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Abstract

Cloud computing holds the promise of revolutionizing the manner in which enter-
prises manage, distribute, and share information. The data owner (client) can

out-source almost all his/her information processing tasks to a "cloud". The cloud can
be seen as a collection of servers, which caters the data storage, processing and main-
tenance needs of the client. Needless to say this new concept of computing has already
brought significant savings in terms of costs for the data owner.

Among others, an important task provided by a cloud is Database as a Service (DAS).
In this service the client delegates the duty of storage and maintenance of his data to a
third party (an un-trusted server). The DAS model allows the client to create, modify
and retrieve data from databases in a remote location. These operations are performed
by the server on behalf of the client. However, delegating this duty to a third party
brings in some new security challenges.

The two main security goals of cryptography are privacy and authentication. These
security issues are relevant to the outsourced databases also. The client who keeps the
data with an untrusted entity has two main concerns. One being that the data may
be sensitive and the client may not want to reveal it to the server and the second one
is the data whose storage and maintenance has been delegated would be used by the
client. The typical usage of the data would be that the client should be able to query
the database and the answers to the client’s queries would be provided by the server. It
is natural for the client to be concerned about a malicious server who does not provide
correct answers to his queries. In this work we aim to devise two schemes: one in
which the client can encrypt the database and still performs queries that are answered
by the server and another one where the client would be able to verify whether the
server is responding correctly to his queries. The first problem is called privacy in
databases and the second one is known as the authenticated query processing. In this
thesis we address both of them. We view the above two problems in a formal manner
and provide its security definitions. Further we device some efficient schemes which
solve them. Finally, we analyze the security of the proposed schemes and also provide
some experimental performance data.
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Resumen

El cómputo nube promete revolucionar la forma en que las empresas manejan, dis-
tribuyen y comparten su información. El dueño de los datos (cliente) puede del-

egar casi todo el procesamiento de la información a la "nube". La nube puede ser
vista como una colección de servidores, los cuales proveen el almacenamiento, proce-
samiento y mantenimiento de los datos del cliente. No hace falta decir que este nuevo
concepto de cómputo ha ocasionado un ahorro considerable en términos de costos para
el dueño de la información.

Entre otros, un servicio importante que provee la nube es el de bases de datos (DAS
por sus siglas en inglés). En este servicio el cliente delega la tarea de almacenamiento y
mantenimiento de su información a un tercero (servidor no confiable). El modelo DAS
permite que el cliente cree, modifique y recuperare información de la base de datos que
se encuentra en una ubicación remota. Estas operaciones son realizadas por el servidor
en nombre del cliente. Sin embargo, delegar esta tarea a un tercero crea nuevos retos
de seguridad.

Los dos principales objetivos de la criptografía con respecto a la seguridad son pri-
vacidad y autenticación. Estos problemas de seguridad también son relevantes para
las bases de datos subcontratadas. El cliente que mantiene sus datos con una tercera
entidad no confiable tiene dos preocupaciones importantes: la primera que la informa-
ción puede ser sensible y por ello puede no querer revelarla al servidor y la segunda
es que la información cuyo almacenamiento y mantenimiento ha sido delegado, será
utilizada por él. El uso que generalmente se le da a los datos consiste en que el cliente
debe poder consultar la base de datos y las respuestas a sus consultas serán generadas
por el servidor. Es natural que el cliente este preocupado porque un servidor malicioso
no le provea las respuestas correctas. El objetivo de este trabajo es diseñar dos esque-
mas: uno en el que la base de datos pueda ser cifrada y que aún así se puedan ejecutar
consultas y otro en que el cliente pueda verificar si el servidor esta respondiendo de
forma correcta. Estos problemas son conocidos como privacidad en bases de datos y proce-

samiento de consultas autenticado, respectivamente. En esta tesis se estudiaron ambos de
manera formal, se plantearon sus difiniciones de seguridad, y además se diseñaron
esquemas eficiententes para resolverlos. Finalmente, se analiza la seguridad de los
esquemas propuestos y también se reporta su desempeño.
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Chapter 1

Introduction
With me poetry has not been a purpose, but a
passion.

Edgar Allan Poe

Now-a-days almost every company needs to handle an enormous amount of infor-
mation for its proper functioning. Storage, maintenance and processing of such

enormous amount of data need lots of resources like special hardware, software and
human expertise. The owner of the data (the client) whose main business or expertise
may not be directly related to data processing technologies is unlikely to have such spe-
cial resources. Also, maintaining this infrastructure may involve high costs. Currently,
this problem has taken a serious shape, as irrespective of the type of business an orga-
nization or individual is involved with, it requires to depend on various information
technologies.

As a response to this challenge, the concept of cloud computing has emerged. Cloud

computing is a popular computing paradigm in which computation is moved away
from a single personal computer or an individual application server to a huge network
of computers, now called a ‘‘cloud” [1]. Cloud computing holds the promise of revolu-
tionizing the manner in which enterprises manage, distribute, and share information.
The data owner (client) can out-source almost all its information processing tasks to a
“cloud”. The cloud can be seen as a collection of servers (we shall sometimes refer to it
as the server) which caters the data storage, processing and maintenance needs of the
client. Needless to say this new concept of computing can bring significant savings in
terms of costs for the data owner.

The cloud provides three fundamental services [2]. These services are often referred to
as the “SPI Model”, where SPI stands for Software, Platform and Infrastructure. The
difference between these three services lies in the control that is given to the client to
use the infrastructure provided by the service provider. Software as a Service (SaaS)

1
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is the most used, as it only provides final applications, for example, google docs. In
Platform as a Service (PaaS) customers can develop their own applications, using pre-
programmed blocks, for instance, google data services. Finally, regarding to Infras-
tructure as a Service (IaaS) the client can decide which operating system and network
components he/she wants to use.

Among others, an important service that falls within the first classification (i.e., SaaS)
is that of storage. In this service the client delegates the duty of storage of his/her files
to a third party (an un-trusted server), and the client requires to have access to them
in the future [3]. Another service that falls within the second classification (i.e., PaaS)
is Database as a Service (DAS). In this service the client also delegates his/her data to a
third party. But, in this case the DASmodel allows the client to perform operations like
create, modify and retrieve from databases in a remote location [4]. These operations
are performed by the server on behalf of the client.

An organization that provides some of these services can offer different tasks such as
data backup, data restore, data reorganization to reclaim space, data management, etc.
Moreover, the users wishing to consult the data will now access it using the hardware
and software at the service provider instead of their own organization’s computing
infrastructure. However, delegating the duty of storage and maintenance of data to
a third party brings in some new security challenges. In a typical application, some
portions of the data may be sensitive and should be protected from the adversaries. An
adversary is some individual/organization who has malicious intention and particu-
larly the entity from whom the sensitive information needs to be kept protected. In
this type of applications, the client/owner side environment is assumed to be secure
and trusted therefore the main threat is from the database provider who is untrusted.

Information security had been achieved through cryptographic techniques. However,
achieving the information security objectives in outsourced applications require a new
set of these techniques, since new features are required in this model. For example,
users of outsourced storage rely on their providers, which are untrusted to maintain
the availability of their data. The solution to this problem is known as storage auditing:
which requires to search for cryptographic systems that allow the client to verify that
his/her data are still available and ready for retrieval if needed, without retrieving the
files [5]. Another instance is encryption, which is a useful tool for protecting the confi-
dentiality of sensitive data. However, when data is encrypted with classical schemes,
performing queries efficiently becomes more challenging. Finally, we want to discuss
authenticated query processing case. Whenever an outsourced database is queried,
the corresponding query reply must be demonstrably authentic. Furthermore, a reply
must include a proof of completeness to convince the querier that no data matching
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the query predicate(s) has been omitted. Even though, there are well known crypto-
graphic primitives for data authentication as message authentication codes or digital
signatures, the completeness requirement makes of this scenario a challenging prob-
lem.

In this thesis we aim to study the security services on outsourced data in detail. Mainly,
we will focus on two services: Privacy and Data authentication. Our study encom-
passes analysis of the existing schemes, we also attempt to design new protocols which
can serve as a solution to these security services on outsourced databases. Finally, we
are interested in their implementations and their performance.

The rest of this chapter is organized as follows. In Section 1.1 we briefly discuss the
objectives of this work and provide non-technical introduction to the problems of our
interest. In Section 1.2 we discuss the results that we have obtained and in the last
section we discuss the structure and content of the rest of this document.

1.1 The Scope of the Thesis

The main goal of our work is to see the problem of security in outsourced data from
a cryptographic viewpoint, and come up with realistic solutions for it. We aim to de-
velop schemes which would be efficient and can be deployed with ease in existing
systems with minimal extra overhead. Moreover we thrive for solutions which would
be sound in the context of modern cryptography, i.e., we aim to see the problem in a
formal cryptographic view. In modern cryptography, given a scheme one aims to de-
fine security in formal terms and prove its security in accordance with the definition.
Such balanced schemes (in the two aspects as discussed above) in the area of our focus
is rare.

The area of securing outsourced data is huge, and it has different directions and ram-
ifications. In this thesis we assume a specific structure of the outsourced data, in par-
ticular we consider a relational database. We address the two most important security
issues for such kind of data, and we briefly discuss them next.

1. Authenticated Query Processing: When a client delegates the duty of storage
and maintenance of his/her data to a third party, it is important to ensure se-
curity of the information against a malicious server who does not responds cor-
rectly to the queries of the client. This problem is easy to define in the context
of an outsourced relational database. Where the client stores the tables in a third
party (server) and the queries are replied by it. The replies provided by the server
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should be both correct and complete1 with respect to the stored tables. The prob-
lem of authenticated query processing aims at developing schemes where the
server should be able to provide "short proofs" of the fact that the replies to the
specified queries are correct and complete. This problem can be seen in different
dimensions, among them two important aspects of the problem are:

• Private versus public verifiability: In private verifiability we assume a sin-
gle data owner model, where the owner and querier is a single entity who
would like to verify the validity of the query response of the server. In pub-
lic verifiability there may be different queriers and theymay be distinct from
the owner. These two scenarios require completely different treatments. Pri-
marily, for private verifiability one can use techniques for data authentica-
tion as relevant to symmetric key cryptography whereas in case of public
verifiability one needs to apply techniques from public key cryptography.
In our work we focus only on private verifiability. It is worth to ensure that
there are several real life scenarios where public verifiability is not required,
and in general schemes with public verifiability needs to use computation-
ally heavier machinery thus making the schemes less efficient. Thus, in sce-
narios where public verifiability is not required having private verifiability
as the goal can lead to more efficient and usable schemes. The current liter-
ature does not duly classify these two scenarios and there are few schemes
which provide only private verifiability.

• Static versus dynamic data: Databases can be both static and dynamic. In
a static database, updates, inserts and deletions are not allowed. Ensuring
authenticated query processing in static databases is comparatively easier
than providing this service in dynamic databases. In this work we aim to
address both scenarios.

2. Database Privacy: Other than authentication, the other main concern of the client
about the outsourced data is privacy. However, the client uses the server to store
his/her information, but the server is untrusted and the client does not want to
reveal its data to the server. This problem can be solved with the help of an en-
cryption algorithm, where the client encrypts the information in the tables before
it outsources it to the server. But, traditional encryption schemes if applied for
this problem would render the data unusable for query processing, as a good en-
cryption algorithm is supposed to hide all structures present in the data, and the
encrypted data would "look random". There has been numerous works to de-

1Correct means that records on the database have not been modified. Complete means that no an-
swers have been omitted from the reply.
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vice cryptographic schemes so that the encrypted data can be amenable to stan-
dard query processing. Again there are several dimensions of this problem, the
main theme being using an encryption scheme where the ciphertext retains some
properties of the plaintext. In this work we aim to address only a part of this
big problem. We aim to device an order preserving encryption scheme, i.e., an
encryption scheme E, such that E(x) ≥ E(y) if and only if x≥ y (monotonically
non-decreasing). Such an encryption scheme helps in executing range queries
on encrypted data, which is one of the main challenges in designing encryption
schemes amenable to query processing.

1.2 Overview of the Solutions

In this section we give a short account of the solutions that we propose for the two
problems stated before.

1.2.1 Authenticated Query Processing

Though there has been considerable amount of work on authenticated query process-
ing on relational databases, but it has been acknowledged (for example in [6]) that
the problem of query authentication largely remains open. An unified cryptographic
treatment of the problem is missing in the literature. In most existing schemes crypto-
graphic objects have been used in an ad-hoc manner, and their security guarantees are
not very clear. In our work we initiate a formal cryptographic study of the problem of
query authentication in a distinct direction. We propose a new scheme which does not
use any specialized data structure to address the completeness problem. Our solution
involves usage of bitmap indices for this purpose. Bitmap indices have gained a lot
of popularity in the current days for their use in accelerated query processing [7, 8].
Many commercially available databases like Oracle, IBM DB2, Sybase IQ now imple-
ment some form of bitmap index scheme in addition to the more traditional B-tree
based schemes, thus it may be easy to incorporate a bitmap based scheme in a modern
database without significant extra cost. To our knowledge, bitmaps have not been used
till date for a security goal.

In addition to bitmap indices we use a secure message authentication code (MAC) as
the only cryptographic object. We show that by the use of these simple objects one can
design a query authentication scheme which allows verification of both correctness
and completeness of query results. As the basic cryptographic object is a symmetric
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key primitive, thus our scheme does not provide public verifiability. Moreover, as
stated before, in this work, we restrict ourselves to private verifiability only. We see
private verifiability of our schememore as a design goal than a limitation, as we believe
that there exist scenarios where public verifiability may not be required, and in such
scenarios it is better not to use the heavy machinery of public key signatures which
uses computationally intensive number theoretic operations, whereas computational
overheads of symmetric key message authentication schemes are minimal.

Next, we summarize our concrete contributions in this problem:

1. We define a generic scheme which we call as relational database authentication
scheme (RDAS) which would provide the functionality of authenticated query
processing. We carefully define the security goals of RDAS in line with the tra-
dition of concrete provable security. The security definition encompasses both
correctness and completeness of a query response. Such a definition is new to
the literature, and we hope that this definition would help to evaluate security of
existing schemes.

2. We propose several concrete instantiations of RDAS:

• RDAS1: RDAS1 is designed using message authentication codes and bitmap
indices in a novel manner. RDAS1 is capable of authenticated query pro-
cessing of simple select queries and select queries involving disjunctions of
equality conditions. The extra overhead for using RDAS1 both in terms of
extra bandwidth and computation cost is not significant. We formally prove
that RDAS1 provides authentication in accordance to our security definition.
Moreover we report some performance data.

• RDAS2: RDAS1 is efficient and secure, a serious limitation of it is that it can
only authenticate a restricted class of queries. We point out various direc-
tions in which RDAS1 can be modified to incorporate other types of queries.
In particular we propose a modification called RDAS2 which is capable of
authenticating a large class of queries but it has more overhead than RDAS1.

• RDAS1-agg, RDAS2-agg: These variants of RDAS1 and RDAS2 uses aggre-
gated message authentication codes. The use of this primitive improves the
bandwidth requirements of both RDAS1 and RDAS2 to a large extent. We
also prove security of these variants.

• RDAS2-cmp: This version uses the idea of compressing bitmaps with a com-
pression scheme called EnhancedWord-AlignedHybrid (EWAH) before they
are stored, this saves storage space and reduces the bandwidth requirement
compared to RDAS2. Furthermore, this compression scheme allows logical
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operations on compressed bitmaps, and the performance is even faster than
the scheme where uncompressed bitmaps are used.

• RDAS-dyn: The instantiations of the RDAS mentioned above work only on
static scenarios, i.e., they cannot accommodate database updates. We over-
come this limitation in RDAS-dyn which can work in dynamic scenarios.

3. We have done highly optimized implementations of all the above mentioned
variants using some modern features of current Intel processors. With these im-
plementations we have generated comparative performance data of these vari-
ants on a "reasonably large" real database. The performance data suggests that
all these variants have negligible overhead both in terms of time and bandwidth
requirement, and thus can be deployed in real life applications.

1.2.2 Database Privacy

As mentioned earlier, the problem of interest to us in this category is to develop an en-
cryption scheme for relational databases which supports range queries. This has been
previously addressed by encrypting each database entry with an order preserving en-
cryption scheme. There have been some works on order preserving encryption [9, 10],
where the main concern was to fix the proper security definition of such a primitive,
recently there have been some advances in proposing an efficient scheme [11, 12, 13,
14]. We restrict ourselves to the scenario of encrypting numerical data in a relational
database, we believe that an order preserving encryption scheme would have maxi-
mum applicability in this scenario.

As in case of authenticated query processing we propose a generic framework for en-
crypting databases such that range queries can be efficiently run on the encrypted
tables. We call the generic scheme as ESRQ (encryption scheme supporting range
queries). We also propose a novel security definition for ESRQ and finally propose
a particular scheme called ESRQ1.

ESRQ1 has several interesting characteristics. In ESRQ1 a given relation is encrypted
using a deterministic encryption scheme, and the order relations between different at-
tribute values are separately stored along with the encrypted relation. With this infor-
mation the server is able to respond to range queries. But the challenge in implement-
ing this idea is to come upwith a strategy to store the order information of the database
value in a compact form. We use a specific type of bitmap encoding, called the range
encoding for this purpose. We use a novel data structure where all order information
can be compactly stored in a single array and a list. Also, this data structure allows
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efficient updates and inserts in the encrypted tables. This specific data structure can
be of independent interest in the context of the design of efficient index structures for
databases. We adequately argue that ESRQ1 provides the required functionalities of
an encrypted database, and also prove that ESRQ1 is secure according to our security
definition.

The only cryptographic object that ESRQ1 requires is a deterministic encryption scheme
which supports associated data and it is secure against chosen plaintext adversaries.
We provide some new constructions of this cryptographic objects and prove them to be
secure. Finally, we implement ESRQ1 on a real database and report some performance
data for it. The overall performance data is encouraging and it suggests that ESRQ1

can be a viable option for encrypting relational databases.

1.3 About Rest of the Document

The rest of this document is organized as follows. In Chapter 2, we present some
basic definitions of the two areas of our interest, i.e, cryptography and databases. In
Chapter 3we discuss the twomain problems that we aim to study: authenticated query
processing and privacy in outsourced databases, we also present a brief survey of the
literature related to these two problems. Our contributions to the area are reported
starting from Chapter 4.

Chapter 4 deals with the definition of a generic scheme which we call as relational
database authentication scheme (RDAS). It also presents the security goals of RDAS

in line with concrete provable security. Finally, in this chapter we present our basic
solution for the query authentication problem called RDAS1 which allows the client
to ensure both the correctness and completeness of the query results obtained from a
server.

In Chapter 5, we propose multiple extensions of the basic protocol RDAS1. In particular
we discuss RDAS2, which is capable of authenticating a large class of queries but has
more overhead than RDAS1. We also discuss how additional features can be added to
RDAS1 and RDAS2 to make them efficient in several respects. In particular we discuss,
how one can use aggregate message authentication codes and bitmap compression
to minimize the requirements of storage and bandwidth. Finally in this chapter we
discuss the basic ideas of RDAS-dyn, which is an extension of RDAS that can be used
for dynamic databases.

In Chapter 6 we initiate our study of database privacy. We discuss a basic frame-
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work for encrypting relational databases so that range queries can be executed on the
encrypted relation, we call this basic framework as ESRQ (to be read as encryption
scheme supporting range queries). We develop a notion of security for ESRQ. Finally,
we present a specific ESRQ, called as ESQR1. The novelty of ESRQ1 is in the use of a
specific encoding of bitmaps, which we call as the l -encoding. We also device a spe-
cial data structure that helps in efficient storage and manipulation of l -bitmaps. This
data structure can have uses in other database applications also. Finally we prove that
ESRQ1 is secure in our proposed security model.

In addition to l -bitmaps, ESRQ1 uses a deterministic encryption scheme which sup-
ports associated data (we call such schemes as DEAD). This primitive, though can be
derived from other available cryptographic objects, is new. Thus, we devote Chapter 7
in the study of DEAD schemes. We report two new constructions of DEAD and prove
their security.

In Chapter 8 we report the implementations of the schemes presented in this thesis.
We report performance data for RDAS1, RDAS2 and ESRQ1 on a real database based on
the prototypes that we implemented.

Finally in Chapter 9 we summarize our contributions and discuss some future direc-
tions of work.





Chapter 2

Preliminaries
All secrets are deep. All secrets become dark.
That’s in the nature of secrets.

Cory Doctorow

We focused our research on the problem of security services on outsourced databases.
For easy exposition of intricacies related to the problem, an understanding of

issues related to cryptographic primitives and basic concepts involving databases is
necessary. Thus, in this chapter we introduce our general notation and discuss some
basics of symmetric cryptographic primitives and databases.

2.1 General Notations

Here we note down some general notations that we would use throughout the thesis.
This is not a comprehensive list of the used notations, more notations are introduced
when used first time. Also for easy reference a detailed list of notations is provided at
the beginning of the thesis.

The set of all binary strings is denoted by {0,1}∗. For a positive integer n, {0,1}n de-
notes the set of all n bit strings. For X,Y ∈ {0,1}∗, by X||Y we will mean the concatena-
tion of X and Y. For X ∈ {0,1}∗, |X| will denote the length of X and biti(X) will denote
the i-th bit of X.

By Fq we shall mean a finite field with q elements. For our purpose we shall be inter-
ested in the field F2n for some n. An n bit string can be represented by a polynomial
of degree less than n, whose coefficients are in F2. For example, if A ∈ {0,1}n such
that A= 〈a0,a1, · · · ,an−1〉 with ai ∈ {0,1} then A can be represented by the polynomial
A(x) = ∑n−1

i=0 aixi . Thus the set of all n bit strings can be treated as the field F2n where the

11
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addition is defined as the xor of the strings and multiplication is defined as the mul-
tiplication of the two polynomials corresponding to the strings modulo an irreducible
polynomial ϕ(x) of fixed degree n. Thus, we will sometimes treat the set {0,1}n as the
field F2n and for X,Y ∈ {0,1}n, X⊕Y and XYwill denote addition and multiplication in
F2n, respectively.

For a finite set A, #A would denote the cardinality of A, and x
$
← A would denote that x

is a uniform random element of A.

2.2 Cryptography

According to Menezes et. al. [15] Cryptography is the study of mathematical tech-
niques related to aspects of information security such as confidentiality, data integrity,
authentication, and non-repudiation. We discuss these basic information security goals
in brief next:

1. Confidentiality is a service to keep information hidden from all, except to those
authorized to have it. This goal is also sometimes called privacy or secrecy.

2. Data integrity is a service which avoids the unauthorized alteration of data.
Where insertion, deletion and substitution may be some forms of unauthorized
changes.

3. Authentication is a service related to identification. Generally, two different kind
of authentication are important, namely, entity authentication and data origin
authentication.

4. Non- repudiation is a service which prevents an entity from denying previous
commitments or actions.

For our purpose we would focus on the first two goals, i.e., confidentiality and data
integrity. The problem of data integrity can also be linked with data origin authentica-
tion. To see this consider, that a sender A sends a message m to B, which gets tampered
to m′ in transit. Thus B receives m′ instead of m. This violates the integrity of the mes-
sage m and also the origin of the tampered data m is no more A. Thus the problem of
data integrity and data source authentication are related and in the literature these two
terms are used interchangeably. We, in this thesis, would also sometimes use authenti-
cation to mean integrity.
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Cryptography can be broadly classified into two categories namely symmetric (pri-
vate) key Cryptography and Asymmetric (public) key Cryptography. This classifica-
tion is based on the usage of the keys. In symmetric key cryptography the sender and
receiver uses the same key which is kept secret, where as in asymmetric key cryp-
tography the sender and receiver use different keys and one of them is public. We
would be using symmetric key cryptography which involves schemes where both par-
ties share a secret information called the key. The classic private key cryptographic
tools that provide the security services of confidentiality and data integrity are encryp-
tion schemes and message authentication codes, respectively. Though encryption schemes
and message authentication codes cannot be used in a straightforward way to achieve
our security goals in outsourced databases, but still they would form the backbone of
the schemes discussed in this thesis. Next, we discuss some preliminary notions of
symmetric key encryption and authentication.

2.3 Symmetric Key Encryption

In Symmetric Key Encryption, two parties share some secret information called a key,
and use this key when they wish to communicate secretly with each other. A party
sending a message uses the key to encrypt the message before it is sent, and the re-
ceiver uses the same key to decrypt. The message itself is commonly called the plaintext
and the encrypted message that is transmitted by the sender to the receiver is called
ciphertext. The shared key serves to distinguish the communicating parties from any
other parties who may be eavesdropping on their communication.

Symmetric-key encryption scheme: A symmetric key encryption scheme Ξ is com-
prised of three algorithms Ξ = (Gen,Enc,Dec), the first is a procedure for generating
keys, the second is a procedure for encrypting, and the third a procedure for decrypt-
ing. These algorithms have the following functionality:

1. The key-generation algorithm Gen is a probabilistic algorithm that outputs a key K
chosen from a pre-defined finite set K (called the key space) according to some
distribution that is determined by the scheme. Unless mentioned otherwise, the
key generation algorithm selects a key K uniformly at random from K and out-
puts it.

2. The encryption algorithm Enc takes as input a key K and a plaintext message m∈M
and outputs a ciphertext c ∈ C . The sets M and C are the sets of all possible
messages and ciphertexts respectively and they are commonly called themessage
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space and cipher space. We denote by EncK(m) the encryption of the plaintext m
using the key K.

3. The decryption algorithm Dec takes as input a key K ∈K and a ciphertext c∈ C and
outputs a plaintext m∈M . We denote the decryption of the ciphertext c using
the key K by DecK(c).

The basic notion of correctness is that for all K ∈ K and m∈M , DecK(EncK(m)) = m,
i.e., irrespective of the choice of key and message the decryption always undoes the
encryption. Symmetric-key encryption schemes are generally designed using crypto-
graphic primitives like block ciphers and stream ciphers.

2.3.1 Block Ciphers

An n-bit block cipher is a function E : K ×{0,1}n→ {0,1}n, where K 6= /0 is the key
space and for any K ∈ K , E(K, .) is a permutation on {0,1}n. We write EK() instead
of E(K, .). So a block cipher takes an n-bit input which is the plaintext and produce
an n-bit output also called the ciphertext under the action of a k-bit key, the values of
n and k vary for different block ciphers. The key is secret and in general it is selected
uniformly at random from the key space K . Some practical block ciphers are the Data
Encryption Standard (DES) [16], The Advanced Encryption Standard (AES) [17], etc.

2.3.2 Pseudorandom Functions and Permutations

Security of a block cipher is defined using an abstract object called a pseudorandom
permutation. We discuss some basic notions of pseudorandom functions and permu-
tations next, the discussions closely follows [18].

Consider the map F : K ×D → R where K ,D,R (commonly called keys, domain and
range respectively ) are all non-empty and K and R are finite. We view this map as
representing a family of functions F = {FK}K∈K , i.e., for each K ∈ K , FK is a function
from D to R defined as FK(X) = F(K,X). For every K ∈ K , we call FK to be a instance
of the family F .

Let F :K ×D→R be a function family whereD =R , and for every K ∈K , let FK :D→
D be a bijection, then we say that F is a permutation family. So, if F is a permutation
family, then for every FK(·), we have a F−1

K (·), such that for all K ∈ K and all X ∈ D ,
F−1

K (FK(X)) = X. Note that a block cipher E : K ×{0,1}n→ {0,1}n is a permutation
family.
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We would be interested in probability distributions over a function family F , in partic-
ular we would often talk of sampling an instance at random from the family. By sam-

pling an instance f uniformly at random from F we would mean K
$
←K and f = FK(),

we will denote this by f
$
← F .

Let Func(D,R ) be the set of all functions mappingD toR , ifD = {0,1}mandR = {0,1}n

then Func(m,n) is the set of all functions that map from m bits to n bits. Note, there
are exactly 2n2m

of these functions, i.e., # Func(m,n) = 2n2m
. If D and R are specified,

then by a random function with domain D and range R we mean a function sampled
uniformly at random from Func(D,R ). Hence by a random function, we are not talking
of the "randomness" of a specific function but we are talking of a function sampled
from a probability distribution (specifically, the uniform distribution) over the set of
all possible functions with a specified domain and range.

Informally a pseudorandom function (PRF) is a family of functions whose behavior
is computationally indistinguishable from a random function. Consider the function

family F : K ×D→ R , and let f
$
← F and let η $

← Func(D,R ). If F is a PRF family then
there should be no efficient procedure to distinguish between f and η. To formalize
this goal of distinguishing between a random instance of F and a random instance of
Func(D,R ), we introduce an entity which we call as a PRF adversary. A PRF adversary
is considered to be a probabilistic algorithmwhose goal is to distinguish between f and
η, and if it can successfully do so then we say that the adversary has broken the PRF
property of F . The adversary is not provided with the description of the functions but
it has an oracle access to a function gwhich is either f or η and it needs to decidewhether
g= f . By an oracle access we mean that for any x∈ D of its choice, the adversary can
obtain the value g(x) by querying the oracle of g. The adversary has the ability to query
its oracle g adaptively, i.e., it may be that first it wishes to query its oracle on x1 and
thus obtain g(x1), seeing g(x1) it decides its next query x2 and so on. The adversary
can query its oracle as long as it wants and finally it outputs a bit, say it outputs a 1
if it thinks that its oracle is f (a real instance from the family F) and a zero if it thinks
its oracle is η (a random function). An adversary A interacting with an oracle O and
outputting a 1 will be denoted by AO ⇒ 1.

The PRF advantage of an adversary A in distinguishing F from a random function is
defined as

Adv
prf
F (A) = Pr

[
K

$
← K : AF(K,.)⇒ 1

]
−Pr

[
η $
← Func(D,R ) : Aη(.)⇒ 1

]
. (2.1)

Hence the PRF advantage of the adversary A is computed as a difference between two
probabilities, the adversary A is required to distinguish between two situations, the
first situation is where A is given a uniformly chosen member of the family F (i.e., A
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has oracle access to the procedure FK , where K
$
←K ) and in the other A is given oracle

access to a uniformly chosen element of Func(D,R ). If no adversary can tell apart these
two situations then we consider F to be a pseudorandom family. In other words F is

considered to be pseudorandom if for all efficient adversaries A , Adv
prf
F (A) is small.

In this definition we use efficient adversary with small advantage. We will never make
this more precise, and this is standard with the paradigm of "concrete security" where
a precise notion of efficiency and small advantage is never specified. What makes an
adversary efficient and its advantage small is left to be interpreted with respect to the

specific application where such an object would be used. We define Adv
prf
F (q, t) by

maxAAdv
prf
F (A) where maximum is taken over all adversaries which makes at most

q queries and runs for time at most t. We consider a family F to be (ε,q, t) PRF, if

Adv
prf
F (q, t)≤ ε.

Let E : K ×D → D be a family of functions such that for every K ∈ K , EK : D → D is
a bijection. Such a family is called a permutation family. Note that according to our
definition of a block cipher, a block cipher indeed is a permutation family.

Let Perm(D) denote the set of all bijections from D to D . Analogous to the definition
of PRF advantage, we define the PRP advantage of an adversary in distinguishing a
random instance of the family E from a random permutation π as

Adv
prp
E (A) = Pr

[
K

$
←K : AEK()⇒ 1

]
−Pr

[
π $
← Perm(D) : Aπ()⇒ 1

]
.

And, E is considered to be a pseudorandom permutation family if for all efficient ad-
versaries A , Adv

prp
E (A) is small.

We consider a family E to be (ε,q, t) PRP, if Adv
prp
E (q, t)≤ ε.

The fact that every member of a permutation family has an inverse, allows to define
a stronger notion of pseudorandomness. Here we assume that the adversary is given
two oracles one of the permutation and other of its inverse and the adversary can
adaptively query both oracles. As before there are two possible scenarios, in the first

scenario the adversary is provided with the oracles EK() and E−1
K () where K

$
← K and

in the other scenario the oracles π(),π−1() are provided where π $
← Perm(D). And the

goal of the adversary is to distinguish between these two scenarios. We define the
advantage of an adversary A in distinguishing a permutation family E from a random
permutation in the ±prp sense as

Adv
±prp
E (A) = Pr

[
K

$
←K : AEK(),E

−1
K ()⇒ 1

]
−Pr

[
π $
← Perm(D) : Aπ(),π−1()⇒ 1

]
,

and if for all efficient adversaries A , Adv
±prp
E (A) is small then we say E is a strong
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pseudorandom permutation (SPRP) family.

Security of Block Ciphers. As defined in Section 2.3.1, a block cipher is a permutation
family E : {0,1}k×{0,1}n→{0,1}n. Of course any such permutation family cannot be
considered as a block cipher, as a block cipher should have some security properties
associated with it which any permutation family will not have. Defining security of a
block cipher is tricky (as is true for all cryptographic primitives), if we consider that a
block cipher EK() is used to encrypt n bit strings then ideally given EK(X) one should
not be able to obtain any information regarding K or X, this property can be achieved
if EK(X) "looks random" to any computationally bounded adversary. In practice we
consider a block cipher to be secure if it behaves like a strong pseudo-random permu-
tation.

2.3.3 Block Cipher Modes of Operations

Block ciphers are themselves not encryption schemes, as their message space is re-
stricted to only fixed length (n- bit) strings. Block ciphers can be used in several ways
to construct encryption schemes with different security properties. A specific way of
using a block cipher to achieve a security/functionality goal is called a block cipher
mode of operation. We informally discuss some specific types of modes which are
currently in use.

1. Privacy Only Mode: As the name suggests, these kinds of modes are meant to
provide privacy/confidentiality. In general these modes are either stateful or
randomized. The examples of such modes are the cipher block chaining (CBC),
counter (CTR), cipher feedback (CFB) and output feedback (OFB).

