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Ciudad de México Agosto, 2016



Abstract

A study on the stability of continuous-time difference equations is presented. Based on the con-

struction of the analogous of the delay Lyapunov matrix for this class of systems, a complete type

Lyapunov-Krasovskii functional is proposed that allows to present necessary conditions of stabil-

ity. Examples are given throughout the work to illustrate the construction of the new Lyapunov

matrix and the obtained necessary conditions of stability.

Resumen

Se presenta un análisis sobre la estabilidad de ecuaciones en diferencias en tiempo continuo. Con

base en la construcción del análogo de la matriz de Lyapunov para esta clase de sistemas, se

propone una funcional de Lyapunov-Krasovskii de tipo completo que permite presentar condiciones

necesarias de estabilidad. A lo largo del trabajo se muestran ejemplos que ilustran la construcción

de la nueva matriz de Lyapunov y las condiciones necesarias de estabilidad obtenidas.
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Notations and Symbols

R Field of real numbers

‖x‖ Euclidian norm of a vector x ∈ Rn

N0 Set of natural numbers, including zero

Z Set of integers

Rn Space of n−vectors with entries in R

i Imaginary unit, i2 = −1

0n×n Zero n× n matrix

In n× n Identity matrix

‖A‖ Induced norm of a matrix A, ‖A‖ = max‖x‖=1‖Ax‖

C([−h, 0),Rn) Space of Rn−valued continuous functions on [−h, 0)

PC([−h, 0),Rn) Space of Rn−valued piecewise continuous functions on [−h, 0)

0h Rn-valued trivial function, 0h(θ) = 0 ∈ Rn, θ ∈ [−h, 0]

f(t+ 0) Right-hand-side limit of f(t) at a point t, f(t+ 0) = limε→0 f(t+ |ε|)

f(t− 0) Left-hand-side limit of f(t) at a point t, f(t− 0) = limε→0 f(t− |ε|)

‖ϕ‖h Uniform norm, ‖ϕ‖h = sup−h≤θ<0‖ϕ(θ)‖

x′(t) First derivative of x(t)

x′′(t) Second derivative of x(t)

xt Restriction of x(t), xt : θ → x(t+ θ), θ ∈ [−h, 0)

AT Transpose of matrix a A

A > 0(A ≥ 0) Symmetric matrix A is positive definite (positive semidefinite)

λ(A) Eigenvalue of a matrix A

λmax(A), λmin(A) Maximum, minimum eigenvalue of a symmetric matrix A

ρ(A) Spectral radius of a square matrix A

A⊗B Kronecker product of matrices A and B

vec(A) Vector of stacked columns of a matrix A
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Introduction

Automatic Control is a field of Engineering Sciences that focuses on the analysis and synthesis

of the behavior of dynamic systems. The main tool to achieve these purposes is mathematics,

which provides resources to manipulate symbols in order to develop strategies that modify a given

dynamic system so that a desired objective is accomplished.

This objective is often associated to taking the response of the system to an equilibrium point,

which, once it is reached, remains as it is in the absence of perturbations. Equilibrium points are

distinguished by a preeminent property called stability. This property is commonly characterized

in the sense of Lyapunov, a Russian engineer and mathematician who established the basis of the

theory called after him. If the behavior of the response of a system starting from a point close to

the equilibrium point remains nearby, the equilibrium point is stable; else, it is unstable.

In many areas of study, problems appear that can be modeled (mathematically represented) by

the so-called difference equations, which relate a measurement obtained from a system in a given

time with previous measurements in equally spaced time instants in the past. These mathematical

models are oversimplifications of the actual phenomena, but they can be sufficient in order to

achieve the aforementioned control purposes.

In this work, we deal with the analysis of the stability of a more general form of these difference

equations known as difference equations in continuous time, in which the past measurement times,

now called delays, need not be equally spaced or even commensurate (integer multiples of a fixed

delay). As is customary in the literature of Automatic Control, the mathematical models will be

referred to as systems, keeping in mind that they are not the actual systems but their symbolic

representations.
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2 Introduction

Throughout this Thesis, the Lyapunov-Krasovskii strategy is pursued in an analogous manner

to the one that V. Kharitonov [1], S. Mondié and A. Egorov [2] have followed for time-delay

systems. This strategy will lead the reader to our main result, Necessary Conditions for stability

of continuous-time difference equations.

Motivation and previous work

In the context of Engineering Sciences, motivations to study these equations come from sampled-

data systems, neutral time-delay systems (see [3], [1], and [4]), difference equations with distributed

delays (examples in [5]), conservation laws modeled by first order hyperbolic partial differential

equations in which a transport phenomenon occurs ( [3], [6] ), and other classes of linear systems

with distributed parameters, which have been shown in [7] to admit a representation in the form

of difference equations in continuous time.

Physical examples of these systems include wave equations (a particular case of hyperbolic partial

differential equations), whose applications range widely, from acoustics (see [8], [9], and [10]),

electrical engineering (e.g. the telegraph equation in [11], [12]), mechanics (examples in [13]),

communications, etc (see [14], [15], and [16]). In Chap. 1, an example of the modeling of a

physical system in terms of difference equations in continuous time is given.

The stability analysis for these systems has been subject of study for many years, and spectral

conditions for stability independent of the delays have been proposed in [17], [18], and [3]. In the

general case, these spectral conditions are difficult to verify. The need to find stability conditions

that are numerically easier to handle arises and the Lyapunov-Krasovskii approach, which yields

conditions in the form of linear matrix inequalities (LMI), has proven useful. Among the first

works that use this approach is [19], in which, using quadratic Lyapunov-Krasovskii functionals,

conditions for L2 asymptotic stability independent of the delays have been obtained. This approach

has been extended in [20] and [21].

More recently, there has been increasing interest in the construction of Lyapunov-Krasovskii func-

tionals that provide constructive exponential decay rate estimates and reduce conservatism, as can

be seen in [22] and [23].
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In the study of time-delay systems, the stability problem has also been approached by means of a

Lyapunov-Krasovskii functional with a prescribed derivative that has led to the definition of the

so-called Lyapunov delay matrix in [24]. Moreover, a functional, named of complete type, that

satisfies a quadratic lower bound when the system is stable, was proposed. Necessary conditions

of stability of time-delay systems in terms of the Lyapunov delay matrix have been presented

in [25], [26], [2]. In this work we present the analogous case of these necessary conditions for

continuous-time difference equations.

Objectives

The main objectives of this work are:

• To propose a Lyapunov-Krasovskii functional with prescribed derivative under the assump-

tion of exponential stability of the systems under study (Chap. 2).

• To analyze the matrix-valued function that defines this functional. This is called the Lya-

punov matrix given that it is a counterpart of the matrix solution of the classical Lyapunov

matrix equation for delay-free systems. From this analysis, it is shown that the assumption

of exponential stability is not necessary for the existence of this Lyapunov matrix (Chap. 2).

• To present a complete type functional that fulfills Sufficient Conditions for the stability of

difference equations in continuous time (Chap. 3).

• To introduce a method for the computation of the above mentioned Lyapunov matrix (Chap.

4).

• To present Necessary Conditions for the stability of difference equations in continuous time

(Chap. 5).
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Chapter 1

Difference equations in continuous time:

preliminaries

Introduction

In the context of time-invariant linear systems, we present a state-space representation of a par-

ticular type of system as follows

x(t) =
∑m

j=1 Ajx(t− hj) +
∑m

j=0Bju(t− hj), t ≥ 0

y(t) =
∑m

j=0 Cjx(t− hj) +
∑m

j=0Dju(t− hj), t ≥ 0,

(1.1)

which resembles that of time-delay systems treated in [1], but having difference equations instead

of the differential type. We call this type of system a difference equation in continuous time, for

the resemblance it has with the difference equations that are normally defined in discrete time in

the classic literature of linear systems [27].

Here, x(t) ∈ Rn is called the instantaneous state at time t ≥ 0, h1, . . . , hm are the delays, with

0 = h0 < h1 < · · · < hm = H. Moreover, Aj are n × n real matrices for j = 1, . . . ,m, and

Bj ∈ Rn×q, Cj ∈ Rp×n and Dj ∈ Rp×q for j = 0, . . . ,m.

Considering u(t) ∈ Rq and y(t) ∈ Rp to be the input and output of system (1.1), respectively,

5



6 Chapter 1. Difference equations in continuous time: preliminaries

we have as motivations to study this class of equations the approximation of linear systems with

distributed parameters discussed in [7], including conservation laws, as well as neutral time-delay

systems and sampled-data systems, among others.

For instance, let us consider the distortionless RLCG-electrical transmission line [28] in Fig. 1.1.

RLCG transmission line

i(0,t)
RL

C1/G

v(0,t)
v(1,t)

i(1,t)

Rl

Figure 1.1: RLCG-electrical transmission line

The electrical dissipative components are assumed to satisfy α = R
L

= C
G

, where R, C, L and G

are, respectively, the resistance, capacitance, inductance and conductance of the finite length line

(we consider a unit length). The following first-order linear partial differential equations describe

the Kirchoff’s laws of the line:

Lit(z, t) = −Ri(z, t)− vz(z, t), (1.2)

Cvt(z, t) = −Gv(z, t)− iz(z, t), (1.3)

for 0 ≤ z ≤ 1 and t ≥ 0, where i(z, t) and v(z, t) stand for the current and voltage in position z

and time t, respectively. The boundary conditions are

v(1, t) = Rli(1, t), u(t) = v(0, t), (1.4)

where Rl is the load resistance connected to the line, and u(t) is the input voltage. The d’Alembert

solutions for (1.2)-(1.3) are

i(z, t) = e−αt
φ(z − νt)− ψ(z + νt)

2σ
(1.5)
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v(z, t) = e−αt
φ(z − νt) + ψ(z + νt)

2
, (1.6)

here, ν = 1√
LC

stands for the velocity of wave propagation, σ =
√

L
C

is known as the wave

impedance of the line, φ and ψ are arbitrary (smooth) functions. The boundary conditions (1.4)

yield

ψ(1 + νt) = κφ(1− νt) (1.7)

2u(t) = e−αt (φ(−νt) + ψ(νt)) , (1.8)

where κ = Rl−σ
Rl+σ

. We define a new variable in the vector form

x(t) =

x1(t)

x2(t)

 =
1

2

e−α(t−h)φ(t− νt)

e−αtφ(−νt)

 , (1.9)

with h = 1
ν
. Using this variable, equations (1.7)-(1.8) are written as

x(t) = Ax(t− h) +Bu(t), (1.10)

where

A =

 0 1

−a 0

 , B =

0

1

 ,
and a = κe−2αh.

We retrieve from (1.9) the physical state variables:

v(1, t) = (1 + κ)e−αhx1(t)

σi(0, t) = 2x2(t)− u(t).

Therefore, the response of the RLCG-electric line to input voltage is modeled by the difference

equation in continuous time in (1.10). Notice that, since |κ| ≤ 1, |a| < 1 is related to the dissipative

components of the line. This fact implies that the matrix A has eigenvalues with module strictly

less than one, which is related to the asymptotic stability of the system.

As a second illustration, let us analyze the link between continuous-time difference equations and
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other time-delay systems, which have been more extensively studied.

Linear time-delay systems

The following is the representation of a linear time-delay system with commensurate delays

ẋ(t) =
m∑
j=0

Ajx(t− jh) +
m∑
j=0

Bju(t− jh), t ≥ 0 (1.11)

y(t) =
m∑
j=0

Cjx(t− jh) +
m∑
j=0

Dju(t− jh), t ≥ 0 (1.12)

where h is strictly positive, x(t) ∈ Rn, u(t) ∈ Rq is the input of the system and y(t) ∈ Rp is

the output of the system. The matrices Aj, Bj, Cj and Dj for j = 0, . . . ,m are real matrices of

the appropriate dimensions and the delays hj = jh are the so-called point-wise delays. For any

continuous initial condition ϕ(θ), θ ∈ [−mh, 0], there exists a unique solution for (1.11)-(1.12).

Neutral type systems

A neutral type system (see [4], [29], and the reference therein) admits the following state-space

representation

ẋ(t) =
m∑
j=0

Ajx(t− jh) +
m∑
j=0

Bju(t− jh) +
m∑
j=1

Ejẋ(t− jh), t ≥ 0 (1.13)

y(t) =
m∑
j=0

Cjx(t− jh) +
m∑
j=0

Dju(t− jh) +
m∑
j=1

Fjy(t− jθ), t ≥ 0, (1.14)

with initial condition ϕ ∈ C([−mh, 0],Rn) and Ej, Fj, real matrices for j = 1, . . . ,m. Notice that

for Ej = 0 and Fj = 0, we obtain a time-delay system. The response of the system is unique for

any initial condition ϕ(θ), θ ∈ [−mh, 0].

Now, we are interested in finding a representation of the neutral type systems as coupled differential-

difference systems.

First, we define the delay operator ς : x(t)→ x(t−h). This operator induces ςj(x(t)) = x(t− jh).

The neutral type system (1.13)-(1.14) can be written, in terms of the operator ς as
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ẋ(t) =
m∑
j=0

Ajς
j(x(t)) +

m∑
j=0

Bjς
j(u(t)) +

m∑
j=1

Ejς
j(ẋ(t)). (1.15)

We define

x1(t) =

(
In −

m∑
j=1

Ejς
j

)
x(t), x2(t) = x(t).

Using these variables, the neutral equation (1.15) now has the form

ẋ1(t) =
m∑
j=0

Ajς
j(x2(t)) +

m∑
j=0

Bjς
j(u(t)),

x2(t) = x1(t) +
m∑
j=1

Ejς
j(x2(t)),

which is equivalent to

ẋ1(t) =
m∑
j=0

Ajx2(t− jh) +
m∑
j=0

Bju(t− jh),

x2(t) = x1(t) +
m∑
j=1

Ejx2(t− jh).

This is a case of the more general coupled difference-differential equation
ẋ1(t) =

∑m
j=0Ajx1(t− jh) +

∑m
j=0 Ejx2(t− jh) +

∑m
j=0Bju(t− jh),

x2(t) =
∑m

j=0 Ãjx1(t− jh) +
∑m

j=0 Ẽjx2(t− jh) +
∑m

j=0 B̃ju(t− jh),

y(t) =
∑m

j=0Cjx1(t− jh) +
∑m

j=0 C̃jx2(t− jh) +
∑m

j=0Dju(t− jh).

The two previous illustrations show the utility of the continuous-time difference equations in engi-

neering sciences and their applications. First, in a reinterpretation of a classic problem involving

partial differencial equations, and later in the analysis of a subject of interest in the literature of

delay systems.

In this research work, we will study, in the framework of the Lyapunov Krasovskii Theory, difference
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equations in continuous time of the form

x(t) =
m∑
j=1

Ajx(t− hj), t ≥ 0, (1.16)

which is the particular autonomous case of (1.1).

Let ϕ : [−H, 0) → Rn be an initial function. We assume that the function belongs to the space

PC([−H, 0),Rn), of piecewise continuous functions defined on the segment [−H, 0). Let x(t, ϕ)

stand for the solution of system (1.16) under the initial condition

x(θ, ϕ) = ϕ(θ), θ ∈ [−H, 0),

and let xt(ϕ) denote the restriction of the solution to the segment [t−H, t),

xt(ϕ) : θ → x(t+ θ, ϕ), θ ∈ [−H, 0).

In the remainder of this work we will be using the Euclidean norm for vectors and the induced

matrix norm for matrices. For elements of the space PC([−H, 0),Rn) we use the uniform norm

‖ϕ(θ)‖h = sup
θ∈[−H,0)

‖ϕ(θ)‖,

and the L2 norm

‖ϕ‖L2 =

∫ 0

−H
‖ϕ(θ)‖dθ.

Let us write next a few comments on the delays in difference equations.

Preliminary remarks on delays.

Let h1, h2, . . . , hm be a set of ordered delays such that 0 < h1 < h2 < · · · < hm.

The delays are said to be commensurate if there exist h > 0 and positive integers p1, . . . , pm such

that

hj = pjh, j = 1, . . . ,m.
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The delays are said to be rationally dependent if there exist γj in Z not all of which are zero such

that
m∑
j=1

γjhj = 0.

