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Resumen

En este trabajo se presenta el diseño y la implementación de técnicas de con-
trol robusto para mejorar el comportamiento de robots autónomos, tales como
humanoides y micro-veh́ıculos aéreos tetrarrotores. Estos robots son sistemas
dinámicos complejos que deben lograr tareas dentro de entornos impredecibles,
por lo tanto, están sujetos a perturbaciones desconocidas que podŕıan afectar su
rendimiento o el cumplimiento de sus tareas. Por tal motivo, se implementaron
técnicas de control robusto capaces de contrarrestar la incertidumbre de la dinámica y
las perturbaciones desconocidas, además de ser mejoradas utilizando técnicas clásicas
de control y observación robustas. Los controladores propuestos fueron probados
en simulaciones y en humanoides y tetrarrotores reales, mostrando resultados
satisfactorios en problemas de regulación y seguimiento, utilizando realimentación
inercial y de visión artificial. La tesis resultante de este trabajo de investigación
está escrita en idioma inglés, con el objetivo de difundirla internacionalmente; por
tal motivo, se presentan a continuación, brevemente, los objetivos, problemática e
hipótesis del trabajo de investigación, aśı como los logros.

Objetivos de Investigación

Objetivo General

El objetivo general de este trabajo de investigación es implementar estrate-
gias de control en lazo cerrado, para contrarrestar perturbaciones desconocidas que
afectan el comportamiento de robots humanoides y micro-veh́ıculos aéreos autónomos
que interactuan con un entorno no estructurado, utilizando controladores robustos
que no requieren un conocimiento preciso de sus modelos dinámicos, ni tampoco the
las perturbaciones mencionadas.
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Objetivos Espećıficos

• Desarrollar modelos dinámicos de nuestros humanoides y micro-veh́ıculos aéreos
para su posterior uso en el diseño de sistemas de control, utilizando técnicas
revisadas en la literatura.

• Diseñar técnicas de control en lazo cerrado para tareas complejas de humanoides
y micro-veh́ıculos aéreos basadas en avances recientes en controladores robustos,
garantizando estabilidad a pesar de perturbaciones e incertidumbre.

• Implementar los controladores diseñados en humanoides y micro-veh́ıculos
aéreos reales, utilizando herramientas especializadas de software para sistemas
robóticos.

• Comparar los controladores implementados contra otras técnicas no robustas
existentes en la literatura, para mostrar la capacidad de rechazo a perturba-
ciones e incertidumbre de dichos controladores.

Problemática

Tanto los robots humanoides como los micro-veh́ıculos aéreos son sistemas robóticos
que operan dentro de entornos no estructurados, por lo tanto, son susceptibles a ser
perturbados aleatoriamente, lo cual puede provocar el incumplimento o cumplim-
iento incompleto de sus tareas asignadas. Además, es complicado obtener modelos
dinámicos precisos de sistemas robóticos reales, incluyendo a los humanoides y
micro-veh́ıculos aéreos, los cuales son útiles para el desarrollo de sistemas de control.

Hipótesis

El uso de una estrategia de control capaz de contrarrestar incertidumbre y
perturbaciones en linea, que además no requiera el conocimiento preciso de la
dinámica del sistema, es una solución apropiada para el cumplimiento de las tareas
ejecutadas por los sistemas robóticos mencionados.
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Solución propuesta

Para satisfacer los objetivos de investigación, se implementó una técnica de
control recientemente aprovechada, llamada control con rechazo activo de per-
turbaciones (ADRC, por sus siglas en inglés), para controlar sistemas robóticos.
Dicha técnica permite el rechazo, en tiempo real, de perturbaciones, por medio de la
estimación en linea de incertidumbres dinámicas y dichas perturbaciones, gracias a un
observador de estado extendido. El control ADRC no requiere un modelo dinámico
preciso de la planta, ni un conocimiento a priori de las señales de perturbación, solo
sus cotas superiores y el orden aproximado del sistema. Además, se implementaron
observadores robustos para mejorar el rendimiento del ADRC. Para el caso de las
tareas con múltiples objetivos para robots humanoides, se implementó un controlador
cuadrático ponderado, el cuál fue mejorado con una técnica de control robusto que
solo requiere de las señales de error para funcionar: el algoritmo de modos deslizantes
super-twisting.

Logros del trabajo de investigación

El trabajo desarrollado consistió en diseñar e implementar sistemas de control
robusto que son útiles para el cumplimiento de tareas complejas de robots hu-
manoides y micro-veh́ıculos aéreos tetrarrotor autónomos. Para cumplir los objetivos
de investigación mencionados, se llevaron a cabo las siguientes actividades:

Actividades técnicas

• Revisión de literatura relacionada con los avances en la teoŕıa del control ro-
busto.

• Análisis y desarrollo de técnicas de control robusto.

• Implementación de algoritmos de realimentación y controladores utilizando
lenguajes de programación y herramientas de desarrollo de software para robots
humanoides y micro-veh́ıculos aéreos.
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• Uso de sofware especializado para robótica: Robotics Operating System y mc rtc.

• Implementación de software de simulación utilizado a nivel internacional como
Chorenoid, RVIZ, Gazebo.

• Asistencia a competencias nacionales de tetrarrotores autónomos.

Logros

• Desarrollo de modelos matemáticos de nuestros robots humanoides.

• Mejora del observador de estado extendido utilizando el enfoque de modos
deslizantes.

• Implementación exitosa de los controladores robustos ADRC y modos
deslizantes super-twisting embebido en un control QP, para el control del equi-
librio y caminado de robots humanoides, y su equilibrio sobre un balanćın.

• Desarrollo de modelos matemáticos de nuestros tetrarrotores.

• Implementación exitosa del control ADRC para la suspensión, regulación de
pose y navegación autónoma de drones tetrarrotor.

• Implementación de técnicas de realimentación visual e inercial para los sistemas
de control.

Publicaciones

[1 ] Orozco-Soto, Santos M., and Juan M. Ibarra-Zannatha. ”Motion control of
humanoid robots using sliding mode observer-based active disturbance rejection
control.” 2017 IEEE 3rd Colombian Conference on Automatic Control (CCAC).
IEEE, 2017.
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Abstract

This thesis work presents the design and implementation of robust control techniques
to improve the behaviour of autonomous robots, such as humanoids and quadrotor
micro-aerial vehicles. These robots are complex dynamic systems that must ac-
complish tasks within unpredictable environments, therefore, they are subjected to
unknown disturbances that might affect its performance or its tasks fulfilment. Hence,
an innovative robust control strategy that is capable to deal with uncertain dynamics
and unknown disturbance is implemented and improved using classical robust control
and observation techniques. The proposed controllers were tested in simulation and
actual humanoid robots, as well as actual quadrotors, showing successful results
in regulation and tracking control problems by means of inertial, force and visual
feedback.





13

Dedicatorias

Dedico esta tesis a mis t́ıas, quienes me han procurado durante toda mi vida;
a mis padres, cuyo apoyo y cariño ha sido fundamental para mi desarrollo; a mi
esposa, que estuvo conmigo desde el inicio de este trabajo y me continúa apoyando
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Introduction

The use of robotic systems is growing so quickly nowadays due to the demand of
automation, precision, efficiency and accuracy of many productive tasks. Service
robots are now taking more attention from industry and service companies for dif-
ferent purposes than typical industrial applications, and the number of robots that
interact within environments designed for human beings is increasing. The general
purpose of a control system is to monitor and correct the actions of a determined
dynamic system [1]. Since disturbances exist in all practical dynamic systems, the
problem of disturbance attenuation or rejection has been a significant topic for many
control field researchers, yielding mainly two approaches to deal with disturbances:
attenuation methods and rejection techniques [1], for which several theories have been
developed. Talking specifically, modern service robots, like humanoids or micro-aerial
vehicles (MAVs), are constantly subjected to disturbances inherently to their interac-
tion within environments designed for human beings; in that sense, control systems
that enable the robots to perform their tasks correctly and safely are required. The
purpose of this research work is to develop automatic control schemes, that deal with
the problem of disturbances affecting the successful accomplishment of complex tasks
performed by both, humanoids and MAVs. For the case of humanoid robots, the
robustness of balance and walking problems were addressed, meanwhile, the robust
autonomous flight of quadrotor MAVs problem was tackled. The selected control
strategies were two: the active disturbance rejection control technique, which is a
modern innovative strategy that takes advantage of canonical forms and the extended-
state observer to estimate and cancel out disturbances on-line; and the super-twisting
sliding mode control, in order to regulate the position of a see-saw mechanism using a
humanoid robot as an actuator. During the research work, an important contribution
to the control theory is the improvement of active disturbance rejection technique by
means of sliding-mode extended-state observers, yielding successful results for both
control of humanoid and MAVs. Another important achievement within the research
was the implementation of the mentioned controllers, using new software tools for
modern robotic systems such as mc rtc, designed for multi-contact and multitask

19



20 1. INTRODUCTION

optimal control of humanoid robots, and the so-called Robotics Operating System, a
middleware helpful for multithreading tasks for robots. In addition, computer vision
systems and sensor-fusion algorithms were implemented in order to develop the real-
time robust controllers for the robots, yielding successful results that were published
on international conferences and journals. This thesis is organized as follows: Chapter
1 introduces the reader to the problems of disturbances in control systems for complex
tasks of robots. Chapter 2 is an overview of the robust control theory used in the
research work. Chapter 3 addresses the modelling of humanoids and quadrotors for
control synthesis. Chapter 4 describes the implementation of the robust controllers
for different tasks and robots. Finally, conclusions are stated in Chapter 5.

1.0.1 Humanoid Robots as Control Systems

Humanoid robots are called, at least in theory, to develop almost any activity per-
formed by human beings. Nevertheless, in order to humanoids perform such tasks,
they need to be able to walk in environments where humans do: flat or uneven ter-
rains with obstacles, climbing ramps or stairs, among other possibilities. Walking
means to displace at a moderate speed lifting alternately both feet and landing them
in a few distance forward; each step of the humanoid gait is compound by the dou-
ble support phase and the swing phase. Within the field of modelling and control
of dynamic systems, the main target is to develop a stable dynamic walking which
must be robust upon disturbances that allows the humanoid robot to move with the
nearest agility to the human being. It is almost impossible to copy directly the hu-
man motion to the robot because it has many less degrees of freedom (DOF) and
actuators than humans [2]. The walking tasks that humanoid robots perform con-
sist, firstly, on the generation of stable walking patterns supplied to the robot and,
then, optionally, the use a of a feedback stabilizer to ensure the correct execution of
those walking patterns by means of disturbance rejection, as is depicted in Fig. 1.1
[3]. Several disturbance rejection techniques to guarantee humanoid stable walking
have been developed and implemented successfully [4] - [5], most of them demand an
accurate dynamic model of the robot or a precise knowledge of the disturbance to be
rejected, increasing the complexity of the control system design. In this thesis work,
the development of robust controllers for humanoid balance and walking inertial and
visual feedback techniques is addressed.

1.0.2 Unmanned Air Vehicles from Control Systems Per-
spective

An unmanned air vehicle (UAV) -or drone- is an aircraft with no on board pilot, that
might be controlled remotely by a human operator or by an external computer; never-
theless, sometimes autonomous UAVs have powerful computers on board. Compared
to other complex robotic systems, UAVs are simple to build; they are compound
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Figure 1.1: Diagram of feedback control of humanoid robots gait.

by a frame, motors, propellers, electronic drivers, speed controllers, the battery, a
flight controller and wireless communication electronics [6]. There are several types
of drones such as fixed-wing, rotorcrafts, flapping wing, among other varieties [7]
shown in Fig. 1.2, and their use is nowadays extended to agriculture, filming, con-
struction, entertainment, evaluating and delivering applications [6]. One of the most
popular type of UAV is the rotorcraft, which can also be classified according to the
number of rotors and their set up [8], and within this classification, quadrotors have
become widely used recently, since they offer better payload capability than other
rotorcrafts, in addition to their building and control simplicity, attenuation of gyro-
scopic effects [9], small size, low cost, agility, manoeuvrability and hovering at fixed
point [10], among other advantages. However, quadrotors have many drawbacks
from the control systems perspective: highly coupled dynamics [11], underactuation,
open-loop instability, difficult parametric identification of dynamic model and noisy
measurements are some reasons that led many control system designers to be partic-
ularly interested in the development of techniques capable to deal with such control
challenges. In this context, many proposals have been developed and reported in
literature such as PID-type controllers, adaptive approaches, feedback linearization,
backstepping, intelligent control schemes, among many other strategies which have
shown successful results in dealing with above mentioned control problems, but also
presenting some drawbacks according to the nature of the control solution for the
given problems [11] [10] [12] [13].

1.0.3 Disturbance Rejection for Robotic Systems

Most of real-life control systems are affected by unconsidered dynamics, paramet-
ric uncertainties of their mathematical models and, of course, external disturbances,
which consequently lead to different implementation challenges for control engineers
[14], specially robotic systems, which are developed to work within environments de-
signed for human beings. A relatively recent control approach that allows real-time



22 1. INTRODUCTION

Figure 1.2: Different types of drones.

disturbance rejection that does not require an accurate dynamic model of the plant
or a precise knowledge of the disturbance signals, is the active disturbance rejection
control (ADRC) [15], which has become popular among control systems developers
and has been implemented in many kind of control applications [16] [17], since it has
several advantages such as the ability in dealing with a vast range of uncertainties,
great transient response, easy implementation and energy savings, among other inter-
esting benefits [14]; all those capabilities are possible since ADRC is based on two of
the best offerings of control theory: canonical forms and state observers [14]. An im-
portant feature of ADRC is that uses the state augmentation to estimate parameters
and disturbances embedded as an additional state, but it is required to implement
an extended-state observer that converges quickly to have a suitable control perfor-
mance [18]. Sliding observers are preferred by many control designers since they
offer similar advantages to those of sliding controllers, such as robustness upon para-
metric uncertainties, high control (observation) authority and easy implementation;
furthermore, chattering inconveniences in sliding observers represent only numerical
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implementation matters rather than physical problems [19]. It worth to mention that
the robustness of sliding observers against parametric uncertainties and noise mea-
surement is bigger than Luenberger observers and the extended Kalman filter [19],
however, sliding observers are susceptible to input disturbances in the plant, but if
the mentioned disturbance signals are bounded, they can still be overcome for state
tracking [20]. ADRC has already been used successfully in robotics applications like
control of mobile robots [21] and also in walking control of humanoid robots, reporting
successful simulation results [16],[22]. This thesis work presents the implementation
of continuous-time sliding and discrete-time quasi sliding observers [23], to imple-
ment ADRC in humanoid robots and quadrotors, showing successful simulation and
real-time implementation results.

