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Abstract

The mathematical formulation of many problems in science and engineering can be reduced
to a set of partial differential equations (PDE). However there is no general theory known
concerning the solvability of all partial differential equations. Such theory is unlikely to
exist, given the rich variety of physical and geometric phenomena which can be modeled by
PDE. Since neural networks have universal approximation capabilities, therefore it is possible
to postulate them as approximate solutions for given differential equations. In this thesis,
a differential neural network approach for non-parametric identification of a class of three
dimensional (3D) PDE is proposed. Learning laws are derived and practical stability of the
identification error is demonstrated via Lyapunov-like analysis. To illustrate the qualitative

behavior and efficiency of the suggested methodology, simulation results are presented.
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Chapter 1

Introduction

1.1 Motivation

In science and engineering, there exists many applications of systems that can be described
by partial differential equations (PDE). Due to its importance, many methods have been
proposed in the literature for their solution, such as finite difference methods (FDM) [29],
[35], [38], finite element methods (FEM) [18], [21], [37], Runge-Kutta methods [42], Splines
9], [20] and predictor—corrector methods [8]. These methods require the discretization of
domain into a number of finite elements where the solutions are approximated locally. Al-
though these methods provide a good approximation of the solution, it is required a complete
knowledge of the system to discretize the domain via meshing, which can be a challenge in
two or more dimension problems. Also, the approximate solution derivatives are discontinu-
ous and can affect the stability of the solution. Furthermore, in order to obtain an accurate
solution, it may be necessary to deal with finite meshes, which significantly increase the com-
putational cost. Finally, these methods are well defined for linear systems with well-known
structure.

A thoroughly research, shows that other methods can approximate solutions of PDEs.
Recent results demonstrate that neural networks techniques can be used effectively to iden-
tify a wide class of nonlinear systems, even when the system model is completely unknown.
Lagaris and Likas [23] presented a method for solving initial and boundary problems using
artificial neural network. They use the collocation method to compute the solution, which
assumes the discretization of the domain. They choose a trial function such that by con-

struction satisfies the given boundary conditions. This is obtained by proposing the trial



function as a sum of two parts, one with no adjustable parameters that satisfy the boundary
conditions and a second term that employs a neural network whose weights are adjusted to
deal with a minimization problem. Then network is trained to satisfy the differential equa-
tion. Using the same approach, Lagaris et al. in [24] studied partial differential equations
where the boundary can be any arbitrary complex geometrical shape. Collocation method
is used again and the problem is transformed into a unconstrained optimization problem. In
[17], the authors presented a method to solve a a class of first order PDE which appears in
input-to-state linearized control systems. They proposed a backpropagation algorithm for
training a feedforward neural network and approximate a solution, which was used to design
feedback control laws to regulate a class of nonlinear systems. Some useful applications can
be found on literature; for example, in [2], the authors developed a multilayer perceptron
(MLP) technique to solve a mathematical model of vibration control of flexible mechanical
systems. Nevertheless, due to non-linearity and complex boundary conditions, their numer-
ical solutions present major drawbacks like numerical instability. Hybrid methods also can
be found in recent literature. Smaoui et al. in [34] analyzed the dynamics of two non-linear
partial differential equations known as the Kuramato-Sivashinsky equations and the two di-
mensional Naiver-Stokes equations using the combination of Karhunen-Loeve decomposition
and artificial neural network. In [3], a novel method based on artificial neural networks,
minimization techniques and collocation method is presented. It provides an approximate
solution to time dependent systems of partial differential equations. In article [39], Tsoulos
et al. used a hybrid method utilizing feedforward neural networks (FFNN) by grammatical
evolution and a local optimization procedure, in order to solve ordinary and partial differ-
ential equations. They used the well stablished evolution technique [27], [40] to evolve the
neural network topology along with the network parameters. A different technique, based on
radial basis function neural networks (RBFNN) for the resolution of nonlinear Schrodinger

equation in hydrogen atom, can be found on [33].

The differential neural network (DNN) approach [30] is a useful tool for the analysis
of a variety of problems related to control theory, such as identification, estimation and
trajectory tracking. Moreover, these networks have adequate performance in the presence
of uncertainty and/or unmodeled dynamics, because its structure incorporates feedback.
Therefore, the learning process is reduced to an appropriate design of feedback. A previous
related work [5] presents a method developed for the approximation of solutions of a class

of partial differential equations in two dimensions. This method proposes the application of
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differential neural networks for approximation of solutions of partial differential equations
with uncertainty. The suggested method proposes the discretization of the domain of PDE
by a mesh and use a finite difference method. The solution is then approximated at each

node of the mesh using a continuous DNN.

1.2 Results

In this thesis, we present an extended method for approximating the solution of a class of
partial differential equations in three dimensions where, in addition, the available information
to approximate the solution of the differential equation is restricted. We consider three types
of restrictions. First, constraints associated with a dynamic model whose outputs (measured
along the entire mesh) are sampled data. These sample-data outputs can be understood as
the result of a quantization process applied to a continuous output signal. Then, constraints
associated directly to the mesh that divides the domain of the partial differential equation,
specifically, an irregular mesh where the available information to approximate the solution is
measurable only in some nodes. Finally, we present a case where the two previous constraints
are considered simultaneously. As it is shown in [30], a Lyapunov-like method can be a good
instrument to generate learning laws and establish error stability conditions. To deal with
cases where outputs provide sampled-data, we use some advanced Lyapunov techniques
related to descriptor method. We refer the reader to [12], [13], [14] for the corresponding
details. In cases where the mesh is irregular, interpolation methods are used to approximate
the missing information on the mesh. The method proposed in this work can be used to
approximate solutions of partial differential equations in three dimensions, which represent
a variety of systems with distributed parameters, such as the three dimensional heat and

wave equation.

1.3 Organization

This thesis is organized as follows. In the second section we make a brief discussion about
systems with distributed parameters and present the necessary tools to study them in the
context of differential neural networks. In the third section, we outline the main problems
and present the results of this work. In Section 4, various simulations are presented to

illustrate the effectiveness of the proposed methodology and, finally, we present a small
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comparative table which highlights the main features of various methods for approximating
solutions of partial differential equations. In Section 5, a brief conclusion summarizes the
objectives achieved. Additionally, in the appendix section, the reader will find the proofs to

the main theorems and notation that will facilitate the reading of this work.
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Chapter 2

Distributed parameter systems

2.1 Distributed parameter systems and its approxima-
tion

As background for the development of non-parametric identifier for approximating the solu-

tion of partial differential equations, we must be able to represent them in a form suitable

for study within the context of DNN. For this, consider the following set of uncertain partial

differential equations

Ut<$,y,2,t) = f (u<xvyaz>t)uux(xayath>7uzm('rayvz>t)7uy(x7yazut>7
uyy(w,y,z,t),uz(x,y,z,t)7uzz(:v7y, zat)auxy(may7zat)> (21)
uym(xvyvzat)aumz(xayvZat)auyz(a:)yvzat)) +§($,y, Zat)

where u© € R" is defined in the domain
G =10, 1J° x [0, 00) (2.2)

thisis, z € [0,1], y € [0,1], z € [0,1] and ¢ € [0, 00). The boundary (Neumann and Dirichlet)

and initial conditions are given by

w(0,y,2,t) =up € R*, u(x,0,2,t) =ug € R", wu(x,y,0,t) =ugyg € R"
ug(0,y,2,t) =0 € R", wuy(z,0,2,t) =0 R, u,(x,y,0,t)=0¢€R", (2.3)
u(x7 y? Z’ O) - C 6 §Rn

13



We may use the following notation throughout this document

ou(zx,y, z,t
ut('ruy’Z?t) = %
ou(z,y, z,t) Pu(x,y, 2,t)
X 7 ) 7t = —7 xrx 9 ) 7t = a5
waley,zt) = ZEIED gy = T
O*u(z,y, z,t) 0?u(z,y, z,t)
X ) ) 7t = —7 €T ) ) 7t = a a_
tay (Y, 2,1) 0x0y e (@Y, 2,1) Jyox

and it follows for all other terms included in the function f(-). It is necessary, when con-
sidering the solution of partial differential equations, to introduce the concept of existence
and uniqueness. The Cauchy-Kovalevskaya theorem (see, for example, [10], [11]) is basically
the only general existence theorem in the subject, and thus should perhaps be regarded as

central. This theorem applies to equations of a very general form

0™, ou Ou
— it S ) i=1, . 2.4
atn f(x“atax)z " (24)
where x = (z1,...,2p-1), u = (uy,...,uy), and for each i = 1,...,m the function f; depends

on the derivatives of the functions u; only up to order n;, is independent of 0™iw;/0t", and
is an analytic function of all its arguments, which covers a great variety of systems. Notwith-
standing, in practice, the power series methods proposed by the Cauchy-Kovalevskaya theo-
rem are not so prevalent. Furthermore, the theory for nonlinear partial differential equations
is far less unified in its approach, as the various types of nonlinearity must be treated in
quite different ways. Some authors (see, for example [11]) rely on functional analysis and
“energy” estimates to prove the existence of weak solutions. In a broad sense, a weak solu-
tion u is a function which is not continuously differentiable or even continuous, but which is
nonetheless deemed to satisfy the equation in some precisely defined sense. Such solutions
are very useful because a lot of natural phenomena modeled by partial differential equations
(such as those modeled by the equation u; + F'(u), = 0, which governs one-dimensional fluid
dynamics and, in particular, models of formation and propagation of shock waves) do not
support sufficiently smooth solutions. We suggest the reader to review the text of Garabe-
dian [15], which makes a precise analysis of the necessary tools for the study of these type

of solutions.

