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Abstract 

 

Game theory (GT) is the science of strategic decision making, which is used to study the 

competition and cooperation relationships among entities. In multi-player games, GT is a 

powerful tool to study the decision-making, where players should make choices that af-

fect the interests of other players, and the whole team. In this thesis, we designed and 

implemented mathematical formal models, based on Finite State Machine for the Base-

ball, American Football, and the game of Go. In addition, we implemented efficient 

methods for the strategic analysis, for Baseball and American Football, we use Nash 

equilibrium and Pareto efficiency, and for Go gaming automation, Neural Networks and 

Monte Carlo Tree Search.  

The multi-player game modeling is of a high complexity, and the strategic analysis of 

Baseball and American Football must include a large number of parameters for fairly 

automatized decision-making support [5]. The strategic analysis for Baseball and Ameri-

can Football involves the use of Nash equilibrium and Pareto efficiency. These classical 

methods are used in economic, for analyzing the interactions among actors in a social 

dynamic context. In Baseball and American Football, they are used for modeling the 

strategic behavior of multiple players in a game match. To apply these methods, utility 

functions for the strategy profiles selection are constructed based on empirical data.  

The computer simulations results of Baseball and American Football matches show that, 

although the usual non-cooperative qualification to Nash equilibrium, it is a relative ad-

jective, up to the real circumstance. In the context of Baseball or American Football 

matches, where several parameters out of the players’ and manager’s control, Nash 

equilibrium allows to identify strategy profiles, for effective cooperation in real circum-

stances. The use of Nash equilibrium prevents to try plays or strategies with low statisti-

cal occurrence, thereby decreasing the risk to lose points, i.e., the Nash equilibrium 

strategy profiles, frequently include plays and strategies with high statistical occurrence, 

thus these strategies are more feasible in real matches. On the other hand, Pareto effi-

ciency induces to choose the theoretically optimum strategy profiles, however we ob-

serve that the optimal plays and strategies have low statistical occurrence, therefore 
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they are impractical in real circumstances. The Pareto strategy profiles are less likely to 

occur than the Nash ones. The strategies in Pareto profiles may be the most profitable, 

but their probability of occurrences are low. The combined use of both, Nash and Pareto 

efficiency, for strategic choice on multi-player Baseball and American football games, it 

is relevant to circumstances with complex social interactions. 

Nowadays, the formal analysis of the board game of Go is paradigmatic for computer 

science, since this game is a top complex game and currently, design and implement 

learning methods for Go gaming automation, conceal a huge combinatorial complexity 

and the challenge is to create efficient methods, that give good strategies for playing Go. 

Two major methods are analyzed and quantified for the Go gaming automation in this 

thesis, Neural Networks and Monte Carlo Tree Search. The Neural Networks are used 

for pattern recognition of Go tactics, and Monte Carlo Tree Search is used for evaluating 

the next move from a board configuration. The main remarks from this analysis is that, 

the use of Neural Networks for pattern recognition of Go eyes, ladders and nets is the 

best option in the early and middle stages of a Go match, and in the end stages, Monte 

Carlo Tree Search is the preferred method to be used. 
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Resumen 

 

La teoría de juegos (GT por sus siglas en ingles) es la ciencia de la toma de decisiones 

estratégicas, la cual es utilizada para estudiar las relaciones de competencia y coopera-

ción entre entidades. En juegos de multijugador, GT es una poderosa herramienta para 

estudiar la toma de decisiones, donde varios jugadores deben tomar decisiones que 

potencialmente afectan a los intereses de los otros jugadores. En esta tesis, diseñamos 

e implementamos modelos formales matemáticos, basados en máquinas de estado fini-

to para el béisbol, fútbol americano y Go. Además, implementamos métodos eficientes 

para el análisis de estrategias, para el béisbol y el fútbol americano, utilizamos el equili-

brio de Nash y la eficiencia de Pareto, y para el juego Go, las redes neuronales y Monte 

Carlo Tree Search.  

El modelado de juegos de multijugador es de alta complejidad, y el análisis de estrate-

gias de estos juegos, deben incluir un gran número de parámetros, para una correcta 

toma de decisiones [5]. Para el análisis de estrategias en el béisbol y en el fútbol ameri-

cano, se usa el equilibrio de Nash y la eficiencia de Pareto. Estos métodos clásicos de 

la economía, son aplicados para el análisis de las interacciones entre actores en un 

contexto dinámico social. En el béisbol y en el fútbol americano, estos métodos son úti-

les para modelar el comportamiento estratégico, de varios jugadores en un partido. Pa-

ra el uso de estos métodos, funciones de utilidad para la selección de perfiles de estra-

tegias se construye utilizando datos empíricos. 

Los resultados de las simulaciones por computadora de partidos de béisbol y de fútbol 

americano muestran que, aunque la calificación de no-cooperación habitual para el 

equilibrio de Nash, es un calificativo relativo, sobre las circunstancia reales. En el con-

texto de un partido de béisbol o de futbol americano, con varios parámetros fuera del 

control de los jugadores y del manager, el equilibrio de Nash permite identificar perfiles 

de estrategias para una cooperación eficaz en circunstancias reales. El uso de equilibrio 

de Nash evita realizar jugadas o estrategias con baja incidencia estadística, lo cual dis-

minuye el riesgo de perder puntos, esto significa que, los perfiles de estrategia de equi-

librio de Nash con asiduidad incluyen jugadas y estrategias con incidencia estadística 
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grande, las cuales son más factibles de que ocurrirán en partidos reales. Por otro lado, 

la eficiencia de Pareto induce a elegir perfiles de estrategias teóricamente óptimos, pero 

observamos que las jugadas y estrategias óptimas tienen baja incidencia estadística, 

por lo que son poco probable de que ocurran en circunstancias reales de un partido de 

béisbol o futbol americano. Los perfiles de estrategia eficiente de Pareto son menos 

probable que ocurra que los de Nash. Las estrategias en los perfiles de Pareto pueden 

ser los más rentables, pero sus estadísticas de ocurrencia son bajas. El uso combinado 

de ambos, Nash y Pareto eficiencia, para la toma decisiones estratégicas en juegos de 

multijugador, es relevante en circunstancias de interacciones sociales complejas.  

Hoy en día, el análisis formal del juego de tablero Go, es paradigmático en la ciencia de 

la computación, debido a que el Go es un juego muy complejo y en la actualidad, dise-

ñar e implementar métodos de aprendizaje para la automatización del él, escoden una 

enorme complejidad combinatoria, por lo que el reto es la creación de métodos eficien-

tes, que den buenas estrategias para jugar el juego de Go. En esta tesis, dos métodos 

principales son analizados y cuantificados, para la automatización del juego de Go, las 

redes neuronales y Monte Carlo Tree Search. Las redes neuronales son usadas para el 

reconocimiento de tácticas del juego de Go, tales como, eyes, ladders and nets, y Mon-

te Carlo Tree search es usado para evaluar el siguiente movimiento desde una configu-

ración del tablero. Las principales observaciones del análisis cuantitativo desarrollado 

es que, el uso de las redes neuronales durante las etapas iniciales e intermedias de un 

partido de Go es la mejor opción, y en etapas finales, Monte Carlo Tree Search es el 

método preferido a ser usado. 
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1                                                         

Introduction 
 

Game theory is the theory of independent and interdependent decision making. It is 

concerned with decision making in organizations, where the outcome depends on the 

decisions of two or more autonomous players, one of which may be nature itself, and 

where no single decision maker has full control over the outcomes. Games like Chess, 

Go, Baseball and American Football can be analyzed from a perspective of game theory 

[12, 28, 63, 72, 73, 82, 96]. 

There are, at least, three categories of games: games of skill, games of chance, and 

games of strategy. Games of skill are one-player games, whose defining property is the 

existence of a single player, who has complete control over all the outcomes [63]. 

Games of chance are those in which, the outcomes are at least partly determined by 

random factors rather than strictly by strategies. Unlike games of skill, the player does 

not control the outcomes completely, and strategic selections do not lead inexorably to 

certain outcomes. The outcomes of a game of chance depend partly on the player’s 

choices, and partly on nature. Games of chance are further categorized as either involv-

ing risk or involving uncertainty. In the former, the player knows the probability of each of 

nature’s responses, therefore knows the probability of success for each of his or her 

strategies. In games of chance involving uncertainty, probabilities cannot meaningfully 

be assigned to any of nature’s responses [28], thus the player’s outcomes are uncertain, 

and the probability of success unknown, some examples are: Poker, Craps, Roulette, 

among others. 
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Games of strategy are games involving two or more players, each of whom has partial 

control over the outcomes. In a way, since the players cannot assign probabilities to 

each other’s choices, games of strategy are games involving uncertainty. They can be 

sub-divided into two-player games and multi-player games. Within each of these two 

sub-divisions, there are three further sub-categories depending on the way in which the 

pay-off functions are related to one another – whether the player’s interests are com-

pletely coincident; completely conflicting; or partly coincident and party conflicting [63], 

some examples are: the game of Go, Baseball, American Football, among others. 

Games of strategy, whether two-player or multi-player, in which the players’ interests 

coincide, are called cooperative games of strategy. 

Games in which the players’ interests are conflicting (i.e. strictly competitive games) are 

known as zero-sum games of strategy, so called because the pay-offs always add up to 

zero for each outcome of a fair game, or to another constant if the game is biased. 

Games in which the interests of players are neither fully conflicting nor fully coincident 

are called mixed-motive games of strategy. 

In this thesis, one problem to be considered is the formal modeling of complex multi-

player games. There are a wide variety of multi-player games examples; therefore we try 

to cover many of these games in this thesis, by following the properties of multi-player 

games. The properties of multi-player games follow.   

1. Alternating move games are a kind of games in which, every time only one 

player can move, and the turn changes from one player to another in a prede-

fined order in the game. 

2. Simultaneous move games are a kind of games in which all players have to 

move in each turn. 

3. Impartial and partial game are alternating move games in which, the legal 

moves depend only on the position of the game, and not on which player is cur-

rently moving, and the payoffs are symmetric. All games which are not impartial 

are partial. 
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Find a single game, which holds all multi-player properties, it is not possible, thus we 

chose strategically, Baseball and American Football, which are simultaneous move 

games, and  Go, which is an alternating move game and impartial game.  

  

1.1. Scope of the Thesis 

 

This section describes the problem to solve on this doctoral work, the hypothesis and 

main objectives to address. Brief descriptions of the importance of the formal modeling 

on Baseball, American Football and Go are also included. 

 

1.1.1. The Problem 

 

In the broad context of modeling for system design, it is normally to assume that all de-

cision-makers cooperate fully and therefore avoid conflict, however this is not always 

possible; in which case, the design process is best modeled and studied as a multi-

player game.  

The multi-player game modeling is of a high complexity, because a large number of 

game aspects, that have to be considered for doing a suitable model. The strategic 

analysis of these kinds of games must include a large number of parameters for fairly 

automatized decision-making support.  

In Baseball and American Football, the formal modeling carries out a huge complexity; in 

a match, there are many uncertain factors like, human ways of pitching, batting, catch-

ing, passing and running, or natural factors like, wind speed, or the height of the place, 

and many others, which affect the game, and have to be considered for an appropriate 

modeling. For strategic analysis, many parameters must be considered like, the player 

playing style, or the circumstances of the match; in order to decide a suitable strategy, 

since it is crucial to obtain the match success. 

In Go game, determining the next moves to perform, during an automated Go match is a 

hard problem, because the huge search space to assess. The complexity of computer 

Go gaming is measured by, the game tree size, and the state space, and it is quite de-
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scriptive. The size of the Go game tree is around 10360, 10172 for the state space, and up 

to 361 legal moves [6], therefore the search space on Go gaming solutions is huger 

(very much) than the one for Chess [35]. 

Based on the previously indicated difficulties, the major problems are: design and im-

plement formal models for multi-player games, as well as, strategic analysis methods. 

The games to be considered are: Baseball, American Football and Go. Some relevant 

questions are the following:  

1. How to design and implement computational models, for the strategic analysis on 

Baseball, American Football, and Go? 

2. How to design and implement formal mathematical models, for Baseball, Ameri-

can Football, and Go? 

3. Which are the game parameters from the match, or from the players, or others, 

that we need to consider, for a strategic analysis on multi-player games? 

4. How to measure the teams’ performance and the automated player’s perfor-

mance? 

 

1.1.2. Hypothesis 

 

Suitable computational models, using formal grammars and finite state machines, will be 

useful for a strategic analysis on multi-player games, since they will ensure the correct 

modeling of the game, covering many aspects for real-life and supported by real statis-

tics. An appropriate analysis of the circumstances of a match will help to make the right 

decisions.  

 Finite state machines and formal grammars, will help to design the correct com-

putational models for Baseball, American Football, and the game of Go.   

 The use of the traditional method in game theory, like Nash equilibrium and Pare-

to efficiency, for selection of strategies either alone or in combination will improve 

the team performance in victories for Baseball and American Football. 
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 The use of pattern recognition on stages, where board is not so occupied, and 

Monte Carlo Tree Search for closing a match, will improve the performance of Go 

automated player. 

 

1.1.3. Objectives 

 

The present work aims to develop formal models and strategic analysis methods for 

multi-player games, which include the algorithmic and mathematical models for Base-

ball, American Football, and Go.  

 To design and implement computational game models, which are useful for stra-

tegic analysis of Baseball, American Football and Go. 

 To design and implement mathematical models for multi-player games, Baseball, 

American Football and Go. 

 To advance the state of the art for multi-player games analysis, by developing ef-

ficient methods to analyze the strategies for multi-player games, which allow 

modeling the person’s or group’s behavior. 

 To validate the performance of the proposed methods for strategic analysis, by 

verifying the success of team and automated players on test sets victories. 

 

1.2. Baseball  

 

Baseball is a top strategic team game, playing by two teams, bat-and-ball play in a dia-

mond field. Each team is 9 players and usually a match lasts 9 innings, nevertheless, if 

there is not a winning team at the ninth inning, additional innings are allowed until one 

team wins. The team that gets more runs throughout the innings is the winner; runs are 

scored by offensive team players, by batting the ball and moving from the home plate to 

first, second and third base and back to home plate without being out by the defense 

team. 

For team success, in a match, the design and use of team strategies as a positive com-

bination of individual strategies are requisites. Nowadays, the decision making is being 
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supported by computer tools, for strategic analysis on single or multi-player games. GT 

was formally founded by Von Neumann and Morgenstern in 1944 [82], having his major 

purpose in the economics modeling for markets, trade and financial issues; currently, it 

has been applied to a growing number of areas such as, politics, biology, sociology, as 

well as, to information technologies and engineering.  

 

1.3. American Football  

 

American Football is one of the top strategic games, played by two teams on a rectangu-

lar shaped field, 100 yards long by 53.3 yards wide, with goalposts in the end of the 

field. Each team has 11 players and a match lasts 1 hour divided in four quarters. The 

offensive team goal is advance an oval ball, by running or passing toward the adver-

sary’s end field [7, 22, 50]. The ways to obtain points are by advancing the ball, ten 

yards at least, until reach to the end zone for touchdown scoring, or kicking the ball such 

that it passes in the middle of the adversary’s goalposts for a field goal, or by the defen-

sive tackling the ball carrier in the offensive end zone for a safety. The offensive team 

should advance the ball at least ten yards in at most four downs (opportunities) to obtain 

four additional downs; otherwise the defensive team that is avoiding the ten yards ad-

vance, changes to the offensive role. The current offensive team advance starts from the 

last ball stop position. If the defensive catches the ball before a down is completed, it 

starts the offensive role at this position. A down ends by the most common circumstanc-

es that follow: when a pass is not successful, or when a player is tackled inside the field, 

or when a ball gets off the field.  

Recently, the formal modeling and strategic analysis for support the matches gaming of 

multi-player sports such as, American Football (AF) or Baseball are growing [8, 52, 104]. 

These multi-player games have led investigations in areas of sport science [2, 61, 70], 

computer science, game theory [3], operation research [8, 104], simulation models [37, 

52], among others.  
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1.4. The Game of Go  

 

The formal analysis of the board game called “Go” is at the core of advances in comput-

er science, in the same way the analysis of Chess was during the 20th century [71]. Go 

is a top complex board game and currently, design and implement learning methods for 

Go gaming automation are central challenges for computational intelligence, to demon-

strate sufficient skill to beat the top human Go masters. The Go game official board 

(GOBAN) is a 19 × 19 grid for two players using black-stones versus white-stones with 

zero-sum, deterministic, and perfect information [35]. By turn, each player places one 

black/white stone on one empty intersection or point of the board. Black plays first and 

white receives a compensation komi, by playing the second turn [13]. The goal of Go 

gaming is to control as much of the board area as possible, by means of complex strat-

egies, applied through simple Go rules. Figure 1.1 presents the flow diagram for Go 

gaming.  

 

 

Figure 1.1 Go gaming flow diagram 

 

To determine the available moves during an automated Go match is a tough problem 

because of the huge search space to assess. The complexity of computer Go gaming is 
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measured by the game tree size and the state space is quite descriptive. The game tree 

is the cardinality of the set of all possible manners for a legal sequence of moves, 

through all Go matches. A Go gaming state (node) is a particular board arrangement, 

i.e., the positions of the stones on the board at a specific moment in a match. The size 

of the Go game tree is around 10360, 10172 for the state space and up to 361 legal moves 

[6]. Therefore, the search space on Go gaming solutions is huger –very much– than that 

for Chess [35]. The moves of a Go match are depicted graphically by a decision tree that 

records the moves and is an element of the game tree. The root state is the match be-

ginning. Any node children are those positions reachable in one move. 

On the Go board, the liberty of a stone is any vertical or horizontal unfilled point adjacent 

to the stone, which sometimes can be shared with other stones. Once a stone is placed 

on the board it can be removed only when it is captured, which happens if it is surround-

ed by adversarial stones and thus, losing all its liberties. Black stones capture white 

stones and vice versa. Two or more stones of the same color joined by horizontal or ver-

tical points form a chain stone that cannot be divided; diagonally adjacent stones are not 

in a chain. From now on, the term stone refers to both single stones and chains, howev-

er, explicit differentiation is made when required. Any stone is alive if it cannot be cap-

tured, and it is dead if it cannot avoid capture. When a player places a stone that will 

result in immediate capture, this is called suicide, which is not allowed. The game ends 

when both players pass on their turn. Then, the score is computed based on both territo-

ry occupied by the player on the board and the number of captured adversarial stones. 

The winner is whoever has the largest total.  

 

1.5. Content Organization 

 

In Chapter 2, we describe all the analysis for Baseball game, the game review, the algo-

rithms proposed, the set of tests, discussion and conclusion. In chapter 3, we present 

the formal analysis for American Football game, the game review, the formal grammar 

and finite state machine, discussion and conclusion. In chapter 4, we describe the Go 

game analysis, the state of art, the mathematical and algorithmic modeling, the experi-
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ments, discussion and conclusion. In chapter 5, we present the general conclusion and 

the summary of the entire thesis. Finally, in Chapter 6, we present the future work. 
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2                                                     

Simulation of Baseball Gaming 

 

2.1 Overview 

 

Baseball is a zero-sum multi-player game that victory is entirely based on the appropri-

ate strategies being practiced. Actually, this world popular team game is strategies 

thoughts obligated for playing [15], and the strategic decision-making is crucial to obtain 

the match success [72]. The strategies, as a set of organized plays are indicated by the 

team’s manager regarding the specific profile of all the players hence each one’s poten-

tial actions, as well the specific match circumstance; from all mentioned information the 

manager could select some strategies amid to obtain the most benefit. Baseball is at the 

time, cooperative from manager’s perspective and non-cooperative from players’ per-

spective: team’s members are encouraged to act individually, but must cooperate for 

team’s benefit too.     

Nash Equilibrium (NE) concept allows typifying a team’s strategy such that no player 

individually deviates by the selected collective strategy, because it will be prejudice for 

the player [81]. The concept of Pareto efficiency (PE) is widely used in the normative 

economics literature. The Pareto principle and unanimity are foundational in discussions 

of social welfare, social welfare functions, and social choice [88]. We say that an out-

come is Pareto optimal if there is no other outcome in which all players are better off and 

at least one player is strictly better off.  In our approach, the use of  NE or PE  is for 

identifying the team’s strategies to apply throughout a Baseball match, either on offense 
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or defense role, for pushing up the probabilities of success by NE/PE-strategies-based 

playing, each Baseball player’s potential actions is according to own profile given the 

current position at field, joint to the other players’ profile and positions, in addition to the 

innings, number of outs and score, all integrated for supporting the manager’s decision 

making at any moment during the match. Baseball NE/PE formal modeling is by means 

of payoff matrix. The computer Baseball simulator is based on: one formal grammar (set 

of rules), one FSM to recognize the language generated by the grammar, one random 

generator of Baseball plays, Hungarian algorithm for team selection, and for the analysis 

of strategies NE/PE algorithm for finding the best match collective strategies. 

 

2.1.1 The Prisoner’s Dilemma 

 

There are circumstances where the players can get a better result cooperating, as illus-

trates in the prisoner's dilemma that describes when the police capture P1 and P2, as 

suspicious people of a crime, without sufficient evidence to charge any of 

them. Questioned by the police, the possible both prisoners’ dilemma strategies profiles 

to answer can be: (silence, silence), (silence, confess), (confess, silence) and (confess, 

confess). Separately, police offer the same deal: if one confesses but the accomplice 

not, the accomplice is ten years jail sentenced but confessor is released, so (3, 0) or (0, 

3); if both silence (deny it) all the police can do is locking them up for six months due to 

a misdemeanor charge, (1, 1); if both confess five years jail is for each one (2, 2). The 

summary of prisoner’s dilemma and the payoff matrix are shown in Table 2.1.  

  

Table 2.1 Prisoners’ payoff matrix 

 
 
 

P1 

P2 

Strategies Silence Confess 

Silence 
P1, P2, 6 month jailed 

Profile (1, 1) 
P2 release, P1 10 year jailed. 

Profile (0, 3) 

Confess 
P1 release, P2 10 year jailed. 

Profile (3, 0) 
P1, P2, 6 year jailed. 

Profile (2, 2) 
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Condition to observe for a NE profile is that if a prisoner drawn up own strategy is for 

losing, because any NE strategy profile should maximize both player’s profits. So, (con-

fess, confess) is NE profile for both prisoners as long as any rational prisoner not devi-

ate from, except to the risk to be negative affected: by keeping silence a prisoner can be 

twice jailed that if confesses.   

In Prisoner’s Dilemma games, a compensation mechanism where all players’ payments 

pairs with mutual cooperation, it fits NE [32]; mutual cooperation is substantially more 

likely with payment pairs that bring the payoffs closer together, but if these payments are 

not permitted cooperation is much less likely. The players’ mutual advantages by coop-

eration in Baseball are next analyzed. 

 

2.1.2 Qualitative Analysis 

 

In a strategy game, the intelligent planning mostly allows driving to victory. Baseball is a 

multi-player top strategic game, bat-and-ball play at a field [15, 17, 106]. Team is com-

pound by 9 players and the match is 9 innings (high/low) initially, but if there is not win-

ner at the ninth, additional innings are allowed. The game basic rules by the offensive 

are simple [38]: the offensive team’s members take turns at the bat for attempting to hit 

the ball so thrown pitched from some distance and locating it away from adversaries in 

front of home plate. The runs are scored by the offensive team when a player, after bat 

ball sequentially advances from home plate to first, second and third base then back to 

home plate without being out by the defense team. The team scoring most runs 

throughout all the innings gets the victory. The team continues at the bat until three outs 

are made by the defensive team then switch the offense / defense team’s roles.  

The main offensive strategy is the appointment of the batting order before the game 

start, so the team’s manager does the 9 players pre-set positions at bat.  Usually, the 

best players are first at bat for having more opportunities to hit than those at the list end. 

Furthermore, at first two places put quick legs people trying as simple as possible to get 

them into the bases; then, the best hitters on 3rd and 4th position trailers to home with a 

home run or a good hit to give the players on bases enough time to move forward. In 
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addition, if one or more runners stay on any base a relevant offensive strategy is to in-

tent to advance the runners, either by base stealing or by connecting a hit. If there are 

fewer than two outs, the sacrifice-plays-based strategy to advance runners is an option 

though could involve an out. 

While the team at bat is for trying score runs, defensive team is for attempting record 

outs; the best defense strategy is to get the more outs as possible hence do not receive 

too many pitches and limits the opposing team’s moves. A qualitative analysis of Base-

ball strategies, particularly the conservative – aggressive tradeoff, by regarding the 

score versus the inning order and number of outs result in the next alternatives: [106].  

Score: Up on the scoreboard, play more recklessly can be a good option in order to in-

crease the difference on the scoreboard; but down on the scoreboard, a conservative 

play is recommended, to keep the number of outs and the players on base.   

Innings: Aggressive or conservative playing depends if the game is on initial, middle, or 

late innings. The first innings main goal is going-ahead by means of an aggressive play-

ing without wasting outs by sacrifice bunts. Middle innings often determines the game 

character, in front of an aggressive style to play conservative is recommended. In the 

late innings and up on the scoreboard an aggressive play is recommended, but down on 

the scoreboard, a conservative play is better option.  

Numbers of outs: Without outs, a small difference on the scoreboard and in the late 

innings, a conservative play should be applied for scoring few more runs and having one 

or two outs play aggressive to reach at least one run more.  