1.1 Research Objectives

1.1.1 Main Objective

The main objective of this research work is to implement closed-loop control strate-
gies, in order to deal with unknown disturbances that affect the performance of hu-
manoid robots and autonomous micro-aerial vehicles (MAVs) that interact with a
non structured environment, using robust control approaches that do not require a
precise knowledge of their dynamic models, neither the mentioned disturbances.

1.1.2 Specific Objectives

• To develop dynamic models for our humanoids and micro-aerial vehicles for
their later use in control systems synthesis, by means of techniques reviewed in
the literature.

• To design closed-loop control techniques for complex tasks of humanoids and
micro-aerial vehicles based on recent advances in robust controllers, guarantee-
ing stability despite of uncertainties or disturbances.

• To implement the designed controllers in actual humanoids and micro-aerial
vehicles, using specialized software development tools for robotic systems.

• To compare the implemented controllers against other non-robust techniques
existing in the literature, showing the disturbances and uncertainties rejection
capability.
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1.2 Research Problem and Hypothesis

Both humanoid robots and MAVs are robotic systems that work within unstructured
environments, therefore, they are susceptible to be disturbed randomly, which may
lead to an unsuccessful or incomplete accomplishment of their assigned tasks. Fur-
thermore, it is difficult to obtain an accurate dynamic model of actual robotic systems,
including humanoids and MAVs, that can be useful for control systems development.

Hypothesis: The use of a robust control strategy capable to deal with uncertain-
ties and disturbances on-line, and that neither require an accurate knowledge of the
system dynamics, is an appropriate solution for the accomplishment of the tasks
performed by the mentioned robotic systems.

1.3 Proposed Solution

In order to accomplish the research objectives, a recently exploited control approach
called active disturbance rejection control (ADRC) was implemented to control robotic
systems. Such technique allows real-time disturbance rejection by means of the on-
line estimation of the disturbances and uncertainties by means of an extended-state
observer (ESO). The ADRC does not require an accurate dynamic model of the plant
or a precise knowledge of the disturbance signals, but only the order of the system
and the upper bounds of the disturbances. Furthermore, robust observers were im-
plemented to improve the performance of the ADRC. For the case of multi-objective
tasks for humanoid robots, a weight prioritized quadratic programming (QP) control
was implemented and enhanced with a robust control technique that only require the
error signals to work, that is the case of the super-twisting sliding mode algorithm.

1.4 Achievements of the Research Work

The development of this research work consisted on the design and implementation
of robust control systems that are helpful to accomplish complex tasks of humanoid
robots and autonomous quadrotor MAVs. In order to fulfil the listed research objec-
tives, the following activities were carried on:

Technical Activities

• Literature review about advances in robust control theory.

• Analysis and development of robust control techniques.

• Implementation of feedback algorithms and controllers using programming lan-
guages and development tools for humanoid robots and quadrotor MAVs.
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• Use of specialized software for robotics: Robotics Operating System and mc rtc.

• Implementation of worldwide-use simulation software such as Chorenoid, RVIZ,
Gazebo.

• Attending to national competitions of autonomous quadrotors.

Achievements

• Development of mathematical models of our humanoid robots.

• Improvement of extended-state observer using sliding mode approach.

• Successful implementation of robust controllers ADRC and super-twisting slid-
ing mode embedded in QP control for humanoid robots balance, walking and
balancing on a see-saw.

• Development of mathematical models of quadrotors.

• Successful implementation of ADRC for hover, pose regulation and autonomous
navigation of quadrotor drones.

• Implementation of inertial and visual feedback techniques for the control sys-
tems.
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2

On Robust Control and
Observation

2.1 Generalities on Active Disturbance Rejection

Control

Active Disturbance Rejection Control (ADRC) is a control strategy that has become
popular among control engineers and researchers, since it has the capability to deal
with a vast range of uncertainties and disturbances with the advantages of easy im-
plementation and energy savings [14]. The baseline of ADRC is the exploitation of
two of the best offerings of modern control theory: the canonical form representation
and the state observer [14].

2.1.1 Fundamentals of ADRC

Consider a dynamic system of the form:

ẋ = f(t, x, u, w)
y = h(t, x, u, w)

(2.1)

Where x ∈ Rn is the state vector, u ∈ Rp is the control inputs vector, w ∈ Rq is
the disturbances vector, usually unknown, but bounded, and y is the output to be
analysed. Independently from its linear or nonlinear nature, the stated system (2.1)
can be represented as a cascade of integrators canonical form under some conditions,
like by means of a diffeomorphic transformation z = T (x) as follows:

ż1 = z2
...

żn−1 = zn
żn = g(t, x, u, w)

y = h(z)

(2.2)

29
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Where g(t, x, u, w) can be considered as a total disturbance that embeds external
disturbances, unconsidered dynamics and parametric uncertainties. Therefore, an
Extended-State Observer (ESO) can be proposed for state tracking and total distur-
bance estimation as follows:

˙̂z1 = ẑ2 − l1(ê)
...

˙̂zn−1 = ẑn − ln(ê)
˙̂zn = g(ẑ, t, u, w)− ln+1(ê)

(2.3)

Note that l(ê) is a vector function which leads ẑ → z asymptotically with an obser-
vation error ê = ẑ − z. In order to cancel the total disturbance effect, the following
controller can be implemented using the information cast from the ESO:

u = u0(t, x, r)− ẑ (2.4)

Where u0(t, x, r) is a controller, that considers x = T−1(z), for the n-th order cascade
of integrators. The general design procedure for ADRC can be stated in three steps
[14]

1) Select the canonical form of the plant in the form of cascade integrators.

2) Consider the different part from the canonical form as a total disturbance.

3) Reduce the system to a cascade of integrators by estimating and compensating
the total disturbance via the ESO.

2.1.2 ADRC for Disturbed Linear Systems

Consider the following LTI disturbed dynamic system:

ẋ = Ax+Bu+ Ew
y = Cx

(2.5)

Where x ∈ Rn is the state, w ∈ Rp is the disturbance vector, usually unknown but
bounded, and E ∈ Rn×p is the disturbance mapping matrix to each degree of freedom
of (2.5). The central idea of linear ADRC is to estimate the unknown generalized
disturbance by means of an extended state observer (ESO), so that, the following
extended-state representation using ξ = [x, ẋ, f(t, x, u, w)]T is implemented [24]:

ξ̇ = Aeξ +Beu
y = Ceξ

(2.6)

where Ae ∈ R(n+q)×(n+q), Be ∈ R(n+q) and Ce ∈ R1×(n+q), q is the order of the
augmented state [24]. It worth to remark that Ae is in controllable canonical form.
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Hence, the following ESO for (2.6) is proposed:

˙̂
ξ = Aeξ̂ +Beu+ L(y − ŷ)

y = Ceξ
(2.7)

the observer gains can be tuned using only the observation bandwidth ω0 as follows
[24]:

L =
[
3ω0 3ω2

0 ω3
0

]
(2.8)

Note that each entry of L is of n-th order; thus, if (Ae − LCe) is Hurwitz, ξ̂1, ..., ξ̂n−1

will approximate ξ1, ..., ξn−1 and ξ̂n will approximate the generalized disturbance
f(t, x, u, w); therefore, the estimated generalized disturbance can be used in a general
controller of the form:

u = B̄−1(u0 − ξ̂n) (2.9)

Where B̄ is an estimated of B and u0 is any regulator for a chain of integrators,
such as a PID type controller. Notice that a precise knowledge of the plant or the
disturbances is not required, but only the order of the system and the upper bound
of the disturbances acting on it.

2.1.3 Feedback Linearization of Nonlinear Systems using the
Extended State Observer

Consider the following nonlinear dynamic system:

ẋ = f(x) + g(x)u
y = h(x)

(2.10)

where x is the state vector, y is the output, u is the control signal, f(x) and g(x) are
the n-dimensional vectors of continuous real-valued functions of x with partial deriva-
tives of any order. It is well known from literature that there exists a diffeomorphic
transformation such that [14]:

z = T (x) =


h(x)
Lfh(x)

...
Ln−1
f h(x)

 (2.11)

Furthermore, 2.10 can be exactly linearized using the state feedback control law:

u =
1

b(z)
(−a(z) + v) (2.12)

Where a(z) = Lnfh(x) and b(z) = LgL
n−1
f h(x). The result of exact feedback lineariza-

tion is the following cascade of integrators:

ż = Az +Bv
y = Cx

(2.13)
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Where [14]:

A =


0 1

0
. . . 1

0

 , B =
[
0 · · · 0 1

]T
, C =

[
1 0 · · · 0

]

In order to perform such exact linearization technique, an accurate knowledge of the
parameters of (2.10) is required. Nevertheless, the exact feedback linearization can
be still accomplished by means of an ESO, without an accurate knowledge of the
parameters of 2.10; consider the following cascade of integrators:

ẋ1 = x2
...

ẋn−1 = xn
ẋn = B̄u

(2.14)

as a canonical form of (2.10), where B̄ is an estimation of B(x) = LgL
n−1
f h(x). The

remaining part of the system that is different from the system is:

F (x) + (B(x)− B̄)u , xn+1 (2.15)

Where F (x) = Lnfh(x); furthermore, if the system is affected by external disturbances,
(2.15) can be rewritten as:

F (x) + (B(x)− B̄)u+ w , xn+1 (2.16)

xn+1 is an extended-state of the system (2.14), for which an ESO can be implemented
to estimate such extended state as follows [14]:

ˆ̇x1 = x̂2 − G1(x̂1 − x1)
...

ˆ̇xn = xn+1 − Gn(x̂1 − x1) + B̄u
ˆ̇xn+1 = −Gn+1(x̂1 − x1)

(2.17)

Where Gi(x̂1 − x1) is a nonlinear vector function such that x̂ → x as t → ∞. This
on-line estimation of the ”total disturbance” (2.16) is used by the following ADRC
to perform the state-feedback linerization:

u = −B̄−1x̂n+1 + u0 (2.18)

Where u0 is a linear controller to regulate (2.14). The success of (2.17) depends on
the information of the sensor that measures x1 and on the robustness of the ESO,
therefore, in this thesis work, a proposal to improve the observed state tracking is
implemented using robust sliding mode observers.
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2.1.4 On the Convergence of the Extended-State Observer

Consider the following nonlinear multi-input multi-output (MIMO) uncertain dis-
turbed system [25]:

x
(n1)
1 (t) = f1(x1(t), ..., x

(n1−1)
1 (t), ..., x

(nm−1)
m (t), w1(t)) + g1(u1(t), ..., uk(t))

x
(n2)
2 (t) = f2(x1(t), ..., x

(n1−1)
1 (t), ..., x

(nm−1)
m (t), w2(t)) + g2(u1(t), ..., uk(t))

...

x
(nm)
m (t) = fm(x1(t), ..., x

(n1−1)
1 (t), ..., x

(nm−1)
m (t), wm(t)) + gm(u1(t), ..., uk(t))

yi(t) = xi(t), i = 1, 2, ...,m

(2.19)

Transforming (2.19) into a first-order system described by m number of subsystems
of first-order differential equations [25]:

ẋi,1(t) = xi,2(t)
ẋi,2(t) = xi,3(t)

...
ẋi,ni

(t) = fm(x1,1(t), ..., x1,n1(t), ..., xm,nm(t), wi(t) + gi(u1, u2, ..., uk)
yi(t) = xi,1(t), i = 1, 2, ...,m

(2.20)

Where xi,j(t) = x
(j−1)
i (t), j = 1, 2, ..., ni. An ESO composed of m subsystem for

(2.20) can be expressed as:

˙̂xi,1(t) = x̂i,2(t) + εni−1φi,1

(
xi,1(t)− x̂i,1(t)

εni

)
˙̂xi,2(t) = x̂i,3(t) + εni−2φi,2

(
xi,1(t)− x̂i,1(t)

εni

)
...

˙̂xi,ni
(t) = x̂i,n+1(t) + φi,ni

(
xi,1(t)− x̂i,1(t)

εni

)
+ gi(u1, u2, ..., uk)

˙̂xi,ni+1(t) =
1

ε
φi,ni+1

(
xi,1(t)− x̂i,1(t)

εni

)
, i = 1, 2, ...,m

(2.21)

The convergence of (2.21) is demonstrated on [25], and relies on the following as-
sumptions:

Assumption (A1). For every i = 1, 2, ...,m, all ui, wi and the solution of (2.20)
are bounded. Additionally, gi ∈ C(Rk,R) and fi ∈ C1(Rn1+..+nm+1,R).

Assumption (A2). For every i = 1, 2, ...,m, there exists continuously differentiable,
positive defined, radially unbounded functions Vi,Wi : Rni+1 → R satisfying:

ni∑
l=1

∂Vi
∂yl

(yl+1 − φi,l(y1))− ∂Vi
∂yni+1

φi,ni+1(y1) ≤ −Wi(y) (2.22)



34 2. ON ROBUST CONTROL AND OBSERVATION

Therefore, the following theorem ensures the convergence of ESO:

Theorem 2.1 Considering assumptions (A1) and (A2), for any initial values of
(2.20) and (2.21):

i) For any t > 0:
lim
ε→0
|xi,j(t)− x̂i,j(t)| = 0 (2.23)

ii) For any ε ∈ (0, 1):
|xi,j(t)− x̂i,j(t)| ≤ Ki,jε

ni+2−j (2.24)

where Ki,j are positive constants independent of ε, but depending on the initial
values [25].

Theorem 2.1 is valid for both MIMO and SISO nonlinear or linear systems [18, 25].

2.2 Sliding Mode Observers

Let be the following dynamic system in companion form:

x(n) = f(t, x, u, w) (2.25)

Note that the parameters of f(t, x, u) are not accurately known, but the mismatch
|∆f | = |f − f̂ | and w are upper bounded. The observation problem is to lead an
estimated state x̂ to track a specific state x despite model imprecisions and distur-
bances. Hence, the following sliding mode observer (SMO) for (2.25) based on the
measurement of x1 is proposed:

˙̂x1 = x̂2 − (l1ê1 + k1sign(ê1))
...

˙̂xn = f̂ − (lnê1 + knsign(ê1))

(2.26)

Where ê1 = x1 − x̂1 is the observation error of the single measured variable, f̂ is an
estimated of f(t, x) and the constants li are chosen similarly to a classical Luenberger
observer to ensure asymptotic error decay of a linearized representation. The resulting
error dynamics can be expressed as [19]:

˙̂e1 = −l1ê1 + ê2 − k1sign(ê1)
...

˙̂en = −lnê1 + f̂ − knsign(ê1)

(2.27)

A suitable alternative for the observer tuning is to choose kn ≥ |f̂ |, and keep a
constant ratio with k1; furthermore, the gains li determine the dynamic performance
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of the observer in order to reach the following sliding patch [19]:λIn−1 −


−(l2 + k2/k1) 1 0 · · · 0
−(l3 + k3/k1) 0 1 · · · 0

...
...