Instead of searching for explicit formulas, we will use numerical methods and neural net-

works techniques to approximate solutions of partial differential equations. When applying
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numerical methods, it is necessary to introduce a third concept, complementary to that of
existence and uniqueness, namely that of a well-posed problem. A problem with a unique
solution is said to be well-posed if any small change in the data of the problem leads to a
small change in the solution. This consideration makes it possible to find an approximate
solution of PDE by means of numerical algorithms. Of the numerical approximation meth-
ods available for solving differential equations those employing finite differences are more
frequently used and more universally applicable than any other [35]. The essence of all finite
difference methods is the replacement, at each of a discrete number of given points, of the
partial derivatives by approximations involving the dependent variable evaluated at each
given point and at appropriate neighboring ones. This transforms the problem of solving
the partial differential equation to one of solving a set of linear algebraic equations. The
main difficulty is ensuring that the numerical values obtained are good approximations to
the exact solution. In order to solve this problem, let us consider that system (2.1)-(2.3)
(fixed in each of the given points) is in a Hilbert space ‘H with inner norm (-,-). Denote
by Lo ([a,b]; H) all H-valued functions g such that (g(-),u) is Lebesgue measurable for all
u € H and [|g||oo = esssup,e(q 4 [9(t, )| < 0o . Now, let g(,7) be piecewise continuous in ¢

and satisfy the Lipschitz condition

lg(t,y) —g(t,m)|| < Ly — 1]

Vy,neB.={yeR"| |7 —l| <r}, Vi€ [to,t1]. Then there exists some ¢ > 0 such that
the state equation 4 = g¢(t,v) has a unique solution over [ty,ty + d] (see [19]). The norm

used above stands for the Sobolev space defined as in [31] as follows

Definition 1. The Sobolev space consists of all functions (for simplicity, real valued) f(¢)

defined on G which have p-integrable continuous derivatives f@(¢)(i = 1,...,1), that is

SHG) = {f(t):G—>%|<oo(z':1,...,l),

l 1/p
1 llsye = ( / NIOITEDS / ) \f@(t)\pdt)
te i1 Jte

where the integral is understood in the Lebesgue sense. More exactly, the Sobolev space is

the completion of (2.5).
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Remark 1. The Sobolev space S5(G) of alll times differentiable on G quadratically integrable

(in Lebesque sense) complex functions under inner product

! 1 i
=3 (e
7 Lz[a,b}

1s a Hilbert space.

Let us consider a function ho(-) € S5(G). A classical result of functional analysis, the
series expansion (see, for example, [31], [41]), states that for any ho(-) € S4(G) the vector

representation (if it exists) is

oo oo oo

= Z Z Z Oé:jk@jk(’Y)

e = (hos Pijk (7)) s

(2.6)

where {¢;;x(7)} is an orthonormal system of functions that constitutes a basis for SL(G).
Similar structures of neural networks to the series expansion (2.6) have been studied in [16],

[30]. Based on this, we propose the following NN mathematical structure

Ny My Lo

= Z Z Z Qijrbijn () = @TW(V)

=N j=M; k=L,
@ o T
- [aN1M1L17 co s N M Loy -+ y ANoMiLys -+ - 704N2M2L2]

T
W(’Y) = [¢N1M1L17 LI ¢N1M1L27 LI ¢N2M1L17 LI ¢N2M2L2]

With this NN representation, we claim that any nonlinear function hy € S}(G) can be ap-
proximated with an adequate selection of positive integers Ny, No, M1, Ms, L, Ly. Moreover,
the Stone-Weierstrass theorem [6] states conditions that guarantee that the network (2.7)
can approximate continuous functions, this is, for any arbitrary positive constant € there are
some positive constants Ny, No, My, My, L1, Lo such that the approximation error satisfies

the following
[1ho(7y, &%) = ho(7y, )| < € (2.8)
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2.2 3D approximation of uncertain PDE

The main idea of applying the differential neural network methodology [30] is to use a class of
finite difference method for uncertain nonlinear functions. To achieve this, it is necessary to
construct a set (called grid or mesh) that divides the sub-domain x € [0,1] in N equidistant
sections, y € [0,1] in M equidistant sections and z € [0, 1] in L equidistant sections defined
as (z',4, 2") in such way that 2° = y° = 20 = 0 and z" = y™ = 2/ = 1. Using the mesh

representation, the following definitions can be used

W) =l )
~ Ou(z,y,2,1)
ot r=xt y=yl z=2F

uBH(1) = w2y, 2, )|

uijk(t) :

‘1;:$i 7y:y] ,z:zk

u}fgk(t) = Ui«ik(% Y, 2, t) }xzxi,y=yjaz=z’“

and it follows for the other cases (uy, s, Uyy, Usz, Usy, Usz, Uy.). Using the same representa-

tion, it can be applied the finite—difference representation to approximate partial derivatives

as
i,k i—1,4,k igk (4 _ i1k
s s
.7,k i,j—1,k 1,5,k _ 47— Lk
u;’j’k(t) ~ u" (t) u* (t)7 uz‘,j,k(t) ~ uy] (t) uy] (t>
Az vy A2y
L. ivjvk t Za]ak_l t . i,j,k t _ ’L,j,k‘—l t
e U s ) NP U R )
Ax A2y
. uz,],k t ui*l,j,k t o 1,7,k t) — i,j—1,k t
u”’k(t) ~ ( ) Y ( >7 uz,j,k(t) ~ Uz ( ) Uy ( )
Y Ax vz A2y
1,7,k 1,7—1,k 1,7,k =15k
ui,j,k(t) ~ u:p] (t) u:rj <t>7 ui,j,k<t) ~ uz] (t) U, / (t>
yx Aflf Tz A2y

Using the (Az, Ay, Az)-approximation, the nonlinear PDE (2.1) can be represented as

ik . . o o L -
ui] (t) ~ q)(uZ,J,kjul,],kjul 2,],k7uld 1,k’uw 27k’um,k 1

igk—2 , ilg-1k ,ij—1k=1  i-14k—1 ,i-1j—1k—1
Uu Y Y 7u 7u (29)

u u

i=1,N; j=1,M; k=1,L

17



It is well known that any function sufficiently smooth can be approximated arbitrary closely
on a compact set by a finite sum of sigmoid functions [7]. By adding and subtracting
the corresponding terms with an adequate selection of a neural network set of activation

functions, equation (2.1) can be written as

11

w(z,y, 2, t) = Au(z,y, z,t) + Z V. (2,9, 2)U"(z,y, 2, t) + f(z,y, 2, 1) (2.10)

r=1

where A € R, Vr € R"*sr for r = 1,11 are any constant matrices. This construction
reflects the method of approximation of functions described in equation (2.7). The approxi-
mation (2.10) and the sets U"(z,y, z,t) and Q" (z,y, z,t) contain eleven terms corresponding
to the eleven in which function f(-) of (2.1) is evaluated. With these eleven elements, we
can ensure that the modeling error term f (x,y, z,t), defined as the difference of the function
f(-) and the so-called nominal section is bounded for certain given (and known) values of V;,
r = 1,11. This statement obeys a direct application of the Stone-Weierstrass theorem [6].
The term Q" (z,y, z,t) refers to a set of monotonically increasing functions whose elements
are given by ol(z,y,z) € RV ol (z,y,2) € R2*" Yz, y,2) € RS*" p?(z,y,2) € R¥*",
V(z,y,2) € R, 03 (x,y, 2) € R, 3 (2, 2) € R, P (,y, 2) € R, 2 (2,9, 2) €
Rsoxn )3 (z,y, z) € R0 and o?(x,y, 2) € R11*", correspondingly. For this application in
particular, sigmoid functions [7] are selected as activation functions, which are bounded by

positive constants for all x, y, z, i.e.

lo' () < o™ o ()l < o™
Ol < o IPOI < e WOl < v 1=T3

Applying the same concept to the A—approximation (2.9) of the nonlinear PDE (2.1), we

get for each i € 1, N, j € 1, M, k € 1, L the following relation

11
ui,j,k@) _ Az‘,j,kuz‘,j,k(t) + Z Wg,j,er(l,i’ yj’ Zk)U(i’ch)’T(t) + fi,j,k(t) (2.11)

r=1

where f”k(t) is the modeling error, and it satisfies the following identity

18



f’l‘v‘%k(t) — (P (ul).])k’ u1_11]1k7 uz_2ujuk7 uz7]_17k7 u7’7]_27k, uzz.]:k_l

uz,],k72’ uz.l,jfl,k:7 uz,]fl,k717 uzfl,],k717 uzfl,]fl,kfl)
11

— AR (t) + E WHIkQr (2 4 | YU IR (1)
r=1

with Whik € Rnxsr for r = 1,11, any fixed given (and known) matrices that can be consid-
ered as the initial values for the weight matrices. Equation (2.11) is obtained by applying
the finite difference representation to equation (2.10). The physical interpretation of this
new equation gives us an intuitive idea about the construction of the neural network. That
is, for each coordinate (i, j, k) we ensure that each of the corresponding partial derivatives in
equation (2.1) is estimated and also used for approximating the solution by proper training
of the neural network. Finally, it will be assumed that the modeling error satisfy the next

assumptions

Assumption 1. The modeling error is absolutely bounded in the domain G, i.e.,

Assumption 2. The error modeling gradient defined as

Figk||? W5k
f <h (2.12)

Vm];(l', Y, %, t) ‘m:mi = vmfi’j’k (213)
where m represents the partial derivate by z, y and z, correspondingly, is bounded, i.e.,

va frik (2 < fUk (2.14)

where &% (s =1, 4) are positive constants.
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Chapter 3

Neural identification of 3D

distributed parameter systems

The data of the problems of technology are invariantly subject to errors of measurement,
quantization processes or loss of information. Finite differences methods and neural networks
techniques generally give solutions that are as accurate as the data warrant. For the purpose
of this paper, we use three types of restriction on the information available for the approx-
imation. In each section, we provide and construct an upper bound for the approximation
error and demonstrate its practical stability via Lyapunov-like analysis. At the same time,

we derive the learning laws for the suggested neural networks.

