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ABSTRACT 

 

The autonomous navigation of robots in unstructured environments is a challenge 

because it requires a set of subsystems to work together. It requires building a map 

of the environment, localizing the robot in that map, making a motion plan 

according to the map, executing that plan with a controller, and other tasks; all at 

the same time. On the other hand, the autonomous navigation problem is very 

important for the future of robotics. There are many applications that require this 

problem to be solved, such as package delivery, cleaning, agriculture, surveillance, 

search & rescue, construction and transportation. Note that all these applications 

occur in unstructured environments. In this thesis, we try to solve some sub-

problems related to autonomous navigation in unstructured environments.  

For map-building, we propose the first 

method based on ellipsoidal sets that can 

solve large-scale problems, unlike other 

methods based on sets. The errors are 

modeled by ellipsoid sets without 

assuming Gaussianity, so we have more 

realistic error modeling. Its performance 

is similar to, and in some cases better than, the method based on a Kalman filter. 

Some real experiments show it is capable of building maps indoors and outdoors.  

For planning, we introduce and study the 

fundamental concepts of Known Space, Free 

Space and Unknown Space Assumptions to deal 

with the partial observability of environment. 

These assumptions are needed to navigate in 

dynamic and unknown environments. For 

dynamic environments, we propose the first two 

methods to recover from false obstacles in the map and make the robot continue 

searching for its goal. For unknown environments, we propose a method to 

navigate more efficiently. We ran Monte Carlo simulations to evaluate the 

performance of our algorithms. The results show in which conditions our algorithms 

perform better and worse.  

 

  



RESUMEN 

 

La navegación autónoma  de robots en ambientes no estructurados es un reto 

porque requiere un conjunto de subsistemas que funcionen simultáneamente para: 

construir un mapa del ambiente, localizar el robot en el mapa, generar un plan de 

movimiento de acuerdo con el mapa, ejecutar el plan mediante un controlador, 

entre otras tareas; todo al mismo tiempo. Por otro lado, la navegación autónoma es 

un problema clave para el futuro de la robótica. Hay muchas aplicaciones que 

necesitan que este problema sea resuelto: entrega de paquetes, limpieza, 

agricultura, vigilancia, búsqueda y rescate, construcción y transporte. Todas estas 

aplicaciones ocurren en ambientes no estructurados. En esta tesis, tratamos de 

resolver algunos sub-problemas relacionados con la navegación autónoma en 

ambientes no estructurados.  

Para la construcción de mapas, 

proponemos el primer método basado en 

conjuntos elipsoidales que puede resolver 

problemas de gran escala, a diferencia de 

otros métodos basados en conjuntos. El  

error es modelado por conjuntos 

elipsoidales sin asumir Gaussianidad, así 

tenemos un modelamiento más real. Su desempeño es similar al método basado en 

el filtro de Kalman. Los experimentos muestran que es capaz de construir mapas en 

interiores y exteriores.  

Para el planeamiento de rutas, introducimos y 

estudiamos las suposiciones fundamentales de 

Espacio Conocido, Espacio Libre y Espacio 

Desconocido para hacer frente a la observabilidad 

parcial del ambiente. Estas suposiciones son 

necesarias para navegar en ambientes dinámicos y 

desconocidos. Para ambientes dinámicos, 

proponemos los primeros dos métodos para recuperase de los errores por los falsos 

obstáculos en el mapa y hacer que el robot continúe buscando su meta. Para 

ambientes desconocidos, proponemos un método para navegar más eficientemente. 

Hicimos simulaciones Monte Carlo para evaluar el desempeño de nuestros 

algoritmos. Los resultados muestran en qué condiciones ellos funcionan mejor y 

peor.  
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Chapter 1

Introduction

"Ask not what your country can do for you; ask what you can do for your coun-

try." –John F Kennedy

Why is it important to develop autonomous navigation robots? Basically, there are

three kinds of robots: operated, automatic and autonomous. Operated robots are those

that require control by a human, e.g. teleoperated robots for surgery or army exploration.

Automatic robots do preprogrammed and repeated activities in controlled environments, e.g.

robotic arms in car production lines or line follower robots. In contrast, autonomous robots

do tasks in unstructured environments and make their own decisions as a function of the

given goal, e.g. courier robots in hospitals and driverless cars in cities. The tendency is to

give robots more autonomy, which means robots do tasks with as little human

assistance as possible.

Autonomous robots can impulse the productivity and the quality of various human activ-

ities. Some applications are: package delivery, cleaning, agriculture, surveillance, search &

rescue, building and transportation. However, a basic task that robots must do is to navigate

in natural and human environments in order to achieve these applications. If someday we

wish to have robots that build our highways, clean our streets, and grow and harvest our

food, it is crucial they be able to navigate in unstructured environments. The mission of this

thesis is to contribute to this goal: solving some problems of autonomous navigation
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Figure 1.1: Subsystems needed to solve the whole autonomous navigation problem.

in unstructured environments.

Autonomous navigation is the capacity of a robot to navigate with as little human as-

sistance as possible. Unstructured environment is an environment that is NOT adapted to

facilitate robot navigation, but is given as it is; e.g. offices, parks, streets, forests, desert, etc.

Navigation in unstructured environments is a problem with many variants. The technical

difficulties to be overcome to navigate depend on the type of environment: in air, on land,

at sea or under the sea. The type of locomotion also imposes restrictions: wheels, legs,

propellers, etc. In this thesis, we limit our work to robots in terrestrial environments with

flat surfaces and we use only wheeled robots.

Although navigation is easy for humans, it is a difficult task for robots. Because they must

navigate in unstructured environments without damage and should use several subsystems

to solve the problem. Figure 1.1 shows an autonomous navigation system consisting of:

• Perception: Interprets the numbers sent by sensors to recognize objects, places, and
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events that occur in the environment, or in the robot. In this way, the robot can

prevent damage, know where it is, or know how the environment is.

• Map-building: Creates a numerical model of the environment around the robot. The
map allows the robot to make appropriate decisions and avoid damage.

• Location: Estimates the robot’s position relative to the map. This helps it plan and
execute movements, and build a correct map of the environment.

• Planning: Decides the movements necessary to reach the goal without colliding and
in minimum time or distance.

• Control: Ensures the planned movements are executed, despite unexpected disturb-
ances.

• Obstacle avoidance: Avoids crashing into moving objects, such as people, animals,
doors, furniture or other robots that are not on the map.

The contributions of this thesis are mainly related to map-building and planning because

we identified relevant research opportunities, as we explain in the next section.

1.1 Motivation of research

Autonomous navigation has been developing for almost fifty years and just in the last decade

has some useful results (see section 2.1). It is too large a problem to be solved with only

one study. Therefore, we decided to focus on two subproblems:

• Map-building problem. If we want to navigate through an environment, we need
a map for two reasons: (1) to localize the robot and the goal, and (2) to plan a path

between the robot’s position and the goal position. But sometimes there are no maps

of buildings, public spaces or cities that can be useful for navigation. Consequently,

the robot must create its own map. In unstructured environments, the map-building
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process requires knowing the robot’s position, and the robot’s position estimation re-

quires a map. So we need to locate the robot and make the map at the same time.

This is why the map-building problem is so interesting and also problematic: errors

in position and map estimation affect each other, producing inconsistent maps. The

effectiveness and efficiency of navigation depends on having a map without large errors.

Most map-building methods are based on the Gaussian assumption (i.e. estimation

errors are described by a Gaussian probability distribution). But this assumption is

incorrect because the real error distributions are not Gaussian. So we propose and

study the Ellipsoidal SLAM method1, which avoids the use of the Gaussian distribu-

tion. Besides, we note that other methods based on sets (i.e. estimation errors modeled

by sets) cannot solve large-scale mapping problems. Our method can.

• Planning in dynamic and unknown environments. In these types of environ-
ments, the problem of partial observability is important because planning has to make

certain assumptions about the environment that cannot be or has not been observed.

And these assumptions might be wrong. Even if we have a perfect mapping method,

the map might have errors relative to real environment. Why is this possible? The

reason is simple: environments are dynamic and all sensors have a limited range of ob-

servation. This type of problem is important to solve because it affects the optimality

of the path length and completeness of navigation task (i.e. to be able to reach the goal

when a solution exists). We present theorems of conditions sufficient to guarantee that

a navigation system can complete its task. We propose the first methods to recover

from false obstacles on the map in dynamic environments. And we propose a method

to navigate more efficiently in unknown environments.

1In this thesis we consider the terms "map building" and "SLAM" synonyms, where SLAM means Sim-

ultaneous Localization And Mapping



1.2 Structure of the thesis 5

1.2 Structure of the thesis

The thesis is organized as Figure 1.2 shows.

Chapter 2. We establish the state of the art of autonomous navigation (section 2.1),

the map-building problem (section 2.2), and the planning problem (section 2.3). The

first describes the big picture of autonomous robots, presenting the main achievements,

the potential applications and the main technical problems. The second summarizes the

different approaches to solve the map-building problem and shows why is important. The

third explains what the planning problem is, discusses the various methods of planning and

presents research work related to the problem of partial observability.

Chapter 3. We propose a novel map-building method based on ellipsoidal sets that

can solve large-scale problems. We present the method and analyze its convergence and

stability by a Lyapunov-like technique. We validate the Ellipsoidal SLAM with simulations

and experiments using the Victoria Park dataset and Koala mobile robot.

Chapter 4. We analyze the assumptions that a robot could make in unobserved parts

of the environment during navigation. We present the theorems of sufficient conditions to

ensure a navigation system is complete. For dynamic environments, we propose the first

methods to recover from false obstacles on the map. And for unknown environments, we

propose a method to navigate more efficiently in unknown environments compared with the

classical approach. We present Monte Carlo simulations to evaluate the performance of these

algorithms and discuss their results.

Chapter 6 (Appendices). We present the two navigation systems that were implemented

during the development of doctoral research. One of them was used in the experiments for

the Ellipsoidal SLAM.

1.3 Contributions

The main contributions of this thesis are the following:

• We propose a novel map-building method based on sets that can solve large-scale
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Conclusion
Chap. 5

Navigation in dynamic and 
unknown environments

Chap. 4

Ellipsiodal SLAM
Chap. 3

Introduction
Chap. 1

SLAM
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Motion Planning
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Autonomous Navigation
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State‐of‐the‐art 
Chap. 2

Appendices
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Figure 1.2: This is the general structure of the thesis.
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problems.

• We propose the first methods to recover from false obstacles and make the robot

continue searching for the goal in dynamic environments.

• We propose a method to navigate more efficiently in unknown environments.

1.4 Products

1.4.1 Publications

We produce the following papers for publication:

In journals:

• Erik Zamora, Wen Yu, "Recent Advances on Simultaneous Localization and Mapping
(SLAM) for Mobile Robots," IETE Technical Review, 2013. (impact factor 0.925)

• Erik Zamora, Alberto Soria, Wen Yu, "Ellipsoid SLAM: A Novel Set Membership

Method for Simultaneous Localization and Mapping," Autonomous Robots, Springer

(in revision).

• Erik Zamora, Wen Yu, "Novel Autonomous Navigation Algorithms in Dynamic and
Unknown Environments," Cybernetics and Systems (in revision).

• Erik Zamora, "Robots Autónomos: Navegación," Komputer Sapiens, SMIA, Enero
2015.

In conferences:

• Erik Zamora, Wen Yu, "Novel Autonomous Navigation Algorithms in Dynamic and
Unknown Environments," 2014 IEEE International Conference on Systems, Man, and

Cybernetics, San Diego, California, USA, October 5-8, 2014.
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• Erik Zamora, Wen Yu, "Mobile Robot Navigation in Dynamic and Unknown Envir-
onments," 2014 IEEE Multi-conference on Systems and Control, October 8-10, 2014,

Antibes, France.

• Erik Zamora, Wen Yu, "Ellipsoid SLAM: A Novel On-line Set Membership Method
for Simultaneous Localization and Mapping," 53rd IEEE Conference on Decision and

Control, Los Angeles, California, USA, December 15-17, 2014.

1.4.2 Autonomous navigation systems

During the research, we developed two autonomous navigation systems in order to put into

practice some of the results of the thesis. Here we briefly present these systems, and we

describe them in detail in the appendices of thesis.

1. A basic autonomous navigation system. At the beginning of the PhD program, it

was necessary to develop an autonomous navigation system for robot Koala; in order

to carry out experiments of the SLAM method proposed in this thesis. This robot

is available in the laboratory of the Department of Automatic Control. The navig-

ation system is comprised of four subsystems: localization, mapping, planning and

controller. The localization is done by odometry that integrates the angular displace-

ments of encoders. The mapping builds a 2-D occupancy grid map using odometry

and information from a laser. The planning is conducted by the method of dynamic

programming with a smoothing method for the generated path. The control is carried

out by a nonlinear controller which follows the smoothed path. The software was writ-

ten in Python and C/C++. This navigation system is very basic because it does not

use a SLAM technique to correct the odometry errors on map. Therefore, this system

cannot be used to navigate distances greater than 20 meters. However, it was useful

for our experiments. Figure 1.3 shows how the robot navigates through a door along

the planned path.

2. Navigation in unknown environments guided by emergency signs. As part
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of the PhD program, the author of this thesis participated in a research stay at the

University of Bristol in England led byWalterio Mayol-Cuevas. The aim of the research

stay was to develop a navigation system for a differential mobile robot (iRobot). The

task was to look for the emergency exit guided by the existing emergency signs on

the building. Figure 1.4 shows some examples of these emergency signs and the robot

moving to the exit. The robot uses a RGBD camera (Kinect) to detect emergency

signs and determine the direction that it should move. The same sensor provides

information on obstacles such as chairs, walls, tables, people, etc. It uses a SLAM

method (Gmapping method) to build a 2-D map as it moves; at the beginning the

robot does not know the environment. It uses a planning method (A* search) to find

the shortest path. This method was modified to integrate the information of emergency

signs. The planned path is executed by a P controller and a method of obstacle

avoidance (Smooth Nearness Diagram) was added. All software is written in Python

and C/C++ on ROS platform (Robot Operating System). The most interesting part

of this project was to implement the system of perception which must detect, recognize

and interpret the emergency signs to know how to move. Furthermore, it was necessary

to implement a system to prevent repeated detections which was coupled to the SLAM

method. A video showing the operation of this navigation system is online at

https://www.youtube.com/watch?v=RAj70AGsXls&feature=youtu.be??

1.4.3 Education of human resources

As part of teaching profession, the author of this thesis collaborated in the education and

graduation of 11 engineers at the UPIITA-IPN (Unidad Interdisciplinaria Profesional en

Ingeniería y Tecnologáas Avanzadas del Instituto Politecnico Nacional). Four terminal works

related to autonomous robotics were done (see Figure 1.5).

• a) Modelado y control de un cuadrirrotor para vuelo en entornos cerrados
implementando visión artificial (Modeling and control of a quadrotor flight in
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Figure 1.3: We show how the Koala robot can navigate through a door along the planned

path using a map that was previously built. The map was constructed while controlling the

robot manually.
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Figure 1.4: We show a snapshot of the robot reaching its goal: the emergency exit. We also

show the emergency signs in the building in the University of Bristol. They were used to

guide the robot to its goal.
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closed environments by implementing computer vision). They developed a system

that allows navigating a quadrotor along a corridor using only visual information from

a RGB camera. Anguiano Torres Iván Adrián, Garrido Reyes Miguel Daniel, Martínez

Loredo Jonathan Emmanuelle, UPIITA-IPN, 2013.

• b) Sistema de navegación evasor de obstáculos en un robot móvil (Navigation
systemwith an obstacles avoidance for a mobile robot). This project develops a reactive

navigation system, which allows driving a mobile robot from a starting point to any

point within the working area avoiding static obstacles along its path. Miguel Antonio

Lagunes Fortiz, UPIITA-IPN, 2014.

• c) Diseño, manufactura e implementación de un sistema de seguimiento

de objetos mediante visión artificial para un robot humanoide NAO (Design,

manufacture and implementation of an object tracking system using artificial vision for

a humanoid robot NAO). The terminal work aims to develop an embedded system for

controlling movement of a humanoid, being able to locate and track an object specific

color. Conde Rangel María Gisel, García Reséndiz Erick Gabriel, Serra Ramírez Jaime,

Trujillo Sánchez Juan Carlos, 2013.

• d) Implementación de visión artificial en un cuadrirrotor para el seguimiento
de objetivos (Implementation of artificial vision in quadrotor for tracking targets).

This project involves the development of control algorithms for the flight of a quadrotor,

taking into account the response of inertial sensors: accelerometer and gyroscope.

In addition, it implements computer vision algorithms to follow a specific target on

the ground. Hernández Espinosa Josué Israel, Montesinos Morales José Iván, Torres

Vázquez Benjamín, 2012.
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Figure 1.5: We show some snapshots of terminal projects and engineers that the author of

this thesis has instructed in UPIITA-IPN during the development of his PhD research (see

text for more details).
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Chapter 2

State of the art

The aim of this chapter is to show an overview of autonomous navigation, the map-building

problem, and the planning problem. This chapter is divided into three main sections. The

first describes the big picture of autonomous robots presenting the main achievements, the

potential applications, and the main technical problems. The second summarizes the dif-

ferent approaches to solve the map-building problem and show why it is important. The

third explains what the planning problem is, discusses the various methods of planning, and

presents research work related to the problem of partial observability.

2.1 Autonomous navigation

"The world requires practical dreamers who can, and will, put their dreams into

action." –Napoleon Hill

Why is it important to develop autonomous navigation? Basically, there are three kinds

of robots: operated, automatic, and autonomous. Operated robots are those that require

control by humans (e.g., teleoperated robots for surgery or army exploration). Automatic

robots do preprogrammed and repeated activities in controlled environments (e.g., robotic

arms in car production lines or line follower robots). In contrast, autonomous robots do

tasks in natural and unstructured environments and make their own decisions as a function
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of the given task goal (e.g., courier robots in hospitals and driverless cars in cities). The

tendency is to give robots more autonomy, which means robots do tasks with as little human

assistance as possible.

