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Resumen
El presente trabajo propone una nueva e innovadora forma para transportar una carga

usando vehículos aéreos no tripulados (UAV) en un esquema de control cooperativo. La
configuración elegida es la suspención de la carga usando cables debido a su facilidad de
implementación y a su bajo peso agregado.

El diseño del controlador cooperativo se basa en la teoría de pasividad de sistemas
dinámicos y sus propiedades energéticas. Ésto permite un amplio rango de opciones de
diseño, incluyendo comunicación implícita, un control descentralizado y algunas garantías
en caso de un fallo en la red de comunicación y sensores. Los vehículos utilizados sólo
requieren ser capaces de seguir una trayectoria basada en la fuerza del agente. Un contro-
lador para un sistema de aterrizaje y despegue vertical en un plano (PVTOL) también es
propuesto para ser implementado en el control cooperativo.

Los resultados han sido corroborados usando simulaciones numéricas y con una vali-
dación experimental.
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ȧ :=
d
dt

a(t) Differentiation with respect to time
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Chapter 1

Introduction

The problem of transportation and logistics has always played a central role in society and

economics. The fact is that there exists a wide variety of means of transportation. From

ground vehicles like trucks and trains, to maritime transportation using freighters and ships,

to aerial transportation in planes and helicopters. Even rockets can be considered a means

of displacing objects from one place to another. This bears to ask the question, why are

there so many of them? The easiest answer is that society has different needs and different

constraints, and the means of transportation are as diverse as the things we are trying to

transport. It is not the same to displace a letter from one country to another than millions

of people from their homes to their works. The fact is that society will always have a need

to ship something in different times and through different places.

This work presents yet another way to transfer objects from one point to another. How-

ever, the method presented here takes advantage of some technological achievements that

have been developing in recent times in order to present an innovative way of doing it in

the hopes that it will be used in one of the many other methods there are for the advance-

ment of humanity. All this starts with one of the most interesting technologies of our time,

unmanned aerial vehicles.

1



1.1 Unmanned Aerial Vehicles

The term unmanned aerial vehicle (UAV) has a very specific meaning in the context of

automatic control research, but it can be substituted by the word “drone” for the general

public. In effect, most people think of those small toys that one can buy in almost any

store nowadays, but they do not realize that drones have permeated many of the layers of

industrial automation in recent years. This type of autonomous vehicles has seen a rise in

popularity, and not only as a didactic novelty. There has been a growing interest in many

different types of field for their use, like law enforcement or disaster relief to name a few

[Valavanis and Vachtsevanos, 2015]. This in turn makes this kind of vehicles a popular

option for the development of innovative control strategies.

UAVs can be divided into two main categories depending on their wing configuration:

rotary-wing and fixed-wing drones. Examples of fixed-winged drones include airplanes in

all kinds of configurations. These type of UAV are good to travel long distances consum-

ing a minimal amount of energy, but at the expense of longer landing and take-off zones

and decreased maneuverability. Rotary-wing drones, on the other hand, include examples

such as helicopters and multirotors, which include quadcopters, hexacopters, octacopters,

etc. These types of UAVs have excellent maneuverability and can take-off and land in con-

strained spaces, but at the expense of requiring more energy even to just stay in one place.

Depending on the task at hand is the kind of vehicle that is usually used, and there has even

been research done in order to make a hybrid vehicle that combines the best characteristics

of both of these vehicles without any of the drawbacks, like the works of [Cronin, 2019],

[Joshi et al., 2019] and [Belokon et al., 2019], to name a few.

However, recent areas of research for UAV applications has focused on expanding the

range of tasks that already existing platforms can achieve. One such territory is the aerial

manipulation field, which includes, perching, grasping, positioning tasks, among others.

These types of applications have seen a lot of interest in recent years because it encourages

physical interaction of the UAV with its surrounding environment [Khamseh et al., 2018],

which enables them to be used in a wider and more complex variety of tasks.
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1.2 Aerial Manipulation and Transportation using UAVs

Recent advances in electronic sensors, power storage and electric motor efficiency have

contributed to the idea that drones should be used in tasks than involve physical interaction

with their surroundings. The fact that UAVs do not require extra equipment dedicated to

the safety of a pilot means that they can potentially go into hazardous or unreachable places

without compromising the safety of any human life and at a potential lower cost. This is

the main focus of the field of aerial manipulation.

Some examples of aerial manipulation are as simple as a stick protruding from the drone

in order to touch and move objects, to something as complex as kinematic chains made out

of extremely precise motors.

The fact that UAVs do not require extra equipment dedicated to the safety of a pi-

lot means that more weight capacity can be used for lifting and transporting the load.

The interest of using UAVs in commercial and industrial applications has been focused

on the passive perception and monitoring of the environment, like inspection, video cap-

ture, surveillance, ... Recent research for UAV applications has focused on expanding this

range of tasks like the aerial manipulation field, which includes, perching, grasping and

positioning tasks, among others. These types of applications have seen a lot of interest in

recent years because it encourages physical interaction of the UAV with its surrounding

environment [Khamseh et al., 2018], which enables them to be used in a wider variety of

tasks. However, the most common solutions to the aerial manipulation problem usually

mount a gripper or robotic arm to the UAV[Ruggiero et al., 2018]. Some examples of

this can be seen in works where the problem of grasping and perching are addressed using

light-weight and low complexity grippers [Mellinger et al., 2011] [Backus et al., 2014].

Another way to address the problem is by means of bio-inspired designs manipulator arms

for aerial griping [Thomas et al., 2014] [ASME, 2013]. There are many works that propose

a solution to manipulation tasks using a robotic arm attached to quadcopters [Kim et al.,

2013] [Orsag et al., 2014] [Ramon Soria et al., 2019]. Some tasks require more complexity

for the kind of manipulation required, in which case a common solution is to add more

manipulators [Yu et al., 2019] [Suarez et al., 2019] or more complex ones [Danko and Oh,
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2013] [Cano et al., 2013] [Suarez et al., 2015] [Heredia et al., 2019]. There are others that

propose unique platforms designed from the ground-up with aerial manipulation in mind

[Nikou et al., 2015]. The advantage of using a dedicated manipulation mechanism is that

it adds dexterity to the the aerial manipulation task at the expense of weight. This ulti-

mately increases battery consumption and lowers flight time. In contrast, the use of cables

or tether mechanisms, like the ones in [Cruz and Fierro, 2014] [Cruz and Fierro, 2017] and

[Foehn et al., 2017], offer an alternative to aerial manipulation tasks with minimal weight

gain at the expense of almost non-existent dexterity. For the problem at hand, which is the

transportation of a load from one point to another, there is no need for a fine-tuned manip-

ulation, which makes the cable mechanisms a more attractive solution. The configuration

that is more widely used is denominated as “slung-load”, and consists of carrying the load

below the vehicles using a single cable, or a tether mechanism.

1.3 Cooperative Transportation using UAVs

Figure 1-1: An example of a position-based control of a swarm of drones

One of the first questions that arises when dealing with a slung-load transport system

comes from the choice of using a single vehicle like in [Pereira et al., 2016] [Cruz and

Fierro, 2014] [Notter et al., 2016] [Cruz and Fierro, 2017] [Foehn et al., 2017] or multiple

vehicles like in [Maza et al., 2009] [Aghdam et al., 2016] [SAYYAADI and SOLTANI,
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2018] or [Shirani et al., 2019]. The single vehicle approach allows a simpler control strat-

egy to be used at the expense of flexibility, as this types of vehicles are often designed with

a very specific type of load in mind. A cooperative approach has the advantage that the

number of agents can be chosen depending on the characteristics of the load, and not the

other way around. The drawback is that the interaction and cooperation makes for more

complex control schemes in general. An example of the position control of various vehicles

(called swarm in this case) can be seen in Figure 1-1

Figure 1-2: An example of a cooperative scheme to build a structure. Each agent has a
simple gripper mechanism and the work is distributed among the agents.
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Cooperative schemes can be be classified into centralized and decentralized algorithms.

Centralized control algorithms, like the ones presented in [Sreenath and Kumar, 2013] [Ma-

sone et al., 2016] and [Manubens et al., 2013], have the advantage that most of the com-

putational resources can be concentrated into a single dedicated vehicle or ground control

station. However, this type of configuration heavily relies on the communication among

the agents. Figure 1-2 shows an example of a centralized algorithm controlling a group of

drones.

Figure 1-3: An example of a cooperative scheme to transport and deploy a cable structure.

On the other hand, decentralized algorithms, like the ones in [Mellinger et al., 2013]

and [Rezaee and Abdollahi, 2013], can be considered to be more robust against errors in

communication and may even be able to rely on sensors in order to gather information of

other agents. This explicit way of exchanging information is known as a sensing and com-

munication network according to [Qu, 2009]. Figure 1-3 shows a couple of quadcopters

deploying a cable structure. Recently, there has been a tendency to take advantage of the

cable’s connection of the agents to the load by considering the effects of this physical in-

teraction as a form of implicit communication, like it was presented in [Tagliabue et al.,

2017], [Tognon et al., 2018] and [Gabellieri et al., 2018]. Some examples where implicit
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communication could be applied are shown in Figures 1-4 and 1-5. The main advantage

of implicit communication is that the control algorithm of each vehicle does not depend

directly on the state of the other vehicles, which makes this type of schemes even more

robust.

Figure 1-4: An example of aerial manipulation using a tethering mechanism and cables.

Because of its ability to be used for implicit communication, low weight and its simple

arrangement, the so called “slung-load” configuration is the method of choice to be used to

solve the cooperative transport of a load.

1.4 Objective

The relevance of the transportation problem is being addressed in this work. It was shown

how using UAVs for the aerial manipulation is a very attractive research topic because

of all the possible applications that could be solved. Some solutions have already been

mentioned, but most of them do not take advantage of the modular approach that comes

from using a cooperative control scheme. Some works of autonomous cooperative trans-

port were mentioned, but most of them rely on a centralized control center or in a sen-
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Figure 1-5: An example of a cooperative scheme to transport a load using a cable mecha-
nism with a bar.

sor/communication network. However, the fact of having a physical connection with the

load that is transported can have an advantage that not many cooperative transport algo-

rithms use, and that is the possibility of using implicit communication. Almost all of

the works that use implicit communication depend on estimating some physical param-

eters online in order to compensate for them, most notably the ones based on mechanical

impedance control.

This work proposes a solution to the cooperative slung-load problem with implicit com-

munication using a passivity-based approach. The design presented here is innovative in

that it does not rely on the estimation of online parameters in order to work, its design strat-

egy has a modular approach and was proven to work in a physical system of two quadcopter

vehicles.

In Chapter 2, the load transportation scheme is translated into three specific cooperative
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control objectives.

The design and corroboration of the main cooperative control scheme is presented in

Chapter 4, which assumes that the agents are either fully actuated or its position dynamics

are able to be regulated.

In order to comply with this assumption, Chapter 3 presents a control law for the PV-

TOL platform that meets all these requirements and can be used in case the need arises

to implement such a controller. The proposed cooperative control was implemented on an

experimental platform consisting of two quadcopter vehicles and a load in the form of a

bar.

The results of the experiment has been displayed and analyzed in Chapter 5.

Finally, the conclusions and future work are shown in Chapter 6
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Chapter 2

Problem Statement

The previous chapter introduced the different approaches that have been used in order to

solve the transportation problem. In its most basic form, it can be addressed as carrying a

load from one point to the other. This simple objective is the basis of many aerial navigation

algorithms. However, its implementation can quickly increase in complexity by taking into

account various factors like the type of carrying configuration, the shape and weight of the

load itself and even the number and type of agents involved. The focus of this chapter is to

synthesize and present the transportation problem in such a way that it can later be solved

in the following chapters. Chapter 5 shows an experimental validation of the proposed

conditions and is a testament of the validity of the hypotheses and simplifications made

here.

2.1 Cooperative Control Objective

The type of vehicle considered in this work are quadcopters, which are an underactuated

type of UAV that can move in a 3D space. The chosen mechanism is a slung-load config-

uration and the form of the load considered can be arbitrary, as well as the anchor point

for the cables on the load. A free body diagram of this type of arrangement can be seen in

Figure 2-1.

The first assumption that is going to be made is that the distance from the center of

mass of the load to each anchor point (the ~d{1,2,...,n} vectors in Figure 2-1) is not zero. This
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Figure 2-1: Free body diagram of the general form of a cooperative slung-load transport in
3D space using quadcopters with four agents

implies that there is no anchor point at the center of mass of the load. In practice, the

configuration of the anchor points can be chosen a priori if one uses a tether mechanism in

order to help avoid collisions.

Using Figure 2-1 as a reference , the control objective can be stated according to the

load’s position ~pl w.r.t. an inertial reference frame I as

t→ ∞ =⇒

 ~pl → ~pl,d

~̇pl → ~0
(2.1)

Because of the configuration of the slung-load mechanism, the control objective (2.1)

can be achieved from the perspective of individual agents. If it can be ensured that the

agents converge to a desired position, the load will tends towards a specific position. This

can be stated as
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t→ ∞ =⇒


~p j→ ~p j,d

~̇pi→ ~0

~̇pl → ~0

(2.2)

for all i ∈ {1,2, ...,n}∖Ω j and for all j ∈Ω j ⊂ {1,2, ...,n} for some nonempty set Ω j of at

least three elements (because of the three dimensions of movement).

The previous definitions are restrictive in the sense that they only allow for a single

possible configuration of the final state. Sometimes, it is better to consider that the system

arrives to a region of interest. Even the load’s orientation is not as relevant, only the position

of the center of mass. In these cases, it is better to have an objective set instead of a punctual

desired state for the control design. The control objective in this case can be generalized in

a 3D environment as

Control Objective 2.1.1. Let ~pl ∈ R3 be the position of the load in the inertial frame

I ; ~pi ∈ R3 is the position of each agent in the inertial frame I for all i ∈ {1,2, ...,n}

agents; ~̇pl,~̇pi ∈ R3 is the load’s and agent’s velocities, respectively; and let Ωd ⊂ R3+3n

be a desired system position set. The objective is to make the load and agent’s position

converge asymptotically to the desired position set with zero velocity as time tends towards

infinity, namely:

t→ ∞ =⇒



 ~pl

~pi

→Ωd

 ~̇pl

~̇pi

→~0

(2.3)

2.2 Problem Simplification

The transport problem for objective (2.3) can become quite complicated because: the load’s

swing effects may eventually produce instability in the system as a whole; and it is difficult

to estimate the state of the load, like position and velocity, from an external agent’s point of
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view. In this section some assumptions are made in order to synthesize the system model

in a way that will allow a simpler controller design in Chapter 4.