2. Authenticated Encryption: Authenticated encryption (AE) provides both the
services of confidentiality and data integrity. As in privacy only modes they are
also either randomized or stateful. Most constructions take as input a non re-
peating quantity called a nonce, which helps in maintaining the state. There are
several constructions of AE schemes known to date, for example [19, 20, 21].

3. Authenticated Encryption with Associated data: Authenticated encryption with
associated data (AEAD) are a variant of AE, where the encryption algorithm
takes as input a message and a message header. The goal is to both encrypt
and authenticate the message, but to only authenticate the header. Most AE
schemes can be converted into AEAD schemes, some existing AEAD schemes
can be found in [22, 23, 24].
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4. Deterministic Authenticated Encryption: As stated before the AE and AEAD
schemes are either randomized or stateful, whereas deterministic authenticated
encryption schemes (DAE) are deterministic. There are many applications where
a randomized/stateful encryption scheme cannot be suitably used, as it is the
case of database encryption. In such scenarios DAE schemes are useful. DAE
schemes can also be modified to support associated data, such schemes are called
deterministic authenticated encryption with associated data (DAEAD). Some ex-
isting DAE and DAEAD schemes can be found in [25, 26, 27].

5. Tweakable enciphering schemes: Tweakable enciphering schemes (TES) are a
special kind of deterministic modes which are length preserving, i.e., the length
of the ciphertext is strictly the same as the length of the plaintext a property which
is not satisfied by the modes mentioned above. TES takes in an additional public
quantity called the tweak, which is meant to increase the variability of the cipher-
text, i.e., two same plaintexts when encrypted with two different tweaks gives
rise to two different ciphertexts. TES has been extensively used to develop en-
cryption schemes for sector oriented storage devices like hard disks, flash mem-
ories etc. Concrete constructions of secure TES can be found in [28, 29, 30, 31].

In our work we would require a specific type of mode which to our knowledge has not
been explicitly studied in the existing literature. We call this mode as a deterministic
encryption scheme with associated data (DEAD). DEAD is different from DAE as it
does not provide authentication, and in terms of security they are weaker than both
DAE and TES. But DEAD provides the exact security and functionality as required for
database encryption. In Chapter 7 we discuss more about DEAD schemes.

2.3.4 Message Authentication Codes

Message authentication codes (MAC) provide authentication in the symmetric key set-
ting. It is assumed that the sender and the receiver share a common secret key K.
Given a message x, the sender uses K to generate a footprint of the message. This
footprint (commonly called a tag) is the message authentication code (MAC) for the
message x. The sender transmits the pair (x, tag) to the receiver. The receiver uses K
to verify that (x, tag) is a properly generated message-tag pair. Verification is generally
performed by regenerating the tag on the message x and comparing the generated tag
with the one received. The algorithm for generating the tag is known as a MAC. As-
suming that the size of the tag is τ bits, we see the tag generation scheme as a function
MAC : K ×M →{0,1}τ, where K andM are the key and message spaces respectively.
In most cases we shall write MACK(x) instead of MAC(K,x).
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An attack on a MAC scheme signifies forging a message-tag pair. The types of attacks
which are important for MAC schemes can be formally described as an interaction
of an adversary A and the procedure MAC. A is given an oracle access to the MAC
generation procedure MACK(.), instantiated with a randomly generated key K, which
is unknown to A . A can query MACK(.) with messages of its choice, and for each
query x it gets MACK(x) as a response. Let us assume that A queries with the mes-
sages x1,x2, . . . ,xq and gets y1, . . . ,yq as the responses. In the end, A produces a pair
(x̃, ỹ), such that x̃ /∈ {x1,x2, . . . ,xq}. It is said that A had committed a successful forgery
if MACK(x̃) = ỹ. We define the advantage of the adversary A in forging the message
authentication code MAC as follows:

AdvauthMAC(A) = Pr[A forges ]. (2.2)

The probability is taken over the random choice of the key K and the randomness of
the adversary.

In the literature there are various known construction of MACs. There are three domi-
nant paradigms for constructing MACs which we discuss next:

1. MACs can be constructed using block ciphers. Such MACs can be seen as a block
cipher mode of operation designed to provide only the security service of au-
thentication. Two well known block cipher based MACs are OMAC [32] and
PMAC [33, 24]. OMAC is based on the cipher block chaining mode of opera-
tion, and being a part of some standard is also widely used. One drawback of
OMAC is that it is inherently sequential thus not very efficient in either software
or hardware. Unlike OMAC, PMAC is fully parallelizable.

2. MACs can also be constructed using universal hash functions. This paradigm
was first proposed by Carter and Wegman [34]. The most popular among these
MACs are polynomial evaluation MACs, specific examples of this class are Poly-
1305 [35], UMAC [36] etc.

3. MACs can also be constructed from collision resistant hash functions. Examples
of such constructions are HMAC and NMAC [37].

2.4 Proofs by Reduction

Modern cryptographic schemes are generally associated with a "security proof", which
provides some formal arguments regarding to its security. This security proof can be
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constructed by using a well known strategy called Proofs by Reduction. The main idea
behind this technique is assume that a low level problem is hard to solve, and then try
to prove that the scheme that is being analyzed is secure under this assumption; i.e. the
reductionist argument shows how to convert any efficient adversary A that succeeds
in breaking the protocol Ξ with non-negligible probability into an efficient algorithm
B that succeeds in solving the problem X that was assumed to be hard. This can be see
it in Figure 2.1 pictorially.

B

A
Break

Instance of
problem X

scheme Ξ
Instance of the

Solution to X

Figure 2.1: Overview of a security proof by reduction

The basic sequence of steps generally adopted to argue about the security of a scheme
is discussed next.

1. Given a cryptographic scheme Ξ, first one needs to define the security notion of
the scheme. The security notion is generally defined in terms of an interaction
between the scheme Ξ and an adversary A , a specific goal for the adversary A

is fixed and a scheme is said to be broken if an adversary A that achieves the
goal can be constructed. This adversary is generally a computationally bounded
probabilistic algorithm. For example, consider the discussions regarding MACs
in Section 2.3.4. Here, the goal of the adversary is to generate a message forgery,
and the goal is defined in terms of an interaction of A with the MAC. The ad-
vantage of an adversary (in equation (2.2)) is defined to be the probability that it
achieves its goal.

2. To prove security of a scheme means to show that there exists no adversary that
can achieve the goal as described in the corresponding security notion. For exam-
ple, to prove that a MAC is secure one needs to show that there exists no compu-
tationally bounded adversary which has a non-negligible advantage in the sense
of equation (2.2). It is to be noted, that the security is guaranteed only against
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computationally bounded adversaries, such kind of security is called "computa-
tional security".

3. In computational security it is almost never possible to show that a scheme sat-
isfies a security definition unconditionally. The security definition is satisfied by
a cryptographic construction based on some assumptions. In general a scheme
is constructed using some basic primitives, for example, as stated, a MAC can
be constructed using block ciphers. The primitives used to build the scheme are
assumed to be secure in some sense, and the security of Ξ is proved based on this
assumption. The proof technique involves a reduction which shows that if the
scheme is insecure then the primitive is also insecure. Thus a security theorem is
not an absolute statement and needs to be interpreted carefully1.

We give an example to a simple reductionist security proof. Consider a MAC f :
K ×M → {0,1}τ, we claim (informally) that f is a secure MAC if f is a PRF. We can
formalize this claim as below.

Proposition 2.1. Let f : K ×M → {0,1}τ be a message authentication code and A be an

arbitrary adversary attacking f , then there exists an adversary B such that

Advauthf (A) = Adv
prf
f (B)+

1
2τ (2.3)

Proof. It is enough to construct a PRF adversary B such that eq. (2.3) is satisfied. We
construct B as in Figure 2.2

Note, as B is a PRF adversary for f hence it has as its oracle either the function fK()

for some K
$
← K or is a uniform random function in Func(M ,{0,1}τ), in Figure 2.2 the

oracle of B is depicted as O. Moreover, B uses A , i.e., it provides the environment
required for A by answering its queries. As the goal of A is to produce a forgery, it
does so in line 4. Based on this forgery, B decides its output.

It is easy to see from the description of B that if the oracle O of B is the real function
fK then the probability that B outputs 1 is same as the probability that A commits a
successful forgery, i.e.,

Pr
[
K

$
← K : B fK(·)⇒ 1

]
= Advauthf (A). (2.4)

1In the recent years there have been some criticisms to the paradigm of provable security and there
have been proposals that given the relative nature of a security theorem and its proof they should not
be called as security proofs but as reductionist arguments [38, 39].
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Adversary BO

1. Q← /0
2. While A queries x, do the following:
2.1 y← O(x)
2.2 Q←Q∪{x}
2.3 return y
3. Until A stops querying
4. A returns (x̃, t̃)
5. if x̃ /∈Q and O(x̃) = t̃
6. return 1
7. else return 0

Figure 2.2: The adversary B .

On the other hand,

Pr
[
η $
← Func(M ,{0,1}τ) : B fK(·)⇒ 1

]
=

1
2τ . (2.5)

As, if the oracle of B is a random function then the point x̃ can get mapped to any of
the 2τ points in the range. Hence subtracting equation (2.5) from equation (2.4) and
using the definition of PRF advantage of B (as in eq. 2.1), we have the proposition.

Proposition 2.1 is a standard form of a reductionist security statement, where the secu-
rity of a scheme is related to the security of something else. We formally study all the
schemes that are proposed in this thesis and we state formal security theorems for our
schemes. Our security theorems have the same structure as that of Proposition 2.1.

2.5 Some Other Cryptographic Primitives

In this section we consider some cryptographic primitives that we do not use explicitly
in our constructions. However, some of the schemes that we introduce as part of the
state of the art in the Chapter 3, make use of them. Therefore, we discuss briefly hash
functions and signature schemes.

Hash Function: A cryptographic hash function is used to construct a short “finger-
print” of some message; if the message is altered, then the fingerprint will no longer be
valid. For example, if the data is stored in an insecure place, its integrity can be checked
from time to time by recomputing the fingerprint and verifying that the fingerprint has
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not changed. Let H be a hash function and let x be some message, where x could be a
binary string of arbitrary length. The corresponding fingerprint is defined as y=H (x)
this fingerprint its know as message digestwhich could be short as 160 bits. Let say that
y is stored in a secure place but x is not. If x is changed to x′, then the old message
digest, y, is not also a message digest for x′. Then the fact that x has been altered can be
detected simply by computing the message digest y′ =H (x′) and verifying that y′ 6= y.

For the purposes of the schemes that we present in the next chapter, it is required that
hash functions are Collision resistance. This property states that it is computationally
infeasible to find two inputs, x1 6= x2, such that H (x1) =H (x2).

Signature Scheme: Digital signatures are the public-key counterpart of message au-
thentication codes. The algorithm that the sender applies to a message is denoted Sign
S , and the output of this algorithm is called signature. The algorithm that the receiver
applies to a message and a signature in order to verify legitimacy is denoted Vf. A
signature scheme is a tuple of three polynomial-time algorithms (Gen,S ,Vf) satisfying
the following:

1. The key-generation algorithm Gen takes as input a security parameter 1n and
outputs a pair of keys (pk,sk). These are called the public key and the private
key, respectively.

2. The signing algorithm S takes as input a private key skand a message m∈ {0,1}∗.
It outputs a signature ϑ denoted as ϑ← Ssk(m).

3. The deterministic verification algorithm Vf takes as input a public key pk, a mes-
sage m, and a signature ϑ. It outputs a bit b, with b= 1 meaning valid and b= 0
meaning invalid. We write this as b := Vfpk(m,ϑ).

2.6 Relational Databases

In this section we describe some basic concepts of a relational database [40] and fix
some notations which we would use later.

2.6.1 Relational Databases: Basic Structure and Notations

A relational database is a collection of data with an specific structure that stores in-
formation about the data itself and its relations. In such a database the data is repre-
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sented as two-dimensional tables called relations. For example, consider an organiza-
tion which stores details regarding its employees, such a relation is shown in Table 2.1.

Each database is a collection of related tables/relations. Each table is a physical rep-
resentation of an entity or object that is in a tabular format consisting of columns and
rows. Columns are the fields of a record or the attributes of an entity. Attributes can be
seen as descriptive properties possessed by each member of an entity. Each attribute
of a table has an unique name. The rows contain the values or data instances; these are
also called records or tuples. For example, in the example in Table 2.1 each row (tuple)
represents an employee and the columns are the specific attributes of the employee,
specifically its identification number, name, gender, level in the organization and age.

We will denote by R(A) a relation defined over a set of attributes A. If A= {a1,a2, · · ·an},
we will sometimes write R(a1,a2, · · · ,an) instead of R(A). Given an attribute a, DomR(a)
represents the set of values of A present in the relation R. We will call DomR(a) as the
domain of a in R, and when the relation R is clear from the context, we will sometimes
drop the subscript R 2. By our definition, for any relation Rand an attribute a, DomR(a)
is always finite. If R, is static thenDomR(a) is fixed, but when R is dynamic, i.e., updates
and insertions are allowed on R, then DomR(a) may change with each insert/update.
By DomR(a) we will always mean the distinct values taken by the attribute a in the
current state of the relation R. By cardinality of an attribute we shall mean the cardi-
nality of the domain of the attribute. We will denote the cardinality of an attribute a
by CardR(a) = #DomR(a). Note, that for a dynamic relation R, CardR(a) can also change
with time.

A tuple t in a relation over a set of attributes is a function that associates with each
attribute a value in its specific domain. Specifically if A= {a1,a2, · · ·an} and R(A) be a
relation then the jth tuple of relation R(A)would be denoted by tR

j and for ai ∈Aby tR
j [ai]

we shall denote the value of attribute ai in the jth tuple in R. E.g the associated value
with tR

3 [Gender] = ′M′. For B⊆ A, tR
j [B] will denote the set of values of the attributes

in B in the jth tuple. We sometimes omit the subscripts and superscripts from tR
j and

denote the tuple by t if the concerned relation is clear from the context and the tuple
number is irrelevant.

2In the literature the domain of an attribute is sometimes used to denote the set of permitted values
of an attribute. For example, for the relation shown in Table 2.1 the domain of the attribute Agewould be
defined by the set of all integers between say 18 and 100. But, according to our definition Domain(Age) =

{17,18,33,36,52}
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Data Manipulation

It is possible to apply different operations or transactions like create, modify, retrieve,

delete to a database. Each of these transactions can be described using a query language.
One of the most popular query languages for data manipulation is the Structured Query

Language (SQL). We discuss the SQL syntax for some basic data manipulation below.

The insert operation is used to populate a table with rows. The basic syntax is:

INSERT INTO <relation> VALUES (v1, v2, · · ·,vl);

EmpId Name Gender Level Age

TRW Tom M L2 18

MST Mary F L1 17

JOH John M L2 52

MRH Mary F L1 33

ASY Anne F L1 18

RZT Rosy F L2 36

Table 2.1: Relation Employees

The clause <relation> implies in which table the rows will be inserted, like INSERT

INTO Employees VALUES (’TRW’,’Tom’,’M’,’L2’,18).

The modification of data that is already in the database is referred to as updating. It
is possible to update individual rows, or a subset of all rows. Each column can be
updated separately, in that case the other columns are not affected. The basic syntax
for this operation is:

UPDATE <relation> SET <attribute> = <value> WHERE <conditions>

It is necessary to specify the row number where the update operation should be ap-
plied, or specify which conditions a row must meet in order to be updated. For in-
stance, consider that the client wants to update the age of Anne (tuple 5 of Table 2.1)
from 18 to 19. Therefore, the SQL statement looks as follows.

UPDATE Employees SET age=19 WHERE EmpId=’ASY’

We have explained how to add data to tables and how to change data. What remains
is to discuss how to remove data that is no longer needed. As in an update statement,
to remove rows, we need to specify the conditions that such rows have to meet. The
respective syntax is:
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DELETE FROM <relation> WHERE <conditions>

Going back to our example, consider that the client wants to remove the tuple corre-
sponding to John, then the following statement has to be posed.

DELETE FROM Employees WHERE EmpId=’JOH’

Retrieving data

The SELECT statement is used to retrieve data from a table. In order to explain the syn-
tax of this operation, we use the following general query form:
SELECT <attributes>

FROM <relations>

WHERE <predicates>

The basic structure of an SQL expression consists of three clauses: SELECT, FROM, and
WHERE. The SELECT clause is used to list the attributes desired in the result of a query.
The FROM clause lists the relations to be scanned in the evaluation of the expression. The
WHERE clause corresponds to predicates which describe relations between the above re-
lations (joins 3, outerjoins , etc). In addition, the WHERE clause allows to declare restric-
tions, i.e. Select all the employees names who are female. The SQL statement for this query
looks like:

SELECT Name

FROM Employees

WHERE Gender=’F’

We only discussed some basic syntax of the SQLwhich wewill use in this thesis. Need-
less to say, that SQL is a powerful query language which includes syntax for more
complicated database operations.

2.6.2 Bitmaps and their Encodings

Traditionally a database has been indexed with B-trees or its variants, in the current
days the Bitmap indices have gained lot of popularity for their use in accelerated query
processing [7, 8], and many commercially available databases like Oracle, IBM DB2,
Sybase IQ now implement some form of bitmap index scheme in addition to the more

3Join it is a relational database operation which selects rows from two tables such that the value in
one column of the first table also appears in certain column of the second table.
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traditional schemes. In this section we discuss the basic concept of bitmaps, the differ-
ent encodings and how the bitmaps can be stored efficiently.

The main idea behind a bitmap index is to use a bit string to describe if the value of an
attribute is equal to an specific value or not. The position of the bit denotes the tuple
number in the relation. This concept is formalized next.

Consider a relation R(a1, . . . ,am) with nT many rows. Consider that for each attribute
ai , DomR(ai) = {vi

1,v
i
2, . . .v

i
λi
}, thus CardR(ai) = λi for 1≤ i ≤ m. We define the bitmap

of an attribute ai corresponding to its value vi
j in the relation R as BitMapR(ai,vi

j) = X,
where X is a binary string, such that |X|= nT and for 1≤ k≤ nT,

bitk(X) =

{
1 if tR

k [ai ] = vi
j

0 otherwise.

The encoding for the previous definition is known as equality encoding, we shall
call such bitmaps as e-encoded bitmaps. This would be more clear with an example.
Consider the specific relation R1 on the attributes {EmpID,Name,Gender,Level,Age} as
shown in Table 2.1. Dom(Gender) = {M, F} and Dom(Level) = {L1,L2}.

From this relation we can compute the following bitmaps

BitMapR1(Gender,F) = 010111

BitMapR1(Gender,M) = 101000

BitMapR1(Level,L1) = 010110

BitMapR1(Level,L2) = 101001.

In the literature there are other kinds of bitmap encodings to allow different kinds of
queries. We would be interested in a specific encoding called range encoding [41]. We
define two types of range bitmaps BitMap< and BitMap> which we will further call as
l-encoded and g-encoded bitmaps respectively. For the relation Rdescribed above, we
have BitMap<R(ai ,vi

j) =Y, where

bitk(Y) =

{
1 if tR

k [ai ]< vi
j

0 otherwise.
.

From the l-encoding and e-encoding other bitmap encodings can be easily derived as
follows:

BitMap>R(ai,v
i
j) = BitMap<R(ai,vi

j)
⊕

BitMapR(ai ,v
i
j)

BitMap≤R(ai,v
i
j) = BitMap<R(ai,v

i
j)
∨

BitMapR(ai ,v
i
j)

BitMap≥R(ai,v
i
j) = BitMap<R(ai,vi

j)
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l-encoded bitmaps g-encoded bitmaps e-encoded bitmaps
BitMap<R1(Age,17) = 000000 BitMap>R1(Age,17) = 101111 BitMapR1(Age,17) = 010000
BitMap<R1(Age,18) = 010000 BitMap>R1(Age,18) = 001101 BitMapR1(Age,18) = 100010
BitMap<R1(Age,33) = 110010 BitMap>R1(Age,33) = 001001 BitMapR1(Age,33) = 000100
BitMap<R1(Age,36) = 110110 BitMap>R1(Age,36) = 001000 BitMapR1(Age,36) = 000001
BitMap<R1(Age,52) = 110111 BitMap>R1(Age,52) = 000000 BitMapR1(Age,52) = 001000

Table 2.2: Example of various bitmap encodings for the values of the attribute Age in
the relation R1

The various encodings would be more clear with an example. Consider the specific
relation R1 on the attributes {EmpID,Name,Gender,Level,Age} as shown in Table 2.1,
where Dom(Age) = {18, 17, 52, 33, 36}. Three different bitmap encodings for all the
values of the attribute Age are shown in Table 2.2.

2.6.3 Bitmap Compression

There had been a lot of work that has shown that bitmap based indexing works ef-
fectively in database applications. To further improve their effectiveness, compression
schemes have been developed, these schemes are capable of reducing the index size
without increasing query processing time. The most frequent operations over bitmaps
are bitwise logical operations [42], the specific compression schemes developed for
bitmaps also allows logical operations to be performed on the compressed bitmaps.

Most of the compression schemes applied to bitmaps are based on run length encoding
(RLE) scheme. Basic RLE works on the basis of the following simple idea. Consecutive
occurrences of identical bits are detected in a bit string, such occurrences are known
as a fill. Each fill in a bit string can be recorded with a counter representing its length
and one bit indicating the actual value. This compression scheme is lossless and very
efficient.

Several variants of RLE has been developed for application to bitmap compression. In
our implementations we use a specific scheme called Enhanced Word Aligned Hybrid
(EWAH). EWAHwas studied independently by Wu et al. [42] and Lemire et al. [43].

Enhanced Word Aligned Hybrid (EWAH) scheme

EWAHdivides the whole bit string X into 32 bit blocks and classify each block as either
a clean word or a dirty word. A clean word is a 32 bit fill (either of zeros or ones), a word
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which is not clean is called dirty. The basic idea is to encode in such a manner that the
clean words are compressed by specifying the type of fill contained in the word and
its length; and the dirty words occur verbatim in the encoded string. We explain the
basic encoding procedure with an example in Figure 2.3. In the example, the original
bit string is shown in the beginning followed by the compressed string. The original
string is 224 bits long and is represented in hexadecimal. As we can see that in the
input string the first two blocks are dirty words followed by four clean words each
with a fill of zeros and the last word is a dirty word. The encoded string contains
two types of 32 bit words namely marked words and verbatim words. Marked words are
sort of headers which carries information regarding the length and positions of fills
and verbatim words are verbatim copies of dirty words. The first bit of each marked
word represents the type of clean word that is to follow, the next 16 bits of a marked
word encodes the length (in words) of the clean words and the final 15 bits encodes the
number of dirty words that follows the clean words.

In our example the first word of the encoded string is a marked word (this is so, for
all strings) 0x00 00 00 02, which means that the marked word is followed by no clean
words but two dirty words. Next the following two dirty words are copied verba-
tim. Next the marked word 0x00040001 occurs, which means that this marked word
would be followed by four clean words each of zero which would be followed by one
dirty word. At the end of this marked word the dirty word is written verbatim. This
procedure can be easily generalized.

80 00 00 00    02 02 02 00 00 00 00 00    00 00 00 00    00 00 00 00     00 00 00 00 F3 00 8A 37

a) An example bitmap being compressed  (224 bits)

b) EWAH encoding

00 00     00 02     80 00 00 00    02 02 02 00

Marked Word Verbatim Word

00 04   00  01 F3 00 8A 37

Marked Word Verbatim Word

0 0000 0000 0000 0100

Type of Clean word (1 bit)
Number of clean words (16 bits)

Number of verbatim words (15 bits)

000 0000 0000 0001

Figure 2.3: EWAH compression example.

Also, it is not difficult to see that as the EWAH works with a granularity of 32 bits,
hence bitwise operations can be easily performed on the compressed words and the
compressed results can be directly obtained. In [43] one can find the algorithms to
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perform logical operations on RLE encoded bitmaps. These procedures can be easily
extended for EWAH compression scheme.

2.7 Summary

In this chapter we discussed some preliminary concepts related to symmetric key cryp-
tography and databases. Regarding cryptography, we introduced symmetric encryp-
tion schemes, block ciphers and and their modes of operations, and messages authen-
tication codes. We also introduced the technique of proofs by reduction, that is largely
used in our work to prove the security of our schemes.

About databases we described the basic structure of a database and fixed some useful
notation. We also mentioned the basic operations that our schemes manage and their
SQL syntax. Finally, we introduced bitmap indexes, which will form the main non
cryptographic tool for the schemes that we develop later.
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The State of the Art
Security is mostly a superstition. It does not
exist in nature... Life is either a daring
adventure or nothing.

Helen Keller

Now-a-days there is a diversity of storage tools oriented to cloud computing. This
variety has generated the necessity of an extended security study. Also, an in-

tensive development of new cryptographic schemes, which provide various kind of
security to these tools, has taken place. These set of schemes aim to achieve a specific
security goal, for example, privacy, integrity, etc. However, most of these problems are
widely open and ideal solution to them is yet to come. In this chapter we summarize
the most relevant works related to privacy and integrity of outsourced databases.

3.1 Database As A Service Model

A DAS model is typically composed of three entities, namely, the data-owner, one or
more data-users (can be same as the owner), usually called clients, and a server (see
Figure 3.1). The owner stores the data on the server and the clients may query parts of
this data. In DAS applications, the server is consider un-trusted. On the other hand,
the client-side is considered to be secure. Therefore the main adversary is considered
to be the server.

In such a scenario the datamay face different threats, among others, modification, dele-
tion or disclosure. The security model can consider two basic scenarios: a) the server
is an active adversary, i.e, the server can modify or delete some of the stored infor-
mation. Integrity checking becomes important in this scenario, specifically a problem
of this class in databases is known as query authentication. b) the passive or curious

31
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Data Owner

Data User

Client

Internet

Untrusted
Server

Service Provider

Figure 3.1: Database as a Service Model.

adversary, in which the server is only interested in getting information about the data
that it is storing, i.e, breaking the confidentiality.

In the next sections we introduce these two problems in detail and we present how it
has been addressed in the literature.

3.2 Query Authentication Problem

We consider the scenario where a client delegates a relational database to an un-trusted
server. When the client queries its outsourced data, it expects in return a set of records
(query reply) satisfying the query’s predicates. As the server is not trusted, so it must
be capable of proving the correctness of its responses. In other words, a malicious
server may attempt to insert fake records into the database, modify existing records or
simply skip some of them from the query response. Hence there must exists a mech-
anism, which can protect the client from such malicious server behavior. We describe
the problem with the help of an example.

Consider that the relation depicted in Table 3.1 has been delegated by a client to a
server, and the client poses the following query

SELECT * FROM R1 WHERE Gender= ’M’ OR Level= ’L2’.

The correct response to this query is the set Res consisting of three tuples

Res= {(TRW, Tom, M,L2,18),(JOH, John, M,L2,52),(RZT, Rosy, F,L2,36)}.

In answering the query the server can act maliciously in various ways. In the context
of authentication we are concerned with two properties of the response namely correct-

ness and completeness. Correctness and completeness denote two different malicious
activities of the server, we explain these notions with an example below:
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1. Incorrect result: The server responds with three tuples, but changes the tuple
(TRW, Tom, M,L2,18), to (TRW, Tom, F,L2,18). Moreover, it can be the case that
the server responds with Res ∪ {(BRW, Bob, M,L2,26), i.e., it responds with an
extra tuple which is not a part of the original relation.

2. Incomplete result: The server may not respond with the complete result, i.e.,
it can delete some valid results from the response, which means that instead of
responding with Res it responds with Res−{(TRW, Tom, M,L2,18)}.

EmpId Name Gender Level Age

TRW Tom M L2 18

MST Mary F L1 17

JOH John M L2 52

MRH Mary F L1 33

ASY Anne F L1 18

RZT Rosy F L2 36

Table 3.1: Relation Employees

It is to be noted that incomplete results are also incorrect, but we differentiate the two
scenarios (as it has been previously done in the literature) by the fact that in an incorrect
result the server inserts something which is not in the database, and in case of an
incomplete answer the answer is correct but is not complete, in the sense that the server
drops some valid tuples from the correct response. A client must be able to verify both
correctness and completeness of a response.

The problem of correctness can be easily handled in the symmetric setting by adding a
message authentication code to each tuple. In contrast, public key cryptography pro-
vides correctness by adding signatures. Both, the secure message authentication code
or the secure signatures are difficult to forge, and thus this property would not allow
the server to add fake entries in its response. However, digital signatures introduce sig-
nificant overhead in terms of storage, bandwidth and computation. The completeness
problem is more difficult and its solution is achieved through more involved schemes.

At the high level, these schemes achieve completeness by using the following strategy:
the data owner not only outsources the database but also an additional data structure
that contains information that helps to verify the completeness of the query results.
This structure is popularly called an Authenticated Data Structure (ADS). After a client
poses a query, the server looks for the results and computes the additional data neces-
sary for proving correctness and completeness. This additional data is referred to as
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the Verification Object (VO), and it is sent to the client along with the usual response.
Using these information the client can verify if the response is correct and complete.

There is a number of important costs pertaining to this model, relating to the construc-
tion, and query phases. Among others, the most relevant metrics are:

1. The computation overhead for the owner, i.e, how many operations the owner
has to perform in order to outsource the data.

2. The communication cost, which generally involves the size of the VO.

3. The storage overhead for the server, i.e, the amount of extra storage required in
the server besides the one corresponding to the database itself.

4. The computation overhead for the server, i.e, how many operations the server
has to perform to answer a query.

5. The computation cost for the client, i.e, the number of operations involved in the
verification process.

The analysis of these costs helps to compare the different schemes.

In general the costs associated with the client have greater priority than the ones asso-
ciated with the server. For instance, a scheme which reduces the number of operations
in the verification process is preferred to a scheme that is expensive in this cost, but
very cheap in the response procedure performed by the server. Also the recurring
costs are more important than the one-time costs, for example the query process is
more important than the initial cost for the data owner to create the data structures.

According to Bajaj et. al. [44], the existing solutions for the problem of authenticated
query processing can be classified as based on authenticated data structures (ADS) or based
on signatures. There are some schemes which use both. The former builds the ADS as a
tree (for example, a Merkley Hash Tree, B-Tree, R-Tree etc). As part of query execution,
the server traverses the tree and obtains the respective nodes to build the VO, which
is sent to the client along with the query results. The client can then reconstruct the
traversal path used in the query execution and verify. Signature based approaches pro-
vide a mechanism to verify the ordering between tuples. The owner builds a signature
chain over the tuples. At query time, the server obtains the corresponding signatures
of all the tuples that comprise the contiguous range query result (VO). Since each tuple
is linked with its predecessor, sometimes also with the successor, the client can verify
the completeness of the result. In the next section we explore briefly the literature in
this regard.
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3.3 Some Existing Schemes for AuthenticatedQuery Pro-

cessing

In Table 3.2 we summarize some of the schemes that aim to solve the authenticated
query processing problem. In general, each of them intends to improve their predeces-
sor in some aspect, for instance in VO size, communication cost, the types of queries
that it is able to manage, or the facility to be implemented.

As we have mentioned, the main two strategies to solve authenticated query problem
are: Tree approach and Signature approach. We analyze first, the works that fall in
the first category. Devanbu et.al in [45, 46] applied for the first time the seminal work
of Merkle in [47] to this problem. In this work the Merkle Tree is proposed as the
ADS. The idea behind this approach is to have a tree whose root is signed by the data
owner. In response to a query posed by the client, the server sends besides the query
results the set of nodes required to reconstruct the root node. The client verifies the
signature of the root, and if it verifies, then the client is satisfied that the query result
is both correct and complete. This idea was extended to trees with bigger fan-out, like
B+-tree; the first scheme that deployed this kind of tree was by Pang et al. [48]. In this
work an authenticated B+-tree is proposed. In [49] another authenticated structure was
proposed which also uses a B+-tree but here each node of the B+ tree encapsulates a
Merkley tree. This structure is called embedded Merkle B+-tree. This ADS provides
better tradeoff between the VO size and the number of operations required to build it.
Later we discuss both the Merkle tree and Merkle B+-tree in a bit more detail.

Some other interesting works have been proposed for join processing [50, 51]. The
straightforward manner to manage joins is to materialize the cartesian product over
the relations and construct the authenticated structure over it. However, this is ineffi-
cient and costly. Pang et. al. in [50] extend their scheme for range queries to primary

key- foreign key joins, e.g., consider a relation Employees R1 (in Table 3.1) related with
a second relation called Departments R2. Each employee works in an specific depart-
ment, e.g. informatics, human resources, etc. The data owner constructs the authenti-
cated structure using the two tables over the attribute in common (id-department). The
server answers the query with respect to the smallest relation (let us assume that is R2)
and completeness is checked. Then a new query is posed over the second relation to
find the matching tuples in R1. The first comprehensive work on authenticated queries
for joins can be found in [51]. The authors propose three joins algorithms:

1. Authenticated Indexed Sort Merge Join (AISM), which utilizes a single authenti-
cated structure on the join attribute.
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2. Authenticated Index Merge Join (AIM), that requires an Authenticated structure
on the join attribute for both relations, and

3. Authenticated Sort Merge Join ASM, which does not rely on any authenticated
structure.

The last method is the most efficient solution proposed in the literature for authenti-
cated join processing.

A few solutions have also studied the authentication problem for aggregated queries [52,
53], e.g (maximum MAX, minimum MIN, average AVG, etc). Pang et. al. in [52] pro-
vide a solution of aggregate range queries, in order to do so the server needs to main-
tain a hierarchy of partial sums over the records. Feifei et.al. in [53] suggest a new
structure for aggregated queries called Authenticated Aggregation B-Tree (AABT). In
a AABT each node stores the aggregated sum of its child nodes on the value of the
search attribute.

