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RESUMEN

Esta tesis presenta modelos para establecer estrategias cooperativas y no cooperativas en

diferentes problemas de teoría de juegos. De manera general, los jugadores pueden actuar

de dos formas: jugando cooperativamente o no cooperativamente con respecto a los otros ju-

gadores. También es importante considerar los juegos en donde los jugadores forman coali-

ciones, en este caso ellos pueden cooperar o no cooperar, o pueden hacer una combinación

de estos comportamientos, los jugadores cooperan dentro de la coalición pero el juego entre

coaliciones es no cooperativo.

El concepto de colaboración implica que los jugadores interactúan con los otros jugadores

con el fin de alcanzar una estabilidad cooperativa. Esta noción requiere que los jugadores

seleccionen estrategias óptimas, condicionando su propio comportamiento al comportamiento

de los demás para alcanzar la mejor estrategia en el futuro. En teoría de juegos, la estabilidad

colectiva es una caso especial del equilibrio de Nash llamado equilibrio strong Nash.

Este trabajo presenta un método para calcular el equilibrio strong Lp−Nash. Este problema

se resuelve en términos de la norma Lp: los jugadores seleccionan una estrategia que minimice

la distancia a un mínimo utópico o ideal en el espacio euclidiano, es decir, no existe otra estrate-

gia que mejore el comportamiento de la función de costo. Esto significa que existe una solu-

ción óptima que es un punto strong Pareto optimal que corresponde al equilibrio strong Nash.

Además, se presenta un método para calcular el equilibrio strong Stackelberg/Nash. Este juego

tipo líder-seguidor involucra a n líderes jugando de manera cooperativa y m seguidores que

también juegan cooperativamente entre ellos, por lo tanto es necesario hacer uso del concepto

de equilibrio strong Lp−Nash, es decir, la existencia de un equilibrio Lp−Stackelberg/Nash es

caracterizada bajo estrategias que son strong Pareto.

Hay un creciente interés en aplicar juegos tipo Stackelberg para modelar asignación de re-

cursos para problemas de patrullaje (seguridad), en los cuales los defensores tienen recursos

limitados y deben asignarlos para proteger diferentes objetivos de posibles atacantes. En el
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mundo real los atacantes son agentes sofisticados que emplean estrategias dinámicas. Sin em-

bargo, la mayoría de los enfoques que existen en la literatura para calcular las estrategias de

los defensores consideran que los atacantes tienen un comportamiento fijo y debido a esto, no

aseguran que se tenga éxito en la realización del juego.

Para abordar esta deficiencia, presentamos un método para adaptar las estrategias de los

atacantes y las estrategias de patrullaje de los defensores que son aplicadas en juegos de se-

guridad de tipo Stackelberg empleando un enfoque de aprendizaje por refuerzo. Se propone

un marco común que combina tres paradigmas diferentes: conocimiento previo, imitación y el

método de diferencia temporal. La arquitectura general de aprendizaje por refuerzo incluye dos

componentes principales: una arquitectura de aprendizaje adaptivo primario y la arquitectura

de actor crítico. Este trabajo considera que los defensores y los atacantes forman coaliciones

en el juego de seguridad Stackelberg calculando el equilibrio Lp−Stackelberg/Nash.

Otra clase importante de juegos que incluye soluciones cooperativas y no cooperativas es

el problema de negociación. El juego de negociación se refiere a una situación en la cual los

jugadores tienen la oportunidad de concluir un acuerdo de beneficio mutuo. Sin embargo, en

este tipo de juegos existe conflicto de intereses sobre cual acuerdo pactar, considerando que

no se puede imponer un acuerdo a ningún jugador sin su aprobación. Cabe destacar que el

problema de negociación y sus soluciones ha sido aplicado en contextos importantes como

acuerdos corporativos, arbitraje, juegos de mercado de duopolio, protocolos de negociación,

etc. El presente trabajo examina los juegos de negociación desde una perspectiva teórica y

proporciona un método de solución para diferentes modelos: los modelos de negociación coo-

perativa presentados por Nash y por Kalai y Smorodinsky, quienes proponen un enfoque axio-

mático para resolver el problema dependiendo de diferentes principios de imparcialidad; y el

modelo para una negociación no cooperativa que presenta Rubinstein, quien propone un juego

de negociación con ofertas alternadas y factores de descuento.

En la presente tesis se consideran juegos con cadenas de Markov en tiempo continuo y dis-

creto. Diseñamos un método para juegos estáticos en términos de problemas de programación

no lineal implementando el principio de Lagrange. Además, se utiliza el método de regula-

rización de Tikhonov con el fin de asegurar la convergencia de las funciones de costo a un
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punto de equilibrio. El problema de programación no lineal es formulado considerando varias

restricciones lineales empleando el método c-variable con la finalidad de hacer el problema

manejable computacionalmente. Para calcular el punto de equilibrio se emplea un enfoque de

programación de dos niveles implementado por el método extraproximal, el cual consiste de un

procedimiento iterativo de dos pasos, el primer paso es una predicción que calcula una aproxi-

mación preliminar del punto de equilibrio y el segundo paso tiene como finalidad realizar un

ajuste de la predicción calculada previamente. Cada ecuación en este método es un problema

de optimización para el cual se resuelve la condición necesaria de un mínimo utilizando el

método de gradiente. El método extraproximal conduce a una realización computacional sim-

ple y lógicamente justificada: en cada iteración de ambos pasos del procedimiento, el funcional

del juego disminuye y converge a un punto de equilibrio.

Los métodos propuestos para cada uno de los problemas de teoría de juegos menciona-

dos anteriormente son validados de manera teórica. Además, algunos ejemplos ilustran los

resultados principales así como la efectividad de los métodos.





ABSTRACT

This thesis presents a model to establish cooperative and non-cooperative strategies for

solving different problems within game theory. In general, players proceed in two different

ways: as in a cooperative game or, a non-cooperative game (selecting their strategies not coop-

eratively among them) with respect to the other players. In the case when players form separate

coalitions they can cooperate or do not cooperate or make a combination (players into coalition

play cooperatively but the game between coalitions is non-cooperative).

The notion of collaboration implies that related players interact with each other looking

for cooperative stability. This notion consents players to select optimal strategies and to con-

dition their own behavior on the behavior of others in a strategic forward-looking manner. In

game theory, collective stability is a special case of the Nash equilibrium called strong Nash

equilibrium.

This work presents a novel method for computing the strong Lp−Nash equilibrium. The

problem is solved in terms of the Lp−norm: players choose a strategy that minimizes the dis-

tance to the utopian minimum in the Euclidean space, i.e., no other strategy produces a smaller

total expected loss. This means that there exists an optimal solution that is a strong Pareto

optimal point and it is the closest solution to the minimum utopia point. The strong Pareto op-

timal solution corresponds to the strong Nash equilibrium. Moreover, an approach for comput-

ing the strong Stackelberg/Nash equilibrium is presented. This leader-follower game implies

that n−leaders play cooperatively and m−followers play also do cooperatively employing the

strong Lp−Nash equilibrium concept, i.e., the existence of the Lp−Stackelberg/Nash equilib-

rium is characterized as a strong Pareto policy.

There is a growing interest in applying Stackelberg games to model resource allocation for

patrolling security problems in which defenders must allocate limited security resources to pro-

tect targets from attack by adversaries. In real-world adversaries are sophisticated presenting

dynamic strategies. Most existing approaches for computing defender strategies calculate the

game against fixed behavioral models of adversaries, and cannot ensure success in the realiza-

tion of the game.
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To address this shortcoming, we present a novel approach for adapting attackers and de-

fenders preferred patrolling strategies in Stackelberg security games using a reinforcement

learning (RL) approach based on average rewards. We propose a common framework that com-

bines three different paradigms: prior knowledge, imitation and temporal-difference method.

The overall RL architecture involves two highest components: the adaptive primary learning

architecture and the actor-critic architecture. This work considers that defenders and attackers

conform coalitions in the Stackelberg security game, these are reached by computing the strong

Lp−Stackelberg/Nash equilibrium.

Another important class of games that includes cooperative and non-cooperative solutions

is the bargaining problem. The bargaining game refers to a situation in which players have the

possibility of concluding a mutually beneficial agreement. Here there is a conflict of interests

about which agreement to conclude, and no-agreement may be imposed on any player without

that player’s approval. Remarkably, bargaining and its game-theoretic solutions have been ap-

plied in many important contexts, like corporate deals, arbitration, duopoly market games, ne-

gotiation protocols, etc. Among all these research applications, equilibrium computation serves

as a basis. This work examines bargaining games from a theoretical perspective and provides

a solution method for different game-theoretic models: the cooperative bargaining models pre-

sented by Nash and Kalai-Smorodinsky which propose an elegant axiomatic approach to solve

the problem depending on different principles of fairness, and the non-cooperative bargaining

solution presented by Rubinstein which propose a bargaining game with alternating offers and

a cost by time.

In this work, we consider games in case of a metric state space for a class of continuous

and discrete time ergodic controllable Markov chains games. We design a method for the static

game in terms of nonlinear programming problems implementing the Lagrange principle. In

addition, we make use of the Tikhonov’s regularization method to ensure the convergence of

the cost functions to an equilibrium point. We formulate the nonlinear programming problem

considering several linear constraints employing the c−variable method for making the prob-

lem computationally tractable. For computing the equilibrium point we employ a bi-level pro-

gramming approach implemented by the extraproximal method, which consists of a two-step
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iterated procedure where the first step is a prediction that calculates the preliminary position ap-

proximation to the equilibrium point and the second step is designed to find a basic adjustment

of the previous prediction. Each equation in this solver is an optimization problem for which

the necessary condition of a minimum is solved using the gradient projection method. The ex-

traproximal method leads to a simple and logically justified computational realization: at each

iteration of both steps of the procedure, the functional of the game decrease and converges to

an equilibrium point.

The proposed methods for the game theory problems mentioned above are validated theo-

retically. In addition, some examples in game theory illustrate the main results and the effec-

tiveness of the methods.
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Chapter 1

Introduction

Nash [61] established the framework to study bargaining where the players should cooper-

ate when non-cooperation leads to Pareto-inefficient results. The bargaining game is based on

a model in which players are assumed to negotiate on a set of feasible payoffs. A fundamental

element of the game is the disagreement point (status quo) which plays a role of a deterrent. A

bargaining solution is a single-valued function that selects an outcome from the feasible pay-

offs for each bargaining problem which is the result of cooperation by the players involved in

the game. The agreement reached in the game is the most preferred alternative within the set

of feasible outcomes.

Nash [61] proposed this approach by presenting four axioms and showing that they charac-

terize the Nash bargaining solution. In the classical bargaining game theory models, a bargainer

has a positive interest in the other’s welfare as well as in his own. The agreement will represent

a situation that could not be improved on to both players’ advantage. Rational players would

not accept a given agreement if some alternative arrangement could make both parties better

off or at least one better off with the other no worse off. Then, the resulting bargaining strategy

is an outcome which is Pareto optimally.

Game theory analyses of bargaining assume one of two approaches: a) the axiomatic, orig-

inates in the characterization of the Nash solution [61] (extended by Kalai and Smorodinsky

[46]), where the desired properties of a solution are satisfied and b) the strategic, exemplified

by Rubinstein’s solution [83], where the bargaining procedure is modeled in detail as a sequen-

tial game, this approach is also called the non-cooperative bargaining solution. When players
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are patient, the equilibrium agreement of the Rubinstein’s game approximates the agreement

given by the Nash’s axiomatic approach. In the bargaining problem, the players have a mutual

interest in reaching an agreement, although in general there is a conflict of interest over the

particular agreement to be reached.

However, Nash [62] then changed to the question of how the dynamics and the rational-

ity proposed for this solution correspond with many real-world situations given the constraint

that players are concerned only with maximizing their own welfare. As a result, Nash pro-

posed a non-cooperative game in which the only equilibrium outcome is exactly the allocation

suggested by the Nash solution.

1.1 The Stackelberg/Nash game

The Nash equilibrium [62], players always make a best-reply to what other players are

doing, is a fundamental concept in game theory and the most widely used method of predicting

the outcome of a strategic interaction of several decision makers in non-cooperative games.

It describes a mathematical model in which all players simultaneously compete against each

other in a game. It is concerned with a strategy profile such that no player can unilaterally

change her/his strategy to increase her/his payoff. However, non-cooperative equilibrium has

individually stability and the collective stability is a special case of the Nash equilibrium called

strong Nash equilibrium (SNE).

The SNE was introduced by Aumann [7] for cooperative games. A SNE is a Nash equilib-

rium for which no coalition of players has a joint deviation that improves the payoff of each

member of the coalition [7]. In cooperative games the players can find a strategy producing the

smaller total expected loss, such a cooperative strategy leads to strong Pareto optimal solution

of the game.

There are several proposals reported in the literature to search strong Nash equilibria for

specific classes of games, however, these proposals and algorithms fail in establishing a proper

formulation regarding existence, recognition, and computation for the Pareto optimality. Most

of them find a Nash equilibrium and then verify the Pareto optimality.
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On the other hand, the leader-follower solution in game theory was introduced by von

Stackelberg [89], as an extension of the Cournot duopoly model [22], suggesting a firm with

the power to commit to a number of production profits from a leadership position. The leader-

follower game theory has been studied in depth in oligopoly theory [15, 58].

Stackelberg games are usually represented by a leader-follower problem which corresponds

to a bi-level programming problem. In bi-level programming problems there are two competing

decision-making parties [10]: a) one is upper-level decision makers and, b) the other is lower

level decision makers. The two levels interact with each other as follows. The lower level is

completely restricted by the upper level’s decision and for each decision made by the upper

level, the lower level will choose the best option according to their objectives. Instead, the

upper-level objectives are restricted from below by the lower level: the upper level controls the

lower level’s decision in the way that lower level will react by choosing the best option.

Game-theoretic approaches have been used in multiple deployed applications. An impor-

tant example is security games between a defender and an attacker: first the defender considers

what the target (best-reply) of the attacker is; then, holding the attacked target fixed, the de-

fender picks a quantity that minimizes its payoff; finally the attacker actually observes this and

in equilibrium picks the expected quantity that maximizes its payoff as a response. Some ap-

plications [72, 43, 106, 73, 2] use the (two-players) leader-follower Stackelberg game-theoretic

formulation for solving the security problem, providing a randomized strategy for the defender

(leader) and the attacker (follower).

We describe a Stackelberg security game as follows. Let us consider a game with n + m

players. Let N = {1, . . . , n} denote the set of players called defenders and let their strategy

set be defined by U . The setM = {1, . . . ,m} of players are called attackers and, similarly, let

the set of their strategy profiles be defined by V . Then, U×V is the set of full strategy profiles.

The dynamics of the game is as follows: the defenders choose a strategy u ∈ U considering the

cost-function ϕ(u|v) for a fixed strategy v of the attackers, the attackers are informed about the

strategy u selected by the defenders and choose their strategies v considering the cost-function

ψ(v|u) for a fixed strategy u of the defenders. We understand ψ(v|u) as the response of the

attackers to the strategy u of the defenders, which is the best-reply in the original game. In the
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security game framework, we suppose that defenders commit to a randomized strategy while

attackers choose their best-reply to this strategy. The solution of the game is a Stackelberg

equilibrium point.

There exists a growing interest in applying Stackelberg games to model resource allocation

for patrolling security problems in which defenders must allocate limited security resources to

protect targets from attack by adversaries. In real-world, adversaries are sophisticated present-

ing dynamic strategies. Most existing approaches for computing defender strategies calculate

the game against fixed behavioral models of adversaries, and cannot ensure success in the real-

ization of the game. In the original Stackelberg security games formulation on Markov chains,

we usually assume fixed and static domains models not able to be adapted to the environment:

fixing a state and an action, the cost/reward and transitions always remain the same. The reason

is that the main goal is minimizing/maximizing the players’ expected cost/reward that depends

on the transitions at each state. However, it is an unrealistic assumption: the transitions ma-

trices and the reward received for Stackelberg security games are commonly non-static. Pro-

ducing always the same resulting behavior can be exploited by intelligent attackers that carry

out surveillance before an attack, it is often desirable for the security agencies to have a system

in which randomness is involved in allocating their resources. To address this shortcoming,

we will consider the learning properties of the attackers and defenders interaction, and we will

deal with the adaptation (estimation and assessment) of the payoff and strategies to dynamic

environments based on the information available to them.

Reinforcement learning (RL) is a problem faced by an agent or multiple agents that must

learn behavior through trial-and-error interactions with a dynamic environment [44, 87]. It

does not assume the existence of a teacher that provides examples upon which learning of a

task takes place [78]. Computationally, RL is intended to operate in a learning environment

composed of two subjects: the learner and a dynamic process. At successive time steps, the

learner makes an observation of the process state, selects an action and applies it back to the

process. Its goal is to find out an action policy that controls the behavior of the dynamic

process, guided by signals that indicate how badly or well it has been performing the required
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task. These signals are usually associated with a dramatic condition, a reward or a punishment,

and the learner tries to optimize its behavior [78].

Figure 1.1 Reinforcement architecture.

Markov chains are a typical tool in the modeling of stochastic processes, specifically in

the area of reinforcement learning, the environment is generally formulated as a Markov de-

cision process. Reinforcement learning algorithms are strongly related to problems where a

balance between the exploration of an unknown environment and the exploitation of previous

knowledge and knowledge obtained during the exploration process is required. Reinforcement

learning is especially appropriate for problems that include long-term vs. short-term reasoning,

it is applicable in problems of game theory where there are scenarios with intelligent behaviors,

situations where it is necessary to learn to decide what action to follow in a specific situation

within a changing environment to achieve its goal.

1.2 The bargaining game

The bargaining model has attracted the attention of researchers from different disciplines

and it is still, a relevant topic which is receiving a growing amount of attention for practition-

ers and academics in game theory. It has been applied in many important contexts including

arbitration, supply chain contracts, duopoly market games, negotiation protocols, etc. It is
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related to negotiation and group decision processes and introduces a solution concept for co-

operative games. Cooperation concerns to coalitions of two or more players acting together

with a specific common purpose taking into account the objective of maximizing their own

individual payoffs. The bargaining game dynamics refers to a situation in which players have

the possibility of concluding a mutually beneficial agreement. Here there is a conflict of in-

terests about which agreement to conclude, and no-agreement may be imposed on any player

without that player’s approval. There are two theoretical perspectives that provide a solution

for the cooperative game-theoretic bargaining models that employ the axiomatic method to

evaluate bargaining: Nash [61] and Kalai-Smorodinsky [46]. It is important to note that the

two bargaining solution approaches have the same feasible payoff set and disagreement point

are considered to be the same bargaining problem in Nash’s model.

The bargaining model was first presented as a game in John Nash’s seminal 1950 paper

[61], using the framework of game theory proposed by von Neumann and Morgenstern [65].

The von Neumann and Morgenstern theory supposes that when players form a coalition, they

expect that a complementary coalition responds by damaging them in the worst way. This

statement finds disapprovements in the literature. In this sense, Nash improved von Neumann

and Morgenstern’s work extending the idea by proposing axioms that characterize a unique re-

sult and a solution to the problem called the Nash bargaining solution. The formal description

consists of two main components: a feasible set of utility allocations reached via cooperation,

and the disagreement point occurring when players do not cooperate. A solution is a function

that selects a feasible utility allocation for every problem. It is interesting to note that bargain-

ing is one of the first situations of conflict of interest presented in the literature of game theory

[45, 66].

The Kalai-Smorodinsky [46] bargaining solution differs from the Nash approach [61]. The

fundamental difference between the two approaches resides in the fact that the Nash solution

complies with the independence of irrelevant alternatives instead of the Kalai-Smorodinsky’s

solution fits monotonicity. Kalai and Smorodinsky argue that the entire set of alternatives must

affect the agreement reached.
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The most basic definition of bargaining refers to a socio-economic class of problems in-

volving several players who can cooperate of not in terms of obtaining a better position of

a desirable surplus whose distribution is in conflict. The features of the cooperation or non-

cooperation of the players in terms of reaching an agreement and the initial situations of the

players in the status-quo before an agreement has effect will determine how the surplus will

be distributed. Several social, political and economic problems are related to the bargaining

problem.

For instance, consider the case of selling a used car. When it comes to selling the car, the

seller naturally wants to obtain the most money possible. It is practical to trade the car at a

dealer or make a quick sale to a used car dealership, but these options usually leave the seller

with significantly less than what the car is actually worth. Selling a car by himself allows the

seller to get its full value. Then, the seller values his car at 3,000 which is the minimum price

at which he would sell it. On the other hand, there is a buyer that values the car at 5,000 which

is the maximum price at which he would buy it. If the trade occurs, the price lies between

3,000 and 5,000, then both the seller and the buyer would become better-off and a conflict

of interests arises. In any trade, the seller and the buyer have the possibility of achieving

a mutually beneficial agreement, or they can reach a non-cooperative agreement, by having

conflicting interests over the terms of the trade.

1.2.1 Cooperative bargaining models

Following Nash [61], a solution to the bargaining problems B is a function f that takes as

input any bargaining problem and returns a vector of utilities that belongs to the set of possible

agreements Ψ. Several solutions can be proposed for solving the problem, but some of them

can present inconsistencies. For example, one solution can go against symmetry by proposing

a total improvement of the position of one player obtaining a point in the Pareto frontier of the

utility and the other player receives no improvement. A different solution to the problem could

be a disagreement point. The first solution violates symmetry, so the solution is unfair, and the

second solution is not Pareto-efficient and does not take advantage of the cooperation related

to an agreement situation. For solving the inconsistencies in the solution of the problem, Nash
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[61] proposed several axioms: a) Invariant to affine transformations (or Invariant to equivalent

utility representations): an affine transformation of the utility and disagreement point should

not alter the outcome of the bargaining process; b) Pareto optimality: the solution selects a

point of the Pareto frontier such that the players can be made better off without making other

players worse off; c) Symmetry: if the players are indistinguishable, the solution should not

discriminate between them; and d) Independence of irrelevant alternatives: if the solution is

chosen from a feasible set which is an element of a subset of the original set but containing

the point selected earlier by the solution, then the solution must still assign the same point

chosen from the subset. As a result, Nash [61] proposed the Nash bargaining solution: we say

that there is a unique solution to the bargaining problem that satisfies the four axioms (a to d)

which is given by the point that maximizes the product of utilities of the players.

Figure 1.2 Cooperative bargaining models.

While three of Nash’s axioms are quite uncontroversial, the fourth one (Independence of

irrelevant alternatives) raised some criticism, which leads to a different line of research. Kalai

and Smorodinsky [46] looked for characterizations of an alternative solution which do not use

the controversial axiom. The solution idea can be represented geometrically in the following

way. Let ψ∗(Ψ) be the utopia point, typically not feasible, which gives the maximum payoff.

Now, connect the point of disagreement φ and that ideal point ψ∗(Ψ) by a line segment. The

Kalai-Smorodinsky solution is the maximal point in Ψ on that line segment. They replaced
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Nash arguable fourth axiom by e) Monotonicity axiom: if the set of possible agreements Ψ

is enlarged such that the maximum utilities of the players remain unchanged, then neither of

the players must suffer from it. Then, Kalai and Smorodinsky [46] proposed the following

solution: we say that there is a unique solution ψ to the bargaining problem that satisfies the

four axioms (a, b, c, and e) which is given by the intersection point of the Pareto frontier

and the straight line segment connecting φ and the utopia point ψ∗(Ψ). Figure 1.2 shows the

cooperative solutions.

Nash [61] showed that there exists a unique standard independent solution for the bargain-

ing model, while Kalai and Smorodinsky [46] showed that a different solution is the unique

standard monotonic one.

Figure 1.3 Bargaining model.

Consider two players l = 1, 2. A bargaining problem is a pair B = (Ψ, φ) in the utility

space were Ψ is a set of possible agreements in terms of utilities ψ that player 1 and player

2 can yield. The player’s utility function ψl is strictly increasing and concave. The set of

possible agreements is Ψ, which is a compact and convex set of R2. An element of Ψ is a pair

ψ = (ψ1, ψ2) ∈ Ψ and φ = (φ1, φ2) is called the disagreement utility point. Compactness

arises from the assumptions related to closed production sets and bounded factor endowments.
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Convexity is obtained from the fact that expected utility over outcomes. Also, the set Ψ involves

points that dominate the disagreement point, i.e., there is a positive surplus to be enjoyed if

agreement is reached. The function f takes as input any bargaining problem and returns a

pair of utilities ψ = (ψ1, ψ2) ∈ Ψ. When we need to refer to the components of f , we write

ψ1 = f 1(B) and ψ2 = f 2(B). The interpretation is that given a bargaining problem B = (Ψ, φ)

there exists an agreement ψ = f(Ψ, φ) ∈ Ψ such that ψ1 ≥ φ1 and ψ2 ≥ φ2 which ensures

that there exists a mutually beneficial agreement. Figure 1.3 shows the bargaining problem.

Figure 1.4 Bargaining axioms.

Two fundamental axioms impose the most important restrictions over the solution of the

bargaining problem (see Figure 1.4). Pareto optimality: the function f(Ψ, φ) has the property

that there does not exist a point ψ = (ψ1, ψ2) ∈ Ψ such that ψ1 ≥ f 1(Ψ, φ) and ψ2 ≥ f 2(Ψ, φ)

such that (ψ1, ψ2) 6= f(Ψ, φ). Symmetry: suppose that B is such that Ψ is symmetric around

the 45◦ line and φ1 = φ2, then f 1(B) = f 2(B). The rest of the axioms will be presented in the

formalization of the model.
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1.2.2 The non-cooperative bargaining game

The Nash model does not allow for delayed agreements. In real situations, when the rules

of the bargaining process are flexible, involving the facts that the time of starting negotiations

and the moment of reaching agreement may be strategic variables, the Nash solution may be

inappropriate.

There has been a large and growing literature in non-cooperative bargaining. Rubinstein

[83] presented a bilateral non-cooperative bargaining process as an alternating offers game

with a penalty according to the time taken by players in the decision making process, where it

is proved that when every player bears fixed bargaining cost for each period, in this case, each

player has a fixed discounting factor, the agreed contract is individual-rational and is Pareto

optimal, i.e. it is no worse than disagreement, and there is no agreement which both would

prefer. Such a model has been studied and extended for three or more players in a variety of

papers and situations. The non-cooperative bargaining model and its game-theoretic solution

have also been applied in many important contexts like market games, networks, apex games,

union formation, and water management.

Consider a bargaining situation defined for two players who have to reach an agreement

on the partition of a good. Each player takes turns to make an offer to the other agent on

how it should be divided between them. After player 1 has made such an offer (x, 1 − x),

player 2 must decide whether to accept it, in this case the bargaining game ends and the players

divide the good according to the accepted offer, or to reject it and continue with the bargaining

process. If player 2 rejects, then this player has to make a counteroffer (y, 1− y) which player

1 would accept it, in this case the players divide the good according to the accepted offer but

also considering a discount factor β associated to each player, or reject it and continue with

the negotiation process. The bargaining game continues until an offer is accepted. Figure 1.5

shows the non-cooperative model.

Despite its wide applicability, crucial assumptions of the traditional Rubinstein bargaining

model include that players have complete information about the characteristics of other agents

(e.g., their discount factor or their utility) and that players are sophisticated in their behavior
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Figure 1.5 Non-cooperative bargaining model.

(e.g., they are forward-looking). As such, there is a need to develop a general theory of bar-

gaining that is robust to work in the absence of sophisticated players or incomplete information

about other players.

Then, we introduce an alternative approach to the traditional bargaining literature that aids

unsophisticated players to reach the equilibrium as if they were forward-looking agents. The

key element of the game is that players are penalized for their deviation from the previous best

response strategy as well as their time taken for the decision-making at each step of the game.

1.3 Summary of the following chapters

The remainder of this thesis is organized as follows. Next Chapter presents the necessary

notions and definitions related to continuous and discrete time Markov chains games to under-

stand the rest of the work. The Part I is related to strong Stackelberg/Nash games. Chapter

3 establishes the definitions of the strong Lp−Nash equilibrium. We first present a general

solution for the Lp−norm for computing the strong Lp−Nash equilibrium. Then, we suggest

an explicit solution for the norms L1, L2 and L∞. Chapter 4 describes and presents the solution

method for computing the strong Lp−Stackelberg/Nash equilibrium. In Chapter 5 we suggest

an approach for adapting attackers and defenders patrolling strategies in Stackelberg security
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games. This chapter considers that defenders and attackers conform coalitions in the security

game, these are reached by computing the strong Lp−Stackelberg/Nash equilibrium.

The Part II is related to the bargaining game. Chapter 6 presents a method for computing

the Nash bargaining solution. Chapter 7 presents an approach for solving a bargaining problem

employing a new equilibrium point for the game theory called the manipulation equilibrium

point, this formulation employs the Nash bargaining and Stackelberg concepts. Chapter 8

presents a method to compute the Kalai-Smorodinsky bargaining solution. In Chapter 9 we

suggest a novel method to find the equilibrium point in non-cooperative bargaining games.

All these chapters present numerical examples that validate the application of the method.

Finally, Chapter 10 presents some final remarks.





Chapter 2

Mathematical background

This chapter presents some basic concepts and results about Markov chains games, needed

to understand the rest of this work. For more information about these topics, please see [75, 76].

As usual, R and N stand for the sets of real numbers and non-negative integers, respectively.

2.1 Random sequences

2.1.1 Random variables

Let Ω = {ω} be a set of elementary events ω which represents the occurrence or non-

occurrence of a phenomenon.

Definition 2.1 The system F of subsets of Ω is said to be the σ-algebra associated with Ω, if

the following properties are fulfilled:

1. Ω ∈ F

2. for any sets A(n) ∈ F (n = 1, 2, ...)

∞⋃
n=1

A(n) ∈ F ,
∞⋂
n=1

A(n) ∈ F ;

3. for any set A ∈ F

A := {ω ∈ Ω | ω /∈ A} ∈ F .

Definition 2.2 The pair (Ω,F) represents the measurable space.



16 Chapter 2. Mathematical background

Definition 2.3 The function P = P (A) of sets A ∈ F is called probability measure on (Ω,F)

if it satisfies the following conditions:

1. for any A ∈ F

P (A) ∈ [0, 1];

2. for any sequence {A(n)} of sets A(n) ∈ F (n = 1, 2, ...) such that

A(n)
⋂
n6=m

A(m) = ∅,

we have

P

(
∞⋃
n=1

A(n)

)
=
∞∑
n=1

P (A(n)) .

The number P (A) is called the probability of the event A. From a practical point of view,

this probability is concerned with the occurrence of events.

Definition 2.4 The triple (Ω,F , P ) is said to be the probability space.

Definition 2.5 A real function ξ = ξω, ω ∈ Ω is called random variable defined on the proba-

bility space (Ω,F , P ), if it is F-measurable, i.e., for any s ∈ (−∞,∞)

{ω | ξω ≤ s} ∈ F .

We say that two random variables ξω(1) and ξω(2) are equal with probability one (or, almost

surely) if

P {ω | ξω(1) = ξω(2)} = 1.

This fact can be expressed mathematically as follows

ξω(1)
a.s.
= ξω(2).

Definition 2.6 Let ξ(1), ξ(2), ..., ξ(n) be random variables defined on (Ω,F , P ). The minimal

σ-algebra F(n) which for any s = (s(1), ..., s(n))T ∈ Rn contains the events

{ω | ξω(1) ≤ s(1), ..., ξω(n) ≤ s(n)} ,
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is said to be the σ-algebra associated to the random variables ξ(1), ξ(2), ..., ξ(n). It is denoted

by

F(n) = σ (ξ(1), ξ(2), ..., ξ(n)) .

Definition 2.7 The Lebesgue integral

E{ξ} :=

∫
ω∈Ω

ξωP{dω},

is said to be the mathematical expectation of a random variable ξ(ω) given on (Ω,F , P )

Definition 2.8 The random variable E {ξ | F(0)} is called the conditional mathematical ex-

pectation of the random variable ξ(ω) given on (Ω,F , P ) with respect to the σ-algebraF(0) ⊆

F if

1. it is F(0)-measurable, i.e.,

{ω | E{ξ | F(0)} ≤ s} ∈ F(0) ∀ s ∈ R1;

2. for any set A ∈ F(0) ∫
ω∈A

E {ξ | F(0)}P{dω} =

∫
ω∈A

ξ(ω)P{dω}.

Let ξ = ξ(ω) and θ = θ(ω) be two random variables given on (Ω,F , P ), θ an F(0)-

measurable (F(0) ⊆ F), then

1. E {θ | F(0)} a.s.= θ;

2. E{θ ξ | F(0)} a.s.= θE{ξ | F(0)};

3. E{E{ξ | F(1)} | F(0)} a.s.= E{ξ | F(0)} if F(0) ⊆ F(1) ⊆ F .

Notice that if ξ is selected to be equal to the characteristic function of the event A ∈ F , i.e.,

ξ(ω) = χ(ω,A) :=

 1 if the event A has been realized

0 if not

from the last definition we can define the conditional probability of this event under fixed F(0)

as follows

P{A | F(0)} := E{χ(ω,A) | F(0)}.



18 Chapter 2. Mathematical background

2.1.2 Markov sequences and chains

Definition 2.9 Any sequence {s(n)} of random variables s(n) = sω(n) (n = 1, 2, ...) given on

(Ω,F , P ) and taking value in a set S is said to be a Markov sequence if for any set A ∈ B(S)

and for any time n the following property (Markov property) holds:

P{s(n+ 1) ∈ A | σ(s(n)) ∧ F(n− 1)} a.s.= P{s(n+ 1) ∈ A | σ(s(n))},

where σ(s(n)) is the σ-algebra generated by s(n), F(n − 1) = σ(s(1), ..., s(n − 1)) and

σ(s(n)) ∧ F(n − 1) is the σ-algebra constructed from all events belonging to σ(s(n)) and

F(n− 1).

This property means that any distribution on the future depends only on the value s(n)

realized at time n and is independent on the post values s(1), ..., s(n − 1); in other words, the

present state of the system determines the probability for one step into the future.

Definition 2.10 If the set S, defining any possible values of the random variables s(n), is

countable then the Markov sequence {s(n)} is called a Markov chain. If, in addition, this set

contains only finite number N of elements, i.e.,

S = {s(1), ..., s(N)},

then this Markov sequence is said to be a finite Markov chain.

2.2 Finite Markov chains

2.2.1 State space

Let S =
{
s(1), ..., s(N)

}
be a finite set of states. A state s(i) ∈ S is said to be

1. a non-return state if there exists a transition from this state to another one s(j) ∈ S but

there is no way to return back to s(i);

2. an accessible (reachable) state from a state s(j) ∈ S if there exists a finite number n such

that the probability for the random state s(n) of a given finite Markov chain to be in the
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state s(i) ∈ S starting from the state s(1) = s(j) ∈ S is more than zero, i.e.,

P
{
s(n) = s(i) | s(1) = s(j)

} a.s.
> 0.

We will denote this fact as follows

s(j) ⇒ s(i).

Otherwise we say that the considered state is inaccessible from the state s(j).

Definition 2.11 Two states s(j) and s(i) are said to be a communicating states if each of them

is accessible from the other one. We will denote this fact by

s(j) ⇔ s(i).

The class S(i) is said to be the jth communicating class of states if it includes all communicating

states of a given finite Markov, i.e., it includes all states such that

s(i) ⇔ s(j) ⇔ · · · ⇔ s(m) ⇔ s(k).

Definition 2.12 A state s(i) is called recurrent if, when starting there, it will be visited infinitely

often with probability one; otherwise the state is said to be transient.

Definition 2.13 A state s(i) is said to be an absorbing state if the probability to remain in state

s(i) is positive, and the probability to move from any state s(j), j 6= i, to the state s(i) is equal

to zero.

2.2.2 Transition matrix

Definition 2.14 Let Π(n) ∈ RN×N is said to be the transition matrix at time n of a given

Markov chains with finite number N of states if it has the form

Π(n) =


π(1,1)(n) π(1,2)(n) · · π(1,N)(n)

π(2,1)(n) π(2,2)(n) · · π(2,N)(n)

· · · · ·

π(N,1)(n) π(N,2)(n) · · π(N,N)(n)


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where each element π(i,j)(n) represents the probability (one-step transition probability) for this

finite Markov chain to go from the state s(n) = s(i) to the next state s(n+ 1) = s(j), i.e.,

π(j|i)(n) := P
{
s(n+ 1) = s(j) | s(n) = s(i)

}
, i, j = 1, ..., N.

Each element π(j|i)(n) of the transition matrix Π(n) is a probability of the corresponding

event, then we conclude that

π(j|i)(n) ∈ [0, 1],
N∑
j=1

π(j|i)(n) = 1. (2.1)

Definition 2.15 Any matrix Π(n) ∈ RN×N with elements π(j|i)(n) satisfying the condition

(2.1) is said to be a stochastic matrix.

Any transition matrix of a finite Markov chains is a stochastic matrix. From condition (2.1),

a stochastic matrix has the following properties:

1. the norm of a stochastic matrix is equal to one;

2. the modulus of the eigenvectors of a stochastic matrix are less or equal to one;

3. any stochastic matrix has l as an eigenvalue;

4. if λ is an eigenvalue of modulus equal to 1, and of multiplicity order equal to k, then

the vector space generated by the eigenvectors associated with this eigenvalue (λ) is of

dimension k.

A finite Markov chain is said to be:

1. a homogeneous (stationary or time homogeneous) chain if its associated transition matrix

is stationary, i.e., Π(n) = Π;

2. a non-homogeneous chain if its associated transition matrix Π(n), is non-stationary.

Example 2.16 Consider 3 supermarkets denoted by s1, s2 and s3. Each month the supermarket

s1 maintains 60% of its clients and losses the 20% that goes to s2 and the rest to s3; on the
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other hand, the supermarket s2 maintains the 40% of its clients and losses the 50% that goes

to s1 and the 10% that goes to s3; while supermarket s3 retains the 80% of its clients and only

losses the 20% that goes to s2. The transition matrix obtained whit the previous information is

as follows:

Π =


0.6 0.2 0.2

0.5 0.4 0.1

0.0 0.2 0.8


Figure 2.1 shows the state transition diagram for this Markov chain.

Figure 2.1 State transition diagram.

Definition 2.17 For a homogeneous chain each lth group S(l) (l = 1, ..., L) of communicating

states is also said to be lth ergodic subclass of states. The index L corresponds to the number

of ergodic subclasses.

An ergodic subclass (set of states) is a collection S(l) of recurrent states with the probability

that, when starting in one of the states in S(l), all states will be visited with probability one. A

Markov chain is ergodic if it has only one subclass, and that subclass is ergodic.

Definition 2.18 If an homogeneous finite Markov chain has only one ergodic subclass and has

no group of non-return states, i.e.,

L = 1, S(0) = ∅,
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it is said to be an ergodic homogeneous finite Markov chain.

Remark 2.19 For any homogeneous finite Markov chain there exists a time n0 such that the

probabilities of transition from any initial states s(1) = s(i) to the state s(n0) = s(j) are strictly

positive, i.e.,

π̃(j|i)(n0) > 0,

for i, j = 1, ..., N , where

π̃(j|i)(n0) := P{s(n0) = s(j) | s(1) = s(i)} = Πn0 ,

If there exists n0 for a homogeneous Markov chain such that Πn0 > 0 then, this Markov

chain is ergodic.

2.3 Coefficient of ergodicity

In this section it is presented a non-traditional approach for ergodicity verification. The

result shows that there exists the class of homogeneous Markov chains, called ergodic, which

satisfy some additional conditions providing that after a long time such chains “forget” the

initial states from which they have started.

For any time n and for any finite Markov chain with transition matrix

Π =
[
π(j|i)

]
i,j=1,...,N

containing N states, the following basic relation holds:

p(n+ 1) = ΠTp(n)

where n = 1, 2, ... and the state distribution vector p(n) is defined by

pT (n) =
(
p(1)(n), ..., p(N)(n)

)
, where p(i)(n) = P

{
s(n) = s(i)

}
.

Definition 2.20 The state distribution vector

(p∗)T =
(
p∗(1), ..., p

∗
(N)

)
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is called the stationary distribution of a homogeneous Markov chain with a given transition

matrix

Π =
[
π(j|i)

]
i,j=1,...,N

if it satisfies the following algebraic relations

p∗(j) =
N∑
i=1

π(j|i)p
∗
(i)

Definition 2.21 For an homogeneous finite Markov chain, the parameter kerg(n0) defined by

kerg(n0) := 1− 1

2
max

i,j=1,...,N

N∑
m=1

∣∣π̃(m|i)(n0)− π̃(m|j)(n0)
∣∣ ∈ [0, 1)

is said to be the coefficient of ergodicity of this Markov chain at time n0, where

π̃(m|i)(n0) = P
{
s(n0) = s(m)

∣∣ s(1) = s(i)

}
=
[
Π(m|i)

]n0

is the probability to evolve from the initial state s(1) = s(i) to the state s(n0) = s(m) after n0

transitions.

Lemma 2.22 The coefficient of ergodicity kerg(n0) can be calculated as

kerg(n0) ≥ min
i,j=1,...,N

N∑
m=1

min
{
π̃(m|i)(n0), π̃(m|j)(n0)

}
.

Its lower estimate is given by

kerg(n0) ≥ min
i=1,...,N

max
j=1,...,N

π̃(j|i)(n0)

For the proof see [76].

If all the elements π̃(j|i)(n0) of the transition matrix Πn0 are positive, then the coefficient of

ergodicity kerg(n0) is also positive. Notice that there exist ergodic Markov chains with elements

π̃(j|i)(n0) equal to zero, but with a positive coefficient of ergodicity kerg(n0).

Theorem 2.23 The lower bound estimate of the ergodicity coefficient for a given finite homo-

geneous Markov chain

χerg := min
n0

max
j=1,...,N

min
i=1,...,N

π̃(j|i)(n0)

is strictly positive, that is, χerg > 0, then the following properties hold:
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1. there exists a unique stationary distribution

lim
n→∞

p(i)(n) := p∗(i)

where i = 1, ..., N and the vector p∗ describes a stationary distribution with positive

components;

2. the convergence of the current-state distribution to the stationary one is exponential,

then, for any initial state distribution p(1)

sup
p(1)

∣∣p(i)(n)− p∗(i)
∣∣ ≤ C exp {−D n}

where

C =
1

1− χerg
and D =

1

n∗0
lnC

and

n∗0 = arg min
n0

[
max

j=1,...,N
min

i=1,...,N
π̃(j|i)(n0)

]
For the proof see [76].

2.4 Controlled Markov chains

2.4.1 Discrete time Markov chains

The behavior of a controlled Markov chain can be described as follows: at each time n the

system is observed to be in one state s(n), whenever the system is in the state s(n) one decision

a(n) (control action) is chosen according to some rule to achieve the desired control objective;

in other words, the decision is selected to guarantee that the resulting state process performs

satisfactorily. Then, at the next time n + 1 the system goes to the state s(n + 1). In the case

when the state and action sets are finite, and the transition from one state to another is random

according to a fixed distribution, we deal with controlled finite Markov chains.

Consider the usual partial order for n-vectors x and y, the inequality x ≤ y means that

xl ≤ yl for all l = 1,N (l = 1, ...,N ). We have that

x < y ⇔ x ≤ y and x 6= y

x << y ⇔ xl < yl for all l = 1, ...,N
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A sequence {xn} ⊂ Rn converging to x is said to converge in the direction y ∈ Rn if there is a

sequence of positive numbers in such that in → 0 and

lim
n→∞

(xn − x) /in = y

Let S be a finite set, called the state space, consisting of a finite set of states
{
s(1), ..., s(N)

}
,

N ∈ N. A Stationary Markov chain is a sequence of S-valued random variables s(n), n ∈ N,

satisfying the Markov condition:

P
(
s(n+ 1) = s(j) | s(n) = s(i), s(n− 1) = s(in−1), ..., s(1) = s(i1)

)
= P

(
s(n+ 1) = s(j) | s(n) = s(i)

)
=: π(j|i)

(2.2)

The Markov chain can be represented by a complete graph whose nodes are the states,

where each edge (s(i), s(j)) ∈ S2 is labeled by the transition probability (2.2). The matrix

Π = (π(j|i))(s(i),s(j))∈S ∈ [0, 1]N×N determines the evolution of the chain: for each m ∈ N, the

power Πm has in each entry (s(i), s(j)) the probability of going from state s(i) to state s(j) in

exactly m steps.

Definition 2.24 A controlled homogeneous finite Markov chain is described by a 4-tuple

MC = {S,A,K,Π}

where:

• S is a finite set of states, S ⊂ N, endowed with a discrete topology;

• A is the finite set of actions. For each s ∈ S,A(s) ⊂ A is the non-empty set of admissible

actions at state s ∈ S. Without loss of generality we may take A= ∪s∈SA(s);

• K = {(s, a) | s ∈ S, a ∈ A(s)} is the set of admissible state-action pairs, which is a

measurable subset of S × A;

• Π(k) =
[
π(j|i,k)

]
is a stationary controlled transition matrix, where

π(j|i,k) ≡ P (s(n+ 1) = s(j) | s(n) = s(i), a(n) = a(k))

represents the probability associated with the transition from state s(i) to state s(j), i, j =

1, N (i = 1, ..., N ), under an action a(k) ∈ A(s(i)), k = 1,M (k = 1, ...,M ).
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We say that a controlled homogeneous finite Markov chain is a communicating chain, if for

any two states s(i) and s(j) of this chain, there exists a deterministic causal strategy {a(n)} such

that

a(n) = a(n)(s(1), a(1); ...; s(n− 1), a(n− 1); s(n))

such that for some n the conditional probability corresponding to the transition from s(i) to s(j)

would be positive, i.e.,

P
{
s(n) = s(j) | s(1) = s(i) ∧ σ(s(1), a(1); ...; s(n− 1), a(n− 1))

} a.s.
> 0

Definition 2.25 A Markov Decision Process is a pair

MDP = {MC, J}

where:

• MC is a controlled homogeneous finite Markov chain (Definition 2.24);

• J : K→ R is a cost/utility function, associating to each state a real value.

The Markov property of the decision process (Definition 2.25) is said to be fulfilled if

P
(
s(n+ 1) = s(j) | (s(1), s(2), ..., s(n− 1)), s(n) = s(i), a(n) = a(k)

)
= P

(
s(n+ 1) = s(j) | s(n) = s(i), a(n) = a(k)

)
The strategy (policy)

d(k|i)(n) ≡ P
(
a(n) = a(k) | s(n) = s(i)

)
represents the probability associated with the occurrence of an action a(n) from state s(n) =

s(i). The elements of the transition matrix for the Markov chain can be expressed as

P
(
s(n+ 1) = s(j) | s(n) = s(i)

)
=

M∑
k=1

P
(
s(n+ 1) = s(j) | s(n) = s(i), a(n) = a(k)

)
d(k|i)(n)

Let us denote the collection
{
d(k|i)(n)

}
by Dn as follows

Dn =
{
d(k|i)(n)

}
k=1,M, i=1,N
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A policy
{
d locn
}
n≥0

is said to be local optimal if for each n ≥ 0 minimizes (or maximizes

if we have a utility function) the conditional mathematical expectation of the cost function

J (s(n+ 1)) under the condition that the history of the process

Fn :=
{
D0, P

{
s(0) = s(j)

}
j=1,N

; ...;Dn−1, P
{
s(n) = s(j)

}
j=1,N

}
is fixed and can not be changed hereafter, i.e., it realizes the “one-step ahead” conditional

optimization rule

d locn := arg min
dn∈Dn

E {J(s(n+ 1)) | Fn}

where J(s(n + 1)) is the cost function at the state s(n + 1). Notice that if J(s(n + 1)) is a

utility function then we have a max problem.

2.4.1.1 Discrete time Markov chains games

Definition 2.26 A discrete-time Markov game is a pair

G = {N ,MDP}

where:

• MDP is a discrete-time Markov decision process (Definition 2.25); and

• N = {1, ..., n} is the set of players, each player is indexed by l = 1, n.

The game for Markov chains consists ofN = {1, ..., n} players (denoted by l = 1, ..., n = 1, n)

and begins at the initial state sl(0) which (as well as the states further realized by the process)

is assumed to be measurable. Each of the players l is allowed to randomize, with distribution

dl(k|i)(n), over the action choices al(k) ∈ Al
(
sl(i)

)
, i = 1, N and k = 1,M . From now on,

consider only stationary strategies dl(k|i)(n) = dl(k|i). These choices induce the state distribution

dynamics

P l
(
sl(n+ 1)=s(j)

)
=

N∑
i=1

(
M∑
k=1

πl(j|i,k)d
l
(k|i)

)
P l
(
sl(n) = s(i)

)
In the ergodic case when all Markov chains are ergodic for any stationary strategy dl(k|i) the

distributions P l(sl(n+ 1) = s(j)) exponentially quickly converge to their limits P l
(
sl = s(i)

)
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satisfying

P l
(
sl = s(j)

)
=

N∑
i=1

(
M∑
k=1

πl(j|i,k)d
l
(k|i)

)
P l
(
sl=s(i)

)
2.4.2 Continuous time Markov chains

This section follows the concepts and definitions presented in [35]. Suppose that s(t) (for

each fixed t ≥ 0) is a random variable on a probability space (Ω,F , P ) and takes values in the

set S, i.e., s(t) is an F-measurable function on Ω and takes values in S. Then we call the set

{s(t), t ≥ 0} a stochastic process with the state space S.

Definition 2.27 A stochastic process {s(t), t ≥ 0} defined on a probability space (Ω,F , P ),

with values in a countable set S (the state space of the process), is called a continuous-time

Markov chain if, for any finite sequence of “times” 0 ≤ t1 < t2 < · · · < tn < tn+1 and a

corresponding set of states s(i1), s(i2), ..., s(in−1) ∈ S, it holds the Markov property

P
(
s(tn+1) = s(j) | s(t1) = s(i1), ..., s(tn−1) = s(in−1), s(tn) = s(i)

)
=

P
(
s(tn+1) = s(j) | s(tn) = s(i)

)
whenever P

(
s(t1) = s(i1), ..., s(tn−1) = s(in−1), s(tn) = s(i)

)
> 0

The probability

p(r, i, t, j) := P
(
s(t) = s(j) | s(r) = s(i)

)
for 0 ≤ r ≤ t is called the chain’s transition (probability) function. Note that p(r, i, t, j)

denotes the transition probability of the process being in state s(j) at time t starting from s(i) at

time r.