3.1 DNN identification for distributed parameter sys-

tems with sample—data measurements.

The principal motivation of this section is to study systems of the form

ut(xaya Z>t) :f (u(m,y,z,t),ux(:l:,y, Zat>7uxz<x7y7 z,t),uy(m,y,z,t),
uyy(xaya th)a Uz(%f% Zat)a U’zz(‘ra Yy, z, t)auwy(wvyv Z,t),
(3.1)

uy:ﬂ(xay7z7t)7u12(x7ya Zat>7uyz(xay7z7t)) + g(xawa?t)

ai,j,k (t) :Ci,j,kui,j,k (tk>Xi,j,k

[trstrt1)

21



where f(-) is an unknown nonlinear partial differential equation satisfying conditions stated
in chapter 2 and C%"* € R9" is a given matrix, fixed for each (2%,97, 2*). Boundary and
initial conditions as well as the domain are defined like in the previous section. The variable
a7k (t) describes the real available sample-data measurements, i.e., the stepwise values of
u™*(t) represents the real measurable output of the system at each fixed point in the mesh.
Here

Xi’j’k B 1 ifte [tk, tk+1>,
thot =
thtt) 0 otherwise.

denotes the characteristic function of the time interval [ty,txy1). Based on the DNN-
methodology [30], let us consider the following DNN-identifier

11
d .. o . o N
ﬁw,k(t) — Az,J,kaz,J,k(t) + § [)VZ,JJCQT(x1’yJ’Zk’)U(%Jvk)J‘(t)
dt —

+Lz‘,j,k (ﬂi,j,k(t) o Ci,j,kai,j,k(t))
i=0,N;j=0,M;k=0,L

(3.2)

where @%9*(t) is the estimate of u®3*(t) and L4* € R™*9. Tt is clear that this methodology
implies the design of an individual DNN-identifier for each point (z¢,17, 2%) in the mesh
representation. The collection of these identifiers constitute a DNN-net composed by N x
M x L connected identifiers working in parallel. Let us introduce the following auxiliary

variables

BT (E) = () — IR, TIH(E) = (1) — ()
B () = AIR(E) —uR(E), () = AR (E) — uR ()
which define the error between the trajectories produced by the model and the DNN—

identifier as well as their derivatives with respect to x, y and z, for each i, 7, k. Additionally,

consider the variable
AubIk = IR () — bk (t) (3.3)

which is bounded as
|Aw | < AP (3.4)

where A”" is a positive constant.
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3.1.1 Learning laws

Let the time-varying matrices W 7*(t) € R, = T, 11 satisfy the following nonlinear matrix

differential equations

. ~ . NP T S
Wish = — S — Kl (0) |06 ()] [0t 4]
3 .. . NP T . . T
= S KSRk ) [0 )] oy, )
=1
| i,5,kOr77(,5,k),r “(i'k)rT mT
— SK A LW T () [U J } 0] (3.5)
1

3
. C . NP N T
~ 5 L KIS AW ) (o] e

1 i3,k O k), Fr(i,9,k),r T rT

— S KT A s LW QT 0 (1) [U g ] ]

Here, K, (r = T,11) are positive definite matrices, W5+ (¢) := Wik — Wik and ubik(t) =
CEIkGhIk () — @R (t). Matrices S©7%, S% and SP* (i = T,N;j = 1, M,k = 1, L) are

positive definite solutions of the following Riccati matrix inequalities

—Si’j’kAi’j’k _ [Ai,j,k:] T Si}j k Q i,J,K Sw K [R J> k} 1/2

PV I >0
[ Sik] Slw€ Lyscn
uo . qT (3.6)
R ’J’ : Z W;’]’kAT_HQ [W;’J’k] + A24
r=1
Q ik _ = aS¥
A . - - . q1/2
s s ot s ] ]
(R st Lscn
(3.7)

l’]’ : ZW”kAr 24 [Ww’ ] + Asg

r=1

Q 7]7 — aIS;ﬂjﬂk"
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g gk _ [Az,j,k]T ik _ Qgik Gk [ng} 1/2
|:Ri7]'7k:| 1/2 Si,j,k I > 0
S3 3 nxn
11 - (3.8)

Rlsik = Z Wf’j’k/\m% [W”k] + Aug

T
r=1
u.gk 1,5,k

with @ > 0 any given constant. Functions Q7 (z%,47, 2F) (with m = 2,y or z) are defined as

QTm(xz,y]’zk) = %Qr(%%z)‘ (39)

g;:.];i 7y:y] 7;/;:279

3.1.2 Main results

In order to analyze the quality of the DNN-identifier (3.2) with learning laws given by (3.5),
let us first present two useful results and a definition needed to state the main results of this

work.

Lemma 1. Let a nonnegative function V'(¢) satisfy the following differential inequality

Dy < —av(t) + 8

dt
where o > 0 and § > 0. Then
tli_mV(t) < B/a (3.10)
—00
Proof. The proof of this lemma can be found on [32, p.75]. ]

The second result is known as the A—matrix inequality and it states that

Lemma 2. For any matrices X, Y € R"™ and any symmetric positive definite matrix

A € R the following inequalities hold
XY +YTX < XTAX +YTATYY (3.11)

and
X +Y) (X +Y) S X (Losin + D) X +YT (Lis + A1) Y (3.12)
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Proof. See [31, p.213] for a detailed proof. O

Now, consider the following nonlinear system

n=f{t,nu)+gtmn) (3.13)

where n € R", u € R™ and g¢(-) is an external bounded perturbation term such that

lg(t,x)|| < gT, where g™ is a positive constant.

Definition 2. Given € > 0, the system (3.13) the system is said to be e-practically stable
around the origin if, for any to > 0, there exists a § = d(¢,t9) > 0 such that n(t) € B|0, €],
Vit > to, whenever ny = n(ty) € B[0,0]. If ¢ is independent of ¢y, then the system is said to

be uniformly e-practically stable around the origin.

We are now able to formulate the following results

Theorem 1. Consider the nonlinear model (3.1), given by the system of PDEs with un-
certainties in the states, and sample—data outputs, with initial and boundary conditions
given by (2.3). Suppose that the DNN-identifier is given by (3.2) and its parameters are
adjusted by the learning laws (3.5). If there exist positive definite matrices Rg{ k. Rlsg * and
Rg‘;k (t=1,N;j=1,M;k =1, L) such that Riccati matrix inequalities (3.6)—(3.8) have a
positive definite solutions S{’M, Sé’j’k and Sg’j’k (1t=1,N;j=1,M;k =1,L), and if there

exist matrices Il,, II,, P%* L%* and parameter € such that

Wi w0 0wt
W 0 0wt
Whek=1 "0 0 wyg* 0 0 (3.14)
0 0 0 wJF o0
Wi Wit 0 0w
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whose elements are given as follows

Wik I, (Abik — piikQidk) | (Abik Li,j,kci,j,k)T , + HbRﬁJ;kHb
T

wigh =Pk g (AR Lkl T, T,

W;’{’k ::Pi’j’k 110, (Az',j,k . Li,j,kc«i,j,k) — 11,

ST N (3.15)
(2% 21, 2,7, 2,75
W22 .—h R J - 21—‘[C —‘I_ HCRHC HC
Wz,],k — he—ahRi,j,k
33
inj»k [ —ah i:jzk
3,5,k __ . i3,k .__ . 3,5,k __ . 3,5,k __ . i3,k
Wyg = — el wist = =y wyy = =y wosT = e wy T = e

is negative definite, then the error of identification %*/*(¢) converges in practical sense to

lim
t—o0 4

()

> l# 5 0)ll5ye < B/0 (3.16)

N
=0 5=0 0

L
k=

where o := a and

4 I N
i o 3 3+ a3 LA 4 S A
s=1

AR w3 A+ A
wp ‘= max {67 )‘max (A2_41) ) /\max (AL;ZI) ) >\max (A‘I81)}
@ =M (A5) + A (A5 (3.17)

11 11
w3 ‘= Z )\max (AT‘+61) Wy = Z >\max (AT’+72)
r=1 r=1

11 11
Ws = Z Amax (Ar+83> We = Z Amax (Ar+94)
r=1 r=1

Proof. The detailed proof is given in the appendix. O

An immediate consequence of theorem 1 is given in the following corollary.
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Corollary 1. The DNN—weight trajectories satisfy the inequality

fim > ||
t—o0

That is, the weights remain bounded and are proportional to 5/a.