Name Year Operations

Tree Approach
MHT [45] [46] 2003 Range queries

VBT [48] 2004 Range queries
HAT [54] 2005 Range queries
EMBT [49] 2006 Range queries

Goodrich et. al. [55] 2008 Range queries
MR-tree [56] 2008 Range queries
PMD [57] 2009 Range quieres
AIM [51] 2009 Range queries, joins
AABT [53] 2010 Aggregation

Signature Approach
DSAC [58] 2005 Range queries

Pang et.al. [50] 2005 Range queries,joins
Pang et.al. [52] 2008 Range queries, aggregation
Pang et.al. [59] 2009 Range queries, joins, aggregation

Other Techniques
Query Racing [60] 2010 Range and logical queries

Table 3.2: Summary of existing approaches

Now, let us discuss the schemes that fall in the second category. The first approaches
that use signatures only can achieve correctness, but not completeness. The basic idea
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was to sign each tuple before outsourcing the data. Narasimha et. al. in [58] provide
the first scheme based only in signatures that achieves completeness for query authen-
tication. The basic idea behind this scheme consists of computing the signature of each
individual tuple along with its immediate predecessors, called chain. The client veri-
fies that the set of tuples received in the result do form a valid chain. Independently
Pang et. al. also proposed a scheme based in signature chains [50]. These schemes can
use aggregated signatures, thereby resulting in a small, constant sized VO. In the next
sections, we explore in more detail some of the schemes that we just mentioned.

3.3.1 Approaches Based on Authenticated Data Structures

A Basic Scheme using Merkle Hash Tree: The basic approach to accomplish com-
pleteness over a set of n values r1, r2, · · · , rn is the Merkle Hash Tree (MHT), see Figure
3.2. This data structure was first proposed by Merkle in [47]. In order to use it in au-
thenticated query processing, the data owner must delegate not only the data itself,
but also this tree.

A MHT is built as a binary tree, where each leaf stores the hash of a data value in the
set. For example, in the tree depicted in Figure 3.2 the first leaf is associated with r1 and
the node contains the H (r1). In contrast, each internal node contains the hash of the
concatenation of the content of its two children, for example the right children of the
root contains H (h3||h4). The root of the tree is authenticated with a digital signature.

This data structure can be used to verify any of the data values, all the server (prover)
has to do is to provide the verifier (data-user) with the verification object (VO). The
VO normally contains the data values that are going to be authenticated along with the
values stored in the siblings of the path that leads from the root of the tree to the values.
This information allows the verifier to re-build the root node and finally compare the
hash of the computed root with the publicly authenticated value of the signature.

For example, let us consider a query whose correct response is the leaf node related
with the value r2, then the verification object is composed of the values r2, h1, h3−4

and the signature value ϑtree. Having these values the data-user computes iteratively:
h2 = H (r2), h1−2 = H (h1||h2), and finally the root H (h1−2||h3−4). Now, the data-user
can check if the hash that it has computed for the root matches with the authentic
published value.

Several notable works exploit this basic approach, in this regard these works varying
the tree data structure (B-trees, R-trees, etc) and add some cryptographic authentica-
tion mechanism like hash functions and/or signatures schemes. Next we discuss how
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to extend this ideas to a B-tree.

r1 r2 r3 r4

hroot =H (h1−2||h3−4)

ϑtree= Ssk(hroot)

h1 =H (r1) h3 =H (r3)h2 =H (r2)

h1−2 =H (h1||h2) h3−4 =H (h3||h4)

h4 =H (r4)

Figure 3.2: Merkeley hash tree

The Merkle B-tree: Devanbu, et al. [45] focus on Third-Party Publication. In this
setting, the data owner produces some content that later will be published by a third
party service. This work introduces the concept of how to efficiently build verification
objects. Also, it presents the idea that B-trees can be used with the same techniques,
which are more efficient data structures than binary trees.

The Merkle tree uses a hierarchy of hashes organized as a binary tree. Of course, this
scheme can use a tree with a bigger fan-out. According to the description of the scheme
in [49], a Merkle B-tree works like a B+− tree and consists of common nodes that are
extended with one hash value associated with every pointer entry. The leaf nodes are
associated with the hashes of the tuples. The internal nodes are related with the hashes
of the concatenation of the hash values of their children. Finally, the root is publicly
signed.

As before, to answer a range query the server sends the tuples that hold with the query,
along with the hash values of the residual entries to the left and to the right parts
of the boundary leaves. The result is also increased with one tuple to the left and
one to the right of the lower-bound and upper-bound of the query result respectively,
for completeness verification. Finally, the signed root of the tree is inserted as well.
Consider a query which result set is composed by records r3 and r4, then in the VO also
includes tuples r2 and r5, along with the h1,h6. Having this information it is possible
to build the root and finally compute the signature and compare with the authentic
published value.
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r1 r2 r5 r6r3 r4

ϑtree= Ssk(hroot)

h1 =H (r1) h2 =H (r2) h3 =H (r3) h4 =H (r4) h5 =H (r5) h6 =H (r6)

hroot =H (h1||h2||h3||h4||h5||h6)

Figure 3.3: B-tree

3.3.2 Approaches Based on Signatures

Signature schemes have also been used in a novel manner for solution of the query
authetication problem. One line of research has focussed on aggregated signatures
[50, 58, 59, 61, 62]. Signature aggregation helps in reducing the communication cost
to some extent and in some cases can function with constant extra communication
overhead. A related line of research uses chain signatures. If one uses chain signatures
as in [58], the use of specialized data structures may no longer be required. In this
section we illustrate two schemes that exemplify these two lines of research.

Aggregated Signatures with B+ trees: This technique is used in [50]. The main idea
behind this scheme is to organize the data in consecutive pairs of tuples, assuming an
order on an attribute ai . Then each pair is hashed and signed. Consider tuples r1, r2 in
Figure 3.4, they should be hashed and signed together Ssk(H (r1||r2)). Thus the data-
owner delegates the pair and also the respective signature. It is necessary to add two
extra pairs composed by: an special marker with the first tuple (∞, r1) and the last tuple
with the special marker (rn,∞). A B+− tree is constructed over attribute ai. When the
untrusted server answers a query, also it constructs the verification object that is sent
as part of the response, this object is built as follows: a) One tuple-signature pair per
query result (r i,ϑi), b) the left lower-bound and the right upper bound of the result
data set. Thus, the client can check completeness of the response.

This will be clearer with an example, consider a query whose result data set is com-
posed of tuples r2, r3 then also the lower and upper bounds are part of the verification
object, i.e r1, r4, along with the respective signatures pairs (ϑ1−2,ϑ2−3,ϑ3−4). Thus, the
verifier (data-user) computes the respective hashes and verifies the respective signa-
tures sent by the server.
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It is clear from the description that the verification object contains a linear number of
signatures respective to the tuples in the result set, which is a drawback. Also the ver-
ifier needs to verify the same number of signatures to check completeness. Thus, this
verification become computationally expensive. Therefore a possible improvement to
this scheme is to use aggregate signatures. Where the idea is to merge several signa-
tures into a "short“ string. This small change, will give us a big advantage that is the
small size of the verification object. However, it still remains a computationally expen-
sive scheme given the high initial cost of the number of signatures that needs to be
computed.

r1 r2 r3 r4 · · · ∞

ϑ1−2 = Ssk(H (r1||r2))
ϑ2−3 = Ssk(H (r2||r3))

ϑ3−4 = Ssk(H (r3||r4))
ϑ4−5 = Ssk(H (r4||r5))

ϑrn−∞ = Ssk(H (rn||∞))

Figure 3.4: B+− tree

Signature Aggregation and Chaining: The main characteristic of this approach is to
achieve completeness without using any specialized data structure. To achieve this
goal, Narasimha et. al. in [58]; introduce the idea of signature chain. In order to con-
struct the signature chains, the data-owner should order the tuples by each of the at-
tributes that are of interest to a query. A tuple signature is computed including the
hashes of all immediate predecessor tuples. Consider the example in Figure 3.5 in
which there are three attributes that are going to be queried a1,a2,a3. First, the tuples
are sorted according to each attribute of interest. Figure 3.5 shows the predecessor and
successor of the tuple r5 based on the values of the three attributes a1,a2 and a3. The
tuple r5 has as immediate predecessors r6, r2, r7 based on the attributes a1,a2,a3. Thus,
the signature of r5 is calculated as: ϑr5 = Ssk(H (H (r5)||H (r6)||H (r2)||H (r7)))

As in the previous scheme the untrusted server answers a range query by including
all matching tuples, the lower and upper boundary tuples, along with the aggregated
signature corresponding to the result set. The data-user verifies completeness by veri-
fying the signature chain and checking that the values in the boundary are just beyond
the query range.
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−∞ a2+∞r2 r5 r6

−∞ a3+∞r7 r5 r12

−∞ a1+∞r6 r5 r7

Figure 3.5: Signature chain

3.3.3 Discussion and Comparisons

We have presented the principal approaches to solve the authenticated query process-
ing problem. In this section we want to point out some of the advantages and disad-
vantages that these schemes have.

In general, one limitation of the schemes which uses trees as authenticated data struc-
ture have, is the need to pre-compute and store a potentially large number of trees,
since according to Narasimha [58] without pre-computed trees for each sort-order, it
becomes impossible to prove completeness of query replies. This requirement imposes
significant setup costs for the data owner, and high storage overhead for the server.
Another disadvantage of trees is the difficulty to be efficiently combined to answer
queries over multiple set of attributes.

On the other hand, the signature schemes also impose a large storage overhead on the
servers, because in general terms signature sizes are bigger than the ones for hashes
or MACs sizes. Also it has a very high initial cost, since a considerable number of
signatures needs to be computed, typically the number of tuples in the relation. If a
scheme that supports aggregation of signatures is used, then the obvious advantage is
the small verification object sizes. However, more computations need to be performed
by the server to compute the aggregate signature. The other costs remain the same.

Another common characteristic of all the schemes in the literature is that the query
completeness problem is largely addressed with respect to range queries on numerical
attributes.

3.4 The Problem of Privacy in Outsourced Databases

Another important security issue besides authentication is the privacy of the outsourced
data. The client who owns the data may not want to reveal it to the server, this objective
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can be attained by encrypting the data.

Encryption, if applied to relational databases, should be done in such away that a large
class of queries can be executed on the encrypted tables. For example, if we consider
the relation R1 shown in Table 3.1 some representative queries on this relation can be:

1. What are the names of the employees whose age is 18 years?

2. What are the names of the employees whose age is more than 30 years?

3. What is the average age of an employee?

If the relation R1 is encrypted normally, i.e., encrypting separately each cell of the rela-
tion with a strong (say an IND-CPA secure) encryption, then none of the above queries
can be executed on the encrypted table. Note that an IND-CPA secure encryption
scheme produces ciphertexts which are indistinguishable from random strings even
for plaintexts which are chosen by the adversary. Thus, an IND-CPA secure encryp-
tion produces two different (seemingly) random strings for even two equal plaintexts.
Hence, to design an encryption scheme which would allow efficient query processing
in an encrypted table special care is required. To do query processing on the encrypted
data the ciphertext should leak some information regarding the plaintext, moreover
this leaked information should not be too much that it breaches the privacy of the
data. Achieving this fine tradeoff is an interesting and difficult problem.

Regarding the queries that we posed above, query (1) can be addressed if the relation is
encrypted using a deterministic encryption scheme, such encryption preserves the equal-
ity relation of plaintexts, i.e., two equal plaintexts produce two equal ciphertexts. For
query (2), it is required that the ciphertexts maintain the order of the plaintexts, this
can be achieved by order preserving encryption. Finally, for query (3) it is required that
meaningful computations can be performed on the ciphertexts, homomorphic encryption

schemes can support such computations on encrypted data.

In general a single encryption mechanism cannot provide with all the functionalities
required for query processing. Hence, it is better to treat different classes of queries
separately and encrypt values in a table with multiple encryption schemes which pro-
vides different functionalities. Among others, this paradigm is followed in a recent
work [63], where several encryption schemes are combined to achieve different query
processing functionalities. In this work we will mainly focus on processing a class of
range queries (query (2) in the example above), and we will not be concerned about
other class of queries where other encryption schemes would be required.

As stated earlier, to enable range queries in an encrypted database the ciphertext values
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should provide order information of the plaintexts. This can be achieved by an order
preserving encryption (OPE) scheme. AnOPE scheme E is such a schemewhere E(x)≥
E(y), iff x≥ y. This interesting primitive has received lot of attention in the current
years.

The problem will be clear if we consider the following example over the relation in
Table 3.1, the initial set of values that the client needs to encrypt for the age attribute
is {18,17,52,33,18,36}. A potential set of order-preserving ciphertexts for this set is
{2,1,5,3,2,4}. This set is ideal because it simply informs the server of the order of the
values, and nothing else. If the outsourced table stores this set, then later the client can
pose the following query:

SELECT * FROM R1 WHERE Age>= 36

This query can be translated to:

SELECT * FROM R1 WHERE Age>= 4

The server just have to perform the query in a normal fashion to recover the corre-
sponding result: Rosy and John. However, ideally an OPE scheme should allow the
client to add new encrypted values without knowing the order relation with the exis-
tent values. For example, consider that later the client wants to add a new employee
which age is 25. Since all integers between 1 and 5 are assigned then there is no space
for the 25. In the next section, we explore the state of the art of this problem.

3.5 Order Preserving Encryption Schemes: An Overview

In Table 3.3 we summarize the different approaches in literature that aim to provide an
efficient encryption scheme that allows to perform range queries on encrypted data,
i.e, there are order preserving encryption schemes. The first concepts appeared in the
paper [64], where the main aim was to design a scheme where efficient range queries
can be executed on encrypted data. The work in [64] does not delve into formal defini-
tional and security perspectives of OPE.

The first work which formally deals with OPE is [65], where the ideal security notion
for an OPE scheme, IND-OCPA, was introduced. The IND-OCPA definition specifies
that the main goal for an OPE is to reveal no additional information about the plaintext
values besides their order (which is theminimum requirement for the order-preserving
property). The IND-OCPA definition is built over the popular IND-CPA definition. We
discuss these definitions first.
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Definition 3.1. Let for b∈ {0,1}, LR (., .,b) be a function that on input m0,m1 outputs mb.

For a symmetric encryption scheme SE =(K ,E ,D) and an adversaryA consider the following

experiment

Experiment ExpIND-CPA-b(A)

K
$
←K ;

d← AEK(LR (.,.,b))

return d

The experiment selects a random key from K and gives an oracle access of EK to A . A can

query its oracle multiple times. Each query is the form of (m0,m1) where |m0| = |m1|, and the

oracle returns EK(mb). The task of A is to guess the bit b. We define the IND-CPA advantage

of A as

Advind−cpa(A) = Pr[ExpIND-CPA-0(A)⇒ 1]−Pr[ExpIND-CPA-1(A)⇒ 1].

SE is called IND-CPA secure if for all efficient adversaries A , Advind−cpa(A) is small.

IND-OCPA is a variant of the IND-CPA definition where some restrictions on the
queries of A are imposed. Let A make q queries like (m(1)

0 ,m(1)
1 ),(m(2)

0 ,m(2)
1 ),··· ,(m(q)

0 ,m(q)
1 ), such

that m(i)
0 < m(i)

1 if and only if m( j)
0 < m( j)

1 , for all 1≤ i, j ≤ q. Such an adversary A is
called a IND-OCPA adversary for indistinguishability under ordered chosen-plaintext
attack.

IND-OCPA security is a strong security notion and it is difficult to achieve. In [65] it
was shown that it is infeasible to achieve IND-OCPA security with a stateless encryp-
tion scheme. As a result, they settled on a weaker security guarantee called POPF,
i.e., pseudorandom order preserving function. This security notion requires that no
adversary can distinguish between oracle access to the encryption algorithm of the
scheme, and a corresponding random order-preserving function on the same domain
and range. However, later was shown in [10] that it leaks at least half of the plaintext
bits.

In [10], Boldyreva et. al. proposed a new scheme that even though is not an order pre-
serving encryption scheme, because the ciphertext does not preserve the order, it still
allows to perform range queries over encrypted data. This new scheme is called mod-
ular order-preserving encryption (MOPE), in which the scheme of Boldyreva et. al. is
prepended with a random shift cipher. Later Yum et. al. [12] improve the encryption
scheme proposed by Boldyreva et.al. in [65]. However, it also reveals more than the
order.
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Later, several other order preserving schemes were proposed [11, 13, 66], but as it is
suggested in [14] none of them has achieved the ideal IND-OCPA security, they all
leak more than just the order of plaintext.

Recently, in [14], the first ideal-security order-preserving encoding scheme was pro-
posed, where the ciphertexts reveal nothing except the order of the plaintext values.
The insight that allow them to avoid the infeasibility result in [65] is that the encryp-
tion protocol proposed is interactive, and a small number of ciphertexts of already
encrypted values change, as new plaintext values are encrypted. A property which the
authors term as “mutable".

Name Year Guarantees

Agrawal et.al.[64] 2004 None
Boldyreva et.al. [65, 10] 2009,2011 POPF

Agrawal et.al. [9] 2009 None
Lee et.al [11] 2009 None

Xiao et. al. [13] 2010 IND-OLCPA
Yum et. al.[12] 2012 POPF
Popa et. al. [14] 2013 IND-OCPA

Table 3.3: Summary of existing approaches

The OPE Scheme in [65] Boldyreva et. al. in [65] provide the first cryptographic
study of OPE primitive and also the first order preserving encryption scheme that does
not require previous knowledge of all the plaintext to encrypt. The main idea of this
scheme is a relation between a random order-preserving function and the hypergeo-
metric probability distribution.

Let D and R be finite sets such that #D ≤ #R and let OPED ,R , be the set of all order
preserving maps from D to R . Note that a map f : D→ R is called order preserving if
for all x,x′ ∈D , f (x)≥ f (x′) iff x≥ x′. In [65] it is proved that

#OPED ,R =

(
#R
#D

)
. (3.1)

Also, if [M] = {1,2, . . .M} and [N] = {1,2, . . . ,N} then, for any x,x+1∈ [M], and y∈ [M],

Pr[ f
$
← OPE[M],[N] : f (x)≤ y≤ f (x+1)] =

(y
x

)(N−y
M−x

)
(N

M

) (3.2)

Now we motivate how Boldyreva et. al. uncovered the relation between order pre-
serving functions to the hypergeometric probability distribution. Let us consider N
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balls in a bin where M of them are black and N−M of them are white. At each step
we draw a ball at random without replacement. Consider a random variable X that
denotes the number of black balls chosen after a sample size of y balls are picked. X
has a hypergeometric distribution, and the probability X = x is given by

Pr[X = x] =

(y
x

)(N−y
M−x

)
(N

M

) .

It is easy to see the correspondence of this probability with Eq.(3.2). This suggests
a way to construct a random order preserving function from [M] to [N] as follows.
Consider a bin with M black and N−M white balls. We pick balls randomly from the
bin without replacement, if the y-th ball which is picked is black then we map the least
unmapped element in [M] to y.

It would be easier to see the above procedure with an example. Consider that we want
to construct a random function mapping A= {1,2,3,4} to B= {1,2,3,4,5,6,7,8}. Thus,
here we have a total of 8 balls, of which 4 are black and 4 white. Suppose the outcome
of an experiment of picking a ball at a time without replacement be as follows:

sample size 1 2 3 4 5 6 7 8
color B W W W B W B B

Whichmeans that the first ball pickedwas black, the second onewas a white and so on.
Based on this outcome an order preserving function f can be constructed as follows

f (1) = 1, f (2) = 5, f (3) = 7, f (4) = 8.

Initially all points in the domain are un-mapped. The first ball picked is black thus the
least unmapped point in the domain (i.e. 1) is mapped to 1. Next the 5-th ball picked
is black, hence the least unmapped point in the domain (i.e. 2) is mapped to 5, and so
on.

The above procedure depicts a way to construct a random order preserving function.
This procedure is too inefficient to be directly used as an order preserving encryption
scheme. The formal algorithms to convert this process in an encryption scheme along
with a discussion on the required parameters (e.g. range size) can be found in the
original paper.

Order Preserving Encoding: Popa et. al. in [14] provide the first OPE with ideal
security, i.e., IND-OCPA security. The scheme in [14] encrypts the data with a normal
encryption scheme which is not order preserving, but also encodes the plaintext values
in a certain way which reveals the order. The basic idea behind the scheme is to encode
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the values to be encrypted and organize them in a binary tree, or in a more efficient
structure as B-trees. Each node contains the deterministic encryption of a value, and
the encrypted values are arranged in the tree according to the order of the plaintext
values. Based on this tree an order preserving encoding of the plaintext is derived.

Let us consider the example of encryption of the values of the attribute Age in the
relation shown in Table 3.1. First the client arranges the values in a binary tree and
encrypt these values using a deterministic encryption scheme EK(). In Figure 3.6 we
show the tree.

Now based on this tree, the client constructs a binary encoding for each ciphertext
according to the following rules:

1. Each edge connecting a node to its left child is labeled 0 and each edge connecting
a node to its right child is labelled 1.

2. The label of a path connecting the root to any node is obtained by concatenating
the labels of the edges in the path in order. Note that there is a unique path
connecting the root to any node.

3. The root is encoded with the empty string.

4. Each other node is encoded with the label of the path connecting the root to that
node.

The encodings obtained in the above manner are not of equal length. An encoding
length n is selected, and all encodings obtained by the above steps are padded with a
1 followed by necessary number of zeros to make each encoding to be of length n. The
ciphertexts, along with the encodings are given to the server by the client.

For the example that we consider, the encodings for the various ciphertexts are also
shown in Figure 3.6. The string shown within square brackets is the code obtained
before the padding. Here we consider each code to be 4 bits long. The decimal repre-
sentation of the code of each cipher reveals the order of the plaintext which the cipher
represents.

In [14] it is argued that this specific encoding does not reveal anything other than the
order of the plaintext. Moreover, new plaintexts can be encrypted under this scheme,
with an interaction between the client and server. The specific tree structure imposed
on the ciphertext helps in attaining this. But, for keeping the code length restricted,
at times it may be necessary to re-balance the tree. With a re-balancing, some old
ciphertext values can have a changed encoding. This is the reason that this scheme is
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called by its authors as mutable, in the sense that the ciphertext encodings can change
with time. In the paper strategies are proposed so that ciphertext mutations and client-
server interactions can be minimized.

Going back to our example, let us see how the value EK(36) is encoded, according
to its position in the tree presented if Figure 3.6 the corresponding path is [10]. As
we require a length of 4 bits this path is padded with the binary string 10 thus the
resulting encoding is 1010, i.e 12 in decimal representation (see the last line in the table
of Figure 3.6). Now consider that the client wants to add a new employee whose age
is 21 to the database. Since the server does not know the underlying plaintext values,
it is impossible for him to arrange the tree with the new value in the correct position.
Therefore the client needs to help him to find the correct position for the new value.
First, the client requires the root of the value, then the server answers with EK(33),
which the client decrypts to 33. Since 21< 33 the client requires the left child of the
root, the server answers with EK(18), and the client decrypts it to 18. The client realizes
that 21> 18, thus it requires the right child of the node EK(18), the server answers that
there does not exist such a node in the tree. Then, the client instructs the server to add
the EK(21) in this position. Notice, that in this example it is not required to re-balance
the tree.

Ciphertext OPE encoding

0

0 0

1

[10]10 = 12
[00]10 = 2

[]1000 = 8
[0]100 = 4

[1]100 = 14

EK(17)

EK(18)
EK(17)

EK(52)

EK(36)

EK(33)

EK(36)

EK(52)

EK(33)
EK(18)

Figure 3.6: mOPE structure

3.6 Final Remarks

We discussed some main directions of previous works involving query authentication
and privacy in databases. For the privacy problem we concentrated on database en-
cryption which enables range queries to be performed efficiently. For this purpose
we reviewed some previous works on order preserving encryption. In the following
chapters we present our schemes for query authentication and encryption. The princi-
pal idea behind them is to use bitmaps indices. For the query authentication problem,
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we use bitmaps as the authenticated data structure. This is completely novel and has
several advantages over tree based ADS, as would be clear from the description of our
schemes. For the privacy problem, our solution has some similarities with the scheme
by Popa et. al. [14], in the sense that we also avoid using an OPE, but we encrypt
the data with a deterministic encryption scheme and reveal the order with a separate
encoding. The specific encoding which we use is also a type of bitmap which we call
as the l -encoded bitmap. This specific encoding makes our scheme different from the
scheme in [14] and also more amenable for implementation in real database environ-
ments.





Chapter 4

Relational Database Authentication

Scheme
I have never thought of writing for reputation
and honor. What I have in my heart must
come out; that is the reason why I compose.

Ludwig van Beethoven

The authenticated query processing is an interesting problem of outsourced databases,
we have discussed some general characteristics of this problem in Section 3.2. In

this chapter we describe a generic framework called RDAS to address this issue. We
also restrict our model and the construction to a static database, i.e., we do not allow
inserts and updates in the database that we consider. Later in Chapter 5 we discuss
some directions by which this limitation can be removed. Also it is important to note
that there are practical scenarios, like applications involving data warehousing, where
databases are largely static.

In what follows, in Section 4.1 we give the basic definition of our framework and we
also discuss our security model. In Section 4.2 we introduce a specific protocol called
RDAS1 which allows the client to authenticate disjunction queries with a reasonable
overhead. We also study its security according to our model. Finally, in Section 4.2.2
we present the specific costs of RDAS1.

4.1 RDAS: Definitions and Basic Notions

A relational database authentication scheme (RDAS) consists of a tuple of algorithms
(G ,F ,Φ,Ψ,V ), which are described in detail in the following paragraphs.

51
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G is the key generation algorithm and it selects one (or more) keys from a pre-
specified key space and outputs them.

F is called the authentication transform, which takes in a set of relations R

and a set of keys and outputs another set of relations R ′ along with some ad-
ditional data (Ms,Mc). If the set of keys is K, we shall denote this operation as
(R ′,Mc,Ms)← FK(R ). A client who wants to store the set of relations R in an un-
trusted server, transforms R to R ′ using the authentication transform F and a
set of keys. The transform F produces some additional data other than the set of
relations R ′, the additional data consists of two distinct parts Ms and Mc. The set
of relations R ′ along with Ms are stored in the server and the keys and the data Mc

are retained in the client. The key generation algorithm and the authentication
transform are executed in the client side.

We call Φ as the query translator, it is a transformation which takes in a query
for the relations in R and converts it into a query for relations in R ′. For ease of
discussion we shall refer a query for R to be an R -query and a query for R ′ to be
an R ′-query. Thus, given a R -query q, Φ(q) would be an R ′-query. Thus by use
of the transform Φ, the client would be able to translate queries meant for R to
queries which can be executed on the transformed relations in R ′.

Ψ is the response procedure. To execute a query q on R , the client converts the
query to Φ(q) and sends it to the server. The server executes the function Ψ,
which takes in the query Φ(q) and uses R ′ and Ms. The output of Ψ is ρ, which
we call as the response of the server. The server returns its response ρ to the
client.

The verification procedure is a keyed transform VK which runs in the client. It
takes as input the query q, a response ρ of the server and Mc and outputs either
an answer ans for the query qor outputs a special symbol⊥which signifies reject.

4.1.1 Correctness and security

If we fix the set of relations R , then an R -query q when executed in R would have
a fixed answer say ans(R ,q). Our goal is to transform R to R ′ using an RDAS in
such a way that if the query Φ(q) is sent to the server, then the answer ans should be
recoverable from the server response ρ through the procedure V , if the server follows
the protocol correctly. On the other hand, if the server is malicious, i.e., it deviates
from the protocol and sends a response ρ′ distinct from the correct response ρ then the
procedure V should reject the response by outputting ⊥. In other words, if the answer
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to a R -query is ans, then after running the protocol, V will either produce ans or ⊥, it
would not produce an answer ans′ distinct from ans.

In the security model, we allow the adversary to choose the primary set of relations R .
Given this choice of R , we compute (R ′,Mc,Ms)← FK(R ), for a randomly selected set
of keys K which is unknown to the adversary. We give R ′ and Ms to the adversary. The
adversary chooses an R -query q and the challenger provides the adversary with Φ(q),
finally the adversary outputs a response ρ, and we say that the adversary is successful
if VK(ρ,q,Mc) /∈ {⊥,ans(R ,q)}.

Definition 4.1. Let SuccA be the event that a specific adversary A is successful in the sense

as described above. We say that a RDAS is (ε, t)-secure if for any adversary A which runs for

time at most t Pr[SuccA ]≤ ε.

Some immediate observations regarding this security definition are as follows:

1. Encompasses both correctness and completeness: An important thing to note is
that the security definition covers both completeness and correctness, as RDAS is
considered secure if the verification algorithm does not accept (except with some
small probability) a wrong response.

2. Concrete security and adversarial resources: The definition follows the paradigm
of concrete security, wherewe specify the running time and the probability of suc-
cess of an adversary. An (ε, t)-secure RDAS is really secure where t is "reasonable"
and ε is "small". These are to be interpreted in the specific context.

4.2 RDAS1: A generic scheme for select queries involving

arbitrary disjunctions

We discuss a basic scheme for a secure RDAS which works only if the queries made
are single attribute select queries or select queries involving disjunctions of an arbi-
trary number of equality conditions. We call this scheme as RDAS1. RDAS1 can be
modified to handle certain other class of queries, but for the sake of simplicity we just
concentrate on a scheme which works on disjunction queries. Later in Chapter 5 we
discuss the possible extensions of RDAS1 including a particular scheme RDAS2, which
is capable of handling more complex queries.

We describe the scheme assuming that the set of initial relations R is a singleton set
consisting of a single relation R(B), where B = {b1,b2, . . . ,b|B|} is the set of attributes,
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and consider A= {a1, . . . ,am} ⊆B to be a set of attributes on which queries are allowed,
we shall call A the set of allowed attributes. Note it is possible that B = A. The pro-
cedure F converts R into two relations Rα and Rβ, i.e, R ′ = {Rα,Rβ} and Ms is empty
and Mc = nT, where nT is the number of tuples in R. The only cryptographic object
used by RDAS1 is a message authentication code MAC : K ×{0,1}∗ → {0,1}τ, where
K is the key space. Next, we discuss the details of each of the procedures involved
in RDAS1. In what follows, we shall describe the procedures considering a generic re-
lation R(B), where the set of allowed attributes is A⊆ B. Also for ease of exposition
we shall throughout consider the relation R1 as depicted in Table 4.1 as a concrete ex-
ample, and for simplicity, for R1 we shall consider the set of allowed attributes to be
{Gender,level}.

EmpId Name Gender Level Age

TRW Tom M L2 18

MST Mary F L1 17

JOH John M L2 52

MRH Mary F L1 33

ASY Anne F L1 18

RZT Rosy F L2 36

Table 4.1: Relation Employees

Key generation algorithm

RDAS1.G : The key space for RDAS1 is the same as the key space of the associated mes-
sage authentication codeMAC. The key generation algorithm selects a key K uniformly
at random from K .

Authentication transform

RDAS1.F : F produces two relations Rα and Rβ by the action of the key. The relation Rα
is defined on the set of attributes B∪{Nonce,Tag}, i.e., Rα has two more attributes than
in R. If R contains nT many tuples then Rα also contains the same number of tuples.
The procedure for populating the tuples of Rα is depicted in Figure 4.1. Basically, this
procedure computes a MAC for each row.

The relation Rβ contains the attributes {Name,SearchKey,RowNo,Tag1}, irrespective of
the attributes in relation R. Where Dom(Name) = {a1, . . . ,am}, i.e., the allowed attributes
in R. And, Dom(SearchKey)=Dom(a1)∪Dom(a1)∪···∪Dom(am). Let Ω = ∪m

i=1({ai}×Dom(ai)), note
that the elements of Ω are ordered pairs of the form (x,y) where x ∈ Dom(Name) and
y∈ Dom(SearchKey), and #Ω = ∑m

i=1Card(ai) = N. Let L be a list of the elements in Ω
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in an arbitrary order. If (x,y) be the i-th element in L , then we shall denote x and y
by L1

i and L2
i respectively, where 1≤ i ≤ N . The way the relation Rβ is populated is

also shown in Figure 4.1. This procedure allows the client to store all possible pairs
L1

i ,L
2
i along with the MAC calculated over this pair concatenated with the respective

bitmap and RowNo. Note that the bitmap is not explicitly stored in the relation Rβ. The
transform F is executed in the client side, and the resulting relations Rα and Rβ are
stored in the server.

Creating Rα

1. for j = 1 to nT // Number of tuples

2. for i = 1 to #B // Number of sensitive attributes

3. tRα
j [bi ]← tR

j [bi ];
4. end for

5. tRα
j [Nonce]← j;

6. H ← tR
j [b1]|| . . . ||tR

j [bm]|| j;
7. tRα

j [Tag]←MACK(H);// MAC for each row

8. end for

Creating Rβ
1. for j = 1 to N // Elements of Ω

2. t
Rβ
j [Name]← L1

j ;

3. t
Rβ
j [SearchKey]← L2

j ;

4. t
Rβ
j [RowNo]← nT + j;

5. L← L1
j ||L

2
j ||BitMapR(L

1
j ,L

2
j )||(nT+ j);

6. t
Rβ
j [Tag1]←MACK(L);// MAC for each bitmap

7. end for

Figure 4.1: Creating Rα and Rβ

For a concrete example, if RDAS1.F has as input the relation R1 (see Table 4.1) and
the set of allowed attributes is {Gender,level}, then it would produce as output the
relations R1α and R1β as shown in Table 4.2. The relation R1α is almost the same as
that of R1, except that it has two additional attributes, Nonce and Tag. The attribute
Nonce just contains the row numbers and is thus unique for each row. The attribute
Tag is the message authentication code computed for a message which is produced by
concatenating all the values of the attributes in that tuple.

