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UNIDAD ZACATENCO
DEPARTAMENTO DE CONTROL AUTOMÁTICO
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Abstract

The mathematical formulation of many problems in science and engineering can be reduced

to a set of partial differential equations (PDE). However there is no general theory known

concerning the solvability of all partial differential equations. Such theory is unlikely to

exist, given the rich variety of physical and geometric phenomena which can be modeled by

PDE. Since neural networks have universal approximation capabilities, therefore it is possible

to postulate them as approximate solutions for given differential equations. In this thesis,

a differential neural network approach for non-parametric identification of a class of three

dimensional (3D) PDE is proposed. Learning laws are derived and practical stability of the

identification error is demonstrated via Lyapunov-like analysis. To illustrate the qualitative

behavior and efficiency of the suggested methodology, simulation results are presented.
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Chapter 1

Introduction

1.1 Motivation

In science and engineering, there exists many applications of systems that can be described

by partial differential equations (PDE). Due to its importance, many methods have been

proposed in the literature for their solution, such as finite difference methods (FDM) [29],

[35], [38], finite element methods (FEM) [18], [21], [37], Runge–Kutta methods [42], Splines

[9], [20] and predictor–corrector methods [8]. These methods require the discretization of

domain into a number of finite elements where the solutions are approximated locally. Al-

though these methods provide a good approximation of the solution, it is required a complete

knowledge of the system to discretize the domain via meshing, which can be a challenge in

two or more dimension problems. Also, the approximate solution derivatives are discontinu-

ous and can affect the stability of the solution. Furthermore, in order to obtain an accurate

solution, it may be necessary to deal with finite meshes, which significantly increase the com-

putational cost. Finally, these methods are well defined for linear systems with well–known

structure.

A thoroughly research, shows that other methods can approximate solutions of PDEs.

Recent results demonstrate that neural networks techniques can be used effectively to iden-

tify a wide class of nonlinear systems, even when the system model is completely unknown.

Lagaris and Likas [23] presented a method for solving initial and boundary problems using

artificial neural network. They use the collocation method to compute the solution, which

assumes the discretization of the domain. They choose a trial function such that by con-

struction satisfies the given boundary conditions. This is obtained by proposing the trial
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function as a sum of two parts, one with no adjustable parameters that satisfy the boundary

conditions and a second term that employs a neural network whose weights are adjusted to

deal with a minimization problem. Then network is trained to satisfy the differential equa-

tion. Using the same approach, Lagaris et al. in [24] studied partial differential equations

where the boundary can be any arbitrary complex geometrical shape. Collocation method

is used again and the problem is transformed into a unconstrained optimization problem. In

[17], the authors presented a method to solve a a class of first order PDE which appears in

input-to-state linearized control systems. They proposed a backpropagation algorithm for

training a feedforward neural network and approximate a solution, which was used to design

feedback control laws to regulate a class of nonlinear systems. Some useful applications can

be found on literature; for example, in [2], the authors developed a multilayer perceptron

(MLP) technique to solve a mathematical model of vibration control of flexible mechanical

systems. Nevertheless, due to non-linearity and complex boundary conditions, their numer-

ical solutions present major drawbacks like numerical instability. Hybrid methods also can

be found in recent literature. Smaoui et al. in [34] analyzed the dynamics of two non-linear

partial differential equations known as the Kuramato-Sivashinsky equations and the two di-

mensional Naiver-Stokes equations using the combination of Karhunen-Loeve decomposition

and artificial neural network. In [3], a novel method based on artificial neural networks,

minimization techniques and collocation method is presented. It provides an approximate

solution to time dependent systems of partial differential equations. In article [39], Tsoulos

et al. used a hybrid method utilizing feedforward neural networks (FFNN) by grammatical

evolution and a local optimization procedure, in order to solve ordinary and partial differ-

ential equations. They used the well stablished evolution technique [27], [40] to evolve the

neural network topology along with the network parameters. A different technique, based on

radial basis function neural networks (RBFNN) for the resolution of nonlinear Schrodinger

equation in hydrogen atom, can be found on [33].

The differential neural network (DNN) approach [30] is a useful tool for the analysis

of a variety of problems related to control theory, such as identification, estimation and

trajectory tracking. Moreover, these networks have adequate performance in the presence

of uncertainty and/or unmodeled dynamics, because its structure incorporates feedback.

Therefore, the learning process is reduced to an appropriate design of feedback. A previous

related work [5] presents a method developed for the approximation of solutions of a class

of partial differential equations in two dimensions. This method proposes the application of
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differential neural networks for approximation of solutions of partial differential equations

with uncertainty. The suggested method proposes the discretization of the domain of PDE

by a mesh and use a finite difference method. The solution is then approximated at each

node of the mesh using a continuous DNN.

1.2 Results

In this thesis, we present an extended method for approximating the solution of a class of

partial differential equations in three dimensions where, in addition, the available information

to approximate the solution of the differential equation is restricted. We consider three types

of restrictions. First, constraints associated with a dynamic model whose outputs (measured

along the entire mesh) are sampled data. These sample–data outputs can be understood as

the result of a quantization process applied to a continuous output signal. Then, constraints

associated directly to the mesh that divides the domain of the partial differential equation,

specifically, an irregular mesh where the available information to approximate the solution is

measurable only in some nodes. Finally, we present a case where the two previous constraints

are considered simultaneously. As it is shown in [30], a Lyapunov-like method can be a good

instrument to generate learning laws and establish error stability conditions. To deal with

cases where outputs provide sampled–data, we use some advanced Lyapunov techniques

related to descriptor method. We refer the reader to [12], [13], [14] for the corresponding

details. In cases where the mesh is irregular, interpolation methods are used to approximate

the missing information on the mesh. The method proposed in this work can be used to

approximate solutions of partial differential equations in three dimensions, which represent

a variety of systems with distributed parameters, such as the three dimensional heat and

wave equation.

1.3 Organization

This thesis is organized as follows. In the second section we make a brief discussion about

systems with distributed parameters and present the necessary tools to study them in the

context of differential neural networks. In the third section, we outline the main problems

and present the results of this work. In Section 4, various simulations are presented to

illustrate the effectiveness of the proposed methodology and, finally, we present a small
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comparative table which highlights the main features of various methods for approximating

solutions of partial differential equations. In Section 5, a brief conclusion summarizes the

objectives achieved. Additionally, in the appendix section, the reader will find the proofs to

the main theorems and notation that will facilitate the reading of this work.
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Chapter 2

Distributed parameter systems

2.1 Distributed parameter systems and its approxima-

tion

As background for the development of non-parametric identifier for approximating the solu-

tion of partial differential equations, we must be able to represent them in a form suitable

for study within the context of DNN. For this, consider the following set of uncertain partial

differential equations

ut(x, y, z, t) = f (u(x, y, z, t), ux(x, y, z, t), uxx(x, y, z, t), uy(x, y, z, t),

uyy(x, y, z, t), uz(x, y, z, t), uzz(x, y, z, t), uxy(x, y, z, t),

uyx(x, y, z, t), uxz(x, y, z, t), uyz(x, y, z, t)) + ξ(x, y, z, t)

(2.1)

where u ∈ �n is defined in the domain

G = [0, 1]3 × [0,∞) (2.2)

this is, x ∈ [0, 1], y ∈ [0, 1], z ∈ [0, 1] and t ∈ [0,∞). The boundary (Neumann and Dirichlet)

and initial conditions are given by

u(0, y, z, t) = u10 ∈ �n, u(x, 0, z, t) = u20 ∈ �n, u(x, y, 0, t) = u30 ∈ �n

ux(0, y, z, t) = 0 ∈ �n, uy(x, 0, z, t) = 0 ∈ �n, uz(x, y, 0, t) = 0 ∈ �n,

u(x, y, z, 0) = c ∈ �n

(2.3)
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We may use the following notation throughout this document

ut(x, y, z, t) =
∂u(x, y, z, t)

∂t

ux(x, y, z, t) =
∂u(x, y, z, t)

∂x
, uxx(x, y, z, t) =

∂2u(x, y, z, t)

∂x2

uxy(x, y, z, t) =
∂2u(x, y, z, t)

∂x∂y
, uyx(x, y, z, t) =

∂2u(x, y, z, t)

∂y∂x

and it follows for all other terms included in the function f(·). It is necessary, when con-

sidering the solution of partial differential equations, to introduce the concept of existence

and uniqueness. The Cauchy-Kovalevskaya theorem (see, for example, [10], [11]) is basically

the only general existence theorem in the subject, and thus should perhaps be regarded as

central. This theorem applies to equations of a very general form

∂niui

∂tni
= fi

�
t, x, u,

∂u

∂t
,
∂u

∂x
. . .

�
, i = 1, . . . ,m. (2.4)

where x = (x1, . . . , xn−1), u = (u1, . . . , um), and for each i = 1, . . . ,m the function fi depends

on the derivatives of the functions uj only up to order nj, is independent of ∂njuj/∂tnj , and

is an analytic function of all its arguments, which covers a great variety of systems. Notwith-

standing, in practice, the power series methods proposed by the Cauchy-Kovalevskaya theo-

rem are not so prevalent. Furthermore, the theory for nonlinear partial differential equations

is far less unified in its approach, as the various types of nonlinearity must be treated in

quite different ways. Some authors (see, for example [11]) rely on functional analysis and

“energy” estimates to prove the existence of weak solutions. In a broad sense, a weak solu-

tion u is a function which is not continuously differentiable or even continuous, but which is

nonetheless deemed to satisfy the equation in some precisely defined sense. Such solutions

are very useful because a lot of natural phenomena modeled by partial differential equations

(such as those modeled by the equation ut+F (u)x = 0, which governs one-dimensional fluid

dynamics and, in particular, models of formation and propagation of shock waves) do not

support sufficiently smooth solutions. We suggest the reader to review the text of Garabe-

dian [15], which makes a precise analysis of the necessary tools for the study of these type

of solutions.

Instead of searching for explicit formulas, we will use numerical methods and neural net-

works techniques to approximate solutions of partial differential equations. When applying
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numerical methods, it is necessary to introduce a third concept, complementary to that of

existence and uniqueness, namely that of a well-posed problem. A problem with a unique

solution is said to be well-posed if any small change in the data of the problem leads to a

small change in the solution. This consideration makes it possible to find an approximate

solution of PDE by means of numerical algorithms. Of the numerical approximation meth-

ods available for solving differential equations those employing finite differences are more

frequently used and more universally applicable than any other [35]. The essence of all finite

difference methods is the replacement, at each of a discrete number of given points, of the

partial derivatives by approximations involving the dependent variable evaluated at each

given point and at appropriate neighboring ones. This transforms the problem of solving

the partial differential equation to one of solving a set of linear algebraic equations. The

main difficulty is ensuring that the numerical values obtained are good approximations to

the exact solution. In order to solve this problem, let us consider that system (2.1)–(2.3)

(fixed in each of the given points) is in a Hilbert space H with inner norm �·, ·�. Denote

by L∞ ([a, b];H) all H-valued functions g such that �g(·), u� is Lebesgue measurable for all

u ∈ H and �g�∞ := ess supt∈[a,b] |g(t, γ)| < ∞ . Now, let g(t, γ) be piecewise continuous in t

and satisfy the Lipschitz condition

�g(t, γ)− g(t, η)� ≤ L�γ − η�

∀ γ, η ∈ Br = {γ ∈ �n | �γ − γ0� ≤ r}, ∀ t ∈ [t0, t1]. Then there exists some δ > 0 such that

the state equation γ̇ = g(t, γ) has a unique solution over [t0, t0 + δ] (see [19]). The norm

used above stands for the Sobolev space defined as in [31] as follows

Definition 1. The Sobolev space consists of all functions (for simplicity, real valued) f(t)

defined on G which have p-integrable continuous derivatives f (i)(t)(i = 1, . . . , l), that is

Sl
p(G) :=

�
f(t) : G → � | < ∞ (i = 1, . . . , l),

�f�Sl
p(G) :=

��

t∈G
|f(t)|pdt+

l�

i=1

�

t∈G

��f (i)(t)
��p dt

�1/p





(2.5)

where the integral is understood in the Lebesgue sense. More exactly, the Sobolev space is

the completion of (2.5).
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Remark 1. The Sobolev space Sl
2(G) of all l times differentiable on G quadratically integrable

(in Lebesgue sense) complex functions under inner product

�x, y�Sl
p
:=

l�

i=0

�
di

dti
x,

di

dti
y

�

L2[a,b]

is a Hilbert space.