Sacrifice Plays (SPs) are suitable strategies to lead the team victory, according to 

Baseball statistical study, by having less than two outs and a player at third base [68]. In 

well identified Baseball circumstances SPs are the best options, particularly the stolen 

base for a base-runner advances. Actually, sometimes, SPs correspond to NE strategy 

profiles [4]. 
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2.1.3 The Strategic Nature of Baseball  

 

In a competitive game the strategies planning looks for driving to victory. Baseball is a 

multi-player strategic game, bat-and-ball play at a field [15, 17, 106]. Each team is com-

pound by 9 players and the match is 9 innings as usual, but if there is not winner at the 

ninth, additional innings are allowed. The offensive team’s members take turns at the 

bat for attempting to hit the ball so thrown pitched from some distance and locating it 

away from adversaries in front of home plate [38]. The runs are scored by the offensive 

team when a player, after bat ball sequentially advances from home plate to first, se-

cond and third base then back to home plate without being out by the defense team. 

The team scoring most runs throughout all the innings gets the victory. The team contin-

ues at the bat until three outs are made by the defensive team then switches the of-

fense/defense team’s roles. The main offensive strategy is the appointment of the bat-

ting order before the game start:  The best batters are first for having more opportunities 

to hit and take in the bases; furthermore, at first two places put quick legs people then 

the best hitters on 3rd and 4th position trailers to home with a home run or a good hit so 

the players on bases have enough time to move forward; in addition, to intent to ad-

vance the runners, either by base stealing or by connecting a hit, or apply a sacrifice-

plays-based strategy to advance runners even it involves an out [68].  

 

2.2 Formal Language 

 

Whether for defense or offense role, the abbreviation to design simple and compound 

Baseball plays made by   player are listed in Table 2.2. Plays are weighted and total or-

dered based on their statistical occurrence (SO) in real life matches as Figure 2.1 

shows: e.g. strikes occur more often than home runs, and balls occur more often than 

double plays.  
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Figure 2.1 Plays ordered. 

 

Notice that wb does not correspond to a typified Baseball play but is needed for a right 

modeling movements of players on bases, whose should wait the batter’s actions hence 

properly play, e.g. if the batter’s hit is a home-run (h) then the runners should go through 

bases to home, or if the batter gets out (o) the runners should stay on bases. For an ex-

pressive algorithmic implementation the Baseball rules are CFG (context-free grammar) 

design to facilitate the control of the number of strikes, balls, fouls or outs then the tran-

sition for modeling plays that occur after a given number of any of them. But it is a re-

mark that a regular grammar, less expressive hence more complex than a CFG, is 

enough for modeling a whole Baseball match. CFG non-terminal elements that corre-

spond to the names of single plays are listed in Table 2.3. The grammar rules generate 

the formal language (set of strings over the alphabet of symbols of simple plays) de-

scribing the whole Baseball match, see some of them in Table 2.4; rules ensure the cor-

rect composition of sentences describing the Baseball plays and matches. The Baseball 

CGF is as follows: 

   is the alphabet of terminals and non-terminals. 

      is the set of terminals.  

     is the set of non-terminal elements.  

    (   )     is the set of rules. 

        is the initial symbol. 

 

Table 2.2∑ = Terminals symbols to simple plays. 

bi: ball  
boi: bolk  
bgi: base hit  
bpi: base on balls 

coi: contact of ball  
hi: homerun 
hii: hit  
ri: stealing base  

wbi: wait batter´s action 
a1

i: move to A1  
a2

i: move to A2  
a3

i: move to A3  
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di: doublet 
fi: foul 
dpi: double play 
fsi: sacrifice fly   
 

si: strike 
ti: triple 
tbi: bunt 
tpi: triple play 
wi: wild pitch 
 

a4
i: move to home  

ce: team change  
oi : out 
pi: punched 

 

Table 2.3 Non-terminals symbols. 

A:  Action by ball contact  
B:  Bat 
B3:  Bat with three outs 
M:  Movement 
MH:  Home run movement 
MR:  Stolen base movement  
MG:  Base hit or base on movement by balls  
MD  Movement by doublet 
MT  Movement by triplet 
R:  Steal 
T:  Transition 

 

Table 2.4 Some grammar rules; H is used for hitting abbreviation. 

B -> bi B H lead to ball, and hit back 
B -> bpi MG B H generate base on balls, making M and H return (4 

balls later) 
B -> si B H generate a strike and hit back 
B -> pi B H lead punch and hit back (3 strike later) 
B -> pi B3 H lead punch and hit back with three out (3 strikes and 2 

outs later) 
B -> fi B H generate a foul, hitting back 
B -> di MD B H generate a double, moving back to bat 
B -> ti MT B H generate a triplet, M and hit back 
A -> hii M B Action to generate a hit, moving and re - bat 
A-> oi B Action to generate one out, H back 
B -> hi MH B H a home run generate M and hit back 
B -> tbi M B H generate a bunt, moving and return to bat 
B -> tbi M oi B H generate a bunt, moving, out and return to bat 
B -> tbi M oi B3 H generate a bunt, moving, out to bat and team change 

(2 outs later ) 
B -> wi M B H generate a wild pitch, moving and hit back 
B -> bgi MG B H generate a base hit, moving and return to bat 
B-> boi M B H generate a bolk, M and return to bat 
B -> fsi M oi B H generate a sacrifice fly, M, and back out to bat 
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B -> fsi M oi B3 H generate a sacrifice fly, M, and change out of equip-
ment 

B3-> ce B                         Hit three out, is change of equipment 
… 
 

i≠j, i≠k, i≠l, j≠k, j≠l, k≠l 
 

2.3 The Finite State Machine 

 

A finite state machine (FSM) is a mathematical device for reading the input strings from 

a formal language; the parsing of strings starts at the FSM initial state then following 

through intermediate states; whenever the output or parsing end of a string occurs in a 

FSM halt state conclusion is that the string belongs to the language being recognized by 

this FSM [103]. A so called Alan Turing FSM deserves for reading a recursive enumera-

ble –the most general formal– language by means of the corresponding transition func-

tion; the FSM memory containing the language is represented by a strip of tape [11]. A 

push-down machine, less general than the Allan Turing one, allows recognizing the CFG 

language describing both the simple or complex Baseball plays [11, 57].  

Let ( ,  ̂,   ,  ,  ) be a push-down FSM such that:  

   is the alphabet.  

  ̂    ,   ,   ,   ,     is the set of states. 

      ̂     ̂ is the transitions function.  

       ̂  is the initial state.  

     ,       ̂ is the set of halt states. 
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Figure 2.2 Baseball FSM diagram. 

 

The FSM for Baseball is shape-of-field-like modeled: the home, 1st, 2nd and 3rd bases 

and a special base, these bases are modeled as the FSM states; the transitions be-

tween states (one to one) are the plays (movements) the players can perform, see 

Baseball FSM in Figure 2.2 and in Appendix 2.A, e.g. hits, fouls, strikes, among others. 

Stacking and de-stacking symbols to/from the FSM stacks are for respective scoring the 

number of strikes ST, fouls F, balls B, outs O, and the players on the bases, see transi-

tion function in Table 2.5. Strings that end in s0 are run-strings and those that end in s 

are out-strings. By starting with the empty string () each next play is right concatenated, 

the super-indexed is for indicating the player who performs the play. Plays being de-

pendent on prior ones are generated whenever the need sequence of previous plays 

have occurred, e.g., for a base on balls must happen four previous balls, or for a punch 

must have three previous strikes.  
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Table 2.5 Transition function. 

(s0,f,nil)  : (s0,F’) 
(s0,s,nil)  : (s0,ST’) 

(s0,b,nil)  : (s0,B’) 

(s0,bp,nil) : (s0,nil) 

(s0,bg,nil) : (s0,nil) 

(s0,bo,nil) : (s0,nil) 

(s0,d,nil)  : (s0,nil) 

(s0,hi,nil) : (s0,nil) 

(s0,h,nil)  : (s0,nil) 
(s0,fs,nil) : (s0,nil) 
(s0,t,nil)  : (s0,nil)  
(s0,tb,nil) : (s0,nil) 

(s0,w,nil)  : (s0,nil) 
(s0, a1,{F ST B }):(s1,a1)

 

(s0,p,{F ST B}): (s,O’) 

(s0,o,{F ST B}): (s,O’) 
(s0,dp,{F ST B}): (s,O’) 
(s0,tp,{F ST B}): (s,O’) 

(s1,r,nil)  : (s1,nil) 
(s1,wb,nil)  : (s1,nil) 

(s1,bo,nil)   : (s1,nil) 

(s1,w,nil)  : (s1,nil) 
(s1,o, nil): (s,O’) 
(s1, a2, a1): (s2, a2)

 

(s2,r,nil)  : (s2,nil) 
(s2,wb,nil)  : (s2,nil) 

(s2,bo,nil)   : (s2,nil) 

(s2,w,nil)  : (s2,nil) 
(s2,o, nil): (s,O’) 
(s2, a3, a2): (s3, a3) 
(s3,r,nil)  : (s3,nil) 
(s3,wb,nil)  : (s3,nil) 

(s3,bo,nil)   : (s3,nil) 

(s3,w,nil)  : (s3,nil) 
(s3,o, nil): (s,O’) 
(s3, a4, a3): (s4, a4) 
 

 

2.4 Generator of Plays 

 

The generator of Baseball plays produces strings that must have a correct sequence of 

moves, i.e., the Baseball plays should generate according to their average SO in real life 

games and the sequence should be consistent with reality. A generator of plays is use-

ful, because it generates valid Baseball strings randomly, quickly and easily.  

The generator produces Baseball plays and verifies that:  

 These must be made based on their average SO, and also 

 Be generated following the rules of the game. 

 

Figure 2.3 shows generation of Baseball plays, so from the   ,  ,    simple plays the 

complex ones are compound. In order the strings describing a simple or complex Base-

ball play preserve the condition of random occurrence –as in real life matches–, a ran-

dom numbers generator is associated to determine any play occurrence. Posterior, the 

Baseball FSM validates the correctness of the arrangements of plays.  
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Figure 2.3 Generation of baseball plays. 

 

In addition, the condition of real SO of a validated play is modeled by means of a flip 

function, it receives the SO of the play and return a random output [0, 1], which means 

to play or not the play, so, greater is the SO more 1s occurrence and conversely; if the 

SO is 0.5, it will return 1 or 0 with the same frequency, see how the flip function is used 

in Figure 2.4.  

The generator has a module for generation and validating of strings. Once having the 

Baseball play to perform, this has to concatenate with the previous plays. The way to do 

this is as follows: at the right end of a string, empty one ( ) in the beginning, the play is 

concatenated with the previous ones and also indicating the player who performs it. The 

diagram for creating Baseball complex but right SO of plays is depicted in Figure 2.5; 

the algorithm for Baseball plays, since basic ones to a whole match according to real SO 

is in Table 2.6. Computer simulator implementation is in C language. 
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Figure 2.4 Probabilistic function scheme. 

 

 

Figure 2.5 General scheme of the generation and construction of chains. 

 

Table 2.6 Algorithm for baseball plays generation. 

Step 1: Numbers in {0,…, m} are random generated and each one is associated 
to any of the m simplest Baseball plays. 

Step 2: String of play is created, including the sequence of prior single plays if 
needed. 

Step 3: Validation of the string as a Baseball play. 
Step 4: After get a valid play, a flip probabilistic function is used to decide to exe-

cute the play or not up to its SO. 
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2.5 Selection of Strategies and Payoff Matrices 

 

In this section we define some mathematical aspects for the strategic analysis using NE 

and PE. 

The NE and PE formal account for multi-player games follow. The joint actions from all 

the players set the strategy profiles vectors; position i corresponds to the player   action. 

Let     , ,  } be the set of players,    ,   
      be an element of the set of simple 

plays, and   
  be a strategy of player   ,   

     ; let   (  ,  ,      ,  ,    ) be the 

game in normal form  [81] where:  

 A strategy is a compound sequence   
    

    
 . 

 A strategy profiles is an n-tuple of strategies one strategy per player (  ,  ,   ). 

    is the set of strategies of player  . 

    ,  ,     is the set of all the     strategies. 

    ,  ,     is the set of all payoff functions one per player. 

 

2.5.1 Nash Equilibrium for Non-Cooperation Strategies 

 

The NE for Baseball strategic reasoning induces each player’s action-decision during a 

match by regarding the others players’ action-decision, hence the team’s action-decision 

should fit the NE strategy profile being modeled by the payoff matrices for a quantitative 

analysis.  

The basic concepts to fundament NE follow. During a game the strategy profile specifies 

the whole team’s actions being derived from every player’s strategy. A strategy profile is 

dominated if any player can be benefit improved by deviating to other of his/her strate-

gies into a different profile. A deviation strategy profile is a set of deviation profiles. A 

payoff function is for calculating the benefit obtained for every possible strategy profile in 

the game [81]. 

Step 5: If Baseball match simulation is over go to Step 6, otherwise go to Step 1. 
Step 6: End of simulation: the validated string is a part of or a whole match. 
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The Nash equilibrium [81] is a widely used mathematical concept in game theory, espe-

cially in non-cooperative games. To identify the strategy profiles that satisfy the condition 

of Nash equilibrium, every strategy profile is evaluated with the payoff functions of the 

players, and the chosen profiles are those which for every player be the options that 

produces less loss for them, individually, non-cooperative, the best options for each 

player. The mathematical definition is given below. 

The NE strategies are denoted   
 ,  ,   

  and   
  is the best answers from player   to the 

    other players’ strategies,   
 ,  ,     

 ,     
 ,  ,   

 ; (  
 ,  ,   

 ,  ,   
 ) is the n-tuple 

of strategies for payoff function maximum equation (2.1): 

  

   (   
 ,  ,     

 ,   
  ,     

 ,  ,   
 )     (   

 ,  ,     
 ,    ,     

 ,  ,   
 )     ,           (2.1) 

 

Every strategy profile is each payoff function valued and compared with all of the others 

to determine whether it is or is not dominated. The dominated profiles are discarded and 

the non-dominated profiles fit the NE (see Table 2.7). Any game in (finite) normal form at 

least has one strategy profile that fits the NE [81].  

 

Table 2.7 Nash equilibrium algorithm for selection of strategies in baseball gaming. 

Input each strategy profile and its payoff value 

1:for all    (   ,  ,    ) strategy profiles 
2:  for all player   ( , ,  ) 
3:    if    is labelled as non-dominated   
4:      Do the derivations in    for player   
5:      if    is dominated by at least one derivation of   
6:         labeled    as dominated, move to the next strategy profile 
7:      end if 
8:    end if  
9:    else move to the next strategy profile 
10:  end for 
11:end for 

 

Observe that in NE every player is applying a non-cooperative perspective – less bad for 

him regarding the other players’ strategies.  
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2.5.2 Pareto Efficiency for Cooperation Strategies 

 

In a broad perspective to deal with valuations on strategy profiles for multiple players, 

definition of Pareto dominance follows: a vector  ⃗  (  ,  ,   ) is said to dominate 

 ̿  ( ̅ ,  ,  ̅ ) if and only if  ⃗ is at least partially better off than  ̿, formally in (2.2) [74]. 

 

                                  ,    ,   ,     ̅         ,    ,         ̅                                (2.2) 

 

Let   (  ,  ,   ) be a strategy profile, and  ⃗⃗    (  ( ),  ,   ( )) be the vector with all 

of the valuations from payoff functions   ,      Vector  ⃗⃗ is Pareto efficient (PE) if and 

only if there is not another vector  ̿ which dominates  ⃗⃗. Thus, one strategy profile results 

in a Pareto efficient valuation if and only if it is not dominated. In other words, a strategy 

profile  is Pareto efficient valued if there is no other strategy profile such that all players 

are better off and at least one player is strictly better off. Algorithm for PE is in Table 2.8.  

 

Table 2.8 Pareto efficiency algorithm for selection of strategies in baseball gaming. 

Input each strategy profile and its payoff value 

1: for each    (  ,  ,   ) strategy profiles  
2:   Create the vectors  ( )  (  ( ),  ,   ( )),     to the total number of profiles 
3:  end for 

4:                    ( ),    contains profiles which are Pareto efficient 

5: find in    the profile(s) which is (are) cooperative (for all players as team) 
  

Pareto efficiency (PE) or optimality is foundational for comparisons and discussions on 

social welfare and choice, as well as on the use of social welfare functions [88]. By ap-

plying Pareto efficiency for selection of strategy profiles in Baseball, we select those 

where the profits are maximized as a group and not only individually. Each player uses 

the strategy such that all players, as a team, get maximum utility, so multi-player coop-

eration is achieved. In this thesis, from a set of Pareto efficient profiles, we select those 
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where the profits are maximized as a group and not only individually i.e., each player 

uses the strategy such that all players get maximum utility cooperatively. 

The FSM that models strategies profiles is as follows. Let ( ,  ̂,  ,  ,  ) be the FSM for 

modeling the NE or Pareto efficient strategies profiles of all player in a team, see Figure 

2.6. 

      ,   ,  ,   ,  ,    is the alphabet.  

  ̂    ,   ,    ,   ,    is the set of states. 

      ̂     ̂ is the transitions function.  

      ̂  is the initial state.  

         ̂ is the set of halt states. 

 

 

Figure 2.6 FSM for modeling the Nash or Pareto efficient strategies profiles of a team. 

 

2.5.3 Modeling of Payoff Matrices 

 

Matrices entries registry every player’s decisions to shape the team’s strategy profiles, in 

addition to the match score and the number of innings and outs, see Figure 2.7. Every 

strategy profile is analyzed and those that do not fit the NE or PE condition are discard-

ed. 
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Figure 2.7 Matrix entries for a baseball quantitative analysis. 

 

From the set of   payoff matrix of every player   the   payoff matrix for n players is ar-

ranged. The   entries are the strategy profiles joint to the profile payoff value   , hence 

the form of a matrix entry is ((  ,  ,   ),   ). An example of two-player’s profiles with 

three strategies per player is present in Figure 2.8, and the payoff matrix for one of the 

players is in Figure 2.9.  

 

 

Figure 2.8 Two players’ strategy profiles. 
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Figure 2.9 Payoff matrix for one player in a two-player game.  

 

The quantitative analysis for a whole Baseball match is based on a set of 216 infor-

mation files, which are the combinations from, 3 stages of the game (first, middle and 

late innings), 3 score conditions, 3 amounts of outs (0 or 1 or 2) and 8 player’s position 

on base, each file contains 1 to 4 payoff matrices up to the match circumstances being 

represented. 

A remark is that in a Baseball match, at any moment, any change of players is allowed, 

what is Baseball characteristic not for several field games. This manager’s decision 

making alternative can be benefitted from the NE or Pareto efficient strategy profile 

guidance as long as the best combination of players according to a strategy at any mo-

ment of the match is ever available. 

 

2.5.3.1 Players’ Payoff Functions 

 

In this section, payoff functions for the Baseball runners and batters are defined. Pa-

rameter   indicates the score conditions,   = 1,   = 0.5 and    = 0.2 when team is down, 

tied and up on score. Parameter   gives information about innings:      ,       and 

    when the match is in first (1-3), middle (4-6) and late (7-9 or extra innings) innings. 

Parameter   gives information about the number of outs in the inning:     for two outs 

and     for one or zero outs. 
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The batter is identified with   and the runners with  ,  ,  . Let     ,    be a weighting 

factor used in a runners’ payoff function to consider the batter’s strategies; and let 

 ,     ,      be parameters to determine the playing style by regarding in turns parame-

ters   and  . Let     be the statistical occurrence (SO) of the strategy   for player   and 

    is the preference value of the player   to the profile that is being analyzed. The payoff 

function is given by     and the parameters described previously. 

The strategy profiles as (  ,  ,   ,  ,   ) highlighting in bold the focus player's strategy. 

We observe that Baseball strategy profiles for the offensive team, with men in the bat 

position and runners are at most a 4-tuple; actually, 3 runners at most in the field, one 

per base, and the batter. Hence strategy profile analysis is restricted by this condition. 

To define payoff functions, we should regard combinations according to the next condi-

tions. 

 

Payoff function for the runners 

Let   (  ,  ,  ,    ) be be the runner     payoff function, with     ,    ;   notation is 

for try to steal the forward base, and    for wait the batter’s action. 

 

Case man on 1st or 2nd base 

If runner’s SO to steal a base     is such that,          , payoff function is in equa-

tion (2.3), 

 

                     (  ,  ,  ,  ,   )      ,   (  ,  ,  , ,   )        .                      (2.3) 

 

Otherwise, if          , we need to consider if any SO of batter’ strategy is greater 

than   , and use equation (2.4), 

 

                   (  ,  ,  ,  ,   )        ,   (  ,  ,  , ,   )      .                    (2.4) 

 

Otherwise, use equation (2.5), 

                    (  ,  ,  ,  ,   )        ,   (  ,  ,  , ,   )      .                       (2.5) 
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Case men 2nd and 1st  

Let runner   the man on 2nd base and runner   the man on 1st base. In this case the ad-

vance of c depends on the advance of   , which payoff function is obtained as in the 

previous case. If     steal a base from   is such that          , use equation (2.6), 

 

                     (  ,  ,  ,  ,   )      ,   (  ,  ,  , ,   )        .                       (2.6) 

 

Otherwise, if          , consider the decision of runner  , if   (  ,  ,  , ,   )  

  (  ,  ,  , ,   ),  so if runner   tries to steal base greater than wait for the batter’s 

action, and use equation (2.7), 

 

                  (  ,  ,  ,  ,   )          ,   (  ,  ,  , ,   )        .                  (2.7) 

 

Otherwise, use equation (2.8), 

 

                     (  ,  ,  ,  ,   )      ,   (  ,  ,  , ,   )        .                       (2.8) 

 

Case men on 3rd, or 3rd and 2nd, or 3rd, 2nd and 1st  

In this case, the payoff function may include when   is in 3rd base,   in 2nd base and   in 

1st base. Base stealing is neutralized since it is highly unlikely that any runner tries base 

stealing in these positions, and use equations in (2.9). 

 

  (  ,  ,  ,  ,   )      ,   (  ,  ,  , ,   )        . 

                          (  ,  ,  ,  ,   )      ,   (  ,  ,  , ,   )        .                  (2.9) 

  (  ,  ,  ,  ,   )      ,   (  ,  ,  , ,   )        . 

 

Payoff function for the batter 

To explain To explain how to define the payoff function for batters, we use the strate-

gies, home run  , hit   , sacrifice flies    and sacrifice bunt   , so,       ,   ,   ,    , 
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even other strategies may be also used. The  ,   parameters indicate the playing style, 

aggressive or conservative, according to results of a set of experiments, and by regard-

ing to the score condition    and the information on innings,  . To model an aggressive 

style use (   ==1), that yield to       ,    . For a conservative style use (  

 ==0.5) that yields to    ,       . Otherwise,    ,     that means that these pa-

rameters do not affect the playing style, and playing is sole restricted to characteristic of 

players.  

The values of   and   came from some experiments, and their assignation is open. They 

are independent and will affect to different Baseball plays in order to induce the playing 

style. They may be asymmetrical or not. The value of   will weight to home run and hit 

plays, for playing aggressively, and the value of   will weight to sacrifice fly, for playing 

conservatively 

Case: no-runner 

With no runners on bases, we only consider the playing style and the SO of batter’ strat-

egy to define the payoff function in equation (2.10). 

  (  )   . 

  (  )          . 

                                                             ( )       .                                              (2.10) 

  (  )         . 

 

Case: one man on base  

Runner   is the man in base. In this case consider the statistical occurrence of batter   

strategies, the preference value    of the batter   on strategy profile ( ,   ),      ,    , 

the statistical occurrence      from runner   on strategy   , and the playing style. The 

payoff function follows in equation (2.11). 

 

  (  ,   )  ((         )      )     . 

  (  ,   )  ((        )      )     . 

                                             ( ,   )  ((       )      )   .                                (2.11) 
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  (  ,   )   ((        )      )   . 

 

Case: two men on base 

Runner    is the more advanced runner in base and   is the other runner. In this case, 

we consider the statistical occurrence of each batter   strategies, the preference value 

   of the batter   on strategy profile ( ,   ,   ),   ,      ,     for the runners   and  , the 

statistical occurrence of strategies    and    from   and   for the, respectively, and the 

playing style. The payoff function follows in equation (2.12). 

 

  (  ,   ,   )  ((        )  (         ))     . 

  (  ,   ,   )  ((        )  (         ))     . 

                                   ( ,   ,   )  ((       )  (         ))   .                        (2.12) 

  (  ,   ,   )   ((        )  (         ))   . 

 

Case: there men on base 

In this case, consider the statistical occurrence of each batter   strategies, the prefer-

ence value    of the batter   on strategy profile ( ,   ,   ,   ),    ,   ,      ,    for the 

runners  ,   and  , the statistical occurrence of the strategies   ,    and    from  ,   and 

 , respectively, and the playing style. The payoff function follows in equation (2.13). 

 

  (  ,   ,   ,   )  ((        )  (              ))       

  (  ,   ,   ,   )  ((        )  (              ))       

                            ( ,   ,   ,   )  ((       )  (              ))                    (2.13) 

  (  ,   ,   ,   )   ((        )  (              ))   . 

 

2.5.3.2 Examples of Analysis of Strategies  

 

Consider the followings circumstances in a Baseball match: last innings with the match 

score tied, one out in the inning and runner   in 3rd base. The   options are, base steal-
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ing r, or wait (wb) for the batter’s action. For batter   options are, homerun h, or a sacri-

fice hit (fs). Let     ,     and      , hence    , and       , so playing style is 

conservative. Using payoff functions the strategy profiles values are calculated to identi-

fy the ones that fit NE or PE. 

For runner  , let his SO of        .  Using the payoff function (2.3). 

   ( ,  )                         ( ,  )                       

   (  ,  )                         (  ,  )                       

 

For batter  , using payoff function (2.11). 

   ( ,  )   ((       )     )    ((        )     )       . 

