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Resumen

El problema de optimización multiobjetivo (MOP, por sus siglas en inglés), surge
de manera natural en diversas áreas del conocimiento, como Economı́a, Finanzas y
principalmente en la Industria; en las cuales se requiere optimizar simultáneamente
más de una función objetivo. Una de las principales caracteŕısticas de un MOP
es que su conjunto de soluciones, llamado Conjunto de Pareto, t́ıpicamente forma
un objeto de dimensión (k − 1), en donde k es el número de objetivos involucra-
dos. En la actualidad, es posible aproximar el conjunto completo de interés para
un número relativamente bajo de funciones objetivo (por ejemplo, para k = 3 o 4).
Sin embargo, para problemas con más de 4 funciones objetivo, los cuales son cono-
cidos como Many-Objective Optimization Problems (MaOPs), es necesario diseñar
mecanismos espećıficos para aproximar sus soluciones. Recientemente, los MaOPs
han captado el interés de la industria debido al éxito de los métodos existentes y a
su impacto en los procesos de toma de decisiones, cada vez más complejos.

En esta tesis se propone el Pareto Explorer (PE), una herramienta de naturaleza
global/local para el tratamiento numérico de MaOPs. PE consta de dos fases prin-
cipales: el cálculo de una (o varias) soluciones óptimas globales y la exploración de
soluciones óptimas a nivel local a través de un método de continuación numérica mul-
tiobjetivo. Este método se adapta al contexto de un MaOP dado y permite dirigir la
búsqueda en cualquier dirección dada por el tomador de decisiones. De esta forma,
es posible explorar un MaOP ya sea en el espacio de decisión, el de los objetivos, o el
de los pesos asociados. Finalmente, se presentan los resultados en algunos problemas
de referencia, aśı como en un problema de 14 objetivos que surge en el diseño de un
sistema de lavandeŕıa.
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Abstract

In many areas such as Economy, Finance,or Industry the problem arises naturally
that several objectives have to be optimized concurrently. Mathematically speaking
this leads to a Multiobjective Optimization Problem (MOP). One important char-
acteristic of MOPs is that its solution set, the Pareto Set (PS), typically forms a
(k− 1)-dimensional object where k is the number of objectives involved in the MOP.
Thus, it is only possible to approximate the entire set of interest for relatively few
number of objectives (say, k = 3 or 4). In this work, we address the numerical treat-
ment of MOPs with more than 4 objectives which are also termed as Many Objective
Optimization Problems (MaOPs). MaOPs have recently caught the interest in Indus-
try due to the huge success of existing methods for the treatment of MaOPs and since
decision making processes are getting more and more complex.

In this thesis, we propose the Pareto Explorer (PE), a global/local tool for the
numerical treatment of MaOPs. The PE consists of two principal phases: Phase I
consists of the computation of one (or several) globally optimal solutions of the given
MaOP. In Phase II, the set of optimal solutions is locally explored via a multiobjective
continuation method that we tailor to the given context. This continuation method
allows to steer the search into any direction given by the Decision Maker (DM), e.g.,
in decision, objective, or weight space of the given problem. We present results on
some benchmark models as well as on a 14-objective problem that arises in the design
of a laundry system.
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apoyos para estancia en el extranjero y beca terminal.

A mis sinodales, Dr. Amilcar Meneses, por los importantes aportes realizados a
este trabajo; y Dra. Adriana Lara, quien de igual forma contribuyó enormemente a
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Chapter 1

Introduction

Optimization problems with multiple objectives arise naturally in areas as Econ-
omy, Finance and Industry, where it is necessary to obtain the greatest profit of the
limited resources. Here, the resources are the decision variables and the objectives
are the objectives functions. These functions are generally in conflict with each other.
For example, the increment for the quality of certain product usually means an incre-
ment of the production costs. Nowadays, there exist a lot of methods used to solve
such Multiobjective Optimization Problems (MOPs) [1], each one with advantages and
disadvantages, looking increasingly to efficiently solve more general problems. The
solution to these problems is not a point rather a set of compromise vectors of the ob-
jectives to be optimized. Usually, these methods obtain a set of points whose images
have a uniform spread along the whole solution set of the given problem. However, for
many applications it is important for a Decision Maker (DM) to find points which sat-
isfy certain values for each function. An alternative to solve such problems is to find
the closets solutions to a reference points defined by the DM in the objective space,
rather than finding the entire set of solutions. This approach is useful when working
with Many Objective Optimization Problem (MaOP), i.e., problems with more than
three objectives.

In this work, we focus on the scenario in which the decision maker wants to follow
certain direction, as much in the space of objective functions as in the space of decision
variables, starting from an initial optimal solution. To solve this problem, we propose
a continuation method for the treatment of MaOPs. A direct application to this
method is when the decision maker, after obtaining a solution, constantly changes
his/her preferences, leading to a Dynamic Reference Point Problem (DRPP), where
the reference point is dependant on time. This is only a module of a tool for the
treatment of MaOPs called Pareto Explorer (PE).

1
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1.1 Motivation

Several strategies for the treatment of continuous MaOPs have been proposed
and tested over the past decades. However, we can identify two principal classes
of approaches as the most common techniques to solve MaOPs. The former one
is the use of evolutionary algorithms in order to compute the entire set of optimal
solutions. This approach has the issue that for a MaOP a good approximation to the
entire solution set implies to get a lot of points. For example, if we have k objective
functions and we want M points for each dimension, then the solution set will have
Mk−1 points, i.e., an exponential growth in k. The above is not very suitable for a
DM since he/she must evaluate all the solutions. The latter one is the use of local
mathematical algorithms that produces only one point, which is not enough for a
DM, e.g., the reference point method.

The PE method raises as a solution for the continuous MaOP and much more.
PE is conceived as a global/local exploration tool for the treatment of MaOPs, which
consists of two principal phases: i) obtaining a global optimal solution for a given
MaOP and ii) the local exploration of optimal solutions.

1.2 Problem

In certain cases, the DM is interested in a certain region of the solution set of a
MaOP. A common way to define this region is with the value of each function, int
his way we can obtain an initial optimal solution based on these preferences.

In this work we focus on the scenario where the DM has an initial optimal solution
and then he/she wants to search for more optimal solution in certain direction. This
direction can be defined both in objective space (the space of the objective functions)
and the decision space (the space of the decision variables). Additionally, we treat the
DRPP, i.e., we are interested in the scenario where we have a reference point which
changes over the time, leads a time depend curve. For this case the continuation
method is guided by the time depend curve.

1.3 Aims of the Thesis

Our goal is to design an efficient continuation method for the steering phase of the
PE able to find a resulting path which represent the best movement according with
the given direction and solving the DRPP, in order to contribute the state-of-the-art.
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Our particular aims are the following.

• To contribute with the framework of the PE method.

• To define several ways to steer the local search.

• To solve the DRPP.

• To solve a real world problem with the PE.

1.4 Final Contribution

This thesis contributes to the area of many-objective optimization, specifically it
provides an efficient way to steer a local search in a given direction. This contribution
is a module of a numerical tool called PE.

Our particular contributions are:

• Proposal of PE framework.

• A method for the steering in objective space.

• A method for the steering in decision space.

• A method for the steering in weight space.

• A method for a steering in decision space with a minimal change in objective
space.

• An implementation to solve the DRPP.

• A software package for free scientific use.

• A preliminary version of a GUI.

• Collaboration with the University of Paderborn, Germany.
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1.5 Organization of the Thesis

This thesis consists of five chapters, including this introductory chapter. The
remainder of this document is organized as follows.

Chapter 2 presents the basic concepts of scalar, multi and many objective opti-
mization problems. Further, we review some of the methods for solving a continuous
MOP optimization problem along with some methods for MaOPs and Scalar Op-
timization Problems (SOPs). The PE method is described in detail in Chapter 3,
beginning with a general view of the state framework of this method. A whole de-
scription of the local exploration using the steering approach is further on given.
Results on several benchmark functions and one real work problem are shown in
Chapter 4. Finally, Chapter 5 presents our conclusions of this thesis along with some
ideas to be considered for future work.

Cinvestav Computer Science Department



Chapter 2

Basic Concepts

We introduce principal concepts and the necessary theoretical background to un-
derstand this work throughout this chapter. The scope of this work contemplates the
treatment of a particular class of optimization problems, MaOPs. Thus, we start to
define a SOP in Section 2.1 together with three alternatives to solve it. In Section
2.2 we address MOPs and state the definitions and optimality conditions used along
this work. We also explain the difference between SOPs and MOPs, as well as the
conflict that exists to find a suitable solution for MOPs. Due to the importance of
some methods and approaches developed to solve MOPs numerically, we describe the
most widely used, related with this work, in Section 2.3. Finally, in Section 2.4 we
deal with MaOPs and the most common approaches used to solve them.

2.1 Single Objective Optimization

In a SOP we have a unique objective function which depends on one or more
variables, f : Rn → R and it is subject to certain constrains. Then, we can write a
continuous SOP in a standard form as:

min
x∈Rn

f(x),

s.t gj(x) = 0, i = 1, ...,m,
hi(x) = 0, j = 1, ..., p,

(2.1)

where gj : Rn → R, i = 1, . . . ,m, are the inequality constraints and hi : Rn → R, j =
1, . . . , p, are the equality constraints.

5



6 Chapter 2

Definition 2.1. The set of points X = {x ∈ Rn | g(x) ≤ 0 and h(x) = 0} is called
feasible region where g : Rn → Rm and h : Rn → Rp are defined as the vector
functions of inequalities and equalities, respectively.

We assume along this work that the objective function and the constraints are con-
tinuously differentiable. Under this assumption, we define the gradient∇f(x) ∈ Rn of
a multivariable function f as the vector consisting of the function partial derivatives

∇f(x) =


δf

δx1
(x)

...
δf

δxn
(x)

 (2.2)

and the Hessian matrix ∇2f(x) ∈ Rn×n as the square matrix of the second order
derivatives

∇2f(x) =



δf

δ2x1
(x)

δf

δx1δx1
(x) . . .

δf

δx1δxn
(x)

δf

δx2δx1
(x)

δf

δ2x2
(x) . . .

δf

δx2δxn
(x)

...

δf

δxnδx1
(x)

δf

δxnδx2
(x) . . .

δf

δ2xn
(x)


. (2.3)

To solve (2.1), the task is to find a vector x∗ ∈ X , such that the function evalua-
tion at x∗ gets a minimum value f(x∗) ∈ X . That is, there is no other x ∈ X , such
that f(x) < f(x∗). Mathematically we have the following.

Definition 2.2. A point x∗ is a global minimizer of f if f(x∗) ≤ f(x) for all x ∈
X and it is a local minimizer of f if f(x∗) ≤ f(x) is satisfied within a feasible
neighborhood of x∗.

Notice that, for some problems, the value f(x∗) could be obtained for more than
one vector. This means that, if we have a feasible solution and depending on char-
acteristics thereof, then it is possible to find a set of solution vectors, such that the
function takes the minimum value for each one. However, the optimal value of the
objective function is unique.

There exist a lot of methods to solve a SOP, each one of which tries to exploit
the characteristics of a given SOP. Due to the scope of this work we will not go into
detail about these methods. However, we briefly describe three of the most common
methods for the continuous case whose concepts are useful for next sections.
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2.1.1 Line Search Strategies

The idea of this kind of methods is to find a descent direction and then to compute
a step size that produces a sufficient decrement along the given direction. In general
a iteration of this method is given by

xi+1 = xi + tν, (2.4)

where t > 0 is the step size and ν ∈ Rn is the descent direction.

Definition 2.3. At a point x ∈ Rn, a descent direction for a function f : Rn → R is
defined as a vector ν ∈ Rn such that

∇f(x)Tν < 0. (2.5)

We can solve the following problem to find the best possible step size

fν(t) = f(x+ tν). (2.6)

However, the optimization process of (2.6) may be costly. Thus, we need a pro-
cedure to find an acceptable step size.

Armijo condition allows to get a sufficient decrease in the objective function f .
This condition is given by

f(x+ tν) ≤ f(x) + c1t∇f(x)Tν, (2.7)

where c1 ∈ (0, 1). On the other hand, a rule that prevents too small steps lengths is
given by

∇f(x+ tν)Tν ≤ c2∇f(x)Tν, (2.8)

where c2 ∈ (0, 1). Equations (2.7) and (2.8) together are called the Wolfe conditions.

2.1.2 Newton Method

A Newton method iteration [2] is computed by

xi+1 = xi −∇2f(x)−1∇f(x). (2.9)

Notice that the structure of (2.9) is very similar to the line search step (2.4).
Indeed, we can consider that the direction ν is given by the negative of the gradient,
which is a descent direction, and that the step size control is provided by the inverse
of the Hessian at the current iteration xi.

The Newton method possesses some important properties, for instance, it presents
typically local quadratic convergence. However, we need the Hessian at each iteration
making the method computationally expensive. As an alternative to the above we
can use inexact Newton methods, e.g. the Newton-CG [2].
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2.1.3 BFGS Method

We can use numerical methods to approximate the Hessians, e.g. finite differences
or automatic differentiation [3]. Yet, there exist more suitable methods to update the
Hessians when we do not have this information at hand: the Quasi-Newton (QN)
methods [4]. QN methods builds a quadratic model of the problem to approximate
the Hessians at each iterations. These approximations produce at most superlinear
convergence.

Some of the QN methods use a line search strategy, where the search direction is
given by

ν = −B−1∇f(x), (2.10)

where B ≈ ∇2f(x). Notice that the the only difference with the Newton method is
the use of B instead the Hessian.

The most common method update is the Broyden-Fletcher-Goldfarb-Shanno (BFGS),
and it is given by

Bi+1 = Bi +
Biss

TBi

sTBis
, (2.11)

where s = xi+1 − xi and and y = ∇f(xi+1)−∇f(xi).

A necessary and sufficient condition to guarantee the positive definiteness of B is
the curvature condition which is satisfied by imposing the Wolfe condition (2.8) on
the step size control.

2.2 Multiobjective Optimization

The continuous MOP is defined as

min
x∈Rn

F (x),

s.t gj(x) = 0, i = 1, ...,m,
hi(x) = 0, j = 1, ..., p.

(2.12)

where F : Rn → Rk, F (x) = (f1(x), . . . , fk(x))T , fi(x) : Rn → R i = 1, . . . , k, with a
feasible region as in Definition 2.1.

A special type of inequality constraints are so called box constraints, which define
limits for each component of the vector x ∈ Rn, so box constraints have the form
ai ≤ xi ≤ bi, with a, b ∈ Rn.
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The main difference between a SOP and a MOP is the nature of the solution.
As we explained before, the solution for a SOP, if it exists, is a unique optimum
value that can be achieved by more than one point in the function domain. On the
other hand, the solution of a MOP implies finding a trade-off among all the objective
functions, and consequently, it leads to find a set of vectors instead of a single value.

The above occurs when functions are in conflict with each other (see e.g. Fig-
ure 2.1); thus, while we minimize one of the objective functions, some of the others
increase their value and vice versa. For example, if we minimize simultaneously two
monotone decreasing functions the solution x∗ ∈ X (we assume that the minimum
exists within the feasible region X ) is a unique point instead a set, due to there are
not functions in conflict.

x

f (x)

f1

f2

f3

Figure 2.1: Functions in conflict, values of functions f1, f2 and f3 have different
behavior with respect to x.

One important characteristic of MOPs is that its solution set, the Pareto Set (PS),
typically forms a (k − 1)-dimensional object where k is the number of objectives in-
volved in the MOP. Thus, it is only possible to approximate the entire set of com-
promise solutions for relatively few number of objectives (say, k = 3 or 4). However,
the vast majority of the time it is not easy to get such approximation. Therefore, it is
important to provide numerical methods to obtain subsets of representative solutions.

Further, in a real world problem, the objective functions commonly have distinct
units making them incomparable with each other. For example, we can not com-
pare a cost function versus a quality function. Even if all functions have the same
measurements, there is not a total order for vectors but only a partial order.
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A total order in R refers to that, for all a, b ∈ R, it is always possible to know if
a ≤ b. We can define a partial order for vectors as follows, given c, d ∈ Rk we say that
c ≤ d ⇐⇒ ci ≤ di ∀i ∈ {1, . . . ,m}. Therefore, we need a different way to compare
two vectors based on the values of the objectives.

For multiobjective optimization, the most commonly adopted method to compare
solutions is the one called Pareto dominance relation. This notion of optimality takes
into account the aspects that we have considered intuitively in this section. It was
originally proposed by Francis Ysidro Edgeworth in 1881 [5] and was later generalized
by Vilfredo Pareto in 1896 [6].

In order to formalize the above, we will introduce some definitions.

2.2.1 Definitions

We have two principal spaces when considering MOPs. The first one is called
decision space. This is the space formed by the variables of the problem; according
to our notation this space is within the Rn. The second one is called objective space
and it is formed by the objective functions. The image of a decision vector is in Rk.
When we solve a MOP, we must do comparisons between images of decision vectors,
namely, we must do its comparison in objective space.

