
CENTRO DE INVESTIGACIÓN Y DE ESTUDIOS
AVANZADOS DEL INSTITUTO POLITÉCNICO NACIONAL

UNIDAD ZACATENCO

DEPARTAMENTO DE CONTROL AUMÁTICO

“Nuevo diseño de backstepping con retardos artificiales
para sistemas con retardos puntuales”

T E S I S

Que presenta

JAVIER EDUARDO PEREYRA ZAMUDIO

Para obtener el grado de

MAESTRO EN CIENCIAS

En la especialidad de

CONTROL AUTOMÁTICO

Directores de la Tesis:

Dra. Sabine Marie Sylvie Mondié Cuzange
Dr. Frédéric Mazenc

Ciudad de México AGOSTO, 2019



CENTRO DE INVESTIGACIÓN Y DE ESTUDIOS
AVANZADOS DEL INSTITUTO POLITÉCNICO NACIONAL

UNIDAD ZACATENCO

DEPARTAMENTO DE CONTROL AUMÁTICO

“New backstepping designs with artificial delays for
systems with pointwise delay”

T H E S I S

Presnted by

JAVIER EDUARDO PEREYRA ZAMUDIO

To obtain the degree of

Master of Science

In the field of

AUTOMATIC CONTROL

Thesis Advisors:

Dra. Sabine Marie Sylvie Mondié Cuzange
Dr. Frédéric Mazenc

México City AUGUST, 2019



Agradecimientos

A mis directores de tesis la Dra. Sabine Mondié y el Dr. Frédéric Mazenc por su paciencia
y atenta tutoria en todos los aspectos de esta tesis.
A los mienbros del jurado, los Dres. Alexander Poznyak y Fernando Castaños por los
comentarios para mejorar este trabajo.
A mis padres María y Javier y a mi hermana Mónica por el amor y apoyo que me han
dado durante toda mi vida.
A mis compañeros de Maestría por el agradable ambiente de trabajo y por la ayuda que
me brindaron durante nuestros estudios.
Al Consejo Nacional de Ciencia y Tecnología (CONACYT) por el apoyo economico otor-
gado.

3



Acknowledgements

To my thesis directors Dr. Sabine Mondié and Dr. Frédéric Mazenc for their patience and
attentive tutoring in all aspects of this thesis.
To the committee members, Drs. Alexander Poznyak and Fernando Castaños for the
comments to improve this work.
To my parents Maria and Javier and my sister Monica for the love and support they have
given me throughout my life.
To my Master´s classmates for the nice work environment and for the help they gave me
during our studies.
To the National Council of Science and Technology (CONACYT) for the economic support.

4



5



6

Notations and symbols

R Field of real numbers.

Rn Space of n-vectors with entries in R.

Rn×n Space of matrices of dimension n× n with entries in R.

In Identity matrix of dimension n .

ai,j Matrix element located in line i and column j.

MT Transpose of the matrix M .

M−1 Inverse of the matrix M .

M > 0 Matrix M : symmetric and positive definite.

λmín(M) Minimum eigenvalue of the matrix M .

λmáx(M) Maximum eigenvalue of the matrix M .

| · | The Euclidean norm in Rn, and the induced norm of matrices

Cn Set of continuous functions and n times differentiable.

C([−T, 0],Rn) Space of Rn-valued continuous functions on [−T, 0], T > 0.

PC([−T, 0],Rn) Space of Rn-valued piecewise continuous functions on [−T, 0], T > 0.

Cin Set of continuous functions which we call the set of initial functions.

‖ϕ‖h Uniform norm, ϕ = sup
−h≤θ≤0

‖ϕ(θ)‖.

f (i) Order derivative i of the function f .

CINVESTAV Departamento de Control Automatico



7

xt Restriction of x(t), xt : θ → x(t+ θ), θ ∈ [−h, 0], h > 0.

ω(·) The Heaviside step function or the unit step function.

σL(s) The symmetric saturation function, σL(s) = min{−L,max{L, s}}, L > 0
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Resumen

La estabilidad y el control de los sistemas con retardos, tanto en el estado como en la en-
trada, ha sido un área activa de investigación en el campo del control automático debido a
que estos retardos se presentan en muchos sistemas de control derivados de una aplicación
de ingeniería. Cuando estos retardos están presentes y son demasiado grandes para ser
ignorados, se deben diseñar nuevas leyes de control para el modelo infinito dimensional
correspondiente. El backstepping es una técnica para diseñar controles estabilizadores
para una amplia clase de sistemas que incluye sistemas con no linealidades e incertidum-
bres. A pesar de ser una técnica tan efectiva, existen limitaciones y aspectos que pueden
mejorarse. Se han obtenido nuevos avances en el enfoque de backstepping a través de una
variante fundamentalmente nueva del backstepping basada en la introducción de retardos
artificiales en el control o extensiones dinámicas utilizadas en el mismo. El análisis de
estabilidad de estas estrategias de backstepping, aplicadas al control de clases de sistemas
con retardos es el tema principal de esta tesis. También mostramos algunas de las ven-
tajas de tales controles, en particular, las leyes de control por realimentación que usan
retardos artificiales son acotadas y están dadas por fórmulas mucho más simples que las
proporcionadas por el enfoque clásico de backstepping.
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Abstract

Stability and control of systems whit delay, both in the state and at the input, has been
an active area of research in the field of automatic control because these delays are present
in many control systems arising from an engineering application. When these delays are
present and are too large for being neglected, new control laws should be designed for
the corresponding infinite-dimensional model. Backsteping is a technique for designing
stabilizing controls for a broad class of systems that includes systems with nonlinearities
and uncertainties. Despite being such an effective technique, there are both limitations
and aspects that can be improved. New advances on the backstepping approach have been
obtained via a fundamentally new variant of backstepping relaying on the introduction of
artificial delays in the control or dynamic extensions used in it. The stability analysis of
these backstepping strategies applied to the control of classes of TDS is the main topic
of this thesis. We also show some of the advantages of such controls, in particular, the
feedback control laws with artificial delays are bounded and are given by simpler formulas
than those provided by the classical backstepping approach.
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Chapter 1

Introduction

In this chapter we give a general introduction to time-delay systems, the backstepping
stabilizability approach, and we present the objectives and the strategies of our work

1.1 Time-delay systems

Control systems frequently present limitations in collecting, processing and transporting
information which often generates delays. When these delays are so long that they cannot
be neglected, a delay system model should be used and controllers should be designed based
on this infinite-dimensional model. Systems with time-delay in the state, control input,
or measurements have been an important field of research in communication, physics,
medicine, biology. Although in some cases the delays can have a stabilizing effect it is
well known that in most cases time delays are a source of instability or bad performance.
Stability analysis of TDS is significant from the applied and theoretical viewpoints.
The notion of stability of control systems, with or without delays, can be seen in two
different ways. The first is the input/output approach where a system is stable if bounded
input signals produce bounded output signals. The second and in which we will work
more is Lyapunov stability which describe continuity properties of the solutions of the
system with respect to a initial condition. If the initial condition is perturbed, then, for
stability, the resulting perturbed solution is required to stay close to the solution that
start in the initial condition, for all time. The direct method of Lyapunov establishes
that if a positive definite functional is such that its derivative along the trajectories of
the system is definite negative, then the origin of the system is asymptotically stable
equilibrium point. Since the classical Lyapunov approach does not work for time-delay
systems, some modifications have been proposed, one of these modification is know as the
Lyapunov-Krasovskii method due to N. N. Krasovskii [8] who proposed to replace classical
Lyapunov functions that depend on the instant state of the system by a functional that
depend on the true state of the delay system. Motivated by this result V. Kharitonov
[4] gave a new approach which consists in selecting a desired time derivative and then
computing a functional whose derivative coincides with the selected one.

1



2 Chapter 1

Another stability concept which is used throughout this work is input to state stability
(ISS), introduced by Sontag [20]. In this approach there is a standard notion of stability,
namely Lyapunov asymptotic stability of the unforced system which means that the input
to state stability implies that the origin of the unforced system is globally asymptotically
stable.

1.2 New backstepping approach

Backstepping is a technique for designing stabilizing controls for systems with nonlinear-
ities and uncertainties, the key idea of backstepping is to follow a step-by-step algorithm
that starts with a subsystem which is stabilizable with a know feedback control law for a
know Lyapunov function and then to add to its input an integrator. For the augmented
system a new stabilizing feedback control law is explicitly designed and shown to be stabi-
lizing for a new Lyapunov function, in this way, it extends the controlled stability of this
subsystem to the larger system. This simple idea has been used by many authors like J.
Tsinias, V.Utkin, A. G. Loukianov, C. Praly, J. M. Coron, M. Krstic, I. Kanellakopoulos,
[7], [9], [21]. But at the best of our know, was in the works of P. V. Kokotovic where it is
referred by the name of backstepping [6], [7].
In this work the backstepping tool is used to study a stabilizing feedback for coupled delay
systems with a triangular structure following a fundamentally new variant of backstep-
ping. The previous works [14], [16], [11] are based in the pioneering recent work [12] that
use these new backstepping results, can help overcome the obstacles encountered when
using standard backstepping. The idea is to combine prediction based techniques with
distributed terms and a new version of backstepping technique which uses an artificial
delay in the control or dynamic extensions that are used by the control. It is reminiscent
of the one introduced in the contributions [11], [13]. The control laws designed by this
approach have the advantage that the feedback are given by formulas much simpler than
those provided by the classical backsteppping approach. For linear time-invariant systems,
our approach is constructive, as the design is based on a Lyapunov-Krasovskii functional of
complete type, while for nonlinear systems the demonstrations are based on assumptions
of bounded input bounded state (BIBS) and converging input converging state (CICS)

The controllers with artificial delays have the form of integral equations which contains
integrals of the state, in the practical implementation, the integral terms needs to be
calculated on-line, a possibility is to approximate the distributed delay by a sum of point-
wise delays using a numerical approximation. This replacement changes the controller
type, this new controllers can lead to an instability of the closed-loop system [22] [2]. To
overcome this difficulty additional filters that can be used, this filters can be interpreted
as a dynamic extension i.e. an extension of the state vector of the system by adding the
control variables to the state variables. The stability of the system with the extension
implies the stability of the original closed-loop system so the controllers can be designed
directly for extended dynamic systems.

CINVESTAV Departamento de Control Automatico



Introduction 3

1.3 Objectives
The general objective of this thesis is to address the controller design in the proposed
framework based on the introduction of artificial delays of time delay systems. In partic-
ular.

• We perform the stabilization of linear time delay-systems in feedback form using a
backstepping approach based on functionals of complete type.

• We perform a robustness analysis of this scheme.

• We design control laws for nonlinear time delay-systems in feedback form using a
backstepping approach based on BIBS and CICS assumptions.

1.4 Structure of the thesis
This work is organized as follow:

• The first chapter gives an introduction to time delay systems, and presents the
general organization of the thesis.

• The second chapter is a summary of the theoretical background of the system sta-
bilization, definitions and classical results, it also introduces the operators that will
be used in the following chapters.

• The third chapter proposes the implementation of a novel version of backstepping,
for linear time invariant systems, which is based on the introduction of artificial
delays and whose stability analysis makes use of Lyapunnov functionals of complete
type. The robustness of the scheme is also analysed.

• The fourth chapter presents a design of feedback which uses an artificial delay. Sta-
bilization of a nonlinear system is achieved.

• The last chapter is devoted to concluding remarks and perspectives.

CINVESTAV Departamento de Control Automatico



Chapter 2

General Theory

In this chapter we remind concepts and general results for time delay systems. In particu-
lar, we recall the main ideas of backstepping, prediction of future states, the construction of
functional with prescribed derivative for time delay systems and we define some operators
that will be used in the next chapters.

2.1 Classical definitions
Let us consider a system

ẋ(t) = A(t, x(t), x(t− τ), w(t)) (2.1)

with a finite delay τ ≥ 0 x ∈ Rn and w = (w1, ..., wm) ∈ Rm.

Definition 1. [3] A function α : [0,+∞) → R≥0 is of class K if it is continuous, zero
at zero and strictly increasing. A function β : R2

≥0 → R≥0 is of class KL if it is contin-
uous and for all a ≥ 0, β(·, a) is of class K and for all b > 0, β(b, ·) is decreasing and
lim
c→+∞

β(b, c) = 0.

Definition 2. The system (2.1) is bounded-input bounded-state (BIBS) with input w if
there exist α, γ in K such that a solution x of (2.1) with φ ∈ Cin as initial condition and
w ∈ L∞ satisfies

|x(t)| ≤ α(|φ|) + γ

(
sup
m∈[0,t]

|w(m)|

)
(2.2)

for all t ≥ 0.

Definition 3. Let us consider the system (2.1). We say that this system is converging-
input converging-state (CICS) with input w if it is forward complete and when

lim
t→+∞

|w(t)| = 0 (2.3)

4



General Theory 5

then
lim
t→+∞

|x(t)| = 0 (2.4)

Definition 4. [3]
The system (2.1)is Input-to-State-Stable (ISS) if there exist a function β of class KL

and a function γ of K such that any solution x of it satisfies:

|x(t)| ≤ β

(
sup

r∈[s−τ,s]
|x(r)|, t− s

)
+ γ

(
sup
r∈[0,t]

|w(r)|

)
(2.5)

for all t ≥ s ≥ 0.

Remark. The inequality (2.5) guarantees that for any bounded input w(t), the state x(t)
remains bounded. Furthermore, as t increases, the state x(t) will be ultimately bounded by
a class K function of sup

r∈[0,t]

|w(r)|. Also if w(t) converges to zero as t → ∞ so does x(t).

In other words when a system is ISS, then it is BIBS and CICS.

Remark. Since, with w(t) = 0, (2.5) reduces to

|x(t)| ≤ β

(
sup

r∈[s−τ,s]
|x(r)|, t− s

)
input-to-state stability implies that the origin of the unforced system (2.1) is globally

uniformly asymptotically stable. In the linear case the converse holds too [18].

Definition 5. [4] System (2.1) is said to be exponentially stable if there exist γ ≥ 1
and σ > 0 such that any solution x(t) with initial condition φ of the system satisfies the
inequality

||x(t)|| ≤ γe−σt||φ||τ t ≥ 0 (2.6)

Remark. [1] The exponential stability of a linear time invariant system is equivalent to
the asymptotic stability of the system.

The following lemma provides a bound for the trajectories of the studied systems which
will be useful to check conditions of ISS type.

Lemma 1. [15] Let T > 0 be a constant. Let w : [−T,∞) → [0,∞) be a piecewise
continuous locally bounded function and d : [0,∞)→ [0,∞) be piecewise continuous.

