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RESUMEN

Esta tesis presenta modelos para establecer estrategias cooperativas y no cooperativas en
diferentes problemas de teoria de juegos. De manera general, los jugadores pueden actuar
de dos formas: jugando cooperativamente o no cooperativamente con respecto a los otros ju-
gadores. También es importante considerar los juegos en donde los jugadores forman coali-
ciones, en este caso ellos pueden cooperar o no cooperar, o pueden hacer una combinacién
de estos comportamientos, los jugadores cooperan dentro de la coalicién pero el juego entre
coaliciones es no cooperativo.

El concepto de colaboracion implica que los jugadores interactian con los otros jugadores
con el fin de alcanzar una estabilidad cooperativa. Esta nocién requiere que los jugadores
seleccionen estrategias Optimas, condicionando su propio comportamiento al comportamiento
de los demds para alcanzar la mejor estrategia en el futuro. En teoria de juegos, la estabilidad
colectiva es una caso especial del equilibrio de Nash llamado equilibrio strong Nash.

Este trabajo presenta un método para calcular el equilibrio strong L,—Nash. Este problema
se resuelve en términos de la norma L,,: los jugadores seleccionan una estrategia que minimice
la distancia a un minimo utépico o ideal en el espacio euclidiano, es decir, no existe otra estrate-
gia que mejore el comportamiento de la funcion de costo. Esto significa que existe una solu-
cién 6ptima que es un punto strong Pareto optimal que corresponde al equilibrio strong Nash.
Ademas, se presenta un método para calcular el equilibrio strong Stackelberg/Nash. Este juego
tipo lider-seguidor involucra a n lideres jugando de manera cooperativa y m seguidores que
también juegan cooperativamente entre ellos, por lo tanto es necesario hacer uso del concepto
de equilibrio strong L,,—Nash, es decir, la existencia de un equilibrio L, —Stackelberg/Nash es
caracterizada bajo estrategias que son strong Pareto.

Hay un creciente interés en aplicar juegos tipo Stackelberg para modelar asignacién de re-
cursos para problemas de patrullaje (seguridad), en los cuales los defensores tienen recursos

limitados y deben asignarlos para proteger diferentes objetivos de posibles atacantes. En el
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mundo real los atacantes son agentes sofisticados que emplean estrategias dindmicas. Sin em-
bargo, la mayoria de los enfoques que existen en la literatura para calcular las estrategias de
los defensores consideran que los atacantes tienen un comportamiento fijo y debido a esto, no
aseguran que se tenga éxito en la realizacion del juego.

Para abordar esta deficiencia, presentamos un método para adaptar las estrategias de los
atacantes y las estrategias de patrullaje de los defensores que son aplicadas en juegos de se-
guridad de tipo Stackelberg empleando un enfoque de aprendizaje por refuerzo. Se propone
un marco comuin que combina tres paradigmas diferentes: conocimiento previo, imitacion y el
método de diferencia temporal. La arquitectura general de aprendizaje por refuerzo incluye dos
componentes principales: una arquitectura de aprendizaje adaptivo primario y la arquitectura
de actor critico. Este trabajo considera que los defensores y los atacantes forman coaliciones
en el juego de seguridad Stackelberg calculando el equilibrio L, —Stackelberg/Nash.

Otra clase importante de juegos que incluye soluciones cooperativas y no cooperativas es
el problema de negociacion. El juego de negociacion se refiere a una situacion en la cual los
jugadores tienen la oportunidad de concluir un acuerdo de beneficio mutuo. Sin embargo, en
este tipo de juegos existe conflicto de intereses sobre cual acuerdo pactar, considerando que
no se puede imponer un acuerdo a ningin jugador sin su aprobacién. Cabe destacar que el
problema de negociacion y sus soluciones ha sido aplicado en contextos importantes como
acuerdos corporativos, arbitraje, juegos de mercado de duopolio, protocolos de negociacion,
etc. El presente trabajo examina los juegos de negociacidon desde una perspectiva tedrica y
proporciona un método de solucidn para diferentes modelos: los modelos de negociacidn coo-
perativa presentados por Nash y por Kalai y Smorodinsky, quienes proponen un enfoque axio-
matico para resolver el problema dependiendo de diferentes principios de imparcialidad; y el
modelo para una negociacidon no cooperativa que presenta Rubinstein, quien propone un juego
de negociacion con ofertas alternadas y factores de descuento.

En la presente tesis se consideran juegos con cadenas de Markov en tiempo continuo y dis-
creto. Disefiamos un método para juegos estaticos en términos de problemas de programacién
no lineal implementando el principio de Lagrange. Ademas, se utiliza el método de regula-

rizaciéon de Tikhonov con el fin de asegurar la convergencia de las funciones de costo a un
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punto de equilibrio. El problema de programacién no lineal es formulado considerando varias
restricciones lineales empleando el método c-variable con la finalidad de hacer el problema
manejable computacionalmente. Para calcular el punto de equilibrio se emplea un enfoque de
programacion de dos niveles implementado por el método extraproximal, el cual consiste de un
procedimiento iterativo de dos pasos, el primer paso es una prediccion que calcula una aproxi-
macioén preliminar del punto de equilibrio y el segundo paso tiene como finalidad realizar un
ajuste de la prediccion calculada previamente. Cada ecuacion en este método es un problema
de optimizacién para el cual se resuelve la condicién necesaria de un minimo utilizando el
método de gradiente. El método extraproximal conduce a una realizacién computacional sim-
ple y 16gicamente justificada: en cada iteracion de ambos pasos del procedimiento, el funcional
del juego disminuye y converge a un punto de equilibrio.

Los métodos propuestos para cada uno de los problemas de teoria de juegos menciona-
dos anteriormente son validados de manera tedrica. Ademads, algunos ejemplos ilustran los

resultados principales asi como la efectividad de los métodos.






ABSTRACT

This thesis presents a model to establish cooperative and non-cooperative strategies for
solving different problems within game theory. In general, players proceed in two different
ways: as in a cooperative game or, a non-cooperative game (selecting their strategies not coop-
eratively among them) with respect to the other players. In the case when players form separate
coalitions they can cooperate or do not cooperate or make a combination (players into coalition
play cooperatively but the game between coalitions is non-cooperative).

The notion of collaboration implies that related players interact with each other looking
for cooperative stability. This notion consents players to select optimal strategies and to con-
dition their own behavior on the behavior of others in a strategic forward-looking manner. In
game theory, collective stability is a special case of the Nash equilibrium called strong Nash
equilibrium.

This work presents a novel method for computing the strong L, —Nash equilibrium. The
problem is solved in terms of the L,—norm: players choose a strategy that minimizes the dis-
tance to the utopian minimum in the Euclidean space, i.e., no other strategy produces a smaller
total expected loss. This means that there exists an optimal solution that is a strong Pareto
optimal point and it is the closest solution to the minimum utopia point. The strong Pareto op-
timal solution corresponds to the strong Nash equilibrium. Moreover, an approach for comput-
ing the strong Stackelberg/Nash equilibrium is presented. This leader-follower game implies
that n—leaders play cooperatively and m—followers play also do cooperatively employing the
strong L,,—Nash equilibrium concept, i.e., the existence of the L,—Stackelberg/Nash equilib-
rium is characterized as a strong Pareto policy.

There is a growing interest in applying Stackelberg games to model resource allocation for
patrolling security problems in which defenders must allocate limited security resources to pro-
tect targets from attack by adversaries. In real-world adversaries are sophisticated presenting
dynamic strategies. Most existing approaches for computing defender strategies calculate the
game against fixed behavioral models of adversaries, and cannot ensure success in the realiza-

tion of the game.
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To address this shortcoming, we present a novel approach for adapting attackers and de-
fenders preferred patrolling strategies in Stackelberg security games using a reinforcement
learning (RL) approach based on average rewards. We propose a common framework that com-
bines three different paradigms: prior knowledge, imitation and temporal-difference method.
The overall RL architecture involves two highest components: the adaptive primary learning
architecture and the actor-critic architecture. This work considers that defenders and attackers
conform coalitions in the Stackelberg security game, these are reached by computing the strong
L, —Stackelberg/Nash equilibrium.

Another important class of games that includes cooperative and non-cooperative solutions
is the bargaining problem. The bargaining game refers to a situation in which players have the
possibility of concluding a mutually beneficial agreement. Here there is a conflict of interests
about which agreement to conclude, and no-agreement may be imposed on any player without
that player’s approval. Remarkably, bargaining and its game-theoretic solutions have been ap-
plied in many important contexts, like corporate deals, arbitration, duopoly market games, ne-
gotiation protocols, etc. Among all these research applications, equilibrium computation serves
as a basis. This work examines bargaining games from a theoretical perspective and provides
a solution method for different game-theoretic models: the cooperative bargaining models pre-
sented by Nash and Kalai-Smorodinsky which propose an elegant axiomatic approach to solve
the problem depending on different principles of fairness, and the non-cooperative bargaining
solution presented by Rubinstein which propose a bargaining game with alternating offers and
a cost by time.

In this work, we consider games in case of a metric state space for a class of continuous
and discrete time ergodic controllable Markov chains games. We design a method for the static
game in terms of nonlinear programming problems implementing the Lagrange principle. In
addition, we make use of the Tikhonov’s regularization method to ensure the convergence of
the cost functions to an equilibrium point. We formulate the nonlinear programming problem
considering several linear constraints employing the c—variable method for making the prob-
lem computationally tractable. For computing the equilibrium point we employ a bi-level pro-

gramming approach implemented by the extraproximal method, which consists of a two-step
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iterated procedure where the first step is a prediction that calculates the preliminary position ap-
proximation to the equilibrium point and the second step is designed to find a basic adjustment
of the previous prediction. Each equation in this solver is an optimization problem for which
the necessary condition of a minimum is solved using the gradient projection method. The ex-
traproximal method leads to a simple and logically justified computational realization: at each
iteration of both steps of the procedure, the functional of the game decrease and converges to
an equilibrium point.

The proposed methods for the game theory problems mentioned above are validated theo-
retically. In addition, some examples in game theory illustrate the main results and the effec-

tiveness of the methods.
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Chapter 1

Introduction

Nash [61] established the framework to study bargaining where the players should cooper-
ate when non-cooperation leads to Pareto-inefficient results. The bargaining game is based on
a model in which players are assumed to negotiate on a set of feasible payoffs. A fundamental
element of the game is the disagreement point (status quo) which plays a role of a deterrent. A
bargaining solution is a single-valued function that selects an outcome from the feasible pay-
offs for each bargaining problem which is the result of cooperation by the players involved in
the game. The agreement reached in the game is the most preferred alternative within the set
of feasible outcomes.

Nash [61] proposed this approach by presenting four axioms and showing that they charac-
terize the Nash bargaining solution. In the classical bargaining game theory models, a bargainer
has a positive interest in the other’s welfare as well as in his own. The agreement will represent
a situation that could not be improved on to both players’ advantage. Rational players would
not accept a given agreement if some alternative arrangement could make both parties better
off or at least one better off with the other no worse off. Then, the resulting bargaining strategy
is an outcome which is Pareto optimally.

Game theory analyses of bargaining assume one of two approaches: a) the axiomatic, orig-
inates in the characterization of the Nash solution [61] (extended by Kalai and Smorodinsky
[46]]), where the desired properties of a solution are satisfied and b) the strategic, exemplified
by Rubinstein’s solution [83]], where the bargaining procedure is modeled in detail as a sequen-

tial game, this approach is also called the non-cooperative bargaining solution. When players
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are patient, the equilibrium agreement of the Rubinstein’s game approximates the agreement
given by the Nash’s axiomatic approach. In the bargaining problem, the players have a mutual
interest in reaching an agreement, although in general there is a conflict of interest over the
particular agreement to be reached.

However, Nash [62] then changed to the question of how the dynamics and the rational-
ity proposed for this solution correspond with many real-world situations given the constraint
that players are concerned only with maximizing their own welfare. As a result, Nash pro-
posed a non-cooperative game in which the only equilibrium outcome is exactly the allocation

suggested by the Nash solution.

1.1 The Stackelberg/Nash game

The Nash equilibrium [62], players always make a best-reply to what other players are
doing, is a fundamental concept in game theory and the most widely used method of predicting
the outcome of a strategic interaction of several decision makers in non-cooperative games.
It describes a mathematical model in which all players simultaneously compete against each
other in a game. It is concerned with a strategy profile such that no player can unilaterally
change her/his strategy to increase her/his payoff. However, non-cooperative equilibrium has
individually stability and the collective stability is a special case of the Nash equilibrium called
strong Nash equilibrium (SNE).

The SNE was introduced by Aumann [[7] for cooperative games. A SNE is a Nash equilib-
rium for which no coalition of players has a joint deviation that improves the payoff of each
member of the coalition [7]. In cooperative games the players can find a strategy producing the
smaller total expected loss, such a cooperative strategy leads to strong Pareto optimal solution
of the game.

There are several proposals reported in the literature to search strong Nash equilibria for
specific classes of games, however, these proposals and algorithms fail in establishing a proper
formulation regarding existence, recognition, and computation for the Pareto optimality. Most

of them find a Nash equilibrium and then verify the Pareto optimality.
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On the other hand, the leader-follower solution in game theory was introduced by von
Stackelberg [89], as an extension of the Cournot duopoly model [22], suggesting a firm with
the power to commit to a number of production profits from a leadership position. The leader-
follower game theory has been studied in depth in oligopoly theory [15}58]].

Stackelberg games are usually represented by a leader-follower problem which corresponds
to a bi-level programming problem. In bi-level programming problems there are two competing
decision-making parties [[10]: a) one is upper-level decision makers and, b) the other is lower
level decision makers. The two levels interact with each other as follows. The lower level is
completely restricted by the upper level’s decision and for each decision made by the upper
level, the lower level will choose the best option according to their objectives. Instead, the
upper-level objectives are restricted from below by the lower level: the upper level controls the
lower level’s decision in the way that lower level will react by choosing the best option.

Game-theoretic approaches have been used in multiple deployed applications. An impor-
tant example is security games between a defender and an attacker: first the defender considers
what the target (best-reply) of the attacker is; then, holding the attacked target fixed, the de-
fender picks a quantity that minimizes its payoff; finally the attacker actually observes this and
in equilibrium picks the expected quantity that maximizes its payoff as a response. Some ap-
plications [72}143],106, 73| 2] use the (two-players) leader-follower Stackelberg game-theoretic
formulation for solving the security problem, providing a randomized strategy for the defender
(leader) and the attacker (follower).

We describe a Stackelberg security game as follows. Let us consider a game with n + m
players. Let NV = {1,...,n} denote the set of players called defenders and let their strategy
set be defined by U. The set M = {1,..., m} of players are called attackers and, similarly, let
the set of their strategy profiles be defined by V. Then, U x V' is the set of full strategy profiles.
The dynamics of the game is as follows: the defenders choose a strategy u € U considering the
cost-function ¢(u|v) for a fixed strategy v of the attackers, the attackers are informed about the
strategy u selected by the defenders and choose their strategies v considering the cost-function
¥ (v|u) for a fixed strategy u of the defenders. We understand ¢(v|u) as the response of the

attackers to the strategy u of the defenders, which is the best-reply in the original game. In the
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security game framework, we suppose that defenders commit to a randomized strategy while
attackers choose their best-reply to this strategy. The solution of the game is a Stackelberg
equilibrium point.

There exists a growing interest in applying Stackelberg games to model resource allocation
for patrolling security problems in which defenders must allocate limited security resources to
protect targets from attack by adversaries. In real-world, adversaries are sophisticated present-
ing dynamic strategies. Most existing approaches for computing defender strategies calculate
the game against fixed behavioral models of adversaries, and cannot ensure success in the real-
ization of the game. In the original Stackelberg security games formulation on Markov chains,
we usually assume fixed and static domains models not able to be adapted to the environment:
fixing a state and an action, the cost/reward and transitions always remain the same. The reason
is that the main goal is minimizing/maximizing the players’ expected cost/reward that depends
on the transitions at each state. However, it is an unrealistic assumption: the transitions ma-
trices and the reward received for Stackelberg security games are commonly non-static. Pro-
ducing always the same resulting behavior can be exploited by intelligent attackers that carry
out surveillance before an attack, it is often desirable for the security agencies to have a system
in which randomness is involved in allocating their resources. To address this shortcoming,
we will consider the learning properties of the attackers and defenders interaction, and we will
deal with the adaptation (estimation and assessment) of the payoff and strategies to dynamic
environments based on the information available to them.

Reinforcement learning (RL) is a problem faced by an agent or multiple agents that must
learn behavior through trial-and-error interactions with a dynamic environment [44} [87]. It
does not assume the existence of a teacher that provides examples upon which learning of a
task takes place [78]. Computationally, RL is intended to operate in a learning environment
composed of two subjects: the learner and a dynamic process. At successive time steps, the
learner makes an observation of the process state, selects an action and applies it back to the
process. Its goal is to find out an action policy that controls the behavior of the dynamic

process, guided by signals that indicate how badly or well it has been performing the required
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task. These signals are usually associated with a dramatic condition, a reward or a punishment,

and the learner tries to optimize its behavior [78].
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Figure 1.1 Reinforcement architecture.

Markov chains are a typical tool in the modeling of stochastic processes, specifically in
the area of reinforcement learning, the environment is generally formulated as a Markov de-
cision process. Reinforcement learning algorithms are strongly related to problems where a
balance between the exploration of an unknown environment and the exploitation of previous
knowledge and knowledge obtained during the exploration process is required. Reinforcement
learning is especially appropriate for problems that include long-term vs. short-term reasoning,
itis applicable in problems of game theory where there are scenarios with intelligent behaviors,
situations where it is necessary to learn to decide what action to follow in a specific situation

within a changing environment to achieve its goal.

1.2 The bargaining game

The bargaining model has attracted the attention of researchers from different disciplines
and it is still, a relevant topic which is receiving a growing amount of attention for practition-
ers and academics in game theory. It has been applied in many important contexts including

arbitration, supply chain contracts, duopoly market games, negotiation protocols, etc. It is
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related to negotiation and group decision processes and introduces a solution concept for co-
operative games. Cooperation concerns to coalitions of two or more players acting together
with a specific common purpose taking into account the objective of maximizing their own
individual payoffs. The bargaining game dynamics refers to a situation in which players have
the possibility of concluding a mutually beneficial agreement. Here there is a conflict of in-
terests about which agreement to conclude, and no-agreement may be imposed on any player
without that player’s approval. There are two theoretical perspectives that provide a solution
for the cooperative game-theoretic bargaining models that employ the axiomatic method to
evaluate bargaining: Nash [61] and Kalai-Smorodinsky [46]. It is important to note that the
two bargaining solution approaches have the same feasible payoff set and disagreement point
are considered to be the same bargaining problem in Nash’s model.

The bargaining model was first presented as a game in John Nash’s seminal 1950 paper
[61]], using the framework of game theory proposed by von Neumann and Morgenstern [635]].
The von Neumann and Morgenstern theory supposes that when players form a coalition, they
expect that a complementary coalition responds by damaging them in the worst way. This
statement finds disapprovements in the literature. In this sense, Nash improved von Neumann
and Morgenstern’s work extending the idea by proposing axioms that characterize a unique re-
sult and a solution to the problem called the Nash bargaining solution. The formal description
consists of two main components: a feasible set of utility allocations reached via cooperation,
and the disagreement point occurring when players do not cooperate. A solution is a function
that selects a feasible utility allocation for every problem. It is interesting to note that bargain-
ing is one of the first situations of conflict of interest presented in the literature of game theory
[45. 166].

The Kalai-Smorodinsky [46] bargaining solution differs from the Nash approach [61]. The
fundamental difference between the two approaches resides in the fact that the Nash solution
complies with the independence of irrelevant alternatives instead of the Kalai-Smorodinsky’s
solution fits monotonicity. Kalai and Smorodinsky argue that the entire set of alternatives must

affect the agreement reached.
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The most basic definition of bargaining refers to a socio-economic class of problems in-
volving several players who can cooperate of not in terms of obtaining a better position of
a desirable surplus whose distribution is in conflict. The features of the cooperation or non-
cooperation of the players in terms of reaching an agreement and the initial situations of the
players in the status-quo before an agreement has effect will determine how the surplus will
be distributed. Several social, political and economic problems are related to the bargaining
problem.

For instance, consider the case of selling a used car. When it comes to selling the car, the
seller naturally wants to obtain the most money possible. It is practical to trade the car at a
dealer or make a quick sale to a used car dealership, but these options usually leave the seller
with significantly less than what the car is actually worth. Selling a car by himself allows the
seller to get its full value. Then, the seller values his car at 3,000 which is the minimum price
at which he would sell it. On the other hand, there is a buyer that values the car at 5,000 which
is the maximum price at which he would buy it. If the trade occurs, the price lies between
3,000 and 5,000, then both the seller and the buyer would become better-off and a conflict
of interests arises. In any trade, the seller and the buyer have the possibility of achieving
a mutually beneficial agreement, or they can reach a non-cooperative agreement, by having

conflicting interests over the terms of the trade.

1.2.1 Cooperative bargaining models

Following Nash [61], a solution to the bargaining problems B is a function f that takes as
input any bargaining problem and returns a vector of utilities that belongs to the set of possible
agreements W. Several solutions can be proposed for solving the problem, but some of them
can present inconsistencies. For example, one solution can go against symmetry by proposing
a total improvement of the position of one player obtaining a point in the Pareto frontier of the
utility and the other player receives no improvement. A different solution to the problem could
be a disagreement point. The first solution violates symmetry, so the solution is unfair, and the
second solution is not Pareto-efficient and does not take advantage of the cooperation related

to an agreement situation. For solving the inconsistencies in the solution of the problem, Nash
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[61]] proposed several axioms: a) Invariant to affine transformations (or Invariant to equivalent
utility representations): an affine transformation of the utility and disagreement point should
not alter the outcome of the bargaining process; b) Pareto optimality: the solution selects a
point of the Pareto frontier such that the players can be made better off without making other
players worse off; ¢) Symmetry: if the players are indistinguishable, the solution should not
discriminate between them; and d) Independence of irrelevant alternatives: if the solution is
chosen from a feasible set which is an element of a subset of the original set but containing
the point selected earlier by the solution, then the solution must still assign the same point
chosen from the subset. As a result, Nash [61] proposed the Nash bargaining solution: we say
that there is a unique solution to the bargaining problem that satisfies the four axioms (a to d)

which is given by the point that maximizes the product of utilities of the players.
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Figure 1.2 Cooperative bargaining models.

While three of Nash’s axioms are quite uncontroversial, the fourth one (/ndependence of
irrelevant alternatives) raised some criticism, which leads to a different line of research. Kalai
and Smorodinsky [46] looked for characterizations of an alternative solution which do not use
the controversial axiom. The solution idea can be represented geometrically in the following
way. Let ¢*(W) be the utopia point, typically not feasible, which gives the maximum payoff.
Now, connect the point of disagreement ¢ and that ideal point ¢*(V) by a line segment. The

Kalai-Smorodinsky solution is the maximal point in ¥ on that line segment. They replaced
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Nash arguable fourth axiom by e) Monotonicity axiom: if the set of possible agreements W
is enlarged such that the maximum utilities of the players remain unchanged, then neither of
the players must suffer from it. Then, Kalai and Smorodinsky [46] proposed the following
solution: we say that there is a unique solution 1) to the bargaining problem that satisfies the
four axioms (a, b, ¢, and e) which is given by the intersection point of the Pareto frontier
and the straight line segment connecting ¢ and the utopia point ¢*(¥). Figure |1.2| shows the
cooperative solutions.

Nash [61] showed that there exists a unique standard independent solution for the bargain-
ing model, while Kalai and Smorodinsky [46] showed that a different solution is the unique

standard monotonic one.

R -‘-\_\ i f(:B, (lb)
| ™ ;
. i \f
B
| \
92 L
: |
¢ Pt

Figure 1.3 Bargaining model.

Consider two players [ = 1,2. A bargaining problem is a pair B = (V, ¢) in the utility
space were W is a set of possible agreements in terms of utilities ¢/ that player 1 and player
2 can yield. The player’s utility function ¢ is strictly increasing and concave. The set of
possible agreements is ¥, which is a compact and convex set of R?. An element of ¥ is a pair
v = (P1,9?) € U and ¢ = (¢!, ¢?) is called the disagreement utility point. Compactness

arises from the assumptions related to closed production sets and bounded factor endowments.
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Convexity is obtained from the fact that expected utility over outcomes. Also, the set ¥ involves
points that dominate the disagreement point, i.e., there is a positive surplus to be enjoyed if
agreement is reached. The function f takes as input any bargaining problem and returns a
pair of utilities ¢» = (¢',4?) € ¥. When we need to refer to the components of f, we write
P! = f1(B) and ? = f?(B). The interpretation is that given a bargaining problem B = (U, ¢)
there exists an agreement ¢ = f(U,$) € W such that ¢)! > ¢' and * > ¢* which ensures

that there exists a mutually beneficial agreement. Figure shows the bargaining problem.

tpz

Figure 1.4 Bargaining axioms.

Two fundamental axioms impose the most important restrictions over the solution of the
bargaining problem (see Figure . Pareto optimality: the function f(W, ¢) has the property
that there does not exist a point 1) = (¢)',9?) € W such that )! > f1(¥, ¢) and ¥* > f?(¥, ¢)
such that (1%, %) # f(V, ). Symmetry: suppose that B is such that ¥ is symmetric around
the 45° line and ¢! = ¢?, then f1(B) = f2(B). The rest of the axioms will be presented in the

formalization of the model.
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1.2.2 The non-cooperative bargaining game

The Nash model does not allow for delayed agreements. In real situations, when the rules
of the bargaining process are flexible, involving the facts that the time of starting negotiations
and the moment of reaching agreement may be strategic variables, the Nash solution may be
inappropriate.

There has been a large and growing literature in non-cooperative bargaining. Rubinstein
[83]] presented a bilateral non-cooperative bargaining process as an alternating offers game
with a penalty according to the time taken by players in the decision making process, where it
is proved that when every player bears fixed bargaining cost for each period, in this case, each
player has a fixed discounting factor, the agreed contract is individual-rational and is Pareto
optimal, i.e. it is no worse than disagreement, and there is no agreement which both would
prefer. Such a model has been studied and extended for three or more players in a variety of
papers and situations. The non-cooperative bargaining model and its game-theoretic solution
have also been applied in many important contexts like market games, networks, apex games,
union formation, and water management.

Consider a bargaining situation defined for two players who have to reach an agreement
on the partition of a good. Each player takes turns to make an offer to the other agent on
how it should be divided between them. After player 1 has made such an offer (z,1 — z),
player 2 must decide whether to accept it, in this case the bargaining game ends and the players
divide the good according to the accepted offer, or to reject it and continue with the bargaining
process. If player 2 rejects, then this player has to make a counteroffer (y, 1 — y) which player
1 would accept it, in this case the players divide the good according to the accepted offer but
also considering a discount factor /3 associated to each player, or reject it and continue with
the negotiation process. The bargaining game continues until an offer is accepted. Figure[I.3|
shows the non-cooperative model.

Despite its wide applicability, crucial assumptions of the traditional Rubinstein bargaining
model include that players have complete information about the characteristics of other agents

(e.g., their discount factor or their utility) and that players are sophisticated in their behavior
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Figure 1.5 Non-cooperative bargaining model.

(e.g., they are forward-looking). As such, there is a need to develop a general theory of bar-
gaining that is robust to work in the absence of sophisticated players or incomplete information
about other players.

Then, we introduce an alternative approach to the traditional bargaining literature that aids
unsophisticated players to reach the equilibrium as if they were forward-looking agents. The
key element of the game is that players are penalized for their deviation from the previous best

response strategy as well as their time taken for the decision-making at each step of the game.

1.3 Summary of the following chapters

The remainder of this thesis is organized as follows. Next Chapter presents the necessary
notions and definitions related to continuous and discrete time Markov chains games to under-
stand the rest of the work. The Part I is related to strong Stackelberg/Nash games. Chapter
3 establishes the definitions of the strong L,—Nash equilibrium. We first present a general
solution for the L,—norm for computing the strong L,—Nash equilibrium. Then, we suggest
an explicit solution for the norms L, Ly and L.,. Chapter 4 describes and presents the solution
method for computing the strong L, —Stackelberg/Nash equilibrium. In Chapter 5 we suggest

an approach for adapting attackers and defenders patrolling strategies in Stackelberg security
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games. This chapter considers that defenders and attackers conform coalitions in the security
game, these are reached by computing the strong L,,—Stackelberg/Nash equilibrium.

The Part II is related to the bargaining game. Chapter 6 presents a method for computing
the Nash bargaining solution. Chapter 7 presents an approach for solving a bargaining problem
employing a new equilibrium point for the game theory called the manipulation equilibrium
point, this formulation employs the Nash bargaining and Stackelberg concepts. Chapter 8
presents a method to compute the Kalai-Smorodinsky bargaining solution. In Chapter 9 we
suggest a novel method to find the equilibrium point in non-cooperative bargaining games.

All these chapters present numerical examples that validate the application of the method.

Finally, Chapter 10 presents some final remarks.






Chapter 2

Mathematical background

This chapter presents some basic concepts and results about Markov chains games, needed
to understand the rest of this work. For more information about these topics, please see [75,76].
As usual, R and N stand for the sets of real numbers and non-negative integers, respectively.
2.1 Random sequences

2.1.1 Random variables

Let Q = {w} be a set of elementary events w which represents the occurrence or non-

occurrence of a phenomenon.

Definition 2.1 The system F of subsets of () is said to be the o-algebra associated with 2, if

the following properties are fulfilled:

1. Qe F

2. forany sets A(n) € F (n=1,2,...)

G A(n) € F, ﬁ A(n) € F;

3. for any set A € F
A={weN|wg A} e F.

Definition 2.2 The pair (2, F) represents the measurable space.
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Definition 2.3 The function P = P(A) of sets A € F is called probability measure on (2, F)

if it satisfies the following conditions:

1. forany A € F
P(A) € [0,1];

2. for any sequence {A(n)} of sets A(n) € F (n = 1,2,...) such that

we have

P (U A(n)) =Y P(A(n).

n=1 n=1
The number P(A) is called the probability of the event A. From a practical point of view,

this probability is concerned with the occurrence of events.
Definition 2.4 The triple (2, F, P) is said to be the probability space.

Definition 2.5 A real function £ = £, w € ) is called random variable defined on the proba-

bility space (2, F, P), if it is F-measurable, i.e., for any s € (—o00, 00)
{wlé, <s}eF

We say that two random variables £, (1) and &,,(2) are equal with probability one (or, almost

surely) if
Plo]&(l) = &(2)} = 1.
This fact can be expressed mathematically as follows

€u(1) = €(2).

Definition 2.6 Let {(1),£(2), ..., &(n) be random variables defined on (2, F, P). The minimal

o-algebra F(n) which for any s = (s(1), ..., s(n))" € R" contains the events

{wl() <s(1),...,8u(n) < s(n)},
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is said to be the c-algebra associated to the random variables £(1),£(2), ..., &(n). It is denoted
by

Definition 2.7 The Lebesgue integral

B{¢) = / £, P{dw},

is said to be the mathematical expectation of a random variable {(w) given on (2, F, P)

Definition 2.8 The random variable E {¢ | F(0)} is called the conditional mathematical ex-
pectation of the random variable {(w) given on (S, F, P) with respect to the o-algebra F (0) C
Fif

1. itis F(0)-measurable, i.e.,
{w[E{¢| F(0)} < s} € F(0)Vs e RY,
2. forany set A € F(0)

/ E{¢| F(0)} P{dw} = / £(w)P{dw}.

w€eA w€eA

Let £ = ¢(w) and # = A(w) be two random variables given on (2, F, P), 6 an F(0)-
measurable (F(0) C F), then

1. E{0| F(0)} = 0,
2. E{0 €| F(0)} 2 0B{¢ | FO)):
3. E{E{¢| F(1)} | F(0)} = E{¢ | F(0)}if F(0) € F(1) C F.
Notice that if ¢ is selected to be equal to the characteristic function of the event A € F, i.e.,

1 if the event A has been realized
{(w) = x(w, A) = ,
0 if not

from the last definition we can define the conditional probability of this event under fixed F(0)

as follows

P{A[F(0)} := E{x(w, A) | F(0)}.
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2.1.2 Markov sequences and chains

Definition 2.9 Any sequence {s(n)} of random variables s(n) = s, (n) (n = 1,2, ...) given on
(Q, F, P) and taking value in a set S is said to be a Markov sequence if for any set A € B(S)
and for any time n the following property (Markov property) holds:

P{s(n+1) € Alo(s(n))ANF(n—1)} =2 P{s(n+1) € A|a(s(n))},

where o(s(n)) is the o-algebra generated by s(n), F(n — 1) = o(s(1),...,s(n — 1)) and
o(s(n)) AN F(n — 1) is the o-algebra constructed from all events belonging to o(s(n)) and
F(n—1).

This property means that any distribution on the future depends only on the value s(n)
realized at time n and is independent on the post values s(1), ..., s(n — 1); in other words, the

present state of the system determines the probability for one step into the future.

Definition 2.10 If the set S, defining any possible values of the random variables s(n), is
countable then the Markov sequence {s(n)} is called a Markov chain. If, in addition, this set

contains only finite number N of elements, i.e.,

S = {S(l), ceey S(N)},

then this Markov sequence is said to be a finite Markov chain.

2.2 Finite Markov chains
2.2.1 State space

Let S = {3(1), - s(N)} be a finite set of states. A state s(;) € S is said to be

1. a non-return state if there exists a transition from this state to another one S() € S but

there is no way to return back to s;);

2. an accessible (reachable) state from a state s(;) € S if there exists a finite number n such

that the probability for the random state s(n) of a given finite Markov chain to be in the
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state s;) € S starting from the state s(1) = s(;) € S is more than zero, i.e.,

a.s

P{s(n) = s@ | s(1) = s} > 0.
We will denote this fact as follows
SG) = 5)-
Otherwise we say that the considered state is inaccessible from the state s;).

Definition 2.11 Two states sjy and s(;y are said to be a communicating states if each of them

is accessible from the other one. We will denote this fact by
(@) < S@)-

The class S; is said to be the j th communicating class of states if it includes all communicating

states of a given finite Markov, i.e., it includes all states such that
S(i) < S(j) < 1 = S(m) < S(k)-

Definition 2.12 A state s; is called recurrent if, when starting there, it will be visited infinitely

often with probability one; otherwise the state is said to be transient.

Definition 2.13 A state 5;) is said to be an absorbing state if the probability to remain in state
5(;) 1s positive, and the probability to move from any state s(;), j # 1, to the state s(;) is equal

to zero.

2.2.2 Transition matrix

Definition 2.14 Let 11(n) € RY*YN is said to be the transition matrix at time n of a given

Markov chains with finite number N of states if it has the form

Ta1)(n) Taynn) - - mawn(n)

Ten(n) me2) - - Ten(n)

| v (n) Ty (n) - T (n)
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where each element 7 (; j(n) represents the probability (one-step transition probability) for this

finite Markov chain to go from the state s(n) = s(;) to the next state s(n + 1) = s(;), i.e.,
T (n) == P{s(n+1) = sy | s(n) =su}, i,j7=1,...,N.

Each element 7(;};)(n) of the transition matrix II(n) is a probability of the corresponding

event, then we conclude that
N
T (n) € [0,1], Zﬂ(ju)(n) =1 (2.1
j=1

Definition 2.15 Any matrix II(n) € RN*N with elements (;;)(n) satisfying the condition

(2.1) is said to be a stochastic matrix.

Any transition matrix of a finite Markov chains is a stochastic matrix. From condition @),

a stochastic matrix has the following properties:
1. the norm of a stochastic matrix is equal to one;
2. the modulus of the eigenvectors of a stochastic matrix are less or equal to one;
3. any stochastic matrix has I as an eigenvalue;

4. if A is an eigenvalue of modulus equal to 1, and of multiplicity order equal to k, then
the vector space generated by the eigenvectors associated with this eigenvalue (\) is of

dimension k.
A finite Markov chain is said to be:

1. ahomogeneous (stationary or time homogeneous) chain if its associated transition matrix

is stationary, i.e., [1(n) = II;
2. anon-homogeneous chain if its associated transition matrix II(n), is non-stationary.

Example 2.16 Consider 3 supermarkets denoted by s, s and s3. Each month the supermarket

s1 maintains 60% of its clients and losses the 20% that goes to s, and the rest to s3; on the
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other hand, the supermarket s, maintains the 40% of its clients and losses the 50% that goes
to s1 and the 10% that goes to s3; while supermarket sz retains the 80% of its clients and only
losses the 20% that goes to so. The transition matrix obtained whit the previous information is

as follows:
0.6 0.2 0.2

=105 04 0.1
0.0 0.2 0.8

Figure[2.1|shows the state transition diagram for this Markov chain.

0.6

Figure 2.1 State transition diagram.

lth

Definition 2.17 For a homogeneous chain each I"* group S(1) (I = 1, ..., L) of communicating

lth

states is also said to be ['" ergodic subclass of states. The index L corresponds to the number

of ergodic subclasses.

An ergodic subclass (set of states) is a collection S(1) of recurrent states with the probability
that, when starting in one of the states in S([), all states will be visited with probability one. A

Markov chain is ergodic if it has only one subclass, and that subclass is ergodic.

Definition 2.18 If an homogeneous finite Markov chain has only one ergodic subclass and has

no group of non-return states, i.e.,
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it is said to be an ergodic homogeneous finite Markov chain.

Remark 2.19 For any homogeneous finite Markov chain there exists a time ng such that the
probabilities of transition from any initial states s(1) = s;) to the state s(ng) = s(;) are strictly
positive, i.e.,

(510 (no) > 0,

forz',j = 17 ---;N; where
i1y (no) = P{s(no) = s¢; | s(1) = s} = 11",

If there exists ny for a homogeneous Markov chain such that II"® > 0 then, this Markov

chain is ergodic.

2.3 Coefficient of ergodicity

In this section it is presented a non-traditional approach for ergodicity verification. The
result shows that there exists the class of homogeneous Markov chains, called ergodic, which
satisfy some additional conditions providing that after a long time such chains “forget” the
initial states from which they have started.

For any time n and for any finite Markov chain with transition matrix

0= (7G]0 n

containing NN states, the following basic relation holds:
p(n+1) = 1" p(n)
where n = 1,2, ... and the state distribution vector p(n) is defined by
p"(n) = (py(n), . pwy(n)) ,  where  pgy(n) = P {s(n) = sp)} .

Definition 2.20 The state distribution vector

)" = (PLy, - Plv))
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is called the stationary distribution of a homogeneous Markov chain with a given transition

matrix
I = [Wﬂz‘)h,jzl,...,zv

if it satisfies the following algebraic relations

N
Py = D maoPl
=1

Definition 2.21 For an homogeneous finite Markov chain, the parameter k,.,(no) defined by

1

N
Kerg(no) =1 — 2 max ) |7~T(m|z‘)(n0) - 7~T(mlj)(no)‘ €10,1)
,j=1,....N =1

is said to be the coefficient of ergodicity of this Markov chain at time ng, where
T(liy (n0) = P {5(n0) = sy | 5(1) = 5} = [Mrupi)] "

is the probability to evolve from the initial state s(1) = s(;) to the state s(ng) = S(m) after ng

transitions.

Lemma 2.22 The coefficient of ergodicity k,.,(ng) can be calculated as

N
kerg(no) > i,jgg.r.l.,]\f Z_l min {ﬁ(m‘z)(no),ﬁ'(m‘])(no)} .

Its lower estimate is given by

Kerg(no) > ZZY{HHN jmax 7 (j1i) (0)

For the proof see [76]].

If all the elements 7 ;) (1) of the transition matrix II" are positive, then the coefficient of
ergodicity ke (1) is also positive. Notice that there exist ergodic Markov chains with elements

(i) (no) equal to zero, but with a positive coefficient of ergodicity Kerg(n0).

Theorem 2.23 The lower bound estimate of the ergodicity coefficient for a given finite homo-
geneous Markov chain

= min max min 71 (no
Xerg no  j=1,.,N i=1,..,N (o)

is strictly positive, that is, X.r, > 0, then the following properties hold:
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1. there exists a unique stationary distribution

lim pg)(n) = P

n—oo

where 1 = 1,..., N and the vector p* describes a stationary distribution with positive

components;

2. the convergence of the current-state distribution to the stationary one is exponential,

then, for any initial state distribution p(1)

sup ‘p(i)(n) - pzki)| < Cexp{—Dn}

p(1)
where
1 1
C=—— and D= —InC
]_ - Xerg nO
and
np = argmin | max - min 7)(no)
For the proof see [76].

2.4 Controlled Markov chains
2.4.1 Discrete time Markov chains

The behavior of a controlled Markov chain can be described as follows: at each time n the
system is observed to be in one state s(n), whenever the system is in the state s(n) one decision
a(n) (control action) is chosen according to some rule to achieve the desired control objective;
in other words, the decision is selected to guarantee that the resulting state process performs
satisfactorily. Then, at the next time n + 1 the system goes to the state s(n + 1). In the case
when the state and action sets are finite, and the transition from one state to another is random
according to a fixed distribution, we deal with controlled finite Markov chains.

Consider the usual partial order for n-vectors = and y, the inequality z < y means that

o' <qylforalll =1,N (I =1,...,N). We have that

r<yszr<yandzx #y

r<<yes <y forall I=1,.. N
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A sequence {z"} C R” converging to x is said to converge in the direction y € R™ if there is a

sequence of positive numbers 7,, such that 7,, — 0 and

lim (2" —x) Ji, =y
n—oo

Let S be a finite set, called the state space, consisting of a finite set of states {3(1), ey S(V) }
N € N. A Stationary Markov chain is a sequence of S-valued random variables s(n), n € N,

satisfying the Markov condition:

P (s(n +1) =53 | s(n) = s@),s(n —1) =53, 1), ..., s(1) = S(il)) 22)

=P (s(n+1) = s | s(n) = s)) = 7
The Markov chain can be represented by a complete graph whose nodes are the states,
where each edge (s(;), s(j)) € S? is labeled by the transition probability . The matrix
IT = (7(j1i)) (s00).505,)e8 € [0, 1]¥*¥ determines the evolution of the chain: for each m € N, the

power II™ has in each entry (s(;), s(;)) the probability of going from state s(;) to state s(;) in

exactly m steps.
Definition 2.24 A controlled homogeneous finite Markov chain is described by a 4-tuple
MC ={S, A K, I}

where:

S is a finite set of states, S C N, endowed with a discrete topology;

o A is the finite set of actions. For each s € S, A(s) C A is the non-empty set of admissible

actions at state s € S. Without loss of generality we may take A= UzcsA(S);

e K = {(s,a) | s € S,a € A(s)} is the set of admissible state-action pairs, which is a

measurable subset of S X A;

o Il = [7T(j|i,k)} is a stationary controlled transition matrix, where
T(lik) = Pls(n +1) = 54y | s(n) = sy, a(n) = aw)

represents the probability associated with the transition from state s;) to state s(j), i, ] =

I,N (i =1,...,N), under an action ag, € A(sw), k=1,M (k=1,...,M).
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We say that a controlled homogeneous finite Markov chain is a communicating chain, if for
any two states s(;) and s(;) of this chain, there exists a deterministic causal strategy {a(n)} such

that
a(n) = a(n)(s(1),a(1);...;s(n = 1),a(n — 1); s(n))
such that for some n the conditional probability corresponding to the transition from s;) to s

would be positive, i.e.,
P{s(n) = s | s(1) = s Ao(s(1),a(1); ...;s(n = 1),a(n — 1))} =0
Definition 2.25 A Markov Decision Process is a pair
MDP ={MC,J}
where:

e MC is a controlled homogeneous finite Markov chain (Definition 2.24));

o J : K — R is a cost/utility function, associating to each state a real value.

