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ABSTRACT

Since the appearance of the theory of Formal Concept Analysis (FCA)
have been published a lot of material and diversified application of

this theory. FCA, has been primarüy presented as a conceptual hier

archical model of a set of objects and attributes and a binary relation.

The term was introduced by Rudolf Wille in 1984, and is based on

Lattice Theory and order theory that was developed by Birkhoff and

others in the 1930S. The Concept Lattice is the main tool that offers

this theory, each concept in the hierarchical network represents the set

of objects that share the same valúes for a given set of attributes, and

every concept that is related down the hierarchy is a subset concepts
that are above.

Many algorithms for generating the lattice of concepts have been

developed since the creation of the foundations of the theory. This

thesis presents the research results of this theory.
In this thesis we present initially, the fundamentáis of the theory

and some of its history, applications and mathematical concepts,which

will serve to define specific applications of the theory of FCA.

We also review algorithms essential for generating the concept lat

tice and classify the algorithms with respect to their characteristics.

Similarly, we present a new algorithm for generating the lattice of

Concepts using dendritic computing theory. Finally, an application in

the context of learning and computer visión is presented. Finally, in

this document, we provide a formal categorical classification method

using the notions researched in the field of FCA and Theory of Lat-

tices. Finally, an application in the context of learning and computer
visión is presented.
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ABSTRACTO.

Desde la aparición de la teoría de Formal Concept Analysis (FCA) se

ha publicado mucho material y se ha diversificado la aplicación de

dicha teoría. FCA, es la derivación de un modelo jerárquico concep
tual de un conjunto de objetos y atributos en una ontología formal.

El término fue introducido por RudolfWille en 1984, y se basa en la

teoría aplicada de las lattice y teoría de la orden que fue desarrollado

por Birkhoff y otros en la década de 1930. La Lattice Conceptual, es

la principal herramienta que ofrece dicha teoría, Cada concepto en

la red jerárquica representa el conjunto de objetos que comparten los

mismos valores para un conjunto determinado de atributos, y cada

concepto que se encuentre relacionado abajo de la jerarquía contiene

un subconjunto de los objetos de los conceptos por encima de ella.

Muchos algoritmos para la generación de la Lattice de Concep
tos han sido desarrollados desde la creación de los fundamentos de

la teoría. Esta tesis presenta los resultados de investigación de esta

teoría.

En esta tesis presentamos, inicialmente, los fundamentos de la teoría,

así como algo de su historia, aplicaciones y conceptos matemáticos,

que nos servirán para definir aplicaciones concretas de la teoría de

FCA.

También navegaremos algoritmos escenciales para la generación de
la lattice de conceptos y clasificaremos los algoritmos -con respecto
a sus características, Del mismo modo, presentaremos un algoritmo
nuevo para la generación de la Lattice de Conceptos basado en la

búsqueda de máximos rectángulos. En este documento, también en

contrarás un proceso formal de clasificación categórica usando las

nociones investigadas en el ámbito de FCA y Teoría de Lattices. Fi

nalmente, una aplicación en el contexto del aprendizaje y visión por
computadora es presentada.
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Partí

INTRODUCTION

This first part is a brief introduction to the Lattice Theory
and FCA subjects. Chapter i is a brief on history of Lattice

Theory and FCA. In this chapter we also define the pur

pose and the goals of this document. Chapter 2 contains

the necessary background knowledge in order to achieve

the proposed goals.



LATTICE THEORY AND FCA.
1

1.1 INTRODUCTION

Lattice Theory is growing popularity since it was first proposed as

mathematical framework. Basically, Lattice Theory is the abstract

study of a set of elements known as lattices. It is an outgrowth of

the study of Boolean Algebras and Abstract Algebras, and provides a

framework for the study of ordered sets in mathematics[6]. Because

of its robustness, at first, this theory took much relevance, especially
after G.Birkhoff[i4] wrote the first textbook about the topic. Imme

diately, the history registered an increase of papers, publications and

new elements of the subject. Figure i shows some fields of study in

mathematics, that have been related to the theory of lattices. As can

be seen in that figure, Discrete Mathematics[6], Numerical Analysis

[74], Binary Relations issues[i6, 38], Probability and Combinatorial

Theory[68], Computer Science[i04J, Topology Theory.is], among oth

ers studies have a strong relationship with this subfield of Abstract

Algebras.

Figure 1: Math Fields Related with Lattice Theory

Lattice Theory

M-ith.matic-il

Related fletó»

Discrete

Mathematics

Numerical

Analysis

Bi-tary

Relations

Probabimyandj Computer

Theory

Topology

Theory

Thousands of studies have been generated from the field of Lattice

Theory, many of themmature, in both, the theoretical and application
sense. In this work we will focus mainly in the theory of lattices in

the field of computer science mentioned early[i04]. In recent decades,

the use of the theory of lattices has also spread, with surprising speed,
in classical and emerging fields of computer science. The state of the

art, presented in this thesis, only includes some topics of interest for

the development and achievement of the objectives that we seek.

The concept tree of Figure 2 shows strongly related Lattice The

ory with Computer Science fields. In this thesis, we are specially
interested in Lattice Based Neural Networks, Prediction and Classi

fication, and Formal Concept Analysis.
Formal Concept Analysis (FCA) emerged in the early years of the

decade of the 8os by Wille. Wille first defined a Lattice Restructuring
as: "Restructuring lattice theory is an attempt to reinvigorate con-

3



4 LATTICE THEORY AND FCA.

nections with our general culture by interpreting the theory as con-

cretely as possible, and in this way to promote better communication

between lattice theorists and potential users of lattice theory"{ioi].
Galois Lattices were later widely studied by the large body ofwork

done by Wille and Ganterf.99, 38] and the many researchers who

worked with them. Their early work, named Formal Concept j\naly-

sis, deals with Concept Lattice idea, in a much more general context,

and it was supported in the field of binary relations. These binary

relations, as description of the world can be found in many áreas of

human interest. There exists several domains, including medicine,

psychology, chemistry, biology, and many others, where we can find

this kind of relations.

In addition, there exists a Philosophical perspective that defines

a concept as a unit of thoughts. According Ganter[37], Philosophy
has identified two parts over the term concept. The extensión of

the concept as the cover of all objects belonging to the concept and

intention of the concept in which is included all attributes shared by
the extensión set.

R. Willie in[ioi], using lattice algebra(i4] approximation, defines

a structured way of deriving a concept hierarchy. Using Galois Con-

nectors, a join and a meet operation over a binary context, generating
lattice order. These operators with the concept idea rise to the Con

cept Lattice Structure.

Basically, FCA, refers to a mathematized and formal human cen

tered way to analyze data. It is described as an ontology based on

an algebraic space. This algebraic space is usable for covering and

visualizing patterns, implications, generalizations and dependencies.
Henee, the binary relation between objects and attributes plays a fun

damental role in the understanding of human conceptualizationmod

els. FCA formalizes this idea and gives a mathematical framework to

work on it.

A formal concept can be seen also as a data cluster, in which all

properties are shared by a set of objects, and dually, all those ob

jects share those represented properties. Those clusters, named also

formal concepts, has the property to be closed. The set of all con

cepts sorted by inclusión order is called the Concept Lattice, some

UaTTICE

THEORY

¡Computer |í Machine j íA,.TrIhm.] fKnowledgelf Decisión
l Vision J [ Learning J (A*a°"*h™ í

[Discovery j[ Theory

Figure 2: Lattice Theory And Computer Science



1.2 PROBLEM DEFINITION. 5

authors[39, 40, 55J describe the concept lattice as all the clusters liv

ing in a binary context.

1.2 PROBLEM DEFINITION.

The main drawback of concept lattices is that they may be of exponen
tial size. It is known that a context of only modest size can produce
hundreds of thousands formal concepts. However, with the knowl

edge of the number of concept as restriction, many algorithms have

been proposed Concept Lattice Generation in polynomial delay time.

A polynomial delay time means that the time elapsed between two

consecutive outputs is polynomial in the input size.

Even, taking account of the polynomial delay analysis. The possi

bility of exponential size of the lattice makes impossible, in practice,
to compute and span the entire lattice structure. Thus, it is outmost

importance to be able to navigate the lattice efficiently, get reduced

representations, or be able to define a polynomial sized sub-lattice

which contains the right information.

Many challenges have been raised from the perspective of Lattice

theory and FCA. In this thesis we work some of them in particu
lar. The first is the generation of concept lattices. In this sense, an

algorithm for generation of concept lattices is presented. The other

problems are in the machine learning approach. In which, we present
a formal classifier method. Additionally, this classifier is able to in

tégrate many methods of pattern recognition, threadhold and binary
functions in the context of categorical classification.

1.3 PURPOSE AND GOAL.

This thesis deals with the problems of generating concept lattices and

machine learning, specifically in categorical pattern recognition sense.

The first purpose is to introduce the reader to the theoretical frame

work of Lattice Theory and FCA. Other important background knowl

edge is the Lattice Based Neural Networks. This method will be used

as a basis for our design. To that effect, the reader will be also intro

duced to the theory of Lattice Based Neural Network, in specific the

Single Layer Lattice Perceptrón.
To solve the problem of the generation concept is proposed a lattice

based neural network for find maximal rectangles. In this sense, to

find the complete concept a lattice, a maximal rectangles search is ap

plied recursively on each máximum rectangle found. With respect to

our proposed classifier, a Lattice Based Neural Network on minimum

and máximum anti-chain is applied on binary contexts.

The goal of this thesis is to prove that both proposals are possible
and feasible. That's why we are attached to each of the proposals, an

experimental analysis and conclusions.



BACKGROUND KNOWLEDGE

2.1 INTRODUCTION.

This section deals with the background knowledge and it is orga

nized as follows: In section 2.2 You will find a brief review on Ma

chine Learning and Categorical Classification. You will find a Su-

pervised/Unsupervised categorical classification description and the

definition of binary and threadhold functions. In section 2.3 you will

find formal and mathematized FCA notions used in this thesis. Sec

tion 2.4 is dedicated to review properties of some of the algorithms
for generating Concept Lattice. Section 2.5 is a brief about known

applications of FCA. A Lattice Based Neural Network introduction is

exposed at Section 2.6. At the end of this chapter you must be able

to understand the given notation and the main terminology used in

this thesis.

2.2 MACHINE LEARNING AND CATEGORICAL CLASSIFICATION.

The essence of machine intelligence is Machine Learning or Com

puter Based Learning. When we have system with learning capabil

ity, we will have a real artificial intelligence. Due there exists many
machine learning strategies and studies, our first step is review the

state of the art inmachine learning and provide a general idea of how

this chapter understand this approach.
Machine learning has beenwidely studied by several authors,many

subtopics have emerged, which are included in this sub-branch of ar

tificial intelligence. In fact, it has been developed so much that have

given rise to excellent methods that simúlate both the acquisition of

new knowledge and the separation of the classes contained in a ana

lyzed data set. In that sense, Pattern Recognition emerged as a new

branch ofmachine learning.
Pattern recognition is one of the cores on which the machine learn

ing theory is supported to achieve two main objectives. A particular
area of pattern recognition, named categorical prediction, focuses on

assigning a category to a given input valué. It means, models for pre
diction of categorical labels, in which, given an input set, a valué label

(class) is assigned to each element of that input set. Real valúes and

Series prediction, works with the idea of get more complex outputs.
In this thesis we works with prediction of categorical labels.

To understand this, suppose the following scenario: You have a cer

tain family of objects, each of these objects have some properties, de

scribed by sensors or mathematical analysis. The pattern recognition,
supervised learning case, related issue is to program the machine

from several examples. The program must learn those examples and

7



8 BACKGROUND KNOWLEDGE

then it must correctly infer which class belongs to a new entry, using

the experience gained by the provided examples. Being the special

case of unsupervised learning in which the same model
is responsi

ble for finding existing classes. In this second case, similarity func

tions, distances or some other techniques are used to group data that

has something in common to each other, using those clusters on con-

sequential extrapolations and always adapting the clusters to
the new

entries.

2.2.1 Supervised learning to predict categorical labels.

This learning technique consists of presenting to learning model, repet-

itively, stimuli input patterns belonging to the training game. The

training game or training data consist of pairs "stimulus pattern

right answer" and should be chosen carefully. Each pair is called a

fact. In the training game should be represented evenly all the in

formation you need learning model to extrapólate, once the training

is finished, system should be capable of handle new information. A

formal definition of that state is:

Definition i. Let X be a input domain and let Y be a set of cate

gorical labels. A set of pairs with the form {(xi,yi),...,(x„,y„)} is

named training set T, where x¡ 6 X is a feature vector, and y, € Y

is an assigned category. A Supervised Learning Algorithm to predict

categorical labels search a function / : X —> Y from a set of possible
functions in a space F, using the training set T as main reference.

In this sense, several methods exists in the literature[29]. Table i

shows some methods ordered by the framework in whkh they are

supported. We present three kinds of frameworks to work. the first

one, Kernel Methods (KM's), is considered a set of algorithms for

pattern analysis. KM's Algorithms can opérate on very general types
of data and can detect very general types of relations. Correlation,

factor, cluster and discriminant analysis are just some of the types
of pattern analysis tasks that can be performed on data as diverse

as sequences, text, images, graphs and of course vectors[83). Statis

tical framework, in which supervised learning to predict categorical
labels gains importance. Statistical algorithms are, mainly, catego
rized as generative or discriminative. Logistic regression, also known

as máximum entropy classifiers, and Bayes Theory are the principal
support of Statistical Algorithms. Neural Networks are also a good
framework to work. These networks have been demonstrated an ex

cellent performance in some specially solutions. Inspired in a biolog
ical sense, some of these Artificial Neural Networks are linked with

the categorical classification trouble.

To fully understand the underlying problem, suppose that you
want to predict whether a person will have a heart attack within a

year. You should have a training game with information about peo

ple; records about their condition, age, sex, blood pressure, weight,
symptoms, etc.. You should to know those people who had a heart

attack about a year after the measurement data. Henee the problem is
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Table i: Categorical Supervised Learning.

Supported by

Kernel Methods

Support Vector Machine (SVMJfes],

Fisher's linear discriminant analysis (LDA)[32, 67],

Principal Component Analysis(PCA).

StatisticalMethods

Bayes Theory[ 11],

Máximum Entropy Classifiers[26, 50].

Learning Vector Quantization[5i]

Neural Networks

Backpropagation, Radial Basis Neural Networks,

Fuzzy Based Neural Network, Dendritical

Neural Networks[i7, 47, 5].

Lattice Based
Lattice Based Neural Networks, Fuzzy

Lattice Classifiers.[79, 80, 77, 51]
This table shows some of the supported classifiers in KM's, SM's,

NN's and Lattice Based Methods.

to combine all available information with a learningmodel that when

presented with data from a new person can predict whether this will

have a heart attack within a year with a reasonable accuracy, that

means the model predicts two categories, "have heart attack within

a year" or "does not have heart attack within a year" What we are

trying to say is that the main feature of this example of supervised

learning is the use of a training set for categorical prediction. There

exists a lot of system that deals with this particular issue.

2.2.2 Unsupervised learning to predict categorical labels.

In unsupervised learning, unlike supervised learning, there is no a

priori knowledge, that is, there is no training set as a basis for adapt

ing the model and then exploit it. In this method of learning, which

is considered automatic method, the model is adapted to the observa

tions. Initially, we can infer that this kind of algorithms don't require
an external teacher. Thus, they show some degree of self-organization.
Then, the model discovers the input data behavior autonomously us

ing features regularities, correlations, similarity measures, distances,
dissimilarities etc. you can realize that there are many algorithms to

achieve this goal. The model discover the cluster model, in which,

the data categories are finally used for an extrapolation phase.
With this technique it is possible, on each new input, genérate or

adjust the clusters and then classifying those new entries generated
from the model. That task will be mainly studied in this chapter
of the dissertation. It is important to note that there exist a lot of

information and many techniques for unsupervised learning, but we
are only interested in the part where the new information is assigned
to a known category.
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2.2.3 Other Learning methods.

Other learning methods, such as the prediction of real-valued labels

and learning of categorical or real valued sequences are not consid

ered in this thesis. However this does not mean they cannot be in

cluded in a future as part of the framework.