Definition 2.4 (Pareto dominance). A point y ∈ X is dominated by a point x ∈ X
if fi(x) ≤ fi(y) ∀ i ∈ {1, . . . , k} and fj(x) < fj(y) for some j ∈ {1, . . . , k}. In this
case we use the notation x ≺ y, otherwise we say that y is non dominated by x.

Definition 2.5. Let x∗ ∈ X be a feasible point of (2.12), x∗ is called weakly Pareto
optimal if @ x ∈ X s.t. fi(x) < fi(x

∗) ∀ i = 1, . . . , k.

Definition 2.6. A decision vector x∗ ∈ X is Pareto optimal with respect to (2.12)
if there does not exist another decision vector x ∈ X such that x ≺ x∗.

Definition 2.7. A point x∗ ∈ X is locally (weak) optimal if it is (weak) optimal in a
feasible neighborhood of x.

In Figure 2.2 we show a representation of a set of compromise solutions for two
functions, fi(x) and f2(x), which depend of the variable x ∈ R; each function fi takes
its minimum value at x∗i . As we can see, the line segment connecting x∗1 and x∗2 consist
of the optimal values.

We can see in Figure 2.3 examples of Pareto dominance, weakly Pareto optimality,
and Pareto optimality. This plot represents a surface in objective space for two
objective functions, f1(x) and f2(x). The points p2 and p3 are Pareto optimal. As we
can see, there is not another point with a less value in both components; the point
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x

f (x)

f1

f2

x∗1 x∗2

Figure 2.2: We illustrate the idea of compromise solutions. In this graph, we
have optimal values between x∗1 and x∗2, as we can see, values of functions from
x∗1 to x∗2 present a trade-off for both.

p1 is weakly Pareto optimal because the point p2 dominates it, even so, p1 is not
dominated by the point p3; for its part, the point p4 is dominated by the other three
points.

Definition 2.8. The set of optimal points P for (2.12),

P = {x ∈ X | @ y ∈ X : y ≺ x}

is called PS.

Definition 2.9. The set of images F for (2.12),

F = {F (x) ∈ Rk | x ∈ P}

is called Pareto Front (PF).

Examples of PS and PF are shown in Figure 2.2 and Figure 2.3, respectively.
In Figure 2.2 the PS is the line segment connecting x∗1 and x∗2. Whereas that, in
Figure 2.3, the PF is represented by the line from F (p2) to F (p3).

A large variety of methods has been developed to solve MOPs. These methods
try to get a set of optimal solutions and they focus on two principal aspects. On one
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f1(x)

F (p3)

F (p4)F (p2)

F (p1)

f2(x)

Figure 2.3: We show in this figure a 2D plot in objective space with four points,
p1 is a weakly Pareto optimal point, p2 and p3 are Pareto optimal points, and
finally, p4 is a dominated point in Pareto sense.

hand, it is important to generate points in all the PF, that is, a good extension; on
the other hand, an uniform distribution along the PF is desirable. Nevertheless, as
we will show in Section 2.3, according to the problem, it is sometimes necessary to
adopt a different approach to solve a MOP.

2.2.2 Optimality Conditions

A first order condition of optimality for differentiable MOPs is given by the
Karush-Kuhn-Tucker (KKT) equations, named after the work of Karush [7] and Kuhn
and Tucker [8].

Theorem 2.1. Suppose that x∗ is a local solution of (2.12). Then, there exist La-
grange multipliers α ∈ Rk, λ ∈ Rp and γ ∈ Rm such that the following conditions are
satisfied

k∑
i=1

αi∇fi(x∗) +

p∑
i=1

λi∇hi(x∗) +
m∑
i=1

γigi(x
∗) = 0 (2.13a)

hi(x
∗) = 0, i = 1 . . . p, (2.13b)

gi(x
∗) ≤ 0, i = 1 . . .m, (2.13c)

αi ≥ 0, i = 1 . . . k, (2.13d)

k∑
i=1

αi = 1, (2.13e)

γi ≥ 0, i = 1 . . .m, (2.13f)

γigi(x
∗) = 0, i = 1 . . .m. (2.13g)
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One important aspect to outline is that given a KKT point x∗ its associated weight
vector α is normal to the linearization (tangent) of the Pareto front at F (x∗) [9]. The
above together with the following definition are a fundamental concepts for this work.

Definition 2.10. A point x̂ is is a critical point of F if rank(J(x̂)) < k, where J is
the Jacobian of F at an arbitrary point x defined as

J(x) =

 ∇f1(x)T

...
∇fn(x)

 . (2.14)

Then, non critical points are those where the Jacobian has full rank. Note that,
this criteria applies for both minimization and maximization problems.

Finally, an important aspect in the context of our work is that Pareto points
typically form a (k− 1)-dimensional differentiable manifold [9]. This and subsequent
applications will be subject to an in-depth discussion throughout the thesis.

2.3 Solving a MOP

In this section we describe the most important methods related to the continua-
tion method proposed in this work. We focus on continuation methods, interactive
methods, and reference point methods for MOPs.

2.3.1 Continuation Methods

Continuation methods have been used to solve MOPs. These methods have the
advantage that they perform a movement along a set of interest. To achieve this, we
need an initial optimal solution. Starting from this point we compute a predictor,
which is a movement according to certain criteria, and then we correct this point to
a new optimal solution. The consideration of both the predictor and in the correc-
tor, gives rise to different methods, e.g, Hillermeier method [9], the Directed Search
Predictor-Corrector method [10], and the Pareto Tracer refer a continuous case; and
the direct Zigzag method [11] for the discrete case, no consider in this work.

Method by Hillermeier

Many predictor-corrector methods are based on the Implicit Function Theorem
[12]. We briefly state the main steps of classical predictor-corrector methods for
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tracing one-dimensional solution. According to this theorem if x is a solution of

H(x) = 0, (2.15)

where H : RN+1 → RN and rank(H ′(x)) = N , then there exists a value ε > 0 and a
curve c : (−ε, ε)→ RN+1 such that c(0) = x and

H(c(s)) = 0 ∀ s ∈ (−ε, ε). (2.16)

Differentiating we obtain

H ′(c(s))c′(s) = 0. (2.17)

This means that we can get the tangent vectors c′(s) computing the kernel vectors
of H ′(x), This can be done via a QR factorization of the matrix H ′(x)T , i.e.

H ′(x)T = QR (2.18)

for an orthogonal matrix Q ∈ R(N+1)×(N+1) = (q1, . . . .qN+1) and a right upper tri-
angular matrix R ∈ R(N+1)×N . Doing so, the last column vector qN+1 is a kernel
vector.

Finally, the orientation of the curve can be control led be monitoring the sign of

(det)

(
H ′(x)
qTN+1

)
. (2.19)

Thus, we can compute a predictor point p along the linearized solution curve
following the same orientation. Now we can get back to a curve c(x) using (2.15) and
p as starting point e.g. via a Gauss-Newton or a Levenberg-Marquardt method [13].

A method was developed by Hillermeier in 2001 [9], for the multiobjective opti-
mization context by considering the auxiliary function F̂ : Rn+k → Rn+1,

F̂ (x, α, λ) =

 ∑k
i=1 αi∇fi(x) +

∑p
i=1 λi∇hi(x)

h(x)∑k
i=1 αi − 1

 = 0. (2.20)

The set of KKT points of a non linear equality constrained is contained in the
zero set of F̂ , which motivates the continuation along F̂−1(0). We show a geometrical
idea of this method in Figure 2.4.
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Figure 2.4: We show in this figure the α vector, which is orthogonal to the
linearization PF at the point F (x∗) (dotted line).

The Hillermeier method proceeds as the general technique described above, but
instead of computing the determinant given in (2.19), authors check the following
condition for two consecutive solutions

[xi − xi+1]q ≥ 0, (2.21)

where xi, xi+1 ∈ Rn+k+p and q is the tangent vector.

Also, the author suggest a suitable step size which guarantees a uniform spread
of the solutions on the PF. That is, for two consecutive solutions we want

‖F (xi)− F (xi+1)‖ ≈ τ, (2.22)

where τ > 0 is the desirable spread. The suggested step size is given by

t =
τ

‖Jνd‖
. (2.23)

Pareto Tracer Method

The idea of the Pareto Tracer method [14] is to separate the decision and weight
space which is not done in the Hillermeier method. In the compose (x, α, λ) space
(see Equation 2.20), the non linearity may increase, e.g, if the PS is linear, then the
related solution set does not have to be linear in the compose space. Thus, when
we separate x and α spaces the non linearity comes to decrease and it implies that a
corrector step is not needed for linear PSs. The above also implies a reduction of the
total computational cost. However, the most important aspect for this work about
this separation is that this make possible to find a relationship between a direction
in objective and decision space, which is the fundamental part for this work.
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We first consider the following unconstrained MOP

min
x∈Rn

F (x), (2.24)

and describe the sequel predictor and corrector steps.

Predictor. The typical task for the computation of predictor points in continua-
tion methods is to determine the tangent space to the given set. In order to do this,
we take by KKT conditions

F̂ (x, α) =

( ∑k
i=1 αi∇fi(x)∑k
i=1 αi − 1

)
= 0. (2.25)

Differentiating we obtain

F̂ ′(x, α)

(
ν
µ

)
=

( ∑k
i=1 αi∇2fi(x) ∇f1(x) . . . ∇fk(x)

0 1 . . . 1

)(
ν
µ

)
= 0 (2.26)

The second equation of (2.26) yields,

k∑
i=1

µi = 0. (2.27)

Having a µ ∈ Rk that satisfies (2.27) we obtain

k∑
i=1

αi∇2fi(x)ν = −
k∑
i=1

µi∇fi(x) = −JTµ, (2.28)

and it is possible to find a relationship between ν and µ, i.e., a relationship between
the objective space and the variable space:

νµ = −W−1
α JTµ, (2.29)

where Wα ∈ Rn×n is given by

Wα :=
k∑
i=1

αi∇2fi(x). (2.30)

If rank(J) = k − 1, we can compute the set of tangent vectors via a QR factor-
ization of α

α = QR = (q1, q2, . . . , qk)R, (2.31)
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where qi ∈ Rk and R ∈ Rk×1. Let Q2 denote the matrix formed by the last k − 1
columns vectors of Q

Q2 = (q2, . . . qk). (2.32)

this matrix is an orthonormal basis of the linearized Pareto front at F (x) (see Fig-
ure 2.5).

α

span{Q2}

F (x∗)
P F

Figure 2.5: We show a plane formed by the tangent vectors of the PF at the
point F (x∗) via QR factorization.

Given a direction ν ∈ Rn in decision space, the corresponding movement in ob-
jective space for infinitesimal step sizes is given by

d = Jν. (2.33)

The orientation of the movements along the tangent space is related to (2.33).
Thus, the task is to find the proper orientation vector d ∈ Rk that satisfies

Jνµd = d. (2.34)

The vector νµ can be obtained with the vector µd that solves:(
−JW−1

α JT

1 . . . 1

)
µd =

(
d
0

)
. (2.35)

So, the predictor is given by the following expression,

p = x∗ + tνµ. (2.36)

where t is the step size given by Equation (2.23) as the Hillermeier method.
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Corrector. The goal of the corrector phase is to ensure that the resulting solution
is on the efficient set.

We apply the Newton method for MOPs [15] as corrector. The Newton direction
is defined as the solution to:

min
(ν,δ)∈Rn×R

δ

s.a ∇fi(x)Tν + 1
2
νT∇2fi(x)ν ≤ δ, i = 1, ..., k,

(2.37)

where δ serves as a measure of the expected decrease in objective space produced
by a line search in direction ν in parameter space. An acceptable step size may
be decided by a backtracking procedure with a modification of the (componentwise)
Armijo condition.

Handling Equality Constrains Now we consider the following MOP:

min
x∈Rn

F (x),

s.t hi(x) = 0, i = 1, ..., p.
(2.38)

In the presence of equality constraints, the follow KKT system has to be consid-
ered; let F̃ : Rn+k+p → Rn+p+1,

F̃ (x, α, λ) =

 ∑k
i=1 αi∇fi(x) +

∑p
j=1 λj∇hj(x)

h(x)∑k
i=1 αi − 1

 = 0. (2.39)

Now we can proceed as in the unconstrained case. We define:

Wα,λ :=
k∑
i=1

αi∇2fi(x) +

p∑
j=1

λj∇2hj(x) ∈ Rn×n, (2.40)

and

H :=

 ∇h1(x)T

...
∇hp(x)T

 ∈ Rp×n. (2.41)

Thus, we can write F̃
′

as:

F̃
′
(x, α, λ) =

 Wα,λ JT HT

H 0 0
0 1, . . . , 1 0

 . (2.42)

Cinvestav Computer Science Department



Basic Concepts 19

Predictor. In order to compute a kernel vector of (2.42), we consider ν ∈ Rn,
µ ∈ Rk and ξ ∈ Rp, such that: Wα,λ JT HT

H 0 0
0 1, . . . , 1 0

 ν
µ
ξ

 =

 0
0
0

 . (2.43)

The choice of a vector µ which satisfies (2.35) allows to reduce (2.43) to:(
Wα,λ HT

H 0

)(
νµ
ξ

)
=

(
−JTµ

0

)
. (2.44)

If rank(Wα,λ) = n and rank(H) = p, then the matrix on the left hand side is
regular and so the solution of (2.44) is unique.

Corrector. For the corrector step, we need a modification of the Newton method
for the given MOP. A suggestion is to modify the Newton direction via:

min
(ν,δ)∈Rn×R

δ

s.a ∇fi(x)Tν + 1
2
νT∇2fi(x)ν ≤ δ, i = 1, ..., k.

hi(x) +∇hi(x)Tν = 0, i = 1, ..., p.

(2.45)

The additional restriction arises from applying the Newton method to h. The
following result shows how we can view this modification as a particular penalization
method. The new penalized MOP is given by:

min
x∈Rn

Fh : Rn → Rk, (2.46)

where Fh =
(
fh1 , . . . , f

h
k

)T
, and

fhi (x) = fi(x) + CP (x), (2.47a)

P (x) =
1

2

p∑
i=1

hi(x)2 =
1

2
‖h(x)‖2. (2.47b)

Proposition 2.1. Let x ∈ Rn be given and the f
′
is be strictly convex, and (ν∗, δ∗) be

a solution of (2.45). Then

(a) If ν∗ = 0, then δ∗ = 0 and x is a KKT point of (4.3).

(b) If ν∗ 6= 0 and δ∗ < 0, then ν∗ is a descent direction of (2.46) for C = 0 (i.e. a
descent direction of the unconstrained MOP (2.12)).
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(c) If ν∗ 6= 0 and δ∗ ≥ 0, then ‖h(x)‖2 6= 0 and ν∗ is a descent direction of (2.46)
for

C >
maxi=1,...,k∇fi(x)Tν∗

‖h(c)‖2
≥ 0. (2.48)

As we compute descent directions of (2.46), there are 3 possibilities: (i) we can
improve F but not P , (ii) we can improve both, and (iii) we can improve P but not
F . This is reflected in the step size control. A component-wise Armijo condition is
used together with the following function:

F̃h(x) =


F (x) δ < 0 y ‖h(x)‖2 = 0
(F (x), P (x))T δ < 0 y ‖h(x)‖2 6= 0
P (x) δ ≥ 0

(2.49)

Notice that if δ < 0, then (i) or (ii) is satisfied. We know, by Proposition 2.1, that
ν∗ is a descent direction of F . If ‖h(x)‖2 = 0, then we can not further improve P ,
so this is not considered. Now, if ‖h(x)‖2 6= 0, then F and P can be simultaneously
decreased through a linear search in direction ν∗. If δ ≥ 0, then at least one of the
objectives increases its value with the direction ν∗.

By Proposition 2.1, we have ‖h(x)‖2 6= 0 and ν∗ is a descent direction of (2.46)
for some C > 0. The choice of a step size, which produces a decrement enough in P ,
depends of C � 0. So, we take as an acceptable step size a t ∈ R+, which satisfies:

F̃h(x− tν) ≤ F̃h(x) + ct∆F̃h(x)ν. (2.50)

Here, δ is a measurement of the expected decrement of F in objective space and
the derivative of P in the direction ν∗ is given by:

h(x)THν∗ = −‖h(x)‖2 ≤ 0.

Thus, we can use −‖h(x)‖2 to measure the possible reduction as a penalization.
The term ∆F̃h of (2.50) represents the expected decrement of F̃h in objective space,
and it is given by:

∆F̃h(x) =


δe δ < 0 y ‖h(x)‖2 = 0
(δe,−‖h(x)‖2)T δ < 0 y ‖h(x)‖2 6= 0
−‖h(x)‖2 δ ≥ 0,

(2.51)

where e ∈ Rk e = [1, . . . , 1].
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Handling Inequality Constraints We focus on the box constraints case

min
l≤x≤u

F (x), (2.52)

where l, u ∈ Rn are the lower and upper bounds, respectively.

