
CENTRO DE INVESTIGACIÓN Y DE

ESTUDIOS AVANZADOS DEL INSTITUTO

POLITÉCNICO NACIONAL

DEPARTAMENTO DE COMPUTACIÓN

Diseño y Desarrollo de un Sistema de Reconocimiento de Gestos
Manuales para el Control de un VANT

Tesis que presenta

Dulce Adriana GÓMEZ ROSAL

para obtener el grado de

Maestra en Ciencias
en Computación

Directora de Tesis:
Dra. Xiaoou LI

Ciudad de México Septiembre de 2016

dgomez@computacion.cs.cinvestav.mx
lixo@cs.cinvestav.mx

CENTER FOR RESEARCH AND ADVANCED

STUDIES OF THE NATIONAL

POLYTECHNIC INSTITUTE

COMPUTER SCIENCE DEPARTMENT

Design and Development of a Hand Gesture Recognition System for
UAV Control

by

Dulce Adriana GÓMEZ ROSAL

Thesis submitted in partial fulfillment of the requirements for the
degree of

Master of Science
in Computer Science

Advisor:
Dr. Xiaoou LI

Mexico City September 2016

dgomez@computacion.cs.cinvestav.mx
lixo@cs.cinvestav.mx

iii

Dedicated to my family, in every form.

“Nullius in verba. ”

Royal Society of London

v

Agradecimientos

Todo lo mostrado y no mostrado en éste documento, producto de intensos meses de con-
tinuo trabajo, fue posible gracias a diversas formas de ayuda que recibí en éste tiempo. Por ello,
dedico un inicial agradecimiento al CONACyT, quien posibilitó económicamente éstos estudios
de posgrado.

Las labores administrativas pueden llegar a ser un dolor de cabeza, y por ello agradezco
enormemente las facilidades que el Dr. Amilcar Meneses Viveros, Sofía Reza Cruz y Erika Ríos
me proporcionaron.

Por su lado, al ser la médula espinal de éste trabajo, las labores académicas requieren de un
agradecimiento particular. A la Dra. Xiaoou Li por su apoyo en diversos aspectos, al Dr. Jiacun
Wang por su disponibilidad y atención hacia mi persona y todo el proyecto, a la Dra. Sonia
Mendoza por su cortesía y favor hacia todo el proceso documental, al Dr. Jair Cervantes por su
consideración y miramiento hacia ésta tesis, y finalmente al CINVESTAV y a la Universidad de
Monmouth, por la presteza de los recursos tecnológicos e instalaciones.

A mi familia sanguínea, Lic. María del Rosario Rosal Montiel, Biól. Nancy Vianey Gómez
Rosal e Ing. Sergio Gerardo Gómez Rosal, hállese aquí el producto de todo su infinito amor y
paciencia, a los cuales las palabras le quedan cortas.. pero, ¡lo logramos!

A mi familia de elección, amigos que me permiten no salir de mis cabales, entienden mis
momentos de lejanía y sobretodo, estaban siempre prestos con su afecto y lealtad a cuando el
proyecto me regalaba micromomentos de distensión: a Berenice Jimenez, Álvaro Becerril, Mario
Peña, Ariana Cortés, Elizabeth Martínez, Daniela Brindis, Mauricio Sánchez, Alicia Cruz, Fany
Ramírez, Elia Peredo, David Quevedo, Uriel Silva, Kim y Frannie Festejo y varios (¡muchos!)
más, que aún sin nombrarlos, se saben parte de mi vida y éste proyecto.

Un agradecimiento especial merecen quienes con al menos una palabra o un momento, me
regalaron un poco de su experiencia y sapiencia en las artes de la Computación: al Dr. Francisco
Rodríguez Henríquez, Dr. Gabriel Ramírez Torres, Dr. Luis Gerardo de la Fraga, Dra. Dolores
Lara, Axel Salazar, Guillermo Monroy y Daniel Torres, por mencionar algunos.

Sería imposible listar todas las personas que merecen al menos una pequeña mención en
éste producto, es por ello que en atención a ésta falta, extiendo un penúltimo agradecimiento a
todos los involucrados de una u otra forma no mencionada hasta el momento.

Y finalmente, gracias a usted, estimado lector, por dedicar minutos de su tiempo a éste
documento. En ello va la motivación real de todo éste trabajo.

vii

Resumen
Al comunicarnos con las personas, usamos, consciente o inconscientemente, gestos. ¿Es posi-
ble que los humanos se comuniquen con un dispositivo inteligente, como un VANT (Vehículo
Aéreo No Tripulado), a través de gestos manuales? Éste trabajo de tesis se enfoca en responder
ésta pregunta, y su objetivo es diseñar y desarrollar un sistema de reconocimiento de gestos
manuales para controlar un VANT cuadrirrotor.

En el sistema, 13 gestos fueron diseñados (5 estáticos y 8 dinámicos) para controlar la op-
eración y dirección de un VANT. Para entrenar al sistema a reconocer los gestos, se usaron
datos esqueléticos de la mano recolectados a través del dispositivo Leap Motion (6 caracterís-
ticas puras en total). El Clasificador Adaptativo Ingenuo de Bayes (ANBC por sus siglas en
inglés Adaptive Naïve Bayes Classifier) y las Máquinas de Soporte Vectorial (SVM, Support Vector
Machines) son seleccionados como los algoritmos base de aprendizaje para el método de en-
samble desarrollado; ésto fue requerido para mejorar la precisión en el reconocimiento. Para
reconocer gestos dinámicos utilizando los clasificadores estáticos, se presenta un enfoque tem-
poral, en el cual se crean características a través de la composición de datos secuenciales de la
mano, ésto generó en total 8 características compuestas. Con ello, los clasificadores son entre-
nados utilizando datos de 14 características (6 puras y 8 compuestas) en vez de 6 características
puras para reconocer gestos dinámicos a través de clasificadores estáticos.

Los componentes de software son tres nodos del Sistema Operativo Robótico (ROS, por sus
siglas en inglés, Robot Operating System) que generan las funciones de creación del vector de carac-
terísticas, reconocimiento de gestos y control del VANT. La plataforma ROS se ha vuelto el estándar
para la robótica industrial, de investigación y entretenimiento. Por tanto, ésta implementación
puede ser utilizada por cualquier otro dispositivo compatible con ROS.

Para probar el sistema, se usó el software Gazebo (un simulador de ROS) así como un VANT
emulado (con el software ArduCopter). Los resultados indican que el sistema desarrollado es
capaz de controlar un VANT de manera estable.

Keywords: Reconocimiento de Gestos Manuales, Leap Motion, ROS, control de VANT.

ix

Abstract
When communicating with each other, we use, conscious or unconsciously, gestures. Can hu-
man communicate with an intelligent device, such as an UAV (Unmanned Aerial Vehicle),
through hand gestures? This thesis work focuses on answering this question, and its aim is
to design and develop a hand gesture recognition system to control a quadrotor UAV.

In the system, 13 gestures were designed (5 statics and 8 dynamics) to control the UAV oper-
ation and direction. In order to train the system to recognize these gestures, hand skeleton data
were collected from the Leap Motion device (6 raw features in total). Adaptive Naïve Bayes
Classifier (ANBC) and Support Vector Machines (SVM) are selected as the base learning algo-
rithms for the ensemble method we developed; this was required to improve the recognition
accuracy. To recognize dynamic gestures using the static classifiers, we introduce the temporal
approach in which the features are created by composing sequential hand data; this provided
in total 8 composed features. Therefore, the classifiers are trained using data of 14 features (6
raw and 8 composed) instead of 6 raw features in pursuance of dynamic gestures recognition
through static classifiers.

The software components are three nodes of the Robot Operating System (ROS) that accom-
plish feature vector creation, gesture recognition, and UAV Control functions. ROS platform has
become the standard for industrial, research and entertainment robotics. Therefore, this imple-
mentation can be used by any other ROS compatible device.

To test the system, the Gazebo software (a ROS simulator) was used along with an emulated
UAV (with the ArduCopter software). Experimental results indicate that the developed system
is able to control the UAV stably.

Keywords: Hand Gesture Recognition, Leap Motion, ROS, UAV Control.

xi

Contents

Resumen vii

Abstract ix

Contents xi

List of Figures xiii

List of Tables xv

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 2
1.3 Project Description . 4
1.4 Contributions . 5
1.5 Thesis organization . 5

2 Hand Gesture Recognition 7
2.1 Human Machine Interface . 7

2.1.1 Real-Time Control Systems . 8
2.1.2 Quadrotor UAV Control . 9

2.2 Hand Gesture Recognition Systems . 10
2.3 Hand Gesture Recognition . 12

2.3.1 Recognition Devices . 12
2.3.2 Other Tools and Applications . 13

2.4 Pattern Recognition . 14
2.4.1 Recognition Process . 16
2.4.2 Gesture Recognition . 18

2.5 Machine Learning Fundamentals . 19
2.5.1 Preliminaries . 19
2.5.2 Types of Learning . 20
2.5.3 Stages of the Machine Learning Process . 22

Training, Testing and Validating sets . 23
The Peaking Phenomenon . 24

2.5.4 Validation Methods . 25
Test Sets and Errors . 25
The Confusion Matrix . 25

2.6 Supervised Learning Algorithms . 26
2.6.1 Bayesian algorithms . 26
2.6.2 Decision Trees . 27

xii

2.6.3 K-Nearest Neighbors . 28
2.6.4 Minimum Distances . 29
2.6.5 Support Vector Machine . 29
2.6.6 Hidden Markov Model . 31
2.6.7 Dynamic Time Warping . 32
2.6.8 Artificial Neural Networks . 32
2.6.9 Algorithms Comparison Chart . 33
2.6.10 Ensemble Methods . 36

2.7 Tested Algorithms . 36

3 Hand Gesture Recognition System for UAV Control 39
3.1 Architecture of the System . 39
3.2 Gesture Recognition subsystem . 40

3.2.1 The Leap Motion Controller . 41
3.2.2 Data Filters . 42
3.2.3 The Feature Vector . 43
3.2.4 Classification . 47
3.2.5 Base Learners . 48

3.3 UAV Control Subsystem . 49
3.3.1 UAS Elements . 51

3.4 Implementation . 52
3.4.1 The Robotic Operating System (ROS) . 52
3.4.2 ROS Nodes . 52
3.4.3 System Pseudocodes . 55
3.4.4 Simulation on Gazebo . 58

4 Experiment 63
4.1 Experiment Design . 63
4.2 Evaluation Description . 65

4.2.1 Training Data . 66
4.2.2 Feature Combinations . 67
4.2.3 Predominant Features . 70

4.3 Static Tests: Test Subset Accuracy Response . 71
4.3.1 Class Accuracy . 71

4.4 Dynamic Tests: Live Data Accuracy Response . 76
4.4.1 Multi-classes Confusion Matrixes . 76

4.5 Dynamic Tests: Live Data Time Response . 82

5 Conclusions and further work 85
5.1 Conclusions . 86
5.2 Further Work . 88

Bibliography 89

xiii

List of Figures

1.1 Telekinesis, a dream cherished for a long time. 3

2.1 A Diagram of a Closed Loop Control System. 8
2.2 A quadrotor UAV, Parrot brand. 9
2.3 Quadcopter attitude axes. 10
2.4 Diagram of a Hand Gesture Recognizer used in a closed loop control system . . . 11
2.5 Examples of approaches: a) vision based b) data-glove based c) colored glove . . 12
2.6 A sample of the astrology across the mayan, egiptian and greek cultures. 15
2.7 The precolombian cultures shared the myth refering a rabbit in the moon. 15
2.8 A simple classification process. 17
2.9 Workflow of a conventional pattern recognition implementation with a super-

vised learning algorithm. 18
2.10 Supervised Learning. 22
2.11 Overview of applying a Supervised Learning Algorithm to a Problem. 23
2.12 The Peaking Problem. 24
2.13 Example of the probability density functions for a three classes Naive Bayes clas-

sifier, the class with greatest likelihood is selected as the output class. 27
2.14 Example of a 2-Classes case, where KNN provides a different class accordingly

to the number of surrounding samples. 28
2.15 Example of a 2-Class Minimum Distances classifier. 29
2.16 Example of the kernel trick. Since the data is not linearly separable, it is trans-

formed to a higher space where it becomes separable. 30
2.17 A representation of the HMM. 31
2.18 A graphical representation of how DTW obtains the distance in time of two out-

of-phase signals. 32

3.1 A logic view of the system. 40
3.2 Gesture recognizer subsystem architecture. 41
3.3 Leap Motion controller, cover removed . 41
3.4 Leap Motion coordinate system and its correspondence with a screen. 42
3.5 Difference across Frames . 44
3.6 Palm Delta vector (∆ Palm). 45
3.7 Leap Motion Palm Vectors . 46
3.8 Leap Motion Finger Vectors . 46
3.9 Hand angular movements. 47
3.10 Hand Gesture Recognizer node. 48
3.11 UAV Control Architecture. 50
3.12 Erle Brain 2 and Erle Copter. 51
3.13 Interaction between ROS nodes. 53

xiv

3.14 Graph with nodes and topics used in the recognition phase and the consequent
UAV control. 55

3.15 Communication between virtualized components and nodes in the simulation. . 60
3.16 Node graph of simulated system. 61
3.17 Simulation of the system in Gazebo. 62

4.1 Workflow of current supervised learning algorithm implementation. 64
4.2 Data captured for Up gesture. 70
4.3 Data captured for left rotation gesture. 71
4.4 Comparison between average accuracy for each classifier in the test set validation. 75
4.5 Comparison between average accuracy for each classifier in the live validation. . 81

xv

List of Tables

2.1 Example of a confusion matrix . 26
2.2 First part of a qualitative comparison of some Supervised Learning algorithms . 34
2.3 Second part of a qualitative comparison of some Supervised Learning algorithms 35

3.1 Relation between target class cj and the redognized hand gestures. 49
3.2 Relation between target class cj , hand movements and UAV behaviour. 50

4.1 Sample number per training data set and per class cj 67
4.2 Total sample number per training data set. 67
4.3 Feature vector combinations. 69
4.4 A sample of the results in the static validation: Test set accuracy for dynamic

gestures with the Combination D. 73
4.5 Average of accuracy results in the static validation. 74
4.6 A sample of the results in the dynamic validation: Live data accuracy for dy-

namic gestures with the Combination B for algorithm ANBC. 77
4.7 Average of accuracy results for the main diagonal in the live validation. 79
4.8 Average time response (in miliseconds) of classifiers across combinations in the

live validation. 82

1

Chapter 1

Introduction

Humans love to communicate. Communication is the channel through which we make our-
selves noticeable to others and in general, to the world. Despite the fact that each region of
the world has their own communication codes, it is undeniable that there is still an universal
language: gestures. Most communication is nonverbal, gestures is a basic nonverbal communi-
cation tool. Among gestures, hand gestures plays an important role in our life. Considering the
current technological development, why do not we extend gesture communication to devices
that we want to communicate with? This question has been partially answered by the devel-
opment of the research field named Gesture Recognition, a subfield of the Pattern Recognition,
branch of Machine Learning.

This introductory chapter explains the motivations of this work, plots the problem state-
ment, presents the project description, lists the contributions of this thesis and finally outlines
the organization of the rest of the document.

1.1 Motivation

Since all humans are different, it is not odd to suppose that we have different communication
capabilities and/or preferences. This leads us to argument that: the interaction possibility
through diverse devices, with different technology and sensing channels, widens the public
to which a certain application or device is focused. With this spirit, hardware development
enthusiasts have provided us in recent years with novel contact-free input systems based on
different methodologies, e.g. speech input, body gestures recognition and eye-gaze control, just
to mention a couple.

The introduction of these technologies enables to diversify the application focus. Let us
mention a sterile environment (clean room) for instance; in such a place, a standard input de-
vice like a regular mouse or keyboard would become devices that violate the sanity terms of
the place and therefore the introduction of certain technology is improper. Under the afore-
mentioned scenarios, and moreover, thinking of persons who do not feel either comfortable or
capable of interacting with the regular input devices (such as a mouse or keyboard), we can
state that:

2 Chapter 1. Introduction

Different human abilities require different input device features, and consequently such differ-
ent input device features opens the possibility to alternative software application targets.

Nowadays the alternative interacting channels research and the gesture recognition field has
become a very promising field, and this is the project’s catalyst: the seek and development of
software tools that, making use of alternatives hardware devices and gesture recognition, pro-
vide a reliable response to a certain task. In this project, this reliable response will be focused on
the movement command of a quadrotor unmanned aerial vehicle (UAV) as an application case.

The hand gestures recognition is a research field that has been addressed with many Ma-
chine Learning algorithms, however its response has been evaluated most of the times only in
terms of its certainty and still depends on the standard devices used for the information re-
trieval such as regular cameras. Since the intention of this project is to apply the hand gesture
recognition algorithms to the control of a mobile robot, it is mandatory to think in terms of
real-time response which generates the need of evaluating the algorithm response not only in
certainty terms but in real-time requirements.

Gathering the above mentioned, the main motivation of this project resides in the proposal
of new technology usage combined with a comprehensive set of hand gestures recognition al-
gorithms, guided under the control real-time system in order to manipulate mobile hardware
(the UAV). The belief is that this proposal gains attention in order to integrate new technologies
with solid algorithms for some other non-standard devices.

1.2 Problem Statement

A world where the Telekinesis (production of motion in objects without contact or other physical
means, but induced by mental or spiritual power) is a reproducible and scientifically verifi-
able phenomenon still looks like a distant reality, although many characters claim to have this
ability such as Edóuard Isidore Buguet in the eighteenth century (Figure 1.1). Inspired by this,
some enthusiastic technologists have developed hardware, through which human may express
commands we want to order to some other objects. Gesture communication is a very natural
language, learned since the beginning of mankind, therefore is valid to think that this commu-
nication may be the (so far) closest attempt to a command induction for mobile objects.

1.2. Problem Statement 3

FIGURE 1.1: Telekinesis, a dream cherished for a long time.

However, attempts to control objects through hand gestures have been as varied since the
first attempts that several techniques (for hardware and software)were developed; above all,
depending on the purpose for which the gestures are used, the techniques greatly vary.

Meanwhile, UAVs have become an interesting subject not only for technologists and am-
ateurs, but for large companies and government sectors that foresee in these devices, a very
versatile pioneer. Today the most common control of the UAVs is through explicit commands
via a remote control or a control station that generates coordinates and order them where to
move. Would not it be interesting to have capabilities of control over the UAV in a gesticulated
way?

Combining both topics, on remote handling through hand gestures movement of a UAV, it
is that the problem arises to resolve. How to ensure that hand gestures can intuitively control
the movement of a UAV?

In recent years, a great interest emerged in the supply of devices that transduce information
from manual movements to computer data; enhanced by this, study techniques of these data
got refined. Nonetheless, these techniques prove to be more suitable for static hand gestures
while for the study of dynamic gestures, there are still problems in terms of hardware require-
ments or simply the recognition of a right gesture is low.

Most of the people used to think that regular recognizers could deliver a stable recognition
independently of the application or entered data, however many researchers who use the tra-
ditional techniques have fallen into the notion that there is not ideal and universal recognizer
approach and for every desired application, a complete study should be driven in order to pro-
pose a suitable approach.

Back when gesture recognition was a field of study in its infancy, people talked about a rigid
classification; now, thanks to the development of more flexible mathematical models, the great
stride of Machine learning (Computer Science subfield dedicated to creating programs able
to generalize behaviors from an unstructured information, usually provided as examples; is a

4 Chapter 1. Introduction

process of knowledge induction, responsible for developing techniques that allow computers to
learn) emerged, which allowed to expand the type of data and applications that the recognizers
may cover.

In first instance, it was thought that a recognizer from a particular methodology was suf-
ficient. And it was indeed! although just for simple applications such as only static gestures
cases. Later on, the recognizers employee grew more complex, which forced to revise alterna-
tive approaches; hence, a drive lane proliferated towards more complex models making use of
diversity. Thus, the so-called Ensemble Methodology was developed and its focus is to combine
recognition techniques using different learning paradigms. By recent experiments it was found
that these methodologies deliver better results than the traditional single recognition approach.

The problem attacked in this project is to control an UAV through hand gestures, both static
and dynamic, using an Ensemble Methodology with Supervised Learning algorithms (retrieved
from Machine Learning) and it is of great interest because the control of an UAV through dif-
ferent media may contribute to creativity on their applications, while recognizing both types of
gestures (static and dynamic) in a single meta-classifier potentiates the uses it may provide and
extends the range of approaches to generate a pattern recognition.

1.3 Project Description

This work develops a control system that recognizes hand gestures making use of the infor-
mation retrieved by the commercial device named Leap Motion. The recognizer was designed
based on the data generated by the Leap Motion controller, user’s hand gestures, an ensemble
learning methodology, recognition algorithms that solve the task in a real-time manner and a
proposed temporal approach; all this, tested and evaluated with a modified version of the regu-
lar comparison tools. A combination of static and dynamic gestures is recognized and mapped
to specific label commands, and in order to select the two most suitable base learners, four pop-
ular algorithms were tested. As an application case, the usage of the recognized gestures is the
control of a quadrotor UAV through the Robot Operating System (ROS) platform.

The gesture recognition phase starts with the hand skeleton data processing provided by
Leap Motion, and the implemented approach is through the usage of a control algorithm which
makes use of Base Learners. The Base Learners belong to the Supervised Learning field, which
is a Learning Paradigm of the Computing Methodology called Machine Learning according to the
Association for Computing Machinery (ACM) classification [1].