This work is delimited to use learning and prediction ofcategorical

labels models. And it can be extended to semi-supervised learning

to predict categorical labels, which mixes both supervised learning

models as a the unsupervised machine learning models.

2.2.4 Threadholds and binary functions.

A threadholding method is an operation over a domain, in which,

a threadhold is used to sepárate that domain in áreas of
interest. In

many applications, it is useful to be able to sepárate out
the regions of

the data corresponding to objects in which we are interested. Thresh

olding often provides an easy and convenient way to perform this

segmentation on the basis of the different intensities or scale valúes

in the data set. Thismethod have been successfully applied in a lot of

Machine Learning related troubles. There also exists a lot of method

for threadholding.

2.3 BASIC FORMAL NOTIONS OF FCA.

In literature of FCA exists a lot of notations. We started with Ganter

work and we decide to use Ganter notation for avoid confusión. You

will find an altemative notation in Appendix A.i. As an observation,

in the literature there are thousands of publications and each pro-

poses new definitions, properties, theorems, algorithms and capabili
ties that enrich the terminology. Formal Concept Analysis home page
was an excellent way to startwith this subject. ([http://www.upriss.org.uk/fca
This section, as the ñame implies, is a set of notions used as basis

in this thesis.

Definition 2. A binary formal context K ís a triple (G,M, I). In this

data structure G and M are two finite sets, called objects and attributes

respectively, and I C G x Misa binary realtion over G and M, named the

incidence ofK.

Table 2 has an example of a Formal Context K := (G,M, I) as a bi

nary relation between objects and attributes. There G := {g\,g2,g3,gi,g5,g(,},
M := {mi,m2,m_i,m4,m5,me,m7} and í is a binary relation where

/ C G x M.

Another useful and intuitively representation is BinaryMatrix Rep
resentation. This representation can be seen too as a set of rows de

scribed with zeros and ones, where the ones describe that an object
poses an attribute and zero on the contrary. Next Table 3 is represent

ing the same context shown in Table 2. It is another representation of
this data structure used to extract concepts in FCA.
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Table 2: Example of Formal Context K

mi "12 Wl3 "Í4 ms W6 ffl7 m»

¿?1 X X X X X

ft x X X X X

£?3 X X X

gi X X X

gs X X

gb X

The mathematical structure which is used to describe formally this

table with crosses is called a formal context (or briefly a context).

Table 3: Matrix representation of a Binary Context.

11010101

o

o

o

o

Matrix representation of the binary relation in Table2.

In order to define formal concepts of the formal context (G,M,I), it is

possible to define two derivation operators. As we mentioned earlier,
these operators, named Galois Connectors or Derivator Operators
or simply Derivates, are basic to understanding the main definitions

ofFCA.

The following definition contains the statement and rules that give
form to these two operations.

Definition 3. For an arbitrary subsets:

AQGandBC M:

• A' := {m G M | (g,m) G l,Vg G A}

B> ;= {g G G | (g,m) G í,Vm G B]

These two Derivation Operators satisfy the following three condi
tions over arbitrary subsets A\,A2C-G and 81,82 C M:

1. Aj C A2 then A'2 C A[ dually B, C B2 then B2 C B\

2. Ax C A'[ and A[ = A'{' dually Bi C B'[ and B[ = B'{'

3. Ai C B[ -4=^ Bi C AJ

Thus, as mentioned above, a concept is constituted into two parts, a

set of irreductible objects and a set of irreductible attributes. Those
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two parts form a dual isomorphism between those two closure sys

tems. The mathematized idea of formal concept, and also mentioned

earlier, represents the unit of FCA:

Definition 4. Let K be a formal context, K := (G,M,I), A C G and

BCM.

A Formal Concept C of K is defined as a pair C = (A, B) where

the following conditions are satisfied.

A = B' and A' = B; where A is named the extent and B is named

the intent of the formal concept (A, B).

Next, separating ourselves slightly of FCA topic, wewill show from

Lattice Theory some useful notions to understand the algebraic struc

ture generated by those derivation operators and the formal concept
idea.

Definition 5. A Partially Ordered Set or abbreviated, poset, is a sys
tem X in which a binary relation x ^ y is defined and which satisfies:

1. Mx, x^x (reflexive).

2. if x ^ y and y ^ x, then x = y (Antisymmetric).

3. if x ^ y and y^z, then x ^ z (Transitive).

From here, is easy to define our algebraic structure, the Concept Lat
tice.

Definition 6. The concepts of a given K := (G,M,I), and denoted

by <8(K) can be regarded as the Concept Lattice of K, where <8(K)
naturally ordered by the sub-concept/super-concept relation is math
ematized by:
Let (Ai,Bi), and (A2,B2) C <8(K)
(Ai, B**) < (A2,B2) <=> Ai C A2( <í=> B, C B2)

However, using the derivation operators we can derive formal con

cepts from our formal context. The whole set of formal concepts
together with the order relation, mentioned early, is called Concept
Lattice or, also Galois Lattice, because it verifies the lattice properties.
The relation < presented above is clearly a partially order relation.

Theorem 1. Basic Theorem on Concept Lattices, Wille [101]. Let K :=

(G,M,l) be a formal context. Then <8(K) is a Complete Lattice, called
the Concept Lattice of (G, M, I), in which infimum and supremum exists
and they are given by:

A((A*,B*)-=(nA*,([jB()")
t£T ter ier

V((At,Bt) = ((|J A*)",n*3.)
•er t€T teT
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Figure 3 shows a typical lattice diagrams, from the context in Table

2. The partial order with the meet and join operations genérate the

lattice graph (named Hasse Diagram) by removing transitivity and

Beflexivity. This means, given the concepts Ci,C2 G 58 (K) there is

an edge from Q to C2 if C\ < C2 and there does not exist another

element C3 G 33 (K) such that Q < C3 < C2.

A claim and a proof that a complete lattice L is isomorphic to 93 (K)
is inGanter [38]. In particular L = 93(L, L, <).

Figure 3: Concept Lattice from Formal Context K in Table 1.

This graph, named Hasse diagram, represents generalization and

specialization relationship for all concepts contained in *8(K).

The following definition is a preamble to explain an altérnate way
to understand the formal concepts. It deals with formed rectangles in

binarymatrices, as presented in Table 3. This is a problem which has

been extensively studied. One of its definitions, máximum rectangles,
is equivalent to the definition of formal concepts as we shown in a

subsequent theorem.

Definition 7. Rectangles in K := (G,M,I). Let A G G and B € M.

A rectangle in K is a pair (A, B) such that A x B C /

From the example in Table 2, the pair A := {g2,g3} and B :=

{mi, «13} as (A,B) is a valid rectangle. But the pair (gi,g2,m__.) is not

a valid rectangle, because gi and m_i does not satisfies definition 7.

Definition 8. Maximal Rectangles in K. A rectangle (Ai, Bi) is maxi

mal if and only if there does not exist another valid rectangle (A2, B2)
in K. In which A2 D Ai or B2 D Bi .

A clear example, using Table 2, is: A := {g2,g3} and B := {m__,m3,m7}
where (A,B) is a rectangle and it is maximal. ({#,#.}, {mi} and

({gi}> {mi'm3>m7}) they are not maximal rectangles since they are

covered by the previously maximal rectangle example.
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Theorem z. Formal Concept as maximals rectangles. (A, B) is aformal

concept ofK ifand only if (A, B) is a maximal rectangle
in K.

Proof. We must to prove two cases, when
we have a formal concept it

must be a maximal rectangle, and when we have a maximal rectangle

then it must be a formal concept. These cases are defined
as follows:

D

Case i. Let (Ai, Bi) be a formal concept. Ai
-

B[, A\ = Bv Ai = A'[

and Bi = B'{ suppose that (A-.,Bi) is not a maximal rectangle
then there exists a maximal rectangle (A2, B2) such that or A2 D

Ai or B2 D Bi. That means, or A'{ = A2 or B'{ = B2, in which

(Ai, Bi) is not a formal concept which lies in a contradiction.

Case 2. Let (Ai, Bi) be a maximal rectangle. So, there does not exists

another valid rectangle (A2,B2) in which or A2 D Ai or B2 D

Bi. We will say that (A^Bi) is not a formal concept. Then, by

derivatives properties we know that or Ai C A" or Bi C B2'.
From this statement we can infer that a valid rectangle (A", Bi )

or (Ai, B") exists, being a contradiction the claim that (Ai, Bi) is

a máximum rectangle.

This theorem, will allow us to use thematrix representation presented
below. This representation gives us another idea of the problem and

a different perspective to propose solutions. As we will see in futhers

chapters, the use of Lattice Based Neural Network Theory in FCA

context is one of the possible perspectives. The following are three

definitions related to the topology of the algebra of lattices.

Anti-chains, Upward and Downward Closed Sets definitions are

related to Lattice Algebra topology. First notion, anti-chains relies in

a set of incomparable elements.

Definition 9. Anti-chains in K := (G,M,I). Let be A C G. A is said

to be a derivative anti-chain set if and only if A\ <£. A2 and A2 £ A[
for any two distinct Ai, A2 G A .

All sets in which the super/subconcept order is not satisfied for

any two elements of the set is called antichain set. Next, we define

two closures systems on any complete lattice.

Definition 10. Upward Closed Set. Let (L, <) be a poset P. A set

S C L is said to be upward closed if Vx,y G S with y > x implies that

y G S.

So, given a set S G L there is a smallest upward closed subset of L,
which is denoted by t S := {x G L\x > y for some y G S} We can

see that S =+ S if, and only if, S is a downward set.

A dually formal definition is the downward closed set using SCL
and i S := {x G L\x < y for some y G S}. So, S is a downward closed
set if, and only if S =| S.

Those closed set, also named upper and lower, exemplified in fig
ure 4 have the following properties:
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Figure 4: Upper and Lower Closed Sets.

sub-Figure A is the Union of two upward closed sets of , it is also

the upward closed set. sub-Figure B is the unión of two downward

closed sets. sub-Figures C an D are their respectives intersections.

•

Every partially ordered set is an Upward/Downward Closed

Set of itself.

• The intersection(n) and the union(U) of Upward Closed Sets

is always an Upward Closed Set.

• The intersection (f)) and the unión (U)of Downward Closed

Sets is always an Downward Closed Set.

• The complement of anyUpwards Closed Set set is a Downward

Closed Set, and vice versa.

Given a partially ordered set (L, <): The family of Downward

Closed Sets of L ordered with the inclusión relation is a com

plete lattice, the down-set lattice O(L). Dually in the case of

Upper Closed Sets.

2.4 ALGORITHMS FOR CONCEPT LATTICE GENERATION.

Now, we will discuss two main issues, the generation and navigation
of Concept Lattices. Once, we briefly review the basic algorithms
from the literature, we extract some properties for these algorithms.
ForAnalysis ofAlgorithms theorywas taken into accountmany ideas

from literature[55, 56, 41]. There is no consensus for the analysis of

algorithms that genérate the Concept Lattice. We use information

recorded in some publications that deal with that analysis[i9]. The

first comparative study of several algorithms constructing the concept
set and diagram graphs can be found in [43].
The first algorithm that generates the lattice is attributed to Mal-

grange[62. and dates from 1962. Few years later, Chein[2i] refined
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Malgrange algorithm and creates a bottom-up algorithm 1. The algo

rithm build from the bottom and it goes up level by level. The first

level contains all pairs Li := {(x, x') | x G G}. Means that each object

gi G G as (gi.g'i) is considered as a first layer. Iteratively,
we can build

new pairs in Lk+i by combining all pairs of Lk. In this process some

elements of the layer k are generated again in a top layer in that case,

the elements are deleted from the previous layer k and stored as ele

ments of the new layer k + 1. A simple formal description of Chein

algorithm is:

Given two elements of Lk: (X,*,X;), (X;*,Xp so if XíflXj <£ Lk+l

then (X,lJXy, X'jftX'j) is a new element of Ljt+i otherwise merge all

the pairs with X¡f\X'r if X'jQX'j G Lk+1 it must be deleted from Lk.

Original versión of Chein Algorithm looks through the current layer
each time a new concept is generated and has a exponential worst-

time complexity. Some authors have proposed a canonicity test based

on the lexicographical order to improve the efficiency of the algorithm

[55, 56]. The time complexity reported is 0( \ G |
3

1 M 1 1 L | ). And the

algorithm has a polynomial delay of 0(\ G \
3

| M |) (56). Originally,
this Algorithm does not genérate the Associated Hasse Diagram, but

with fewer modifications, some authors reports that it can do Hasse

Diagram Generation.
2

Some algorithms from the early 80's areNext-ClosureAlgorithm^],
Bordat Algorithm[i6],MI-treeIio6], NorrisMaximal Rectangles Computationfro].
Next-Closure algorithm was proposed by Ganter, and it computes
closures for only some of subsets of G using an efficient canonic

ity test, which does not look backwards to the list of generated con

cepts. It produces the set ofall concepts in time 0(|G|2|M||L|) where
L = -B(K) and has polynomial delay 0(|G|2|M|){56]. However, Next
Closure Algorithm does not compute the associated Hasse Diagram,
instead it generates the concepts in lexicographic order3. Next, Bor
dat Algorithm [16] generates the associated Hasse Diagram. This al

gorithm computes all the concepts of L by computing cover(A, B) for
each concept (A,B), starting from the bottom concept, until all con

cepts are generated (A Bottom Up Algorithm). The time complexity
of Bordat is 0(|G||M|2|L|). Moreover, this algorithm has a polyno
mial delay 0(|G||M|2)[56]. The inclusion-maximal subsets problem
in Bordat Algorithm is known to be resolved using sophisticated data
structures such as a Tree-Set. MI-Tree Algorithm searches over a set

of previously generated concepts and it does not consider the Hasse

Diagram Generation. The original versión of the Norris Algorithm
does not construct the diagram graph. But with fewer modifications,
it produces the diagram graph without effort. This Algorithm is also
the first Incremental Algorithm <•. The algorithm ofNorris, in process
ing a concept (A, B), checks whether B f\g/ C h' for any h G G,¡ \ A

1 A Bottom Up Algorithm construct the lattice from the bottom, generating first, the
concepts with fewer objects.

2 An interesting property of these algorithms is that some of them have the ability to
genérate a structure that represents: the Associated Hasse Diagram.

3 Some Algorithms construct the lattice in lexicographic order.
4 Incremental Algorithms updates the lattice when a new relation between one obiect
and the set of attributes is inserted.
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Table 4: Properties of Algorithms for Concept Lattice Generation

BU = Bottom*

BU TD L B I

Chein X X

Next-Closure X X

Bordat X X

MI-Tree X X

Norris X

Up, TD = Top-Down, L = l,exi< oer iphi

and I = Incremental.

where G¡ is the set of previously processed objects. Then A is not

the maximal extent, and henee (A,B) is not the most general con

cept capable of generating B set[7o]. Table 4 shows the Algorithmic

properties proposed by FCA Theory over the previously algorithms
mentioned.

.After the decade of the 80's, many algorithms have been proposed
for genérate Concept Lattice. Concept Lattice Algorithms can be di

vided into two categories: Batch and Incremental algorithms, as we

have seen before. Nourrine Algorithmfrí], LingLing Algorithm[6o],
are two important batch generation approaches. In the other hand,

Norris algorithm, Godin Algorithm[39], Carpineto Algorithm[i9, 20],

DowlingAlgorithm and, recentlyAdd IntentAlgorithm[66] and Valtchev

work[95, 96, 94] are some examples in the incremental sense. Also,

some new ideas has emerged, from the Matrix Based Approach for

Concept Lattice Generation[59], Farach-Colton, et al.[3i], and a Con

cept Lattice Generation using RDF are examples of these new approach[27].
There are many algorithms in the literature and in time, more are

added. Not surprisingly, the processing time of the concept lattice

and complexity analysis of the new algorithms with respect to the

former ones has decreased a lot. In this section, we mention only
some algorithms. The literature is rich, if the reader wants to fol

low the new algorithms related with Concept Lattice Generation and

Navigation.