Predictor. We can include the set of active constraints as equality constraints
to solve 2.52, i.e.

−xi + li = 0, i ∈ Il

xi − ui = 0, i ∈ Iu,

where

Il = {i| − xi + li > −ε, i = 1, . . . , n}

Iu = {i|xi − ui > −ε, i = 1, . . . , n}

for some ε ∈ R+, and Il,u = {i|i ∈ Il o i ∈ Iu}. Hence F̃ : Rn+k+r → Rn+r+1 is
given by

F̃ (x, α, ρ, %) =


∑k

i=1 αi∇fi(x)−
∑

i∈Il ρiei +
∑

i∈Iu %iei
(−xi + li)i∈Il
(xi − ui)i∈Iu∑k

i=1 αi − 1

 = 0, (2.53)

where ei is the i− th canonic vector and r = |Il,u|. We define Il,u ∈ Rr×n as

[Il,u]ji =

{
−eTi i ∈ Il
eTi i ∈ Iu

, j = 1, . . . , r, (2.54)

where [Il,u]ji denotes the j − th row of Il,u. Notice that

F̃
′
(x, α, ρ, %) =

 Wα JT ITl,u
Il,u 0 0
0 1, . . . , 1 0

 . (2.55)

Now we must compute a kernel vector of (2.55). Let ν ∈ Rn, µ ∈ Rk and η ∈ Rr

be vectors, such that Wα JT ITl,u
Il,u 0 0
0 1, . . . , 1 0

 ν
µ
η

 =

 0
0
0

 . (2.56)
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A µ vector which satisfies (2.35) reduces (2.56) to(
Wα ITl,u
Il,u 0

)(
ν
η

)
=

(
−JTµ

0

)
. (2.57)

If rank(Wα) = n and rank(Il,u) = r, then we have a regular matrix and the
solution of (2.57) is unique. We obtain by (2.57)

Wαν + ITl,uη = −JTµ (2.58a)

Il,uν = 0, (2.58b)

and by (2.58b), we notice that νi = 0 for i ∈ Il,u. So, it is enough to compute the
jth components of ν, such that j /∈ Il,u. In addition, we know that (ITl,uν)j = 0 for
j /∈ Il,u, then

W Ic
α ν

Ic = −JTIcµ, Ic := {1, . . . , n}\Il,u, (2.59)

where W Ic
α comes to remove i − th row and column of Wα ∀ i ∈ Il,u. Analogy, νIc

comes to remove i− th element of ν and JIc comes to remove i− th column of J .

Corrector. Now, the Newton direction is computed to solve

min
(ν,δ)∈Rn×R

δ

s.t ∇fi(x)Tν + 1
2
νT∇2fi(x)ν ≤ δ, i = 1, ..., k.

−νi − xi + li ≤ 0, i ∈ Il.
νi + xi − ui ≤ 0, i ∈ Iu.

(2.60)

We assume that xi is not active respect with to both its upper and lower bound
at the same time. For the step size control, we use again a component-wise Armijo
condition, but in this case, we impose the following upper limit:

tmax = min
i=1,...,n

ti, (2.61)

where

ti =


li−xi
νi

νi < 0
ui−xi
νi

νi > 0, i = 1, . . . , n.

+∞ νi = 0.

(2.62)

Directed Search Predictor-Corrector Method

This method defines a way to steer the search for continuous problems. We need
a direction in objective space and mapping it to parameter space [16]. The main idea
of this method is as follows.
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Let be x0 ∈ Rn a point in parameter space with rank(J(x0)) = k and d ∈ Rk a
given vector which representing a desired search direction in image space. Then, a
search direction ν ∈ Rn in decision space is sought such that for y0 := x0 + tν, where
t ∈ R+ is the step size (i.e., y0 represents a movement from x0 in direction v), it
holds:

lim
t→0

fi(y0)− fi(x0)
t

= 〈∇fi(x0), ν〉 = di, i = 1, ..., k. (2.63)

Using the Jacobian of F , Eq. (2.63) can be stated in matrix vector notation as

J(x0)ν = d. (2.64)

Hence, such a search direction ν can be computed by solving a system of linear
equations. Since typically the number of decision variables is (much) higher than the
number of objectives for a given MOP, i.e., n� k, system (2.64) is (probably highly)
underdetermined, which implies that its solution is not unique. One possible choice
is to take

ν+ = J(x0)
+d, (2.65)

where J(x0)
+ ∈ Rn×k denotes the pseudo inverse1 of J(x0). A new iterate x1 can

be computed as the following discussion shows: given a candidate solution x0, a new
solution is obtained via x1 = x0 + tν, where t > 0 is a step size and ν ∈ Rn is a
vector that satisfies (2.64). Among the solutions of system (2.64), ν+ is the one with
the smallest Euclidean norm. Hence, given t, one expects for a step in direction ν+
(decision space) the largest progress in d-direction (objective space).

Predictor Given a KKT point x0 ∈ Rn, it is known that its associated weight
vector α is orthogonal to the linearized Pareto front at F (x0) [9] and hence any
direction orthogonal to α could be a promising predictor direction. To compute such
a direction a QR factorization on α can be performed:

α = QR = (q1, . . . , qk)(r11, 0, . . . , 0)T , (2.66)

where Q ∈ Rk×k is an orthogonal matrix and R ∈ Rk×1 with r11 ∈ R\{0} is an upper
triangular matrix. Since by Eq. (2.66) α = r11q1, it follows that a well spread set of
directions can be taken from any of the normalized search directions νi such that:

J(x0)νi = qi+1, i = 1, . . . , k − 1. (2.67)

To orientate the curve (i.e., to determine the signum of p) the change in one of
the objective values can be used. For this, the signum of the according entry of the

1If the rank of J := J(x0) is k (i.e., maximal) the pseudo inverse is given by J+ = JT (JJT )−1.
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the direction vector q2 can be taken. If, for instance, an improvement according to f2
is sought, then

p = x0 − sgn(q22)
tν2
||v2||

, (2.68)

where t is the chosen step size.

Corrector Given a predictor p, the subsequent solution along the curve can be
computed by solving

x(0) = x0 ∈ Rn

~̇x(t) = J(x(t))+d, t > 0.
(2.69)

Using p as initial value and choosing d = −α0, i.e. the negative of the weight from
the previous solution x0, leading to a new solution x1. The new associated weight
vector α1 can be updated as follows:

α1 = min
λ∈Rk


∥∥∥∥∥

k∑
i=1

λi∇fi(x)

∥∥∥∥∥
2

s. t. λi ≥ 0, i = 1, . . . k,
k∑
i=1

λi = 1

 . (2.70)

Figure 2.6 displays a single iteration of the DS method, p stands for the predictor
direction, while c stands for the corrector direction. It can be seen from the images
that even though a movement along a linearization of the Pareto front at f(x0) is
desired, it is not always possible to move in such direction and hence predictors usually
end up above the Pareto front, making the use of corrector steps necessary in most
cases.

Figure 2.6: Example of the Directed Search predictor-corrector method.
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2.3.2 Reference Point Methods

Usually, the solution of a MOP involves to find a set of non dominated vectors,
i.e., vectors whose image can not be improved by other vectors in all its components.
We commonly want to obtain a set that satisfies certain properties, e.g. that the
image of this set has a uniform spread along the whole PF of the given problem.

However, there are real-world problems in which a DM has knowledge about
the problem or he/she wants to obtain optimal solutions with certain characteristics
instead of solutions in the whole PS. The reference point methods are useful for these
scenarios. The idea is to get the closest solution to a given vector, usually infeasible,
which is a guess of the DM. This kind of methods, where the DM has an active
participation in the solution process, are called interactive methods. The difference
between a type of interactive method and other ones is the kind of information asked
to the DM [1].

Reference Point Problem

We can find different alternatives, which consider one reference point at the same
time, in order to get a solution. An example is the classic reference point method,
which was presented by Wierzbicki [17] in 1981. This method uses a given reference
point, that represents the preferences of the DM, to solve a SOP. The solution of
the SOP is presented to the DM and, if the solution is not good enough for the DM,
then a new reference point is proposed. The process continues until the DM is in
agreement with the solution.

The SOP in the reference point method employs an achievement function, which
we will define in the next section. Other methods consider different ways to use a
reference point, e.g, light beam search [18] and GUESS [19].

Achievement Functions

Most of the achievement scalarization functions are based on the Tchebycheff
metric. For this work, we use an appropriate achievement scalarizing function defined
as follows.

Definition 2.11. The augmented weighted Tchebycheff scalarizing function is defined
by:

szt(x) = max
i=1,...,k

{λi|fi(x)− zti|}+ ρ

k∑
i=1

λi (fi(x)− zti), (2.71)

where zt is a reference point, ρ > 0 is an augmentation coefficient, and λ = (λ1, . . . , λk)
is a vector of weights, such that ∀i λi ≥ 0 and, for at least one i, λi > 0.
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The exploration of the objective space, in most of the reference points methods,
is made by moving the reference point at each iteration. That is, weights do not
define preferences, but they are mainly used for normalizing each objective function.
Usually, the weights are set as:

λi =
1

znadi − zutpi

,

where znad and zutp are the nadir and the utopian point respectively.

The utopian point is a vector formed by the minimum of each objective function,
znadi = min fi(x) | x ∈ X ∀ i ∈ {1, . . . , k}; this point is generally infeasible. The
nadir point is a vector formed by the maximum of each objective function on the PF,
zutpi = max fi(x) | x ∈ P ∀ i ∈ {1, . . . , k}. Typically, the estimation of the nadir point
is more complicated than the estimation of the utopian point.

The weighted Tchebycheff scalarizing function poses some convenient properties
over other scalarizing functions. As proved in [1] by using the augmented version of
this function we can find any Pareto optimal solution. It is important to mention
that the DM can provide both feasible and infeasible reference points.

Dynamic Reference Point Problem

As we have described, reference point methods take an only point at the same
time to find a solution. However, the scenario in which a reference point changes over
time has been poorly treated.

Let z(t) be a time-dependent curve and consider the MOP in the standard form
(2.12). The DRPP is to solve,

min
x∈X

szt(x), (2.72)

for a set of points z(ti), i = 0, . . . ,m. Where szt(x) is an achievement scalarizing
function.

The continuation method developed in this work is capable of obtaining a sequence
of points x∗i , . . . , xm, starting from an initial solution x∗0, such that x∗i is solution of
(2.72) for each z(ti+1) respectively. So if we have a solution x∗i for a reference point
z(ti), then we can compute a predictor for this point with a continuation method and,
after that, to obtain the next solution x∗i+1 solving the reference point problem for
z(ti+1), as the corrector. A geometrical idea of the DRPP is depicted in Figure 2.7.

Cinvestav Computer Science Department



Basic Concepts 27

0 1 2 3 4 5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

F (PQ)

z(t)

z(0)

z(1)

f1

f 2

Figure 2.7: Example for the DRPP. The time curve is denoted by z(t) and the
PF by F (PQ). Each solution is joined by a scatter line with the point in the
time curve and they are indicated with a dot. The initial point is z(0), whereas,
the final point is z(1).

2.3.3 Interactive Methods

For its part, a different class of interactive methods, the learning-oriented methods,
exploit the preferences of the DM to direct the search and reduce the number of
solutions to consider. Such methods are useful when the set of optimal solutions is
very large, for example, MaOPs. A wide variety of these interactive methods have
been developed in recent years [20].

Pareto Navigator Method

The Pareto Navigator [21] is an interactive learning-oriented method for nonlinear
multiobjective optimization, which uses a set of optimal solutions to create a polyhe-
dral approximation of the PF. The DM can direct the search along this polyhedral
approximation according to her/his preferences. Once an interesting region has been
identified, the DM can continue with another method to get an optimal solution.

It is important to stand out that the navigation is not along optimal solutions and
that we need a set of initial optimal solutions to use this method, which is composed
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by two principal phases: the initialization and the navigation.

1. Initialization. Given a set of optimal solutions, we construct a polyhedral in
objective space.

2. Navigation. According the preferences of the DM, we steer along the poly-
hedral until reach a good zone for the DM. Now we can use an achievement
function to get the closest optimal solution to this zone.

If the DM is not satisfied, we repeat the process, adding the new solution of the
initialization phase.

NIMBUS Method

NIMBUS [22] is a system for non-linear optimization problems. It has, as principal
characteristic, an on-line GUI to solve MOPs. Te GUI allows the user to easily defines
preferences for a search. The method used by this system to solve the MOP is an
evolutionary algorithm, so it is a robust system.

Also, this system provides to the user with different kinds of plots to visualize
results for problems with many objective functions.

Nautilus Method

This is an interactive method, which is based on the assumption that the DM
prefers to gets better solutions in each iteration, instead to sacrifice the value of some
function, then the movement stars in the nadir point.

2.4 Many-objective Optimization

and Evolutionary Algorithms

The notion of many-criteria optimization was used for the first time in [23]. Math-
ematically, a MaOP is defined in the same way as Equation 2.12 but with k > 3. Thus,
described methods in Section 2.3 can be used to it, but these mathematical techniques
compute only one solution at each execution.

However, another approach to work with high dimensional problems is the Evo-
lutionary Optimization. This approach considers Genetic Algorithms and different
population algorithms. A thorough survey on multiobjective evolutionary algorithms
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for MaOPs can be found in [24]. There are tables and some graphs with the most
important aspects of the considered methods as the maximum number of treated
objectives and tests functions used.

We can classify the methods for the treatment of MaOP in two groups. We will
describe brief those groups:

i Methods using alternative preference relations:

• Crisp. An example of this kind of method is provided in [25]. Here, authors
propose to use the Preference Ordering, a generalization of Pareto optimality
which uses two more stringent definitions of optimality: Efficiency of Order
and the Efficiency of order k with degree z, as a ranking criterion in the
framework of NSGA-II [26]. Tests were made in this paper with problems of
up to 8 objective functions.

• Fuzzy. A fuzzy relation is introduced in [23]; it is based on the number of
components: bigger, smaller and equal between two vectors. We can find
in this paper an expression for the portion e in a M-dimensional criteria
domain, such that the dominance concept classifies as equivalent solutions,

e =
2M − 2

2M
. Thus, Pareto optimal definition is not effective for MOPs.

ii Methods transforming the original MaOP into a SOP:

• Based on scalarization functions,

– Decomposition based. The most famous method is MOEA/D [27]; this
method decomposes the original problem into a set of scalar optimiza-
tion problems, a scalarization function with different weights for each
individual is assigned. In the original paper, the method is tested with
until 4 objective functions.

• Indicator based. A method to approximate the value of the Hypervolume
(HV) indicator was developed in [28]. The idea is to use a Monte Carlo
algorithm to estimate values of the HV for a large number of objectives.

• Based on dimensional reduction techniques. Two kinds of objective reduc-
tion, linear objective reduction and nonlinear objective reduction, are pre-
sented in [29]. Both are made after to get a set of nondominated solutions
with some MOEA, the idea is to consider the correlation of the solution via
an eigenvalue analysis to identify the set of important objectives. Tests of
this approach include problems with up to 50 objective functions.

• Based on space partitioning. ε Ranking-Evolutionary Multiobjective Opti-
mizer (εR-EMO) [30]; this method takes the basis of the NSGA-II [26]. It
uses a partition strategy to define a schedule of subspace sampling and an
adaptive ε-ranking procedure to re-rank solutions in each subspace. The
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number of solutions to be considered at each partition and the number of
generations before creating a new partition is set by the user.

Additionally to the aforementioned methods and classifications, we present the
following methods as the most relevant ones.

HV values

• S-metric Selection-EMOA (SMS-EMOA) [31]. The aim of this method is to
maximize the HV. The former selection criterion is the non-dominated sorting
procedure and the latter one is the HV, if the change of certain individual by a
new one improves the HV, then this change is preserved.

• Hypervolume Estimation Algorithm for Multi-objective Optimization (Hype)
[32]. As in [28], the idea is to approximate the HV indicator. Hype uses the
concept of environmental selection to create a new population from the best
solutions in the union set of the parent and offspring populations; this allows
us to estimate the HV value by sampling solutions in different fronts. In this
work, test problems with up to 50 objectives are considered.

Large Populations

• An survey about MOEA/D and NSGA-II with large pupulation, e.g. 10,000
individuals, is presented in [33].

• Dynamical Multiobjective Evolutionary Algorithm (DMOEA) [34]. This method
is based on the principle of the minimal free energy in thermodynamics. The
method defines a fitness function, which considers three aspects: the Pareto
rank value of the individual, a function analog to the temperature and the
crowding distance [26].

• Grid-Based Evolutionary Algorithm (GrEA) [35]. This method tries to strengthen
the selection pressure toward the optimal direction while maintaining an exten-
sive and uniform distribution among solutions with the help of a grid. Three
grid-based criteria, based on grid dominance and grid difference, are included
to compute the fitness of individuals.