With these ideas, we summarize the main objective of this project in the following question:
Is it possible to develop software that recognizes hand gestures and controls certain actions for
a mobile robot in a real-time manner and incorporates a learning approach?

This question is worth to be answered from (at least) two points of view:

• Control: To control a device in just one way may be a challenge or even uncomfortable
for some people. Therefore, to investigate alternative approaches for common actions
becomes an important field of research.

1.4. Contributions 5

• Gesture recognition: This research field still has plenty of room for improvements and
technical proposals with the development of the latest sensors and composed devices.

This project makes use of a proposed approach that allows the incorporation of static classi-
fiers into temporal gestures recognition, we call it: the temporal approach. Afterwards, in order
to validate the response of the recognizer algorithms, their performance and accuracy responses
are compared in the classical way, by making use of the classic Test Set, and in a modified version
of the binary confusion matrix. This allowed us to extend its comparison usage from the binary
to the multiclasses classifiers.

1.4 Contributions

• A Real-Time Control System for the command of a Quadrotor Unmanned Aerial Vehicle, which
retrieves the orders from the static and dynamic hand gestures recognition. This will be
obtained as the outcome of the control algorithm under the philosophy of the Ensemble
Methods of base Supervised Learning algorithms. The complete system runs over the Robot
Operating System.

• A temporal approach that enables the usage of static classifiers into dynamic gestures
recognition.

• A proposal of the accuracy evaluation based on live data.

1.5 Thesis organization

The rest of the document is organized as follows: Chapter 2 contains an overview of hand
gesture recognition systems, some similar projects around the State of Art and the theoreti-
cal framework presents briefly the tools to understand in a quick glance the world of Pattern
Recognition and the Machine Learning techniques that it inherits, which are key to comprehend
the algorithms cores and the information displayed in following chapters. Chapter 3 displays
the complete system design, unwrapping each subsystem into understandable fragments: the
classifiers and the control stage; the temporal approach is depicted and the ROS implementation
is exhibited. Chapter 4 holds the experiment design, the tests and results where the selection
of the most suitables base learners is made; the static and live evaluations are explained along
with the introduction of the modified confusion matrixes. Finally, Chapter 5 is made up by
the summary of the complete work, where some conclusions and ideas for further work are
discussed as well.

7

Chapter 2

Hand Gesture Recognition

The human recognition and learning capabilities are, without any question, one of the great-
est gifts that mankind has ever received. In pursue of transmitting this abilities to their own
technological creations, researchers developed some decades ago the Machine Learning and
the Pattern Recognition research fields. There is still a long discussion among their bookish,
whether which branch was first; what it is known for sure, is that both of them support each
other through its principle sharing. Hand Gesture Recognition is a branch of Pattern Recogni-
tion and since this is the mechanism that this project counts with, it is wise to take a brief travel
to review some important definitions and tools.

This Chapter starts by introducing the components of a Human Machine Interface, explain-
ing what a Real-Time System is and what it takes to control a quadrotor Unmanned Aerial Ve-
hicle (UAV) in a general overview. Following section holds a review of the State of Art around
similar developments, introducing related devices and applications, while in next section a
proper induction to the Pattern Recognition theory is presented. Since Pattern Recognition can
not exist without the Machine Learning tools, a section of their fundamentals is presented. This
project makes use of the Ensemble Methodology of Supervised Learning algorithms, hence, a
section is devoted to briefly present the working principle of some of them (emphasizing the
algorithms to be compared in Chapter 4) followed by a comparison chart where their main
characteristics are faced. Finally, section 2.7 contains the list of algorithms selected for the eval-
uation and the reasons why they were chosen.

2.1 Human Machine Interface

Human Machine Interface (HMI) systems are nowadays a common solution for the problem of
communicating technology with its users. An HMI may be defined as the channel that en-
ables the machine control to an operator, therefore the main task of an HMI system resides in
its ability of being self-evident to the user, i.e. a well designed HMI system will be the most
self-explanatory possible, or will require the less possible training for the user. An HMI system
is judged by its usability, which includes how easy is to learn its manipulation as well as how
productive its user may be [2].

The design of such a system must take in account several factors such as safety, effectiveness,
consistency and intuition. And from these four features, the intuition may be the fuzziest and
hardest-to-define term. Insight of this, this project emphasizes this factor, and since humans
start communicating with gestures prior than words, the project uses hand gestures as input

8 Chapter 2. Hand Gesture Recognition

commands for the system.

In [3] a series of guidelines is provided in order to design an ideal HMI; among them, the
key to a successful HMI system is to get to know the operator. For any user along the range from
intuitive to expert, interface ergonomic considerations should be taken in account. And this is
where Hand Gestures Recognition come to play an important role. But let us get there little by
little.

2.1.1 Real-Time Control Systems

It is important to emphasize what Real-Time in the Computer Sciences means according to the
IEEE Computers Society Technical Committee on Real-Time Systems:

Real-Time System: is a computing system whose correct behavior depends not only on the
value of the computation but also on the time at which outputs are produced [4] .

Therefore, a Real-Time system describes hardware and/or software systems subject to a
“real-time constraint” [5]. This does not necessarily means “fast”, but responsive in terms of a
time need. This approach is widely used in control applications and a good reason for this is the
following: in a closed loop controlled system, one of the main goals is to reduce the feedback er-
ror as soon as possible; hence, the response time is one of the most important error collaborators.

Figure 2.1 lets us think about it in this way: when the system is fed with a certain input,
the system reacts to this signal in such a way that produces an output (the controlled variable).
Right after the output is generated, it is retrieved as a feedback signal, which allows the error
signal calculation: the difference between the reference input and the feedback signal. Once the
error is known, the controller will behave in such a way that next time it retrieves a decreased
error. It is then logical to think that when the complete system is coordinated and there are no
big time loses or significant delays, the controller is able to modify its behavior in such a way
that next time it gets the signal error, it corresponds to the commanded behavior and not to
other one that could have been delayed in the path. In such an ideal system, the controller is able
to perform its control action trusting completely in the system and its behavior.

FIGURE 2.1: A Diagram of a Closed Loop Control System.

2.1. Human Machine Interface 9

Real-Time Control Systems are subject to tight time windows: to retrieve data, process it,
and update the station. It is easy to notice that if this time window is disturbed, the stability of
the system is degraded and may be compromised. Nowadays these systems are found almost
in every aspect of human life, since the fundamental components of the CERN’s Large Hadron
Collider, until the breaking mechanism of a regular car. Its features and advantages make these
systems very popular and widely spread. Naturally the Robotics field is not apathetic to this
and in response, this scheme is maybe the most used for control applications. Insight of this, let
us talk about its application in one of the trending robotics applications: the Unmanned Aerial
Vehicles.

2.1.2 Quadrotor UAV Control

If the Robotics of this century could be summarized into one word, possibly that would be the
drone. This is a fancy word which makes reference to the Unmanned Aerial Vehicles (UAVs), a
vast category within the Mobile Robots.

The UAVs are only a member of an Unmanned Aerial System (UAS), being that an UAS
consists of one or more UAVs, a communication link, a control station and the ground crew
(expert persons who control the complete UAS). Its growing importance and interest are owed
to the exponential popularity that the UAVs have gained due to their wide applications field
and the fact that the technological cost of its assembly pieces has decreased.

This situation leaded to a wide expansion of the UAVs devices (nowadays practically every
mobile robot in the air is named an UAV). Perhaps the most widespread UAV is the multiple ro-
tating wing style, where the UAV has from four to eight propellers. The simplest version, which
counts with just four rotors, is popularly called the quadrotor style, quadrotor UAV or simply
quadcopter (Figure 2.2). The four light motors hold the UAV in the air, providing the capability
of keeping the device statically in the air.

FIGURE 2.2: A quadrotor UAV, Parrot brand.

The quadricopters have special perks since their design allows them to take off and land in
a vertical manner, static flying capability, reduced dimensions and an interesting control mech-
anism. This last feature is better explained as follows:

The quadrotor UAV uses the pressure difference as uplift principle, which consists in the cre-
ation of a vertical force by an air flow and a counterturned torque around the UAV at the same
time. The combined action of the rotors allows the movement of the UAV and because it needs

10 Chapter 2. Hand Gesture Recognition

only four (rotor) inputs to control six individual outputs, this robot style is named a disengaged
controlled device.

The six individual outputs to be commanded allow this quadcopter model to be a Holonomic
Mobile Robot since it does not require a reconfiguration in order to follow a different direction,
i.e. the current movement direction may be changed immediate and independently, without
needing of any extra configuration adjustment beyond the specific one for the new desired di-
rection. Figure 2.3 shows the quadrotor UAV attitude axes.

FIGURE 2.3: Quadcopter attitude axes.

2.2 Hand Gesture Recognition Systems

If humans learn to express themselves through gestures prior than through words, does not
that make us more experienced using that channel? This question has addressed some research
efforts into the conjunction of real time system control and its commandment through gestures.
Being precise, such a system requires an interface, through which the natural human gestures
are translated into a tag that the control system understands. This translation is the primary job
of a Gesture Recognizer.

A Gesture Recognizer is a system that, making use of hardware and/or software, retrieves
an input (may be a video camera frame), pre-process it, and then analyzes the incoming infor-
mation in such a way that it is capable to deliver a class or label that corresponds to the recog-
nized gesture. The mechanism that allows this deliverance, labeling or categorization is normally
an algorithm. Of course, there are plenty of efforts in providing an algorithm that performs this
categorization as best as possible, however these proposals are affected by the circumstances of
the problem itself.

Depending on the application, the recognition task may have or not time constrains and
there must be a trade-off between the time it takes to recognize a certain pattern, and the rate

2.2. Hand Gesture Recognition Systems 11

of the retrieval device. These are very challenging jobs, and being more precise, this is the chal-
lenge that Real-Time Control Systems face when they incorporate Gesture Recognizers.

Initial recognizer proposals employed Image Processing tools in its early stages. In these
first experiences, the challenge was the usage of 2D models: Since the data is normally gathered
by a regular cameras, there was no information about the depth and therefore the the algo-
rithms performed taking into account only 2D models (Appearance based). The main problems
of this approach is the lack of some others features (like the one that the third dimension would
provide). This leaded to undesired limitations, such as the fact that the algorithms’ usage lied
right after the image processing, process which would not deliver information straight to the
algorithms and consequently did not perform as good as expected. In response to this, some
other model estimation variations were proposed. A good example of this is the one presented
by researchers in the Nara Institute of Science and Technology in Japan, who in 2001 published a
method to estimate the translation of hand 2D information into a 3D model using silhouettes[6].

Figure 2.4 plots in a general diagram, the interaction between the components in a real time
system controlled through a hand gesture recognizer. The HMI provides only the connection
between the user (and his hand gestures) and the controlled system and must be compliant with
the real time constrain, otherwise it could lead to a bottleneck that, even when the controller and
the process work in real time manner, would introduce undesired latency and therefore a delay.

FIGURE 2.4: Diagram of a Hand Gesture Recognizer used in a closed loop control
system .

In the pursuit of such a recognizer, an approach is to combine Supervised Learning Algo-
rithms with the HMI development field. Being the HMI natural born’s place the industry [7],
the HMI applications rapidly grew into more formal and documented examples[8]. Given the
fact that a decisive element of the HMI and the recognition process lays on the algorithm itself,
several techniques have been developed in order to address this problem on its own. This leads
us now to the next big topic: Hand Gesture Recognition.

12 Chapter 2. Hand Gesture Recognition

2.3 Hand Gesture Recognition

The hand gesture recognition problem has been handled traditionally, by conventional cameras
which look at the hand(s) from a front view. This is called the Appearance Based approach and
uses different algorithms in order to recognize the gesture. Even when they still have an ample
error range in the recognition task, it is still a popular research field. Example of this is shown
in [9], where the authors present an interesting study about the sign language recognition, em-
phasizing the usage of the three common approaches: Appearance based, Hand Shape and 3D
hand models.

The hardware usage is very creative and may vary in styles, for instance, in [10], the author
uses a regular stereo webcam to gather the information and then merge the images in order to
get a descriptive frame.

Another very interesting, although classical, approach is the creation of the model to be
recognized through fixed hardware: gloves full of sensors and gloves with markers on strategic
points of the hand [11], this is better expressed in Figure 2.5.

FIGURE 2.5: Examples of approaches: a) vision based b) data-glove based c) col-
ored glove

In [12], an assistive glove is made up by networked sensors which create specific data stream
accordingly to the current hand position. The low voltage signals are then provided to the soft-
ware system that decodes this information into recognizable words and generates a message.
In [13], the Cracow University of Technology developed a similar tool (although with much less
sensors). In this project, the sensed information is provided to a pre-processor and delivered to
three Machine Learning Classifiers.

2.3.1 Recognition Devices

With the introduction of hardware capable of providing more useful gesture information, in
lately years a new approach has been developed and reinforced: the 3D Hand Skeleton Model,
which is a subfield of the more general 3D model based [14]. The Skeleton Model basically
makes use of different techniques and sensors in order to calculate the hands’ depth informa-
tion. Some examples of hardware devices capable of providing this kind of model are binocular
cameras, Kinect and Leap Motion. Since their public availability, many researchers have been
attracted to their usage: In 2014, the University of Padova published an application and compar-
ison of the Kinect and Leap Motion devices for the same application[15]. Their results express
that both devices have good response despite their physical differences and in conjunction,
both of them can achieve a higher hand recognition accuracy. While in 2013 and 2014, Frank

2.3. Hand Gesture Recognition 13

Weichert conducted a series of experiments ([16], [17]) demonstrating the specific capabilities
of Leap Motion and Kinect.

Despite of the great perks that the Skeleton Model provides, the inclusion of the following
two facts, turns this approach into a very challenging process:

• The multiple hands’ degrees of freedom (DOF).

• The hand is an articulated deformable object.

Being the Leap Motion Controller a device which makes use of cameras that look from a
down-to-up view, it requires a different approach in order to recognize the gestures. Consid-
ering this, the Leap Motion has been used mainly for Computer interaction and for Desktop
software control. Since it is a recent device (launched in 2013), its development capabilities still
have plenty of room and with this, the recognition implementation tools is a very exploitable
field. In combination with this, the proposal of a hardware control makes the gesture recognizer
a very attracting and promising research sphere which is enhanced with the addition of a set of
effective and efficient recognition algorithms [18].

Nowadays, the Leap Motion APP Store counts with around 200 applications developed for
Windows and OS X ranking in categories such as games, virtual reality, desktop environment
manipulation, education, music, among some others [19]. This kind of tools attracts the atten-
tion of programmers all over the world who, inspired by its flexibility and open SDK write pro-
gramming codes for hobby, educational and research purposes. Up to now, to the best knowl-
edge of the author, there exist a couple of applications that making use of the Leap Motion, send
commands in order to control a quadcopter, nevertheless they don’t use a recognizer machine.
This leads to the unstable performance that the results show [20].

In this spirit, some other implementation tools have been developed, such as the MATLAB
Image Processing Toolbox or its conjunction with the OpenCV Library to implement recogniz-
ing systems, despite, they only use 2D images.

2.3.2 Other Tools and Applications

The majority of the tools used in Hand Gesture Recognition are the heritage algorithms of the
so-called Artificial Intelligence (better explained in Section 2).

The techniques for dynamic gestures recognition popularly are the Hidden Markov Model,
Dynamic Time Warping and Artificial Neural Networks, while for static postures the offer is
much larger: Kalman Filter based hand tracking, Condensation Algorithms (based in the prin-
ciple of Particle Filtering), Finite State Machine, Bayesian Methods, Support Vector Machine,
Time Delay Neural Network, among many others [14].

Proof of its wide application are for instance, the project published by the Nanjing Uni-
versity [21] in which, through the Hidden Markov Model, an incremental learning model is
implemented and a HCI is enabled. On its side, the NVIDIA corporation developed a recog-
nizer making use of Convolutional Neural Networks [22] in order to get a recognition accuracy

14 Chapter 2. Hand Gesture Recognition

of near 77%. In 2012, the Xian Jiaotong University published a project [23] in which through the
Adaboost algorithm, a system is capable to achieve a trustable gesture recognition.

Once the recognition of the gestures is achieved, the application boundaries is merely left
to the imagination limits. Proof of this are projects such as the one published by the Ruhr West
University [24], in which, through a Multi Layer Perceptron, a learning mechanism is trained
for automotive applications. Multimedia applications is also targeted and one attractive em-
ployment is the one generated by the Karlsruhe University [25], where the sound and music
control of an application is left on charge of an ANN based hand gesture recognizer.

Special attention to this field has attracted even the development of complete hardware-
SDK combos, such as the one introduced by Intel with Intel Real Sense SDK [26] which is an
integrated tool capable of hand/finger tracking, facial analysis, speech recognition, augmented
reality and background segmentation, and consists of a specific Intel camera and its SDK. De-
spite of its interesting capabilities, this tool is a closed-source software that works only with its
specific devices and runs only over Windows.

When it comes to robot manipulation, the hand gestures play also a substantial role and
although some of the developments have been targeted to trigger behaviours, the recognition
may be focused on the robot’s movement control. In 2012, the National Taiwan University
published a project [27] in which the actions of a service robot were handled by the recognition
of the person hand gestures; its task was mainly to provide the cared person with healthing
actions. On the other side, the Beijing Institute of Technology achieved to control a virtual robot
in 2014 [28] with Neurofuzzy techniques and a SVM classifier.

2.4 Pattern Recognition

We were born into a mistery, one that has haunted us since the very beginning of the human
memory. We awakened on this tiny world beneath a blanket of stars like an abandoned baby
left in a doorstep, without a note to explain where we came from, who we are or why the world
is the way it is. With no idea how to end our lack of knowledge, we had to figure it all out
for ourselves. Best thing we had going for us was our intelligence, specially our gift for find-
ing non-apparent clues in clusters of information, or deducting conclusions where there are not
straight rules. This is our pattern recognition skill, sharpened over eons of evolution. The first
humans who were good at spotting prey and predator, telling poisonous plants from the nour-
ishing ones, they had a better chance to live and reproduce, they survived and passed on those
genes for pattern recognition with its obvious advantages.

Across the planet, almost every culture looked at the same stars and found different figures
there, Figure 2.6 plots this idea. We can see how astonoshing our disorder perception and imag-
ination may be. In those early days, we used this gift for recognizing patterns in nature to read
the messages written in the stars, they told our forefathers and mothers when the migratory
rains and when the rains and the cold would come, or when they would cease for a time. When
they observed the right connection between the motions of the stars and the seasonal cycles
of life on Earth, they concluded, naturally, that what happens up there must be directed at us
down here. And it makes sense, isn’t it?

2.4. Pattern Recognition 15

FIGURE 2.6: A sample of the astrology across the mayan, egiptian and greek cul-
tures.

However, the human talent for pattern recognition is a two-edged sword. We are specially
good at finding patterns, even when they are not really there, something known as false pat-
tern recognition (Figure 2.7). We hunger for significance, for signs that our personal existence is
of special meaning to the universe, and this motivation has leaded us to discoveries of unde-
scriptible value. Let us recall for instance, those ages in which by looking at the stars, Edmond
Halley predicted the Halley commet return every 76 years. It is certainly true that our guest has
not let us down ever since.

FIGURE 2.7: The precolombian cultures shared the myth refering a rabbit in the
moon.

The easiness that we have in order to recognize the world (faces, voices or actions just to
mention some examples) is a proof of the astoundingly intricated processes that take place
when we need to recognize patterns. Even though, the knowledge about our cognitive process
is still small, we know that our pattern recognition is not a straight-forward process. Despite of
this lack of awareness, we have tried to transfer this ability to things over which we have power:
the machines. In general terms, the artificial pattern recognition feature is nowadays used by

16 Chapter 2. Hand Gesture Recognition

several technologies at very different levels of engagement; nonetheless there still exist some
challenging problems that are much more complex than others. This is the case of the voice and
visual pattern recognition (just to mention a couple them)[29], [30]; hence, Pattern Recognition
is a branch of Machine Learning (Section 2.5).

When it comes to visual patterns, the task implies the selection of specific features that the
image processing will focus on. The selection of these required features provides another degree
of complexity, since the determination of the right number of them (keeping the major number
of necessary features,ignoring redundant and irrelevant information), is another research field
called Feature Extraction and Selection. From this research field, we have learned that conforming
features of a model must be robust, relatively insensitive to noise and as most explanatory
as possible.

2.4.1 Recognition Process

The core of a Pattern Recognition process is executed mainly in the Classifier stage. This func-
tion is performed by certain algorithms, which making an analogy with the human process,
receive a certain amount of information without an apparent structure and deduces from it, a
hypothesis. The initial provided information is a set of features, the deduction process may im-
ply learning or not, and the obtained hypothesis is called the class. Due to this last step, these
algorithms are called Classifiers.

Although the classification task may be based on the structural relationships between vari-
ous features (Features aggregation), rather than the features themselves, this second approach
is the one that has gained popularity and may informally be explained as follows: the set of the
selected features will conform a model, which may be understood as a mathematical description
of the features.