2.5 FCA APPLICATIONS.

FCA comes from data analysis requirements. From FCA, early ap

parition, has been strongly linked with the theory of Knowledge

Discovery[93, 85]. There are even papers, which recursively exam

ines the concepts generated by FCA using the Lattice of Concepts as

ontology[75]. Ontology in its original sense is a philosophical dis

cipline dealing with the potentialities and conditions of being. Par-

menides was among the first to propose an ontological characteri

zation of the fundamental nature of reality[69]. Within Computer
Science, ontologies have been used for more than, they represent a

method for formally represent knowledge.[42]. There are a lot of

proposals for standard knowledge representation format which are
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independent of the content of knowledge being exchanged
or com

municated, establishing agreements about knowledge, such as shared

assumptions and models of lite world.

Ontologies play a significant role in software source
structure analysis

for example, studies for features searching in source
code and source

structure analysis has been reseaiched(:>4, 30]. In this sense, many

methods have been proposed in PCA. expressing the concept lattice

as ontology. They use the inherent logic of that structure
to under

stand and extract independent content knowledgefo, 48, S5, 8, 100J.

As we have just seen, ontologies have the status of a model. Their

purpose is to understand a shared interpretation of the reality. For

mal Concept Analysis, on the other hand, plays other role with the

same finalitv. Concept lattices are not understood as modeling some

part of the reality, but rather it is an artifact to do domain analysis

using a given data.(8i]. While ontologies can be established without

any given data, FCA relies always on some set of objects. Thus, in

FCA, extensional and intentional aspects are equally important,while

ontologies emphasize on the intentional part[4-] FCA can be used

as a technique forOntology Engineering. It supports rhe structuring
of some given data by construction of concept lattices. In addition, it

can be used to extract, from a given dataset, a conceptual hierarchy
which may serve as a basis for the manual or semi-automatic devel

opment of an ontology. In this sense, BiologkalfSb], Medical!3, bi]

and Chemtcalj 5--] Ontologies have been reported as part of the FCA

study.
Other area of interest to FCA is Databases systems. To access

data stored in databases and using lite information that emerges

from those databases, new techniques are developed to automati

cally discover knowledge. The subfield of Datamining, to find the

useful knowledge in databases, is named Knowledge Discovery in

Databases (KDD). It is referred as the process to find outstanding
rules, trends, pattems and relations, focusing cm reusable informa

tion that is useful for predict behaviors. Association rulemining and

learning is a popular and well researched method for discovering in

teresting relations between variables. KDD is another area that has

been strongly attracted to FCA. In the case ofMining of association
rules and dependencies! s8] KDD has been strongly supported by
FCA. The main aspects in which, FCA has been involved with KDD

is the calculation of frequent itemsets[ot>], minimal generators(28, 8s]
and closed sets[49, 76L among othen>[<-4]. FCA has focused on de-

crease computing costs of mining of association rules, using lattices

theory to reduce the search space and find better representations of
these sets, making the search more efficient.
The first time FCA contributes to the field of association rules was

with the development of new algorithms for frequent itemsets discov
ery. These results only took into account the closed set, pruning of the
lattice was not considered. As we seen before Algorithms to find all
closed itemsets (Formal Concept Set) were developed and those algo
rithms were used for find frequent closed itemset. Later, Duquenne
Guigues described a minimum set of exact rutes from which can
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be derived all other rules[44J. Connections between this statement

minim generators and FCA were published. [34] «And although up to

that point both fields were independent, several research groups bet

on this combination. Since then, the attention of FCA has increased

within the data mining community collaboration. Some work, of FCA

in KDD, focuses on reduced representations or minimal generator of

all rules.

Frequent itemset mining is one of the main issues discussed in the

scope of FCA and is a crucial step in find Association Rules. The prob
lem definition of association rule mining was introduced in 1993 by

Agrawal, R. et. al.Agrawal [2]. Some years later, the research linked

directly this definition with FCA. The approach of the problem of

association rules, considered important part of Knowledge Discov

ery in Databases, as we mentioned above, requires detecting frequent

patterns. The most frequent patterns, called Frequent Itemset, are the

engine of this paradigm.
One of the main problems concerning the algorithms to compute

frequent closed itemsets is the number of disk accesses required. The

first algorithms were inspired by the Apriori method[i]. All these

algorithms have in common the level-wise search and the generic
closed itemsets search. fbr example, ChARM[i07] also follows a

bottom-up approach. Contrary to In-Close Algorithm[4] it performs
a depth-first search in the powerset of itemsets. It stores the frequent
itemsets in a prefix tree in main memory. And then, the algorithm
traverses both the itemset and transaction search spaces. As soon as

a frequent itemset is generated, the set of corresponding transactions

is compared with those of the other itemsets having the same parent
in the prefix tree. If they are equal, then their nodes aremerged in the

prefix tree, as both genérate the same closure. Closet Algorithm[73]
also compute the frequent closed sets and their supports in a depth-
first manner, storing the transactions in a tree structure, called FP

tree, inherited from the FP Growth algorithm[82]. They use a simi

lar ChARM merging strategy. MaFia Algorithm[i8] is an algorithm
which mainly is intended for computing all maximal frequent item

sets (which, by basic results from FCA, are all cióse). It also has

the option to compute all frequent closed itemsets. Bamboo [98]
mines closed itemsets following a length decreasing support con

straint, which states that large itemsets need a lower support to be

considered relevant than small ones.

The area of marketing and corporate decisión has been benefited

from these algorithms. There are many software packages in the mar

ket that are especially dedicated to this type of data mining. They
use as background FCA algorithms.
Other common application area of FCA is Machine Learning. For

example, in cooperative e-Learning and semantic web Beydoun [13,

12] FCA is used for knowledge acquisition and as a system to process

and exploit dependencies between nodes to yield subsequent and

more effective focused search results. One model of machine learn

ing that also uses closure systems in machine learning is the JSM-

methodjioó]. Several versions of JSM-method has been developed.
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There exist a JSM Method FCA based. This method uses positive
and negative hypotheses, and search conditions in the intersections

of these hypotheses. They first search them individually, then more

inferences and constrains are found by hypothesis intersection[57].
Given a negative and a positive hypotheses, JSM-method are suit

able to classify undetermined examples. In[io6, 97] you can found

a complete research about JSM-method techniques. Some applied
work have been published for Toxicology analysis[^6], Carcinogenic-

ity of Chemical Compounds[54J and Prediction of the Toxicity of

Chemical Compounds[92]. This applications provides an excellent

compilation for discover and understand the reasoning technique on

JSM-method. There exists, a lot of applications of JSM-method related

with Bayesian inference[n] ,
Decisión Trees[io, 22], and inference

in general. Spam Filtering[i05], Software Patterns Analysis[23, 24],
Structured Pattern Analysis[33, 72], Software Engineering are some

examples of applications of this theory.
The second model ofmachine learning, Concept Lattice-based Ar

tificial Neural Network (CLANN) uses constraints transformations

for supervised classification[87]. The first step of this classifier, learns

relevant concepts from the data. The second step is build a join semi-

lattice of concepts applying constraints on those relevant concepts. Fi

nally, it convert the semi-lattice to a Artificial Neural Network topol

ogy. The proposed algorithm uses frequency and the validity of a

concept, to select them. Then, a mapping from a join semi lattice

is performed. After that mapping, a connection weights and thread-
holds are initialized. Finally the backpropagation algorithm is used

to find those weights for an extrapolation phase. M-CLANN: Multi-

class Concept Lattice-based Artificial Neural Network (M-CLANN)
is an extensión of CLANN in order to threat multi-class data[65J.
The third studies related with machine learning in FCA are com

posite classifiers based on Concept Lattice[i03][45, 63].
Other example of FCA application is image learning, also named,

Image characterization[io8]. In this case this image characterization
is performed using image features and object class partitions. During
extrapolation time, the system reviews if new data is a superset of
the conditions that belong to a class.
As we have seen FCA is still growing. The previous literature re

view proves the feasibility of the field. All these topics were reviewed
in terms of verify the scope of FCA in applications. Many of these

papers served as inspiration of this thesis.

2.6 LATTICE BASED NEURAL NETWORKS.

Artificial Neural Network (ANN ) is a paradigm of learning and au

tomatic processing inspired by the nervous system. Figure 5 shows
standard neuron structure. This structure is the inspiration of LBNN

presented in this chapter.
The features of ANN make them quite suitable for applications

where there is no a priori of an identifiable pattern that can be pro-
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grammed, but there is a basic set of input examples (previously classi

fied or not). They are also highly robust to noise so as to dysfunction
of concrete elements and, moreover, ANN are parallelizable. As we
said early, our work is related with LBNN, which is also considered

an Artificial Neural Network. ANN merges Computer Science with

Neuroscience, in order to take advantage of recent advances in neu

robiology and the biophysics of neural computation.
The theory of Lattice Based Neural Networks (LBNN) is actively

used in classifiers, Ritter and Urcid [77], Urcid et al. [89], Barmpoutis
and Ritter [7]. clustering, Kaburlasos [51], associativememories, Aldape-
Perez et al. [3], Ritter et al. [80], among others[io2, 90]. Some char

acteristics of these networks is their analogous morphology to the

structure of the brain[78]. In this analogy, dendrites are considered
an essential part of the computation. In biological neurons, the ter
minal axonal branches make contact with the soma and the many
dendrites of other neurons [84]. Dendrites form the major receiv

ing part of neurons. It is within these highly complex, branching
structures that the real work of the nervous system takes place. The

dendrites of neurons receive thousands of synaptic inputs from other

neurons. However, dendrites do more than simply collect and funnel
these signals to the soma and axon. They shape and intégrate the in

puts in complex ways. Despite being discovered over a century ago,

dendrites received little research attention until the early 1950S. Over

the past few years there has been a dramatic explosión of interest

in the function of these structures. New research has increased out

understanding of the properties of dendrites, and their role in neu

ronal function, Stuart et al. [84]. Most of the synapses occur on the

dendritic tree of the neuron, and some researchers claims the infor

mation is processed in those dendrites. Part of this is due to the fact
that pyramidal cell dendrites span all cortical layers in all regions of
the cerebral cortex, Arbib [5].

Basicly, in LBNN model, .an input layer receives external data. Sub

sequent layers perform the necessary functions to genérate the de

sired outputs. This can range from determine which class belongs
given input to the reconstruction of a pattern. Noise removal and

image segmentation are two examples of applications of this kind of

ANN[88, 91, 102]. Applications in a variety of disciplines have em

ployed LBNN. Some aspects of LBNN have attracted considerable at

tention which is partially due to their useful applications in a variety
of disciplines[53, 46].

Single Lattice Layer Perceptrón, also named Dendritic Single Layer
Perceptrón, is basically a classifier in which exists a set of input neu

rons, a set of output neurons, and a set of dendrites, growing from

the output neurons. Those dendrites are connected with the input
set by some axonal branches from those input neurons. A training
set configure those outputs based on the máxima V and minima A

operations. They are derived from the algebra (R,+, V,A)* Figure 5

represents this structure.

Lattice Based Neural Network Theory comes mainly from Lattice

and Fuzzy TheoryKaburlasos [51]. In this section, we will show only
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Figure 5: LBNN Basic Structure

Published at Computational Inteligence Based on Lattice Theory[52].

how to do computation from dendrites to neuron and how to com

pute the output of that neurone in SLLP. Advanced information
and a

complete introduction in the subject is in Computational Inteligence
Based on Lattice TheoryBarmpoutis and Ritter [7].

In SLLP, a set of n input neurons Ni, N„ accepts input
x = (x\, ...,x„) G IR". An input neuron provides information through
its axonal branches to the dendritic trees of the set output neurons.

A set of O output neurons is represented by Oi,...,Om. The weight
of an axonal branch of neuron N, connected to the kt}_ dendrite of

the Oj output neuron is denoted by zuL, in which, the superscript
l G {0,1} represents an excitatory l

— 1 or a inhibitory £ = 0 input
to the dendrite. The kth dendrite of Oj will respond to the total valué

recived from the JV input neurons set, and it will accept or reject the

given input. Dendrite computation is the most important operation
in LBNN. The following equation t¿(x), from SLLP, corresponds to
the computation of the rc**, dendrite of the ;'st output neuron^].

4(x) = p¡k A AC-^-^-K*)

Where x is the input valué of neurons Ni,...,Nn and x¡ is the the

valué of the input neuron N¡. I(k) C \,...,n represents the set of all

input neurons with synaptic connection on the fc*-, dendrite of Oj. The
number of terminal axonal fibers on N* that synapse on a dendrite of

Oj is at most two, since £(i) C {0, 1} FinaUy, the last one involved
valué is pjk G {-1,1} and it denotes the excitatory ipjk = 1) or in

hibitory ipjk
= -1) response of the kth dendrite of 0¡ to the received

input.
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All the valúes t¿(x) are passed to the neuron cell body. The valué

computation of Oj is a function that computes all its dendrites valúes.

The total valué received by 0¡ is given by(77]:

Ki
.

t>íx) = p¡* y4ix)
jt=i

In this SLLP model, Ky is the set of all dendrites of 0¡, p¡
= ±1

represents the response of the cell body to the received input vector.

At this point, we know that p¡
= 1 means that the input is accepted

and p¡
= -1 means that the cell body rejects the received input vector.

The last statement related with 0¡ correspond to an activation func

tion /, namely y¡ = f [tÍ(x)].

/[t-mih-^™-0 w(:0 <-==■>■ t(x) < 0

As, we mention early, dendrites configurations is computed using
a training set. There are in SLLP, two algorithms in order to complete
the training task: Merge and Elimination methods. Present section

only lies with the basic structure of the SLLP. Those methods, and a

lot of applications can be reviewed in literature. Basically the compu
tation of a neuron, which represents a class, is made by checking if

the element is classified within the regions formed by, excitatory and

inhibitory hyper-boxes.

2-7 CONCLUSIÓN.

As we have seen, Lattice Theory has a strong presence in the world

of mathematics, engineering and recently Industrial Research. It is a

fact that Lattices Theory still moves on, and continúes growing with

respect to their applications and base. More and better, algorithms
and applications emerge to solve more interest problems every day.
We can see that this theory, which, naturally, studies a topological

space associated to an abstract world, is an excellent tool for solving

many important problems in Computer Science.

Section 2 showed how FCA born and evolution from Lattice the

ory. Subsection 2.3 formally presents definitions used in this thesis

scope. A section dedicated to show the state of FCA applications was

presented in the state of art in FCA.

Practical applications, such as finding the set of frequent items, as

sociation rules, classifiers, cryptography, network analysis, semantic

web, analysis of DBPL, marketing demónstrate the ability and power
ofFCA.

Chapter 3 of this work is focused in develop our own algorithm for

generating Concept Lattice.



Part II

APPLICATIONS

Concept lattice generation algorithms plays an essential

role for the application of FCA. As we studied before,

many algorithms have been proposed for generating the

Concept lattice from a binary relation, each one with their

own properties and structures. This Part presents two ap

plications of research scope. Chapter 3, proposes a nobel

method for Concept Lattice Generation. The construction

of this method is highly related with the Lattice Based

Neural Networks Theory. You will find also, an experi
mental analysis on ourAlgorithm for Concept Lattice Gen

eration. In chapter 4 we propose a classifier. In this chap
ter you will find the notions of how to extrapólate knowl

edge, understand the learning process using the power of

the definitions of FCA and Lattice Theory. That, in order

to achieve the goal of formal classification on binary rela

tions.



COMPUTING CONCEPT LATTICE USING LATTICE

BASED NEURAL NETWORK THEORY

3.1 INTRODUCTION.

This chapter proposes and algorithm for the generation of all formal

concepts. This is achieved through the use available FCA theoryfioi,

99/ 38» 37,- lattice tools[6, 14] the search of theMaximal Rectangles Set,

Intent Cardinality and Lattice Based Neural Networks (LBNN)[79,

78]. Also, we will use the intervals between those maximal rectan

gles sets for the construction of the Concept Lattice. In addition, the

proposed algorithm can compute the diagram graph without extra

effort.

As discussed above, there are many algorithms dedicated to the

generation of this structure. But, none of them have used Lattices

Based Neural Networks theory to achieve their goal.
As we have seen early, computing unit of the LBNN is the dendrite.

The dendrites in the LBNN split into two types: positives and nega-
tives dendrites. The combination of positive and negative dendrites

generates rectangles. Similarly those rectangles can be classified in

two types, those in which the input is accepted and rectangles which

reject inputs. It has also been explored their ability to orthonormalize

this structure for better results[7]. In this chapter we include theory
in order to find the maximal rectangles in a binary formal context.