A basic task that robots must do is to navigate in natural and human environments. If

someday we wish to have robots that build our buildings and highways, clean our streets,

grow and harvest our food, it is crucial they are able to navigate in unstructured

environments. There have been incremental advancements in the last 15 years. In the

following three subsections, we will revise some breakthroughs, mention some of the applic-

ations for autonomous robots and describe what the main problems are, respectively.

2.1.1 Breakthroughs and companies

In 2004 and 2005, several vehicles navigated autonomously through the Mojave Desert,

travelling about 200 km, following a map of GPS coordinates and using a set of lasers and

cameras to avoid the obstacles on the route. The robotic vehicles were built by universities

and companies, and the driverless car challenge was organized by DARPA (Defense Advanced

Research Projects Agency in the USA). In 2007, there was another competition, but in an

urban environment, which is a harder challenge. The vehicles had to avoid crashing into

cars, bikes, and pavement; to execute driving skills such as lane changes, U-turns, parking,

and merging into moving traffic. The winners for the 2005 and 2007 challenges were Stanley

[1] from Stanford University and Boss [2] from Carnegie Mellon University; you can see these

vehicles in Figure 2.1.

Based on these results, Google Inc. has developed several autonomous cars that have

been tested in cities and highways, in Nevada and California, USA, where the government

already gives restricted driver license for autonomous cars. A disadvantage of Google cars

is its high cost because of the 3-D sensor (Velodyne costs about $75,000) and high-precision

GPS. Thus, the University of Oxford has launched the project RobotCar UK to replace this

expensive sensor with cheaper lasers and cameras, using the spatial-visual information to

localize the robot without GPS [3].
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Figure 2.1: Some autonomous cars are able to navigate in deserts, cities, and highways: (a)

Stanley, (b) Boss, (c) Google driverless car, (d) RobotCar UK.
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Humanoid robots (see Figure 2.2) will evolve toward autonomy, but currently they show

limited capabilities. Asimo has automatic skills, including jumping with only one foot,

running, climbing stairs, opening bottles, pouring liquids from one glass to another. However,

most activities are preprogrammed by humans and are not autonomous, so they cannot find

and execute the suitable motions to solve the task by themselves. Other humanoids like Atlas,

Justin, Reem, Charli or HRP-4C suffer from the same problem. But there are advancements

in motion planning, learning, and perception to give them more autonomy. Some examples

are the algorithms tested in PR2 [4] and iCub [5]; they can decide how to move their arms

to grasp bottles without hitting the table or other objects. Due to the nuclear disaster in

Fukushima, DARPA is organizing another competition, Darpa Robotics Challenge [6]. The

goal is to develop algorithms that make humanoids assist humans in natural and man-made

disasters. This challenge will bring new technologies to catapult forward development of

autonomous robots.

Several autonomous robots exist in Mexico: Justina [7], Golem [8], Markovito [9], Don-

axi [10] and Mex-One (see Figure 2.3). The first four can navigate autonomously indoors,

moving toward previously visited places and avoiding obstacles. They can do some tasks,

like recognizing objects, people, and voice; cleaning tables; grasping bottles; speaking some

preprogrammed sentences. These robots have competed in Robocup@home, which is a com-

petition of service robotics, where Golem won the prize for innovation in 2013. On the other

hand, Mex-One will be the first Mexican biped robot, but it is still in development. It

promises to be a great platform to test algorithms to transform it into an autonomous robot.

Besides, there are Mexican robots that compete in RoboCup@Soccer and RoboCup Rescue;

some of them do autonomous tasks, like play football or build a map inside a collapsed

building.

Several companies produce autonomous robots. In the United States, three companies

target infant industry (see Figure 2.4). Boston Dynamics has made a reputation with its

impressive robotic mules able to travel on rough terrain. Willow Garage produces PR2, which

has been tested if it can fold laundry or play billiards. But his most important contribution

is continuing the development of the operating system for robots ROS (Robot Operating
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Figure 2.2: We show some humanoid robots useful for researching motion planning, percep-

tion, and learning algorithms, with the objective of giving them autonomy.
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Figure 2.3: Mexican autonomous robots

System), whose license is free and supports a considerable number of commercial robots.

Rethink Robotics sells Baxter, a manufacturing robot that does not require a specialist to

code tasks since anyone can program it with a friendly graphical interface and moving robot

arms to indicate the task. Moreover, in Germany, BlueBotics produces and sells mobile

robots with autonomous navigation systems, guiding tourists in cities and museums. These

are some examples of how the robotics industry moves toward autonomy.

The industry for autonomous robots is almost nil in Mexico. This is a great opportunity

for investors and entrepreneurs since the market is virgin, waiting for someone to exploit

it. The company, called 3D Robotics, has done this; it was cofounded by a Mexican and

an American, and it produces and distributes unmanned aerial vehicles with a navigation

system based on GPS. The rest of the Mexican industry sells robots and accessories, gives

courses, and installs automatic robots for manufacturing.
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Figure 2.4: Companies of autonomous robots.

2.1.2 Applications

Autonomous robots catapult the productivity and quality of various human activities. Here

we will present some existing applications and imagine other possibilities.

• Package delivery. Imagine a robotic motorcycle or quadcopter that delivers pizza
to your front door. In the near future, companies will begin to send small packages

with fast food, bills, documents, books, or DVDs using autonomous robots. One

advantage is that the flying vehicles can take the sky, unlike human messengers. In

2013, Amazon announced that it is willing to test this idea, creating a new delivery

system to get packages into customers’ hands using drones [11]. The Matternet project

[12] proposes quadcopters forming a network to distribute food and medicine. There

are already robotic messengers carrying medicine and documents between departments

in hospitals [13] (see Figure 2.5).

• Cleaning. Cleanliness and order are important in any advanced civilization. But
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cleaning and maintaining order have always been heavy and monotonous activities.

Robots can perform these tasks for us at home and in public places. Take a look at

the current progress: iRoomba cleans the floors of homes [14], Lely Discovery keeps

the environment of cows hygienic at farms [15], and Ambrogio maintains lawn at the

desired height in your garden [16]. This is just the beginning.

• Agriculture. The machinery added in the 20th century has allowed modern agricul-
ture to increase its productivity and to free humans to do other activities that develop

civilization. The company John Deere estimates that 90% of the U.S. population in

1848 was involved in agriculture, and today it is about 0.9%, partly because of the

machinery for harvesting and planting. Why not automate it? The algorithms de-

veloped for autonomous navigation may allow the machinery to produce the same

with minimal human intervention and supervision for repairs. See these references: in

Australia [17][18] and Denmark [19], people are giving autonomy to agricultural ma-

chinery. In some years, we will see companies exploiting these opportunities; I wish

they are Mexican.

• Surveillance. Algorithms to perceive and model the environment might be used to
monitor human behavior. Imagine quadcopters looking for criminals on the streets and

reporting it to the nearest police officer. Imagine watchdog robots at home that detect

the entry of an unknown person or when a window breaks. The Japanese company

Secom has developed two autonomous robots for surveillance and promises to put them

on the market [20].

• Search and Rescue. In Mexico, one of the basic tasks of Plan DN-III-E is to search
and rescue in disasters. The Mexican army could use mobile robots to find people

trapped in dangerous places. With the information you collect, the robot can serve to

create a better bailout. Currently, most robots are teleoperated [21]. But giving them

the ability to navigate and search, a group of robots can cover the same area faster,

increasing the likelihood of rescuing people. Search and rescue have several challenges:

mobility on land with debris, enough power for long missions, identifying victims,
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Package Delivery

Surveillance

Agriculture

Cleaning

Figure 2.5: Package delivery: quadcopter and station to provide food and medicines to

rural areas; RobotCourier to transport substances and documents in hospitals. Clean-

ing: iRoomba autonomous vacuum cleaner; Ambrogio, autonomous mower; Lely Discovery,

cleaner for farms. Agriculture: autonomous agricultural machinery. Surveillance: Secom

company’s robots.
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and others. The RoboCupRescue competition aims to overcome these limitations (see

Figure 2.6). A team who took part in this competition, the Hector Team Darmstadt

[22], has developed robots with search and rescue skills, including map-building in not

planar floors, detecting victims, planning motion, semantic mapping, etc.

• Building. The construction industry can benefit from robotics as the manufacturing

industry has done. Robots would liberate humans from heavy labor, improving their

life quality. A city could build people’s homes faster and cheaper. Although construc-

tion robotics is emerging, there is some progress: space exploration robots carry metal

bars to form walls [23], quadcopters build cubic structures [24], and mobile robots with

mechanical arms build furniture [25].

• Transportation. Most goods you use were brought from distant places; this is pos-

sible by planes, cars, and boats which amplify human force. In the future, we will

see those vehicles moving with minimal human assistance, increasing productivity, ef-

ficiency, and safety (reducing the number of accidents). Cities will have autonomous

public transport (e.g., there was a demonstration of an autonomous minibus in the

Intelligent Vehicles Symposium 2012). Also, short-distance transportation can bene-

fit: Kiva company sells a robotic system that handles the inputs and outputs of a

warehouse [26].

• Guiding People. Since 1997, there have been robots that interact with visitors in
museums [27][28], explain the exhibits, and guide people. This technology can also

be used in guiding blind people or for advertising in malls, football stadiums, and

concerts. Imagine a sales robot that is appealing to the public and engages people to

offer them a product. Imagine flying robots that align to form shapes in the air while

they advertise a service.
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Figure 2.6: Search and Rescue: Japanese robot to retrieve people; maritime quadcopter

to monitor seas; robot to find people in collapsed buildings. Building: rovers stacking rods;

quadcopters building cubic structures; mobile robots building a small table. Transport-

ation: a minibus navigates autonomously; the Kika robot system that handles the inputs

and outputs of a warehouse. Guiding People: Rhino, one of the first robots that guides

visitors in a museum; a more current guide robot; robotic dog for blind people.
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2.1.3 Main problems

Each of the above applications has specific challenges, but they share autonomous navigation

as a problem. Even though navigation is easy for humans, it is a difficult task for robots.

Theymust navigate in unstructured environments, reaching the given target without damage.

To achieve this goal, the robot should solve different subproblems. Figure 2.7 shows a system

of autonomous navigation.

The body of the robot has the following:

• Sensors send pieces of information about the environment and the robot’s state (e.g.,
distance to the nearest object or robot speed).

• Actuators execute the motions that the computer commands (e.g., electric motors).
The robot’s mind is a set of algorithms executed by the computer:

• Perception: Interprets the numbers sent by the sensors to recognize objects, places,
and events that occur in the environment or in the robot. In this way, the robot can

prevent damage, know where it is, or know how the environment is.

• Map-building: Creates a numerical model of the environment around the robot. This
allows the robot to make appropriate decisions and avoid damage.

• Location: Estimates the robot’s position with respect to the map. This helps it plan
and execute movements, and build a correct map of the environment.

• Planning: Decides the movements necessary to reach the goal without colliding and
in minimum time or distance.

• Control: Ensures the planned movements are executed, despite unexpected disturb-
ances.

• Obstacle avoidance: Avoids crashing into moving objects, such as people, animals,
doors, furniture, or other robots that are not on the map.
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Figure 2.7: This illustrates the subsystems needed to solve the whole autonomous navigation

problem.
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Algorithms already exist for each of these tasks [29].

The problem of navigation in unstructured environments presents several challenges.

However, this thesis only focuses on two specific problems.

1. Map-building (SLAM, Simultaneous Localization and Mapping). The effectiveness and

efficiency of navigation depends on having a map with no errors. Most map-building

methods are based on the Gaussian assumption (i.e., estimation errors modeled by

a Gaussian probability distribution). But this assumption is incorrect because the

real error distributions are not Gaussian. So we propose and study a new method

that avoids the use of the Gaussian distribution, and errors are modeled by ellipsoidal

sets. Besides, none of the other methods based on sets has shown to be able to build

large-scale maps. Our method can.

2. Planning in dynamic and unknown environments. In these types of environments, the

problem of partial observability is important because planning has to make certain

assumptions about the environment that cannot be or has not been observed. And

these assumptions may be wrong. Even if we have a perfect mapping method, the map

might have errors relative to the real environment. This type of problem is important

to solve because it affects the optimality of the path length and the completeness of

the navigation task (i.e., to be able to reach the goal when a solution exists). We

present theorems of sufficient conditions to guarantee that a navigation system can

complete its task. We propose the first methods to recover from false obstacles on the

map in dynamic environments. And we propose a method to navigate more efficiently

in unknown environments.

In the next two sections, we present the state of the art of these two problems: map-

building and planning. And we give more details on these issues.

2.2 SLAM

"It is only by learning from mistakes that progress is made." –Sir James Dyson
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2.2.1 SLAM problem

The objective of simultaneous localization and mapping (SLAM) is to build a map and

to locate the robot in that map at the same time. We should clarify that for the SLAM

problem, it does not matter if the robot moves autonomously or is controlled by a human.

The important thing is to build the map and locate the robot correctly.

The most basic way to locate a robot is using odometry. For a terrestrial mobile robot,

odometry consists of integrating the displacements measured by encoders to estimate the

position and orientation of the robot. The problem is that odometer error accumulates as

the robot moves. Eventually, the error is so large that odometry no longer gives a good

estimate of the state of the robot, as shown in Figure 2.8. Then the robot must make

observations of some references in the environment to correct the odometer error, assuming

the references are static. When the robot returns to observe, these references can reduce

the accumulated error. The main work of the SLAM method is to correct the estimation of

the robot state and the map. On the other hand, the SLAM is a chicken-and-egg problem

because the robot needs a map to locate itself and the map needs the localization of the

robot to build a consistent map. Thus SLAM methods must be recursive. This is why

the SLAM problem is so difficult because errors in robot and map states affect each other,

producing inconsistent maps. In the following section, we will give an overview of several

SLAM methods.

2.2.2 SLAM solutions

In the last decade, many types of SLAM have been developed. They can be categorized by

different criteria, such as state estimation techniques, type of map, real-time performance, the

sensors, etc. However, we classify the techniques according to the type of problem they solve

into the following four categories: Feature-based SLAM, Pose-based SLAM, Appearance-

based SLAM, and Other SLAMs. In Figure 2.9, we compare these main SLAM paradigms.

Feature-based SLAM. Odometer error can be corrected by the use of landmarks in

the environment as references. Consider a mobile robot that moves through an environment,
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Map
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Robot state

Objective: Reduce errors

Figure 2.8: The goal of the SLAM method is to build a consistent map and locate the robot

during its journey. In general, SLAM methods integrate the observations of some references

in the environment with the odometry to reduce errors.
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Figure 2.9: We compare the main SLAM paradigms in terms of their capacity to solve some

problems and the type of map they build (+ bad, ++ good and +++ very good). Loop-

closure performance measures the ability to close the loop when the robot revisits the same

place. The wake-up robot problem, also called global localization, refers to a situation where

a robot is carried to an arbitrary location and put to operation; the robot must localize itself

without any prior knowledge. The kidnapped robot problem refers to a situation where a

robot in operation is carried to an arbitrary location; the robot must localize itself, avoiding

confusions.
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Figure 2.10: The robot simultaneously builds a map and localizes itself. At each time step

, the robot moves according to controls u−1 and takes some observations z = {z z }
at the pose x.

as represented in Figure 2.10. In the beginning, we can take the initial robot position as

zero. The robot must be able to detect some specific objects in the environments, which are

called landmarks. This robot must also be able to measure the distance between its position

x and landmark positions m in the environment and also measure the angle between the

robot-landmark line and some reference line. At each time step , the robot moves according

to controls u−1 and takes measurements z = {z z } at the state x.
There are three tasks shown in Figure 2.11 that any feature-based SLAM method must

do. (1) Landmark detection. The robot must recognize some specific objects in the envir-

onment; they are called landmarks. It is common to use a laser range finder or cameras

to recognize landmarks, such as corners, lines, trees, etc. (2) Data association. Detected

landmarks should be associated with the landmarks on the map. Because landmarks are not

distinguishable, the association may be wrong, causing large errors on the map. Besides, the

number of possible associations can grow exponentially over time; therefore, data association
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Figure 2.11: Any method of feature-based SLAM must do these tasks: detecting landmarks

on the environment, associating the detected landmarks with the landmarks on the map,

and improving the estimate of the robot’s position and the map.

is a difficult task. (3) State estimation. It takes observations and odometry to reduce errors.

The convergence, accuracy, and consistency of the state estimation are the most important

properties. In this thesis, we focus on state estimation task.

The major difficulties of any SLAM method are the following:

• High dimensionality. Since the map dimension always grows when the robot explores
the environment, the memory requirements and time processing of the state estim-

ation increase. Some submapping techniques can be used to solve it (metric-metric

approaches [52][53][54], topological-metric approaches [55][56][57]).

• Loop closure. When the robot revisits a past place, the accumulated odometry error
might be large. Then the data association and landmark detection must be effective

to correct the odometry. Place recognition techniques are used to cope with the loop

closure problem [71][78].

• Dynamics in environment. State estimation and data association can be confused by
the inconsistent measurements in the dynamic environment. There are some methods

that try to deal with these environments [36][85][86][87].
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Pose-based SLAM. It estimates only the robot’s state. It is easier than feature-based

SLAM because the landmark positions are not estimated. However, it must maintain the

robot path, and it uses the landmarks to extract metric constraints to compensate the

odometer error. Therefore, the high dimensionality limitation arises from the dimension

growing by robot states rather than by the landmark states. Landmark detection, data

association, loop closure, and dynamic environment still are relevant problems. Most pose-

based SLAMs employ a laser range finder and the laser scans that form the occupancy grid

maps of the environment (if the odometry is corrected, the grid map is right). Instead of

using the landmark detector, the laser scan transforms the data association problem as an

matching of laser scans for extracting the constraints. This problem is also called front-end

problem and is typically hard due to potential ambiguities or symmetries in the environment.