Assume that there exists a constant ρ ∈ (0, 1) such that

w(t) ≤ ρ|w|[t−T,t] + d(t)

CINVESTAV Departamento de Control Automatico



6 Chapter 2

holds for all t ≥ 0. Then the inequality

w(t) ≤ |w|[−T,0]e
ln(ρ)
T

t +
1

1− ρ
|d|[0,t]

holds for all t ≥ 0.

2.2 Classical Backstepping
We start reminding the classical backstepping for a system with one integrator [3] (Chapter
14, pp 589–603).

ẋ = f(x) + g(x)y

ẏ = u

where [xT , y]T ∈ Rn+1 is the state and u ∈ R is the input. The functions f : D → Rn

and g : D → Rn are smooth in a domain D ⊂ Rn that contains x = 0 and f(0) = 0.
Suppose that the component x can be stabilized by a state feedback control law y = h(x),
with h(0) = 0; that is the origin of

ẋ = f(x) + g(x)h(x)

is asymptotically stable. Suppose further that we know a positive definite Lyapunov
function V (x) such that

∂V

∂x
[f(x) + g(x)h(x)] ≤ −W (x),

holds for all x ∈ D, where W (x) is positive definite. Adding and subtracting g(x)h(x)
we obtain

ẋ = [f(x) + g(x)h(x)] + g(x)[y − h(x)]

ẏ = u

Now a changing of variable

z = y − h(x)

results in the system

ẋ = [f(x) + g(x)h(x)] + g(x)z

ż = u− ḣ

and ḣ = ∂h
∂x

[f(x) + g(x)y]. Taking v = u − ḣ reduces the system to the cascade
connection

CINVESTAV Departamento de Control Automatico



General Theory 7

ẋ = [f(x) + g(x)h(x)] + g(x)z

ż = v

The first component has an asymptotically stable origin when the input is zero. This
feature will be exploited in the design of v to stabilize the overall system. Using

Vc(x, y) = V (x) +
1

2
z2

as a Lyapunov function candidate, we obtain

V̇c ≤ −W (x) +
∂V

∂x
g(x)z + zv

Choosing

v = −∂V
∂x

g(x)− kz k > 0

yields

V̇c ≤ −W (x)− kz2

which implies that the origin of the closed-loop system is asymptotically stale. Substi-
tuting for v, z and ḣ, we obtain the state feedback control law

u =
∂h(x)

∂x
[f(x) + g(x)y]− ∂V

∂x
g(x)− k[y − h(x)]]

If all the Assumptions hold globally and V (x) is radially unbounded, we can conclude
that the origin is globally asymptotically stable.

2.3 Predictor

First we introduce a predictor of future values of the state variable ξ(t) of system (2.7)
which will be used when we establish the stability of the system in closed-loop with the
feedback we propose.

We consider the linear time-delay systems of the form

ξ̇(t) = A0ξ(t) + A1ξ(t− h) +Bu(t− τ)

(2.7)

CINVESTAV Departamento de Control Automatico



8 Chapter 2

with ξ ∈ Rn, B, Ai ∈ Rn×n
i=0,1, real matrices, u ∈ Rn is the input, τ > h ≥ 0

Lemma 2. The solution of system (2.7) satisfies:

ξ(t+ τ − h) = eA0(τ−h)ξ(t) +

∫ t

t−τ+h

eA0(t−l)[A1ξ(l + τ − 2h) +Bu(l − h)] dl (2.8)

for all t ≥ 0 and

ξ(t+ τ) = eA0(τ−h)ξ(t+ h) +

∫ t

t−τ+h

eA0(t−m)A1e
A0(τ−h)ξ(m) dm

+

∫ t

t−τ+h

eA0(t−m)A1

∫ m

m−τ+h

eA0(m−l)A1ξ(l + τ − 2h) dldm

+

∫ t

t−τ+h

eA0(t−m)A1

∫ m

m−τ+h

eA0(m−l)Bu(l − h) dldm+

∫ t

t−τ+h

eA0(t−m)Bu(m) dm (2.9)

for all t ≥ 0

Proof. By integrating the ξ equation of the system (2.7), we obtain almost directly (2.8).
Using (2.8), we obtain directly:

ξ(t+ τ) = eA0(τ−h)ξ(t+ h) +

∫ t+h

t−τ+2h

eA0(t+h−l)[A1ξ(l + τ − 2h) +Bu(l − h)] dl

It follows that

ξ(t+ τ) = eA0(τ−h)ξ(t+ h) +

∫ t

t−τ+h

eA0(t−m)[A1ξ(m+ τ − h) +Bu(m)] dm

Again by (2.8) we obtain directly:

ξ(t+ 2h) = eA0(τ−h)ξ(t+ h) +

∫ t

t−τ+h

eA0(t−m)A1e
A0(τ−h)ξ(m) dm+

∫ t

t−τ+h

eA0(t−m)A1×∫ m

m−τ+h

eA0(m−l)A1ξ(l + τ − 2h) dldm+

∫ t

t−τ+h

eA0(t−m)A1

∫ m

m−τ+h

eA0(m−l)Bu(l − h) dldm

+

∫ t

t−τ+h

eA0(t−m)Bu(m) dm

CINVESTAV Departamento de Control Automatico



General Theory 9

2.4 Lyapunov-Krasovskii functionals of complete type

Now we recall a property of the complete type Lyapunov-Krasovskii functionals which will
be used to perform a stability analysis in the next part.

Definition 6. [4] We say that the matrix U(τ) is a Lyapunov matrix of system unforced
(2.7) associated with a symmetric positive definite matrix W if it satisfies the following
properties:

1. Dynamic property

dU(τ)

dτ
= U(τ)A0 + U(τ − h)A1, τ ≥ 0 (2.10)

2. Symmetry property
U(−τ) = U(τ)T (2.11)

3. Algebraic property

−W = U(0)A0 + AT0U(0) + U(−h)A1 + AT1U(h) (2.12)

The following theorem gives the form of the functional V with prescribed derivative
along the trajectories of the unforced system (2.7).

Theorem 3. [4] Given three symmetric positive definite matrices Wj, (j = 0, 1, 2) let

w(ϕ) = ϕT (0)W0ϕ(0) + ϕT (−h)W1ϕ(−h) +

∫ 0

−h
ϕT (θ)W2ϕ(θ) dθ

If the unforced system (2.7) is exponential stable, the Lyapunov matrix function U(τ)
associated with the matrix W = W0 +W1 + hW2 exists, and the functional

V (ϕ) = ϕT (0)U(0)ϕ(0) + 2ϕT (0)

∫ 0

−h
U(−h− θ)A1ϕ(θ) dθ

+

∫ 0

−h
ϕT (θ1)AT1

[∫ 0

−h
U(θ1 − θ2)A1ϕ(θ2)

]
dθ2dθ1 +

∫ 0

−h
ϕT (θ) [W1 + (h+ θ)W2]ϕ(θ) dθ

(2.13)
has time derivative along the solutions of the unforced system (2.7) given by

d

dt
V (ξt) = −w(ξt), t ≥ 0

CINVESTAV Departamento de Control Automatico



10 Chapter 2

2.5 Operators: definitions and lemmas
In this section, we introduce operators and establish results that will be instrumental when
we establish some of the results of this work.

Let k > 0, h > 0 and τ > 0 be real numbers. Let

j =
kekh

ekh − 1
(2.14)

Notice for later use that

k

ekh − 1

∫ t

t−h
ek(s+h−t)ds = 1 (2.15)

for all t ∈ R.

Remark. Throughout the present work, we can let k be equal to 1, or any other positive
constant. However, we keep k as a tuning parameter helping to improve the performances
of the control laws we will propose.

Let
ẋ(t) = R(t, xt) (2.16)

be a forward complete system with x ∈ Rq and τ ≥ 0.

2.5.1 Operators

Let U : R× Rq → R be a function such that there are a constant LU > 0 and a function
B of class K such that

|U(a, b1)− U(a, b2)| ≤ LU |b1 − b2| (2.17)

for all (a, b1, b2) ∈ R1+2q and

|U(a1, b)− U(a2, b)| ≤ |a1 − a2|B(|b|) (2.18)

for all (a1, a2, b) ∈ R2+q.

i) Let ΓU ,i with i ∈ N denote the operators such that along the trajectories of (2.16),

ΓU ,0(t, xt) = U(t− τ, x(t− τ)) (2.19)

and, for j ≥ 1,

ΓU ,j(t, xt) = j

∫ t

t−h
ek(s−t)ΓU ,j−1(s, xs)ds (2.20)

where j is the constant defined in (2.14).

CINVESTAV Departamento de Control Automatico



General Theory 11

ii) For all j ∈ N, j > 0, i ∈ {0, ..., j}, we let ΩU ,j,i denote the operators such that along
the trajectories of (2.16),

ΩU ,j,i(t, xt) = Γ
(i)
U ,j(t, xt) (2.21)

Example: for i = 1 and j ≥ 1,

ΩU ,j,1(t, xt) = −kΓU ,j(t, xt) +
kekh

ekh − 1
ΓU ,j−1(t, xt)−

k

ekh − 1
ΓU ,j−1(t− h, xt−h) (2.22)

iii) Let ζ : Cin → Rq be the operator defined by:

ζ(φ) =
k

ekh − 1

[
ekhφ(0)− φ(−h)

]
(2.23)

for all φ ∈ Cin.

2.5.2 Estimates for the operators

The following lemma shows that the smaller the constant h is selected, the closer ΓU ,j(t, xt)
is to U(t− τ, x(t− τ)).

Lemma 4. Along the trajectories of the system (2.16), for all j ∈ N, the inequalities

|ΓU ,j(t, xt)− U(t− τ, x(t− τ))| ≤ LU

∫ t−τ

t−τ−jh
|ẋ(s)|ds+ jhB(|x(t− τ)|) (2.24)

hold for all t ≥ τ + jh.

Proof. Let us introduce the simplifying notation ∆(t, xt) = |ΓU ,j(t, xt)−U(t−τ, x(t−τ))|.
The inequality (2.24) is satisfied for j = 0. Now, let us consider a positive integer j. From
the definition of ΓU ,j and (2.15), we deduce that

ΓU ,j(t, xt)− U(t− τ, x(t− τ)) =

j

∫ t

t−h
ek(s1−t)....j

∫ sj−1

sj−1−h
ek(sj−sj−1)[U(sj − τ, x(sj − τ))− U(t− τ, x(t− τ))]dsj...ds1

= j

∫ t

t−h
ek(s1−t)....j

∫ sj−1

sj−1−h
ek(sj−sj−1)[U(sj − τ, x(sj − τ))− U(sj − τ, x(t− τ))]dsj...ds1

+j

∫ t

t−h
ek(s1−t)....j

∫ sj−1

sj−1−h
ek(sj−sj−1)[U(sj − τ, x(t− τ))− U(t− τ, x(t− τ))]dsj...ds1

(2.25)
It follows that

∆(t, xt) ≤

j

∫ t

t−h
ek(s1−t)....j

∫ sj−1

sj−1−h
ek(sj−sj−1)|U(sj − τ, x(sj − τ))− U(sj − τ, x(t− τ))|dsj...ds1

+j

∫ t

t−h
ek(s1−t)....j

∫ sj−1

sj−1−h
ek(sj−sj−1)|U(sj − τ, x(t− τ))− U(t− τ, x(t− τ))|dsj...ds1
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From (2.17) and (2.18), we deduce that

∆(t, xt) ≤

j

∫ t

t−h
ek(s1−t)j

∫ s1

s1−h
ek(s2−s1)....j

∫ sj−1

sj−1−h
ek(sj−sj−1)LU |x(sj − τ)− x(t− τ)|dsj...ds1

+j

∫ t

t−h
ek(s1−t)j

∫ s1

s1−h
ek(s2−s1)....j

∫ sj−1

sj−1−h
ek(sj−sj−1)|sj − t|B(|x(t− τ)|)dsj...ds1

(2.26)
Now, since for sj ≥ τ and t ≥ sj, the inequality

|x(sj − τ)− x(t− τ)| ≤
∫ t−τ

sj−τ
|ẋ(r)|dr (2.27)

is satisfied, we obtain

∆(t, xt) ≤ LU j

∫ t

t−h
ek(s1−t)....

∫ sj−1

sj−1−h
ek(sj−sj−1)

∫ t−τ

sj−τ
|ẋ(r)|drdsj...ds1

+j

∫ t

t−h
ek(s1−t)....j

∫ sj−1

sj−1−h
ek(sj−sj−1)|t+ jh− t|dsj...ds1B(|x(t− τ))|)

≤ LU

∫ t−τ

t−τ−jh
|ẋ(r)|dr + jhB(|x(t− τ)|)

for all t ≥ τ + jh.

Now we determine upper bounds for the operators ΓU ,j and ΩU ,j,i.

Lemma 5. Let us consider the system (2.16). For all j ∈ N, j > 0,

|ΓU ,j(t, xt)| ≤ j

∫ t−τ

t−τ−jh
|U(s, x(s))|ds (2.28)

for all t ≥ τ + jh.

Proof. We directly deduce from the definition of ΓU ,j that:

|ΓU ,j(t, xt)| ≤ j

∫ t

t−h
ek(s1−t)j

∫ s1

s1−h
ek(s2−s1)....j

∫ sj−1

sj−1−h
ek(sj−sj−1)|U(sj−τ, x(sj−τ))|dsj...ds1

(2.29)
for all t ≥ τ + jh. As sj−1 ∈ [t− (j − 1)h, t] and sj ∈ [sj−1 − h, sj−1], the inequalities

CINVESTAV Departamento de Control Automatico



General Theory 13

∫ sj−1

sj−1−h
ek(sj−sj−1)|U(sj − τ, x(sj − τ))|dsj ≤

∫ t

t−jh
ek(sj−sj−1)|U(sj − τ, x(sj − τ))|dsj

≤
∫ t

t−jh
|U(sj − τ, x(sj − τ))|dsj

(2.30)
are satisfied. This inequalities and (2.29) give:

|ΓU ,j(t, xt)| ≤ j

∫ t

t−h
ek(s1−t)j

∫ s1

s1−h
ek(s2−s1)....jdsj−1...ds1

∫ t

t−jh
|U(sj − τ, x(sj − τ))|dsj

= j

∫ t

t−jh
|U(sj − τ, x(sj − τ))|dsj

This allows us to conclude.

Lemma 6. For all j ∈ N, j ≥ 1, i ∈ {0, ..., j − 1}, the inequalities

|ΩU ,j,i(t, xt)| ≤ 2iji+1

∫ t−τ

t−τ−jh
|U(s, x(s))|ds (2.31)

are satisfied for all t ≥ τ + jh.