Let us consider a function h0(·) ∈ Sl
2(G). A classical result of functional analysis, the

series expansion (see, for example, [31], [41]), states that for any h0(·) ∈ Sl
2(G) the vector

representation (if it exists) is

h0(γ,α
∗) =

∞�

i

∞�

j

∞�

k

α∗
ijkφijk(γ)

α∗
ijk = �h0,φijk(γ)�Sl

2

(2.6)

where {φijk(γ)} is an orthonormal system of functions that constitutes a basis for Sl
2(G).

Similar structures of neural networks to the series expansion (2.6) have been studied in [16],

[30]. Based on this, we propose the following NN mathematical structure

h0(γ,α) :=
N2�

i=N1

M2�

j=M1

L2�

k=L1

αijkφijk(γ) = ΘTW (γ)

Θ = [αN1M1L1 , . . . ,αN1M1L2 , . . . ,αN2M1L1 , . . . ,αN2M2L2 ]
T

W (γ) = [φN1M1L1 , . . . ,φN1M1L2 , . . . ,φN2M1L1 , . . . ,φN2M2L2 ]
T

(2.7)

With this NN representation, we claim that any nonlinear function h0 ∈ Sl
2(G) can be ap-

proximated with an adequate selection of positive integers N1, N2,M1,M2, L1, L2. Moreover,

the Stone-Weierstrass theorem [6] states conditions that guarantee that the network (2.7)

can approximate continuous functions, this is, for any arbitrary positive constant � there are

some positive constants N1, N2,M1,M2, L1, L2 such that the approximation error satisfies

the following

�h0(γ,α
∗)− h0(γ,α)� ≤ � (2.8)
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2.2 3D approximation of uncertain PDE

The main idea of applying the differential neural network methodology [30] is to use a class of

finite difference method for uncertain nonlinear functions. To achieve this, it is necessary to

construct a set (called grid or mesh) that divides the sub–domain x ∈ [0, 1] in N equidistant

sections, y ∈ [0, 1] in M equidistant sections and z ∈ [0, 1] in L equidistant sections defined

as
�
xi, yj, zk

�
in such way that x0 = y0 = z0 = 0 and xN = yM = zL = 1. Using the mesh

representation, the following definitions can be used

ui,j,k(t) := u(xi, yj, zk, t)

ui,j,k
t (t) :=

∂u(x, y, z, t)

∂t

����
x=xi,y=yj ,z=zk

ui,j,k
x (t) := ui,j,k

x (x, y, z, t)
��
x=xi,y=yj ,z=zk

ui,j,k
xx (t) := ui,j,k

xx (x, y, z, t)
��
x=xi,y=yj ,z=zk

and it follows for the other cases (uy, uz, uyy, uzz, uxy, uxz, uyz). Using the same representa-

tion, it can be applied the finite–difference representation to approximate partial derivatives

as

ui,j,k
x (t) � ui,j,k(t)− ui−1,j,k(t)

∆x
, ui,j,k

xx (t) � ui,j,k
x (t)− ui−1,j,k

x (t)

∆2x

ui,j,k
y (t) � ui,j,k(t)− ui,j−1,k(t)

∆x
, ui,j,k

yy (t) �
ui,j,k
y (t)− ui,j−1,k

y (t)

∆2y

ui,j,k
z (t) � ui,j,k(t)− ui,j,k−1(t)

∆x
, ui,j,k

zz (t) � ui,j,k
z (t)− ui,j,k−1

z (t)

∆2y

ui,j,k
xy (t) �

ui,j,k
y (t)− ui−1,j,k

y (t)

∆x
, ui,j,k

yz (t) � ui,j,k
z (t)− ui,j−1,k

z (t)

∆2y

ui,j,k
yx (t) � ui,j,k

x (t)− ui,j−1,k
x (t)

∆x
, ui,j,k

xz (t) � ui,j,k
z (t)− ui−1,j,k

z (t)

∆2y

Using the (∆x, ∆y, ∆z)–approximation, the nonlinear PDE (2.1) can be represented as

ui,j,k
t (t) � Φ

�
ui,j,k, ui,j,k, ui−2,j,k, ui,j−1,k, ui,j−2,k, ui,j,k−1

ui,j,k−2, ui.1,j−1,k, ui,j−1,k−1, ui−1,j,k−1, ui−1,j−1,k−1
�

i = 1, N ; j = 1,M ; k = 1, L

(2.9)
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It is well known that any function sufficiently smooth can be approximated arbitrary closely

on a compact set by a finite sum of sigmoid functions [7]. By adding and subtracting

the corresponding terms with an adequate selection of a neural network set of activation

functions, equation (2.1) can be written as

ut(x, y, z, t) = Au(x, y, z, t) +
11�

r=1

V̊rΩ
r(x, y, z)U r(x, y, z, t) + f̃(x, y, z, t) (2.10)

where A ∈ �n×n, V̊r ∈ �n×sr for r = 1, 11 are any constant matrices. This construction

reflects the method of approximation of functions described in equation (2.7). The approxi-

mation (2.10) and the sets U r(x, y, z, t) and Ωr(x, y, z, t) contain eleven terms corresponding

to the eleven in which function f(·) of (2.1) is evaluated. With these eleven elements, we

can ensure that the modeling error term f̃(x, y, z, t), defined as the difference of the function

f(·) and the so-called nominal section is bounded for certain given (and known) values of V̊r,

r = 1, 11. This statement obeys a direct application of the Stone-Weierstrass theorem [6].

The term Ωr(x, y, z, t) refers to a set of monotonically increasing functions whose elements

are given by σ1(x, y, z) ∈ �s1×n, ϕ1(x, y, z) ∈ �s2×n, γ1(x, y, z) ∈ �s3×n, ϕ2(x, y, z) ∈ �s4×n,

γ2(x, y, z) ∈ �s5×n, ϕ3(x, y, z) ∈ �s6×n, γ3(x, y, z) ∈ �s7×n, ψ1(x, y, z) ∈ �s8×n, ψ2(x, y, z) ∈
�s9×n, ψ3(x, y, z) ∈ �s10×n and σ2(x, y, z) ∈ �s11×n, correspondingly. For this application in

particular, sigmoid functions [7] are selected as activation functions, which are bounded by

positive constants for all x, y, z, i.e.

�σ1(·)� ≤ σ1+; �σ2(·)� ≤ σ2+;

�σl(·)� ≤ σl+; �ϕl(·)� ≤ ϕl+; �ψl(·)� ≤ ψl+; l = 1, 3

Applying the same concept to the ∆–approximation (2.9) of the nonlinear PDE (2.1), we

get for each i ∈ 1, N , j ∈ 1,M , k ∈ 1, L the following relation

ui,j,k
t (t) = Ai,j,kui,j,k(t) +

11�

r=1

W̊ i,j,k
r Ωr(xi, yj, zk)U (i,j,k),r(t) + f̃ i,j,k(t) (2.11)

where f̃ i,j,k(t) is the modeling error, and it satisfies the following identity

18



f̃ i,j,k(t) = Φ
�
ui,j,k, ui−1,j,k, ui−2,j,k, ui,j−1,k, ui,j−2,k, ui,j,k−1

ui,j,k−2, ui.1,j−1,k, ui,j−1,k−1, ui−1,j,k−1, ui−1,j−1,k−1
�

−Ai,j,kui,j,k(t) +
11�

r=1

W̊ i,j,k
r Ωr(xi, yj, zk)U (i,j,k),r(t)

with W̊ i,j,k
r ∈ �n×sr for r = 1, 11, any fixed given (and known) matrices that can be consid-

ered as the initial values for the weight matrices. Equation (2.11) is obtained by applying

the finite difference representation to equation (2.10). The physical interpretation of this

new equation gives us an intuitive idea about the construction of the neural network. That

is, for each coordinate (i, j, k) we ensure that each of the corresponding partial derivatives in

equation (2.1) is estimated and also used for approximating the solution by proper training

of the neural network. Finally, it will be assumed that the modeling error satisfy the next

assumptions

Assumption 1. The modeling error is absolutely bounded in the domain G, i.e.,

���f̃ i,j,k
���
2
≤ f i,j,k

1 (2.12)

Assumption 2. The error modeling gradient defined as

∇mf̃(x, y, z, t)
��
m=mi := ∇mf̃

i,j,k (2.13)

where m represents the partial derivate by x, y and z, correspondingly, is bounded, i.e.,

���∇mf̃
i,j,k

���
2
≤ f i,j,k

s (2.14)

where f i,j,k
s (s = 1, 4) are positive constants.
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Chapter 3

Neural identification of 3D

distributed parameter systems

The data of the problems of technology are invariantly subject to errors of measurement,

quantization processes or loss of information. Finite differences methods and neural networks

techniques generally give solutions that are as accurate as the data warrant. For the purpose

of this paper, we use three types of restriction on the information available for the approx-

imation. In each section, we provide and construct an upper bound for the approximation

error and demonstrate its practical stability via Lyapunov-like analysis. At the same time,

we derive the learning laws for the suggested neural networks.

3.1 DNN identification for distributed parameter sys-

tems with sample–data measurements.

The principal motivation of this section is to study systems of the form

ut(x, y, z, t) =f (u(x, y, z, t), ux(x, y, z, t), uxx(x, y, z, t), uy(x, y, z, t),

uyy(x, y, z, t), uz(x, y, z, t), uzz(x, y, z, t), uxy(x, y, z, t),

uyx(x, y, z, t), uxz(x, y, z, t), uyz(x, y, z, t)) + ξ(x, y, z, t)

ūi,j,k(t) =C i,j,kui,j,k(tk)χ
i,j,k
[tk,tk+1)

(3.1)
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where f(·) is an unknown nonlinear partial differential equation satisfying conditions stated

in chapter 2 and C i,j,k ∈ �q×n
is a given matrix, fixed for each (xi, yj, zk). Boundary and

initial conditions as well as the domain are defined like in the previous section. The variable

ūi,j,k
(t) describes the real available sample–data measurements, i.e., the stepwise values of

ūi,j,k
(t) represents the real measurable output of the system at each fixed point in the mesh.

Here

χi,j,k
[tk,tk+1)

:=





1 if t ∈ [tk, tk+1),

0 otherwise.

denotes the characteristic function of the time interval [tk, tk+1). Based on the DNN–

methodology [30], let us consider the following DNN–identifier

d

dt
ûi,j,k

(t) = Ai,j,kûi,j,k
(t) +

11�

r=1

W i,j,k
r Ωr

(xi, yj, zk)Û (i,j,k),r
(t)

+Li,j,k
�
ūi,j,k

(t)− C i,j,kûi,j,k
(t)

�

i = 0, N ; j = 0,M ; k = 0, L

(3.2)

where ûi,j,k
(t) is the estimate of ui,j,k

(t) and Li,j,k ∈ �n×q
. It is clear that this methodology

implies the design of an individual DNN–identifier for each point (xi, yj, zk) in the mesh

representation. The collection of these identifiers constitute a DNN–net composed by N ×
M × L connected identifiers working in parallel. Let us introduce the following auxiliary

variables

ũi,j,k
(t) := ûi,j,k

(t)− uu,j,k
(t), ũi,j,k

x (t) := ûi,j,k
x (t)− ui,j,k

x (t)

ũi,j,k
y (t) := ûi,j,k

y (t)− ui,j,k
y (t), ũi,j,k

z (t) := ûi,j,k
z (t)− ui,j,k

z (t)

which define the error between the trajectories produced by the model and the DNN–

identifier as well as their derivatives with respect to x, y and z, for each i, j, k. Additionally,

consider the variable

∆ui,j,k
:= ūi,j,k

(t)− ui,j,k
(t) (3.3)

which is bounded as
��∆ui,j,k

��2 ≤ ∆i,j,k
1,+ (3.4)

where ∆i,j,k
1,+ is a positive constant.
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3.1.1 Learning laws

Let the time–varying matrices W̃ i,j,k
r (t) ∈ �n

, r = 1, 11 satisfy the following nonlinear matrix

differential equations

Ẇ i,j,k
r =− a

2
W̃ i,j,k

r −K−1
r Πbu

i,j,k
e (t)