The Markov property of the decision process (Definition is said to be fulfilled if
P(s(n+1) =5 | (s(1),8(2),....;s(n — 1)), s(n) = s4),a(n) = ag)
=P (s(n+1) = s | s(n) = s, aln) = aw)
The strategy (policy)
dkiy(n) = P (a(n) = aw) | s(n) = s@)
represents the probability associated with the occurrence of an action a(n) from state s(n) =

5(;)- The elements of the transition matrix for the Markov chain can be expressed as

P(s(n+1) =54 | s(n) =su) =

Mz

P (s(n+1) = s | s(n) = s@), a(n) = aw) dwy(n)

k=1

Let us denote the collection {d ;) (n)} by D, as follows

D, = {d(k|i) (n>}k:17 i=1,N
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A policy {d;*} _ is said to be local optimal if for each n > 0 minimizes (or maximizes
if we have a utility function) the conditional mathematical expectation of the cost function

J (s(n + 1)) under the condition that the history of the process

Fn = {Do,P 15(0) = 56) g -3 Dnos, P {s(n) = S<j>}jzﬁ}

is fixed and can not be changed hereafter, i.e., it realizes the “one-step ahead” conditional
optimization rule

loc .__ 1
d, = arg min E{J(s(n+1)) | Fu}

where J(s(n 4 1)) is the cost function at the state s(n + 1). Notice that if J(s(n + 1)) is a

utility function then we have a max problem.

2.4.1.1 Discrete time Markov chains games

Definition 2.26 A discrete-time Markov game is a pair
G={N,MDP}
where:

e MDP is a discrete-time Markov decision process (Definition[2.25)); and

o N = {1,...,n} is the set of players, each player is indexed by | = 1,n.

The game for Markov chains consists of N' = {1, ..., n} players (denoted by [ = 1,....n = 1,n)
and begins at the initial state s'(0) which (as well as the states further realized by the process)
is assumed to be measurable. Each of the players [ is allowed to randomize, with distribution
d{yy (1), over the action choices af,) € A’ (sl(z.)> ,4=1,N and k = 1, M. From now on,
consider only stationary strategies dl( ki) (n) = dl( ki) These choices induce the state distribution
dynamics
M
P'(s'(n+1)=s(;)) = > (Z iju,k)dl(km) P (s'(n) = s9)
i=1 \k=1
In the ergodic case when all Markov chains are ergodic for any stationary strategy dikli) the

distributions P'(s'(n + 1) = s(;)) exponentially quickly converge to their limits P! (s' = s;))
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satisfying

M
P (s'=s5p)) =) (Z Wﬁju,k)dl(kli)) P! (s'=s)
k=1

=1 =
2.4.2 Continuous time Markov chains

This section follows the concepts and definitions presented in [35]. Suppose that s(t) (for
each fixed ¢ > 0) is a random variable on a probability space (€2, F, P) and takes values in the
set S, i.e., s(t) is an F-measurable function on €2 and takes values in S. Then we call the set

{s(t),t > 0} a stochastic process with the state space S.

Definition 2.27 A stochastic process {s(t),t > 0} defined on a probability space (2, F, P),
with values in a countable set S (the state space of the process), is called a continuous-time
Markov chain if, for any finite sequence of “times” 0 < t; < to < -+ < t, < t,41 and a

corresponding set of states (i), S(iy), ---» S(in_,) € S, it holds the Markov property

P (S(tn-i-l) = S(j) | S(tl) = 3(i1)7 ceey S(tn_l) = S(in—1)7 S(tn) = 8@) =

P (s(tn+1) = s() | 8(tn) = S(i))

whenever P (s(tl) = 5(i1), --r S(tn1) = S(in_1), S(tn) = s(i)) >0

The probability
p(r it 5) =P (s(t) = s | s(r) = 55))

for 0 < r < tis called the chain’s transition (probability) function. Note that p(r,i,t, j)
denotes the transition probability of the process being in state s(;) at time ¢ starting from s;) at

time r.

Proposition 2.28 Suppose that p(r,i,t, j) is the transition function of a Markov chain. Then,
forall sy, 55 € Sand 0 <r < t:
L op(r,i,t,j) = 0and 3 p(r,it, j) <1.
8(j>ES
2. The Kronecker delta: p(r,i,t, j) = ¢ ).
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3. The Chapman-Kolmogorov equation: p(r,i,t,j) = >, p(r,i,v,h)p(v, h,t,j) for all
S(h)ES
54),8G) € Sand 0 <r <v <t
4. p(r,i,t,7) is continuous in v € [0,t], right-continuous at 0 and left-continuous at t.
5. p(r,i,t, j) is continuous int € [r,+00), right-continuous at r and uniformly continuous
insg €8S
Definition 2.29 A controllable continuous-time Markov chain is a 4-tuple
CTMC ={S,AK,Q}
where:
o The state space S is a finite set of states {s(l), vy S(N)}, N € N, endowed with the
discrete topology;

e The set of actions A is a finite action (or control) space, for each s € S, A(s) C A is the

non-empty set of admissible actions at state s € S and we shall suppose that is compact;

o K={(s,a)|s € S,a € A(s)} is the class of admissible state-action pairs, which is con-

sidered a subspace of S X A;

e () is the matrix of the transition rates [q(j‘i7k)}, the transition from state s; to state S
under an action a;y € A (s(i)) k= 1,...,M; satisfying q(jjix) > 0 forall (s,a) € K
and i # j such that
N . . .

=22 Ay (aw), if i=]

i#]
Ay (awm)), if 1#]

4(jlik) =

where \(; j) is a transition rate between state 5(;) and sj), \;) = Zf\;j A,j)- This matrix
is assumed to be conservative, i.e., Zjvzl q(jlik) = 0, and stable, which means that
q(;) == sup qu)(a) <oo VieS
acA

where q(;y(a) == —q)(a) > 0forall a € A.
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Definition 2.30 A continuous-time Markov Decision Process is a pair
CTMDP ={CTMC,U}
where:
o CTMC! is a controllable continuous-time Markov chain (Definition[2.29); and

o J: K — R is the (measurable) one stage cost/ utility function, associating to each state

a real value.
Now, we denote the probability transition matrix by
H<t) = I:Tr(?",iﬂ',j,k)]i,j,ka T 2 r

such that, m(.; -ir = Tk, ¢ = 7 —1r Vi,7 € S and where Zjvzl ik = 1. The

Kolmogorov forward equations can be written as the matrix differential equation as follows:
() =11(t) @Q;  11(0) =1

I1(t) € RV*N T € RV* ig the identity matrix. This system can be solved by

_ Qt _ Qt ._
I(t) = 11(0) e?* = ¢ ._; w

and at the stationary state, the probability transition matrix is defined as
= R
Definition 2.31 The vector P € RY is called stationary distribution vector if
@m)'P=r
where SN | Psy=1.
This vector can be seen as the long-run proportion of time that the process is in state s;) € S.
Theorem 2.32 The following statements are equivalent:
e QT P=0
e II'(tH)P=P; Vt>0

The proof of this fact is easy in the case of a finite state space, recalling the Kolmogorov

backward equation.
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2.4.2.1 Continuous time Markov chains games
Definition 2.33 A continuous-time Markov game is a pair

G — {N,CTMDP}
where:

o CTMDP is a continuous-time Markov decision process (Definition[2.30); and

N = {1, ...,n} is the set of players, each player is indexed by | = 1, n.

A strategy for player [ is then defined as a sequence d' = {dl(t),t > O} of stochastic
kernels d'(t) such that:

a. for each time ¢ > 0, dl(km (t) is a probability measure on A’ such that dl( Al t)=1

and,

b. forevery E' € B(A'), d{ () is a Borel-measurable function in ¢ > 0.

We denoted by D' the family of all strategies for player /. A multistrategy is a vector d =
(d*,..,dN) € D := @Y, ,D'. From now on, we will consider only stationary strategies

dl( Kli) (t) = dl( ki)~ For each strategy dl (k)s) the associated transition rate matrix is defined as:

Q'(d') = [g(; 5(d")] Z 0100 Lkl
such that on a stationary state distribution for all dl( Kli) and ¢ > 0 we have that

11" (d) = lim Q'@

t—o00

where I1* (dl ) is a stationary transition controlled matrix.

2.5 Formulation of Markov chains games

Considering the utility matrix U, (ZZ k) and the transition matrix wé ilik)? the utility function

that describes the behavior of each player is defined as

N
l _ l !
Wik = Z Ui,k T (ili.k) (2.3)
7=1
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so that the average utility function J' in the stationary regime can be expressed as

JH(, :ZZW(M Hdk| '(s'=s0)

=1 k=1
Given that ¢! := [céz k)] is a matrix with elements
R T N k=10
! ! 1 (.1
it follows that
N M N
I )y =3 W T cin (2.5)
i=1 k=1 =1
Notice that by (2.4)) it follows that
= Cli)
1 (.0 ! ! i,
P! (s'=s()) = Z Ciry dugy = 3 ; (20
k=1 > Clik)
k=1

The variable c( ) satisfies the following restrictions:

1. Each vector from the matrix cl(l. ) Tepresents a stationary mixed-strategy that belongs to

the simplex
N M

2. The variable cl(i k) satisfies the ergodicity constraints, and belongs to the convex, closed

and bounded set defined as follows:

czec;dm:{ szk iy — chk)— } (2.8)

=1 k=1

3. And, in case of continuous time Markov games, the variable cl(i k) satisfies the continuous

time condition: u
¢ GCldm—{Zqu clim _0} (2.9)
i=1 k=1

In the ergodic case ch\/[:l Céi,k) > 0 for all [ = 1, N. The individual aim of each player is

min J () or max J !(c!) depending on whether J(c!) is a cost or utility function.
ced] deCly

adm
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Chapter 3

The Strong L,—Nash Equilibrium

3.1 Introduction

Nash equilibrium [62] is a fundamental concept in game theory and the most widely used
method of predicting the outcome of a strategic interaction of several decision makers in non-
cooperative games. It is concerned with a strategy profile such that no player can unilaterally
change her/his strategy to increase her/his payoff. However, non-cooperative equilibrium has
individually stability and the collective stability is a special case of the Nash equilibrium called
strong Nash equilibrium (SNE).

The SNE was introduced by Aumann [7] for cooperative games. It may benefit from es-
tablishing coalitions with other players and there is no coalition that can definitely improve
their payoffs by a collective deviation. A SNE is a Nash Equilibrium for which no coalition
of players has a joint deviation that improves the payoff of each member of the coalition. In
cooperative games the players can find a strategy producing the smaller total expected loss,
such cooperative strategy leads to strong Pareto optimal solution of the game.

The difference between the non-cooperative and cooperative Nash equilibrium can be ex-

emplified by the following version of the Prisoner’s dilemma [82, 84].

Example 3.1 Prisoner’s dilemma. Consider the following two-person game with two possible

strategies: a; and by (I = 1,2) and the utilities represented by the following matrix
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Player1\Player2 | as by
ay (27 2) (07 3)
bl (37 0) (17 1)

The following interpretation of the game explains its name. The column Player2 is society,
the row Playerl is a citizen. When free, the citizen can behave well (a1) or commit a crime
(b1). Society can jail him (by) or let him free (ay). Commission of a crime benefits the individual
but damages society; punishing the criminal is damaging to both. The players are planning to
play (a1, as) unless one of them deviates. If player I deviates (b, as), player 2 punishes him
by forcing (b1, by). Clearly, the punishing player profits from the punishing arrangement and
he has no motivation to forgive the deviant. It is easily verified that (a4, as) is indeed a strong

Nash equilibrium. The only Nash equilibrium is (by, bs).

There are several proposals reported in the literature to search strong Nash equilibria for
specific classes of games, e.g., congestion games, connection games, maxcut games, voting
models, coalition formation and other fields. Proving the existence of SNE is a difficult prob-
lem [64] and there are a small number of computational tools available for finding the SNE.

In order to solve the problem many refinements of Nash equilibrium were proposed to have
a better model of the real world. Ichiishi [41] proposed a social coalition equilibrium where
an abstract model of society in which each member can cooperate with others by forming a
coalition, but at the same time can be influenced by the members outside the coalition. Green-
berg and Weber [34] investigated the existence and proposed a partial characterization of a
“strong Tiebout equilibrium” consisting of an endogenously formed partition of the individ-
uals into disjoint jurisdictions with each jurisdiction producing and financing its own public
goods where no group of individuals can benefit by establishing their own community. De-
mange and Henriet [25] proved that in a sustainable oligopoly each consumer chooses the firm
which proposes the price-quality schedule he prefers, firms earn non-negative profits and no
new firm could attract consumers and make profits. Demange [24] proposed two forces that

are at work to explain the formation of coalitions that partition the society in a stable way: the
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increasing power of the coalitions which incites to cooperate, the heterogeneity of the agents
which leads to the formation of subgroups. Konishi et al. [49] proved that a non-cooperative
game with a finite set of players and common finite strategy sets possesses a strong Nash equi-
librium in pure strategies whenever individuals’ preferences satisfy independence of irrelevant
choices, anonymity, and partial rivalry. Then, he [S0] examined the conditions which guarantee
that the set of coalition-proof Nash equilibria coincides with the set of strong Nash equilibria
in the normal form games without spillovers. Hotzman [38] obtained conditions for the ex-
istence of a strong equilibrium in congestion games, as well for the equivalence of Nash and
strong equilibria, giving conditions for uniqueness and for Pareto optimality of the Nash equi-
librium. Rozenfeld [81] dealt with possible deviations by coalitions of players in congestion
games studying the existence of strong and correlated strong equilibria in monotone conges-
tion games. Gatti et al. [31] suggested that in order for a n—agent game to have at least one
non—pure-strategy SNE, the agents’ payoffs restricted to the agents’ supports must lie on an
(n — 1)-dimensional space. Gatti et al. [30] provided a nonlinear program in which a strat-
egy profile is forced to be Pareto efficient with respect to coalition correlated strategies. It
is a sufficient, but non—necessary, condition for the existence of an SNE that can be used to
search for an SNE. Kubica and Wozniak [S1] provided an interval method approach to verify
the existence of equilibria in certain points and proposed an algorithm for finding the SNE.

However, these proposal and algorithms fail in establishing a proper formulation regarding
existence, recognition, and computation for the Pareto optimality. Most of them find a Nash
equilibrium and then verify the Pareto optimality.

This chapter presents a method for computing the strong L,,—Nash equilibrium in case of
discrete time Markov chains games [101} 96]. The problem is solved in terms of the L, —norm:
players choose a strategy that minimizes the distance to the utopian minimum and no other
strategy produces a smaller total expected loss. This means that there exists an optimal solu-
tion that is a strong Pareto optimal point and it is the closest solution to the minimum utopia
point. The strong Pareto optimal solution corresponds to the strong Nash equilibrium. First, a
general solution is presented for the L,—norm for computing the strong L, —Nash equilibrium.

Then, an explicit solution is suggested for the norms L, L, and L. For solving the problem,
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the extraproximal method is used [S]]: a natural extension of the proximal and the gradient opti-
mization methods used for solving the more difficult problems for finding an equilibrium point
in game theory. The extraproximal method is defined by a two-step iterated procedure consist-
ing of a prediction step that calculates the preliminary position approximation to the equilib-
rium point, and a basic adjustment of the previous step. The method is designed for the static
strong Nash game in terms of nonlinear programming problems implementing the Lagrange
principle; then, employing the Tikhonov’s regularization method ensures the convergence of
the cost-functions to a unique strong L,,—Nash equilibrium. The nonlinear programming prob-
lem is formulated considering several linear constraints employing the c-variable method for
making the problem computationally tractable. For solving each equation of the extraproximal
optimization approach the projection gradient method is used. It is proved that the proposed

method converges in exponential time to a strong L,—Nash equilibrium.

3.2 Formulation of the problem

To study the existence of Pareto policies it is necessary first follow the well-known “scalar-

ization” approach. Thus, given a n-vector A > 0 consider the cost-function J. Let
N
ul = col (cl) U = C’fldm, U:= ®Ul
=1

for | = 1, n, where col is the column operator.

The Pareto set can be defined as [32, 133]]

- * . : 7! n
P = {u (A) = arg min [;/\ J (u)] ,AeS }
such that
S" = {)\GR":)\E[O,l],ZAZ_l}
=1

for

I A) = (I @ (V) I (W (V). I (w (V)
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The vector u* is called a Pareto optimal solution for P. The Pareto front is defined as the image

of P under J as follows
JP)= {(3" (u" (0) 92 (w0 (X)) e I (" (N)) | " € P}
A Nash equilibrium is a strategy u* = (u'*, ..., u™) such that
J (ul*, ...,u"*) <J (ul*, Lol ...,u“*)

forany u! € U.
A strong Nash equilibrium is a strategy u™ = (u'**, ..., u™*) such that there does not

exist any u' € U, u! # u"** such that

J (ul**, Ll ...,u"**) <J (ul**, ...,u“**)

for any u' € U.

Remark 3.2 The game problem is to find a policy u* that minimizes J(u', ..., u") in the sense

of Pareto.

Let P be a subset of R". The tangent cone to P at u € P is the set of all the directions

u’ € R" in which some sequence in P converges to u. A vector u* € P in R" is said to be
1. a Pareto point of P if there is no u € P such that u < u*;
2. a weak Pareto point of P if there is no u € P such that u << u*;

3. a proper Pareto point of P if u* is a Pareto point and, in addition, the tangent cone to P

at u* does not contain vectors v’ < 0.

A policy u* is said to be a Pareto policy (or Pareto optimal) if there is no policy u such that
J(u) < J(u*), and similarly for weak or proper Pareto policies.
Problem Formulation. Let

J* = inf J'(u)

uelU
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and define the utopia minimum as J* = (J'*, ..., J™) (infeasible in general), then the resulting

problem is to find the values of
A" = arg mm Z NI u

in order to find the strong Nash equilibrium u*(\) whose cost vector J(u*(\)) is the “closest”
to J* in the usual Euclidean norm. Let ||.|| be the Euclidean norm in R" and let o : D — R

be the map defined as
o(u) = [[J(u) = J7

J* is also known as the utopian or the ideal or the shadow minimum [91} 92]. This is a utility
function (or a strongly monotonically increasing function [42]) for the Markov chains game in
the sense that if v and v’ are such that J(u) < J(u'), then o(u) < o(u').

A policy u* is said to be strong Pareto optimal (or a strong Pareto policy) if it minimizes
the function p that is,

o(u”) = inf {o(u) | u" € D} = ¢

As p is a utility function, it is clear that a strong Pareto policy is Pareto optimal, but of course

the converse is not true.

3.3 The strong L,—Nash equilibrium

Consider a game with N' = {1,...,n} players with strategies u' € U’ (l = 1,_11) where U
is a convex and compact set. Denote by v = (u!,...,u")" € U the joint strategy of the players

and u! is a strategy of the rest of the players adjoint to u’, namely,

ul = (ul,...,ul_l,ul“,...,u” cU = ® um
m=1, m#l
such that u = (u!, ) (I = T,n).

Players try to reach the one of Nash equilibria, that is, to find a joint strategy u* =

»\ /P
) (3.1

(ul*,...,u™) € U satisfying for any admissible u' € U' and any [ = 1,n

G, (u,d (Z‘(ﬁ% o (v ul)) — @i (ul,ui>
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where 4(u) = (u'7,..,u*T)T € U C R*™D and p > 1[92, OT]. Here ¢, (u u) is the
cost-function of the player [ which plays the strategy u' € U’ and the rest of the players the
strategy ul e U

If we consider the utopia point

l l

U = arg minl Vv <u ,ui> 3.2)
then, we can rewrite eq. (3.1)) as follows

uteU
A 1/p
GLP L1 <Z ’gpl (u u) — (ul,ul> p)

The functions ¢, (ul u ) (l =1 n) are assumed to be convex in all their arguments.

Remark 3.3 The function G, (u,u(u)) satisfies the Nash property

@1 (ﬂl,ui) — @ (ul,ui) <0 (3.3)

foranyu! € Uland alll =1,n

Remark 3.4 Following restrictions and (2.8), the set U admissible (Uyuy) is defined as
follows

Uadm = C;d -x C"

adm

Definition 3.5 A strategy u* € U,y is said to be a L,—Nash equilibrium if

ur,, € Arg min {Gpr, (u,d(w))}

UEUum

Remark 3.6 If G, (u,u(u)) is strictly convex then

uy, = arg min {GLP (U,ﬁ(u))}

ue Uadm

Definition 3.7 A strategy u™* € Uy is said to be a strong L,—Nash equilibrium if

up, €Arg min o {Gr, (uw(N), d(u,\)}

UEUgm,\E

where

1/p
p
) (3.4

G, (w(A), alu, A) := (i N ‘Sﬁl (ﬂl, ui> — @ (ul, ui>
=1
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Remark 3.8 If G, (u()),4(u, N)) is strictly convex then

up, = arg min {Gr, (w(N),a(u, \))}

uEUade\ES“
3.3.1 The strong Nash equilibrium for norms 7,; and L-

If ¢, (ul, ui> =y (ﬂl, u[> in eq. , then u' achieves the minimum of J(u) giving the
optimal solution to each player /. But such cases are rarely and hardly ever take place. Then,
players choose a strategy that minimizes the distance from ¢, (ul, uz> to ¢; (a’, u[> where @'
satisfies the utopia (3.2), this corresponds to the strong Nash equilibrium. That is, no other
strategy produces a smaller total expected loss in the sense of the distance given by eq. (3.4).
This means that there exists an optimal solution ' that is a strong Pareto optimal solution and
it is the closest solution to the utopia point '

To find the strong L,-Nash equilibrium (Definition[3.7) of this minimization L,-norm prob-

lem, we propose the following solutions:

Definition 3.9 The strong L,-Nash equilibrium uy’ € U can be expressed for Ly norm as

follows

upt = arg ueg,l,i\gsn Gr, (u(X),a(u, X))

G, (u(N) i, N)) = ZZ N i (at,) = ()

%) (ﬂl,ul) = min ¢y (zl,u[>

el

Definition 3.10 The strong Ly-Nash equilibrium vy’ € U can be expressed for Ly norm as

follows

upt = arg ueg,l,i\relsn Gr, (u(X),a(u, \))

2) 1/2

G, (u(A), @(u, X)) := (lilkl ’901 <ﬂl,ui> — @ <ul,ui>

%) (ﬂl,ul) = min ¢y (zl,u[>

el
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Applying the Lagrange principle (see, for example, [76]) for Definitions [3.9]and [3.10] we
may conclude
uyt = arg min max Ls(u, u(u), A, §)
P uel,a(u)el, esm €20
(3.5

L3 0 ©) = Gy (N 1) + 32 5 el $ 373 (€)°

1j=1

—~

where

n 1/p
GMM&WMW{ZMMWJ%WWMW>+QM%WMHMW

Now, the function G’z 5 (u(X), @(u, X)) is strictly convex if the Hessian matrix is positive

semi-definite, then G, 5 (u(\), 4(u, A)) attains a minimum at (u(X), 4(u, A)) if

V2G5 (u(A), d(u, A)) =

G (W), a(w, X)) - gl Gr, s (u(N), alu, A)
au?;ul GL,,,(S (U(A)’ ﬂ(u, )\)) T 8u?(;un GLp:5 (U(A)7 a(“? )‘)) =
| 6u?2u1 Gr,s (u(A), @, A)) - (331)2 GL,s (u(A), @(u, A)) ]
0nyxny,  DGia(tra) -+ DGin(lyn)
DG (tig,) 0Ly sy -+ DGsa(l32)
>0
I DGsq(us1) DGsa(tss) - O S |

or, equivalently, 6 should provide the inequality

min _ [Apin (V?Gr, 5 (u(N), @(u, N)))] >0

uwel,aelU

where A, is the minimum eigenvalue. Here, 1, is independent of u® and u®), that is,

o = 9
muik = 0 and muzk =0.
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With sufficiently large 9, the considered functions provide the uniqueness of the conditional
optimization problem (3.5]). Notice also that the Lagrange function in (3.5) satisfies the saddle-

point condition [[75], namely, forall u € U, u € U , A € S"and £ > 0 we have
Ls(uz, w5(w), Aj, &) <Ls(ug, t5(w), As, &) <Ls(us, Us(w), As, &)
3.3.2 Strong L.,,—Nash equilibrium

Definition 3.11 The strong Nash equilibrium u** € U can be expressed for L., as follows

up, €arg min G, (u(), 4(u; 1))

G, (), i, X)) = mae [N [ () = o ()|

) (ﬂl,u[) = min ¢y (zl,u[>

et

That implies
‘)‘l [‘Pl (Ulaui) — ¥ <UZ,U[)” <t, t — min

t,u, i

Then, applying the Lagrange principle we have
L(t,u,u(u), \,0) : =t+ ZQZ (‘/\l [gol (ﬂl,ui> — (ul,uiﬂ ‘ — t)
=1
i (g ED (YEICRORRICRUI)
=1 =1
It has a minimum if and only if # belongs to the simplex, i.e., § € S"

S%:{@eRn:eemu,§:¢:1}
=1

Then, the L.,-norm problem is reduced to the form

N _ AN A ) .
B0, = 30 ¥ o (o) = (0| =
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Remark 3.12 Applying the Lagrange principle for Definition [3.11} we may conclude that eq.

(3-3) can be rewritten as follows

u, = ar min max_ Ls(u, u(u),\ €, 60
o gUEUvﬁ(u)eU,/\eSn £>0,0e8" it (u),A,€,0)
(3.6)
~ R n N 1 s hn N o
Ls(u,u(u), A, &, 0) :== Ls(u, u(u), A\, 0) + IZ Zlfjhj(c) _ 5; Zl (5]-)
=1J= =1j=

where

Lo(w )0 8) = 326 N [ () = ()] |+ (al+ ) -+ 12— )

=1
3.4 The proximal format

In the proximal format (see [5]) the relation (3.5]) can be expressed as
5 = arg max {=3l€ = &I +vLs(uz, a5(u), A5, €) }

u; = argglei(r]l {%”u - UEHQ + ’yﬁ(g(u,ﬁg(u), )‘gvfg)}
(3.7)
a3(u) = argmin { 3{|a(u) — a5(w)[|* +vLs(uz, a(u), A5, &) }

uelU
As = arg min {5 [|A = A51* + 7L (5, @5(w), A, &) }
Given the proximal format for the L.,-norm problem will be extended with the fol-
lowing equation

05 = argmax { —3 |0 — 03* +7L(uj, @5(u), 15, €5.0)}

where the solutions uj, @j(u), A}, 05 and £ depend on the parameters J,y > 0.

3.5 The extraproximal method

The Extraproximal Method for the conditional optimization problems (3.5) was suggested
by Antipin [5]. The general format iterative version (n = 0, 1, ...) of the extraproximal method
with some fixed admissible initial values (uy € U, tug(u) € U, X\ € [0,1], and & > 0) is as

follows
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1. The first half-step (prediction):

gn: arg Ignz%l {%Hg - €n||2_’7£5(u7w ,an<u)7 A'n,? 5)}

U= arg Iqulerl {3l = un|l? + vLs(u, tn(u), A, &) }

(3.8)
Un(u) = arg min {3llaw) — a, (W) +7Ls(wn, alu), A, &) }
ue
A= arg min {51 = Aul*+7Ls (1, i (0), A60) }
2. The second half-step (basic)
Ener=argmin {3ln — g1, [ =7 L5 (1, (). M ) }
= argmin {3u — w2 + 7 Ls(u, Tu(u), 3, E,)}

(3.9

@41 (w) = arg min {lla(u) =, (@)P+yLs(an, @(u), A, €,) }

ue

>\n+1: arg ?elgl‘ {%H)‘ - /\n‘|2+7£6(ﬂn7 5n(u)a )‘7 gn>}
Then, given the extraproximal method will be extended with the following equations
1. The first half-step (prediction):

én: arg grelg} {%“0 - 0n||2_’7£5<una ﬁ'n(u)v )‘na gnae)}

2. The second half-step (basic)

en—i-l: arg grelg& {%He - 9n||2_7£5(ﬂnaan(u)75\na Snvg)}

3.6 Convergence analysis

The following theorem presents the convergence conditions of (3.8] - [3.9) and gives the
estimate of its rate of convergence for the L,— Nash equilibrium and the strong L,— Nash
equilibrium. As well, we prove that the extraproximal method converges to an equilibrium
point. Let us define the following extended vectors

u

eU=UxUxRt, z=¢eZ:=R*t

gz
I
>

>~
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Then, the regularized Lagrange function can be expressed as

Ls(t, 2) == Ls(us, Us, As, §s)
The equilibrium point that satisfies can be expressed as
iy = arg min {%Hﬂ — 3|* Lo (a, 53‘)}
& = argmax {—%Ilf — [P+ Ls (5, 5)}

Now, introducing the following variables

w=| " |eUxZ o=| |eUxZ

Wo (%

and let define the Lagrangian in term of the previous variables

Ls(,9) := Ls(t01, D) — Ls(0y, 02)
For w, = u, we = z, U1 = 0] = 4} and Uy = U5 = Z; we have

Ls(w,0%) == Ls(a, ;) — Ls(1}, 2)
In these variables the relation (3.7) can be represented as follows

v*=arg min_{1i||@ — "||*+yLs(w,7")} (3.10)
welUxZ

Finally, we have that the extraproximal method can be expressed by

1. First step

bp=arg min_{i||w — 9, |*+vLs(w,?,)} (3.11)
welUxZ
2. Second step
Uppr=arg min_{i||l& — o, ||*+vLs(0,9,)} (3.12)
welUxZ

Once the proximal and extraproximal method has been defined in terms of these new vari-

ables, we can follow the convergence theorems and proofs presented in Appendix
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3.7 Numerical example

Consider a Nash game with 3 players. Let the number of states N = 4 and the actions

M = 2 for each player. Then, the transition matrices for each player be defined as follows

[0.9535  0.0055

0.0289]

[0.2081

0.0120 0.0405
X 03971 0.2711 0.3097 0.0221] 0.3522 0.2399 0.1467 0.2612
T090= 0 0778 00300 0.0431 08482 PP 0.0882 0.7087 0.1557 0.0474
0.9398 0.0485 0.0095 0.0022] 0.2406 0.1503 0.3903 02189
07543 0.2206 0.0162 0.0089 | (02809 0.3226 0.3149 0.0815]
L [01495 02011 02547 03547)  , |0.9456 00091 00409 0.0014
C2U= 100076 01221 00527 08176]  7PT [0.0495 0.3111 0.2543 0.3851
03773 0.3154 0.0372 02701 0.2649 0.0207 0.2508 0.4547 |
01368 0.3923 0.0525 0.4184) 01888 0.2770 0.2159 0.3184]
L [00%98 03454 03366 02582, 02945 03463 01538 02054
C2U= 101450 03711 01858 0.2981]  7PT 0.0504 0.2463 0.3467 0.3566
04365 0.4967 0.0350 0.0318] 0.3766 0.2250 0.2691 0.1292]
The individual utility for each player is defined by

7 17 3 55 0 17 9 11] (5 8 7 8

o - 110 6 7 v 017 9 7 v 1 4 3 5

PV 16 17 4 P00 11 12 4 POy 6 17 1

0 15 9 1] 0 15 11 1] 12 0 7 3]

37 6 8 3] (10 18 80 9] (9 13 7 9]

G = 4 10 8 6 . 4 5 1 3 02 5 0 70 4

4 6 8 10 4 6 7 0 11 2 19 6

2 5 9 0 12 7 8 o 3 10 14 5]

Applying the extraproximal method for Markov chains: For L, —norm the resulting strate-

gies c(; x) for each player (see Figures[3.1}[3.2]and 3.3) are as follows

0.3335 0.3279]
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—0.4272

0.0050]
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(0.0894  0.0856)

0.1737 0.1963]
1 0.1012 0.0856 9 0.1935 0.0050 5 0.3310 0.0050
Cc = ct = c’ =
0.0878 0.1330 0.0453 0.0838 0.1332 0.1055
_0.0050 0.2174_ _0.0602 0.1801_ _0.1084 0.1419_
As well Figure [3.4]shows the convergence of the parameter A
0.3691
M= | 0.2843
0.3467
0.25
e'(1,1) | 11| ]
0.2+ e'(2,1) |4 &(2,1)
—c'31)_| —_—2(31)
c'(4.1) c*(4,1)
0.15 e'(1,2) i &*(1,2)
¢'(2,2) (2.2)]
0.1 c'(3,2) 3.2
ez c2(4.2)
0.05
] 10 20 30 40 50 10 20 30 40 50
Time (n) Time (n)

Figure 3.1 Strategies for Player 1, norm p = 2.

03f e (1,1)] 1
z)
0.25 63[3.1} 1
0.2 sz'ﬂ 1
e (1.2)
0.15 o)
Si3.2)H
0.1 c*4.2) [
0.05
o - . . .
20 30 40 50
Time (n)

Figure 3.3 Strategies for Player 3, norm p = 2.

Figure 3.2 Strategies for Player 2, norm p = 2.

041

0.35

0.3

0.25 : ; :
20 30 40
Time (n)

50

=
= |
=

Figure 3.4 Convergence of \!, norm p = 2.
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Then, applying (2.6) the strategies needed to converge to a strong Nash equilibrium are as

follows:
0.4693  0.5307] (0.9884  0.0116] (0.5100 0.4891
0.5416 0.4584 0.9748  0.0252 0.9851 0.0149
dl = &2 = & =
0.3977 0.6023 0.3506 0.6494 05579 0.4421
00225 09775 02504 07496 04330 05670

Finally, the resulting individual utilities are as follows:

J' =48.9213
J? = 22.1660
J? = 22.6872

For L., —norm the strategies c(;) for the players (see Figures [3.5 [3.6] and are as

follows:
0.1669 0.2082 0.4278 0.0050 0.0860 0.0887
0.1004 0.0863 0.1940 0.0050 0.3293 0.0050
ct = = 3 =
0.0837 0.1350 0.0456 0.0828 0.1285 0.1120
100177 0.2018 ] 10.0622 0.1775 0.1062  0.1443 |
0.25 . . . :
K; c'(1,1) S|
0.2 H ¢z H cf[z.r}
//7 <31y @) |
[ ¢ 1) f4,1)
0.15 izl €(12)
—c'22) c(22) | 5
0.1 c'i3.2) H (3,2}
c'4.2) [ cid.2)
0.05
%0 10 20 2 40 50 60 30 40 50 60
Time (n) Time (n)
Figure 3.5 Strategies for Player 1, norm p = oc. Figure 3.6 Strategies for Player 2, norm p = oo.

As well Figures [3.8]and 3.9 show the convergence of the parameter A and 6.

0.3981 0.2869
M= 02475 | 6'=] 0.3817
0.3544 0.3314
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Figure 3.7 Strategies for Player 3, norm p = oo.
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Time (n) Time (n)
Figure 3.8 Convergence of )\, norm p = oo. Figure 3.9 Convergence of 6, norm p = co.

Then, applying (2.6) the strategies needed to converge to a strong Nash equilibrium are as

follows:
[0.4450  0.5550] (0.9884 0.0116] (0.4921  0.5079]
05378 0.4622 0.9749 0.0251 0.9850 0.0150
dlZ d2: d3:
0.3827 0.6173 0.3553  0.6447 0.5344  0.4656
0.0805 0.9195 | 02595 0.7405) 04239 05761

Then, the resulting individual utilities are as follows:

J' = 54.2461, J? =19.3209, J3 = 23.4588

Remark 3.13 In order to demonstrate the effectiveness of the solution we prove that G, =

41598 < G, = 5.0202






Chapter 4
The Strong L,—Stackelberg game

4.1 Introduction

The notion of collaboration implies that related players interact with each other looking for
cooperative stability. This notion consents players to select optimal strategies and to condition
their own behavior on the behavior of others in a strategic forward-looking manner. This
chapter examines the formation of coalitions within a class of hierarchical problems called
Stackelberg games [89]. The complexity analysis of the Stackelberg equilibrium plays a central
role in game theory and it has been analyzed to determine whether the concept is reasonable
from a computational point of view.

Stackelberg games are usually represented by a leader-follower problem which corresponds
to a bi-level programming problem. In bi-level programming problems there are two competing
decision-making parties [[10]: a) one is upper-level decision makers and, b) the other is lower-
level decision makers. The two levels interact with each other as follows. The lower-level is
completely restricted by the upper-level’s decision and for each decision made by the upper-
level, the lower-level will choose the best option according to their objectives. Instead, the
upper-level objectives are restricted from below by the lower-level: the upper-level controls
the lower-level’s decision in the way that the lower-level will react by choosing the best option.

In a Stackelberg game, the leader’s optimization problem is represented by the upper-level,
restricted by the follower’s optimization mission at the lower-level. The dynamics of a Stack-

elberg game is as follows: the leader considers the best-reply of the follower. Then, he/she
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commits to a mixed strategy (a probability distribution over deterministic schedules) that min-
imizes the cost, anticipating the predicted best-reply of the follower. Then, taking into the
account the adversary’s mixed strategy selection, the follower in equilibrium selects the ex-
pected best-reply that minimizes the cost (maximizes the utility).

Bi-level programming models have vast theoretical studies and applications in the real
world. The traditional methods employed to solve these problems include penalty functions
[1], the Karush-Kuhn-Tucker method [13, 37] and branch-and-bound procedures [[11]. Appli-
cations were presented into the security domain by ([20, [86]) suggesting an upper-level that
represents defenders trying to minimize risk and a lower-level that represents attackers try-
ing maximizing destruction for a given target. There are several applications implemented in
different areas: transportation, agriculture, network, management.

This chapter presents an approach for computing the strong Stackelberg/Nash equilibrium
for Markov chains games [[100, 97]]. The cooperative n-leaders and m-followers Markov game
is solved considering the minimization of the L,-norm. The existence of the L,-Stackelberg/Nash
equilibrium is characterized as a strong Pareto policy, which is the closest in the Euclidean
norm to the virtual minimum (utopia point). Then, the optimization problem is reduced to find
a Pareto optimal solution. A bi-level programming model implemented by the extraproximal
optimization approach is designed for computing the static strong Stackelberg/Nash equilib-
rium. We design the method for the static strong Stackelberg/Nash game in terms of non-
linear programming problems implementing the regularized Lagrange principle to ensure the
convergence of the cost-functions to a unique strong L, —Stackelberg/Nash equilibrium. We
formulate the nonlinear programming problem considering several linear constraints employ-
ing the c-variable method. The proposed method approaches in exponential time to a strong
L,—Stackelberg/Nash equilibrium. The usefulness of the proposed solution is proved theo-
retically and by an application example related to the effectiveness of relationship marketing

strategies within the department store sector of the retail industry (supermarkets).
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4.2 The strong Stackelberg/Nash game
Let us introduce the variables
v =col (¢"), V" :=Cn, V= ® v

for m = 1, m, where col is the column operator. Consider a Stackelberg game with N =
{1, ...,n} leaders whose strategies are denoted by ul e U (l = L_n) where U is a convex and
compact set. Denote by u = (u',...,u")" € U the joint strategy of the players and ulis a

strategy of the rest of the leaders adjoint to u!, namely,

u = (ul,...,ul_l,ul“,...,u” cU = ® Ut
h=1, hs#l

such that u = (u!,u!) (I =1,n). As well, consider M = {1, ..., m} followers with strategies
vm e vm (m =1, m) and V is also a convex and compact set. Denote by v = (v!,...,0™) € V
the joint strategy of the followers and v is a strategy of the rest of the followers adjoint to v™,

namely,

m
A~ _ T A~
o™= (v o ™) e V= ® Ve
q=1, g#m

such that v = (v™,v™) (m = 1,m).

4.2.1 The strong Nash equilibria

Following the concepts presented in Chapter 3. In the dynamics of the game leaders play
cooperatively and they are assumed to anticipate the reactions of the followers trying to reach
the strong Nash equilibria. For reaching the goal of the game leaders first try to find a joint

strategy u* = (u'*,...,u™) € U satisfying for any admissible u' € U' and any [ = 1,1

G, (. (lewl@ i) - (ul,uf>p>1/p

where i(u) = (u!7, ..., u"T)T € U C R and @ is the utopia point 1) Here ¢, (ul, ui>

is the cost-function of the leader [ which plays the strategy u! € U’ and the rest of the leaders

play the strategy ul € U, these functions are assumed to be convex in all their arguments.
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Condition 4.1 The function G, (u, u(u)) satisfies the Nash condition

o () ()] =0

=1

=1

foranyu' € Ul and all | = 1,n.

As well, in this process the followers try to reach one of the strong Nash equilibria trying
to find a joint strategy v* = (v* ..., v™) € V satisfying for any admissible v™ € V"™ and any

m=1m

1/p
Fr, (v, 0 (Z‘)m!% (0", 0™) = tom (v, 0 )|p>

where 6(v) = (v1T,...,0"T)T € V C R™™1 and 5™ is defined as the utopia point (3.2). Here
U (vm, vm) is the cost-function of the follower m which plays the strategy v € V" and the
rest of the followers play the strategy v € V', these functions are assumed to be convex in

all their arguments.

Condition 4.2 The function Fy, (v, 0(v)) satisfies the Nash condition

i i (0 0] <0

m=1

for any v™ € V™ and all m = 1, m.

4.2.2 The Stackelberg game

Leaders and followers together are in a Stackelberg game: the model involves two cooper-

ative Nash games restricted by a Stackelberg game defined as follows.

Definition 4.3 A game with n leaders and m followers said to be a cooperatively Stackelberg-

Nash game if

| 1/p
G, (). i, Vo) 1= (Z M (8 dlv) o (u' o) r)

given \ € 8" such that

o000 = 3 [ (1) < o ()] <

=1
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and for the followers,

m 1/p
fr, (W(0),0(v,0)|u) = (Z o™ ‘@bm (ﬁm, vm]u) — U (vm,vm\u) ‘p) 4.1)
m=1
where 6 € S™.

Remark 4.4 In the case of the bi-level approach introduced in Definition we employ the
restriction fr,, (v(6),0(v,0)u) in for ensuring the followers play cooperatively.

Definition 4.5 Let G, (u()\), @(u, A)|v) be the cost functions of the leaders (I =1,n). A
strategy u* € U of the leaders together with the collection v* € V of the followers is said to

be a cooperatively Stackelberg-Nash equilibrium if

(u*,v*) € Arg min min min max max max
uelU g(u)elU AeS™ vEV §j(v)eV 0eS™

{Gr, (V) i(u, M) | g (uaw)lv) <0, fr, (v(A), (v, A)|u) < 0}

Remark 4.6 If G, (u(\), @(u, \)|v) is strictly convex then

(u*,v*) = arg min min min max max max
uelU g(u)elU AeS™ vEV p(v)eV 0€S™

{GL, (u(), (u, M) | g (u, @(u)lv) <0, f, (v(6),0(v,0)]u) <0}

Applying the Lagrange principle we may conclude that Definition 4.5/ can be rewritten as

(u*,v*) € Arg min min min max max max max max L(u,u(u),v,0(v),\,8,w,§)
wel q(u)eU AeS™ veV pv)ev 0e8™ w20 £20

where
L(u,u(u),v,0(v), A\, 0,w, &) :=

G, (u(A), @(u, A) [ v) + wg (u, a(u) | v) + & fr, (0(0),0(v,0) | )

The approximative solution obtained by the Tikhonov’s regularization is given by

(u*,v*) = arg min min min max max max max max Ls(u, u(u),v,0(v),\, 0, w,§)
uelU g(u)eU AeS™ veV pp)ev 0€8™ w20 £20
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such that

Ls(u, a(u),v,0(0), A, 0,w,€) = G, 5 (u(A), a(u, A) [ 0) + wgs (u, a(u) [ v) +
4.2)

Ef1,6 (V(0), 0(v,0) | w) — §(w® + &2)

where

P\ /P
) ;

e (ol [0) = (ulud [o) | + 8 (lul” + law) )

G, s (u(N), i, ) | v) = (l; N ‘w (az’ dl | v) — o (uz’ dl | v>

5 (lal® + lla)I” + IAI)

Q
>
=
£
—
£
=
|
(7=
—

Now, the function Gy (u, u(u) | v) is strictly convex if the Hessian matrix is positive semi-

definite, then G (u, w(u)'| v) attains a minimum at (u, 4(u) | v) if

0Ly xny DG12(U12) ... DGyn(tyn)
DGy (4 Olnysns - DGys(il
V2G5 (u, a(u)|v) = 21(21) x 3,2(U32) -
i DGz i(tz1) DGsaltiz) - 0lnyxn,

or, equivalently, ¢ should provide the inequality

min _ [Apin (V2G5 (u, @(u)[v))] >0

uel,ael
Here, 4, is independent of u® and u®, that is, %ﬁik = 0and %ﬁik = 0. As well as, the
function f5 (v, v(v)|u) is strictly concave if the Hessian matrix is negative semi-definite, then
fs (v, 0(v)|u) attains a maximum at (v, 0(v)|u) if
hax, [Amax (V25 (v, 0(v)[u))] <0
With sufficiently large d, the considered functions provide the uniqueness of the conditional

optimization problem (#.2). Notice also that the Lagrange function (4.2) satisfies the saddle-
point condition, namely, for all u € U, 4 € U, veV, ow) e V,Ae S 0e 8™ w>0and
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& > 0 we have
Ls(ug, 5(u), v, 05(v), A5, 05, ws, £) < Lo (u5, U5 (), v5, 05(v), A3, 05, w5, 65) <
Ls(us, ds(u), v5,05(v), As, 05, w5, &)
4.3 The proximal format
In the proximal format the relation (#.2)) can be expressed as
wp = argmax { —llw — will* + v Ls(us, @5 (w), v, 05 (0), A3, 0, w5, ) }
& = argmanc {316 = &1 + 7La(u, 3 (1), 05, 95(0), 45 65,15 €5))
uj = argmin {3l — uj|* + 5 Ls(us, @5 (), v3, 55(0), A5, 65,5, €) }
i = avgmin {3l — a5[1° + yLs(u5, s(u), 05, 55(0), X5, 65,5, 65)}
(4.3)
vF = arg max {=3llv = w31 + Lo (us, a5 (w), vs, 05 (v), Ay, 05, w5, ) }
05 = argmax { =310 — 5 |1* + yLs(us, @5(w), 03, 05(0), X5, 65,5, 6)}
A5 = arg min {3IIA = NP + v Lo (g, a5 (), v5, 95 (v), As, 05, w5, &5 }
05 = arg max {3110 = O511* + vLs(up, 05 (u), v, 05(v), A5, 05, w3, 5 }

where the solutions u}, 43 (u), v§, 05 (v), A5, 05, wi and & depend on the parameters o,y > 0.

