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Abstract

Since the beginning of public-key cryptography, small-characteristic finite fields have
been proposed as basic mathematical structures for implementing electronic com-
munication protocols and standardized algorithms that achieve different information
security objectives. This is because the arithmetic on these fields can be efficiently
realized in the binary and trinary number systems, which are fundamental in mod-
ern computer architectures. This thesis proposes a concrete analysis of the current
security and performance of different primitives based on these fields.

In the first part of this document, we introduce efficient software implementa-
tions of the point multiplication algorithm for two families of binary elliptic curves
which are provided with efficiently computable endomorphisms. The first class is
called Galbraith-Lin-Scott (GLS) curves. There, we present state-of-the-art imple-
mentations based on the Gallant-Lambert-Vanstone decomposition method and on
the Montgomery ladder approach, in order to achieve a high-speed protected and
non-protected code against timing attacks. The second family studied in this thesis
is called anomalous binary curves or Koblitz curves. On these elliptic curves, we
present, for the first time, a timing-attack protected scalar multiplication based on
the regular recoding approach. In addition, we introduce a novel implementation
of Koblitz curves defined over the extension field F4, which resulted in an efficient
arithmetic that exploits the internal parallelism contained in the newest desktop pro-
cessors. All of the previously mentioned implementations are supported by a new
projective coordinate system, denoted lambda-coordinates, which provides state-of-
the-art formulas for computing the basic point arithmetic operations.

In the second part, we provide a concrete analysis of the impact of the recent ap-
proaches for solving the discrete logarithm problem (DLP) in small-characteristic
fields of cryptographic interest. After that, we realize practical attacks against
fields proposed in the literature to realize pairing-based protocols. Finally, we study
the practical implications of the Gaudry-Hess-Smart attack against the binary GLS
curves. For that purpose, we analyze and implement techniques to improve the effi-
ciency of the Enge-Gaudry algorithm for solving the DLP over hyperelliptic curves.
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Resumen

Desde el inicio de la criptograf́ıa de llave pública, los campos finitos de caracteŕıstica
chica han sido propuestos como estructuras matemáticas en implementación de pro-
tocolos de comunicación electrónica, cuyo objetivo es garantizar distintos atributos
de seguridad. Estas estructuras son propuestas porque pueden ser implementadas
eficientemente en sistemas numéricos binarios o ternarios, los cuales son intŕınsecos
de las arquitecturas computacionales modernas. En esta tesis se realiza un análisis
de la seguridad y eficiencia de distintas primitivas basadas en estos campos finitos.

En la primera parte de la tesis, presentamos la implementación eficiente en soft-
ware del algoritmo para la multiplicación escalar de puntos en dos familias de curvas
eĺıpticas binarias, las cuales cuentan con endomorfismos eficientemente computables.
La primera familia es la llamada de Galbraith-Lin-Scott (GLS). En estas curvas
presentamos implementaciones construidas con los métodos de Gallant-Lambert-
Vanstone y la escalera de Montgomery, con la finalidade de computar una multi-
plicación escalar eficiente y protegida contra ataques de canal lateral. La segunda
familia es la denominada como curvas binarias anómalas o curvas de Koblitz. En esta
familia presentamos, de manera inédita, la implementación del algoritmo de multipli-
cación escalar de puntos protegida contra ataques de canal lateral, basados en tiempo,
mediante la técnica de recodificación regular. Además, introducimos una novedosa
implementación de las curvas de Koblitz definidas sobre la extensión de campo F4,
lo que resultó en una aritmética eficiente que toma vantaja del paralelismo ofrecido
por los procesadores de escritorio más recientes. Todas las implementaciones men-
cionadas fueron basadas en el nuevo sistema de coordinadas proyectivas lambda que
aportan formulas al “estado del arte” para el cómputo de la aritmética de puntos.

En la segunda parte, realizamos un análisis del impacto de los avances recientes
en la solución del problema del logaritmo discreto (PLD) en campos finitos de car-
acteŕıstica chica de interes criptografico. También, realizamos ataques prácticos en
campos finitos usados en protocolos basados en emparejamientos. Finalmente, im-
plementamos métodos para mejorar la eficiencia del algoritmo de Enge y Gaudry
para resolver el PLD en curvas hiperelipticas.
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Resumo

Desde os primórdios da criptografia de chave pública, corpos finitos de caracteŕıstica
pequena são propostos como estruturas matemáticas para a implementação de pro-
tocolos de comunicação eletrônica que garantem diferentes atributos de segurança
da informação. Estas estruturas são propostas pois podem ser instanciadas eficiente-
mente em sistemas numéricos binários ou ternários, que são inerentes nas arquiteturas
computacionais contemporâneas. Esta tese realiza uma análise dos recentes avanços
em segurança e eficiência em diferentes primitivas baseadas nestes corpos finitos.

Na primeira parte desta tese, descrevemos implementações em software de algo-
ritmos para a multiplicação de pontos em duas famı́lias de curvas eĺıpticas binárias
proporcionadas com endomorfismos eficientemente computáveis. A primeira famı́lia
é chamada curvas Galbraith-Lin-Scott (GLS). Nestas curvas, apresentamos imple-
mentações baseadas no método Gallant-Lambert-Vanstone e na escada de Mont-
gomery com a finalidade de gerar uma multiplicação escalar eficiente e protegida
contra ataques de canal secundário. A segunda famı́lia denominada curvas binárias
anômalas ou curvas de Koblitz. Nesta famı́lia, realizamos, de maneira inédita, imple-
mentações do algoritmo de multiplicação de pontos protegida contra ataques de canal
secundário através da técnica da recodificação regular. Além disso, introduzimos im-
plementações das curvas de Koblitz definidas sobre o corpo de extensão F4, o que
resultou em uma aritmética eficiente e que aproveita o paralelismo interno presente
nos processadores desktop. Todas as implementações mencionadas são constrúıdas
sobre um novo sistema de coordenadas projetivas denominadas coordenadas lambda,
que fornecem fórmulas de alto ńıvel para o cálculo da aritmética de pontos.

Na segunda parte, proporcionamos uma análise dos avanços recentes na resolução
do problema do logaritmo discreto (PLD) em corpos finitos de caracteŕıstica pequena
destinados ao uso criptográfico. Em seguida, efetuamos ataques práticos em corpos
finitos usados em protocolos baseados em emparelhamentos. Finalmente, estudamos
as implicações práticas do ataque Gaudry-Hess-Smart em curvas binárias GLS. Para
tal propósito, implementamos técnicas para melhorar a eficiência do algoritmo de
Enge e Gaudry para resolver o PLD em curvas hipereĺıpticas.
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Résumé

Depuis les débuts de la cryptographie asymétrique, les corps finis de petite car-
actéristique sont proposés comme structures mathématiques pour les protocoles de
communication électronique, réalisant ainsi plusieurs des objectifs de securité. Ces
structures sont proposées parce qu’elles peuvent être efficacement implémentées dans
les systèmes numériques binaires ou ternaires, inhérents aux architectures informa-
tiques contemporaines. Cette thèse effectue une analyse des progrès en sécurité et
en efficacité d’objets mathématiques cryprographiques basés sur ces corps finis.

Dans la première partie, nous presentons différentes implémentations logicielles ef-
ficaces de l’algorithme de multiplication de points sur deux famillies de courbes ellip-
tiques binaires possédant des endomorphismes efficacement calculables. La première
catégorie concerne les courbes de Galbraith-Lin-Scott (GLS). Nous presentons des
implémentations de multiplication de points basées sur la méthode de décomposition
Gallant-Lambert-Vanstone et sur l’échelle de Montgomery pour développer un code
rapide, en version protegée et en version non-protegée contre les attaques par canaux
auxiliaires. La deuxième catégorie est composée des courbes de Koblitz. Sur ces
courbes, nous presentons pour la première fois, un algorithme de multiplication par
un scalaire protegé contre les attaques par canaux auxiliaires, basé sur la méthode de
la reprogrammation regulière. De plus, nous introduisons une nouvelle implémentation
des courbes de Koblitz définies sur le corps fini F4, qui jouit d’arithmétique efficace ex-
ploitant le parallelisme interne des processeurs desktop. Toutes nos implémentations
sont supportées par un nouveau système de coordonnées projectives, coordonnées
lambda, qui fournit une représentation plus adaptée à l’arithmétique de points.

Dans la deuxième partie, nous présentons une analyse de l’impact des nouvelles
méthodes pour résoudre le problème du logarithme discret (DLP) dans les corps finis
considerés. En suite, nous procédons à des attaques pratiques contre des corps de
base de courbes elliptiques pairing-friendly. Finalement, nous étudions les implica-
tions practiques de l’attaque Gaudry-Hess-Smart contre les courbes GLS. Pour cela,
nous mettons en œuvre des techniques pour améliorer l’efficacité de l’algorithme de
Enge-Gaudry pour résoudre le DLP dans les courbes hyper-elliptiques.

xi



xii RÉSUMÉ
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1 | Introduction

Extension fields of small characteristic are quite useful for implementing crypto-
graphic primitives. This is because their elements can be directly represented in the
binary or ternary number system, which is inherent to the modern computers based
on integrated circuits. As a consequence, the small-characteristic field arithmetic
functions are usually more efficient when compared with large prime fields.

For instance, let us consider the basic two-word schoolbook multiplication. We
want to multiply two field elements c = a × b, where each of them is stored in
two machine registers, namely, (a0, a1) and (b0, b1). The schoolbook multiplication
operation is depicted in Figure 1.1.

Figure 1.1: The two-word schoolbook multiplication

Given that our architecture is embedded with native multipliers with and without
carry, which is the case of modern high-end desktops and smart devices, the four
multiplication operations (a0 × b0), (a1 × b0), (a0 × b1) and (a1 × b1) are similar in

1
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terms of efficiency for the binary and the prime field cases1,2.
However, when we analyze the schoolbook addition phase, the costs differ between

the large and small-characteristic fields. If we consider binary fields constructed
with a polynomial basis, the addition function is realized easily with the exclusive-or
logical operator, since the polynomials that represent the field elements are added
coefficient-wise and reduced modulo two. As a result, it is not required to man-
age carries. On the other hand, in large characteristic fields, we must control the
carry values that could appear during the intermediate additions, with makes the
implementation more cumbersome and, consequently, less efficient.

Considering the advantage, in terms of efficiency, of the small-characteristic fields,
one could ask: why aren’t those fields prevalent in real-world cryptographic proto-
cols? The reason is that, in terms of security, the structure inherent to cryptographic
primitives constructed over small-characteristic fields allows a wider and more pow-
erful range of attacks. If we consider the binary elliptic curves, different approaches
for solving the discrete logarithm problem (ECDLP) were devised in the last decades
[58]. In small-characteristic fields, impressive progress in solving the DLP were ob-
served in the last five years, which culminated in a quasi-polynomial algorithm [13].

1.1 Motivation

In short, we have currently the following scenario. On the one hand, there exist
different options for selecting efficient and elegant small-characteristic field primitives
which are well-suited for implementation on a wide range of software and hardware
architectures. On the other hand, strong and effective approaches for solving the
mathematical problems beneath those structures were proposed recently and their
progress seem to continue. These circunstances have brought a considerable level
of suspiciousness in the community on applying cryptographic primitives based on
small-characteristic fields to the real-world activities.

In this thesis, we intend to clarify the practical implications of the new advances
on the security of small-characteristic field-based primitives and, at the same time,
demonstrate that those primitives are highly efficient and should be considered in

1In current high-end desktop platforms (e.g. Intel Haswell) the 64-bit carry-less multiplier has a
latency of 7 clock cycles [130], while the 64-bit multiplication with carry is available with a latency
of 4 clock cycles [52].

2For fields of small characteristic greater than two, the multiplication is more costly in software.
This is because there are no native instructions which implement the operation in such fields. One
solution is to implement the multiplication via the expensive comb methods and/or to use a look-up
table approach.
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cryptographic libraries, standards and protocols.

1.2 Outline

This document is divided into two parts. In the first part, denoted high-speed elliptic
curve cryptography, we focus on the constructive aspects of the small-characteristic
field cryptography. More precisely, we present software implementations of the scalar
multiplication algorithm on elliptic curves defined over binary fields.

In Chapter 2, we introduce a novel system of projective coordinates called lambda
coordinates. Its formulas for point addition, doubling and doubling-and-addition
are presented with their respective proofs. In addition, we compare the cost for
computing the point arithmetic operations with state-of-the-art coordinate systems.
This work was realized along with Diego F. Aranha, Julio López and Francisco
Rodŕıguez-Henŕıquez and published in [119, 120].

Chapter 3 describes 128-bit scalar multiplication implementations on a Galbraith-
Lin-Scott (GLS) curve defined over the quadratic field F22·127 . After giving the details
of our base and quadratic field arithmetic, we present a protected and non-protected
version of the point multiplication algorithm designed with the Gallant-Lambert-
Vanstone method. Finally, we propose and implement new procedures in order to
compute the Montgomery ladder with the halve-and-add and double-and-add ap-
proaches. The work presented in this chapter is based on the papers [119, 120, 118],
coauthored with Diego F. Aranha, Julio López and Francisco Rodŕıguez-Henŕıquez.

In Chapter 4, we devise methods for implementing timing-resistant point multi-
plication algorithms on Koblitz curves. At first, we give details of an adaptation of
the regular recoding procedure proposed by Joye-Tunstall [91] to scalars represented
in the τ -adic form. Next, we propose a new family of Koblitz curves defined over
F4, which resulted in the fastest protected 128-bit secure point multiplication on
those curves. The advances presented in this chapter are a joint work with Diego
F. Aranha, Julio López and Francisco Rodŕıguez-Henŕıquez and were partially pub-
lished in [118].

In the following paragraphs, we present the outline of the second part of this
thesis, entitled discrete logarithm problem. In these chapters, we analyzed and im-
plemented algorithms that solve the discrete logarithm problem (DLP) on small-
characteristic fields of cryptographic interest and on binary GLS curves.

Chapter 5 describes the recent advances on solving the DLP on small-characteristic
fields and presents implementations of those attacks against two pairing-friendly
fields, specifically, F36·137 and F36·163 . In addition, we analyze concretely the impact



4 CHAPTER 1. INTRODUCTION

of the new approaches in other fields of cryptographic interest, namely, F36·509 and
F36·1429 . This work is related to different papers [2, 1, 4, 3], which were couthored
with Gora Adj, Alfred Menezes and Francisco Rodŕıguez-Henŕıquez.

In Chapter 6, we present an implementation of the Gaudry-Hess-Smart attack
(GHS) against a binary GLS curve defined over the field F22·31 . Also, we present
the practical implications of constructing a dynamic factor base, as proposed in [85],
in the relations collection phase of the Enge-Gaudry algorithm for solving the DLP
on hyperelliptic curves. This work was published in [36] and was performed with
Jesús-Javier Chi.

Finally, in Chapter 7, we conclude the thesis by listing more specifically our main
contributions, a collection of open problems and further research themes related to
our main subjects of study.



Part I

High-Speed Elliptic Curve
Cryptography





2 | Lambda Coordinates

From the algorithmic point of view, one of the most effective approaches to accel-
erate the computation of the scalar multiplication is the improvement of the point
arithmetic formulas. The quest for simpler formulas, along with the relatively high
cost of the field inversion operation, which is required by the arithmetic of points
represented in affine coordinates, motivated the development of distinct projective
coordinate systems.

In the case of binary curves, one of the first proposals1 was the homogeneous
projective coordinates system [114, 5], which represents an affine point P = (x, y)
as the triplet (X, Y, Z), where x = X

Z
and y = Y

Z
; whereas in the Jacobian coordi-

nate system [37], a projective point P = (X, Y, Z) corresponds to the affine point
(x = X

Z2 , y = Y
Z3 ). In 1998, López-Dahab (LD) coordinates [105] were introduced,

representing the affine-coordinate x = X
Z

and y = Y
Z2 .

Since then, LD coordinates have become the most studied coordinate system for
binary elliptic curves, with many authors [94, 101, 8, 100, 21] contributing to improve
their performance. In 2007, Kim and Kim [93] presented a 4-dimensional extension
of the LD coordinate system that represents P as (X, Y, Z, T 2), with x = X

Z
, y = Y

T

and T = Z2. In a different vein, Bernstein et al. introduced in [21] a set of complete
formulas2 for binary Edwards elliptic curves.

Alternatively, we have different affine representations for binary elliptic points,
namely, (x, y

x
) and (x, x+ y

x
), which were introduced in [95, 139]. In [139] the latter

representation was designated λ-affine representation of points, and was used for
performing the point doubling operation in [105, 106, 139], the point halving in
[95, 140, 53, 11], and point compression in [107].

The efficiency of a coordinate system is measured by counting the number of field

1The homogeneous projective coordinates were originally proposed to accelerate integer factor-
ization methods based on the elliptic curves [114].

2Given a field K, a complete system of addition laws on an elliptic curve E/K has the property
that for any two points P,Q ∈ E(K), there is an addition law in the collection that can be used to
add P and Q [32].

7
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operations required to perform the point arithmetic functions, namely, addition and
doubling. Usually, only the field multiplication, squaring and inversion operations
are considered, since the costs of the other functions, such as the addition, are usually
negligible3

Also, when presenting coordinate systems costs and formulas, we frequently sep-
arate the point addition into two kinds: full or projective, and mixed. Given two
points P = (XP , YP , ZP ) and Q = (XQ, YQ, ZQ), both in projective coordinates, the
point full addition is the operation

R = (XR, YR, ZR) = P +Q.

The mixed point addition is quite similar: given a point P = (XP , YP , ZP ) in projec-
tive coordinates and a point Q = (xQ, yQ) in affine coordinates, the mixed addition
is the operation R = (XR, YR, ZR) = P + Q. The motives for dividing the point
addition into different categories, are twofold: first, the mixed addition is less expen-
sive than the full addition. In the former, one has that, the coordinate ZQ is equal
to one. Consequently, a few field multiplications are saved. Second, different scalar
multiplication algorithms require the computation of a distinct amount of mixed and
full point multiplication functions. As a result, point multiplication estimations can
be made more reliable and concrete if we consider the aforementioned operations
separately.

2.1 Coordinate systems

In this section, we describe the main binary projective coordinate system formulas for
computing the point doubling and full addition. The mixed addition can be derived
from the full addition formula by taking the normalized version of the projective co-
ordinate. Following the scope of this thesis, we only describe the coordinate systems
related to Weierstrass binary elliptic curves:

E/F2m : y2 + xy = x3 + ax2 + b. (2.1)

3This statement is only true for the binary field arithmetic implemented in high-end desktops. In
the near future, it is expected that the difference between the binary field addition and multiplication
costs become smaller (see Section 7.3.1).
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2.1.1 Affine coordinates

Theorem 1 ([152, Section 2.8]). Let P = (xP , yP ) be a point in a non-supersingular
elliptic curve. Then the formula for computing R = 2P = (xR, yR) is given by:

λ = xP + yP/xP

xR = λ2 + λ+ a

yR = λ · (xP + xR) + xR + yP .

Therefore, one inversion, two multiplications and one squaring are required to
perform point doubling in affine coordinates.

Theorem 2 ([152, Section 2.8]). Let P = (xP , yP ) and Q = (xQ, yQ) be points in
a non-supersingular elliptic curve, with P 6= ±Q. Then the formula for computing
R = P +Q = (xR, yR) is given by:

λ = (yP + yQ)/(xP + xQ)

xR = λ2 + λ+ xP + xQ + a

yR = λ · (xP + xR) + xR + yP .

Then, we need one inversion, two multiplications and one squaring to perform
the point addition in affine coordinates.

2.1.2 Homogeneous projective coordinates

Theorem 3 ([114]). Let P = (XP , YP , ZP ) be a point in a non-supersingular elliptic
curve. Then the formula for computing R = 2P = (XR, YR, ZR) is given by:

A = XP · ZP
B = b · Z4

P +X4
P

XR = A ·B
YR = X4

P · A+B · (X2
P + YP · ZP + A)

ZR = A3.

As a result, seven multiplications and five squarings are needed to implement the
point doubling in homogeneous coordinates.

Theorem 4 ([114]). Let P = (XP , YP , ZP ) and Q = (XQ, YQ, ZQ) be points in a
non-supersingular elliptic curve, with P 6= ±Q. Then the formula for computing
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R = P +Q = (XR, YR, ZR) is given by:

A = XQ · ZP +XP · ZQ
B = YQ · ZP + YP · ZQ
C = A+B

D = A2 · (A+ a · ZP · ZQ) + ZP · ZQ ·B · C
XR = A ·D
YR = C ·D + A2 · (B ·XP + A · YP )

ZR = A3 · ZP · ZQ.

Here, we need sixteen multiplications and one squaring to implement the point full
addition in homogeneous coordinates.

2.1.3 Jacobian projective coordinates

The Jacobian coordinates formulas described in this section are based on [19].

Theorem 5 ([37]). Let P = (XP , YP , ZP ) be a point in a non-supersingular elliptic
curve. Then the formula for computing R = 2P = (XR, YR, ZR) is given by:

A = X2
P

B = A2

C = Z2
P

D = C2

XR = B + b ·D2

ZR = XP · C
YR = B · ZR + (A+ YP · ZP + ZR) ·XR.

As a consequence, five multiplications and five squarings are required to implement
the point doubling in Jacobian coordinates.

Theorem 6 ([37]). Let P = (XP , YP , ZP ) and Q = (XQ, YQ, ZQ) be points in a
non-supersingular elliptic curve, with P 6= ±Q. Then the formula for computing



2.1. COORDINATE SYSTEMS 11

R = P +Q = (XR, YR, ZR) is given by:

A = XP · Z2
Q +XQ · Z2

P

B = YP · Z3
Q + YQ · Z3

P

C = A · ZP
D = B ·XQ + C · YQ
ZR = C · ZQ
E = B + ZR

XR = a · Z2
R +B · E + A3

YR = E ·XR + C2 ·D.

Consequently, fifteen multiplications and five squarings are needed to perform the
point full addition in Jacobian coordinates.

2.1.4 López-Dahab projective coordinates

The López-Dahab coordinates formulas described below is based on [19].

Theorem 7 ([105]). Let P = (XP , YP , ZP ) be a point in a non-supersingular elliptic
curve. Then the formula for computing R = 2P = (XR, YR, ZR) is given by:

A = XP · ZP
B = X2

P

C = B + YP

D = A · C
ZR = A2

XR = C2 +D + a · ZR
YR = (ZR +D) ·XR +B2 · ZR.

In this coordinate system, five multiplications and four squarings are needed to per-
form the point doubling.

Theorem 8 ([105]). Let P = (XP , YP , ZP ) and Q = (XQ, YQ, ZQ) be points in a
non-supersingular elliptic curve, with P 6= ±Q. Then the formula for computing
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R = P +Q = (XR, YR, ZR) is given by:

A = XP · Z2
Q

B = XQ · Z2
P

C = A2

D = B2

E = A+B

F = C +D

G = YP · Z2
Q

H = YQ · Z2
P

I = G+H

J = I · E
ZR = F · ZP · ZQ
XR = A · (H +D) +B · (C +G)

YR = (A · J + F ·G) · F + (J + ZR) ·XR.

As a result, thirteen multiplications and four squarings are required to perform the
point full addition in López-Dahab coordinates.

2.1.5 Coordinate systems summary

In Table 2.1, we summarize the costs for performing the point doubling and full
addition using the previously presented coordinate systems. Here, m̂ represents the
general field multiplication. The symbols m̂a and m̂b mean, respectively, the field
multiplication by the curve parameters a and b. This distinction is made because, in
some scenarios, it is possible to choose those curve parameters with a certain degree
of freedom. As a result, the developer can select the parameters in a way such that
m̂a and m̂b are less costly than m̂. The squaring operation is symbolized by ŝ and
the inversion by î.

We conclude from the above comparison that the López-Dahab coordinate system
is the most efficient projective coordinate system for short binary Weierstrass curves.
The affine coordinate system would outperform it if one field inversion is less or equal
than three multiplications plus three squarings for the point doubling case, and less
or equal than eleven multiplications plus three squarings, for the point full addition
function. In high-end desktop architectures, those scenarios seem very unlikely in
the year term, since the latency and throughput of the carry-less multiplier are being
reduced in the newest processors [129].
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Table 2.1: Binary coordinate systems comparison: field operations

Coordinate system Point doubling Point full addition

Affine 1̂i+ 2m̂+ ŝ 1̂i+ 2m̂+ 1ŝ
Homogeneous 6m̂+ 1m̂b + 5ŝ 15m̂+ 1m̂a + 1ŝ
Jacobian 4m̂+ 1m̂b + 5s 14m̂+ 1m̂a + 5ŝ
López-Dahab 4m̂+ 1m̂a + 4ŝ 13m̂+ 4ŝ

In Table 2.2, we present a coordinate system comparative with respect to memory
usage. Here, we consider the number of values that must be read or written at least
once during the computation of the point operations. During the programming phase,
one can optimize the code in order to reduce the amount of memory that need to be
simultaneously allocated.

Table 2.2: Binary coordinate systems comparison: memory usage. The variables
naming is in accordance with the formulas presented in Section 2.1.

Coordinate system Point doubling Point full addition

Affine
λ+ a+ (xR, yR) + (xP , yP ) λ+ a+ (xR, yR) + (xP , yP ) +

(xR, yR)
Total: 6 Total: 8

Homogeneous
(A,B) + b+ (XR, YR, ZR) +
(XP , YP , ZP )

(A,B,C,D) + a+
(XR, YR, ZR) +
(XP , YP , ZP ) + (XQ, YQ, ZQ)

Total: 9 Total: 14

Jacobian
(A,B,C,D) + b+
(XR, YR, ZR) + (XP , YP , ZP )

(A,B,C,D,E) + a+
(XR, YR, ZR) +
(XP , YP , ZP ) + (XQ, YQ, ZQ)

Total: 11 Total: 15

López-Dahab
(A,B,C,D) + a+
(XR, YR, ZR) + (XP , YP , ZP )

(A,B,C,D,E, F,G,H, I, J)+
(XR, YR, ZR) +
(XP , YP , ZP ) + (XQ, YQ, ZQ)

Total: 11 Total: 19

In the next section, we will present formulas for a new coordinate system that
produces more efficient formulas than the projective systems discussed hitherto.
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2.2 Lambda projective coordinates

As seen in the previous section, in order to have a more efficient elliptic curve arith-
metic, it is standard to use a projective version of the Weierstrass elliptic curve
equation (2.1), where the points are represented in the so-called projective space. In
the following, we describe the λ-projective coordinates, a coordinate system whose
associated group law is introduced in this part.

Given a point P = (xP , yP ) ∈ E(F2m) with xP 6= 0, the λ-affine representa-
tion of P is defined as (xP , λP ), where λP = xP + yP

xP
. The λ-projective point

P = (XP , LP , ZP ) corresponds to the λ-affine point (XP
ZP
, LP
ZP

). The λ-projective equa-
tion form of the Weierstrass equation (2.1) is,

(L2 + LZ + aZ2)X2 = X4 + bZ4. (2.2)

Notice that the condition xP = 0 does not pose a limitation in practice, since the
only point P with xP = 0 that satisfies equation (2.1) is (0,

√
b), which is usually

confined to a subgroup of no cryptographic interest.

2.2.1 Group law

In this section, the formulas for point doubling and addition in the λ-projective
coordinate system are presented. Complementary formulas, when they exist, and
complete proofs follow each given formula.

Theorem 9. Let P = (XP , LP , ZP ) be a point in a non-supersingular curve. Then
the formula for computing R = 2P = (XR, LR, ZR) using the λ-projective represen-
tation is given by

A = L2
P + (LP · ZP ) + a · Z2

P

XR = A2

ZR = A · Z2
P

LR = (XP · ZP )2 +XR + A · (LP · ZP ) + ZR.

As a result, five multiplications and four squarings are required to perform the
point doubling in λ-projective coordinates.

For situations where the multiplication by the b-coefficient is fast, one can replace
a standard multiplication with a multiplication by the constant (a2 + b). We present
below an alternative formula for calculating LR:

LR = (LP +XP )2 · ((LP +XP )2 + A+ Z2
P ) + (a2 + b) · Z4

P +XR + (a+ 1) · ZR.
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Proof of Theorem 9. Let P = (xP , λP ) be a point in an non-supersingular curve.
Then a formula for computing R = 2P = (xR, λR) is given by

xR = λ2
P + λP + a

λR =
x2
P

xR
+ λ2

P + a+ 1.

From [78, Section 3.1.2], we have the formulas: xR = λ2
P + λP + a and yR = x2

P +
λPxR + xR. Then, a formula for computing λR can be obtained as follows:

λR =
yR + x2

R

xR
=

(x2
P + λP · xR + xR) + x2

R

xR

=
x2
P

xR
+ λP + 1 + xR =

x2
P

xR
+ λP + 1 + (λ2

P + λP + a)

=
x2
P

xR
+ λ2

P + a+ 1.

In affine coordinates, the doubling formula requires one division and two squarings.
Given the point P = (XP , LP , ZP ) in the λ-projective representation, an efficient
projective doubling algorithm can be derived by applying the doubling formula to
the affine point (XP

ZP
, LP
ZP

). For xR we have:

xR =
L2
P

Z2
P

+
LP
ZP

+ a =
L2
P + LP · ZP + a · Z2

P

Z2
P

=
A

Z2
P

=
A2

A · Z2
P

.

For λR we have:

λR =

X2
P

Z2
P

T
Z2
P

+
L2
P

Z2
P

+ a+ 1

=
X2
P · Z2

P + A · (L2
P + (a+ 1) · Z2

P )

A · Z2
P

.

From the λ-projective equation, we have the relation A · X2
P = X4

P + b · Z4
P . Then
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the numerator w of λR can also be written as follows,

w = X2
P · Z2

P + A · (L2
P + (a+ 1) · Z2

P )

= X2
P · Z2

P + A · L2
P + A2 + A2 + (a+ 1) · ZR

= X2
P · Z2

P + A · L2
P + L4

P + L2
P · Z2

P + a2 · Z4
P + A2 + (a+ 1) · ZR

= X2
P · Z2

P + A · (L2
P +X2

P ) +X4
P + b · Z4

P + L4
P

+ L2
P · Z2

P + a2 · Z4
P + A2 + (a+ 1) · ZR

= (L2
P +X2

P ) · ((L2
P +X2

P ) + A+ Z2
P ) + A2

+ (a2 + b) · Z4
P + (a+ 1) · ZR.

This completes the proof.

Theorem 10. Let P = (XP , LP , ZP ) and Q = (XQ, LQ, ZQ) be points in a non-
supersingular curve, with P 6= ±Q. Then the addition R = P + Q = (XR, LR, ZR)
can be computed by the formulas

A = LP · ZQ + LQ · ZP
B = (XP · ZQ +XQ · ZP )2

XR = A · (XP · ZQ) · (XQ · ZP ) · A
LR = (A · (XQ · ZP ) +B)2 + (A ·B · ZQ) · (LP + ZP )

ZR = (A ·B · ZQ) · ZP .

Proof of Theorem 10. Let P = (xP , λP ) and Q = (xQ, λQ) be elliptic curve points.
Then a formula for R = P +Q = (xR, λR) is given by

xR =
xP · xQ

(xP + xQ)2
(λP + λQ)

λR =
xQ · (xR + xP )2

xR · xP
+ λP + 1.

Since P and Q are elliptic points on a non-supersingular curve, we have the following
relation: y2

P + xP · yP + x3
P + a · x2

P = b = y2
Q + xQ · yQ + x3

Q + a · x2
Q. The known

formula for computing the x-coordinate of R is given by xR = s2 + s+ xP + xQ + a,
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where s =
yP+yQ
xP+xQ

. Then one can derive the new formula as follows,

xR =
(yP + yQ)2 + (yP + yQ) · (xP + yQ)

(xP + xQ)2

+
(xP + xQ)3 + a · (xP + xQ)2

(xP + xQ)2

=
b+ b+ xQ · (x2

P + yP ) + xP · (x2
Q + yQ)

(xP + xQ)2

=
xP · xQ · (λP + λQ)

(xP + xQ)2
.

For computing λR, we use the observation that the x-coordinate of R − P is xQ.
We also know that for −P we have λ−P = λP + 1 and x−P = xP . By applying the
formula for the x-coordinate of R + (−P ) we have

xQ = xR+(−P ) =
xR · x−P

(xR + x−P )2
· (λR + λ−P )

=
xR · xP

(xR + xP )2
· (λR + λP + 1).

Then λR =
xQ·(xR+xP )2

xR·xP
+ λP + 1.

To obtain a λ-projective addition formula, we apply the formulas above to the
affine points (XP

ZP
, LP
ZP

) and (
XQ
ZQ
,
LQ
ZQ

). Then, the xR coordinate of P + Q can be

computed as:

xR =

XP
ZP
· XQ
ZQ
· (LP

ZP
+

LQ
ZQ

)

(XP
ZP

+
XQ
ZQ

)2

=
XP ·XQ · (LP · ZQ + LQ · ZP )

(XP · ZQ +XQ · ZP )2
= XP ·XQ ·

A

B
.

For the λR coordinate we have:

λR =

XQ
ZQ
· (XP ·XQ·A

B
+ XP

ZP
)2

XP ·XQ·A
B

· XP
ZP

+
LP + ZP
ZP

=
(A ·XQ · ZP +B)2 + (A ·B · ZQ)(LP + ZP )

A ·B · ZP · ZQ
.
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In order that both xR and λR have the same denominator, the formula for xR can
be written as

XR =
XP ·XQ · A

B
=
A · (XP · ZQ) · (XQ · ZP ) · A

A ·B · ZP · ZQ
.

Therefore, xR = XR
ZR

and λR = LR
ZR

. This completes the proof.

Furthermore, we derived an efficient formula for computing the operation R =
2Q+P , with the points Q and P represented in λ-projective and λ-affine coordinates,
respectively.

Theorem 11. Let P = (xP , λP ) and Q = (XQ, LQ, ZQ) be points in a non-
supersingular curve. Then the operation R = 2Q+P = (XR, LR, ZR) can be computed
as follows:

A = L2
Q + LQ · ZQ + a · Z2

Q

B = X2
Q · Z2

Q + A · (L2
Q + (a+ 1 + λP ) · Z2

Q)

C = (xP · Z2
Q + A)2

XR = (xP · Z2
Q) ·B2

ZR = (B · C · Z2
Q)

LR = A · (B + C)2 + (λP + 1) · ZR.
Proof of Theorem 11. The λ-projective formula is obtained by adding the λ-affine
points S = 2Q = (xS, λS) = (XS

ZS
, LS
ZS

) and P = (xP , λP ) with the formula of Theorem
2. Then, the x coordinate of R = S + P is given by

xR =
xS · xP

(xS + xP )2
(λS + λP )

=
XS · xP (LS + λP · ZS)

(XS + xP · ZS)2

=
xP · (X2

Q · Z2
Q + A · (L2

Q + (a+ 1 + λP ) · Z2
Q))

(T + xP · Z2
Q)2

= xP ·
B

C
.