If such integers do not exist, the delays are said to be rationally independent, that is, the only

m−tuple of integers γj ∈ Z such that
∑m

j=1 γjhj = 0 is the trivial solution in which every integer

γj is zero. Let ϕ ∈ C([−hm, 0)) be an initial condition. The times when jump discontinuities occur

are characterized by the propagation of the first jump which arises at time t0 = 0, with

∆(t0) = x(t0 + 0, ϕ)− x(t0 − 0, ϕ) =
m∑
j=1

Ajϕ(−hj)− ϕ(−0).

Since the instantaneous state x(t, ϕ) is a copy of its past values, the times of discontinuity are

propagated by positive integer combinations of the delays. Namely, denoting {tn}n∈N0 the times

of discontinuity, we have

tn = pn1h1 + · · ·+mnmhm,

for some pnk ∈ N0, k = 1, . . . ,m. The times of discontinuity are defined iteratively by

tn = min
pnj∈N0

{
m∑
j=1

pnjhj : tn > tn−1

}

with t0 = 0.

We define

δn = tn+1 − tn, n ∈ N0.

The set G = {δn, n ∈ N0} is an additive subgroup of (R,+), and is therefore either in the form hZ

for h > 0, or dense in R. The first case arises when the delays are commensurate, while the second

case arises when the delays are rationally independent.

Few comments are in order. First, the explicit dependency structure of the delays has to be taken

into account in the analysis. For this, assume that the delays (h1, . . . , hm) are linear combinations

of the form

hi =
N∑
j=1

γijηj, i = 1, . . . ,m,



12 Chapter 1. Difference equations in continuous time: preliminaries

where ηj > 0, γij ∈ N0, and N ≤ m.

The question is then to reformulate the initial equation with delays hi by another equation in the

delays ηj. For this, notice that the elements (η1, . . . , ηN) can always be assumed to be rationally

independent. Indeed, if this is not the case, there exist ρj ∈ Z, for j = 1, . . . , N not all identically

zero such that

ρ1η1 + · · ·+ ρNηN = 0.

There exists at least i0 in {1, . . . , N} such that ρi0 > 0. Therefore,

ηi0 = −
∑

i 6=i0 ρiηi

ρi0
.

Define η̃i = ηi
ρi0

, for i = 1, . . . , N , i 6= i0. It follows that

ηi0 = −
∑
i 6=i0

ρiη̃i.

We conclude that ηi = ρi0 η̃i and that ηi0 is a linear combination of the delays η̃i, for i 6= i0. In

other words, the delays hi, for i = 1, . . . ,m, can be written with respect to η̃i, that is, for any

i = 1 . . . ,m,

hi =
N∑
j=1

γijηj

=
∑
j 6=i0

γijρi0 η̃j − γii0
∑
j 6=i0

ρj η̃j

=
∑
j 6=i0

(γijρi0 − γii0ρj) η̃j.

In other words, we have reduced the number of independent delays which generate the initial

delays hi. Hence, without loss of generality, the elements (η1, . . . , ηN) can be taken as rationally

independent. The second question now is to reformulate the initial difference equation in the delays

hi into another form with delays ηi. For this, consider the plant

x(t) = A1x(t− h1) + A2x(t− h2) + A3x(t− h1 − 2h2),

where delays h1 and h2 are rationally independent, x(t) ∈ Rn, and Aj ∈ Rn×n, for j = 1, 2, 3.
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Define

χ(t) =


x(t)

x(t− h2)

x(t− 2h2)

 .

It follows that

χ(t) =


A1 0n×n A3

0n×n 0n×n 0n×n

0n×n 0n×n 0n×n

χ(t− h1) +


A2 0n×n 0n×n

In 0n×n 0n×n

0n×n In 0n×n

χ(t− h2)

which is a difference equation with independent delays (that is η1 = h1 and η2 = h2 with the

notations above), where the explicit dependency structure on delays was taken into account. With

this as a background, we can introduce the concepts needed in order to construct a Lyapunov-

Krasovskii functional that allows us to conclude on the stability of system (1.16).

The following sections will address the representation of an explicit expression for the solutions of

system (1.16) in terms of their initial functions.

1.1 Fundamental matrix

In order to derive this equation, we will make use of the fundamental matrix of system (1.16).

This matrix has been defined for linear systems of different nature [12], and has shown to be of

great use in the study of their dynamics.

Definition 1.1. For the system (1.16), we define the continuous-time difference matrix equation

K(t) =
m∑
j=1

K(t− hj)Aj + In, t ≥ 0, (1.17)

with the initial condition

K(θ) = 0n×n for θ ∈ [−H, 0). (1.18)
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Such a matrix K(t) is called the fundamental matrix of system (1.16). From its initial condition

we have that it is well-defined for all t ≥ 0 and it is straightforward to show that it is also unique.

Definition 1.2. We also introduce the following matrix function

K̄(t) = K(t) +K0, t ≥ −H, (1.19)

where

K0 =

(
m∑
j=1

Aj − In

)−1

, (1.20)

assuming that λ is not a root of det
(
In −

∑m
j=1 Aje

−λhj
)

= 0. We will refer to this matrix in

forthcoming sections.

Lemma 1.1. The matrix K̄(t) defined in (1.19) satisfies the following equation

K̄(t) =
m∑
j=1

K̄(t− hj)Aj, t ≥ 0. (1.21)

Proof. We use the definition of K̄(t) in (1.19) and equation (1.17) to write

K̄(t) =
m∑
j=1

K(t− hj)Aj + In +K0, t ≥ 0,

we replace K(t− hj) with K̄(t− hj)−K0, and obtain

K̄(t) =
m∑
j=1

K̄(t− hj)Aj + In +K0 −
m∑
j=1

K0Aj, t ≥ 0,

grouping the terms of the preceding equation, it follows that

K̄(t) =
m∑
j=1

K̄(t− hj)Aj + In −K0

(
m∑
j=1

Aj − In

)
, t ≥ 0,

equation (1.27) follows from the definition of K0 in (1.20).



1.1. Fundamental matrix 15

Example 1. One delay system. In Fig. 1.2 (a) we show the time response of a one-dimensional

system described by a particular case of equation (1.16), namely

x(t) = ax(t−H), t ≥ 0

x(θ) = ϕ(θ), θ < 0,
(1.22)

with a = −0.77, H = 1, and ϕ(θ) = 0.5 sin(2θ) − e−0.5θ. Fig 1.2 (b) shows its corresponding

fundamental function K(t).

(a) Time response of system (1.22) (b) Fundamental function K(t) of system (1.22)

Figure 1.2: Graphic representations of the dynamics of system (1.22)

Example 2. System with two non commensurate delays In Fig. 1.3 (a) we show the time response

of the one-dimensional system described by

x(t) = a1x(t− 1) + a2x(t−
√

2), t ≥ 0

x(θ) = ϕ(θ), θ < 0
(1.23)

with a1 = −0.46, a2 = −0.54, and ϕ(θ) = 0.5 sin(6θ)− e−0.5θ. Fig 1.3 (b) shows its corresponding

fundamental function K(t).

(a) Time response of system (1.23) (b) Fundamental function K(t) of system (1.23)

Figure 1.3: Graphic representations of the dynamics of system (1.23)
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We continue to characterize the fundamental matrix with the following property

Lemma 1.2. The fundamental matrix K(t) defined in (1.17) satisfies the matrix equation

K(t) =
m∑
j=1

AjK(t− hj) + In, t ≥ 0. (1.24)

This does not mean that matrix K(t) commutes individually with the coefficient matrices Aj,

j = 1,m.

Proof. To verify this, we introduce the matrix Q(t), which is the unique solution to

Q(t) =
m∑
j=1

AjQ(t− hj) + In, t ≥ 0 (1.25)

Q(θ) = 0n×n, θ < 0.

Consider the following identity:

∫ t

−0

K(t− s)Q(s)ds =

∫ t+0

0

K(t− θ)Q(θ)dθ. (1.26)

Replacing K(t− s) on the left-hand side (l.h.s.) of (1.26) with (1.17), and Q(θ) on the right-hand

side (r.h.s.) of the same equation with (1.25), we have

m∑
j=1

∫ t

−0

K(t−s−hj)AjQ(s)ds+

∫ t

−0

Q(s)ds =
m∑
j=1

∫ t+0

0

K(t−θ)AjQ(θ−hj)dθ+

∫ t+0

0

K(t−θ)dθ,

the change of variable s = θ− hj on the first integral of the r.h.s. of the preceding equation yields

m∑
j=1

∫ t

−0

K(t−s−hj)AjQ(s)ds+

∫ t

−0

Q(s)ds =
m∑
j=1

∫ t−hj+0

−hj
K(t−s−hj)AjQ(s)ds+

∫ t+0

0

K(t−θ)dθ,

subtracting
∑m

j=1

∫ t−hj+0

−0
K(t− s− hj)AjQ(s)ds from both sides of this equation, we obtain

m∑
j=1

∫ t

t−hj+0

K(t−s−hj)AjQ(s)ds+

∫ t

−0

Q(s)ds =
m∑
j=1

∫ −0

−hj
K(t−s−hj)AjQ(s)ds+

∫ t+0

0

K(t−θ)dθ,
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the change of variable s = t− θ on the second integral of the r.h.s. gives

m∑
j=1

∫ t

t−hj+0

K(t− s− hj)AjQ(s)ds+

∫ t

−0

Q(s)ds =
m∑
j=1

∫ −0

−hj
K(t− s− hj)AjQ(s)ds−

∫ 0

t+0

K(s)ds.

Notice that for s ∈ (t− hj, t], K(t− s− hj) = 0n×n, and for s ∈ [−hj, 0), Q(s) = 0n×n. Then, we

arrive at ∫ t

−0

Q(s)ds =

∫ t+0

0

K(s)ds.

Taking the time derivative on both sides, yields

Q(t) = K(t+ 0), t ≥ 0,

and, given that K(t) is right-continuous, we arrive at (1.24).

Corollary 1.1. The matrix K̄(t) defined in (1.19) satisfies the following equation

K̄(t) =
m∑
j=1

AjK̄(t− hj), t ≥ 0. (1.27)

Proof. We use the result in (1.24), the definition of K̄(t) in (1.19) and the same arguments used

in Lemma 1.1 to prove this assertion.

1.2 Cauchy formula

Next, we present the Cauchy formula for system (1.16). This formula, also known as variation of

constants formula, see Bellman and Cooke [12], provides an expression of the solution of system

(1.16) in terms of the fundamental matrix.

Theorem 1.1. Given an initial function ϕ ∈ PC([−H, 0),Rn) the following equality holds:

x(t, ϕ) =
m∑
j=1

∫ 0

−hj

d

dt
K(t− θ − hj)Ajϕ(θ)dθ, t ≥ 0, (1.28)

where the integral is in the Lebesgue sense. This equality is known as the Cauchy formula for

system (1.16).
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Proof. Let us consider the following equation:

∫ t

0

K(t− θ)x(θ)dθ =

∫ t+0

0

K(t− θ)x(θ)dθ. (1.29)

Using the expression for K(t) in (1.17) and the expression for x(t) in (1.16) on the l.h.s. and the

r.h.s. of (1.29), respectively, gives

m∑
j=1

∫ t

0

K(t− θ − hj)Ajx(θ)dθ +

∫ t

0

x(θ)dθ =
m∑
j=1

∫ t+0

0

K(t− θ)Ajx(θ − hj)dθ. (1.30)

Applying the change of variable ξ = θ − hj on the r.h.s. of (1.30), the equation becomes

m∑
j=1

∫ t

0

K(t− θ − hj)Ajx(θ)dθ +

∫ t

0

x(θ)dθ =
m∑
j=1

∫ t−hj+0

−hj
K(t− ξ − hj)Ajx(ξ)dξ. (1.31)

Replacing ξ with θ and taking into consideration that
∫ b
a
f(x)dx =

∫ c
a
f(x)dx +

∫ b
c
f(x)dx, the

r.h.s. of (1.31) can be modified so that it becomes

m∑
j=1

∫ t

0

K(t− θ − hj)Ajx(θ)dθ +

∫ t

0

x(θ)dθ =
m∑
j=1

∫ t−hj+0

0

K(t− θ − hj)Ajx(θ)dθ

+
m∑
j=1

∫ 0

−hj
K(t− θ − hj)Ajx(θ)dθ.

(1.32)

Now, subtracting the first term on the r.h.s. of (1.32) from both sides of the equation, yields

m∑
j=1

∫ t

t−hj+0

K(t− θ − hj)Ajx(θ)dθ +

∫ t

0

x(θ)dθ =
m∑
j=1

∫ 0

−hj
K(t− θ − hj)Ajx(θ)dθ.

Notice that, for θ ∈ (t−hj, t], the expression t−θ−hj ∈ [−hj, 0). Therefore, K(t−θ−hj) = 0n×n.

Moreover, x(θ) = ϕ(θ) on θ ∈ [−hj, 0). Thus, the preceding equation can be rewritten as

∫ t

0

x(θ)dθ =
m∑
j=1

∫ 0

−hj
K(t− θ − hj)Ajϕ(θ)dθ. (1.33)

Taking the first derivative with respect to t on both sides of (1.33) yields
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x(t) =
m∑
j=1

∫ 0

−hj

d

dt
K(t− θ − hj)Ajϕ(θ)dθ.

1.3 Predictor

Next, we present a predictor formula for system (1.16).

Lemma 1.3. With the knowledge of the state, xt, of system (1.16) at a given time t, we can

compute a value for x(t+ τ), τ ≥ 0 using the following formula:

x(t+ τ, xt) =
m∑
j=1

∫ 0

−hj
K ′(τ − θ − hj)Ajx(t+ θ)dθ. (1.34)

Proof. We can prove this Lemma with the same steps we used to prove Theorem 1.1, replacing

the identity (1.29) with

∫ τ

0

K(τ − θ)x(t+ θ)dθ =

∫ τ+0

0

K(τ − θ)x(t+ θ)dθ,

which yields ∫ τ

0

x(t+ θ)dθ =
m∑
j=1

∫ 0

−hj
K(τ − θ − hj)Ajx(t+ θ)dθ.

We take the derivative with respect to τ on both sides of the preceding equation to obtain

x(t+ τ) =
m∑
j=1

∫ 0

−hj
K ′(τ − θ − hj)Ajx(t+ θ)dθ.

Thus, we arrive at (1.34).
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1.4 Stability of difference equations in continuous time

1.4.1 Stability definitions

The following definitions concerning the class of linear systems under study are found in [19].

Definition 1.3. System (1.16) is said to be

i) stable (resp. L2−stable) if, for any ε > 0, there exists δ(ε) > 0 such that ‖ϕ‖h < δ implies

‖x(t, ϕ)‖ < ε (resp. ‖x(t, ϕ)‖L2 < ε), for any t ≥ 0.

ii) L2−asymptotically stable if it is L2−stable and, for any bounded initial function

ϕ ∈ PC([−H, 0),Rn),

lim
t→∞
‖xt(ϕ)‖L2 = 0,

iii) asymptotically stable if it is stable and, for any bounded initial function ϕ ∈ PC([−H, 0),Rn),

lim
t→∞
‖x(t, ϕ)‖ = 0,

iv) L2−exponentially stable if it is L2−asymptotically stable and if there exist α ≥ 0 and µ > 0

such that,

‖xt(ϕ)‖L2 ≤ αe−µt‖ϕ‖h, ∀t ≥ 0.

v) exponentially stable if it is asymptotically stable and if there exist α ≥ 0 and µ > 0 such that,

‖xt(ϕ)‖ ≤ αe−µt‖ϕ‖h, ∀t ≥ 0.

