
Centro de Investigación y de Estudios
Avanzados del Instituto Politécnico Nacional

Unidad Zacatenco

Departamento de Computación

EDS: Método de continuación para problemas de

optimización multi-objetivo mixtos-enteros

Tesis que presenta

David Laredo Razo

para obtener el Grado de

Maestro en Ciencias en Computación

Director de la Tesis

Dr. Oliver Schütze

México, D.F. Noviembre 2015



ii



Centro de Investigación y de Estudios
Avanzados del Instituto Politécnico Nacional

Zacatenco Campus

Computer Science Department

EDS: A Continuation Method for Mixed-Integer

Multi-objective Optimization Problems

Submitted by

David Laredo Razo

As a fulfillment of the requirement for the degree of

Master in Computer Science

Advisor

Dr. Oliver Schütze

México, D.F. November 2015



iv



Resumen

Los problemas de optimización multi-objetivo (MOPs por sus siglas en inglés) se
presentan frecuentemente en diversas aplicaciones de ingenieŕıa y gestión. Un tipo
más general de MOPs son los llamados problemas de optimización multi-objetivo
mixtos (MMOPs en inglés), en los cuales el espacio de búsqueda está conformado por
variables enteras y variables reales. La investigación relacionada con los MMOPs es
aún escasa considerando la frecuencia con la que estos se presentan en la vida real.
Por ejemplo, en aplicaciones gestión, el problema de la distribución óptima de los
recursos en una ĺınea de ensamblaje puede involucrar variables enteras (número de
trabajadores, número de estaciones de trabajo, número de piezas de un determinado
producto, etc.), aśı como variables reales (tiempo consumido por tarea, costo de
producción. etc.). Generalmente, la resolución de MMOPs es más complicada que la
de los MOPs, requiriendo de técnicas especializadas.

En este trabajo presentamos un método de continuación para la resolución tanto
de MOPs como de MMOPs. Nuestro algoritmo, llamado Enhanced Directed Search
(EDS), permite dirigir la búsqueda en una dirección predefinida en el espacio objetivo.
Más aún, este método puede aplicarse para la resolución de problemas con k ≥ 2,
donde k denota el número de objetivos que comprenden al problema, a la vez que hace
uso de puntos ya calculados en el vecindario para aumentar la eficiencia del método.
Demostramos, mediante la resolución de algunas funciones de prueba, que el método
EDS es tan confiable como los métodos Direct Zig Zag (DZZ) y NSGA-II pero más
eficiente que cualquiera de ellos.

v





Abstract

Multi-objective optimization problems (MOPs) commonly arise in several real-life en-
gineering and management applications. A more general (and hence more complicated
to solve) kind of MOPs are the so called mixed-integer multi-objective optimization
problems (MMOPs), where the search space is composed by real and integer vari-
ables. The research regarding the treatment of MMOPs is still scarce despite the
frequency in which they arise in practice. For example, in management applications,
the allocation of resources in a factory may consider integer variables (number of
workers, number of workstations, number of pieces of a determined product, etc.)
and real variables (time consumed per task, production cost, etc.). These MMOPs
are generally more complicated to solve, and thus, require specialized techniques.

In this work we propose a continuation method that deals with continuous and
mixed-integer problems as well. Our approach, called Enhanced Directed Search
(EDS), is capable of steering the search along a predefined direction in objective
space. Furthermore, it is capable of dealing with problems with k ≥ 2, where k
denotes the number of objectives involved in the problem, while making use of neigh-
boring information to increase the efficiency of the method. We demonstrate, through
the resolution of some test functions, that the EDS method is as reliable as the Direct
Zig Zag (DZZs) and NSGA-II methods while being more efficient than both of them.

vii





Agradecimientos

A mi Dios Jehova por sus abundantes bendiciones, por permitirme concluir este grado
académico y por ser siempre un pilar fundamental en mi desarrollo humano.

A mi asesor, el Dr. Oliver Schütze, sin cuya gúıa y constantes cŕıticas y obser-
vaciones este trabajo no habŕıa sido posible. Por su confianza y el tiempo invertido
en el desarrollo de este proyecto aśı como por el amable trato recibido. Le agradezco
por el conocimiento compartido y por sus magistrales clases, las cuales me motivaron
al estudio de esta ciencia y a la realización de este proyecto de tesis. Por su buena
disposición para la conclusión exitosa de este trabajo y por ser siempre una agradable
persona.

A mis padres Angélica y Rogelio a los cuales amo profundamente y que siempre han
sido un apoyo incondicional e invaluable, no solo en mi vida profesional y académica,
sino en todos los aspectos de mi vida. Ellos merecen gran parte del mérito de este
trabajo. A mi hermano Hiram, al cual amo por igual y que siempre ha sido un amigo
entrañable del cual he podido aprender.

A mis amigos Jhonatan y Oliver, por estar en los buenos y en los malos momen-
tos, por su disposición a ayudar y por ser siempre un apoyo incondicional durante
este proceso. A mis amigos Mart́ın, Gabriel y Cesar por hacer de la maestŕıa una
experiencia amena y gratificante. A todos ellos por ayudarme a ser mejor persona.

Al Dr. Honggang Wang por haberme brindado tan amable recibimiento durante
mi estancia en el extranjero, por haber contribuido al desarrollo de este trabajo y por
ser una excelente persona con una gran calidad humana.

Al CINVESTAV-IPN por haber sido mas que mi escuela, mi casa durante estos dos
años, por las facilidades que me brindó para mis estudios de posgrado y al CONACyT
por la beca de maestŕıa y el apoyo brindado para mi estancia en el extranjero.

A mis sinodales los doctores Luis Gerardo de la Fraga y Amilcar Meneses, por
haber aceptado revisar y hacer observaciones a este trabajo. A los doctores Fran-
cisco Rodŕıguez Henŕıquez y Debrup Chakraborty por sus clases, el conocimiento
compartido y la humildad con la que siempre se han conducido.

ix



x

A todo el personal del Departamento de Computación por las facilidades brindadas
durante estos dos años.

Gracias a todos los que de una u otra manera formaron parte directa o indirecta-
mente de este proceso.



Contents

List of Figures xv

List of Tables xix

List of Algorithms xxi

List of Acronyms xxiii

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 The Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Aims of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Final Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background and Related Work 5

2.1 Theoretical Background . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Multi-objective Optimization . . . . . . . . . . . . . . . . . . 5

2.1.2 The Karush-Kuhn-Tucker Optimality Conditions for Multi-objective
Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.3 Mixed-Integer Multi-objective Optimization . . . . . . . . . . 10

2.2 Continuation Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 11

xi



xii CONTENTS

2.2.1 Hillermeier’s Predictor-Corrector Method . . . . . . . . . . . . 13

2.3 The Directed Search Method . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.1 Directed Search Descent Method . . . . . . . . . . . . . . . . 15

2.3.2 Directed Search Predictor-Corrector Method . . . . . . . . . . 18

2.4 Direct Zig Zag Method . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 Multi-objective Optimization Evolutionary Algorithms . . . . . . . . 20

2.6 Performance Indicators . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.6.1 Generational Distance . . . . . . . . . . . . . . . . . . . . . . 23

2.6.2 Inverted Generational Distance . . . . . . . . . . . . . . . . . 23

2.6.3 Hausdorff Distance . . . . . . . . . . . . . . . . . . . . . . . . 24

2.6.4 Averaged Hausdorff Distance 4p . . . . . . . . . . . . . . . . 24

3 The Enhanced Directed Search Method 27

3.1 Following a Direction in Objective Space . . . . . . . . . . . . . . . . 27

3.2 Predictor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Corrector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3.1 Corrector Step Size . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3.2 Determining Critical Points . . . . . . . . . . . . . . . . . . . 35

3.4 The Enhanced Directed Search Method . . . . . . . . . . . . . . . . . 37

3.4.1 Determining Points Already Covered by EDS . . . . . . . . . 37

3.4.2 Handling Box Constrained Problems . . . . . . . . . . . . . . 40

3.4.3 Stopping Criteria for the EDS Method . . . . . . . . . . . . . 41

3.5 Using Neighborhood Information . . . . . . . . . . . . . . . . . . . . 42

3.6 Handling Mixed-Integer Problems . . . . . . . . . . . . . . . . . . . . 45

3.7 An Example of the EDS Method . . . . . . . . . . . . . . . . . . . . 47

3.7.1 On the Impact of the δ Thresholds . . . . . . . . . . . . . . . 49



CONTENTS xiii

3.7.2 On the Impact of the Size of the Neighborhood N(x) . . . . . 50

4 Numerical Results and Experiments 53

4.1 General Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 Continuous Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2.1 Binh Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2.2 Fonseca Function . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2.3 Dent Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2.4 ZDT1 Function . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2.5 Binh tri-objective Function . . . . . . . . . . . . . . . . . . . . 58

4.2.6 DTZL1 Function . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2.7 DTLZ2 Function . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3 Integer Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3.1 Binh Integer Function . . . . . . . . . . . . . . . . . . . . . . 63

4.3.2 Dent Integer Function . . . . . . . . . . . . . . . . . . . . . . 64

4.3.3 ZDT1 Integer Function . . . . . . . . . . . . . . . . . . . . . . 65

4.3.4 ZDT2 Integer Function . . . . . . . . . . . . . . . . . . . . . . 66

4.4 A Mixed-Integer Model . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5 Conclusions and Future Work 71

5.1 Obtained Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Appendices 75

A Parameter Setting for the Experiments 77

A.1 Parameter Setting of the DZZ Method . . . . . . . . . . . . . . . . . 77



xiv CONTENTS

A.2 Parameter Setting of the EDS Method . . . . . . . . . . . . . . . . . 78

A.3 Parameter Setting of the NSGA-II Algorithm . . . . . . . . . . . . . 78

B Reference Pareto Fronts of the Test Problems 79

B.1 Binh Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

B.2 Fonseca Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

B.3 Dent function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

B.4 ZDT1 Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

B.5 Binh tri-objective function . . . . . . . . . . . . . . . . . . . . . . . . 81

B.6 DTLZ1 Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

B.7 DTLZ2 Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

B.8 Binh Integer Function . . . . . . . . . . . . . . . . . . . . . . . . . . 83

B.9 Dent Integer Function . . . . . . . . . . . . . . . . . . . . . . . . . . 83

B.10 ZDT1 Integer Function . . . . . . . . . . . . . . . . . . . . . . . . . . 84

B.11 ZDT2 Integer Function . . . . . . . . . . . . . . . . . . . . . . . . . . 84

B.12 Binh Mixed-Integer Function . . . . . . . . . . . . . . . . . . . . . . . 85

References 86



List of Figures

2.1 Hypothetical Pareto front for the cost-quality problem . . . . . . . . 7

2.2 The weight vector α is orthogonal to the linearized Pareto front F (P )
at F (x∗). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Examples of decision spaces . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Example of a PC step. . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 Greedy movement of DS descent . . . . . . . . . . . . . . . . . . . . . 16

2.6 Examples of the Directed Search predictor-corrector method . . . . . 19

2.7 DZZ method example . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1 Computation of the predictors . . . . . . . . . . . . . . . . . . . . . . 30

3.2 −αi taken as steering direction for the corrector . . . . . . . . . . . . 31

3.3 Deviation of the direction d̃, obtained by following ν, with respect to d. 32

3.4 Acceptable deviations for the corrector c . . . . . . . . . . . . . . . . 34

3.5 The data structure used for the representation of the solution set. . . 39

3.6 Neighbors used for the approximation of the Jacobian are spotted as
triangles, squares are points outside the neighborhood N(x0) . . . . . 44

3.7 Resolution of a bi-objective problem by using the EDS method . . . . 48

3.8 Pareto fronts computed by the EDS method for different values of τ . 48

3.9 Pareto fronts computed by the EDS for the different settings of max δ
and min δ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

xv



xvi LIST OF FIGURES

4.1 Pareto fronts of the Binh function computed by the different methods 55

4.2 Pareto fronts of the Fonseca function computed by the different methods 56

4.3 Pareto fronts of the Dent function computed by the different methods 57

4.4 Pareto fronts of the ZDT1 function computed by the different methods 58

4.5 Pareto fronts of the Binh3 function computed by the different methods 59

4.6 Pareto fronts of the DTLZ2 function computed by the different methods 61

4.7 Pareto fronts of the DTLZ2 function computed by the different methods 62

4.8 Pareto fronts of the Convex integer function computed by the different
methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.9 Pareto fronts of the Dent integer function computed by the different
methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.10 Pareto fronts of the ZDT1 integer function computed by the different
methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.11 Pareto fronts of the ZDT2 Integer function computed by the different
methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.12 Pareto fronts of the Binh3 MI function computed by the different methods 69