   ( ,  )   ((       )      )    ((        )     )        . 

   (  ,  )   ((        )     )      ((         )     )            . 

   (  ,   )  ((        )      )      ((         )     )            . 

 

The strategy profiles and the utility value assigned by the payoff function of each player 

to each profile are shown in Fig. 2.10.  

 

 

Figure 2.10 Entries for the payoff matrices of players 1 and 2 

 

Now, in Fig. 2.11 the deviations in the strategy profiles is illustrated, such that in the 

analysis, depending on the values assigned by the payoff function, those strategy pro-

files being not dominated are identified. The example illustrates the steps to be applied 

to find the profiles that satisfy NE condition. For a player,   /   means that profile    

dominates profile   , so for player 1 we have 2/4; for player   domination is by 3/4. 

  (  ,  ,   )   ( )

(h, r) 0.5

(h, wb) 0.5

(fs, r) 0.3

(fs, wb) 0.4

  (  ,  ,   )   ( )

(h, r) 0.5

(h, wb) -0.1

(fs, r) 0.5

(fs, wb) 0.3

1

2

3

4
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Therefore, the non-dominated profiles for all players are the profiles 1, (h, r) and 4, (fs, 

wb), and both satisfy the NE condition. The only profile that satisfies PE condition is (h, 

r) because, in this profile, both players get the maximum profit as a team. 

 

 

Figure 2.11 Deviations in the strategy profiles 

 

Table 2.9 summarizes: the strategy profiles, the payoff values assigned to profiles by 

each player, the statistical occurrence of strategies, and the profiles which are NE or Pa-

reto efficient or none, following the example above. Usually, the strategies in NE profiles 

are statistically more frequent of occurrence than strategies in Pareto efficient profiles. 

Particularly, sacrifice hit (  ) strategy is in NE profile and home run ( ) is in Pareto effi-

cient profile; statistically,     is more frequent to occur than  , although   is more profita-

ble than   . The Pareto efficient profiles are the theoretical most profitable, but their oc-

currence in practice is too low.  

 

Table 2.9 Summary of the analysis of strategy profiles 

 Strategy pro-

files 

Payoff value 

by player 

Statistical occur-

rence (average) 

NE PE 

1 ( ,  ) 0.5, 0.5 0.3, 0.2   

2 ( ,   ) -0.1, 0.5 0.3, 0.8   

3 (  ,  ) 0.5, 0.3 0.7, 0.2   

4 (  ,   ) 0.3, 0.4 0.7, 0.8   

 

Profiles ( ,  ) and  (  ,   )  fit the NE condition because hold equation (2.1) 

  (  ,  ,   )   ( )

(h, r) 0.5

(h, wb) -0.1

(fs, r) 0.5

(fs, wb) 0.3

2

4

  (  ,  ,   )   ( )

(h, r) 0.5

(h, wb) 0.5

(fs, r) 0.3

(fs, wb) 0.4

3

4
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   ( ,  )    (  ,  ) 

   ( ,  )    ( ,   ) 

and 

   (  ,   )    ( ,   ) 

   (  ,   )    (  ,  ) 

 

Profile ( ,  )  is Pareto efficient   ⃗⃗  ((  ( ,  ),   ( ,  ))  because given       ,   ,    

  ,    , there is not a vector  ̿  (  (  ,   ),   (  ,   ))  that dominates  ⃗⃗, see equation 

(2.2). 

Next, the analytical comparison of the use of HM for player-positions assignment com-

bined with NE or PE for selection of strategies follows. The way to assign player-

positions is of great importance and a team perspective analysis is needed. In addition, 

the selection of strategies is essential for a good team performance.  

 

2.6 Hungarian Algorithm for Baseball Team Selection 

 

The Baseball players’ selection has as primordial goal to attain overall team efficiency. A 

baseball team must not be formed based on individual skills of its players; it needs to 

consider the contribution of each one on his assigned position for the best team perfor-

mance. To deal with the problem of Baseball positions assignment, we used Hungarian 

algorithm proposed by Kuhn [66] and Munkres [79], statistic of Major League Baseball 

(MLB) as the data set and the methodology is based on the proposal of Britz and Maltitz 

[18]. The teams comparative analysis using different techniques was performed in a 

Baseball simulator [3]. 

Hungarian algorithm (HA) is a prime method to solve the assignment problem [66]. HA is 

been using in different problems such as: Baseball players’ selection, economic issues, 

clustering analysis. 

Given the necessity of select the most effective Baseball team, a set of measures to as-

sess the players’ skills is required. Britz and Maltitz  [18] proposed a set of tests, in order 
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to evaluate each player to know his skills. Our approach uses Britz and Maltitz’s meth-

odology and real statistics of MLB players. 

The information source used to obtain statistics of players was the data by seasons of 

MLB Baseball teams. Precisely, we used 42 players for the 2012 MLB season, including 

21 of the team of Boston Red Sox and 21 of New York Yankees. From these players, we 

selected 12 pitchers (6 from each team) and 30 field players (15 from each team). Sta-

tistical measures considered are shown in Table 2.10: 

 

Table 2.10 Statistical measures to be considered. 

Batting  Pitching  Fielding  

R Runs W-L% 
Percentage of game 
won 

E Errors 

SB Stealing bases ERA 
Runs allowed per 
game 

DP 
Double 
plays 

OPS OBP + SLG WHIP (BB + Hits) / Inning RF/9 
(PO + A) / 
Innings 

GDP Double plays H/9 Hits per game SB 
Stealing 
bases 

SH Sacrifices hits HR/9 Home run per game   

SF Sacrifices fly BB/9 
Bases on balls per 
game 

  

IBB BB intentional SO/9 Strikeout per game   
*OBP  percentage of times an offensive player reaches a base. 

*SLG  total bases reached by total number at-bat. 

*BB  bases on balls allowed the player. 

*PO  outs got for the defensive.  

*A  assistance to get outs. 

  

2.6.1 Data Normalization 

 

The statistical data must be normalized, such that, it does not affect comparisons. The 

following expressions were taken from [18],  the normalization process is as follows. 



63 

 

Let   ,    be the lowest and highest value, respectively, of a measure        . The rela-

tive score (RS) for each observation    in test   is a transformation of the absolute value 

(AS) as noted as follows (2.14): 

 

                                                          
(       )

(     )
,                                               (2.14) 

 

Once all the tests score have been converted, this information can be summarized in the 

following matrix (2.15): 

 

                                                       (
         

   
         

)                                     (2.15) 

 

Where   is the number of tests and   is the number of players. The purpose of the skills 

tests is to correlate each player to a Baseball position, for this, we define a weight vector 

for each position such that ponders its relationship with each test. The weight vector for 

position   is represented as    (  
 ,   

 ,  ,   
 ),   

    , ∑   
  

     . Each    
  repre-

sents the importance of test   corresponding to the position  . These vectors comprise 

the matrix    such that   
      are the entries of the matrix (2.16): 
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)                            (2.16) 

Where   is the number of positions and    is the number of tests. The selection of weight 

vectors is the responsibility of an expert and should be selected carefully, with the matri-

ces   and  , we obtain the relationship between each player and each position that is 

given by the cost matrix   (2.17): 
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The solution to our problem is by finding the combination of values in   such that max-

imizes the efficiency subject to certain constraints: 

1. Select exactly one value for each column, to ensure that each position is as-

signed to a player. 

2. Select at most one value for each row, to ensure that a player is no assigned to 

more than one position. 

 

Stated mathematically, the optimal team efficiency is defined as (2.18): 

 

                                                 
 

 ( )  ∑∑   

 

   

 

   

                                                                  (    ) 

 

Where       ,   , subject to: 

∑   

 

   

     ,        

∑   

 

   

      ,        

 

The objective function   represents the overall efficiency of the team and the combina-

tion of player yielding   is the optimal selection of the team. The player   is assigned to 

the position   if      . Note that the simple selection of the fittest players for each posi-

tion does not ensure the optimal selection. The solution is more complex than that and 

to find it, Hungarian algorithm is used. 
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2.6.2 Hungarian Algorithm 

 

Unlike the initial proposal by Kuhn, in this case the assignment is not complete, i.e., 

there are more players than positions. In addition, this is an efficiency maximization 

problem, is not a minimization problem. The algorithm to solve the problem follows. 

Given the matrix that contains the contributions of a set of agents (rows) to a set of tasks 

(columns), the following procedure ensures an optimal assignment: 

Step 1: Convert the values in the matrix of maximum benefit at lower cost. This is done 

by subtracting each element, the maximum value of the matrix (2.19): 

 

                                          , where           
     

                                         (2.19) 

 

Step 2: If the matrix is a rectangular, transform it to a square matrix, adding columns 

missing and assigning to these position a value greater than M. 

Step 3: In each row, subtract to each element the minimum row value. 

Step 4: For each column, subtract to each element the minimum column value. 

These two steps ensure that there will be at least one zero in each row and column. 

Paso 5: Draw lines through rows and columns in such way that all zeros are covered 

using the minimum number of lines. Let   be the number of lines used. 

a) If     go to step 6. 

b) If    , let   be the smallest number that is not covered by any lines. Every el-

ement not covered for any lines, subtract   (including  ). Add   to every number 

in a position where two lines intersect. Repeat the step 5 until    . 

Step 6: Evaluate each row, starting at the top and highlight the zeros which are the soli-

tary zeros in the row. The positions of these zeros are unique assignments and, there-

fore, the corresponding row and column can be deleted from further consideration. If all 

  assignments have not been made by applying this step, repeat this procedure for the 

columns, starting from the left. Continue iterating between rows and columns until all    

assignments have been made. If a final complete solution cannot be reached this means 
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that there is no unique solution yielding the minimum overall cost. An arbitrary zero can 

then be selected and Step 6 can be repeated if necessary for the remaining rows and 

columns, producing a final assignment solution. At the end of this algorithm, all high-

lighted zeros in positions     means assign player   to position  . 

 

2.7 Merging Equilibrium of Nash and Pareto Efficiency: Test and Comparison 

 

We do an analytical comparison on the teams gaming performance. Experiments con-

cern the performance comparison of teams that use a method for selection of strategies 

with regard to the next match gaming conditions: 

 Comparing the MLB results from some teams against the simulation results by 

applying NE or PE. 

 A team with a score disadvantages changes from NE to PE, and vice-versa 

(PE to NE). 

 Using PE by a defense team for exclusive, versus the NE use by offensive 

teams for exclusive.  

 

2.7.1 Simulation using MLB Data or Selection of Strategies 

 

To simulate the players’ actions according to their performance, we use MLB real statis-

tics from the New York Yankees (NYY) and Oakland Athletics (OAK) in the 2012 season 

(some data are in Table 2.11). Shown is the number of times that a player makes AB at 

bat, R for reach home base, H for a hit, 2B for a hit and reaches second base, 3B for a 

hit and reach third base, HR for a home run, BB for walk by a player (four balls during at 

bat), SO for strikeout (three strakes during at bat), SB for stolen a base, CS for a player 

put out by attempting to steal a base.  
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Table 2.11 Some MLB baseball players’ statistics. 

Player Team AB H 2B 3B HR BB SO SB CS 

Suzuki, I NYY 227 73 13 1 5 5 21 14 5 
Jeter, D NYY 683 216 32 0 15 45 90 9 4 
Cano, R NYY 527 196 48 1 33 61 96 3 2 
Nunez, E NYY 89 26 4 1 1 6 12 11 2 
Chavez, E NYY 278 78 12 0 16 30 59 0 0 
Swisher, N NYY 537 146 36 0 24 77 141 2 3 
Cespedes, Y OAK 487 142 25 5 23 43 102 16 4 
Moss, B OAK 265 77 18 0 21 26 90 1 1 
Gomes, J OAK 279 73 10 0 18 44 104 3 1 
Crisp, C OAK 455 118 25 7 11 45 64 39 4 
Reddick, J OAK 611 148 29 5 32 55 151 11 1 
Smith, S OAK 383 92 23 2 14 50 98 2 2 

 

Using the MLB statistics [77], the frequency of occurrence of each Baseball play per 

player is used to induce the SO of the play can happen in a match, e.g., the SO of a 

player making a hit is given by AB/H, a home run by AB/HR and so on. Thus, when a 

player is at bat, we can simulate his performance in a gaming (e.g. 2012) season. Next, 

we do a comparison among simulations of Baseball matches using MLB statistics, with-

out any concern for analysis of strategies, versus simulations that use NE or PE as the 

methods for selection of strategies. Two hundred computer simulations per each of the 

next conditions were carried out. 

1) Team 1 (T1) uses NE versus Team 2 (T2) uses NYY MLB statistics. 

2) T1 uses NE versus T2 uses OAK MLB statistics.  

3) T1 uses PE versus T2 uses NYY MLB statistics. 

4) T1 uses PE versus T2 uses OAK MLB statistics. 
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Figure 2.12 T1 NE vs T2 
NYY. 

 

Figure 2.13 T1 NE vs T2 
OAK. 

 

Figure 2.14 T1 PE vs T2 
NYY. 

 

 

 

Figure 2.15 T1 PE vs T2 
OAK. 

 

 

By considering the results in Figure 2.12, when T1 uses NE and T2 uses NYY statistics, 

T1 is 160/40 superior. Results in Figure 2.13 show when T1 uses NE and T2 uses OAK 

statistics, and T1 is 168/32 superior. Results in Figure 2.14 show when T1 uses PE and 

T2 uses NYY statistics, and 158/42 wins in favour of T1. Results in Figure 2.15 illustrate 

when T1 uses PE and T2 uses OAK statistics, and T1 won more times 150/50.      

The huge contrast between the results from the previous simulations quantifies the rele-

vance of the selection of strategies, even for a team having top level Baseball players, 

whose inclusion does not guarantee a high level team performance. Therefore, methods 
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analysis for guiding players’ actions as a team is primordial for the selection of the prop-

er strategies to increase the probability of team success in a match. 

 

2.7.2 The Mix Election Methods 

 

Two hundred simulations per each of the next selection of strategies, sometimes combi-

nations of them, were carried out. 

1) T1 uses NE and T2 uses PE. 

2) T1 uses PE and T2 uses NE.  

3) T1 starts using NE and T2 starts using PE, then change to PE or NE, respectively. 

4) T1 starts using PE and T2 starts using NE, then change to NE or PE, respectively. 

5) T1 uses NE always and T2 uses combination of PE-NE. 

6) T1 uses PE always and T2 uses NE-PE. 

7) T1 uses combination of PE-NE and T2 uses NE always. 

8) T1 uses combination of NE-PE and T2 uses NE always. 

 

Observe that method to strategies election is changed at inning 4 or 7. Observe that the 

change of selection of strategies occurs at the first middle inning 4th or at the first late 

inning 7th, and if needed at extra 9th inning. Considering the results in Tables 2.12 – 2.13 

Figures 2.16 – 2.17 (item 1-2), the team that uses NE for selection of strategies in Base-

ball gaming, either for defense or offensive role, has advantage over the team that uses 

PE. In Tables 2.14 – 2.15 and Figures 2.18 – 2.19 (items 3 – 4), when a team, as soon 

as it is losing, changes strategy from NE to PE, or vice-versa, the results illustrate that 

the change is beneficial to the team because the score is closing, and sometimes the 

team that is losing can overcome the score. Tables 2.16 – 2.19 and Figures 2.20 – 2.23 

show results (items 5 – 8) when one team fixes the strategy analysis and the other 

change and this last obtained an advance. 
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Table 2.12 Examples of games 

scores in item (1). 

 

# Score Inning Winner 

1 14 7 T1 

2 1 5 T2 

3 1 3 T2 

4 16 9 T1 

5 3 4 T2 

… 

196 8 5 T1 

197 11 2 T1 

198 2 7 T2 

199 7 3 T1 

200 5 6 T2 

Table 2.13 Examples of games 

scores in item (2). 

 

# Score Inning Winner 

1 8 5 T1 

2 2 1 T1 

3 3 2 T1 

4 5 6 T2 

5 5 10 T2 

… 

196 6 4 T1 

197 0 4 T2 

198 1 4 T2 

199 2 4 T2 

200 5 13 T2 
  

Table 2.14 Examples of games 

scores in item (3). 

 

# Score Inning Winner 

1 11 15 T2 

2 4 10 T2 

3 4 5 T2 

4 4 19 T2 

5 5 3 T1 

… 

196 0 4 T2 

197 13 0 T1 

198 4 2 T1 

199 1 6 T2 

200 4 7 T2 

 

Table 2.15 Examples of games 

scores in item (4). 

 

# Score Inning Winner 

1 9 5 T1 

2 14 2 T1 

3 8 1 T1 

4 0 2 T2 

5 8 7 T1 

… 

196 8 10 T2 

197 16 13 T1 

198 3 8 T2 

199 8 6 T1 

200 6 0 T1 

 

Table 2.16 Examples of games 

scores in item (5). 

# Score Inning Winner 

1 7 4 T1 

2 13 2 T1 

3 9 6 T1 

4 11 8 T1 

5 8 9 T2 

… 

 

Table 2.17 Examples of games 

scores in item (6). 

# Score Inning Winner 

1 5 11 T2 

2 5 1 T1 

3 0 4 T2 

4 3 4 T2 

5 9 5 T1 

… 
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196 6 2 T1 

197 0 1 T2 

198 1 4 T2 

199 2 6 T2 

200 5 7 T2 
 

196 6 3 T1 

197 0 14 T2 

198 6 5 T1 

199 7 8 T2 

200 5 9 T2 
 

Table 2.18 Examples of games 

scores in item (7). 

 

# Score Inning Winner 

1 14 4 T1 

2 8 13 T2 

3 8 2 T1 

4 3 2 T1 

5 6 12 T2 

… 

196 1 4 T2 

197 3 8 T2 

198 5 2 T1 

199 5 7 T2 

200 3 4 T2 

 

Table 2.19 Examples of games 

scores in item (8). 

 

# Score Inning Winner 

1 4 8 T2 

2 7 8 T2 

3 5 6 T2 

4 3 6 T2 

5 12 4 T1 

… 

196 7 8 T2 

197 3 13 T2 

198 12 9 T1 

199 6 7 T2 

200 13 8 T1 
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Figure 2.16 Percentage of 
winning of T1 vs. T2 in item 

(1). 

 

Figure 2.17 Percentage of 
winning of T1 vs. T2 in item 

(2). 

 

Figure 2.18 Percentage of 
winning of T1 vs. T2 in item 

(3). 
 

 

Figure 2.19 Percentage of 
winning of T1 vs. T2 in item 

(4). 

 

 

Figure 2.20 Percentage of 
winning of T1 vs. T2 in item 

(5). 

 

 

Figure 2.21 Percentage of 
winning of T1 vs. T2 in item 

(6). 
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Figure 2.22 Percentage of winning of T1 

vs. T2 in item (7). 
 

 

Figure 2.23 Percentage of winning of T1 

vs. T2 in item (8). 

 

Next, analysis focuses when T1 and T2 change their strategies selection method for 

items (3 - 8). In Figure 2.24, the result shows when T1 begins NE and T2 PE. Both 

change selection of strategies method NE-PE or PE-NE when losing. In Figure 2.24 (A) 

T2 changes PE-NE in the 4th inning and the score has increased; in the 7th inning the T1 

changes NE-PE maintaining the score. Figure 2.24 (B) shows the percentage of in-

crease, no increase and score closeness when teams change the selection of strategy. 

For T1 the 20% increased, 35% did not increase and 45% closed the score when it 

changed NE-PE. Furthermore, for T2 the 55% increased, 25% did not increase and 25% 

closed the score when it changed PE-NE. Observe that in some cases both teams 

change more than once. 
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                                         (A)                                                  (B) 

Figure 2.24 Analysis of change of strategy technique of teams (3). 

 

Figure 2.25 illustrates when T1 begins PE and T2 NE, then both change strategy. In Fig-

ure 2.25 (A) T1 changes PE-NE in the 4th inning and the score is improved; in the 7th 

inning T1 changes NE-PE and the score is unimproved. Figure 2.25 (B) shows the per-

centage of increase, not increase and score closing when team change selection of 

strategies method: for T1 60% increased, 15% did not increase and 25% score closing 

when there was change PE-NE; for T2, moreover, 30% increased, 30% did not increase 

and 40% closed the score when change NE-PE. 

. 

NE 

ch (NE 
to PE) 

PE 

ch (PE 
to NE) 

NE 

NE 

0

2

4

6

8

10

4 7 9

R
u

n
s
 s

c
o

re
d

 

Innings 

T1

T2

20% 

55% 

35% 

25% 

45% 

20% 

0

20

40

60

80

100

120

T1 T2

Closes the
score

No increase

Increase



75 

 

 

(A)                                                   (B) 

Figure 2.25 Analysis of change of strategy technique of teams (4). 

 

In Figure 2.26 T1 fixes NE and T2 begins PE and can change strategy selection. In Fig-

ure 2.26 (A) T2 changes PE-NE in the 4th inning improving score; in the 7th inning T1 

maintains NE and makes some score improvements. Figure 2.26 (B) shows the per-

centage of increase, not increase and score closing when team changes selection of 

strategy. For T2 60% increased, 15% did not increase and 25% score closing when it 

changes PE-NE. 

 

ch (PE to 
NE) 

ch (NE to 
PE) 

PE 

NE 

NE 

NE 

0

2

4

6

8

10

12

4 7 9

R
u

n
s

 s
c
o

re
d

 

Innings 

T1

T2

60% 

30% 

15% 

30% 

25% 
40% 

0

20

40

60

80

100

120

T1 T2

Closes the
score

No increase

Increase



76 

 

 

(A)                                                      (B) 

Figure 2.26 Analysis of change of strategy technique of teams (5). 

 

In Figure 2.27 T1 fixes to PE and T2 begins NE and can change selection of strategies. 

In Figure 2.27 (A) T2 changes NE-PE in the 7th inning and it did not improve the score. 

Figure 2.27 (B) shows the percentage of increase, did not increase and score closing 

when team changes selection of strategies method: for T2 35% increased, 35% did not 

increase and 35% score closing by change. 

 

 

(A)                                                    (B) 

Figure 2.27 Analysis of change of strategy technique of teams (6). 
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In Figure 2.28 T2 fixes NE and T1 begins PE and can change selection of strategies. In 

Figure 2.28 (A) T1 changes PE-NE in the 4th inning and improves the score. Figure 2.28 

(B) shows the percentage of increase, not increase and score closing by team change; 

for T1 60% increased, 15% did not increase and 25% score closing when selection of 

strategies PE-NE was changed. 

 

 

                              (A)                                                    (B) 

Figure 2.28 Analysis of change of strategy technique of teams (7). 

 

In Figure 2.29 T2 fixes PE and T1 begins NE and can change selection of strategies 

method. In Figure 2.29 (A) T1 changes NE-PE in the 4th inning, and does not improve 

the score, T1 changes NE-PE in the 7th inning improving his score. Figure 2.29 (B) 

shows percentage of increase, did not increase and score closing when team changes 

selection of strategies method; for T1 40% increased, 30% did not increase and 30% 

score closing when selection of strategies method was changed. 
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(A)                                                     (B) 

Figure 2.29 Analysis of change of strategy technique of teams (8). 

 

The results obtained revealed the positive impact, the percentage of gain or loss, the 

change of strategy selection for a team regarding items (3 – 8); thus the advantage of 

using NE or PE for strategy selection in a Baseball match.  
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Figure 2.30 Percentage of 
winning of T1 vs. T2 in item 

(a). 

 

Figure 2.31 Percentage of 
winning of T1 vs. T2 in item 

(b). 

 

Figure 2.32 Percentage of 
winning of T1 vs. T2 in item 

(c). 
 

From the results illustrated in in Figures 2.30 – 2.32, it may be concluded that the teams 

using NE for the offensive role and PE for defensive achieve better performance than 

those that only use one method for selection of strategies gaming any of the roles. 

The percentage of strategy profiles being likewise PE and NE is 58%. The remaining 

42% is of different strategy profiles (see Figure 2.33). In addition, when the analysis de-

termines that NE strategic profiles should be done for gaming, the percentage really 

practiced is 71% (see Figure 2.34), whereas for PE, 46% is practiced (see Figure 2.35). 
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Figure 2.33 Common strategic profiles between NE and PE. 

 

 

Figure 2.34 Percentage of occurrence of NE profiles. 
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Figure 2.35 Percentage of occurrence of Pareto efficient profiles. 

 

As conclusion of this analysis, beyond to consider if strategic profiles are Pareto efficient 

or NE, there are factors which influence in the Baseball gaming, e.g., the SO of Baseball 

plays. The SO of plays determines the nature of the game, i.e., there are Baseball plays 

that are more likely to occur than others, hence, if a Pareto efficient strategic profile is 

harder to occur than a NE strategic profile, so, a NE profile will occur more often than a 

Pareto efficient profile. This is because Pareto efficient profiles are those where the 

players perform the best plays but these plays are more difficult to occur. The major ex-

amples are the sacrifices plays. For players who are sluggers (home run hitters), they 

would prefer a home run rather than a sacrifice fly but, a sacrifice fly is more likely to 

happen than home run even if players are sluggers. 
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acter, in front of an aggressive style to play conservative is recommended. In the late 
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scoreboard, a conservative play is better option. Up on the scoreboard, play more reck-

lessly to increase the difference on the scoreboard is recommended,  but down on the 

scoreboard, a conservative style works, to keep the number of outs and the players on 

base.   Without outs, a small difference on the scoreboard and in the late innings, a con-

servative play should be applied for scoring few more runs and having one or two outs 

play aggressive to reach at least one run more [3, 68]. 

 

2.8 Hungarian Selection: Team Performance Comparison 

 

In MLB players selected using HA are listed in Table 2.20 and the probability matrix ob-

tained for offensive actions is presented in Table 2.21.  