�
Û (i,j,k),r

(t)
�T �

Ωr
(xi, yj, zk)

�T

−
3�

l=1

K−1
r Si,j,k

l ui,j,k
em (t)

�
Û (i,j,k),r

(t)
�T �

Ωr
m(x

i, yj, zk)
�T

− 1

2
K−1

r ΠbΛr+61ΠbW
i,j,k
r ΩrÛ (i,j,k),r

(t)
�
Û (i,j,k),r

�T
[Ωr

]
T

− 1

2

3�

l=1

K−1
r Si,j,k

l Λr+72S
i,j,k
l W i,j,k

r Ωr
mÛ

(i,j,k),r
(t)

�
Û (i,j,k),r

�T
[Ωr

m]
T

− 1

2
K−1

r ΠbΛr+105ΠbW
i,j,k
r ΩrÛ (i,j,k),r

(t)
�
Û (i,j,k),r

�T
[Ωr

]
T

(3.5)

Here, Kr (r = 1, 11) are positive definite matrices, W̃ i,j,k
r (t) := W i,j,k

r − W̊ i,j,k
r and ui,j,k

e (t) :=

C i,j,kûi,j,k
(t) − ūi,j,k

(t). Matrices Si,j,k
1 , Si,j,k

2 and Si,j,k
3 (i = 1, N ; j = 1,M, k = 1, L) are

positive definite solutions of the following Riccati matrix inequalities




−Si,j,k

1 Ai,j,k −
�
Ai,j,k

�T
Si,j,k
1 −Qi,j,k

S1
Si,j,k
1

�
Ri,j,k

S1

�1/2

�
Ri,j,k

S1

�1/2
Si,j,k
1 In×n



 > 0

Ri,j,k
S1

:=

11�

r=1

W̊ i,j,k
r Λr+12

�
W̊ i,j,k

r

�T
+ Λ24

Qi,j,k
S1

:= aSi,j,k
1

(3.6)




−Si,j,k

2 Ai,j,k −
�
Ai,j,k

�T
Si,j,k
2 −Qi,j,k

S1
Si,j,k
2

�
Ri,j,k

S2

�1/2

�
Ri,j,k

S2

�1/2
Si,j,k
2 In×n



 > 0

Ri,j,k
S2

:=

11�

r=1

W̊ i,j,k
r Λr+24

�
W̊ i,j,k

r

�T
+ Λ36

Qi,j,k
S2

:= aSi,j,k
2

(3.7)
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


−Si,j,k

3 Ai,j,k −
�
Ai,j,k

�T
Si,j,k
3 −Qi,j,k

S1
Si,j,k
3

�
Ri,j,k

S3

�1/2

�
Ri,j,k

S3

�1/2
Si,j,k
3 In×n



 > 0

Ri,j,k
S3

:=
11�

r=1

W̊ i,j,k
r Λr+36

�
W̊ i,j,k

r

�T
+ Λ48

Qi,j,k
S3

:= aSi,j,k
3

(3.8)

with a > 0 any given constant. Functions Ωr
m(x

i, yj, zk) (with m = x, y or z) are defined as

Ωr
m(x

i, yj, zk) :=
d

dm
Ωr(x, y, z)

��
x=xi,y=yj ,z=zk

(3.9)

3.1.2 Main results

In order to analyze the quality of the DNN–identifier (3.2) with learning laws given by (3.5),

let us first present two useful results and a definition needed to state the main results of this

work.

Lemma 1. Let a nonnegative function V (t) satisfy the following differential inequality

d

dt
Vt ≤ −αV (t) + β

where α > 0 and β > 0. Then

lim
t→∞

V (t) ≤ β/α (3.10)

Proof. The proof of this lemma can be found on [32, p.75].

The second result is known as the Λ–matrix inequality and it states that

Lemma 2. For any matrices X, Y ∈ �n×m and any symmetric positive definite matrix

Λ ∈ �n×n the following inequalities hold

XTY + Y TX ≤ XTΛX + Y TΛ−1Y (3.11)

and

(X + Y )T (X + Y ) ≤ XT (In×n + Λ)X + Y T
�
In×n + Λ−1

�
Y (3.12)
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Proof. See [31, p.213] for a detailed proof.

Now, consider the following nonlinear system

η̇ = f(t, η, u) + g(t, η) (3.13)

where η ∈ �n, u ∈ �m and g(·) is an external bounded perturbation term such that

�g(t, x)� ≤ g+, where g+ is a positive constant.

Definition 2. Given � > 0, the system (3.13) the system is said to be �-practically stable

around the origin if, for any t0 ≥ 0, there exists a δ = δ(�, t0) ≥ 0 such that η(t) ∈ B[0, �],

∀t ≥ t0, whenever η0 = η(t0) ∈ B[0, δ]. If δ is independent of t0, then the system is said to

be uniformly �-practically stable around the origin.

We are now able to formulate the following results

Theorem 1. Consider the nonlinear model (3.1), given by the system of PDEs with un-

certainties in the states, and sample–data outputs, with initial and boundary conditions

given by (2.3). Suppose that the DNN–identifier is given by (3.2) and its parameters are

adjusted by the learning laws (3.5). If there exist positive definite matrices Ri,j,k
S1

, Ri,j,k
S2

and

Ri,j,k
S3

(i = 1, N ; j = 1,M ; k = 1, L) such that Riccati matrix inequalities (3.6)–(3.8) have a

positive definite solutions Si,j,k
1 , Si,j,k

2 and Si,j,k
3 (i = 1, N ; j = 1,M ; k = 1, L), and if there

exist matrices Πb, Πc, P i,j,k, Li,j,k and parameter � such that

W i,j,k =





wi,j,k
11 wi,j,k

12 0 0 wi,j,k
15

wi,j,k
21 wi,j,k

22 0 0 wi,j,k
25

0 0 wi,j,k
33 0 0

0 0 0 wi,j,k
44 0

wi,j,k
51 wi,j,k

52 0 0 wi,j,k
55





(3.14)
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whose elements are given as follows

wi,j,k
11 :=Πb

�
Ai,j,k − Li,j,kC i,j,k

�
+
�
Ai,j,k − Li,j,kC i,j,k

�T
Πb + ΠbR

i,j,k
Πb

Πb

+Qi,j,k
Πb

+ Si,j,k
4 + aP i,j,k

wi,j,k
12 :=P i,j,k +

�
Ai,j,k − Li,j,kC i,j,k

�T
Πc − Πb

wi,j,k
21 :=P i,j,k + Πc

�
Ai,j,k − Li,j,kC i,j,k

�
− Πb

wi,j,k
22 :=h2Ri,j,k − 2Πc + ΠcR

i,j,k
Πc

Πc

wi,j,k
33 :=− he−ahRi,j,k

wi,j,k
44 :=− e−ahSi,j,k

4

.wi,j,k
55 :=− �I; wi,j,k

15 := −Πb; wi,j,k
51 := −Πb; wi,j,k

25 := −Πc; wi,j,k
52 := −Πc

(3.15)

is negative definite, then the error of identification ũi,j,k(t) converges in practical sense to

lim
t→∞

N�

i=0

M�

j=0

L�

k=0

��ũi,j,k(t)
��2

Sl
2(G)

≤ β/α (3.16)

where α := a and

β := �1

� 4�

s=1

f i,j,k
s +�2

���Li,j,k∆ui,j,k
��2

+�3

�
∆i,j,k

1,+

+�4

�
∆i,j,k

2,+ +�5

�
∆i,j,k

3,+ +�6

�
∆i,j,k

4,+

�1 :=max
�
�,λmax

�
Λ−1

24

�
,λmax

�
Λ−1

32

�
,λmax

�
Λ−1

48

��

�2 :=λmax

�
Λ−1

60

�
+ λmax

�
Λ−1

61

�

�3 :=
11�

r=1

λmax (Λr+61) �4 :=
11�

r=1

λmax (Λr+72)

�5 :=
11�

r=1

λmax (Λr+83) �6 :=
11�

r=1

λmax (Λr+94)

(3.17)

Proof. The detailed proof is given in the appendix.

An immediate consequence of theorem 1 is given in the following corollary.
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Corollary 1. The DNN–weight trajectories satisfy the inequality

lim
t→∞

����W̃ i,j,k
r

���
2
≤ K−1

r

β

α
; r = 1, 11 (3.18)

That is, the weights remain bounded and are proportional to β/α.

Proof. Straightforward from the proof of theorem 1

Evidently, the problem of selecting a set of optimal matrices Πb, Πc, P i,j,k and Li,j,k such

that W i,j,k ≤ 0 is a strongly nonlinear problem of mathematical programming. This problem

is associated with the resolution of a bilinear matrix inequality (BMI). Our aim is to relax

the given nonlinear matrix–constrain with a suitable system of linear matrix inequalities

(LMI). To achieve this, select the next matrices as

Πb = Πc := P i,j,k

Ri,j,k
Πb

:=
�
P i,j,k

�−1
R̄1

�
P i,j,k

�−1

Ri,j,k
Πc

:=
�
P i,j,k

�−1
R̄2

�
P i,j,k

�−1

(3.19)

where R̄1 and R̄2 are any symmetric positive definite matrices. Then, the elements of W i,j,k

can be simplified as following

w
i,j,k
11 :=P i,j,k

�
Ãi,j,k − Li,j,kC

�
+

�
Ãi,j,k − Li,j,kC

�
P i,j,k

+ Q̃i,j,k

w
i,j,k
12 :=

�
Ai,j,k − Li,j,kC

�T
P i,j,k

w
i,j,k
21 :=P i,j,k

�
Ai,j,k − Li,j,kC

�

w
i,j,k
22 :=h2Ri,j,k

+ R̄2 − 2P i,j,k

w
i,j,k
33 :=− he−ahRi,j,k

w
i,j,k
44 :=− e−ahSi,j,k

4

.wi,j,k
55 :=− �I; w

i,j,k
15 := −P i,j,k

; w
i,j,k
51 := −P i,j,k

; w
i,j,k
25 := −P i,j,k

; w
i,j,k
52 := −P i,j,k

(3.20)

where Ãi,j,k := Ai,j,k +
a
2I and Q̃i,j,k := R̄1 + Qi,j,k

Πb
+ Si,j,k

4 . Using the following additional

notation

X i,j,k
:= P i,j,k

Y i,j,k
:= P i,j,kLi,j,k

(3.21)
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the initial problem of the nonlinear matrix–constraint W i,j,k ≤ 0 can be reduced to a suitable

system of LMIs, defined as

W i,j,k =





Ξi,j,k
�
Ai,j,k

�T
X i,j,k − CT

�
Y i,j,k

�T
0 0 −X i,j,k

X i,j,kAi,j,k − Y i,j,kC h2Ri,j,k − 2X i,j,k + R̄2 0 0 −X i,j,k

0 0 −he−ahRi,j,k 0 0

0 0 0 −e−ahSi,j,k
4 0

−X i,j,k −X i,j,k 0 0 −�I





Ξi,j,k := X i,j,kÃi,j,k − Y i,j,kC +
�
Ãi,j,k

�T
X i,j,k − CT

�
Y i,j,k

�T
+ Q̃i,j,k

(3.22)

Regarding this considerations, let us present two additional results

Theorem 2. Under assumptions of theorem 1 about solution of the Riccati equations

(3.6)–(3.8) and choosing matrices as in (3.19) and (3.21) if there exist a solution Υ :=

(�, X i,j,k, Y i,j,k) of the simplified LMI (3.22) such that W i,j,k ≤ 0, then the error of identifi-

cation ũi,j,k(t) converges in practical sense to

lim
t→∞

N�

i=0

M�

j=0

L�

k=0

��ũi,j,k(t)
��2

Sl
2(G)

≤ β/α (3.23)

Moreover, the corresponding gain matrix Li,j,k is given by

Li,j,k := Y i,j,k
�
P i,j,k

�−1
(3.24)

Proof. The proof of this theorem is based on a linear approximation of the set given by the

matrix inequality (3.50).

The next remark provides additional features about matrices X i,j,k and Y i,j,k.
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Remark 2. Assume that the following auxiliary optimization problem

min
Υ

tr
��

X i,j,k
�−1

�

subject to W i,j,k ≤ 0

X i,j,k > 0 Y i,j,k > 0

(3.25)

has an optimal solution

Υ̂ :=
�
�, X̂ i,j,k, Ŷ i,j,k

�
(3.26)

Then, the ellipsoid defined by the matrix X̂ i,j,k approximates a minimal attractive ellipsoid

for the error of identification ũi,j,k(t). Theory and results on the atractive ellipsoid method

can be consulted in [4], [22], [28] and other related papers.