B.1 Real Pareto front of the Binh function . . . . . . . . . . . . . . . . . 79

B.2 Real Pareto front of the Fonseca function . . . . . . . . . . . . . . . . 80

B.3 Real Pareto front of the Dent function . . . . . . . . . . . . . . . . . 80

B.4 Real Pareto front of the ZDT1 function . . . . . . . . . . . . . . . . . 81

B.5 Real Pareto front of the Binh tri-objective function . . . . . . . . . . 81

B.6 Real Pareto front of the DTLZ1 function . . . . . . . . . . . . . . . . 82

B.7 Real Pareto front of the DTLZ2 function . . . . . . . . . . . . . . . . 82

B.8 Real Pareto front of the Binh Integer function . . . . . . . . . . . . . 83

B.9 Real Pareto front of the Dent Integer function . . . . . . . . . . . . . 83

B.10 Real Pareto front of the ZDT1 Integer function . . . . . . . . . . . . 84

B.11 Real Pareto front of the ZDT2 Integer function . . . . . . . . . . . . 84



LIST OF FIGURES xvii

B.12 Real Pareto front of the Binh3 MI function . . . . . . . . . . . . . . . 85



xviii LIST OF FIGURES



List of Tables

3.1 Number of solutions computed for the different values of τ . . . . . . 49

3.2 Impact of the δ thresholds on the overall performance of the EDS method 49

3.3 Impact of the size of N(x) on the overall performance of the EDS method 51

4.1 Summarized results for Binh function . . . . . . . . . . . . . . . . . . 54

4.2 Summarized results for Fonseca function . . . . . . . . . . . . . . . . 55

4.3 Summarized results for Dent function . . . . . . . . . . . . . . . . . . 56

4.4 Summarized results for ZDT1 function . . . . . . . . . . . . . . . . . 58

4.5 Summarized results for Binh3 function . . . . . . . . . . . . . . . . . 59

4.6 Summarized results for DTLZ1 function . . . . . . . . . . . . . . . . 60

4.7 Summarized results for DTLZ2 function . . . . . . . . . . . . . . . . 62

4.8 Summarized results for Binh Integer function . . . . . . . . . . . . . . 63

4.9 Summarized results for Dent integer function . . . . . . . . . . . . . . 64

4.10 Summarized results for ZDT1 Integer function . . . . . . . . . . . . . 66

4.11 Summarized results for ZDT2 Integer function . . . . . . . . . . . . . 67

4.12 Summarized results for Binh3 MI function . . . . . . . . . . . . . . . 68

A.1 Parameter setting of the DZZ method for the test functions . . . . . . 77

A.2 Parameter setting of the EDS method for the test functions . . . . . 78

xix



xx LIST OF TABLES



List of Algorithms

1 Generic MOEA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1 Obtain predictors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2 Corrector step size . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3 Compute corrector . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4 BoxContains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5 EDS Predictor-Corrector method . . . . . . . . . . . . . . . . . . . . 42
6 Convert to Mixed-Integer . . . . . . . . . . . . . . . . . . . . . . . . . 46

xxi



xxii LIST OF ALGORITHMS



Acronyms

BOP Bi-objective Optimization Problem. 14, 20, 37

DS Directed Search. 3–5, 16, 18, 19, 27, 28, 31, 43, 71

DZZ Direct Zig Zag. v, vii, 5, 19, 20, 53–68, 72, 77

EDS Enhanced Directed Search. v, vii, 4, 18, 27–29, 34, 36, 37, 40–42, 45, 47, 49–51,
53–69, 71–73, 77, 78

FPS First Pareto Solution. 20, 53

GD Generational Distance. 22–24

GSA Gradient Subspace Approximation. 4, 43

IFT Implicit Function Theorem. 12, 13

IGD Inverted Generational Distance. 22–24

KKT Karush-Kuhn-Tucker. 7–9, 11, 13, 16

MMOP Mixed-Integer Multi-objective Optimization Problem. v, vii, 2–5, 10, 21,
27, 45, 47, 71

MOEA Multi-objective Optimization Evolutionary Algorithm. 5, 20, 21, 43, 73

MOEA-D Multi-objective Optimization Evolutionary Algorithm based on Decom-
position. 21

MOO Multi-objective Optimization. 1, 4, 5

MOP Multi-objective Optimization Problem. v, vii, 1, 2, 5–7, 10–15, 19, 21–24, 27,
37, 45, 46, 53, 54

NBI Normal Boundary Intersection. 16

xxiii



xxiv Acronyms

NSGA-II Non-Sorted Genetic Algorithm II. v, vii, 21, 53–69, 77, 78

PC Predictor-Corrector. 3, 4, 11–13, 16–18, 27, 37, 41

PF Pareto Front. 48

SOP Single-objective Optimization Problem. 33



Chapter 1

Introduction

Optimization is a research field that deals with the problem of obtaining the best
attainable solution of a problem, with regard to some criteria, from some set of
available alternatives. We can find applications for the optimization in many different
fields, for instance, investors seek to create portfolios that avoid excessive risk while
achieving a high rate of return, manufacturers aim for maximimum efficiency in the
design and operation of their productions processes, engineers adjust parameters to
optimize the performance of their designs, etc.

Optimization is an important tool in several fields, however, to make use of this
tool we must first identify some objective, i.e., a quantitative measure of the per-
formance of the system under study. This objective could be profit, time, quality,
performance or any quantity or combination of quantities that can be represented by
a single value. The objective depends on certain characteristics of the system, called
variables and sometimes, just as in real life, the variables of a problem are somehow
restricted or constrained. The goal is then to find the set of variables that optimizes
the objective value, this is what we call single objective optimization.

A less intuitive scenario, nevertheless present in a great variety of applications,
arises when several objectives have to be optimized concurrently under the aforemen-
tioned conditions. This is what we call multi-objective optimization (MOO). As a
simple example consider product manufacturing: the product quality has to be maxi-
mized while the production cost has to be minimized. A high quality product is likely
to increase the production costs, which translates into less profits for the producers.
On the other hand, cheap products may lead to costumer insatisfaction, which will
probably transform into low product demand. This is an example of a Multi-objective
Optimization Problem (MOP).

It is therefore mandatory to achieve a consensus over the meaning of an optimal
solution according to more than one objective. For this purpose we use the notion of

1



2 Chapter 1

Pareto optimality [1], which states that a solution is defined to be better if at least one
of its objectives is improved while the others do not get worse. It is worth to mention
that typically there is no single solution to multi-objective problems. Instead, a whole
set of solutions can be found where each solution in the set represents a different
optimal solution. Hence, an optimal solution is one which is not dominated by any
other one within the feasible set. Mathematical definitions of this concept shall be
reviewed in the next chapters.

One important sub-field in optimization is the treatment of the so called mixed-
integer problems1 given that they frequently arise in practice. For example in manage-
ment sciences, problems such as supplier selection [2, 3, 4] or assembly line balancing
[5, 6] may consider integer variables (number of workstations, number of suppliers)
as well as continuous variables (percentage of demmand assigned to each supplier,
cost per worker). These discrete or mixed-integer multi-objective problems require
specialized techniques for their numerical solutions. The goal of this thesis is the de-
velopment of a state-of-the-art method for solving such mixed-integer multi-objective
problems (MMOPs).

1.1 Motivation

Although there is a great amount of work related to the solution, structure and even
creation of multi-objective problems, most of it deals with continuous problems2.
Several strategies for the treatment of continuous MOPs have been proposed and
tested over the past decades. For example, scalarization methods [7, 8, 9, 10, 11] that
transform (via parametrization) multi-objective problems into single objective ones.
By choosing a clever sequence of parameters, a suitable finite size approximation
of the Pareto set can be obtained. Further, there exist many set oriented methods
such as evolutionary strategies [12, 13, 14, 15], subdivision techniques [16, 17] or cell
mappig techniques [18, 19]. These methods have in common that they use sets in an
iterative manner and are thus able to deliver an approximation of the solution set
in one run. Nevertheless, they often require a high number of function evaluations,
making efficiency an issue. Another group encloses the descent direction methods
[20, 21, 21, 22] that are generally fast local convergent algorithms focused on finding
only one optimal point. Finally, we can find the so called continuation methods
[23, 24, 25, 22, 26, 27] which exploit the fact that, under some mild conditions, the
Pareto set/front forms typically a (k− 1)-dimensional object [27], making it possible
to apply these techniques to detect further points within a neighborhood of a given

1In mixed-integer problems some variables are real and some are integer. An in depth definition
of mixed-integer problems will be given in Chapter 2.

2By continuous optimization we mean that all the functions involved (objectives as well as con-
straints) are continuous.

Cinvestav Computer Science Department



Introduction 3

solution. Literally, the idea here is to follow the curve (or manifold3) of Pareto points
which turns out to be a very efficient manner to detect large connected portions of
the solution set. These methods are of local nature, implying that we can get trapped
in local optima or miss sections of the Pareto set if it is not connected.

Despite the amount of work developed for continuous MOPs the research done on
discrete or mixed-integer problems is still scarce (to the best of our knowledge) if we
take into account the frequency in which this problems arise in real life, specially in
engineering and management problems [29, 30, 31, 32]. The important gap in this
field and that novel and efficient methods can be developed in this area was our main
motivation for this research.

1.2 The Problem

This thesis project deals with the development of a new continuation method to
approximate the Pareto set of a given MMOP while making it competitive against the
state-of-the-art methods in this field. More specifically, given a MMOP and an initial
Pareto point of the problem, the task is to explore the neighborhood of such initial
point in order to find further Pareto optimal solutions. The method will continue in
an iterative manner until a suitable discretization of the Pareto set/front is computed.
By a suitable discretization we mean a set of points that are evenly distributed along
the objective space. The theory developed for this method is of local nature and hence
we consider that the starting point is close enough to the set of interest. Given the
local nature of the method we do not expect to obtain the entire Pareto set/front, but
instead some of the connected components of it. Constraint handling techniques, as
well as convergence proofs are left out of this work to be subject of a future analysis.

1.3 Aims of the Thesis

Our main goal in this project is the development of a state-of-the-art continuation
method for solving mixed-integer multi-objective optimization problems (MMOPs).
The method’s efficiency will be measured in terms of function evaluations, while its
performance will be measured in terms of the4p (Delta p) performance indicator [33].
Specifically, we aim to design a Predictor-Corrector (PC) method for the numerical
treatment of MMOPs. To achieve this goal the Directed Search (DS) method [22]
will serve as the basis for the development of our new algorithm.

3A manifold is a topological space that resembles Euclidean space near each point. More precisely,
each point of a n-dimensional manifold has a neighborhood that is homeomorphic to the Euclidean
space of dimension n [28].

Cinvestav Computer Science Department



4 Chapter 1

The Enhanced Directed Search (EDS) method, as we call our approach, will im-
prove the steering properties of the original DS method (which has some drawbacks
regarding the detection of Pareto points). For this, new mathematical theory for
mapping movements in objective space into decision space will be tested. Efficiency
plays also an important role in the development of the EDS method. In order to
make the EDS method highly efficient the approach taken in the Gradient Subspace
Approximation (GSA) method [34], which considers exploiting neighborhood infor-
mation in order to save function evaluations, will be considered. The EDS method
should also be applicable to problems with more than two objectives, which can be
easily accomplished, thanks to the method’s steering properties, by implementing the
data structure used in [35]. Finally, some modifications will be done to the method
in order to make it capable for solving MMOPs.

1.4 Final Contributions

This thesis contributes to the area of multi-objective optimization, specifically it
introduces a new PC method called Enhanced Directed Search (EDS) capable of
following a path along the Pareto front of MMOPs. First order gradient information
is used, nevertheless neighborhood information is used as well improving the overall
efficiency of the method. Problems with more than two objectives can be solved with
the EDS method. Finally, the method along with the theory developed in this thesis
is also applicable to continuous multi-objective optimization. In this case our method
has shown to perform as good as state-of-the-art methods.

1.5 Organization of the Thesis

The remainder of this thesis is organized as follows: Chapter 2 gives the theoretical
background of MOO as well as a brief description of the state-of-the-art methods for
solving MMOPs, an introduction to the DS method is given in this chapter as well.
The EDS method is described in detail in Chapter 3, beginning with the theoretical
foundation of the method, a whole description of the algorithm and its components is
then given. Results on several benchmark functions are shown in Chapter 4 together
with a comparison against state-of-the-art methods for solving MMOPs. Finally,
Chapter 5 presents our conclusions about the method along with some ideas to be
considered for future work.

Cinvestav Computer Science Department



Chapter 2

Background and Related Work

This chapter is dedicated to the exposition of the theoretical background of multi-
objective optimization (MOO), needed to understand the ideas developed in this work.
First, a description of MOO is given followed by the definition of a mixed-integer
multi-objective problem (MMOP). Next, an introduction to continuation methods
is given, Directed Search (DS) and Direct Zig-Zag (DZZ) methods are reviewed in
detail. A brief description of multi-objective optimization evolutionary algorithms
(MOEAs) follows. Finally, an introduction to performance indicators and the 4p

indicator is given.

2.1 Theoretical Background

2.1.1 Multi-objective Optimization

Optimization is a field where one tries to find solutions that represent the best choice
of a given problem. Here, we divide this field into two sub-fields: (i) single objective
optimization, where one tries to solve problems with only one objective and (ii) when
a problem has multiple objectives which are in conflict with each other and all have
to be optimized concurrently. This latter are called multi-objective optimization
problems (MOPs).

Arguably, optimization plays an important role in everyday life, for example in
activities such as decision-making, design of goods, system’s control and others [36].
Hence, it is important to improve the knowledge related to this field and specifi-
cally application domains that involve MOPs, for example: engineering applications
(electrical, aeronautical, robotics and control), industrial applications (scheduling,
management, design and manufacture) or scientific applications (chemistry, physics,

5



6 Chapter 2

medicine and computer science) [37].

As a simple example imagine the process of building a motorcycle. Such a vehicle
has many features, but for now let us focus on just two of them: the speed and the
cost. We want our model to be attractive to the costumers due to the quality, but also
to get a good profit selling it. Both objectives, cost and quality, are in conflict. Shall
we reduce the production cost, the quality might be affected. If on the other hand,
we maximize the quality, the motorcycle might be too expensive for the costumers.
This implies that not only one solution exists but rather an entire set of solutions.
This set is called the Pareto set [1] in the literature.

Formally speaking, a continuous MOP is defined as follows:

min
x∈Rn

F (x)

s. t.

hi(x) = 0, i = 1 . . .m

hj(x) ≤ 0, j = 1 . . . p,

(2.1)

where F : Rn → Rk, F (x) = (f1(x), . . . , fk(x))T represents a vector of k ≥ 2 objective
functions. The feasible decision vectors, that form the set X, are those x ∈ Rn that
comply with the equality hi(x) and inequality hj(x) constraints.

The optimality of a MOP is defined by the concept of dominance [1].