Relation R1α

EmpId Name Gender Level Nonce Tag

TRW Tom M L2 1 Y1

MST Mary F L1 2 Y2

JOH John M L2 3 Y3

LCT Lucy F L1 4 Y4

ASY Anne F L1 5 Y5

RZT Rosy F L2 6 Y6

Relation R1β

Name SearchKey RowNo Tag1

Gender F 7 Y′7
Gender M 8 Y′8
Level L1 9 Y′9
Level L2 10 Y10

′

Table 4.2: Relations R1α and R1β

The relation R1β contains the attributes {Name,SearchKey,RowNo,Tag1}, where in this
case, Dom(Name) = {Gender,Level}, Dom(SearchKey) = {M,F}∪{L1,L2}. The tuples in
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R1β are populated according to the procedure as shown in Figure 4.1, and the specific
relation R1β is shown in Table 4.2.

Query translator

RDAS1.Φ: The transform Φ, transforms a query meant for the original relation Rto a set
of queries which are meant to be executed on the relations Rα and Rβ which are stored
in the server side. RDAS1 can authenticate only certain types of queries, the allowed
queries for RDAS1 are of the following form:

Q: SELECT * FROM R WHERE a1 = v1 OR a2 = v2 OR ...... OR al = vl

The allowed set of queries are thus select queries on arbitrary numbers of disjunctions
on different or repeated attributes1, which includes select queries on a single attribute
of the form SELECT * FROM R WHERE ai = v. Given as input a valid query q, Φ(q) out-
puts two queries one for the relation Rα (which we call qα) and the other for Rβ (which
we call qβ). For the specific query Q, Φ(Q)will output the following queries:

Qα: SELECT * FROM Rα WHERE a1 = v1 OR a2 = v2 OR ...... OR al = vl

Qβ: SELECT * FROM Rβ WHERE (Name = a1 AND SearchKey = v2) OR ...... OR

( Name = al AND SearchKey = vl)

Going back to the concrete example, consider the following query Q1 on the relation
R1

Q1: SELECT * FROM R1 WHERE Gender = ’M’ OR Level= ’L2’

After applying the transformation Φ(Q1) , the output queries Q1α and Q1β would be
the following:

Q1α: SELECT * FROM R1α WHERE Gender= ’M’ OR Level= ’L2’

Q1β: SELECT * FROM R1β WHERE (Name= ’Gender’ AND Searchkey=’M’) OR

(Name= ’Level’ AND Searchkey=’L2’)

The reason for the specific structure of the qβ queries would be clear from the descrip-
tion of the verification process and the associated example.

1By a query of disjunction on repeated attributes we mean a query like: SELECT * FROM R WHERE

a1 = v1 OR a1 = v2 OR a2 = v3. Here the attribute a1 is repeated twice.
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Response procedure

RDAS1.Ψ: As discussed, Ψ is the transform executed in the server to generate the re-
sponse for a set of queries produced by Φ. In RDAS1 the response of the server is
constructed just by running the queries specified by Φ on Rα and Rβ. We denote the
response by ρ = (ρα,ρβ)where ρα and ρβ corresponds to responses of qα and qβ respec-
tively. Thus, for the example, the server executes the queries Q1α and Q1β on R1α and
R1β respectively and thus returns the response ρ1= (ρ1α,ρ1β)which is shown in Table
4.3.

Relation ρ1α

EmpId Name Gender Level Nonce Tag

TRW Tom M L2 1 Y1

JOH John M L2 3 Y3

RZT Rosy F L2 6 Y6

Relation ρ1β

Name SearchKey RowNo Tag1

Gender M 8 Y′8
Level L2 10 Y10

′

Table 4.3: Left side: Answer ρ1α, Right side: Answer ρ1β

Verification procedure

RDAS1.V : The verification procedure receives as input the response ρ = (ρα,ρβ) from
the server, the original query and the keys. The response of the server consists of two
parts. We denote these two parts as two sets ρα and ρβ which are responses to the
queries qα and qβ respectively. Thus, ρα and ρβ contain tuples from the relations Rα
and Rβ respectively.

The transformed queries qα and qβ are also disjunctions of conditions, for a qα query
the conditions are of the form ai = vi , where ai is an attribute and vi its value, and for
a qβ query the conditions are of the form Name = v ANDSearchKey = w. Thus, for the
description below, we consider that Cα

1 OR Cα
2 OR . . . Cα

l is a α query where each Cα
i is

an equality condition and Cβ
1 OR Cβ

2 OR . . . Cβ
l is a β query where each Cβ

i is a conjunc-
tion of two equality conditions. Note that the number of conditions in qα and qβ would
always be the same. Let SaT be a predicate which takes as input a tuple t and a condi-
tionC (which can also be a query q) and outputs a 1 if the tuple t satisfies the condition
C, otherwise outputs a zero. With these notations defined, we are ready to describe
the verification algorithm. The verification algorithm consists of three procedures. We
name the procedures as α-Verify, makeBitMap and β-Verify. The procedures are shown in
Figure 4.2, and they are applied sequentially in the same order as stated above.

The verification procedure checks for both the correctness and the completeness of the
server response against the original query q. Note that the server response consists of
two distinct parts ρα and ρβ, the ρα part corresponds to the real result of the original
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α-Verify

1. for all tuples t ∈ ρα //Verifying each Tag in ρα

2. if SaT(t,qα) = 0, return ⊥
3. ta←MACK(t[b1]|| . . . ||t[b|B|]||t[Nonce]);
4. if ta 6= t[Tag] , return ⊥;
5. end for

makeBitMap

6. for i← 1 to l //Creating l bitmaps in zeros

7. Xi ← 0nT;
8. end for

9. for all tuples t ∈ ρα
10. for i← 1 to l
11. if SaT(t,Ci) //Set ones according with ρα

12. j ← t[Nonce];
13. bit j(Xi)← 1;
14. end if

15. end for

16.end for

β-Verify

17.for i← 1 to l
18. T[i]← 0;
19.end for

20.for i← 1 to l //Verifying each Tag in ρβ

21. for all tuples t ∈ ρβ

22. if SaT(Cβ
i , t) = 1

23. T[i]← T[i]+1;
24. LL← t[Name]||t[SearchKey]||Xi ||t[RowNo];
25. ifMACK(LL) 6= t[Tag1] return ⊥;
26. endif

27. end for

28.end for

29.for i← 1 to l
30. if T[i] 6= 1 return ⊥;
31.end for

32.return ∏(b1,b2,··· ,b|B|)
ρα;

Figure 4.2: The procedures involved in the verification process: we assume that the
verification procedure has as input the queries qα = Cα

1 OR Cα
2 OR . . . Cα

l , qβ = Cβ
1 OR

Cβ
2 OR . . . Cβ

l , and the server responses ρα and ρβ.
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query q and the ρβ part assists the verification process to verify the completeness of
the result in ρα. In the part α-Verify, the verification procedure checks for the correct-
ness of the tuples returned by the server. As in the transformed relation Rα a message
authentication code is associated with each tuple of the original relation, hence the α-
Verify part of the verification procedure checks whether the contents of the tuples in ρα
are not modified. If any of the the tuples in ρα are modified then the computed mes-
sage authentication code on the tuple will not match the attribute Tag. If the computed
value of tag does not match with the attribute Tag for any tuple then the verification
process rejects by returning ⊥. Moreover in line 2 it checks whether each tuple in ρα do
satisfy the specified query. If the verification process does not terminate in the α-Verify

phase then it means that the tuples in ρα are all valid tuples of the relation Rα and they
all satisfy the specified query qα. The other two parts of the verification process checks
the completeness of the response.

Corresponding to each condition Name= vAND SearchKey = w in the query qβ the pro-
cedure makeBitMap constructs the corresponding bitmapBitMapRα(v,w) using the server
response ρα. Note that if the server response ρα is correct then makeBitMap would be
able to construct the bitmaps corresponding to each condition in qβ correctly. This is
possible due to the specific type of the allowed queries. Recall that an allowed query is
formed only by the disjunctions of equality conditions. In the procedure correspond-
ing to the l conditions in qβ, l bitmaps are constructed which are named X1, . . . ,Xl (See
the example later for more explanation).

In the procedure β-Verify the response ρβ is verified using the bitmaps X1, . . . ,Xl con-
structed before. The procedure β-Verify first verifies whether ρβ contains tuples corre-
sponding to each condition in qβ, this is done using the counter T[i], where i runs over

the conditions in qβ. Notice, that for every condition Cβ
i the server must return only

one tuple in ρβ. The other parts of the procedure involves in verifying the tags of the
tuples against the tag’s of the computed bitmaps.

To make the exposition clearer let us consider the same example we have so far consid-
ered, i.e., the relation R1 the queries Q1α, Q1β and the corresponding server responses
of ρ1α and ρ1β (which are shown in Table 4.3). Given these responses the procedure
α-Verify will not terminate, as all the tuples in ρ1α do satisfy the conditions in Q1α
and as they are correct responses in the sense that they are just copies of the tuples
present in the relation Rα, hence the corresponding message authentication codes will
match. Given the responses in ρ1α, one can compute the bitmaps BitMapRα(Gender,M)

and BitMapRα(Level,L2). To see this, see the response ρ1α in Table 4.3, where it says
that the tuples satisfying the condition Gender=M OR Level=L2 are the tuples with the
nonce values 1, 3 and 6. Now, as the verification procedure has as input the whole
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of response ρ1α, hence it can predict correctly that the rows with the nonce value 1
and 3 satisfy the condition Gender=M and all the tuples in ρ1α (i.e., with nonce values
1, 3, 6) satisfy the condition Level=L2. Thus, knowing that the total number of tu-
ples in Rα to be 6, and assuming that server response is complete then the bitmap can
be computed as BitMapRα(Gender,M) = 101000. Note that the 1st and 3rd bits of this
bitmap are only one, as it corresponds to the response in ρ1α. Similarly one can com-
pute BitMapRα(Level,L2) = 101001. This is precisely what the procedure makeBitMaps

would do for the example that we consider. The computation of the individual bitmaps
BitMapRα(Gender,M) and BitMapRα(Level,L2) are possible from ρ1α as the Q1α query
is a disjunction of equality conditions, if in the contrary the query was a conjunction
of conditions then there would be no way to compute the individual bitmaps in a
straightforward way, this explains the reason for the query restriction that we impose.

Once these bitmaps are computed by using the procedure β-Verify one can verify the
correctness of the response ρ1β. As one can concatenate corresponding the bitmaps
computed by the procedure makeBitMaps with the other attributes of the tuples in ρβ
and compute the tag using the message authentication code and thus verify if the com-
puted tag matches the attribute Tag1.

The procedure β-Verify basically verifies the correctness of the response ρβ, this verifi-
cation is done by using the bitmaps constructed using the response ρα. The correctness
of the response ρβ implies the completeness of the response ρα. We discuss about this
more in the following section.

4.2.1 Security of RDAS1

In this section we show that the security of RDAS1 can be reduced to the security of
MAC. In other words, if there exists an adversary capable of breaking RDAS1 then the
MAC is not secure.

We can distinguish two possibilities for breaking RDAS: a) infringe the correctness and
b) violate the completeness of the response for a fixed query. To break the correctness
the opponent must make changes in one or more tuples of ρα and still pass the veri-
fication process. This implies that the adversary must forge the respective MACs. On
the other hand, to violate the completeness, the adversary must change the respective
bitmaps in ρβ which also implies forging the respective MACs. Now, we introduce this
notion in a formal way.

Theorem 4.1. Consider an adversary A attacking RDAS1 in the sense of definition 4.1. Let

A choose a relation Rwith nT tuples and the relation be such that the transformed relation Rβ



Chapter 4. Relational Database Authentication Scheme 61

contains n′ tuples. Then there exists an adversary B attacking the message authentication code

MAC such that

Pr[SuccA ]≤ Pr[B forges ].

Also, B asks at most nT+n′ queries to its oracle and runs for time tA +(nT+n′)(c+ tMAC),

where tA is the running time of A , tMAC is the time for one MAC computation and c is a

constant.

Proof. The idea of the proof is to construct an adversary B whose task is to forge the
message authentication code MAC. B will use the adversary A by acting as its chal-
lenger. The interaction between B and A is represented in the procedure below:

Adversary BMACK(.)

1. Receive the relation R from A ;
2. Send (Rα,Rβ)← RDAS1.F (R) to A ;
(Use the oracle MACK(.) to construct (Rα,Rβ);
Let Q be the set of queries asked to MACK(.))

3. Receive a query q from A ;
4. Send (qα,qβ)← RDAS1.Φ(q) to A
5. Receive a response ρ′ from A

6. if RDAS1.V (ρ′) 6=⊥ AND RDAS1.V (ρ′) 6= ans(R ,q);
7. (x, tag)← GenerateForgery();

8. else x
$
←{0,1}∗−Q, tag $

←{0,1}τ;
9. return x, tag

In line 7 we mention a routine GenerateForgery() which will be defined later. The
heart of the reduction is the following claim:

Claim 1. If the condition of line 6 is satisfied, then B forges the MAC with probability 1.

If the above claim is valid then we have

Pr[B forges] = Pr[B forges|SuccA ]Pr[SuccA ]+Pr[B forges|SuccA ]Pr[SuccA ] (4.1)

= Pr[SuccA ]+
1
2τ Pr[SuccA ] (4.2)

≥ Pr[SuccA ],
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as desired. Eq. (4.2) follows from (4.1) as according to our claim Pr[B forges|SuccA ] = 1
and Pr[B forges|[SuccA ] = 1

2τ as the probability that the τ bit tag of a message matches
with a random τ bit string is 1

2τ .

Proof of Claim: Here we will basically describe the procedure GenerateForgery().
Note that the response ρ′ of A consists of (ρ′α,ρ′β) and as the verification procedure
does not output ⊥ hence the following must be true:

1. The tuples in ρ′α and ρ′β satisfies the conditions in the queries qα and qβ respec-
tively, moreover there is only one tuple returned in ρβ corresponding to each
condition in qβ (see procedures α-Verify and β-Verify in Figure 4.2).

2. All the tuples in ρ′α and ρ′β are associated with their valid tags.

Moreover the condition in line 6 says that response produced by V is not correct. This
can happen in the following two scenarios.

Case 1: There is a tuple tup∈ ρ′α such that tup is not inRα. Moreover, if {b1, . . . ,b|B|}
be the original set of attributes, and X = tup[b1]|| . . . ||tup[b|B|]||tup[Nonce], then
(X, tup[Tag]) is a valid message tag pair. Note, that this case signifies that the
server response is incorrect.

Case 2: There is no tup ∈ ρ′α which is not present in Rα. This case can only occur
if the response is incomplete. This signifies that A has been able to forge a tag in
Rβ. To see this, note that the procedure V constructs the bitmaps corresponding
to the conditions in the qβ query based on the information in ρα. If the result
returned in ρα is incomplete then the bitmap corresponding to some condition
would be wrongly computed by V , but this wrong bitmap corresponds to the
tag returned in ρ′β.

In both cases above B can construct a forgery for the MAC in the following way:

GenerateForgery() for Case I: (X, tup[Tag]) is a valid forgery, as according to the
condition in line 6, tup[Tag]) is a valid tag for X, moreover as tup is not in Rα hence
B has never asked its oracle a query of X.

GenerateForgery() for Case II: Consider an arbitrary attribute a, and its value v,
which is related to the query in question, such that the bitmap computed by V

for the condition a= v is Y′ and Y′ 6=Y, where Y = BitMapv(a) is the real bitmap.
In this case ρ′β would contain a tuple (a,v, r, tag) where r is the row number and
it must be the case that MACK(a||v||Y′||r) = tag. Thus (a||v||Y′||r, tag) is a valid
forgery, as B has never asked a||v||Y′||r to its MAC oracle.
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4.2.2 Costs and Overheads

In Section 3.2 we discussed the different costs associated to the query authenticated
problem. In this section we quantify these costs for RDAS1 scheme.

Storage cost: Given a relation R(B) with nT tuples, let size(ti[b]) denote the size of the
attribute b in the tuple t. Then the total size of R (which we also denote by size(R))
would be given by

size(R) =
nT

∑
i=1

∑
b∈B

size(ti[b]).

If this relation R is converted into (Rα,Rβ)with the help of the authentication transform
RDAS1.F , then we would have,

size(Rα) = size(R)+
nT

∑
i=1

(size(ti[Nonce])+ size(ti[Tag])),

if we assume a tag of constant length of τ bits then we would have

size(Rα)≤ size(R)+nT(lgnT+ τ).

Again considering the set of allowed attributes of R as A = {a1,a2, . . . ,am}, and N =

∑m
i=1Card(ai), we will have

size(Rβ) =
N

∑
i=1

(size(ti[Name])+ ti[SearchKey]+ ti[RowNo]+ size(ti[Tag1])).

If we consider sName and ssk the maximum size of the values of the attributes Name and
SearchKey, then we would have

size(Rβ)≤ N(sName+ssk+ lg(nT+N)+ τ).

The total cost of storage at the server side would be size(Rα)+ size(Rβ), and at the client
side would be lg(nT) as in the client we need to store the number of tuples in the
original relation.

Communication Cost: Consider the query SELECT * FROM Rα WHERE a1 = v1 OR a2 =

v2 OR ...... OR al = vl , let the number of tuples satisfying the query be num. Let



64 4.3 Summary

siz be the size of the response in a normal scenario without authentication. Then the
maximum size of the server response in case of RDAS1 would be

sizRD1 = siz+num× (lgnT+ τ)+ l × (sName+ssk+ lg(nT+N)+ τ), (4.3)

where the first two terms corresponds to the ρα response and the remaining term
counts for the ρβ response.

4.3 Summary

In this chapter we described RDAS, which is a basic model for authenticated query
processing in outsourced databases. We also fixed a syntax for RDAS and defined
its security. Moreover we presented a concrete scheme RDAS1 which uses message
authentication codes and bitmap indices. There are several ways in which RDAS1 can
be improved. We discuss in details some extensions over RDAS1 in the next chapter.



Chapter 5

Extensions and Improvements of RDAS1

Small opportunities are often the beginning of
great enterprises.

Demosthenes

In this chapter we discuss the following extensions to our construction RDAS1:

1. In Section 5.1 we discuss RDAS2 which extends RDAS1 by allowing it to handle se-
lect queries involving all kinds of logical operators. We argue that RDAS2 enjoys
same security as of RDAS1 but the response sizes of RDAS2 are greater than that
of RDAS1. We also present a variant of RDAS2 called RDAS2-cmp, where we use
a compression technique named Enhanced Word Aligned Hybrid (EWAH) (dis-
cussed in Section 2.6.3), in RDAS2-cmp the response sizes are significantly smaller
than in RDAS2.

2. Both RDAS1 and RDAS2 suffer from a limitation that if no tuple in the outsourced
table matches a posed query then there is no way to verify that the empty reply
that the server responds is a correct one. We describe two ways by which the
authenticity of such empty replies can be verified both in RDAS1 and RDAS2.

3. In Section 5.3 we describe two more variants called RDAS1-agg and RDAS2-agg.
In these variants we improve over the basic RDAS1 and RDAS2 schemes by using
aggregated message authentication schemes. These variants have significantly
less communication costs compared to the basic schemes.

4. In Section 5.5 we discuss how RDAS2 can be extended to dynamic scenarios
where the operations like insert, update and delete can also be applied.

65
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5.1 RDAS2: Selects Involving Arbitrary Boolean Connec-

tives

RDAS1 can be modified to support SELECT queries involving all kinds of Boolean con-
nectives at the cost of the size of the query responses. Recall that the query restriction
for RDAS1 arises from the problem of constructing the bitmaps of all the attributes in-
volved in the query. We propose an extension of RDAS1 which can support queries of
the form

Q: SELECT * FROM R WHERE (a1 = v1) ∆1 (a2 = v2) ∆2 ...... ∆l−1 (al = vl),
where ∆is are arbitrary Boolean connectives. An easy solution to this case would be to
change RDAS1 to a new protocol RDAS2 along the following lines:

1. The relation Rβ produced by RDAS2.F would contain explicit bitmaps corre-
sponding to the attributes and the values. Specifically, the attributes present in
Rβ should be {Name,SearchKey,RowNo,bitmap,tag1}. Thus, for creating the rela-

tion Rβ we need to add a line t
Rβ
j [bitmap]← BitMapR(L

1
j ,L

2
j ) after line 5 in the

procedure Creating Rβ in Figure 4.1.

2. The query translation procedure and the response procedure for RDAS2 remain
same as that of RDAS1.

3. The response procedure also remains the same, i.e., the server just answers the qα
and qβ queries, but as the Rβ relation now explicitly contains the bitmaps, hence
the bitmaps would also be a part of the query.

4. For the verification procedure in RDAS2 it is not required to create the bitmaps
anymore, the client verifies the ρα response by the procedure α-Verify in Figure
4.2, then it verifies the tags of the individual bitmaps returned in ρβ and finally
computes the result bitmap using the returned bitmap and checks if the result
bitmap matches with the result returned.

We now state the storage and communication costs for RDAS2 following the notations
in Section 4.2.2. The size of Rα in case of RDAS2 would be the same as in RDAS1, the
size of Rβ would be

size(Rβ)≤ N(sName+ssk+ lg(nT+N)+ τ+nT).

The size of a server response in case of RDAS2 would be

sizRD2 = sizRD1+ l ×nT (5.1)
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where sizRD1 is the size of the response of RDAS1, as given in Eq. (4.3).

In case of RDAS2, though we state that the bitmaps are to be explicitly stored in the re-
lation Rβ, but as most commercial databases use bitmaps indices for accelerating query
processing, hence this may not amount to extra storage in some systems. Moreover
bitmaps can be compressed, there has been substantial work on suitable encoding of
bitmaps such that their sizes can be reduced and the Boolean operations be applied on
the compressed bitmaps [43, 67, 68, 69, 70]. Applying proper encoding of the bitmaps
can drastically reduce both storage and communication costs. This version which uses
compression is discussed in Section 5.4.

5.1.1 Security of RDAS2

In this section we show that as in RDAS1 the security of RDAS2 depends on the strength
of theMAC.Notice that the pairs m, tag in ρα,ρβ are the same as in RDAS1. The only dif-
ference is that in RDAS2, the complete message t[Name]||t[SearchKey]||t[Bitmap]||t[RowNo] is stored
in Rβ. Thus, the security theorem for RDAS1 applies to RDAS2 without any change.

Theorem 5.1. Consider an adversary A attacking RDAS2 in the sense of definition 4.1. Let

A choose a relation Rwith nT tuples and the relation be such that the transformed relation Rβ
contains n′ tuples. Then there exists an adversary B attacking the message authentication code

MAC such that

Pr[SuccA ]≤ Pr[B forges ].

Also, B asks at most nT+n′ queries to its oracle and runs for time tA +(nT+n′)(c+ tMAC),

where tA is the running time of A , tMAC is the time for one MAC computation and c is a

constant.

The proof follows in the same way as the proof of Theorem 4.1, hence we do not repeat
it.

5.2 The case of empty replies

One limitation of RDAS1 and RDAS2 is that if the server replies with an empty re-
sponse in Sβ corresponding to a query then there is no way to verify the validity of the
response. For example, in case of the relation R1 (in Table 3.1), if a query

SELECT * FROM R1 WHERE Level = ’L3’

is posed, then response to this query would be empty, and there is no way to verify
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whether the response is correct. It is to be noted that a server may reply an RDAS1/RDAS2

query which has a valid response with an empty response and in such scenario also
RDAS1/RDAS2 provides no mechanism to detect that the response is wrong.

If we assume knowledge of the client regarding the values of the attributes present in
the relation then it would be easy for it to verify whether an empty response is the
correct one. We discuss two simple ways by which RDAS1 can be extended so that
empty responses can be verified. The same steps are valid for RDAS2 also.

1. Recall that the authentication transform F returns two additional data items Mc

and Ms, which are stored in the client and server sides respectively. In RDAS1,
Mc = nT the number of tuples in the original relation, and Ms is empty. As a first
solution, we suggest to augment Mc with a list of all values corresponding to each
sensitive attribute in the relation. With this additional information, the client can
easily verify whether an empty response is correct. This functionality comes with
an additional storage cost in the client side. But if we assume that the domain of
the attributes has small cardinality this storage would be much less compared to
the size of the whole relation. Moreover, with this small change in RDAS1 the
other efficiency and security claims remain unchanged.

2. As a second solution we propose to augment Ms with additional information.
In particular, we suggest to build a list Lsta, which contains all distinct values
of the attribute a which occur in the original relation (encoded in an appropriate
way). Corresponding to each list we compute lstTaga=MACK1(Lsta), andwe store
(Lsta, lstTaga) for each sensitive attribute a in Ms. Whenever the server returns an
empty response corresponding to a query involving a set of attributes S, then the
server includes in its response (Lsta, lstTaga) for all a∈S. It is easy to see that with
this information the client can verify whether the empty response is the correct
one.

This solution has no extra overhead on the client side storage, but increases the
server side storage, which is generally not of much concern. Additionally, it in-
creases the bandwidth requirement for the responses of queries with empty re-
sponses. But, for other queries the functionality of RDAS1 along with the security
claims remain unchanged.
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5.3 Using Aggregated MACs

Deterministic message authentication codes can be suitably aggregated [71]. The main
motivation behind aggregated MACs is to provide authenticated communications in
bandwidth constrained scenarios, say in case of a sensor network. In case of a sensor
network various sensor nodes have their own secret key which they only share with
the base station. Let us see an example of a sensor network consisting of k nodes
labeled i1, . . . , ik. We assume a communication protocol, where first the node i1 sends
its authenticated data (mi1, ti1) ( consisting of the message mi1 and the authentication
tag ti1, which is computed using mi1 and the key ki1 of the node) to the next node i2.
Node i2 adds its own authenticatedmessage (mi2, ti2) to the receivedmessage and sends
[(mi1, ti1),(mi2, ti2)] to i3. Thus, ultimately the base station receives [(mi1, ti1), . . . ,(mik, tik)]
from node ik. As the base station owns the key of all the nodes, hence it can verify
the authenticity of all the messages received. If we assume that the authentication tags
are n bit long irrespective of the message lengths, then this communication protocol
has an extra bandwidth overhead of O(k2n) bits. In case of sensor networks the data
sent by them are generally very short, say a temperature reading, thus the size of the
data may be much smaller than the size of the authentication tag (if one uses a secure
MAC to generate the tag, then n would be around 128 bits). Thus a O(k2n) bit extra
bandwidth overhead may not be tolerated in a standard scenario. Aggregated MAC
comes as a solution to this problem, if the MAC used for generating the authenticated
tag is "aggregate-able", then node i1 sends (mi1, ti1) to i2, i2 sends [(mi1,mi2), ti1⊕ ti2)] etc.
And finally, node ik sends [(mi1, . . . ,mik); ti1⊕ . . .⊕ tik)] to the base station. This protocol
only requires an extra bandwidth overhead of O(kn).

In the example above, we used ⊕ as the aggregation operator, but one can define it
generically as it was done in [71]. Moreover, it was proved in [71] that if one has
a secure deterministic message authentication code then by using ⊕ as the aggrega-
tion operator one can securely aggregate MACs, in the multiuser setting. The security
model describes a successful adversary as onewho can produce a set ofmessages along
with the user identifiers for each message and an aggregated tag which verifies. The
adversary is allowed to see the tags corresponding to messages of his/her choice, and
additionally (s)he is allowed to corrupt some users and know their keys. The final mes-
sage set produced by the adversary should contain at least one message user id pair
(m, id) such that (s)he has not seen the tag corresponding to m and has not corrupted
the user id.

Aggregated MACs can reduce communication costs both in case of RDAS1 and RDAS2.
Functionally, using aggregated MACs would reduce the response sizes, as then the
tags corresponding to all the tuples in ρα and ρβ will not be required to be sent, but an
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aggregation of these would be required. But it is to be noted that our case is funda-
mentally different from the above example in that we do not have multiple users, the
authentication tags are all generated using the same key. This has an advantage, that
the security reduction that can be obtained in this scenario is tighter than that obtained
in the multiuser scenario. We discuss this a bit more in Section 5.3.1.

We propose two variants of RDAS namely RDAS1-agg and RDAS2-agg which extend
RDAS1 and RDAS2 by using the functionality of aggregated MACs. We describe these
variants next.

To convert RDAS1 to RDAS1-agg we just need to apply little modifications in the server
response procedure and the verification procedure. In the response procedure, the
server sends ρα and ρβ as in RDAS1 but without the attributes Tag and Tag1, and it
sends two additional strings strα and strβ which contain the xor of the tags in ρα and ρβ
respectively. For example, consider the responses ρ1α and ρ1β in Table 4.3, the response
for RDAS1-agg would be projections of ρ1α and ρ1β without the attributes Tag and Tag1

respectively. And additionally the response procedure would return strα =Y1⊕Y3⊕Y6

and strβ = Y′8⊕Y′10. The changes that are to be applied to RDAS2 to obtain RDAS2-agg

are exactly the same.

This aggregation of tags leads to a savings in the communication cost in both RDAS1

and RDAS2. Following the notation of Section 4.2.2, the size of server response for
RDAS1-agg and RDAS2-agg would be

sizRD1-agg = sizRD1− τ(num+ l) (5.2)

sizRD2-agg = sizRD2− τ(num+ l). (5.3)

5.3.1 Security of RDAS1-agg and RDAS2-agg

For discussion of security, first we try to formalize the security definition of the ag-
gregated MACs. Firstly, given a message authentication code MAC : K ×M → {0,1}τ

we define the corresponding aggregated MAC MAC∗ in the single user setting as fol-
lows. The MAC generation algorithm given as input m∈M and a key K ∈ K outputs
MACK(m). The aggregation algorithm when given two sets of messages M1,M2 ⊂M

and two corresponding tags tag1, tag2 ∈ {0,1}
τ outputs tag1⊕ tag2. The verification al-

gorithm when given a key K ∈ K , a set of messages M ⊂ M and a tag tag ∈ {0,1}τ

computes
t =

⊕

m∈M

MACK(m),

and accepts if tag = t and rejects otherwise.
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An adversary A attacking MAC∗ is given oracle access to MACK(), i.e., it can know the
tags corresponding to the messages of it’s choice. Let us consider that A asks q queries
Q = {x1, . . . ,xq} to its oracle and gets back the corresponding tags t1, . . . , tq. Finally A

produces a set of messages M f ⊂M and a tag tag f . A is said to be successful in forging
if there is at least one element m∈M f such that m /∈Q and the verification algorithm of
MAC∗ on input (K,M f , tag f ) accepts. We define the forging advantage of A as

Adv
auth-ag
MAC∗

(A) = Pr[A forges].

If MACK() is a secure MAC then so is MAC∗K(). The following theorem states this more
formally.

Theorem 5.2. Let A be an arbitrary adversary attacking the aggregated MAC MAC∗, and A

runs for time T and makes q queries to its oracle. Then there exists an adversary B such that

Advauth−ag
MAC∗

(A) = Advauth
MAC(B).

B in turn makes O(q) queries and runs for time O(T).

Proof. Note B is attacking MACK , hence it has MACK as its oracle. B runs A as follows:
whenever A asks a query m, B returns to A , MACK(m) through its oracle. Let Q be the
set of queries made by A . Finally A outputs a forgery (M f , tag f ). If A is successful in
forging then Γ = M f \Q 6= /0. Fix r ∈ Γ and compute

tall =

{ ⊕
x∈Γ\{r}MACK(x), if Γ\{r} 6= /0

0 otherwise.

Note that B can compute tall using its oracle. Finally, B outputs (r, tag f ⊕ tall) as its
forgery. It is easy to see that if A successfully forges then so does B , and the runing
time of B and the number of queries asked by B are as desired.

With this discussion we are ready to state the security of RDAS1-agg and RDAS2-agg.

Theorem 5.3. Consider an adversary A attacking ϒ∈ {RDAS1-agg, RDAS2-agg} in the sense

of definition 4.1. Let A choose a relation Rwith nT tuples and let Rβ contains n′ tuples. Then
there exists an adversary B such that

Pr[SuccA ]≤ Advauth
MAC(B).

Also, B asks at most nT+n′ queries to its oracle and runs for time tA +(nT+n′)(c+ tMAC),

where tA is the running time of A , tMAC is the time for one MAC computation and c is a

constant.
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Proof. The proof is similar to proof of Theorem 4.1, with some small differences. We
present the reduction in two steps. First we construct an adversary C which attacks the
aggregated MACMAC∗, and it runs the adversary A , such that

Pr[SuccA ]≤ Advauth−ag
MAC∗

(C ). (5.4)

Then using Theorem 5.2, we have that there exists an adversary B such that

Advauth−ag
MAC∗

(B) = Advauth
MAC(C ). (5.5)

Thus, from equations (5.4) and (5.5) the Theorem follows.

To prove equation (5.5) we construct an adversary C which attacks the aggregate MAC
MAC∗. C runs A (A attacks ϒ) as follows.

Adversary CMACK(.)

1. Receive the relation R from A ;
2. Send (Rα,Rβ)← ϒ.F (R) to A ;
(Use the oracle MACK(.) to construct (Rα,Rβ);
Let Q be the set of queries asked to MACK(.))

3. Receive a query q from A ;
4. Send (qα,qβ)← ϒ.Φ(q) to A
5. Receive a response ρ′ from A

6. if ϒ.V (ρ′) 6=⊥ AND ϒ.V (ρ′) 6= ans(R ,q);
7. (x, tag)← AggregateForgery();

8. else x
$
←{0,1}∗−Q, tag $

←{0,1}τ;
9. return {x}, tag

Description of C is almost the same as the description of adversary B as given in the
proof of Theorem 4.1. As in the proof of Theorem 4.1, we claim that if the condition in
line 6 is satisfied then C generates a forgery forMAC∗with probability 1. We can see this
by following the same line of arguments as in the proof of Theorem 4.1. We explain the
procedure of AggregateForgery() briefly for ϒ =RADS2-agg, the case of ϒ =RADS1-agg

is similar.