3.2 DNN identification for distributed parameter sys-

tems with scattered grid outputs.

Through this section, let us consider the following set of uncertain PDEs

ut(x, y, z, t) =f (u(x, y, z, t), ux(x, y, z, t), uxx(x, y, z, t), uy(x, y, z, t),

uyy(x, y, z, t), uz(x, y, z, t), uzz(x, y, z, t), uxy(x, y, z, t),

uyx(x, y, z, t), uxz(x, y, z, t), uyz(x, y, z, t)) + ξ(x, y, z, t)

ui,j,k(t) =ui∗,j∗,k∗(t), for (i∗, j∗, k∗) ∈ I

(3.27)

where u ∈ �n in the domain (2.2) and I is a set of indices of positive integers constituting

a 3-tuple indicating a location in the mesh representation. The boundary (Neumann and

Dirichlet) and initial conditions are given by (2.3). Equations (3.27) stand that the measur-

able output of the system is distributed unevenly along the mesh (or grid), i.e., the (∆x, ∆y,

∆z)–approximation ui,j,k(t) of the system (3.27) is available only for some i, j, k along the

grid. The problem that arises is to approximate the missing data and modify the identifier

and its learning laws to estimate the upper bound of the identification error given by

lim
t→∞

N�

i=0

M�

j=0

L�

k=0

��ûi,j,k(t)− ui,j,k(t)
��2

Sl
2(G)

(3.28)
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and if it is possible to reduce it to the lowest possible value, selecting free parameters par-

ticipating in the DNN–identifier.

3.2.1 Surface fitting

The scattered nature of available data to approximate the solution of the system (3.27),

suggests using a surface fitting scheme to approximate the missing information in the mesh

representation. Thus the interpolation problem might be defined as follows: given D data

points (xi, yi, zi) and D numbers fi, i = 1, 2, . . . , D, find a function f(x, y, z) from some class

and defined on the whole space (or at leats a region containing the data points) for which

f(xi, yi, zi) = fi for i = 1, 2, . . . , D. It is well documented that there is no universal choice

for the solution of the above problem. Depends on the nature of the data and the nature of

the modeled phenomenon the choice of the surface fitting technique. For the specific purpose

of this work, we chose the triangle-based linear interpolation method to perform the surface

fitting regarding the available data. We may refer the reader to [25], [36] to consult the

technical details of the interpolation algorithm.

3.2.2 Identifier and learning laws

Based on DNN–methodology [30], consider the following identifier

d

dt
ûi,j,k(t) = Ai,j,kûi,j,k(t) +

11�

r=1

W i,j,k
r Ωr(xi, yj, zk)Û (i,j,k),r(t)

i = 0, N ; j = 0,M ; k = 0, L

(3.29)

where Ai,j,k ∈ �n×n is constant matrix to be selected, ûi,j,k(t) is the estimate of ui,j,k(t). As

in the previous section, this methodology implies the design of individual DNN–identifiers

for each (xi, yj, zk). Let us introduce the following auxiliary variables

ũi,j,k(t) := ûi,j,k(t)− uu,j,k(t), ũi,j,k
x (t) := ûi,j,k

x (t)− ui,j,k
x (t)

ũi,j,k
y (t) := ûi,j,k

y (t)− ui,j,k
y (t), ũi,j,k

z (t) := ûi,j,k
z (t)− ui,j,k

z (t)
(3.30)

which define the error between the trajectories produced by the model and the DNN–

identifier as well as their derivatives with respect to x, y and z, for each i, j, k. Suppose
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that through triangle-based linear interpolation method, we are able to provide an estimate

ui,j,k
int (t) of the missing information along the grid, that satisfies

���ui,j,k
int (t)− ui,j,k

���
2
≤ ηi,j,k1,+ (∆x,∆y,∆z) (3.31)

where η1,+ is a positive constant which depends directly on the amount of data available

for the interpolation algorithm, as well as the maximum separation distance ∆m for the

coordinates x, y and z [25]. Let the time–varying matrices W̃ i,j,k
r (t) ∈ �n

, r = 1, 11 satisfy

the following nonlinear matrix differential equations

Ẇ i,j,k
r =− α

2
W̃ i,j,k

r −K−1
r P i,j,k ¯̄ui,j,k

(t)
�
Û (i,j,k),r

(t)
�T �

Ωr
(xi, yj, zk)

�T

−
3�

l=1

K−1
r Si,j,k

l
¯̄ui,j,k
m (t)

�
Û (i,j,k),r

(t)
�T �

Ωr
m(x

i, yj, zk)
�T

− 1

2
K−1

r P i,j,kΛrP
i,j,kW̃ i,j,k

r Ωr
(xi, yj, zk)Û (i,j,k),r

(t)
�
Û (i,j,k),r

(t)
�T �

Ωr
(xi, yj, zk)

�T

− 1

2

3�

l=1

K−1
r Si,j,k

l ΛrS
i,j,k
l W̃ i,j,k

r Ωr
mÛ

(i,j,k),r
(t)

�
Û (i,j,k),r

(t)
�T

(Ωr
m)

T

(3.32)

where m represents the partial derivative with respect to x for l = 1, with respect to y for

l = 2 and with respect to z for l = 3. Here ¯̄ui,j,k
(t) := ûi,j,k

(t) − ui,j,k
int (t). Matrices P i,j,k

,

Si,j,k
1 , Si,j,k

2 and Si,j,k
3 (i = 1, N ; j = 1,M, k = 1, L) are positive definite solutions of the

following Riccati matrix inequalities
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


−P i,j,kAi,j,k −

�
Ai,j,k

�T
P i,j,k −Qi,j,k

P P i,j,k
�
Ri,j,k

P

�1/2

�
Ri,j,k

P

�1/2
P i,j,k In×n



 > 0

Ri,j,k
P :=

11�

r=1

W̊ i,j,k
r Λr+12

�
W̊ i,j,k

r

�T
+ Λ12

Qi,j,k
P :=

11�

r=1

��Ωr(xi, yj, zk)
��2

Λ−1
r

+
11�

r=1

��Ωr
x(x

i, yj, zk)
��2

Λ−1
r+12

+
11�

r=1

��Ωr
y(x

i, yj, zk)
��2

Λ−1
r+21

+
11�

r=1

��Ωr
z(x

i, yj, zk)
��2

Λ−1
r+36

+ αP i,j,k

(3.33)




−Si,j,k

1 Ai,j,k −
�
Ai,j,k

�T
Si,j,k
1 −Qi,j,k

S1
Si,j,k
1

�
Ri,j,k

S1

�1/2

�
Ri,j,k

S1

�1/2
Si,j,k
1 In×n



 > 0

Ri,j,k
S1

:=
11�

r=1

W̊ i,j,k
r Λr+12

�
W̊ i,j,k

r

�T
+ Λ24

Qi,j,k
S1

:= αSi,j,k
1

(3.34)




−Si,j,k

2 Ai,j,k −
�
Ai,j,k

�T
Si,j,k
2 −Qi,j,k

S1
Si,j,k
2

�
Ri,j,k

S2

�1/2

�
Ri,j,k

S2

�1/2
Si,j,k
2 In×n



 > 0

Ri,j,k
S2

:=
11�

r=1

W̊ i,j,k
r Λr+24

�
W̊ i,j,k

r

�T
+ Λ36

Qi,j,k
S2

:= αSi,j,k
2

(3.35)




−Si,j,k

3 Ai,j,k −
�
Ai,j,k

�T
Si,j,k
3 −Qi,j,k

S1
Si,j,k
3

�
Ri,j,k

S3

�1/2

�
Ri,j,k

S3

�1/2
Si,j,k
3 In×n



 > 0

Ri,j,k
S3

:=
11�

r=1

W̊ i,j,k
r Λr+36

�
W̊ i,j,k

r

�T
+ Λ48

Qi,j,k
S3

:= αSi,j,k
3

(3.36)
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and α > 0 is any constant.

3.2.3 Main result

The main result of this section is summarized in the next theorem

Theorem 3. Consider the nonlinear model (3.27), given by the system of PDEs with un-

certainties in the states with initial and boundary conditions given by (2.3). Suppose that

there exists an estimate ui,j,k
int (t) of the missing data such that

���ui,j,k
int (t)− ui,j,k

���
2
≤ ηi,j,k1,+ (3.37)

Suppose that the DNN–identifier is given by (3.29) and its parameters are adjusted by the

learning laws (3.32). If there exist positive definite matrices Ri,j,k
P , Ri,j,k

S1
, Ri,j,k

S2
and Ri,j,k

S3

(i = 1, N ; j = 1,M ; k = 1, L) such that satisfies Riccati matrix inequalities (3.33)–(3.36)

with positive definite solutions P i,j,k, Si,j,k
1 , Si,j,k

2 and Si,j,k
3 (i = 1, N ; j = 1,M ; k = 1, L),

then the error of identification ũi,j,k(t) converges in practical sense to

lim
t→∞

N�

i=0

M�

j=0

L�

k=0

��ũi,j,k(t)
��2

Sl
2(G)

≤ β/α (3.38)

where α > 0 and

β := �1

� 4�

s=1

f i,j,k
s +�2

�
ηi,j,k1,+ +�3

�
ηi,j,k2,+

+�4

�
ηi,j,k3,+ +�5

�
ηi,j,k4,+

�1 :=max
�
λmax

�
Λ−1

12

�
,λmax

�
Λ−1

24

�
,λmax

�
Λ−1

32

�
,λmax

�
Λ−1

48

��

�2 :=
11�

r=1

λmax

�
Λ−1

r+48

�
�3 :=

11�

r=1

λmax

�
Λ−1

r+59

�

�4 :=
11�

r=1

λmax

�
Λ−1

r+70

�
�5 :=

11�

r=1

λmax

�
Λ−1

r+82

�

(3.39)

Proof. The detailed proof is given in the appendix.
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3.3 DNN identification for distributed parameter sys-

tems with sample–data measurements and scat-

tered grid outputs.

Consider the following set of uncertain PDEs whose outputs are given as follows

ut(x, y, z, t) =f (u(x, y, z, t), ux(x, y, z, t), uxx(x, y, z, t), uy(x, y, z, t),

uyy(x, y, z, t), uz(x, y, z, t), uzz(x, y, z, t), uxy(x, y, z, t),

uyx(x, y, z, t), uxz(x, y, z, t), uyz(x, y, z, t)) + ξ(x, y, z, t)

ūi,j,k
(t) =C i∗,j∗,k∗ui∗,j∗,k∗

(tk)χ
i∗,j∗,k∗

[tk,tk+1)
, for (i∗, j∗, k∗

) ∈ I

(3.40)

where f(·) is an unknown nonlinear partial differential equation and u ∈ �n
is defined in

the domain (2.2).The boundary (Neumann and Dirichlet) and initial conditions are given

by (2.3). Set I is defined as in the previous section. The variable ūi,j,k
(t) describes the

real available sample–data measurements, i.e., the stepwise values of ūi,j,k
(t) represents the

available output, which are measurable only at points spread over the mesh. Here

χi∗,j∗,k∗

[tk,tk+1)
:=





1 if t ∈ [tk, tk+1),

0 otherwise.
(3.41)

denotes the characteristic function of the time interval [tk, tk+1).