Path estimation can be performed by optimization techniques [33][62][63][64][65][66] [67][68],

information filters [34][69], and particle filters [70][35].

Appearance-based SLAM. It does not use metric information. The robot path is not

tracked in a metric sense; instead, it estimates a topological map of places. Topological maps

are useful for global motion planning, but not for obstacles avoidance. The configurations

of the landmarks of a given place can be used to recognize the place; visual images or

spatial information are also utilized to recognize the place. The metric estimation problem

is avoided, but data association is still an important problem to solve. Loop closure is

performed in the topological space. High dimensionality is translated into the number of

places in the topological map. It is very common that these appearance techniques are used

complementary to any metric SLAM method to detect loop closures [36]. Some methods

based on visual appearance are [71][72][73][74][75][76][77][78], and others based on spatial

appearance are [79][80].

Other SLAMs. There are several variants of the SLAM problem that cannot be in-

cluded in the above paradigms. Pedestrian SLAM employs light and cheap sensors and faces

the obstacle of human movements, which are different to robot behavior [37][81][82][83].

SLAM with enriched maps uses auxiliary information on the map [38][84], such as temper-

ature, terrain characteristics, and information form humans. Active SLAM derives a control
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law for robot navigation in order to efficiently achieve a certain desired accuracy of the robot

location and the map [39]. Multirobot SLAM uses many robots for large environments [40].

SLAM in dynamic environments [85][86][87] deals with moving objects and agents.

In this thesis, we are interested in the feature-based SLAM paradigm because it is the

original form of the SLAM problem. The SLAM method we are proposing in this thesis

belongs to this category. So we go into more detail about the methods to solve feature-based

SLAM problems.

There are two versions for feature-based SLAM [41][42]: (1) Full SLAM. It estimates the

current and the past states {1  −1 } in order to know the complete robot trajectory
and to estimate the landmark’s positions  = {12 } at each time step (this is a
smoothing problem). (2) Online SLAM. It estimates only the current robot state  and

the landmark’s positions  at each time step (this is a filtering problem). Our method

(Ellipsoidal SLAM) is an Online SLAM.

An important point is that there are two ways of error modeling: by probability distri-

butions or by sets that bound the error. Our method (Ellipsoidal SLAM) uses ellipsoidal

sets to model the error. In the following sections, we present the main approaches for these

categories and discuss some of their limitations.

Probabilistic approaches

In these methods, the odometer error, the sensors’ error, and the modeling error (for example,

linearization) are modeled by probability distributions. We will present an overview of the

main probabilistic methods used in the SLAM problem. In Figure 2.12, we show a general

comparison among them.

Kalman-based SLAM. Extended Kalman Filter SLAM (EKF-SLAM) is the first solu-

tion for the Online SLAM problem, and it is the most popular method. The complete

discussion can be found in [30]. Since the Gaussian noise assumption is not realistic and

causes fake landmarks on the map, EKF-SLAM requires additional techniques to manage the

map to eliminate the fake landmarks. The consistency and convergence of the EKF-SLAM

algorithm are studied in [43], and various techniques are reviewed to overcome the incon-
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Figure 2.12: We compare the probabilistic methods used for feature-based SLAM problem.

Note that all are assuming Gaussianity. Full SLAM estimates the complete trajectory of

robot and the landmark’s positions at each time step (this is a smoothing problem). Online

SLAM estimates only the current robot pose and the landmark’s positions m at each time

step (this is a filtering problem).
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sistency problem of EKF-SLAM in [44]. The biggest disadvantage of EKF-SLAM is that its

computing time is quadratic over the number of landmarks due to the update of the covari-

ance matrix. There are several ways to overcome this limitation: (1) limiting the number of

landmarks to be estimated [31], (2) updating only the part of currently detected landmarks

and postponing the complete update to a later time [45], and (3) making approximations in

the covariance update stage [46].

Information-based SLAM. Motivated by reducing the computing time of EKF-SLAM

in larger environments, the Extended Information Filter (EIF) was developed. The great

advantage of EIF over EKF is that the computing time can be reduced due to the sparseness

property of the information matrix. However, the recovery of the landmark positions and

the covariance associated with the landmarks in the vicinity of the robot are needed for data

association, map update, and robot localization. When the number of landmarks is small, it

can be obtained by the inverse of the information matrix, but the computational cost of the

inversion will be unacceptable with a large information matrix. Some methods that use the

information filter are: Sparse Extended Information Filter [47], Exactly Sparse Extended

Information Filter [48], and Decoupled SLAM [49].

Particles-based SLAM. Particle filter is a sequential Monte Carlo inference method

that approximates the exact probability distribution through a set of state samples. Its

advantage is that it can represent any multi-modal probability distribution. It does not need

Gaussian assumption. Its main drawback is that the sampling in a high-dimensional space is

computational inefficient. But if the problem estimation has "nice structure," we can reduce

the size of the space using the Rao-Blackwellized Particle Filter (RBPF), which marginalizes

out some of the random variables. The RBPF is used in conjunction with the Kalman filters

to estimate the positions of the landmarks (one Kalman filter for each landmark). Some

methods that use particle filter are: the FastSLAM algorithm [58] and its improved versions

(the UFastSLAM algorithm [59] and the Gaussian mixture probability hypothesis density

(PHD) filter [60]).

Graph-based SLAM. These methods use optimization techniques to transform the

SLAM problem into a quadratic programming problem. The historical development of this
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paradigm has been focused on pose-only approaches and using the landmark positions to

obtain constraints for the robot path. The objective function to optimize is obtained assum-

ing Gaussianity. Some methods are: GraphSLAM [32], Square Root SLAM [50], and Sliding

Window Filter [61]. Their main disadvantage is the high computational time they take to

solve the problem. So they are suitable to build maps off-line. They are used because they

are more accurate.

Set-membership approaches

Another way to model the error is by sets. The literature reports a few SLAM solutions

using sets.

Di Marco et al. [124] have developed an online algorithm. They obtain linear time

complexity () with respect to the number of landmarks  by state decomposition and

approximating the sets as aligned boxes. The correlation between robot states and landmark

positions is lost due to the decomposition state. These correlations are crucial to build a

consistent map, especially when the robot closes a loop [118]; this is why we think this

method is not able to solve large-scale SLAM problems. Our method (Ellipsoidal SLAM)

saves these correlations as Kalman filter does.

CuikSLAM [88] is a project based on interval analysis. They interpret the SLAM problem

as a set of kinematic equations that are solved by interval arithmetic. Unfortunately, this

work assumed that the association problem is solved and only present a simulation of a

simple example to validate the algorithm.

Jaulin [122][123] represents the uncertainty with intervals of real numbers. It translates

the range-only and full SLAM problems in terms of a constraint satisfaction problem. It uses

interval analysis and contraction techniques to find the minimal envelope of robot trajectory

and the minimal sets to enclose the landmarks. This method has some limitations. It lacks

the association among landmarks and observations. In [122], it requires a human operator

to make the association. The algorithms must work off-line due to the large computational

cost of contraction. Besides, their operation is sensitive to outliers, yielding empty sets

and stopping the estimation. These shortcomings mean it can not solve large-scale SLAM
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problems. In contrast, our method can deal with the association problem without a human

operator, and it has the potential to work online. And more importantly, we show that it is

able to build large-scale maps.

2.2.3 Conclusion

In this section, we gave an overview of the SLAM problem and its solutions. We showed that

the simplest way to model the error is with a Gaussian distribution. Most methods consider

Gaussianity because we only require two parameters: mean and variance. However, we know

that Gaussianity is not a realistic assumption, as we will show in the next chapter. In this

thesis, we are looking for a method that does not assume this. And we note that none of

the SLAM methods based on sets can solve large-scale problems (with high dimensionality

in the state vector). This thesis proposes a method based on ellipsoidal sets (Chapter 3).

The ellipsoid filter is similar to Kalman filter, and then we can extrapolate many techniques

of EKF SLAM to deal with large environments, data association, and map management.

2.3 Motion planning

"The definition of insanity is doing the same thing over and over again and

expecting different results." –Albert Einstein

2.3.1 Planning problem

Motion planning decides what and how to move. It has the purpose of generating a trajectory

(path) in state space to reach the goal, given an environment model (map), the current state

of the robot, and a goal state (see Figure 2.13). It must avoid the obstacles in the environment

and must take into account the kinematic and dynamic constraints of the robot and its size.

Motion planning is a difficult task because the algorithms should search for a solution on a

continuous and high-dimensional state space. They must discretize the state space to make

decisions as soon as possible.
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Figure 2.13: The motion planning method must generate a state trajectory (blue line),

avoiding damage to the robot (red triangle) and reaching the goal state (G).
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The motion planning problem can be stated as follows: given an environment model (an

occupancy grid map, in our case), an initial state x , and a goal state x, the planning

algorithm must calculate automatically a sequence of states x1 = x x2 x = x, which

conforms to a free-collision trajectory, with minimal length and enough smooth, and satisfies

the kinematic and dynamic constraints of the robot.

2.3.2 Planning approaches

In general, there are two kinds of planners: Graph Search, where the trajectory is searching

in a graph of nodes that discretely represent the state space of the robot; and Controllers,

where instead of obtaining a path, they determine the control policy for every location in the

state space. We briefly review the most important algorithms for each category. A detailed

explanation about the following algorithms can be found in [99][29].

Graph Search algorithms discretize the state space by creating a graph [141][142][143]

with nodes that represent robot states and edges that represent the robot actions. The

graph formation can be too simple, like dividing the physical space into a grid [144], or more

complicated, like randomly sampling the state space [145][146]. The most common Graph

Search algorithms are the following:

• Breadth-First Search [100]. The nodes are explored in order of proximity. Proximity
is defined as the shortest number of edge transitions. The generated path could be

the minimum-cost path (i.e., it is the optimal path) if the cost of edges is a non-

decreasing function of the depth of the node. Its large disadvantage is that the memory

requirement is bigger as the depth of the graph increases.

• Depth-First Search [100]. In contrast to the previous algorithm, this explores each node
up to the deepest level of the graph. The advantage is that its memory requirement is

less than Breadth-First Search because it stores only a single path during execution.

However, this search does not guarantee finding the optimal solution.

• A* search [101][102]. It is an improvement of Dijkstra’s algorithm [103], adding a



42 State of the art

heuristic function that encodes knowledge about the cost for reaching the goal. The

optimal solution is guaranteed, if the heuristic is always an underestimated the cost.

This heuristic reduces the number of node explorations with respect to Breadth- and

Depth-First. Its main drawback is the high memory requirement because it keeps all

generated nodes in memory. Some ways to face this difficulty is applying an Iterat-

ive Deepening strategy (IDA*) [100], Recursive Best-First Search (RBFS) [104], or

Memory Bounded (MA* or simplified MA*) [105].

• D* algorithm [106](or D*Lite [107]). They are incremental replanning versions of A*,

where the algorithm reuses the previous search efforts, instead of generating a new

solution from scratch. Search time may decrease by one or two orders of magnitude.

Replanning is important in dynamic environments or when the map is corrupted by

noise or when the environment is unknown.

• Anytime planners A*[108] or D*[109]. The anytime planners are suitable when the
planning time is limited. They find a feasible solution quickly (a suboptimal solution)

and then continue to work on improving it until time runs out.

• Distance-propagating dynamic system [110][111]. Each node stores a current estimate
of the distance to the nearest target and the neighbor node from which this distance

was determined. The update of the distance estimate at each node is done using only

the information gathered from the node’s neighbors. The path is determined from the

information at the robot’s current location. This algorithm can deal with dynamic

obstacles or dynamic goals.

• Higher geometry maze routing algorithm [112]. This algorithm is inspired by Lee’s

routing algorithm [113] in the grid plane. It can deal with any shape of robot to avoid

obstacles.

• Sampling-based planners. All previous search algorithms are deterministic. In contrast,
sampling-based planners are stochastic to solve complex high-dimensional motion prob-

lems for fly vehicles, humanoids, or robot manipulators in cluttered environments or



2.3 Motion planning 43

narrow passages. Some examples are Probabilistic Roadmap Planner [145], Expansive-

Spaces Tree Planner [114], and Rapidly Exploring Random Trees (RRTs) [115].

The most important Controllers are the following:

• Potential field planning [93]. It is not a formal controller, but its output is a control
policy of robot direction. It creates a gradient (a virtual force) across the map that

directs the robot to the goal. This gradient is calculated by a function that continuously

represents the occupied and free space of the map. The goal position is represented by

the minimum of the function (attractive force), and obstacles are related to high values

of the function (repulsive forces). Its main drawback is that the generated function

can have local minimums depending on the shape of the obstacles (e.g., if the obstacles

are concave, the robot could oscillate). To overcome this limitation, we can use the

harmonic potential field method [94], which numerically solves a Laplace equation.

• Dynamic programming [96]. It is a numerical method to solve optimal control problems
based on the principle of optimality developed by R. E. Bellman [95]. This method is

used to generate control policy over the free space of the map. The main disadvantage

is its high computational cost.

• Value Iteration [97]. It is a Markov decision process to determine a control policy,
considering the uncertainty of robot actions. Value iteration recursively calculates

the utility of each action relative to a payoff function. Its drawback is also its high

computational cost.

• Model Predictive Control (MPC). It uses a reference model to predict the dynamic
behavior of the robot in next time step, and using an optimization technique, it de-

termines the best action controls. Tahirovic et al. [98] have studied the use of MPC

with passivity-based control and a potential field representation of the environment to

propose a navigation planner.

Planning is performed by A* search method in this thesis because we consider that the

mobile robot only moves in a plane, to simplify the problem.
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The effect of partial observability of environment on planning

In this thesis, we are interested in studying the effect of partial observability of the environ-

ment on planning. Planning requires making some assumptions about the environment that

cannot be or has not been observed to generate paths in these regions in order to reach its

goal. The problem is that these assumptions about the environment may be wrong, and can

cause the planning to make bad decisions. This problem is more important when environ-

ments are dynamic or unknown because there is no way to guarantee that the map and the

environment are the same. Most navigation systems reported in literature [147][78][148][142]

assumes to know the environment without errors or changes. Or when the environment is

previously unknown, it assumes the environment is free of obstacles [148][142][149]. There

have been few studies on these assumptions even though they are fundamental for the nav-

igation problem.

The assumption of free obstacles is studied in [153][150]. The aim of the authors is to

analyze how suboptimal the path length is when the environment is initially unknown, focus-

ing on the worst path length obtained by three planning methods Greedy Mappingg (GM),

Dynamic A* (D*), and Chronological Backtracking (CBack). For the first two methods, the

authors derived upper (| |32) and lower Ω( log| |
log log| | | |) bounds on the worst-case path

length as a function of the number  of vertices of the graph. And the same authors showed

that GM and D* can present shorter path lengths than CBack for an average-case analysis.

They assume that the known area of the map is identical to the environment, which is not

true, especially when the environment is dynamic. In this thesis, we study what could hap-

pen in this case, showing that it is necessary to develop algorithms to recover from map

errors. This problem has been ignored systematically in literature, with the thinking that

the map is always equal to the environment.

2.3.3 Conclusion

In this section, we gave an overview of the planning problem and its solutions. Besides,

we showed the few papers that have addressed the problem of partial observability of the
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environment and its effects on planning. Inspired by this situation, this thesis studies how

this partial observability affects navigation (Chapter 4), given formal definitions for the

autonomous navigation problem. We present theorems of sufficient conditions to ensure a

navigation system is complete. We propose the first methods to recover from false obstacles

on the map in dynamic environments. And we propose a method to navigate more efficiently

in unknown environments.
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Chapter 3

Ellipsoidal SLAM

"I have not failed. I’ve just found 10,000 ways that won’t work." –Edison

3.1 Introduction

Robotics science aims to build autonomous robots. One part of the problem consists of

giving them autonomy for navigation. This implies, among other things, robots must build

an environment model (i.e., a map). This problem is known as Simultaneous Localization

and Mapping (SLAM) [118]: the robot must estimate the position of some landmarks in the

environment and use them to estimate its state, and vice versa, use its state to estimate the

landmark positions. Thus SLAM solutions are recursive.

In the last 15 years, many types of SLAM methods have been developed. They can

be categorized as feature-based SLAM [47], pose-based SLAM [33], and appearance-based

SLAM [36]. For a more complete revision of categories and techniques, we invite the reader

to consult our review [119]. In this chapter, we focus on the feature-based SLAM problem.

There are some uncertainties in determining the robot’s position and the landmarks’

positions due to sensor and model errors. To compensate these errors, some techniques are

used to estimate the states. Robotics community has focused on the probabilistic methods.

The extended Kalman filter (EKF) is the most popular method [118]. It represents the robot
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and environment states with Gaussian probability distributions. There have been other

estimation techniques applied for SLAM, such as extended information filter (EIF) [47][49],

particle filters [58][60], and optimization smoothers [51][61]. The fundamental critique

of probabilistic methods is that the real probability distributions of the state

are usually unknown. To facing this problem, it is commonly assumed that probability

distributions are Gaussian. This is assumed by the Kalman, and the information filters, and

the optimization smoothers. Even the particle filter [58] uses Gaussian assumption in sample

motion models and landmark positions. As we will show, the assumption is wrong because

sensor and model errors are no Gaussian in real world for SLAM problem.

In contrast, we can leave out the need to know probability distributions, if we represent

sensor and model errors by sets. Set membership techniques are a helpful tool to solve

the state estimation of dynamic systems with bounded disturbances [120]. There are two

common methods: polytopes, and ellipsoids.