As it can be seen, exponential stability implies L2−exponential stability, and this in turn implies

asymptotic stability. However, the converse is false, in general. Furthermore, these definitions

hold for a given set of delays {h1, . . . , hm}. If these properties hold independently of the delays, we

say that system (1.16) is stable in the delays [19].
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1.4.2 Spectral analysis of asymptotic stability

From [3] we have the following necessary and sufficient condition for L2-asymptotic stability in the

delays of system (1.16):

sup

{
ρ

(
m∑
j=1

eiθjAj

)
, θj ∈ [0, 2π]

}
< 1. (1.35)

This condition, in the scalar case is equal to

m∑
j=1

|aj| < 1. (1.36)

If the delays in system (1.16) are commensurate, i.e., there exists h > 0 such that hj = pjh, pj ∈ Z,

j = 1, . . . ,m, then it admits the following representation with a single delay h > 0 (see [19])

X(t) = AX(t− h), t ≥ 0, (1.37)

where X(t) ∈ Rpmn, and A is the following pmn× pmn companion matrix

A =



0 0 · · · 0 A1 0 · · · 0 Ai 0 · · · 0 Am

I 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0

0 I · · · 0 0 0 · · · 0 0 0 · · · 0 0
. . .

0 0 · · · 0 0 0 · · · 0 0 0 · · · I 0


.

For this case the stability criterion for discrete linear systems (see Appendix B) holds. A general-

ization of the stability condition in (1.35) that takes into account the algebraic multiplicity of the

eigenvalues of A is given by

Theorem 1.2. [30] System (1.37) is

i) asymptotically stable if and only if ρ(A) < 1,

ii) stable if and only if ρ(A) ≤ 1, and for any eigenvalue |λk| = 1, rank(A − λkI) = n − qk,

where qk is the algebraic multiplicity of λk.
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1.4.3 Lyapunov-Krasovskii sufficient conditions of exponential stabil-

ity

In this section we present sufficient conditions for stability of system (1.16) given by the Lyapunov

Krasovskii approach, which uses a functional whose upper right-hand derivative is defined by

D+v(xt(ϕ)) = lim sup
h→0+

v(xt+h(ϕ)− v(xt(ϕ))

h
.

This upper right-hand derivative of v is named the Dini derivative [31]. Let us remind that if the

Dini derivative of a continuous function f(·) is not positive, then, this function does not increase.

The following is a result in which the L2-stability of system (1.16) is established.

Theorem 1.3. Assume that there exists a continuous functional v : PC([−H, 0),Rn) → R such

that t 7→ v(xt(ϕ)) is (upper right-hand) differentiable for all t ≥ 0 and such that

1. ∃ α1 > 0 s.t. ∀t ≥ 0, α1‖xt(ϕ)‖2
L2
≤ v(xt(ϕ)),

2. ∃ α2 ≥ 0 s.t. v(ϕ) ≤ α2‖ϕ‖2
h,

3. ∃ σ > 0 s.t. ∀t ≥ 0, D+v(xt(ϕ)) ≤ −2σv(xt).

Then (1.16) is L2-exponentially stable, that is

‖xt(ϕ)‖L2 ≤
√
α2

α1

‖ϕ‖he−σt, t ≥ 0.

Proof. From assumption (3) we obtain

D+v(xt(ϕ)) + 2σv(xt(ϕ)) ≤ 0,

this leads to

v(xt(ϕ)) ≤ v(ϕ)e−2σt, t ≥ 0.
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Assumptions (1) and (2) yield

‖xt(ϕ)‖2
L2
≤ α2

α1

‖ϕ‖2
he
−2σt, t ≥ 0,

which ends the proof.
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Chapter 2

Functional with prescribed derivative

With Theorem 1.3 as a motivation, we start searching for quadratic functionals that satisfy the

theorem conditions. For this purpose, we follow a strategy based on the direct Lyapunov method.

We begin by selecting a desired time derivative and then computing the functional whose time

derivative along the solution of (1.16) corresponds to the selected one. The linearity and time

invariance of the system allows us to begin with the case where the desired derivative is a quadratic

form.

2.1 Form of the functional

In this section we assume that the system (1.16) is stable. Under this assumption, we are able to

construct, with the help of the Cauchy formula (1.28), a functional with prescribed derivative.

We first define a quadratic functional v0(ϕ), ϕ ∈ PC([−H, 0),Rn), that satisfies the equality

D+v0(xt) = −xT (t, ϕ)Wx(t, ϕ), t ≥ 0, (2.1)

along the solutions of system (1.16). Here W is a given positive definite matrix. Integrating

equation (2.1) from t = 0 to t = T > 0 we obtain

v0(xT (ϕ))− v0(ϕ) = −
∫ T

0

x(t, ϕ)Wx(t, ϕ)dt.

25
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Since system (1.16) is exponentially stable, xT (ϕ)→ 0h as T →∞, and we arrive at the expression

v0(ϕ) =

∫ ∞
0

xT (t, ϕ)Wx(t, ϕ)dt,

the fact that x(t) is right-continuous gives

v0(ϕ) =

∫ ∞
−0

xT (t, ϕ)Wx(t, ϕ)dt.

The exponential stability of system (1.16) implies that the improper integral on the right-hand side

of the previous equality is well defined. Replacing x(t, ϕ) with the r.h.s. of the Cauchy formula

(1.28), we have

v0(ϕ) =
m∑
i=1

m∑
j=1

∫ 0

−hi

∫ 0

−hj
ϕT (ξ)ATi

∫ ∞
−0

d

dt
KT (t− ξ − hi)W

d

dt
K(t− θ − hj)dtAjϕ(θ)dθdξ.

(2.2)

The equality
d

dt
K(t− τ) = − d

dτ
K(t− τ),

allows us to express (2.2) as

v0(ϕ) =
m∑
i=1

m∑
j=1

∫ 0

−hi

∫ 0

−hj
ϕT (ξ)ATi

d

dξ

d

dθ

∫ ∞
−0

KT (t− ξ − hi)WK(t− θ − hj)dtAjϕ(θ)dθdξ.

(2.3)

We define the following matrix

U(τ) ,
∫ ∞
−0

KT (t)WK̄(t+ τ)dt, τ ∈ R, (2.4)

where K̄(t) is introduced in (1.19). This matrix will play an important role in the following

sections. In analogy with the delay-free case, and other cases of delay systems reported in the

literature, this real valued matrix function is called the Lyapunov matrix of system (1.16).

Let us prove that the matrix U(τ) is well defined for τ ∈ R.
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Lemma 2.1. Given τ0 ∈ R, the improper integral (2.4) converges absolutely and uniformly with

respect to τ ∈ [τ0,∞).

Proof. From equation (1.27) we see that the columns of matrix K̄(t) are solutions of (1.16) with

specific initial conditions. Therefore, under the assumption that system (1.16) is exponentially

stable, we can say that this matrix admits an upper exponential estimate of the form

‖K̄(t)‖ ≤ γe−σt, t ≥ 0. (2.5)

It follows directly from (2.5) that, for t ≥ 0

‖KT (t)WK̄(t+ τ)‖ =
∥∥(K̄T (t)−KT

0

)
WK̄(t+ τ)

∥∥
≤ γ2‖W‖e−σ(2t+τ) + γ ‖WK0‖ e−σ(t+τ).

Now, let τ ∈ [τ0,∞); then, the inequality

∫ ∞
−0

‖KT (t)WK̄(t+ τ)‖dt ≤ γ2

2γ
‖W‖e−στ0

(
1 +

2

γ
‖K0‖

)
,

proves the statement.

Observe that, under the change of variable s = t− ξ − hi, the expression

∫ ∞
−0

KT (t− ξ − hi)WK(t− θ − hj)dt,

appearing in (2.3), becomes∫ ∞
−ξ−hi−0

KT (s)WK(s+ ξ + hi − θ − hj)ds =

∫ ∞
−0

KT (s)WK̄(s+ ξ + hi − θ − hj)ds

−
∫ ∞
−0

KT (s)WK0ds

+

∫ −0

−ξ−hi−0

KT (s)WK(s+ ξ + hi − θ − hj)ds.
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From the definition of U(τ) in (2.4), we get∫ ∞
−0

KT (t− ξ − hi)WK(t− θ − hj)dt =U(−θ − hj + ξ + hi)

+

∫ −0

−ξ−hi−0

KT (s)WK(s+ ξ + hi − θ − hj)ds

−
∫ ∞
−0

KT (s)WK0ds.

Returning to (2.3), we have

d

dξ

d

dθ

∫ ∞
−0

KT (t− ξ − hi)WK(t− θ − hj)dt =
d

dξ

d

dθ
U(−θ − hj + ξ + hi)

− d

dξ

∫ −0

−ξ−hi−0

KT (s)WK ′(s− θ − hj + ξ + hi)ds

− d

dξ

d

dθ

∫ ∞
−0

KT (s)dsWK0.

As ξ ∈ [−hi, 0], s ∈ [−hi, 0) and K(s) = 0n×n. We observe also that the terms inside the second

integral on the r.h.s. of the preceding equation are constant with respect to θ and ξ. Then, we

arrive at the following expression

d

dξ

d

dθ

∫ ∞
−0

KT (t− ξ − hi)WK(t− θ − hj)dt =
d

dξ

d

dθ
U(−θ − hj + ξ + hi)

= −U ′′(−θ − hj + ξ + hi),

which allows us to write the functional (2.2) as

v0(ϕ) = −
m∑
i=1

m∑
j=1

∫ 0

−hi

∫ 0

−hj
ϕT (ξ)ATi U

′′(−θ − hj + ξ + hi)Ajϕ(θ)dθdξ. (2.6)

2.2 Properties of the delay Lyapunov matrix

In this section we prove some properties of the matrix function U(τ), τ ∈ [−H,H], defined in

(2.4), and of its derivative’s jump discontinuities, denoted as ∆U ′(τ).
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2.2.1 Properties of U(τ)

Lemma 2.2. Let system (1.28) be exponentially stable. We define the n×n antisymmetric matrix

P ,
∫ ∞
−0

K̄T (τ)WK0dτ −
∫ ∞
−0

KT
0 WK̄(τ)dτ (2.7)

with K0 defined in (1.20). Then, the Lyapunov matrix (2.4) associated to the positive definite

matrix W, satisfies the following properties:

1. Symmetry property:

U(−τ) = UT (τ) + P − τKT
0 WK0, τ ∈ [−H,H] (2.8)

2. Dynamic property:

U(τ) =
m∑
j=1

U(τ − hj)Aj, τ ≥ 0, (2.9)

Proof. 1. Symmetry property

The matrix U(τ) satisfies

U(−τ) =

∫ ∞
−0

KT (t)WK̄(t− τ)dt =

∫ ∞
−τ−0

KT (ξ + τ)WK̄(ξ)dξ

=

∫ ∞
−τ−0

(
K̄(ξ + τ)−K0

)T
W (K(ξ) +K0) dξ

= UT (τ) +

∫ −0

−τ−0

K̄T (ξ + τ)WK(ξ)dξ +

∫ ∞
−τ−0

(
K̄T (ξ + τ)WK0 −KT

0 WK̄(ξ)
)

dξ.

Consider the case τ ≥ 0. Since the matrix K(ξ) = 0n×n, ξ ∈ [−τ, 0), the first integral term

on the right-hand side of the preceding equation equals zero, then we rewrite the equality as

U(−τ) = UT (τ) +

∫ ∞
−0

K̄T (ξ)WK0dξ −
∫ ∞
−0

KT
0 WK̄(ξ)dξ −

∫ −0

−τ−0

KT
0 WK̄(ξ)dξ.

The definition of P given in (2.7) and the fact that for ξ ∈ [−H, 0), K̄(ξ) = K0 lead us to

equation (2.8) for τ ∈ [0, H).
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Consider now the case τ ∈ [−H, 0), the equality

U(τ) = UT (−τ) + P +

∫ τ−0

−0

KT
0 WK̄(ξ)dξ,

is satisfied. We transpose the preceding equation and obtain that (2.8) also holds, thus

ending the proof.

2. Dynamic property

From the definition of the fundamental matrix, (1.17), and the Lyapunov matrix (2.4), we

have

U(τ) =

∫ ∞
−0

KT (t)WK̄(t+ τ)dt

=

∫ ∞
−0

KT (t)W

(
m∑
j=1

K̄(t+ τ − hj)Aj

)
dt

=
m∑
j=1

∫ ∞
−0

KT (t)WK̄(t+ τ − hj)dtAj.

Since U(τ − hj) =
∫∞
−0
KT (t)WK̄(t+ τ − hj), we arrive at the result in (2.9).

2.2.2 Computation of matrix P

Lemma 2.3. The matrix P defined in (2.7) satisfies the following equation

P = KT
0

[
m∑
j=1

hj
(
WK0Aj − ATj KT

0 W
)]
K0, (2.10)

Proof. We begin by taking the Laplace transform of equation (1.27), this is

ˆ̄K(s) =
m∑
j=1

∫ ∞
−0

K̄(t− hj)e−stdtAj

=
m∑
j=1

ˆ̄K(s)e−shjAj +
m∑
j=1

∫ −0

−hj
K̄(t)e−s(t+hj)dtAj

=
m∑
j=1

ˆ̄K(s)e−shjAj +
1

s
K0

m∑
j=1

(
1− e−shj

)
Aj,
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which is equivalent to

ˆ̄K(s) =
1

s
K0

m∑
j=1

(
1− e−shj

)
Aj

(
In −

m∑
j=1

Aje
−shj

)−1

. (2.11)

Given that

K0

m∑
j=1

Aj = K0

(
m∑
j=1

Aj − In + In

)

= K0

(
m∑
j=1

Aj − In

)
+K0

= In +K0,

we can rewrite equation (2.11) as

ˆ̄K(s) =
1

s

(
In +K0

(
In −

m∑
j=1

e−shjAj

))(
In −

m∑
j=1

Aje
−shj

)−1

,

which yields

ˆ̄K(s) =
1

s

K0 −

(
m∑
j=1

Aje
−shj − In

)−1
 .

Now, we define the matrix function

R(t) = −
∫ t

−0

KT
0 WK̄(τ)dτ,

which has the following Laplace Transform

R̂(s) =
1

s2
KT

0 W


(

m∑
j=1

Aje
−shj − In

)−1

−K0

 .

From the definition of P in (2.7), we see that

P = lim
t→∞

{
R(t)−RT (t)

}
.

Making use of the Final Value Theorem, we find that

P = lim
s→0

{
sR̂(s)− sR̂T (s)

}
.
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It can be readily verified that

P = lim
s→0

1

s

KT
0 W

(
m∑
j=1

Aje
−shj − In

)−1

−

(
m∑
j=1

ATj e−shj − In

)−1

WK0

 .

The series expansion of the term
(∑m

j=1Aje
−shj − In

)−1

allows us to conclude that

lim
s→0

1

s

(
m∑
j=1

Aje
−shj − In

)−1

= lim
s→0

1

s

(
m∑
j=1

Aj (1− shj)− In

)−1

= lim
s→0

1

s

(
K−1

0

(
In − sK0

m∑
j=1

hjAj

))−1

= lim
s→0

1

s

(
In − sK0

m∑
j=1

hjAj

)−1

K0

= lim
s→0

1

s

(
In + sK0

m∑
j=1

hjAj

)
K0.

Therefore,

P = lim
s→0

1

s

KT
0 W

(
In + sK0

m∑
j=1

hjAj

)
K0 −KT

0

(
In + sK0

m∑
j=1

hjAj

)T

WK0

 ,

and equation (2.10) follows.

2.2.3 Properties of ∆U ′(τ)

From the definition of the matrix function U(τ) in (2.4), we have limitations in order to use it

for practical applications. First, we find that this definition is only applicable to exponentially

stable systems. Second, the definition is of little help in order to find an analytic expression of the

function. We will use the function ∆U ′(τ), defined as U ′(τ + 0)−U ′(τ −0) to assist us in finding a

new definition of the Lyapunov matrix that is valid for unstable systems as well, and can be easily

computed.

Now, we present properties of the matrix function ∆U ′(τ), τ ∈ [−H,H]. These properties will be

used to show that matrix U(τ) exists regardless of the stability of system (1.16).
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Lemma 2.4. Let system (1.16) be exponentially stable, the Lyapunov matrix (2.4) associated to a

positive definite matrix W satisfies the following properties:

1. Symmetry property:

∆U ′(−τ) = [∆U ′(τ)]T , (2.12)

2. Dynamic property:

∆U ′(τ) =



∑m
j=1 ∆U ′(τ − hj)Aj, τ > 0,

∑m
j=1A

T
j ∆U ′(τ + hj), τ < 0,

(2.13)

3. Generalized algebraic property:

m∑
i=1

m∑
j=1

ATi ∆U ′(τ + hi − hj)Aj −∆U ′(τ) =


W∆K(τ), τ ≥ 0

∆KT (−τ)W, τ < 0.