 

Table 2.20 Player selected using Hungarian Algorithm. 

Player 
Original 
position 

Team 
Assigned 
position 

Benefice 

Mark Teixeira 1B Yankees C 1.1187 
Adrián González 1B Red Sox 1B 0.9915 
Dustin Pedroia 2B Red Sox 2B 1.0352 
Robinson Cano 2B Yankees SS 0.8308 
Derek Jeter SS Yankees 3B 0.7256 
Cody Ross RF Red Sox LF 0.7446 
David Ortiz DH Red Sox CF 1.0607 
Curtis Granderson CF Yankees RF 0.9595 
Nick Swisher RF Yankees DH 0.9023 
CC Sabathia SP Yankees SP 1.1444 

TOTAL    9.5134 
 

Table 2.21 The probability obtained for each player. 

 H HR 2B SF SH SB GDP SO BB 

1 0.2996 0.0310 0.0764 0.0145 0.0000 0.0000 0.0186 0.1674 0.0641 
2 0.2895 0.0266 0.0693 0.0107 0.0018 0.0355 0.0160 0.1066 0.0853 
3 0.2668 0.0462 0.0714 0.0126 0.0021 0.0042 0.0231 0.2710 0.0882 
4 0.3179 0.0710 0.0802 0.0093 0.0000 0.0000 0.0185 0.1574 0.1728 
5 0.2156 0.0458 0.0515 0.0229 0.0000 0.0038 0.0210 0.1584 0.1031 
6 0.2812 0.0473 0.0689 0.0029 0.0000 0.0043 0.0316 0.1377 0.0875 
7 0.2919 0.0203 0.0432 0.0014 0.0081 0.0122 0.0324 0.1216 0.0608 
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8 0.2018 0.0629 0.0263 0.0102 0.0015 0.0146 0.0073 0.2851 0.1096 
9 0.2340 0.0385 0.0577 0.0080 0.0016 0.0032 0.0144 0.2260 0.1234 

Avg 0.2665 0.0433 0.0606 0.0103 0.0017 0.0086 0.0203 0.1812 0.0994 
 

A comparative analysis mixing different techniques applied to Baseball teams was per-

formed. A total of six hundred computer simulations of Baseball matches were per-

formed for the next items, one hundred (100) simulations each.  

1. Team 1 (T1) uses HA and NE; versus Team 2 (T2) uses NE. 

2. T1 uses HA and NE; versus T2 uses PE. 

3. T1 uses HA and PE; versus T2 uses NE. 

4. T1 uses HA and PE; versus T2 uses PE.  

5. T1 uses HA and NE versus T2 uses HA and PE.  

6. T1 uses HA and PE versus T2 does not use any method.  

 

The results in Figure 2.36 correspond when T1 uses HA to assign player-positions and 

NE for strategic analysis while T2 uses only NE; T1 achieved more victories 55/45 and in 

a total of 5 Baseball matches reached extra innings. Figure 2.37 shows the results when 

T1 uses HA selection and NE while T2 only uses PE; T1 won more victories 60/40 and 5 

Baseball matches reached extra innings. Figure 2.38 shows the results when T1 uses 

HA selection and PE while T2 only uses NE; T1 won more victories 53/47 and 4 Baseball 

matches reached extra innings. Figure 2.39 shows the results when T1 uses HA selec-

tion and PE while T2 only uses PE; T1 scored more victories 59/41 and 8 Baseball 

matches reached extra innings. Figure 2.40 shows the results when T1 uses HA selec-

tion and PE while T2 uses PE; T1 won 54/46 and 4 Baseball matches extended to extra 

innings. Figure 2.41 shows the results when T1 uses HA selection and PE while T2 uses 

PE; T1 won 61/39 victories and only 6 Baseball matches reached extra innings. 
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Figure 2.36 HA-NE versus 

NE. 

 

Figure 2.37 HA-NE versus PE. 

 

Figure 2.38 HA-PE versus NE. 

 

Figure 2.39 HA-PE versus PE. 
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Figure 2.40 HA-NE versus 

HA-PE. 

 

Figure 2.41 HA versus No-

Method. 

 

Next follows a comparative analysis among Baseball teams that use HA to assign play-

er-positions and NE or PE to select strategies. 

Figure 2.42 illustrates the behavior when T1 only uses HA with NE while T2 uses PE, NE 

and HA with PE. The T1 performance is superior to all other techniques used by T2 and 

the T2 performance improves by changing to a better technique.  

 

 

Figure 2.42 T1 only uses (HA+NE) and T2 uses (PE, NE, HA+PE, HA+NE). 
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Figure 2.43 describes the use of different techniques by T2 while T1 only uses HA+PE. 

The T1 performance decays while the T2 performance increases and even exceeds the 

T1 performance when T2 uses HA+NE.  

 

 

Figure 2.43 T1 only uses (HA+PE) and T2 uses (PE, NE, HA+PE, HA+NE). 

 

As In summary, the team selected by HA and using NE for selection of strategies 

showed a better performance than any other team which used any other combination of 

methods. In addition, a comparison of when T1 used HA for player-positions assignment 

when T2 did not use HA or perform any selection of strategies shows that the T1 perfor-

mance is better. 

 

2.9 Discussion 

 

On decision making being supported by computer tools, for single or multi-player games, 

GT formal approach [82], having as major purpose the economics modeling on markets, 

trade and financial issues, nowadays applied to a growing number of areas such as poli-

tics, biology, sociology, information technologies and engineering. 
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In the examples presented about the analysis of strategies, different circumstances of a 

Baseball match are analyzed using Nash equilibrium and Pareto efficiency for making 

strategic choices. Particularly, one strategy profile of sacrifice plays was finding by using 

Nash equilibrium. Qualitative analysis [68] and statistical studies [106] about the perti-

nence of sacrifice plays in a Baseball match explain the best moment to apply them. The 

equilibrium analysis on the strategy profiles of sacrifice plays in a Baseball match being 

supported by computer simulations [3], found that these profiles fit the Nash profiles 

when circumstances of Baseball match are, the last innings, the match score tied, one 

player on third base and one/none out(s) in the inning. For these circumstances sacrifice 

plays are applied opportunely to reach the best result. The convergence to these profiles 

is by means of increase the probability of occurrence of these plays; in practice, the 

manager should indicate his players try to perform these plays, so the probability to the-

se plays is increased. Moreover, according to our experimental results, the probability of 

convergence to the strategy profiles of sacrifice plays is over 60 percent, at the last in-

nings and tied score. We claim a probabilistic convergence to desired profiles because 

the stochastic nature of the Baseball game, many uncertain factors –beyond the team’s 

control.  

As we discuss previously, PE allows the theoretical Pareto-efficient, so optimal design of 

strategies. However, in real human Baseball matches, the theoretical design cannot oc-

cur by the presence of uncertain factors –beyond the team’s control. Whereby, the use 

of theoretical Pareto efficient strategies under some circumstances in Baseball game is 

low feasible. In a Baseball match there are many uncertain factors such as, human ways 

of pitching, running and batting, or natural factors like wind speed or the height of the 

place, which affect the playing performance. The stochastic nature of the Baseball game 

is well-modeled by our approach, and the convergence to some identified equilibrium 

points observes the statistics from real matches.  

A convergence method proposed by Clempner and Poznyak [24], finds an equilibrium 

strategy profile using a vector Lyapunov-like function in strictly dominated games, where 

strategy profiles with dominated strategies are deleted. A Lyapunov strategy profile 

(point) is a Nash equilibrium point. The convergence method is applied to the prisoner’s 
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dilemma and battle of the sexes, two players and two strategies games. For the future, it 

would be interesting analyze the Lyapunov-like function for convergence to Lyapunov 

strategy profiles on multi-players games, like Baseball that have many more than two 

players and strategies.   

 

2.9.1 Nash Equilibrium Computing Complexity 

 

In multi-player symmetric game where each player has a small number of strategies, a 

polynomial-time algorithm for finding NE is presented [87]. Even if the strategies are NE 

profiles and efficiently found, usual implementation is hard to do [69, 87]. The proposed 

algorithm for Baseball match analysis makes deviations of profiles to rule out the profiles 

that are dominated for all the NE profiles and are find out by using NE payoff matrix. 

This is low cost with computational complexity   , with   is the number of strategy pro-

files and   is the number of players. In the worst case,   is around 512 strategy profiles 

and   is 9, therefore the computer complexity is polynomial time.  

In addition NE approximation in an additive and multiplicative sense, with n pure strate-

gies per player in games with r ≥ players is in [55]. NE in discrete routing games is in-

vestigated in [45], in a discrete routing game, each of n selfish users employs a mixed 

strategy to ship her traffic over m parallel links.   

 

2.9.2 Cooperation Management 

 

For the sake of collective convenience among the bidding agents, a kind of equilibrium 

is desirable into such complex process. A mixed-strategy by reinforcement learning al-

lows changing the price strategy in a game over time to two sellers so a theoretical NE 

convergence is obtained [10]. The interaction among employees of a provider firm and 

the ones of an outsourcing firm, whose should share knowledge and skills to work as a 

team but that might be antagonistic each other, is in such a way that whenever the de-

gree of complimentarily knowledge among the employees is high, a better payoff is 



89 

 

achieved up to the provider and outsourcing firm’s top management enforces coopera-

tion than when they decide not to do [9].  

Cooperation in players’ strategic interactions in finite games with independent actions 

and equal distributed random payoffs over continuous functions is such that per realiza-

tion, players show all the payoffs values and simultaneously choose strategies [27]. The 

NE and Pareto optimality results suggest that cooperation becomes increasingly advan-

tageous in increasingly complex situations when actors have increasingly numerous of 

possible responses to the strategic actions of others.  

In the so called tragedy of the commons problem a set of fishers must expend labor on a 

lake to catch fish. Each fisher has a utility function over fish caught and labor expended 

[95]. Kantian equilibrium (KE) formalism supports the design of Pareto models in econ-

omy and, the theoretical optimal, team collaboration [94]. KE guarantees that the each 

other commit allows the theoretical optimum on team collaboration [94, 95].   

In Kantian equilibrium (KE) [95] all players have a common strategy space S, so the 

normal form game is   (    ,  ,    ); a strategy profile (  ,  ,   )  is Kantian if equa-

tion (2.20) holds: 

 

                               (  ,  ,   )     ( (  ,  ,   ))       ,                                  (2.20) 

 

All of the player’s action value is weighted by the same factor α. This is community co-

operation in theoretically equal conditions and no one player takes advantage from any 

other. By KE usage every player is applying the Pareto efficient best own strategy from a 

cooperative perspective, and there is at least one strategy profile for a game in normal 

form that fits Kantian equilibrium, as for NE. For KE, all players get the maximum profit, 

in fact the player changes his strategy if and only if each player changes its strategy by 

the same multiplicative factor  , we interpret   as a change in the strategy profile for all 

players, and perhaps, we do not fit strictly with real definition on (2.20) but we claim at 

least that the profiles be Pareto efficient. Nevertheless, due to the lack of interpretation 

of KE in this kind of games, we can interpretation the use of KE as previously. 
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Payoff matrix formalism. To compute NE for finite strategic game the covariance matrix 

adaptation evolution strategies (CMA-ES), the particle swarm optimization (PSO), and 

the differential evolution (DE) were applied [89]. An algorithm to obtain the NE of n-

player matrix games with stochastic reinforcement learning has the potential to solve 

within large player-action spaces [80]. The solution approach is related to matrix games 

with discounted and average reward stochastic games. 

 

2.9.3 Couple and Team Formation 

 

In GT, a problem of finding a stable matching between two sets of elements is known as 

the stable marriage problem (SMP) [46]. In this problem, we have a set of n men and n 

women where each person has his/her own preference list of the persons that he/she 

wants to marry. The goal is to have a set of stables marriages, such that, there are no 

two persons of opposite set who would prefer other person than his/her current partner. 

Gale and Shapley in [46] proved that there is a stable set of marriages. In the case of 

Baseball, the solution of SMP does not satisfy the player-positions assignment because 

SMP emphases finding solutions by couple rather than by group, i.e., the couple (player, 

Baseball-position) is attended individually without regard the others couples.  On the op-

posite, HM allows to find out the best couples (player, Baseball-position) thinking of 

forming the best team. The best Baseball-positions couples are not the assigned sole 

regarding the best statistics-player, but such that all Baseball-positions-player are at-

tended in a way that emerging team guarantees the best playing performance.  

This thesis applied HA for Baseball players’ selection and NE or PE to coordinate the 

Baseball team. From simulations of Baseball matches, we showed that the best team 

performance is improved by the use of HA and NE, thus, we claim that not only with a 

suitable players’ selection, is enough, it requires a strategic analysis that guides the 

team to the victory. On the other hand, the correct way to make players’ selection has 

significant importance in the team performance. 

Nash equilibrium and Pareto efficiency for selection of strategies in Baseball gaming, 

jointly used with the Hungarian method to choose a Baseball team, fit the aim of improv-
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ing the team performance. Actually, according to our set of computer simulation tests the 

combination HM+NE methods produces the best Baseball team performance during 

match playing. HE+PE, theoretical best, frequently cannot be practiced by empirical rea-

sons ever present in real matches, e.g., the home run is one of the best Baseball offen-

sive options and under some circumstances, it belongs to Pareto efficient profiles.  If it 

happened is the best option for the team, but has a low statistical occurrence in practice. 

Whenever the risk of trying to perform a home run is less than the benefit that the team 

could get then, it is a good option to try to perform it; otherwise it is better to use another 

option. We emphasize, on these kinds of games not always the best theoretical options 

can be practiced.  

On the task assignment approaches that uses HA such as [42, 51] may not require a 

strategic analysis after the assignment, but in Baseball, the assignment is one problem 

to attend, but, there exist factors during a match that requires a strong strategic analysis 

to  find suitable strategies to achieve team victory. 

 

2.9.4 Critical Zone Behavior in Biological and Physical Systems 

 

Since the end of last century a growing interest is present in the analysis of complex 

networks having heterogeneous elements and positive and negative interactions, either 

directed or not, from diverse kinds. Fundamental in this emphasize is the need for un-

derstanding the structure and dynamics in the social networks as well as the strength 

capacity of current computers for simulating events in a real manner.  

In the studies on biological, genomics, protein and metabolism networks was founded 

that all of these networks operate in critical zones, in between the order and disorder, 

where the homeostatic regulation is more effective, where little changes in the origins 

induces big changes on the effects.  

Inside the study on biological dynamics is omnipresent the analysis on the series of el-

ements like the nucleic bases in genetics sequences, amino acids in proteins, join to the 

electric cardiogram, electric encephalogram, and other records in the central nervous 
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system. In this last one has been found that like in other biological systems the central 

nervous system operates in critical zone, between the order and disorder.  

In the area of collective games like Baseball, there are series of context free plays as 

well as independent from each other players’ behavior. Up to the match score the man-

ager do changes of gaming strategies. Thus, the systemic study on strategies changes 

is relevant. A first decision concerns the assignment of positions to the players based on 

each one capacity that has been studied by applying the so called Hungarian algorithm 

[19]. Other criteria are the permanence of change that the manager decides to use when 

the pitcher of any player’s performance comes down. Beyond the manager’s experience 

and intuition to change the player at any match moment, in this work we consider the 

criteria to alternate the strategies election by following PE or NE. Actually, a relevant 

question is what’s on the quantitative criteria to define the need of change the gaming 

strategy? Results in previous sections give an advising about it.  

 

2.10 Conclusion 

 

In the top strategic game of Baseball, team’s cooperation is essential for success.  The 

usage of combined NE-PE strategy profile leads a Baseball team to choice strategies for 

building the match victory in such a way that every player’s decision is by including from 

the other’s ones. Formal account is normal form game and payoff matrix done, the algo-

rithmic fundament is a context-free grammar and the match plays run random enough, 

so the simulator implementation is attaining similar scores to the human teams’ ones in 

real life matches. The combined NE-PE, as the applied strategy from the team is losing, 

pushes to close or overcome the match score to the current advantaging team; this 

gaming style mixing Nash individual-self-centered strategy with a Pareto optimal 

strength the team gaming, and looks like to behavior in biological and physics networks 

as the correction to strength the system’s behave.  

Moreover, the results from computer simulations of Baseball matches show that, alt-

hough the usual non-cooperative qualification to NE, it is a relative adjective, up to the 

real circumstance. In the context of a Baseball match, with several parameters out of the 
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players’ and manager’s control, NE allows identify strategy profiles for effective coopera-

tion in real circumstances of Baseball gaming. The use of NE prevents to try plays or 

strategies with low statistical occurrence, so to avoid the risk to lose score points. It 

means that NE strategy profiles frequently include plays and strategies with higher sta-

tistical occurrence, so they are more feasible in real circumstances of matches. Fur-

thermore, NE, by avoiding the risk to lose score points induces an effective cooperation 

for a team. On the other hand, PE formal account, it induces to choose the theoretically 

optimum strategy profiles. We observe that the best plays and strategies have low statis-

tical occurrence, so few time to be practiced in real Baseball gaming circumstances. The 

Pareto efficient strategy profiles are less likely to occur than the Nash ones. Strategies in 

Pareto efficient profiles may be the most profitable but their probability of occurrence is 

low, and it moderates the use of Pareto efficiency to identify circumstances of coopera-

tion in real circumstances of Baseball gaming. 

The assignment problem is a complex task even in sport like Baseball. In this Chapter, 

we also used the HA for assigning a set of players to a set of Baseball positions in order 

to improve the team performance and for coordination NE and PE as strategic analysis. 

Results obtained using the Baseball simulator showed better performance to those 

teams that use HA and NE than those that use other mixing or lonely techniques. There-

fore, it is important to have methods to make efficient the players’ selection and methods 

to guide the team victory. 
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3                                                     

Simulation of American Football Gam-

ing 

 

3.1 Overview 

 

Recently, the formal modeling and strategic analysis for support the matches gaming of 

multi-player sports like American Football (AF) or Baseball is growing [8, 52, 104]. These 

multi-player games have led investigations in areas of sport science [2, 61, 70], comput-

er science, game theory [3], operation research [8, 104], simulation models [37, 52], 

among others.  

In [104] an analysis of the forecasts of the outcomes of National Football League (NFL) 

games made by 31 statistical models with those of 70 experts was studied. A compara-

tive of accuracy results that the experts and statistical systems in predicting game win-

ners was not statistically significant. Similar approach in [8] presented a model for fore-

casting end-of-match exact scores in NFL games. The model uses a set of covariates 

based on past game statistics, to make predictions of the game results and exact 

scores. 

In [52] a program capable to learn to play a game of imperfect information by observing 

its opponent´s play is presented. The program uses an historical database of records of 

opponent’s moves which effectiveness was tested playing against experts in AF, and 

similar learning curve as human opponent was reported.  
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In [37] presented a simulation-model for AF plays in which the representation of individ-

ual Football players’ positions and velocities as a function of time,  by means of Hill’s 

equation of human motion and  non-zero initial velocities. The Monte Carlo model is 

used to simulate the times history of the players’ positions and velocities. In [59] studied 

a particular game situation in a college Football uses as decision criteria the maximum 

expected utility based on a von Neuman-Morgentern utility function, and as alternative 

option the stochastic dominance is applied. 

The selection of strategies is an essential aspect to be considered for a whole AF auto-

mation. In this Chapter, we present a formulation using context-free-grammar for the al-

gorithmic setting of AF; hence the corresponding finite state machine is described as 

well, doing emphasis in the strategic study of the behavior of the players in a game 

match.  

 

3.1.1 Description 

 

American Football is one of the top strategic games, played by two teams on a rectangu-

lar shaped field, 120 yards long by 53.3 yards wide, with goalposts in the end of the 

field. Each team has 11 players and a match lasts 1 hour divided in four quarters. The 

offensive team goal is advance an oval ball, by running or passing toward the adver-

sary’s end field [7, 22, 50]. The ways to obtain points are by advancing the ball, ten 

yards at least, until reach to the end zone for touchdown scoring, or kicking the ball such 

that it passes in the middle of the adversary’s goalposts for a field goal, or by the defen-

sive tackling the ball carrier in the offensive end zone for a safety. The offensive team 

should advance the ball at least ten yards in at most four downs (opportunities) to get 

four additional downs; otherwise the defensive team that is avoiding the ten yards ad-

vance, changes to the offensive role. The current offensive team advance starts from the 

last ball stop position. If the defensive catches the ball before a down is completed, it 

starts the offensive role at this position. A down ends by the most common circumstanc-

es that follow: when a pass is not successful, or when a player is tackled inside the field, 

or when a ball gets off the field.  
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The offensive team members follow: the quarterback is the offensive leader; half-

backs/tailbacks do carrying the ball on running plays; centers, for snapping the ball to 

the quarterback; guards, for protect the quarterback from the tacklers; wider receivers’ 

main goal is to catch passes thrown by the quarterback; tight ends, for doing function 

like the guards and wide receivers. In the defensive team, the linebackers are the de-

fensive leaders; the principal role of the defensive team is to stop the running plays on 

the inside and outside; the defensive tacklers, for stopping the running plays; corner-

backs, line up outside the defensive formation and cover wide receivers; safeties, for 

stopping deep passes and running plays. 

In multi-player football game, the team strategic reasoning is presented. The AF team 

members are encouraged to do the best individual actions, but they must cooperate for 

the best team benefit. The strategies are indicated by the team manager regarding on 

each player’s profile as well as the specific match circumstances to obtain the most 

benefit [72]. A planned-strategy should include both the individual and the team motiva-

tion.  

 

3.1.2 Strategy Thinking: Cooperation and Non-Cooperation 

 

Strategies are organized and weighted actions practiced to obtain the maximum availa-

ble profit up to the minimum effort [12, 41, 73]. Regarding the game rules, a player 

should determine the order and preference of his own actions and strategies joint to the 

threat embodied in the other players’ strategies mind to obtain match success [31, 85, 

91]. A successful result in matches of collective sports essentially depends on mutual 

team members cooperation,  and non-cooperation can carry to unsuccessful results [1]. 

Team games highlight positive participation among players as the strategic basis to 

achieve match success, and a loss of every player’s protagonist role is needed for a 

team’s efficient cooperation strategy [76]. The strategies to organize the actions are in-

dicated by the team’s manager regarding each player’s profile as well as the specific 

match circumstance aimed to obtain the most benefit [72]. A fine strategy should include 

both the individual and the team motivation. 
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NE mathematical model [81] has been a classic in the design of economy models 

around the world. In Game Theory, NE is the formal fundament of non-cooperative 

game and commonly used for decision-making in competitive scenarios [85]. The auto-

mation of Baseball strategic gaming by applying the NE for a team selection of strate-

gies is applied and the strength obtained has been analyzed by [3]. However, a NE 

strategy profile is frequently not Pareto optimal and may not lead to the best decision-

making for a team but just to a half-good for individuals, which could, in the long term, 

have negative impact for the whole team. PE formalism supports the design of Pareto 

models in economy and, the theoretical optimal benefit. In this thesis with the use of PE 

and selection of cooperative profiles, we guarantee that the each other commit allows 

the theoretical optimum on team collaboration. For decades Pareto efficiency has been 

well known to be a benchmark to select, from a population of solutions, the optimal for a 

problem in engineering fields, and, in evolutionary algorithms, to select the next genera-

tion of individuals[25]. 

The selection of strategies based on either the PE, or on the NE, or on both, is ana-

lyzed. PE rules the team cooperation mind that people’s mutual confidence is an as-

sumed condition for a successful team. The abilities of each group member are added in 

the collective procedure facing a complex task deployment, which allows a theoretical 

Pareto-efficient design of collective strategies to work up a complex task. However, this 

theoretical perspective on each member’s best strategies, in a real (non-theoretical) 

match, may not be the times followed. The pass from theory to practice enlightens the 

usefulness of each of the NE or PE in a real AF match. The relevance of use of each of 

the equilibriums is shown from the set of computer simulations, which apply either each 

or both at the opportune moment so to strengthen the team’s performance. 

For the algorithmic American Football match gaming, we follow the formulation prosed in  

[3] for Baseball gaming, which formal account is a context-free-grammar like the one for 

the present American Football algorithmic setting.  
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3.2 Formal Language 

 

Using the formal CFG (context-free grammar) rules the generation/description of any 

simple or complex Football gaming, including a whole match, is done. The generated 

CFG language is read by the associated finite state machine. In order to guarantee the 

SO of plays in the simulation, likely to human being matches, we use a generator of 

random numbers such that the number occurrence carries the occurrence of the associ-

ated play. In addition, the higher is the SO (frequency of occurrence) of the play the 

more the chance it is included in the simulation. See details on the flip function in [3]. 

CFG, finite state machine and the generator of random plays are the algorithmic funda-

ments for our automation, which attains similar scores to the human team’s matches in 

real life. By starting with the empty string () each next play is concatenated in a string 

describing the occurrence of the plays in a match. The super-indexed indicates the 

player who performs the play. 

Let  ,    be different AF teams,     and      , the CFG for AF follows. Let  ̂  

( ,    ,  ,  ) be the CFG: 

   is the alphabet of terminals and non-terminals. 

     is the set of terminals.  

     is the set of non-terminal elements.  

    (   )     is the set of rules. 

       is the initial symbol. 

 

In a multi-player game, we express the available actions from all the players at the time 

into the strategy profiles, which are vectors that position i correspond to the player i ac-

tion, in Table 3.1 is shown the terminals symbols, in Table 3.2 the non-terminal symbols 

and in Table 3.3 some CFG rules.  
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Table 3.1∑ = Terminals symbols. 