The polytope-set method has been applied for localization problem [121] and for SLAM

problem [122][123][124]. In [122] and [123], the interval analysis, the contraction technique

and the polytope sets are used, finding the minimal envelope of robot trajectory. The

algorithms can only work off-line due to computational cost of the contraction. In [124], an

online algorithm with polytope sets is developed. However, the correlations between robot

and landmark positions are lost due to the decomposition simplification. These correlations

are crucial to build a consistent map, especially when the robot closes a loop [118]. This

algorithm is not suitable for large-scale SLAM problems.

In 1970s, the ellipsoid method was applied for state estimation with bounded noise

[125][126][127]. The results caused great excitement, and stimulated many technical pa-

pers. [128] obtains confidence ellipsoids which are valid for a finite number of data points.

[129] presents an ellipsoid propagation such that the new ellipsoid satisfies an affine relation

with another ellipsoid. In [130], the ellipsoid algorithm is used as an optimization tech-

nique that takes into account the constraints on cluster coefficients. [131] describes several

methods that can be used to derive an appropriate uncertainty ellipsoid for array response.

[132] concerns asymptotic behavior of the ellipsoid estimation. Even though all of these



3.2 Ellipsoidal SLAM 49

developments, the ellipsoidal method for SLAM is still not published from the best of our

knowledge.

The main advantage of ellipsoid-set over polytope-set is the ellipsoid-set needs fewer

information because sets can be described by matrices, like covariance matrix in the Kalman

filter, but with no Gaussianity assumption. So we will show that the ellipsoid filter can

solve large-scale SLAM problems without Gaussian assumption; this is our main

contribution in this chapter. The main obstacle of this application is the ellipsoid filter is

more complex than the Kalman filter; and it is difficult to analyze its convergence property.

In this chapter, we use ellipsoid algorithm for solving SLAM problem. The proposed

Ellipsoidal SLAM has advantages in certain noise conditions, online realization, and large-

scale problems. Furthermore, its performance is similar to EKF SLAM with no Gaussian

assumption, which means we have more realistic error modeling. By bounded ellipsoid

technique, we analyze the convergence and stability of the novel algorithm. Simulation and

experimental results show that the Ellipsoidal SLAM is effective for on-line and large-scale

problems, such as Victoria Park dataset. In this chapter, we modify the ellipsoid algorithm

for SLAM in Section 3.2. We analyze convergence and stability of state estimation with the

bounding ellipsoid algorithm by a Lyapunov-like technique [133] in Section 3.3. We validate

the Ellipsoidal SLAM with a simulation test, Victoria Park dataset and Koala mobile robot

in Section 3.4. Finally, we give our conclusions in Section 3.5.

3.2 Ellipsoidal SLAM

The main motivation to use the Ellipsoidal SLAM is that the uncertainty in SLAM problem

does not satisfy Gaussian distribution. The odometry error of the mobile robot Koala [138]

are shown in Figure 3.1. The position and angle comes from the encoders of the robot.

Here (a) shows the marginal distributions of odometry error for (  ). There are great

differences between the real distributions (blue lines) and Gaussian distributions (red lines);

it is clear that Gaussianity is false. However, if we bound the error distribution by an ellipsoid

(without Gaussianity) as you see Figure 3.1-(b), this assumption is more realistic because



50 Ellipsoidal SLAM

real errors have finite variability.

3.2.1 Ellipsoid filter for SLAM

Consider a mobile robot moving through an environment at time  the state vector of robot

is defined as x = (  ); here ( ) describes location, and  is the orientation.

The control vector is u The vector x

 =

¡
m1

m
2
 m




¢
describes the location of the

landmarks;m
 = (


 


)

 is the location of the th landmark, whose true location is assumed

static. The state x of a SLAM system is composed into two parts: the states of the robot

x and the states of the landmarks x

 

The state equation of SLAM is

x+1 =

µ
x+1
x+1

¶
=

µ
f(x



u) +w

x

¶
= F(xu) + [w 0]

 (3.1)

where f() is the vehicle kinematics, w is the motion disturbances, u is the control vector.

Since landmark positions x is not affected by the motion disturbances, we use the vector

[w 0]
 to indicate this.

We define z as the observation between the robot and landmark locations. The obser-

vation model for the th landmark is

z = h(x


m

) + v


 (3.2)

where h() depends on the geometry of the observation; the vector v is the observation error;

w and v

 are not assumed to be zero mean Gaussian noises.

We use the ellipsoid method to estimate the robot state x and the landmark x

  The

following definitions and assumptions are used.

Definition 3.1 A real −dimensional ellipsoid set, centered on ∗ can be described as

 (x∗P) =
n
x ∈ < | (x− x∗) P−1 (x− x∗) ≤ 1

o
where P ∈ <× is a positive-definite symmetric matrix. The volume of  (x∗P) is defined

as in [127] and [129],

 ( (x∗P)) =
p
det (P) (3.3)
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Figure 3.1: (a) Gaussianity is false for odometer error of a differential robot. Blue lines

are marginal histograms of real odometer error. Red lines represent the maximum-likelihood

Gaussian distributions adjusting to data. (b) The odometer error is bounded by an ellipsoid.

A better assumption is to consider that the error is bounded and can follow any probabilistic

distribution.
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Figure 3.2: An ellipsoid showing its eigenvectors.

where  is the constant represents the volume of the unit ball in <

The orientation (direction of axis) of the ellipsoid  is determined by the eigenvectors

[u1 · · ·u] of P, the lengths of the semimajor axes of  are determined by the eigenvalues

[1 · · ·]of P A two dimensional ellipsoid is shown in Figure 3.2.

Definition 3.2 The ellipsoid intersection of two ellipsoid sets  (x1P1) and  (x2P2)

is another ellipsoid set [126], defined as 

 ∩  =  () = { ∈  |  (x− x1) P−11 (x− x1) + 

+ (1− ) (x− x2) P−12 (x− x2) ≤ 1}
where 0 ≤  ≤ 1 P1 and P2 are positive definite symmetric matrices, ∩ defines as the
ellipsoid intersection.

In general, the intersection of the two ellipsoid sets  ∩  is not an ellipsoid set. The

definition guarantees the ellipsoid set  contains the intersection; Figure 3.3 shows this idea.
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Figure 3.3: The intersection of two ellipsoid sets is not an ellipsoid set, but we can find an

ellipsoid set that it can enclose it.

Many possible values of  can be used, but there is a minimal volume ellipsoid corresponding

to ∗, called the optimal bounding ellipsoid (OBE) (see [129] and [126]). In this work, we

will not try to find ∗, but we will propose an algorithm such that the volume of the new

ellipsoid intersection will not increase.

Linearizing (3.1) about the estimated state x̂ yields

x+1 = F(xu) |x=x̂ +∇F· (x − x̂) +1
£
(x − x̂)2

¤
+ [w 0]

 (3.4)

where ∇F =
F
x
|x=x̂  1 [(x − x̂)2] is the linearization remainder. Note that the tra-

ditional EKF considers w as a zero mean uncorrelated Gaussian noise. The EKF method

also ignores the linearization error term 1 [(x − x̂)2].
Similarly, we linearize the observation equation

z = h(x) |x=x̂ +∇h· (x − x̂) +2
£
(x − x̂)2

¤
+ v (3.5)
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where ∇h = h
x
|x=x̂ 

Using the ellipsoid definition for the state estimation, we define the state estimation error

ellipsoid  as

 =
©
x | x̃P−1 x̃ ≤ 1

ª
(3.6)

where P = P

  0 x̃ = x − x̂.

In this chapter, we use the following two assumptions.

A1 It is assumed that [1 [(x − x̂)2] +w] and [2(x − x̂)2 + v] belong to ellipsoid
sets 1 and 

1 =
n
x |

°°1 [(x − x̂)2] + [w 0]

°°2 ≤ 1

o
 =

n
x | k2 [(x − x̂)2] + vk2 ≤ 

o (3.7)

where 1 and  are positive constants.

A2 It is assumed that the initial estimation errors are inside an ellipsoid 1

1 =
©
x1 | x̃1P−11 x̃1 ≤ 1

ª
(3.8)

where P1 = P

1  0 x̃1 = x1 − x̂1.

In this chapter, we discuss open-loop estimation. We assume that all states in the models

(3.4) and (3.5) are bounded. So Assumption A1 is satisfied. Assumption A2 requires the

initial states to be bounded. Obviously, this assumption is established.

3.2.2 Recursive algorithm

Similar to other SLAM methods, the Ellipsoidal SLAM also has two-step recursive form.

The following algorithms are based on our previous work in [133].

Prediction step. Given the past state x̂|, the past matrix P|, and the past control

u, the states of the robot and the landmarks are calculated by

x̂+1| = F(x̂|u)

P+1| = ∇F
P|
1−∇F


 +

11

I

(3.9)

where 1 is a positive constant which is selected such that 1  1 and 11  1 1 is defined

in (3.7). We use the free parameter  to adjust the size of ellipsoid P+1|. Here 1 and 1
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are initial values. In the correction step,  will be updated.  are previous defined, they

can be constants as  = , see (3.7).

Correction step. Given predicted states x̂+1|, predicted matrix P+1|, and current

observations z, the states of the robot and landmarks are calculated by

 =


1+∇h

P+1|∇h

(1− )P+1|+1 = P+1| − 

(1−)+∇hP+1|∇h
P+1|∇h∇hP+1|

 =  − (x̂+1|)

x̂+1|+1 = x̂+1| +


P+1|+1∇h

(3.10)

where 0    1, 0    1 −   1 and   1  represents th landmark, 

represents th component of the observation z,  is time. So at each time  the landmark

 has  observations. ∇h is the gradient of function h() for component .

3.2.3 Convergence property of the Ellipsoidal SLAM

The problem of state estimation (3.10) is to find a minimum set of  which satisfies (3.6)

and (3.7). From Definition 2 we known the ellipsoid intersection  and  satisfies

(1− ) x̃

+1|P

−1
+1|x̃+1| +





¡
[2

¡
x̃2+1|

¢
] + 2

¢2 ≤ 1 (3.11)

where x̃+1| = x − x̂+1|.
Next theorem shows that the recursive algorithms (3.9) and (3.10) make new ellipsoid

+1 as a bounding ellipsoid set, if  is a bounding ellipsoid set. This means if initial state

estimation error 1 is an ellipsoid set, then all state estimation errors  are ellipsoid sets.

Theorem 3.1 If  in (3.6) is an ellipsoid set, we use (3.10) to update P and x̂ with initial

condition (3.8), then +1 is also an ellipsoid set,

+1 =
n
x+1 | x̃+1|+1P−1+1|+1x̃+1|+1 ≤ 1

o
(3.12)

and the volume of the ellipsoid set  converges to the volume of the uncertainty ellipsoid

,

lim
→∞

[ ()−  ()] = 0 (3.13)
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Proof. The first part of the proof shows how the updating law (3.10) can assure +1 to

be an ellipsoid set (3.12). Since is assumed to be an ellipsoid set, from (3.6), x̃

P

−1
 x̃ ≤ 1.

In order to verify x̃+1|+1P
−1
+1|+1x̃+1|+1 ≤ 1 we should calculate x̃+1|+1 and P−1+1|+1

using (3.10)

x̃+1|+1 = x+1 − x̂+1| − 

P+1|+1∇h

= x̃+1| − 

P+1|+1∇h

(3.14)

We apply the matrix inversion lemma [140] to calculate P−1
+1|+1 in the following way,³

−1 −−1
¡
−1 + −1

¢−1
−1

´−1
= + (3.15)

Re-writing the equation (3.10),

P−1
+1|+1
1− 

= [P+1|−P+1|

µ
∇h



¶
× 1

(1− ) +∇hP+1|
³
∇h 

´∇hP+1|]
−1

(3.16)

We take −1 = P+1|,  = ∇h 
, −1 = 1−  and  = ∇h, then it gives:

P−1
+1|+1 = (1− )P

−1
+1| +




∇h∇h (3.17)

Substitute x̃+1|+1 (3.14) into +1

x̃+1|+1P
−1
+1|+1x̃+1|+1

=
h
x̃+1| − 


P+1|+1∇h

i
P−1
+1|+1

h
x̃+1| − 


P+1|+1∇h

i
= x̃+1|P

−1
+1|+1x̃+1| − 2

x̃+1|∇h +
2
2
∇hP+1|+1∇h2

(3.18)

Substitute P−1
+1|+1 (3.17) into +1

x̃+1|+1P
−1
+1|+1x̃+1|+1 = (1− ) x̃


+1|P

−1
+1|x̃+1| +



x̃+1|∇h∇hx̃+1|

− 2

x̃+1|∇h +

2
2
∇hP+1|+1∇h2

(3.19)
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By the intersection property (3.11),

(1− )

 ≤ 1−





°°° − (x̂+1|)
°°°2 (3.20)

Now we combine (3.18) and (3.19),

x̃+1|+1P
−1
+1|+1x̃+1|+1 ≤ 1− 


[
°°° − (x̂+1|)

°°°2 
− x̃+1|∇h∇hx̃+1| + 2x̃+1|∇h] + 

+
2
2
∇hP+1|+1∇h2

(3.21)

We use x̃+1| = x+1 − x̂+1|, and  =  − (x̂+1|), the second term of the above

equation can be calculated as°°° − (x̂+1|)
°°°2 − x̃+1|∇h∇hx̃+1| + 2x̃+1|∇h =

=
¡

¢2 − 2x̂+1|∇h + x̂+1|∇h∇hx̂+1|

=
¡
 −∇hx̂+1|

¢2 (3.22)

Substitute (3.22) and  (3.10) into (3.21)

x̃+1|+1P
−1
+1|+1x̃+1|+1

≤ 1− 


³
1− 


∇hP+1|+1∇h

´
2

≤ 1− 


³
1− 

∇h

P+1|+1∇h

1+∇h

P+1|∇h

´
2

= 1− 


µ
1+∇h

(P+1|−P+1|+1)∇h
1+∇h


P+1|∇h

¶
2

(3.23)

In order to prove x̃+1|+1P
−1
+1|+1x̃+1|+1 ≤ 1 we need

¡
P+1| − P+1|+1

¢
is positive

definite. Re-order the terms in (3.10), we obtain

P+1|+1 −P+1| =


1− [
³
1− 1−



´
P+1| − 

(1−)+∇hP+1|∇h
× 

×P+1|∇h
¡
P+1|∇h

¢
]

Because   1 and 0    1 1 − 1−


 0,


(1−)+∇hP+1|∇h
 0 , and

the matrices P+1| and P+1|∇h
¡
P+1|∇h

¢
are positive definite, then P+1|+1−

P+1| is negative definite,

∇h
¡
P+1| − P+1|+1

¢∇h ≥ 0 (3.24)
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Therefore,

x̃+1|+1P
−1
+1|+1x̃+1|+1 ≤ 1−





Ã
1

1 +∇hP+1|∇h

!
2 ≤ 1 (3.25)

+1 is an ellipsoid set. The ellipsoid intersection of  in (3.6) and  in (3.7) is (3.11),

which is also ellipsoid. We defined this ellipsoid as

Π =
n
x̃+1| | x̃+1|Σ−1x̃2+1| ≤ 1

o
Π = {x̃+1| | (1− −1) x̃+1|P

−1
+1|x̃+1| + −1 ≤ 1}

(3.26)

where Σ is a positive definite matrix. Although we cannot assure that the center of the the

ellipsoid intersection Π is also on x since the centers of  in (3.6) and 1 in (3.7) are x

we can guarantee x is inside of Π. Now we discuss the relation between  and ΠSince

Π+1 =
©
x̃+1|+1 | (1− )+1 + +1 ≤ 1

ª
(3.27)

From (3.10) we know

det
£
(1− )P+1|+1

¤ ≤ det ¡P+1|
¢

By definition (3.3), the volume of the part of +1 which is inside the ellipsoid intersection

Π+1 in (3.27), is smaller than the volume of  see Figure 3.4. Usually the volume of 

is bigger than the volume of  This behavior of (3.27) can be explained in two directions:

1. If  → 0 the main part of Π+1 is +1 In order to assure the main part of the

intersection of +1 and +1 belongs to +1 and the volume of this part is smaller

than the volume of  the volume of +1 should be smaller than the volume of 

see Figure 3.4-(a). So the volume of  becomes smaller with (3.10) in this case.

2. If  → 1 the main part of Π+1 is +1 In order to assure the main part of the

intersection of  and  belongs to the smaller set   must moves to  see

Figure 3.4.

With the above two change directions and 0    1 (3.13) is established.

(3.13) means the estimation error of the Ellipsoidal SLAM proposed is not bigger than

the upper bounds of the unknown uncertainties defined in (3.7).
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Figure 3.4: The ellipsoid intersections with the ellipsoid SLAM algorithm.
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Remark 3.1 If P+1|+1 does not change as P+1|+1 = P, it becomes gradient descent

algorithm. The time varying gain 

P+1|+1 in the ellipsoid algorithm may speed up the

estimation process.

The ellipsoid algorithm (3.10) has similar structure to the extended Kalman filter al-

gorithm [118][47]

x̂+1|+1 = x̂+1| +P+1|∇h
¡
2 +∇hP+1|∇h

¢−1
e

P+1|+1 = P+1| − 2
2
P+1|∇h

¡
2 +∇hP+1|∇h

¢−1∇hP+1| +1
(3.28)

where 1 and 2 are the covariances of the process noise. When 1 = 0, it becomes the least

square algorithm [140]. If 1 = 0 and 2 +∇hP+1|∇h = 2
2

 in (3.28) is the ellipsoid

algorithm (3.10). But there is a large difference, the ellipsoid algorithm does not require the

disturbance is zero mean un-correlated Gaussian noises.

3.2.4 Algorithm of the Ellipsoidal SLAM

Every observation must be associated to a landmark on the map or be considered a new

landmark. Due to the similarity between Kalman and ellipsoidal approaches, we can use the

Mahalanobis distance as association criteria. The individual compatibility nearest neighbor

is applied to calculate every distance between the observation and the predicted observations

of all landmarks on the map [134]. The landmark closer to observation is associated if the

distance is below to a threshold and the association is unique. If all landmarks are far from

the observation, then it is considered a new landmark. (In Algorithm 4.1, a contains the

results of associations).