4.4 The Extraproximal method

We design the extraproximal method for the static Stackelberg-Nash game in a general for-
mat iterative version (n = 0, 1, ...) with some fixed admissible initial values (ug € U, 1o € U,

vo €V, 09 € V, wo > 0,& >0, \g € S"and 0y € S™) as follows:
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1. The first half-step (prediction):
w, = arg {Iulzlgl {%Hw — wnll* = VL5 (U, T (1), Vs D0 (V) Ay Oy w0, En)}
& = arg min {311€ = &all* = VL5 (tn, U (1), Vny 0 (0), A O O, €) }
U, = arg ELHEIIIJI {3llu = un|® + vLs(w, G (w), Vo, 00 (V), Any by Dy En) }

Up = argmilfl {%Ha - ﬂnHZ + ’755(11%’ a(u)7vn7ﬁn(v)> /\n7 9717@7”571)}
aelU

4.4)
U, = arg Ivrél‘gl {31lv = vall? = VLo (tn, tin(w), v, 00 (v), Any Oy G, &) }
0, = arg 11161‘1/1 {3119 = 0,112 = Lo (un, W (), vy, D(V), A, Oy @0, &) }
A\, = arg irelg}V {31 = Xl + L5 (wn, U (W), Ony 00 (), A, O G, &) }
0, = arg glg‘lsI]lV {%HG — Onll? = VL5 (Un, Un (1), Uy, O (V) Ay, Q,cvn,gn)}
2. The second half-step (basic):
Wpy1 = arg glzlg {%Hw — wn||? = VL5 (T n (1), T, 0 (V) A, Q_n,w,gn)}
§nt1 = argmin {311€ = &all® = VL5 ln (), Ty 0 (0), Ay O, s ) }
Uy = argrqui[rjl {3lu = wn|® + Lo (w0 (), Uy, 00 (), Ay Oy 0, E) }
ny1 = aIg I0ID {3110 = @nl? + Lo (T, (W), Uny0(0), Ay O, Oy En) }
4.5)

Up41 = arg rvrél‘r/l {%HU - UnHQ - Vﬁﬁ(ﬂn:an(u)a v,f)n(v), )\na éna (Dn: gn)}

On+1 = argmin {3110 = 0nl* = ALs(tn,Tn (), B, 0(0), A, O, O, En) }
ve

>\n+1 = arg irelg}\’ {%H)\ - /\nH2 + 'yﬁ(;(ﬂn,ﬁn(u), En,gn(v),)\, Qn, W, gn)}

Ony1 = arg ?;}gr}v {3110 — 0,1 — YL (Tl (1), Ty 0 (V) A 0,0, &) }
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4.5 Convergence analysis

61

The following theorem presents the convergence conditions of (4.4) - (4.5) and gives the

estimate of its rate of convergence for the strong L,— Stackelberg/Nash equilibrium. As well,

it is proved that the extraproximal method converges to an equilibrium point.

Let us define the following extended vectors

v

U v

a=| a | eU=UxUxR z=]| ¢
A 3

w

Then, the regularized Lagrange function can be expressed as

Ls(a,2) = Ls(us, s, vs, Vs, As, 05, §5, ws)
The equilibrium point that satisfies can be expressed as
iy = argmin { 312 — 53] *4+£5(2. %) |
5 = argmax { —112 — 3 |*+7Ls(a5, 2) |
Now, introducing the following variables
W= g eUxZ, o= ’ ceUxZ

Wa Vg
and let define the Lagrangian in term of the previous variables

L(;(UNJ, ’lNJ) = E(s(UNJh 62) - Lg(f)l, Ibg)
For w, = u, Wy = z, U1 = 0] = 4} and Uy = U5 = z; we have

L(;(ﬁ), @*) = ﬁg(’&, 5;) — ﬁg(sz, 5)
In these variables the relation (4.3)) can be represented by

0" =arg min_{3l@ —0"[]* + yLs(w,7") }
welUxZ

Finally, we have that the extraproximal method can be expressed by

€ Z:=V xV xR"xR" x RT

(4.6)
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1. First step

b, = arg min_{1[|@ — 0,|]* + yLs (w0, 0,) } 4.7)
welxZ
2. Second step
Busr = arg min_ {3l — 5| + vLs(, 0,)} (48)
welxZ

Theorem 4.7 (Convergence and Rate of Convergence) Ler L;s(ii, Z) be differentiable in i
and z, whose partial derivative with respect to z satisfies the Lipschitz condition with positive

constant C'. Then, for some ¢ and

n
C(l) = E C()’l < nmaXC’O,l = IlCéJr
=1

I=1n
and

m
Ci' =Y Com < mmaxCy, = mCy™"

1 m=1m

there exists a small-enough

Yo = ’}/0(5) < (C:=

S @) ()
max | min \/§Cé+ﬂ7 Q(C(l)+)2l‘l 7m1n \/506”+m’ 2(06n+>2m

such that, for any 0 < v < o, sequence {0, }, which generated by the equivalent extraproximal

procedure (@) - (@, monotonically converges with exponential rate q € (0,1) to a unique
equilibrium point v*, i.e.,

5 — &71* < €™ ||5p — 7|

where
4(67)?
=1 — 20y <1
1= T T a5y — 2
and Qi 1s given by
207y 1

min = 1 — = .
¢ 1426y 1+ 20y

For the proof, follow the convergence theorems and proofs presented in Appendix
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4.6 Application examples
4.6.1 The pursuit problem

The pursuit evasion problem is among the oldest and most elegant problems in game theory.
In our case, the game involves two pursuers whose goal is to capture two evaders, whose goal
is to avoid capture. Capture is occurring when a pursuer occupies the same position as a prey.

The following are fixed assumptions:

1. There are two evaders (m = 1, 2) and two pursuers ([ = 1, 2).

2. For each time n € N, the evaders (and pursuers) jump from state a s™(n) to s™(n + 1)
(s'(n) to s'(n + 1)), a point within the Manhattan distance (just adjacent points are

allowed).
3. The pursuers win the game if they occupy the same position as preys.
4. When a pursuer captures a prey, the pursuer continues in the game.

5. Each pursuer has no information about the current position of the evader, however strate-

gically evaders and pursuers cooperate with themselves.

The principal result of the realization is to show that the pursuers’ strategies win the game,
regardless of evader strategy. Our choice for selecting a strategy is given by the Max Entropy
[75] H = d{}; log d{j, ;) between the computed distribution d,,) and the optimal distribution

dl(’,;l 0 This approach can be expressed as
1%
Ageriy = Ok (i).0)
where d(-(),5) is the Kronecker symbol, k* (¢) is an index for which

k*(i) = max H
keM

Similarly, we have a starting point for the evaders with a stationary Markov policy given by

equation 1b and a Max Entropy given by H = d?ﬁz) log d?;fi).
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The capture condition at time n is determined by the fact that a pursuer and a evader are

located at the same state and can be formalized mathematically as follows:

Z [X(oz : sl(n) =55 As"(n) = s(j))] = Z [X(a : sl(n) = 5(j)) x(a: 8™(n) = s(j))}

Jj=1 J
where o € () is a trajectory. Now, the capture event of all the attackers is given by

n m N

DTS Il s'(n) = s) x(a: s (n) = s()]

1=1 m=1 j=1
A fixed Markov transition matrix ;) is given. Then, the state transitions induced by the
strategy d?k*l ;) are governed by the conditional probability law for pursuers and evaders as

follows
M

M
1% _ ! 153 mx _ m m*
TG (d) = Y Wi Do G (d) = > i di)
k=1 k=1

Let N =4, M = 2. The individual utility for each player are defined by

70 17 30 55 (37 6 8 3

19 1 100 6 40 10 0 17
U(li‘l): J(lz'ﬂ):
o 20 60 16 17 7 4 6 43 10
[0 15 15 30 0 2 15 100
(0 17 9 11 (5 20 12 0]
13 4 0 17 9 16 54 29
Toan = g =
o 9 0 11 46 ” 4 1 4 0
9 0 25 11 9 16 42 0
(9 13 70 9] (50 6 9 10]
13 5 0 70 0 16 59 1
R = Rsn=
7 11 2 16 19 ” 16 48 2 9
16 49 3 10 110 46 28 9 |
(17 7 13 5] 30 0 18 23
19 43 11 0 14 10 28 16
Tign = s =
o 1 16 20 6 o 4 0 14 6
27 4 0 25 4 8 9 15
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The transition matrices for each player are defined as follows

(0.6144 03856 0 0 | (0.5535 0.4465 0 0 |
. 0.4061 0.2772 03167 0 . 0.7197 0.1596 0.1207 0
> 0 01208 0.1688 0.7104| 0 0.6374 0.1401 0.2225
0 0 0.7696 0.2304] 0 0 06407 0.3593]
(06420 03580 0 0 | (0.7040 0.2960 0 0 |
L, |02317 03736 03047 0 |, 04417 01015 04568 0
(21 0 3269 01621 05110| P 0  0.3273 0.2675 0.4052
0 0 01211 0.8789)] 0 0 0.3555 0.6445)
(0.3341 0.6659 0 0 | 0.4053 0.5947 0 0 |
,_|01s0s 04103 03099 0 | |03706 04358 01936 0
(21 0 04340 02173 0.3487| 0 0  0.6393 0.1778 0.1829
0 0 0.5240 0.4760] 0 0 0.6756 0.3244]
(06299 03701 0 0 | 02267 0.7733 0 0 |
. |02032 05345 00723 0 | 02195 05162 02643 0
(21 0 02800 05336 0.1864| 77 0 0.2081 0.6278 0.1641
0 0 04102 0.5808] 0 0 5328 0.4672]

Given 4 and v and applying the extraproximal method we obtain the convergence of the
strategies in terms of the variable c(; 1) for the pursuers (see Figures and and for the
evaders (see Figures 4.3|and 4.4). In addition, Figures4.5]and [4.6] show the convergence of the
parameters £ and w.

With final values A\! = 0.77 and A\? = 0.23 for the leaders (pursuers) (see Figure , the

mixed strategies obtained for all the players are as follows

0.9741 0.0259 0.4627 0.5373
0.9722 0.0278 0.2462 0.7538
dl — d? —
0.0543 0.9457 0.5897 0.4103

10.1438  0.8562 10.3923  0.6077
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— i ||
“ete)
....... S

a1
—e— 1o

r s

RIR))
— Mz

—=— A

40 45 50
Time (n) Time {n)

Figure 4.3 Strategies for evader 1. Figure 4.4 Strategies for evader 2.
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Figure 4.5 Convergence of the parameter €. Figure 4.6 Convergence of the parameter w.
0.9308  0.0692] 0.7214 0.2786]
0.6733 0.3267 0.2340 0.7660
d® = d* =
0.9654 0.0346 0.4354 0.5646
0.8731 0.1269 0.4318 0.5682
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Figure 4.8 Realization of the game.

For the realization of the game we define the initial state s(;) of each player as follows:
55(0) = 3, s3,(0) = 1, s%,,(0) = 4 and s;, (0) = 2. As aresult, we obtain that the evader 1 is

caught at state s(z) and evader 2 is caught at state s(3), so the game is over (see Figure [@

4.6.2 Marketing problem

This example analyzes the effectiveness of relationship marketing strategies within the de-
partment store sector of the retail industry considering two supermarket leaders with [ = 1,2
and two supermarkets followers with m = 3, 4. The four supermarkets are branching out into

non-food items and they are also department stores in their own right, selling items like clothes,
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entertainment products for example toys, books, cosmetics, non-prescription drugs and many
other household goods. All the supermarkets offer loyalty cards having their own system with
the purpose to attract customers, encourage customer loyalty and build strong customer rela-
tionships. As well, loyalty cards create an advantage for supermarkets developing profiles of
individuals’ personal shopping habits. When linked with the personal details that customers
disclosed when signing up for the scheme, the store is in a position to target promotions that

are tailored around specific customers shopping habits.
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Figure 4.9 Supermarket Markov Chain.

Based on the available data, supermarkets discretize the client space in four sub-segments
according to the regularly of purchasing, using frequency of the loyalty card and the revenue.
Figure [4.9] describes the segments and promotions corresponding to the Markov chain of the
marketing problem. Here a customer is said to be in state s; if he/she become a Potential
customer. A Low-frequent customer corresponds with the state s, and a Regular customer is a
frequent customer of the loyalty card that is said to be in state s3. A Loyal customer corresponds
with the state s, and he/she is a high-frequency user of the loyal card. The promotions (actions)
offered by the supermarkets include two different benefits: 1) points and 2) discounts. We are
interested in contrasting the strategies applied by the supermarkets defined over all possible

combinations of states (z, j) and actions (k) given a fixed utility Uy, j 1.
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Our goal is to analyze a four-player Stackelberg game for the norm p = 1 in a class of

ergodic controllable finite Markov chains. Let N = 4, M = 2. The individual utility for each

player are defined by
567 822 733 830 (170 27 57 699
) 261 896 85 568| 275 855 224 919
Ul = Ulija) =
30 996 634 261 50 205 46 909
288 90 806 785 398 861 751 806]
810 36 27 9| (8 502 48 0 |
, 63 90 567 72| 64 64 312 16
Ui gy Ulija) =
81 0 9 45 24 32 120 T2
855 504 441 9 | 400 56 40 200]
(22 7 11 6 (66 0 126 42
) 00 19 8 18 78 240 6
Ulign = Ulijo) =
23 28 23 9 9 18 60 156
900 5 12 1 66 102 180 48 |
[0 60 2 26] (420 168 378 84
L |10026 86 48] |0 280 14 112
Ulijoy = Ulijo) =
14 56 28 24 42 56 350 140
8 12 16 38] 84 210 336 98

The transition matrices for each player are defined as follows

(0.2759  0.4886 0.0366 0.1989] 0.0863 0.3672 0.3201 0.2264]
L |0a732 00053 03825 03470 04339 01684 01919 0.2058
G20 01695 0.2620 04103 01574 7P |0.3856 0.2349 0.1324 0.2471
02612 0.1665 0.4124 0.1600] 0.1475 0.3500 0.1903 0.3122
[0.1761  0.1204 0.3883 0.3151] 0.2033 0.2456 0.2667 0.2844)
,_[02207 01632 02354 03507| , |0.2732 01032 03046 08190
G20 100708 03708 01364 04219 7P |0.1207 0.0930 0.3997 0.3866
00132 0.5169 0.4127 0.0572] 0.1032 0.6976 0.1609 0.0383)
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0.1654
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0.2470
0.3006

0.1141
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02536
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0.1498]
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Given ¢ and v and applying the extraproximal method we obtain the convergence of the

strategies in terms of the variable c(; 1) for the leaders (see Figure 4.10) and for the followers
(see Figure 4.T1)). In addition, the Figure .12 and Figure .13| show the convergence of the

parameters £ and w.

With final values \! = 0.5063 and \*> = 0.4937 for the leaders, and #' = 0.5258 and
6% = 0.4792 for the followers (see Figure and Figure [4.15)), the mixed strategies obtained

for determining the strong Stackelberg/Nash equilibrium for all the players applying (2.6) are

as follows

The resulting utilities by segment are as

Jl(Si) ==

dl
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0.1701
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10.2249

129,130
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121,520
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d3

JQ(SZ‘) =

0.1890]

[0.6023

0.3977]

08200|  , |0.8408 0.1502
0.2280 0.8187 0.1813
0.7751 | 08242 0.1758 |
0.3522] 0.7337  0.2663]
0202 |0.7454 02546
0.3545 0.7376 0.2624
0.3558 06418 03582
follows:

[13,102] [ 551 |

L I L R
1,113 746
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3. 914]
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3,467

4.9)

(4.10)
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Figure 4.11 Convergence of the strategies for follower 1 (left) and follower 2 (right).
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Figure 4.12 Convergence of the parameter £. Figure 4.13 Convergence of the parameter w.
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Figure 4.14 Convergence of the parameter \. Figure 4.15 Convergence of the parameter 6.
And the resulting utilities by promotion are as follows:
JH(k) = [ 226, 830 201,190} T2 (k) = [ 93,930 7, 729]
4.11)
J3(k) = [ 437 3,650} Ji(k) = [ 609 11,045}

Relationship marketing recognizes that the focus of marketing is to build a relationship
with existing customers. The main purpose of the game is to discover the extent to which cus-
tomers use and are influenced by relationship marketing strategies. In addition, it is to analyze
the impact that these strategies have on customer loyalty and the development of customer-
department store relationship. The supermarket leaders (players 1 and 2) fix their strategies
(4.9) to ensure high degrees of customer loyalty and retention as well utility by segment (4.10)
and promotion (4.11). For segment 1, leader 1 made a strong emphasis on offering points
(0.8110) for attracting Potential customers. Instead, the leader 2 made emphasis on offering
points (0.6023) and discounts (0.3977) for the same segment. Looking at the utilities of the
leaders, the followerl decided for offering points (0.6478) and discounts (0.3522). Instead, the
follower 2 resolved for competing for highlighting points (0.7337). For segment 2 correspond-
ing to Low-Frequent customers the leader 1 promoted points (0.1701) and discounts (0.8299)
and, the leader 2 chose offering points (0.8408) and discounts (0.1592). However, for compet-
ing with the leaders, follower 1 and follower 2 made emphasis on points (0.7078 and 0.7454
respectively). For Regular customers, the leader 1 focused on points (0.7720) and discounts

(0.2280) and, the leader 2 made emphasis on points (0.8187). The follower 1 preferred offering
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points (0.6455) and discounts (0.3545). Instead, follower 2 made emphasis on points (0.7376)
and discounts (0.2624). For Loyal customers, the leader 1 made emphasis on points (0.2249)
and discounts (0.7751), leader 2 focus on points (0.8242) and discounts (0.1758) as well, fol-
lower 1 chose the same strategies — points (0.6442) and discounts (0.3558) —. The follower 2
made emphasis on points (0.6418) and discounts (0.3582). For the leaders, the most profitable
segments are the Potential customers and the Loyal customers (see 4.10). An insight into the
mind of the consumer is obvious from the findings the importance that is placed on a given

policy: the utilities obtained by action for the leaders and followers are shown in (@.11).






Chapter 5

A Reinforcement Learning Approach for
Stackelberg Security Games

5.1 Introduction

There exists a growing interest in applying Stackelberg games to model resource allocation
for patrolling security problems in which defenders must allocate limited security resources
to protect targets from attack by adversaries [20, 28]]. In real-world adversaries are sophisti-
cated presenting dynamic strategies. In the original Stackelberg security games formulation on
Markov chains, we usually assume fixed and static domains models not able to be adapted to
the environment: fixing a state and action the reward and transitions always remain the same.
The reason is that the main goal is minimizing/maximizing the players’ expected cost/reward
that depends on the transitions at each state. However, it is an unrealistic assumption: the tran-
sitions matrices and the reward received for Stackelberg security games are commonly non-
static. Producing always the same resulting behavior can be exploited by intelligent attackers
that carry out surveillance before an attack, it is often desirable for the security agencies to have
a system in which randomness is involved in allocating their resources. To address this short-
coming, we will consider the learning properties of the attackers and defenders interaction, and
we will deal with the adaptation (estimation and assessment) of the payoff and strategies to
dynamic environments based on the information available to them.

Game-theoretic approaches have been used in multiple deployed applications. These games

are security games between a defender and an attacker: first, the defender considers what the
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target (best-reply) of the attacker is; then, holding the attacked target fixed, the defender picks a
quantity that minimizes its payoff; finally, the attacker actually observes this and in equilibrium
picks the expected quantity that maximizes its payoff as a response. These applications [72,
43,1106, [73| 2] use the (two-players) leader-follower Stackelberg game-theoretic formulation
for solving the security problem, providing a randomized strategy for the defender (leader) and
the attacker (follower).

Reinforcement learning (RL) is a problem faced by an agent or multiple agents that must
learn behavior through trial-and-error interactions with a dynamic environment [44]]. It does not
assume the existence of a teacher that provides examples upon which learning of a task takes
place [78]. Computationally, RL is intended to operate in a learning environment composed of
two subjects: the learner and a dynamic process. At successive time steps, the learner makes
an observation of the process state, selects an action and applies it back to the process. Its goal
is to find out an action policy that controls the behavior of the dynamic process, guided by
signals that indicate how badly or well it has been performing the required task. These signals
are usually associated with a dramatic condition, a reward or a punishment, and the learner
tries to optimize its behavior [78]].

Motivated by the importance of game-theoretic Markov chains solutions, this chapter con-
siders a RL process for Stackelberg security games [103) 99] that involves two components:
the Adaptive Primary Learning architecture and the Actor-critic architecture. The Adaptive Pri-
mary Learning architecture proposes a connection between prior knowledge learning and im-
itative learning. The main goal of the Adaptive Primary Learning architecture is dramatically
to accelerate the reinforcement learning process. The Actor-critic architecture is a temporal-
difference method responsible for evaluating the new state and determine if rewards are better
or worse than expected based on a game theory solution. The Stackelberg game is solved in
terms of the L,—norm: players choose a strategy that minimizes the distance to the utopian
minimum and no other strategy produces a smaller total expected loss. The notion of collab-
oration implies that related players interact with each other looking for cooperative stability.
This notion consents players to select optimal strategies and to condition their own behavior

on the behavior of others in a strategic forward-looking manner.
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The overall RL architecture presents several benefits. The Adaptive Primary Learning ar-
chitecture can be viewed as a process for enhancing learning for multiple players. It allows
players to use prior knowledge of the security problem. This is given in terms of the Markov
assumptions and a uniform distribution that represent a simple solution of the security game.
In the short term, learning according to a uniform distribution helps by focusing on states that
are near increments of the pay-off of the starting state. It also augments players’ ability to learn
useful behaviors by making intelligent use of the knowledge implicit in behaviors demonstrated
by cooperative mentors (more experienced players). Using reinforcement learning theory we
construct a formal framework for security games that allows players to combine prior knowl-
edge and imitative behavior (extracted from other players). This framework uses observations
of other players behavior to provide a player with transition probabilities about its capabili-
ties in unexperienced situations. The actor-critic architecture will execute a learning process
based on a Stackelberg game theory solution. It will use the best-reply strategies to obtain the
estimated model for the occurring actions and states. In order to address the dynamic execu-
tion uncertainty in security patrolling, we provide a game-theoretic formulation method able to
generate randomized patrol schedules based on Markov decision process.

The formulation of the game is considered as a nonlinear programming problem for finding
the strong L, —Stackelberg/Nash equilibrium point based on cost-functions that are supposed to
be (non-obligatory strictly) convex and differentiable on the corresponding sets. This problem
is analyzed for a class of ergodic controllable finite Markov chains using the extraproximal
method. It is also provided a game-theoretic formulation method able to generate randomized
patrol schedules based on the Stackelberg game theory solution.

Moreover, an efficient algorithm for players that accelerate the reinforcement learning pro-
cess is presented. Computing the best-reply strategies for the game in the actor-critic archi-
tecture requires a large computation time compared with the computation time required in the
adaptive primary learning architecture. However, both steps of the architecture combined will,
in the long run, converge to an estimated transition matrix and estimated utility provided that
acting using the best-reply strategy according to the sequence of estimated models leads the

players to explore the entire state-action space.
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5.2 The Stackelberg security game

A Stackelberg security game [98] includes defenders (the leaders in the game) who aim to
protect a set of targets against attackers (the followers in a Stackelberg game). The defenders
play first by committing to a randomized strategy. The defenders’ commitment is observed by
the attackers, who then play a best-reply to the defenders’ strategy. The role of the defender is
usually played by a security agency, which has the responsibility of protecting critical infras-
tructure. The strategy set of the defenders can be interpreted as the assignments of (protecting)
resources to potential targets. The goal is to minimize the damage. The attacker observes the
defenders’ randomized strategies (resources deployment), and choose a target to attack in a
way that maximizes the damage.

We describe a Stackelberg game as follows. Let us consider a game with n + m players.
Let NV = {1,...,n} denote the set of players called defenders and let their strategy set be
defined by U. The rest M = {1, ..., m} players are called attackers and, similarly, let the set
of their strategy profiles be defined by V. Then, U x V is the set of full strategy profiles. The
dynamics of the Stackelberg security game is as follows: the defenders choose a strategy v € U
considering the cost-function ¢(u|v) for a fixed strategy v of the attackers, the attackers are
informed about the strategy u selected by the defenders and choose their strategies considering
(v|u) for a fixed u of the defenders. We understand ) (v|u) as the response of the attackers
to the strategy u of the defenders, which is the best-reply in the original game. In the security
game framework, we suppose that defenders commit to a randomized strategy while attackers
choose their best-reply to this strategy. The solution of the game is a Stackelberg equilibrium
point. The formalization of the Stackelberg game was presented in Chapter 4.

Also, it is considered a Stackelberg security game model where each player either staying
put or moving along a state to an adjacent state. Adjacency of the states is determined by the
probabilities given in the transitions matrices of the Markov chain. The main concern about
Stackelberg games is as follows: the highest leader payoff is obtained when the followers

always reply in the best possible way for the leader. Then, the defender can capture the attacker,
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because he implements a strategy that always dominates the current position of the attacker.
Once the attacker is caught, the security game is over.

Let us introduce the capture condition at time n (defender and attacker are located at the
same state) as follows:

N N

D x(w:s'(n) = s As™(n) = s)) = > x(w:s'(n) = si)) x(w: s™(n) = 55)

j=1 j=1
where w € €2 is a trajectory. The capture event of all the attackers is given by

n m N

Z Z Z x(w:s'(n) = s))x(w : s™(n) = s(;)) (5.1)

I=1 m=1 j=1

In the dynamics of the game, the defender commits first to a strategy and then, the attacker
strategy is played. We consider a Random Walk model such that each member either staying
put or moving along a state to an adjacent state. The defender can capture the attacker (5.1) if
he implements an appropriate strategy such as always moving toward the current position of
the attacker. Once the attacker is caught, the game is over. The computational algorithm in

Table (5.1) for each player ¢« = 1, ..., n 4+ m is iterative.

5.3 RL security game architecture

The aim of this Section is to introduce the RL architecture for the Stackelberg security
game. It is illustrated in Figure 5.1 showing two highest components: the Adaptive Primary
Learning architecture and the Actor-critic architecture.

Consider first the Adaptive Primary Learning architecture proposed to increase the learning
speed. It is better understood as an attempt to combine prior knowledge with an imitation
process for selecting the strategies. In fact, the prior knowledge will be cast and augmented
with the imitative learning formalism. The Adaptive Primary Learning architecture of the RL
for the game is illustrated in Figure[5.2] It has two main modules: the belief-forming process
and the belief-imitating process.

The belief-forming process provides the player ¢ with the ability to seed a learning algorithm

about the security problem. It allows the player to use prior knowledge of the problem. This is
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Algorithm 1:

1. For the matrix d(;, find the action a' = af, using a random k € (1, ..., M)
distributed according to the stochastic vector (olz1| PYREE d% M\i)) for a fixed 7 €

(1,.... N).

2. Using the matrix Tlink) find the next state s(;) selecting randomly j €
(1,...,N) distributed according to the stochastic vector (m{;; iy - T(yji 1))

for afixedi € (1,...,N) and action k € (1,..., M).
3. Add the state s(;) to the patrol schedule and update the initial value of ¢ with
J-

4. Repeat steps (1), (2) and (3) until the capture condition (5.1)) is satisfied.

Table 5.1 Patrol Schedule

given in terms of the Markov assumptions and a uniform distribution that represent the initial
solution of the game. The focus of the belief-forming process is to solve general security
situations given a uniform distribution of the game. The uniform distribution of the strategies
is useful for balancing exploration and exploitation in a basic reinforcement learning (one
drawback is that when it explores it chooses equally among all actions). This process is marred
by generic optimization criteria. A stochastic strategy selector is used to generate exploratory
random action of player ¢ from dék\i) at the beginning of the training process. As well as, a
stochastic strategy selector is used to generate exploratory random next step from Tk e
employ two different learning rules ﬁéﬂl B (t) and J (L” M (t) for estimating the resulting values.

The belief-imitating process provides a player ¢ with a system of rules that idealize the
mentor’s belief-forming behavior. It augments a player’s ability to learn using the knowledge

implicit in behaviors demonstrated by more experienced players. An estimated value is con-

sidered to be imitated according to a rule which encourages or discourages the current strategy
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Figure 5.1 Reinforcement learning architecture.

depending on cost. The main idea is that if the estimated value is considered if the cost is
smaller than the corresponding estimated value because it decreases the expected cost for the
visited state. In security games, a defender tries to minimize the capture time, as well as, the
attacker tries to maximize the escape time.

The dynamics of the Adaptive Primary Learning architecture is as follows. The process for
player ¢ begins with an initial state s*(0) = s(; (for the estimated value 7) and it is considered a
fixed uniform distribution of the strategies as a solution of the security game given by [dfk| i)} =
%[1(i7k)]i€[1,N],k€[1yM], where [1(; ;)] is a matrix of “ones” of size ¢ x k. Then, it is chosen
randomly an action a‘(t) = iy (for the estimated value l%) from the vector dzk\i) (for a fixed
7). After that, the transition matrix II* = [Wfﬂi,k)] is used to choose randomly the consecutive
state s*(t + 1) = sEj) (for the estimated value 7) from the vector Wéjm) (for a fixed 7 and l%).
Once a'(t) and s*(t + 1) are selected the estimating values are updated employing the adaptive
module in which the learning rules ﬁfﬂz, B (t)and .J Gk (t) are computed. Then, it is determined

a mentor k. The player ¢ (+ # k) imitate the estimated value ﬁg i) according to a rule which
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Figure 5.2 Adaptive primary learning architecture.

encourages or discourages the current strategy depending on cost J (Li,jl by updating ﬁéjﬁ,l}) if it
is the case, which has to be projected to the simplex. Finally, it is made the assignment of the
next state j to the currently state s*(f + 1) = 54 = 5(5)> i.e. 2 = ), and the process begins again
until it converges.

Actor-critic methods are temporal-difference learning methods. The process responsible

for generating the policy structure (dzkli)) and, selecting an action and next state is known as

the actor, while the process in charge of estimating the value function is known as the critic.
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The learning process is all the time on the policy dzkl 0 of the players. The critic task is to
learn about the complete process and analyze if the policy represents the best-reply that must
be followed by the actor. To fulfill the task the critic uses an error estimator (e) which manages

all the learning decisions for both the actor and the critic.
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Figure 5.3 Actor critic architecture.

The actor-critic architecture of the RL is illustrated in Figure The initial 7, (t) and

J (Lij ]%)(t) are given as a result of applying the belief-forming process and the belief-imitating
process. The selection of a(t) and s(t + 1) is equal as in the Adaptive Primary Learning archi-
tecture. The added value is in the use of a game theory for computing the distribution d, . of

the strategies in order to obtain the policies for RL process. In this case, the trade-off between
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exploration and exploitation of the actions in reinforcement learning is given by the solution
of the game. Then, the process for player ¢ begins with an initial state s*(0) = S (for the
estimated value ) and it is considered a fixed uniform distribution of the strategies as a solu-
tion of the security game given by [d%k‘ i)]. Then, it is selected randomly an action a‘(t) = iy
(for the estimated value l%) from the vector dzkA\z) (for a fixed 7). After that, the transition matrix
I = [ﬂfj|i7k)} is used to choose randomly the consecutive state s'(t + 1) = s, (for the esti-
mated value 7) from the vector ﬂém M (for a fixed 7 and k). Once a*(t) and s*(t+1) are selected,
the estimating values are updated employing the adaptive module in which are computed the
learning rules ﬁéﬂz,i@) (t) and j(bmﬁ) (t). The value-maximizing action at each state is taken
whether the actor-critic learning rule ﬁéﬂi, ) ensures convergence (e [f[‘(t —-1)— ﬂ‘(t)] > O).
If the condition of estimated error e is not satisfied, then the selection of the random variables
S(i)» 5(; and a(y, is carried out again. On the other hand, the distribution d{, ;) of the strategies
is computed again using the game theory module until it converges. The proposed architec-

ture converges by the ergodicity restriction for Markov chains imposed on the definition of the

game.

5.4 Learning model

The aim of this section is to present how the selection of actions from the best-reply strategy

affects the RL process and, also how to learn the transition and cost/reward models.

5.4.1 Exploration and exploitation

One of the most critical problems in RL is that the players need to make decisions as they
learn. There are two basic motivations for choosing an action: i) exploitation, which selects an
action from the best-reply strategy that leads to an “optimal” cost/reward; and ii) exploration,
that selects an action from the best-reply of a strategy that provides support information that
will benefit future behavior (to act better in the future).

By employing the exploitation approach the players follow only the best-reply strategy

action and they use the next state reached, and the reward received, to adapt its behavior in
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the future. However, it can happen that players (defenders/attackers) will get trapped in a
local minima/maxima during the RL process. On the other hand, exploration is related to
choosing actions of any strategy to learn how to behave in general situations. The tradeoff
between exploration and exploitation is that the first assists the players (defenders/attackers) in
minimizing/maximizing the costs/rewards and, the second helps the players to learn an overall
policy in the long term.

With pure exploration, the players will never obtain the benefits of “optimal” best-reply
learning. With pure exploitation, the players will get stuck in a local minima/maxima. A
combination of both approaches is needed.

In our case, the trade-off between exploration and exploitation is implicit in the proposed
architecture for RL. The Adaptive Primary Learning architecture is assumed to have a fixed uni-
form distribution of strategies [d%k‘ z.)] = ﬁ[l@k)]ie[l, Nke[1,m]> and an initial state s(0) = 5.
We also suppose that the players take advantage of external knowledge represented by some
current transition matrix II* = (Wéﬂ i1y Tl M)) useful when learning a new task from re-
inforcement. Such evidence is available as historical data. During the dynamics of the learn-
ing process, the players interact with their environment and at each stage of the process ran-
domly select an action a(t) = iy based on the best-reply strategies dmi) and a next state
s(t +1) = s(; given previously s(t) = s(;) and a(t) = a;). We ensure that in the long run
every action is taken in every state an unbounded number of times and the learning rate is
eventually small enough. This is equivalent to pure exploration.

On the other hand, in the actor-critic architecture, we also suppose that the players take ad-
vantage of external knowledge represented by the transition matrices I = (7(;; 1, -, T ar))
and cost/reward matrices J* = (J iy i M)) available as a result of executing the belief-
forming process and the belief-imitating process. It is also assumed that the distribution of
strategies [d%k| Z.)] is computed using a game theory model for solving the game, and an initial
state s(0) = s(;). As well, during the dynamics of the learning process, the players interact with

their environment and at each stage of the RL process randomly select an action a(t) = iy

and a state s(t + 1) = s(;. Because [dz K i)] is the best-reply strategy resulting of computing the
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game, the distribution of d%k\ ;) give importance to the actions a(t) = aj, having a high prob-
ability to minimize/maximize the costs/rewards of the players (defenders/attackers). Then, the
process naturally makes emphasis over the exploitation approach and reduces the exploration

rate (because actions have low probability to be randomly selected).

5.4.2 Adaptive module

The proposed approach to reinforcement learning just learns the transition and costs/reward
models. It is important to note that in the original Markov game formulation for Stackelberg
security games, we usually assume fixed and statics domains not able to be adapted to the
environment: fixing a state and action the costs/reward and transition remains always the same.
The reason is that the goal is minimizing/maximizing the players’ expected costs/reward that
depends on the transitions at each state.

However, in Stackelberg security games it is an unrealistic assumption: the costs/reward
and transitions received are commonly non-static. For reasoning about more realistic pa-
trol strategies, we need to specify that there is a probability distribution over the possible
costs/rewards for any action in any state. Then, for learning in a cost/reward model, we may
obtain different costs/rewards at different times for the same action and state. As well as, for
the transition model where we may obtain different transitions at different times.

To do this, we introduce a model from experiences that can simply be done by counting the
frequency w of observed experiences. Towards this goal the players use the following variables

defined recursively as:

such that
1 if the event £ occurs at interaction ¢

x(&) =

otherwise

where Wi, k) (t) is the total number of times that the player ¢ evolves from state i applying action

k in the the RL process and, Wik is the total number of times that player ¢ evolves from state
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1 to state j applying action k in the RL process. As well as, for the cost/reward model, we keep

a running average of the rewards observed upon taking each action in each state as follows

Tiean®) = 35,6500 - x (501 1) = 59 | s(n) = 50, alm) = ap)
such that

&= Jium + (A, for Ay < J(Lj‘i’]%) and r =rand([—1,1])

where ‘7(;\1 B (t) is the sum over all immediate costs/rewards received after executing action a in
state 7 and stepping to state j, incremented by A ; multiplied by a random value r, —1 < r < 1.

The learning rules of the architecture are computed considering the maximum likelihood
model where % := 0. The designing of the adaptive module for the belief-forming process

involves the following learning rules:

a. The learning rule for estimating T ilik) is given by

w(iﬁ)(t —-1)+1

iy (8) =

such that

b. The learning rule for estimating .J;; ., is as follows

AL _ ‘7(7?7.?7];’) (t)
T = )
)

The designing of the adaptive module for the actor-critic architecture consists of the follow-

ing learning rules. The definition involves the variable ¢, which is the time required to compute

the matrices by the belief-forming process and the belief-imitating process.

a. The learning rule for estimating Tt k) is given by

i?

i t0) + ——Z (1)
i1 oo (to) + ——F——= 7
- - = ) R
A1) = Wb ®) _ Yo FEGp 0 0 Wisy (o) Y
Glik) N e T =02 B L
“iak) (t) Yk (to) + =k (t) 14+ ———="2 (1)
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where

t
S = 2 x(#n D) = spylstn) = sfy. (o) = aiy )

n=tg+1

and

¢
—t,2 L L L L
:(i,fc)<t) = Z X (s (n) = s(z,a'(n) = a(fg)) :

n=to+1

b. The learning rule for estimating .J (‘Z i) is as follows

In the end, we have a RL process where if there exist changes in the system the players
are able to learn and adapt to the environment. In addition, there is a natural trade-off be-
tween exploration and exploitation: in the actor-critic architecture, we make emphasis over the
exploitation approach and drastically decrements the exploration rate in a careful way.

We are able to estimate the aleatory variables corresponding to the entry (i, 7, /%) of both,
the transition and the cost/reward matrices. An advantage of the Adaptive Primary Learning

architecture step is that the distribution is easily generated and does not need any computation.

The process continues until its convergence (the process converges because it is ergodic).

5.5 Shopping mall security game

This example is suggested to illustrate how the RL method presented in this chapter can be
employed to improve the strategy for patrolling four shopping malls located geographically in

different areas.
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5.5.1 Game overview

Shopping malls are multi-storied structures housing a large number of stores that sell di-
verse products and services adjoined by pedestrian areas. Families usually choose to visit
shopping malls, for a family outing, it is a more convenient option because a parking service is
provided. Attributes of the location of the shopping malls have a strong impact on the retailer’s
strategy. The geographic areas for a shopping mall are selected in terms of the socio-economic
characteristics of the residents of the area. Usually, 3 to 5-mile radius generates 50 to 70% of
the customers. We will consider four shopping malls (targets) located in different areas: the
mall 1 is located in a lower class neighborhood, usually an urban area with low-quality of civil
services, mall 2 and 3 are located in a middle-class area and finally the mall 4 is located in an
upper-class area where residents are prosperous.

Taking into consideration these properties shopping malls are considered targets for rob-
bery and burglary, involving the theft of property from an individual or the unlawful entry to a
structure with the intent to steal or commit a felony. Victims can be or not have to be present.
Robberies usually happen during the day and burglaries during the night. The time that bur-
glaries and robberies occur is different which result in higher levels of coverage at all times.
Then, protecting shopping malls of the perpetrators is a complicated task.

For representing the Stackelberg security game we will consider four players, two attackers
(followers m = 3,4) that try to reach different goals (to commit a crime in a shopping mall)
maximizing the expected damage and two defenders (leaders [ = 1,2) that try to stop the
attackers minimizing his expected loss. Here defenders work cooperatively and the defender
2 imitates and learns from the defender 1 who has more experience in this type of crimes, the
attackers also work cooperating and the attacker 4 imitates and learns from the attacker 3. In
the dynamics of the game the players take alternate turns: defenders commit first to a strategy
and then, the attackers’ strategies are played. Let the number of states of each player (shopping
malls) N = 4 and M = 2 the number of actions of each player (burglary and robbery).

The defenders and attackers already have of prior knowledge about the problem, which is

recovered from historical data that provide exact information about the crimes occurred in the
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geographical area where each mall is located. In addition to economic information, which is

strongly correlated with high-risk areas of crime, distance and traffic is an additional important

factor that must be considered in solving the patrolling problem. This information is repre-

sented in terms of the Markov transition matrices, utility matrices and a uniform distribution

that denotes the initial solution of the game.

Let the initial transition matrices for each player be defined as follows

T
(4,4,1)

T
(4,5,1)

3
T2, .
(4,5,1)

TE
(4,5,1)

and let the individual utility matrices for each player be defined by

—0.1971 0.3490 0.3119

0.1348 0.3041
0.2118 0.3286
0.1866 0.3332

0.3968 0.1003
0.2006 0.1484
0.2943 0.2318
10,1740 0.2872

[0.2730 0.3103
0.2512 0.1834
0.2853 0.4364
0.1571 0.2909

-0.2175 0.2621
0.2905 0.3822
0.1852 0.1649

10.2267  0.3092

1 _
Ui jn=

81
63
90
84

0.1421 |

0.2942  0.2669
0.2628 0.1967

0.2946 0.1857

0.2403 0.2626]

0.2140 0.4370
0.2103 0.2637

0.2293  0.3096 |

0.1945 0.2213]

0.2524 0.3130
0.0994 0.1789

0.2764 0.2756)

0.3406 0.1798)

0.1211 0.2062
0.3652 0.2847

0.2133 0.2507

246 219
258 54
288 192
270 240

90
204
63

225

Ti,,2) =

T4 . —
(4,4,2)

T, . —
(4,4,2)

1

U=

[0.2972
0.3616
0.3505

10.2063

0.2033
0.2277
0.0928

0.2332

[0.2538
0.2058
0.2312

0.2416

[0.1930
0.3020
0.2463

02113

51 81

150 75

0.2825
0.2237
0.2135
0.2917

0.2456
0.2527
0.3023
0.5366

0.2403
0.2482
0.1876
0.2613

0.3877
0.2704
0.4126
0.3330

171 207]
81 255 72 207
138 270
204 138 153 258]

0.2462
0.2432
0.2113
0.2419

0.2667
0.2538
0.3075
0.1238

0.2144
0.2550
0.3374
0.2196

0.1851
0.3076
0.1491
0.2692

0.1742]
0.1715
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0.2602 ]

0.2844]
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01064

0.2915)
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0.2343]
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0.1920
0.1864
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360 16 12 4 (6 444 36 0 |
98 40 252 32 A8 48 234 12
Uz . . = U2 . =
(4,5,1) (4,5,2)
36 0 4 20 198 24 90 54
380 264 196 4 300 42 30 150
(44 14 22 12] 33 0 63 21]
20 0 38 16 9 39 120 3
(i,5,1) (4,5,2)
46 56 46 18 8 9 30 78
180 10 24 2 33 51 90 24
[0 120 4 352 [90 36 81 18]
20 52 72 96 0 60 3 24
Ut = Ut =
(1) (,.2)
98 112 56 48 9 12 75 30
16 24 32 76 18 45 72 21

5.5.2 RL process for security games

Once the defenders and attackers have the initial information, they begin an iterative re-
inforcement learning process for security games proposed in the adaptive primary learning
architecture. The purpose of this first step is that making use of the exploration properties, the
players choose equally among all actions to learn how to behave in general situations, that is,
players explore the shops and the area where they are located in order to learn how to move
and act in different situations. In fact, players improve their transition and cost/reward matrices
by combining their initial information with learning rules and an imitative behavior extracted
from other players that are selected as more experienced, defender 2 learns from the defender
1 and the attacker 4 imitates the attacker 3.