Proof. Let us establish the inequality (2.31) by induction.
Induction Assumption. For all j ∈ {1, ..., p}, p ∈ N, p > 1, for all i ∈ {0, ..., j − 1},
the inequalities

|ΩU ,j,i(t, xt)| ≤ 2iji+1

∫ t−τ

t−τ−jh
|U(s, x(s))|ds (2.32)

are satisfied for all t ≥ τ + jh.

Step 1. Since
|ΩU ,1,0(t, xt)| = |ΓU ,1(t, xt)| (2.33)

we deduce from Lemma 5 that

|ΩU ,1,0(t, xt)| ≤ j

∫ t−τ

t−τ−h
|U(s, x(s))|ds (2.34)

for all t ≥ τ + h. Therefore the induction Assumption is satisfied at the step 1.

Step p. Let us assume that the induction Assumption is satisfied at the step p. Let us
prove, by induction again that is satisfied at the step p + 1 To do this, we proceed again
by induction. Let us introduce this new induction Assumption:
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Second induction Assumption. For all a ∈ {0, ..., i} with i ∈ {0, ..., p−1} the inequality

|ΩU ,p+1,a(t, xt)| ≤ 2aja+1

∫ t−τ

t−τ−(p+1)h

|U(s, x(s))|ds (2.35)

is satisfied.

Step 0. We have:

|ΩU ,p+1,0(t, xt)| = |ΓU ,p+1(t, xt)|
≤ j

∫ t−τ
t−τ−(p+1)h

|U(s, x(s))|ds (2.36)

where the last inequality is a consequence of Lemma 5. Thus the second induction As-
sumption is satisfied at the step 0.

Step i. Let us assume that the induction Assumption is satisfied at the step i < p. One
can easily prove that

ΩU ,j,i+1(t, xt) = k

(
−ΩU ,j,i(t, xt) +

ekh

ekh − 1
ΩU ,j−1,i(t, xt)−

1

ekh − 1
ΩU ,j−1,i(t− h, xt−h)

)
(2.37)

Consequently, using the two induction Assumptions, we obtain:

|ΩU ,p+1,i+1(t, xt)| ≤ k
(
|ΩU ,p+1,i(t, xt)|+ ekh

ekh−1
|ΩU ,p,i(t, xt)|+ 1

ekh−1
|ΩU ,p,i(t− h, xt−h)|

)
≤ k

(
1 + ekh

ekh−1
+ 1

ekh−1

)
2iji+1

∫ t−τ
t−τ−(p+1)h

|U(s, x(s))|ds
= 2kekh

ekh−1
2iji+1

∫ t−τ
t−τ−(p+1)h

|U(s, x(s))|ds
(2.38)

Thus the second induction Assumption is satisfied at the step i + 1. We deduce that the
first induction Assumption is satisfied at the step p+ 1.

2.5.3 Dynamic extensions to replace the operators

In this section, we show that the operators ΓU ,i are equal along the solutions of the system
(2.16), after a finite time interval, to a functional of the solutions of a dynamic extension
in which are present pointwise delays only. We will use later this fact can be used to
circumvent the inconvenient of using feedbacks with distributed delays.

Let us start with a well-known result:

Lemma 7. Let

ẇ(t) = −kw(t) + α(t) (2.39)
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where w ∈ R, k > 0 and α : [0,+∞) → R is a piecewise continuous function. Then for
any T > 0,

w(t)− e−kTw(t− T ) =

∫ t

t−T
ek(s−t)α(s)ds (2.40)

for all t ≥ T .

Next, let us consider the function U and let us introduce dynamic extensions:

ẇ1(t) = −kw1(t) + U(t− τ, x(t− τ)) (2.41)

with w1 ∈ R and, for all j ∈ N, j ≥ 2

ẇj(t) = −kwj(t) + ζ(wj−1,t) (2.42)

with wj ∈ R, ζ defined in (2.23). We have:

Lemma 8. Let m ∈ N, m > 0. For all t ≥ mh, the equality

ζ(wm,t) = ΓU ,m(t, xt) (2.43)

is satisfied.

Proof. By applying Lemma 7 to (2.41), we obtain

kekh

ekh − 1

[
w1(t)− e−khw1(t− h)

]
= j

∫ t

t−h
ek(s−t)U(s− τ, x(s− τ))ds (2.44)

Since

ζ(w1,t) = j
[
w1(t)− e−khw1(t− h)

]
(2.45)

the equality
ζ(w1,t) = ΓU ,1(xt) (2.46)

holds for all t ≥ h.

Now, we proceed by induction.

Induction Assumption. The equality

ζ(wm,t) = ΓU ,m(t, xt) (2.47)

is satisfied for all t ≥ mh.

Step 1. We have proved that the induction Assumption is satisfied at the step 1.

Step m. Let us assume that the induction Assumption is satisfied for all l ∈ {1, ...,m},
m ∈ N.
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By applying Lemma 7 to (2.42) with j = m+ 1, we obtain

wm+1(t)− e−khwm+1(t− h) =

∫ t

t−h
ek(s−t)ζ(wm,s)ds (2.48)

for all t ≥ h. It follows that

ζ(wm+1,t) = j

∫ t

t−h
ek(s−t)ζ(wm,s)ds (2.49)

for all t ≥ h. From the Induction Assumption, we deduce that

ζ(wm+1,t) = j

∫ t

t−h
ek(s−t)ΓU ,m(xs)ds = ΓU ,m+1(xt) (2.50)

for all t ≥ (m+ 1)h.

2.6 Conclusions
In this chapter, we briefly describe the technique of classical backstepping and we have
introduced important stability definitions. We have defined operators and we have intro-
duced tools that will be useful in the following chapters.
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Chapter 3

Backstepping based on artificial delays
and functionals of complete type

In this chapter we present a first approach for the control of systems with delay in strict
feedback form. It is based on a backstepping strategy using an artificial delay combined
with the use of complete Lyapunov functional. A robustness analysis with respect to
systems matrices and systems delay is carried out.

3.1 Problem Statement
We consider a coupled linear time-delay system of the form{

ξ̇(t) = A0ξ(t) + A1ξ(t− h) +Bη(t− τ)
η̇(t) = Mη(t) + k1(t, ξt, ηt) + u(t)

(3.1)

with ξ ∈ Rn, η ∈ Rn, Ai ∈ Rn×n
i=0,1, B,M ∈ Rn×n real matrices, u ∈ Rn is the input,

τ > h ≥ 0 and k1 is a continuous function.

We consider the following Assumption.

Assumption A1. There exist two matrices K0 and K1 such that the origin of the
system

ξ̇(t) = H0ξ(t) +H1ξ(t− h) (3.2)

with H0 = A0 +BK0 and H1 = A1 +BK1, is globally exponentially stable.

Problem 1. Under Assumption A1, design a stabilizing control law for system (3.1).

Let us introduce the notation

ηs(t, ξt, ηt) = K0ξ(t+ τ) +K1ξ(t+ τ − h) (3.3)

17
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for all t ≥ τ .

Theorem 9. Let system (3.1) satisfy the Assumption A1. There is a positive real scalar
r̄ > 0 such that the system (1) in closed loop with the feedback

u(t, ξt, ηt) = Nη(t)− M+N
r

∫ t
t−r ηs(l, ξl, ηl) dl + ηs(t,ξt,ηt)−ηs(t−r,ξt−r,ηt−r)

r
− k1(t, ξt, ηt)

(3.4)
where N is a matrix such that M + N is Hurwitz, is globally exponentially stable for

all r ∈ (0, r̄].

Remark. Even when the classical backstepping applies, it may be useful to apply the a
approach which uses artificial delays because the feedback with artificial delays is given by
formulas simpler than those provident by the classical backstepping approach.

Proof. The proof starts by defining a transformation

η̄(t) = η(t)− 1

r

∫ t

t−r
ηs(l, ξl, ηl) dl (3.5)

Then simple calculations give

{
ξ̇(t) = A0ξ(t) + A1ξ(t− h) +B 1

r

∫ t−τ
t−r−τ ηs(l, ξl, ηl)dl +Bη̄(t− τ)

˙̄η(t) = M(η̄(t) + 1
r

∫ t
t−r ηs(l, ξl, ηl) dl) + u(t) + ηs(t−r,ξt−r,ηt−r)−ηs(t,ξt,ηt)

r
+ k1(t, ξt, ηt)

Now observe that the control law (3.4) can be rewritten as:

u(t, ξt, ηt) = Nη̄(t)− M

r

∫ t

t−r
ηs(l, ξl, ηl) dl +

ηs(t, ξt, ηt)− ηs(t− r, ξt−r, ηt−r)
r

− k1(t, ξt, ηt)

(3.6)
Hence the closed loop system reduces to:

{
ξ̇(t) = A0ξ(t) + A1ξ(t− h) +B 1

r

∫ t−τ
t−r−τ ηs(l, ξl, ηl)dl +Bη̄(t− τ)

˙̄η(t) = (M +N)η̄(t)
(3.7)

Since the η̄-subsystem in (3.7) is exponentially stable, we try to extend its stability to
the ξ-subsystem
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ξ̇(t) = A0ξ(t) + A1ξ(t− h) +
B

r

∫ t−τ

t−r−τ
ηs(l, ξl, ηl) dl + ε(t) (3.8)

with ε(t) = Bη̄(t− τ). We observe that

ξ̇(t) = A0ξ(t) + A1ξ(t− h) +Bηs(t− τ, ξt−τ , ηt−τ )
+B

r

∫ t−τ
t−r−τ [ηs(l, ξl, ηl)− ηs(t− τ, ξt−τ , ηt−τ )] dl + ε(t)

(3.9)

Thus we have

ξ̇(t) = H0ξ(t) +H1ξ(t− h) +
B

r

∫ t−τ

t−r−τ
[ηs(l, ξl, ηl)− ηs(t− τ, ξt−τ , ηt−τ )] dl + ε(t)

for all t ≥ τ . We deduce that

ξ̇(t) = H0ξ(t)+H1ξ(t−h)+
B

r

∫ t−τ

t−r−τ
[K0(ξ(l+τ)−ξ(t))+K1(ξ(l+τ−h)−ξ(t−h))] dl+ε(t)

for all t ≥ τ . As an immediate consequence

ξ̇(t) = H0ξ(t) +H1ξ(t− h) + ζ(t, ξt) (3.10)

where

ζ(t, ξt) =
B

r

∫ t−τ

t−r−τ

[
K0

∫ l+τ

t

ξ̇(s)ds+K1

∫ l+τ−h

t−h
ξ̇(s)ds

]
dl + ε(t)

In view of the Assumption A1 and the results of the previous chapter, the Lyapunov
matrix U(θ), θ ∈ [−h, 0] of system (3.2) associated with W = W0 +W1 + hW2, where Wi

are symmetric positive definite matrices for i = 0, 1, 2, exist then we consider the positive
defined functional

V (ξt) = ξT (t)U(0)ξ(t) + 2ξT (t)
∫ 0

−h U(−h− θ)H1ξ(t+ θ) dθ

+
∫ 0

−h ξ
T (t+ θ1)HT

1

∫ 0

−h U(θ1 − θ2)H1ξ(t+ θ2) dθ2dθ1

+
∫ 0

−h ξ
T (t+ θ)[W1 + (θ + h)W2]ξ(t+ θ) dθ

(3.11)

Following the same procedure as in [19] the derivative of V (ξt) along the trajectories
of system (3.10) is

V̇ (ξt) = −ξT (t)W0ξ(t)− ξT (t− h)W1ξ(t− h)−
∫ 0

−h ξ
T (t+ θ)W2ξ(t+ θ) dθ

+2ζT (t, ξt)
[
U(0)ξ(t) +

∫ 0

−h U(−h− θ)H1ξ(t+ θ) dθ
] (3.12)
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Let

γ(t, ξt) = U(0)ξ(t) +

∫ 0

−h
U(−h− θ)H1ξ(t+ θ) dθ

Then

V̇ (ξt) = −ξT (t)W0ξ(t)−ξT (t−h)W1ξ(t−h)−
∫ 0

−h
ξT (t+θ)W2ξ(t+θ) dθ+2ζT (t, ξt)γ(t, ξt)

Using the inequality 2aT b ≤ aTMa + bTM−1b which holds for an arbitrary positive
definite matrix M and a, b ∈ Rn, we can arrive at

V̇ (ξt) ≤ −λmin(W0)|ξ(t)|2 − λmin(W1)|ξ(t− h)|2 − λmin(W2)
∫ 0

−h |ξ(t+ θ)|2 dθ
+1
δ
|ζ(t, ξt)|2 + δ|γ(t, ξt)|2

(3.13)

for a positive real scalar δ > 0. Let us define

α1 = sup
θ∈[−h,0]

|U(−h− θ)H1| (3.14)

α0 = |U(0)| (3.15)

Then

|γ(t, ξt)|2 =
∣∣∣U(0)ξ(t) +

∫ 0

−h U(−h− θ)H1ξ(t+ θ) dθ
∣∣∣2

≤ 2 |U(0)ξ(t)|2 + 2
∣∣∣∫ 0

−h U(−h− θ)H1ξ(t+ θ) dθ
∣∣∣2

≤ 2α2
0|ξ(t)|2 + 2

∫ 0

−h |U(−h− θ)H1ξ(t+ θ)|2 dθ
≤ 2α2

0|ξ(t)|2 + 2α2
1

∫ 0

−h |ξ(t+ θ)|2 dθ

(3.16)

and

|ζ(t, ξt)|2 ≤ 4
∣∣∣Br ∫ t−τt−τ−rK0

∫ l+τ
t

ξ̇(s) dsdl
∣∣∣2 + 4

∣∣∣Br ∫ t−τt−τ−rK1

∫ l+τ−h
t−h ξ̇(s) dsdl

∣∣∣2 + 2 |ε(t)|2

Therefore

V̇ (ξt) ≤
−(λmin(W0)− 2δα2

0)|ξ(t)|2 − λmin(W1)|ξ(t− h)|2 − (λmin(W2)− 2δα2
1)×∫ 0

−h |ξ(t+ θ)|2 dθ + 4
δ

∣∣∣Br ∫ t−τt−τ−rK0

∫ l+τ
t

ξ̇(s) dsdl
∣∣∣2 + 4

δ

∣∣∣Br ∫ t−τt−τ−rK1

∫ l+τ−h
t−h ξ̇(s) dsdl

∣∣∣2
+2
δ
|ε(t)|2
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≤ −(λmin(W0)− 2δα2
0)|ξ(t)|2 − λmin(W1)|ξ(t− h)|2 − (λmin(W2)− 2δα2