(2.14)

Proof. 1. Symmetry property

From the definition of the Lyapunov matrix (2.4) we have,

U ′(τ) =

∫ ∞
−0

KT (t)WK ′(t+ τ)dt, τ ∈ R,

where the integral is in the Lebesgue sense, it is a right-continuous function.

The fundamental matrix K(t) is a constant function except at discontinuity points depending

on the delays hj, j = 1,m. Defining the set of discontinuity instants of K(t) as IK =

{tκ}κ∈N0 , where

tκ , min
p1κ,...,p

m
κ

{
m∑
j=1

pjκhj | tκ > tκ−1, pjκ ∈ N0

}
, (2.15)
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we can write U ′(τ) as

U ′(τ) =
∑
κ≥0

∫ tκ−τ+0

tκ−τ−0

KT (t)WK ′(t+ τ)dt,

which yields

U ′(τ) =
∑
κ≥0

KT (tκ − τ)W∆K(tκ). (2.16)

We have for ∆U ′(τ) = U ′(τ + 0)− U ′(τ − 0), τ ∈ R

∆U ′(τ) = −
∑
κ≥0

∆KT (tκ − τ)W∆K(tκ). (2.17)

From the definition of ∆K(t), we have that at least one of the terms of the previous sum is

not zero only when tκ − τ ∈ IK for some κ ∈ N0. Otherwise, ∆U ′(τ) = 0. We define the

set of values of τ̄ ∈ [a, b] such that for at least one κ ∈ N0, tκ − τ̄ ∈ IK as

IU [a,b] = {τ̄}τ̄∈[a,b]. (2.18)

Defining the variable tq = tκ − τ̄ , and

q(τ̄) =

q ∈ N0 | tq =

τ̄ , τ̄ ≥ 0,

0, τ̄ < 0

 ,

we obtain

∆U ′(τ̄) = −
∑

q≥q(−τ̄)

∆KT (tq)W∆K(tq + τ̄).

If τ̄ ≥ 0, then q(−τ̄) = 0 and

∆U ′(τ̄) = −
∑
q≥0

∆KT (tq)W∆K(tq + τ̄), (2.19)
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otherwise, we can write

∆U ′(τ̄) = −
∑
q≥0

∆KT (tq)W∆K(tq + τ̄) +
∑

0≤q<q(−τ̄)

∆KT (tq)W∆K(tq + τ̄).

As tq + τ̄ < 0, for 0 ≤ q < q(−τ̄); then, ∆K(tq + τ̄) = 0n×n, and (2.19) holds.

Given the two definitions of ∆U ′(τ) that we have found in (2.17) and (2.19), it is straightfor-

ward to verify that property (2.12) is satisfied in the case tq−τ ∈ IK , for at least one q ∈ N0.

Otherwise, tq − τ /∈ IK , tq + τ /∈ IK for all q ∈ N0, and ∆U ′(τ) = 0n×n = (∆U ′(−τ))T .

2. Dynamic property

Let us remember the definition of the fundamental matrix, (1.17), we have

K(t) =



∑m
j=1K(t− hj)Aj + In, t ≥ 0

0n×n, t < 0,

therefore, for t > 0 we have that

∆K(t) = K(t+ 0)−K(t− 0) =
m∑
j=1

K(t+ 0− hj)Aj + In −
m∑
j=1

K(t− 0− hj)Aj − In,

=
m∑
j=1

(K(t+ 0− hj)−K(t− 0− hj))Aj,

=
m∑
j=1

∆K(t− hj)Aj.

For t = 0

∆K(0) = K(+0)−K(−0) = In.
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Summarizing these results, we have

∆K(t) =



∑m
j=1 ∆K(t− hj)Aj, t > 0

In, t = 0,

0n×n, t < 0.

(2.20)

Considering the definition of ∆U ′(τ) in (2.19) we can write

∆U ′(τ) = −
∑
κ≥0

∆KT (tκ)W∆K(tκ + τ).

In view of the dynamics of ∆K(t) given in (2.20), it follows that

∆U ′(τ) = −
∑
κ≥0

∆KT (tκ)W
m∑
j=1

∆K(tκ + τ − hj)Aj,

= −
m∑
j=1

∑
κ≥0

∆KT (tκ)W∆K(tκ + τ − hj)Aj,

=
m∑
j=1

∆U ′(τ − hj)Aj, τ > 0,

(2.21)

and we arrive at the result for τ > 0 in (2.13).

Consider τ < 0, so that −τ > 0, and ∆U ′(−τ) satisfies equation (2.21) as follows

∆U ′(−τ) =
m∑
j=1

∆U ′(−τ − hj)Aj, τ < 0,

as the matrix ∆U ′(−τ) satisfies the symmetry property (2.12), we can apply it on both sides

and obtain

(∆U ′(τ))
T

=
m∑
j=1

(∆U ′(τ + hj)))
T
Aj, τ < 0.

Transposition of this equation ends the proof.
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3. Generalized algebraic property We will consider both terms on the left-hand side of

equation (2.14) separately. For ∆U ′(τ), τ ≥ 0, defined by equation (2.19), we can write

∆U ′(τ) = −
∑
κ>0

∆KT (tκ)W∆K(tκ + τ)−∆KT (0)W∆K(τ).

Then, using the dynamics of ∆K(t) described in (2.20), we have

∆U ′(τ) = −
∑
κ>0

∆KT (tκ)W∆K(tκ + τ)−∆KT (0)W∆K(τ)

= −
∑
κ>0

m∑
i=1

ATi ∆KT (tκ − hi)W
m∑
j=1

∆K(tκ + τ − hj)Aj −W∆K(τ),

which is equal to

∆U ′(τ) = −
∑
κ>0

m∑
i=1

m∑
j=1

ATi ∆KT (tκ − hi)W∆K(tκ + τ − hj)Aj −W∆K(τ). (2.22)

Now, for
∑m

i=1

∑m
j=1 A

T
i ∆U ′(τ + hi − hj)Aj, consider again equation (2.19)

∆U ′(τ + hi − hj) = −
∑
κ≥0

∆KT (tκ)W∆K(tκ + τ + hi − hj),

the change of variable tq = tκ + hi allows us to write this equation as

∆U ′(τ + hi − hj) = −
∑

q≥q(hi)

∆KT (tq − hi)W∆K(tq + τ − hj)

= −
∑
q≥0

∆KT (tq − hi)W∆K(tq + τ − hj)

+
∑

0≤q<q(hi)

∆KT (tq − hi)W∆K(tq + τ − hj).

The last term is canceled given that tq − hi < 0 and ∆K(t) = 0, for t < 0. Finally, we arrive

at

∆U ′(τ + hi − hj) = −
∑
q≥0

∆KT (tq − hi)W∆K(tq + τ − hj). (2.23)
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As a consequence,

m∑
i=1

m∑
j=1

ATi ∆U ′(τ + hi − hj)Aj = −
∑
q>0

m∑
i=1

m∑
j=1

ATi ∆KT (tq − hi)W∆K(tq + τ − hj)Aj

−
m∑
i=1

m∑
j=1

ATi ∆KT (−hi)W∆K(τ − hj)Aj

the last term is equal to zero as ∆K(−hi) = 0. Thus, we have

m∑
i=1

m∑
j=1

ATi ∆U ′(τ + hi − hj)Aj = −
∑
q>0

m∑
i=1

m∑
j=1

ATi ∆KT (tq − hi)W∆K(tq + τ − hj)Aj,

(2.24)

Subtracting (2.22) from (2.24) we arrive at the case τ ≥ 0 in (2.14). We now consider the

case τ < 0. Equation

m∑
i=1

m∑
j=1

ATi ∆U ′(−τ + hi − hj)Aj −∆U ′(−τ) = W∆K(−τ)

holds. Then, applying the symmetry property on both sides of this equation we have

m∑
i=1

m∑
j=1

ATi (∆U ′(τ − hi + hj))
T
Aj − (∆U ′(τ))

T
= W∆K(−τ).

We can interchange i for j, and transpose both sides to end the proof.

2.3 Proof by derivation without stability assumption

In the following result, we prove that the derivative of the functional v0 defined in (2.6) is indeed

(2.1). The importance of this result is that, in contrast with the strategy followed thus far for

finding the functional, no stability assumption of system (1.16) is made. Therefore, we conclude

that the functional is valid for stable as well as for unstable systems. The proof of this result relies

on the use of the properties defined in Lemma 2.4.
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Theorem 2.1. Let the matrix Ũ(τ), τ ∈ [−H,H], satisfy properties (2.8), (2.9), and (2.12)-(2.14).

If we use the following definition of a functional ṽ0(xt),

ṽ0(xt) = −
m∑
i=1

m∑
j=1

∫ t

t−hi

∫ t

t−hj
xT (ξ)ATi Ũ

′′(−θ − hj + ξ + hi)Ajx(θ)dθdξ. (2.25)

Then, this functional is such that along the solutions of system (1.16) the following equality holds:

D+ṽ0(xt) = −xT (t)Wx(t), t ≥ 0.

Proof. Given a solution xt of system (1.16), we consider the upper-right hand derivative of v0(xt)

as defined in (2.25), this is

D+ṽ0(xt) = −xT (t)
m∑
i=1

m∑
j=1

ATi

∫ t

t−hj
Ũ ′′(t+ hi − θ − hj)Ajx(θ)dθ

+
m∑
i=1

m∑
j=1

xT (t− hi)ATi
∫ t

t−hj
Ũ ′′(t− θ − hj)Ajx(θ)dθ

−
m∑
i=1

m∑
j=1

∫ t

t−hi
xT (ξ)ATi Ũ

′′(−t+ ξ + hi − hj)dξAjx(t)

+
m∑
i=1

m∑
j=1

∫ t

t−hi
xT (ξ)ATi Ũ

′′(−t+ ξ + hi)dξAjx(t− hj).

The preceding equation is equal to

D+ṽ0(xt) = −xT (t)
m∑
i=1

m∑
j=1

ATi

∫ 0

−hj
Ũ ′′(hi − θ − hj)Ajx(t+ θ)dθ

+
m∑
i=1

m∑
j=1

xT (t− hi)ATi
∫ 0

−hj
Ũ ′′(−θ − hj)Ajx(t+ θ)dθ

−
m∑
i=1

m∑
j=1

∫ 0

−hi
xT (t+ ξ)ATi Ũ

′′(ξ + hi − hj)dξAjx(t)

+
m∑
i=1

m∑
j=1

∫ 0

−hi
xT (t+ ξ)ATi Ũ

′′(ξ + hi)dξAjx(t− hj),
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equivalently, as Ũ(τ) is a piecewise linear function,

D+ṽ0(xt) = −xT (t)
m∑
i=1

m∑
j=1

ATi
∑

τ̄∈IU (−hj,0]

∫ −τ̄−hj+0

−τ̄−hj
Ũ ′′(hi − θ − hj)Ajx(t+ θ)dθ

+
m∑
i=1

m∑
j=1

xT (t− hi)ATi
∑

τ̄∈IU (−hj,0]

∫ −τ̄−hj+0

−τ̄−hj
Ũ ′′(−θ − hj)Ajx(t+ θ)dθ

−
m∑
i=1

m∑
j=1

∑
τ̄∈IU [0,hi)

∫ τ̄−hi

τ̄−hi−0

xT (t+ ξ)ATi Ũ
′′(ξ + hi − hj)dξAjx(t)

+
m∑
i=1

m∑
j=1

∑
τ̄∈IU [0,hi)

∫ τ̄−hi

τ̄−hi−0

xT (t+ ξ)ATi Ũ
′′(ξ + hi)dξAjx(t− hj),

where IU [a,b] is defined in (2.18).

Using the fact that the matrix Ũ ′(t) is right-continuous, that is, Ũ ′(t + 0) = Ũ ′(t), we have that

∆Ũ ′(t) = Ũ ′(t)− Ũ ′(t− 0), then we get

D+ṽ0(xt) = −xT (t)
m∑
i=1

m∑
j=1

ATi
∑

τ̄∈IU (−hj,0]

∆Ũ ′(τ̄ + hi)Ajx(t− τ̄ − hj)

+
m∑
i=1

m∑
j=1

xT (t− hi)ATi
∑

τ̄∈IU (−hj,0]

∆Ũ ′(τ̄)Ajx(t− τ̄ − hj)

−
m∑
i=1

m∑
j=1

∑
τ̄∈IU [0,hi)

xT (t+ τ̄ − hi)ATi ∆Ũ ′(τ̄ − hj)Ajx(t)

+
m∑
i=1

m∑
j=1

∑
τ̄∈IU [0,hi)

xT (t+ τ̄ − hi)ATi ∆Ũ ′(τ̄)Ajx(t− hj).

Now, we use equation (1.16), and the fact that
∑
−a<j≤bG(j) =

∑
−a<j<bG(j) + G(b), to rewrite

the preceding equation as
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D+ṽ0(xt) = −xT (t)
m∑
i=1

m∑
j=1

ATi
∑

τ̄∈IU (−hj,0)

∆Ũ ′(τ̄ + hi)Ajx(t− τ̄ − hj)

−xT (t)
m∑
i=1

ATi ∆Ũ ′(hi)x(t) +
m∑
j=1

xT (t)
∑

τ̄∈IU (−hj,0)

∆Ũ ′(τ̄)Ajx(t− τ̄ − hj)

+xT (t)∆Ũ ′(0)x(t)−
m∑
i=1

m∑
j=1

∑
τ̄∈IU (0,hi)

xT (t+ τ̄ − hi)ATi ∆Ũ ′(τ̄ − hj)Ajx(t)

−
m∑
i=1

m∑
j=1

xT (t)ATi ∆Ũ ′(hi − hj)Ajx(t)

+
m∑
i=1

∑
τ̄∈IU (0,hi)

xT (t+ τ̄ − hi)ATi ∆Ũ ′(τ̄)x(t) +
m∑
i=1

xT (t)ATi ∆Ũ ′(hi)x(t).

Grouping terms, we obtain

D+ṽ0(xt) = −xT (t)
m∑
j=1

∑
τ̄∈IU (−hj,0)

[
m∑
i=1

ATi ∆Ũ ′(τ̄ + hi)−∆Ũ ′(τ̄)

]
Ajx(t− τ̄ − hj)

−
m∑
i=1

∑
τ̄∈IU (0,hi)

xT (t+ τ̄ − hi)ATi

[
m∑
j=1

∆Ũ ′(τ̄ − hj)Aj −∆Ũ ′(τ̄)

]
x(t)

−xT (t)

[
m∑
i=1

ATi ∆Ũ ′(hi)−
m∑
i=1

ATi ∆Ũ ′(hi)

]
x(t)

−xT (t)

[
m∑
i=1

m∑
j=1

ATi ∆Ũ ′(hi − hj)Aj −∆Ũ ′(0)

]
x(t).

The first and second terms are equal to zero because property (2.13) is satisfied. The expression

in brackets of the fourth term equals W , given that property (2.14) is also satisfied, hence

D+ṽ0(xt) = −xT (t)Wx(t),

and the result follows.

Definition 2.1. Let the n×n matrix U(τ) satisfy Eq. (2.13). We say that it is a Lyapunov matrix

of system (1.16) associated with a symmetric matrix W if it also satisfies properties (2.8), (2.9),

(2.12), and(2.14).
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Conclusion

In this chapter we have presented the form v0(xt) of the functional with prescribed derivative

D+v0(xt) = −xT (t)Wx(t).

We have shown that this expression is valid for stable and unstable systems indistinctly.

It is noticeable that the functional is completely determined by the so-called delay Lyapunov

matrix, which satisfies a number of important properties. In contrast with differential systems, as

those studied in [1], the properties of the jumps in the derivative of U(τ) will play a significant

role in the remainder of our work.