The holly grail in pattern classification is to hypothesize the class number of data clusters,
process the sensed data to eliminate noise (not due to the models) and for any new sensed pat-
tern, choose the model that corresponds best. A comprehensive view of this process is shown
in Figure 2.8. Incoming data is perceived through a certain port, it may be a virtual Transducer
or a physical Sensor. It delivers a certain data model to a Preprocessor stage, which is responsi-
ble to adequate the raw data to a more suitable model taking care of not losing any important
information. Regularly, this second data model is transfered to a Segmentation proceeding. This
is a supporting step, responsible of isolating the information into more concise units, and al-
though is not mandatory for every classification system, it is of great help. Following step is to
distribute the data model to the Feature Extraction phase. This stage is critical, since the over-
all system performance is bonded to its proper fulfillment; in here, the most descriptive and
robust features of the data model are arranged into a structure suitable to the algorithm under-
standing. Last step is naturally the execution of the Classifier algorithm, over the features vector,
providing a final decision or class.

2.4. Pattern Recognition 17

FIGURE 2.8: A simple classification process.

The complete Pattern Recognition process may be listed, but not limited, into the following
steps:

1. Data Preprocessing.

2. Dimension Reduction and Feature Extraction.

3. Classification making use of Machine Learning algorithms.

4. Iterative algorithm Training and Testing.

5. Comparison across Classifiers and Feature Subsets.

While Data Preprocessing, Dimension Reduction and Feature Extraction are executed in
the same way that Figure 2.8 displayed, following phases are separated for good reason: Clas-
sification algorithms may be featured with a learning approach or not. Among the many differ-
ences between them, the underlying importance of the learning algorithms, is that their output
obeys to the way they are trained, whereas a non-learning classifier delivers an output based
on the way it is programmed.

The approach used in a learning classifier differs, since different classification techniques
are useful depending on different factors, such as the learning style (supervised or unsuper-
vised), feature selection (how many and what types of features they manage), or the type of
candidate models themselves. In general, the algorithms that obey to this behaviour belong to
the Machine Learning field and therefore they inherit the name and its tools. Most of the times,
it is desirable that the classifier provides a real-time response, however this may be difficult

18 Chapter 2. Hand Gesture Recognition

to achieve, since several experiments have shown that the decisions based on overly complex
models, often lead to lower accuracy and time response from the algorithm [31], [32].

As result of a learning classifier election, an iterative training and testing phase is required
over the algorithm. This is mandatory because the classifier performance lies explicitly in the
training procedure. Figure 2.9[33] shows the workflow of a supervised learning classifier imple-
mentation divided in four main steps: sample retrieval, configuration of the learning problem
and algorithm, learning phase and the traditional static evaluation. The samples retrieval phase
consists of the Training Dataset gathering in order to feed the following stage. Configuration
of the problem is where it is analyzed and some proposals are introduced, regularly as features
selections or creations followed by their employee in the elected algorithm (along with the al-
gorithms parameters tuning). Once a good proposal is retrieved, the algorithm gets trained the
consequent static evaluation consists of computing the algorithm over a test dataset, providing
decision or class. This output is analyzed commonly through binary confusion matrixes.

FIGURE 2.9: Workflow of a conventional pattern recognition implementation with
a supervised learning algorithm.

Finally, a certain algorithm may, or may not, be the best choice for the specific problem. This
is known by the study of the algorithm guidelines and through their performance comparisons;
therefore, a test comparison across classifiers is a very useful resource to count with. The same
applies when selecting the best features for the feature selection stage. They way the algorithms
answer to different features subsets is directly related to its recognition ability.

2.4.2 Gesture Recognition

Gesture Recognition is a remarkable subfield of the Pattern Recognition domain and its impor-
tance lies on the variety of applications that a human gesture and its interpretation may provide,
although this implies one of the main problems of this dilemma: generally there are many-to-one
mappings from meanings to gestures and vice versa; hence, gestures are ambiguous and incom-
pletely specified.

A simple and initial classification of human gestures splits them up in two categories: Static
and Dynamic:

• Static gestures are non-temporal body positions which express something.

• Dynamic gestures refer to a body movement with a related significance.

2.5. Machine Learning Fundamentals 19

Among both of them, the dynamic gestures recognition requires special attention due to its
necessary temporal segmentation. Dynamic gestures make use of specifications of the start and
end points in terms of the movements frames; dynamic frames are often tracked to generate
suitable recognitions. This problem is better known as “Gesture Spotting” and could be de-
scribed as the situation where, when the hand motion changes from each gesture to another, an
intermediate movement occurs and most of the times, this transitional movement is segmented
and matched with some referent pattern. This is obviously a disadvantage and needs to be
removed from the model to process. Hence, dynamic classifiers are much more complex than
static classifiers.

2.5 Machine Learning Fundamentals

Machine Learning is the field of study that according to Arthur Samuel “gives computers the
ability to learn without being explicitly programmed”[34]. Even when this definition provides
the reader with the spirit of what Machine Learning does, there is another (more formal) defi-
nition provided by Tom Mitchell: “A computer program is said to learn from experience E with
respect to some class of tasks T and performance measure P if its performance at tasks in T, as
measured by P, improves with experience E” [35].

Machine Learning is then, the subfield of the Computing Sciences that develops mechanisms
that adapt their actions so that these actions improve their accuracy, being that accuracy is de-
fined as a measure of how well the selected decision reflects the right decision. The Machine Learning
mechanisms are based in the making of a model, which is constructed from examples (experi-
ences). This step is called Training and it allows the model to deliver data-driven answers to a
certain task (in the On-line stage), instead of selecting explicitly a programmed sequence.

2.5.1 Preliminaries

In the simplest approach, a Machine Learning algorithm must be first trained with a training
dataset, tested with a test dataset and finally on-line executed with live data.

The nature of the datasets categorize the Learning style of the Machine Learning algorithm,
nonetheless, we can make use of a simple example in order to clarify some terms and expres-
sions:

• Feature, Attribute or Covariate xi: are characteristic properties to be measured of a certain
object. The feature value should be similar for objects in a particular class, and different
from the values for objects in another class; this is known as distance intra- and inter-class.
We can say, for instance, if the object to be classified are human persons, the features could
be weight, height, age and gender.

• Feature vector x: is the D-dimensional vector that contains the specific features for an
object. Taking the same example of the human, the feature vector for a certain person with
the features mentioned could be : [60kg, 160cm, 28years, male]. The Feature vector are

20 Chapter 2. Hand Gesture Recognition

the incoming data to the algorithm. For n features, its feature vector will be represented
by:

x = [x1, x2, ..., xn] (2.1)

• Class, Target, Label, or Category cj : It is the expected category or nominal value, depend-
ing on the desired output.

• Classes or targets vector c: will contain j available classes and is denoted by:

c = [c1, c2, ..., cm] (2.2)

The election of the number of features is an important step, since a bad choice could lead
the process to suffer what is called the Curse of Dimensionality. This is a term used to express the
problematic that arises when a high number of features is chosen. It is natural to wonder why
would we want to use many features?, and the reason is this: a Machine Learning algorithm re-
quires many features in order to describe and generalize the process sufficiently well. Since we
have already mentioned, the algorithms are fed mostly through the features, and if we aspire
to one that works fine, we would think that as long as we provide more features, its perfor-
mance will increase. And that is where the curse happens: as the number of input dimensions
(the features) gets larger, the algorithm needs more data samples to be able to generalize the
recognition. Most of the times, grabbing so many samples and handling a huge amount of data
is a remarkable problem. This problem is well explained in [36] and what matters the most,
is that the features amount should be selected in such a way that the algorithm has enough
information in order to do its job.

2.5.2 Types of Learning

Depending on the nature of the available data to a learning system, the Machine Learning tasks
are categorized mainly in the following categories:

• Supervised learning: The algorithm is trained with a set of data composed by the fea-
ture vector and the corresponding target class. Based on the training set, the algorithm
generalizes a model to categorize other possible inputs.

• Unsupervised learning: In this case, the training set does not provide target classes to
each feature vector, therefore the algorithm tries to identify patterns and similarities be-
tween the incoming samples in a way that the samples with similar features are catego-
rized under the same class. Its statistical approach is known as density estimation

• Reinforcement learning: This approach focuses on the output as a whole. For this algo-
rithms, what is important is a sequence of actions that together make up a good policy. A
sequence on its own is not right or wrong, but the policy (sequence of correct actions to
reach a goal) as a whole. It is somewhere between supervised and unsupervised learning:
The algorithm gets told when the answer is wrong, but does not get told how to correct it.
It has to explore and try out different possibilities until it works out how to get the answer
right.

• Evolutionary learning: This style is taken from the biological evolution ideas, in which
an organism gets adapted by improving their survival rates and chance of having descen-
dants in their environment.

2.5. Machine Learning Fundamentals 21

It can be said that Machine Learning is commonly used to solve the following two main
problems (among some others such as Segmentation, Clustering, Time series Prediction, Knowl-
edge Discovery, etc):

• Classification: This task delivers Discrete Outputs and may be understood as the task
where a recognition is required for a feature vector in such a way that the response may
take its time.

• Regression: This solution provides Continuous Outputs and is also known as Prediction.
It owes this name to the fact that the correspondence between feature vector and classes
must be performed continuously since the system requires a labeling each time frame.

Even when they are displayed as two different tasks, it becomes the same classification
problem: In the field, there have been several experiments that use continuous classification
algorithms in order to solve Prediction tasks, and although the algorithms may be diversified
in order to attend one or another problem, it is important to keep this difference in mind.

Therefore, this work makes use of a Classification approach, using Supervised Learning,
since the task is to recognize classes (or targets) and these algorithms have shown great advan-
tages and improved responses as for what real time concerns. In Section 2.5 these algorithms are
discussed in greater detail and why they are suitable to this system. Figure 2.10 shows the gen-
eral process of a supervised learning system, it is composed by two phases that happen offline
and online. The Offline Phase is called Training because it is where the algorithm develops a
notion model of the system accordingly to what it is taught through the examples. The learning
algorithm is fed with examples, known as the Training Dataset, and using diverse procedures,
it is able to deliver a model that expresses the relations and knowledge that could retrieve from
the examples. The delivered model is then used by the following phase, which happens to be
the Classifier itself. Its task is to receive the data that need a classification, and making use of
the model delivered by the learning algorithm, does its job i.e. makes a classification decision
over the incoming data and assigns a target class to the processed data.

22 Chapter 2. Hand Gesture Recognition

FIGURE 2.10: Supervised Learning.

2.5.3 Stages of the Machine Learning Process

The application of a supervised learning algorithm to a problem is depicted in Figure 2.11. As
it can be seen, it consists of two phases separated by the dataflow nature: in the offline process,
the algorithm is provided with a previously recorded Training Dataset obtaining a model of the
training data as result. Afterwards, this model is employed by the same classifier algorithm
in order to process the incoming data (the Feature Vector) and provide its recognized Class as
output.

2.5. Machine Learning Fundamentals 23

FIGURE 2.11: Overview of applying a Supervised Learning Algorithm to a Prob-
lem.

It becomes self evident then, that the choice of the specific learning algorithm is a critical step
that directly affects the performance of the classification. This problem is not uncommon and is
expressed by the No Free Lunch Theorem [37], by Wolpert and Macready in 1997, which relates
that there is no ideal solution to the classification problem. Therefore, the process of solving
a problem is: select an algorithm, apply it to a training set, evaluate it, correct if necessary and
then adopt it to for the occasion. This evaluation is most often based on its prediction accuracy,
however, since the elected algorithm will be a component of the HMI, a very important feature
will be its time response.

Training, Testing and Validating sets

Retaking the Figure 2.10, it is easy to see that the Training Data may be expressed by the vector:

X = [[x1, t1], [x2, t2], ..., [xM , tM]]T (2.3)

However, the unique real way to know how good an algorithm is to compare its classifi-
cations against known target classes, and this is how the training stage happens in Supervised
Learning. Therefore, in Supervised Learning two data sets are required (at least): the training
and the validation datasets. There is a third set, called the testing dataset, and its importance
lies in the need of knowing how well the algorithm generalized the classification task for the
samples that were not seen (or shown) in the training dataset. This test dataset will be used
only to decide how well the algorithm learned and not for modifying any weight or parameter.

Therefore, we could list the three datasets as:

24 Chapter 2. Hand Gesture Recognition

• Training Data: To actually train the algorithm.

• Testing Data: To keep track of how well it is doing as it learns (to check if the model might
be overtrained or undertrained)

• Validation Data: To generate the final result.

The Peaking Phenomenon

As it was expressed in 2.5.2, the learning algorithm deduces the model from the provided Train-
ing Dataset. The common sense would tell that if we provide as many examples as possible, the
algorithm would be trained at its best and therefore the model would be nearly perfect. This is
almost true but counterproductive and is known as Overtraining the algorithm, or Overfitting.
The negative effect of this may be understood by thinking that (besides of getting the curse of di-
mensionality) when the algorithm has too many examples, it learns exactly what those examples
are, and start to lose Generality. On the other side, if the algorithm is provided with very few
examples, the generated model could provide decisions that would not obey to a certain pattern
and it would not be so different from the decision provided by a coin toast; this is known as
Underfitting.

This notion may be seen easily in a two classes Classifier as Figure 2.12 shows. Suppose that
the algorithm is fed with Training Datasets that deliver two classes (the triangle and the circle
class). Since it would be a two-dimensional problem, a simple line marks the limit between the
classes. This limit is called the Decision Boundary and it is what mainly composes the model
delivered by the learning algorithm. Now, if the algorithm is fed with too many training data,
it will be overtrained and deliver the tight decision boundary shown in a). This boundary is
intrincated, generates a complicated mathematical expression and more importantly, it loses
generality in great manner: during the on-line process, is highly probable that an incoming
data would be mistakenly categorized if it is near to the training sample that is almost inside
the other class field. On the other side, if the algorithm does not receive enough training, it may
generate a very loose and simple boundary that simplifies the decision way too much. Finally,
the third example shows that even when a model is not either Over- or Underfitted, there could
be many decision boundaries. This is influenced by the training set and the way the algorithm
works.

FIGURE 2.12: The Peaking Problem.

2.5. Machine Learning Fundamentals 25

As a natural consequence, it is a trade-off between how much training samples the algorithm
requires in order to provide a generalized model, since the model will trust on the training sam-
ples (on the learning phase) and will decide based on how well it generalizes the classification
problem.

2.5.4 Validation Methods

Insight of what has been described it is required a measure that allows the selection of the best
way to proceed taking in account several factors such as the way the whole training dataset is
partitioned into the three subsets, the accuracy of the algorithm, the decision boundary form,
and of course, the response of the classifier for the system requirements where it will be used.

Test Sets and Errors

As explained earlier, three datasets are required in order to train and confirm if the algorithm is
working as expected. It is obvious that the three datasets should be the same nature, i.e. they
must have a feature vector and its corresponding class, and normally, having a great amount
of such samples is difficult. The way these sets are selected and splitted affects the way the
algorithm performs; normally this distribution election is up to the developer, however a good
proportion would be 50-60% for training, 25-20% for testing and 25-20% for validation.

We have talked about the error in a model, however we have not defined what an error
would be, so let us start on that way. An error in a classification will happen when the classifier
assigns a wrong target class to a certain input sample.

Even when this single term would be useful for most of the classifiers, there are some other
tool measures that provide better knowledge on how good a classifier is performing.

The Confusion Matrix

This chart is a tool developed for two-class classifiers (or binary classifiers). For the sake of
this implementation, it is required to extend its usage to multi-class classifiers, and in order to
understand the basis, the simple binary example is explained:

It consists of a square matrix made up by all the possible target classes. The top of the table
contains the predicted outputs (result of classification) and the rows hold the expected output
(real class). With this structure, the cell (i, j) contains the number of how many input patterns
for class i were in the training set, but were classified as j by the algorithm.

In the example shown in Table 2.1, it is easy to perceive that everything in the leading
diagonal is correct, while everything outside was miss-classified.

In the Section 4, these matrixes are modified in order to display the output for the multi-class
recognizers in percentage values and analyse the classifiers response in a more useful way.

26 Chapter 2. Hand Gesture Recognition

Real Class Output
Class 1 Class 2 Class 3

Class 1 8 1 0
Class 2 2 6 1
Class 3 1 2 5

TABLE 2.1: Example of a confusion matrix

2.6 Supervised Learning Algorithms

The offer of Supervised Learning Algorithms is immense and diverse. Fortunately to us, since
the emergence of this discipline, it has gained good attention and therefore several approaches
have been proposed. Since this work makes use of a combination of them, it is wise to take a
brief look to them. There is an voluminous literature covering the algorithms due to their pop-
ularity and extensive use and although most of them have additional subtleties and parameters
beyond the mentioned here, they will be discussed just in a simple overview. If further interest,
the reader is encouraged to consult [30] and [36] which are authorities in the topic along with
the related articles published every now and then.

2.6.1 Bayesian algorithms

The bayesian algorithms imply a whole kind of algorithms of the probability approach which
are based on the confidence that, beneath the training samples, there is a probability model. In
general, given a number of hypotheses (or a priori probabilities with the training examples) the
class assignation is performed turning them into a posteriori probabilities by selecting the hypoth-
esis with highest likelihood (or probability of being a certain class). This notion is expressed in
the Bayes Law (Equation 2.4) which express that the probability of likelihood of event A occur-
ring given the observation of event B. In the algorithms usage, P (A|B) would turn to be the
posteriori, P (B|A) the likelihood, P (A) the priori and P (B) the evidence.

P (A|B) =
P (B|A)P (A)

P (B)
(2.4)

Making use of the notation for the targets classes and the features vector, this Law would be
rewritten as:

P (cj |x) =
P (x|cj)P (cj)∑m
i=1 P (x|ci)P (ci)

(2.5)

and since x is a vector with n features:

P (x|cj)P (cj) =
n∏

i=1

P (xi|cj)P (cj) (2.6)

2.6. Supervised Learning Algorithms 27

Equation 2.5 predicts the likelihood of label cj given the observation of the feature vector x.

This approach requires that the features are independent conditionally to the targets and the
delivered model consists of boundaries determined by the probabilities density functions of the
classes, which are determined by the probability distributions of the samples. Afterwards the
probabilities density function, the class election depends on the class most similar to the input
sample.

The Adaptive Naive Bayes Classifier (ANBC) [38] is an algorithm based on the Bayes’ the-
ory which essentially works by fitting an N-dimensional Gaussian distribution to each class
during the training phase. The incoming data is labelled in the prediction phase by finding the
gesture that results in the maximum likelihood value (given the new sensor data and each of the
Gaussian distributions). Its implementation is convenient due to its prediction time complexity,
short computational training time and low variance, which makes it highly recommendable to
use in combination with some other classifier and approaches. This may be depicted in Figure
2.13

FIGURE 2.13: Example of the probability density functions for a three classes
Naive Bayes classifier, the class with greatest likelihood is selected as the output

class.

2.6.2 Decision Trees

It is a nonmetric approach that assigns classes using a top-down decision flowchart where each
step is divided generally with a if-else statement over the input features. It may be understood
as a decision graph that recursively partitions the dataset based on a certain feature. When
such an algorithm is trained, the model is made up by a tree architecture where each node’s
decision is structured by the training data, or better said each branching level is a feature-value
pair; with this, the lowest levels become the leaf nodes and are labelled with a class name; if a
smaller model is required, the non-desired leaves may be pruned away in order to have a simpler
and quicker model. This enables the option of express the model as a rule set or a decision tree.

28 Chapter 2. Hand Gesture Recognition

2.6.3 K-Nearest Neighbors

The K-Nearest Neighbors is an instance-based method which delivers a target class using a ma-
jority vote of the k nearest training examples. k is the primary parameter of this algorithm and
defines how smooth the categorization will be: if it takes less neighbors, the decision will be
taken without much knowledge. The decision boundary between classes is defined using the
Euclidean distance d (most of the times) which for an n-dimensional space and two vectors (a
and b) is computed as:

d(a,b) =
√

(a1 − b1)2 + (a2 − b2)2 + . . .+ (an − bn)2 =

√√√√ n∑
i=1

(ai − bi)2 (2.7)

This distance is measured from the received data to its k-neighbors, therefore it is composed
of sections of straight lines and it can be said that the algorithm does not provide a global model
but a local one built on the fly from the samples. Figure 2.14 displays the way it categorizes in
a two-Classes case, if K is selected as 4, the new information will be categorized as the three
closer neighbors say, on the other hand if K is larger, it will take in account more opinions from
the neighbors.

FIGURE 2.14: Example of a 2-Classes case, where KNN provides a different class
accordingly to the number of surrounding samples.

Its disadvantages could be named as: the large storage requirements, the sensibility to the
choice of the similarity function (for comparing instances) and the lack of a principled way to
choose k. This last problem may be better understood by taking a look to some scenarios where
the kNN could missclassify a sample: If a query input is located near to a noisy region, the noisy
instance could win the majority vote resulting in the incorrect classification (in this case a larger
k could avoid the problem); or if the class defining region is very small, instances belonging to
the surrounding classes to the small region could win the majority (a smaller k could solve this
problem).

2.6. Supervised Learning Algorithms 29

Its nature of instance-based provides an easy implementation since no training is required
given the fact that the learning model is retrieved directly from the raw data. Due to its lack of
training, it is also named as a Lazy Learning algorithm.

2.6.4 Minimum Distances

The Minimum Distances classifier is a simple algorithm which partitions the space into as many
disjoint decision regions as number of known target classes. The equation that generates its
decision boundaries is the Euclidean distance (Equation 2.7) between classes means. The pre-
diction is based on the computation of the closest mean to the incoming information through its
Euclidean distance. It may be easily depicted in a 2-Classes case, as Figure 2.15 shows, where
the decision boundary is defined by the focus to the hyperplane that is halfway between the
two means of each data group and is orthogonal to the line connecting them.

FIGURE 2.15: Example of a 2-Class Minimum Distances classifier.