...
. . . 1

−(ln + kn/k1) 0 0 · · · 0


 (2.28)

Where λIn−1 is the matrix of the n − 1 poles of the linear part of the observer. In
order to get a successful performance of the observer (2.26), it is recommended to
pre-filter the measurement x1 using, for example, a first-order filter with significant
larger bandwidth than the frequency content of x1, in addition, the sampling rate
should be chosen to be consistent with the pre-filtering stage [19]. Note that multiple
measurements can be included into the SMO to enhance the state tracking perfor-
mance.

2.2.1 Some Aspects on Discrete-Time Variable Structure
Systems

Even sliding mode control and observation algorithms are performed by hardware,
normally they are designed and considered as continuous-time systems thanks to
nowadays high-speed computers; however, for relatively slowly-sampled systems, it
is convenient to consider a discrete-time analysis for a suitable control (or observer)
design and performance. Consider a discrete-time plant:

x(k + 1) = Ax(k) + bu(k) (2.29)

When a discrete-time variable structure control (or observer) is applied to the plant
(2.29), it earns the following properties [23]:

P1) The states will perform a trajectory from an initial condition towards a switch-
ing plane (or surface) and cross it in finite time.

P2) Once the trajectory crosses the plane, it will cross it again repeatedly every
successive sampling period, resulting in a zigzag motion about the switching
plane.

P3) The zigzag motion amplitude size is non-increasing and the trajectory remains
within a band given by:

{x| −∆ < s(x) < ∆} (2.30)

Where 2∆ is the width of the band.

The switching motion of a discrete-time variable structure system satisfying P2 and
P3 is called Quasi-sliding mode, and the band (2.30) is known as Quasi-sliding mode
band. A discrete-time variable structure system satisfies a reaching condition when



36 2. ON ROBUST CONTROL AND OBSERVATION

it has the properties P1, P2 and P3 [23]. Since the above properties are not always
satisfied, a reaching law must be firstly specified to guarantee their fulfilment. This
reaching law should govern the dynamics of a stable switching function S(x) = 0 [23];
a convenient reaching law may be:

s(k + 1)− s(k) = −qTss(k)− εTssign(s(k)), 1− qTs > 0 (2.31)

Where Ts > 0 is the sample period, ε > 0 and q > 0 are constant design parameters
that affect the reaching mode response. Note that the choice of Ts is restricted since
it guarantees the fulfilment of P1, and the presence of the sgn(·) term guarantees P2
and P3 [23].

2.2.2 Sliding Mode Extended-State Observers

Consider the sliding mode observer (2.26); according to the equivalent control method,
an ”average” dynamics of the system can be achieved from the high-frequency switch-
ing using a low-pass filter as follows:

f̂(t, x, u, w) = ρ(sign(ê)) (2.32)

Where ρ(sign(ê)) is the low-pass filter. Nevertheless, information cast from (2.32)
might not be as accurate as the total disturbance provided from an ESO. Hence, in
order to enhance the ESO with robustness, an sliding mode part can be implemented
as follows:

˙̂x1 = x̂2 + εn−1

(
l1ê1 + sign(ê1)

εn

)
...

˙̂xn = x̂n+1 +

(
lnê1 + kn

k1
sign(ê1)

εn

)
+ u

˙̂xn+1 = ε−1

(
ln+1ê1 + kn+1

k1
sign(ê1)

εn

)
(2.33)

Invoking Theorem 2.1 and guaranteeing that the eigenvalues of the sliding patch
(2.28), the convergence of the sliding-mode extended-state observer (SMESO) is en-
sured, either a robust total disturbance estimation and, consequently, a successful
disturbance rejection part of an ADRC.
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2.3 Quadratic Programming Control

Task-Space control of robotic systems is not trivial to solve, since it involves sev-
eral kinematic, contacts, dynamics among other kinds of constraints that must be
computed almost simultaneously, due to the interaction of the robots with their envi-
ronment and other robots. In order to unify all tasks in a single optimization problem
subject to constraints, the Quadratic Programming (QP) control has been proposed.
Such controller reduces to the solution of a QP where multiple objective tasks are
accomplished, minimizing the acceleration error of each task using the following cost
function [26]:

min
x

M∑
k=1

wk‖Θ̈k − Θ̈d
k‖ (2.34)

where x ∈ M is the constraint variables space and Θk,Θ
d
k are the acceleration of

the tasks and desired accelerations respectively; hence, the solution of (2.34) lead to
the derivation of the gains of linear control techniques in task space. QP control has
been used widely in humanoid robots control, since the complex tasks involve multiple
objectives to fulfill in real time [27]. Nevertheless, the QP is based on the models of the
robots and tasks, therefore, it would be some mismatches, inaccuracies or disturbances
that might affect the control performance or even the tasks accomplishment.

2.4 Super Twisting Sliding Mode Control

Sliding-mode controllers (SMC) are well known by their robustness upon parametric
uncertainty of the controlled systems and against bounded disturbances [28], yield-
ing successful regulation and tracking performances. Some improvements to the SMC
have been developed to reduce chattering ; among more popular is the Super-Twisting
SMC (STSMC), which is a kind of second-order sliding-mode algorithm firstly de-
signed to compensate Lipschitz disturbances exactly, ensuring finite time convergence
[29]. This controller has been proposed in order to substitute discontinuous controllers
by continuous ones, reducing the chattering effect of the sliding modes. In addition,
finite time convergence, and tuning methods have been developed using geometric, ho-
mogeneity and strict-Lyapunov approaches to ensure the stability of such controllers
[29]. The classical STSMC is expressed as:

u(t) = u1(t) + u2(t),
u1(t) = −k1|σ|1/2sign(σ),
u1(t) = −k2sign(σ)

(2.35)

Where k1, k2 > 0. The controller (2.35) is robust against a disturbance w(t) with
bounded derivative |ẇ(t)| ≤ L, and do not require the derivative of the state variable
σ for its implementation [29].
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3

Modelling of Humanoids and
Quadrotors

3.1 Modelling of Humanoid Robots

A humanoid robot is a highly nonlinear system with coupled complex dynamics, which
is also compound by multiple DOF, yielding an arborescent kinematic chain. There-
fore, accurate modelling of humanoid robots results a very complex task. Even though
the equations of motion of the humanoids can be developed using the Euler-Lagrange
methodology, coarse graining methods are also popular to approach their dynamics
behavior in order to have a useful representation for control strategies synthesis. In
this section, most common mathematical representations of humanoid robots kine-
matics and dynamics are presented. First, the problem of walking pattern generation
is addressed in order to generate the Cartesian trajectories that the body of the hu-
manoid must follow to perform its gait. Therefore, the inverse kinematics is required
to transform the Cartesian trajectories into desired joint trajectories, hence, a ge-
omteric approach was followed to derive the equations. Finally, different approaches
were used to yield the humanoids dynamics depending on the control target, from
very simple and approximated models, to complex Lagrangian and spatial vector
based approaches.

3.1.1 Walking Pattern Generation using the Three-
Dimensional Linear Inverted Pendulum Model

Consider the humanoid robot shown in Fig. 3.1, where it can be observed that such
three-dimensional linear inverted pendulum (3D LIPM) model is compound by the
total Center of Mass (CoM) of the robot attached to a massless prismatic joint, that
rotates freely about a supporting point representing the ankle joint during the single
support phase [16]. The motion of the CoM at x and y directions is constrained by
the plane z = kxx+ kyy + zc; since the motion is consider purely horizontal,

39
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Figure 3.1: Humanoid represented as a 3D LIPM system.

then the slopes are kx ≡ ky ≡ 0. Hence, the 3D LIP dynamics is given by:

ẍ = g
zc
x+ ux

mzc

ÿ = g
zc
y + uy

mzc

(3.1)

Where g is the gravity acceleration, (x, y) is the CoM motion Cartesian coordinate
and (ux, uy) are the control inputs incoming from roll and pitch torques from the
ankle, however, such torques are very limited to stabilize the whole humanoid, so
they are not considered [16]. Therefore, in order to perform the walking pattern, the
3D LIP dynamics (3.1) is integrated yielding a walking primitive taking advantage of
its saddle point behavior.

Definition 3.1 Walking Primitive. A walking primitive is a piece of a 3D linear
inverted pendulum trajectory, which is symmetric about y axis and it is defined within
the period [T0, Tsup], where Tsup is the duration of the supporting phase.

A walking primitive describes the Cartesian trajectory of the CoM from a point
(−x̄, ȳ) to (x̄, ȳ). A set of walking primitives is called a walking trajectory, and can be
appreciated in Fig. 3.2, where both a single walking primitive and a walking trajectory
are displayed; for each step of the humanoid walking trajectories, the following initial
conditions to solve (3.1) must be stated:

• Initial position in x:
x̄(n) = S(n+1)

x /2 (3.2)

• Initial position in y:
ȳ(n) = (−1)nS(n+1)

y /2 (3.3)

• Initial velocity in x:
v̄(n)
x = x̄(C + 1)/TcS (3.4)
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Figure 3.2: Walking primitive with its parameters and walking trajectory. The change
of color means the suportting leg switching.

• Initial velocity in y:
v̄(n)
y = ȳ(C − 1)/TcS (3.5)

Where S
(n+1)
x is the length of the step, S

(n+1)
y is the width of the step Tc =

√
zc/g, C =

cosh(Tsup/Tc), S = sinh(Tsup/Tc) and zc is the desired CoM height along the trajec-
tory. Finally, the initial conditions to solve (3.1) are:

x
(n)
0 = (−x̄(n), v̄(n)

x , ȳ(n),−v̄(n)
y ) (3.6)

It worths to consider the following remarks for a suitable walking pattern (trajectory)
generation [16]:

Remark 3.1 In order to perform a continuous CoM trajectory, and consequently,
continuous joint trajectories, the length of steps should be based on the size of the legs
of the humanoid robot.

Remark 3.2 The walking primitives only depend on the initial conditions of position
and velocity, since the 3D LIP moition is generated intrinsically by its unstable saddle-
point nature, so that, no control inputs supplied by the ankles are required.

Hence, integrating (3.1) along [−Tsup/2, Tsup/2] with initial conditions (3.6) yields the
following hip (CoM) trajectory of the humanoid robot to perform a step:[

xh(k) yh(k) zc(k)
]
∈ Rk×3 (3.7)

Where k is the number of samples within the integration time interval. In order to
compute the Cartesian trajectory of the swing ankle, the following expressions can
be implemented:

xa(k) = x̄ sin

(
πkT

Tsup

)
(3.8)
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za(k) =
Hs

2

(
1 + sin

(
2πkT

Tsup
+
π

2

))
(3.9)

Where Hs is the maximum height of the swing foot and kT is the time at sample k.
Fig. 3.3 shows both Sagittal and frontal planes of a humanoid robot, where the step
parameters mentioned above can be appreciated. The general algorithm for walking
pattern generation using the 3D LIP approach is as follows:

Algorithm 3.1 3D LIP Walking Pattern Generation

1. State kinematic parameters of the robot.

2. Determine step parameters: zc, Tsup, S
(n+1)
x ,S

(n+1)
y .

3. Compute the initial conditions (3.6).

4. Obtain the hip trajectories by integrating (3.1) along [−Tsup/2, Tsup/2] with ini-
tial conditions (3.6).

5. Obtain the swing ankle trajectories solving (3.8) and (3.9).

6. Compute joint trajectories using the inverse kinematics of legs.

7. IF any trajectory is discontinuous: Go to 2.

3.1.2 Inverse Kinematics for Humanoid Robots Walking:
A Geometric Approach

In last section, the problem of developing Cartesian trajectories for the hip and the
swing ankle for biped gait was addressed. Such Cartesian trajectories must be trans-
formed into joint trajectories that are going to be tracked by the local joint controllers,
by means of the inverse kinematics equations. The problem of determining the most
appropriate joint motions for humanoid robots under a given set of motion-task con-
straints is a difficult task [30]. Humanoid roboticists have developed analytical ge-
ometric methods [3, 31], but some others prefer computational approaches such as
Extended Jacobian integration [32], multiobjective optimization [27], or prioritized
tasks [33]. In this work, the geometric approach presented in [31] was preferred, since
the only desired task for the humanoid is to walk.
Therefore, the swing leg desired angles will be firstly computed. Consider Fig. 3.3
c), the first desired joint angle that is computed is the right ankle roll by means of
the expression:

qd1 =
π

2
+ tan−1

(
yh − ȳ
zc

)
(3.10)
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Figure 3.3: Sagittal and frontal planes of a humanoid robot with the useful geometric
parameters to derive the inverse kinematics.a) Right-side Sagittal plane. Both step
parameters and geometric parameters of the robot can be appreciated. b) Left-side
Sagittal plane showing step and geometric parameters. c) Frontal plane, where both
step and geometric parameters are depicted.

Where ȳ can be computed using (3.3). Continuing with the swing leg, behold Fig.
3.3 a) to compute the ankle pitch as follows:

qd2 = − (π − α− γ2) (3.11)

Where α = cos−1
(
l21+l20−l22

2l0l1

)
, γ2 = tan−1

(
xh−xa
zc−za

)
+ π

2
and

l0 =
√

(xh − xa)2 + (zc − za)2. Notice that xh, xa, zh and za are time-depending tra-

jectories, hence the joint angles must be computed for each value of such variables at
each sample within the trajectory period. Then, the swing knee angle is given by:

qd3 = cos−1

(
l22 + l21 − l20

2l1l2

)
(3.12)

The swing-leg hip pitch can be computed using:

qd4 = − (π − β − γ1) (3.13)

Where β = π − cos−1
(
l22+l21−l20

2l1l2

)
and γ1 = π − γ2. Then, observing Fig. 3.3 c), the

swing-leg hip roll can be obtained by:

qd5 = π − qd1 (3.14)
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Continuing with the support leg, from the frontal plane can be observed that:

qd6 = qd1 (3.15)

Considering now Fig. 3.3 b), the support-leg knee angle is derived by:

qd8 = cos−1

(
l20L − l

2
1 − l22

2l1l2

)
(3.16)

Where l0L =
√
x2
h + z2

h. In addition, support-leg hip pitch can be obtained by means
of:

qd9 = −
(
−αL + cos−1

(
l21 − l20L − l

2
2

−2l0Ll2

))
(3.17)

Where αL = tan−1
(
xh
zh

)
. Hence, the support-leg ankle pitch can be computed as

follows:
qd7 = qd8 − qd9 (3.18)

Finally, from Fig. 3.3 c) it can be seen that:

qd10 = qd5 (3.19)

3.1.3 Humanoids Dynamics: Cart-Table ZMP Approach

This model considers the total mass of the humanoid concentrated in a cart that runs
over a massless table, as is depicted in Fig. 3.4 where the constant height of the cart
zc and the generalized position and acceleration of the cart can be appreciated. Even
though the foot of the table is significantly small, if the cart moves at a determined
acceleration, it is possible to reach instant balance, hence ẍ can be considered as
the control input. In addition, its linear displacement x determines the center of
pressure that acts from the floor at the sole(s) of the humanoid, consequently, the
zero-moment point (ZMP) can be computed in order to have feedback for a suitable
balance condition [3].