Offensive movements 
kfbi: kick the ball  
cbi: catch the ball  
rbi: run with the ball  
dbi: pass the ball 
adbi: advance with the ball  
tdi: touchdown 
pi: punt 
gai: field goal    
rei: conversion 
gi: goal 
si: Snap 

Defensive movements 
tli: tackle the player  
sfi: safety 
obi: stop the ball 
beoi: roll back the adversary 
 
Penalization movements 
hi: holding  
fsi: false start 
dgi: delay game 

 

Table 3.2 Non-terminals symbols. 

B: Initial symbol 
M: Movement after kick off 
M1: Movement for catching the ball 
M2: Movement for running  with the ball 
M3: Movement for passing the ball 

  
  : Denote the downs 

M5: Auxiliary symbol 
M6: Auxiliary symbol 
M7: Auxiliary symbol  
T: Options after touchdown  
PA: Extra point by kicking the  ball 

RE: Conversion of two point 
Mre: After conversion of two point 
Mre2: Auxiliary symbol 
Rre: Auxiliary symbol 
Mre3: Auxiliary symbol 
Prela: Auxiliary symbol 
P: Changes team defensive to offen-
sive 
Pla: Auxiliary symbol 
R: Auxiliary symbol 
Ax: yards count 

 

Table 3.3 R   (V - ∑) × V* some grammar rules. 

        : kick off the ball. 

       : The offensive team catches the ball a make a move. 

                
j
 

        
  : run, or pass the ball, or the player i is tackled by j. 

    j
 

        
  |    |        

  : The player i is tackled by j, or make a touchdown, or 

the team is stopped.  

        |        
  |    

  
  : Catch the ball, or the team is stopped, or interception 

the ball. 

     
     

  : Symbol to define the first down. 

  
         

   : Options in the begging of the down. 

    
        

   : First down of another team. 
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  : advance 10 or more yards and get first down. 

       |    |       j
’

       
        

    |         
    |         

    : Moves after a play 

including the penalization ones. 

              : kick off, or pass the ball.  

             : After an extra point, make a goal, or stop the team.  
         : Conversion of two points. 

          |  
    | 

j
’

     : Movements after the conversion of two points. 

           |     |      
  : catch the ball, or stop the team.  

           |        | j
’

           : run, or pass the ball, or the player i is tackled 

by j, or conversion. 

     j
’

     |     |              : The player i is tackled by j, or conversion, or stop 

the team, or pass the ball.     

               j
’

          : Run, or pass the ball, or the player i tackled by j. 

             |     |      
  : catch the ball, or stop the team.  

       |     | 
j
’

              
   : Run, or the player i is tackled by j, or touch-

down. 

        |     | 
j
’

            : run, or pass the ball, or the player i is tackled by j. 

         |     |  
    

   j
’

     : Actions after kick off by a touchdown. 

       |     
    |      

     
 : Change of team defensive to offensive. 

         
j
’

     |  
  |      : Pass, or the player i is tackled by j, or touchdown, or 

stop the team. 

             
                

    : Sum, or subtraction of yards. 

 

3.3 Finite State Machine 

 

The next finite state machine (FSM) does the algorithmic setting for the AF. Let (∑, S, s0, 

δ, H) be a push-down automata such that:  

   is the alphabet.  

 S=   , ,  ,   ,   ,   
  ,   ,   ,   ,  ,   ,   ,   ,    ,    ,     , 

   ,     ,      ,  ,    ,  ,   ,   
 ,   ,     is the set of states. 

  :       is the transitions function.  

     is the initial state.  

   =    
 ,   ,       is the set of halt states. 
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The FSM for (a) the game start, (b) touchdown annotation, and (c) the plays execution in 

the field is respectively illustrated in Figure 3.1 (a), (b) and (c).  

 

 (a) FSM for the game start. 

 

 (b) FSM for a touchdown. 
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(c) FSM for the plays description in the field. 

Figure 3.1 FSM for AF (a), (b), (c). 

 

These FSMs read the strings that were generated by applying the CFG rules and de-

scribe the complex plays during part or a whole American Football match.  

 

3.4 Strategies by Team-Roles and the Average Occurrence of Plays 

 

In this section, we present some AF plays being divided according to the team-role, of-

fensive or defensive (Table 3.4).  
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Table 3.4 Offensive and defensive plays. 

Off. 

plays 
Description 

 Def. 

plays 

Description 

   Kick the ball    Tackling 

   
Catch the ball  by product of a 

pass 
   Safety 

   Run with the ball    Stop the ball 

   Pass the ball    Interception 

   Scoring yards    Tackling the quarterback 

   Touchdown    Roll back the contraries 

  
Extra point (1 point by product of 

a kick) 
   Fumble the ball 

   Conversion (2 points)    Turnover the ball 

   Field goal    Touchback 

 

Using real statistical from NFL (National Football League) see 

http://gametheory.cs.cinvestav.mx/NFL_statistics.pdf, the probability of occurrence of 

each play above is calculated and listed in descending order in Table 3.5. These values 

come from performing statistical averages of values in tables showing data by player-

role and not by specific player, but for a specific player his individual statistics can be 

used. 

 

Table 3.5 SO of AF plays. 

Play Average  (    )  Play Average  (    ) 

   1050.5 0.232884067    39.4375 0.008742851 

   845 0.187327022     26.96875 0.005978669 

   775.6875 0.171961218     25.125 0.005569931 

   566.75 0.125642118     15.6875 0.003477743 

   348.484375 0.077255077     15.09375 0.003346115 

http://gametheory.cs.cinvestav.mx/NFL_statistics.pdf
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   346.9375 0.076912152     9.625 0.002133755 

   319.125 0.070746433     5.875 0.001302422 

   78.40625 0.017381786     1.03125 0.000228617 

   40.46875 0.008971468     0.625 0.000138555 

 

3.4.1 Offensive Team Plays 

 

 Offensive linemen players    have two major tasks: 1) block the defensive team 

members which try to tackle to the quarterback (  ), and 2) open ways in order 

to runners can pass.  The    players are, the center, left guard, right guard, left 

tackle and right tackle. We defined these players as     and the plays to consider 

are            ,    . 

 The quarterback (  ) is the offensive leader, whose plays follows,         

   ,   ,   ,   ,   ,    . 

 The backfield players    are: the halfback, tailback the fullback. The BF plays fol-

low,            ,   ,   ,   ,   ,    . 

 Receiver’s role    is to catch the ball passed by the   ;    players are the tight 

end and wide. The RC plays follow,            ,   ,   ,   ,    . 

 

3.4.2 Defensive Team Plays 

 

 The defensive linemen players    are: the defensive end, defensive tackle and 

nose tackle, their main task is to stop running plays on the inside and outside, re-

spectively, to pressure the     on passing plays. The    plays follow,         

   ,   ,   ,   ,   ,   ,    . 

 The linebacker players    have several tasks: defend passes in shortest paths, 

stop races that have passed the defensive line or on the same line and attack the 

    plays penetration; they can be three or four. The    plays follow,         

   ,   ,   ,   ,   ,    . 
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 The defensive backfield players    are: the cornerbacks and safeties, which ma-

jor task is to cover the receivers. The    plays follow,            ,   ,   ,    . 

 

3.4.3 Special Team Plays 

 

 Kicker player   kicks off the ball and do field goals and extra points. The kicker’s 

plays follow,            ,  ,    . 

 The kickoff returner   is the player on the receiving team who catches the ball. 

The plays are           ,   ,    . 

 

3.5 Setting-Up of Payoff Functions 

 

The each role’s payoff function to value the strategy profiles, selects the own conven-

ience value by regarding:  

 For    is important to make a pass, his characteristic move, even with a touch-

down scoring can generate a greater personal gain.  

 The basic action of    is to increase the score, but to make it happens he must 

catch the ball and run to the touchdown line. 

 The    main function is tackling the adversary to allow    send pass; as well, 

open space for    ball runs, or, in some cases, push back the opposing team. 

 The    preferred score is touchdown or conversion, and should run to get there. 

Other option is to get a first down, or tackling a player of the opposing team. 

 The    should be tackling the opposing   , roll back yards to the opposing team 

or get a safety; in descent order of importance the following is to stop the ball, 

tackling and cause fumbles and try to recover it by the opponent. 

 The main function of    is to recover a lost ball and then could be to generate a 

safety. 

 For    intercepting a pass would be best, but it is also important to get the other 

team loses control of the ball. 
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 For  , the most important is to make a field goal, followed by an extra point and 

typically perform the corresponding kicks. 

 For  , the best choice is to score a touchdown with the return of the kick, but 

usually just run until stopped, or perform touchback for time. 

 

We propose that the player-roles’ skills are qualified on the base of the player-roles’ per-

formance on certain plays, and the statistics resumes these qualifications. 

Let   (  ,  ,    ,  ,   )    (  )   (  )      (  )   (  )      (  )   (  )  be the 

payoff function of the player-role  , (  ,  ,    ,  ,   ) is a strategy profile such that    is 

one play of player-role  , The factors in the payoff function are:   (  ) represents the 

player-role  ’s preference on the play    , and   (  ) is the average statistics of the play-

er-role on play    , by regarding the NFL statistics [83]; as well, the other elements in the 

formula are the contributions of the other player-roles whom directly share the play. 

 

3.5.1 Offensive Team 

 

Let define the strategy profile for offensive team as( ,  ,  ,  ), with           ,   

        ,           ,          . 

 For   , we should consider the    plays as well as the    plays, the payoff func-

tion (3.1) follows. 

 

     ( ,  ,  ,  )     ( )   ( )     ( )   ( )                         (3.1) 

 

 For   , we should consider the    plays, the    as well as the    plays, the 

payoff function (3.2) follows. 

 

        ( ,  ,  ,  )     ( )   ( )     ( )   ( )      ( )   ( )        (3.2) 
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 For   , we should consider the    plays, the    plays as well as the    plays, 

the payoff function (3.3)  follows. 

 

        ( ,  ,  ,  )     ( )   ( )     ( )   ( )      ( )   ( )        (3.3) 

 

 For   , we should only consider the    plays, the payoff function (3.4) follows. 

 

   ( ,  ,  ,  )     ( )   ( )                                 (3.4) 

 

3.5.2 Defensive Team 

 

Let define the strategy profile for defensive team as  ( ,  ,  ) where           ,   

        ,          . 

 For    and   , we should consider    plays as well as   plays, the payoff func-

tion (3.5) follows. 

 

                             ( ,  ,  )     ( )   ( )      ( )   ( )                           (3.5) 

 

 For   , we should only consider the    plays, the payoff function (3.6) follows. 

 

                                  ( ,  ,  )     ( )   ( )                                                 (3.6) 

 

3.5.3 Special Team 

 

 For  , the payoff function (3.7) follows. 

                              ( )    ( )   ( ) where                                           (3.7) 

 For  , the payoff function (3.8) follows. 

                             ( )    ( )   ( ) where                                             (3.8) 
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3.5.4 Examples 

 

We use the set of values in Tables 3.6 – 3.7 that are assigned according to each play-

er’s preference values on each of the own plays, and are used to calculate the payoff 

functions, that in turns are used to find out the strategy profiles that fit the Nash equilib-

rium condition. 

 

Table 3.6 Values of offensive plays by player. 

            

   (  )         (  )         (  )         (  )      

   (  )         (  )         (  )         (  )      

   (  )         (  )          (  )      

   (  )         (  )          (  )      

   (  )         (  )          (  )      

   (  )         

 

Table 3.7 Values of defensive plays by player. 

         

   (  )         (  )         (  )      

   (  )         (  )         (  )      

   (  )         (  )         (  )      

   (  )         (  )         (  )      

   (  )         (  )       

   (  )         (  )       

 

Now, we define the set of strategy profiles. The set of strategy profiles for offensive 

team, ( ,  ,  ,  )where           ,          ,          ,           is 

                    (  ,   ,   ,   ), (  ,   ,   ,   ),  , (  ,   ,   ,   ) . The set of strategy 
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profiles for defensive team, ( ,  ,  ) where          ,          ,           is 

                    (  ,   ,   ), (  ,   ,   ),  , (  ,   ,   ) . Using the payoff functions de-

fined in Section 3, each strategy profile is valued by respective player’s payoff function. 

Some illustrative examples follow.  

 

Offensive team 

 For   ,    (  ,   ,   ,   )     (  )   (  )     (  )   (  )is the payoff function 

that only embrace    and    plays. Reason is that    and    plays do not rele-

vant impact the    plays, so not the    payoff function valuations. 

   (  ,   ,   ,   )                                 .    (  ,   ,   ,   )  

        . 

 For   ,    (  ,   ,   ,   )     (  )   (  )     (  )   (  )      (  )   (  ) is 

the payoff function, that only embrace   ,    and    plays. Reason is that the 

   plays do not relevant impact the    plays, so not the    payoff function valua-

tions.    (  ,   ,   ,   )                                      

           .    (  ,   ,   ,   )              . 

 For   ,   (  ,   ,   ,   )     (  )   (  )     (  )   (  )      (  )   (  ) is 

the payoff function, that only embrace   ,    and    plays. Reason is that the 

   plays do not relevant impact the    plays, so not the    payoff function valua-

tions.    (  ,   ,   ,   )                                      

           .    (  ,   ,   ,   )              . 

 For   ,    (  ,   ,   ,   )     (  )   (  ) is the payoff function, that only em-

brace the    plays.    (  ,   ,   ,   )                 .    (  ,   ,   ,   )  

           . 

 

Defensive team 

 For    and   ,       (  ,   ,   )     (  )   (  )      (  )   (  ) is the payoff 

function, that only embrace the    and    plays. Reason is that the     plays do 

not relevant impact the    and    plays, so not the    and    payoff function 
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valuations.       (  ,   ,   )                                  . 

      (  ,   ,   )             . 

 For   ,    (  ,   ,   )     (  )   (  ) is the payoff function, that only embrace the 

   plays.    (  ,   ,   )                 .    (  ,   ,   )             . 

 

We should calculate all payoff values on strategy profiles using the players’ payoff func-

tions. For the offensive team the strategy profile (  ,   ,   ,   ) satisfies the Nash equilib-

rium condition, and for the defensive team, the NE profile is (  ,   ,   ). So, the best 

combination of offensive plays is by combining a pass from QB, the RC running with the 

ball and the OL and BF opening the way and stopping their opponents. Notice that the 

Nash equilibrium strategy profile depends on the player’s preference value as well as on 

the player’s payoff function. For more examples with different preference values and 

payoff functions, please visit 

http://gametheory.cs.cinvestav.mx/Examples_AF_Analysis_of_Strategies.pdf.  

 

3.6 Selection of Strategies: Merging of and Experiments 

 

Experiments concern the performance comparison of teams that use a method for selec-

tion of strategies with regard to the next match gaming conditions: 

 Comparing the NFL results from some teams against the simulation results by 

applying NE or PE. 

 Comparing NE versus PE in teams with the same playing characteristics (NFL 

statistics).  

 

Analysis of results is also given. 

 

3.6.1 Simulations using NFL Data or Selection of Strategies 

 

To simulate the players’ actions according to their performance, we use NFL real statis-

tics from the Denver Broncos (DEN) and Oakland Raiders (OAK1) in the 2012 season. 

http://gametheory.cs.cinvestav.mx/Examples_AF_Analysis_of_Strategies.pdf
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Using the NFL statistics, the SO of each AF play is used to induce the SO of the play 

can happen in a computer match simulation. Next, we do a comparison among simula-

tions of AF matches using NFL statistics, without any concern for analysis of strategies, 

versus simulations that use NE or PE as the methods for selection of strategies. One 

thousand computer simulations per each of the next conditions were carried out. 

1) Team 1 (T1) uses DEN statistics versus Team 2 (T2) uses OAK1 statistics. 

2) T1 uses DEN statistics versus T2 uses OAK1 statistics and NE as strategic analy-

sis.  

3) T1 uses DEN statistics versus T2 uses OAK1 statistics and PE as strategic analy-

sis. 
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Figure 3.2 DEN stats versus 

OAK1 stats. 

 

Figure 3.3 DEN stats versus 

OAK1 stats and NE. 

 

Figure 3.4 DEN stats versus OAK1 stats and PE. 

 

By considering the results in Figure 3.2, when T1 uses DEN statistics and T2 uses OAK1 

statistics, T1 is superior, 610/355 wins respectively. Figure 3.3 shows when T1 uses DEN 

statistics and T2 uses OAK1statistics and NE, and T2 is superior, 305/668 wins respec-

tively. Figure 3.4 shows when T1 uses DEN statistics and T2 uses OAK1 statistics and 

PE, and 469/511 wins in favor of T2.      
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3.6.2 Using Nash and Pareto Efficiency in Teams with Common NFL Statistics 

 

In this section of tests, we highlight the use of NE and PE in teams with same playing 

characteristics (same statistics), in order to measure the performance of both tech-

niques. One hundred computer simulations of AF matches where both teams, T1 and T2 

use DEN statistics were carried out per each of the next conditions.  

1) T1 uses NE and T2 only uses statistics. 

2) T1 uses PE and T2 only uses statistics. 

3) T1 uses NE and T2 uses NE. 

4) T1 uses NE and T2 uses PE.  

5) T1 uses PE and T2 uses NE. 

6) T1 uses PE and T2 uses PE. 

 

Considering the results in Figures 3.5 – 3.6 (item 1-2), T1 uses NE or PE for selection of 

strategies while T2 only uses statistics in AF gaming, T1 has advantage over the T2. In 

Figure 3.7 (items 3), T1 and T2 remain balance 477/472 both use NE. In Figure 3.8 (items 

4), T1 uses NE and it is superior to T2 that uses PE, 681/259 wins respectively. In Figure 

3.9 (items 5), T1 uses PE versus T2 that uses NE, T2 is superior 302/622 and In Figure 

3.10 (items 6), both teams use PE and both remain balance 481/471. 
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Figure 3.5 NE versus stats. 

 

Figure 3.6 PE versus stats. 

 

Figure 3.7 NE versus NE. 

 

Figure 3.8 NE versus PE. 
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3.6.3 Analysis of Results 

 

Next, analysis focuses on the behavior when both teams T1 and T2, use different tech-

niques. Figure 3.11 illustrates when T1 only uses DEN statistics while T2 uses OAK1 sta-

tistics, or PE, or NE. Statistically, when T1 uses DEN statistics and T2 OAK1 statistics, T1 

has a superior performance because in the NFL 2012 season, DEN team had a superior 

performance than OAK1 team but when T2 uses either PE or NE for selection of strate-

gies his performance increased even overcome T1. In this case, we emphasize that with 

the use of NE or PE for selection of strategies. The teams increased their playing level, 

selecting the most appropriate strategies given the present AF circumstances. Even if 

the teams are inferior statistically to their opponents. 

 

 

Figure 3.9 PE versus NE. 

 

Figure 3.10 PE versus PE. 
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Figure 3.11 T1 only uses stats and T2 uses stats, PE and NE.  

 

In the following figures (Figures 3.12 – 3.14) are shown comparisons regarding when 

teams have the same playing characteristics, showing how the team performance is 

changed according with the method of selection of strategies used. Figure 3.12 illus-

trates when T1 only uses DEN statistics while T2 uses DEN statistics, or PE, or NE. In 

this case, since T1 remains with DEN statistics and T2 changes his strategy analysis, T2 

performance is improved. Figure 3.13 shows when T1 only uses PE while T2 uses DEN 

statistics, or PE, or NE. In this case, T1 performance is worse only when T2 uses NE for 

selection of strategies. And Figure 3.14 illustrates when T1 only uses NE while T2 uses 

DEN statistics, or PE, or NE. T1 and T2 performance remains balance until both use NE. 
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Figure 3.12 T1 only uses stats and T2 uses stats, PE and NE.  

 

 

Figure 3.13 T1 only uses PE and T2 uses stats, PE and NE.  
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Figure 3.14 T1 only uses NE and T2 uses (stats, PE and NE).  

 

3.6.4 Score Forecasting 

 

Our approach can be used to forecast the results of team games and predict the exact 

scores. Reliable and realistic results are obtained from the computer simulations of AF 

games using a formal language, a FSM and a generator for American Football plays 

(see the formal description in Section 2). Within our approach, all of the possible ways to 

play AF are considered from the start to the end of a game: real games among NFL 

teams are simulated by basing all of the players’ actions on their own NFL statistics. In 

particular, the complex scoring plays presented by Baker and McHale [8] are included in 

our model, as given below. 

 A touchdown with kickoff return: T2 kicks the ball, and the kick returner from T1 

scores a touchdown:  

                   . 

 A touchdown with a one-point conversion: the quarterback makes two passes to 

score a touchdown, followed by a one-point conversion: 

                                          . 
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 A touchdown with a two-point conversion: the quarterback makes two passes to 

score a touchdown, followed by a two-point conversion: 

                                                  . 

 A safety, i.e., a ball carrier is tackled in his own end zone: T2 kicks the ball, and 

the kick returner 1 of T1  is tackled in his own end zone by player 6:  

                       . 

 A field goal: after three plays towards the opponent’s end zone, the team decides 

to kick a field goal: 

                                . 

 

The aforementioned strings describe particular routes to score points, although there are 

other routes are possible. Recall that to perform one part of the experiments described 

in the previous section, one hundred computer simulations are conducted on games be-

tween the Denver team and the Oakland team using only the NFL statistics for the 2012 

season and without making any strategic choices. The winning percentage and the av-

erage points that are obtained in one hundred computer simulations are reported and 

compared with the real scores for the games in the 2012 season (Table 3.8). The results 

show a high degree of accuracy for the forecasting of the exact scores, i.e., there is a 

difference of        points between the actual and predicted scores.  

:  

Table 3.8 Forecasting game results using computer simulations 

Team 
Winning per-

centage 
Average points 

Actual 

score 

Denver 62% 27.21 26 

Oakland 38% 12.25 13 

 

Song et al. [104] have stated that statistical models may yield more accurate forecasts 

than human judgment because objective criteria are employed in models to guard 

against bias and the non-rational interpretation of data. However, statistical models 
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sometimes cannot capture non-quantitative factors; hence, forecasts are not completely 

accurate. Our model produces a high precision for forecasting winning teams and exact 

scores. 

Baker and McHale [8] used a forecasting model with a continuous-time Markov birth 

process to analyze the ways in which points could be scored in NFL games. The authors 

focused on an unconverted touchdown (6 points), a touchdown with a one-point conver-

sion (7 points), a touchdown with a two-point conversion (8 points), a safety (2 points), 

and a field goal (3 points). For each type of score, various hazard functions were used 

for each team, home and away, that depended on the state of play. As previously de-

scribed, our developed approach can be used to formally score these particular circum-

stances by substituting a probabilistic generator for the hazard functions and finite state 

automata for the Markov process.  

 

3.7 Discussion  

 

By using NFL statistics our proposed approach can forecast the result of matches of 

teams which never played among them; moreover, the computer simulation results ob-

tained are reliable and realistic since all players’ actions are simulated based on their 

own statistics and hence we can analyze players’ behavior under certain circumstances 

in the match. Generalizes of [8, 52, 104] follows. Besides, the analysis of strategies can 

be introduced for a whole simulation of a match. For selecting a strategy we can apply 

specific strategies for the different match circumstances. Decision making for gaming 

can be, by using the statistics, or by using a kind of the strategies machine based on the 

NE or the PE.  

In our approach the computer simulations of American Football matches are simple and 

correct. The context-free-language guaranties the correctness of the computer simula-

tions. The SO of the plays during the human being matches, taken from NFL statistics, 

guaranties the real simulation results. Although Baseball and AF are largely different in 

how to play and the game rules, the formal modeling and the algorithmic setting of both 

games are similar because the next reason: Baseball and AF are multi-player sport 
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games, but each gamer having specific roles that do following ordered strategies during 

the offensive and defensive steps, as one member of a team obeying the manager. 

Hence, the formal modeling of AF game is quite similar as the one of Baseball; besides, 

the essential use of statistics for strategic analysis in both sports is a determining fact for 

a right decision making that should be regard during match gaming simulations. 

A successful analysis of strategies in both gaming matches is supported by the use of 

NE and PE that are relevant tools for the selection of the players’ proper actions during 

a match, and help to increase the expectations of team success. This partial analysis on 

strategies for AF match gaming can be improved by following specific challenges: on 

principal is a whole exploration in all the downs and apply specifics ways to play de-

pending on the adversaries.  

In the perspective of multi-agent systems, the authors proposed an Iterated Cooperative 

Equilibrium (ICE) [23]. In each round the players forecast how the game would be 

played if they form coalitions, and select their actions accordingly; up to the reward to be 

obtained the participants’ behavior change and the Nash equilibrium convergence is not 

mandatory, but cooperation behavior can be observed. Tests are practiced with the 

prisoner’s dilemma, the traveler’s dilemma and the public goods game. American Foot-

ball is a team sport game where individualities are meaningful as well. Team coopera-

tion and individualism are equally relevant in an AF match. In our analysis, a meaningful 

fact is that Nash equilibrium is used to identify relevant circumstance of cooperation in 

an AF match. When some players should sacrifice their ambitious to ensure a better 

team result: theoretical best actions, touchdown by long ball pass, is low probably to oc-

cur so give a major chance to more probably play, step by step ball carrying, is need. 

The proposed algorithm for Nash equilibrium on American Football, has a low computa-

tional complexity   , with   is the number of strategy profiles and   is the number of 

players. In the worst case,   is around 2000 strategy profiles and   is 11; therefore, the 

computer complexity is polynomial time.  

 In the context of an AF match, Pareto efficiency identifies the best actions for the whole 

team, beyond their plausibility of occurrence. Nash equilibrium can be used to identify 
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team actions with more realistic plausibility of occurrence. Cooperation passes by the 

players’ ambitious sacrifice to practice a more probably play.  