As it can be seen, it is a very simple approach the one that it uses and enables a quick pre-
diction (compared to KNN) although its reliability lies on the simplicity of the application use,
the learning phase, and of course, the distance between the class data.

Some approaches use instead of the mean, a cluster principle that joins the training Samples.
This variation sets then the number of clusters as the single parameter of this algorithm.

2.6.5 Support Vector Machine

It is a Kernel Method that performs its classification based on the distance from the instance (to
be classified) until the hyperplane on a high-dimensional space.

This hyperplane transformation is called the Kernel trick and most of the times produces a
non-linear model. It allows to create a decision boundary in a high-dimension space when this

30 Chapter 2. Hand Gesture Recognition

boundary could not be possible in the features vector space. This idea is displayed in Figure
2.16.

FIGURE 2.16: Example of the kernel trick. Since the data is not linearly separable,
it is transformed to a higher space where it becomes separable.

The delivered model consists not of the hyperplane itself, but on the support vectors which
come to be some specific training samples. The training of the SVM implies a maximization
function responsible of finding the hyperplane with maximum margin making use of the sup-
port vectors, therefore the election of this kernel function impacts the computation time, since it
may be linear, polynomial and radial based among some others.

The Kernel function generates the kernel matrix (a.k.a. the Gram matrix) of the low-dimensional
space data, and are the milestone of this algorithm because they enable the hyperplane that gen-
erates the incoming data transformation into a high-dimensional space. The election of the Ker-
nel function affects enormously the classifier’s performance. Of course there is a wide offering
of Kernel functions and they range from the simple linear transformations until very intricated
mathematical models.

The Mercer’s theorem [39] says that any symmetric function positive definite can be used as
a kernel, as well as, it is possible to convolve kernels together in order to generate a resulting
kernel. As the reader may deduce, the offer is very wide, however there are three different basis
functions commonly used:

• Polynomials up to some degree s in the element xk of the feature vector x and target
vector t with a kernel of the Equation 2.8 type. For s = 1, a linear kernel is obtained.

K(x, t) = (1 + xT t)s (2.8)

• Sigmoid functions of the xks with parameters κ, δ and a kernel as Equation 2.9.

K(x, t) = tanh(κxT t− δ) (2.9)

2.6. Supervised Learning Algorithms 31

• Radial basis function expansions of the xks with parameter σ and kernel of Equation 2.10
type.

K(x, t) = exp(−(x− t)2

2σ2
) (2.10)

There is a large discussion about which kernel and parameters work the best, their election
is a very sensitive problem, and while there is a large theory towards this (based on a dis-
tance called the Vapnik-Chervonenkis dimension [40]), most researchers just experiment with
different values and find what works best for their application using the regular validation tech-
niques mentioned in Section 2.5.4.

The SVM are known because in comparison with other algorithms, they require longer time
to train for large-scale one-versus-many mode of recognition, and besides, they require a big
number of training samples per target class in order to ensure reasonable accuracy.

2.6.6 Hidden Markov Model

The HMM is a very popular classifier for temporal recognition applications since it executes
classification through feature matching at each moment. It provides time scale invariance and
keeps the gestures in time sequence. It is considered as a doubly stochastic process because is
made up of a not observable underlying stochastic process (hidden) and can only be observed
through a set of stochastic processes which produce the observations. This model may be repre-
sented by a set of finite states connected by transitions, where each state is characterized by the
state transition probabilities and the probability distribution of the observations it may reach,
as Figure 2.17 shows.

FIGURE 2.17: A representation of the HMM.

A disadvantage of this method is that the training process is time consuming and the selec-
tion of its topology structure is determined by the expert experience, i.e., trial and error method
used for number of invisible states and transfer states determination.

32 Chapter 2. Hand Gesture Recognition

2.6.7 Dynamic Time Warping

DTW, as HMM, is another very popular algorithm for motional classifications and is used in
simple tracking recognition through the difference between the dealt gestures and standard
gestures for feature matching at each moment. This algorithm generates the dynamic distance
between an input sample and the set of target classes in a computationally efficient manner
while copying with different speeds of motion hand gestures. Its best feature is that it calcu-
lates the similarity between two time series, even if their lengths do not match, as Figure 2.18
illustrates.

FIGURE 2.18: A graphical representation of how DTW obtains the distance in time
of two out-of-phase signals.

Even when it is a reliable algorithm, the computational costs are highly considerable to use
for real-time recognition, as every value in the cost matrix must be filled specially is a large
database of classes is used. It may be said that DTW is the simplified version of HMM.

2.6.8 Artificial Neural Networks

Developed around the 1990’s, the ANN are mathematical models inspired by the biological
brain. The most popular ANN is the multilayer perceptron which consists of a series of layers,
each layers is a computational node that produces an output according to the nonlinear acti-
vation function that is fed with the input of each node. Each computational node represents a
neuron and they are interconnected in such a way that across each layer, the information travels
along. The first layer receives the input features and the last layer delivers the output selection.
Such networks are greedily learned through each layer and data abstraction increases with level
of layers.

Its power resides in the fact that they are able to model complex nonlinear relationships be-
tween the input and outputs through a proper training, with this, a trained neural network
provides a compact model, allowing efficient computation of new samples. They are founded
to perform better than most conventional classifiers when the number of features increases
or when the classification becomes very complex or nonlinear, while on the counterpart, the
ANNs produce a black box model and hence cannot be mathematically interpreted as in other

2.6. Supervised Learning Algorithms 33

approaches like the statistical one. Some others examples of ANN are Hopfield and Back-
propagation.

2.6.9 Algorithms Comparison Chart

All these algorithms are considered traditional since they have been among the programmers
for certain decades and therefore have been widely studied. So, a qualitative comparison is
exposed in Tables 2.2 and 2.3.

34
C

hapter
2.

H
and

G
esture

R
ecognition

Algorithm Approach Advantages Limitations Accuracy
Complexity

(with the test set)
Regular

application

Bayesian
Classifier

Statistical.
Assumes an
underlying
probability

model.

Relatively inmune to
over-fitting due to

simplicity of the model.
Simple, efficient,

effective and robusty to
noisy data.

Assumpts features
independence which is

often violated in the
real world, not feasible

for many features
datasets.

Good.
O(Number of

attributes)
Static

classifier.

Decision
Tree

Nonmetric,
rules.

Easy to understand,
robust to noises, low
computational cost
even for very large
training datasets.

Over-fitting problem:
when the tree has many
levels and rules become
difficult to understand.

Medium.
O(Number of

Rules)
Static

classifier.

k-Nearest
Neighbors

Instance
based.

Easy to implement and
to understand, does not

require training.

Large storage
requirements, very

susceptible to
high-dimensional data.

Good
O(Nr of

examples*Nr of
attributes)

Static
classifier.

Minimum
Distances

Instance
based.

Easy to implement and
understand. Quick

response.

Susceptible to
high-dimensional data
and close features data.

Good.
O(Nr of

examples*Nr of
attributes).

Static
classifier.

SVM Kernel
method.

Provides a unique
solution, solves

nonlinear problem,
works even when

training samples are
biased, flexible

N-Dimensional input.

Depends on the choice
of the kernel, difficult to
design multi-class SVM
classifiers, requires big

number of training
samples per class.

Very
good.

O(Nr of support
vectors * Nr of

attributes), up to
the kernel
constant.

Static.
Possible

temporal im-
plementations

although
difficult.

TABLE 2.2: First part of a qualitative comparison of some Supervised Learning algorithms

2.6.
Supervised

Learning
A

lgorithm
s

35

Algorithm Approach Advantages Limitations Accuracy
Complexity

(with the test set)
Regular

application

HMM

Statistical.
Finite State

Machine with
double

stochastic
process.

Flexible N-Dimensional
input when appropiate

feature extraction is
used such as k-means,

moderated training
size, provides time

scale invariance and
keep gestures in time

sequence.

Requires a considerable
training time, topology
of the machine is up to

the expertise of
implementer, low
applicability for

unsegmented
recognition.

Very
Good.

O(Number of
hidden states2 *

Length of
sequence of

states)

Temporal
Dynamic
Classifier.

DTW

Based on
distance

comparison of
two time

series.

Flexible N-Dimensional
input, low training size,

high applicability for
pre-segmented and

unsegmented
recognition, provides a

distance measure
insensitive to local
compression and
stretches, and a
warping which

optimally deforms one
input serie onto the

other.

Carefully specification
of the approximation

levels used in the
alignment, problems
when indexing large
time series databases,
not suitable for long

time series.

Very
Good.

O(Number of
examples2)

Temporal
Dynamic
Classifier.

Neural
Network

Biologic
inspired cells.

Well-generalizing
capability, can solve

dynamic or nonlinear
problem.

The learned model is
unable to be interpreted

(black box), high
complexity.

Very
Good.

Depends on the
architecture and

number of layers.

Static and
temporal
dynamic
classifier.

TABLE 2.3: Second part of a qualitative comparison of some Supervised Learning algorithms

36 Chapter 2. Hand Gesture Recognition

2.6.10 Ensemble Methods

Ensemble learning takes a different approach in comparison with the aforementioned algo-
rithms. Rather than finding the best hypothesis to classify the incoming data, they construct
a set of hypotheses (called a committee or ensemble) Afterwards, those hypotheses are voted in
some fashion to predict the class of new data points. Experimental evidence has shown that en-
semble methods are often much more accurate than any single hypothesis since the ensemble
of approaches can reduce both the bias and the variance of the compounding algorithms [41]
and work pretty well even when there is very little data as well when there is too much [36].

It is said that the ensemble methods are in reality a meta-algorithm that under a certain heuris-
tic, joins classification algorithms in the pursuit of variety. These meta-algorithms are then made
up by multiple classifiers (known as base learners) to obtain a better predictive performance
than could otherwise be obtained from any of the constituent classifiers [42]. It is desirable
that the compounding algorithms perform their classification under different approaches and
techniques in order to assure predictions from the diverse perspectives that the base learners
provide.

2.7 Tested Algorithms

As result of the analysis and comparisons depicted in this Chapter, six supervised learning
algorithms were tested in total: two dynamic and four static classifiers (final election of the
static type above the dynamic approach is better explained in Section 4.1). Since this project
makes use of an Ensemble approach, two algorithms were selected to become the base learn-
ers. This election and testing phase was required, because as expressed in Section 2.4.1, the
Pattern Recognition system development requires an iterative process in order to assure the
best performance and approach that each algorithm’s perspective offers.

The tested algorithms were selected due to the different vision they employ, along with their
diverse operative guidelines and characteristics displayed in Table 2.2, for the static type, and
Table 2.3 for the temporal classifiers.

The gestures to be recognized are both static and dynamic, hence an initial proposal in-
cluded the implementation of temporal classifiers as base learners. Based on the computational
complexity that HMM and DTW count with, over the Neural Networks, along with the fact that
the generated model is readable, these algorithms were first trained and tested. This implemen-
tation was discouraged due to reasons explained in Section 4.1 and followed by the insertion of
static classifiers instead.

From Table 2.2, four static classifiers were elected:

• Adaptative Naive Bayes Classifier (ANBC).

• Minimim Distances (MinDist).

• Support Vector Machines (SVM), linear kernel.

2.7. Tested Algorithms 37

• K-Nearest Neighboors (KNN).

Although these classifiers were originally designed for static classification purposes, this
project makes use of them for the recognition of temporal gestures too. This is enabled by the
generation of a specific Feature Vector and a temporal approach (to be depicted in Section 3.2.3).

Despite the perks that the Decision Tree algorithms show in regards of the current low num-
ber of target classes, they were not tested due to the nature of the feature vector: the temporal
approach discouraged the generation of fixed rules.

Section 3.2.4 talks about the elected algorithms, whereas Section 4 backs up their election.

39

Chapter 3

Hand Gesture Recognition System for
UAV Control

This Chapter contains the explanation of the implemented system. As start point, the archi-
tecture of the project is presented, the hardware components are mentioned and the system is
subdivided in two main subsystems. Following section contains the description of the subsys-
tem responsible of the static and dynamic hand gestures recognition and its translation into
suitable tags; this subsystem is called Hand Gesture Recognition and holds the ensembled su-
pervised learning meta-algorithm: It is the core mechanism of the system. Upcoming section
holds the description of the Unammend Aerial Vehicle (UAV) control subsystem and contains
an explanation of an Unmanned Aerial System (UAS) requirements. Last but not least, section
3.4 vcontains the implementation details of this system, by introducing the Robotic Operating
System (ROS) as the platform where this project is developed, the initial architecture is now
translated to ROS terminology and their elements are displayed in a graphical and understand-
able way. The Gazebo software is the simulator where the UAV behaviour is emulated, and
therefore, a screenshot of its environment is presented.

3.1 Architecture of the System

A first approximation to the complete system is contained in Figure 3.1. A person is responsible
of generating hand gestures having in mind the UAV movement. Retrieval from the gestures
information is made through the Leap Motion controller, which delivers a Skeleton Model to
the Laptop computer. The Leap Motion data gets processed, the gesture is recognized and af-
terwards, the recognized class is sent to an UAV Control module; this one sends the appropriate
information to the UAV’s computer(Erle Brain 2) through WiFi in the MavLink protocol. The
Erle Brain board internally process the incoming information with support of the ArduPilot-
Mega(APM) software (the autopilot) and modifies the UAV behaviour. In a parallel process, the
UAV Control module delivers the same information to a software executed in the same Laptop
which acts as a Ground Control Station.

40 Chapter 3. Hand Gesture Recognition System for UAV Control

FIGURE 3.1: A logic view of the system.

Taking the Figure 3.1 as starting point, two subsystems are extracted: the Hand Gesture
Recognizer and the UAV Control subsystems, both of them explained as follows.

3.2 Gesture Recognition subsystem

The Gesture Recognizer subsystem is displayed in Figure 3.2 and is the responsible of turning
the hand gestures into target classes that are processed by the UAV Control stage. This subsystem
is made up by two stages: The Leap Motion and the Hand Gesture Recognition. The first one
is in charge of receiving the Hand gestures and with the transducer function provided by the
Leap Motion controller, a Skeleton Model is obtained in form of Frames. This data is supplied to
a following stage where the data is filtered and processed in order to retrieve an appropriated
Features Vector. Following stage receives this Vector supplying the data to the Base Learners
(BL) which execute their recognition in a parallel form (in threads) and deliver their recognized
hypothesis to the Hypothesis Vector. This Vector is fed to the selection algorithm which plays
a stabilization and selection function and is the last responsible of delivering a final Recognized
Class to the following phase (the UAV Control subsystem). The Hand Gesture Recognition stage
is where the Ensemble learning approach happens, due to the integration of the Base Learners,
which use their own approach to emit their hypothesis; Section 3.2.4 explains in detail the indi-
vidual components.

3.2. Gesture Recognition subsystem 41

FIGURE 3.2: Gesture recognizer subsystem architecture.

3.2.1 The Leap Motion Controller

With the development of new hardware alternatives for data retrieval (a.k.a. sensors) the offer
of optical 3D sensors has widened [15]. This brings the opportunity to experiment with devices
such as the Leap Motion controller, shown in Figure 3.3.

FIGURE 3.3: Leap Motion controller, cover removed

This device (released back in 2013 [43]) has gained popularity since it promises an accurate
interaction between the user and a regular computer, however with the release of its Software
Development Kit (SDK) and the effort of excited developers, the Leap Motion controller may
be used not as a controller itself, but as a transducer or sensor that feeds an application, which
performs something. As a matter of fact, the device shown in Figure 3.3 executes only a very
small amount of data computing, leaving the real expensive image processing to the computer.

The Leap Motion controller consists of a pair of Infrared Light (IR) cameras and three IR leds
which project an IR pattern in order to generate an image of predefined objects such as hands
and pointy tools with depth information. Hence, the device may be categorized as a tracking
system based on the Stereo Vision principle. This is one of the three principles of measurement
for optical 3D sensors: structured light, time of flight and stereo vision; and consists of two
optical 2D cameras with known extrinsic parameters[16]. It determines the depth of the objects
in the scene based on the search of the points correspondence between captures in both images.

42 Chapter 3. Hand Gesture Recognition System for UAV Control

This information is then used in the optical tracking system in such a way that the position of
predefined markers (such as fingers or tools) in the Cartesian space of the viewed scene are
detected.

The information that Leap Motion delivers is the hand Skeleton model it sees in form of
Frames. The Skeleton model consists of objects (like fingers or tools) positions relative to the
Leap Motion controller’s origin point [17]. The origin point is located at the center of the top
surface device; Figure 3.4 shows the coordinate system, the axes and directions as well as the
correspondence it generates with an XY plane (for a computer screen mapping).

FIGURE 3.4: Leap Motion coordinate system and its correspondence with a screen.

The Frames are data structures that hold the hand skeleton model information and are gen-
erated accordingly to the current frame rate. They may be understood as snapshots of the hand
skeleton at the time the frame was captured. The frame rate fluctuates depending on the avail-
able computing resources, activity within the device field of view, software tracking settings,
and other factors, and therefore can not be precisely determined or adjusted. In Object Oriented
Programming terminology, the frames are objects containing all the tracked information regard-
ing hands, fingers and tools within the Leap Motion field of view, therefore a posterior data
processing is required to provide the algorithms with a suitable Feature Vector.

3.2.2 Data Filters

It is necessary to implement filters for the data across the frames because Leap Motion loses,
from time to time, certain frames or even displays completely incorrect information between
consequent frames. This leaded to data that show an facing-down hand in one frame, followed
by a facing-up hand or even worst.

3.2. Gesture Recognition subsystem 43

This undesired behavior was corrected by implementing filters with the pattern of Equation
3.1:

filteredV alue = filteredV alue+ decay ∗ (value− filteredV alue) (3.1)

Where decay is a factor that sets the permission to modify the current filtered value with the
incoming data (value).

This filter was implemented for all the features, although it was specially necessary for the
Z position data. It is known in the Leap Motion developers community that the Z direction is
not very accurate and therefore, the emphasis of the filter for this coordinate direction [44].

Although Leap Motion is able to provide much more information than the first six shown
features, their use was tested and finally neglected due to the risk of falling into the peaking
phenomenon discussed earlier (Section 2.5.3).

3.2.3 The Feature Vector

.
The Frame contains the information required to constitute the feature vector x (Equation

2.1, Section 2.5.1) to be used by the base learners.

As mentioned earlier, the conformation of the feature vector x is highly important due to its
impact in the algorithm performance, therefore, the right choice of the compounding features xi
was determined after a series of exhausting tests (to be explained in Chapter 4). The full feature
vector x is

x = [x1, x2, ..., xi, ..., x14] (3.2)

where the features xi are:

• x1: Palm center X coordinate Palmx.

• x2: Palm center Y coordinate Palmy.

• x3: Palm center Z coordinate Palmz ..

• x4: Thumb tip X coordinate Thumbx.

• x5: Thumb tip Y coordinate Thumby.

• x6: Thumb tip Z coordinate Thumbz .

• x7: Vector of Change.

• x8: Palm center Delta X coordinate Palm∆x.

• x9: Palm center Delta Y coordinate Palm∆y.

• x10: Palm center Delta Z coordinate Palm∆z .

• x11: Thumb tip Delta X coordinate Thumb∆x.

44 Chapter 3. Hand Gesture Recognition System for UAV Control

• x12: Thumb tip Delta Y coordinate Thumb∆y.

• x13: Thumb tip Delta Z coordinate Thumb∆z .

• x14: Delta yaw angle ∆Y aw.

For auxiliary purposes in the selection algorithm, the fist presence and number of fingers were
calculated as well.

Among the fourteen features xi, only x1 : x6 were retrieved directly from each frame, while
features x7 : x14 were generated by programming calculations using a so-called temporal ap-
proach. The temporal approach consists of the determination of the Delta values for each point
of interest (the palm center and thumb tip in this case) and resembles a footprint across a certain
number of k frames.

Figure 3.5 expresses this idea, when the hand is located in an initial position, a Frame 0 is
collected (containing the x, y, z position data for Palm0 and Thumb0, and the rotation angle for
Y aw0). When the hand is displaced from this initial configuration to a posterior position (i.e.
the hand performed a dynamic gesture), an array of size k gathers the same raw information
across frames, resembling a buffer.

FIGURE 3.5: Difference across Frames

The delta values (∆) are obtained as their difference across k frames. This principle is used
for position and angle values. In the case of the palm delta position values (x8 : x10), the stored
array allows to calculate the difference between the initial and the Kth position vectors (Palm 0
to Palm K), which is displayed in Figure 3.6.

3.2. Gesture Recognition subsystem 45

FIGURE 3.6: Palm Delta vector (∆ Palm).

The Equation 3.3 shows this principle with the Palm ∆x coordinate calculation (feature x8).

∆x = x0 − xk (3.3)

The previous frame number k is set to 10 in this system, although it may be changed to some
other number. This means that the delta values are calculated from the difference between the
current position and the position across the last ten frames.

Back to the full feature vector x, and for clarification purposes, each feature xi is described
as follows:

• x1 : x : 3: Palm X, Y, Z coordinates. Correspond to the location of the palm center
calculated by the Leap Motion driver. It is displayed in Figure 3.7.

46 Chapter 3. Hand Gesture Recognition System for UAV Control

FIGURE 3.7: Leap Motion Palm Vectors

• x4 : x : 6: Thumb X, Y, Z coordinates. Likewise, these coordinates correspond to the
location of the thumb finger tip, shown in Figure 3.8.

FIGURE 3.8: Leap Motion Finger Vectors

• x7: Vector of Change. This feature is a composed attribute and reflects the coordinate where
the major difference was observed. It assigns a label that corresponds to the following
rule:

– 1 if Major Change is in the +X axis.