Chapter 3

Complete type functional

In this chapter we present a new functional, called of complete type. By adding new terms to

v0(xt), it is possible to prove that the new functional admits quadratic lower and upper bounds,

which provide constructive L2-exponential decay rate estimates of the commensurate case of (1.16).

3.1 Form of the complete type functional

First, we obtain a quadratic upper bound for the functional v0(xt). We consider only the case of

commensurate delays.

We define the basic delay, h, as the greatest common divisor of the delays hi, i = 1,m, and pi as

the integer such that pih = hi. Then, we can write the functional v0(ϕ) in (2.6) as

v0(ϕ) = −
m∑
i=1

m∑
j=1

∫ hi

0

∫ hj

0

ϕT (ξ − hi)ATi U ′′(ξ − θ)Ajϕ(θ − hj)dθdξ

= −
m∑
i=1

m∑
j=1

∫ hj

0

∑
τ̄∈IU (−θ,hi−θ]

∫ τ̄+θ

τ̄+θ−0

ϕT (ξ − hi)ATi U ′′(ξ − θ)dξAjϕ(θ − hj)dθ

= −
m∑
i=1

m∑
j=1

∫ hj

0

∑
τ̄∈IU (−θ,hi−θ]

ϕT (θ + τ̄ − hi)ATi ∆U ′(τ̄)Ajϕ(θ − hj)dθ.
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The change of variable σ̄ = τ̄ + θ in the last equation yields

v0(ϕ) = −
m∑
i=1

m∑
j=1

∫ hj

0

∑
σ̄∈IU (0,hi]

ϕT (σ̄ − hi)ATi ∆U ′(σ̄ − θ)Ajϕ(θ − hj)dθ.

For the commensurate delay case, IU (0,H] = {h, 2h, . . . , pmh}, therefore,

v0(ϕ) = −
m∑
i=1

m∑
j=1

∫ hj

0

pi∑
q=1

ϕT (qh− hi)ATi ∆U ′(qh− θ)Ajϕ(θ − hj)dθ. (3.1)

Now, we introduce the notations

µ = sup
τ∈[0,H]

‖−∆U ′(τ)‖, aj = ‖Aj‖, j = 1,m.

Let us prove that the non-negative constant µ exists from the definition of ∆U ′(τ) in (2.19). We

have that

−∆U ′(τ) =
∑
q≥0

∆KT (tq)W∆K(tq + τ).

From equation (1.24) we find, for ∆K(t) = K(t+ 0)−K(t− 0),

∆K(t) =
m∑
j=1

Aj∆K(t− hj), t > 0

∆K(0) = In.

Therefore, as the columns of ∆K(t) satisfy equation (1.16), if the system is exponentially stable

∆K(t) admits an upper exponential estimate of the form

‖∆K(t)‖ ≤ γe−σt, t ≥ 0.

Consequently,

‖−∆U ′(τ)‖ ≤ γ2‖W‖e−στ
∑
q≥0

e−2σtq , τ ≥ 0. (3.2)
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Since we are studying the case of commensurate delays, each discontinuity time tq ∈ IK defined

in (2.15) is a multiple of the base delay h. Thus, the inequality (3.2) is equivalent to

‖−∆U ′(τ)‖ ≤ γ2‖W‖e−στ
∑
q≥0

e−2σqh

≤ γ2‖W‖e−στ 1

1− e−2σh
, τ ≥ 0.

Therefore, µ exists.

Now, we write an upper bound for v0(ϕ) as follows

v0(ϕ) ≤ max
i∈[1,m]

a2
iµ

2

{
m∑
j=1

∫ 0

−hj
‖ϕ(θ)‖2dθ +

m∑
j=1

pj∑
q=0

‖ϕ(−qh)‖2

}
. (3.3)

With this in mind, we propose a complete type functional in the following theorem.

Theorem 3.1. Given the symmetric matrices Wq, q = 0, 2pm, let us define the functional

w(ϕ) =
m∑
j=1

pj∑
q=0

ϕT (−qh)Wqϕ(−qh)

+
m∑
j=1

pj∑
q=1

∫ 0

−qh
ϕT (θ)Wpm+qϕ(θ)dθ.

(3.4)

If there exists a Lyapunov matrix U(τ) associated with the matrix

W = W0 +
m∑
j=1

pj∑
q=1

(Wq + qhWpm+q) ,

and v0(ϕ) is the functional (2.6) defined by this Lyapunov matrix, then the upper right-hand deriva-

tive of the functional

v(ϕ) =v0(ϕ) +
m∑
j=1

pj∑
q=1

∫ 0

−qh
ϕT (θ) (Wq + (qh+ θ)Wpm+q)ϕ(θ)dθ (3.5)

along the solutions of system (1.16) is such that

D+v(xt) = −w(xt), t ≥ 0.
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Proof. We know that

D+v0(xt) = −xT (t)Wx(t) = −xT (t)

{
W0 +

m∑
j=1

pj∑
q=1

(Wq + qhWpm+q)

}
x(t).

Let us call Qj(t) the terms under the summation sign in equation (3.5). A simple change of the

integration variable yields the equality

Qj(t) =

pj∑
q=1

∫ 0

−qh
xT (t+ θ) (Wq + (qh+ θ)Wpm+q)x(t+ θ)dθ

=

pj∑
q=1

∫ t

t−qh
xT (ξ) (Wq + (qh+ ξ − t)Wpm+q)x(ξ)dθ,

therefore,

m∑
j=1

D+Qj(t) =xT (t)

[
m∑
j=1

pj∑
q=1

(Wq + qhWpm+q)

]
x(t)

−
m∑
j=1

pj∑
q=1

[
xT (t− qh)Wqx(t− qh) +

∫ 0

−qh
xT (t+ ξ)Wpm+qx(t+ ξ)dθ

]
.

The theorem statement follows directly from the preceding expressions for the time derivatives.

Definition 3.1. We say that functional (3.5) is of the complete type if the matrices Wq, q =

0, 1, . . . , 2pm are positive definite.

3.2 Quadratic lower and upper bounds

Lemma 3.1. Let system (1.16) be exponentially stable. Given the positive-definite matrices Wq,

q = 0, 1, . . . , 2pm, there exists a positive constant α1 such that the complete type functional (3.5)

satisfies the inequality

α1‖ϕ‖2
L2
≤ v(ϕ), ϕ ∈ PC([−H, 0),Rn).
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Proof. We consider a modified functional of the form

ṽ(ϕ) = v(ϕ)− α‖ϕ‖2
L2

= v(ϕ)− α
∫ 0

−H
‖ϕ(θ)‖2dθ,

where α ∈ R. Then

D+ṽ(xt) = −w̃(xt), t ≥ 0.

Here,

w̃(xt) = w(xt) + α
[
xT (t)x(t)− xT (t−H)x(t−H)

]

≥
(
xT (t) xT (t−H)

)
L(α)

 x(t)

x(t−H)

 .

The matrix L(α) is given by the following expression

L(α) =

 W0 0n×n

0n×n Wpm

+ α

 In 0n×n

0n×n −In

 .

Because the matrices Wq, q = 0, 1, . . . , 2pm, are positive definite, there exists α1 > 0 such that the

matrix L(α1) is positive definite. Indeed, we find that 0 < α1 ≤ λmin(Wpm), and we conclude that

w̃(xt) ≥ 0.

The exponential stability of system (1.16) makes it possible to present ṽ(ϕ) in the form

ṽ(ϕ) =

∫ ∞
−0

w̃(x(t, ϕ))dt ≥ 0,

therefore, we conclude that α1‖ϕ‖2
L2
≤ v(ϕ).

Remark 1. Observe that if we had only considered v0(xt) (Wq = 0, q = 0, 1, . . . , 2pm) it would

not have been possible to find an L2 lower quadratic bound.
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Lemma 3.2. Given the symmetric matrices Wq, q = 0, 1, . . . , 2pm, assume that system (1.16)

admits a Lyapunov matrix associated with the matrix

W = W0 +
m∑
j=1

pj∑
q=1

(Wq + qhWpm+q) .

Then, there exists a positive constant α2 such that the complete type functional (3.5) satisfies the

inequality

v(ϕ) ≤ α2‖ϕ‖2
h.

Proof. The following estimates hold for the terms of functional (3.5):

For v0(ϕ),

v0(ϕ) ≤ max
i∈[1,m]

a2
iµ

2

m∑
j=1

(hj + (pj + 1)pj/2) ‖ϕ‖2
h.

For j = 1,m,

Qj(t) =

pj∑
q=1

∫ 0

−qh
ϕT (θ) (Wq + (qh+ θ)Wpm+q)ϕ(θ)dθ

≤

(
pj∑
q=1

λmax (Wq + qhWpm+q) qh

)
‖ϕ‖2

h.

As a result, we arrive at an upper estimation of the form

v(ϕ) ≤ α2‖ϕ‖2
h,

where

α2 = max
i∈[1,m]

a2
iµ

2

m∑
j=1

(hj + (pj + 1)pj/2) +
m∑
j=1

pj∑
q=1

λmax (Wq + qhWpm+q) qh.

The terms added to v0(xt) in order to get the complete type functional v(xt) defined in (3.5) were

shown to be relevant, as they allowed to establish the existence of a quadratic lower bound for

v(xt). This bound will turn out to be crucial for finding exponential estimates of the solution as

shown in Theorem 1.3.
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3.3 Exponential estimates of the response of difference

equations in continuous time

3.3.1 L2-exponential stability (case of commensurate delays)

The upper and lower bounds of the functional v(xt) that we found in the previous section, together

with the statement in Theorem 1.3 allow us to write a quadratic upper bound for ‖xt(ϕ)‖L2 as

follows

‖xt(ϕ)‖L2 ≤
√
α2

α1

‖ϕ‖e−σt, t ≥ 0

where α2 ≥ maxi∈[1,m]
a2iµ

2

∑m
j=1 (hj + (pj + 1)pj/2) +

∑m
j=1

∑pj
q=1 λmax (Wq + qhWpm+q) qh,

α1 ≤ λmin(Wpm).

For the constant σ, we have that

D+v(xt) + 2σv(xt) ≤ 0.

Therefore,(
min

q∈[1,pm]
λmin(Wpm+q)− 2σ

(
max
i∈[1,m]

a2
iµ

2
+ max

q∈[1,pm]
λmax (Wq + qhWpm+q)

))
×

m∑
j=1

pj∑
q=1

∫ 0

−qh
‖x(t+ θ)‖2dθ +

(
min

q∈[1,pm]
λmin(Wq)− σ max

i∈[1,m]
a2
iµ

) m∑
j=1

pj∑
q=0

‖x(t− qh)‖2 ≥ 0.

If σ is such that the terms of the preceding inequality are both greater than zero, then the conditions

of Theorem 1.3 are fulfilled, and we have an expression for the L2-exponential estimate for systems

with commensurate delays.

3.3.2 Exponential stability (case of commensurate delays)

The following result (Lemma 7 in [23]) allows us to find exponential estimates of the response of

system (1.16) in terms of the constants defined in the preceding section.
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Lemma 3.3. [23] Assume that there exists β ≤ 0 and σ > 0 such that, for any ϕ ∈ PC([−H, 0),Rn)

and for any t ≥ 0,

‖xt(ϕ)‖L2 ≤ β‖ϕ‖he−σt.

Then,

‖x(t, ϕ)‖ ≤ β√
H
‖ϕ‖he−σt, t ≥ 0.

In this case, β =
√

α2

α1
.

Conclusion

In this chapter, a Complete Type Lyapunov-Krasovskii functional was introduced in order to

fulfill the sufficient conditions for the stability given by Theorem 1.3. The existence of an upper

bound of the matrix function ∆U ′(τ) defined in (2.19) was proven for the commensurate case, and

constructive exponential estimates of the L2 and the Euclidean norms of the solutions of (1.16)

were obtained. The non-commensurate delay case is substantially more complex to analyze and it

is beyond the scope of this work.
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Construction of the Lyapunov matrix

Providing an effective numerical procedure for constructing the matrices ∆U ′(τ) and U(τ) is indeed

a crucial step of our approach. Only in this case, we will be able to use the theoretical results we

present. Now, we present a strategy that can be followed in order to construct matrix U(τ) that

satisfies properties (2.8),(2.9), and (2.12)-(2.14).

4.1 Single-delay case

For the difference equation

x(t) = Ax(t−H), t ≥ 0,

x(θ) = ϕ(θ), θ ∈ [−H, 0),
(4.1)

with x(t) ∈ Rn, the fundamental matrix is given by

K(t) = K(t−H)A+ In, t ≥ 0, (4.2)

with initial condition

K(θ) = 0n×n, θ ∈ [−H, 0). (4.3)

For any positive definite matrix W, the Lyapunov matrix (2.4) satisfies the properties (2.8)-(2.9).
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We consider the following equalities, given by the dynamic property (2.9), for ξ ∈ [0, H],

U(ξ) =U(ξ −H)A,

UT (H − ξ) =ATUT (ξ).

Applying the symmetry property (2.8) to the second equation we have

U(ξ) =U(ξ −H)A, (4.4)

U(ξ −H) =ATU(ξ)−
(
K−1

0

)T
P −

(
ξIn +HKT

0

)
WK0. (4.5)

where P defined in (2.10), is given by

P = HKT
0 WK2

0 −H(K2
0)TWK0.

We define the following variables, for ξ ∈ [0, H],

Y (ξ) = U(ξ),

Z(ξ) = U(ξ −H).
(4.6)

Writing (4.4)-(4.5) in terms of the variables defined in (4.6), the following system of equations is

obtained

Y (ξ)− Z(ξ)A = 0

Z(ξ)− ATY (ξ) = −
(
K−1

0

)T
P −

(
ξIn +HKT

0

)
WK0.

(4.7)

Next, we use some properties of the Kronecker product (see Appendix A) to solve for the matrices

Y (ξ) and Z(ξ). Define the vectors y(ξ) = vec(Y (ξ)) and z(ξ) = vec(Z(ξ)). Then, the system of

equations (4.7) can be rewritten in algebraic form as

 In ⊗ In −AT ⊗ In
−In ⊗ AT In ⊗ In

y(ξ)

z(ξ)

 =

 0n2

−vec(
(
K−1

0

)T
P +

(
ξIn +HKT

0

)
WK0)

 . (4.8)

Using the matrix inversion lemma [32], we have that the preceding system of equations has unique
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solution if the matrix

In ⊗ In − AT ⊗ AT

is invertible, that is, if none of the eigenvalues of A lies on the unit circle of the complex plane.

Recalling the definitions in (4.6), we obtain, for ξ ∈ [0, H],

u(ξ) = vec(U(ξ)) = −
(
In ⊗ In − AT ⊗ AT

)−1
vec
((
K−1

0

)T
PA+

(
ξIn +HKT

0

)
WK0A

)
,

u(ξ −H) = −
(
In ⊗ In − AT ⊗ AT

)−1
vec
((
K−1

0

)T
P +

(
ξIn +HKT

0

)
WK0

)
,

with

P = HKT
0 WK2

0 −H(K2
0)TWK0.

Example 3. In Fig. 4.1 we present the construction of U(τ), τ ∈ [−H,H] associated to a one-

dimensional system, for a given positive definite matrix W = I2, and a given parameter matrix

A =

−0.9375 1.11844

0.3732 −1.3009

.

- 1.0 - 0.5 0.0 0.5 1.0

- 0.1

0.0

0.1

0.2

τ

Figure 4.1: Graph of U(τ), for a two-dimensional system of the form (4.1). The elements of U(τ)
appear as follows: U11(τ) (−−), U12(τ)(−−), U21(τ) (−−), and U22(τ) (−−).

4.2 Multiple commensurate delays case

It is clear that the case of commensurate delays can be reduced to the one delay case, however,

it seems important to address it as a multiple-delay system as a preparatory step to the case of
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multiple non commensurate delays.