At the beginning of map-building, the vector x̂ just contains the robot’s state with no

landmarks. As exploration increases, the robot detects landmarks and decides if it should

add this new landmark for the state estimation.

If the new landmark is far from the other landmarks on the map, then the landmark

is added, otherwise, it is ignored. We define a critical distance min to limit the maximal

landmark density. This can reduce false positives in data association and avoid overload

with the useless landmarks.
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If the distance between the new landmark x = [+1 +1] and the others is bigger

than min the landmark should be added into x. Given the current state x

 and observation

z, we can calculate the new landmark position with respect to the absolute framework by

x = (x z) (3.29)

We can define the transformation in terms of the complete state

x+1 =

µ
x

(x z)

¶
= T(x z) (3.30)

The nonlinear transformation function T also applies to the uncertainty set P. Since

a linear transformation of an ellipsoidal set is always ellipsoid [126], we approximate the

transformation T by a linearization. Thus P in absolute framework can be expressed as

P =

⎛⎜⎜⎝
P
 P

 0

(P
 )


P
 0

0 0 V

⎞⎟⎟⎠ (3.31)

Similar to EKF SLAM [135],

P = ∇TP∇T

where ∇T =

⎛⎜⎜⎝
I 0 0

0 I 0

∇g 0 ∇g

⎞⎟⎟⎠  ∇g := g

x


(x z)∇g := g

z
(x z)

[31] shows that it is possible to prune landmarks from estimation process without making

it inconsistent in EKF SLAM. We exploit the same property in Ellipsoidal SLAM. Every

 times, the landmarks with less number of corrections are removed from state vector and

ellipsoid matrix. The vector c (see algorithm 3.1) saves this number for each landmark

since its initialization.

The final Ellipsoidal SLAM algorithm can be described as

Algorithm 3.1 Ellipsoidal SLAM

x̂1 = 0P1|1 = I = 1 À 1
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u1 =get_controls

z1 =get_observations;  = 1

[x̂1P1] =add_features(x̂1P1 z1) (3.31)

while not_stop

if controls_are_available£
x̂+1|P+1|

¤
=prediction

¡
x̂|P|u

¢
(3.9)

u =get_controls

end if

if observations_are_available

z =get_observations

a =data_association
¡
z x̂+1|P+1|

¢£
x̂+1|+1P+1|+1 c

¤
=correction

¡
x̂+1|P+1| z

¢
(3.10)£

x̂+1|+1P+1|+1
¤

=add_features
¡
x̂+1|+1P+1|+1 z

¢
(3.31)

 =  + 1

end if

if mod () = 0£
x̂+1|+1P+1|+1

¤
=pruning

¡
x̂+1|+1P+1|+1 ca

¢
end if

 =  + 1

end while

3.3 Stability analysis

Theorem 2.1 tells us +1 =
n
x+1 | x̃+1|+1P−1+1|+1x̃+1|+1 ≤ 1

o
is a bounding ellipsoid

if A2 is satisfied. So the estimated states are bounded with the algorithm (3.10). The next

theorem gives the bound of the estimation error 2 which is defined in (3.10).
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Theorem 3.2 If we use the algorithm (3.10), then the normalization of the estimation error

is bounded by:

lim sup
→∞

1



X
=1

2

1 +∇hP+1|∇h
≤ 1

 (1− )
(3.32)

where 0    1

Proof. We define the following Lyapunov function

 () = x̃+1|P
−1
+1|x̃+1| (3.33)

Evaluating ∆ () as

∆ () = x̃+1|+1P
−1
+1|+1x̃+1|+1 − x̃+1|P−1+1|x̃+1| (3.34)

By (3.23) we have

x̃+1|+1P
−1
+1|+1x̃+1|+1 ≤ 1−




(1− ) 

2
 (3.35)

Substitute in (3.34)

∆ () ≤ −

(1− ) 

2
 + 1− x̃+1|P−1+1|x̃+1| (3.36)

We know 1 ≥ 1− x̃+1|P−1+1|x̃+1| ≥ 0 Then

∆ () ≤ −

(1− ) 

2
 + 1 (3.37)

Summarize (3.37) from 1 to  :

X
=1




(1− ) 

2
 ≤  (1)−  ( + 1) +  ≤  (1) +  (3.38)

Since  (1) is constant and  =


1+∇h

P+1|∇h ,

lim sup
→∞

1



X
=1

2

1 +∇hP+1|∇h ≤
1

 (1− )
(3.39)
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It is (3.32).

Please note that even if the estimated states converge to their real values with the al-

gorithm (3.10), from (3.4), we know that there always exist unmodeled dynamics (structure

error). So we cannot reach  =  − (x̂+1|)→ 0

3.4 Simulations and experiments

In this section, we evaluate the effectiveness of the Ellipsoidal SLAM through simulations

and experiments with real data. We compare the novel Ellipsoidal SLAM with the extended

Kalman filter (EKF) SLAM. The experiments are implemented in Matlab in a PC with the

Intel Core i3-3.3Ghz processor.

3.4.1 A simple example

We will show that the Ellipsoidal SLAM has better performances than EKF SLAM in some

conditions. In the case of a linear system, the ellipsoid filter has smaller errors when process

noise has skewness and bias [136]. However, the SLAM model is a nonlinear system. So we

ran a set of Monte Carlo simulations to test this property. We use the following metrics and

conditions in our simulations.

Metrics. The three metrics for evaluating the performance over  number of Monte

Carlo simulations are defined as

 =
1



P



P


q¡
 − ∗

¢2
+
¡
 − ∗

¢2
 =

1


P



P


¯̄
 − ∗

¯̄
 =

1


P



P


P


q¡
 − 

¢2
+
¡
 − 

¢2 (3.40)

where  is a particular simulation,  is the time step,  is a specific landmark, ∗ represents
the true values,  and  are the average of Euclidean and orientation errors,  is the

average of Euclidean errors of landmarks.

Conditions. We assume that the data association is known and the process model error

can be explained totally by noise with respect to controls. The virtual vehicle executes
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Figure 3.5: (a) The virtual environment and robot path, (b) Gamma and Gaussian probab-

ility distributions for controls.



66 Ellipsoidal SLAM

a circle path to evaluate the long-term performance, where controls are  = 10 and

 = 03. The range-bearing sensor has a field of view determined by  ∈ [05 30]
and  ∈ [0 ] . The sample time for filtering is  = 01. The landmark distribution
is shown in Figure 3.5. We adjust manually the covariance and ellipsoid parameters before

tests. Thus the results are the best we could find for each method.

We explore three conditions of noise for motion model, where control noises are inde-

pendent.

Condition 1 (Gaussian + bias). Gaussian noise with the standard deviation is 1% of the

control magnitudes, i.e.,  = 0003,  = 001. We also add biases  = 005

and  = 005 to the Gaussian noise.

Condition 2 (Gamma). We select the gamma distribution to study the effect of skewness.

Their parameters are chosen such that the standard deviations are the same as the above

Gaussian noise. The mean is compensated to be zero. Figure 3.5 shows the differences

between Gaussian and Gamma distributions for both controls. Each control noise has about

155 skewness. The specific parameters are:  = 3  = 5773 × 10−3  = 3  =

1732× 10−3.

Condition 3 (Gamma + bias). Here we study the jointly effect of skewness and bias,

using the above gamma distributions together with bias  = 005 and  = 005.

The observation noise is assumed to be Gaussian, and the same for all three conditions,

i.e.,  = 01,  = 001,  =  =  = 0.

Figure 3.6 shows the results of  = 50 simulations for every condition. We note that

the EKF-SLAM generates small errors when there is no bias in control noises (Condition

2). But our method is better when the control noise contains bias under Condition 1 and

Condition 3. Figure 3.7 also shows how the estimation errors of the EKF SLAM increase

under Gaussian noise and bias (Condition 1), and the estimation errors of the Ellipsoidal

SLAM keep the same after the third turn (a turn over circle is completed in 40 second). So

the Ellipsoidal SLAM is more robust when there is bias in control noises.
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Figure 3.6: We show the errors of EKF SLAM and Ellipsoidal SLAM for the three different

conditions over 50 Monte Carlo simulations. Our method is more robust under bias in control

noises.

3.4.2 Victoria Park dataset

For validating the Ellipsoidal SLAM with real and noisy measurements, we test it with

a benchmark, called Victoria Park dataset [137]. This dataset is a classical benchmark for

feature-based SLAMmethods, because the environment is large (250×3002), the trajectory

is long (45), and there are many loops (~14 loops). Besides, the observations have much

spurious detections of trees. All these qualities make it a really difficult problem. It is used

in the robotics community to make comparisons.

First, we present the models used for this experiment. The model of the SLAM system

consists: motion and observation equations. For motion model, we have an Ackerman vehicle

described by the unicycle model as⎛⎜⎜⎝






⎞⎟⎟⎠ =

⎛⎜⎜⎝
−1 + −1−1 cos 


−1

−1 + −1−1 sin 

−1

−1 + −1
−1

tan−1

⎞⎟⎟⎠+w (3.41)

where w ∈ Ω(0W) is the process noise,  is the linear velocity,  the steering angle,

and  the sample time.
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Figure 3.7: An simulation under condition 1 (red lines - Ellipsoidal SLAM, blue lines - EKF-

SLAM). We see that errors remain bounded for our method, while the errors for EKF-SLAM

increase over time.



3.4 Simulations and experiments 69

The observation model is

 =

Ã




!
=

⎛⎝ q
( − )

2
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2
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³
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
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
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´
−  +


2

⎞⎠+ v (3.42)

The observation function (3.29) is

(x z) =

Ã
 +  cos

¡
 +  − 

2

¢
 +  sin

¡
 +  − 

2

¢ ! (3.43)

Figure 3.8 shows the map and trajectory generated by our Ellipsoidal SLAM, and the

comparison results with the EKF SLAM. In both methods, the free parameters (covariance

matrices of noises and errors bounds) were chosen by trial and error.

From the best of our knowledge, it is the first time that such large-scale SLAM problem

is solved by a non-probabilistic technique. The other SLAM methods based on sets have

been validated only with small environments and trajectories [124], or with manual data

association [122], while the Ellipsoidal SLAM associates data automatically and can solve

large-scale problems, such as Victoria Park benchmark.

In some parts, the Ellipsoidal SLAM has similar results to the EKF SLAM. But the

Kalman approach is a little more exact than the Ellipsoidal SLAM (e.g., in upper-left corner

of Figure 3.8). There are some disadvantages for the Ellipsoidal SLAM. (1) When the noise

level is small or the noise behavior is like Gaussian, the EKF SLAM is better because Kalman

filter is the optimal estimation technique with respect to linear system and white noise, while

the ellipsoid filter is not optimal in any case. (2) The EKF SLAM solves faster than the

Ellipsoidal SLAM. In this example, the EKF SLAM uses 788 to map 111 landmarks,

while the Ellipsoidal SLAM uses 1086 to map 123 landmarks. Since the vehicle takes

1548 for recording the dataset, this is enough to run on-line. And (3) the trial and error

method to choose the free parameters could be more difficult for Ellipsoidal SLAM.

3.4.3 Koala mobile robot

In order to validate the performances of the Ellipsoidal SLAM, we use the mobile robot

Koala [138], which is a mid-size robot designed for real-world applications, in two types of
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Figure 3.8: Comparison of the proposed Ellipsoidal SLAM and EKF SLAM with Victoria

Park dataset. The red circles are landmarks detected during the journey, most of them

represent trees in the Victoria Park. In some parts, ellipsoid SLAM has similar results as

EKF SLAM. But the Kalman approach is a little more exact than Ellipsoidal SLAM
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Figure 3.9: The experiment in an office environment equiped a motion capture system

environments. The Koala robot has two encoders to reconstruct odometry, and one laser

range finder to detect natural features in the environment.

The first experiment is inside a room (see Figure 3.9). The room contains some chairs,

tables, and one wastebasket. In order to verify our algorithm, we use a motion capture

system, OptiTrack [139], in the room. It includes 16 cameras and one center processing

computer. The position accuracy of this motion capture system is ±5 The Ellipsoidal

SLAM uses the measurement of the odometer and laser scan of Koala to generate estimation

states. The results of the Ellipsoidal SLAM are shown in Figure 3.10. Here, "+" is initial

position, "o" is the end position, and the circles are the landmark detected by the SLAM.

We find that there is odometer error. By the data association and landmark detection of

our Ellipsoidal SLAM, the loop closure problem is overcome.
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Figure 3.10: The map and trajectories generated by the ellipsoidal SLAM.

Figure 3.11 shows the square of the estimation error. The sensor accuracy of the laser

range finder is ≤ 01 The accuracy of the Ellipsoidal SLAM is ≤ 031. The results are
satisfied. It can also been seen, even if the environment is small, the algorithm can detect

enough number of landmarks (28 landmarks).

The second experiment is in a larger natural environment, see Figure 3.12-(a). It is a

yard with trees and light poles. The soil is irregular with depressions. This environment is

harder than the office environment because of the ground’s irregularity. The laser rays can

hit on the ground, and create false detection of landmarks. The odometer is also affected by

these depressions.

In this experiment, we do not have truth map and positions. We only check the loop
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Figure 3.11: We show the square of the estimation error of the ellipsoidal SLAM.
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Figure 3.12: The experiment in (a) outdoor environment and (b) the map and trajectory

generated by the mobile robot. The landmarks (blue circles) qualitatively correspond to the

trees and light poles in the environment.
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closure problem. Figure 3.12-(b) shows the map and trajectory of the mobile robot. We

can see that every landmark has a number that relates to the trees or the light poles in the

picture of environment. The relations between the landmarks and objects in the environment

are qualitatively correct. In Figure 3.12-(b), we show that the estimate trajectory returns

to its start point.

From these two experiments, we conclude that the Ellipsoidal SLAM can map different

environments and estimate the robot’s position with accuracy less than 04.

3.5 Conclusion

Unlike the other SLAMmethods based on sets, the Ellipsoidal SLAMproposed is able to solve

large-scale problems. Furthermore, its performance is similar to the EKF SLAM with no

Gaussian assumption, which means we have more realistic error modeling. One contribution

of this work is that the convergence of the ellipsoid algorithm is proven. We also propose

a data association method which is similar to the individual compatibility nearest neighbor

test in the EKF SLAM. The simulated results showed that the Ellipsoidal SLAM could be

more robust to motion model errors with bias. And the experimental results show it is

capable of building maps indoors and outdoors with enough number landmarks.

This chapter introduces the idea that large-scale SLAM problems can be solved in real-

time by not assuming Gaussianity. However, there are still technical problems, like how to

calibrate the Ellipsoidal SLAM parameters and how to improve accuracy.
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Chapter 4

Autonomous navigation in dynamic

and unknown environments

"Our outdated education system defines intelligence as a process of memorizing

old answers to avoid errors. True intelligence is to learn to solve our problems

to face greater challenges. True intelligence is about the joy of learning and not

with the fear of failure." –Robert Kiyosaki

4.1 Introduction

This chapter is related to motion planning and how to deal with the partial observability

of the environment. The problem of autonomous navigation in static environments is

currently solved [142]. Navigation systems are complete and optimal in static environments.

Complete means that the navigation system ensures achieving the goal, if a feasible path

exists in the environment to reach the goal. Optimal means that the navigation system is

able to find the shortest path to reach the goal.

In contrast, dynamic and unknown environments represent a great challenge due to the

partial observability of the environment. Dynamic environments contain objects that can

change its shape, position, or orientation (e.g., furniture, doors, people, animals, cars).
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Observed region Unobserved region

G

Figure 4.1: This figure illustrates the partial observability of the environment. The ro-

bot is represented by the triangle and the observed region by a circle. Due to the partial

observability, a conventional navigation system is neither optimal nor complete.

An unknown environment is when the navigation system has no information about the

environment; it does not have a map. In both cases, the navigation system needs to make

certain assumptions about how the environment that has not been observed is. This is

because all the sensors have limits on its measuring range–for example, a laser can only see

within the range of 0.05m to 10m. So the robot can only sense what is around it; this region

of the environment is called the observed region (see Figure 4.1). Thus, navigation systems

must have certain "beliefs" about the unobserved region in order to complete the navigation

task. The problem is that such beliefs may be erroneous when the environment is dynamic

or unknown. In other words, there may be differences between the map (belief) and the

environment (reality). These differences (errors) cause any navigation system to no

longer be optimal nor complete.

There are only three possible assumptions that a navigation system can consider when

it plans movements in the unobserved region (see Figure 4.2):
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1. Known Space Assumption (KSA). The whole space is supposed to be known, including

the unobserved space. This means that the whole environment is known via a map

generated previously [147][148]. The navigation system can plan according to this map.

2. Free Space Assumption (FSA). This concept was introduced by S. Koenig et al. [153].

The unobserved space is supposed to be free of obstacles. It is often used when there

is no previous map [142][149] to plan paths to the goal. The robot executes the plan

until it finds an obstacle in its path, then plans a new path to avoid the obstacle. This

process is repeated until the goal is reached.

3. Unknown Space Assumption (USA). The unobserved space is accepted as unknown, so

we cannot make plans over that region. It is often used for autonomous map-building

tasks [151][152], not for autonomous navigation tasks. The robot plans to expand

the observed region. So it picks a point on the border between the observed and the

unobserved regions as a partial goal. Once the robot has approached this partial goal,

the observed region has increased. This process is repeated until the main goal is

within the observed region and the robot can reach it.

Most navigation systems assume the workspace is known (KSA), the environment does

not change, and the map does not have errors [147][148]. Other times when the map is not

previously built, it assumes the environment is free of obstacles (FSA) [142][149], allowing

the robot to make plans moving toward the unobserved area and finding the actual obstacles.