– 2 if Major Change is in the -X axis.

– 3 if Major Change is in the +Y axis.

– 4 if Major Change is in the -Y axis.

– 5 if Major Change is in the +Z axis.

– 6 if Major Change is in the -Z axis.

– 7 if Major Change is in the positive Yaw angle direction.

– 8 if Major Change is in the negative Yaw angle direction.

where Major Change is the greatest position (or angle) difference between the initial and
the kth value.

• x8 : x : 10: Palm Delta X, Y, Z position. These Features are calculated based on the X, Y
or Z position difference between the current and the kth previous frame .

• x11 : x : 13:Thumb Delta X, Y, Z position. Similarly to the Palm Delta X, Y, Z position,
these differences are calculated based on the Thumb tip positions across kth frames.

• x14:Delta Yaw Angle. Likewise Palm and Thumb Delta, the hand yaw angle difference
is calculated from the current to the last kth frame. The regular yaw angle of the hand
movement is the one around the palm center as Figure 3.9 shows.

3.2. Gesture Recognition subsystem 47

FIGURE 3.9: Hand angular movements.

The previously explained temporal approach is the mechanism that allows the usage of
Static classifiers into the current Dynamic gestures classification. Without it, the implemen-
tation of the static algorithms would be impossible and it would be required to make use of
the temporal algorithms (such as HMM, DTW or Neural Networks), which as mentioned in
the comparison charts 2.2 and 2.3, require much more computation time, bigger training data,
among some other special considerations. The implementation of the composed features en-
abled the option to work with these humble tools.

3.2.4 Classification

This stage is made up by two base and parallel classifiers which deliver their hypothesis to a
stabilizer module that according to a predefined logic, delivers a recognized command. Taking
as starting point the Figure 3.2, the diagram in Figure 3.10 becomes a more explicit resource.

48 Chapter 3. Hand Gesture Recognition System for UAV Control

FIGURE 3.10: Hand Gesture Recognizer node.

It all begins with the feature vector retrieved by the previous stage. As mentioned earlier
(Section 2.5.3), every classification problem and tool require specific treatment and details at-
tention. In this case, each classifier requires its own sub feature vector, each one called Feature
Vector 1 and 2. In the same way, each classifier counts with its own Training Data set which
generates an independent knowledge model.

Everytime the system is started it may, either load the knowledge model, or load the train-
ing data and train itself according to its own parameters. When the classifiers are trained, they
are able to receive their own feature vector, which is specially splitted by a previous divider.
Since the classifiers run in independent threads, they receive their features vectors and provide
their hypothesis target classes to the stabilizer.

3.2.5 Base Learners

The classifiers used as base learners are the Adaptive Naive Bayes Classifier (ANBC) and the
Support Vectors Machine (SVM) based on the results displayed in Section 4. Since they have
been already explained in Section 2.6, their working principles are not covered here. Once
the hypothesis are provided, the stabilizer ponders the recognized command across ten votes
and through the media calculation delivers the final command, which comes to be one of the
predefined target classes cj (equation 2.2). Therefore, the full classes vector c is

3.3. UAV Control Subsystem 49

c = [c0, c1, ..., cj , ..., c13] (3.4)

where each target class cj is shown in Table 3.1 accordingly to the hand movement described.

Target
class
cj

Gesture
description

Illustration
Target
class
cj

Gesture
description

Illustration

1 Fist 8
Front

movement

2
Number

one
9

Back
movement

4
Number

two
10

Right
movement

3
Number

three
11

Left
movement

5
Number

four
12

Hand right
rotation

6
Up

movement
13

Hand left
rotation

7
Down

movement

TABLE 3.1: Relation between target class cj and the redognized hand gestures.

While c1 : c5 are made up by static and fixed hand positions, c6 : c13require an extended
and separated fingers hand to generate the described movements (dynamic gestures).

Although it is not expressed in the Table 3.1, the classifiers provide a zero as hypothesis if
the gesture was not recognized. If several gestures are not recognized, the stabilizer algorithm
delivers 0 as the recognized command.

3.3 UAV Control Subsystem

This subsystem is responsible for turning the target classes (recognized from the previous stage)
into commands that modify the UAV behaviour. Figure 3.11 provides an overall scheme of the
elements that play a role.

50 Chapter 3. Hand Gesture Recognition System for UAV Control

FIGURE 3.11: UAV Control Architecture.

In this stage, the recognized target class is assigned to a certain UAV behaviour according
to Table 3.2. The recognized class (or recognized command) is retrieved by the Drone management
node. This software is responsible for establishing communication with the mavros node (through
topic or services depending on the command), checking the UAV status, requesting services to
mavros and translating the recognized commands into understandable orders for the UAV move-
ment.

Target
class cj

Gesture description UAV behavior

1 Fist Set to Brake mode
2 Number one Turn on (Arm UAV)
4 Number two Take off
3 Number three Land
5 Number four Return to launch
6 Up movement Increase throttle
7 Down movement Decrease throttle
8 Front movement Increase Pitch
9 Back movement Decrease Pitch

10 Right movement Increase Roll
11 Left movement Decrease Roll
12 Hand right rotation Increase Yaw
13 Hand left rotation Decrease Yaw

TABLE 3.2: Relation between target class cj , hand movements and UAV be-
haviour.

On its side, the mavros node is the direct gate to the APM manipulation. Since APM handles

3.3. UAV Control Subsystem 51

the MAVLink protocol (Micro Air Vehicle Communication Protocol, a specialized communica-
tion protocol for micro vehicles [45]), mavros receives the messages and services requests from the
management node and translates them into MAVLink for its interpretation in the APM soft-
ware.

Due to safety reasons, it was established that if the previous stage does not provide a recog-
nized target class (delivers a class 0), the command is set to Brake mode.

3.3.1 UAS Elements

As explained in Section 2.1.2, an Unmanned Aerial System (UAS) is comprised of not just the
UAV. However, it is important to talk about these elements. The UAV’s computer is the board
named Erle Brain 2[46] and is mounted directly on the back of the copter, shown in Figure 3.12.
It is an open hardware and Linux based controller interface and consists of a BeagleBone Black
Board and a PixHawk Fire Cape (PXF). It holds a Linux Operating System, Debian image, which
enables the ROS interface and holds the execution of the ArduPilotMega (APM) software: the
UAV controller. The APM [47] is an open-source project focused in the mobile robots control
and is the platform for independent robot enthusiasts. APM is at the same time, a Dronecode
Software Platform[48] member, a Linux Foundation project.

FIGURE 3.12: Erle Brain 2 and Erle Copter.

The same Figure shows on the right the elected UAV: the Erle Copter, a DIY quadcopter that
requires a full parameter tuning and calibration, which is very time consuming for a novice.

The Ground Control Station (GCS) stablishes communication with the UAV through MAVLink
and is the platform that provides a general status of the UAV. It is able to retrieve and mod-
ify parameters as well as setting some isolated features. For the UAV tuning and calibration,
Mission Planner[49] is the used GCS, while for the system execution, APM Planner[47] and
MavProxy[50] are the tools to keep track of the UAV and monitor its status.

52 Chapter 3. Hand Gesture Recognition System for UAV Control

3.4 Implementation

Section 3.3 contains the architecture of the UAV Control subsystem and a presentation of the
elements that conform an UAS. Taking these resources as springboard, current section contains
a brief introduction to the Robotic Operating System, presents the software particles (called nodes)
developed under this framework to enable the UAV Control, and finally, renders the simulation
details.

3.4.1 The Robotic Operating System (ROS)

The system is developed on top of the Robotic Operating System[51] (ROS), a member of the
Open Source Robotics Foundation[52] (OSRF). Being strict, ROS is not an Operating System
itself, but a framework made up by tools, libraries and conventions that aim to unify the cre-
ation of software robotics related. It is an open source project born in the Stanford University in
2008 and has gained researchers and industry attentions since then, becoming nowadays the de
facto robotics standard. As its wiki page[53] mentions, “ROS is an open-source, meta-operating
system for your robot” that works alongside a Linux Operating System. This project runs ROS
over Ubuntu 14.04 LTS.

One of ROS’s main capabilities lies in the Distributed Computation that it supports. ROS soft-
ware components are called nodes and its guiding design rule is that each one works indepen-
dently and holds a single but general capability. There are two mechanisms that the nodes may
use when they need to communicate: messages and services. Messages are enabled through a
topic channel, while services are performed through direct communication between the nodes
with the server/client model. The election of whether to use messages or services between
nodes, resides on the feedback: while the service request always waits until a service response
is received, the messages publication to the topic never receives a notification or feedback.

3.4.2 ROS Nodes

The project runs on top of the ROS platform and as expected, the subsystems presented in
Figure 3.1 are translated into ROS terms (nodes, topics and services) and displayed in Figure
3.13.

3.4. Implementation 53

FIGURE 3.13: Interaction between ROS nodes.

The system runs in two platforms: the laptop where the gesture recognition is achieved,
and the board over which the APM software runs; each one holds nodes with specific func-
tions. Since it is a distributed system, all the nodes need to register with the ROS MASTER,
which holds the complete system communication and integration. This is executed on the Erle
Brain due to safety reasons, being the fact that it holds the node (mavros) that stablish the direct
communication with the APM.

Besides the platforms, the system counts with two external hardware components, the Leap
Motion controller and the Remote Controller (for the UAV), which establishes communication
to the UAV through the mavros node as well.

The complete system is then made up by three topics and services requests among the nodes:

1. Leap Motion Feature Vector: Receives the Leap Motion skeleton model data and gener-
ates the feature vector message to be published in the Feature Vector topic.

2. Hand Gesture Recognizer: Contains the Machine Learning algorithms, is subscribed to
the Feature Vector topic, and everytime it process an incoming message, it publishes the
recognized class in the Recognized Command topic.

3. Drone Management: Provides the UAV management and translation from classes into
APM commands. It is subscribed to the Recognized Command topic and everytime it
receives an incoming message, it verifies the current status and if it is safe and valid,
publishes the correspondent command in the “Mavros RC Override” topic. It is also a
client to the services offered by the Mavros node when it is necessary.

54 Chapter 3. Hand Gesture Recognition System for UAV Control

4. Mavros: This node owes its name to its main function. It translates into the MAVLink
protocol the incoming messages it receives and sends them directly to ArduCopter (APM).

As mentioned, there are occasions where Drone Management requests services to Mavros.
These services are:

• cmd ~arming

• cmd ~takeoff

• set mode

Therefore, the interaction between Drone Management and Mavros is as follows: Services
are required in the event of commands 1 to 5, and messages are generated for commands 6 to
13 according to Table 3.2.

The Hand Gesture Recognizer node and Drone Management node are configured as critical,
whereas Leap Motion Feature Vector node is only required. This means that if the Leap Motion
node fails for whatever reason, it will reinitialize without further problem. But if a critical node
is killed, then the laptops executing nodes close and leaves the UAV command to the physical
Remote Control. This is one of the perks of having a decoupled system such as ROS.

Figure 3.14 displays the all the nodes and topics. It consists of two namespaces which are
mechanisms to group nodes belonging to a same category; in this case, the namespaces are
hgr4dc_ns and mavros. hgr4dc_ns contains the nodes for the hand gesture recognition and the
drone management, while the mavros namespace gathers the mavros node and the topics it
regulates.

3.4. Implementation 55

FIGURE 3.14: Graph with nodes and topics used in the recognition phase and the
consequent UAV control.

3.4.3 System Pseudocodes

Once the two compounding subsystems (Hand Gesture Recognition and UAV Control) have
been explained and the ROS terminology introduced, a pseudocode of them may be expressed.
Algorithm 1 contains the Feature Vector node working principle, Algorithm 2 shows the Ges-
ture Recognition subsystem and Algorithm 5 manifest the UAV control in pseudocode termi-
nology.

As mentioned in Section 3.4.2, the interaction between the nodes and subsystems is regu-
lated by the ROS Master, who is also responsible for bringing them to life and/or killing them.

56 Chapter 3. Hand Gesture Recognition System for UAV Control

input : Leap Motion Frames
output: Feature vectors x = [x1, x2, ..., xn]

initialization ;
Leap Motion controller creation;
while This node is alive do

if controller is connected to the service then
read current Frame;
refresh the latest 10 Frames buffer;
filter noise;
update hand confidence, strength, radius and finger positions with the filtered
data;

generate the clean hand data;
if updated hand information is valid then

calculate deltaValues across the latest 10 Frames;
generate FVectorMessage;
if deltaValues are within the range then

generate VectorOfChange;
detect fist or extendedHand;
FVectorMessage.yaw = hand.yawAngle;
FVectorMessage.palmX = hand.palmX;
FVectorMessage.palmY = hand.palmY;
FVectorMessage.palmZ = hand.palmZ;
FVectorMessage.thumbX = hand.thumbX;
FVectorMessage.thumbY = hand.thumbY;
FVectorMessage.thumbZ = hand.thumbZ;
FVectorMessage.vectorOfChange = VectorOfChange;
FVectorMessage.palmDeltaX = deltaValues.palm.x;
FVectorMessage.palmDeltaY = deltaValues.palm.y;
FVectorMessage.palmDeltaZ = deltaValues.palm.z;
FVectorMessage.thumbDeltaX = deltaValues.thumb.x;
FVectorMessage.thumbDeltaY = deltaValues.thumb.y;
FVectorMessage.thumbDeltaZ = deltaValues.thumb.z;
FVectorMessage.isFist = fist or extendedHand;

else
FVectorMessage = latest FVectorMessage sent;

end
publish the FVectorMessage on topic feature_vector_tp;

end
else

print message No LM found;
kill this node;

end
end

Algorithm 1: Feature extraction node pseudocode.

3.4. Implementation 57

input : Training data X = [[x1, t1], [x2, t2], ..., [xM , tM]]T and feature vectors
x = [x1, x2, ..., xn]

output: Target class cj

initialize baseLearner1 and baseLearner2 objects ;
assign baseLearner1 and baseLearner2 objects to threads;
load Training Data for baseLearner1 and baseLearner2;
train baseLearner1 and baseLearner2;
while This node is alive do

if baseLearner1.trained and baseLearner2.trained then
generate RecognizedCommandMessage;
if new FVectorMessage is published on topic feature_vector_tp then

create featureVector1 and featureVector2;
hypothesis1=baseLearner1.recognize(featureVector1);
hypothesis2=baseLearner2.recognize(featureVector2);
if hypothesis1.type=dynamic and hypothesis2.type=dynamic then

recognizedGesture=stabilize(filter(hypothesis1, hypothesis2));
recognizedGesture.type=dynamic;

else
recognizedGesture=staticRecognition(featureVector1,featureVector2);
recognizedGesture.type=static;

end
RecognizedCommandMessage=recognizedGesture;

end
publish the RecognizedCommandMessage on topic recognized_command_tp;

end
end

Algorithm 2: Hand gesture recognition subsystem pseudocode.

input : Training data X = [[x1, t1], [x2, t2], ..., [xM , tM]]T and feature vectors
x = [x1, x2, ..., xn]

output: Target class cj

recover the training data set and complete initialization;
turn 20% of the data set into Test set and 80% in Training data;
convert the training data into a frequency table;
create a likelihood chart by finding the probabilities of the feature vectors and the
corresponding classes;

Training: use Bayesian equation to calculate the posterior probability for each class in the
training data:;
P (x|cj)P (cj) =

∏n
i=1 P (xi|cj)P (cj);

while This object is alive do
Calculate the posterior probability of the incoming feature vector;
Classify: the class cj with the highest posterior probability is the outcome of
prediction;

end
Algorithm 3: Pseudocode of base learner 1: ANBC Algorithm.

58 Chapter 3. Hand Gesture Recognition System for UAV Control

input : Training data X = [[x1, t1], [x2, t2], ..., [xM , tM]]T and feature vectors
x = [x1, x2, ..., xn]

output: Target class cj

recover the training data set and complete initialization;
turn 20% of the data set into Test set and 80% in Training data;
for the linear kernel, compute the kernel of distances between the datapoints (x, c) of the
Training Data;
K = XXT ;
Training: identify the support vectors as those that are within some specified distance of
the closest point and dispose of the rest of the training data;

while This object is alive do
Classify: for the given feature vector x, use the support vectors to classify the data for
the relevant kernel;

end
Algorithm 4: Pseudocode of base learner 2: SVM Algorithm.

3.4.4 Simulation on Gazebo

A very useful advantage of using independent nodes is the fact that they are not looking for
specific nodes, but for topics (in case they use only messages). This may look as a slight feature,
however it enables one of the greatest ROS capabilities, which is the ability of running a system
in whatever other interface that communicates through the same topics. And it finally enables
the integration of a virtual UAV, executed through a simulator. This transition happens seam-
lessly.

Gazebo[54] is an open-source project robot simulator, member of the OSRF as well as ROS,
which enables an environment for safe testing of a robotic project. For this implementation,
given the nodes independence, it was possible to visualize the UAV movement in the Gazebo
environment by replacing the real Mavros node with one that gets attached to a virtualization
of the ArduCopter firmware.

This simulation counts with the virtualization of elements that together, mimic the be-
haviour of an UAV. The core of the ArduPilot software lies in a launch script (simvehicle.sh),
well known of being an APM virtualization, which generates an instance of the MavProxy con-
sole and optionally a map; the console works as a very simple GCS (mentioned in Section 3.3.1).
This script is part of the project called Software in the Loop (SITL), generated by the same commu-
nity that leads the ArduCopter framework [55]. The APM virtualization counts with an Iner-
tial measurement unit (IMU) which provides linear acceleration, angular velocity, atmospheric
pressure and altitude, while the virtual GPS integration is provided by the plugin developed by
the Technische University of Darmstadt [56] (ardupilot_sitl_gazebo_plugin) and delivers longi-
tude, latitude and altitude data to allow the UAV self control.

Through the usage of common MAVROS topics, a MAVLink bridge may be generated for
another GCS connection. Using the UDP protocol our ROS nodes send specific navigation com-
mands to the virtual UAV and the simulated behaviour is calculated in the SITL and displayed
in Gazebo. The step lock mechanism enforces a pause of the Gazebo simulation until it receives

3.4. Implementation 59

input : Target class of recognized gestures as commands
output: Commands for the Mavros/RC topic
initialization, reset(throttle);
while This node is alive do

reset(roll,pitch,yaw);
if new RecognizedCommandMessage is published on topic recognized_command_tp then

command=RecognizedCommandMessage;
if command.type=dynamic then

set flight mode AltHold;
end
switch command do

Case 0: print(Unrecognized command);
reset(roll,pitch,yaw,throttle);
Case 1: print(Freeze command);
set flight mode Brake;
reset(roll,pitch,yaw,throttle);
Case 2: print(Turn on command);
set flight mode Guided;
arm_throttle(true);
Case 3: print(Land command);
set flight mode Land;
Case 4: print(Take off command);
set flight mode Guided;
arm_throttle(true);
take_off();
Case 5: print(Return to Launch command);
set flight mode RTL;
arm_throttle(false);
Case 6: print(Up command);
verify throttle limits and increase;
Case 7: print(Down command);
verify throttle limits and decrease;
Case 8: print(Front command);
verify pitch limits and increase;
Case 9: print(Back command);
verify pitch limits and decrease;
Case 10: print(Right command);
verify roll limits and increase;
Case 11: print(Left command);
verify roll limits and decrease;
Case 12: print(Right turn command);
verify yaw limits and increase;
Case 13: print(Left turn command);
verify yaw limits and decrease;

end
generate RemoteControlMessage;
RemoteControlMessage.set(roll,pitch,yaw,throttle);
publish the RemoteControlMessage on topic mavros/rc/override;

end
end

Algorithm 5: UAV Control subsystem pseudocode

60 Chapter 3. Hand Gesture Recognition System for UAV Control

the next motor command from the APM. Afterwards, Gazebo steps forward the simulation by
2.5 ms (for a 400 Hz update rate) and sends back new sensor measurements to the virtual APM.
In this specific simulation, the virtual APM is the master of the simulation clock. The interaction
between these components is better explained in Figure 3.15.

FIGURE 3.15: Communication between virtualized components and nodes in the
simulation.

The node graph of the simulated environment and the recognition system is displayed in
the Figure 3.16, as expected it holds the same nodes as Figure 3.14 adding the corresponding
Gazebo nodes for the simulated UAV.

3.4. Implementation 61

FIGURE 3.16: Node graph of simulated system.

Finally, a screenshot of the simulation environment is displayed in Figure 3.17. An orange
square frames the Gazebo visualizer displays how the simulated UAV looks (the blue screen is
the UAV field of view), the green frame shows how the Ground Control Station interacts with
the simulation (MavProxy is the name of the GCS), whereas the purple and blue frames show
the output of the drone_mgmt and leapm_featv nodes respectively, and last but not least, the yel-
low frame shows the output that the simulated APM provides.

62
C

hapter
3.

H
and

G
esture

R
ecognition

System
for

U
A

V
C

ontrol

FIGURE 3.17: Simulation of the system in Gazebo.

63

Chapter 4

Experiment

The present Chapter contains the explanation of the driven experiments in order to measure the
recognition accuracy response and analyze the time behaviour. Section 4.1 holds the specifica-
tions of the experiment, hardware and software tools and some other considerations. Section 4.2
contains the results from the gestures recognition evaluation. This was executed in two ways:
first in a static form, where just the recognition accuracy was measured, followed by a dynamic
test using live data. In this last evaluation, the accuracy and time response were measured and
compared in order to elect the best base learner for the ensembled design.