Definitions on LBNN are bounded by this goal. Our idea is to use a

similar method to compute the maximal rectangles, given a set of bi

nary vector and using the cardinality notion to extract those maximal

rectangles.
The chapter is organized as follows. Next, section .Section 3.3

contains the complete description of the Concept Lattice Generation

LBNN based. In section 4.6 you will find the experimental analysis,

Figure 6: Standard Dendrite Neuron

n inputs

27
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in which we compare our algorithm with some other existent algo
rithms. At the end of this chapter you will find the conclusión and

some notes and observations.

3-2 REVISITING UPWARD AND DOWNWARD CLOSED SETS.

Before ofLBNN, in this section, we define two notions. First one is the

minimum coverage set in a binary context K. The second definition,

is the maximal coverage set. We will work on their properties, and

we will define their usages over the binary context.

Let G' — {m C M\m = g1, g G G} be the objects derivative set.

LetM' := {g C G\g = m',m G M} be the attributes derivative set.

Definition 11. TheMinimum Coverage set D_(or Negative Dendrite

Set) over K, for object derivative set, is described as follows:

D- := {d G G' | Vm G G', m ¿ d, d 2 m)

This is, all elements d in G such that d is not a superset of any other

element m in G'.

A dually definition on the attributes derivative set is defined.

The following definition is focused on, the maximal coverage set

associated with a the formal context. In this case, we got the maximal

rectangles rn a given context.

Definition xz. The Maximal Coverage Set D+(or Positive Dendrite

Set) over G' is defined as:

D+ := {d G G'IVih G G',m/= d,d% ni}.

It means, all elements d in G' such that d is not a subset of any
other element m in G'.

A dually definition on the attributes derivative set is also defined.

Definition 13. As the readermay guess, the altemative ñame in these

definitions shows the purpose for which this pair of sets will be used.
But that will be done later. Here, we explain and exemplify some

basic notions about these definitions.

Claim 1. The conditions sets D~, D+ are anti-chains sets over G deriva

tives.

Since, any poset is reflexive and transitive we can do five more

claims:

Claim 2. Let x C M and let f be defined in the M Power Lattice Set. If
x D d for some d G D~, then x G| G'. Itmeans: x Gf D~ •*=► x f G'

Example 1. Let x := {abe}, G' := {{abee}, {abd}, {ab}, {cd}, {abde}},
then D : {{ab}, {cd}} where x GT D~ and x Gf G'.

Claim 3. Let x C M and let | be defined in the M Power Lattice Set.
If x C d for some d G D+, then x Gj, G'.
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Example 2. Let x := {abe}, G' : {{abce},{abd},{ab},{cd},{abde},
then D+ : {{abee}, {cd}, {abde}} with x Gi D+ You can easily verify
that x Gl G'.

Claim 4. Let x C M. If x C d for any element d G D", then x £ G'

Example 3. Let x := {a}, G' : {{abee}, {abd}, {ab}, {cd}, {abde}, then

D~ : {{ab}, {cd}}. You can easily verify that x ^* m fbr any m G G'.

Claim 5. Let x C M. If x g d for any element d G D+, then x g

m,V,7i G G-'

Example 4. Let x := {be}, G' : {{abee}, {abd}, {ab},{cd}, {abde},
then D+ : {{abee}, {cd}, {abde}}. You can easily verify that x \7> m

for any m G G'

C/a/m 6. The cardinality of the minimum and maximal coverage sets

is bounded by |G| assuming G' is itself, a set of anti-chains.

Thus, these sets are bounded by |G|.

AU these claims are defined and exemplified in the object derivative

set.

Next claim, defines a relation between a lattice infimum and the set

D+.

Claim 7. Let (At,B¡) be the infimum element in 93(K). Any element

(d',d), where d G D+ for G', is closed and there is not any other

formal concept (A¡, B¡) G ÍB(K) such that d C B¡ C B, and d' D A¡ D

A.

Based, in our last claims, next section 3.3 construct an algorithm
for Concept Lattice Generation.

3-3 COMPUTING CONCEPT LATTICE WITH A LBNN MODEL.

In our LBNN model for find maximal rectangles set. A set of binary

patterns are represented by G' So the binary representation of a

formal context, is itself a set of patterns, in which the derivative of

each object is an element x G G', as we seen before. We can define x =

(x\, ...,x„) G B" as a vector. In the same way as SLLP, a set of n input
neurons N\,...,Nn is directly associated with the x input. We also

know that the valué of each x, in x is binary, so we can say that each x,
is an input for N¡ and x, G {0,1}. A simple class formulation is used

for learning the maximal rectangles set, in these terms one models of

dendrite computation are proposed. Those two proposes are based

in claim 7 and uses the set D+ for objects derivatives. The first model

is based on an LBNN that classify upper closed set members on this

set. The second, is based in the an operation that represents the lower

closed set on the same set. A unique output neuron ;'with k dendrites

is provided with information from an axonal branches from the input
neurons. In this section we works with the second propose.
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Other particular thing is the fact that for us is sufficient
to use only

the notion of maximal or minimum to genérate rectangles, it means

our superscript í will be a constant i
= 1 or l = 0 depending on the

perspective. In the same way we can use only excitatory
or inhibitory

dendrites. So, p¡k is also a constant, pfk
= 1 or pjk

= -1 and it

denotes the excitatory or inhibitory response of the ka, dendrite of

Mj to the received input, another
remarkable thing is the fact that we

only need to connect maximal or minimum axonal branches which

of depends on our algorithm perspective. But the simplest way to

compute the valué of the klh dendrite, using claim 2, derived from

the SLLP equations, is:

4(x) = v o.) (2>

Where t[(x) is the valué of the computation of the ka, dendrite of

the ja, output neuron given a input x, /(fc) C {!,...,n} is the set of

input neurons with terminal fibers that synapse the ka, dendrite of

our output neuron. We realize that all weights w\]k are equal to zero,
this is, for our maximal rectangles classifier, we only need to store

zero valúes from the input patterns at training step, our goal is that

the output of our classification neuron be x G Ci if the input x is an

maximal rectangle given the patterns that currently holds our den

dritic neural network. Later, in this chapter, you will find a detailed

discussion about the goal and the learning step.

Specifically, each dendrite fc corresponds with one maximal rectan

gle intent to be tested, /(fc) is the incidence set of positions where the

valué of the maximal rectangle is zero for the pattern represented by
the fc dendrite.

We get the state valué of M¡ computing the minimum valué of all

it's dendrites. Again, as the SLLP, each t[(x) is computed, and it is

passed to the cell body ofM¡. Thenwe can get the total valué received

by our output neuron as follows:

ri(x) = /\i(x) (3)

It is easy to realize that the activation function is not required since

/ [t'(x)] = t'(x) where t'(x) = 1 if x *¿ y for all y G Q and t'(x) = 0

if x < y for some y G C\. As we mentioned above x is a maximal rect

angles if and only if x *¿ y and y *¿ x for all y G C-*. Using the

previous statement we can ensure that half of the work is done, the

second test, y *¿ x, will be performed processing data in a particu
lar order. In our case, we use cardinality order, objects with more

attributes first. Cardinality order, previously defined notion, ensures

that each new computed row is minor than the previously computed
rows.

As we said before, the idea is to use our LBNN structure to clas

sify maximal rectangles. When we start to compute a formal concept,
our structure is empty, it means, it hasn't any dendrite or any ax-
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Algorithmus 3.1 addDendrite

INPUT: NeuralNetwork P, Pattern x

OUTPUT: Updated P

Dendrite k = addNewDendrite(P)

FOR EACH element in x

IF getVa lúe (element) = 0

i = getPosition (element)

addAxonalBranch(k,i)

END

END

END
-*

This function adds, as a dendrite, a new Pattern to a LBNN.

onal branch connection, so the first step is add each element of the

maximal cardinality as a pattern to learn.

Algorithm 3.1 shows how an element is added to our lattice neural

network for maximal rectangles learning.
First, Algorithm 3.1 receives as parameter the LBNNwhich is being

trained and a binary vector. As we will see below, this binary vector

has been proven as a maximal rectangle. The Algorithm 3.1, first

grows a new dendrite fc*-, in our output neuron Oj. Every column in

x is checked, if that property is not contained by the object x, then

an axonal branch grows from the i position of the input neuron set to

the new dendrite. This operation is represented by addAxonalBranch

calling.
Now that we know how a dendrite grows in our neural network,

we must ensure that only maximal rectangles are presented as a part
of the training.

Algorithm 3.2 shows how to, compute the Concept Lattice, com

puting Maximal Rectangle Sets Recursively.
In algorithm 3.2: First step is créate a new dendritic neural network.

It must be initialized with one output neuron, n
= \intent | and fc = 0.

Where the number of input neurons is n, and each one neuron repre
sents one attribute element in intent. Second step is get G set ordered

by G' attribute cardinality. Next, third step, if the maximal cardinality
of the elements in G' is equal to the K-Supremum intent, we add a

link between Supremum and Infimum and stop. Otherwise, we must

add to our dendritical neural network structure all the elements in G'

with the maximal cardinality, those elements are maximal rectangles
in the given binary context. Once all elements, with maximal cardi

nality, were processed. Fourth step is to check remaining elements.

If an element derivative does not exists already, as an intent, and the

evaluation 3 says that it is a maximal rectangle then we must to add

the object and his derivative as a new maximal rectangle. Otherwise,
if the element derivative already existwe will add it to the previously
formal concept as extent. Last step, we will to process each maximal

rectangle founded. If that element is already contained in Lattice, we

add a link between K-Infimum and the previously element created

in Lattice. Otherwise, we add that link, we process that formal con-
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Algorithmus 3.2 Compute Maximal Rectangles

INPUT: A Binary Context K:(G,M,I), K-Supremum, K-Infimum, Lattice

OUTPUT: Intent HashSet Maximal-Rectangles

STEP 1:

Init:

LBNN Upward Structure

Maximal-Rectangles

STEP 2:

Sort G by derivative higher to lower Cardinality

STEP 3:

IF maximal cardinality is equal to K-Supremum intention

cardinality

Add Link from K-Supremum to K- Infimum

RETURN

Add, as positive dendrites, all elements with maximal

cardinality in G' to LBNN.

STEP 4:

Foreach remaining element in G

IF Maximal-Rectangles does not contains element'

AND Upward evaluation element' is 1 then:

add, as dendrite, element to LBNN

créate Formal Concept with:

element unión K- infimum as extent

element' as intent

add this new formal concept to:

Maximal-Rectangles

OTHER IF Maximal-Rectangles contains element

add element to previously Formal Concept

created.

STEP 5:

Foreach Rectangle in Maximal-Rectangles

IF Lattice does not contains Rectangle

add Rectangle to Lattice

add a Link from Rectangle to K-Infimum

Compute Maximal Rectangles with:

G = G / Rectangle extent

M = Rectangle intent

I = Projection

K-Supremum

Rectangle as a K-Infimum

Lattice

ELSE

add a Link from previously created

Rectangle in Global_Maximal_

Rectangles to K-Infimum

This recursive algorithm is used to compute the concept lattice.
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Figure 7: Binary Tree for \8(K) storage.

Each formal concept added is represented by his intent part. the

binary tree is used to Link a set of formal concepts input to a

consecutive memory address.

Algorithmus 3.3 Main Function

INPUT: BinaryContext(G,M,I)

OUTPUT: Lattice L

Step 1: Get Máximum and Infimum elements.

FormalConcept max = getMax(G,M,I)

FormalConcept min = getMin(G,M,I)

addConcept(L.max), addConcept(L.min)

STEP 2:.Get maximal Rectangles From min

MaxRectangles = Compute Maximal Rectangles with:

G/min . extent ,

min . intent , I
- Proj ,

max,

min,

L

This algorithm triggers the process for compute the concept lattice.

cept recursively. And, finally, we add this new element to the Lattice

Structure.

Algorithm 3.3 shows how the recursive process is triggered from

the maximal element of the lattice.

At this point, we can compute all the concepts given by the binary
context. But, as we seen before, C3(K) cardinality is bounded by
an exponential number. A search in 93 (K) exploit the algorithmic

complexity to exponential delay time. A simple way to avoid this

issue is to use a Binary Tree to store and recover all elements in23(K).

Basically, this represents binary tree serves as hash function. Basically,
this binary tree serves as hash function. The idea is to use the concept
of intent in their binary representation. Figure 7 represents a binary
tree in which the leaf nodes are linked to memory addresses which

is stored in the formal concepts. Using this structure we do a clean

and unbounded cardinality of ÍB(K) search, finding and adding any
intent in \M\ steps.
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Figure 8: Example of Processing
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This computations is done in a depth search way. All those concepts
are finally stored in a binary tree structure.

Using the formal context 2 presented in the first chapter. Figure
X shows the process and the order in which the elements are com

puted from the lattice. In this process, we can observe that the formal

concepts are not processed twice. In addition, the processing order

enables us to genérate the edges of the Hasse diagram without addi

tional computing steps. The process of generating the concept lattice

and Hasse diagram presented in this paper meets the basic rules to

be considered an expected polynomial algorithm. That is, there is no

exponential search or update the lattice. Although it is true, it is a

batch algorithm, we can prove a good efficiency and performance of
the algorithm.
Now that we have described the process of generating the concept

lattice, in the next section we will make an experimental analysis.

34 EXPERIMENTAL ANALYSIS.

As shown in Sergei O. Kuznetsov et. al. [56] many parameters are

involved in the performance and running time of an algorithm. For
our tests, it was considered, the number of objects, the number of
attributes, the density of the context and the worst case for contexts

ofM * M, also called diagonal context. Those parameters were tested
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independently, and four algorithms were selected to compare our al

gorithm performance. In experimental analysis charts our algorithm
is named Dendritical.

With the exception of the contexts for M *

M, the datasets were

taken from the website fcarepository, a collection of binary contexts
available to the general public.
The algorithms were implemented in java environment and the

tests were run on the same machine with the same O.S.

Figure 9: Growing objects number.

Bordat

Oajndritical

Nourrine

Godln

V-ütchc»

How grows execution time when the number of objects grows, from

1000 to 20000, with 100 attributes and 10% of density.

Is important to understand that each of these algorithms proved
here, has independent properties, which emphasizes: Valgrin, Nour

rine and Godin incremental processing, which increases the execution

time of these algorithmswith respect to the Bordat and our algorithm.

Figure 9 shows the execution time behavior for a formal context

with 10% density and 100 attributes. The number of objects is grow

ing from one thousand to twenty thousand, obviously, with more

objects the number of formal concepts grows when the density is con

stant. We can verify that Bordat algorithm has the better performance
when the number of objects grows.

Figure 10 shows how grows the time execution when the number of

attributes grows, all datasets for this test has a 10% density and 1000

objects. the number of attributes is growing from ten to one hundred,

and, the number of formal concepts is growing too. Here we can

notice that Bordat and Dendritical algorithms, are faster than Godin,

Nourrine and Valtchev algorithms because Bordat and Dendritical

algorithms are not incremental. We can also notice that Dendritical

execution time behavior is faster when the number of objects grows.

Figure 1 1 shows how grows the time execution when density be-

comes higher, all datasets has 1000 objects and 100 attributes and

obviously when the density grows the number of formal concepts

grows too. Density is mainly the percentage of attributes for all the

objects in the formal context. Here, we notice that when the density

grows Dendritical is closer and even faster than the other algorithms.

Figure 6 shows running time for diagonal contexts where I G I =

I M I and yields the complete lattice, it means 2^ formal concepts.

1000 2000 5000 10000 20000
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Figure 10: Growing attributes number

How grows execution time when the number of attributes grows

from 10 to ico with 1000 objects and 10% density case.

Figure 11 Growing density percentage
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How grows execution time when density percentage grows from 10

to 20 percent. Here, 1000 objects and 100 attributes case.

Figure 12: MxM worst case contexts

-Bordat
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Algorithms running diagonal contexts in which number of attributes
is growing from 8 to 20 attributes. This kind of context generates

2lMl formal concepts.
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Table 5: Execution time of the dendritical algorithm.