When the defenders and attackers finish the adaptive primary learning process, they begin a
new iterative procedure, represented by an actor-critic architecture. In this stage defenders and
attackers improve their transition and cost/reward matrices (obtained from the adaptive primary
learning architecture) through the application of new learning rules and the calculation of the

strategies of the Stackelberg security game employing the extraproximal method.
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Remark 5.1 It is clear that attackers’ actions are dependent on their past successes and fail-
ures. The proposed adaptive model captures this adaptive nature of the attackers’ behavior
by modifying probabilities in the transition matrices and the values in the utility matrices.
Then, the RL process estimates the new matrices and recalculate the resulting strategies of the

security game every time the behavior of the attackers or the environment change.

The resulting estimations of the transition matrices of the RL process are the following:

(01907 0.3449 0.3447 0.1197] 0.3220 0.2813 0.2449 0.1518]
L |01412 0205 03114 02515 |0.3434 01520 02875 01872
G20 102216 03049 02705 0.2030] 7% |0.3433 0.1924 0.2474 0.2169
0.1837 03860 0.2656 0.1647 0238 02973 02275 0.2366
04388 0.1052 0.2288 0.2272] 02023 0.2367 0.2957 0.2652]
o 0.1887 0.1939 0.2606 0.3568 o 0.2186 0.2606 0.2782 0.2427
2D 102920 02402 01878 0.2800| 7% |0.1271 02506 0.3205 0.3018
0.1665 0.2027 0.2631 02777 | 02142 0.4197 0.1576 0.2085
(02811 0.3041 0.1723 0.2426) 02728 0.2576 0.1841 0.2855]
L, |o2649 0720 02393 0.3220) | [0.1983 02218 0.2728 0.3071
0D T o675 04784 00834 0.1686] 0P 02428 01778 03420 0.2366
0.1930 0.2692 0.2894 0.2484] 0.2646 0.2337 0.2330 0.2686
(0.1760  0.3492 0.3093 0.1655) 02489 0.2026 0.2645 0.1939]
. |o2684 03365 02072 0.1880| , [0.2011 02607 0.2849 0.1633
6D T 0 1924 01864 03307 02005 9P 02450 03278 0.1830 0.2433
0.1921 0.3153 0.2232 0.2694] 02400 0.3325 0.2391 0.1883)

And the resulting utility matrices for each player are as follows
47.822 67.034  22.627 8.032 27.715 26.283 4.514 283.899_
U(lihj)l): 21.748  96.729 16.847 180.253 U(lz.?jz): 20.333 43.550 54.349 157.131
25.835 281720 100.239 35541 101.889 39.178 190407 57.975
125741 118.075 179.806 128.743 69.107 31595 24990 48.384 |
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Figure [5.4] shows the estimation function error of the transition matrices which has a de-

creasing behavior, we can see in these graphs that the estimation error is greater for less expe-

rienced players, defender 2 and attacker 2 need more time to improve their transition matrices.

Figure [5.5] shows the estimation function error of the utility matrices which have a decreasing

behavior.

The solution of the game is obtained employing the Stackelberg game formulation with

Markov chains, the game is solved making use of the extraproximal method from which we

obtain the convergence of the strategies of defenders and attackers.
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At the end of the adaptive process, combining exploration and exploitation, players select

an action from the best-reply strategy that leads to an optimal cost or reward. Figure [5.6|show
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Figure 5.4 Estimation function error of the transition matrices.

the convergence of the strategies of defenders and Figure [5.7) show the convergence of the

strategies of attackers.

Remark 5.2 For modeling a security real-world application, it is necessary to compute the
values of the parameters of the environment given by the transition probabilities and the cost
functions. Transition probabilities can be computed recovering statistical data related to oc-
currences of crimes. Nevertheless, it is impossible to recover all the data necessary for com-
puting the exact values for the transition matrices. In addition, the cost functions are typically
hand-tuned by experts in the security field until it is acquired a satisfactory value, which can
result in an undesired process. Then, the RL process plays a fundamental role for computing

the transition and cost matrices very close to the real values in Stackelberg security games.
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Figure 5.6 The convergence of the defenders strategies.
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Figure 5.7 The convergence of the attackers strategies.

5.5.3 Realization of the security game

The main objective of the defenders is to provide protection and security to people who
visit the mall as well as to the stores, and deciding to act taking into account the infrastructure,
alarms and security systems of each mall according to the location area. Taking into account
that the shopping mall 1 is located in a lower-class area that is usually unprotected during the
night, defender 1 prefers to protect the mall from a possible burglary (d%l,Z) = (0.6477) while
defender 2 has almost the same preference to proceed during the day (d%l,l) = 0.5463) or at
night (d%m) = 0.4537); on the other hand, attackers know that this mall is more protected at
night so they decide to commit robberies (di()’l,l) = 0.7258 and d?1,1) = 0.7058). For shopping
malls 2 and 3 located in a middle-class area, defenders have similar preferences about work
at day or night, the defender 1 has almost the same preference for protecting mall 2 at day
(d(lm) = 0.5743) or overnight (d%m) = 0.4257) while chooses to protect mall 3 from a pos-
sible robbery (d%371) = 0.6821), as well as, the defender 2 decides to protect the mall 2 from
possible robberies (d%m) = 0.6581) and for mall 3 has almost the same preference to pro-
tect it at day (d7; ) = 0.4919) or during the night (d7; ,) = 0.5081). For mall 2, the attacker 3
chooses to commit a robbery (d?2,1) = (0.7169) while the attacker 4 prefers to commit a burglary
(d‘(‘m) = 0.7695), and for mall 3 both attackers decide to act during the night (d?&?) = 0.7007

and d‘(‘372) = 0.7268). Because the shopping mall 4 is located in a high-class area, defenders
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consider that the mall and the whole area have efficient night-time security systems, so both
defenders decide to protect during the day to provide security and tranquility to people who
visit the mall (d%4,1) = (.7388 and d%4,1) = (0.8213). Attackers observe that this mall is more
protected during the day, and even if committing robberies means high profits because wealthy
people visit the mall, they prefer not to take the risk and act overnight (d?472) = (.7344 and
d‘(ﬂm) = 0.6536).

With the strategies calculated from the RL process, we considered a Random walk model,
such that each player either staying put or moving to another state, i.e., defenders and attackers
decide to remain patrolling the same mall or move to one of the other malls that must protect,
defenders can capture attackers if they implement the appropriate strategy (to protect at day or

overnight). Here the game is over when the attackers are caught (5.1)).
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T T T T T T T T
4 i
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Time

Figure 5.8 Random Walk.

The initial position (state) of each player are as follows: defender 1 is patrolling the shop-
ping mall 3 and defender 2 is patrolling the mall 1, while attacker 3 set the mall 2 as his target
and attacker 4 plans to commit a crime in the mall 4, that is, s(;(0) = 3, s7,,(0) = 1, s{,(0) =
2, S?i)(O) = 4. Applying the patrol schedule in Algorithm 1 (Table of the security game
we obtain that the attacker 4 is caught at shopping mall 1 after 3 steps by the defender 2, to
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capture the attacker 3 the defenders work cooperatively and both catch him after 9 steps while

he tries to commit a crime in the mall 2, so with both attackers captured the game is over (see

Figure [5.8).



Part 11

The bargaining game

99






Chapter 6
The Nash bargaining solution

6.1 Introduction

The starting point of bargaining theory is the Nash formulation [61] who presented this
situation as a new treatment of a classical economic problem. A two-player bargaining situation
involves two individuals who have the opportunity to collaborate for mutual benefit, each player
has to make in turn a proposal, after one player has made an offer, the other must decide either
to accept it, or to reject it and continue the bargaining process.

Nash [61] idealized the bargaining problem by assuming that the two individuals are highly
rational, that they are equal in bargaining skill, and that each has full knowledge of the tastes
and preferences of the other. Nash proved that a solution for all convex bargaining problems
always maximizes the product of individuals’ utilities under four axioms that describe the
behavior of players and provide a unique solution: Symmetry, Pareto optimality, Invariance
with respect to positive affine transformations, and Independence of irrelevant alternatives;
however, this last axiom came under criticism because empirical evidence shows that it is not
often satisfied even in individual decision-making.

Since Nash [61], a bargaining problem is usually defined as a pair (¥, ¢) where V¥ is a
compact and convex subset of R? containing both ¢ and a point that strictly dominates ¢. Point
v = (Y1, 9?) € VU represents levels of utility for players 1 and 2 that can be reached by
an outcome of the game which is feasible for the two players when they do cooperate, and

¢ = (¢, ¢) is the level of utility that players receive if the two players do not cooperate with
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each other (status-quo outcome). The goal is to find an outcome in ¥ which will be agreeable
to both players.

Applications for bargaining situations beyond economic models, the latest applications take
place also in the communications area where some problems are formulated as a two-person
bargaining problem. For example, Zhang et al. [[112] proposed a cooperation strategy among
rational nodes in a wireless cooperative relaying network as an effort to solve two basic prob-
lems, when to cooperate and how to cooperate. Another example is proposed by Han et al. [36]
where a fair scheme to allocate subcarrier, rate, and power for multiuser orthogonal frequency-
division multiple-access systems is proposed. The problem here was to maximize the overall
system rate, under each user’s maximal power and minimal rate constraints, while consider-
ing the fairness among users. This approach considers a new fairness criterion, which is a
generalized proportional fairness based on Nash bargaining solutions and coalitions. On the
other hand, Birkeland and Tungodden [14]] studied the role of fairness motivation in bargaining
showing that the bargaining outcome is sensitive to the fairness motivation of the two indi-
viduals, unless they both consider an equal division fair. A bargaining between two strongly
fairness motivated individuals who have different views about what represents a fair division

may end in disagreement.

6.2 The Nash bargaining model

Nash bargaining solution is based on a model in which the players are assumed to negotiate
on which point of the set of feasible payoffs W C R" will be agreed upon and realized by
concerted actions of the members of the grand coalition [ = 1,...,n. A pivotal element of the
model is a fixed disagreement vector ¢ € R" which plays the role of a deterrent. If negotiations
break down and no agreement is reached, then the player are committed to the disagreement
point. Thus the whole bargaining problem B will be concisely given by the pair B = (¥, ¢),
this is called the condensed form of the bargaining problem (see [29, 61]).

A bargaining problem can be derived from the normal form of an n-person game G' =

{C,...,C™ 4, ... 4"} in a natural way. The set of all feasible payoffs (outcomes) is defined
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®={¢|v= (") 9")},

wherec€ Cand C = C! x ... x C"

Given a disagreement vector ¢ € R", B = (P, ¢) is a bargaining problem in condensed
form. We can derive another bargaining problem B = (¥, ¢) from G by extending the set of
feasible outcomes P to its convex hull ¥. Notice that any element ¢ € W can be represented

as i
p=> Ny,
=1
where ¢ = (¢'(c),...,9"(c)), ¢ €), \' > 0 for all player [ and ), A = 1.
The payoff vector ¢ can be realized by playing the strategies ¢/ with probability \', and so ¢
is the expected payoff of the players. Thus, when the players face the bargaining problem B the

question is, which point of ¥ should be selected taking into account the different position and

strength of the players that is reflected in the set W of extended payoffs and the disagreement

point ¢.
Nash approached this problem by assigning a one-point solution to 13 in an axiomatic man-

ner. Let B denote the set of all pairs (¥, ¢) such that

1. ¥ C R"is compact, convex;

2. there exists at least one v € ¥ such that ¢) > ¢.

A Nash solution to the bargaining problem is a function f : B — R" such that f(\V, ¢) € .

We shall confine ourselves to functions satisfying the following axioms (see [61, 29, 60]).
1. Feasibility: f(V,¢) € V.
2. Rationality: f(V,¢) > ¢.

3. Pareto Optimality: For every (U, ¢) € B there is ©» € W such that ¢ > f(¥, ¢) and
imply ¢ = f(¥, ¢).
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4. Symmetry: If for a bargaining problem (¥, ¢) € B, there exist indices 4, ; such that
0 = (¢%...,0") € Uifand only if p = (¢}, ...,0") € U, (@' = o', # il # j,¢" =
0@l = ) and ¢' = ¢ for ¢ = (¢',...,¢"), then f© = f7 for the solution vector
f(¥,0)=(f1 ... f").

5. Invariance with respect to affine transformations of utility: Let o > 0,8, (I = 1,...,n)

be arbitrary constants and let

¢ = (alrg! + B . at" + B") with ¢ = (¢} ..., ¢")
and
U = (ol + B, ., a0 + BY) s (oh ., o) €U,
Then f(V', ¢') = (o' f1 + B, ..., " f" + "), where f(U,¢) = (f1, ..., f").

6. Independence of irrelevant alternatives: If (¥, ¢) and (O, ¢) are bargaining pairs such

that U C © and f(O, ¢) € U, then f(O,¢) = f(¥, ¢).

Theorem 6.1 There is a unique function f satisfying axioms 1-6, furthermore for all (V, ¢) €
B, the vector f(U,¢) = (f1, ..., f") = (¥, ..., ") is the unique solution of the optimization

problem
maximize g() = T1(" = ¢")
=1
(6.1)
subject to Vev >
The objective function of problem in eq. (6.1)) is usually called the Nash product.

Proof. Sce [29] =

Remark 6.2 There are exactly two solutions satisfying axioms 1, 2, 4, 5, and 6. One is the

Nash’s solution and the other is the disagreement solution.

For the next conjectures consider a bargaining problem as a pair (¥, ¢) where ¥ C R? and

¢ € R
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Corollary 6.3 [60] The Pareto frontier Q¢ of the set V is the graph of a concave function,
denoted by h, whose domain is a closed interval B C R. Furthermore, there exists V' € B

such that ' > ¢' and h(') > ¢?.

Corollary 6.4 [60] The set Q2 of weakly Pareto efficient utility pairs is closed.

wZ

¢2

¢ 4

Figure 6.1 Pareto front.

Considering a two-person bargaining problem. Denote the disagreement cost of each player
as ¢! and ¢?, and the solution for the Nash bargaining problem as the point (1!, 1)?), therefore

the Pareto front is as the Figure[6.1]

6.2.1 Formulation of the problem

Stated in general terms, a n-person bargaining problem is a situation in which n players have
a common interest to cooperate, but have conflicting interests over exactly how to cooperate.
This process involves the players making offers and counteroffers to each other.

Consider a n-person bargaining problem [102, 95]]. Let us denote the disagreement utility
that depends on the strategies cl@ k) as #'(ct,...,c") for each player (I = 1,...,n), and the
solution for the Nash bargaining problem as the point (¢!, ..., ¢"). Following the eq. the
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utilities 1!, in the same way that the disagreement utilities, are for Markov chains as follows

N M n
Ph=t (.., M) = Z;W(Zk 1:[ C(m (6.2)

where the matrices W(ll ) Tepresent the behavior of each player. This point is better than the
disagreement point, therefore must satisfy that 1! > ¢'.

The process to solve the bargaining problem consists of two main steps, firstly to find the
disagreement point we define it as the Nash equilibrium point of the problem (see [62]]), this
formulation is detailed in Chapter 2; while for the solution of the bargaining process we follow
the model presented by Nash [61]. The function for finding the solution to the Nash Bargaining

problem is

g,y = [T = @)= (63)

=1

where o' > 0and > o/ =1, (I = 1,..,n), which are weighting parameters for each player.

We can rewrite (6.3 for purposes of implementation as follows
Zax > @) In(y! — ¢)

Thus, the strategy z*, which is the vector z* = (¢!, ..., ") € Xum := @, Cly satisfying the

simplex (2.7) and ergodicity (2.8)) restrictions, is the solution for the Nash bargaining problem

A g(ct, ..., c"
v € Arg max {g(c, ..., ")}

Applying the Lagrange principle,

n N n N,M
L) = 3l e?) = 32 3 iyl (@) = 2 3 0t (g — 1)
1=1j=1

=11i,k=1

The approximative solution obtained by the Tikhonov’s regularization is given by

#",p%, " = arg max min Ls(x, p1,m)

where

3 92 i ()~
" of (g = 1) -4 <||xr|2 = [l = nl)

0 M:s

Ed xa:uun):g(clu“' )
\ (6.4)
2
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Notice that the Lagrange function (6.4)) satisfies the saddle-point condition, namely, for all

x € Xaam and p, 7> 0 we have
Ls(xs, pi5,m5) < Ls(x5, s m5) < Ls(5, s, 1)
6.2.2 The proximal format
In the proximal format [5] the relation (6.4) can be expressed as
s = argmin {3 lp — p5* + Lol p05) )
n; = argmin {5ln — 5 1* +7Ls(x5, 5.m) } (6.5)
vy = argmax { =3 [lw — 25|1* + v Ls(x, 15, 75) }

where the solutions z, p; and 775 depend on the parameters 6 > 0 and v > 0.

6.2.3 The Extraproximal method

We design the method for the static Nash bargaining game in a general format with some
fixed admissible initial values (r¢ € X,qm and pg, 79 > 0), considering that we want to maxi-

mize the function as follows:

1. The first half-step (prediction):
in = argmasc { =3 |1 — pin||* = 7Ls(n, p1:70) }
Tl =argr£1§3<{—%l|n—nn|l2 — VL5 (T, finy 1) } (6.6)
Zp = argmax { =3l — 2 [ + 7L5(2, fin, M) }
2. The second half-step (basic)
k1 = aTg Max {=3lp— pnll®> = vLs(Zr, 11, 70) }
41 = arg max {=3ln = mall® = vLs(Zn, fin,m) } (6.7)

T = argmax { —g|z — || +Ls(2, fin, ) }
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6.2.4 Convergence Analysis

The following theorem presents the convergence conditions of eqs. (6.6) and (6.7) and
gives the estimate of its rate of convergence for the Nash bargaining equilibrium. As well,
we prove that the extraproximal method converges to an equilibrium point. Let us define the

following extended vectors

i=zxeX, j= ) ert xR
U

Then, the regularized Lagrange function can be expressed as

Ls(@, 1) == Ls(x, p,m)
The equilibrium point that satisfies (6.5]) can be expressed as
iy = argmin { § 18 — 751 + L5, )}
5 = argmax { 3117 — 5|° +L5(2, ;) }
Now, introducing the following variables

~ z ~
g=| " Jexxrt =" | eXxRr*
Yo 22
and let define the Lagrange function in term of y and 2

Ls(5,2) = Ls(ih, 22) — Ls(21,72)

For gy = &, §o = fi, 21 = 2] = T} and Z, = Z} = [i} we have

In these variables the relation (6.5) can be represented by

Z=arg max {—3ll§ — Z"*+vLs(7,2")} (6.8)
X xR+

YyeEX X

Finally, we have that the extraproximal method can be expressed by
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1. First step

Zn=arg max {—3|7—Z,|P+7Ls(7,%,)} (6.9)
geX xR+

2. Second step

Zp=arg max { =37 — 2, [P +vLs(7,2,) } (6.10)
geEX xR+

Lemma 6.5 Let EN(;(:TU, fi) be differentiable in T and [i, whose partial derivative with respect to

[ satisfies the Lipschitz condition with positive constant K. Then,
2041 — Znll < vKol|Zn — 22|

Lemma 6.6 Consider the set of regularized solutions of a non-empty game. The behavior of

the regularized function is described by the following inequality:
forally €e{y|yeX xR} and 6 > 0.

Theorem 6.7 (Convergence and rate of convergence) Let CN(;(:E, fi) be differentiable in ¥ and
i, whose partial derivative with respect to [i satisfies the Lipschitz condition with positive con-

stant K. Then, for any § > 0 there exists a small-enough

70_’70(5)<K:—min{ 1 1+\/W}

V2K’ 2(Ko)?
where such that, for any 0 < v < -y, sequence {Z,}, which generated by the equivalent

extraproximal procedure in eqs. ([6.9) and (6.10), monotonically converges with exponential

rate r € (0,1) to a unique equilibrium point Z*, i.e.,
Hin—i*HQS enlnr‘|§0_5*|’2

where

Ay
r =1t g5, gy —207 < 1

and ry,;y, is given by

25y 1

T1420y T 1+426y°

Tmin= 1

Please refer to Appendix [C] for the proofs of these results.
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6.3 The disagreement point model

A pivotal element of the model is a fixed disagreement vector (sometimes also called as
status quo or threat point). The player are committed to the disagreement point in the case of

failing to reach a consensus on which feasible payoff to realize. introduce the variables
r:=cold, &:=cold,

The strategies of the players [ = 1, n are denoted by the vector z, and 7 is a strategy of the rest
of the players adjoint to z. For reaching the goal of the game, players try to find a join strategy
z* = (ct, 2, ) satisfying
[ ) =3 ¢ () = ¢t ()]
=1

where ¢! (cl, ci> is the utility-function of the player [ which plays the strategy ¢! € C! and the

rest of the players play the strategy de C’Z, and ¢ is the utopia point defined as follows

d := argmax ¢' <cl, cl>
cteC!

The functions ¢' <cl, ci> (l = 1,_11) are assumed to be concave in all their arguments.

Property 6.8 The function f(x, ) satisfies the Nash condition
& (Cl,ci) _ (El,ci> <0
foranycd € C'andalll =1,n
Definition 6.9 A strategy ©* € Xuam := @, Cy (Restrictions 2.7\ and is said to be a
Nash equilibrium if
z"€ Arg max {f(z,2)}

Applying the regularized Lagrange principle we have the solution for the Nash equilibrium

* Ak * % . A
r*, 2%, p,nt =arg max min Lys(z, T, 1, n)
zeX,zeX >0
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where

Loste e 1= (1= 0)(2.2) = 52 3=y ()~
3 5 o (g — 1) = S0l + 117 = el = )

1=114,k=1

(6.11)

Notice also that the Lagrange function (6.11) satisfies the saddle-point condition, namely, for

allx € X, 7 € X, and p,n> 0 we have
Los(xs, Lo, 15, m5) S Los (x5, TF, 15, 15 ) < Lo, (X5, L5, ps; o)
6.3.1 The proximal format
In the proximal format the relation (6.11)) can be expressed as
s = argmin {5 lu — g5l + Lo (25, 5 1,175 }
ny = argmin {5 |n — 5 1* + v Los (w5, 25, 5. 1) }
vy = argmax {—gle — 25|1* + Lo (v, 5, 15, 75) }
5 = avgmax { =3} — &F1* +yLos(x3, & 5, m5) }
where the solutions x}, Z3(u), uj and 7} depend on the parameters 6 > 0 and v > 0.
6.3.2 The Extraproximal method

We design the method for the static Nash game in a general format with some fixed admis-
sible initial values (xg € X, gy € X , and 1, n9 > 0), considering that we want to maximize

the function, as follows:

1. The first half-step:

in = avgmax { =5l = piall* = 7Los (@0, Ens 11, 10) }
M = argmax { =3 ln = mll* = 1Los (20, &, pin, 1)}

> (6.12)
T = arg max {3z — znll® + vLos(x, Tn, fin, 7Tn) }

En = arg IAHa)%( {_%H‘% - £n|’2 + "}/5975(1}“ jja larwﬁn)}
Te
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2. The second half-step

fint1 = arg max {=3lp— pnll> = vLos (T, Ty 11, 70) }
M1 = argmax { =5 [|n = 1l = 7Los(Tn, En, fins ) }
Tpt+1 = arggle%? {_%Hx - anQ + 7£0,5<x7§n7ﬂm ﬁn)}

jjTLJrl = arg I}la)%( {_%Hj - j:nHQ + ’Vﬁe,é(i’m :%7 s ﬁn)}
re

6.4 Numerical Examples

Example 1

(6.13)

Our goal is to analyze a 2-player Nash Bargaining situation in a class of ergodic controllable

finite Markov chains. Denote the disagreement utility that depends on the strategies cl( k) (Il =

1,2) for players 1 and 2 as ¢'(c!, ¢?) and ¢?(c', ¢?) respectively, and the solution for the Nash

bargaining problem as the point (¢1,75). Let the states N = 3 and the number of actions

M = 2 for each player. The individual utility for each player are defined by

Jii.41)

2
JGi4)

7 17 13 18 3

— 1 _

=10 1 18 Jijy=1]9 0
13 7 10 15 6
(9 11 6 10 18

— 2 —

=19 17 3| Joo=|12 7
11 1 4 17 6

The transition matrices for each player are as follows

0.5144
Ty = |0.3775
0.3305
0.3541
i1 = |0.5929
0.4288

0.2877
0.0893
0.2703

0.1945
0.2559
0.2434

0.1978_ _0.3438

1 _
0.5332| 7l = |0.2484
0.3992 0.1378
0.4514] [0.6435
2 _
0.1512| 74 = |0.2990
03278 05575

10
7
16

0
18
10

0.3846
0.0756
0.4655

0.0216
0.3905
0.2203

0.2717]
0.6759
0.3968

0.3349
0.3105

0.2221
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Computing the disagreement point. Given ¢, v and applying the extraproximal method

we obtain the convergence of the strategies for each player in the disagreement point in terms

of the variable cl(i, k) (Figure and Figure .

0.1683 0.1551 0.2618 0.2122
ct=10.1829 0.0973 = 10.0673 0.1320
0.1853 0.2111 0.1305 0.1962

e2(1,) [
osst[ 2|
c?(2,1)
c2(3.1)
18l = I | e I - = =c(1.2)| -
: o == =deaF
H 2)| | S == =32
0.16 [
0.14 1 A E—
ozt s ] 04
e
o R | w\
g 3 ? 0.05
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
Figure 6.2 Strategies for player 1 Figure 6.3 Strategies for player 2.

With the strategies calculated, the resulting utilities in the disagreement point for each

player are as follows:
o' (ct, ) =120.3001  ¢*(ct, ¢?) = 97.0832

Computing the Nash Bargaining solution. The Nash’s solution has a simple geometric
interpretation in a two-person game: given a bargaining pair, for every point (1, 12 ), consider
the product (area of a rectangle) (1)1 — ¢')(1)2 — ¢?). Then (41, 1)2) is the unique point in the
Pareto front that maximizes this product [60].

Following the method presented and applying the extraproximal method for the Nash bar-
gaining problem (6.6] - [6.7), we obtain the convergence of the strategies for the bargaining
solution in terms of the variable cl@ k) for each player (see Figure 6.4 and Figure .
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0.1890 0.1178 0.3463 0.0881
¢! =10.3057 0.0010 ¢ =10.0010 0.2325
0.0010 0.3854 0.0010 0.3310
04 o] J 035}
el(1.1)] | e e 21,1 1
c'2,1) 0.3+ 2|
c'(3,1) c?(3,1)
= = =ell) 025 == =c(1.2)| A
= = =gllenn | g [ T el ] il
-==c¢'32) 02t I‘ == =232 4
0451 r’i‘\
b Y
______________________ ] T
i 01 A o b
/]
0.05
u]
i] 5 10 15 0 5 10 15
Figure 6.4 Strategies of player 1 Figure 6.5 Strategies of player 2.

With the strategies calculated, the resulting utilities in the bargaining solution are as fol-
lows:
Pl(ct, ®) =139.6854  ?(ct, c?) = 119.4296
We can see that the profits obtained at the point of Nash bargaining solution are greater than

those obtained at the disagreement point.

Example 2

Our goal is to analyze a three-player Nash bargaining situation in a class of ergodic con-
trollable finite Markov chains, we have n = 3. Denote the disagreement cost that depends
on the strategies c(; ,, (I = 1,2,3) for players 1, 2 and 3 as ¢'(c!, %, ¢*), ¢*(c!, ¢*,¢?) and

(!, 2, ) respectively, and the solution for the Nash bargaining problem as (¢!, ¢?, ¢?).
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Let the states N = 5 and the number of actions M = 2 for each player. The individual

utility for each player are defined by

10 9 3 7 6 14 9 12 6 1 5 8 7 8 10

1119 6 8 10 18 12 7 9 10 10 4 13 11 5
Uijn=19 7 13 19 5| UZ,;y=1|5 14 8 11 6| Uj;;y=|[14 11 6 17 1
14 9 15 2 16 19 13 8 4 10 12 0 9 7 3
12 4 9 3 10 6 9 12 10 8 16 12 8 4 10
12 6 7 10 5] 10 17 6 9 11 9 13 7 10 11
16 0 9 14 5 16 9 4 12 8 19 5 0 7 20
Ujop=[18 10 16 9 4| UZ;»=1[10 13 9 1 18] Uj,,=1{11 2 19 6 9
2 16 9 7 13 12 18 15 9 4 3 10 14 5 18
11 9 3 17 10 17 3 9 10 6 9 10 17 6 11

The transition matrices for each player are defined as follows

0233 0130 0.090 0.278 0.266] 0210 0.235 0166 0.209 0.088]
0.123 0.029 0.174 0.394 0.279 0.177 0.054 0.483 0.143 0.141
Thin= 0.220 0.187 0.276 0.182 0.124| 7(; ;9= 10.102 0.345 0.294 0.167 0.089
0.129 0.265 0.336 0.190 0.078 0.187 0.100 0.364 0.249 0.099
0.331 0.189 0.108 0.172 0.198 0.087 0.197 0.193 0.388 0.132
0240 0132 0307 0.160 0.159] 0380 0.013 0202 0.117 0.278]
0.353 0.152 0.090 0.170 0.232 0.171 0.224 0.178 0.323 0.101
T4 in= 0.243  0.138 0.185 0.249 0.183| 7, ;5= [0.315 0.124 0.125 0.217 0.217
0.134 0.214 0.244 0.290 0.116 0.185 0.122 0.330 0.171 0.189
0.170 0.267 0.215 0.167 0.179 0.111 0.285 0.208 0.205 0.190
0070 0.334 0261 0.143 0.189] 0.466 0108 0.084 0.124 0.215]
0.053 0.085 0.446 0.126 0.288 0.205 0.241 0.107 0.143 0.301
T = 0127 0.325 0.140 0.180 0.227| 7(; ;5= |0.044 0216 0.305 0.313 0.120
0.317 0.265 0.031 0.227 0.158 0.287 0.171 0.205 0.098 0.235
0101 0.291 0.039 0.311 0.256] 0.145 0.214 0.166 0.245 0.227

Computing the disagreement point. Given ¢ and 7 and applying the extraproximal
method (eqs. [6.12]and [6.13) we obtain the convergence of the strategies for the disagreement

point in terms of the variable cl( k) for each player (see Figure .

i,
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[0.1729  0.0399 [0.0499 0.1642)] [0.1004  0.0533]

0.1445 0.0010 0.0010 0.1682 0.2270 0.0010
¢! = [0.1549 0.0641 ¢ = (02139 0.0010 ¢ = 10.1296 0.0645
0.0010 0.2475 0.1856 0.0440 0.2027 0.0010
10.1732°0.0010 10.0734 0.0989 10.1505  0.0699 |

Following eq. the mixed strategies obtained for the players are as follows

[0.8125 0.1875 [0.2330 0.7670 [0.6530 0.3470

0.9931 0.0069 0.0059 0.9941 0.9956 0.0044
d' = [0.7073 0.2927 d* = [0.9953 0.0047 d* = 10.6676 0.3324
0.0040 0.9960 0.8085 0.1915 0.9951 0.0049
0.9943  0.0057 04261 0.5739 0.6827 0.3173)

With the strategies calculated, the resulting utilities, following eq. (6.2), in the disagree-

ment point for each player ¢'(c!, ¢2, ¢®) are as follows:
pt(ct, 2 ®) =93.1288  ¢*(ct, P ) =100.9968  ¢(ct, P, ) = 96.0779

Computing the Nash bargaining solution. The Nash’s unique solution has a very sim-
ple geometric interpretation in a three-person game: given a bargaining pair, for every point
(1,92, 13), consider the product (volume of a rectangular prism) (¢! — ') (¢? — ¢?) (1® — ¢3).
Then (1!, 12, 1)3) is the unique point in the Pareto front that maximizes this product (see [60]).

The function for finding the solution to the Nash Bargaining problem in a three-person game is
gleh, 2 %) = (P = @)XW (2 — gt (gt (6.14)

where the parameters o1, as, a3 > 0 and o' + a? + o = 1. For the implementation we can

rewrite (6.14) as follows
glc!, e, ) = a'x(¥' > ¢') In(y" — ¢!)
+a?x(¥? > ¢*) In(y? — ¢%) + X (¢° > ¢°) In(4)* — ¢%)
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c'(1,1) (11} 4
¢'i2.1) PRI
¢'i31) Zi3| 4
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Figure 6.6 Convergence of players’ strategies.

Then, given §, v, o' = 1/3 and applying the extraproximal method (egs. and for
the Nash bargaining problem we obtain the convergence of the strategies for the bargaining

solution in terms of the variable cl( k) for each player (see Figure .

Z’7

0.0793 00890 0.1377  0.1026] 0.0880 0.0965|
0.0822 0.1043 0.1055 0.0540 0.0784 0.1453
¢! = (0.1285 0.1413 ¢ =10.0779 0.1343 ¢ =10.0789 0.0952
0.1420 0.0956 0.0818 0.1154 0.0645 0.1250
0.0412 00956 10,0976 0.0931] 0.1067 0.1214]
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Figure 6.7 Convergence of players’ strategies.
Following eq. (2.6)) the mixed strategies obtained for the players are as follows
[0.4712  0.5288] 05730 0.4270] [0.4769 0.5231]
0.4408 0.5592 0.6613 0.3387 0.3506 0.6494
d' = [0.4764 0.5236 d*> = [0.3671 0.6329 d* = 10.4530 0.5470
0.5991 0.4009 0.4149 0.5851 0.3404 0.6596
10.3011  0.6989 [0.5117  0.4883 10.4679  0.5321 |

Then, we can see that the resulting utilities obtained in the Nash bargaining solution are greater

than those obtained at the disagreement point.

P, ?.c®) = 118.0408  *(c', P, c*) =117.3255 (¢!, 2, ) = 122.5102



Chapter 7
Solving Bargaining by Manipulation

7.1 Introduction

The Machiavellianism is defined as a political strategy of social conduct that involves ma-
nipulating others for personal gain, often against the other’s self-interest [16]. This concept
coincides with the central insight that gave rise to modern economics where the common good
is well served by the free actions of self-interested agents in a market. The profit maximization
of agents assigns essentially no role to generosity and social conscience because actions in
many domains of application commonly conform to standards of manipulation. In this sense,
the manipulation model presents an advantage for expanding the classical economic models as
a more realistic behavioral assumption. In the classical economic theory, agents are assumed
to be rationally law-abiding but not fair. This non-fairness assumption can be explained by
the Machiavellianism in terms of the immorality (considered by Christie and Geis [[16] to be
among the three key elements of Machiavellianism) which has deep roots in the history of the
economy. It is important to note that a manipulation strategy is a political strategy and it is
not an economical strategy as is presented in compensation contracts which solves a particular
case of manipulation [12].

The concept of Machiavellianism was first studied by Christie and Geis [16] as the ability
to manipulate others as an important personality trait. They analyze whether the principles

associated with three of Machiavelli’s greatest works (The Prince [54]], The Discourses [54]



120 Chapter 7. Solving Bargaining by Manipulation

and The Art of War [55]) were practiced by individuals in today’s society. The fundamental
idea throughout Machiavelli’s discourses is the degree to which people can be manipulated.

Christie and Geis [16] defined the Machiavellian personality type as someone who seeks
to manipulate others to achieve his or her own ends. Machiavellianism structure is composed
by three key elements: 1) the belief in manipulative tactics, 2) a cynical world view, and 3) a
pragmatic morality (immorality). For individuals who manipulate, others are viewed entirely
as objects or as means to personal ends (views) having an utilitarian, rather than a moral view
of their interactions with others (immorality) and focused on applying manipulation strategies
for accomplishing their goals related to power situations (tactics).

The interest in the subject of Machiavellianism was almost among social psychologists
[107, 23,18, 185]. These works only made an interpretation of the concept of Machiavellianism
related to well-known games of game theory and in game-theoretic experiments focusing on
explaining the rationality of the players. These works has not converged on the framework of
game theory and a small number of articles are inspired by traditional game theory. In addition,
the effects of repeated interactions with the intention to exploit others have not been addressed.

The manipulation game is conceptualized under the Machiavellianism psychological the-
ory which determines a Stackelberg game model consisting of manipulating and manipulated
players that employ manipulation strategies to achieve power situations with the disposition to
not become attached to a conventional moral. The Stackelberg game focuses on computing the
strong Stackelberg equilibrium. In this paper we are considering manipulating and manipu-
lated players engaged in a cooperative Nash game. Power situations suggest that the advantage
is for the manipulating players. The equilibrium may be imposed on the manipulated players
without their approval but considering that every player is able of manipulative behavior to
some degree (manipulated players try to minimize their lost). The resulting manipulation strat-
egy is an outcome which is optimally better for the manipulating players with the manipulated
players necessarily worse off. The rationality of the players follows this two basics principles:
a) no manipulating player will agree to accept a payoff lower than the one guaranteed to him
under disagreement, and b) the agreement will represent a situation that could not be improved

by the manipulated players.
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The main results of this chapter are summarized as follows.

e The manipulation game is conceptualized under the Machiavellianism psychological the-
ory as a Stackelberg game model involving manipulating (leaders) and manipulated (fol-

lowers) players.

e We consider a game model involving manipulating and manipulated players engaged

cooperatively in a Nash game restricted by a Stackelberg game.
e The cooperation is represented by the Nash bargaining solution.

e [t is proposed an analytical method for finding the manipulation equilibrium point. There
is a manipulating strategy solution (which arises as the maximum of the quotient of two

Nash products) which under a feasibility condition is a manipulation equilibrium point.

o We represent the Stackelberg game model as Nash game for relaxing the interpretation

of the game and the equilibrium selection problem

e The solution concept applied to the manipulation game focuses on computing the ma-

nipulation equilibrium which is a political strategy.

e Under conditions of unequal relative power among players, the player with high power

tends to behave exploitative, while the less powerful player tends to behave submissively.

e The weights of the players for the Nash solution are determined by their role in the

Stackelberg game.

e The manipulated players break ties optimally for the manipulating players finding a new
strong Stackelberg equilibrium point solution where manipulating maximize the gain and
the manipulated minimize the lost. There is an equilibrium selection problem forcing the

manipulating players to manipulate on which equilibrium to converge.

e The manipulation equilibrium point is a political strategy with an outcome which is op-

timally better for the manipulating players.
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e The computation of the problem is fitted into a class of homogeneous, ergodic, control-

lable and finite Markov chains games.

7.2 The Manipulation Game
7.2.1 Machiavellian structure

The Machiavellianism structure that encodes the set of characteristics of a Machiavellian

individual is represented by three fundamental concepts [[16]]:

e Views: The belief that the world can be manipulated - the world consists of manipulating

and manipulated

e Tactics: The use of a manipulation strategies needed to achieve specific power situations

(goals).

e Immorality: The disposition to not become attached to a conventional moral.

Remark 7.1 Strategies are based on the Machiavelli’s The Prince [54|], The Discourses [54]],
The Art of War [55] and the psychological behavior patterns [107].

A manipulation game is a Stackelberg game model consisting of manipulating and manip-
ulated players (views) that employ manipulation strategies to achieve power situations (tactics)
with the disposition to not become attached to a conventional moral (immorality) [18]].

The solution concept applied to the manipulation game is the strong Stackelberg equilib-
rium. In the manipulation game the manipulating players consider the best-reply of the ma-
nipulated players selecting the strategy that maximizes the payoff anticipating the predicted
best-reply of the manipulated players. The manipulated players break ties optimally for the
manipulating players and in equilibrium select the expected strategy as a best-reply. We are
considering manipulating and manipulated players engaged in a cooperative Nash game re-
stricted by a Stackelberg game.

The formal definition and rationality of the solution for the bargaining problem based on

the manipulation game is as follows.
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7.2.2 The bargaining manipulation solution

Consider a manipulation game, for a finite set of players Z = {N U M} with n + m el-
ements, let R? denote the (n + m)-dimensional Euclidean space with coordinates indexed by
the elements of Z. For representing a Stackelberg game as a Nash game a strategy profile
x = (u,v) € X C R"™ is constructed, where X = U ® V' is the concatenation of U and V,

Lo, ut vl ... v™). The strategy profile u represents the proposal of the ma-

such that z = (u
nipulating players and the strategy profile v represents the proposal of the manipulated players.
The manipulation solution is based on a model in which the players are assumed to manipu-
late on which point of the feasible payoff vector ®(z) = (o' (u), ..., " (u), P (v), ..., V™ (v))
where p(u) = (¢'(u), ..., p"(u)) and ¢ (v) = (Y*(v),...,¥)™(v)) are the payoff vectors cor-
responding to the manipulating and manipulated players, respectively, and the vector x =
(u', ... u™ vl o v™) € X, Letus denote ¥ := {®(x) € R*™ | z € X} as the adjunct set
of payoft vectors ®(z).

Players have strictly opposed preferences and each one is concerned only with the share
of benefits it obtains from manipulation. A fundamental point of the model is a fixed dis-
agreement vector ¢ = (@(u),p(v)) € ¥ which plays the role of a deterrent where p(u) =
(@' (u), ..., ¢"(u)) is the disagreement payoff vector corresponding to the manipulating players
and ¢ (v) = (' (v), ...,)™(v)) is the disagreement payoff vector corresponding to the manip-
ulated players.

The manipulating players would like to increase their components in ¢ and to achieve a
o € U(x) for which ¢ > ¢ (where o, > ¢,, ¢ = 1,...,n + m). We will suppose the conflict
of interest involves all external factors, depends only on the agreement being considered and
on the objections, and therefore the manipulation process is independent of time, history, and

experience.

Remark 7.2 We are considering manipulating and manipulated players engaged in a cooper-

ative Nash game restricted by a Stackelberg game.

Remark 7.3 In a Stackelberg game leaders and followers move asynchronous. For instance, if

we first fix the followers then, we will have a Nash product for the leaders given by [, (¢' (u|v)—
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Q). On the other hand, if we fix the leaders we will have a Nash product for the followers given
by TT%_ (™ — o™ (v|u)). In a Stackelberg game we look for

n
max [[(¢'(ulv) = &'), ¢ > ¢
ucU =1

while

mo -
min [T (07 =ym(lu), o™ > gm

Then, for fitting the manipulation game to more real situations we consider that manipulating

and manipulated players can move simultaneously. In addition, we consider that every player

is capable of manipulative behavior to some degree, but making emphasis in the fact that some

are more willing and more able than others. We represent the Stackelberg game model as Nash

game for relaxing the interpretation of the game and the equilibrium selection problem.

Remark 7.4 The transformation of a Stackelberg game into a Nash game is already described
by [90] where the authors suggest that a leadership game is a two-stage game played as fol-
lows: the leaders choose and commit to their strategies which are announced to the followers,
who then simultaneously choose their strategies, which are played together with the strategies
of the leaders. The players’ payoffs for the strategy profile are as in the original game. Then,

there is no need for understanding leadership as an asynchronous game.