4.1 Experiment Design

As explained earlier in Section 2.7, given the fact that both static and dynamic gestures are
meant to be recognized, the first proposal for base learners was composed by the temporal
classifiers HMM and DTW. However, the combination of gestures nature leaded to malfunc-
tions in the algorithms principles, due to the lack of temporal variation in the static gestures.
Although the temporal classifiers displayed their advantages such as the flexibility in the in-
coming data moderated training time and quick response, the inclusion of the static gestures
generated unexpected recognized classes and therefore, the usage of temporal classifiers was
discouraged.

The inclusion of the temporal approach (Section 3.2.3) enabled the usage of static classifiers
for the recognition of both gestures type: static and dynamic, setting up as next challenge, the
election of the two best base learners along with their best training data and best feature vector.

As mentioned in Figure 2.9, a traditional supervised learning implementation considerates
an iterative process. In the case of the present project, this workflow differed due to the addition
of an extra test: a dynamic evaluation (or live validation).

Figure 4.1 shows the followed process in order to determine the best feature vector for the
best base learners along with their best training data for this implementation. The election of
these three best components is tied up among them, since there is no warranty that the feature
vector that works best for a certain algorithm, works as good with some other algorithm, and
the same happens with the training data, there is no warranty that some training data gener-
alizes the problem perfectly for every classifier. This, and the dynamic evaluation, leaded to
the situation of turning the regular process into an iterative one with more stages, explained as

64 Chapter 4. Experiment

follows.

FIGURE 4.1: Workflow of current supervised learning algorithm implementation.

First step was to generate a complete training dataset. In order to generate these files, a pro-
gram was developed to record samples with the information of interest from the Leap Motion
frames, these files and data are explained in Section 4.2.2. As mentioned in Section 3.2.1, the
Frames contain a whole set of information from which the next task is to select the most descrip-
tive features and/or create the new required features (which leaded us to the temporal approach).
This features election is followed by their test in an algorithm along with its parameter tuning.
As a natural consequence of the supervised learning algorithms implementation, the algorithm
gets trained, and as a supporting measure, a training data analysis was driven. This analysis was
highly required in order to determine if the classifier accuracy was motivated by the algorithm
itself, or induced by some tendency in the retrieved data (This analysis is also detailed in Section
4.2.2). After these tied phases, an evaluation stage was generated. This was composed by two
parallel modes called Static and Dynamic evaluations, and owe their names to the data nature.
In the static evaluation, the data belonged to the test set (retrieved from the 20% of the com-
plete Training Dataset), whereas in the dynamic evaluation (or live validation), the data was
provided by the real-time input from Leap Motion. In both cases, the accuracy performance
was measured, and only in the live test, time response was included as well.

Due to the fact that nowadays, there exists a huge offer of machine learning algorithms im-
plementation and libraries, it was decided to employ the Gesture Recognition Toolkit (GRT)
as libraries to manipulate the classifiers. The GRT [57] is an open source C++ project which has
been specifically designed for real-time gesture recognition and provides with many machine
learning algorithms implementations and their corresponding parameters access.

The results shown in following sections were obtained in a computer with the following
characteristics:

4.2. Evaluation Description 65

• PROCESSOR / CHIPSET

– CPU: Intel Core i7 (4th Gen) 4500U / 1.8 GHz
– Max Turbo Speed: 3 GHz
– Number of Cores: Dual-Core
– Cache: 4 MB (Installed Size)
– Architecture: 64-bit Computing

• RAM

– Size: 8GB
– Technology: DDR3 SDRAM

• Operating System: Ubuntu 14.04.4 LTS, Trusty Tahr, 64 bits

4.2 Evaluation Description

The recognition of the gesture is a critical step in the complete system, therefore, an exhaustive
series of tests were performed in order to get the best performance possible. Although a large
amount of different attempts and evaluations were conducted during the development of this
project, following sections show only the final and most important tests and results.

Chapter 2.4 introduced the evaluation tools and mechanisms presented in this section, there-
fore it is worth to mention that although only the classical methods are explained over there,
some variations to the tools were developed in pursuance of a better results understanding and
analysis, and are briefly explained as follows:

• Static evaluation: This is the classical mechanism for determining the performance of a
classifier and was briefly explained in Section 2.5.4, it is the accuracy response with data
from the test set.

• Dynamic evaluation: While the test set evaluation shows the classifier performance for
a previously known data, the nature of this project required to test the accuracy with
unknown data. Therefore, Section 4.4 presents the live data test, where the individual
accuracy and time response are compared when they receive live data from Leap Motion.
It is the accuracy response with live data.

• Confusion matrixes. As explained in subsection 2.5.4, these matrixes were originally de-
veloped for binary classifiers. Since they present the information in a concise and useful
way, Section 4.4 makes use of them in a version where they present percentage results for
the multi-classes classifiers used in this project and enhance the data analysis.

As we know, the Peaking Phenomenon (Section 2.5.3) is generated by an incorrect election
of either the feature vector or the training data. In order to avoid this undesired behaviour,
several test executions were performed to achieve the response we needed.

Basically the tests were driven in four dimensions expressed in the following list:

66 Chapter 4. Experiment

• Machine learning static algorithms (classifiers) tested (based on the analysis and compar-
isons showed in Section 2.6):

– Adaptive Naive Bayes Classifier (ANBC).

– Minimum Distances (MD).

– Support Vector Machines (SVM).

– K-Nearest Neighbors (KNN).

• Size of the Training Data: Number of training samples provided for the classes to be
recognized, which could lead to a under/over training.

• Feature Vector: Number and combination of features (How many and which features
generalize the problem in the best way).

• Required time to deliver a recognized class.

4.2.1 Training Data

Due to the over/under training problem, it is necessary to test the classifiers with different train-
ing data sizes, this lets us know which data set generalizes best enough the recognition problem
(Section 2.5.3). In this context, size refers to the number of samples that each target class counts
with and consequently the total number of samples per set.

The training data was generated by us, through the usage of a developed piece of software
that retrieved the data corresponding to a gesture. The program creates an array that holds the
target class of the gesture to be recorded, retrieves the information from the frames, filters the
data (Section 3.2.2), generates the complete feature vector (Section 3.2.3), stores it in the array
and saves the information in a text file. A sample of a training data text files for the full feature
vector is shown for the gesture labelled as six (Up movement):

DatasetName: TrainingData_80D.txt
NumDimensions: 14
TotalNumExamples: 2701
Data:
...
6 -3.891090 63.118100 17.611600 -43.636800 65.272600 -14.094800 0.000000
-0.055208 -0.157330 -0.057181 -0.065460 -0.122833 0.014272 0.001159
6 -3.932880 63.001500 17.667800 -43.663000 65.227000 -14.085900 0.000000
-0.079023 -0.222164 -0.252977 -0.069847 -0.125015 0.009707 -0.001639
...

The first element of each data row is the target class cj that corresponds to the recorded
gesture (Table 3.1). Afterwards, the fourteen following values correspond to the full feature
vector x. Therefore, each sample (row) of the training data file may be expressed by the target
class followed by the feature vector:

4.2. Evaluation Description 67

sample of X = [trecorded gesture, x1, x2, ..., x14] (4.1)

Table 4.1 shows each training data set labeled as TD1, TD2, TD3 or TD4 in its in-
creasing order, along with the number of samples that each class has. This is important to know
due to the fact that the classes should ideally be equally trained (i.e. every class should have
the same number of samples), however, due to the way the samples were recorded, this was
impossible to assure. Taking as example the extreme datasets, TD1 is the set with less number
of samples per class (around 300) while TD4 is the biggest set holding around 1000 training sam-
ples per class. Although these results display only four datasets, many more were previously
recorded in order to count with an initial approximation to the training data size that started to
show acceptable accuracies. Counting with these different set sizes, allowed us to test the effect
of over/under training and the algorithm’s capability to deliver a model that generalizes the
training data for the requested classes (Section 2.5.1).

T.
data

name

Sample
nr for
t = 6

Sample
nr for
t = 7

Sample
nr for
t = 8

Sample
nr for
t = 9

Sample
nr for
t =
10

Sample
nr for
t =
11

Sample
nr for
t =
12

Sample
nr for
t =
13

TD1 337 412 337 269 419 310 391 226
TD2 454 338 410 396 349 300 377 305
TD3 501 522 491 511 478 519 488 503
TD4 1054 984 1382 1523 954 926 1132 1161

TABLE 4.1: Sample number per training data set and per class cj .
Table 4.2 summarizes the total samples number per each set, giving an idea of how much

complete knowledge the tests were provided with.

Training data name
Total number of

samples
TD1 2701
TD2 2929
TD3 4013
TD4 9116

TABLE 4.2: Total sample number per training data set.

4.2.2 Feature Combinations

The next dimension to test is regarding the Feature Selection problem (Section 2.5.1) and it is
comprised by two questions:

• How many features should the feature vector contain? and

• Which features are the most descriptive and useful for the algorithm?

Both questions should be answered having in mind the same goal: To select the features that
allow a good generalization of the data that represents the same class. In order to solve both
questions at the same time, four feature combinations created four different feature vectors and

68 Chapter 4. Experiment

are explained in this section (although they were not the only proposals, the displayed here are
the bests).

Table 4.3 summarizes the combinations, naming them as A, B, C and D. These combinations
were proposed in order to test the algorithm generalization capability with single and double
reference points to be tracked and the inclusion (or lack) of the feature x7:Vector of Change. Tested
features were chosen upon the utility of the reference points coordinates and the information
they provided according to the delta values presented in Section 3.2.3. As the Table displays,
combination A keeps track of the single reference point (the palm center), while Combination
C is its extension adding the feature x7. Combination B is the arrangement that keeps track of
two reference points (the palm center and the thumb tip) and Combination D is the B, including
the Vector of Change. As it may be easily deduced, combination D is the full feature vector and
therefore its size corresponds to the fourteen features previously showed in Section 3.2.3.

4.2.
Evaluation

D
escription

69

Combination
name

Included features Feature vector x
Size of
feature
vector x

A
Palm center (position and ∆

values), ∆Y aw
x = [x1, x2, x3, x8, x9, x10, x14] 7

B
Palm center (position and ∆
values), Thumb tip (position

and ∆ values), ∆Y aw
x = [x1, x2, x3, x4, x5, x6, x8, x9, x10, x11, x12, x13, x14] 13

C
Palm center (position and ∆
values), Vector of Change,

∆Y aw
x = [x1, x2, x3, x7, x8, x9, x10, x14] 8

D

Palm center (position and ∆
values), Thumb tip (position

and ∆ values), Vector of
Change, ∆Y aw

x = [x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14] 14

TABLE 4.3: Feature vector combinations.

70 Chapter 4. Experiment

4.2.3 Predominant Features

To finalize this introduction to the metrics analysis, it is necessary to list the predominant fea-
tures depending on the gesture to be recognized. As displayed in Table 3.1, each gesture was
matched to a class cj .

From the nature of the gestures, it can be seen that certain features may play a more impor-
tant role for certain gestures than for others. Let us mention class 6 for instance (corresponding
to the Up movement). This movement provides more useful information in the Y axis (see Fig-
ure 3.4) than in some other feature (unlike data from the Yaw rotation for instance). Figure 4.2
shows that for this gesture, the predominant features are the related to the Y axis, which according
to the list shown in Section 3.2.3, are features x2, x5, x9 and x12 (the palm and thumb Y posi-
tion and delta values). The values obtained in these features show greater variation than others.

FIGURE 4.2: Data captured for Up gesture.

To understand the comparison, let us take now the gesture of left rotation, corresponding to
class 13. With aid of Figure 4.3, we may compare against Figure 4.2 and verify that the features
that played a important role for class 6, show no meaningful change for class 13, and moreover,
since class 13 depends much on the ∆ yaw angle (feature x14) due to the movement nature, this

4.3. Static Tests: Test Subset Accuracy Response 71

same feature x14 plays no important role for class 6.

FIGURE 4.3: Data captured for left rotation gesture.

4.3 Static Tests: Test Subset Accuracy Response

As described in Section 2.5.3, the test set validation consists of the recognition evaluations ex-
ecuted over the test set: a subset previously retrieved from the original training data. The test
subsets are composed by 20% randomly taken samples from the full training data set, leaving
the rest for training purposes. In the current implementation, these methodology may be cate-
gorized as a static evaluation, due to the fact that the tested data is known in advance.

As explained in earlier sections, the tests were executed by training data set (1, 2, 3 and 4),
by classifier algorithm (ANBC, MinDist, SVM and KNN) and by feature vector (features com-
bination).

4.3.1 Class Accuracy

Let us show an example of one of these test results chart in order to understand their signifi-
cance. For display purposes, accuracies for only classes t6 : t13 are shown, since they correspond

72 Chapter 4. Experiment

to the dynamic movements and are the angular stone of the project. Table 4.4 displays the re-
sults for the recognition accuracy, in the dynamic gestures, as output of the evaluation with the
four training data sets for every classifier, with the combination D as the feature vector x.

Each column represents the target class cj (to be recognized) and each row is the arrange-
ment of training data and classifier used at that time. The cell obtained as intersection between
the Training Data row and the Class accuracy column, contains the accuracy percentage of the
class prediction (or classification). Last column, Average accuracy, holds the average of accura-
cies between the classes t6 : t13, i.e. the average of the row. Accuracy was defined in Section 2.5
as a measure of how well the selected decision reflects the right decision. For this analysis, accuracy
for each class is measured as the percentage of True Positive classifications in each class. A
True Positive (TP) is considered when the classifier correctly assigns the right class to the tested
sample (Proper assignment of class cj to the evaluated data). Hence, accuracy for each class cj
(Accuracyj) is expressed by the sum of the number of TP divided by the total number of tested
samples for class cj (nj), and represented by the Equation 4.2.

Accuracyj =
TPj

nj
(4.2)

Average accuracy (Equation 4.3) is the measure we used to qualify a classifier in general
terms and is obtained as the mathematical mean of the classes accuracy (Accuracyj) for the
tested classes (N = 6 : 13).

Accuracyj =

∑13
j=6Accuracyj

N
(4.3)

Table 4.4 provides an overview of how well the static classifiers perform their job; the chart
is composed by four subsections where each one belongs to the accuracy results of each tested
algorithm (ANBC, Min Dist, SVM and KNN) and discussed in following lines. From the com-
parison of all of them and at first sight, KNN is the algorithm which presented the best accuracy
to almost every training datasets. It does not create a model of the data, but classifies on the fly,
hence, the training data is not altered and classifies only by comparing. This algorithm counts
with just one parameter (K) which makes it a very simple approach for static purposes. In
the same Table 4.4, although MinDist counts with a similar heuristic about not transforming the
training data, this algorithm showed lowerAccuracyj . This was result of the similarity between
the training samples, remembering the working principle of this algorithm, MinDist creates a
chart containing the euclidean distances (in this case) from the tested sample to the training
data. If the Training data are very similar among classes (low inter-class distance, Section 2.5.1),
the algorithm will find more than one good candidate for the tested sample.

A more interesting response is the one obtained from the ANBC and SVM algorithms. Since
both of them do generate a model from the training data, their prediction is completely influ-
enced by the training samples nature. This means that for ANBC, the ability to generate a prob-
ability density function from the data, gets the model directly affected; hence, the data needs
to comply with the independent probability condition for each event (which indeed happens
for these dynamic gestures and their training data). In juxtaposition, SVM and its linear kernel
transformation get rid of the probabilistic assumptions. Thanks to the margin maximization,
this algorithm exhibits a better inter-class distance which compensates in great manner the in-
consistent data retrieved by Leap Motion and delivers the high accuracy displayed in the Table.

4.3. Static Tests: Test Subset Accuracy Response 73

6 7 8 9 10 11 12 13

1 80.00 100.00 97.50 100.00 100.00 96.77 95.71 100.00 96.25

2 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

3 99.00 100.00 97.92 98.97 100.00 100.00 98.92 99.07 99.23

4 100.00 99.55 97.79 100.00 98.84 98.92 97.86 98.69 98.96

6 7 8 9 10 11 12 13

1 100.00 98.98 100.00 97.87 100.00 98.53 100.00 100.00 99.42

2 99.02 98.36 100.00 100.00 100.00 100.00 100.00 100.00 99.67

3 92.39 98.26 96.74 100.00 76.29 71.00 97.92 94.23 90.85

4 99.51 99.49 99.24 98.75 99.47 98.32 98.70 100.00 99.18

6 7 8 9 10 11 12 13

1 95.95 100.00 100.00 100.00 98.68 98.08 97.40 100.00 98.76

2 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

3 100.00 100.00 99.03 100.00 100.00 99.11 100.00 100.00 99.77

4 100.00 100.00 98.96 99.30 100.00 99.47 98.26 99.55 99.44

6 7 8 9 10 11 12 13

1 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

2 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

3 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

4 100.00 100.00 100.00 99.69 100.00 100.00 100.00 99.20 99.86

Accuracy for Test Data

ANBC

Training Data

Class accuracy (%) Average

accuracy (%)

Training Data

Class accuracy (%) Average

accuracy (%)

Training Data

Class accuracy (%) Average

accuracy (%)

Training Data

Combination D

Min Dist

SVM

Class accuracy (%) Average

accuracy (%)

KNN

TABLE 4.4: A sample of the results in the static validation: Test set accuracy for
dynamic gestures with the Combination D.

Previous Table is just a sample, indeed, the same exercise was made with the four feature
combinations (A, B, C and D). Table 4.5 displays the summary of all the static evaluations using
the four feature vectors, and for displaying purposes, the chart shows only the average accu-
racy Accuracyj for each classifier in each combination with each training data set.

It becomes clear that when two reference points are tracked, the results are much better.
This is verified by the outputs obtained in Combination B and D in comparison with the re-
trieved in Combination A and C. From this pair, Combination C behaved in general slightly
better than A due to the inclusion of the extra feature, while Combination D showed the same
advantage for the lazy classifiers (MinDist and KNN) but decreased slightly the performance
for the algorithms that create a model (ANBC and SVM). The over/under training effect may
be also compared between the rows of each classifier, and it can be seen that while the same
data set may not be a peaking problem for one arrangement (classifier and feature combina-
tion), it may greatly affect another configuration. That is the case (for instance) of Training Data
3, which turned to be a perfect training set for the KNN-Combination B, but the worst for the

74 Chapter 4. Experiment

MD-Combination A.

Combination A Combination B Combination C Combination D

1 94.69 97.19 95.05 96.25

2 88.20 99.86 99.48 100.00

3 99.38 98.99 97.44 99.23

4 88.24 99.15 88.39 98.96

1 97.533 97.743 97.564 99.422

2 96.996 99.380 97.279 99.672

3 77.169 89.856 76.328 90.853

4 92.635 98.111 92.957 99.184

1 99.00 100.00 98.09 98.76

2 99.63 100.00 99.85 100.00

3 98.64 99.89 98.50 99.77

4 88.51 99.50 90.26 99.44

1 99.84 100.00 98.92 100.00

2 99.17 100.00 99.28 100.00

3 99.54 100.00 98.96 100.00

4 98.52 99.93 98.50 99.86

Training

Data

Training

Data

Training

Data

Training

Data

ANBC average accuracy (%)

MD average accuracy (%)

SVM average accuracy (%)

KNN average accuracy (%)

TABLE 4.5: Average of accuracy results in the static validation.

In order to provide a better comparison experience, Figure 4.4 holds the graphical compar-
ison for these averages values, exactly in the same way Table 4.5 did. This gives an idea of
how well the classifiers work by showing how close their accuracies are to a perfect recognition
(100%).

It is absolutely important to mention that just by looking at these results, the classifiers
performance seem highly promising; apparently all the tested classifiers deliver recognition
accuracies almost perfect. However this is only the response to static tests, and since the classi-
fication is targeted to control a mobile device, its behaviour for live data must be tested as well.
This is demonstrated in following Section.

4.3.
Static

Tests:TestSubsetA
ccuracy

R
esponse

75

0

10

20

30

40

50

60

70

80

90

100

AVERAGE ACCURACY IN STATIC TEST

Combination A Combination B Combination C Combination D

ANBC MD SVM KNN

FIGURE 4.4: Comparison between average accuracy for each classifier in the test set validation.

76 Chapter 4. Experiment

4.4 Dynamic Tests: Live Data Accuracy Response

At first sight, accuracies presented in Table 4.5 seem highly promising. However, as mentioned
earlier, these are tests performed with pre-recorded data (ergo, static) and when it comes to
real-time systems, the weight of reality falls into place. . .

Truth is, when the classifiers were tested with live data, their predictions were highly affected
and the optimistic expectations from the previous static tests served only as starting points and
guidelines towards more realistic tests.

In fact, this is the reason why the temporal classifiers were discarded from this system im-
plementation (Section 2.7) and the temporal approach proposed: although the temporal classifiers
accuracy with static data was high, their behavior with live data was completely different, the
accuracy fell down to 10% or below.

4.4.1 Multi-classes Confusion Matrixes

Taking the classical binary confusion matrixes as starting point, a program was designed in or-
der to generate a modified version, called multi-classes confusion matrixes, used to measure the
algorithms response to live data. This program was provided with the target class cj of the hand
movement to be performed, and recorded the classifiers response. Afterwards the predicted
class (the outcome from the classifiers) was compared against the expected class (the real class
corresponding to the hand movement) and the confusion matrix was generated in a similar way
than the binary confusion matrixes (Section 2.5.4), explained as following.