Dimension Reduction

• Pareto Corner Search Evolutionary Algorithm (PCSEA) [36]. This algorithm
does a dimensionality reduction searching corners of the Pareto front. Authors
identify two classes of corners. The minimization is made using the L2 norm and
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solutions that minimize either one of the objectives or the rest of the objectives
simultaneously are preferred. The dimensionality analysis for the reduction
is performed using a heuristic technique, which considers a rate between the
number of non-dominated solutions in a reference set and the number of non-
dominated solutions corresponding to the objective set obtained after omitting
certain individual from the set.

We considered in this section the mathematical background and the related work
in order to present, in Chapter 3, a continuation method for the treatment of MaOPs.
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Pareto Explorer

In this chapter we describe the general framework of the PE which is conceived as a
global/local exploration tool for the treatment of MaOPs. We discuss the motivation
about this computational tool in Section 3.1.

The PE consists of two principal phases. The first phase is about how to obtain
a global optimal solution for a given MaOP, which is explained in Section 3.2. The
second phase is concerning to the local exploration of the optimal solutions both in
objective and decision spaces.

The local exploration with PE has two different approaches which are detailed
in Sections 3.3 and 3.4. On one hand, we consider the search of optimal solutions
around an initial optimal solution. On the other hand, we consider the steering along
a given direction, which is the main contribution of this work.

3.1 Motivation

As stated in Section 2.3, the solution set of a MOP typically forms a (k − 1)-
dimensional manifold where k is the number of objectives involved in the given MOP.
In practice, it is in most cases desirable to to attain a solution set which covers the
entire PF uniformly.

There exist different performance indicators use to compare the quality of the
solution set obtained by certain algorithm. These indicators usually map the PF to
a single value. Examples of performance indicator are the the Generational Distance
[37], the Inverted Generational Distance [38], and the Averaged Hausdorff Distance
(∆p) [39].
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In the practice we can obtain good values for the performance indicators with a
solution set of few elements of a given MOP, provided that, these elements present
an uniform distributions on the PF. However, if we want to obtain a similar accuracy
for a problem with more objectives, that is, a MaOP, then we need to increase the
number of elements in the solution set.

Notice that, although for a MOP with k = 2 a solution set with 50 uniform spread
elements can produce good indicator values. For a MOP with three objectives (k = 3)
this is may be not enough. If we consider that for the case k = 2 we have 50 = 50k−1

solutions, then for a k = 3 we need 502 = 2500 solutions. Thus, if we have a MaOP
with k = 10 this means to compute 509 solutions which is computationally costly. In
addition, when the MaOP involves a DM the rating of all these solutions it is not
feasible.

Reference point methods (see Section 2.3.2) are an alternative to treat a given
MaOP. However, a unique solution may be not so useful for the DM. On the
other hand, some of the evolutionary algorithms for MaOP (see Section 2.4) allow
to indicate the DM preferences but actually the DM has not interaction with the
obtained solutions at real time. That is, the algorithm must finish and then the DM
evaluates the obtained solutions; if the DM identifies a region of interest between
two points, then the algorithm or another method is executed again until the DM is
satisfied, which requires time and computer resources.

The two phases of PE arise to provide an efficient tool capable to solve the MaOP
considering the DM preferences (computing initial solution) and providing his/her an
interaction in real time (local exploration).

3.2 Computing an Initial Solution

The first step of PE consists of computing a global optimal solution. This is
necessary to star with the next phase. In this work we compute the initial optimal
solution via to different methods.

The former is the Newton method for MOPs, which is used as the corrector
step of the Pareto Tracer method (see Section 2.3.1). This approach has the issue
that Newton method for MOPs is not a global method and it does not consider the
preferences of the DM. However, when we do not have an idea about the given
problem, we can use this method as a efficient way to get an initial local solution.

The latter is the reference point problem (see Section 2.3.2) using the Tcheby-
cheff scalarizing function, given by Equation (2.71). Here the preferences of the DM
are considered by the chosen reference point used to solve Equation (2.71) which
guarantees an staring optimal point close to a region of interest.
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Nevertheless, PE contemplates this phase with a global solver , e.g. an evolution-
ary algorithm, which takes into a consideration the DM preferences and also provides
a set with a few elements on different regions of the PF and PS to star with the local
search (see Section 2.4). We provide more details of the future work in Chapter 5.

3.3 Local Complete Exploration

The first scenario is that we have an initial optimal solution and we want to
find several well spread other solutions around this one. We describe this approach
without going into details, even though it is an important part of the PE, due to it
is out of the scope of this work.

The neighborhood exploration can be done both in objective and decision spaces.
Let be x∗ ∈ Rn be the initial optimal solution. The idea is to obtain N optimal
neighbors xi i = 1, . . . , N with a good distribution on the PS or PF, depending on
the selected space. In broad strokes the procedure is as follows:

1. Define the best possible distribution around x∗ for a search in the decision space
or around F (x∗) for a search in the objective space.

2. Use the appropriate predictor step of the Pareto Tracer (depending on the
constraints) to find the corresponding µi, i = 1 . . . , N, for each vector on the
previous computed distribution.

3. Compute ti, i = 1, . . . , N , using (2.23). Here, τ is the radius of the neighbor-
hood.

4. Compute pi = x∗ + tiνi, i = 1, . . . , N .

5. Compute xi, i = 1, . . . , N , by using the appropriate Newton method starting
at each pi.

We can see in Figure 3.1 the difference between the neighborhood exploration for
a search in decision and in objective space. The search in decision space of is shown in
Figures 3.1a and 3.1b, for this case we have a uniform distribution along the PS. On
the other hand, in Figures Figures 3.1a and 3.1b we can see the steering in objective
space, which presents a uniform distribution along the PF.
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tions in objective space.
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Figure 3.1: Example of the complete exploration on a MOP with k = 3, n = 3
and different values of N , N = 3, 4, 5, 8. On the top we can see the exploration
in decision space and on the bottom we can observe the exploration in objective
space. Starting points are the same for both cases in order to show the difference
between these approaches.
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3.4 Steering the Search into User Defined Direc-

tions

As we explained in Section 2.3.1, Pareto Tracer Method [14] provides a relationship
between the objective and the decision space. We can use this relationship, given by
Equation (2.28), to follow a given direction along the PS/PF of a given MaOP. The
way to define the steering depend on the desirable movement but Algorithm 1 provides
the pseudocode to illustrate a standard version for the PE steering phase. Hereinafter
we use the PE to refer to this phase.

Algorithm 1 General Case of PE Steering

Require: A continuous MaOP.
Ensure: A solution set for the given MaOP.

1: Get an initial optimal solution to the given MaOP
2: Give the obtained solution to the DM.
3: while DM is not satisfied do
4: The DM provides a direction to steer the search.
5: Ask for the desirable number of solutions and the distance between them.
6: Find solutions according to the given direction.
7: if A new solution is found then
8: Give the obtained solution set to the DM.
9: end if

10: end while

3.4.1 Steering in Objective Space

In certain cases, the DM is interested in a certain region of the solution set. A
common way to define this region is via the value of each function. The PE starts
with an optimal solution and, in this case, the idea is to explore the PF according to
a given direction, which represents the preferences of the DM in objective space.

In addition, the DM can specify the number of solutions to get and the distance
between them. Once that the method returns a new solution, the DM can stop the
process if he/she is satisfied, otherwise, the method continues with the same direction
or with a new one.

The DM can easily define a direction in objective space. For example consider a
MOP with three objective functions f1, f2, and f3 an the following scenario; the DM
has an optimal solution for this problem but he/she is not satisfied. The DM wants
to minimize as much as possible the first function, starting from his/her optimal
solution. Thus, the direction d = (−1, 0, 0)T may be considered to get it.
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A lot of options can be considered for the above example. The direction d =
(−1, 0,−1)T means a simultaneous reduction in f1 and f3, meanwhile, the direction
d = (−1,−5, 0)T implies a reduction of f1 and f2 in a bigger amount for the second
one (see Example 4). The normalization of the given direction by the DM is not
necessary.

For a movement in objective space, it is important to have in mind the notion of
Pareto optimality. If we have an optimal solution then it is not possible to improve
all the functions simultaneously. However, the DM can define a direction formed only
by negative components, or a direction which does not involve an optimal movement.
This is not a limitation for the PE.

Once we have obtained an initial optimal solution, the PE method takes any
direction and then it seeks for a new direction which guarantees an optimal movement.
In order to preserve the preferences of the DM, the new direction is the closest one
to the original one as we explain in the following.

Let dk ∈ Rk be a given direction. If x∗ is a solution of (2.24) with its corresponding
weight vector α, then the best direction to move the point F (x∗) along the PF,
according to dk, is given by the orthogonal projection of dk on the linearization of PF
at the poin F (x), i.e.

d = Q2Q
T
2 dk, (3.1)

where Q2 is defined as in Equation (2.32).

We can see in Figure 3.2 the geometrical idea of a orthogonal projection. We show
a convex PF with two objective functions, the image of an initial optimal solution
F (x∗), and a given direction dk. The linearization of the PF at the point F (x∗) is
denoted by TF (x∗), the orthogonal projection of dk is realized on this space. In this
case, the matrix Q2 is formed by a unique vector in 2D. We can see that the new
direction d is in the space TF (x∗).

We consider the normalized direction of d, i.e. d := d/‖d‖ and we can now
compute the desired vector νd ∈ Rn such that Jνd = d using (2.29) and (2.35). The
normalization of d is useful to compute the step length t, defined as in Equation
(2.22), for the predictor. Thus, we can utilize (2.23).

Now we have the direction νd in decision space, which produces a movement in
objective space to follow dk. Also, we can set a τ value as in Equation (2.22) in order
that the image of the new solution is to an approximate distance of τ from the image
of the initial optimal solution.

Finally, the corrector step is applied in the same way that the Pareto Tracer
(see Section 2.3.1), i.e. we use the Newton method for MOPs, depending on the
constraints. This is because, for this case, the corrector has the same purpose. That
is, if the predictor is out the PS, then the corrector returns it again to the PS.
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Figure 3.2: Hypothetical example of how to compute the orthogonal direction
in objective space. The linearization of the PF at the point F (x∗) is denoted by
TF (x∗) and the orthogonal projection of dk on TF (x∗) is the vector d.

Stopping Criteria

The DM can specify the number of steps for the PE. However, the movement
along a given direction may produce a backtrack in the resulting path or there are no
more optimal solutions in this direction. Thus, we define different stopping criteria
for this case considering the non promising steps in decision space.

We consider three different stopping criteria:

1. 〈d, dk〉 ≤ ε1. This means that the orthogonal projection of the direction dk on
the linearization of the PF is practically equal to zero vector. So, there not exist
a good movement for this point along the PF according dk. We consider this
condition with a tolerance of ε1 > 0 instead of the norm of d in the numerical
implementation.

2. sign[(J(xi)νi)j] = −sign[(J(xi+1)ν)j+1] ∀ j ∈ {1, . . . , k}. This happens when
there is a backtrack in the method which means a swing around a point on the
PF and no more promising steps.

3. ‖α‖∞ = 1 − ε2. For unconstrained MOPs this condition represents a corner of
the PF. If the method reaches a corner, it ends. The tolerance in the numerical
implementation is given by ε2.
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Examples

In this section we exemplify the three stopping criteria described in Section 3.4.1.
We also include one example which shows a different behavior in a particular direction
for convex and non convex functions.

Along this chapter we introduce some test problems. We use those problems with
k = 2, 3, only as examples. In Chapter 4 we take some of these problems define for
k ≥ 4 and use them for the numerical results for MaOPs.

Example 1. Projection equal to zero For this example we consider Binh prob-
lem [40]. This is a convex problem with two objective functions and two decision
variables defined as

f1(x) = x21 + x22
f2(x) = (x1 − 5)2 + (x2 − 5)2.

(3.2)

For the movement in objective space we take the direction dk = (−1,−1)T and
the optimal solution x0 = (0, 0)T as starting point. We show in Figure 3.3 the PS
and PF for this example. We can see in Figure 3.3b that α vector is collinear to the
given direction dk at the last optimal solution.

(a) Pareto set (b) Pareto front

Figure 3.3: Example of the first stopping criterion for the movement in objec-
tive space.

We can numerically verify the obtained result for this example. The Jacobian of
Equation 3.10 at the point x∗ = (2.5, 2.5)T is given by:

J∗ = J(x∗) =

(
∇f1(x∗)T
∇f2(x∗)T

)
=

(
2x1 2x2

2(x1 − 5) 2(x2 − 5)

)
=

(
5 5
−5 −5

)
.
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Solving the KKT system we obtain α∗ = (0.5, 0.5)T . Notice that α∗1 +α∗2 = 1 and,

JTα∗ = (∇f ∗1 ,∇f ∗2 )

(
0.5
0.5

)
=

(
5 −5
5 −5

)(
0.5
0.5

)
=

(
0
0

)
.

Now we observe that dk = −2α∗. Thus, an orthogonal vector to α∗ is also orthog-
onal to dk. This condition is equivalent to the first stopping criterion of Section 3.4.1.
If we compute the QR factorization of α∗ we obtain a Q = (q1, q2) ∈ R2×2, the first
column of this matrix is the normalization of α∗ while q2 is a unit vector orthogonal
to α.

According to the procedure of the PE method we must compute the orthogonal
projection of dk on q2 to get the vector d. As d is in the span of q2 then d is orthogonal
to α∗, and as we described below, it is also orthogonal to dk, i.e. < d, dk >= 0.

In this example we found a point x∗ such that ∇f1(x∗) = −∇f2(x∗). Since we
have a convex problem, we used the direction dk = (−1,−1)T to do this. However,
we take a different direction to achieve the same for a concave problem. We show
this in the next example.

Example 2. Concave function and corner of the PF For this example we
use Fonseca problem [41]. This is a problem with concave PF with two objective
functions and two decision variables defined as

f1(x) = 1− exp(1− (x1 − 1)2 − (x2 + 1)2)

f2(x) = 1− exp(1− (x1 − 1)2 − (x2 − 1)2).
(3.3)

Our goal in this example is to get an optimal solution x∗ which satisfies ∇f1(x∗) =
−∇f2(x∗). We show results for these two directions in Figure 3.4, we only plot the
PFs.

We take two directions in objective space dk1 = (−1,−1)T and dk2 = (1, 1)T , the
initial optimal point x0 = (−0.44, 0.44)T is the starting point for both directions and
the value for the objective function at the point x0 is F (x0) = (0.942, 4659)T . We
show results for these two directions in Figure 3.4 in objective space.

Equation (3.3) satisfies ∇f1(x∗) = −∇f2(x∗) at the point x∗ = (0, 0)T . In
this point F (x∗) = (0.8647, 0.8647)T , ∇f1(x∗) = (−0.2707, 0.2707)T and ∇f2(x∗) =
(0.2707,−0.2707)T .

We can see in Figure 3.4b that the direction dk2 reaches the desirable solution. This
behavior is the opposite to the one obtained for a convex function for the direction
dk1 = (−1,−1)T (see Example 1 of this section).
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(b) Example with dk2

Figure 3.4: Problem with concave PF. Plot (a) shows the result for the direc-
tion dk1 = (−1,−1). Plot (b) shows the result for dk2 = (1, 1)T .

Notice that, if we rotate 45◦ our plots, the direction dk1 represents a descent
direction while dk2 produces an ascent direction. So, if we combine the direction dk1
with a convex problem, we can reach the bottom of the curve. On the other hand,
with dk2 and a concave problem we can reach the top of the curve. As we notice
in Figure 3.4a, when we use the direction dk1 in a concave problem we finish in a
extreme of the PF. Indeed, if the initial staring point is in the right side of the PF,
the final solution will be the right-down corner (see Figure 3.5). We will exploit this
fact in Chapter 4.
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Figure 3.5: Example of Fonseca problem with a starting point on the right side
of the PF.
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Finally, we see in this example that the stopping criterion used in Figures 3.4a
and 3.5 is the third one defined in Section 3.4.1, that is ‖α‖∞ = 1− ε2.

Example 3. Backtrack in the steps Now we consider the Dent problem [42]

f1(x) =
1

2

(√
1 + (x1 + x2)2 +

√
1 + (x1 − x2)2 + x1 − x2

)
+ 0.85 e−(x1−x2)

2

f2(x) =
1

2

(√
1 + (x1 + x2)2 +

√
1 + (x1 − x2)2 − x1 + x2

)
+ 0.85 e−(x1−x2)

2
(3.4)

Equation (3.4) is a problem with convex-concave PF defined by two objective
functions and two decision variables. For this case we take the vector x0 = (−2, 2)T

as starting optimal solution and we steer the search in the direction dk = (−1,−1)T .
We show the result of this example in Figure 3.6.
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(b) Pareto front

Figure 3.6: Example of the third stopping criterion

We can see a backtrack in the steps of the method. We have again the direction
dk = (−1,−1)T , however, in this case we do not obtain an optimal solution x∗ with
∇f1(x∗) = −∇f2(x∗). This is because although we reach the top of the 45◦ rotate
curve, the optimal solution which satisfies the above it is not in this point.