2.2.1 Planar Movement

Moving from an initial point ~p·,0 to a desired point ~p·,d in a 3D space can be seen as moving

in a plane that is collinear with both points and perpendicular to the ground plane (Ix−Iy

from Figure 2-1) of the inertial frame. An example of this plane can be seen in Figure 2-2.

In this way, the problem can be restated but in a 2D perspective.

Figure 2-2: Collinear plane for points ~p·,0 and ~p·,d w.r.t. the inertial frame I

The quadcopter agents can be modeled as PVTOL vehicles by restricting their move-

ment in this plane. The new inertial plane can be defined as I ′.

2.2.2 Rigid Ideal Cables

Cables in aerial manipulation problems can be modeled in many ways, like kinematic

chains composed of many rigid links. However, a key aspect of cooperative schemes that

use cables is ensuring that the cables stay tense for all agents. Otherwise, the weight of

the load is not distributed among the agents. One way of ensuring this by considering or

enforcing that the agents and the load’s velocity is small enough.
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In this work, the cables are modeled as if they were rigid bodies but with despicable

mass (practically mass-less). The consequence of choosing the model this way, along with

restricting it to a plane as mention in Section 2.2.1, is that the more agents there are, the

interaction among them is less realistic as the cables will tend to have forces that tend to

compress them. If this would happen in a practical implementation, the cables would sack

leaving the connection of the agent with the load “severed”. This is the main reason of

using two agents instead of more for all the planar implementations of cooperative aerial

manipulation.

2.2.3 Bar Load

Figure 2-3: Load synthesis diagram using just the anchor points and the center of mass

The load presented on Figure 2-1 has an arbitrary shape. However, there are various

ways in which it can be simplified for modeling and control purposes. One such approach is

to consider it as a polygon form using just the anchor points and its center of mass. Figure

2-3 shows an example of this kind of synthesis.
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Section 2.2.2 presents a compelling argument for using only two agents. With just two

anchor points, the load model can be simplified into a bar. In practice, a bar can be used as

a tethering mechanism to force this configuration, as can be seen in Image 1-5

2.2.4 Ideal Conditions

The proposed conditions presented in the mathematical models and the external conditions

are proposed to be in controlled environments. In this case, the most notable change is

the absence of wind or aerodynamic effects like drag. This is done in order to keep the

analysis in the cooperative control, as robust and wind effects are better suited for their

own consideration. In practical terms, this implies that the results can be used seamlessly

in interior or calm environments, but should have a more special consideration in more

hostile ones.

2.2.5 Planar Cooperative Control Objective

Using the simplifications proposed above, the objective 2.1.1 can be simplified into

Control Objective 2.2.1. Let ~pl ∈ R2 be the position of the load in the plane I ′ as seen

in Figure 2-2; ~pi ∈ R2 is the position of each agent in the inertial frame I ′ for all i ∈

{1,2, ...,n} agents; ~̇pl,~̇pi ∈ R2 is the load’s and agent’s velocities, respectively; and let

Ωd ⊂R2+2n be a desired system position set. The objective is to make the load and agent’s

position converge asymptotically to a desired position set with zero velocity as time tends

towards infinity, namely:

t→ ∞ =⇒



 ~pl

~pi

→Ωd

 ~̇pl

~̇pi

→~0

(2.4)
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2.3 Planar Vertical Take-Off and Landing (PVTOL) Con-

trol Objective

The cooperative control objective (2.4) does not explicitly include the orientation of each

of the agents. In the system presented if Figure 2-1, the direction of the thrust force acting

on the PVTOL depends directly on its orientation, and its magnitude is a control input.

In order to achieve objective (2.4) in this situation, the following complementary control

objective is introduced.

Control Objective 2.3.1. Let ~Fth,i ∈ R2 be the thrust of each agent as seen in Figure 2-1

in the inertial frame I ′ shown in Figure 2-2; Fth,i ∈ R+ is the thrust’s magnitude for each

agent i and is a control input; let ui be a desired control input force for each agent. The

objective is to make the thrust force of each agent converge towards a desired control input

force as time tends towards infinity, namely:

t→ ∞ =⇒ ~Fth,i→ ui (2.5)

for some desired control input force ui ∈ R2

2.4 Summary

In this chapter, the cooperative control problem for a slung-load transportation has been di-

vided into achieving two separate control objectives presented in (2.4) and (2.5). A diagram

of the overall control strategy can be seen on Figure 2-4.

The proposed solution for objective (2.5) will be developed in Chapter 3 and then a

solution to the control objective (2.4) will be proposed in Chapter 4.
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Figure 2-4: A block diagram that shows how the cooperative control using PVTOLs global
objective can be separated into two different specific control objectives
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Chapter 3

PVTOL Control

In this chapter, a control for the PVTOL platform is presented. The method used is based

on the control technique of feedback linearization [Khalil, 2002, Chapter 13]. This is a

nonlinear control technique that allows the system to be transformed into a linear system

using a feedback function. The advantage of this technique is that it becomes easier to solve

the regulation problem for the force of the PVTOL. In other words, this control allows us

to shape the form of the force acting on the PVTOL.

This chapter is meant to be used as a complement to the theory and results presented

in Chapter 4. However, they are not essential as the cooperative system control can be

synthesized with any kind of agent as long as Objective 2.3.1is achieved. A more thorough

discussion can be seen on Chapter 4.

This chapter is divided in four main sections. Section 3.1 presents the PVTOL model

that is used throughout the controller design and numerialc validations. The control is

presented in section 3.2, which in turn separates the design into various parts. In section

3.2.1 the regulation problem to be solved is introduced. Section 3.2.2 extends the model

presented in section 3.1 in order to allow the use of an exact linearization methodology

as presented in [Khalil, 2015, Chapter 13]. In section 3.2.3, a state feedback control is

proposed to solve the regulation problem. In section 3.3 an academic example is presented

using a numerical simulation. Finally, section 3.4 is used to present the final thoughts

of the presented PVTOL control and make some remarks on how to implement it for the

theory presented in Chapter 4. All the proofs of the theorems shown in this chapter can be
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addressed in Appendix A

3.1 PVTOL System Model

The PVTOL is considered to behave like a rigid body. The external forces acting on the

system are considered to be just the effects of the motors and the gravity. It is considered

that the speed is small enough that any aerodynamic effects, such as drag, is negligible in

the model. The free body diagram of all the forces considered is shown in figure 3-1 and

explained further in this section.

Figure 3-1: The PVTOL free body diagram.

The position of the vehicle ~pi :=
[

x z
]T
∈ R2 and its attitude θi ∈ R are referenced

w.r.t. the inertial frame I ′. The mass of the vehicle mi and the effect of the gravity g are

positive constants.

It is assumed that the velocity of each motor ω j ∀ j ∈ {1,2} is controllable. The thrust

that each motor generates fm j,i ∈ R+ is proportional to the square of the propellers’ speed,

that is

fmi = km j ω
2
i ∀i ∈ {1,2} (3.1)

for some real constant kmi > 0.
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In order to simplify the design and analysis of the control law, the control inputs will

be considered as

u = fm1 + fm2

τ = l ( fm2− fm1)
(3.2)

which are the PVTOL thrust force and torque, respectively.

The PVTOL model can the be described by applying a Newton-Euler method to obtain

mẍ = −u sinθ (3.3)

mz̈ = u cosθ −mg (3.4)

J θ̈ = τ (3.5)

where J ∈ R is a positive constant that represents the second inertia moment.

More information about this model can be obtained from [Castillo et al., 2005].

3.2 PVTOL Control Design

In this section, the control for the PVTOL is designed in a four part procedure. The first

part explains the objective that the designed control should reach and which will guide the

rest of the design process. An extension is given for the PVTOL model presented in section

3.1 in order to transform the higher derivatives of equations (3.3) and (3.4) into an affine

system. The altitude dynamics are then extracted from this system and will be used in the

stability proof. The next part proposes a feedback linearization control for the new affine

system and gives the conditions in which the control strategy is valid. The last part presents

a state feedback control in order to stabilize the vehicle in a trajectory tracking scheme and

it will be shown that the control algorithm locally stabilizes the PVTOL system.
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3.2.1 PVTOL Control Problem Statement

The problem addressed in this work is known as the tracking problem. In order to present a

better understanding of it from a theoretical point of view the following definition is needed

The state of the PVTOL vehicle is defined as

ξ̂ :=
[

x ẋ z ż θ θ̇

]T
(3.6)

The control objective is then presented as

Control Objective 3.2.1. Design the control inputs u and τ in equations (3.3) - (3.5) such

that

lim
t→∞

∣∣∣∣∣∣ξ̂ − ξ̂d (t)
∣∣∣∣∣∣= 0 (3.7)

where ξ̂d (t) : R→ R6 is a function that represents the desired trajectory of the vehicle.

If objective 3.2.1 is accomplished, it means that the vehicle is capable of tracking the

state ξ̂d (t).

3.2.2 System Model Extension

The control input u in (3.3) and (3.4) can be extended to include higher order derivatives.

In order to do this, the following remark is used.

Remark 3.2.1. The control input u is considered to be a C2 function. This implies that u̇, ü

exist and are continuous.

Taking into consideration Remark 3.2.1, the differentiation of equations (3.3) and (3.4)

w.r.t. time results in

mx(3) = mx(3)(u,θ , u̇, θ̇) = −u̇ sinθ −u θ̇ cosθ (3.8)

mz(3) = mz(3)(u,θ , u̇, θ̇) = u̇ cosθ −u θ̇ sinθ (3.9)
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It should be noted that the differentiation presented in (3.9) does not contain a term

related to the gravity of the system mg, but equation (3.4) does take it into account for the

system model. Equations (3.8) and (3.9) can be differentiated once again w.r.t. time, which

results in

mx(4) = −ü sinθ −2 u̇ θ̇ cosθ −u θ̈ cosθ +u θ̇ 2 sinθ (3.10)

mz(4) = ü cosθ −2 u̇ θ̇ sinθ −u θ̈ sinθ −u θ̇ 2 cosθ (3.11)

Substituting θ̈ , given in (3.5), into (3.10) and (3.11) results in

mx(4) = −ü sinθ −2 u̇ θ̇ cosθ − uτ cosθ

J
+u θ̇ 2 sinθ (3.12)

mz(4) = ü cosθ −2 u̇ θ̇ sinθ − uτ sinθ

J
−u θ̇ 2 cosθ (3.13)

which can be rewritten in matrix form as

m

 x(4)

z(4)

=

 −sinθ −u cosθ

J
cosθ −u sinθ

J


 ü

τ

+
 −2 θ̇ cosθ u θ̇ sinθ

−2 θ̇ sinθ −u θ̇ cosθ

 u̇

θ̇


(3.14)

Define E (u,θ) and F
(
u, u̇,θ , θ̇

)
as

E (u,θ) :=

 −sinθ −u cosθ

J
cosθ −u sinθ

J

 (3.15)

F
(
u, u̇,θ , θ̇

)
:=

 −2 θ̇ cosθ u θ̇ sinθ

−2 θ̇ sinθ −u θ̇ cosθ

  u̇

θ̇

 (3.16)

Then (3.14) can be written as
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m

 x(4)

z(4)

= E (u,θ)

 ü

τ

+F
(
u, u̇,θ , θ̇

)
(3.17)

which is in an affine control form.

3.2.3 PVTOL Feedback Linearization

The control inputs of the system presented in (3.17) are ü and τ . The nonlinearity in

equation (3.17) is due to matrix E (u,θ) and the term F
(
u, u̇,θ , θ̇

)
. The control inputs ü

and τ can compensate for the matrix E (u,θ) by using its inverse, but its domain will be

restricted by the conditions under which the matrix is not singular. The following corollary

is used to obtain this domain.

Remark 3.2.2. Matrix E (u,θ) is not singular iff u ̸= 0. This can be deduced from the fact

that

det [E (u,θ)] =
u
J

(3.18)

The nonlinear term F
(
u, u̇,θ , θ̇

)
can be canceled by subtraction. The control inputs ü

and τ are defined as

 ü

τ

 := E−1 (u,θ)

m

 utra

uatt

−F
(
u, u̇,θ , θ̇

) (3.19)

where utra,uatt ∈ R are new control inputs for the resulting linear system and E−1 (u,θ)

has the form

E−1 (u,θ) =

 −sinθ cosθ

−J cosθ

u
−J sinθ

u

 (3.20)

Introducing (3.19) into (3.17) leads to
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 x(4)

z(4)

=

 utra

uatt

 (3.21)

In order to design a state feedback control law, the state of the system is defined as

ξ :=
[

x z ẋ ż ẍ z̈+g x(3) z(3)
]T

(3.22)

Note that most control design techniques for the PVTOL define the state as shown

in (3.6), which are the variables that could be obtained from the sensors and most state

estimators. However, according to (3.3), (3.4), (3.8) and (3.9), the derivatives ẍ, z̈,x(3) and

z(3) can be obtained from the vehicle’s variables m,θ , θ̇ ,u and u̇. The following corollary

can be obtained from this fact.

Corollary 3.2.1. There exists a transformation T (·) that changes the state presented in

(3.6) into the one in (3.22)

ξ = T
(

ξ̂ ,u, u̇
)
=



x

z

ẋ

ż

−u sinθ

m
u cosθ

m
−u̇ sinθ −u θ̇ cosθ

m
u̇ cosθ −u θ̇ sinθ

m



(3.23)

Using the state vector (3.22), equation (3.4) and the system (3.21), the PVTOL system

can be expressed as the following linear system

ξ̇ =

 06×2 I6×6

02×2 02×6

 ξ +

 06×2

I2

  utra

uatt

+


03×1

−g

04×1

 (3.24)
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Equation (3.24) shows that the PVTOL system has been transformed into a linear repre-

sentation with a gravity term. The control input
[

utra uatt

]T
will be used to compensate

the gravity and stabilize the system.

Following the lead from Chapter 2, the PVTOL system can be separated into two inde-

pendent dynamical systems. The first one is the PVTOL position dynamics and the second

one is the PVTOL’s attitude dynamics. Both will be address in the following sections.