Dual equilibrium (DE) with respect to NE for two players is studied in the so called pre-

scriptive games, Corley et al. [29].  In DE each player acts motivated by the others’ best 

interest and non-selfish behavior influence the outcomes. The essential concept in DE 

correspond the cooperation in PE since both equilibriums formalize the theoretically op-

timal team collaboration; PE is a generalized formal account of DE. The altruism and 

envy behavior in contests for two players is formally analyzed by Kai Konrad [65].  

Share in outcomes, at which altruists and envious players have identical payoffs in the 

games are observed; Konrad claims that the presence of altruism and envy behavior 

provide stability to the whole population dynamic. We emphasize the relevance of both, 

cooperation and non-cooperation behavior in human relationships. In our AF analysis 

both attitudes cooperation and non-cooperation, result in a complementary advantage 

for the team. We remark again that in some circumstances of AF match, effective coop-

eration can be identified by mean of the use of NE, beyond the shared strategy profiles 

that fit both NE and PE.  

The design and use of collective strategies has an impact far beyond the field of multi-

player sports. Dornhaus [39] analyzed the behavior of social insects, such as ants and 

bees, and showed that individual-based models can be used to identify non-intuitive 

benefits of different mechanisms of communication and division of labor. Dornhaus also 

found that these benefits may depend on the external environment and concluded that 

individual-based models are useful for testing hypotheses about the benefits of different 

collective strategies under varying ecological conditions. Roy [97] studied collective 

strategies in businesses to define the conditions under which this type of strategy can 

emerge and stabilize and demonstrated the endogenous nature of the dissolution of the 

strategy.   

Coen in [26] studies multiple-team social dilemma integrating the empirical studies of 

how the people behave and how the people should behave by simulation. It does so by 

examining the findings of each separate approach to the single team social dilemma, 

then it applies elements of each approach to the multiple-team social dilemma. This ap-
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proach first induces multiple decision rules from empirical outcomes.  Second, it analyz-

es which of these rules-in-use in the multiple-team context provides the best outcome for 

the individuals involved. i.e., the empirical studies attend the how people make decision 

and the computer simulations explore which decisions are more effective. Our approach 

has similarities on this study [26] since we proposed the use of two methods for the 

analysis of strategies according to different circumstances of AF match for exploring the 

different players’ actions in order to choose the most appropriate team strategy to in-

crease the team performance and also the use of computer simulations is for measuring 

team strategies using either real statistics of NFL, or NE, or PE. 

 

3.8 Conclusion 

 

American Football is one of the top sport games, the analysis of strategies is essential 

for a team success. In this Chapter was presented a formal modeling of American Foot-

ball using a formal grammar and finite state machine. The NFL statistics are used for 

obtaining realistic computer simulations of AF matches as the matches of NFL teams. 

The manager's decisions critically influence the gameplay, such that one bad decision 

can result in poor team performance. A decision based on analytical strategic methods, 

such as the NE and/or PE, strengthens the team performance, thereby increasing the 

expectations of winning. The results of computer simulations showed that using the NE 

for strategy selection improved the team performance over using the PE, even though 

the PE fits the theoretical Pareto-efficient selection of the strategy profiles, thereby in-

corporating each member’s best strategies. However, in a real (non-theoretical) match, 

these strategies are unlikely to occur and are therefore impractical. Thus, application to 

practical situations illustrates the relative utility of the NE and the PE for strategy selec-

tion in real AF matches. Applying these methods to strategy selection in a multi-player 

game can provide the team manager with information to make more successful deci-

sions. Beyond its application to strategic analysis in AF, the developed mathematical 

model and algorithmic simulation can also be used to analyze topics that involve multi-
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agent contributions and interactions among a complex group of entities’ actions for 

which a set of rules is followed to achieve well-defined objectives. 
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4                                                        

The Game of GO  

 

The formal analysis of the board game called “Go” is at the core of advances in comput-

er science in the same way the analysis of Chess was during the 20th century [71]. Go is 

a top complex board game and currently, design and implement learning methods for 

Go gaming automation are central challenges for computational intelligence, to demon-

strate sufficient skill to beat the top human Go masters.  

The basic tactics of Go of eyes, ladders and nets are used to dominate a local area 

[110] (see Figure 4.1). An eye is a single empty point enclosed by stones of the same 

color, which cannot be occupied by an adversary’s stone owing to the suicide rule. Two 

eyes inside a stone make its capture very difficult. A stone having only one liberty is in 

Atari. A ladder results from a sequence of moves that forces an adversary’s stone into 

atari. A net is a set of stones (not always a chain) that surrounds an adversary’s stone 

such that it could eventually be captured [64]. All these a-priori-known patterns of Go 

basic tactics should be recognized for a fair Go game, and are used for training the NN 

in learning their recognition.  
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Figure 4.1 Go basic tactics: (a) eyes, unavailable points – A is black and B is white; (b) 

Ω stones are surrounded by a net and may soon be captured; (c) Ω stones are in atari 

by ladders. 

 

For broad territory control, Go strategies follow a set of planned actions, deployed partly 

by using the aforementioned tactics as elements. Basic strategies are invasion, reduc-

tion, connection, and capture [110] (see Figure 4.2). An invasion strategy places a stone 

near friendly stones, in an area where the adversary’s stones look likely to dominate. A 

reduction strategy places a stone near friendly stones, to connect them if needed, in an 

area likely to be occupied eventually by the adversary. Capture reduces the liberties of 

an adversary’s stone to zero and removes it from the board. 

 

 

Figure 4.2 Go basic strategies: (a) Ω stones perform invasion in territory dominated by 

white; (b) Ω black/white stones perform reduction in territory of white/black dominance; 

(c) black/white playing in positions A/B capture white/back stones; (d) black/white play-

ing in positions A/B perform connections with friendly stones. 
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A Go gaming strategy move, from the root node to the leaves nodes, is aiming to win a 

match efficiently. Despite the disarming simplicity of the Go rules, Go gaming conceals a 

huge combinatorial complexity [6, 43] (see Table 4.1) and therefore, the big complexity 

is to set up an efficient strategy for playing Go. The state space complexity is the 

number of all the possible arrangements of the game board, which in a 19 × 19 board is 

about 319×19 ≈ 10172.24 for Go, whereas it is 1050 for Chess and 1018 for checkers. The 

branching factor for Go ranges from 200–300 possible moves at each player’s turn; for 

Chess, the range is 35–40 moves. The game tree size is the total number of different 

matches that can be played and for Go that is ≈ 10360 (chess ≈ 10123 and checkers ≈ 

1054). Even on the 9 × 9 board size, the state space and the game tree size is astronom-

ically large [40]. 

 

Table 4.1 Complexity of Go, Chess and Checkers games 

Game Board size State space Game tree size 

Go 19 x 19 10172 10360 

chess 8 x 8 1050 10123 

Checkers 8 x 8 1018 1054 
 

4.1 State of the Art 

 

Nowadays, the playing level of the best current Go automated simulator versus human 

being is still modest compared to the great successes achieved in other games of skill 

such as chess [78]. Current best Go automated players mostly use MCTS and Artificial 

Neural Networks (NN). The main focus for Go automation is on evaluating non-final po-

sitions for estimating the potential on territory occupy [13, 92, 105].  Prospective meth-

ods for programming Go gaming are being deployed in AI related domains like simula-

tion-based search algorithm, evaluation functions, heuristic search, machine learning 

and automatic knowledge generation [16]. 
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4.1.1 Simulation-Based Search 

 

A simulation-based approach is used in game playing that does not require any a priori 

domain knowledge.  

 

4.1.1.1 Monte-Carlo Tree Search 

 

Monte-Carlo (MC) methods root in statistical physics [20] used to obtain approximations 

to intractable integrals, in numerical algorithms being successful in various AI games. 

Monte-Carlo tree search (MCTS) is a best-first search technique that uses stochastic 

simulations, see Figure 4.3; it uses the true value of an action may be approximated us-

ing random simulations, and that value may be used to efficiently adjust the policy to-

wards a best-first strategy [20]. The MCTS is one of the best-known examples of a simu-

lation based search that makes use of MC simulation to evaluate the nodes of a search 

tree. The algorithm progressively builds a partial game tree, guided by the results of pre-

vious exploration of that tree; the tree is built to more accurate estimate the values of 

moves; the algorithm builds a tree according to the following mechanisms [33]: selection, 

expansion, simulation and back-propagation. 

 

 

Figure 4.3 MCTS Approach, the process can be divided into: selection, expansion, sim-

ulation and back-propagation. 
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Gelly and Silver present two extensions to the MCTS algorithm [48]: The Rapid Action 

Value Estimation (RAVE) shares the value of actions across each sub-tree of the tree 

search, and the heuristic MCTS uses a function to initializes the value of the new posi-

tions in the tree search. Go programs based on MCTS now play at human-master level 

[47].  

 

4.1.1.2 Temporal-Difference Learning 

 

Temporal difference (TD) learning and reinforcement learning proved to be successful 

game playing techniques for other games, including Backgammon. The large state 

space of Go prevents these techniques from being effective when applied directly to the 

Go game.  

TD search approach in computer Go [102]  is another technique that has been using to 

automate Go players. TD learning is a prediction method, one of the most successful 

and broadly applied solutions to reinforcement learning problem. TD leaning combines 

Monte Carlo Method and dynamic programing, because, it learns by sampling the envi-

ronment according to a policy and approximates its current estimate based on previously 

estimates. Reinforcement learning is considered a slow procedure; it divides in two ma-

jor problems: learning improves the agent policy with environment interactions and plan-

ning improves the agent policy without environment interactions. This approach com-

bines TD learning with simulation-based search, essentially, with MCTS. It uses the 

mean outcome of simulated episodes of experience to evaluate each node in a search 

state, where each node corresponds a particular Go board configuration (state). TD 

search still lacks of efficient, it requires many simulations per move to obtain good re-

sults but unlike MCTS, is seeking to integrate prior knowledge although MCTS has 

proved to be better.     
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4.1.2 Neural Network for Learning/Recognition 

 

The ability of NNs  to find hidden relationships from the input-output mapping of evaluat-

ed information makes this method powerful in areas where there exists a large number 

of patterns to analysis such as Go. The classic Back Propagation Neural Network 

(BPNN) method for NN training on pattern recognition uses a supervised learning to ad-

just the connection weights and is able to recognize complex pattern [101]. Typical to-

pology of Multilayer BPNN is shown in Figure 4.4. Let   (  ,  ,   ,  ,   )  be an input 

vector,   (  ,  ,   ,  ,   )  be a hidden layer´s output vector,   (  ,  ,   ,  ,   )
  

an output layer´s output vector,   (  ,  ,   ,  ,   )
 , an expect output vector,   

(  ,  ,   ,  ,   )  a weight matrix form input layer to hidden layer, and 

  (  ,  ,   ,  ,   )
 a weight matrix from hidden layer to output layer. 

 

 

 

Figure 4.4 Multi-layer topology example.  

 

SANE (Symbiotic, Adaptive Neuro-Evolution) [92] is used to evolve NNs capable of play-

ing Go on small boards with no pre-programmed go knowledge. The major purpose is, 

combine Evolutionary Algorithms (EA) and NNs. The EA solves the problem of the credit 

assignment; this problem determines which moves played are good and deserve credit 

for a win and which are bad and deserve to be blamed for a loss. SANE evolves partial 
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solutions, i.e. neurons, represented as a collection of labeled weight links to input and 

output units. Evolving the label as well as the weight enables the genetic algorithm to 

evolve the structure of the network and the parameters. Those neurons, in turn, are 

grouped at random to form a network. One neuron can participate in more than one 

network. Hierarchical SANE evolves those groups of neurons as well as the neurons 

themselves. 

The go-playing program Honte [36] uses NNs together with TD learning.  One NN is 

trained to learn local shapes using supervised learning, additional, two more NNs are 

used by self –play using TD to estimate safety group and value the territorial potential of 

occupied points, Honte has not yet reached good level although the designing of NNs to 

imitate human concepts has been successful. When groups are not well defined be-

cause potential connections are still in question, a neural net trained with TD-learning 

evaluates their safety value. The groups are represented in terms of operational features 

such as the number of liberties, the number of eyes and the influence value of the liber-

ties. Groups are considered safe if the stone remains on the board at the end of the 

game. Go AI program based on BP-Neural Network is analyzed in [60], in this approach 

presented a architecture of BP-NN, the authors claim that the use of NNs is for learning 

a model form training data, such as Go better than other techniques be very difficult .  

A machine for playing Go –and related board games–,primarily focusing on the problem 

of learning a good evaluation function in a scalable way is developed in [109]. Scalability 

is essential at multiple levels, from the library of local tactical patterns, to the integration 

of patterns across the board, to the size of the board itself. System is automatically 

learning the propensity of local patterns from a library of games; propensity and other 

local tactical information are fed into recursive neural networks, derived from a probabil-

istic Bayesian network architecture. The recursive neural networks in turn integrate local 

information across the board in all four cardinal directions and produce local outputs that 

represent local territory ownership probabilities. 

Evaluation of the current board position is critical in computer game engines. In [21] the 

combination of NNs, particle swarm optimization (PSO), and evolutionary algorithms 

(EAs) to train a board evaluator from zero knowledge is present. By enhancing the sur-
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vivors of an EA with PSO, the hybrid algorithm successfully trains the high-dimensional 

NNs to provide an evaluation of the game board through self-play. Experimental results, 

on the benchmark game of capture Go, demonstrate that the hybrid algorithm can be 

more powerful than its individual parts, with the system playing against EA and PSO 

trained game engines. 

Go gaming presents a broad set of shapes (diverse forms) that can be classified into 

desired patterns. Our approach focuses on the BPNN pattern recognition of Go tactics. 

This pattern recognition sets to strategic reasoning to decide some Go gaming actions. 

The pattern recognition process is essential to the learning and understanding of the 

game moves [84]. The better the understanding of game moves the better decisions can 

be made by playing. Moves can be learnt from patterns by humans then there should be 

also a way for computer programs.  

 

4.1.3 Go Pattern Recognition 

 

Shi-jim et al. [99] proposed a Go patterns matching algorithm to find game records that 

contains desired query patterns then an index structure for Go record database inte-

grates methods of information retrieval and domains knowledge of Go. This approach 

mainly focuses on finding edge and corner patterns in to Go records and uses an index 

structure to increase the speed of pattern searching. To construct index structure on the 

game record database, the features of many significant query patterns is extracted and 

used as the index key. 400 featured patterns are used. Feature patterns are some pat-

terns that appear frequently in Go games. The approach can solve the most difficult part 

of a Go game record information retrieval system. String matching for text in Go game 

records is easily implemented. The matching can be considered as text information re-

trieval. 

Bayesian technique for  supervised pattern-learning algorithm, based on the Bradley-

Terry model, is proposed in [30]. The principle of Elo ratings, as applied to chess, is that 

each player gets numerical strength estimation, computed from the observation of past 

game results. From the ratings of players, it is possible to estimate a probability distribu-
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tion over the outcome of future games.  The generalized Bradley-Terry model is a pow-

erful technique for pattern learning in the Go game, is simple and efficient, can combine 

several feature and produces a probability over legal moves, it can be used to incorpo-

rate domain knowledge into MCTS.  

A systematic approach for knowledge representation of Go playing where the meaning 

of move is defined as a contextual pattern with respect to local contexts of surrounding 

of the move is introduced in [111]. The approach purpose is to acquire certain 

knowledge of patterns. Contextual patterns and pattern collocations have the following 

key advantages in comparison with other manual and ad hoc representations of GO-

playing knowledge: Quality knowledge, efficient acquisition and effectiveness. 

The recognition of strategies being performed by the player and the adversary is funda-

mental to propose the best offensive/defensive strategies. During the Go game match, 

different strategies and tactics are taking place, such as: eyes, ladders, nets, capture of 

adversary stones, among other.  Artificial Neural Networks are powerful in pattern 

recognition especially Back-Propagation Neural Networks (BPNNs). BPNNs allow dis-

covering and recognizing complex patterns and therefore strategies patter recognition is 

relevant to apply during a Go match.  

During Go game match, an implicit complex analysis is being practiced by players to de-

fine the next move. Our aims are to incorporate mechanisms that help to identify the 

best options (strategies) to perform in certain Go match stages. After a number of 

moves, the BPNNs should recognize what the player and adversary are doing for identi-

fying the possible offensive/defensive strategies. The strategic analysis is used by both 

players.  

 

4.1.4 Evolutionary Algorithms 

 

The GoTools program solves life and death problems in the Go game. Pratola and Wolf 

[90] introduced Genetic Algorithm (GA) to optimize heuristic weight used by GoTools 

tree-search. The set of heuristic weights is composed of subgroups, each optimized with 

a suitable fitness function. In order to optimize the heuristic weights, and hence the use-



136 

 

fulness of their heuristic rules, a GA was implemented to search for the best set of heu-

ristic weights. As they have many heuristic rules available, they also have many heuristic 

weights to consider. A set of these heuristic weights is referred to as a chromosome. 

Thus, each chromosome is a candidate solution, containing a set of heuristic weights 

(whose individual values are referred to as allele’s) to be optimized. 

Shiba et al. [100] proposed a system which automatically carries out Go record from im-

ages which pictured the Go game situation, from the Go stone position choice on the 19 

x 19 cells of the Go board. A genetic algorithm for Go board contour detection in the real 

image is used, that show the elite saving strategy mode for combining a global and local 

search. 

To find moves in Go with representation of partial strategies as a multithreaded, steady-

state co-evolution algorithm without domain-specific knowledge can discover the correct 

move [40]; valuable performing distributed tree search, quickly eliminating unpromising 

moves and dividing exploratory computation across multiple search paths are claimed. 

This approach rather than evolve a general function for playing Go from any board posi-

tion, it evolve partial strategies for the current position. 

Lei Yu et al. [67] calculate the winning probability which model parameter is optimized by 

genetic algorithm. The winning probability model presented by this paper has a high 

precision, and it can be applied in the middle game module and endgame module, help-

ing the program to determine the best move. This approach mainly focuses on the lead-

ing points and Go situation, combined with genetic algorithm and optimizing the model 

parameter.  

Solving multi-objective optimization problems using evolutionary algorithms has been 

gaining a lot of interest recently. Go is a hard and complex board game. Using EAs, a 

computer may learn to play the game of Go by playing the games repeatedly and gain-

ing the experience from these repeated plays. In [62], artificial neural networks (NNs) 

are evolved with the Pareto Archived Evolution Strategies (PAES) for the computer 

player to automatically learn and optimally play the small board Go game. ANNs will be 

automatically evolved with the least amount of complexity (number of hidden units) to 

optimally play the Go game. The complexity of NN is of particular importance since it will 
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influence the generalization capability of the evolved network. Hence, there are two con-

flicting objectives in this study; first is maximizing the Go game fitness score and the se-

cond is reducing the complexity in the NN. Several comparative empirical experiments 

were conducted that showed that the multi-objective optimization with two distinct and 

conflicting fitness functions outperformed the single-objective optimization which only 

optimized the first objective with no selection pressure selection on the second objec-

tive. 

 

4.1.5 Planning Techniques  

 

In [107] proposed an adversarial planning approach called goal-driven. In this approach 

is described how adversarial Hierarchical Task Network (HTN) planning can provide a 

framework for goal-directed game. Each player attempts to satisfy its own goals while 

refuting those of its opponents. If one player achieves its goal, the opponent backtracks 

and tries a different decomposition, so each player keeps an open agenda of goals 

which represents its current plan of action. To solve a problem in a domain, each player 

is given an abstract goal (or set of goals) to achieve. The players then attempt to find 

sequences of moves which satisfy their goals. Once one of the players has achieved all 

of its goals it knows that it must have satisfied its top level goals. The opposing player is 

made aware of this fact and, since in general a good outcome for one player is a bad 

outcome for the other, both agents are allowed to force backtracking. Players are al-

lowed to backtrack to any of their previous goal or expansion choices but only to their 

own decisions. 

 

4.2 Mathematical Modeling 

 

This section is devoted to characterize the Go gaming algorithmic perspective, using 

process diagrams, and finite state machines that support our Go game approach. 

Mathematical descriptions of Go game concepts follow, 

 Board:    ( ,  )    ,     ,      is the official size.  
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 Let    ,   ,  ( )     ,  ,   ,  ( ) denotes the content of a coordinate; in the be-

ginning all  ( )     an empty position in T, and  ,   denote black and white, 

    ,  . 

 Ps =        ,  ( )     ≠  , is the set of occupied positions. 

   (  ,   )                          denotes the Manhattan distance be-

tween   ,     .   

 Stone:    (  ,      ),    ,  (  )      (  ),       (  ,     )   . A sin-

gle stone is     1, otherwise is a sequence of single stones each another adja-

cent. 

 Set of stones:          ,                    

 Set of liberties of      :   (  )         ( )      ,  and      member of    

with   (  ,  )    . 

 atari:        is in atari if and only if (iff) | (  )    

 eye:  ⋂  (   )
 
      ,    , ,                                   

 Ladder:       is a ladder on    iff st is the other color to ld and is in atari by ld. 

 Net:       is a net on    iff       (  ),     ̂  i       and 

   i     ̂             ( ,  )   ; that is, any liberty of st is adjacent to an adver-

sary’s stone.  

      ,     , p1 and p2 the black- and white-player. 

      ,   ,      is the set of actions.  

             is the transition function or relation. 

   is the state space. 

 

We characterize the algorithmic description of the Go gaming using all the previous 

mathematical definitions. 
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4.3 Algorithmic Modeling 

 

In Game Theory, the formal modeling of gaming accounts for the interaction between 

the players’ actions by obeying the game rules. Match gaming is algorithmically imple-

mented according to the interaction of the strategies   each player applies in attempting 

to achieve maximum gain. We give a formal definition of strategy that will be used later 

to define basic tactics and some basic strategies.  

A strategy is formally defined as  ̈  (  ,   ,    ) so  ̈     is a sequence of planned 

actions. For      let: 

       ,   ,      the set of strategies. 

           is the strategy space. 

       ,   ,         the set of tactics (simple strategies). 

 

A finite state machine (FSM) for Go strategies algorithmic setting in equation (4.1) is de-

fined as follows, see Figure 4.5: 

                                                   ̈  ( ,  ̂,  ,  ̂,  )                                               (4.1) 

 

     is a set of symbols that denote basic actions,  ̂    ,   ,   ,    ,    is the set of 

states,  ̂   ̂     ̂ is the transition function.       is the set of final states,     ̂ is 

the initial state. 
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Figure 4.5 FSM for modeling the player’ strategies from basic actions   
 . 

 

This FSM computes any strategy for a     , by passing through states until the final 

(halt) state  ; at each level of automata, actions   
 

 are different because it is a determin-

istic FSM, so given a state and action, there exist one and only one transition to a next 

state in equation (4.2). 

 

                                                                                         
  (  

 ,   
 ,    

 )                                                (4.2) 

 

A tactic  ̈      is defined by  ̈  (  )  A FSM for Go tactics (4.3) follows see Figure 4.6: 

 

                                                     ̈  ( ,  ̂,  ,  ̂,  )                                                      (4.3) 

 

 

Figure 4.6 The FSM modeling the   
  player’s tactics. 

 

FSMs that model eyes, ladders and nets is in equation (4.4). 

 

                                                       ( ,  ̂,  ,  ̂,  )                                                      (4.4) 
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See Figure 4.7 for the FSM for modeling eyes. Chains halting at    and holding eye 

conditions are edge eyes; and those halting at    and    and holding eye conditions rep-

resent lateral and normal eyes respectively. Here: 

 ̂    ,   ,   ,   ,   ,   ,     and      ,   ,    . 

 

 

Figure 4.7 FSM for eyes creation.  

 

In the FSM for ladders creation,  ̂    ,   ,      ,   , and      . Any string of symbols 

halting at   and holding the ladder conditions, i.e., forcing an adversary’s stone in atari, 

result in a ladder, see Figure 4.8:  

 

 

Figure 4.8 FSM for ladder creation. 

 

In a FSM for nets creation, any string of symbols halting at   and surrounding adver-

sary’s stones results in a net, see Figure 4.9: 

 

 

Figure 4.9 FSM for net creation. 

 

The diagram flow that indicates the gaming states/moves is in Figure 4.10.  
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Figure 4.10 Go game process flow. 

 

In this proposal, it uses MCTS simulations, all the actions have the same probability, so 

uniform distribution is used (4.5) and (4.6): 

                                                                 (  )  
 

 
                                                      (4.5) 

                                                             ∑  (  )     
                                                    (4.6) 

 

4.4 Tactics Recognition and Strategies Building 

 

Strategic reasoning is used to decide, from the learned Go actions, a convenient move 

to do in the current state of the match, so the next node in the match-game decision 

tree, as a result from recognizing the adversary’s Go tactics being deployed so far. After 

an empirical analysis of Go matches by stages, we concluded that:  

 In the early and middle Go match stages to apply pattern recognition and strate-

gic reasoning is an efficient gaming option, since is the way for using a prior 

known tactics and strategies. Actually, it serves as the basis to deploy a match 

gaming.  

 In the late Go match stage free positions on the board are too restrictive, so the 

deployment of a priori strategies is difficult; under this circumstance the gaming 

way is by doing a MCTS evaluation to play any of the board free positions.  
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Thus, during the early and middle a Go match stages, our automated Go player uses 

pattern recognition to identify the adversary’s (sequence of) movements, so identify 

his/her strategies followed so far; a strategic answer should be reasoned to decide the 

next movement using a priori knowledge from the players’ experience. Note that, in a Go 

match early stage the set of board free positions is high and any movement by MCTS 

tends to be random, so, due to huge size of sear space the processing is time spending. 