The λR coordinate of S + P is computed as

λR =

XS
ZS
· (xP · BC + xP )2

xP · BC · xP
+ λP + 1

=
A · (B + C)2 + (λP + 1) · (B · C · Z2

Q)

B · C · Z2
Q

.
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The formula for xR can be written with denominator ZR as follows,

xR =
xP ·B
C

=
xP · Z2

Q ·B2

B · C · Z2
Q

.

Therefore, xR = XR
ZR

and λR = LR
ZR

. This completes the proof.

2.2.2 Comparison

Table 2.3 summarizes the costs of the basic operations on points represented by
the λ-projective coordinate system. For comparison purposes, the costs of those
operations with the López-Dahab projective system are also included.

Table 2.3: A cost comparison of the elliptic curve arithmetic using López-Dahab
vs. the λ-projective coordinate system

Operations
Coordinate systems

López-Dahab Lambda

Full addition 13m̂+ 4ŝ 11m̂+ 2ŝ
Mixed addition 8m̂+ m̂a + 5ŝ 8m̂+ 2ŝ

Doubling 3m̂+ m̂a + m̂b + 5ŝ
4m̂+ m̂a + 4ŝ

or 3m̂+ m̂a + m̂b + 4ŝ
Doubling and mixed

11m̂+ 2m̂a + m̂b + 10ŝ 10m̂+ m̂a + 6ŝ
addition

The Lambda coordinate system provides a point full addition formula which is two
multiplications and two squarings cheaper than the LD formula. Also, it outperforms
the LD coordinates in the mixed addition operation by one multiplication by the
curve parameter a and three squarings.

Regarding the point doubling, the alternative Lambda formula saves one squaring,
when compared with LD coordinates. Moreover, the Lambda coordinates allow to
perform the atomic doubling and mixed addition operation (i.e. given the points P
and Q, compute R = 2Q+P ) by one multiplication, one multiplication by the curve
parameter a, one multiplication by the curve parameter b and four squarings faster
than the LD coordinate system.

Finally, the Lambda point doubling and full addition operations require 8 vari-
ables each. This amount is smaller than the Homogeneous coordinates, which is the
most efficient binary projective system in terms of memory usage (see Table 2.2).
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2.3 Summary

In this chapter, we presented a survey on the projective coordinate systems for
binary elliptic curves. For each representation, we gave formulas for computing the
point doubling and full addition operations along with their costs in terms of field
arithmetic functions.

After that, we introduced a new set of projective coordinates denominated lambda
coordinates. Here, we presented formulas and their respecive proofs for the point dou-
bling, mixed addition, full addition and doubling-and-mixed-addition operations.
Those operations, computed in lambda coordinates, outperforms, in terms of effi-
ciency, the state-of-the-art López-Dahab projective coordinates for binary curves.
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Given a point P ∈ E(F2m) of prime order r, the average cost of computing the scalar
multiplication Q = kP by a random n-bit scalar k using the traditional double-and-
add method is about nD+ n

2
A, where D and A are the cost of doubling and adding

a point, respectively.

In 2001, Gallant, Lambert and Vanstone (GLV) [63] presented a technique that
uses efficiently computable endomorphisms, available in certain classes of elliptic
curves, which allows significant speedups in the scalar multiplication computation. If
the elliptic curve is equipped with a non-trivial efficiently computable endomorphism
ψ such that ψ(P ) = δP ∈ 〈P 〉, for some δ ∈ [2, r− 2]. Then the point multiplication
can be computed through the GLV method as,

Q = kP = k1P + k2ψ(P ) = k1P + k2 · δP,

where the subscalars |k1|, |k2| ≈ n/2, can be found by solving a closest vector prob-
lem in a lattice [61]. Having split the scalar k into two parts, the computation of
kP = k1P +k2ψ(P ) can be performed by applying simultaneous multiple point mul-
tiplication techniques [78, Section 3.3.3] that translates into a saving of half of the
doublings required by the execution of a single point multiplication kP .

In 2009, Galbraith, Lin and Scott (GLS) [61] constructed efficient endomorphisms
for a broader class of elliptic curves defined over Fp2 , where p is a prime number,
showing that the GLV technique also applies to these curves. Subsequently, Hanker-
son, Karabina and Menezes investigated in [76] the feasibility of implementing the
GLS curves over F22m .

In this chapter, we present efficient implementations of the 128-bit secure scalar
multiplication over binary GLS curves on high-end desktop architectures. Our work
provides an efficient quadratic finite field arithmetic and takes advantage of the GLS
curve endomorphism to generate fast timing-attack resistant and non-resistant point
multiplication algorithms.

21
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3.1 Binary field arithmetic

A binary extension field F2m of order q = 2m can be constructed by taking an
m-degree polynomial f(x) ∈ F2[x] irreducible over F2. The field F2m is isomor-
phic to F2[x]/(f(x)) and its elements are binary polynomials of degree less than m.
Quadratic extensions of a binary extension field can be built using a degree two monic
polynomial g(u) ∈ F2[u] that happens to be irreducible over Fq. In this case, the
field Fq2 is isomorphic to Fq[u]/(g(u)) and its elements can be represented as a+ bu,
with a, b ∈ Fq. In this chapter, we developed an efficient field arithmetic library for
the field Fq and its quadratic extension Fq2 , with m = 127, which were constructed
by means of the irreducible trinomials f(x) = x127 + x63 + 1 and g(u) = u2 + u+ 1,
respectively.

The following discussion assumes m = 127, but all techniques can be easily
adapted to other field extensions.

3.1.1 Field multiplication over Fq
Given two field elements a, b ∈ Fq, the field multiplication can be performed by poly-
nomial multiplication followed by modular reduction as, c = a · b mod f(x). Since
the binary coefficients of the base field elements Fq can be packed as vectors of two
64-bit words, the standard Karatsuba method allows us to compute the polynomial
multiplication step at a cost of three 64-bit products (equivalent to three invoca-
tions of the carry-less multiplication instruction [148]), plus some additions. Due to
the very special form of f(x), modular reduction is especially elegant as it can be
accomplished using essentially additions and shifts.

3.1.2 Field squaring, square root and multi-squaring over Fq
Due to the action of the Frobenius operator, field squaring and square-root are linear
operations in any binary field [136]. These two operations can be implemented at
a very low cost provided that the base field Fq is defined by a square-root friendly
trinomial or pentanomial1. Furthermore, vectorized implementations with simulta-
neous table look-ups through byte shuffling instructions, as presented in [10], kept
square and square-root efficient relative to multiplication even with the acceleration
of field multiplication brought by the native carry-less multiplier.

1The continuing decrease of the carry-less multiplier costs will probably make this requirement
obsolete.
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Multi-squaring, or exponentiation to 2k, with k > 5 is performed via look-up of
per-field constant tables of field elements, as proposed in [7, 30]. For a fixed k, a
table T of 24 · dm

4
e field elements can be precomputed such that

T [j, i0 + 2i1 + 4i2 + 8i3] = (i0z
4j + i1z

4j+1 + i2z
4j+2 + i3z

4j+3)2k

and a2k =
∑dm

4
e

j=0 T [j, ba/24jc mod 24].

3.1.3 Field inversion over Fq
Field inversion in the base field is carried out using the Itoh-Tsujii algorithm [84],
by computing a−1 = a(2m−1−1)2. The exponentiation is computed through the terms
(a2i−1)2k · a2k−1, with 0 ≤ i ≤ k ≤ m − 1. The overall cost of the method is m − 1
squarings and 9 multiplications given by the length of the following addition chain
for m− 1 = 126,

1→ 2→ 3→ 6→ 12→ 24→ 48→ 96→ 120→ 126.

The cost of squarings can be reduced by computing each required 2k-power as a
multi-squaring whenever k > 5. This value was determined experimentally.

3.1.4 Modular reduction

Table 3.1 provides the notation of the vector instructions that were used for perform-
ing the modular reduction algorithms to be presented in this section. This notation
is closely based on [10], but notice that here, we are invoking the three-operand AVX
instructions corresponding to 128-bit SSE instructions. Bitwise logical instructions
operate across two entire vector registers and produce the result in a third vector
register. Bitwise shifts perform parallel shifts in the 64-bit integers packed in a
vector register, not propagating bits between contiguous data objects and requiring
additional instructions to implement 128-bit shifts. Bytewise shifts are different in
both the shift amount, which must be a multiple of 8; and the propagation of shifted
out bytes between the two operands. Byte interleaving instructions take bytes alter-
nately from the lower or higher halves of two vector register operands to produce a
third output register.

For our irreducible trinomial f(x) = x127 + x63 + 1 choice, we use the procedure
shown in Algorithm 1, which requires ten vector instructions to perform a reduc-
tion in the base field Fq. This modular reduction algorithm can be improved when
performing field squaring. In this case, the 253-bit polynomial a2, with a ∈ Fq, is
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Table 3.1: Vector instructions used for the binary field arithmetic implementation

Symbol Description AVX

⊕, ∧, ∨ Bitwise XOR, AND, OR VPXOR, VPAND, VPOR

�64,�64
Bitwise shift of packed 64-bit

VPSLLQ, VPSRLQ
integers

B Bytewise multi-precision shift VPALIGNR

intlo64,
intlhi64

Byte interleaving of packed
64-bit integers

VPUNPCKLBW,
VPUNPCKHBW

represented using two 128-bit registers r1||r0. By observing that the 63-th bit of the
register r1 is zero, the optimized modular reduction algorithm uses just six vector
instructions, as shown in Algorithm 2.

Algorithm 1 Modular reduction by trinomial f(x) = x127 + x63 + 1

Input: 253-bit polynomial d stored into two 128-bit registers r1||r0.
Output: Fq element d mod f(x) stored into a 128-bit register r0.

1: t0 ← (r1, r0) B 64
3: r1 ← r1 �64 1
5: r1 ← inthi64(r1, t0)
7: t0 ← t0 �64 63
9: r1 ← intlo64(t0, t0)
11: return r0

2: t0 ← t0 ⊕ r1

4: r0 ← r0 ⊕ r1

6: r0 ← r0 ⊕ r1

8: r0 ← r0 ⊕ t0
10: r0 ← r0 ⊕ (r1 �64 63)

3.1.5 Half-trace over Fq

The trace function on F2m is the function Tr : F2m → F2 defined as Tr(c) =
∑m−1

i=0 c2i .
The solutions of quadratic equations x2 + x = c over Fq, with Tr(c) = 0, can
be found by means of the half-trace function H : F2m → F2m , which is defined
as H(c) =

∑(m−1)/2
i=0 c22i

. A fast computation of this function can be achieved by
exploiting its linear property,

H(c) = H(
m−1∑
i=0

cix
i) =

m−1∑
i=0

ciH(xi),
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Algorithm 2 Modular reduction by f(x) = x127 +x63 +1 for the squaring operation

Input: 253-bit polynomial a2 stored into two 128-bit registers r1||r0.
Output: Fq element a2 mod f(x) stored into a 128-bit register r0.

1: t0 ← (r1, r0) B 64
3: r1 ← r1 �64 1
5: t0 ← inthi64(r1, t0)
7: return r0

2: t0 ← t0 ⊕ r1

4: r0 ← r0 ⊕ r1

6: r0 ← r0 ⊕ t0

and by using an 8-bit index look-up table T of size 28 · dm
8
e field elements such that,

H(c) =

dm
8
e∑

j=0

T [j, b c
28j
c mod 28].

3.1.6 Field arithmetic over Fq2
Recall that the quadratic extension Fq2 of the base field Fq is built using the monic
trinomial g(u) = u2 + u + 1 ∈ F2[u] irreducible over Fq. An arbitrary field element
a ∈ Fq2 is represented as a = a0 + a1u, with a0, a1 ∈ Fq. Operations in the quadratic
extension are performed coefficient-wise. For instance, the multiplication of two
elements a, b ∈ Fq2 is computed as,

a · b = (a0 + a1u) · (b0 + b1u)

= (a0b0 + a1b1) + (a0b0 + (a0 + a1) · (b0 + b1))u,

with a0, a1, b0, b1 ∈ Fq.
The square and square-root of a field element a is accomplished using the iden-

tities,

a2 = (a0 + a1u)2 = a2
0 + a2

1 + a2
1u,√

a =
√
a0 + a1u =

√
a0 + a1 +

√
a1u,

respectively. The multiplicative inverse c of a field element a is found by solving
the equation a · c = (a0 + a1u)(c0 + c1u) = 1, which yields the unique solution,
c0 = (a0 + a1)t−1 and c1 = a1t

−1, where t = a0a1 + a0
2 + a1

2.

Solving quadratic equations over Fq2 of the form x2 + x = c with Tr(c) = 0,
reduces to the solution of two quadratic equations over Fq, as discussed next. For an
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element a = a0 + a1u ∈ Fq2 , a solution x = x0 + x1u ∈ Fq2 to the quadratic equation
x2 + x = a, can be found by solving the base field quadratic equations,

x2
0 + x2

1 + x0 = a0

x2
1 + x1 = a1.

Notice that, since Tr(a1) = 0, the solution to the second equation above can be found
as x1 = H(a1). Then x0 is determined from x2

0 +x0 = x1 +a1 +a0 +Tr(x1 +a1 +a0).
The solution is x = x0 + (x1 + Tr(x1 + a1 + a0))u [76].

The costs of the quadratic extension arithmetic in terms of its base field operations
and C language implementation are presented in Table 3.2. Throughout this chapter,
we denote (ã, m̃, q̃, s̃, ĩ, h̃, t̃) and (â, m̂, q̂, ŝ, î, ĥ, t̂) the computational effort associated
with the addition, multiplication, square-root, squaring, inversion, half-trace and
trace operations over the base field Fq and its quadratic extension Fq2 , respectively.

Table 3.2: Cost of the field Fq2 ∼= Fq[u]/(u2 + u+ 1) arithmetic with respect to the
base field Fq and its C language implementation

Arithmetic over Fq2
Cost in terms of Number of
Fq arithmetic instructions
operations invoked

Multiplication (m̂) 3m̃+ 4ã 9 PCLMULQDQ + 62 AVX
instr.

Square-root (q̂) 2q̃ + ã 37 AVX instr.
Squaring (ŝ) 2s̃+ ã 33 AVX instr.

Inversion (̂i) ĩ+ 3m̃+ 3ã 36 PCLMULQDQ + 386 AVX
instr. 160 tbl lkup.

Half-trace (ĥ) 2h̃+ t̃+ 2ã 19 AVX instr. + 32 tbl lkup.
‘PCLMULQDQ’, ‘AVX instr.’ and ‘tbl lkup.’ stand for carry-less multiplication,
128-bit SSE/AVX vector instruction and table look-up, respectively.

3.2 GLS binary curves

Let q = 2m and let E/Fq : y2 + xy = x3 + ax2 + b, with a, b ∈ Fq, be a binary elliptic
curve. Also, pick a field element a′ ∈ Fq2 such that Tr(a′) = 1, where Tr is the trace
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function from Fq2 to F2 (see Section 3.1.5). Given #E(Fq) = q+1− t, it follows that
#E(Fq2) = (q + 1)2 − t2. Let us define

Ẽ/Fq2 : y2 + xy = x3 + a′x2 + b, (3.1)

with #Ẽ(Fq2) = (q − 1)2 + t2. It is known that Ẽ is the quadratic twist of E, which
means that both curves are isomorphic over Fq4 under the endomorphism [76]

φ : E → Ẽ,

(x, y) 7→ (x, y + sx),

with s ∈ Fq4\Fq2 satisfying s2 + s = a+ a′.
It is also known that the map φ is an involution, i.e., φ = φ−1. Let π : E → E

be the Frobenius map defined as (x, y) 7→ (x2m , y2m), and let ψ be the composite
endomorphism ψ = φπφ−1 given as,

ψ : Ẽ → Ẽ,

(x, y) 7→ (x2m , y2m + s2mx2m + sx2m).

In this work, the binary elliptic curve Ẽa′,b(Fq2) was defined with the parameters

a′ = u and b ∈ Fq, where b was carefully chosen to ensure that #Ẽa′,b(Fq2) = hr,
with h = 2 and where r is a prime of size 2m− 1 bits. Moreover, s2m + s = u, which
implies that the endomorphism ψ acting over the λ-affine point

P = (x0 + x1u, λ0 + λ1u) ∈ Ẽa′,b(Fq2),

can be computed with only three additions in Fq as

ψ(P ) 7→ ((x0 + x1) + x1u, (λ0 + λ1) + (λ1 + 1)u).

3.2.1 Security

Given a point Q ∈ 〈P 〉, the elliptic curve discrete logarithm problem (ECDLP)
consists of finding the unique integer k ∈ [0, r− 1] such that Q = kP. To the best of
our knowledge, the most powerful attack for solving the ECDLP on binary elliptic
curves was presented in [125] (see also [82, 143]), with an associated computational

complexity of O(2c·m
2/3 logm), where c < 2, and where m is a prime number. This

is worse than generic algorithms with time complexity O(2m/2) for all prime field
extensions m less than N = 2000, a bound that is well above the range used for
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performing elliptic curve cryptography [125]. On the other hand, since a GLS elliptic
curve is defined over a quadratic extension of the field Fq, the generalized Gaudry-
Hess-Smart (gGHS) attack [65, 80] to solve the ECDLP on the curve Ẽ, applies. To
prevent this attack, it suffices to verify that the constant b of Ẽa′,b(Fq2) is not weak.
Nevertheless, the probability that a randomly selected b ∈ F∗q is a weak parameter,
is negligibly small [76].

3.3 GLV scalar multiplication

Let 〈P 〉 be an additively written subgroup of prime order r defined over a GLS curve
Ẽ(Fq2) (see Equation (3.1)). Let k be a positive integer such that k ∈ [0, r−1]. Then,
the scalar multiplication operation, denoted by Q = kP , corresponds to adding P to
itself k − 1 times.

In this section, the most prominent methods for computing the GLV scalar multi-
plication on a GLS binary curve Ẽ are described. Here, we are specifically interested
in the problem of computing the elliptic curve scalar multiplication Q = kP , where
q = 2m with prime m, P ∈ Ẽ(Fq2) is a generator of prime order r and k ∈ Zr is a
scalar of bitlength |k| ≈ |r| = 2m− 1.

3.3.1 The GLV method and the w-NAF representation

Let ψ be a nontrivial efficiently computable endomorphism of Ẽ. Also, let us define
the integer δ ∈ [2, r − 1] such that ψ(Q) = δQ, for all Q ∈ Ẽ(Fq2). Computing kP
via the GLV method consists of the following steps.

First, a balanced length-two representation of the scalar k ≡ k1 + k2δ mod r,
must be found, where |k1|, |k2| ≈ |r|/2. Given k and δ, there exist several methods
to find k1, k2 [78, 124, 92]. However, considering the efficiency of our implmentation,
we decided to follow the suggestion in [61] which selects two integers k1, k2 at random,
performs the scalar multiplication and then returns k ≡ k1 + k2δ mod r, if required.

Having split the scalar k into two parts, the computation of kP = k1P + k2ψ(P )
can be performed by simultaneous multiple point multiplication techniques [75], in
combination with any of the methods to be described next. A further acceleration
can be achieved by representing the scalars k1, k2 in the width-w non-adjacent form
(w-NAF). In this representation, kj is written as an n-bit string kj =

∑n−1
i=0 kj,i2

i,
with kj,i ∈ {0,±1,±3, . . . ,±2w−1 − 1}, for j ∈ {1, 2}. A w-NAF string has a length
n ≤ |kj|+ 1, at most one nonzero bit among any w consecutive bits, and its average
nonzero-bit density is approximately 1/(w + 1).
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3.3.2 Left-to-right double-and-add

The computation of the scalar multiplication kP = k1P +k2ψ(P ) via the traditional
left-to-right double-and-add method, can be achieved by splitting the scalar k as
described above and representing the scalars k1, k2 so obtained in their w-NAF form.
The precomputation step is accomplished by calculating the 2w−2 multiples Pi = iP
for odd i ∈ {1, . . . , 2w−1 − 1}. For the sake of efficiency, those multiples must be
computed in λ-projective form, a task that can be accomplished using the atomic
doubling and addition operation described in Section 2.2.1. This is followed by the
application of the endomorphism to each point Pi so that the multiples ψ(Pi) are
also precomputed and stored. Thereafter, the accumulator Q is initialized at the
point at infinity O, and the digits kj,i are scanned from left to right, one at a time.
The accumulator is doubled at each iteration of the main loop and in case that
kj,i 6= 0, the corresponding precomputed multiple is added to the accumulator as,
Q = Q± Pkj,i . Algorithm 3 illustrates the method just described.

Algorithm 3 GLV left-to-right double-and-add scalar multiplication

Input: P ∈ Ẽ(F22m), scalars k1, k2 of bitlength n ≈ |r|/2, NAF width w
Output: Q = kP

1: Compute w-NAF(ki) for i ∈ {1, 2}
2: for i ∈ {1, . . . , 2w−1 − 1} do Pi = iP and P̃i = ψ(Pi) end for
3: Initialize Q← O

4: for i = n downto t do
5: Q← 2Q
6: if k1,i > 0 then Q← Q+ Pk1,i
7: if k1,i < 0 then Q← Q− Pk1,i
8:

9: if k2,i > 0 then Q← Q+ P̃k2,i
10: if k2,i < 0 then Q← Q− P̃k2,i
11: end for

12: Recode k1, k2 → k.
13: return Q
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3.3.3 Right-to-left halve-and-add

In the halve-and-add method [95, 141], all point doublings are replaced by an opera-
tion called point halving. Given a point P , the halving point operation finds R such
that P = 2R. For the field arithmetic implementation considered in this work, the
halving operation is faster than point doubling when applied on binary curves with
Tr(a′) = 1. Halving a point involves computing a field multiplication, a square-root
extraction and solving a quadratic equation of the form x2 + x = c [53], whose solu-
tion can be found by calculating the half-trace of the field element c, as discussed in
Section 3.1.5.

The halve-and-add method is described as follows. At first, let us compute
k′ ≡ 2n−1k mod r, with n = ‖r‖2. This implies that,

k ≡
n−1∑
i=0

k′n−1−i/2
i + 2k′n mod r,

and therefore

kP =
n−1∑
i=0

k′n−1−i(
1

2i
P ) + 2k′nP.

Then, k′ is represented in its w-NAF form, and 2w−2 accumulators are initialized as,
Qi = O, for i ∈ {1, 3, . . ., 2w−1 − 1}. Thereafter, each one of the n bits of k′ are
scanned from right to left. Whenever a digit k′i 6= 0, the point ±P is added to the
accumulator Qk′i

, followed by P = 1
2
P ; otherwise, only the halving of P is performed.

In a final post-processing step, all the accumulators are added as Q =
∑
iQi, for

i ∈ {1, 3, . . . , 2w−1 − 1}. This summation can be efficiently accomplished using
Knuth’s method [96, Section 4.6.3]. The algorithm outputs the result as Q = kP .
Algorithm 4, with t = n shows a two-dimensional GLV halve-and-add method.

3.3.4 Lambda-coordinates aftermath

Besides enjoying a slightly cheaper, but at the same time noticeable, computational
cost when compared to the LD coordinates, the flexibility of the λ-coordinate system
can improve the customary scalar multiplication algorithms in other more subtle
ways. For instance, in the case of the double-and-add method, the usage of the
atomic doubling and addition operation saves multiplications whenever an addition
must be performed in the main loop. The speedup comes from the difference between
the cost of the atomic doubling and addition (10m̂+ m̂a + 6ŝ) shown in Section 2.2.2
versus the expense of performing a doubling and then adding the points in two
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Algorithm 4 GLV right-to-left halve-and-add scalar multiplication

Input: P ∈ Ẽ(F22m), scalars k1, k2 of bitlength n ≈ |r|/2, NAF width w
Output: Q = kP

1: Calculate w-NAF(ki) for i ∈ {1, 2}
2: for i ∈ {1, . . . , 2w−1 − 1} do Initialize Qi ← O end for

3: for i = n− 1 downto 0 do
4: if k1,i > 0 then Qk1,i ← Qk1,i + P
5: if k1,i < 0 then Qk1,i ← Qk1,i − P
6:

7: if k2,i > 0 then Qk2,i ← Qk2,i + ψ(P )
8: if k2,i < 0 then Qk2,i ← Qk2,i − ψ(P )
9: P ← P/2

10: end for

11: Q←
∑

i∈{1,...,2w−1−1} iQi

12: Recode k1, k2 → k, if necessary.
13: return Q

separate steps (12m̂+ m̂a + 6ŝ). To see the overall impact of this saving in say, the
GLV double-and-add method, one has to calculate the probabilities of one, two or
no additions in a loop iteration.

Basically, three cases can occur in the 2-GLV double-and-add main loop. The
first one, when the digits of both scalars k1, k2 equal zero, we just perform a point
doubling (D) in the accumulator. The second one, when both scalar digits are
different from zero, we have to double the accumulator and sum two points. In this
case, we perform one doubling and addition (DA) followed by a mixed addition (A).
Finally, it is possible that just one scalar has its digit different from zero. Here, we
double the accumulator and add a point, which can be done with only one doubling-
and-addition operation.

Then, as the nonzero bit distributions in the scalars represented by the w-NAF
are independent, we have for the first case,

Pr[k1,i = 0 ∧ k2,i = 0] =
w2

(w + 1)2
, for i ∈ {0, . . . , n− 1}.
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For the second case,

Pr[k1,i 6= 0 ∧ k2,i 6= 0] =
1

(w + 1)2
, for i ∈ {0, . . . , n− 1}.

And for the third case,

Pr[(k1,i 6= 0 ∧ k2,i = 0) ∨ (k1,i = 0 ∧ k2,i 6= 0)] =
2w

(w + 1)2
.

Consequently, the operation count can be written as

n

2

(
w2

(w + 1)2
D +

1

(w + 1)2
(DA+ A) +

2w

(w + 1)2
DA

)

=
(2w + 1)n

2(w + 1)2
DA+

w2n

2(w + 1)2
D +

n

2(w + 1)2
A.

As mentioned before, it is also possible to apply the doubling and addition oper-
ation to speedup the calculation of the multiples of P in the precomputation phase.
For that, we modified the original doubling and addition operation to compute si-
multaneously the points, R, S = 2Q±P , with an associate cost of just 16m̂+m̂a+8ŝ.

More significantly, there is an important multiplication saving in each one of
the point additions in the main loop of the halve-and-add method. This is because
points in the λ-form (x, x + y

x
) are already in the required format for the λ-mixed

addition operation and, therefore do not need to be reconverted to the regular affine
representation as done in [53].

The concrete gains obtained from the λ-projective coordinates can be better ap-
preciated in terms of field operations. Specifically, using the 4-NAF representation of
a 254-bit scalar yields the following estimated savings. The double-and-add strategy
requires 872m̂ + 889ŝ (considering m̂b = 2

3
m̂) and 823m̂ + 610ŝ when performed

with LD and λ-coordinates, respectively. This amounts for a saving of 31% and 5%
in the number of field squarings and multiplications, respectively. The halve-and-add
requires 772m̂ + 255ŝ and 721m̂ + 101ŝ when using LD and λ-coordinates, respec-
tively. The savings that the latter coordinate system yields for this case are 60%
and 6% fewer field squarings and multiplications, respectively. Notice that these
estimations do not consider pre- and post-computation costs.

Table 3.3 presents the estimated costs of the scalar multiplication algorithms in
terms of point doublings (D), halvings (H), additions (A), Doubling and additions
(DA) and GLS endomorphisms (ψ) when performing the scalar multiplication in the
curve Ẽ(Fq2).
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Table 3.3: Operation counts for selected scalar multiplication methods in a binary
GLS curve

Left-to-right
double-and-add

Right-to-left
halve-and-add

No-GLV (LD)
Pre/post 1D + (2w−2 − 1)A 1D + (2w−1 − 2)A
Sc. mult. n

w+1
A+ nD n

w+1
(A+ m̂) + nH

2-GLV (LD)
Pre/post 1D+(2w−2−1)A+2w−2ψ 1D + (2w−1 − 2)A
Sc. mult. n

w+1
A+ n

2
D n

w+1
(A+ m̂) + n

2
H+ n

2(w+1)
ψ

2-GLV (λ)
Pre/post 1D+(2w−2−1)A+2w−2ψ 1D + (2w−1 − 2)A

Sc. mult. (2w+1)n
2(w+1)2

DA+ w2n
2(w+1)2

D +
n

2(w+1)2
A

n
w+1

A+ n
2
H + n

2(w+1)
ψ

‘Pre/post’ and ‘Sc. mult.’ stands for the pre/post-computation and the
scalar multiplication costs, respectively.

3.3.5 Parallel scalar multiplication

In this section, we apply the method given in [7] for computing a scalar multiplication
using two CPU cores. The main idea is to compute k′′ ≡ 2tk mod r, for some
0 < t ≤ n. This produces,

k ≡ k′′n−12n−1−t + . . .+ k′′t 20 + k′′t−1/2
−1 + . . .+ k′′02−t mod r,

which can be rewritten as

kP =
n−1∑
i=t

k′′i (2i−tP ) +
t−1∑
i=0

k′′i

(
1

2−(t−i)P

)
.

This parallel formulation allows to compute Q = kP using the double-and-add and
halve-and-add concurrently, where a portion of k is processed in different cores. The
optimal value for the constant t depends on the performance of the scalar multi-
plication methods and therefore must be found experimentally. The GLV method
combined with the parallel technique just explained is presented in Algorithm 52.

2The pseudo-instruction Barrier refers to an OpenMP synchronization clause that forces each
thread to wait until all the other threads have completed their assigned tasks.
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Algorithm 5 Parallel GLV scalar multiplication

Input: P ∈ Ẽ(F22m), scalars k1, k2 of bitlength n ≈ |r|/2, NAF width w, constant t
Output: Q = kP

1: Calculate w-NAF(ki) for i ∈ {1, 2}

2: for i ∈ {1, . . . , 2w−1 − 1} do
3: Compute Pi = iP and P̃i = ψ(Pi)
4: end for

5: Initialize Q0 ← O
6: for i = n downto t do
7: Q0 ← 2Q0

8: if k1,i > 0 then Q0 ← Q0 + Pk1,i
9: if k1,i < 0 then Q0 ← Q0 − Pk1,i

10: if k2,i > 0 then Q0 ← Q0 + P̃k2,i
11: if k2,i < 0 then Q0 ← Q0 − P̃k2,i
12: end for

13: {Barrier}

2: for i ∈ {1, . . . , 2w−1 − 1} do
3: Initialize Qi ← O
4: end for

5: for i = t− 1 downto 0 do
6: if k1,i > 0 then Qk1,i ← Qk1,i + P
7: if k1,i < 0 then Qk1,i ← Qk1,i − P
8: if k2,i > 0 then Qk2,i ← Qk2,i + ψ(P )
9: if k2,i < 0 then Qk2,i ← Qk2,i − ψ(P )

10: P ← P/2
11: end for

12: Q←
∑

i∈{1,...,2w−1−1} iQi

13: {Barrier}

14: Recode k1, k2 → k, if necessary.
15: return Q← Q+Q0

3.3.6 Protected scalar multiplication

Regular scalar multiplication algorithms attempt to prevent leakage of information
about the (possibly secret) scalar, obtained from procedures that have non-constant
execution times. There are two main approaches to make a scalar multiplication
regular: one is using unified point doubling and addition formulas [21] and the other
is recoding the scalar in a predictable pattern [91]. Both halve-and-add and double-
and-add methods can be modified in the latter manner, with the additional care
that table look-ups to read or write sensitive data need to be completed in constant-
time. This can be accomplished by performing linear passes3 with conditional move
instructions over the accumulators or precomputed points, thus thwarting cache-
timing attacks.

Implementing timing-attack resistance usually imposes significant performance

3The linear pass function is discussed in more details in Chapter 4, Section 4.2.4.
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penalties. For example, the density of regular recodings ( 1
w−1

) is considerably lower
than w-NAF and the access to precomputed data becomes more expensive due to
the linear passes. Efficiently computing a point halving in constant time is specially
challenging, since the fastest methods for half-trace computation require considerable
amounts of memory. This requirement can be relaxed if we assume that the base
points are public information and available to the attacker. Notice however that this
is a reasonable assumption in most protocols based on elliptic curves, but there are
exceptions [35]. In any case, performing linear passes to read and store each one of the
2w−2 accumulators used in the halve-and-add procedure discussed in Section 3.3.3,
impose a significant impact performance at every point addition.

Because of the above rationale, doubling-based methods seem to be a more
promising option for protected implementations. Somewhat surprisingly, the reg-
ular recoding method combined with λ-coordinates admits an atomic formula for
computing mixed addition plus doubling-and-addition as 2Q+Pi +Pj with a cost of
17m̂+m̂a+8ŝ, saving one multiplication compared to performing the additions sepa-
rately. Reading the points Pi, Pj can also be optimized by performing a single linear
pass over the precomputed table. These optimizations alone are enough to compen-
sate the performance gap between point doubling and point halving computations
to be presented in the next section.

The approach for protected scalar multiplication is shown in Algorithm 6. In
this procedure, the scalar k is decomposed into subscalars k1, k2 before the main
loop. Because the regular recoding requires the input scalar to be odd, we modified
slightly the GLV recoding algorithm to produce k2 always odd, with at most one extra
point addition needed to correct the result at the end. This is actually faster than
generating random and possibly even k1, k2 for reconstructing k, because otherwise
two point additions would be needed for correction. These extra point additions
must always be performed for satisfying constant-time execution, but conditional
move instructions can be used to eliminate incorrect results.

3.3.7 Results and discussion

Our library targets the Intel Sandy Bridge processor family. This multi-core micro-
architecture supports carry-less multiplications, the SSE set of instructions [128]
that operates on 128-bit registers and the AVX extension [51], which provides SIMD
instructions in a three-operand format. However, our code can be easily adapted
to any architecture that supports the aforementioned features. The benchmarking
was run on an Intel Xeon E31270 3.4GHz and on an Intel Core i5 3570 3.4GHz
with the TurboBoost and the HyperThreading technologies disabled. The code was
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Algorithm 6 Protected scalar multiplication

Input: P ∈ E(F22m) of order r, k ∈ Zr, NAF width w
Output: Q = kP

1: Decompose k into k1, k2, with k2 always odd.
2: c← 1− (k1 mod 2)
3: k1 ← k1 + c
4: Compute width-w length-l regular recodings of k1, k2.

5: for i ∈ {1, . . . , 2w−1 − 1} do Compute Pi = iP end for

6: Q← Pk1,l−1
+ ψ(Pk2,l−1

)
7: for i = l − 2 downto 0 do
8: Q← 2w−2Q
9: Perform a linear pass to recover Pk1,i , Pk2,i .