Let B = {b1,b2, . . . ,b|B|} be the original set of attributes and let ρ′ = (ρ′α,ρ′β), strα, strβ.
Note that here ρ′α,ρ′β does not contain the attribute Tag and Tag1 respectively. If the
condition in line 6 is satisfied then either of the two cases must be satisfied:
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• Case I: There exists at least one tuple X in ρα which does not correspond to any
tuple in Rα. Construct a set Sα as

Sα = {t[b1]|| · · · ||t[b|B|]||t[Nonce] : t ∈ ρ′α}.

Then Sα, strα constitutes a valid forgery for MAC∗.

• Case II: There exists at least one tuple X in ρβ which does not correspond to any
tuple in Rβ. Construct a set Sβ as

Sβ = {t[Name]||t[SearchKey]||t[bitmap]||t[RowNumber] : t ∈ ρ′β}.

Then Sβ, strβ constitutes a valid forgery forMAC∗.

5.4 RDAS2-cmp: RDAS2 with Compression

We discussed in Section 2.6.3, that bitmaps can be compressed in such a way that the
bit operations can be applied in the compressed domain, moreover by compression
the size of the bitmaps can be drastically reduced. RDAS2 and its variants require
explicit storage of bitmaps and also the bitmaps need to be transmitted as the part
of the query response, hence bitmap compression in this context can be very helpful.
Our experiments which we present later also validate that using compressed bitmaps
not only reduces storage and communication costs but it also results in considerable
savings in computation time.

The changes required in RDAS2 and its variants to incorporate bitmap compression are
as follows:

1. The column Rβ[bitmap] in the relation Rβ would be populated by the EWAH
compressed bitmaps. The MAC would also be computed using the compressed
bitmaps.

2. The query translation procedure and the response procedure remains same as
that of RDAS2 (without compression).

3. The response procedure also remains the same, i.e., the server just answers the qα
and qβ queries.
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4. For the verification procedure in RDAS2 with compression it is not required to
uncompress the bitmaps, the client verifies the ρα response by the procedure α-
Verify in Figure 4.2, then it verifies the tags of the individual compressed bitmaps
returned in ρβ and finally computes the resulting bitmap using the returned com-
pressed bitmaps, and checks if the resulting bitmapmatches with the compressed
bitmap obtained from the response.

The incorporation of compression in RDAS2 has no effect on the security but the stor-
age and communication costs would decrease based on the amount of compression
achieved.

The size of Rα in case of RDAS2 with compression would be the same as in RDAS1. Let
sz_cmp(tN[bitmap]) denotes the size of the compressed bitmap for a given attribute and
value pair, the size of Rβ would be

size(Rβ)≤ N(sName+ssk+ lg(nT+N)+ τ+ sz_cmp(tN[bitmap]))

The size of a server response in case of RDAS2 would be

sizRD2 = sizRD1+ l × sz_cmp(tl [bitmap]), (5.6)

where sizRD1 is the size of the response of RDAS1, as given in Eq. (4.3).

Our experiments (presented later) clearly show gains in both communication and com-
putational cost if compression is used.

5.5 Dynamic databases

We argued that there exist scenarios in which it may not be necessary to handle data
updates, for instance, the case of data warehousing applications. Thus having a scheme
which is valid only for static databases is useful. Most work in the literature on authen-
ticated query processing focus on static databases. The proposals for dynamic scenario
are quite few [6, 49, 59]. However, our proposal can be extended to dynamic scenarios
also. Here we discuss the issues related to extending RDAS2 for dynamic scenarios,
we shall call the new scheme as RDAS2-dyn. We equip RDAS2-dyn to handle all possi-
ble kinds of updates in a outsourced relation: insertion, deletion and updates (by an
update we would mean a change in some field of an existing row).

We build RDAS2-dyn over the version of RDAS2 equipped with handling authenticity
of empty replies. The basic differences of RDAS2-dyn from the baseline RDAS2 are de-
scribed next.
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Both Rα and Rβ produced by RDAS2-dyn.Φ contain a new attribute, i.e., if B be the set of
original attributes then for RDAS2-dyn, Rα will contain the attributes B∪{Nonce,Ucount,Tag}

and Rβ will contain the attributes {Name,SearchKey,Bitmap,RowNo,Ucount1,Tag1} re-
spectively. These new attributes Ucount and Ucount1 would keep a record of the num-
ber of updates that take place in the rows of the relations Rα and Rβ. This information
would be necessary to ensure the freshness of the query results, a property that we have
ignored for the schemes that we have so far discussed, as freshness is only meaningful
in the dynamic scenario.

RDAS2-dyn.Φ populates the relations Rα and Rβ in almost the same way as depicted in
Figure 4.1, except that it sets t[Ucount] and t[Ucount1] to zero for all tuples t in Rα and
Rβ respectively, and while calculating the MAC, it encodes the attributes Nonce and
Ucount in Rα and the attributes RowNo and Ucount1 in Rβ as strings of fixed lengths, we
consider for concreteness that these attributes are 32 bit strings.

In addition to Rα and Rβ, RDAS2-dyn.Φ produces Ms and Mc, Ms consists of (Lstb, lstTagb)

for all attributes b ∈ B and Mc consists of nT the current number of tuples present in
Rα, N the current number of tuples in Rβ a bit string mask of size nT, and two arrays
UpdateListα and UpdateListβ of size nT and N respectively, both initialized to zero. The
value of the i-th element in UpdateListα represents the number of updates that the i-
th tuple in Rα has undergone. Similar information for Rβ is kept in the list UpdateListβ.
Thus, these lists keep track of the number of updates that have taken place in the tuples
of Rα and Rβ. Note that nT, mask, UpdateListα, UpdateListβ change their values with the
updates; the sizes of mask, UpdateListα, UpdateListβ are also dynamic. The bit stringmask

is used to handle deletions, and the structures UpdateListα and UpdateListβ would help
in verifying freshness. This would be clear from the discussions that follow.

Next we outline the four main procedures required by RDAS2-dyn for the dynamic
scenario: a) Insertion, b) Updates c) Deletion and d) Query processing.

InsertionWe consider that the client wants to insert a new tuple tnew in the outsourced
data base. We also consider J to be the set of sensitive attributes in tnew, where J =

{J1,J2, . . . ,J|J|} ⊆ B. For easy exposition let J=B. To insert tnew in the database, the client
should give proper instructions to the server to update both Rα and Rβ. The basic steps
required for the insert are noted as follows:

1. To insert a tuple corresponding to tnew in Rα the client uses the same process as
in RDAS2. Regarding the attributes Nonce and Ucount1, it instructs the server to
set tnew[Nonce] = nT+1 and tnew[Ucount] = 0. And the attribute tag is computed
using the values of all the attributes in Rα.

2. For the insertion, the number of tuples in Rβ that need to be updated is equal to
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the set of sensitive attributes J, as with this insertion the bitmaps corresponding
to all these attributes would change. There are two distinct cases to handle, firstly
it may be so that there is a specific attribute Ji such that tnew[Ji] is new, in the sense
that no other existing tuple in Rα has this value for the attribute J. The second
case is that there is no such new value in tnew. Note, that the client can know
which case it has to handle by suitably querying the existing database, and the
functionality of authenticating empty replies would help in this.

• For the first case, the client creates a new tuple for Rβ involving the new
value of the attribute by creating the suitable bitmap and computing its
MAC, and it sends the tuple to the server.

• For the second case the client gets all the relevant bitmaps corresponding to
the values of the new tuple and updates them, computes the MACs for the
updated tuples and sends them back to the server. For all the tuples of Rβ
that are updated, the attribute Ucount1 is incremented by 1.

Note that for an insert, the size of Rα increases by one tuple, hence the size of
each bitmap should also increase by one bit. This is explicitly not done, as for all
bitmaps except the bitmap for the value which is inserted the extra bit would be
a one for all others it would be a zero.

3. The client updates the value of nT by nT+ 1. It then updates UpdateListα by
augmenting it with a new element and setting it to zero, i.e., UpdateListα = 0. It
updates UpdateListβ by incrementing its i-th element if the i-th tuple of Rβ has
suffered an update. In case, that a new Rβ tuple has been generated, then the
client updates the value of N increasing by the number of new tuples.

Updates: This procedure has as main goal to update an attribute bi in tuple t in the
original relation from a value a to a′. For the description we assume the following: tRα

is the tuple in Rα, where the update is to be made, and tRα occurs in the j-th row of Rα.
The client gets tRα and j from the server through a suitable query. Let tup1 and tup2 be
the answers to the following queries respectively:

SELECT * FROM Rβ WHERE NAME= bi AND SearchKey= a
SELECT * FROM Rβ WHERE NAME=bi AND SearchKey= a′

The update would be performed by following the steps below:

1. The client updates the attribute bi with the new value a′ in the j-th tuple of
Rα, increments the attribute tRα[Ucount], and recomputes tRα[Tag] with the up-
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dated values and sends this to the server. The client also increments the value of
UpdateListα[ j] by 1.

2. As in case of inserts, for the update in Rβ there are two cases to handle. The first
one being tup2 is not empty and the other one where tup2 is empty.

• Suppose tup2 is not empty, i.e., there already exists a tuple with value a′ for
the attribute bi . In this case, the j-th bit of tup1[BitMap] would be 1 and the j-
th bit of tup2[BitMap] would be 0. The client would flip the bits of these two
bitmaps, increment the Ucount1 attribute of both these bitmaps and recom-
pute the tag1 attribute and send these updated tuples to the server. Assum-
ing tup1 and tup2 are the k-th and ℓ-th rows of Rβ, the client also increments
the values of UpdateListβ[k] and UpdateListβ[ℓ] by 1.

• When tup2 is empty, then there is no tuple in Rα where the attribute bi bears
the value a′. In this case we need to insert a new tuple tup in Rβ, such that
tup[Name] = bi , tup[SearchKey] = a′, tup[Ucount1] = 0, and tup[BitMap]= z, such
that bit j(z) = 1 and all other bits of z are zero. Using these new values of
attributes of tup, the client computes tup[Tag1] and sends this new tuple to
the server. Moreover as in the previous case the j-th bit of tup1[BitMap] is
changed from 1 to 0. The client also increments N (the number of tuples in
Rβ) by 1 and sets UpdateListβ[N] = 0 and increments UpdateListβ[k] by 1.

Deletion This procedure deletes a tuple tRα in Rα. We handle deletions by the use of a
bit string mask. The size of mask is nT bits, and initially it is an all 1 bit string. We do
not physically delete tuples from Rα. Whenever the j-th tuple in Rα is required to be
deleted then the j-th bit of mask is changed to zero.

Query The query processing in RDAS2-dyn remains the same as in case of RDAS2 except
by three small changes in the Verification Process V at the bitmaps operation phase:

• Before verifying the Rα and Rβ tuples, the client checks that their Ucount and
Ucount1 values matches with UpdateListα and UpdateListβ values respectively,
which are stored in the client. By this step the freshness property is guaranteed.

• Before operating the bitmaps, the length must be updated to exactly the one spec-
ified by nT.

• An extra operation ANDwith the mask array is required. This is because in case
some tuples had been deleted their values are not presented to the client.
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We described the basic ideas involved in adapting RDAS2 to a dynamic scenario. We
have some things which are left to do in this regard, the security of RDAS-dyn needs to
be analyzed in a different model, since the security definition in 4.1 is not adequate for
the dynamic scenario.

5.6 Further Extensions and Improvements

In this section we discuss several other ways in which the RDAS framework can be
extended.

5.6.1 Including other query types

Efficient range query processing: Range queries can be handled by RDAS2 by
posing a range query with several selects. But this may not be efficient. An effi-
cient way to handle range queries would be to store range bitmaps [67, 68]. The
type of bitmaps that we have used so far are called equality bitmaps, and they
are good for select queries. Using range bitmaps one can encode range informa-
tion of the attribute values and thus would be well suited for processing range
queries. Adding other bitmap encodings in our system can be done in a straight-
forward way, and would increase the functionality at the cost of storage.

In the next chapter we discuss in details some novel range encoding schemes for
bitmaps in the context of database privacy. These encodings can also be used in
the context of authenticated query processing. But a detailed study in this regard
is necessary, which we are yet to do.

Projection and aggregation queries: Projection and aggregation queries cannot
be handled directly by our protocol. But, projections and aggregations can al-
ways be done in the client side if these functionalities are required. And this can
also be added to the system, without hampering its security properties.

Join queries: We have not discussed the functionality of join processing for our
schemes. But basic join processing (like equijoins) can again be obtained in a
straightforward way by storing extra information. In particular, join bitmaps
[72, 73] can be used for this purpose.
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5.6.2 Multiuser settings

As stated earlier, we use a symmetric key primitive as the main cryptographic object,
thus our scheme is restricted to a single user setting, i.e., the data owner is the one
who queries the database. We can replace the message authentication scheme with a
public key signature scheme to extend the scheme for multiple queriers. We see no
problem in doing this, but for a multiuser setting, the security definition that we give
for RDAS would no more be valid, and one needs to extend this definition. Using
signatures, the computational cost would in general be more than that in using MACs.
The functionality of aggregation can also be used (as we used for MACs) to reduce
communication costs.

5.7 Discussions and Comparisons

As stated earlier there are other schemes available in the literature which achieves the
functionality of authenticated query processing. The main novelty of our scheme is in
the use of bitmaps and ability to work on queries other than range queries, moreover
we try to analyze security in formal terms and also link the security of the scheme with
the security of the message authentication code.

In this section we aim to provide a comparison of RDAS1/RDAS2 schemes with the
other existing schemes, and also point out the limitations in our schemes. Providing
an experimental comparison of our schemes with the existing ones is beyond the scope
of this work. Some authors (for example [6]) compare the storage and communication
cost of the protocols in asymptotic terms, which also do not reveal the complete picture.
We would point out some of the differences of our framework in comparison to the
others with respect to functionality and costs.

As stated earlier, most existing schemes use an additional authenticated data structure
to ensure completeness. The additional data structure is usually a tree, in its barest
form a Merkle hash tree is used [74, 75]. In some cases variants of B+ trees have also
been used as the additional data structure [49, 48, 76]. The other significant direction
is use of signatures. By signing the individual tuples with a secure signature scheme,
as it was done in [48, 61] one can ensure correctness but not completeness. To attain
completeness only with signatures a method in [58] was proposed, where chains of
signatures are constructed based on a specific sort order of the attribute values. Such
types of signatures allow verification of completeness for range queries, without the
use of additional data structures. Signature aggregation has also been used to reduce
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the size of the responses [61, 77, 58, 76]. In what follows we summarize some of the
salient features of the previous works available in the literature and compare and con-
trast it with the RDAS framework.

Type of queries: In the literature, all basic schemes are designed to handle mostly
range queries on numerical attributes. In most cases, to handle additional query types,
drastic changes in the basic schemes are required. For most tree based schemes, even
handling tuples with repeated values of attributes needs special treatment [58, 76]. In
some tree based schemes join processing is achieved in rather a straight forward way
[76, 78, 49, 59], which leads to significant increase in the size of the query responses and
also the stored data in the server side. In [52] a special tree structure called authenti-
cated aggregation B tree was specifically designed to handle aggregation queries, other
tree based schemes cannot handle aggregation queries as a part of the scheme.

The signature based schemes like in [58, 76] which uses chain signatures are mainly
designed for range queries and are not efficient for other types of queries. It has been
claimed in [76] that joins can be handled, but here too the computational costs and the
size of the responses would be prohibitively large.

RDAS2 can handle selects involving arbitrary Boolean operations. These query types
can be modified to handle range queries, without any extra overhead. In the recent
years other efficient bitmap encodings, like the range encodings [67, 68] have been pro-
posed. Such bitmap encoding can provide functionality of range queries in a more effi-
cient way. Such extensions are straightforward and can be easily implemented. Projec-
tions and aggregations cannot be handled directly by the protocol, but they can be im-
plemented in the client side without any difficulties. Moreover, simple join queries can
also be accommodated if some additional information is stored through join bitmaps
[72, 73]. Hence the spectrum of query types that can be handled by the RDAS frame-
work is comparable to the existing schemes.

In the following discussion we will denote the number of rows in a database by n and
the number of attributes by m. By nq we shall mean the number of tuples included in a
correct and complete response of a query q, and lq will denote the number of bitmaps
involved in a query q.

Storage Costs: Tree based schemes need to store a tree for each attribute. Asymptoti-
cally, a tree based scheme (such as the one described in [49, 76]) requires O(mn) extra
storage. Whereas in case of RDAS1 we require O(n+N) storage, where N is the car-
dinality of all the attributes present. We know that N ≤ mn, but in most scenarios N
is smaller than mn, and in certain scenarios N << mn. In case of the basic RDAS2, we
require O(n+Nn) storage as we require to store the bitmaps also corresponding to each
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attribute and its value. Assuming N = O(mn), we have the asymptotic storage require-
ment for RDAS2 as O(mn2), but the constants involved in this are much smaller than
in the case of tree based solutions, and this is an extreme overestimate for databases
with low cardinality attributes. Moreover, in case of RDAS2 the bitmaps can be com-
pressed. It is difficult to give a proper estimate of the amount of compression that can
be achieved in general. But, it is clear that when the attribute cardinalities increases,
the bitmaps become more sparse (in the sense that they would have lower Hamming
weights), which would allow better compression. In case N = mn, each bitmap would
have only one 1 and rest zeros, and can be encoded in constant length irrespective of
the number of rows in the database. Thus, it is expected that with increase in N the
encoded size of the bitmaps decreases. In general terms, it has been said (for example
in [79]) that the sizes of the compressed bitmap indices are relatively small compared
with the typical B-tree indices. This is true even for attributes with very high cardinal-
ities.

Let us see a simple comparison between B-tree and equal bitmap encoding, a bitmap
index on an attribute a of a table R requires in space nN

8 bytes. On the other hand,
building a B-tree on the same attribute requires about 1.44×n

M × p bytes, where p is the
page size, and M is the degree of the B-tree [80, 81]. Now let us assume that p = 4K
and M = 512and the cardinality of a is smaller than 93 then building a equal encoding
bitmap is cheaper in size that building a B-tree. The schemes based on signature chains
or aggregate signatures like [58, 59] also use = O(mn) storage.

Query execution costs: The tree based schemes (as [49]) do not have any extra compu-
tational overhead in query execution. This is also true for the basic RDAS1 and RDAS2.
In case of RDAS2−agg, for query execution the tags should be aggregated, thus, re-
quires a number of xor operations which grows linearly with the response size. But in
tree based schemes, answering a query requires traversing the tree to find the relevant
node, and for multiple attributes this has to be done in multiple trees, and there exists
no trivial way to combine the trees corresponding to different attributes. In RDAS,
query execution is simpler, moreover the bitmaps stored in case of RDAS2 can even
act as indexes and thus make query execution further efficient. In case of schemes us-
ing signature chains [58, 59], the signatures are also pre-computed, hence additional
computation in query execution is not required. But schemes which use aggregated
signatures are required to be aggregated for responding queries. In such a scenario,
the server needs to aggregate O(nq) signatures. It is to be noted that aggregating signa-
tures is much more costly than aggregating MACs. For example if RSA signatures are
used then to aggregate two signatures one requires a modular multiplication modulo
the RSA modulus (which should be at least 1024 bits long).
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Query Verification costs: The schemes based on trees structures [49] require to com-
pute O(mnq) hashes plus one signature to verify a query. In the case of [76], O(mnq)

signatures are required to be computed, which is very expensive. On the other hand,
RDAS1 and RDAS2 requires the computation of O(nq+ lq ·n) tags, where lq is the number
of bitmaps involved in the query. RDAS2 only differs from RDAS1 in that it is necessary
to build the involved bitmaps. In case of schemes using signature chains ([58, 59]) the
cost is similar to the tree approach.

Communication costs: In RDAS1 and RDAS2, the extra communication cost is O(nq+

n · lq). Once more the difference between RDAS1 and RDAS2 is that in RDAS2 the com-
munication costs grows because bitmaps are also sent as part of the response. The
extra cost can be reduced by compression as in RDAS2-cmp. In case of RDAS1-agg

the extra overhead is constant, since just two aggregated tags are sent irrespective of
the response size. Finally in RDAS2-agg the object verification size has a bound of
O(n · lq) where lq is the number of bitmaps involved in the query. The schemes based
on trees [49] have a communication cost of O(logn) hashes that need to be sent. The
scheme in [76] has a constant communication cost, as only an aggregate signature is
sent here irrespective of the response size. The schemes described in [59, 58] need to
send O(mnq) hashes plus one aggregated signature.

5.8 Summary

In this chapter we presented some improvements to our basic construction RDAS1, and
provided a detailed comparison of our framework with the other existing schemes in
the literature. In this chapter we end our study on authenticated query processing, and
in the next chapter we begin our study of privacy in databases.



Chapter 6

ESRQ1: A Scheme to Provide Privacy in

Relational Databases
Every child is an artist. The problem is how to
remain an artist once he grows up.

Pablo Picasso

Till now we have concentrated on the query authentication problem in outsourced
databases. In this chapter we deal with privacy. In Section 3.4 some of the intri-

cacies involving privacy in databases were discussed. It was also stated that we only
attempt to address the problem of running range queries in an encrypted database. In
the existing literature, it has been proposed that this problem could be handled if the
database entries are encrypted using order preserving encryption schemes. Several or-
der preserving encryption schemes are available in the existing literature [9, 10, 11, 12,
13, 64, 65], but as Popa et.al. [14] recently suggest, none of them has achieved the ideal
IND-OCPA security, they either leakmore than just the order of plaintext values or pro-
pose other security notions weaker than the IND-OCPA notion. Also, there does not
exist any comprehensive security analysis of the scenario when the above mentioned
schemes are applied in a real database.

We see the problem of executing range queries in an encrypted database from a dif-
ferent direction. The main component of our solution is not to use any special type
of encryption scheme, i.e., the encryption scheme we use is not an OPE scheme. We
encrypt the tables with a deterministic encryption scheme, additionally we maintain
some extra data in the server side which contains just the order information of the vari-
ous attribute values. Both the encrypted table and the additional data are kept with the
server, and the server can respond to range queries without the knowledge of the real
attribute values in the table. Our solution has some relationship with the philosophy
adopted in [14], where encryption was done using a deterministic encryption scheme
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and in addition to the ciphertext a special order preserving encoding of the plaintext
was used to reveal the order. But the details of our solution are completely different
from [14]. A novel component of our proposal is that it uses bitmap indices to encode
the order information of the attributes, instead of using a tree based data structure as
Popa et al. in [14] did (see section 3.5). The specific form of encoding that we use is
more suitable for use in the context of relational databases. Moreover, our encoding
enables more efficient query processing. Also as will be evident from the following
discussions, we use a cryptographic primitive that provide the exact security required
for encrypting databases. The specific primitive we use allow us to have a light weight
protocol.

As we did in the case of the problem of authenticated query processing, here we pro-
pose a generic framework for a database encryption scheme supporting range queries
(ESRQ), and define its syntax and security notion. We also provide a complete scheme
called ESRQ1.

The main cryptographic component required in our scheme is a deterministic encryp-
tion scheme E. E has some curious requirements, firstly it should support associ-
ated data, i.e., it receives as input not only a plaintext but a public associated data
(also called tweak). Moreover we require E to be secure against deterministic cho-
sen plaintext adversaries (CPA secure). Though deterministic encryption schemes
which provide stronger security against chosen ciphertext adversaries (CCA secure)
exist [82, 83, 84], but the possibility of a more efficient deterministic scheme which is
only CPA secure has not been adequately explored in the literature. Though, it has
been acknowledged [14, 63] that CPA secure deterministic schemes are required for
database encryption, but still it suggests the use of schemes which provide stronger
security. We fix some efficient schemes that provide the required security. In particular
we propose a class of constructions called OHCTR which are deterministic CPA secure
and are more efficient than CCA secure deterministic schemes. These schemes can be
of independent interest, and are described separately in Chapter 7.

One interesting property of ESRQ1 is that it supports updates and inserts in the database.
To enable this functionality within ESRQ1, we required to device a specific data struc-
ture to store bitmaps. This data structure allows efficient updates and also results in a
short representation of bitmaps. This specific data structure can also be of independent
interest.

In what follows, in Section 6.1, we introduce some additional notations and also briefly
discuss the syntax and security of deterministic encryption schemes supporting asso-
ciated data (DEAD). In Section 6.2 we discuss the syntax of a ESRQ scheme along with
the security notion. In Section 6.3 we introduce our proposed structure to store bitmaps
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and its properties. Finally, in Section 6.4 we present our specific construction ESRQ1

that allows to encrypt a database in such a way that range queries can be performed.

6.1 Additional Notations

Lists and arrays. We will require dynamic lists for our descriptions. For our descrip-
tion we will see the lists as arrays, though other implementation options are possible.
In most cases the lists that we will use would be sorted in the ascending order, i.e., if L
is a list with n elements then

L [1]≤ L [2]≤ ·· · ≤ L [n].

Given a sorted list L we will frequently use some operations on L . We describe this
operations next, with the help of an example list L1 = 〈3,9,19,26,52,76,111〉.

len(L), will denote the number of elements in L , for example, len(L1) = 7.

exists(L ,val) returns 1 if val exists in the list L and returns a 0 otherwise. For
example, exists(L1,26) = 1, and exists(L1,25) = 0.

position(L ,val) returns the position of val in L . Note, if val is not present in L , then
also it returns a value. For example, position(L ,19) returns 3, and position(L ,10)
also returns 3 signifying that though 10 does not exists in L1, but if it is inserted
in L1 it will have the position 3.

Insert(L , i,val), inserts val in the ith position of L . This operation increases the
number of elements in L by 1. For example, Insert(L ,2,5) changes the original
list L1 to 〈3,5,9,19,26,52,76,111〉.

Deterministic Encryption Schemes: A deterministic encryption scheme with associ-
ated data (DEAD) is a deterministic function E : K ×T ×M → C , where K , T ,M and
C are the key space, tweak (associated data) space, message space and cipher space,
respectively. Thus, E receives as input a key K ∈ K , a tweak T ∈ T and a message
M ∈M and produces as output a cipher C ∈ C . We shall often write EK(T,M) instead
of E(K,T,M). E also has an inverse function D : K ×T ×C →M , such that for every
K ∈K , every T ∈ T and every M ∈M , DK(T,EK(T,M))= M. This implies that for every
T ∈ T and every K ∈K , EK(T, ·) : M → C is an injective function.

To define security of E we consider an adversary A which is given an oracle O. The
oracle O can either be EK(·, ·), i.e., the encryption scheme which is instantiated with a
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uniform random key K selected from K , or it can be $(·, ·), i.e., it is an oracle which on
input (T,M) ∈ T ×M outputs a random string of size EK(T,M). A is allowed to query
its oracle and decide with whom it is interacting. One important restriction of A is that
is not allowed to repeat any query. We formally define the advantage of A as

Adv
det-cpa
E (A) =

∣∣∣Pr[K
$
← K : AEK(·,·)⇒ 1]−Pr[A$(·,·)⇒ 1]

∣∣∣ . (6.1)

We define Adv
det-cpa
E (q,σ,t) by maxAAdv

det-cpa
E (A) where maximum is taken over all adver-

saries that make at most q queries having at most σ many blocks and run for time at

most t. We consider an encryption scheme to be (ε,q,t) det-cpa secure if Adv
det-cpa
E (q,σ,t)≤ε.

This syntax and the security notion of DEAD would be enough for us to describe the
basic ESRQ scheme in this chapter. In the next chapter we discuss more details of
DEAD, including some practical instantiations.

6.2 Encryption SchemeSupportingRangeQueries (ESRQ):

Definitions and Basic Notions

An encryption scheme supporting range queries (ESRQ) consists of a tuple of algo-
rithms (G ,Enc,Φ,Ψ,I ,U,Dec), which work as follows.

The key generation algorithm G runs at the client side and outputs a set of keys
that are randomly selected from a pre-specified key space. We will denote the
key space by K .

The privacy transform Enc receives as an input a relation R and the set of keys
generated by G . This transform generates a new relation called R′ along with
some additional data (Ms,Mc) . We denote this operation as (R′,Ms,Mc)←EncK(R).
This transform is executed in the client side. The resulting relation R′ is an en-
crypted table.

The query translator Φ is an interactive procedure that runs between the client
and the server. It takes in the key K and a query q meant for the relation R and
converts it to a query q′ which can be executed in R′. For convenience, we shall
sometimes refer to a query meant for R to be an R-query and a query meant for
R′ as R′-query. Thus Φ converts an R-query to an R′-query with the help of a key.

The response procedure Ψ runs at the server side. Ψ allows the server to answer
a query Φ(q) on R′ . The output of Ψ for a query is the response of the server,
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called ρ. ρ contains the encrypted answer that should be decrypted at the client
side. The server returns this reply to the client.

The Insert procedure I is an interactive procedure which inserts a tuple t to the
relation R. The procedure takes in a tuple t and I (t) does the necessary updates
in R′ and Ms,Mc.

The Update procedure U is an interactive procedure which updates a tuple t
already present in R. The procedure takes in the original tuple to and the new
tuple tn, and U(to, tn) does the necessary updates in R′ and Ms,Mc.

The decryption procedure is a keyed transform DecK which runs in the client. It
receives as input the server response ρ and outputs the answer ans for the query
q.

A client who wants to store a relation R in an un-trusted server, executes EncK(R) using
K ∈ K . The transform Enc produces a relation R′ along with (Ms,Mc). The relation R′

and Ms is stored in the server and Mc and the keys are retained in the client side. The
client can pose an R-query, the query is transformed to a query R′-query using Φ, and
it is sent to the server. Then the server answers the R′-query through the ψ procedure.
Finally, the answer ρ is sent to the client to be decrypted. The client performs the
decryption procedure DecK and recovers the answer ans for the R-query. The client is
also allowed to update the database by inserting more tuples in it or by changing some
existing tuples.

6.2.1 Security Notion

To define the security notion, we first define some important concepts.

Definition 6.1. Given a relation R over a set of attributes A, we classify the attributes in two

different classes: the ones where a range query is valid and the ones where such queries are not

valid. Define ty : A→ {0,1}, where for any a∈ A, ty(a) = 0, if range queries on the attribute

a is not applicable and ty(a) = 1, otherwise. An attribute a∈ A, such that ty(a) = 1 is called a

range attribute.

Definition 6.2. Two relations R and S are said to be equivalent (denoted by R≈ S) if the
following conditions hold.

1. R and Sare defined over the same set of attributes A.

2. R and Scontains the same number of tuples nT.
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3. For every i, j ∈ {1,2, . . . ,nT}, and every a∈ A, such that ty(a) = 1,

tR
i [a]≥ tR

j [a]⇐⇒ tS
i [a]≥ tS

j [a].

4. For every i ∈ {1,2, . . . ,nT}, and every a∈ A, |tR
i [a]|= |t

S
i [a]|.

Game ESRQA
ϒ

1. The challenger selects K
$
←K

2. A selects two relations R0, R1

such that R0≈ R1, and gives them to the challenger.

3. The challenger selects a bit b
$
←{0,1}

4. The challenger computes (R′,Ms,Mc)← ϒ.EncK(Rb), and publishes (R′,Ms) .
Now the adversary A can perform inserts and updates as follows:
5. For an insert A submits two tuples (t0

∗ , t
1
∗),

such that R0⊔ t0
∗ ≈ R1⊔ t1

∗ . The challenger executes Ins(tb)
6. For an update, A selects a 1≤ i ≤ nT, and two tuples (t0

∗ , t
1
∗),

such that R0⊎ (t
R0
i , t0

∗)≈ R1⊎ (t
R1
i , t1

∗). The challenger executes U(tRb
i , tb

∗)

7. A outputs a bit b′.
8. if b= b′ output 1
9. else output 0

Figure 6.1: Game used to define security of ESRQ

A tuple can be considered to be a relation with only one row. Thus we will sometimes
talk of the equivalence of two tuples in the above sense.

Moreover given a relation R, we will denote by R⊔ t the new relation obtained by
inserting t to R. And, R⊎ (to, tn) will denote the new relation obtained by changing the
tuple to in R to tn.

The basic goal of ESRQ is to transform R to R′ in such a way that R′ should not contain
any information beyond the order relation between the attribute values. We formally
define security of ESRQ ϒ as a game between an adversary and a challenger, the inter-
action between these two entities is described in Figure 6.1.

In the game described in Figure 6.1, the challenger first selects the keys that would be
necessary for ESRQ ϒ. Next, the adversary chooses two equivalent relations R0 and
R1, such that R0 ≈ R1, and submits these relations to the challenger. The challenger
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selects a bit b uniformly at random and applies ϒ.EncK(Rb) to obtain (R′,Ms,Mc) and
reveals (R′,Ms) to A . The task of A is to guess the bit b chosen by the challenger, i.e., to
guess which of the relations R0 or R1 was encrypted by the challenger. The adversary
can additionally seek updates or inserts to the original relation. For seeking inserts, it
needs to submit two tuples (t0

∗ , t
1
∗)where t0

∗ and t1
∗ are meant to be inserted in R0 and R1

respectively. Further it is required that if these tuples are inserted in R0 and R1 then also
the relations remain equivalent. Similarly, the adversary can ask for updates where he
chooses a tuple to change and supplies the new tuple for both the relations. It is again
required that after the update both relations R0 and R1 should be equivalent. Note that
with inserts and updates being allowed, the relation R′ and Ms are dynamic and they
change with each update sought by the adversary, and the adversary is allowed to seek
multiple inserts/updates. Finally, the adversary outputs a bit b′ and the game returns
a 1 if b= b′ and returns a 0 otherwise.

Definition 6.3. The advantage of an adversary A in attacking an ESRQ ϒ is defined as

Adv
esrq
ϒ (A) =

∣∣∣∣Pr[ESRQA ⇒ 1]−
1
2

∣∣∣∣ .