Definition 3.2 Zero Moment Point.
Is the point where the horizontal components of the moment of the reaction forces
between the ground with the foot (feet) of the humanoid is 0. Therefore, the ZMP of
the robot can be represented mathematically only for x axis as follows:

px = x− zc
g
ẍ (3.20)

Where px is the distance of the ZMP respect to an arbitrary coordinate frame.

In order to guarantee that the robot keeps standing (or balanced), the ZMP must
exist inside the support polygon formed by its soles, leading to the following definition:
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Definition 3.3 Balance of a Humanoid Robot. A humanoid robot is said to be
balanced if the its ZMP exists inside the support polygon formed by its sole(s), i.e:

||(px, py)|| ≤ supSp (3.21)

Where py is the ZMP computed for y axis respect to an arbitrary frame and Sp is a
convex hull formed by the sole of a single foot or the soles of the feet.

In the Figure 3.4, the point px, is also represented, and it is helpful to determine if the
robot is balanced if the ZMP moment τZMP = 0 [3]. Now, a state-space representation
for the humanoid robot based on (3.20) can be written as:

d
dt

pxx
ẋ

 =

−1/Tsens 1/Tsens 0
0 0 1
0 0 0

pxx
ẋ

+

−zc/g0
1

u
y =

[
1 0 0

] [
px x ẋ

]T
(3.22)

Where Tsens is the time constant of the sensors that computes the ZMP located at
the soles of the robot. The implementation of a controller using this model requires
that the actuators are capable to supply position signals, since the control input is
in acceleration units. In addition, it is also necessary a correct measurement of the
ZMP using force sensors at the soles of the humanoid to have a reliable feedback.
Note that (3.22) is a non-minimum phase plant, so that, some considerations must
be taken into account while designing the control system.

Figure 3.4: Humanoid represented as a cart-table system.
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3.1.4 Biped Dynamics for Single-Support Phase using Euler-
Lagrange Methodology

Biped walking of humanoid robots is divided generally in two phases: Double-Support
Phase (DSP), when both feet of the robot are in contact with the ground, and Single-
Support Phase (SSP), when feet are alternatively swinging to perform a step. In
order to develop a control strategy that guarantees the SSP stability, the dynamics
equations of can be implemented. One of the most used methodology to derive the
dynamics equations for robotic systems is the Euler-Lagrange approach, which is
based in the difference of kinetic and potential energies. Such methodology has been
widely used for manipulators compound by several DOF with successful results. For
the case of the humanoid robots dynamics, deriving the equations of motion using this
energy-based technique can be more difficult than for manipulators, since humanoids
are compound by more DOF in arborescent kinematic chains. Nevertheless, in order
to obtain the humanoid’s equations of motion using the Euler-Lagrange methodology,
some authors perform an approximation of the upper limbs, head and trunk of the
humanoid into a single link called torso, therefore, the lower limbs are modeled as a
planar biped from 3 DOF [34], up to 7 DOF [35], but yielding equations of motion
from such approximations is still challenging. To simplify the development of the
equations, most authors have followed a convention to measure the angles of the links
respect to the y axis of the world frame. In Fig. 3.5, an example of a 5-link planar
biped using such convention is presented, where the angles considered respect to the y
axis can be appreciated [36]. The resulting equations of motion using the mentioned
approach have the following form:

D(θ)θ̈ + h(θ, θ̇) +G(θ) = Eτ (3.23)

Figure 3.5: 5-link planar biped robot model used in [36].
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Where D(θ) ∈ Rn×n is the inertial forces matrix, h(θ, θ̇) ∈ Rn is the centripetal and
Coriolis forces vector, G(θ) ∈ Rn is the gravitational forces vector, τ is the control
inputs vector and E ∈ Rn×n−1 is a mapping matrix such that:

E =


1 0 · · · 0
−1 1 · · · 0
...

...
. . .

...
0 0 · · · −1


However, some later transformation are required to map θ → q, in order to control
the local generalized coordinates. In this thesis work, the direct equations of motion
were obtained considering the local joint angles as is depicted in Fig. 3.6, where
the joint angle convention and the dynamics parameters can be appreciated. In this
sense, and for the derivation of the SSP dynamics, the position vectors of the links
are given by:[

x1

y1

]
=

[
lc1s1

lc1c1

]
,

[
x2

y2

]
=

[
l1s1 + lc2s12

l1c1 + lc2c12

]
,

[
x3

y3

]
=

[
l1s1 + l2s12 + lc3s123

l1c1 + l2c12 + lc3c123

]
,

[
x4

y4

]
=

[
l1s1 + l2s12 + l3s123 + lc4s1234

l1c1 + l2c2 + l3c123 + lc4c1234

]
,

[
x5

y5

]
=

[
l1s1 + l2s12 + lc5s125

l1c1 + l2c12 + lc5c125

]
(3.24)

In order to derive the dynamics of the biped robot for SSP, only Sagittal-plane motion

Figure 3.6: 5-link planar biped robot model with dynamics parameters used in this
thesis work. a) Displays the joint angle convention and the link lengths. b) Shows
the lengths of the links from the joint to their CoM, their masses mi and their inertia
moments Ii; g is the gravity acceleration.
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with parallel feet to the ground must be assumed. Therefore, the Lagrangian of the
system is given by:

L = K − U (3.25)

Where the potential energy of the whole system can be expressed as:

U =
5∑
i=1

migyi (3.26)

And the kinetic energy is:

K =
5∑
i=1

1

2
miv

2
i +

5∑
i=1

1

2
Iiω

2
i (3.27)

Where vi =
[
ẋi ẏi

]T
are the linear velocities and ωi are the angular velocities. After

manipulating:
d

dt

{
∂L
∂q̇i

}
− ∂L
∂qi

= τ (3.28)

The equations of motion of the biped robot in SSP can be written as:

M(q)q̈ + b(q, q̇) = τ (3.29)

Where M(q) ∈ R5×5 is the inertial forces matrix whose entries are:
M11 =
m1l

2
c1 +m2l

2
1 +m2l

2
c2 +m3l

2
1 +m3l

2
2 +m3l

2
c3 +m4l

2
1 +m4l

2
2 +m4l

2
3 +m4l

2
c4 +m5l

2
1 +m5l

2
2 +

m5l
2
c5 +2m2l1lc2 cos(q2)+2m3l1l2 cos(q2 +q3)+2m3l2lc3 cos(q3)+2m4l1l3 cos(q2 +q3)+

2m4l1lc4 cos(q2 + q3 + q4) + 4m4l2l3 cos(q3) + 2m4l2lc4 cos(q3 + q4) + 2m4l3lc4 cos(q4) +
2m5l1l2 cos(q2 + q5) + 2m5l2lc5 cos(q5) + I1

M12 =
m2l

2
c2+m3l

2
2 +m3l

2
c3+m4l

2
3 +m4l

2
c4+m5l

2
2 +m5l

2
c5+m2l1lc2 cos(q2)+m3l1l2 cos(q2+q3)+

2m3l2lc3 cos(q3) +m4l1l2 cos(q2) +m4l1l3 cos(q2 + q3) +m4l2l3 cos(q3) +m4l1lc4 cos(q2 +
q3 + q4) + 2m4l2lc4 cos(q3 + q4) + 2m4l3lc4 cos(q4) +m5l1l2 cos(q2 + q5) + 2m5l2lc5 cos(q5)

M13 =
m3l

2
c3 + m4l

2
3 + m4l

2
c4 + m3l1l2 cos(q2 + q3) + 2m3l2lc3 cos(q3) + m4l1l3 cos(q2 + q3) +

m4l1lc4 cos(q2 + q3 + q4) +m4l2l3 cos(q3) + 2m4l3lc4 cos(q4)

M14 = m4lc4 +m4l1lc4 cos(q2 + q3 + q4) +m4l3lc4 cos(q4)

M15 = m5l
2
c3 +m5l1l2 cos(q2 + q5) + 2m5l2lc5 cos(q5)

M21 = M12
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M22 =
m2l

2
c2 +m3l

2
2 +m3l

2
c3 +m4l

2
3 +m4l

2
c4 +m5l

2
2 +m5l

2
c5 +2m3l2lc3 cos(q3)+2m4l3lc4 cos(q4)+

2m5l2lc5 cos(q5) + I2

M23 = m3l
2
c3 +m4l

2
3 +m4l

2
c4 +m4l3l4 cos(q3 + q4) +m4l2l3 cos(q3) + 2m4l3lc4 cos(q4)

M24 = m4l
2
c4 +m4l3lc4 cos(q4)

M25 = m5l
2
c5 +m5l2lc5 cos(q5)

M31 = M13

M32 = M23

M33 = m3l
2
c3 +m4l

2
3 +m4l

2
c4 + 2m4l3lc4 cos(q4) + I3

M34 = m4l
2
c4 +m4l3lc4 cos(q4)

M35 = m5l
2
c5 +m5l2lc5 cos(q5)

M41 = M14

M42 = M24

M43 = M34

M44 = m4l
2
c4 + I4

M45 = 0

M51 = M15

M52 = M25

M53 = M35

M54 = M45

M55 = m5l
2
c5 + I5

b(q) ∈ R5 is the bias vector including centripetal, Coriolis and gravitational forces,
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which is compound by:
b1 =
−m2l1lc2q̇2 sin(q2) [2q̇1 + q̇2]
−m3l1l2 (q̇2 + q̇3) sin(q2 + q3) [2q̇1 + q̇2 + q̇3]
−m4l1l2q̇2 sin(q2) [2q̇1 + q̇2]
−m4l1l3 (q̇2 + q̇3) sin(q2 + q3) [2q̇1 + q̇2 + q̇3]
−m4l1lc4 (q̇2 + q̇3 + q̇4) sin(q2 + q3 + q4) [2q̇1 + q̇2 + q̇3 + q̇4]
−m4l2l3q̇3 sin(q3) [4q̇1 + q̇2 + q̇3]
−m4l2lc4 (q̇3 + q̇4) sin(q3 + q4) [2q̇1 + 2q̇2]
−m4l3lc4q̇4 sin(q4) [2q̇1 + 2q̇2 + 2q̇3 + q̇4]
−m5l1l2 (q̇2 + q̇5) sin(q2 + q5) [2q̇1 + q̇2 + q̇5]
+ [m1lc1 +m2l1 +m3l1 +m4l1 +m5l1] g sin(q1)
+ [m2lc2 +m3l2 +m4l2 +m5l2] g sin(q1 + q2)
+ [m3lc3 +m4l3] g sin(q1 + q2 + q3)
+m4lc4g sin(q1 + q2 + q3 + q4)
+m5lc5g sin(q1 + q2 + q5)

b2 =
−m2l1lc2q̇1q̇2 sin(q2)
−m3l1l2 (q̇1q̇2 + q̇1q̇3) sin(q2 + q3)
−m3l2lc3q̇3 sin(q3) [2q̇1 + q̇2 + q̇3]
−m4l1l2q̇1q̇2 sin(q2)
−m4l1l3q̇1 (q̇2 + q̇3) sin(q2 + q3)
−m4l1lc4q̇1 (q̇2 + q̇3 + q̇4) sin(q2 + q3 + q4)
−m4l2l3q̇3 sin(q3) [4q̇1 + q̇2 + q̇3]
−m4l2lc4q̇3 sin(q3) [q̇1 + 2q̇2 + q̇3+]
−m4l3lc4q̇4 sin(q4) [2q̇1 + 2q̇2 + 2q̇3 + q̇4]
−m5l1l2 (q̇1q̇2 + q̇1q̇5) sin(q2 + q5)
−m5l2lc5q̇5 sin(q5) [2q̇1 + q̇2 + q̇5]
+ [m2lc2 +m3l2 +m4l2 +m5l2] g sin(q1 + q2)
+ [m3lc3 +m4l3] g sin(q1 + q2 + q3)
+m4lc4g sin(q1 + q2 + q3 + q4)
+m5lc5g sin(q1 + q2 + q5)

b3 =
−m3l1l2q̇1 (q̇2 + q̇1q̇3) sin(q2 + q3)
−m3l2lc3q̇3 sin(q3) [q̇1 + q̇2]
−m4l1l3q̇1 (q̇2 + q̇3) sin(q2 + q3)
−m4l1lc4q̇1 (q̇2 + q̇3 + q̇4) sin(q2 + q3 + q4)
−m4l2l3q̇3 sin(q3) [q̇1 + q̇2]
−m4l2lc4q̇2 sin(q3) [q̇3 + q̇4+]
−m4l3lc4q̇4 sin(q4) [2q̇1 + 2q̇2 + 2q̇3 + q̇4]
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+ [m3lc3 +m4l3] g sin(q1 + q2 + q3)
+m4lc4g sin(q1 + q2 + q3 + q4)
+m5lc5g sin(q1 + q2 + q5)

b4 =
−m4l1lc4q̇1 (q̇2 + q̇3 + q̇4) sin(q2 + q3 + q4)
−m4l3lc4q̇4 sin(q4) [q̇1 + q̇2 + q̇3]
+m4lc4g sin(q1 + q2 + q3 + q4)

b5 =
−m5l1l2q̇1 (q̇2 + q̇1q̇5) sin(q2 + q5)
−m5l2lc5q̇5 sin(q5) [q̇1 + q̇2]
+m5lc5g sin(q1 + q2 + q5)

The dynamic model (3.29) has the following properties [37]:

• Property 1. The inertial forces matrix M(q) is positive definite and its inverse
can always be calculated.

• Property 2. The nonlinear bias velocity-dependent torque b(q, q̇) can be ex-
pressed as:

b(q, q̇) = C(q, q̇)q̇ +G(q) (3.30)

Even C(q, q̇) ∈ R5×5 is not unique, b(q, q̇) is unique [38].

• Property 3. There exists a skew-symmetric matrix S×(q, q̇) that determines
the passivity property such that q̇TS×(q, q̇)q̇ = 0. This matrix is defined by:

S×(q, q̇) =
1

2
Ṁ(q)− C(q, q̇) (3.31)

• Property 4. Since the humanoiod robot is actuated only by rotational joints,
the gravitational torques vector g(q) is Lipschitz, i.e., it exists a constant kg > 0
such that [38]:

||g(x)− g(y)|| ≤ kg||x− y||, ∀x, y ∈ R5 (3.32)

A possible bound of kg may be:

kg ≥ n

[
max
i,j,q

∣∣∣∂gi(q)∂qj

∣∣∣] (3.33)

Furthermore, kg satisfy:

kg ≥ ‖
∂g(q)

∂q
‖ ≥ λMax

{
∂g(q)

∂q

}
(3.34)

Where λMax is the maximum eigenvalue.