PVTOL Position Dynamical System

The translational dynamics are obtained from system (3.24). The system presented here

will be used in the following sections to help prove the local stability of the system.

The state vector of the lateral position dynamic system is defined as

ξtra :=
[

x ẋ ẍ x(3)
]T

(3.25)

Taking into account system (3.24), the differentiation of ξtra w.r.t. time is

ξ̇tra = Aξtra +Butra (3.26)

with the matrices A and B defined as

A :=

 03×1 I3

0 01×3

 , B :=

 03×1

1

 (3.27)

PVTOL Altitude Dynamical System

The altitude dynamics are obtained from system (3.24) so that it may later be used for the

stability analysis and the calculation of the region of attraction.

The state vector of the altitude system is defined as

ξalt :=
[

z ż z̈+g z(3)
]T

(3.28)

Taking into account system (3.24), the differentiation of ξalt w.r.t. time is
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ξ̇alt = Aξalt +Bualt + γalt (3.29)

The constant vector γalt is the effect that the gravity has on system (3.29), with the

following definition

γalt :=
[

0 −g 0 0
]T

(3.30)

3.2.4 State Feedback Control Design

The proposed control algorithm in this work for system (3.24) is a state feedback control.

Its description and the stability analysis are shown in the following definition and theorem.

Definition 3.2.1. Let us define two gain vectors Ktra,Katt ∈ R1×4, which are chosen in

order to comply with the Lyapunov equations

Ptra (A−BKtra)+(A−BKtra)
T Ptra =−Qtra (3.31)

Palt (A−BKalt)+(A−BKalt)
T Palt =−Qalt (3.32)

where Qtra,Ptra,Qalt ,Palt ∈ R4×4 are positive definite symmetric matrices.

Theorem 3.2.1. The proposed control law is utra

ualt

=

 −Ktra ξtra

−Kalt (ξalt− γu)

 (3.33)

where

γu :=
[

01×2 g 0
]T

(3.34)

The control law (3.33) locally stabilizes system (3.24) to the state
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ξ
* =


05×1

g

02×1

 (3.35)

Theorem 3.2.1 provides the basis to achieve the control objective 3.2.1. In order to

complete the control algorithm the desired trajectory needs to be transformed into the new

state coordinates.

Corollary 3.2.2. The desired trajectory presented in (3.7) can be transformed into a desired

trajectory in the new state vector as

ξd(t) := ξd := T
(

ξ̂d(t),u, u̇
)

(3.36)

It is assumed that this trajectory is continuous and smooth and that u ̸= 0. Also, its

differentiation w.r.t. time is also assumed to have the form (see Corollary 3.2.1)

ξ̇d =

 06×2 I6×6

02×2 02×6

 ξd (3.37)

Corollary 3.2.3. It follows from Corollary 3.2.2 and definitions 3.25 and 3.28 that the

trajectories for the translation and altitude systems can be obtained as

ξtra,d :=
[

xd ẋd ẍd x(3)d

]T
(3.38)

ξalt,d :=
[

zd żd z̈d z(3)d

]T
(3.39)

Also from Corollary 3.2.2, the trajectories for each subsystem have the form
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ξ̇tra,d = Aξtra,d (3.40)

ξ̇alt,d = Aξalt,d (3.41)

The following theorem is the result of using corollary 3.2.2 and the control law pre-

sented in theorem 3.2.1.

Theorem 3.2.2. The control law

 utra

ualt

=

 −Ktra
(
ξtra−ξtra,d

)
−Kalt

(
ξalt−ξalt,d− γu

)
 (3.42)

makes system (3.24) be locally asymptotically stable to the state

ξ
* = ξd +


05×1

g

02×1

 (3.43)

Even though the linear system (3.24) has been proven to be asymptotically exponen-

tially stable around the desired state ξd using Theorem 3.2.2, the fact that the inverse (3.20)

was used means that the stability is local according to Remark 3.2.2. The approach taken

in this work is to calculate a region of attraction for which the stability analysis of the

proposed control law is still valid. As the system was separated into an altitude and a

translation system, and this singularity only affects the altitude dynamics, the translation

dynamics are still globally asymptotically stable.

Theorem 3.2.3. The region of attraction of system (3.24) with control (3.33) can be defined

as

Ω :=
{

ξ ∈ R8∣∣ ||ξalt ||< g
}

(3.44)
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Theorem 3.2.4. The region of attraction of system (3.24) with control (3.42) can be defined

as

Ω :=
{

ξ ∈ R8∣∣ ||ξalt ||<
∣∣∣∣ud cosθd

m
+g
∣∣∣∣} (3.45)

From equations (3.15), (3.19), (3.20), (3.25), (3.28), (3.34), (3.38) and (3.42), and def-

inition 3.2.1, the control inputs ü and τ are completely defined as

 ü

τ

=

 −sinθ cosθ

−J cosθ

u
−J sinθ

u

m

 −Ktra
(
ξtra−ξtra,d

)
−Kalt

(
ξalt−ξalt,d− γu

)
− −2 θ̇ cosθ u θ̇ sinθ

−2 θ̇ sinθ −u θ̇ cosθ

 u̇

θ̇


(3.46)

3.2.5 PVTOL Force Regulation

The presented theorems are useful to control the complete state ξ of the PVTOL platform.

However, in order to comply with the Control Objective 2.3.1, it is only necessary at this

point to control just the thrust vector force

Fth,i =

 ξ5,i

ξ6,i

 (3.47)

This can be done without loss of generality by adapting the control law presented in

Theorem 3.2.2, as stated in the following corollary

Corollary 3.2.4. The control law

 utra

ualt

=

 −Ktra,13
(
ẍi− ẍi,d

)
−Ktra,14 x(3)i

−Kalt,13
(
z̈i− z̈i,d

)
−Kalt,14 z(3)i

 (3.48)

makes system (3.24) be locally asymptotically stable to the state
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ξ
* =


04×1

ξ5,d,i

ξ6,d,i

02×1

+


05×1

g

02×1

 (3.49)

3.3 PVTOL Control Academic Example

According to Definition 3.2.1, two state feedback gains Ktra and Kalt are needed in order

to implement the proposed PVTOL control law. These matrices can be obtained using

many different methods like pole placement [Chen, 1998, Chapter 9] or root locus [Dorf

and Bishop, 2011, Chapter 7], the only restriction is that they need to satisfy the Lyapunov

algebraic equations (3.31) and (3.32).

For the example presented here, these gains will be obtained using a LQR approach.

The parameters used to solve the algebraic Riccati equation were

QLQR = diag
{

1 1 0.1 0.01
}

(3.50)

is the state-cost weighted matrix1and

RLQR = I2 (3.51)

is the input-cost weighted matrix2.

The control law (3.46) was simulated numerically with the following state feedback

gain

1The matrix QLQR was selected in this way to ensure that the position and velocity states converge faster
to the desired state. The higher-order terms are not as important because they either depend on the attitude
state, which is assumed to have fast dynamics, or on the numerical integration of the thrust force, which are
extended states.

2The matrix RLQR was selected in this simple way because the input-cost is not as important as the design
of QLQR.
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Ktra = Kalt =
[

1 2.91712925 3.75482154 2.74219676
]

(3.52)

m 1.8 kg J 0.79 kg ·m2

g 9.81 m/s2 t0 0 s
∆t 0.01 s t f 30 s
xd −1 m zd 1.5 m
ẋd 0 m/s żd 0 m/s
θd 0 rad θ̇d 0 rad/s
ud mg N u̇d 0 N/s
x0 0 m z0 0 m
ẋ0 0 m/s ż0 0 m/s
θ0 0 rad θ̇0 0 rad/s
u0 0.01m N u̇0 0 N/s

Table 3.1: Academic example simulation parameters for the proposed PVTOL control law

From these parameters, the maximum value of the region of attraction is

∣∣∣∣ud cosθd

m
+g
∣∣∣∣= |g| (3.53)

and the norm of the initial parameters vector ξalt,0 is obtained using (3.23)

∣∣∣∣ξalt,0
∣∣∣∣= ∣∣∣∣∣∣∣∣0.01m cos0

m
−g
∣∣∣∣∣∣∣∣= 9.8 < g (3.54)

which implies that the initial conditions of the system are inside the region of attraction

(3.45).

In order to proof the robustness of the proposed control, a crosswind perturbation was

added to the simulation as described in [Munoz et al., 2010], with random bounded param-

eters

w1 ∼U (−5,5) (3.55)

and

w2 ∼U (−0.01,0.01) (3.56)
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The results of the simulation can be seen in figures 3-2 through 3-11.
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Figure 3-2: PVTOL control academic example position

Figure 3-2 shows the xi and zi position of the PVTOL. Because of the initial conditions,

the altitude drops significantly in the first seconds of the simulation due to the effect of the

gravity. On both figure 3-2 and 3-3 the effect of the crosswind does not allow the state

to fully reach the desired state, but it can be seen in figures 3-4 and 3-5 that the error is

bounded.

The change of attitude of the vehicle is reflected in figure 3-6. It can be seen that it has a

jump at the start due to the initial conditions and the desired position. The angular velocity

is shown in figure 3-7. Both of these plots have small angles changes, but it is enough to

have an effect on the translational dynamics.

Figure 3-8 shows the input torque and figure 3-9 shows the thrust vector magnitude. In

figure 3-8 the input torque τ is bounded near zero because of the crosswind perturbation. It

can be seen in figure 3-9 that the thrust vector u does not pass through zero, which avoids

the singularity in the control algorithm presented.

Figures 3-9-3-11 show the dynamics of the thrust vector system. Because the thrust

vector u is a control input, the initial conditions of the thrust vector’s dynamic system can
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Figure 3-3: PVTOL control academic example velocity

be initialized at any arbitrary value. The thrust does not come close to zero since the initial

conditions satisfy (3.44) and (3.45)

3.4 Summary

Even though the PVTOL platform model presented in equations (3.3)-(3.5) is well known,

the control input u can be extended in order to make the platform behave like a linear

system. In contrast with other non linear control techniques, like the ones presented in

[Aguilar-Ibañez, 2017], [Aguilar-Ibañez et al., 2018] and [Hernández-Castañeda et al.,

2018], the advantage of this approach is that the control design and stability analysis is

easier for the linear system than for the original model. A state feedback control was used

and proven to be able to solve the tracking problem. However, this is just one of the possible

controls that can be used with this linearized system.

Feedback linearization has been applied to the PVTOL platform before, mostly by ex-

tending the state of the system’s thrust force Fth. However, the feedback linearization in all

these controllers can only be local, as the feedback function has a singularity when Fth = 0.
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Figure 3-4: PVTOL control academic example absolute position error

This is because the inverse of the matrix E(Fth,θ) is used to make the feedback lineariza-

tion possible, and it becomes singular at this particular point, which is explained in Remark

3.2.2. The singularity for this model is unavoidable, but most of these works only acknowl-

edge it, and [Aguilar-Ibanez et al., 2019] even mentions that the thrust of the vehicle is

always positive in practice. Even if the physical system does have the limitation that the

thrust force should always remain positive, that is not a guarantee that the control scheme

implemented may not at some point pass through the singularity. In [Puga et al., 2015],

the range of action of the control is limited to a region, which could be used to prevent the

state of the vehicle from reaching the singularity, but that is not the main objective of these

authors.

Finally, the controller presented here solves Control Objective 2.3.1 by using Corollary

3.2.4 (see Figure 2-4). Control Objective 2.2.1 will be solved in the next chapter with the

aid of this result.
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Figure 3-5: PVTOL control academic example absolute velocity error
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Figure 3-6: PVTOL control academic example attitude
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Figure 3-7: PVTOL control academic example angular velocity
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Figure 3-8: PVTOL control academic example input torque τ
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Figure 3-9: PVTOL control academic example position Fth
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Figure 3-10: PVTOL control academic example thrust vector differentiation w.r.t. time Ḟth
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Figure 3-11: PVTOL control academic example thrust vector double differentiation w.r.t.
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Chapter 4

Cooperative Slung-Load Transport

Control

This chapter presents the main theoretical results in order to achieve Control Objective

2.2.1, which results in a decentralized cooperative control law (see Figure 2-4). The main

contributions come from the properties of the proposed design approach. The system is

guaranteed to be locally asymptotically stable towards a desired state set Ωd using very

little system information, unlike similar approaches like the ones in [Tognon et al., 2018]

[Tagliabue et al., 2017] [Tagliabue et al., 2019] and [Gabellieri et al., 2018]. The algorithm

in its minimum expression only requires the velocity information of each vehicle and can

be extended to include even traditional cooperation schemes. Like the works in [Guerrero

et al., 2015] and [Valk and Keviczky, 2018], the proposed approach is based on passivity,

which adds robustness to the system by modifying the point of minimal mechanical energy.

The chapter is divided in four main sections. Section 4.1.1 presents a more thorough

description of the cooperative system model than the one presented in Chapter 2, along

with its dynamic equations. Section 4.2 shows the design approach based on an objective

function and the theorems that prove the stability of the proposed control law. Section

4.3 displays the results of an academic example. The control law that was developed is

compared with another one based on mechanical impedance control using a numeric simu-

lation. Finally, a summary of the presented design process can be found in Section 4.4. The

main theorems of the passivity theory that are going to be used are defined in Appendix B.
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The proof of the presented theorems can be seen in Appendix C

4.1 Cooperative Slung-Load Transport Dynamic Model

This section presents a system as the one presented in Figure 2-1, but with all the consid-

erations listed in Section 2.2. The cooperative system is compromised of two agents and a

slung-load in the form of a bar. A visualization of the system’s configuration and parame-

ters can be seen in Figure 4-1. The variables are described in this section and the dynamics

equations are then obtained using the Euler-Lagrange methodology.

4.1.1 System Description

Figure 4-1: The free body diagram of the vehicles with the bar attached

Figure 4-1 shows the system’s free body diagram. The variables are defined as:

∙ I ′ is the inertial reference frame.

∙ x,z are the horizontal and vertical axis, respectively.

∙ g :=
[

0 −g
]T
∈ R2 is the effect of the gravity, and g ∈ R is its value.
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∙ ml ∈ R is the load’s mass.

∙ ~pl :=
[

xl yl

]T
∈ R2 is the load’s position w.r.t. the inertial reference frame I ′.

∙ θl ∈ R is the load’s attitude.