So, the orthogonal projection of dk on the linearization of the PF is different to
the zero vector, even when the solution is near to the top. Now, as the method tries to
follow the given direction, it produces an oscillation around the final solution showed
in Figure 3.6.
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Example 4. Different directions Now we consider the DTLZ2 test problem from
[43] with three objectives and hundred variables given by

f1(x) = (1 + g(Xk))
k−1∏
i=1

cos(0.5xiπ),

f2(x) = (1 + g(Xk)) sin(0.5xk−1π)
k−2∏
i=1

cos(0.5xiπ),

...fk(x) = (1 + g(Xk)) sin(0.5x1π),

(3.5)

where
g(Xk) =

∑
xi∈Xk

(xi − 0.5)2, (3.6)

and Xk is a vector of the remaining attributes (xk, . . . , xn) for n > k.

Equation (3.5) is a problem with concave PF. We test the PE method with two di-
rections in R3, and our goal is to reach the corner of the PF. The first direction is given
by the vector dk1 = (0,−1, 0) and the second one is the vector dk2 = (0,−1,−1)T . We
take the same starting point for both cases and we show the results for these cases in
Figure 3.7.

(a) Example for dk1 =
(0,−1, 0)T

(b) Example for dk2 =
(0,−1,−1)T

Figure 3.7: Example of a movement in objective space for two different direc-
tions.

We can see in Figure 3.7a the plot for the direction dk2. For this direction the
goal is to reduce the value of f2. We notice that this happens, the method reduces

Cinvestav Computer Science Department



Pareto Explorer 45

the value of f2 as much as possible and, as the orthogonal projection of dk1 on the
PF is not the zero vector, then it continues with the steps until a backtrack in the
steps is obtained.

On the other hand, we observe in Figure 3.7b the result for the direction dk2.
Here we want to reduce both f2 and f3, this produces a different kind of movement
along the PF. We notice the simultaneous reduction of two functions causing that the
method continues the movement in the boundary of the PF until a corner is reached.

We note with this example that is not enough to steer the search only in one
direction. If we want to obtain more information of an unknown problem, we must
try with different directions. We notice that even when we get the minimum value of
certain function, it does not guarantees that the method is in a corner of the PF.

3.4.2 Steering in Decision Space

In a wide variety of applications, the values of decision variables are crucial, since
these variables commonly represent the available resources, which are generally lim-
ited. Constraints allow us to have a control on these variables in a MaOP.

The DM can suggest a non optimal initial point expressing his/her preferences in
decision space. Then staring from this point a particular method can obtain a set
of optimal solutions. One of the issues of this approach is that normally methods
that solve MaOPs only consider the values of the objective functions. Thus, if an
important resource does not have an impact in objective functions, then the solution
set could not contain the best value for this resource.

Usually, the DM wishes to improve the value for a certain resource, that are more
important than the others, as much as possible without optimality loss. Likewise to
the movement in objective space, the PE provides the option to steer the movement
along the PS in a given direction, that is, we can get optimal solutions which improve
the values of the desired decision variables.

The idea to move from a point x ∈ Rn along the PS following a direction dn ∈ Rn

is similar to above. We use the orthogonal projection of dn, but in this case on a
linearization of the PS at the point x.

One way to do this is to compute the corresponding vector νdj for each vector
dj, j = 1, . . . , k− 1, which are the columns of the matrix Q2, using (2.29) and (2.35).
We can obtain a basis of the PS at the point x with the matrix formed by the columns
νdj . Let Qv denote such a matrix. Once that we have this matrix, we can compute
the best direction according dn via

dv = QvQ
T
v dn. (3.7)
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Then, for this case, the predictor is given by,

p = x+ tdv. (3.8)

If we want a fixed distance between two solutions in objective space of τ , then we
use (2.23). Otherwise, if we want for two consecutive solutions, ‖xi−xi+1‖ ≈ τ , then
we simply set t = τ . The corrector is also given by the Newton method for MOPs.

We can see in Figure 3.2 the geometrical idea of an orthogonal projection. We
show a non linear PS with two decision variables, the initial optimal solution x∗, and
a given direction dn. The linearization of the PS at the point x∗ is denoted by Tx∗ ,
the orthogonal projection of dn is realized on this space. In this case the matrix Qv is
formed by a unique vector in 2D. We can see that the new direction d is in the space
Tx∗ .
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Figure 3.8: Geometrical example of how to compute the orthogonal direction
in decision space. The linearization of the PS at the point x∗ is denoted by Tx∗

and the orthogonal projection of dn on Tx∗ is the vector d.
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Stopping Criteria

For this case, we consider the following three stopping criteria:

1. ‖QvQ
T
v dn‖∞ < ε1. We use this stopping criterion instead of the first one in

objective space. This also means the absence of a good movement, but in this
case in decision space.

2. sign[xi]j = −sign[xi+1]j+1 ∀ j ∈ {1, . . . , k}. A backtrack in decision space can
be detected with this condition.

3. ‖xi+1−xi‖ ≤ ε2. If the point xi is equal to xi+i then there is not an improvement
in the given direction, so the method stops. We consider a tolerance ε2 for the
numerical treatment.

Stopping criteria 1 and 2 are analogous to the first two criteria for a movement
in objective space given in Section 3.4.1. Even for unconstrained problems, stopping
criterion 3 of Section 3.4.1 has not an equivalent formulation in decision space, due
to the fact that there are not a relationship between the KKT multiplier and the
geometry of the PS. Indeed, generally speaking there is no correlation between the
geometry of PS and PF.

Examples

In this section we illustrate the stopping criteria of Section 3.4.2. As we explained
in Section 3.4.1, we use some test problems with k ≤ 3 for the examples and we take
scalable problems with k > 3 for the numerical results in Chapter 4.

Example 5. Projection equal to zero For this example we consider the following
problem [44]. This is a convex problem with a non linear PS defined as

fj(x) =
n∑
i=1

(xi − aji )2 + (xj − ajj)4, j = 1, 2. (3.9)

where a1 = (1, . . . , 1)T ∈ Rn and a2 = −a1. In this example we take n = 2, k = 2
and the direction dn = (−1, 1)T . The obtained result is shown in Figure 3.9.
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(b) Pareto front

Figure 3.9: Example of the first stopping criterion for the movement in decision
space. Scatter line is the tangent of the PS at the last point which is represented
by a triangle, we can see that the direction dn is orthogonal to the tangent space.

We can see in Figure 3.9a both the direction dk and the tangent space at the final
solution, it is clear that dk is orthogonal to the tangent space, i.e. the orthogonal
projection d is the zero vector, so there is not a possible movement at this point
according dk.

Example 6. Backtrack in the steps For this example we use again the Binh
problem [40] with an equality constraint in order to get a non linear PS. Now this
problem with two variables and two objectives is defined as

f1(x) = x21 + x22
f2(x) = (x1 − 5)2 + (x2 − 5)2

s.t. ‖x− c‖ = 0

(3.10)

where c = (2.5, 2.5)T . The incorporated equality constraint is a circle which goes
through two extremes of the PS of the unconstrained problem.

For this example we take the direction dn = (−0.9,−0.1)T . Result for this problem
is shown in Figure 3.10, PS is in Figure 3.10a and PF is in Figure 3.10b.
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Figure 3.10: Example of the second stopping criterion for the movement in
decision space. We can see the direction dn at the final solution, we notice that
the orthogonal projection is between two solutions, i.e., a backtrack in the steps.

Dots in Figure 3.10 are the steps of the PE method. We can see in Figure 3.10a
the direction dn at the final point, this point is represented by a triangle. We notice
that the orthogonal projection of dk on the linearization of the PS is between the last
two solutions, i.e. a backtrack in the steps.

Example 7. No progress in the given direction Now we consider the DTLZ3
test problem from [43] given by

f1(x) = (1 + g(Xk))
k−1∏
i=1

cos(0.5xiπ),

f2(x) = (1 + g(Xk)) sin(0.5xk−1π)
k−2∏
i=1

cos(0.5xiπ)

...

fk(x) = (1 + g(Xk)) sin(0.5x1π),

(3.11)

where

g(Xk) = 100

(
|xk|+

∑
xi∈xk

(
(xi − 0.5)2 − cos(20π(xi − 0.5))

))
, (3.12)
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and Xk is a vector of the remaining attributes (xk, . . . , xn) for n > k. For this example
we consider n = 3, k = 3 and the direction dn = (−1, 0, 0)T . Result of this case is
shown in Figure 3.11.

(a) Pareto set (b) Pareto front

Figure 3.11: Example of the third stopping criterion for the movement in
decision space. The method stops when there is not a new point in the given
direction.

We can see in Figure 3.11a a flat rectangle which is the real PS, starting point is
in the center of this rectangle and the steps improve x1 according dn. Method stops
when steps reach the boundary of the PS, this is because there is no more optimal
solutions in the given direction causing a repeated solution.

The above comes from the fact that we have two dimension manifold in the PF
(see Figure 3.11b), then a basis of a linearization of this manifold has two vectors in
R3. So, we also have a two vectors basis in Rn.

We focus on the final point x∗ at the boundary of the PS of this example. The
two vector basis in decision space at x∗ produces an orthogonal projection d different
to the zero vector. The computed predictor p in the direction d yields a non feasible
solution and the corrector returns p to the PS. However, the new point is at a shorter
distance than ε2 to the point x∗ and the method stops.
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3.4.3 Steering in µ Space

As explained in Section 2.3.1, the vector µ provides a way to relate the objective
and the decision spaces via (2.35), provided that the sum of its components is zero.
Hence, we can use this vector as another alternative to define a direction in objective
space.

If we have an optimal solution, then the vector µ represents the trade-off between
this one and a new one. That is, in order to define a µ vector, the DM must specify
both the improvement functions and the sacrifice functions; after that, the DM assigns
values to each one. These values and its signs are in concordance with the preferences
of the DM. A negative value means a reduction of certain function, a positive sign is
related to a sacrifice function and a zero value can be used for an indifference function.
The DM has a µ vector when the sum of these values is equal to zero.

For example, if we have five functions f1, . . . , f5 and our goal is to improve the third
function, then it is necessary to define the sacrifice functions to get a suitable vector µ.
We can choose this vector in many different ways according to the preferences for the
sacrifice functions. In this way, the vector µ = (0.25, 0.25,−1, 0.25, 0.25)T indicates a
sacrifice of the same amount for each function, the vector µ = (0, 0,−1, 0, 1)T suggests
that the whole sacrifice is taken by f5, and the vector µ = (0.3, 0.2,−1, 0.4, 0.1)T is a
representation of a possible configuration with different weights.

Notice that, for the case k = 2, the only available options for the µ vector are the
vectors: µ(1) = (−1, 1)T and µ(2) = (1,−1)T . These vectors correspond to a left-up
and right-down movement, respectively. An exploration in objective space along a
biobjective PF may not be very interesting, however, if we use both µ(1) and µ(2)

vectors we can compute an approximation to all the PF.

The PE procedure for this case is basically the same of Section 3.4.1. The differ-
ence is that, as we have a µ vector, then it is not necessary to compute an orthogonal
projection. We only need Equation (2.29) to get the predictor. Finally, the step
length is computed using Equation (2.23).

Now we consider a change in µ vector. The DM can change µ vector at any time
of the exploration, this leads to two possible options. On one hand, the DM can
immediately use the new µ vector to steer the search. On the other hand, the DM
can take the difference vector as a transition between the current µ vector and the
new one. This change can be done because the difference vector is also a µ vector,
Lemma 3.1.

Lemma 3.1. Let µ(i), µ(i+1) ∈ Rk be two vectors that satisfy (2.27), then the vector
µd = µ(i+1) − µ(i) also satisfies (2.27).

Cinvestav Computer Science Department



52 Chapter 3

Proof. As µ(i+1) and µ(i) satisfy (2.27), then the sum of components of µd is given by,

k∑
j=1

µdj =
k∑
j=1

(µ
(i+1)
j − µ(i)

j ) =
k∑
j=1

µ
(i+1)
j −

k∑
j=1

µ
(i)
j = 0

�

Stopping Criteria We consider the special case in which µdj = 0 ∀ j ∈ {1, . . . , k} as
a stopping criterion for this problem because it would mean backtrack. This condition
replaces the first condition mentioned on the case of objective space, the rest of these
criteria are maintained.

Example 8. Different µ vectors Now we consider the DTLZ1 test problem from
[43] given by

f1(x) =
1

2
(1 + g(Xk))

k−1∏
i=1

xi,

f2(x) =
1

2
(1 + g(Xk))(1− xk−1)

k−2∏
i=1

xi,

...

fk−1(x) =
1

2
(1 + g(Xk))(1− x2)x1,

fk(x) =
1

2
(1− x1)(1 + g(Xm)),

(3.13)

where

g(Xk) = 100

(
|Xk|+

∑
xi∈Xk

(
(xi − 0.5)2 − cos(20π(xi − 0.5))

))
. (3.14)

and Xk is a vector of the remaining attributes (xk, . . . , xn) for n > k. For this example
we consider n = 100, k = 3 and the vectors µ1 = (1,−1, 0) and µ1 = (0;−1; 1).

In both cases we try to reduce f2 but the sacrifice function is no the same. For
µ1 we increase f1 and for µ2 we increase f3. We can see the results for this cases in
Figure 3.12.
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(b) Example with µ2

Figure 3.12: Example of a steering in µ space for DTLZ1. Plot (a) shows
the result for the direction µ1 = (1,−1, 0). Plot (b) shows the result for µ2 =
(0,−1, 1).

With this example we notice how we can use the vector µ to define a trade-off.
We obtain the minimum for f2 but with two different paths.

3.4.4 Minimal Change in Objective Space

Sometimes the most important aspect for a problem is the exploitation of the
resources. Under this assumption, the DM may be interested in optimal solutions
that have an equivalent performance in objective space, but with a high discrepancy
in decision space. We can also consider the scenario where it is possible to reach an
appreciable improvement of some variables with a little change of the function values.

In a MOP the DM may be in agreement with an optimal solution in objective
space. Nevertheless, if this solution has not an appropriate value for an important
decision variable, then the DM may be willing to sacrifice the function values in order
to get a better value for the desired variable.

We can use the procedure of Section 3.4.2 to improve some values in decision
space. However, this method does not take into consideration the objective function
values, so we can get values that are far from the initial optimal solution. For this
kind of problems, we need a different way to compute a direction in objective space,
that is close to the given direction and yields a minimal change in objective space.

Cinvestav Computer Science Department



54 Chapter 3

Let dn ∈ Rn be a given direction in decision space, we can find a new direction
v∗ ∈ Rn as follows:

min
v∈Rn

− < v, dn >

s.t. Jv = 0
‖v‖22 = 1.

(3.15)

The SOP defined by Equation (3.15) reaches the optimum when the direction v is
equal to dn. The first constraint is due to the relation between the Jacobian and the
change in objective space, we got a minimal change when the value of this constraint
is near to zero. Finally, the norm of the direction v is considered so that we obtain a
different solution to the zero vector.

Stopping Criteria As this is indeed a steering in decision space, the stopping
criteria are the same.

Example 9. Difference with the steering in decision space. For this example
we consider the following test quadratic problem [44].

fj(x) =
n∑
i=1

(xi − aji )2 (3.16)

where aj ∈ Rn j = 1, . . . , k. We take k = 3, n = 3 and the vectors a1 = (1, 1, 1)T ,
a2 = (−1,−1,−1)T , and a3 = (1,−1, 1)T .

We compare the obtained solution for the steering in decision space with the ob-
tained one for the minimal change in objective space under the same initial conditions,
the chosen direction is dn = (−1,−1,−1)T . Results are shown in Figure 3.13, we only
plot the path obtained by each kind of steering in order to have a better visualization.

We can see the PF for both methods in Figure 3.13b. we notice that the marks
that represent the path obtained by the steering of minimal change in objective space
stops when the change become to increase with respect to the first steps. On the
other hand, the steering of movement continues its movement.

For the decision space (see Figure 3.13a we notice that at first we practically have
the same solution but the minimal change path becomes to differ with the iterations.
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Figure 3.13: Example of minimal change in objective space (o) versus the
steering in decision space (∗).

3.4.5 Treatment of Dynamic Reference Point

Now we consider the DRPP defined in Section 2.3.2. Here we have a time depen-
dent curve, which is formed by the DM preferences. Our goal is to obtain a set of
optimal solutions, where each solution is the nearest one for each reference point on
the curve (if we have a continuous case, then we take a discretization of the curve).