Proposition 2.28 Suppose that p(r, i, t, j) is the transition function of a Markov chain. Then,

for all s(i), s(j) ∈ S and 0 ≤ r ≤ t:

1. p(r, i, t, j) ≥ 0 and
∑

s(j)∈S
p(r, i, t, j) ≤ 1.

2. The Kronecker delta: p(r, i, t, j) = δ(i,j).
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3. The Chapman-Kolmogorov equation: p(r, i, t, j) =
∑

s(h)∈S
p(r, i, v, h)p(v, h, t, j) for all

s(i), s(j) ∈ S and 0 ≤ r ≤ v ≤ t.

4. p(r, i, t, j) is continuous in r ∈ [0, t], right-continuous at 0 and left-continuous at t.

5. p(r, i, t, j) is continuous in t ∈ [r,+∞), right-continuous at r and uniformly continuous

in s(j) ∈ S

Definition 2.29 A controllable continuous-time Markov chain is a 4-tuple

CTMC = {S,A,K, Q}

where:

• The state space S is a finite set of states
{
s(1), ..., s(N)

}
, N ∈ N, endowed with the

discrete topology;

• The set of actions A is a finite action (or control) space, for each s ∈ S, A(s) ⊂ A is the

non-empty set of admissible actions at state s ∈ S and we shall suppose that is compact;

• K = {(s, a)|s ∈ S, a ∈ A(s)} is the class of admissible state-action pairs, which is con-

sidered a subspace of S × A;

• Q is the matrix of the transition rates
[
q(j|i,k)

]
, the transition from state s(i) to state s(j)

under an action a(k) ∈ A
(
s(i)

)
, k = 1, ...,M ; satisfying q(j|i,k) ≥ 0 for all (s, a) ∈ K

and i 6= j such that

q(j|i,k) =


−

N∑
i 6=j

λ(i,j)(a(k)), if i = j

λ(i,j)(a(k)), if i 6= j

where λ(i,j) is a transition rate between state s(i) and s(j), λ(i) =
∑N

i 6=j λ(i,j). This matrix

is assumed to be conservative, i.e.,
∑N

j=1 q(j|i,k) = 0, and stable, which means that

q∗(i) := sup
a∈A

q(i)(a) <∞ ∀ i ∈ S

where q(i)(a) := −q(i,i)(a) ≥ 0 for all a ∈ A.
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Definition 2.30 A continuous-time Markov Decision Process is a pair

CTMDP = {CTMC,U}

where:

• CTMC is a controllable continuous-time Markov chain (Definition 2.29); and

• J : K→ R is the (measurable) one stage cost/ utility function, associating to each state

a real value.

Now, we denote the probability transition matrix by

Π(t) = [π(r,i,τ,j,k)]i,j,k, τ ≥ r

such that, π(r,i,τ,j,k) = π(0,i,t,j,k), t = τ − r ∀ i, j ∈ S and where
∑N

j=1 π(j|i,k) = 1. The

Kolmogorov forward equations can be written as the matrix differential equation as follows:

Π′(t) = Π(t) Q; Π(0) = I

Π(t) ∈ RN×N , I ∈ RN×N is the identity matrix. This system can be solved by

Π(t) = Π(0) eQt = eQt :=
∞∑
t=0

tnQn

n!

and at the stationary state, the probability transition matrix is defined as

Π∗ = lim
t→∞

Π(t)

Definition 2.31 The vector P ∈ RN is called stationary distribution vector if(
Π>
)∗
P = P

where
∑N

i=1 P(i) = 1.

This vector can be seen as the long-run proportion of time that the process is in state s(i) ∈ S.

Theorem 2.32 The following statements are equivalent:

• Q> P = 0

• Π>(t) P = P ; ∀ t ≥ 0

The proof of this fact is easy in the case of a finite state space, recalling the Kolmogorov

backward equation.
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2.4.2.1 Continuous time Markov chains games

Definition 2.33 A continuous-time Markov game is a pair

G = {N , CTMDP}

where:

• CTMDP is a continuous-time Markov decision process (Definition 2.30); and

• N = {1, ..., n} is the set of players, each player is indexed by l = 1, n.

A strategy for player l is then defined as a sequence dl =
{
dl(t), t ≥ 0

}
of stochastic

kernels dl(t) such that:

a. for each time t ≥ 0, dl(k|i)(t) is a probability measure on Al such that dl
(Al(s(i))|i)

(t) = 1

and,

b. for every El ∈ B(Al), dl
(El|i)(t) is a Borel-measurable function in t ≥ 0.

We denoted by Dl the family of all strategies for player l. A multistrategy is a vector d =

(d1, ..., dN ) ∈ D := ⊗Nl=1D
l. From now on, we will consider only stationary strategies

dl(k|i)(t) = dl(k|i). For each strategy dl(k|i) the associated transition rate matrix is defined as:

Ql(dl) :=
[
ql(i,j)(d

l)
]

=
M∑
k=1

ql(j|i,k)d
l
(k|i)

such that on a stationary state distribution for all dl(k|i) and t ≥ 0 we have that

Πl∗(d) = lim
t→∞

eQ
l(dl)t

where Πl∗ (dl) is a stationary transition controlled matrix.

2.5 Formulation of Markov chains games

Considering the utility matrix U l
(i,j,k) and the transition matrix πl(j|i,k), the utility function

that describes the behavior of each player is defined as

W l
(i,k) =

N∑
j=1

U l
(i,j,k)π

l
(j|i,k) (2.3)
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so that the average utility function Jl in the stationary regime can be expressed as

Jl
(
c1, ..., cN

)
:=

N∑
i=1

M∑
k=1

W l
(i,k)

N∏
l=1

dl(k|i)P
l
(
sl=s(i)

)
Given that cl :=

[
cl(i,k)

]
i=1,N ;k=1,M

is a matrix with elements

cl(i,k) = dl(k|i)P
l
(
sl=s(i)

)
(2.4)

it follows that

Jl
(
c1, ..., cN

)
:=

N∑
i=1

M∑
k=1

W l
(i,k)

N∏
l=1

cl(i,k) (2.5)

Notice that by (2.4) it follows that

P l
(
sl=s(i)

)
=

M∑
k=1

cl(i,k), dl(k|i) =
cl(i,k)

M∑
k=1

cl(i,k)

(2.6)

The variable cl(i,k) satisfies the following restrictions:

1. Each vector from the matrix cl(i,k) represents a stationary mixed-strategy that belongs to

the simplex

cl ∈ C l
adm =

{
cl(i,k) ∈ RN×M : cl(i,k) ≥ 0,

N∑
i=1

M∑
k=1

cl(i,k)=1

}
(2.7)

2. The variable cl(i,k) satisfies the ergodicity constraints, and belongs to the convex, closed

and bounded set defined as follows:

cl ∈ C l
adm =

{
hl(j)(c

l) =
N∑
i=1

M∑
k=1

πl(j|i,k)c
l
(i,k) −

M∑
k=1

cl(j,k)= 0

}
(2.8)

3. And, in case of continuous time Markov games, the variable cl(i,k) satisfies the continuous

time condition:

cl ∈ C l
adm =

{
N∑
i=1

M∑
k=1

ql(j|i,k)c
l
(i,k) = 0

}
(2.9)

In the ergodic case
∑M

k=1 c
l
(i,k) > 0 for all l = 1,N . The individual aim of each player is

min
cl∈Cladm

Jl(cl) or max
cl∈Cladm

Jl(cl) depending on whether Jl(cl) is a cost or utility function.
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Chapter 3

The Strong Lp−Nash Equilibrium

3.1 Introduction

Nash equilibrium [62] is a fundamental concept in game theory and the most widely used

method of predicting the outcome of a strategic interaction of several decision makers in non-

cooperative games. It is concerned with a strategy profile such that no player can unilaterally

change her/his strategy to increase her/his payoff. However, non-cooperative equilibrium has

individually stability and the collective stability is a special case of the Nash equilibrium called

strong Nash equilibrium (SNE).

The SNE was introduced by Aumann [7] for cooperative games. It may benefit from es-

tablishing coalitions with other players and there is no coalition that can definitely improve

their payoffs by a collective deviation. A SNE is a Nash Equilibrium for which no coalition

of players has a joint deviation that improves the payoff of each member of the coalition. In

cooperative games the players can find a strategy producing the smaller total expected loss,

such cooperative strategy leads to strong Pareto optimal solution of the game.

The difference between the non-cooperative and cooperative Nash equilibrium can be ex-

emplified by the following version of the Prisoner’s dilemma [82, 84].

Example 3.1 Prisoner’s dilemma. Consider the following two-person game with two possible

strategies: al and bl (l = 1, 2) and the utilities represented by the following matrix
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Player1\Player2 a2 b2

a1 (2 ,2) (0 ,3)

b1 (3 ,0) (1 ,1)

The following interpretation of the game explains its name. The column Player2 is society,

the row Player1 is a citizen. When free, the citizen can behave well (a1) or commit a crime

(b1). Society can jail him (b2) or let him free (a2). Commission of a crime benefits the individual

but damages society; punishing the criminal is damaging to both. The players are planning to

play (a1, a2) unless one of them deviates. If player 1 deviates (b1, a2), player 2 punishes him

by forcing (b1, b2). Clearly, the punishing player profits from the punishing arrangement and

he has no motivation to forgive the deviant. It is easily verified that (a1, a2) is indeed a strong

Nash equilibrium. The only Nash equilibrium is (b1, b2).

There are several proposals reported in the literature to search strong Nash equilibria for

specific classes of games, e.g., congestion games, connection games, maxcut games, voting

models, coalition formation and other fields. Proving the existence of SNE is a difficult prob-

lem [64] and there are a small number of computational tools available for finding the SNE.

In order to solve the problem many refinements of Nash equilibrium were proposed to have

a better model of the real world. Ichiishi [41] proposed a social coalition equilibrium where

an abstract model of society in which each member can cooperate with others by forming a

coalition, but at the same time can be influenced by the members outside the coalition. Green-

berg and Weber [34] investigated the existence and proposed a partial characterization of a

“strong Tiebout equilibrium” consisting of an endogenously formed partition of the individ-

uals into disjoint jurisdictions with each jurisdiction producing and financing its own public

goods where no group of individuals can benefit by establishing their own community. De-

mange and Henriet [25] proved that in a sustainable oligopoly each consumer chooses the firm

which proposes the price-quality schedule he prefers, firms earn non-negative profits and no

new firm could attract consumers and make profits. Demange [24] proposed two forces that

are at work to explain the formation of coalitions that partition the society in a stable way: the
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increasing power of the coalitions which incites to cooperate, the heterogeneity of the agents

which leads to the formation of subgroups. Konishi et al. [49] proved that a non-cooperative

game with a finite set of players and common finite strategy sets possesses a strong Nash equi-

librium in pure strategies whenever individuals’ preferences satisfy independence of irrelevant

choices, anonymity, and partial rivalry. Then, he [50] examined the conditions which guarantee

that the set of coalition-proof Nash equilibria coincides with the set of strong Nash equilibria

in the normal form games without spillovers. Hotzman [38] obtained conditions for the ex-

istence of a strong equilibrium in congestion games, as well for the equivalence of Nash and

strong equilibria, giving conditions for uniqueness and for Pareto optimality of the Nash equi-

librium. Rozenfeld [81] dealt with possible deviations by coalitions of players in congestion

games studying the existence of strong and correlated strong equilibria in monotone conges-

tion games. Gatti et al. [31] suggested that in order for a n–agent game to have at least one

non–pure–strategy SNE, the agents’ payoffs restricted to the agents’ supports must lie on an

(n − 1)–dimensional space. Gatti et al. [30] provided a nonlinear program in which a strat-

egy profile is forced to be Pareto efficient with respect to coalition correlated strategies. It

is a sufficient, but non–necessary, condition for the existence of an SNE that can be used to

search for an SNE. Kubica and Wozniak [51] provided an interval method approach to verify

the existence of equilibria in certain points and proposed an algorithm for finding the SNE.

However, these proposal and algorithms fail in establishing a proper formulation regarding

existence, recognition, and computation for the Pareto optimality. Most of them find a Nash

equilibrium and then verify the Pareto optimality.

This chapter presents a method for computing the strong Lp−Nash equilibrium in case of

discrete time Markov chains games [101, 96]. The problem is solved in terms of the Lp−norm:

players choose a strategy that minimizes the distance to the utopian minimum and no other

strategy produces a smaller total expected loss. This means that there exists an optimal solu-

tion that is a strong Pareto optimal point and it is the closest solution to the minimum utopia

point. The strong Pareto optimal solution corresponds to the strong Nash equilibrium. First, a

general solution is presented for the Lp−norm for computing the strong Lp−Nash equilibrium.

Then, an explicit solution is suggested for the norms L1, L2 and L∞. For solving the problem,
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the extraproximal method is used [5]: a natural extension of the proximal and the gradient opti-

mization methods used for solving the more difficult problems for finding an equilibrium point

in game theory. The extraproximal method is defined by a two-step iterated procedure consist-

ing of a prediction step that calculates the preliminary position approximation to the equilib-

rium point, and a basic adjustment of the previous step. The method is designed for the static

strong Nash game in terms of nonlinear programming problems implementing the Lagrange

principle; then, employing the Tikhonov’s regularization method ensures the convergence of

the cost-functions to a unique strong Lp−Nash equilibrium. The nonlinear programming prob-

lem is formulated considering several linear constraints employing the c-variable method for

making the problem computationally tractable. For solving each equation of the extraproximal

optimization approach the projection gradient method is used. It is proved that the proposed

method converges in exponential time to a strong Lp−Nash equilibrium.

3.2 Formulation of the problem

To study the existence of Pareto policies it is necessary first follow the well-known “scalar-

ization” approach. Thus, given a n-vector λ > 0 consider the cost-function J. Let

ul := col
(
cl
)
, U l := C l

adm , U :=
N⊗
l=1

U l

for l = 1, n, where col is the column operator.

The Pareto set can be defined as [32, 33]

P :=

{
u∗ (λ) := arg min

u∈U

[
n∑
l=1

λl Jl(u)

]
, λ ∈ Sn

}

such that

Sn :=

{
λ ∈ Rn : λ ∈ [0, 1] ,

n∑
l=1

λl = 1

}
for

J (u∗(λ)) =
(
J1 (u∗ (λ)) ,J2 (u∗ (λ)) , ...,Jn (u∗ (λ))

)
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The vector u∗ is called a Pareto optimal solution for P . The Pareto front is defined as the image

of P under J as follows

J(P):=
{(

J1 (u∗ (λ)) ,J2 (u∗ (λ)) , ...,Jn (u∗ (λ))
)
| u∗ ∈ P

}
A Nash equilibrium is a strategy u∗ = (u1∗, ..., un∗) such that

J
(
u1∗, ..., un∗

)
≤ J

(
u1∗, ..., ul, ..., un∗

)
for any ul ∈ U .

A strong Nash equilibrium is a strategy u∗∗ = (u1∗∗, ..., un∗∗) such that there does not

exist any ul ∈ U, ul 6= ul∗∗ such that

J
(
u1∗∗, ..., ul, ..., un∗∗

)
≤ J

(
u1∗∗, ..., un∗∗

)
for any ul ∈ U .

Remark 3.2 The game problem is to find a policy u∗ that minimizes J(u1, ..., un) in the sense

of Pareto.

Let P be a subset of Rn. The tangent cone to P at u ∈ P is the set of all the directions

u′ ∈ Rn in which some sequence in P converges to u. A vector u∗ ∈ P in Rn is said to be

1. a Pareto point of P if there is no u ∈ P such that u < u∗;

2. a weak Pareto point of P if there is no u ∈ P such that u << u∗;

3. a proper Pareto point of P if u∗ is a Pareto point and, in addition, the tangent cone to P

at u∗ does not contain vectors u′ < 0.

A policy u∗ is said to be a Pareto policy (or Pareto optimal) if there is no policy u such that

J(u) < J(u∗), and similarly for weak or proper Pareto policies.

Problem Formulation. Let

Jl∗ = inf
u∈U

Jl(u)
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and define the utopia minimum as J∗ = (J1∗, ...,Jn∗) (infeasible in general), then the resulting

problem is to find the values of

λ∗ = arg min
λ∈Sn

n∑
l=1

λl Jl(u∗(λ))

in order to find the strong Nash equilibrium u∗(λ) whose cost vector J(u∗(λ)) is the “closest”

to J∗ in the usual Euclidean norm. Let ‖.‖ be the Euclidean norm in Rn and let % : D → R+

be the map defined as

%(u) := ‖J(u)− J∗‖

J∗ is also known as the utopian or the ideal or the shadow minimum [91, 92]. This is a utility

function (or a strongly monotonically increasing function [42]) for the Markov chains game in

the sense that if u and u′ are such that J(u) < J(u′), then %(u) < %(u′).

A policy u∗ is said to be strong Pareto optimal (or a strong Pareto policy) if it minimizes

the function % that is,

%(u∗) = inf {%(u) | u∗ ∈ D} =: %∗

As % is a utility function, it is clear that a strong Pareto policy is Pareto optimal, but of course

the converse is not true.

3.3 The strong Lp−Nash equilibrium

Consider a game with N = {1, ..., n} players with strategies ul ∈ U l
(
l = 1, n

)
where U

is a convex and compact set. Denote by u = (u1, ..., un)> ∈ U the joint strategy of the players

and ul̂ is a strategy of the rest of the players adjoint to ul, namely,

ul̂ :=
(
u1, ..., ul−1, ul+1, ..., un

)> ∈ U l̂ :=
n⊗

m=1, m 6=l

Um

such that u = (ul, ul̂)
(
l = 1, n

)
.

Players try to reach the one of Nash equilibria, that is, to find a joint strategy u∗ =

(u1∗, ..., un∗) ∈ U satisfying for any admissible ul ∈ U l and any l = 1, n

GLp (u, û(u)) :=

(
n∑
l=1

∣∣∣∣(min
ul∈U l

ϕl

(
ul, ul̂

))
− ϕl

(
ul, ul̂

)∣∣∣∣p
)1/p

(3.1)
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where û(u) = (u1̂>, ..., un̂>)> ∈ Û ⊆ Rn(n−1) and p ≥ 1 [92, 91]. Here ϕl
(
ul, ul̂

)
is the

cost-function of the player l which plays the strategy ul ∈ U l and the rest of the players the

strategy ul̂ ∈ U l̂.

If we consider the utopia point

ūl := arg min
ul∈U l

ϕl

(
ul, ul̂

)
(3.2)

then, we can rewrite eq. (3.1) as follows

GLp (u, û(u)) :=

(
n∑
l=1

∣∣∣ϕl (ūl, ul̂)− ϕl (ul, ul̂)∣∣∣p)1/p

The functions ϕl
(
ul, ul̂

) (
l = 1, n

)
are assumed to be convex in all their arguments.

Remark 3.3 The function GLp (u, û(u)) satisfies the Nash property

ϕl

(
ūl, ul̂

)
− ϕl

(
ul, ul̂

)
≤ 0 (3.3)

for any ul ∈ U l and all l = 1, n

Remark 3.4 Following restrictions (2.7) and (2.8), the set U admissible (Uadm) is defined as

follows

Uadm = C1
adm × · · · × Cn

adm

Definition 3.5 A strategy u∗ ∈ Uadm is said to be a Lp−Nash equilibrium if

u∗Lp ∈ Arg min
u∈Uadm

{
GLp (u, û(u))

}
Remark 3.6 If GLp (u, û(u)) is strictly convex then

u∗Lp = arg min
u∈Uadm

{
GLp (u, û(u))

}
Definition 3.7 A strategy u∗∗ ∈ Uadm is said to be a strong Lp−Nash equilibrium if

u∗∗Lp ∈ Arg min
u∈Uadm,λ∈Sn

{
GLp (u(λ), û(u, λ))

}
where

GLp (u(λ), û(u, λ) :=

(
n∑
l=1

λl
∣∣∣ϕl (ūl, ul̂)− ϕl (ul, ul̂)∣∣∣p)1/p

(3.4)
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Remark 3.8 If GLp (u(λ), û(u, λ)) is strictly convex then

u∗∗Lp = arg min
u∈Uadm,λ∈Sn

{
GLp (u(λ), û(u, λ))

}
3.3.1 The strong Nash equilibrium for norms L1 and L2

If ϕl
(
ul, ul̂

)
= ϕl

(
ūl, ul̂

)
in eq. (3.4), then ul achieves the minimum of J(u) giving the

optimal solution to each player l. But such cases are rarely and hardly ever take place. Then,

players choose a strategy that minimizes the distance from ϕl

(
ul, ul̂

)
to ϕl

(
ūl, ul̂

)
where ūl

satisfies the utopia (3.2), this corresponds to the strong Nash equilibrium. That is, no other

strategy produces a smaller total expected loss in the sense of the distance given by eq. (3.4).

This means that there exists an optimal solution ul that is a strong Pareto optimal solution and

it is the closest solution to the utopia point ūl.

To find the strong Lp-Nash equilibrium (Definition 3.7) of this minimization Lp-norm prob-

lem, we propose the following solutions:

Definition 3.9 The strong L1-Nash equilibrium u∗∗Lp ∈ U can be expressed for L1 norm as

follows

u∗∗Lp = arg min
u∈U,λ∈Sn

GLp (u(λ), û(u, λ))

GLp(u(λ), û(u, λ)) :=
n∑
l=1

λl
∣∣∣ϕl (ūl, ul̂)− ϕl (ul, ul̂)∣∣∣

ϕl

(
ūl, ul̂

)
:= min

zl∈U l
ϕl

(
zl, ul̂

)

Definition 3.10 The strong L2-Nash equilibrium u∗∗Lp ∈ U can be expressed for L2 norm as

follows

u∗∗Lp = arg min
u∈U,λ∈Sn

GLp (u(λ), û(u, λ))

GLp (u(λ), û(u, λ)) :=

(
n∑
l=1

λl
∣∣∣ϕl (ūl, ul̂)− ϕl (ul, ul̂)∣∣∣2)1/2

ϕl

(
ūl, ul̂

)
:= min

zl∈U l
ϕl

(
zl, ul̂

)
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Applying the Lagrange principle (see, for example, [76]) for Definitions 3.9 and 3.10, we

may conclude

u∗∗Lp = arg min
u∈U,û(u)∈Û ,λ∈Sn

max
ξ≥0
Lδ(u, û(u), λ, ξ)

Lδ(u, û(u),λ, ξ) := GLp,δ (u(λ), û(u, λ)) +
n∑
l=1

N∑
j=1

ξljh
l
j(c)− δ

2

n∑
l=1

N∑
j=1

(
ξlj
)2

(3.5)

where

GLp,δ (u(λ), û(u, λ)) =

(
n∑
l=1

λl
∣∣∣ϕl (ūl, ul̂)− ϕl (ul, ul̂)∣∣∣p)1/p

+
δ

2
(‖u‖2 +‖û(u)‖2 +‖λ‖2)

Now, the function GLp,δ (u(λ), û(u, λ)) is strictly convex if the Hessian matrix is positive

semi-definite, then GLp,δ (u(λ), û(u, λ)) attains a minimum at (u(λ), û(u, λ)) if

∇2GLp,δ (u(λ), û(u, λ)) =
∂2

(∂u1)2
GLp,δ (u(λ), û(u, λ)) · · · ∂2

∂u1∂un
GLp,δ (u(λ), û(u, λ))

∂2

∂u2∂u1
GLp,δ (u(λ), û(u, λ)) · · · ∂2

∂u2∂un
GLp,δ (u(λ), û(u, λ))

· · · · · · · · ·
∂2

∂un∂u1
GLp,δ (u(λ), û(u, λ)) · · · ∂2

(∂un)2
GLp,δ (u(λ), û(u, λ))

 =


δIn1×n1 DG1,2(û1,2) · · · DG1,n(û1,n)

DG2,1(û2,1) δIn2×n2 · · · DG3,2(û3,2)

· · · · · · · · · · · ·

DG3,1(û3,1) DG3,2(û3,2) · · · δInn×nn

 > 0

or, equivalently, δ should provide the inequality

min
u∈U,û∈Û

[
Λmin

(
∇2GLp,δ (u(λ), û(u, λ))

)]
> 0

where Λmin is the minimum eigenvalue. Here, ûik is independent of u(i) and u(k), that is,
∂

∂u(i)
ûik = 0 and ∂

∂u(k)
ûik = 0.
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With sufficiently large δ, the considered functions provide the uniqueness of the conditional

optimization problem (3.5). Notice also that the Lagrange function in (3.5) satisfies the saddle-

point condition [75], namely, for all u ∈ U , û ∈ Û , λ ∈ Sn and ξ ≥ 0 we have

Lδ(u∗δ , û∗δ(u), λ∗δ , ξδ)≤Lδ(u∗δ , û∗δ(u), λ∗δ , ξ
∗
δ )≤Lδ(uδ, ûδ(u), λδ, ξ

∗
δ )

3.3.2 Strong L∞−Nash equilibrium

Definition 3.11 The strong Nash equilibrium u∗∗ ∈ U can be expressed for L∞ as follows

u∗∗Lp ∈ arg min
u∈U,λ∈Sn

GLp (u(λ), û(u, λ))

GLp (u(λ), û(u, λ)) := max
l

∣∣∣λl [ϕl (ūl, ul̂)− ϕl (ul, ul̂)]∣∣∣
ϕl

(
ūl, ul̂

)
:= min

zl∈U l
ϕl

(
zl, ul̂

)

That implies ∣∣∣λl [ϕl (ul, ul̂)− ϕl (ul, ul̂)]∣∣∣ ≤ t, t→ min
t,u,û

Then, applying the Lagrange principle we have

L(t, u, û(u), λ, θ) : = t+
n∑
l=1

θl
(∣∣∣λl [ϕl (ūl, ul̂)− ϕl (ul, ul̂)]∣∣∣− t)

= t

(
1−

n∑
l=1

θl

)
+

n∑
l=1

θl
(∣∣∣λl [ϕl (ūl, ul̂)− ϕl (ul, ul̂)]∣∣∣)

It has a minimum if and only if θ belongs to the simplex, i.e., θ ∈ Sn

Sn :=

{
θ ∈ Rn : θ ∈ [0, 1] ,

n∑
l=1

θl = 1

}

Then, the L∞-norm problem is reduced to the form

L(u, û(u), λ, θ) =
n∑
l=1

θl
∣∣∣λl [ϕl (ūl, ul̂)− ϕl (ul, ul̂)]∣∣∣→ min

u,û(u),λ∈Sn
max
θ∈Sn
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Remark 3.12 Applying the Lagrange principle for Definition 3.11, we may conclude that eq.

(3.5) can be rewritten as follows

u∗∗Lp = arg min
u∈U,û(u)∈Û ,λ∈Sn

max
ξ≥0,θ∈Sn

Lδ(u, û(u),λ, ξ, θ)

Lδ(u, û(u), λ, ξ, θ) := Lδ(u, û(u), λ, θ) +
n∑
l=1

N∑
j=1

ξljh
l
j(c)− δ

2

n∑
l=1

N∑
j=1

(
ξlj
)2

(3.6)

where

Lδ(u, û(u), λ, θ) =
n∑
l=1

θl
∣∣∣λl [ϕl (ūl, ul̂)− ϕl (ul, ul̂)]∣∣∣+ δ

2
(‖u‖2 +‖û(u)‖2 +‖λ‖2−‖θ‖2)

3.4 The proximal format

In the proximal format (see [5]) the relation (3.5) can be expressed as

ξ∗δ = arg max
ξ≥0

{
−1

2
‖ξ − ξ∗δ‖2 + γLδ(u∗δ , û∗δ(u), λ∗δ , ξ)

}
u∗δ = arg min

u∈U

{
1
2
‖u− u∗δ‖2 + γLδ(u, û∗δ(u), λ∗δ , ξ

∗
δ )
}

û∗δ(u) = arg min
û∈Û

{
1
2
‖û(u)− û∗δ(u)‖2 + γLδ(u∗δ , û(u), λ∗δ , ξ

∗
δ )
}

λ∗δ = arg min
λ∈Sn

{
1
2
‖λ− λ∗δ‖2 + γLδ(u∗δ , û∗δ(u), λ, ξ∗δ )

}
(3.7)

Given (3.6) the proximal format for the L∞-norm problem will be extended with the fol-

lowing equation

θ∗δ = arg max
θ∈Sn

{
−1

2
‖θ − θ∗δ‖2 + γLδ(u∗δ , û∗δ(u), λ∗δ , ξ

∗
δ , θ)

}
where the solutions u∗δ , û

∗
δ(u), λ∗δ , θ

∗
δ and ξ∗δ depend on the parameters δ, γ > 0.

3.5 The extraproximal method

The Extraproximal Method for the conditional optimization problems (3.5) was suggested

by Antipin [5]. The general format iterative version (n = 0, 1, ...) of the extraproximal method

with some fixed admissible initial values (u0 ∈ U, û0(u) ∈ Û , λ0 ∈ [0, 1], and ξ0 ≥ 0) is as

follows
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1. The first half-step (prediction):

ξ̄n= arg min
ξ≥0

{
1
2
‖ξ − ξn‖2−γLδ(un, ûn(u), λn, ξ)

}
ūn= arg min

u∈U

{
1
2
‖u− un‖2 + γLδ(u, ûn(u), λn, ξ̄n)

}
ûn(u) = arg min

û∈Û

{
1
2
‖û(u)− ûn(u)‖2+γLδ(un, û(u), λn, ξ̄n)

}
λ̄n= arg min

λ∈Sn

{
1
2
‖λ− λn‖2+γLδ(un, ûn(u), λ,ξ̄n)

}
(3.8)

2. The second half-step (basic)

ξn+1= arg min
ξ≥0

{
1
2
‖µ− µn‖2−γLδ(ūn, ûn(u),λ̄n,ξ)

}
un+1= arg min

u∈U

{
1
2
‖u− un‖2 + γLδ(u, ûn(u), λ̄n, ξ̄n)

}
ûn+1(u) = arg min

û∈Û

{
1
2
‖û(u)− ûn(u)‖2+γLδ(ūn, û(u), λ̄n, ξ̄n)

}
λn+1= arg min

λ∈Sn

{
1
2
‖λ− λn‖2+γLδ(ūn, ûn(u), λ, ξ̄n)

}
(3.9)

Then, given (3.6) the extraproximal method will be extended with the following equations

1. The first half-step (prediction):

θ̄n= arg min
θ∈Sn

{
1
2
‖θ − θn‖2−γLδ(un, ûn(u), λn, ξ̄n,θ)

}
2. The second half-step (basic)

θn+1= arg min
θ∈Sn

{
1
2
‖θ − θn‖2−γLδ(ūn, ûn(u),λ̄n, ξ̄n,θ)

}
3.6 Convergence analysis

The following theorem presents the convergence conditions of (3.8 - 3.9) and gives the

estimate of its rate of convergence for the Lp− Nash equilibrium and the strong Lp− Nash

equilibrium. As well, we prove that the extraproximal method converges to an equilibrium

point. Let us define the following extended vectors

ũ:=


u

û

λ

 ∈ Ũ := U × Û × R+, z̃:= ξ ∈ Z̃:=R+
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Then, the regularized Lagrange function can be expressed as

L̃δ(ũ, z̃) := Lδ(uδ, ûδ, λδ, ξδ)

The equilibrium point that satisfies (3.7) can be expressed as

ũ∗δ = arg min
ũ∈Ũ

{
1
2
‖ũ− ũ∗δ‖

2+γL̃δ(ũ, z̃∗δ )
}

z̃∗δ = arg max
z̃∈Z̃

{
−1

2
‖z̃ − z̃∗δ‖

2+γL̃δ(ũ∗δ , z̃)
}

Now, introducing the following variables

w̃ =

 w̃1

w̃2

 ∈ Ũ × Z̃, ṽ =

 ṽ1

ṽ2

 ∈ Ũ × Z̃
and let define the Lagrangian in term of the previous variables

Lδ(w̃, ṽ) := L̃δ(w̃1, ṽ2)− L̃δ(ṽ1, w̃2)

For w̃1 = ũ, w̃2 = z̃, ṽ1 = ṽ∗1 = ũ∗δ and ṽ2 = ṽ∗2 = z̃∗δ we have

Lδ(w̃, ṽ
∗) := L̃δ(ũ, z̃∗δ )− L̃δ(ũ∗δ , z̃)

In these variables the relation (3.7) can be represented as follows

ṽ∗= arg min
w̃∈Ũ×Z̃

{
1
2
‖w̃ − ṽ∗‖2+γLδ(w̃, ṽ

∗)
}

(3.10)

Finally, we have that the extraproximal method can be expressed by

1. First step

v̂n= arg min
w̃∈Ũ×Z̃

{
1
2
‖w̃ − ṽn‖

2+γLδ(w̃, ṽn)
}

(3.11)

2. Second step

ṽn+1= arg min
w̃∈Ũ×Z̃

{
1
2
‖w̃ − ṽn‖

2+γLδ(w̃, v̂n)
}

(3.12)

Once the proximal and extraproximal method has been defined in terms of these new vari-

ables, we can follow the convergence theorems and proofs presented in Appendix C.
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3.7 Numerical example

Consider a Nash game with 3 players. Let the number of states N = 4 and the actions

M = 2 for each player. Then, the transition matrices for each player be defined as follows

π1
(i,j,1)=


0.9535 0.0055 0.0120 0.0289

0.3971 0.2711 0.3097 0.0221

0.0778 0.0309 0.0431 0.8482

0.9398 0.0485 0.0095 0.0022

 π1
(i,j,2)=


0.2981 0.0405 0.3335 0.3279

0.3522 0.2399 0.1467 0.2612

0.0882 0.7087 0.1557 0.0474

0.2406 0.1503 0.3903 0.2189



π2
(i,j,1)=


0.7543 0.2206 0.0162 0.0089

0.1495 0.2411 0.2547 0.3547

0.0076 0.1221 0.0527 0.8176

0.3773 0.3154 0.0372 0.2701

 π2
(i,j,2)=


0.2809 0.3226 0.3149 0.0815

0.9486 0.0091 0.0409 0.0014

0.0495 0.3111 0.2543 0.3851

0.2649 0.0297 0.2508 0.4547



π3
(i,j,1)=


0.1368 0.3923 0.0525 0.4184

0.0598 0.3454 0.3366 0.2582

0.1450 0.3711 0.1858 0.2981

0.4365 0.4967 0.0350 0.0318

 π3
(i,j,2)=


0.1888 0.2770 0.2159 0.3184

0.2945 0.3463 0.1538 0.2054

0.0504 0.2463 0.3467 0.3566

0.3766 0.2250 0.2691 0.1292


The individual utility for each player is defined by

U1
(i,j,1) =


7 17 3 55

1 10 6 7

0 16 17 4

0 15 9 1

 U2
(i,j,1)=


0 17 9 11

0 17 9 7

0 11 12 4

0 15 11 1

 U3
(i,j,1)=


5 8 7 8

1 4 3 5

4 6 17 1

12 0 7 3



U1
(i,j,2) =


37 6 8 3

4 10 8 6

4 6 8 10

2 5 9 0

 U2
(i,j,2)=


10 18 80 9

4 5 1 3

4 6 7 0

12 7 8 0

 U3
(i,j,2)=


9 13 7 9

5 0 70 4

11 2 19 6

3 10 14 5


Applying the extraproximal method for Markov chains: For L2−norm the resulting strate-

gies c(i,k) for each player (see Figures 3.1, 3.2 and 3.3) are as follows
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c1 =


0.1737 0.1963

0.1012 0.0856

0.0878 0.1330

0.0050 0.2174

 c2 =


0.4272 0.0050

0.1935 0.0050

0.0453 0.0838

0.0602 0.1801

 c3 =


0.0894 0.0856

0.3310 0.0050

0.1332 0.1055

0.1084 0.1419


As well Figure 3.4 shows the convergence of the parameter λ

λl =


0.3691

0.2843

0.3467



Figure 3.1 Strategies for Player 1, norm p = 2. Figure 3.2 Strategies for Player 2, norm p = 2.

Figure 3.3 Strategies for Player 3, norm p = 2. Figure 3.4 Convergence of λl, norm p = 2.
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Then, applying (2.6) the strategies needed to converge to a strong Nash equilibrium are as

follows:

d1 =


0.4693 0.5307

0.5416 0.4584

0.3977 0.6023

0.0225 0.9775

 d2 =


0.9884 0.0116

0.9748 0.0252

0.3506 0.6494

0.2504 0.7496

 d3 =


0.5109 0.4891

0.9851 0.0149

0.5579 0.4421

0.4330 0.5670


Finally, the resulting individual utilities are as follows:

J1 = 48.9213

J2 = 22.1660

J3 = 22.6872

For L∞−norm the strategies c(i,k) for the players (see Figures 3.5, 3.6 and 3.7) are as

follows:

c1 =


0.1669 0.2082

0.1004 0.0863

0.0837 0.1350

0.0177 0.2018

 c2 =


0.4278 0.0050

0.1940 0.0050

0.0456 0.0828

0.0622 0.1775

 c3 =


0.0860 0.0887

0.3293 0.0050

0.1285 0.1120

0.1062 0.1443



Figure 3.5 Strategies for Player 1, norm p =∞. Figure 3.6 Strategies for Player 2, norm p =∞.

As well Figures 3.8 and 3.9 show the convergence of the parameter λ and θ.

λl =


0.3981

0.2475

0.3544

 θl =


0.2869

0.3817

0.3314


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Figure 3.7 Strategies for Player 3, norm p =∞.

Figure 3.8 Convergence of λ, norm p =∞. Figure 3.9 Convergence of θ, norm p =∞.

Then, applying (2.6) the strategies needed to converge to a strong Nash equilibrium are as

follows:

d1 =


0.4450 0.5550

0.5378 0.4622

0.3827 0.6173

0.0805 0.9195

 d2 =


0.9884 0.0116

0.9749 0.0251

0.3553 0.6447

0.2595 0.7405

 d3 =


0.4921 0.5079

0.9850 0.0150

0.5344 0.4656

0.4239 0.5761


Then, the resulting individual utilities are as follows:

J1 = 54.2461, J2 = 19.3209, J3 = 23.4588

Remark 3.13 In order to demonstrate the effectiveness of the solution we prove that GL∞ =

4.1598 < GL2 = 5.0202





Chapter 4

The Strong Lp−Stackelberg game

4.1 Introduction

The notion of collaboration implies that related players interact with each other looking for

cooperative stability. This notion consents players to select optimal strategies and to condition

their own behavior on the behavior of others in a strategic forward-looking manner. This

chapter examines the formation of coalitions within a class of hierarchical problems called

Stackelberg games [89]. The complexity analysis of the Stackelberg equilibrium plays a central

role in game theory and it has been analyzed to determine whether the concept is reasonable

from a computational point of view.

Stackelberg games are usually represented by a leader-follower problem which corresponds

to a bi-level programming problem. In bi-level programming problems there are two competing

decision-making parties [10]: a) one is upper-level decision makers and, b) the other is lower-

level decision makers. The two levels interact with each other as follows. The lower-level is

completely restricted by the upper-level’s decision and for each decision made by the upper-

level, the lower-level will choose the best option according to their objectives. Instead, the

upper-level objectives are restricted from below by the lower-level: the upper-level controls

the lower-level’s decision in the way that the lower-level will react by choosing the best option.

In a Stackelberg game, the leader’s optimization problem is represented by the upper-level,

restricted by the follower’s optimization mission at the lower-level. The dynamics of a Stack-

elberg game is as follows: the leader considers the best-reply of the follower. Then, he/she
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commits to a mixed strategy (a probability distribution over deterministic schedules) that min-

imizes the cost, anticipating the predicted best-reply of the follower. Then, taking into the

account the adversary’s mixed strategy selection, the follower in equilibrium selects the ex-

pected best-reply that minimizes the cost (maximizes the utility).

Bi-level programming models have vast theoretical studies and applications in the real

world. The traditional methods employed to solve these problems include penalty functions

[1], the Karush-Kuhn-Tucker method [13, 37] and branch-and-bound procedures [11]. Appli-

cations were presented into the security domain by ([20, 86]) suggesting an upper-level that

represents defenders trying to minimize risk and a lower-level that represents attackers try-

ing maximizing destruction for a given target. There are several applications implemented in

different areas: transportation, agriculture, network, management.

This chapter presents an approach for computing the strong Stackelberg/Nash equilibrium

for Markov chains games [100, 97]. The cooperative n-leaders and m-followers Markov game

is solved considering the minimization of theLp-norm. The existence of theLp-Stackelberg/Nash

equilibrium is characterized as a strong Pareto policy, which is the closest in the Euclidean

norm to the virtual minimum (utopia point). Then, the optimization problem is reduced to find

a Pareto optimal solution. A bi-level programming model implemented by the extraproximal

optimization approach is designed for computing the static strong Stackelberg/Nash equilib-

rium. We design the method for the static strong Stackelberg/Nash game in terms of non-

linear programming problems implementing the regularized Lagrange principle to ensure the

convergence of the cost-functions to a unique strong Lp−Stackelberg/Nash equilibrium. We

formulate the nonlinear programming problem considering several linear constraints employ-

ing the c-variable method. The proposed method approaches in exponential time to a strong

Lp−Stackelberg/Nash equilibrium. The usefulness of the proposed solution is proved theo-

retically and by an application example related to the effectiveness of relationship marketing

strategies within the department store sector of the retail industry (supermarkets).
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4.2 The strong Stackelberg/Nash game

Let us introduce the variables

vm := col (cm), V m := Cm
adm V :=

m⊗
m=1

V m

for m = 1,m, where col is the column operator. Consider a Stackelberg game with N =

{1, ..., n} leaders whose strategies are denoted by ul ∈ U l
(
l = 1, n

)
where U is a convex and

compact set. Denote by u = (u1, ..., un)> ∈ U the joint strategy of the players and ul̂ is a

strategy of the rest of the leaders adjoint to ul, namely,

ul̂ :=
(
u1, ..., ul−1, ul+1, ..., un

)> ∈ U l̂ :=
n⊗

h=1, h 6=l

Uh

such that u = (ul, ul̂)
(
l = 1, n

)
. As well, considerM = {1, ...,m} followers with strategies

vm ∈ V m
(
m = 1,m

)
and V is also a convex and compact set. Denote by v = (v1, ..., vm) ∈ V

the joint strategy of the followers and vm̂ is a strategy of the rest of the followers adjoint to vm,

namely,

vm̂ :=
(
v1, ..., vm−1, vm+1, ..., vm

)> ∈ V m̂ :=
m⊗

q=1, q 6=m

V q

such that v = (vm, vm̂)
(
m = 1,m

)
.

4.2.1 The strong Nash equilibria

Following the concepts presented in Chapter 3. In the dynamics of the game leaders play

cooperatively and they are assumed to anticipate the reactions of the followers trying to reach

the strong Nash equilibria. For reaching the goal of the game leaders first try to find a joint

strategy u∗ = (u1∗, ..., un∗) ∈ U satisfying for any admissible ul ∈ U l and any l = 1, n

GLp (u, û(u)) :=

(
n∑
l=1

λl
∣∣∣ϕl (ūl, ul̂)− ϕl (ul, ul̂)∣∣∣p )1/p

where û(u) = (u1̂>, ..., un̂>)> ∈ Û ⊆ Rn(n−1) and ūl is the utopia point (3.2). Here ϕl
(
ul, ul̂

)
is the cost-function of the leader l which plays the strategy ul ∈ U l and the rest of the leaders

play the strategy ul̂ ∈ U l̂, these functions are assumed to be convex in all their arguments.
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Condition 4.1 The function GLp (u, û(u)) satisfies the Nash condition

g (u, û(u)) =
n∑
l=1

[
ϕl

(
ūl, ul̂

)
− ϕl

(
ul, ul̂

)]
≤ 0

for any ul ∈ U l and all l = 1, n.

As well, in this process the followers try to reach one of the strong Nash equilibria trying

to find a joint strategy v∗ = (v1∗, ..., vm∗) ∈ V satisfying for any admissible vm ∈ V m and any

m = 1,m

FLp (v, v̂(v)) :=

(
m∑

m=1

θm
∣∣ψm (v̄m, vm̂)− ψm (vm, vm̂)∣∣p)1/p

where v̂(v) = (v1̂>, ..., vm̂>)> ∈ V̂ ⊆ Rm(m−1) and v̄m is defined as the utopia point (3.2). Here

ψm
(
vm, vm̂

)
is the cost-function of the follower m which plays the strategy vm ∈ V m and the

rest of the followers play the strategy vm̂ ∈ V m̂, these functions are assumed to be convex in

all their arguments.

Condition 4.2 The function FLp (v, v̂(v)) satisfies the Nash condition

f (v, v̂(v)) =
m∑

m=1

[
ψm
(
v̄m, vm̂

)
− ψm

(
vm, vm̂

)]
≤ 0

for any vm ∈ V m and all m = 1,m.

4.2.2 The Stackelberg game

Leaders and followers together are in a Stackelberg game: the model involves two cooper-

ative Nash games restricted by a Stackelberg game defined as follows.

Definition 4.3 A game with n leaders and m followers said to be a cooperatively Stackelberg-

Nash game if

GLp (u(λ), û(u, λ)|v) :=

(
n∑
l=1

λl
∣∣∣ϕl (ūl, ul̂|v)− ϕl (ul, ul̂|v)∣∣∣p)1/p

given λ ∈ Sn such that

g (u, û(u)|v) =
N∑
l=1

[
ϕl

(
ūl, ul̂|v

)
− ϕl

(
ul, ul̂|v

)]
≤ 0
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and for the followers,

fLp (v(θ), v̂(v, θ)|u) :=

(
m∑

m=1

θm
∣∣ψm (v̄m, vm̂|u)− ψm (vm, vm̂|u)∣∣p)1/p

(4.1)

where θ ∈ Sm.

Remark 4.4 In the case of the bi-level approach introduced in Definition (4.3) we employ the

restriction fLp (v(θ), v̂(v, θ)|u) in (4.1) for ensuring the followers play cooperatively.

Definition 4.5 Let GLp (u(λ), û(u, λ)|v) be the cost functions of the leaders
(
l = 1, n

)
. A

strategy u∗ ∈ U of the leaders together with the collection v∗ ∈ V of the followers is said to

be a cooperatively Stackelberg-Nash equilibrium if

(u∗, v∗) ∈ Arg min
u∈U

min
û(u)∈Û

min
λ∈Sn

max
v∈V

max
v̂(v)∈V̂

max
θ∈Sm{

GLp (u(λ), û(u, λ)|v) | g (u, û(u)|v) ≤ 0, fLp (v(λ), v̂(v, λ)|u) ≤ 0
}

Remark 4.6 If GLp (u(λ), û(u, λ)|v) is strictly convex then

(u∗, v∗) = arg min
u∈U

min
û(u)∈Û

min
λ∈Sn

max
v∈V

max
v̂(v)∈V̂

max
θ∈Sm{

GLp (u(λ), û(u, λ)|v) | g (u, û(u)|v) ≤ 0, fLp (v(θ), v̂(v, θ)|u) ≤ 0
}

Applying the Lagrange principle we may conclude that Definition 4.5 can be rewritten as

(u∗, v∗) ∈ Arg min
u∈U

min
û(u)∈Û

min
λ∈Sn

max
v∈V

max
v̂(v)∈V̂

max
θ∈Sm

max
ω≥0

max
ξ≥0
L(u, û(u), v, v̂(v), λ, θ, ω, ξ)

where
L(u, û(u), v, v̂(v), λ, θ, ω, ξ) :=

GLp (u(λ), û(u, λ) | v) + ωg (u, û(u) | v) + ξfLp (v(θ), v̂(v, θ) | u)

The approximative solution obtained by the Tikhonov’s regularization is given by

(u∗, v∗) = arg min
u∈U

min
û(u)∈Û

min
λ∈Sn

max
v∈V

max
v̂(v)∈V̂

max
θ∈Sm

max
ω≥0

max
ξ≥0
Lδ(u, û(u), v, v̂(v), λ, θ, ω, ξ)
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such that

Lδ(u, û(u), v, v̂(v), λ, θ, ω, ξ) := GLp,δ (u(λ), û(u, λ) | v) + ωgδ (u, û(u) | v) +

ξfLp,δ (v(θ), v̂(v, θ) | u)− δ
2
(ω2 + ξ2)

(4.2)

where

GLp,δ (u(λ), û(u, λ) | v) =

(
n∑
l=1

λl
∣∣∣ϕl (ūl, ul̂ | v)− ϕl (ul, ul̂ | v)∣∣∣p)1/p

+

δ
2

(
‖u‖2 + ‖û(u)‖2 + ‖λ‖2)

gδ (u, û(u) | v) =
n∑
l=1

[
ϕl

(
ūl, ul̂ | v

)
− ϕl

(
ul, ul̂ | v

)]
+ δ

2

(
‖u‖2 + ‖û(u)‖2)

fLp,δ (v(θ), v̂(v, θ) | u) =

(
m∑

m=1

θm
∣∣ψm (v̄m, vm̂ | u)− ψm (vm, vm̂ | u)∣∣p)1/p

+

δ
2

(
‖v‖2 + ‖v̂(v)‖2 + ‖θ‖2)

Now, the function Gδ (u, û(u) | v) is strictly convex if the Hessian matrix is positive semi-

definite, then Gδ (u, û(u)′| v) attains a minimum at (u, û(u) | v) if

∇2Gδ (u, û(u)|v) =


δIn1×n1 DG1,2(û1,2) ... DG1,n(û1,n)

DG2,1(û2,1) δIn2×n2 ... DG3,2(û3,2)

... ... ... ...