∙ l ∈ R is the length from the load’s center of mass to each of the cables.

∙ mi ∈ R ∀i ∈ {1,2} are the individual masses of each vehicle.

∙ ~pi :=
[

xi yi

]T
∈R2 ∀i∈ {1,2} are the positions of each vehicle w.r.t. the inertial

reference frame I ′.

∙ li ∈ R ∀i ∈ {1,2} are the cable’s length for each vehicle.

The dynamic model of a PVTOL was presented in Chapter 3. In this chapter, it is

assumed that the thrust force ~Fth,i of each PVTOl is a control input of the system. This can

be accomplished by using Corollary 3.2.4. The cables are assumed to be attached to the

center of mass of each vehicle.

4.1.2 Dynamic Equations

The method used to obtain the model is the Euler-Lagrange formulation. The reason behind

this is that the close relationship of the system Lagrangian with the energy of the system.

This fact will be used later on to develop the passivity and stability tests. The state of

generalized coordinates q ∈ R7 used for the equations is defined as

q :=


pl

θl

p1

p2

 (4.1)

and the full space state of the system x ∈ R14 can be defined as

x :=

 q

q̇

 (4.2)
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System’s Kinetic Energy

The total kinetic energy of the system is the sum of the load’s kinetic energy and the ve-

hicles’ kinetic energy. The load’s kinetic energy is calculated by adding the effects of its

linear velocity ṗl ∈ R2 and angular velocity θ̇l ∈ R

Tl :=
ml ṗT

l ṗl

2
+

Jl θ̇ 2
l

2
(4.3)

where Jl ∈ R is the inertia matrix.

The kinetic energy for each vehicle can be calculated as

Ti :=
mi ṗT

i ṗi

2
(4.4)

where ṗi ∈ R2 is the vehicle’s velocity.

The total kinetic energy is then obtained as

T := Tl +
2

∑
i=1

Ti (4.5)

System’s Potential Energy

The total potential energy of the system is the sum of the load’s potential energy, the ve-

hicles’ potential energy and the holonomic constraints terms due to the effects that the

presence of the cables has on the system. It is assumed that the potential energy is bounded

from below, which implies that ∃ Umin ∈ R such that U ≥ Umin. The load’s potential

energy is calculated as

Ul :=ml yl g (4.6)

The potential energy for each vehicle can be obtained as
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Ui := mi yi g+λi
(
eT

i ei− l2
i
)

(4.7)

where the term λi
(
eT

i ei− l2
i
)

takes into account the effects that the presence of the cables

have on the system’s potential energy, and will be described next.

Holonomic Constraints

The terms λi in equation (4.7) are Lagrange multipliers and the terms ei are the distances

between each vehicle and the load w.r.t. the system’s state q. They are defined as

e1 :=

 e1,x

e1,y

 := −p1 + pl− l

 cosθl

sinθl


e2 :=

 e2,x

e2,y

 := −p2 + pl + l

 cosθl

sinθl

 (4.8)

In order for the distances li to remain constant the following equality, which defines the

holonomic constraints, must be enforced

eT
i ei− l2

i = 0 (4.9)

The total potential energy is obtained as

U :=Ul +
2

∑
i=1

Ui +φ (q)T
λ (4.10)

where the Lagrange multipliers vector λ ∈ R2 is defined as

λ :=

 λ1

λ2

 (4.11)

and the holonomic constraints vector φ (q) as

φ (q) :=

 eT
1 e1− l2

1

eT
2 e2− l2

2

= 0 (4.12)
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The system’s Lagrangian can be calculated as

L = T −U

= Tl−Ul +
2
∑

i=1
Ti−Ui

=
ml ṗT

l ṗl

2
+

Jl θ̇ 2
l

2
+

m1 ṗT
1 ṗ1

2
+

m2 ṗT
2 ṗ2

2
−ml yl g−m1 y1 g−m2 y2 g−φ (q)T

λ

(4.13)

Differential Equations

The system’s dynamic model can be obtained from the Lagrangian as

d
dt

∂L

∂ q̇
− ∂L

∂q
= Qn.p.(u) (4.14)

where the vector of non-potential forces is defined as

Qn.p.(u) := E u (4.15)

which depends on the control input

u :=

 u1

u2

 (4.16)

for each vehicle input vector ui ∈ R2, and the constant matrix

E :=

 03×4

I4

 (4.17)

The partial differential equations in (4.14) can be solved for each variable in q as

d
dt

∂L

∂ ṗl
− ∂L

∂ pl
=ml p̈l−ml g+

[
e1 e2

]
λ = 0 (4.18)

d
dt

∂L

∂ ṗ1
− ∂L

∂ p1
=m1 p̈1−m1 g+

[
−e1 0

]
λ = u1 (4.19)

d
dt

∂L

∂ ṗ2
− ∂L

∂ p2
=m2 p̈2−m2 g+

[
0 −e2

]
λ = u2 (4.20)
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d
dt

∂L

∂ θ̇l
− ∂L

∂θl
= Jl θ̈l+ −eT

1

 −sinθl

cosθl

 l eT
2

 −sinθl

cosθl

 l

λ = 0
(4.21)

The system model can be structured from equations (4.18)-(4.21) in the following ma-

trix form

M q̈+AT (q)λ +G(q) = E u (4.22)

where the general inertia matrix is defined as

M := diag{ml,ml,Jl,m1,m1,m2,m2} (4.23)

the effect of the gravity on the system is defined as

G(q) :=



0

ml g

0

0

m1 g

0

m2 g


(4.24)

and the effect of the constraints on the system is

∂φ (q)
∂q

:= A(q) =


eT

1 −eT
1

 −sinθl

cosθl

 l −eT
1 0

eT
2 eT

2

 −sinθl

cosθl

 l 0 −eT
2

 (4.25)

.
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4.2 Control Law and Stability Analysis

The proposed control law is based on passivity and its designed to take the system into a

state of minimum energy and into the desired set Ωd as was seen in Control Objective 2.2.1.

Now that the cooperative system model has been completely defined in Section 4.1.1, the

desired set Ωd can be further constrained as

Ωd ⊂


[

qT q̇T λ T
]T
∈ R16

∣∣∣∣∣∣∣∣∣∣∣∣

q̇ = 0,ei,x = 0,∥∥ei,y
∥∥= li,

‖λi‖=
ml g
2 li

,

ei,y < 0,λi > 0


(4.26)

An auxiliary objective function will be defined in the next section in order to aid the

control law design to reach the set Ωd

4.2.1 Objective Function

Definition 4.2.1. Following the control design of [Bai et al., 2011], an objective function

ψ(p1, p2) ∈ R is defined such that

ψ(p1, p2) :=



ψ(p1, p2)> 0 , pi /∈Ωd

ψ(p1, p2) = 0 , pi ∈Ωd

∂ψ (p1, p2)

p1
+

∂ψ (p1, p2)

p2
̸= 0 , pi /∈Ωd

∂ψ (p1, p2)

p1
+

∂ψ (p1, p2)

p2
= 0 , pi ∈Ωd

(4.27)

It is also assumed that ||pi− pi,d||→∞ =⇒ ψ(p1, p2)→∞ ∀pi,d ∈Ωd , which implies

that the function ψ(·) is radially unbounded on the error ||pi− pi,d||. The third part of the

definition is necessary for the stability analysis later on.

Bounded Objective Function

Definition 4.2.2. A bounded objective function ψb (p1, p2) has all the characteristics of an

objective function, as stated in definition 4.2.1, but it also has the property
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∥∥∥∥∂ψb (p1, p2)

∂ pi

∥∥∥∥< ρi (4.28)

for some positive ρi ∈ R+

4.2.2 Control Law

The development of a suitable control law is separated in six main results. In Theorem

4.2.1 it was shown how a gravity compensation term can be added to the control input in

order to change the potential energy for system (4.22). In Theorem 4.2.2 it was determined

that the system is passive with the gravity compensation and, using the Lagrange-Dirichlet

Theorem (see Appendix B.3), local asymptotic stability is proved using the Rayleigh dis-

sipation term. In Theorem 4.2.4 asymptotic stability to the desired set is verified with the

help of the objective function term and the Krasovskii-LaSalle’s invariant set theorem. In

Theorem 4.2.5 a saturation function is defined that will be used to bound the control law.

In Theorem 4.2.6 the control law for system (4.22) using PVTOL dynamics (3.3), (3.4) and

(3.5) is presented.

Theorem 4.2.1. The control law

ui :=
(

mi +
ml

2

)
g+ui,p (4.29)

where ui,p ∈ R2 is an additional control input; makes the system (4.22) have its minimum

potential energy in the set

 q*

λ *

 ∈Ωg :=


q ∈ R7,λ ∈ R2

∣∣∣∣∣∣∣∣∣∣∣∣

ei,x = 0,
∥∥ei,y

∥∥= li,

‖λi‖=
ml g
2 li

,

ei,y > 0,

λi > 0


(4.30)

Theorem 4.2.1 allows system (4.22) to have a new point of minimum potential energy
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such that Ωd ⊂Ωg. Another effect that the gravity compensation has on the system is that

it now possesses the passivity property, as stated in the following theorems

Theorem 4.2.2. The control law

ui :=
(

mi +
ml

2

)
g+ui,p (4.31)

makes system (4.22) be passive from the input ui,p to the velocity vector
[

ṗT
1 ṗT

2

]T

One of the advantages of making the system be passive is that feedback interconnec-

tions can be added to system (4.22) [Khalil, 2002, Theorem 6.1]. One such connection can

be seen in the following theorem

Theorem 4.2.3. The control law

ui :=
(

mi +
ml

2

)
g− kv,i ṗi +ui,ψ (4.32)

where i ∈ {1,2} and kv,i ∈ R+ is a positive gain control parameter known as Rayleigh

dissipation gain; makes system (4.22) be passive from the input ui,ψ to the velocity vector[
ṗT

1 ṗT
2

]T
as seen on Figure 4-2.

Figure 4-2: Block diagram of system (C.20) showing it is passive.

The Rayleigh dissipation helps to extract kinetic energy from the system in order to

drive it into a state of minimum mechanical energy. Also, the gain kv,i can be adjusted to

make the system more robust as any perturbation can be seen as increase in the system’s
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energy. In other words, if the system can be guarantee to always dissipate more mechanical

energy than the amount that enters, it adds to its robustness. This is not necessary for the

case at hand, but it is worth mentioning it.

Also, other types of feedback interconnections could be added to the system in the

same manner as was done in Theorem 4.2.3. The effect that this has is that it changes the

minimum of the potential energy. The feedback can also be a passive static nonlinearity (

see Definition B.1.2 in Appendix B).

Another use of the passivity property is that stability can be proven by using the Lagrange-

Dirichlet theorem as presented in [Lozano et al., 2013, Lemma 7.3], which is shown in

Section B.3.

Theorem 4.2.4. The control law

ui :=
(

mi +
ml

2

)
g− kv,i ṗi−

∂ψ(p1, p2)

∂ pi
(4.33)

where i ∈ {1,2} and kv,i ∈ R+ is a positive gain control parameter; locally asymptotically

stabilizes system (4.22) towards the set Ωd for any initial condition inside the set

 q0

λ0

 ∈ {[ q q̇
]
∈ R14,λ ∈ R2 ∣∣ei,y < 0,λi > 0,T = 0

}
(4.34)

However, this controller assumes that the actuators on the system may output an almost

limitless amount of energy, as the control law (4.33) is not bounded. In order to bound it

and, therefore, validate the results obtained for a model that is closer to what happens in

real-world applications, the control law is bounded using a saturation function.

Definition 4.2.3. The saturation function is defined for a scalar value a ∈ R as

σβ (a) :=

 a ,‖a‖< β

β sign(a) ,‖a‖ ≥ β

(4.35)
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where β ∈ R+ is the saturation limit and sign(·) is the scalar sign function.

Definition 4.2.4. The saturation function can be defined for a vector value v ∈ Rn as

σβ (a) :=

 v ,‖v‖< β

β sign(v) ,‖v‖ ≥ β

(4.36)

where sign(·) : Rn→ Rn is the vector sign function and is obtained by applying the scalar

sign function element-wise.

The following theorem shows how a saturation in the control law (4.2.4) still ensures

local asymptotic stability for system (4.22).

Theorem 4.2.5. The control law

ui :=
(

mi +
ml

2

)
g−σβi (kv,i ṗi)−

∂ψb(p1, p2)

∂ pi
(4.37)

∀i ∈ {1,2} asymptotically stabilizes system (4.22) towards the set Ωd for the saturation

limits βi ∈ R+.

It can be seen that the gravity term in the control law (4.37) has not been included in the

saturation. The reasoning behind this decision is because the gravity compensation term

is constant and therefore allows for the control law to still be bounded without any loss of

generality.

4.2.3 Control Law with full PVTOL Dynamics

Theorems 4.2.4 and 4.2.5 give examples of control laws that ensure that the Control Ob-

jective 2.2.1 is reached for system (4.22) but do not take explicitly into account the attitude

dynamics of each PVTOL vehicle. The following theorem ties in these results with the

ones in Chapter 3.

Theorem 4.2.6. Let there be a control law utra,ualt that ensures the Control Objective 2.3.1

is enforced on the PVTOL system presented in (3.24) with Lyapunov candidate function

Vatt,i (ξi), whose differentiation w.r.t. time results in
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V̇att,i (ξi) =−υi

(
~Fth,i−ui

)
(4.38)

where ui is the desired thrust force as described in Theorem 4.2.4 and υi (·) : R2→ R+ is

a positive definite function such that

υi

(
~Fth,i−ui

)
>
∥∥~̇pi
∥∥∥∥∥~Fth,i−ui

∥∥∥ (4.39)

Then the control law (4.33) (or (4.37)) locally asymptotically stabilizes the underactu-

ated PVTOL dynamics presented in (3.3), (3.4) and (3.5) towards the set Ωd for any initial

condition inside the set

 q0

λ0

 ∈ {[ q q̇
]
∈ R14,λ ∈ R2 ∣∣ei,y < 0,λi > 0,T = 0

}
(4.40)

4.2.4 Objective Function Design

The choice of using an objective function to guide the system allows control (4.33) to be

the basis of more complex control schemes. In this section, some example designs are

presented in order to highlight the flexibility of this approach.

Example: Fail-Safe Control

In this case the objective function is defined as ψ(p1, p2) = 0, which results in Ωd = Ωv.