2 1 B
)SKﬁTZMl (3.18)
(6]

Proof. Straightforward from the proof of theorem 1 ]

Evidently, the problem of selecting a set of optimal matrices I, II., P** and L*/* such
that W#* < 0 is a strongly nonlinear problem of mathematical programming. This problem
is associated with the resolution of a bilinear matrix inequality (BMI). Our aim is to relax
the given nonlinear matrix—constrain with a suitable system of linear matrix inequalities

(LMI). To achieve this, select the next matrices as
I, = I, := P"*
ik ig.k]1 1 B iJs
it o= (P [
R = [PP3F] TN Ry [PHF] T

-1

(3.19)

where R; and R, are any symmetric positive definite matrices. Then, the elements of W/
can be simplified as following

Wzlfk . ik (Ai,j,k - Li,j,kQ) n (Ai,j,k _ Li,j,kQ) Pk g ik

Wzlgk — (Ai,j,k . Li,j,kC)T pidk

szfk . piik (Ai,j,k _ Li,j,kc«)

ngk —hZRVIF L R, — 9 piik (3.20)

ngk = — he "Rk

Wz'd',k — _ e—ahsi,j,k‘

ngk = — el Wllgk = — piik. ngk = — piik. W;gk = — Pk ngk = — phik

where AWk = AWk 4 4] and QWF = Ry + Qi{bk + S27% . Using the following additional
notation
Xi,j,k’ — Pi,j,k
y o (3.21)
Yz,j,k — Pz,],kLz,j,k
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the initial problem of the nonlinear matrix—constraint W#»** < 0 can be reduced to a suitable

system of LMIs, defined as

ik [Ai,j,k}-rxi,j,k T [Yi,j,k:]-r 0 0 _ Xk
Xbik Abdk _yiikC h2RbIE — 2 X0k Ry 0 0 — X ok
Whik = 0 0 —he@h RiIk 0 0
0 0 0 —eah gk
— Xk — Xk 0 0 —el

Zidk . xidk fidk _ gk g [Ai,j,k]TXi,j,k _ T [Yi,ng}T 4 Ok
(3.22)

Regarding this considerations, let us present two additional results

Theorem 2. Under assumptions of theorem 1 about solution of the Riccati equations
(3.6)—(3.8) and choosing matrices as in (3.19) and (3.21) if there exist a solution T :=
(€, X3k Y13k) of the simplified LMI (3.22) such that Wk < 0, then the error of identifi-

cation @/ (t) converges in practical sense to

L

D> l# 5 0)ll5ye < B/0 (3.23)

7=0 k=0

lim
t—o0 4
1

N
—0
Moreover, the corresponding gain matrix L** is given by

[k . yriik [pwyk}‘l (3.24)

Proof. The proof of this theorem is based on a linear approximation of the set given by the

matrix inequality (3.50). O

The next remark provides additional features about matrices X*#* and Y#/*.
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Remark 2. Assume that the following auziliary optimization problem
min tr ([Xi’j’k}_1>
T

subject to Whik < (3.25)
Xtk > 0 yeik >

has an optimal solution

T .= <e, Xk, }A/”k> (3.26)

Then, the ellipsoid defined by the matrix Xk approximates a minimal attractive ellipsoid
for the error of identification u>9*(t). Theory and results on the atractive ellipsoid method
can be consulted in [4], [22], [28] and other related papers.

3.2 DNN identification for distributed parameter sys-

tems with scattered grid outputs.

Through this section, let us consider the following set of uncertain PDEs

ut(w7y7 Z7t) :f (u(x7y7z7t)7u$(x7y7 z7t)7u$f£(a:7y7 Z7t)7uy(x7y7z7t)7
U xvyyzatvuz I’y?’Z?t?uZZ x7ya27taua) 'Tayazvt7
wy( )s = ( )5tz ) Uay ( ) (3.27)
uyx(‘r7 y? Z? t>7uwz(‘/’v7 y? Z7t)7uy2(x7 y? Z? t)) +§(‘/E7 y? Z? t)

uh () =R (1), for (i, 57, k%) € T

where u € R" in the domain (2.2) and Z is a set of indices of positive integers constituting
a 3-tuple indicating a location in the mesh representation. The boundary (Neumann and
Dirichlet) and initial conditions are given by (2.3). Equations (3.27) stand that the measur-
able output of the system is distributed unevenly along the mesh (or grid), i.e., the (Az, Ay,
Az)-approximation u**(t) of the system (3.27) is available only for some i, j, k along the
grid. The problem that arises is to approximate the missing data and modify the identifier

and its learning laws to estimate the upper bound of the identification error given by

i, i.j 2
AR () — u ’]’k(t)”sg(c) (3.28)

29



and if it is possible to reduce it to the lowest possible value, selecting free parameters par-

ticipating in the DNN-identifier.

3.2.1 Surface fitting

The scattered nature of available data to approximate the solution of the system (3.27),
suggests using a surface fitting scheme to approximate the missing information in the mesh
representation. Thus the interpolation problem might be defined as follows: given D data
points (z;,v;, z;) and D numbers f;, i = 1,2,..., D, find a function f(x,y, z) from some class
and defined on the whole space (or at leats a region containing the data points) for which
f(ziyyi, zi) = fi for i = 1,2,...,D. It is well documented that there is no universal choice
for the solution of the above problem. Depends on the nature of the data and the nature of
the modeled phenomenon the choice of the surface fitting technique. For the specific purpose
of this work, we chose the triangle-based linear interpolation method to perform the surface
fitting regarding the available data. We may refer the reader to [25], [36] to consult the

technical details of the interpolation algorithm.

3.2.2 Identifier and learning laws
Based on DNN-methodology [30], consider the following identifier

d .. N noo o
_,az,],k (t) _ Az,],k,&z,],k‘(t) + Z W:’]’er (QTZ, yj’ Zk)U(z,j,k),r (t)
dt = (3.29)

i=0,N;j=0,M;k=0,L

where AF € R™™ is constant matrix to be selected, @7k (t) is the estimate of u™*(t). As
in the previous section, this methodology implies the design of individual DNN-identifiers

for each (2,37, 2¥). Let us introduce the following auxiliary variables

B (E) s AR (E) — (), () = () — )

L R T e (3.30)
() i M) — uH(), M) = () ()

which define the error between the trajectories produced by the model and the DNN—

identifier as well as their derivatives with respect to x, y and z, for each i, j, k. Suppose
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that through triangle-based linear interpolation method, we are able to provide an estimate
fn]tk(t) of the missing information along the grid, that satisfies

where 7, 4 is a positive constant which depends directly on the amount of data available

u

) —

2 ..
<A Ay A2) (3.31)

for the interpolation algorithm, as well as the maximum separation distance A,, for the
coordinates z, y and z [25]. Let the time-varying matrices Wﬁjk(t) € R, r = 1,11 satisfy

the following nonlinear matrix differential equations

Co o~ o NP T .
Wﬁ’]’k — %W;’J’k . Kr—lpz,j,k:az,j,k(t) <U(z,],k),r<t>> (Qr(l’z,y], Zk))T

3
S N T o
= SRS ) (D6 (0)) (@ (g, )
=1

1 o C o NP NP T o
. 5Kr_lpz’j’kATPl’J’kW;’J’kQT (.Tl, y37 Zk)U(z,],k),r (t) (U(z,],k),r (t)) (Qr (ZEZ, y]) Zk))T

3
1 - o oy o T
_ 5 E Kr_lS;’]’kATS;’]’kU’;’]’kQTmU(Z’J’k)’r(t) (U(”J’k)’r(t)> (Qr )T

m
=1

(3.32)

where m represents the partial derivative with respect to x for [ = 1, with respect to y for
I = 2 and with respect to z for [ = 3. Here @®*(t) := a»9(t) — ul?*(t). Matrices P#*,

ShIR SRR and Sé’j’k (i=1,N;j = 1,M,k = 1,L) are positive definite solutions of the

following Riccati matrix inequalities
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igk Adygk i,5,k1 T i,k i3,k ik | pidk 1/2
— puik Aiak _ [A Js } Pk — Qs Pk R
a2 >0
|:R1337 :| Pz,j,k In><n

Rw’ ZW”kArHQ [Ww’ } + Aig
r=1
W Z HQT (2,97, 2"

+ 3 gt IIA—+21+ZHM v, + P

r+36

1+ZHQTQU y', 2 HA;HQ
r=1

r=1

_Si,j,kAi,j,k _ [Ai,j,k] J k Q 1,5,k S t,9,k [R J> k} 1/2

>0
S 91/2

77k 77k
e L

w, : ZWW FAri1o [WW’ ] + Aoy

Qy.]k —O[S/L"jk

i.g.k Adi ikl T oig.k i,k i,k i3,k 1/2

— Sy ARE — [A ’J’k] Sy = Qg 8y [Rsi }
v >0
s L
EA ZW“J’ r+24 [Ww’ ] + Ass

Q?]k _aszvjk

. . . . q1/2
gk pigk [ Aigkl T Qidk gk qidk | pigk
Sy A [A ] Sy Qg 53 R¢

>0
(R st L

l’]’ : ZW”kAr 36 [Ww’ ] + Aug

r=1

Q,]k _&Sljk
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and o > 0 is any constant.

3.2.3 Main result

The main result of this section is summarized in the next theorem

Theorem 3. Consider the nonlinear model (3.27), given by the system of PDEs with un-
certainties in the states with initial and boundary conditions given by (2.3). Suppose that

there exists an estimate ;) ’]’ (t) of the missing data such that

Suppose that the DNN-identifier is given by (3.29) and its parameters are adjusted by the
learning laws (3.32). If there exist positive definite matrices Ry™* Rg’f’k, Rg;k and Rg;k
(i =1,N;j = 1,M;k = 1,L) such that satisfies Riccati matrix inequalities (3.33)—(3.36)
with positive definite solutions P"/* S0* Sk and §2i% (i = T N;j = 1,M;k = 1, L),

then the error of identification @%*(t) converges in practical sense to

a0 — it <

2 ik
‘ < i (3.37)

N M L
Tm Y > ) latH( , < B/a (3.38)
e, j=0 k=0

where o > 0 and

=my Z Sk i 4 S
+ w42n E Zm’]’

w1 ‘= max {/\maX (A1_21) Amax (A2_41) )\max (Ag;) /\max (AZSI)} (339)

Wo = E >\rnax 7“+48 W3 = E >\rnax 7«+59

Wy = Z Amax (A;—im) Ws = Z Amax (ATT-&SQ)

r=1 r=1

Proof. The detailed proof is given in the appendix. O
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3.3 DNN identification for distributed parameter sys-
tems with sample—data measurements and scat-

tered grid outputs.