Following the Remark [7.2] Remark [7.3] and Remark [7.4] we approach the solution of the
bargaining by manipulation problem as the maximum of the quotient of two Nash products as

follows.

Definition 7.5 A strategy * = (u*,v*) € X is called a manipulation strategy solution of the

game if it is an optimal solution of the maximization problem

zeX

[1

max  ((o(x)) = -
[1

(7.1)

subject to o(x) € ¥(x)
o' > G and P > ™
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where ¢(x1) = (p(u), ¥ (v)) € U(xr), 21 € X, o(x*) = (¢ (u*), 9 (v*)) such that ¢ (u*) =
(¢ (0)) L @ & (%) = (07 ()1

Remark 7.6 The pay-off vector given by o(x*) = (p (u*) , ¢ (v*)) generated by manipulation

solution * = (u*,v*) € X is called the manipulation solution payoff.

For making emphasis in representing the Stackelberg game model as a Nash game we

consider that the problem (7.1)) for finding the solution to the manipulation problem is given by

[1(¢! - )=
C(o(x)) = = — max (7.2)
IT (§m — pm)Brx@m>um) veX
m=1

where o(x) = (p (u),% (v))and o' > ™ >0 (I = 1,...,n, m = 1,...,m) are the weighting
parameters for manipulating and manipulated players, respectively. Then, we rewrite (7.2)) as

follows

M=

Clo(x)) =Y alx(¢' > @) In(¢t — ') —

l

> (0" > 6™ (" — ™) > max

where o(x) = (¢ (u), 9 (v)) where ¢ (u*) = ¢y (u*),_3 and ¥ (v*) = Yy, (V7)1

Given ((o(z)) and considering the disagreement vector ¢(x/) = (@(u), ¥ (v)) € U(xr),

1

(7.3)

a payoff vector solution to the manipulation problem is a function go(x) € W(x) such that
x € X. The manipulation process result in a particular strategy solution z* € X which can
be considered the equilibrium point of the manipulation game when it results a particular point

satisfying o(z*) € U(z*).

Definition 7.7 The strategy solution x* = (u*,v*) € X of the manipulation game is called the

manipulation equilibrium point.

In the following statement we present the characterization of the manipulation equilibrium

point z* = (u*,v*) € X of the manipulation game.

Theorem 7.8 Let I' be a manipulation game. Then, the manipulation strategy solution x* =

(u*,v*) € X of the game T is a manipulation equilibrium point if and only if o(x*) € W(x*).
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Proof. =) Suppose that z* = (u*,v*) € X is an equilibrium point. In addition, let us
suppose that there exists a z € X,  # z*, such that o(z) = (¢ (u),® (v)) € ¥(x) such
that o (u) > ¢ (u*) and ¥ (v) > 9 (v*). It is impossible, because z* € X is a solution of the
manipulation game I'.

<) By contradiction. Suppose that o(z*) ¢ W(z*). Then, it is possible for the manipulating
player to increase their pay-off. Consistently, it is possible for the manipulated players to

reduce their pay-off. Then, it is not a manipulation equilibrium point. m

Remark 7.9 The bargaining conditions under manipulation will produce that manipulating
players prefers to increase the profit while the manipulated players prefers to decrease it. Un-
der these circumstances, it may be necessary for all players to adjust the profit in order to find
a Pareto solution. The change of the profit is also a Pareto solution because the renegotiated

profit for the manipulated players is below the efficient profit.

7.3 Numerical example

For this example, consider the results presented in the previous chapters. Let us analyze
a two-player manipulation problem, where player 1 is the manipulating and player 2 is the
manipulated, in a class of ergodic controllable finite Markov chains. Let the states N = 3, and

the number of actions M = 2. The individual utility for each player are defined by

(7 17 3 6 18 13
Ulm=110 6 7|  Ulbm=[10 18 6
16 17 4 16 8 10
(19 11 7 1 8 10
Uim=12 7 13 Ul = |5 17 8
1 10 7 416 1

The transition matrices for each player are defined as follows

0.4554 0.2548 0.2898 0.3088 0.3445 0.3467
Thim= [0.2195 04718 0.3086| ;2= [0.0888 0.2358 0.6754
0.2460 0.3044 0.4496 0.2336 0.4656 0.3008
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0.2906 0.3389 0.3705 0.5628 0.1440 0.2932
TG im= 04773 0.2058 0.3168| 7 ;= |0.3416 0.4461 0.2123
0.4783 0.1561 0.3656 0.4114 0.1624 0.4262

Given the parameter ¢ and - and applying the extraproximal method for finding the Nash
equilibrium point of the manipulation situation we obtain the convergence of the strategies for
the disagreement point in terms of the variable c%l. k) for the manipulating player (see Figure

and the convergence of the strategies c?i, k) for the manipulated player (see Figure .
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Figure 7.1 Convergence of the strategies for the Figure 7.2 Convergence of the strategies for the
manipulating player. manipulated player.

Following eq. (2.6)) the mixed strategies obtained for the players are as follows

0.8795 0.1205 0.2075 0.7925
d' = 10.7470 0.2530 d* = 10.9944 0.0056
0.3164 0.6836 0.5310 0.4690

With the strategies calculated, the resulting utilities in the disagreement point for each

player are as follows:

P1(ct, ) = 27.1564  ty(ct, ?) = 17.1008
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Once the disagreement point is fixed, the manipulation process begins. With 9, v and the
weighting parameters o' = 40 for the manipulating player and 3! = 25 for the manipulated
player, and applying the extraproximal method we obtain the convergence of the strategies for
the manipulation problem in terms of the variable c%i, k) for the manipulating player (see Figure

and the convergence of the strategies c%i’ k) for the manipulated player (see Figure .
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Figure 7.3 Convergence of the strategies for the Figure 7.4 Convergence of the strategies for the
manipulating player. manipulated player.

Following eq. (2.6) the mixed strategies obtained for the players are as follows

0.5314 0.4686 0.0019 0.9981
d' = 10.5280 0.4720 d* = 10.9937 0.0063
0.4980 0.5020 0.9969 0.0031

With the strategies calculated, the resulting utilities in the manipulation solution are as
follows:

ol(c', ?) =29.0885  Pl(c!, c?) = 14.8154
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We can see that the profits obtained after the manipulation process are for the manipulating
player greater than the disagreement point while for the manipulated player are smaller than

the obtained in the disagreement solution, see Figure
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Figure 7.5 Manipulation Solution.






Chapter 8
The Kalai-Smorodinsky bargaining solution

8.1 Introduction

One of the most prominent alternatives to the Nash bargaining solution is the solution pre-
sented by Raiffa [[77] for two-person bargaining games, which has been axiomatized by Kalai
and Smorodinsky [46] suggesting an alternative axiom, the axiom of Monotonicity, which leads
to another unique solution. Considering a two-person bargaining situation, this axiom states
that if, for every utility level that player one may demand, the maximum feasible utility level
that player two can simultaneously reach is increased; then the utility level assigned to player
two according to the solution should also be increased.

Anant et al. [3] showed that the Kalai-Smorodinsky’s result is true and the unique one
satisfying the four axioms even if it is generalized the domain of bargaining games to allow
for non-convex utility feasibility sets. Roth [80]] showed that the Kalai-Smorodinsky solution
for two-person bargaining games does not generalize in a straightforward manner to general
n-person bargaining games. Specifically, the solution is not Pareto Optimal on the class of all
n-person bargaining games, and no solution which is can possess the other properties which
characterize in the two-person case.

Following this problem, Peters and Tijs [[71] introduced a rather large subclass of n-person
bargaining games. They described all bargaining solutions on this subclass having the four
axioms of the Kalai-Smorodinsky solution, and exactly one of these solutions is symmetric;

also, they proved that all these solutions are risk sensitive.
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8.2 The Bargaining Model

With the property of independence of irrelevant alternatives, Nash’s solution is not sensi-

tive to the range of outcomes contained in the feasible set, for instance, by the utopia point

(U, 0) = (V1 (P, 9), ..., ¥ (¥, ¢)) defined by
(0, 0) = max {¢' ¢! € Tyl > ¢}

this point is the highest possible utility payoff that player / can attain in the bargaining prob-
lem (W, ¢). Raiffa [77] proposed a solution for for two-players bargaining problems which is
sensitive to changes in ¢*(U, ¢). He proposed the solution ¢ for two-player games such that
Y = f(U, ®) is the Pareto-optimal point at which (! — @) /(Pp1* —p1) = (V2 —p?)/ (V> —¢?).
The solution 1) selects the maximal point on the line joining ¢ to ¢*, yielding each player the
largest reward consistent with the constraint that the players’ actual gains should be in propor-
tion to their maximum gains, as measured by the ideal point * (¥, ¢).

The Kalai-Smorodinsky solution of the bargaining problem amounts to normalizing the
utility function of each agent in such a way that it is worth zero at the status-quo and one at
this agent’s best outcome, given that all others get al least their status quo utility level; and to
share equally the benefit from cooperation. This solution has been proposed by Raiffa [77] and
axiomatically characterized by Kalai and Smorodinsky [46] when society A/ contains only two
agents, i.e., [ = 1, 2. Consider the pair (¥, ¢), where the point in the plane ¢ = (¢!, ¢?) is the
level of utility that player [ = 1, 2 receives if the two players do not cooperate with each other,
this point is called the status quo; and W is a subset of the plane, every point i) = (!, ?) € ¥
represents levels of utility for players 1 and 2 that can be reached by an outcome of the game
which is feasible for the two players when they do cooperate.

Let B denote the set of all pairs (¥, ¢) such that
1. ¥ C R?is compact, convex;
2. There exists at least one point 1) € L such that 1! > ¢, for [ = 1, 2.

A Kalai-Smorodinsky solution to the bargaining problem is a function f : B — R? such

that (¥, ¢) € ¥ and satisfies the following axioms [46]
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1. Pareto Optimality: For every (¥, ¢) € B there is no ¢» € W such that ¢ > f(\U, ¢) and
imply ¢ # f(U, §).

2. Symmetry: We let f : R? — R? be defined by T'(1*, 1?) = (¢?,4') and we require that
for every (¥, ¢) € B, f(T(¥), T(¢)) = T(f(¥, 9)).

3. Invariance with respect to affine transformations of utility: A is an affine transformation
of utility if A = (A, A?) : R? — R2, A((¥',4?)) = (A (¢!, A%(x)?)), and the maps
Al(2)) are of the form cl4) + d' for some positive constant ¢! and some constant d’. We

require that for A, f(A(L), A(¢)) = A(f(V, ¢)).

4. Monotonicity: For a pair (¥, ¢) € B, let *(¥) = (*(V),4**(V)) and gy (') be a
function defined for ¢! < ¢)1*(¥) in the following way
X 2, if (!, 1?) is the Pareto of (¥, ¢)
gL(7) =
P2*(W), if there is no such v
If (U2, ¢) and (P!, ¢) are bargaining pairs such that o'*(¥!) = o*(¥?) and gg1 < gye,
then f(W', ¢) < f2(V?, ¢), where f(¥,¢) = (f1(V, ), f2(¥,9)).

Consider a Pareto optimal outcome and the line segments connecting that outcome to the
disagreement point and to the utopia point. For any pair of players we may then project these
line segments into the plane (see Figure [8.1).

The axiom of monotonicity states that if, for every utility level that player 1 may demand,
the maximum feasible utility level that player 2 can simultaneously reach is increased, then the

utility level assigned to player 2 according to the solution should also be increased.

8.2.1 Generalization of the Kalai-Smorodinsky solution for \/ -player

We consider the set of all n-player bargaining problems defined by Peters and Tijs [71]], and
on this set we define a class of asymmetric n-person Kalai-Smorodinsky solutions. The set of
playersn = {1,...,n} isindexed by I = (1, ...,n), withn > 2. A set * C R" is comprehensive

ifreVandz > yimply y € U, forall z,y € R".



134 Chapter 8. The Kalai-Smorodinsky bargaining solution

LlJz

Figure 8.1 The Kalai-Smorodinsky solution.

We talk about comprehensiveness in the sense that any player can choose a lower utility
without this leading to an infeasible outcome. A bargaining problem for A is a pair (¥, ¢)
where: U C R" is compact, convex, and comprehensive; and there exists a ¢» € W such that

1 > ¢ and ¢ € V. For all bargaining problem (U, ¢) € B" we define the Pareto set of ¥ as
PW)={yeV: forallz € R", ifx > ¢ and x # ¢, thenz ¢ U}

A bargaining solution is a map f : B" — R" that assigns to each bargaining problem (¥, ¢) €
B" a single point f(¥, ¢) € W. Roth [80] observed that the n-player extension of the Kalai-
Smorodinsky solution is not Pareto optimal on all bargaining problems in B", i.e., does not
assign an element of P(¥) to each (¥, ¢) € B". Therefore, Peters and Tijs [[71] introduced a

subclass of bargaining problems in B" for which this problem does not occur.

Property 8.1 Forally € U, ¢ > ¢, 1= (1,...,n): v & P(V) and ' < (¥, ¢) = e >0
with 1) + ee! € W, where the vector ¢! € R"™ has the I-th coordinate equal to 1 and all other

coordinates equal to (.

If a feasible outcome 1) is not Pareto optimal, then for any player [ who receives less than his
utopia payoff it is possible to increase his utility while all other players still receive ). Let

" C B" consist of all bargaining problems satisfying Property [8.1] The class of bargaining
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problems (W, 0) € Z" is denoted by Z§. Peters and Tijs [71] defined the n-player extension of
the solution by making use of monotonic curves. A monotonic curve for n is a map
v [ln] — {w € RY | ¢! < 1forall player/, and 1 < Zwl}
=1
such that for all 1 < s < ¢t < n we have ¥(s) < ¥(¢) and >, V' (s) = s. The set of all

monotonic curves for n is denoted by O".

Lemma 8.2 Peters and Tijs [71]. For each ¥ € O" and (V,0) € I} with f(\V,0) = ", the set
P(U)N{J(t) | t € [1,n]} contains exactly one point.

Let ¢ be some monotonic curve in ©". Following Lemma 8.2 the solution associated with 9 is

defined as p? : Z" — R". Let (¥, 0) € Z¢, if *(¥,0) = e, then
{0/ (W,0)} == P(W) N {0(1) | € [1,n]}

and if ¢*(0,0) = ¢, then p’(V,0) := ¢*p’((v*)"'¥). For (¥,¢) € I° we define
P’ (U, ¢) = ¢ + p?(¥ — ¢). The class of all solutions associated with a monotonic curve
in ©" is referred to as the class of individually monotonic bargaining solutions, the Kalai-
Smorodinsky solution is an element of this class. Observe that 19, the monotonic curve of the
Kalai-Smorodinsky solution, defines a straight line in R", which for bargaining games ¥ € 7}
with ¢*(W, 0) = e", coincides with the line connecting the disagreement point 0 and the utopia
point e". For general bargaining problems (W, ¢) € Z", the solution is the intersection of the

Pareto set P(V) and the straight line that connects the disagreement point ¢ and the utopia

point *.
8.3 Formulation of the problem for Markov chains games

Consider a n-person bargaining problem [104]. Denote the disagreement utility for each
player (I = 1, ..., n) that depends on the strategies cl(iyk) as ¢'(ct, ..., c"), and the solution for the
bargaining problem as the point (1}, ...,%"). Following (2.5)), the utilities ¢! are for Markov

chains as follows

W= ) = iiw’ ﬂcz'
s : : (,k) (i,k)
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where the matrices W(ll ) Tepresent the behavior of each player. This point is better than the
disagreement point, therefore must satisfy that i)' > ¢'.

The process to solve the bargaining problem consists of two main steps: firstly, to find
the disagreement point we define it as the Nash equilibrium point of the problem (see [62]),
while for the solution of the bargaining process we follow the model presented by Kalai and
Smorodinsky [46]. The Kalai-Smorodinsky solution chooses the maximum individually ratio-
nal payoff profile at which each player’s payoff has the same proportion from disagreement
point to the utopia point. For solving the bargaining problem we consider there exists an op-
timal solution that is a strong Pareto optimal point and it is the closest solution to the utopia
point. We formulate the problem as the L,-norm to find the Pareto optimal solution, this for-
mulation reduces the distance to the utopian point in the Euclidean space. Following the model
presented in Chapter 2, the function for finding the solution to the bargaining problem is

I C Y s i ]/
glc', .., LZ; A O g (8.1)

where ¢! is the utopia point, o' > 0 are weighting parameters for each player, and A € A"

such that
A“::{)\GR“ A el0,1] Z)\l_l}

We can rewrite (8.1) for purposes of implementation as follows
1/p
g(c [Z Nl x (@' > ¢ In(y' — ¢') — alx (¥ > ¢') In(y™ - ¢l)|p]

Thus, the strategy z*, which is the vector z* = (c!,...,c") € Xum = @ Clym» is the

solution for the bargaining problem

* ~r 1 n
xr*e Argxexrﬁjfe/\n {a(c',....c")}

the strategies cl(iJC) satisfy the restrictions |i 1} and 1| Applying the Lagrange princi-
ple it follows that

n N
5(177/\4%5777) = g(cl’ "'7Cn) - Z Z H’l(j)hl(J)(cl)_

ii%%fé] (i) ii%n(%,k)_l)

I=11=1j5=1k=1 I=1:=1k=1
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The solution obtained by the Tikhonov’s regularization with > 0 is given by
A8 =argmax  nin Ls(z, A p1,€,m)
where
R n N n N M
Lol h &) = 5(E ) = 2 8 by (&) = 2 3 (g = 1) =
- - (8.2)
n N N M 5 ) ) ) )
;ZZE 4Gl aw — 3 (2l I = llell™ = € = nll°)

Notice that the Lagrange function (8.2) satisfies the saddle-point condition, namely, for all
r € Xagm, A € A" and u, &, n> 0 we have

L (51567 )‘57/1“575677]6) S E(S(.T;, A;a“;aggang) S »56(93;7 )\3,#5,55,775)
8.3.1 The proximal format

In the proximal format (see [5]) the relation (8.2)) can be expressed as

uy = argmin {5lp — w3[1” +7Ls (5 AT 1 &555) §
& = argmin {311€ — &7 +Lo(a5, N 15, €,75)}

MNs = arg%l;%)l{%un - n;HQ +7£5<x§=)‘§7“§=€§7 )}

(8.3)
Ti = argr&aﬁc{—— |z — @3> + v Ls(x, NS, 13, €5, m5) }
N = arg max {31 = N1+ Lo (g, N 13, &5.m3) }

where the solutions x}, A5, 15, £ and 75 depend on the parameters d,y > 0

8.3.2 The Extraproximal method

We design the method for the static bargaining game in a general format with some fixed

admissible initial values (zo € X, \g € A" and pg, &, 170 > 0), considering that we want to
maximize the function as follows
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1. The first half-step (prediction):
fin = arg max {=3llp = pall> = VL5 (@0, Ay 11, &y ) }
& = arg max {=211€ = &ll* = VL5 Ty Any Fin, € 10) }
M = argmax { =310 = 1| = 7Ls(@n: Ans fins &ns 1)} (8.4)
T = argmas { =& = za |l + L@, Ans fins &ns ) §
An = argmax { =3 {IA = Aull* + L5 (0, A, fin, € 710) §
2. The second half-step (basic)
fin+1 = argmax { =3l = pnll? = VL5 (T, My 16, 71 }
S = arg max { =31 = Gull* = 3L5 (@0 Ay fins € 710) }
41 = A MAX {=3ln = mll® = vLs(Zn, A, iy &nim) } (8.5)
To1 = argmax { 3|1z — 2|2+ 7Ls(@, A fins Enr )}
A1 = arg max {=2IA =Xl + 7L (T, N, i Ens ) }
8.3.3 Convergence Analysis

Define the following extended vectors

1
x .
T = eX =XxR", =] ¢ | eR"xR"xR"
A
n

The regularized Lagrange function can be expressed as Ls(, i) := Ls(x, \, i1, €,1). And the

equilibrium point that satisfies (8.3) can be expressed as
fi; = axgmin { 1117 — 751° +~£5(55.0) |

#} = argmax {41 = 112 +2Ls(3, 75) |
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Now, introducing the following variables
~ z ~
g = €e X xR, z= € X xR

and then, the Lagrange function in terms of 3 and Z can be defined as Ls(7, 2) := Ls(01, 22) —
L5(31, 7). For §ii = &, §jo = i, 5 = 5F = &% and 3, = 3 = i we have that Ls(§, 5*) =

Ls(z, i) — Ls(2%, ii). In these variables the relation (8.3)) can be represented by

F*=arg max {—3|7—Z"|*+vLs(7, %)} (8.6)
geX xR+

Finally, we have that the extraproximal method can be expressed by

1. First step

fn=arg max {—3[l7 — Z,I* + vLs(7, 2,) } 8.7)
geX xR+
2. Second step
Znpi=arg max {—3l|g— Z,1° +vLs(7, 2,) } (8.8)
geEX xRt

Please refer to Appendix [C] for the results and proofs of convergence analysis.

8.4 The disagreement point model

If negotiations break down and no agreement is reached, then inevitably the disagreement
point (also called as status quo or threat point) will take effect. Following the model presented
in section [6.3| but with the consideration that this model is related to continuous time Markov
chains, i.e., the strategies c ®) satisfy the restrictions and .

Applying the regularized Lagrange principle we have the solution for the disagreement
point

rt, 2Tt 0t =arg max  min Lys(x, T, 1, €, n)
zeX,zeX &m0

where

Los(e, i, &m) = (1= 0)f(z,8) — 3 2 Hiphi () =322 3o (Cl(i,k) - 1) -

M:’
M=
M=
Mz
m
;Q
N

= 5 (el + 12017 = Neall® = NlEl® = llmll®)

N
I
—
<.
Il
—
<.
Il
—
£
I
—

(8.9)
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Notice that the Lagrange function (8.9) satisfies the saddle-point condition, namely, for all

xeX,i'eX,andu,g,nzowehave

59,5(%’@5;%7‘5;:77;) S '50,6(%@}7#;75;777;) S 50,6(95;7@;7,“57567775)

8.4.1 The proximal format
In the proximal format the relation (8.9) can be expressed as
£ _ ar . 1 o x]|2 L * ok * ok
s = avgmin {51 — 5> + v Lo (w5, 25 1,65, 5) }
& = argrgrl;on{%||§—§§||2 +7£975($§7i§7/‘§75777§)}
ni = arggr)1>i(r)1 {30 — n3l1* + v Los(xs, &5, 15, &5.m) }
* _l X 2 £ % * * *
T} argl;lezl)?({ sl — a3l + v Los(x, 35, 115, &5 75) }
sk _l S Ak 2 ,C * * * *
Ts argrpag({ ol = 25° + 0,6(%7557“57557775)}

S

where the solutions 3, 5, 15, £ and 775 depend on the parameters ¢,y > 0.

8.4.2 The Extraproximal method

We design the method for the static Nash game in a general format with some fixed admis-

sible initial values (xg € X, Zg € X ,and (19, £, Mo > 0), considering that we want to maximize

the function, as follows:

1. The first half-step:
fin = arg max { =5 [lit = pinl|* = ¥Lo,5 (w0, B 1, Gns ) §
En = argmax {=201€ = &l1? — VLo (Tns Fny fin, €, 70) }
i = argmax { =31 = mll* = 3Los(n, s in, Ens1)} (8.10)
Ty = arg max {—1llz — znll® + vLos (T, Zns fin, Ens ) }

Ty = argrp%? {_%Hiﬁ - inH2 +vLo5(Tn, T, fin, Ens ﬁn)}
Te
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2. The second half-step
e = argmax { =3l — pn|* - VLo (T Eons s s i) }
gn—i-l = argrgag( {_%”5 - 5“”2 - PY‘CG,(s('fnaEnvlanafaﬁn)}
M1 = argmax { =g |9 — 0. 1> = ¥Lo s (Zn, Tn, fins €, 1) } 8.11
n >0 D) n , nyLny ny, Sn ( . )
T4l = arg Mmax {—%Hx — 20||? + Lo s (0, B, ﬂn,gn,ﬁn)}

j:n+1 = argm‘%?( {_%Hjj - ;%VLHQ + 7£9,5(£n;£7 ﬁn7§n7ﬁn)}
xe

8.5 Numerical Example

In this example, we are considering a bargaining on the labor market between three con-
tracting parties corresponding to the government, an employers’ federation and a labor union
which are often characterized by reciprocal incremental concessions. They are aimed at agree-
ments to regulate working salaries, conditions, benefits, and other aspects of workers’ com-
pensation and rights for workers. We expect that the contracting parties carry out a negotiation
process that reach a Pareto efficient outcome when solving their differences. The government
plays a fundamental role, because can change the equilibrium on the labor market by modify-
ing the reserves related to the wage. This enables us to analyze the convergence of the equi-
librium of the labor market in terms of a continuous-time approach considering the changes
in the reservation wage along the time, or more generally with respect to public policy. In
such scenario, the Kalai-Smorodinsky solution can be applied to labor-market negotiations.
The Kalai-Smorodinsky approach is distinguished by the equal proportional concessions of for
the three parties in conflict. In this sense, this negotiation process gives the impression to be
more intuitive than the Nash bargaining model in representing a solution for the labor market
problem, because each party makes concessions with respect to its initial demands. In this
bargaining process, it is expected that the parties progressively moderate their demands until

an agreement is reached, sooner or later.
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Figure 8.2 Markov chain of the labor market problem.

Our goal is to analyze a three-player bargaining situation on the labor market in a class
of continuous time Markov chains using the Kalai-Smorodinsky approach. We assume a
continuous-time Markov process defined over a discrete state-space S where the labor force
is divided into five possible states, namely, employed (£), unemployed (U), out of the labor
force (O), inactivity (I), retired (R). This involves each individual in a labor path. The labor
dynamics information is contained in the transition matrices, which represents the individual’s
characteristics in the long-run time. The set of actions A is a finite space determined by two
different actions A = {agree, disagree} (see Figure .

Denote the disagreement cost that depends on the strategies cl(i’ k) for players [ = 1,2,3
(the government, an employers’ federation and a labor union) as ¢'(ct, ¢, ¢®) and the solution
for the bargaining problem as the point (1%, 1% 13). Let the number of states N = 5 (S =
{E,U,0,1,R}), and the actions M = 2 (A = {agree, disagree}). The individual utility for

each player on the labor market are defined by

(10 8 13 7 6 12 9 7 10 15]

11 19 6 8 10 16 0 9 14 6
Upjn=19 7 13 19 5| Uji;9=|18 10 16 9 4
14 9 15 12 16 12 16 9 8 13
12 14 9 8 10] 11 9 13 17 10]
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18 12 7
Ubn=15 14 8
10 13 8
16 9 12
(15 9 10
12 5 4

U(?’i,j,l) =119 7 6
2 16 10
10 6 9

6 10
9 10
11 16| Uf o=
14 10
10 8

4 10
0 11
13 10| Ul o=
9 7
14 10

. Numerical Example

5 17
8 9
10 13
12 18
17 13

10 7
16 9
19 3
2 8

1 13

14 12

15 9

12 19
0 10
4 13
1 19
9 15

The transition rate matrices for each player are defined as follows

[—0.8402
0.1090
1 _

gb = | 0.4127
0.8641

| 0.2886

[ 0.3601
0.0467
1 _

gl = | 0.1769

0.3703

| 0.1237

01017
0.0104
qG, = | 0.0144
0.0234
| 0.0243

0.1555  0.1069
—0.7197  0.2965
0.3376  —1.4437
0.3679  0.3194
0.1649  0.2348

0.0666  0.0458
—0.3085 0.1271
0.1447 —0.6188
0.1577  0.1369
0.0707  0.1006

0.0234  0.0236
—0.0819 0.0147
0.0285 —0.0790
0.0526  0.0456
0.0322  0.0315

0.3312
0.0878
0.3286
—1.7086
0.1507

0.1420
0.0376
0.1408
—0.7323
0.0646

0.0424
0.0333
0.0235
—0.1441
0.0433

0.2466 |
0.2264
0.3648
0.1571
—~0.8390

0.1057
0.0970
0.1563
0.0673

~0.3596 |

0.0125 |
0.0235
0.0125
0.0225

—0.1311

143
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[0.9155 02102 02120 03812  0.1121 |
0.0936 —0.7371 0.1322  0.2094  0.2119

¢ o= | 01202 02567 —0.7106 0.2119  0.1128
0.2110  0.4730  0.4107 —1.2968 0.2021

| 02183 0.2894 02831  0.3892 —1.1800

—1.2086 0.1168  0.6178  0.2118  0.2622
0.0779 —-1.0141 0.2118  0.5627  0.1618
Q?i7j71)= 0.4218  0.6426 —1.4448 0.1177  0.2626
0.1178  0.2412  0.1555 —0.5857 0.0712
| 03212 0.1608  0.1573  0.2163  —0.8556 |

_—1.2086 0.1168  0.6178  0.2118  0.2622 ]
0.0779 —1.0141 0.2118 0.5627  0.1618

0 j0)= | 04218  0.6426 —1.4448 0.1177  0.2626
0.1178  0.2412 0.1555 —0.5857 0.0712

| 0.3212 0.1608  0.1573  0.2163  —0.8556

Given 0 and v and applying the extraproximal method - to calculate the strate-

gies for the Nash equilibrium, we obtain the resulting utilities at the disagreement point for

each player ¢!(c!, 2, ¢®) as follows

P(c', P, c?) =127.0052, ¢*(ct,c?, ) =110.9296, ¢°(c',c?, c*) = 129.5264
The utilities at the utopia point of the bargaining problem are as follows:

Pt e, ) = 140.7620, v**(c, c?, ) = 111.9948, **(c', *, ¢*) = 168.6736

Then, given d, 7, o' = 0.35, o' = 0.2, o® = 0.45, and applying the extraproximal method

(8-4] - [B.5) for the Kalai-Smorodinsky bargaining solution, we obtain the convergence of the
strategies in terms of the variable cl@ k) for each player (see Figures and .
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Following (2.6) the mixed strategies obtained for the players are as follows

(06111 0.38%9]
0.6111  0.3889
d' = 106111  0.3889
0.6111  0.3889
06111 0.3889]

& =

[0.4344
0.4344
0.4344
0.4344

0.4344

0.5656 |
0.5656
0.5656
0.5656

d3 =

0.5656

[0.5024
0.4270
0.5363
0.3925

0.3727

0.4976
0.5730
0.4637
0.6075
0.6273

With the strategies calculated, the resulting utilities at the Kalai-Smorodinky bargaining

solution, are as follows:

W, 2, ) = 130.0756

P3(c', 2 ¢®) = 111.0906  ¢°(c', 2, ¢*) = 137.4903
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Figure 8.6 The Kalai-Smorodinsky solution.

lIlz

Finally, we can see that the profits obtained with the Kalai-Smorodinsky solution are greater

than those obtained at the disagreement point. Figure [8.6] shows the straight line linking the
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utilities obtained at the disagreement point and those obtained at the utopia point. We can
also observe that the Kalai-Smorodinsky solution approaches this line but is not exactly on it
due to the convergence of the strategies. The significant input that can be illustrated by this
example is the choice of the Kalai-Smorodinsky approach for the bargaining solution for the
labor market problem. We expected that the parties progressively moderate their demands in

equal proportional concessions.






Chapter 9
The non-cooperative bargaining game

9.1 Introduction

There has been a large and growing literature in non-cooperative bargaining. Rubinstein
[83] presented a bilateral non-cooperative bargaining process as an alternating offers game
with a bargaining cost for each period. Such a model has been studied and extended for three
or more players in a variety of papers and situations. The non-cooperative bargaining model
and its game-theoretic solution have also been applied in many important contexts like market
games, networks, apex games, union formation, and water management.

Despite its wide applicability, crucial assumptions of the traditional bargaining model in-
clude that players have complete information about the characteristics of other agents (e.g.,
their discount factor or their utility) and that players are sophisticated in their behavior (e.g.,
they are forward-looking). The traditional equilibrium concept has been shown to fail when
agents are not sophisticated, for instance when they are not forward-looking ([69, 56, 67, |68,
88.,139]). As such, there is a need to develop a general theory of bargaining that is robust to
work in the absence of sophisticated players or incomplete information about other players.

As an aid to the implementation of bargaining solutions in the presence of unsophisticated
agents, we propose an alternative approach to the traditional bargaining literature, where a
planner has the ability to set up a game to aid the agents to reach an equilibrium. Thus, this

chapter presents a novel approach that complements the traditional bargaining literature and
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enlarges the class of processes and functions where non-cooperative bargaining solutions might
be defined and applied.

To understand the characteristics of our game, consider the simple bargaining game where
the planner is able to penalize the agents based on two factors: first players are penalized for
their deviation from the previous best response strategy and second, they are penalized over the
time taken for the decision-making at each step of the game.

This chapter presents a solution method of the non-cooperative bargaining problem for

three different games:

e We solve the game where players are individual-rational, and make offers and counterof-
fers alternately thinking only of their own interests, i.e., they compute the strategies that

maximize only their own utility.

e We present a solution for a game where at each step of the negotiation process players
calculate the Nash equilibrium at the same time considering the utility function of all
players, but with the particularity that internally each player reaches this equilibrium

point in a different time.

e We analyze a game where players make coalitions and alternately each group of players

makes an offer to the others until they reach an equilibrium point.

Finally, we illustrate the results of the three methods by a numerical example with continuous-

time Markov chains.

9.2 The Rubinstein’s alternating-offers model

In the simplest case, Rubinstein [83] considered a bargaining situation where two players
(n = 2) have to reach an agreement on the partition of a pie of size 1; each player has to
make in turn an offer (a proposal as to how it should be divided, i.e., an offer is the share of
the pie to the proposer and the complete pie minus the offer is the share to the responder).
After player 1 has made such an offer, player 2 must decided either to accept it, in this case

the bargaining game ends and the players divide the cake according to the accepted offer, or to
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reject it and continue with the bargaining process. If player 2 rejected, then this player has to
make a counteroffer which player 1 would accept or reject it and continue with the negotiation
process. The bargaining game continues until an offer is accepted. Offers are made at discrete
points in time: at times 0, A, 2A, ..., tA, ..., where A > 0.

In real situations it is important to consider that there are losses during the time that the
players are negotiating, for example, the devaluation or deterioration of assets (in the example
presented above, over time the cake can be spoiled). In order to deal with this problem, Rubin-
stein considered that there exists a cost associated with the time taken by the player [ = 1,1 to
reach an agreement 2! (a share 0 < 2! < 1 of the cake) and proposed two class of models: a
fixed bargaining cost where players have a fix cost for each period of time, therefore the agree-
ment would produce payoffs of 2! — c/tA for each player; and a fixed discounting factor for

(=r'tA) that depends of a discount rate 7 (in this example, r! can be

every player given by 2! - e
interpreted as the rate at which the cake shrinks) and the function 8! = ¢(="'2) is the discount
factor of each player. In this way, it is clear that if the players rejects any offer made, then each
player’s payoff is zero.

Rubinstein showed that there exists a subgame perfect equilibrium in the bargaining prob-
lem: in the fixed bargaining cost model, if ¢! > ¢? player 1 receives ¢?, if ¢! < ¢? player 1
receives all and if ¢! = ¢? player 1 receives at least ¢!; in the fixed discounting factor model

(the most used model in a bargaining process) the following offers are a subgame perfect equi-

librium:
1x 1— 62 2% 1— 61
r = -—= 7 = —4—4m4— MM
1— g2 1— Bi52
where player 1 always offers z'* and always accepts an offer 2 if and only if 2% < z**; and
player 2 always offers 2>* and always accepts an offer x! if and only if 2 < x'*.

The alternating offers game with a discount rate 7

> 0 has a unique subgame perfect
equilibrium, agreement is reached at time 0 and the equilibrium is Pareto efficient, if player
1 makes the offer at time 0, the shares of the cake obtained by players 1 and 2 in the unique
subgame perfect equilibrium are z'* and 1 — z'* respectively. On the other hand, when r! = 0

there exist many subgame perfect equilibria, including equilibria which are Pareto inefficient,

in this case we have a frictionless bargaining game where players do not care how long it takes
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to reach an agreement. Then, for any r! > 0, the pair of strategies z! in the bargaining game is
a Nash equilibrium; even if ' > 0, the alternating offers game has many Nash equilibria (see
[601).

Now, let us define the model in a general way. Let X be the set of possible agreements.
Consider two players (I = 1,n,n = 2) bargaining according to the alternating-offers proce-
dure in which an offer is an element of the set X. If players reach agreement at time ¢tA on
x € X, then player [ payoff considering the fixed discounting model is W(m)e(*’"lm), where
B = e='2) is the discount factor with a discount rate 7, and ¢!(z) : X — R is the utility
function from agreement x of each player.

Let define the set of possible utility pairs as ® = {(!,+4?)}. Thus, the set of possible

utility pairs obtainable through agreement at time tA is
o' = {(v'B,4°0) : (¥1,¥7) € O}

It should be noted that ®° = ® and let ®¢ denote the Pareto frontier of the set ®. A utility
pair (01, 1?) € ®° if and only if (¢',¢?) € ® and there does not exist another utility pair
(o1, ?) € ® such that p' > 9!, * > 4% The Pareto frontier ®¢ of the set ® is the graph
function of a strictly decreasing and concave function, denoted by ¢, whose domain is an

interval I* C R and range an interval [? C R, with 0 € I', 0 € I? and ¢(0) > 0. Then,

¢ = {(¢, %) ¢t e I' WP € (1)}
Consider ¢~ the inverse of ¢, a strictly decreasing and concave function from 12 to I, with
¢~ 1(0) > 0. Then, for any )* € I', ¢(1)!) is the maximum utility that player 2 receives subject
to player 1 receiving a utility !; in the same way, for any ¢)? € I?%, ¢~1(1/?) is the maximum
utility that player 1 receives subject to player 2 receiving a utility /2.

Let 2 be the equilibrium offer that player [ makes during the bargaining process. Also,

consider Z', a non-empty subset de X, defined as follows
7 = { = argmax 9!(a) - P (al) = BTY ("), (m £ w}
e

Proposition 9.1 For any 2 € Z', | = 1,2, the following pair of strategies is a subgame

perfect equilibrium of the general Rubinstein model (see [60]):
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e Player I always offers x'* and always accepts an offer x? if and only if ' (z?) > frpt*

o Player 2 always offers x** and always accepts an offer x* if and only if *(z') > [%)**

where

Y =0T AT) T = g8

If Z' contains more than one element, then there exist more than one subgame perfect
equilibrium in the general Rubinstein model. In any subgame perfect equilibrium, if agreement
is reached at time 0 and it is player 1 who makes the offer, then the equilibrium payoff for player
1 is ¢1* and for player 2 is ¢(1)1*); similarly, if it is player 2 who makes the offer at time 0,
then the equilibrium payoff for player 1 is ¢~!(1)**) and for player 2 is ¢)**. This equilibrium
pair is Pareto efficient (See Figure[9.1).

lpZ

(o7 @*) . ¥*")

@™, ¢@™))

wl

Figure 9.1 The Pareto solution of the bargaining problem at time 0.

Remark 9.2 In the limit, as A — 0, the unique subgame perfect equilibrium payoff pair in the
Rubinstein model converges to the asymmetric Nash bargaining solution of the appropriately
defined bargaining problem; if and only if the players’ discount factor are identical (i.e., r* =

r?) the symmetry axiom of the Nash bargaining solution would be satisfied.
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9.3 The non-cooperative bargaining game

Consider the game theory problem of a concave twice-differentiable real-valued function

1) defined on X, which is a compact and convex subset of RY

max ()

Following the proximal point algorithm for solving game theory problems presented by

Antipin [4]], the unique solution is a sequence (x,,) n € N with a initial value =y € X,

max [¢($) — Oy || — xn||2} 9.1)

reX
where 8, > 0, §, | 0 and the term ||z — z,,|* ensures that the objective function is
strictly positive definite and that some iterative method presents convergence [93, 94]. The
result obtained is not affected by the quadratic term for 6,, > 0 and 9,, | 0.

The bargaining game model considered in this chapter involves game theory problems with
an additional penalization, a time cost related with the time spent for each player to move from
one position to another one [6,159,19], i.e., to decide either to accept an offer or to reject it and
choose another.

In this section we will discuss three different ways to formulate the non-cooperative bar-
gaining game with alternating-offers and time cost. In the models presented below, it is con-
sidered that the players start from a point that is Pareto optimal, players could obtain the best

utilities if they finished the bargaining process at time 0.
Bargaining model 1

In this first approach, we consider the model presented by Rubinstein [83]], and we provide
a solution to a bargaining situation where players are individual-rational and alternately make
offers and counteroffers thinking only of their own interests, i.e., they compute independently
the strategies that maximize only their own utility.

In general terms, the dynamic of the multilateral non-cooperative bargaining game is as

follows. The game consists of a set N' = {1, ..., n} of players bargaining a certain transaction
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according to the alternating-offers procedure. Define the behavior of each player | = 1,n as a

sequence 7!, € X', n € N, where X! is the decision space (strategies) of each player. Then,

1

ny -

we can define the strategies set of all players as x,, = (z,,...,2}) € X where X is a convex
and compact set. Players take turns to analyze and present their position in the negotiation
process, i.e., at each step n the player [ in turn must decide between to stay in the same strategy
Tni1 = Tp, that is that player [ accepts the offer, or to choose a new strategy x,, .1 # x,, that
means that player rejects the offer and makes a new one. The function ¢!(z) represents the
utility function of each player which determines the decision of to accept or to reject the offer.

At turn n = 0, the first player to make an offer chooses a strategy set z,, considering the
utility function ¢!(x), then, the rest of the players must decided either to accept the offer and
finish the game or to reject it and continue with the process, in this case, at step n = 1 the
next player makes a counteroffer by choosing a strategy set x,, that benefits him more or in
equal measure than the offer proposed by the first player according to his utility function, if
this counteroffer is accepted then agreement is struck, otherwise, the player in turn makes a
new offer at step n = 2, and the process continues.

The time cost between offers is defined for each player as a function A : X x X — R which
can be interpreted as a distance function of each player where A!(z,,, ,11) = K (7, Tpy1),
we have that x!(x,, z,,1) = 0if z,,1 = x, (accepts the offer) or k'(x,,, xp41) > 0if 2, #
ZTpe1 (rejects and makes a new one). In general, the time cost function can be reexpressed as
A2y, pp1) = 1@, Tpy1)K (T, Tny1) Where (2, 2,41) > 0 is the time spent for each
player to reject an offer z,, and to make a new one z,,; and x'(z,,T,,1) is the offer cost
function associated to each player.

In the simplest case, each player makes a new offer trying to obtain the highest possible pay-
off according to the utility function, 1!(x, ) — 1'(x,) > 0 given the time spent t!(x, 1) > 0
to analyze the advantage of to reject the offer x,, and make a new offer z,,,1, and o!(z,) be
the weight that players put on their advantages of to reject the offer x,,. Thus, the advan-

tages of to reject the offer z,, and to propose a new offer x,,,; are given by A(x,,x,,1) =

O‘l(xn)tl(xn—l-l) [¢l(xn+1) - Qﬁl(xn)}
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The dynamics of the bargaining game with alternating-offers considering the time cost is
as follows. At each step n € N, the player in turn considers to reject the offer x,, and pro-
pose a new offer x,, .. For each player, to make a new proposal is acceptable if the advan-
tages A'(x,, r,.1) are determined by §'(z,,) € [0, 1] (degree of acceptability) of the time cost

Az, 2,,11). Then, the set of strategies that maximizes the utility of each player is defined by
Fi(z,) =

(P01 € X 0l (@) [0 (@) = ()] = @) ()W (@, 200) }

We define a utility function ¢! : X — R such that the impact of experience on cost is
constant and limited to the most recent element x,, on the trajectory (z,). In addition, the
advantages to change A!(x,,7,,,) are determined by the degree of acceptability ¢! (z,,) €
[0, 1] of the costs to move Az, x4 1).