This is considered a fail-safe control because it possess the minimum information necessary

in this scheme to accomplish the Control Objective 2.2.1 with an arbitrary desired condi-

tion. This control can be used in case the position state of any of the agents is unavailable

or if there is a sensor failure. In this case, the final state depends on the initial conditions of

the system.

53



Example: Bounded Altitude Control

The control function for this case is designed in order for the two agents to asymptotically

converge to the same altitude using a bounded control. The proposed objective function

can be defined as

ψb(p1, p2) = ky,1 ln [cosh(y1− yd)]+ ky,2 ln [cosh(y2− yd)] (4.41)

where ky,i ∈ R+ and yd ∈ R.

This results in

Ωd = Ωv∩
{[

qT q̇T
]T
∈ R14,λ ∈ R2

∣∣∣∣y1 = y2 = yd

}
(4.42)

and

∂ψb(p1, p2)

∂yi
= ky,i tanh(yi− yd) (4.43)

which has property (4.28) as stated in Definition 4.2.2 for ρi = ky,i

Example: Passive Formation Control

In this case, the control objective is to stabilize the position of the first agent, which will be

denoted as the "leader". The other agent will be forced to follow the leader because of the

effect that the physical connection with the load has on the system. The proposed objective

function can be defined as

ψ(p1, p2) =
kp,1

(
p1− p1,d

)T (p1− p1,d
)

2
(4.44)

where kp,1 ∈ R,kp,1 > 0 and p1,d ∈ R2.

This results in

Ωd = Ωv∩
{[

qT q̇T
]T
∈ R14,λ ∈ R2

∣∣∣∣ p1 = p1,d

}
(4.45)

and
∂ψ(p1, p2)

∂ p1
= kp,1

(
p1− p1,d

)
. It can easily be seen by using theorem [Khalil, 2002,
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Theorem 6.1] that the resulting system with the objective function (4.44) is passive from

the input p1,d to the output velocity ṗ1. This also highlights how the proposed control

design can be used to preserve the passivity of the system while at the same time, reduce

the solution space Ωd .

4.3 Cooperative Control Academic Example and Compar-

ison

In order to demonstrate the control algorithm in action, a numeric simulation is presented.

The objective is similar to the passive formation control presented in section 4.2.4, but with

an additional altitude reference for the second agent. This section is separated into four

parts. Section 4.3.1 describes the objective function used for solving Control Objective

2.2.1. Section 4.3.2 show the parameters used for the simulation and how the gains for

the Raleigh dissipation and objective function were chosen. Section 4.3.3 exposes a me-

chanical impedance-based control that uses the same gains for similar purposes than the

presented control law. Finally, Section 4.3.4 displays the results of the numeric simulation

with both controllers and exhibits the differences between them.

4.3.1 Objective Function Description

The objective function is defined as

ψ(p1, p2) :=
kp,1

(
p1− p1,d

)T (p1− p1,d
)
+ kp,2

(
y2− y2,d

)2

2
(4.46)

where y2,d ∈ R and
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∂ψ(p1, p2)

∂ p1
=kp,1

(
p1− p1,d

)
∂ψ(p1, p2)

∂ p1
=

 0

kp,2
(
y2− y2,d

)
 (4.47)

4.3.2 Model Parameters

The simulation was made using the data presented in Table 4.1. The control u is designed

as in (4.33), with the definition (4.46). The Raleigh dissipation and objective functions

gains

kd,1 = kd,2 = 3.16227766

kp,1 = kp,2 = 2.70639157
(4.48)

were chosen using a LQR approach. The model used was a second order particle model

with unitary mass ( p̈ = u) and the parameters used to solve the algebraic Riccati equation

were

QLQR = diag
{

10 1
}

(4.49)

is the state-cost weighted matrix1and

RLQR = I1 = 1 (4.50)

is the input-cost weighted matrix2.

The simulated control law is described as

1The matrix QLQR was selected in this way to ensure that the position state converges faster to the desired
state in order to avoid possible collisions. The velocity is meant to be small in order to more easily allow the
implicit communication.

2The matrix RLQR was selected in this simple way because the input-cost is not as important as the design
of QLQR.
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m1 = 1.7 kg m2 = 1.62 kg ml = 0.87 kg
l1 = 1.1 m l2 = 0.7 m l = 0.5 m
t0 = 0 s t f = 60 s ∆t = 0.1 s

x1,0 = −1.6 m x2,0 = 1.2 m Jl = 0.71 kgm2

y1,0 = 0 m y2,0 = 0 m g = 9.81 m/s2

pl,0 = 0 m θl,0 = 0 rad θ̇l,0 = 0 rad/s
ẋ1,0 = 0 m/s ẋ2,0 = 0 m/s ṗl,0 = 0 m/s
p1,d = 0 m y2,d = 0 m

Table 4.1: The parameters used for the simulation

u1 :=− kp,1 p1− kd,1 ṗ1 +
(

m1 +
ml

2

)
g

u2 :=− kp,2

 0

y1

− kd,2 ṗ2 +
(

m2 +
ml

2

)
g

(4.51)

The initial conditions of the bar and the vehicles were chosen as one of the most critical

states in the problem addressed.

4.3.3 Impedance Control for Comparison

The following impedance control is formulated in order to have comparative simulation

results in order to show the superiority of the proposed approach. The control has the same

structure as the ones presented in [Villani and De Schutter, 2016, control law 9.16] and

[Augugliaro and D’Andrea, 2013, control law 19]

Definition 4.3.1.

u1,impedance := −kp,1 p1− kd,1 ṗ1 +

 0

m1 g

+ e1 λ1

u2,impedance := −kp,2

 xd,2

y1

− kd,2 ṗ2 +

 0

m2 g

+ e2 λ2

(4.52)

where xd,2 := 2 l sin
[

arccos
(

l1− l2
2 l

)]
is the desired lateral distance for the second ve-

hicle. It was chosen to coincide with the equilibrium point of the objective function in
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(4.46).

It can be seen that the control inputs in (4.52) depend on not just knowing the desired

distance xd,2, but also the forces ei λi that the presence of the cable and load has on the

system. These external forces are assumed to be measured or estimated, like in [Tagliabue

et al., 2019].

4.3.4 Simulation Results

In the following section, the simulation results are shown. The proposed control law in

(4.51) is plotted on the left side of Figures 4-3 to Figure 4-10. The impedance control

(4.52) is plotted on the right side.
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Figure 4-3: The lateral position of each of the agents. Left is the proposed controller

Figure 4-3 shows that the lateral position of each vehicle tends towards
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x1 ≈ 0,x2 ≈ 2 l sin
[

arccos
(

l1− l2
2 l

)]
≈ 0.9177 (4.53)

on both plots. It can be seen that the control objective has been accomplished for the lateral

position of the first vehicle.
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Figure 4-4: The altitude of each of the agents. Left is the proposed controller

Another control objective was to maintain a zero altitude in both vehicles. Figure 4-4

shows that this objective is accomplished in both plots.

The position of the bar is plotted in Figure 4-5. It can be seen that both plots converge

asymptotically towards the values

pl ≈
[

l1− l2
2

l1 + l sin
{

arccos
(

l1− l2
2 l

)} ]T

≈ [0.4588,−0.9018]T (4.54)

59



0 20 40 60
Time [s]

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4
Ba

r's
 P

os
iti

on
 [m

]

xl
yl

0 20 40 60
Time [s]

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

Ba
r's

 P
os

iti
on

 [m
]

xl
yl

Figure 4-5: The position of the load in the plane. Left is the proposed controller

The bar’s attitude also tends towards the constant value of

θl ≈ arccos
(

l1− l2
2 l

)
≈ 0.40825 (4.55)

as seen in Figure 4-6 for both plots.

The velocities of both vehicles tend to dissipate for the proposed control law as the

velocity feedback term of the control acts as a damper of the kinetic energy and is reflected

in the passivity properties that have been previously proved. The impedance control also

added a dampening term for the vehicles’ velocities. These velocities are shown in Figure

4-7 and Figure 4-8.

Even though both control algorithms do not depend on the bar’s state (which is the bar’s

position, attitude, velocity and angular velocity), it can be seen that their kinetic energy

(velocity) tends towards zero as seen in Figure 4-9 and Figure 4-10. This in turn implies
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Figure 4-6: The orientation of the load w.r.t. time. Left is the proposed controller

that the velocity converges to zero and the position tends to the desired value.

Both control schemes have similar performance under the proposed simulation condi-

tions. However, it should be noted that the impedance control law requires more direct

knowledge of the state of the vehicles.

4.4 Summary

The aim of this chapter was to solve the problem of cooperative slung-load transportation

on a plane using two modified PVTOL vehicles. For this purpose, a decentralized coop-

erative control law design methodology was devised using the physical connection of the

system to establish what is known as implicit communication. The vehicles and the load are

guaranteed to be locally asymptotically stable towards a desired state set using very little

system information. In this way, the Control Objective 2.2.1 can be achieved as seen in Fig-
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Figure 4-7: The lateral velocity of each of the agents. Left is the proposed controller

ure 2-4. The algorithm in its minimum expression only requires the velocity information

of each vehicle as demonstrated by the fail-safe example in Section 4.2.4. The proposed

approach was based on passivity, which adds robustness by dissipating any energy that may

enter the system via a perturbation. The design using an objective function allows the pro-

posed control scheme to be used as a basis for more complex algorithms, even a bounded

one as shown in Section 4.2.4.

The method was displayed using a numeric simulation as an academic example with

a formation objective, as described in Section 4.3.1, and the results analyzed in Section

4.3.4. A cooperative impedance control law was formulated in order to have comparative

simulation results. It can be seen that the control was able to asymptotically stabilize the

system using the proposed methodology in an similar manner as the impedance control.

The key advantage of this method comes from the fact that the proposed control does

not require the estimation of the external forces acting on each platform, unlike the ones
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Figure 4-8: The vertical velocity of each of the agents. Left is the proposed controller

proposed in [Tognon et al., 2018] [Tagliabue et al., 2017] [Tagliabue et al., 2019]
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Figure 4-9: The velocity of the load in the plane. Left is the proposed controller
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Figure 4-10: The change of angular velocity of the load w.r.t. time. Left is the proposed
controller
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Chapter 5

Indoor Experiments: Two Quadcopters

Cooperative Slung-Load Transport

Control

In this chapter the stability results and theorems developed in Chapter 4 were applied to a

pair of quadcopter vehicles carrying a carbon fiber bar in order for them to achieve Control

Objective 2.1.1. The theorems presented in the previous chapter, namely Theorem 4.2.4,

do not directly translate into the quadcopter platform. However, the problem was divided

into two separate cooperative control problems in two different planes. The resulting con-

trol algorithm was then fed into a quadrotor control law based on quaternions which was

developed in [Carino et al., 2015], and it is summarized in Appendix D.

The chapter is divided in three main sections. The experimental setup is described in

detail in Section 5.1, including the physical parameters of the system and the desired behav-

ior of the cooperative system. Section 5.2 divides the control problem into two orthogonal

planes; the design methodology from Chapter 4 is used to propose two separate cooperative

controllers to achieve Control Objective 2.1.1 for each of the two different planes. Finally,

the results are presented in Section 5.3. The proofs for this chapter are shown in Appendix

E. An summary of the quadcopter controller used can be found in Appendix D.
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5.1 Experimental Setup

The experimental setup consists of two quadcopter vehicles attached to a carbon fiber bar

of one meter of length using nylon cables. The configuration can be seen in Figure 5-1

Figure 5-1: Slung-load configuration of the two quadcopters cooperatively carrying a bar.
The inertial frame I can be separated into two perpendicular planes x− z and y− z.

As was explained in Section 2.2.1, the movement of the quadcopters and the bar can

be projected into two perpendicular planes x− z and y− z. The planes and the quadcopter

agent’s projection can be seen in Figure 5-2 and Figure 5-3

Figure 5-2: Slung-load configuration of the two quadcopters cooperatively carrying a bar
in the y− z plane

The objective of the experiment is to translate the bar from one point into another using

both vehicles. One of the agents acts as the leader, receiving reference position commands

from a human operator while the other agent is tasked with keeping a formation w.r.t. itself

and its leader as closely as possible. In other words, the Control Objective 2.1.1 has been

separated into two Control Objectives 2.2.1.
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Figure 5-3: Slung-load configuration of the two quadcopters cooperatively carrying a bar
in the x− z plane

The quadcopter vehicles used were of the model Ar.Drone 2.0 platform by the company

Parrot c○. Its technical specifications can be seen in tables 5.1. The platform

Video Specifications 1

720p 30fps HD camera

Wide-angle lens: 92deg diagonal

Basic encoding profile: H264

Photo format: JPEG

Connection: Wi-Fi

Table 5.1: Video specifications of the Ar.Drone 2.0 platform [Parrot c○, 2019]

1Not necessary for the experimental result
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Electronics, Software and Sensors

Processor: ARM Cortex A8 1 GHz 32-bit processor

DSP video: 800 MHz TMS320DMC64x

OS: Linux 2.6.32

eq: Objective Function minimums RAM: DDR2 1 GB at 200 MHz

USB: High-speed USB 2.0 for extensions

Wi-Fi b g n

Gyroscope: 3 axles, accuracy of 2000deg/s

Accelerometer: 3 axles, accuracy of +/−50mg

Magnetometer: 3 axles, accuracy of 6deg

Pressure sensor: Accuracy of +/− 10Pa

Altitude ultrasound sensor 2

Vertical camera: QVGA 60 FPS to measure the ground speed

Table 5.2: Electronics, software and sensors specifications of the Ar.Drone 2.0 platform

[Parrot c○, 2019]

Motors and Weight
4 “inrunne” type brush-free motors: 14.5watts and 28500rev/min
Micro ball bearing
Nylatron Gears
Bronze self-lubricating ball bearings
Weight with internal frame 380g

Table 5.3: Motors and weight specifications of the Ar.Drone 2.0 platform [Parrot c○, 2019]

The platforms were programmed using the Fl-AIR programming platform, which “[...]is

a framework written in C++ that aims at helping the development of applications for robots,

and more specially for UAVs”[libre AIR, 2019], and the positions were obtained using.

an OptiTrack motion capture system [OptiTrack, 2019].