Such properties are useful for control systems design.
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3.1.5 Humanoids Dynamics using Spatial Vector Algebra

A rigid body has six degrees of motion freedom, therefore, in literature there exists
a tool that can represent mathematically such DOF by means of 6D vectors: the
spatial vector algebra [39]. Such technique has been widely used for robot kinematics
and dynamics applications with successful results [40], since it reduces the volume of
algebra yielding efficient, clear and compact solutions in comparison to use 3D-vectors
equations.

Definition 3.4 Spatial Vector. A spatial vector is a 6D vector that provides a
complete description of the state of motion of a rigid body, or the forces acting upon
it, in much the same way that a Euclidean vector provides a complete description of
the state of motion of a particle, or the forces acting upon it. In particular, a spatial
vector combines the linear and angular aspects of rigid-body motions m̂ ∈ M6 or
forces f̂ ∈ F 6 into a single quantity.

A body-fixed point is a point in a fixed location relative to a rigid body. When the
body moves, the point moves with it. The set of vector fields that describe every
possible velocity of a rigid body moving in 3D space forms a 6D vector space [39].
The spatial velocity of a rigid body B moving from an origin O to a point P can be
expressed as:

v̂ =
[
ωx ωy ωz νOx νOy νOz

]T
(3.35)

Where ω =
[
ωx ωy ωz

]T
is the angular velocity and νO =

[
νOx νOy νOz

]T
is the

linear velocity. Notice that equation (3.35) defines a vector field, the velocity field of a
body B [41]. Likewise, a force acting on a rigid body at a point O can be represented
by:

f̂ =
[
nOx nOy nOz fx fy fz

]T
(3.36)

Where n =
[
nOx nOy nOz

]T
is the moments vector at the point o and

f =
[
fx fy fz

]T
is the forces vector.

Plücker Coordinate Transforms

Consider the motion from coordinate frames A to B with displacement r and rotation
E represented graphically in Fig. 3.7. Such motion can be computed in terms of the
Plücker transform using the following equation:

BXA =

[
E 0
0 E

] [
1 0
r̃T 1

]
(3.37)

Where:

r̃ =

 0 −rz ry
rz 0 −rx
−ry rx 0
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Figure 3.7: Representation of a motion from coordinate frames A to B with displace-
ment r and rotation E.

For the case of force vectors representation, the following expression is useful:

BX∗A = (BXA)−T (3.38)

Spatial Acceleration

If a rigid body has a velocity
[
ωT νTO

]T
respect to an origin O, its spatial acceleration

is given by [41]:

â = ˙̂v =
d

dt

[
ω
νO

]
= lim

δt→0

1

δt

[
ω(t+ δt)− ω(t)
νO(t+ δt)− νO(t)

]
=

[
ω̇

r̈ − ω × ṙ

]
(3.39)

Spatial Inertia

The spatial momentum of a rigid body is a spatial force vector (wrench) describing
its linear and angular momentum.

−→
h O =

−→
h c +−→c ×

−→
h (3.40)

The spatial intertia of a rigid body is a function of its mass, center of mass (CoM)
and rotational inertia about its CoM, that maps spatial velocity to momentum.

IO =

[
ĪO m−→c ×

m−→c ×T m

]
(3.41)

Where ĪO = ĪC −m−→c ×−→c ×, m is the mass, C is the CoM and ĪC is the inertia at
CoM [39].

Humanoid Dynamics with Contacts

The equation of motion of a humanoid robot can be expressed as follows [42]:

Mq̈ + b = u+

NE∑
i=1

JTEi
fEi

(3.42)
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Figure 3.8: Moving rigid body whose centre of mass coincides with the fixed point C.
Its mass is m, and its rotational inertia is Īc [41].

where q ∈ Rn is the generalized coordinate of the robot, M = M(q) ∈ Rn×n is
the inertial forces matrix, b = b(q, q̇) ∈ Rn is the nonlinear bias force including the
generalizaed centrifugal, Coriolis and gravitational forces, JEi

= JEi
(q) ∈ Rn×3 is

the Jacobian matrix of the ith contact point and fEi
∈ R3 is the ith contact force;

furthermore, n is the size of q and NE is the number of contact points [42]. Fig. 3.9
shows an example of a humanoid robot in contact with the environment, where all
the contact point forces are illustrated.

Figure 3.9: Humanoid robot in contact with the environment using are 3 contact
points, consequently, there are 3 contact forces affecting the robot dynamics.

Humanoid Dynamics in Spatial Coordinates

Humanoid robots interact with the environment using their end links; such end-links
motion and force controllers are specified in spatial coordinates [37]. Consider the eq.
(3.9), the relation between the inertial forces of the robot and the end-link spatial
coordinates is given by:

M−1
e (q) = J(q)M−1

q (q)JT (q) (3.43)
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Where Mq(q) = M(q) and M−1
e (q) is the operational space inertia matrix [37]. There-

fore, considering the static force relation τf = JTFm, Fm is the spatial force related
to the mobility rather than contacts, the equation of motion of humanoids in spatial
coordinates for operational space can be expressed as:

Fm = Me(q)ν̇ + Ce(q, q̇) + Ge(q) (3.44)

Where Ce(q, q̇) = JT bq − Me(q)J̇ q̇ is the nonlinear velocity-dependent force and
Ge(q) = JTGq is the gravity force, both are expressed as end-link wrenches [37].

Multirobot Formalism

Consider a system of n robots, which can be actual robots or passive articulated
mechanisms modeled as a kinematic tree structure using [43]:

Mi(qi)q̈i + bi(qi, q̇i) = JTi fEi
+ Siτi (3.45)

Where Si is an actuation mapping matrix and fEi
are contact forces, as in (3.42),

but also applied to the ith robot, and can be decomposed as follows [43]:

fi = (f 0
i , f

−
i ,−f+

i ) (3.46)

Where f 0
i stacks the forces applied by the fixed environment on the robot, f−i are the

forces applied by the robots j < i on robot i, and f+
i stacks the forces applied by the

robot i on robots j > i, hence, the equations of motion for a whole system of robots
can be written as [43]:

Mi(qi)q̈i + bi(qi, q̇i) = JTi,0f
0
i + JTi,−f

−
i − JTi,+ΨiF

− + Siτi (3.47)

Figure 3.10: Humanoid robot in contact with a seesaw fixed to the environment and
the forces acting to each robot. Humanoid is the Robot 2, the seesaw is the Robot 1,
and the base of the seesaw is the fixed environment, since it is attached to the floor.
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Where Ji,0, Ji,− and Ji,+ are matrices obtained by extracting the columns of f 0, f− and
f+ from f , F− is the vector containing all f−i , and Ψ = Π⊗I3 is a permutation matrix,
⊗ is the Kronecker product. Fig. 3.10 shows an example of the force interaction
between robots.

3.2 Modelling of Quadrotors

Consider the Fig. 3.11, where a UAV airframe, its generalized coordinates and the
forces acting on it are depicted. The coordinate frame of the rigid UAV body (or
navigation frame) is denoted by {B}, and the world reference frame is {W}. Note
that the x axis of the navigation frame is in the frontal motion direction, y axis is in
the lateral motion direction, and z is the vertical motion axis with positive direction
pointing to the ground according to aerodynamics convention. Furthermore, the
roll, pitch and yaw angular motions represented by φ, θ and ψ respectively can be
appreciated.

Figure 3.11: Quadrotor navigation and coordinates frames.

Rotor Dynamics

Each rotor that compounds the UAV has an angular velocity ωi which produces a
vertical force or thrust given by [44]:

Ti = CTiρArir
2
iω

2
i (3.48)
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Where, for the i-th rotor, CTi is the thrust coefficient that depends on the chord
length and geometric profile of the blades, ρ is the air density, Ari is the rotor disk
area and ri is the radius. However, for simplicity, some authors lump such parameters
into a single parameter model as follows:

Ti = kTω
2
i (3.49)

Where kT > 0 can be determined by experimental thrust tests [44]. In addition, the
torque applied to each propeller by the actuator is opposed by aerodynamic drag such
that [45]:

Qi = kQω
2
i (3.50)

Note that kQ depends on the same parameters as kT .

Airframe Dynamics

Consider the i-th rotor thrust (3.49), the total upward or hover thrust applied to the
airframe is given by [44]:

T =
4∑
i=1

|kTω2
i | (3.51)

By Newton’s Second Law, the equations of translational motion of the quadrotor are
given by[45]:

mξ̈ =

 0
0
mg

−W RB

0
0
T

 (3.52)

Where ξ = [x, y, z]T is the linear displacement coordinates vector, m is the total mass
of the quadrotor, g is the gravity acceleration and WRB is the rotation matrix from
the world coordinate frame {W} to the navigation frame {B}, which can be expressed
in terms of the roll, pitch and yaw angles as follows [46]:

WRB =

cψcθ cψsθsφ − sψcφ cψsθcφ + sψsφ
sψsθ sψsθsφ + cψcφ sψsθcφ − cψsφ
−sθ cθsφ cθcφ

 (3.53)

In addition to translational forces, also rotational moments affect the airframe; pair-
wise differences in rotor thrusts cause the vehicle to rotate [45]. The torque about x
axis (or roll torque) is given by:

τφ = d(T4 − T2) = dkT (ω2
4 − ω2

2) (3.54)

Where d is the distance between the center of mass of the vehicle and the center of
any rotor, which can also be appreciated in Fig. 3.11. The torque about y axis (or
pitch torque) can be obtained by:

τθ = d(T1 − T3) = dkT (ω2
1 − ω2

3) (3.55)
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Now consider the aerodynamic drag (3.50) caused by the i-th rotor, the total reaction
torque about z axis is expressed as:

τψ = kT (Q1 −Q2 +Q3 −Q4) = kT (ω2
1 − ω2

2 + ω2
3 − ω2

4) (3.56)

Note that the rotational motion of the airframe is expressed by the following 2nd order
dynamics [45]:

τ = Jη̈ + βη̇ (3.57)

Where τ = [τφ, τθ, τψ]T is the moments vector, η = [φ, θ, ψ]T is the rotational motion
generalized coordinates vector, β ≈ 0 is the aerodynamic damping coefficient [45],
and the inertia tensor is:

J =

Jxx Jxy Jxz
Jyx Jyy Jyz
Jzx Jzy Jzz

 (3.58)

According to [45], the products of inertia (elements outside the main diagonal of J) are
zero if the object’s mass distribution is symmetrical with respect to the coordinate
frame, which is the case of the UAV of this work, hence, only the main diagonal
elements are considered as J1 = Jxx, J2 = Jyy and J3 = Jzz. Considering φ and θ
very small, such that cos(φ) ≈ 1, sin(φ) ≈ φ, and the same for θ, the dynamics of the
quadrotor airframe is given by:

mẍ
mÿ
mz̈

J3ψ̈

J2θ̈

J1φ̈

 =


T (cψsθcφ + sψsφ)
T (sψsθcφ − cψsφ)
Tcθcφ −mg

τψ
τθ
τφ

 =


T (θ + ψφ)
T (ψθ − φ)
T −mg
τψ
τθ
τφ

 (3.59)

It worth to remark that the quadrotor used in this work, Parrot Bebop, includes
internal controllers T, τφ, τθ that compensates the nonlinearities of the model and the
gravity, yielding the following model:

mẍ = ūx
mÿ = ūy
mz̈ = ūz
J3ψ̈ = ūψ

(3.60)

where ū(·) are the control inputs.



4

Robust Control of Humanoid
Robots and MAVs

4.1 Active Disturbance Rejection Control for

Humanoid Robust Balance

The balance control problem is based on keeping the ZMP inside the support polygon
formed by the soles of the humanoid that are in contact with the ground, so that, the
robot remains balanced even in presence of disturbances.

Control System Design

Considering motion only in x direction and the sensors time constant Tsens = 1 for
simplicity, the cart-table model (3.22) requires to be transformed into a canonical
cascade of integrators form as is suggested from ADRC theory. Therefore, consider
the controllability matrix of (3.22) given by:

MC =

−zc/g zc/g 1− zc/g
0 1 0
1 0 0

 (4.1)

Note that (4.1) is full rank, so that, it is invertible, and, consequently, there exists:

M−1
C =

[
q1 q2 q3

]T
(4.2)

From row q3, the inverse transformation matrix is built as follows:

T−1
C =

[
q3 q3A q3A

2
]T

(4.3)

Hence, inverting (4.3) yields the corresponding transformation matrix:

TC =

1 0 −zc/g
1 1 0
0 1 1

 (4.4)

59
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Therefore, the corresponding transformed system is:

ż =

0 1 0
0 0 1
0 0 −1

 z +

0
0
1

 (uC + wx)

y =
[
1 0 0

]
z

(4.5)

Where z =
[
z1 z2 z3

]T
= T−1

C

[
px x ẋ

]T
, wx is the disturbance affecting the ZMP

dynamics and uC is a controller uC = K̃z that works on the new coordinates, then,
a return of coordinates must be carried out for the original state variables by means
of:

u0 = K̃T−1
C

[
px x ẋ

]T
(4.6)

Note that K̃ can be designed using a classical technique such as Ackermann’s formula
or LQR optimal approach. Once the system is represented in a canonical form, an

extended state variables set ξ =
[
z1 z2 z3 wx

]T
is put into effect according to the

ADRC theory, hence, the extended-state representation of (4.5) is given by:

ξ̇ =


0 1 0 0
0 0 1 0
0 0 −1 0
0 0 0 1

 ξ +


0
0
1
0

uC
y =

[
1 0 0 0

]
ξ

(4.7)

Then, the following SMO is proposed:

˙̂
ξ =


ξ̂2 − (l1ê1 + sign(ê1))

ξ̂3 − (l2ê1 + sign(ê1))

ξ̂4 − ξ̂3 − (l3ê1 + sign(ê1)) + uC
−(l4ê1 + sign(ê1))

 (4.8)

Where ei = ξi − ξ̂i is the observation error for the i−th variable, ξ̂4 = ξ1 − ξ̂1 is the
disturbance reconstruction and li are the observer gains. Finally, the total controller
for the ZMP is given by:

u = K̃T−1
C

[
px x ẋ

]T − T−1
C ξ̂4 (4.9)

However, some tradeoffs have to be taken into account for the non-minimum phase
plant (3.22); this kind of systems with a faster response will have more undershoot
and vice versa, in addition, for a non-minimum phase system with slow poles it is
hard to get a fast response, because the observer bandwidth has an upper limit, hence,
increasing system bandwidth might lead the system close to instability [47]. Some
techniques have been developed to cancel the effect of non-minimum phase for hu-
manoid robots like using preview control [3], or using the torso dynamics as a phase
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compensator [48]. In this thesis work, it was preferred to have an slower response to
minimize the undershoot by means of a LQR gain K̃ selection approach presented
below. Additionally, it worth to mention that another control scheme must be con-
sidered for y motion, which is independent from x motion controller.