Thus, the acceptance criterion to propose a new offer satisfies the condition

0 ()1 (@) 8 (1) > 0L (@)t (@1 ) (@, )

This algorithms are naturally linked with several classical proximal algorithms given in eq.
(9.1). That is, by taking the functions &%t/ (z) k! (z*, z) = 0Lt () ||(z — 2*)||* and Al (z, z*) :=
ol t'(z) [ (z) — ¢'(z*)], the point z* solves the maximization problem if remains a fixed

point of the proximal mapping, that is,
r* = arg max {=6Lt'(z) ||(z — ) ||° + ot (z) f(z, )} 9.2)
xe

where
fla,z) = ¢! () — ¢ (z")

Once the player in turn makes a new offer according to equation (9.2), the next player must
decide either to accept or to reject the offer. If the player rejects the offer, then now it is his
turn to calculate the strategies that benefit his utility and to make a new offer. This process
continues until an agreement is reached, i.e. the proposals (strategies) of the players do not

change (convergence).
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Bargaining model 2

In this approach we present a solution where at each step of the negotiation process players
calculate the Nash equilibrium with the particularity that internally each player reaches this
equilibrium point in a different time. Following the description of the model presented previ-

ously, we redefine the advantage of propose a new offer that depends on the utility function

n

(T, Tny) = Z W(%H) - wl(xn)] >0

=1
for all players to reject the offer x,, and making a new offer x,,,; given the time spent to benefit
of this advantage #(z,,11) > 0, and a!(z,,) be the weight that players put on their advantages to

reject the offer z,,. Thus, the advantages to reject the offer x,, and to propose a new offer x,,,

are given by A(z,, Tpy1) = a2t (Tpi1) [(Tn, Tni1)-
Remark 9.3 The function f(x,, x,1) satisfies the Nash condition
P (21) = Y (20) 20
for any x € X and all players.
Definition 9.4 A strategy v* € X is said to be a Nash equilibrium if
v e Argmax {f(@n, @)

Then, at each step of the bargaining game we have in proximal format that the players must

select their strategies according to
2" = argmax { ~0,t(z) [|(z — 2)|* + ant(z) f(z, %)} (9.3)

where
n

fla,z®) =) [¢H(z) — ' (")

=1
At each step of the bargaining process, players calculate simultaneously the Nash equilib-

rium but considering that each player reach the equilibrium in a different time.
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Bargaining model 3

In this approach we analyze a bargaining situation where players make groups and alter-
nately each group makes an offer to the others until they reach an equilibrium point (agree-
ment). We describe a bargaining model with two teams of players as follows. Let us consider a
bargaining game with '+ M players. Let NV = {1, ..., n} denote the set of players called team
A and let us define the behavior of all players [ = 1,nas x,, = (z},...,2") € X where X is a
convex and compact set. In the same way, the rest M = {1, ..., m} players are the team B and
let the set of the strategy profiles of all player m = 1, m be defined by vy, = (y},...,y") € Y
where Y is a convex and compact set. Then, X X Y in the set of full strategy profiles. In this
model the function v (x, y) represents the utility function of team A which determines the de-
cision of accept or reject the offer; similarly, team B makes the decision according to its utility
function p(z,y).

Following the description of the model presented above, we redefine the advantage of pro-

pose a new offer considering the utility function for team A as follows

n

f(l’m Yns Tn+1, yn-‘rl) = Z [W(%Hayn) - ¢l<xn7 yn)] Z 0

=1
and, similarly the utility function for team B is as follows

m
9(Tny Yns Tng 15 Ynt1) 1= Z [Qpl(xmyn—&-l) - gpl(:tn,yn)} >0

m=1
Thus, the advantages for team A to reject the offer x,, and to propose a new offer z,,; are

given by A(Tu, Y st Yns1) = (@)t (@011)f (Tas Y Tus1, Yusa): in the same way, the

advantages for team B to reject the offer y, and to propose a new offer ¥, are given by

A((ﬂn, Yny Tni1, yn+1) = a(yn)t(yn+l)g(xna Yns T+, yn+1>-

Remark 9.5 The function f(x,, Yn, Tni1, Ynt1) Satisfies the Nash condition

¢l($n+17yn) - djl(l‘na yn> Z 0

forany x € X,y € Y and | = 1,n players.
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Remark 9.6 The function g(x,, Yn, Tni1, Ynr1) satisfies the Nash condition

O (@ Yns1) — O (@0, yn) >0

foranyz € X,y € Y and m = 1, m players.

The dynamics of the bargaining game is as follows: at each step of the negotiation process
the team A chooses a strategy x € X considering the utility function f(z,, Yn, Tni1, Yni1), then
team B must decide between to accept or reject the offer calculating a new offer (strategies) y €
Y considering the utility function of the group g(x,,, Yn, Tnt1, Ynt1). Following the description
of the model 1, now we have that teams solve the problem in proximal format as follows:

v* = argmax {~0,t(2) ||(v — 2" + awt(2) f (2,5, 2%, y") }
(9.4)
y* = argmax {=dut(y) | (y = y")|I* + ant(®)g(, y,2", y")}

where

[y, 2 y) =3 [z, y) — P (a*, y")]

=1

~

m
gz, y,z%,y") = 21 [e™ (@, y) — ™ (2", y)]
At each step, teams make a new offer according to equation (9.4)), both teams solve the
bargaining problem together but they reach the equilibrium at different time, the bargaining

game continues until the offers (strategies) of all player show convergence.

9.3.1 Formulation of the problem

Consider the following constrained programming problem

max [z, z,)

9.5)
Xaam = {2 €R*: 2 >0, Aoz =by € RM | A1z < b € RM}

where X,qm is a bounded set. Introducing the vector u € R with components u; > 0 for all

i =1,..., My, the original problem (9.5) can be rewritten as

max T, T
€ Xadm,u>0 f( ’ n)

(9.6)
Xagm = {z €R": 2 >0, Agx = by, A1z — by + u =0}
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Notice that this problem may have non-unique solution and det (A} Ay) = 0. Define by X* C

Xadm the set of all solutions of the problem (9.6) and consider the objective function

)
Pos (2, ultn) = () |z = zall” + ot(2) (2, 20)—
9.7)

1 1 1)
3 | Aoz — bol|” — 3 | Az — by +ul” — 3 [l

where the parameters «, ¢ are positive. Then, the game theory problem is as follows

zeﬁiizo Pa,(i (1‘7 U|ZL’n)

9.3.2 Convergence analysis

The game consists of a set N' = {1,...,n} of players. Let ' € X! be the strategy of each
player [ = 1,n where X' is the decision space (strategies) of each player. Then, we can define

the strategies set of all players as

r= (2" . 2") X, X:= ®Xl

=1

where X is a convex and compact set.

Theorem 9.7 The bounded set X* of all solutions of the original game theory problem

is not empty and the Slater’s condition holds, that is, there exists a point © € X .4y, such that
A < by (9.8)
Moreover, the parameters o and § are time-varying, i.e.,

a=a, 6=0§ (n=012..)

such that
0<a, 0, %w when n — 60 (9.9)
Then
xh =" (, 0p) T
wp = ut (g, 0p) — U™

n—o0
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where x** € X* and v** € R define the solution of the original problem with the
minimal weighted norm,

217+ ™ 1” < a1+ [l

forall v* € X*, u* € RM and

utt = bl . Alx**

Proof.

1. First, let us prove that the Hessian matrix H associated with the objective function
is strictly negative definite for any positive o and 9, to show that the objective function is
strictly concave. If the set of solutions of problem (9.06)) is non-empty then the objective function

(9.7) is strictly concave.

It should be proven that for all z € R" and u € RM:

02 02
== Pas (@, ulz, P
oz ° (. uln) Oudx

0? 0?
8x8upa’6 (x,ul|x,) %Pa’g (x, u|x,)

a,d ($,U|ZE”)

H = <0,

Employing Schur’s lemma [74]] it is necessary and sufficient to prove that

0? 0?
1. @Paﬁ (x,ulz,) <0, 2. wﬂ”%(g (z,ulz,) <0,
o2 o2 o2 -1 2
3. @Pm(s (x,u|x,) < mﬂ”a,g (z, u|zy) [%Payg (x,u|xn)} MPM (x,ulz,) .
Applying the Schur’s lemma over the objective function (9.7) it follows for condition 1
0? 0?
@]P’W; (x,u|x,) = —0t(xy) Lnxn + at(:vn)ﬁf (x,x,) — AJAg — ATA; <
0? < o
() 5 (,0) = 0b(@a)Ton < 0t(wa) (FAF = 1) Lua < 0,

for all 6 > 0 where

Then, for condition 2 we have

92
wIPW; (x,ulr,) = — (14 0) Ingyxary, <O.
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By condition 3, it is necessary to satisfy that

0? 0?
@ng (x,ulr,) = —0t(zn) Loxn + Olt(%z)wf (x,x,) — AJAg — ATA; <
0?2 2 oo B
—auﬁxPa’5 (x, ul|x,) {—auQ P.s (x, u]xn)} —amauPM (z,ulz,) = — (1+6) " ATA;,

or equivalently,
82

)
@f (l’, .Z'n) — 5t(xn)[n><n — ABAO — —A.{Al < O,

at(z,) 5

which holds for any 6 > 0 having

)
t(xy) (AT = 8) Lisn — AJAg — 1—+5A{Al <

5t(2,) (%)ﬁ - 1) Toxn = 0t(20) (0(1) — 1) Iyxn < 0.

As a result, the Hessian is H < 0 which means that proximal function (9.7) is strictly concave

and, hence, has a unique maximal point defined below as z* («, §) and u* («, 9).

2. If the proximal function is strictly concave then the sequence {x,} of the proximal

function converges when n — oo, i.e. the proximal function has a maximal point defined

by z* (0, §) and u* («, 6).

T
Following the strictly concavity property (Theorem [9.7) for any y := and any vec-
u
xt =x* (ap, oy ‘
tor y := for the function P, s (z, u|x,) = Py s (y|x,) we have



9.3. The non-cooperative bargaining game 163

3
0<(vn—9)" = a 50 (Ynln)
3 0
(..'lf - '7‘“' a ( n? n|xn) + (u;kz - U)T %Pam(sn (:an Un|l'n)
(@~ 1) ( ) () o (e ) — A (Ao, — b

9.10
AT [t — by )+ (0 — )T (—Avah + by — (14 6,) ut) ©-10)

=t () (55— 2)7 2 (5 70) — [Ao (5 — 2)] [Ag, — b
— [As (2, — )] [Away, — by + ] = Ot () (27, — )" (27, — )
—(up —u)" [Arzy — by + (1 +0,) ur].

Now, selecting x := z* € X* (z* is one of the admissible solutions such that Agx* = by and

Ayz* = by —u*)and u = (14 6,) " (by — A x*) we obtain
0 < amt(wn) (z), — 2%)7 %f (@3, 2n) = [Ao (2}, — 2)]" [Aoz;, — bo] —
Ay (zf — a*)]T [Arxl — by + ul] — Ont(xy) (xf — )7 (2 — xn)—
[Ax ( T [Ar 1+ ] (zn) ( ) ( ) ©.11)
(14 6,) 7" [l (14 6,) — by + Ayt [Aval — by + (14 6,) ] —

Op (u — by — Ayz)Tu

simplifying eq. (9.11) we have

0 < ant(an) (25, —2%)" %f () = | Ao (2, — 27| = but () (27, — 2*)7 (27, — ) —

1AL (2, = 2*) 1" = (14 80) 7 | Avzy, = byl (14 80)[° = 0 (uf, — b1 — Asa;)Tw
Dividing both sides of this inequality by d,, we obtain
n 0 1
0% D) () () — e~ -
1 1 _
5 1A (= 2P = = (1 6n) 7 Ay, = by 4, (14 60) [ -
t(wn) (27, — )" (27, = wn) — (ug — by — Ay) T

9.12)
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Now, taking « = z, and v = 0 from Eq. (9.10) one has
0<—(u) [Arx], — by + (14 0,) uy]

= — (u;)" (Arzy, = by) = (14 6,) s |

(vl s [ 4
1)

|V By + i)
U,
2v1+ 0,

2 (A — b)) ||
21+,

implying

Azt —by) Ajzr —by)l?

(11’ 1 1+5nn+(1xn 1)

2V +o, 2V1+56,
and

* * —_ 2
L2 [le+2(1+0n) up, [[(Avr, = b0) 7]

where ||e|| = 1. Which means that the sequence {u}} is bounded. In view of this and taking

into account that by the supposition that Gn 0, from Eq. (9.12)) it follows

5n n—00

Const = limsup (|(z — 2*)" (2 — x,)| + |(u — by — Ayzl)Tuk|) >

n—o0
: 1 BT o2 -1 ) ‘2
lim sup= ([| Ao (7, = @)|I" + [[Av (27, = @) + (1 +6a) " 14127, — b1 + (14 3n) s [)
n— o0 n
(9.13)
From Eq. (9.13) we may conclude that
140 (a5, = 2)|1* + [|As (a5, — 27)|* +

(9.14)
(1462 [ Away, = b1+ (1+8,) up|* = O (6a),

and
AO.CEZO — Ao.’l?* = onzo — bg = O,
Ayl — Ayt = Ayl — by +ul, =0,
where x* € X* is a partial limit of the sequence {x} which, obviously, may be not unique.

The vector v, is also a partial limit of the sequence {u }.
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3. Now, denote by ,, the projection of x}, to the set X,qm, namely,

= Pr (z7),

X, adm

where Pr is the projection operator. And show that

|z} — 2| < C\/dn, C = const > 0. (9.15)

From Eq. (9.14) we have that
||A1.Z':; — b+ U:;H < Cl\/ 5n; Cl = const > 0,

implying
Ajzy — by < Civ/bpe —u, < Civ/one, le|| =1,

where the vector inequality is treated in component-wise sense. Since:

r* — 2 1> < max min x—yl*:=d(s,).
o=l < max  win eyl d(6)

Introduce the new variable
T =0—-v)x4+v,2 € Xuam,

where by Slater’s condition given in Eq. (9.8))

Civo,
Cl\/_—|— max (A1$ — bl)

< 1.

0<w,:=

T — UL

. T
For the new variable z = we have

—,
= (1 —wv,) A1z + v, AT — by
=(1—w,) (A1z—b1) + (1 —v,) by + v, (A2 — by) + 0,01 — by
= (1—wy,) (A1z — by) + v, (AT — by)

<(1—wy,) Ol\/_e+vn (A1 — by)

CivV/0, (
01\/_+ rlnax (Alx—bl)

.....

e+ (All’ — bl)) ~ O,
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and therefore

d (6,) = max min z — yl?
( TL) Y€ Xadm Alm—b1§01me, € X adm || y”
F-vi _||?
< max -
A13—b1<0, 7€ Xum || 1 — v,
2
=" min |7 -

(1 — vy,)? A13—b1<0, 7€ Xyam

< 02571, Cy > 0.

Given that ||z¥ — 2,|| < \/d (,) < v/C2/3,, which proves Eq. (9.13).

4. If the proximal function is strictly concave and the sequence {z,} of the proximal
function (9.7) converges, then, the necessary and sufficient condition for the point x* to be the

maximum point of the function ||z*_||* on the set X* is given by
0> (22, — 2")" (22, — x,) forany 2%, < X*. (9.16)

o0 o0

In addition, this point is unique and it has a minimal norm among all possible partial limits x7_.

From Eq. (9.12) one obtains

0 tan) (55, = 0")" g f () = 2 Ao &5, = ) = - 1Ay = )
- ain (14 6,) " || Arzr — by + o (1+6,)|]° — Z—Zt(xn) () — ™) (x} —x,) (9.17)
< Hra) (5 — )T S ) — t(aa) (2 — ) (2 — ).
ox o,
By the strong concavity property
0 0 N
(y—2)" (a_yf W) = 3,1 (Z)> <Oforanyy,z € R",
which, in view of the property (9.15), implies
1) (75— 20 A (a3,) = O (V7).

) oo = 2T 5 ) < ) (0 — )T f (0%, ) <0,
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then, we have

) (25, = 2T o (5 a) = #0) (25 = 20)" - () + ) (i = )T o f (2, 20)
= (ﬁ)ﬂ(azn)(@n z*)T (a—f@;,xn) aﬁ (zﬁmfcn))

) (= )T o f (i 0)
<O (V) o) o =2 (2 ) = o f i)

+ () (T, — ") O (z%, zn)

<0 (Vo) + tan) 2w — 2| H%f (@50 20) = - )

Since any function is Lipschitz-continuous on any bounded compact set, we can conclude that

< Const ||z} — &,|| = O <\/5_n> ;

0 . o, ..

which gives
t(xy) (2 — )T —f (a, x )——O<\/§ )
n n n 91‘ nytn njJ o

that by Eq. leads to

0 0
< * A N\T 7 * __n * o R\T *
0 < t(zn) (), — &) axf (Ca ant(xn) (z, — ") (z, — =)

= 0 (Va) = 2t(a) (0 — o) (e — )

n

(9.18)

Dividing both sides of the inequality (9.18) by %, taking t(z,,) = 1, and given that ||z} — Z,| <

/0, by Eq. (9.15) we obtain that

0<0 (w_) (=) (@ — ) = 0 (1) VB, — (a— 2" (2, — ),

which, by Eq. (9.9), for n — oo leads to Eq. (9.16)). Finally, for any z* < X* it implies

0> (af, —a*)T (2, —x,) =

o0 [e.9]

kg — 2 |* + (2, — ") (2% — ) > (a, — 2*)T (2" — @),
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9.4 Bargaining with Markov chains

- n
Consider a game with players’ strategies denoted by z' € X' (I = 1,n) where X := @ X'
=1
is a convex and compact set,

2hi=col (), X':=Cl.

where col is the column operator and Cyar, satisfies the restrictions (2.7] 2.8/ and [2.9).
Denote by x = (z!,...,2")" € X, the joint strategy of the players and 2l is a strategy of
the rest of the players adjoint to 2!, namely,

zl = (Il,...,xl_l,a:l+1,...,x" c Xl .= ® X"
h=1, h+£l

such that z = (2!, z!), | = T, n.

The process to solve the non-cooperative bargaining game consists of two main steps:
firstly to find the initial point of the negotiation (an ideal agreement that players can reach if
they negotiate cooperatively, this point is the Pareto optimal solution of the bargaining game),
the formulation and solution for this problem is called the strong Nash equilibrium (for the
complete formulation, solution and convergence analysis see Chapter 2); while for the solution

of the non-cooperative bargaining process we follow the different models presented in section

9.3.

9.4.1 The Pareto optimal solution of the bargaining problem

Consider that players try to reach the strong Nash equilibrium, that is, to find a joint strategy

r* = (2, ..., 2™) € X satisfying for any admissible 2! € X' andany [ = 1,n

1/p
p]

where &(z,\) = (¢'7,...,2"")T € X C R™D, p > 1 and #' is the utopia point (3.2). Here

G, (x(N), &z, \)) == [Z ‘Al [z/ﬂ (xz,xf) — ot (xlxzﬂ

! (m x ) is the cost-function of player [ which plays the strategy 2! € X' and the rest of
players the strategy 2! € X!. The functions ! (;1: x ) [ = 1, n, are assumed to be concave in

all their arguments.
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Remark 9.8 The function G, (u()), @(u, \)) satisfies the Nash condition
" <xl’xi) _ g (jl7xf> <0
forany ' € X'andalll =1,n

Applying the Lagrange principle we may conclude

x; =ar max min Ls(x,x(x), N\, 1, &, 9.19
= ga:eX,aE(:c)eX,AES" 120,620,120 5< ( ) S 7]> ( )
where
) n N
‘Cé(x l’($), A?H’)&a 77) = GL;,,(S (.CE()\),ZE(.T,', A)) - lE:l leul(])hl(J)(xl)
= ]:
R ! - 5 2 2 2
S0 Y i — 2 5 2 (2l — 1) 5 (all” + 1€l + Inl)
I=1i=1j=1k=1 1=1i=1 k=1
and

n 1/p
Gy (2(N), 2(w, V) = [Z [ (ot at) = ot (21,2))] \p] =3I+l @)+ A1)

In order to find the Pareto optimal solution, the relation (9.19) can be expressed in the proximal

format as
s = argmin {5lu — g5l + Lo (h #5(0), A5 1. 65.5) }
{5 = argmin {3118 = &P + v Ls(as, #5(2), A5, 15,6 m5) |
i = argmin {0 — 31 + 7 La(af 25(0) Af, 45.63.m)}
B (9.20)
73 = argmax {—§lle — 23[* + Lo, 85(2), X5, )}
#5() = axgmax { ~3[1&(x) — () |* + 7Ls(a3. 2 (2). 5. )}

As = arg max { =5 | = AjlI* + 7L (25, 25(2), A, ) }

where the solutions x}, 25 (), A%, 15, & and ) depend on the small parameters J,y > 0.



170 Chapter 9. Non-cooperative bargaining games

9.4.2 The non-cooperative bargaining solution

Bargaining model 1

In order to find the non-cooperative bargaining solution, let us define a time function that

depends of the transition rates between states of each player as follows

(1
— ifi=j
% !
451k
Thiim =3 7 O (9.21)
1 o
— if 7
DLk

Also, redefined the utility function in eq. (2.3) to involves the previous time function (9.21)

N
I l -1, 1
Wiy = > (i) Ul ™Giin

Jj=1

so that the average utility function in the stationary regime can be expressed as

N M n
) =Y Wi [T in (9.22)

i=1 k=1 =1
Then, define the norm of the strategies x that depends on the transition time cost of each player

as follows

2 M l l r l l l
=>.> (l’(k) - x(k)) A(ic) (x(k) - x(k))

I=1k=1

n M
* 2 *
It =) = 22 3 | (v — =it

I=1k=1

where
xl(k) = <Cl(1,k)7 -~-7Cl(N7k))T eRYN, k=1.M
and
Ay = % [f\ik) +/X’(;)] C Ay = ], Ay e RV
Considering the utility function that depends on the average utility function ¢! (x) defined as

follows

N
Il
-
<.
Il
-
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we may conclude that

¥ = arg max min Fl(%/%ﬁaﬁ)

Finally we have that the player in turn has to fix the strategies according to the solution of the

non-cooperative bargaining problem in proximal format defined as follows
H* = arg 1’/51>1[I)l {5ZHM _ M*HQ 4 OélFl (.Z'*, " 6*7 77*)}

¢ = argmin {86 — €2 + o' F (2", ", €, )}
= (9.23)
n* = argmin {3l — ' [2 + o' F' (2%, € )}
* _ sl ]2 |8 nl) e
v = argmax {=0'[|(z — 2)[[y + 'F" (&, p*, £, 0") }

Bargaining model 2

Consider that players try to reach the Nash equilibrium of the bargaining problem, that is,
to find a joint strategy * = (z'*,...,2™) € X satisfying for any admissible 2! € X' and any

I=1n

flaa@) = 3 [ (sal) 0! (a1.01)]

where 7 = (217,...,2" )T € X C R, 7 is the utopia point defined as eq. (3.2) and

Yt (xl, :1:’) is the concave cost-function of player [ which plays the strategy 2! € X' and the
rest of players the strategy 2! € X! defined as eq. li considering the time function.

Remark 9.9 The function f(x,z(x)) satisfies the Nash condition
! (ml,xl) _ g (i,l7xf> <0
forany ©' € X' and alll =1, n

We redefine the utility function that depends of the average utility function of all players as

follows
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then, we may conclude that

¥ = arg max min Flx, z(x
gzeX,ﬁeX p©>0,6>0,7>0 (2, 2(x), 1 &)

Finally we have that at each step of the bargaining process, players calculate the Nash
equilibrium (but they reach the equilibrium at different time) according to the solution of the

non-cooperative bargaining problem in proximal format defined as follows
p = argmin {~0l|u — @[> + aF (%, 8" (2), 1, €%, ")}
¢ = argmin {0l = &7[° + aF (27, & (x), . €, ")}
0" = argmin {0l —i"|]* + aF (2%, &*(z), w7, ", 1)} (9:24)
v = argmax {0 ||(z — 2*) [} + aF (z, 2 (x), 4", € 0") }
i = argmax {=01(2 =)} + aF («*, &(z), u*, 0" }

Bargaining model 3

For this model, in the same way that we define the strategies z € X, consider a set of

- m
strategies denoted by y™ € Y™ (m =1, m) where Y := &) Y'is a convex and compact set,
m=1

y™ :=col (c™), Y™ :=CI

adm

where col is the column operator.
Denote by y = (y!,...,y4™)" € Y, the joint strategy of the players and y™ is a strategy of

the rest of the players adjoint to y™, namely,

m
Y= (Yt Ly Ly ...,ym)T cY™ = ® Yy
h=1, h#m
such that y = (y™,y™), m = 1, m.
Consider that players of team A try to reach the Nash equilibrium of the bargaining prob-
1%

lem, that is, to find a joint strategy z* = (z'*,...,2"™) € X satisfying for any admissible

'€ X'andanyl =1 n

n

flz,z(x)ly) = Z [wl (:Ul,x[\y) — gt (fl,xi\y)]

=1
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where & = (2!7,...,2")T € X C R, 7 is the utopia point and /! (mﬂx”y) is
the concave cost-function of player [ which plays the strategy 2! € X' and the rest of players
the strategy o e X! fixing the strategies y € Y of team B, and it is defined as eq.
considering the time function.

Similarly, consider that players of team B also try to reach the Nash equilibrium of the
bargaining problem, that is, to find a joint strategy y* = (y'*, ..., y™) € Y satisfying for any

admissible y” € Y and any m = 1,m

m

g, 9)x) = [ (v, y" ) =™ (7" Y™ @)]

m=1
where § = (y'7,...,y™")T € Y C R™™1 4™ is the utopia point and Y™ (y™,y™|z)
is the concave cost-function of player m which plays the strategy y™ € Y™ and the rest of
players the strategy y™ € Y™ fixing the strategies x € X of team A, and it is defined as eq.
(9.22)) considering the time function.

Then, we have that a strategy 2* € X of team A together with the collection y* € Y of

team B are defined as the equilibrium of a strictly concave bargaining problem if

(z%,y") = arg  max  {f(z,2(z)ly) <0,9(y,9(y)|z) < 0}
€ Xadm,YEYadm

We redefine the utility function that depends of the average utility function of all players as

follows

then, we may conclude that
¥, y*) =ar max min  F(z,z(x),y,9(y), 1, &,
( Y ) gmeX,feX,er,geY/ p>0,£>0,n>0 ( ( ) Y y(y) & 77)
Finally we have that at each step of the bargaining process, players calculate their equilibrium

according to the solution of the non-cooperative bargaining problem in proximal format defined
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as follows

pr = argmin {0l — |+ o (27,3 (@), 57, 57 () 1 €77}
£ = argrgél{_é”f - 5*“2 + aF (:I:*,i*(:c),y*,gj*(y),,u*,é,n*)}

= axgmin {~dln — |+ aF (2%, (@), 4", 5 (). 4", )}

Chapter 9. Non-cooperative bargaining games

zTE

y' = argrjleaf{—(S Iy =93 + aF (2%, @ (), y, 5" (), 1% € 07) }

ye

9.5 Numerical Example

(9.25)

Our goal is to analyze a three-player non-cooperative bargaining situation in a class of

continuous time Markov chains. Consider a transfer pricing approach which divide the revenue

of a passenger between members of an airline alliance. The set of origin-destination time are

made up of itineraries. The itineraries are either a direct flight or a series of connecting flights

within the supply chain represented by the airlines network. The game penalizes the revenue

taking into account the total time that a passenger takes for reaching the final destination. We

are taking into account only round trips so the Markov chain game is ergodic.

Let the number of states N = 3 and the number of actions M = 2 for each airline. The

individual utility for each airline are defined by

1
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The transition rate matrices, i.e. the matrices with the information about the behavior of

9.5. Numerical Example

each airline, are defined as follows

—0.2230  0.0581  0.1649 0.2323

1 — 1 —

4= | 01166 —0.3131  0.1965 Ofji2)= | 0.4664 —1.2526 0.7862
0.0504  0.0531 —0.1034 0.2014  0.2122 —0.4137
—0.9336  0.7250  0.2086 ~0.2334  0.1813  0.0521

2 — 2 —

= | 0.4673 —0.9428 0.4755 0Fji2)= | 0.1168 —0.2357 0.1189
0.0862  0.6542 —0.7405 0.0216  0.1636 —0.1851
~0.3297 0.2872  0.0426 ~0.7694 0.6700  0.0993

3 — 3 —

q%=| 0.0473  —0.1738  0.1265 ¢%i2= | 01103  —0.4056 0.2953
0.2012  0.2401 —0.5313 0.6794  0.5602 —1.2396

First let us calculate the starting point of the bargaining process applying the proximal

method (9.20) to find the strong Nash equilibrium. We obtain the convergence of the strategies
in terms of the variable cl( i) for each player (airline) [ = 1, n (see Figures and and

the convergence of the parameter \ (see Figure|9.5)).

[_0.8918

0.6595 |

0.5 T T T T T T T 0.4
______ o'(t.1)|. 0.35
0.4} g cliznl |
P c'(3,1) 0.3F
-3 e
” c'(1.2)
0.25
0.3 -=-=c'22)]
Sy - ) 0.2
: 0.15
""""""" 0.1
0.05
0 . ‘ ‘ ‘ ‘ ‘ . 0 . ‘ . ‘ ‘ .
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
Step (n) Step (n)

Figure 9.2 SNE Strategies of player 1. Figure 9.3 SNE Strategies of player 2.

The strong Nash equilibrium reached for all players is as follows:

0.0071 0.2237
0.0187 0.5876
0.0050 0.1579

0.2163 0.0253
0.3764 0.0440
0.3026 0.0354

0.0691 0.1510
ct = 10.0464 0.1015 =
0.1984 0.4336

3 =
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0.6 T P R R 0.45
o c3(1,1) At
0.5 ot cAe |1 A2
4 c3(3.1) 0.4 —_—3]
i
041 » - = =c*(1.2)]
4 - - =22
= ==c%3.2)|1 0.35 1
""""""""""" 0.3 ]
0.25 : ‘ ‘ : ‘ ‘ :
15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
Step (n) Step (n)
Figure 9.4 SNE Strategies of player 3. Figure 9.5 Convergence of A.

The utilities for each player in the strong Nash equilibrium are 1!(c!, %, ¢3) = 38424,
P2(ct, 2, c3) = 2961.7 and ¥3(c!, 2, ¢3) = 3560.3. Once the starting point is set, the negoti-
ation process between players begins, calculating the strategies until they converge. Then, the

results obtained in each of the models presented above are shown:
Bargaining model 1
In this model each player calculates the strategies independently and alternately following

the relation (9.23)) until they reach an agreement. Figures[9.6][9.7|and 0.8 show the behavior of

the offers (strategies) during the bargaining process.

0 50 100 150
Step (n)

Figure 9.6 Strategies of player 1 in the bargaining Figure 9.7 Strategies of player 2 in the bargaining
model 1. model 1.
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0.6 : : 4,000

— (e % c?)

#(c'c?6?)

Ae' e |

3,500 |

3,000

2,500

2,000

1,500

[//

1,000

500

100 150

o
|
(=]

Step (n) Step (n)

Figure 9.8 Strategies of player 3 in the bargaining  Figure 9.9 Behavior of players’ utilities in the
model 1. bargaining model 1.

Finally, the agreement reached is as follows:

0.2028 0.0173 0.0691 0.1725 0.1320 0.0988
ct = 10.1363 0.0116 2= 10.1202 0.3001 = 10.3469 0.2594
0.5824 0.0495 0.0967 0.2413 0.0932 0.0697

Following (2.6) the mixed strategies obtained for players are as follows

0.9216 0.0784 0.2860 0.7140 0.5721 0.4279
d" = 10.9216 0.0784 d* = 0.2860 0.7140 d* = 10.5721 0.4279
0.9216 0.0784 0.2860 0.7140 0.5721 0.4279

With the strategies calculated at each step of the negotiation process, the utilities of each
player showed a decreasing behavior as shown in the Figure [9.9] i.e., at each step of the bar-
gaining process, the utility of each player decreases until they reach an agreement. At the
end of the bargaining process, the resulting utilities are as follows ¥!(ct, c?, ¢®) = 678.2,

P2(c, ?, ) = 1028.0 and ¢*(c!, ¢?, ¢¥) = 1394.3 for each player.

Bargaining model 2

In this model each player calculates the strategies according the Nash equilibrium formu-

lation where players calculate the Nash equilibrium simultaneously, but with the characteristic
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that they reach the equilibrium at different time, following the relation (9.24) until they reach

an agreement (strategies show convergence). Figures[9.10] [9.11]and [0.12]show the behavior of

the offers (strategies) during the bargaining process.

c'(1.1) D 000 TR e
1 2
c'(2.1 c(2,1
@1 a5 ‘an| ]
c@Eh TR, L _emEEes c™(3,1)| 1
- -l 0.3 - - -
iiag'= 1 P27 .25 | it e |
ey | | T T T mg e - - -2 7
c'(3,2 c°(3,2
(3.2) 0.2 P 3.2)] |
0.15F
011
0.1 \ R
Y 0.05
ot e e e e e e e e 0 ‘ ‘ . ‘ ‘ . 3
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
Step (n) Step (n)

Figure 9.10 Strategies of player 1 in the bargaining Figure 9.11 Strategies of player 2 in the bargaining
model 2. model 2.
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Figure 9.12 Strategies of player 3 in the bargaining Figure 9.13 Behavior of players’ utilities in the

model 2. bargaining model 2.

Finally, the agreement reached is as follows:

0.2127 0.0074 0.0050 0.2366 0.2237 0.0071
ct = 10.1429 0.0050 2= 10.0087 0.4117 A= 105877 0.0186
0.6106 0.0214 0.0070 0.3310 0.1579 0.0050
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Following (2.6) the mixed strategies obtained for players are as follows

0.9662 0.0338 0.0207 0.9793 0.9693 0.0307
d" = 10.9662 0.0338 d* = 0.0207 0.9793 d* = 10.9693 0.0307
0.9662 0.0338 0.0207 0.9793 0.9693 0.0307

With the strategies calculated at each step of the negotiation process, the utilities of each
player showed a decreasing behavior as shown in the Figure[9.13] i.e., at each step of the bar-
gaining process, the utility of each player decreases until they reach an agreement. At the
end of the bargaining process, the resulting utilities are as follows ¥!'(c!, ¢?, ) = 986.8936,

(e, ?, 3) = 651.4633 and ¥?(ct, 2, ¢®) = 949.6980 for each player.

Bargaining model 3

For this model players make teams, in this example as we have three players the team 1 is
only formed by player 1 while team 2 is composed of players 2 and 3. Although the players
calculate the strategies together following the relation (9.25), we consider that players reach

the equilibrium at different times. Figures [9.14] [9.15] and [9.16] show the behavior of the offers

(strategies) during the bargaining process.

¢t okt 0000 e c2(1.1)|7
1 2
c'(2,1 c(2,1
1(,)_ 0.35 1 2(,)_
e@® | 000 TN, EF g c(3,1)|
-==c'(1,2) 0.3 == =c%1,2)|
- - -c'2,2) 0.5 - - =22
-l | T N NG e g EEEE - -2 )
C (3.2 c(3,2
(3.2) ozl (3.2)] |
0.15F
0 s \\ 1
1 o 0.05
bl S 1
AN T o e e mm mm o e o e e o mm o e o e e
0L e, e e g e o e e, e 0 L L i I L | 7
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
Step (n) Step (n)

Figure 9.14 Strategies of player 1 in the bargaining Figure 9.15 Strategies of player 2 in the bargaining
model 3. model 3.
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Figure 9.16 Strategies of player 3 in the bargaining Figure 9.17 Behavior of players’ utilities in the

model 3. bargaining model 3.

Finally, the agreement reached is as follows:

0.2127 0.0074 0.0050 0.2366 0.2237
ct = 10.1429 0.0050 2= 10.0087 0.4117 A= 105877
0.6106 0.0214 0.0070 0.3310 0.1579

Following (2.6) the mixed strategies obtained for players are as follows

0.9662 0.0338 0.0207 0.9793 0.9693
d' = 10.9662 0.0338 d*> = 10.0207 0.9793 d® = 10.9693
0.9662 0.0338 0.0207 0.9793 0.9693

0.0071
0.0186
0.0050

0.0307
0.0307
0.0307

With the strategies calculated at each step of the negotiation process, the utilities of each

player showed a decreasing behavior as shown in the Figure i.e., at each step of the

bargaining process, the utility of each player decreases until they reach an agreement. At the

end of the bargaining process, the resulting utilities are as follows ¥!(c!, ¢?, ) = 986.8936,

P2(c!, ?, ) = 651.4631 and ¥?(ct, 2, ¢*) = 949.6978 for each player.

The following figure shows the behavior of the utilities at each of the applied models,

we can see that the utilities begin at the same point, the strong Nash equilibrium, and then

decrease until the strategies converge (see Figure[9.18). From the results obtained we observed

that model 1 favors the utilities of players 2 and 3, while model 2 and 3 are better for player 1.

We also observed that even if models 2 and 3 reach the same agreement (equilibrium point) the
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strategies and, as a consequence, the utilities have a different behavior during the bargaining

process.

4000
3000 -

2000 J ——— Utility of Model 1

Utility of Model 2

1000 | —— Utility of Model 3

Figure 9.18 Behavior of the utilities at each model.






Chapter 10

Conclusions

This thesis presented models to establish cooperative and non-cooperative strategies for
solving different games. It was suggested a novel method for computing the L,—Nash and
the Strong L,,—Nash equilibrium in case of a metric state space. Under mild assumptions, it
is shown the existence of L,—Nash and the Strong L, —Nash equilibrium characterized as a
strong Pareto policy, which is the closest in the Euclidean norm, to the virtual minimum. Fol-
lowing these concepts it was presented a method for computing the strong L, —Stackelberg/Nash
equilibrium, where leaders and followers together are in a Stackelberg game: the model in-
volves two cooperatively Nash games restricted by a Stackelberg game. We should also note
that our solution approach essentially simplifies the convergence to a strong Nash equilibrium
and to a strong Stackelberg/Nash equilibrium.

A very interesting problem in game theory is the security games that can be described
under the Stackelberg formulation. This work addressed dynamic execution uncertainty in se-
curity resources allocation presenting a novel approach for adapting attackers and defenders
preferred patrolling strategies using a RL process based-on average rewards for Stackelberg
security games. More specifically, we presented several contributions. First, we proposed
a general RL architecture that combines three different paradigms in reinforcement learning:
prior knowledge, imitation and temporal-difference method. The RL architecture involved two
components: the Adaptive Primary Learning architecture and the Actor-critic architecture. We
showed that the Adaptive Primary Learning architecture accelerates the reinforcement learn-

ing process while the Actor-critic architecture determines if rewards are better or worse than
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expected based on a game theory solution. For the solution of the game, we considered that
defenders and attackers conform coalitions in the Stackelberg security game, respectively. The
coalition of the defenders and attackers are reached by computing in case of a metric state
space the Strong Lp-Stackelberg/Nash equilibrium. The key result is that this contribution
can employ real information available about security uncertainty and generate strategies for
scheduling random patrols for different domains of application.

A method to find the equilibria in cooperative and non-cooperative bargaining games was
also presented. With respect to cooperative solutions, we examined the bargaining approach
from a theoretical perspective and provided a computational solution of the bargaining game for
the Nash and Kalai-Smorodinsky models. We first proposed a solution for the disagreement
point considered as a Nash equilibrium. Then, to solve the cooperative bargaining problem
finding a new agreement point we employed the Nash and the Kalai-Smorodinsky models.
We encapsulated both models, first focusing on some of the early results suggested in the
literature, and then extending the Nash and Kalai-Smorodinsky analysis to continuous-time
Markov games.

Following the results in Nash, Stackelberg and bargaining games, we proposed a new equi-
librium point for game theory called the manipulation equilibrium point conceptualized under
the Machiavellianism social theory. We employed this equilibrium for proposing a novel ap-
proach in solving the bargaining problem. The dynamics and the rationality proposed for
the manipulation game correspond with many real-world manipulation situations. The ma-
nipulation game is determined by a Stackelberg game model consisting of manipulating and
manipulated players that employ manipulation strategies to achieve power situations with the
disposition to not become attached to a conventional moral. We represented the Stackelberg
game model as Nash game for relaxing the interpretation of the game and the equilibrium se-
lection problem where the weights of the players for the Nash solution are determined by their
role in the Stackelberg game. We proposed an analytical formula for solving the manipulation
game which arises as the maximum of the quotient of two Nash products which under a fea-

sibility condition is a manipulation equilibrium point. Since a manipulation solution for the
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bargaining problem is a particular case of a single-valued function, we analyzed the rationality
of the players in the game solution.

In relation to non-cooperative bargaining, a proximal algorithm to solve the non-cooperative
bargaining game between two o more unsophisticated players as if they were forward-looking
players was presented. To achieve this goal we considered a time penalization related with
the time spent for each player for the decision-making at each step of the negotiation process
as well as their deviation from the previous best response strategy. We presented three dif-
ferent approaches for the non-cooperative bargaining problem: 1. a game where players are
individual-rational and compute the strategies thinking only of their own interests, 2. we con-
sider a game where players calculate the Nash equilibrium simultaneously but they reach the
equilibrium point at different times, and 3. a game where players make teams and alternately
each team makes an offer to the others until they reach an equilibrium. It was shown that
our work complements traditional bargaining literature for myopic agents, but also enlarges
the class of processes and functions where Rubinstein’s non-cooperative bargaining solutions
might be defined and applied.

Our solution approaches are supported by the proximal and extraproximal method. We pro-
posed a set of nonlinear equations represented by the Lagrange optimization method involving
the Tikhonov’s regularization approach for ensuring the convergence of the solution method
to one of the equilibria of the problem. We employed the c-variable method for making the
problem computationally tractable. We restricted the solution to a class of Markov chains
games. The effectiveness of the proposed methods was validated theoretically and illustrated

with some numerical examples.
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Appendix A
Proximal Constrained Optimization Approach with
Time Penalization

This chapter concerns a proximal-point algorithm with time penalization [105]. The case
where the cost to move from one position to a better one is penalized by the time taken by
the agent for the decision-making is being studied and the restriction employing the penalty
method is incorporated. It is shown that the method converges monotonically with respect to
the minimal weighted norm to a unique minimal point under mild assumptions. The gradient
method is employed for solving the objective function, and its convergence is proven. The
rate of convergence of the method is also estimated by computing the optimal parameters.
The effectiveness of the method is illustrated by a numerical optimization example employing
continuous-time Markov chains.

To the best of our knowledge, the proximal constrained optimization approach with time
penalization is still an open problem. The method presents a main advantage: it involves a cost
to move from one position to a better one with penalization of time taken by the agent for the

decision-making. This chapter presents the following results:

e Shows that the method converges monotonically with respect to the minimal weighted

norm to a unique minimal point under mild assumptions.
e Employs the projection gradient method for solving the objective function.
e Estimates the rate of convergence of the method by computing the optimal parameters.

e [llustrates the method by a numerical example employing continuous-time Markov chains.
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A.1 Introduction

Let ¢ be a convex twice-differentiable real-valued function defined on V', which is a com-

pact and convex subset of RY. The optimization problem

min o(v),

means the problem of finding the minimal point v* such that p(v*) < p(v), Vv € V. The
optimization problem in this chapter involves an additional penalization or cost to move from
one position to a better one, which is related with the proximal point algorithms [4, 5, 70]. The
proximal point algorithms for solving non-smooth constrained optimization problems were ini-
tially proposed by [57, [79,153]]. Several applications reported in the literature employ proximal
point algorithms, for instance see [17,119, 21}, 27]]. Indeed, when one uses proximal algorithms
suppose choosing an arbitrary initial point vy € V' and builds the sequence (v,), where v,, is

the unique solution of the optimization problem of the form

On
min gp(v)—i—EHU—UnHQ , 6, >0, 6, = 0Oandn € N. (A.1)

The term ||v — v,||* ensures that the objective function (A.1)) is strictly positive definite
[93, 94] and it is introduced in order to improve convergence of some iterative methods. In
addition, |jv — vnH2 minimizes the distance between v, and v, (v, is not far from v,,).
Because, 9,, > 0 and 9,, — 0 the final result obtained is not affected by the quadratic term. An
iterative approach, like the projected gradient method, can be employed to solve the objective
function (A.T).