The multi-classes confusion matrixes reveal the accuracy in percentage format (another differ-
ence from the classical binary) for each class. Its columns express the predicted class, its rows
contain the expected class and the intersecting cell shows the percentage of their coincidence (if
the predicted class was the same that the expected class). To fill the matrix, the pseudocode of
the algorithm is displayed in Algorithm 6.

In order to better describe what they represent and how they were used, let us present a
sample of a set. Table 4.6 shows four confusion matrixes belonging to the four training data
sets, just for the ANBC algorithm with the feature combination B.

An ideal confusion matrix should contain 100% values across the diagonal (the predicted
class matched the expected class), whereas a complete row should add up 100%. Class 0 acts
as a wildcard and is obtained when the classifier can not recognize the gesture as one of the
known classes (from six to thirteen). Let us analyze the case of the first confusion matrix, for
the expected class 11. As wished, the correspondence to the column 11 shows a 94, it means
that 94 % of the times, the live data corresponding to class 11 was rightly classified as class 11.
However, 4% of the times it was missclassified as class 13 and 2% of the times, the gesture could
not be recognized at all (Class 0). Since the rows hold the expected class, the missclassification
analysis throws very useful information (explained in following paragraphs). Last column in
each matrix contains the accuracy average retrieved from the main diagonal, which at the end

4.4. Dynamic Tests: Live Data Accuracy Response 77

0 6 7 8 9 10 11 12 13

0 100 0 0 0 0 0 0 0 0

6 2.00 98.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

7 0.00 0.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00

8 6.00 52.00 0.00 40.00 0.00 0.00 0.00 0.00 2.00 91

9 0.00 0.00 0.00 0.00 100.00 0.00 0.00 0.00 0.00

10 0.00 0.00 0.00 0.00 0.00 100.00 0.00 0.00 0.00

11 2.00 0.00 0.00 0.00 0.00 0.00 94.00 0.00 4.00

12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 0.00

13 2.00 0.00 0.00 0.00 2.00 0.00 0.00 0.00 96.00

0 6 7 8 9 10 11 12 13

0 100 0 0 0 0 0 0 0 0

6 2.00 96.00 0.00 2.00 0.00 0.00 0.00 0.00 0.00

7 4.00 0.00 96.00 0.00 0.00 0.00 0.00 0.00 0.00

8 4.00 0.00 0.00 96.00 0.00 0.00 0.00 0.00 0.00 95.25

9 2.00 0.00 0.00 6.00 92.00 0.00 0.00 0.00 0.00

10 12.00 0.00 0.00 0.00 0.00 88.00 0.00 0.00 0.00

11 0.00 0.00 0.00 0.00 0.00 0.00 100.00 0.00 0.00

12 2.00 0.00 0.00 0.00 0.00 4.00 0.00 94.00 0.00

13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00

0 6 7 8 9 10 11 12 13

0 100 0 0 0 0 0 0 0 0

6 34.00 66.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

7 2.00 0.00 98.00 0.00 0.00 0.00 0.00 0.00 0.00

8 70.00 0.00 0.00 30.00 0.00 0.00 0.00 0.00 0.00 75.75

9 34.00 0.00 0.00 18.00 48.00 0.00 0.00 0.00 0.00

10 20.00 0.00 0.00 0.00 0.00 80.00 0.00 0.00 0.00

11 2.00 0.00 0.00 0.00 0.00 0.00 98.00 0.00 0.00

12 10.00 0.00 0.00 0.00 0.00 0.00 0.00 88.00 2.00

13 2.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 98.00

0 6 7 8 9 10 11 12 13

0 100 0 0 0 0 0 0 0 0

6 0.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

7 2.00 2.00 96.00 0.00 0.00 0.00 0.00 0.00 0.00

8 2.00 0.00 0.00 88.00 10.00 0.00 0.00 0.00 0.00 97.75

9 0.00 0.00 0.00 0.00 100.00 0.00 0.00 0.00 0.00

10 0.00 0.00 0.00 0.00 0.00 100.00 0.00 0.00 0.00

11 0.00 0.00 0.00 0.00 0.00 0.00 100.00 0.00 0.00

12 2.00 0.00 0.00 0.00 0.00 0.00 0.00 98.00 0.00

13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00

ANBC

Diagonal

average

accuracy (%)

Diagonal

average

accuracy (%)

Diagonal

average

accuracy (%)

Diagonal

average

accuracy (%)

Training

data 3

Expected

Class

(Assigned

in the

Training

Data)

Training

data 4

Expected

Class

(Assigned

in the

Training

Data)

Combination B

Accuracy for Live Data: Confusion Matrix

Output Class (classifier's response)

Training

data 1

Expected

Class

(Assigned

in the

Training

Data)

Expected

Class

(Assigned

in the

Training

Data)

Training

data 2

TABLE 4.6: A sample of the results in the dynamic validation: Live data accuracy
for dynamic gestures with the Combination B for algorithm ANBC.

78 Chapter 4. Experiment

input : File with live data classifications
output: Multi-classes confusion matrixes

Classifications retrieval from the file;
Storage of classifications in the data structure TrainingSample;
Creation of square matrix confusionM_rate as zeros(numClasses,numClasses);
for class=1:numClasses do

totalMembers = How many samples were recorded for all classes in total (right and
wrong predictions);

vectorConfM = Accumulates how many votes each Output class adds in each
Expected class;

nrElems = How many samples were recorded per class;
for row = 1:nrElems do

for col = 1:numClasses do
retrieved = trainingSample(row, col,class);
if retrieved = 0 then

vectorConfM(retrieved)++;
end

end
end
confusionM_rate(class,:) = (vectorConfM/totalMembers)*100;

end
Algorithm 6: Pseudocode for the multi-classes confusion matrixes creation.

may be summarized as the integrated accuracy.

Reasons why the classifier algorithm could not assign the live data to a known class are
different. One of them is that the entered data to the algorithm were completely wrong values
(feature vectors full of zeros) due to Leap Motion failures, therefore, the classifier was not able
to categorize the incoming feature vector in neither class due to lack of information.

These matrixes helped to understand better why the classifiers failed, for instance, when
two continuous classes are confused among each other, it may exist a correlation between their
training data values and such. Retaking the Table 4.6, the matrixes belonging to the training
data 2, 3 and 4 show this behaviour in the predicted classes 8 and 9. It can be seen that classes 8
and 9 are confused among them. The reason of this is because class 8 and 9 belong to the front
and back hand gesture and the predominant features are x3, x6, x10 and x13, i.e. the features re-
lated to the Z direction (Section 4.2.3). A brief discussion about the problem of the Leap Motion
Z coordinates estimation has already been presented in Section 3.2.2. Therefore, the results of a
missclasification may be studied to gain understanding about some data problems.

Likewise in the test set validation, the live data response was tested using the same feature
vector combinations, training data sizes and the four algorithms, hence, for the complete analy-
sis, sixty four confusion matrixes were generated and studied: the four algorithms with its four
features combinations for each training data set. From their analysis, interesting things could
be understood for the recognition problems, and just as a quantitative measure, the diagonal
average accuracy of each matrix is displayed in Table 4.7.

4.4. Dynamic Tests: Live Data Accuracy Response 79

Combination A Combination B Combination C Combination D

1 74.50 91.00 68.25 96.75

2 97.75 95.25 96.75 94.25

3 73.75 75.75 71.00 70.50

4 65.00 97.75 69.00 94.75

1 65.250 80.000 64.750 92.250

2 83.250 86.750 77.500 85.500

3 54.500 67.500 58.250 64.000

4 62.500 95.500 57.500 93.250

1 96.75 95.00 95.50 94.00

2 91.50 97.75 87.75 92.00

3 73.75 79.00 78.75 78.25

4 80.00 89.50 79.75 95.50

1 77.50 90.25 81.25 95.00

2 72.00 96.25 79.25 87.50

3 67.25 74.00 63.00 76.75

4 83.25 90.75 69.00 98.00

Training

Data

Training

Data

Training

Data

Training

Data

ANBC average accuracy (%)

MD average accuracy (%)

SVM average accuracy (%)

KNN average accuracy (%)

TABLE 4.7: Average of accuracy results for the main diagonal in the live valida-
tion.

Two more useful details were depicted from the matrixes and are explained as follows: Since
they show if a gesture was mistakenly classified as another one, the matrixes display exactly
which one was the missclasified gesture. This helps figuring out the reason why the gesture
was not properly recognized. Let us say for instance, if similar movements with opposed di-
rections were missclasified among them (like the up-down or left-right couple), the reason was
that the necessary characteristics were properly saved, but the temporal features did not reflect
correctly the movement sense. The second extra feature of these matrixes is that they allow to
know the error generated by the hardware itself. This can be read in the matrixes row; it is
easily recognizable that every row must add up 100% (the most desirable is to have 100% in
the cell that matches the recognized class with the desired class), however, in the reality of our
experiments this did not happen. The additions did not sum up the desired 100%, which meant
that the classifier could not assign the incoming data to any of the available classes. This could
make think that at that moment, Leap Motion was delivering some zeroed Frames that obli-
gated the classifiers to deliver a non-recognized class.

From all this, it could be expressed that the inclusion of these modified confusion matrixes
achieves three major and useful functions: they allow to know the classifier’s accuracy, de-
livers information with clues about the missclasification reasons, and finally, gives an idea of
how much anomalous information is delivered by the hardware. These functions were metic-
ulously employed and analyzed in the results evaluation towards the following four goals:
calibrate/tune the classifiers parameters, improve the Training Datasets everytime they were
recorded, choose the most meaningful characteristics for the feature vector, and finally, design

80 Chapter 4. Experiment

the final recognizer.

In similar way as in the test set validation section, Figure 4.5 summarizes the comparison
for just the accuracy averages across the main diagonal for the live validation tests. This time,
the classifiers do not show a quasi perfect recognition because now they are facing real condi-
tions. In this graph, it can be seen how well an algorithm generalizes the training data in order
to provide a classification for unknown data (or live data). It is easy to see that now, ANBC,
SVM and KNN are the classifiers that approach closer to the perfect recognizer (100%) with the
Combinations B and D, and Training Data 2 and 4.

Now that the best classifiers start to arise, is time to include the last important component
to the algorithm election: its time response.

4.4.
D

ynam
ic

Tests:Live
D

ata
A

ccuracy
R

esponse
81

0

10

20

30

40

50

60

70

80

90

100

AVERAGE ACCURACY IN LIVE TEST

Combination A Combination B Combination C Combination D

ANBC MD SVM KNN

FIGURE 4.5: Comparison between average accuracy for each classifier in the live validation.

82 Chapter 4. Experiment

4.5 Dynamic Tests: Live Data Time Response

Last but not least, another highly important factor to take in account for the classifiers election is
the time response. Table 4.8 holds the average time it takes to each classifier, under the different
circumstances, to deliver the prediction value, expressed in miliseconds.

Combination A Combination B Combination C Combination D

1 0.04 0.19 0.07 0.07

2 0.05 0.13 0.05 0.09

3 0.09 0.13 0.08 0.08

4 0.06 0.11 0.09 0.06

1 0.016 0.066 0.045 0.035

2 0.024 0.041 0.024 0.045

3 0.043 0.063 0.031 0.038

4 0.059 0.066 0.044 0.038

1 0.24 0.67 0.29 0.25

2 0.46 0.34 0.53 0.18

3 0.66 0.25 0.46 0.23

4 1.74 0.91 0.96 1.97

1 2.37 5.68 4.29 5.12

2 5.74 5.18 5.76 6.02

3 7.37 9.28 6.56 9.51

4 14.43 19.59 19.17 22.49

ANBC average response time (ms)

MD average response time (ms)

SVM average response time (ms)

KNN average response time (ms)

Training

Data

Training

Data

Training

Data

Training

Data

TABLE 4.8: Average time response (in miliseconds) of classifiers across combina-
tions in the live validation.

Although KNN had been presenting very good classification results, due to the fact that it
does not properly create a model of the data (it is a lazy learner), it takes a long time in order to
provide a classification. This discards completely its inclusion into the final base learners. On
the other side, MinDist is the fastest classifier due to the simple euclidean distance it generates.
After MinDist, ANBC follows as second fastest classifier, its success reason is because it does
create a model from the training data and just turns the incoming data into a probability value,
compare it against the already created probability functions and chooses the most likely class.
Finally, SVM is the third fastest due to the usage of a linear kernel. This helps tremendously
to the kernel creation by lightening the transformation function for the live data and compares
with the already stored data model from the training set.

These response times were obtained in a laptop computer with the characteristics mentioned
in Section 4.1.

4.5. Dynamic Tests: Live Data Time Response 83

Classifiers Election

Paraphrasing the No free lunch theorem (Section 2.5.3): There is no ideal classifier for all the clas-
sification tasks. In reality, it is a trade off between multiples factors, and for this work the factors
were listed in subsection 4.2.

The results displayed in the previous sections showed some of this trade off, because al-
though Minimum Distances and ANBC were the fastest classifiers, Minimum Distances was not
able to even figure within an acceptable accuracy percentage. And although KNN showed
the best accuracy from all the compared classifiers, its response time was more than 200 times
slower (in comparison with ANBC for instance) due to the fact that KNN does not create a
learning model per se, but compares the neighbors distances on the fly.

Therefore the elected classifiers that respond with the best accuracy possible in a timely
manner, are:

• ANBC. Using TD4 and Combination B.

• SVM. Using TD2 and Combination B.

Both classifiers run in separate threads which leads to independent executions, as shown in
Figure 3.10.

85

Chapter 5

Conclusions and further work

This document comprises the development of a Hand Gesture Recognizer towards the UAV di-
rection movements control, implementing it over ROS. The core components of the recognizer
are classifiers based on the Supervised Learning paradigm and run engaging the spirit of the En-
semble methodology. The manipulation of this system is provided by dynamic hand gestures,
which are translated into a static approach, in order to be suitable to the base learners. The re-
sponse of this system is visualized in the Gazebo environment, which is a ROS-based simulator.

The interest in developing such a system with the mentioned characteristics is explained in
the introductory chapter, which is then followed by the theoretical frame required to under-
stand the terminology and tools used throughout the current document.

Beginning with a small introduction to the Human Machine Interface Systems, the need to
reach a consensus about what the Real Time term implies, obligated us to outline about the Real
Time Control Systems, and in order to narrow down our goal study field, the Hand Gesture
Recognition systems were reviewed along some current published applications. Since the Leap
Motion controller was the elected hardware for this project implementation, some related works
and proposals are mentioned in this same section as well.

Pattern Recognition is the great study field tackled in this project, therefore, a complete
section is dedicated to a gentle introduction to the Gesture Recognition and Machine Learn-
ing tools. Since the nuclear components of the recognizer are Machine Learning algorithms,
some Supervised Learning Algorithms are mentioned and compared along with some of their
most important characteristics. This section contains a brief description about the terminology,
approaches and mechanisms used in this work, which knowledge is essential for a full under-
standing of the algorithms evaluation, development of the recognizer and its implementation.

After the reader is well conditioned with the provided information, the System Design is
presented, introducing the project idea with an overview of the complete system architecture,
giving way to the detailed explanation of the two main subsystems: the Hand Gesture Recog-
nition subsystem and the UAV Control subsystem. Each one is described in simple but direct
terms, which then brings in the implementation details. As aforementioned, ROS is the selected
developing platform, hence, a full explanation of the component nodes and topics is provided,
accompanied with an overhaul of the system simulation in Gazebo.

Finally, the Evaluation chapter consists of all the tests explained earlier with an interesting
proposal regarding the confusion matrixes. Being loyal to the traditional terms, the regular
tests were driven, however, a slight different approach is proposed and implemented due to

86 Chapter 5. Conclusions and further work

our own real time system needs, therefore the live data tests for accuracy and time responses
are executed. This leaded to the election of the best classifiers for the proposal, complete the rec-
ognizer development life cycle (presented in the Introduction), and therefore, to gain the best
possible response from the system.

5.1 Conclusions

The Pattern Recognition skill, so natural and impeccable executed by the humans, turns out to
be a true challenge when trying to implement it even in a basic level; it is nonetheless, another
small attempt to imitate a cognitive process.

This documents holds the project description of the proposal to employ the capabilities of a
hardware device that has gained a lot of attention in recent years (the Leap Motion controller)
and focus its usage in a very interesting task: the Hand Gesture Recognition through Super-
vised Learning mechanisms. To turn this proposal into an even more interesting one, it was
decided to make use of static and dynamic gestures at the same time in a system that addresses
the recognition of specific gestures towards another very exciting task, which is the UAV move-
ment control. The management of a device of this nature implies the supervision of degrees
of freedom in all directions (in comparison to a ground mobile robot, where not all directions
are required), which leads to the generation of more recognized gestures and therefore, to more
characteristics to process and evaluate. As mentioned in Section 2.4.1, the recognizer genera-
tion is an iterative work that requires an improvement procedure and demands to be exhausted
until a decent output is achieved.

The system

It is widely known that when something works optimally in theory, its response in physical con-
ditions may deliver erratic behaviors that obey to situations that were not either imagined, or
simply uncontrollable. That is why it was decided to implement the recognizer in a simulated
environment, where at least most of the conditions are able to be manipulated, and control a
simulated UAV. The projection displays the UAV movement response to the system commands.
The results were very favorable since the aircraft obeyed the commanded orders at its backend.
A detail to considerate is the fact that there were some physical variables, owned by the sim-
ulator, that were not completely accurate and sometimes did not allow the robot to land 100%
perfectly (sometimes it just hanged out, bouncing in small steps all over the floor and was not
capable of remaining steady). This behaviour was aided too by the APM autopilot, the software
installed in the simulated UAV itself, which tried to hold a position and owned to this simu-
lators physics, capricious UAV movements were sometimes obtained. Since this work focuses
on the gesture recognizer deployment and the recognized gestures transformation into UAV
commands, we did not spend much time in the research of all the components that affect the
simulated system, or the re-progamming and tuning of the UAV autopilot software.

The transducer

Since the recognizer reads continuously the Leap Motion retrieved data, it constantly sends the
commands to the UAV, hence, in order to manipulate the UAV it was necessary to generate the

5.1. Conclusions 87

desired gesture and afterwards either a fist or remove the hand from the Leap Motion field of
view, otherwise, the recognizer would continue sending the most likely command to the hand’s
stance at that moment. This turned the system into a discrete one, meaning this, that the move-
ments commands were ordered in steps towards the desired direction. This is a good behaviour
because if the UAV could move unstoppable towards the required direction, it could even go
outside of the remote control operation range and coverage area.

The simulation

Naturally, a simulated system helps beating the adversities that a physical system may count
with. In our case, it was preferred to stick with the simulation because the physical UAV was
never able to hold a steady and controlled position, not even with its own remote control. This
would lead to an extremely unstable system if the recognizer system controls the real aircraft,
therefore this option was avoided. Since the manipulation and tuning of the internal compass
within the autopilot board was beyond the scope of this work, it was decided to bide the simu-
lated system response, which in short words, achieved its goal.

The recognition

It is interesting to emphasize the accomplishment of enabling the dynamic gesture recognition
making use of tools dedicated to static gestures recognition. This was possible due to the em-
ployed approach: generation and addition of temporal features to the vector delivered to the
core classifiers. Worth to say is that this approach is not owned by the device, but may be imple-
mented in whatever other device that, in similar way, delivers a skeletical hand model in some
framerate. The frame number was set to ten in this project, however, as future work, a series
of comparatives could be generated in order to determine an optimal number for this parameter.

Of course some other problems were encountered during the development of this project,
and among them, some interesting ones related to Leap Motion are described as following. The
Leap Motion controller does not work at a fixed, adjustable or constant frame rate [58], there-
fore the temporal features recorded in the Training Datasets may not fit if they are used in a
computer with different features, or may even differ in the same computer if the conditions are
very distinct (like running programs with high memory demands at the same time). Due to
this, a very high amount of tests were driven, more than fifty Training Datasets recorded and
of course, different recognizers implementation proposals. The most promising results are the
ones displayed in the Evaluation chapter.

The Leap Motion usage brought another extra complication. As commented earlier, the de-
velopers community is aware of the following situation [44]: Leap Motion is a device optimized
for the position tracking in the XY plane (the plane parallel to a computer’s monitor) because its
intended use is towards the hand interaction with objects in a screen. This feature brings along
the fact that the tracking position for the Z direction is not as optimal as for the X or Y direction
and therefore, the retrieved information for the Z direction may not be very accurate. Since the
recognizer controls the UAV in six degrees of freedom, the tracking of the Z position turns out to
be vital in at least a third part, which impacts directly the over-all system performance. Adding
to this effect, the problem where Leap Motion sometimes loses certain Frames and delivers ze-
roed data, it was necessary to implement data filtering, which nevertheless helped, they did not

88 Chapter 5. Conclusions and further work

completely eliminated the errors due to these effects. The Evaluation chapter shows that the
accuracy for the movements in the XY plane is higher than the ones where the Z direction plays
an important role.

The election of the core classifiers was perhaps the most demanding and exhausting step of
this work given its fundamental importance. This is the reason why it was necessary to study
very detailedly their answers and yet, generate mechanisms that allowed us to compare their
behavior in a more suitable way in regards of this project’s approach. This is how the Live
Data tests were generated through the incorporation of the modified confusion matrixes for the
multiclasses classifiers. From these matrixes, maybe the most important number is the accu-
racy percentage for each recognized-received class pair, however, it is not the only interesting
information that can be extracted from them.