2Not enabled when the control law is active
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5.2 Implemented Control Law

Let us define the desired objective sets Ωd,x−z ⊂Ωd and Ωd,y−z ⊂Ωd (see (4.26)) for each

control objective on each of the planes x− z and y− z, respectively, as

Ωd,x−z =



[
qT q̇T λ T

]T
∈ R16

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

q̇ = 0,ei,x = 0,

‖ei,z‖= li,

‖λi‖=
ml g
2 li

,

ei,z < 0,λi > 0,

z1 = z1,d,z2 = z2,d ̸= z1,d

x1 = x2 = x1,d


(5.1)

and

Ωd,y−z =



[
qT q̇T λ T

]T
∈ R16

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

q̇ = 0,ei,y = 0,

‖ei,z‖= li,

‖λi‖=
ml g
2 li

,

ei,z < 0,λi > 0,

z1 = z1,d,z2 = z2,d ̸= z1,d

y1 = y1,d,y2− y1 = d,y1 ̸= y2


(5.2)

where x1,d,z1,d,z2,d ∈ R are reference positions in the x and z axes, respectively, given

by the human operator; y1,d ∈ R is a reference position in the y axis given by the human

operator; d ∈ R+ is a reference distance between the first and second agents in the y axis

The conditions z2,d ̸= z1,d and y1 ̸= y2 are used to prevent collisions.

5.2.1 Implemented Objective Function

The objective functions of Section 4.2.1, ψx−z (~p1,x−z, ~p2,x−z) and ψy−z
(
~p1,y−z, ~p2,y−z

)
are

defined for the planar positions ~pi,x−z,~pi,y−z ∈ R2 for each of the planes x− z and y− z,

respectively. However, a problem becomes apparent from these definitions. The position

reference is only available to the first of the agents. The other agent needs to follow the
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former at a safe distance in order to ensure that the load remains at a constant altitude. In

this case, the objective functions must only affect directly the state of the second agent,

which poses a problem because of how these functions have been formulated up to this

point (see the examples in Section 4.2.4 ). In simple terms, it is difficult to formulate an

objective function explicitly that only affects one of the agents and achieves the proposed

objectives.

Fortunately, the way the objective function was defined in Definition 4.2.1 is sufficiently

general that it is not strictly necessary to know explicitly the objective function, only its

characteristics. In particular, the properties

ψ(p1, p2) :

 ψ(p1, p2)> 0 , pi /∈Ωd

ψ(p1, p2) = 0 , pi ∈Ωd

(5.3)

can be ensured by looking at the convexity of the objective function, which is a property of

its partial differentiation w.r.t. each state ~pi.

This is shown in the following corollary

Corollary 5.2.1. Let ψ (~p1, ~p2) :
[
R2 R2

]
→ R be an objective function with the proper-

ties shown in (5.3) if the partial differentiation function
∂ ψ (~p1, ~p2)

∂

[
~pT

1 ~pT
2

]T exists such that

∂ ψ (~p1, ~p2)

∂

[
~pT

1 ~pT
2

]T

∣∣∣∣∣∣∣
Ωd

=~0 (5.4)

for some set Ωd and if the diagonal elements of the second partial differentiation function
∂ 2 ψ (~p1, ~p2)

∂

[
~pT

1 ~pT
2

]T,2 are positive

Corollary 5.2.1 implies that the objective function is convex with a minimum in Ωd .

This is the same conditions used to prove Theorem B.3.1 in [Lozano et al., 2013, Lemma

7.3].

The objective functions can then be defined from its partial differentiation functions

using the following theorem
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Theorem 5.2.1. Let there be two functions ψx−z (~p1,x−z,~p2,x−z) :R4→R+ and ψy−z
(
~p1,y−z,~p2,y−z

)
:

R4→ R+ whose partial differentiation w.r.t. each of their states be defined as

∂ ψx−z (~p1,x−z,~p2,x−z)

∂

[
~pT

1,x−z ~pT
2,x−z

]T :=



(
x1− x1,d

)
kp,1(

z1− z1,d
)

kp,1

(x2− x1) kp,2(
z2− z2,d

)
kp,2

 (5.5)

∂ ψy−z
(
~p1,y−z,~p2,y−z

)
∂

[
~pT

1,y−z ~pT
2,y−z

]T :=



(
y1− y1,d

)
kp,1(

z1− z1,d
)

kp,1(
y2− y1

d|y2− y1|
− 1

y2− y1

)
kp,2(

z2− z2,d
)

kp,2


(5.6)

for the planar positions ~pi,x−z,~pi,y−z ∈ R2.

The functions ψx−z (~p1,x−z,~p2,x−z) and ψy−z
(
~p1,y−z,~p2,y−z

)
are candidate objective

functions as described in Definition 4.2.1 with its minimums in
[
~pT

1,x−z ~pT
2,x−z

]T
∈Ωd,x−z

and
[
~pT

1,y−z ~pT
2,y−z

]T
∈Ωd,y−z

The third term in equation (5.6) is of particular interest, as it helps to avoid the collision

of both agents with a singularity when y1 = y2 and it is equal to zero when |y2− y1|= d.

5.2.2 Implemented Control Law

The control law that was implemented in the quadcopter is explained in Appendix D by

modeling the quadcopter as two PVTOL vehicles but on different planes. The reference

force comes from applying Theorem 4.2.4 to the objective functions described in Theorem

5.2.1. Stability is ensured if the implemented controller [Carino et al., 2015, (12)] can guar-

antee that the error between the control law (4.33) and each of the quadcopter orientations

qi tends towards zero using Theorem D.1.1 in Appendix D. Therefore, Control Objective

2.3.1 is ensured for the implemented control scheme. This can be seen as a double imple-

mentation of the control law presented in Theorem 4.2.6.
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The implemented control scheme can be seen in Figure 5-4. Comparing it with the

one shown in Figure 2-4, it can be noted that the attitude control is now using the refer-

ence attitude provided by Theorem D.1.1 in Appendix D. However, the cooperative system

structure remained the same.

Figure 5-4: A block diagram that shows how the cooperative control using two quadcopters
can be separated into two different specific control objectives

5.3 Experimental Results

Figure 5-5 shows the two quadcopter agents carrying the bar using nylon threads. The

cables are not visible in the image.

Figures 5-6 and 5-7 show the position of the vehicles during the take-off part and the

transportation part. It can be seen in Figure 5-6 that the vehicles try to remain in the x

plane. Figure 5-7 shows that the drones keep their distance almost constant, which can also

be seen in Figure 5-8, showing that the control is working.
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Figure 5-5: Two quadcopters transporting a slung-load
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Figure 5-6: Position in the x axis of the transportation experiment
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Figure 5-7: Position in the y axis of the transportation experiment
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Figure 5-8: Distance between agents in the y axis in the transportation experiment

Figures 5-9 and 5-10 show the altitude of each vehicle along with the altitude reference.

It can be seen that the first agent tracks the altitude better than the second one, but the error

is still negligible.
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Figure 5-9: First drone’s altitude of the transportation experiment
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Figure 5-10: Second drone’s altitude of the transportation experiment

Figures 5-11 and 5-12 display the velocity of each agent. It can be seen that there

are some spikes but that could be because of the noise in the speed measurements of the

OptiTrack, as it uses a low-pass filter in order to estimate the speeds.
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Figure 5-11: The first agent’s speed in the transportation experiment
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Figure 5-12: The second agent’s speed in the transportation experiment

Figures 5-13 and 5-14 present the attitude of each drone. There are some spikes in the

attitude due to the references shifting in order to enforce the desired position control.
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Figure 5-13: First agent’s orientation in the transportation experiment
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Figure 5-14: Second agent’s orientation in the transportation experiment

Figures 5-15 and 5-16 present the angular velocity of each quadcopter. It is very noisy

as it comes directly from the unfiltered IMU.
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Figure 5-15: First agent’s angular speed in the transportation experiment
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Figure 5-16: Second agent’s angular speed in the transportation experiment

Finally, Figure 5-17 shows the full spatial trajectory of both agents in a 3D plot. It is

worth noting that the distance in the x axis is relatively small compared to the altitude and

the distance in the y axis.
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Figure 5-17: Trajectory of the transportation experiment

81





Chapter 6

Conclusions

In this thesis work, the design of a cooperative control scheme for slung-load transportation

using UAV was developed and validated. The problem of transporting an object from one

point into another using aerial vehicles is still being studied even though it started since

the 1950’s. Some of the most innovative advances in this field include the use of UAV,

as they help to reduce the cost and to prevent any accidents involving human pilots. The

interaction of UAV with the environment, which is called aerial manipulation, and is an

area of opportunity that has picked the interest of a lot of researchers because it would

allow for a wider array of applications of drones. The solutions in aerial manipulation for

the transportation of an object usually fall in one of two categories: flying hands or tether

mechanisms.

Flying hands allow for a very precise manipulation of a load, at the expense of a higher

complexity, which often translates into a higher weight and less flight time. Configurations

like the slung-load and tether mechanisms are simple and light-weight, but lack the dexter-

ity to manipulate an object in a precise way. In some instances, the oscillations of the load

could even destabilize the whole system if the vehicle is not able to compensate them.

Another way to increase the flight time is to distribute the load’s weight among more

than one UAV. These schemes that involve more than one vehicle, or agent, are from an

area known as cooperative control. Some of the most well-known problems of cooperative

control include the consensus problem and formation flight. There are many cooperative

schemes for UAV, but there are not many that use them for aerial manipulation. One ex-
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ample is the work presented in [Guerrero et al., 2015], which uses an interconnection and

damping assignment passivity-based control (IDA-PBC) that allows a quadcopter to stabi-

lize a slung-load. The IDA-PBC scheme is also used in [Valk and Keviczky, 2018] in order

to cooperatively stabilize a group of mechanical and under-actuated agents. Most of these

were analyzed in Chapter 1.

In Chapter 2, the cooperative transportation problem was introduced and then divided

into three control objectives: Control Objective 2.1.1, Control Objective 2.2.1 and Control

Objective 2.3.1. The first one can become quite complicated because there are many factors

that can affect the stability of the system as a whole. Even adding agents increases the

complexity and could make them be more inefficient due to errors in communications or

bad state estimations. Because of this, the second control objective was developed such that

it included various simplifications for the system. However, these objectives do not take

into account the attitude dynamics of the vehicles, which play an important role because

the quadcopters, or PVTOLs, have coupled orientation and position dynamics. This can

be taken into account in the last control objective. A control design was developed in

order to achieve these control objectives and, therefore, accomplish the original purpose of

cooperative transport.

Control Objective 2.3.1 was mainly addressed in Chapter 3 by proposing a control

algorithm for the PVTOL. The presented control design is based of feedback linearization

and dynamic extension of the thrust force magnitude of the PVTOL model presented in

Section 3.1. Many controllers were designed using this linearization, including the ones in

Theorem 3.2.1, which asymptotically stabilizes the state towards the origin and Theorem

3.2.2, which stabilizes the state towards a desired trajectory. However, the main fault of

these algorithms is that the feedback linearization has a singularity when the thrust force is

null. This singularity prevents the linearization from being defined globally, but Theorem

3.2.3 and Theorem 3.2.4 give the basis to prove local asymptotic stability for the PVTOl

platform by restricting the state to a region of attraction. An academic example of the

proposed controller was given in Section 3.3. In Chapter 4, Control Objective 2.3.1 is

solved by using Corollary 3.2.4.

Chapter 4 assumes that the agents used are particles, where the control inputs are the
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forces that each particle exerts on the cooperative slung-load system presented in (4.22).

The system model is obtained using an Euler-Lagrange approach, and the holonomic con-

straints due to the cables were addressed using Lagrange multipliers. The control design of

the system model can be separated in three main parts. The first one consisted on adding

a gravity compensation term in order to change the point of minimum mechanical energy

of the system and to make it passive as seen in Theorem 4.2.1 and Theorem 4.2.2. The

passivity is used to give some robustness to the system, as any perturbation can be consid-

ered as something that injects mechanical energy to the system. Theorem 4.2.3 shows how

the controller takes advantage of this perspective based on energy consumption and adds a

dissipation term that helps to reduce the mechanical energy of the system. Passivity also

helps to implement feedback functions thanks to the properties explained in [Khalil, 2002,

Theorem 6.1] (see Figure B-1), as was shown in the proof of Theorem 4.2.3.

Another key aspect of the proposed control design strategy is the definition of an ob-

jective function (as seen in Section 4.2.1, Definition 4.2.1). This objective function, along

with Theorem 4.2.4, allows for the cooperative slung-load system to be asymptotically sta-

ble towards a desired set Ωd . Thus, completing Control Objective 2.2.1. An academic

example was given using an impedance control law as a comparison in Section 4.3. These

results were combined with Control Objective 2.3.1 in Theorem 4.2.6.

Finally on Chapter 5, an indoor experiments was conducted using two quadcopters for

the cooperative slung-load transport problem. In order to use the control design techniques

developed in the previous chapters, the operational space was divided into two perpendic-

ular planes as seen in Figure 5-1, Figure 5-2 and Figure 5-3. In the experimental configu-

ration, it was decided that one of the agents would follow a reference position given by a

human operator. In order to achieve this, two objective sets (5.1) and (5.2) were defined. A

problem was encountered in the design of the objective function for both planes as seen in

Section 4.2.1. This was because it was difficult to formulate an objective function explicitly

that only affects one of the agents and achieves the proposed objective sets. In the end, the

objective functions were successfully defined in Theorem 5.2.1 using Corollary 5.2.1. Fig-

ure 5-5 shows the quadcopters successfully carrying the load. Figures 5-6 through Figure

5-17 show the measurements of the tests made. The controller in [Carino et al., 2015, (12)]
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and shown in Appendix D can guarantee that the error between the control law (4.33) and

each of the quadcopter orientations qi tends towards zero. Therefore, Control Objective

2.3.1 is ensured for the implemented control scheme, thus concluding that the proposed

method works for the cooperative transport of a slung-load.

6.1 Future Works

The flexibility of the control scheme presented allows for the design and implementation

of more complex control strategies. For example, the way the Rayleigh dissipation was

applied in Theorem 4.2.3 makes it possible for other types of feedback functions to be

used. These could be used to increase the robustness of the system or to add perturbation

rejection directly in the control law. Another way to increase complexity is through the

objective function design. In this work just a small amount of example objective functions

were used, and even some that were not defined explicitly (see Theorem 5.2.1). It would

be interesting to see what other design option could be used with this scheme.