DG3,1(û3,1) DG3,2(û3,2) ... δInn×nn

 > 0

or, equivalently, δ should provide the inequality

min
u∈U,û∈Û

[
Λmin

(
∇2Gδ (u, û(u)|v)

)]
> 0

Here, ûik is independent of u(i) and u(k), that is, ∂
∂u(i)

ûik = 0 and ∂
∂u(k)

ûik = 0. As well as, the

function fδ (v, v̂(v)|u) is strictly concave if the Hessian matrix is negative semi-definite, then

fδ (v, v̂(v)|u) attains a maximum at (v, v̂(v)|u) if

max
v∈V,v̂∈V̂

[
Λmax

(
∇2fδ (v, v̂(v)|u)

)]
< 0

With sufficiently large δ, the considered functions provide the uniqueness of the conditional

optimization problem (4.2). Notice also that the Lagrange function (4.2) satisfies the saddle-

point condition, namely, for all u ∈ U, û ∈ Û , v ∈ V, v̂(v) ∈ V̂ , λ ∈ Sn, θ ∈ Sm, ω≥ 0 and
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ξ ≥ 0 we have

Lδ(u∗δ , û∗δ(u), vδ, v̂δ(v), λ∗δ , θδ, ωδ, ξδ)≤Lδ(u∗δ , û∗δ(u), v∗δ , v̂
∗
δ (v), λ∗δ , θ

∗
δ , ω

∗
δ , ξ
∗
δ )≤

Lδ(uδ, ûδ(u), v∗δ , v̂
∗
δ (v), λδ, θ

∗
δ , ω

∗
δ , ξ
∗
δ )

4.3 The proximal format

In the proximal format the relation (4.2) can be expressed as

ω∗δ = arg max
ω≥0

{
−1

2
‖ω − ω∗δ‖2 + γLδ(u∗δ , û∗δ(u), v∗δ , v̂

∗
δ (v), λ∗δ , θ

∗
δ , ωδ, ξ

∗
δ )
}

ξ∗δ = arg max
ξ≥0

{
−1

2
‖ξ − ξ∗δ‖2 + γLδ(u∗δ , û∗δ(u), v∗δ , v̂

∗
δ (v), λ∗δ , θ

∗
δ , ω

∗
δ , ξδ)

}
u∗δ = arg min

u∈U

{
1
2
‖u− u∗δ‖2 + γLδ(uδ, û∗δ(u), v∗δ , v̂

∗
δ (v), λ∗δ , θ

∗
δ , ω

∗
δ , ξ
∗
δ )
}

û∗δ = arg min
û∈Û

{
1
2
‖û− û∗δ‖2 + γLδ(u∗δ , ûδ(u), v∗δ , v̂

∗
δ (v), λ∗δ , θ

∗
δ , ω

∗
δ , ξ
∗
δ )
}

v∗δ = arg max
v∈V

{
−1

2
‖v − v∗δ‖2 + γLδ(u∗δ , û∗δ(u), vδ, v̂

∗
δ (v), λ∗δ , θ

∗
δ , ω

∗
δ , ξ
∗
δ )
}

v̂∗δ = arg max
v̂∈V̂

{
−1

2
‖v̂ − v̂∗δ‖2 + γLδ(u∗δ , û∗δ(u), v∗δ , v̂δ(v), λ∗δ , θ

∗
δ , ω

∗
δ , ξ
∗
δ )
}

λ∗δ = arg min
λ∈SN

{
1
2
‖λ− λ∗δ‖2 + γLδ(u∗δ , û∗δ(u), v∗δ , v̂

∗
δ (v), λδ, θ

∗
δ , ω

∗
δ , ξ
∗
δ

}
θ∗δ = arg max

θ∈SN

{
−1

2
‖θ − θ∗δ‖2 + γLδ(u∗δ , û∗δ(u), v∗δ , v̂

∗
δ (v), λ∗δ , θδ, ω

∗
δ , ξ
∗
δ

}

(4.3)

where the solutions u∗δ , û
∗
δ(u), v∗δ , v̂

∗
δ (v), λ∗δ , θ

∗
δ , ω

∗
δ and ξ∗δ depend on the parameters δ, γ > 0.

4.4 The Extraproximal method

We design the extraproximal method for the static Stackelberg-Nash game in a general for-

mat iterative version (n = 0, 1, ...) with some fixed admissible initial values (u0 ∈ U , û0 ∈ U ,

v0 ∈ V , v̂0 ∈ V̂ , ω0 ≥ 0, ξ0 ≥ 0, λ0 ∈ Sn and θ0 ∈ Sm) as follows:
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1. The first half-step (prediction):

ω̄n = arg min
ω≥0

{
1
2
‖ω − ωn‖2 − γLδ(un, ûn(u), vn, v̂n(v), λn, θn, ω, ξ̄n)

}
ξ̄n = arg min

ξ≥0

{
1
2
‖ξ − ξn‖2 − γLδ(un, ûn(u), vn, v̂n(v), λn, θn, ω̄n, ξ)

}
ūn = arg min

u∈U

{
1
2
‖u− un‖2 + γLδ(u, ûn(u), vn, v̂n(v), λn, θn, ω̄n, ξ̄n)

}
ûn = arg min

û∈Û

{
1
2
‖û− ûn‖2 + γLδ(un, û(u), vn, v̂n(v), λn, θn, ω̄n, ξ̄n)

}
v̄n = arg min

v∈V

{
1
2
‖v − vn‖2 − γLδ(un, ûn(u), v, v̂n(v), λn, θn, ω̄n, ξ̄n)

}
v̂n = arg min

v̂∈V̂

{
1
2
‖v̂ − v̂n‖2 − γLδ(un, ûn(u), vn, v̂(v), λn, θn, ω̄n, ξ̄n)

}
λ̄n = arg min

λ∈SN

{
1
2
‖λ− λn‖2 + γLδ(un, ûn(u), vn, v̂n(v), λ, θn, ω̄n, ξ̄n)

}
θ̄n = arg min

θ∈SN

{
1
2
‖θ − θn‖2 − γLδ(un, ûn(u), vn, v̂n(v), λn, θ, ω̄n, ξ̄n)

}

(4.4)

2. The second half-step (basic):

ωn+1 = arg min
ω≥0

{
1
2
‖ω − ωn‖2 − γLδ(ūn,ûn(u), v̄n,v̂n(v), λ̄n, θ̄n, ω, ξ̄n)

}
ξn+1 = arg min

ξ≥0

{
1
2
‖ξ − ξn‖2 − γLδ(ūn,ûn(u), v̄n,v̂n(v), λ̄n, θ̄n, ω̄n, ξ)

}
un+1 = arg min

u∈U

{
1
2
‖u− un‖2 + γLδ(u,ûn(u), v̄n,v̂n(v), λ̄n, θ̄n, ω̄n, ξ̄n)

}
ûn+1 = arg min

û∈Û

{
1
2
‖û− ûn‖2 + γLδ(ūn, û(u), v̄n,v̂n(v), λ̄n, θ̄n, ω̄n, ξ̄n)

}
vn+1 = arg min

v∈V

{
1
2
‖v − vn‖2 − γLδ(ūn,ûn(u), v,v̂n(v), λ̄n, θ̄n, ω̄n, ξ̄n)

}
v̂n+1 = arg min

v̂∈V̂

{
1
2
‖v̂ − v̂n‖2 − γLδ(ūn,ûn(u), v̄n, v̂(v), λ̄n, θ̄n, ω̄n, ξ̄n)

}
λn+1 = arg min

λ∈SN

{
1
2
‖λ− λn‖2 + γLδ(ūn,ûn(u), v̄n,v̂n(v),λ, θ̄n, ω̄n, ξ̄n)

}
θn+1 = arg min

θ∈SN

{
1
2
‖θ − θn‖2 − γLδ(ūn,ûn(u), v̄n,v̂n(v),λ̄n, θ, ω̄n, ξ̄n)

}

(4.5)
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4.5 Convergence analysis

The following theorem presents the convergence conditions of (4.4) - (4.5) and gives the

estimate of its rate of convergence for the strong Lp− Stackelberg/Nash equilibrium. As well,

it is proved that the extraproximal method converges to an equilibrium point.

Let us define the following extended vectors

ũ:=


u

û

λ

 ∈ Ũ :=U × Û × R+, z̃:=



v

v̂

θ

ξ

ω


∈ Z̃:=V × V̂ × R+ × R+ × R+

Then, the regularized Lagrange function can be expressed as

L̃δ(ũ, z̃) := Lδ(uδ, ûδ, vδ, v̂δ, λδ, θδ, ξδ, ωδ)

The equilibrium point that satisfies (4.3) can be expressed as

ũ∗δ = arg min
ũ∈Ũ

{
1
2
‖ũ− ũ∗δ‖

2+γL̃δ(ũ, z̃∗δ )
}

z̃∗δ = arg max
z̃∈Z̃

{
−1

2
‖z̃ − z̃∗δ‖

2+γL̃δ(ũ∗δ , z̃)
}

Now, introducing the following variables

w̃ =

 w̃1

w̃2

 ∈ Ũ × Z̃, ṽ =

 ṽ1

ṽ2

 ∈ Ũ × Z̃
and let define the Lagrangian in term of the previous variables

Lδ(w̃, ṽ) := L̃δ(w̃1, ṽ2)− L̃δ(ṽ1, w̃2)

For w̃1 = ũ, w̃2 = z̃, ṽ1 = ṽ∗1 = ũ∗δ and ṽ2 = ṽ∗2 = z̃∗δ we have

Lδ(w̃, ṽ
∗) := L̃δ(ũ, z̃∗δ )− L̃δ(ũ∗δ , z̃)

In these variables the relation (4.3) can be represented by

ṽ∗ = arg min
w̃∈Ũ×Z̃

{
1
2
‖w̃ − ṽ∗‖2 + γLδ(w̃, ṽ

∗)
}

(4.6)

Finally, we have that the extraproximal method can be expressed by
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1. First step

v̂n = arg min
w̃∈Ũ×Z̃

{
1
2
‖w̃ − ṽn‖2 + γLδ(w̃, ṽn)

}
(4.7)

2. Second step

ṽn+1 = arg min
w̃∈Ũ×Z̃

{
1
2
‖w̃ − ṽn‖2 + γLδ(w̃, v̂n)

}
(4.8)

Theorem 4.7 (Convergence and Rate of Convergence) Let L̃δ(ũ, z̃) be differentiable in ũ

and z̃, whose partial derivative with respect to z̃ satisfies the Lipschitz condition with positive

constant C. Then, for some δ and

C l
0 =

n∑
l=1

C0,l ≤ nmax
l=1,n

C0,l = nC l+
0

and

Cm
0 =

m∑
m=1

C0,m ≤ m max
m=1,m

C0,m = mCm+
0

there exists a small-enough

γ0 = γ0(δ) < C :=

max

[
min

{
1√

2Cl+0 n
,

1+
√

1+2(Cl+0 )
2

2(Cl+0 )
2
n

}
,min

{
1√

2Cm+
0 m

,
1+

√
1+2(Cm+

0 )
2

2(Cm+
0 )

2
m

}]
such that, for any 0 < γ ≤ γ0, sequence {ṽn}, which generated by the equivalent extraproximal

procedure (4.7) - (4.8), monotonically converges with exponential rate q ∈ (0, 1) to a unique

equilibrium point ṽ∗, i.e.,

‖ṽn − ṽ∗‖2 ≤ en ln q‖ṽ0 − ṽ∗‖2

where

q = 1 +
4(δγ)2

1 + 2δγ − 2γ2C2
− 2δγ < 1

and qmin is given by

qmin = 1− 2δγ

1 + 2δγ
=

1

1 + 2δγ
.

For the proof, follow the convergence theorems and proofs presented in Appendix C.
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4.6 Application examples

4.6.1 The pursuit problem

The pursuit evasion problem is among the oldest and most elegant problems in game theory.

In our case, the game involves two pursuers whose goal is to capture two evaders, whose goal

is to avoid capture. Capture is occurring when a pursuer occupies the same position as a prey.

The following are fixed assumptions:

1. There are two evaders (m = 1, 2) and two pursuers (l = 1, 2).

2. For each time n ∈ N, the evaders (and pursuers) jump from state a sm(n) to sm(n + 1)

(sl(n) to sl(n + 1)), a point within the Manhattan distance (just adjacent points are

allowed).

3. The pursuers win the game if they occupy the same position as preys.

4. When a pursuer captures a prey, the pursuer continues in the game.

5. Each pursuer has no information about the current position of the evader, however strate-

gically evaders and pursuers cooperate with themselves.

The principal result of the realization is to show that the pursuers’ strategies win the game,

regardless of evader strategy. Our choice for selecting a strategy is given by the Max Entropy

[75] H = dl∗(k|i) log dl∗(k|i) between the computed distribution dl(k|i) and the optimal distribution

dl∗(k|i). This approach can be expressed as

dl∗(k∗|i) = δ(k∗(i),i)

where δ(k∗(i),i) is the Kronecker symbol, k∗(i) is an index for which

k∗(i) = max
k∈M

H

Similarly, we have a starting point for the evaders with a stationary Markov policy given by

equation (2.6) and a Max Entropy given by H = dm∗(k|i) log dm∗(k|i).
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The capture condition at time n is determined by the fact that a pursuer and a evader are

located at the same state and can be formalized mathematically as follows:

N∑
j=1

[
χ(α : sl(n) = s(j) ∧ sm(n) = s(j))

]
=

N∑
j=1

[
χ(α : sl(n) = s(j)) χ(α : sm(n) = s(j))

]
where α ∈ Ω is a trajectory. Now, the capture event of all the attackers is given by

n∑
l=1

m∑
m=1

N∑
j=1

[
χ(α : sl(n) = s(j)) χ(α : sm(n) = s(j))

]
A fixed Markov transition matrix π(j|i,k) is given. Then, the state transitions induced by the

strategy d∗(k∗|i) are governed by the conditional probability law for pursuers and evaders as

follows

Πl∗
(j|i)(d) =

M∑
k=1

πl(j|i,k)d
l∗
(k∗|i), Πm∗

(j|i)(d) =
M∑
k=1

πm(j|i,k)d
m∗
(k∗|i)

Let N = 4, M = 2. The individual utility for each player are defined by

U1
(i,j,1) =


70 17 30 55

19 1 100 6

20 60 16 17

0 15 15 30

 J1
(i,j,2) =


37 6 8 3

40 10 0 17

4 6 43 10

0 2 15 100



J2
(i,j,1) =


0 17 9 11

13 4 0 17

9 0 11 46

9 0 25 11

 J2
(i,j,2) =


5 29 12 0

9 16 54 29

74 1 4 0

9 16 42 0



J3
(i,j,1) =


9 13 70 9

13 5 0 70

11 2 16 19

16 49 3 10

 J3
(i,j,2) =


50 6 9 10

0 16 59 1

16 48 2 9

110 46 28 9



J4
(i,j,1) =


17 7 13 5

19 43 11 0

1 16 20 6

27 4 0 25

 J4
(i,j,2) =


30 0 18 23

14 10 28 16

4 0 14 6

4 8 9 15


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The transition matrices for each player are defined as follows

π1
(i,j,1) =


0.6144 0.3856 0 0

0.4061 0.2772 0.3167 0

0 0.1208 0.1688 0.7104

0 0 0.7696 0.2304

 π1
(i,j,2) =


0.5535 0.4465 0 0

0.7197 0.1596 0.1207 0

0 0.6374 0.1401 0.2225

0 0 0.6407 0.3593



π2
(i,j,1) =


0.6420 0.3580 0 0

0.2317 0.3736 0.3947 0

0 3269 0.1621 0.5110

0 0 0.1211 0.8789

 π2
(i,j,2) =


0.7040 0.2960 0 0

0.4417 0.1015 0.4568 0

0 0.3273 0.2675 0.4052

0 0 0.3555 0.6445



π3
(i,j,1) =


0.3341 0.6659 0 0

0.1898 0.4103 0.3999 0

0 0.4340 0.2173 0.3487

0 0 0.5240 0.4760

 π3
(i,j,2) =


0.4053 0.5947 0 0

0.3706 0.4358 0.1936 0

0 0.6393 0.1778 0.1829

0 0 0.6756 0.3244



π4
(i,j,1) =


0.6299 0.3701 0 0

0.2932 0.5345 0.1723 0

0 0.2800 0.5336 0.1864

0 0 0.4102 0.5898

 π4
(i,j,2) =


0.2267 0.7733 0 0

0.2195 0.5162 0.2643 0

0 0.2081 0.6278 0.1641

0 0 5328 0.4672


Given δ and γ and applying the extraproximal method we obtain the convergence of the

strategies in terms of the variable c(i,k) for the pursuers (see Figures 4.1 and 4.2) and for the

evaders (see Figures 4.3 and 4.4). In addition, Figures 4.5 and 4.6 show the convergence of the

parameters ξ and ω.

With final values λ1 = 0.77 and λ2 = 0.23 for the leaders (pursuers) (see Figure 4.7), the

mixed strategies obtained for all the players are as follows

d1 =


0.9741 0.0259

0.9722 0.0278

0.0543 0.9457

0.1438 0.8562

 d2 =


0.4627 0.5373

0.2462 0.7538

0.5897 0.4103

0.3923 0.6077


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Figure 4.1 Strategies for pursuer 1. Figure 4.2 Strategies for pursuer 2.

Figure 4.3 Strategies for evader 1. Figure 4.4 Strategies for evader 2.

Figure 4.5 Convergence of the parameter ξ. Figure 4.6 Convergence of the parameter ω.

d3 =


0.9308 0.0692

0.6733 0.3267

0.9654 0.0346

0.8731 0.1269

 d4 =


0.7214 0.2786

0.2340 0.7660

0.4354 0.5646

0.4318 0.5682


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Figure 4.7 Convergence of λ.

Figure 4.8 Realization of the game.

For the realization of the game we define the initial state s(i) of each player as follows:

s1
(i)(0) = 3, s2

(i)(0) = 1, s3
(i)(0) = 4 and s4

(i)(0) = 2. As a result, we obtain that the evader 1 is

caught at state s(2) and evader 2 is caught at state s(3), so the game is over (see Figure 4.8).

4.6.2 Marketing problem

This example analyzes the effectiveness of relationship marketing strategies within the de-

partment store sector of the retail industry considering two supermarket leaders with l = 1, 2

and two supermarkets followers with m = 3, 4. The four supermarkets are branching out into

non-food items and they are also department stores in their own right, selling items like clothes,
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entertainment products for example toys, books, cosmetics, non-prescription drugs and many

other household goods. All the supermarkets offer loyalty cards having their own system with

the purpose to attract customers, encourage customer loyalty and build strong customer rela-

tionships. As well, loyalty cards create an advantage for supermarkets developing profiles of

individuals’ personal shopping habits. When linked with the personal details that customers

disclosed when signing up for the scheme, the store is in a position to target promotions that

are tailored around specific customers shopping habits.

Figure 4.9 Supermarket Markov Chain.

Based on the available data, supermarkets discretize the client space in four sub-segments

according to the regularly of purchasing, using frequency of the loyalty card and the revenue.

Figure 4.9 describes the segments and promotions corresponding to the Markov chain of the

marketing problem. Here a customer is said to be in state s1 if he/she become a Potential

customer. A Low-frequent customer corresponds with the state s2 and a Regular customer is a

frequent customer of the loyalty card that is said to be in state s3. A Loyal customer corresponds

with the state s4 and he/she is a high-frequency user of the loyal card. The promotions (actions)

offered by the supermarkets include two different benefits: 1) points and 2) discounts. We are

interested in contrasting the strategies applied by the supermarkets defined over all possible

combinations of states (i, j) and actions (k) given a fixed utility U(i,j,k).
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Our goal is to analyze a four-player Stackelberg game for the norm p = 1 in a class of

ergodic controllable finite Markov chains. Let N = 4, M = 2. The individual utility for each

player are defined by

U1
(i,j,1) =


567 822 733 830

261 896 85 568

30 996 634 261

288 90 806 785

 U1
(i,j,2) =


170 27 57 699

275 855 224 919

50 205 46 909

398 861 751 806



U2
(i,j,1) =


810 36 27 9

63 90 567 72

81 0 9 45

855 594 441 9

 U2
(i,j,2) =


8 592 48 0

64 64 312 16

264 32 120 72

400 56 40 200



U3
(i,j,1) =


22 7 11 6

10 0 19 8

23 28 23 9

90 5 12 1

 U3
(i,j,2) =


66 0 126 42

18 78 240 6

96 18 60 156

66 102 180 48



U4
(i,j,1) =


0 60 2 26

10 26 36 48

14 56 28 24

8 12 16 38

 U4
(i,j,2) =


420 168 378 84

0 280 14 112

42 56 350 140

84 210 336 98


The transition matrices for each player are defined as follows

π1
(i,j,1) =


0.2759 0.4886 0.0366 0.1989

0.1752 0.0953 0.3825 0.3470

0.1695 0.2629 0.4103 0.1574

0.2612 0.1665 0.4124 0.1600

 π1
(i,j,2) =


0.0863 0.3672 0.3201 0.2264

0.4339 0.1684 0.1919 0.2058

0.3856 0.2349 0.1324 0.2471

0.1475 0.3500 0.1903 0.3122



π2
(i,j,1) =


0.1761 0.1204 0.3883 0.3151

0.2207 0.1632 0.2354 0.3807

0.0708 0.3708 0.1364 0.4219

0.0132 0.5169 0.4127 0.0572

 π2
(i,j,2) =


0.2033 0.2456 0.2667 0.2844

0.2732 0.1032 0.3046 0.3190

0.1207 0.0930 0.3997 0.3866

0.1032 0.6976 0.1609 0.0383


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π3
(i,j,1) =


0.4109 0.1654 0.0918 0.3319

0.3015 0.2201 0.1029 0.3756

0.1709 0.5673 0.0292 0.2326

0.1885 0.1491 0.3317 0.3307

 π3
(i,j,2) =


0.3046 0.2883 0.2573 0.1498

0.2470 0.0978 0.3060 0.3492

0.3006 0.0439 0.4387 0.2169

0.1141 0.3397 0.1855 0.3607



π4
(i,j,1) =


0.2610 0.3145 0.2088 0.2158

0.3777 0.1968 0.1574 0.2681

0.2593 0.0308 0.5113 0.1986

0.3401 0.4638 0.1200 0.0761

 π4
(i,j,2) =


0.0316 0.4652 0.2221 0.2811

0.1624 0.3245 0.3691 0.1440

0.1448 0.5777 0.2087 0.0688

0.2536 0.1996 0.3231 0.2237


Given δ and γ and applying the extraproximal method we obtain the convergence of the

strategies in terms of the variable c(i,k) for the leaders (see Figure 4.10) and for the followers

(see Figure 4.11). In addition, the Figure 4.12 and Figure 4.13 show the convergence of the

parameters ξ and ω.

With final values λ1 = 0.5063 and λ2 = 0.4937 for the leaders, and θ1 = 0.5258 and

θ2 = 0.4792 for the followers (see Figure 4.14 and Figure 4.15), the mixed strategies obtained

for determining the strong Stackelberg/Nash equilibrium for all the players applying (2.6) are

as follows

d1 =


0.8110 0.1890

0.1701 0.8299

0.7720 0.2280

0.2249 0.7751

 d2 =


0.6023 0.3977

0.8408 0.1592

0.8187 0.1813

0.8242 0.1758



d3 =


0.6478 0.3522

0.7078 0.2922

0.6455 0.3545

0.6442 0.3558

 d4 =


0.7337 0.2663

0.7454 0.2546

0.7376 0.2624

0.6418 0.3582



(4.9)

The resulting utilities by segment are as follows:

J1(si) =


129, 130

92, 790

84, 590

121, 520

 J2(si) =


13, 102

22, 635

1, 113

64, 809

 J3(si) =


551

1, 295

746

1, 494

 J4(si) =


3, 914

2, 113

2, 158

3, 467

 (4.10)
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Figure 4.10 Convergence of the strategies for leader 1 (left) and leader 2 (right).

Figure 4.11 Convergence of the strategies for follower 1 (left) and follower 2 (right).

Figure 4.12 Convergence of the parameter ξ. Figure 4.13 Convergence of the parameter ω.



72 Chapter 4. The Strong Lp−Stackelberg game

Figure 4.14 Convergence of the parameter λ. Figure 4.15 Convergence of the parameter θ.

And the resulting utilities by promotion are as follows:

J1(k) =
[
226, 830 201, 190

]
J2(k) =

[
93, 930 7, 729

]
J3(k) =

[
437 3, 650

]
J4(k) =

[
609 11, 045

] (4.11)

Relationship marketing recognizes that the focus of marketing is to build a relationship

with existing customers. The main purpose of the game is to discover the extent to which cus-

tomers use and are influenced by relationship marketing strategies. In addition, it is to analyze

the impact that these strategies have on customer loyalty and the development of customer-

department store relationship. The supermarket leaders (players 1 and 2) fix their strategies

(4.9) to ensure high degrees of customer loyalty and retention as well utility by segment (4.10)

and promotion (4.11). For segment 1, leader 1 made a strong emphasis on offering points

(0.8110) for attracting Potential customers. Instead, the leader 2 made emphasis on offering

points (0.6023) and discounts (0.3977) for the same segment. Looking at the utilities of the

leaders, the follower1 decided for offering points (0.6478) and discounts (0.3522). Instead, the

follower 2 resolved for competing for highlighting points (0.7337). For segment 2 correspond-

ing to Low-Frequent customers the leader 1 promoted points (0.1701) and discounts (0.8299)

and, the leader 2 chose offering points (0.8408) and discounts (0.1592). However, for compet-

ing with the leaders, follower 1 and follower 2 made emphasis on points (0.7078 and 0.7454

respectively). For Regular customers, the leader 1 focused on points (0.7720) and discounts

(0.2280) and, the leader 2 made emphasis on points (0.8187). The follower 1 preferred offering



4.6. Application examples 73

points (0.6455) and discounts (0.3545). Instead, follower 2 made emphasis on points (0.7376)

and discounts (0.2624). For Loyal customers, the leader 1 made emphasis on points (0.2249)

and discounts (0.7751), leader 2 focus on points (0.8242) and discounts (0.1758) as well, fol-

lower 1 chose the same strategies – points (0.6442) and discounts (0.3558) –. The follower 2

made emphasis on points (0.6418) and discounts (0.3582). For the leaders, the most profitable

segments are the Potential customers and the Loyal customers (see 4.10). An insight into the

mind of the consumer is obvious from the findings the importance that is placed on a given

policy: the utilities obtained by action for the leaders and followers are shown in (4.11).





Chapter 5

A Reinforcement Learning Approach for
Stackelberg Security Games

5.1 Introduction

There exists a growing interest in applying Stackelberg games to model resource allocation

for patrolling security problems in which defenders must allocate limited security resources

to protect targets from attack by adversaries [20, 28]. In real-world adversaries are sophisti-

cated presenting dynamic strategies. In the original Stackelberg security games formulation on

Markov chains, we usually assume fixed and static domains models not able to be adapted to

the environment: fixing a state and action the reward and transitions always remain the same.

The reason is that the main goal is minimizing/maximizing the players’ expected cost/reward

that depends on the transitions at each state. However, it is an unrealistic assumption: the tran-

sitions matrices and the reward received for Stackelberg security games are commonly non-

static. Producing always the same resulting behavior can be exploited by intelligent attackers

that carry out surveillance before an attack, it is often desirable for the security agencies to have

a system in which randomness is involved in allocating their resources. To address this short-

coming, we will consider the learning properties of the attackers and defenders interaction, and

we will deal with the adaptation (estimation and assessment) of the payoff and strategies to

dynamic environments based on the information available to them.

Game-theoretic approaches have been used in multiple deployed applications. These games

are security games between a defender and an attacker: first, the defender considers what the
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target (best-reply) of the attacker is; then, holding the attacked target fixed, the defender picks a

quantity that minimizes its payoff; finally, the attacker actually observes this and in equilibrium

picks the expected quantity that maximizes its payoff as a response. These applications [72,

43, 106, 73, 2] use the (two-players) leader-follower Stackelberg game-theoretic formulation

for solving the security problem, providing a randomized strategy for the defender (leader) and

the attacker (follower).

Reinforcement learning (RL) is a problem faced by an agent or multiple agents that must

learn behavior through trial-and-error interactions with a dynamic environment [44]. It does not

assume the existence of a teacher that provides examples upon which learning of a task takes

place [78]. Computationally, RL is intended to operate in a learning environment composed of

two subjects: the learner and a dynamic process. At successive time steps, the learner makes

an observation of the process state, selects an action and applies it back to the process. Its goal

is to find out an action policy that controls the behavior of the dynamic process, guided by

signals that indicate how badly or well it has been performing the required task. These signals

are usually associated with a dramatic condition, a reward or a punishment, and the learner

tries to optimize its behavior [78].

Motivated by the importance of game-theoretic Markov chains solutions, this chapter con-

siders a RL process for Stackelberg security games [103, 99] that involves two components:

the Adaptive Primary Learning architecture and the Actor-critic architecture. The Adaptive Pri-

mary Learning architecture proposes a connection between prior knowledge learning and im-

itative learning. The main goal of the Adaptive Primary Learning architecture is dramatically

to accelerate the reinforcement learning process. The Actor-critic architecture is a temporal-

difference method responsible for evaluating the new state and determine if rewards are better

or worse than expected based on a game theory solution. The Stackelberg game is solved in

terms of the Lp−norm: players choose a strategy that minimizes the distance to the utopian

minimum and no other strategy produces a smaller total expected loss. The notion of collab-

oration implies that related players interact with each other looking for cooperative stability.

This notion consents players to select optimal strategies and to condition their own behavior

on the behavior of others in a strategic forward-looking manner.
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The overall RL architecture presents several benefits. The Adaptive Primary Learning ar-

chitecture can be viewed as a process for enhancing learning for multiple players. It allows

players to use prior knowledge of the security problem. This is given in terms of the Markov

assumptions and a uniform distribution that represent a simple solution of the security game.

In the short term, learning according to a uniform distribution helps by focusing on states that

are near increments of the pay-off of the starting state. It also augments players’ ability to learn

useful behaviors by making intelligent use of the knowledge implicit in behaviors demonstrated

by cooperative mentors (more experienced players). Using reinforcement learning theory we

construct a formal framework for security games that allows players to combine prior knowl-

edge and imitative behavior (extracted from other players). This framework uses observations

of other players behavior to provide a player with transition probabilities about its capabili-

ties in unexperienced situations. The actor-critic architecture will execute a learning process

based on a Stackelberg game theory solution. It will use the best-reply strategies to obtain the

estimated model for the occurring actions and states. In order to address the dynamic execu-

tion uncertainty in security patrolling, we provide a game-theoretic formulation method able to

generate randomized patrol schedules based on Markov decision process.

The formulation of the game is considered as a nonlinear programming problem for finding

the strongLp−Stackelberg/Nash equilibrium point based on cost-functions that are supposed to

be (non-obligatory strictly) convex and differentiable on the corresponding sets. This problem

is analyzed for a class of ergodic controllable finite Markov chains using the extraproximal

method. It is also provided a game-theoretic formulation method able to generate randomized

patrol schedules based on the Stackelberg game theory solution.

Moreover, an efficient algorithm for players that accelerate the reinforcement learning pro-

cess is presented. Computing the best-reply strategies for the game in the actor-critic archi-

tecture requires a large computation time compared with the computation time required in the

adaptive primary learning architecture. However, both steps of the architecture combined will,

in the long run, converge to an estimated transition matrix and estimated utility provided that

acting using the best-reply strategy according to the sequence of estimated models leads the

players to explore the entire state-action space.
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5.2 The Stackelberg security game

A Stackelberg security game [98] includes defenders (the leaders in the game) who aim to

protect a set of targets against attackers (the followers in a Stackelberg game). The defenders

play first by committing to a randomized strategy. The defenders’ commitment is observed by

the attackers, who then play a best-reply to the defenders’ strategy. The role of the defender is

usually played by a security agency, which has the responsibility of protecting critical infras-

tructure. The strategy set of the defenders can be interpreted as the assignments of (protecting)

resources to potential targets. The goal is to minimize the damage. The attacker observes the

defenders’ randomized strategies (resources deployment), and choose a target to attack in a

way that maximizes the damage.

We describe a Stackelberg game as follows. Let us consider a game with n + m players.

Let N = {1, ..., n} denote the set of players called defenders and let their strategy set be

defined by U . The restM = {1, ...,m} players are called attackers and, similarly, let the set

of their strategy profiles be defined by V . Then, U × V is the set of full strategy profiles. The

dynamics of the Stackelberg security game is as follows: the defenders choose a strategy u ∈ U

considering the cost-function ϕ(u|v) for a fixed strategy v of the attackers, the attackers are

informed about the strategy u selected by the defenders and choose their strategies considering

ψ(v|u) for a fixed u of the defenders. We understand ψ(v|u) as the response of the attackers

to the strategy u of the defenders, which is the best-reply in the original game. In the security

game framework, we suppose that defenders commit to a randomized strategy while attackers

choose their best-reply to this strategy. The solution of the game is a Stackelberg equilibrium

point. The formalization of the Stackelberg game was presented in Chapter 4.

Also, it is considered a Stackelberg security game model where each player either staying

put or moving along a state to an adjacent state. Adjacency of the states is determined by the

probabilities given in the transitions matrices of the Markov chain. The main concern about

Stackelberg games is as follows: the highest leader payoff is obtained when the followers

always reply in the best possible way for the leader. Then, the defender can capture the attacker,
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because he implements a strategy that always dominates the current position of the attacker.

Once the attacker is caught, the security game is over.

Let us introduce the capture condition at time n (defender and attacker are located at the

same state) as follows:

N∑
j=1

χ(w : sl(n) = s(j) ∧ sm(n) = s(j)) =
N∑
j=1

χ(w : sl(n) = s(j)) χ(w : sm(n) = s(j))

where w ∈ Ω is a trajectory. The capture event of all the attackers is given by

n∑
l=1

m∑
m=1

N∑
j=1

χ(w : sl(n) = s(j))χ(w : sm(n) = s(j)) (5.1)

In the dynamics of the game, the defender commits first to a strategy and then, the attacker

strategy is played. We consider a Random Walk model such that each member either staying

put or moving along a state to an adjacent state. The defender can capture the attacker (5.1) if

he implements an appropriate strategy such as always moving toward the current position of

the attacker. Once the attacker is caught, the game is over. The computational algorithm in

Table (5.1) for each player ι = 1, ..., n + m is iterative.

5.3 RL security game architecture

The aim of this Section is to introduce the RL architecture for the Stackelberg security

game. It is illustrated in Figure 5.1 showing two highest components: the Adaptive Primary

Learning architecture and the Actor-critic architecture.

Consider first the Adaptive Primary Learning architecture proposed to increase the learning

speed. It is better understood as an attempt to combine prior knowledge with an imitation

process for selecting the strategies. In fact, the prior knowledge will be cast and augmented

with the imitative learning formalism. The Adaptive Primary Learning architecture of the RL

for the game is illustrated in Figure 5.2. It has two main modules: the belief-forming process

and the belief-imitating process.

The belief-forming process provides the player ιwith the ability to seed a learning algorithm

about the security problem. It allows the player to use prior knowledge of the problem. This is
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Algorithm 1:

1. For the matrix dι(k|i) find the action aι = aι(k) using a random k ∈ (1, ...,M)

distributed according to the stochastic vector (dι(1|i), ..., d
ι
(M |i)) for a fixed i ∈

(1, ..., N).

2. Using the matrix πι(j|i,k) find the next state s(j) selecting randomly j ∈

(1, ..., N) distributed according to the stochastic vector (πι(1|i,k), ..., π
ι
(N |i,k))

for a fixed i ∈ (1, ..., N) and action k ∈ (1, ...,M).

3. Add the state s(j) to the patrol schedule and update the initial value of i with

j.

4. Repeat steps (1), (2) and (3) until the capture condition (5.1) is satisfied.

Table 5.1 Patrol Schedule

given in terms of the Markov assumptions and a uniform distribution that represent the initial

solution of the game. The focus of the belief-forming process is to solve general security

situations given a uniform distribution of the game. The uniform distribution of the strategies

is useful for balancing exploration and exploitation in a basic reinforcement learning (one

drawback is that when it explores it chooses equally among all actions). This process is marred

by generic optimization criteria. A stochastic strategy selector is used to generate exploratory

random action of player ι from dι(k|i) at the beginning of the training process. As well as, a

stochastic strategy selector is used to generate exploratory random next step from πι(j|i,k). We

employ two different learning rules π̂ι
(̂|̂ı,k̂)

(t) and Ĵ ι
(ı̂,̂,k̂)

(t) for estimating the resulting values.

The belief-imitating process provides a player ι with a system of rules that idealize the

mentor’s belief-forming behavior. It augments a player’s ability to learn using the knowledge

implicit in behaviors demonstrated by more experienced players. An estimated value is con-

sidered to be imitated according to a rule which encourages or discourages the current strategy
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Figure 5.1 Reinforcement learning architecture.

depending on cost. The main idea is that if the estimated value is considered if the cost is

smaller than the corresponding estimated value because it decreases the expected cost for the

visited state. In security games, a defender tries to minimize the capture time, as well as, the

attacker tries to maximize the escape time.

The dynamics of the Adaptive Primary Learning architecture is as follows. The process for

player ι begins with an initial state sι(0) = sι(ı̂) (for the estimated value ı̂) and it is considered a

fixed uniform distribution of the strategies as a solution of the security game given by [dι(k|i)] =

1
M

[1(i,k)]i∈[1,N ],k∈[1,M ], where [1(i,k)] is a matrix of “ones” of size i × k. Then, it is chosen

randomly an action aι(t) = a(k̂) (for the estimated value k̂) from the vector dι(k|̂ı) (for a fixed

ı̂). After that, the transition matrix Πι =
[
πι(j|i,k)

]
is used to choose randomly the consecutive

state sι(t + 1) = sι(̂) (for the estimated value ̂) from the vector πι
(j |̂ı,k̂)

(for a fixed ı̂ and k̂).

Once aι(t) and sι(t+ 1) are selected the estimating values are updated employing the adaptive

module in which the learning rules π̂ι
(̂|̂ı,k̂)

(t) and Ĵ ι
(ı̂,̂,k̂)

(t) are computed. Then, it is determined

a mentor κ. The player ι (ι 6= κ) imitate the estimated value π̂κ
(ı̂,̂|k̂)

according to a rule which
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Figure 5.2 Adaptive primary learning architecture.

encourages or discourages the current strategy depending on cost Ĵ ι
(ı̂,̂|k̂)

, updating π̃ι
(̂|̂ı,k̂)

if it

is the case, which has to be projected to the simplex. Finally, it is made the assignment of the

next state ̂ to the currently state sι(t+ 1) = sι(ı̂) = sι(̂), i.e. ı̂ = ̂, and the process begins again

until it converges.

Actor-critic methods are temporal-difference learning methods. The process responsible

for generating the policy structure (dι(k|i)) and, selecting an action and next state is known as

the actor, while the process in charge of estimating the value function is known as the critic.
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The learning process is all the time on the policy dι(k|i) of the players. The critic task is to

learn about the complete process and analyze if the policy represents the best-reply that must

be followed by the actor. To fulfill the task the critic uses an error estimator (e) which manages

all the learning decisions for both the actor and the critic.

Figure 5.3 Actor critic architecture.

The actor-critic architecture of the RL is illustrated in Figure 5.3. The initial πι
(̂|̂ı,k̂)

(t) and

J ι
(ı̂,̂,k̂)

(t) are given as a result of applying the belief-forming process and the belief-imitating

process. The selection of a(t) and s(t+ 1) is equal as in the Adaptive Primary Learning archi-

tecture. The added value is in the use of a game theory for computing the distribution dι(k|i) of

the strategies in order to obtain the policies for RL process. In this case, the trade-off between
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exploration and exploitation of the actions in reinforcement learning is given by the solution

of the game. Then, the process for player ι begins with an initial state sι(0) = sι(ı̂) (for the

estimated value ı̂) and it is considered a fixed uniform distribution of the strategies as a solu-

tion of the security game given by [dι(k|i)]. Then, it is selected randomly an action aι(t) = a(k̂)

(for the estimated value k̂) from the vector dι
(k̂|ı)

(for a fixed ı̂). After that, the transition matrix

Πι =
[
πι(j|i,k)

]
is used to choose randomly the consecutive state sι(t + 1) = sι(̂) (for the esti-

mated value ̂) from the vector πι
(j |̂ı,k̂)

(for a fixed ı̂ and k̂). Once aι(t) and sι(t+1) are selected,

the estimating values are updated employing the adaptive module in which are computed the

learning rules π̂ι
(̂|̂ı,k̂)

(t) and Ĵ ι
(ı̂,̂,k̂)

(t). The value-maximizing action at each state is taken

whether the actor-critic learning rule π̂l
(̂|̂ı,k̂)

ensures convergence
(
e
[
Π̂ι(t− 1)− Π̂ι(t)

]
> 0
)

.

If the condition of estimated error e is not satisfied, then the selection of the random variables

sι(i), s
ι
(j) and aι(k) is carried out again. On the other hand, the distribution dι(k|i) of the strategies

is computed again using the game theory module until it converges. The proposed architec-

ture converges by the ergodicity restriction for Markov chains imposed on the definition of the

game.

5.4 Learning model

The aim of this section is to present how the selection of actions from the best-reply strategy

affects the RL process and, also how to learn the transition and cost/reward models.

5.4.1 Exploration and exploitation

One of the most critical problems in RL is that the players need to make decisions as they

learn. There are two basic motivations for choosing an action: i) exploitation, which selects an

action from the best-reply strategy that leads to an “optimal” cost/reward; and ii) exploration,

that selects an action from the best-reply of a strategy that provides support information that

will benefit future behavior (to act better in the future).

By employing the exploitation approach the players follow only the best-reply strategy

action and they use the next state reached, and the reward received, to adapt its behavior in
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the future. However, it can happen that players (defenders/attackers) will get trapped in a

local minima/maxima during the RL process. On the other hand, exploration is related to

choosing actions of any strategy to learn how to behave in general situations. The tradeoff

between exploration and exploitation is that the first assists the players (defenders/attackers) in

minimizing/maximizing the costs/rewards and, the second helps the players to learn an overall

policy in the long term.

With pure exploration, the players will never obtain the benefits of “optimal” best-reply

learning. With pure exploitation, the players will get stuck in a local minima/maxima. A

combination of both approaches is needed.

In our case, the trade-off between exploration and exploitation is implicit in the proposed

architecture for RL. The Adaptive Primary Learning architecture is assumed to have a fixed uni-

form distribution of strategies [dι(k|i)] = 1
M

[1(i,k)]i∈[1,N ],k∈[1,M ], and an initial state s(0) = s(ı̂).

We also suppose that the players take advantage of external knowledge represented by some

current transition matrix Πι = (πι(j|i,1), ..., π
ι
(j|i,M)) useful when learning a new task from re-

inforcement. Such evidence is available as historical data. During the dynamics of the learn-

ing process, the players interact with their environment and at each stage of the process ran-

domly select an action a(t) = a(k̂) based on the best-reply strategies dι(k|i) and a next state

s(t + 1) = s(̂) given previously s(t) = s(ı̂) and a(t) = a(k̂). We ensure that in the long run

every action is taken in every state an unbounded number of times and the learning rate is

eventually small enough. This is equivalent to pure exploration.

On the other hand, in the actor-critic architecture, we also suppose that the players take ad-

vantage of external knowledge represented by the transition matrices Πι = (πι(j|i,1), ..., π
ι
(j|i,M))

and cost/reward matrices J ι = (J ι(i,j,1), ..., J
ι
(i,j,M)) available as a result of executing the belief-

forming process and the belief-imitating process. It is also assumed that the distribution of

strategies [dι(k|i)] is computed using a game theory model for solving the game, and an initial

state s(0) = s(ı̂). As well, during the dynamics of the learning process, the players interact with

their environment and at each stage of the RL process randomly select an action a(t) = a(k̂)

and a state s(t+ 1) = s(̂). Because [dι(k|i)] is the best-reply strategy resulting of computing the
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game, the distribution of dι(k|i) give importance to the actions a(t) = a(k̂) having a high prob-

ability to minimize/maximize the costs/rewards of the players (defenders/attackers). Then, the

process naturally makes emphasis over the exploitation approach and reduces the exploration

rate (because actions have low probability to be randomly selected).

5.4.2 Adaptive module

The proposed approach to reinforcement learning just learns the transition and costs/reward

models. It is important to note that in the original Markov game formulation for Stackelberg

security games, we usually assume fixed and statics domains not able to be adapted to the

environment: fixing a state and action the costs/reward and transition remains always the same.

The reason is that the goal is minimizing/maximizing the players’ expected costs/reward that

depends on the transitions at each state.

However, in Stackelberg security games it is an unrealistic assumption: the costs/reward

and transitions received are commonly non-static. For reasoning about more realistic pa-

trol strategies, we need to specify that there is a probability distribution over the possible

costs/rewards for any action in any state. Then, for learning in a cost/reward model, we may

obtain different costs/rewards at different times for the same action and state. As well as, for

the transition model where we may obtain different transitions at different times.

To do this, we introduce a model from experiences that can simply be done by counting the

frequency ω of observed experiences. Towards this goal the players use the following variables

defined recursively as:

ωι(i,k)(t) =
t∑

n=1

χ
(
sι(n) = sι(i), a

ι(n) = aι(k)

)
ωι(j|i,k)(t) =

t∑
n=1

χ
(
sι(n+ 1) = sι(j)|sι(n) = sι(i), a

ι(n) = aι(k)

)
such that

χ(Et) =


1 if the event E occurs at interaction t

0 otherwise

where ωι(i,k)(t) is the total number of times that the player ι evolves from state i applying action

k in the the RL process and, ωι(j|i,k) is the total number of times that player ι evolves from state
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i to state j applying action k in the RL process. As well as, for the cost/reward model, we keep

a running average of the rewards observed upon taking each action in each state as follows

J ι
(̂|̂ı,k̂)

(t) =
t∑

n=1

ξιJ(n) · χ
(
s(n+ 1) = s(̂) | s(n) = s(ı̂), a(n) = a(k̂)

)
such that

ξιJ := J ι(j|i,k) + (∆J) r, for ∆J ≤ J ι
(̂|̂ı,k̂)

and r = rand ([−1, 1])

whereJ ι
(̂|̂ı,k̂)

(t) is the sum over all immediate costs/rewards received after executing action a in

state i and stepping to state j, incremented by ∆J multiplied by a random value r,−1 ≤ r ≤ 1.

The learning rules of the architecture are computed considering the maximum likelihood

model where 0
0

:= 0. The designing of the adaptive module for the belief-forming process

involves the following learning rules:

a. The learning rule for estimating πι(j|i,k) is given by

π̂ι
(̂|̂ı,k̂)

(t) =
ωι

(̂|̂ı,k̂)
(t− 1) + 1

ωι
(ı̂,k̂)

(t− 1) + 1

such that

ω(̂|̂ı,k̂)(0) = 0, and ω(ı̂,k̂)(0) = 0.

b. The learning rule for estimating J ι(i,j,k) is as follows

Ĵ ι
(ı̂,̂,k̂)

(t) =
J ι

(ı̂,̂,k̂)
(t)

ωι
(̂|̂ı,k̂)

(t)

The designing of the adaptive module for the actor-critic architecture consists of the follow-

ing learning rules. The definition involves the variable t0 which is the time required to compute

the matrices by the belief-forming process and the belief-imitating process.

a. The learning rule for estimating πι(j|i,k) is given by

π̂ι
(̂|̂ı,k̂)

(t) =
ωι

(̂|̂ı,k̂)
(t)

ωι
(ı̂,k̂)

(t)
=
ωι

(̂|̂ı,k̂)
(t0) + Ξι,1

(̂|̂ı,k̂)
(t)

ωι
(ı̂,k̂)

(t0) + Ξι,2

(ı̂,k̂)
(t)

=

π̂ι
(̂|̂ı,k̂)

(t0) +
1

ωι
(ı̂,k̂)

(t0)
Ξι,1

(̂|̂ı,k̂)
(t)

1 +
1

ωι
(ı̂,k̂)

(t0)
Ξι,2

(ı̂,k̂)
(t)
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where

Ξι,1

(̂|̂ı,k̂)
(t) =

t∑
n=t0+1

χ
(
sι(n+ 1) = sι(̂)|sι(n) = sι(ı̂), a

ι(n) = aι
(k̂)

)
·

χ
(
sι(n) = sι(ı̂), a

ι(n) = aι
(k̂)

)
and

Ξι,2

(ı̂,k̂)
(t) =

t∑
n=t0+1

χ
(
sι(n) = sι(ı̂), a

ι(n) = aι
(k̂)

)
.

b. The learning rule for estimating J ι
(ı̂,̂,k̂)

is as follows

A(t) =
t∑

n=1

ξιJ(n) · χ
(
sι(n+ 1) = sι(̂) | sι(n) = sι(ı̂), a

ι(n) = aι
(k̂)

)
B(t) =

t∑
n=1

χ
(
sι(n+ 1) = sι(̂) | sι(n) = sι(ı̂), a

ι(n) = aι
(k̂)

)

Ĵ ι
(ı̂,̂,k̂)

(t) =
A(t)

B(t)
=
J(ı̂,̂,k̂)(t0) + A(n = t0 + 1)

ω(ı̂,̂,k̂)(t0) +B(n = t0 + 1)

In the end, we have a RL process where if there exist changes in the system the players

are able to learn and adapt to the environment. In addition, there is a natural trade-off be-

tween exploration and exploitation: in the actor-critic architecture, we make emphasis over the

exploitation approach and drastically decrements the exploration rate in a careful way.

We are able to estimate the aleatory variables corresponding to the entry (̂ı, ̂, k̂) of both,

the transition and the cost/reward matrices. An advantage of the Adaptive Primary Learning

architecture step is that the distribution is easily generated and does not need any computation.

The process continues until its convergence (the process converges because it is ergodic).

5.5 Shopping mall security game

This example is suggested to illustrate how the RL method presented in this chapter can be

employed to improve the strategy for patrolling four shopping malls located geographically in

different areas.
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5.5.1 Game overview

Shopping malls are multi-storied structures housing a large number of stores that sell di-

verse products and services adjoined by pedestrian areas. Families usually choose to visit

shopping malls, for a family outing, it is a more convenient option because a parking service is

provided. Attributes of the location of the shopping malls have a strong impact on the retailer’s

strategy. The geographic areas for a shopping mall are selected in terms of the socio-economic

characteristics of the residents of the area. Usually, 3 to 5-mile radius generates 50 to 70% of

the customers. We will consider four shopping malls (targets) located in different areas: the

mall 1 is located in a lower class neighborhood, usually an urban area with low-quality of civil

services, mall 2 and 3 are located in a middle-class area and finally the mall 4 is located in an

upper-class area where residents are prosperous.

Taking into consideration these properties shopping malls are considered targets for rob-

bery and burglary, involving the theft of property from an individual or the unlawful entry to a

structure with the intent to steal or commit a felony. Victims can be or not have to be present.

Robberies usually happen during the day and burglaries during the night. The time that bur-

glaries and robberies occur is different which result in higher levels of coverage at all times.

Then, protecting shopping malls of the perpetrators is a complicated task.