10: Q← 2Q+ Pk1,i + ψ(Pk2,i)
11: end for

12: return Q← Q− cP

implemented in the C programming language with intrinsics for vector instructions,
compiled with GCC 4.8.1 and executed on 64-bit Linux. Experiments with the
ICC 13.0 were also carried out and generated similar results. For that reason, we
abstain from presenting timings for that compiler. Also, portions of the code critical
for timing-attack resistance (linear passes over precomputed tables, for example),
were implemented in Assembly language to prevent undue manipulation by a code-
optimizing compiler.

GLS curve parameters

The main parameters of the GLS curve implemented in this chapter are presented
below.

Let q = 2m, with m = 127. The towering of the fields Fq and its quadratic
extension Fq2 ∼= Fq[u]/(g(u)) are constructed by means of the irreducible trinomials
f(x) = x127 + x63 + 1 and g(u) = u2 + u+ 1, respectively. Let

E/Fq : y2 + xy = x3 + ax2 + b,

with a, b ∈ Fq, be a binary elliptic curve and define the quadratic twist of E as the
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Galbraith-Lin-Scott elliptic curve

Ẽ/Fq2 : y2 + xy = x3 + a′x2 + b,

with a′ ∈ Fq2 such that Tr(a′) = 1. Given #E(Fq) = q + 1 − t, it follows that

#Ẽ(Fq2) = (q−1)2 + t2 where t is the trace of Frobenius of the curve E. We selected

a curve such that #Ẽ(Fq2) = h · r, where h = 2 and r is a 253-bit prime number.

In this work, the binary GLS elliptic curve Ẽ(Fq2) was defined with the following
parameters

• a′ = u.

• b ∈ Fq is a degree-126 binary polynomial that can be represented in hexadecimal
format as, b = 0x59C8202CB9E6E0AE2E6D944FA54DE7E5.

• The 253-bit prime order r of the main subgroup of Ẽa′,b(Fq2) is,

r =0x1FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

DAC40D1195270779877DABA2A44750A5.

• The base point P = (xp, λp) of order r specified in λ−affine coordinates is,

xp = 0x203B6A93395E0432344038B63FBA32DE

+ 0x78E51FD0C310696D5396E0681AA10E0D · u,
λp = 0x5BD7653482085F55DEB59C6137074B50

+ 0x7F90D98B1589A17F24568FA5A1033946 · u.

Field and elliptic curve arithmetic timings

Table 3.4 shows that the quadratic field arithmetic can handle the base field elements
with considerable efficiency. Field inversion, squaring and square-root, as well as
the half-trace computational costs are just 1.27, 1.44, 1.87 and 1.43 times higher
than their corresponding base field operations, respectively. Field multiplication in
the quadratic field can be accomplished at a cost of about 2.23 times base field
multiplications, which is significantly better than the theoretical Karatsuba ratio of
three.

The lazy reduction technique was employed to optimize the λ-coordinate formu-
las. Nevertheless, experimental results showed us that this method should be used
with caution. Extra savings were obtained by considering the separate case of per-
forming mixed addition where the two points have their Z coordinate equal to one
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Table 3.4: Timings (in clock cycles) for the field arithmetic in the Sandy Bridge
platform

Field operation
F2127 F2254

cycles op/m̃a cycles op/m

Multiplication 42 1.00 94 1.00
Mod. reductionb 6 0.14 11 0.12
Square root 8 0.19 15 0.16
Squaring 9 0.21 13 0.14
Multi-squaring 55 1.31 n/ac n/a
Inversion 765 18.21 969 10.30
Half-trace 42 1.00 60 0.64
Trace ≈ 0 0 ≈ 0 0
a Ratio to multiplication.
b This cost is included in all operations that require modular reduction.
c Multi-squaring is computed only in F2127 .

(see Chapter 2). In this case, mixed addition can be performed with just five mul-
tiplications and two squarings. This observation helped us to save more than 1000
cycles in the halve-and-add algorithm computation. The reverse recoding calcula-
tion, that is, given k1, k2 return k ≡ k1 + k2δ mod r can be omitted if not required.
However, in our scalar multiplication timings, this operation was included in all the
cases. The timings for the point arithmetic is presented in Table 3.5.

Scalar multiplication timings

From both algorithmic analysis and experimental results, we decided to use w = 4
for the w-NAF scalar recoding and w = 5 for the regular recoding from [91]. In
the case of our parallel implementation (see Algorithm 5), the parameter t = 72
was selected, which is consistent with the 1.29 ratio between the double-and-add
and halve-and-add computational costs. Notice that in the scalar multiplication
procedure, it was assumed that the points are given and returned in λ-affine form. If
the input and output points must be represented in conventional affine coordinates,
it is necessary to add about 1000 cycles (2m̂+ î) to convert from conventional affine
coordinates to the λ ones at the beginning and at the end of the scalar multiplication
procedure. Furthermore, we observed an average 2% speedup when executing our
code on the newer Ivy Bridge platform. Our scalar multiplication timings, along
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Table 3.5: Timings (in clock cycles) for the point arithmetic in the Sandy Bridge
platform

Elliptic Curve GLS Ẽ/F2254

operation cycles op/M

Doubling 450 4.79
Full addition 1,102 11.72
Mixed addition 812 8.64
Doubling and addition 1,063 11.30
Halving 233 2.48
No-GLV 4-NAF recoding 1,540 16.38
2-GLV 4-NAF recoding 918 9.76
Reverse recoding 396 4.21

with the state-of-the-art implementations, are presented in Table 3.6.

Comparison to related work

Our single-core 4-NAF 2-dimensional GLV implementation achieves 69,500 clock cy-
cles with the halve-and-add method. This result is 20% and 30% faster than the best
implementations of point multiplication at the 128-bit security level over prime [50]
and binary curves [9], respectively. Furthermore, our two-core parallel implementa-
tion using the GLV technique combined with the halve-and-add and double-and-add
methods takes 47,900 clock cycles, thus outperforming by 21% the timings reported
in [102] for a four-core parallel implementation. Also, the single and multi-core imple-
mentations at the 112-bit security level using Koblitz binary curves reported in [148]
outperforms our code by just 2% and 3%, respectively. Finally, our single-core pro-
tected multiplication is 16% faster than [102], 4% faster than [27] and 16% slower
than the current speed record on prime curves [50], but sets a new speed record for
binary curves with an improvement of 49% compared to the previous one [148].

A field multiplication comparative

Trying to have a fair comparison that attenuates the diversity of curves, methods
and technologies, Table 3.7 compares the estimated number of field multiplications
required by implementations that represent the state-of-the-art of unprotected im-
plementations of scalar multiplication computations.
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Table 3.6: Timings (in clock cycles) for scalar multiplication with or without timing-
attack resistance (TAR) in the Intel Sandy Bridge platform. In our implementation
we assume that the input and output points are provided in λ-affine coordinates.
Here, (B) and (P) mean that the curve is binary and prime, respectively. Also, the
“Sec.” column represents the theoretical security in bits

Scalar
multiplication

Curve Sec. Method TAR Cycles

Taverne et al. [148]2 NIST-K233 (B) 112 No-GLV ♦ no 67,800
Bos et al. [27]1 BK/FKT (P) 128 4-GLV ♣ no 156,000
Aranha et al. [9]2 NIST-K283 (B) 128 2-GLV ♦ no 99,200
Longa and Sica [102]2 GLV-GLS (P) 128 4-GLV ♣ no 91,000
Faz-H. et al. [50]2 GLV-GLS (P) 128 4-GLV ♣ no 87,000

Taverne et al. [148]2 NIST-K233 (B) 112 No-GLV, (2 cores) no 46,500
Longa and Sica [102]2 GLV-GLS (P) 128 4-GLV, (4 cores) no 61,000

Taverne et al. [148]2 Curve2251 (B) 128 Mont. ladder yes 225,000
Bernstein [16, 18]2 Curve25519 (P) 128 Mont. ladder yes 194,000
Hamburg [74]3 Montgomery (P) 128 Mont. ladder yes 153,000
Longa and Sica [102]2 GLV-GLS (P) 128 4-GLV ♣ yes 137,000
Bos et al. [27]1 Kummer (P) 128 Mont. ladder yes 117,000
Faz-H. et al. [50]2 GLV-GLS (P) 128 4-GLV ♣ yes 96,000

This work GLS (B) 127

2-GLV ♣ (LD) no 116,700
2-GLV ♣ (λ) no 92,800
2-GLV ♥ (LD) no 82,800
2-GLV ♥ (λ) no 69,500
2-GLV (2 cores, λ) no 47,900
2-GLV ♣ (λ) yes 114,800

1 Intel Core i7-3520M 2.89GHz (Ivy Bridge)
2 Intel Core i7-2600 3.4GHz (Sandy Bridge)
3 Intel Core i7-2720QM 2.2GHz (Sandy Bridge)
♣ Double-and-add ♦ τ -and-add ♥ Halve-and-add

The GLS elliptic curve over a prime field reported in [102] requires 33% more field
multiplications than our code. Nevertheless, it benefits from a highly efficient native
multiplication with carry instruction (MUL), which allows to generate a fast scalar
multiplication. The same observation can be extended to protected implementations
when comparing between prime and binary curves.
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Table 3.7: A comparison of several elliptic curve libraries by their required number
of field multiplications

Implementation Field Method
Estimated mult. Field mult.

cost (cc)pre/post sc. mult.

Taverne et al. [148] F2233 No-GLV 92 638 100
Aranha et al. [9] F2283 2-GLV 100 572 142
Longa and Sica
[102]

Fp2 4-GLV 113 1004 80

This work F2254 2-GLV 86 752 94

Faster native multiplication

The Haswell family of processors was launched in 2013, including among other
features, the AVX2 set of vector instructions and a faster carry-less multiplier la-
tency and throughput. The latency of this multiplier, compared to previous micro-
architectures, was reduced from between 12 and 14 cycles to only 7 cycles, while the
reciprocal throughput was reduced from between 7 and 8 cycles to only 2 cycles [52].
In Table 3.8 we report our timings in this platform, specifically in an Intel Core i7
4770K 3.50GHz machine with HyperThreading and TurboBoost disabled.

Table 3.8: Timings and memory requirements for scalar multiplication in the
Haswell platform, assuming that the input and output points are provided in λ-
affine coordinates

Scalar
multiplication

Method TAR Cycles Memory
(bytes)

This work

2-GLV (double-and-add, λ) no 46,700 215 + 4× 64
2-GLV (halve-and-add, λ) no 42,100 216 + 215 + 4×96
2-GLV, parallel (2 cores, λ) no 27,300 216 + 215 + 4×

(96 + 64)
2-GLV (double-and-add, λ) yes 60,000 8× 64

When compared with the Sandy Bridge results (see Table 3.5), the Haswell tim-
ings are about 39% faster for the halve-and-add method and about 48% and 50%
faster for the protected and unprotected double-and-add implementations, respec-
tively. Note that the faster carry-less multiplication plays the main role in the new
results. As a consequence, methods that use more field multiplications, which is
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the case of the double-and-add, benefit the most. The competitiveness between the
double-and-add and halve-and-add methods favors the parallel version, which can
almost achieve a two-factor speed-up. When executed in the Haswell platform, the
two-core 2-GLV method is 43% faster than the Sandy Bridge timings.

Memory requirements

The library presented in this chapter is intended for its application in high-end
platforms where, typically, memory is an abundant resource. Accordingly, several
arithmetic operations aggressively use precomputed tables with the aim of achieving
a faster computation than what could be obtained by a direct calculation.

In particular, the base field implementation of the half-trace operation, uses a
precomputed table of size 28 · dm

8
e field elements. Using m = 128, this translates to

a 216-byte table. The faster field inverse implementation invokes four multi-squaring
operations, but the constant-time implementations uses slower consecutive squarings.
Each one of these multi-squaring operations requires to precompute a table of size
24 · dm

4
e field elements, that translates to a table with a size of 213 bytes. Therefore,

the memory cost associated to the faster field inversion computation in our library is
of 215 bytes. Finally, the halve-and-add scalar multiplication requires the storage of 4
accumulators in projective coordinates; and the double-and-add scalar multiplication
requires the storage of 4 and 8 multiples of the base point for the unprotected and
protected versions, respectively. A summary of the memory costs associated to the
scalar multiplication algorithms presented in this work are reported in the last column
of Table 3.8.

3.4 Montgomery ladder scalar multiplication

In this part, we present new methods aimed to perform fast constant-time variable-
base-point multiplication computation for GLS binary elliptic curves. We introduce a
novel right-to-left variant of the classical Montgomery-López-Dahab ladder algorithm
presented in [104], which efficiently adapted the original ladder idea introduced by
Peter Montgomery in his 1987 landmark paper [114]. The new variant presented
in this chapter does not require point doublings, but instead, it uses the efficient
point halving operation available on binary elliptic curves. In contrast with the
algorithm presented in [104] that does not admit the benefit of precomputed tables,
our proposed variant can take advantage of this technique, a feature that could be
valuable for the fixed-base-point multiplication scenario. Moreover, we show that
our new right-to-left Montgomery ladder formulation can be nicely combined with
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the classical ladder to attain a high parallel acceleration factor for a constant-time
multi-core implementation of the point multiplication operation.

3.4.1 Montgomery ladder variants

This section presents algorithms for computing the scalar multiplication through the
Montgomery ladder method. Again, we let P be a point on a binary elliptic curve of
prime order r and k a scalar of bit length n. Our objective is to compute Q = kP .

Algorithm 7 Left-to-right Montgomery ladder [114]

Input: P = (x, y), k = (1, kn−2, . . . , k1, k0)
Output: Q = kP

1: R0 ← P ; R1 ← 2P ;
2: for i = n− 2 downto 0 do
3: if ki = 1 then
4: R0 ← R0 +R1; R1 ← 2R1

5: else
6: R1 ← R0 +R1; R0 ← 2R0

7: end if
8: end for
9: return Q = R0

Algorithm 7 describes the classical left-to-right Montgomery ladder approach for
point multiplication [114], whose key algorithmic idea is based on the following ob-
servation. Given a base point P and two input points R0 and R1, such that their
difference, R0 − R1 = P, is known, the x-coordinates of the points, 2R0, 2R1 and
R0 +R1, are fully determined by the x-coordinates of P, R0 and R1.

More than one decade after its original proposal in [114], López and Dahab pre-
sented in [104] an optimized version of the Montgomery ladder, which was specifically
crafted for the efficient computation of point multiplication on ordinary binary el-
liptic curves. In this scenario, compact formulas for the point addition and point
doubling operations of Algorithm 7 can be derived from the following result.

Lemma 1 ([104]). Let P = (x, y), R1 = (x1, y1), and R0 = (x0, y0) be elliptic curve
points, and assume that R1 − R0 = P, and x0 6= 0. Then, the x-coordinate of the
point (R0 +R1), x3, can be computed in terms of x0, x1, and x as follows,

x3 =

{
x+ x0·x1

(x0+x1)2
R0 6= ±R1

x2
0 + b

x20
R0 = R1.

(3.2)
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Moreover, the y-coordinate of R0 can be expressed in terms of P, and the x-coordinates
of R0, R1 as,

y0 = x−1(x0 + x)
[
(x0 + x)(x1 + x) + x2 + y

]
+ y. (3.3)

Let us denote the projective representation of the points R0, R1 and R0 + R1,
without considering their y-coordinates as, R0 = (X0,−, Z0), R1 = (X1,−, Z1) and
R0 +R1 = (X3,−, Z3). Then, for the case R0 = R1, Lemma 1 implies,{

X3 = X4
0 + b · Z4

0

Z3 = X2
0 · Z2

0 .
(3.4)

Furthermore, for the case R0 6= ±R1, one has that,{
Z3 = (X0 · Z1 +X1 · Z0)2

X3 = x · Z3 + (X0 · Z1) · (X1 · Z0).
(3.5)

From Equations (3.4) and (3.5) it follows that the computational cost of each
ladder step in Algorithm 7 is 5 multiplications, 1 multiplication by the curve param-
eter b, 4 or 5 squarings4 and 3 additions over the binary extension field where the
elliptic curve has been defined.

In the rest of this section, we will present a novel right-to-left formulation of the
classical Montgomery ladder.

Right-to-left double-and-add Montgomery-LD ladder

Algorithm 8 presents a right-to-left version of the classical Montgomery ladder pro-
cedure. At the end of the i-th iteration, the points in the variables R0, R1 are
R0 = 2i+1P and R1 = `P + P

2
, where ` is the integer represented by the i rightmost

bits of the scalar k. The variable R2 maintains the relationship, R2 = R0 − R1

from the initialization (step 1), until the execution of the last iteration of the main
loop (steps 2-9). This comes from the fact that at each iteration, if ki = 1, then
the difference R0 − R1 remains unchanged. If otherwise, ki = 0, then both R2 and
R0 are updated with their respective original values plus R0, which ensures that
R2 = R0−R1, still holds. Notice however that although the difference R2 = R0−R1

is known, it may vary throughout the iterations.
As stated in Lemma 1, the point additions of steps 4 and 6 in Algorithm 8 can

be computed using the x-coordinates of the points R0, R1 and R2, according to the

4Either b = 1 or
√
b is precomputed. Formula (3.4) can also be computed as Z3 = (X0 · Z0)2

and X3 = (X2
0 +
√
b · Z2

0 )2
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Algorithm 8 Montgomery-LD double-and-add scalar multiplication (right-to-left)

Input: P = (x, y), k = (kn−1, kn−2, . . . , k1, k0)
Output: Q = kP

1: R0 ← P ; R1 ← P
2

; R2 ← P
2

= (R0 −R1);
2: for i = 0 to n− 1 do
3: if ki = 1 then
4: R1 ← R1 +R0;
5: else
6: R2 ← R2 +R0;
7: end if
8: R0 ← 2R0;
9: end for

10: return Q = R1 − P
2

following analysis. If ki = 1, then the x-coordinate of R0 + R1 is a function of
the x-coordinates of R0, R1 and R2, because R2 = R0 − R1. If ki = 0, the x-
coordinate of R2 + R0 is a function of the x-coordinates of the points R0, R1 and
R2, because R0 − R2 = R0 − (R0 − R1) = R1. Hence, considering the projective
representation of the points R0 = (X0,−, Z0), R1 = (X1,−, Z1), R2 = (X2,−, Z2)
and R0 + R1 = (X3,−, Z3), where all the y-coordinates are ignored, and assuming
R0 6= ±R1, we have,

T = (X0 · Z1 +X1 · Z0)2

Z3 = Z2 · T
X3 = X2 · T + Z2 · (X0 · Z1) · (X1 · Z0).

(3.6)

From Equations (3.4) and (3.6), it follows that the computational cost of each ladder
step in Algorithm 8 is 7 multiplications, 1 multiplication by the curve parameter b,
4 or 5 squarings and 3 additions over the binary field where the elliptic curve lies.

Although conceptually simple, the above method has several algorithmic and
practical shortcomings. The most important one is the difficulty to recover, at the
end of the algorithm, the y-coordinate of R1, as in none of the available points (R0,
R1 and R2) the corresponding y-coordinate is known. This may force the decision to
use complete projective formulae for the point addition and doubling operations of
steps 4, 6 and 8, which would be costly. Finally, we stress that to guarantee that the
case R0 = R2 will never occur, it is sufficient to initialize R1 with P

2
, and perform an

affine subtraction at the end of the main loop (step 10).
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In the following subsection we present a halve-and-add right-to-left Montgomery
ladder algorithm that alleviates the above shortcomings and still achieves a compet-
itive performance.

Right-To-Left halve-and-add Montgomery-LD ladder

Algorithm 9 Montgomery-LD halve-and-add scalar multiplication (right-to-left)

Input: P = (x, y), k′ = (k′n−1, k
′
n−2, . . . , k

′
1, k
′
0)

Output: Q = kP
1: Precomputation: x(Pi), where Pi = P

2i
, for i = 0, . . . , n

2: R1 ← Pn; R2 ← Pn;
3: for i = 0 to n− 1 do
4: R0 ← Pn−1−i;
5: if k′i = 1 then
6: R1 ← R0 +R1;
7: else
8: R2 ← R0 +R2;
9: end if

10: end for
11: R1 ← R1 − Pn
12: return R1

Algorithm 9 presents a right-to-left Montgomery ladder procedure similar to Al-
gorithm 8, but in this case, all the point doubling operations are substituted with
point halvings. A left-to-right approach using halve-and-add with Montgomery lad-
der was published in [116], however, this method requires one inversion per iteration,
which degrades its efficiency due to the cost of this operation.

As in any halve-and-add procedure, an initial step before performing the ac-
tual computation consists of processing the scalar k such that it can be equiva-
lently represented with negative powers of two. To this end, one first computes
k′ ≡ 2n−1k mod r, with n = ‖r‖2. This implies that, k ≡

∑n
i=1 k

′
n−i/2

i−1 mod r
and therefore, kP =

∑n
i=1 k

′
n−i(

1
2i−1P ). Then, in the first step of Algorithm 9, n

halvings of the base point P are computed. We stress that all the precomputed
points Pi = P

2i
, for i = 0, . . . , n can be stored in affine coordinates. In fact, just

the x-coordinate of each one of the above n points must be stored (with the sole
exception of the point Pn, whose y-coordinate is also computed and stored).

As in the preceding algorithm, notice that at the end of the i-th iteration, the
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points in the variables R0, R1 are, R0 = P
2n−i−1 , and R1 = `P +Pn, where in this case

` is the integer represented as ` =
i∑

j=0

k′j
2n−j

mod r. Notice also that the variable R2

maintains the relationship, R2 = R0−R1, until the execution of the last iteration of
the main loop (steps 3-10). This comes from the fact that at each iteration, if ki = 1,
then the difference R0 − R1 remains unchanged. If otherwise, ki = 0, then both R2

and R0 are updated with their respective original values plus R0, which ensures that
R2 = R0 −R1, still holds.

Since at every iteration, the values of the points R0, R1 and R0 − R1 are all
known, the compact point addition formula (3.6) can be used. In practice, this
is also possible because the y-coordinate of the output point kP can be readily
recovered using Equation 3.3, along with the point 2P . Moreover, since the points
in the precomputed table were generated using affine coordinates, it turns out that
the z-coordinate of the point R0 is always 1 for all the iterations of the main loop.
This simplifies (3.6) as,

T = (X0 · Z1 +X1)2

Z3 = Z2 · T
X3 = X2 · T + Z2 · (X0 · Z1) · (X1).

(3.7)

Hence, the computational cost per iteration of Algorithm 9 is 5 multiplications, 1
squaring, 2 additions and one point halving over the binary field where the elliptic
curve lies.

GLS Endomorphism The efficient computable endomorphism provided by the
GLS curves can be used to implement the 2-GLV method on the Algorithm 9. As
a result, only n/2 point halving operations must be computed. Besides the speed
improvement, the 2-GLV method reduces to a half the number of precomputed points
that must be stored.

Multi-core Montgomery ladder

As proposed in [148], by properly recoding the scalar, one can efficiently compute
the scalar multiplication in a multi-core environment. Specifically, given a scalar k
of size n, we fix a constant t which establishes how many scalar bits will be processed
by the double-and-add, and by the halve-and-add procedures. This is accomplished
by computing k′ = 2tk mod r, which yields
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k =
k′0
2t

+
k′1

2t−1
+ · · ·+

k′t−1

21︸ ︷︷ ︸
halve−and−add

+
k′t
20

+ 21k′t+1 + 22k′t+2 + · · ·+ 2(n−1)−tk′n−1︸ ︷︷ ︸
double−and−add

.

In a two-core setting, it is straightforward to combine the left-to-right and right-
to-left Montgomery ladder procedures of Algorithms 7 and 9, and distribute them
to both cores. In this scenario, the number of necessary pre-computed halved points
reduces to ∼ n

4
.

In a four-core platform, we can apply the GLS endomorphism to the left-to-right
Montgomery ladder (Algorithm 7). Even though the GLV technique is ineffective
for the classical Montgomery algorithm (due to the fact that we cannot share the
point doublings between the base point and its endomorphism), the method permits
an efficient splitting of the algorithm workload into two cores. In this way, one can
use the first two cores for computing t-digits of the GLV subscalars k1 and k2 by
means of Algorithm 9, while we allocate the other two cores to compute the rest of
the scalar’s bits using Algorithm 7, as shown in Algorithm 10.

Given t4 the integer constant that establishes the workload of each algorithm,
P ∈ E(Fq2), and the scalar k represented as k1 + k2 · δ using the GLS-GLV method,
cores I and II are both responsible for computing bn

2
c − t4 bits of the subscalars k1

and k2 using the Montgomery-LD double-and-add method. In turn, the cores III
and IV , both compute t4 bits of k1 and k2 with the Montgomery-LD halve-and-add
algorithm. In the end, on a single core, it is necessary to add all the accumulators
Qi, for i = 0 . . . 3.

Cost comparison of Montgomery ladder variants

Table 3.9 shows the computational costs associated to the Montgomery ladder vari-
ants described in this Section. The constants t2 and t4 represent the values of the
parameter t chosen for the two- and four-core implementations, respectively.5 All
Montgomery ladder algorithms require a basic post-computation cost to retrieve the
y-coordinate, which demands ten multiplications, one squaring and one inversion.
Due to the application of the GLV technique, the Montgomery-LD-2-GLV halve-
and-add version (corresponding to Algorithm 9), requires some few extra operations,
namely, the subtraction of a point and the addition of two accumulators, which is
performed using the López-Dahab (LD) projective coordinate formulae. In the end,

5In our implementations, the values used for the parameters t2 and t4 ranged from 53 to 55.
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one extra inversion is needed to convert the point representation from LD-projective
coordinates to affine coordinates.

Algorithm 10 Parallel Montgomery ladder scalar multiplication (four-core)

Input: P ∈ E(Fq2) of order r, scalar k of bit length n, integer constant t4
Output: Q = kP
1: k′ ← 2t4k mod r
2: Represent k′ = k′1 + k′2λ, where ψ(P ) = λP

{Initialization}
R0 ← O, R1 ← P
for i = dn2 e downto t4 do

b← k′1,i ∈ {0, 1}
R1−b ← R1−b +Rb
Rb ← 2Rb

end for
Q0 ← R0

{Barrier} Core I

{Initialization}
R0 ← O, R1 ← P
for i = dn2 e downto t4 do

b← k′2,i ∈ {0, 1}
R1−b ← R1−b +Rb
Rb ← 2Rb

end for
Q1 ← R0

{Barrier} Core II

{Precomputation}
for i = 1 to t4 + 1 do

Pi ← P
2i

end for
{Initialization}
R1 ← Pt4+1, R2 ← Pt4+1

for i = 0 to t4 − 1 do
R0 ← Pt4−i
b← k′1,i ∈ {0, 1}
R2−b ← R2−b +R0

end for
Q2 ← R1 − Pt4+1

{Barrier} Core III

{Precomputation}
for i = 1 to t4 + 1 do

Pi ← P
2i

end for
{Initialization}
R1 ← Pt4+1, R2 ← Pt4+1

for i = 0 to t4 − 1 do
R0 ← Pt4−i
b← k′2,i ∈ {0, 1}
R2−b ← R2−b +R0

end for
Q3 ← R1 − Pt4+1

{Barrier} Core IV

3: return Q = Q0 +Q2 + ψ(Q1 +Q3)

In the case of the parallel versions, the overhead is given by the post-computation
done in one single core. The exact costs are mainly determined by the accumulator
additions that are performed via full and mixed LD-projective formulas.
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Table 3.9: Montgomery-LD algorithms cost comparison. In this table,
m̂, m̂a, m̂b, ŝ, î denote the following field operations: multiplication, multiplication
by the curve parameters a and b, squaring and inversion. The point halving opera-
tion is denoted by H. The scalar bitlength is denoted as n

Method Cost

1
-c

o
re

Alg. 7: Montgomery-LD
(double-and-add, left-to-right)

pre/post 10m̂+ 1ŝ+ 1̂i
sc. mult. n(5m̂+ 1m̂b + 4ŝ)

Alg. 9: Montgomery-LD-2-GLV
(halve-and-add, right-to-left)

pre/post 48m̂+ 1m̂a + 13ŝ+ 3̂i
sc. mult. (n

2
+ 1)H + n(5m̂+ 1ŝ)

2
-c

o
re

Montgomery-LD-2-GLV
(double-and-add, left-to-right)

core I
pre/post 25m̂+ 1m̂a + 5ŝ+ 2̂i
sc. mult. (n− t2)(5m̂+1m̂b+4ŝ)

Montgomery-LD-2-GLV
(halve-and-add, right-to-left)

core II
pre/post 46m̂+ 2m̂a + 12ŝ+ 2̂i
sc. mult. ( t2

2
+ 1)H + t2(5m̂+ 1ŝ)

Overhead 15m̂+ 5ŝ+ 1̂i

4
-c

o
re

Montgomery-LD-2-GLV
(double-and-add, left-to-right)

cores pre/post 10m̂+ 1ŝ+ 1̂i
I & II sc. mult. (n

2
− t4)(5m̂+1m̂b+4ŝ)

Montgomery-LD-2-GLV
(halve-and-add, right-to-left)

cores pre/post 16m̂+ 1m̂a + 4ŝ+ 1̂i
III & IV sc. mult. ( t4

2
+ 1)H + t4(5m̂+ 1ŝ)

Overhead 34m̂+ 1m̂a + 12ŝ+ 1̂i

3.4.2 Results and discussion

In this part, we discuss several implementation issues. We also present our ex-
perimental results and we compare them against state-of-the-art protected point
multiplication implementations at the 128-bit security level.

Mechanisms to achieve a constant-time implementation

To protect the previously described algorithms against timing attacks, we observed
the following precautions,

Branchless code The main loop, the pre- and post-computation phases are im-
plemented by code that is completely branch-free.

Data veiling To guarantee a constant memory access pattern in the main loop
of the Montgomery ladder algorithms, we proposed an efficient data veiling method,
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which ensures a fixed memory access pattern for all Montgomery-LD ladder algo-
rithms. Given the two Montgomery-LD ladder accumulators A and B, and the
scalar k = (kn−1, kn−2, . . . k0), this method allows us, in the beginning of the i-th
main loop iteration, to use the bits ki−1 and ki to decide if A and B will or will not
be swapped. As a result, it is not necessary to reapply the procedure at the end of
the i-th iteration.

Algorithm 11 saves a considerable portion of the computational effort associated
to Algorithm 1 of [25].

Algorithm 11 Data veiling algorithm

Input: Scalar digits ki and ki−1, Montgomery-LD ladder accumulators A and B
Output: Montgomery-LD ladder accumulators A and B

1: mask ← 0− (ki−1 ⊕ ki)
2: tmp← A⊕B
3: tmp← tmp ∧mask
4: A← A⊕ tmp
5: B ← B ⊕ tmp
6: return A,B

Field arithmetic Two of the base field arithmetic operations over Fq were imple-
mented through look-up tables, namely, the half-trace and the multiplicative inverse
operations. The half-trace is used to perform the point halving primitive, which is
required in the pre-computation phase of the Montgomery-LD halve-and-add algo-
rithm. The multiplicative inverse is one of the operations in the y-coordinate retrieval
procedure, at the end of the Montgomery ladder algorithms. Also, whenever post-
computational additions are necessary, inverses must be performed to convert a point
from LD-projective to affine coordinates.

Although we are aware of the existence of protocols that consider the base point
as a secret information [35], in which case one could not consider that our software
provides protection against timing attacks, in the vast majority of protocols, the
base point is public. Consequently, any attacks aimed at the two field operations
mentioned above would be pointless.

GLS curve parameters

For achieving a greater benefit from the multiplication by the curve parameter b
in the Montgomery-LD doubling formula X3 = X0

4 + bZ0
4 = (X0

2 +
√
bZ0

2)2 we
carefully selected a GLS curve with a 64-bit value

√
b. As a result, we saved two
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carry-less multiplication and a dozen of SSE instructions per field multiplication.
Next, we describe the parameters, as polynomials represented in hexadecimal, for
our GLS curve Ẽa′,b/Fq2 : y2 + xy = x3 + a′x2 + b.

• a′ = u,

• b = 0x54045144410401544101540540515101,

•
√
b = 0xE2DA921E91E38DD1,

The 253-bit prime order r of the main subgroup of Ẽ/Fq2 is,

r =0x1FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFA6B89E49D3FECD828CA8D66BF4B88ED5.

Also, the integer δ such that ψ(P ) = δP for all P ∈ Ẽ(Fq2) is,

δ =0x74AEFB81EE8A42E9E9D0085E156A8EFBA3D302F9C74D737FA00360F9395C788.

The base point P = (x, y) of order r used in this work is,

x =0x4A21A3666CF9CAEBD812FA19DF9A3380 + 0x358D7917D6E9B5A7550B1B083BC299F3 · u,
y =0x6690CB7B914B7C4018E7475D9C2B1C13 + 0x2AD4E15A695FD54011BA179D5F4B44FC · u.

Finally, the towering of our field Fq ∼= F2[x]/(f(x)) and its quadratic extension
Fq2 ∼= Fq[u]/(g(x)) is constructed by means of the irreducible trinomials f(x) =
x127 + x63 + 1 and g(u) = u2 + u+ 1.

Scalar multiplication timings

Our implementation was mainly designed for the Intel Haswell processor family,
which supports vectorial sets such as SSE and AVX, a carry-less multiplication and
some bit manipulation instructions. The programming was done in C with the sup-
port of assembly inline code. The compilation was performed via GCC version 4.7.3
with the flags -m64 -march=core-avx2 -mtune=core-avx2 -O3 -funroll-loops

-fomit-frame-pointer. Finally, the timings were collected on an Intel Core i7-
4700MQ, with the Turbo Boost and Hyperthreading features disabled.

Table 3.10 presents the experimental timings obtained for the most prominent
building blocks required for computing the point multiplication operation on the
GLS binary elliptic curves.

We present, in Table 3.11, a comparison of our timings against a selection of state-
of-the-art implementations of the point multiplication operation on binary and prime
elliptic curves. Due to the Montgomery-LD point doubling efficiency, which costs
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Table 3.10: Timings (in clock cycles) for the elliptic curve operations in the Intel
Haswell platform

Elliptic curve
operation

GLS Ẽ/F2254

cycles op/M1

Halving 184 4.181
Montgomery-LD D&A (left-to-right) Addition (Eq. (3.5)) 161 3.659
Montgomery-LD H&A (right-to-left) Addition (Eq. (3.7)) 199 4.522

Montgomery-LD Doubling2 (Eq. (3.4)) 95 2.159
1 Ratio to multiplication.
2 The flexibility for finding a curve parameter b, provided by the GLS curves,

allow us to have a small
√
b. As a consequence, we used the Eq. (3.4) alternative

formula.