1)×∫ 0

−h |ξ(t+ θ)|2 dθ + 4
δ
|B|2|K0|2

∣∣∣∫ tt−r |ξ̇(s)|ds∣∣∣2 + 4
δ
|B|2|K1|2

∣∣∣∫ t−ht−h−r |ξ̇(s)|ds
∣∣∣2

+2
δ
|ε(t)|2

≤ −(λmin(W0)− 2δα2
0)|ξ(t)|2 − λmin(W1)|ξ(t− h)|2 − (λmin(W2)− 2δα2

1)×∫ 0

−h |ξ(t+ θ)|2 dθ + 4
δ
|B|2|K0|2r

∫ t
t−r |ξ̇(s)|

2ds+ 4
δ
|B|2|K1|2r

∫ t−h
t−h−r |ξ̇(s)|

2ds

+2
δ
|ε(t)|2

Now consider the functional

V1(ξt) = V (ξt) + 4
δ
|B|2|K0|2r

∫ t
t−r

∫ t
m
|ξ̇(s)|2dsdm+ 4

δ
|B|2|K1|2r

∫ t−h
t−h−r

∫ t−h
m
|ξ̇(s)|2dsdm

+4
δ
|B|2|K1|2r2

∫ t
t−h |ξ̇(m)|2 dm

Then

V̇1(ξt) ≤ −(λmin(W0)− 2δα2
0)|ξ(t)|2 − λmin(W1)|ξ(t− h)|2 − (λmin(W2)− 2δα2

1)×∫ 0

−h |ξ(t+ θ)|2dθ + 4
δ
|B|2(|K0|+ |K1|)r2|ξ̇(t)|2 + 2

δ
|ε(t)|2

by (3.8)

V̇1(ξt) ≤
−(λmin(W0)− 2δα2

0)|ξ(t)|2 − λmin(W1)|ξ(t− h)|2 − (λmin(W2)− 2δα2
1)
∫ 0

−h |ξ(t+ θ)|2dθ

+ q
δ
r2
∣∣∣A0ξ(t) + A1ξ(t− h) + B

r

∫ t−τ
t−τ−r[K0ξ(l + τ) +K1ξ(l + τ − h)]dl + ε(t)

∣∣∣2 + 2
δ
|ε(t)|2

with q = 4|B|2(|K0|+ |K1|). Thus

V̇1(ξt) ≤
−(λmin(W0)− 2δα2

0)|ξ(t)|2 − λmin(W1)|ξ(t− h)|2 − (λmin(W2)− 2δα2
1)
∫ 0

−h |ξ(t+ θ)|2dθ

+2q
δ
r2|A0ξ(t)|2 + 2q

δ
r2
∣∣∣A1ξ(t− h) + B

r

∫ t−τ
t−τ−r[K0ξ(l + τ) +K1ξ(l + τ − h)] dl + ε(t)

∣∣∣2
+2
δ
|ε(t)|2

≤
−(λmin(W0)− 2δα2

0)|ξ(t)|2 − λmin(W1)|ξ(t− h)|2 − (λmin(W2)− 2δα2
1)
∫ 0

−h |ξ(t+ θ)|2dθ
+2q

δ
r2|A0ξ(t)|2 + 4q

δ
r2|A1ξ(t− h)|2

+4q
δ
r2
∣∣∣Br ∫ t−τt−τ−r[K0ξ(l + τ) +K1ξ(l + τ − h)] dl + ε(t)

∣∣∣2 + 2
δ
|ε(t)|2
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≤
−(λmin(W0)− 2δα2

0)|ξ(t)|2 − λmin(W1)|ξ(t− h)|2 − (λmin(W2)− 2δα2
1)
∫ 0

−h |ξ(t+ θ)|2dθ

+2q
δ
r2|A0ξ(t)|2 + 4q

δ
r2|A1ξ(t− h)|2 + 8q

δ
r2
∣∣∣Br ∫ t−τt−τ−r[K0ξ(l + τ) +K1ξ(l + τ − h)]dl

∣∣∣2
+8q

δ
r2|ε(t)|2 + 2

δ
|ε(t)|2

≤
−(λmin(W0)− 2δα2

0 −
2q
δ
r2|A0|2)|ξ(t)|2 − (λmin(W1)− 4q

δ
r2|A1|2)|ξ(t− h)|2

−(λmin(W2)− 2δα2
1)×

∫ 0

−h |ξ(t+ θ)|2dθ + 16q
δ
r2
∣∣∣BrK0

∫ t
t−r ξ(l)dl

∣∣∣2
+16q

δ
r2
∣∣∣BrK1

∫ t−h
t−h−r ξ(l)]dl

∣∣∣2 +
[

8qr2+2
δ

]
|ε(t)|2

≤
−(λmin(W0)− 2δα2

0 −
2q
δ
r2|A0|2)|ξ(t)|2 − (λmin(W1)− 4q

δ
r2|A1|2)|ξ(t− h)|2

−(λmin(W2)− 2δα2
1)
∫ 0

−h |ξ(t+ θ)|2dθ + 16qr
δ
|BK0|2

∫ t
t−r |ξ(l)|

2dl

+16qr
δ
|BK1|2

∫ t−h
t−h−r |ξ(l)|

2dl +
[

8qr2+2
δ

]
|ε(t)|2

Now, let

V2(ξt) = V1(ξt) + 16qr
δ
|BK0|2

∫ t
t−r

∫ t
m
|ξ(l)|2 dldm+ 16qr

δ
|BK1|2

∫ t−h
t−h−r

∫ t−h
m
|ξ(l)|2 dldm

Then

V̇2(ξt) ≤ −(λmin(W0)− 2qr2

δ
|A0|2 − 2δα2

0 −
16qr2

δ
|BK0|2)|ξ(t)|2 − (λmin(W1)

−4qr2

δ
|A1|2 − 16qr2

δ
|BK1|2)|ξ(t− h)|2 − (λmin(W2)− 2δα2

1)
∫ 0

−h |ξ(t+ θ)|2dθ
+
[

8qr2+2
δ

]
|ε(t)|2

(3.17)

Recall from the previous chapter that W0 + W1 + hW2 = W and that U(θ), θ ∈
[−h, 0] depends on W . Furthermore α0 and α1 depend on U(θ). As W0, W1 and W2 are
symmetric positive definite matrices there always exist δ and r small enough so that the
terms multiplied by δ and r

δ
do not destroy the positivity of the factors of |ξ(t)|2, |ξ(t−h)|2

and
∫ t
t−h |ξ(θ)|

2 dθ. Hence, there exist δ̄ and r̄ such that for δ ∈ (0, δ̄] and for r ∈ (0, r̄],

(λmin(W0)− 2qr2

δ
|A0|2 − 2δα2

0 −
16qr2

δ
|B|2|K0|2) ≥ λmin(W )

2
(3.18)

(λmin(W1)− 4qr2

δ
|A1|2 −

16qr2

δ
|B|2|K1|2) ≥ 0 (3.19)
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(λmin(W2)− 2δα2
1) ≥ 0 (3.20)

and we obtain the inequality

V̇2(ξt) ≤ −
λmin(W )

2
|ξ(t)|2 +

(8qr2 + 2)

δ
|ε(t)|2 (3.21)

Since ε(t) converges exponentially to the origin, we deduce that ξ(t) converges expo-
nentially to the origin.

3.2 Systems with uncertainty in matrix

Now we consider additive uncertainty in the systems matrices. The perturbed system is
in the form {

χ̇(t) = (A0 + ∆0)χ(t) + (A1 + ∆1)χ(t− h) +Bη(t− τ)
η̇(t) = η(t) + k1(t, χt, ηt) + u(t)

(3.22)

with χ ∈ Rn, η ∈ Rn, Ai, i = 0, 1, B,M ∈ Rn ×Rn, real matrices, u ∈ Rn is the input,
τ ≥ h > 0 and k1 is a continuous function. Here matrices ∆0 and ∆1 are constants but
unknown such that

|∆k| ≤ ρk, k = 0, 1 (3.23)

Problem 2 Design a stabilizing control law for system (3.22).

Theorem 10. Let system (3.22) be such that the matrices of the Assumption A1 exist.
There is a positive real scalar r̄ > 0 such that the system (3.22) in closed loop with

u(t, χt, ηt) = Nη(t)− M+N
r

∫ t
t−r ηs(l, χl, ηl) dl + ηs(t,χt,ηt)−ηs(t−r,χt−r,ηt−r)

r
− k1(t, χt, ηt)

(3.24)
is globally exponentially stable for r ∈ (0, r̄].

Remark. The term ηs in control law is computed with the matrices of the nominal system
(3.1) and the corresponding nominal predictors of Lemma 2
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Proof. As in the nominal case, the control law (3.24) can be rewritten using the transfor-
mation (3.5) :

u(t.χt, ηt) = Nη̄(t)− M
r

∫ t
t−r ηs(l, χl, ηl) dl + ηs(t,χt,ηt)−ηs(t−r,χt−r,ηt−r)

r
− k1(t, χt, ηt)

Hence the closed loop system reduces to:

 χ̇(t) = A0χ(t) + A1χ(t− h) +B 1
r

∫ t−τ
t−r−τ ηs(l, χl, ηl)dl +Bη̄(t− τ)

+∆0χ(t) + ∆1χ(t− h)
˙̄η(t) = (M +N)η̄(t)

(3.25)

Since the η̄-subsystem in (3.25) is exponentially stable, we try to extend its stability
to the χ-subsystem

χ̇(t) = A0χ(t) +A1χ(t− h) +
B

r

∫ t−τ

t−τ−r
ηs(l, χl, ηl) dl+ ∆0χ(t) + ∆1χ(t− h) + ε(t) (3.26)

with ε(t) = Bη̄(t− τ).

As in previous section

χ̇(t) = H0χ(t) +H1χ(t− h) + ζ(χt) (3.27)

where

ζ(t, χt) =
B

r

∫ t−τ

t−τ−r

[
K0

∫ l+τ

t

χ̇(s)ds+K1

∫ l+τ−h

t−h
χ̇(s)ds

]
dl+[∆0χ(t) + ∆1χ(t− h)]+ε(t)

In view of Assumption A1, the functional

V (χt) = χT (t)U(0)χ(t) + 2χT (t)
∫ 0

−h U(−h− θ)H1χ(t+ θ)dθ

+
∫ 0

−h χ
T (t+ θ1)HT

1

∫ 0

−h U(θ1 − θ2)H1χ(t+ θ2) dθ2dθ1

+
∫ 0

−h χ
T (t+ θ)[W1 + (θ + h)W2]χ(t+ θ) dθ

is well defined and has as a derivative along the trajectories of (3.26)

V̇ (χt) = −χT (t)W0χ(t)− χT (t− h)W1χ(t− h)−
∫ 0

−h χ
T (t+ θ)W2χ(t+ θ)dθ

+2ζT (t, χt)γ(t, χt)

≤ −λmin(W0)|χ(t)|2 − λmin(W1)|χ(t− h)|2 − λmin(W2)
∫ 0

−h |χ(t+ θ)|2dθ
+1
δ
|ζ(t, χt)|2 + δ|γ(t, χt)|2
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with

γ(t, χt) = U(0)χ(t) +

∫ 0

−h
U(−h− θ)H1χ(t+ θ) dθ

and δ > 0 a positive real scalar.

Then for α0 and α1 defined as in (3.14)-(3.15)

|γ(t, χt)|2 ≤ 2α2
0|χ(t)|2 + 2α2

1

∫ 0

−h
|χ(t+ θ)|2 dθ

Therefore

V̇ (χt) ≤
−(λmin(W0)− 2δα2

0)|χ(t)|2 − λmin(W1)|χ(t− h)|2 − (λmin(W2)− 2δα2
1)×∫ 0

−h |χ(t+ θ)|2dθ + 2
δ

∣∣∣Br ∫ t−τt−τ−rK0

∫ l+τ
t

χ̇(s)dsdl
∣∣∣2 + 22

δ

∣∣∣Br ∫ t−τt−τ−rK1

∫ l+τ−h
t−h χ̇(s)dsdl

∣∣∣2
+23

δ
|∆0χ(t)|2 + 24

δ
|∆1χ(t− h)|2 + 25

δ
|ε(t)|2

≤
−(λmin(W0)− 2δα2

0 − 23

δ
ρ2

0)|χ(t)|2 − (λmin(W1)− 24

δ
ρ2

1)|χ(t− h)|2
−(λmin(W2)− 2δα2

1)
∫ 0

−h |χ(t+ θ)|2dθ + 2
δ
|BK0|2r

∫ t
t−r |χ̇(s)|2ds

+22

δ
|BK1|2r

∫ t−h
t−h−r |χ̇(s)|2ds+ 25

δ
|ε(t)|2

Now consider the functional

V1(χt) =

V (χt) + 2
δ
|BK0|2r

∫ t
t−r

∫ t
m
|χ̇(s)|2dsdm+ 22

δ
|BK1|2r

∫ t−h
t−h−r

∫ t−h
m
|χ̇(s)|2dsdm

+22

δ
|BK1|2r2

∫ t
t−h |χ̇(m)|2dm

Then

V̇1(χt) ≤
−(λmin(W0)− 2δα2

0 − 23

δ
ρ2

0)|χ(t)|2 − (λmin(W1)− 24

κ
ρ2

1)|χ(t− h)|2
−(λmin(W2)− 2δα2

1)
∫ 0

−h |χ(t+ θ)|2 dθ + 2
δ
|B|2(|K0|+ 2|K1|)r2|χ̇(t)|2 + 25

δ
|ε(t)|2

by (3.26) and defining q = 2|B|2(|K0|+ 2|K1|)

V̇1(χt) ≤
−(λmin(W0)− 2δα2

0 − 23

δ
ρ2

0 −
2q
δ
r2(|A0|2 + ρ2

0))|χ(t)|2
−(λmin(W1)− 24

δ
ρ2

1 −
4q
δ
r2(|A1|2 + ρ2

1))|χ(t− h)|2
−(λmin(W2)− 2δα2

1)
∫ 0

−h |χ(t+ θ)|2dθ
+16qr

δ
|BK0|2

∫ t
t−r |χ(l)|2dl + 16qr

δ
|BK1|2

∫ t−h
t−h−r |χ(l)|2dl +

[
8qr2+25

δ

]
|ε(t)|2

CINVESTAV Departamento de Control Automatico



26 Chapter 3

Now, let

V2(χt) = V1(χt) + 16qr
δ
|BK0|2

∫ t
t−r

∫ t
m
|χ(l)|2dldm+ 16qr

δ
|BK1|2

∫ t−h
t−h−r

∫ t−h
m
|χ(l)|2dldm

Then

V̇2(χt) ≤ −(λmin(W0)− 2δα2
0 − 23

δ
ρ2

0 −
2q
δ
r2(|A0|2 + ρ2

0)− 16qr2

δ
|BK0|2)|χ(t)|2

−(λmin(W1)− 24

δ
ρ2

1 −
4q
δ
r2(|A1|2 + ρ2

1)− 16qr2

δ
|BK1|2)|χ(t− h)|2

−(λmin(W2)− 2δα2
1)
∫ 0

−h |χ(t+ θ)|2 dθ +
[

8qr2+25

δ

]
|ε(t)|2

As in the case of the nominal system we need find δ and r ensuring the positivity of
the factors of |χ(t)|2, |χ(t− h)|2 and

∫ t
t−h |χ(θ)|2 dθ. Hence, there exist δ̄ and r̄ such that

for δ ∈ (0, δ̄] and r ∈ (0, r̄],

(λmin(W0)− 2δα2
0 −

23

δ
ρ2

0 −
2q

δ
r2(|A0|2 + ρ2

0)− 16qr2

δ
|BK0|2) ≥ λmin(W )

2
(3.28)

(λmin(W1)− 24

δ
ρ2

1 −
4q

δ
r2(|A1|2 + ρ2

1)− 16qr2

δ
|BK1|2) ≥ 0 (3.29)

(λmin(W2)− 2δα2
1) ≥ 0 (3.30)

and we obtain the inequality

V̇2(χt) ≤ −
λmin(W )

2
|χ(t)|2 +

(8qr2 + 25)

δ
|ε(t)|2

Since ε(t) converges exponentially to the origin, we deduce that χ(t) converges expo-
nentially to the origin.