For representing the Stackelberg security game we will consider four players, two attackers

(followers m = 3, 4) that try to reach different goals (to commit a crime in a shopping mall)

maximizing the expected damage and two defenders (leaders l = 1, 2) that try to stop the

attackers minimizing his expected loss. Here defenders work cooperatively and the defender

2 imitates and learns from the defender 1 who has more experience in this type of crimes, the

attackers also work cooperating and the attacker 4 imitates and learns from the attacker 3. In

the dynamics of the game the players take alternate turns: defenders commit first to a strategy

and then, the attackers’ strategies are played. Let the number of states of each player (shopping

malls) N = 4 and M = 2 the number of actions of each player (burglary and robbery).

The defenders and attackers already have of prior knowledge about the problem, which is

recovered from historical data that provide exact information about the crimes occurred in the
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geographical area where each mall is located. In addition to economic information, which is

strongly correlated with high-risk areas of crime, distance and traffic is an additional important

factor that must be considered in solving the patrolling problem. This information is repre-

sented in terms of the Markov transition matrices, utility matrices and a uniform distribution

that denotes the initial solution of the game.

Let the initial transition matrices for each player be defined as follows

π1
(i,j,1) =


0.1971 0.3490 0.3119 0.1421

0.1348 0.3041 0.2942 0.2669

0.2118 0.3286 0.2628 0.1967

0.1866 0.3332 0.2946 0.1857

 π1
(i,j,2) =


0.2972 0.2825 0.2462 0.1742

0.3616 0.2237 0.2432 0.1715

0.3505 0.2135 0.2113 0.2246

0.2063 0.2917 0.2419 0.2602



π2
(i,j,1) =


0.3968 0.1003 0.2403 0.2626

0.2006 0.1484 0.2140 0.4370

0.2943 0.2318 0.2103 0.2637

0.1740 0.2872 0.2293 0.3096

 π2
(i,j,2) =


0.2033 0.2456 0.2667 0.2844

0.2277 0.2527 0.2538 0.2658

0.0928 0.3023 0.3075 0.2974

0.2332 0.5366 0.1238 0.1064



π3
(i,j,1) =


0.2739 0.3103 0.1945 0.2213

0.2512 0.1834 0.2524 0.3130

0.2853 0.4364 0.0994 0.1789

0.1571 0.2909 0.2764 0.2756

 π3
(i,j,2) =


0.2538 0.2403 0.2144 0.2915

0.2058 0.2482 0.2550 0.2910

0.2312 0.1876 0.3374 0.2438

0.2416 0.2613 0.2196 0.2775



π4
(i,j,1) =


0.2175 0.2621 0.3406 0.1798

0.2905 0.3822 0.1211 0.2062

0.1852 0.1649 0.3652 0.2847

0.2267 0.3092 0.2133 0.2507

 π4
(i,j,2) =


0.1930 0.3877 0.1851 0.2343

0.3020 0.2704 0.3076 0.1200

0.2463 0.4126 0.1491 0.1920

0.2113 0.3330 0.2692 0.1864


and let the individual utility matrices for each player be defined by

U1
(i,j,1)=


81 246 219 90

63 258 54 204

90 288 192 63

84 270 240 225

 U1
(i,j,2)=


51 81 171 207

81 255 72 297

150 75 138 270

294 138 153 258


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U2
(i,j,1) =


360 16 12 4

28 40 252 32

36 0 4 20

380 264 196 4

 U2
(i,j,2) =


6 444 36 0

48 48 234 12

198 24 90 54

300 42 30 150



U3
(i,j,1) =


44 14 22 12

20 0 38 16

46 56 46 18

180 10 24 2

 U3
(i,j,2) =


33 0 63 21

9 39 120 3

48 9 30 78

33 51 90 24



U4
(i,j,1) =


0 120 4 52

20 52 72 96

28 112 56 48

16 24 32 76

 U4
(i,j,2) =


90 36 81 18

0 60 3 24

9 12 75 30

18 45 72 21


5.5.2 RL process for security games

Once the defenders and attackers have the initial information, they begin an iterative re-

inforcement learning process for security games proposed in the adaptive primary learning

architecture. The purpose of this first step is that making use of the exploration properties, the

players choose equally among all actions to learn how to behave in general situations, that is,

players explore the shops and the area where they are located in order to learn how to move

and act in different situations. In fact, players improve their transition and cost/reward matrices

by combining their initial information with learning rules and an imitative behavior extracted

from other players that are selected as more experienced, defender 2 learns from the defender

1 and the attacker 4 imitates the attacker 3.

When the defenders and attackers finish the adaptive primary learning process, they begin a

new iterative procedure, represented by an actor-critic architecture. In this stage defenders and

attackers improve their transition and cost/reward matrices (obtained from the adaptive primary

learning architecture) through the application of new learning rules and the calculation of the

strategies of the Stackelberg security game employing the extraproximal method.
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Remark 5.1 It is clear that attackers’ actions are dependent on their past successes and fail-

ures. The proposed adaptive model captures this adaptive nature of the attackers’ behavior

by modifying probabilities in the transition matrices and the values in the utility matrices.

Then, the RL process estimates the new matrices and recalculate the resulting strategies of the

security game every time the behavior of the attackers or the environment change.

The resulting estimations of the transition matrices of the RL process are the following:

π̂1
(i,j,1) =


0.1907 0.3449 0.3447 0.1197

0.1412 0.2959 0.3114 0.2515

0.2216 0.3049 0.2705 0.2030

0.1837 0.3860 0.2656 0.1647

 π̂1
(i,j,2) =


0.3220 0.2813 0.2449 0.1518

0.3434 0.1820 0.2875 0.1872

0.3433 0.1924 0.2474 0.2169

0.2386 0.2973 0.2275 0.2366



π̂2
(i,j,1) =


0.4388 0.1052 0.2288 0.2272

0.1887 0.1939 0.2606 0.3568

0.2920 0.2402 0.1878 0.2800

0.1665 0.2927 0.2631 0.2777

 π̂2
(i,j,2) =


0.2023 0.2367 0.2957 0.2652

0.2186 0.2606 0.2782 0.2427

0.1271 0.2506 0.3205 0.3018

0.2142 0.4197 0.1576 0.2085



π̂3
(i,j,1) =


0.2811 0.3041 0.1723 0.2426

0.2649 0.1729 0.2393 0.3229

0.2675 0.4784 0.0854 0.1686

0.1930 0.2692 0.2894 0.2484

 π̂3
(i,j,2) =


0.2728 0.2576 0.1841 0.2855

0.1983 0.2218 0.2728 0.3071

0.2428 0.1778 0.3429 0.2366

0.2646 0.2337 0.2330 0.2686



π̂4
(i,j,1) =


0.1760 0.3492 0.3093 0.1655

0.2684 0.3365 0.2072 0.1880

0.1924 0.1864 0.3307 0.2905

0.1921 0.3153 0.2232 0.2694

 π̂4
(i,j,2) =


0.2489 0.2926 0.2645 0.1939

0.2911 0.2607 0.2849 0.1633

0.2450 0.3278 0.1839 0.2433

0.2400 0.3325 0.2391 0.1883


And the resulting utility matrices for each player are as follows

Û1
(i,j,1)=


47.822 67.034 22.627 8.032

21.748 96.729 16.847 180.253

25.835 281.720 100.239 35.541

125.741 118.075 179.806 128.743

 Û1
(i,j,2)=


27.715 26.283 4.514 283.899

20.333 43.550 54.349 157.131

101.889 39.178 190.407 57.975

69.107 31.595 24.990 48.384


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Û2
(i,j,1) =


104.944 11.107 4.259 0.259

21.793 14.472 168.325 36.846

23.551 0 2.253 16.483

148.615 246.275 156.610 2.731

 Û2
(i,j,2) =


3.037 57.997 21.857 0

10.547 17.522 47.336 1.931

47.569 8.045 15.247 27.541

30.802 5.786 10.441 102.284



Û3
(i,j,1) =


19.881 3.507 10.956 1.826

4.687 0 4.515 13.516

30.828 46.227 4.657 20.855

113.018 3.831 11.719 0.963

 Û3
(i,j,2) =


10.872 0 63.043 5.121

1.450 24.269 153.231 4.503

34.276 4.058 12.099 30.349

40.081 25.870 9.222 10.912



Û4
(i,j,1) =


0 58.833 3.203 11.789

9.585 39.761 100.258 10.602

20.336 29.004 33.262 31.653

13.177 1.855 7.098 103.302

 Û4
(i,j,2) =


14.555 27.783 56.755 15.630

0 3.968 6.252 16.363

2.531 3.553 18.185 27.441

25.482 26.219 74.518 11.881


Figure 5.4 shows the estimation function error of the transition matrices which has a de-

creasing behavior, we can see in these graphs that the estimation error is greater for less expe-

rienced players, defender 2 and attacker 2 need more time to improve their transition matrices.

Figure 5.5 shows the estimation function error of the utility matrices which have a decreasing

behavior.

The solution of the game is obtained employing the Stackelberg game formulation with

Markov chains, the game is solved making use of the extraproximal method from which we

obtain the convergence of the strategies of defenders and attackers.

d1 =


0.3523 0.6477

0.5743 0.4257

0.6821 0.3179

0.7388 0.2612

 d2 =


0.5463 0.4537

0.6581 0.3419

0.4919 0.5081

0.8213 0.1787



d3 =


0.7258 0.2742

0.7169 0.2831

0.2993 0.7007

0.2656 0.7344

 d4 =


0.7058 0.2942

0.2305 0.7695

0.2732 0.7268

0.3464 0.6536


At the end of the adaptive process, combining exploration and exploitation, players select

an action from the best-reply strategy that leads to an optimal cost or reward. Figure 5.6 show
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(a) Defender 1 (b) Defender 2

(c) Attacker 1 (d) Attacker 2

Figure 5.4 Estimation function error of the transition matrices.

the convergence of the strategies of defenders and Figure 5.7 show the convergence of the

strategies of attackers.

Remark 5.2 For modeling a security real-world application, it is necessary to compute the

values of the parameters of the environment given by the transition probabilities and the cost

functions. Transition probabilities can be computed recovering statistical data related to oc-

currences of crimes. Nevertheless, it is impossible to recover all the data necessary for com-

puting the exact values for the transition matrices. In addition, the cost functions are typically

hand-tuned by experts in the security field until it is acquired a satisfactory value, which can

result in an undesired process. Then, the RL process plays a fundamental role for computing

the transition and cost matrices very close to the real values in Stackelberg security games.
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(a) Defender 1 (b) Defender 2

(c) Attacker 1 (d) Attacker 2

Figure 5.5 Estimation function error of the utility matrices.

(a) Defender 1 (b) Defender 2

Figure 5.6 The convergence of the defenders strategies.
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(a) Attacker 1 (b) Attacker 2

Figure 5.7 The convergence of the attackers strategies.

5.5.3 Realization of the security game

The main objective of the defenders is to provide protection and security to people who

visit the mall as well as to the stores, and deciding to act taking into account the infrastructure,

alarms and security systems of each mall according to the location area. Taking into account

that the shopping mall 1 is located in a lower-class area that is usually unprotected during the

night, defender 1 prefers to protect the mall from a possible burglary (d1
(1,2) = 0.6477) while

defender 2 has almost the same preference to proceed during the day (d2
(1,1) = 0.5463) or at

night (d2
(1,2) = 0.4537); on the other hand, attackers know that this mall is more protected at

night so they decide to commit robberies (d3
(1,1) = 0.7258 and d4

(1,1) = 0.7058). For shopping

malls 2 and 3 located in a middle-class area, defenders have similar preferences about work

at day or night, the defender 1 has almost the same preference for protecting mall 2 at day

(d1
(2,1) = 0.5743) or overnight (d1

(2,2) = 0.4257) while chooses to protect mall 3 from a pos-

sible robbery (d1
(3,1) = 0.6821), as well as, the defender 2 decides to protect the mall 2 from

possible robberies (d2
(2,1) = 0.6581) and for mall 3 has almost the same preference to pro-

tect it at day (d2
(3,1) = 0.4919) or during the night (d2

(3,2) = 0.5081). For mall 2, the attacker 3

chooses to commit a robbery (d3
(2,1) = 0.7169) while the attacker 4 prefers to commit a burglary

(d4
(2,2) = 0.7695), and for mall 3 both attackers decide to act during the night (d3

(3,2) = 0.7007

and d4
(3,2) = 0.7268). Because the shopping mall 4 is located in a high-class area, defenders
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consider that the mall and the whole area have efficient night-time security systems, so both

defenders decide to protect during the day to provide security and tranquility to people who

visit the mall (d1
(4,1) = 0.7388 and d2

(4,1) = 0.8213). Attackers observe that this mall is more

protected during the day, and even if committing robberies means high profits because wealthy

people visit the mall, they prefer not to take the risk and act overnight (d3
(4,2) = 0.7344 and

d4
(4,2) = 0.6536).

With the strategies calculated from the RL process, we considered a Random walk model,

such that each player either staying put or moving to another state, i.e., defenders and attackers

decide to remain patrolling the same mall or move to one of the other malls that must protect,

defenders can capture attackers if they implement the appropriate strategy (to protect at day or

overnight). Here the game is over when the attackers are caught (5.1).

Figure 5.8 Random Walk.

The initial position (state) of each player are as follows: defender 1 is patrolling the shop-

ping mall 3 and defender 2 is patrolling the mall 1, while attacker 3 set the mall 2 as his target

and attacker 4 plans to commit a crime in the mall 4, that is, s1
(i)(0) = 3, s2

(i)(0) = 1, s3
(i)(0) =

2, s4
(i)(0) = 4. Applying the patrol schedule in Algorithm 1 (Table 5.1) of the security game

we obtain that the attacker 4 is caught at shopping mall 1 after 3 steps by the defender 2, to
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capture the attacker 3 the defenders work cooperatively and both catch him after 9 steps while

he tries to commit a crime in the mall 2, so with both attackers captured the game is over (see

Figure 5.8).
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Chapter 6

The Nash bargaining solution

6.1 Introduction

The starting point of bargaining theory is the Nash formulation [61] who presented this

situation as a new treatment of a classical economic problem. A two-player bargaining situation

involves two individuals who have the opportunity to collaborate for mutual benefit, each player

has to make in turn a proposal, after one player has made an offer, the other must decide either

to accept it, or to reject it and continue the bargaining process.

Nash [61] idealized the bargaining problem by assuming that the two individuals are highly

rational, that they are equal in bargaining skill, and that each has full knowledge of the tastes

and preferences of the other. Nash proved that a solution for all convex bargaining problems

always maximizes the product of individuals’ utilities under four axioms that describe the

behavior of players and provide a unique solution: Symmetry, Pareto optimality, Invariance

with respect to positive affine transformations, and Independence of irrelevant alternatives;

however, this last axiom came under criticism because empirical evidence shows that it is not

often satisfied even in individual decision-making.

Since Nash [61], a bargaining problem is usually defined as a pair (Ψ, φ) where Ψ is a

compact and convex subset of R2 containing both φ and a point that strictly dominates φ. Point

ψ = (ψ1, ψ2) ∈ Ψ represents levels of utility for players 1 and 2 that can be reached by

an outcome of the game which is feasible for the two players when they do cooperate, and

φ = (φ, φ) is the level of utility that players receive if the two players do not cooperate with
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each other (status-quo outcome). The goal is to find an outcome in Ψ which will be agreeable

to both players.

Applications for bargaining situations beyond economic models, the latest applications take

place also in the communications area where some problems are formulated as a two-person

bargaining problem. For example, Zhang et al. [112] proposed a cooperation strategy among

rational nodes in a wireless cooperative relaying network as an effort to solve two basic prob-

lems, when to cooperate and how to cooperate. Another example is proposed by Han et al. [36]

where a fair scheme to allocate subcarrier, rate, and power for multiuser orthogonal frequency-

division multiple-access systems is proposed. The problem here was to maximize the overall

system rate, under each user’s maximal power and minimal rate constraints, while consider-

ing the fairness among users. This approach considers a new fairness criterion, which is a

generalized proportional fairness based on Nash bargaining solutions and coalitions. On the

other hand, Birkeland and Tungodden [14] studied the role of fairness motivation in bargaining

showing that the bargaining outcome is sensitive to the fairness motivation of the two indi-

viduals, unless they both consider an equal division fair. A bargaining between two strongly

fairness motivated individuals who have different views about what represents a fair division

may end in disagreement.

6.2 The Nash bargaining model

Nash bargaining solution is based on a model in which the players are assumed to negotiate

on which point of the set of feasible payoffs Ψ ⊂ Rn will be agreed upon and realized by

concerted actions of the members of the grand coalition l = 1, ..., n. A pivotal element of the

model is a fixed disagreement vector φ ∈ Rn which plays the role of a deterrent. If negotiations

break down and no agreement is reached, then the player are committed to the disagreement

point. Thus the whole bargaining problem B will be concisely given by the pair B = (Ψ, φ),

this is called the condensed form of the bargaining problem (see [29, 61]).

A bargaining problem can be derived from the normal form of an n-person game G =

{C1, ..., Cn;ψ1, ..., ψn} in a natural way. The set of all feasible payoffs (outcomes) is defined
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as

Φ =
{
ψ | ψ =

(
ψ1(c), ..., ψn(c)

)}
,

where c ∈ C and C = C1 × ...× Cn

Given a disagreement vector φ ∈ Rn, B = (Φ, φ) is a bargaining problem in condensed

form. We can derive another bargaining problem B = (Ψ, φ) from G by extending the set of

feasible outcomes Φ to its convex hull Ψ. Notice that any element ϕ ∈ Ψ can be represented

as

ϕ =
n∑
l=1

λlψl,

where ψ = (ψ1(c), ..., ψn(c)), c ∈), λl ≥ 0 for all player l and
∑n

l=1 λ
l = 1.

The payoff vector ϕ can be realized by playing the strategies cl with probability λl, and so ϕ

is the expected payoff of the players. Thus, when the players face the bargaining problem B the

question is, which point of Ψ should be selected taking into account the different position and

strength of the players that is reflected in the set Ψ of extended payoffs and the disagreement

point φ.

Nash approached this problem by assigning a one-point solution to B in an axiomatic man-

ner. Let B denote the set of all pairs (Ψ, φ) such that

1. Ψ ⊂ Rn is compact, convex;

2. there exists at least one ψ ∈ Ψ such that ψ > φ.

A Nash solution to the bargaining problem is a function f : B → Rn such that f(Ψ, φ) ∈ Ψ.

We shall confine ourselves to functions satisfying the following axioms (see [61, 29, 60]).

1. Feasibility: f(Ψ, φ) ∈ Ψ.

2. Rationality: f(Ψ, φ) ≥ φ.

3. Pareto Optimality: For every (Ψ, φ) ∈ B there is ψ ∈ Ψ such that ψ ≥ f(Ψ, φ) and

imply ψ = f(Ψ, φ).
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4. Symmetry: If for a bargaining problem (Ψ, φ) ∈ B, there exist indices i, j such that

ϕ = (ϕ1, ..., ϕn) ∈ Ψ if and only if ϕ̄ = (ϕ̄1, ..., ϕ̄n) ∈ Ψ, (ϕ̄l = ϕl, l 6= i, l 6= j, ϕ̄i =

ϕj, ϕ̄j = ϕi) and φi = φj for φ = (φ1, ..., φn), then f i = f j for the solution vector

f(Ψ, φ) = (f 1, ..., f n) .

5. Invariance with respect to affine transformations of utility: Let αl > 0, βl, (l = 1, ..., n)

be arbitrary constants and let

φ′ = (α1φ1 + β1, ..., αnφn + βn) with φ = (φ1, ..., φn)

and

Ψ′ = (α1ϕ1 + β1, ..., αnϕn + βn) : (ϕ1, ..., ϕn) ∈ Ψ.

Then f(Ψ′, φ′) = (α1f 1 + β1, ..., αnf n + βn), where f(Ψ, φ) = (f 1, ..., f n).

6. Independence of irrelevant alternatives: If (Ψ, φ) and (Θ, φ) are bargaining pairs such

that Ψ ⊂ Θ and f(Θ, φ) ∈ Ψ, then f(Θ, φ) = f(Ψ, φ).

Theorem 6.1 There is a unique function f satisfying axioms 1-6, furthermore for all (Ψ, φ) ∈

B, the vector f(Ψ, φ) = (f 1, ..., f n) = (ψ1, ..., ψn) is the unique solution of the optimization

problem

maximize g(ψ) =
n∏
l=1

(ψl − φl)

subject to ψ ∈ Ψ, ψ ≥ φ

(6.1)

The objective function of problem in eq. (6.1) is usually called the Nash product.

Proof. See [29]

Remark 6.2 There are exactly two solutions satisfying axioms 1, 2, 4, 5, and 6. One is the

Nash’s solution and the other is the disagreement solution.

For the next conjectures consider a bargaining problem as a pair (Ψ, φ) where Ψ ⊂ R2 and

φ ∈ R2.
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Corollary 6.3 [60] The Pareto frontier Ωe of the set Ψ is the graph of a concave function,

denoted by h, whose domain is a closed interval B ⊆ R. Furthermore, there exists ψ1 ∈ B

such that ψ1 > φ1 and h(ψ1) > φ2.

Corollary 6.4 [60] The set Ωw of weakly Pareto efficient utility pairs is closed.

Figure 6.1 Pareto front.

Considering a two-person bargaining problem. Denote the disagreement cost of each player

as φ1 and φ2, and the solution for the Nash bargaining problem as the point (ψ1, ψ2), therefore

the Pareto front is as the Figure 6.1.

6.2.1 Formulation of the problem

Stated in general terms, a n-person bargaining problem is a situation in which n players have

a common interest to cooperate, but have conflicting interests over exactly how to cooperate.

This process involves the players making offers and counteroffers to each other.

Consider a n-person bargaining problem [102, 95]. Let us denote the disagreement utility

that depends on the strategies cl(i,k) as φl(c1, ..., cn) for each player (l = 1, ..., n), and the

solution for the Nash bargaining problem as the point (ψ1, ..., ψn). Following the eq. (2.5) the
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utilities ψl, in the same way that the disagreement utilities, are for Markov chains as follows

ψl = ψl (c1, ..., cn) :=
N∑
i

M∑
k

W l
(i,k)

n∏
l=1

cl(i,k) (6.2)

where the matrices W l
(i,k) represent the behavior of each player. This point is better than the

disagreement point, therefore must satisfy that ψl > φl.

The process to solve the bargaining problem consists of two main steps, firstly to find the

disagreement point we define it as the Nash equilibrium point of the problem (see [62]), this

formulation is detailed in Chapter 2; while for the solution of the bargaining process we follow

the model presented by Nash [61]. The function for finding the solution to the Nash Bargaining

problem is

g(c1, ..., cn) =
n∏
l=1

(ψl − φl)αlχ(ψl>φl) (6.3)

where αl ≥ 0 and
∑n

l=1 α
l = 1, (l = 1, .., n), which are weighting parameters for each player.

We can rewrite (6.3) for purposes of implementation as follows

g̃(c1, ..., cn) =
n∑
l=1

αlχ(ψl > φl) ln(ψl − φl)

Thus, the strategy x∗, which is the vector x∗ = (c1, ..., cn) ∈ Xadm :=
⊗n

l=1C
l
adm satisfying the

simplex (2.7) and ergodicity (2.8) restrictions, is the solution for the Nash bargaining problem

x∗ ∈ Arg max
x∈Xadm

{
g̃(c1, ..., cn)

}
Applying the Lagrange principle,

L(x, µ, η) = g̃(c1, ..., cn)−
n∑
l=1

N∑
j=1

µl(j)h
l
(j)(c

l)−
n∑
l=1

N,M∑
i,k=1

ηl
(
cl(i,k) − 1

)
The approximative solution obtained by the Tikhonov’s regularization is given by

x∗, µ∗, η∗ = arg max
x∈Xadm

min
µ,η≥0

Lδ(x, µ, η)

where

Lδ(x, µ, η) = g̃(c1, ..., cn)−
n∑
l=1

N∑
j=1

µl(j)h
l
(j)(c

l)−

n∑
l=1

N,M∑
i,k=1

ηl
(
cl(i,k) − 1

)
− δ

2

(
‖x‖2 − ‖µ‖2 − ‖η‖2) (6.4)
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Notice that the Lagrange function (6.4) satisfies the saddle-point condition, namely, for all

x ∈ Xadm and µ, η≥ 0 we have

Lδ(xδ, µ∗δ , η∗δ ) ≤ Lδ(x∗δ , µ∗δ , η∗δ ) ≤ Lδ(x∗δ , µδ, ηδ)

6.2.2 The proximal format

In the proximal format [5] the relation (6.4) can be expressed as

µ∗δ = arg min
µ≥0

{
1
2
‖µ− µ∗δ‖2 + γLδ(x∗δ , µ, η∗δ )

}
η∗δ = arg min

η≥0

{
1
2
‖η − η∗δ‖2 + γLδ(x∗δ , µ∗δ , η)

}
x∗δ = arg max

x∈X

{
−1

2
‖x− x∗δ‖2 + γLδ(x, µ∗δ , η∗δ )

} (6.5)

where the solutions x∗δ , µ
∗
δ and η∗δ depend on the parameters δ > 0 and γ > 0.

6.2.3 The Extraproximal method

We design the method for the static Nash bargaining game in a general format with some

fixed admissible initial values (x0 ∈ Xadm and µ0, η0 ≥ 0), considering that we want to maxi-

mize the function as follows:

1. The first half-step (prediction):

µ̄n = arg max
µ≥0

{
−1

2
‖µ− µn‖2 − γLδ(xn, µ, ηn)

}
η̄n = arg max

η≥0

{
−1

2
‖η − ηn‖2 − γLδ(xn, µ̄n, η)

}
x̄n = arg max

x∈X

{
−1

2
‖x− xn‖2 + γLδ(x, µ̄n, η̄n)

} (6.6)

2. The second half-step (basic)

µn+1 = arg max
µ≥0

{
−1

2
‖µ− µn‖2 − γLδ(x̄n, µ, η̄n)

}
ηn+1 = arg max

η≥0

{
−1

2
‖η − ηn‖2 − γLδ(x̄n, µ̄n, η)

}
xn+1 = arg max

x∈X

{
−1

2
‖x− xn‖2 + γLδ(x, µ̄n, η̄n)

} (6.7)
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6.2.4 Convergence Analysis

The following theorem presents the convergence conditions of eqs. (6.6) and (6.7) and

gives the estimate of its rate of convergence for the Nash bargaining equilibrium. As well,

we prove that the extraproximal method converges to an equilibrium point. Let us define the

following extended vectors

x̃ = x ∈ X̃, µ̃ =

 µ

η

 ∈ R+ × R+

Then, the regularized Lagrange function can be expressed as

L̃δ(x̃, µ̃) := Lδ(x, µ, η)

The equilibrium point that satisfies (6.5) can be expressed as

µ̃∗δ = arg min
µ̃≥0

{
1
2
‖µ̃− µ̃∗δ‖2 + γL̃δ(x̃∗δ , µ̃)

}
x̃∗δ = arg max

x̃∈X̃

{
−1

2
‖x̃− x̃∗δ‖2 + γL̃δ(x̃, µ̃∗δ)

}
Now, introducing the following variables

ỹ =

 ỹ1

ỹ2

 ∈ X̃ × R+, z̃ =

 z̃1

z̃2

 ∈ X̃ × R+

and let define the Lagrange function in term of ỹ and z̃

Lδ(ỹ, z̃) := L̃δ(ỹ1, z̃2)− L̃δ(z̃1, ỹ2)

For ỹ1 = x̃, ỹ2 = µ̃, z̃1 = z̃∗1 = x̃∗δ and z̃2 = z̃∗2 = µ̃∗δ we have

Lδ(ỹ, z̃
∗) := L̃δ(x̃, µ̃∗δ)− L̃δ(x̃∗δ , µ̃)

In these variables the relation (6.5) can be represented by

z̃∗= arg max
ỹ∈X̃×R+

{
−1

2
‖ỹ − z̃∗‖2+γLδ(ỹ, z̃

∗)
}

(6.8)

Finally, we have that the extraproximal method can be expressed by
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1. First step

ẑn= arg max
ỹ∈X̃×R+

{
−1

2
‖ỹ − z̃n‖

2+γLδ(ỹ, z̃n)
}

(6.9)

2. Second step

z̃n+1= arg max
ỹ∈X̃×R+

{
−1

2
‖ỹ − z̃n‖

2+γLδ(ỹ, ẑn)
}

(6.10)

Lemma 6.5 Let L̃δ(x̃, µ̃) be differentiable in x̃ and µ̃, whose partial derivative with respect to

µ̃ satisfies the Lipschitz condition with positive constant K0. Then,

‖z̃n+1 − ẑn‖ ≤ γK0‖z̃n − ẑn‖

Lemma 6.6 Consider the set of regularized solutions of a non-empty game. The behavior of

the regularized function is described by the following inequality:

Lδ(ỹ, ỹ)− Lδ(z̃
∗
δ , ỹ) ≥ δ‖ỹ − z̃∗δ‖

for all ỹ ∈{ỹ | ỹ ∈X × R+} and δ > 0.

Theorem 6.7 (Convergence and rate of convergence) Let L̃δ(x̃, µ̃) be differentiable in x̃ and

µ̃, whose partial derivative with respect to µ̃ satisfies the Lipschitz condition with positive con-

stant K. Then, for any δ > 0 there exists a small-enough

γ0 = γ0(δ) < K:= min

{
1√
2K0

,
1+
√

1+2(K0)2

2(K0)2

}
where such that, for any 0 < γ ≤ γ0, sequence {z̃n}, which generated by the equivalent

extraproximal procedure in eqs. (6.9) and (6.10), monotonically converges with exponential

rate r ∈ (0, 1) to a unique equilibrium point z̃∗, i.e.,

‖z̃n−z̃∗‖2≤ en ln r‖z̃0−z̃∗‖2

where

r = 1+ 4(δγ)2

1+2δγ−2γ2K2−2δγ < 1

and rmin is given by

rmin= 1− 2δγ
1+2δγ

= 1
1+2δγ

.

Please refer to Appendix C for the proofs of these results.
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6.3 The disagreement point model

A pivotal element of the model is a fixed disagreement vector (sometimes also called as

status quo or threat point). The player are committed to the disagreement point in the case of

failing to reach a consensus on which feasible payoff to realize. introduce the variables

x := col cl, x̂ := col cl̂,

The strategies of the players l = 1, n are denoted by the vector x, and x̂ is a strategy of the rest

of the players adjoint to x. For reaching the goal of the game, players try to find a join strategy

x∗ = (c1, c2, c3) satisfying

f(x, x̂) :=
n∑
l=1

[
φl
(
cl, cl̂

)
− φl

(
c̄l, cl̂

)]
where φl

(
cl, cl̂

)
is the utility-function of the player l which plays the strategy cl ∈ C l and the

rest of the players play the strategy cl̂ ∈ C l̂, and c̄l is the utopia point defined as follows

c̄l := arg max
cl∈Cl

φl
(
cl, cl̂

)
The functions φl

(
cl, cl̂

) (
l = 1, n

)
are assumed to be concave in all their arguments.

Property 6.8 The function f(x, x̂) satisfies the Nash condition

φl
(
cl, cl̂

)
− φl

(
c̄l, cl̂

)
≤ 0

for any cl ∈ C l and all l = 1, n

Definition 6.9 A strategy x∗ ∈ Xadm :=
⊗n

l=1C
l
adm (Restrictions 2.7 and 2.8) is said to be a

Nash equilibrium if

x∗∈ Arg max
x∈Xadm

{f(x, x̂)}

Applying the regularized Lagrange principle we have the solution for the Nash equilibrium

x∗, x̂∗, µ∗, η∗ = arg max
x∈X,x̂∈X̂

min
µ,η≥0

Lθ,δ(x, x̂, µ, η)
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where

Lθ,δ(x, x̂, µ, η) := (1− θ)f(x, x̂)−
n∑
l=1

N∑
j=1

µl(j)h
l
(j)(c

l)−
n∑
l=1

N,M∑
i,k=1

ηl
(
cl(i,k) − 1

)
− δ

2
(‖x‖2 + ‖x̂‖2 − ‖µ‖2 − ‖η‖2)

(6.11)

Notice also that the Lagrange function (6.11) satisfies the saddle-point condition, namely, for

all x ∈ X, x̂ ∈ X̂, and µ, η≥ 0 we have

Lθ,δ(xδ, x̂δ, µ∗δ , η∗δ )≤Lθ,δ(x∗δ , x̂∗δ , µ∗δ , η∗δ )≤Lθ,δ(x∗δ , x̂∗δ , µδ, ηδ)

6.3.1 The proximal format

In the proximal format the relation (6.11) can be expressed as

µ∗δ = arg min
µ≥0

{
1
2
‖µ− µ∗δ‖2 + γLθ,δ(x∗δ , x̂∗δ , µ, η∗δ )

}
η∗δ = arg min

η≥0

{
1
2
‖η − η∗δ‖2 + γLθ,δ(x∗δ , x̂∗δ , µ∗δ , η)

}
x∗δ = arg max

x∈X

{
−1

2
‖x− x∗δ‖2 + γLθ,δ(x, x̂∗δ , µ∗δ , η∗δ )

}
x̂∗δ = arg max

x̂∈X̂

{
−1

2
‖x̂− x̂∗δ‖2 + γLθ,δ(x∗δ , x̂, µ∗δ , η∗δ )

}
where the solutions x∗δ , x̂

∗
δ(u), µ∗δ and η∗δ depend on the parameters δ > 0 and γ > 0.

6.3.2 The Extraproximal method

We design the method for the static Nash game in a general format with some fixed admis-

sible initial values (x0 ∈ X , x̂0 ∈ X̂ , and µ0, η0 ≥ 0), considering that we want to maximize

the function, as follows:

1. The first half-step:

µ̄n = arg max
µ≥0

{
−1

2
‖µ− µn‖2 − γLθ,δ(xn, x̂n, µ, ηn)

}
η̄n = arg max

η≥0

{
−1

2
‖η − ηn‖2 − γLθ,δ(xn, x̂n, µn, η)

}
x̄n = arg max

x∈X

{
−1

2
‖x− xn‖2 + γLθ,δ(x, x̂n, µ̄n, η̄n)

}
x̂n = arg max

x̂∈X̂

{
−1

2
‖x̂− x̂n‖2 + γLθ,δ(xn, x̂, µ̄n, η̄n)

}
(6.12)
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2. The second half-step

µn+1 = arg max
µ≥0

{
−1

2
‖µ− µn‖2 − γLθ,δ(x̄n, x̂n, µ, η̄n)

}
ηn+1 = arg max

η≥0

{
−1

2
‖η − ηn‖2 − γLθ,δ(x̄n, x̂n, µ̄n, η)

}
xn+1 = arg max

x∈X

{
−1

2
‖x− xn‖2 + γLθ,δ(x, x̂n, µ̄n, η̄n)

}
x̂n+1 = arg max

x̂∈X̂

{
−1

2
‖x̂− x̂n‖2 + γLθ,δ(x̄n, x̂, µ̄n, η̄n)

}
(6.13)

6.4 Numerical Examples

Example 1

Our goal is to analyze a 2-player Nash Bargaining situation in a class of ergodic controllable

finite Markov chains. Denote the disagreement utility that depends on the strategies cl(i,k) (l =

1, 2) for players 1 and 2 as φ1(c1, c2) and φ2(c1, c2) respectively, and the solution for the Nash

bargaining problem as the point (ψ1, ψ2). Let the states N = 3 and the number of actions

M = 2 for each player. The individual utility for each player are defined by

J1
(i,j,1) =


7 17 13

0 1 18

13 7 10

 J1
(i,j,2) =


18 3 10

9 0 7

15 6 16



J2
(i,j,1) =


9 11 6

9 17 3

11 1 4

 J2
(i,j,2) =


10 18 0

12 7 18

17 6 10


The transition matrices for each player are as follows

π1
(i,j,1) =


0.5144 0.2877 0.1978

0.3775 0.0893 0.5332

0.3305 0.2703 0.3992

 π1
(i,j,2) =


0.3438 0.3846 0.2717

0.2484 0.0756 0.6759

0.1378 0.4655 0.3968



π2
(i,j,1) =


0.3541 0.1945 0.4514

0.5929 0.2559 0.1512

0.4288 0.2434 0.3278

 π2
(i,j,2) =


0.6435 0.0216 0.3349

0.2990 0.3905 0.3105

0.5575 0.2203 0.2221


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Computing the disagreement point. Given δ, γ and applying the extraproximal method

we obtain the convergence of the strategies for each player in the disagreement point in terms

of the variable cl(i,k) (Figure 6.2 and Figure 6.3).

c1 =


0.1683 0.1551

0.1829 0.0973

0.1853 0.2111

 c2 =


0.2618 0.2122

0.0673 0.1320

0.1305 0.1962



Figure 6.2 Strategies for player 1 Figure 6.3 Strategies for player 2.

With the strategies calculated, the resulting utilities in the disagreement point for each

player are as follows:

φ1(c1, c2) = 120.3001 φ2(c1, c2) = 97.0832

Computing the Nash Bargaining solution. The Nash’s solution has a simple geometric

interpretation in a two-person game: given a bargaining pair, for every point (ψ1, ψ2), consider

the product (area of a rectangle) (ψ1 − φ1)(ψ2 − φ2). Then (ψ1, ψ2) is the unique point in the

Pareto front that maximizes this product [60].

Following the method presented and applying the extraproximal method for the Nash bar-

gaining problem (6.6 - 6.7), we obtain the convergence of the strategies for the bargaining

solution in terms of the variable cl(i,k) for each player (see Figure 6.4 and Figure 6.5).
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c1 =


0.1890 0.1178

0.3057 0.0010

0.0010 0.3854

 c2 =


0.3463 0.0881

0.0010 0.2325

0.0010 0.3310



Figure 6.4 Strategies of player 1 Figure 6.5 Strategies of player 2.

With the strategies calculated, the resulting utilities in the bargaining solution are as fol-

lows:

ψ1(c1, c2) = 139.6854 ψ2(c1, c2) = 119.4296

We can see that the profits obtained at the point of Nash bargaining solution are greater than

those obtained at the disagreement point.

Example 2

Our goal is to analyze a three-player Nash bargaining situation in a class of ergodic con-

trollable finite Markov chains, we have n = 3. Denote the disagreement cost that depends

on the strategies cl(i,k) (l = 1, 2, 3) for players 1, 2 and 3 as φ1(c1, c2, c3), φ2(c1, c2, c3) and

φ3(c1, c2, c3) respectively, and the solution for the Nash bargaining problem as (ψ1, ψ2, ψ3).
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Let the states N = 5 and the number of actions M = 2 for each player. The individual

utility for each player are defined by

U1
(i,j,1)=



10 9 3 7 6

11 19 6 8 10

9 7 13 19 5

14 9 15 2 16

12 4 9 3 10


U2
(i,j,1) =



14 9 12 6 1

18 12 7 9 10

5 14 8 11 6

19 13 8 4 10

6 9 12 10 8


U3
(i,j,1) =



5 8 7 8 10

10 4 13 11 5

14 11 6 17 1

12 0 9 7 3

16 12 8 4 10



U1
(i,j,2)=



12 6 7 10 5

16 0 9 14 5

18 10 16 9 4

2 16 9 7 13

11 9 3 17 10


U2
(i,j,2) =



10 17 6 9 11

16 9 4 12 8

10 13 9 1 18

12 18 15 9 4

17 3 9 10 6


U3
(i,j,2) =



9 13 7 10 11

19 5 0 7 20

11 2 19 6 9

3 10 14 5 18

9 10 17 6 11


The transition matrices for each player are defined as follows

π1
(i,j,1)=



0.233 0.130 0.090 0.278 0.266

0.123 0.029 0.174 0.394 0.279

0.229 0.187 0.276 0.182 0.124

0.129 0.265 0.336 0.190 0.078

0.331 0.189 0.108 0.172 0.198


π1
(i,j,2)=



0.210 0.235 0.166 0.299 0.088

0.177 0.054 0.483 0.143 0.141

0.102 0.345 0.294 0.167 0.089

0.187 0.100 0.364 0.249 0.099

0.087 0.197 0.193 0.388 0.132



π2
(i,j,1)=



0.240 0.132 0.307 0.160 0.159

0.353 0.152 0.090 0.170 0.232

0.243 0.138 0.185 0.249 0.183

0.134 0.214 0.244 0.290 0.116

0.170 0.267 0.215 0.167 0.179


π2
(i,j,2)=



0.389 0.013 0.202 0.117 0.278

0.171 0.224 0.178 0.323 0.101

0.315 0.124 0.125 0.217 0.217

0.185 0.122 0.330 0.171 0.189

0.111 0.285 0.208 0.205 0.190



π3
(i,j,1)=



0.070 0.334 0.261 0.143 0.189

0.053 0.085 0.446 0.126 0.288

0.127 0.325 0.140 0.180 0.227

0.317 0.265 0.031 0.227 0.158

0.101 0.291 0.039 0.311 0.256


π3
(i,j,2)=



0.466 0.108 0.084 0.124 0.215

0.205 0.241 0.107 0.143 0.301

0.044 0.216 0.305 0.313 0.120

0.287 0.171 0.205 0.098 0.235

0.145 0.214 0.166 0.245 0.227


Computing the disagreement point. Given δ and γ and applying the extraproximal

method (eqs. 6.12 and 6.13) we obtain the convergence of the strategies for the disagreement

point in terms of the variable cl(i,k) for each player (see Figure 6.6).
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c1 =



0.1729 0.0399

0.1445 0.0010

0.1549 0.0641

0.0010 0.2475

0.1732 0.0010


c2 =



0.0499 0.1642

0.0010 0.1682

0.2139 0.0010

0.1856 0.0440

0.0734 0.0989


c3 =



0.1004 0.0533

0.2270 0.0010

0.1296 0.0645

0.2027 0.0010

0.1505 0.0699


Following eq. (2.6) the mixed strategies obtained for the players are as follows

d1 =



0.8125 0.1875

0.9931 0.0069

0.7073 0.2927

0.0040 0.9960

0.9943 0.0057


d2 =



0.2330 0.7670

0.0059 0.9941

0.9953 0.0047

0.8085 0.1915

0.4261 0.5739


d3 =



0.6530 0.3470

0.9956 0.0044

0.6676 0.3324

0.9951 0.0049

0.6827 0.3173


With the strategies calculated, the resulting utilities, following eq. (6.2), in the disagree-

ment point for each player φl(c1, c2, c3) are as follows:

φ1(c1, c2, c3) = 93.1288 φ2(c1, c2, c3) = 100.9968 φ3(c1, c2, c3) = 96.0779

Computing the Nash bargaining solution. The Nash’s unique solution has a very sim-

ple geometric interpretation in a three-person game: given a bargaining pair, for every point

(ψ1, ψ2, ψ3), consider the product (volume of a rectangular prism) (ψ1−φ1)(ψ2−φ2)(ψ3−φ3).

Then (ψ1, ψ2, ψ3) is the unique point in the Pareto front that maximizes this product (see [60]).

The function for finding the solution to the Nash Bargaining problem in a three-person game is

g(c1, c2, c3) = (ψ1 − φ1)α
1χ(ψ1>φ1) · (ψ2 − φ2)α

2χ(ψ2>φ2) · (ψ3 − φ3)α
3χ(ψ3>φ3) (6.14)

where the parameters α1, α2, α3 ≥ 0 and α1 + α2 + α3 = 1. For the implementation we can

rewrite (6.14) as follows

g̃(c1, c2, c3) = α1χ(ψ1 > φ1) ln(ψ1 − φ1)

+α2χ(ψ2 > φ2) ln(ψ2 − φ2) + α3χ(ψ3 > φ3) ln(ψ3 − φ3)
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(a) Player 1. (b) Player 2.

(c) Player 3.

Figure 6.6 Convergence of players’ strategies.

Then, given δ, γ, αl = 1/3 and applying the extraproximal method (eqs. 6.6 and 6.7) for

the Nash bargaining problem we obtain the convergence of the strategies for the bargaining

solution in terms of the variable cl(i,k) for each player (see Figure 6.7).

c1 =



0.0793 0.0890

0.0822 0.1043

0.1285 0.1413

0.1429 0.0956

0.0412 0.0956


c2 =



0.1377 0.1026

0.1055 0.0540

0.0779 0.1343

0.0818 0.1154

0.0976 0.0931


c3 =



0.0880 0.0965

0.0784 0.1453

0.0789 0.0952

0.0645 0.1250

0.1067 0.1214


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(a) Player 1. (b) Player 2.

(c) Player 3.

Figure 6.7 Convergence of players’ strategies.

Following eq. (2.6) the mixed strategies obtained for the players are as follows

d1 =



0.4712 0.5288

0.4408 0.5592

0.4764 0.5236

0.5991 0.4009

0.3011 0.6989


d2 =



0.5730 0.4270

0.6613 0.3387

0.3671 0.6329

0.4149 0.5851

0.5117 0.4883


d3 =



0.4769 0.5231

0.3506 0.6494

0.4530 0.5470

0.3404 0.6596

0.4679 0.5321


Then, we can see that the resulting utilities obtained in the Nash bargaining solution are greater

than those obtained at the disagreement point.

ψ1(c1, c2.c3) = 118.0408 ψ2(c1, c2, c3) = 117.3255 ψ3(c1, c2, c3) = 122.5102



Chapter 7

Solving Bargaining by Manipulation

7.1 Introduction

The Machiavellianism is defined as a political strategy of social conduct that involves ma-

nipulating others for personal gain, often against the other’s self-interest [16]. This concept

coincides with the central insight that gave rise to modern economics where the common good

is well served by the free actions of self-interested agents in a market. The profit maximization

of agents assigns essentially no role to generosity and social conscience because actions in

many domains of application commonly conform to standards of manipulation. In this sense,

the manipulation model presents an advantage for expanding the classical economic models as

a more realistic behavioral assumption. In the classical economic theory, agents are assumed

to be rationally law-abiding but not fair. This non-fairness assumption can be explained by

the Machiavellianism in terms of the immorality (considered by Christie and Geis [16] to be

among the three key elements of Machiavellianism) which has deep roots in the history of the

economy. It is important to note that a manipulation strategy is a political strategy and it is

not an economical strategy as is presented in compensation contracts which solves a particular

case of manipulation [12].

The concept of Machiavellianism was first studied by Christie and Geis [16] as the ability

to manipulate others as an important personality trait. They analyze whether the principles

associated with three of Machiavelli’s greatest works (The Prince [54], The Discourses [54]
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and The Art of War [55]) were practiced by individuals in today’s society. The fundamental

idea throughout Machiavelli’s discourses is the degree to which people can be manipulated.

Christie and Geis [16] defined the Machiavellian personality type as someone who seeks

to manipulate others to achieve his or her own ends. Machiavellianism structure is composed

by three key elements: 1) the belief in manipulative tactics, 2) a cynical world view, and 3) a

pragmatic morality (immorality). For individuals who manipulate, others are viewed entirely

as objects or as means to personal ends (views) having an utilitarian, rather than a moral view

of their interactions with others (immorality) and focused on applying manipulation strategies

for accomplishing their goals related to power situations (tactics).

The interest in the subject of Machiavellianism was almost among social psychologists

[107, 23, 8, 85]. These works only made an interpretation of the concept of Machiavellianism

related to well-known games of game theory and in game-theoretic experiments focusing on

explaining the rationality of the players. These works has not converged on the framework of

game theory and a small number of articles are inspired by traditional game theory. In addition,

the effects of repeated interactions with the intention to exploit others have not been addressed.

The manipulation game is conceptualized under the Machiavellianism psychological the-

ory which determines a Stackelberg game model consisting of manipulating and manipulated

players that employ manipulation strategies to achieve power situations with the disposition to

not become attached to a conventional moral. The Stackelberg game focuses on computing the

strong Stackelberg equilibrium. In this paper we are considering manipulating and manipu-

lated players engaged in a cooperative Nash game. Power situations suggest that the advantage

is for the manipulating players. The equilibrium may be imposed on the manipulated players

without their approval but considering that every player is able of manipulative behavior to

some degree (manipulated players try to minimize their lost). The resulting manipulation strat-

egy is an outcome which is optimally better for the manipulating players with the manipulated

players necessarily worse off. The rationality of the players follows this two basics principles:

a) no manipulating player will agree to accept a payoff lower than the one guaranteed to him

under disagreement, and b) the agreement will represent a situation that could not be improved

by the manipulated players.
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The main results of this chapter are summarized as follows.

• The manipulation game is conceptualized under the Machiavellianism psychological the-

ory as a Stackelberg game model involving manipulating (leaders) and manipulated (fol-

lowers) players.

• We consider a game model involving manipulating and manipulated players engaged

cooperatively in a Nash game restricted by a Stackelberg game.

• The cooperation is represented by the Nash bargaining solution.

• It is proposed an analytical method for finding the manipulation equilibrium point. There

is a manipulating strategy solution (which arises as the maximum of the quotient of two

Nash products) which under a feasibility condition is a manipulation equilibrium point.

• We represent the Stackelberg game model as Nash game for relaxing the interpretation

of the game and the equilibrium selection problem

• The solution concept applied to the manipulation game focuses on computing the ma-

nipulation equilibrium which is a political strategy.

• Under conditions of unequal relative power among players, the player with high power

tends to behave exploitative, while the less powerful player tends to behave submissively.

• The weights of the players for the Nash solution are determined by their role in the

Stackelberg game.

• The manipulated players break ties optimally for the manipulating players finding a new

strong Stackelberg equilibrium point solution where manipulating maximize the gain and

the manipulated minimize the lost. There is an equilibrium selection problem forcing the

manipulating players to manipulate on which equilibrium to converge.

• The manipulation equilibrium point is a political strategy with an outcome which is op-

timally better for the manipulating players.
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• The computation of the problem is fitted into a class of homogeneous, ergodic, control-

lable and finite Markov chains games.

7.2 The Manipulation Game

7.2.1 Machiavellian structure

The Machiavellianism structure that encodes the set of characteristics of a Machiavellian

individual is represented by three fundamental concepts [16]:

• Views: The belief that the world can be manipulated - the world consists of manipulating

and manipulated

• Tactics: The use of a manipulation strategies needed to achieve specific power situations

(goals).

• Immorality: The disposition to not become attached to a conventional moral.

Remark 7.1 Strategies are based on the Machiavelli’s The Prince [54], The Discourses [54],

The Art of War [55] and the psychological behavior patterns [107].

A manipulation game is a Stackelberg game model consisting of manipulating and manip-

ulated players (views) that employ manipulation strategies to achieve power situations (tactics)

with the disposition to not become attached to a conventional moral (immorality) [18].