Consider the following set of uncertain PDEs whose outputs are given as follows

’U/t(‘r, y? Z? t) :f (u(aj7 y? Z,t),Ux<x7 y7 Z? t)7uzm($7 y7 Z? t)7uy(x7y7 z7t)7
U x7y7z7t7uz $7y7z7t7uzz(x7y7z7t>7u$ $7y7z7t7
(.32, 8) 0y, 2,1 o2 10
uyl’(x7 y? Z’ t)?“Z'Z(m? y? Z? t)’uyz(x7 y? Z’ t)) +£(x7 y? Z’ t)

GE(E) =CF I ()N for (10,5 k) € T

where f(-) is an unknown nonlinear partial differential equation and u € R" is defined in
the domain (2.2).The boundary (Neumann and Dirichlet) and initial conditions are given
by (2.3). Set Z is defined as in the previous section. The variable @*/*(t) describes the
real available sample-data measurements, i.e., the stepwise values of #"/*(t) represents the

available output, which are measurable only at points spread over the mesh. Here

)1t E [tk ter), (3.41)
0 otherwise.

denotes the characteristic function of the time interval [ty, txi1).

Thus, the problem that arises is that, given the sample-time scattered output "/ (t),
provide an estimate u**(t) of the missing information along the grid, based on the triangle-

based linear interpolation method, that satisfies the following relation

iy - 2
’ ufnjt’f:k — u”’k(t)H < (ﬁjf (h, Az, Ay, Az) (3.42)
where h = mgx|tk+1 — tx| and Am is the is the maximum distance between points at

coordinates z, y and z in mesh representation.. Additionally, provide an estimate of the
upper bound of the identification error and, if it is possible, reduce it to the lowest possible

value selecting free parameters participating in the DNN—identifier.
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3.3.1 Identifier and learning laws

Based on the results from previous sections, let us propose the following identifier

11
d .. S . o N
aﬁz,],k(t) _ Az,],k‘az,g,k’(t) + Z W:’]’er(l’l, y37 Zk)U(z,j,k),r(t)
r=1
o S 3.43
+Lz,],k (I:LZ’]’k(t) . OZ’]’kﬂZ’]’k(t)) ( )
1=0,N;5=0,M;k=0,L
where
=i j igk i ijk
IR (t) = CRIRgIR (1) — uly () (3.44)
define the error trajectory between the estimate 4%9*(t) and the data obtained through the
interpolation method. Additionally, consider the following quantities
0y bik () (3.45)

() o= i

where m represents the partial derivative respect to x, y or z, correspondingly. Let the time—
varying matrices Wf,]k (t) € R", r = 1,11 satisfy the following nonlinear matrix differential

equations
. o —. N T S
Wik = = W — KL (0097(0) (@ (a7 )
3 o o T o -
= Y ESSERE) (0E @) (6 2)
=1
(3.46)

1

-1 i3,k Or77(8,5,k),r Fr(i,g,k),r T T
KA1 T WRQr @ (1) (7 @)

1

2

1
—-K
2
where m represents the partial derivative with respect to x for [ = 1, with respect to y for

3
o . . NP N T
> KA ST, D00 ) (G050 (@ )T

=1

PO o T
LA 4105 W4 D00 (1) (G607 ()

[ = 2 and with respect to z for [ = 3. Matrices Si’j’k, S;’j’k and Sé’j’k (i=1,N;j=1,M,k =
1, L) are positive definite solutions of the following Riccati matrix inequalities
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o - o o Co11/2
.5,k gk g,k T Qidk ik Qigk | pidk
— Sy AW — [A J ] Sy — Qsl Sy Rsl

o oq12 >0
I 7k I 7k
(R st L

w, : ZWZ]kAr 12 [Ww’] + Aoy

r=1
Ql k. aSi’J’k
_Sz»]>kAl7j7kI _ [AZ,],k]T Slz.]zk _ szjvk Slmjvk Rzyjak 1/2
2 2 S1 2 Sa > 0

Coq12
2,5,k t,5,k
[RSQ ] 82 ]n><n
11
o o T
).]ﬂ . iy lyk 7:’ .ak
R* = 3 Wi Ay W] 4 Age

r=1

u5.k t,5,k

_S;,j,kAi,j,k o [Ai,j,k] J k Q 1,5,k S 1,9,k [R Js k} 1/2

>0
o o11/2

I 7k I 7k
[ lsﬁ, ] S;J [n><n

A ZWW’ r+36 [WW’] + Ags

’.7’ . i7j7k
Q" = aSy

3.3.2 Main result

The main result of this section can be summarized in the following theorem

are adjusted by the learning laws (3.46). If there exist positive definite matrices R’
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(3.47)

(3.48)

(3.49)

Theorem 4. Consider the nonlinear model (3.40), given by the system of PDEs with uncer-
tainties in the states, and scattered sample-data outputs, with initial and boundary condi-

tions given by (2.3). Suppose that the DNN—-identifier is given by (3.43) and its parameters

RJk

and Rggk (1t =1,N;j =1,M;k =1, L) such that Riccati matrix inequalities (3.47)—(3.49)
have a positive definite solutions St*, %% and ngj”“ (t=1,N;7=1,M;k=1,L), and if

there exist matrices IIy, II., P** L% and parameter € such that



Wik —

i7j7k 7] k 0 O i:jzk

Wil Wi W15
1,3,k 1,5,k 1,5,k
Woi Wa 0 0 Woy

0 0 wib o0 0
0 0 0 wJF o0

7:7j7k 7.7 k 7-] k
W51 Wsh 0 0

whose elements are given as follows

(3.50)

Wl,{, ::Hb (Ai,j,k - Li,j,kci,ﬁk) + (Ai,j,k _ L’i,jkai,j,k)T Hb 4 HbRi'_,[jl;,kHb
+ Qi + S + apiih

Wzl,g, = Pk (vak _

i’j’k - —_— i7 .7k Z’7 ‘7k
wyi =Pk 1, (AR —

Lk L, — 1,

Li,j,kci,j,k) - Hb

wilt =h?R* 9Tl 4 LR *II, + Qi

o B
ng,’ ‘— _ he ath,],k
" '?k - '7 ‘7k

wipt = — e S
i?j’k Pyp— . i7j7k .
Wept = —el; Wit

_ u5k .5k ik
— _Hb, W51 . _Hb, W25 . HC7 W =

(3.51)

_HC

is negative definite, then the error of identification @*¥*(t) converges in practical sense to

lim
t—o0

where « := a and

22 2 N#0)[ gy < Bla

i=0 j=0 k=0
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—wlZZf”’“szHL”’%W’“H + S 0 (b, Ax, Ay, Az)

S 65T (h, Az, Ay, Az) + 5 > 05 (b, Az, Ay, Az) + w6 > 00 (b, Ax, Ay, Az)

w1 = Mmax {67 Amax (A54 ) s Amax (A§2 ) » Amax (AZS )}
W9 i =Amax (Agol) + Amax (A&l)

11 11

w3 1= Z Amax (Ary61) @4 = Z Amax (Ar172)
r=1 r=1
11 11

Ws = Z Amax (AT+83> We = Z Amax (AT+94)
r=1 r=1

Proof. The proof of this theorem does not differ significantly from that made for theorem
1. The only difference lies in the fact that the approximation of the error of identification
k() is as follows

IR (E) = () + At

int,t

This consideration changes the learning laws of the neural network as in (3.46) and provides

a new upper bound for the identification error given by (3.52) O
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Chapter 4
Numerical Results

To test the quality of the approximation of the solution of partial differential equations using
the proposed neural network methodology, we present below several examples where they
qualitatively illustrate the theory presented in the previous sections. At the end, we present
a table comparing different techniques for the approximation of solution of partial differential

equations using neural networks, which highlight its main features.

4.1 PDE with sample-time outputs

Let us consider the following 3D heat equation with heat source given by

ut(ta x,Y, Z) = _Clux:(:(ta x,Y, Z) - C2uyy(t7 x,Y, Z) - C3uZZ<t7 z,Y, Z) + f(ta z,Y, Z)
E(t,z,y,2) = asin(t + bz + byy + b32)

(4.1)

where a = 0.1, by = 1, by = 0.5, b3 = 0.7 and ¢; = ¢3 = ¢3 = 0.01. This system can be
represented (using the FDM) as

1
~Az [—(

+203ui’j’k_1(t) — cqut T2k CQUi’j_Q’k(t) — 03ui’j’k_2(t)}

ul (1) 1+ co + c3)u () + 2cut IR (L) 2cutT TR (1)

Boundary and initial conditions were selected as

u(0,y, z,t) = rand(1) u(x,0,2,t) = rand(1)
U,(l’,y7 Oa t) = rand(l) Uw(o, 0, 0, t) =0 U,(l’,y7 zZ, 0) =10
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where rand(1) is a series of random numbers in the interval [0, 1]. This condition is provided
only to ensure that different initial and boundary conditions give similar approximations of
the solution. The sampling time-intervals were selected to ¢, = 0.2s and the domain was
divided in 10 x 10 x 10 equidistant sections. In figure 4.1 we show a comparison between
trajectories produced by the model (4.1) and the output from the identifier proposed after
10 s. In this graph, the z coordinate is hidden. After 10 seconds of simulation, the identifier
has approached the solution of partial differential equation (4.1). In this comparison we
can see small differences in some regions represented by the color scale. This is because the
identifier ensures that the identification error converges to a region and it will remain bounded
during the identification process. To clarify this, figure 4.2 shows the difference between the
trajectories produced by the equation and the identifier at the time 10s. The difference is near
zero and remains bounded in the domain defined by the equation. Additional information is
presented in figure 4.3. In the first graph we can see the comparison between the trajectories
produced by the partial differential equation, the sample-time output and the identified
output. These information were obtained by measuring directly the node (6,8,9) of the
mesh representation. We can see that the approximates solution stays close to the solution
of the model. Figure 4.13(b) shows the logarithmic quadratic error for the simulation time.
Finally, figure 4.4 shows a comparison between the PDE numerical solution and the solution
approximated by the identifier. We used the mesh representation because it allows a better
comparison node to node. This graph shows the coordinates x, y and z of the grid and the
color scale determines the value of the functions u(t, x,y, z) and u(t, z,y, z) at time 10s. It
can be seen that both grid outputs are nearly identical. One can see that the outputs are

almost identical illustrating the high efficiency of the identification algorithm