3.3 Systems with uncertain delays
Now we consider additive uncertainty in the delays of the systems. The perturbed system
is of the form {

χ̇(t) = A0χ(t) + A1χ(t− h− x1) +Bη(t− τ − x2)
η̇(t) = Mη(t) + k1(t, χt, ηt) + u(t)

(3.31)
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with χ ∈ Rn, η ∈ Rn, Ai, i = 0, 1, B,M ∈ Rn ×Rn, real matrices, u ∈ Rn is the input,
τ > h > 0 and k1 is a continuous function. Here we consider that x1 and x2 are constants
but unknown and exist β1 ∈ [0, h] and β2 ∈ [0, τ ] such that

|x1| ≤ β1 (3.32)

|x2| ≤ β2 (3.33)

Remembering the equation (3.3) it define

ηs(t, χt, ηt) = K0χ(t+ τ − β2) +K1χ(t+ τ − β2 − h) (3.34)

Remark. The corresponding predictors are computed with the nominal system (3.1).

Problem 3 Design a stabilizing control law for system (3.31).

Theorem 11. Let system (3.31) such that the matrices of the Assumption A1 exist. There
is a positive real scalar r̄ > 0 such that the system (3.31) in closed loop with

u(t, χt, ηt) = Nη(t)− M+N
r

∫ t
t−r ηs(l, χl, ηl) dl + ηs(t,χt,ηt)−ηs(t−r,χt−r,ηt−r)

r
− k1(t, χt, ηt)

(3.35)
is globally exponentially stable for r ∈ (0, r̄].

Proof. Using the transformation.

η̄(t) = η(t)− 1

r

∫ t

t−r
ηs(l, χl, ηl) dl (3.36)

we can rewrite the control law as

u(t, χt, ηt) = Nη̄(t)− M
r

∫ t
t−r ηs(l, χl, ηl) dl + ηs(t,χt,ηt)−ηs(t−r,χt−r,ηt−r)

r
− k1(t, χt, ηt)

(3.37)
then the system (3.31) reduces to:

{
χ̇(t) = A0χ(t) + A1χ(t− x1 − h) +B 1

r

∫ t−τ−x2
t−τ−x2−r ηs(l, χl, ηl)dl +Bη̄(t− τ − x2)

˙̄η(t) = (M +N)η̄(t)
(3.38)

Since the η̄-subsystem of (3.38) is exponentially stable, we try to extend its stability
to the χ-subsystem
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χ̇(t) = A0χ(t)+A1χ(t−h)+B
1

r

∫ t−τ−x2

t−τ−x2−r
ηs(l, χl, ηl)dl+Bη̄(t−τ−x2)−

∫ t−h

t−h−x1
A1χ̇(θ) dθ

(3.39)
with ε(t) = Bη̄(t− τ − x2).

Remark. Since the definition of (3.34) is different from (3.3) then (3.36) is different from
(3.5).

As in previous section we can rewrite (3.39) as

χ̇(t) = H0χ(t) +H1χ(t− h) + ζ(χt) (3.40)

where

ζ(χt) = −K0χ(t)−K1χ(t− h)−
∫ t−h
t−h−x1 A1χ̇(θ) dθ

+B
r

∫ t−τ−x2
t−τ−x2−r [K0χ(l + τ − β2) +K1χ(l + τ − β2 − h)] dl + ε(t)

In view of Assumption A1, the functional

V (χt) = χT (t)U(0)χ(t) + 2χT (t)
∫ 0

−h U(−h− θ)H1χ(t+ θ)dθ

+
∫ 0

−h χ
T (t+ θ1)HT

1

∫ 0

−h U(θ1 − θ2)H1χ(t+ θ2)dθ2dθ1

+
∫ 0

−h χ
T (t+ θ)[W1 + (θ + h)W2]χ(t+ θ)dθ

(3.41)

is well defined and admits a derivative along the trajectories of (3.40) such that

V̇ (χt) ≤ −χT (t)W0χ(t)− χT (t− h)W1χ(t− h)−
∫ 0

−h χ
T (t+ θ)W2χ(t+ θ) dθ

+|2ζT (χt)γ(χt)|

with

γ(χt) = U(0)χ(t) +

∫ 0

−h
U(−h− θ)H1χ(t+ θ) dθ

then

V̇ (χt) ≤ −λmin(W0)|χ(t)|2 − λmin(W1)|χ(t− h)|2 − λmin(W2)
∫ 0

−h |χ(t+ θ)|2 dθ
+δ|ζ(χt)|2 + 1

δ
|γ(χt)|2

As we have seen in the previous section,

1
δ
|γ(χt)|2 ≤ 2

δ
α2

0|χ(t)|2 + 2
δ
α2

1

∫ 0

−h |χ(t+ θ)|2 dθ (3.42)
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Now we are looking for a upper bound for δ|ζT (χt)|2

δ|ζT (χt)|2 ≤
2δ|K0|2 |χ(t)|2 + 22δ|K1|2 |χ(t− h)|2 + 23δ |B|

2

r2

∣∣∣∫ t−τ−x2t−τ−x2−rK0χ(l + τ − β2) dl
∣∣∣2

+24δ |B|
2

r2

∣∣∣∫ t−τ−x2t−τ−x2−rK1χ(l + τ − β2 − h) dl
∣∣∣2 + 25δ

∣∣∣∫ t−ht−h−x1 A1χ̇(θ) dθ
∣∣∣2 + 25δ |ε(t)|2

≤
2δ|K0|2 |χ(t)|2 + 22δ|K1|2 |χ(t− h)|2 + 23δ |BK0|2

r

∫ −x2
−x2−r |χ(l + t− β2)|2 dl

+24δ |BK1|2
r

∫ −x2
−x2−r |χ(l + t− β2 − h)|2 dl + 25δ

∣∣∣∫ t−ht−h−x1 A1χ̇(θ) dθ
∣∣∣2 + 25δ |ε(t)|2

Substituting χ̇(θ) from the equation (3.38)

δ|ζT (χt)|2 ≤
2δ|K0|2 |χ(t)|2 + 22δ|K1|2 |χ(t− h)|2 + 23δ |BK0|2

r

∫ β2
−β2−r |χ(l + t− β2)|2 dl

+24δ |BK1|2
r

∫ β2
−β2−r |χ(l + t− β2 − h)|2 dl

+sign(x1)26δ|x1||A1A0|2
∫ −h
−h−x1 |χ(t+ θ)|2 dθ

+sign(x1)27δ|x1||A1A1|2
∫ −h
−h−x1 |χ(t+ θ − h− x1)|2 dθ

+sign(x1)28δ|x1| |A1BK0|2
r

∫ −h
−h−x1

∫ θ−x2
θ−x2−r |χ(s+ t− β2)|2 dsdθ

+sign(x1)29δ|x1| |A1BK1|2
r

∫ −h
−h−x1

∫ θ−x2
θ−x2−r |χ(s+ t− β2 − h)|2 dsdθ

+sign(x1)210δ|x1||A1B|2
∫ −h
−h−x1 |ε(θ + t)|2 dθ + 25δ |ε(t)|2

≤ 2δ|K0|2 |χ(t)|2 + 22δ|K1|2 |χ(t− h)|2 + 23δ |BK0|2
r

∫ 0

−2β2−r |χ(l + t)|2 dl
+24δ |BK1|2

r

∫ 0

−2β2−r |χ(l + t− h)|2 dl
+26δ|x1||A1A0|2

∫ 0

−h−x1ω(x1)
|χ(t+ θ)|2 dθ

+27δ|x1||A1A1|2
∫ 0

−h−2x1ω(x1)
|χ(t+ θ − h)|2 dθ

+28δ|x1| |A1BK0|2
r

∫ 0

−h−x1ω(x1)

∫ θ
θ−2β2−r |χ(s+ t)|2 dsdθ

+29δ|x1| |A1BK1|2
r

∫ 0

−h−x1ω(x1)

∫ θ
θ−2β2−r |χ(s+ t− h)|2 dsdθ

+210δ|x1||A1B|2
∫ 0

−h−x1ω(x1)
|ε(θ + t)|2 dθ + 25δ |ε(t)|2

≤ 2δ|K0|2 |χ(t)|2 + 22δ|K1|2 |χ(t− h)|2 + 23δ |BK0|2
r

∫ 0

−2β2−r |χ(l + t)|2 dl
+24δ |BK1|2

r

∫ 0

−2β2−r |χ(l + t− h)|2 dl
+26δ|x1||A1A0|2

∫ 0

−h−x1ω(x1)
|χ(t+ θ)|2 dθ

+27δ|x1||A1A1|2
∫ 0

−h−2x1ω(x1)
|χ(t+ θ − h)|2 dθ

+(h+ x1ω(x1))28δ|x1| |A1BK0|2
r

∫ 0

−h−x1ω(x1)−2β2−r |χ(s+ t)|2 ds
+(h+ x1ω(x1))29δ|x1| |A1BK1|2

r

∫ 0

−h−x1ω(x1)−2β2−r |χ(s+ t− h)|2 ds
+210δ|x1||A1B|2

∫ 0

−h−x1ω(x1)
|ε(θ + t)|2 dθ + 25δ |ε(t)|2
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Now we define the positive definite functional V1(χt) as

V1(χt) =

V (χt) + 23δ |BK0|2
r

∫ 0

−2β2−r(2β2 + r + l) |χ(l + t)|2 dl
+24δ |BK1|2

r

∫ 0

−2β2−r(2β2 + r + l) |χ(l + t− h)|2 dl
+26δ|x1||A1A0|2

∫ 0

−h−x1ω(x1)
(h+ x1ω(x1) + l) |χ(l + t)|2 dl

+27δ|x1||A1A1|2
∫ 0

−h−2x1ω(x1)
(h+ 2x1ω(x1) + l) |χ(l + t− h)|2 dl

+28δ|x1| |A1BK0|2
r

(h+ x1ω(x1))×∫ 0

−h−x1ω(x1)−2β2−r(h+ x1ω(x1) + 2β2 + r + s) |χ(s+ t)|2 ds
+29δ|x1| |A1BK1|2

r
(h+ x1ω(x1))×∫ 0

−h−x1ω(x1)−2β2−r(h+ x1ω(x1) + 2β2 + r + s) |χ(s+ t− h)|2 ds

(3.43)

Then

V̇1(χt) ≤ −N0|χ(t)|2 −N1|χ(t− h)|2 −N2

∫ 0

−h |χ(t+ θ)|2dθ
+210δ|x1||A1|

∫ −h
−h−x1 |ε(θ + t)|2 dθ + 25δ |ε(t)|2

(3.44)

N0 = λmin(W0)− 2δ|K0|2 − 23δ |BK0|2
r

(2β2 + r)− 26δ|x1||A1A0|2(h+ x1ω(x1))

−28δ|x1| |A1BK0|2
r

(h+ x1ω(x1))(h+ x1ω(x1) + 2β2 + r)− 2
δ
α2

0

(3.45)

N1 = λmin(W1)− 2δ|K1|2 − 24δ |BK1|2
r

(2β2 + r)− 27δ|x1||A1A1|2(h+ 2x1ω(x1))

−29δ|x1| |A1BK1|2
r

(h+ x1ω(x1))(h+ x1ω(x1) + 2β2 + r)
(3.46)

N2 = λmin(W2)− 2

δ
α2

1 (3.47)

As in the case of the nominal system we need find an δ and r ensuring the positivity
of the factors of |χ(t)|2, |χ(t− h)|2 and

∫ 0

−h |χ(θ+ t)|2 dθ. Hence, there exist δ̄ and r̄ such
that for δ ∈ (0, δ̄] and r ∈ (0, r̄]

N0 ≥
λmin(W )

2
(3.48)

N1 ≥ 0 (3.49)

N2 ≥ 0 (3.50)
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and we obtain the inequality

V̇1(χt) ≤ −
λmin(W )

2
|χ(t)|2 + 210δ|x1||A1|

∫ −h
−h−x1

|ε(θ + t)|2 dθ + 25δ |ε(t)|2 (3.51)

Since ε(t) converges exponentially to the origin, we deduce that χ(t) converges expo-
nentially to the origin.

3.4 Illustrative examples

Exampe 1. Let us consider the scalar equations{
ξ̇(t) = ξ(t) + η(t− 2)
η̇(t) = η(t) + u(t)

(3.52)

Choosing W0 = 1, W1 = 0.02 and W2 = 0.03, to satisfy with the conditions (3.18)-
(3.20) the values of δ̄ and r̄ are

δ̄ = 0.03

r̄ = 0.0128

then using the control law (3.4) we obtain

Figure 3.1: u(t) Figure 3.2: η(t)
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Figure 3.3: ξ(t)

Remark. As we can see in [22] the semidiscretization of distributed-delay control laws
may have a destabilizing effect on the systems. So for the implementation of the control
law we use the filter given in [5] with N = −1.1 and G = −0.7

Exampe 2. Consider

{
ξ̇(t) = 2ξ(t) + ξ(t− 0.25) + η(t− 0.5)
η̇(t) = η(t) + u(t)

(3.53)

With ξ ∈ R, η ∈ R. If we choose W0 = 1, W1 = 0.02 and W2 = 0.03, to satisfy with
the conditions (3.18)-(3.20) the values of δ̄ and r̄ are

δ̄ = 0.01

r̄ = 0.0009

then using the control law (3.4) we obtain
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Figure 3.4: u(t) Figure 3.5: η(t)

Figure 3.6: ξ(t)

Remark. For the implementation of the control law using the filter previously described
with N = −30 and G = −40.