G M Density QT Ordering Dendritical Total

1000 36 17 722ms 2oms 49ms 79ims

1000 49 H 9241-ns 671T1S loims i092ms

1000 81 11 i853ms 1241TIS 20ims 2i78ms
G is the number of objects. M is the number of attributes. QT is the

time of query's over each formal concept process projection. Ordering
is the time in which elements are sorted. Dendritical is the time in

which dendritical classifier goes on. Finally, total is the running time.

In this kind of formal contexts we can see a clear running time supe-

riority of dendritical algorithm. We can also notice that Dendritical

algorithm mantains some stability with the execution time relation.

Table 3 shows how our implementation grows in each dendritical

algorithm step. As a note, this dendritical implementation handles

sets and binary representation for each stage. Removing sets struc

tures. In this case using a purely binary representation, we got a

better results.

3.5 CONCLUSIÓN.

In this Chapter, we presented an algorithm based on the idea ofMax

imal Rectangles, cardinality notion and LBNN theory. We have also

compared itwith some known algorithms for the construction of Con

cept Lattice.

From the tests presented in this paper, we can see that when the

number of objects grows, our algorithm time execution grows more

than Bordat or other methods, but it could be a better choose when

the density or the number of attributes is high. Also, the results

shows a good performance for the M x M contexts worst case.

Another interesting feature that will be studied in future work is

the possibility of parallelization of this LBNN based Algorithm. Sim

ilarly, using this algorithm idea a bottom-top approach (for intents)

must be performed.
It is also necessary a wider study of Dendritical Algorithm for lat

tice generation, and a comparisson with more and sofisticated new

algorithms for lattice construction. However,
in this paper we demón

strate that using our algorithm is feasible and scalable to large datsets.



SUPERVISED LEARNING USING FCA.

New ideas, theories, methodologies and engineering techniques have

emerged from the Machine Learning Theory. In this field, many al

gorithms related to self-organization and extrapolation of knowledge
have gained importance. Those algorithms, also named as algorithms
for classification and prediction, have been used for design systems
where the learning of the environment is the main objective. With the

learning idea in mind, individually algorithms have demonstrated

certain skills and more than acceptable results in industry and re

search field.

This chapter proposes a method for the use of FCA in supervised

learning. The goal of this method is based in the use of Lattice The

ory as driver between different threadholds, binary functions, con

ceptual scaling generating a descriptor and a classification rule. We

show how in this process is possible a clean and clear design. With

those goals, we will concéntrate on methods published in the ma

chine learning literature, as well as methods from other fields that

have had considerable impact on the machine learning literature. We

will also use as example a basic binary function over the Computer
Vision Environment, that can be used to serve a higher classification

purpose.

The main objective of this chapter is to show the proposed method

to classify, using categorical classifiers, threadholds or binary func

tions. Here, we prove that our generated classifier is feasible. Note

that the experiment show the reader how this method works, which

include the application of classify from binary threadholds.

This chapter is organized as follows: In the previous section 2.2 is

an overview of what is regarded by our method, in addition you will

find a basic review of learning models that concern us for this work.

It focuses especially in the categorical output learning.
Section 4.1 shows the definition on which the classifier presented

in this chapter works. Section 4.2 defines the Classification
Rule used

in this chapter. It defines a Downward/Upward membership func

tion over Máximum and Minimum Coverage. Section 4.3 defines in

equations terms the proposed classification rule. In this section, we

also define a simple extensión to solve the multiclass problem using

the classification rule previously presented and the formal context

partition notion. Section 4.4 defines in lattice
terms the proper binary

definition, which is useful for data revisión. Section 4.5 explain the

dataset in which our classifier will be analyzed. Next, in section 4.6

you will find the results of the proposed experiment together with

the observations. Finally, you will find, in section 4.7
conclusions and

remarks.
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4-1 BINARY CONTEXTS AND LATTICE BASED NEURAL NETWORK

As we have seen, Lattice Based Neural Network (LBNN) are a very

specific class of algorithms. They are characterized by the use
of rect

angles, the use of inhibitory and excitatory classification regions
and

the absence of local minima. After the introduction of
,
an increas

ing number of researchers have worked on both the algorithmic and

theoretical analysis of these systems, creating in just on a few years

what is effectively a new research direction in its own right, merg

ing concepts mainly from lattice theory. In practice, LBNN theory

can solve the problem of identifying to which category a new ob

servation belongs. Means, LBNN theory can solve the classification

problem. Where the term classifier refers, mainly, to the mathemati

cal function mapping from the input data to the categories. Known

LBNN works with real-value and discrete input terms. Those LBNN

models may be less effective when it comes to classification of binary

inputs.
There exists many other algorithms to solve classification problem.

This work is exclusively focused on classification for binary contexts

using LBNN theory. The advantage of working in a binary context

classification binary, is the ease of use of the binary input method

classification in the area of information fusion[refs]. In appendix sec

tion A.2, you will find a brief and a simple description of how our

classifier can work on information fusión terms.

As we defined previously, a binary context can be represented in

matrix terms. Moreover, each object or set of objects has its derived

attributes. Similarly, a set of attributes has its derived objects. With

these notions previously defined, the following section presents a

classification rule in a context as a training space. This competition
aims to define borders, using the máximum and the minimum cover

age, to allocate a new element to a class. Using the definition 1, in

which is specified a mapping / : X -. Y, we restrict X 6 IB", with

these ideas in mind, the following section defines a classification rule

for our work.

4.2 A FORMAL CLASSIFICATION RULE.

In this section, we will define a simple classification rule that can

be used in our supervised classifier model. The proposed classifica

tion rule uses notions of upward and downward closed sets, which

is represented in the next statement. Since we are not interested in

intersections, we will work over formal contexts. For practical pur
poses, we initially define the two class case. Later, we will define the

múltiple partition case.

Definition 14. This formal classification rule is a mapping from x C

M to our formal context class <p, and it is defined as follows :

Given x C M,x will be associated to <p if and only if

• xefD" and x Gj D+ where (f, 1) are defined in the M power
set domain.
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This rule is the main driver of our learning method, it is also neces

sary to complete the goal set in this chapter.
In order to build our classifier, using LBNN structures, we will

define a computation way for the minimum andmáximum coverage's
sets, associated with a binary context..
We will define algorithms to find the minimum and máximum cov

erage set in G. Even more, we will define a Lattice Based Neural Net

work structure that uses D^,D_p to training and extrapolation phases.

4.2.1 Computing Negative Dendrites Set.

In this particular case, we need the negative dendrite set that is present
in the formal context class description. The main idea over this struc

ture will be to discover all the elements in D~ which have the min

imum conditions to associate a set of attributes to the class <p. The

following algorithm, Algorithm 4.1, must not be confused with the

one presented in Chapter 3. First, This algorithm classifies positive
when the evaluated member is in the upward, computing from the

minimum to máximum cardinality.
Thus, we will process each element g € G from lower to the higher

derivative cardinality. The final output will be the set D~ We also

will construct a LBNN P which will be used for the extrapolation

phase.
In this LBNN based model, a set of binary patterns are represented

by X, and it is used as a training set. Thus, the binary representation

of a formal context, is itself a set of patterns, inwhich the derivative of

each object is an observation x € G We can define x' = (x\, ..., xn) €

B" as a binary vector. A set of n input neurons Ni,...,N„ is directly

associated with the x input. In order to compute a output neuron Oj

valué, we compute each dendrite individually. Formally, in this case,

kth dendrite computation is given by:

i(*r = A (*<) w

iet(k)

All the valúes r'k(x)~ are passed to the neuron cell body. The com

putation valué of the output neuron M¡, for negative dendrites is

given by the Equation 5. And it computes all the negative dendrites

valúes.

t/(x)- = \/t/(x)- (5)

Then, first step is to sort G' by cardinality from lower to higher

cardinality. Second step will be add all the elements with lower cardi

nality and without repetitions as
dendrites of our LBNN. Algorithm

4.1 is in charge to add individually
minimum elements to the LBNN

structure. Basically, Algorithm 4.1 receives an x C M, and grows a

new dendrite. Therefore, for each attribute m¡ € M, if m
■

€ x, it grows

an axonal branch from the input neuron N, to the new dendrite.

The third step will be process,
the remaining sorted elements. Those

elements must be evaluated in the LBNN P. Equation 5 represent the
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Algorithmus 4.1 Add Negative Dendrite

INPUT: NeuralNetwork P, Pattern x

OUTPUT: Updated P

// add a new dendrite

Dendrite k addNegativeDendrite(P)

FOR EACH element in M

IF getValue(element)
= 1

i = getPosition(element)
addAxonalBrach(k.i)

END

END

END

This Algorithm shows how a new Binary Pattern x is added to a

Neural Network P. This algorithm is used for the computation of

Minimum Coverage Set or Negative Dendrite Set.

Algorithmus 4.2 Computing Mínimum Coverage Set.

INPUT /> Binary Context (G,M,I)

OUTPUT an LBNN Structure

STEP 1:

Sort G' by lower to higher Cardinality

STEP 2:

Add to LBNN, as negative dendrite, all slements with lower

cardinality and no repetition in G'

STEP 3:

Each remaining element is evaluated for D- set.

If evaluation is 0 then add. as negative dendrite,

element to LBNN.
.

evaluation function. This evaluation together with the cardinality no

tion are based on the claim 2. Then, in this training phase, r>(x)~ = 0

means that x € D~ aAnd finally, Algorithm 4.1 adds processed ele

ments with tÍ(x)~ = 0 to the LBNN structure. Algorithm 4.2 shows

this process.

So far we have obtained the minimum dendrites, to declare that an

object is associated with a class. We can see from the output given by
the negative output for neuron ;', that it is needed that x be a superset
of only one element in D~ to say that the attribute set x satisfies the

minimum coverage of the context K.

Remark 1. The evaluation function previously defined, together with

the set D~
, gives us an upward closed set membership function on

the power set lattice ofM.

4.2.2 Computing Positive Dendrites Set.

Using the same notions of the last subsection, now we will define a

LBNN structure in order to find all the Máximum Coverage Set, D+

Algorithm 4.3 adds a new positive dendrite to our LBNN. In order to

complete the algorithm, we must find all the maximal elements and
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Algorithmus 4.3 Add Positive Dendrite

INPUT: NeuralNetwork P.Pattern x

OUTPUT Updated P

// add a new dendrite

Dendrite k =

addPositiveDendrite(P)
FOR EACH element in x

IF getValue(element) = e

i = getPosi t ion ( element)

addAxonalBrach(k.i)
END

END

END

■Axonal branches grows from positions with o valué.

add them to the LBNN model. First step, showed in Algorithm 4.2,
is to define a function in which those elements are computed. This
time, we will process elements from higher to lower cardinality. This

computation is based in the Claim 3.

In this case, the kth positive dendrite state for the ;' output neuron

computation is given by:

4(*)+ = A (0*0 (6)

The difference with the use of the D+ set, given by the Dendritical

Algorithm in 3, is: Meanwhile Dendritical Algorithm classifies posi
tive for elements in which x D d for all d € D+ This one, classifies

positive for elements in which x C d for some d € D+.

As you can see, one of the ways to maintain the consistency of

the output, is turning the x, valúes. The reason for this is to assess

the closed downward setmembership having a positive output if the

membership function is satisfied.

Again, all the valúes r'k(x)+ are passed to the neuron cell body. The
computation valué of the output neuron My is given by;

T>(x)+ = \¡T>(x)
+

(7)

The trick is the same presented in the negative dendrites. Vector

x is a subset of a member of a ka, member of D+ if and only if each

Xj
= 0 for all i € I{k), with I(k) growing from o's. It means, x does

not has attributes that the ka, member of D+does not has. So, it is

only necessary satisfies one ka, element to make positive the Equa
tion 7. It is enough to be considered as an element that does not

exceed themáximum coverage set. It is very important to see that the

output of the classifier or binary function, generated in the training

stage described above, is equivalent to these statements. The output
is tÍ(x)+ = 1, when the element x is member of the class and zero

otherwise. Algorithm 4.4 shows how to compute the máximum cov

erage set for this case.
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Algorithm 4.4 Computing Máximum Coverage Set

INPUT A Binary Context (G,M,I)

OUTPUT an LBNN Structure

STEP

Sort

1:

G' by higher to lower Cardinality

STEP

Add,

2:

as

in

positive dendrites

G' to LBNN.

, all elements with máximum cardinality

STEP

Each

3:

remaining element is

If evaluation is 0

svaluated.

then add element to LBNN.

Here, our result is an LBNN Structure with a downward

membership function and D+ coverage.

Remark 2. This evaluation function, gives us an downward closed set

membership function, defined on the power set lattice of M, for our

formal context.

4.3 EXTRAPOLATION PHASE AND MULTI-CLASS.

The final computation at extrapolation phase for the js_ neuron is the

minimum A of the máximum and minimum condition set evaluation.

TÍ(X)=TÍ(X)-/\T>(X)+ (8)

This function represents an intersection on those membership func

tions, and it matches with the formal classification rule previously
defined. Next, we will see, a simple way to get a multiclass classifier.

In order to simplify the multiclass versión of this algorithm. We

will define Context Partitions. This definition is used to multi-class

classification over the same context.

Definition 15. Let K
= (G,M, I) be a formal context. An element

(p G Y is called a class and Y is the set of classes. Let each g € G be a

member of one class <p . Gq is the set over G_p derivatives, of elements

associated to the class <f> It is represented by the context partition

Kf.

Table 6 shows a formal context particioned in classes.
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Table 6: Formal context with Ifl classes.

Class Sample fx ■ • /-i A

Olí 1 0 1

<h
O1.2 0 1 1

Oi.|G*| 0 1 0

O2.1 0 1 0

•Vi
O22 1 0 0

P2. |G^T, | 1 0 1

This table shows, how a set of classes |Y| is separating a binary con
text. Each partition has |G^|objects. Each Object 0¡_k belongs to the
partition / and is the element k of that partition.

Thus, is easy to see that the context can be processed by the pro
posed partition. Achieving a separation of |Y| classes.
Next section deals with an attribute reduction and a levelwise ap

proximation on the reduction of rules.

44 HANDLING ATTRIBUTES.

The smaller extent of all element of 9L>(K) is the set of objects that

share all features of M. So it is not generally the empty set 0. Ac

tually, the formal definition of a context that is given above is too

general and may include unnecessary redundancies. It is possible to

cancel non discriminant attributes or process them early, which are

useless for class separation. The following definition, proper context,

is the main definition of this possible reduction of rules.

Definition 16. Let K=(G,M,I) be a context. If (0,M) and (G,0) are

concepts, then the context K is said proper.

If the context is not proper, at least one attribute is present in all

objects, or one attribute is not related with any object or, maybe si

multaneously, at least one objects has all or none attributes. Thus, the

set of attributes or objects must be studied.

If an attribute m is present in all object on the learning set, it is not

a discriminative attribute. This does not mean that m is not useful,

cause maybe it could be used to discrimínate from external contexts.

But if it is not the case, either attribute m must be removed. At the

other side, it could happen that instead (0, tn) the context contains

another (0, m) with m C M, in this case it means that for some valúes,

in this case M\m, are not related to any object.

It is important to know that if one object of any class has all at

tributes then classification will not work properly, and the set of at

tributes has to be enlarged.
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If the context is proper, (0, M) is the smaller concept, and (G,0) is

the greater concept, then the context has not an unnecesary attributes

for classification. At this step, it is important to considérate this an

notation.

To understand how to use these statements and annotations to try

to reduce the numbers of dendrites, we will define an abstract exam

ple.

4.4.1 Level wise attribute handling.

At this point, assume that both D+ and D~, have not been computed
for each class. Our purpose will be through an abstract example,

using the previously defined statement, proper context, reduce the

attributes for computation of those sets. Our goal is to handle the

levéis of information and try to reduce the number of dendrites in

our classification. a^s we are working on the intentional part of the

formal concept, we will work only with the attributes set M.

Proposition 1. Let the greater concept ofan a context Kbe: (G,m), where

m c M. As explained above, this means that the set of attributes m is

related to all objects that exist in ourformal context.

We can define a Formal Context Level wise Negative Dendrite, in

this case m is the training pattern. After that, we can ignore all the

attributes that belong to m when we compute the dendrites for the

classes.

In a dual way we can reduce the set of positive dendrites. So, we

can work with the formal context infimum, as follows.