Definition 2.1.1 (Pareto Dominance) A point y ∈ X is dominated by a point
x ∈ X (x ≺ y) with respect to Eq. (2.1) if x is partially less than y, i.e., if fi(x) ≤
fi(y), for all i ∈ 1, . . . , k, and fj(x) < fj(y) for some j ∈ 1, . . . , k. Otherwise it is
non-dominated by x.

Definition 2.1.2 (Pareto Optimality) A decision vector x∗ ∈ X is Pareto optimal
with respect to Eq. (2.1) if there does not exist another decision vector x ∈ X such
that x ≺ x∗.

Definition 2.1.3 (Pareto Weak Optimality) A decision vector x∗ ∈ X is weakly
Pareto optimal if there does not exist another decision vector x ∈ X, such that fi(x) <
fi(x

∗) ∀i = 1, ..., k.

In general, the solution of a MOP consists not only of a single solution but of a
set of solutions which have to be considered as optimal. The solution set is called
the Pareto set and its corresponding image is called the Pareto front which typically
forms a (k−1)-dimensional manifold [27], where k is the number of objectives involved

Cinvestav Computer Science Department



Background and Related Work 7

in the problem. The concepts of Pareto set and Pareto front are formalized in the
following definition:

Definition 2.1.4 (Pareto set and Pareto front) The set of optimal points P for
Eq. (2.1),

P = {x ∈ X | 6 ∃y ∈ X : y ≺ x}

is called the Pareto set. The image F (P) is called the Pareto front.

Figure 2.1 shows a hypothetical Pareto front for the cost-quality problem. A and
B are non-dominated points while C is a dominated one.

+
C
os
t

−Quality

A

B

C

Figure 2.1: Hypothetical Pareto front for the cost-quality problem

2.1.2 The Karush-Kuhn-Tucker Optimality Conditions for
Multi-objective Optimization

Simultaneously to their single objective optimization first order conditions (also known
as Karush-Kuhn-Tucker or KKT conditions) [38] Karush, Kuhn and Tucker formu-
lated a first order necessary condition for MOPs.

Cinvestav Computer Science Department



8 Chapter 2

Theorem 1 (KKT Conditions) Let x∗ be a solution of Eq. (2.1), that is a Pareto
point, then there exist vectors α ∈ Rk and λ ∈ Rm+p s.t.

αi ≥ 0 and
k∑
i=1

αi = 1

and

k∑
i=1

αi∇fi(x∗) +

m+p∑
j=1

λj∇hj(x∗) = 0

hi(x
∗) = 0, i = 1 . . .m (2.2)

λj ≥ 0, hj(x
∗) ≤ 0, λjhj(x

∗) = 0, j = 1 . . . p.

By introducing the scalar valued function gα : Rn → R,

gα =
k∑
i=1

αifi(x
∗), (2.3)

it can be noticed that ∇gα(x∗) =
∑k

i=1 αi∇fi(x∗). It can be seen then, that Eq. (2.3)
is equivalent to the claim that x∗ is a KKT point of the corresponding scalar-valued
(single objective) optimization problem with the objective function gα [36].

Due to Eqs. (2.2) and (2.3), gα constitutes a convex linear combination of the
individual objective functions fi, where each coefficient indicates the relative weight
with which the individual objective fi is part of the linear combination gα.

One important thing to outline is that given a KKT point x∗ its associated weight
vector α is normal to the linearization (tangent) of the Pareto front at F (x∗) [27] as
it is illustrated in Figure 2.2.

Cinvestav Computer Science Department



Background and Related Work 9

α

F (x∗)

F (P )

f2

f1

Figure 2.2: The weight vector α is orthogonal to the linearized Pareto front F (P ) at
F (x∗).

The Jacobian of F at a point x is given by

J(x) =

 ∇f1(x)
...

∇fm(x)

 ∈ Rk. (2.4)

By considering the unconstrained version of Eq. (2.1) Theorem 1 can be restated
as:

Theorem 2 Let x∗ be a local Pareto point of an unconstrained multi-objective prob-
lem with y∗ = F (x∗). Let gα denote a convex combination of the objectives for which
x∗ is a KKT point.

Then the weight vector α is a kernel vector of the Jacobian of F at x∗, that is,
J(x∗)Tα = 0.

As a corollary, it is obtained that rank(J(x∗)T ) < k for any x that is a KKT point
[27].

Finally, an important aspect for the context of our work is that Pareto points
typically form a (k−1)-dimensional differentiable manifold [27]. This and subsequent
applications will be subject to an in-depth discussion throughout the thesis.

Cinvestav Computer Science Department



10 Chapter 2

2.1.3 Mixed-Integer Multi-objective Optimization

A mixed-integer multi-objective optimization problem (MMOP) can be formally stated
as:

min
x∈Zd1×Rd2

F (x)

s. t.

hi(x) = 0, i = 1 . . .m

hj(x) ≤ 0, j = 1 . . . p,

(2.5)

where F : Zd1 × Rd2 → Rk, which means that the parameter vector can be formed
either by real variables, discrete (or integer) variables or a mixture of both depending
on the values of d1 and d2 respectively. For instance, Figure 2.3a displays a two
dimensional integer space where x1, x2 ∈ Z, Figure 2.3b represents a mixed-integer
space where x1 ∈ Z and x2 ∈ R, while in Figure 2.3c x1, x2 ∈ R, that is, they belong
to a real space. Just as in the case of continuous MOPs hi and hj represent the
constraints of the problem. The feasible set X is the set formed by all the x ∈ Rn

that comply with the constraints.

The goal of Eq. (2.5), as in the continuous case, is to seek non-dominated (Pareto
optimal) solutions of the objective function F on the feasible set X.

x2

1

2

3

...

x11 2 3 · · ·
(a) Integer space

x2

x11 2 3 · · ·
(b) Mixed-Integer space

x2

x1
(c) Real space

Figure 2.3: Examples of decision spaces

In this work the theory developed for continuous MOPs will be used for the treat-
ment of MMOPs since it can be shown, that under some assumptions, most of theory
presented within this chapter holds for MMOPs.

Cinvestav Computer Science Department



Background and Related Work 11

2.2 Continuation Methods

The main motivation to apply continuation methods for the numerical treatment of
MOPs comes from the fact that, under certain mild assumptions, it can be induced
from the KKTs conditions that the Pareto front of a continuous MOP is typically
a (k − 1)-dimensional manifold [27], where k is the number of objectives. Thus,
specialized techniques capable of performing a search along the manifold of solutions
are very promising within this context.

Continuation (also known as embedding or homotopy) methods can be seen as
methods for following a certain curve or manifold [39]. The classical embedding meth-
ods may be regarded as a forerunner of Predictor-Corrector (PC) methods. Stated
briefly, a homothopy method consists of the following: suppose one wishes to obtain
a solution to a system of n nonlinear equations in n variables, say

F (x) = 0, (2.6)

where F : Rn → Rn is a sufficiently smooth mapping1. Let us consider the situation in
which very little a priori knowledge concerning zero points of F is available. Certainly,
if on the contrary a good approximation x0 of zero point x∗ of F is available, it is
advisable to calculate x∗ via a Newton type algorithm [20].

Since it is assumed that a priori knowledge is not available, a possible remedy is
to define a homotophy or deformation H : Rn+1 → Rn such that

H(x, 1) = G(x), H(x, 0) = F (x), (2.7)

where G : Rn → Rn is a (trivial) smooth map having known zero points. Typically,
one may choose a convex homothopy such as:

H(x, λ) = λG(x) + (1− λ)F (x) (2.8)

and attempt to trace an implicitly defined curve c(s) ∈ H−1(0) from a starting point
(x1, 1) to solution point (x∗, 0). If this succeds then a zero point x∗ of F is obtained.

We can now describe the basic ideas of continuation methods. Assume we are
given the equation:

H(x, λ) = 0, (2.9)

1When we say a map is sufficiently smooth we mean that it has as many continuous derivatives
as the subsequent discussion requires.

Cinvestav Computer Science Department



12 Chapter 2

where H : Rn+1 → Rn is sufficiently smooth. If (x, λ) is a solution of Eq. (2.9) with
rank(H ′(x, λ)) = n, then it follows by the Implicit Function Theorem (IFT) [27] that
there exists a value ε > 0 and a curve c : (−ε, ε)→ Rn+1, such that c(0) = x and

H(c(s)) = 0, ∀s ∈ (−ε, ε). (2.10)

By differentiating Eq. (2.10) we get

H ′(c(s))T · c′(s) = 0. (2.11)

Hence, tangent vectors c′(s) (and thus, linearizations of the solution curve at
x = c(s)) can be found by computing kernel vectors of H ′(x, λ). This is done in
literature by a QR factorization of H ′(x, λ)T [39] : if

H ′(x, λ)T = QR = (q1, . . . , qn+1)R (2.12)

for an orthogonal matrix Q ∈ R(n+1)×(n+1) and a right upper triangular matrix R ∈
R(n+1)×n, then the last column vector qn+1 of Q is such a desired kernel vector. The
orientation of the curve (note that both +qn+1 and −qn+1 are desired linearizations,
but point in opposite directions) can be inferred by monitoring the sign of

det

(
H ′(x, λ)

qTn+1

)
. (2.13)

More specifically, we change the sign of the computed predictor whenever the
determinant in Eq. (2.13) is negative. Having the vector pointing along the linearized
solution curve, a movement in that direction can be performed leading to a predictor
point p. In a following corrector step one can get back to c by using Eq. (2.9),
e.g., via a Gauss-Newton or a Levenberg-Marquardt method [40] starting with p. In
this manner, a sequence of solutions that are aligned along the curve H−1(0) can be
obtained. Figure 2.4 provides a more illustrative example of the working principle of
PC methods.

The relation between the classical continuation theory and multi-objective opti-
mization is thus easily derived: the first-order optimality conditions for MOPs (see
Theorem 1) lead to an undetermined system of equations (that we call indistinctly
KKT system or KKT equations). Thus, applying the IFT on the underlying sys-
tem and under some mild conditions, it is inferred that the optimal solution set is a
(k−1)-dimensional object that can be tracked, e.g., by PC methods. A more detailed
argument on this subject is provided in [27]. The algorithms we review next closely

Cinvestav Computer Science Department



Background and Related Work 13

ta
ng

en
t ve

ct
or

predictor

corrector

xi

xi+1

H−1(0)

Figure 2.4: Example of a PC step.

follow the spirit of the continuation theory (in particular, PC methods) although not
all are oriented to explicitly solve the KKT system of equations.

2.2.1 Hillermeier’s Predictor-Corrector Method

A direct application of PC methods on the KKT equations of a MOP was first intro-
duced by Claus Hillermeier in [27] which we describe in the following. Consider the
map:

min
x∈Rn

F (x), (2.14)

where F is defined as in Eq. (2.1).

Now we can define the map F̂ : Rn+k → Rn+1,

F̂ (x, α) =


k∑
i=1

αi∇fi(x)

k∑
i=1

αi − 1

 = 0, (2.15)

were α ∈ Rk is the associated weight vector to F (x). The set of KKT points of
Eq. (2.14) is contained in the zero set of F̂ . For bi-objective optimization problems
(BOPs), the method proceeds as the general homothopy technique described in Sec-
tion 2.2 but with the following change: instead of computing the determinant given
in Eq. (2.13) to orientate the direction of the predictor, the author proposes to check

Cinvestav Computer Science Department



14 Chapter 2

whether the condition

[x− x̃] · q ≥ 0 (2.16)

is met, where x = (x, α) ∈ Rn+k is the current corrector point, x̃ is the previously
solution, and q is the tangent vector. If that is not the case, the direction of q is
flipped. Then, a suitable step length that guarantees a uniform spread of solutions
on the front is sought. That is, for two consecutive solutions x and x̃, it is desirable
that

||F (x)− F (x̃)|| ≈ τ, (2.17)

where τ > 0 is a user specified value. For this, one can take the step size

t =
τ

||J(x)q||
. (2.18)

The case were k ≥ 2 is handled by taking kernel vectors of F̂ ′
T

. Given that

F̂ ′(x, α)T = QR = (q1, . . . , qn+k)R (2.19)

for an orthogonal matrix Q ∈ R(n+k)×(n+k) and a right upper triangular matrix R ∈
R(n+k)×1, the last k−1 column vectors of Q form an orthonormal basis of the linearized
solution set in the compound (x, α)-space. Thus, one can e.g., move in the directions
of the computed orthonormal vectors xn+2, . . . , xx+k to obtain predictors that are
grid-aligned along the tangent space of the optimal manifold in decision space. A
problem of this election, though, is that after mapping the computed predictors to
the objective space, the grid alignment is probably not kept. Finally, the continuation
algorithm is stopped if one of the Lagrange multipliers αj, j ∈ {1, . . . , k} is negative,
which indicates that a non-optimal solution has been found.

2.3 The Directed Search Method

This method defines a way to steer the search for continuous MOPs by using a
direction in objective space and mapping it into parameter space [22]. The main idea
is as follows.

Assume a point x0 ∈ Rn, in parameter space, with rank(J(x0)) = k, and a vector
d ∈ Rk representing a desired search direction in image space are given. Then, a

Cinvestav Computer Science Department



Background and Related Work 15

search direction ν ∈ Rn in decision space is sought such that for y0 := x0 + tν, where
t ∈ R+ is the step size (i.e., y0 represents a movement from x0 in direction v), it holds:

lim
t→0

fi(y0)− fi(x0)
t

= 〈∇fi(x0), ν〉 = di, i = 1, ..., k. (2.20)

Using the Jacobian of F , Eq. (2.20) can be stated in matrix vector notation as

J(x0)ν = d. (2.21)

Hence, such a search direction ν can be computed by solving a system of linear
equations. Since typically the number of decision variables is (much) higher than the
number of objectives for a given MOP, i.e., n� k, system (2.21) is (probably highly)
underdetermined, which implies that its solution is not unique. One possible choice
is to take

ν+ = J(x0)
+d, (2.22)

where J(x0)
+ ∈ Rn×k denotes the pseudo inverse2 of J(x0). A new iterate x1 can

be computed as the following discussion shows: given a candidate solution x0, a new
solution is obtained via x1 = x0 + tν, where t > 0 is a step size and ν ∈ Rn is a
vector that satisfies (2.21). Among the solutions of system (2.21), ν+ is the one with
the smallest Euclidean norm. Hence, given t, one expects for a step in direction ν+
(decision space) the largest progress in d-direction (objective space).