Control System in Discrete Time

Some commercial humanoid robots are equipped with force sensors in the soles, like
NAO robot of Aldebaran Robotics, which is helpful to compute the ZMP in order to
robust the walking task via a stabilizer. However, accessing the data of several sensors
and running some other algorithms such as computing the robot pose or performing a
control scheme can take significant time, which might worth to consider relatively high
sample periods, and consequently, to carry out a discrete-time analysis. Therefore,
consider the model (3.22) to design a ZMP based control to balance a humanoid
robot and a canonical form of such model given by (4.5); hence, a discrete-time
representation of the transformed system using the zero-order hold method can be
constructed as follows [49]:

z(k + 1) =

1 Ts T 2
s /2

0 1 Ts
0 0 1

 z(k) +

T 3
s /6
T 2
s /2
T

 (uC(k) + wx(k))

y =
[
1 0 0

]
z(k)

(4.10)

Where Ts is the sampling period. Note that (4.10) keeps the cascade of unit delays
canonical form. Once the canonical form requirement is fulfilled as is requested from
the ADRC theory, the following extended-state representation that considers ξ(k) =[
z1(k) z2(k) z3(k) wx(k)

]T
is given:

ξ(k + 1) =


1 Ts T 2

s /2 T 3
s /6

0 1 Ts T 2
s /2

0 0 1 Ts
0 0 0 1

 ξ(k) +

T 4
s /8
T 3
s /6
T 2
s /2
Ts

uC(k)
y =

[
1 0 0 0

]
ξ(k)

(4.11)

Now, in order to continue with the design of the ADRC, the following Quasi Sliding
Mode Observer is proposed for the disturbances detection based on the measurement
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of ZMP:

˙̂
ξ(k) =

ξ̂1(k) + Tsξ̂2(k) + T 2
s

2
ξ̂3(k) + T 3

s

6
ξ̂4(k) + T 4

s

8
uC(k)− l1sign(ê1(k))

ξ̂2(k) + Tsξ̂3(k) + T 2
s

2
ξ̂4(k) + T 3

s

6
uC(k)− l2sign(ê1(k))

ξ̂3(k) + Tsξ̂4(k)T
2
s

2
uC(k)− l3sign(ê1(k))

ξ1(k)− ξ̂1(k) + TsuC(k)− l4sign(ê1(k))

 (4.12)

Where êi(k) = ξi(k)− ξ̂i(k) is the i−th observation error. Note that the observation
error ê1(k) is not required in the observer, since the disturbance is propagated along
all states from the input transfer vector as control inputs does. The observer gains
li are chosen based on the bandwidth of the observer and on the sample period Ts
as is suggested in (2.31). The auxiliary control input uC(k) = K̃z(k) is designed as
the following discrete LQR porblem. The target of control system is to minimize the
following ZMP error cost function:

J =
∞∑
j=1

{
Q(pdxj(k)− pxj(k))2 +Ru2

Cj
(k)
}

(4.13)

Where Q > 0 ∈ R3×3 and R > 0 are weight constants. Reducing J means solving the
following Riccati equation:

ATS + SA− SBR−1BTS +Q = 0 (4.14)

In order to guarantee stability in the sense of Lyapunov. Solving (4.14) yields the
gains using:

K̃ = R−1BTS (4.15)

Finally, the discrete-time ADRC based in Quasi Sliding Mode Observer is given by:

u(k) = K̃T−1
CD

[
px(k) x(k) ẋ(k)

]T − T−1
CD
ξ̂4(k) (4.16)

Where TCD
is the corresponding transformation to return to the original coordinates

but in discrete time. Note that the same tradeoffs for minimum-phase systems like
control (4.9) have to be considered when designing this controller, in addition to a
low-pass prefiltering stage for ZMP measurements.

Implementation

The designed control system (4.16) was implemented using a Nao humanoid robot.
Consider the equation (3.20) that represents the ZMP of a humanoid. Even x is the
variable of interest, it is frequently not available as a direct measurement; nevertheless,
ẍ can be obtained from an inertial measurement unit (IMU) attached at the humanoid
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torso as is displayed in Fig. 4.1, and x can be integrated from such measurement.
Additionally, the ZMP can be computed as follows [50]:

zmp =
1∑4

1 FLfsri

∑4
1 FLfsridLxi∑4
1 FLfsridLyi

+
1∑4

1 FRfsri

∑4
1 FRfsridRxi∑4
1 FRfsridRyi

 (4.17)

Where FLfsri is the force measured at the i − th force sensor (FSR) of the left foot,
FRfsri represents the same force at the right foot, dLyi is the force location at y axis of
the i− th FSR at the left foot respect to an arbitrary frame, dLxi is the same location
but at x axis, dRyi and dRxi are the right foot counterparts. It worth to mention
that (3.20) represents only the x axis motion. In Fig. 4.2, the concept of location of
FSR to compute the ZMP is illustrated; furthermore, the arbitrary reference frame
from where the distances are computed can be appreciated. The NAO humanoid
parameters are shown in Table 4.1. The DLQR parameters obtained from (4.14),
which consider the lowest energy consumption are:

Q =

1 0 0
0 1 0
0 0 1

 (4.18)

R = 1e− 3 (4.19)

P =

480.026 234.299 22.775
234.299 1244.482 46.328
22.775 46.328 34.337

 (4.20)

K =
[
6.2917(g/zc)Ts 37.7014Ts 32.5359Ts

]
(4.21)

Figure 4.1: Diagram representing the IMU attached at Nao humanoid torso and hip
joints used as control inputs.
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Figure 4.2: FSRs attached to humanoid feet that help the ZMP estimation.

Table 4.1: Parameters of the NAO humanoid robot.
Parameter Symbol Value Units

Mass of the robot m 5.182530 Kg
CoM Height zc 0.335 m

Gravity acceleration g 9.81 m/s2

Sample period T 100 ms

The stable poles of LQR are given by:

z =

 0.96887
0.99889 + 0.00044i
0.99889− 0.00044i

 (4.22)

The whole control system (4.16) was programmed in Python language using the hip
actuators showed in Fig. 4.1.

Results

In order to test the proposed ADRC on the Nao platform, a target ZMP was set in
prefx = 0.02m respect to the IMU frame. The experiment consisted on leading the
ZMP of the robot to the target using the hip actuators. Once the ZMP position was
regulated, external forces at the torso are applied in frontal direction as is displayed
in Fig. 4.3 a), and also shoves from the back were applied as can be appreciated in
Fig. 4.3 b), in order to disturb the ZMP position and hence the humanoid should
keep balanced. This experiment was excecuted for 20 seconds using both the DLQR
and the ADRC controllers.
Fig. 4.4 a) shows the results of the developed experiment using the DLQR control,
where it can be observed that the oscilations of the ZMP after shoves are of bigger
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amplitude and higher frequency than those depicted in Fig. 4.5 a), which are the
results of the implementation of ADRC. In addition, in Figs. 4.4 b) and 4.5 b),
the disturbances detected by the Quasi-sliding mode extended-state observer are pre-
sented; it worths to mention that the DLQR do not use such detected disturbance.
Figs. 4.4 c) and 4.5 c) show the x position computed from the double integration of
the IMU signals and also the observed x̂, where a successful tracking from the robust
observer can be appreciated.

Figure 4.3: Disturbances applied to the humanoid. a) Front disturbance. b) Back
disturbance. Video available at https://www.youtube.com/watch?v=B9_J0H3KX0I.

https://www.youtube.com/watch?v=B9_J0H3KX0I
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Figure 4.4: Results with DLQR. a) Controlled ZMP. b) Detected disturbance wx(k).
c) Computed and observed positions. d) Computed and observed velocities.
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Figure 4.5: Results with ADRC. a) Controlled ZMP. b) Detected disturbance wx(k).
c) Computed and observed positions. d) Computed and observed velocities.
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4.2 Active Disturbance Rejection Control for

Humanoid Robust Walking

The walking problem of a biped robot is to follow set of joint trajectories within a
period of time in order to perform a step (or a set of steps), keeping the robot itself
balanced in both SSP and DSP, even in presence of disturbances. Then, consider the
humanoid dynamics in SSP (3.29) represented as the following system subjected to
disturbances:

ẋ = f(x) + g(x)u+ w (4.23)

Where w is a set of unknown piecewise-smooth bounded external disturbances evolv-
ing in Ω, which is a compact subset of Rp. In order to track the desired joint trajec-
tories, a robust controller must be applied.

Definition 4.1 Robust state feedback stabilizing control [51].
A static state feedback u = k(x), with k a smooth function mapping Rn → R and
k(0) = 0 is said to be a local robust state feedback stabilizing control for system (4.23)
if the origin x(0) of the closed-loop system

ẋ = f(x) + g(x)k(x) + w

is locally uniformly asymptotically stable for any w ∈ Ω. It is said to be a globally
stabilizing robust control if the origin is globally uniformly asymptotically stable for
any w ∈ Ω.

Theorem 4.1 Assume that the nominal system (f, g) of (4.23) is globally state feed-
back linearizable and Ω is a compact subset of Rp, therefore, there exists a global static
state feedback locally stabilizing control [51].

Theorem 4.2 Assume that the system (4.23) is globally state feedback linearizable,
and that there exists an Extended-State Observer (ESO) that can estimate a total
disturbance f̂ + w. Therefore, there exists a robust state feedback stabilizing control
that use the information cast from the ESO to exaclty linearize (4.23)[14].

Generation of the Desired Joint Trajectories

Firstly, a walking pattern generation technique must be implemented to later develop
the trajectories of the joints using the inverse kinematics of the legs, hence, the 3D
LIP approach is used considering the step parameters shown in Table 4.2 for equations
(3.2), (3.3), (3.4) and (3.5). The CoM is named, in this work, indistinctly as hip, only
for the case of 3D LIP motion. The resulting walking primitive for x motion can be
appreciated in Fig. 4.6, where both desired position and velocity trajectories of the
hip in the Sagittal plane can be appreciated. Furthermore, Fig. 4.7 shows the position
and velocity desired trajectories for the hip in y direction. Additionally, considering
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the equations (3.8) and (3.9), the desired position trajectories of the ankle in x and
z directions are depicted in Fig. 4.8. The Cartesian-space trajectories of the hip and
the ankle are displayed in Fig. 4.9.

Table 4.2: Step parameters for 3D LIP walking pattern generation.
Parameter Symbol Value Units

Height of the CoM zc 0.65 m
Half step width Hs 0.1 m
Half step length Ds 0.15 m

Support phase time Tsup 0.5 s

Now consider the inverse kinematics equations from (3.10) to (3.19) and the Fig.
3.3. Solving such equations using the Cartesian trajectories yield the desired joint
trajectories for the humanoid legs. The parameters of the robot used for the inverse
kinematics solution are listed in Table 4.3. Fig. 4.10 shows the resulting desired joint
trajectories for the support-leg joints in Sagittal plane. The desired joint trajectories
for the swing-leg are depicted in Fig. 4.11, and finally, the desired trajectories of
the ankles and hips for the frontal plane joints are presented in Fig. 4.12. Those
desired joint trajectories feed the robust control input that must ensure the asymptotic
tracking of such joint trajectories, that consequently yield the accomplishment of the
walking task.

Table 4.3: Humanoid robot kinematic parameters for inverse kinematics solution.
Parameter Symbol Value Units

support shank l1 0.34 m
support thigh l2 0.36 m
swing thigh l3 0.36 m
swing shank l4 0.34 m
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Figure 4.6: Desired position and velocity trajectories of the hip (CoM) in x direction.

Figure 4.7: Desired position and velocity trajectories of the hip (CoM) in y direction.
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Figure 4.8: Desired position trajectories of the ankle in x and z directions.

Figure 4.9: Desired Cartesian trajectories for the hip (CoM) and the ankle.
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Figure 4.10: Desired position trajectories for the hip, knee and the ankle pitch angles
for the support leg.

Figure 4.11: Desired position trajectories for the hip, knee and the ankle pitch angles
for the swing leg.
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Figure 4.12: Desired position trajectories for both ankles roll angles, swing hip and
support hip roll angles.

Control System Design

Consider that the humanoid robot dynamics (4.23), which may be subjected to distur-
bances and its parameters are unknown, is desired to follow the smooth trajectories
vector qd. The error signals of such tracking problem can be expressed as follows:

z1 = qd − q
z2 = q̇d − q̇ (4.24)

Rewritting (4.24) as a first-order vector differential equation gives:

d

dt

[
z1

z2

]
=

[
z2

q̈d −M(q)−1 (τ − b(q, q̇) + w)

]
(4.25)

Note that q̈d is available from data; then, the control problem of trajectory tracking
is a stabilizing problem of (4.25)[52]. Hence, invoking the Theorem 4.1, the feedback
controller that stabilizes (4.25) is:

τ = M̂(q)(u− q̈d) + b̂(q, q̇) (4.26)

Where M̂(q) is a estimate value of M(q) and b̂(q, q̇) , (b(q, q̇) − w) is considered as
a total disturbance. In order to accomplish the stabilization of (4.25) by means of
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the feedback linearization controller (4.26), an ADRC approach can be implemented,
so that, an accurate knowledge of the parameters of (4.23), neither the disturbances
affecting the system are required. Therefore, the following robust ESO is implemented
to estimate the disturbances on-line:

˙̂z1 = ẑ2 + ε

(
(z1 − ẑ1) + sign(z1 − ẑ1)

ε2

)

˙̂z2 = ẑ3 +

(
(z1 − ẑ1) + sign(z1 − ẑ1)

ε2

)
+ (u− q̈d)

˙̂z3 =
1

ε

(
(z1 − ẑ1) + sign(z1 − ẑ1)

ε2

)
(4.27)

Where 0 < ε < 1 [25]. Hence, the different part from the canonical form of the
cascade of integrators is the total disturbance given by [14]:

(M(q)− M̂(q))(u− q̈d) + b̂(q, q̇) , ẑ3 (4.28)

Therefore, the ADRC controller that accomplishes the robust feedback linearization
based on Theorems 4.1 and 4.2 is:

τ = M̂(q)(u− q̈d) + ẑ3 (4.29)

Where u = −Kz is a stabilizer to achieve a satisfactory behavior of the remaining
cascade of integrators.

Implementation

In order to evaluate the designed robust controller (4.29), simulation experiments
were put into effect, comparing it with a feedback linearization control to demonstrate
the ADRC disturbance capability. The control and the observation algorithms were
programmed in Python language using the odeint function to solve the differential
equations numerically. The parameters used are listed in Table 4.4 [53]. Furthermore,
a disturbance vector w = [0,−50, 0,−50,−60]T [Nm] was applied to the biped robot
for 200 ms, and also a -50 % variation of the D matrix was applied when using the
ADRC, simulating parametric uncertainty.

