ner. Gradient-based learning applied to doc-

ument recognition. Proceedings of the IEEE, Vol.86, No.11, 2278-2324,1998

125

[44] N. Le Roux and Y. Bengio, Representational power of restricted Boltzmann machines

and deep belief networks, Neural Computation, Vol. 20, 1631-1649, 2008

[45] J.M. Leski, TSK-Fuzzy Modeling Based on "-Insensitive Learning, IEEE Trans. on

Fuzzy System, vol. 13, no. 2, pp181-193, 2005.

[46] F. H. F. Leung, H. K. Lam, S. H. Ling, and P. K. S. Tam, Tuning of the structure and

parameters of a neural network using an improved genetic algorithm, IEEE Transactions

on Neural Networks, 14 (2003) 79-88.

[47] J.Li, S.Ray, B.G.Lindsay, A Nonparametric Statistical Approach to Clustering via Mode

Identi�cation, Journal of Machine Learning Research, Vol.8, 1687-1723, 2007

[48] C.-T. Lin and C-.S.G. Lee, Neural network-based fuzzy logic control and decision system,

IEEE Trans. Comput., vol 40 pp. 1320-1336, 1991.

[49] Y. Liu, K.Chan, K.A.Hua, Hybrid Manifold Embedding, IEEE Transactions on Neural

Networks and Learning Systems, 25 (12) (2014) 2295 - 2302.

[50] Z.Liu and H-X.Li, Probabilistic Fuzzy Logic System for Modeling and Control, IEEE

Trans. on Fuzzy System, vol. 13, no. 6, pp848-859, 2005.

[51] L.Ljung, System Identi�cation-Theory for User, Prentice Hall, Englewood Cli¤s, NJ

07632, 1987.

[52] D. Marquardt, An Algorithm for Least-Squares Estimation of Nonlinear Parameters,

SIAM Journal on Applied Mathematics, 11 (2) (1963) 431-441.

[53] M. Minsky, S. Papert, Perceptrons: an introduction to computational geometry, Cam-

bridge: MIT Press; 1969.

[54] S. Mitra adn Y. Hayashi, Neuro�fuzzy rule generation: survey in soft computing frame-

work, IEEE Transactions on Neural Networks 11 (3) (2000) 748-769.

[55] T.M. Nabhan, A.Y. Zomaya, Toward generating neural network structures for function

approximation, Neural Networks, Vol.7, No.1, pp. 89-99, 1994

126

[56] K. S. Narendra and K. Parthasarathy, Gradient methods for optimization of dynam-

ical systems containing neural networks, IEEE Transactions on Neural Networks, 3 (2)

(1991) 252-262.

[57] K.Noori, K.JenabFuzzy Reliability-Based Traction Control Model for Intelligent Trans-

portation Systems, IEEE Transactions on Systems, Man, and Cybernetics: Systems,

Volume: 43, Issue: 1, Pages: 229 - 234, 2013.

[58] I. Rivals and L. Personnaz, Neural-network construction and selection in nonlinear mod-

eling, IEEE Transactions on Neural Networks, 14 (4) (2003) 804-820.

[59] P. Romeu, et al. Time-Series Forecasting of Indoor Temperature Using Pre-trained

Deep Neural Networks. Arti�cial Neural Networks and Machine Learning�ICANN 2013.

Springer Berlin Heidelberg, 451-458. 2013.

[60] F. Rosenblatt, The perceptron: a probabilistic model for information storage and or-

ganization in the brain, Psychol Rev, 1958;65(6):386�408.

[61] R.Salakhutdinov, G. E.Hinton, An E¢ cient Learning Procedure for Deep Boltzmann

Machines, Neural Computation, Vol.24, 1967-2006, 2012

[62] R.Salakhutdinov, G. E.Hinton, Deep Boltzmann Machines, 12th International Confer-

ence on Arti�cial Intelligence and Statistics (AISTATS), Clearwater Beach, Florida,

USA, 2009

[63] W. F. Schmidt, M. A. Kraaijveld, R. P. W. Duin, Feedforward neural networks with

random weights, 11th IAPR International Conference on Pattern Recognition, pp. 1-4,

The Hague, Netherlands , 1992.

[64] J. Schoukens, J. Suykens, L. Ljung, Wiener-Hammerstein benchmark, 15th IFAC Sym-

posiumon System Identi�cation, Saint-Malo, France, 2009.

[65] Q. Song, Robust Initialization of a Jordan Network With Recurrent Constrained Learn-

ing, IEEE Transactions on Neural Networks, 22 (12) (2011) 2460-2473.

[66] D. Sosulski, M. Bloom ML, T. Cutforth, R. Axel , S. Datta, Distinct representations of

olfactory information in di¤erent cortical centres, Nature, 2011;472:213�6.

127

[67] M. Sugeno, T. Yasukawa, A Fuzzy Logic Based Approach to Qualitative Modeling, IEEE

Trans.on Fuzzy Systems, 1 (1) (1993) 7-31.

[68] T. Takagi and M. Sugeno, Fuzzy identi�cation of systems and its applications to mod-

eling and control, IEEE Trans. Syst., Man. and Cybern., vol. 1, pp. 116-132, Jan. 1985.

[69] S. Tamura and M. Tateishi, Capabilities of a four-layered feedforward neural network:

Four layers versus three, IEEE Transactions on Neural Networks, vol. 8, no. 2, pp.

251� 255, 1997.

[70] J. Tapson and A. van Schaik, Learning the pseudoinverse solution to network weights,

Neural Networks, 45 (2013) 94-100.

[71] S.G.Tzafestas and K.C.Zikidis, NeuroFAST: On-line neuro-fuzzy ART-based structure

and parameter learning TSK model, IEEE Transactions on Systems, Man and Cyber-

netics, Part B, Vol.31, No.5, 797-803, 2001.

[72] P. E. Utgo¤ and D. J. Stracuzzi, Many-layered learning, Neural Computation, vol. 14,

pp. 2497�2539, 2002.

[73] L.Waltman, U.Kaymak, J.Berg, Maximum likelihood parameter estimation in probabil-

istic fuzzy classi�ers, 14th IEEE International Conference on Fuzzy Systems, 1098-1103,

2005.

[74] L.X.Wang, Adaptive Fuzzy Systems and Control, Englewood Cli¤s NJ: Prentice-Hall,

1994.

[75] L. Wang and R. Langari, Complex Systems Modeling via Fuzzy Logic, IEEE Trans. on

Syst., Man, and Cybernetics, 26 (1) (1996) 100-106.

[76] W. Yu, X. Li, Automated Nonlinear System Modeling with Multiple Fuzzy Neural Net-

works and Kernel Smoothing, International Journal of Neural Systems, 20 (5) (2010)

429-435.

[77] W. Yu, X. Li, Online fuzzy modeling with structure and parameter learning, Expert

Systems With Applications, Vol. 36, 7484-7492, 2009

[78] L.A. Zadeh, A note on Z-numbers, Information Sciences, Vol. 181, pp.2923-2932, 2011.

128

[79] L.A. Zadeh, "Fuzzy sets". Inf. Control, vol 8, pp 338-353, Aug, 1998.

[80] H.Zhang, M.Li, J.Yang, D.Yang, Fuzzy Model-Based Robust Networked Control for a

Class of Nonlinear Systems,IEEE Transactions on Systems, Man, and Cybernetics - Part

A: Systems and Humans, Volume: 39, Issue: 2, Pages: 437 - 447, 2009.

129