The relevant resources of an adversary attacking an ESRQ scheme is its running time,
cell complexity and query complexity, which we define next:

1. The running time of the adversary is the time spent by A in the ESRQA game,
before it stops.

2. The cell complexity of A is computed in the following manner. Suppose the ini-
tially chosen relations R0 andR1 has n1 attributes and n2 tuples. Further the adver-
sary asks for ni many inserts and nu many updates. Then the cell complexity q of
A would be q= n1(n2+ni +nu).

3. The query complexity is the total number of n block queries that the adversary
makes, where n is a previously chosen parameter. Note that the cell complexity
of A is the total number of cells queried by it. If the ith cell is of size si , then the
query complexity of A is computed as

σn =
q

∑
i
⌈si/n⌉.

We define Adv
esrq
ϒ (q,σ, t) = maxAdv

esrq
ϒ (A), where the maximum is taken over all

adversaries A which run for time at most t and have cell complexity and query com-
plexity of at most q and σn, respectively. Moreover, we say that an ESRQ scheme ϒ is
(ε,q,σn, t) secure, if for all adversaries which run for time at most t, Adv

esrq
ϒ (q,σn, t)≤ ε.
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This definition bears lot of similarity with the IND-OCPA security definition for en-
cryption schemes. The definition implicitly allows the encryption procedure to leak
the order of the plaintext. This is done through the restriction that the initial relations
R0 and R1 chosen by the adversary are such that R0 ≈ R1. As per Definition 6.2, if two
relations are equivalent then the values in the tables bear the same order relation (see
points 3 and 4 in the definition). Thus, even if the encryption procedure leaks the order
of the plaintexts then also the adversary would not be able to distinguish between the
two encrypted relations. The concept of equivalence that we use here is an adaptation
of the IND-OCPA definition [65] for relational databases.

6.3 Matrix representation of bitmaps

In this section we discuss some specific representations and operations on bitmaps
which would help us in the description of a specific encryption protocol ESRQ1.

Column Ordered Matrices. Let M be a m×n matrix. We will denote the entry in the
ith row and jth column by M (i, j). For 1≤ j ≤ m and 1≤ i ≤ n, ColM ( j) and RowM (i)
will denote the jth column and ith row ofM , respectively.

Definition 6.4. Let M be a m× n bit matrix. A column j (1≤ j ≤ n) of M is said to be

ordered if

M (1, j)≤M (2, j)≤ ·· · ≤M (m, j).

Definition 6.5. A matrixM is said to be column ordered if all its columns are ordered.

IfM is a column ordered matrix of bits, then each column would contain a block of ze-
ros followed possibly by a block of ones, where either block can be empty. For example,
the matrix:

M1 =




0 0 0 0 0 0
0 1 0 0 0 0
1 1 0 0 1 0
1 1 0 1 1 0
1 1 0 1 1 1




(6.2)

is a column ordered bit matrix.

Definition 6.6. LetM be am×n column ordered bit matrix. For 1≤ j ≤n, define one(M , j)=
i, where i ≤m is the smallest positive integer such thatM (i, j) = 1. If no such i exists, then we

define one(M , j) = 0.
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For example, we have one(M1,1) = 3, one(M1,3) = 0, etc.

A m×n column ordered bit matrix M can be represented by an array arrM of size n,
where

arrM [i] = one(M , i), for 1≤ i ≤ n.

The array representation of the matrixM1 in Eq. (6.2) would be arrM1
= 〈3,2,0,4,3,5〉.

Note that each entry of arrM is a non negative integer less than m+1. Thus, this repre-
sentation would occupy nlgmbits contrary to the usual bit representation which occu-
pies mnbits.

For our schemes described later, we would require to store bitmaps of attributes and
operate on them efficiently. We discuss some of these issues next.

Definition 6.7. Given a relation R(A) and an attribute a ∈ A. Let L be a sorted list (in in-

creasing order) of the values in DomR(a). We call L as the ordered list of a for R. We denote

the length of L as len(L). Hence, len(L) = #Dom(a).

Definition 6.8. Let R(A) be a relation with nT rows. Let a∈ A be an attribute and L be the

ordered list of a in R. Let M be a #Dom(a)× nT bit-matrix such that for 1 ≤ i ≤ len(L),

RowM (i) = BitMap<(a,L [i]). We callM as the l-bitmap matrix of a for R.

Let us review with an example the above two definitions. Consider the relation R1
in Table 6.1, now if we want to construct the ordered list of the attribute age for the
relation R1, we have to list all the possible values of age in increasing order. Thus the
list looks as follows:

L1 = 〈17,18,33,36,52〉

The l -bitmap matrix of the attribute age for the relation R1 is shown in Equation 6.2, to
build this matrix we have to include each of the l-bitmaps for each of the values in the
ordered list. Thus, the first row ofM1 is the l -encoded bitmap of 17, the second row is
the l -encoded bitmap of 18, etc.

EmpId Name Gender Level Age

TRW Tom M L2 18

MST Mary F L1 17

JOH John M L2 52

MRH Mary F L1 33

ASY Anne F L1 18

RZT Rosy F L2 36

Table 6.1: Relation Employees
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Lesser(L,arr,a,v)
1. Find i such that L[i] = v
2. for j = 1 to nT

3. if (arr[ j]> i ORarr[ j] == 0)
4. b[ j]← 0
5. else b[ j]← 1
6. end for

7. return b

Equal(L,arr,a,v)
1. Find i, such that L[i] = v
2. b← Lesser(L,arr,a,v)
3. if i = #DomR(a)
4. return b̄
5. else
6. b′← Lesser(L,arr,a,L[i +1])
7. return b⊕b′

8. end if

Greater(L,arr,a,v)
1. b← Lesser(L,arr,a,v)
2. b′← Equal(L,arr,a,v)
3. return b̄⊕b′

Figure 6.2: The procedures to obtain different bitmap encodings for an attribute
a and value v, given the ordered list L and an array representation arr of the
l -bitmap matrix of the attribute a in relation R. Lesser(L ,arr,a,v) computes
BitMap<(a,v), Equal(L ,arr,a,v) computes BitMap(a,v) and Greater(L ,arr,a,v) com-
putes BitMap>(a,v).

It is easy to verify the following proposition.

Proposition 6.1. Let R(A) be a relation, and a ∈ A be an arbitrary attribute. If M be the

l -bitmap matrix of a, thenM is column ordered.

Hence, the l -bitmap matrix of an attribute can be represented with an array as dis-
cussed above. Moreover, given arr (the array representation of the l -bitmap matrix)
and L (the ordered list) of any attribute a∈ A, all bitmap encodings for a correspond-
ing to all values in Dom(a) can be efficiently computed. Assuming arr, and L are
given, we describe the procedures to obtain the bitmaps BitMap<R(a,v), BitMapR(a,v)
and BitMap>R(a,v) in the algorithms Lesser(L ,arr,a,v), Equal(L ,arr,a,v) and
Greater(L ,arr,a,v) in Figure 6.2.

Proposition 6.2. The procedures in Figure 6.2 are correct. In particular

1. Lesser(L ,arr,a,v) computes BitMap<(a,v).

2. Equal(L ,arr,a,v) computes BitMap(a,v).

3. Greater(L ,arr,a,v) computes BitMap>(a,v).

Proof. In what follows we assume that arr and L represents the matrixM , which is the
l -bitmap matrix for a in R.

1. It is easy to see that the procedure Lesser just reconstructs the ith row of M and
the ith row of M is the l -encoded bitmap corresponding to the attribute a and
value v.



Chapter 6. ESRQ1: A Scheme to Provide Privacy in Relational Databases 93

2. There are two cases to handle

(a) If i = #Dom(a), then L [i] is the the largest element in Dom(a), i.e., L [i] is the
largest value for the attribute a in the relation R. Thus, the ith row of M
contains a zero in only those positions where the relation contains the value
L [i], in other positions it contains a 1. Thus the bit-wise complement of the
ith row gives the equality bitmap.

(b) If i < #Dom(a), then the ith and the (i +1)th rows of M differs only in those
positions, where the relation contains the value L [i], thus the bitwise xor of
the ith and (i +1)th rows gives the equality bitmap.

3. This follows directly from the fact that the bitwise complement of BitMap<R(a,v),
gives BitMap≥R(a,v).

Updating l -bitmap matrices. The discussion above shows that if the l -bitmap indices
of a relation Rare stored then it would be enough to answer a variety of range queries
on R. Here we discuss some issues about updating l -bitmap indices when updates or
inserts are applied to the original relation R.

Consider a relation R(A), and let a be the only range attribute in A. Let La and Ma

be the ordered list and l -bitmap matrix of a in R, respectively. Let arra be the array
representation of Ma. With insertions and updates, new values for the attribute a may
be introduced which would change the l -bitmap matrix for a. We are interested in
fixing procedures which can update the matrix Ma incrementally. Consider, that we
need to insert a new tuple t in R. With this new tuple inserted into R, the matrix Ma

changes. The procedure that is required to update the representation arra of the matrix
Ma for this insertion is depicted in Figure 6.3(a). We show an example for the running
of these procedures next.

Consider the relation R1 in Table 6.1. The attribute age of this relation generates the l -
bitmap matrix, the array representation arr and the ordered list L1 depicted in the left
side of Table 6.2. Now, suppose that the client wants to insert a new tuple in relation R1
where age is equal to 25. According to the procedure in Figure 6.3(a) position(L1,25) =
3. The returned position is equal to 3 because as we explain in the definition of this
function (see Section 6.1) even though 25 is a quantity that is not part of the original
list, this function outputs the position in which it should be inserted. Since the function
exists(L1,25) returns 0, the l-bitmap matrix M1 suffers changes in the two dimensions,
first a new row is insertedM1(i)(3) and also a new columnM1(7)( j) (see Table 6.2 right
side colored in red). Therefore the array representation also changes. The procedure
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Matrix_Update_For_Insert(La,arra, t[a])
1. p← position(La, t[a]) //looking for the position

2. if exists(La, t[a]) = 0 //if the value not exists

3. for j = 1 to nT

4. if arr[ j]> p,
5. arra[ j]← arra[ j]+1
6. end if

7. end for

8. Insert(La, p, t[a])//inserting the new value

9. end if

10.nT← nT+1 //updating the number of tuples

11.arra[nT] = p+1
12.if arra[nT]> len(La)

13. arra[nT]← 0
14.end if

Matrix_Update_For_Update(La,arra, j,vN)

1. p← position(La,vN) //looking for the position

2. if exists(La, t[a]) = 0 //if the value not exists

3. for i = 1 to nT

4. if arr[ j]> p,
5. arra[i]← arra[i]+1
6. end if

7. end for

8. Insert(La, p, t[a]);//inserting the new value

9. end if

10.arra[ j]← p+1 //updating the array

11.if arra[ j]> len(La)

12. arra[ j]← 0
13.end if

(a) (b)

Figure 6.3: Insert and update procedures

Matrix_Update_For_Insert in lines 4 to 6 suggests a comparison between each of the
entries in the arrM1

and the position p. The ones that are greater than the position are
updated. For example, consider the first entry arrM1

[1] whose original value is 3, since
it is not greater than the position p, then the entry arrM1[1] does not change. On the
other hand if we consider the entry arrM1

[6]whose original value is 5 then an update is
required and now this entry will be equal to 6. Also, the new column requires a new
entry in the array representation that is equal to arrM1

[7] = p+1, i.e. 4. Finally, the order
list for attribute age is updated and it is shown in right side of the Table 6.2. Notice,
that the value 25was inserted in the third position.

M

0 0 0 0 0 0
0 1 0 0 0 0
1 1 0 0 1 0
1 1 0 1 1 0
1 1 0 1 1 1

arr

3 2 0 4 3 5

L1 = 〈17,18,33,36,52〉.

M

0 0 0 0 0 0 0
0 1 0 0 0 0 0
1 1 0 0 1 0 0
1 1 0 0 1 0 1
1 1 0 1 1 0 1
1 1 0 1 1 1 1

arr

3 2 0 5 3 6 4

L1 = 〈17,18,25,33,36,52〉.

Table 6.2: Insert example
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Another operation that we need to consider is updating an already existing tuple. We
consider the update of the t j [a] in R from a value vO to vN. The corresponding proce-
dure to update the matrix arra and the list L is depicted in Figure 6.3(b). This procedure
resembles to the insert procedure, the only difference is that instead of creating a new
column in the matrix Ma an existing column will change. First, this procedure deter-
mines the correct position p of the new value vN in the list L . As in the insert procedure
we will have two possible cases: the one where the new value vN exists in the list and
the one where vN corresponds to a value that no other tuple has, thus it does not exists
in the list. In the first case, there is nothing to do except for modify the arra[ j] by adding
1 to the present value. In the other case, the insertion of the new value in the list L is
required.

This will be clear with an example, consider again our original scenario of relation
R1 in Table 6.1. In Table 6.3 we show in the right side, the l-bitmap matrix, the array
representation, and the ordered list of the age attribute. Now suppose that the client
wants to update the age of Anne (tuple 5 in Table 6.1) from 18 to 33. Since the value
33already exists in the list L1 the only change that the matrix will suffer is the column
Ma(i)(5), i.e., the colored blue column in Table 6.3. Notice the change in the red column
by contrasting it with the blue column of the matrix after the update is performed.
Therefore, the entry arra[5]will change by adding 1 to the current value that was 3, see
the blue entry in Table 6.3.

M

0 0 0 0 0 0
0 1 0 0 0 0
1 1 0 0 1 0
1 1 0 1 1 0
1 1 0 1 1 1

arr

3 2 0 4 3 5

L1 = 〈17,18,33,36,52〉.

M

0 0 0 0 0 0
0 1 0 0 0 0
1 1 0 0 0 0
1 1 0 1 1 0
1 1 0 1 1 1

arr

3 2 0 4 4 5

L1 = 〈17,18,33,36,52〉.

Table 6.3: Update example

6.4 ESRQ1: An Encryption Scheme Supporting Range

Queries

Here we discuss a scheme ESRQ for encrypting relations such that simple select and
range queries can be executed in the encrypted relations. Consider a relation R(A)
where A = {a1,a2, . . .a|A|}, and the function ty : A→ {0,1} defined on A (see Defini-
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tion 6.1 for a definition of ty). We consider that a client wants to outsource this generic
relation R(A) to a server. To ensure privacy, the client, encrypts the relation R(A) using
ESRQ1 and delegates this outsourced relation instead of the original one. The clientwill
pose queries to the server and expects the server to execute these queries on his/her
behalf without knowing the real contents of the relation R(A).

In what follows, we present a generic description of the scheme, also throughout we
discuss a specific example based on the relation shown in Table 6.1. The only crypto-
graphic object used by ESRQ1 is a deterministic encryption scheme E which is secure
in the sense of Definition 6.1. We assume that E : K ×{0,1}τ×{0,1}∗→ {0,1}∗, i.e., E
has as its key space K , the space of associated data are binary strings of length τ, and
the message/cipher space contains arbitrary length binary strings. The specific instan-
tiation of E in practical scenarios is discussed later in Sections 7.1 and 7.2. Other than
the deterministic encryption scheme E, ESRQ1 uses l -encoded bitmap indices, which
are stored as l - bitmap matrices.

The various algorithms involved in ESRQ1 are discussed next in order.

ESRQ1.G : This procedure selects a key K uniformly at random from K . Where K is
the key space of the deterministic encryption scheme E involved.

ESRQ1.Enc: Given R(A) and the key K as input, ESRQ1.Enc outputs a relation Rα along
with additional server side data Ms and client side data Mc. We assume that R(A) con-
tains nT many tuples and A = {a1,a2, . . . ,a#A}. To each attribute ai ∈ A we associate
an unique identifier idi ∈ {0,1}τ. Among other possibilities, this identifier can be the
(appropriately coded) name of the attribute or a counter. Given an attribute a∈ A, we
shall sometime refer to its unique identifier as id(a).

Rα contains nT tuples and it is defined over the attributes B= {RowNo}∪{b1,b2, . . . ,b#A}.
Where bi = EK(id

∗,ai) for some id∗ ∈ {0,1}τ such that id∗ /∈ {id1, id2, . . . , id#A}. Hence, Rα
has one attribute more than in R, the extra attribute is RowNo, the other attributes of Rα
are the encryption of the attribute names in A. The specific way in which Rα is created
from R is shown in Figure 6.4, which shows that Rα contains the encryption of the
values present in R. Note that, while encryption each attribute a different associated
data id is used. This creates a separation between values taken by different attributes,
i.e., two different attributes occur with the same value in R, then their encryptions in
Rα would be different. This property would be required for our scheme to satisfy the
security definition.

Other than Rα, ESRQ1.Enc creates the server side and client side additional data Ms and
Mc. We discuss Ms first.
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Creating Rα
1. for j = 1 to #A, // Encrypting the attributes names

2. b j ← EK(id
∗,a j);

3. end for

4. for j = 1 to nT,// Encrypting the attributes cells

5. tRα
j [RowNo]← j ;

6. for i = 1 to #A,
7. tRα

j [bi ]← EK(idi , tR
j [ai]);

8. end for

9. end for

Figure 6.4: Creating Rα.

Let Λ = {a∈ A : ty(a) = 1}, i.e., Λ contains the range attributes in A. For each λ ∈ Λ let
Lstλ be the ordered list of λ in R and let arrEK(id

∗,λ) be (the an array representation of)
the l -bitmap matrix of λ in R. From each list Lstλ, we create a new list LEK(id

∗,λ), such
that len(LEK(id

∗λ)) = len(Lstλ), and LEK(id
∗,λ)[i] = EK(Lstλ[i]). For each λ ∈ Λ, arrλ and Lλ

are created by the client and then sent to the server and this constitutes the server side
additional data Ms. Note, we index the list L and the array arr using EK(id

∗,λ) instead
of λ to stress the fact that it is not required even to reveal the attribute names to the
server.

The client side data Mc consists of the attribute names a1,a2, . . . ,a|A|, the corresponding
identifiers id1, id2, . . . , id#A and the identifier id∗.

For a concrete example, consider that ESRQ1.Enc has as input the relation R1 as shown
in Table 6.1. The only attribute in R1, where range queries are meaningful is the at-
tribute Age. Then ESRQ1.Enc(R1) would produce as output the relations R1α and the
server side data as shown in Table 6.4. The relation R1α is the same as R1 except that
each value is separately encrypted, and contains an additional attribute RowNo, which
is stored in clear. Moreover, while applying encryption, the unique identifier of each
column is used as the associated data. The attribute names of the original relation R1
also occur in R1α in the encrypted form.
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Relation R1α

RowNo EK(id
∗,EmpId) EK (id

∗,Name) EK(id
∗,Age)

1 EK(id1,TRW) EK(id2,Tom) EK(id3,18)
2 EK(id1,MST) EK (id2,Mary) EK(id3,17)
3 EK(id1,JOH) EK (id2,John) EK(id3,52)
4 EK (id1,MRH) EK (id2,Mary) EK(id3,33)
5 EK (id1,ASY) EK (id2,Anne) EK(id3,18)
6 EK (id1,RZT) EK(id2,Rosy) EK(id3,36)

M

0 0 0 0 0 0
0 1 0 0 0 0
1 1 0 0 1 0
1 1 0 1 1 0
1 1 0 1 1 1

arr

3 2 0 4 3 5

LAge

EK (id3,17)
EK (id3,18)
EK (id3,33)
EK (id3,36)
EK (id3,52)

Table 6.4: The data stored at server side after encrypting R1with ESRQ1: Relation R1α,
the l -bitmap matrix M and the ordered list LAge. Note that instead of the matrixM its
array representation arr is stored.

The server side data Ms consists of the list LEK(id
∗,Age), which contains the ciphertexts of

the values of the attribute Age sorted according to the real values. And the matrixMAge,
whose ith row corresponds to the l -encoded bitmap of the value E−1

K (id∗,LEK(id
∗,Age)[i]).

The array representation of MAge is shown as arrEK(id
∗,Age). The array arrEK(id

∗,Age) is
stored in the server instead of the matrix MAge. It would be clear from the discussions
presented later that this information would be enough for the server to respond to any
range query of the client.

ESRQ1.Φ: The transform Φ receives as input a query meant for R and converts it to
a query which can be executed in (Rα). The allowed set of queries are simple select
queries and range queries. The generic format of an allowed query is

Q: SELECT * FROM R WHERE (a1⊳1v1) ⊚1 (a1⊳2v2) ⊚2 ...... ⊚ℓ−1 (aℓ⊳1vℓ),

where ai represent an attribute name and vi a value of the attribute. ⊳i ∈{=,>,<,≤,≥},
and ⊚i can be an arbitrary Boolean connective, say ∨, ∧ etc.

The query translation takes place in two phases. Given the query Q, in the first phase
the values v1,v2, . . . ,vℓ are re-written to ṽ1, ṽ2, . . . , ṽℓ, such that the response of the re-
written query is the same as the query Q when executed in the original relation R, and
the values ṽ1, ṽ2, . . . , ṽℓ are present in the original relation R in the respective columns.
For example, if we take the relation R1, the query SELECT * FROM R1 WHERE AGE≥ 19
AND AGE≤ 40 will be re-written as SELECT * FROM R1 WHERE AGE> 18 AND AGE< 52.
Note that the response of these two queries would be the same in the relation R1 and
the values 18and 52occur in R1 in the attribute Age, whereas the values 19 and 40not
occur.

Generally speaking, let v be any possible value of an attribute a and let vlo and vhi be
respectively, the largest and the smallest values in Dom(a) such that vlo ≤ v≤ vhi. If
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such a vlo or vhi does not exist we set their values to ∞. If v∈DomR(a), then vlo = vhi = v.
Now, we claim that given an attribute a∈ A and a value v it is possible for the client to
determine vlo and vhi.

Let findLoa(v) and findHia(v) be the procedures which return vlo and vhi, respectively.
These procedures can be realized by an interactive binary search between the client and
the server. The lists stored as part of Ms in the server would be used for this purpose.
For a given attribute a and value v, the client initiates the procedure by sending c =

Ek(id
∗,a) to the server. The server returns themiddle element of the list Lc, call this as α.

The client decrypts α using its key and the associated identifier of the attribute a, if the
decrypted value (call it β) is equal to v then it stops and sets findLoa(v) = findHia(v) = v.
If β > v then it asks the server to return the middle element of the lower half of the list
and if β < v then the server returns the middle element in the upper half of the list Lc.
This interaction continues as in a binary search. It is easy to see that on termination of
this binary search the server would be able to determine the values of findLoa(v) and
findHia(v).

In the query re-writing phase each condition (ai⊳ivi) of the given query Q is converted
into an equivalent condition following the procedure described in Figure 6.5. Thus,
after the query Q undergoes re-writing it is converted into a new query Q̃ which has
the same structure as of Q.

Q̃: SELECT * FROM R WHERE (a1⊳1ṽ1) ⊚1 (a1⊳2ṽ2) ⊚2 ...... ⊚ℓ−1 (aℓ⊳1ṽℓ),

In the second phase, the attribute names and the values in Q̃ are encrypted to pro-
duce the final output Q′. As the input query has a specific structure, hence the final
translated query Φ(Q) is just:

Q′: (c1⊳1c′1)⊚1(c2⊳2c′2)⊚2......⊚ℓ−1(cℓ⊳1c′ℓ),

where ci = EK(id
∗,ai) and c′i = EK(idi , ṽi).

Going back to the concrete example, consider the following query Q1 for the relation
R1

Q1: SELECT * FROM R WHERE Age ≥ 19 AND Age= ≤ 36

After re-writing, this query becomes:

Q̃1: SELECT * FROM R WHERE Age ≥ 33 AND Age= ≤ 36
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reWrite(a⊳v)
1. vlo← findLoa(v) //Finding the smallest value in Dom(a) s.t. vlo ≤ v≤ vhi

2. vhi← findHia(v) //Finding the largest value in Dom(a) s.t. vlo ≤ v≤ vhi

3. if vlo = vhi,
4. return a⊳v;

5. if ⊳ is ’=’, //Equality case

6. return a= v;

7. if ⊳ is ’<’ OR ’≤, //Less and less equal case

8. if vlo 6= ∞, return (a≤ vlo);
9. else return (a< vhi);

10. if ⊳ is ’>’ OR ’≥’, //Greater and greater equal case

11. if vhi 6= ∞, return (a≥ vhi);
12. else return (a> vlo) ;

Figure 6.5: The query re-writing procedure

And, the final output of Φ(Q1), will be:

Q1′: (Ek(id
∗,Age)≥ EK(id3,33))

∧
(Ek(id

∗,Age)≤ EK(id3,36))

This transformed query is sent to the server.

ESRQ1.Ψ: As discussed, Ψ is the transform that runs in the server to execute the client
instructions. The instruction from the client comes to the server encoded as Q′, and
it executes the procedure Ψ(Q′) as described in Figure 6.6. Q′ contains a collection
of equality/inequality conditions aggregated by some Boolean connectives. Ψ treats
these equality/inequality conditions separately, and constructs a bitmap for each of
these conditions. Based on the type of condition, the procedure uses the functions
Equal, Lesser and Greater. These functions are also described in Figure 6.2.

Once the bitmaps for the individual conditions are constructed, it aggregates the bitmaps
using the given Boolean connectives. Note that in line 13, the Boolean operations are
applied bit-wise. The final bitmap B constructed in line 13 contains the information
regarding the tuples in Rα, which satisfies the client’s query. Thus, the server returns
these valid tuples to the client.
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Response Procedure Ψ(Q′)
(Assume Q′ ≡ (c1⊳1c′1)⊚1(c2⊳2c′2)⊚2......⊚ℓ−1(cℓ⊳1c′ℓ))
1. for i← 1 to ℓ//Bitmaps generation

2. L ← Lci ; arr← arrci ;
2. if ⊳i is ’=’,
3. Bi ← Equal(L ,arr,ci ,c′i)
4. if ⊳i is ’<’,
5. Bi ← Lesser(L ,arr,ci,c′i)
6. if ⊳i is ’>’,
7. Bi ←Greater(L ,arr,ci,c′i)
8. if ⊳i is ’≥’,
9. Bi ← Lesser(L ,arr,ci,c′i)
10. if ⊳i is ’≤’,
11. Bi ← Lesser(L ,arr,ci,c′i)∨Equal(L ,arr,ci ,c′i)
12.end for

13.B← B1⊚1B2⊚2 · · ·⊚ℓ−1Bℓ //Operating Bitmaps

14.∆←MakeSet(B,nT) //Extracting indices

( Let ∆ = {∆1,∆2, . . . ,∆m})
15.Run the query:

SELECT * FROM Rα WHERE

RowNo IN (∆1,∆2, . . . ,∆m)

16.Let ρ be the response to the above query;
17.return ρ;

Figure 6.6: The response procedure Ψ. The procedures Lesser(·, ·, ·, ·), Greater(·, ·, ·, ·)
and Equal(·, ·, ·, ·) are described in Figure 6.2.
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Going back to our example, the query Q1′ consists of two inequality conditions. The
first one is (EK(id

∗,Age) ≥ EK(id3,33)), the bitmap for this condition is constructed
by checking the array arr and applying the algorithm of Figure 6.2, the bitmap cor-
responding to Name = EK(id

∗,Age) AND SearchKey = EK(id3,33) is 110010. But re-
call that the bitmap is the l-encoded bitmap. Hence, the bitmap for the condition
(EK(id

∗,Age)≥EK(id3,33))would be the complement of the stored bitmap, i.e., 001101.
The bitmap for the second condition (Ek(id

∗,Age)≤EK(id3,36)) is computed by retriev-
ing the l-encoded bitmap for Name = EK(id

∗,Age) AND SearchKey = EK(id3,36) that is
equal to 110110. Then the e-encoded bitmap is computed from the arr using again the
algorithm of Figure 6.2 , i.e., 000001. Finally these two bitmaps are operated by an OR
bitwise, giving as result 110111. As in the query the two conditions are connected by
an AND, hence the bitmap for the query is 001101∧110111= 000101. This bitmap cor-
responds to the rows 4 and 6 of the table Rα. Hence the server sends the response ρ
as:

Response ρ
RowNo EK(id

∗,EmpId) EK(id
∗,Name) EK(id

∗Age)

4 EK(id1,MRH) EK(id2,Mary) EK(id3,33)
6 EK(id1,RZT) EK(id2,Rosy) EK(id3,36)

Update Procedure ESRQ1.U: Let us assume that the client wants to update the value of
tR
j [ai] from old to new. First, note that it is possible for the client to know the RowNo of the
corresponding tuple in Rα by posing a suitable query, and hence, direct the server to
change the corresponding value in Rα with EK(idi ,new). To update the ordered list and
the respective matrices we are going to use the algorithmMatrix_Update_For_Update

described in Figure 6.3 and all previous functions as exists(L ,val) or position(L ,val).
However, regarding to position function we have to consider that the elements in the
ordered list are encrypted, thus if val is not present in L , this function is realized by
the server with an interactive binary search assisted by the client, as in the procedures
findHi and findLo described in Section 6.4. We describe the update procedure in Fig-
ure 6.7. The first step is to encrypt the attribute name, and also the new value, with
this information is possible to build an update query that instructs the server to change
the old value of tuple j in attribute EK(id

∗,ai) with the value EK(idi ,new) (see line 3).
After, this update is performed, the next step is to update the respective matrix and
ordered list, by calling the Matrix_Update_For_Update algorithm.

Insert Procedure ESRQ1.I : Let tup be a tuple for the original relation R. In Figure 6.7
we show the steps required to insert the tuple tup. The description assumes Λ to be
the set of indices of the attributes which are range attributes. First, for all attributes
in the relation R their respective values in the tuple tup are encrypted and a query
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Procedure Update( j,ai ,new)

1. valn← EK(idi ,new);
2. c← EK(id

∗,ai);
3. Execute the following query:

UPDATE Rα SET c= valn WHERE RowNo= j ;
4. Matrix_Update_For_Update(Lc,arrc, j,valn) ;

Procedure Insert(tup)

1. for all ai ∈ A,
2. tRα

nT
[ai ]← EK(idi , tup[ai ]);

3. end for

4. Execute the following query:
INSERT INTO Rα VALUES (tRα

nT
[a1],

tRα
nT
[a2], · · · t

Rα
nT
[an]);

5. for all i ∈ Λ;
6. c← EK(id

∗,ai);
7. val← EK(id

i , tup[ai ]);
8. Matrix_Update_For_Insert(Lc,arrc,val)
9. end for

Figure 6.7: The update and insert procedures

for insertion is sent to the server (see line 4). Finally the respective updates to the
matrices and ordered lists of the range attributes are performed by calling the Ma-

trix_Update_For_Insert described in Figure 6.3.

Decryption Procedure ESRQ1.Dec: The decryption procedure receives as input the
response ρ from the server and the keys. This procedure uses the inverse of the en-
cryption E−1

K to decrypt the server response.

6.4.1 Characteristics of ESRQ1

We list some of the important characteristics of ESRQ1.

1. Efficiency: It is clear from the description that to encrypt a relation with nT tuples
and m attributes, at most m(nT+ 1) many encryption calls are required, which
form the bulk of the computational overhead. Note, that the encryptions for the
attributes lists are not required to be done again, as these values are already in-
cluded in Rα. For translating a query involving ℓ conditions 2ℓ encryptions are
required. The query response procedure does not require any encryption/de-
cryption. For decryption m(s+1) invocations of E−1 are required if the response
contains s tuples.

2. Storage: The storage requirement depends on the nature of E. Let strE(x) : M →
N, define the stretch of the encryption scheme E, i.e., for any K ∈ K , strE(x) =
|EK(x)|− |x|. If E is length preserving, then for every x∈M , strE(x) = 0. For other
practical schemes the stretch would be generally a constant for every message.

If Rhas nT tuples and m attributes A= {a1, . . . ,am}, and if siz(R) denotes the size
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of the relation R in bits, then we would have

siz(Rα)≤ siz(R)+
nT

∑
j=1

m

∑
i=1

strE(t
R
j [ai])+nT lg(nT).

Let B⊆ A be the set of range attributes in A, then we have

siz(Ms) = ∑
b∈B

∑
x∈DomR(b)

(strE(b)+ strE(x)+nT) .

3. Role of the associated data: We have used a different identifier as an associated
data for encrypting values in each column. This plays an important role. As
the encryption algorithm to be used is deterministic, hence same plaintext values
yield the same ciphertexts. It is important that for a specific attribute the equality
relations in different tuples is maintained in the encrypted relation. This property
is important for query processing and it does not amount to insecurity in our
proposed model. But, it can be the case that in a relation two different attributes
take the same value. We do not want that this type of equality is revealed in the
encrypted tables, as even in our security model this kind of leakage may allow
the adversary to be successful in distinguishing in the ESRQ game. To prevent
such leakages we use a distinct associated data to encrypt values of different
attributes.

4. Security: The security of ESRQ1 depends on the encryption scheme E. In Sec-
tion 6.4.2, we provide a theorem, which relates the security of ESRQ1 with the
encryption scheme E.

5. Other query types: For ease of discussion we restricted ourselves to a specific
type of query which involves equality/inequality conditions aggregated by Boo-
lean operators. But, it is easy to see that a few more types of queries like COUNT,
GROUP BY, DISTINCT, ORDER BY, MIN, MAX etc. can also be answered using the infor-
mation in Rα and Ms. The discussion that we presented assumed that the client
always delegates a single relation. The scheme can be extended in a natural way
to accommodate multiple relations, where for each relation R the pair (Rα) and
the respective lists and arrays would be created and some additional informa-
tion in the form of join bitmaps [85] would be stored. In such situations queries
involving equality joins can also be answered.

6.4.2 Security of ESRQ1

The following Theorem specifies the security of ψ = ESRQ1[E].
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Theorem 6.1. Fix natural numbers q,σn, t, and a deterministic encryption scheme E : K ×
T ×M → C , such that the smallest ciphertext in C has size s. Let Ψ = ESRQ1[E]. Then

Adv
esrq
Ψ (q,σn, t)≤ Adv

det-cpa
E (q′,σ′n, t

′)+
q2

2s+1 , (6.3)

where q′ ≤ q, σ′n≤ σn and t ′ = O(t).