4.2 PDE with scattered outputs

Consider the 3D wave equation defined as

uy(t,z,y,2) = V2u(t,x,y, 2) (4.2)
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Figure 4.2: Difference between PDE solution and DNN approximation at time 10s.
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Figure 4.3: (a) Comparison between trajectories produced by PDE solution, sampled-time
output and the DNN-identifier output for fixed =, y and z coordinates. (b) Logarithmic
quadratic error for fixed x, y and z coordinates.
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Figure 4.4: Comparison between grid outputs produced by PDE and the DNN-identifier
after 10s.
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where ¢ = 0.1 and V? is the Laplace operator. The FDM representation of this equation is
1
=3 [
+C(ui—2,j,k(t) + ui,j—Q,k;<t) + ui’j’k_2(t))}

ui;fj’k(t) 3cui’j’k(t) — QC(ui’l’j’k(t) + ui’jfl’k(t) + u"’j’kfl(t))

The initial and boundary conditions are the same as in (4.1) and the domain was divided in
10 x 10 x 10 equidistant sections. The process to implement this simulation is as follows. To
produce outputs in a scattered grid, we have assumed that the measurements are available
only in some nodes, i.e., data is available at nodes whose sum of indices 7, j, k is even. For
this particular simulation, this represents 52% of the total data. Next, we used the griddata
method of Matlab™ for interpolation of missing information. This method implements the
triangular-based linear surface fitting algorithm and provides an interpolation that satisfies
condition (3.31). With these new data, we use the identifier (3.29) with learning laws (3.32)
to approximate the solution of (4.2). In figure 4.5 it is shown the comparison between the
PDE numerical solution and the DNN-identifier output using the interpolated data for its
learning process. Trajectories are quite similar, but the error graph shown in figure 4.6
demonstrate that there are areas where the difference between the model and its approxima-
tion is large. These major differences are the result of the interpolation algorithm, because
it has approximately fifty percent of the total information for this process. To avoid these
results is necessary to measure more mesh nodes in order to obtain a better approximation.
In figure 4.7(a) we can see the comparison between trajectories produced by the 3D wave
equation, the identifier output and the interpolated trajectory. It can be seen that the trajec-
tories of the equation and interpolation are practically the same, however the output of the
identifier is different from these. This is because the learning process uses information from
the neighbors in the mesh, and if the interpolation process is deficient in some nodes, errors
are propagated through these. In figure 4.7(b) it is shown the logarithmic quadratic error
for the node (7,9,7) in the mesh representation. In figure 4.8, we present the comparison

between the output grids of PDE and DNN identifier, respectively.
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Figure 4.5: Comparison between trajectories produced by PDE and the DNN-identifier after

10s.
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Figure 4.6: Difference between PDE solution and DNN approximation at time 10s.

44




Amplitude

5 6 4 5
Time (sec) Time (sec)

(a)

Figure 4.7: (a) Comparison between trajectories produced by PDE solution, interpolation
output and the DNN-identifier output for fixed z, y and z coordinates. (b) Logarithmic

quadratic error for fixed x, y and z coordinates.
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Figure 4.8: Comparison between grid outputs produced by PDE and the DNN-identifier

after 10s.
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4.3 PDE with sample-time scattered outputs

Consider the 3D wave equation defined as
u(t, 2,y,z) = V2t x,y, 2) (4.3)

with boundary and initial conditions as in (4.1). Here ¢ = —0.1 and V? is the Laplace

operator. The FDM representation of this equation is

ui’tj’k(t) =Xz [SCum’k(t) — ZC(UZ_LJ’k(t) + u”‘l’k(t) + um’k_l(t))

He(u 2R () 4 ubTTER () ui’j’k’z(t))}

Assume that the given output is

ﬂi’j’k(t) = ui*’j*’k*(tk>X[tk¢k+1)

where ¢, = 0.2s is the sample time and Xy, s, ,,) is the characteristic function of the time
interval. Indices ¢*, j* and k* represent the measurable nodes in the grid representation. For
this particular simulation we assume that nodes whose sum of indices is even or (i + j + k)
mod (3) = 0 are available. With this assumption we have 73 percent of all the information
to perform interpolation, which will increase its quality, and consequently, the quality of
the approximation of the solution of (4.3). Following the same procedure as in the previous
section, we provide an interpolation of the missing data through the Matlab™ function
griddata, which satisfies relation (3.42).

Figure 4.9 shows the comparison between trajectories produced by the mathematical
model and the DNN identifier. As in the previous case, the trajectories are very similar, but
unlike that case, the error between them is close to zero, except in certain well-identified
points (see fig. 4.11). In figure 4.12 are shown a comparison between trajectories involved in
the identification process and the logarithmic quadratic error fixed for the node (8,8,7). In
figure 4.10, it is shown the comparison between the output grids of PDE and DNN identifier,

respectively.
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Figure 4.9: Comparison between trajectories produced by PDE and the DNN-identifier after
10s.

4.4 State estimation of PDE

Consider the telegraph equation [26] given by

U + (o + B)ug + afu = g, (4.4)
where . C .
2 _ _ = — = —
“=Ic ““¢ P71

Here, u(z,t) denotes the voltage at position x and time t. C stands for capacitance to
ground, L and R are the inductance and resistance of the cable, respectively, and G denotes
the conductance to ground. For a case illustrating the ability to estimate unknown states

using the identifier proposed in equation (3.2), we use the following benchmark system,

Uy = Ugy — Ay — Bu

1,95k i3,k i3,k (4-5)
Y (t) =Cu <tk)x[tk»tk+1)
where
20 3 0
0 3 0 4

which represents two transmission lines of which we can measure voltage at the first one. We

assume further that the output is only available through a process of sampling with period
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(b) DNN approximation at time 10s.
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(a) PDE solution at time 10s.

Figure 4.10: Comparison between grid outputs produced by PDE and the DNN-identifier
after 10s.

u(tax’:’-hz) - ﬂ(t7x’y1z)

Figure 4.11: Difference between PDE solution and DNN approximation at time 10s.
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Amplitude
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(a) (b)

Figure 4.12: (a) Comparison between trajectories produced by PDE solution, sampled-
time scattered output and the DNN-identifier output for fixed x, y and z coordinates. (b)
Logarithmic quadratic error for fixed x, y and z coordinates.

tx = 0.2s. In figure 4.13, it is shown a comparison between trajectories produced by the
mathematical model and the DNN identifier. The major differences between them are result
of the period of learning process. Figure 4.14 allows a better visualization of the process of
estimating the trajectories of the system of PDE. In figure 4.14(a), we see a direct comparison
between the trajectories produced by the model and the neural network. Moreover, in figure
4.14(b) it is shown the graph of the error between the model and the neural network. With

this we can conclude that the estimation process is satisfactory from the known information.

4.5 Comparative chart

In this section, simulations were developed to illustrate the effectiveness of the proposed
algorithms, however, these are not the only ones available. Table 4.1 shows some of the
proposals available for approximating solutions of unknown partial differential equations via
neural network techniques, highlighting its main characteristics. Thus, the reader will be

able to discern and choose the option that best suits its problem.
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(a) PDE solution after 20s. (b) DNNIapproximation after 20s.

Figure 4.13: Comparison between trajectories produced by PDE and the DNN-identifier
after 20s.
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Figure 4.14: (a)Comparison between trajectories produced by PDE and the DNN-identifier
after 20s and (b) error trajectory for a fixed x.
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Chapter 5
Conclusions

This thesis presents a new robust adaptive DNN strategy for identifying and approximating
the solution of partial differential equations with uncertainty, measured in different ways
along a grid that divides the domain of definition of the PDE. We present three different cases
for identification. First, the case where information for the identification process is available
across the grid and the outputs are sampled over time. Second, the case where information
is measurable in some scattered points on the grid. Finally, a combination of both previous
cases. For all cases, we demonstrate the practical stability for the approximation process via
Lyapunov-like analysis. We provide and construct an upper bound for identification error
and, using the same analysis, we derive the learning laws for the suggested neural networks.
Additionally, we construct numerical simulations that illustrate the efficiency of the proposed
methodology. In the first case, it illustrates the convergence error to a bounded region
identification. In the second case, we provide an interpolation of scattered data, however,
the quality of the interpolation determines the quality of the approximation of the solution,
since small interpolation errors are dispersed over the mesh due to the relationship with its
neighbors expressed in learning laws. A third simulation was conducted to illustrate the two
previous cases. We note in it that the error converges to a bounded region, with some slight
variations due to the interpolation scheme.