The solution concept applied to the manipulation game is the strong Stackelberg equilib-

rium. In the manipulation game the manipulating players consider the best-reply of the ma-

nipulated players selecting the strategy that maximizes the payoff anticipating the predicted

best-reply of the manipulated players. The manipulated players break ties optimally for the

manipulating players and in equilibrium select the expected strategy as a best-reply. We are

considering manipulating and manipulated players engaged in a cooperative Nash game re-

stricted by a Stackelberg game.

The formal definition and rationality of the solution for the bargaining problem based on

the manipulation game is as follows.
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7.2.2 The bargaining manipulation solution

Consider a manipulation game, for a finite set of players I = {N ∪M} with n + m el-

ements, let RI denote the (n + m)-dimensional Euclidean space with coordinates indexed by

the elements of I. For representing a Stackelberg game as a Nash game a strategy profile

x = (u, v) ∈ X ⊆ Rn+m is constructed, where X = U ⊗ V is the concatenation of U and V ,

such that x = (u1, . . . , un, v1, . . . , vm). The strategy profile u represents the proposal of the ma-

nipulating players and the strategy profile v represents the proposal of the manipulated players.

The manipulation solution is based on a model in which the players are assumed to manipu-

late on which point of the feasible payoff vector Φ(x) = (ϕ1(u), ..., ϕn(u), ψ1(v), ..., ψm(v))

where ϕ(u) = (ϕ1(u), ..., ϕn(u)) and ψ (v) = (ψ1(v), ..., ψm(v)) are the payoff vectors cor-

responding to the manipulating and manipulated players, respectively, and the vector x =

(u1, . . . , un, v1, . . . , vm) ∈ X . Let us denote Ψ := {Φ(x) ∈ Rn+m | x ∈ X} as the adjunct set

of payoff vectors Φ(x).

Players have strictly opposed preferences and each one is concerned only with the share

of benefits it obtains from manipulation. A fundamental point of the model is a fixed dis-

agreement vector φ = (ϕ̃(u), ψ̃(v)) ∈ Ψ which plays the role of a deterrent where ϕ̃(u) =

(ϕ̃1(u), ..., ϕ̃n(u)) is the disagreement payoff vector corresponding to the manipulating players

and ψ̃(v) = (ψ̃1(v), ..., ψ̃m(v)) is the disagreement payoff vector corresponding to the manip-

ulated players.

The manipulating players would like to increase their components in φ and to achieve a

% ∈ Ψ(x) for which % ≥ φ (where %ι ≥ φι, ι = 1, ..., n + m). We will suppose the conflict

of interest involves all external factors, depends only on the agreement being considered and

on the objections, and therefore the manipulation process is independent of time, history, and

experience.

Remark 7.2 We are considering manipulating and manipulated players engaged in a cooper-

ative Nash game restricted by a Stackelberg game.

Remark 7.3 In a Stackelberg game leaders and followers move asynchronous. For instance, if

we first fix the followers then, we will have a Nash product for the leaders given by
∏n

l=1(ϕl(u|v)−
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ϕ̃l). On the other hand, if we fix the leaders we will have a Nash product for the followers given

by
∏m

m=1(ψ̃m − ψm(v|u)). In a Stackelberg game we look for

max
u∈U

n∏
l=1

(ϕl(u|v)− ϕ̃l), ϕl > ϕ̃l

while

min
v∈V

m∏
m=1

(ψ̃m − ψm(v|u)), ψ̃m > ψm

Then, for fitting the manipulation game to more real situations we consider that manipulating

and manipulated players can move simultaneously. In addition, we consider that every player

is capable of manipulative behavior to some degree, but making emphasis in the fact that some

are more willing and more able than others. We represent the Stackelberg game model as Nash

game for relaxing the interpretation of the game and the equilibrium selection problem.

Remark 7.4 The transformation of a Stackelberg game into a Nash game is already described

by [90] where the authors suggest that a leadership game is a two-stage game played as fol-

lows: the leaders choose and commit to their strategies which are announced to the followers,

who then simultaneously choose their strategies, which are played together with the strategies

of the leaders. The players’ payoffs for the strategy profile are as in the original game. Then,

there is no need for understanding leadership as an asynchronous game.

Following the Remark 7.2, Remark 7.3 and Remark 7.4 we approach the solution of the

bargaining by manipulation problem as the maximum of the quotient of two Nash products as

follows.

Definition 7.5 A strategy x∗ = (u∗, v∗) ∈ X is called a manipulation strategy solution of the

game if it is an optimal solution of the maximization problem

max
x∈X

ζ(%(x)) =

n∏
l=1

(ϕl(u)− ϕ̃l)
m∏

m=1

(ψ̃m − ψm(v))

subject to %(x) ∈ Ψ(x)

ϕl > ϕ̃l and ψ̃m > ψm

(7.1)
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where φ(x′) = (ϕ̃(u), ψ̃(v)) ∈ Ψ(x′), x′ ∈ X , %(x∗) = (ϕ (u∗) , ψ (v∗)) such that ϕ (u∗) =(
ϕl (u∗)

)
l=1,n

, and ψ (v∗) = (ψm (v∗))m=1,m.

Remark 7.6 The pay-off vector given by %(x∗) = (ϕ (u∗) , ψ (v∗)) generated by manipulation

solution x∗ = (u∗, v∗) ∈ X is called the manipulation solution payoff.

For making emphasis in representing the Stackelberg game model as a Nash game we

consider that the problem (7.1) for finding the solution to the manipulation problem is given by

ζ(%(x)) =

n∏
l=1

(ϕl − ϕ̃l)αlχ(ϕl>ϕ̃l)

m∏
m=1

(ψ̃m − ψm)βmχ(ψ̃m>ψm)

→ max
x∈X

(7.2)

where %(x) = (ϕ (u) , ψ (v)) and αl ≥ βm > 0 (l = 1, ..., n, m = 1, ...,m) are the weighting

parameters for manipulating and manipulated players, respectively. Then, we rewrite (7.2) as

follows
ζ(%(x)) =

n∑
l=1

αlχ(ϕl > ϕ̃l) ln(ϕl − ϕ̃l)−

m∑
m=1

βmχ(ψ̃m > ψm) ln(ψ̃m − ψm) → max
x∈X

(7.3)

where %(x) = (ϕ (u) , ψ (v)) where ϕ (u∗) = ϕl (u
∗)l=1,n and ψ (v∗) = ψm (v∗)m=1,m.

Given ζ(%(x)) and considering the disagreement vector φ(x′) = (ϕ̃(u), ψ̃(v)) ∈ Ψ(x′),

a payoff vector solution to the manipulation problem is a function %(x) ∈ Ψ(x) such that

x ∈ X . The manipulation process result in a particular strategy solution x∗ ∈ X which can

be considered the equilibrium point of the manipulation game when it results a particular point

satisfying %(x∗) ∈ Ψ(x∗).

Definition 7.7 The strategy solution x∗ = (u∗, v∗) ∈ X of the manipulation game is called the

manipulation equilibrium point.

In the following statement we present the characterization of the manipulation equilibrium

point x∗ = (u∗, v∗) ∈ X of the manipulation game.

Theorem 7.8 Let Γ be a manipulation game. Then, the manipulation strategy solution x∗ =

(u∗, v∗) ∈ X of the game Γ is a manipulation equilibrium point if and only if %(x∗) ∈ Ψ(x∗).
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Proof. ⇒) Suppose that x∗ = (u∗, v∗) ∈ X is an equilibrium point. In addition, let us

suppose that there exists a x ∈ X , x 6= x∗, such that %(x) = (ϕ (u) , ψ (v)) ∈ Ψ(x) such

that ϕ (u) > ϕ (u∗) and ψ (v) > ψ (v∗). It is impossible, because x∗ ∈ X is a solution of the

manipulation game Γ.

⇐) By contradiction. Suppose that %(x∗) /∈ Ψ(x∗). Then, it is possible for the manipulating

player to increase their pay-off. Consistently, it is possible for the manipulated players to

reduce their pay-off. Then, it is not a manipulation equilibrium point.

Remark 7.9 The bargaining conditions under manipulation will produce that manipulating

players prefers to increase the profit while the manipulated players prefers to decrease it. Un-

der these circumstances, it may be necessary for all players to adjust the profit in order to find

a Pareto solution. The change of the profit is also a Pareto solution because the renegotiated

profit for the manipulated players is below the efficient profit.

7.3 Numerical example

For this example, consider the results presented in the previous chapters. Let us analyze

a two-player manipulation problem, where player 1 is the manipulating and player 2 is the

manipulated, in a class of ergodic controllable finite Markov chains. Let the states N = 3, and

the number of actions M = 2. The individual utility for each player are defined by

U1
(i,j|1)=


7 17 3

10 6 7

16 17 4

 U1
(i,j|2)=


6 18 13

10 18 6

16 8 10



U2
(i,j|1) =


19 11 7

2 7 13

1 10 7

 U2
(i,j|2) =


1 8 10

5 17 8

4 16 1


The transition matrices for each player are defined as follows

π1
(i,j|1)=


0.4554 0.2548 0.2898

0.2195 0.4718 0.3086

0.2460 0.3044 0.4496

 π1
(i,j|2)=


0.3088 0.3445 0.3467

0.0888 0.2358 0.6754

0.2336 0.4656 0.3008


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π2
(i,j|1)=


0.2906 0.3389 0.3705

0.4773 0.2058 0.3168

0.4783 0.1561 0.3656

 π2
(i,j|2)=


0.5628 0.1440 0.2932

0.3416 0.4461 0.2123

0.4114 0.1624 0.4262


Given the parameter δ and γ and applying the extraproximal method for finding the Nash

equilibrium point of the manipulation situation we obtain the convergence of the strategies for

the disagreement point in terms of the variable c1
(i,k) for the manipulating player (see Figure

7.1) and the convergence of the strategies c2
(i,k) for the manipulated player (see Figure 7.2).

c1 =


0.2403 0.0329

0.2786 0.0944

0.1120 0.2419

 c2 =


0.0998 0.3811

0.1789 0.0010

0.1801 0.1591



Figure 7.1 Convergence of the strategies for the
manipulating player.

Figure 7.2 Convergence of the strategies for the
manipulated player.

Following eq. (2.6) the mixed strategies obtained for the players are as follows

d1 =


0.8795 0.1205

0.7470 0.2530

0.3164 0.6836

 d2 =


0.2075 0.7925

0.9944 0.0056

0.5310 0.4690


With the strategies calculated, the resulting utilities in the disagreement point for each

player are as follows:

ϕ̃1(c1, c2) = 27.1564 ψ̃2(c1, c2) = 17.1008
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Once the disagreement point is fixed, the manipulation process begins. With δ, γ and the

weighting parameters α1 = 40 for the manipulating player and β1 = 25 for the manipulated

player, and applying the extraproximal method we obtain the convergence of the strategies for

the manipulation problem in terms of the variable c1
(i,k) for the manipulating player (see Figure

7.3) and the convergence of the strategies c2
(i,k) for the manipulated player (see Figure 7.4).

c1 =


0.1313 0.1157

0.1873 0.1674

0.1984 0.2000

 c2 =


0.0010 0.5207

0.1571 0.0010

0.3192 0.0010



Figure 7.3 Convergence of the strategies for the
manipulating player.

Figure 7.4 Convergence of the strategies for the
manipulated player.

Following eq. (2.6) the mixed strategies obtained for the players are as follows

d1 =


0.5314 0.4686

0.5280 0.4720

0.4980 0.5020

 d2 =


0.0019 0.9981

0.9937 0.0063

0.9969 0.0031


With the strategies calculated, the resulting utilities in the manipulation solution are as

follows:

ϕ1(c1, c2) = 29.0885 ψ1(c1, c2) = 14.8154
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We can see that the profits obtained after the manipulation process are for the manipulating

player greater than the disagreement point while for the manipulated player are smaller than

the obtained in the disagreement solution, see Figure 7.5.

Figure 7.5 Manipulation Solution.





Chapter 8

The Kalai-Smorodinsky bargaining solution

8.1 Introduction

One of the most prominent alternatives to the Nash bargaining solution is the solution pre-

sented by Raiffa [77] for two-person bargaining games, which has been axiomatized by Kalai

and Smorodinsky [46] suggesting an alternative axiom, the axiom of Monotonicity, which leads

to another unique solution. Considering a two-person bargaining situation, this axiom states

that if, for every utility level that player one may demand, the maximum feasible utility level

that player two can simultaneously reach is increased; then the utility level assigned to player

two according to the solution should also be increased.

Anant et al. [3] showed that the Kalai-Smorodinsky’s result is true and the unique one

satisfying the four axioms even if it is generalized the domain of bargaining games to allow

for non-convex utility feasibility sets. Roth [80] showed that the Kalai-Smorodinsky solution

for two-person bargaining games does not generalize in a straightforward manner to general

n-person bargaining games. Specifically, the solution is not Pareto Optimal on the class of all

n-person bargaining games, and no solution which is can possess the other properties which

characterize in the two-person case.

Following this problem, Peters and Tijs [71] introduced a rather large subclass of n-person

bargaining games. They described all bargaining solutions on this subclass having the four

axioms of the Kalai-Smorodinsky solution, and exactly one of these solutions is symmetric;

also, they proved that all these solutions are risk sensitive.
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8.2 The Bargaining Model

With the property of independence of irrelevant alternatives, Nash’s solution is not sensi-

tive to the range of outcomes contained in the feasible set, for instance, by the utopia point

ψ∗(Ψ, φ) = (ψ1∗(Ψ, φ), ..., ψN∗(Ψ, φ)) defined by

ψl∗(Ψ, φ) = max
{
ψl : ψl ∈ Ψ, ψl ≥ φl

}
this point is the highest possible utility payoff that player l can attain in the bargaining prob-

lem (Ψ, φ). Raiffa [77] proposed a solution for for two-players bargaining problems which is

sensitive to changes in ψ∗(Ψ, φ). He proposed the solution ψ for two-player games such that

ψ = f(Ψ, φ) is the Pareto-optimal point at which (ψ1−φ1)/(ψ1∗−φ1) = (ψ2−φ2)/(ψ2∗−φ2).

The solution ψ selects the maximal point on the line joining φ to ψ∗, yielding each player the

largest reward consistent with the constraint that the players’ actual gains should be in propor-

tion to their maximum gains, as measured by the ideal point ψ∗(Ψ, φ).

The Kalai-Smorodinsky solution of the bargaining problem amounts to normalizing the

utility function of each agent in such a way that it is worth zero at the status-quo and one at

this agent’s best outcome, given that all others get al least their status quo utility level; and to

share equally the benefit from cooperation. This solution has been proposed by Raiffa [77] and

axiomatically characterized by Kalai and Smorodinsky [46] when societyN contains only two

agents, i.e., l = 1, 2. Consider the pair (Ψ, φ), where the point in the plane φ = (φ1, φ2) is the

level of utility that player l = 1, 2 receives if the two players do not cooperate with each other,

this point is called the status quo; and Ψ is a subset of the plane, every point ψ = (ψ1, ψ2) ∈ Ψ

represents levels of utility for players 1 and 2 that can be reached by an outcome of the game

which is feasible for the two players when they do cooperate.

Let B denote the set of all pairs (Ψ, φ) such that

1. Ψ ⊂ R2 is compact, convex;

2. There exists at least one point ψ ∈ L such that ψl > φl, for l = 1, 2.

A Kalai-Smorodinsky solution to the bargaining problem is a function f : B → R2 such

that f(Ψ, φ) ∈ Ψ and satisfies the following axioms [46]
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1. Pareto Optimality: For every (Ψ, φ) ∈ B there is no ψ ∈ Ψ such that ψ ≥ f(Ψ, φ) and

imply ψ 6= f(Ψ, φ).

2. Symmetry: We let f : R2 → R2 be defined by T (ψ1, ψ2) = (ψ2, ψ1) and we require that

for every (Ψ, φ) ∈ B, f(T (Ψ), T (φ)) = T (f(Ψ, φ)).

3. Invariance with respect to affine transformations of utility: A is an affine transformation

of utility if A = (A1, A2) : R2 → R2, A((ψl, ψ2)) = (A1(ψl), A2(ψ2)), and the maps

Al(ψ) are of the form clψ + dl for some positive constant cl and some constant dl. We

require that for A, f(A(L), A(φ)) = A(f(Ψ, φ)).

4. Monotonicity: For a pair (Ψ, φ) ∈ B, let ψ∗(Ψ) = (ψ1∗(Ψ), ψ2∗(Ψ)) and gΨ(ψ1) be a

function defined for ψ1 ≤ ψ1∗(Ψ) in the following way

gL(ψ1) =


ψ2, if (ψ1, ψ2) is the Pareto of(Ψ, φ)

ψ2∗(Ψ), if there is no such ψ2

If (Ψ2, φ) and (Ψ1, φ) are bargaining pairs such that ψ1∗(Ψ1) = ψ1∗(Ψ2) and gΨ1 ≤ gΨ2 ,

then f 2(Ψ1, φ) ≤ f 2(Ψ2, φ), where f(Ψ, φ) = (f 1(Ψ, φ), f 2(Ψ, φ)).

Consider a Pareto optimal outcome and the line segments connecting that outcome to the

disagreement point and to the utopia point. For any pair of players we may then project these

line segments into the plane (see Figure 8.1).

The axiom of monotonicity states that if, for every utility level that player 1 may demand,

the maximum feasible utility level that player 2 can simultaneously reach is increased, then the

utility level assigned to player 2 according to the solution should also be increased.

8.2.1 Generalization of the Kalai-Smorodinsky solution forN -player

We consider the set of all n-player bargaining problems defined by Peters and Tijs [71], and

on this set we define a class of asymmetric n-person Kalai-Smorodinsky solutions. The set of

players n = {1, ..., n} is indexed by l = (1, ..., n), with n ≥ 2. A set Ψ ⊆ Rn is comprehensive

if x ∈ Ψ and x ≥ y imply y ∈ Ψ, for all x, y ∈ Rn.
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Figure 8.1 The Kalai-Smorodinsky solution.

We talk about comprehensiveness in the sense that any player can choose a lower utility

without this leading to an infeasible outcome. A bargaining problem for N is a pair (Ψ, φ)

where: Ψ ⊆ Rn is compact, convex, and comprehensive; and there exists a ψ ∈ Ψ such that

ψ > φ and φ ∈ Ψ. For all bargaining problem (Ψ, φ) ∈ Bn we define the Pareto set of Ψ as

P (Ψ) = {ψ ∈ Ψ : for all x ∈ Rn, if x ≥ ψ and x 6= ψ, then x 6∈ Ψ}

A bargaining solution is a map f : Bn → Rn that assigns to each bargaining problem (Ψ, φ) ∈

Bn a single point f(Ψ, φ) ∈ Ψ. Roth [80] observed that the n-player extension of the Kalai-

Smorodinsky solution is not Pareto optimal on all bargaining problems in Bn, i.e., does not

assign an element of P (Ψ) to each (Ψ, φ) ∈ Bn. Therefore, Peters and Tijs [71] introduced a

subclass of bargaining problems in Bn for which this problem does not occur.

Property 8.1 For all ψ ∈ Ψ, ψ ≥ φ, l = (1, ..., n): ψ 6∈ P (Ψ) and ψl < ψl∗(Ψ, φ)⇒ ∃ ε > 0

with ψ + εel ∈ Ψ, where the vector el ∈ Rn has the l-th coordinate equal to 1 and all other

coordinates equal to 0.

If a feasible outcome ψ is not Pareto optimal, then for any player l who receives less than his

utopia payoff it is possible to increase his utility while all other players still receive ψ. Let

In ⊆ Bn consist of all bargaining problems satisfying Property 8.1. The class of bargaining



8.3. Formulation of the problem for Markov chains games 135

problems (Ψ, 0) ∈ In is denoted by In0 . Peters and Tijs [71] defined the n-player extension of

the solution by making use of monotonic curves. A monotonic curve for n is a map

ϑ : [1, n]→

{
ψ ∈ Rn

+ | ψl ≤ 1 for all player l, and 1 ≤
n∑
l=1

ψl

}
such that for all 1 ≤ s ≤ t ≤ n we have ϑ(s) ≤ ϑ(t) and

∑n
l=1 ϑ

l(s) = s. The set of all

monotonic curves for n is denoted by Θn.

Lemma 8.2 Peters and Tijs [71]. For each ϑ ∈ Θn and (Ψ, 0) ∈ In0 with f(Ψ, 0) = en, the set

P (Ψ) ∩ {ϑ(t) | t ∈ [1, n]} contains exactly one point.

Let ϑ be some monotonic curve in Θn. Following Lemma 8.2, the solution associated with ϑ is

defined as ρϑ : In → Rn. Let (Ψ, 0) ∈ In0 , if ψ∗(Ψ, 0) = en, then{
ρϑ(Ψ, 0)

}
:= P (Ψ) ∩ {ϑ(t) | t ∈ [1, n]}

and if ψ∗(Ψ, 0) = ψ∗, then ρϑ(Ψ, 0) := ψ∗ρϑ((ψ∗)−1Ψ). For (Ψ, φ) ∈ In, we define

ρϑ(Ψ, φ) = φ + ρϑ(Ψ − φ). The class of all solutions associated with a monotonic curve

in Θn is referred to as the class of individually monotonic bargaining solutions, the Kalai-

Smorodinsky solution is an element of this class. Observe that ϑ̂, the monotonic curve of the

Kalai-Smorodinsky solution, defines a straight line in Rn, which for bargaining games Ψ ∈ In0
with ψ∗(Ψ, 0) = en, coincides with the line connecting the disagreement point 0 and the utopia

point en. For general bargaining problems (Ψ, φ) ∈ In, the solution is the intersection of the

Pareto set P (Ψ) and the straight line that connects the disagreement point φ and the utopia

point ψ∗.

8.3 Formulation of the problem for Markov chains games

Consider a n-person bargaining problem [104]. Denote the disagreement utility for each

player (l = 1, ..., n) that depends on the strategies cl(i,k) as φl(c1, ..., cn), and the solution for the

bargaining problem as the point (ψ1, ..., ψn). Following (2.5), the utilities ψl are for Markov

chains as follows

ψl = ψl
(
c1, ..., cn

)
:=

N∑
i=1

M∑
k=1

W l
(i,k)

N∏
l=1

cl(i,k)
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where the matrices W l
(i,k) represent the behavior of each player. This point is better than the

disagreement point, therefore must satisfy that ψl > φl.

The process to solve the bargaining problem consists of two main steps: firstly, to find

the disagreement point we define it as the Nash equilibrium point of the problem (see [62]),

while for the solution of the bargaining process we follow the model presented by Kalai and

Smorodinsky [46]. The Kalai-Smorodinsky solution chooses the maximum individually ratio-

nal payoff profile at which each player’s payoff has the same proportion from disagreement

point to the utopia point. For solving the bargaining problem we consider there exists an op-

timal solution that is a strong Pareto optimal point and it is the closest solution to the utopia

point. We formulate the problem as the Lp-norm to find the Pareto optimal solution, this for-

mulation reduces the distance to the utopian point in the Euclidean space. Following the model

presented in Chapter 2, the function for finding the solution to the bargaining problem is

g(c1, ..., cn) =

[
n∑
l=1

∣∣∣∣∣λl (ψl − φl)αlχ(ψl>φl)

(ψl∗ − φl)αlχ(ψl∗>φl)

∣∣∣∣∣
p]1/p

(8.1)

where ψl∗ is the utopia point, αl ≥ 0 are weighting parameters for each player, and λ ∈ Λn

such that

Λn :=

{
λ ∈ Rn : λ ∈ [0, 1] ,

n∑
l=1

λl = 1

}
We can rewrite (8.1) for purposes of implementation as follows

g̃(c1, ..., cn) =

[
n∑
l=1

λl
∣∣αlχ(ψl > φl) ln(ψl − φl)− αlχ(ψl∗ > φl) ln(ψl∗ − φl)

∣∣p]1/p

Thus, the strategy x∗, which is the vector x∗ = (c1, ..., cn) ∈ Xadm :=
⊗n

l=1 C
l
adm, is the

solution for the bargaining problem

x∗∈ Arg max
x∈Xadm,λ∈Λn

{
g̃(c1, ..., cn)

}
the strategies cl(i,k) satisfy the restrictions (2.7), (2.8) and (2.9). Applying the Lagrange princi-

ple it follows that

L(x, λ, µ, ξ, η) = g̃(c1, ..., cn)−
n∑
l=1

N∑
j=1

µl(j)h
l
(j)(c

l)−

n∑
l=1

N∑
i=1

N∑
j=1

M∑
k=1

ξl(j)q
l
(j|i,k)c

l
(i,k) −

n∑
l=1

N∑
i=1

M∑
k=1

ηl
(
cl(i,k) − 1

)
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The solution obtained by the Tikhonov’s regularization with δ > 0 is given by

x∗, λ∗, µ∗, ξ∗, η∗ = arg max
x∈Xadm,λ∈Λn

min
µ,ξ,η≥0

Lδ(x, λ, µ, ξ, η)

where

Lδ(x, λ, µ, ξ, η) = g̃(c1, ..., cn)−
n∑
l=1

N∑
j=1

µl(j)h
l
(j)(c

l)−
n∑
l=1

N∑
i=1

M∑
k=1

ηl
(
cl(i,k) − 1

)
−

n∑
l=1

N∑
i=1

N∑
j=1

M∑
k=1

ξl(j)q
l
(j|i,k)c

l
(i,k) −

δ
2

(
‖x‖2 + ‖λ‖2 − ‖µ‖2 − ‖ξ‖2 − ‖η‖2) (8.2)

Notice that the Lagrange function (8.2) satisfies the saddle-point condition, namely, for all

x ∈ Xadm, λ ∈ Λn and µ, ξ, η≥ 0 we have

Lδ(xδ, λδ, µ∗δ , ξ∗δ , η∗δ ) ≤ Lδ(x∗δ , λ∗δ , µ∗δ , ξ∗δ , η∗δ ) ≤ Lδ(x∗δ , λ∗δ , µδ, ξδ, ηδ)

8.3.1 The proximal format

In the proximal format (see [5]) the relation (8.2) can be expressed as

µ∗δ = arg min
µ≥0

{
1
2
‖µ− µ∗δ‖2 + γLδ(x∗δ , λ∗δ , µ, ξ∗δ , η∗δ )

}
ξ∗δ = arg min

ξ≥0

{
1
2
‖ξ − ξ∗δ‖2 + γLδ(x∗δ , λ∗δ , µ∗δ , ξ, η∗δ )

}
η∗δ = arg min

η≥0

{
1
2
‖η − η∗δ‖2 + γLδ(x∗δ , λ∗δ , µ∗δ , ξ∗δ , η)

}
x∗δ = arg max

x∈X

{
−1

2
‖x− x∗δ‖2 + γLδ(x, λ∗δ , µ∗δ , ξ∗δ , η∗δ )

}
λ∗δ = arg max

λ∈Λn

{
−1

2
‖λ− λ∗δ‖2 + γLδ(x∗δ , λ, µ∗δ , ξ∗δ , η∗δ )

}
(8.3)

where the solutions x∗δ , λ
∗
δ , µ

∗
δ , ξ
∗
δ and η∗δ depend on the parameters δ, γ > 0.

8.3.2 The Extraproximal method

We design the method for the static bargaining game in a general format with some fixed

admissible initial values (x0 ∈ X , λ0 ∈ Λn and µ0, ξ0, η0 ≥ 0), considering that we want to

maximize the function as follows:
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1. The first half-step (prediction):

µ̄n = arg max
µ≥0

{
−1

2
‖µ− µn‖2 − γLδ(xn, λn, µ, ξn, ηn)

}
ξ̄n = arg max

ξ≥0

{
−1

2
‖ξ − ξn‖2 − γLδ(xn, λn, µ̄n, ξ, ηn)

}
η̄n = arg max

η≥0

{
−1

2
‖η − ηn‖2 − γLδ(xn, λn, µ̄n, ξ̄n, η)

}
x̄n = arg max

x∈X

{
−1

2
‖x− xn‖2 + γLδ(x, λn, µ̄n, ξ̄n, η̄n)

}
λ̄n = arg max

λ∈Λn

{
−1

2
‖λ− λn‖2 + γLδ(xn, λ, µ̄n, ξ̄n, η̄n)

}
(8.4)

2. The second half-step (basic)

µn+1 = arg max
µ≥0

{
−1

2
‖µ− µn‖2 − γLδ(x̄n, λ̄n, µ, ξ̄n, η̄n)

}
ξn+1 = arg max

ξ≥0

{
−1

2
‖ξ − ξn‖2 − γLδ(x̄n, λ̄n, µ̄n, ξ, η̄n)

}
ηn+1 = arg max

η≥0

{
−1

2
‖η − ηn‖2 − γLδ(x̄n, λ̄n, µ̄n, ξ̄n, η)

}
xn+1 = arg max

x∈X

{
−1

2
‖x− xn‖2 + γLδ(x, λ̄n, µ̄n, ξ̄n, η̄n)

}
λn+1 = arg max

λ∈Λn

{
−1

2
‖λ− λn‖2 + γLδ(x̄n, λ, µ̄n, ξ̄n, η̄n)

}
(8.5)

8.3.3 Convergence Analysis

Define the following extended vectors

x̃ =

 x

λ

 ∈ X̃ := X × R+, µ̃ =


µ

ξ

η

 ∈ R+ × R+ × R+

The regularized Lagrange function can be expressed as L̃δ(x̃, µ̃) := Lδ(x, λ, µ, ξ, η). And the

equilibrium point that satisfies (8.3) can be expressed as

µ̃∗δ = arg min
µ̃≥0

{
1
2
‖µ̃− µ̃∗δ‖2 + γL̃δ(x̃∗δ , µ̃)

}
x̃∗δ = arg max

x̃∈X̃

{
−1

2
‖x̃− x̃∗δ‖2 + γL̃δ(x̃, µ̃∗δ)

}
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Now, introducing the following variables

ỹ =

 ỹ1

ỹ2

 ∈ X̃ × R+, z̃ =

 z̃1

z̃2

 ∈ X̃ × R+

and then, the Lagrange function in terms of ỹ and z̃ can be defined as Lδ(ỹ, z̃) := Lδ(ỹ1, z̃2)−

Lδ(z̃1, ỹ2). For ỹ1 = x̃, ỹ2 = µ̃, z̃1 = z̃∗1 = x̃∗δ and z̃2 = z̃∗2 = µ̃∗δ we have that Lδ(ỹ, z̃∗) :=

L̃δ(x̃, µ̃∗δ)− L̃δ(x̃∗δ , µ̃). In these variables the relation (8.3) can be represented by

z̃∗= arg max
ỹ∈X̃×R+

{
−1

2
‖ỹ − z̃∗‖2+γLδ(ỹ, z̃

∗)
}

(8.6)

Finally, we have that the extraproximal method can be expressed by

1. First step

ẑn= arg max
ỹ∈X̃×R+

{
−1

2
‖ỹ − z̃n‖

2 + γLδ(ỹ, z̃n)
}

(8.7)

2. Second step

z̃n+1= arg max
ỹ∈X̃×R+

{
−1

2
‖ỹ − z̃n‖

2 + γLδ(ỹ, ẑn)
}

(8.8)

Please refer to Appendix C for the results and proofs of convergence analysis.

8.4 The disagreement point model

If negotiations break down and no agreement is reached, then inevitably the disagreement

point (also called as status quo or threat point) will take effect. Following the model presented

in section 6.3 but with the consideration that this model is related to continuous time Markov

chains, i.e., the strategies cl(i,k) satisfy the restrictions (2.7), (2.8) and (2.9).

Applying the regularized Lagrange principle we have the solution for the disagreement

point

x∗, x̂∗, µ∗, ξ∗, η∗ = arg max
x∈X,x̂∈X̂

min
µ,ξ,η≥0

Lθ,δ(x, x̂, µ, ξ, η)

where

Lθ,δ(x, x̂, µ, ξ, η) := (1− θ)f(x, x̂)−
n∑
l=1

N∑
j=1

µl(j)h
l
(j)(c

l)−
n∑
l=1

N∑
i=1

M∑
k=1

ηl
(
cl(i,k) − 1

)
−

n∑
l=1

N∑
i=1

N∑
j=1

M∑
k=1

ξl(j)q
l
(j|i,k)c

l
(i,k) −

δ
2

(
‖x‖2 + ‖x̂‖2 − ‖µ‖2 − ‖ξ‖2 − ‖η‖2)

(8.9)
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Notice that the Lagrange function (8.9) satisfies the saddle-point condition, namely, for all

x ∈ X, x̂ ∈ X̂, and µ, ξ, η≥ 0 we have

Lθ,δ(xδ, x̂δ, µ∗δ , ξ∗δ , η∗δ ) ≤ Lθ,δ(x∗δ , x̂∗δ , µ∗δ , ξ∗δ , η∗δ ) ≤ Lθ,δ(x∗δ , x̂∗δ , µδ, ξδ, ηδ)

8.4.1 The proximal format

In the proximal format the relation (8.9) can be expressed as

µ∗δ = arg min
µ≥0

{
1
2
‖µ− µ∗δ‖2 + γLθ,δ(x∗δ , x̂∗δ , µ, ξ∗δ , η∗δ )

}
ξ∗δ = arg min

ξ≥0

{
1
2
‖ξ − ξ∗δ‖2 + γLθ,δ(x∗δ , x̂∗δ , µ∗δ , ξ, η∗δ )

}
η∗δ = arg min

η≥0

{
1
2
‖η − η∗δ‖2 + γLθ,δ(x∗δ , x̂∗δ , µ∗δ , ξ∗δ , η)

}
x∗δ = arg max

x∈X

{
−1

2
‖x− x∗δ‖2 + γLθ,δ(x, x̂∗δ , µ∗δ , ξ∗δ , η∗δ )

}
x̂∗δ = arg max

x̂∈X̂

{
−1

2
‖x̂− x̂∗δ‖2 + γLθ,δ(x∗δ , x̂, µ∗δ , ξ∗δ , η∗δ )

}
where the solutions x∗δ , x̂

∗
δ , µ

∗
δ , ξ
∗
δ and η∗δ depend on the parameters δ, γ > 0.

8.4.2 The Extraproximal method

We design the method for the static Nash game in a general format with some fixed admis-

sible initial values (x0 ∈ X , x̂0 ∈ X̂ , and µ0, ξ0, η0 ≥ 0), considering that we want to maximize

the function, as follows:

1. The first half-step:

µ̄n = arg max
µ≥0

{
−1

2
‖µ− µn‖2 − γLθ,δ(xn, x̂n, µ, ξn, ηn)

}
ξ̄n = arg max

ξ≥0

{
−1

2
‖ξ − ξn‖2 − γLθ,δ(xn, x̂n, µ̄n, ξ, ηn)

}
η̄n = arg max

η≥0

{
−1

2
‖η − ηn‖2 − γLθ,δ(xn, x̂n, µ̄n, ξ̄n, η)

}
x̄n = arg max

x∈X

{
−1

2
‖x− xn‖2 + γLθ,δ(x, x̂n, µ̄n, ξ̄n, η̄n)

}
x̂n = arg max

x̂∈X̂

{
−1

2
‖x̂− x̂n‖2 + γLθ,δ(xn, x̂, µ̄n, ξ̄n, η̄n)

}
(8.10)
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2. The second half-step

µn+1 = arg max
µ≥0

{
−1

2
‖µ− µn‖2 − γLθ,δ(x̄n, x̂n, µ, ξ̄n, η̄n)

}
ξn+1 = arg max

ξ≥0

{
−1

2
‖ξ − ξn‖2 − γLθ,δ(x̄n, x̂n, µ̄n, ξ, η̄n)

}
ηn+1 = arg max

η≥0

{
−1

2
‖η − ηn‖2 − γLθ,δ(x̄n, x̂n, µ̄n, ξ̄n, η)

}
xn+1 = arg max

x∈X

{
−1

2
‖x− xn‖2 + γLθ,δ(x, x̂n, µ̄n, ξ̄n, η̄n)

}
x̂n+1 = arg max

x̂∈X̂

{
−1

2
‖x̂− x̂n‖2 + γLθ,δ(x̄n, x̂, µ̄n, ξ̄n, η̄n)

}
(8.11)

8.5 Numerical Example

In this example, we are considering a bargaining on the labor market between three con-

tracting parties corresponding to the government, an employers’ federation and a labor union

which are often characterized by reciprocal incremental concessions. They are aimed at agree-

ments to regulate working salaries, conditions, benefits, and other aspects of workers’ com-

pensation and rights for workers. We expect that the contracting parties carry out a negotiation

process that reach a Pareto efficient outcome when solving their differences. The government

plays a fundamental role, because can change the equilibrium on the labor market by modify-

ing the reserves related to the wage. This enables us to analyze the convergence of the equi-

librium of the labor market in terms of a continuous-time approach considering the changes

in the reservation wage along the time, or more generally with respect to public policy. In

such scenario, the Kalai-Smorodinsky solution can be applied to labor-market negotiations.

The Kalai-Smorodinsky approach is distinguished by the equal proportional concessions of for

the three parties in conflict. In this sense, this negotiation process gives the impression to be

more intuitive than the Nash bargaining model in representing a solution for the labor market

problem, because each party makes concessions with respect to its initial demands. In this

bargaining process, it is expected that the parties progressively moderate their demands until

an agreement is reached, sooner or later.
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Figure 8.2 Markov chain of the labor market problem.

Our goal is to analyze a three-player bargaining situation on the labor market in a class

of continuous time Markov chains using the Kalai-Smorodinsky approach. We assume a

continuous-time Markov process defined over a discrete state-space S where the labor force

is divided into five possible states, namely, employed (E), unemployed (U ), out of the labor

force (O), inactivity (I), retired (R). This involves each individual in a labor path. The labor

dynamics information is contained in the transition matrices, which represents the individual’s

characteristics in the long-run time. The set of actions A is a finite space determined by two

different actions A = {agree, disagree} (see Figure 8.2).

Denote the disagreement cost that depends on the strategies cl(i,k) for players l = 1, 2, 3

(the government, an employers’ federation and a labor union) as φl(c1, c2, c3) and the solution

for the bargaining problem as the point (ψ1, ψ2, ψ3). Let the number of states N = 5 (S =

{E,U,O, I, R}), and the actions M = 2 (A = {agree, disagree}). The individual utility for

each player on the labor market are defined by

U1
(i,j,1)=



10 8 13 7 6

11 19 6 8 10

9 7 13 19 5

14 9 15 12 16

12 14 9 8 10


U1

(i,j,2)=



12 9 7 10 15

16 0 9 14 6

18 10 16 9 4

12 16 9 8 13

11 9 13 17 10


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U2
(i,j,1) =



7 9 12 6 10

18 12 7 9 10

5 14 8 11 16

10 13 8 14 10

16 9 12 10 8


U2

(i,j,2) =



5 17 6 9 11

8 9 14 12 8

10 13 9 1 18

12 18 15 9 4

17 13 9 5 6



U3
(i,j,1) =



15 9 10 4 10

12 5 4 0 11

19 7 6 13 10

2 16 10 9 7

10 6 9 14 10


U3

(i,j,2) =



10 7 12 19 1

16 9 0 10 12

19 3 4 13 8

2 8 1 19 14

1 13 9 15 16


The transition rate matrices for each player are defined as follows

q1
(i,j,1)=



−0.8402 0.1555 0.1069 0.3312 0.2466

0.1090 −0.7197 0.2965 0.0878 0.2264

0.4127 0.3376 −1.4437 0.3286 0.3648

0.8641 0.3679 0.3194 −1.7086 0.1571

0.2886 0.1649 0.2348 0.1507 −0.8390



q1
(i,j,2)=



−0.3601 0.0666 0.0458 0.1420 0.1057

0.0467 −0.3085 0.1271 0.0376 0.0970

0.1769 0.1447 −0.6188 0.1408 0.1563

0.3703 0.1577 0.1369 −0.7323 0.0673

0.1237 0.0707 0.1006 0.0646 −0.3596



q2
(i,j,1)=



−0.1017 0.0234 0.0236 0.0424 0.0125

0.0104 −0.0819 0.0147 0.0333 0.0235

0.0144 0.0285 −0.0790 0.0235 0.0125

0.0234 0.0526 0.0456 −0.1441 0.0225

0.0243 0.0322 0.0315 0.0433 −0.1311


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q2
(i,j,2)=



−0.9155 0.2102 0.2120 0.3812 0.1121

0.0936 −0.7371 0.1322 0.2994 0.2119

0.1292 0.2567 −0.7106 0.2119 0.1128

0.2110 0.4730 0.4107 −1.2968 0.2021

0.2183 0.2894 0.2831 0.3892 −1.1800



q3
(i,j,1)=



−1.2086 0.1168 0.6178 0.2118 0.2622

0.0779 −1.0141 0.2118 0.5627 0.1618

0.4218 0.6426 −1.4448 0.1177 0.2626

0.1178 0.2412 0.1555 −0.5857 0.0712

0.3212 0.1608 0.1573 0.2163 −0.8556



q3
(i,j,2)=



−1.2086 0.1168 0.6178 0.2118 0.2622

0.0779 −1.0141 0.2118 0.5627 0.1618

0.4218 0.6426 −1.4448 0.1177 0.2626

0.1178 0.2412 0.1555 −0.5857 0.0712

0.3212 0.1608 0.1573 0.2163 −0.8556


Given δ and γ and applying the extraproximal method (8.10 - 8.11) to calculate the strate-

gies for the Nash equilibrium, we obtain the resulting utilities at the disagreement point for

each player φl(c1, c2, c3) as follows

φ1(c1, c2, c3) = 127.0052, φ2(c1, c2, c3) = 110.9296, φ3(c1, c2, c3) = 129.5264

The utilities at the utopia point of the bargaining problem are as follows:

ψ1∗(c1, c2, c3) = 140.7620, ψ2∗(c1, c2, c3) = 111.9948, ψ3∗(c1, c2, c3) = 168.6736

Then, given δ, γ, α1 = 0.35, α1 = 0.2, α3 = 0.45, and applying the extraproximal method

(8.4 - 8.5) for the Kalai-Smorodinsky bargaining solution, we obtain the convergence of the

strategies in terms of the variable cl(i,k) for each player (see Figures 8.3, 8.4 and 8.5).
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c1 =



0.1778 0.1131

0.1438 0.0915

0.0807 0.0514

0.0697 0.0443

0.1392 0.0886


c2 =



0.0603 0.0785

0.1289 0.1678

0.1104 0.1437

0.0815 0.1061

0.0534 0.0695


c3 =



0.0702 0.0695

0.0917 0.1230

0.0779 0.0674

0.1349 0.2088

0.0584 0.0982



Figure 8.3 Strategies of player 1. Figure 8.4 Strategies of player 2.

Figure 8.5 Strategies of player 3.
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Following (2.6) the mixed strategies obtained for the players are as follows

d1 =



0.6111 0.3889

0.6111 0.3889

0.6111 0.3889

0.6111 0.3889

0.6111 0.3889


d2 =



0.4344 0.5656

0.4344 0.5656

0.4344 0.5656

0.4344 0.5656

0.4344 0.5656


d3 =



0.5024 0.4976

0.4270 0.5730

0.5363 0.4637

0.3925 0.6075

0.3727 0.6273


With the strategies calculated, the resulting utilities at the Kalai-Smorodinky bargaining

solution, are as follows:

ψ1(c1, c2, c3) = 130.0756 ψ2(c1, c2, c3) = 111.0906 ψ3(c1, c2, c3) = 137.4903

Figure 8.6 The Kalai-Smorodinsky solution.

Finally, we can see that the profits obtained with the Kalai-Smorodinsky solution are greater

than those obtained at the disagreement point. Figure 8.6 shows the straight line linking the
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utilities obtained at the disagreement point and those obtained at the utopia point. We can

also observe that the Kalai-Smorodinsky solution approaches this line but is not exactly on it

due to the convergence of the strategies. The significant input that can be illustrated by this

example is the choice of the Kalai-Smorodinsky approach for the bargaining solution for the

labor market problem. We expected that the parties progressively moderate their demands in

equal proportional concessions.





Chapter 9

The non-cooperative bargaining game

9.1 Introduction

There has been a large and growing literature in non-cooperative bargaining. Rubinstein

[83] presented a bilateral non-cooperative bargaining process as an alternating offers game

with a bargaining cost for each period. Such a model has been studied and extended for three

or more players in a variety of papers and situations. The non-cooperative bargaining model

and its game-theoretic solution have also been applied in many important contexts like market

games, networks, apex games, union formation, and water management.

Despite its wide applicability, crucial assumptions of the traditional bargaining model in-

clude that players have complete information about the characteristics of other agents (e.g.,

their discount factor or their utility) and that players are sophisticated in their behavior (e.g.,

they are forward-looking). The traditional equilibrium concept has been shown to fail when

agents are not sophisticated, for instance when they are not forward-looking ([69, 56, 67, 68,

88, 39]). As such, there is a need to develop a general theory of bargaining that is robust to

work in the absence of sophisticated players or incomplete information about other players.

As an aid to the implementation of bargaining solutions in the presence of unsophisticated

agents, we propose an alternative approach to the traditional bargaining literature, where a

planner has the ability to set up a game to aid the agents to reach an equilibrium. Thus, this

chapter presents a novel approach that complements the traditional bargaining literature and
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enlarges the class of processes and functions where non-cooperative bargaining solutions might

be defined and applied.

To understand the characteristics of our game, consider the simple bargaining game where

the planner is able to penalize the agents based on two factors: first players are penalized for

their deviation from the previous best response strategy and second, they are penalized over the

time taken for the decision-making at each step of the game.

This chapter presents a solution method of the non-cooperative bargaining problem for

three different games:

• We solve the game where players are individual-rational, and make offers and counterof-

fers alternately thinking only of their own interests, i.e., they compute the strategies that

maximize only their own utility.

• We present a solution for a game where at each step of the negotiation process players

calculate the Nash equilibrium at the same time considering the utility function of all

players, but with the particularity that internally each player reaches this equilibrium

point in a different time.

• We analyze a game where players make coalitions and alternately each group of players

makes an offer to the others until they reach an equilibrium point.

Finally, we illustrate the results of the three methods by a numerical example with continuous-

time Markov chains.

9.2 The Rubinstein’s alternating-offers model

In the simplest case, Rubinstein [83] considered a bargaining situation where two players

(n = 2) have to reach an agreement on the partition of a pie of size 1; each player has to

make in turn an offer (a proposal as to how it should be divided, i.e., an offer is the share of

the pie to the proposer and the complete pie minus the offer is the share to the responder).

After player 1 has made such an offer, player 2 must decided either to accept it, in this case

the bargaining game ends and the players divide the cake according to the accepted offer, or to
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reject it and continue with the bargaining process. If player 2 rejected, then this player has to

make a counteroffer which player 1 would accept or reject it and continue with the negotiation

process. The bargaining game continues until an offer is accepted. Offers are made at discrete

points in time: at times 0,∆, 2∆, ..., t∆, ..., where ∆ > 0.

In real situations it is important to consider that there are losses during the time that the

players are negotiating, for example, the devaluation or deterioration of assets (in the example

presented above, over time the cake can be spoiled). In order to deal with this problem, Rubin-

stein considered that there exists a cost associated with the time taken by the player l = 1, n to

reach an agreement xl (a share 0 ≤ xl ≤ 1 of the cake) and proposed two class of models: a

fixed bargaining cost where players have a fix cost for each period of time, therefore the agree-

ment would produce payoffs of xl − clt∆ for each player; and a fixed discounting factor for

every player given by xl · e(−rlt∆) that depends of a discount rate rl (in this example, rl can be

interpreted as the rate at which the cake shrinks) and the function βl = e(−rl∆) is the discount

factor of each player. In this way, it is clear that if the players rejects any offer made, then each

player’s payoff is zero.

Rubinstein showed that there exists a subgame perfect equilibrium in the bargaining prob-

lem: in the fixed bargaining cost model, if c1 > c2 player 1 receives c2, if c1 < c2 player 1

receives all and if c1 = c2 player 1 receives at least c1; in the fixed discounting factor model

(the most used model in a bargaining process) the following offers are a subgame perfect equi-

librium:

x1∗ =
1− β2

1− β1β2
x2∗ =

1− β1

1− β1β2

where player 1 always offers x1∗ and always accepts an offer x2 if and only if x2 ≤ x2∗; and

player 2 always offers x2∗ and always accepts an offer x1 if and only if x1 ≤ x1∗.

The alternating offers game with a discount rate rl > 0 has a unique subgame perfect

equilibrium, agreement is reached at time 0 and the equilibrium is Pareto efficient, if player

1 makes the offer at time 0, the shares of the cake obtained by players 1 and 2 in the unique

subgame perfect equilibrium are x1∗ and 1− x1∗ respectively. On the other hand, when rl = 0

there exist many subgame perfect equilibria, including equilibria which are Pareto inefficient,

in this case we have a frictionless bargaining game where players do not care how long it takes
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to reach an agreement. Then, for any rl ≥ 0, the pair of strategies xl in the bargaining game is

a Nash equilibrium; even if rl > 0, the alternating offers game has many Nash equilibria (see

[60]).

Now, let us define the model in a general way. Let X be the set of possible agreements.

Consider two players (l = 1, n , n = 2) bargaining according to the alternating-offers proce-

dure in which an offer is an element of the set X . If players reach agreement at time t∆ on

x ∈ X , then player l payoff considering the fixed discounting model is ψl(x)e(−rlt∆), where

βl = e(−rl∆) is the discount factor with a discount rate rl, and ψl(x) : X → R is the utility

function from agreement x of each player.

Let define the set of possible utility pairs as Φ = {(ψ1, ψ2)}. Thus, the set of possible

utility pairs obtainable through agreement at time t∆ is

Φt =
{

(ψ1βt1, ψ
2βt2) : (ψ1, ψ2) ∈ Φ

}
It should be noted that Φ0 = Φ and let Φe denote the Pareto frontier of the set Φ. A utility

pair (ψ1, ψ2) ∈ Φe if and only if (ψ1, ψ2) ∈ Φ and there does not exist another utility pair

(ϕ1, ϕ2) ∈ Φ such that ϕ1 ≥ ψ1, ϕ2 ≥ ψ2. The Pareto frontier Φe of the set Φ is the graph

function of a strictly decreasing and concave function, denoted by φ, whose domain is an

interval I1 ⊆ < and range an interval I2 ⊆ R, with 0 ∈ I1, 0 ∈ I2 and φ(0) > 0. Then,

Φe =
{

(ψ1, ψ2) : ψ1 ∈ I1, ψ2 ∈ φ(ψ1)
}

Consider φ−1 the inverse of φ, a strictly decreasing and concave function from I2 to I1, with

φ−1(0) > 0. Then, for any ψ1 ∈ I1, φ(ψ1) is the maximum utility that player 2 receives subject

to player 1 receiving a utility ψ1; in the same way, for any ψ2 ∈ I2, φ−1(ψ2) is the maximum

utility that player 1 receives subject to player 2 receiving a utility ψ2.