Using the ideas mentioned above, the authors of [22] developed a method to move
towards and along the Pareto front of continuous MOPs which we will describe in the
following.

2.3.1 Directed Search Descent Method

Given a direction d ∈ Rk\{0} with di ≤ 0, i = 1, . . . , k, a point x0 ∈ Rn with
rank(J(x0)) = k and assuming that the image of F is bounded from below, a greedy
search in direction d using Eq. (2.22) leads to the (numerical) solution of the following
initial value problem:

x(0) = x0 ∈ Rn (2.23)

ẋ(t) = J(x(t))+d, t > 0.

2If the rank of J := J(x0) is k (i.e., maximal) the pseudo inverse is given by J+ = JT (JJT )−1.

Cinvestav Computer Science Department



16 Chapter 2

Definition 2.3.1 (Critical Point) Let γ : [0, tf ] → Rn be a solution of Eq. (2.23)
and let tc be the smallest value of t > 0 such that

6 ∃v ∈ Rn : J(x(t))v = d. (2.24)

.

Then tc and γ(tc) are a critical value an critical point of (2.23) respectively.

By Definition 2.3.1, it is possible to divide the solution γ : [0, tf ] of Eq. (2.23)
into two phases, (see Figure 2.5):

• γ([0, tc]): the function F (γ(t)) gets the desired decay in d-direction.

• γ((tc, tf ]): the function F (γ(t)) moves along the critical points of F . For the
end point γ(tf ), it holds J(γ(tf ))

+d = 0.

d
F (x0)

F (γ(tc)) F (γ(tf ))

f2

f1

Figure 2.5: Greedy movement of DS descent

The study made in [22] shows that critical points are not necessarily KKT points
but are local solutions of the well known NBI [11] problem, therefore the DS descent
method is only restricted to the detection of such critical points. To trace the solution
curve of Eq. (2.23) numerically, specialized PC methods [39] can be used. It is
important to notice that by performing a movement along d-direction then, for every
point x on the solution curve, it holds

F (x) = F (x0) + λyd, (2.25)

where λy ∈ R+. Hence, the curve is contained in the zero set of

H : Rn+1 → Rk, H(x, λy) = F (x)− F (x0)− λyd. (2.26)

Cinvestav Computer Science Department



Background and Related Work 17

To comply with the needs of PC methods an additional parameter λx is introduced
into the solution curve (which is defined in decision space):

x(0) = (x0, λx,0) ∈ Rn+1 (2.27)

ẋ(t) =

(
J(x(t))+d

1

)
, t > 0.

It is not possible, nevertheless, to apply PC methods yet since the parameters λx
and λy parametrize different curves. However, as shown in [22] it is reasonable to
match the two parameters: let x0 be given and λx,0 = 0, and let (x1, λx,1) be an Euler
step of (2.27) with a small step size 4λx. i.e., x1 = x0 +4λxν+(x0) and λx,1 = 4λx.
By construction of ν+(x0) and since 4λx is small we have

di ≈
fi(x1)− fi(x0)
4λx||ν+(x0)||

, i = 1 . . . k. (2.28)

This implies that F (x1)−F (x0) ≈ 4λxd||ν+(x0)||, and hence, H(x1, λx,1||ν+(x0)||) ≈
0. This way, Eqs. (2.26) and (2.27) can now be used to perform classical PC corrector
methods (e.g., Euler’s method [36]) to trace the solution curve.

To define a stopping criterion, authors utilize the fact that rank(J(x0)) = k (by
assumption) and rank(J(x∗)) < k (by definition of the critical point x∗). Nevertheless,
the rank of a matrix can not be used to detect the critical point numerically. The
condition number κ2 of J(x0) can be used instead: one can for example compute

κ2(J(x)) = ||J(x)||||J(x)+|| = σ1/σk, (2.29)

where σ1 and σk are the largest and the smallest singular values of J(x), respectively,
and stop the process if, for a given (large) threshold tol ∈ R+, κ2(Ji) ≥ tol. This can
be done since, by the above discussion, κ2(J(x(t)))→∞ when x(t)→ x∗.

This way of computing Pareto points shows one potential drawback of the ap-
proach, namely that the determination of the search direction by solving Eq. (2.22)
gets inaccurate for points near the Pareto set due to the high condition number of
J(x0) and that establishing a stopping criterion is dependent upon the condition
number of J(x). A solution to this problem will be addressed in the development of
the new method (EDS) and shall be discussed within the next chapter.

Cinvestav Computer Science Department



18 Chapter 2

2.3.2 Directed Search Predictor-Corrector Method

Once the main ideas of DS are established, a PC method can be developed as described
in the following way.

Predictor Direction

Assume a local Pareto point x0 ∈ Rn with rank(J(x)) = k − 1, and its associated
weight vector α. Then by Theorem 1, α is orthogonal to the linearized Pareto front
at F (x0) [27] and hence any direction orthogonal to α could be a promising predictor
direction. To compute such a direction a QR factorization on α can be performed:

α = QR = (q1, . . . , qk)(r11, 0, . . . , 0)T , (2.30)

where Q ∈ Rk×k is an orthogonal matrix and R ∈ Rk×1 with r11 ∈ R\{0} is an upper
triangular matrix. Since by Eq. (2.30) α = r11q1, it follows that a well spread set of
directions can be taken from any of the normalized search directions νi such that:

J(x0)νi = qi+1, i = 1, . . . , k − 1. (2.31)

To orientate the curve (i.e., to determine the signum of p) the change in one of
the objective values can be used. For this, the signum of the according entry of the
the direction vector q2 can be taken. If, for instance, an improvement according to f2
is sought, then

p = x0 − sgn(q22)
tν2
||v2||

, (2.32)

where t ∈ R+ is the chosen step size.

Corrector Direction

Given a predictor p, the subsequent solution along the curve can be computed by
solving Eq. (2.23) numerically using p as initial value and choosing d = −α0, i.e., the
negative of the weight from the previous solution x0, leading to a new solution x1.

Cinvestav Computer Science Department



Background and Related Work 19

The new associated weight vector α1 can be updated as follows:

α1 = argmin
λ∈Rk


∥∥∥∥∥

k∑
i=1

λi∇fi(x)

∥∥∥∥∥
2

s. t. λi ≥ 0, i = 1, . . . k,
k∑
i=1

λi = 1

 . (2.33)

Figure 2.6 displays a single iteration of the DS method, p stands for the predictor
direction, while c stands for the corrector direction. It can be seen from the images
that even though a movement along a linearization of the Pareto front at f(x0) is
desired, it is not always possible to move in such direction and hence predictors usually
end up above the Pareto front, making the use of corrector steps necessary in most
cases.

αpc

f1

f2

(a) Convex Pareto front example

α
p

c

f1

f2

(b) Concave Pareto front example

Figure 2.6: Examples of the Directed Search predictor-corrector method

2.4 Direct Zig Zag Method

The Direct Zig-Zag (DZZ) method [41] is a continuation method for solving discrete
or mixed-integer bi-objective problems. The DZZ method searches Pareto optimal
solutions along a zig-zag path close to the Pareto front. The local zig-zag path is
identified based on a pattern search idea (e.g. Hooke-Jeeves method [42]) in which
the search procedure only compares function values without computing the gradients
of the objective functions. Thus, the DZZ method can, in general, be applied for black-
box discrete or mixed-integer MOPs where the objective functions can be evaluated
through numerical or simulation processes. The DZZ method guarantees local Pareto
optimality of the solutions due to the neighborhood search inside the pattern search
procedure. The method consists of two parts.

Cinvestav Computer Science Department



20 Chapter 2

In the first part, a First Pareto Solution (FPS) is computed, from a starting point
x0, by means of a modified version of the well known pattern search method [42].
This FPS is the Pareto point which minimizes f1 while attaining the smallest value
of f2.

The second part is performed in an iterative way. For each Pareto solution x∗0
the method looks for a neighboring solution x1 that increases the value of f1, i.e.,
f1(x1) > f1(x

∗
0), this is called a zig step. Since it is assumed that the continuation

will start at the Pareto point that minimizes f1 (FPS) it is logical to think that the
only direction to keep moving is the one that increases the values of f1. From x1 a
pattern search like strategy is applied in order to find a non-dominated solution x∗1,
such that x∗1 6= x∗0, this is a zag step. Figure 2.7 displays a simple example of the
application of the DZZ method. The first phase, namely the FPS phase goes from
f(x0) to f(x1). From f(x1) onwards, zig and zag steps are iteratively applied.

Figure 2.7: DZZ method example

It is remarkable that the method does not use gradient information making it very
efficient in terms of function evaluations. Nevertheless, it is only able to solve BOPs
so far, making this its biggest disadvantage.

2.5 Multi-objective Optimization Evolutionary Al-

gorithms

Multi-objective Optimization Evolutionary Algorithms (MOEAs) use a population of
solutions (called individuals) which are “evolved” through special operators inspired
by the evolution of species [43, 44, 37]. This evolution process is expected to lead the

Cinvestav Computer Science Department



Background and Related Work 21

individuals towards the Pareto front. This evolutionary search process is influenced
by the following main components of a MOEA:

• An encoding of solutions to the problems as a chromosome.

• A function to evaluate the fitness, or survival strenght of individuals.

• A population of individuals (solutions).

• A generation counter.

• Initialization of the initial population.

• Selection operators.

• Crossover operators.

Algorithm 1 shows how these components are combined to form a generic MOEA.
The steps of a MOEA are applied iteratively until some stopping condition is satisfied.
Each iteration is referred to as a generation.

Algorithm 1 Generic MOEA
Input: t, nx, ns
Output: A set P of Pareto points.

1: Let t = 0 be the generation counter
2: Create and initialize an nx-dimensional population, P(0), to consist of ns indi-

viduals
3: while stopping conditions not true do
4: Evaluate the fitness, F (xi(t)), of each individual, xi(t)
5: Perform crossover to create offspring
6: Select the new population, P(t+ 1)
7: Advance to the new generation, i.e. t = t+ 1
8: end while

MOEAs are widely used because they provide global convergence and are rela-
tively easy to implement. Among the most widely known MOEAs are NSGA-II [45]
and MOEA-D [46]. One drawback of all MOEAs however is their relatively slow con-
vergence rates, making them impractical for some real world MOPs, where function
evaluations may entail intense computing. As for MMOPs, MOEAs tend to round off
the values of the solutions closest to the feasible points for Eq. (2.5) which can lead
to suboptimal solutions [41].

Cinvestav Computer Science Department



22 Chapter 2

2.6 Performance Indicators

As stated before, the solution set of a MOP (the Pareto set) is not given by a single
point but typically forms a (k−1)-dimensional manifold where k is the number of ob-
jectives involved in the MOP. Hence, a natural question that arises is how to measure
the performance of an algorithm aiming for the approximation of the entire Pareto
set and its image, the Pareto front. In practice, it is always desirable to to attain
an approximation that (i) covers the entire Pareto front uniformly (which accounts
for spread) and (ii) lies exactly over the Pareto front (which accounts for convergence).

A performance indicator is a mapping that associates a scalar value to the Pareto
set/front computed by some algorithm. Such scalar value indicates the quality of
the solution (Pareto set/front). Hence, by using performance indicatorsthe quality
of the solutions computed by different algorithms can be compared. Examples of
performance indicator are the the Generational Distance (GD) [47], the Inverted
Generational Distance (IGD) [48] and the Averaged Hausdorff Distance (4p) [33].
We will now briefly describe the 4p performance indicator.

Definition 2.6.1 (Archive) An archive A of size l contains l elements in Rn which
are mutually non-dominated, i.e.

A = a1, . . . , al, ai ∈ Rn, i = 1, . . . , l

: ai 6≺ aj∀i = 1, . . . , l : ∀j = 1, . . . , l, j 6= i. (2.34)

Definition 2.6.2 (Distance from a point to a set) The distance between a point
b ∈ Rn and a set A ⊂ Rn is defined as:

dist(b,A) := inf
a∈A
||b− a||p, (2.35)

where || · ||p is the p norm.

Definition 2.6.3 (Semi-distance between two sets) The semi-distance between
two sets A ⊂ Rn and B ⊂ Rn is defined as:

dist(B,A) := sup
b∈B

dist(b,A). (2.36)

Note that dist(A,B) is not symmetric, i.e., it does not necessary hold dist(B,A) =
dist(A,B) for all sets.

Cinvestav Computer Science Department



Background and Related Work 23

2.6.1 Generational Distance

The Generational Distance (GD) indicator measures the averaged distance from image
of the archive towards the Pareto front. Given two finite sets A = a1, . . . , aN and
B = b1, . . . , bM , and using dist from Definition 2.6.2, the GD indicator as proposed
in [47] can be computed as follows:

GD(A,B) :=
1

N

(
N∑
i=1

dist(ai, B)p

) 1
p

. (2.37)

The GD indicator takes the distance from each member of the set A to the closest
point in the set B. Assume set A is the outcome of a given multi-objective opti-
mization algorithm for a certain MOP F and that B is discretized version of the real
Pareto front of F . Hence, GD measures convergence to the Pareto front (a GD value
of zero means all solutions of A lie on the Pareto front).