At this match early stage MCTS is not an efficient technique but the opposite. However, 

in the late Go match stage a MCTS move becomes an efficient option: the size of search 

space has become small and, on the other hand, the automated patter recognition is too 

hard to do over the remaining board free positions.  

 

4.4.1 Tactics Pattern Recognition 

 

For the process of pattern recognition analysis, the Go board is segmented into a win-

dow view size of 3 × 3 in order to identify eyes patterns. A window view size of 5 × 5 is 

used for identifying ladders and nets patterns, and as a result of the neighboring combi-

nation of these windows, bigger ladders and nets can be recognized. The NN layer of 

the input receives a set of board occupied points; 9 for eyes and 25 for a ladder or a net. 

During the training stage, the training patterns include don´t care symbols to represent 

those points that can be replaced regardless of their value, see examples in Figure 4.11. 

It is valuable to include don’t care patterns in Go tactics recognition because of the non-

deterministic nature of Go gaming.  
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Figure 4.11 Illustrations of eyes, ladders and nets patterns. 

 

To start the process of Go tactics pattern recognition, the positions from the 3 × 3 and 5 

× 5 windows view size are encoded into a vector that feeds the network. When using 

pattern recognition to identify Go tactics in a match, the main difficulty concerns verifying 

that a shape really corresponds to an eye, ladder or net. The NN should check the con-

ditions to authenticate whether the detected shape is a true Go tactic. 

For eye pattern recognition, the NN tries to find similarities with the given input to any of 

the shapes described in Figure 4.11: edge, lateral or normal eyes. If high similarities ex-

ist then the conditions of eye must be checked, i.e., there must be an empty point of 
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space surrounded by friendly stones such that no adversary’s stone may be set upon it. 

These conditions are verified outside the NN using verifier conditions. As in the case of 

eye patterns, the same procedure is applied for ladder and net pattern recognition, but 

with the proper ladder and net conditions. 

 

4.4.2 Building of Strategies from Pattern Recognition 

 

Once the Go tactics patterns such as eyes, ladders or nets, are recognized, as well as 

the Go gaming strategies of invasion, reduction, connection or capture, offen-

sive/defensive strategies can be employed (see Figure 4.12). Hence, based on the tac-

tics pattern recognition, deployment heuristics for suitable defensive/offensive Go a-

priori-knowledge strategies are available to be applied during the initial and middle steps 

of an automated Go match. Strategies of reduction and invasion as well as defensive 

strategies, address saving stones in atari or are devoted to augment the liberties of ally 

stones. Strategies can be constructed following the next statements, as illustrated in 

Figure 4.13. 

Defensive strategies: 

 Save a stone in atari by close placement of an ally stone that eventually connects 

and saves it, or increasing liberties. 

 For preventing a stone falling within risk of be captured by the adversary’s next 

moves. 

 

Offensive strategies: 

 Interrupt the formation of adversary’s eye by placing a new stone. 

 Reduce liberties to adversary’s stones, eventually placing it in atari. 

 Play close to own stones, sets of stone(s) or close to stone(s) with two or more 

eyes to ensure high possibilities of making connections and spreading of stones. 

 Capture adversary’s stones by placing adversary’s stones in or close to atari. 
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Figure 4.12 Example pattern recognition of a possible eye. 

 

 

Figure 4.13 Go gaming strategies: (a) Ω is in atari, but playing in point A makes a con-

nection for saving Ω; (b) playing in points A reduces Ω liberties; (c) white/black playing to 

points A/B increases dominance area; (d) white/black playing to points A/B interrupts the 

formation of adversary’s eye. 

 

In the latter stages of a Go match, an MCTS-based move becomes a suitable option. 

This is because the size of the search space has become small and the automated pat-

tern recognition is too difficult to perform over the complex patterns on the board with the 

few free board positions. Actually, in the latter stages of a Go match, the deployment of 

a-priori-known strategies is hard because the free board points are too restrictive, and 
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few board spaces make it difficult to deploy strategies. Under this circumstance, the 

gaming method is to perform an MCTS evaluation to play any of the free board posi-

tions. Hybrid approaches with Go a-priori-knowledge-based strategies are easy to de-

ploy in the initial and middle stages of the game when few board points are occupied. By 

the end stages, the use of MCTS is better suited to choosing a move on the empty 

board positions. A description of the hybrid Go players that prove our claim is given in 

the following.  

 

4.5 Strategic Players 

 

Our gaming simulator compromises a set of automated Go players, using either random, 

or pattern recognition, or strategic reasoning, or MC-Rave methods. In addition, it has a 

graphic interface and uses Go Text Protocol for communication with other automated 

players in KGS [26] Go servers (see Figure 4.14).  

 

 

Figure 4.14 Components of Go gaming simulator. 

 

 

 

GTP 

communication

CGOS

KGS

Any automated player
(GNUGo, …)

Go Game 

Simulator

Go Engine:
random, pattern 

recognition, strategic 

reasoning, MC-Rave 

methods.

Graphic

interface
(developed)

Set of automated

players



148 

 

4.5.1 Hybrid SP1 Player with MCTS 

 

Our next strategic player SP1 combines the pattern recognition with the MCTS Rave ap-

proach [48], see Figure 4.15. 

 

Figure 4.15 Hybrid Go gaming: pattern recognition of tactics and strategies by the early 

and middle match stages, and MCTS in the latter stages. 

 

This SP1 hybrid use experience-known Go tactics patterns in the early and middle stag-

es of a match, and MCTS in the late stage. 

 To start the process of Go tactics pattern recognition, the positions from 3 x 3 and 

5 x 5 windows view size are encoded into a vector that feeds the network. 

 Once a certain pattern is recognized, a set of Go gaming actions is proposed as 

offensive/defensive strategies, see Figure 4.10. Go gaming actions like do eyes, 

ladders, nets, invasion, reduction, connection, capture, are performed as offen-

sive/defensive strategies. 

 

Using pattern recognition to identify Go tactics in a match a main difficulty concerns veri-

fy a shape really corresponds to an eye, ladder or net.  The NN should check conditions 

to authenticate if the shape is a true Go tactic. 
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4.5.2 Hybrid SP2 Player with GNUGo 

 

GNUGo is a classic and powerful automated open source Go player, the first with huge 

impact in Go automation [14], so nowadays, comparison versus GNUGo is obligated; 

GNUGo uses pattern matching algorithms to analyze the stones patterns on the board 

then proposing next moves [44]. In addition:  

 GNUGo rates the shape formed by a move, and the value of local moves at spe-

cific territory,  

 GNUGo calculates the max/min value obtained by a move using pattern match-

ing.  

 

Because the GNUGo Go player strength is in the criteria used to evaluate a move, our 

next proposed hybrid player SP2 is based on GNUGo. SP2 uses GNUGo criteria to play 

during the first 10 moves and then shifts to pattern recognition for the subsequent 10 

moves, on average, and so on. The reason for doing 10 moves each is because the 

match stages are determined by the number of moves played by each player. Statistical-

ly, for a 9 × 9 board size, the number of moves is around 40 per player and therefore, on 

average, each early, middle or late stage in a match is scoped by 13 moves per player. 

Similar calculus works for a 19 × 19 size board.  

 

4.6 Go Gaming Experiments and Comparisons 

 

The average recognition performance obtained by different numbers of hidden neurons 

is shown in Figure 4.16. In order to surpass the major difficulty for Go tactics patterns 

recognition, given the wide variety of shapes in a Go match; we fix on five for the num-

ber of neurons in the hidden layer of the multi-layer NN used. This way, efficient pattern 

recognition and learning is our best performance. Furthermore, the training time is short 

enough to avoid over-learning, which produces noise and/or redundancy. The test de-

scription to recognize eyes, ladders and nets on the Go board follows. 
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Figure 4.16 Tradeoff: number of neurons in the hidden layer versus the recognition per-

centage.  

 

Test description to recognize eyes, ladders and nets on the Go board follows.  

Eyes patterns. 900 tests divided into groups of 150 were performed. 400 eyes positive 

examples and 100 not-eyes negative examples were used to test the NN. The mean, 

minimum and maximum accuracy obtained for each group from the eyes/no-eyes exam-

ples and the mean accuracy of the NN are reported. The average accuracy is above 

70%, as shown in Table 4.2. 

 

Table 4.2 Results of NN eyes. 

 
 

Number of 
tests 

Eyes examples 
 

No-eyes examples 
 

Total classification 
Eyes + No-eyes 

(Correct classification cases %) 

Mean Min. Max. Mean Min. Max Mean 

1 -150 83.68 80 90 67.58 58 74 75.77 

151-300 83.24 80 88 68.04 60 74 75.64 

301-450 83.58 80 91 67.72 56 74 75.65 

451-600 83.78 80 91 67.45 60 74 75.62 

601-750 83.62 80 90 67.69 60 74 75.65 

751-900 83.32 81 88 67.96 60 74 75.64 
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Ladders and Nets patterns. A similar analysis was done for ladders and nets by applying 

900 tests. Each test uses 100 ladders-nets positive examples and 100 no-ladders-nets 

negative examples. 75% accuracy is obtained, see Table 4.3. 

 

Table 4.3 Results of NN Ladders and nets. 

 
 

Number of 
tests 

Ladders-nets examples 
No-ladders-nets 

examples 

Total classifica-
tion Ladders-net 

+ No-ladders-
nets 

(Correct classification cases %) 

Mean Min. Max. Mean Min. Max. Mean 

1 -150 86.96 60 100 56.06 21 75 71.51 

151-300 87.19 61 100 56.16 30 75 71.67 

301-450 86.7 48 100 56.89 26 90 71.79 

451-600 85.88 29 100 57.58 25 100 71.73 

601-750 86.34 43 100 56.83 25 90 71.58 

751-900 87.78 63 100 55.09 22 80 71.44 
 

The experimental results prove certain improving on the NNs effectiveness to recognize 

complex patterns of Go gaming. Actually, the pattern recognition is through a wide varie-

ty of shapes, sometimes too complex and not obvious of true Go tactics. Results in Ta-

bles 4.1 and 4.2 show the NNs accuracy. The around 70% of efficiency recognition is a 

good result due to the complexity of these kinds of patterns. The huge amount of forms 

that occur by a Go gaming match makes the tactics patterns recognition a hard task. 

Even that the recognized patterns correspond to tactics that are significant for the pro-

posed Go strategic analysis. The [99] approach tries to find out Go patterns in game 

records like edge and corner patterns but few of them represent proper Go tactics pat-

terns. 
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Figure 4.17 Number of patterns recognized through stages in a Go match. 

 

Figure 4.17 shows that the highest number of recognized patterns occurs in the middle 

stage of the match. In the early and middle stages, based on the Go gaming a-priori-

knowledge of these states, the pattern recognition and strategic reasoning work; thus, a 

better strategic analysis of offensive/defensive Go actions is available. However, when 

we lack information or when the free board positions are too restrictive, corresponding to 

typical circumstances of the latter stages of the game, the use of MCTS on the set of 

free positions performs best for choosing the best play. Note, the numbers on the x-axis 

represent Go match turns for both players.  
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Figure 4.18 Elapsed time per move throughout stages of a Go match. 

 

Figure 4.18 shows the elapsed time per move per player throughout the stages of a Go 

match. Time required per move using pattern recognition is too low and almost constant 

during the first and middle stages, but increases significantly in the latter stages be-

cause of the difficulty in recognizing any patterns on the board during this stage. In con-

trast, by using MCTS, the time spent deciding of a move is too high in the early stage, 

but reduces in the middle stage and is truly short in the late stage. The reason for this is 

that the size of search space the algorithm works in the early stage is huge; thus, apply-

ing MCTS is expensive and wastes a lot of time. In the late stage of a Go match, the 

search space size is small and so applying MCTS is faster. 
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Figure 4.19 Percentage of random moves throughout stages of a Go match. 

 

Figure 4.19 shows the percentage of observed random moves in 100 simulations. In the 

late stage, MCTS movements are suitable because each position can be evaluated 

quickly and therefore, it is the best method. In the early and middle stages, MCTS is too 

time consuming, but the random pattern recognition supporting a-priori-known strategic 

Go movements are easy to apply. 

From the experiments described, we can conclude that in the early and middle stages of 

a Go match, it is best to apply a-priori-knowledge for the pattern recognition of tactics 

and strategies; thus, efficient gaming is achieved this way during these match steps. 

Conversely, because in the early stages of a Go match the number of free board points 

is large, any movement by MCTS tends to be random, and the huge size of the search 

space means that the processing time is high. Hence, during the early stage of a match, 

the MCTS technique is inefficient and the computer resources are wasted. Henceforth, 

we propose the systematic use of hybrid Go automated players for achieving efficient 

performance during matches. 
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4.7 Players’ Performance Analysis 

 

The performance comparison among the different automated Go players and the analyt-

ical comparison of approaches that use NNs for Go automation follow. The compared 

Go automated gamers are SP1 (uses pattern recognition, strategic reasoning and MC-

Rave [48]), and the Strategic player that uses pattern recognition and strategic reason-

ing, and MC-Rave player that uses the method in [48]. 

 

4.7.1 SP1 Performance Comparison 

 

1000 tests on board size of 9 x 9 of the following combination were performed to make a 

comparison among them: 

(a).SP1 vs. SP1,  

(b).SP1 vs. Strategic player,  

(c). Strategic player vs. SP1,  

(d).SP1 vs. MC-Rave,  

(e).MC-Rave vs. MC-Rave. 

 

In Figure 4.18, the performance of the automated players from 1000 simulations is 

shown. Black SP1 vs. white SP1 is 49.3%/50.7% of wins rate (see Figure 4.20 (a)). Black 

SP1 vs. white Strategic player is 53%/47% of wins rate (see Figure 4.20 (b)). Black Stra-

tegic player vs. white SP1 is 44.7%/55.3% of wins rate (see Figure 4.20 (c)). Black SP1 

vs. white MC-Rave player is 52%/48% of wins rate (see Figure 4.20 (d)). Black MC-

Rave player vs. white MC-Rave player is 48.9%/51.1% of wins rate (see Figure 4.20 

(e)). 

 As shown in the results, SP1 overcomes the other automated Go player’s performances 

by applying different techniques in the early, middle, and late stages of the Go match. 

. 
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Figure 4.20 First set of performance results of automated Go players. 

 

4.7.2 SP2 Performance Comparison 

 

1000 tests on board size of 9 x 9 using the following players were performed:  SP2 (Hy-

bridGNUGo) player uses pattern recognition, strategic reasoning and GNUGo, GNUGo 

player, Strategic player and Hybrid player (SP1) uses pattern recognition, strategic 

reasoning along with MCTS. The performance comparisons were done as follows:  

(a). SP2 vs. SP1,  

(b). SP2 vs. GNUGo,  

(c). SP2 vs. Strategic player,  

(d). GNUGo vs. SP1,  

(e). GNUGo vs. Strategic player. 
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The automated players’ performances from 1000 simulations are shown in Figure 4.19. 

Black SP2 player vs. white SP1 is 55.7%/44.3% of wins rate (see Figure 4.21 (a)). Black 

SP2 player vs. white GNUGo player is 51.1%/49.9% of wins rate (see Figure 4.21 (b)). 

Black SP2 player vs. white Strategic player is 61.2.7%/38.8% of wins rate (see Figure 

4.21 (c)). Black GNUGo player vs. white SP1 is 54.5%/45.5% of wins rate (see Figure 

4.21 (d)). Black GNUGo player vs. white Strategic player is 58%/42% of wins rate (see 

Figure 4.21 (e)).  

 

 

Figure 4.21 Second set of performance results of automated Go players. 

 

The results show that SP2 overcomes the other automated Go player’s performances, 

even the GNUGo performance, by applying different techniques in the early, middle, and 

late stages of a Go match. 

The Elo rating estimates the abilities level of Go player [30]. We measure the Elo rating 

of our automated Go players on Computer Go Server (CGOS) on 9 x 9 board size, with 

different on-line adversaries. The Elo ratings reported, see Table 4.4, is from average 
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values. Strategic players performance was also compared versus human players with 

low Go level, although this analysis is not reported because is not representative 

enough, particularly, all matches were in favor of our automated players.  

 

Table 4.4 Elo Rating comparison. 

Automated player 
Elo rating on 

CGOS 

Strategic Player 810 

SP1 1120 

SP2 1650 
 

4.7.3 NN-Based Approaches Comparison 

 

In [92], the NN output positive value indicates a good move, the larger the value, the 

better the move. In [36], one NN previously trained from a database of Go expert play-

ers’ matches, tries to imitate local Go shapes; another NN estimates safely stones and a 

third NN tries to find potential unoccupied territory. In [109], an NN integrates local in-

formation across the board in all directions and produces outputs that represent owner-

ship probabilities for identifying local territory to be occupied. In [21], an NN is used as 

the evaluation function of the leaf nodes in a game tree, with zero expertise involved. In 

contrast to our approach, the use of an NN is for pattern recognition of Go tactics. For 

this, an NN is trained with a set of Don’t care patterns. Once the NN is trained, the board 

game is segmented into windows view size of 3 × 3 and 5 × 5. Each windows view is 

encoded into a vector that serves as input to the NN, and the NN tries to find similarities 

with Go tactics, such as eyes, ladders and nets. Based on this recognition, a set of Go 

gaming actions is proposed. Table 4.5 summaries some aspects of the approaches 

based on NNs.   

 

Table 4.5 Comparison of NN usage for playing Go. 

Approaches Purpose How is trained Accuracy 

N. Richard et al. To define the - - 
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1998 next move 

F. Dahl 2001 

Detect local 
shape, territo-
rial and safe 

group 

400 games rec-
ords 

- 

L. Wu et al. 2008 

Identify local 
territory own-
ership proba-

bilities 

From a dataset 
played by human 

- 

X. Cai et al. 2010 

Use to ap-
proximate the 
board evalua-
tion function 

Records of pro-
fessional players 

- 

Own approach 

Tactics pat-
terns recogni-
tion to use on 

offensive / 
defensive. 

Using a set of 
don´t care pat-
terns of eyes, 

ladders and nets 
forms 

Above 70 % 

 

A comparative review of the NN-based approaches for automated Go players is shown 

in Table 4.6. The use of NNs for pattern recognition is essential in our proposal.  

 

Table 4.6 Analytical comparison among different NN approaches. 

Go game proposal / 
Features 

Our ap-
proach 

N. Richard 
et al. 1998 

F. Dahl 2001 
L. Wu 
et al. 
2008 

X. Cai 
et al. 
2010 

Plays in small board 
size 

    

Plays in medium 
board size 

 x   

Plays in large board 
size 

 x   - 

Board Segmentation 
 3 x 3; 5 x 

5 Size 
x x 

 3 x 3 
Size 



Multi-Players includ-
ing 

 4  2  - - 

FSM and formal lan-
guages Modeling 

 x x x x 

Diversity strategies 
and tactics including 

    

Visual tactics recog-  x  Detects  x 
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nition good or bad 
shapes 

Visual strategies 
recognition 

 x x x x 

 

Efficiency [75] is the correct way to use the available resources for doing a task, meas-

ured by runtime. In our case, this is the time taken for training the net and simulating an 

entire match game; a reduced runtime implies more efficiency. 

Efficacy [75] is the ability to achieve the desired goals or the realization of the activities 

to reach the goals, in our case is measured by the number of frequent similar patterns 

obtained. See Table 4.7 on for a comparison of efficiency and efficacy of the various NN 

Go automation approaches. 

 

Table 4.7 Efficacy and Efficiency reported on the NN approaches. 

Issue / Feature 
Own ap-
proach 

Richard 
et al. 
1998 

F. 
Dahl 
2001 

L. Wu 
et al. 
2008 

Cai et al. 
2010 

Efficiency 
NN 

 

19 x 19 
board 
size, 

each net 
training 

spends ≈ 
10 se-
conds 

9 x 9 
board 
size, 

training 
spends 5 
days, and 
“the train-
ing times 
increase 
with BS 

quite rap-
idly” [92] 

- 

For 
training 
a 9 x 9 
board 
size is 
O(N4) 

and for 
future 

19 x 19 
could 
take 

months 

- 

Efficacy 
NN 

 

Net accu-
racy is 
above 
70%. 

- - 

“NN can 
learn 

territory 
predic-
tions 
fairly 
well” 
[109] 

- 
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SANE [92] plays Go on a small board, cannot perform pattern recognition and needs 

100 to 1000 simulations to achieve a 75% win rate over an adversary. Other approaches 

that use NNs, but do not present statistical results of accuracy are given in [36] [109] 

[21]. 

The results show that the strategic reasoning based on pattern recognition during the 

early and middle stages is appropriate because it allows the deployment of the strategi-

cally suitable moves through the deployment of previously known effective Go tactics 

and strategies. However, as the performance of this method reduces, MCTS is able to 

replace it and select moves based on the remaining free positions on the board. In the 

latter stages of a Go match, the switch to MCTS becomes an efficient option, because 

the size of the search space has become small and automated pattern recognition is too 

difficult to perform with the complex patterns on the board and the few remaining free 

board positions. Actually, in the late Go match stage, the deployment of a-priori-known 

strategies is difficult because the free board positions are too restrictive; few board 

spaces make it difficult to deploy strategies. Under this circumstance, the gaming meth-

od is by performing an MCTS evaluation to play any of the remaining free board posi-

tions. Therefore, in the early and middle match stages when few board points are occu-

pied the Go a-priori-knowledge-based strategies are easy to deploy. At the end of a Go 

match, the use of MCTS is better for determining a move based on the empty board po-

sitions.  

 

4.8 Gaming Discussion 

 

The relevant advances by Monte-Carlo Tree Search applied to overcome the Go gaming 

huge complexity should be complemented to achieve to beat Go top level master peo-

ple. Methods focused on simulation-based search algorithm [20, 47, 48] behaves very 

random in the early Go match stage so produce high search complexity in order to 

choice the next Go moves, because the huge set of board free positions at this match 

step. In contrast, by using pattern recognition and a priori known movements, sets the 

bases for efficient Go strategies/tactics gaming. The Go game is the long-term influence 
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moves [47], and moves made in the beginning affect the outcome of the later moves, so 

the relevance on doing right decisions in the early Go match stage. MCTS is particularly 

free from expert knowledge and from tactical solving guidance [56], and memory of pre-

vious game moves is based on a huge amount of simulations [47, 48], that results 

strongly time expensive in the early stage match. Furthermore, in specifics situations it 

prevents to identify any right move since the lack in the use of a tactical search; it needs 

too many simulations per move for achieving an apt gaming move [33, 56].  Hence, an a 

priori knowledge-based method to movement election is smart at this step. 

The method proposed in [107] for adversarial planning technique has some similarities 

to our proposal since both  focus on building a sequence of planned actions such as 

eye, nets, ladders, capture, invasion, among others. 

But our proposal uses NNs for pattern recognition to guide the sequence of planning 

actions. In contrast to [107] that uses a Hierarchical Task Network to build a tree search, 

where each node represent a plan for achieving the abstract goals and also each node 

in the search tree has one branch for each way the system suggests to further refine the 

plan. 

Analysis on Go gaming automation from the complex network approach, like the one of 

the World Wide Web, focuses on the non-trivial topology of the network that results from 

a Go match [49]; the construction of a directed network given a suitable definition of re-

lated tactical Go gaming moves. By mining database matches of master level games, 

this approach discovered the similar patterns arising during the early stages of a Go 

match. In [34], the proposal for two dynamic randomization techniques is given: one for 

the parameters and the other for a hierarchical move generator. 

The similarity between fractal formation and Go gaming patterns, is the diversity of the 

complex forms involved. However, a fractal formation follows a predetermined and regu-

lar pattern, but no previous regular pattern is followed by playing Go. Actually, the eyes, 

ladder and nets patterns are all obtained by ongoing strategies pertinent to each Go 

match.  

Complex pattern recognition is present in Bioinformatics, which is devoted to computer 

and information analysis and the management of data on biological processes [58, 93, 
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108], particularly in determining or classifying molecular or tissue patterns as equivalent 

or related to some extent. Pattern recognition for Go gaming and Bioinformatics pro-

cesses may advance in parallel from now on.  

In computer complexity theory [98], the problems pertain to specific complexity classes 

by regarding certain characteristics: one major is time, which refers to the number of ex-

ecution steps that an algorithm used to solve a problem; the other main complexity 

character is space, which refers to the amount of memory used to deal with a problem. 

Some complexity classes are P, NP, PSPACE, and EXPTIME. As a result of some com-

plexity analyses of Go gaming, experts of the area claim that Go gaming belongs to 

EXPTIME-complete game [54], because it is an unbounded two-player game. Unbound-

ed games are those in which there is no restriction on the number of moves that can be 

made. However, Go seems to be a bounded game because in each move a stone is 

placed, but there exist capturing moves that reopen spaces on the board. Papadimitriou 

[86], in one of his analyses, concluded that Go is a PSPACE-complete game.  

Actually, being aware of what the adversary is doing helps to formulate defensive ac-

tions that inhibit her offensive actions. The inspired thinking that humans are capable of, 

as a result of observing the decisions other people make, applies in Go gaming through 

performing pattern recognition to decide on the next offensive/defensive move. The pro-

posed NNs recognize forms that are Go tactics patterns and therefore, give relevant in-

formation to strategic decision making during the early and middle stages of a Go match. 

 

4.9 Conclusion 

 

We proposed the use of NNs for pattern recognition during the early and middle steps of 

a Go match; the expert’s a-priori-knowledge for pattern recognition of eyes, ladders and 

nets is efficiently translated by means of NN for Go gaming automation. Based on this 

pattern recognition, defensive/offensive movements, such as those involved in complex 

Go gaming moves, are available to build up and apply during the middle steps of the 

match. On the other hand, during the latter stages of the game, the use of MCTS is ap-

propriate because of the difficulty of performing a-priori-knowledge strategic gaming. A 
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relevant discussion of Go gaming analysis in a perspective of complex networks and 

fractals was introduced, and a mathematical modeling of a Go game was presented.   
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5                                                    

General Conclusion 

 

5.1 Conclusions 

 

The multi-player game modeling is of high complexity, and the strategic analysis of the-

se sports should include a huge amount of parameters for fairly automated decision-

making support.  