49% less than a point halving, the GLS-Montgomery-LD-double-and-add achieved
the fastest timing in the one-core setting, with 70,800 clock cycles. This is 13%
faster than the performance obtained by the GLS-Montgomery-LD-halve-and-add
algorithm. In the known-base point setting, we can ignore the GLS-Montgomery-LD-
halve-and-add pre-computation expenses associated with its table of halved points.
In that case, we can compute the scalar multiplication in an estimated time of 44,600
clock cycles using a table of just 4128 bytes.

Furthermore, the GLS-Montgomery-LD-halve-and-add is crucial for implement-
ing the multi-core versions of the Montgomery ladder. When compared with our
one-core double-and-add implementation, Table 3.11 reports a speedup of 1.36 and
2.03 in our two- and four-core Montgomery ladder versions, respectively. Here, be-
sides the overhead costs commented in Section 3.4.1, we can clearly perceive the usual
multicore management penalty. Finally, we observe that our GLS-Montgomery-LD-
double-and-add surpasses by 48%, 40% and 2% the Montgomery ladder implemen-
tations of [25] (Random), [25] (Koblitz) and [17], respectively.

3.5 Summary

In the first part of this chapter, we presented a fast software implementation, aimed
at high-end desktop architectures, of the quadratic field F22·127 arithmetic. This arith-
metic was used as a base for our speed-record 128-bit scalar multiplication on GLS
curves. In order to achieve that, we took advantage of the efficiently computable en-
domorphism present in those curves to design a point multiplication with the 2-GLV
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Table 3.11: Timings (in clock cycles) for 128-bit level scalar multiplication with
timing-attack resistance in the Intel Ivy Bridge (I) and Haswell (H) architectures

Method Cycles Arch

S
ta

te
-o

f-
th

e-
ar

t
im

p
le

m
en

ta
ti

on
s Montgomery-DJB-chain (prime) [42] 148,000 I

Random-Montgomery-LD ladder (binary) [25] 135,000 H
Genus-2-Kummer (prime) [28] 122,000 I
Koblitz-Montgomery-LD ladder (binary) [25] 118,000 H
Twisted-Edwards-4-GLV (prime) [50] 92,000 I
Genus-2-Kummer Montgomery ladder (prime) [17] 72,200 H
GLS-2-GLV double-and-add (binary, λ) [120] 60,000 H

O
u
r

W
o
rk

GLS-Montgomery-LD-2-GLV halve-and-add (Alg. 7) 80,800 H
GLS-Montgomery-LD double-and-add (Alg. 9) 70,800 H
2-core GLS-Montgomery-LD-2-GLV
halve-and-add/double-and-add

52,000 H

4-core GLS-Montgomery-LD-2-GLV
halve-and-add/double-and-add (Alg. 10)

34,800 H

decomposition method along with the halve-and-add approach, for the not-timing-
resistant version, and the double-and-add algorithm for the timing-resistant imple-
mentation. In addition, we presented a 2-core version of our not-timing-resistant
implementation that took less than 30,000 clock cycles.

In the second part, we applied the Montgomery-LD ladder approach to the GLS
curves to achieve an efficent timing-resistant implementation. Also, we designed,
for the first time, a Montgomery-LD halve-and-add point multiplication algorithm
that makes extensive use of pre-computation. Finally, we merged the Montgomery-
LD double-and-add and halve-and-add approaches to generate a 4-core parallel LD-
Montgomery ladder algorithm, which took about 35,000 cycles in a Haswell machine.



4 | Koblitz Curves

The anomalous binary curves, generally referred to as Koblitz curves, are binary
elliptic curves which satisfies the following Weierstrass equation,

Ea : y2 + xy = x3 + ax2 + 1, (4.1)

with a ∈ {0, 1}. Since their introduction in 1991 by Neal Koblitz [99], these curves
were extensively studied for their additional structure that allows, in principle, a
performance speedup in the point multiplication computation.

Let q = 2m, with prime m. The set of affine points P = (x, y) ∈ Fq × Fq that
satisfy Equation 4.1 together with a point at infinity represented as O, forms an
abelian group denoted by Ea(F2m) of order #Ea(F2m) = 2 · (2− a) · r. Its group law
is defined by the point addition operation.

In λ-affine coordinates (see Chapter 2), where the points are represented as
P = (x, λ = x+ y

x
), x 6= 0, the λ-affine form of the curve equation becomes,

Ea : (λ2 + λ+ a)x2 = x4 + 1. (4.2)

The Frobenius map τ : Ea(Fq)→ Ea(Fq) defined by τ(O) = O, τ(x, y) = (x2, y2),
is a curve automorphism satisfying (τ 2 + 2)P = µτ(P ) for µ = (−1)1−a and all
P ∈ Ea(Fq). By solving the equation τ 2 + 2 = µτ , the Frobenius map can be seen as
the complex number τ = (µ±

√
−7)/2. Notice that in λ-coordinates the Frobenius

map action remains the same. Let Λ be the function that tranforms the point coor-
dinates from affine to λ-affine as Λ(x, y) = (x, x+ x

y
), then τ(Λ(x, y)) = (x2, x2 + y2

x2
),

which corresponds to the λ-representation of τ(x, y).
Let Z[τ ] be the ring extension of Z. Since the Frobenius map is computationally

cheap, as long as it is possible to convert an integer scalar k to its τ -representation
k =

∑l−1
i=0 uiτ

i, with ui ∈ Z, its action can be exploited in a point multiplication com-
putation by adding multiples uiτ

i(P ). Solinas [145] proposed exactly that, namely, a
τ -adic scalar recoding analogous to the signed digit scalar non-adjacent form (NAF)
representation.

55
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From the security point of view, it has been argued that the availability of ad-
ditional structure in the form of endomorphisms can be a potential threat to the
hardness of elliptic curve discrete logarithms [20], but limitations observed in ap-
proaches based on isogeny walks is evidence to the contrary [97]. Furthermore, the
generation of Koblitz curves satisfy by definition the rigidity property in the most
strict sense1.

Constant-time compact implementations for Koblitz curves are also easily ob-
tained by specializing the Montgomery-López-Dahab ladder algorithm [104] for the
curve parameter b = 1, although we show below that this is not the most efficient
constant-time implementation strategy possible. Another practical advantage is the
adoption of Koblitz curves by several standards bodies [131], which guarantee in-
teroperability and availability of implementations in many hardware and software
platforms.

The present chapter is divided into two parts. First, a regular τ -adic recoding
method, which is a necessary step in order to implement a timing-resistant scalar
multiplication on Koblitz curves, is proposed. Second, the new recoding method is
used to introduce a 128-bit secure protected point multiplication on a new family of
Koblitz curves defined over F4.

4.1 A novel regular τ-adic approach

Let r be a prime order of a subgroup of Ea(Fq) and k a scalar in Zr. The recoding
approach proposed by Solinas [145] finds an element ρ ∈ Z[τ ], of minimal norm as
possible, such that ρ ≡ k (mod τm−1

τ−1
). A τ -adic expansion with average non-zero

density 1
3

can be obtained by repeatedly dividing ρ by τ and assigning the remainders

to the digits ui to obtain k =
∑i=l−1

i=0 uiτ
i. An alternative approach that does not

involve multi-precision divisions, is to compute the partial reduction2 of the element
k as ρ = k partmod

(
τm−1
τ−1

)
.

A width-w τ -NAF expansion with non-zero density 1
w+1

, where at most one of any
w consecutive coefficients is non-zero, can also be obtained by repeatedly dividing
ρ′ by τw and assigning the remainders to the digit set {0,±α1,±α3, . . . ,±α2w−1−1},
for αi = i mod τw. Under reasonable assumptions, this window-based recoding has
length l ≤ m+ 1 [145].

1The only degree of freedom in the curve generation process consists in choosing a suitable prime
degree extension m that produces a curve with almost-prime order.

2The operation is denoted as partmod in [145].
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In the following sections, a regular recoding version of the width-w τ -NAF expan-
sion is derived. The security advantages of such recoding are the predictable length
and locations of non-zero digits in the expansion. This eliminates any side-channel
information that an attacker could possibly collect regarding the operation executed
at any iteration of the scalar multiplication algorithm (Frobenius map or point ad-
dition). As long as access to the pre-computed points is kept constant, the resulting
algorithm should be resistant against any timing-based side-channel attacks.

4.1.1 Recoding in τ-adic form

Let us first consider the integer recoding proposed by Joye and Tunstall [91]. They
observed that any odd integer i ∈ [0, 2w) can be written as i = 2w−1 + (−(2w−1 − i)).
Repeatedly dividing an odd n-bit integer k− ((k mod 2w)−2w−1) by 2w−1 maintains
the parity and assigns the remainders to the digit set {±1, . . . ,±(2w−1 − 1)}, pro-
ducing an expansion of length d1 + n

w−1
] with non-zero density 1

w−1
. Our solution

for the problem of finding a regular τ -adic expansion employs the same intuition as
explained next.

Let φw : Z[τ ] → Z2w be a surjective ring homomorphism induced by τ 7→ tw,
for t2w + 2 ≡ µtw (mod 2w), with kernel {α ∈ Z[τ ] : τw divides α}. An element
i = i0+i1τ from Z[τ ] with odd integers i0, i1 ∈ [0, 2w) satisfies the analogous property
φw(i) = 2w−1 + (−(2w−1 − φw(i))). Repeated division of

(r0 + r1τ)− (((r0 + r1τ) mod τw)− τw−1)

by τw−1, correspondingly of φw(ρ′) = (r0 + r1tw) − ((r0 + r1tw mod 2w) − 2w−1) by
2w−1, yields remainders that belong to the set {0,±α1,±α3, . . . ,±α2w−1−1}. The
resulting expansion has always length d1 + m+2

w−1
e and non-zero density 1

w−1
.

Algorithm 12 presents the recoding process for any w ≥ 2. The resulting recoding
can also be seen as an adaption of the SPA-resistant recoding of [117], mapping
to the digit set {0,±α1,±α3, . . . ,±α2w−1−1} instead of integers. While the non-
zero densities are very similar, our scheme provides a performance benefit in the
precomputation step, since the Frobenius map is usually faster than point doubling
and preserves affine coordinates, which consequently, allows faster point additions.

4.1.2 Left-to-right regular scalar multiplication

Algorithm 13 presents a complete description of a regular scalar multiplication ap-
proach that uses as a building block the regular width-w τ -recoding recoding proce-
dure just described.
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Algorithm 12 Regular width-w τ -adic expansion for an m-bit scalar

Input: w, tw, αu = βu+γuτ for u = {±1,±3,±5, . . . ,±2w−1−1}, ρ = r0+r1τ ∈ Z[τ ]
with odd r0, r1

Output: ρ =

dm+2
w−1
e∑

i=0

uiτ
i(w−1)

1: for i← 0 to dm+2
w−1
e - 1 do

2: if w = 2 then
3: ui ← ((r0 − 2r1) mod 4)− 2
4: r0 ← r0 − ui
5: else
6: u← (r0 + r1tw mod 2w)− 2w−1

7: if u > 0 then s← 1 else s← −1
8: r0 ← r0 − sβu, r1 ← r1 − sγu, ui ← sαu
9: end if

10: for j ← 0 to (w − 2) do
11: t← r0, r0 ← r1 + µr0/2, r1 ← −t/2
12: end for
13: end for

14: if r0 6= 0 and r1 6= 1 then
15: ui ← r0 + r1τ
16: else
17: if r1 6= 0 then
18: ui ← r1

19: else
20: ui ← r0

21: end if
22: end if

Algorithm 13 Timing attack resistant scalar multiplication

Input: P = (x, λ), k ∈ Zr, width w
Output: Q = kP

1: Compute ρ = r0 + r1τ = k partmod
(
τm−1
τ−1

)
2: if 2|r0 then r′0 = r0 + 1 end if
3: if 2|r1 then r′1 = r1 + 1 end if
4: Compute the width-w length-l regular τ -adic representation of ρ′ = r′0 + r′1τ as∑d1+m+2

w−1
e

i=0 uiτ
i(w−1) (Alg. 12)

5: for i ∈ {1, . . . , 2w−1 − 1} do Compute Pu = αuP end for
6: Q← O
7: for i = l − 1 downto 0 do
8: Q← τw−1(Q)
9: Perform a linear pass to recover Pui

10: Q← Q+ Pui
11: end for
12: return Q = Q− (r′0 − r0)P − (r′1 − r1)τ(P ).



4.1. A NOVEL REGULAR τ -ADIC APPROACH 59

4.1.3 Results and discussion

In this section, we present an implementation of the novel regular recoding technique
on a NIST standardized Koblitz curve defined over F2283 (NIST K-283). In addition,
our work is compared with the state-of-the-art 128-bit secure scalar multiplications.

Mechanisms to achieve a constant-time Koblitz implementation

Implementing Algorithm 13 in constant time requires some attention, since all of its
building blocks must be implemented in constant time.

Finite field arithmetic. Modern implementations of finite field arithmetic make
extensive use of vector registers, which removes timing variances due to the cache
hierarchy. For our illustrative implementation of the curve NIST K-283, we closely
follow the arithmetic described in Bluhm-Gueron [25], adopting the incomplete re-
duction improvement proposed by Nègre-Robert [116].

Integer recoding. All the branches in Algorithm 12 must be eliminated by con-
ditional execution statements in order to prevent leakage3 of the scalar k. Moreover,
to remove the remaining sign-related branches, multiple precision integer arithmetic
must be implemented in two’s complement. If two constants, say βu, γu, are stored
in a precomputed table, then they need to be recovered by a linear pass across the
table in constant time. Finally, it is essential that the partial reduction step also
be implemented in constant time by removing all of its branches. Notice that the
requirement for r0, r1 to be odd is not a problem, since partial reduction can be
modified to always result in odd integers, with a possible correction at the end of
the scalar multiplication by performing a protected conditional subtraction of points
(see Algorithm 13, line 14).

Timings

Similarly to our GLS-Montgomery ladder scalar multiplication implementation (see
Chapter 3), we run our timing-protected point multiplication in a Intel Core i7-
4700MQ (Haswell architecture) with the Turbo Boost and Hyperthreading technolo-
gies disabled. The code was programmed in C language and compiled with GCC 4.7.3
with the flags -m64 -march=core-avx2 -mtune=core-avx2 -O3 -funroll-loops

3In the context of side-channel attacks.
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-fomit-frame-pointer. In Table 4.1 we present the costs of the functions that
form the base of our protected NIST K-283 point multiplication.

Table 4.1: Timings (in clock cycles) for the NIST K-283 elliptic curve operations

Elliptic curve
operation

Koblitz E/F2283

cycles op/m1

Frobenius 70 1.235
Integer τ -adic recoding (Alg. 12) (w = 5) 8,900 156.863

Point addition 602 10.588
1 Ratio to multiplication in F2283 .

In Table 4.2, we show our scalar multiplication results. For benchmarking pur-
poses we also included a baseline implementation of the customary Montgomery
López-Dahab ladder. This allows easier comparisons with related work and permits
to evaluate the impact of incomplete reduction in the field arithmetic performance.

Table 4.2: Timings (in clock cycles) for different 128-bit secure scalar multiplication
implementations with timing-attack resistance in the Intel Ivy Bridge (I) and Haswell
(H) architectures

Method Cycles Arch

S
ta

te
-o
f-
th

e
-a
rt

im
p
le
m
e
n
ta

ti
o
n
s Montgomery-DJB-chain (prime) [42] 148,000 I

Random-Montgomery-LD ladder (binary) [25] 135,000 H
Genus-2-Kummer (prime) [28] 122,000 I
Koblitz-Montgomery-LD ladder (binary) [25] 118,000 H
Twisted-Edwards-4-GLV (prime) [50] 92,000 I
Genus-2-Kummer Montgomery ladder (prime) [17] 72,200 H
GLS-2-GLV double-and-add (binary, λ) [120] 60,000 H

Our Work
Koblitz-Montgomery-LD (left-to-right) 122,000 H
Koblitz-regular τ -and-add (left-to-right, w = 5) 99,000 H

The fast τ endomorphism allows us to have a regular-recoding implementation
that outperforms a standard Montgomery ladder for Koblitz curves by 18%. In
addition, our fastest Koblitz code surpasses by 16% the recent implementation re-
ported in [25] 4. Finally, note that, in spite of the fact that the τ endomorphism is

4We could not reproduce the timing of 118,000 cycles with the code available from [25], which
indicates that TurboBoost could be possibly turned on on their benchmarks. Considering this,
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26% faster than the Montgomery-LD point doubling, the superior efficiency of the
GLS quadratic field arithmetic produces faster results for the GLS double-and-add
algorithm.

4.2 Koblitz curves over F4

Koblitz curves defined over F4 were also proposed in 1991 by Neal Koblitz [99].
However, until nowadays, works related to Koblitz curves have analyzed the security
and performance of curves defined only over F2m , with prime m (for instance, [148,
9, 155]). On the other hand, it has been shown recently [120, 103] that the quadratic
extension field arithmetic is quite efficient when implemented in software. This is
because we execute the same operation in each base element of the extension field
element. For instance, given the quadratic field elements a = a0+a1i and b = b0+b1i,
the addition c = a+b can be performed as c = (a0+b0)+(a1+b1)i (for more examples,
see Section 3.1.6). As a result, we can fully employ the current high-end processors
pipelines and their inherent instruction-level parallelism.

In this work, we designed and implemented, for the first time, a 128-bit secure
and timing attack resistant scalar multiplication on a Koblitz curve defined over
F4. In the next sections, we present the details of the Koblitz curves defined over
quadratic extensions along with the field arithmetic functions. Finally, we discuss
our implementation timings and compare it against the state-of-the-art works.

4.2.1 Introduction

Let q = 2m, with prime m. Koblitz curves over F4 are defined by the following
equation

Ea : y2 + xy = x3 + aγx2 + γ, (4.3)

where γ ∈ F22 satisfies γ2 = γ + 1 and a ∈ {0, 1}.
It is known that, for each proper divisor l of k, E(F4l) is a subgroup of E(F4k)

and #E(F4l) divides #E(F4k). Since m is prime, Ea(F4m) can have almost-prime
order (for instance, E0(F22·163) and E1(F22·167)).

Note that #E0(F4) = 4 and #E1(F4) = 6. In Table 4.3, we present the group
orders #Ea(F4m) of Koblitz curves defined over F4 for prime degrees m ∈ [127, 191].

our implementation of Koblitz-Montgomery-LD becomes 9% faster than [25], reflecting the savings
from partial reduction, and the speedup achieved by the Koblitz-regular implementation increases
to 26%.
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The chosen range is convenient for implementing a 128-bit secure scalar multiplica-
tion on architectures that are provided with 64-bit carry-less multipliers, such as the
modern personal desktops.

Table 4.3: Group orders #Ea(F22m) with prime m ∈ [127, 191]. Prime factors are
underlined. The size (in bits) of the largest prime factor is presented in parenthesis

m a Factorization of #Ea(F22m)

127 0 0x4 · 0x1268F1298760419 ·
0xDE7D169BED4130151CD618CF5713077271FF51A4B1CFB75BF (196)

127 1 0x6 · 0x41603EAF071 ·
0x29C4C778B6D2CD0FA36B3CA951A32DAC100C9C63576EEF7BF1F21 (209)

131 0 0x4 · 0x14E3BEE4283C895368536FD0FCF0049D152D78B ·
0xC41400B084478F241C495042459 (108)

131 1 0x6 · 0x4267F1026F4F ·
0x2806BB97FB5F7C2F9E1EDE20BF59AC390DABBA7621D9A0F26AA1 (205)

137 0 0x4 · 0x763DB379950B73D200B971F1D ·
0x22A41FB03F2428B44188DD9FFEA796DC6D197A91BA21 (173)

137 1 0x6 · 0x4337925B3141B99447C1273 ·
0x289FE5979AC03A2E5CFCE8E6024FEF0863C633AE96A0DF (182)

149 0 0x4 · 0x29B66B578C9FAEB ·
0x62322066993B57A8857E552587C80A567018483F2E493DBB7750AB7DB623 (239)

149 1 0x6 · 0x1B73C442E8D ·
0x637845F7F8BFAB325B85412FB54061F148B7F6E79AE11CC843ADE1470F7E4E29 (255)

151 0 0x4 · 0x1C4AEB2D8E194A47D0382EB3617226E64298205F16F ·
0x90C5C79B46EC78B84E022CB2715ED8281 (131)

151 1 0x6 · 0x1BFFB49BB65DF97968C6F644AF7D0F4DB6F5163 ·
0xF9ABD46E3960E5060364D59EBACA8C8326B (140)

157 0 0x4 · 0x499D09449B55C7D71FC18A2B0265785F ·
0x37A45BD5E114A84FCB8900BAEA9E731E0C4B3EDEC15F327 (186)

157 1 0x6 · 0xEECA8C4698A0916800B4E7 ·
0xB6F74A858FF10701D113E39259417F04CF038B297F3C6573F6E14F33 (224)

163 0 0x4 · 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF\
EA48D724AAB2045E5CFE286F8372017024DFF7BB3 (324)

163 1 0x6 · 0x71977BB40CF524BCA9A8DFB19BD9B251D5 ·
0x180A101E65451B46A75AC029CF08711513C17FDE760B92E5 (189)
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Table 4.3: Continued from previous page

m a Factorization of #Ea(F22m)

167 0 0x4 · 0x6B30E725707929FA94FEFAA012F999 ·
0x26364FB489C8B628D0E48E36B3BB4F3C70B651945484571B06BA77 (213)

167 1 0x6 · 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\
D45C6A4A8565763007E9FEFA42E0EA9B9E8B7F3541 (331)

173 0 0x4 · 0x163D79633AE74D69B1F95475535FB6B057D397 ·
0xB82BEB20E4D8E6D2BFFC1AB84B6BC625C94C6002336E2573F (196)

173 1 0x6 · 0xBA3DEF139 ·
0xEA9746EEF14E1638A503FA6FB739A623894A590811B6939A30D7A016E8A77815\
0084D9C4D6E0D (308)

179 0 0x4 · 0x10C01861F3F8F0AC2767CD ·
0xF4882969C296A9493FEAA3C9F58DA166B76D3236BF15C2F10E2B0421F3F7E50DCC6F
(272)

179 1 0x6 · 0x9D1C1699F1F6977990F2FFDF75540051322D7023 ·
0x116171487AD893A0E28972203861592DD2828EF2D71B9D5B03 (196)

181 0 0x4 · 0xCBB ·
0x141BF6E35420FDE10CF60620853943A20D5A91F2F5DDE75B04126F3100B191AF1\
E338F81FB8ED77C1C57BEF3 (348)

181 1 0x6 · 0x1C0B0F8135C51501AD7DC439F84CF88FA90C9907A08AAE56D243E127CF ·
0x615FA176A8D559A3FFDB2ECDACAF97A9B (130)

191 0 0x4 · 0x65E935E0087F8CBE7343A713158023856DFD17A25EE004B0837F ·
0x2831230707A836BC4B2B625A55960A5506F5CCD1B719 (174)

191 1 0x6 · 0x23D01 ·
0x4C3F9B376D369D04F03499007A43FE6460A012C86B2C575858EE9FC7F67A566813\
B39DA28DC9D58285BC07F8811 (362)

The τ-adic representation

Given a Koblitz curve Ea/F22m with group order #Ea(F22m) = h · p · r, where r is
the order of our subgroup of interest, we can express a scalar k ∈ Zr as an element
in Z[τ ] using the partial reduction by Solinas [145] with a few modifications. The
modified version is based on the fact that τ 2 = µτ − 4 and is presented in Algorithm
14. The Round function is the Z[τ ] rounding-off method described in [145, Routine
60].

Given that the norm of τ is N(τ) = 4, N(τ − 1) = h, N(τm − 1) = h · p · r
and N((τm − 1)/(τ − 1)) = p · r, the subscalars r0 and r1 resulted from the partial
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Algorithm 14 Partial reduction modulo (τm − 1)/(τ − 1)

Input: The scalar k ∈ [1, r − 1], s0 = d0 + µd1, s1 = −d1, where
(τm − 1)/(τ − 1) = d0 + d1τ

Output: ρ = (r0 + r1τ) = k partmod (τm − 1)/(τ − 1)
1: t← s0 + µ · s1

2: λ0 ← s0 · k/(p · r)
3: λ1 ← s1 · k/(p · r)
4: q0, q1 ← Round(λ0, λ1)
5: r0 ← k − t · q0 − 4 · s1 · q1

6: r1 ← s1 · q0 − s0 · q1

7: return (r0, r1).

modulo function will be both of size approximately (p · r)/2. As a consequence, our
scalar multiplication will need more iterations than expected, since it will consider
the order p of a subgroup which is not of cryptographic interest.

For that reason, we considered that the input scalar of our point multiplication
algorithm is already represented in Z[τ ]. As a result, it is not required to perform a
partial reduction in the scalar k, and the number of iterations in the point multipli-
cation will be consistent with the scalar k size. If one needs to retrieve the scalar k
represented in Zr, it can be easily computed with one multiplication and one addition
in Zr. This design decision was based on the degree-2 scalar decomposition method,
in the GLS curves context, suggested in [61].

The width-w τNAF form

After representing the scalar k in Z[τ ], we can apply the slightly modified version of
the Algorithm 12 in order to express the scalar in the regular width-w τNAF form.
The adjusted method is presented in Algorithm 15.

Given a width w, after running Algorithm 15, we have 22(w−1)−1 digits5. As a
result, it is necessary to be more conservative when choosing the width w, when
compared to the Koblitz curves defined over F2. For widths w = 2, 3, 4, 5 we have
to pre- or post-compute 2, 8, 32 and 128 points, respectively. For the 128-bit point
multiplication, we estimated that the value of the width w must be at most four,
otherwise, the costs of the point pre/post-processing are greater than the addition
savings obtained in the main iteration.

5We are considering only positive digits, since the cost of applying signs to points in binary
elliptic curves is negligible.
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Algorithm 15 Regular width-w τ -recoding for m-bit scalar

Input: w, tw, αu = βu+γuτ for u = {±1,±3,±5, . . . ,±4w−1−1}, ρ = r0+r1τ ∈ Z[τ ]
with odd r0, r1

Output: ρ =

dm+2
w−1
e∑

i=0

uiτ
i(w−1)

1: for i← 0 to dm+2
w−1
e - 1 do

2: if w = 2 then
3: ui ← ((r0 − 4 · r1) mod 8)− 4
4: r0 ← r0 − ui
5: else
6: u← (r0 + r1tw mod 22w−1)− 22(w−1)

7: if u > 0 then s← 1 else s← −1
8: r0 ← r0 − sβu, r1 ← r1 − sγu, ui ← sαu
9: end if

10: for j ← 0 to (w − 2) do
11: t← r0, r0 ← r1 + (µ · r0)/4, r1 ← −t/4
12: end for
13: end for

14: if r0 6= 0 and r1 6= 1 then
15: ui ← r0 + r1τ
16: else
17: if r1 6= 0 then
18: ui ← r1

19: else
20: ui ← r0

21: end if
22: end if

In addition, we must find efficient expressions of αu = u (mod τw). The method
for searching the best expressions in Koblitz curves over F2 [150] cannot be directly
applied in the F4 case. As a result, we manually provided αu representations for
w ∈ {2, 3} and a = 1, which are our implementation parameters. In Table 4.5 we
present the αu representations along with the operations required to generate the
points.

Therefore, one point doubling and full addition are required to generate the points
αu for w = 2 and one point doubling, four full additions, three mixed additions and
four applications of the Frobenius map for the w = 3 case.

4.2.2 Base field arithmetic

In this section, we present the techniques used in our work in order to implement
the binary field arithmetic. We selected a Koblitz curve with the parameter a = 1
defined over F4m with m = 149. This curve was chosen because the order of its
subgroup of interest is of size 2254 (see Table 4.3), which is a security-level equivalent
of a 128-bit secure scalar multiplication.
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Table 4.5: Representations of αu = u (mod τw), for w ∈ {2, 3} and a = 1 and
the required operations for computing αu. Here we denote by D,FA,MA, T the
point doubling, full addition, mixed addition and the Frobenius map, respectively.
In addition, we consider that the point α1 is represented in affine coordinates

w u u (mod τw) αu Operations

2 1 1 1 n/a
3 3 3 t0 ← 2α1, α3 ← t0 + α1 (D + FA)

3 1 1 1 n/a
3 3 3 t0 ← 2α1, α3 ← t0 + α1 (D + FA)
5 5 −τ −α15 α5 ← −t1 − α15 (MA)
7 3τ + 3 τ 2α3+α3 α7 ← τ 2α3 + α3 (FA+ 2T )
9 3τ + 5 α7 + 2 α9 ← α7 + t0 (FA)
11 3τ + 7 α9 + 2 α11 ← α9 + t0 (FA)
13 −τ − 7 τ 2 − α3 α13 ← t2 − α3 (MA)
15 −τ − 5 τ 2 − 1 t1 ← τα1, t2 ← τt1, α15 ← t2 − α1 (MA+ 2T )

Modular reduction

As discussed in Section 3.1, we can construct a binary extension field F2m by taking
a polynomial f(x) ∈ F2[x] of degree m which is irreducible over F2. Also, it is very
important that the form of our polynomial f(x) allows us to efficiently compute the
modular reduction. The criteria for selecting f(x) depends on the architecture to be
implemented and was extensively discussed in [142].

In our case, we do not have degree-149 trinomials which are irreducible over F2.
An alternative solution is to construct the field through irreducible pentanomials.
Given an irreducible pentanomial f(x) = xm + xa + xb + xc + 1, the efficiency of
the shift-and-add reduction method depends on that (mostly of) the term degree
differences m − a, m − b and m − c be equal to 0 modulo W , where W is the
architecture word size in bits. Since our scalar multiplication is implemented with
the SSE/AVX set of instructions, which provides byte shifts in one clock cycle, we
considered W = 8, however we could obtain important speed-ups if W = 64 or 128.

Using the terminology of [142], lucky irreducible pentanomials are the ones where
the three previously mentioned differences are equal to 0 modulo W . Fortunate irre-
ducible pentanomials are the ones whose two of the differences are equal to 0 modulo
W . The remaining cases are called ordinary irreducible pentanomials. Performing
an extensive search with W = 8, we found no lucky pentanomials, 189 fortunate
pentanomials and 9491 ordinary pentanomials.
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The problem is that fortunate pentanomials make the modular reduction too
costly if we compare with the field multiplication computed with carry-less instruc-
tions. This is because we need to perform four shift-and-add operations per reduction
step. Besides, two of those operations require complex shift instructions, since they
are shifts not divisible by 8.

Redundant trinomials As a consequence, we considered the redundant trinomi-
als option introduced in [33, 45]. Given a non-irreducible trinomial g(x) of degree n
that factorizes into an irreducible polynomial f(x) of degree m < n, the idea is to
perform the field reduction modulo g(x) throughout the scalar multiplication and,
at the end of the algorithm, reduce the point coordinates modulo f(x).

In other words, throughout the algorithm, we represent the base field elements as
polynomials in the ring F2[x] reduced modulo g(x). At the end of the algorithm, the
elements are reduced modulo f(x) in order to bring them to the field F2149 . For the
sake of simplicity, throughout this chapter, we will refer to those elements as field
elements.

Since our architecture is embedded with a 64-bit carry-less multiplier, an efficient
representation of the field elements must have at most 192 bits (three 64-bit words).
For that reason, we searched for redundant trinomials of degree at most 192. In
Table 4.6, we present the available redundant trinomials.

We selected the trinomial g(x) = x192 + x19 + 1 for two reasons. First, the
difference (m − a) > 128, which allow us to perform the shift-and-add reduction in
just two steps, since our architecture contains 128-bit vectorial registers. Second,
the property m mod 64 = 0 allow us to perform efficiently the first part of the
shift-and-add reduction. The steps to perform the modular reduction are described
in Algorithm 16. The notation is similar to the one presented in Section 3.1.4 but
here translated to 64-bit registers. The reduction using 128-bit registers is presented
later, in Section 4.2.3, which discusses the arithmetic in the quadratic field extension.

Algorithm 16 Modular reduction by the trinomial g(x) = x192 + x19 + 1

Input: A 384-bit polynomial r(x) = F ·x320 +E ·x256 +D ·x192 +C ·x128 +B ·x64 +A
in F2[x] stored into six 64-bit registers (A - F).

Output: A 192-bit polynomial s(x) = r(x) mod g(x) = I ·x128 +H ·x64 +G stored
into three 64-bit registers (G - I).

1: G← A⊕D ⊕ (F � 45)⊕ ((D ⊕ (F � 45))� 19)
2: H ← B ⊕ E ⊕ (E � 19)⊕ (D � 45)
3: I ← C ⊕ F ⊕ (F � 19)⊕ (E � 45)
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Table 4.6: Redundant trinomials g(x) = xm+xa+1 of degree ≤ 192 which factorizes
into a irreducible polynomial of degree 149

Trinomial m− a m mod 64 (m− a) mod 64
x151 + x2 + 1 149 23 21
x151 + x149 + 1 2 23 2
x156 + x73 + 1 83 28 19
x156 + x83 + 1 73 28 9
x163 + x61 + 1 102 35 38
x163 + x80 + 1 83 35 19
x163 + x83 + 1 80 35 16
x163 + x102 + 1 61 35 61
x166 + x43 + 1 123 38 59
x166 + x123 + 1 43 38 43
x169 + x53 + 1 116 41 52
x169 + x116 + 1 53 41 53
x173 + x36 + 1 137 45 9
x173 + x137 + 1 36 45 36
x179 + x78 + 1 101 51 37
x179 + x101 + 1 78 51 14
x187 + x15 + 1 172 59 44
x187 + x172 + 1 15 59 15
x191 + x74 + 1 117 63 53
x191 + x117 + 1 74 63 10
x192 + x19 + 1 173 0 45
x192 + x173 + 1 19 0 19

The overall cost of the modular reduction is ten xors and six bitwise shifts. At
the end of the scalar multiplication, we have to reduce the 192-bit polynomial to an
element of the field F2149 . Note that the trinomial g(x) = x192 + x19 + 1 factorizes
into a 69-term irreducible polynomial f(x) of degree 149 defined by

f(x) =x149 + x146 + x143 + x141 + x140 + x139 + x138 + x137 + x129 + x123 + x122+

x121 + x119 + x117 + x114 + x113 + x111 + x108 + x107 + x106 + x105 + x99+

x94 + x92 + x91 + x90 + x86 + x85 + x83 + x81 + x80 + x78 + x77 + x75+

x71 + x70 + x68 + x67 + x65 + x64 + x63 + x54 + x53 + x51 + x49 + x48+

x43 + x42 + x41 + x40 + x39 + x38 + x37 + x35 + x28 + x26 + x23 + x18+

x17 + x16 + x15 + x12 + x11 + x10 + x9 + x3 + x2 + x+ 1.
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The final reduction is performed via the mul-and-add reduction6 which, exper-
imentally, performed more efficiently than the shift-and-add reduction. Concisely,
the mul-and-add technique consists in a series of steps which includes shifts (in order
to align the bits in the registers), carry-less multiplications and xors for eliminating
the extra bits.