Proposition 2. Let our smaller concept ofan a context Kbe: (0, m), where

m C M. In this case, the difference c = M\m, tells us that the set cf
attributes c S M, is not related to any object in the formal context.

Here, we can define a Formal Context Level wise Positive Dendrite,

with the attributes set c as a training pattern. After that we can ignore
all the attributes that belong to c when we compute the dendrites for

the classes.

Once we have calculated the pair of dendrites for the formal context

level wise, we can also define dendrites for Classes Partitions Level

wise. In the following proposition, which works with formal context
class partitions, we define also a infimum and a supremum elements.

We will work on those elements to genérate a reduction in the number

of attributes for both positive and negative dendrites.

Proposition 3. Let <p e Y be a class. Let (G^,m), with m C Mbe the

greaterformal concept ofthe formal class context for <p. Here, m is the set of
common attributes for all the objects that belongs to the class <p.

For this case, we define a Class Level wise Negative Dendrite, with
ni as a training pattern. Again, attributes in m can be ignored when
we compute D+ and D~ for the class tp. Next, we defina a Class Level
wise Positive dendrite.
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Figure 13: Level wise attributes computation.
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Processing from the rigth to the left. First compute the Context Level
wise dendrite, if that test is passed, compute the class level wise

dendrites. Last, if tge Levelwise condition are satisfied, then the set

D+ and D~ computation will be done.

Proposition 4. Let <p € Y be a class. Let (0, m) be the smaller concept of
theformal class context. In this case, the differencec = M\m, tells us that
the set (rfattributes c € M , is not related to any object in the class <p.

Finally, we add a Class Level wise Positive Dendrite with c as a

training pattern. We will, also, ignore those c attributes at D+, D—

computation. Figure X shows how to process dendrites to get the

final classifier computation.
Reduce the number of attributes or grouping them by level gives us

a better and a cleaner set of dendrites to work with. The main idea of

this, is get a reduced computation of the class membership functions.

This was achieved with the notion of supreme and infimum, both

context and class level. This was achieved with the notion of supreme

and infimum, both context and class level. Next, we will define a

dataset to work with the experimental analysis.

4.5 COMPUTER VISION DATASET: REGIONS OF INTEREST.

. In this dataset objects were selected with different shapes and colors.

The number of classes that depend on the shape are three (Cone,

Sphere, Square). While the color-dependent classes are five (Green,

Purple, Orange, Gray, Black). Figure 15 shows objects used for this

example.
We used a SLLP for color recognition. The image segmentation

was carried out with the purpose of simplifying the dataset creation
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Figure 14: Image Segmentation Learning Process.

The process of find S.L.L.P weights for image segmentation.

Figure 15: Objects Examples

Cone, Box and Sphere are shapes. Gray, Purple, Green and Orange
are Colours.

task. Two tasks were considered. Color segmentation and shape
detection. The first task was carried out using a set of images for

the training step. In each image, using the algorithm of Canny; we

detected regions of interest. For each región of interest, manually, we

classified the color. Finally, a file containing the characteristics of the

región of interest was generated. Figure 14 is a diagram representing
this process.

The use of a detector of edges and regions of interest obtained is a

first step for image segmentation. We manually classify the colors in
order to reduce the cost of obtaining the training samples. Once the

samples were collected and trained, we were focused on selecting the
characteristics of features used.

In the next chapter we will se the proposed features for the shape
classification task. At this point, our work is focused on generating,
based on this segmentation algorithm, a set of data, represented by
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Sub-Figure A: is an arbitrary image from the webcam taken in the

enviroment. Sub-Figure B represents the image segmentation using
an SLLP, in which, red bounded región of interest is classified as
Cone by the supervisor. Sub-Figure C represents that región scaled
and a croped for feature extraction. In this case we have 25 features
it means, each section in the cropped scaled sample is qualified

using a threadhold.

the regions of interest for shapes. The next part focused on getting
the attributes, threadhold takes several crops of that scaled región
of interest. Thus, this dataset is justified as the elements generated
by the segmentation algorithm presented. Which is noisy and looks

classify shapes and contours.

4.6 EXPERIMENTAL ANALYSIS.

Once the color system were specified, the next stage is the shape
detection. Here, we propose a set of features and a test bed for the

experimental analysis. This stage was performed using an LBBN,

specifically the SLLP-Merge algorithm. As in image segmentation

training, we use an contour detector, on the segmented image. Each

región of interest was also classified manually. Figure 16 shows the

cuttings of an area of interest and illustrates the ability to get features

using individual cropped regions.
With the purpose of challenging the ability of our classifier, we

use very simple features and a noisy camera. As we have seen be

fore, these features are mainly a dynamic threshold over croped re

gions. With dynamic we mean a threadhold based on the image den

sity, given preference to find discriminative valúes. Nothing stop the

reader to use other kinds of features. In Appendix A.3, we present

some reviewed features.

Once, all the feature extraction process has finished, we have a file

containing rows of features associated to classes. This file is used to

train our classifier. Figure 17 shows the learning process of shapes

using the SLLP for image segmentation. In this case, the final result

is a shape classifier, using the model proposed in the previous section.

Even though, when this process some noise features
are produced.
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Figure 17: Shapes Learning Process

Process of construction for shapes classifier.

Table 7: Number of Dendrites

CUTS iD-t-rl* \Diox\ PíoJ X^Conel \®Sphere\ \DSpliere\ Total

5x5 4 17 54 31 12 43 195

6x6 9 32 95 50 30 35 215

7x7 15 50 129 85 31 49 248

8x8 19 84 176 108 39 52 296
Number of Positive and Negative dendrite per class.

One concern is the system ability to add new color classes or even,

new shapes. It is possible add new colors and extrapólate known

shapes, using those new colors and viceversa. You can also add new

shapes and extrapólate them with the known colors. Thus, you can

individuallymodify our S.L.L.P., adding or removing output neurons,
or modify, even,. the shape classifier.

For the training set was used: 500 samples of cones, 500 samples of

sphere, 500 samples of boxes and 500 unknown elements. For each

test set 700 samples were taken. Those samples represent objects in
various different locations. The next step was reduce the number

of attributes and sepárate all dendrites in the levelwise system pre
sented below. The discriminative attributes for the class for a training
on 5x5 cuts is bounded by 25. All this information is presented in

table 7. This table shows the ability for good extrapolation of the

proposed algorithm.
Next step was to find the percentage of the classifier performance.

Experimental Analysis over this classifier were simple and classical.

We calculated misclassified, false positives and correct classifications.
This on a 10-fold cross validation test on binary classes[refs...]. In this
k-fold cross-validation, our binary context is randomly partitioned
into k equal size subsamples. One partition is used as testing data,
meanwhile the other k-i partitions are used as a training set. This

process is repeated k times, in our case, it is ten partitions and ten

times. The main advantage of k-fold cross validation is that it works
over repeated random sub-sampling and it use all observations for

training exactly k-i times, and each observation is used for validation
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Table 8: Classification Rate.

Class Missclassified% False Positive% Accuracy%

Cone 0.0421 0.0900 0.9442

Sphere 0.0280 0.0750 0.9585

Box 0.0420 0.1200 0.8785

64 features over scaled regions of interest with size 40x40

Table 9: Comparing classifiers.

Class Missclassified False Positive% Accuracy%

Dendritical 0.0240 0.0850 0.9585

SVM 0.1600 0.0280 0.9057

"Linear Classifier 0.4250 0.448 o.5585

100 features for cone class scaled regions of interest with size 40x40.

exactly once. Table 8 shows the classification performance results in

our experimental analysis framework.

As we said those results consider several conditions and even in

complete patterns, we discovered at this point a good performance

over our classifier. Even more, it shows that is a good method for

shape recognition.
This shows the system's response to an instantiation, in which fig

ures were sought in the environment. The result of the classification

is showed from 25 to 64 features, given the simplicity of the problem.

The study of features for classification are many. We proposed a sim

ple dataset with equally simple features.
There exists a lot of studies

of image features for classification. We proposed a simple dataset

with equally simple features. Most of the time, features modeled in a

computer visión system depend on the specific addressed problems.

In this case, we only took the classification of shapes to genérate a

dataset. However, in Appendix A.3, you will find a brief on features

images.
Our final experiment is to compare our classifier performance

with

other algorithms for classification.
At this point, we chose two key

classifiers to make the comparison. The former, a discriminator, to

show the non-linear separability nature of our dataset. The second,

a Support Vector Machine using a radial basis function for classifi

cation. These two classifiers are considered sufficient
to demónstrate

the quaUty of our classifier
in these terms. Table 9 shows the obtained

experimental results.

One significant difference is that for this test we used 100 crops,

in images of 30x30. Furthermore, single cone dataset was used to

execute the operation, using the same system
of k-fold crossover, with

k = 10.

In the next and final section of this chapter, you will find the con

clusions.
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4-7 CONCLUSIÓN

Machine learning is a growing area. We demónstrate in this chapter,
the possibility of using the lattice theory in this context. The ability
on algorithm to learn, to discriminate objects in specific, helps us to

understand the environment. Similarly, based on the same precepts

of the theory of dendritical neural networks. The experimental results

were collected and explained in the previous section. They showed

an excellent performance on a known problem.

Recognition of múltiple classes in computer visión. It is not a

trivial problem and there are many methods to be compared with

ours. However, the scope of our work, achieved through an example
demonstrates the feasibility and capability of our classification rule.

This first attempt, from our point of view successful, links the ma

chine learning theory with FCA. Addition ofmore and better features

can be tested in the model. The purpose of this chapter, which was to

show the reader through an example, the method we developed for

classification. Understanding topological operations in lattices a good
start to continué the theme and further develop more comprehensive

improvements and ideas.

We have defined the basic theoretical framework for this disserta

tion. We showed several ways on how theory of lattices can be used

as a system for design models in pattern recognition and machine

learning. In section [secExperimental-Analysis.], which serves as a

test bed, we shown how to design a classifier for shape recognition
with a simple cam, combining several binary functions over the image.
Furthermore, this design allows structural organization: the detection
of features needed for an output that specializes the description of the

object in each layer.
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APPENDIX A

A.l FCA ALTERNATIVE NOTATION.

This Appendix Section introduces basic notions of formal concept

analysis, among which are the fundamental notions of a formal con

text, formal concept, and concept lattice. The chapter uses an alter-

native notation which represents the same definitions given at the

Chapter i.

Definition 17. (Formal Context). A formal context is a triplet (X, Y, /)
where X and Y are non-empty sets and / is a binary relation between

X and Y
, i.e., / C X x Y.

Like its definition used in this thesis, this, first, altemative defini

tion of the definition 2, reflects the concept of a formal context.

Definition 18. (Concept-forming Operators). For a formal context

(X,Y,í), operators t- 2X -> 2y and |: 2Y -+ 2X are defined for every

ACXandBCYby:
A t= y 6 Y\foreach x € A : (x,y) e /,

B \.= x e X\foreachy € B : (x,y) £ /

Every formal context induces a pair of operators, so-called concept-

forming operators. Those concept-forming operators are equivalent
to galois connector from the Galois Connectors definition 3.

Definition 19. (Formal Concept). A formal concept in (X,Y,I) is a

pair (A,B) of A C X and B C Y such that A f= B and B 4.= A.

This definition, equivalent to definition 4 says mathematically, that

an (A, B) is a formal concept if and only if (A, B)is a fixpoint of the

pair (t/4-) of concept-forming operators.

Definition 20. (Subconcept-superconcept Ordering). For formal con

cepts (A,,Bi) and (A2,B2) of (X, Y, I), put (AVBX) < (A2,B2) iff

Ai C A2(iff B2 C Bi).

the above definition together with the following one is an equiva

lent to the definition 6 of chapter 1.

Definition 21. (Concept Lattice). Denoted by <8(X, Y, /) the collection

of all formal concepts of (X, Y, I), ordered by definiton is named the

Concept Lattice.20.

As the reader wül see, the differences between these two notations

are rninimal, and those differences relapse basically in the symbols

and the style used to define the same set of operations, definitions

and properties. Our purpose was to simplify
and make pleasant the

reading of this thesis. In that sense any
notation is fine to reach that

goal. However, the combined notations,
or not maintain a prewritten

•*;■■;
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order usually causes complications for the reader. The latter is the

main reason for decide to skip this notation and use only the one

presented in the first chapter.

A.2 INFORMATION FUSIÓN.

Although the idea of fusión of information is very intuitive. There

are several definitions of this notion. Many definitions have been pro

posed [refs], with some more general or more abstract and inclusive

than others have been defined in some specific fields of study. A more

general and detailed work on information fusión could be found at

Andrés Mendezfrefs]. One of the more general and accepted defini

tion was given by Waldenfrefs] is:

Definition 22. "Information fusión is a formal framework in which

are expressed means and tools for the alliance of data originating
from different sources. It aims at obtaining information of greater

quality ; the exact definition of "greater quality" will depend upon

the application."
The study of information fusión is mainly divided into three cate

gories [refs]:

1. Data level fusión,which fuses data acquired frommúltiple sources,
such as images acquired in different spectral bands, directly.

2. Feature level fusión, which combines features calculated on data

acquired from múltiple sources.

3. Decisión level fusión, which combines decisión statistics and

confidence base information derived from algorithms applied
to múltiple sources.

In this appendix section we works with the second and the third case.

Next, we will define useful notions to plot the outputs of several clas
sifiers. Even when we are talking about classifiers. It is remarkable,
that this idea could be extended to fuzzy and binary threadholds.

Last one, presented at chapter 4.

Definition 23. Concept Lattice in Machine Learning: Let Y be a set

of categorical output spaces such that Y := Yi,..., Y„, in which, each

y¡ € Y* is a categorical label. By the same way, Let Z be a set of

categorical classificators such that Z := Z\, ..., Z„ each one handling a

map function from Z, -> Y¿, and X := {Xj, ..., X^,} is a binary vector

output for the classifier Z-, over our set of objects to conceptulize,
those vectors will serve as our formal context K. We can note that m'

is the cardinality of Y*.

Last definition allows us to formally identify elements that form
the basis of our framework intended to be applied to conceptualize
or fuse the output of a set of classifiers. In the table 10, is illustrated
in the abstract way, how different classifiers, for different or even the
same features, can genérate the set of attributes M, feeding binary
contexts.
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Classifier\ Classifier2 Classifier„

G/M Vl.t ... *l.m' n.i *2,m*- Y«.i Y„_m"

O, ...

... ...

°|q

Table 10: A Set of n classifiers feeding M set of K

This formal context, as reviewed in chapter 3, generates a Concept
Lattice representing all clusters present in the context. Section 4.2

defines a formal classification rule for this kind of binary formal con
texts.

A.3 IMAGE FEATURES .

One of the first publications on image features appeared after the ob

servation on the importance of corners and junctions in visual recog-
nition[refsj. Since then, a large number of algorithms and techniques
have been proposed to extract and detect points or regions of inter

est in an image. Interest points are the preferred strategy for solv

ing a wide variety of problems, from wide baseline matching and

the recognition of specific objects to the recognition of object classes.

Additionally, similar ideas have been appUed to robot navigation, tex

ture recognition, scene classification, visual data mining, and sym

metry detection, image segmentation to ñame just a few appUcation
domains. In this appendix section we present some known character

istics on those features.

A characteristic feature of the type are given by the detector re

sponse obtained. The main branches, with respect to the output type

are:

Edges
-

Edges based characteristics works with boundaries. This

kind of response is frequently described as a point in the imagewhich

have a strong gradient magnitude.
Interest point

-

Mainly, those interest point are defined on mea

surements of one point with their neighboorhood. They are a two di

mensión features, and the features detector of this kind, are expected

to get descriptors of the image.
Blobs - An blob output, is a complementary image descriptor.

In

this kind of features, several regions of the images are grouped to get

those áreas as a feature.

Othermeasures to the features are given by the quaUty response of

a kind of feature to üghting, scale, rotation variation.
The following

lines describes those kind of variations and how they are defined by

an specific goal.

Quality
- the quaüty of detected features is a measurement on the

stabiUty of the detected points or región of interest, given similar

images. So, those features must to
have a good characteristic with the
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good quality with a good level of consistency. They are able to obtain

information that will sepárate the classes that are being sought.

Lighting invariant Is an special characteristic on some features.