The case where the cost to move from one position to a better one is penalized by the time
taken by the agent for the decision-making [6} 59, 9] is studied herein. Let V' C R be the
decision space (strategies) and define the behavior of an agent as a sequence (v,),cn Where
there are possible changes, v; # v; or remaining in the same, v; = v;. Then, at each step
n € N the agent chooses to change or to remain in v; € V. The function ¢ represents the cost
function that determines the decision to move from v;. A cost-to-go is defined as a function
A : V x V — R which can be interpreted as a distance function A(v;,v;) = k(v;, v;) where

k(v vj) = 0if v; = v; or k(v;,v5) > 0if v; # v;. In general, the cost to go function can
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be reexpressed as A(v;, v;) := t(v;, v)k(v;, vj) where t(v;,v;) > 0 is the time spent to move
from v; to v; and k(v;, v;) is the one-step cost-to-go function.

In the simplest (separable) case, ¢(v;) — ¢(v;) > 0 is the advantage to change from v; to
v; given t(v;) > 0, the time spent to benefit of this advantage, and «(v;) being the weight the
agent puts on his advantages to change. Thus, the respective advantages to change from v; to
v; are given by A(v;, v;) = a(v;)t(v;) (e(v;) — ¢(v;)).

The dynamics of the cost to go model is as follows. At each step, the agent considers to
change from v; to v;, v;,v; € V. A transition from v; to v; is acceptable if the advantages to
change A(v;,v;) from v; to v; are determined by 6(v;) € [0, 1] (degree of acceptability) of the
costs to move A(v;, v;) from v; to v;. Then, the set of strategies that minimizes the general cost

to go is defined by

G(vi) = {v; € V s afwi)t(v)) [p(vi) — @(v;)] = 6(vi)t(v;)k(vi, v5)} -

One can associate a discrete dynamic on V' to this relation, whose trajectories (v, )nen
satisfies that v, ; € G(v,). Then, in this context, a utility function ¢ : V' — R such that
the impact of experience on cost is constant and limited to the most recent element v,, on the
trajectory (v, )nen is defined. In addition, the advantages to change A(v,,, v,,,1) are determined
by the degree of acceptability d,,(v,,) € [0, 1] of the costs to move A(vy,, vy 41).

Thus, the acceptance criterion to change or stay process satisfies the condition

0t (V) (Un11) [(vn) = ©(Un11)] 2 0n(vn)t(Vnt1)E(Vn, Ung1)-

These algorithms are naturally linked with several classical proximal algorithms given in
Eq. (A.1). That is, by fixing v, = v and taking 6(v)t(v)k(v,v*) = 8,t(v) ||(v — v*)||* and

A(v,v*) := a,t(v) [p(v) — ¢(v*)] as one has in proximal format that

v* = argmin {8,t(v) | (v — 0" + ent(v) [p(v) — 0 ("))}
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A.2 Formulation of the problem

Consider the following constrained programming problem

in o(v),

(A.2)
Vaam == {v ERY : 0 >0, Aeqv = beg € RM| Ajpeqv < bipeg € RM1 } .

where Vgm is a bounded set. Introducing the “slack” vectors u € RM! with nonnegative

components, that is, u; > 0 for all j = 1,..., M}, the original problem (A.2)) can be rewritten

as
VEVagm 120 o) (A3)
Vidm 1= {U € RY: v > 0, AeqU = bequ Aineqv — bineq +u= O} .
Define by V* C V,un the set of all solutions of the problem (A.3)).
Consider the objective function given by
Fos (U’ u'”ﬂ) = t(”ﬂ)g HU - Un”2 + O‘t(vn) (90(7]) - Sp(vn)) +
(A4)

% HAeqU - beq”2 + % ||Aineqv — bineq + uH2 + g ||UH2

where «, 6 > 0. The problem of calculating the fixed point of the extremal mapping will be

considered
min F,s (v, ulv
0E€Vaam, u>0 (v, ulon)
such that
* L 0% * * L Kk
vt =0 (o, 0,) — U, ul = ut (an, 0,) — U,
n—oo n—oo

considering that the parameters « and 0 are time-varying, i.e.,
a=a, 06=90, (n=01,2..),

and

Qp
On
In addition, v** (o, §) € V* is the solution of the original problem (A.3]) with minimal weighted

0<a, —0, — 0, whenn — oo. (A.S5)

norm, i.e.,

|lo™*|| < ||v*|| forall v* € V*,
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and

* *
u = bineq - Aineqv .

Moreover, the bounded set V* of all solutions of the original optimization problem given
in Eq. is not empty and Slater’s condition holds [74]], that is, there exists a point v € Vg,
such that

AineqV < bineg- (A.6)

A.3 Convergence analysis

The behavior of the iterative proximal method of the original problem (A.3)) will be studied.
First, it will be proven that the Hessian matrix H associated with the objective function (A.4))
is strictly positive definite for any positive « and 4, to show that the objective function (A.4)) is

strictly convex. The following theorem if formulated.

Theorem A.1 If the set of solutions of problem ([A.3)) is non-empty then the objective function

is strictly convex.

Proof. It should be proven that for all v € RY and u € RM!

%FM (v, ulv,) %Fa,é (v, ul|vy)
H = > 0,

%Faﬁ (v, ulvn) %Fa,g (v, u|vy)

Employing Schur’s lemma [74] it is necessary and sufficient to prove that
%Fa,é (U,U‘Un) > 0’ 88_11,22IF0¢75 ('U, U|'Un) > O7

(A.7)
-1
;—;IFQ,(; (v, u|vy,) > %;}Fa,(; (v, ulvy) [;—;FM (v,u]vn)} %;UIFQ,(; (v, ulvy,) .

Then, applying the Schur’s lemma over the objective function (A.4) it follows that
%FOMS (U7 u|vn) = at(”ﬂ)éa_; (90<U) - @(Un)) + A.erquq + A;rnquineq + t(vn)(S]NxN >

at(vn) 2 (9(v) — @(vn)) + Hvn) 0Ty > Hvn)d (1 n %A*) Iy > 0V 6, > 0,

where

A i i i (o ) = (i) ).

Ue‘/adm
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and
82
—F
ou?
By Eq. (A.7) it is necessary to satisfy that

as (v, ulvy) = (1 +98) Ingxar, > 0.

B Fas (v,ulvn) = at(va) 25 (9(v) — @(v)) + AL Aeq + AL Aineg + t(vn)8 Insny >

neq
) ) -1 —
aiav‘Fa,é (v, ulvy,) %Fw (U,U)] afmFa,a (v, ulvn) = (1+6) 1 AiTnqui"eq’

or equivalently,

0? o
at(vn)w (QD(U) - @(Un)) + quAeq + 1—_‘_(5Ai1;lquineq + t(vn)(;INXN > 0,

which holds for any 6 > 0 having
o

t(Un) ((1//\7 + 5) Ingn + quAeq + 1—_‘_5_/411;16(]

t(v2)8 (1 + 2A7) I = £(0,)8 (1 + 0(1)) Inxry > 0.

Aineq Z

As a result, the Hessian is H > 0 which means that proximal function (A.4)) is strictly convex.

Remark A.2 The Hessian H > 0 is a sufficient condition for the convergence to a unique

minimal point defined v* (c, §) and u* (cv, 8) for the proximal function (A.4).

Next, objective function (A.4) is considered to be strictly convex and it is shown that it

converges to a unique minimal point that depends of the parameters « and 9.

Theorem A.3 If the proximal function is strictly convex then the sequence {v,} of the
proximal function (A.4) converges whenn — oo, i.e. the proximal function (A.4) has a minimal

point defined by v* («, 6) and u* («, 0).

Proof. The theorem will be proven in two parts.

i) Following the strictly convexity property (Theorem |A.1)) for any w := and any

vE = v* (a, 0p)

vector w = for the function F, s (v, u|v,) = Fus (w|v,) one has

up = u* (an, On)
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n ) %

(1 0" o, (010 = (0 = o) () 510 () = )+

ALy [Aeqy; = beg] 4 Affeq [AineqVs; — bineq + 1] + (vn )0 (v}, — Un)) +

(= )T (Aineqt}, — bineg + (14 6,) u) = (A-8)

0

ant(vn) (07, = 0)" 5 (9 (17) = ¢ (vn)) + [Aeq (0, = )] [Aequr, = beg] +

(Aing (05— 0)]7 [Aineqt}, — binsg + 1] + 1(0)8, (05, = v)7 (v — v+
(u, — )" [Aineq — ineq + (L 8,) ]

Selecting in Eq. (A.8) v := v* € V* (v* is one of the admissible solutions such that A.qv* =

beq) and u := (1 + (5n)_1 (bineq — Aineq;;) One obtains

0> ant(vn) (v, = ") o=(@ (v]) = @ (vn)) + [Aeq (v, = V)]T [Aequy, — beg] +

Aine 'U:; —v* T Aine ’U;; - bine + U; + t(vn 5n ('U;: - U*)T (U:L — Un +
v (05, = )] (v, g + 3] +1(03) ) )

(1 + (571)71 (U;ﬁl (1 + 5n) - bineq + AineqU:L)T (Aineqv;kl - bineq + (1 + 571) u;kz) +

*\T ,, %
- bineq - Aineqvn) Up,,

on (ut

simplifying Eq. (A.9) one obtains
* * a * k k * *
02 ant(vn) (v, = v7)" 5 (0 (07) = @ () + [[Aeq (07, — M+ 1| Aineq (05, = 0)I* +

H(0n)0n (0 — )T (UE = 0,) + (14 6,) " || AineqVls — Dineq + (14 6,) u||* +

T,,*
Uy, -

O (u

n bineq - Aineqv;i)
Dividing both sides of this inequality by 9,, one gets

« 0

0> 5—:t(vn) (v, =) 5o (e () = (o)) +

1 _
On (1 4eq (05 = )" 4 [l Aineq (05 = 0 )I* 4+ (L 4+ 80) ™" || AineqVy — bineq + (14 62) wz[I*) +

o) (0 — 0T (0 = ) + (0~ bineq — Aneg) .
(A.10)
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Now, taking v = v}, and u = 0 from Eq. (A.8) one has

0> (u}) [Aineqtf, — bineg + (1 + 0n) up] = ()" (Aineqty, — bineg) + (L +65) [l |I* =

i

2

p £\ T (Ainequ*l - bineq)} H (AineqU:l - bineq)
<||\/1 +oun||” +2 (VI+ o) { its, | T v
2)

2 N (Ainequ: - bineq)
2v/1+ 6,

(Aineqv;; - bineq)
2149,

(félineqv>|< - bineq)
1 577, * n
H\/ + Ont, + WiETH

implying , ,
(Aineqv* - bineq) (AAineq'U>|< - bineq)
n > 1 + 5n * + n ’
H ovito, || =" Ty Tt e,
and

1> [le+2(1+ 60) ), [1(Aieqvl = binea) I )75 llell = 1,

. . .. «
which means that the sequence {u} is bounded. If it is assumed that —*

(A.10) it follows

Const = limsup (| (5, — v*)7 (15 — )| + |(15 — Bieg — Aimegt}) T 123]) >

— 0, from Eq.
0, n—0o

n—oo
1
limsup(;_ (HAeqU;; - beqH2 + ||Aineq (U: - U*)HZ + (A.11)
n—oo n

(14 02) " [ Aineqy, — bineq + (1 + ) u||”) -
From Eq. (A.T1)) one may conclude that

1 4equy, = begll” + [ Aineq (v, — v*)|I* +
(A.12)
(1 + 5n)71 ||Aineqv;kl - bineq + (1 + 5n) U:LHQ = O (571) )

and
AeqUi, — beg = 0,

Aineqvéo - Aineqv* - Aineqv:o - bineq + Uio = 07
where v, € V* is a partial limit of the sequence {v}} which, obviously, may be not unique.

The vector v, is also a partial limit of the sequence {u }.

ii) Denote by ©,, the projection of v to the set Vygn, i.e.

R
=P (40),
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where Pr is the projection operator. It is shown that
|vr — 0| < Kk\/0n, K = const > 0. (A.13)
Given Eq. (A.12)) one has that
| AineqUyy — bineq + || < K1 \/E, k1 = const > 0,

implying
Ainequ - bineq S R1v 577,6 - u:; S K1y 57167 ||6|| = 17

where the vector inequality is treated in component-wise sense:

|vf — b, < max min ||Jv — z||* == d (6,) .
Aineqv’n_binquﬁl \/Ee, 'Uevadm Zevz‘dm

Define

vi=1—-z,)v+2,0 € Vg,

by Slater’s condition given in Eq. (A.6) one obtains that

Hl\/(s—n

0<x, = < 1.
K1vV0n, + min | (AineqV — bineq) ;
7j=1,...,M, J
. U — T, U
For the variable v = "~ one has

Aineq{] - bineq = (1 - -Tn) Aineqv + mnAineq{] - bineq =
(1 - xn) (Aineqv - bineq) + (1 - l'n) bineq + Ty (Aineq{] - bineq) + znbineq - bineq -
(1 - xn) (Aineqv - bineq) + Tp (Aineq/lo} - bineq) S
m\/ﬁ
/11\/& + . min (Aineq'lo} - bineq)j‘
J

=1,...,M;
/ﬁ\/a (
/‘il\/& + . min (Aineq{) - bineq)j‘
J

=1,..M;

(1 — l’n) /il\/EG + (Aineq{} - bineq) =

min
j=1,..., M1

(Aineqﬁ - bineq) j

e+ (Aineqﬁ - bineq)) S 07



196 Appendix A. Proximal constrained optimization

then
. 2
d(,) = max min ||z —y||” <

Aineqv_binquﬁll Vone, VEV yam Y€ Vadm

U— T,

max — =
Aineqﬁfbinquoy VEV adm 1 - SL’n
x% ~ o2
max |0 —2]|” < K10p, 0 < Ky <00,

(]. — ]}'n)Q Alneq0—bineq <0, D€V aam

Given that [|v — 0, < \/d (6,) < /&1 = const > 01/6, proving Eq. (A.13). m

Finally, in the following theorem it is shown that the sequence {v,, } converges with minimal

norm to v*.

Theorem A.4 If the proximal function is strictly convex and the sequence {v,} of the
proximal function ([A.4) converges, then, the necessary and sufficient condition for the point v*

to be the minimum point of the function ||v}, H2 on the set V* is given by

0> (v, —v")T (v, — vy,) forany vi, < V™. (A.14)

oo

In addition, this point is unique and it has a minimal norm among all possible partial limits

*

5.

Proof. From Eq. (A.10) one obtains

0 1
0> t(vn) (v, = v*)" (2 (v7) = 2 (vn)) + — (1 Aequy = beall” + | Aineq (v = v7)II") +
On, 1
o) (07 = 0)T (0 = ) + — [t = bing + (14 8) 1”2
* *\T 9 * 6" * *\T (%
o) (05 = 0T (9 (02) = 0 (00)) + —t(on) (0 — 0T (05 = v0).

(A.15)

By the strong convexity property (see Corollary 21.4 in [74]]) it follows that

0

0
(@0 (oo @)~ o)) = Oforany oy < Y
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which, in view of the property (A.13), implies

) (0 — )7 (2 (45) — i (0n) = O (V)

t(vn) (0 — v*)T %(90 (0n) — ¢ (vn)) >0,
) (= 0°)7 o (07) = 2 (00) 2 (00 (15— 0*)T (0 (05) — 2 (00) =

o) (05— 02)7 50 (03) = 9 (0)) ) (0 — 1) (i (05) = 0 () >

O (V/3,) + t(vn) (0 — v*)T-

(3P0 = 9 () = 510 ) = 90 )+ l0n) B = )T 3 (00) = 0 (0) 2
0 0 R

*

O (V) = t(va) [l = vl {| 5-(2 (v7) = @ (vn)) = 5-(2 (Bn) = @ (vn)| -

Since any function is Lipschitz-continuous on any bounded compact set, one can conclude that

5 0 . < Const ||[v) — 0, = O (\/@) '

*

—(p(03) = 9 (v)) = 5 (i) — ¢ (v0)

which gives

o) (05— 0,07 20 (00) — 0 (0)) = 0 (V).
which, by Eq. (A.13) leads to
0 o) (0 — 00)7 (o () = @ () + () (15— 0} (0 — 03) =
5 " (A.16)
O (V82) + 21w (15, — ) (07 )

On

Dividing both sides of the inequality (A.16)) by %, taking t(v,,) = 1, and given that ||v} — v, || <

/0, by Eq. (A.13)) one has that

020(&)+<v;:—v*>T<v;;—vn>=o<1>@+<v:—v*>wv:—vn>,

which, by Eq. (A.5), for n — oo leads to Eq. (A.14). Finally, for any v* < V* it implies

0> (v, —v)" (v —v,) =

[z, = v*[* + (03 — v*)T (V" = ) = (vl — v)T (0" — vy).
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A.4 Gradient solver

Consider the proximal function for finding the unique minimal point defined by v* (v, §)

and u* (o, 9)

Fos (va u|vn) = t(vn)%” |U - Un||2 + O‘nt(UN) (SO(U) - ‘P(Un)) +
2 2 2
% ||Aeqv_beq|| "'% ||Aineqv_bineq+“” + %n ]| "

When ¢ is smooth, one could use iterative methods to solve F,, 5 (v, u|v,,).

Theorem A.5 Consider the following iterative procedure for finding the extremal point w** =

v
u**
w 0 F ( [vn) (A.17)
n = |Wn-1 — TYngy La Wp—1|Un ) .
1= 7 Jw ndn 1 .
where
z if 220,
[Z]+: .
0 if =z2<0.
If
o n n — Un— (Sn_(sn,
S b =o0. g, [ lnlt] oo @
then
2, = |lw, —wl]* — 0. (A.19)
n—oo

Proof. From the iterative procedure given in Eq. (A.17) one has that

a 2
En == H |:wn—1 - Wn%Fan,én (wn—1|vn):| - 'LU;; S
+
a 2
H (wn—l - w;—l) - 'Vn%Fanﬁn (Wn—1]vn) + (w;;—l - w:) =
2

o (A.20)

+ || (wioy —wp)

0
_Fan On (wn—l |Un>

En—l + 77% aw

0
2771 (wn—l - w;_l)T %Fan,én (wn—1|vn) +2 (wn—l - w:_l)T (w;:,_l - w:) -

0
2% (wfl_1 — w:;)T %]Fan’(sn (Wn_1|vn) -
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By the inequalities (see the inequalities (21.17) and (21.36) in [[74]) it can be concluded that

2

0
H %Fan,én (wnfl ’Un>

0 9 4
H |:a_wFan,5n (wn—1|vn) - %Fanﬁn (w;—1|vn):| + %F@nuén (w;kl—lhj”)

2
<

d %, . ?
(1 + 7~9n) %thnﬁn (wn_llvn) — %Famgn (UJn_l”Un) +
a 2
(1+9;h) ’a—wFam(gn (wi_4lva)|| < (X +9,) LeEa1 + (1+9,1)d,

2

where < d, and

0
a_wFan On (w:,— 1 |/Un)

19

(wn—l —wy ) awﬂ?an,(sn (wn—1|vn) Z lnEn—h ln - (an)\i + 671)

* T * * * * =
| (way = y) T (wh oy —wi)| < Jwhy —wi|| VES

¥>0
* *
S ||wn—1 — W,

r 9

(w;—l - w:) awFan,ﬁn (wn—lyvn)

VA +9) LyE, 1+ (1+9-1)d <

* *
Hwn—l - wy,

[(1 +0V2) VIvyEr + (1 +971?) \/c_i} .

Then, from Eq. (A.20) it follows that

p < Enot 2 [(L+9) LyZaat + (L + 97 d] + 2 (82 |y — ana|” + 83 |60 — Gna|)
=279, (e A™ + 0,) ZEnc1 + 2 (K1 | — Q1| + K2 |00 — 0n1]) VE_1+

Q’yn (/4,1 \qn — qn,l\ + Ko ‘(Sn — 57171‘) . [(1 + 191/2) AV LV\/En,1 + (1 -+ 79_1/2) \/C_i:| 5

or, equivalently,

En S En—l (1 - Qn—l) + Sn—l V En—l + Wn—1,
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where
. -~ 2 . _ _ ’Yn (1 + 19) LV
Gn-1 =2 (A~ +6,) — 72 (1 +9) Ly = 27, (ap A\~ + 6,) {1 a5 a0, =
2(1 1 l—-—— | > On,s

571_1 =2 (1‘11 |06n - Oén—ll + Ko |5n - 5n—1|) : [1 + Tn (1 + 791/2) \% LV}

S Rs (|an - an—1| + |5n - 5n—1|)7

Wy =72 (1 + 07 d+ (82 |on — o | + 6316, — 6ua )
+ 2’)/71 (/431 ‘Oén - C‘v/n—1| + Ko |5n - 5n—1|) (1 + 19_1/2) \/C_Z <
7721/‘{/0.;,1 + Tn (|Ofn - an—1| + |5n - 5n—1|) Ryw,2 + (|Oén - Ofn_1|2 + |6n - 6n_1|2> l%w,3~

Using the inequality

=, S (L= + =50, pE(0.1), 6,>0,
gn—l . .
for p = 1/2 and v/0,, = m ,n € (0,1), the inequality can be reduced to the
gn—1 - 77

following one
571—1
QQn— 1 \/%

En1 (1 )+ S
—n—1 4n—17 Wnp—1 4 (1 — 77) Gt .

En < Enfl (1 —A4n-1 |:1 :|> + [wnfl + %Snfl\/ﬂ] =

(A.21)

By Theorem 16.14 in [74] =, — O0if

n—oo
oo S2
Wn—1 0 —1
E qn = 00, + ; — 07
n=0 QHfl q'n,fl n—00

which is equivalent to Eq. (A.19). Theorem is proven. m



A.5. Rate of convergence 201

A.5 Rate of convergence

Select the parameters of the algorithm (A.17) as follows:

do if n<ng o if n<ng
(Sn = 5 Ay = ;
[I+In(n—no)] a .
om if n>mng W if n>ng
(A.22)

Yo if n< o

Tn = ) 67 Q, 7y > 07 607 o, Yo > 07
(e +n7_°n0)7 if n>ng

To guarantee the convergence of the suggested procedure, by the property % — 0 and by
n—oo

n

the conditions (A.T8)), the parameters of the algorithm should satisfy that
0<a, v>0, v+d6<1. (A.23)

Lemma A.6 Suppose that for a nonnegative sequence {s,} the following recurrent inequality
holds

Sn S Sn—1 (1 - Qn) + Wn,
where numerical sequences {q,} and {w,} satisfies
an € (0,1], w, >0, v, >0 foralln=0,1...

& & . Up — Un—1
G =00, Y wpu, <00, lim———m:=0<1.
n=0

n=0 n—oo qn’Un
Then
Sp =0 (U_l) ) (A.24)

n

Proof. For 35,, = v, s, it follows
5 <31 (1= q) vty 4+ vpwn = 31 [1 = ¢ (1= 0+ 0(1))] + Vpwy,
which by the same Theorem 16.14 in [74] implies Eq. (A.24). m

Theorem A.7 If the proximal function ([A.4)) is strictly convex and the sequence v,, of the prox-

imal function converges, then the optimal parameters are given by

1 1 3
Y= =3 5 4,5
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Proof. By (A.21)) and (A.22)) one has

qnzO(mlM),
o aaa) =0 () v (o) -0 (i)
+0

4(1—n
0 (n“/—i-a—i-l) +0 (n7+5+1> (n2 (at1)—7— 5> <n2(5+1 ) -
1 1 1
o () +0 () +o ()
As a result,

- — 1 1
=<z fi- o ()| 1o () +

© (m+5+1 i —|—1ln (n— no)]) o (nwmw [11+ n(n = no)]) ’

and for v,, = n" it follows that =, = O (n™"), if v € (0, 1] satisfies

Y+O<1, v<2y, v<O6+2—7, (A.25)
or, equivalently, 0 < v < min{2v,J + 2 — 7}.
So, the rate of convergence for =, := |lw, — w**||* will be estimated by the following

* * sk |2 = Kok sk || 2
n = [[(wn —wp) + (), —w™)||” < 25, + 2| (wi” —w™)|" =

2

2
22, +0 (%) =o(n™")+ O (%) — 0,

which leads to the following conclusion: the best rate n~¢" of the convergence =, to zero is

relation

[1]2

defined as
én =0 (n_é) ,

where £* = maxmin {v, 2a — 0} = maxmin{2v,0 + 2 — v, 2o — 6, 1}.

Since 6 +2—v>d+2—(1—-0)=25+1> 1, it follows that

min {27, + 2 — v, 2a — 6,1} = min {2v,2a — 0,1} .
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Under constrains (A.23)) and (A.23) the maximal upper estimate is achieved when 2y = 2o —

. : 1 1 3 . .
0 =1,implyingy = -,0 =2a — 1 <1 -7 = - and 2a < —. Finally one obtains
2 2 2 Y

A.6 Production planning example

Consider the Continuous-Time Markov Chains theory presented in Chapter 2. Then, the

joint strategy variable c(; ;) which belongs to the set of matrices ¢ € Cyqp, is restricted by Egs.

[2.8/and [2.9). Introducing

=

ifi =,
5
. qli,k
Tk = |z I
1
ifi  j.
\ q(]‘lvk)

Then, one has that

* . 5n *\ |2
v = arg 1;}%1‘1//.1 {E H(U -0 )HA:diag(Al,...,A]\,j) + Tn (Fa’a (U7 u‘vn))} .

The production planning and scheduling are very important processes that directly influ-
ence the success of production companies, this models are usually formulated as optimization
problems subject to uncertainties derived from events as fluctuation of demand, equipment

failures, quantity of surplus production, among other factors. There is a growing interest in
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applying these models in manufacturing and remanufacturing systems in different industries or
companies (see for example, [52, 47, 26, 40, 48]]).

Consider a Production Planning Model where the state variable is taken as the surplus
amount of the production system that is determined by both demand rate and production rate,
which in turn is governed by the production capacity [109].

The manufacturing system produces M different products. The system is given by a differ-
ential equation, which states that the rates of change of the surplus, the inventory/shortage level
z(t) € RM, constitute the difference between the production rates v(t) € R which depends
on the random machine capacity, and the random demand rates z(t) € R (see Figure .
The objective is to find the optimal production rate v* to minimize the cost function subject to
the system dynamics, the machine capacity y(t), and other operating conditions.

The usefulness of implementing the optimization method presented in this article is that
with the time penalization, the losses that the industry/company has in the manufacturing pro-

cess due to different factors, for example the continuous deterioration of the machines, can be

modeled.
Demand z(t) Ko y(©) Machine
rate /Update demand level capacity
F
B(®)
x(t) Control policy v(t) | Manufacturing
v* = argmin F(x,v,f3) operations

Define production rate

Update inventary/shortage level
Figure A.1 A schematic representation of a manufacturing system.
Let define demand process as a finite-state Markov chain z = {z(¢) : t > 0} having state

space Z = {z1, ..., zn, }- Considering the possible random breakdown and repair, the machine

capacity is modeled by a continuous-time, finite-state Markov chain y = {y(t) : ¢ > 0} with
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state space Y = {y1,...,yn, - At any given time the production capacity determines the set
of all possible rates of production v(¢). For each state of the capacity, y; < y; < yn,, the

production rate uy = (uy, ug, ..., ups) > 0 must satisfy the constraint
p'U,/SOéi, i:07"'7N17

where p = (p1, ..., par) > 01is a given constant vector with each p;, (k = 1, ..., M) representing
the amount of capacity needed to produce one unit of product k.
The generators of the Markov chains y and z following an action denoted by £ (the de-

and ()* =

cision of generate a type of product k) are given by Q)Y = [ Y. }
s P P ) 8 y 9l k) 4,j=1,N1,k=1,M

[q(zﬂ i k)} TN respectively.

Let there be a manufacturing model with two machine producing three different products,
because of this, the machines can follow three actions & = 1,—M, M = 3, this means to
generate product k. Suppose that one only has flexible machines which require no setup-time
consumption when switching from production of one type of product to the production of
another. In this example, consider the demand process as a two-states Markov chain, z(t) €
Z = {2z, 22}, Ny = 2, that means that z; is a low level and 2z, is a high level of demand. The
generator for each action & of the demand process is as follows

-4 4 —1 1 -5 5

@jlin) = 9 _9 Qjli) = 5 _o9 Gl = 5  _g3

Consider that the two parallel machines are subject to breakdown and repair. If the machine
is up, then it can produce parts with production rate v(¢) and its production rate is zero if the
machine is under repair, so each having capacities y' € {0,y,} and *> € {0, y»}, the overall
state space of the four-state Markov chain capacity is Y = {(0,0), (y1,0), (0,v2), (y1,y2)}
which contains all possible combinations N; = 4 between the states of the two machines.
For simplicity, suppose each of the machines is either in operating condition (denoted by 1)
or under repair (denoted by 0), then it follows that Y = {(0,0),(1,0),(0,1),(1,1)}. Let the

rates of each machine going down be \; and \,, and the rates of resumption be j1; and pi5. The
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generators for any action (product) k of each machine capacity are as follows

—H1 0 0 —pa 0 fo 0
A1 —M 0 0 0 —H2 0 2
1 _ 2 —
Qi) = Qi) =
0 0 —H1 M1 )\2 0 —)\2 0
0 0 )\1 —/\1 0 )\2 0 _)\2

To determine the generator for the overall capacity process, it is satisfied that only one

machine may change its state during a single transition. Therefore

—(p1 + p2) I3 % 0

y B A\ —(A + p2) 0 i

e A2 0 —(A2 + ) {1
0 Ao M () |

In this example, consider A\; = 3.53, Ay = 4.8, 1 = 120 and s = 120, then the matrix Q¥ for

any action k gives

[ 240 120 120 0 |
.| 35 —12353 0 120
Ul = 48 0 1248 120

0 48 353 833

Then, the production system is subject to a joint stochastic process, 5(t) = (y(t), z(t))

consisting of the capacity and demand pair. Observe that (3 is also a Markov chain that has a

state space of size N = N; x N,

B ={(W1,21), -, (UNy, 21)s -os (Y15 ZN5 )5 -5 (Unys 285 ) T -

In this example the total number of states is N = Ny X Ny =8

B = {(O, 07 Zl), (1, 0, Zl), (07 1, Zl), (]_, 1, Zl), (0, 0, 22), (17 0, ZQ), (0, ]_, 22)7 (1, ]_, ZQ)} s

that is, all possible combination between the states of the demand process and the states of the

capacity process.
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In many manufacturing processes, the machine capacity (breakdown and repair) take place
much more frequently than the changes in demand. To reflect the differences in transition
rates between the matrices Q¥ and ()7, i.e., the weak and strong interactions of the systems, a
timescale separation by introducing a small parameter € > 0 into the system [108] is imple-
mented. The generator of the chain 3(t) is of the form Q = [q(jin] T a7 Where for

action k = 1, M, M = 3 and a scale factor € = 0.01 is given by

QY GoIn GGaIve 0 4G vy I

m | =
m | =

O
+

O
Il

Qy q(ZNQ,l)INl (:Z(ZN272)]N1 e Q(ZNQ,NQ)INI

where Q = diag(QY, ..., QY) is a block-diagonal matrix representing the fast motion and the
Kronecker product Q = ()* ® Iy, governs the slow varying part.

The dynamic system of the manufacturing process is given by

(1) = y(t)o(t) — (1),
N (A.26)

z(0) =

where 3 = (v, 2) is the initial state of the Markov chain and x € R™ is the initial surplus level
that is positive when it represents inventory and negative when it represents shortage. Define

the cost functional as

F (a(t), 0(t), (1)) = E / G (a(t), olt), (D)) dt, (A27)

where G (z(t),v(t), 8(t)) is the running cost of having surplus z(¢), a normalized production
rate v(t), a Markov chain [ (y(t), 2(¢)) and a discount rate p > 0 (old data have less impact
into the overall cost). The goal is to find the optimal policy or the optimal production rate
v*(t) € RM*M to minimize the objective function (Eq. , subject to dynamics described
by Eq. the capacity y(¢), and other production constraints for the given initial conditions.

Let the utility matrix u;j; x) of the production process that depends on the transition be-

tween the states of the Markov chain ((y, z) and the product being manufactured be as follows:
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(19 10 18 11 18 11 10 6]

15 19 3 17 18 3 15 8

12 1 9 17 5 3 7 18

20 04 6 1m 2 18 9 9
faln = 17 10 20 5 10 13 11 5
20 11 13 11 17 6 18 12

13 2 6 18 10 18 16 10

8 14 3 3 9 2 2 18]

(19 17 2 18 14 2 10 20

17 11 9 7 12 15 10 5

5 8 3 1 13 7 19 16

15 5 9 3 18 14 8 12
OR824 14 3 9
2 6 8 15 18 11 5 11

7 2 3 10 10 15 14 10

12 12 14 3 11 17 14]

15 19 18 1 20 15 2 4]

7 018 2 8 11 11 14 1

2 20 20 19 20 17 13 9

17 18 19 11 10 11 5 10

Hali = 8§ 1 12 10 9 12 9 4
6 11 9 10 5 5 13 14

4 20 7 7T 4 12 12 1

3 11 15 20 17 3 3 3]

The cost matrix r; ) for each state and action, that depends on the utility matrix w;; ) and
the transition matrix ;; ») that represent the behavior of the Markov chain 3(y, z), is defined

as follows

N
Tik = E Uj|ikT 5)ik
Jj=1
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then, the production cost function .J(v, ) of the manufacturing process is given by

For the integral cost function G (z, v, 3), it is also considered the holding cost, which are the
costs associated with storing and maintaining a piece of inventory that remains unsold over the

course of time and that depends only of the total surplus for product £
M

h(x(t) =) (0.0l +0.72;) |

k=1

where z;7 = max{0, z} and z;, = max{0, —x;}. Finally, the overall cost function for the
manufacturing model is G (z(t),v(t), 5(t)) = h(z(t)) + J (v(t), B(t)). Applying the proposed
optimization method with given initial values of surplus x = (45, —15,5) and following Eq.
(2.6), the optimal values v* are calculated. Figure[A.2]shows the convergence of the production
rate v* for each state and product k = 1, M, M = 3.

Once the method converges, the optimal production rate v* is as follows

(03333 0.3333  0.3333]
0.0409 0.9180  0.0411
0.0558  0.8892  0.0550
0.0019  0.9896  0.0085
0.3333  0.3333  0.3333
0.3152  0.2932  0.3917
0.1023  0.2979  0.5998

0.0032  0.9937  0.0032]

Vi) =

For example, for state 3 (this means that only one machine is in operating condition and the
rate of demand is low for all products) one has that in a working day the 0.0558 is dedicated
to manufacture product £ = 1, 0.8892 to product £ = 2 and 0.0550 to product £ = 3, these
production rates are due to the fact that we have a shortage level of product 2 (o, = —15);
and in general, for all states in the production rate matrix, it is observed that there is a greater
emphasis on compensating the shortage of the product 2.

Finally, Figure [A.3] shows the behavior of the objective cost function, which with the use

of the presented method, converges in a lower cost than the initial one.
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=
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o
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v(1,1)| |
- = —v(2.1)
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Production Rate

! v(8,1) |
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=~
Production Rate
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- - -y(2.2)
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(b) Convergence for product k = 2.
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& a

(c) Convergence for product & = 3.

Figure A.2 Convergence of the production rate v;y.
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Figure A.3 Convergence of the cost function.
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Appendix B
The Nash vs. Kalai-Smorodinsky solution

This Chapter presents a numerical example in order to appreciate the difference between
the solution presented by Nash and the one presented by Kalai and Smorodinsky [95].

Consider a two-person bargaining problem in a class of continuous time controllable Markov
chains. Let us denote the disagreement cost that depends on the strategies cl(Lk) (I =1,2) for
players 1 and 2 as ¢'(c!, c?) and ¢?(c!, ¢?) respectively, and the solution for the bargaining

problem as the point (1)1, 1?).

Let the states N = 6, and the number of actions M = 3. The individual utility for each

player are defined by
(34 45 1 28 7 23] 31 1 30 38 2 17
97 43 25 47 26 24 18 41 10 13 42 11
15 45 14 15 43 48 5 8 34 33 12 31
ULl = U2 . .=
(0.4]1) (.41
36 47 12 17 20 5 9 44 13 43 3 40
20 41 22 43 35 14 2% 5 22 5 28 10
20 20 18 18 32 23] 13 18 7 20 48 3]
(30 44 14 47 25 31] (15 15 43 9 18 14]
44 24 45 37 11 30 13 13 2 36 32 30
24 25 12 20 32 22 25 25 15 42 18 22
UL = U2 . ..=
D) (0.412)
22 25 44 50 12 33 39 23 45 2 11 5
38 12 36 33 27 22 18 41 27 38 40 2
24 5 44 45 37 1| 20 5 7 18 17 25
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43 47
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24 29
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50 42

Appendix B. The Nash vs. Kalai-Smorodinsky solution

48
33
19
24
46
ol

8
24
28

3
33
45

16
22
15
50
31
13

27
28
42
42
42
11

(4,413)

14
17
15
9
20
35

11
34
23
22
9
10

The transition rate matrices for each player are defined as follows

1 _
Y1)~

1 _
i j12)=

1 _
9(i,513)=

[ 0.5371
0.0208
0.1179
0.1871
0.0825

| 0.0831

[ 1.6112
0.0624
0.3538
0.5614
0.2474

| 0.2492

[ 0.5371
0.0208
0.1179
0.1871
0.0825

| 0.0831

0.0444
—0.5381
0.0965
0.0965
0.1871
0.1685

0.1333
—1.6142
0.2894
0.2894
0.5614
0.5055

0.0444
—0.5381
0.0965
0.0965
0.1871
0.1685

0.2305
0.0294
—0.6554
0.1622
0.0671
0.1221

0.6916
0.0881
—1.9662
0.4867
0.2012
0.3662

0.2305
0.0294
—0.6554
0.1622
0.0671
0.1221

0.0946
0.0665
0.0939

—0.5826

0.0431
0.3425

0.2839
0.1996
0.2817

—1.7477

0.1292
1.0275

0.0946
0.0665
0.0939

—0.5826

0.0431
0.3425

0.0705
0.0471
0.1042
0.0285
—0.4624
0.0432

0.2114
0.1412
0.3127
0.0855
—1.3873
0.1295

0.0705
0.0471
0.1042
0.0285
—0.4624
0.0432

31
14
28
48
36
34

48
39
31
48

14

0.0970
0.3743
0.2429
0.1083
0.0827
—0.7593

0.2911
1.1228
0.7287
0.3248
0.2482
—2.2780 |

0.0970
0.3743
0.2429
0.1083
0.0827

~0.7593 |

50
39
24
35
21
20

11
20

24
17
49
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[ 0.8499 02201 03707 0.1271  0.0374  0.0947 |
0.3467 —0.6729 0.1271 0.0376  0.0970  0.0644
, | 02831 00856 —0.6306 0.0706 0.0376  0.1537
W) 00703 01577 01369 —0.8573 03673 0.1250
0.3727  0.0964 0.0944 0.1298 —0.8026 0.1092
01627 01095 01237 00754 04537 —0.9250]
[ 0.8499 02201 03707 0.1271  0.0374  0.0947 |
0.3467 —0.6729 0.1271 0.0376  0.0970  0.0644
, | 02831 00856 —0.6306 0.0706 0.0376  0.1537
WD (0703 01577 01369 —0.8573 03673 0.1250
0.3727  0.0064 0.0944 0.1298 —0.8026 0.1092
01627 01095 01237 00754 04537 —0.9250]
(11332 02034 04942  0.1694 0.0498  0.1263 |
0.4623 —0.8972 0.1694 0.0502 0.1294  0.0859
, | 03774 01141 —08408 00942 00501  0.2050
a1 00038 02102 01825 11431 04898  0.1667
04970  0.1286  0.1258  0.1730 —1.0701 0.1456
02169 0.1460  0.1650  0.1005  0.6049 —1.2334

The process to solve the bargaining problem consists of two main steps, firstly to find the
disagreement point we define it as the Nash equilibrium point of the problem [63]]; while for
the solution of the bargaining process we follow the models presented by Nash and Kalai-

Smorodinsky.

B.1 The disagreement point

Given 4 and v and applying the extraproximal method we obtain the convergence of the
strategies for the disagreement point in terms of the variable c%i k) for the player 1 (see Figure

i and the convergence of the strategies c{, , for the player 2 (see Figure .
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0.075 T T T T T T T

0.065

0.05

0.045

0.035

Figure B.1 Convergence of the strategies for player 1 in the
disagreement point.

0 5 10 156 20 25 30 35 40

Figure B.2 Convergence of the strategies for player 2 in the
disagreement point.



[0.0517
0.0560
0.0542
0.0660
0.0332

10.0582

Following (2.6) the mixed strategies obtained for the players are as follows

0.3273
0.3160
0.3378
0.3354
0.3051

dl

0.2926

B.2.

0.0540
0.0605
0.0548
0.0672
0.0372
0.0679

0.3416
0.3416
0.3416
0.3416
0.3416
0.3416

The Nash bargaining solution

0.0523]
0.0607
0.0514
0.0635
0.0385
0.0727]

0.3311
0.3424
0.3205
0.3230
0.3533

0.3658 |

&2 =

[0.0824
0.0669
0.0840
0.0407
0.0399

10.0371

0.3405
0.3933
0.3503
0.4295
0.2723
0.3484

0.0766
0.0449
0.0736
0.0215
0.0564
0.0329

0.3166
0.2637
0.3068
0.2275
0.3847
0.3087

215

0.0830
0.0584
0.0823
0.0325
0.0503
0.0366

0.3429]
0.3429
0.3429
0.3429
0.3429
0.3429

With the strategies calculated, the resulting utilities following in the disagreement point for

each player ¢!(c!, ¢?), are as follows:

B.2 The Nash bargaining solution

oL(c, ) = 905.6447

d?(ct, c?) = 704.2493

Given J, 7, o' and applying the extraproximal method for the Nash bargaining solution,

we obtain the convergence of the strategies in terms of the variable c% ) for the player 1 (see

i?

Figure D and the convergence of the strategies cf, , for the player 2 (see Figure .

[0.0281
0.0010
0.0907
0.1115
0.0010

10.0010

0.0677
0.0758
0.0686
0.0842
0.0466
0.0851

0.0623]
0.1003
0.0010
0.0010
0.0613

0.1127 |

[0.1227
0.1100
0.1555
0.0607
0.0010

0.0663

0.0350
0.0010
0.0010
0.0010
0.0946
0.0032

0.0842)]
0.0592
0.0835
0.0329
0.0510
0.0371]
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Figure B.3 Convergence of the strategies for player 1 in the
Nash solution.
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Figure B.4 Convergence of the strategies for payer 2 in the
Nash solution.
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The mixed strategies obtained for the players are as follows

(01778 0.4280  0.3942 (05073 0.1447  0.3479
0.0056  0.4280  0.5663 0.6462  0.0059  0.3479
L4 |05658 04280 0.0062 o 06479 00042 03479
0.5669  0.4280  0.0051 0.6415  0.0106  0.3479
0.0092  0.4280  0.5628 0.0068  0.6453  0.3479
0.0050 04280  0.5670) 0.6221  0.0300  0.3479)

With the strategies calculated, the resulting utilities in the Nash bargaining solution for each

player, are as follows:

Pl(ct, ) = 958.0281 V?(ct, ) = 813.2879

B.3 The Kalai-Smorodinsky bargaining solution

Given 4, , ! and applying the extraproximal method for the Kalai-Smorodinsky bargain-
ing solution with the L;-norm, we obtain the convergence of the strategies in terms of the

variable c{; ,, for the player 1 (see Figure D and the convergence of the strategies cf, ,, for
the player 2 (see Figure [B.6).

(00010 0.0432  0.1139 [0.2061  0.0010  0.0349]
0.0010  0.0484  0.1278 0.1447  0.0010  0.0245
L [01156 00438 0.0010 o [0204 00010 0.0346
0.1420  0.0537  0.0010 0.0800  0.0010  0.0136
0.0010  0.0297  0.0782 0.0010 01245  0.0211
0.0010  0.0543  0.1435) 0.0903  0.0010 00154

The mixed strategies obtained for the players are as follows

(0.0063  0.2730  0.7207] (0.8518  0.0041  0.1441]
0.0056 02730  0.7213 0.8500  0.0059  0.1441
4 |07207 02730 0.0062 o |08517 00042 01441
0.7219 02730  0.0051 0.8454  0.0106  0.1441
0.0092 02730  0.7178 0.0068  0.8491  0.1441
0.0050 02730 0.7219) 0.8465  0.0094  0.1441




218 Appendix B. The Nash vs. Kalai-Smorodinsky solution
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Figure B.5 Convergence of the strategies for player 1 in the
KS solution.