The basic mul-and-add step is described in Algorithm 17. Here, besides the usual
notation, we represent the 64-bit carry-less multiplication by the symbol ×ij, where
i, j = {L,H}, with L and H representing the lowest and highest 64-bit word packed
in a 128-bit register, respectively. For example, if we want to multiply the 128-bit
register A lowest 64-bit word by the 128-bit register B highest 64-bit word, we would
express this operation as T ← A×LH B.

Algorithm 17 Basic step of the mul-and-add reduction modulo the 69-term irre-
ducible polynomial f(x)

Input: A j-bit polynomial r(x) = B · x128 + A stored into two 128-bit registers
(A, B), the irreducible polynomial f(x) = F · x128 + E stored into two 128-bit
registers (E, F).

Output: A (j−3)-bit polynomial s(x) = D·x128+C stored into two 128-bit registers
(C, D).

1: T0 ← B � 21 (64-bit word alignment, 149 mod 64 = 21)
2: T1 ← E ×LL T0

3: T2 ← E ×HL T0

4: T0 ← F ×LL T0

5: T1 ← T1 ⊕ (T2 � 64)
6: T0 ← T0 ⊕ (T2 � 64)
7: C ← A⊕ T1

8: D ← B ⊕ T0

The algorithm requires four xors, three bitwise shifts and three carry-less multi-
plications. In our particular case, the difference between the degrees of the two most
significant monomials of f(x) is three. Also, note that we need to reduce 43 bits
(191-148). As a result, it is required d43

3
e = 15 applications of the Algorithm 17 in

order to conclude the reduction.

6For a more detailed explanation of the shift-and-add and the mul-and-add reduction methods
to binary fields, see [25].
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4.2.3 Quadratic field arithmetic

In this part, we present the arithmetic functions in the quadratic field. Most of
the issues discussed here are related to our concrete implementation, since the basic
algorithms are similar to the ones examined in Section 3.1. As usual, our quadratic
field F22·149 was constructed by the degree two monic polynomial h(u) = u2 + u+ 1,
and its elements are represented as a0 + a1u, with a0, a1 ∈ F2149 .

Register allocation The first topic to analyze is the element allocation into the
architecture available registers. In our case, we have to store two polynomials of 192
bits into 128-bit registers in such way that it allows an efficient modular reduction
and, at the same time, generates a minimum overhead in the two main arithmetic
operations, namely, the multiplication and squaring.

Let us consider an element a = (a0+a1u) ∈ F22·149 , where a0 = C ·x128+B ·x64+A
and a1 = F · x128 + E · x64 + D are 192-bit polynomials, each stored in three 64-bit
words (A-C, D-F). Also, let us have three 128-bit registers Ri, with i ∈ {0, 1, 2},
which can store two 64-bit words each. In this section, we adopted the following
notation, given a 128-bit register R, its most and least significant packed 64-bit
words, denoted respectively by S and T , are represented as R = S|T .

The first option is to rearrange the 384-bit element a = (a0 + a1u) as

R0 = D|A, R1 = C|D, R2 = E|F.

The problem with this representation is that a significant overhead is generated in
the multiplication function, more specifically, in the pre-computation phase of the
Karatsuba procedure (see the Multiplication paragraph below, computation of V0,1,
V0,2 and V1,2). Besides, in order to efficiently perform the subsequent reduction phase,
we must temporarily store the polynomial terms into four 128-bit vectors, which can
cause a register overflow. A better method for storing the element a is presented as
follows,

R0 = D|A, R1 = E|B, R2 = F |C.

Now, we still have some overhead in the multiplication and squaring functions, even
though the penalty on the latter function is almost negligible. However, the terms of
the elements a0, a1 do not need to be rearranged and the modular reduction of the
these two base field elements can be performed in parallel, as discussed in the next
paragraphs.
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Multiplication Given two F22·149 elements a = (a0 + a1u) and b = (b0 + b1u), with
a0, a1, b0, b1 in F2149 , we perform the multiplication c = a · b as,

c = a · b = (a0 + a1u) · (b0 + b1u)

= (a0b0 + a1b1) + (a0b0 + a1b1 + (a0 + a1) · (b0 + b1))u,

where each element ai, bi ∈ F2149 is composed by three 64-bit words. The analysis of
the Karatsuba algorithm cost for different word sizes was presented in [153]. There,
it was shown that the most efficient way to multiply three 64-bit word polynomials
s(x) = s2x

2 + s1x+ s0 and t(x) = t2x
2 + t1x+ t0 as v(x) = s(x) · t(x) is through the

one-level Karatsuba method,

V0 = s0 · t0, V1 = s1 · t1, V2 = s2 · t2,

V0,1 = (s0 + s1) · (t0 + t1), V0,2 = (s0 + s2) · (t0 + t2) V1,2 = (s1 + s2) · (t1 + t2),

v(x) = V2 ·x4 +(V1,2 +V1 +V2) ·x3 +(V0,2 +V0 +V1 +V2) ·x2 +(V0,1 +V0 +V1) ·x+V0,

which costs six multiplications and twelve additions. The Karatsuba algorithm is
presented in the Algorithm 18.

Algorithm 18 Karatsuba algorithm for multiplying three 64-bit word polynomials
s(x) and t(x)

Input: Six 128-bit registers Ri, with i ∈ {0 . . . 5}, containing the elements
R0 = t0|s0, R1 = t1|s1, R2 = t2|s2, R3 = (t0⊕ t1)|(s0⊕ s1), R4 = (t0⊕ t2)|(s0⊕ s2),
R5 = (t1 ⊕ t2)|(s1 ⊕ s2).

Output: Three 128-bit registers Ri, with i ∈ {6 . . . 8}, which store the value
v(x) = s(x) · t(x) = v5 · x320 + v4 · x256 + v3 · x192 + v2 · x128 + v1 · x64 + v0 as
R6 = v1|v0, R7 = v3|v2, R8 = v5|v4.

1: tmp0 ← R0 ×HL R0

2: tmp1 ← R1 ×HL R1

3: tmp2 ← R2 ×HL R2

4: tmp3 ← R3 ×HL R3

5: tmp4 ← R4 ×HL R4

6: tmp5 ← R5 ×HL R5

7: tmp5 ← tmp5 ⊕ tmp1

8: tmp5 ← tmp5 ⊕ tmp2

9: tmp1 ← tmp1 ⊕ tmp0

10: tmp4 ← tmp4 ⊕ tmp1

11: tmp4 ← tmp4 ⊕ tmp2

12: tmp3 ← tmp3 ⊕ tmp1

13: R6 ← (tmp3 � 64)
14: R8 ← (tmp5 � 64)
15: R7 ← ((tmp5, tmp3) B 64)

The algorithm requires six carry-less instructions, six vectorial xors and three
bitwise shift instructions. In order to calculate the total multiplication cost, it is
necessary to include the Karatsuba pre-computation operations at the base field level
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(tweve vectorial xors and six byte interleaving instructions) and at the quadratic field
level (six vectorial xors). Also, we must consider the reorganization of the registers
in order to proceed with the modular reduction (six vectorial xors).

Modular reduction The modular reduction of an element a ∈ F22·149 takes nine
vectorial xors and six bitwise shifts. The gains of the previously discussed register
configuration can be seen when we compare the reduction of quadratic field elements,
presented in Algorithm 19 with the modular reduction of the base field elements (see
Algorithm 16). The cost of reducing an element in F2149 in 64-bit registers is similar
to the cost of the reduction of an element in F22·149 stored into 128-bit registers.
Thus, we achieved the expected speedup of 100%.

Algorithm 19 Modular reduction of the terms a0, a1 of an element a = (a0 + a1u)
modulo g(x) = x192 + x19 + 1

Input: An element a = a0 + a1u = (F ·x320 +E ·x256 +D ·x192 +C ·x128 +B ·x64 +
A) + (L · x320 +K · x256 + J · x192 + I · x128 +H · x64 +G)u, with the 64-bit words
(A-L) arranged in six 128-bit registers as R0 = G|A,R1 = H|B,R2 = I|C,R3 =
J |D,R4 = K|E,R5 = L|F

Output: Elements (a0, a1) mod g(x) = M · x128 +N · x64 +O,P · x128 +Q · x64+R,
with the 64-bit words (M-R) organized in three 128-bit registers as
R6 = R|O,R7 = Q|N,R8 = P |M

1: R8 ← R2 ⊕R5

2: R7 ← R1 ⊕R4

3: R8 ← R8 ⊕ (R5 � 19)
4: R7 ← R7 ⊕ (R4 � 19)
5: R8 ← R8 ⊕ (R4 � 45)

6: R7 ← R7 ⊕ (R3 � 19)
7: R6 ← R3 ⊕ (R5 � 45)
8: R6 ← R6 ⊕ (R6 � 19)
9: R6 ← R6 ⊕R0

Squaring Squaring is a very important function in the Koblitz curve point mul-
tiplication algorithm, since it forms the building block for computing the τ endo-
morphism. In our implementation, we computed the squaring operation through
carry-less multiplication instructions which, experimentally, was less expensive than
the bit interleaving method (see [78, Section 2.3.4]). The pre-processing phase is
straightforward, we just need to rearrange the 32-bit packed words of the 128-bit
registers in order to prepare them for the subsequent modular reduction.

The pre- and post-processing phases require three shuffle instructions, three vec-
torial xors and three bitwise shifts. The complete function is described in Algo-
rithm 20. Given 128-bit registers Ri, we depict the SSE 32-bit shuffle operation as
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R0 ← R1 G xxxx. For instance, if we compute R0 ← R1 G 3210, it just maintains the
32-bit word order of the register R1, in other words, it just copy R1 to R0. The op-
eration R0 ← R1 G 2103 rotates the register R1 to the left by 32-bits. See [130, 129]
for more details.

Algorithm 20 Squaring of an element a = (a0 + a1u) ∈ F22·149

Input: Element a = a0 + a1u = (C · x128 + B · x64 + A) + (F · x128 + E · x64 +
D)u ∈ F22·149 , with the 64-bit words (A-F) arranged in three 128-bit registers as
R0 = D|A,R1 = E|B,R2 = F |C

Output: Element a2 = c = c0 + c1u = (I · x128 +H · x64 +G) +
(L · x128 +K · x64 + J)u ∈ F22·149 , where both elements (c0, c1) ∈ F2[x] are re-
duced modulo x192 +x19 +1. The 64-bit words (G-L) are arranged in three 128-bit
registers as r3 = J |G, r4 = H|K, r5 = I|L.

1: tmp0 ← r0 G 3120
2: tmp1 ← r1 G 3120
3: tmp2 ← r2 G 3120
4: aux0 ← tmp0 ×LL tmp0

5: aux1 ← tmp0 ×HH tmp0

6: aux2 ← tmp1 ×LL tmp1

7: aux3 ← tmp1 ×HH tmp1

8: aux4 ← tmp2 ×LL tmp2

9: aux5 ← tmp2 ×HH tmp2

10: r3, r4, r5 ← ModularReduction(aux0...5)
11: tmp0 ← r3 � 64
12: tmp1 ← r4 � 64
13: tmp2 ← r5 � 64
14: r3 ← r3 ⊕ tmp0

15: r4 ← r4 ⊕ tmp1

16: r5 ← r5 ⊕ tmp2

Inversion The inversion operation is computed via the Itoh-Tsujii method [84].
Given an element c ∈ F2m , we compute c−1 = c(2m−1−1)·2 through an addition chain.
For the case m = 149, the following chain is used,

1← 2← 4← 8← 16← 32← 33← 66← 74← 148.

This addition chain is optimal and was found through the procedure described in [38].
Note that although we compute the inversion operation over polynomials in F2[x]
(reduced modulo g(x) = x192 + x19 + 1), we still have to perform the addition chain
with m = 149, since we are in fact interested in the embedded F2149 field element.

The addition chain is computed by a series of multiplications and squarings.
Given an element a0 ∈ F2149 , in each step we calculate a0

2i−1, where the value i
represents the integers that form the addition chain. Experimentally, we found that
when i ≥ 4, it is cheaper to compute the exponentiation through table look-ups.
Our pre-computed tables process four bits per iteration, therefore, it is required
d192

4
e = 48 table queries in order to complete the multisquaring function.
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4.2.4 τ-and-add scalar multiplication

In this part we discuss the single-core algorithms that compute a timing-resistant
scalar multiplication through the τ -and-add method over Koblitz curves defined over
F4. There are two basic approaches, the right-to-left and the left-to-right algorithms.
Those methods differ by the order which the scalar digits are processed in the main
iteration of the point multiplication.

Left-to-right τ-and-add This algorithm is similar to the left-to-right double-
and-add approach discussed in Section 3.3.2. Here, the point doubling operation is
replaced by the computationally cheaper τ endomorphism. In addition, we need to
compute the width w-τNAF representation of the scalar k and perform linear passes
(this function is discussed at the end of this section) in the accumulators in order to
avoid cache attacks [151, 121]. The method is shown in Algorithm 21.

Algorithm 21 Left-to-right regular w-TNAF τ -and-add on Koblitz curves defined
over F4

Input: A Koblitz curve Ea/F22m , a point P ∈ Ea(F22m) of order r, k ∈ Zr
Output: Q = kP

1: Compute ρ = r0 + r1τ = k partmod
(
τm−1
τ−1

)
2: Ensure that r0 and r1 are odd.

3: Compute the width-w regular τ -NAF of r0 + r1τ as
∑dm+2

w−1
+1e

i=0 uiτ
i(w−1)

4: for i ∈ {1, 3, . . . 4w−1 − 1} do Compute Pi end for
5: Q← O
6: for i = m+2

w−1
+ 1 to 0 do

7: Q← τw−1(Q)
8: Perform a linear pass to recover Pui
9: Q← Q± Pui

10: end for
11: Subtract P, τ(P ) if necessary
12: return Q = kP

The main advantage of this method is that the sensitive data is indirectly placed
in the points Pui . However, those points are only read and then added to the unique
accumulator Q. As a consequence, only one linear pass per iteration is required before
reading Pui . On the other hand, the operation τw−1(Q) must be performed by suc-
cessive squarings, since computing it through look-up tables could leak information
about the scalar k.
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Right-to-left τ-and-add This other method processes the scalar k from the least
to the most significant digit. It is similar to the algorithm depicted in Chapter 3.
In this case, the point halving is substituted by the τ endomorphism, and the GLV
method is brought to its full extent, through the τ -adic representation of the scalar
k. This approach is presented in Algorithm 22.

Algorithm 22 Right-to-left regular w-TNAF τ -and-add on Koblitz curves defined
over F4

Input: A Koblitz curve Ea/F22m , a point P ∈ Ea(F22m) of order r, k ∈ Zr
Output: Q = kP

1: Compute ρ = r0 + r1τ = k partmod (mod τm−1
τ−1

)
2: Ensure that r0 and r1 are odd.

3: Compute the width-w regular τ -NAF of r0 + r1τ as
∑dm+2

w−1
+1e

i=0 uiτ
i(w−1)

4: for i ∈ {1, 3, . . . 4w−1 − 1} do Qi = O
5: for i = 0 to m+2

w−1
+ 1 do

6: Perform a linear pass to recover Qui

7: Qui ← Qui ± P
8: Perform a linear pass to store Qui

9: P ← τw−1(P )
10: Q← O
11: for i ∈ {1, 3, . . . 4w−1 − 1} do Q = i ·Qi

12: Subtract P, τ(P ) if necessary
13: return Q = kP

Here, we have to perform a post-computation in the accumulators instead of
precomputing the points Pi as in the previous approach. Also, the τ endomorphism
is applied to the point P , which is usually public. For that reason, we can compute
τ with table look-ups instead of performing squarings multiple times.

The downside of this algorithm is that the accumulators carry sensitive informa-
tion about the digits of the scalar. Also, the accumulators are read and written. As
a result, it is necessary to apply the linear pass algorithm to the accumulators Qi

twice per iteration.

Linear pass The linear pass is a method designed to protect sensitive information
against side-channel attacks associated with the CPU cache access patterns. Let
us consider an array A of size l. Before reading a value A[i], with i ∈ [0, l − 1],
the linear pass technique reads the entire array A but only stores, possibly into an
output register, the requested value A[i]. In that way, the attacker does not know
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which array index was accessed just by analyzing the location of the cache-miss in his
own artificially injected data. However, this method causes a considerable overhead,
which depends on the size of the array.

In this work, we implemented the linear pass method using 128-bit SSE vectorial
instructions and registers. For each array index i, we copy it to a register and compare
it with the current scalar k τNAF digit. The SSE instruction pcmpeqq compares the
values of two 128-bit registers A and B and sets the resulting register C with bits
one, if A and B are equal, and bits zero otherwise. For that reason, we can use the
register C as a mask, which is applied to each value A[i] before copying it to the
register that will hold the requested data.

Experimental results shown that the implementation of the linear pass technique
with SSE registers is more efficient than using 64-bit conditional move instructions
[120] by an order of 2.125. Our approach is depicted in Algorithm 23.

Algorithm 23 Linear pass using 128-bit AVX vectorial instructions

Input: An array A of size l, a requested index i, SSE 128-bit registers tmp, dst.
Output: The register dst containing A[d].

1: dst← 0
2: for i ∈ {0, . . . , l − 1} do
3: tmp← i
4: tmp← compare( tmp, i )

(compare returns 1128 if the operands are equal and 0128 otherwise.)
5: tmp← tmp ∧ Pi
6: dst← dst ∨ tmp
7: end for

4.2.5 Results and discussion

Our software library can be executed in any Intel platform, which comes with the
SSE4.1 vector instructions and the 64-bit carry-less multiplier instruction pclmulqdq.
The benchmarking was executed in a Intel Core i7 4770k 3.50 GHz machine (Haswell
architecture) with the TurboBoost and HyperThreading features disabled. Also, the
library was coded in the GNU11 C and Assembly languages.

Regarding the compilers, we performed an experimental analysis on the perfor-
mance of our code compiled with different systems: GCC (Gnu Compiler Collection)
versions 4.7, 4.8, 4.9, 5.1, 5.2; ICC (Intel C++ Compiler) version 15; and the clang
frontend for the LLVM compiler infrastructure versions 3.4 and 3.7. All compilations
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were done with the flags -O3 -march=core-avx27 -fomit-frame-pointer. For the
sake of comparison, we reported our timings for all of the previously mentioned com-
pilers. However, when comparing our code with the state-of-the-art works, we opted
for the clang/llvm 3.4, since it gave us the best performance.

Parameters Given q = 2m, with m = 149, we constructed our base binary field
Fq ∼= F2[x]/(f(x)) with the 69-term irreducible polynomial f(x) described in Sec-
tion 4.2.3. The quadratic extension Fq2 ∼= Fq[u]/(h(u)) was built through the irre-
ducible quadratic h(u) = u2+u+1. However, our base field arithmetic was computed
modulo the redundant trinomial g(x) = x192+x19+1, which has among its irreducible
factors, the polynomial f(x).

Our Koblitz curve was defined over Fq2 as

E1/Fq2 : y2 + xy = x3 + ux2 + u,

and the group E1(Fq2) contains a subgroup of interest of order

r = 0x637845F7F8BFAB325B85412FB54061F148B7F6E79AE11CC843ADE1470F7E4E29,

which corresponds to approximately 255 bits. In addition, our scalar multiplication
was computed using a base point P represented in lambda coordinates as

xP = 0x1B0CB55BC0B41C3EC1820E4E24EBC310451476

+ 0x4649A2FF1A1B8BA00AA8A706C04D6D97DF60C · u,
λP = 0x6B64DFA496D1DEEA880545B44AC9CC4950C1C

+ 0x1ADB1DA167DBDF597F03D9A0889FF76FB0B2A1 · u.

Field and elliptic curve arithmetic timings In Table 4.7, we present the tim-
ings for the base and the quadratic field arithmetic. The multisquaring operation
is used to support the Itoh-Tsujii addition chain, therefore, is implemented only in
F2149 (actually, in a 192-bit polynomial in F2[x]). In addition, we gave timings to
reduce a 192-bit polynomial element in F2[x] modulo f(x). Finally, all timings of
operations in the quadratic field include the subsequent modular reduction.

7For the ICC, instead of using -march-core-avx2, we used -xCORE-AVX2.
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Table 4.7: A comparison of the base arithmetic timings (in clock cycles) between
different compiler families

Compilers Multiplication Squaring Multisquaring Inversion
Reduction

modulo f(x)

GCC 4.7 68 20 136 2,184 444
GCC 4.8 56 20 176 2,376 452
GCC 4.9 56 20 168 2,388 432
GCC 5.1 52 20 188 2,396 452
GCC 5.2 52 20 184 2,396 452
ICC 15 60 20 116 2,076 416
clang 3.4 60 20 100 1,928 460
clang 3.7 60 24 100 1,916 456

Applying the techniques presented in [123], we saw that our machine has a margin
of error of four cycles. This range is not of significance when considering the timings
of the point arithmetic or the scalar multiplication; however, for inexpensive functions
such as multiplication and squaring, it is recommended to consider it when comparing
the timings between different compilers.

Interestingly, the clang 3.4 compiler does not perform efficiently either in the
multiplication function or in the reduction modulo f(x). However, the latter is used
only once throughout the scalar multiplication. Also, the next timings show that
the clang compiler processes the multiplication more efficiently when it is integrated
into a more complex arithmetic function. Next, we compare in Table 4.8 the base
arithmetic operation timings with the multiplication function, which is the main
operation of our library.

Table 4.8: The relation between the timings of the base arithmetic and the multi-
plication function. The timings were taken from the code compiled with the clang
3.4

Operations Squaring Multisquaring Inversion
Reduction

modulo f(x)

operation /
0.33 1.66 32.13 7.60multiplication

ratio

The ratio squaring/multiplication is more expensive than the one in the GLS
curve implementation (see Chapter 3). This is because g(x) = x192 + x19 + 1 does
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not allow a reduction specially designed for the squaring operation. Furthermore,
the multisquaring and the inversion functions are relatively more costly than the
GLS curve work. A possible explanation is that here, we are measuring timings in a
Haswell architecture, which has a computationally cheaper carry-less multiplication
when compared with the Sandy Bridge platform [130].

In Table 4.9 we give the timings of the point arithmetic functions. There, we pre-
sented the costs of applying the τ endomorphism to an affine point (two coordinates)
and a λ-projective point (three coordinates). The reason is that, depending on the
scalar multiplication algorithm, one can apply the Frobenius map on the accumulator
(projective) or the base point (affine). In addition, we included, in the following ta-
ble, the mixed-doubling operation. Given a point P = (xP , yP ), the mixed-doubling
function performs R = (XR, LR, ZR) = 2P . In other words, it performs a point dou-
bling on an affine point and returns the point in the projective representation. Such
function is used in the computation of the τNAF representations αu = u (mod τw)
(see Section 4.2.1).

Table 4.9: A comparison of the point arithmetic timings (in clock cycles) between
different compiler families

Compilers
Full Mixed Full Mixed τ endomorphism

Addition Addition Doubling Doubling 2 coord. 3 coord.

GCC 4.7 828 624 420 180 92 136
GCC 4.8 816 608 380 144 80 120
GCC 4.9 792 616 376 148 84 124
GCC 5.1 796 592 368 148 80 120
GCC 5.2 796 592 368 148 80 120
ICC 15 780 604 364 148 84 124
clang 3.4 772 568 400 168 84 112
clang 3.7 760 580 404 168 84 124

Table 4.9 also shows the predominance of the clang compiler in the point arith-
metic timings, since the only operations which it has a clear disadvantage are the
full and mixed point doubling. However, those functions are rarely used through-
out a Koblitz curve scalar multiplication. More precisely, they are used only in the
precomputing phase.

In the left-to-right scalar multiplication approach, the most performed functions
are the mixed addition, whose clang timings outperformed the GCC family by 4%
and the ICC compiler by 6%, and the τ endomorphism applied on three coordinates.
Here, the clang code is 6% faster than the GCC family and almost 10% more efficient
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than the ICC. Next, in Table 4.10, we show the relation of the point arithmetic
timings with the field multiplication.

Table 4.10: The relation between the point arithmetic timings and the multiplica-
tion function. The timings were taken from the code compiled with the clang 3.4
compiler

Operations
Full Mixed Full Mixed τ endomorphism

Addition Addition Doubling Doubling 2 coord. 3 coord.

operation /
12.86 9.46 6.66 2.80 1.40 1.86multiplication

ratio

Scalar multiplication timings In this part, we present timings for the left-to-
right regular w-τNAF τ -and-add scalar multiplication, with w = 2, 3. The setting
w = 2 is presented in order to analyze how the balance between the pre-computation
and the main iteration costs works in practice. Our main result lies in the setting
w = 3. Also, among the scalar multiplication timings, we show, in Table 4.11, the
costs of the regular recoding (see Section 4.1) and the linear pass functions.

Table 4.11: A comparison of the scalar multiplication and its support functions
timings (in clock cycles) between different compiler families

Compilers
Regular recoding Linear pass Scalar multiplication
2-τNAF 3-τNAF 2-τNAF 3-τNAF 2-τNAF 3-τNAF

GCC 4.7 1,696 2,652 20 76 103,400 73,468
GCC 4.8 1,724 2,628 20 64 102,036 73,012
GCC 4.9 1,688 2,744 20 68 100,892 72,180
GCC 5.1 1,684 2,728 16 64 100,560 71,868
GCC 5.2 1,676 2,728 16 64 100,504 71,844
ICC 15 1,992 3,272 16 72 102,516 73,436
clang 3.4 1,828 2,680 ? ? 96,822 69,656
clang 3.7 1,860 2,748 ? ? 97,240 69,860

Regarding the regular recoding function, we saw an increase of about 46% in the
3-τNAF timings when comparing with the w = 2 case. The reason is that, for the
w = 3 case, we must compute a more complicated arithmetic. Also, when selecting
the digits, we must perform a linear pass in the array that stores them. Otherwise,
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an attacker could learn about the scalar k by performing a timing-attack based on
the CPU cache.

The linear pass function also becomes more expensive in the w = 3 case, since
we have more points in the array. However, in the m = 149 case, we have to process
64 more iterations with the width w = 2, when comparing it with the 3-τNAF point
multiplication. As a result, the linear pass function overhead is smaller than the
savings in mixed additions and τ endomorphisms applications.

Furthermore, the clang scalar multiplication timings are significantly better than
the other compilers. For the w = 2 case, it outperforms the GCC family by 3682 and
the ICC by 5694 clock cycles. In the w = 3 point multiplication, the clang code is
2188 and 3780 cycles faster than the GCC family and the ICC compiler, respectively.

Also, the question marks in Table 4.11 means that the linear passes could not
be measured in the clang compilers. Somehow it knows that we are performing
dummy operations in order to measure the code and optimizes it by just avoiding
the execution of the code. Finally, our scalar multiplication measurements consider
that the point Q = kP is returned in the λ-projective coordinate representation. If
the affine representation is required, it is necessary to add 2000 cycles to the total
scalar multiplication timings.

Comparisons In Table 4.12, we compare our implementation with the state-of-the-
art works. Our 3-τNAF left-to-right τ -and-add point multiplication outperformed
by 29.64% the work in [118], which is considered the fastest protected 128-bit secure
Koblitz implementation. When compared with prime curves, our work is surpassed
by 15.29% and 21.91% by the works in [43] and [17], respectively.

As a future work, we intend to implement the case w = 4, which would likely
be compatible with the state-of-the-art prime curves. Considering that the regular
recoding overhead does not change from the case w = 3, and that the linear pass
would take about 100 cc, we expect that, without any optimization, a 4-τNAF left-
to-right τ -and-add point multiplication would take about 62,000 cc.

Moreover, we can optimize our code with larger AVX 256-bit instructions. In
addition, our implementation is supposed to be more efficient with the Broadwell
architecture, which provides faster carry-less multipliers. Finally, we would like to
design a version of our point multiplication in the multi-core and known point sce-
narios.
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Table 4.12: Scalar multiplication timings (in clock cycles) on 128-bit secure ellitpic
curves

Curve/Method TAR1 Architecture Timings

Koblitz over F2283 (NIST K-283)
yes Haswell 99,000

τ -and-add, 5-τNAF [118]
Twisted Edwards over F(2127−1)2 yes Haswell 59,000
double-and-add [43]
Kummer genus-2 over F2127−1 yes Haswell 54,389
Kummer ladder [17]

Koblitz over F4149 yes Haswell 96,822
τ-and-add, 2-τNAF (our work)
Koblitz over F4149 yes Haswell 69,656
τ-and-add, 3-τNAF (our work)
1 Timing-attack resistant.

4.3 Summary

At first, we adapted the Joye-Tunstall recoding method to generate, for the first
time, a timing-resistant τ -and-add scalar multiplication on Koblitz curves. This
implementation outperformed by 26% the protected Koblitz point multiplication
based on the Montgomery ladder algorithm.

Next, we designed completely novel 128-bit secure scalar multiplication algo-
rithms on Koblitz curves defined over F4. In order to achieve that, we implemented
a fast base and quadratic field arithmetic, which took advantage of the redundant
trinomials method and allowed an efficient modular reduction.



Part II

The Discrete Logarithm Problem





5 | Finite Fields

Let FQ denote the finite field of order Q. The discrete logarithm problem (DLP) in
FQ is that of determining, given a generator g of F∗Q and an element h ∈ F∗Q, the
integer x ∈ [0, Q − 2] satisfying h = gx. In the remainder of this chapter, we shall
assume that the characteristic of FQ is 2 or 3.

Until recently, the fastest general-purpose algorithm known for solving the DLP
in FQ was Coppersmith’s 1984 index-calculus algorithm [40] with a running time of
LQ[1

3
, (32/9)1/3] ≈ LQ[1

3
, 1.526], where as usual LQ[α, c] with 0 < α < 1 and c > 0

denotes the expression

exp
(
(c+ o(1))(logQ)α(log logQ)1−α)

that is subexponential in logQ. In February 2013, Joux [86] presented a new DLP
algorithm with a running time of LQ[1

4
+ o(1), c] (for some undetermined c) when

Q = q2n and q ≈ n. Shortly thereafter, Barbulescu, Gaudry, Joux and Thomé [13]
presented an algorithm with quasi-polynomial running time (logQ)O(log logQ) when
Q = q2n with q ≈ n.

These dramatic developments were accompanied by some striking computational
results. For example, Göloğlu et al. [68] computed logarithms in F28·3·255 = F26120

in only 750 CPU hours, and Joux [87] computed logarithms in F28·3·257 = F26168 in
only 550 CPU hours. The small computational effort expended in these experiments
depends crucially on the special nature of the fields F26120 and F26168 — namely that
F26120 is a degree-255 extension of F28·3 with 255 = 28 − 1 (a Kummer extension),
and F26168 is a degree-257 extension of F28·3 with 257 = 28 + 1 (a twisted Kummer
extension). Adj et al. [2] presented a concrete analysis of the new algorithms and
demonstrated that logarithms in F36·509 can be computed in approximately 282 steps,
which is considerably less than the 2128 steps required by Coppersmith’s algorithm.
Unlike the aforementioned experimental results, the analysis by Adj et al. does not
exploit any special properties of the fields F36·509 and F36·1429 .

The purpose of this work is to demonstrate that, with modest computational re-
sources, the new algorithms can be used to solve instances of the discrete logarithm

85
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problem that remain beyond the reach of classical algorithms. The first target field is
the 1303-bit field F36·137 ; this field does not enjoy any Kummer-like properties. More
precisely, we are interested in solving the discrete logarithm problem in the order-r
subgroup G of F∗36·137 , where r = (3137 − 369 + 1)/7011427850892440647 is a 155-bit
prime. The discrete logarithm problem in this group is of cryptographic interest be-
cause the values of the bilinear pairing derived from the supersingular elliptic curve
E : y2 = x3−x+ 1 over F3137 lie in G.1 Consequently, if logarithms in G can be com-
puted efficiently then the associated bilinear pairing is rendered cryptographically
insecure. Note that since r is a 155-bit prime, Pollard’s rho algorithm [126] for com-
puting logarithms in G is infeasible. Moreover, recent work on computing logarithms
in the 809-bit field F2809 [12] suggests that Coppersmith’s algorithm is infeasible for
computing logarithms in G, whereas recent work on computing logarithms in the 923-
bit field F36·97 [79] (see also [144]) indicates that computing logarithms in G using the
Joux-Lercier algorithm [88] would be a formidable challenge. In contrast, we show
that Joux’s algorithm can be used to compute logarithms in G in just a few days
using a small number of CPUs; more precisely, our computation consumed a total of
888 CPU hours. The computational effort expended in our experiment is relatively
small, despite the fact that our implementation was done using the computer algebra
system Magma V2.20-2 [31] and is far from optimal.

The second target field is the 1551-bit field F36·163 ; this field does not enjoy any
Kummer-like properties. More precisely, we are interested in solving the discrete
logarithm problem in the order-r subgroup G of F∗36·163 , where r = 3163 + 382 + 1 is
a 259-bit prime. The discrete logarithm problem in this group is of cryptographic
interest because the values of the bilinear pairing derived from the supersingular
elliptic curve E : y2 = x3 − x − 1 over F3163 lie in G. This bilinear pairing was
first considered by Boneh, Lynn and Shacham in their landmark paper on short
signature schemes [26]; see also [73]. Furthermore, the bilinear pairing derived from
the quadratic twist of E was one of the pairings implemented by Galbraith, Harrison
and Soldera [59]. Again, we show that Joux’s algorithm can be used to compute
logarithms in G in just a few days using a small number of CPUs; our computation
used 1201 CPU hours.

After we had completed the F36·137 discrete logarithm computation, Granger,
Kleinjung and Zumbrägel [70] presented several practical improvements and refine-
ments of Joux’s algorithm. These improvements allowed them to compute logarithms
in the 4404-bit field F212·367 in approximately 52,240 CPU hours, and drastically low-

1We note that the supersingular elliptic curves y2 = x3− x± 1 over F3n have embedding degree
6 and were proposed for cryptographic use in several early papers on pairing-based cryptography
[15, 26, 59, 72].
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ered the estimated time to compute logarithms in the 4892-bit field F24·1223 to 259

modular multiplications. More recently, Joux and Pierrot [89] presented a more effi-
cient algorithm for computing logarithms of factor base elements. The new algorithm
was used to compute logarithms in the 3796-bit characteristic-three field F35·479 in
less than 8600 CPU hours.

Also, we present an analysis of the cost for solving the DLP in the characteristic-
three fields F36·509 and F36·1429 . Both fields are used to construct k = 6 pairings
derived from supersingular elliptic curves Y 2 = X3 −X + 1 and Y 2 = X3 −X − 1
over F3` considered in [26, 56, 15, 59] and implemented in [14, 72, 122, 6, 77, 24,
34, 22]. Finally, we briefly discuss the practical implications of the quasi-polynomial
algorithm (QPA) of Barbulescu et al. [13] for solving the DLP in small-characteristic
fields.