3.5 Conclusions
In this chapter we proposed a new backstepping control law based on artificial delays for
time invariant linear systems and we performed a robustness analysis for disturbances
in both system matrices and delays. A noticeable feature of this approach is that it is
constructive. The examples presented at the end of the chapter show that control law,
provides a satisfactory closed loop response.
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Backstepping based on artificial delays
for nonlinear time delay systems

In this chapter we use artificial delays to stabilize nonlinear time invariant systems in strict
feedback form with pointwise delay in the input. A remarkable aspect of this variant is
that the controllers are implemented with pointwise delays.

4.1 Problem statement
We consider the system {

Ẋ(t) = F (t,X(t), y1(t) + r1(t))

Ẏ (t) = A(t)Y (t) +Bu(t− τ) + r2(t)
(4.1)

with X ∈ Rq, Y = (y1, ...., yn)T ∈ Rn, B = (0 , .... , 0 , 1)> ∈ Rn, u ∈ R, τ ≥ 0, F is a
nonlinear functional, locally Lipschitz with respect to its two last arguments and piecewise-
continuous with respect to the first, r1 and r2 are disturbances, and A : [0,+∞)→ Rn×n

is of the form:

A(t) =



a1,1(t) a1,2(t) 0 ... 0
a2,1(t) a2,2(t) a2,3(t) ... 0

... . . . . . . ...

...
...

an−1,1(t) an−1,2(t) . . . . . . an−1,n(t)
an,1(t) an,2(t) ... ... an,n(t)


(4.2)

As F does not satisfy smoothness conditions then classical backstepping approach can
not be applied to the system (4.1) so we established the problem of this chapter as

Problem 4. Design of globally asymptotically stabilizing control laws for the system
(4.1) when F is not necessarily of class C1.

34
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Let us introduce 3 Assumptions.

Assumption B1. There are a functional V, a functional ϕ and a constant d ≥ 0 such
that the origin of the system{

ζ̇(t) = A(t)ζ(t) +BV(t− τ, χt−τ , ζt−τ ) + d(t)
χ̇(t) = ϕ(t, χt, ζt)

(4.3)

with ζ ∈ Rn and χ ∈ Rr, is BIBS and CICS with input d when

|d|∞ ≤ d (4.4)

The functional V is locally Lipschitz and there is a Lipschitz continuous function V such
that

|V(t, φ1, φ2)| ≤ V(φ1, φ2) (4.5)

for all t ∈ [0,+∞) and φ1 ∈ Cin and φ2 ∈ R.

Assumption B2. There are a function W, a functional $ and constants k > 0 and
h? > 0 such that when h ∈ (0, h?], then the system{

ξ̇(t) = F (t, ξt,ΓW,n(t, ξt,ℵt) + r(t))

ℵ̇(t) = $(t, ξt,ℵt)
(4.6)

with ξ ∈ Rq, ℵ ∈ Ru and ΓW,n defined in (2.19)-(2.20) is BIBS and CICS with input r.
The function W is locally Lipschitz and there is a Lipschitz continuous functions W such
that

|W(t, ξ,ℵ)| ≤ W(ξ,ℵ) (4.7)

for all t ∈ [0,+∞) and ξ ∈ Rq, ℵ ∈ Ru.

Remark. In the systems (4.3) and (4.6), there are dynamic extensions. We introduce
them for the sake of generality. Evidently, Assumptions B1 and B2 are satisfied in cases
where these dynamic extensions are not present.

Assumption B3. The functions ai,j, i ∈ {1, ..., n}, j ∈ {1, ...,min{i + 1, n}} are of
class Cn−i and there are constants a > 0 and a > 0 such that

|A(t)| ≤ a , ∀t ≥ 0 (4.8)

and
|a(p)
i,j (t)| ≤ a , ∀t ≥ 0 (4.9)

for all i ∈ {1, ..., n}, j ∈ {1, ...,min{i+1, n}}, p ∈ {1, ..., n−i} and for all i ∈ {1, ..., n−1}

a ≤ ai,i+1(t) , ∀t ≥ 0 (4.10)
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There is a Lipschitz continuous function F such that

|F (t, φ1, φ2)| ≤ F (φ1, φ2) (4.11)

for all t ∈ [0,+∞) and (φ1, φ2) ∈ Cin × R and

F (0, 0) = 0 (4.12)

4.2 Feedback stabilization

Let us define the functional

y†,1(t,Xt,ℵt) = ΓW,n(t,Xt,ℵt) (4.13)

and by induction, we define the functionals y†,i as the functionals such that for i ∈
{1, ..., n− 1}, along the trajectories system (4.1)

y†,i+1(t,Xt,ℵt) =
1

ai,i+1(t)

[
ẏ†,i(t,Xt,ℵt)−

i∑
l=1

ai,l(t)y†,l(t,Xt,ℵt)

]
(4.14)

Assumption B3 ensures that they are well-defined. Now, one can prove by indutions
that there are continuous and bounded functions bi,s(t) such that, for i ∈ {1, ..., n},

y†,i(t,Xt,ℵt) =
n∑

s=n−i+1

bi,s(t)ΓW,s(t,Xt,ℵt) (4.15)

We deduce that there are continuous and bounded functions cs(t) such that

n∑
l=1

an,l(t)y†,l(t,Xt,ℵt)− ẏ†,n(t,Xt,ℵt) =
n∑
s=0

cs(t)ΓW,s(t,Xt,ℵt) (4.16)

Now, let us introduce:

ỹi(t) = yi(t)− y†,i(t,Xt,ℵt), i = 1, ..., n (4.17)

and
Ỹ (t) = (ỹ1(t), .... , ỹn(t)) (4.18)

We are ready to state and prove the following theorem, which is the main result of this
chapter.
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Theorem 12. Let the system (4.1) satisfy Assumptions B1 to B3. Then the system (4.1)
in closed-loop with the dynamic feedback:

u(t− τ) = −
n∑
s=0

cs(t)ΓW,s(t,Xt,ℵt) + V
(
t− τ, χt−τ , Ỹt−τ

)
ℵ̇(t) = $(t,Xt,ℵt)
χ̇(t) = ϕ

(
t, χt, Ỹt

) (4.19)

with Ỹ defined in (4.18) is BIBS and CICS with input (r1(t), r2(t)) when

|r2|∞ ≤ d (4.20)

where d is the constant in (4.4).

Proof. Let us consider the system (4.1) and Ỹ defined in (4.18). Since, according to (4.14),

ẏ†,i(t,Xt,ℵt) =
i+1∑
l=1

ai,l(t)y†,l(t,Xt,ℵt) (4.21)

for all i = 1 to n− 1, we have

˙̃yi(t) =
i+1∑
l=1

ai,l(t)ỹl(t) (4.22)

and

˙̃yn(t) =
n∑
l=1

an,l(t)yl(t) + u(t− τ)− ẏ†,n(t,Xt,ℵt)

=
n∑
l=1

an,l(t)ỹl(t) + u(t− τ) +
n∑
l=1

an,l(t)y†,l(t,Xt,ℵt)− ẏ†,n(t,Xt,ℵt)
(4.23)

It follows from (4.22) and the (4.16) that

˙̃Y (t) = A(t)Ỹ (t) +B

[
u(t− τ) +

n∑
s=0

cs(t)ΓW,s(t,Xt,ℵt)

]
(4.24)

From (4.17), it follows that y1(t) = ΓW,n(t,Xt,ℵt) + ỹ1(t).
Thus we have:

Ẋ(t) = F (t,Xt,ΓW,n(t,Xt,ℵt) + ỹ1(t) + r1(t))

˙̃Y (t) = A(t)Ỹ (t) +B

[
u(t− τ) +

n∑
s=0

cs(t)ΓW,s(t,Xt,ℵt)

]
+ r2(t)

(4.25)

Applying the feedback u(t− τ) defined in (4.19), we obtain
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
Ẋ(t) = F (t,Xt,ΓW,n(t,Xt,ℵt) + ỹ1(t) + r1(t))

ℵ̇(t) = $(t,Xt,ℵt)
˙̃Y (t) = A(t)Ỹ (t) +BV

(
t− τ, χt−τ , Ỹt−τ

)
+ r2(t)

χ̇(t) = ϕ(t, χt, Ỹt)

(4.26)

Assumption B1 and (4.20) ensure that the (Ỹ , χ)-subsystem of (4.26) is BIBS and
CICS with input r2(t). Next, Assumption B2 allows us to conclude.

4.2.1 Discussion of the main result

1) Since ΓW,s(t,Xt,ℵt) and V
(
t− τ, χt−τ , Ỹt−τ

)
depend on values of the various variables

involved at instants smaller than t − τ , the feedback in (4.19) is well-defined. For any
system (4.1), an explicit expression for the functions cs in (4.16) can be determined. Thus
the control in (4.19) can be used in practice.
2) When the functions V and W are bounded, then the feedback u defined in (4.19) is
bounded because the functions cs and ΓW,s are bounded.
4) Some considerations about the Theorem 12 are the following: (i) A depends on t, (ii)
the delay τ is present in u, (iii) delays can be present in the X-subsystem.
5) Under the additional mild condition that the system (4.1) is forward complete, one
can deduce from Theorem 12 and Lemma 8 the expression of a globally asymptotically
stabilizing control law with pointwise delays instead of distributed delays. Indeed, let us
introduce the dynamic extension:

ẇ1(t) = −kw1(t) +W(t− τ,X(t− τ)) (4.27)

and, for all j ∈ N, j ≥ 2
ẇj(t) = −kwj(t) + ζ(wj−1,t) (4.28)

with ζ defined in (2.23). Then Lemma 8 ensures that for all m ∈ N, for all t ≥ mh, the
equality

ζ(wm,t) = ΓW,m(t,Xt,ℵt) (4.29)
is satisfied. Thus

v(t− τ) = −
n∑
s=0

cs(t)ζ(ws,t) + V
(
t− τ,ℵt−τ , Ỹt−τ

)
ℵ̇(t) = $(t,Xt,ℵt)
χ̇(t) = ϕ

(
t, χt, Ỹt

) (4.30)

is such that
v(t− τ) = u(t− τ) (4.31)

for all t ≥ nh where u is the feedback defined in (4.19). From a practical point of view,
implementing v may be easier than implementing u.
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4.2.2 Checking the Assumptions

In general, checking that Assumption B1 is satisfied is a standard problem. Indeed, this
Assumption basically means that a linear time-varying system with a delay in the input
is stabilizable by a dynamic feedback. Assumption B3 is a boundedness condition on the
functions of the system with respect to t. It can be easily checked. Assumption B2 is
more problematic because the unusual operator ΓW,n is involved in it. However, one can
check that it is satisfied using a strategy in 2 steps:

(i) First, one determines functions W and $ such that{
ξ̇(t) = F (t, ξt,W(t− τ, ξ(t− τ),ℵ(t− τ)) + r(t))

ℵ̇(t) = $(t, ξt,ℵt)
(4.32)

is BIBS and CICS with input r.

(ii) Next, one establishes that the system (4.6) is BIBS and CICS when the tuning
parameter h is sufficiently small.

To prove this we describe how the trajectory based approach presented in [15] can be
applied when the particular case where the following Assumption is satisfied:

Assumption B4. There are constants f i ≥ 0, i = 1, 2 such that

|F (t, φ, z) | ≤ f 1 sup
s∈[−τ,0]

|φ(s)|+ f 2|z| (4.33)

for all t ≥ 0, φ ∈ Cin and z ∈ R. There are a function W : R × Rq → R, two constants
KW ≥ 0 and BW ≥ 0 such that

|W(a, b1)−W(a, b2)| ≤ KW |b1 − b2| (4.34)

for all a ∈ R, b1 ∈ Rq, b2 ∈ Rq and

|W(a1, b)−W(a2, b)| ≤ BW |a1 − a2||b| (4.35)

for all a1 ∈ R, a2 ∈ R, b ∈ Rq and constants T > 0 and t] ≥ T + τ such that the
solutions of the system:

Ẏ(t) = F (t,Yt,W(t− τ,Y(t− τ)) + r(t)) (4.36)
satisfy

|Y(t)| ≤ ι1 sup
s∈[t−T,t]

|Y(s)|+ ι2 sup
s∈[t−T,t]

|r(s)| (4.37)

with
0 ≤ ι1 < 1 (4.38)

and ι2 > 0 for all t ≥ t].

We have the following result:
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Proposition 1. Let the system (4.1) satisfy Assumption B3. Let F be a functional and
W be a function such that Assumption B4 is satisfied. Then Assumption B2 is satisfied.

Proof. Under the conditions of Proposition 1, the system which corresponds to (4.6) admits
the representation:

ξ̇(t) = F (t, ξt,ΓW,n(t, ξt) + r(t)) (4.39)

Assumption B4 ensures that this system is forward complete, it admits the equivalent
representation:

ξ̇(t) = F (t, ξt,W(t− τ, ξ(t− τ)) + ΓW,n(t, ξt)−W(t− τ, ξ(t− τ)) + r(t)) (4.40)

The inequality (4.37) gives

|ξ(t)| ≤ ι1 sup
m∈[t−T,t]

|ξ(m)|+ ι2 sup
s∈[t−T,t]

|ΓW,n(s, ξs)−W(s− τ, ξ(s− τ)) + r(s)| (4.41)

Next, from (4.34), (4.35) and Lemma 4, we deduce that

|ΓW,n(t, ξt)−W(t− τ, ξ(t− τ))| ≤ KW

∫ t−τ

t−τ−nh
|ξ̇(m)|dm+ nhBW |ξ(t− τ)| (4.42)

for all t ≥ τ + nh. As an immediate consequence,

|ξ(t)| ≤ ι1 sup
m∈[t−T,t]

|ξ(m)|+ ι2 sup
s∈[t−T,t]

KW

∫ s−τ

s−τ−nh
|ξ̇(m)|dm

+ι2 sup
s∈[t−T,t]

nhBW |ξ(s− τ)|+ ι2 sup
s∈[t−T,t]

|r(s)|

≤ ι3 sup
m∈[t−T−τ,t]

|ξ(m)|+ ι4 sup
s∈[t−T−τ−nh,t]

|ξ̇(s)|+ ι2 sup
s∈[t−T,t]

|r(s)|

(4.43)

with ι3 = ι1 + ι2nhBW and ι4 = ι2KWnh. Thus

|ξ(t)| ≤ ι3 sup
m∈[t−T−τ,t]

|ξ(m)|+ ι4 sup
s∈[t−T−τ−nh,t]

|F (s, ξs,ΓW,n(s, ξs) + r(s))|

+ι2 sup
s∈[t−T,t]

|r(s)| (4.44)

Now, from (4.33), it follows that

|ξ(t)| ≤
ι3 sup
m∈[t−T−τ,t]

|ξ(m)|

+ι4 sup
s∈[t−T−τ−nh,t]

(
f 1 sup

m∈[s−τ,s]
|ξ(m)|+ f 2 |ΓW,n(s, ξs) + r(s)|

)
+ ι2 sup

s∈[t−T,t]
|r(s)|

(4.45)
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≤
ι3 sup
m∈[t−T−τ,t]

|ξ(m)|+ ι4f 1 sup
s∈[t−T−2τ−nh,t]

|ξ(s)|+ ι4f 2 sup
s∈[t−T−τ−nh,t]

|ΓW,n(s, ξs)|

+ι5 sup
s∈[t−T−τ−nh,t]

|r(s)|

(4.46)
with ι5 = ι2 + ι4f 2.