However, GD is not well suited for measuring the spread of the solutions. For
example, an archive with a single Pareto optimal solution would get the best value of
the GD indicator.

2.6.2 Inverted Generational Distance

Proposed in [48] by Cruz and Coello. Inverted Generational Distance (IGD) can be
seen as a complimentary indicator of GD. It is defined as follows:

IGD(A,B) :=
1

M

(
M∑
i=1

dist(bi,A)p

) 1
p

, (2.38)

where A = a1, . . . , aN and B = b1, . . . , bM are two finite sets.

Assuming again that the set A is the outcome of a given multi-objective opti-
mization algorithm for a certain MOP F , and that B is discretized version of the real
Pareto front of F . The IGD value denotes how “well” the archive A covers the given
discretization of the Pareto front B (spread of solutions). The following scenario,
nevertheless, poses a trouble for the IGD indicator: let the archive A contain more
points than the discretization of the Pareto front B, also let that for each point ai ∈ A
there is a point bj ∈ B such that dist(ai, bj) = 0. Hence, all the remaining points in
A are not taken into account and can lie wherever in the objective space.

Cinvestav Computer Science Department



24 Chapter 2

Finally, it can be seen from the definitions of GD and IGD that

GD(A,B) = IGD(B,A) (2.39)

for all finite sets A and B.

2.6.3 Hausdorff Distance

Let A, B ∈ Rn, then, using dist as in Definition 2.6.3, the Hausdorff distance [49]
between A and B is defined as:

dH(A,B) := max(dist(A,B), dist(B,A)). (2.40)

The Hausdorff distance has a couple of interesting advantages over some other per-
formance indicators. For instance, dH defines a metric in the mathematical sense and
as such the triangle inequality, which says that given the sets A, B and C, the distance
from A to C via B is at least as great as from A to C directly, is satisfied. Another
major advantage of dH is that, assuming A is the outcome of a given multi-objective
optimization algorithm for a certain MOP F and that B is discretized version of the
real Pareto front of F , then a low value dH(A,B) of the distance between the outcome
set A and the Pareto front B gives a clear idea of the approximation quality of A.
On the other hand, the Hausdorff distance is yet scarcely as an indicator, the appar-
ent reason is that dH penalizes the largest outlier of the candidate set, which makes
“good” approximations that contain at least one outlier to appear “bad”. Hence, a
large value of dH(A,B) can indicate either that A is indeed a bad approximation of
B or that A is a good approximation containing some outliers.

2.6.4 Averaged Hausdorff Distance 4p

The4p performance indicator [33] can be seen as an averaged version of the Hausdorff
distance. It measures, by combining slightly modified versions of the GD and the IGD
indicators, the distance of the outcome set of the algorithm A to the set of interest
B.

Cinvestav Computer Science Department



Background and Related Work 25

Definition 2.6.4 (Averaged Hausdorff Distance 4p)

GDp(A,B) :=

(
1

N

N∑
i=1

dist(ai, B)p

) 1
p

IGDp(A,B) :=

(
1

M

M∑
i=1

dist(bi,A)p

) 1
p

(2.41)

4p := max(GDp(A,B), IGDp(A,B)).

It is demonstrated in [33] that 4p is a semi-metric for 1 ≤ p <∞ and a metric for
p =∞. Furthermore, for p =∞ the4p coincides with the Hausdorff distance dH . For
p < ∞ the distances between sets are averaged, therefore, the choice of the p-norm
is key to handle the outlier trade off: the smaller p, the higher the averaging effect
and the lower the influence of single outliers. If, on the other hand, p is increased,
outliers stronger influence the value of 4p.

Cinvestav Computer Science Department



26 Chapter 2

Cinvestav Computer Science Department



Chapter 3

The Enhanced Directed Search
Method

In this chapter we will describe in detail the Enhanced Directed Search (EDS) method
for the treatment of MMOPs. The EDS method is a PC algorithm based on the
previously described DS method [22]. Its main task is to follow a fixed direction in
objective space. For this purpose, an alternative version of the map (2.22), in page
15, is used. This alternative not only preserves the steering properties of DS but also
provides a more reliable way of detecting critical points than condition (2.29) in page
17. Following a direction in objective space allows us to implement a PC method
capable of handling MOPs and MMOPs. The resulting method can be applied to
problems with any number of objectives using only first order gradient information.
Another important feature of the EDS method is the implementation of a mechanism
that allows it to use neighborhood information in order to save function evaluations,
making EDS more efficient than the classical DS.

This chapter is organized as follows: Section 3.1 defines the mapping of a direction
in objective space to a direction in parameter space. Sections 3.2 and 3.3 address
predictor and corrector steps of the algorithm respectively. The strategy used for
handling MOPs with more than two objectives is discussed in Section 3.4.1. The use
of neighborhood information within the computation of predictors and correctors is
explained in Section 3.5. Finally, modifications to the predictor and the corrector in
order to handle MMOPs are reviewed in detail in Section 3.6.

3.1 Following a Direction in Objective Space

Our main task in the development of the EDS continuation method is to “follow”
a certain direction in objective space. For this, we will use the work developed in

27



28 Chapter 3

[50], which allows to map a direction from objective space ν ∈ Rn to direction in
parameter space d ∈ Rk. This is achieved by solving the following single-objective
optimization problem [50]:

min
ν,δ

1

2
‖ν‖22 − δ

s. t. J(x)ν = δd,
(3.1)

where J(x) ∈ Rk×n is the Jacobian of F as defined in Eq. 2.1 in page 6 at the point
x and δ ∈ R is a scalar value. Let (ν∗, δ∗) be a solution of Problem (3.1) where d 6= 0.
Then for v∗ and δ∗ the following propositions hold [50]:

Proposition 3.1.1

a) v∗ 6= 0 ⇐⇒ δ∗ > 0 ⇐⇒ ∃v ∈ Rn : J(x)v = d. In that case v∗ = δ∗J+(x)d.

b) v∗ = 0 ⇐⇒ δ∗ = 0. In that case x is a critical point (see Definition 2.3.1 in page
16.).

c) v(x) and δ(x) are continuous mappings.

By Proposition 3.1.1 it follows that:

• δ∗ can be used as a criterion for determining critical points.

• Problem (3.1) can be used for mapping a direction in objective space to a
direction in parameter space.

Problem 3.1 along with the above propositions open the possibility for steering
the search in a desired direction in objective space and mapping it to parameter
space. As it can be seen, this is exactly the main idea underlying DS, nevertheless
Proposition 3.1.1 provides a more stable criterion for determining critical points that
the one provided in [22]. Hence, by solving Problem (3.1) for a point x0 ∈ Rn and
a direction in objective space d ∈ Rk, one obtains a direction in parameter space
ν ∈ Rn such that F (xi), where xi = x0 + tν, moves along d for a suitable step size t,
and a scalar δ ∈ R, where δ = 0 when x0 is a critical point. The aforementioned ideas
serve as the basis for the predictor and corrector steps in the EDS method. Here we
would like to stress that for this particular application we have used an interior-point
algorithm (as implemented by the fmincon function in Matlab [51]) for the solution
of problem (3.1).

Cinvestav Computer Science Department



The Enhanced Directed Search Method 29

3.2 Predictor

In this section we will analyze the steps for the computation of the predictor direction.
Assume we are given a (local) Pareto point and its associated convex weight α ∈ Rk,
further, we assume that rank(J(x)) = k − 1. Then it is known by Theorem 2 in
page 9 that α is orthogonal to the linearized Pareto front at F (x). Thus, a search
orthogonal to α could be promising to obtain new predictor points. To obtain such
directions a QR-factorization of α can be computed, i.e.,

α = QR, (3.2)

where Q = (q1, . . . , qk) ∈ Rk×k is an orthogonal matrix and R = (r11, 0, . . . , 0)T ∈
Rk×1 with r11 ∈ R\{0}. Since by Eq. (3.2) α = r11q1, it follows that a well spread set
of directions can be taken from any of the normalized search directions νi such that:

J(x)νi = qi+1, i = 1, . . . , k − 1. (3.3)

It follows by the rank of J(x) that the vectors q2, . . . , qk, are in the image of J(x)
and hence Eq. (3.1) can be solved for each qi where i ∈ {2, . . . , k}. Please note that
such predictor directions νi = δiJ

+(x)qi do not have to be tangent to the Pareto set.
Instead, ν = δJ(x)+q points along the linearized Pareto front (see Figure 2.2). Since
by Proposition 3.1.1 ν is the most greedy solution of Problem (3.1) with respect to q,
we can expect that the image F (p), where p ∈ Rn is the chosen predictor, is also close
to the Pareto front, and thus, that only few iteration steps are required to correct
back to the front. Hence, a set of predictors can be computed in the following way:

pi+ = x+ t̂
νi
||νi||

pi− = x− t̂ νi
||νi||

, (3.4)

where t̂ is the chosen step size. Note that both, the positive and the negative predic-
tors have to be considered. This is done to ensure that the search is done in every
possible direction and hence that a full covering of the Pareto front is obtained at the
end of EDS execution.

Finally, to obtain the predictor p at the current point x, we need to select a suitable
step size. In this study we are particularly interested in an evenly distributed set of
solutions along the Pareto front. That is, at least for two consecutive solutions xi+1

Cinvestav Computer Science Department



30 Chapter 3

and xi we want that

||F (xi+1)− F (xi)|| ≈ τ, (3.5)

where τ > 0 is a user specified value. For this, we follow the suggestion made in [27]
and take the step size

t̂ =
τ

||J(x)ν||
. (3.6)

The entire predictor phase is shown in Algorithm 1

Algorithm 1 Obtain predictors

Input: Initial point x ∈ Rn, predictor direction in objective space d ∈ Rk

Output: A set of predictors p+ and p−

1: Compute J(x)
2: Compute direction νp by solving Problem (3.1)
3: Compute predictor step size t̂ by Eq. (3.6)
4: Set p+ = x+ t̂ν and p− = x− t̂ν
5: return [p+, p−]

Figure 3.1 exemplifies the predictor phase. First, for the local Pareto point xi the
α vector is computed, then a direction d+ orthogonal to α is computed. Finally, after
executing Algorithm 1, two predictors p+ and p− are obtained.

f 2

f1

F (xi)

αi
d

−d

F (p+)

F (p−)

Figure 3.1: Computation of the predictors

Cinvestav Computer Science Department



The Enhanced Directed Search Method 31

3.3 Corrector

The goal of the corrector phase is to ensure that the resulting solution is on the
efficient set (i.e., it is at least a local Pareto point). Since typically a predictor can
not even guarantee local optimality, some corrector steps may be necessary to ensure
that a solution near to the Pareto front is computed at the end of the iteration.
Therefore, our new target is to bring (or correct) the predicted point back to the
solution manifold, which is certainly not an easy task. Nevertheless, due to the
smoothness assumptions considered in this study; namely that a good property of
predictors is that they remain close to the Pareto set provided that the step size
t used by the predictor is not too large, it is expected that few corrector steps are
needed.

For the computation of the corrector, a new directed search descent method was
developed. Assume we are given a predictor p along with the weight vector α as-
sociated to the initial point x from which p was computed. Furthermore, since by
assumption F (p) is close to F (x) it makes sense to use the opposite direction of α,
i.e., −α, in order to move back to the Pareto front (see Figure 3.2).

f 2

f1

F (xi)

F (pi)
αi

F (xi+1)

−αi

Figure 3.2: −αi taken as steering direction for the corrector

Thus, given p ∈ Rn and −α ∈ Rk, a direction νc ∈ Rn that moves along −α can
be computed by solving Eq. (3.1) for p and −α. A movement along νc (and hence in
−α direction in objective space) is then performed in the following way:

ci = pi + t
νc
||νc||

, (3.7)

where t is the corrector step size. In this phase several corrector iterations may be
computed until a certain stopping criterion (see Section 3.3.2) is met.

Cinvestav Computer Science Department



32 Chapter 3

Two important issues arise now: first, how to compute a suitable step size for the
corrector? And second, how to determine whenever the corrector is indeed a critical
point? Both issues will be addressed in the following sections.

3.3.1 Corrector Step Size

As stated in Section 2.3 a movement along d ∈ Rk (in objective space) using the map
(2.22), which maps to a movement ν in parameter space

xi+1 = xi + tν, (3.8)

is only possible for sufficiently small values of t. Let d̃ = F (xi+1) − F (xi) ∈ Rk, be
the vector in objective space obtained after moving along ν direction for a given step
size t, also let

β = cos−1(
〈d̃, d〉
||d̃||||d||

), (3.9)

be the angle between d̃ and d. It was observed during our experiments that as t
increases the deviation between d̃ and d, measured by the angle β, also increases.
Figure 3.3 illustrates this behavior. For increasing step sizes t, a deviation in the
current direction d̃ can be observed with respect to the original direction d.

Figure 3.3: Deviation of the direction d̃, obtained by following ν, with respect to d.

Cinvestav Computer Science Department



The Enhanced Directed Search Method 33

Therefore, the step size for the corrector plays an important role in the overall
performance of the method.

Assume we are given a predictor p along with a direction in parameter space ν
and a direction d in objective space. Let d̃ = F (c) − F (p) where c = p + tν. A
suitable step size t provides the largest progress in direction d̃ while keeping angle β
bellow a user defined threshold. For our convenience we will define ε ∈ [0, 1] as the
aforementioned threshold where ε = cos(β), therefore keeping the angle itself bellow
a threshold cos−1(ε). Furthermore we would like that the corrector c at least weekly
dominates the previous point p. Hence, the optimal step size t can be computed by
solving the following constrained single objective optmization problem (SOP):

minimize
t∈R

− ||d̃||

s. t.

min(d̃) ≤ 0

ε− 〈d̃, d〉
||d̃||||d||

≤ 0,

(3.10)

where d̃ = F (p + tν) − F (p). The objective function of Problem (3.10) will try
to maximize the movement along d̃. The first constraint ensures that the newly
computed point F (c) at least weakly dominates the previous one F (p). We will now
bring our attention to the second constraint.