5.1 Joux’s L[1/4 + o(1)] algorithm

Let Fq3n be a finite field where n ≤ 2q + 1.2 The elements of Fq3n are represented
as polynomials of degree at most n − 1 over Fq3 . Let N = q3n − 1, and let r be a
prime divisor of N . In this work, we are interested in the discrete logarithm problem
in the order-r subgroup of F∗q3n . More precisely, we are given two elements α, β of
order r in F∗q3n and we wish to find logα β. Let g be an element of order N in F∗q3n .
Then logα β = (logg β)/(logg α) mod r. Thus, in the remainder of this section we
will assume that we need to compute logg h mod r, where h is an element of order r
in F∗q3n .

The algorithm proceeds by first finding the logarithms (mod r) of all degree-one
elements in Fq3n (see Section 5.1.1). Then, in the descent stage, logg h is expressed
as a linear combination of logarithms of degree-one elements. The descent stage
proceeds in several steps, each expressing the logarithm of a degree-D element as a
linear combination of the logarithms of elements of degree ≤ m for some m < D.
Four descent methods are employed; these are described in Sections 5.1.2 – 5.1.5.

Notation. Nq3(m,n) denotes the number of monic m-smooth degree-n polynomials
in Fq3 [X], Aq3(m,n) denotes the average number of distinct monic irreducible factors
among all monic m-smooth degree-n polynomials in Fq3 [X], and Sq3(m, d) denotes
the cost of testing m-smoothness of a degree-d polynomial in Fq3 [X]. Formulas
for Nq3(m,n), Aq3(m,n) and Sq3(m,n) are given in [2]. For γ ∈ Fq3 , γ denotes

the element γq
2
. For P ∈ Fq3 [X], P denotes the polynomial obtained by raising

2More generally, one could consider fields Fqkn where n ≤ 2q + 1. We focus on the case k = 3
since our target fields are F36n with n ∈ {137, 163}, which we will embed in F(34)3·n .
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each coefficient of P to the power q2. The cost of an integer addition modulo r
is denoted by Ar, and the cost of a multiplication in Fq3 is denoted by Mq3 . The
projective general linear group of degree 2 over Fq is denoted PGL2(Fq). Pq is a
set of distinct representatives of the left cosets of PGL2(Fq) in PGL2(Fq3); note that
#Pq = q6 + q4 + q2. A matrix ( a bc d ) ∈ Pq is identified with the quadruple (a, b, c, d).

5.1.1 Setup

Select polynomials h0, h1 ∈ Fq3 [X] of small degree so that

X · h1(Xq)− h0(Xq) (5.1)

has an irreducible factor IX of degree n in Fq3 [X]; we will henceforth assume that
max(deg h0, deg h1) = 2, whence n ≤ 2q + 1. Note that

X ≡ h0(Xq)

h1(Xq)
≡
(
h0(X)

h1(X)

)q
(mod IX). (5.2)

The field Fq3n is represented as Fq3n = Fq3 [X]/(IX) and the elements of Fq3n are
represented as polynomials in Fq3 [X] of degree at most n− 1. Let g be a generator
of F∗q3n .

Finding logarithms of linear polynomials

Let B1 = {X + a | a ∈ Fq3}, and note that #B1 = q3. To compute the loga-
rithms of B1-elements, we first generate linear relations of these logarithms. Let
(a, b, c, d) ∈ Pq. Substituting Y 7→ (aX + b)/(cX + d) into the systematic equation

Y q − Y =
∏
α∈Fq

(Y − α) (5.3)

and using (5.2) yields(
(aX + b)(ch0 + d h1)− (ah0 + b h1)(cX + d)

)q
(5.4)

≡ h
q

1 · (cX + d) ·
∏
α∈Fq

[(a− αc)X + (b− αd)].

If the polynomial on the left side of (5.4) is 1-smooth, then taking logarithms (mod r)
of both sides of (5.4) yields a linear relation of the logarithms of B1-elements and
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the logarithm of h1. The probability that the left side of (5.4) is 1-smooth is
Nq3(1, 3)/q9 ≈ 1

6
. Thus, after approximately 6q3 trials one expects to obtain q3

relations. The cost of the relation generation stage is 6q3 · Sq3(1, 3). The logarithms
can then be obtained by using Wiedemann’s algorithm for solving sparse systems of
linear equations [156, 41]. The expected cost of the linear algebra is q7 ·Ar since each
equation has approximately q nonzero terms.

5.1.2 Continued-fractions descent

Recall that we wish to compute logg h mod r, where h ∈ Fq3n = Fq3 [X]/(IX) has
order r. We will henceforth assume that deg h = n − 1. The descent stage be-
gins by multiplying h by a random power of g. The extended Euclidean algo-
rithm is used to express the resulting field element h′ in the form h′ = w1/w2

where degw1, degw2 ≈ n/2 [83]; for simplicity, we shall assume that n is odd and
degw1 = degw2 = (n − 1)/2. This process is repeated until both w1 and w2 are
m-smooth for some chosen m < (n − 1)/2. This gives logg h

′ as a linear combina-
tion of logarithms of polynomials of degree at most m. The expected cost of this
continued-fractions descent step is approximately(

(q3)(n−1)/2

Nq3(m, (n− 1)/2)

)2

· Sq3(m, (n− 1)/2). (5.5)

The expected number of distinct irreducible factors of w1 and w2 is 2Aq3(m, (n−1)/2).
In the concrete analysis, we shall assume that each of these irreducible factors has
degree exactly m. The logarithm of each of these degree-m polynomials is then
expressed as a linear combination of logarithms of smaller degree polynomials using
one of the descent methods described in Sections 5.1.3, 5.1.4 and 5.1.5.

5.1.3 Classical descent

Let p be the characteristic of Fq, and let q = p`. Let s ∈ [0, `], and let R ∈ Fq3 [X, Y ].
Then it can be seen that[

R(X, (h0/h1)p
`−s

)
]ps
≡ R′(Xps , X) (mod IX) (5.6)

where R′ is obtained from R by raising all its coefficients to the power ps. Let
µ = degY R. Then multiplying both sides of (5.6) by h

qµ

1 gives[
h
p`−s·µ
1 ·R(X, (h0/h1)p

`−s
)
]ps
≡ h

qµ

1 ·R′(Xps , X) (mod IX). (5.7)
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Let Q ∈ Fq3 [X] with degQ = D, and let m < D. In the Joux-Lercier descent
method [88], as modified by Göloğlu et al. [67], one selects s ∈ [0, `] and searches for
a polynomial R ∈ Fq3 [X, Y ] such that (i) Q | R2 where R2 = R′(Xps , X); (ii) degR1

and degR2/Q are appropriately balanced where R1 = h
p`−sµ

1 R(X, (h0/h1)p
`−s

); and
(iii) both R1 and R2/Q are m-smooth. Taking logarithms of both sides of (5.7) then
gives an expression for loggQ in terms of the logarithms of polynomials of degree at
most m.

A family of polynomials R satisfying (i) and (ii) can be constructed by finding a
basis {(u1, u2), (v1, v2)} of the lattice

LQ = {(w1, w2) ∈ Fq3 [X]× Fq3 [X] : Q | (w1(X)− w2(X)Xps)}

where deg u1, deg u2, deg v1, deg v2 ≈ D/2. By writing (w1, w2) = a(u1, u2) +
b(v1, v2) = (au1 + bv1, au2 + bv2) with a ∈ Fq3 [X] monic of degree δ and b ∈ Fq3 [X]
of degree δ − 1, the points (w1, w2) in LQ can be sampled to obtain polynomi-
als R(X, Y ) = w′′1(Y ) − w′′2(Y )X satisfying (i) and (ii) where w′′ is obtained from
w by raising all its coefficients to the power p−s. The number of lattice points
to consider is therefore (q3)2δ. We have degw1, degw2 ≈ D/2 + δ, so degR1 =
t1 ≈ 2(D/2 + δ)p`−s + 1 and degR2 = t2 ≈ (D/2 + δ) + ps. In order to ensure that
there are sufficiently many such lattice points to generate a polynomial R for which
both R1 and R2/Q are m-smooth, the parameters s and δ must be selected so that

q6δ � q3t1

Nq3(m, t1)
· q3(t2−D)

Nq3(m, t2 −D)
. (5.8)

Ignoring the time to compute a balanced basis of LQ, the expected cost of finding a
polynomial R satisfying (i)–(iii) is

q3t1

Nq3(m, t1)
· q3(t2−D)

Nq3(m, t2 −D)
·min(Sq3(m, t1), Sq3(m, t2 −D)). (5.9)

The expected number of distinct irreducible factors of R1 and R2/Q is Aq3(m, t1) +
Aq3(m, t2 −D).

5.1.4 Gröbner bases descent

Let Q ∈ Fq3 [X] with degQ = D. Let m = d(D + 1)/2e, and suppose that 3m < n.
In Joux’s new descent method [86, Section 5.3], one finds degree-m polynomials

k1, k2 ∈ Fq3 [X] such that G = k1k̃2 − k̃1k2 = QR, where k̃1 = h
m

1 k1(h0/h1) and
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k̃2 = h
m

1 k2(h0/h1), and R ∈ Fq3 [X]. Note that degR = 3m−D. If R is m-smooth,
then we obtain a linear relationship between loggQ and logs of degree-m polynomials
(see [4, Section 3.7]):

h
mq

1 · k2 ·
∏
α∈Fq

(k1 − αk2) ≡ (Q(X)R(X))q (mod IX). (5.10)

To determine (k1, k2, R) that satisfy

k1k̃2 − k̃1k2 = QR, (5.11)

one can transform (5.11) into a system of multivariate quadratic equations over Fq.
Specifically, each coefficient of k1, k2 and R is written using three variables over Fq.
The coefficients of k̃1 and k̃2 can then be written in terms of the coefficients of k1 and
k2. Hence, equating coefficients of X i of both sides of (5.11) yields 3m+ 1 quadratic
equations. Equating Fq-components of these equations then yields 9m + 3 bilinear
equations in 15m− 3D+ 9 variables over Fq. This system of equations can be solved
by finding a Gröbner basis for the ideal it generates. Finally, solutions (k1, k2, R)
are tested until one is found for which R is m-smooth. This yields an expression
for loggQ in terms of the logarithms of approximately q + 1 + Aq3(m, 3m − D)
polynomials of degree (at most) m; in the concrete analysis we shall assume that
each of the polynomials has degree exactly m.

5.1.5 2-to-1 descent.

The Gröbner bases descent methodology of §2.5 can be employed in the case (D,m) =
(2, 1). However, as also reported by Joux in his F26168 discrete log computation [87],
we found the descent to be successful for only about 50% of all irreducible quadratic
polynomials. Despite this, some strategies can be used to increase this percentage.

Let Q(X) = X2 + uX + v ∈ Fq3 [X] be an irreducible quadratic polynomial for
which the Gröbner bases descent method failed.

Strategy 1. Introduced by Joux [87] and Göloğlu et al. [68], this strategy is based
on the systematic equation derived from Y q′ − Y where q′ < q and Fq′ is a proper
subfield of Fq3 instead of the systematic equation (5.3) derived from Y q − Y . Let p
be the characteristic of Fq, and let q = p`, q′ = p`

′
, and s = `− `′. Then q = ps · q′.

Now, one searches for a, b, c, d ∈ Fq3 such that

G = (aX + b)(ch0 + d h1)p
s − (ah0 + b h1)p

s

(cX + d) = QR
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with R ∈ Fq3 [X]. Note that degR = 2ps − 1.3 If R is 1-smooth, then we obtain a
linear relationship between loggQ and logs of linear polynomials since

Gq ≡ h
psq

1 · (cX + d)p
s ·
∏
α∈Fq′

(
(aX + b)p

s − α(cX + d)p
s)

(mod IX),

as can be seen by making the substitution Y 7→ (aX + b)p
s
/(cX + d)p

s
into the

systematic equation derived from Y q′ − Y .
Unfortunately, in all instances we considered, the polynomial R never factors

completely into linear polynomials. However, it hopefully factors into a quadratic
polynomial Q′ and 2ps− 3 linear polynomials, thereby yielding a relation between Q
and another quadratic which has a roughly 50% chance of descending using Gröbner
bases descent. Combined with the latter, this strategy descends about 95% of all
irreducible quadratic polynomials in the fields F36·137 and F36·163 .

Strategy 2. We have

h
2q

1 Q(X) ≡ h
2q

1 Q((h0/h1)q) = h
2q

0 + uh
q

0h
q

1 + vh
2q

1

= (h
2

0 + uh0h1 + v h
2

1)q (mod IX). (5.12)

It can be seen that the degree-4 polynomial fQ(X) = h
2

0 + uh0h1 + v h
2

1 is either a
product of two irreducible quadratics or itself irreducible. In the former case, we
apply the standard Gröbner bases descent method to the two irreducible quadratics.
If both descents are successful, then we have succeeded in descending the original Q.

The strategies are combined in the following manner. For an irreducible quadratic
Q ∈ Fq3 [X], we first check if the Gröbner bases descent is successful. If the descent
fails, we apply Strategy 2 to Q. In the case where fQ factors into two irreducible
quadratics, and at least one of them fails to descent with Gröbner bases descent, we
apply Strategy 1 to Q. If Strategy 1 fails on Q, we apply it to the two quadratic
factors of fQ. In the case where fQ is irreducible, we apply Strategy 1 to Q.

If none of the attempts succeed, we declare Q to be “bad”, and avoid it in the
higher-degree descent steps by repeating a step until all the quadratics encountered
are “good”. In our experiments with F36·137 and F36·163 , we observed that approxi-
mately 97.2% of all irreducible quadratic polynomials Q were “good”.

3For our F36·137 and F36·163 computations, we have q = 34 and used q′ = 33, so s = 1 and
degR = 5.
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To see that this percentage is sufficient to complete the descent phase in these
two fields, consider a 3-to-2 descent step where the number of resulting irreducible
quadratic polynomials is 42 on average (cf. equation (5.10)). Then the probability
of descending a degree-3 polynomial after finding one useful solution (k1, k2, R) in
Gröbner bases descent is 0.97242 ≈ 0.3. Therefore, after at most four trials we expect
to successfully descend a degree-3 polynomial. Since the expected number of distinct
solutions of (5.11) is approximately q3 (according to equation (10) in [70]), one can
afford this many trials.

5.2 Computing discrete logarithms in F36·137

The supersingular elliptic curve E : y2 = x3−x+ 1 has order #E(F3137) = cr, where

c = 7 · 4111 · 5729341 · 42526171

and

r = (3137 − 369 + 1)/c = 33098280119090191028775580055082175056428495623

is a 155-bit prime [23]. The Weil and Tate pairing attacks [112, 55] efficiently reduce
the discrete logarithm problem in the order-r subgroup E of E(F3137) to the discrete
logarithm problem in the order-r subgroup G of F∗36·137 .

Our approach to computing logarithms in G is to use Joux’s algorithm to compute
logarithms in the quadratic extension F312·137 of F36·137 (so q = 34 and n = 137 in
the notation of Section 5.1). More precisely, we are given two elements α, β of order
r in F∗312·137 and we wish to find logα β. Let g be a generator of F∗312·137 . Then
logα β = (logg β)/(logg α) mod r. Thus, in the remainder of the section we will
assume that we need to compute logg h mod r, where h is an element of order r in
F∗312·137 .

The DLP instance we solved is described in Section 5.2.1. The concrete esti-
mates from Section 5.1 for solving the DLP instances are given in Section 5.2.2.
These estimates are only upper bounds on the running time of the algorithm. Never-
theless, they provide convincing evidence for the feasibility of the discrete logarithm
computations. Our experimental results are presented in Section 5.2.3.

5.2.1 Problem instance

Let N denote the order of F∗312·137 . Using the tables from the Cunningham Project
[134], we determined that the factorization of N is N = p4

1 ·
∏31

i=2 pi, where the pi are
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the following primes (and r = p25):

p1 = 2 p2 = 5 p3 = 7 p4 = 13 p5 = 73 p6 = 823 p7 = 4111 p8 = 4933

p9 = 236737 p10 = 344693 p11 = 2115829 p12 = 5729341 p13 = 42526171

p14 = 217629707 p15 = 634432753 p16 = 685934341 p17 = 82093596209179

p18 = 4354414202063707 p19 = 18329390240606021 p20 = 46249052722878623693

p21 = 201820452878622271249 p22 = 113938829134880224954142892526477

p23 = 51854546646328186791017417700430486396513

p24 = 273537065683369412556888964042827802376371

p25 = 33098280119090191028775580055082175056428495623

p26 = 706712258201940254667826642673008768387229115048379

p27 = 108081809773839995188256800499141543684393035450350551

p28 = 91321974595662761339222271626247966116126450162880692588587183952237

p29 = 39487531149773489532096996293368370182957526257988573877031054477249

393549

p30 = 40189860022384850044254854796561182547553072730738823866986300807613

29207749418522920289

p31 = 19064323153825272072803685870803955622834286523139037403580752310822

7896644646984063736942624066227406898132113366226593158464419713.

We chose F34 = F3[U ]/(U4 + U2 + 2) and F312 = F34 [V ]/(V 3 + V + U2 + U),
and selected h0(X) = V 326196X2 + V 35305X + V 204091 ∈ F312 [X] and h1 = 1. Then
IX ∈ F312 [X] is the degree-137 monic irreducible factor of X − h0(X34); the other
irreducible factor has degree 25.

We chose the generator g = X+V 113713 of F∗312·137 . To generate an order-r discrete
logarithm challenge h, we computed

h′ =
136∑
i=0

(
V bπ·(3

12)i+1c mod 312
)
X i

and then set h = (h′)N/r. The discrete logarithm logg h mod r was found to be

x = 27339619076975093920245515973214186963025656559.

This can be verified by checking that h = (gN/r)y, where y = x · (N/r)−1 mod r.
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5.2.2 Estimates

The factor base B1 has size 312 ≈ 219. The cost of the relation generation is approx-
imately 229.2Mq3 , whereas the cost of the linear algebra is approximately 244.4Ar.
Figure 5.1 shows the estimated running times for the descent stage. Further infor-
mation about the parameter choices are provided below.

1. For the continued-fractions descent stage, we selected m = 13. The expected
cost of this descent is 243.2Mq3 , and the expected number of irreducible factors
of degree (at most) 13 obtained is 2A312(68, 13) ≈ 20.

2. Two classical descent stages are employed. In the first stage, we have D = 13
and select m = 7, s = 3, δ = 1, which yield t1 = 43 and t2 = 34. The expected
cost of the descent for each of the 20 degree-13 polynomials is approximately
233.7Mq3 . The expected total number of distinct irreducible polynomials of
degree (at most) 7 obtained is approximately 320.

In the second classical descent stage, we have D = 7 and select m = 5, s = 3,
δ = 1, which yield t1 = 25 and t2 = 31. The expected cost of the descent for
each of the 320 degree-7 polynomials is approximately 234.8Mq3 . The expected
total number of distinct irreducible polynomials of degree (at most) 5 obtained
is approximately 5, 120.

3. Our implementation of the Gröbner bases descent stage used Magma’s imple-
mentation of Faugére’s F4 algorithm [48] and took 26.5 minutes on average
for a 5-to-3 descent, 34.7 seconds for a 3-to-2 descent, and 0.216 seconds for a
2-to-1 descent. The total expected running time for each of these stages is 94,
211 and 168 days, respectively.

Since all the descent stages can be effectively parallelized, our estimates suggest
that a discrete logarithm can be computed in a week or so given a few dozen proces-
sors. In fact (and as confirmed by our experimental results), the actual running time
is expected to be significantly less than the estimated running time since the esti-
mates are quite conservative; for example, our estimates for the number of branches
in a descent step assumes that each distinct irreducible polynomial has degree ex-
actly m, whereas in practice many of these polynomials will have degree significantly
less than m.

5.2.3 Experimental results

Our experiments were run on an Intel i7-2600K 3.40 GHz machine (Sandy Bridge),
and on an Intel i7-4700MQ 2.40 GHz machine (Haswell).
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Continued fraction descent
Time: 243.2Mq3

68 (2)

Classical descent

7 (320)
Classical descent
Time: 320 · 234.8Mq3

Time: 20 · 233.7Mq3

13 (20)

5 (5,120)
Gröbner bases descent
Time: 5, 120 · (26.5 minutes)

3 (219)

Time: 219 · (34.7 seconds)
Gröbner bases descent

1

2 (226)
Gröbner bases descent
Time: 226 · (0.216 seconds)

Figure 5.1: A typical path of the descent tree for computing an individual logarithm
in F312·137 (q = 34). The numbers in parentheses next to each node are the expected
number of nodes at that level. ‘Time’ is the expected time to generate all nodes at
a level.
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Relation generation took 1.05 CPU hours (Sandy Bridge, 1 core). The resulting
sparse linear system of linear equation was solved using Magma’s multi-threaded
parallel version of the Lanczos algorithm; the computation took 556.8 CPU hours
(Sandy Bridge, 4 cores).

In the continued-fractions descent stage, the first degree-68 polynomial yielded 9
irreducible factors of degrees 12, 12, 11, 10, 8, 6, 6, 2, 1, and the second degree-68
polynomial yielded 11 irreducible factors of degrees 13, 12, 10, 10, 7, 6, 5, 2, 1, 1, 1.
The computation took 22 CPU hours (Haswell, 4 cores).

Classical descent was used on the 9 polynomials of degree ≥ 8 to obtain polyno-
mials of degree ≤ 7, and then on the 23 polynomials of degree 7 and 23 polynomials
of degree 6 to obtain polynomials of degree ≤ 5. These computations took 80 CPU
hours (Haswell, 4 cores).

Finally, we used 5-to-3, 4-to-3, 3-to-2 and 2-to-1 Gröbner bases descent proce-
dures. The average time for a 4-to-3 descent was 33.8 seconds; the other average
times are given in Figure 5.1. In total, we performed 233 5-to-3 descents, 174 4-to-3
descents, and 11573 3-to-2 descents. These computations took 115.2 CPU hours,
1.5 CPU hours, and 111.2 CPU hours, respectively (Haswell, 4 cores). We also per-
formed 493537 2-to-1 descents; their running times are incorporated into the running
times for the higher-level descents.

5.3 Computing discrete logarithms in F36·163

The supersingular elliptic curve E : y2 = x3 − x − 1 has order #E(F3163) = 3163 +
382 + 1 = r, where r is the following 259-bit prime:

r = 589881151426658740854227725580736348850640632297373414091790995505756

623268837.

The Weil and Tate pairing attacks [112, 55] efficiently reduce the discrete logarithm
problem in the order-r group E = E(F3163) to the discrete logarithm problem in the
order-r subgroup G of F∗36·163 .

As in Section 5.2, we will compute logarithms in G by using Joux’s algorithm
to compute logarithms in the quadratic extension F312·163 of F36·163 (so q = 34 and
n = 163 in the notation of Section 5.1). We will compute logg h mod r, where g is a
generator of F∗312·163 and h is an element of order r in F∗312·163 .
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5.3.1 Problem instance

Let N denote the order of F∗312·163 . Using the tables from the Cunningham Project
[134], we partially factored N as N = C · p4

1 ·
∏22

i=2 pi, where the pi are the following
primes (and r = p20):

p1 = 2 p2 = 5 p3 = 7 p4 = 13 p5 = 73 p6 = 653 p7 = 50857

p8 = 107581 p9 = 489001 p10 = 105451873 p11 = 380998157

p12 = 8483499631 p13 = 5227348213873 p14 = 8882811705390167

p15 = 4956470591980320134353 p16 = 23210817035829275705929

p17 = 3507171060957186767994912136200333814689659449

p18 = 6351885141964057411259499526611848626072045955243

p19 = 84268735918094105836318246511533764121140010481130741067443071103148

817701717

p20 = 58988115142665874085422772558073634885064063229737341409179099550575

6623268837

p21 = 13262905784043723370034025667618121081540438283177268680045186884853

26204127242781054287716913828905695771535319617625904849821802388801

p22 = 24879984727675011205198718183055547601122582974374576908898869641570

09269122423985704395925964922959410448009886539842494955927136450643

31019158574269,

and C is the following 919-bit composite number

C = 2873322036656120507394501949912283436722983546265951551507632957325767

0275216328747773792566523729655097848102113488795698936768394494992621

2312022819011019340957620502000045691081669475648919901346991751981450

8311534570945558522228827298337826215043744094861514754454151493177.

We verified that gcd(C,N/C) = 1 and that C is not divisible by any of the first 107

primes. Consequently, if an element g is selected uniformly at random from F∗312·163 ,
and g satisfies g(N−1)/pi 6= 1 for 1 ≤ i ≤ 22, then g is a generator with very high
probability.4

We chose F34 = F3[U ]/(U4 + U2 + 2) and F312 = F34 [V ]/(V 3 + V + U2 + U), and
selected h0(X) = 1 and

h1(X) = X2 + V 530855 ∈ F312 [X].

4More precisely, since C has at most 34 prime factors, each of which is greater than the prime
p = 179424673, the probability that g is a generator is at least (1− 1

p )34 > 0.99999981.
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Then IX ∈ F312 [X] is the degree-163 irreducible polynomial X · h1(X34)− 1:

IX = X163 + V 530855X + 2.

We chose g = X + V 2, which we hope is a generator of F∗312·163 .
To generate an order-r discrete logarithm challenge h, we computed

h′ =
162∑
i=0

(
V bπ·(3

12)i+1c mod 312
)
X i

and then set h = (h′)N/r. The discrete logarithm logg h mod r was found to be

x = 42639595149827919371329139195344900073259255425113252567203978435605

4526194343.

This can be verified by checking that h = (gN/r)y, where y = x · (N/r)−1 mod r.

5.3.2 Experimental results

Our experiments were run on an Intel i7-2600K 3.40 GHz machine (Sandy Bridge),
and on an Intel Xeon E5-2650 2.00 GHz machine (Sandy Bridge-EP). The descent
strategy was similar to the one used for the F36·137 computation.

Relation generation took 0.84 CPU hours (Sandy Bridge, 1 core). The resulting
sparse system of linear equations was solved using Magma’s multi-threaded parallel
version of the Lanczos algorithm; the computation took 852.5 CPU hours (Sandy
Bridge, 4 cores).

In the continued-fractions descent stage with m = 15, the first degree-81 polyno-
mial yielded 8 irreducible factors of degrees 15, 15, 14, 14, 10, 7, 5, 1, and the second
degree-81 polynomial yielded 12 irreducible factors of degrees 12, 10, 9, 9, 9, 8, 6, 6,
6, 4, 1, 1. The computation took 226.7 CPU hours (Sandy Bridge-EP, 16 cores).

Classical descent was used on the 11 polynomials of degree ≥ 8 to obtain polyno-
mials of degree ≤ 7, and then a variant of classical descent (called the “alternative”
method in Section 3.5 of [4]) was used on the 15 polynomials of degree 7 and 30
polynomials of degree 6 to obtain polynomials of degree ≤ 5. These computations
took 51.0 CPU hours (Sandy Bridge-EP, 16 cores).

Finally, we used 5-to-3, 4-to-3 and 3-to-2 Gröbner bases descent procedures. The
descent was sped up by writing the coefficients of R (cf. equation (5.11)) in terms
of the coefficients of k1 and k2; this reduced the number of variables in the resulting
bilinear equations from 15m − 3D + 9 to 9m + 3. In total, we performed 213 5-
to-3 descents, 187 4-to-3 descents, and 11442 3-to-2 descents. These computations
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took 24.0 CPU hours (Sandy Bridge-EP 16 cores), 0.8 CPU hours (Sandy Bridge, 4
cores), and 44.8 CPU hours (Sandy Bridge, 4 cores), respectively. The running times
of the 2-to-1 descents were incorporated into the running times for the higher-level
descents.

5.4 Higher extension degrees

As mentioned in the introduction of this chapter, there have been several practical im-
provements and refinements in discrete logarithm algorithms since Joux’s L[1

4
+o(1)]

algorithm. Most notably, Granger, Kleinjung and Zumbrägel [70] presented several
refinements that allowed them to compute logarithms in the 4404-bit characteristic-
two field F212·367 , and Joux and Pierrot [89] presented a faster algorithm for computing
logarithms of factor base elements and used it to compute logarithms in the 3796-bit
characteristic-three field F35·479 .

In Section 5.4.1, we show that the techniques from [89] and [70] can be used
to lower the estimate from [2] for computing discrete logarithms in the 4841-bit
characteristic-three field F36·509 from 281.7Mq2 to 258.9Mq (where q = 36). In Section
5.4.2, we use techniques from [70] to lower the estimate from [4] for computing
discrete logarithms in the 13590-bit characteristic-three field F36·1429 from 295.8Mq2

to 278.8Mq2 (where q = 36). We emphasize that these estimates are upper bounds
on the running times of known algorithms for computing discrete logarithms. Of
course, it is possible that these upper bounds can be lowered with a more judicious
choice of algorithm parameters, or with a tighter analysis, or with improvements to
the algorithms themselves.

5.4.1 Computing discrete logarithms in F36·509.

As in Section 4 of [2], we are interested in computing discrete logarithms in the order
r-subgroup of F∗36·509 , where r = (3509 − 3255 + 1)/7 is an 804-bit prime.

We use the algorithm developed by Joux and Pierrot [89], whence q = 36 and
k = 1. The field F36 is represented as F3[u]/(u6 + 2u4 + u2 + 2u + 2). The field
F36·509 is represented as F36 [X]/(IX), where IX is the degree-509 irreducible factor
of h1(X)Xq − h0(X) with h0(X) = u46X + u219 and h1(X) = X(X + u409). Joux
and Pierrot [89] exploit the special form of h0(X) and h1(X) to accelerate the com-
putation of logarithms of polynomials of degree ≤ 4; the dominant step is the com-
putation of logarithms of degree-3 polynomials, where q linear algebra problems are
solved each taking time approximately q5/27Ar. The continued-fractions, classical
and Gröbner bases descents are all performed over Fq.
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The new cost estimates are presented in Table 5.1. We used the estimates for
smoothness testing from [69], and the ‘bottom-top’ approach from [70] for estimating
the cost of Gröbner bases descent from degree 15 to degree 4. We assume that 227

multiplications in F36 can be performed in 1 second; we achieved this performance
using a look-up table approach. The timings for Gröbner bases descent and F36

multiplications were obtained on an Intel i7-3930K 3.2 GHz machine. In a non-
optimized C implementation, we have observed an Ar cost of 43 clock cycles, where
lazy reduction is used to amortize the cost of a modular reduction among many
integer additions. This yields the cost ratio Ar/Mq ≈ 2.

The main effect of the improvements is the removal of the QPA descent stage
from the estimates in [2]. The overall running time is 258.9Mq, a significant improve-
ment over the 281.7Mq2 estimate from [2]. In particular, assuming the availability of
processors that can perform 227 F36-multiplications per second, the estimated run-
ning time is approximately 127 CPU years — this is a feasible computation if one
has access to a few hundred cores.

Table 5.1: Estimated costs of the main steps for computing discrete logarithms in
F36·509 (q = 36). Ar and Mq denote the costs of an addition modulo the 804-bit prime
r = (3509−3255 + 1)/7 and a multiplication in F36 . We use the cost ratio Ar/Mq = 2,
and also assume that 227 multiplications in F36 can be performed in 1 second

Finding logarithms of polynomials of degree ≤ 4
Linear algebra 252.3Ar 253.3Mq

Descent
Continued-fractions (254 to 40) 256.9Mq 256.9Mq

Classical (40 to 21) 12.7× 254.2Mq 257.9Mq

Classical (21 to 15) 159× 249.4Mq 256.7Mq

Gröbner bases (15 to 4) 1924× 8249 seconds 250.9Mq

Remark 1. The strategy for computing logarithms in F36·509 can be employed to
compute logarithms in F36·239 . The latter problem is of cryptographic interest because
the prime-order elliptic curve y2 = x3 − x − 1 over F3239 has embedding degree 6
and has been considered in several papers including [73] and [22]. One could use
continued-fractions descent from degree 119 to degree 20 with an estimated cost of
250Mq, followed by a classical descent stage from degree 20 to degree 15 at a cost
of 253.2Mq, and finally Gröbner bases descent to degree 4 at a cost of 247.2Mq. The
total computational effort is 254.3Mq, or approximately 5.2 CPU years.
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5.4.2 Computing discrete logarithms in F36·1429.

As in Section 4 of [4], we are interested in computing discrete logarithms in the
order r-subgroup of F∗36·1429 , where r = (31429− 3715 + 1)/7622150170693 is a 2223-bit
prime. To accomplish this, we embed F36·1429 in its quadratic extension F312·1429 . Let
q = 36 and k = 2. The field F312·1429 is represented as Fq2 [X]/(IX), where IX is a
monic degree-1429 irreducible factor of h1(Xq) ·X−h0(Xq) with h0, h1 ∈ Fq2 [X] and
max(deg h0, deg h1) = 2.

The techniques from [70] employed to improve the estimates of [4] are the follow-
ing:

1. Since logarithms are actually sought in the field F36·1429 , the continued fractions
and classical descent stages are performed over Fq (and not Fq2).

2. In the final classical descent stage to degree 11, one permits irreducible factors
over Fq of even degree up to 22; any factors of degree 2t ≥ 12 that are obtained
can be written as a product of two degree-t irreducible polynomials over Fq2 .

3. The number of irreducible factors of an m-smooth degree-t polynomial is esti-
mated as t/m.

4. The smoothness testing estimates from Appendix B of [69] were used.

The remaining steps of the algorithm, namely finding logarithms of linear polynomial,
finding logarithms of irreducible quadratic polynomials, QPA descent, and Gröbner
bases descent, are as described in [4].