For the case of a difference equation in continuous time with multiple commensurate delays of the

form

x(t) =
m∑
j=1

Ajx(t− jh), t ≥ 0,

x(θ) = ϕ(θ), θ ∈ [−mh, 0),

(4.9)

where h is known as the basic delay, the fundamental matrix is given by

K(t) =
m∑
j=1

K(t− jh)Aj + In, t ≥ 0, (4.10)

with initial condition

K(θ) = 0n×n, θ ∈ [−mh, 0). (4.11)

We consider the following equalities, given by the dynamic and the symmetry properties, (2.9) and

(2.8), respectively. For ξ ∈ [0, h],

U(kh+ ξ) =
m∑
j=1

U ((k − j)h+ ξ)Aj, k = 0, 1, . . . ,m− 1, (4.12)

U(ξ − kh) =
m∑
j=1

ATj U (ξ + (j − k)h)−
(
K−1

0

)T
P

−

(
(ξ − kh)In +

m∑
j=1

hjA
T
j K

T
0

)
WK0, k = 1, 2, . . . ,m.

(4.13)

where P is defined in (2.10), namely

P = KT
0

[
m∑
j=1

jh
(
WK0Aj − ATj KT

0 W
)]
K0. (4.14)

Let us define the auxiliary matrices, for ξ ∈ [0, h]

Yk(ξ) = U(kh+ ξ), k ∈ {−m,−m+ 1, . . . , 0, . . . ,m− 1}. (4.15)

First, we observe that the equations in (4.12), for k ∈ {0, 1, . . . ,m− 1}, rewritten in the variables
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introduced in (4.15) are

Yk(ξ) =
m∑
j=1

Yk−j(ξ)Aj, k ∈ {0, 1, . . . ,m− 1}. (4.16)

Now, assume that k = 1,m; then, the equations in (4.13) are rewritten as

Y−k(ξ) =
m∑
j=1

ATj Y−k+j(ξ)−
(
K−1

0

)T
P −

(
(ξ − kh)In +

m∑
j=1

hjA
T
j K

T
0

)
WK0, k = 1,m.

(4.17)

Observe that (4.16)-(4.17) is a system of 2m algebraic equations with 2m unknowns defined in

(4.15). To solve this system, we use Kronecker products along with vectorization techniques (see

Appendix A). We define the vectors yk(ξ) = vec(Yk(ξ)), k ∈ {−m, 1−m, . . . ,−1, 0, 1, . . . ,m− 1},

ξ ∈ [0, h]. Then, the system of equations (4.16)-(4.17) can be rewritten as

yk(ξ) =



∑m
j=1

(
ATj ⊗ In

)
yk−j(ξ), k ≥ 0

∑m
j=1

(
In ⊗ ATj

)
yk+j(ξ)

−vec
{(
K−1

0

)T
P +

(
(ξ + kh)In +

∑m
j=1 hjA

T
j K

T
0

)
WK0

}
, k < 0.

(4.18)

Corollary 4.1. If the system of equations (4.16)-(4.17) admits a unique solution

{Ym−1(ξ), Ym−2(ξ), . . . , Y0(ξ), . . . , Y−m(ξ)} , ξ ∈ [0, h],

then, there exists a unique Lyapunov matrix U(τ) associated with the matrix W. This matrix is

defined on [0, H] by the equalities

U(kh+ ξ) = Yj(ξ), ξ ∈ [0, h], k = 0, 1, . . . ,m− 1.
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Example 4. Two-delay system Consider the following system

x(t) = A1x(t− 1) + A2x(t− 3/2), t ≥ 0

x(θ) = ϕ(θ), θ ∈ [−3/2, 0),

(4.19)

where x(t) ∈ Rn and the basic delay, h, is equal to 1/2, given that it is the maximum number that

divides 1 and 3/2. We solve for U(τ), τ ∈ [−3/2, 3/2], by finding the solution of the system of

equations (4.16)-(4.17), using Kronecker products, as follows:



In2 0n2×n2 −A
T
1 ⊗In −AT2 ⊗In 0n2×n2 0n2×n2

0n2×n2 In2 0n2×n2 −A
T
1 ⊗In −AT2 ⊗In 0n2×n2

0n2×n2 0n2×n2 In2 0n2×n2 −A
T
1 ⊗In −AT2 ⊗In

−In⊗AT2 −In⊗AT1 0n2×n2 In2 0n2×n2 0n2×n2

0n2×n2 −In⊗A
T
2 −In⊗AT1 0n2×n2 In2 0n2×n2

0n2×n2 0n2×n2 −In⊗A
T
2 −In⊗AT1 0n2×n2 In2





y2(ξ)

y1(ξ)

y0(ξ)

y−1(ξ)

y−2(ξ)

y−3(ξ)


= −



0n2×1

0n2×1

0n2×1

vec
(
(K−1

0 )
T
P+(ξIn+1/2KT

0 )WK0

)

vec
(
(K−1

0 )
T
P+(ξIn+KT

0 )WK0

)

vec
(
(K−1

0 )
T
P+(ξIn+3/2KT

0 )WK0

)


,

where yk(ξ) = U(kh + ξ), ξ ∈ [0, 1/2), P = KT
0

[∑2
j=1 hpj

(
WK0Aj − ATj KT

0 W
)]
K0, p1 = 2,

and p2 = 3. Plots of U(τ) ∈ R2, τ ∈ [−3/2, 3/2], are shown in Fig. 4.2 for W = I2,

K0 = (A1 + A2 − I2)−1, and different values of A1 and A2.

Fig 4.2(a) corresponds to A1 =

−0.4 −0.3

0.1 0.15

 and A2 =

 0.1 0.25

−0.9 −0.1

,

Fig 4.2(b) corresponds to A1 =

0.1 −0.7

0.6 0.8

 and A2 =

 0.5 −0.25

−0.4 −0.2

,

finally, Fig 4.2(c) corresponds to A1 =

 1.1 0

−0.4 0

 and A2 =

0.25 −0.125

−0.4 −0.5

.
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Figure 4.2: U(τ), τ ∈ [−7/2, 7/2) related to the two-dimensional system of two commensurate
delays (4.19). The elements of U(τ) appear as U11(τ) (−−), U12(τ) (−−), U21(τ) (−−), and U22(τ)
(−−).
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4.3 Non-commensurate delay case: proposal of an approx-

imation

In this section, we analyze a strategy to approximate the matrix function Unc(τ) related to a

system of two non commensurate delays. We will do so by computing the matrices Us(τ) related to

systems of commensurate delays that tend to the non commensurate case. The intuition behind this

approach is that a sufficiently good approximation obtained from the systems with commensurate

delays is attainable, since it will become noticeable that the sequence of the matrix functions Us(τ)

tends to a continuous function. This will be better understood through an example.

For the sake of clarity we use the same system as in Example 2, this is, the system described by

the following equation.

x(t) = a1x(t− 1) + a2x(t−
√

2), t ≥ 0,

x(θ) = ϕ(θ), θ ∈
[
−
√

2, 0
)
.

(4.20)

The fundamental function of this system is given by

K(t) = K(t− 1)a1 +K(t−
√

2)a2 + 1, t ≥ 0,

K(θ) = 0, θ < 0,
(4.21)

Consider the continued fraction representation [33] of
√

2:

√
2 = 1 +

1

2 +
1

2 +
1

2 +
. . .

which can also be written as
√

2 = [1; 2, 2, 2, . . . ] (4.22)

A rational approximation of the number
√

2 is given by a finite number of twos on the l.h.s. of

equation (4.22), allowing us to find an approximation of Unc(τ) in the same way we have done
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for the multiple delay case. Using this finite approximation of the irrational number, we have the

following system of equations:

yk(ξ) = Us(kh+ ξ) =
2∑
j=1

Us(kh− hj + ξ)aj,

=
2∑
j=1

y
k−

hj
h

(ξ)aj, k ≥ 0.

(4.23)

yk(ξ) =
2∑
j=1

ajyk+
hj
h

(ξ)− k0p−

(
ξ + kh+

2∑
j=1

hjajk0

)
wk0, k < 0 (4.24)

Where

w > 0,

k0 = 1/(a1 + a2 − 1),

h1 = 1,

h2 = [1; 2, 2, · · · , 2],

h = gcd (h1, h2), is the basic delay,

p = −p = 0,

k ∈ {−h2/h,−h2/h+ 1, . . . , 0, . . . , h2/h− 2, h2/h− 1, h2/h}.

Then, the solution for the function Us(kh + ξ), ξ ∈ [0, h], is obtained by solving the system of

equations (4.23)-(4.24).

Graphs of the scalar function Us(τ), τ ∈ [−H,H] are shown in Fig. 4.3 for different values of a1,

a2, and s is the number of twos on the continued fraction notation of h2. Notice that as s increases,

the function Us(τ) converges to a continuous function.
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Figure 4.3: Results of the construction of U(τ) for the rational approximation of the system of
two non-commensurate delays in (4.20).
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Conclusion

In this chapter, we have presented the construction methodology (the numerical computation) of

the matrix function U(τ) using the properties of this matrix introduced in Chap. 2, for the cases

of a single delay and multiple commensurate delays.

For the case of non commensurate delays, we have resorted to an approximation given by a close

enough commensurate case. This topic deserves further research efforts in the future, as an analysis

of the error of approximation ought to be made.
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Chapter 5

Necessary stability conditions

In the study of time-delay systems, necessary conditions of stability were introduced by S. Mondié

and A. Egorov in [25], [26], [2]. Based on the delay Lyapunov Matrix, they proposed a complete

type functional that satisfies a lower quadratic bound if the system is stable. Rewriting this

condition in terms depending solely on the delay Lyapunov matrix, they arrived at necessary

conditions of stability that become less conservative as a parameter r increases. The analogous

of this result for continuous-time difference equations is presented here. A comparison between

existing conditions of stability and the new necessary conditions is presented in the examples at

the end of the chapter.

5.1 Preliminary results

5.1.1 A new functional

We introduce in this section a new functional derived from v0(xt) defined in (2.6). This functional

will allow us to find necessary conditions for the stability of system (1.16) depending on the

Lyapunov matrix.

Consider the quadratic functional

v1(ϕ) = v0(ϕ) +

∫ 0

−H
ϕT (θ)Wϕ(θ)dθ. (5.1)

63
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Its upper right-hand derivative along the solutions of system (1.16) is equal to

D+v1(xt(ϕ)) = −xT (t−H,ϕ)Wx(t−H,ϕ).

The following is a result of necessary conditions for the stability of system (1.16) depending on

the recently defined functional v1(xt).

Theorem 5.1. If system (1.16) is exponentially stable, then there exists α > 0 such that

v1(ϕ) ≥ α‖ϕ‖2
L2
. (5.2)

Proof. Using the same argument that in the proof of Lemma 3.1, we define a functional ṽ(ϕ) such

that

ṽ(ϕ) = v1(ϕ)− α‖ϕ‖2
L2
,

where α ∈ R. Then,

D+ṽ(xt) = −w̃(xt), t ≥ 0.

Consequently,

w̃(xt) = xT (t−H)Wx(t−H) + α‖x(t)‖2 − α‖x(t−H)‖2.

Therefore, the asymptotic stability of system (1.16) implies α < λmin(W ).

5.1.2 Cauchy formula for K(t)

Lemma 5.1. Given the fundamental matrix K(t) defined in (1.17) and (1.24), the following

equality holds:

K(t+ τ) = K(t) +
m∑
j=1

∫ 0

−hj

d

dt
K(t+ θ − hj)AjK(θ + τ)dθ, (5.3)
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here, the integral is in the Lebesgue sense.

Proof. Let us consider the identity, for t ≥ 0 and τ ≥ 0

∫ τ

0

K(t+ τ − θ)K(θ)dθ =

∫ τ

−0

K(t+ τ − s)K(s)ds.

We use the formula in (1.17) and the formula in (1.24) to arrive at the following equation

m∑
j=1

∫ τ

0

K(t+ τ − θ)AjK(θ − hj)dθ +

∫ τ

0

K(t+ τ − θ)dθ =
m∑
j=1

∫ τ

−0

K(t+ τ − s− hj)AjK(s)ds

+

∫ τ

−0

K(s)ds,

the change of variable s = θ− hj on the first integral of the l.h.s. of the preceding equation yields

m∑
j=1

∫ τ−hj

−hj
K(t+ τ − s− hj)AjK(s)ds+

∫ τ

0

K(t+ τ − θ)dθ =
m∑
j=1

∫ τ

−0

K(t+ τ − s− hj)AjK(s)ds

+

∫ τ

−0

K(s)ds.

This equation can be written as follows

∫ τ

0

K(t+ τ − θ)dθ =
m∑
j=1

∫ τ

τ−hj
K(t+ τ − s− hj)AjK(s)ds+

∫ τ

−0

K(s)ds.

As s ∈ [−hj, 0), K(s) = 0n×n. The change of variable θ = s− τ on the first integral of the r.h.s.,

together with the change of variable s = t+ τ − θ on the integral of the l.h.s. of this equation yield

∫ t+τ

t

K(s)ds =
m∑
j=1

∫ 0

−hj
K(t− θ − hj)AjK(θ + τ)dθ +

∫ τ

0

K(s)ds.

Taking the derivative with respect to t on both sides of the previous equation we get

K(t+ τ)−K(t) =
m∑
j=1

∫ 0

−hj

d

dt
K(t− θ − hj)AjK(θ + τ)dθ.

Thus, we arrive at (5.3).

Remark 2. Notice that equation (5.3) holds for any t ∈ R and any τ ≥ 0.
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5.1.3 A crucial bilinear functional

Let us define the following functional depending on two initial conditions, which will play an

important role in the proof connecting the necessary condition (5.2) for the stability of (1.16):

z(ϕ, ψ) =

∫ ∞
−H

xT (t, ϕ)Wx(t, ψ)dt. (5.4)

In the next lemma, we show that for special initial functions depending on the fundamental matrix

K(t), and constant vectors, this bilinear functional reveals a dependence on the Lyapunov delay

matrix function.

Lemma 5.2. For any τk, τl ∈ (0, H), and initial functions

ϕ0(ξ) =
r∑

k=1

K(τk + ξ)γk, ξ ∈ [−H, 0),

ψ0(θ) =
r∑
l=1

K(τl + θ)γl, θ ∈ [−H, 0)

the bilinear functional (5.4) can be written as follows

z(ϕ0, ψ0) =
r∑

k=1

r∑
l=1

γTk F (τk, τl)γl, (5.5)

where F (τk, τl) = U(0)− U(−τk)− U(τl) + U(τl − τk).

Proof. Replacing x(t, ·) with the r.h.s. of the Cauchy formula (1.28), we get the following equation:

z(ϕ0, ψ0) =
r∑

k=1

r∑
l=1

∫ ∞
−H

m∑
i=1

m∑
j=1

∫ 0

−hi

∫ 0

−hj
γTkK

T (τk + ξ)ATi
d

dt
KT (t− ξ − hi)W

× d

dt
K(t− θ − hj)AiK(τl + θ)γldθdξdt

(5.6)

Using equation (5.3), equation (5.6) becomes
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z(ϕ0, ψ0) =
r∑

k=1

r∑
l=1

γTk

∫ ∞
−H

(
KT (t+ τk)−KT (t)

)
W (K(t+ τl)−K(t)) dtγl.

The fact that K(t+ τk)−K(t) =
∫ 0

−τk
K ′(t− ξ)dξ, allows us to write

z(ϕ0, ψ0) =
r∑

k=1

r∑
l=1

γTk

∫ ∞
−H

(∫ 0

−τk
K ′(t− ξ)dξ

)T
W

(∫ 0

−τl
K ′(t− θ)dθ

)
dtγl,

we now substitute K ′(t− θ) with − d
dθ
K(t− θ) and K ′(t− ξ) with − d

dξ
K(t− ξ), to obtain

z(ϕ0, ψ0) =
r∑

k=1

r∑
l=1

γTk

∫ 0

−τk

∫ 0

−τl

d

dξ

d

dθ

∫ ∞
−H

KT (t− ξ)WK(t− θ)dtdθdξγl,

the change of variable θ = t− ξ on the innermost integral of the preceding equation yields

z(ϕ0, ψ0) =
r∑

k=1

r∑
l=1

γTk

∫ 0

−τk

∫ 0

−τl

d

dξ

d

dθ

∫ ∞
−H−ξ

KT (t)WK(t+ ξ − θ)dtdθdξγl.