An aspect that could be addressed is that the model presented has been simplified,

but the methodology presented could be used for systems with added perturbations, like

aerodynamic effects or even wind effects. This in turn would allow the study in more

depth of the robustness of the proposed method. Also, a strong assumption made was

that the cables were always tense. In real-world scenarios this might not always be the

case, and in cooperative schemes this could be disastrous because the weight could stop

being distributed among the agents. Maybe this could be addressed more thoroughly in the

system model design or in the control design.

Another aspect that was not explored is that the movements of the platforms are con-

strained in the action plane. Even though the method presented in Chapter 5 found a way

around this particular issue, it would be interesting to see if the proposed method could

be extended to include more agents and to take into account the slacking of cables in the

control design. This would eliminate the need to constrain the problem to few vehicles.

In practice, many of the physical parameters of the agents and the load are hard to

estimate. The proposed control framework could be extended in order to estimate these

86



parameters online by means of an adaptive control scheme. This would be particularly

useful in cases when different load weights need to use the same control law.
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Appendix A

PVTOL Control Demonstrations

A.1 Proof of Theorem 3.2.1

Proof of Theorem 3.2.1. First let us calculate the equilibrium points of both the lateral and

altitude systems by substituting utra from equation (3.33) into (3.26) and ualt from equation

(3.33) into (3.29) as

ξ̇tra = Aξtra−BKtra ξtra

= (A−BKtra) ξtra

(A.1)

ξ̇alt = Aξalt−BKalt [ξalt− γu]+ γalt

= (A−BKalt) ξalt +


0

−g

0

Kalt,3 g


(A.2)

Solving equations (A.1) and (A.2) when ξ̇tra = 0 and ξ̇alt = 0 for ξ results in the state

presented in equation (3.35).

Now, let us define the Lyapunov candidate function V (ξ , t) as

V (ξ , t) := ∆ξ
T
alt Palt ∆ξalt +ξ

T
tra Ptra ξtra > 0 (A.3)
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where the altitude error ∆ξalt is defined as

∆ξalt := ξalt−
[

02×1 g 0
]T

(A.4)

and its differentiation w.r.t. time, substituting from equations (3.26) and (3.33), which was

partially developed in (A.2), is

∆ξ̇alt = ξ̇alt

= (A−BKalt) ξalt +


0

−g

0

Kalt,3 g


= (A−BKalt) ∆ξalt

(A.5)

It can be seen that substituting equation (3.35) into (A.3) results in V (ξ *, t) = 0.

Differentiating (A.3) w.r.t. time results in

V̇ (ξ , t) = ∆ξ T
alt Palt ∆ξ̇alt +∆ξ̇ T

alt Palt ∆ξalt +ξ T
tra Ptra ξ̇tra + ξ̇ T

tra Ptra ξtra (A.6)

The term ∆ξ̇alt can be substituted from equation (A.5), and the term ξ̇tra can be substi-

tuted from equation (A.1). This results in

V̇ (ξ , t) = ∆ξ T
alt Palt (A−BKalt) ∆ξalt +∆ξ T

alt (A−BKalt)
T Palt ∆ξalt+

ξ T
tra Ptra (A−BKtra)ξtra +ξ T

tra (A−BKtra)
T Ptra ξtra

= ∆ξ T
alt

[
Palt (A−BKalt)+(A−BKalt)

T Palt

]
∆ξalt+

ξ T
tra

[
Ptra (A−BKtra)+(A−BKtra)

T Ptra

]
ξtra

(A.7)

which can be further simplified using equations (3.32) and (3.31), and results in

V̇ (ξ , t) = −∆ξ T
alt Qalt ∆ξalt−ξ T

tra Qtra ξtra < 0 (A.8)
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Therefore, system (3.24) is proven to be asymptotically, exponentially stable to the state

(3.35) using control law (3.33).

A.2 Proof of Theorem 3.2.2

Proof of Theorem 3.2.2. Let us use equations (3.38) and (3.39) to define the translation and

altitude tracking errors as

etra := ξtra−ξtra,d (A.9)

ealt := ξalt−ξalt,d (A.10)

The differentiation of these tracking errors w.r.t. time, using the control law (3.42) and

systems (3.26), (3.29), (3.38) and (3.39), is

ėtra = ξ̇tra− ξ̇tra,d = (A−BKtra)etra (A.11)

ėalt = ξ̇alt− ξ̇alt,d = (A−BKalt) ealt +


0

−g

0

Kalt,2 g

 (A.12)

Let us now define an altitude difference as

∆ealt := ealt−


02×1

g

0

 (A.13)

differentiating this altitude difference w.r.t. time using equation (A.12) results in

∆ėalt = ėalt = (A−BKalt) ∆ealt (A.14)
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The equilibrium point for the tracking error system can be obtained by solving the

equations ėtra = ėalt = 0 for the tracking errors etra and ealt , which was already solved in

(A.1) and (A.2). Using the definition of the tracking errors in (A.9) and (A.10), it can be

concluded that ξ *tra = ξtra,d and ξ *alt = ξalt,d +
[

01×2 g 0
]T

which is the same state as

the one defined in (3.43).

Now, let us define the Lyapunov candidate function Ve(ξ ,ξd, t) as

Ve(ξ ,ξd, t) := ∆eT
alt Palt ∆ealt + eT

tra Ptra etra > 0 (A.15)

Substituting equation (3.43) into (A.15) results in Ve(ξ
*,ξd, t) = 0. Differentiating

(A.15) w.r.t. time along the trajectories of the system results in

V̇e(ξ ,ξd, t) = ∆ėT
alt Palt ∆ealt +∆eT

alt Palt ∆ėalt + ėT
tra Ptra etra + eT

tra Ptra ėtra (A.16)

The term ∆ėalt can be substituted from equation (A.14) and the term ėtra from equation

(A.11). This results in

V̇e(ξ ,ξd, t) = ∆eT
alt Palt (A−BKalt) ∆ealt +∆eT

alt (A−BKalt)
T Palt ∆ealt+

eT
tra Ptra (A−BKtra) etra + eT

tra (A−BKtra)
T Ptra etra

= ∆eT
alt

[
Palt (A−BKalt)+(A−BKalt)

T Palt

]
∆ealt+

eT
tra

[
Ptra (A−BKtra)+(A−BKtra)

T Ptra

]
etra

(A.17)

which can be further simplified using equations (3.32) and (3.31), that results in

V̇e(ξ ,ξd, t) = −∆eT
alt Qalt ∆ealt− eT

tra Qtra etra < 0 (A.18)

Therefore, system (3.24) is proven to be asymptotically, exponentially stable to the state

(3.43) using control law (3.42).
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A.3 Proof of Theorem 3.2.3

Proof of Theorem 3.2.3. First, the maximum value of the region is obtained by substituting

u = 0 into equation (3.4) and solving for z̈

z̈ =
u cosθ

m
−g =−g (A.19)

The stability proof of theorem 3.2.1 uses a Lyapunov candidate function made up of

two different positive definite functions, one for the altitude dynamical system and another

for the translational dynamical system. A new positive definite function can then be defined

exclusively for the altitude system, which is independent from the translational system and

even has different control input.

V (ξ , t)≥Valt (ξalt , t) := ξ
T
alt Palt ξalt (A.20)

Its differentiation w.r.t. time results in

V̇alt (ξalt , t) =−ξ
T
alt Qalt ξalt < 0 (A.21)

which implies that the following inequality holds

Valt (ξalt , t)≤ λmax (Palt)
∣∣∣∣ξalt,0

∣∣∣∣2 ≤V (ξ , t) (A.22)

where ξalt,0 ∈ R4 are the initial conditions of the altitude system.

In order to ensure that the control input u > 0, the initial conditions can be chosen such

that

λmax (Palt)
∣∣∣∣ξalt,0

∣∣∣∣2 < λmax (Palt) g2

=⇒
∣∣∣∣ξalt,0

∣∣∣∣< g
(A.23)

which is the region presented in (3.44) and thus concluding the proof.
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A.4 Proof of Theorem 3.2.4

Proof of Theorem 3.2.4. First, the altitude error is defined as

∆z := z− zd (A.24)

where the desired altitude is represented by zd . Differentiating ∆z w.r.t. time and using

equations (3.4) and (3.37) results in

∆z̈ = z̈− z̈d =
u cosθ

m
−g− ud cosθd

m
(A.25)

where ud,θd ∈ R are the desired thrust force and attitude angle, respectively. It is assumed

that ud is positive and constant.

The maximum value of the region of attraction can be acquired by obtaining the value

of ||∆z̈|| when u = 0. It is calculated from equation (A.25) as

||∆z̈||=
∣∣∣∣ud cosθd

m
+g
∣∣∣∣ (A.26)

Taking a closer look at (A.11) and (A.14), the proof of the region of attraction is the

same as in Theorem 3.2.3. In order to ensure that the control input u > 0, the initial condi-

tions and the desired state can be chosen such that

λmax (Palt)
∣∣∣∣ξalt,0

∣∣∣∣2 < λmax (Palt)

∣∣∣∣ud cosθd

m
+g
∣∣∣∣2

=⇒
∣∣∣∣ξalt,0

∣∣∣∣< ∣∣∣∣ud cosθd

m
+g
∣∣∣∣ (A.27)

which is the region presented in (3.45) and thus concluding the proof.
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Appendix B

Passivity Preliminaries

This section will introduce the definitions and theorems used for the remainder of this

work. The passivity concepts can be found in [Lozano et al., 2013] [Khalil, 2002][Byrnes

et al., 1991] [Willems, 1972b] [Willems, 1972a].

B.1 Passivity Definitions

Passivity is a property that depends exclusively on the relationship between the input and

the output of a system. In simple terms, it is similar to the definition of a passive electric

component in the fact that the property reflects that the amount of energy available in

the system is finite. In a more formal description, passivity can be described using the

following definition found in [Lozano et al., 2013, Definition 2.1].

Definition B.1.1. A system H : L2,e←L2,e with input and output u(·),y(·) ∈ Rm, respec-

tively, is passive if ∃β ∈ R such that

∫ t

t0
yT (τ)u(τ)dτ ≥ β (B.1)

∀u(·) and t, t0 ∈ R, t ≥ t0

This definition can also be seen from the perspective of continuous positive functions,

as stated in [Lozano et al., 2013, Theorem 2.2], as
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Theorem B.1.1. Assume that a continuous function V (·) ∈ R≥0 exists such that

V (t)−V (t0)≤
∫ t

t0
yT (τ)u(τ)dτ (B.2)

∀u(·), t ≥ t0 and V (t0). Then the system with input u(·) and output y(·) is passive.

Some nonlinear static functions are known to preserve the passivity properties when

applied as a feedback gain or as inputs in certain dynamical systems. This can be seen in

the following definition from [Bai et al., 2011, Definition 1.3]

Definition B.1.2. A static nonlinearity y = h(u), where h : Rn←Rn is a function with input

u ∈ Rn is passive if

uT y = uT h(u)≥ 0 (B.3)

∀u(·)

B.2 Passivity Feedback Interconnection

A common result in passive systems that will be used for the stability analysis is that a

feedback interconnection of passive systems preserves the passivity property as shown in

[Khalil, 2002, Theorem 6.1]. The diagram of the connection can be seen in Figure B-1.

Figure B-1: Feedback interconnection diagram of two passive systems
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B.3 Lagrange-Dirichlet Theorem

Finally, the Lagrange-Dirichlet theorem as presented in [Lozano et al., 2013, Lemma 7.3]

is used to provide the basis of the asymptotic stability proof.

Theorem B.3.1. Assume that a system’s potential energy U (q) is such that:

∙ ∂U
∂q

(q) = 0 ⇐⇒ q = q*, where q is the system’s state in generalized coordinates

(which will be defined in the following section) and q* is a critical point of the po-

tential energy.

∙ ∂ 2U
∂q2 (q*)> 0, which implies that U (q) is locally convex around q*.

The unforced Euler-Lagrange dynamics with Rayleigh dissipation possesses a fixed point

(q, q̇) = (q*,0) that is locally asymptotically stable.
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Appendix C

Cooperative Slung-Load Transport

Control Demonstrations

C.1 Proof of Theorem 4.2.1

Proof of Theorem 4.2.1. Substituting the control (4.29) into (4.22) results in

M q̈+AT (q) λ +G(q) =E

 u1,p +u1,g

u2,p +u2,g

 (C.1)

M q̈+AT (q) λ +G(q)−E

 u1,g

u2,g

=E

 u1,p

u2,p

 (C.2)

M q̈+AT (q) λ +G′ (q) =E

 u1,p

u2,p

 (C.3)

where
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G′ (q) :=



0

ml g

0

0

−ml g
2

0

−ml g
2


(C.4)

The effect that the gravity compensation term has had on the system is that it has effec-

tively changed the form of the potential energy of the resulting system (C.3). That is, a new

potential energy term U ′ ∈ R exists such that
∂U ′

∂q
:= AT (q) λ +G′ (q). Following theo-

rem B.3.1 description, the critical points of the potential energy q* ∈ R7 and λ * ∈ R2 can

then be found by solving AT (q) λ +G′ (q) = 0, which will be expanded in the following

equations

e1 λ1 + e2 λ2 +

 0

ml g

=0 (C.5)

(e2 λ2− e1 λ1)
T

 −sinθl

cosθl

 l =0 (C.6)

−ei λi +

 0

−ml g
2

=0 (C.7)

Solving equations (C.5) through (C.7) results in the following solution set

 q*

λ *

 ∈Ωg :=

q ∈ R7,λ ∈ R2

∣∣∣∣∣∣∣∣∣
ei,x = 0,

∥∥ei,y
∥∥= li,

‖λi‖=
ml g
2 li

,

ei,y λi > 0

 (C.8)

Depending on the signs of ei,y and λi, there are four possible configurations of the crit-
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ical points q* and λ *, which are shown on Figure C-1. From these possible configurations,

only 1) (where ei,y < 0 and λi > 0) is a stable critical point of the system, that is, the sys-

tem tends to drift away from all the other possible configurations. This can be shown by

analyzing the convexity of all the configurations.