Let xl∗ be the equilibrium offer that player l makes during the bargaining process. Also,

consider Z l, a non-empty subset de X , defined as follows

Z l =

{
xl := arg max

x∈X
ψl(xl) : ψm(xl) = βmψm(xm) , (m 6= l)

}
Proposition 9.1 For any xl∗ ∈ Z l, l = 1, 2, the following pair of strategies is a subgame

perfect equilibrium of the general Rubinstein model (see [60]):
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• Player 1 always offers x1∗ and always accepts an offer x2 if and only if ψ1(x2) ≥ β1ψ1∗

• Player 2 always offers x2∗ and always accepts an offer x1 if and only if ψ2(x1) ≥ β2ψ2∗

where

ψ1∗ = φ−1(β2ψ2∗) ψ2∗ = φ(β1ψ1∗)

If Z l contains more than one element, then there exist more than one subgame perfect

equilibrium in the general Rubinstein model. In any subgame perfect equilibrium, if agreement

is reached at time 0 and it is player 1 who makes the offer, then the equilibrium payoff for player

1 is ψ1∗ and for player 2 is φ(ψ1∗); similarly, if it is player 2 who makes the offer at time 0,

then the equilibrium payoff for player 1 is φ−1(ψ2∗) and for player 2 is ψ2∗. This equilibrium

pair is Pareto efficient (See Figure 9.1).

Figure 9.1 The Pareto solution of the bargaining problem at time 0.

Remark 9.2 In the limit, as ∆→ 0, the unique subgame perfect equilibrium payoff pair in the

Rubinstein model converges to the asymmetric Nash bargaining solution of the appropriately

defined bargaining problem; if and only if the players’ discount factor are identical (i.e., r1 =

r2) the symmetry axiom of the Nash bargaining solution would be satisfied.
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9.3 The non-cooperative bargaining game

Consider the game theory problem of a concave twice-differentiable real-valued function

ψ defined on X , which is a compact and convex subset of RN

max
x∈X

ψ(x)

Following the proximal point algorithm for solving game theory problems presented by

Antipin [4], the unique solution is a sequence (xn) n ∈ N with a initial value x0 ∈ X ,

max
x∈X

[
ψ(x)− δn ‖x− xn‖2] (9.1)

where δn > 0, δn ↓ 0 and the term ‖x− xn‖2 ensures that the objective function (9.1) is

strictly positive definite and that some iterative method presents convergence [93, 94]. The

result obtained is not affected by the quadratic term for δn > 0 and δn ↓ 0.

The bargaining game model considered in this chapter involves game theory problems with

an additional penalization, a time cost related with the time spent for each player to move from

one position to another one [6, 59, 9], i.e., to decide either to accept an offer or to reject it and

choose another.

In this section we will discuss three different ways to formulate the non-cooperative bar-

gaining game with alternating-offers and time cost. In the models presented below, it is con-

sidered that the players start from a point that is Pareto optimal, players could obtain the best

utilities if they finished the bargaining process at time 0.

Bargaining model 1

In this first approach, we consider the model presented by Rubinstein [83], and we provide

a solution to a bargaining situation where players are individual-rational and alternately make

offers and counteroffers thinking only of their own interests, i.e., they compute independently

the strategies that maximize only their own utility.

In general terms, the dynamic of the multilateral non-cooperative bargaining game is as

follows. The game consists of a set N = {1, ..., n} of players bargaining a certain transaction



9.3. The non-cooperative bargaining game 155

according to the alternating-offers procedure. Define the behavior of each player l = 1, n as a

sequence xln ∈ X l, n ∈ N, where X l is the decision space (strategies) of each player. Then,

we can define the strategies set of all players as xn = (x1
n, ..., x

n
n) ∈ X where X is a convex

and compact set. Players take turns to analyze and present their position in the negotiation

process, i.e., at each step n the player l in turn must decide between to stay in the same strategy

xn+1 = xn, that is that player l accepts the offer, or to choose a new strategy xn+1 6= xn, that

means that player rejects the offer and makes a new one. The function ψl(x) represents the

utility function of each player which determines the decision of to accept or to reject the offer.

At turn n = 0, the first player to make an offer chooses a strategy set xn considering the

utility function ψl(x), then, the rest of the players must decided either to accept the offer and

finish the game or to reject it and continue with the process, in this case, at step n = 1 the

next player makes a counteroffer by choosing a strategy set xn that benefits him more or in

equal measure than the offer proposed by the first player according to his utility function, if

this counteroffer is accepted then agreement is struck, otherwise, the player in turn makes a

new offer at step n = 2, and the process continues.

The time cost between offers is defined for each player as a function Λl : X×X → R which

can be interpreted as a distance function of each player where Λl(xn, xn+1) = κl(xn, xn+1),

we have that κl(xn, xn+1) = 0 if xn+1 = xn (accepts the offer) or κl(xn, xn+1) > 0 if xn 6=

xn+1 (rejects and makes a new one). In general, the time cost function can be reexpressed as

Λl(xn, xn+1) := tl(xn, xn+1)κl(xn, xn+1) where tl(xn, xn+1) ≥ 0 is the time spent for each

player to reject an offer xn and to make a new one xn+1 and κl(xn, xn+1) is the offer cost

function associated to each player.

In the simplest case, each player makes a new offer trying to obtain the highest possible pay-

off according to the utility function, ψl(xn+1)− ψl(xn) ≥ 0 given the time spent tl(xn+1) > 0

to analyze the advantage of to reject the offer xn and make a new offer xn+1, and αl(xn) be

the weight that players put on their advantages of to reject the offer xn. Thus, the advan-

tages of to reject the offer xn and to propose a new offer xn+1 are given by Al(xn, xn+1) =

αl(xn)tl(xn+1)
[
ψl(xn+1)− ψl(xn)

]
.
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The dynamics of the bargaining game with alternating-offers considering the time cost is

as follows. At each step n ∈ N, the player in turn considers to reject the offer xn and pro-

pose a new offer xn+1. For each player, to make a new proposal is acceptable if the advan-

tages Al(xn, xn+1) are determined by δl(xn) ∈ [0, 1] (degree of acceptability) of the time cost

Λl(xn, xn+1). Then, the set of strategies that maximizes the utility of each player is defined by

F l(xn) ={
xn+1 ∈ X : αl(xn)tl(xn+1)

[
ψl(xn+1)− ψl(xn)

]
≥ δl(xn)tl(xn+1)κl(xn, xn+1)

}
We define a utility function ψl : X → R such that the impact of experience on cost is

constant and limited to the most recent element xn on the trajectory (xn). In addition, the

advantages to change Al(xn, xn+1) are determined by the degree of acceptability δln(xn) ∈

[0, 1] of the costs to move Λl(xn, xn+1).

Thus, the acceptance criterion to propose a new offer satisfies the condition

αln(xn)tl(xn+1)ψl(xn+1) ≥ δln(xn)tl(xn+1)κl(xn, xn+1)

This algorithms are naturally linked with several classical proximal algorithms given in eq.

(9.1). That is, by taking the functions δlnt
l(x)κl(x∗, x) = δlnt

l(x) ‖(x− x∗)‖2 and Al(x, x∗) :=

αlnt
l(x)

[
ψl(x)− ψl(x∗)

]
, the point x∗ solves the maximization problem if remains a fixed

point of the proximal mapping, that is,

x∗ = arg max
x∈X

{
−δlntl(x) ‖(x− x∗)‖2 + αlnt

l(x)f(x, x∗)
}

(9.2)

where

f(x, x∗) := ψl(x)− ψl(x∗)

Once the player in turn makes a new offer according to equation (9.2), the next player must

decide either to accept or to reject the offer. If the player rejects the offer, then now it is his

turn to calculate the strategies that benefit his utility and to make a new offer. This process

continues until an agreement is reached, i.e. the proposals (strategies) of the players do not

change (convergence).
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Bargaining model 2

In this approach we present a solution where at each step of the negotiation process players

calculate the Nash equilibrium with the particularity that internally each player reaches this

equilibrium point in a different time. Following the description of the model presented previ-

ously, we redefine the advantage of propose a new offer that depends on the utility function

f(xn, xn+1) :=
n∑
l=1

[
ψl(xn+1)− ψl(xn)

]
≥ 0

for all players to reject the offer xn and making a new offer xn+1 given the time spent to benefit

of this advantage t(xn+1) > 0, and αl(xn) be the weight that players put on their advantages to

reject the offer xn. Thus, the advantages to reject the offer xn and to propose a new offer xn+1

are given by A(xn, xn+1) = α(xn)t(xn+1)f(xn, xn+1).

Remark 9.3 The function f(xn, xn+1) satisfies the Nash condition

ψl(xn+1)− ψl(xn) ≥ 0

for any x ∈ X and all players.

Definition 9.4 A strategy x∗ ∈ X is said to be a Nash equilibrium if

x∗ ∈ Arg max
x∈X

{f(xn, xn+1)}

Then, at each step of the bargaining game we have in proximal format that the players must

select their strategies according to

x∗ = arg max
x∈X

{
−δnt(x) ‖(x− x∗)‖2 + αnt(x)f(x, x∗)

}
(9.3)

where

f(x, x∗) :=
n∑
l=1

[
ψl(x)− ψl(x∗)

]
At each step of the bargaining process, players calculate simultaneously the Nash equilib-

rium but considering that each player reach the equilibrium in a different time.
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Bargaining model 3

In this approach we analyze a bargaining situation where players make groups and alter-

nately each group makes an offer to the others until they reach an equilibrium point (agree-

ment). We describe a bargaining model with two teams of players as follows. Let us consider a

bargaining game withN+M players. LetN = {1, ..., n} denote the set of players called team

A and let us define the behavior of all players l = 1, n as xn = (x1
n, ..., x

n
n) ∈ X where X is a

convex and compact set. In the same way, the restM = {1, ...,m} players are the team B and

let the set of the strategy profiles of all player m = 1,m be defined by yn = (y1
n, ..., y

m
n ) ∈ Y

where Y is a convex and compact set. Then, X × Y in the set of full strategy profiles. In this

model the function ψ(x, y) represents the utility function of team A which determines the de-

cision of accept or reject the offer; similarly, team B makes the decision according to its utility

function ϕ(x, y).

Following the description of the model presented above, we redefine the advantage of pro-

pose a new offer considering the utility function for team A as follows

f(xn, yn, xn+1, yn+1) :=
n∑
l=1

[
ψl(xn+1, yn)− ψl(xn, yn)

]
≥ 0

and, similarly the utility function for team B is as follows

g(xn, yn, xn+1, yn+1) :=
m∑

m=1

[
ϕl(xn, yn+1)− ϕl(xn, yn)

]
≥ 0

Thus, the advantages for team A to reject the offer xn and to propose a new offer xn+1 are

given by A(xn, yn, xn+1, yn+1) = α(xn)t(xn+1)f(xn, yn, xn+1, yn+1); in the same way, the

advantages for team B to reject the offer yn and to propose a new offer yn+1 are given by

A(xn, yn, xn+1, yn+1) = α(yn)t(yn+1)g(xn, yn, xn+1, yn+1).

Remark 9.5 The function f(xn, yn, xn+1, yn+1) satisfies the Nash condition

ψl(xn+1, yn)− ψl(xn, yn) ≥ 0

for any x ∈ X , y ∈ Y and l = 1, n players.
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Remark 9.6 The function g(xn, yn, xn+1, yn+1) satisfies the Nash condition

ϕl(xn, yn+1)− ϕl(xn, yn) ≥ 0

for any x ∈ X , y ∈ Y and m = 1,m players.

The dynamics of the bargaining game is as follows: at each step of the negotiation process

the team A chooses a strategy x ∈ X considering the utility function f(xn, yn, xn+1, yn+1), then

team B must decide between to accept or reject the offer calculating a new offer (strategies) y ∈

Y considering the utility function of the group g(xn, yn, xn+1, yn+1). Following the description

of the model 1, now we have that teams solve the problem in proximal format as follows:

x∗ = arg max
x∈X

{
−δnt(x) ‖(x− x∗)‖2 + αnt(x)f(x, y, x∗, y∗)

}
y∗ = arg max

y∈Y

{
−δnt(y) ‖(y − y∗)‖2 + αnt(y)g(x, y, x∗, y∗)

} (9.4)

where
f(x, y, x∗, y∗) :=

n∑
l=1

[
ψl(x, y∗)− ψl(x∗, y∗)

]
g(x, y, x∗, y∗) :=

m∑
m=1

[ϕm(x∗, y)− ϕm(x∗, y∗)]

At each step, teams make a new offer according to equation (9.4), both teams solve the

bargaining problem together but they reach the equilibrium at different time, the bargaining

game continues until the offers (strategies) of all player show convergence.

9.3.1 Formulation of the problem

Consider the following constrained programming problem

max
x∈Xadm

f(x, xn)

Xadm :=
{
x ∈ Rn : x ≥ 0, A0x = b0 ∈ RM0 , A1x ≤ b1 ∈ RM1

} (9.5)

where Xadm is a bounded set. Introducing the vector u ∈ RM1 with components ui ≥ 0 for all

i = 1, ...,M1, the original problem (9.5) can be rewritten as

max
x∈Xadm,u≥0

f(x, xn)

Xadm := {x ∈ Rn : x ≥ 0, A0x = b0, A1x− b1 + u = 0}
(9.6)
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Notice that this problem may have non-unique solution and det (Aᵀ
0A0) = 0. Define by X∗ ⊆

Xadm the set of all solutions of the problem (9.6) and consider the objective function

Pα,δ (x, u|xn) := −δ
2
t(x) ‖x− xn‖2 + αt(x)f(x, xn)−

1

2
‖A0x− b0‖2 − 1

2
‖A1x− b1 + u‖2 − δ

2
‖u‖2

(9.7)

where the parameters α, δ are positive. Then, the game theory problem is as follows

max
x∈Xadm,u≥0

Pα,δ (x, u|xn)

9.3.2 Convergence analysis

The game consists of a set N = {1, ..., n} of players. Let xl ∈ X l be the strategy of each

player l = 1, n where X l is the decision space (strategies) of each player. Then, we can define

the strategies set of all players as

x = (x1, ..., xn) ∈ X, X :=
n⊗
l=1

X l

where X is a convex and compact set.

Theorem 9.7 The bounded set X∗ of all solutions of the original game theory problem (9.6)

is not empty and the Slater’s condition holds, that is, there exists a point x̊ ∈ Xadm such that

A1x̊ < b1 (9.8)

Moreover, the parameters α and δ are time-varying, i.e.,

α = αn, δ = δn (n = 0, 1, 2, ....)

such that

0 < αn ↓ 0,
αn
δn
↓ 0 when n→∞ (9.9)

Then
x∗n := x∗ (αn, δn) →

n→∞
x∗∗

u∗n := u∗ (αn, δn) →
n→∞

u∗∗
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where x∗∗ ∈ X∗ and u∗∗ ∈ RM1 define the solution of the original problem (9.6) with the

minimal weighted norm,

‖x∗∗‖2 + ‖u∗∗‖2 ≤ ‖x∗‖2 + ‖u∗‖2

for all x∗ ∈ X∗, u∗ ∈ RM1 and

u∗∗ = b1 − A1x
∗∗

Proof.

1. First, let us prove that the Hessian matrix H associated with the objective function (9.7)

is strictly negative definite for any positive α and δ, to show that the objective function (9.7) is

strictly concave. If the set of solutions of problem (9.6) is non-empty then the objective function

(9.7) is strictly concave.

It should be proven that for all x ∈ Rn and u ∈ RM1

H =


∂2

∂x2
Pα,δ (x, u|xn)

∂2

∂u∂x
Pα,δ (x, u|xn)

∂2

∂x∂u
Pα,δ (x, u|xn)

∂2

∂u2
Pα,δ (x, u|xn)

 < 0,

Employing Schur’s lemma [74] it is necessary and sufficient to prove that

1.
∂2

∂x2
Pα,δ (x, u|xn) < 0, 2.

∂2

∂u2
Pα,δ (x, u|xn) < 0,

3.
∂2

∂x2
Pα,δ (x, u|xn) <

∂2

∂u∂x
Pα,δ (x, u|xn)

[
∂2

∂u2
Pα,δ (x, u|xn)

]−1
∂2

∂x∂u
Pα,δ (x, u|xn) .

Applying the Schur’s lemma over the objective function (9.7) it follows for condition 1

∂2

∂x2
Pα,δ (x, u|xn) = −δt(xn)In×n + αt(xn)

∂2

∂x2
f (x, xn)− Aᵀ

0A0 − Aᵀ
1A1 ≤

αt(xn)
∂2

∂x2
f (x, xn)− δt(xn)In×n ≤ δt(xn)

(α
δ
λ+ − 1

)
In×n < 0,

for all δ > 0 where

λ+ := max
x∈Xadm

[
λmax

(
∂2

∂x2
f(x, xn)

)]
< 0,

Then, for condition 2 we have

∂2

∂u2
Pα,δ (x, u|xn) = − (1 + δ) IM1×M1 < 0.
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By condition 3, it is necessary to satisfy that

∂2

∂x2
Pα,δ (x, u|xn) = −δt(xn)In×n + αt(xn)

∂2

∂x2
f (x, xn)− Aᵀ

0A0 − Aᵀ
1A1 <

∂2

∂u∂x
Pα,δ (x, u|xn)

[
∂2

∂u2
Pα,δ (x, u|xn)

]−1
∂2

∂x∂u
Pα,δ (x, u|xn) = − (1 + δ)−1Aᵀ

1A1,

or equivalently,

αt(xn)
∂2

∂x2
f (x, xn)− δt(xn)In×n − Aᵀ

0A0 −
δ

1 + δ
Aᵀ

1A1 < 0,

which holds for any δ > 0 having

t(xn) (αλ+ − δ) In×n − Aᵀ
0A0 −

δ

1 + δ
Aᵀ

1A1 ≤

δt(xn)
(α
δ
λ+ − 1

)
In×n = δt(xn) (o(1)− 1) In×n < 0.

As a result, the Hessian is H < 0 which means that proximal function (9.7) is strictly concave

and, hence, has a unique maximal point defined below as x∗ (α, δ) and u∗ (α, δ).

2. If the proximal function (9.7) is strictly concave then the sequence {xn} of the proximal

function (9.7) converges when n→∞, i.e. the proximal function has a maximal point defined

by x∗ (α, δ) and u∗ (α, δ).

Following the strictly concavity property (Theorem 9.7) for any y :=

 x

u

 and any vec-

tor y∗n :=

 x∗n = x∗ (αn, δn)

u∗n = u∗ (αn, δn)

 for the function Pα,δ (x, u|xn) = Pα,δ (y|xn) we have
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0 ≤ (y∗n − y)ᵀ
∂

∂y
Pαn,δn (y∗n|xn)

= (x∗n − x)ᵀ
∂

∂x
Pαn,δn (x∗n, u

∗
n|xn) + (u∗n − u)ᵀ

∂

∂u
Pαn,δn (x∗n, u

∗
n|xn)

= (x∗n − x)ᵀ
(
−δnt(xn)(x∗n − xn) + αnt(xn)

∂

∂x
f (x∗n, xn)− Aᵀ

0 [A0x
∗
n − b0]

−Aᵀ
1 [A1x

∗
n − b1 + u∗n]) + (u∗n − u)ᵀ (−A1x

∗
n + b1 − (1 + δn)u∗n)

= αnt(xn) (x∗n − x)ᵀ
∂

∂x
f (x∗n, xn)− [A0 (x∗n − x)]ᵀ [A0x

∗
n − b0]

− [A1 (x∗n − x)]ᵀ [A1x
∗
n − b1 + u∗n]− δnt(xn) (x∗n − x)ᵀ (x∗n − xn)

− (u∗n − u)ᵀ [A1x
∗
n − b1 + (1 + δn)u∗n] .

(9.10)

Now, selecting x := x∗ ∈ X∗ (x∗ is one of the admissible solutions such that A0x
∗ = b0 and

A1x
∗ = b1 − u∗) and u := (1 + δn)−1 (b1 − A1x

∗
n) we obtain

0 ≤ αnt(xn) (x∗n − x∗)
ᵀ ∂

∂x
f (x∗n, xn)− [A0 (x∗n − x∗)]

ᵀ [A0x
∗
n − b0]−

[A1 (x∗n − x∗)]
ᵀ [A1x

∗
n − b1 + u∗n]− δnt(xn) (x∗n − x∗)

ᵀ (x∗n − xn)−

(1 + δn)−1 [u∗n (1 + δn)− b1 + A1x
∗
n]ᵀ [A1x

∗
n − b1 + (1 + δn)u∗n]−

δn (u∗n − b1 − A1x
∗
n)ᵀ u∗n,

(9.11)

simplifying eq. (9.11) we have

0 ≤ αnt(xn) (x∗n − x∗)
ᵀ ∂

∂x
f (x∗n, xn)− ‖A0 (x∗n − x∗)‖

2 − δnt(xn) (x∗n − x∗)
ᵀ (x∗n − xn)−

‖A1 (x∗n − x∗)‖
2 − (1 + δn)−1 ‖A1x

∗
n − b1 + u∗n (1 + δn)‖2 − δn (u∗n − b1 − A1x

∗
n)ᵀ u∗n.

Dividing both sides of this inequality by δn we obtain

0 ≤ αn
δn
t(xn) (x∗n − x∗)

ᵀ ∂

∂x
f (x∗n, xn)− 1

δn
‖A0 (x∗n − x∗)‖

2−

1

δn
‖A1 (x∗n − x∗)‖

2 − 1

δn
(1 + δn)−1 ‖A1x

∗
n − b1 + u∗n (1 + δn)‖2−

t(xn) (x∗n − x∗)
ᵀ (x∗n − xn)− (uxn − b1 − A1x

∗
n)ᵀ u∗n.

(9.12)
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Now, taking x = x∗n and u = 0 from Eq. (9.10) one has

0 ≤ − (u∗n)ᵀ [A1x
∗
n − b1 + (1 + δn)u∗n]

= − (u∗n)ᵀ (A1x
∗
n − b1)− (1 + δn) ‖u∗n‖

2

= −

(∥∥∥√1 + δnu
∗
n

∥∥∥2

+ 2
(√

1 + δnu
∗
n

)ᵀ [(A1x
∗
n − b1)

2
√

1 + δn

]
+

∥∥∥∥(A1x
∗
n − b1)

2
√

1 + δn

∥∥∥∥2

−
∥∥∥∥(A1v

∗
n − b1)

2
√

1δn

∥∥∥∥2
)

= −
∥∥∥∥√1 + δnu

∗
n +

(A1x
∗
n − b1)

2
√

1 + δn

∥∥∥∥2

+

∥∥∥∥(A1x
∗
n − b1)

2
√

1 + δn

∥∥∥∥2

,

implying ∥∥∥∥(A1x
∗
n − b1)

2
√

1 + δn

∥∥∥∥2

≥
∥∥∥∥√1 + δnu

∗
n +

(A1x
∗
n − b1)

2
√

1 + δn

∥∥∥∥2

,

and

1 ≥
∥∥e+ 2 (1 + δn)u∗n ‖(A1x

∗
n − b1)‖−1

∥∥2
,

where ‖e‖ = 1. Which means that the sequence {u∗n} is bounded. In view of this and taking

into account that by the supposition that
αn
δn
→
n→∞

0, from Eq. (9.12) it follows

Const = lim sup
n→∞

(|(x∗n − x∗)
ᵀ (x∗n − xn)|+ |(u∗n − b1 − A1x

∗
n)ᵀ u∗n|) ≥

lim sup
n→∞

1

δn

(
‖A0 (x∗n − x∗)‖

2 + ‖A1 (x∗n − x∗)‖
2 + (1 + δn)−1 ‖A1x

∗
n − b1 + (1 + δn)u∗n‖

2) .
(9.13)

From Eq. (9.13) we may conclude that

‖A0 (x∗n − x∗)‖
2 + ‖A1 (x∗n − x∗)‖

2 +

(1 + δn)−1 ‖A1x
∗
n − b1 + (1 + δn)u∗n‖

2 = O (δn) ,

(9.14)

and
A0x

∗
∞ − A0x

∗ = A0x
∗
∞ − b0 = 0,

A1v
∗
∞ − A1x

∗ = A1x
∗
∞ − b1 + u∗∞ = 0,

where x∗∞ ∈ X∗ is a partial limit of the sequence {x∗n} which, obviously, may be not unique.

The vector u∗∞ is also a partial limit of the sequence {u∗n}.
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3. Now, denote by x̂n the projection of x∗n to the set Xadm, namely,

x̂n = Pr
Xadm

(x∗n) ,

where Pr is the projection operator. And show that

‖x∗n − x̂n‖ ≤ C
√
δn, C = const > 0. (9.15)

From Eq. (9.14) we have that

‖A1x
∗
n − b1 + u∗n‖ ≤ C1

√
δn, C1 = const > 0,

implying

A1x
∗
n − b1 ≤ C1

√
δne− u∗n ≤ C1

√
δne, ‖e‖ = 1,

where the vector inequality is treated in component-wise sense. Since:

‖x∗n − x̂n‖
2 ≤ max

y∈Xadm

min
A1x−b1≤C1

√
δne, x∈Xadm

‖x− y‖2 := d (δn) .

Introduce the new variable

x̃ := (1− vn)x+ vnx̊ ∈ Xadm,

where by Slater’s condition given in Eq. (9.8)

0 < vn :=
C1

√
δn

C1

√
δn + max

j=1,...,M1

∣∣∣(A1x̊− b1)j

∣∣∣ < 1.

For the new variable x =
x̃− vnx̊
1− vn

we have

A1x̃− b1 = (1− vn)A1x+ vnA1x̊− b1

= (1− vn) (A1x− b1) + (1− vn) b1 + vn (A1x̊− b1) + vnb1 − b1

= (1− vn) (A1x− b1) + vn (A1x̊− b1)

≤ (1− vn)C1

√
δn e+ vn (A1x̊− b1)

=
C1

√
δn

C1

√
δn + max

j=1,...,M1

∣∣∣(A1x̊− b1)j

∣∣∣
(

max
j=1,...,M1

∣∣∣(A1x̊− b1)j

∣∣∣ e+ (A1x̊− b1)

)
≤ 0,
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and therefore

d (δn) = max
y∈Xadm

min
A1x−b1≤C1

√
δne, x∈Xadm

‖x− y‖2

≤ max
A1x̃−b1≤0, x̃∈Xadm

∥∥∥∥ x̃− vnx̊1− vn
− x̃
∥∥∥∥2

=
v2
n

(1− vn)2 min
A1x̃−b1≤0, x̃∈Xadm

‖x̃− x̊‖2

≤ C2δn, C2 > 0.

Given that ‖x∗n − x̂n‖ ≤
√
d (δn) ≤

√
C2

√
δn which proves Eq. (9.15).

4. If the proximal function (9.7) is strictly concave and the sequence {xn} of the proximal

function (9.7) converges, then, the necessary and sufficient condition for the point x∗ to be the

maximum point of the function ‖x∗∞‖
2 on the set X∗ is given by

0 ≥ (x∗∞ − x∗)
ᵀ (x∗∞ − xn) for any x∗∞ ≤ X∗. (9.16)

In addition, this point is unique and it has a minimal norm among all possible partial limits x∗∞.

From Eq. (9.12) one obtains

0 ≤ t(xn) (x∗n − x∗)
ᵀ ∂

∂x
f (x∗n, xn)− 1

αn
‖A0 (x∗n − x∗)‖

2 − 1

αn
‖A1 (x∗n − x∗)‖

2

− 1

αn
(1 + δn)−1 ‖A1x

∗
n − b1 + u∗n (1 + δn)‖2 − δn

αn
t(xn) (x∗n − x∗)

ᵀ (x∗n − xn)

≤ t(xn) (x∗n − x∗)
ᵀ ∂

∂x
f (x∗n, xn)− δn

αn
t(xn) (x∗n − x∗)

ᵀ (x∗n − xn).

(9.17)

By the strong concavity property

(y − z)ᵀ
(
∂

∂y
f (y)− ∂

∂y
f (z)

)
≤ 0 for any y, z ∈ RN,

which, in view of the property (9.15), implies

t(xn) (x∗n − x̂n)ᵀ
∂

∂x
f (x∗n, xn) = O

(√
δn
)
,

t(xn) (x̂n − x∗)ᵀ
∂

∂x
f (x̂n, xn) ≤ t(xn) (x̂n − x∗)ᵀ

∂

∂x
f (x∗, xn) ≤ 0,



9.3. The non-cooperative bargaining game 167

then, we have

t(xn) (x∗n − x∗)
ᵀ ∂

∂x
f (x∗n, xn) = t(xn) (x∗n − x̂n)ᵀ

∂

∂x
f (x∗n, xn) + t(xn) (x̂n − x∗)ᵀ

∂

∂x
f (x∗n, xn)

= O
(√

δn

)
+ t(xn) (x̂n − x∗)ᵀ

(
∂

∂x
f (x∗n, xn)− ∂

∂x
f (x̂n, xn)

)
+ t(xn) (x̂n − x∗)ᵀ

∂

∂x
f (x̂n, xn)

≤ O
(√

δn

)
+ t(xn) (x̂n − x∗)ᵀ

(
∂

∂x
f (x∗n, xn)− ∂

∂x
f (x̂n, xn)

)
+ t(xn) (x̂n − x∗)ᵀ

∂

∂x
f (x∗, xn)

≤ O
(√

δn

)
+ t(xn) ‖x̂n − x∗‖

∥∥∥∥ ∂∂xf (x∗n, xn)− ∂

∂x
f (x̂n, xn)

∥∥∥∥ .
Since any function is Lipschitz-continuous on any bounded compact set, we can conclude that∥∥∥∥ ∂∂xf (x∗n, xn)− ∂

∂x
f (x̂n, xn)

∥∥∥∥ ≤ Const ‖x∗n − x̂n‖ = O
(√

δn

)
,

which gives

t(xn) (x∗n − x̂n)ᵀ
∂

∂x
f (x∗n, xn) = O

(√
δn

)
,

that by Eq. (9.17) leads to

0 ≤ t(xn) (x∗n − x̂n)ᵀ
∂

∂x
f (x∗n, xn)− δn

αn
t(xn) (x∗n − x∗)

ᵀ (x∗n − xn)

= O
(√

δn

)
− δn
αn
t(xn) (x∗n − x∗)

ᵀ (x∗n − xn).

(9.18)

Dividing both sides of the inequality (9.18) by
αn
δn

, taking t(xn) = 1, and given that ‖x∗n − x̂n‖ ≤

κ
√
δn by Eq. (9.15) we obtain that

0 ≤ O

(
αn√
δn

)
− (x∗n − x∗)

ᵀ (x∗n − xn) = o (1)
√
δn − (x∗n − x∗)

ᵀ (x∗n − xn),

which, by Eq. (9.9), for n→∞ leads to Eq. (9.16). Finally, for any x∗ ≤ X∗ it implies

0 ≥ (x∗∞ − x∗)
ᵀ (x∗∞ − xn) =

‖x∗∞ − x∗‖
2 + (x∗∞ − x∗)

ᵀ (x∗ − xn) ≥ (x∗∞ − x∗)
ᵀ (x∗ − xn).
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9.4 Bargaining with Markov chains

Consider a game with players’ strategies denoted by xl ∈ X l
(
l = 1, n

)
where X :=

n⊗
l=1

X l

is a convex and compact set,

xl := col (cl), X l := C l
adm

where col is the column operator and Cadm satisfies the restrictions (2.7, 2.8 and 2.9).

Denote by x = (x1, ..., xn)> ∈ X , the joint strategy of the players and xl̂ is a strategy of

the rest of the players adjoint to xl, namely,

xl̂ :=
(
x1, ..., xl−1, xl+1, ..., xn

)> ∈ X l̂ :=
n⊗

h=1, h6=l

Xh

such that x = (xl, xl̂), l = 1, n.

The process to solve the non-cooperative bargaining game consists of two main steps:

firstly to find the initial point of the negotiation (an ideal agreement that players can reach if

they negotiate cooperatively, this point is the Pareto optimal solution of the bargaining game),

the formulation and solution for this problem is called the strong Nash equilibrium (for the

complete formulation, solution and convergence analysis see Chapter 2); while for the solution

of the non-cooperative bargaining process we follow the different models presented in section

9.3.

9.4.1 The Pareto optimal solution of the bargaining problem

Consider that players try to reach the strong Nash equilibrium, that is, to find a joint strategy

x∗ = (x1∗, ..., xn∗) ∈ X satisfying for any admissible xl ∈ X l and any l = 1, n

GLp (x(λ), x̂(x, λ)) :=

[
n∑
l=1

∣∣∣λl [ψl (xl, xl̂)− ψl (x̄l, xl̂)]∣∣∣p]1/p

where x̂(x, λ) = (x1̂>, ..., xn̂>)> ∈ X̂ ⊆ Rn(n−1), p ≥ 1 and x̄l is the utopia point (3.2). Here

ψl
(
xl, xl̂

)
is the cost-function of player l which plays the strategy xl ∈ X l and the rest of

players the strategy xl̂ ∈ X l̂. The functions ψl
(
xl, xl̂

)
, l = 1, n, are assumed to be concave in

all their arguments.
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Remark 9.8 The function GLp (u(λ), û(u, λ)) satisfies the Nash condition

ψl
(
xl, xl̂

)
− ψl

(
x̄l, xl̂

)
≤ 0

for any xl ∈ X l and all l = 1, n

Applying the Lagrange principle we may conclude

x∗Lp = arg max
x∈X,x̂(x)∈X̂,λ∈Sn

min
µ≥0,ξ≥0,η≥0

Lδ(x, x̂(x), λ, µ, ξ, η) (9.19)

where

Lδ(x, x̂(x), λ, µ, ξ, η) := GLp,δ (x(λ), x̂(x, λ))−
n∑
l=1

N∑
j=1

µl(j)h
l
(j)(x

l)−

n∑
l=1

N∑
i=1

N∑
j=1

M∑
k=1

ξl(j)q
l
(j|i,k)x

l
(i,k) −

n∑
l=1

N∑
i=1

M∑
k=1

ηl
(
xl(i,k) − 1

)
+ δ

2

(
‖µ‖2 + ‖ξ‖2 + ‖η‖2)

and

GLp,δ (x(λ), x̂(x, λ)) =

[
n∑
l=1

∣∣∣λl [ψl (xl, xl̂)− ψl (x̄l, xl̂)]∣∣∣p]1/p

− δ
2
(‖x‖2+‖x̂(x)‖2+‖λ‖2)

In order to find the Pareto optimal solution, the relation (9.19) can be expressed in the proximal

format as

µ∗δ = arg min
µ≥0

{
1
2
‖µ− µ∗δ‖2 + γLδ(x∗δ , x̂∗δ(x), λ∗δ , µ, ξ

∗
δ , η
∗
δ )
}

ξ∗δ = arg min
ξ≥0

{
1
2
‖ξ − ξ∗δ‖2 + γLδ(x∗δ , x̂∗δ(x), λ∗δ , µ

∗
δ , ξ, η

∗
δ )
}

η∗δ = arg min
η≥0

{
1
2
‖η − η∗δ‖2 + γLδ(x∗δ , x̂∗δ(x), λ∗δ , µ

∗
δ , ξ
∗
δ , η)

}
x∗δ = arg max

x∈X

{
−1

2
‖x− x∗δ‖2 + γLδ(x, x̂∗δ(x), λ∗δ , ξ

∗
δ )
}

x̂∗δ(x) = arg max
x̂∈X̂

{
−1

2
‖x̂(x)− x̂∗δ(x)‖2 + γLδ(x∗δ , x̂(x), λ∗δ , ξ

∗
δ )
}

λ∗δ = arg max
λ∈SN

{
−1

2
‖λ− λ∗δ‖2 + γLδ(x∗δ , x̂∗δ(x), λ, ξ∗δ )

}

(9.20)

where the solutions x∗δ , x̂
∗
δ(x), λ∗δ , µ

∗
δ , ξ
∗
δ and η∗δ depend on the small parameters δ, γ > 0.
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9.4.2 The non-cooperative bargaining solution

Bargaining model 1

In order to find the non-cooperative bargaining solution, let us define a time function that

depends of the transition rates between states of each player as follows

τ l(j|i,k) :=



1∣∣∣∣∣ N∑i 6=j ql(j|i,k)

∣∣∣∣∣
if i = j

1

ql(j|i,k)

, if i 6= j

(9.21)

Also, redefined the utility function in eq. (2.3) to involves the previous time function (9.21)

W l
(i,k) =

N∑
j=1

(
τ l(j|i,k)

)−1
U l

(j,i,k)π
l
(j|i,k)

so that the average utility function in the stationary regime can be expressed as

ψl (x) :=
N∑
i=1

M∑
k=1

W l
(i,k)

n∏
l=1

cl(i,k) (9.22)

Then, define the norm of the strategies x that depends on the transition time cost of each player

as follows

‖(x− x∗)‖2
Λ =

n∑
l=1

M∑
k=1

∥∥∥(xl(k) − xl∗(k)

)∥∥∥2

=
n∑
l=1

M∑
k=1

(
xl(k) − xl∗(k)

)T
Λl

(k)

(
xl(k) − xl∗(k)

)
where

xl(k) = (cl(1,k), ..., c
l
(N,k))

T ∈ RN , k = 1,M

and

Λl
(k) :=

1

2

[
Λ̃l

(k) + Λ̃lᵀ
(k)

]
, Λ̃l

(k) :=
[
τ l(j|i,k)

]
, Λ̃l

(k) ∈ RN×N

Considering the utility function that depends on the average utility function ψl (x) defined as

follows

F l(x, µ, ξ, η) := ψl (x)− ψl(x∗)− 1
2

n∑
l=1

N∑
j=1

µl(j)h
l
(j)(x

l)−

1
2

n∑
l=1

N∑
i=1

N∑
j=1

M∑
k=1

ξl(j)q
l
(j|i,k)x

l
(i,k) −

1
2

n∑
l=1

N∑
i=1

M∑
k=1

ηl
(
xl(i,k) − 1

)
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we may conclude that

x∗ = arg max
x∈X

min
µ≥0,ξ≥0,η≥0

F l(x, µ, ξ, η)

Finally we have that the player in turn has to fix the strategies according to the solution of the

non-cooperative bargaining problem in proximal format defined as follows

µ∗ = arg min
µ≥0

{
δl‖µ− µ∗‖2 + αlF l (x∗, µ, ξ∗, η∗)

}
ξ∗ = arg min

ξ≥0

{
δl‖ξ − ξ∗‖2 + αlF l (x∗, µ∗, ξ, η∗)

}
η∗ = arg min

η≥0

{
δl‖η − η∗‖2 + αlF l (x∗, µ∗, ξ∗, η)

}
x∗ = arg max

x∈X

{
−δl ‖(x− x∗)‖2

Λ + αlF l (x, µ∗, ξ∗, η∗)
}

(9.23)

Bargaining model 2

Consider that players try to reach the Nash equilibrium of the bargaining problem, that is,

to find a joint strategy x∗ = (x1∗, ..., xn∗) ∈ X satisfying for any admissible xl ∈ X l and any

l = 1, n

f(x, x̂(x)) :=
n∑
l=1

[
ψl
(
xl, xl̂

)
− ψl

(
x̄l, xl̂

)]
where x̂ = (x1̂>, ..., xn̂>)> ∈ X̂ ⊆ Rn(n−1), x̄l is the utopia point defined as eq. (3.2) and

ψl
(
xl, xl̂

)
is the concave cost-function of player l which plays the strategy xl ∈ X l and the

rest of players the strategy xl̂ ∈ X l̂ defined as eq. (9.22) considering the time function.

Remark 9.9 The function f(x, x̂(x)) satisfies the Nash condition

ψl
(
xl, xl̂

)
− ψl

(
x̄l, xl̂

)
≤ 0

for any xl ∈ X l and all l = 1, n

We redefine the utility function that depends of the average utility function of all players as

follows

F (x, x̂(x)) := f(x, x̂(x))− 1
2

n∑
l=1

N∑
j=1

µl(j)h
l
(j)(x

l)−

1
2

n∑
l=1

N∑
i=1

N∑
j=1

M∑
k=1

ξl(j)q
l
(j|i,k)x

l
(i,k) −

1
2

n∑
l=1

N∑
i=1

M∑
k=1

ηl
(
xl(i,k) − 1

)
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then, we may conclude that

x∗ = arg max
x∈X,x̂∈X̂

min
µ≥0,ξ≥0,η≥0

F (x, x̂(x), µ, ξ, η)

Finally we have that at each step of the bargaining process, players calculate the Nash

equilibrium (but they reach the equilibrium at different time) according to the solution of the

non-cooperative bargaining problem in proximal format defined as follows

µ∗ = arg min
µ≥0
{−δ‖µ− µ∗‖2 + αF (x∗, x̂∗(x), µ, ξ∗, η∗)}

ξ∗ = arg min
ξ≥0
{−δ‖ξ − ξ∗‖2 + αF (x∗, x̂∗(x), µ∗, ξ, η∗)}

η∗ = arg min
η≥0
{−δ‖η − η∗‖2 + αF (x∗, x̂∗(x), µ∗, ξ∗, η)}

x∗ = arg max
x∈X

{
−δ ‖(x− x∗)‖2

Λ + αF (x, x̂∗(x), µ∗, ξ∗, η∗)
}

x̂∗ = arg max
x̂∈X̂

{
−δ ‖(x̂− x̂∗)‖2

Λ + αF (x∗, x̂(x), µ∗, ξ∗, η∗)
}

(9.24)

Bargaining model 3

For this model, in the same way that we define the strategies x ∈ X , consider a set of

strategies denoted by ym ∈ Y m
(
m = 1,m

)
where Y :=

m⊗
m=1

Y l is a convex and compact set,

ym := col (cm), Y m := Cm
adm

where col is the column operator.

Denote by y = (y1, ..., ym)> ∈ Y , the joint strategy of the players and ym̂ is a strategy of

the rest of the players adjoint to ym, namely,

ym̂ :=
(
y1, ..., ym−1, ym+1, ..., ym

)> ∈ Y m̂ :=
m⊗

h=1, h6=m

Y h

such that y = (ym, ym̂), m = 1,m.

Consider that players of team A try to reach the Nash equilibrium of the bargaining prob-

lem, that is, to find a joint strategy x∗ = (x1∗, ..., xn∗) ∈ X satisfying for any admissible

xl ∈ X l and any l = 1, n

f(x, x̂(x)|y) :=
n∑
l=1

[
ψl
(
xl, xl̂|y

)
− ψl

(
x̄l, xl̂|y

)]
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where x̂ = (x1̂>, ..., xn̂>)> ∈ X̂ ⊆ Rn(n−1), x̄l is the utopia point (3.2) and ψl
(
xl, xl̂|y

)
is

the concave cost-function of player l which plays the strategy xl ∈ X l and the rest of players

the strategy xl̂ ∈ X l̂ fixing the strategies y ∈ Y of team B, and it is defined as eq. (9.22)

considering the time function.

Similarly, consider that players of team B also try to reach the Nash equilibrium of the

bargaining problem, that is, to find a joint strategy y∗ = (y1∗, ..., ym∗) ∈ Y satisfying for any

admissible ym ∈ Y m and any m = 1,m

g(y, ŷ(y)|x) :=
m∑

m=1

[
ψm
(
ym, ym̂|x

)
− ψm

(
ȳm, ym̂|x

)]
where ŷ = (y1̂>, ..., ym̂>)> ∈ Ŷ ⊆ Rm(m−1), ȳm is the utopia point (3.2) and ψm

(
ym, ym̂|x

)
is the concave cost-function of player m which plays the strategy ym ∈ Y m and the rest of

players the strategy ym̂ ∈ Y m̂ fixing the strategies x ∈ X of team A, and it is defined as eq.

(9.22) considering the time function.

Then, we have that a strategy x∗ ∈ X of team A together with the collection y∗ ∈ Y of

team B are defined as the equilibrium of a strictly concave bargaining problem if

(x∗, y∗) = arg max
x∈Xadm,y∈Yadm

{f(x, x̂(x)|y) ≤ 0, g(y, ŷ(y)|x) ≤ 0}

We redefine the utility function that depends of the average utility function of all players as

follows

F (x, x̂(x), y, ŷ(y)) := f(x, x̂(x)|y) + g(y, ŷ(y)|x)− 1
2

n∑
l=1

N∑
j=1

µl(j)h
l
(j)(x

l)−

1
2

m∑
m=1

N∑
j=1

µm(j)h
m
(j)(y

m)− 1
2

n∑
l=1

N∑
i=1

N∑
j=1

M∑
k=1

ξl(j)q
l
(j|i,k)x

l
(i,k) −

1
2

m∑
m=1

N∑
i=1

N∑
j=1

M∑
k=1

ξm(j)q
m
(j|i,k)y

m
(i,k)−

1
2

n∑
l=1

N∑
i=1

M∑
k=1

ηl
(
xl(i,k) − 1

)
− 1

2

m∑
m=1

N∑
i=1

M∑
k=1

ηm
(
ym(i,k) − 1

)
then, we may conclude that

(x∗, y∗) = arg max
x∈X,x̂∈X̂,y∈Y,ŷ∈Ŷ

min
µ≥0,ξ≥0,η≥0

F (x, x̂(x), y, ŷ(y), µ, ξ, η)

Finally we have that at each step of the bargaining process, players calculate their equilibrium

according to the solution of the non-cooperative bargaining problem in proximal format defined
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as follows

µ∗ = arg min
µ≥0
{−δ‖µ− µ∗‖2 + αF (x∗, x̂∗(x), y∗, ŷ∗(y), µ, ξ∗, η∗)}

ξ∗ = arg min
ξ≥0
{−δ‖ξ − ξ∗‖2 + αF (x∗, x̂∗(x), y∗, ŷ∗(y), µ∗, ξ, η∗)}

η∗ = arg min
η≥0
{−δ‖η − η∗‖2 + αF (x∗, x̂∗(x), y∗, ŷ∗(y), µ∗, ξ∗, η)}

x∗ = arg max
x∈X

{
−δ ‖(x− x∗)‖2

Λ + αF (x, x̂∗(x), y∗, ŷ∗(y), µ∗, ξ∗, η∗)
}

x̂∗ = arg max
x̂∈X̂

{
−δ ‖(x̂− x̂∗)‖2

Λ + αF (x∗, x̂(x), y∗, ŷ∗(y), µ∗, ξ∗, η∗)
}

y∗ = arg max
y∈Y

{
−δ ‖(y − y∗)‖2

Λ + αF (x∗, x̂∗(x), y, ŷ∗(y), µ∗, ξ∗, η∗)
}

ŷ∗ = arg max
ŷ∈Ŷ

{
−δ ‖(ŷ − ŷ∗)‖2

Λ + αF (x∗, x̂∗(x), y∗, ŷ(y), µ∗, ξ∗, η∗)
}

(9.25)

9.5 Numerical Example

Our goal is to analyze a three-player non-cooperative bargaining situation in a class of

continuous time Markov chains. Consider a transfer pricing approach which divide the revenue

of a passenger between members of an airline alliance. The set of origin-destination time are

made up of itineraries. The itineraries are either a direct flight or a series of connecting flights

within the supply chain represented by the airlines network. The game penalizes the revenue

taking into account the total time that a passenger takes for reaching the final destination. We

are taking into account only round trips so the Markov chain game is ergodic.

Let the number of states N = 3 and the number of actions M = 2 for each airline. The

individual utility for each airline are defined by

U1
(i,j,1)=


10 8 12

6 11 19

10 14 13

 U2
(i,j,1) =


7 9 11

5 10 14

9 6 10

 U3
(i,j,1) =


17 9 6

19 13 11

3 2 8



U1
(i,j,2)=


12 10 5

20 16 14

18 9 11

 U2
(i,j,2) =


15 6 9

15 8 9

12 10 7

 U3
(i,j,2) =


10 12 3

4 10 9

20 17 19


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The transition rate matrices, i.e. the matrices with the information about the behavior of

each airline, are defined as follows

q1
(j|i,1)=


−0.2230 0.0581 0.1649

0.1166 −0.3131 0.1965

0.0504 0.0531 −0.1034

 q1
(j|i,2)=


−0.8918 0.2323 0.6595

0.4664 −1.2526 0.7862

0.2014 0.2122 −0.4137



q2
(j|i,1)=


−0.9336 0.7250 0.2086

0.4673 −0.9428 0.4755

0.0862 0.6542 −0.7405

 q2
(j|i,2)=


−0.2334 0.1813 0.0521

0.1168 −0.2357 0.1189

0.0216 0.1636 −0.1851



q3
(j|i,1)=


−0.3297 0.2872 0.0426

0.0473 −0.1738 0.1265

0.2912 0.2401 −0.5313

 q3
(j|i,2)=


−0.7694 0.6700 0.0993

0.1103 −0.4056 0.2953

0.6794 0.5602 −1.2396


First let us calculate the starting point of the bargaining process applying the proximal

method (9.20) to find the strong Nash equilibrium. We obtain the convergence of the strategies

in terms of the variable cl(i,k) for each player (airline) l = 1, n (see Figures 9.2, 9.3 and 9.4) and

the convergence of the parameter λ (see Figure 9.5).

Figure 9.2 SNE Strategies of player 1. Figure 9.3 SNE Strategies of player 2.

The strong Nash equilibrium reached for all players is as follows:

c1 =


0.0691 0.1510

0.0464 0.1015

0.1984 0.4336

 c2 =


0.2163 0.0253

0.3764 0.0440

0.3026 0.0354

 c3 =


0.0071 0.2237

0.0187 0.5876

0.0050 0.1579


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Figure 9.4 SNE Strategies of player 3. Figure 9.5 Convergence of λ.

The utilities for each player in the strong Nash equilibrium are ψ1(c1, c2, c3) = 3842.4,

ψ2(c1, c2, c3) = 2961.7 and ψ3(c1, c2, c3) = 3560.3. Once the starting point is set, the negoti-

ation process between players begins, calculating the strategies until they converge. Then, the

results obtained in each of the models presented above are shown:

Bargaining model 1

In this model each player calculates the strategies independently and alternately following

the relation (9.23) until they reach an agreement. Figures 9.6, 9.7 and 9.8 show the behavior of

the offers (strategies) during the bargaining process.