Assume that a certain deviation from direction d, measured by ε ∈ [0, 1], is per-
mitted. Then any direction d̃ = F (c)− F (p) that fulfills the constraint

ε− 〈d̃, d〉
||d̃||||d||

≤ 0 (3.11)

points in direction d with a maximum deviation of β = cos−1(ε) degrees. Thus, the
smaller the value of ε, the greater the permitted angle between d̃ and d (and thus
the deviation between them) is. Also note that by construction of constraint (3.11)
angles β ∈ (π

2
, 3π

2
), and thus solutions that are dominated by F (p), are automatically

discarded. Figure 3.4 depicts constraint (3.11), any point in between the dashed
arrows is an acceptable corrector point c, recall that β = cos−1(ε).

Cinvestav Computer Science Department



34 Chapter 3

β

β

d

d̃

d̃

F (p)

Figure 3.4: Acceptable deviations for the corrector c

Therefore, by solving Problem (3.10) a suitable step size for the corrector can be
obtained. Nevertheless, solving Problem (3.10) would directly impact on the efficiency
of EDS method. Instead, a more efficient backtracking-like strategy has been adopted.

Assume we are given ε and an initial step size t0 (usually the last suitable step size
computed). We test whether t0 fulfills the constraints of Problem (3.10), if it does
we take t0 as step size for the corrector, otherwise we shrink t0 and try again until
a suitable step size t0 is found or until t0 is bellow a user defined threshold. In case
t0 is suitable at the first try we set t1 = 2t0 and use it as initial guess for the next
corrector step.

Finally, it is worth to mention that although the value of ε is a user defined and
problem dependent parameter, experimental results have shown that ε ∈ [0.6, 0.9]
improve the overall performance of the EDS method. Algorithm 2 shows how to
compute a suitable step size for the corrector given a direction ν in parameter space,
a direction d in objective space, and an initial point x0.

Cinvestav Computer Science Department



The Enhanced Directed Search Method 35

Algorithm 2 Corrector step size

Input: Current point x ∈ Rn along with its function value F (x), step size guess
t ∈ R+, ν ∈ Rn direction and minimum step size threshold min t.
Output: A step size t, a new point x = x + tν along with its function value F (x),
and a flag b first indicating whether step size h was suitable at first try.

1: Compute a random shrinking factor ρ ∈ [0.1, 0.6]
2: b cont = 1
3: b first = 1
4: x init = x
5: while b cont 6= 0 do
6: x = x init+ tν
7: Evaluate F (x)
8: if F (x) satisfies the constraints of Problem (3.10) then
9: b cont = 0

10: else
11: Shrink t by ρ factor, i.e., t = ρt
12: b first = 0
13: end if
14: if t < min t then
15: t = 0
16: b cont = 0
17: end if
18: end while
19: return [x, F (x), t, b first]

3.3.2 Determining Critical Points

Now that we have a promising search direction ν ∈ Rn and a suitable step size t ∈ R
the remaining task of the corrector step is to determine whether a corrector point
c is a critical point or not. We are interested in the detection of such points since
they are strong candidates of being Pareto points (see Definition 2.3.1 in page 16).
Recall, by Proposition 3.1.1, that δ = 0 when c is a critical point and that δ(x) is a
continuous map. Therefore, the value of δ can be used for determining if a corrector
c is indeed a critical point. Two thresholds for δ can be defined: max δ > 0 and
0 < min δ < max δ. The use of both thresholds and the entire corrector phase is
described in Algorithm 3.

Cinvestav Computer Science Department



36 Chapter 3

Algorithm 3 Compute corrector

Input: Direction −α ∈ Rk, predictor point p ∈ Rn, thresholds min δ ∈ R+ and
max δ ∈ R+

Output: A point x ∈ Rn along with its function value F (x) and a flag b ∈ {0, 1}
indicating whether x is a critical point or not.

1: x = p
2: while true do
3: Compute J(x) ∈ Rk×n

4: Compute ν, s.t. Jν = d, by solving Problem (3.1)
5: if δ < min δ then
6: return [x, F (x), b = 1]
7: end if
8: Obtain [x, F (x), h, b first] by Algorithm 2
9: if h = 0, i.e. no suitable step size could be computed then

10: if δ < max δ then
11: return [x, F (x), b = 1]
12: else
13: return [x, F (x), b = 0]
14: end if
15: else
16: if b first = 1 then t = 2t
17: end if
18: end if
19: end while
20: return [x, F (x), b = 0]

As it can be seen the thresholds min δ and max δ are critical for the robustness
and performance of EDS method. Further investigation on this topic is left for future
research.

Finally after a new critical point is computed, its associated weight vector α can
be updated as follows ([52]):

α = arg min
λ∈Rk


∥∥∥∥∥

k∑
i=1

λi∇fi(x)

∥∥∥∥∥
2

s. t. λi ≥ 0, i = 1, . . . k,
k∑
i=1

λi = 1

 . (3.12)

Cinvestav Computer Science Department



The Enhanced Directed Search Method 37

3.4 The Enhanced Directed Search Method

We are now in the position to put predictor and corrector methods together into
a continuation algorithm that we call Enhanced Directed Search (EDS). The EDS
method is able to “follow” the curve (or manifold) of Pareto points of a MOP. This
procedure perfectly fits into the category of PC methods. There are, nevertheless,
still two issues that need to be solved before defining the algorithm of EDS: first,
how to identify the parts of the manifold that have already been covered by EDS?
And second, when and how should the glseds method be stopped? Answers to these
questions are given in the following sections.

3.4.1 Determining Points Already Covered by EDS

The issue of determining points already computed by the EDS method arises already
for BOPs. Recall that the predictor phase computes two predictors: one that maps
to direction d ∈ Rk and another that maps to direction −d ∈ Rk. This is done to
ensure that by the end of EDS execution a well spread discretization of the Pareto
front is obtained.

Let x ∈ Rn be a local Pareto point. Now, assume that a set of predictors p+ =
x + t̂ν and p− = x − t̂ν are computed for a fixed value of t̂ and that from each of
the predictors a new critical point can be reached by means of a corrector step. Let
x1 be one of such new critical points, shall we compute again a set of predictors and
correctors with the same t̂ from x1 it is most likely that one of the new critical points,
say x2, will be within a “small” neighborhood of x and hence if the process is repeated
with x2 it is clear to see that a set of “repeated” points will be computed. Therefore,
a mechanism to avoid computing such “repeated” points should be developed.

To achieve this, it is crucial to provide an efficient method to keep track of the
computed solutions. To this end, the method proposed in [53] is used. According
to [53] the objective space can be divided into a set of small boxes where each box
B ⊂ Rk is represented by a center ĉ ∈ Rk and a radius r̂ ∈ Rk. Therefore, the covering
box B(F (x)) of a given solution F (x) can be unequivocally determined.

The subdivision of the objective space into boxes is done in the following way: sup-
pose that every function in Problem (2.1) is restricted to a certain range in objective
space

lFj ≤ fj(x) ≤ uFj , j = 1, . . . , k. (3.13)

Cinvestav Computer Science Department



38 Chapter 3

The objective space is then contained in

QF = [lF , uF ] = [lF1 , u
F
1 ]× [lF2 , u

F
2 ]× . . .× [lFk , u

F
k ] ∈ Rk×2. (3.14)

Hence, each box B can be determined by a center ĉ ∈ Rk and a radius r̂ ∈ Rk:

B(ĉ, r̂) =

{
F (x) ∈ QF

∣∣∣∣ ĉj − r̂j ≤ fj(x) < ĉj + r̂j, if ĉj + r̂j < uFj

ĉj − r̂j ≤ fj(x) ≤ ĉj + r̂j, if ĉj + r̂j = uFj
, ∀j = 1, . . . , k

}
.

(3.15)

Each of these boxes can be subdivided with respect to the i-th coordinate leading
to two boxes that completely cover the old one. That is, B−(ĉ−, r̂) and B+(ĉ+, r̂)
where

r̂j =

{
r̂j, i 6= j

r̂j/2, i = j
and ĉ±j =

{
ĉj, i 6= j

ĉj ± r̂j/2, i = j
. (3.16)

Subsequently, after h subdivisions of the current set of boxes and by cyclically
choosing the reference coordinate, i.e.,

ji = (i− 1) mod k + 1, i = 1, . . . , h, (3.17)

we finish with a partition of QF into boxes of radius

r̂j =


uFj −lFj

2bh−1
k c+2

, j ≤ (h− 1) mod k + 1

uFj −lFj

2bh−1
k c+1

, j > (h− 1) mod k + 1
, j = 1, . . . , k, (3.18)

where for every point F (x) ∈ QF there exists exactly one covering box with center in

ĉj =


lFj + 2r̂j

⌊
fj(x)−lFj

2r̂j

⌋
+ r̂j, fj(x) /∈ uFj

lFj + 2r̂j

⌊
fj(x)−lFj

2r̂j

⌋
− r̂j, fj(x) ∈ uFj

, j = 1, . . . , k. (3.19)

We can thus maintain a collection B(F∗) to store the boxes corresponding to the
solution’s images in F∗. An efficient implementation of this data structure can be

Cinvestav Computer Science Department



The Enhanced Directed Search Method 39

achieved by considering a binary tree B(F∗) where each level corresponds to one sub-
division step and each leaf to one box. Considering B(QF , h) the full set of boxes
obtained after h subdivisions, it is not hard to see that B(QF , h) is defined by a
complete binary tree of height h and that any arbitrary tree B(F∗) ⊂ B(QF , h) is
usually not complete. Moreover, using this scheme, the memory requirements seem
to grow linearly in the number of objectives and solutions. On the other hand, the
operation of insertion as well as verifying whether a box (leaf) belongs to the set (tree)
can be implemented in O(h). Figure 3.5 depicts the data structure used for keeping
track of the computed solutions, each leaf of the three represents a subdivision of the
objective space.

Figure 3.5: The data structure used for the representation of the solution set.

The value of h plays a key role in the performance of the method. In this work,
since we are interested in obtaining a set of evenly distributed solutions along the
Pareto front, where the distance between neighbors is approximately τ > 0, we will
follow the suggestion made in [53] and take

h = k

⌈
log2

max(uF − lF)

τ

⌉
. (3.20)

By using the aforementioned approach, the problem of detecting parts of the
manifold that have already been computed reduces to determining whether a solution
F (x) belongs to a determined box B(F (x)) and to determine whether that box already
contains a solution. This can be achieved by Algorithm 4. The method ensures that
the covering of the box of a given solution is added to the tree and returns whether
the corresponding leaf was really inserted or already belonged to the collection. For
further details of this approach and the underlying data structure please refer to [53].

Cinvestav Computer Science Department



40 Chapter 3

Algorithm 4 BoxContains

Input: Binary tree B(F∗) ⊂ B(QF, h), F (x) ∈ Rk

Output: Box B where F∗ belongs to and a binary flag b ∈ {0, 1} indicating whether
the point F∗ was inserted or not into the box.

1: b = 0
2: Starting at the root of B(F∗)
3: for i = 1, . . . , h do
4: Compute j = (i− 1) mod k + 1
5: Compute cj = lFj + (uFj − lFj )/2
6: if fj(x) < cj then
7: if there is no left child then
8: Create a new left child
9: b = 1

10: end if
11: Move one level down to the left child
12: Set uFj = cj
13: else
14: if there is no right child then
15: Create a new right child
16: b = 1
17: end if
18: Move one level down to the right child
19: Set lFj = cj
20: end if
21: Compute r̂ = (uF − lF)/2 and ĉ = lF + r̂
22: end for
23: return [B(ĉ, r̂), b]

It is worth to mention that an additional optimization for EDS can be achieved
via bypassing predictor points when their associated boxes have previously been con-
sidered (i.e., they already contain a corrector). Considering that predictors and cor-
rectors are supposed to be close, this will avoid the computation of a corrector that
may be later discarded.

3.4.2 Handling Box Constrained Problems

The strategy for handling box constrained problems in the EDS method is straight-
forward. This strategy is widely used and consists on the following: let x ∈ Rn be a
box constrained vector, i.e., lb ≤ x ≤ ub, where ub ∈ Rn and lb ∈ Rn are the upper
and lower boundaries vectors for x. If any of the components of x is bigger than its
corresponding component in ub, i.e., xi > ubi, we make xi = ubi. The same applies if

Cinvestav Computer Science Department



The Enhanced Directed Search Method 41

xi < lbi. In short, this strategy projects the value of the components that violate the
constrains xi to the n-dimensional box formed by ub and lb.

3.4.3 Stopping Criteria for the EDS Method

Our last task is to define the stopping criteria for the EDS method, which is in fact
straightforward. Assume that each newly computed critical point (x) is stored in a
queue M. The EDS method takes a point xi from M at each iteration and tries to
compute new predictors (and hence a correctors) from this point and add the newly
computed critical points to M. It is then obvious to stop EDS whenever the queue
M is empty. Nevertheless, if we keep adding points to M the queue will never be
empty. Thus, criteria for adding new points to M should be defined.

It is indeed simple to define which points should be added toM. Here is a list of
all the conditions that will avoid a point x from being added to M:

1. Any point whose δ value is above the user defined thresholds min δ and max δ

2. Any point x, whose function value F (x) lies within a box that already contains
a point (see Section 3.4.1). For this purpose we use Algorithm 4.

3. Any point x, whose associated weight vector α ∈ Rk does not comply with the
condition: max(α) ≤ 1 − tol, where 0 < tol < 0.1 is a user defined, problem
dependent tolerance. This condition excludes points that lie on the boundary
of the Pareto front and thus are likely to be dominated ones.