Thus, the problem that arises is that, given the sample–time scattered output ūi,j,k
(t),

provide an estimate ¯̄̄ui,j,k
(t) of the missing information along the grid, based on the triangle-

based linear interpolation method, that satisfies the following relation

���ui,j,k
int,tk

− ui,j,k
(t)

���
2
≤ δi,j,k1,+ (h,∆x,∆y,∆z) (3.42)

where h := max
k

|tk+1 − tk| and ∆m is the is the maximum distance between points at

coordinates x, y and z in mesh representation.. Additionally, provide an estimate of the

upper bound of the identification error and, if it is possible, reduce it to the lowest possible

value selecting free parameters participating in the DNN–identifier.
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3.3.1 Identifier and learning laws

Based on the results from previous sections, let us propose the following identifier

d

dt
ûi,j,k(t) = Ai,j,kûi,j,k(t) +

11�

r=1

W i,j,k
r Ωr(xi, yj, zk)Û (i,j,k),r(t)

+Li,j,k
�
¯̄̄ui,j,k(t)− C i,j,kûi,j,k(t)

�

i = 0, N ; j = 0,M ; k = 0, L

(3.43)

where
¯̄̄ui,j,k(t) := C i,j,kûi,j,k(t)− ui,j,k

int,tk
(t) (3.44)

define the error trajectory between the estimate ûi,j,k(t) and the data obtained through the

interpolation method. Additionally, consider the following quantities

¯̄̄ui,j,k
m (t) := ûi,j,k

m (t)− ∂
∂mui,j,k

int,tk
(t) (3.45)

where m represents the partial derivative respect to x, y or z, correspondingly. Let the time–

varying matrices W̃ i,j,k
r (t) ∈ �n, r = 1, 11 satisfy the following nonlinear matrix differential

equations

Ẇ i,j,k
r =− a

2
W̃ i,j,k

r −K−1
r Πb

¯̄̄ui,j,k(t)
�
Û (i,j,k),r(t)

�T �
Ωr(xi, yj, zk)

�T

−
3�

l=1

K−1
r Si,j,k

l
¯̄̄ui,j,k
m (t)

�
Û (i,j,k),r(t)

�T �
Ωr

m(x
i, yj, zk)

�T

− 1

2
K−1

r ΠbΛr+61ΠbW
i,j,k
r ΩrÛ (i,j,k),r(t)

�
Û (i,j,k),r

�T
(Ωr)T

− 1

2

3�

l=1

K−1
r Si,j,k

l Λr+72S
i,j,k
l W i,j,k

r Ωr
mÛ

(i,j,k),r(t)
�
Û (i,j,k),r

�T
(Ωr

m)
T

− 1

2
K−1

r ΠbΛr+105ΠbW
i,j,k
r ΩrÛ (i,j,k),r(t)

�
Û (i,j,k),r

�T
(Ωr)T

(3.46)

where m represents the partial derivative with respect to x for l = 1, with respect to y for

l = 2 and with respect to z for l = 3. Matrices Si,j,k
1 , Si,j,k

2 and Si,j,k
3 (i = 1, N ; j = 1,M, k =

1, L) are positive definite solutions of the following Riccati matrix inequalities
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


−Si,j,k

1 Ai,j,k −
�
Ai,j,k

�T
Si,j,k
1 −Qi,j,k

S1
Si,j,k
1

�
Ri,j,k

S1

�1/2

�
Ri,j,k

S1

�1/2
Si,j,k
1 In×n



 > 0

Ri,j,k
S1

:=
11�

r=1

W̊ i,j,k
r Λr+12

�
W̊ i,j,k

r

�T
+ Λ24

Qi,j,k
S1

:= aSi,j,k
1

(3.47)




−Si,j,k

2 Ai,j,k −
�
Ai,j,k

�T
Si,j,k
2 −Qi,j,k

S1
Si,j,k
2

�
Ri,j,k

S2

�1/2

�
Ri,j,k

S2

�1/2
Si,j,k
2 In×n



 > 0

Ri,j,k
S2

:=
11�

r=1

W̊ i,j,k
r Λr+24

�
W̊ i,j,k

r

�T
+ Λ36

Qi,j,k
S2

:= aSi,j,k
2

(3.48)




−Si,j,k

3 Ai,j,k −
�
Ai,j,k

�T
Si,j,k
3 −Qi,j,k

S1
Si,j,k
3

�
Ri,j,k

S3

�1/2

�
Ri,j,k

S3

�1/2
Si,j,k
3 In×n



 > 0

Ri,j,k
S3

:=
11�

r=1

W̊ i,j,k
r Λr+36

�
W̊ i,j,k

r

�T
+ Λ48

Qi,j,k
S3

:= aSi,j,k
3

(3.49)

3.3.2 Main result

The main result of this section can be summarized in the following theorem

Theorem 4. Consider the nonlinear model (3.40), given by the system of PDEs with uncer-

tainties in the states, and scattered sample–data outputs, with initial and boundary condi-

tions given by (2.3). Suppose that the DNN–identifier is given by (3.43) and its parameters

are adjusted by the learning laws (3.46). If there exist positive definite matrices Ri,j,k
S1

, Ri,j,k
S2

and Ri,j,k
S3

(i = 1, N ; j = 1,M ; k = 1, L) such that Riccati matrix inequalities (3.47)–(3.49)

have a positive definite solutions Si,j,k
1 , Si,j,k

2 and Si,j,k
3 (i = 1, N ; j = 1,M ; k = 1, L), and if

there exist matrices Πb, Πc, P i,j,k, Li,j,k and parameter � such that
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W i,j,k =





wi,j,k
11 wi,j,k

12 0 0 wi,j,k
15

wi,j,k
21 wi,j,k

22 0 0 wi,j,k
25

0 0 wi,j,k
33 0 0

0 0 0 wi,j,k
44 0

wi,j,k
51 wi,j,k

52 0 0 wi,j,k
55





(3.50)

whose elements are given as follows

wi,j,k
11 :=Πb

�
Ai,j,k − Li,j,kC i,j,k

�
+
�
Ai,j,k − Li,j,kC i,j,k

�T
Πb + ΠbR

i,j,k
Πb

Πb

+Qi,j,k
Πb

+ Si,j,k
4 + aP i,j,k

wi,j,k
12 :=P i,j,k +

�
Ai,j,k − Li,j,kC i,j,k

�T
Πc − Πb

wi,j,k
21 :=P i,j,k + Πc

�
Ai,j,k − Li,j,kC i,j,k

�
− Πb

wi,j,k
22 :=h2Ri,j,k − 2Πc + ΠcR

i,j,k
Πc

Πc +Qi,j,k
Πc

wi,j,k
33 :=− he−ahRi,j,k

wi,j,k
44 :=− e−ahSi,j,k

4

.wi,j,k
55 :=− �I; wi,j,k

15 := −Πb; wi,j,k
51 := −Πb; wi,j,k

25 := −Πc; wi,j,k
52 := −Πc

(3.51)

is negative definite, then the error of identification ũi,j,k(t) converges in practical sense to

lim
t→∞

N�

i=0

M�

j=0

L�

k=0

��ũi,j,k(t)
��2

Sl
2(G)

≤ β/α (3.52)

where α := a and
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β := �1

� 4�

s=1

f i,j,k
s +�2

���Li,j,k∆ui,j,k
��2

+�3

�
δi,j,k1,+ (h,∆x,∆y,∆z)

+�4

�
δi,j,k2,+ (h,∆x,∆y,∆z) +�5

�
δi,j,k3,+ (h,∆x,∆y,∆z) +�6

�
δi,j,k4,+ (h,∆x,∆y,∆z)

�1 :=max
�
�,λmax

�
Λ−1

24

�
,λmax

�
Λ−1

32

�
,λmax

�
Λ−1

48

��

�2 :=λmax

�
Λ−1

60

�
+ λmax

�
Λ−1

61

�

�3 :=
11�

r=1

λmax (Λr+61) �4 :=
11�

r=1

λmax (Λr+72)

�5 :=
11�

r=1

λmax (Λr+83) �6 :=
11�

r=1

λmax (Λr+94)

Proof. The proof of this theorem does not differ significantly from that made for theorem

1. The only difference lies in the fact that the approximation of the error of identification

ũi,j,k(t) is as follows

ũi,j,k(t) := ¯̄̄ui,j,k(t) +∆ui,j,k
int,tk

This consideration changes the learning laws of the neural network as in (3.46) and provides

a new upper bound for the identification error given by (3.52)
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Chapter 4

Numerical Results

To test the quality of the approximation of the solution of partial differential equations using

the proposed neural network methodology, we present below several examples where they

qualitatively illustrate the theory presented in the previous sections. At the end, we present

a table comparing different techniques for the approximation of solution of partial differential

equations using neural networks, which highlight its main features.

4.1 PDE with sample-time outputs

Let us consider the following 3D heat equation with heat source given by

ut(t, x, y, z) = −c1uxx(t, x, y, z)− c2uyy(t, x, y, z)− c3uzz(t, x, y, z) + ξ(t, x, y, z)

ξ(t, x, y, z) = a sin(t+ b1x+ b2y + b3z)
(4.1)

where a = 0.1, b1 = 1, b2 = 0.5, b3 = 0.7 and c1 = c2 = c3 = 0.01. This system can be

represented (using the FDM) as

ui,j,k
t (t) =

1

∆2

�
−(c1 + c2 + c3)u

i,j,k(t) + 2c1u
i−1,j,k(t) + 2c2u

i,j−1,k(t)

+2c3u
i,j,k−1(t)− c1u

i−2,j,k − c2u
i,j−2,k(t)− c3u

i,j,k−2(t)
�

Boundary and initial conditions were selected as

u(0, y, z, t) = rand(1) u(x, 0, z, t) = rand(1)

u(x, y, 0, t) = rand(1) ux(0, 0, 0, t) = 0 u(x, y, z, 0) = 10
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where rand(1) is a series of random numbers in the interval [0, 1]. This condition is provided

only to ensure that different initial and boundary conditions give similar approximations of

the solution. The sampling time–intervals were selected to tk = 0.2s and the domain was

divided in 10 × 10 × 10 equidistant sections. In figure 4.1 we show a comparison between

trajectories produced by the model (4.1) and the output from the identifier proposed after

10 s. In this graph, the z coordinate is hidden. After 10 seconds of simulation, the identifier

has approached the solution of partial differential equation (4.1). In this comparison we

can see small differences in some regions represented by the color scale. This is because the

identifier ensures that the identification error converges to a region and it will remain bounded

during the identification process. To clarify this, figure 4.2 shows the difference between the

trajectories produced by the equation and the identifier at the time 10s. The difference is near

zero and remains bounded in the domain defined by the equation. Additional information is

presented in figure 4.3. In the first graph we can see the comparison between the trajectories

produced by the partial differential equation, the sample-time output and the identified

output. These information were obtained by measuring directly the node (6, 8, 9) of the

mesh representation. We can see that the approximates solution stays close to the solution

of the model. Figure 4.13(b) shows the logarithmic quadratic error for the simulation time.

Finally, figure 4.4 shows a comparison between the PDE numerical solution and the solution

approximated by the identifier. We used the mesh representation because it allows a better

comparison node to node. This graph shows the coordinates x, y and z of the grid and the

color scale determines the value of the functions u(t, x, y, z) and û(t, x, y, z) at time 10s. It

can be seen that both grid outputs are nearly identical. One can see that the outputs are

almost identical illustrating the high efficiency of the identification algorithm

4.2 PDE with scattered outputs

Consider the 3D wave equation defined as

utt(t, x, y, z) = c2∇2u(t, x, y, z) (4.2)
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(b) DNN approximation at time 10s.

Figure 4.1: Comparison between trajectories produced by PDE and the DNN-identifier after
10s.
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û
(t
,
x
,
y
,
z
)

0

0.05

0.1

0.15

0.2

Figure 4.2: Difference between PDE solution and DNN approximation at time 10s.

41



0 1 2 3 4 5 6 7 8 9 10
9.5

10

10.5

11

Time (sec)

A
m

p
lit

u
d

e

 

 

ui ,j,k(t)
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quadratic error for fixed x, y and z coordinates.
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Figure 4.4: Comparison between grid outputs produced by PDE and the DNN-identifier
after 10s.

42



where c2 = 0.1 and ∇2 is the Laplace operator. The FDM representation of this equation is

ui,j,k
tt (t) =

1

∆2

�
3cui,j,k(t)− 2c(ui−1,j,k(t) + ui,j−1,k(t) + ui,j,k−1(t))

+c(ui−2,j,k(t) + ui,j−2,k(t) + ui,j,k−2(t))
�

The initial and boundary conditions are the same as in (4.1) and the domain was divided in

10× 10× 10 equidistant sections. The process to implement this simulation is as follows. To

produce outputs in a scattered grid, we have assumed that the measurements are available

only in some nodes, i.e., data is available at nodes whose sum of indices i, j, k is even. For

this particular simulation, this represents 52% of the total data. Next, we used the griddata

method of MatlabTM for interpolation of missing information. This method implements the

triangular-based linear surface fitting algorithm and provides an interpolation that satisfies

condition (3.31). With these new data, we use the identifier (3.29) with learning laws (3.32)

to approximate the solution of (4.2). In figure 4.5 it is shown the comparison between the

PDE numerical solution and the DNN-identifier output using the interpolated data for its

learning process. Trajectories are quite similar, but the error graph shown in figure 4.6

demonstrate that there are areas where the difference between the model and its approxima-

tion is large. These major differences are the result of the interpolation algorithm, because

it has approximately fifty percent of the total information for this process. To avoid these

results is necessary to measure more mesh nodes in order to obtain a better approximation.