Figure 9.6 Strategies of player 1 in the bargaining
model 1.

Figure 9.7 Strategies of player 2 in the bargaining
model 1.
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Figure 9.8 Strategies of player 3 in the bargaining
model 1.

Figure 9.9 Behavior of players’ utilities in the
bargaining model 1.

Finally, the agreement reached is as follows:

c1 =


0.2028 0.0173

0.1363 0.0116

0.5824 0.0495

 c2 =


0.0691 0.1725

0.1202 0.3001

0.0967 0.2413

 c3 =


0.1320 0.0988

0.3469 0.2594

0.0932 0.0697


Following (2.6) the mixed strategies obtained for players are as follows

d1 =


0.9216 0.0784

0.9216 0.0784

0.9216 0.0784

 d2 =


0.2860 0.7140

0.2860 0.7140

0.2860 0.7140

 d3 =


0.5721 0.4279

0.5721 0.4279

0.5721 0.4279


With the strategies calculated at each step of the negotiation process, the utilities of each

player showed a decreasing behavior as shown in the Figure 9.9, i.e., at each step of the bar-

gaining process, the utility of each player decreases until they reach an agreement. At the

end of the bargaining process, the resulting utilities are as follows ψ1(c1, c2, c3) = 678.2,

ψ2(c1, c2, c3) = 1028.0 and ψ2(c1, c2, c3) = 1394.3 for each player.

Bargaining model 2

In this model each player calculates the strategies according the Nash equilibrium formu-

lation where players calculate the Nash equilibrium simultaneously, but with the characteristic
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that they reach the equilibrium at different time, following the relation (9.24) until they reach

an agreement (strategies show convergence). Figures 9.10, 9.11 and 9.12 show the behavior of

the offers (strategies) during the bargaining process.

Figure 9.10 Strategies of player 1 in the bargaining
model 2.

Figure 9.11 Strategies of player 2 in the bargaining
model 2.

Figure 9.12 Strategies of player 3 in the bargaining
model 2.

Figure 9.13 Behavior of players’ utilities in the
bargaining model 2.

Finally, the agreement reached is as follows:

c1 =


0.2127 0.0074

0.1429 0.0050

0.6106 0.0214

 c2 =


0.0050 0.2366

0.0087 0.4117

0.0070 0.3310

 c3 =


0.2237 0.0071

0.5877 0.0186

0.1579 0.0050


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Following (2.6) the mixed strategies obtained for players are as follows

d1 =


0.9662 0.0338

0.9662 0.0338

0.9662 0.0338

 d2 =


0.0207 0.9793

0.0207 0.9793

0.0207 0.9793

 d3 =


0.9693 0.0307

0.9693 0.0307

0.9693 0.0307


With the strategies calculated at each step of the negotiation process, the utilities of each

player showed a decreasing behavior as shown in the Figure 9.13, i.e., at each step of the bar-

gaining process, the utility of each player decreases until they reach an agreement. At the

end of the bargaining process, the resulting utilities are as follows ψ1(c1, c2, c3) = 986.8936,

ψ2(c1, c2, c3) = 651.4633 and ψ2(c1, c2, c3) = 949.6980 for each player.

Bargaining model 3

For this model players make teams, in this example as we have three players the team 1 is

only formed by player 1 while team 2 is composed of players 2 and 3. Although the players

calculate the strategies together following the relation (9.25), we consider that players reach

the equilibrium at different times. Figures 9.14, 9.15 and 9.16 show the behavior of the offers

(strategies) during the bargaining process.

Figure 9.14 Strategies of player 1 in the bargaining
model 3.

Figure 9.15 Strategies of player 2 in the bargaining
model 3.
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Figure 9.16 Strategies of player 3 in the bargaining
model 3.

Figure 9.17 Behavior of players’ utilities in the
bargaining model 3.

Finally, the agreement reached is as follows:

c1 =


0.2127 0.0074

0.1429 0.0050

0.6106 0.0214

 c2 =


0.0050 0.2366

0.0087 0.4117

0.0070 0.3310

 c3 =


0.2237 0.0071

0.5877 0.0186

0.1579 0.0050


Following (2.6) the mixed strategies obtained for players are as follows

d1 =


0.9662 0.0338

0.9662 0.0338

0.9662 0.0338

 d2 =


0.0207 0.9793

0.0207 0.9793

0.0207 0.9793

 d3 =


0.9693 0.0307

0.9693 0.0307

0.9693 0.0307


With the strategies calculated at each step of the negotiation process, the utilities of each

player showed a decreasing behavior as shown in the Figure 9.17, i.e., at each step of the

bargaining process, the utility of each player decreases until they reach an agreement. At the

end of the bargaining process, the resulting utilities are as follows ψ1(c1, c2, c3) = 986.8936,

ψ2(c1, c2, c3) = 651.4631 and ψ2(c1, c2, c3) = 949.6978 for each player.

The following figure shows the behavior of the utilities at each of the applied models,

we can see that the utilities begin at the same point, the strong Nash equilibrium, and then

decrease until the strategies converge (see Figure 9.18). From the results obtained we observed

that model 1 favors the utilities of players 2 and 3, while model 2 and 3 are better for player 1.

We also observed that even if models 2 and 3 reach the same agreement (equilibrium point) the
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strategies and, as a consequence, the utilities have a different behavior during the bargaining

process.

Figure 9.18 Behavior of the utilities at each model.





Chapter 10

Conclusions

This thesis presented models to establish cooperative and non-cooperative strategies for

solving different games. It was suggested a novel method for computing the Lp−Nash and

the Strong Lp−Nash equilibrium in case of a metric state space. Under mild assumptions, it

is shown the existence of Lp−Nash and the Strong Lp−Nash equilibrium characterized as a

strong Pareto policy, which is the closest in the Euclidean norm, to the virtual minimum. Fol-

lowing these concepts it was presented a method for computing the strongLp−Stackelberg/Nash

equilibrium, where leaders and followers together are in a Stackelberg game: the model in-

volves two cooperatively Nash games restricted by a Stackelberg game. We should also note

that our solution approach essentially simplifies the convergence to a strong Nash equilibrium

and to a strong Stackelberg/Nash equilibrium.

A very interesting problem in game theory is the security games that can be described

under the Stackelberg formulation. This work addressed dynamic execution uncertainty in se-

curity resources allocation presenting a novel approach for adapting attackers and defenders

preferred patrolling strategies using a RL process based-on average rewards for Stackelberg

security games. More specifically, we presented several contributions. First, we proposed

a general RL architecture that combines three different paradigms in reinforcement learning:

prior knowledge, imitation and temporal-difference method. The RL architecture involved two

components: the Adaptive Primary Learning architecture and the Actor-critic architecture. We

showed that the Adaptive Primary Learning architecture accelerates the reinforcement learn-

ing process while the Actor-critic architecture determines if rewards are better or worse than
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expected based on a game theory solution. For the solution of the game, we considered that

defenders and attackers conform coalitions in the Stackelberg security game, respectively. The

coalition of the defenders and attackers are reached by computing in case of a metric state

space the Strong Lp-Stackelberg/Nash equilibrium. The key result is that this contribution

can employ real information available about security uncertainty and generate strategies for

scheduling random patrols for different domains of application.

A method to find the equilibria in cooperative and non-cooperative bargaining games was

also presented. With respect to cooperative solutions, we examined the bargaining approach

from a theoretical perspective and provided a computational solution of the bargaining game for

the Nash and Kalai-Smorodinsky models. We first proposed a solution for the disagreement

point considered as a Nash equilibrium. Then, to solve the cooperative bargaining problem

finding a new agreement point we employed the Nash and the Kalai-Smorodinsky models.

We encapsulated both models, first focusing on some of the early results suggested in the

literature, and then extending the Nash and Kalai-Smorodinsky analysis to continuous-time

Markov games.

Following the results in Nash, Stackelberg and bargaining games, we proposed a new equi-

librium point for game theory called the manipulation equilibrium point conceptualized under

the Machiavellianism social theory. We employed this equilibrium for proposing a novel ap-

proach in solving the bargaining problem. The dynamics and the rationality proposed for

the manipulation game correspond with many real-world manipulation situations. The ma-

nipulation game is determined by a Stackelberg game model consisting of manipulating and

manipulated players that employ manipulation strategies to achieve power situations with the

disposition to not become attached to a conventional moral. We represented the Stackelberg

game model as Nash game for relaxing the interpretation of the game and the equilibrium se-

lection problem where the weights of the players for the Nash solution are determined by their

role in the Stackelberg game. We proposed an analytical formula for solving the manipulation

game which arises as the maximum of the quotient of two Nash products which under a fea-

sibility condition is a manipulation equilibrium point. Since a manipulation solution for the
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bargaining problem is a particular case of a single-valued function, we analyzed the rationality

of the players in the game solution.

In relation to non-cooperative bargaining, a proximal algorithm to solve the non-cooperative

bargaining game between two o more unsophisticated players as if they were forward-looking

players was presented. To achieve this goal we considered a time penalization related with

the time spent for each player for the decision-making at each step of the negotiation process

as well as their deviation from the previous best response strategy. We presented three dif-

ferent approaches for the non-cooperative bargaining problem: 1. a game where players are

individual-rational and compute the strategies thinking only of their own interests, 2. we con-

sider a game where players calculate the Nash equilibrium simultaneously but they reach the

equilibrium point at different times, and 3. a game where players make teams and alternately

each team makes an offer to the others until they reach an equilibrium. It was shown that

our work complements traditional bargaining literature for myopic agents, but also enlarges

the class of processes and functions where Rubinstein’s non-cooperative bargaining solutions

might be defined and applied.

Our solution approaches are supported by the proximal and extraproximal method. We pro-

posed a set of nonlinear equations represented by the Lagrange optimization method involving

the Tikhonov’s regularization approach for ensuring the convergence of the solution method

to one of the equilibria of the problem. We employed the c-variable method for making the

problem computationally tractable. We restricted the solution to a class of Markov chains

games. The effectiveness of the proposed methods was validated theoretically and illustrated

with some numerical examples.
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Appendix A
Proximal Constrained Optimization Approach with

Time Penalization

This chapter concerns a proximal-point algorithm with time penalization [105]. The case

where the cost to move from one position to a better one is penalized by the time taken by

the agent for the decision-making is being studied and the restriction employing the penalty

method is incorporated. It is shown that the method converges monotonically with respect to

the minimal weighted norm to a unique minimal point under mild assumptions. The gradient

method is employed for solving the objective function, and its convergence is proven. The

rate of convergence of the method is also estimated by computing the optimal parameters.

The effectiveness of the method is illustrated by a numerical optimization example employing

continuous-time Markov chains.

To the best of our knowledge, the proximal constrained optimization approach with time

penalization is still an open problem. The method presents a main advantage: it involves a cost

to move from one position to a better one with penalization of time taken by the agent for the

decision-making. This chapter presents the following results:

• Shows that the method converges monotonically with respect to the minimal weighted

norm to a unique minimal point under mild assumptions.

• Employs the projection gradient method for solving the objective function.

• Estimates the rate of convergence of the method by computing the optimal parameters.

• Illustrates the method by a numerical example employing continuous-time Markov chains.
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A.1 Introduction

Let ϕ be a convex twice-differentiable real-valued function defined on V , which is a com-

pact and convex subset of RN. The optimization problem

min
v∈V

ϕ(v),

means the problem of finding the minimal point v∗ such that ϕ(v∗) ≤ ϕ(v), ∀ v ∈ V . The

optimization problem in this chapter involves an additional penalization or cost to move from

one position to a better one, which is related with the proximal point algorithms [4, 5, 70]. The

proximal point algorithms for solving non-smooth constrained optimization problems were ini-

tially proposed by [57, 79, 53]. Several applications reported in the literature employ proximal

point algorithms, for instance see [17, 19, 21, 27]. Indeed, when one uses proximal algorithms

suppose choosing an arbitrary initial point v0 ∈ V and builds the sequence (vn), where vn is

the unique solution of the optimization problem of the form

min
v∈V

[
ϕ(v) +

δn
2
‖v − vn‖2

]
, δn > 0, δn → 0 and n ∈ N. (A.1)

The term ‖v − vn‖2 ensures that the objective function (A.1) is strictly positive definite

[93, 94] and it is introduced in order to improve convergence of some iterative methods. In

addition, ‖v − vn‖2 minimizes the distance between vn+1 and vn (vn+1 is not far from vn).

Because, δn > 0 and δn → 0 the final result obtained is not affected by the quadratic term. An

iterative approach, like the projected gradient method, can be employed to solve the objective

function (A.1).

The case where the cost to move from one position to a better one is penalized by the time

taken by the agent for the decision-making [6, 59, 9] is studied herein. Let V ⊆ RN be the

decision space (strategies) and define the behavior of an agent as a sequence (vn)n∈N where

there are possible changes, vj 6= vi or remaining in the same, vj = vi. Then, at each step

n ∈ N the agent chooses to change or to remain in vi ∈ V . The function ϕ represents the cost

function that determines the decision to move from vi. A cost-to-go is defined as a function

Λ : V × V → R which can be interpreted as a distance function Λ(vi, vj) = κ(vi, vj) where

κ(vi, vj) = 0 if vj = vi or κ(vi, vj) > 0 if vi 6= vj . In general, the cost to go function can
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be reexpressed as Λ(vi, vj) := t(vi, vj)κ(vi, vj) where t(vi, vj) ≥ 0 is the time spent to move

from vi to vj and κ(vi, vj) is the one-step cost-to-go function.

In the simplest (separable) case, ϕ(vi) − ϕ(vj) ≥ 0 is the advantage to change from vi to

vj given t(vj) > 0, the time spent to benefit of this advantage, and α(vi) being the weight the

agent puts on his advantages to change. Thus, the respective advantages to change from vi to

vj are given by A(vi, vj) = α(vi)t(vj) (ϕ(vi)− ϕ(vj)).

The dynamics of the cost to go model is as follows. At each step, the agent considers to

change from vi to vj , vi, vj ∈ V . A transition from vi to vj is acceptable if the advantages to

change A(vi, vj) from vi to vj are determined by δ(vi) ∈ [0, 1] (degree of acceptability) of the

costs to move Λ(vi, vj) from vi to vj . Then, the set of strategies that minimizes the general cost

to go is defined by

G(vi) = {vj ∈ V : α(vi)t(vj) [ϕ(vi)− ϕ(vj)] ≥ δ(vi)t(vj)κ(vi, vj)} .

One can associate a discrete dynamic on V to this relation, whose trajectories (vn)n∈N

satisfies that vn+1 ∈ G(vn). Then, in this context, a utility function ϕ : V → R such that

the impact of experience on cost is constant and limited to the most recent element vn on the

trajectory (vn)n∈N is defined. In addition, the advantages to change A(vn, vn+1) are determined

by the degree of acceptability δn(vn) ∈ [0, 1] of the costs to move Λ(vn, vn+1).

Thus, the acceptance criterion to change or stay process satisfies the condition

αn(vn)t(vn+1) [ϕ(vn)− ϕ(vn+1)] ≥ δn(vn)t(vn+1)κ(vn, vn+1).

These algorithms are naturally linked with several classical proximal algorithms given in

Eq. (A.1). That is, by fixing vn = v and taking δ(v)t(v)κ(v, v∗) = δnt(v) ‖(v − v∗)‖2 and

A(v, v∗) := αnt(v) [ϕ(v)− ϕ(v∗)] as one has in proximal format that

v∗ = arg min
v∈V

{
δnt(v) ‖(v − v∗)‖2 + αnt(v) [ϕ(v)− ϕ(v∗)]

}
.
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A.2 Formulation of the problem

Consider the following constrained programming problem

min
v∈Vadm

ϕ(v) ,

Vadm :=
{
v ∈ RN : v ≥ 0, Aeqv = beq ∈ RM0 , Aineqv ≤ bineq ∈ RM1

}
.

(A.2)

where Vadm is a bounded set. Introducing the “slack” vectors u ∈ RM1 with nonnegative

components, that is, uj ≥ 0 for all j = 1, ...,M1, the original problem (A.2) can be rewritten

as
min

v∈Vadm, u≥0
ϕ(v) ,

Vadm :=
{
v ∈ RN : v ≥ 0, Aeqv = beq, Aineqv − bineq + u = 0

}
.

(A.3)

Define by V ∗ ⊆ Vadm the set of all solutions of the problem (A.3).

Consider the objective function given by

Fα,δ (v, u|vn) := t(vn) δ
2
‖v − vn‖2 + αt(vn) (ϕ(v)− ϕ(vn)) +

1
2
‖Aeqv − beq‖2 + 1

2
‖Aineqv − bineq + u‖2 + δ

2
‖u‖2

(A.4)

where α, δ > 0. The problem of calculating the fixed point of the extremal mapping will be

considered

min
v∈Vadm, u≥0

Fα,δ (v, u|vn) ,

such that

v∗n := v∗ (αn, δn) →
n→∞

v∗∗, u∗n := u∗ (αn, δn) →
n→∞

u∗∗,

considering that the parameters α and δ are time-varying, i.e.,

α = αn, δ = δn, (n = 0, 1, 2, ....) ,

and

0 < αn → 0,
αn
δn
→ 0, when n→∞. (A.5)

In addition, v∗∗ (α, δ) ∈ V ∗ is the solution of the original problem (A.3) with minimal weighted

norm, i.e.,

‖v∗∗‖ ≤ ‖v∗‖ for all v∗ ∈ V ∗,
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and

u∗ = bineq − Aineqv
∗.

Moreover, the bounded set V ∗ of all solutions of the original optimization problem given

in Eq. (A.3) is not empty and Slater’s condition holds [74], that is, there exists a point v̊ ∈ Vadm

such that

Aineqv̊ < bineq. (A.6)

A.3 Convergence analysis

The behavior of the iterative proximal method of the original problem (A.3) will be studied.

First, it will be proven that the Hessian matrix H associated with the objective function (A.4)

is strictly positive definite for any positive α and δ, to show that the objective function (A.4) is

strictly convex. The following theorem if formulated.

Theorem A.1 If the set of solutions of problem (A.3) is non-empty then the objective function

(A.4) is strictly convex.

Proof. It should be proven that for all v ∈ RN and u ∈ RM1

H =

 ∂2

∂v2
Fα,δ (v, u|vn) ∂2

∂u∂v
Fα,δ (v, u|vn)

∂2

∂v∂u
Fα,δ (v, u|vn) ∂2

∂u2
Fα,δ (v, u|vn)

 > 0,

Employing Schur’s lemma [74] it is necessary and sufficient to prove that

∂2

∂v2
Fα,δ (v, u|vn) > 0, ∂2

∂u2
Fα,δ (v, u|vn) > 0,

∂2

∂v2
Fα,δ (v, u|vn) > ∂2

∂u∂v
Fα,δ (v, u|vn)

[
∂2

∂u2
Fα,δ (v, u|vn)

]−1
∂2

∂v∂u
Fα,δ (v, u|vn) .

(A.7)

Then, applying the Schur’s lemma over the objective function (A.4) it follows that

∂2

∂v2
Fα,δ (v, u|vn) = αt(vn) ∂2

∂v2
(ϕ(v)− ϕ(vn)) + Aᵀ

eqAeq + Aᵀ
ineqAineq + t(vn)δIN×N ≥

αt(vn) ∂2

∂v2
(ϕ(v)− ϕ(vn)) + t(vn)δIN×N ≥ t(vn)δ

(
1 +

α

δ
λ−
)
IN×N > 0 ∀ δn > 0,

where

λ− := min
v∈Vadm

λmin

(
∂2

∂v2
(ϕ(v)− ϕ(vn))

)
,
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and
∂2

∂u2
Fα,δ (v, u|vn) = (1 + δ) IM1×M1 > 0.

By Eq. (A.7) it is necessary to satisfy that

∂2

∂v2
Fα,δ (v, u|vn) = αt(vn) ∂2

∂v2
(ϕ(v)− ϕ(vn)) + Aᵀ

eqAeq + Aᵀ
ineqAineq + t(vn)δIN×N >

∂2

∂u∂v
Fα,δ (v, u|vn)

[
∂2

∂u2
Fα,δ (v, u)

]−1
∂2

∂v∂u
Fα,δ (v, u|vn) = (1 + δ)−1Aᵀ

ineqAineq,

or equivalently,

αt(vn)
∂2

∂v2
(ϕ(v)− ϕ(vn)) + Aᵀ

eqAeq +
δ

1 + δ
Aᵀ

ineqAineq + t(vn)δIN×N > 0,

which holds for any δ > 0 having

t(vn) (αλ− + δ) IN×N + Aᵀ
eqAeq +

δ

1 + δ
Aᵀ

ineqAineq ≥

t(vn)δ
(
1 + α

δ
λ−
)
IN×N = t(vn)δ (1 + o(1)) IN×N > 0.

As a result, the Hessian is H > 0 which means that proximal function (A.4) is strictly convex.

Remark A.2 The Hessian H > 0 is a sufficient condition for the convergence to a unique

minimal point defined v∗ (α, δ) and u∗ (α, δ) for the proximal function (A.4).

Next, objective function (A.4) is considered to be strictly convex and it is shown that it

converges to a unique minimal point that depends of the parameters α and δ.

Theorem A.3 If the proximal function (A.4) is strictly convex then the sequence {vn} of the

proximal function (A.4) converges when n→∞, i.e. the proximal function (A.4) has a minimal

point defined by v∗ (α, δ) and u∗ (α, δ).

Proof. The theorem will be proven in two parts.

i) Following the strictly convexity property (Theorem A.1) for any w :=

 v

u

 and any

vector w∗n :=

 v∗n = v∗ (αn, δn)

u∗n = u∗ (αn, δn)

 for the function Fα,δ (v, u|vn) = Fα,δ (w|vn) one has
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0 ≥ (w∗n − w)ᵀ
∂

∂w
Fαn,δn (w∗n|vn) = (v∗n − v)ᵀ

∂

∂v
Fαn,δn (v∗n, u

∗
n|vn) +

(u∗n − u)ᵀ
∂

∂u
Fαn,δn (v∗n, u

∗
n|vn) = (v∗n − v)ᵀ

(
αnt(vn)

∂

∂v
(ϕ (v∗n)− ϕ (vn))+

Aᵀ
eq [Aeqv

∗
n − beq] + Aᵀ

ineq [Aineqv
∗
n − bineq + u∗n] + t(vn)δn(v∗n − vn)

)
+

(u∗n − u)ᵀ (Aineqv
∗
n − bineq + (1 + δn)u∗n) =

αnt(vn) (v∗n − v)ᵀ
∂

∂v
(ϕ (v∗n)− ϕ (vn)) + [Aeq (v∗n − v)]ᵀ [Aeqv

∗
n − beq] +

[Aineq (v∗n − v)]ᵀ [Aineqv
∗
n − bineq + u∗n] + t(vn)δn (v∗n − v)ᵀ (v∗n − vn)+

(u∗n − u)ᵀ [Aineqv
∗
n − bineq + (1 + δn)u∗n] .

(A.8)

Selecting in Eq. (A.8) v := v∗ ∈ V ∗ (v∗ is one of the admissible solutions such that Aeqv
∗ =

beq) and u := (1 + δn)−1 (bineq − Aineqv
∗
n) one obtains

0 ≥ αnt(vn) (v∗n − v∗)
ᵀ ∂

∂v
(ϕ (v∗n)− ϕ (vn)) + [Aeq (v∗n − v∗)]

ᵀ [Aeqv
∗
n − beq] +

[Aineq (v∗n − v∗)]
ᵀ [Aineqv

∗
n − bineq + u∗n] + t(vn)δn (v∗n − v∗)

ᵀ (v∗n − vn)+

(1 + δn)−1 (u∗n (1 + δn)− bineq + Aineqv
∗
n)ᵀ (Aineqv

∗
n − bineq + (1 + δn)u∗n) +

δn (u∗n − bineq − Aineqv
∗
n)ᵀ u∗n,

(A.9)

simplifying Eq. (A.9) one obtains

0 ≥ αnt(vn) (v∗n − v∗)
ᵀ ∂

∂v
(ϕ (v∗n)− ϕ (vn)) + ‖Aeq (v∗n − v∗)‖

2 + ‖Aineq (v∗n − v∗)‖
2 +

t(vn)δn (v∗n − v∗)
ᵀ (v∗n − vn) + (1 + δn)−1 ‖Aineqv

∗
n − bineq + (1 + δn)u∗n‖

2 +

δn (u∗n − bineq − Aineqv
∗
n)ᵀ u∗n.

Dividing both sides of this inequality by δn one gets

0 ≥ αn
δn
t(vn) (v∗n − v∗)

ᵀ ∂

∂v
(ϕ (v∗n)− ϕ (vn))+

1

δn

(
‖Aeq (v∗n − v∗)‖

2 + ‖Aineq (v∗n − v∗)‖
2 + (1 + δn)−1 ‖Aineqv

∗
n − bineq + (1 + δn)u∗n‖

2)+

t(vn) (v∗n − v∗)
ᵀ (v∗n − vn) + (u∗n − bineq − Aineqv

∗
n)ᵀ u∗n.

(A.10)
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Now, taking v = v∗n and u = 0 from Eq. (A.8) one has

0 ≥ (u∗n)ᵀ [Aineqv
∗
n − bineq + (1 + δn)u∗n] = (u∗n)ᵀ (Aineqv

∗
n − bineq) + (1 + δn) ‖u∗n‖

2 =(∥∥√1 + δnu
∗
n

∥∥2
+ 2

(√
1 + δnu

∗
n

)ᵀ [(Aineqv
∗
n − bineq)

2
√

1 + δn

]
+

∥∥∥∥(Aineqv
∗
n − bineq)

2
√

1 + δn

∥∥∥∥2

−

∥∥∥∥(Aineqv
∗
n − bineq)

2
√

1 + δn

∥∥∥∥2
)

=

[∥∥∥∥√1 + δnu
∗
n +

(Aineqv
∗
n − bineq)

2
√

1 + δn

∥∥∥∥2

−
∥∥∥∥(Aineqv

∗
n − bineq)

2
√

1 + δn

∥∥∥∥2
]
,

implying ∥∥∥∥(Aineqv
∗
n − bineq)

2
√

1 + δn

∥∥∥∥2

≥
∥∥∥∥√1 + δnu

∗
n +

(Aineqv
∗
n − bineq)

2
√

1 + δn

∥∥∥∥2

,

and

1 ≥
∥∥e+ 2 (1 + δn)u∗n ‖(Aineqv

∗
n − bineq)‖−1

∥∥2
, ‖e‖ = 1,

which means that the sequence {u∗n} is bounded. If it is assumed that
αn
δn
→
n→∞

0, from Eq.

(A.10) it follows

Const = lim sup
n→∞

(|(v∗n − v∗)
ᵀ (v∗n − vn)|+ |(u∗n − bineq − Aineqv

∗
n)ᵀ u∗n|) ≥

lim sup
n→∞

1

δn

(
‖Aeqv

∗
n − beq‖2 + ‖Aineq (v∗n − v∗)‖

2 +

(1 + δn)−1 ‖Aineqv
∗
n − bineq + (1 + δn)u∗n‖

2) .
(A.11)

From Eq. (A.11) one may conclude that

‖Aeqv
∗
n − beq‖2 + ‖Aineq (v∗n − v∗)‖

2 +

(1 + δn)−1 ‖Aineqv
∗
n − bineq + (1 + δn)u∗n‖

2 = O (δn) ,

(A.12)

and
Aeqv

∗
∞ − beq = 0,

Aineqv
∗
∞ − Aineqv

∗ = Aineqv
∗
∞ − bineq + u∗∞ = 0,

where v∗∞ ∈ V ∗ is a partial limit of the sequence {v∗n} which, obviously, may be not unique.

The vector u∗∞ is also a partial limit of the sequence {u∗n}.

ii) Denote by v̂n the projection of v∗n to the set Vadm, i.e.

v̂n = Pr
Vadm

(v∗n) ,
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where Pr is the projection operator. It is shown that

‖v∗n − v̂n‖ ≤ κ
√
δn, κ = const > 0. (A.13)

Given Eq. (A.12) one has that

‖Aineqv
∗
n − bineq + u∗n‖ ≤ κ1

√
δn, κ1 = const > 0,

implying

Aineqv
∗
n − bineq ≤ κ1

√
δne− u∗n ≤ κ1

√
δne, ‖e‖ = 1,

where the vector inequality is treated in component-wise sense:

‖v∗n − v̂n‖
2 ≤ max

Aineqvn−bineq≤κ1
√
δne, v∈V adm

min
z∈Vadm

‖v − z‖2 := d (δn) .

Define

ṽ := (1− xn) v + xnv̊ ∈ Vadm,

by Slater’s condition given in Eq. (A.6) one obtains that

0 < xn :=
κ1

√
δn

κ1

√
δn + min

j=1,...,M1

∣∣∣(Aineqv̊ − bineq)j

∣∣∣ < 1.

For the variable v =
ṽ − xnv̊
1− xn

one has

Aineqṽ − bineq = (1− xn)Aineqv + xnAineqv̊ − bineq =

(1− xn) (Aineqv − bineq) + (1− xn) bineq + xn (Aineqv̊ − bineq) + xnbineq − bineq =

(1− xn) (Aineqv − bineq) + xn (Aineqv̊ − bineq) ≤

(1− xn)κ1

√
δne+

κ1

√
δn

κ1

√
δn + min

j=1,...,M1

∣∣∣(Aineqv̊ − bineq)j

∣∣∣ (Aineqv̊ − bineq) =

κ1

√
δn

κ1

√
δn + min

j=1,...,M1

∣∣∣(Aineqv̊ − bineq)j

∣∣∣
(

min
j=1,...,M1

∣∣∣(Aineqv̊ − bineq)j

∣∣∣ e+ (Aineqv̊ − bineq)

)
≤ 0,
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then
d (δn) = max

Aineqv−bineq≤κ1
√
δne, v∈V adm

min
y∈Vadm

‖x− y‖2 ≤

max
Aineqṽ−bineq≤0, ṽ∈V adm

∥∥∥∥ ṽ − xnv̊1− xn
− x̃
∥∥∥∥2

=

x2
n

(1− xn)2 max
Aineqṽ−bineq≤0, ṽ∈V adm

‖ṽ − v̊‖2 ≤ κ1δn, 0 < κ1 <∞.

Given that ‖v∗n − v̂n‖ ≤
√
d (δn) ≤

√
κ1 = const > 0

√
δn proving Eq. (A.13).

Finally, in the following theorem it is shown that the sequence {vn} converges with minimal

norm to v∗.

Theorem A.4 If the proximal function (A.4) is strictly convex and the sequence {vn} of the

proximal function (A.4) converges, then, the necessary and sufficient condition for the point v∗

to be the minimum point of the function ‖v∗∞‖
2 on the set V ∗ is given by

0 ≥ (v∗∞ − v∗)
ᵀ (v∗∞ − vn) for any v∗∞ ≤ V ∗. (A.14)

In addition, this point is unique and it has a minimal norm among all possible partial limits

v∗∞.

Proof. From Eq. (A.10) one obtains

0 ≥ t(vn) (v∗n − v∗)
ᵀ ∂

∂v
(ϕ (v∗n)− ϕ (vn)) +

1

αn

(
‖Aeqv

∗
n − beq‖2 + ‖Aineq (v∗n − v∗)‖

2)+

δn
αn
t(vn) (v∗n − v∗)

ᵀ (v∗n − vn) +
1

αn
‖Aineqv

∗
n − bineq + (1 + δn)u∗n‖

2 ≥

t(vn) (v∗n − v∗)
ᵀ ∂

∂v
(ϕ (v∗n)− ϕ (vn)) +

δn
αn
t(vn) (v∗n − v∗)

ᵀ (v∗n − vn).

(A.15)

By the strong convexity property (see Corollary 21.4 in [74]) it follows that

(x− y)ᵀ
(
∂

∂x
ϕ (x)− ∂

∂x
ϕ (y)

)
≥ 0 for any x, y ∈ RN,
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which, in view of the property (A.13), implies

t(vn) (v∗n − v̂n)ᵀ
∂

∂v
(ϕ (v∗n)− ϕ (vn)) = O

(√
δn
)
,

t(vn) (v̂n − v∗)ᵀ
∂

∂v
(ϕ (v̂n)− ϕ (vn)) ≥ 0,

t(vn) (v̂n − v∗)ᵀ
∂

∂v
(ϕ (v∗n)− ϕ (vn)) ≥ t(vn) (v∗n − v∗)

ᵀ ∂

∂v
(ϕ (v∗n)− ϕ (vn)) =

t(vn) (v∗n − v̂n)ᵀ
∂

∂v
(ϕ (v∗n)− ϕ (vn)) + t(vn) (v̂n − v∗)ᵀ

∂

∂v
(ϕ (v∗n)− ϕ (vn)) ≥

O
(√

δn
)

+ t(vn) (v̂n − v∗)ᵀ ·(
∂

∂v
(ϕ (v∗n)− ϕ (vn))− ∂

∂v
(ϕ (v̂n)− ϕ (vn))

)
+ t(vn) (v̂n − v∗)ᵀ

∂

∂v
(ϕ (v̂n)− ϕ (vn)) ≥

O
(√

δn
)
− t(vn) ‖v̂n − v∗‖

∥∥∥∥ ∂∂v (ϕ (v∗n)− ϕ (vn))− ∂

∂v
(ϕ (v̂n)− ϕ (vn))

∥∥∥∥ .
Since any function is Lipschitz-continuous on any bounded compact set, one can conclude that∥∥∥∥ ∂∂v (ϕ (v∗n)− ϕ (vn))− ∂

∂v
(ϕ (v̂n)− ϕ (vn))

∥∥∥∥ ≤ Const ‖v∗n − v̂n‖ = O
(√

δn

)
,

which gives

t(vn) (v∗n − v̂n)ᵀ
∂

∂v
(ϕ (v∗n)− ϕ (vn)) = O

(√
δn

)
,

which, by Eq. (A.15) leads to

0 ≥ t(vn) (v∗n − v̂n)ᵀ
∂

∂v
(ϕ (v∗n)− ϕ (vn)) +

δn
αn
t(vn) (v∗n − v∗)

ᵀ (v∗n − vn) =

O
(√

δn
)

+
δn
αn
t(vn) (v∗n − v∗)

ᵀ (v∗n − vn).

(A.16)

Dividing both sides of the inequality (A.16) by
αn
δn

, taking t(vn) = 1, and given that ‖v∗n − v̂n‖ ≤

κ
√
δn by Eq. (A.13) one has that

0 ≥ O

(
αn√
δn

)
+ (v∗n − v∗)

ᵀ (v∗n − vn) = o (1)
√
δn + (v∗n − v∗)

ᵀ (v∗n − vn),

which, by Eq. (A.5), for n→∞ leads to Eq. (A.14). Finally, for any v∗ ≤ V ∗ it implies

0 ≥ (v∗∞ − v∗)
ᵀ (v∗∞ − vn) =

‖v∗∞ − v∗‖
2 + (v∗∞ − v∗)

ᵀ (v∗ − vn) ≥ (v∗∞ − v∗)
ᵀ (v∗ − vn).
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A.4 Gradient solver

Consider the proximal function for finding the unique minimal point defined by v∗ (α, δ)

and u∗ (α, δ)

Fα,δ (v, u|vn) := t(vn) δn
2
‖v − vn‖2 + αnt(vn) (ϕ(v)− ϕ(vn)) +

1
2
‖Aeqv − beq‖2 + 1

2
‖Aineqv − bineq + u‖2 + δn

2
‖u‖2 .

When ϕ is smooth, one could use iterative methods to solve Fα,δ (v, u|vn).

Theorem A.5 Consider the following iterative procedure for finding the extremal point w∗∗ = v∗∗

u∗∗

:

wn =

[
wn−1 − γn

∂

∂w
Fαn,δn (wn−1|vn)

]
+

, (A.17)

where

[z]+ =

 z if z ≥ 0,

0 if z < 0.

If
∞∑
n=0

γnδn =∞, γn
δn
→
n→∞

0,
|αn − αn−1|+ |δn − δn−1|

γnδn
→
n→∞

0, (A.18)

then

Ξn := ‖wn − w∗n‖
2 →
n→∞

0. (A.19)

Proof. From the iterative procedure given in Eq. (A.17) one has that

Ξn =

∥∥∥∥[wn−1 − γn
∂

∂w
Fαn,δn (wn−1|vn)

]
+

− w∗n
∥∥∥∥2

≤∥∥∥∥(wn−1 − w∗n−1

)
− γn

∂

∂w
Fαn,δn (wn−1|vn) +

(
w∗n−1 − w∗n

)∥∥∥∥2

=

Ξn−1 + γ2
n

∥∥∥∥ ∂

∂w
Fαn,δn (wn−1|vn)

∥∥∥∥2

+
∥∥(w∗n−1 − w∗n

)∥∥2−

2γn
(
wn−1 − w∗n−1

)ᵀ ∂

∂w
Fαn,δn (wn−1|vn) + 2

(
wn−1 − w∗n−1

)ᵀ (
w∗n−1 − w∗n

)
−

2γn
(
w∗n−1 − w∗n

)ᵀ ∂

∂w
Fαn,δn (wn−1|vn) .

(A.20)
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By the inequalities (see the inequalities (21.17) and (21.36) in [74]) it can be concluded that∥∥∥∥ ∂

∂w
Fαn,δn (wn−1|vn)

∥∥∥∥2

=∥∥∥∥[ ∂∂wFαn,δn (wn−1|vn)− ∂

∂w
Fαn,δn

(
w∗n−1|vn

)]
+

∂

∂w
Fαn,δn

(
w∗n−1|vn

)∥∥∥∥2

≤

(1 + ϑn)

∥∥∥∥ ∂

∂w
Fαn,δn (wn−1|vn)− ∂

∂w
Fαn,δn

(
w∗n−1|vn

)∥∥∥∥2

+

(1 + ϑ−1
n )

∥∥∥∥ ∂

∂w
Fαn,δn

(
w∗n−1|vn

)∥∥∥∥2

≤ (1 + ϑn)L∇Ξn−1 + (1 + ϑ−1
n ) d,

where
∥∥∥∥ ∂

∂w
Fαn,δn

(
w∗n−1|vn

)∥∥∥∥2

≤ d, and

(
wn−1 − w∗n−1

)ᵀ ∂

∂w
Fαn,δn (wn−1|vn) ≥ lnΞn−1, ln = (αnλ

− + δn)

∣∣(wn−1 − w∗n−1

)ᵀ (
w∗n−1 − w∗n

)∣∣ ≤ ∥∥w∗n−1 − w∗n
∥∥√Ξn−1

∣∣∣∣(w∗n−1 − w∗n
)ᵀ ∂

∂w
Fαn,δn (wn−1|vn)

∣∣∣∣ ϑ>0

≤
∥∥w∗n−1 − w∗n

∥∥√(1 + ϑ)L∇Ξn−1 + (1 + ϑ−1) d ≤∥∥w∗n−1 − w∗n
∥∥ [(1 + ϑ1/2

)√
L∇
√

Ξn−1 +
(
1 + ϑ−1/2

)√
d
]
.

Then, from Eq. (A.20) it follows that

Ξn ≤ Ξn−1 + γ2
n [(1 + ϑ)L∇Ξn−1 + (1 + ϑ−1) d] + 2

(
κ2

1 |αn − αn−1|2 + κ2
2 |δn − δn−1|2

)
−2γn (αnλ

− + δn) Ξn−1 + 2 (κ1 |αn − αn−1|+ κ2 |δn − δn−1|)
√

Ξn−1+

2γn (κ1 |qn − qn−1|+ κ2 |δn − δn−1|) ·
[(

1 + ϑ1/2
)√

L∇
√

Ξn−1 +
(
1 + ϑ−1/2

)√
d
]
,

or, equivalently,

Ξn ≤ Ξn−1 (1− qn−1) + δ̄n−1

√
Ξn−1 + ωn−1,
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where

qn−1 = 2γn (αnλ
− + δn)− γ2

n (1 + ϑ)L∇ = 2γn (αnλ
− + δn)

[
1− γn (1 + ϑ)L∇

2 (αnλ− + δn)

]
≥

γnδn2 (1 + o (1))

[
1− γn (1 + ϑ)L∇

2δn (o (1) + 1)

]
≥ κqγnδn,

δ̄n−1 = 2 (κ1 |αn − αn−1|+ κ2 |δn − δn−1|) ·
[
1 + γn

(
1 + ϑ1/2

)√
L∇
]

≤ κδ (|αn − αn−1|+ |δn − δn−1|) ,

ωn−1 = γ2
n (1 + ϑ−1) d+

(
κ2

1 |αn − αn−1|2 + κ2
2 |δn − δn−1|2

)
+ 2γn (κ1 |αn − αn−1|+ κ2 |δn − δn−1|)

(
1 + ϑ−1/2

)√
d ≤

γ2
nκω,1 + γn (|αn − αn−1|+ |δn − δn−1|)κω,2 +

(
|αn − αn−1|2 + |δn − δn−1|2

)
κω,3.

Using the inequality

Ξr
n ≤ (1− r) θrn +

p

θ1−r
n

Ξn, p ∈ (0, 1) , θn > 0,

for p = 1/2 and
√
θn =

δ̄n−1

2qn−1 (1− η)
, η ∈ (0, 1), the inequality can be reduced to the

following one

Ξn ≤ Ξn−1

(
1− qn−1

[
1− δ̄n−1

2qn−1

√
θn

])
+
[
ωn−1 + 1

2
δ̄n−1

√
θn
]

=

Ξn−1 (1− qn−1η) +

[
ωn−1 +

δ̄2
n−1

4 (1− η) qn−1

]
.

(A.21)

By Theorem 16.14 in [74] Ξn →
n→∞

0 if

∞∑
n=0

qn =∞, ωn−1

qn−1

+
δ̄2
n−1

q2
n−1

→
n→∞

0,

which is equivalent to Eq. (A.19). Theorem is proven.
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A.5 Rate of convergence

Select the parameters of the algorithm (A.17) as follows:

δn =


δ0 if n ≤ n0

δ0
[1+ln(n−n0)]

(1+n−n0)δ
if n > n0

, αn =


α0 if n < n0

α0

(1+n−n0)α
if n ≥ n0

,

γn =


γ0 if n < n0

γ0
(1+n−n0)γ

if n ≥ n0

, δ, α, γ > 0, δ0, α0, γ0 > 0,

(A.22)

To guarantee the convergence of the suggested procedure, by the property
αn
δn
→
n→∞

0 and by

the conditions (A.18), the parameters of the algorithm should satisfy that

δ ≤ α, γ ≥ δ, γ + δ ≤ 1. (A.23)

Lemma A.6 Suppose that for a nonnegative sequence {sn} the following recurrent inequality

holds

sn ≤ sn−1 (1− qn) + ωn,

where numerical sequences {qn} and {ωn} satisfies

qn ∈ (0, 1] , ωn ≥ 0, υn > 0 for all n = 0, 1...

∞∑
n=0

qn =∞,
∞∑
n=0

ωnυn <∞, lim
n→∞

υn − υn−1

qnυn
:= θ < 1.

Then

sn = o
(
υ−1
n

)
. (A.24)

Proof. For s̃n = υnsn it follows

s̃n ≤ s̃n−1 (1− qn) υnυ
−1
n−1 + υnωn = s̃n−1 [1− qn (1− θ + o(1))] + υnωn,

which by the same Theorem 16.14 in [74] implies Eq. (A.24).

Theorem A.7 If the proximal function (A.4) is strictly convex and the sequence vn of the prox-

imal function (A.4) converges, then the optimal parameters are given by

γ = γ∗ =
1

2
, δ = δ∗ =

1

2
, α∗ =

3

4
, ξ∗ = 1.
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Proof. By (A.21) and (A.22) one has

qn = O

(
1

nγ+δ

)
,

[
ωn−1 +

δ̄2
n−1

4 (1− η)αn−1

]
= O

(
1

n2γ

)
+O

(
1

n2(α+1)

)
+O

(
1

n2(δ+1)

)
+

O

(
1

nγ+α+1

)
+O

(
1

nγ+δ+1

)
O

(
1

n2(α+1)−γ−δ

)
+O

(
1

n2(δ+1)−γ−δ

)
=

O

(
1

n2γ

)
+O

(
1

nγ+δ+1

)
+O

(
1

nδ+2−γ

)
.

As a result,

Ξn ≤ Ξn−1

[
1−

∣∣∣∣O( 1

nγ+δ

)∣∣∣∣]+O

(
1

n2γ

)
+

O

(
1

nγ+δ+1 [1 + ln (n− n0)]

)
+O

(
1

n2(δ+1)−γ−δ [1 + ln (n− n0)]

)
,

and for υn = nv it follows that Ξn = O (n−v), if v ∈ (0, 1] satisfies

γ + δ ≤ 1, v ≤ 2γ, v ≤ δ + 2− γ, (A.25)

or, equivalently, 0 < v ≤ min {2γ, δ + 2− γ}.

So, the rate of convergence for Ξ̃n := ‖wn − w∗∗‖2 will be estimated by the following

relation
Ξ̃n = ‖(wn − w∗n) + (w∗n − w∗∗)‖

2 ≤ 2Ξn + 2 ‖(w∗∗n − w∗∗)‖
2 =

2Ξn +O

(
α2
n

δn

)
= o(n−v) +O

(
α2
n

δn

)
→
n→∞

0,

which leads to the following conclusion: the best rate n−ξ∗ of the convergence Ξ̃n to zero is

defined as

Ξ̃n = O
(
n−ξ
)
,

where ξ∗ = max min {v, 2α− δ} = max min {2γ, δ + 2− γ, 2α− δ, 1}.

Since δ + 2− γ ≥ δ + 2− (1− δ) = 2δ + 1 > 1, it follows that

min {2γ, δ + 2− γ, 2α− δ, 1} = min {2γ, 2α− δ, 1} .
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Under constrains (A.23) and (A.25) the maximal upper estimate is achieved when 2γ = 2α −

δ = 1, implying γ =
1

2
, δ = 2α− 1 ≤ 1− γ =

1

2
and 2α ≤ 3

2
. Finally one obtains

γ = γ∗ =
1

2
, δ = δ∗ =

1

2
, α∗ =

3

4
, ξ∗ = 1.

A.6 Production planning example

Consider the Continuous-Time Markov Chains theory presented in Chapter 2. Then, the

joint strategy variable c(i,k) which belongs to the set of matrices c ∈ Cadm is restricted by Eqs.

(2.7, 2.8 and 2.9). Introducing

‖(v − v∗)‖2
Λ=diag(Λ1,...,ΛM ) =

M∑
k=1

∥∥(v(k) − v∗(k)

)∥∥2
=

M∑
k=1

(
v(k) − v∗(k)

)ᵀ
Λk

(
v(k) − v∗(k)

)
,

where

v =
(
v(1), ..., v(M)

)ᵀ ∈ RN×M , v(k) = (c(1,k), ..., c(N,k))
ᵀ ∈ RN ,

for k = 1, ...,M and

Λk := 1
2

[
Λ̃k + Λ̃ᵀ

k

]
, Λ̃k :=

[
τ(j|i,k)

]
, Λ̃k ∈ RN×N ,

τ(j|i,k) :=



1∣∣∣∣∣ N∑i 6=j q(j|i,k)

∣∣∣∣∣
if i = j,

1

q(j|i,k)

if i 6= j.

Then, one has that

v∗ = arg min
v∈V

{
δn
2
‖(v − v∗)‖2

Λ=diag(Λ1,...,ΛM ) + γn (Fα,δ (v, u|vn))

}
.

The production planning and scheduling are very important processes that directly influ-

ence the success of production companies, this models are usually formulated as optimization

problems subject to uncertainties derived from events as fluctuation of demand, equipment

failures, quantity of surplus production, among other factors. There is a growing interest in
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applying these models in manufacturing and remanufacturing systems in different industries or

companies (see for example, [52, 47, 26, 40, 48]).

Consider a Production Planning Model where the state variable is taken as the surplus

amount of the production system that is determined by both demand rate and production rate,

which in turn is governed by the production capacity [109].

The manufacturing system produces M different products. The system is given by a differ-

ential equation, which states that the rates of change of the surplus, the inventory/shortage level

x(t) ∈ RM , constitute the difference between the production rates v(t) ∈ RM which depends

on the random machine capacity, and the random demand rates z(t) ∈ RM (see Figure A.1).

The objective is to find the optimal production rate v∗ to minimize the cost function subject to

the system dynamics, the machine capacity y(t), and other operating conditions.

The usefulness of implementing the optimization method presented in this article is that

with the time penalization, the losses that the industry/company has in the manufacturing pro-

cess due to different factors, for example the continuous deterioration of the machines, can be

modeled.

Figure A.1 A schematic representation of a manufacturing system.

Let define demand process as a finite-state Markov chain z = {z(t) : t ≥ 0} having state

space Z = {z1, ..., zN2}. Considering the possible random breakdown and repair, the machine

capacity is modeled by a continuous-time, finite-state Markov chain y = {y(t) : t ≥ 0} with
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state space Y = {y1, ..., yN1}. At any given time the production capacity determines the set

of all possible rates of production v(t). For each state of the capacity, y1 ≤ yi ≤ yN1 , the

production rate uk = (u1, u2, ..., uM) ≥ 0 must satisfy the constraint

p · u′ ≤ αi, i = 0, ..., N1,

where p = (p1, ..., pM) ≥ 0 is a given constant vector with each pk (k = 1, ...,M) representing

the amount of capacity needed to produce one unit of product k.

The generators of the Markov chains y and z following an action denoted by k (the de-

cision of generate a type of product k) are given by Qy =
[
qy(j|i,k)

]
i,j=1,N1,k=1,M

and Qz =[
qz(j|i,k)

]
i,j=1,N2,k=1,M

, respectively.

Let there be a manufacturing model with two machine producing three different products,

because of this, the machines can follow three actions k = 1,M , M = 3, this means to

generate product k. Suppose that one only has flexible machines which require no setup-time

consumption when switching from production of one type of product to the production of

another. In this example, consider the demand process as a two-states Markov chain, z(t) ∈

Z = {z1, z2}, N2 = 2, that means that z1 is a low level and z2 is a high level of demand. The

generator for each action k of the demand process is as follows

Qz
(j|i,1) =

 −4 4

2 −2

 Qz
(j|i,2) =

 −1 1

2 −2

 Qz
(j|i,3) =

 −5 5

3 −3


Consider that the two parallel machines are subject to breakdown and repair. If the machine

is up, then it can produce parts with production rate v(t) and its production rate is zero if the

machine is under repair, so each having capacities y1 ∈ {0, y1} and y2 ∈ {0, y2}, the overall

state space of the four-state Markov chain capacity is Y = {(0, 0), (y1, 0), (0, y2), (y1, y2)}

which contains all possible combinations N1 = 4 between the states of the two machines.