We use the definition of U(τ) in (2.4) to obtain

z(ϕ0, ψ0) =
r∑

k=1

r∑
l=1

γTk

∫ 0

−τk

∫ 0

−τl

d

dξ

d

dθ

(
U(ξ − θ) +

∫ −0

−H−ξ
KT (t)WK(t+ ξ − θ)dt

)
dθdξγl

−
r∑

k=1

r∑
l=1

γTk

∫ 0

−τk

∫ 0

−τl

d

dξ

d

dθ

∫ ∞
−0

KT (t)dtWK0dθdξγl.

For the first integral with respect to t in the preceding equation we have that on the interval

t ∈ [−H − ξ, 0), K(t) = 0n×n, and the second term of the r.h.s. is zero given that K(t) is constant

with respect to ξ and θ. Then, we can write

z(ϕ0, ψ0) =−
r∑

k=1

r∑
l=1

γTk

∫ 0

−τk

∫ 0

−τl
U ′′(ξ − θ)dθdξγl.
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It can be readily verified that

z(ϕ0, ψ0) =
r∑

k=1

r∑
l=1

γTk (U(0)− U(−τk)− U(τl) + U(τl − τk)) γl.

Thus, arriving at (5.5).

5.2 Main result

In this section, we present necessary stability conditions for system (1.16). The proof of the result

is achieved by using a particular case of the generalized Cauchy formula and the bilinear functional

introduced in the previous section, in conjunction with the lower bound on the functional v1(xt)

presented in section 5.1.1. We also discuss the special case of commensurate delays, in particular,

the connection with stability results for discrete delays. Finally, some academic examples validate

our theoretical results.

5.2.1 Necessary stability conditions for difference equations in contin-

uous time

Let us introduce the matrix-valued function determined by the Lyapunov matrix

Kr(τ1, . . . , τr) = {F (τk, τl)}rk,l=1 , (5.7)

where the expression {Aij}ri,j=1 corresponds to a block matrix, where the element lying in the i-th

row and the j-th column is Aij ∈ Rn×n (i, j = 1, . . . , r). Now, we present a family of necessary

stability conditions with increasing complexity depending on the parameter r in (5.7).

Theorem 5.2. If system (1.16) is exponentially stable, then

Kr(τ1, . . . , τr) > 0 (5.8)

where τi ∈ (0, H], i = 1, r, and τk 6= τl, if k 6= l.
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Proof. We begin by proving that the matrix Kr is symmetric. Given the definition (5.7), it suffices

to show that

F (τk, τl) = F T (τl, τk). (5.9)

Matrix F (x, y) is defined as

F (x, y) = U(0)− U(y)− U(−x) + U(y − x), (5.10)

then, for F (τl, τk) we have

F (τl, τk) = U(0)− U(−τl)− U(τk) + U(τk − τl).

The symmetry property (2.8) allows us to write

F (τl, τk) = UT (0)− UT (τl)− UT (−τk) + UT (τl − τk),

thus, we arrive at (5.9).

From the definition of z(·, ·) in (5.4), it is straightforward to see that the functional v1(ϕ) defined

in (5.1) equals z(ϕ, ϕ). Then, it follows that, for

ϕ̃(θ) =
r∑

k=1

ϕk(θ), θ ∈ [−H, 0),

where ϕk(θ) = K(τk + θ)γk, with γk ∈ Rn, k = 1, r, the functional v1(ϕ̃) is equal to

v1(ϕ̃) = z(ϕ̃, ϕ̃) =
r∑

k=1

r∑
l=1

z(ϕk, ϕl),

equivalently,

v1(ϕ̃) =
r∑

k=1

r∑
l=1

γTk F (τk, τl)γl = γTKr(τ1, . . . , τr)γ,

where γ =
[
γT1 , γ

T
2 , . . . , γ

T
r

]T
. As system (1.16) is assumed to be exponentially stable, v1(ϕ̃) ≥

β‖ϕ̃‖2
L2

by Theorem 5.1, it remains to show that ‖ϕ̃‖L2 > 0 if γ 6= 0.
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It is easy to check that K(t) = In for t ∈ [0, h1). Suppose, 0 < τ0 < τ1 < · · · < τr. If γ 6= 0,

there exists at least one γq 6= 0. If γq 6= 0, then ϕ̃(θ) = ϕq(θ) = K(τq + θ)γq = γq 6= 0 for

θ ∈ [−τq,−τq + ∆q), where ∆q = min{τq − τq−1, h1} > 0. Since τq is arbitrary, we have that

‖ϕ̃‖L2 > 0, which proves the Theorem.

5.2.2 Discussion of the case of commensurate delays

It is well known that in the case of commensurate delays, the difference equation (1.16) in contin-

uous time can be viewed as a discrete system.

Single delay case

First, we consider the case of a single delay, which evidently is of commensurate type. In the result

below, we prove that it is possible to recover from our conditions, the classical discrete Lyapunov

equation.

x(t) = Ax(t−H), t ≥ 0, (5.11)

with the initial condition x(θ) = ϕ(θ), θ ∈ [−H, 0).

It has been shown in the literature [31] (the proof of this result is given in Appendix B) that a

stability criterion for system (1.16) is the following

Theorem 5.3. System (5.11) is asymptotically stable if and only if for a positive definite matrix

Q, the solution P of the discrete Lyapunov equation

ATPA− P = −Q, (5.12)

is such that P is positive definite.

Clearly, it is important to prove that our main result, Theorem 5.2, implies in the sense of necessity

the statement of Theorem 5.3.

In other words, we must show that condition (5.8) of Theorem 5.2 implies the existence of a positive

definite matrix P , satisfying the discrete Lyapunov equation (5.12).
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Proposition 1. If the system (5.11) is exponentially stable, then the condition (5.8) implies that

the conditions of Theorem 5.3 are satisfied.

Proof. Notice first that the matrix U(τ) that defines Kr in (5.8) of Theorem 5.2 satisfies the

generalized algebraic property (2.14). In the special case i, j = 1 and τ = 0 this is

AT∆U ′(0)A−∆U ′(0) = W. (5.13)

Consider now condition (5.8) of Theorem 5.2. In this case, this is

K1(H) = F (H,H) = 2U(0)− U(−H)− U(H) > 0.

This can be written as

K1(H) = U(0)− U(−H)− (U(H)− U(0)) > 0.

Given that U(τ) is a piecewise linear function, U(0) − U(−H) = U ′(−0)H and U(H) − U(0) =

U ′(+0)H, then we can write the preceding inequality as

K1(H) = H (U ′(−0)− U ′(+0)) > 0,

using the fact that ∆U ′(0) = U ′(+0)− U ′(−0) we arrive at

K1(H) = −H∆U ′(0) > 0.

Since H is positive, we have that, if the system is stable, ∆U ′(0) is a negative definite matrix, or

equivalently −∆U ′(0) > 0.

Clearly, if we rewrite (5.13) as

AT (−∆U ′(0))A− (−∆U ′(0)) = −W,
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then, by taking P ≡ −∆U ′(0), we have recovered the necessary conditions of Theorem 5.3 for the

discrete case.

Case with multiple commensurate delays

In the case of commensurate delays, we are able to provide a simpler form of the necessary stability

conditions proved in this chapter.

Corollary 5.1. Consider a system of the form (4.9) with multiple commensurate delays. A nec-

essary stability condition for this system is:

− {∆U ′ ((i− j)h)}mi,j=1 > 0. (5.14)

Proof. We start from the definition of F (kh, lh) in (5.10)

F (kh, lh)) = U(0)− U(lh)− U(−kh) + U ((l − k)h)

= − (U(lh)− U(0)) + (U ((l − k)h)− U(−kh)) .

Because U(τ) is a piecewise continuous linear function, we have that

F (kh, lh))− h

[
l−1∑
p=0

U ′(ph+ 0)−
l−1∑
p=0

U ′ ((p− k + 1)h− 0)

]

= −h
l−1∑
p=0

(U ′(ph+ 0)− U ′ ((p− k + 1)h− 0)) ;

hence, we can write the expression U ′(ph+ 0)− U ′ ((p− k + 1)h− 0) as

p∑
q=p−k+1

∆U ′(qh).

Then, we obtain that

F (kh, lh) = −h
l−1∑
p=0

p∑
q=p−k+1

∆U ′(qh).
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With the changes of variable i = p+ 1 and j = i− q we get

F (kh, lh) = −h
l∑

i=1

k∑
j=1

∆U ′ ((i− j)h) .

It is easy to show that the preceding equation implies

Km(h, 2h, . . . ,mh) = −hT T {∆U ′ ((i− j)h)}mi,j=1 T,

where T =


In In · · · In

0n×n In · · · In
...

...
. . .

...

0n×n 0n×n · · · In

 is a block matrix composed of m×m matrices of size n× n.

The result follows from the fact that T is an orthogonal transformation.

5.3 Examples

We present the following examples illustrating the use of our main result in order to find the

stability regions in the space of parameters for different types of systems.

Example 5. One-delay system.

Let us consider the following system, for x(t) ∈ R.

x(t) = a1x(t− h) + a2x(t− 2h). (5.15)

It is equivalent to the following 2-dimensional system

χ(t) =

a1 a2

1 0


︸ ︷︷ ︸
A

χ(t− h).
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For the parameter space a2 vs. a1, we compare the region where the condition for asymptotic

stability of equation (5.15) (i.e. ρ(A) < 1, equivalently, all solutions λ for det (λI − A) = 0 are

inside the unit circle) is satisfied (solid line), against the region marked by points in which the pair

(a1, a2) satisfies −∆U ′(0) > 0. The resulting plot is shown in Fig. 5.1. The construction of the

delay Lyapunov matrix of this system is addressed in Section 4.1.
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Figure 5.1: Space of parameters a1 vs. a2 satisfying −∆U ′(0) > 0, for system (5.15).

Now, we will define a particular case of the matrix Kr, this is

Kr

(
H

r
, 2
H

r
, . . . , H

)
=

{
F

(
k
H

r
, l
H

r

)}r
k,l=1

, (5.16)

from which the conditions in the forthcoming examples will follow.

Example 6. System with multiple commensurate delays.

In Fig. 5.2 (a), we present the regions in the space of parameters a1 vs. a2 where equation

x(t) = a1x(t− 1) + a2x(t− 3/2), t ≥ 0

x(θ) = ϕ(θ), θ ∈ [−3/2, 0),

is stable, that is, where

max
i∈[1,3]

|λi(A)| < 1,

with A given by
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A =


0 a1 a2

1 0 0

0 1 0

 .
In Fig. 5.1 (b)-(d) we plot the pairs (a, b) satisfying the following necessary conditions of stability

• Condition 1:

K1 (H) > 0. (5.17)

• Condition 2:

K2

(
H

2
, H

)
> 0. (5.18)

• Condition 3:

K3

(
H

3
, 2
H

3
, H

)
> 0. (5.19)

The construction of the delay Lyapunov matrix of the multidimensional case of this system is

addressed in Example 4, Section 4.2.

-2 -1 0 1 2

-2

-1

0

1

2
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a
2

(a) Pairs (a1, a2) where neces-
sary and sufficient conditions are
satisfied
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(b) Pairs (a1, a2) where (5.17) is
satisfied
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(c) Pairs (a1, a2) where (5.18) is
satisfied
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(d) Pairs (a1, a2) where (5.19) is
satisfied

Figure 5.2: Stability region for equation (4.19).
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This example illustrates the fact that increasing the value of r in Kr(·) reduces the region in the

space of parameters where the necessary conditions are satisfied. For any value of r bigger than 3,

the resulting graph will not change with respect to Fig. 5.2 (d).

Example 7. Two-dimensional system with multiple commensurate delays.

In Fig. 5.3, we present the regions in the space of parameters a vs. b where the following equation:

x(t) =

0.3 1

−1 0.3


︸ ︷︷ ︸
A1

x(t− 1/2) +

 0 0.5ab2

0.2b 0


︸ ︷︷ ︸

A2

x(t− 1) +

0.2a 0

0 0.5a2b


︸ ︷︷ ︸

A3

x(t− 3/2) t ≥ 0,

(5.20)

with initial condition

x(θ) = ϕ(θ), θ ∈ [−3/2, 0),

satisfies the following necessary conditions of stability:

• Condition 1:

−∆U ′(0) > 0. (5.21)

• Condition 2:

−

 ∆U ′(0) ∆U ′(1/2)

∆U ′(−1/2) ∆U ′(0)

 > 0. (5.22)

• Condition 3:

−


∆U ′(0) ∆U ′(1/2) ∆U ′(1)

∆U ′(−1/2) ∆U ′(0) ∆U ′(1/2)

∆U ′(−1) ∆U ′(−1/2) ∆U ′(0)

 > 0. (5.23)

The construction of the delay Lyapunov matrix of this system is addressed in Example 4, Section

4.2.
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(a) Pairs (a, b) where necessary
and sufficient conditions are sat-
isfied
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Figure 5.3: Stability region for equation (5.20).

For this example, the necessary and sufficient conditions are obtained via the Lyapunov equation

for discrete systems (5.12), where matrix A is given by

A =


A1 A2 A3

I2 02×2 02×2

02×2 I2 02×2

 .

The necessary conditions were written in terms of the matrix ∆U ′(k/2), k = 0,±1,±2. The re-

duction of the region in which the necessary conditions are satisfied as r increases is evident from

the graphs.

Example 8. System with two non-commensurate delays. We present in Fig. 5.4 the regions in

the space of parameters a1 vs. a2 where equation
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x(t) = a1x(t− 1) + a2x(t−
√

2), t ≥ 0,

x(θ) = ϕ(θ), θ ∈
[
−
√

2, 0
)
.

(5.24)

introduced in Section 4.3 is stable [3], that is |a1|+ |a2| < 1 (Fig. 5.4 (a)), against the pairs (a1, a2)

satisfying the following necessary conditions of stability dependent on Kr(·), defined in (5.16)

• Condition 1:

K1 (h2) > 0, s = 3. (5.25)

• Condition 2:

Ks (h, 2h, . . . , h2) > 0, s = 3. (5.26)

• Condition 3:

Ks (h, 2h, . . . , h2) > 0, s = 6. (5.27)

-2 -1 0 1 2

-2

-1

0

1

2

a1

a
2

(a) Pairs (a1, a2) where
necessary and sufficient
conditions are satisfied
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(b) Pairs (a1, a2) where
(5.25) is satisfied
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(c) Pairs (a1, a2) where
(5.26) is satisfied
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(d) Pairs (a1, a2) where
(5.27) is satisfied

Figure 5.4: Stability region for equation (5.24).
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We can see from this example that the region in the space of parameters for which the necessary

conditions of stability are satisfied is practically the same as the necessary and sufficient conditions

shown in Fig. 5.4 (a). This approximation improves as r increases and s also increases.

5.4 Comparison with sufficient conditions of stability

In this section, we compare the necessary conditions of stability for continuous-time difference

equations presented in this work, against other conditions of stability in the literature. We will

obtain the graphs of the regions in the space of parameters for which the conditions are satisfied

and comment on the results.

The following sufficient condition for stability of system (1.16) appears in [19] [29]

m∑
j=1

‖Aj‖ < 1. (5.28)

As can be expected, this condition is very conservative in the sense that in many cases where the

system is stable, (5.28) does not hold, which makes it of little use in the analysis of stability.

Based on the Lyapunov-Krasovskii approach, the following result is a consequence of Theorem 2

and Lemma 7 in [23].

Consider that there exist n × n symmetric positive definite matrices Pj, j = 1,m that define the

symmetric matrix

−M0 = ATc diag(P1, . . . , Pm)Ac − diag(P1, . . . , Pm), (5.29)

where Ac is the nm× nm companion matrix,

Ac =


A1 A2 · · · AN

In
. . .

In 0n×n

 , (5.30)
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and diag(P1, · · · , Pm) is defined by the following block diagonal matrix:

diag(P1, · · · , Pm) =


P1

. . .

Pm

 .

Lemma 5.3. Assume that there exist n×n symmetric positive definite matrices Pj, j = 1,m, and

µ > 0, such that

−Mµ = −M0 + diag
((

1− e−2µhj
)

(Pj − Pj+1) , . . . ,
(
1− e−2µhm

)
(Pm − Pm+1)

)
, (5.31)

where M0 is defined in (5.29). Then, the system (1.16) is exponentially stable with exponential

decay rate µ.