Features detector are expected to detect the same features even when

the light is variant. Sight bright and contrast fluctuations will not

affect significantly on the feature detection.

Scale invariant This is, in this case, features detection are ex

pected to detect the same features on a class even when the scale

is large or tiny. A robust detection is critical for processing classes

recognition in computer visión.

Rotation invariant - The position or rotation of one object is con

sidered in this kind of features. The objective is detect the common

features when the image is rotated.

Feature confidence - The confidence of one feature is an informa

tion about the certainty about the valué of some kind of feature.

An important problem in pattern analysis is the automatic rec- og-
nition of an object in a scene regardless of its position, size, and ori

entation. They arise in a variety of situations such as inspection and

packaging of manufactured parts. Features on image literature are

rich and it is growing fast. In table 11 we present some known fea

tures.
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Table 11: Features

Feature Output Invariant Observation

FAST Corners None

First feature based on

Accelerated Segment

Test.

Harris operator Corners Gray

Works over local

neighborhod using image

derivatives.

Canny-edges
Interest

point
Gray

Gives a good edge

descriptor for several

objects on the image.

Sobel
Interest

point
Gray

An discrete differentiation

operator to detect edges

of an image.

LoG Blob Scale
The image is is convolved

by a Gaussian kernel.

DoG Blob
Gray

Scale

Involves the subtraction of

one transformed versión of an

original grayscale with other

image less transformed.

ZernikeMoments Interest point Rotation

Use the notion of regular

orthogonal moments to handle

rotation variation.

Some features studies example, each one with particular properties

and an own mathematical framework.



BIBLIOGRAPHY

[i] Rakesh Agrawal. Fast algorithms for mining association rules

in large databases. Proceedings ofthe ioth International Conference
on Very Large Data Bases,, 1:487-499, 1994. (Cited on page 19.)

[2] T; Swami A. Agrawal, R.; Imielinski. Mining association rules

between sets of items in large databases. Proceedings ofthe 1993

ACM SIGMOD International Conference on Management of Data,

1:207, (1993)* (Cited on page 19.)

[3] Mario Aldape-Perez, CorneUo Yanez-Marquez, Osear

Camacho-Nieto, and Amadeo J.Arguelles-Cruz. .An as

sociative memory approach to medical decisión sup

port systems. Comput. Methods Prog. Biomed., 106(3):

287-307, 2012. doi: io.ioi6/j.cmpb.20ii.05.oo2. URL

http://dx.doi.Org/lO.lO16/j.cmpb.2Oll.Q5.002. (Cited on

pages 18 and 21.)

[4] Simón Andrews. In-Close, a Fast Algorithm for Computing
Formal Concepts. In the Seventeenth International Conference on

Conceptual Structures, 2009. (Cited on page 19.)

[5] M.A. Arbib. The Handbook ofBrain Theory and Neural Networks:

Second Edition. Bradford Books. MIT Press, 2002. (Cited on

pages 9 and 21.)

[6] H. A. Priestley B. A. Davey. Introduction to lattices and orders.

Press Sindícate H. Cambridge University, 2nd edition, 2002.

(Cited on pages 3 and 27.)

[7] A. Barmpoutis and G. X. Ritter. Orthonormal Basis Latice Neu

ralNetworks. In Computational Intelligence Based on LatticeTheory,
V. Kaburlasos and G. X. Ritter, 1:43-56, Springer-Verlag, Heidel

berg, Germany, 2007. (Cited on pages 21, 22, and 27.)

[8] R. Belohlavek and Ghassan Beydoun. Formal Concept Analysis
With Background Knowledge: Attribute Priorities. IEEE Trans

actions on Systems, Man, and Cybernetics, Part C: Applications and

Reviews, 5465:109-117, 2009. (Cited on page 18.)

[9] Radim Belohlavek and Vilem Vychodil. Formal concept analysis
with background knowledge: attribute priorities. Trans. Sys.
Man Cyber Part C, 39(4):399~409, 2009. (Cited on page 18.)

[10] Radim Belohlavek, Bernard De Baets, Jan Outrata, and Vilem

Vychodil. Inducing decisión trees via concept lattices. (Cited

on page 20.)

[11] James O. Berger. Bayesian Analysis: A Look at Today and

Thoughts of Tomorrow. journal of the American Statistical As

sociation, 95(452):i2Ó9
- 1276, 2000. (Cited on pages 9 and 20.)



62 BIBLIOGRAPHY

[12] Ghassan Beydoun. Formal concept analysis for an e-learning
se

mantic web. Expert Syst. Appl, 36(8):i0952-i096i, 2009. (Cited

on page 19.)

[13] Ghassan Beydoun. Using Formal Concept Analysis towards

Cooperative E-Learning. In Debbie Richards and Byeong-Ho

Kang, editors, KnowledgeAcquisition: Approaches, Algorithms and

Applications, volume 5465 of Lecture Notes in Computer Science,

pages 109-117. Springer Berlin Heidelberg, 2009. (Cited on

page 19.)

[14] Garrett. Birkhoff. Lattice Theory, Volumen 25, volume 25 (jrd

ed). American Mathematical Society Colloquium PubUcations.,

1995. (Cited on pages 3, 4, and 27.)

[15] J. Blanck. Domain representations of topological spaces. Theo

retical Computer Science., 247:229777255, 2000. (Cited on page 3.)

[16] J. P. Bordat. Calcul pratique du treiUis de Galois d une corre-

spondance. Informatiques et Sciences Humaines, 96:31-47, 1986.

(Cited on pages 3 and 16.)

[17] Martin D. Buhmann and M. D. Buhmann. Radial Basis Functions.

Cambridge University Press, New York, NY, USA, 2003. ISBN

052Í633389. (Cited on page 9.)

[18] Douglas Burdick, Manuel Calimlim, Jason Flannick, Johannes

Gehrke, and Tomi Yiu. MAFIA: A Maximal Frequent Itemset

Algorithm. IEEE Trans. Knowl. Data Eng., I7(n):i490-i504, 2005.

(Cited on page 19.)

[19] C. Carpineto and G. Romano. An order-theoretic approach to

conceptual clustering. Proc. of the íoth Conf. on Mach. Learning.,

10:33-40, 1993. (Cited on pages 15 and 17.)

[20] C. Carpineto and G. Romano. Information retrieval through hy
brid navigation of lattice representations. International Journal of

Human-Computer Studies,, 45:553-578., 1996. (Cited on page 17.)

[21] Michel Chein. Algorithme de recherche des sous-matrices pre
mieres d une matrice. Bull. Math. Soc. Sc. Math. de Roumanie, 1

(i3):2i-25, 1969. (Cited on page 15.)

[22] St?phanie Chollet, Vincent Lestideau, PhiÜppe Lalanda, Yoann

Maurel, Pierre Colomb, and OUvier Raynaud. Building FCA-

Based Decisión Trees for the Selection of Heterogeneous Ser

vices. In Hans-Arno Jacobsen, Yang Wang, and Patrick Hung,
editors, IEEE SCC, pages 616-623. IEEE, 2011. (Cited on

page 20.)

[23] Richard Colé and Peter Becker. Navigation spaces for the

conceptual analysis of software structure. In Proceedings of
the Third international conference on Formal Concept Analysis,



BIBLIOGRAPHY 63

ICFCA'05, pages 113-128, Berlin, Heidelberg, 2005. Springer-
Verlag. doi: io.ioo7/978-3-540-32262-7_8. URL http://dx.
doi. org/10. 1607/978-3-540-32262-7,8. (Cited on pages 18

and 20.)

[24] Tilley T. Ducrou J. R. Belohlavek V. Snasel Colé, R. Conceptual
Exploration of Software Structure: A Collection of Examples.
In CLA, pages 135-148, 2005. (Cited on pages 18 and 20.)

[25] Nello Cristianini and John Shawe-Taylor. An Introduction to

Support Vector Machines and Other Kernel-based LearningMethods.

Cambridge University Press, 1 edition, March 2000. (Cited on

page 9.)

[26] Hal Daumé, III and Daniel Marcu. Domain adaptation for sta

tistical classifiers. /. Artif. Int. Res., 26(i):ioi-i26, May 2006.

ISSN 1076-9757. URL http://dl.acm.org/citation.cfm?id=

1622559. 1622562. (Cited on page 9.)

[27] Alexandre Delteil, Catherine Faron, and Rose Dieng. Building

Concept Lattices by Learning Concepts from RDF Graphs An-

notating Web Documents. In Uta Priss, Dan Corbett, and Galia

Angelova, editors, Conceptual Structures: Integration and Inter

faces, volume 2393 of Lecture Notes in Computer Science, pages

191-204. Springer Berlin Heidelberg, 2002. (Cited on page 17.)

[28] Guozhu Dong, Chunyu Jiang, Jian Pei, Jinyan Li, and Lim-

soon Wong. Mining succinct systems of minimal generators

of formal concepts. fn Proceedings of the íoth international

conference on Datábase Systems for Advanced Applications, DAS-

FAA'05, pages 175-187, Berlin, Heidelberg, 2005. Springer-

Verlag. doi: io.ioo7/ii4o8o79_i7. URL http://dx.doi.org/

10.1007/11408079-17. (Cited on page 18.)

[29] P. E.; Stork D. H. Duda, R. O.; Hart. Pattern Classification. Wiley

Interscience, 2000. (Cited on page 8.)

[30] Koschke R. Simón D. Eisenbarth, T. Locating Features in Source

Code. IEEE Transactions on software engineering., Vol. 29.(3):2io-

224, March. 2003. (Cited on page 18.)

[31] Martin Farach-Colton and Yang Huang. A Linear Delay Algo

rithm for Building Concept Lattices. lh Paolo Ferragina and

GadM. Landau, editors, Combinatorial Pattern Matching, vol

ume 5029 of Lecture Notes in Computer Science, pages 204-216.

Springer Berlin Heidelberg, 2008. (Cited
on page 17.)

[32] R. A. Fisher. The use of múltiple measurements in taxonomic

problems. Annals of Eugenics, 7(2):i79-i88, 1936. (Cited on

page 9.)

[33] Boris Galitsky, Boris Kovalerchuk, and Sergei O. Kuznetsov.

Learning Common Outcomes of Communicative Actions Rep

resented by Labeled Graphs. In ICCS, pages 387-400, 2007.

(Cited on page 20.)



64 BIBLIOGRAPHY

[34] A. Galy, R. Medina, L. Nourine, and Y. Renaud. Uncovering and

Reducing Hidden Combinatorics in Guigues-Duquenne Bases.

In Formal Concept Analysis, pages 235-248. Springer Berlin /

Heidelberg, 2005. (Cited on page 19.)

[35] Bernhard Ganter. Two basic algorithms in concept analysis.
In

Proceedings of the 8th international conference on Formal Concept

Analysis, ICFCA-10, pages 312.-^0, Berlin, Heidelberg,
2010.

Springer-Verlag. (Cited on page 16.)

[36] Bernhard Ganter and SergeiO. Kuznetsov. Hypotheses
and Ver

sión Spaces. In Bernhard Ganter, Aldo Moor, and Wilfried

Lex, editors, Conceptual Structures for Knowledge Creation and

Communication, volume 2746 of Lecture Notes in Computer Sci

ence, pages 83-95. Springer Berlin Heidelberg, 2003. doi: 10.

io07/978-3-54O-4509i-7_6. URL http://dx.doi.org/10.1007/

978- 3- 540- 45091- 7_ 6. (Cited on pages 18 and 20.)

[37] Bernhard Ganter and Rudolf Wille. AppUed Lattice Theory:

Formal ConceptAnalysis. In ln General Lattice Theory, G. Gratzer

editor, Birkháuser. Preprints, 1997. (Cited on pages 4 and 27.)

[38] Wille R. Ganter, B. Formal Concept Analysis, Mathematical Foun

dation. Springer-Berlin, 1999. (Cited on pages 3, 4, 13, and 27.)

[39] R. Godin, R. Missaoui, and H. Alaoui. Incremental

concept formation algorithms based on Galois (Con

cept) lattices. Computational Intelligence, n(2):246-

267, 1995- URL http://www.bibsonomy.org/bibtex/

26ab0b458c708c8abl4597749573e92b6/stumme. (Cited on

pages 5 and 17.)

[40] Saunders E. Godin, R. and J. Gecsei. LatticeModel of Browsable

Data Spaces. Information Sciences, 40:89-116., 1986. (Cited on

page 5.)

[41] LesUe Ann Goldberg. Efficient algorithms for listing combinatorial

structures. Cambridge University Press, New York, NY, USA,

1993. (Cited on page 15.)

[42] Thomas R. Gruber. Toward principies for the design of on

tologies used for knowledge sharing. In International Journal

of Human-Computer Studies, pages 907-928. Kluwer Academic

Publishers, 1993. (Cited on pages 17 and 18.)

[43] A. Guenoche. Construction du treillis de Galois d une relation

binaire. Math. Inf Sci. Hum., 109:41-53, 1990. (Cited on page 15.)

[44] Duquenne V Guigues, J.L. Families minimales d'implications
informatives resultant d'un tableau de donnees binaires. Math.

Sci. Hum., 95(i):5-i8, 1986. (Cited on page 19.)

[45] Stephanie Guillas, Karell Bertet, and Jean-Marc Ogier. A

generic description of the concept lattices' classifier: applica
tion to symbol recognition. In Proceedings ofthe 6th international



BIBLIOGRAPHY 65

conference on Graphics Recognition: ten Years Review and Future

Perspectives, GREC'05, pages 47-60, Berlin, Heidelberg, 2006.

Springer-Verlag. (Cited on page 20.)

[46] Caudell T Healy M. Ontologies and worlds in category theory:

implications for neural systems. Axiomathes, 16:165-214, 2006.

(Cited on page 21.)

[47] Hecht-Nielsen. Theory of the backpropagation neural network.
In International Joint Conference on Neural Networks, pages 593-

605 vol.i. IEEE, June 1989. (Cited on page 9.)

[48] Joachim Hereth, Gerd Stumme, Rudolf WUle, and Uta Wille.

Conceptual knowledge discovery: a human-centered approach.

Journal ofApplied Artificial Intelligence, 17:281-302, 2003. (Cited
on page 18.)

[49] Sertkaya B. R. Medina Hermann, M. and S. Obiedkov. On the

Complexity of Computing Generators of Closed Sets. 1CFCA,

LNAI 4933.Springer, 2008. (Cited on page 18.)

[50] Jorge Eduardo Hurtado-Gómez and Diego Andrés Álvarez-

Marfn. An optimization method for learning statistical classi

fiers in structural reliability. Probabilistic EngineeringMechanics,

25(i):26~34, 2010. (Cited on page 9.)

[51] Vassilis Kaburlasos. Granular Enhancement of Fuzzy ART-

SOM Neural Classifiers Based on Lattice Theory. In Vassilis

Kaburlasos and Ritter Gerhard, editors, Computational Intelli

gence Based on Lattice Theory, volume 67 of Studies in Compu
tational Intelligence, pages 3-23. Springer Berlin / Heidelberg,

2007. (Cited on pages 9 and 21.)

[52] Vassilis G. Kaburlasos and Gerhard X. Ritter. Computational In

telligence Based on Lattice Theory, volume 67 of Studies in Compu
tational Intelligence. Springer, 2007. (Cited on page 22.)

[53] James M. KeUer and Douglas J. Hunt. Incorporating Fuzzy

Membership Functions into the Perceptrón Algorithm. IEEE

Trans. Pattern Anal. Mach. Intell., 7(6):693-699, 1985. doi: 10.

1109/TPAMI.1985.4767725. URL http://dx.doi.org/10.1109/
TPAMI . 1985 . 4767725. (Cited on page 21.)

[54] N. Kharchevnikova, V. Blinova, D. Dobrynin, N. Fedorova,

M. Novich, and M. Vrachko. Data mining on carcinogenic-

ity of chemical compounds by the JSM method. Auto

matic Documentation and Mathematical Linguistics, 43:330-335,

2009. URL http://dx.doi.org/lO.31O3/S00O510550906OO3X.

10.3103/S000510550906003X. (Cited on page 20.)