5.2 Further Work

The limitations and difficulties explained in above paragraphs are some of the matters that may
be managed by intelligent mechanisms (or mechanisms that are not explicitly programmed to
do so) such as the ones that Machine Learning delivers. This transition from the rigid pro-
gramming towards more flexible models, provides some clearance that allows the inclusion of
problems out of our reach (as the ones exposed in previous paragraphs).

Of course it is possible that a single classifier would be employed in this project, however
it is well known that error happens, and for a system with an application such as the one our
system counts with, the errors must be reduced to the minimum. Therefore it was thought in
countervailing their effect taking in account the spyrit of the Ensembled methodology, which
promotes the diversity of hypothesis making use of the abilities that every classifier’s approach
has. It would be tremendously interesting try with alternative ensemble methodologies such
as boosting and including other machine learning algorithms, there exists an amazingly wide
offer to explore.

Knowledge should be free and open, promoted by people with access to it in such a way
that the community gets benefits of it. This is the reason why this project made use of open
source tools such as Linux, ROS and the APM project. This last one is integrated in its majority
by technology adepts and enthusiastic programmers, moved by the desire of developing open
code for UAV autopilot needs. On its side, the ROS project was born with the set of mind of not
reinventing the wheel every time a person wishes to put his hands on the robotics world in sake
of an achievement of more complex proposals. With this said, this work aims to hold this phi-
losophy and keep up this profile. Because, if we stop for a minute and think about the human
evolution, isn’t it true that through the diversity of opinions, ideas and knowledge of misfits,
rebels and crazy thinkers, humanity and science have achieved one step ahead everytime?

Unity is variety and variety in unity is
the supreme law of the universe.

Isaac Newton

89

Bibliography

[1] Association for computing machinery,computing classification system, 2012 revision. http :
//delivery.acm.org/10.1145/2380000/2371137/ACMCCSTaxonomy.html,
Accessed: 2016-06-14.

[2] J. Fiset, Human-Machine Interface Design for Process Control Applications. Instrumentation,
Systems, and Automation Society, 2009, ISBN: 9781934394359. [Online]. Available: https:
//books.google.com/books?id=NE_TEJBmwi8C.

[3] G. Salvendy, Handbook of Human Factors and Ergonomics. Wiley, 2012, ISBN: 9781118129081.
[Online]. Available: https://books.google.com/books?id=WxJVNLzvRVUC.

[4] HMI product design and development, http://sites.ieee.org/tcrts/education/
terminology-and-notation/, Accessed: 2016-03-01.

[5] Wikipedia: Real time system, https://en.wikipedia.org/wiki/Real- time_
computing, Accessed: 2016-03-01.

[6] E. Ueda, Y. Matsumoto, M. Imai, and T. Ogasawara, “Hand pose estimation using multi-
viewpoint silhouette images”, in IEEE/RSJ International Conference on Intelligent Robots and
Systems, IROS 2001: Expanding the Societal Role of Robotics in the the Next Millennium, Maui,
HI, USA, October 29 - November 3, 2001, 2001, pp. 1989–1996. DOI: 10.1109/IROS.2001.
976365. [Online]. Available: http://dx.doi.org/10.1109/IROS.2001.976365.

[7] S. Hoffberg and L. Hoffberg-Borghesani, Ergonomic man-machine interface incorporating
adaptive pattern recognition based control system, US Patent 5,875,108, 1999. [Online]. Avail-
able: https://www.google.com/patents/US5875108.

[8] R. Fiebrink, “Real-time human interaction with supervised learning algorithms for music
composition and performance”, PhD thesis, Princeton University, Princeton, NJ, USA,
2011.

[9] S. Bilal, R. Akmeliawati, M. J. E. Salami, and A. A. Shafie, “Vision-based hand posture de-
tection and recognition for sign language”, in Mechatronics (ICOM), 2011 4th International
Conference On, 2011, pp. 1–6. DOI: 10.1109/ICOM.2011.5937178.

[10] K. Liu and N. Kehtarnavaz, “Real-time robust vision-based hand gesture recognition us-
ing stereo images”, Journal of Real-Time Image Processing, vol. 11, no. 1, pp. 201–209, 2016,
ISSN: 1861-8219. DOI: 10.1007/s11554-013-0333-6. [Online]. Available: http:
//dx.doi.org/10.1007/s11554-013-0333-6.

[11] R. Z. Khan and N. A. Ibraheem, “Survey on gesture recognition for hand image postures”,
Computer and Information Science, vol. 5, pp. 110–121, 2012.

[12] P. Mátételki, M. Pataki, S. Turbucz, and L. Kovács, “An assistive interpreter tool using
glove-based hand gesture recognition”, in Humanitarian Technology Conference - (IHTC),
2014 IEEE Canada International, 2014, pp. 1–5. DOI: 10.1109/IHTC.2014.7147529.

http://delivery.acm.org/10.1145/2380000/2371137/ACMCCSTaxonomy.html
http://delivery.acm.org/10.1145/2380000/2371137/ACMCCSTaxonomy.html
https://books.google.com/books?id=NE_TEJBmwi8C
https://books.google.com/books?id=NE_TEJBmwi8C
https://books.google.com/books?id=WxJVNLzvRVUC
http://sites.ieee.org/tcrts/education/terminology-and-notation/
http://sites.ieee.org/tcrts/education/terminology-and-notation/
https://en.wikipedia.org/wiki/Real-time_computing
https://en.wikipedia.org/wiki/Real-time_computing
http://dx.doi.org/10.1109/IROS.2001.976365
http://dx.doi.org/10.1109/IROS.2001.976365
http://dx.doi.org/10.1109/IROS.2001.976365
https://www.google.com/patents/US5875108
http://dx.doi.org/10.1109/ICOM.2011.5937178
http://dx.doi.org/10.1007/s11554-013-0333-6
http://dx.doi.org/10.1007/s11554-013-0333-6
http://dx.doi.org/10.1007/s11554-013-0333-6
http://dx.doi.org/10.1109/IHTC.2014.7147529

90 BIBLIOGRAPHY

[13] P. Pławiak, T. Sośnicki, M. Niedźwiecki, Z. Tabor, and K. Rzecki, “Hand body language
gesture recognition based on signals from specialized glove and machine learning algo-
rithms”, IEEE Transactions on Industrial Informatics, vol. 12, no. 3, pp. 1104–1113, 2016, ISSN:
1551-3203. DOI: 10.1109/TII.2016.2550528.

[14] S. S. Rautaray and A. Agrawal, “Vision based hand gesture recognition for human com-
puter interaction: A survey”, Artif. Intell. Rev., vol. 43, no. 1, pp. 1–54, 2015. DOI: 10.
1007/s10462-012-9356-9. [Online]. Available: http://dx.doi.org/10.1007/
s10462-012-9356-9.

[15] G. Marin, F. Dominio, and P. Zanuttigh, “Hand gesture recognition with leap motion
and kinect devices”, in Image Processing (ICIP), 2014 IEEE International Conference on, 2014,
pp. 1565–1569. DOI: 10.1109/ICIP.2014.7025313.

[16] F. Weichert, D. Bachmann, B. Rudak, and D. Fisseler, “Analysis of the accuracy and robust-
ness of the leap motion controller”, Sensors, vol. 13, no. 5, p. 6380, 2013, ISSN: 1424-8220.
DOI: 10.3390/s130506380. [Online]. Available: http://www.mdpi.com/1424-
8220/13/5/6380.

[17] D. Bachmann, F. Weichert, and G. Rinkenauer, “Evaluation of the leap motion controller
as a new contact-free pointing device”, Sensors, vol. 15, no. 1, p. 214, 2014, ISSN: 1424-8220.
DOI: 10.3390/s150100214. [Online]. Available: http://www.mdpi.com/1424-
8220/15/1/214.

[18] M. Spiegelmock, Leap Motion Development Essentials. Packt Publishing, 2013.

[19] Leap Motion developers site, https://developer.leapmotion.com/, Accessed: 2015-
11-21.

[20] Parrot developer portal, http://developer.parrot.com/, Accessed: 2015-11-21.

[21] M. Hu, F. Shen, and J. Zhao, “Hidden markov models based dynamic hand gesture recog-
nition with incremental learning method”, in 2014 International Joint Conference on Neural
Networks, IJCNN 2014, Beijing, China, July 6-11, 2014, 2014, pp. 3108–3115.

[22] P. Molchanov, S. Gupta, K. Kim, and J. Kautz, “Hand gesture recognition with 3d convolu-
tional neural networks”, in 2015 IEEE Conference on Computer Vision and Pattern Recognition
Workshops, CVPR Workshops, Boston, MA, USA, June 7-12, 2015, 2015, pp. 1–7.

[23] G.-W. Wang, C. Zhang, and J. Zhuang, “An application of classifier combination methods
in hand gesture recognition”, Mathematical Problems in Engineering, vol. 2012, 2012.

[24] T. Kopinski, S. Magand, A. R. T. Gepperth, and U. Handmann, “A light-weight real-time
applicable hand gesture recognition system for automotive applications”, in 2015 IEEE In-
telligent Vehicles Symposium, IV 2015, Seoul, South Korea, June 28 - July 1, 2015, 2015, pp. 336–
342.

[25] P. Modler and T. Myatt, “Video based recognition of hand gestures by neural networks
for the control of sound and music”, in 8th International Conference on New Interfaces for
Musical Expression, NIME 2008, Genova, Italy, June 5-7, 2008, 2008, pp. 358–359.

[26] Intel real sense sdk, https://software.intel.com/en-us/intel-realsense-
sdk, Accessed: 2017-06-15.

[27] R. C. Luo and Y. Wu, “Hand gesture recognition for human-robot interaction for service
robot”, in IEEE International Conference on Multisensor Fusion and Integration for Intelligent
Systems, MFI 2012, Hamburg, Germany, September 13-15, 2012, 2012, pp. 318–323.

http://dx.doi.org/10.1109/TII.2016.2550528
http://dx.doi.org/10.1007/s10462-012-9356-9
http://dx.doi.org/10.1007/s10462-012-9356-9
http://dx.doi.org/10.1007/s10462-012-9356-9
http://dx.doi.org/10.1007/s10462-012-9356-9
http://dx.doi.org/10.1109/ICIP.2014.7025313
http://dx.doi.org/10.3390/s130506380
http://www.mdpi.com/1424-8220/13/5/6380
http://www.mdpi.com/1424-8220/13/5/6380
http://dx.doi.org/10.3390/s150100214
http://www.mdpi.com/1424-8220/15/1/214
http://www.mdpi.com/1424-8220/15/1/214
https://developer.leapmotion.com/
http://developer.parrot.com/
https://software.intel.com/en-us/intel-realsense-sdk
https://software.intel.com/en-us/intel-realsense-sdk

BIBLIOGRAPHY 91

[28] C. Li, H. Ma, C. Yang, and M. Fu, “Teleoperation of a virtual icub robot under framework
of parallel system via hand gesture recognition”, in IEEE International Conference on Fuzzy
Systems, FUZZ-IEEE 2014, Beijing, China, July 6-11, 2014, 2014, pp. 1469–1474.

[29] R. Duda, P. Hart, and D. Stork, Pattern Classification. Wiley, 2012, ISBN: 9781118586006.
[Online]. Available: https://books.google.com.mx/books?id=Br33IRC3PkQC.

[30] G. Dougherty, Pattern Recognition and Classification, An Introduction. Springer, 2013.

[31] M. S. D. Rose and C. C. Wagner, “Survey on classifying human actions through visual
sensors”, Artificial Intelligence Rev, vol. 37, pp. 301–311, 2012.

[32] C. K. Mohan, “Artificial intelligence: Pattern recognition”, Salem Press Encyclopedia of Sci-
ence, 2015.

[33] J. A. Fails and D. R. Olsen Jr., “Interactive machine learning”, in Proceedings of the 8th In-
ternational Conference on Intelligent User Interfaces, ser. IUI ’03, Miami, Florida, USA: ACM,
2003, pp. 39–45, ISBN: 1-58113-586-6. DOI: 10.1145/604045.604056. [Online]. Avail-
able: http://doi.acm.org/10.1145/604045.604056.

[34] A. L. Samuel, “Programming computers to play games”, Advances in Computers, vol. 1,
pp. 165–192, 1960. DOI: 10.1016/S0065- 2458(08)60608- 7. [Online]. Available:
http://dx.doi.org/10.1016/S0065-2458(08)60608-7.

[35] T. M. Mitchell, Machine learning, ser. McGraw Hill series in computer science. McGraw-
Hill, 1997, ISBN: 978-0-07-042807-2.

[36] S. Marsland, Machine learning : An algorithmic perspective, ser. Chapman and Hall CRC ma-
chine learning and pattern recognition series. Boca Raton: CRC Press, 2009, A Chapman
& Hall book., ISBN: 978-1-4200-6718-7. [Online]. Available: http://opac.inria.fr/
record=b1129336.

[37] D. Wolpert and W. G. Macready, “No free lunch theorems for optimization”, IEEE Trans.
Evolutionary Computation, vol. 1, no. 1, pp. 67–82, 1997. DOI: 10.1109/4235.585893.
[Online]. Available: http://dx.doi.org/10.1109/4235.585893.

[38] N. Gillian and R. Benjamin, “An adaptive classification algorithm for semiotic musical
gestures”, in In the 8th Sound and Music Computing Conference (SCM2011, 2011.

[39] I. Steinwart and C. Scovel, “Mercer’s theorem on general domains: On the interaction
between measures, kernels, and rkhss”, Constructive Approximation, vol. 35, no. 3, pp. 363–
417, 2012, ISSN: 1432-0940. DOI: 10.1007/s00365-012-9153-3. [Online]. Available:
http://dx.doi.org/10.1007/s00365-012-9153-3.

[40] M. Warmuth, “Sample compression, learnability, and the vapnik-chervonenkis dimen-
sion”, in Computational Learning Theory: Third European Conference, EuroCOLT ’97 Jerusalem,
Israel, March 17–19, 1997 Proceedings, S. Ben-David, Ed. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1997, pp. 1–2, ISBN: 978-3-540-68431-2. DOI: 10.1007/3-540-62685-9_1.
[Online]. Available: http://dx.doi.org/10.1007/3-540-62685-9_1.

[41] M. A. Arbib, Handbook of brain theory and neural networks, 2nd ed. The MIT Press, 2002,
ISBN: 0262011972,9780262011976,9780585457406.

[42] L. I. Kuncheva, Combining Pattern Classifiers: Methods and Algorithms. Wiley-Interscience,
2004, ISBN: 0471210781,9780471210788. [Online]. Available: http://gen.lib.rus.ec/
book/index.php?md5=D3E45AB795C1549CFC5A3374FEA50373.

https://books.google.com.mx/books?id=Br33IRC3PkQC
http://dx.doi.org/10.1145/604045.604056
http://doi.acm.org/10.1145/604045.604056
http://dx.doi.org/10.1016/S0065-2458(08)60608-7
http://dx.doi.org/10.1016/S0065-2458(08)60608-7
http://opac.inria.fr/record=b1129336
http://opac.inria.fr/record=b1129336
http://dx.doi.org/10.1109/4235.585893
http://dx.doi.org/10.1109/4235.585893
http://dx.doi.org/10.1007/s00365-012-9153-3
http://dx.doi.org/10.1007/s00365-012-9153-3
http://dx.doi.org/10.1007/3-540-62685-9_1
http://dx.doi.org/10.1007/3-540-62685-9_1
http://gen.lib.rus.ec/book/index.php?md5=D3E45AB795C1549CFC5A3374FEA50373
http://gen.lib.rus.ec/book/index.php?md5=D3E45AB795C1549CFC5A3374FEA50373

92 BIBLIOGRAPHY

[43] Leap Motion public introduction, https : / / www . leapmotion . com / news / leap -
motion-launches-world-s-most-accurate-3-d-motion-control-technology-
for-computing, Accessed: 2015-11-21.

[44] Leap Motion and the z axis accuracy, https://community.leapmotion.com/t/
stabilized-palm-z-component-has-opposite-than-intended-behaviour/
528/2, Accessed: 2016-05-31.

[45] The MavLink protocol, http://qgroundcontrol.org/mavlink/start, Accessed:
2016-05-31.

[46] Erle brain 2 git book, https://erlerobotics.gitbooks.io/erle-robotics-
erle-brain-a-linux-brain-for-drones/content/en//, Accessed: 2016-05-31.

[47] Arducopter project, http://ardupilot.org/copter/index.html, Accessed: 2016-
05-31.

[48] Dronecode software platform, https://www.dronecode.org/dronecode-software-
platform, Accessed: 2016-05-31.

[49] Mission planner, http://ardupilot.org/planner/index.html, Accessed: 2016-
05-31.

[50] Mavproxy, http://qgroundcontrol.org/mavlink/mavproxy_startpage, Ac-
cessed: 2016-05-31.

[51] The robotic operating system (ros), http://www.ros.org/, Accessed: 2016-05-31.

[52] Open source robotics foundation, http://www.osrfoundation.org/, Accessed: 2016-
05-31.

[53] Ros wiki, http://wiki.ros.org/ROS/Introduction, Accessed: 2016-05-31.

[54] Gazebo simulator, http://gazebosim.org/, Accessed: 2016-05-31.

[55] Ardupilot: software in the loop, http://ardupilot.org/dev/docs/sitl-simulator-
software-in-the-loop.html, Accessed: 2016-06-31.

[56] Gazebo hector plugin, https://github.com/tu-darmstadt-ros-pkg/hector_
gazebo/, Accessed: 2016-06-31.

[57] N. Gillian and J. A. Paradiso, “The gesture recognition toolkit”, The Journal of Machine
Learning Research, vol. 15, no. 1, pp. 3483–3487, Jan. 2014, ISSN: 1532-4435. [Online]. Avail-
able: http://dl.acm.org/citation.cfm?id=2627435.2697076.

[58] Leap motion frame rate, https://developer.leapmotion.com/documentation/
cpp/api/Leap.Frame.html, Accessed: 2016-05-31.

https://www.leapmotion.com/news/leap-motion-launches-world-s-most-accurate-3-d-motion-control-technology-for-computing
https://www.leapmotion.com/news/leap-motion-launches-world-s-most-accurate-3-d-motion-control-technology-for-computing
https://www.leapmotion.com/news/leap-motion-launches-world-s-most-accurate-3-d-motion-control-technology-for-computing
https://community.leapmotion.com/t/stabilized-palm-z-component-has-opposite-than-intended-behaviour/528/2
https://community.leapmotion.com/t/stabilized-palm-z-component-has-opposite-than-intended-behaviour/528/2
https://community.leapmotion.com/t/stabilized-palm-z-component-has-opposite-than-intended-behaviour/528/2
http://qgroundcontrol.org/mavlink/start
https://erlerobotics.gitbooks.io/erle-robotics-erle-brain-a-linux-brain-for-drones/content/en//
https://erlerobotics.gitbooks.io/erle-robotics-erle-brain-a-linux-brain-for-drones/content/en//
http://ardupilot.org/copter/index.html
https://www.dronecode.org/dronecode-software-platform
https://www.dronecode.org/dronecode-software-platform
http://ardupilot.org/planner/index.html
http://qgroundcontrol.org/mavlink/mavproxy_startpage
http://www.ros.org/
http://www.osrfoundation.org/
http://wiki.ros.org/ROS/Introduction
http://gazebosim.org/
http://ardupilot.org/dev/docs/sitl-simulator-software-in-the-loop.html
http://ardupilot.org/dev/docs/sitl-simulator-software-in-the-loop.html
https://github.com/tu-darmstadt-ros-pkg/hector_gazebo/
https://github.com/tu-darmstadt-ros-pkg/hector_gazebo/
http://dl.acm.org/citation.cfm?id=2627435.2697076
https://developer.leapmotion.com/documentation/cpp/api/Leap.Frame.html
https://developer.leapmotion.com/documentation/cpp/api/Leap.Frame.html

	Resumen
	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Problem Statement
	Project Description
	Contributions
	Thesis organization

	Hand Gesture Recognition
	Human Machine Interface
	Real-Time Control Systems
	Quadrotor UAV Control

	Hand Gesture Recognition Systems
	Hand Gesture Recognition
	Recognition Devices
	Other Tools and Applications

	Pattern Recognition
	Recognition Process
	Gesture Recognition

	Machine Learning Fundamentals
	Preliminaries
	Types of Learning
	Stages of the Machine Learning Process
	Training, Testing and Validating sets
	The Peaking Phenomenon

	Validation Methods
	Test Sets and Errors
	The Confusion Matrix

	Supervised Learning Algorithms
	Bayesian algorithms
	Decision Trees
	K-Nearest Neighbors
	Minimum Distances
	Support Vector Machine
	Hidden Markov Model
	Dynamic Time Warping
	Artificial Neural Networks
	Algorithms Comparison Chart
	Ensemble Methods

	Tested Algorithms

	Hand Gesture Recognition System for UAV Control
	Architecture of the System
	Gesture Recognition subsystem
	The Leap Motion Controller
	Data Filters
	The Feature Vector
	Classification
	Base Learners

	UAV Control Subsystem
	UAS Elements

	Implementation
	The Robotic Operating System (ROS)
	ROS Nodes
	System Pseudocodes
	Simulation on Gazebo

	Experiment
	Experiment Design
	Evaluation Description
	Training Data
	Feature Combinations
	Predominant Features

	Static Tests: Test Subset Accuracy Response
	Class Accuracy

	Dynamic Tests: Live Data Accuracy Response
	Multi-classes Confusion Matrixes

	Dynamic Tests: Live Data Time Response

	Conclusions and further work
	Conclusions
	Further Work

	Bibliography