Future work includes implementing the identification algorithm for the approximation
of real distributed parameter systems as models of distribution of oil and water, where
information is available just like in the third case, as well as improve the interpolation

algorithms, since the quality identification depends directly on it.
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Appendix A

Proofs

A.1 Proof of theorem 1

Proof. Let us consider the following Lyapunov—Krasovskii functional, defined as the compo-

sition of NML individual Lyapunov-Krasovskii functionals along the whole space:

ViR (1) + i tr { [Wf’j’k(t)} ! KTWj’j"“(t)}

t—h
0 t
o / et [ai’j’k(s)]TRi’j’kﬂi’j’k(s)dsdé’} (A1)
——hJi+
V() 1= 350 e+ IO Gy + N7 Ol g + 170 g

where S;”" and R“* are positive definite symmetrical matrices, h := max |ty — t;| and
k

a > 0. The time derivative V(-) of V(-) can be obtained and is given by the following relation
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V(t):2i[ﬂ13k( )] P’Jkd%]k +2Z ij Szjkd%]k(t)

dt*
N ~1 7 d ~z ~i i d ~i
+2) ) [a* ) syt (1) +23 [aik (e )] Sy 1)
1
+ QZZ“{[W?]"“@)} KTWZ”’”“(t)} + [@R ()] T Shk gk (t)
r=1

S [t )T SRR = )+ ? @] R (A
t
. a/ a(s t) [ z]k( )}TSZ’j’kﬂi’j’k(S)dS
t—h
t . T
i h/ 6a(s—t) [a:g,k<s)} Rz,],kﬂid,kz(s)
t—h
0 t y T
—ah/ / e?(s=0) [ﬂijk(s)] RWFhik (5)dsdf
o=—h Ji+0
The tenth term of the time derivative of V(t) can be estimated as
¢ - T t hy T
—h / o= [a;w’f(s)] RWIkGR(5) < —pemah / [a;ﬂvk(s)] RiFkGR(s)  (A.3)
t—h t—h
Applying the Jensen’s inequality to the last integrals we get

~1,5,k T ik h ~iik T
ot )] st [ fak )] s

‘ t
heah/ [ai,j,k(s)f Rmvkaid‘v’“(s)ds > heah/
t—h =

(A.4)

h
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Now, adding aV'(t) to both sides of (A.2) we obtain

d
Uk pl]k ~ka 9 z]k igk @ ik
Vo +av <2} [o (6)+2) [w(0)] S+ Lat )
_ d g
~1 k 1,7,k ~1 k ~i k ik ik
Z Js SJ J +22 Js SSJ - Z] (t)
+2ZZ“{[W”’“ ] KrWﬁ’j”“(t)} + (@) " SRk ()
—ah [ ”k(t . h)] Si’]’kﬂi’j’k(t . h) + h2 [w]k( )] Ri’j’kﬁi’j’k(t)
¢
_ a/ ea(s—t) [ai’j’k(s)]TSi’]’kﬁi’j’k(s)ds
t—h

e /tth [344(s)] " dsro® thh [2i4(5) " ds

— ah/ / 5=t ”jk s)}TRi’j’kﬁi’j’k(s)deG
9=—h Ji+o
+ aif/i’j ok )+ aiz tr { [W” b } KTWZ’j’k(t)}
¢
+ a/ e?(s=) [ﬂi’j’k(s)fSi’j’kﬂi’j’k(s)ds
t—h

0 ¢ - T
+ ah/ / e(s=t) [ﬂijk(s)} RZ’]’kﬂZ’J’k(s)dsdG
o=—h Ji+0
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Let a := a. Then, the right hand side of the last inequality can be simplified as

V( ) + OéV( ) i [am, ( )} Pz,]k ~z,], + 22 ,], ,],kjta;j’k@)
_ i T 7 ~Z ;. d i
+2)  [w(1)] S, jk (1) + 2 [l (o S3Jkdt (1)
11
+ QZZtr { [Wz,j,k(t)] K. k( )} + [u J k( )} Sz,g,kz w’k(t)
r=1

—ah [=i,j T ik ~ij, ; ivjok ~ 7,
— e [u TR — h)} S4Jku IRt — h) + h? [utjk( )] R Jkutjk(t) (A.6)

+ ai\_/i’j’k )+ az Z tr { [W” (¢ ] KTVVf’j’k(t)}

Let II, and II. be some matrices of the suitable dimension. Following the idea of the “de-

scriptor method” for systems with time—delays, we know consider the term

T C
257 ([940] o [ 0)0] 1) x [R5 0) + 194 a4 ) + 95

TR G2k () TR 20k () T 202k () ik ik (1)
- VERAB GRIR 2 () (YR L LR () TR 2 IR () TR g8 i Lak ()
W”k 2” 1,j—1,k— 1( )+Wzyk: 1~ zjk(t>_’_Wi,]k(pluz 1,5,k () ka 1~ 7, 2]k(t)
R 2R (§) YRR 2GR () YR Biakl () o YEikaB ik ()
N I A v (7 IR T I e TLe e ()
—fi’j’k(t) | [k (ﬁi’j’k(t) B Cﬂi’j’k(t)) _ ﬂi]k(t)}
(A7)

o8



ubdk (t )} Sl”kgfuﬁnjk(t) can be

Adding equations (A.6) and (A.7), we have that the terms 2 |

estimated as

2 [ald* (1)) Sij’k%ai,’{”“(t) < [a ()] " (S A 4 [49H] TSR aso)]
11
+ [ (p)] " sik (Z WEkA (W] Ty Ab+12> Sy [ * ()]
r=1

-3 [ el [0 )

+ [fi’j’k(t)}TAb_jm [ﬂmjk(t)]

—1—22 S”kW”kQT T z)U(”k "(t)
(A.8)

where | = 1,2,3; m represents the partial derivate, for S; it is respect to x, for Sy with
respect to y and for S3 with respect to z; and b = 12,24, 36, correspondingly. The learning

laws can be derived by grouping all terms containing WiJ-*

)3 {[W’J”f(t>f(f<m%’f+[Hba@'va’f<t>+ncaz““< )] (B9 (1) (@, )T

Si’j’kﬂi’j’k<t> (Uv(z’,j,k),r(t))—r (QT ($Z yj Zk))T 4 Si’j’kﬂi’j’k(t) (U(i,j,k),r<t))T (Qr(xz J Zk))T
x I I 2 Y Y ;y 9
S N T L a ..
S;,J,kazzﬂ,k(t) (U(m’k)’r(t)> (Qz(xz7 yj, Zk))T + §KTW;’j’k
(A.9)

Now, let approximate @/ (t) as

AR () = IR () — R () £ a R () = ulIR () + Aubr (A.10)
where ubk(t) == ab9F(t) — utF(t) and AubF = @R () — Bk (t). For the terms containing
@7k (t) they can be approximated as

TP (t) = ul?F(t) + AubPF (A.11)
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where

WEIR(E) 1= A W) — a ()]
A (A.12)
AUQM = — [Aui’j’k - Aui_l’j’k]
x

Remark 3. The same is true for a,7*(t) and @,/ (t).

Applying the A-matrix inequality to terms containing u’/*(¢) and Au®* (and its respec-

tive partial derivatives), the learning laws satisfy the following nonlinear matrix differential

equations
irigk _  Yiirigk | opo—1 i,k o (3,5,k),r LEPSR i kT
Wr - 2Wr Kr Hbue (t) U (t) (Q (x Yz ))
1 @ik, ik e (ing ) T i i kT
- Kr Sl U, (t) (U (t)> (Qx('x Y,z ))
-

— K s (0690 0) (@ v, )

. . N T L
— KSR ) (009 1) (@t o, 2)T

1 o o N N T S
— §Kr_1HbAr+61HbWZ’]’kQT($Z7 Y, Zk)U(Z,J,k)J(t) <U(Z’7’k)’r(t)> (Qr(xz’ Y, Zk))T
1 . o o o o T o
— 5KT_1Si’]’k/\inSi’]’kWf’]’kQ;(xz, v, zk)U(”’k)’r(t) (U(wyk),r(t» (Q;(ml, v, Zk))T
Lo 1 Gk A—1  qidkirigkor (i o i,k gk (A (O (i o T
— §Kr 1gid Arisssij’ WTJ,ka(:E 7, zk)U( Gk () (U( Gk (t)) (Qy(w YA zk))
Lo 1 Gk A—1  qidhyirigkor (i o 70,k @ik (1Y) | (O (g T
- §Kr 1537% Ar—&94537]7 WrJ’sz(x 7yj7 Zk)U( I (t) (U( I (t)> (Qz(‘r ’yja Zk))

1 o~ S P N T S
. _K;IHbAr+105HbW;7]7kQT (ZL‘Z, yj7 Zk)U(z,],k),r (t) (U(z,],k),r (t)) (Qr (ZL’Z, yJ7 Zk))T

2
(A.13)
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Then, the next inequality is achieved

V(e + av(e) < 237 [a4 0] T PR ) + 3 [94(0)] i )
+i[a;jk t)] Liab*(t) +Z [@* (1)) L (t) +Z [k (1)) T L (1)
+i [ai’j’k(tﬂT SyPEutk () — e’“hz (@™ (t — h Sjlvﬂv’f@w:k(t —h)
Y [ )] R
'

|
— he’“hi [ﬂ;jk(s)] ! dsR™* /tth [ﬁijk(s)] ! ds
T

t—h
oS [k )T () — 23 [94(e)] I )
_2i[ﬁi’j’k(ﬂr i (t —22 [”]kt] I fik () + 0
-9 0] mLea — 23 [af o) nseai

(A.14)

where

W= [Fh0] At + Y [Fo)] AR
+ 30 [k 0] ARF0 + 3 (A Aa )T A (LA (0)

N 11
+ 37 (LR AT )T AG! (L AT () + 3 [AutiH]T (Z I, Ayser nb> [AuiH]
r=1

gl

11
(804" (328 A 174 ) [0

-
r=1
— no N
+ Z [Au;rj:k}—r ZS;,],I@ Ar+83 S;7J7k [Au;’]’k}
r=1
f— 11
+ Z [Auivjvk}-r Z Sgﬁk Ar+94 Sé,j,k [Au;’j’k}
r=1

(A.15)
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and

Ty, =T, A 4 [AWF] T, 4 TR, + QRF 4 Pk
11
Righ = 3 Wi, [ ’“} + Ago
r=1
1
) k _ Tt r r
QJ ZHQ(x,yJ,z 1—1—2”9 (2,97, 2" HA—H2+Z”Q T HA
+ZH9 vy, Ar;36+ZHQ o ),
. S o T
Rﬁik = Z WIEA, 1 [Wﬁjk] + Ag1
r=1
]1 RlC(SZJ k) S’L] kAzJ k |:A’L,j,k,‘:|T Si,]yk + Siy]yle‘é{,kS’i,]yk + Qg{,k‘
o .. o . .7
R¢ ’] b= Z WE A 12 [Wf]k] + Aoy
r=1
Q 0,75 k aSivjvk
I = Ric(Sy7%) 1= Spik Atk o [AWk] T gtk | qrik ik ghik o Lk
.y U o T
= Z WEEA, 24 [Wf]k] + Asg
r=1
I5 = Ric(Sy*) = SpPk AWk 4 [A1K) T Ghitk | Ghatk plik ghik o gtk
. o T
R = SOV W] s
r=1
Q 6, — CLS3]
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(A.16)

(A.17)
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The special class of Riccati equation

PA+ATP+PRP+Q =0

where A, Q = QT, R = R" > 0 are given matrices of appropriate sizes and P = PT is

variable, may be represented as the following linear matrix inequality (LMI)

—PA—A"P—-Q PR'?