And finally, when the robot must build a map [151][152] instead of reaching a specific goal

state, we use the Unknown Space Assumption, restricting the robot to plan its movements

only inside the known area. Although these three assumptions have been used widely, there

are no studies focused on these assumptions themselves, to the best of our knowledge.

In this chapter, we discuss how these assumptions affect navigation, given formal defin-

itions for the autonomous navigation problem. In section 4.2, we present the theorems of

sufficient conditions to guarantee a navigation system is complete. In section 4.3, we pro-

pose the first methods to recover from false obstacles on the map in dynamic environments.

In section 4.4, we propose a method to navigate more efficiently in unknown environments
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Free 
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Known
Space
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Figure 4.2: These are the possible assumptions that a navigation system can consider when

planning movements in the unobserved region. The unobserved region is supposed to be

known (KSA), free of obstacles (FSA), or unknown (USA). These assumptions change the

way a navigation system works (robot [triangle], observed region [circle], blue line [path

planning], goal [G]).
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and we compare with the classical method of the FSA. Finally, we give our conclusions in

section 4.5.

4.2 Analysis for navigation

Due to the partial observability of the environment, there could be two types of errors in

a map: false obstacles and false free spaces (see Figure 4.3). False obstacles are obstacles

that appears on the map but they do not exist in the real environment. False free spaces

are real obstacles in the environment, but they do not appear on the map. Both types of

errors cause the planning system to produce suboptimal paths. But that is not the biggest

problem. In addition, the planning system may fail to find a path to reach the goal due to

false obstacles on map. In this case, a conventional navigation system (a system without

the methods that will be presented in the next section) would be incomplete (i.e., could not

reach the goal even if a viable route exists in the real environment). In this section, we will

give sufficient conditions to ensure a navigation system is complete.

We use the graph theory to describe the autonomous navigation problem. So we analyze

the sufficient conditions to guarantee a navigation system reaches its goal when the map

can have errors. For simplicity, our analysis considers the environment is static. But this

is not a limitation, since the results give us a practical idea of what happens in dynamic

environments. First, we introduce a series of definitions. Later, we present the theorems for

sufficient conditions.

The main elements of autonomous navigation are the following:

• Environment. It is defined by an undirected graph () = ( ()). Here

 is the discrete version of the state space, and the edges () represent validated

state transformation actions of the robot; () means the graph is dynamic. So

the obstacles can be easily represented by the absence of edges within a state. The

environment is assumed to be finite.

• Navigation task. It consist of a given initial state  , a goal state  and a map of
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Figure 4.3: This figure illustrates the two types of errors that could be on a map because of

the partial observability of the environment. Note the differences between the belief of the

robot (map) and the reality (environment).
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environment () = ( ()). The objective of navigation is that the robot

can reach the goal state in a finite time. The map () is an undirected graph

corresponding to the environment ().

• Robot. It is an entity that does the navigation task.

In order to reach the goal, some assumptions have to be made to plan a path. Figure 4.4

shows the graphic explanations of these assumptions. We give formal definitions for them

as follows:

1. Known Space Assumption (KSA). The whole environment is known. The accessibility

or obstacle function () is known for ∀, where (·) represents the obstacles on
the map and the environment. We define

() =

⎧⎨⎩1 ()  0

0 () = 0

where (·) is the number of incident edges (the edges that are connected to a state),
so () = 0 means the state  is an obstacle.

2. Free Space Assumption (FSA). The unobserved region is free of obstacles. The ()

is known for ∀ ∈ () and () = 1 for ∀ ∈ (). Where () is the

unobserved region and () is the observed region. We define () = 0 ∪ 1 ∪
 ∪  where every  is a subset of states that are observed by the mapping system
around the robot at time 

3. Unknown Space Assumption (USA). The unobserved region is unknown. The ()

is known for ∀ ∈ (), and () is unknown for ∀ ∈ ().

Usually, the map () may be different with the environment (), due to partial

observability. In other words, map and environment can have errors due to the mobile objects

in the environment and the errors in localization, in mapping, or in perception (e.g., some of



84 Autonomous navigation in dynamic and unknown environments

Figure 4.4: Assumptions for the unobserved part of the environment using graph represent-

ation.
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Figure 4.5: The two types of errors in the map are represented in a graph.

current SLAM techniques are not reliable for the long term [154]). Since the robot cannot

observe the whole environment, it is impossible to obtain the optimal path, and even worse,

the planning system could not find a path, even if a path exists. We consider two types of

errors on the map (see Figure 4.5):

• We define the number of false obstacles as (()) =
P
∀∈()

(), where

() =

⎧⎨⎩1 (

 ) = 0 ∧ ( ) = 1

0 

• We define the number of false free spaces as  (()) =
P
∀∈()

 () where

 () =

⎧⎨⎩1 (

 ) = 1 ∧ ( ) = 0

0 

Because a navigation system consists of several subsystems, and we just want to analyze

the problem of errors on the map, we will consider the following assumptions and definitions.

1. Effective Localization 
 () =  () for ∀; here  means the current state of the

robot in graph 

2. Effective Mapping. (

 ) = ( ) for any observed state  ∈  6= ∅ at any

time .
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3. Complete Planner. If 

 6= ∅, then the planner always gives a path solution 

 =

{ = 0 1   = }; here 
 is the set of vertices of a connected component of

 that contains both  and .

4. Effective Execution. After robot has a path plan 

 = { = 0 1   = }, it

executes the first  states in  until it reaches  or it finds an obstacle in the path

(i.e., ∃ ∈ 

 such that ( ) = 0 for   ).

5. Effective Planner. It is a complete planner that generates a new 

 every time it

finds a new obstacle or tells that there is no path.

6. Effective Robot. A robot is effective if localization, mapping, planner, and execution

are effective.

7. The navigation system is complete for a navigation task (   (0)) if the robot

can reach  =  in finite time when a path to goal exists (i.e., 

 6= ∅ for ∀).

The following three theorems analyze the sufficient conditions to guarantee a navigation

system is complete.

4.2.1 Known Space Assumption

Theorem 4.1 For an Effective Robot under Known Space Assumption, the navigation sys-

tem in a static environment is complete if ((0)) = 0.

Proof. If there are no false obstacles on the map at initial time ((0)) = 0

and there is a navigation solution in the environment  
 6= ∅, then the map always has

solutions 

 () ⊇  

 for ∀. Since the environment is static, it does not show false

obstacles at   0. This guarantees completion of the navigation task, because an Effective

Robot can search all possible paths in 

 () until it reaches it.

The false free spaces on the map produce false paths, and the false obstacles block the

paths to the goal. The conventional path-planning algorithms can easily deal with false free
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spaces because they directly modify the path as soon as they are found. However, it might

not work with the false obstacles. In the worst case, if all paths on the map are blocked, the

conventional planning algorithms cannot obtain a path to the goal, even if there is a path in

the environment. Later in this chapter, we will propose and study algorithms to try to solve

this problem.

4.2.2 Free Space Assumption

Theorem 4.2 For an Effective Robot under Free Space Assumption, the navigation system

in a static environment is complete if ((0)) = 0.

Proof. The FSA means if () = 1 for ∀ ∈ (0) then there are no false obstacles

in (0) because there are no obstacles at all. Taking into account there are no false

obstacles in (0), thus ((0)) = 0 on the map at the initial point. Because mapping

is effective and the environment is static, no false obstacles appear later (i.e., (()) =

0 for ∀). Therefore, 
 () ⊇  

 6= ∅ for ∀. So an Effective Robot eventually can reach
the goal.

The Free Space Assumption is usually used when the whole environment is initially

unknown [153][150]. In this case, the condition ((0)) = 0 is satisfied because (0) = ∅.

The navigation task is guaranteed to be complete, if a solution exists. However, in dynamic

environments, the FSA might have false obstacles in the observed space () The FSA

cannot guarantee completion of the navigation task in dynamic environments, but we can

use the algorithms presented in section 4.3 to deal with the false obstacles.

4.2.3 Unknown Space Assumption

We often find the use of Known Space and Free Space Assumptions in robotics literature

[147][148][142], but Unknown Space Assumption is less usual. In fact, it is used for map-

building tasks [151][152], not for navigation tasks. The aim of a map-building task is for

the robot to acquire a map of the whole environment. The common approach is to detect
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the frontier states between observed and unobserved regions and to choose a state near to

the frontier to expand the observed region. We want to study the above approach, applying

it for navigation tasks. Thus we need to find a way to choose a subgoal in the frontier to

expand the frontier and make progress toward the main goal.

We consider the following definitions to study the completeness of a navigation system

with Unknown Space Assumption.

Frontier. A state  is in frontier set  () if and only if () = 1 and ∃ ∈
(() ∩ ()), where () is the set of all immediate neighbor states of

 . The first condition guarantees the state  can be reached by a robot, and the second

condition ensures that the state  has at least one neighbor in the unobserved region.

Goal planner for Unknown Space Assumption. When  ∈ () for some   0, the

goal planner chooses a state () ∈  () as a partial goal every time that the previous

selected (0) is no longer in  (). And when  ∈ () for some , the goal planner

always chooses  to complete the navigation task.

Theorem 4.3 For an Effective Robot under Unknown Space Assumption, the navigation

system in a static environment is complete if ((0)) = 0.

Proof. Because there is no assumption on obstacles in the unobserved region, ((0)) =

0. Taking into account no false obstacles in (0), ((0)) = 0 on the map at ini-

tial time. Because mapping is effective and the environment is static, (()) = 0

for ∀. Besides, an Effective Robot with a goal planner for Unknown Space Assumption
guarantees the expansion of observed space at every new partial goal ; therefore, ∃  0,



 () ∩  

 6= ∅ So an Effective Robot can eventually reach the goal .
If we use a goal planner for Unknown Space Assumption when the whole environment is

initially unknown, the condition ((0)) = 0 is trivially satisfied because (0) = ∅. The

navigation task is guaranteed to be complete, if a solution exists. If the sufficient condition

is not satisfied ((0)) 6= 0 or the environment is dynamic, false obstacles can be created
over () we can apply any of the strategies to deal with false obstacles, which we show in

the next section.
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The strong conclusion in this section is the relevance of false obstacles. They can de-

termine whether a navigation task can be complete or not. Besides, we introduce how to use

Unknown Space Assumption for navigation tasks, which will be used in section 4.4.

4.3 Navigation in dynamic environments

In the previous section, we saw that if there are no false obstacles, we can ensure that the

navigation system can find a path to reach the goal for static environments. However, false

obstacles can be generated in dynamic environments. So it is necessary to invent methods to

ensure that a navigation system can find the path to its goal, even if there are false obstacles.

In this section, we develop two algorithms to recover from map errors. To the best

of our knowledge, these algorithms are the first reported in literature.

When a conventional navigation systems gets stuck because the planning system does

not find a path to the goal, there are at least two basic methods to solve this problem:

1. Method of deleting the unobserved region. Create a new map with the observed region

( = 1) and assume the unobserved region is free space (see Figure 4.6). Then the

planning system can generate paths to reach the goal. Many of these paths will be

erroneous due to false free spaces, but eventually the navigation system could find a

path to the goal if it exists.

2. Method of verification of barrier. Find the barrier of obstacles enclosing the goal in the

unobserved region ( = 1) on the map and verify that the barrier actually exists

in the environment (see Figure 4.7). If any part of the barrier is false, the robot could

find a path reaching the goal. If it turns out that the barrier is real, then the robot

will know that there is no route to the goal.

The first method is easy to implement, and needs to track the recently observed region.

Since the previous map information in  is ignored, it only conserves the recently observed

region (1). The second method saves the whole previous map until the verification process
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deletes the false obstacles. It needs more computation time to detect the barrier and verify

obstacles. It can be useful when the errors on the map are small. The implementation is

more complex.

Any of the twomethods makes the navigation system recover frommap errors.

The first method deletes false obstacles and uses Free Space Assumption. The second method

verifies the barrier on the map exhaustively. If a false obstacle exists, it will be found and

deleted, and a path to the goal might be formed. Both methods can work with any path-

planning algorithm.

4.3.1 Algorithms

Algorithm 4.1 Main()

 := ;  := ;  := ∅

while  6= 

 := ComputeShortestPath(,,)

if  = ∅

 :=ComputeGoalToVerifyBarrier()

if  6= ∅,  := , else, return 

else

while PathIsFree()

 :=planexecution()

 
 :=mapupdate()

if  = 

if  = 

break

else

if BarrierIsOpen()

 := 

break
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Figure 4.6: (a) If the navigation system cannot find a way to reach the goal, then (b) it will

delete all obstacles in the unobserved region to prevent false obstacles. This figure illustrates

this method.
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Figure 4.7: (a) If the navigation system cannot find a way to reach the goal, then (b) it will

find the barrier of obstacles (green line) enclosing the goal on the map, and it will check if

the barrier actually exists. This figure illustrates this method.



4.3 Navigation in dynamic environments 93

elseif  = 

 :=ComputeGoalToVerifyBarrier()

if  6= ∅,  := , break, else, return 

We only present the algorithm for the second method because the first is too simple.

Algorithm 4.1 describes the main loop to complete the navigation task and to cope with

false obstacles. When the planner (i.e., "ComputeShortestPath"), cannot find a path to the

goal , the function "ComputeGoalToVerifyBarrier" computes the unobserved barrier and

determines the best state in the barrier  to be checked.

We use the planner to find the path to . If the barrier is open during path execution,

the algorithm comes back to the main goal . If the state  is reached and the barrier

has not been opened, it recomputes the barrier and chooses another state in the barrier to

be checked out. This process is repeated until eventually the barrier is open or there is no

unobserved barrier.

Algorithm 4.2 ComputeGoalToVerifyBarrier()

for all  ∈ 

() := 0

() = 0

() := 

() :=∞
 := ∅

enqueue [0 ] onto 

while  6= ∅
 ←− ()

() := 1

for all 0 ∈ ()

if (0) = 0

0 :=  + ( 0)

if (0) = 0 and 
0 ∈ 
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if 0  (0)

(0) := 1

(0) := 

(0) := 0

elseif (0) = 1

if 0  (0)

enqueue [0 0] onto 

(0) := 0

for all  ∈ 

() := 0

 := ∅

 := ∅

enqueue [] onto 

() := 1

while  6= ∅
←− ()

() := 1

for all 0 ∈ ()

if (0) = 0 and 
0 ∈ 

if (0) = 1

enqueue [(0) + (0 ) 0] onto 

else

enqueue [0] onto 

(0) = 1

if  6= ∅
 = argmin∈{() + ( )}
 = ()

else
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 = ∅

return 

Algorithm 4.2 explains how to compute the unobserved barrier and how to choose a

state to be checked. It detects the unobserved barrier using two wave expansions based on

breadth-first search (BFS). The first expansion detects all the obstacles in the unobserved

region around the robot´s position. The array () stores all these obstacles. The

second expansion initializes from  and ends when it finds the zone reached by the first

expansion. This last expansion takes into account only the obstacles detected by the first

expansion. Finally it stores the unobserved barrier states in a list called . This

process is illustrated in Figure 4.8.

Finally, the algorithm chooses a state in the barrier minimizing () = () + ( ),

which is equal to the function used in the A* search. The first term corresponds to the

actual distance of  →  and the latter term is a heuristic distance of  → ,

ignoring the obstacles on the map. We try to select the state to be observed, minimizing the

distance the robot must move during barrier verification and finding the closest state to the

goal. Figure 4.8 shows an example of this minimization.

4.3.2 Experiments

Navigation systems with the proposed methods can recover from errors on the map. In

this section, we wonder which of the two methods is closer to optimality. We want to know

which one generates shorter paths. To answer this question, we make a series of Monte Carlo

simulations and we introduce some new concepts: the suboptimality of the path length, the

obstacle density, the success index, and the dissimilarity of the map.

We define the suboptimality of the path length  as

 =
length of the effectivepath

length of the optimal path
(4.1)

where effective path is the path that the robot has followed to reach the goal and the optimal

path is the shortest path to reach the goal.  ≥ 1 means that the effective path is longer
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Figure 4.8: This illustrates the method of verification of the barrier where obstacles are

black and grey. In (a) it finds only the obstacles outside the observed region  via a

BFS expansion; such obstacles are grey. The  is delimited by dashes. In (b) the second

expansion from  finds the barrier. In (c) it chooses the state in the barrier that minimizes

() = () + ( ). These distances are marked by dashes.
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than the optimal path (see an example in Figure 4.9). The average of  in a series of

Monte Carlo simulations, defined by  [], represents the effectiveness of the navigation

system.

We define the obstacle density  as

 =
Obstacles Area

Total Area
=

P
∈ ()

|| (4.2)

If  = 0, the environment is empty; if  = 1, the whole environment is occupied.

We define the success index  as

 =
Number of successful navigations

Total number of navigations
(4.3)

It measures the probability of reaching the goal when the map has false obstacles.

We introduce the dissimilarity of map  as

 =
False Obstacles Area + False Free Spaces Area

Total Area
=

 () + ()

|| (4.4)

It measures how many errors the map has. If  = 0, the map matches the environment

perfectly. If  = 1, the map has a perfect interchange between obstacles and free spaces.

The proposed algorithms are evaluated through Monte Carlo simulations. We use a two-

dimensional grid space with 100×100 states as environments and maps. The initial point of
the robot  and the goal state  are set near the contra corners, as we illustrate in Figure

4.9.

Navigation under Free Space Assumption in unknown environments

We first study the suboptimality  for initial unknown environments using Free Space

Assumption. We randomly generate 500 environments with uniform distribution. The range

of obstacle density (4.2) is [01 06], and we fix this maximum because when   06,

no path exists between  and  The optimal path is obtained by a normal A* search,

assuming the map is known and correct. The effective path is produced by the same A*

search algorithm, but assuming the environment is initially unknown and the whole initial

map is set as free space.
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Figure 4.9: This shows an example of the difference between the effective path (solid line)

and the optimal path (dash line). The first is produced because initially the environment

is unknown. The second is determined when the environment is known completely and

correctly.
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Figure 4.10: The average of the path length  [] together with an interval of one standard

deviation as a function of obstacles density, when initially the environment is unknown.