[55] Sergei O. Kuznetsov and Sergei A. Obiedkov. Algorithms
for the Construction of Concept Lattices and Their Diagram

Graphs. In Proceedings of the ¡jth European Conference on Prin

cipies of Data Mining and Knowledge Discovery, pages 289-300,



66 BIBLIOGRAPHY

London, UK, UK, 2001. Springer-Verlag. (Cited on pages 5, 15,

and 16.)

[56] Sergei O. Kuznetsov and Sergei A. Obiedkov. Comparing per

formance of algorithms for generating concept lattices. Jour

nal of Experimental and Theoretical Artificial Intelligence, 14(2-

3)1189-216, 2002. URL http://www.bibsonomy.org/bibtex/

2582910e7al4a80469b2cb328faOd9884/kde. (Cited on pages 15,

16, and 34.)

[57] S.O. Kuznetsov. Learning of Simple Conceptual Graphs from

Positive and Negative Examples. Proceedings of the Third Euro-

pean Conference on Principies of Data Mining and Knowledge Dis

covery., 1704:284-391, 1999. (Cited on page 20.)

[58] Stumme G. Lakhal, L. Efficient Mining of Association Rules

Based on Formal Concept Analysis. Ganter et al. Springer., LNAI

3626:180-195, 2005. (Cited on page 18.)

[59] Kai Li, Yajun Du, Dan Xiang, Honghua Chen, and Zhenwen

Liao. A Method for Building Concept Lattice Based on Matrix

Operation. In De-Shuang Huang, Laurent Heutte, and Marco

Loog, editors, Advanced Intelligent Computing Theories and Appli

cations. With Aspects ofArtificial Intelligence, volume 4682 of Lec

ture Notes in Computer Science, pages 350-359. Springer Berlin

Heidelberg, 2007. (Cited on page 17.)

[60] LingLing Lv, Lei Zhang, PeiYan Jia, and FuNa Zhou. A Bottom-

Up Incremental Algorithm of Building ConceptLattice. In Yan-

wenWu, editor. Software Engineering and Knowledge Engineering:

Theory and Practice, volume 115 of Advances in Intelligent and

Soft Computing, pages 91-98. Springer Berlin Heidelberg, 2012.

(Cited on page 17.)

[61] Schnabel M. Representing and processing medical knowledge

using formal concept analysis. Methods InfMed., 4i(2):i6o-i67,
2002. (Cited on page 18.)

[62] Y. Malagrange. Recherche des sous-matrices premieres d une

matrice a coefficients binaires. Deuxieme congress de L AFCLTI,

i:Unknow, 1961. (Cited on page 15.)

[63] NidaMeddouri andMondher Maddouri. Boosting Formal Con

cepts to Discover Classification Rules. In Proceedings ofthe zznd

International Conference on Industrial, Engineering and Other Ap

plications of Applied Intelligent Systems: Next-Generation Applied

Intelligence, IEA/ALE '09, pages 501-510, Berlin, Heidelberg,
2009. Springer-Verlag. doi: 10.1007/978-3-642-02568-6_5i. URL

http://dx.doi.org/10.1007/978-3-642-02568-6_51. (Cited
on page 20.)

[64] Raoul Medina and Lhouari Nourine. A Unified Hierarchy
for Functional Dependencies, Conditional Functional Depen-



BIBLIOGRAPHY 67

dencies and Association Rules. In ICFCA, pages 98-113, 2009.

(Cited on page 18.)

[65] Engelbert Mephu Nguifo, Norbert Tsopze, and Gilbert Tindo.

M-CLANN: Multi-class Concept Lattice-Based Artificial Neu

ral Network for Supervised Classification. In Proceedings of the

i8th international conference on Artificial Neural Networks, Part II,
ICANN '08, pages 812-821, Berlin, Heidelberg, 2008. Springer-

Verlag. (Cited on page 20.)

[66] DeanMerwe, Sergei Obiedkov, and Derrick Kourie. Addlntent:

A New Incremental Algorithm for Constructing Concept Lat

tices. In Peter Eklund, editor, Concept Lattices, volume 2961 of

Lecture Notes in Computer Science, pages 372-385. Springer Berlin

Heidelberg, 2004. (Cited on page 17.)

[67] S. Mika, G. Ratsch, J. Weston, B. Schólkopf, and K. R. Mullers.

Fisher discriminant analysis with kernels. Neural Networks for

Signal Processing IX, 1999. Proceedings of the 1999 IEEE Signal

Processing Society Workshop, 1:41-48, August 1999. (Cited on

page 9.)

[68] A. Nica and R. Speicher. Lectures on the Combinatorics of Free

Probability. Number v. 13 in London Mathematical Society Lec

ture Note Series. Cambridge University Press, 2006. (Cited on

page 3.)

[69] Bakalis Nikolaos. Handbook of Greek Philosophy: From Tliales

to the Stoics Analysis and Fragments. Trafford Publishing, 2005.

(Cited on page 17.)

[70] E. M. Norris. An Algorithm for Computing the

Maximal Rectangles in a Binary Relation. Revue

Roumaine de Mathematiques Purés et Appliquees, 23(2):243-

250, 1978. URL http://www.bibsonomy.org/bibtex/

241ffd27a2c9c7Ob7elf8fa85c40240b8/stumme. (Cited on

pages 16 and 17.)

[71] Lhouari Nourine and Olivier Raynaud. A Fast Algorithm for

Building Lattices. Inf. Process. Lett., 7i(5-6):i99~204, 1999. (Cited
on page 17.)

[72] Vera V. Pankratieva and Sergei O. Kuznetsov. Relations between

Proto-fuzzy Concepts, Crisply Generated Fuzzy Concepts, and

Interval Pattern Structures. Fundam. Inform., ii5(4):2Ó5-277,
2012. (Cited on page 20.)

[73] Jian Pei, Jiawei Han, and Runying Mao. CLOSET: An Efficient

Algorithm for Mining Frequent Closed Itemsets. In ACM SIG

MOD Workshop on Research Issues in Data Mining and Knowledge

Discovery, pages 21-30, 2000. (Cited on page 19.)

[74] John L. Pfaltz. Representing Numeric Valúes in Concept Lat

tices. In CLA, 2007. (Cited on page 3.)



68 BIBLIOGRAPHY

Í75l Joñas Poelmans, Paul Elzinga, Stijn Viaene, and Guido De-

dene. Formal concept analysis rn knowledge discovery: a sur

vey. In Proceedings ofthe i8th international conference on Concep
tual structures: from information to intelligence, ICCS'10, pages

139-153, Berlin, Heidelberg, 2010. Springer-Verlag. URL http:

//dl. acm. org/citation.cfm?id=1881168. 1881185. (Cited on

page 17.)

[76] Liu D.Y. Hu CQ. Lu M. Zhao L. Qi, H. Searching for closed

itemset with Formal Concept Analysis. In yd Int. Conf. on

Machine learning and Cybernetics, Shanghai., 2004. (Cited on

page 18.)

[77] Gerhard Ritter and Gonzalo Urcid. Learning in Lattice Neu

ral Networks that Employ Dendritic Computing. In Vassilis

Kaburlasos and Gerhard Ritter, editors, Computational Intelli

gence Based on Lattice Theory, volume 67 of Studies in Compu
tational Intelligence, pages 25-44. Springer BerUn / Heidelberg,
2007. (Cited on pages 9, 21, 22, and 23.)

[78] Gerhard X. Ritter and Gonzalo Urcid. Lattice Neural Networks

with Spike Trains. In HAIS (2), pages 367-374, 2010. (Cited on

pages 21 and 27.)

[79] Gerhard X. Ritter, Laurentiu Iancu, and Gonzalo Urcid. Neu

rons, Dendrites, and Pattern Classification. In CIARP, pages

1-16, 2003. (Cited on pages 9 and 27.)

[80] Gerhard X. Ritter, Darya Chyzhyk, Gonzalo Urcid, and Manuel

Grana. A Novel Lattice AssociativeMemory Based on Dendritic

Computing. In HAIS, pages 491-502, 2012. (Cited on pages 9

and 21.)

[81] Volker J. Hitzler Rudolph, S. Supporting Lexical Ontology
Learning by Relational Exploration. li. Pn'ss, S. Polovina. And

R. Hill ICCS, LNAI 4604:488-491, 2007. (Cited on page 18.)

[82] P. V G. D. Prasad Reddy Shashikumar G. Totad, R. B. Geeta.

Batch incremental processing for FP-tree construction using FP-

Growth algorithm. Knowledge and Information Systems, 1:1-16,
2012. (Cited on page 19.)

[83] John Shawe-Taylor and Nello Cristianini. KemelMethods for Pat
tern Analysis. Cambridge University Press, New York, NY, USA,

2004. ISBN 0521813972. (Cited on page 8.)

[84] G. Stuart, N. Spruston, and M. Hausser. Dendrites. Oxford

University Press, USA, 2007. URL http://books.google.com.
mx/books?id=hbnlRRrP004C. (Cited on page 21.)

[85] Gerd Stumme, RudolfWille, and Uta Wille. Conceptual Knowl

edge Discovery in Databases Using Formal Concept Analysis
Methods. In Proceedings of the Second European Symposium on

Principies of Data Mining and Knowledge Discovery, PKDD '98,



BIBLIOGRAPHY 69

pages 45<>-458r London, UK, UK, 1998. Springer-Verlag. URL

http ://dl. acm. org/citation.cfm?id=645802. 669204. (Cited
on pages 17 and 18.)

[86] J. B. C R. J.-F. B. Sylvain Blachon, RuggeroG. Pensa and O. Gan-
drillon. Clustering formal concepts to discover biologically rel
evant knowledge from gene expression data, ln Silico Biology, 7:
467777483, 2007. (Cited on page 18.)

[87] Norbert Tsopze, Engelbert Mephu Nguifo, Gilbert Tindo, and
Yaounde Cameroun. CLANN: Concept Lattice-based Artifi

cial Neural Network for supervised classification. (Cited on

page 20.)

[88] Gonzalo Urcid and Gerhard Ritter. Noise Masking for Pattern

Recall Using a Single Lattice Matrix Associative Memory. In

Vassilis Kaburlasos and Gerhard Ritter, editors, Computational

Intelligence Based on Lattice Theory, volume 67 of Studies in Com

putational Intelligence, pages 81-100. Springer Berlin / Heidel

berg, 2007. (Cited on page 21.)

[89] Gonzalo Urcid, Gerhard X. Ritter, and Laurentiu Iancu. Single

Layer Morphological Perceptrón Solution to the N-Bit Parity
Problem. In CIARP, pages 171-178, 2004. (Cited on page 21.)

[90] Gonzalo Urcid, José Ángel Nieves-Vázquez, Anmi Garcia-A.,

and Juan Carlos Valdiviezo-N. Robust image retrieval from

noisy inputs using lattice associative memories. In Image Pro

cessing: Algorithms and Systems, 2009. (Cited on page 21.)

[91] Gonzalo Urcid, Juan Carlos Valdiviezo-N., and Gerhard X. Rit

ter. Lattice AssociativeMemories for Segmenting Color Images
in Different Color Spaces. In HAIS, pages 359-366, 2010. (Cited

on page 21.)

[92] V. K. Finn-S. O. Kuznetsov V G. Blinova, D. A. Dobrynin and

E. S. Pankratova. Toxicology analysis by means of the jsm-

method. Russia Institute for Scientific and Technical Information

(VINLTI), 13:1201-1207, 2002. (Cited on page 20.)

[93] Missaoui R. Godin R. Valtchev, P. Formal Concept /Vnalysis for

Knowledge Discovery and Data Mining: The New Challenges.

P. Eklund (Ed.): 1CFCA, LNAI 2961:352-371, 2004. (Cited on

page 17.)

[94] Missaoui R. Godin R. Valtchev, P A framework for incremental

generation of closed itemsets. Discrete Applied Mathematics, 156:

924-949, 2008. (Cited on page 17.)

[95] P. Valtchev, R. Missaoui, and P. Lebrun. A partition-based ap

proach towards constructing Galois (concept) lattices. Discrete

Math., 256(3):8oi-829, 2002. (Cited on page 17.)



70 BIBLIOGRAPHY

[96] Petko Valtchev, Rokia Missaoui, Robert Godin, and Mohamed

Meridji. Generating frequent itemsets incrementaUy:
two novel

approaches based on Galois lattice theory. /. Exp. Theor. Artif.

Intell., i4(2-3):i 15-142, 2002. (Cited on pages 17 and 18.)

[97] A. Volkova. Algorithmization of procedures of the JSM
method

for automatic hypothesis generation. Automatic Documenta

tion and Mathematical Linguistics, 45:113-120, 2011. (Cited on

page 20.)

[98] J. Wang, G. Karypis, J. Wang, and G. Karypis. BAMBOO: Accel

erating Closed Itemset Mining by Deeply Pushing the Length-

Decreasing Support Constraint. (Cited on page 19.)

[99] Rudolf Wille. Formal Concept Analysis as Mathematical The

ory of Concepts and Concept Hierarchies. In Formal Concept

Analysis, pages 1-33, 2005. (Cited on pages 4 and 27.)

[100] Rudolf Wille. Methods of Conceptual Knowledge Processing.

In Formal Concept Analysis. Springer Berlin Heidelberg, 2006.

(Cited on page 18.)

[101] Rudolf WiUe. Restructuring Lattice Theory: An Approach

Based on Hierarchies of Concepts. In ICFCA, pages 314-339,

2009. (Cited on pages 4, 12, and 27.)

[102] Valrie Witte, Stefan Schulte, Mike Nachtegael, Tom Malange,
and Etienne Kerre. A Lattice-Based Approach to Mathemat

ical Morphology for Greyscale and Colour Images. In Vas

silis Kaburlasos and Gerhard Ritter, editors, Computational In

telligence Based on Lattice Theory, volume 67, pages 129-148.

Springer Berlin / Heidelberg, 2007. (Cited on page 21.)

[103] Zhipeng Xie,Wynne Hsu, Zongtian Liu, andMong Li Lee. Con

cept Lattice based Composite Classifiers for High Predictability,
2002. (Cited on page 20.)

[104] X.S. Yang. Introduction To Computational Mathematics. World

Scientific Publications, 2008. (Cited on page 3.)

[105] Seongwook Youn and Dermis McLeod. Improved spam fil

tering by extraction of information from text embedded im

age e-mail. Ih Proceedings of the 2009 ACM symposium on Ap

plied Computing, SAC '09, pages 1754-1755, New York, NY,

USA, 2009. ACM. doi: 10.1145/1529282.1529677. URL http:

//doi. acm. org/10. 1145/1529282. 1529677. (Cited on page 20.)

[106] Ivashko V.G. Kuznetsov S.O. Mikheenkova M.A. Khazanovskii-

K.P. Zabezhailo, M.I. and O.M. Anshakov. Algorithms and Pro

grams of the JSM-Method ofAutomatic Hypothesis Generation.

Automatic Documentation and Mathematical Linguistics, 21.5:1-14,

1987. (Cited on pages 16, 19, and 20.)

[107] Mohammed J. Zaki and Ching J. Hsiao. CHARM: An Efficient

Algorithm for Closed Itemset Mining. (Cited on page 19.)



BIBLIOGRAPHY 71

[108] Emmanuel Zenou and Manuel Samuelides. Characterizing Im

age Sets Using Formal Concept Analysis. EURASIP J. Adv. Sig.

Proc., 2005(i3):i93i-i938, 2005. (Cited on page 20.)



CENTRO DE INVESTIGACIÓN Y DE ESTUDIOS MANEADOS DEL I.P.N.

UNIDAD BUADALAJABA

El Jurado designado por la Unidad Guadalajara del Centro de Investigación y de

Estudios Avanzados del Instituto Politécnico Nacional aprobó la tesis

Aplicaciones de Redes Neuronales dentriticas a Análisis de

Conceptos Formales - Dentritic Neuronal Network applications to
Formal Concept Analysis

del (la) C.

David Ernesto CARO CONTRERAS

el día 08 de Febrero de 2013.

Dr. Luis Ernesto "fcépéz Mellado

Investigador CINVESTAV 3C

CINVESTAV Unidad Guadalajara

Dr. Félix FranciSce«B|nws Corchado

lnvestigadgÉa^^/E^ST*AY3A
CINVESTAV Unidad GuadalajS

Dr. Andrés Méndez Vázquez

Investigador CINVESTAV Guadalajara

2C

CINVESTAV Guadalajara