Results

In Fig. 4.13, the behaviour of the joints of the biped robot in SSP using feedback
linearization control are presented, and the error signals produced by the controller
are depicted in Fig. 4.14. Notice that errors approximate asymptotically to 0. When
the disturbance vector is applied, the tracking performance fails, as can be appreciated
in Fig. 4.15; furthermore, error signals do not keep close to 0 while the disturbance



4.2. ADRC FOR HUMANOID ROBUST WALKING 75

is applied. ADRC performance is similar to feedback linearization in absence of
disturbances, as is depicted in Fig. 4.17 and Fig. 4.18, where the correct tracking and
the asymptotic approximation to 0 of error signals can be appreciated. In contrast,
Fig. 4.19 a successful tracking in presence of disturbances, which is reinforced with
the error signals behaviour presented in Fig. 4.20, which remain close to 0 even in
presence of disturbances and parametric uncertainty. A visualization of the robot
walking can be watched using the link of Fig. 4.21.

Table 4.4: Humanoid robot dynamic parameters for numerical simulation.
Parameter Symbol Value Units

Length of link 1 (support shank) l1 0.34 m
Length of link 2 (support thigh) l2 0.36 m
Length of link 3 (swing thigh) l3 0.36 m
Length of link 4 (swing shank) l4 0.34 m

Length of link 5 (trunk) l5 0.96 m
Length from joint 1 to CoM of link 1 lc1 0.114 m
Length from joint 2 to CoM of link 2 lc2 0.123 m
Length from joint 3 to CoM of link 3 lc3 0.123 m
Length from joint 4 to CoM of link 4 lc4 0.114 m
Length from joint 3 to CoM of link 5 lc5 0.624 m

Mass of link 1 m1 2.0812 Kg
Mass of link 2 m2 2.0648 Kg
Mass of link 3 m3 2.0648 Kg
Mass of link 4 m4 2.0812 Kg
Mass of link 5 m5 9.2110 Kg

Inertia of link 1 I1 0.0164 Kg·m2

Inertia of link 2 I2 0.0103 Kg·m2

Inertia of link 3 I3 0.0103 Kg·m2

Inertia of link 4 I4 0.0164 Kg·m2

Inertia of link 5 I5 0.1054 Kg·m2
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Figure 4.13: Behavior of the controlled joints while performing a step using feedback
linearization control.

Figure 4.14: Error signals of the joints using feedback linearization control. All errors
approximate asymptotically to 0.
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Figure 4.15: Behavior of the controlled joints while performing a step using feedback
linearization control in presence of disturbances.

Figure 4.16: Error signals of the joints using feedback linearization control in presence
of disturbances. Some errors do not keep close to 0.
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Figure 4.17: Behavior of the controlled joints while performing a step using ADRC.

Figure 4.18: Error signals of the joints using ADRC. All errors approximate asymp-
totically to 0.
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Figure 4.19: Behavior of the controlled joints while performing a step using ADRC
in presence of disturbances.

Figure 4.20: Error signals of the joints using ADRC in presence of disturbances. All
errors keep close to 0.
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Figure 4.21: Visualization of the walking trajectories using the RViz simulator. Video
available at https://www.youtube.com/watch?v=WildzQwH9M0.

https://www.youtube.com/watch?v=WildzQwH9M0
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4.3 Super Twisting Sliding Mode Control

Embedded within QP Control for a Seesaw

Actuated by Humanoid

QP control has been proposed in the robotics to solve the control problem of multi-
body systems with floating bases subject to friction, contacts and motion limitations,
appearing particularly to humanoid robots due to the complexity of their tasks, which
normally involve the performing of several activities with each limb [43]. Such QP
control target is to minimize the error of each weight prioritized task that must be
performed by the humanoid [26], nevertheless, the task accomplishment is not robust.
In order to enhance somoe tasks within the QP control, robust control strategies can
be implemented. In this thesis work, the complex task of controlling a seesaw sys-
tem using a humanoid robot standing on it is presented. The control targets are the
following:

1. Control the seesaw angle by means of a torque signal applied on it by a humanoid
robot.

2. Control the torque applied by the humanoid and measure it using the force
sensors at its feet to accomplish 1.

3. Control the CoM of the robot to supply forces on its feet, keeping itself balanced
over the seesaw.

A complete description of the humanoid-seesaw system is presented in Fig. 4.22,
where the control variables and the contacts can be appreciated.

Figure 4.22: HRP4 humanoid balancing on a seesaw.
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Control System Design

Consider the following system of 2 robots:

Mi(qi)q̈i + bi(qi, q̇i) = JTfi + Siτi (4.30)

Where i = 1, 2, are the humanoid and the seesaw indices respectively. Such system
must perform the following tasks:

T1. Posture Task. Related to the local joints position control of the servomotors
actuating the humanoid.

T2. CoM Task. Related to the Cartesian position control of the CoM of the
humanoid.

T3. Seesaw Posture Task. Related to the local position control of the joint of the
seesaw, which is underactuated.

T4. End-Effector Task. Related to the Cartesian pose control of the an end-
effector of the humanoid, in this case, the right foot.

Therefore, the following QP control is implemented to accomplish such tasks [43]:

min
q̈,τ,λ

M∑
k=1

wk‖Θ̈k − Θ̈d
k‖ (4.31)

Subject to:

C1. Dynamics (4.30)

C2. The contact constraints between robots:

λ = (λ−, λ0) ≥ 0 (4.32)

C3. The contact constraints between the seesaw and the fixed environment: J0 = 0

C4. The humanoid and seesaw kinematic constraints:

qmin ≤ q ≤ qmax (4.33)

q̇min ≤ q̇ ≤ q̇max (4.34)

Where Θk are the tasks T1, ..., T4 listed above. The robot dynamics (4.30), the QP
controller (4.31), the tasks and constraints are performed computationally. However,
the QP control is not robust, at least respecting to the seesaw position regulation, and
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either the robot balance. Hence, the following Super Twisting-Sliding Mode Control
algorithmfor the position regulation of the seesaw is implemented:

τss = Kssess +
1

4
Kssėss−W (4.35)

Where the error signal is given by:

ess = qdss − qss (4.36)

The sliding state variable is given by:

σ = ess (4.37)

And the components of the STSMC are:

W = −KW |s|
1
2sign (σ) + V (4.38)

V̇ = −KVsign (σ) (4.39)

Notice that it was decided to use the controller (4.35), since no algebraic, neither
numeric knowledge about the seesaw is available, but only the numerical computation
of its dynamics embbeded within the QP solver. Continuing with the control system
design, in order to achieve the Control Target 2, a torque τss must be supplied to
the seesaw provided by the humanoid. The control system developed to supply such
torque signal to the seesaw by means of the humanoid is a Difference of Force controller
of the form:

u∆CoM
= sat

∣∣Kpef +Kdėf +Ki

∫ t
0
ef (T )dT

∣∣ (4.40)

Where ef = ∆f
f −∆f is the error signal and ∆d

f = τss/df is the desired difference of
forces required to supply a torque τss. df is the distance from the joint of the seesaw
to the center of the contact of each foot of the humanoid. The difference of forces is
computed using:

∆f = FzR − FzL (4.41)

Where FzR and FzL are the measurements of the force sensors at the soles of the HRP4
humanoid in z direction. The control signal u∆CoM

is the displacement of the CoM
of the humanoid in y direction in order to project forces at the feet, as is depicted in
Fig. 4.22. The controller (4.40) is saturated since large quick displacements of the
CoM might cause the ZMP of the humanoid get outside the support polygon causing
it to fall. Finally, the controller (4.40) supplies the input of the CoM task of the QP
controller (4.31).

Implementation

The presented control strategy was implemented using the mc-rtc framework, which
is a super set of spatial vector algebra-based functions that are helpful to compute
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Table 4.5: Parameters of the control system proposed.
Parameter Symbol Value

Proportional gain of STSMC Kss 1600
Gain of STSMC KV 15
Gain of STSMC KW 15

Proportional gain of PID Kp 0.005
Derivative gain of PID Kd 0.001
Integral gain of PID Ki 0.0005

Saturation limits of PID sat| · | ±0.015

dynamics and control of robotic systems. The robot models are computed by means
of computational graphs that are involved in a task-optimiztion problem subjected
to constraints. The proposed controller was programmed using C++ and it was
implemented in a virtual model of the HRP4 humanoid robot. The parameters used
for the presented control scheme are listed in Table 4.5. The full algorithm was
implemented as a Finite-State Machine control (FSMC) detailed as follows:

Algorithm 4.1 Finite-State Machine Control.

1. Move the CoM over the left foot.

– Tasks (weight,stiffness):
Θ1(1000, 5),Θ2(1000, 5),Θ3(1000, 1000),Θ4(0, 0)

– Target: CoMy = 0.12

– Condition: ||Θ1|| ≤ 0.02, ||Θ̇1|| ≤ 0.0

2. Move the right foot to the right.

Figure 4.23: States of the FSMC: a) Move CoM Left. b) Move Rigth Foot Right. c)
Move Rigth Foot Dowm. d) Move CoM Center. e) Force Control. Video available at
https://youtu.be/mmBlAmVddoU.

https://youtu.be/mmBlAmVddoU
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– Tasks (weight,stiffness):
Θ1(1000, 5),Θ2(1000, 5),Θ3(1000, 0.1),Θ4(1000, 2)

– Target: (x, y, z) = (0.0,−0.4, 0.1)

– Condition: ||Θ4|| ≤ 0.06, ||Θ̇4|| ≤ 0.0

3. Move the right foot down.

– Tasks (weight,stiffness):
Θ1(1000, 5),Θ2(1000, 5),Θ3(1000, 0.1),Θ4(1000, 2)

– Target: (x, y, z) = (0.0,−0.4, 0.06)

– Condition: ||Θ4|| ≤ 0.01⊗ FzR > 20, ||Θ̇4|| ≤ 0.0

4. Move the CoM to the center.

– Tasks (weight,stiffness):
Θ1(1000, 5),Θ2(1000, 5),Θ3(1000, 0.1),Θ4(0, 0)

– Target: CoMy = −0.1

– Condition: ||Θ1|| ≤ 0.02, ||Θ̇1|| ≤ 0.0

5. Force control.

– Tasks (weight,stiffness):
Θ1(1000, 5),Θ2(1000, 5),Θ3(1000, 0.1),Θ4(0, 0)

The complete states of the FSMC are dected in Fig. 4.23, where those states sequence
can be appreciated.

Results

The behavior of the controlled multirobot system using the STSMC embedded within
the QP control are presented below. Fig. 4.24 shows the behavior of the seesaw
controlled by the humanoid using a target of qss = 0 [rad]. Notice that the angle
regulation is accomplished. In Fig. 4.25, the behavior of the seesaw using a control
target of qss = 0.1 [rad] is presented, where it can be appreciated a steady state error
at position regulation. Difference of forces control tracks the trajectory correctly.
Another experiment was performed using a target of qss = −0.15 [rad], where it can
be noticed that the position regulation is achieved with significatively low steady-state
error and the control of difference of forces tracks the trajectory asymptotically.
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Figure 4.24: Behavior of the multirobot system with the proposed STSMC with a
target position of 0.0 [rad].

Figure 4.25: Behavior of the multirobot system with the proposed STSMC with a
target position of 0.1 [rad].
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Figure 4.26: Behavior of the multirobot system with the proposed STSMC with a
target position of −0.15 [rad].
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4.4 ADRC for Quadrotor Autonomous Flight

Control System Design

Consider the dynamics of a quadrotor airframe given by (3.60), affected by distur-
bances, and the Parrot Bebop quadrotor internal control system that simplifies the
dynamics as follows:

mẍ = ūx + wx
mÿ = ūy + wy
mz̈ = ūz + wz
J3ψ̈ = ūψ + wψ

(4.42)

Hence, Parrot Bebop dynamics can be considered as the following linear system with
disturbances:



ẋ
ẍ
ẏ
ÿ
ż
z̈

ψ̇

ψ̈


=



0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0





x
ẋ
y
ẏ
z
ż
ψ

ψ̇


+



0 0 0 0
1/m 0 0 0

0 0 0 0
0 1/m 0 0
0 0 0 0
0 0 1/m 0
0 0 0 0
0 0 0 1/J3




ux + wx
uy + wy
uz + wz
uψ + wψ



(4.43)

Recalling to the central idea of ADRC, such equations can be represented in the

form (2.6) using: ξ =
[
x, ẋ, y, ẏ, z, ż, ψ, ψ̇, wT

]T
, w = [wx, wy, wz, wψ] and:
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Ae =



0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1



Be =


0 1/m 0 0 0 0 0 0 0 0 0 0
0 0 0 1/m 0 0 0 0 0 0 0 0
0 0 0 0 0 1/m 0 0 0 0 0 0
0 0 0 0 0 0 0 1/J3 0 0 0 0


T

Ce =


1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0


with y = Ceξ. Hence, an ESO of the form (2.7) is implemented to estimate the

disturbances, using the bandwidth ω0 = 200π [rad/s], which is based on the frequency
of the sensors measurements. Then, the observer gain matrix is given by:

L =



3ω0 0 0 0
3ω2

0 0 0 0
0 3ω0 0 0
0 3ω2

0 0 0
0 0 3ω0 0
0 0 3ω2

0 0
0 0 0 3ω0

0 0 0 3ω2
0

ω2
0 0 0 0

0 ω2
0 0 0

0 0 ω2
0 0

0 0 0 ω2
0



(4.44)

In order to enhance and robust the ESO performance, a sliding mode term was added
to the Luenberger observer, giving the finally form of:

˙̂
ξ = Aeξ̂ +Beu+ L(y − ŷ) + sign(y − ŷ) (4.45)
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Then, the estimated disturbances are given by:

ξ̂9 = ω2
0(ξ1 − ξ̂1) + sign(β5(ξ1 − ξ̂1))

ξ̂10 = ω2
0(ξ3 − ξ̂3) + sign(β6(ξ3 − ξ̂3))

ξ̂11 = ω2
0(ξ5 − ξ̂5) + sign(β7(ξ5 − ξ̂5))

ξ̂12 = ω2
0(ξ7 − ξ̂7) + sign(β8(ξ7 − ξ̂7))

(4.46)

Substituting the value of the observer bandwidth, the eigenvalues of A− LC consid-
ering only the linear part of the observer are:

l1,3,5,7 = −942 + 544j
l2,4,6,8 = −942− 544j
l9,10,11,12 = −394785

(4.47)

Which ensures the convergence of the observer and the reconstruction of the distur-
bances.
Now consider the disturbed representation of quadrotor (4.43). Since it is a cascade of
integrators, all of its poles are 0. Then, a state-feedback controller to firstly stabilize
the system was designed using Ackerman’s formula and the mass and inertia of the
quadrotor as m = 0.48 [Kg] and J = 0.01 [Kgm2], which yields:

K =



1.08 0 0 0
1.44 0 0 0

0 1.08 0 0
0 1.44 0 0
0 0 1.08 0
0 0 1.44 0
0 0 0 0.0225
0 0 0 0.03



T 

x
ẋ
y
ẏ
z
ż
ψ

ψ̇


(4.48)

Then, the eigenvalues of A−BK are:

p1,...,8 = −1.5 (4.49)

So now the closed-loop system is stable. In order to track a reference signal, the pose
errors ex = x− xd, ey = y − yd, ez = z − zd and eψ = ψ − ψd were introduced within
the final controller in addition to the disturbance rejection part, yielding:

u = −


m 0 0 0
0 m 0 0
0 0 m 0
0 0 0 J3

K [ex, ẋ, ey, ẏ, ez, ż, eψ, ψ̇]T −
[
ξ̂9, ξ̂10, ξ̂11, ξ̂12

]T (4.50)
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4.4.1 Hover control using inertial feedback

Inertial feedback using the IMU

The quadrotor used in this thesis work is equipped with proprioceptive sensors such
as a 9-DOF inertial measurement unit (IMU), an ultrasonic sensor for height mea-
surement up to 16 ft, a pressure sensor that complements the last one for heights
beyond 16 ft, a vertical stabilization camera and a global navigation satellite system
(GNSS) chipset (GPS + GNSS). The Bebop 2 is also equipped with an embedded
full-HD 14 Mpx fish-eye camera, which is helpful as an exteroceptive sensor for si-
multaneous localization and mapping, obstacle detection and control applications.
This quadrotor reaches up to 60 km/h horizontal speed and up to 21 km/h vertical,
furthermore, it resists head winds up to 63 km/h. Another important feature is the
included hover regulation, which is useful because the gravity compensation can be
omitted during control design.