The average of the path length  [] with respect to the obstacle density is shown in

Figure 4.10. Since the robot does not have map at the initial point,  [] increases when

obstacle density increases; this behavior is also reported in [150]. This result will be used in

the next subsections.

Navigation under Known Space Assumption with false obstacles

We study the success index  and the suboptimality  for Known Space Assumption in

the function of the map errors (i.e., the dissimilarity of map (4.3) first with no method to
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deal with false obstacles and later comparing the two methods describe in section 4.3).

We also generate 500 random environments with uniform distribution for each obstacle

density in the set {01 02 03 04 05 06}. For each density and dissimilarity value, we
copy the 500 environments and use them as maps, but the maps contain a certain number

of errors. These errors are also uniformly random according to the value of dissimilarity

[0 06]  Again if   06, no path exists between  and . The planner is a conventional

A* search that replans if the path is blocked.

Figure 4.11 shows the success index  (4.3) vs. the dissimilarity  (4.4) with respect

to obstacle density  (4.2). It is reasonable that the probability of reaching the goal is

reduced as the map dissimilarity increases. When the obstacle density is large, the robot

may not find a path to the goal due to errors. Indeed, if more than 60% of states on the

map are wrong, it is impossible to reach the goal for any obstacle density.

We compare Known Space and Free Space Assumptions in terms of suboptimality. Figure

4.12 shows the average of the path length  [] (4.1) and the dissimilarity of map  (4.4)

with respect to different obstacle densities  (4.2). For environments with low density

(≤ 03), the profit of knowing the environment with lower dissimilarity is not much (≤ 025),
then the use of a map is a waste of time. Therefore, if the environment were dynamic, with

a constant density ≤ 03, it is better to use the FSA. For environments with higher density
( 03), having a map with a 015 dissimilarity or less is a real advantage. But if the map

has more than ∼ 15% errors, it is better to use the FSA. In this case, a wrong belief

(corrupted map) is worse than ignorance (the FSA).

Now we turn our attention to the two methods of section 4.3 to deal with false obstacles.

Remember that we want to know which one generates shorter paths. We use the random

environments and maps of the previous experiment only for high density {04 05 06}. The
low density can be ignored because we know that the FSA is better than the KSA. Note

that  = 1 for both methods at any density and dissimilarity of static environments. So

we only focus on studying the path length  [].

Figure 4.13 shows the results at different scales: the first row shows them for the whole

range of dissimilarity, and the second row, at low dissimilarity only. The constant values
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Figure 4.11: This figure shows the probability of achieving the goal (success index) when

the map has errors (dissimilarity of map), considering different densities of obstacles and

knowing a map initially (KSA).
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Figure 4.12: This figure compares KSA (blue line) and FSA (red line) in terms of suboptim-

ality, considering different densities of obstacles.
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Figure 4.13: When the map has few errors (dissimilarity  10%), is better to verify the

barrier (blue lines); and when the map has many errors (dissimilarity  10%), it is better to

delete the unobserved region of the map (black lines). The red lines are obtained by using

FSA from the beginning, which has the best suboptimality at high dissimilarity ( 10%).
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represented by the red lines are obtained by using the FSA from the beginning, the black

lines by using the method of deleting the unobserved region, and the blue lines by using the

method of verification of barrier.

We can see that the method of deleting the unobserved region (black lines) is better when

there is high dissimilarity ( 10%), while the method of verification of barrier (blue lines) is

better when there is low dissimilarity. The latter is more obvious when the obstacle density

is bigger than 06. In other words, when the map has few errors (dissimilarity  10%), it

is better to verify the barrier, and when the map has many errors (dissimilarity  10%),

it is better to delete the unobserved region of the map. These results suggest that if the

robot keeps track of an estimation of dissimilarity of the map, the robot could decide which

method to use and could benefit from both methods.

4.4 Navigation in unknown environments

We studied the effect of partial observability in dynamic environments; now we will study

what happens in unknown environments. Free Space Assumption is the common approach

to navigate in unknown parts of an environment. For example, in an initially unknown

environment, the robot makes a plan assuming the space is free; it tries to execute the plan,

but it finds an obstacle and needs to replan a new path. Replanning is done every time

the robot cannot execute the plan, until it reaches the goal. Navigation with the FSA is

illustrated in Figure 4.14-(a).

As we see in section 4.2, there is another way to solve this problem, using the Unknown

Space Assumption instead. In an initially unknown environment, the robot observes the near

space, detects the frontier  (between  and ), chooses a promising state  in the

frontier, and then plans and executes a path to . As consequence, the robot expands the

observed region, making progress to the main goal . The whole process is repeated until

eventually  is in the observed region and it can be reached. Figure 4.14-(b) illustrates this

navigation process using the USA.

We could prefer this second approach because the FSA requires planning even within
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regions where the robot has no information about the environment and there is a high

probability that the path should be changed. The USA only plans within the observed

region, and this path is highly probably correct and short. In principle, we could save

computational resources.

4.4.1 Algorithms

Algorithm 4.3 Main()

 := ;  := ;  := ∅;  := ∅;

while  6= 

 
 :=mapupdate()

 := frontierupdate()

if  ∈ 

 :=goalplanner()

if  = ∅, return 

if IsCloseToGoal()

 :=reactiveexecution()

continue

else

 := ComputeShortestPath(,,)

if  = ∅, return 

 :=planexecution()

return 

Algorithm 4.3 implements the navigation using the USA. The initial goal is . When 

is in the unobserved region, the goal planner chooses a partial goal  in the frontier  . If

 disappears from the frontier during the execution, the algorithm chooses another partial

goal in the current frontier. One good property of Algorithm 4.3 is that it can avoid planning

when the goal is close to the robot. In this case, no plan is made, reducing computational

processing and the robot simply moves toward the partial goal.
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Figure 4.14: This illustrates the navigation in unknown environments using (a) FSA and

(b) USA (the grey area represents that the environment is unknown). The former generates

paths across the whole map, even in the unobserved region, while the latter only makes plans

within the observed region. This could be a computational advantage.
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Figure 4.15: The figures show the different functions to be minimized to select a partial goal

at the frontier.

Algorithm 4.4 Goal planner

if  ∈ 

return 

else

if  6= ∅
return argmin∈ {()}

else

return ∅

However, the big question is how to select a good state in the frontier to make the major

progress to the goal. Algorithm 4.4 shows the general way to choose a goal in the frontier.

If the main goal  is not observed, the algorithm chooses a goal in the frontier to visit and

expand the observed region. Otherwise, the goal planner would choose the main goal.

The goal planners presented choose the goal by minimizing a cost function (). There

are at least three candidates for cost function using the geometrical information from the

map (see Figure 4.15).
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1. 1() = ( ) + ( ). It measures the Euclidean distance () from the robot’s

position to the frontier state, and from the frontier state to the main goal. Note that

real distance should consider the obstacles configuration, so () is just an optimistic

approximation of the distance.

2. 2() = () + ( ). The first term is exchanged with the real distance from the

robot’s position to the frontier state, considering the obstacles in the observed region.

This cost function is similar to the A* search. () is computed by a forward search

based on BFS to the frontier. This represents more computational processing.

3. 3() = (). The goal planner selects the frontier state closest to the main goal. ()

is obtained by a backward A* search from the main goal to the observed region. The

search is stopped when the closest frontier state is found.

4.4.2 Experiments

The classical approach to facing unknown environments is using Free Space Assumption. We

compare the method we proposed using the three cost functions with this classical approach.

We want to know which one generates the shortest paths and consumes less time to plan. To

answer this question, we make some Monte Carlo simulations. The environments for these

experiments are the same as in section 4.3. Initially the map is set as an unknown space for

our method. We use a conventional A* search as the planner ComputeShortestPath(). For

cost functions 1() and 3(), the frontier detection method frontierupdate() continuously

computes the frontier in the same philosophy of Fast Frontier Detector [155]. In contrast, for

cost function 2(), the algorithm detects the frontier states from scratch, similar to what

the Wave Frontier Detector [155] does (this is implemented without using frontierupdate()).

Figure 4.16 and 4.17 show the suboptimality  [] and the average time to complete

the random navigation tasks in a function of density .

The FSA presents the best  at high densities ( 04). Below this value, any method

produces the same suboptimality . However, we must note that the function 1() has
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ments using FSA and USA with different cost functions.
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the best computational efficiency (see Figure 4.17), even better than the FSA (at densities

 015). This is explained by two reasons:

1. Our method plans only in the observed region, instead of planning in the entire map.

2. Our method avoids planning when the partial goal  is too close to the robot and this

could happen frequently.

Based on these results, we can recommend using the USA with the function 1() at low

densities ( 04) and use the FSA at high densities ( 04) For real applications, this implies

that we need a way to estimate the obstacle density, which is another problem outside the

scope of this thesis.

4.5 Conclusion

Three assumptions are analyzed to deal with the problem of partial observability of the

environment. We give the conditions sufficient to ensure the navigation is complete under

Known, Free, and Unknown Space Assumptions for static environments. This analysis shows

the importance of dealing with false obstacles in order to complete the navigation task.

Although it is impossible to guarantee that a navigation system is complete in dynamic

environments, it is possible to create methods for recovering from false obstacles. We propose

and evaluate two methods to recover from false obstacles on the map. Both must be used

depending on the magnitude of the errors on the map. The method of deleting the unobserved

region is better when there is high dissimilarity between the map and the environment (

10%), while the method of verification of the barrier is better when there is low dissimilarity

( 10%). We think this work opens the research for methods that give robots the ability to

recover from errors on the map. More work should be made in this direction because SLAM

methods are imperfect and the environments are dynamic.

On the other hand, we also study the effect of partial observability on unknown envir-

onments. We propose a new method using Unknown Space Assumption to navigate more
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efficiently in unknown environments. We compare with the classical approach using Free

Space Assumption. Our method is more efficient, but can generate longer paths. We recom-

mend using our method with the function 1() at low obstacle density ( 04) and when

planning time is important, and using the classical method of the FSA at high obstacle

density ( 04) and when optimality of path length is more important.



Chapter 5

Conclusion

"Don’t learn everything... if you want to reach your goal, just learn what is

needed." –Erik Zamora

5.1 Conclusions and outlook

Here we summarize the results and the conclusions of this thesis. In this thesis, we solve some

problems of autonomous navigation in unstructured environments. Autonomous

navigation is a complex problem which is divided into sub-problems such as perception,

map-building, robot state estimation, planning and control. We focus on developing some

algorithms related to map-building, and planning, obtaining the following results:

For the map-building problem:

• Unlike the other methods based on sets, the Ellipsoidal SLAM method solves large-

scale problems. Furthermore, it has similar performance to EKF-SLAM, and in some

simulated cases, it can be better. Errors are modeled by ellipsoid sets without assuming

Gaussianity, so we have more realistic error modeling. Other results are: (1) the

convergence of the ellipsoid algorithm is proven, (2) we also propose a data association

method similar to the individual compatibility nearest neighbor test in EKF-SLAM,

(3) simulations showed that the Ellipsoidal SLAM could be more robust to motion
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model errors with bias, and (4) the experimental results show it is capable of building

maps both indoors and outdoors. However, there are technical problems remain, such

as how to calibrate the Ellipsoidal SLAM parameters and how to improve accuracy.

For the planning problem:

• We introduce and study the fundamental concepts of Known Space, Free Space and
Unknown Space Assumptions. These assumptions are needed to navigate in dynamic

and unknown environments. We give the conditions sufficient to ensure a navigation

system is complete for static environments, showing the importance of dealing with

false obstacles to complete the navigation task.

• For dynamic environments, we propose two methods to deal with false obstacles
on the map. Both must be used depending on the magnitude of map errors, i.e. the

dissimilarity of the map with respect to the environment. The method of deleting

the unobserved region is better when there is high dissimilarity ( 10%), while the

method of verification of barrier is better when there is low dissimilarity ( 10%). We

think this work opens up research for methods that give robots the ability to correct

errors on the map. More work is needed in this direction, because SLAM methods are

imperfect and the environments are dynamic.

• For unknown environments, we proposed a method to navigate more efficiently,
showing that this method can be faster than the classical approach using Free Space

Assumption. We recommend using our method with the function 1() at low obstacle

density ( 04) and when planning time is important, and using the classical method

of the FSA at high obstacle density ( 04) and when optimality of path length is more

important.

Finally, the following open problems should be solved in the future:

• The main hurdle for improving the accuracy of a SLAM method is to have reliable

landmark detectors. Based on our experience, we can tell that if we can create a 100%



5.2 Final Message 115

reliable landmark detector, we could solve the SLAM problem almost without error.

We think that research efforts should be conducted toward this direction instead of

toward finding better estimation techniques.

• We need to search for methods that give robots the ability to recover from errors on

the map because SLAM methods are imperfect and environments are dynamic. One

way is to ensure that robots recognize mobile objects, like doors and furniture in order

to ignore them in the mapping and planning processes to avoid errors.

5.2 Final Message

This thesis is just another small step toward solving autonomous navigation problem in

unstructured environments, however, the future is bright. Robotics is to the 21st century

and is going to catalyze the development of our civilization. Enough technology and effective

methods exist to implement autonomous robots today. It is strategic to use these resources

to generate wealth for the benefit of Mexican society. If we add forces from entrepreneurs,

investors, scientists and government, robotics will transform the country to improve

our quality of life.



116 Conclusion



Chapter 6

Appendices

6.1 A basic autonomous navigation system

"More gold has been mined from the brains of men than has ever been taken from

the earth." –Napoleon Hill

We go into details about autonomous navigation. We will describe a navigation system for

a differential mobile robot (Koala robot), which is available in the Laboratory of Department

of Automatic Control . All parts of the system will be explained: localization, mapping,

planning, path smoothing and control.

6.1.1 Localization

The navigation system uses odometry to track the robot’s state. The kinematic model of a

differential-drive robot (Koala robot) can be described by the unicycle model,

0() = () cos ()

0() = () sin ()

0() = ()

(6.1)

where (  ) is the robot’s state, () is the linear velocity of the robot, and () is

the angular velocity of the robot. These velocities are determined by the velocity of right
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() =
()+()

2
and left () =

()−()


wheels, where  is the wheelbase of the vehicle

(see Figure 6.1). The unicycle model must be discretized to estimate (  ). We use the

model of Borenstein [89],

∆ = 

∆ = 

∆ = (∆ +∆) 2

∆ = (∆ −∆) 

 = −1 +∆

 = −1 +∆ cos 

 = −1 +∆ sin 

(6.2)

where and are the left and right pulse increment of wheel encoders in a sample time

; ∆ and∆ the incremental distance for the left and right wheel; ∆ is the incremental

linear displacement of the center point ; ∆ is the incremental angular displacement;

(  ) are the kinematic states;  and  are the conversion factors that translates

encoder pulses into linear wheel displacement for left and right wheels. Figure 6.1 shows a

graphical representation of these variables.

In order to improve accuracy of odometry, we calibrate the parameters (  ) through

an optimization method. The method consist of:

1. Selecting an initial position (0 0 0) and a final position
¡
∗  

∗
  

∗


¢
in a floor plane

and measure the Cartesian coordinates of final point with respect to initial point.

2. Moving the robot from the initial to the final positions  times, following arbitrary

trajectories and recollecting encoders data.

3. Applying an optimization method to identify (∗ ∗ 
∗
) = argmin (  )We

quantify percentage errors for linear displacement  and angular displacement 

with respect to the total displacement given a trajectory. The objective function is
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Figure 6.1: We show some parameters in the model of Borenstein for odometry.

 (  ) =
P

=1 +
P

=1 and

 (  ) =

X
=1

1



q¡
∗ − 

¢2
+
¡
∗ − 

¢2
+

X
=1

1



¯̄
∗ − 

¯̄
(6.3)

where  is the path, (  ) is the final position calculated by the odometry,

 =
P−1

=1

q
(+1 − )

2
+ (+1 − )

2
is the total linear displacement and  =P−1

=1 |+1 − | is the total angular displacement (note that ∗   ∈ [− ] and
 is number of positions).

We apply previous method with
¡
∗ = 6826 

∗
 = 8933 

∗
 = 2

¢
. We move the robot

 = 5 times through different trajectories. Figure 6.2 shows the trajectories obtained using

nominal values
¡
 = 031  =

1
22
× 10−3  = 1

22
× 10−3¢, the average errors are  =

819% and  = 357%. In contrast, Figure 6.3 shows the trajectories obtained using

calibrated values (∗ = 03128 ∗ = 43490× 10−5 ∗ = 43372× 10−5), the

average errors are  = 159% and  = 056%. The odometry accuracy is improved.

We use the Nelder-Mead simplex method [90] (in Matlab(R), fminsearch) to optimize the

objective function 6.3.
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Figure 6.2: Initial and final poses are marked by a circle and a cross, respectively. Note that

nominal values do not obtain a good odometry.
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Figure 6.3: Initial and final poses are marked by a circle and a cross, respectively. The

calibrated parameters improve the accuracy of odometry.
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6.1.2 Mapping

Mapping is the task to model the environment. Maps are useful to locate the robot and to

make motion plans. There are three types of maps: grid maps [91], features maps [58] and

topological maps [92]. We use a 2-D occupancy grid map. This map divides the environment

in a grid, which each cell contains the probability of this area is occupied by an obstacle. So

the map is a matrix which entries are probabilities of occupation. Every time that the robot

takes a range measurement from laser, some of the cells in the grid are updated by a binary

Bayes filter (see [30] for mathematical details).

The procedure is as follows.

1. Initially, it is created a zero matrix with × dimensions; zero entries are equivalent

to 05 probability of occupation.

2. The laser takes a set of range measurements, which are distances from sensor to

obstacles.