From Lemma 5, we deduce that

|ξ(t)| ≤ (ι3 + ι4f 1) sup
s∈[t−T−2τ−nh,t]

|ξ(s)|+ ι4f 2 sup
s∈[t−T−τ−nh,t]

j

∫ s−τ

s−τ−nh
|W(m, ξ(m))|dm

+ι5 sup
s∈[t−T−τ−nh,t]

|r(s)|

(4.47)
with j defined in (2.14). From (4.34), it follows that

|ξ(t)| ≤ (ι3 + ι4f 1) sup
s∈[t−T−2τ−nh,t]

|ξ(s)|+ ι4f 2 sup
s∈[t−T−τ−nh,t]

j

∫ s−τ

s−τ−nh
KW |ξ(m)|dm

+ι5 sup
s∈[t−T−τ−nh,t]

|r(s)|

≤ ι6 sup
s∈[t−T−2τ−2nh,t]

|ξ(s)|+ ι5 sup
s∈[t−T−τ−nh,t]

|r(s)|

(4.48)
with

ι6 = ι3 + ι4f 1 + ι4nf 2KW jh (4.49)

Now, observe that

ι6 = ι1 + ι2nhBW + ι2KWnhf 1 + ι2K
2
Wn

2f 2h
khekh

ekh − 1
(4.50)

and

lim
h→0+

(
ι1 + ι2nhBW + ι2KWnhf 1 + ι2K

2
Wn

2f 2h
khekh

ekh − 1

)
= ι1 (4.51)

Then the inequality (4.38) ensures that there is a constant h\ > 0 such that ι6 < 1
when 0 ≤ h ≤ h\. We deduce from Lemma 1 that Assumption B2 is satisfied.

4.3 Illustrations of the main result

4.3.1 Benchmark system

We consider the three dimensional linear time-varying system
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 Ẋ(t) = γ(t)y1(t)
ẏ1(t) = y2(t)
ẏ2(t) = −y1(t)− θ(t)y2(t) + u(t− τ)

(4.52)

where γ(t) = 1 + | sin(t)|, τ ≥ 0 and where θ(t) is a continuous periodic nonnegative
function not identically equal to zero. The function γ is not of class C1 it follows that the
classical backstepping approach cannot be applied to the system (4.52).

Now, to check Assumptions B1 and B3, consider the positive definite quadratic function

Q(Y ) =
1

2
[y2

1 + y2
2] (4.53)

Its derivative along the trajectories of the system (4.52) satisfies:

Q̇(t) = −θ(t)y2(t)2 (4.54)

Since θ(t) is continuous, periodic, nonnegative and is not identically equal to zero, we
deduce from the LaSalle Invariance Principle that the Y -subsystem of (4.52) is globally
uniformly exponentially stable when u is identically equal to zero. Thus, with the notation
of the previous section, Assumptions B1 and B3 are satisfied with V = 0.

Now, we check that Assumption B2 is satisfied in two different cases.

First choice for the function W

We choose a stabilizing control law (in which no dynamic extension is involved):

W(X) = −ΥX (4.55)

where Υ > 0 is an arbitrary constant when τ = 0 and such that

Υ <
1− e−1

8τ
(4.56)

when τ > 0. The system (4.6) which corresponds to the choice (4.55) is

ξ̇(t) = (1 + | sin(t)|)[ΓW,2(t, ξt) + r(t)] (4.57)

We can apply Proposition 1 to it. We have: f 1 = 0 and f 2 = 2, KW = Υ, BΥ = 0. Now,
check that Assumption B4 is satisfied. To do this, let us consider:

Ẏ(t) = (1 + | sin(t)|)[W(t,Y(t− τ)) + r(t)] (4.58)

This system can be rewritten as:

Ẏ(t) = (1 + | sin(t)|)[−ΥY(t− τ) + r(t)] (4.59)
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We deduce that, for all t ≥ 2τ

Ẏ(t) = −(1 + | sin(t)|)ΥY(t) + (1 + | sin(t)|)Υ
∫ t
t−τ Ẏ(s)ds+ (1 + | sin(t)|)r(t)

= −(1 + | sin(t)|)ΥY(t) + (1 + | sin(t)|)Υ
∫ t
t−τ (1 + | sin(s)|)[−ΥY(s− τ) + r(s)]ds

+(1 + | sin(t)|)r(t)
(4.60)

Now, let us introduce the positive definite quadratic function:

Q(Y) =
1

2
Y2 (4.61)

Its derivative along the trajectories of (4.60) satisfies

Q̇(t) ≤ −(1 + | sin(t)|)ΥY(t)2 + 2(1 + | sin(t)|)Υ2|Y(t)|
∫ t−τ
t−2τ
|Y(s)|ds

+2(1 + | sin(t)|)Υ|Y(t)|
∫ t
t−τ |r(s)|ds+ (1 + | sin(t)|)Y(t)r(t)

(4.62)

Using the inequalities

2(1+| sin(t)|)Υ|Y(t)|
∫ t

t−τ
|s(r)|dr ≤ 1

4
(1+| sin(t)|)ΥY(t)2+4(1+| sin(t)|)Υ

(∫ t

t−τ
|r(s)|ds

)2

and (1 + | sin(t)|)Y(t)r(t) ≤ 1
4
(1 + | sin(t)|)ΥY(t)2 + 1

Υ
r(t)2, we obtain

Q̇(t) ≤ −1
2
(1 + | sin(t)|)ΥY(t)2 + 2(1 + | sin(t)|)Υ2|Y(t)|

∫ t−τ
t−2τ
|Y(s)|ds

+4(1 + | sin(t)|)Υ
(∫ t

t−τ |r(s)|ds
)2

+ 1
Υ
r(t)2

(4.63)

As an immediate consequence,

Q̇(t) ≤ −ΥQ(Y(t)) + 8Υ2τ sup
m∈[t−2τ,t]

Q(Y(m)) + % sup
m∈[t−τ,t]

r(m)2
(4.64)

with % = 8Υτ 2 + 1
Υ
. Let T > 0 be a positive real number to be selected later. By

integrating this inequality over [t− T, t] with T > 0, we obtain:

Q(Y(t)) ≤ e−ΥTQ(Y(t− T )) +

∫ t

t−T

[
8Υ2τ sup

s∈[m−2τ,m]

Q(Y(s)) + % sup
s∈[m−τ,m]

r(s)2

]
dm

≤ e−ΥTQ(Y(t− T )) + 8Υ2τT sup
s∈[t−T−2τ,t]

Q(Y(s)) + T% sup
s∈[t−T−τ,t]

r(s)2

≤
[
e−ΥT + 8Υ2τT

]
sup

s∈[t−T−2τ,t]

Q(Y(s)) + T% sup
s∈[t−T−τ,t]

r(s)2

(4.65)
The choice T = 1

Υ
yields e−ΥT + 8Υ2τT = e−1 + 8τΥ. From (4.56), we deduce that

e−ΥT + 8Υ2τT < 1. This inequality and (4.65) imply that Assumption B4 is satisfied.
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It follows from Proposition 1 that Assumption B2 holds. We conclude that Theorem 12
applies to (4.52).

Now, let us determine the stabilizing control law for the system (4.52) provided by
Theorem 12.

Let
y†,1(t,Xt) = ΓW,2(t,Xt) (4.66)

Then
y†,2(t,Xt) = ΩW,2,1(t,Xt) (4.67)

and
˙̃y2(t) = −y1(t)− θ(t)y2(t) + u(t− τ)− ΩW,2,2(t,Xt)

= −ỹ1(t)− θ(t)ỹ2(t) + u(t− τ)− ΓW,2(t,Xt)− θ(t)ΩW,2,1(t,Xt)− ΩW,2,2(t,Xt)
(4.68)

Theorem 12 ensures that the control law:

u(t− τ) = ΓW,2(t,Xt) + θ(t)ΩW,2,1(t,Xt) + ΩW,2,2(t,Xt) (4.69)

globally asymptotically stabilizes the origin of (4.52).

Now, let us determine an explicit expression for the control defined in (4.69).
We have

ΓW,2(t,Xt) = −P
∫ t

t−h
ek(s−t)

∫ s

s−h
ek(r−s)X(r − τ)drds (4.70)

with
P = Υj2 (4.71)

Elementary calculations give:

ΩW,2,1(t,Xt) = kP
∫ t
t−h e

k(s−t) ∫ s
s−h e

k(r−s)X(r − τ)drds

−P
∫ t
t−h e

k(r−t)X(r − τ)dr + P
∫ t−h
t−2h

ek(r−t)X(r − τ)dr
(4.72)

and

ΩW,2,2(t,Xt) = −k2P
∫ t
t−h e

k(s−t) ∫ s
s−h e

k(r−s)X(r − τ)drds

+kP
∫ t
t−h e

k(r−t)X(r − τ)dr − kP
∫ t−h
t−2h

ek(r−t)X(r − τ)dr

+kP
∫ t
t−h e

k(r−t)X(r − τ)dr − kP
∫ t−h
t−2h

ek(r−t)X(r − τ)dr

−PX(t− τ) + 2P(k, h)e−khX(t− h− τ)
−Pe−2khX(t− 2h− τ)

(4.73)

Thus, finally, we obtain for the control (4.69):

u(t− τ) = (−k2 + kθ(t)− 1)P
∫ t
t−h

∫ s
s−h e

k(r−t)X(r − τ)drds

+(2k − θ(t))P
∫ t
t−h e

k(r−t)X(r − τ)dr + (θ(t)− 2k)P
∫ t−h
t−2h

ek(r−t)X(r − τ)dr

−PX(t− τ) + 2Pe−khX(t− h− τ)− Pe−2khX(t− 2h− τ)
(4.74)
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For the simulation the stabilizing control law (4.69) without dynamic extension:

W(X) = −ΥX

where Υ = 0.06 satisfies the equation (4.55), give us the following trajectories for the
control law and states X, y1, y2.

Figure 4.1: u(t− τ) Figure 4.2: X(t)

Figure 4.3: y1(t) Figure 4.4: y2(t)

Second choice for W

The gain Υ in the function W defined in (4.55) needs to be chosen smaller than 1−e−1

8τ
to

ensure that the control law (4.69). This limits the rate of convergence of the solutions of
the system (4.52) in closed-loop with the control law (4.74): the rate of convergence goes
to zero as τ goes to +∞. In order to achieve a rate of convergence independent from the
size of τ , we adopt now another strategy based on the design of control laws using the
dynamic extension introduced in [17].

Consider:

W(t, ξt,ℵt) = ℵ(t)

ℵ̇(t) = −γ(t+ τ)a1ℵ(t)− γ(t+ τ)a2

[
ξ(t) +

∫ t
t−τ γ(`+ τ)ℵ(`)d`

] (4.75)
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where a1 > 0 and a2 > 0 are tuning parameters. The system (4.6) corresponding to
this choice is:

{
ξ̇(t) = γ(t)ΓW,2(t, ξt,ℵt) + r(t)

ℵ̇(t) = −γ(t+ τ)a1ℵ(t)− γ(t+ τ)a2

[
ξ(t) +

∫ t
t−τ γ(`+ τ)ℵ(`)d`

] (4.76)

Let us establish that this system is ISS with input r(t) when h is sufficiently small. Let

Λ(t) = ξ(t) +

∫ t

t−τ
γ(`+ τ)ℵ(`)d` (4.77)

Simple calculations give{
Λ̇(t) = γ(t+ τ)ℵ(t) + γ(t)[ΓW,2(t, ξt,ℵt)− ℵ(t− τ)] + r(t)

ℵ̇(t) = −γ(t+ τ)a1ℵ(t)− γ(t+ τ)a2Λ(t)
(4.78)

Since a1 > 0 and a2 > 0, there are a positive time-invariant quadratic function Q (for
which a formula can be easily determined but which is useless of illustrative purpose)
and constants a3 > 0 and a4 > 0 such that its derivative along the trajectories of (4.78)
satisfies

Q̇(t) ≤ −a4Q(Λ(t),ℵ(t)) + a3 (γ(t)[ΓW,n(t, ξt,ℵt)− ℵ(t− τ)] + r(t))2 (4.79)

Consequently,

Q̇(t) ≤ −a4Q(Λ(t),ℵ(t)) + 8a3[ΓW,n(t, ξt,ℵt)− ℵ(t− τ)]2 + 2a3r(t)
2 (4.80)

where the last inequality is a consequence of |γ|∞ ≤ 2. From Lemma 4, we deduce that

Q̇(t) ≤ −a4Q(Λ(t),ℵ(t)) + 8a3

[∫ t−τ
t−τ−nh |ℵ̇(s)|ds

]2

+ 2a3r(t)
2 (4.81)

Using Jensen’s inequality, we obtain:

Q̇(t) ≤ −a4Q(Λ(t),ℵ(t)) + 8a3nh
∫ t−τ
t−τ−nh ℵ̇(s)2ds+ 2a3r(t)

2 (4.82)

Using the expression of ℵ̇(s), we obtain

Q̇(t) ≤ −a4Q(Λ(t),ℵ(t)) + 8a3nh
∫ t−τ
t−τ−nh (γ(s+ τ)a1ℵ(s) + γ(s+ τ)a2Λ(s))2 ds

+2a3r(t)
2

≤ −a4Q(Λ(t),ℵ(t)) + 32a3nh
∫ t−τ
t−τ−nh (a1ℵ(s) + a2Λ(s))2 ds+ 2a3r(t)

2

(4.83)
Since Q is a positive time-invariant quadratic function, there is a constant a5 ≥ 0 such

that

Q̇(t) ≤ −a4Q(Λ(t),ℵ(t)) + a5

∫ t−τ
t−τ−nhQ(Λ(s),ℵ(s))ds+ 2a3r(t)

2 (4.84)
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As an immediate consequence,

Q̇(t) ≤ −a4Q(Λ(t),ℵ(t)) + a5nh sup
s∈[t−τ−nh,t]

Q(Λ(s),ℵ(s)) + 2a3r(t)
2

(4.85)

It allows us to conclude that the system (4.78) is ISS with input r(t) when a4 > a5nh,
which implies that (4.76) is ISS with input r(t). Thus Assumption A2 is satisfied.