The above Theorem relates the ESRQ security of ESRQ1[E], with the det-cpa security
of E, and it implies that the ESRQ1 scheme provides almost the same security as that of
E with a small degradation. The degradation depends on the size of the relation being
encrypted and surprisingly on the size of the smallest ciphertext. The bound becomes
stronger if the size of the smallest ciphertext is bigger. We provide the complete proof
in the next section.

6.4.3 Proof of Theorem 6.1

First, it is easy to see that because of the specific restrictions that we put on the adver-
sary, the server side data Ms for both the relations R0 and R1 (required for the ESRQ
security game, see Figure 6.1) would always be the same, thus this data would be of
no help to the adversary in guessing the bit b. The only way that A can guess the bit is
by using the information in the encrypted relation.

We construct a det-cpa adversary B with oracle O, which acts as a challenger for A in
the ESRQ security game.

For acting as the challenger, B follows the procedure described in Figures 6.4 and 6.6,
and whenever a call to E(·, ·) is required it uses its oracle O, moreover B never repeats
a query to O(·, ·). B achieves this by keeping record of the oracle outputs for each of
its queries. Hence, if the cell complexity of A is q , and the query complexity of A is
σn. Then the number of queries asked by B is at most q, and the query complexity is at
most σn.

From the description of B and the ESRQ game in Figure 6.1, it is easy to see that

Pr[K
$
← K : BEK(·,·)⇒ 1] = Pr[ESRQA ⇒ 1]. (6.4)

We want to bound the det-cpa advantage of B , for doing that we would require a
bound on Pr[B$(.,.)⇒ 1]. To make the proof cleaner, we do this in two steps, for which
we would require some additional technicalities. Let the message spaceM and tweak
space T and cipher space C be all non-empty subsets of {0,1}∗. Let e : T ×M → N be
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such that e(T,X) = |EK(T,X)| for any K ∈ K . The function e defines the length of the
ciphertext for the encryption scheme E, and it is dependent only on |X| and |T|. Also,

C ⊆
⋃

t∈T ,X∈M

{0,1}e(T,M).

Let Inje(M ,T ) be the set of all injective functions from T ×M to C , such that for ev-
ery f ∈ Inje(T ,M ) and every (T,X) ∈ T ×M , | f (T,X)| = e(T,X). Now, we make the
following claims.

Claim 6.1. For any arbitrary adversary B which never repeats a query and asks at most q
oracle queries

∣∣∣Pr[ f
$
← Inje(T ,M ) : B f (·,·)⇒ 1]−Pr[B$(·,·)⇒ 1]

∣∣∣≤ q2

2s−1 , (6.5)

where $(T,X) returns a random string from {0,1}e(T,X), and s is the size of the smallest string

in C .

Proof. Amore general version of this claim is proved in [82], for completeness we again
provide a proof here. We use the sequence of games. Consider the procedures F0

and F1 described in Figure 6.8. It is clear from the description in Figure 6.8 that the
procedure F0 mimics the behaviour of a uniform random function f ∈ Inje(T ,M ). On
the other hand, F1 on each query (id,X) returns a uniform random string in {0,1}e(id,X).
Hence, for an arbitrary adversary B we have

Pr[ f
$
← Inje(T ,M ) : B f (·,·)⇒ 1] = Pr[BF0⇒ 1], (6.6)

and
Pr[B$(·,·)⇒ 1] = Pr[BF1⇒ 1]. (6.7)

Moreover, the procedures F0 and F1 runs in exactly the same way unless the bad flag
is set to true. Hence, by the fundamental lemma of game playing

∣∣∣Pr[BF0⇒ 1]−Pr[BF1⇒ 1]
∣∣∣≤ Pr[BF1 sets bad]. (6.8)

If BAD be the event that BF1 sets the flag bad to true, then using equations (6.6), (6.7)
and (6.8), we have

∣∣∣Pr[ f
$
← Inje(M ,T ) : B f (·,·)⇒ 1]−Pr[B$(·,·)⇒ 1]

∣∣∣≤ Pr[BAD]. (6.9)

Thus, to complete the proof we need an upper bound for Pr[BAD].
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Procedures F0 and F1

Initialization
20. bad← true;
21. for all id ∈ T

22. for all X ∈M
23. Range(id,X)← undefined

24. end for

25. end for

On receiving a query (id,X), do the following:
201 c← e(id,X);

202. Y $
←{0,1}c;

203. ifY ∈ Range(id, ·);
204. bad← true;
205. Y←{0,1}c\Range(id, ·) ;
206. Range(id,X)←Y;
207. end if

208. returnY;

Figure 6.8: The procedures F0 and F1. F0 is the complete code; in F1 the boxed state-
ment is omitted.
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B asks q distinct queries. After B stops querying, there would be q entries in the table
Range, which are different from undefined. We collect these q values in a multiset
Ran. If COLL be the event that two elements in Ran are equal, then Pr[BAD] = Pr[COLL].
Now, if two elements in Ran are of different length then they cannot be equal and if
they are of the same length c, then they are uniform random elements in {0,1}c, thus
the probability of them being equal is 1/2c. As s is the size of the smallest element in
C , hence by the union bound we have,

Pr[BAD] = Pr[COLL]≤

(
q
2

)
/2s<

q2

2s+1 . (6.10)

Now, using Eqs. (6.9) and (6.10) we have the claim.

Claim 6.2. For the adversary B , described in Figure 6.1,

Pr[ f
$
← Inje(M ,T ) : B f (·,·)⇒ 1]≤

1
2
. (6.11)

Proof. When the oracle of B is a function f which is random element in Inje(T ,M ),
then it provides a perfect environment for A . Note that A expects that the encryptions
in (Rα,Ms) are done by a deterministic encryption scheme EK : T ×M → C which is
injective. Moreover, a random element f of Inje(T ,M ) maps each distinct element in
T ×M to a uniform random element in {0,1}e(X,T), maintaining injectivity. It may be
convenient to see f as the procedure F0 described in Figure 6.8.

As R0,R1 which is chosen by A are equivalent, i.e., R0 ≈ R1, hence if B’s oracle is f
$
←

Inje(T ,M ), then the (Rα,Rβ) that it gets from B is independent of R0,R1. Thus, the only
way A can determine whether R0 or R1 was encrypted is by guessing randomly, and
this is what we claim.

Finally, from the claims 6.1 and 6.2, we have

∣∣∣Pr[K
$
← K : BE(·,·)⇒ 1]−Pr[B$(·,·)⇒ 1]

∣∣∣≥
∣∣∣∣Pr[ESRQA ⇒ 1]−

1
2

∣∣∣∣−
q2

2s+1 .

Now, using Eq. (6.1) and Definition 6.3 we have

Adv
esrq
ESRQ1(A)≤ Adv

det-cpa
E (B)+

q2

2s+1 .

As A is an arbitrary adversary with cell complexity q and query complexity σn, the
Theorem follows. �
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6.5 Summary

In this chapter we described ESRQ, which is a basic model for providing privacy in
outsourced databases. We introduced a novel structure to store bitmaps that uses an
ordered matrix and its array representation. We also fixed a syntax for ESRQ and de-
fined its security. Moreover we presented a concrete scheme ESQR1 which uses deter-
ministic encryption scheme with associated data (DEAD) and bitmap indices. Finally
we proved security of ESRQ1 according our security definition. In the next chapter we
discuss some new constructions for DEAD.





Chapter 7

Practical Instantiations of DEAD

Schemes
Doubt is not a pleasant condition, but certainty
is absurd.

Voltaire

We described and proved the security of ESRQ using an encryption scheme E. To
prove security we required E to be a det-cpa secure deterministic encryption

scheme with associated data (DEAD). Moreover, E should be chosen in such a way
that it has favourable efficiency and usability properties. The type of security and func-
tionality required by E can be immediately obtained by two existing and well studied
cryptographic objects, namely, deterministic authenticated encryption with associated
data (DAEAD) [82], and tweakable enciphering schemes (TES) [83, 84, 86].

We first briefly discuss the suitability of these objects next.

• DAEAD schemes are deterministic encryption schemes which provide both pri-
vacy and authenticity, they provide security against (deterministic) chosen cipher
text adversaries. Thus, these schemes provide more security than required for
this application. This enhanced security comes at an extra cost, the significant
cost being that of the ciphertext expansion, i.e., the ciphertext is considerably
longer than the plaintext. This expansion takes place due to the fact that the ci-
phertext includes an authentication tag, for practical secure schemes this extra
tag length would be around 128 bits. This length expansion may not be tolerable
in certain applications, say where the database contains only “small" numerical
values.

• TES are length preserving schemes which also provide security against (deter-
ministic) chosen ciphertext adversaries. Being length preserving, TES not have

111
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the same disadvantage as that of DAEAD schemes stated above. But the known
constructions of TES are computationally heavy compared to only CPA secure
encryption schemes like CBC, counter etc.

Thus, from the discussion above it is clear, that there is a scope to come up with some
new encryption schemes which are strictly det-cpa secure and are more efficient than
TES or DAEAD schemes. In this chapter we explore several such constructions. In
Section 7.1 we provide a construction which has some restriction on the message space,
and further in Section 7.2 we propose another class of constructions which we call as
OHCTR where the restriction on the message space is removed. We analyze all the
proposed constructions formally and we argue regarding their security.

7.1 A Construction for Restricted Message Spaces

We give here a block cipher based solution for a det-cpa scheme assuming that the
message space is restricted. We fix n as the block length of the block cipher. Addition-
ally, we assume that the tweak space is {0,1}λ, and the message space contains strings
at most ℓ-bits long. The necessary restriction is ℓ+ ⌈lgℓ⌉+λ≤ n.

Let E :K ×{0,1}n→{0,1}n be a block cipher. Using only E, we construct E as shown in
Figure 7.1. In the description we assume that τ = n− (ℓ+λ), padn(x) = x||0n−|x|, lsbλ(x)
and msbλ(x) outputs the λ least and most significant bits of x, respectively. For an
integer i ≤ 2n−1, binn(i) is the n-bit binary representation of i and toInt(x) returns the
positive integer represented by the binary string x.

EK(id,x)
1. z1← padℓ(x) ;
2. z2← binτ(|x|) ;
3. z← EK(z1||id||z2);
4. return z

E−1
K (id,z)
1. y← E−1

K (z) ;
2. z2← toInt(lsbλ(y)) ;
3. x←msbz2(y);
4. return x

Figure 7.1: A block cipher based construction of E for restricted message spaces.

The construction requires just one block cipher call for one encryption and the cipher-
text is always n-bits long. Also if the block cipher E is a secure pseudorandom permu-
tation then E is det-cpa secure. We state this formally in the next Theorem.



Chapter 7. Practical Instantiations of DEAD Schemes 113

Theorem 7.1. Let A be an arbitrary det-cpa adversary attacking E who asks at most q queries

and runs for time at most t. Then there exists a prp adversary B attacking E, such that

Adv
det-cpa
E (A) = Adv

prp
E (B).

Moreover B runs for the same time as of A and asks the same number of queries as A .

Proof. The idea of the proof is to construct an adversary B whose task is to break the
pseudorandomness of E. B will use the adversary A by acting as its challenger. The
interaction between B and A is represented in the procedure below:

Adversary BO

1. Whenever A queries its encryption oracle on a (m, id) pair:
2. c← E(padℓ(m)||id||binτ(|m|);
B uses its oracle to compute c

3. Eventually, A outputs a bit b′

4. return b′

From the procedure above we can argue the following:

1. When the oracle of B is EK , then the adversary A is basically interacting with the
scheme EK , thus

Pr[K
$
← K : BEK()⇒ 1] = Pr[K

$
← K : AEK(.,.)⇒ 1] (7.1)

2. When the oracle of B is a π selected uniformly at random from Perm(n), then A in
response to its queries gets uniform random strings in {0,1}n. This is because, A
never repeats a query, and in consequence π is evaluated only on distinct inputs.
As π is an uniform random permutation, thus its outputs on distinct inputs are
uniformly distributed in {0,1}n. Thus we have

Pr[π $
← Perm(n) : Bπ(.)⇒ 1] = Pr[A$(.,.)⇒ 1] (7.2)

Thus subtracting equation (7.2) from (7.1) and using the definitions of the det-cpa ad-
vantage of A and the prp advantage of B , we can conclude

Adv
det-cpa
E (A) = Adv

prp
E (B).
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7.2 OHCTR: A Construction for ArbitraryMessage Spaces

The OHCTR construction is motivated by the HCTR construction which is a tweak-
able enciphering scheme. HCTR stands for Hash counter, it uses two universal hash
functions and a counter mode of operation to obtain a tweakable enciphering scheme.
OHCTR stands for only one hash counter, thus in the name we want to stress that un-
like HCTR this construction uses only one universal hash, thus it is more efficient than
HCTR, but of course it does not provide the strong security of HCTR. OHCTR is det-cpa
secure, thus it is strictly weaker than HCTR in terms of security.

We propose two versions of OHCTR namely OHCTRa and OHCTRb. Both are con-
structed using a block cipher E : K ×{0,1}n→ {0,1}n. For OHCTRa we assume that
the message space contains strings which are at least n-bits long. The other construc-
tion does not require this restriction.

Before we discuss the construction we fix some components which would be used in
the construction. For X ∈ {0,1}∗, FormatAn(X) outputs X1||X2|| . . . ||Xmwhere m= ⌈|X|/n⌉
and for 1≤ i ≤m−1, |Xi| = m and |Xm| ≤ n. Hence, Formatn(X) divides X into mblocks
where the first m−1blocks are nbits long the last block can be less than nbits. pad01(X)

returns X||10∗, i.e., it pads a 1 to the input string and then pads zeros until the length
of the resulting string becomes a multiple of n.

The constructions uses a counter mode of operation CTR which is defined as follows.
Let K ∈ K and S∈ {0,1}n, X ∈ {0,1}∗, and X1||X2|| · · · ||Xm← Formatn(X), then

CTRS
K(X) = EK (S⊕binn(1))⊕X1||EK(S⊕binn(2))⊕X2|| · · · ||lsb|Xm|(EK(S⊕binn(m)))⊕Xm.

In addition to the counter mode we would require a polynomial hash defined as

Hh(X) = X1hm+1⊕X2hm⊕·· ·⊕padn(Xm)h
2⊕binn(|X|)h,

where h∈ {0,1}n, X1||X2|| . . . ||Xm= Formatn(X), and recall that padn(Y) =Y||0n−|Y|.

The encryption and decryption algorithms for OHCTRa is described in Figure 7.2.

OHCTRb, shown in Figure 7.3, is same as OHCTRa, the only difference being that, in
the encryption procedure the input message is padded with 10∗, and in the decryption
process the postfix 10∗ is removed after decryption.

We discuss a few properties of the constructions OHCTRa and OHCTRb next.

1. Message/Cipher Lengths: OHCTRa has the restriction that the messages should
be at least n-bits long, but OHCTRb does not have any such restriction. OHCTRa
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Algorithm OHCTRa.EK,h(id,P)

1. P1|| · · · ||Pm← Formatn(P);
1. MM← P1⊕Hh(P2|| . . . ||Pm||id);
2. CC← EK(MM);
3. S←MM⊕CC;

4. (C2|| . . . ||Cm−1,Cm)

← CTRS
K(P2|| . . . ||Pm);

5. C1←CC;
6. return (C1|| · · · ||Cm);

Algorithm OHCTRa.DK,h(id,C)

1. C1|| · · · ||Cm← Formatn(P);
1. CC←C1⊕Hh(C2||C3|| . . . ||Cm||id);
2. MM← E−1

K (CC);
3. S←MM⊕CC;

4. (P2|| · · · ||Pm−1||Pm)

← CTRS
K(C2|| · · · ||Cm);

5. P1←MM;
6. return (P1|| · · · ||Pm);

Figure 7.2: Encryption using OHCTR. K is the block-cipher key, h the hash key and id

the associated data. The message space isM = ∪i≥n{0,1}i.

Algorithm OHCTRb.EK,h(id,P)

1. Y← pad10(P);
2. Z← OHCTRa.EK,h(id,Y) ;
3. return Z;

Algorithm OHCTRb.DK,h(id,C)

1. Z← OHCTRa.DK,h(id,C);
2. X← extract(Z);
3. return X;

Figure 7.3: Encryption and decryption using OHCTRb. K is the block-cipher key, h
the hash key and id the associated data. The message space is {0,1}∗. The procedure
extract(X) removes the postfix 10∗ from X and returns the remaining string.
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is length preserving, i.e., the ciphertext always has the same length as that of
the plaintext. In OHCTRb the ciphertext is always longer than the plaintext as
an injective padding pad10 is applied to the plaintext before encryption. The
ciphertext expansion in OHCTRb is at most n bits.

2. Efficiency: To encrypt a m block message, OHCTRa requires m block cipher calls
and m+1 finite field multiplications. For OHCTRb it would require at most m+1
block cipher calls and m+2 finite field multiplications. If the underlying block
cipher is an AES then both the block cipher calls and the finite field multipli-
cations can be implemented very efficiently using the dedicated AES-NI instruc-
tions in anymodern Intel processor. As discussed before, the OHCTR construction
is much more efficient than the original HCTR construction.

3. Security: Both the constructions are “provably secure" in the det-cpa sense (we
formally state the security theorems in Section 7.2.1), and thus they provide the
necessary security required for the application.

7.2.1 Security of OHCTR

Let us denote OHCTRa instantiated with a block cipher E by OHCTRa[E], similar nota-
tion is used for OHCTRb. The following Theorem specifies the security of OHCTR.

Theorem 7.2. Fix n,σ to be positive integers and an n-bit block cipher E : K ×{0,1}n→
{0,1}n. Let ϒϒϒ ∈ {OHCTRa[E],OHCTRb[E]}. Then:

Adv
det-cpa
ϒϒϒ (σ, t)≤

3σ2

2n +Adv
prp
E (σ, t ′) (7.3)

where t ′ = t +O(σ).

7.2.2 Proof of Theorem 7.2

The proof is a standard reduction which resembles closely the structure of the security
proof in [87]. In this proof we will show that for an arbitrary adversary A who asks q
queries and has a query complexity σ,

Adv
det-cpa
OHCTRa [Perm(n)](A)≤

3σ2

2n , (7.4)
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where OHCTRa [Perm(n)] denotes OHCTRa instantiated by a permutation π selected
uniformly at random from Perm(n). The bound in Eq. (7.4) is called the informa-
tion theoretic bound, the corresponding complexity theoretic bound is stated in Theo-
rem 7.2, which can be derived by a standard way from the bound in Eq. (7.4) (see [86]
for details).

Also the following proof is for the construction OHCTRa, the proof for OHCTRb in-
volves the same arguments, and can be easily derived from the proof that follows.

We use the technique of sequence of games to model the interaction of an arbitrary
adversary A with OHCTRa. In what follows, we will denote OHCTRa instantiated with

π $
←Perm(n) by ϒϒϒπ. We briefly discuss the sequence of the games next.

Game G0: In G0, the adversary interacts with ϒϒϒπ where π is a randomly chosen per-
mutation from Perm(n). Instead of initially choosing π, we build up π using the func-
tion ch-π in the following manner. Initially π is assumed to be undefined everywhere.
When π(X) is needed, but the value of π is not yet defined at X, then a random value is
chosen among the available range values. The domain and range of π are maintained
in two sets Domainand Range, and Domainand Rangeare the complements of Domain
and Rangerelative to {0,1}n. The game G0 is shown in Figure 7.4. The figure shows the
subroutine Ch-π, the initialization steps and how the game responds to an encryption
query of the adversary.

The game G0 accurately represents the attack scenario, and by our choice of notation,
we can write

Pr[Aϒϒϒπ ⇒ 1] = Pr[AG0 ⇒ 1]. (7.5)

Game G1: We modify G0 by deleting the boxed entries in G0 and call the modified
game as G1. By deleting the boxed entries it cannot be guaranteed that π is a permuta-
tion as though we do the consistency checks but we do not reset the value ofY in Ch-π.
The games G0 and G1 are identical apart from what happens when the bad flag is set.
By using the fundamental lemma of game playing [88], we obtain

|Pr[AG0 ⇒ 1]−Pr[AG1 ⇒ 1]| ≤ Pr[AG1 sets bad]. (7.6)

Another important thing to note is that in G1 in line 102, for an encryption query, CCs

gets set to a random n bit string. Similarly in lines 105 and 108 Zs
i gets set to random

values. Thus, in the game G1 the adversary gets random strings in response to his
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Subroutine Ch-π(X)

11. Y
$
←{0,1}n; if Y ∈ Rangethen bad← true; Y

$
← Range; endif;

12. if X ∈ Domainthen bad← true; Y← π(X) ; endif
13. π(X)←Y; Domain←Domain∪{X}; Range← Range∪{Y}; return(Y);

Initialization:
17. for all X ∈ {0,1}n π(X) = undef endfor

18. bad← false

Respond to the sth query as follows: (Assume ls= n(ms−1)+ rs, with 0≤ rs < n.)
Encipher query: Enc(Ts;Ps

1,P
s
2, . . .P

s
ms)

101.MMs← Ps
1⊕Hh(Ps

2|| . . . ||P
s
m||id

s);
102.CCs← Ch-π(MMs);
103.Ss←MMs⊕CCs;
104.for i = 1 to ms−2,
105. Zs

i ← Ch-π(Ss⊕binn(i));
106. Cs

i+1← Ps
i+1⊕Zs

i ;
107.end for

108.Cs
1←CCs;

109.returnCs
1||C

s
2|| . . . ||C

s
ms

Figure 7.4: Games G0 and G1
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Respond to the sth adversary query as follows:

ENCIPHER QUERY Enc(Ts;Ps
1,P

s
2, . . . ,P

s
ms)

tys = Enc;Cs
1||C

s
2|| . . . ||C

s
ms−1||D

s
ms

$
←{0,1}nms

;
Cs

ms← dropn−rs(Dms) return Cs
1||C

s
2|| . . . ||C

s
ms;

Finalization:

Case tys = Enc:

MMs← Ps
1⊕Hh(Ps

2|| . . . ||P
s
m||id

s);
CCs←Cs

1⊕Hh(Cs
2|| . . . ||C

s
m||id

s);
Ss←MMs⊕CCs;
D←D ∪{MMs};
R ← R ∪{CCs};
for i = 2 to ms−1,
Ys

i ←Cs
i ⊕Ps

i ;
D ←D ∪{Ss⊕binn(i−1)};
R ← R ∪{Ys

i };
end for

SECOND PHASE

bad= false;
if (some value occurs more than once in D) then bad = true endif;
if (some value occurs more than once in R ) then bad = true endif.

Figure 7.5: Game G2

encryption queries. Hence,

Pr[AG1 ⇒ 1] = Pr[A$(.,.)⇒ 1] (7.7)

So using Equations (6.1), (7.6) and (7.7) we get

Adv
det-cpa
OHCTRa [Perm(n)](A) = |Pr[Aϒϒϒπ ⇒ 1]−Pr[A$(.,.)⇒ 1]| (7.8)

= |Pr[AG0 ⇒ 1]−Pr[AG1 ⇒ 1]|

≤ Pr[AG1 sets bad] (7.9)
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Game G2: Now we make some subtle changes in the game G1 to get a new game
G2 which is described in Figure 7.5. In game G1 the permutation was not maintained
and a call to the permutation was responded by returning random strings, so in Game
G2 we no more use the subroutine Ch-π. Here we immediately return random strings
to the adversary in response to his encryption queries. Later, in the finalization step
we adjust variables and maintain multisets D and R where we list the elements that
were supposed to be inputs and outputs of the permutation. In the second phase of
the finalization step, we check for collisions in the sets D and R , and in the event of a
collision we set the bad flag to true.

Game G1 and Game G2 are indistinguishable to the adversary, as in both cases it gets
random strings in response to his queries. Also, the probability with which G1 sets bad
is same as the probability with which G2 sets bad. Thus we get:

Pr[AG1 sets bad] = Pr[AG2 sets bad] (7.10)

Thus from Equations (7.9) and (7.10) we obtain

Adv
det-cpa
OHCTRa[Perm(n)](A)≤ Pr[AG2 sets bad] (7.11)

Now our goal would be to bound Pr[AG2 sets bad]. We notice that in Game G2 the bad
flag is set when there is a collision in either of the sets D or R . So if COLLD and COLLR

denote the events of a collision in D and R respectively then we have

Pr[AG2 sets bad]≤ Pr[COLLR]+Pr[COLLD].

The rest of the proof is devoted to bound Pr[COLLR] and Pr[COLLD]. In the analysis we
consider the sets D and R to consist of the formal variables instead of their values. For
example, whenever we set D ← D ∪{X} for some variable X we think of it as setting
D←D∪{“X”}where “X” is the name of that formal variable. Our goal is to bound the
probability that two formal variables in the sets D and R take the same value. After q
queries of the adversary where the sth query has ms blocks of plaintext and t blocks of
tweak, then the sets D and R can be written as follows:

D = {MMs : 1≤ s≤ q}
⋃
{Ss

j : 1≤ s≤ q;1≤ i ≤ms−1},

R = {CCs : 1≤ s≤ q}
⋃
{Ys

i : 2≤ i ≤ms;1≤ s≤ q}.
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where

MMs = Ps
1⊕Hh(P

s
2 ‖ · · · ‖ Ps

ms ‖ ids),

Ss
j = Ss⊕binn( j) = (Ps

1⊕Cs
1)⊕ (Hh(P

s
2 ‖ · · · ‖ Ps

ms ‖ ids)⊕binn( j)),

CCs = Cs
1,

Ys
i = Cs

i ⊕Ps
i .

Before we compute the collision probabilities in the sets D and R , it is important to
note the following points.

1. The ciphertext blocks Ci are all generated uniformly at random from {0,1}n.

2. The hash key h is generated uniformly at random from {0,1}n and is independent
of the Cis, and Pis. Note that Pis are supplied by the adversary, the ith query
supplied by the adversary may depend on the previous outputs obtained by the
adversary, but as the output of game G2 is not dependent in any way on the hash
key h thus the queries supplied by the adversary are independent of h.

3. We consider ids as t n-bit blocks. Thus, for any s, Hh(Ps
2|| · · · ||P

s
ms||ids) has degree

at most ms+ t. We denote σ = qt+∑sms. We denote ℓs,s′ = max{ms,ms′}+ t. Since
ℓs,s′ ≤ms+ms′+ t, we have the following inequality

∑
1≤s<s′≤q

ℓs,s′ ≤

(
q
2

)
t + ∑

1≤s<s′≤q

(ms+ms′)

≤

(
q
2

)
t +(q−1)(σ−qt)

≤ (q−1)σ+
qt(q−1)

2
−qt(q−1)

≤ (q−1)σ. (7.12)

Now we make the following claims:

Claim 7.1. For any (s,s′) such that s 6= s′, Pr[MMs= MMs′] = ℓs,s′/2n.

Proof. Let, Ξs= Ps
2 ‖ · · · ‖ Ps

ms ‖ Ts, hence

MMs⊕MMs′ = (Ps
1⊕Ps′

1 )⊕Hh(Ξs)⊕Hh(Ξs′).

Case 1: Ξs = Ξs′ . Then Ps
1 6= Ps′

1 as A does not repeat any query. Thus in this case
Pr[MMs= MMs′] = 0
Case 2:Ξs 6= Ξs′ . In this case MMs⊕MMs′ is a non zero polynomial of degree ℓs,s′ on h.
As h is a uniform random string in {0,1}n, hence Pr[MMs⊕MMs′ = 0]≤ ℓs,s′/2n.
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Claim 7.2. For (s, i) 6= (s′, j), Pr[Ss
i = Ss′

j ]≤ 1/2n.

Proof. Note, that Ss
j = Ss⊕binn( j) = (Ps

1⊕Cs
1)⊕(Hh(Ps

2 ‖ · · · ‖ Ps
ms ‖ ids)⊕binn( j)). If s= s′,

then Ss
i ⊕Ss

j = binn(i)⊕binn( j) 6= 0, as i 6= j , thus making Pr[Ss
i = Ss′

j ] = 0. If s 6= s′ then Cs
1

and Cs′
1 are two uniform and independent strings in {0,1}n, thus making Pr[Ss

i = Ss′
j ] ≤

1/2n.

Claim 7.3. For 1≤ s,s′ ≤ q and 1≤ j ≤ms−1, Pr[Ss
j = MMs′] = 1/2n.

Proof. As Ss
j contains the term Cs

1, which is a uniform random element in {0,1}n.

To compute the collision probability inD , we need to consider the collision probability
of each pairs of variables in D , it is easy to see that Pr[COLLD] = p1+ p2+ p3, where

p1 = Pr[MMs= MMs′ : for some 1≤ s< s′ ≤ q],

p2 = Pr[Ss
i = Ss′

j : 1≤ s,s′ ≤ q;1≤ i ≤ms−1;1≤ j ≤ms′−1;(s, i) 6= (s′, j)],

p3 = Pr[Ss
j = MMs′ : 1≤ s,s′ ≤ q;1≤ j ≤ms−1].

From claims 7.1, 7.2 and 7.3 we have

p1 ≤ ∑
1≤s<s′≤q

ℓs,s′ ≤
q(σ−1)

2n ,

p2 ≤

(
σ−q−qt

2

)
/2n,

p3 ≤
qσ
2n .

Which gives us,

Pr[COLLD]≤
5σ2

2n+1 .

The variables present in R are CCs and Ys
i and both are uniform random elements in

{0,1}n. Hence for variables X,Y ∈ R such that X 6=Y, the probability that they take the
same value is at most 1/2n. Now, as there are q+∑q

s=1(ms−1) = σ many elements in R ,
hence we have

Pr[COLLR]≤

(
σ
2

)
/2n≤

σ2

2n+1

Hence putting all together, we have from Eq. (7.11)

Adv
det-cpa
OHCTRa[Perm(n)](A)≤

3σ2

2n ,

as desired. �
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7.3 Summary

In this chapter we described some practical constructions of DEAD. We also proved
its security. In the next chapter we discuss the details of our implementations and we
report some performance data.





Chapter 8

Implementations

One essential object is to choose that
arrangement which shall tend to reduce to a
minimum the time necessary for completing
the calculation.

Ada Lovelace

In this chapter we discuss in details the experimental results obtained from our imple-
mentations of authentication (RDAS) and privacy (ESRQ) schemes. In Section 8.1 we
discuss the system information and then in Sections 8.2 and 8.3 we discuss the details
of the experiments and we report performance data for our different versions of RDAS
and ESRQ1 respectively.

8.1 System Information

The results of all experiments were obtained by testing the implementations in a ma-
chine with the following specifications:

• CPU: Four-core i5-2400 Intel processor (3.1GHz).

• OS: Ubuntu 12.04.4 LTS.

• DataBase: PostgreSQL 9.2.6

• Compiler: gcc 4.7.3

We use Census-Income data set [89] to test performance of our relational database au-
thentication schemes. This data contains weighted census data extracted from the 1994

125
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and 1995 population surveys conducted by the U.S. Census Bureau. The number of
tuples in the data set is 199523. The data contains 42 demographic and employment
related attributes, the sum of the cardinalities of all the attributes is 103419, and the
total size of the dataset is 99.1 MB. To test the performance of ESQR1, we create a new
data based on the Census-Income. Out of the total 42 attributes, we chose 5 range at-
tributes and 2 alphanumerical attributes only for the experiments. In these attributes,
all values has a length less than 128bits.

As explained, our schemes work in an environment where one needs to perform com-
putations in both the client and the server side. In the authentications schemes all
server-side computations are implemented in the PostgreSQL database using the Post-
greSQL tools. We implemented the client in C, wherever possible we used the Intel
SIMD instructions using Intel intrinsics. We designed the server side code in such a
way that all computations can be handled by the default PostgreSQL tools. In case of
our ESQR1 we used C for some server side computations also.

This specific implementation choice makes our client much more powerful than the
server, and also it leaves space for a much more optimized implementation. Such
an optimized implementation would require the development of all database engine
functionalities, which we think is beyond the scope of this work. But, we would like to
mention that this specific design choice also gives us the opportunity to see how good
one can do by adding the functionalities to an already existing database system.

8.2 Results on the Query Authentication Schemes

In this thesis we have proposed two schemes for authenticated query processing: RDAS1

and RDAS2. The former allows to authenticate queries over an arbitrary number of
disjunctions. The later allows to authenticate queries that involves an arbitrary logi-
cal operations. In Section 8.2.1 we describe the implementational issues of the basic
building blocks used for the RDAS constructions. In Sections 8.2.3 and 8.2.4 we give
the detailed performance results in the different versions of RDAS.

8.2.1 The Basic Building Blocks

Both RDAS1 and RDAS2 can be implemented with any secure MAC, we chose two
MACs for our implementations (a) PMAC instantiated with an AES with 128 bit key
(in particular we use the description in [90]) and (b) Polynomial evaluationMac (which
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we will further call as PolyMac).

PMAC is a block cipher based MAC where the main operations involved are block
cipher calls. The way we implement PolyMac is as follows. Let X1||X2|| . . . ||Xm =

Formatn(X), and let µ∈ {0,1}n, we define

PolyMach,k(X,µ) = (X1h⊕X2h2⊕ cpadn(Xm)h
m⊕|X|hm+1)⊕Ek(µ), (8.1)

where X is the message and µ a non-repeating quantity associated with each message,
Ek() is a block cipher and cpadn(X) pads the necessary number of zeros to the end of
X, to make it n-bit long. The additions and multiplications in Eq. (8.1) are in the field
GF(2n). Such polynomial evaluation MACs are known to be secure when the quantity
µ is non-repeating. For our implementations we take n = 128, and we consider the
attribute Nonce in Rα and RowNo in Rβ as the quantity µ. For PolyMac also we choose
the block cipher as AES with 128 bit key.