Now we have all the necessary elements to introduce EDS PC method. Its pseudo-
code is presented in Algorithm 5.

Cinvestav Computer Science Department



42 Chapter 3

Algorithm 5 EDS Predictor-Corrector method

Input: Starting local Pareto point x0 ∈ Rn along with is associated weight vector
α ∈ Rk, τ ∈ R value defining the spreadness of the solutions, min δ ∈ R+ and
max δ ∈ R+ thresholds and minimum step size threshold min h ∈ R+

Output: Finite size approximation of P and F∗

1: Set P = P ∪ x0 and F = F ∪ F (x0)
2: Compute J(x)
3: Enqueue(M, x0)
4: whileM not empty do
5: x = Dequeue(M)
6: Compute a set of promising directions in objective space by Eq. (3.2)
7: for each qi ∈ i = 2, k do
8: Set d = qi
9: Compute a set of predictors p+ and p− using Algorithm 1

10: for each predictor do
11: Compute a corrector x1 using Algorithm 3
12: if x1 does not meet any of the criteria in Section 3.4.3 then
13: Enqueue(M, x1)
14: P = P ∪ x1
15: F = F ∪ F (x1)
16: end if
17: end for
18: end for
19: end while
20: return [P ,F ]

Finally, one important aspect related to the performance of EDS method has to
do with the information we keep or recompute regarding the current set of solutions.
For each point in the queue M, the corresponding function and α values are stored
respectively. Furthermore, the Jacobian matrix is also stored. Storing all this infor-
mation has a direct impact on the memory requirements of the method. Nevertheless,
since one of our goals is to make the method efficient in terms of functions evaluations
we have taken this approach to avoid recomputing information.

3.5 Using Neighborhood Information

So far, the EDS method requires Jacobian information for the computation of ν via
Eq. (3.1). In this section, we present an alternative way to obtain such search di-
rections ν without explicitly computing or approximating the Jacobian. Instead, the
neighborhood information is exploited and used for the approximation of ν. This

Cinvestav Computer Science Department



The Enhanced Directed Search Method 43

method can be viewed as a particular finite difference method [36], however, it has
the advantage that the information of points already computed can be exploited in
order to approximate the Jacobian matrix and hence some function evaluations can
be saved. This is particularly interesting within the context of set-based optimization
strategies such as MOEAs. The approach taken here was inspired by the usage of
neighborhood information in the DS method [22] and the Gradient Subspace Approx-
imation (GSA) method [34].

The general idea behind the method is as follows: given a point x0 that is desig-
nated for local search as well as another point xi whose function value is known that
is in the vicinity of x0, then the given information can be used to approximate the
directional derivative in direction

νi :=
(xi − x0)
||xi − x0||

, (3.21)

without any additional cost (in terms of function evaluations). That is, it holds

fνi(x0) = 〈∇f(x0), vi〉 =
f(xi)− f(x0)

||xi − x0||
+O(||xi − x0||). (3.22)

This can be seen by considering the forward difference quotient on the line search
function fνi(t) = f(x0 + tνi).

Now assume a candidate solution x0 ∈ Rn is designated for local search and further
r search directions νi ∈ Rn, i = 1, . . . , n, are given. Then, the matrix A := JV ∈
Rk×r, where V = (ν1, . . . , νr) ∈ Rn×r, is as follows:

A = JV = (〈∇fi(x), νj〉)i=1,...,k. j=1,...,n. (3.23)

Hence, every element mij of JV is defined by the value of the directional deriva-
tive of objective fi in direction νj, an can be approximated as in Eq. (3.22). An
approximation to the Jacobian matrix can thus be obtained by computing

J ≈ A(V TV )−1V. (3.24)

Crucial for the approximation of A is the choice of tests point xi. If the function
values of points in a neighborhood N(x0) are already known, it seems to be wise to
include them to build the matrix V (see Figure 3.6).

Cinvestav Computer Science Department



44 Chapter 3

x
2

x1

x0

x1

x2

ν2

ν1 N(x0)

Figure 3.6: Neighbors used for the approximation of the Jacobian are spotted as
triangles, squares are points outside the neighborhood N(x0)

Nevertheless, it might be that further test points have to be sampled to obtain
the n neighbors. More precisely, assume that we are given x0 ∈ Rn as well as l
neighboring solutions x1, . . . , xl ∈ N(x0). One desirable property of all the remaining
search directions is that they are both orthogonal to each other and orthogonal to
the previous ones. In order to compute the new search directions vl+1, . . . , vr, r > 1,
one can proceed as follows: compute V = QR = (q1, . . . , ql, ql+1, . . . , qn)R. Then it is
by construction vi ∈ span{q1, . . . , qi} for i = 1, . . . , l, and hence

〈vi, qj〉 = 0, ∀i ∈ {i, . . . , l}, j ∈ {l + 1, . . . , r}. (3.25)

One can thus e.g. set

vl+i = ql+1, i = 1, . . . , r − 1 (3.26)

xl+i = x0 + vl+i, i = 1, . . . , r − l. (3.27)

This way, neighborhood information can be used to approximate the value of
the Jacobian. By doing this, some function evaluations can be saved by using the
information computed in previous iterations. It is also important to note that the
choice of r and the size of the neighborhood N(x0) has a direct impact on the quality
of the method, it can be seen that for r = k search directions νi, i = 1, . . . , r, one can
find a descent direction ν by solving Eq. (3.1) and using J as in Eq. (3.24) regardless
of n. However, by construction it is ν ∈ span{ν1, . . . , νr}, which means that only a

Cinvestav Computer Science Department



The Enhanced Directed Search Method 45

r-dimensional subspace of the Rn space is explored in each step. One would expect
that the more search directions νi are taken into account, the better the choice of
ν is. In fact, for the development of this work r = n is used. As for the size of
neighborhood, we recommend 0.01 ≤ N(x0) ≤ 1, nevertheless, it must be taken into
account that this is a problem dependent parameter.

3.6 Handling Mixed-Integer Problems

The EDS method is now capable of computing the connected components of MOPs
with k ≥ 2 in an efficient way. Nevertheless, our main objective in this work is the
development of a continuation method for MMOPs. A simple modification can be
done to the EDS method in order to make it capable, under a certain condition on
the structure of the problem, of solving MMOPs.

The aforementioned condition has to do with the search space of the problem.
Recall that MMOPs are defined almost exactly as MOPs except that the parameter
space is defined by a mixture of real and discrete variables (see Section 2.1.3 in page
10). The key for the mechanism that allows the EDS method to solve MMOPs is the
following.

Definition 3.6.1 (Domain restriction) Let f : E 7→ F be a function from a set E
to a set F, so that the domain of f is in E (dom f ⊆ E). If a set A is a subset of E,
then the restriction of f to A is the function

f |A : A 7→ E

Given two functions f : A 7→ B and g : D 7→ B such that f is a restriction of g,
that is, A ⊆ D and f = g|A, then g is an extension of f .

In this work we will only consider MMOPs whose parameter space can be extended
to the real domain. In other words, the parameter space E = Rd1 × Zd2 must be a
restriction of Rn for n = d1 + d2. This condition is necessary for the computation
of a direction ν such that J(x)ν = δd, since the approximation of J(x) requires that
samples in a small neighborhood of x can be taken (see Section 3.5). In case this
sampling process is not possible, ν direction can not be computed.

Thus, the EDS method can only be used to solve MMOPs that comply with the
aforementioned condition. Real variables in a mixed-integer problem are handled
the same way as for MOPs, for handling integer variables the following strategy is
adopted.

Cinvestav Computer Science Department



46 Chapter 3

Let d ∈ Rk be a direction in objective space and let x ∈ Rd1 × Zd2 be a point
from which we would like to move in a direction ν ∈ Rn such that J(x)ν = δd for a
given step size t ∈ R. For the computation of the ν direction we proceed as for the
case of MOPs (Section 3.1). Nevertheless, when performing the movement along ν,
i.e. x̂ = x+ tν we proceed as follows as in Algorithm 6.

Algorithm 6 Convert to Mixed-Integer

Input: Point x ∈ Rd1×Zd2 , direction ν ∈ Rn, step size t ∈ R and threshold λ ∈ (0, 1]
Output: New point x̂ ∈ Rd1 × Zd2

1: for Each component xj of x do
2: if Component xj is discrete then
3: if abs(νj) > λ then
4: if νj > 0 then
5: x̂j = xj + ceil(νj)
6: else
7: x̂j = xj + floor(νj)
8: end if
9: end if

10: else
11: x̂j = xj + tνj
12: end if
13: end for
14: return x̂

The main task of Algorithm 6 is to ensure that the point x̂, which results from
performing the line search along ν ∈ Rn, belongs to the appropriate space, that is,
to the mixed-integer space in case the problem is mixed-integer or to the real space
in case of dealing with a problem defined within the real space. The main idea of
the algorithm is contained in the lines 3 to 11. An in-depth explanation of it is given
next.

Recall that ν ∈ Rn is the greediest direction in parameter space such that J(x)ν =
δd, that is, for a step size t ∈ R, a movement along ν, i.e. x̂ = x + tν, maps to a
movement d ∈ Rk in objective space. Let us assume that x ∈ Rd1 × Zd2 (that is x is
a mixed-integer variable), since ν ∈ Rn belongs to the real space if we perform the
line search as stated before, x̂ will belong to the real space instead of belonging to a
mixed-integer one. Thus, in order to keep x̂ in the appropriate space:

• We round the value of the i-th component of ν and add it to the corresponding
component of x (lines 5 and 7), if the value of such component surpasses a
certain user defined threshold λ ∈ (0, 1] (line 3), when dealing with integer
variables.

Cinvestav Computer Science Department



The Enhanced Directed Search Method 47

• We proceed as usual, i.e., x̂i = xi + tνi, when dealing with real variables (line
11).

We will now explain the role of the threshold λ. By considering that each of the
components of ν determines how much to move in each coordinate, it can be seen that
the bigger the magnitude of a certain coordinate direction, the greater the reason to
increase/decrease such component in the new point x̂. Therefore, the necessity for
a threshold on the magnitude of each component of the direction v arises, we have
decided to call such threshold λ and although it is a user defined parameter, our
experiments have shown that setting λ ∈ [0.2, 0.4] usually leads to good results.

Finally, the reason for choosing floor and ceil functions over round is due to
the following observation: round function is always equivalent to the result of the
floor function if λ < 0.5, hence, if the user defines λ ∈ (0, 0.5) the value of the i-th
component will always be mapped to the smallest following integer. The situation
is analogous for the ceil function when λ ∈ [0.5, 1). This is of course an undesirable
behavior according to the above discussion, thus, floor and ceil functions are used
instead of round since they provide more flexibility for mapping the real components
of ν to an integer space.

Hence, to make the EDS method capable of solving MMOPs a call of Algorithm
6 is necessary for every new point that has to be computed.

3.7 An Example of the EDS Method

In the following we would like to exemplify how the various parameters of the EDS
method have an impact on the performance and the reliability of the method. For
this example we will use the bi-objective function described in [35], which is defined
as follows:

f1(x) = (x2 − a2)2 + (x1 − a1)4

f2(x) = (x1 − b1)2 + (x2 − b2)4, (3.28)

for a = (1, 1) and b = −a. This function has a convex Pareto front with a non-linear
Pareto set. Figure 3.7 shows the resolution of a bi-objective problem using the EDS
method, for this example we set τ = 2 since our goal is to depict predictor and cor-
rector steps. Blue dots represent the real Pareto front and set. The points computed
by the EDS method are depicted in red color, green arrows represent the predictor
directions while red arrows represent corrector directions. As can be observed in the
picture, the predictor directions are not necessarily tangent to the Pareto set, it can

Cinvestav Computer Science Department



48 Chapter 3

also be observed that the computed points do not necessarily lie on the Pareto set but
instead on the Pareto front. Also note that two predictors are computed per point,
nevertheless not all of them lead to new correctors (see Section 3.4.1).

(a) Objective space (b) Decision space

Figure 3.7: Resolution of a bi-objective problem by using the EDS method

The computed Pareto front (PF) for this example with τ = 3 can be seen in Figure
3.8a, a finer discretization of the objective space can be seen in Figure 3.8b where
τ = 1. An even finer discretization, where τ = 0.5, is shown in Figure 3.8c.

(a) Computed PF for τ = 3 (b) Computed PF for τ = 1 (c) Computed PF for τ = 0.5

Figure 3.8: Pareto fronts computed by the EDS method for different values of τ

Cinvestav Computer Science Department



The Enhanced Directed Search Method 49

The number of solutions computed for each of the τ values is displayed in Table
3.1. As it can be observed the lower the value of τ the more solutions we get.

τ value Solutions
3 14
1 44

0.5 80

Table 3.1: Number of solutions computed for the different values of τ

The plots displayed in Picture 3.8 along with the results in Table 3.1 help to have
a better understanding of the τ role.

3.7.1 On the Impact of the δ Thresholds

Here we would like to demonstrate how both δ thresholds impact on the overall
performance of the EDS method. For this we will consider test problem (3.28) again.
We set τ = 0.5 and will show some combinations of the max δ and min δ in order to
let the reader gain a bigger understanding of the role of such thresholds. Table 3.2
displays five different settings for the δ thresholds in the max δ and min δ columns
along with the number of solutions, number of function evaluations and the42 values
for each of the combinations.