Now, we can apply Theorem 12 to the system (4.52). It ensures that the dynamic
feedback:

u(t− τ) = ΓW,2(t,Xt,£t) + θ(t)ΩW,2,1(t,Xt,£t) + ΩW,2,2(t,Xt,£t)

£̇(t) = −γ(t+ τ)a1£(t)− γ(t+ τ)a2[X(t) +
∫ t
t−τ γ(`+ τ)£(`)d`]

(4.86)

renders the origin of (4.52) globally asymptotically stable. Through simple calculations,
we obtain an explicit expression for this control law:

u(t− τ) = (k2 − kθ(t) + 1)j2
∫ t
t−h

∫ s
s−h e

k(r−t)£(r − τ)drds

+(θ(t)− 2k)j2
∫ t
t−h e

k(r−t)£(r − τ)dr

+(2k − θ(t))j2
∫ t−h
t−2h

ek(r−t)£(r − τ)dr

+j2ℵ(t− τ)− 2j2e−khℵ(t− h− τ) + j2e−2kh£(t− 2h− τ)

£̇(t) = −γ(t+ τ)a1£(t)− γ(t+ τ)a2[X(t) +
∫ t
t−τ γ(`+ τ)£(`)d`]

(4.87)

Finally, let us explain why the rate of convergence of the solutions of the closed-loop
system does not go to zero when τ goes to +∞. This system is:

Ẋ(t) = γ(t)y1(t)
ẏ1(t) = y2(t)

ẏ2(t) = −y1(t)− θ(t)y2(t) + (k2 − kθ(t) + 1)j2
∫ t
t−h

∫ s
s−h e

k(r−t)£(r − τ)drds

+(θ(t)− 2k)j2
∫ t
t−h e

k(r−t)£(r − τ)dr

+(2k − θ(t))j2
∫ t−h
t−2h

ek(r−t)£(r − τ)dr

+j2£(t− τ)− 2j2e−kh£(t− h− τ) + j2e−2kh£(t− 2h− τ)

£̇(t) = −γ(t+ τ)a1£(t)− γ(t+ τ)a2[X(t) +
∫ t
t−τ γ(`+ τ)£(`)d`]

(4.88)
and it admits the following representation:

Ẋ(t) = γ(t)£(t− τ) + γ(t)[ΓW,2(t,Xt,£t)−£(t− τ)] + γ(t)ỹ1(t)

£̇(t) = −γ(t+ τ)a1£(t)− γ(t+ τ)a2[X(t) +
∫ t
t−τ γ(`+ τ)£(`)d`]

˙̃y1(t) = ỹ2(t)
˙̃y2(t) = −ỹ1(t)− θ(t)ỹ2(t)

(4.89)

Obviously, the rate of convergence of the (ỹ1, ỹ2)-subsystem of (4.89) is independent from
τ . Now, using

G(t) = X(t) +

∫ t

t−τ
γ(`+ τ)£(`)d` (4.90)
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we obtain:{
Ġ(t) = γ(t+ τ)£(t) + γ(t)[ΓW,2(t,Xt,£t)−£(t− τ)] + γ(t)ỹ1(t)

£̇(t) = −γ(t+ τ)a1£(t)− γ(t+ τ)a2G(t)
(4.91)

From which through a lengthy but simple proof, one can conclude. The key ideas of the
proof are the following: (i) γ(t)ỹ1(t) goes to zero when the time goes to the infinity, thus
this term can be ’forgotten’, (ii) Lemma 4 ensures that the term γ(t)[ΓW,2(t,Xt,£t) −
£(t−τ)] is ’small’ when h is small so that it can be neglected when h is chosen sufficiently
small, (iii) the rate of convergence of the solutions of{

Ġ(t) = γ(t+ τ)£(t)

£̇(t) = −γ(t+ τ)a1£(t)− γ(t+ τ)a2G(t)
(4.92)

is larger than a constant independent from τ , (iv) then from (4.90), we can conclude.

For the dynamic extension (4.76), using a1 = 0.1 and a2 = 0.01 we obtain the following
trajectories for the control law (4.87) and the states X, y1, y2 and ℵ

Figure 4.5: u(t− τ) Figure 4.6: X(t)

Figure 4.7: y1(t) Figure 4.8: y2(t)
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Figure 4.9: ℵ(t)

4.3.2 TORA system

We next illustrate our theory using the system


ẋ1(t) = x2(t)
ẋ2(t) = −x1(t) + 3

4

[
cos
(
t
2

)
sin (y1(t)) + sin

(
t
2

)
(cos (y1(t))− 1)

]
ẏ1(t) = y2(t)
ẏ2(t) = u(t)

(4.93)

Now, let us check that Theorem 12 applies to this system by verifying that Assumptions
B1 to B3 are satisfied by (4.93).

Through a simple proof using the Lyapunov function f(ζ) =
∫ ζ1+ζ2

0
σ1(`)d`+ 1

2
ζ2

2 , one
can prove that Assumption B1 is satisfied with

V(ζ) = −σ1(ζ1 + ζ2)− σ1(ζ2) (4.94)

One can check easily that Assumption B3 is satisfied. Now, let us check that Assump-
tion B2 is satisfied with

W(t,X) = −ε cos

(
t

2

)
σ1(x2) (4.95)

and ε ∈
(
0, 1

2

)
. The equation which corresponds to the system (4.6) is

ξ̇1(t) = ξ2(t)

ξ̇2(t) = −ξ1(t) + 3
4

cos
(
t
2

)
sin (ΓW,2(t, ξt) + r(t))

+3
4

sin
(
t
2

)
(cos (ΓW,2(t, ξt) + r(t))− 1)

(4.96)

It can be rewritten as:
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
ξ̇1(t) = ξ2(t)

ξ̇2(t) = −ξ1(t) + 3
4

cos
(
t
2

)
sin
(
−ε cos

(
t
2

)
σ1(ξ2(t))

)
+3

4
sin
(
t
2

) (
cos
(
ε cos

(
t
2

)
σ1(ξ2(t))

)
− 1
)

+ C1(t, ξt) + C2(t, r(t), ξ(t))
(4.97)

with

C1(t, ξt) = 3
4

[
sin (ΓW,2(t, ξt)) cos

(
t
2

)
+ (cos (ΓW,2(t, ξt))− 1) sin

(
t
2

)]
−3

4
sin
(
−ε cos

(
t
2

)
σ1(ξ2(t))

)
cos
(
t
2

)
−3

4

(
cos
(
ε cos

(
t
2

)
σ1(ξ2(t))

)
− 1
)

sin
(
t
2

) (4.98)

and

C2(t, r(t), ξt) = 3
4

[(sin (ΓW,2(t, ξt) + r(t))− sin (ΓW,2(t, ξt)))] cos
(
t
2

)
+3

4
[cos (ΓW,2(t, ξt) + r(t))− cos (ΓW,2(t, ξt))] sin

(
t
2

) (4.99)

Let us consider the positive definite quadratic function:

Q(ξ1, ξ2) =
2

3
(ξ2

1 + ξ2
2) (4.100)

Its derivative along the trajectories of the system (4.97) satisfies

Q̇(t) = −ξ2(t) sin
(
ε cos

(
t
2

)
σ1(ξ2(t))

)
cos
(
t
2

)
+ ξ2(t)

(
cos
(
ε cos

(
t
2

)
σ1(ξ2(t))

)
− 1
)
×

sin
(
t
2

)
+ ξ2(t) [C1(t, ξt) + C2(t, s(t), ξ(t))]

≤ − cos
(
t
2

)
ξ2(t) sin

(
ε cos

(
t
2

)
σ1(ξ2(t))

)
+ ξ2(t) [C1(t, ξt) + C2(t, r(t), ξ(t))]

+|x2(t)|ε cos
(
t
2

)
σ1(ξ2(t)) sin

(
ε cos

(
t
2

)
σ1(ξ2(t))

)
(4.101)

where the last inequality is a consequence of the fact that 1− cos(a) ≤ a sin(a) for all
a ∈

[
0, π

2

]
. Since ε ∈

(
0, 1

2

)
, we have:

Q̇(t) ≤ − cos
(
t
2

)
ξ2(t) sin

(
ε cos

(
t
2

)
σ1(ξ2(t))

)
+ ξ2(t) [C1(t, ξt) + C2(t, r(t), ξ(t))]

+1
2
|ξ2(t)| cos

(
t
2

)
σ1(ξ2(t)) sin

(
ε cos

(
t
2

)
σ1(ξ2(t))

)
≤ −1

2
cos
(
t
2

)
ξ2(t) sin

(
ε cos

(
t
2

)
σ1(ξ2(t))

)
+ ξ2(t) [C1(t, ξt) + C2(t, r(t), ξ(t))]

(4.102)
Since the system (4.97) is periodic, we deduce from the LaSalle Invariance Principle

that this system would be globally uniformly asymptotically stable if C1 and C2 were not
present. Now, let us investigate what is the impact of these functions. The inequalities

|C1(t, ξt)| ≤ 3
4

∣∣sin (ΓW,2(t, ξt))− sin
(
−ε cos

(
t
2

)
σ1(ξ2(t))

)∣∣
+3

4

∣∣cos (ΓW,2(t, ξt))− cos
(
−ε cos

(
t
2

)
σ1(ξ2(t))

)∣∣
≤ 3

2

∣∣ΓW,2(t, ξt) + ε cos
(
t
2

)
σ1(ξ2(t))

∣∣ (4.103)

and
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|C2(t, s(t), ξt)| ≤ 3
2
|r(t)| (4.104)

are satisfied. Then, through a lengthy but simple reasoning, one can prove that there
is a constant h? > 0 such that when h ∈ (0, h?] this system is ISS with restriction with
input r(t). Thus Assumption B2 is satisfied.

Then
y†,1(t,Xt) = ΓW,2(t,Xt) (4.105)

y†,2(t,Xt) = ẏ†,1(t,Xt)

= −kΓW,2(t,Xt) + kekh

ekh−1
ΓW,1(t,Xt)− k

ekh−1
ΓW,1(t− h,Xt−h)

(4.106)

and

ẏ†,2(t,Xt) = k2ΓW,2(t,Xt)− k kekh

ekh−1
ΓW,1(t,Xt) + k k

ekh−1
ΓW,1(t− h,Xt−h)

+ kekh

ekh−1
Γ̇W,1(t,Xt)− k

ekh−1
Γ̇W,1(t− h,Xt−h)

= k2ΓW,2(t,Xt)− k kekh

ekh−1
ΓW,1(t,Xt) + k k

ekh−1
ΓW,1(t− h,Xt−h)

+ kekh

ekh−1

[
−kΓW,1(t,Xt) + kekh

ekh−1
W(t, x2(t))− k

ekh−1
W(t− h, x2(t− h))

]
− k
ekh−1

[
−kΓW,1(t− h,Xt−h) + kekh

ekh−1
W(t− h, x2(t− h))

− k
ekh−1

W(t− 2h, x2(t− 2h))
]

(4.107)
By grouping the terms,

ẏ†,2(t,Xt) = k2ΓW,2(t,Xt)− 2k2ekh

ekh−1
ΓW,1(t,Xt) + 2k2

ekh−1
ΓW,1(t− h,Xt−h)

+
(

kekh

ekh−1

)2

W(t, x2(t))− 2ekh
(

k
ekh−1

)2

W(t− h, x2(t− h))

+
(

k
ekh−1

)2

W(t− 2h, x2(t− 2h))

(4.108)

This leads us to the bounded control law:

u(t) = −σ1(ỹ1(t) + ỹ2(t))− σ1(ỹ2(t)) + k2ΓW,2(t,Xt)− 2k2ekh

ekh−1
ΓW,1(t,Xt)

+ 2k2

ekh−1
ΓW,1(t− h,Xt−h)

+
(

kekh

ekh−1

)2

W(t, x2(t))− 2ekh
(

k
ekh−1

)2

W(t− h, x2(t− h))

+
(

k
ekh−1

)2

W(t− 2h, x2(t− 2h))

(4.109)

with

ỹ1(t) = y1(t)− ΓW,2(t,Xt)

ỹ2(t) = y2(t) + kΓW,2(t,Xt)− kekh

ekh−1
ΓW,1(t,Xt) + k

ekh−1
ΓW,1(t− h,Xt−h)

(4.110)

For the stabilizing control law (4.109) without dynamic extension with h = 1, ε = 0.49
and k = 0.1 gives us the following trajectories for the control law and states X, Y .

CINVESTAV Departamento de Control Automatico



52 Chapter 4

Figure 4.10: x1(t) Figure 4.11: x2(t)

Figure 4.12: y1(t) Figure 4.13: y2(t)

Figure 4.14: u(t)
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4.4 Conclusions
In this chapter a new backstepping design of control laws for a family of nonlinear con-
tinuous time-varying systems with delay was introduced. This design strategy relies on a
family of operators which can be replaced by terms generated by dynamic extensions with
pointwise delays. This is indeed an advantage over using controllers with distributed de-
lays. The examples presented at the end of the chapter show the successful implementation
of these control laws.
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Chapter 5

Conclusions

5.1 Concluding remarks
In this work we have presented new control desings for some class of systems in strict
feedback form. In general, the designed control laws have the advantage of being given
by simpler formulas than those provided by classical techniques. In particular for linear
systems with state delay the approach is constructive, while for non-linear systems with
input delay, the control laws can be implemented using pointwise delays.

5.2 Future work
Future work in this direction include in particular

• Design control laws following this backstepping approach for systems with time-
varying delays, systems with distributed delays and neutral type delay systems.

• Get a better performance in the control laws given for linear systems, since as we
saw in the examples they present chattering.

• Relax the conditions of the values δ and r.

• Check Assumption B2 without using other assumptions and relax the boundary
conditions of the Assumptions B3.

• Extend the main result of Chapter 4 for systems with a nonlinear Y -subsystem.
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