Let x∗i be solution of Equation (2.72) for the reference point z(ti). We can solve
the DRPP with an embedding method, that is, we simply take x∗i as the starting
point to solve Equation (2.72) for the next reference point z(ti+1). Instead of this, we
modify the procedure of Section Section 3.4.1 to obtain the next solution x∗i+1.

We define a direction dk = z(ti+1) − z(ti) in objective space. After that, we can
use the predictor of Section 3.4.1 with a little modification in the step size control.
Let d be the orthogonal projection of dk on the linearization of the PF at the point
F (x∗i ). For this case the value of τ in Equation (2.23) is set as the norm of d, so the
step size t is given by:

t =
‖d‖
‖Jνd‖

. (3.17)

Equation (3.17) allows to get a small step size when the change in the PF is low,
according dk, and vice versa. This is because the norm of d has a direct relationship
with the orthogonal projection of dk on the linearization of the PF.
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As the goal of this approach is to get the nearest optimal solution for each point
on the curve, then we use the point given by the predictor to solve Equation (2.72)
for z(ti+1). Namely, we have a new corrector. We do not need any stopping criteria,
we compute both a predictor and a corrector for each point considered on the time
dependent curve.

Example 10. Time dependent curve beyond the PF For this example we
consider the quadratic problem defined by Equation 3.16. But for this case we take
k = 2, n = 100 and the vectors a1 ∈ Rn a1 := (1, . . . , 1), and a2 ∈ Rn a2 = −a1.

Results are shown in Figure 3.14. Here we see the time dependent curve and
the predictor-corrector steps, we notice that all the predictors (+) are close to the
correctors (*).
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f 2(x
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Figure 3.14: Example for the DRPP with an outside time dependent curve.

Example 11. Time dependent curve inside the PF Finally, we consider the
Dent problem defined by Equation (3.4).

We present the result of this example in Figure 3.15 both for PS and PF. We
notice that the method works for a time dependent curve with point inside the PF
due to the Tchebycheff scalarizing function (2.71). However for this case, predictor
and correctors is more distant with respect to the Example 10.
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Figure 3.15: Example for the DRPP with an inside time dependent curve.
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Chapter 4

Numerical Results

In this chapter, we present numerical results obtained by the PE method. Sec-
tions 4.1, 4.2, and 4.3 contain results for some of the benchmark MaOPs defined in
Chapter 3. Section 4.4 is completely dedicated to a real world application.

We tested two different versions of the PE method. The first one is the Newton
Pareto Explorer (PE-N), that is, the classical version of this method as we described
in Chapter 3. The second one is the Quasi-Newton Pareto Explorer (PE-QN), this is
a free Hessian version of the PE method which uses the BFGS method [14].

The results of this chapter are on MaOPs, that is, we can not plot the entire PF
solution paths of the method as we did in Chapter 3. Along this chapter we include
figures with the radar chart [45] which allows to show iterations that PE takes for
the solution of a given problem.

The radar chart representation is useful because we can show a normalization of all
the values both objective functions and decision variables, we only need the utopian
and nadir points. If we do not have the exact values for the utopian and the nadir
points, we can use approximations of them. Once we have values for the utopian and
nadir points, we can compute the normalization of the objectives values as follows.

As our objective is to reduce the values of a given MaOP, we set the utopian on the
circle and the nadir on the center of the wheel, i,e., each component of the utopian
is set at the unit circle with coordinates (cos(θi), sin(θi)), with θi = 2(i − 1)π/k,
i = 1, . . . , k. The nadir point is used for the normalization.

Let Y = (y1, . . . , yk)
T be an element of the PF of a given MaOP, the normalization

ri for the radar chart is given by

ri = 1− yi − zutpi

znadi − zutpi

, (4.1)
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where znad and zutp denote the nadir and the utopian point, respectively.

Thus, the coordinates of each component yi of the Y vector on the radar chart
are given by

(ri cos(θi), ri sin(θi)), i = 1, . . . , k. (4.2)

Analogously, we can define a similar representation for the PS taking a normal-
ization in decision space. In order to maintain consistency with the objective space
representation, we take the smaller values of x as the furthest ones from the center.

We use lower and upper bounds of each problem in order to do the normalization in
decision space for the radar chart results along this chapter. We plot both decision and
objective spaces (at the left and right sides, respectively) in four different moments:
initial, quarter, middle, and final optimal solution.

An important issue of the radar chart is that we may lose the notion of the
magnitude of functions, which is due to the normalization. For example, if the method
did a reduction of 10 units for some function, this has a different impact in the char
depending of the magnitude of each function, i.e., this change may be very notorious
or imperceptible. Hence, in all the tested problems we include a table with the values
of the objective functions or the decision variables, according to the type of movement
selected, in the four indicated steps.

We have experimentally observed that we have practically the same radar chart
and the same quality for the numerical results of PE-N and PE-QN at each iteration.
Thus, we include only one of these versions. We indicated the selected version for
each case. Additionally, we present one table with computational efforts for each
problem. This is in order to compare the performance of the two versions: PE-N and
PE-QN.

4.1 DTLZ1

The scalable DTLZ1 problem was defined in Section 3.4.3 in Equation (3.13).
Along this section we consider DTLZ1 with 15 decision variables and 10 objective
functions.

We tested this problem with four of the five kinds of movement described in
Chapter 3. We discard the steer of minimal change in objective space due to the fact
that this kind of movement does not produce new solutions for the DTLZ problems
(see Section ). Likewise, we consider the same four cases for the DTLZ2 problem in
Section 4.2 and the DTLZ3 problem in Section 4.2.

Cinvestav Computer Science Department



Numerical Results 61

4.1.1 DTLZ1 Objective Space Movement

For this first case we assume that it is desire to improve much as possible functions
f8, f9 and f10; values for others functions are not important for us. Thus, we define the
direction dk ∈ R10 as dk = (0, . . . , 0,−1,−1,−1)T , we take as initial optimal solution
the vector x0 = (0.5, . . . , 0.5)T ∈ R15. Computational efforts for these conditions and
a step size of 0.05 are shown in Table 4.1.

Table 4.1: Computational efforts for the PE variants for the objective space
movement for DTLZ1.

PE-N PE-QN
Solutions 16.00 17.00
Avg. corrector iterations 0.00 0.00
Avg. backtrack iterations 0.00 0.00
Function evaluations 16.00 18.00
Jacobian evaluations 16.00 18.00
Hessian evaluations 160.00 -

We can see in Table 4.1 that PE-N and PE-QN obtained 16 and 17 solutions,
respectively. Stopping criterion was the backtrack in the steps in both cases. We
present results using PE-QN in Table 4.2 and in Figure 4.1.

Table 4.2: Values of the objective functions for the objective space movement
in four different steps for DTLZ1 using the PE-QN.

Initial Quarter Middle Final
f1 0.0010 0.0802 0.1521 0.3757
f2 0.0010 0.0000 0.0000 0.0000
f3 0.0020 0.0000 0.0000 0.0000
f4 0.0039 0.0839 0.1552 0.0000
f5 0.0078 0.0000 0.0000 0.0000
f6 0.0156 0.0000 0.0000 0.0000
f7 0.0312 0.0710 0.1439 0.1243
f8 0.0625 0.0233 0.0000 0.0000
f9 0.1250 0.0743 0.0000 0.0000
f10 0.2500 0.1673 0.0488 0.0000

We notice in Figure 4.1 a clear reduction for f8, f9 and f10, so the procedure was
successful. Indeed, we can in Table 4.2 we reach the minimum for all functions, except
for f1 and f7.
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Figure 4.1: Resulting movement in objective space for DTLZ1.
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4.1.2 DTLZ1 Decision Space Movement

For this case we assume the direction dn ∈ R15 which gets a reduction for the
first six decision variables, that is, dn =

∑6
i=1−ei. Our initial optimal solution is the

vector x0 = (0.5, . . . , 0.5)T ∈ R15. Computational efforts for these conditions and a
step size of 0.05 are presented in Table 4.3.

Table 4.3: Computational efforts for the PE variants for the decision space
movement for DTLZ1.

PE-N PE-QN
Solutions 5.00 5.00
Avg. corrector iterations 0.00 0.00
Avg. backtrack iterations 0.00 0.00
Function evaluations 5.00 5.00
Jacobian evaluations 5.00 5.00
Hessian evaluations 50.00 -

We have for this case a few steps to get the final solution, Table 4.1 indicates five
obtained solutions for both versions. We also have backtrack in the steps as stopping
criterion for both cases. We can see results using PE-N in Table 4.4 and in Figure 4.2.

Table 4.4: Values of the decision variables for the decision space movement in
four different steps for DTLZ2 using the PE-N.

Initial Quarter Middle Final
x1 0.5000 0.4621 0.3663 0.0000
x2 0.5000 0.4278 0.2737 0.0000
x3 0.5000 0.3679 0.1497 0.0000
x4 0.5000 0.2731 0.0059 0.0000
x5 0.5000 0.1413 0.0000 0.0000
x6 0.5000 0.0000 0.0000 0.0000
x7 0.5000 0.5000 0.5000 0.5000
x8 0.5000 0.5000 0.5000 0.5000
x9 0.5000 0.5000 0.5000 0.5000
x10 0.5000 0.5000 0.5000 0.5000
x11 0.5000 0.5000 0.5000 0.5000
x12 0.5000 0.5000 0.5000 0.5000
x13 0.5000 0.5000 0.5000 0.5000
x14 0.5000 0.5000 0.5000 0.5000
x15 0.5000 0.5000 0.5000 0.5000
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Figure 4.2: Resulting movement in decision space for DTLZ1.
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We can observe that PE follows the desirable movement with the radar chart of
decision variables in Figure 4.2. We can also see in Figure 4.2 that the movement
in decision space produces a reduction on six function in objective space, from f5 to
f10. The values of Table 4.4 confirm that the method reaches the lower bound at the
target variables.

4.1.3 DTLZ1 Movement in µ space

For this case we simply chose a vector µ which involves the reduction of f10 together
with the increment of f5, that is, µ ∈ R10, µ5 = 1, µ10 = −1, and µi = µ2i = 0,
i = 1, . . . , 4. Computational efforts fort this case with a step size of 0.05 are shown in
Table 4.5, here we can see that PE-QN needed one more step to complete its solution
path. The stopping criteria in this case was backtrack in the steps.

Table 4.5: Computational efforts for the PE variants for the µ space movement
for DTLZ1.

PE-N PE-QN
Solutions 17.00 18.00
Avg. corrector iterations 0.00 0.00
Avg. backtrack iterations 0.00 0.00
Function evaluations 18.00 19.00
Jacobian evaluations 18.00 19.00
Hessian evaluations 180.00 -

We present the solution path using PE-N in Figure 4.3 and in Table 4.6.

Table 4.6: Values of the objective functions for the µ space movement in four
different steps for DTLZ2 using the PE-N.

Initial Quarter Middle Final
f1 0.0010 0.0018 0.0040 0.0000
f2 0.0010 0.0018 0.0040 0.0000
f3 0.0020 0.0036 0.0080 0.0000
f4 0.0039 0.0071 0.0161 0.0000
f5 0.0078 0.0149 0.1073 0.5000
f6 0.0156 0.0278 0.0410 0.0000
f7 0.0312 0.0542 0.0559 0.0000
f8 0.0625 0.1060 0.0889 0.0000
f9 0.1250 0.2075 0.1747 0.0000
f10 0.2500 0.0754 0.0000 0.0000
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Figure 4.3: Resulting movement in decision space for DTLZ1.

Cinvestav Computer Science Department



Numerical Results 67

We notice in Figure 4.3 that PE-N follows the desirable path, that is, a reduction
of f10 together with a increment of f5. We naturally appreciate a change for the
others functions but such changes are more subtle.

Values of Table 4.6 indicate that although PE-N quickly reach the minimum values
of f10, it stops until the highest value of f5 is obtained. Indeed, with this direction
we obtain the minimum value for all objective functions except for f5.

4.1.4 DTLZ1 DDRP

We define a curve z(t) ∈ R10 as the line segment connecting the points z0 ∈ R10,
z0 = (0, . . . , 0)T and z1 ∈ R10, z1i = 1, i = 1, 3, . . . , 9. We divide this segment in 50
equal parts, thus, we have 51 solutions to compute.

The computational efforts for this case are shown in Table 4.7, Here, we notice
that there is a considerable increment in the number of functions evaluations with
respected to the previous results due to the corrector step. For this case we need at
least one corrector by each iteration, that is, we must solve the reference point problem
(Equation (2.71)) after each predictor step. According with Table 4.7 the corrector
takes in average 33.95 and 31.96 iterations for PE-N and PE-QN, respectively. The
above produces the significant increment in the function evaluations (5582 for PE-N
and 5453 for PE-QN).

Table 4.7: Computational efforts for the PE variants for DRPP for DTLZ2.

PE-N PE-QN
Solutions 51.00 51.00
Avg. corrector iterations 33.95 31.96
Avg. backtrack iterations 50.60 50.00
Function evaluations 5582.00 5453.00
Jacobian evaluations 67.00 15.00
Hessian evaluations 670.00 -

We can see the resulting path for this case in Figure 4.4 using PE-N, time depend
curve can not plot in our graphical representation. We notice in Figure 4.4 that the
method start with similar values for all the functions and in the end PE-N we have a
reduction for the even functions.
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Figure 4.4: Result of DRPP for DTLZ1.
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We can see in Table 4.8 the values of the objective functions using PE-N. We
notice that a solution is maintained, due to the selected curve can not produce new
movements. However, it is unknown until we solve the reference point problem.

Table 4.8: Values of the objective functions for DRPP in four different steps
for DTLZ1 using the PE-N.

Initial Quarter Middle Final
f1 0.0537 0.0900 0.0900 0.0900
f2 0.0531 0.0000 0.0000 0.0000
f1 0.0506 0.0940 0.0940 0.0940
f1 0.0415 0.0000 0.0000 0.0000
f1 0.0417 0.0994 0.0994 0.0994
f1 0.0453 0.0000 0.0000 0.0000
f1 0.0537 0.1053 0.1053 0.1053
f1 0.0533 0.0000 0.0000 0.0000
f1 0.0540 0.1113 0.1113 0.1113
f1 0.0537 0.0000 0.0000 0.0000

4.2 DTLZ2

The scalable DTLZ2 problem was defined in Section 3.4.1 in Equation (3.5). Along
this section we consider the DTLZ2 with 15 decision variables and 10 objective func-
tions. We tested this problem with the same four kinds of steering used in Section
4.1.

4.2.1 DTLZ2 Objective Space Movement

We know that the DTLZ2 problem has a concave PF. Thus, we chose the direction
dk ∈ Rk dk := (−1, . . . ,−1)T in order to obtain as final result a point on PF which has
a similar value at all its components. We take as initial optimal solution the vector
x0 = (0.5, . . . , 0.5)T ∈ R15. Computational efforts for these conditions are shown in
Table 4.9.
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Table 4.9: Computational efforts for the PE variants for the objective space
movement for DTLZ2.

PE-N PE-QN
Solutions 16.00 16.00
Avg. corrector iterations 0.00 0.00
Avg. backtrack iterations 0.00 0.00
Function evaluations 17.00 17.00
Jacobian evaluations 17.00 17.00
Hessian evaluations 170.00 -

Table 4.9 indicates that both versions obtained 16 solutions and spent 17 function
evaluations. Also in both cases the method stopped due to a backtrack in the steps.
We selected PE-N to show the resulting path.

We can see results using PE-N in Table 4.4 and in Figure 4.2.

We notice in Figure 4.1 a regular polygon at the final iteration of the method, that
is, the method gets the expected result. While, in Table 4.2 we can see the values
of each objective function. We do not have exactly the same values for all functions,
however these values are similar with each other.

Table 4.10: Values of the decision variables for the objective space movement
in four different steps for DTLZ2 using PE-N.

Initial Quarter Middle Final
f1 0.0442 0.1143 0.1955 0.3233
f2 0.0442 0.1143 0.1955 0.3233
f3 0.0625 0.1252 0.2021 0.3228
f4 0.0884 0.1433 0.2132 0.3221
f5 0.1250 0.1714 0.2307 0.3210
f6 0.1768 0.2130 0.2574 0.3192
f7 0.2500 0.2733 0.2971 0.3164
f8 0.3536 0.3593 0.3550 0.3121
f9 0.5000 0.4813 0.4385 0.3055
f10 0.7071 0.6538 0.5578 0.2954
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Figure 4.5: Resulting movement in objective space for DTLZ2.
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4.2.2 DTLZ2 Decision Space Movement

For this case we take the direction dn ∈ R15 as dn = −e5 in order to reduce x5.
Our initial optimal solution is the vector x0 = (0.5, . . . , 0.5)T ∈ R15. Computational
efforts for these conditions and step size of 0.05 are presented in Table 4.11.

Table 4.11: Computational efforts for the PE variants for the decision space
movement for DTLZ2.