>0

R'2P Inxn

Finally, lets consider the extended vector

of0)i= (@940, a7

o [ [ao] as @ - n. k) T

therefore, the next inequality can be estimated

V(E) +aV(t) < S 0T Wiy 4 4

where =WV + eillf”’“(t)IIQ and

Wk =

1,7,k 1,5,k W5,k
W11 Wi3 0 0 Wi5
Woi' Woj Woi
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The elements of W/* are given as follows

Wil =L, (MR — LPRCY) 4 (AW — [9RC) T, + T, Ry,
+ QZ] k Si,j,k + aPi,j,k

wigh .= piak 4 (ARk — kYT T, - T,

W;,{',k P’i,j,k 4 Hc (Ai,j,k _ Ll,j,kc«) o

k2 i - (A.24)
1,75 2,7, %575
W22 h R J - 2HC + HCRHC HC
Wz,],k — he—ahRi,j,k
33
iaj’k R —ah i:jzk
gk . bk hik bik C bk
.W55 6[ W15 o _Hb, W51 . _Hb, W25 . _HC7 W52 - _HC

Hence, by selecting some matrices I, and II. and the optimal matrices P and L such that
W <0, we can conclude that the function V() satisfies lemma 1. O

A.2 Proof of theorem 4.

Proof. Let us consider the following Lyapunov functional, defined as the composition of NML

individual Lyapunov functios along the whole domain:

V(t) ::i VEIk(#) +Ztr{[W”kt] KTWj’j”“(t)}

(A.25)
V) 1= 40 e+ 40 g+ 15740 g+ 540
The time derivative V(-) can be obtained and is given by the following equation
V(t) =2 [a(e)] T P ) + 23 (a0 0] S J”f%a;ﬂ “(1)
w23 [ah ()] S;’j’k%a;j”“(t) +23 [t ) Sé’j”“%ﬂi’j”“(t) (A.26)
+2§itr{[ﬁ/yk<t>} KTW;J’“(t)}



Using the A—matrix inequality, we can approximate the first term of the time derivative as

92 [ai,j,k< )] Pz]kddt ~3.7, k(t) < [ 7, k( )}T (Pi,j,kAi,j,k + [Ai,j,k] Pi,j}k) ﬂi’j’k@)
11
+ [ai7j7k( )] sz k (Z sz kA |:WZ] k} ) Pi,j,kai,j,k(t)
r=1

1 U(i,j,k)ﬂ" (t)

+Z[ [7(isgik).r ] o (o, o7 Z>‘i;

+ [fi,j,k(t)} fz NR k( ) [ 7, k( )} T Pi’j’k/\mpi’j’kﬂi’j’k(t)

_'_22 'ij PljleijT(l_ y p )U(i,j,k),r(t)

(A.27)
For the terms of the form 2 [a%3*(t )] Sk Lk (t)
2 [k ()] T it Sk e) < [ o) (1A 1 [AH]T 50%) [ o)
11
n [a%,k(t)rsli,j,k (Z WidkA, L, [W;J } i Ab+12) S [idH(1)]
r=1
zg k),r r i F k|2 r7(4,,k),r
+ Z O] | @y, ) [ [0 )]
+ [f"’j”“(t)} vhe | (0]
+22 z]k Sz]sz]er<x y Z)U(z]k ()
(A.28)

where [ = 1,2,3; m represents the partial derivate, for Sy it is respect to x, for Sy with

respect to y and for S3 with respect to z; and b = 12,24, 36, correspondingly. Now, adding
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aV/ (t) to both sides of the resulting inequality we have

V() aV) < 3 [@H0) HaE ) + Y [@0] BHa o
2 [uzﬂ ’“(t)} OB + 3 [E40] Lo

— . =4 ~ . .1T .
RO WEED D R LTI S
s=1 r=1
—— AT
+ay Y { W] KTW,%’J”‘;}
r=1
where
1(t) = Ric(P'%) = PRFAIE 4 [AVH]T Prok g prakRytpiak 4 gt

R . ZW”’“A [W”’f] + A

r=1

" ” ’ (A.30)
ZHQ oyl 2 1+ZHQ 'y, )y
+;Hm o HA-H4+ZHM ] Y

Ly(t) = Ric(S1) = Siak giak 4 [ALiH]T ghik | ghik pik ghik | ik
Rig* = ZW TEA 1o [W” ] ¥ Aoy (A.31)
Q”k = aSi’]’k

I() RlC(S”k) Sz]kAz]k [Ai,j,k} Sz]k+51ijz]kSzjk+ngk
Rk = ZW TEN s [W” ] + Agg (A.32)

Q’L]k‘ _asljk‘
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L4(t) = Ric(S5) := Soik bk o [A3k]T Ghik o giak piik giik | ik

”’ : ZW”’ r+36 [Ww’ ] + Aug (A.33)
r=1
Qg Wik — aSé’j’k

In order to obtain the learning laws, let us add all terms containing Wﬁjk

2% Ztr { [W” (t } (KrWﬁ’j”"  pldkgiik(g) (U@v%’f)vr(t))T (0, (2 o7, 2)) T
Y NPy S L N T o
ﬂ%%yﬂw(mwmww)(Qyﬂyaﬁ»T+s#%wﬁm(UW“%w)(Qﬂfwa%»T

. . . . ~ s T ) ] a T i,J
Sikgiak () (U(”J”‘“)’T(t)> (g, =)+ KWk

(A.34)
Now, we can approximate a/*(t) as
FHE(E) = (L) — (1) £ g — () + Aub (A.35)
where @HF(t) = 04k (t) — ul?® and Aull* = ulP* — 4#k(t). For the other terms, the
following applies
W) = Ut () + 2= Augh (A.36)

Applying the A-matrix inequality to terms containing @**(t) and Aul>" (and its respec-

int

tive partial derivatives), the learning laws satisfy the following nonlinear matrix differential
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equations

Co o~ S NP T .
W;’J’k — %Wﬁ’y’k . Kr—lpz,j,kaz,j,k(t) (U(z,],k),r(t>> (QT(I‘Z, y]7 Zk))T
3

Ca NP T o
= YK ) (0P @) ()T
=1

1 o S~ S NP NP T S
i 5Kr—lpz,j,kATPz,],kW;,],er (x17 y37 Zk)U(z,j,k),r (t) (U(z,],k),r (t)) (Qr (LUZ, y]) Zk))T

N T
- ZK LSRN SRR D0 (1) (00507 (1)) ()T
=1

(A.37)

If there exist matrices P%"F, SiF Sh7% and S47% such that the Riccati equations (A.30)-
(A.33) are less than or equal to zero, and taking into account the laws of learning previously

obtained, then we obtain the following inequality
V(t) = —aV(t)+ 3 (A.38)

where

G= Zz/\maX{Ar+48 ”k‘f‘zz/\max{Ar%g ”k
+iz>‘mx{/\r+7o ”hrzz)‘max{/\ww ”’“WZZJ””“

(A.39)

Thereby, we conclude that the above equation satisfies conditions from lemma 1.
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Appendix B

Notation

U (E) = 1)
U 0) = ()
U (1) = w42

U(z,J,k),lO(t> _ uzfl,J,kfl(t)

0 ) = < )
) = 91 ()
(1) = @421

(1,5,k),4
(1,5,k),7

U(z,],k:),lO(t) _ ,&z— ,],k—l(t) U(i,j,k),l (t)

z 1,7, k( ) U(i,j,k),:}(t) _ ui72,j,k<t)
,] Qk( ) U(i,j,k),G(t) _ uz‘,j,k—l(t)
z 1,71, k(t) U(i,j,k),Q(t) — uz’,j—l,k—l(t>

— ul*l,j*l,k*l (t)

_ O_l(xi7yg’zk> QQ(xi’yj,Zk> _ gpl(xi,yj, Zk)
,)/1(1,1'7:[/]" Zk) Q4(xi’yj7zk> _ ¢2<xi,yj’ Zk)
72($i’yj’ zk) QG(xi’yj7zk) _ g03(xi,yj, Zk:)
7:s(xihyj7 Zk) QS(xi7yj7Zk> _ ¢1(xi,yj,zk)
wQ(xi’ Y, Zk) QlO(xi7yj, zk) _ Q/JB(ZCi,yj, zk)

= (2,97, 2F)
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