In figure 4.7(a) we can see the comparison between trajectories produced by the 3D wave

equation, the identifier output and the interpolated trajectory. It can be seen that the trajec-

tories of the equation and interpolation are practically the same, however the output of the

identifier is different from these. This is because the learning process uses information from

the neighbors in the mesh, and if the interpolation process is deficient in some nodes, errors

are propagated through these. In figure 4.7(b) it is shown the logarithmic quadratic error

for the node (7,9,7) in the mesh representation. In figure 4.8, we present the comparison

between the output grids of PDE and DNN identifier, respectively.
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Figure 4.5: Comparison between trajectories produced by PDE and the DNN-identifier after
10s.
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û
(t
,
x
,
y
,
z
)

−3

−2

−1

0

1

2

3

4

5

6

7

Figure 4.6: Difference between PDE solution and DNN approximation at time 10s.
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Figure 4.7: (a) Comparison between trajectories produced by PDE solution, interpolation
output and the DNN-identifier output for fixed x, y and z coordinates. (b) Logarithmic
quadratic error for fixed x, y and z coordinates.
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(b) DNN approximation at time 10s.

Figure 4.8: Comparison between grid outputs produced by PDE and the DNN-identifier
after 10s.
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4.3 PDE with sample-time scattered outputs

Consider the 3D wave equation defined as

utt(t, x, y, z) = c2∇2u(t, x, y, z) (4.3)

with boundary and initial conditions as in (4.1). Here c = −0.1 and ∇2
is the Laplace

operator. The FDM representation of this equation is

ui,j,k
tt (t) =

1

∆2

�
3cui,j,k

(t)− 2c(ui−1,j,k
(t) + ui,j−1,k

(t) + ui,j,k−1
(t))

+c(ui−2,j,k
(t) + ui,j−2,k

(t) + ui,j,k−2
(t))

�

Assume that the given output is

ūi,j,k
(t) = ui∗,j∗,k∗

(tk)χ[tk,tk+1)

where tk = 0.2s is the sample time and χ[tk,tk+1) is the characteristic function of the time

interval. Indices i∗, j∗ and k∗
represent the measurable nodes in the grid representation. For

this particular simulation we assume that nodes whose sum of indices is even or (i+ j + k)

mod (3) = 0 are available. With this assumption we have 73 percent of all the information

to perform interpolation, which will increase its quality, and consequently, the quality of

the approximation of the solution of (4.3). Following the same procedure as in the previous

section, we provide an interpolation of the missing data through the Matlab
TM

function

griddata, which satisfies relation (3.42).

Figure 4.9 shows the comparison between trajectories produced by the mathematical

model and the DNN identifier. As in the previous case, the trajectories are very similar, but

unlike that case, the error between them is close to zero, except in certain well-identified

points (see fig. 4.11). In figure 4.12 are shown a comparison between trajectories involved in

the identification process and the logarithmic quadratic error fixed for the node (8, 8, 7). In

figure 4.10, it is shown the comparison between the output grids of PDE and DNN identifier,

respectively.
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Figure 4.9: Comparison between trajectories produced by PDE and the DNN-identifier after

10s.

4.4 State estimation of PDE

Consider the telegraph equation [26] given by

utt + (α + β)ut + αβu = c2uxx (4.4)

where

c2 =
1

LC
α =

G

C
β =

R

L

Here, u(x, t) denotes the voltage at position x and time t. C stands for capacitance to

ground, L and R are the inductance and resistance of the cable, respectively, and G denotes

the conductance to ground. For a case illustrating the ability to estimate unknown states

using the identifier proposed in equation (3.2), we use the following benchmark system,

utt = uxx − Aut − Bu

ūi,j,k
(t) = Cui,j,k

(tk)χ
i,j,k
[tk,tk+1)

(4.5)

where

A =

�
2 0

0 3

�
, B =

�
3 0

0 4

�
, C =

�
1 0

�
(4.6)

which represents two transmission lines of which we can measure voltage at the first one. We

assume further that the output is only available through a process of sampling with period
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û(t , x, y, z )

yt

 

z
t

−30

−20

−10

0

10

20

30

40

50

60

(b) DNN approximation at time 10s.

Figure 4.10: Comparison between grid outputs produced by PDE and the DNN-identifier
after 10s.

2

4

6

8

10 2
4

6
8

10

−2

0

2

4

6

 

ytx t

 

u
(t
,x

,
y
,
z
)
−

û
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Figure 4.11: Difference between PDE solution and DNN approximation at time 10s.
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Figure 4.12: (a) Comparison between trajectories produced by PDE solution, sampled-
time scattered output and the DNN-identifier output for fixed x, y and z coordinates. (b)
Logarithmic quadratic error for fixed x, y and z coordinates.

tk = 0.2s. In figure 4.13, it is shown a comparison between trajectories produced by the

mathematical model and the DNN identifier. The major differences between them are result

of the period of learning process. Figure 4.14 allows a better visualization of the process of

estimating the trajectories of the system of PDE. In figure 4.14(a), we see a direct comparison

between the trajectories produced by the model and the neural network. Moreover, in figure

4.14(b) it is shown the graph of the error between the model and the neural network. With

this we can conclude that the estimation process is satisfactory from the known information.

4.5 Comparative chart

In this section, simulations were developed to illustrate the effectiveness of the proposed

algorithms, however, these are not the only ones available. Table 4.1 shows some of the

proposals available for approximating solutions of unknown partial differential equations via

neural network techniques, highlighting its main characteristics. Thus, the reader will be

able to discern and choose the option that best suits its problem.
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Figure 4.13: Comparison between trajectories produced by PDE and the DNN-identifier
after 20s.
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Figure 4.14: (a)Comparison between trajectories produced by PDE and the DNN-identifier
after 20s and (b) error trajectory for a fixed x.
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Chapter 5

Conclusions

This thesis presents a new robust adaptive DNN strategy for identifying and approximating

the solution of partial differential equations with uncertainty, measured in different ways

along a grid that divides the domain of definition of the PDE. We present three different cases

for identification. First, the case where information for the identification process is available

across the grid and the outputs are sampled over time. Second, the case where information

is measurable in some scattered points on the grid. Finally, a combination of both previous

cases. For all cases, we demonstrate the practical stability for the approximation process via

Lyapunov-like analysis. We provide and construct an upper bound for identification error

and, using the same analysis, we derive the learning laws for the suggested neural networks.

Additionally, we construct numerical simulations that illustrate the efficiency of the proposed

methodology. In the first case, it illustrates the convergence error to a bounded region

identification. In the second case, we provide an interpolation of scattered data, however,

the quality of the interpolation determines the quality of the approximation of the solution,

since small interpolation errors are dispersed over the mesh due to the relationship with its

neighbors expressed in learning laws. A third simulation was conducted to illustrate the two

previous cases. We note in it that the error converges to a bounded region, with some slight

variations due to the interpolation scheme.

Future work includes implementing the identification algorithm for the approximation

of real distributed parameter systems as models of distribution of oil and water, where

information is available just like in the third case, as well as improve the interpolation

algorithms, since the quality identification depends directly on it.
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Appendix A

Proofs

A.1 Proof of theorem 1

Proof. Let us consider the following Lyapunov–Krasovskii functional, defined as the compo-

sition of NML individual Lyapunov–Krasovskii functionals along the whole space:

V (t) :=
�

�
V̄ i,j,k(t) +

11�

r=1

tr

��
W̃ i,j,k

r (t)
�T

KrW̃
i,j,k
r (t)

�

+

� t

t−h

ea(s−t)
�
ũi,j,k(s)

�T
Si,j,k
4 ũi,j,k(s)ds

+ h

� 0

θ=−h

� t

t+θ

ea(s−t)
�
ũi,j,k
t (s)

�T
Ri,j,kũi,j,k

t (s)dsdθ

�

V̄ i,j,k(t) :=
��ũi,j,k(t)

��2

P i,j,k +
��ũi,j,k

x (t)
��2

Si,j,k
1

+
��ũi,j,k

y (t)
��2

Si,j,k
2

+
��ũi,j,k

z (t)
��2

Si,j,k
3

�
:=

N�

i=0

M�

j=0

L�

k=0

(A.1)

where Si,j,k
4 and Ri,j,k are positive definite symmetrical matrices, h := max

k
|tk+1 − tk| and

a > 0. The time derivative V̇ (·) of V (·) can be obtained and is given by the following relation
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V̇ (t) = 2
��

ũi,j,k(t)
�T

P i,j,k d

dt
ũi,j,k(t) + 2

��
ũi,j,k
x (t)
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d

dt
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d

dt
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d

dt
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+ 2
� 11�
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ũi,j,k(t)

�T
Si,j,k
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(A.2)

The tenth term of the time derivative of V(t) can be estimated as

−h

� t

t−h

ea(s−t)
�
ũi,j,k
t (s)

�T
Ri,j,kũi,j,k

t (s) ≤ −he−ah

� t
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t (s) (A.3)

Applying the Jensen’s inequality to the last integrals we get
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ũi,j,k(s)

�T
ds

(A.4)
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Now, adding αV (t) to both sides of (A.2) we obtain
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ũi,j,k(t)
�T

P i,j,k d

dt
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ũi,j,k(t− h)

�T
Si,j,k
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Ri,j,kũi,j,k(s)dsdθ

+ α
�

V̄ i,j,k(t) + α
� 11�

r=1

tr

��
W̃ i,j,k

r (t)
�T

KrW̃
i,j,k
r (t)

�

+ α

� t

t−h

ea(s−t)
�
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Let α := a. Then, the right hand side of the last inequality can be simplified as

V̇ (t) + αV (t) ≤ 2
��

ũi,j,k(t)
�T

P i,j,k d

dt
ũi,j,k(t) + 2

��
ũi,j,k
x (t)

�T
Si,j,k
1

d

dt
ũi,j,k
x (t)

+ 2
��

ũi,j,k
y (t)

�T
Si,j,k
2

d

dt
ũi,j,k
y (t) + 2

��
ũi,j,k
z (t)

�T
Si,j,k
3

d

dt
ũi,j,k
z (t)

+ 2
� 11�

r=1

tr

��
W̃ i,j,k

r (t)
�T

KrẆ
i,j,k
r (t)

�
+
�
ũi,j,k(t)

�T
Si,j,k
4 ũi,j,k(t)

− e−ah
�
ũi,j,k(t− h)

�T
Si,j,k
4 ũi,j,k(t− h) + h2

�
ũi,j,k
t (t)

�
Ri,j,kũi,j,k

t (t)

− a

� t

t−h

ea(s−t)
�
ũi,j,k(s)

�T
Si,j,k
4 ũi,j,k(s)ds

− he−ah

� t

t−h

�
ũi,j,k
t (s)

�T
dsRi,j,k

� h

t−h

�
ũi,j,k
t (s)

�T
ds

+ a
�

V̄ i,j,k(t) + a
� 11�

r=1

tr

��
W̃ i,j,k

r (t)
�T

KrW̃
i,j,k
r (t)

�

(A.6)

Let Πb and Πc be some matrices of the suitable dimension. Following the idea of the “de-

scriptor method” for systems with time–delays, we know consider the term

2
���

ũi,j,k(t)
�T

Πb +
�
ũi,j,k
t (t)(t)

�T
Πc

�
×
�
Ai,j,kũi,j,k(t) + W̃ i,j,k

1 σ1ûi,j,k(t) + W̃ i,j,k
2 ϕ1ûi−1,j,k(t)

+ W̃ i,j,k
3 γ1ûi−2,j,k(t) + W̃ i,j,k

4 ϕ2ûi,j−1,k(t) + W̃ i,j,k
5 γ2ûi,j−2,k(t) + W̃ i,j,k

6 ϕ3ûi,j,k−1(t)