PE-N PE-QN
Solutions 5.00 5.00
Avg. corrector iterations 0.00 0.00
Avg. backtrack iterations 0.00 0.00
Function evaluations 5.00 5.00
Jacobian evaluations 5.00 5.00
Hessian evaluations 50.00 -

We have for this case a few steps to get the final solution, Table 4.9 indicates
five obtained solutions for both versions. We also have backtrack in the steps as
stopping criterion for both cases. We can see results using PE-N in Table 4.12 and
in Figure 4.6, where is clear that the method follows the direction due to we have a
change only for the variable x5.

Table 4.12: Values of the decision variables for the decision space movement in
four different steps for DTLZ2 using PE-N.

Initial Quarter Middle Final
x1 0.5000 0.5000 0.5000 0.5000
x2 0.5000 0.5000 0.5000 0.5000
x3 0.5000 0.5000 0.5000 0.5000
x4 0.5000 0.5000 0.5000 0.5000
x5 0.5000 0.3727 0.2454 0.0000
x6 0.5000 0.5000 0.5000 0.5000
x7 0.5000 0.5000 0.5000 0.5000
x8 0.5000 0.5000 0.5000 0.5000
x9 0.5000 0.5000 0.5000 0.5000
x10 0.5000 0.5000 0.5000 0.5000
x11 0.5000 0.5000 0.5000 0.5000
x12 0.5000 0.5000 0.5000 0.5000
x13 0.5000 0.5000 0.5000 0.5000
x14 0.5000 0.5000 0.5000 0.5000
x15 0.5000 0.5000 0.5000 0.5000
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Figure 4.6: Resulting movement in decision space for DTLZ2.
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4.2.3 DTLZ2 Movement in µ space

For this case we chose a vector µ which involves the increment of f9 together with
the reduction in the same amount for the others functions, that is, µ ∈ R10, µ9 = 1
and µi = −1/9, i = 1, . . . , 4. Computational efforts fort this case with a step size of
0.05 are shown in Table 4.13, here we can see that PE-QN needed one more step to
complete its solution path. The stopping criteria in this case is backtrack in the steps.

Table 4.13: Computational efforts for the PE variants for the µ space movement
for DTLZ2.

PE-N PE-QN
Solutions 22.00 23.00
Avg. corrector iterations 0.00 0.00
Avg. backtrack iterations 0.00 0.00
Function evaluations 23.00 24.00
Jacobian evaluations 23.00 24.00
Hessian evaluations 230.00 -

We notice in Figure 4.7 that PE-N follows the desirable path and we confirm
this with the values of Table 4.14. We do not obtain the maximum for f9 but the
considered steps satisfies a considerable decrement for f9 and a little reduction for
the rest of the functions.

Table 4.14: Values of the objective functions for the µ space movement in four
different steps for DTLZ2 using PE-N.

Initial Quarter Middle Final
f1 0.0442 0.0394 0.0278 0.0000
f2 0.0442 0.0394 0.0278 0.0000
f3 0.0625 0.0558 0.0394 0.0000
f4 0.0884 0.0791 0.0559 0.0000
f5 0.1250 0.1123 0.0797 0.0000
f6 0.1768 0.1598 0.1140 0.0000
f7 0.2500 0.2283 0.1641 0.0000
f8 0.3536 0.3278 0.2387 0.0000
f9 0.5000 0.6610 0.8534 0.9999
f10 0.7071 0.5941 0.4027 0.0163
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Figure 4.7: Resulting movement in decision space for DTLZ2.
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4.2.4 DTLZ2 DDRP

We again consider 51 points on a curve z(t) ∈ R10 defined as the line segment
connecting the points z0 ∈ R10, z0 = (0, . . . , 0)T and z1 ∈ R10, z1i = 1, i = 1, 3, . . . , 9.
The computational efforts for this case are shown in Table 4.15.

We also have a significant increment of the functions evaluations with respected to
the others movements due to the corrector step, in average 33.95 and 31.96 iterations
for PE-N and PE-QN, respectively. As PE-N spends less function evaluations than
PE-QN, we show the PE-N resulting path in Figure 4.8 and in Table 4.16.

Table 4.15: Computational efforts for the PE variants for DRPP for DTLZ2.

PE-N PE-QN
Solutions 51.00 51.00
Avg. corrector iterations 33.95 31.96
Avg. backtrack iterations 0.00 0.00
Function evaluations 16782.00 17987.00
Jacobian evaluations 24.00 53.00
Hessian evaluations 240.00 -

We notice in Figure 4.8 that the method start with similar values for all the
functions and at the end it reaches a value according with z1.

Table 4.16: Values of the objective functions for DRPP in four different steps
for DTLZ2 using PE-N.

Initial Quarter Middle Final
f1 0.3158 0.4126 0.4055 0.3791
f2 0.3163 0.1726 0.0000 0.0000
f3 0.3164 0.4126 0.4767 0.4688
f4 0.3164 0.1726 0.0000 0.0000
f5 0.3164 0.4126 0.3872 0.3451
f6 0.3163 0.1726 0.0000 0.0000
f7 0.3164 0.4126 0.4774 0.4970
f8 0.3164 0.1726 0.0000 0.0000
f9 0.3154 0.4126 0.4800 0.5200
f10 0.3165 0.1726 0.0000 0.0000
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Figure 4.8: Result of DRPP for DTLZ2.
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4.3 DTLZ3

The DTLZ3 problem was defined in Section 3.4.2 in Equation (3.11). Along this
section we consider the DTLZ3 with 15 decision variables and 10 objective functions.
We tested this problem with the same four kinds of steering used in Section 4.1.

4.3.1 DTLZ3 Objective Space Movement

We take as initial optimal solution the vector x0 = (0.5, . . . , 0.5)T ∈ R15 and the
direction dk ∈ R15 dk := e10. That is, we want to increase the values of f10. The
computational efforts for this case with a step size of 0.05 are shown in Figure 4.17,
we can see similar values for PE-N PE-QN. Stop condition was backtrack in the steps
in both versions.

Table 4.17: Computational efforts for the PE variants for the objective space
movement for DTLZ3.

PE-N PE-QN
Solutions 24.00 24.00
Avg. corrector iterations 0.00 0.00
Avg. backtrack iterations 0.00 0.00
Function evaluations 24.00 24.00
Jacobian evaluations 24.00 24.00
Hessian evaluations 240.00 -

We present in Figure 4.9 and in Table 4.18 the resulting path steps for PE-N.
PE-N gets the maximum value for f10 and the minimum for the others.

Table 4.18: Values of the decision variables for the objective space movement
in four different steps for DTLZ3 using PE-N.

Initial Quarter Middle Final
f1 0.0442 0.0042 0.0000 0.0000
f2 0.0442 0.0042 0.0000 0.0000
f3 0.0625 0.0037 0.0000 0.0000
f4 0.0884 0.0068 0.0000 0.0000
f5 0.1250 0.0185 0.0000 0.0000
f6 0.1768 0.0771 0.0000 0.0000
f7 0.2500 0.1721 0.0230 0.0000
f8 0.3536 0.3099 0.1589 0.0000
f9 0.5000 0.5056 0.4529 0.0000
f10 0.7071 0.7825 0.8770 1.0000

Cinvestav Computer Science Department



Numerical Results 79

x1

x2

x3

x4
x5

x6

x7

x8

x9

x10

x11

x12
x13

x14

x15

Initial

x1

x2

x3

x4
x5

x6

x7

x8

x9

x10

x11

x12
x13

x14

x15

Initial
Quarter

x1

x2

x3

x4
x5

x6

x7

x8

x9

x10

x11

x12
x13

x14

x15

Initial
Quarter
Middle

x1

x2

x3

x4
x5

x6

x7

x8

x9

x10

x11

x12
x13

x14

x15

Initial
Quarter
Middle
Final

f1

f2

f3f4

f5

f6

f7

f8 f9

f10

Initial

f1

f2

f3f4

f5

f6

f7

f8 f9

f10

Initial
Quarter

f1

f2

f3f4

f5

f6

f7

f8 f9

f10

Initial
Quarter
Middle

f1

f2

f3f4

f5

f6

f7

f8 f9

f10

Initial
Quarter
Middle
Final

Figure 4.9: Resulting movement in objective space for DTLZ3.
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4.3.2 DTLZ3 Decision Space Movement

Now we take the direction dn ∈ R15, dni = −1, i = 1, 3, . . . , 9 and dni = 0
otherwise. Our initial optimal solution is the vector x0 = (0.5, . . . , 0.5)T ∈ R15.
Computational efforts for these conditions and a step size of 0.05 are presented in
Table 4.19, we notice in this table a similar performance for PE-N and PE-QN. The
stopping criterion for both versions is backtrack in steps.

Table 4.19: Computational efforts for the PE variants for the decision space
movement for DTLZ3.

PE-N PE-QN
Solutions 27.00 27.00
Avg. corrector iterations 0.00 0.00
Avg. backtrack iterations 0.00 0.00
Function evaluations 27.00 27.00
Jacobian evaluations 27.00 27.00
Hessian evaluations 270.00 -

We can see results using PE-N in Table 4.20 and in Figure 4.10. We appreciate
that the method follows the given direction due to the indicated decision variables
get their minimum value.

Table 4.20: DValues of the decision variables for the decision space movement
in four different steps for DTLZ2 using PE-N.

Initial Quarter Middle Final
x1 0.5000 0.4810 0.3958 0.0000
x2 0.5000 0.5000 0.5000 0.5000
x3 0.5000 0.4256 0.1336 0.0000
x4 0.5000 0.5000 0.5000 0.5000
x5 0.5000 0.2256 0.0000 0.0000
x6 0.5000 0.5000 0.5000 0.5000
x7 0.5000 0.0000 0.0000 0.0000
x8 0.5000 0.5000 0.5000 0.5000
x9 0.5000 0.0000 0.0000 0.0000
x10 0.5000 0.5000 0.5000 0.5000
x11 0.5000 0.5000 0.5000 0.5000
x12 0.5000 0.5000 0.5000 0.5000
x13 0.5000 0.5000 0.5000 0.5000
x14 0.5000 0.5000 0.5000 0.5000
x15 0.5000 0.5000 0.5000 0.5000
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Figure 4.10: Resulting movement in decision space for DTLZ3.
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4.3.3 DTLZ3 Movement in µ space

Here we chose a vector µ which involves the decrement of f5 together with the
increment in the same amount for the others functions, that is, µ ∈ R10, µ5 = −1 and
µi = 1/9, i = 1, . . . , 4. Computational efforts fort this case with a step size of 0.05
are shown in Table 4.21, here we can see that PE-QN needs more steps to complete
its solution path. The stopping criteria in this case is backtrack in the steps.

Table 4.21: Computational efforts for the PE variants for the µ space movement
for DTLZ2.

PE-N PE-QN
Solutions 3.00 7.00
Avg. corrector iterations 0.00 0.00
Avg. backtrack iterations 0.00 0.00
Function evaluations 4.00 8.00
Jacobian evaluations 4.00 8.00
Hessian evaluations 40.00 -

We can see in Figure 4.11 and in Table 4.22 the resulting path using PE-QN. We
notice that the expected direction is not exactly satisfied, there are functions besides
of f5 which decrement their value. Thus, we have an approximate movement which
depends of each version. It explains the different obtained results in Table 4.21.

Table 4.22: Values of the objective functions for the µ space movement in four
different steps for DTLZ3 using PE-Q.

Initial Quarter Middle Final
f1 0.0442 0.0378 0.0234 0.0159
f2 0.0442 0.0378 0.0234 0.0159
f3 0.0625 0.0533 0.0328 0.0222
f4 0.0884 0.0749 0.0454 0.0304
f5 0.1250 0.0901 0.0367 0.0171
f6 0.1768 0.1584 0.1142 0.0894
f7 0.2500 0.2369 0.1991 0.1751
f8 0.3536 0.3499 0.3320 0.3186
f9 0.5000 0.5081 0.5224 0.5361
f10 0.7071 0.7203 0.7474 0.7552
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Figure 4.11: Resulting movement in decision space for DTLZ3.
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4.3.4 DTLZ3 DDRP

We again consider 51 points on a curve z(t) ∈ R10 defined as the line segment
connecting the points z0 ∈ R10, z0 = (0, . . . , 0)T and z1 ∈ R10, z1i = 1, i = 1, 3, . . . , 9.
The computational efforts for this case are shown in Table 4.23.

We have that PE-N and PE-QN require 47.64 and 31.96 correctors in average,
respectively. This produces a significant increment of the functions evaluations with
respected to the others movements.

Table 4.23: Computational efforts for the PE variants for DRPP for DTLZ3.

PE-N PE-QN
Solutions 51.00 51.00
Avg. corrector iterations 47.64 31.96
Avg. backtrack iterations 0.00 0.00
Function evaluations 18628.00 21399.00
Jacobian evaluations 28.00 63.00
Hessian evaluations 280.00 -

We show the PE-N resulting path in Figure 4.8 and in Table 4.16, due to PE-N
spends less function evaluations. We notice the expected result, that is similar to the
observed in Figure 4.10. This suggest that we can obtain similar results with different
kinds of movements.

Table 4.24: Values of the objective functions for DRPP in four different steps
for DTLZ3 using PE-N.

Initial Quarter Middle Final
f1 0.3302 0.4126 0.4382 0.4382
f2 0.3302 0.1726 0.0988 0.0988
f3 0.3043 0.4126 0.4384 0.4384
f4 0.2904 0.1726 0.0986 0.0986
f5 0.3089 0.4126 0.4383 0.4383
f6 0.2887 0.1726 0.0986 0.0986
f7 0.3273 0.4126 0.4388 0.4388
f8 0.3230 0.1725 0.0982 0.0982
f9 0.3252 0.4126 0.4386 0.4386
f10 0.3302 0.1726 0.0000 0.0000
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Figure 4.12: Result of DRPP for DTLZ3.

Cinvestav Computer Science Department



86 Chapter 4

4.4 Real Word Application: Industrial Laundering

In industrial laundering, it is of great importance to achieve high degrees of clean-
ing for different kinds of contaminations such as oil, egg, curry, etc. for different
kinds of fabrics. Additionally, the laundering costs as well as the environmental bur-
den need to be minimized. The laundering process [46] is –among others– influenced
by the four parameters:

• x1: temperature,

• x2: chemistry (amount of cleaner),

• x3: time,

• x4: mechanics (speed of rotation).

In [46] authors developed a model which describes the relation between the factors
of and the degree of cleaning for 13 different combinations of fabric and contamination.
The model was generated by fitting quadratic ansatz functions to experimental mea-
surements [47]. All parameters are normalized using the reference point (0, 0, 0, 0).
The degree of cleaning varies between 0 (no cleaning) and 100 (perfect cleaning). The
type of contamination on particular elements considered by objective functions and
the cost function are:

• f1(x): wool grease in cotton,

• f2(x): wool grease in polyester,

• f3(x): red in cotton,

• f4(x): sebum in cotton,

• f5(x): sebum in polyester,

• f6(x): currry in cotton,

• f7(x): motoroel in cotton,

• f8(x): petroleum in cotton,

• f9(x): blood in cotton,

• f10(x): egg in cotton,

• f11(x): starch in cotton,

• f12(x): cocoa,

• f13(x): vegetable grease,

• f14(x): cost function.
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Thus, the Laundering Problem (LP) is given by:

min
x∈R4

F (x) = [f1(x), . . . , f14(x)],

s.t −1.5 ≤ xi ≤ 1.5, i = 1, 2, 4.
0 ≤ x3 ≤ 1.5.

(4.3)

We consider the five different scenarios described in Chapter 3 and the two versions
of PE to solve LP. We use an approximation of the Hessians via finite differences for
the PE-N.

The first scenario is a movement in objective space. For this case the goal is an
improvement for the cost function (f14). For the movement in decision space we focus
on the reduction of the variable which corresponds to time (x3) and we take the same
direction for the case of a minimal change in objective space. We define a suitable
vector µ for the movement in µ space, which represents a bigger progress on f10
sacrificing the value for the rest of objective functions in the same amount. Finally,
we fixed a curve for the DRPP, such that the method tries to reach the best value
for f12 and the closest value to the utopian point for the other objective functions.

4.4.1 Movement in Objective Space

For this approach we define the direction in objective space as dk = −e14, i.e. we
want to reduce the value of the cost function as much as possible. We take as initial
point x0 = (1, 1, 1, 1)T , which is not an optimal solution.

We can see the computational efforts for each version of the method with a step
size of 1 in Table 4.25. Both versions obtained 111 solutions and also in both cases
the method stopped due to a backtrack in the steps.

We show in Figure 4.13 the initial optimal solution as well as the iterations 27,
55, and 111 obtained by PE-QN. Numerical values of all objective functions in the
indicated iterations are presented in Table 4.26.

Table 4.25: Computational efforts for the PE variants for the objective space
movement for LP.