The new cost estimates are presented in Table 5.2. The main effect of the tech-
niques from [70] is the removal of one QPA descent stage. The overall running time
is 278.8Mq2 , a significant improvement over the 295.8Mq2 estimate from [4].
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Table 5.2: Estimated costs of the main steps for computing discrete logarithms
in F312·1429 (q = 36). Ar, Mq, and Mq2 denote the costs of an addition modulo the
2223-bit prime r, a multiplication in F36 , and a multiplication in F312 . We use the
cost ratio Ar/Mq2 = 4, and also assume that 226 (resp. 227) multiplications in F312

(resp. F36) can be performed in 1 second (cf. Section 5.4.1)

Finding logarithms of linear polynomials
Relation generation 228.6Mq2 228.6Mq2

Linear algebra 247.5Ar 249.5Mq2

Finding logarithms of irreducible quadratic polynomials
Relation generation 312 × 237.6Mq2 256.6Mq2

Linear algebra 312 × 247.5Ar 268.5Mq2

Descent
Continued-fractions (714 to 88) 277.6Mq 277.6Mq

Classical (88 to 29) 16.2× 273.5Mq 277.5Mq

Classical (29 to 11) 267.3× 270.8Mq 278.9Mq

QPA (11 to 7) 213.9 × (244.4Mq2 + 247.5Ar) 263.4Mq2

Gröbner bases (7 to 4) 235.2 × (76.9 seconds) 267.5Mq2

Gröbner bases (4 to 3) 244.7 × (0.03135 seconds) 265.7Mq2

Gröbner bases (3 to 2) 254.2 × (0.002532 seconds) 271.6Mq2

5.5 On the asymptotic nature of the QPA algo-

rithm

Let E denote the supersingular elliptic curve y2+y = x3+x or y2+y = x3+x+1 over
F2n where n is prime, and suppose that #E(F2n) = cr where r is prime and c� r.
The Weil and Tate pairings reduce the discrete logarithm problem in the order-r
subgroup of E(F2n) to the discrete logarithm problem in the order-r subgroup of the
multiplicative group of F24n . Coppersmith’s subexponential-time algorithm [40] can
be used to solve the latter problem.

In contrast, the QPA algorithm of Barbulescu et al. [13] tackles the problem by
embedding F24n in Fq2n where q = 2` ≈ n. The running time of the QPA algorithm is
dominated by the descent stage. In this stage, one begins with a polynomial of degree
(at most) n−1 over Fq2 whose logarithm is sought. One then expresses the logarithm
of this polynomial in terms of the logarithms of roughly q2 polynomials of degree at
most n/2. This process is applied recursively to each polynomial encountered in
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the “descent tree”; the logarithm of each such polynomial of degree d is expressed
in terms of the logarithms of roughly q2 polynomials of degree at most d/2. To
terminate the recursion, the logarithms of all degree-1 polynomials are obtained
using a relatively fast method. The number of nodes in the descent tree gives a very
crude lower bound on the running time of the QPA algorithm. Since n ≈ q, the
descent tree has approximately log2 q levels and at least q2 log2 q nodes.

Table 5.3 compares the running time C(q) = exp(1.526(log 24q)1/3(log log 24q)2/3)
of Coppersmith’s algorithm for computing discrete logarithms in F24q , and the lower
bound q2 log2 q on the running time of the QPA algorithm for computing discrete
logarithms in Fq2n with q ≈ n.

Table 5.3: Comparison of the running time q2 log2 q of the QPA algorithm for com-
puting logarithms in Fq2n with q ≈ n, and the running time C(q) of Coppersmith’s
algorithm for computing logarithms in F24n

q q2 log2 q C(q)
29 2162 293

210 2200 2124

211 2242 2165

212 2288 2219

213 2338 2290

214 2392 2382

215 2450 2501

We see from Table 5.3 that the QPA algorithm is faster than Coppersmith’s
algorithm only when n ≈ q = 215. However, such n is too large to be of interest in
cryptography based on pairings over E(F2n).

As already stated in [13, Section 6.2], to determine the practical efficiency of the
QPA algorithm, and therefore the implications of QPA to the security of pairing-
based cryptosystems based on E(F2n), it is imperative that the descent stage of
QPA be combined with descent steps from classical algorithms. The asymptotic
running time of the resulting hybrid algorithm is difficult to determine. Instead, the
framework and tools introduced in [2] are used to perform a concrete analysis which
provides a reasonably accurate picture of the effectiveness of the hybrid algorithm.
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5.6 Summary

In this chapter, we applied the recent techniques for solving the DLP on small-
characteristic fields to the cases F36·137 and F36·163 . The implementations were done
completely in the Magma algebra system and took 918 CPU hours and 1201 CPU
hours, respectively.

Next, we realized a concrete analisis of the cost to solve the DLP in the fields F36·509

and F36·1429 using the Joux-Pierrot approach. Both fields were previously proposed
as primitives for pairing-based protocols. Finally, we presented estimations for the
Barbulescu et al. quasi-polynomial algorithm on different extension fields in order
to verify its feasibility on being applied to fields of cryptographic interest.
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6 | Elliptic and Hyperelliptic Curves

In the last two decades, the elliptic curve cryptosystems introduced by Koblitz and
Miller [98, 113] have been increasingly employed to instantiate public-key standards
[132] and protocols [44, 146]. The main reason for that is their reduced key size,
which accommodate fast and lightweight implementations.

In 2011, Galbraith, Lin and Scott (GLS) [61] introduced efficient computable
endomorphisms for a large class of elliptic curves defined over Fp2 , where p is a prime
number. Later, Hankerson, Karabina and Menezes [76] analyzed the GLS curves
defined over characteristic two fields F22n , with prime n. For more details of the GLS
curves, see Chapter 3.

Since then, many authors combined the GLS efficient endomorphisms with the
Gallant-Lambert-Vanstone decomposition method [63] to present high-performance
scalar multiplication software implementations over binary [76, 120] and prime [81,
103, 29, 50] fields.

The theoretical security of an elliptic curve is given by the complexity of solving
the discrete logarithm problem (DLP) on its group of points. Given an elliptic curve
E defined over a field Fq, a generator point P ∈ E(Fq) of order r and a challenge
point Q ∈ 〈P 〉, the DLP on E consists in computing the integer λ ∈ Zr such that
Q = λP .

Among the classical methods for solving the DLP on E(Fq) we can cite the Baby
Step Giant Step [39, Section 19.4] and Pollard Rho [126] algorithms. Both of them
run in time O(

√
q). In 1993, Menezes, Okamoto and Vanstone presented a method

[112] that uses the Weil pairing to reduce the DLP on E(Fq) to the same problem
on F∗

qk
, where k is the smallest positive integer such that r | qk− 1. In binary curves

where k is small, the attack is highly effective, because there exist quasi-polynomial
algorithms for solving the discrete logarithm on small-characteristic finite fields [13].
For binary curves, we also have algorithms based on the index-calculus approach [49]
which run in time O(

√
qω), where ω is a constant related to the linear algebra.

In 2000, Gaudry, Hess and Smart (GHS) [65] applied the ideas in [54, 62] to
reduce any instance of the DLP on a binary curve E/F2ln to one on the Jacobian

107
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of a hyperelliptic curve defined over a subfield F2l . Afterwards, Galbraith, Hess and
Smart [60] extended the attack by using isogenies. Next, Hess [80] generalized the
attack (gGHS) to arbitrary Artin-Schreier extensions.

The analysis of the practical implications of the GHS Weil descent method were
made by Menezes and Qu [108] who demonstrated that the attack is infeasible for
elliptic curves over F2n with primes n ∈ [160, . . . , 600] and by Menezes, Teske and
Weng [111] who showed that the attack can be applied to curves defined over com-
posite extensions of a binary field. Finally, the authors in [76] analyzed the appli-
cation of the gGHS attack over GLS binary curves E/F22n and concluded that for
n ∈ [80, . . . , 256], the degree-127 extension is the only one that contains vulnerable
curve isogeny classes.

In this work, we wanted to get a practical perspective of the GHS Weil descent
attack. In order to achieve this goal, we implemented the attack against a binary
GLS elliptic curve on the Magma computer algebra system. The implementation
included the construction of vulnerable curves, the search for susceptible isogenous
curves and the adaptation of the Enge-Gaudry algorithm [46] to solve the discrete
logarithm problem on the generated hyperelliptic curve.

Moreover, we proposed a mechanism to check for unsafe binary curve parame-
ters against the GHS attack. The Magma source code for the algorithms presented
in this document is available at http://computacion.cs.cinvestav.mx/~thomaz/
gls.tar.gz. Our program can be easily adapted for any extension field and can be
executed on single and multi-core architectures.

6.1 Hyperelliptic Curves

Let F2l be a finite field of 2l elements, for some positive integer l, and let F2ln be a
degree-n extension field of F2l . A hyperelliptic curve H/F2l of genus g is given by
the following non-singular equation,

H/F2l : y
2 + h(x)y = f(x), (6.1)

where f, h ∈ F2l [x], deg(f) = 2g + 1 and deg(h) ≤ g. The set of F2ln-rational points
on H is H(F2ln) = {(x, y) : x, y ∈ F2ln , y

2 + h(x)y = f(x)} ∪ {O}. The opposite of a
point P = (x, y) ∈ H(F2ln) is denoted as P = (x, y + h(x)) and O = O.

The group law is not defined over the curve itself but on the Jacobian of H,
denoted by JH(F2l), which is defined in terms of the set of divisors on H. A divisor
is a finite formal sum of points on the curve and the set of all divisors on H yield
an abelian group denoted by Div(H). Let ci be an integer, then for each divisor

http://computacion.cs.cinvestav.mx/~thomaz/gls.tar.gz
http://computacion.cs.cinvestav.mx/~thomaz/gls.tar.gz
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D =
∑

Pi∈H ci(Pi), deg(D) =
∑
ci is the degree of D. The set Div0(H) of degree-

zero divisors forms a subgroup of Div(H).

The function field F2ln(H) of H is the set of rational functions on H. For each non-

zero function ϕ ∈ F2ln(H), we can associate a divisor div(ϕ) =
∑

Pi∈H νPi(ϕ)(Pi),
where νPi(ϕ) is an integer defined as follows:

νPi(ϕ) =


the multiplicity of Pi with respect to ϕ if ϕ has a zero at Pi

the negative of the multiplicity of Pi
with respect to ϕ if ϕ has a pole at Pi

0 otherwise.

A non-zero rational function has only finitely many zeroes and poles. In addition,
the number of poles equals the number of zeroes (with multiplicity). Therefore,
νPi(ϕ) is equal to zero for almost all Pi and div(ϕ) is consequently well defined.

The divisor div(ϕ) is called principal. Given two functions ϕ0 and ϕ1 ∈ F2ln(H),
the difference of two principal divisors div(ϕ0) and div(ϕ1) is also a principal divisor,
corresponding to the fraction of the two functions. The set P(H) of principal divisors
contains 0 as div(1) and is a subgroup of Div0(H). The Jacobian of the curve H is
given by the quotient group JH(F2l) = Div0(H)/P(H) and JH(F2l) is the Jacobian
over F2l . Note that #JH(F2l) ≈ 2lg.

A consequence of the Riemann-Roch theorem [39, Section 4.4.2] is that every
element of the Jacobian can be represented by a divisor of the form

D = (P1) + (P2) · · ·+ (Pr)− r(O) (6.2)

where Pi ∈ H for i = 1, . . . , r and r ≤ g. Furthermore, if Pi 6= Pj for all i 6= j, then
D is called a reduced divisor. A reduced divisor can be uniquely represented by a
pair of polynomials U, V ∈ F2l [x] such that (i) deg(V ) < deg(U) ≤ g; (ii) U is monic;
and (iii) U |(V 2 + V h− f).

If U and V are two polynomials that satisfy the above conditions, we denote by
div(U, V ) the corresponding element of JH(F2l). When U is irreducible in F2l [x] we
say that div(U, V ) is a prime divisor. Let D = div(U, V ) ∈ JH(F2l) and U =

∏
Ui,

where each Ui is an irreducible polynomial in F2l [x], and let Vi = V mod Ui. Then
Di = div(Ui, Vi) is a prime divisor and D =

∑
Di.
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6.2 The Hyperelliptic Curve Discrete Logarithm

Problem

Let q = 2l and g be the genus of the hyperelliptic curve H/Fq. The discrete logarithm
problem on JH(Fq) is defined as follows: given D1 ∈ JH(Fq) of order r and D2 ∈ 〈D1〉,
find λ ∈ Zr such that D2 = λD1.

Besides the Pollard Rho algorithm, whose time complexity is O(
√

πqg

2
), the meth-

ods proposed in the literature for solving the DLP on H are index-calculus-based
algorithms:

1. Gaudry in [64] proposed an algorithm whose complexity is O(g3q2 log2 q +
g2g!q log2 q). If one considers a fixed genus g, the algorithm executes in time

O(q2+ε). In [65], the algorithm is modified to perform in time O(q
2g
g+1

+ε). Here,
ε is a number less than 1.

2. The Enge-Gaudry algorithm [46] has an expected running time of Lqg [
√

2] when
g/ log q →∞. Here, Lx[c] denotes the expression e((c+o(1))

√
log x

√
log log x).

3. In [66], Gaudry et al. propose a double large prime variation in order to improve
the relation collection phase. For curves with fixed genus g ≥ 3 the algorithm

runs in time Õ(q2− 2
g ).

4. The approach from Sarkar and Singh [137, 138], based on the Nagao’s work
[115], avoids the requirement of solving a multi-variate system and combines
a sieving method proposed by Joux and Vitse [90]. They showed that it is
possible to obtain a single relation in about (2g + 3)! trials.

6.3 The Gaudry-Hess-Smart (GHS) Weil descent

attack

Let F2ln be a degree-n extension of F2l and let E be an elliptic curve defined over
F2ln given by the equation

E/F2ln : y2 + xy = x3 + ax2 + b a ∈ F2ln , b ∈ F∗2ln . (6.3)

The GHS Weil descent attack [65] consists of the following steps,

1. The Weil descent:
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(a) Construct the Weil restriction WE/F
2l

of scalars of E, which is an n-
dimensional abelian variety over F2l . One can construct this variety as
follows. Let β = {φ1, . . . , φn} be a basis of F2ln viewed as a vector space
over F2l . Then write a, b, x and y in terms of β,

a =
n∑
i=1

aiφi, b =
n∑
i=1

biφi, x =
n∑
i=1

xiφi and y =
n∑
i=1

yiφi. (6.4)

Given that β is a linearly independent set, by substituting the equations
(6.4) into the equation (6.3) we obtain an n-dimensional abelian variety
A defined over F2l . Moreover, the group law of A is similar to the elliptic
curve E group law.

(b) Intersect A with n − 1 hyperplanes (e.g. x1 = x2 = · · · = xn = x) to
obtain a subvariety of A, and then use its linear independence property
to obtain a curve H over F2l .

2. Reduce the DLP on E(F2ln) to the DLP on JH(F2l).

3. Solve the DLP on JH(F2l).

Let γ ∈ F2ln , σ : F2ln → F2ln be the Frobenius automorphism defined as σ(γ) = γ2l ,
γi = σi(γ) for all i ∈ {0, . . . , n− 1} and

m = m(γ) = dim(SpanF2
{(1, γ1/2

0 ), . . . , (1, γ
1/2
n−1)}).

Finally, let us assume that

either n is odd or m(b) = n or TrF
2ln

/F2(a) = 0. (6.5)

Then the GHS Weil descent attack constructs an explicit group homomorphism
χ : E(F2ln) → JH(F2l), where H is a hyperelliptic curve defined over F2l of genus
g = 2m−1 or g = 2m−1 − 1.

6.3.1 The generalized GHS (gGHS) Weil descent attack

In [80] Hess generalized the GHS restrictions (6.5) as follows. Let ℘(x) = x2 +x and
F = F2ln(x), ∆ = fF2[σ] + ℘(F ) where f = γ1/x+ γ3 + xγ2 for γ1, γ2, γ3 ∈ F2ln such
that γ1γ2 6= 0.

Given a polynomial p =
∑d

i=0 pix
i ∈ F2[x] of degree d we write p(σ)(x) =∑d

i=0 pix
2li . For each element γ ∈ F2ln , Ordγ(x) is the unique monic polynomial
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p ∈ F2[x] of least degree such that p(σ)(γ) = 0. Furthermore, we define the m-
degree Ordγ1,γ2,γ3 as,

Ordγ1,γ2,γ3 =

{
lcm(Ordγ1 ,Ordγ2) if TrF

2ln
/F2(γ3) = 0

lcm(Ordγ1 ,Ordγ2 , x+ 1) otherwise.

Then ∆/℘(F ) ∼= F2[x]/Ordγ1,γ2,γ3 and the Frobenius automorphism σ of F with
respect to F2ln extends to a Frobenius automorphism of a function field C = F (℘−1(∆))
with respect to F2ln if and only if,

either TrF
2ln

/F2(γ3) = 0 or TrF
2ln

/F
2l

(γ1) 6= 0 or TrF
2ln

/F
2l

(γ2) 6= 0. (6.6)

In addition, the genus of C is given by

gC = 2m − 2m−deg(Ordγ1 ) − 2m−deg(Ordγ2 ) + 1

and there exists a curve H with genus gC that can be related to an elliptic curve
E/F2ln : y2 + xy = x3 + ax2 + b with a = γ3 and b = (γ1γ2)2.

6.3.2 Using isogenies to extend the attacks

Let E and E ′ be two ordinary elliptic curves defined over F2ln and given by the
equation (6.3). A rational map Ψ: E → E ′ over F2ln is an element of the elliptic
curve E ′(F2ln(E)). An isogeny Φ: E → E ′ over F2ln is a non-constant rational map
over F2ln and is also a group homomorphism from E(F2ln) to E ′(F2ln). In that case,
we say that E and E ′ are isogenous. It is known that E and E ′ are isogenous over
F2ln if and only if #E(F2ln) = #E ′(F2ln) [147].

An isogeny Φ: E → E ′ induces a map Φ∗ : F2ln(E ′)→ F2ln(E), called the pullback
of Φ [57], which is necessarily injective,

Φ∗ : F2ln(E ′) → F2ln(E)

θ → θ ◦ Φ.

If x ∈ E ′(F2ln), we can pull back x along Φ, and obtain a divisor

D =
∑

P∈Φ−1(x)

νP (Φ)(P ).

The degree δ of Φ is defined by the integer [F2ln(E) : Φ∗(F2ln(E ′))] and we say that
Φ is a δ-isogeny.

The authors in [60] propose to extend the range of vulnerable curves against the
GHS attack (and equivalently the gGHS attack) by finding an explicit representation
for an isogeny Φ: E → E ′ and determining if there exists at least one elliptic curve
E ′ against which the attack is effective.
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6.4 Analyzing the GLS elliptic curves

Let F22n be a degree-2 extension of F2n . Also, let E/F2n be an ordinary elliptic curve
given by the equation

E/F2n : y2 + xy = x3 + ax2 + b a ∈ F2n , b ∈ F∗2n , (6.7)

with Tr(a) = 1. We know that #E(F2n) = q + 1− t, where t is the trace of E over
F2n . It follows that #E(F22n) = (q + 1)2 − t2. Let a′ ∈ F22n such that Tr(a′) = 1.
Then we can construct the GLS curve,

E ′/F22n : y2 + xy = x3 + a′x2 + b. (6.8)

Which is isomorphic to E over F24n under the involutive isomorphism τ : E → E ′.
The GLS endomorphism can be constructed by applying τ with the Frobenius auto-
morphism σ, defined as (x, y) 7→ (x2n , y2n), as follows, ψ = τστ−1.

6.4.1 Applying the GHS Weil descent attack

The theoretical security of a given binary GLS curve E/F22n depends basically on
the complexity of solving the DLP on its group of points E(F22n). As discussed in
the introduction of this chapter, the usual approach is to apply the Pollard Rho

algorithm for elliptic curves, which runs in approximately
√

π22n

2
operations [126].

However, after the publication of the GHS reduction, it is also necessary to check
whether the complexities of solving the DLP on JH(F2), JH(F22) or JH(F2n) are lower
than solving it on E(F22n). If such is the case, the smallest complexity provides us
the real security of the curve E.

Let us assume that the number of isogenous curves E ′ is smaller than the num-
ber of vulnerable isogeny classes, then the following steps describe a method for
determining if a given GLS curve is vulnerable against the extended GHS attack:

1. Setting the environment. Let us have a GLS curve Eã,b̃/F22n given by the

equation (6.8) but defined with the particular parameters ã and b̃. In the
context of the GHS attack, the extension field F22n can be seen as a degree-n
extension of F22 or a degree-2n extension of F2. For the sake of simplicity, we
will represent the base field as F22 . Nonetheless, the steps must be executed
for both base representations.
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2. Checking the b̃ parameter. We know that (xn + 1)(σ) = x22n + x = 0 ⇔
x22n = x. In addition, Ordγ|(xn + 1). Given that the polynomial xn + 1
factorizes as (x + 1) · fi · . . . · fs, let d = deg(fi). Then, search a pair of
polynomials s1 = (x+ 1)j1 · f j2i and s2 = (x+ 1)j3 · f j4i , with positive integers ji
and find a representation of b̃ as (γ1γ2)2, such that Ordγi = si(σ) and Ordγ1,γ2,ã
derive a small associated value gC .

3. Solving the DLP on a hyperelliptic curve. If such minimum pair s1, s2

exists (i), apply the Weil descent on E to construct a hyperelliptic curve H.
Check if the complexity of solving the DLP on JH(F22) is smaller than solving
it on E(F22n) (ii). If that is the case, the curve E is vulnerable against the
GHS attack. If either (i) or (ii) is false, go to step 4.

4. The extended GHS attack. For each isogenous curve E ′ to E, perform the
check (steps 2 and 3). If there is no vulnerable elliptic curve E ′ isogenous to
E, then the curve E is not vulnerable against the extended GHS attack.

If the number of isogenous curves E ′ is greater than the number of vulnerable
isogeny classes, a more efficient method to perform the vulnerability check is to list
all vulnerable parameters b̂ and store all of the related group orders #Ea,b̂(F22n) in
a set L. The check consists in verifying whether #Ea,b(F22n) ∈ L [76].

The extension field F22n can also be represented as a degree-2 extension of F2n .
However, as analyzed in [76], in this setting the GHS attack generates hyperelliptic
curves of genus 2 or 3. Solving the DLP on the Jacobian of these curves is not easier
than solving it on E(F22n) with the Pollard Rho method.

The complexity of solving the DLP on JH(F22) (or JH(F2)) is determined by the
genus of the curve H (see Section 6.2). In the GHS attack context, the genus of
the constructed hyperelliptic curve H is given by the degree of the minimum pair
of polynomials (s1, s2). For each extension degree n, these values are derived from
the factors of the polynomial xn + 1. For this reason, in characteristic two, we have
many extensions where the genus of H is large and consequently, the GHS attack is
ineffective for any GLS curve defined over such extension fields.

To illustrate those cases, we present in Table 6.1 the costs of solving the DLP
with the GHS/Enge-Gaudry approach and the Pollard Rho algorithm on binary
GLS curves E/F22n with n ∈ [5, 257]. We chose all the hidden constant factors in
the Enge-Gaudry algorithm complexity to be one, and suppressed all fields whose
genus of the generated curve H is higher than 106. In addition, the effort of finding
a vulnerable curve against the GHS attack is not included in the cost for solving the
DLP.
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Table 6.1: Different binary GLS curves and their security. The smallest complexity
is written in bold type

Cost for solving the DLP
Base

field of E
Base

field of
H

Genus
of H

E(F22n)
order (≈)

(bits)

Pollard Rho
algorithm on E
(ceiling, bits)

Enge-Gaudry
algorithm on H
(ceiling, bits)

F22·5
F2 32

9 5
17

F22 15 16

F22·7
F2 16

13 7
11

F22 7 10

F22·11
F2 2048

21 11
207

F22 1023 207

F22·13
F2 8192

25 13
452

F22 4095 452

F22·17
F2 512

33 17
93

F22 255 93

F22·19
F2 524288

37 19
4401

F22 262143 4401

F22·23
F2 4096

45 23
307

F22 2047 306

F22·31
F2 64

61 31
26

F22 31 26

F22·43
F2 32768

85 43
974

F22 16383 974

F22·73
F2 1024

145 73
139

F22 511 139

F22·89
F2 4096

177 89
307

F22 2047 306

F22·127
F2 256

253 127
62

F22 127 62

F22·151
F2 65536

301 151
1424

F22 32767 1424

F22·257
F2 131072

513 257
2078

F22 65535 2078
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6.4.2 A mechanism for finding vulnerable curves

In this part, we propose a mechanism for performing the step 3 check on the param-
eter b of a given GLS curve Ea,b. This mechanism is useful when the number of GHS
vulnerable isogeny classes is greater than the number of isogenous curves to Ea,b.
Similarly to the previous section, F22n is a degree-n extension field of F22 . However,
the method can be easily adapted to any field representation.

Let xn + 1 = (x + 1)f1 · · · fs, where each irreducible polynomial fi ∈ F2[x] has
degree d and fi 6= fj for i 6= j. Also, let S = {(x + 1)j1f j2i , (x + 1)j3f j4i }ji∈{0,1} be
a nonempty finite set where for each pair (s1, s2) ∈ S, deg(s1) ≥ deg(s2). Then let
B = {b = (γ1γ2)2 : γ1, γ2 ∈ F∗22n , ∃(s1, s2) ∈ S|s1(σ)(γ1) = 0 ∧ s2(σ)(γ2) = 0}.

Let f, g ∈ F2[x] be two degree-d polynomials. Then we have the following theo-
rems:

Theorem 12. (f · g)(σ)(x) = (f(σ) ◦ g(σ))(x) = (g(σ) ◦ f(σ))(x).

Proof. Let q = 22. The expression (f · g)(x) can be written as

(
d∑
i=0

fix
i)(

d∑
j=0

gjx
j) =

d∑
i=0

d∑
j=0

figjx
i+j.

Then,

(f · g)(σ)(x) =
d∑
i=0

d∑
j=0

figjx
qi+j =

d∑
i=0

d∑
j=0

fi

(
gjx

qj
)qi

=
d∑
i=0

fi

d∑
j=0

(
gjx

qj
)qi

=
d∑
i=0

fi

(
d∑
j=0

gjx
qj

)qi

= (f(σ) ◦ g(σ)) (x).

The proof of the case (f · g)(σ)(x) = (g(σ) ◦ f(σ))(x) is similar.

Theorem 13. f(σ)(x) | (f · g)(σ)(x) over F22n(α1, . . . , αqd) where each αi is a root
of the polynomial f(σ).

Proof. Given that p(σ)(x) has a zero at x = 0 for all polynomial p ∈ F2[x], let α
be a root of f(σ)(x) in its splitting field. Then g(σ)(f(σ)(α)) = g(σ)(0) = 0, i.e.,
α is also a root of (f · g)(σ). As a result, f(σ) =

∏
(x − αi) divides (f · g)(σ) over

F22n(α1, . . . , αqd).

Theorem 14. ∀γ ∈ F22n, we have that Ordγ(σ)(x) splits on F2.
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Proof. From the the previous theorem, we have that for a polynomial p(x) ∈ F2[x],
every factor p(x) of p(x) satisfies p(σ)(x)|p(σ)(x) over F22n(α1, . . . , αdeg(p)) where each

αi is a root of p. Then, since Ordγ(x)|xn + 1 we have that Ordγ(σ)(x)|(xq2n + x)
over F22n(α1, . . . , αdeg(Ordγ)) where each αi is a root of Ordγ(σ)(x). Consequently,
F22n = F22n(α1, . . . , αdeg(Ordγ)) and Ordγ(σ)(x) splits over F2[x].

For a given b ∈ F∗22n , we can determine whether b is in B as follows. For all

(s1, s2) = (
∑

j s1,jx
j,
∑

j s2,jx
j) ∈ S, let bi(x) = si(σ)(b1/2x) =

∑
j(b

1/2si,j)x
qj and

let si(x) = xdeg(si)si(σ)( 1
x
). Then,

gcd (b1(x), s2(x)) 6= 1 ⇔ ∃γ ∈ F∗22n such that s1(σ)(b1/2γ) = 0 and s2(σ)(
1

λ
) = 0

⇔ s1(σ)(x) has a zero at γ1 = b1/2γ and

s2(σ)(x) has a zero at γ2 =
1

γ

⇔ b = (γ1γ2)2 where s1(σ)(γ1) = 0 and

s2(σ)(γ2) = 0

⇔ b = (γ1γ2)2 ∈ B.

Let us now assume that S contains only the pairs of polynomials (s1, s2) that
construct parameters b which are vulnerable against the gGHS attack. Then, for an
arbitrary GLS curve E we have that,

Ea,b is vulnerable⇔ ∃(s1, s2) ∈ S such that gcd (b1(x), s2(x)) 6= 1. (6.9)

Complexity analysis. Let s1 = (x + 1)fi be the maximum degree polynomial of
all pairs in S and the complexity of computing the greatest common divisor over
elements in S be O((qd+1)

2
). Then the complexity for checking a parameter b with

the above mechanism is O(#S(qd+1)
2
). This complexity is an upper bound because

in practice we see that a gcd in S requires a smaller number of operations.

At last, we summarize the mechanism in Algorithm 24. Note that, for determining
whether a given b is a vulnerable parameter, the algorithm must be executed in all
base field representations.
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Algorithm 24 A mechanism for verifying the binary curve parameter b

Input: The element b ∈ F∗22n , the polynomial lists b1, s2 obtained from the set S.
Output: True if the binary curve defined with a parameter b is vulnerable against

the gGHS attack and False otherwise.

1: aux ← 1, j ← 0

2: while aux = 1 and j < #S do
3: j ← j + 1
4: aux ← gcd(b1[j], s2[j])
5: end while

6: if aux 6= 1 then
7: return True
8: else
9: return False

10: end if

6.5 A concrete attack on the GLS curve E/F262

In order to understand the practical implications of the GHS Weil descent algorithm
over a binary GLS curve, we implemented a complete attack on a curve defined over
the field F231·2 . Such field was chosen for two reasons: (i) solving the DLP on the
Jacobian of a hyperelliptic curve obtained by the GHS attack is easier then solving
it on the elliptic curve (see Table 6.1); (ii) the small amount of resources required for
solving the DLP in this curve allowed us to experiment with different approaches to
the problem.

6.5.1 Building a vulnerable curve

Let F22·31 be an extension field of Fq with q = 22·31/n where n ∈ {31, 62}. Then we
can represent the field F262 as follows,

• n = 62, q = 2, F262
∼= F2[v]/f(v), with f(v) = v62 + v29 + 1.

• n = 31, q = 22, F22
∼= F2[z]/g(z), with g(z) = z2 + z + 1.

a F262
∼= F22 [u]/h(u), with h(u) = u31 + u3 + 1
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Also, let E be a binary GLS curve given by the following equation

Ea,b/F262 : y2 + xy = x3 + ax2 + b a ∈ F262 , b ∈ F∗231

Given that the parameter a can be chosen arbitrarily subject to the constraint
TrF262/F2(a) = 1, we chose a = z2. The next step was to find a vulnerable parameter
b ∈ F∗231 which defines a curve Ea,b that is vulnerable against the gGHS attack.
Moreover, to simulate a cryptographic environment, we must have #Ea,b(F262) = c·r,
with small c and prime r.

Let x31 + 1 = (x+ 1)f1 · · · f6. We have deg(fi) = 5. Then Tables 6.2 and 6.3 give
us a list of polynomials that generate the vulnerable parameters b = (γ1γ2)2.

Table 6.2: Polynomials Ordγi which generate low-genus hyperelliptic curves for the
case n = 31, q = 22

Ordγ1 Ordγ2 deg(Ordγ1) deg(Ordγ2) m genus E-G algorithm
complexity

(x+1)fi x+ 1 6 1 6 32 26.46
fi x+ 1 5 1 6 31 25.93

Table 6.3: Polynomials Ordγi which generate low-genus hyperelliptic curves for the
case n = 62, q = 2

Ordγ1 Ordγ2 deg(Ordγ1) deg(Ordγ2) m genus E-G algorithm
complexity

(x+1)2fi x+ 1 7 1 7 64 26.46

At first, we looked for vulnerable parameters b ∈ F∗231 by obtaining the roots of
the polynomials listed in Tables 6.2 and 6.3. However, for all those b parameters,
log2 |r| < 52. For that reason, we considered non-GLS vulnerable parameters b ∈ F∗262
for which log2 |r| ≥ 52. As a result, 61 isogeny classes were found. Let L be the set
of its group orders. Then, in a 20-core Intel Xeon E5-2658 2.40GHz, we executed
for 70 hours an extensive search through all b ∈ F∗231 checking if #Ea,b(F262) ∈ L.
However, no isogenous curves were found and the extended GHS attack could not
be carried out.

Next, under the setting (n = 31, q = 22), we chose the vulnerable parameter
b = u24 + u17 + u16 + u12 + u5 + u4 + u3 + u + 1, which allowed us to construct a
group with order #Ea,b(F262) = 4611686014201959530. The size of our subgroup of
interest is of about 51 bits. In theory, solving the DLP on this subgroup through the
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Pollard Rho method would take about 226 steps, which is the same cost as solving
the DLP with the GHS/Enge-Gaudry approach.

Finally, we created an order-r generator point P ∈ Ea,b(F262) with the Magma
Random function:

P (x, y) =(u30 + z2u28 + zu27 + u26 + zu25 + zu24 + u23 + z2u20 + u18 + zu17

+ zu16 + u15 + u12 + z2u10 + zu9 + z2u8 + u7 + zu6 + u4 + u2

+ z2u+ z,

zu30 + z2u29 + z2u26 + z2u25 + zu24 + u23 + z2u22 + z2u21 + zu20

+ u19 + zu18 + u17 + u15 + zu14 + zu13 + z2u12 + z2u10 + zu9 + u8

+ zu7 + u6 + u2 + zu).

The challenge Q was generated with the same function:

Q(x, y) =(u29 + z2u28 + u27 + u26 + z2u25 + zu24 + u23 + zu22 + z2u20 + z2u17

+ z2u16 + zu12 + u11 + zu10 + z2u9 + z2u8 + zu7 + zu6 + z2u5 + zu4+

z2u2 + u+ z2,

u30 + u29 + z2u28 + u27 + zu26 + z2u24 + zu22 + u21 + z2u20 + z2u19

+ zu18 + zu17 + zu15 + u14 + zu12 + z2u11 + u10 + z2u9 + u6 + u5

+ z2u3 + z2u2 + z2u+ z).

Then we constructed the following genus-32 hyperelliptic curve with the Weil descent
method1:

H(F22) : y2 + (z2x32 + x16 + z2x8 + z2x2 + x)y =

x65 + x64 + z2x33 + zx32 + x17 + z2x16 + x8 + x5 + x4 + z2x3 + zx2 + zx.

The points P,Q were mapped to the JH(F22), which generated the divisors DP and
DQ.

6.5.2 Adapting the Enge-Gaudry Algorithm

To solve the DLP on JH(Fq), with q = 22 and genus g = 32, we adapted the
Enge-Gaudry algorithm by restricting the factor base size in order to balance the

1In this step, we used the function WeilDescent from Magma..
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relation collection and the linear algebra phases. According to [46], we can balance
the two phases by selecting the factor base degree as m = dlogq Lqg [%]e where % =√

1
2

+ 1
4ϑ
−
√

1
4ϑ

for some positive integer ϑ which complies with (i) g ≥ ϑ log q and

(ii) q ≤ Lqg [
1√
ϑ
]. Similarly to the Section 6.4, we chose the constant factors of the

algorithm complexity to be one. For all values of ϑ that satisfy the restrictions (i)
and (ii), we have m = [4, 6].