3. Given the robot’s state (  ) by odometry, the mapping algorithm updates the

probabilities according to the measurements. We use a simple sensor model to update

the map. The laser beam is modeled as a straight line. Every cell where the laser beam

pass is updated (see Figure 6.4). The measurements out of range [0 max] are ignored.

We test this method building a couple of maps at the Department of Automatic Control

(see Figure 6.5). There are inconsistencies with respect to the real environment because of

the odometry error accumulation.

6.1.3 Planning

The planning problem can be stated as follows: given a map, an initial state x and a goal

state x, the planning algorithmmust calculate a sequence of states x1 = x x2 x = x,

which conforms a free-collision trajectory. We use dynamic programming for planning in 2-D

space x = ( ), where  is the row and  is the column of a cell in the grid map. State
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Figure 6.4: Red lines represent the laser beams and only the cells that passed the laser beam

are updated with free or occupy probability (grey = 0.5, black = 1.0 and white = 0.0).

Figure 6.5: The grid maps of second and ground floors at Automatic Control Department,

Zacatenco, CINVESTAV.
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xI

xI

xGxG

xG

Figure 6.6: This is a small grid map as an example. (a) The robot can only move 8 different

ways. The cost of action is assigned by Euclidean distance. (b) The value function is calcu-

lated according to the Algorithm 6.1. (c) The best action the robot can take is represented

by arrows. (d) It shows two paths (blue and green) from different initial states.

space  is a discretized 2-D space (x). We restrict the robot actions  ∈  to  = 8

movements, as you see in Figure 6.6-(a). In order to minimize the distance, the cost ()

of each action is equal to Euclidean distance, assuming that the distance between horizontal

or vertical adjacent cells is the unit.

We use Dynamic programming for plannning. This method uses the Bellman’s principle

of optimality to choose the best action. It begins to explore from goal location x, updating

the value function  (x) of each free cell (i.e. x ∈  = {∀x|(x) ≤ 01}); the occupied
or uncertain cells (i.e. x ∈ ) are ignored. The value function  (x) is the minimal

cost to reach the goal from any state x. Algorithm 6.1 calculates  (x) to determine the

best action for every free cell to reach the goal (see Figure 6.6-(b) and (c)); where f(x )
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represents the transition action model. On the other hand, Algorithm 6.2 uses the value

function to generate the path P = {x1x2 x} which contains a series of adjacent states
from initial state x1 to the goal state x (see Figure 6.6-(d)).

Algorithm 6.1 ValueFunction(,x)

 (x) :=∞ for ∀x ∈ 

 (x) := 0

open_states := {x}
while open_states is not empty

xmin := argminx  (open_states)

eliminate xmin from open_states

for  = 1 to  do

x := f(xmin ())

if x ∈ 

if  (xmin) + (())   (x)

open_states := {open_statesx}
 (x) :=  (xmin) + (())

return 

Algorithm 6.2 PathGeneration( ,x)

P := {x}
x := x

while  (x) 6= 0
x := argmin  (f(x )) for ∀ ∈  and ∀f(x ) ∈ 

P := {P }
return P

In order to prevent the generated paths are too close to the walls, we artificially widen

the obstacles on the map according with the size of robot. Figure 6.7 shows a path generated

by this approach with normal map and thick map. We can see that the path tends to be

close to obstacles, but the robot size is considered by the greater thickness of obstacles.
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Figure 6.7: In order to prevent the generated paths are very close to the real obstacles (a),

we artificially widen the obstacles in the map according with the size of robot (b).
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6.1.4 Path smoothing

After obtaining a path in terms of cells, we must transform this path to calculate a metric

path. The resulted path must be smoothed before executing the plan because non-smooth

motions can cause slippage and over-actuation. Particularly, we should limit the curvature

of paths to guarantee a smooth motion. The Koala robot can perform paths with maximum

curvature about max =
2

' 639−1. We implement a simple algorithm to smooth the

paths based on the Thrun’s approach [142]. The idea is to optimize the objective function

 (P) = 1

−1X
=2

kP
 −Pk2 + 2

"
−1X
=1

kP+1 −Pk2 +
X
=2

kP −P−1k2
#

(6.4)

where P is the original path, P is the smooth path, P is a particular state in the path,

1 and 2 are weights. The first term penalizes the difference between original and smooth

path. The second term is the smooth condition, which penalizes the distance among the

adjacent states in smooth path. Considering P = P, we apply gradient-descent method to

optimize  (P). The derivatives of objective function are



P

= −21 (P
 −P)− 22 (P+1 − 2P +P−1) for ∀ ∈ {2   − 1} (6.5)

where the initial and the goal state must be fixed.

Figures 6.8,6.9, and 6.10 show the result of smoothness (with 1 = 20, 2 = 048). The

orientation of robot  := tan
−1
³
∆
∆

´
for original path (red lines) presents discontinuities,

while the smooth path (blue lines) shows a better continuity. The curvature  := ∆√
∆2+∆2

of original path has a maximum about 55−1, while the maximum curvature in smooth path

is  4−1; below what is allowed.

6.1.5 Control

The smoothed path will be used as reference for a controller. We use the following tracking

controller for Koala motion [116][117]:

 = −1( )1

 = −4 sin 33
2 − 3( )3

(6.6)
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Figure 6.8: We show the original and smooth path for comparison.

Figure 6.9: After the smooth process, the orientation has smooth transitions.



128 Appendices

Figure 6.10: After the smooth process, the curvature is limited   4−1

where control gains are

1() = 3( ) = 2
p
2

 + 2

4 = 
(6.7)

 and  are positive real constants. The errors expressed in the body frame of mobile robot

are ⎛⎜⎜⎝
1

2

3

⎞⎟⎟⎠ =

⎛⎜⎜⎝
cos  sin  0

− sin  cos  0

0 0 1

⎞⎟⎟⎠
⎛⎜⎜⎝







⎞⎟⎟⎠ (6.8)

where  = −,  = − ,  = −  This controller requires (    ), but we

only have a path P = {£1
1

¤
 

£



¤} with no orientation nor velocities. So we assign directly
 := {}=1 and  := {}=1; and the rest reference signals (the orientation  := {}=1,
the linear velocity  := {}=1, the angular velocity  := {}) can be calculated as
follows,

 =

(
2(∆∆) for ∀ ∈ {1   − 1}

2(∆−1∆−1) for  = 

)
(6.9)

 =

⎧⎨⎩
1


p
∆2 +∆2 for ∀ ∈ {1   − 1}

1


q
∆2−1 +∆2−1 for  = 

⎫⎬⎭ (6.10)
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 =

(
∆


for ∀ ∈ {1   − 1}
∆−1


for  = 

)
(6.11)

where ∆ = +1− , ∆ = +1− , ∆ = +1−  and  is the virtual sample time of

reference trajectory. This parameter regulates the velocity profile of real robot.

In order to evaluate the performance of controller, we make some simulations in Sim-

ulink(R) and Python. Figure 6.11 shows the discrete-time controller with sample time

 = 01 and the kinematic model of Koala robot with saturation in velocities. The

reference trajectories under test are three trajectories (a straightline path, a cycle and an

"eight path"). The initial state is (−01−01) for all simulations. We choose these

initial values because it is the worst case where the angular error  and error position ( )

are initially maximum (the resolution of grid maps is 01). The saturations ±055

are the maximum velocities of wheels for Koala robot. The parameterized equations for each

test trajectory are the following:

For a straight line

() = 

() = 0
(6.12)

For a circular path

() =  sin(
2

)

() = 

³
1− cos

³
2


´´ (6.13)

For an "eight path"

() =  sin(
4

)

() = 2

³
1− cos

³
2


´´ (6.14)

where  ∈ [0 60],  = 1,  = 60,  = 01.

Figure 6.12 shows the results of these tests with ( = 2  = 10). The controller com-

pensates well the initial error and we compensate the final error maintaining the final state

of reference trajectory (       ), until the robot state reaches it under certain

tolerance
p
2 + 2   (in simulation,  = 001).
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Figure 6.11: The discrete-time controller is applied to an continuous-time unicycle model that

represent the kinematics of Koala robot. The simulation considers the velocity saturation

effect in left and right wheel.



6.1 A basic autonomous navigation system 131

Figure 6.12: We show how the controller follows the reference trajectories (red lines). Blue

lines are robot trajectories.
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6.1.6 Experiment

The Koala robot was tested in an office environment at Department of Automatic Control,

performing a small navigation task showed in Figure 6.13. Previously, the robot was guided

manually through the environment to acquire laser and encoders measurements. The nav-

igation system builds an occupancy grid map Figure 6.13-(a). The planner builds a value

function  (x) and generates the optimal free-collision path, Figure 6.13-(b). Finally, the

controller tracks the robot state to the reference trajectory; some snapshots are shown in

Figure 6.13-(c).

This experiment shows that:

• The odometry is quite problematic because the map and the navigation task are cor-
rupted by odometry error, which is accumulated over time. It is indispensable to

implement a SLAM method to avoid these problems.

• The controller can guarantee that the error in the final position of the robot can be less
than 005. This is because the robot is always behind the reference state trajectory.

6.2 Autonomous navigation in unknown environments

guided by emergency signs

"Lucky is the society that enjoys the gradual acquisition of a perfect balance

between imitation and curiosity, between slavish, unthinking copying and pro-

gressive, rational experimentation." –Desmond Morris

In this section, we present an autonomous navigation system able to find the exit, guided

by emergency signs in unknown environments. Initially, the robot does not have a map and

does not know where the emergency exit is. But it has a SLAM system that creates a map

as the robot moves in the environment. And it has a perception system that observes the

environment and interprets emergency signs (see Figure 6.14) to plan how to move toward
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Figure 6.13: An small autonomous navigation experiment.
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the possible exit. The map is necessary for preventing that the robot visits the same place

more than once during exploration. Note that emergency signs are signs that were already in

the building and used by humans for the same purpose. The environment was not modified

in any way for facilitating navigation. This project was done as part of a research stay at

the University of Bristol in England led by Walterio Mayol-Cuevas. A video showing the

operation of this navigation system is online at

https://www.youtube.com/watch?v=RAj70AGsXls&feature=youtu.be??

The robot used for this project was an iRobot Create [156]. It is a differential robot that

has encoders for odometry and bumpers to avoid obstacles. We mounted a RGBD camera

[157] on the robot; which is used to build the map and observe emergency signs. The software

was developed on ROS (Robot Operating System) [158] that facilitates the construction of a

modular software system. ROS already have some software that were reused for this project:

the driver for iRobot Create [159], the driver for the Kinect sensor [160] and Gmapping [161],

which is a SLAM method.

The navigation system diagram is shown in Figure 6.15. The perception is in charge of:

(1) detecting and segmenting the signs appearing in RGB images, (2) recognizing the arrow

direction on the segmented image of the signs, (3) interpreting this direction in geometrical

terms of the environment, (4) creating a map of the observed signs to avoid recognizing and

interpreting signs already detected, and (5) choosing the nearest sign to be followed. The

mapping is comprised of the module "Kinect to Laser" and the module "SLAM". The first

takes only a horizontal region of the depth image and transforms it into a laser format. The

second builds a 2-D occupancy grid map and locates the robot. The planning takes the goal,

the map and the robot’s position to generate a sequence of waypoints that the robot must

follow to reach the exit. The controller follows these waypoints to execute the plan and

incorporates a module to avoid obstacles. Note that the plan changes every time that the

map changes or the planned path is invalid. This gives flexibility to the navigation system

to explore the environment. In the following sections, we will present the details of each part
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Figure 6.14: We show the signals that were used to guide the robot to the emergency exit.

And we show some pictures of the environment in which the robot navigates and how the

signals were set.
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Figure 6.15: This is the diagram of the navigation system.

of this navigation system.

6.2.1 Perception

The objective of perception system is to detect, recognize and interpret emergency signs seen

from RGBD camera, and provide to the planning system the position of the nearest sign and

the direction of the emergency exit given by this sign. This perception system is divided

into two modules: Signal Watcher and Signal Recognizer.

Signal Watcher functions are the following:

• Monitoring when one or more emergency signs appear in RGB images.

• Building a map of the positions of emergency signs. This map is used to avoid recog-
nizing a sign more than once.

• Determining the closest signs to the robot for following this signs.

• Calling Signal Recognizer to process emergency signs that have been seen for the first
time (i.e. they are not found on map previously).
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• Stopping the robot during recognition process to reduce errors due to the blur images.

The Signal Recognizer recognizes the direction of arrow on emergency signs. First, the

region where an emergency sign appears in RGB image is segmented using an Adaboost clas-

sifier [162][163][164]. A centroid (  ) and a plane (3 2 1 0) of emergency sign is de-

termined using the point cloud corresponding to the region in RGB image (where 3 2 1 0

are coefficients of plane equation). The plane is adjusted to point cloud by RANSAC method

[165]. This process of detecting the centroid and plane is repeated with all images taken dur-

ing 10 seconds. The centroids are spatially clustered to identify the most reliable detections

and discard false detections. A centroid and a plane are assigned to each group as the

mean of the centroids and planes of the group, respectively. Groups with more number of

detections ( 10) are processed to recognize the direction of the arrow by the correlation

between templates of arrows and the last image of detected sign (see Figure 6.16). Finally,

the position and direction of the emergency sign are projected on the floor plane. And the

coordinates are transformed from sensor framework to robot framework. These data of the

detected signs are sent to Signal Watcher to add them to the map of the sign positions.

6.2.2 Map-building

Since the environment is unknown at the beginning, the robot must be able to build a map

as it explores the environment to avoid visiting the same place more than once. Thus the

search for emergency exit is more efficient, and we can ensure that the robot explores the

whole environment, if necessary, until finding the exit. The mapping is comprised of two

modules: "Kinect to Laser" and "SLAM".

The "Kinect to Laser" module takes a horizontal region ([−020 080] of height) of

the depth image from a RGBD camera and transforms these data into format of a laser. It

determines the shortest depth for each angle of that horizontal region. Due to the limitations

of RGBD camera, this virtual laser only covers about 60◦ and only sees obstacles between

[06 60] (see Figure 6.17). This is a major limitation because the robot cannot see nearby

obstacles ( 60), so it may collide with objects that come suddenly into this blind region.
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Figure 6.16: This illustrates the matching process between templates of arrows and the image

of emergency signal to recognize the direction to the emergency signal.

Figure 6.17: This shows (a) the region that the camera RGBD can detect obstacles and (b)

the horizontal region where the shortest depth is determined.
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This module also takes into account the slope of RGBD camera, reading its angular position

and transforming point cloud from sensor framework to robot framework. This allows the

camera can increase its angular position for seeing the emergency signs that are located at

ceiling.

The module "SLAM" builds the map from laser data and odometry provided by the

robot’s encoders. This is a vital module for the proper functioning of the navigation system

because if the map is incorrect or location fails then there is no guarantee that the robot can

find the emergency exit. We use the method Gmapping to perform this task. GMapping is

an efficient Rao-Blackwellized particle filer [35] in which each particle carries an individual

map of the environment. The method can be summarized by the following four steps:

1. Sampling: The next generation of particles is obtained from the past generation by

sampling from a proposal probability distribution.

2. Importance Weighting: An individual importance weight is assigned to each particle

according to the importance sampling principle.

3. Resampling: Particles are drawn with replacement proportional to their importance

weight. After resampling, all the particles have the same weight.

4. Map Estimation: For each particle, the corresponding map estimate is computed based

on the trajectory of that sample and the history of observations.

This method is already implemented as a standard module in ROS [161]. We reuse it in

this project.

6.2.3 Planning & Execution

The planning system decides to where the robot will move to find the emergency exit. We

use a conventional algorithm in 2-D: A* search [101][102]. This algorithm requires three

inputs: the map, the current location of the robot and the goal. Commonly, the goal is a

point ( ), but the problem is to find the emergency exit, so in principle we have no goal
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defined in terms of coordinates. What we have is the information (  ) of the nearest

emergency sign to robot; where ( ) is the location of the sign and  is the direction of

the arrow in the sign. With this information we can project a straight line in the direction of

 and located on the sign ( ), and take the intersection ( ) between this line and

the border of the map as the goal (see Figure 6.18). The planning generates a path toward

this goal assuming that the unobserved region of the map is free of obstacles. The path is a

sequence of coordinates ( ) spaced every 1m, called waypoints.

A P controller follows these waypoints using the following control law to assign linear 

and angular  velocities:

 = max(0 1
−||


)

 =max(−1 1  )
(6.15)

where max ymax are maximum linear and angular velocities,  is a parameter to adjust

the velocity of turns, () is the saturation function, and  = arctan 2
³
−
−

´
−  is the

angular difference between direction to next waypoint ( ) and robot orientation . Note

that if the robot collides with some unexpected obstacle, then a preprogrammed routine is

activated to avoid the obstacle.

6.2.4 Experiments

We made seven experiments to evaluate the effectiveness of this navigation system. One

of which was completely successful reaching the emergency exit, 3 were partially successful

because the robot just lost in the environment near to the exit, and 3 were completely failed

since it could not leave the initial region. The cause of all these failures was due to SLAM

system that lost the location of robot. Since the angular range of virtual laser is very short

(~60 ◦), the SLAM system does not have enough information to keep robustly the location

of robot. Note the importance of SLAM system in the Figure 6.15. The systems of planning,

controlling, and perception depend on robot localization. If this fails, then the other systems

also fail. Possibly changing the virtual laser for a laser with over 180◦ angular range, the

SLAM system will be more reliable. Figure 6.19 shows some snapshots of the successful
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Figure 6.18: This illustrates how to calculate a goal ( ) through information provided

by emergency signal (  ). The goal is used by A* search to compute the path, which

is a sequence of points (in blue).
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experiment. A video showing this experiment is online at

https://www.youtube.com/watch?v=RAj70AGsXls&feature=youtu.be??

1 2

3

4

5

6

Figure 6.19: We show some snapshots during the travel of robot to the emergency exit.
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