PE-N PE-QN
Solutions 111.00 111.00
Avg. corrector iterations 0.00 0.00
Avg. backtrack iterations 0.00 0.00
Function evaluations 112.00 111.00
Jacobian evaluations 112.00 111.00
Hessian evaluations 1568.00 -

Cinvestav Computer Science Department



88 Chapter 4

x1

x2

x3

x4

Initial

x1

x2

x3

x4

Initial
Quarter

x1

x2

x3

x4

Initial
Quarter
Middle

x1

x2

x3

x4

Initial
Quarter
Middle
Final

f1

f2

f3

f4f5

f6

f7

f8

f9

f10

f11 f12

f13

f14

Initial

f1

f2

f3

f4f5

f6

f7

f8

f9

f10

f11 f12

f13

f14

Initial
Quarter

f1

f2

f3

f4f5

f6

f7

f8

f9

f10

f11 f12

f13

f14

Initial
Quarter
Middle

f1

f2

f3

f4f5

f6

f7

f8

f9

f10

f11 f12

f13

f14

Initial
Quarter
Middle
Final

Figure 4.13: Resulting movement in objective space for LP using PE-QN.
Reduction of the cost function (f14).
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Table 4.26: Values of the objective functions for the objective space movement
in four different steps for LP using PE-QN.

Initial Quarter Middle Final
f1 -51.7939 -48.4594 -44.1958 -37.1351
f2 -60.6967 -50.1930 -40.2057 -18.7666
f3 -64.7622 -66.1990 -66.7195 -60.4359
f4 -57.0948 -53.8678 -48.3284 -45.0684
f5 -84.4151 -76.7702 -64.9868 -56.0820
f6 -71.2207 -69.9971 -68.0270 -64.9441
f7 -67.3154 -64.1632 -59.7479 -54.3218
f8 -46.3219 -47.2275 -45.7867 -40.8224
f9 -65.2682 -61.3069 -59.2949 -83.1116
f10 -32.0226 -33.2730 -35.6052 -41.4375
f11 -45.9450 -46.0133 -44.1074 -36.3988
f12 -71.6009 -60.7151 -44.6800 -22.5289
f13 -40.3162 -41.9827 -43.2332 -33.8284
f14 26.0637 12.9035 6.0533 0.0000

We can see in Figure 4.26 a decrement in the value of the cost function, according
with the Table 4.26 the value of f14 is reduced from 26.0637 to 0.0000, that is, the
method reaches the best possible value. This solution leads to an increment for the
majority of the others functions with respect to the initial configuration, only for
objectives f9 and f10 we observe a decrement.

Regarding the decision variables, the final solution for this approach implies the
reduction of x1 and x2 along with the increment of x3 and x4 (see Figure 4.13). In
other words, we need to reduce the temperature (x1) and the amount of cleaner (x2),
additionally we need to increase the time (x3) and the speed of rotation in order to
get the minimum possible cost.

4.4.2 Movement in Decision Space

An interesting scenario is to reduce the time of the model without optimality loss.
Of course we can provide a configuration with the minimum possible time, but this
configuration may correspond to a dominated point. Instead, we perform a steering
in decision space in order to know how much we can reduce the time, which is given
in the model by x3. Thus, we defined the direction in decision space as: dn = −e3 and
we take again x0 = (1, 1, 1, 1)T as initial point. We show in Figure 4.14 the obtained
results for this approach for the PE-QN and present computational efforts for each
version of the method with a step size of 0.2 in Table 4.27.
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Figure 4.14: Resulting movement in decision space for LP using PE-QN. Re-
duction of the time variable (x3).
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Table 4.27: Computational efforts for the PE variants for the objective space
movement for LP.

PE-N PE-QN
Solutions 102.00 83.00
Avg. corrector iterations 2.08 0.95
Avg. backtrack iterations 0.03 0.00
Function evaluations 328.00 163.00
Jacobian evaluations 316.00 163.00
Hessian evaluations 4424.00 -

Unlike with the results for benchmark problems, in this case we have a considerable
discrepancy on the number of obtained solutions. PE-N obtained 83 solutions while
PE-QN obtained 102. The stopping criterion was, for both cases, backtrack in the
steps but it occurs at different iterations. Thus, PE-N does not reach the minimum
time, which seems to be due to the Hessian approximations via finite differences.
Therefore, we focus here on the PE-QN results.

We notice in Figure 4.14 the desirable reduction in x3 and that the rest of the
variables do not a significant change. Also, the form of the radar chart for the
objective space is very similar at each iteration.

Finally, we present in Table 4.28 the values of the decision variables at iterations
1, 21, 42, and 83 for the PE-QN. The time variable has a reduction from 1.3622 to
0.000, which is a very significant decrement and it is also the minimum possible value
for this variable. On the other hand, the value of x4 is the same at each iteration,
while for x1 and x2 no a significant changes can be observed.

Table 4.28: Values of the decision variables for the objective space movement
in four different steps for LP using PE-N.

Initial Quarter Middle Final
x1 1.0429 1.0507 1.0497 1.0504
x2 0.8521 0.7958 0.7661 0.7549
x3 1.3622 1.0978 0.7974 0.0000
x4 1.5000 1.5000 1.5000 1.5000

Similar results obtained for this approach motivate the use of the steer of minimal
change in objective space for the same direction dn = −e3.
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4.4.3 Minimal Change in Objective Space

For this approach we take the direction dn = −e3, but in this case we try to
conserve the initial configuration in objective space.

Computational efforts for each version of the method with a step size of 0.2 are
shown in Table 4.27. We notice a similar behavior of the PE-N with respect to the
movement in objective space, that is, PE-N did less iterations than the PE-QN. The
stopping criterion is backtrack in the steps for both cases and again PE-N did not
reach the best solution because the finite differences.

Table 4.29: Computational efforts for the PE variants for the steer of minimal
change in objective space for LP.

PE-N PE-QN
Solutions 61.00 34.00
Avg. corrector iterations 1.50 0.85
Avg. backtrack iterations 0.03 0.00
Function evaluations 154.00 64.00
Jacobian evaluations 154.00 64.00
Hessian evaluations 2156.00 -

We can see in Figure 4.15 that the form of the radar chart of the objective space
is very similar at each iteration and we achieve a reduction for the time variable in
decision space at the same time. Table 4.30 presents numerical results obtained by
PE-QN at the iterations 1, 15, 30, and 61. Values have similarities with values of
Table 4.27, x4 is the same value at each iteration, x1 and x2 have a non significant
change, and finally x3 is reduced but in a lower amount.

Table 4.30: Values of the decision variables for the steer of minimal change in
objective space in four different steps for LP using PE-QN.

Initial Quarter Middle Final
x1 1.0429 1.0400 1.0349 1.0203
x2 0.8521 0.8479 0.8470 0.8607
x3 1.3622 1.1525 0.8698 0.3453
x4 1.5000 1.5000 1.5000 1.5000

At first we have similar results for this problem approach and the movement
in objective space for the same direction. However, the steering with respect to a
minimal change in objective space stops when the change in objective space becomes
to grow and then it does not reach the minimum value for the time variable.
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Figure 4.15: Resulting movement of minimal change in objective space for LP.
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4.4.4 Movement in µ Space

The µ vector chosen for this example was defined as: µ10 = −1 and µi = 1/13
otherwise, for i = 1, . . . , 14. The idea is to reduce the value of f10 (egg in cotton)
sacrificing the value for the rest of objective functions in the same amount.

Computational efforts of the PE variants with a step size of 1 are shown in Ta-
ble 4.31. PE-QN spends 76 iterations to reach the best value for f10. PE-N only
obtains 46 solutions and it does not obtain the best value.

Table 4.31: Computational efforts for the PE variants for the µ space movement
for LP.

PE-N PE-QN
Solutions 46.00 76.00
Avg. corrector iterations 0.00 0.00
Avg. backtrack iterations 0.00 0.00
Function evaluations 47.00 76.00
Jacobian evaluations 47.00 76.00
Hessian evaluations 658.00 -

We show in Table 4.32 the obtained numerical results by PE-QN for iterations 1,
19, 38, and 76. in Figure 4.16 we can see the radar chart for the indicated iterations.

Table 4.32: Values of the decision variables for the µ space movement in four
different steps for LP using PE-Q.

Initial Quarter Middle Final
f1 -51.7939 -48.3577 -44.6496 -38.0414
f2 -60.6967 -56.7886 -51.5355 -32.3484
f3 -64.7622 -63.6687 -62.2982 -58.0583
f4 -57.0948 -55.8538 -54.4228 -51.0232
f5 -84.4151 -84.3138 -83.9069 -80.3922
f6 -71.2207 -70.9236 -70.5037 -68.8194
f7 -67.3154 -63.8794 -60.2761 -54.8541
f8 -46.3219 -46.2011 -45.9977 -44.9631
f9 -65.2682 -77.9235 -91.1811 -111.0770
f10 -32.0226 -41.8877 -51.8563 -63.2592
f11 -45.9450 -44.6885 -43.0823 -37.8752
f12 -71.6009 -71.9252 -71.1836 -59.5752
f13 -40.3162 -44.5083 -48.3741 -49.0434
f14 26.0637 24.4800 22.4533 15.7769
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Figure 4.16: Resulting movement in µ space for LP.
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4.4.5 Dynamic Reference Point

We define a curve taking 50 intermediate values between the utopian point and
the nadir point for each function and changing the value of f12 until reach the utopian
point value. We expect to get a better value for f12 in for each step that the method
does. Computational efforts of the PE variants are shown in Table 4.33.

Table 4.33: Computational efforts for the PE variants for the DRPP for LP.

PE-N PE-QN
Solutions 50.00 50.00
Avg. corrector iterations 23.10 23.36
Avg. backtrack iterations 0.00 0.00
Function evaluations 99.00 99.00
Jacobian evaluations 50.00 99.00
Hessian evaluations 700.00 -

We can see the numerical results given by the PE-N in Figure 4.17 and in Ta-
ble 4.34. We show the solution for the initial point and the iterations 13th, 25th and
50. Our goal to improve f12 is done but the final configuration is not well distributed
as in the above case.

Table 4.34: Values of the objective functions for the objective space movement
in four different steps for LP using PE-N.

Initial Quarter Middle Final
f1 -46.1828 -46.6207 -47.1140 -48.4010
f2 -47.6121 -49.9058 -52.2351 -57.2613
f3 -66.7666 -66.3993 -66.0581 -65.4715
f4 -61.1284 -62.6389 -64.1311 -67.1606
f5 -58.7567 -62.2110 -65.5399 -71.9140
f6 -78.5294 -79.1683 -79.7865 -80.9844
f7 -53.7768 -54.4855 -55.2614 -57.1881
f8 -35.4564 -36.0470 -36.5950 -37.5522
f9 -61.8950 -65.1489 -68.0795 -72.6893
f10 -67.5941 -69.8967 -71.9398 -75.0143
f11 -51.7789 -52.3751 -52.9650 -54.1711
f12 -61.4944 -66.1612 -70.7075 -79.6468
f13 -45.6760 -46.6680 -47.5503 -48.8988
f14 -11.7027 -9.9782 -8.1332 -3.7573
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Figure 4.17: Result of DRPP for LP.
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Chapter 5

Conclusions and Future Work

In this chapter, we first summarize the thesis work in Section 5.1. After that we
discuss our findings and contributions, and point out its limitations in Section 5.2.
Finally, in Section 5.3, we outline directions for future research.

5.1 Obtained Results

In this section we briefly present the principal contributions of this work. As
described in Chapter 3, Pareto Explorer (PE) is a global/local tool for the treatment of
Many Objective Optimization Problems (MaOPs). On this framework, we developed a
continuation method for the local steering phase of the PE, which is capable to follow
the Pareto landscapes (Pareto Set (PS) and Pareto Front (PF)) in a given direction.

The first kind of movement is the steering in objective space, presented in Sec-
tion 3.4.1. For this case we have a given direction in objective space and an initial
optimal solution. PE method allows to obtain a path of optimal solutions which rep-
resents the best possible movement according to the given direction. We also provide
stopping criteria that avoid to continue with the search in case of non promising steps.

The second approach is the steering in decision space, described in Section 3.4.2.
Here, we also have an initial optimal solution, but the given direction is in decision
space. We achieve for this scenario, with the PE method, a continuation focuses
along the PS instead of the PF, that is, our interest is in the resulting path on the
decision space. We define different stopping criteria for this case considering the non
promising steps in decision space.
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The third movement is made in the µ space (or weight space) which considers
the trade-off between optimal solutions, we explain more details about the µ space
in Section 3.4.3. Basically we have an initial optimal solution and a direction in
objective space given by a vector whose component sum is equal to zero (a vector µ).
Although the movement is performed in objective space, the continuation according
to a given vector µ implies a procedure simpler than the requires for the steering in
objective space. Indeed, we consider the same stopping criteria used for the steering in
objective space. The movement along µ space it is important due to its interpretation
for the Decision Maker (DM).

A variant of the steering in the decision space is the fourth kind of movement,
presented in Section 3.4.4, where we have the steering of minimal change in objective
space. Here, PE makes the steering in decision space but the resulting path produces
the minimal change in objective space. That is, we start with an initial optimal
solution and a given direction in decision space, this direction is a guide. The idea is
to get the closest vector to the given direction in objective space such that the change
in objective space is minimal.

Finally, we use the predictor of the steering in objective space together with a
change on the corrector step to solve the Dynamic Reference Point Problem (DRPP).
PE returns optimal solution even if the reference points are inside the Pareto surface
(see Section 3.4.5).

The five kinds to explore the Pareto landscapes provide to the DM a complete
tool to evaluate different options and getting information for a given problem. This
is the highlight of this work.

5.2 Conclusions

Here we discuss, based on the examples of Section 3.4 and the numerical results
of Chapter 4, the impact of this work.

We developed, as our contribution to the steering phase of the PE, five different
ways to steer a search of Pareto landscapes. We provided suitable stopping criteria
for the steering in objective and decision spaces. These condition can be used for the
steering in µ space and the minimal change in objective space, respectively. As we can
see, with the examples of Section 3.4, our stopping criteria prevent the continuation
along non promising surfaces and also they avoid the swing of the method.

We appreciate with the tables in Chapter 4 that the PE method generally does
not require a lot of function evaluations to get a resulting path. Of course it depends
of the number of steps that the method produces, but taking into account that we are
considering MaOPs with more than 9 functions, the computational cost is reasonable.
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The exception is the treatment of the DRPP which presents a considerable increment
of the function evaluations due to the corrector step. Though the method stays in
the same point, the method needs to compute at least one iteration for the corrector
at each iteration (see Section 4.1.4). In addition, solving the reference point problem
implies to find the minimum of a non differentiable function (Equation (2.71)) which
naturally has an negative impact whit the efficiency of this approach.

The two versions of PE considered for this work, Newton Pareto Explorer (PE-N)
and Quasi-Newton Pareto Explorer (PE-QN), present a similar performance for the
majority of the examples when we used the analytical expression for the Hessians
and Jacobians. This means a good performance of the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) method used for the PE-QN. On the other hand, for the cases when
we used finite differences to approximate both Hessians and Jacobians, the PE-QN
presents the bests results (see the real word application in Section 4.4). This confirms
that the BFGS has a good performance and this also suggest the use of the PE-QN
for problems where we have not the second order information.

Finally, we can conclude that PE satisfies its principal purpose, to provide a
tool which allows to the DM to explore the Pareto landscapes in real time. The
Laundering Problem (LP) is an example of a successful application of the PE in a
real word problem. Along this work we notice that these movements produce the
expected results, that is, the method efficiently achieves a resulting path according
with the given direction.

5.3 Future Work

As we described in Chapter 3, the PE method is conceived as a numerical tool
for the treatment of MaOPs. Though the first results are very promising, there are
several lines of research arising from this work that may be pursued in the future.

• As we commented in Section 3, the continuation method used by the steering
phase of the PE is based on the Pareto Tracer method which does not handle
general inequality constraints. Thus, the PE is also available only for general
equality constraints and box constraints. The extension of the Pareto Tracer
to handle with general equality constraints can be also included as a natural
extension to the PE.

• The proposed stopping criteria have demonstrated good results in the practice,
however mathematical proofs of these conditions are required to guarantee their
general effectiveness.
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• The treatment of the DRPP comes so far with a high number of function evalu-
ations, required to obtain good results. Thus, it is desirable a more efficient way
to solve the reference point problem in order to reduce the required function
evaluations.

• The use of an evolutionary algorithm or other technique to find global solutions
is the first step to develop a memetic algorithm with the PE which is consider
as future work.

• We observe that the radar char has some issues. Thus, the implementation of
new visualization techniques in a Graphical User Interface (GUI) which allows
a friendly interaction with the DM is one of the most important aspect to do
as future work. Indeed, we has been already developed a first version of a GUI.

• Finally, we know that PE method have been developed for the continuous MaOP
context. As future work the implementation of PE method for discrete MaOPs
may be consider in order to potentiate its applicability for real word problems.
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