T T T T T
L . (1.1) [
o2 f c?(2.1)
0.18 ‘ c2(3.1)|
c2(4.1)
0.16 1 c2(5.1)| ]
0.14 %611
Sl - - mdf12)
TE o SRR R o S SR TR TR SRR it rE-
== =?@.2)
011 =i oy | 7l
0.08 | ~ TG
’ c?(6.2)
c2(1.3)| 4
c2(2,3)

c2(3.3)|.
243) |
c2(53) |-
¢%(6,3) |

30

Figure B.6 Convergence of the strategies for payer 2 in the
KS solution.
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With the strategies calculated, the resulting utilities in the Kalai-Smorodinsky bargaining

solution for each player are as follows:
Pi(ct, ) = 960.5554 P?(c!, ) = 841.0831

Figure shows the straight line linking the utilities obtained at the disagreement point
and those obtained at the utopia point. We can also observe that the Nash solution approaches
this line while the Kalai-Smorodinsky solution is exactly on this line. The utilities on the utopia

point for the bargaining problem are for each player as follows:

P (ct, ¢?) = 964.3472 P?*(ct, ¢®) = 849.8365
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+
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i1
()

Figure B.7 The bargaining Solution.
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Appendix C
Convergence Analysis of the Extraproximal Method

Lemma C.1 Let f(z) be a convex function defined on the convex set Z. If z € Z and z* is a

minimizer of function ¢(z) = i||z — z||* + af(z) on Z where x and =z are fixed. Then, f(z)

satisfies the inequality:
Sl = 2l + af () < Sl — ol + af(2) 5l = 7| c
Proof. A necessary condition for a minimum at z* can be written as

(" —zxz+aVf(z"),z—2")>0
and the convexity condition for f(z) is as follows

f(2) 2 f(z7) +(V[(z),2 = 27)
Employing the necessary condition for a minimum at z*, we have

0< (z*—x+aVf(z*),z— 2"

=(z*—z+a,z—2)+ (aVf(z*),z — z*)

= (" —x+a,z—2)+a(VF(z*),z— 2"

Then, by the convexity condition for f(z), we have (Vf(2*),z — 2*) < f(2) — f(2*). Now,

combining the inequalities it follows that
0< (" —z+a,z—2"+af(z) —af(z")

(zF—r4a,z—2") > af(2") —af(z)
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Using the identity
1 1 1
Sz =l = Sllz = 22+ (2 = 27,2 — @)+ S| —

we have

* * 1 *
Iz = 21" + af(z7) — af(2) + Sll=" = z||”
1 1
Sle" =zl +af(z) < Sllz= ol* +af(z) - Sllz = s

Then, inequality (C.1)) is proven. m

Lemma C.2 Consider the set of regularized solutions of a non-empty game. The behavior of

the regularized function is described by the following inequality:

ﬁnmwe{wnbeUxZ}mm5>a

Proof. The function L;(i, 2} is strictly convex, then we have

Lo(di, %) — Lo(i3, 2) = | Lo, 55) — Lo, )| + | L@, %) — Lo(i5, )

> o (|la— a3l + (12 - Z11%)
Then, we have that
Ls(w,w) — Ls(0;,w) = Ls(wy, 6;"5) — L(;(i}f’é,zbg)
> § (|l — o glI? + 15 — 555]12) = 8l — 5512

(C.2)

Lemma C.3 Let 55(11, %) be differentiable in U and Z, whose partial derivative with respect to

Z satisfies the Lipschitz condition with positive constant Cy. Then,

[0n 41 = | < ACol|Tn — 0]

(C.3)
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Proof. Consider the following inequality [C.1]
1 * 2 * 1 2 1 * (12
Sl =l af() < iz — 2l +af(2) — 5l - 7

and let for time n assign the following variables to Eq. (C.1)

*

=7, 2 =W, T =10y, 2¥= U,

(C4)
f(z) = Ls(w, 0y), f(2%) = Ls(0n, )

Then, we can rewrite the first step of the equivalent extraproximal method in an equivalent

form to Eq. (C.I)) replacing the variables (C.4) as follows
1 R T, S TR
§an_vnn + YLs (0, Un) < 5”“’_“71” + v Ls (W0, Uy) — §||w_UnH (C.5)

As well, let for time n + 1 assign the following variables to Eq. (C.I])

*

2=, T =Ty, 2° = Vpy1,

(C.6)
f(z) = Ls(w, 1), f(2%) = Ls(Vps1, 0n)

Then, we can rewrite the second step of the equivalent extraproximal method in an equivalent

form to Eq. (C.I) replacing the variables (C.6) as follows

1 . N N R 1,. . o 1,. .

§||Un+l - UnHz + Y Ls(Unt1, 0n) < 5[0 — Un||2 + v Ls(W, 0y) — 5”“’ - Un+1||2 (C.7)
Assigning @ = 0,41 and replacing in (C.5) we obtain

1. - 12 . 1. . S . . 1. . . 12

§an — U [|* + Y W5(0n, On) < §an+l — Onl|* +vLs(Vpt1, 0n) — §an+l — O (C.8)
as well, replacing w = v,, in (C.7) we obtain

1. o 1 R T
§||Un+1 — Unl|” + Y Ls(Ony1, 0n) < §an — On||* + YL (0, On) — §an — Ut | (C.9)
Adding (C.8) with (C.9) we obtain

1

. . N - - L . S L
7L§<Un7vn)+fyL5(Un+lyvn) S '7L6(Un+lavn)_ §||Un+1_Un||2+7L6(Un7Un)_§||Un_vn+1||2
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Then, we have that
%H@n+1 - @nHQ < 7L6("7n+17 @n) + 7L6(ﬁna {)n) - 7L5<®na ﬂn) - 7L5<2~}n+17 @n) <

v ([Lﬁ({)n-l-lv 671) - Lé(@na f}n)] + [Lt?(ﬁm ﬁn) - Lﬁ({)n-kla ﬁn)])
Now, assign the following variables

G4 h=Tpsr, O =10y, O4t=0p, 0=">0n, h =1 —On, t =0y — by

Because all partial derivative of 55(@ %) satisfy the Lipschitz condition with positive constant

C, the following Lipschitz-type condition holds:
I[Ls(w + h, 0+ ) = Ls(w, 0 + t)] = [Ls(w + h, 0) = Ls(w, 0)]|| < Cl[l[It]}  (C.10)
for any w, h,v,t € U x Z. Then, employing Eq. we conclude
[On41 = 011 < Y[Ls (T, Bn) = Lo(On, Tn)] = V(Lo (Tnr1, 0n) = Lo (D41, 0n)] <

VOO t1 = Onl[l[On = Onl

which implies

[0n 1 = O] < AC0n — Bn|

Theorem C.4 [Convergence and Rate of Convergence] Let ,CN(;(@NL, Z) be differentiable in U
and Z, whose partial derivative with respect to Z satisfies the Lipschitz condition with positive

constant C. Then, for any 6 € (0,1) and
N
C(0 - ;COJ S Ng%co’l = /\/’CS_

there exists a small-enough

1 1+y14+2(¢6)”

V2CENT 2(CH)P N

Y0 = Y(0) < C := min



225

where such that, for any 0 < v < =, sequence {0,}, which generated by the equivalent
extraproximal procedure, monotonically converges with exponential rate q € (0, 1) to an equi-
librium point v*, i.e.,

[T, — 0% < e ao — o7

where

4(d7)?
—1 — 25y < 1
L 7 S oA

and Qi 1s given by
207y 1
Qmin = 1—- -
1426y 1420y

Proof. Let @ = 0,41, then replacing in (C.5) we obtain

1. . ~ o 1., . . . ~ 1., . R
§an - UnH2 + YL (0, Up) < §||Un+1 - Un||2 + Y Ls(Ung1, Un) — §||Un+1 - UnH2 (C.11)

as well, let w = 05 € U* x Z* then replacing in 1b we get

1., . B N R 1, ., e 1.,
§an+1 - vn”2 + Y Ls(Upy1, 0n) < 5””6 - Un”2 + 7L5(U67Un) - 5”“6 - Un-i-le (C.12)

Adding Eq. (C.TI) and Eq. (C.12)) and multiplying by two yields
155 = Tnall® 4 1001 = Ball® + 10 — Tall® = 2yLs(55, )+
(C.13)
27[L5<7~)n+17 ﬁn) + Lé(f)m ﬁn) - Lé(ﬁnJrla ﬁn)] < Hf}jf - 77nH2
Adding and subtracting Ls(0,,, 0,) in Eq. (C.13) we have
||1~);§ - 5%—&-1”2 + ||1~)n+1 - @n||2 + “@n - ﬁnHQ + 2y [Lt?(@m @n) - L5(6§7@n)] + 2y [Lé(ﬁn—i—h@n)_

L5(@m @n) + L5(@na 6n) - L5(7~)n+1; ﬁn)] < H@g - ﬁnHQ
(C.19)

Let assign the following variables

having h = v,,41 — 0, and k = v,, — 0,,. Using (C.10) the inequality (C.14)) becomes
155 = Tnall® + 1001 = Onll® + 100 = Tall* + 2 [Lo(Dn, 0n) — Ls (05, 0n)] —

2'70||77n+1 - @nH”?}n - @n” < ||6§ - 671”2
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Applying (C.3) to the last term in the left-hand side and in view of the strict convexity property
of Ls in Eq. (C.2)) given by

L (i, in) — Ls (05, 00) 2 81 — 73]
we get
195 = Bnal* + 1Bn1 = Dull* + 296 ]10n — T + (1 = 29°C%) 100 — Dull* < [[05 — Ta”

We know that
2(a—c¢,c—b) = |la—0|> = [la — ¢||* = [le = b]|?

Then, replacing a = ©,,, b = v5 and ¢ = v, to the left-hand side of the last inequality we have
155 = Ot I* + [Bnsr = 0all* + (1 = 2902C?) |50 — On|* + 26 (2{0 — T, T — T5)) +
150 = 0l + 1|0 — 5117 = 195 = Busa I* + 1B — Ball* + (1 4 290 — 292C?) |8, — 0|+
A6 (D — T, B — T5) + 29010 — T3> < |75 — T
Completing the square form of the third and fourth terms yields

155 = Dt I” + 01 — all* + (14 296 — 29°C?) (| — n|* + 4700, — T, D — T5)+

(279)° (279)°
14290 — 272C? 14290 — 272C?

[ — 552 — 6 — 512 + 296, — 5112 < 155 — B2

Then, we have that

276
+
V1 + 276 — 292C2

155 = D II? + 18041 = Dall? + |[/1 + 290 — 292C2 (0, — B) (0n —

( (276)°

o ) o = 17+ 23000, — 51 < 165 -

developing the terms we obtain that

(270)?
1+ 276 — 272072

)H%—@MQ—?ﬂMn—®W—

2

|m—mmvﬂw—mW+(

276
+
V14275 — 24202

||1~}n+1 _@nHZ - "\/14‘2’}/5—2’7202(671—@”) (671_6;)
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as a result we have that

~ % ~ 2 (275)2 ~ % ~ 112
155 = Bl < (1= 206 4+ oy ) 165 =

where
(20)?
=1-2v0 <1
1 T T 95 — 222
Iterating over the previous inequality we have
15 = T |I* < g5 — 0al® < ... < €55 — G (C.15)

That implies that the series converge and also that the trajectories are bounded. Then, by Eq.
(C.15)) we have that
15 = Bpgal* — 0
n—s00
Given that v is a bounded sequence, by the Weierstrass Theorem there exists a point ¢’ such that
any subsequence 0, satisfies that ¥, e #'. In addition, we have that ||T,,, — @, 41" — 0.
Fixing, n = n; in the equivalent proximal equation and computing the limit when n; — oo we

have

1
¥ — arg mjm{§||w—@’||2+m<w,@'>}

BeUxZ

Then, we have that o/ = o7, i.e., any limit point of the sequence ¥,, is a solution of the prob-

lem. Given that ||v,, — v} ? is monotonically decreasin then, there exists a unique limit point
5 y g q P

(equilibrium point). As a consequence, we have that the sequence v,, satisfies that v,, — 0%

q Y q q 5

n—0o0

with a convergence velocity of e" 1", m
Remark C.5 The exponential rate q € (0,1) (see Figure|C.1) satisfies

ngo(l—i—%).

C.0.1 Convergence conditions of ) and ~

This section presents the convergence conditions and compute the estimate rate of conver-
gence of the variables v and ¢ [[75]. The regularizing parameter ¢ and its asymptotic behavior
when 0 — 0 is analyzed. Also, the step size parameter + and its asymptotic behavior when

~v — 0 is analyzed.
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qmin

x €ERP

Figure C.1 Rate of convergence.

Theorem C.6 Within the class of numerical sequences

= 7o
" (n+mng)7

571—L 99,0 >0

(n 4 ng)?

Y0, 10,7y > 0

the step size v, and the regularizing parameter ¢, satisfy the following conditions:

0<% —0,0<0d,—0 when n — 0o

n=0
g— — ¢ which is small enough % — 0 whenn — oo
n ’Yn n

for v+6 < 1,v> 4, y< 1.

Proof. It follows from the estimates that

1
fyn(sn =0 (n“/—l-(s)

we have that
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and

‘5n+1 B 511‘ _ 1
Yol © ni=

Theorem C.7 Let u and x two variables with non-negative components for the players. Then,

within the class of numerical sequences we have that

o

= ey +20)7 Y0, 19,7 > 0
9

571 = m 60,5 > O

of the procedure given in proximal method, the rate of convergence for the players is given by

the step size 7,, and the regularizing parameter 9,

EX3 )% 1
i — w4 2 — @ H=O<—)

n%
where s is equal to

» =min{y — J; 1—~;d} (C.16)
Then, the maximal rate »* of convergence is attained for
Y= =2/3  §=0"=1/3 (C.17)
Proof. It follows that for s¢, characterizing the rate of convergence is given by

= =0 (8| 4 [l — 2*(8,)]) = O ( : )

nxo
we have 7y = min{y — J§;1 — 7; d}. It follows from the linear dependence of the regularized

Lagrange function on ¢ that

[t — ™| + ||z — 2 ||_7“n+0(5n)_0<%>+0<$)_O(W)
which implies (C.16). The maximal value ¢ of »* is attained wheny — 6 =1 — v = 4, i.e.,

when (C.17) holds. m

Remark C.8 In the case of a Stackelberg game, we have a similar rate of convergence for the

followers given by

*k *ok 1
[on = ™[ + [l —w™]| =0(7>
n
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Appendix D
The Lagrange Method for Polylinear Programming
Problems

D.1 Polylinear optimization problem formulation

Consider the following poly-linear programming problem

N N N
fl@) =01 32 ey +o2 30 30 €y jp®y T+

Jj1=1 Jj1=1j2=1

N N N
Qas Z Z Z Cj1,52,33Lj1Lj2Ljs3 et
Jj1=1j2=17j3=1
(D.1)
N N N
aN-1 Z Z T Z Cirygin—1¥j1 " " .'Tijl_’_

Jj1=172=1 JN-1=1

N N N
an Z Z e Z Cjy,einTiy = Tjy =7 m)}n
i=1ljo=1  jn=1 #EXadm

where o; = {0;1} (j =1,...,N) are binary variables and X4, is a bounded set defined as

follows
Xadm = {x eRY:2>0, Aeq® = beq € RMo, Aineq < bineq € RMI}

Notice that this problem may have non-unique solution and det (quAeq) = (. Define by
X* C X,uam the set of all solutions of the problem (D.1}).

D.2 The Lagrange Method

Following [110]] and [[111] consider the Regularized Lagrange Function (RLF)

£9,6 (ZB7 Ko, PJl) = Qf(l‘) + M(T) (AquE - beq) + ,U11- (Aineqx - bineq)
(D.2)

(=)

2 2 2
+ 5 (117 = Teoll” = llpall”)
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where the parameters 6, § are positive and the Lagrange vector-multipliers z; € RM! are non-
negative and the components of 1y € R™° may have any sign. Obviously, the optimization
problem

Loys (z, po, 1) = min max (D.3)

€ Xadm HO,H1>0

has a unique saddle-point on z since the optimized RLF (D.2) is strongly convex [74] if the
parameters 6 and 6 > 0 provide the condition

82
0xoxT

Los (T, p0,1t1) >0 V€ Xygm CRY

and is strongly concave on the Lagrange multipliers pig, p; for any 6 > 0. In view of these
properties RLF has the unique saddle point (z* (0), g (0, 9) , 15 (0,0)) (see The Kuhn-Tucker
Theorem 21.13 in [74]) for which the following inequalities hold: for any g, ;41 with non-

negative components and any x € RV

‘69,5 (.l’, MS (07 6) ’/j{ (6’ 5)) > ‘69,5 (x* (5) 7MS (07 5) ’/ff (07 5)) > EG,5 (:L'* (5) y MO, Ml)

As for the non-regularized function £, ¢ (, 110, f41), it may have several (not obligatory unique)

saddle points (x*, u§, ui) € X* @ A*.

D.2.1 Property of Lagrange Method

Proposition D.1 [f the parameter 0 and the regularizing parameter ¢ tend to zero by a partic-
ular manner, then we may expect that x* (6, 6) and 11§ (0,6) , pi (0, 0) which are the solutions
of the min-max optimization problem tend to the set X* ® N* of all saddle point of the
original optimization problem (D.1)), that is,

p{z*(6,0), 15 (0,0), 17 (6,0); X* @A™} e 0 (D.4)

where p{a; X* ® A*} is the Hausdorff distance defined as

a—z"

Below we define exactly how the parameters 6 and 0 should tend to zero to provide the

property (D.4).



D.3. The extremal points of the regularized Lagrange function 233

D.3 The extremal points of the regularized Lagrange function

The next lemma describes the dependence of the saddle-point z* (0, 0) and i, (0, 9), 1} (6, )
of the RLF on the regularizing parameters J, # and analyses it asymptotic behavior when both

of them tend to zero.
Theorem D.2 Assume that

1) the bounded set X* of all solutions of the original optimization problem is not

empty and the Slater’s condition holds, that is, there exists a point © € X .4, such that
Aineg < bineg
2) The parameters 0 and § are time-varying, i.e.,
0=0, 6=05, (n=0,1,2,....)

such that

0<#6,10, %iOwhenn—M)o

n

Then
x) =% (0,,6,) — ™
n—oo

i (0. 0) > i

147 (O, 0n) njoo i
where x** € X*, (uy*, 1i*) € A* define the solution of the original problem with the

minimal norm which is unique, i.e.,
Kk || 2 Kk [ 2 sk (]2 * |2 *112 *[12
217+ {leo™ 1™ + 1117 < Nl 7 + lkoll™ + [kl

forall x* € X*, and (15, 117) € A*.

Proof.
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a) First, prove that the Hessian matrix H := aj;ﬂ Lo s (z, po, p11) is strictly positive definite
for all x € RY and for some positive # and J, satisfying a special relation, namely,
H > 0. We have
8—2595 (z, po, j11) = 08—2f(x) +8Iyun >0 (1 + Q)\‘) Inxn >0V 6> 6|\
ox? 7 Ox? )
where

82
A7 = min A\, <@f(x))

€ Xadm
fulfilling the property H > 0if 0 > 6 |A~|. This means that RLF (D.2) is strongly convex

on z and, hence, has a unique minimal point defined below as x*.

b) In view of the properties

(Vf(z),(y—2) < fy)—f(z)
(Vf(z),(x—=y) = f(x) = [f(y)

valid for any convex function f (z) and any z,y, for RLF at any admissible points z,
to, 1 and z;, = x* (0., 6,), Mé,n = g (0ns 0n) Pin = 1 (0, 0,) we have

0

0
=T — —ur =T _
(:'C xn’ 83: 97L767L (x7M07/“’L1)) (/"LO MO,’R’ 8/1,0 9n76n ('I’M()’/“’Ll))

(11 = s s, (oo ) ) = B = 2207 5 ) +
(x —a5)" [ALpo + ALt + 0nx] + (0 — 155,0) " (Supto — Aeq + beg)
(11— 15,)" (Onpt1 — Aineq® + bineq) = 05 f(2) + 1d (Aeq — beg) + 1] (Aineq® — bineg)
+ %" (el = Naoll® = N *) = Onf () = (5.0) " (Acqy — beg)

)

*

2
’ _‘:ul,n

On (11 & §
= ()" (e = big) = 5 (Il = s
= 'Cenv&n <$7 Iuan? :uin) - ‘6975 (:B:m Ko, :ul)

(5n * * *
+ 2 (o = wpl?+ o — sl + s = w1,

(D.5)
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which by the the saddle-point condition implies

Op (x —a2)7 (% () + (z — a3)" [Al o + Alegin + on] +
(1o = 115,0) " (On — Acq + beg) + (11 — 187,) " (O — AineqZ + bineg) > (D.6)
5 )
2 (=2l + o = s I+ s = 12l

¢) Selecting in x =" € X* (2" is one of admissible solutions such that A.qz* = beq

and Aineq®* < bineg) and p9 = p5, p1 = p in view of the complementary slackness

conditions
(NT)Z (Aineqx* - bineq)i - (Min)l (Aineqx:; - bineq)i =0
we obtain
0
O (2" — )T e (@) + (2 — a3)" [AL g + Afeglt + 0nz™] +

(15 = 15.0) " (Ot — Acqt™ + beg) + (15 = 11,0) " (Onfty = AineT" + Dineq)
= = )T ST () () (A — b — A — )
+ (u7)" ([Aineq®™ — bineg] — [Aineqy, — bineq]) + 0 (2" — UM LRSS
O (15— 115,0) " 15+ (15 = 115 10) " Oty + (17,) " (AinegT* — Dineq)

On
> 2 (lla = a3 + |

s = il + st = 3 ]17) = 0

Simplifying the last inequality we have

* * a * * * * * * * * * *
On (2" = 20)T o f (@) 400 (2" = 20)T " +0n (15 = 16,) " 5+ (17 = 147,) " Ous] 2 0

On,
Dividing both sides of this inequality by J,, and taking 5 — 0 we get

n—o0

0< limsup [(27 —27)" 2" + (6 = 45,0) " 15+ (01 = 1iin) " 1]

This means that there obligatory exists subsequences 0 and 05 (kK — o) on which there

exist the limits

o = 27 (On, 0k) = 75 p1g = 416 Ok, 0) = [ig

(g = p Ok, ) — if as k — o0
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Suppose that there exist two limit points for two different convergent subsequences, i.e.,
there exist the limits

Tp =7 (ek’v 5k’) — I, Mg,k’ = ILLE; (Qk’a 51@’) — IELS

/ubik/ = /ULT <9k’75k’) — /U_LT as k — oo

Then on these subsequences one has

0 < (v" =) a* + (g — 1) " pug + (py — 7)1

0 < (z" =) 2" + (g — i) " pg + (i — )" 13

From this inequalities it follows that points (Z*, i, i7) and (Z*, iy, i) correspond to

the minimum point of the function

* * * * (12 * (12 * (12
s (2%, g 17) = 5 (12117 + Mol + el

1
2
defined on X* @ A* for all possible saddle-points of the non-regularized Lagrange func-

tion. But the function s (z*, g, 117) is strictly convex, and, hence, its minimum is unique

that gives * = %, [i5 = 15, fio = Hg- Proposition is proven.

Lemma D.3 Under the assumptions of the Theorem there exist positive constants C,, and

C's such that

I3, — 27l + |

“S,n - NS,mH + ‘ MT,n - ,UimH S 09 |0n - 0m| + 05 |5n - 5m|

Proof. It follows also from the necessary and sufficient conditions (D.5]) for the points z} =
T (Ony On)s 115, = 15 (Ons 6n) 5 115, = 17 (0, 0,) to be the extremal points of the function

£9n7(5n (‘CU? NO’/JLl)‘ u



Bibliography

[1] Aiyoshi, E., Shimizu, K.: Hierarchical decentralized systems and its new solution by
abarrier method. IEEE Transactions on Systems, Man, and Cybernetics 11, 444-449
(1981)

[2] An, B., Pita, J., Shieh, E., Tambe, M., Kiekintveld, C., Marecki, J.: GUARDS and PRO-
TECT: Next generation applications of security games. SIGECOM 10, 31-34 (2011)

[3] Anant, T.C.A., Mukherji, B., Basu, K.: Bargaining without convexity: Generalizing the
kalai-smorodinsky solution. Economics Letters 33(2), 115-119 (1990)

[4] Antipin, A.S.: The convergence of proximal methods to fixed points of extremal map-
pings and estimates of their rate of convergence. Computational Mathematics and Math-
ematical Physics 35(5), 539-551 (1995)

[5] Antipin, A.S.: An extraproximal method for solving equilibrium programming problems
and games. Computational Mathematics and Mathematical Physics 45(11), 1893-1914
(2005)

[6] Attouch, H., Soubeyran, A.: Local search proximal algorithms as decision dynamics
with costs to move. Set Valued Analysis 19, 157-177 (2011)

[7] Aumann, R.: Contributions to the Theory of Games, Annals of Mathematics Study,
vol. IV, chap. Acceptable points in general cooperative n-person games, pp. 287-324
(1959)

[8] Axelrod, R., Dion, D.: More on the evolution of cooperation. Science 242, 1385-1390
(1988)

[9] Bao, T.Q., Mordukhovich, B.S., Soubeyran, A.: Variational analysis in psychological
modeling. Journal of Optimization Theory 164(1), 290-315 (2015)

[10] Bard, J.: Practical bilevel optimization:algorithms and applications. The Nether-
lands:Kluwer (1998)

[11] Bard, J., Falk, J.: An explicit solution to the multi-level programming problem. Com-
puters and Operations Research 9, 77-100 (1982)



238 Bibliography

[12] Beyer, A., Gutman, 1., Marinovic, I.: Optimal contracts with performance manipulation.
Journal of Accounting Research 52(4), 817-847 (2014)

[13] Bianco, L., Caramia, M., Giordani, S.: A bilevel flow model for hazmat transportation
network design. Transportation Research Part C: Emerging Technologies 17(2), 175—
196 (2009)

[14] Birkeland, S., Tungodden, B.: Fairness motivation in bargaining: a matter of principle.
Theory and Decision 77(1), 125-151 (2014)

[15] Bos, D.: Privatization: A theoretical treatment. Clarendon Press, Oxford (1991)
[16] Christie, R., Geis, F.: Studies in Machiavellianism. Academic Press (1970)

[17] Clempner, J.B.: A continuous-time markov stackelberg security game approach for
reasoning about real patrol strategies. International Journal of Control (2017). DOI
10.1080/00207179.2017.1371853. To be published

[18] Clempner, J.B.: A game theory model of manipulation based on the machiavellian social
interaction theory: Moral and ethical behavior. J. Artif. Soc. Soc. Simulat. (2017). To
be published

[19] Clempner, J.B.: Computing multiobjective markov chains handled by the extraproximal
method. Annals of Operations Research (2018). DOI 10.1007/s10479-018-2755-9. To
be published

[20] Clempner, J.B., Poznyak, A.S.: Computing the strong Nash equilibrium for Markov
chains games. Applied Mathematics and Computation 265, 911-927 (2015)

[21] Combettes, P.L., Wajs, V.R.: Signal recovery by proximal forwardbackward splitting.
Multiscale Modeling and Simulation 4(4), 1168-1200 (2006)

[22] Cournot, A.A.: Recherches sur les principes mathematiques de la theorie des richesses.
Hachette, Paris (1838)

[23] Dawkins, R.: The selfish gene (1st ed.). Oxford, England: Oxford University Press
(1976)

[24] Demange, G.: Intermediate preferences and stable coalition structures. Journal of Math-
ematical Economics 23, 45-58 (1994)

[25] Demange, G., Henriet, D.: Sustainable oligopolies. Journal of Economic Theory 54,,
417-428 (1991)

[26] Dev, N.K., Shankar, R., Choudhary, A.: Strategic design for inventory and production
planning in closed-loop hybrid systems. Int. J. Production Economics 183, 345-353
(2017)



Bibliography 239

[27] Eckstein, J.: Nonlinear proximal point algorithms using bregman functions, with appli-
cations to convex programming. Mathematics of Operations Research 18(1), 202-226
(1993)

[28] Fave, F., Jiang, A., Yin, Z., Zhang, C., Tambe, M., Kraus, S., Sullivan, J.: Game-
theoretic security patrolling with dynamic execution uncertainty and a case study on
a real transit system. Journal of Artificial Intelligence Research 50, 321-367 (2014)

[29] Forgo, F., Szép, J., E., S.: Introduction to the Theory of Games: concepts, methods,
applications. Kluwer Academic Publishers (1999)

[30] Gatti, N., Rocco, M., Sandholm, T.: Algorithms for strong nash equilibrium with more
than two agents. In: The Twenty-Seventh AAAI Conference on Artificial Intelligence,
pp- 342-349. Bellevue, Washington, USA (2013)

[31] Gatti, N., Rocco, M., Sandholm, T.: Strong nash equilibrium is in smoothed p. In:
The Twenty-Seventh AAAI Conference on Artificial Intelligence, pp. 29-31. Bellevue,
Washington, USA (2013)

[32] Germeyer, Y.: Introduction to the theory of operations research. Nauka, Moscow (1971)
[33] Germeyer, Y.: Games with nonantagonistic Interests. Nauka, Moscow (1976)

[34] Greenberg, J., Weber, S.: Strong tiebout equilibrium under restricted preferences do-
main. Journal of Economic Theory 38, 101-117 (1986)

[35] Guo, X., Herndndez-Lerma, O.: Continuos—Time Markov Decision Processes: Theory
and Applications. Springer-Verlag Berlin Heidelberg (2009)

[36] Han, Z., Ji, Z., Liu, K.: Fair multiuser channel allocation for ofdma networks using
nash bargaining solutions and coalitions. IEEE Transactions on Communications 53(8),
1366-1376 (2005)

[37] Herskovits, J., Leontiev, A., Dias, G., Santos, G.: Contact shape optimization: A bilevel
programming approach. Structural and Multidisciplinary Optimization 20, 214-221
(2000)

[38] Hotzman, R., Law-Yone, N.: Strong equilibrium in congestion games. Games and Eco-
nomic Bahavior 21, 85-101 (1997)

[39] Howard, N.: Paradoxes of rationality: Theory of metagames and political behaviour.
MIT Press (1971)

[40] Hulse, E.O., Camponogara, E.: Robust formulations for production optimization of
satellite oil wells. Engineering Optimization 49(5), 846-863 (2017)

[41] Ichiishi, T.: A social coalitional equilibrium existence lemma. Econometrica 49, 369—
377 (1981)



240 Bibliography

[42] Jahn, J.: Multicriteria decision making, International Series in Operations Research &
Management Science, vol. 21, chap. Theory of vector maximization: various concepts
of efficient solutions, pp. 37-68. Springer US (1999)

[43] Jain, M., Kardes, E., Kiekintveld, C., Ordonez, F., Tambe, M.: Security games with
arbitrary schedules: A branch and price approach. In: Proceedings of the National
Conference on Artificial Intelligence (AAAI). Atlanta, GA, USA (2010)

[44] Kaelbling, L., Littman, M., Moore, A.: Reinforcement learning: A survey. Journal of
Artificial Intelligence Research 4, 237-285 (1996)

[45] Kalai, E.: Social Goals and Social Organization,, chap. Solutions to the bargaining prob-
lem, pp. 75-105. Cambridge, University Press (1985)

[46] Kalai, E., Smorodinsky, M.: Other solutions to nash’s bargaining problem. Economet-
rica 43(3), 513-518 (1975)

[47] Ke, S., Guo, D., Niu, Q., Huang, D.: Optimized production planning model for a mul-
tiplant cultivation system under uncertainty. Engineering Optimization 47(2), 204-220
(2015)

[48] Kim, T., Glock, C.H.: Production planning for a two-stage production system with mul-
tiple parallel machines and variable production rates. Int. J. Production Economics 196,
284-292 (2018)

[49] Konishi, H., Le Breton, M., Weber, S.: Equilibria in a model with partial rivalry. Journal
of Economic Theory 72, 225-237 (1997)

[50] Konishi, H., Le Breton, M., Weber, S.: Equivalence of strong and coalition-proof nash
equilibria in games without spillovers. Economic Theory 9, 97-113 (1997)

[51] Kubica, B.J., Wozniak, A.: Interval methods for computing strong nash equilibria of
continuous games. Decision Making in Manufacturing and Services 9(1), 63—78 (2015)

[52] Kumral, M.: Robust stochastic mine production scheduling. Engineering Optimization
42(6), 567-579 (2010)

[53] Lemaire, B.: The proximal algorithm. International series of numerical mathematics 87,
73-87 (1989)

[54] Machiavelli, N.: Discourses in the first ten books of Titus Livius. Duke University Press
(1965)

[55] Machiavelli, N.: The Art of War. Da Capo Press (2001)

[56] Madani, K., Hipel, K.: Non-cooperative stability definitions for strategic analysis of
generic water resources conflicts. Water Resources Managment 25(8), 1949-1977
(2011)



Bibliography 241

[57] Martinet, B.: Breve communication. regularisation d’inequations variationnelles par ap-
proximations successives. ESAIM: Mathematical Modelling and Numerical Analysis
4(3), 154-158 (1970)

[58] Merril, W., Schneider, N.: Government firms in oligopoly industries: a short-run analy-
sis. Quaterly Journal of Economics 80(3), 400—412 (1966)

[59] Moreno, F.G., Oliveira, P.R., Soubeyran, A.: A proximal algorithm with quasidistance.
application to habit’s formation. Optimization 61, 1383-1403 (2011)

[60] Muthoo, A.: Bargaining theory with applications. Cambridge University Press (2002)
[61] Nash, J.F.: The bargaining problem. Econometrica 18(2), 155-162 (1950)

[62] Nash, J.F.: Non-cooperative games. Annals of Mathematics 54, 286-295 (1951)

[63] Nash, J.F.: Two person cooperative games. Econometrica 21, 128-140 (1953)

[64] Nessah, R., Tian, G.: On the existence of strong nash equilibria. Journal of Mathemati-
cal Analysis and Applications 414(2), 871-885 (2014)

[65] von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior. Prince-
ton University Press (1944)

[66] Osborne, M., Rubinstein, A.: Bargaining and Markets. Academic Press, Inc. (1990)

[67] Ostrom, E.: Governing the commons: The evolution of institutions for collective action.
Cambridge University Press (1990)

[68] Ostrom, E.: A behavioral approach to the rational choice theory of collective action.
The American Political Science Review 92(1), 1-22 (1998)

[69] Ostrom, E., Gardner, R., Walker, J.: Rules, games, and common-pool resources. The
University of Michigan Press (1994)

[70] Parikh, N., Boyd, S.: Proximal algorithms. Foundations and Trends in Optimization
1(3), 123-231 (2014)

[71] Peters, H., Tijs, S.: Individually monotonic bargaining solutions for n-person bargaining
games. Methods of Operations Research 51, 377-384 (1984)

[72] Pita, J., Jain, M., Ordofiez, F., Portwa, C., Tambe, M., Western, C.: Using game theory
for Los Angeles airport security. Al Magazine 30(1), 43-57 (2009)

[73] Pita, J., Tambe, M., Kiekintveld, C., Cullen, S., Steigerwald, E.: GUARDS: game the-
oretic security allocation on a national scale. In: Proceedings of the The 10th Interna-
tional Conference on Autonomous Agents and Multiagent Systems (AAMAS), vol. 1,
pp. 37-44. Taipei, Taiwan (2011)



242 Bibliography

[74] Poznyak, A.S.: Advance Mathematical Tools for Automatic Control Engineers. Deter-
ministic Techniques, vol. 1. Elsevier, Amsterdam (2008)

[75] Poznyak, A.S.: Advance Mathematical Tools for Automatic Control Engineers. Stochas-
tic Techniques, vol. 2. Elsevier, Amsterdam (2009)

[76] Poznyak, A.S., Najim, K., Gomez-Ramirez, E.: Self-learning control of finite Markov
chains. Marcel Dekker, New York (2000)

[77] Raiffa, H.: Arbitration schemes for generalized two-person games. Annals of Mathe-
matics Studies 28, 361-387 (1953)

[78] Ribeiro, C.: Reinforcement learning agents. Artificial Intelligence Review 17(3), 223—
250 (2002)

[79] Rockafellar, R.: Monotone operators and the proximal point algorithm. SIAM journal
on control and optimization 14(5), 877-898 (1976)

[80] Roth, A.E.: An impossibility result converning n-person bargaining games. Int. Journal
of Game Theory 8(3), 129-132 (1979)

[81] Rozenfeld, O., Tennenholtz, M.: Strong and correlated strong equilibria in monotone
congestion games. In: The 2nd Workshop on Internet & Network Economics (WINE
06), pp. 74-86 (2006)

[82] Rubinstein, A.: Strong perfect equilibrium in supergames. International Journal of
Game Theory 9(1), 1-12 (1980)

[83] Rubinstein, A.: Perfect equilibrium in a bargaining model. Econometrica 50(1), 97-109
(1982)

[84] Rubinstein, A.: Finite automata play the repeated prisoner’s dilemma. Journal of Eco-
nomic Theory 39(1), 83-96 (1986)

[85] Sakalaki, M., Kyriakopoulos, G., Kanellaki, S.: Are social representations consistent
with social stategies? machiavellianism, opportunism and aspects of lay thinking. Hell.
J. Psychol. 7, 141-158 (2010)

[86] Salmeron, J., Wood, K., Baldick, R.: Analysis of electric grid security under terrorist
threat. IEEE Transactions on Power Systems 19(2), 905-912 (2004)

[87] Sanchez, E.M., Clempner, J.B., Poznyak, A.S.: A priori-knowledge/actor-critic re-
inforcement learning architecture for computing the mean-variance customer portfo-
lio:The case of bank marmarket campaigns. Engineering Applications of Artificial In-
telligence 46, 82-92 (2015)

[88] Selbirak, T.: Some concepts of non-myopic equilibria in games with finite strategy sets
and their properties. Annals of Operations Research 51(2), 73—82 (1994)



Bibliography 243

[89] von Stackelberg, H.: Marktform und Gleichgewicht. Springer, Vienna (1934)

[90] von Stengel, B., Zamir, S.: Leadership games with convex strategy sets. Games and
Economic Behavior 69, 446-457 (2010)

[91] Tanaka, K.: The closest solution to the shadow minimum of a cooperative dynamic
game. Computers & Mathematics with Applications 18(1-3), 181-188 (1989)

[92] Tanaka, K., Yokoyama, K.: On e-equilibrium point in a noncooperative n-person game.
Journal of Mathematical Analysis and Applications 160, 413-423 (1991)

[93] Tikhonov, A.N., Arsenin, V.Y.: Solution of Ill-posed Problems. Washington: Winston
& Sons (1977)

[94] Tikhonov, A.N., Goncharsky, A.V., Stepanov, V.V., Yagola, A.G.: Numerical Methods
for the Solution of I11-Posed Problems. Kluwer Academic Publishers (1995)

[95] Trejo, K.K., Clempner, J.B.: New Perspectives and Applications of Modern Control
Theory, chap. Setting Nash vs. Kalai-Smorodinsky bargaining approach: Computing
the continuous-time controllable Markov game, pp. 335-369. Springer International
Publishing (2018)

[96] Trejo, K.K., Clempner, J.B., Poznyak, A.S.: Computing the L,-strong Nash equilibrium
looking for cooperative stability in multiple agents Markov games. In: 12th Interna-
tional Conference on Electrical Engineering, Computing Science and Automatic Control
(CCE), pp. 309-314. Mexico City, Mexico (2015)

[97] Trejo, K.K., Clempner, J.B., Poznyak, A.S.: Computing the stackelberg/nash equilibria
using the extraproximal method: convergence analysis and implementation details for
markov chains games. International Journal of Applied Mathematics and Computer
Science 25(2), 337-351 (2015)

[98] Trejo, K.K., Clempner, J.B., Poznyak, A.S.: A Stackelberg security game with random
strategies based on the extraproximal theoretic approach. Engineering Applications of
Artificial Intelligence 37, 145-153 (2015)

[99] Trejo, K.K., Clempner, J.B., Poznyak, A.S.: Adapting strategies to dynamic environ-
ments in controllable Stackelberg security games. In: 55th IEEE Conference on Deci-
sion and Control (CDC), pp. 5484-5489 (2016)

[100] Trejo, K.K., Clempner, J.B., Poznyak, A.S.: An optimal strong equilibrium solution
for cooperative multi-leader-follower Stackelberg Markov chains games. Kybernetika
52(2), 258-279 (2016)

[101] Trejo, K.K., Clempner, J.B., Poznyak, A.S.: Computing the strong [/,-nash equilibrium
for markov chains games: convergence and uniqueness. Applied Mathematical Mod-
elling 41, 399418 (2017)



244 Bibliography

[102] Trejo, K.K., Clempner, J.B., Poznyak, A.S.: Nash bargaining equilibria for controllable
markov chains games. In: The 20th World Congress of the International Federation of
Automatic Control (IFAC), vol. 50, pp. 12,261-12,266 (2017)

[103] Trejo, K.K., Clempner, J.B., Poznyak, A.S.: Adapting attackers and defenders patrolling
strategies: A reinforcement learning approach for stackelberg security games. Journal
of Computer and System Sciences 95, 35-54 (2018)

[104] Trejo, K.K., Clempner, J.B., Poznyak, A.S.: Computing the bargaining approach
for equalizing the ratios of maximal gains in continuous-time markov chains
games. Computational Economics (2018). DOI 10.1007/s10614-018-9859-9. DOI:
10.1007/s10614-018-9859-9

[105] Trejo, K.K., Clempner, J.B., Poznyak, A.S.: Proximal constrained optimization ap-
proach with time penalization. Engineering Optimization (2018). DOI 10.1080/
0305215X.2018.1519072. DOI: 10.1080/0305215X.2018.1519072

[106] Tsai, J., Rathi, S., Kiekintveld, C., Ordoiiez, F., Tambe, M.: IRIS - a tool for strategic
security allocation in transportation networks. In: Eighth International Conference on
Autonomous Agents and Multiagent Systems - Industry Track, pp. 37-44 (2009)

[107] Wilson, D., Near, D., Miller, R.: Machiavellianism: A synthesis of the evolutionary and
psychological literatures. Psychol. Bull. 119(2), 285-299 (1996)

[108] Yin, G.G., Zhang, Q.: Continuous-Time Markov Chains and Applications: A Two-
Time-Scale Approach. Springer (2013)

[109] Yin, K.K., Yin, G.G., Liu, H.: Stochastic modeling for inventory and production plan-
ning in the paper industry. AIChE Journal 50(11), 2877-2890 (2004)

[110] Zangwill, W.I.: Nonlinear programming: A unified approach. Prentice-Hall, Englewood
Cliffs (1969)

[111] Zangwill, W.I., Garcia, C.B.: Pathways to solutions, fixed points and equilibria.
Prentice-Hall, Englewood Cliffs (1981)

[112] Zhang, Z., Shi, J., Chen, H., Guizani, M., P., Q.: A cooperation strategy based on
nash bargaining solution in cooperative relay networks. IEEE Transactions on Vehicular
Technology 57(4), 2570-2577 (2008)



	List of figures
	Resumen
	Abstract
	Publications
	 Introduction
	 Mathematical background
	I The Lp-Stackelberg/Nash game
	 The Strong Lp-Nash Equilibrium
	 The Strong Lp-Stackelberg game
	 A Reinforcement Learning Approach for Stackelberg Security Games

	II The bargaining game
	 The Nash bargaining solution
	 Solving Bargaining by Manipulation
	 The Kalai-Smorodinsky bargaining solution
	 Non-cooperative bargaining games

	 Conclusions
	 Proximal constrained optimization
	 The Nash vs. Kalai-Smorodinsky solution
	 Convergence Analysis of the Extraproximal Method
	 The Lagrange method
	Bibliography