The study of strategies in multi-player games such as Baseball and American Football is 

highly relevant so that it deserves an analysis like the one presented in this research 

work, since the selection of the players' strategies is a complex task therefore it needs a 

complex analysis of the match situations, thus proposing a plan of actions in order to 

increase the team expectations of win. 

One contribution of this research work is the use of NE and/or the PE for the selection of 

the strategies of the players and Hungarian algorithm for team formation. This proposed 

methodology was tested through computer simulations of Baseball and AF matches, us-

ing real data of teams from the MLB and NFL. 

In the top strategic game of Baseball, team’s cooperation is essential for success.  The 

usage of combined NE-PE strategy profile leads a Baseball team to choice strategies for 

building the match victory in such a way that every player’s decision is by including from 

the other’s ones. The combined NE-PE, as the applied strategy from the team is losing, 

pushes to close or overcome the match score to the current advantaging team; this 

gaming style mixing Nash individual-self-centered strategy with a Pareto collective-
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optimal cooperation strength the team gaming. The assignment problem is a complex 

task even in sport like Baseball. In this thesis, we used the HA for assigning a set of 

players to a set of Baseball positions in order to improve the team performance and for 

coordination NE and PE as strategic analysis.  

AF is one of the top sport games, the analysis of strategies is essential for a team suc-

cess. In this thesis was presented a formal modeling of American Football using a formal 

grammar and finite state machine. The perspective of cooperation/non-cooperation in-

fluences the team performance. The teams performance using different methods of se-

lection strategies were analyzed concluded that, the use of the NE for selection of strat-

egies showed better team performance than that based on PE.  

Moreover, the results from computer simulations of Baseball matches show that, alt-

hough the usual non-cooperative qualification to NE, it is a relative adjective, up to the 

real circumstance. In the context of a Baseball match, with several parameters out of the 

players’ and manager’s control, NE allows identify strategy profiles for effective coopera-

tion in real circumstances of Baseball gaming. The use of NE prevents to try plays or 

strategies with low statistical occurrence, so to avoid the risk to lose score points. It 

means that NE strategy profiles frequently include plays and strategies with higher sta-

tistical occurrence, so they are more feasible in real circumstances of matches. Fur-

thermore, NE, by avoiding the risk to lose score points induces an effective cooperation 

for a team. On the other hand, PE formal account, it induces to choose the theoretically 

optimum strategy profiles. We observe that the best plays and strategies have low statis-

tical occurrence, so few time to be practiced in real Baseball gaming circumstances. The 

Pareto efficient strategy profiles are less likely to occur than the Nash ones. Strategies in 

Pareto efficient profiles may be the most profitable but their probability of occurrence is 

low, and it moderates the use of Pareto efficiency to identify circumstances of coopera-

tion in real circumstances of Baseball gaming. 

The Go game is a top complex board game and currently, the deployment of learning 

algorithms for Go gaming automation is a central challenge in computer and artificial in-

telligence sciences. We proposed the use of NNs for pattern recognition during the early 

and middle steps of a Go match; the expert’s a-priori-knowledge for pattern recognition 
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of eyes, ladders and nets is efficiently translated by means of NN for Go gaming auto-

mation. Based on this pattern recognition, defensive/offensive movements, such as 

those involved in complex Go gaming moves, are available to build up and apply during 

the middle steps of the match. On the other hand, during the latter stages of the game, 

the use of MCTS is appropriate because of the difficulty of performing a-priori-

knowledge strategic gaming.  

 

5.2 Summary of Contributions 

  

In this section, we describe the major contributions of this doctoral work. 

 

5.2.1 Methods 

  

I. Finite state machines and formal languages for Baseball.  

II. Finite state machines and formal languages for American Football. 

III. Finite state machines and formal languages for the game of Go. 

IV. Selection of strategies by using Nash equilibrium. 

V. Selection of strategies by using Pareto efficiency. 

VI. Selection of strategies by using mix of both methods for Baseball and American 

Football gaming. 

VII. Selection of strategies based on tactics pattern recognition using neural networks 

and based on Monte Carlo tree search. 

 

5.2.2 Products 

 

Software 

I. Baseball simulator with a module for the selection of strategies (using Nash equi-

librium and / or Pareto efficiency). 

II. American Football simulator with a module for the selection of strategies (using 

Nash equilibrium and / or Pareto efficiency). 
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III. An automated Go player, a graphic interface. 

 

Papers 

III. Published papers: 

Journal papers 

3. Matías Alvarado and Arturo Yee, “Nash equilibrium for collec-

tive strategic reasoning”, Expert System with Application, 2012. 39(15). Index-

ing in SCISEARCH, Science Citation Index, Scopus. 

4. Matías Alvarado, Arturo Yee and Germinal Cocho, “Simulation of baseball gam-

ing by cooperation and non-cooperation strategies”, Computación y Sistemas, 

2014. 18(4). Indexing in CONACYT Index of Excellence of Mexican Jour-

nals, Scopus, Redalyc, E-Journal, e-revist@s, Latindex, Biblat, Periodica, DBLP, 

and SciELO. 

 

Congress papers: 

7. Arturo Yee Rendón and Matías Alvarado, "Formal language and reasoning for 

playing Go", Proceedings of LANMR'11, published, 2011. 

8.  Arturo Yee and Matías Alvarado, "Pattern Recognition and Monte-Carlo Tree 

Search for Go Gaming Better Automation", Proceedings of IBERAMIA 2012, LNAI 

7637, 2012. 

9. Matías Alvarado, Arturo Yee and Jesús Fernández, “Simulation of American 

Football Gaming”, Advances in Sport Science and Computer Science, (ISSN: 

1743- 3517), 2014.  

10. Arturo Yee, Reinaldo Rodriguez and Matías Alvarado, “Analysis of Strategies in 

American Football Using Nash Equilibrium”, the proceedings of AIMSA 2014, 

LNCS 8722, 2014. 

11. Arturo Yee and Matías Alvarado, “Methodology for the Modeling of Multi-Player 

Games”, Proceedings of the 18th International Conference on Computers (part of 

CSCC '14), 2014. 
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12. Arturo Yee and Matías Alvarado, “Well-Time pattern recognition in Go gaming au-

tomation”, Mathematical Methods and Computational Techniques in Science and 

Engineering, 2014. 

 

IV. Conferences participations: 

1. “Formal language and reasoning for playing Go”. Seventh Latin American Works 

shop on logic/languages, Algorithms and New Methods of Reasoning, 2011. 

2. “Razonamiento estratégico mediante Equilibrio de Nash en el juego de Béisbol”. 

National Day of logic, Benemérita Universidad Autónoma de Puebla, México, 

2011. 

3. “Pattern Recognition and Monte-Carlo Tree Search for Go Gaming Better Auto-

mation”. The 13th edition of the Ibero-American Conference on Artificial Intelli-

gence IBERAMIA, Cartagena de Indias, Colombia, 2012. 

4. “Simulation of American Football Gaming”. 2013 International Conference on 

Sport Science and Computer Science, Hong Kong, China, 2013. 

5. “Methodology for the Modeling of Multi-Player Games”, The 18th International 

Conference on Computers (part of CSCC '14), Santorini, Grecia, 2014. 

6. “Well-Time pattern recognition in Go gaming automation”, Mathematical Methods 

and Computational Techniques in Science and Engineering, Atenas, Grecia, 

2014. 

 

V. Submitted Papers  

5. Arturo Yee, Matías Alvarado and Germinal Cocho, "Simulation on best team for-

mation and selection of strategies for baseball gaming", 2015, (under-review). 

6. Arturo Yee and Matías Alvarado. “Simulation of strategic choices in an American 

football game", 2015, (under-review). 

7. Matías Alvarado, Carlos Villareal, Sergio Camposortega and Arturo Yee, “Ising 

model for computer Go”, 2015, (under-review). 

8. Arturo Yee and Matías Alvrado, “Mathematical modeling and analysis of learning 

techniques for the game of Go”, 2015, (under-review). 
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Patents 

1. Simulador y módulo para  la selección de estrategias al jugar Beisbol (expediente 

MX/a/2015/002133). 

 

5.2.3 Impact in Media 

 

Table 5.1 shows the impact of the newsletter title: ”Desarrolla Cinvestav simulador para 

preparar estrategias en béisbol”, this information was provided by Luisa Miranda Bar-

botó department chair of comunicación, atención a medios, Cinvestav. 

  

Table 5.1 Information related to the impacts of newsletter. 

Title Media name Web address 

Cinvestav desarrolla simulador 

para preparar estrategias de 

beisbol Alianza Tex 

http://www.alianzatex.com/nota.php?nota=N

0027855 

Juegan matemáticos al béisbol AM http://www.am.com.mx/notareforma/13143 

Diseña Cinvestav simulador para 

preparar estrategias de beisbol 

Avance y Perspec-

tiva 

http://avanceyperspectiva.cinvestav.mx/410

2/disena-cinvestav-simulador-para-

preparar-estrategias-en-beisbol 

Desarrollan simulador para pre-

parar estrategias en beisbol El Imparcial 

http://www.elimparcial.com/EdicionEnLinea/

No-

tas/CienciayTecnologia/10022014/807021-

Desarrollan-simulador-para-preparar-

estrategias-en-beisbol.html 

Juegan matemáticos al béisbol El Norte 

http://www.elnorte.com/ciencia/articulo/786/

1571804/ 

Desarrolla Cinvestav simulador 

para preparar estrategias en 

beisbol En Directo http://endirecto.mx/?p=141471 

Desarrollan simulador para pre-

parar estrategias en beisbol Frontera Ensenada 

http://www.fronteraensenada.info/EdicionEn

Li-

nea/Notas/CienciayTecnologia/10022014/80

7021-Desarrollan-simulador-para-preparar-
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estrategias-en-beisbol.html 

Desarrollan simulador para pre-

parar estrategias en beisbol Frontera.info 

http://www.frontera.info/EdicionEnLinea/Nota

s/CienciayTecnologia/10022014/807021-

Desarrollan-simulador-para-preparar-

estrategias-en-beisbol.html 

Diseña Cinvestav simulador para 

preparar estrategias de beisbol 

Investigación y 

Desarrollo 

http://www.invdes.com.mx/ciencia-

mobil/4076-disena-cinvestav-simulador-

para-preparar-estrategias-en-beisbol 

Desarrollan simulador para pre-

parar estrategias en beisbol La Crónica.com 

http://www.lacronica.com/EdicionEnlinea/Not

as/CienciayTecnologia/10022014/807021-

Desarrollan-simulador-para-preparar-

estrategias-en-beisbol.html 

Desarrollan simulador para pre-

parar estrategias en beisbol Pop Buzz http://www.popbuzz.me/mx/p/3008606/ 

Juegan matemáticos al béisbol Reforma 

http://www.reforma.com/ciencia/articulo/730/

1459397/ 

Científicos mexicanos obtienen 

algoritmo capaz de ser manager 

de beisbol Zona Franca 

http://zonafranca.mx/cientificos-mexicanos-

obtienen-algoritmo-capaz-de-ser-manager-

de-beisbol/ 

Desarrollan simulador para pre-

parar estrategias en beisbol 

Beisbol Sina-

loa.com 

http://www.beisbolsinaloa.com/index.php?op

tion=com_content&view=article&id=13850%

3Adesarrollan-simulador-para-preparar-

estrategias-en-beisbol&catid=103%3Aotras-

noticias&Itemid=130 

Diseña Cinvestav simulador para 

preparar estrategias de beisbol Caribe Noticias 

http://caribenoticias.com/2014/02/11/disena-

cinvestav-simulador-para-prepara-

estrategias-en-beisbol/ 

Desarrolla Cinvestav simulador 

para preparar estrategias en 

beisbol Conversión 21 

http://www.conversion21.com/index.php/prog

ramas-mainmenu-30/6924-desarrolla-

cinvestav-simulador-para-preparar-

estrategias-en-beisbol 

Desarrollan simulador para pre-

parar estrategias en beisbol Enteradísimo 

http://www.enteradisimo.com/noticia/140556

0/desarrollan-simulador-para-preparar-

estrategias-en-beacuteisbol 

Desarrolla Cinvestav simulador 

para preparar estrategias en 

beisbol Gaiabit 

http://www.gaiabit.com/category/cultura-y-

salud/ 
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Play ball La Crónica de Hoy  

Desarrollan simulador para pre-

parar estrategias en beisbol La Jornada.net 

http://www.lajornadanet.com/diario/archivo/2

014/febrero/11/11.php 

Diseña Cinvestav simulador para 

preparar estrategias de beisbol Tiempo en línea 

http://www.tiempoenlinea.com.mx/index.php/

using-

joomla/extensions/components/content-

component/article-categories/83-

demo/news/tech/1650-disena-cinvestav-

simulador-para-preparar-estrategias-de-

beisbol 

IPN desarrolla simulador que 

remplaza a manager de beisbol El Financiero 

http://www.elfinanciero.com.mx/after-

office/ipn-desarrolla-simulador-que-

reemplazaria-a-manager-de-beisbol.html 

IPN desarrolla simulador que 

remplaza a manager de beisbol En Tiempo real http://entiemporealmx.com/?p=174279 
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6                                                         

Future work 

 

6.1 Potential Analysis by Product of our Work 

 

In a broader perspective, our methodology for modeling complex games could analyze 

other types of complex problems such as:  

 Physics aspects.  

 Social dilemmas.  

 

Although this is an idea “thinking out loud”, it could be interesting analyze some aspects 

of these problems and observe how to formulate formal models based on our work. Of 

course, to take any of the mentioned projects we require collaboration with experts on 

these areas.  

 

6.2 Ising Model for Computer Go 

 

In this section, we study a computational algorithm based on an Ising model and com-

mon fate graphs to estimate the value of strategies construction and territory control in 

computer Go. According to the simple rules of Go game, each other adversary single 

black and white stones (atoms) joint on complex stones shapes, struggling for achieving 
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territory control. We define the energy of stones in any Go board configuration by means 

of the Ising model. The Ising model, originally formulated to describe thermodynamic 

properties of ferromagnetic systems, considers a set of dichotomy variables represent-

ing discrete states of magnetization of magnetic dipole moments in atoms (spins). This 

interactions and the action of external fields may induce phase transitions between 

emergent states characterized by diverse degrees of spin ordering. Our point is that the 

Ising model fine describes the relationships among Go allied stones or the fighting with 

adversaries, as a stochastic process among dichotomy variables. The relations between 

stones in the Go board are implemented by assigning spin variables representing stone 

colors. The Go phase transition is displayed when black (white) stones make board area 

dominance by a movement, overriding the white (black) stones after balance dominance 

on this board area. We define the energy of stones in a Go board configuration on the 

base of the strength of these stones arrangement, that is, on the strength of every stone 

and their relative position on board. At the match end the stones with the highest energy 

yields to the winner.  

 

6.2.1 The Ising Model 

 

Our key point is that the Ising model is useful to describe the tactics construction pro-

cess, so the relationships among allied stones or the fighting with adversaries may be 

simulated by the dynamics of this model. In a Go match we consider that a phase transi-

tion is displayed when black (white) stones make board control overriding the white 

(black) ones, and a single color stones prevail over the board. This is observed in a Go 

match when, from an initial configuration where the board appearance is of equilibrium 

between players controlling partial territories, placement of a single stone leads to cap-

ture of adversarial stones and control of most of the formerly shared area. See Figure 

6.1.  
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Figure 6.1 Phase transition by one stone placement on the Go board. 

 

In the Ising model the atomic magnetic moments or spins are represented by dichotomic 

variables    representing the ith-spin state and may acquire any of two values, 1 or -1. 

The spins are arranged in an N-dimensional lattice; each spin interacts with neighboring 

spins or with external magnetic fields that tend to align them in the applied direction. The 

energy interaction is described by the Hamiltonian (6.1). 

 

                                                ∑     

  

    ∑    

 

                                                                (   ) 

Where     represents the interaction strength between spin   and  ,   the magnitude of 

an external magnetic field, and    its relative contribution at site  . For a homogeneous 

external field     . The Ising model has no phase transition in the 1D case, but dis-

plays phase transitions in 2D and higher dimensional cases. The alternative 2D phases 

of the Ising model described above are associated in our model to different stone con-

figurations over the Go board. 

The use of Ising model let us construct an algorithm for modeling tactics in computer Go 

gaming. In our model, the effective interactions between stones are represented by as-

signing a spin variable to each stone and its neighbors. The alternative spin states (1 or 

-1) are identified with the stone colors. The interactions can be graphically depicted in a 

lattice that allows the construction of a common fate graph [53], that yields a fair transla-

tion of the interaction dynamics in a Go match.  
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6.2.2 Go Tactics by Common Fate Graph 

 

A common fate graph (CFG) is a form of representing any given state in a Go board. 

The CFG allows for grouping the stones in different shapes and relationships among 

them, by regarding the structure induced by the sequence of movements during Go 

gaming. CFGs have the following characteristics [53]: 

 Each stone on the board, single or compound, is a principal node in the CFG. 

 Each principal node is labeled with the number of single stones (same color) that 

compose it.  

 Each adjacent liberty to a stone on the board is considered a secondary node un-

labeled and not colored. 

 There are one or more edges between each principal node and one or more sec-

ondary nodes, depending of the liberties that have a compound stone.  

 There is an edge whenever two different color compound stones are adjacent on 

the board  

 

Definition of a CFG is extended. The representation of the stones and different patterns 

between them is shown in Table 6.1. 

 

Table 6.1 Representation of the pattern of the stones for a CFG. 

Patron/move Graphic Repre-

sentation 

Description 

Compound stone 
 

Compound stone of n single stones. 

Single Liberty 
 

Shared liberty between two compound 

stones, regardless of color. 

Eyes 

 

Liberty between same color stones. 

n n

n n

n O n

n O n
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Ladder 
 

 

Liberty on a ladder between different colored 

stones. The color of liberty indicates the color 

of the stone that forms the ladder. 

Net 

 

Liberty in a net between two stones of differ-

ent colors. The color of liberty is the color of 

stone that form the net. 

Invasion 

 

Liberty to indicate that a stone makes inva-

sion of territory control stone (s) opponents. 

The color of liberty is the ones of the stone 

making invasion. 

Reduction 

 

Liberty to indicate that a stone makes reduc-

tion of territory control stone (s) opponents. 

The color of liberty is the ones of the stone 

making reduction. 

 

 

6.2.3 Example of CFG 

 

We present an example for representing a given board configuration into a CFG. Figure 

6.2 represents the stones configuration or state in a Go match played by Murakawa with 

black stones versus Chao Chikun with white stones in the 39th Japanese Kisei. We 

used the SGF of the match and built a CFG of the match. Chao Chikun who is one of 

the top players ranked in http://www.go4go.net/.  

n E n

n E n

n N n

n N n

n I n

n I n

n R n

n R n

http://www.go4go.net/
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Figure 6.2 The representation of board configuration and CFG of Murakawa and Chao 

Chikun. 

 

We remark the capacity to represent any Go board configuration by CFG representation, 

and this way the relationships among any Go configuration of stones that represent the 

sequences of tactics and strategies deployed during any Go match.  

 

6.2.4 Go Modeling by Energy Function and CFG 

 

In order to evaluate the energy associated to a given configuration we define an intrinsic 

strength function of a given stone to be introduced in the Ising Hamiltonian Eq. (6.1) de-

fined above. We assume that the interaction strengths     in the Ising model represent 

the ratio of union or repulsion between each pair of single or composite stones. The ex-

ternal field     represents the total number of liberties owned by stone  . The intrinsic 

strength of a single or compound stone is evaluated according to the following (6.2):  

 

                                                            (       
  )                                                    (6.2) 
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where    denotes the number of single stones that form a compound stone,       is a 

positive constant that represents the occurrence of an internal eye (         if there is 

no eye),    is the number of eyes inside a compound stone, and    is the color of the 

stone, 1 for white, and -1 for black. Observe that the term   
    captures the importance 

of the number of eyes into one stone; in particular,      is for a non-capturable stone. 

On the other hand, the value of each     depends on the liberties alongside possible 

paths joining stone   to  . They are affected by the presence and the intrinsic strength of 

adversary stones that may impede the     connection. They are explicitly given by 

    ∑     
(  )

 , where   
(  )

 denotes the intrinsic strength of a stone s lying between   and 

 , and   represents the potency of a tactic pattern: eye (    ), net (    ), ladder (    ), in-

vasion (    ), reduction (    ), and single liberty (     ). These parameters form a total 

order                           , determined by a-priori knowledge of Go tactics 

impact. A given tactic impact is estimated by an averaging procedure of observations of 

real matches between top-level players. A single eye is the top potency tactic for Go, 

followed by a net, a ladder, an invasion and a reduction.  

The use of equations (6.1) and (6.2) permit to evaluate the energies of all the stones on 

the board for the sequence of states in a Go match, including the ultimate state that 

yields the final match. In summary, in order to calculate the energy of a given stone con-

figuration we consider a complete combination of, the intrinsic stone strengths, the inter-

action strengths, the potency of tactics patterns, and the strategic movements. 

The applying of Ising model to characterize a Go match let us identify phase transition-

like phenomena   occurring when a given color stone overrides the adversary one to 

achieve territory control in an isolated domain or the entire board. The evolution leading 

to territory control can be regarded as a phase transition that considers the following as-

pects: 1) The stronger a given color of compound stones the weaker the adversary 

ones; 2) in Ising model, the perturbation from an external field is considered. Likewise 

any stone in the board is affected from the global state in the board at any Go match 

step; 3) in Go game the combined power of allied stones it depends on the relative posi-

tion and each other support arrangement over the board. Hence, Go gaming is fine de-
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scribed by the Ising model. Moreover, the phenomenology of the game may be enlight-

ened by the use of this classic mathematical model of complex interaction.  

 

6.2.5 Experiments and Results 

 

We present one set of experiments that use the present proposal to evaluate the energy 

of every configuration of stones in a Go board, each corresponding to each state of a Go 

match. Thus, the energy of the sequence of states, given by the sequence of made 

movements, is evaluated to decide what color stones has a better placement on the 

board in this state. The estimation from our proposal is compared against the human 

estimation. We use the information of Go matches reported at http://www.go4go.net/. 

Next figures represent the value of the Ising-model-based proposal on each move made 

by each player, blue line for blacks and red line for whites.  

In Figure 6.3 we used the match played by Murakawa as black player versus Chao 

Chikun as white player in the 39th Japanese Kisei. During the first hundred of move-

ments (states) an almost equal energy was present for black and white stones. During 

the movements 100 – 170 the energy values were separated and the separation be-

comes greater during the movements 171 – 230, but energy values become very close 

at the final movements. At the end, the total energy of black player is 667 and for the 

white player is 481. In this match, the result of the match reported in SGF is B+3.5.  

 

http://www.go4go.net/
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Figure 6.3 Stones energy from Ising-model-based proposal to the match of Murakawa 

vs. Chao Chikun 

 

In Figure 6.4, we used a match played by Lee Changho as black player versus Ryu 

Suhang 3p as white player in Korean League 2014. They maintain a close fight during 

70 off 100 movements, so their energies were almost the same in these movements. At 

move 73 a phase transition occurs and in this state and the next ones, the energy for 

blacks becomes each state greater than the energy for whites, until de end of the game. 

At the end, according to our proposal calculus the total energy of black stones is 424 

and for the white player is -51. In this match, the result of the match reported in SGF is 

B+R. 

In both of the described experiments the final result we got using our proposal is accord-

ing to the one calculated by human Go players. We observe the closed fight during most 

of the movements in a match of top qualified Go players.  

We made dozens of simulations with similar experiments to the above described. Next, 

we summarize the results on 30 ones of these matches, using the Ising-model-based 

proposal to evaluate the energy of stones configurations as well as the final result from 
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Go matches reported in http://www.go4go.net/. In 19 off 30 matches we got correct re-

sult, 8 off 30 we got close to correct result (minor error than 5%), and we got a bit non-

correct result error, in a range of 6% - 10%, close to the correct match score. Please, 

see related material visiting 

http://delta.cs.cinvestav.mx/~matias/Teoria_Juegos/Go/EnergyFunction. 

 

 

Figure 6.4 Stones energy from Ising-model-based proposal to the match of Lee 

Changho vs. Ryu Suhang. 

 

 

 

 

 

http://www.go4go.net/
http://delta.cs.cinvestav.mx/~matias/Teoria_Juegos/Go/EnergyFunction
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Appendix 2.A 

 

Here, we presented a deterministic FSM for Baseball gaming (see Figure 2.A.1). The 

FSM presented in (Figure 2.2) is non-deterministic, since in some states there are not 

transitions defined for every element of the alphabet; but for the smart modeling of 

Baseball gaming, this FSA works since it is able to recognize any string of the language 

generated by the Baseball formal grammar. The deterministic FSM that covers all the 

transitions given any state and any element from the alphabet follows (see Figure 

2.A.1).  

 

Let ( ,  ̂,   ,  ,  ) be a deterministic Baseball FSM such that:  

   is the alphabet, see Table 1.  

  ̂    ,   ,   ,   ,   ,     is the set of states. 

      ̂     ̂ is the transitions function.  

       ̂  is the initial state.  

   { ,   ,   }    ̂ is the set of halt states. 
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Figure 2.A.1. Deterministic baseball FSM 
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