One thing to notice is that PolyMac is not a deterministic MAC. It is a stateful MAC,
the quantity µ is a state of the algorithm and repetition of µ completely breaks down
its security. As we stated in Section 5.3.1 only deterministic MACs can be aggregated,
thus, Theorem 5.2 for aggregated MACs does not hold for PolyMac. Thus PolyMac
cannot be used in RDAS1-agg and RDAS2-agg.

For implementation of the block cipher in both MACs we use the new Intel dedicated
instructions for AES. Finite field multiplications required for the PolyMac were imple-
mented using the PCLMULQDQ instruction, which can perform carry-less multiplication
of two 64 bit strings. These 64 bit multiplications were combined using the Karatsuba
technique to obtain multiplication of two 128 bit strings, the final reduction was per-
formed using a technique described in [91].

8.2.2 Experimental Settings

The experiments were performed using the set of queries presented in Table 8.1 (the
specific queries can be seen in Appendix A). Table 8.1 shows the characteristics of the
queries in terms of the number of restrictions, the query type and the size of the query
response. The restrictions are all equality conditions aggregated by some Boolean op-
erators. Query Q1-Q5 are disjunctions of equality conditions, whereas the rest of the
queries have additional Boolean operators like AND and NOT. The last column shows
the percentage of the response size in terms of the whole database size. Note that the
number of restrictions corresponds to the number of tuples which would be included
in a correct and complete ρβ response and the response size would be same as the
number of tuples in the ρα result.
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Query Id Number of Query Response Size Database
Restrictions type (tuples) Percentage

Q1 10 OR 20115 10
Q2 20 OR 35452 18
Q3 30 OR 92791 46
Q4 40 OR 106065 53
Q5 50 OR 198869 99
Q6 3 OR, AND 4016 2
Q7 3 OR, AND, NOT 10354 5
Q8 4 OR, AND 24722 12
Q9 3 OR, AND 64028 32

Table 8.1: Summary of the different queries used for performance testing

Query Id Number of Updated New
Attributes Bitmaps Bitmaps

I1 42 42 0
I2 42 30 12
U1 1 2 0
U2 1 1 1

Table 8.2: Summary of the different insertions, updates used for performance testing

The dynamic databases experiments were performed using the set of queries presented
in Table 8.2. Table 8.2 shows the characteristics of the queries in terms of the number
of attributes affected, the number of bitmaps that need to be updated and number of
bitmaps that need to be created. The first two lines correspond to an insertion queries,
and the last two lines correspond to an update queries.

We present results for the scenarios presented in Table 8.3. Table 8.3 shows the queries
that can be managed in each scenario.

RDAS1 in all its variants only can manage the queries Q1-Q5, because these are queries
in which the Boolean connectives are disjunctions. On the other hand RDAS2 can han-
dle all the queries Q1-Q9, because it is designed to work with queries involving all
kinds of Boolean connectives.

RDAS1-agg and RDAS2-agg are implemented only using PMAC as PolyMac cannot be
used as an aggregate MAC. As stated before, we implemented the aggregation at the
server side with PostgreSQL XOR function and at the client side with the Intel SIMD
instruction for xor, this of course has performance implications that we discuss later.

RDAS2 is only implemented with compression, we name the variant as RDAS2-cmp. As
in RDAS1 explicit bitmaps are neither stored nor transmitted, hence the compressed
bitmap version is not applicable in case of RDAS1. For compressing the bitmaps and
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Scenario Queries
RDAS1 PolyMac Q1-Q5
RDAS1 PMAC Q1-Q5
RDAS1-agg Q1-Q5
RDAS2 PolyMac Q1-Q9
RDAS2 PMAC Q1-Q9
RDAS2-agg Q1-Q9
RDAS2-cmp PolyMac Q1-Q8
RDAS2-cmp PMAC Q1-Q8
RDAS2-dyn PolyMac I1,I2-U1,U2
RDAS2-dyn PMAC I1,I2-U1,U2

Table 8.3: Summary of the different scenarios used for performance testing

applying logic operations on them we used the Lemire library [92]. This library only
implements OR, AND, XOR, operations over compressed bitmaps. This is the reason
why we report only results for queries Q1-Q9 except Q7 for RDAS2-cmp. Though using
these basic operations as provided by the library one can implement other logic opera-
tions, but we have not done this, as we feel that for a proof of concept the query classes
that we handle would be enough.

RDAS2 is implemented with the new characteristics required to manage insertions, up-
dates and deletions (See Section 5.5). This new variant is called RDAS2-dyn. This ver-
sion was implemented using PolyMac and also PMAC. RDAS2-dyn was tested for its
new funtionalities using the queries in Table 8.2.

8.2.3 Experimental Results on RDAS1 and its Variants

In Table 8.4 we report the time required for executing the set of queries (from Q1 to
Q5). We report the normal time (i.e., the time for execution without any authentica-
tion) along with the times required for RDAS1 with both PolyMac and PMAC, and for
RDAS1-agg. All reported times are in milliseconds and it is the average of 250 execu-
tions of the same query. In Table 8.4 we also report the extra overhead of each of our
schemes over the normal scheme without authentication. The data presented in Table
8.4 is also presented pictorially in Figure 8.1

The results of Table 8.4 show that in general PMAC is marginally faster than PolyMac.
Even though the aggregated scheme is implemented with PMAC, the results show
that this scheme is very expensive, in general it takes a bit more than the double of the
normal time (time to respond the query without authentication). This can be explained
by the fact that in case of RDAS1-agg the server and the client need to calculate the
aggregated tags, this is done by XORing all the involved tags. We will see in Table 8.5
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Query Normal time RDAS1 [PolyMac] RDAS1 [PMAC] RDAS1-agg [PMAC]

Id - Avg Extra Avg Extra Avg Extra
time Overhead(%) time Overhead(%) time Overhead(%)

Q1 437.05 525.74 20.29 522.01 19.44 879.69 101.28
Q2 747.58 1062.52 42.13 1048.32 40.23 1743.47 133.22
Q3 1708.08 2668.86 56.25 2652.40 55.29 4025.26 135.66
Q4 1944.71 2895.41 48.88 2877.48 47.97 4357.16 124.05
Q5 3739.53 7568.17 102.38 7564.11 102.27 10357.86 176.98

Table 8.4: Execution times for OR queries with RDAS1 (milliseconds).

 0

 2000

 4000

 6000

 8000

 10000

 12000

Q1 Q2 Q3 Q4 Q5

Average Time OR Queries

Normal
POLYMAC RDAS1

PMAC RDAS 1
AGG PMAC RDAS1

Figure 8.1: RDAS1 OR queries times (milliseconds).

that the time for responding the query increases significantly in RDAS1-agg compared
to RDAS1.

In Table 8.5 we present the following times:

1. Time required for query translation (the Φ function).

2. Time required by the server to respond to the query (the Ψ function).

3. The time required for verification (the V function).

Note that out of the above functions only the response procedure (Ψ) is executed in the
server, and the other two procedures run in the client. Also the time for execution of
V is only dependent on the type of message authentication code used.

In Table 8.5 we report the average time for each of these functions. We show the verifi-
cation time for both the MACs in case of RDAS1. Table 8.5 clearly shows that the time
required for query translation is negligible, the most of the time is spent in the server
response and the verification procedures.
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The time reported for the server response procedure in the case of RDAS1-agg is sig-
nificantly more than that of RDAS1. This is because that in case of RDAS1-agg, the
server needs to aggregate the MACs before sending them. Thus, the server needs to
compute xors equal to the total number of tuples in ρα and ρβ. And these operations
are not required to be performed by the server in case of RDAS1. As the server side
is implemented using the PostgreSQL, these XORs are expensive. But the verification
procedure in case of RDAS1-agg is marginally faster than in RDAS1. Note that the num-
ber of MAC computations in the verification process of both RDAS1 and RDAS1-agg are
the same. But, in case of RDAS1 the verification process requires to compare each com-
puted tag with the tag received. But in case of RDAS1-agg, individual tag verification is
not required, here the computed tags are xor-ed and the final value is compared with
the aggregated tag, which received as a part of the query response. As stated, the ver-
ification process is implemented using SIMD instructions, hence the aggregation does
not take as much time as individual comparison of the tags.

The communication overhead of RDAS1 and RDAS1-agg is discussed in Sections 4.2.2
and 5.3 respectively. Specifically Eq. (4.3) gives an upper bound on the response size
for RDAS1 and Eq. (5.2) gives the same for RDAS1-agg. In Table 8.6 we give the numer-
ical values of the response size for the specific queries used in our implementation. In
Table 8.6, columns 2 and 3 represents the size in tuples for ρα and ρβ respectively. The
values in columns labeled sizRD1−siz and sizAGG−RD1−siz represent the extra size of the
response (in bytes) in case of RDAS1 and RDAS1-agg respectively. These were calcu-
lated using equations( 4.3) and (5.2) respectively. For these calculations we assume the
tag size to be 16bytes, the size for the Nonce and RowNo as 4 bytes, and sName+ssk = 200
bytes. Table 8.6 clearly shows that RDAS1-agg has significantly lower communication
cost compared to RDAS1.

Query RDAS1 RDAS1-agg

Id φ ψ V [PolyMac] V [PMAC] φ ψ V [PMAC]
Q1 .0127 442.78 83.26 77.86 .0170 811.60 76.56
Q2 .0260 843.92 216.33 202.67 .0339 11558.59 201.84
Q3 .0262 1806.30 862.74 844.75 .0422 3209.64 827.17
Q4 .0262 1980.46 922.22 901.82 .0382 3489.79 884.24
Q5 .0419 3983.31 3638.79 3560.35 .0677 6868.57 3532.19

Table 8.5: Execution times for primitives with RDAS1-OR queries (milliseconds).
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Query Id Size ρα Size ρβ sizRD1− siz sizAGG−RD1− siz

Q1 20115 10 404500 82532
Q2 35452 20 713440 145920
Q3 92791 30 1862420 377316
Q4 106065 40 2130100 432452
Q5 198869 50 3988380 805708

Table 8.6: Object Verification Extra-Size for RDAS1 in bytes.

8.2.4 Experimental results on RDAS2 and its Variants

In this section we present the results of the variants of RDAS2 in the same way as
we did in the previous section for RDAS1. In Table 8.7 we report the time required for
executing the set of queries (Q1-Q9) with RDAS2, RDSAS2-agg and RDAS2-cmp. In Table
8.8 we report the time taken for various sub-processes involved in the query execution.
In Figures 8.2, 8.3 we present the data of Table 8.7 pictorically. In Table 8.9 we report
data corresponding to the size of the response.

Query Normal RDAS2 [PolyMac] RDAS2 [PMAC] RDAS2-agg [PMAC] RDAS2-cmp [PolyMac] RDAS2-cmp [PMAC]

Id time Avg Over- Avg Over- Avg Over- Avg Over- Avg Over-
time head(%) time head(%) time head(%) time head(%) time head(%)

Q1 437.05 515.06 17.85 508.88 16.43 870.48 99.17 496.03 13.49 496.82 13.67
Q2 747.58 971.57 29.96 969.90 29.74 1671.36 123.57 963.94 28.94 959.39 28.33
Q3 1708.08 2316.89 35.64 2311.90 35.35 3719.12 117.74 2302.87 34.82 2178.18 27.52
Q4 1944.71 2504.30 28.78 2502.96 28.68 3988.83 105.11 2454.10 26.19 2284.95 17.49
Q5 3739.53 6331.86 69.32 6326.28 69.17 9130.61 144.16 6298.63 68.43 6266.40 67.57

Q6 108.64 184.93 70.22 175.72 61.75 322.71 197.04 175.67 61.70 166.92 53.64
Q7 182.37 286.44 57.06 276.79 51.77 488.53 167.87 - - - -
Q8 374.05 572.92 53.17 558.98 49.44 954.73 155.24 570.75 52.59 545.83 45.93
Q9 784.72 1179.85 50.35 1162.56 48.15 1874.71 138.90 1166.25 48.62 1142.06 45.54

Table 8.7: Execution times with RDAS2 (milliseconds).

Query RDAS2 RDAS2-agg[PMAC] RDAS2-cmp

Id φ ψ V [PolyMac] V [PMAC] φ ψ V φ ψ V [PolyMac] V [PMAC]
Q1 0.0117 457.20 55.62 55.09 0.2367 806.88 60.51 0.0128 451.98 54.87 54.79
Q2 0.0227 857.55 109.95 108.99 0.2033 1534.68 120.56 0.0255 841.26 114.26 115.11
Q3 0.0280 1815.84 500.97 498.63 0.1583 3177.27 513.94 0.0304 1805.03 498.38 499.64
Q4 0.0254 1995.49 514.39 513.00 0.1618 3451.78 523.04 0.0291 1949.91 512.31 511.50
Q5 0.0413 3962.19 2368.64 2355.91 0.2354 6875.67 2400.21 0.0442 3970.33 2369.98 2362.77

Q6 .0048 163.83 20.19 14.90 0.1663 301.95 20.07 0.0052 152.19 14.37 13.59
Q7 .0057 252.35 33.49 27.88 0.1662 451.71 33.90 - - - -
Q8 .0085 497.18 70.75 61.29 0.2183 878.69 69.25 0.0097 490.65 60.42 60.34
Q9 .0061 1026.55 146.92 136.15 0.1671 1725.26 145.86 0.0065 1008.72 134.41 135.49

Table 8.8: Execution times for primitives with RDAS2 (milliseconds).
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Query Id Size ρα Size ρβ sizRD2− siz sizAGG−RD2− siz sizCMP−RD2− siz

Q1 20115 10 653910 331942 524520
Q2 35452 20 1212260 644740 796649
Q3 92791 30 2610650 1125546 1933237
Q4 106065 40 3127740 1430092 2187503
Q5 198869 50 5235430 2052758 4086144
Q6 4016 3 155803 91531 129932
Q7 10354 3 282563 116883 277908
Q8 24722 4 569923 199500 562899
Q9 64028 3 1356043 331579 1338472

Table 8.9: Object Verification Extra-Size in bytes.
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From the Tables we can infer the following:

1. RDAS2-cmp has the best performance in terms of time for all queries, and RDAS2-

agg has the worst performance. The reason for good performance of RDAS2-cmp

is probably due to the fact that as compression reduces the size of the bitmaps,
hence operations on them can be performed much more efficiently. The perfor-
mance of RDAS2-agg can be further improved by optimizing the server. Table
8.8 clearly shows that for RDAS2-agg most of the time is consumed by the query
response procedure (Ψ).

2. All versions of RDAS2 performs better than the corresponding versions of RDAS1.
This is because in all versions of RDAS1 the verification process has to create the
bitmaps, from the responses. This can take up some time. But in case of RDAS2,
the bitmaps are already there as part of the response.
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3. From Table 8.9, we can see that RDAS2-agg have the best performance in terms
of communication cost, followed by RDAS2-cmp and RDAS2. But all versions of
RDAS2 have more communication cost compared to the corresponding versions
of RDAS1.

RDAS2-dyn Version

The experiments of this version are based on the queries described in Table 8.2. To
interpret this table it is necessary to take a look to the description in Section 5.5, when
a tuple is inserted or it is updated, two cases are considered: a) we are in presence of a
new value, or b) the value exists in other tuple. In the former case a new bitmap needs
to be inserted. In the last case the corresponding bitmap needs to be updated. Let us
analyze the Table 8.2 which is composed by four columns, column 2 shows the number
of attributes affected by the query. Column 3 shows the number of updated bitmaps,
and column 4 shows the number of new bitmaps. All these insertions and updates are
performed by the protocol, plus the original operation. For instance row 1 corresponds
to query I1 that affects the 42 attributes, it updates 42 bitmaps and it does not insert
any bitmap. In other words, this query inserts a tuple only with values that previously
exist in the database.

The tuples for insertion in I1 were constructed by selecting a random value among
the existing values for each attribute. On the other hand, the tuples for insertion in I2
were constructed with the same procedure except for the numeric attributes, for them
new random values were included. The updates queries in U1 were constructed by
randomly select a tuple and an attribute to be updated. The update value was choosen
by randomly selecting a value in the domain of the attribute. The updates queries in
U2 were constructed with the same procedure that in I2.

We report in Table 8.10 the time required for executing an insertion and an update in
a plaintext database, along with the times required for RDAS2-dyn with both PolyMac
and PMAC. All reported times are in milliseconds. For the insertion I1 experiment we
report the average time over the minimums obtained in 10 executions for each tuple,
and the average of 100 executions in any other case. The reported time involves all
steps in the insertion and update procedures respectively, i.e., time for query trans-
lation, time required for the server to respond and the time for update the aditional
information in Rβ,Mc,Ms.

This version imposes a considerable time to be executed compared with the plaintext
database. However, this can be explained by the fact that for each insertion or update
query, several other update or insertion operations needs to be performed to maintain
the consistency of the Rα and Rβ and to provide the authentication service. For instance
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consider the case of query I2, while in the plaintext case just 1 insertion is done, RDAS2-

dyn has to apply 30updates and 12 insertions besides the original insertion to Rα. The
PMAC variant is a little bit faster than the PolyMac case.

Query Id Normal time RDAS2-dyn [PolyMac] RDAS2-dyn [PMAC]

I1 12 2500.36 2485.44
I2 12 6930.64 6902.35
U1 140.56 551.21 534.22
U2 140.56 877.945 875.57

Table 8.10: Execution times for RDAS2-dyn (milliseconds).

8.3 Results on ESRQ1

In this section we discuss the performance of our implementation of ESQR1. For this
implementation, we used the deterministic encryption scheme EK as described in Fig-
ure 7.1 instantiated with an AES 128. As noted, E has a restriction on the message
space, hence we chose only those attributes from the Census-data which satisfy this
message length restriction. This would not have been required if we chose OHCTR as
our deterministic encryption scheme. But, the basic performance in terms of query pro-
cessing is expected to remain same with OHCTR, but the encryption decryption times
may vary. In the implementations we use the array encoding of the l -bitmap matrix to
represent the bitmaps.

The experiments were performed using the set of queries presented in Table 8.11 (the
specific queries can be seen in Appendix A). Table 8.11 shows the characteristics of the
queries in terms of the number of restrictions, the logical operators, the range operators
(<,>,≤,≥), the size of the query response and the number of bitmaps that are required
to be computed to respond to the query. The restrictions are conditions aggregated by
some Boolean operators. Note that the number of restrictions are equal to the number
of bitmaps that will be aggregated to find out which tuples of Rα satisfy the query. The
response size would be same as the number of the set bits in the final bitmap. The last
column of the table shows the number of bitmaps that are to be created from the array
encoding of the l -bitmap matrix to solve the query. For instance, in query Q2 just one
bitmap is calculated because the required bitmap is the one that has l -encoding. Thus
no further calculation is required. On the contrary, the other queries require creation
of more bitmaps. For instance to solve query Q10, one l -bitamp, one g-bitmap and two
equality bitmaps are required to be created.
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Query Id Number of Logical Range Response Size No. of bitmaps
Restrictions operator operators (tuples) to be computed

Q10 2 AND ≥,≤ 9483 4
Q11 1 - < 2839 1
Q12 1 - > 4648 3
Q13 1 - = 2995 2
Q14 2 OR ≥,= 8972 3

Table 8.11: Summary of the different queries used for performance testing of ESRQ1

In Table 8.12 we report the time required for executing the set of queries (Q10-Q14).
We report the normal time (i.e., the time for execution in a plaintext database) along
with the times required for ESQR1. All reported times are in milliseconds and is the
average of 100 executions of the same query. The reported time involves the following
steps: time for query translation (excluding the rewriting phase1), time required for the
server to calculate the involved bitmaps and operate them, and the time to solve the
last query, the one constructed with the row number RowNo of the tuples obtained from
the resulting bitmap. In Table 8.12 we also report the extra overhead of each query on
encrypted data against with the run on a plaintext database.

It is important to notice that queries Q11 and Q13 have an negative extra overhead,
this make sense because in the array enconding of the l -bitmap matrix we have the
pre-computed index to solve this type of queries, the normal execution instead has to
transverse the index to find out which tuples are part of the result set. The query Q11
has better performance than query Q13, because as we have mentioned the < query
does not require any computation except recovery the bitmap. On the other hand Q13
involves an equality condition, thus two bitmaps have to be recovered and it has to be
xored.

Query Normal time ESRQ1

Id - Avg Extra
time Overhead(%)

Q10 33.12 38.38 15.89
Q11 22.13 10.08 −54.43
Q12 22.52 27.48 22.03
Q13 21.02 17.69 −15.86
Q14 35.03 40.38 15.28

Table 8.12: Execution times for queries with ESRQ1 (milliseconds).

In Table 8.13 we show the breakdown of ESRQ1 times presented in Table 8.12. To

1The queries that we select not require re-writing. As re-writing involves a client server interaction,
hence measuring time with re-writing involves many complexities, and we do not consider them in our
implementation.
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interpret these results, it would be necessary to take a close look at the response proce-
dure. The response procedure which runs at the server can be broken down into two
phases, the first one involves creating the required bitmaps based on the conditions of
the query and operating the bitmaps based on the Boolean connectives present in the
query. As a final result of this phase a single bitmap is obtained and the bits that are set
in this final bitmap corresponds to the row numbers of the tuples which would form
the result. The second phase consists of collecting the tuples corresponding to these
row numbers and sending them to the client.

Table 8.13 consists of four columns, the second column gives the total response time
for the queries in a normal (un-encrypted ) database and the other two columns give
the time for creating and operating on the bitmaps (i.e., the first phase) and the time
required to obtain the tuples based on the evaluated bitmap. The query time for the
separate phases were measured by the EXPLAIN ANALYZE tool of PostgreSQL. This
tool devises a query plan and also performs it (analyze option), which allow us to
see execution time without considering the time spent transmitting result rows to the
client.

Table 8.13 clearly shows that the time spent in the first phase is always less than the
time spent in the second phase. The cost of the bitmap operations depends on the re-
quired number of bitmap computations, which is the minimum for Q11 andmaximum
for Q14.

Query Id Normal Query Phase 1 Phase 2
(Bitmap Operations) (Query evaluation)

Q10 33.12 7.06 31.32
Q11 22.13 1.52 8.57
Q12 22.52 10.33 17.15
Q13 21.02 7.93 9.75
Q14 35.03 10.61 29.77

Table 8.13: Breakdown execution times for queries with ESRQ1 (milliseconds).

Insertions and Updates: In table 8.14 we report the time required for the operations
insert and update in ESRQ1. For insertion we constructed a new tuple by selecting a
random value among the existing values for each attribute. We created 100 such tuples
and inserted them. The average time in milliseconds for insert both for a normal data
base and ESRQ1 are shown in the second row of the table. For updates, we selected
randomly a tuple, and an attribute and updated the value of the selected attribute
with a randomly selected value in the domain of that attribute. Again we updated 100
tuples, and report the time in the third row of the table.
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Query Id Normal Query ESQR1 Overhead
I0 13.08 20.74 58.55
U0 12.41 20.65 66.42

Table 8.14: Insertions and updates times with ESRQ1 (milliseconds).

8.4 Final Remarks

We presented the experimental protocols and performance results of all the schemes.
The performance results are in general encouraging, and it seems that the procedures
when applied to databases will not give rise to significant extra overhead.
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Conclusions and Future Work
One never notices what has been done; one
can only see what remains to be done.

Marie Curie

So far we have discussed several issues involving security of outsourced databases.
Starting from Chapter 4 to Chapter 8 we presented several aspects of some new

constructions that aim to solve the problems of authenticated query processing and
privacy in relational databases. In this chapterwe summarize themain contributions of
our work and finally we note down some immediate thoughts to improve and extend
this research.

9.1 Conclusions

In this thesis we have studied the problems of query authentication and privacy in
outsourced databases. Our study includes three directions:

1. We studied the problems from a formal cryptographic viewpoint, which includes
formulating appropriate security definitions for them.

2. Designing cryptographic schemes which provide solution to the problem. We
focussed on proposing solutions which are both efficient and secure. We also
proved security of our protocols in line with the proposed security definitions.

3. Finally we implemented these schemes and generated performance data in a re-
alistic setting.

Next, we summarize our specific contributions in the above three directions.

139
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For the problem of authenticated query processing we achieved the following:

1. Formal Study: The problem of authenticated query processing has not been stud-
ied before from a formal cryptographic perspective. In Chapter 4 on page 51 we
initiate such a study, where we introduced a general cryptographic framework
called RDAS. We specify a generic syntax for RDAS and formulate a novel secu-
rity notion in line with the paradigm of concrete provable security. We think that
this framework can accommodate other schemes proposed in the literature, and
this formal model can facilitate the security analysis of some existing schemes.

2. New Constructions: In Chapter 4 on page 51, we proposed the basic scheme
RDAS1 which allows to authenticate queries with arbitrary number of disjunc-
tion conditions. The main innovative idea of this scheme is that it uses a simple
structure to provide completeness, named bitmaps, and it uses a lightweight cryp-
tographic primitive called MAC. In Chapter 5 on page 65 we proposed several
improvements over the RDAS1 scheme. We call the main improved scheme as
RDAS2, that allows authentication of queries which involves an arbitrary num-
ber of conditions with any logical operator. We also develop other variants of
RDAS1 and RDAS2, namely, RDAS1-agg, RDAS2-agg, that use aggregated message
authentication codes and thus helps in reducing communication costs. We also
propose RDAS2-cmp which uses compression bitmaps and thus helps in reducing
both serverside storage and communication costs. Finally we propose RDAS2-

dyn, which is suitable for dynamic databases. We provide a formal security anal-
ysis of all the proposed schemes and prove them to be secure in the proposed
security model.

3. Implementations: We implemented all our proposed schemes, and we tested
them in a real dataset, in Chapter 8 on page 125 we presented our experimental
results over these implementations. The results are encouraging, and they sug-
gest that they are practical and thus can be included in practical database systems
without significant additional overhead.

We dealt with a small part of the problem of privacy in outsourced databases. We
concentrated on database encryption schemes where range queries can be efficiently
executed. In this problem we have the following contributions:

1. Theoretical study: The literature suggests that an order preserving encryption
scheme should be used to encrypt databases so that range queries can be run
on it. Recently, there have been ample theoretical studies involving order pre-
serving encryption schemes and some security definitions for such schemes have
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also been proposed. These studies only deal with the specific encryption primi-
tive, and they not handle the scenario when such a primitive would be used in
a real database environment. We provide a theoretical model for the problem of
database encryption where range queries are possible. Our security definition is
motivated by the IND-OCPA security definition of OPE schemes, but it is more
suitable for application in a real database secenario.

2. New Constructions: In Chapter 6 on page 83, we proposed a new scheme for en-
crypted databases called ESRQ1. Themain novelty of ESRQ1 lies in the fact that it
uses a specific type of encoding of range bitmaps which we call the array encod-
ing. The array encoding of bitmaps are used to reveal the order of the plaintexts.
Other than this ESRQ1 uses a new cryptographic primitive called deterministic
encryption with associated data (DEAD). DEAD is related to an existing prim-
itive called deterministic authenticated encryption (DAE), but DEAD is less se-
cure than DAE and it provides the exact security that is required for databases.
In Chapter 7 on page 111 we also provide some practical constructions of this
primitive.

3. Implementations: We implemented the ESQR1 scheme, and tested its perfor-
mance on a real dataset. In Chapter 8 on page 125 we presented our experimental
results on this implementation.

9.2 Future work

We note down some issues of immediate interest which were not treated in this thesis
but we wish to take up in the near future:

1. Security analysis of other schemes: We have proposed a general framework
for security of authenticated query processing problem. It will be interesting to
perform a study of the security of other schemes proposed in the literature in our
framework.

2. Extend the type of queries. The type of queries that our schemes RDAS1, RDAS2

can authenticate are still restricted. We wish to explore the possibility of extend-
ing the schemes so that other query types can be handle. Among others, the
study of join bitmaps indices, and their applicability in processing join queries is
of our immediate interest.

3. Improvements over RDAS-dyn. We have presented our RDAS-dyn as a scheme
that can authenticate queries in the presence of insertions, updates and deletions.
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It seems that the specific structure of l -bitmap matrices that we use in Chapter 6
will be better suited to design authentication schemes for dynamic databases. We
plan to analyze this option.

4. l -Bitmap Matrix. We have proposed this new structure to allow efficient storing
of bitmaps in the context of ESRQ1. We think that l -bitmap matrices and their
array representations can be of independent interest and can be used as an in-
dex for ordinary databases also. A proper experimental evaluation of l -bitmap
indices and a comparative analysis with other existing index structures is of im-
mediate interest to us.

5. A combined scheme for authentication and privacy. Since our proposals for the
query authentication problem and the privacy problem work based on bitmaps,
we consider that the design of a single scheme that provides these two security
services is possible.

6. Cloud deployments. Until now all our implementations are prototypical and
does not run in the cloud, we have only simulated the client-server environment.
Thus, it seems appealing to deploy our schemes in a real cloud scenario. This can
generate some problems that we did not consider in this thesis.

7. Cryptographic database engine. A very challenging project is to develop a new
database engine that facilitates the addition of cryptographic schemes as a natural
part of the database operations.
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Queries

Q1 SELECT * FROM data_alpha WHERE age=’28’ OR age=’85’ OR age=’9’

OR age=’80’ OR age=’26’ OR age=’3’ OR age=’33’

OR age=’39’ OR age=’88’ ORDER BY nonce

Q2 SELECT * FROM data_alpha WHERE occupation=’23’ OR occupation=’7’ OR age=’66’

OR education=’Bachelorsdegree(BAABBS)’ OR wage=’2208’ OR wage=’385’

OR wage=’1121’ OR wage=’275’ OR wage=’2480’ OR wage=’1910’ OR wage=’690’

OR wage=’468’ OR wage=’1471’ OR wage=’1385’ OR wage=’2800’ OR wage=’853’

OR wage=’455’ OR wage=’2160’ OR mstatus=’Married-AFspousepresent’

OR moccup=’Precisionproductioncraft&repair’ ORDER BY nonce

Q3 SELECT * FROM data_alpha WHERE occupation=’20’ OR occupation=’10’ OR age=’56’

OR wage=’2138’ OR wage=’839’ OR wage=’936’ OR wage=’890’ OR wage=’1866’

OR wage=’1315’ OR wage=’805’ OR wage=’466’ OR wage=’1314’ OR wage=’1195’

OR wage=’1450’ OR wage=’691’ OR wage=’535’ OR wage=’735’ OR wage=’1119’

OR wage=’3190’ OR wage=’1592’ OR wage=’1633’ OR wage=’5250’

OR mstatus=’Nevermarried’ OR indcode=’Socialservices’ OR losses=’2457’

OR dividends=’833’ ORDER BY nonce

Q4 SELECT * FROM data_alpha WHERE age=’57’ OR wage=’2198’ OR wage=’1971’

OR wage=’1269’ OR wage=’709’ OR wage=’1311’ OR wage=’822’ OR wage=’671’

OR wage=’1152’ OR wage=’1130’ OR wage=’1834’ OR wage=’879’ OR wage=’2988’

OR wage=’758’ OR wage=’1730’ OR wage=’1042’ OR wage=’602’ OR wage=’1850’

OR wage=’1107’ OR wage=’1035’ OR indcode=’Hospitalservices’ OR sex=’Female’

OR gains=’14344’ OR losses=’1887’ OR losses=’1504’ OR dividends=’1059’
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OR dividends=’157’ OR dividends=’2143’ OR dividends=’1240’

OR dividends=’762’ order by nonce

Q5 SELECT * FROM data_alpha WHERE msa=’972.45’ OR msa=’974.37’

OR msa=’975.77’ OR msa=’976.67’ OR msa=’976.83’ OR msa=’977.06’

OR msa=’977.59’ OR msa=’978.89’ OR msa=’979.62’ OR msa=’980.61’

OR msa=’981.86’ OR msa=’982.11’ OR msa=’982.38’ OR msa=’982.54’

OR msa=’983.6’ OR msa=’984.26’OR msa=’984.64’ OR msa=’985.58’

OR msa=’985.73’ OR msa=’985.75’ OR msa=’988.21’ OR msa=’988.73’

OR msa=’989.41’ OR msa=’989.42’ OR msa=’989.76’ OR msa=’98.98’

OR msa=’990.74’ OR msa=’992.42’ OR msa=’992.62’ OR msa=’993.1’

OR msa=’993.39’ OR msa=’993.45’ OR msa=’996.35’ OR msa=’998.11’

OR msa=’998.16’ OR msa=’998.18’ OR msa=’998.63’ OR msa=’999.22’

OR msa=’999.43’ OR msa=’999.56’ OR live=’Nonmover’

OR live=’DifferentstateinMidwest’ OR self=’Puerto-Rico’

OR self=’Nicaragua’ OR self=’India’ OR self=’Taiwan’

OR citizen=’Taiwan’ OR business=’Native-BornintheUnitedStates’

OR year=’43’ OR band=’-50000.’ order by nonce

Q6 Select * FROM data WHERE age=’45’ OR age=’50’ AND sex=’Female’

Q7 SELECT * FROM data WHERE enroll=’Highschool’

OR enroll=’Collegeoruniversity’ AND NOT sunbelt=’Yes’

Q8 Select * FROM data WHERE mstatus=’Divorced’ OR mstatus=’Widowed’

OR househ=’Householder’ AND age=’35’

Q9 SELECT * FROM data WHERE class=’Private’ AND race=’White’

OR race=’AmerIndianAleutorEskimo’

Q10 Select * FROM smalldata_num WHERE age ≥ 8 AND age ≤ 10

Q11 Select * FROM smalldata_num WHERE age < 1

Q12 Select * FROM smalldata_num WHERE age > 80

Q13 Select * FROM smalldata_num WHERE age = 42

Q14 Select * FROM smalldata_num WHERE age ≤ 1 OR age = 42
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