+ W̃ i,j,k
7 γ3ûi,j,k−2(t) + W̃ i,j,k

8 ψ1ûi−1,j−1,k(t) + W̃ i,j,k
9 ψ2ûi,j−1,k−1(t) + W̃ i,j,k

10 ψ3ûi−1,j,k−1(t)

+ W̃ i,j,k
11 σ2ûi−1,j−1,k−1(t) + W̊ i,j,k

1 σ1ũi,j,k(t) + W̊ i,j,k
2 ϕ1ũi−1,j,k(t) + W̊ i,j,k

3 γ1ũi−2,j,k(t)

+ W̊ i,j,k
4 ϕ2ũi,j−1,k(t) + W̊ i,j,k

5 γ2ũi,j−2,k(t) + W̊ i,j,k
6 ϕ3ũi,j,k−1(t) + W̊ i,j,k

7 γ3ũi,j,k−2(t)

+ W̊ i,j,k
8 ψ1ũi−1,j−1,k(t) + W̊ i,j,k

9 ψ2ũi,j−1,k−1(t) + W̊ i,j,k
10 ψ3ũi−1,j,k−1(t) + W̊ i,j,k

11 σ2ũi−1,j−1,k−1(t)

−f̃ i,j,k(t) + Li,j,k
�
ūi,j,k(t)− Cûi,j,k(t)

�
− ũi,j,k

t (t)
�

(A.7)

58



Adding equations (A.6) and (A.7), we have that the terms 2
�
ũi,j,k
m (t)

�T
Si,j,k
l

d
dt ũ

i,j,k
m (t) can be

estimated as

2
�
ũi,j,k
m (t)

�T
Si,j,k
l

d

dt
ũi,j,k
m (t) ≤

�
ũi,j,k
m (t)

�T �
Si,j,k
l Ai,j,k +

�
Ai,j,k

�T
Si,j,k
l

� �
ũi,j,k
m (t)

�

+
�
ũi,j,k
m (t)

�T
Si,j,k
l

�
11�

r=1

W̊ i,j,k
r Λr+b

�
W̊ i,j,k

r

�T
+ Λb+12

�
Si,j,k
l

�
ũi,j,k
m (t)

�

+
11�

r=1

�
Ũ (i,j,k),r(t)

� ��Ωr
m(x

i, yj, zk)
��2

Λ−1
r+b

�
Ũ (i,j,k),r(t)

�

+
�
f̃ i,j,k
m (t)

�T
Λ−1

b+12

�
f̃ i,j,k
m (t)

�

+ 2
11�

r=1

�
ũi,j,k
m (t)

�T
Si,j,k
l W̃ i,j,k

r Ωr
m(x

i, yj, zk)Û (i,j,k),r(t)

(A.8)

where l = 1, 2, 3; m represents the partial derivate, for S1 it is respect to x, for S2 with

respect to y and for S3 with respect to z; and b = 12, 24, 36, correspondingly. The learning

laws can be derived by grouping all terms containing W̃ i,j,k
r

2
� 11�

r=1

tr

��
W̃ i,j,k

r (t)
�T �

KrẆ
i,j,k
r +

�
Πbũ

i,j,k(t) + Πcũ
i,j,k
t (t)

� �
Û (i,j,k),r(t)

�T �
Ωr

m(x
i, yj, zk)

�T

Si,j,k
1 ũi,j,k

x (t)
�
Û (i,j,k),r(t)

�T �
Ωr

x(x
i, yj, zk)

�T
+ Si,j,k

2 ũi,j,k
y (t)

�
Û (i,j,k),r(t)

�T �
Ωr

y(x
i, yj, zk)

�T

Si,j,k
3 ũi,j,k

z (t)
�
Û (i,j,k),r(t)

�T �
Ωr

z(x
i, yj, zk)

�T
+

a

2
KrW̃

i,j,k
r










(A.9)

Now, let approximate ũi,j,k(t) as

ũi,j,k(t) = ûi,j,k(t)− ui,j,k(t)± ūi,j,k(t) = ui,j,k
e (t) +∆ui,j,k (A.10)

where ui,j,k
e (t) := ûi,j,k(t)− ūi,j,k(t) and ∆ui,j,k = ūi,j,k(t)− ui,j,k(t). For the terms containing

ũi,j,k
x (t) they can be approximated as

ũi,j,k
x (t) = ui,j,k

ex (t) +∆ui,j,k
x (A.11)
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where

ui,j,k
ex (t) :=

1

∆x

�
ui,j,k
e (t)− ui−1,j,k

e (t)
�

∆ui,j,k
x :=

1

∆x

�
∆ui,j,k −∆ui−1,j,k

� (A.12)

Remark 3. The same is true for ũi,j,k
y (t) and ũi,j,k

z (t).

Applying the Λ–matrix inequality to terms containing ui,j,k
e (t) and ∆ui,j,k (and its respec-

tive partial derivatives), the learning laws satisfy the following nonlinear matrix differential

equations

Ẇ i,j,k
r =− a

2
W̃ i,j,k

r −K−1
r Πbu

i,j,k
e (t)

�
Û (i,j,k),r(t)

�T �
Ωr(xi, yj, zk)

�T

−K−1
r Si,j,k

1 ui,j,k
ex (t)

�
Û (i,j,k),r(t)

�T �
Ωr

x(x
i, yj, zk)

�T

−K−1
r Si,j,k

2 ui,j,k
ey (t)

�
Û (i,j,k),r(t)

�T �
Ωr

y(x
i, yj, zk)

�T

−K−1
r Si,j,k

3 ui,j,k
ez (t)

�
Û (i,j,k),r(t)

�T �
Ωr

z(x
i, yj, zk)

�T

− 1

2
K−1

r ΠbΛr+61ΠbW̃
i,j,k
r Ωr(xi, yj, zk)Û (i,j,k),r(t)

�
Û (i,j,k),r(t)

�T �
Ωr(xi, yj, zk)

�T

− 1

2
K−1

r Si,j,k
1 Λ−1

r+72S
i,j,k
1 W̃ i,j,k

r Ωr
x(x

i, yj, zk)Û (i,j,k),r(t)
�
Û (i,j,k),r(t)

�T �
Ωr

x(x
i, yj, zk)

�T

− 1

2
K−1

r Si,j,k
2 Λ−1

r+83S
i,j,k
2 W̃ i,j,k

r Ωr
y(x

i, yj, zk)Û (i,j,k),r(t)
�
Û (i,j,k),r(t)

�T �
Ωr

y(x
i, yj, zk)

�T

− 1

2
K−1

r Si,j,k
3 Λ−1

r+94S
i,j,k
3 W̃ i,j,k

r Ωr
z(x

i, yj, zk)Û (i,j,k),r(t)
�
Û (i,j,k),r(t)

�T �
Ωr

z(x
i, yj, zk)

�T

− 1

2
K−1

r ΠbΛr+105ΠbW̃
i,j,k
r Ωr(xi, yj, zk)Û (i,j,k),r(t)

�
Û (i,j,k),r(t)

�T �
Ωr(xi, yj, zk)

�T

(A.13)
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Then, the next inequality is achieved

V̇ (t) + aV (t) ≤ 2
��

ũi,j,k(t)
�T

P i,j,kũi,j,k
t (t) +

��
ũi,j,k(t)

�
IΠb

ũi,j,k(t)

+
��

ũi,j,k
x (t)

�
I1ũ

i,j,k
x (t) +

��
ũi,j,k
y (t)

�
I2ũ

i,j,k
y (t) +

��
ũi,j,k
z (t)

�T
I3ũ

i,j,k
z (t)

+
��

ũi,j,k(t)
�T

Si,j,k
4 ũi,j,k(t)− e−ah

��
ũi,j,k(t− h)

�T
Si,j,k
4 ũi,j,k(t− h)

+ h2
��

ũi,j,k
t (t)

�T
Ri,j,kũi,j,k

t (t)

− he−ah
�� t

t−h

�
ũi,j,k
t (s)

�T
dsRi,j,k

� t

t−h

�
ũi,j,k
t (s)

�T
ds

− 2
��

ũi,j,k(t)
�T

Πbũ
i,j,k
t (t)− 2

��
ũi,j,k(t)

�T
Πbf̃

i,j,k(t)

− 2
��

ũi,j,k
t (t)

�T
Πcũ

i,j,k
t (t)− 2

��
ũi,j,k
t (t)

�T
Πcf̃

i,j,k(t) +Ψ

− 2
��

ũi,j,k(t)
�T

ΠbL
i,j,kCũi,j,k(t)− 2

��
ũi,j,k
t (t)

�T
ΠcL

i,j,kCũi,j,k(t)

(A.14)

where

Ψ :=
��

f̃ i,j,k
x (t)

�T
Λ−1

24 f̃
i,j,k
x (t) +

��
f̃ i,j,k
y (t)

�T
Λ−1

32 f̃
i,j,k
y (t)

+
��

f̃ i,j,k
z (t)

�T
Λ−1

48 f̃
i,j,k
z (t) +

��
Li,j,k∆ūi,j,k(t)

�T
Λ−1

60

�
Li,j,k∆ūi,j,k(t)

�

+
��

Li,j,k∆ūi,j,k(t)
�T

Λ−1
61

�
Li,j,k∆ūi,j,k(t)

�
+
��

∆ui,j,k
�T

�
11�

r=1

Πb Λr+61 Πb

�
�
∆ui,j,k

�

+
��

∆ui,j,k
x

�T
�

11�

r=1

Si,j,k
1 Λr+72 Si,j,k

1

�
�
∆ui,j,k

x

�

+
��

∆ui,j,k
y

�T
�

11�

r=1

Si,j,k
2 Λr+83 Si,j,k

2

�
�
∆ui,j,k

y

�

+
��

∆ui,j,k
z

�T
�

11�

r=1

Si,j,k
3 Λr+94 Si,j,k

3

�
�
∆ui,j,k

z

�

(A.15)
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and

IΠb
:=ΠbA

i,j,k +
�
Ai,j,k

�T
Πb + ΠbR

i,j,k
Πb

Πb +Qi,j,k
Πb

+ aP i,j,k

Ri,j,k
Πb

:=
11�

r=1

W̊ i,j,k
r Λr

�
W̊ i,j,k

r

�T
+ Λ60

Qi,j,k
Πb

:=
11�

r=1

��Ωr(xi, yj, zk)
��2

Λ−1
r

+
11�

r=1

��Ωr
x(x

i, yj, zk)
��2

Λ−1
r+12

+
11�

r=1

��Ωr
y(x

i, yj, zk)
��2

Λ−1
r+24

+
11�

r=1

��Ωr
z(x

i, yj, zk)
��2

Λ−1
r+36

+
11�

r=1

��Ωr(xi, yj, zk)
��2

Λ−1
r+48

Ri,j,k
Πc

:=
11�

r=1

W̊ i,j,k
r Λr+48

�
W̊ i,j,k

r

�T
+ Λ61

(A.16)

I1 = Ric(Si,j,k
1 ) := Si,j,k

1 Ai,j,k +
�
Ai,j,k

�T
Si,j,k
1 + Si,j,k

1 Ri,j,k
S1

Si,j,k
1 +Qi,j,k

S1

Ri,j,k
S1

:=
11�

r=1

W̊ i,j,k
r Λr+12

�
W̊ i,j,k

r

�T
+ Λ24

Qi,j,k
S1

:= aSi,j,k
1

(A.17)

I2 = Ric(Si,j,k
2 ) := Si,j,k

2 Ai,j,k +
�
Ai,j,k

�T
Si,j,k
2 + Si,j,k

2 Ri,j,k
S2

Si,j,k
2 +Qi,j,k

S2

Ri,j,k
S2

:=
11�

r=1

W̊ i,j,k
r Λr+24

�
W̊ i,j,k

r

�T
+ Λ36

Qi,j,k
S2

:= aSi,j,k
2

(A.18)

I3 = Ric(Si,j,k
3 ) := Si,j,k

3 Ai,j,k +
�
Ai,j,k

�T
Si,j,k
3 + Si,j,k

3 Ri,j,k
S3

Si,j,k
3 +Qi,j,k

S3

Ri,j,k
S3

:=
11�

r=1

W̊ i,j,k
r Λr+36

�
W̊ i,j,k

r

�T
+ Λ48

Qi,j,k
S3

:= aSi,j,k
3

(A.19)
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The special class of Riccati equation