Figure C-1: Possible configurations for the solution set Ωg

In order to determine that
∂ 2U ′

∂q2 (q*,λ *) > 0, it is sufficient to determine that its diag-

onal elements are nonnegative. The diagonal elements are obtained from equations (C.5)

through (C.7) as

∂ 2U ′

∂ p2
l
(q*,λ *) = λ1 +λ2 (C.9)

∂ 2U ′

∂θ 2
l
(q*,λ *) = −(e2 λ2− e1 λ1)

T

 cosθl

sinθl

 l

+

 −sinθl

cosθl

λ2 l +

 −sinθl

cosθl

λ1 l

T  −sinθl

cosθl

 l

(C.10)
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∂ 2U ′

∂ p2
i
(q*,λ *) =λi (C.11)

Equation (C.11) is only positive when λi > 0, which implies that the only possible

configuration that could be convex is 1). In order to conclude the convexity of configuration

1), equations (C.9) and (C.10) are evaluated for this configuration

∂ 2U ′

∂ p2
l
(q*,λ *)

∣∣∣∣
ei,y<0,λi>0

= λ1 +λ2 > 0 (C.12)

∂ 2U ′

∂θ 2
l
(q*,λ *)

∣∣∣∣
ei,y<0,λi>0

=−

0︷ ︸︸ ︷
(e2 λ2− e1 λ1)

T

 cosθl

sinθl

 l +(λ1 +λ2) l2 > 0 (C.13)

which implies that the only convex configuration of the critical points is 1).

Therefore, the new point of minimal potential energy is located in the set

Ωg =


q ∈ R7,λ ∈ R2

∣∣∣∣∣∣∣∣∣∣∣∣

ei,x = 0,
∥∥ei,y

∥∥= li,

‖λi‖=
ml g
2 li

,

ei,y > 0,

λi > 0


(C.14)

C.2 Proof of Theorem 4.2.2

Proof of Theorem 4.2.2. Firstly, system (4.22) is changed into system (C.3) because of the

gravity compensation term and Theorem 4.2.2. In order to prove that system (C.3) is pas-

sive from the input ui,p to the velocity vector
[

ṗT
1 ṗT

2

]T
, it is necessary to note that the

potential energy U ′ ≥U ′min is also limited from below from the assumption that the poten-

104



tial energy U was also limited from below and the fact it is convex with minimum in Ωg

(see Theorem 4.2.1). The proposed storage function is the total energy function

Vs (q, q̇, t) :=
q̇T M q̇

2
+U ′−U ′min ≥ 0 (C.15)

Its differentiation w.r.t. time results in

V̇s (q, q̇, t) =
q̈T M q̇+ q̇T M q̈

2
+U̇ ′ (C.16)

Substituting q̈ = M−1

−AT (q) λ −G′ (q)+E

 u1,p

u2,p

 from (C.3) into (C.16) re-

sults in

V̇s (q, q̇, t) =

−AT (q) λ −G′ (q)+E

 u1,p

u2,p

T

q̇

+
∂U
∂q

q̇

=
[

u1,p u2,p

]T
ET q̇−λ T A(q) q̇

−G′T (q) q̇+λ T A(q) q̇+G′T (q) q̇

=
[

u1,p u2,p

]
ET q̇ = uT

1,p ṗ1 +uT
2,p ṗ2

(C.17)

Integrating both sides of (C.17) w.r.t. time results in

∫ t
t0 V̇s (q, q̇,τ) dτ

= Vs (q, q̇, t)−Vs,0 (q, q̇, t)

=
∫ t

t0 uT
1,p ṗ1 +uT

2,p ṗ2 dτ

(C.18)

Since Vs (q, q̇, t)−Vs,0 (q, q̇, t)≥−Vs,0 (q, q̇, t) from (C.15), and the fact that−Vs,0 (q, q̇, t)

denotes the total energy of the system at time t0, which is constant, this implies that

∫ t

t0
uT

1 ṗ1 +uT
2 ṗ2 τ ≥−Vs,0 (q, q̇, t) (C.19)

which proves that system (C.3) is passive from the input ui,p to the velocity vector
[

ṗT
1 ṗT

2

]T
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C.3 Proof of Theorem 4.2.3

Proof of Theorem 4.2.3. Because of theorem B.1.1, and the fact that the Rayleigh dissipa-

tion term ui,v =−kv,i ṗi from (4.32) is also passive (because it is just a proportional feedback

gain), the system

M q̈+AT (q) λ +G′ (q)+E

 kv,1 ṗ1

kv,2 ṗ2

= E

 u1,ψ

u2,ψ

 (C.20)

is passive from the inputs ui,ψ to the generalized velocities q̇. This is illustrated in Figure

4-2.

C.4 Proof of Theorem 4.2.4

Proof of Theorem 4.2.4. Using theorem B.3.1, it can be concluded that system (C.20) is

locally asymptotically stable to the set

Ωv :=


[

qT q̇T
]T
∈ R14,λ ∈ R2

∣∣∣∣∣∣∣∣∣∣∣∣

ṗi = 0,ei,x = 0,∥∥ei,y
∥∥= li,

‖λi‖=
ml g
2 li

,

ei,y < 0,λi > 0


(C.21)

if the inputs ui,φ = 0

The stability is local because system (C.20) may start in one of the unstable configura-

tions exposed in Figure C-1. In order to guarantee stability of the system, and have a more

realistic practical approximation of the behavior of the cables, the initial conditions will

be restricted to the states where the cables are not experiencing any compression (where

λi < 0) and with zero kinetic energy in order to ensure that the velocities stay small. The

resulting set of viable initial conditions is depicted in (4.34).

In order to prove stability in the case when the control inputs ui,φ ̸= 0, the candidate

Lyapunov function used is defined as
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V (q, q̇, t) :=Vs (q, q̇, t)+ψ (q1,q2)≥ 0 (C.22)

Differentiating with respect to time through the trajectories of system (C.20) using con-

trol law (4.33) and equation (C.17) results in

V̇ (q, q̇, t) = uT
1,p ṗ1 +uT

2,p ṗ2 + ψ̇ (q1,q2)

= −kv,1 ṗT
1 ṗ1− kv,2 ṗT

2 ṗ2−uT
1,φ ṗ1−uT

2,φ ṗ2

+
∂ψT (p1, p2)

∂q
∂q
∂ t

= −kv,1 ṗT
1 ṗ1− kv,2 ṗT

2 ṗ2−
∂ψT (p1, p2)

∂ p1
ṗ1

−∂ψT (p1, p2)

∂ p2
ṗ2 +

∂ψT (p1, p2)

∂q
q̇

= −kv,1 ṗT
1 ṗ1− kv,2 ṗT

2 ṗ2 ≤ 0

(C.23)

It can be seen that (C.23) is negative semi-definite. The Krasovskii-LaSalle’s invariant

set theorem, along with a look at definition 4.2.1 , allows us to conclude that system (C.20)

is locally asymptotically stable to the set Ωd ⊂Ωv thus concluding the proof.

C.5 Proof of Theorem 4.2.5

Proof of Theorem 4.2.5. Without any loss of generality, the proof is the same as the one

presented for theorem 4.2.4, except that the definitions of the separated control law become

ui,v :=−σβi (kv,i ṗi) (C.24)

ui,ψ :=−∂ψb(p1, p2)

∂ pi
(C.25)

and the candidate Lyapunov function used is

V (q, q̇, t) :=Vs (q, q̇, t)+ψb (q1,q2)≥ 0 (C.26)
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Differentiating (C.26) w.r.t. time results in

V̇ (q, q̇, t) =−kv,1 ṗT
1 σβ1 (kv,1 ṗ1)− kv,2 ṗT

2 σβ2 (kv,2 ṗ2) (C.27)

The derivative of the Lyapunov function (C.27) is negative semi-definite if the term

− kv,i ṗT
i σβi (kv,i ṗi) (C.28)

is negative semi-definite.

If the function σβi (kv,i ṗi) is saturated, that is, ‖kv,i ṗi‖ ≥ βi, the term (C.28) becomes

− kv,i βi ṗT
i sign(kv,i ṗi) =−kv,i βi ṗT

i sign(ṗi)≤−kv,i βi ‖ṗi‖ ≤ 0 (C.29)

which is negative semi-definite.

In the case when the term (C.28) is on the linear part, the case is the same as the one in

theorem 4.2.4. This proves that (C.27) is negative semi-definite, and the rest of the proof

follows the one in theorem 4.2.4 without any loss of generality.

C.6 Proof of Theorem 4.2.6

Proof of Theorem 4.2.6. Let us define a new Lyapunov candidate function as

V :=V (q, q̇, t)+
n

∑
i=1

Vatt,i (ξi) (C.30)

where V (q, q̇, t) is defined as in (C.22)

The difference of V w.r.t. time results in
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V̇ = V̇ (q, q̇, t)+
n
∑

i=1
V̇att,i (ξi)

= ~FT
th,1 ṗ1 +~FT

th,2 ṗ2 + ψ̇ (q1,q2)−
n
∑

i=1
υi

(
~Fth,i−ui

)
=

(
~Fth,1−u1 +u1

)T
ṗ1 +

(
~Fth,2−u2 +u2

)T
ṗ2 + ψ̇ (q1,q2)−

n
∑

i=1
υi

(
~Fth,i−ui

)
= uT

1 ṗ1 +uT
2 ṗ2 + ψ̇ (q1,q2)+

n
∑

i=1

[(
~Fth,i−ui

)T
ṗ1−υi

(
~Fth,i−ui

)]
(C.31)

which can be simplified using the results from equation (C.23). This results in

V̇ ≤
n
∑

i=1

(
~Fth,i−ui

)T
ṗ1−υi

(
~Fth,i−ui

)
≤ −

n
∑

i=1
υi

(
~Fth,i−ui

)
−
(
~Fth,i−ui

)T
ṗ1

≤ −
n
∑

i=1

∣∣∣υi

(
~Fth,i−ui

)∣∣∣−∥∥~̇pi
∥∥∥∥∥~Fth,i−ui

∥∥∥
(C.32)

Using the condition (4.39) and the result in (C.32), it can be seen that V̇ ≤ 0. Without

any loss of generality, the results can be extended with the saturated control law following

the same methodology as the proof of Theorem 4.2.5, thus concluding the proof.
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Appendix D

Quadcopter Control

This section describes the theory and control law used for the stability of a quadcopter vehi-

cle. The results presented here are a summary of the ones published in [Carino et al., 2015]

for a better understanding on how they were used in the experimental results presented in

Chapter 5.

The quadcopter vehicle can be seen as an underactuated rigid body platform. This is

because the position dynamics depend on the attitude dynamics. In other terms, it is not

possible to change the position of the platform without having to alter its orientation. The

solution presented separates the problem into designing two independent control laws, one

for the position dynamics and one for the attitude, and then connect the output of one into

the input of the other one (see Figure D-1).

Figure D-1: A diagram that shows how the quadcopter control is connected in [Carino
et al., 2015]
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D.1 Desired Attitude

The following theorem comes from [Carino et al., 2015, (14)]

Theorem D.1.1. Let ~Fth ∈R3 be a desired thrust force in the inertial frame,~b ∈R3; ||~b||=

1 be a unitary vector denoting the axis in which the thrust acts in the body frame, and

qre f ,q
′
re f ∈H be quaternion variables defined as

q′re f :=
(
~b ·~Fth +

∥∥∥~Fth

∥∥∥)+~b×~Fth (D.1)

qre f :=
q′re f∥∥∥q′re f

∥∥∥ (D.2)

If the quadcopter attitude is the same as qre f , then the thrust force’s direction is the

same as the desired thrust force.

Theorem D.1.1 and Figure D-1 show that a reference attitude qre f ∈H,
∥∥qre f

∥∥ can be

constructed from a reference thrust force, either from Theorem 4.2.4 or Theorem 4.2.5 in

this particular case. If the attitude of the quadcopter is the same as this reference orientation,

then the thrust force of the quadcopter is guaranteed to be the same as the one from Theorem

4.2.4 or Theorem 4.2.5 (considering that the thrust force of the quadcopter is a control

input). This bears a striking resemblance to the function of the control law proposed in

Chapter 3, but for the PVTOL platform.

In [Carino et al., 2015], the orientation control used is a PD controller based on a

quaternion model. The one used for the attitude dynamics of the quadrotor platforms in

Chapter 5 has the same structure.
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Appendix E

Experimental Validation

Demonstrations

E.1 Proof of Theorem 5.2.1

Proof of Theorem 5.2.1. It can be seen that equations (5.5) and (5.6) are equal to zero when[
~pT

1,x−z ~pT
2,x−z

]T
∈Ωd,x−z and

[
~pT

1,y−z ~pT
2,y−z

]T
∈Ωd,y−z, respectively.

The differentiation of each of the diagonal elements of the matrix
∂ 2 ψx−z (~p1,x−z,~p2,x−z)

∂

[
~pT

1,x−z ~pT
2,x−z

]T,2

w.r.t. each position are calculated in the following equations

∂ 2 ψx−z (~p1,x−z,~p2,x−z)

∂x2
1

= kp,1 > 0 (E.1)

∂ 2 ψx−z (~p1,x−z,~p2,x−z)

∂ z2
1

= kp,1 > 0 (E.2)

∂ 2 ψx−z (~p1,x−z,~p2,x−z)

∂x2
2

= kp,2 > 0 (E.3)

∂ 2 ψx−z (~p1,x−z,~p2,x−z)

∂ z2
2

= kp,2 > 0 (E.4)
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The differentiation of each of the diagonal elements of the matrix
∂ 2 ψy−z

(
~p1,y−z,~p2,y−z

)
∂

[
~pT

1,y−z ~pT
2,y−z

]T,2

w.r.t. each position are calculated in the following equations

∂ 2 ψy−z
(
~p1,y−z,~p2,y−z

)
∂y2

1
= kp,1 > 0 (E.5)

∂ 2 ψy−z
(
~p1,y−z,~p2,y−z

)
∂ z2

1
= kp,1 > 0 (E.6)

∂ 2 ψy−z
(
~p1,y−z,~p2,y−z

)
∂y2

2
=

kp,2

(y2− y1)
2 > 0 (E.7)

∂ 2 ψy−z
(
~p1,y−z,~p2,y−z

)
∂ z2

2
= kp,2 > 0 (E.8)

Using Corollary 5.2.1 and equations (E.1) through (E.4) and equations (E.5) through

(E.8), the functions ψx−z (~p1,x−z,~p2,x−z) and ψy−z
(
~p1,y−z,~p2,y−z

)
are valid objective func-

tions according to Definition 4.2.1.
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