However, in practice, we constructed the factor base dynamically. At first, we
initialized our base F as an empty set and imposed a restriction so that F can
contain polynomials up to degree m. Next, for each valid relation in the Enge-
Gaudry algorithm, that is, when the polynomial U of a divisor D = div(U, V ) is
d-smooth, we included in F all irreducible factors of U which were not in F . Finally,
when the number of relations were equal to the number of factors in F , we concluded
the relations collection phase.

Experimentally, we saw that, at the end of the relations collection phase, just a
portion of the irreducible polynomials of degree less or equal than m were included
in F . For that reason, in order to have approximately the same factor base size as
if we had constructed a factor base with all irreducible polynomials of degree up to
6, we chose m = 7. The algorithm was executed within the Magma v2.20-2 system,
in one core of a Intel Core i7-4700MQ 2.40GHz machine. The timings of each phase
are presented below.

Table 6.4: Timings for the adapted Enge-Gaudry algorithm

Random walk initialization 3.00 s
Relations collection 284.52 s

Linear Algebra (Lanczos) 0.11 s

At the end of the relation collection phase, our factor basis had 1458 elements,
which is 44.12% of the total number of irreducible polynomials of degree 7 and
below. Although the algorithm phases were not balanced as expected, solving the
linear algebra system was trivial, and we considered our degree selection satisfactory.
Finally, the computed discrete logarithm is given as λ = 2344450470259921.

An analysis of the algorithm balance: the genus-32 case

In order to verify the theoretical balance of [46] in the context of the dynamic factor
base construction, we executed the algorithm with different factor base degree limits.
The results are presented in Table 6.5.
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Table 6.5: Details of different Enge-Gaudry (E-G) algorithm settings (g = 32)

Factor base maximum degree (d)
5 6 7 8 9 10 11 12

Relations collection phase
Number of irre-
ducible poly of
degree ≤ d (α)

294 964 3304 11464 40584 145338 526638 1924378

Factor base size
(β)

152 474 1458 4352 12980 34883 91793 214116

Ratio β/α 0.52 0.49 0.44 0.38 0.32 0.24 0.17 0.11
Theoretical cost
(bits, ceiling) ∗

23 21 20 19 19 19 20 21

Average timing
per relation (s)

20.25 1.47 0.20 0.05 0.02 0.01 0.01 0.01

Timing (s) 3078 646 284 220 252 413 909 2451
Original E-G
timing estima-
tion (s)

5953 1416 644 573 771 1744 4739 21168

Linear algebra phase
Theoretical cost
(bits, ceiling) ∗

17 21 24 27 30 33 35 38

Timing (s) 0.01 0.03 0.11 0.87 9.62 169 1288 6774
∗ The steps in the relations collection and the linear algebra phases have
different costs. Since we do not have access to the Magma algebra system
code, we could not give the exact timings of each step.

The theoretical costs for the relation collection phase were obtained by multiply-
ing the inverse of the probability of having a d-smooth degree-32 polynomial by the
factor base size. The linear algebra step theoretical cost was computed as the square
of the factor base size multiplied by the average number of irreducible factors in each
d-smooth degree-32 polynomial, which was calculated experimentally.

Here we can see that, regarding the theoretical costs, setting the factor base
degree limit to 6 results in the most balanced implementation. However, the practical
timings demonstrate against this assertion. This is because factorizing a degree-32
polynomial in F22 [x], which is the relations collection step2, is more expensive than

2In fact, the cost of this step can be reduced by performing only a smoothness test instead of
factorizing the polynomial. However, since we implemented the attack in Magma, we used the
available function Factorization.
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the linear algebra step.

On the other hand, if we consider practical timings, the degree-11 setting offers
the most balanced version. However, it is clearly more important to have the lowest
overall timings, which is achieved by the degree-8 setting. The results for the degree
settings from 5 to 12 are presented in Figure 6.1.
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Figure 6.1: Timings for the Enge-Gaudry algorithm with dynamic factor base
(g = 32)

The problem of balancing the Enge-Gaudry method with dynamic factor base is
slightly different from the traditional algorithm. In the former, the cost of finding a
valid relation and the ratio α/β (see Table 6.5) decreases as we increase the factor
base degree limit. However, because of the larger number of irreducible polynomials,
the probability of having relations with factors which are not included in our factor
base increases. As a consequence, for each valid relation, more factors are added
and the cost to achieve a matrix with the same number of columns and rows also
increases. This effect is shown in the Figure 6.2.
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Figure 6.2: The ratio of the matrix columns (polynomials in the factor base) and
rows (valid relations) per time. The relation collections phase ends when the ratio
is equal to one (g = 32).

One possible solution for achieving a balanced algorithm is to restrict the size of
the dynamic factor base. Ultimately, although unbalanced, constructing our factor
base dynamically was useful in our context, since it allowed us to conclude the
relations collection phase more efficiently when compared with the original Enge-
Gaudry algorithm (see Table 6.5).

An analysis of the algorithm balance: the genus-45 case

We also analyzed the balance between the relations collection and the linear alge-
bra phases of the dynamic-base Enge-Gaudry algorithm over a Jacobian of a hy-
perelliptic curve of genus 45 defined over F22 . The subgroup of interest is of size
r = 2934347646102267239451433 of approximately 81 bits.

After performing the theoretical balancing computations presented at the begin-
ning of this section, we saw that our factor base should be composed of irreducible
polynomials of degree up to m = [5, 8]. For that reason, we used this range as a
reference for our factor base limit selection. The results are presented below.

Compared with the genus-32 case, we had a large number of factors per relation.
As a result, more irreducible polynomials were added to the factor base, and con-
sequently the relations collection phase became more costly. In addition, the ratios
α/β were greater than the ones presented in the genus-32 example (see Table 6.5).

The most efficient configuration (d = 10) was unbalanced, the relations collection
was about 36 times slower than the linear algebra phase. However, the genus-45
example provided a more balanced Enge-Gaudry algorithm, since the best setting
for the genus-32 curve was unbalanced by a factor of 253. One possible reason is
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Table 6.6: Details of different Enge-Gaudry algorithm settings (g = 45)

Factor base maximum degree (d)
7 8 9 10 11 12 13

Relations collection phase
Number of irre-
ducible poly of
degree ≤ d (α)

3304 11464 40584 145338 526638 1924378 7086598

Factor base size
(β)

1626 5227 16808 52366 158226 460240 1268615

Ratio β/α 0.49 0.46 0.41 0.36 0.30 0.24 0.18
Theoretical cost
(bits, ceiling) ∗

27 26 25 25 25 25 26

Average timing
per relation (s)

29.45 4.60 1.05 0.29 0.12 0.07 0.09

Timing (s) 47895 24067 17621 15204 18909 32630 107902
Original E-G
timing estima-
tion (s)

97319 52780 42532 42148 62670 136631 602361

Linear algebra phase
Theoretical cost
(bits, ceiling) ∗

25 28 31 34 37 40 43

Timing (s) 0.62 3.79 39 421 4804 48661 417920
∗ The steps in the relations collection and the linear algebra phases have
different costs. Since we do not have access to the Magma algebra system
code, we could not give the exact timings of each step.

that, here, each linear algebra steps computed over operands of about 81 bits, which
are 30 bits longer than the operands processed in the genus-32 linear algebra steps.

We expect that, for curves with larger genus, with respectively larger subgroups,
a fully balanced configuration can be found. The results for each setting in the
45-genus example is shown in Figure 6.3.

In Figure 6.4, we show the progression of the ratio

number of valid relations

factor base size

during the relations collection phase. Similarly to the genus-32 case, for bigger
d values, the rate of the factor base growth stalled the progress of the relations
collection algorithm. Again, one potential solution to this issue is to impose limits
on the factor base size.
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Figure 6.3: Timings for the Enge-Gaudry algorithm with dynamic factor base
(g = 45)
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Figure 6.4: The ratio of the matrix columns (polynomials in the factor base) and
rows (valid relations) per time. The relation collections phase ends when the ratio
is equal to one (g = 45)

The challenge for obtaining an optimal relations collection phase is to find a
balance between the average timing per relation and the factor base growth rate.
The goal is to have a graph which, after the initial vertical rise, directs toward the
ratio one as a linear function, such as the d = 8, 10 cases.
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6.5.3 The Pollard Rho method

In order to verify the correspondence between the theoretical complexities and the
practical results, we implemented the Pollard rho method which, for GLS curves
E/F22·31 , requires about 29.65 times the amount of work to solve the DLP with the
GHS/Enge-Gaudry approach (see Table 6.1).

Our Pollard rho random walk implementation was based on the r-adding walk
(with r = 100) method proposed in [149] and on the Floyd’s cycle-finding technique.
The algorithm was also implemented on Magma and executed in eight cores of a
Intel Xeon E5-2650 2.60GHz machine.

After computing 68880848 points, we found the discrete logarithm in 63.18 CPU
hours. Each step of the algorithm, which includes two modular integer addition and
one point addition, took about 0.026 seconds. Comparing the practical experiments
of the Pollard rho and the GHS/Enge-Gaudry algorithms, we have that the latter
is about 6329.23 times faster. Note that, both implementations could be possibly
improved by implementing them in C and exploiting the computing resources of our
particular architetcure.

6.6 Summary

Here, we presented an implementation of the GHS attack against a binary GLS curve
defined over F22·31 . The DLP was solved in the Jacobian of a genus-32 hyperelliptic
curve over F22 with a modified version of the Enge-Gaudry algorithm. In this version,
we used a dynamic factor base in the relations collection phase. As a result, this
phase proved to be more than twice as fast as the factor base proposed in the original
algorithm.

Moreover, we realized experiments to understand the dynamic factor base mech-
anism with different configurations. In order to strengthen our conclusion, we also
provided experiments in the Jacobian of a genus-45 binary hyperelliptic curve.
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Part III

Conclusion





7 | Final Discussions

In the subsequent sections we present a general analysis of the work presented in
this thesis. We start by enumerating our main contributions and then examine
the impact of them in the development of cryptography primitives constructed over
small-characteristic fields. Finally, we consider the problems and challenges left for
future research and the open possibilities for investigation in the technological and
algorithmic areas.

7.1 Contributions

In the following paragraphs, we concisely specify our contributions in the area of
high-speed elliptic curve cryptography,

• A new system of projective coordinates, denominated lambda coordinates, which
provided state-of-the-art formulas for computing the point arithmetic in binary
elliptic curves. In addition, its form (x, λ = x + y

x
), is particularly appropri-

ate for scalar multiplication methods based on the point halving operation,
since it bypasses the point coordinates transformation overhead imposed by
this operation.

• Design of efficient base (Fq) and quadratic (Fq2) field arithmetic. More pre-
cisely, the implementation of fast arithmetic for the case q = 2127 aimed for
high-end desktops. This implementation exploits the 128-bit SSE/AVX vector
set of instructions and the 64-bit carry-less multiplier, both technologies which
are ubiquitous on current desktop platforms. Our efficient arithmetic, along
with the lambda coordinate system formulas, supported the speed-record soft-
ware implementation of a 128-bit secure scalar multiplication in a binary GLS
curve.

131



132 CHAPTER 7. FINAL DISCUSSIONS

• A novel right-to-left halve-and-add Montgomery ladder algorithm. For the
first time, the point halving operation could be applied efficiently in a scalar
multiplication algorithm based on the Montgomery ladder. In addition, the
algorithm precomputes the points to be added throughout the main iteration.
As a consequence, a major speed-up is expected in the fixed-point scenario.

• The first timing-resistant scalar multiplication algorithm designed for four-
core platforms. To achieve this, we combined the double-and-add left-to-right
(without precomputation) and the halve-and-add right-to-left (with precom-
putation) Montgomery ladder point multiplication approaches with the endo-
morphism provided by the GLS binary curves. As a result, we improved by
50% the one-core 128-bit secure Montgomery double-and-add algorithm imple-
mentation.

• A regular τ -adic recoding based on the work in [91]. This method was a
necessary step for the implementation of the first timing-attack resistant scalar
multiplication in Koblitz curves, which surpassed by 26% the fastest protected
Montgomery ladder point multiplication implementation on Koblitz curves [25].

• The construction of a new family of Koblitz curves defined over a prime ex-
tension of the field F4. The arithmetic in quadratic fields is well-suited for
implementation on concurrent computing architectures, such as the current
desktops and some mobile devices. As a result, we achieved a speed record
in protected 128-bit software scalar multiplication implementation on Koblitz
curves.

• Finally, we developed base arithmetic fully based on redundant trinomials [45].
Our scalar multiplication in Koblitz curves over F4 was implemented using the
trinomial g(x) = x192 +x19 +1, which was carefully selected in order to provide
efficient timings for the main base arithmetic operations: multiplication and
squaring.

Next, we list our contributions in the area of the discrete logarithm problem,

• A concrete analysis of the impact of the recent discrete logarithm problem
advances [86, 68, 13, 70, 89] on the pairing-friendly fields F36·509 and F36·1429 .
Our study was important to understand the computing costs for solving the
DLP on fields of cryptographic importance. Also, it assisted the community in
deciding whether those fields are secure to be employed in practical protocols.
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• The practical application of the new methods for solving the DLP over small-
characteristic fields to the cases F36·137 and F36·163 . The field F36·163 was previ-
ously considered for implementing pairing-based protocols [26, 59]. Our com-
putations were temporarily established as a record in breaking cryptographic-
relevant fields.

• An implementation of the GHS attack against a GLS binary elliptic curve
defined over F22·31 with the Magma algebraic system. The implementation
showed us that, in practice, the GHS attack is more efficient than the Pollard
Rho approach, even though both have approximately the same theoretical cost.

• The analysis of the cost of the Enge-Gaudry algorithm [46] for solving the dis-
crete logarithm problem with a dynamic factor base. In this work, we realized
experiments to determine the best factor base configuration in order to balance
the relation collection and the linear algebra phases. Moreover, we showed how
this optimal setting differs from the theoretical balance, which are based on
asymptotic cost estimates.
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bedded System - CHES 2013, volume 8086 of LNCS, pages 311 - 330. Springer
Berlin Heidelberg, 2013.

• G. Adj, A. Menezes, T. Oliveira and F. Rodŕıguez-Henŕıquez. Weakness of
F36·509 for Discrete Logarithm Cryptography. In Pairing-Based Cryptography
- Pairing 2013, volume 8365 of LNCS, pages 20 - 44. Springer International
Publishing, 2014.

• T. Oliveira, J. López, D. F. Aranha and F. Rodŕıguez-Henŕıquez. Two is
the fastest prime: lambda coordinates for binary elliptic curves. Journal of
Cryptographic Engineering, 4(1):3 - 17, 2014.

• T. Oliveira, J. López, D. F. Aranha and F. Rodŕıguez-Henŕıquez. Fast Point
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LNCS, pages 324 - 344. Springer International Publishing, 2014.
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crete Logarithms in F36·137 and F36·163 Using Magma. In International Workshop
on the Arithmetic of Finite Fields - WAIFI 2014, volume 9061 of LNCS, pages
3 - 22. Springer International Publishing, 2014.
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308 - 326. Springer International Publishing, 2015.

7.2 Advances

Recently, a number of new approaches for solving the discrete logarithm problem in
elliptic curves (ECDLP) were proposed. Those advances, concisely discussed in [58],
brought doubt and mistrust to the practical use of binary curves in the academic
community [135]. However, the same authors in [58] concluded their survey with the
following statement,

The current situation, not at all definitive, is that there is no consensus
whether there is a subexponential algorithm for ECDLP in characteristic
2.

Considering this current scenario, our work proposed, through new technological
and algorithmic ideas, alternative methods to compute, in software, efficient and
secure scalar multiplications on binary curves. Our result showed that the binary
curves are highly competitive with the mainstream approaches on prime curves.

In the discrete logarithm problem (DLP) area, our theoretical analysis of the
impact of the recently proposed algorithms to solve the DLP on small-characteristic
fields in pairing-based fields helped to clarify the range of fields which are suitable for
the secure instantitation of pairing-based protocols. Moreover, our implementation
of the attacks against fields that were previously proposed in the literature depicted
the potential of the recent approaches.

Finally, our work on the DLP on binary GLS curves provided a better compre-
hension of the practical implications of the gGHS attack on this novel family of
curves. In addition, we presented, for the first time, a concrete analysis of the effect
of the dynamic factor base to the Enge-Gaudry algorithm for solving the DLP on a
hyperelliptic curve.
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7.3 Future work

7.3.1 Open questions

In this section, we list the open problems related to our work. The problems are not
presented in any order of significance, but grouped by the two main subjects of our
thesis.

Are there more efficient approaches to compute the inversion operation
in binary fields? After the publication, in 1988, of the Itoh-Tsujii algorithm [84]
for inversion in binary fields1, there wasn’t any major advances to improve the effi-
ciency of this operation. The continuous decrease of the carry-less multiplier latency
and throughput emphasizes even more the high cost of the inversion function. For
instance, in the Haswell architecture, the relation between the inversion and multi-
plication costs (in clock cycles) is more than thirty (see Section 4.2.5).

An efficient inversion operation would open more possibilities in the implemen-
tation of the scalar multiplication algorithm. For example, one could choose to
represent the points with affine coordinates, whose arithmetic are based on inver-
sions and, consequently, reduce the required amount of memory throughout the main
iteration of the algorithm.

Is the Karatsuba method faster than the schoolbook algorithm? Asymp-
totically, the Karatsuba technique computational complexity of O(nlog23) is better
than the O(n2) complexity of the schoolbook approach. However, in practice, the
cost of pre- and post-processing the operands is higher in the Karatsuba algorithm.
In addition, the cost of multiplying two 64-bit operands is approaching the cost of
the basic logical operations, which are used in the peripheral phases of the Karatsuba
method. The evolution of these instructions costs is shown in Table 7.1.

As a result, when multiplying polynomials stored in a few words (i.e. two or
three), the schoolbook algorithm may be faster. Let us analyze the two-word case.
For the Karatsuba method we need three multiplications and twelve logical instruc-
tions, while the schoolbook algorithm requires four multiplications and five logical
instructions. If we have a scenario where one 64-bit carry-less multiplication costs
less than seven logical operations, then the schoolbook method is more efficient.

1As the title of the article suggests, the method was devised for finite fields elements represented
by a normal basis, where the squaring operation is computed by low-cost circular shifts. In the
case of the polynomial representation, it is too much expensive to compute the algorithm through
multiple squarings. As a consequence, precomputed tables are required (see Section 3.1.3).
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Table 7.1: Comparison of the costs (in clock cycles) of the carry-less multiplier with
the logical operations (computed with 128-bit SSE/AVX instructions) in different
computer architectures

Architecture
Carry-less multiplier Logical operations

Latency Throughput Latency Throughput
Westmere, 2010 14 8 1 0.33
Sandy Bridge, 2011 14 8 1 0.33
Ivy Bridge, 2012 14 8 1 0.33
Haswell, 2013 7 2 1 0.33
Broadwell, 2014 5 1 1 1
Skylake, 2015 7 1 1 0.33
The costs of the Westmere, Sandy Bridge, Ivy Bridge and Haswell
architectures were taken from [130]. For the Broadwell and Skylake
machines, the timings were based on [127].

Considering only the latency, we have that the Broadwell architecture fulfills these
requirements. In practice, experiments must be carried out, since the instruction
throughput is also a determining factor.

Is the shift-and-add method for computing the modular reduction faster
than its alternative, the mul-and-add technique? This is another problem
related to the decrease of the latency and throughput of the carry-less multiplication
instruction. However, it is more complex to analyze, since it depends on many factors
such as the size of the field and the form of the irreducible polynomial which is used
to construct the field.

If the answer to this problem is affirmative, an interesting result follows: there
would be no need to search for irreducible trinomials or pentanomials (or redundant
trinomials) anymore. The only requirement (for the sake of efficiency) is that one is
given a degree-d irreducible polynomial f(x) = xd + xa + . . .+ 1 with (d− a) > W ,
where W is the architecture word size.

Do other families of binary elliptic curves with efficiently-computable en-
domorphisms exist? When compared with prime elliptic curves, there are a few
families of binary curves which are provided with efficient endomorphisms [99, 76].
If more such families were found, we would have more options to provide an efficient
point multiplication implementation. Besides, we could combine the families to ex-
tend the dimension of the GLV decomposition, as done with prime curves [29, 50, 43]



7.3. FUTURE WORK 137

and, consequently, accelerate the scalar multiplication computation.

Is it possible to compute the point halving operation in projective coor-
dinates? Computing a timing-resistant right-to-left halve-and-add scalar multipli-
cation is not feasible in practice. This is because the right-to-left approach implies
a higher overhead in order to protect the point multiplication. More precisely, we
must apply the linear pass function twice on the accumulator points (see Sections
3.3 and 4.2.4). When the NAF-width w value is big (e.g. four or five), this overhead
becomes too high.

However, to perform the left-to-right approach efficiently, we need that the ac-
cumulator point be represented in projective coordinates throughout the main point
multiplication loop. If we could devise a method to perform the point halving in pro-
jective coordinates which was faster than the projective point doubling operation, we
could improve the efficiency of the protected scalar multiplication in binary curves.

Can we apply the GLV decomposition method with the Montgomery lad-
der algorithm? In Section 3.4, we presented a method combining the GLV ap-
proach with the Montgomery ladder in order to compute the scalar multiplication in
the multi-core scenario. However, for a one-core architecture, it is not known how
to maintain the Montgomery ladder point difference together with the applications
of a non-trivial endomorphism.

If the same speed-ups obtained in the GLV approach were achieved in the Mont-
gomery ladder algorithm, we would have the fastest timing-resistant scalar multipli-
cation approach.

Is it faster to solve the DLP over small-characteristic fields with FPGAs?
It would be useful to analyze the performance of FPGAs to perform the first de-
scent phases (i.e. continuous-fraction and classical) of the DLP algorithms. Those
phases consist of multiple instances of simple functions, such as the polynomial mul-
tiplication and smoothness testing, which are fully independent. As a result, the
implementation of these algorithms in FPGAs could be faster than executing them
in desktop machines that are embedded with just four to sixteen cores.

Can we use GPUs to accelerate the relations collection phase of the
Enge-Gaudry algorithm? The relations collection phase is one of the most cru-
cial steps of the Enge-Gaudry method for solving the DLP in hyperelliptic curves.
If we improve the efficiency for collecting a relation, we could reduce the factor base
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degree and, consequently, would have a smaller set of equations to be solved in the
subsequent linear algebra step.

The challenge is to devise an implementation for adding divisors which is suitable
for efficient implementation in many GPU threads. Also, this implementation must
require a minimum amount of memory, in order to extend the GPU parallelism.

Is there a polynomial-time algorithm to solve the DLP over small-char-
acteristic fields? After the recent outstanding advances in solving the DLP over
small-characteristic fields, which included a quasi-polynomial algorithm [13], the ex-
pectations for finding a polynomial-time approach in the near future are high. How-
ever, one questions whether another framework will be required for such an achieve-
ment. In practice, we must devise an efficient descent method which outpaces the
one based on the complex Gröbner basis algorithm for solving bilinear equations.

7.3.2 Further possibilities

Next, we present different subjects that could complement and advance the work
developed in this thesis.

Implementation of the GLS and Koblitz curves scalar multiplication in
different architectures and scenarios. In this thesis, we presented point multi-
plication implementations focused on high-end desktop architectures. However, it is
worthwhile to analyze the efficiency of those curves in constrained platforms, where
resources such as memory and power are scarce, the instruction set is simpler and
the register size is smaller. On the other hand, architectures that provides a higher
level of parallelism, such as GPUs, could also be explored.

In addition, the fixed-point setting should also be analyzed, since it is part of
elliptic curve-based digital signatures protocols [132].

Instruction-level parallelism in the point multiplication implementations.
The opportunities for applying the 256-bit AVX instruction set and its future 512-
bit extension (AVX-512) to scalar multiplication implementations could be studied.
The larger 256-bit registers could be used to generate an efficient one-step shift-
and-add modular reduction. Also, the same techniques used to implement a 128-bit
base arithmetic could be applied to higher security levels by using larger vectorized
registers.
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Alternative methods to avoid side-channel attacks based on the CPU
cache. As we increase the NAF w-width, we also increase the pre- and post-
computation overhead. At the same time, we save point additions in the scalar
multiplication main loop. The bound for selecting the value of w lies on the balance
between these two phases2. For timing attack-resistant implementations, the w value
also determines the not-negligible linear pass function cost, which increases with the
precomputed points.

An alternative method that mitigates the impact of the CPU cache timing-attack
protection would allow the expansion of the NAF-width w and the efficiency improve-
ment of the scalar multiplication.

The impact of the side-channel attacks in multi-core architectures. The
multiple cores currently available in desktops and mobile devices can be used to accel-
erate the scalar multiplication computations (see Sections 3.3.5 and 3.4). However,
there are few studies [154] on the vulnerability of cryptographic implementations in
these architectures.

Binary elliptic curves with higher security levels. According to a recent NSA
statement on cryptographic algorithms, documents classified as “TOP SECRET”,
which is the maximum U.S. government security level, should be signed with 384-bit
elliptic curves (192-bit security level) [133]. More precisely, with the standard NIST
P-384. As a result, we must expect, in the near future, a greater demand for scalar
multiplication implementations with more than 128 bits of security.

For binary curves, we have different options for implementing an efficient high-
security level point multiplication. For 256 bits of security, one could select a GLS
curve defined over F22·251 or F22·257 or a Koblitz curve defined over the field F2571 .
Both curves require cost estimations, new arithmetic techniques and a crafty imple-
mentation in order to be considered proper to be used in practice.

Implementation of algorithms for computing Gröbner basis. The Gröbner
basis descent is one of the most crucial phases of the small-characteristic field DLP
algorithms. This is because it determines the smoothness bound that the previous
descent phases must reach. Presently, the Magma algebra system [31] holds one of
the most popular [3, 70] state-of-the-art implementation of the Faugère’s F4 algo-
rithm [47], which is used to compute the Gröbner basis.

2This statement applies only to architectures that do not have any memory restraints, such
as high-end desktops. For constrained devices, one also must care about the required amount of
memory when pre- or post-processing the points.
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Given that the Magma code is not public, we do not know whether optimizations
for a particular small-characteristic field could be applied. As a result, an efficient
open-source implementation of the F4 (or F5 [48]) algorithm would allow the general
use of a Gröbner basis computation technique and possibly extend the reach of the
recent small-characteristic DLP solver methods.

Solving the DLP on higher extensions of pairing-related fields The analysis
presented in [4, 3] showed that solving the DLP on large-extension fields such as
F36·1429 and F24·3041 is infeasible in practice. Although theoretically broken, those
fields are constructed with a large prime extension, which makes the descent phase
too costly and still dependent of the expensive QPA step. Devising methods to reduce
the cost of the DLP on those fields can possibly give insights for further asymptotic
reductions in the general algorithm for solving the DLP on small-characteristic fields.

One of the last remaining fields that was considered for pairing-based cryptog-
raphy but hasn’t been practically broken yet is F212·439 , which is the embedded field
of a genus two supersingular curve [34]. Here, we could analyze the applicability
of the new methods [71, 89] to improve the efficiency of the DLP algorithms for
small-characteristic fields.

Solving the DLP on a weak GLS curve defined over F22·127. According to the
authors in [76], solving the DLP over a GLS curve E/F22·127 defined with vulnerable
parameters against the generalized/extended GHS attack (see Section 6.3) has a
cost of 52 bits. Roughly, a current high-end desktop can process about 244 relation
generation steps in one month3.

As a consequence, we would need about 28 = 256 machines to compute the
relations collection phase in one month. This number can be reduced if we consider
optimizations in the divisor arithmetic functions, the CPU/GPU parallelism (see
Section 7.3.1) or relaxing the deadline by two or more months.

Solving the DLP on such GLS elliptic curves would show, in practice, the potential
of the GHS attack against a curve that provides about 128 bits of security with the
traditional Pollard rho method. Also, it would give us the expertise for implementing
the Enge-Gaudry algorithm in a large scale.

3In small-characteristic field DLP algorithms, the relations collection step is less costly when
compared with the hyperelliptic DLP solvers. Experimentally, in an Intel Core i7-4700MQ machine,
we verified that a desktop can process 246 steps of the former algorithm in one month. Considering
that the latter algorithm step is four times more expensive, we estimated the cost as 244.
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Binary elliptic curves defined over F8. Defining a binary elliptic curve over F8

would allow us to develop fast arithmetic, which can take profit from the internal
parallelism of the current commercial desktops. However, it is necessary to perform
an analysis of its security against attacks based on the Weil restriction. As stated by
the authors in [109], the field F23 is “partially weak”, which means that “only a non-
negligible proportion of all elliptic curves over [this field] can be solved significantly
faster that it takes Pollard’s rho method”.

As a result, one could determine this non-negligible proportion and find secure
fields of cryptographic interest for implementing efficient scalar multiplication algo-
rithms.

Practical generalized GHS attack Given that the curve C over k generated by
the generalized GHS method is in general not hyperelliptic, the effectiveness of this
attack depends on that the addition operation in JC(k) is similar to this operation
in hyperelliptic curves and that the cost of solving the DLP in JC(k) is the same of
solving it in a hyperelliptic curve with the Enge-Gaudry algorithm [110].

An interesting line of research would be to analyze the feasibility of the gGHS
attack against elliptic curves currently used in real-world protocols, verifying how do
the above assumptions hold in practice.
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F. Rodŕıguez-Henŕıquez. Multi-core Implementation of the Tate Pairing over
Supersingular Elliptic Curves. In Cryptology and Network Security, volume
5888 of LNCS, pages 413–432. Springer Berlin Heidelberg, 2009.

[25] M. Bluhm and S. Gueron. Fast Software Implementation of Binary Ellip-
tic Curve Cryptography. Cryptology ePrint Archive, Report 2013/741, 2013.
http://eprint.iacr.org/.

[26] D. Boneh, B. Lynn, and H. Shacham. Short Signatures from the Weil Pairing.
Journal of Cryptology, 17(4):297–319, 2004.

[27] J. W. Bos, C. Costello, H. Hisil, and K. Lauter. Two is Greater than One.
Cryptology ePrint Archive, Report 2012/670, 2012. http://eprint.iacr.org/.

[28] J. W. Bos, C. Costello, H. Hisil, and K. Lauter. Fast Cryptography in Genus
2. In Advances in Cryptology - EUROCRYPT 2013, volume 7881 of LNCS,
pages 194 – 210. Springer Berlin Heidelberg, 2013.



146 BIBLIOGRAPHY

[29] J. W. Bos, C. Costello, H. Hisil, and K. Lauter. High-Performance Scalar Mul-
tiplication Using 8-Dimensional GLV/GLS Decomposition. In Cryptographic
Hardware and Embedded Systems - CHES 2013, volume 8086 of LNCS, pages
331 – 348. Springer Berlin Heidelberg, 2013.

[30] J. W. Bos, T. Kleinjung, R. Niederhagen, and P. Schwabe. ECC2K-130 on
Cell CPUs. In Progress in Cryptology - AFRICACRYPT 2010, volume 6055
of LNCS, pages 225–242. Springer Berlin Heidelberg, 2010.

[31] W. Bosma, J. Cannon, and C. Playoust. The Magma algebra system. I. The
user language. Journal of Symbolic Computation, 24(3 - 4):235 – 265, 1997.

[32] W. Bosma and H. Lenstra. Complete Systems of Two Addition Laws for
Elliptic Curves. Journal of Number Theory, 53(2):229 – 240, 1995.

[33] R. Brent and P. Zimmerman. Algorithms for finding al-
most irreducible and almost primitive trinomials. Proceedings
of a conference in honour of Professor H.C. Williams, 2003.
http://web.comlab.ox.ac.uk/oucl/work/richard.brent/pd/rpb212.pdf.

[34] S. Chatterjee, D. Hankerson, and A. Menezes. On the Efficiency and Security
of Pairing-Based Protocols in the Type 1 and Type 4 Settings. In Arithmetic
of Finite Fields, volume 6087 of LNCS, pages 114–134. Springer Berlin Heidel-
berg, 2010.

[35] S. Chatterjee, K. Karabina, and A. Menezes. A New Protocol for the Nearby
Friend Problem. In Cryptography and Coding, volume 5921 of LNCS, pages
236–251. Springer Berlin Heidelberg, 2009.

[36] J.-J. Chi and T. Oliveira. Attacking a Binary GLS Elliptic Curve with Magma.
In Progress in Cryptology - LATINCRYPT 2015, volume 9230 of LNCS, pages
308 – 326. Springer International Publishing, 2015.

[37] D. V. Chudnovsky and G. V. Chudnovsky. Sequences of numbers generated by
addition in formal groups and new primality and factorization tests. Advances
in Applied Mathematics, 7(4):385–434, 1986.

[38] N. M. Clift. Calculating optimal addition chains. Computing, 91(3):265 – 284,
2011.



147

[39] H. Cohen, G. Frey, R. Avanzi, C. Doche, T. Lange, K. Nguyen, and F. Ver-
cauteren. Handbook of Elliptic and Hyperelliptic Curve Cryptography. Chap-
man & Hall/CRC, Second edition, 2012.

[40] D. Coppersmith. Fast evaluation of logarithms in fields of characteristic two.
IEEE Transactions on Information Theory, 30(4):587–594, 1984.

[41] D. Coppersmith. Solving Homogeneous Linear Equations Over GF (2)
via Block Wiedemann Algorithm. AMS Mathematics of Computation,
62(205):333–350, 1994.

[42] C. Costello, H. Hisil, and B. Smith. Faster Compact Diffie-Hellman: Endomor-
phisms on the x-line. In Advances in Cryptology - EUROCRYPT 2014, volume
8441 of LNCS, pages 183 – 200. Springer Berlin Heidelberg, 2014.

[43] C. Costello and P. Longa. FourQ: four-dimensional decompositions on a Q-
curve over the Mersenne prime. Cryptology ePrint Archive, Report 2015/565,
2015. http://eprint.iacr.org/.

[44] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol
Version 1.2, 2008. http://www.ietf.org/rfc/rfc5246.txt.

[45] C. Doche. Redundant Trinomials for Finite Fields of Characteristic 2. In
Information Security and Privacy, volume 3574 of LNCS, pages 122 – 133.
Springer Berlin Heidelberg, 2005.

[46] A. Enge and P. Gaudry. A general framework for subexponential discrete
logarithm algorithms. Acta Arithmetica, 102:83–103, 2002.

[47] J. C. Faugère. A new efficient algorithm for computing Gröbner bases (F4) .
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persingular binary curves (or how to solve discrete logarithms in F24·1223 and
F212·367). In Advances in Cryptology - CRYPTO 2014, volume 8617 of LNCS,
pages 126–145. Springer, 2014.



150 BIBLIOGRAPHY

[71] R. Granger, T. Kleinjung, and J. Zumbrägel. On the Powers of 2. Cryptology
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