For simplicity, suppose each of the machines is either in operating condition (denoted by 1)

or under repair (denoted by 0), then it follows that Y = {(0, 0), (1, 0), (0, 1), (1, 1)}. Let the

rates of each machine going down be λ1 and λ2, and the rates of resumption be µ1 and µ2. The
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generators for any action (product) k of each machine capacity are as follows

Q1
(j|i,k) =


−µ1 µ1 0 0

λ1 −λ1 0 0

0 0 −µ1 µ1

0 0 λ1 −λ1

 Q2
(j|i,k) =


−µ2 0 µ2 0

0 −µ2 0 µ2

λ2 0 −λ2 0

0 λ2 0 −λ2


To determine the generator for the overall capacity process, it is satisfied that only one

machine may change its state during a single transition. Therefore

Qy
(j|i,k) =


−(µ1 + µ2) µ1 µ2 0

λ1 −(λ1 + µ2) 0 µ2

λ2 0 −(λ2 + µ1) µ1

0 λ2 λ1 −(λ1 + λ2)


In this example, consider λ1 = 3.53, λ2 = 4.8, µ1 = 120 and µ2 = 120, then the matrix Qy for

any action k gives

Qy
(j|i,k) =


−240 120 120 0

3.53 −123.53 0 120

4.8 0 −124.8 120

0 4.8 3.53 −8.33


Then, the production system is subject to a joint stochastic process, β(t) = (y(t), z(t))

consisting of the capacity and demand pair. Observe that β is also a Markov chain that has a

state space of size N = N1 ×N2

B = {(y1, z1), ..., (yN1 , z1), ..., (y1, zN2), ..., (yN1 , zN2)} .

In this example the total number of states is N = N1 ×N2 = 8

B = {(0, 0, z1), (1, 0, z1), (0, 1, z1), (1, 1, z1), (0, 0, z2), (1, 0, z2), (0, 1, z2), (1, 1, z2)} ,

that is, all possible combination between the states of the demand process and the states of the

capacity process.
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In many manufacturing processes, the machine capacity (breakdown and repair) take place

much more frequently than the changes in demand. To reflect the differences in transition

rates between the matrices Qy and Qz, i.e., the weak and strong interactions of the systems, a

timescale separation by introducing a small parameter ε > 0 into the system [108] is imple-

mented. The generator of the chain β(t) is of the form Q =
[
q(j|i,k)

]
i,j=1,N,k=1,M

where for

action k = 1,M,M = 3 and a scale factor ε = 0.01 is given by

Q =
1

ε
Q̃+ Q̂ =

1

ε


Qy

. . .

Qy

+


qz(1,1)IN1 qz(1,2)IN1 · · · qz(1,N2)IN1

...
... . . . ...

qz(N2,1)IN1 qz(N2,2)IN1 · · · qz(N2,N2)IN1

 ,
where Q̃ = diag(Qy, ..., Qy) is a block-diagonal matrix representing the fast motion and the

Kronecker product Q̂ = Qz ⊗ IN1 governs the slow varying part.

The dynamic system of the manufacturing process is given by

ẋ(t) = y(t)v(t)− z(t),

x(0) = x,
(A.26)

where β = (y, z) is the initial state of the Markov chain and x ∈ RM is the initial surplus level

that is positive when it represents inventory and negative when it represents shortage. Define

the cost functional as

F (x(t), v(t), β(t)) = E

∫ ∞
0

e−ρtG (x(t), v(t), β(t)) dt, (A.27)

where G (x(t), v(t), β(t)) is the running cost of having surplus x(t), a normalized production

rate v(t), a Markov chain β (y(t), z(t)) and a discount rate ρ > 0 (old data have less impact

into the overall cost). The goal is to find the optimal policy or the optimal production rate

v∗(t) ∈ RN×M , to minimize the objective function (Eq. A.27), subject to dynamics described

by Eq. A.26, the capacity y(t), and other production constraints for the given initial conditions.

Let the utility matrix u(j|i,k) of the production process that depends on the transition be-

tween the states of the Markov chain β(y, z) and the product being manufactured be as follows:
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u(j|i,1) =



19 10 18 11 18 11 10 6

15 19 3 17 18 3 15 8

12 1 9 17 5 3 7 18

20 4 6 17 2 18 9 9

17 10 20 5 10 13 11 5

20 11 13 11 17 6 18 12

13 2 6 18 10 18 16 10

8 14 3 3 9 2 2 18



u(j|i,2) =



19 17 2 18 14 2 10 20

17 11 9 7 12 15 10 5

15 8 3 1 13 7 19 16

15 5 9 3 18 14 8 12

18 11 18 2 14 14 3 9

2 6 8 15 18 11 5 11

7 2 3 10 10 15 14 10

1 2 12 14 3 11 17 14



u(j|i,3) =



15 19 18 1 20 15 2 4

7 18 2 8 11 11 14 1

2 20 20 19 20 17 13 9

17 18 19 11 10 11 5 10

8 1 12 10 9 12 9 4

16 11 9 10 5 5 13 14

4 20 7 7 4 12 12 1

3 11 15 20 17 3 3 3


The cost matrix r(i,k) for each state and action, that depends on the utility matrix u(j|i,k) and

the transition matrix π(j|i,k) that represent the behavior of the Markov chain β(y, z), is defined

as follows

rik =
N∑
j=1

uj|ikπj|ik,
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then, the production cost function J(v, β) of the manufacturing process is given by

J (v(t), β(t)) =
N∑
i=1

M∑
k=1

r(i,k)v(i,k).

For the integral cost function G (x, v, β), it is also considered the holding cost, which are the

costs associated with storing and maintaining a piece of inventory that remains unsold over the

course of time and that depends only of the total surplus for product k

h (x(t)) =
M∑
k=1

(
0.01x+

k + 0.7x−k
)
,

where x+
k = max{0, xk} and x−k = max{0,−xk}. Finally, the overall cost function for the

manufacturing model is G (x(t), v(t), β(t)) = h(x(t)) +J (v(t), β(t)). Applying the proposed

optimization method with given initial values of surplus x = (45,−15, 5) and following Eq.

(2.6), the optimal values v∗ are calculated. Figure A.2 shows the convergence of the production

rate v∗ for each state and product k = 1,M,M = 3.

Once the method converges, the optimal production rate v∗ is as follows

v∗(i,k) =



0.3333 0.3333 0.3333

0.0409 0.9180 0.0411

0.0558 0.8892 0.0550

0.0019 0.9896 0.0085

0.3333 0.3333 0.3333

0.3152 0.2932 0.3917

0.1023 0.2979 0.5998

0.0032 0.9937 0.0032


For example, for state 3 (this means that only one machine is in operating condition and the

rate of demand is low for all products) one has that in a working day the 0.0558 is dedicated

to manufacture product k = 1, 0.8892 to product k = 2 and 0.0550 to product k = 3, these

production rates are due to the fact that we have a shortage level of product 2 (x2 = −15);

and in general, for all states in the production rate matrix, it is observed that there is a greater

emphasis on compensating the shortage of the product 2.

Finally, Figure A.3 shows the behavior of the objective cost function, which with the use

of the presented method, converges in a lower cost than the initial one.
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(a) Convergence for product k = 1. (b) Convergence for product k = 2.

(c) Convergence for product k = 3.

Figure A.2 Convergence of the production rate vik.

Figure A.3 Convergence of the cost function.
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Appendix B
The Nash vs. Kalai-Smorodinsky solution

This Chapter presents a numerical example in order to appreciate the difference between

the solution presented by Nash and the one presented by Kalai and Smorodinsky [95].

Consider a two-person bargaining problem in a class of continuous time controllable Markov

chains. Let us denote the disagreement cost that depends on the strategies cl(i,k) (l = 1, 2) for

players 1 and 2 as φ1(c1, c2) and φ2(c1, c2) respectively, and the solution for the bargaining

problem as the point (ψ1, ψ2).

Let the states N = 6, and the number of actions M = 3. The individual utility for each

player are defined by

U1
(i,j|1)=



34 45 1 28 7 23

27 43 25 47 26 24

15 45 14 15 43 48

36 47 12 17 20 5

20 41 22 43 35 14

29 29 18 18 32 23


U2

(i,j|1)=



31 1 30 38 2 17

18 41 10 13 42 11

5 8 34 33 12 31

2 44 13 43 3 40

25 5 22 5 28 10

13 18 7 29 48 3



U1
(i,j|2)=



30 44 14 47 25 31

44 24 45 37 11 30

24 25 12 20 32 22

22 25 44 50 12 33

38 12 36 33 27 22

24 5 44 45 37 1


U2

(i,j|2)=



15 15 43 9 18 14

13 13 2 36 32 30

25 25 15 42 18 22

39 23 45 2 11 5

18 41 27 38 40 2

29 5 7 18 17 25


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U1
(i,j|3)=



28 27 48 8 16 27

43 47 33 24 22 28

21 37 19 28 15 42

24 29 24 3 50 42

42 49 46 33 31 42

50 42 51 45 13 11


U2

(i,j|3)=



14 11 31 48 50 11

17 34 14 39 39 20

15 23 28 31 24 2

9 22 48 48 35 24

20 9 36 3 21 17

35 10 34 14 20 49



The transition rate matrices for each player are defined as follows

q1
(i,j|1)=



−0.5371 0.0444 0.2305 0.0946 0.0705 0.0970

0.0208 −0.5381 0.0294 0.0665 0.0471 0.3743

0.1179 0.0965 −0.6554 0.0939 0.1042 0.2429

0.1871 0.0965 0.1622 −0.5826 0.0285 0.1083

0.0825 0.1871 0.0671 0.0431 −0.4624 0.0827

0.0831 0.1685 0.1221 0.3425 0.0432 −0.7593



q1
(i,j|2)=



−1.6112 0.1333 0.6916 0.2839 0.2114 0.2911

0.0624 −1.6142 0.0881 0.1996 0.1412 1.1228

0.3538 0.2894 −1.9662 0.2817 0.3127 0.7287

0.5614 0.2894 0.4867 −1.7477 0.0855 0.3248

0.2474 0.5614 0.2012 0.1292 −1.3873 0.2482

0.2492 0.5055 0.3662 1.0275 0.1295 −2.2780



q1
(i,j|3)=



−0.5371 0.0444 0.2305 0.0946 0.0705 0.0970

0.0208 −0.5381 0.0294 0.0665 0.0471 0.3743

0.1179 0.0965 −0.6554 0.0939 0.1042 0.2429

0.1871 0.0965 0.1622 −0.5826 0.0285 0.1083

0.0825 0.1871 0.0671 0.0431 −0.4624 0.0827

0.0831 0.1685 0.1221 0.3425 0.0432 −0.7593


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q2
(i,j|1)=



−0.8499 0.2201 0.3707 0.1271 0.0374 0.0947

0.3467 −0.6729 0.1271 0.0376 0.0970 0.0644

0.2831 0.0856 −0.6306 0.0706 0.0376 0.1537

0.0703 0.1577 0.1369 −0.8573 0.3673 0.1250

0.3727 0.0964 0.0944 0.1298 −0.8026 0.1092

0.1627 0.1095 0.1237 0.0754 0.4537 −0.9250



q2
(i,j|2)=



−0.8499 0.2201 0.3707 0.1271 0.0374 0.0947

0.3467 −0.6729 0.1271 0.0376 0.0970 0.0644

0.2831 0.0856 −0.6306 0.0706 0.0376 0.1537

0.0703 0.1577 0.1369 −0.8573 0.3673 0.1250

0.3727 0.0964 0.0944 0.1298 −0.8026 0.1092

0.1627 0.1095 0.1237 0.0754 0.4537 −0.9250



q2
(i,j|3)=



−1.1332 0.2934 0.4942 0.1694 0.0498 0.1263

0.4623 −0.8972 0.1694 0.0502 0.1294 0.0859

0.3774 0.1141 −0.8408 0.0942 0.0501 0.2050

0.0938 0.2102 0.1825 −1.1431 0.4898 0.1667

0.4970 0.1286 0.1258 0.1730 −1.0701 0.1456

0.2169 0.1460 0.1650 0.1005 0.6049 −1.2334



The process to solve the bargaining problem consists of two main steps, firstly to find the

disagreement point we define it as the Nash equilibrium point of the problem [63]; while for

the solution of the bargaining process we follow the models presented by Nash and Kalai-

Smorodinsky.

B.1 The disagreement point

Given δ and γ and applying the extraproximal method we obtain the convergence of the

strategies for the disagreement point in terms of the variable c1
(i,k) for the player 1 (see Figure

B.1) and the convergence of the strategies c2
(i,k) for the player 2 (see Figure B.2).
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Figure B.1 Convergence of the strategies for player 1 in the
disagreement point.

Figure B.2 Convergence of the strategies for player 2 in the
disagreement point.
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c1 =



0.0517 0.0540 0.0523

0.0560 0.0605 0.0607

0.0542 0.0548 0.0514

0.0660 0.0672 0.0635

0.0332 0.0372 0.0385

0.0582 0.0679 0.0727


c2 =



0.0824 0.0766 0.0830

0.0669 0.0449 0.0584

0.0840 0.0736 0.0823

0.0407 0.0215 0.0325

0.0399 0.0564 0.0503

0.0371 0.0329 0.0366


Following (2.6) the mixed strategies obtained for the players are as follows

d1 =



0.3273 0.3416 0.3311

0.3160 0.3416 0.3424

0.3378 0.3416 0.3205

0.3354 0.3416 0.3230

0.3051 0.3416 0.3533

0.2926 0.3416 0.3658


d2 =



0.3405 0.3166 0.3429

0.3933 0.2637 0.3429

0.3503 0.3068 0.3429

0.4295 0.2275 0.3429

0.2723 0.3847 0.3429

0.3484 0.3087 0.3429


With the strategies calculated, the resulting utilities following in the disagreement point for

each player φl(c1, c2), are as follows:

φ1(c1, c2) = 905.6447 φ2(c1, c2) = 704.2493

B.2 The Nash bargaining solution

Given δ, γ, αl and applying the extraproximal method for the Nash bargaining solution,

we obtain the convergence of the strategies in terms of the variable c1
(i,k) for the player 1 (see

Figure B.3) and the convergence of the strategies c2
(i,k) for the player 2 (see Figure B.4).

c1 =



0.0281 0.0677 0.0623

0.0010 0.0758 0.1003

0.0907 0.0686 0.0010

0.1115 0.0842 0.0010

0.0010 0.0466 0.0613

0.0010 0.0851 0.1127


c2 =



0.1227 0.0350 0.0842

0.1100 0.0010 0.0592

0.1555 0.0010 0.0835

0.0607 0.0010 0.0329

0.0010 0.0946 0.0510

0.0663 0.0032 0.0371


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Figure B.3 Convergence of the strategies for player 1 in the
Nash solution.

Figure B.4 Convergence of the strategies for payer 2 in the
Nash solution.
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The mixed strategies obtained for the players are as follows

d1 =



0.1778 0.4280 0.3942

0.0056 0.4280 0.5663

0.5658 0.4280 0.0062

0.5669 0.4280 0.0051

0.0092 0.4280 0.5628

0.0050 0.4280 0.5670


d2 =



0.5073 0.1447 0.3479

0.6462 0.0059 0.3479

0.6479 0.0042 0.3479

0.6415 0.0106 0.3479

0.0068 0.6453 0.3479

0.6221 0.0300 0.3479


With the strategies calculated, the resulting utilities in the Nash bargaining solution for each

player, are as follows:

ψ1(c1, c2) = 958.0281 ψ2(c1, c2) = 813.2879

B.3 The Kalai-Smorodinsky bargaining solution

Given δ, γ, αl and applying the extraproximal method for the Kalai-Smorodinsky bargain-

ing solution with the L1-norm, we obtain the convergence of the strategies in terms of the

variable c1
(i,k) for the player 1 (see Figure B.5) and the convergence of the strategies c2

(i,k) for

the player 2 (see Figure B.6).

c1 =



0.0010 0.0432 0.1139

0.0010 0.0484 0.1278

0.1156 0.0438 0.0010

0.1420 0.0537 0.0010

0.0010 0.0297 0.0782

0.0010 0.0543 0.1435


c2 =



0.2061 0.0010 0.0349

0.1447 0.0010 0.0245

0.2044 0.0010 0.0346

0.0800 0.0010 0.0136

0.0010 0.1245 0.0211

0.0903 0.0010 0.0154


The mixed strategies obtained for the players are as follows

d1 =



0.0063 0.2730 0.7207

0.0056 0.2730 0.7213

0.7207 0.2730 0.0062

0.7219 0.2730 0.0051

0.0092 0.2730 0.7178

0.0050 0.2730 0.7219


d2 =



0.8518 0.0041 0.1441

0.8500 0.0059 0.1441

0.8517 0.0042 0.1441

0.8454 0.0106 0.1441

0.0068 0.8491 0.1441

0.8465 0.0094 0.1441


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Figure B.5 Convergence of the strategies for player 1 in the
KS solution.

Figure B.6 Convergence of the strategies for payer 2 in the
KS solution.
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With the strategies calculated, the resulting utilities in the Kalai-Smorodinsky bargaining

solution for each player are as follows:

ψ1(c1, c2) = 960.5554 ψ2(c1, c2) = 841.0831

Figure B.7 shows the straight line linking the utilities obtained at the disagreement point

and those obtained at the utopia point. We can also observe that the Nash solution approaches

this line while the Kalai-Smorodinsky solution is exactly on this line. The utilities on the utopia

point for the bargaining problem are for each player as follows:

ψ1∗(c1, c2) = 964.3472 ψ2∗(c1, c2) = 849.8365

Figure B.7 The bargaining Solution.
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Appendix C
Convergence Analysis of the Extraproximal Method

Lemma C.1 Let f(z) be a convex function defined on the convex set Z. If z ∈ Z and z∗ is a

minimizer of function ϕ(z) = 1
2
‖z − x‖2 + αf(z) on Z where x and z are fixed. Then, f(z)

satisfies the inequality:

1

2
‖z∗ − x‖2 + αf(z∗) ≤ 1

2
‖z − x‖2 + αf(z)− 1

2
‖z − z∗‖2 (C.1)

Proof. A necessary condition for a minimum at z∗ can be written as

〈z∗ − x+ α∇f(z∗), z − z∗〉 ≥ 0

and the convexity condition for f(z) is as follows

f(z) ≥ f(z∗) + 〈∇f(z∗), z − z∗〉

Employing the necessary condition for a minimum at z∗, we have

0 ≤ 〈z∗ − x+ α∇f(z∗), z − z∗〉

= 〈z∗ − x+ α, z − z∗〉+ 〈α∇f(z∗), z − z∗〉

= 〈z∗ − x+ α, z − z∗〉+ α〈∇f(z∗), z − z∗〉

Then, by the convexity condition for f(z), we have 〈∇f(z∗), z − z∗〉 ≤ f(z) − f(z∗). Now,

combining the inequalities it follows that

0 ≤ 〈z∗ − x+ α, z − z∗〉+ αf(z)− αf(z∗)

〈z∗ − x+ α, z − z∗〉 ≥ αf(z∗)− αf(z)
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Using the identity

1

2
‖z − x‖2 =

1

2
‖z − z∗‖2 + 〈z − z∗, z∗ − x〉+

1

2
‖z∗ − x‖2

we have
1

2
‖z − x‖2 ≥ 1

2
‖z − z∗‖2 + αf(z∗)− αf(z) +

1

2
‖z∗ − x‖2

1

2
‖z∗ − x‖2 + αf(z∗) ≤ 1

2
‖z − x‖2 + αf(z)− 1

2
‖z − z∗‖2

Then, inequality (C.1) is proven.

Lemma C.2 Consider the set of regularized solutions of a non-empty game. The behavior of

the regularized function is described by the following inequality:

Lδ(w̃, w̃)− Lδ(ṽ∗δ , w̃) ≥ δ‖w̃ − ṽ∗δ‖ (C.2)

for all w̃ ∈
{
w̃ | w̃ ∈ Ũ × Z̃

}
and δ > 0.

Proof. The function L̃δ(ũ, z̃∗δ ) is strictly convex, then we have

L̃δ(ũ, z̃
∗
δ )− L̃δ(ũ∗δ , z̃) =

[
L̃δ(ũ, z̃

∗
δ )− L̃δ(ũ∗δ , z̃∗δ )

]
+
[
L̃δ(ũ

∗
δ , z̃
∗
δ )− L̃δ(ũ∗δ , z̃)

]
≥ δ (‖ũ− ũ∗δ‖2 + ‖z̃ − z̃∗δ‖2)

Then, we have that

Lδ(w̃, w̃)− Lδ(ṽ∗δ , w̃) = Lδ(w̃1, ṽ
∗
2,δ)− Lδ(ṽ∗1,δ, w̃2)

≥ δ
(
‖w̃1 − ṽ∗1,δ‖2 + ‖w̃2 − ṽ∗2,δ‖2

)
= δ‖w̃ − ṽ∗δ‖2

Lemma C.3 Let L̃δ(ũ, z̃) be differentiable in ũ and z̃, whose partial derivative with respect to

z̃ satisfies the Lipschitz condition with positive constant C0. Then,

‖ṽn+1 − v̂n‖ ≤ γC0‖ṽn − v̂n‖ (C.3)
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Proof. Consider the following inequality C.1

1

2
‖z∗ − x‖2 + αf(z∗) ≤ 1

2
‖z − x‖2 + αf(z)− 1

2
‖z − z∗‖2

and let for time n assign the following variables to Eq. (C.1)

α = γ, z = w̃, x = ṽn, z
∗ = v̂n,

f(z) = Lδ(w̃, ṽn), f(z∗) = Lδ(v̂n, ṽn)

(C.4)

Then, we can rewrite the first step of the equivalent extraproximal method in an equivalent

form to Eq. (C.1) replacing the variables (C.4) as follows

1

2
‖v̂n − ṽn‖2 + γLδ(v̂n, ṽn) ≤ 1

2
‖w̃ − ṽn‖2 + γLδ(w̃, ṽn)− 1

2
‖w̃ − v̂n‖2 (C.5)

As well, let for time n+ 1 assign the following variables to Eq. (C.1)

z = w̃, x = ṽn, z
∗ = ṽn+1,

f(z) = Lδ(w̃, v̂n), f(z∗) = Lδ(ṽn+1, v̂n)

(C.6)

Then, we can rewrite the second step of the equivalent extraproximal method in an equivalent

form to Eq. (C.1) replacing the variables (C.6) as follows

1

2
‖ṽn+1 − ṽn‖2 + γLδ(ṽn+1, v̂n) ≤ 1

2
‖w̃ − ṽn‖2 + γLδ(w̃, v̂n)− 1

2
‖w̃ − ṽn+1‖2 (C.7)

Assigning w̃ = ṽn+1 and replacing in (C.5) we obtain

1

2
‖v̂n − ṽn‖2 + γΨδ(v̂n, ṽn) ≤ 1

2
‖ṽn+1 − ṽn‖2 + γLδ(ṽn+1, ṽn)− 1

2
‖ṽn+1 − v̂n‖2 (C.8)

as well, replacing w̃ = v̂n in (C.7) we obtain

1

2
‖ṽn+1 − ṽn‖2 + γLδ(ṽn+1, v̂n) ≤ 1

2
‖v̂n − ṽn‖2 + γLδ(v̂n, v̂n)− 1

2
‖v̂n − ṽn+1‖2 (C.9)

Adding (C.8) with (C.9) we obtain

γLδ(v̂n, ṽn)+γLδ(ṽn+1, v̂n) ≤ γLδ(ṽn+1, ṽn)− 1

2
‖ṽn+1− v̂n‖2 +γLδ(v̂n, v̂n)− 1

2
‖v̂n− ṽn+1‖2
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Then, we have that

1
2
‖ṽn+1 − v̂n‖2 ≤ γLδ(ṽn+1, ṽn) + γLδ(v̂n, v̂n)− γLδ(v̂n, ṽn)− γLδ(ṽn+1, v̂n) ≤

γ ([Lδ(ṽn+1, ṽn)− Lδ(v̂n, ṽn)] + [Lδ(v̂n, v̂n)− Lδ(ṽn+1, v̂n)])

Now, assign the following variables

w̃ + h = ṽn+1, w̃ = v̂n, ṽ + t = ṽn, ṽ = v̂n, h = ṽn+1 − v̂n, t = ṽn − v̂n

Because all partial derivative of L̃δ(ũ, z̃) satisfy the Lipschitz condition with positive constant

C, the following Lipschitz-type condition holds:

‖[Lδ(w̃ + h, ṽ + t)− Lδ(w̃, ṽ + t)]− [Lδ(w̃ + h, ṽ)− Lδ(w̃, ṽ)]‖ ≤ C‖h‖‖t‖ (C.10)

for any w̃, h, ṽ, t ∈ Ũ × Z̃. Then, employing Eq. (C.10) we conclude

‖ṽn+1 − v̂‖2 ≤ γ[Lδ(ṽn+1, ṽn)− Lδ(v̂n, ṽn)]− γ[Lδ(ṽn+1, v̂n)− Lδ(v̂n+1, v̂n)] ≤

γC‖ṽn+1 − v̂n‖‖ṽn − v̂n‖

which implies

‖ṽn+1 − v̂n‖ ≤ γC‖ṽn − v̂n‖

Theorem C.4 [Convergence and Rate of Convergence] Let L̃δ(ũ, z̃) be differentiable in ũ

and z̃, whose partial derivative with respect to z̃ satisfies the Lipschitz condition with positive

constant C. Then, for any δ ∈ (0, 1) and

C0 =
N∑
l=1

C0,l ≤ N max
l=1,N

C0,l = NC+
0

there exists a small-enough

γ0 = γ0(δ) < C := min

 1√
2C+

0 N
,
1 +

√
1 + 2

(
C+

0

)2

2
(
C+

0

)2N


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where such that, for any 0 < γ ≤ γ0, sequence {ṽn}, which generated by the equivalent

extraproximal procedure, monotonically converges with exponential rate q ∈ (0, 1) to an equi-

librium point ṽ∗, i.e.,

‖ṽn − ṽ∗‖2 ≤ en ln q‖ṽ0 − ṽ∗‖2

where

q = 1 +
4(δγ)2

1 + 2δγ − 2γ2C2
− 2δγ < 1

and qmin is given by

qmin = 1− 2δγ

1 + 2δγ
=

1

1 + 2δγ

Proof. Let w̃ = ṽn+1, then replacing in (C.5) we obtain

1

2
‖v̂n − ṽn‖2 + γLδ(v̂n, ṽn) ≤ 1

2
‖ṽn+1 − ṽn‖2 + γLδ(ṽn+1, ṽn)− 1

2
‖ṽn+1 − v̂n‖2 (C.11)

as well, let w̃ = ṽ∗δ ∈ Ũ∗ × Z̃∗ then replacing in (C.7) we get

1

2
‖ṽn+1 − ṽn‖2 + γLδ(ṽn+1, v̂n) ≤ 1

2
‖ṽ∗δ − ṽn‖2 + γLδ(ṽ

∗
δ , v̂n)− 1

2
‖ṽ∗δ − ṽn+1‖2 (C.12)

Adding Eq. (C.11) and Eq. (C.12) and multiplying by two yields

‖ṽ∗δ − ṽn+1‖2 + ‖ṽn+1 − v̂n‖2 + ‖v̂n − ṽn‖2 − 2γLδ(ṽ
∗
δ , v̂n)+

2γ[Lδ(ṽn+1, v̂n) + Lδ(v̂n, ṽn)− Lδ(ṽn+1, ṽn)] ≤ ‖ṽ∗δ − ṽn‖2

(C.13)

Adding and subtracting Lδ(v̂n, v̂n) in Eq. (C.13) we have

‖ṽ∗δ − ṽn+1‖2 + ‖ṽn+1 − v̂n‖2 + ‖v̂n − ṽn‖2 + 2γ [Lδ(v̂n, v̂n)− Lδ(ṽ∗δ , v̂n)] + 2γ [Lδ(ṽn+1, v̂n)−

Lδ(v̂n, v̂n) + Lδ(v̂n, ṽn)− Lδ(ṽn+1, ṽn)] ≤ ‖ṽ∗δ − ṽn‖2

(C.14)

Let assign the following variables

w̃ + h = ṽn+1, w̃ = v̂n, ṽ + k = ṽn, ṽ = v̂n

having h = ṽn+1 − v̂n and k = ṽn − v̂n. Using (C.10) the inequality (C.14) becomes

‖ṽ∗δ − ṽn+1‖2 + ‖ṽn+1 − v̂n‖2 + ‖v̂n − ṽn‖2 + 2γ [Lδ(v̂n, v̂n)− Lδ(ṽ∗δ , v̂n)]−

2γC‖ṽn+1 − v̂n‖‖ṽn − v̂n‖ ≤ ‖ṽ∗δ − ṽn‖2
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Applying (C.3) to the last term in the left-hand side and in view of the strict convexity property

of Lδ in Eq. (C.2) given by

Lδ(v̂n, v̂n)− Lδ(ṽ∗δ , v̂n) ≥ δ‖v̂n − ṽ∗δ‖2

we get

‖ṽ∗δ − ṽn+1‖2 + ‖ṽn+1 − v̂n‖2 + 2γδ‖v̂n − ṽ∗δ‖2 +
(
1− 2γ2C2

)
‖ṽn − v̂n‖2 ≤ ‖ṽ∗δ − ṽn‖2

We know that

2〈a− c, c− b〉 = ‖a− b‖2 − ‖a− c‖2 − ‖c− b‖2

Then, replacing a = v̂n, b = ṽ∗δ and c = ṽn, to the left-hand side of the last inequality we have

‖ṽ∗δ − ṽn+1‖2 + ‖ṽn+1 − v̂n‖2 + (1− 2γ2C2) ‖ṽn − v̂n‖2 + 2γδ (2〈v̂n − ṽn, ṽn − ṽ∗δ 〉) +

‖ṽn − v̂n‖2 + ‖ṽn − ṽ∗δ‖2 = ‖ṽ∗δ − ṽn+1‖2 + ‖ṽn+1 − v̂n‖2 + (1 + 2γδ − 2γ2C2)‖ṽn − v̂n‖2+

4γδ〈v̂n − ṽn, ṽn − ṽ∗δ 〉+ 2γδ‖ṽn − ṽ∗δ‖2 ≤ ‖ṽ∗δ − ṽn‖2

Completing the square form of the third and fourth terms yields

‖ṽ∗δ − ṽn+1‖2 + ‖ṽn+1 − v̂n‖2 + (1 + 2γδ − 2γ2C2) ‖ṽn − v̂n‖2 + 4γδ〈v̂n − ṽn, ṽn − ṽ∗δ 〉+

(2γδ)2

1 + 2γδ − 2γ2C2
‖ṽn − ṽ∗δ‖2 − (2γδ)2

1 + 2γδ − 2γ2C2
‖ṽn − ṽ∗δ‖2 + 2γδ‖ṽn − ṽ∗δ‖2 ≤ ‖ṽ∗δ − ṽn‖2

Then, we have that

‖ṽ∗δ − ṽn+1‖2 + ‖ṽn+1 − v̂n‖2 +

∥∥∥∥∥√1 + 2γδ − 2γ2C2(ṽn − v̂n) +
2γδ√

1 + 2γδ − 2γ2C2
(ṽn − ṽ∗δ )

∥∥∥∥∥
2

−

(
(2γδ)2

1 + 2γδ − 2γ2C2

)
‖ṽn − ṽ∗δ‖2 + 2γδ‖ṽn − ṽ∗δ‖2 ≤ ‖ṽ∗δ − ṽn‖2

developing the terms we obtain that

‖ṽ∗δ − ṽn+1‖2 ≤ ‖ṽ∗δ − ṽn‖2 +

(
(2γδ)2

1 + 2γδ − 2γ2C2

)
‖ṽn − ṽ∗δ‖2 − 2γδ‖ṽn − ṽ∗δ‖2−

‖ṽn+1 − v̂n‖2 −

∥∥∥∥∥√1 + 2γδ − 2γ2C2(ṽn − v̂n) +
2γδ√

1 + 2γδ − 2γ2C2
(ṽn − ṽ∗δ )

∥∥∥∥∥
2
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as a result we have that

‖ṽ∗δ − ṽn+1‖2 ≤
(

1− 2γδ +
(2γδ)2

1 + 2γδ − 2γ2C2

)
‖ṽ∗δ − ṽn‖2

where

q = 1− 2γδ +
(2γδ)2

1 + 2γδ − 2γ2C2
< 1

Iterating over the previous inequality we have

‖ṽ∗δ − ṽn+1‖2 ≤ q‖ṽ∗δ − ṽn‖2 ≤ ... ≤ en+1 ln q‖ṽ∗δ − ṽ0‖2 (C.15)

That implies that the series converge and also that the trajectories are bounded. Then, by Eq.

(C.15) we have that

‖ṽ∗δ − ṽn+1‖2 →
n→∞

0

Given that ṽ is a bounded sequence, by the Weierstrass Theorem there exists a point ṽ′ such that

any subsequence ṽni satisfies that ṽni →
ni→∞

ṽ′. In addition, we have that ‖ṽni − ṽni+1‖2 → 0.

Fixing, n = ni in the equivalent proximal equation and computing the limit when ni →∞ we

have

ṽ′ = arg min
w̃∈Ũ×Z̃

{
1

2
‖w̃ − ṽ′‖2 + γLδ(w̃, ṽ

′)

}
Then, we have that ṽ′ = ṽ∗δ , i.e., any limit point of the sequence ṽn is a solution of the prob-

lem. Given that ‖ṽn − ṽ∗δ‖
2 is monotonically decreasing then, there exists a unique limit point

(equilibrium point). As a consequence, we have that the sequence ṽn satisfies that ṽn →
n→∞

ṽ∗δ

with a convergence velocity of en+1 ln q.

Remark C.5 The exponential rate q ∈ (0, 1) (see Figure C.1) satisfies

q ' q0

(
1 + 1

N2

)
.

C.0.1 Convergence conditions of δ and γ

This section presents the convergence conditions and compute the estimate rate of conver-

gence of the variables γ and δ [75]. The regularizing parameter δ and its asymptotic behavior

when δ → 0 is analyzed. Also, the step size parameter γ and its asymptotic behavior when

γ → 0 is analyzed.
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Figure C.1 Rate of convergence.

Theorem C.6 Within the class of numerical sequences

γn =
γ0

(n+ n0)γ
γ0, n0, γ > 0

δn =
δ0

(n+ n0)δ
δ0, δ > 0

the step size γn and the regularizing parameter δn satisfy the following conditions:

0 < γn → 0, 0 < δn → 0 when n→∞
∞∑
n=0

γnδn =∞

γn
δn
→ ε which is small enough

|δn+1 − δn|
γnδn

→ 0 when n→∞

for γ+δ ≤ 1, γ≥ δ, γ< 1.

Proof. It follows from the estimates that

γnδn = O

(
1

nγ+δ

)
we have that

|δn+1 − δn| = O

(
1

nδ
− 1

(n+ 1)δ

)
= O

(
1

(n+ 1)δ

[(
1 +

1

n

)δ
− 1

])

= O

(
1

(n+ 1)δ

[(
1

n

)δ
+ o(1)

])
= O

(
1

nδ + 1

)
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and
|δn+1 − δn|

γnδn
= O

(
1

n1−γ

)

Theorem C.7 Let u and x two variables with non-negative components for the players. Then,

within the class of numerical sequences we have that

γn =
γ0

(n+ n0)γ
γ0, n0, γ > 0

δn =
δ0

(n+ n0)δ
δ0, δ > 0

of the procedure given in proximal method, the rate of convergence for the players is given by

the step size γn and the regularizing parameter δn

‖un − u∗∗‖+ ‖xn − x∗∗‖ = O

(
1

nκ

)
where κ is equal to

κ = min{γ − δ; 1−γ; δ} (C.16)

Then, the maximal rate κ∗ of convergence is attained for

γ = γ∗ = 2/3 δ = δ∗ = 1/3 (C.17)

Proof. It follows that for κ0 characterizing the rate of convergence is given by

rn = ‖un − u∗(δn)‖+ ‖xn − x∗(δn)‖ = O

(
1

nκ0

)
we have κ0 = min{γ − δ; 1 − γ; δ}. It follows from the linear dependence of the regularized

Lagrange function on δ that

‖un − u∗∗‖+ ‖xn − x∗∗‖ = rn +O(δn) = O

(
1

nκ0

)
+O

(
1

nδ

)
= O

(
1

nmin{κ0;δ}

)
which implies (C.16). The maximal value κ of κ∗ is attained when γ − δ = 1 − γ = δ, i.e.,

when (C.17) holds.

Remark C.8 In the case of a Stackelberg game, we have a similar rate of convergence for the

followers given by

‖vn − v∗∗‖+ ‖wn − w∗∗‖ = O

(
1

nκ

)
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Appendix D
The Lagrange Method for Polylinear Programming

Problems
D.1 Polylinear optimization problem formulation

Consider the following poly-linear programming problem

f(x) = α1

N∑
j1=1

cj1xj1 + α2

N∑
j1=1

N∑
j2=1

cj1,j2xj1xj2+

α3

N∑
j1=1

N∑
j2=1

N∑
j3=1

cj1,j2,j3xj1xj2xj3 + · · ·+

αN−1

N∑
j1=1

N∑
j2=1

· · ·
N∑

jN−1=1

cj1,···,jN−1
xj1 · · · xjN−1

+

αN
N∑
j1=1

N∑
j2=1

· · ·
N∑

jN=1

cj1,···,jNxj1 · · ·xjN → min
x∈Xadm

(D.1)

where αj = {0; 1} (j = 1, ..., N) are binary variables and Xadm is a bounded set defined as

follows

Xadm :=
{
x ∈ RN : x ≥ 0, Aeqx = beq ∈ RM0 , Aineqx ≤ bineq ∈ RM1

}
Notice that this problem may have non-unique solution and det

(
Aᵀ

eqAeq
)

= 0. Define by

X∗ ⊆ Xadm the set of all solutions of the problem (D.1).

D.2 The Lagrange Method

Following [110] and [111] consider the Regularized Lagrange Function (RLF)

Lθ,δ (x, µ0, µ1) := θf(x) + µᵀ
0 (Aeqx− beq) + µᵀ

1 (Aineqx− bineq)

+
δ

2

(
‖x‖2 − ‖µ0‖2 − ‖µ1‖2) (D.2)
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where the parameters θ, δ are positive and the Lagrange vector-multipliers µ1 ∈ RM1 are non-

negative and the components of µ0 ∈ RM0 may have any sign. Obviously, the optimization

problem

Lθ,δ (x, µ0, µ1)→ min
x∈Xadm

max
µ0,µ1≥0

(D.3)

has a unique saddle-point on x since the optimized RLF (D.2) is strongly convex [74] if the

parameters θ and δ > 0 provide the condition

∂2

∂x∂xᵀ
Lθ,δ (x, µ0, µ1) > 0 ∀ x ∈ Xadm ⊂ RN

and is strongly concave on the Lagrange multipliers µ0, µ1 for any δ > 0. In view of these

properties RLF has the unique saddle point (x∗ (δ) , µ∗0 (θ, δ) , µ∗1 (θ, δ)) (see The Kuhn-Tucker

Theorem 21.13 in [74]) for which the following inequalities hold: for any µ0, µ1 with non-

negative components and any x ∈ RN

Lθ,δ (x, µ∗0 (θ, δ) , µ∗1 (θ, δ)) ≥ Lθ,δ (x∗ (δ) , µ∗0 (θ, δ) , µ∗1 (θ, δ)) ≥ Lθ,δ (x∗ (δ) , µ0, µ1)

As for the non-regularized function L1,0 (x, µ0, µ1), it may have several (not obligatory unique)

saddle points (x∗, µ∗0, µ
∗
1) ∈ X∗ ⊗ Λ∗.

D.2.1 Property of Lagrange Method

Proposition D.1 If the parameter θ and the regularizing parameter δ tend to zero by a partic-

ular manner, then we may expect that x∗ (θ, δ) and µ∗0 (θ, δ) , µ∗1 (θ, δ) which are the solutions

of the min-max optimization problem (D.3) tend to the set X∗ ⊗ Λ∗ of all saddle point of the

original optimization problem (D.1), that is,

ρ {x∗ (θ, δ) , µ∗0 (θ, δ) , µ∗1 (θ, δ) ;X∗ ⊗ Λ∗} →
θ,δ↓0

0 (D.4)

where ρ {a;X∗ ⊗ Λ∗} is the Hausdorff distance defined as

ρ {a;X∗ ⊗ Λ∗} = min
z∗∈X∗⊗Λ∗

‖a− z∗‖2

Below we define exactly how the parameters θ and δ should tend to zero to provide the

property (D.4).
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D.3 The extremal points of the regularized Lagrange function

The next lemma describes the dependence of the saddle-point x∗ (θ, δ) and µ∗0 (θ, δ), µ∗1 (θ, δ)

of the RLF on the regularizing parameters δ, θ and analyses it asymptotic behavior when both

of them tend to zero.

Theorem D.2 Assume that

1) the bounded set X∗ of all solutions of the original optimization problem (D.1) is not

empty and the Slater’s condition holds, that is, there exists a point x̊ ∈ Xadm such that

Aineqx̊ < bineq

2) The parameters θ and δ are time-varying, i.e.,

θ = θn, δ = δn (n = 0, 1, 2, ....)

such that

0 < θn ↓ 0,
θn
δn
↓ 0 when n→∞

Then
x∗n := x∗ (θn, δn) →

n→∞
x∗∗

µ∗0 (θn, δn) →
n→∞

µ∗∗0

µ∗1 (θn, δn) →
n→∞

µ∗∗1

where x∗∗ ∈ X∗, (µ∗∗0 , µ
∗∗
1 ) ∈ Λ∗ define the solution of the original problem (D.1) with the

minimal norm which is unique, i.e.,

‖x∗∗‖2 + ‖µ∗∗0 ‖
2 + ‖µ∗∗1 ‖

2 ≤ ‖x∗‖2 + ‖µ∗0‖
2 + ‖µ∗1‖

2

for all x∗ ∈ X∗, and (µ∗0, µ
∗
1) ∈ Λ∗.

Proof.
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a) First, prove that the Hessian matrix H :=
∂2

∂x∂xᵀ
Lθ,δ (x, µ0, µ1) is strictly positive definite

for all x ∈ RN and for some positive θ and δ, satisfying a special relation, namely,

H > 0. We have

∂2

∂x2
Lθ,δ (x, µ0, µ1) = θ

∂2

∂x2
f(x) + δIN×N ≥ δ

(
1 +

θ

δ
λ−
)
IN×N > 0 ∀ δ > θ

∣∣λ−∣∣
where

λ− := min
x∈Xadm

λmin

(
∂2

∂x2
f(x)

)
fulfilling the propertyH > 0 if δ > θ |λ−|. This means that RLF (D.2) is strongly convex

on x and, hence, has a unique minimal point defined below as x∗.

b) In view of the properties

(∇f (x) , (y − x)) ≤ f (y)− f (x)

(∇f (x) , (x− y)) ≥ f (x)− f (y)

valid for any convex function f (x) and any x, y, for RLF at any admissible points x,

µ0, µ1 and x∗n = x∗ (θn, δn), µ∗0,n = µ∗0 (θn, δn) , µ∗1,n = µ∗1 (θn, δn) we have(
x− x∗n,

∂

∂x
Lθn,δn (x, µ0, µ1)

)
−
(
µ0 − µ∗0,n,

∂

∂µ0

Lθn,δn (x, µ0, µ1)

)
−(

µ1 − µ∗1,n,
∂

∂µ1

Lθn,δn (x, µ0, µ1)

)
= θn (x− x∗n)ᵀ

∂

∂x
f (x) +

(x− x∗n)ᵀ
[
Aᵀ

eqµ0 + Aᵀ
ineqµ1 + δnx

]
+
(
µ0 − µ∗0,n

)ᵀ
(δnµ0 − Aeqx+ beq)(

µ1 − µ∗1,n
)ᵀ

(δnµ1 − Aineqx+ bineq) = θnf(x) + µᵀ
0 (Aeqx− beq) + µᵀ

1 (Aineqx− bineq)

+
δn
2

(
‖x‖2 − ‖µ0‖2 − ‖µ1‖2)− θnf(x∗n)−

(
µ∗0,n

)ᵀ
(Aeqx

∗
n − beq)

−
(
µ∗1,n

)ᵀ
(Aineqx

∗
n − bineq)−

δn
2

(
‖x∗n‖

2 −
∥∥µ∗0,n∥∥2 −

∥∥µ∗1,n∥∥2
)

= Lθn,δn
(
x, µ∗0,n, µ

∗
1,n

)
− Lθ,δ (x∗n, µ0, µ1)

+
δn
2

(
‖x− x∗n‖

2 +
∥∥µ0 − µ∗0,n

∥∥2
+
∥∥µ1 − µ∗1,n

∥∥2
)

(D.5)
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which by the the saddle-point condition (D.2) implies

θn (x− x∗n)ᵀ
∂

∂x
f (x) + (x− x∗n)ᵀ

[
Aᵀ

eqµ0 + Aᵀ
ineqµ1 + δnx

]
+(

µ0 − µ∗0,n
)ᵀ

(δn − Aeqx+ beq) +
(
µ1 − µ∗1,n

)ᵀ
(δn − Aineqx+ bineq) ≥

δn
2

(
‖x− x∗n‖

2 +
∥∥µ0 − µ∗0,n,

∥∥2
+
∥∥µ1 − µ∗1,n

∥∥2
) (D.6)

c) Selecting in (D.6) x := x∗ ∈ X∗ (x∗ is one of admissible solutions such that Aeqx
∗ = beq

and Aineqx
∗ ≤ bineq) and µ0 = µ∗0, µ1 = µ∗1 in view of the complementary slackness

conditions

(µ∗1)i (Aineqx
∗ − bineq)i =

(
µ∗1,n

)
i
(Aineqx

∗
n − bineq)i = 0

we obtain

θn (x∗ − x∗n)ᵀ
∂

∂x
f (x∗) + (x∗ − x∗n)ᵀ

[
Aᵀ

eqµ
∗
0 + Aᵀ

ineqµ
∗
1 + δnx

∗]+(
µ∗0 − µ∗0,n

)ᵀ
(δnµ

∗
0 − Aeqx

∗ + beq) +
(
µ∗1 − µ∗1,n

)ᵀ
(δnµ

∗
1 − Aineqx

∗ + bineq)

= θn (x∗ − x∗n)ᵀ
∂

∂x
f (x∗) + (µ∗0)ᵀ ([Aeqx

∗ − beq]− [Aeqx
∗
n − beq])

+ (µ∗1)ᵀ ([Aineqx
∗ − bineq]− [Aineqx

∗
n − bineq]) + δn (x∗ − x∗n)ᵀ x∗+

δn
(
µ∗0 − µ∗0,n

)ᵀ
µ∗0 +

(
µ∗1 − µ∗1,n

)ᵀ
δnµ

∗
1 +

(
µ∗1,n

)ᵀ
(Aineqx

∗ − bineq)

≥ δn
2

(
‖x∗ − x∗n‖

2 +
∥∥µ∗0 − µ∗0,n∥∥2

+
∥∥µ∗1 − µ∗1,n∥∥2

)
≥ 0

Simplifying the last inequality we have

θn (x∗ − x∗n)ᵀ
∂

∂x
f (x∗)+δn (x∗ − x∗n)ᵀ x∗+δn

(
µ∗0 − µ∗0,n

)ᵀ
µ∗0 +

(
µ∗1 − µ∗1,n

)ᵀ
δnµ

∗
1 ≥ 0

Dividing both sides of this inequality by δn and taking
θn
δn
→
n→∞

0 we get

0 ≤ lim sup
n→∞

[
(x∗ − x∗n)ᵀ x∗ +

(
µ∗0 − µ∗0,n

)ᵀ
µ∗0 +

(
µ∗1 − µ∗1,n

)ᵀ
µ∗1
]

This means that there obligatory exists subsequences δk and θk (k →∞) on which there

exist the limits

x∗k = x∗ (θk, δk)→ x̃∗, µ∗0,k = µ∗0 (θk, δk)→ µ̃∗0

µ∗1,k = µ∗1 (θk, δk)→ µ̃∗1 as k →∞
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Suppose that there exist two limit points for two different convergent subsequences, i.e.,

there exist the limits

x∗k′ = x∗ (θk′ , δk′)→ x̄∗, µ∗0,k′ = µ∗0 (θk′ , δk′)→ µ̄∗0

µ∗1,k′ = µ∗1 (θk′ , δk′)→ µ̄∗1 as k →∞

Then on these subsequences one has

0 ≤ (x∗ − x̃∗)ᵀ x∗ + (µ∗0 − µ̃∗0)ᵀ µ∗0 + (µ∗1 − µ̃∗1)ᵀ µ∗1

0 ≤ (x∗ − x̄∗)ᵀ x∗ + (µ∗0 − µ̄∗0)ᵀ µ∗0 + (µ∗1 − µ̄∗1)ᵀ µ∗1

From this inequalities it follows that points (x̃∗, µ̃∗0, µ̃
∗
1) and (x̄∗, µ̄∗0, µ̄

∗
1) correspond to

the minimum point of the function

s (x∗, µ∗0, µ
∗
1) :=

1

2

(
‖x∗‖2 + ‖µ∗0‖

2 + ‖µ∗1‖
2)

defined on X∗ ⊗Λ∗ for all possible saddle-points of the non-regularized Lagrange func-

tion. But the function s (x∗, µ∗0, µ
∗
1) is strictly convex, and, hence, its minimum is unique

that gives x̃∗ = x̄∗, µ̃∗0 = µ̄∗0, µ̃
∗
0 = µ̄∗0. Proposition is proven.

Lemma D.3 Under the assumptions of the Theorem D.2 there exist positive constants Cµ and

Cδ such that

‖x∗n − x∗m‖+
∥∥µ∗0,n − µ∗0,m∥∥+

∥∥µ∗1,n − µ∗1,m∥∥ ≤ Cθ |θn − θm|+ Cδ |δn − δm|

Proof. It follows also from the necessary and sufficient conditions (D.5) for the points x∗n =

x∗ (θn, δn), µ∗0,n = µ∗0 (θn, δn) , µ∗1,n = µ∗1 (θn, δn) to be the extremal points of the function

Lθn,δn (x, µ0, µ1).
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