Implementation

The middleware Robotics Operating System (ROS) was developed in 2007 by Stanford
Artificial Intelligence Laboratory (SAIL) to create functionalities that can be shared
and used in other robots or by a single robot to save computational resources per-
formed by hardware [46]. In this thesis work, ROS was implemented to perform the
control algorithms, which is helpful to execute simultaneous tasks that imply multiple
sensors reading and some security functions such as forcing the quadrotor to hover or
land in case of autonomous behavior fail. The control system and the sliding mode
extended state observer algorithms were developed using C++ language including
the ROS libraries and functions. The ultrasonic sensor was used for height hovering
measurement. The ROS nodes interaction is depicted in Fig. 4.27.

Results

The experiments to test the proposed control strategy consisted in giving a 0.6 m
reference altitude to the quadrotor after its first default 1 m hover stabilization.Once
the UAV is stable, some shoves were applied downwards and then its response was ob-
served during 20 seconds, as is illustrated in Fig. 4.28. The behavior of the quadrotor
during both ADRC and PD control experiments is presented in Fig. 4.29 and 4.30;
notice that the behavior measurements include the take-off, default hover, controlled
hover, disturbed hover and landing stages and the samples in x axis scale is 10. It
worth to mention that the feedback linearization part for gravity and attitude com-
pensation is included in Bebop internal control; nevertheless, the altitude regulation
can be still implemented externally. Another important remark is that at such desired
altitude, the wind gusts generated by the rotors bounce against the ground and return
upwards affecting the hovering stabilization. Note in Fig. 4.29 that the quadrotor
hover controlled by PD is significantly affected by vortex effect presenting oscillations
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Figure 4.27: ROS rqt plot showing the nodes and topics of the implemented control
system for the quadrotor autonomous flight using inertial feedback.

Figure 4.28: Hover control stages: a) Initial hovering at 1 m. b) Height regulation to
0.6 m. c) Applied disturbances. Video available at https://youtu.be/x_wLSkgdnag.

during the controlled hover stage of up to 15%. Furthermore, after the vertical down-
wards shoves the quadrotor presents an overshoot of up to 40% and a recuperation
before about 5000 samples or 1.5 seconds. ADRC results, are depicted in Fig. 4.30,
where can be observed that the controlled hover presents smaller oscillations of up to
3%, which in comparison with PD controller, shows better performance. In addition,
when the downwards shoves are applied to the quadrotor, the maximum overshoot is
of 20% with the same recovery time. These quantitative results are presented also in
Table 4.6, which includes overshoot and oscillations amplitude peak percentages and
approximated recovery time.

https://youtu.be/x_wLSkgdnag
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Table 4.6: Comparison between PD and ADRC hover controllers.
Controller Oscillation

peak time
Maximum overshoot Recovery time

PD 15% 40% ≈ 1.5s
ADRC 3% 20% ≈ 1.5s

Figure 4.29: Quadrotor hover with PD control.

Figure 4.30: Quadrotor hover with ADRC control.

4.4.2 Pose regulation using inertial feedback

Implementation

The successful hover control results encouraged to the implementation of ADRC
now for pose regulation. So that, an experiment consisting on programming to the

quadrotor a target 4 DOF pose
[
ξref , ψref

]T
= [0.5, 0.2, 0.5, 28.5]T from an initial pose

[ξ0, ψ0]T = [0, 0, 1, 0]T using a PD controller and the proposed ADRC was put into
effect.
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Results

In Fig. 4.31, the behavior of the generalized coordinates is presented during a 25
seconds experiment. Note that x and y positions are never reached with PD con-
trol, however, the quadrotor controlled by the ADRC achieves the goal position.
Furthermore, position in z with ADRC presents less-amplitude overshoots than PD.
The downward peaks in both cases are not a real measurements; during some ex-
periments, inaccuracy of the ultrasonic sensor was realized, so that, an alternative
technique should be put into effect to enhance the accuracy of height measurements.
In the case of ψ, ADRC also produces less amplitude oscillations and also faster re-
covery. The 3D behavior of the quadrotor is presented in Fig. 4.32, where it can be
appreciated in blue line that the quadrotor does not achieve the target pose, repre-
sented with a red dot, with the PD controller. However, such pose is reached with
the ADRC, which is represented with the black line.

Figure 4.31: Generalized coordinates behavior with both PD and ADRC control
schemes. The samples were acquired during 25 seconds.

4.4.3 Pose regulation using visual feedback

Visual feedback: ORB-SLAM

ORB-SLAM is a feature-based monocular video SLAM (VSLAM) algorithm that
works in indoor and outdoor environments by means of Oriented FAST and Rotated
BRIEF (ORB) feature extraction technique [54]. This algorithm is compound by
the following main stages: tracking, local mapping and loop closing, and it provides
the camera pose matrix and a point-cloud map of the environment. In Fig. 4.33, a
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Figure 4.32: 3D view of quadrotor behavior and target pose with both PD and ADRC
control schemes.

couple of frames obtained from the Parrot Bebop camera are presented, where the
detected features in each frame are shown; such features are useful for visual SLAM
task activities. It was decided to use ORB-SLAM it this thesis work, since it presents
the fastest and most accurate performance for visual localization among all reported
techniques in literature [55], in addition to the possibility of using it for indoor or
outdoor navigation; furthermore, it is able to be performed using ROS, so that, the
control system and vision nodes can be executed in parallel threads.

Figure 4.33: Examples of feature detection using ORB-SLAM.



96 4. ROBUST CONTROL OF HUMANOID ROBOTS AND MAVS

Coordinate Frames Transformations

Within the presented control strategy, ORB-SLAM works as a pose feedback for the
closed-loop system, however, some transformations should be applied to match the
ORB-SLAM reference frame with the airframe coordinates. In Fig. 4.34, the consid-
ered coordinate frames are depicted. Note that the first frame OS is provided directly
by ORB-SLAM as a local frame representing the camera pose. Since the target is to
control the global vehicle’s pose with the camera on-board respect to a global world
frame, a transformation from local coordinates to global world coordinates should be
applied to yield the new frame GOS. Such frame is then represented in a conventional
form used in robotics literature, named GR. Finally, the standard frame representa-
tion for UAVs, but in global coordinates is GQ. The corresponding transformations
are given by: xGQ

yGQ

zGQ

 = Ry(θOS )Rx(−90
o)Rz(−90o)Rx(180o)

xOS

yOS

zOS

 (4.51)

Where θ
OS

is the orientation angle about y
OS

provided by ORB-SLAM pose matrix.
Hence, for a simple writting let

[
x

GQ
, y

GQ
, z

GQ

]
= [x, y, z], and the orientation yaw

angle about z
GQ

is represented as ψ. The scale of the ORB-SLAM information was
computed using the inertial sensors data as in [56].

Figure 4.34: Coordinate frames transformation.

Results

The autonomous navigation algorithm selected in this work is the Dead Reckoning
(DR), which consists on estimating and advancing from a current position to an-
other previously determined; it is frequently used in mobile robots navigation for its
simplicity, and generally consists in a list of desired straight forward motions with
orientation targets. A disadvantage of DR is that the position errors are cumula-
tive in open loop, however, since the ORB-SLAM supplies the pose of the quadrotor
respect to objects detected in a map, the mentioned drawback can be effectively over-
come. The presented controller is implemented to send [x, y, z, ψ] commands to the
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quadrotor in order to ensure the DR targets completion. The presented ORB-SLAM
based ADRC was implemented using ROS middleware using the nodes depicted in
Fig. 4.35, where also the interaction of such developed nodes and their topics can be
appreciated. ROS is helpful to compute such nodes or programs in parallel threads,
which enhances the control system performance. Furthermore, a block diagram of
the control system is displayed in Fig. 4.36; notice that the DR targets supplied as
references and the ORB-SLAM feedback signal feed the ADRC, wich consequently
commands the quadrotor motion. In order to test the developed controller, the fol-
lowing target pose was commanded:

ξd =
[
6m 0.3m 1m −90o

]
(4.52)

A frame sequence of the Parrot Bebop on-board camera during the commanded flight
is presented in Fig. 4.37, where the ORB-SLAM features detected at the outdoor
environment can be appreciated, and also the trajectory performed by the quadrotor.
The behavior of the controlled height is depicted in Fig. 4.38 a); notice that the height
reference is missed about ±2cm due to wind disturbances, but it is compensated by
ADRC. Fig. 4.38 b) presents the distance control behavaior along x axis, where an
overshoot of about 30cm can be observed, but it was compensated successfully by
the ADRC. In Fig. 4.38 c), the orientation behavior is presented first, keeping a
0rad angle, and once it reaches the desired x position, a −π/2rad target orientation
was performed. All the pose measurements of the experiment are depicted in Fig.
4.38 d), where the constant height can be appreciated; furthermore it can be noted
from the scaled x motion that once the quadrotor reaches the desired distance, both
orientation and y controlled motions are performed. Finally, the desired trajectory
in xy plane is presented in Fig. 4.39, where, in the part a), it can be observed
that the quadrotor reached the target pose successfully despite the wind disturbances
intrinsic to an outdoor environment; in addition, the part b) of the figure depicts the
trajectory computed by the ORB-SLAM using the frames, which is consistent with
the trajectory displayed in the part a).



98 4. ROBUST CONTROL OF HUMANOID ROBOTS AND MAVS

Figure 4.35: ROS rqt plot showing the nodes and topics of the implemented control
system for the quadrotor autonomous flight using visual feedback.

Figure 4.36: Block diagram of the controller for quadrotor autonomous flight.

Figure 4.37: Some ORB-SLAM frames captured by Parrot Bebop camera during the
performance of the experiment.
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Figure 4.38: Controlled variables of the Parrot Bebop quadrotor using ORB-SLAM
based ADRC.
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Figure 4.39: Performed trajectory: a) xy plane with target pose. b) ORB-SLAM
frames.



5

Conclusions

The aim of this research work is to develop closed-loop controllers based on recent
robust control strategies, in order to deal with the disturbances affecting autonomous
robotic systems. The work is mainly focused on humanoid robots and quadrotor
MAVs, that are robotic systems that share their environments with humans and
other natural facts that inherently yield disturbances on their behavior whilst per-
forming an assigned task.
Firstly, mathematical models of our humanoid robots and MAVs were developed, us-
ing approaches reviewed in the literature. It can be concluded that those models were
useful for control systems synthesis and simulations, since the gains of the controllers
obtained theoretically were up to ±8% alike than the used in implementation.
Another important contribution of this work, from the control theory perspective, is
the implementation of the sliding-mode approach in order to improve the extended-
state observer technique, improving the performance of the Luenberger-ESO based
ADRC. An example of the improvement for humanoid robots motion control is de-
tailed in [49], where the observation error was reduced from 7.04 % to 1.01 %, so
there is an improvement of the observation technique.
The ADRC was preferred among other robust control schemes since it estimate and
reject disturbances on line. Such innovative ADRC, enhanced with sliding mode
observers, were implemented on humanoid robots complex tasks such as balance,
walking showing successful simulation and implementation results. The ADRC im-
proved the balance of a humanoid robot despite the applied shoves, reducing the ZMP
oscilation amplitude up to 40 %, which means a less risk of falling rather than when
the humanoid is controlled by an LQR. Such result is consistent with the research
objective of accomplishing the task of balance even in presence of disturbances.
For the case of biped walking task, a comparison of the ADRC against a feedback
linerization was put into effect. Both controllers led the error signals to 0 asymp-
totically without disturbances. In presence of disturbances, it was demonstrated the
capability of the ADRC to reject them, by keeping the error less than 0.04 [rad] close
to 0. In contrast, some errors with feedback linearization exceeded the value of 2
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[rad]. Thus, another research objective was accomplished.
For the control of a seesaw task of a humanoid robot, a Super-Twisting SMC was
implemented, since the model of the system dynamics was totally unknown and it
only requires the error signals to be developed. The developed controller was pro-
grammed as a meta-task within a QP control solver and it was tested in a highly
realistic simulator. The position error of the seesaw was up to 0.77 [deg], from which
can be concluded that the Super-Twisting SMC accomplished the completion of the
tasks, even for a highly uncertain system, as is requested by the research objectives.
The autonomous flight of quadrorotor MAVs is a challenge from control systems per-
spective, since the measurements are noisy, sometimes inaccurate and it is a highly
susceptible-to-disturbances system. In this work, both inertial and vision-based feed-
back techniques were implemented to perform the ADRC algorithm to deal with dis-
turbances affecting the hover and autonomous flight of a quadrotor. Such controller
was compared against a PD, in order to show the disturbance rejection capability.
The ADRC showed less oscillation peak time, less maximum overshoot and the same
recovery time than the PD for hover regulation. Whilst performing pose regulation,
the PD could not reach the target pose. In both cases, it can be concluded that
the ADRC performance was useful to reject disturbances. During the autonomous
navigation in outdoors environment, the quadrotor reached the target pose, confirm-
ing that the ADRC rejected the environment disturbances, as was expected in the
hypothesis.
From all the developed work and the successful results it can be generally concluded
that the improvement of the ADRC using sliding-mode observers is a powerful tool
to control complex robotic systems, since it is simple to implement and do not only
deal with model inaccuracy, but also with actual unknown disturbances that affect
the robots in real time. As future work, it would be interesting to compare the pro-
posed robust control techniques against other robust approaches to evaluate their
robustness and performance.
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