Proof. Obvious from Theorem 2 and Lemma 7 in [23].

Another, more complex, sufficient condition of stability was proposed in [23] Theorem 8, with the

advantage that it provides a constructive exponential estimate of the response of system (1.16). A

rephrasing of this theorem is written in the form of an LMI as follows:

Theorem 5.4. [23] Assume that there exist a n × n symmetric positive definite matrix Sm,

n × n symmetric positive semidefinite matrices Si, for i = 1,m− 1, 2n × 2n symmetric positive

semidefinite matrices Pj and Qj, for j = 2, · · · ,m defined as

Pj =

P (j)
11 P

(j)
12

∗ P
(j)
22

 , Qj =

Q(j)
11 Q

(j)
12

∗ Q
(j)
22

 ,
(where * represents symmetric terms) with respective blocks of size n× n, and µ > 0 such that
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− Λµ =

Ψµ Υµ

ΥT
µ Φµ

 (5.32)

is a 2(m− 1)n× 2(m− 1)n negative semidefinite matrix, where

Ψµ = ATc WAc −WP −WQ

Φµ = diag
(

e−2µκj
(
Q

(j)
22 − P

(j)
11

))

Υµ = ATc

e−2µκ2Q
(2)
12 · · · e−2µκmQ

(m)
12

0(m−1)n×n · · · 0(m−1)n×n

−
 0n×(m−1)n

diag
(

e−2µκjP
(j)
12

T
)

W =


Ξ P

(2)
12 P

(3)
12 · · · P

(m)
12

∗ P
(2)
22

∗ P
(3)
22

... P
(m)
22

 , Ξ =
m∑
j=1

Sj +
m∑
j=2

(
P

(j)
11 + e−2µκjQ

(j)
11

)

WP = diag
(

e−2µh1S1, e
−2µκ2P

(2)
22 + e−2µh2S2, . . . , e

−2µκmP
(m)
22 + e−2µhmSm

)

WQ =


e−2µh2Q

(2)
11 e−2µh2Q

(2)
12

∗ e−2µh2Q
(2)
22 +e−2µh3Q

(3)
11 e−2µh3Q

(3)
12

... ... ...
e−2µhm−1Q

(m−1)
22 +e−2µhmQ

(m)
11 e−2µhmQ

(m)
22

∗ e−2µhmQ
(m)
22

,

and κj = hj − hj−1, for j = 2,m. Then, the system (1.16) is exponentially stable with exponential

decay rate µ.

In the following example, we find the regions where the sufficient conditions of stability described

above hold, and compare them with the regions found using the necessary conditions proposed in

this work. It is important to notice that greater conservatism of the sufficient conditions implies

that the conditions of stability will hold for smaller regions in the space of parameters, whereas

for the necessary conditions smaller regions correspond to less conservative conditions.
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Example 9. Closed-loop system

Consider the difference equation

x(t) = A1x(t− h1) + A2x(t− h2) +Bu(t),

with h1 = 1, h2 = π, and

A1 =

−0.4 −0.3

0.1 0.15

 , A2 =

 0.1 0.25

−0.9 −0.1

 , and B =

0

1

 .
Making

u(t) =
[
a1 0

]
x(t− h1) +

[
0 a2

]
x(t− h2),

we have the following closed-loop system

x(t) = Ā1x(t− h1) + Ā2x(t− h2), (5.33)

with

Ā1 =

 −0.4 −0.3

0.1 + a1 0.15

 , Ā2 =

 0.1 0.25

−0.9 −0.1 + a2

 .
We wish to compare the regions in the space of parameters a1 vs. a2 given by the sufficient condi-

tions of stability in Lemma 5.3 and Lemma 5.4 against the region corresponding to the necessary

conditions given in Theorem 5.2.

We show in Fig. 5.5 (a) the plot of the pairs (a1, a2) that satisfy equation (5.28); in Fig. 5.5 (b),

the pairs corresponding to the stability condition in Lemma 5.3; and, in Fig. 5.5 (c), the region in

the space of parameters for which the conditions in Lemma 5.4 hold. Finally, in Fig. 5.6 (a)-(c) we

show the regions of stability that correspond to the necessary conditions given by the matrix Kr(·)

defined in (5.16), obtained by means of approximations of U(τ) parametrized by s and r. Here, the

parameter s is the amount of numbers that define the finite continued fraction that approximates

π, that is, π ≈ [3; 7, 15, 1, 292, 1, . . .︸ ︷︷ ︸
s

] [34].
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(a) Pairs (a1, a2) where the suffi-
cient condition in (5.28) is satisfied
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(c) Pairs (a1, a2) where the suffi-
cient condition in Theorem 5.4 is
satisfied

Figure 5.5: Stability regions for equation (4.19), found using sufficient conditions for exponential
stability.
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(a) Pairs (a1, a2) where the neces-
sary condition (5.8) is satisfied, for
r = 1, s = 1
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(b) Pairs (a1, a2) where the neces-
sary condition (5.8) is satisfied, for
r = 7, s = 1.
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(c) Pairs (a1, a2) where the neces-
sary condition (5.8) is satisfied, for
r = 22, s = 1

Figure 5.6: Stability regions for equation (4.19) found using necessary conditions for L2-exponential
stability.

The figures show that the more complex stability condition in Theorem 5.4 is less conservative

than the stability conditions in 5.3 and equation (5.28), which is not useful for the analysis of the

closed-loop system (5.33). In contrast, the regions of stability found using the necessary conditions

in (5.8), are less conservative for higher values of r with a fixed value of s. We can have a very

good idea of the region of exact stability from Fig. 5.5(c) and Fig. 5.6 (c).
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5.5 σ-stability of the response of differential equations in

continuous time.

Lemma 5.4. The response of system (1.16) has an exponential decay σ if and only if the system

y(t) =
m∑
j=1

eσhjAjy(t− hj), t ≥ 0,

is asymptotically stable.

Proof. We introduce the new variable

y(t) = eσtx(t), t ≥ 0.

As x(t) = e−σty(t), then

y(t) = eσt
m∑
j=1

Aje
−σ(t−hj)y(t− hj)

=
m∑
j=1

Aje
σhjy(t− hj).

Clearly, if y(t) is asymptotically stable, then x(t) decreases with exponential decay σ.

We use this result to extend Example 9 in order to find regions in the space of parameters that

allow a given exponential estimate of the solution of the closed-loop system (5.33).

Example 10. In this example we compare the regions of σ-stability of the solutions of the closed-

loop system (5.33) given by the sufficient conditions in Lemma 5.3 and Theorem 5.4, against the

regions obtained using the necessary conditions in Theorem 5.2.

For a given σ > 0, we make µ = σ in Lemma 5.3 and find if the sufficient conditions of stability

hold for system (5.33). We also set µ = σ in Theorem 5.4 in order to find whether or not system

(5.33) parametrized by a1 and a2 satisfies the sufficient conditions of stability.
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In order to make use of the necessary conditions in (5.8), we introduce the variable

y(t) = eσtx(t), t ≥ 0,

so that the analysis is made with respect to the system

y(t) =
m∑
j=1

Aje
σhjy(t− hj).

Then, if y(t) is stable, x(t) is σ-stable, and the necessary conditions hold.

In Fig. 5.7(a) (resp. (b), (c)) we show the regions in the space of parameters (a1, a2) that satisfy

the sufficient conditions for stability in Lemma 5.3 (Theorem 5.4, Theorem 5.2), for σ = 0 (•),

σ = 0.06 (•), σ = 0.108 (•), σ = 0.16 (•), and σ = 0.175 (•).
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(c) Pairs (a1, a2) where the neces-
sary condition (5.8) is satisfied, for
r = 22, s = 1

Figure 5.7: σ-stability regions for equation (5.33). For different values of σ, σ = 0 (•), σ = 0.06
(•), σ = 0.108 (•), σ = 0.16 (•), and σ = 0.175 (•).

With this example it is possible to verify that a state feedback of a system described with continuous-

time different equations may be useful in order to change the decay rate of the system, so it

approaches the equilibrium more rapidly. Once again, we practically have the exact conditions of

stability for the example discussed, since the necessary conditions given by Theorem 5.2 and the

sufficient conditions given by Theorem 5.4 yield almost equivalent regions. Notice that it is possible

to stabilize an unstable system with this state-feedback approach.
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Conclusion

We were able to find necessary conditions for the stability of difference equations in continuous

following a strategy used for time-delay systems. These necessary conditions depend on the matrix

function U(τ) introduced in Chap. 2. An alternative form to write these conditions was presented,

with respect to ∆U ′(τ), for the commensurate case.

It was shown that the necessary condition for the one-delay case is also sufficient, and that it is

the same as the well-known Lyapunov equation for discrete time systems.

Additionally, examples were discussed in which the necessary conditions help find the stability

region in the space of parameters of given continuous-time difference equations, we emphasized

the role of the parameter r in reducing the conservatism of the conditions.

Finally, a brief discussion on sufficient conditions of stability found in the literature was established

so that we were able to compare our result with previous works. This comparison is made in

Examples 9 and 10.



Conclusion

Necessary conditions for asymptotic L2-stability of linear difference equations in continuous time

were obtained via the use of a Lyapunov-Krasovskii functional with prescribed upper right-hand

derivative. The matrix function that defines such a functional was analyzed and its properties

were discussed. This properties allowed for the construction of the Lyapunov matrix U(τ), for

stable as well as for unstable systems. An idea on the approximation of this matrix for the non

commensurate case is presented, and the necessary conditions are written in terms independent of

the commensurability of the delays.

Moreover, a complete type functional was proposed such that L2-exponential estimates of the

trajectories of the system can be obtained explicitly in the case of commensurate delays. Some

examples are shown that illustrate the construction of the matrix function U(τ) and the application

of the necessary conditions to find regions of stability in the space of parameters.

Future Work

The fundamentals of this work may be useful in order to address control problems concerning

difference equations in continuous time. For instance, the predictor formula (1.34) can be used in

problems in which there is a delay in the input of a system defined by this class of equations.

In order to find exponential estimates of the response of difference equations in continuous time with

non-commensurate delays, the issue of convergence of the Lyapunov matrix U(τ), or a numerical

approximation within a margin of error, needs to be elucidated. Once this problem is solved, results

for parametric robustness can be obtained using a more appropriate complete type functional.
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The stability conditions thus far presented in previous works and in this one, make it possible

to implement control strategies for physical systems that can be modeled by continuous-time

difference equations.

The discontinuous nature of the response of this type of systems makes it a problem that can

be addressed in the distribution sense, an effort in order to find conditions of stability with the

corresponding mathematical tools, should be made.



Appendix A

Kronecker Product

The Kronecker Product is defined for two matrices of arbitrary size over any ring. For our purposes

we will only consider the field of the real numbers, and real matrices will be denoted by Rm×n,

where m and n are the number of rows and columns of the matrix, respectively.

Definition A.1. The Kronecker product of the matrix A ∈ Rp×q with the matrix B ∈ Rr×s is

defined as

A⊗B =


a11B · · · a1qB

...
...

ap1B · · · apqB

 . (A.1)

Other names for the Kronecker product include tensor product, direct product or left direct prod-

uct. The applications of this operation range widely, in order to start exploring some of them, we

introduce the notation of the vec(·) operator.

Definition A.2. For any matrix A = {aij} ∈ Rm×n, the vec(·) operator is defined as

vec(A) =
[
a11, · · · , am1, a12, · · · am2, · · · , a1n, · · · , amn

]T
, (A.2)

i.e. the entries of A are stacked columnwise, forming a vector of length mn.
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A.1 Properties of the Kronecker Product

The following are some of the most useful properties of the Kronecker product, they are stated

and proven in the basic literature about matrix analysis (e.g. [35]).

A.1.1 Basic Properties

KR 1. Multiplication with a scalar

(µA)⊗B = A⊗ (µB) = µ(A⊗B), ∀µ ∈ R, A ∈ Rp×q, B ∈ Rr×s.

KR 2. Transpose of Kronecker product

(A⊗B)T = AT ⊗BT , ∀A ∈ Rp×q, B ∈ Rr×s.

KR 3. The Kronecker product is associative, i.e.

A⊗ (B ⊗ C) = (A⊗B)⊗ C = A⊗B ⊗ C, ∀A ∈ Rm×n, B ∈ Rp×q, C ∈ Rr×s.

KR 4. The Kronecker product is right-distributive, i.e.

(A+B)⊗ C = A⊗ C +B ⊗ C, ∀A ∈ Rm×n, B ∈ Rp×q, C ∈ Rr×s.

KR 5. The Kronecker product is left-distributive, i.e.

A⊗ (B + C) = A⊗B + A⊗ C, ∀A ∈ Rm×n, B ∈ Rp×q, C ∈ Rr×s.

KR 6. The product of two Kronecker products yields another Kronecker product:

(A⊗B)(C ⊗D) = AC ⊗BD, ∀A ∈ Rp×q, B ∈ Rr×s, C ∈ Rq×k, D ∈ Rs×l.

KR 7. The trace of the Kronecker product of two matrices is the product of the traces of the
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matrices, i.e.

trace(A⊗B) = trace(B ⊗ A)

= trace(A)trace(B), ∀A ∈ Rp×q, B ∈ Rr×s.

KR 8. The determinant of the Kronecker product satisfies:

det(A⊗B) = det(B ⊗ A)

= (det(A))n(det(B))m, ∀A ∈ Rm×m, B ∈ Rn×n.

This implies that A⊗B is not singular if and only if both A and B are nonsingular.

KR 9. If A ∈ Rm×m and B ∈ Rn×n are not singular then

(A⊗B)−1 = A−1 ⊗B−1.

This property follows directly from KR 6.

A.1.2 Matrix Equations and the Kronecker Product

The Kronecker product can be used to present linear equations in which the unknowns are matrices.

An example of these equations is

AXB = C,

which is equivalent to the following:

(BT ⊗ A)vec(X) = vec(C)
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Appendix B

Stability of Discrete-Time Systems

Consider the discrete-time linear system

x[k + 1] = Ax[k], (B.1)

where x ∈ R and A ∈ Rn×n. The asymptotic stability of this system depends on the eigenvalues

of matrix A and it is achieved when all of them are located inside the unit circle in the complex

plane.

Definition B.1. The matrix A is called Schur stable if and only if

|λi| < 1,∀i = 1, n,

where λi’s are the eigenvalues of matrix A. In particular it is true that

max
i
|λi| < 1,

where maxi |λi| is known as ρ(A), the spectral radius of A.

Theorem B.1. [31] Considering the system (B.1), the following conditions are equivalent:
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1. The matrix A is Schur stable

2. Given any matrix Q = QT > 0 there exists a positive definite matrix P = P T satisfying the

discrete-time matrix Lyapunov equation

ATPA− P = −Q (B.2)

Proof. Let us show that 1 =⇒ 2. Let A be Schur stable, and let us take any positive definite

matrix Q. Take the matrix P =
∑∞

j=0(AT )jQAj, which is well defined by the asymptotic stability

of A, and P = P T > 0 by definition. Substitute P into (B.2)

ATPA− P = AT

(
∞∑
j=0

(AT )jQAj

)
A−

∞∑
j=0

(AT )jQAj,

equivalently

ATPA− P =

(
∞∑
j=1

(AT )jQAj

)
−
∞∑
j=0

(AT )jQAj = −Q.

In order to show that 2 =⇒ 1, consider the Lyapunov function V (x) = xTPx, we have that

V (x[k + 1])− V (x[k]) = xT [k]ATPAx[k]− xT [k]Px[k]

= xT [k]
(
ATPA− P

)
x[k]

= −xT [k]Qx[k] < 0.

Therefore, the sequence [V (x[k])]k∈N is strictly decreasing and bounded from below, from the

stability Theorem of Lyapunov it follows that matrix A is Schur stable.
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[25] S. Mondié and A. V. Egorov, “Some necessary conditions for the exponential stability of one

delay systems,” 8th International Conference on Electrical Engineering, Computing Science

and Automatic Control, pp. 3204 – 3208, 2011.
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