PA+ ATP + PRP +Q = 0

where A, Q = QT, R = RT > 0 are given matrices of appropriate sizes and P = PT is

variable, may be represented as the following linear matrix inequality (LMI)

�
−PA− ATP −Q PR1/2

R1/2P In×n

�
> 0 (A.20)

Finally, lets consider the extended vector

η(t) :=

�
ũi,j,k(t), ũi,j,k

t (t),

� t

t−h

�
ũi,j,k
t (s)

�T
ds, ũi,j,k(t− h), f̃ i,j,k(t)

�T

(A.21)

therefore, the next inequality can be estimated

V̇ (t) + aV (t) ≤
�

ηTW i,j,kη + β (A.22)

where β := Ψ+ �
�

�f̃ i,j,k(t)�2 and

W i,j,k :=





wi,j,k
11 wi,j,k

12 0 0 wi,j,k
15

wi,j,k
21 wi,j,k

22 0 0 wi,j,k
25

0 0 wi,j,k
33 0 0

0 0 0 wi,j,k
44 0

wi,j,k
51 wi,j,k

52 0 0 wi,j,k
55





(A.23)
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The elements of W i,j,k
are given as follows

w
i,j,k
11 :=Πb

�
Ai,j,k − Li,j,kC

�
+
�
Ai,j,k − Li,j,kC

�T
Πb + ΠbR

i,j,k
Πb

Πb

+Qi,j,k
Πb

+ Si,j,k
4 + aP i,j,k

w
i,j,k
12 :=P i,j,k

+
�
Ai,j,k − Li,j,kC

�T
Πc − Πb

w
i,j,k
21 :=P i,j,k

+ Πc

�
Ai,j,k − Li,j,kC

�
− Πb

w
i,j,k
22 :=h2Ri,j,k − 2Πc + ΠcR

i,j,k
Πc

Πc

w
i,j,k
33 :=− he−ahRi,j,k

w
i,j,k
44 :=− e−ahSi,j,k

4

.wi,j,k
55 :=− �I; w

i,j,k
15 := −Πb; w

i,j,k
51 := −Πb; w

i,j,k
25 := −Πc; w

i,j,k
52 := −Πc

(A.24)

Hence, by selecting some matrices Πb and Πc and the optimal matrices P̂ and L̂ such that

W ≤ 0, we can conclude that the function V (t) satisfies lemma 1.

A.2 Proof of theorem 4.

Proof. Let us consider the following Lyapunov functional, defined as the composition of NML

individual Lyapunov functios along the whole domain:

V (t) :=
�

�
V̄ i,j,k

(t) +
11�

r=1

tr

��
W̃ i,j,k

r (t)
�T

KrW̃
i,j,k
r (t)

��

V̄ i,j,k
(t) :=

��ũi,j,k
(t)

��2

P i,j,k +
��ũi,j,k

x (t)
��2

Si,j,k
1

+
��ũi,j,k

y (t)
��2

Si,j,k
2

+
��ũi,j,k

z (t)
��2

Si,j,k
3

(A.25)

The time derivative V̇ (·) can be obtained and is given by the following equation

V̇ (t) =2

��
ũi,j,k

(t)
�T

P i,j,k d

dt
ũi,j,k

(t) + 2

��
ũi,j,k
x (t)

�T
Si,j,k
1

d

dt
ũi,j,k
x (t)

+ 2

��
ũi,j,k
y (t)

�T
Si,j,k
2

d

dt
ũi,j,k
y (t) + 2

��
ũi,j,k
z (t)

�T
Si,j,k
3

d

dt
ũi,j,k
z (t)

+ 2

� 11�

r=1

tr

��
W̃ i,j,k

r (t)
�T

KrẆ
i,j,k
r (t)

�
(A.26)
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Using the Λ–matrix inequality, we can approximate the first term of the time derivative as

2
�
ũi,j,k(t)

�T
P i,j,k d

dt
ũi,j,k(t) ≤

�
ũi,j,k(t)

�T �
P i,j,kAi,j,k +

�
Ai,j,k

�
P i,j,k

�
ũi,j,k(t)

+
�
ũi,j,k(t)

�T
P i,j,k

�
11�

r=1

W̊ i,j,k
r Λr

�
W̊ i,j,k

r

�T
�
P i,j,kũi,j,k(t)

+
11�

r=1

�
Ũ (i,j,k),r(t)

�T ��Ωr(xi, yj, zk)
��2

Λ−1
r

Ũ (i,j,k),r(t)

+
�
f̃ i,j,k(t)

�T
Λ−1

12 f̃
i,j,k(t) +

�
ũi,j,k(t)

�T
P i,j,kΛ12P

i,j,kũi,j,k(t)

+ 2
11�

r=1

�
ũi,j,k(t)

�T
P i,j,kW̃ i,j,k

r Ωr(xi, yj, zk)Û (i,j,k),r(t)

(A.27)

For the terms of the form 2
�
ũi,j,k
m (t)

�T
Si,j,k
l

d
dt ũ

i,j,k
m (t)

2
�
ũi,j,k
m (t)

�T
Si,j,k
l

d

dt
ũi,j,k
m (t) ≤

�
ũi,j,k
m (t)

�T �
Si,j,k
l Ai,j,k +

�
Ai,j,k

�T
Si,j,k
l

� �
ũi,j,k
m (t)

�

+
�
ũi,j,k
m (t)

�T
Si,j,k
l

�
11�

r=1

W̊ i,j,k
r Λr+b

�
W̊ i,j,k

r

�T
+ Λb+12

�
Si,j,k
l

�
ũi,j,k
m (t)

�

+
11�
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�
Ũ (i,j,k),r(t)

� ��Ωr
m(x

i, yj, zk)
��2

Λ−1
r+b

�
Ũ (i,j,k),r(t)

�

+
�
f̃ i,j,k
m (t)

�T
Λ−1
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�
f̃ i,j,k
m (t)

�

+ 2
11�
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�
ũi,j,k
m (t)

�T
Si,j,k
l W̃ i,j,k

r Ωr
m(x

i, yj, zk)Û (i,j,k),r(t)

(A.28)

where l = 1, 2, 3; m represents the partial derivate, for S1 it is respect to x, for S2 with

respect to y and for S3 with respect to z; and b = 12, 24, 36, correspondingly. Now, adding
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αV (t) to both sides of the resulting inequality we have

V̇ (t) + aV (t) ≤
��

ũi,j,k(t)
�
I1(t)ũ

i,j,k(t) +
��

ũi,j,k
x (t)

�
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i,j,k
x (t)

+
��
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y (t)

�
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i,j,k
y (t) +

��
ũi,j,k
z (t)

�T
I4(t)ũ

i,j,k
z (t)

+�
� 4�

s=1

f i,j,k
s + 2

� 11�

r=1

tr

��
W̃ i,j,k

r

�T
KrẆ

i,j,k
r

�

+ α
� 11�

r=1

��
W̃ i,j,k

r

�T
KrW̃

i,j,k
r

�

(A.29)

where

I1(t) = Ric(P i,j,k) := P i,j,kAi,j,k +
�
Ai,j,k

�T
P i,j,k + P i,j,kRi,j,k

P P i,j,k +Qi,j,k
P

Ri,j,k
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11�

r=1

W̊ i,j,k
r Λr

�
W̊ i,j,k
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�T
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11�
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11�
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11�
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+ αP i,j,k

(A.30)

I2(t) = Ric(Si,j,k
1 ) := Si,j,k

1 Ai,j,k +
�
Ai,j,k

�T
Si,j,k
1 + Si,j,k

1 Ri,j,k
S1

Si,j,k
1 +Qi,j,k
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(A.31)

I3(t) = Ric(Si,j,k
2 ) := Si,j,k

2 Ai,j,k +
�
Ai,j,k

�T
Si,j,k
2 + Si,j,k

2 Ri,j,k
S2

Si,j,k
2 +Qi,j,k

S2

Ri,j,k
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11�
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(A.32)
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I4(t) = Ric(Si,j,k
3 ) := Si,j,k

3 Ai,j,k +
�
Ai,j,k

�T
Si,j,k
3 + Si,j,k
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(A.33)

In order to obtain the learning laws, let us add all terms containing W̃ i,j,k
r

2
� 11�
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Û (i,j,k),r(t)

�T �
Ωr

m(x
i, yj, zk)

�T

Si,j,k
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Û (i,j,k),r(t)

�T �
Ωr

y(x
i, yj, zk)

�T

Si,j,k
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(A.34)

Now, we can approximate ũi,j,k(t) as

ũi,j,k(t) = ûi,j,k(t)− ui,j,k(t)± ui,j,k
int = ¯̄ui,j,k(t) +∆ui,j,k

int (A.35)

where ¯̄ui,j,k(t) := ûi,j,k(t) − ui,j,k
int and ∆ui,j,k

int = ui,j,k
int − ui,j,k(t). For the other terms, the

following applies

ũi,j,k
m (t) = ¯̄ui,j,k

m (t) + ∂
∂m∆ui,j,k

int (A.36)

Applying the Λ–matrix inequality to terms containing ¯̄ui,j,k(t) and ∆ui,j,k
int (and its respec-

tive partial derivatives), the learning laws satisfy the following nonlinear matrix differential
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equations
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r =− α

2
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�
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mÛ
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�T
(Ωr

m)
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(A.37)

If there exist matrices P i,j,k, Si,j,k
1 , Si,j,k

2 and Si,j,k
3 such that the Riccati equations (A.30)–

(A.33) are less than or equal to zero, and taking into account the laws of learning previously

obtained, then we obtain the following inequality

V̇ (t) = −αV (t) + β (A.38)

where

β :=
� 11�

r=1

λmax

�
Λ−1

r+48

�
ηi,j,k1,+ +

� 11�

r=1

λmax

�
Λ−1

r+59

�
ηi,j,k2,+

+
� 11�

r=1

λmax

�
Λ−1

r+70
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� 11�
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�
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r+82

�
ηi,j,k4,+ +�

� 4�

s=1

f i,j,k
s

(A.39)

Thereby, we conclude that the above equation satisfies conditions from lemma 1.
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Appendix B

Notation

U (i,j,k),1(t) = ui,j,k(t) U (i,j,k),2(t) = ui−1,j,k(t) U (i,j,k),3(t) = ui−2,j,k(t)

U (i,j,k),4(t) = ui,j−1,k(t) U (i,j,k),5(t) = ui,j−2,k(t) U (i,j,k),6(t) = ui,j,k−1(t)

U (i,j,k),7(t) = ui,j,k−2(t) U (i,j,k),8(t) = ui−1,j−1,k(t) U (i,j,k),9(t) = ui,j−1,k−1(t)

U (i,j,k),10(t) = ui−1,j,k−1(t) U (i,j,k),11(t) = ui−1,j−1,k−1(t)

Û (i,j,k),1(t) = ûi,j,k(t) Û (i,j,k),2(t) = ûi−1,j,k(t) Û (i,j,k),3(t) = ûi−2,j,k(t)

Û (i,j,k),4(t) = ûi,j−1,k(t) Û (i,j,k),5(t) = ûi,j−2,k(t) Û (i,j,k),6(t) = ûi,j,k−1(t)

Û (i,j,k),7(t) = ûi,j,k−2(t) Û (i,j,k),8(t) = ûi−1,j−1,k(t) Û (i,j,k),9(t) = ûi,j−1,k−1(t)

Û (i,j,k),10(t) = ûi−1,j,k−1(t) Û (i,j,k),11(t) = ûi−1,j−1,k−1(t)

Ω1(xi, yj, zk) = σ1(xi, yj, zk) Ω2(xi, yj, zk) = ϕ1(xi, yj, zk)

Ω3(xi, yj, zk) = γ1(xi, yj, zk) Ω4(xi, yj, zk) = ϕ2(xi, yj, zk)

Ω5(xi, yj, zk) = γ2(xi, yj, zk) Ω6(xi, yj, zk) = ϕ3(xi, yj, zk)

Ω7(xi, yj, zk) = γ3(xi, yj, zk) Ω8(xi, yj, zk) = ψ1(xi, yj, zk)

Ω9(xi, yj, zk) = ψ2(xi, yj, zk) Ω10(xi, yj, zk) = ψ3(xi, yj, zk)

Ω11(xi, yj, zk) = σ2(xi, yj, zk)
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