Setting max δ min δ Solutions Feval 42 Avg. Feval/Sols
1 10−1 10−3 81 423 0.15 5.2
2 10−1 10−2 77 320 0.19 4.1
3 10−1 10−1 77 269 0.19 3.4
4 10−2 10−3 26 164 10.16 6.3
5 10−3 10−3 7 45 15.53 6.4

Table 3.2: Impact of the δ thresholds on the overall performance of the EDS method

As can be observed by the results in Table 3.2 the choice of the values of the δ
thresholds have a large impact on the performance of the EDS method. In some cases
this impact is so large that the EDS method is unable to compute further correctors
and hence stops it execution as was the case for the last two settings in Table 3.2.
Also note that, as expected, the more tight these thresholds are the more function
evaluations are used per computed solution. Therefore a good balance between max δ
and min δ thresholds has to be considered in order to obtain reliable results. Pictures
for each of the computed Pareto fronts for each of the settings in Table 3.2 are shown
in Figure 3.9.

Cinvestav Computer Science Department



50 Chapter 3

(a) Computed PF for setting 1 (b) Computed PF for setting 2 (c) Computed PF for setting 3

(d) Computed PF for setting 4 (e) Computed PF for setting 5

Figure 3.9: Pareto fronts computed by the EDS for the different settings of max δ
and min δ

3.7.2 On the Impact of the Size of the Neighborhood N(x)

As mentioned in Section 3.5 neighboring information can be used in order to save
function evaluations and, therefore, improve the performance of the EDS method.
Here we would like to demonstrate, trough some examples, how the choice of the size
of the neighborhood N(x) impacts the performance of the EDS method.

Once again we will use function (3.28) for our examples. We set τ = 0.5, max δ =
10−1 and min δ = 10−3. For this example we put special emphasis on the number of
function evaluations, the number of neighboring solutions used in the computation
and the quality of the computed solutions (measured by the 42 indicator). Table 3.3
summarizes the results obtained for five different neighborhood sizes.

Cinvestav Computer Science Department



The Enhanced Directed Search Method 51

Size of N(x) Solutions Feval # Neighbors 42 Avg. Feval/Sols
0 80 502 0 0.153 6.2

0.01 84 458 28 0.158 5.4
0.02 80 396 163 0.140 4.9
0.03 89 357 177 0.164 4
0.04 74 344 249 0.164 4.6
0.05 78 334 268 0.171 4.2

Table 3.3: Impact of the size of N(x) on the overall performance of the EDS method

First of all note that the first setting is almost same as the first setting in Table 3.2
but here we increased the tolerance for smaller step sizes in the corrector, hence, this
setting may have slightly more correctors than the setting in Table 3.2, this explains
with this second setting uses more function evaluations the former. Note, by the
data in Table 3.3, that by increasing the size of the neighborhood more points can
be reused, nevertheless, the bigger the size of the neighborhood is the less accurate
mapping (3.1) and hence, the more function evaluations needed to reach a new critical
point by means of the corrector phase. Note the negative impact this effect has on the
quality of the solution computed. This effect also explains why although the number
of neighboring solutions reused increases in the last three settings, the number of
function evaluations required by the method does not improve much. In an extreme
case, where the size of the neighborhood is too large, the corrector phase may not
be able to compute further critical points, leading to a premature termination of the
EDS method.

Cinvestav Computer Science Department



52 Chapter 3

Cinvestav Computer Science Department



Chapter 4

Numerical Results and
Experiments

In this chapter we present the numerical results obtained with the EDS method on
unconstrained, box constrained and mixed-integer problems up to three objectives.
The EDS method is compared against the DZZ method [41] and NSGA-II algorithm
[45]. We chose to compare against the DZZ method since it is a state-of-the-art
algorithm in the field of mixed-integer multi-objective optimization. As for NSGA-
II, it is one of the most widely used algorithms for solving MOPs. Although we are
aware that there is no “fair” comparison between NSGA-II and EDS algorithms given
that the former is a global optimization method while the latter is of local nature,
we consider this comparison necessary in order to show the quality of the solutions
obtained by our method. The parameter settings for each algorithm on each of the
problems is presented in Appendix A.

4.1 General Setting

We will now describe the general setting of our experiments. DZZ version used in this
experiment was provided by Dr. Honggang Wang from Rutgers University, being this
the better version up to date. NSGA-II algorithm was downloaded from [54] which
is version of NSGA-II with support for mixed-integer problems [55]. For each of the
problems a similar number of solutions was computed by each algorithm in order to
make a fairer comparison. For the case of NSGA-II a budget of approximately four
times the number of function evaluations spent by EDS was assigned as stopping
criteria. In the case of the DZZ method the First Pareto Solution (FPS) is given
in order to restrict the comparison to the continuation method (Zig and Zag steps).
For each of the test problems the three algorithms were run ten times and the better

53



54 Chapter 4

solution of each of them is used for the comparison.

For each of the solved problems a table summarizing key information for the com-
parison is presented. We put special emphasis on the number of function evaluations
used by each algorithm displayed in the Feval column and on the value of the 42 and
43 performance indicators [33]. A ratio of function evaluations per solution is shown
on the column Funeval/sol.

Finally, for the computation of the 4p performance indicator the real Pareto front
was used in all of the cases except for the last function presented in this chapter,
where the Pareto front was approximated by performing ten long runs of the NSGA-
II algorithm and keeping the non-dominated points among all of the runs. Plots for
each one of the reference fronts are shown in Appendix B.

4.2 Continuous Models

First, we will show the performance of the EDS method on some well-known continu-
ous test problems. The results obtained provide clear evidence that the EDS method
can be used as a continuation method for solving continuous MOPs.

4.2.1 Binh Function

First we consider the following bi-objective problem [13]:

f1(x) = ||x− a1||22
f2(x) = ||x− a2||22, (4.1)

where a1 = (1, . . . , 1)T ∈ Rn and a2 = −a1 for n = 10. This is a widely used
benchmark function with a convex Pareto front and a linear Pareto set. The results
obtained by EDS, NSGA-II and DZZ are summarized in Table 4.1.

Algorithm Int. Var. Real Var. Sols Feval 42 43 Funeval/Sol
EDS 0 10 216 1205 0.09 0.10 5.6
NSGA-II 0 10 200 5000 4.40 5.70 25
DZZ 0 10 212 3282 0.11 0.15 15.5

Table 4.1: Summarized results for Binh function

As it can be observed by the data in Table 4.1 the EDS method outperforms
both NSGA-II and DZZ. In both cases the 4p values of EDS are better with a lower

Cinvestav Computer Science Department



Numerical Results and Experiments 55

number of function evaluations. It can be appreciated in this experiment that EDS
uses in average three times less function evaluations than DZZ and five times less
than NSGA-II. The quality of the Pareto fronts computed by each method can be
observed in Figure 4.1.

(a) EDS (b) NSGA-II (c) DZZ

Figure 4.1: Pareto fronts of the Binh function computed by the different methods

4.2.2 Fonseca Function

Another well known benchmark function is Fonseca function [13]:

f1(x) = 1− e(−(x1−1)2−(x2+1)2)

f2(x) = 1− e(−(x1+1)2−(x2−1)2). (4.2)

This is a bi-objective function with a linear Pareto set and a concave Pareto front.
The results obtained by EDS, DZZ and NSGA-II on this function are shown in Table
4.2.

Algorithm Int. Var. Real Var. Sols Feval 42 43 Funeval/Sol
EDS 0 2 40 62 0.014 0.015 1.5
NSGA-II 0 2 40 240 0.033 0.045 6
DZZ 0 2 41 80 0.014 0.015 2

Table 4.2: Summarized results for Fonseca function

The results depicted in Table 4.2 show that DZZ and EDS methods obtained
both a similar Pareto front being way better than the results obtained by NSGA-II.

Cinvestav Computer Science Department



56 Chapter 4

The performance of the EDS and DZZ methods is quite similar as well, being both
much more efficient than NSGA-II using up to four times less function evaluations
per solution. The Pareto fronts computed by each method are shown in Figure 4.2.

(a) EDS (b) NSGA-II (c) DZZ

Figure 4.2: Pareto fronts of the Fonseca function computed by the different methods

4.2.3 Dent Function

Next is the Dent function [56] defined as:

f1(x) =
1

2
(
√

1 + (x1 + x2)2 +
√

1 + (x1 − x2)2 + x1 − x2) + λ · e−(x1−x2)

f1(x) =
1

2
(
√

1 + (x1 + x2)2 +
√

1 + (x1 − x2)2 − x1 + x2) + λ · e−(x1−x2). (4.3)

The Pareto set of this function is a line and the Pareto front is convex-concave
for λ = 0.85 as chosen here. Table 4.3 shows the results obtained by EDS, DZZ and
NSGA-II.

Algorithm Int. Var. Real Var. Sols Feval 42 43 Funeval/Sol
EDS 0 2 111 217 0.03 0.04 2
NSGA-II 0 2 110 990 0.22 0.30 9
DZZ 0 2 80 195 0.77 1.07 2.5

Table 4.3: Summarized results for Dent function

It can be observed from Table 4.3 that the EDS method is clearly superior to both
DZZ and NSGA-II. Compared against DZZ, the EDS method is slightly more efficient

Cinvestav Computer Science Department



Numerical Results and Experiments 57

while delivering a Pareto front of higher quality. In fact, DZZ could not compute the
entire Pareto front for this test problem. Compared against NSGA-II it can be seen
that the EDS method is four times more efficient with a better solution delivered.
In fact, the solution delivered by the EDS method is of high quality given its 4p

values. Pictures for the computed Pareto fronts are shown in Figure 4.3. Note how
the Pareto front computed by DZZ algorithm is incomplete.

(a) EDS (b) NSGA-II (c) DZZ

Figure 4.3: Pareto fronts of the Dent function computed by the different methods

4.2.4 ZDT1 Function

Now we test on ZDT1 function [57] defined as follows:

f1(x) = x1

f2(x) = g(x) ·

(
1−

√
f1(x)

g(x)

)
(4.4)

g(x) = 1 +
9

n− 1

n∑
i=1

xi

s.t. 0 ≤ xi ≤ 1, i = 1, . . . , n.

where n = 10. This function has a convex Pareto front and also has box constraints,
therefore, this example also demonstrates how the EDS method can handle box con-
strained functions. The results for the three methods are displayed in Table 4.4.

By the results in Table 4.4 it can be observed that the DZZ method performed

Cinvestav Computer Science Department



58 Chapter 4

Algorithm Int. Var. Real Var. Sols Feval 42 43 Funeval/Sol
EDS 0 10 99 1123 0.0051 0.0052 11
NSGA-II 0 10 100 4000 0.0073 0.0075 40
DZZ 0 10 101 1100 0.0052 0.0073 10

Table 4.4: Summarized results for ZDT1 function

slightly better than the EDS method for this test function, using in average one
function evaluation less per solution computed. It can also be observed that the 4p

values of both methods are quite similar. Finally, it can be seen that EDS and DZZ
methods outperformed NSGA-II algorithm, being much more efficient and delivering
better results. The Pareto fronts obtained by each method are shown in Figure 4.4.

(a) EDS (b) NSGA-II (c) PDZZ

Figure 4.4: Pareto fronts of the ZDT1 function computed by the different methods

4.2.5 Binh tri-objective Function

We will now consider tri-objective problems. Our first experiment is conducted on
an extended version of the bi-objective Binh function and is defined as follows:

f1(x) = ||x− a1||22
f2(x) = ||x− a2||22 (4.5)

f3(x) = ||x− a3||22,

where a1 = (20, . . . , 20) ∈ Rn, a2 = −a1 and a3 = (20, . . . , 20︸ ︷︷ ︸
m times

,−20, . . . ,−20︸ ︷︷ ︸
n-m times

) ∈ Rn for

Cinvestav Computer Science Department



Numerical Results and Experiments 59

n = 3 and m = ceil(n/2). This function has a convex Pareto front. No comparison
against DZZ is possible for tri-objective problems since the method is only developed
for bi-objective problems, thus, only the comparison against NSGA-II is presented in
Table 4.5.

Algorithm Int. Var. Real Var. Sols Feval 42 43 Funeval/Sol
EDS 0 3 1267 11567 0.102 0.106 9
NSGA-II 0 3 1200 45600 0.145 0.149 38

Table 4.5: Summarized results for Binh3 function

As can be observed by the results in Table 4.5 the EDS method performs way
better than NSGA-II being more accurate in the quality of the solutions delivered
with approximately four times less function evaluations. The fronts computed by
both methods are shown in Figure 4.5.

(a) EDS (b) NSGA-II

Figure 4.5: Pareto fronts of the Binh3 function computed by the different methods

It can be seen on the pictures that the solutions obtained by the EDS method are
more evenly distributed that the ones obtained by NSGA-II algorithm.

Cinvestav Computer Science Department



60 Chapter 4

4.2.6 DTZL1 Function

The DTLZ benchmark functions [13] are scalable in the number of variables and
objectives. We will first test on DTLZ1 function, which is a multimodal function
with box constraints. It is defined as follows:

f1(x) =
1

2
x1x2(1 + g(x))

f2(x) =
1

2
x1(1− x2)(1 + g(x))

f3(x) =
1

2
(1− x1)(1 + g(x)) (4.6)

g(x) = 100(10 +
n∑
i=3

(xi − 0.5)2 − cos(20π(xi − 0.5)))

s.t. 0 ≤ xi ≤ 1, i = 1, . . . , n.

For this example we set n = 3. As in the previous example DZZ is not applicable
to this function, hence the comparison is only made between the EDS method and
NSGA-II algorithm. Results are shown in Table 4.6.

Algorithm Int. Var. Real Var. Sols Feval 42 43 Funeval/Sol
EDS 0 3 870 5991 0.0085 0.0082 7
NSGA-II 0 3 900 23400 0.0093 0.0094 26

Table 4.6: Summarized results for DTLZ1 function

Once again, as indicated by the results in Table 4.6 the EDS method performs
better than the NSGA-II algorithm, despite the latter uses about four times more
function evaluations. Figure 4.6 shows the Pareto fronts computed by both methods.

Cinvestav Computer Science Department



Numerical Results and Experiments 61

(a) EDS (b) NSGA-II

Figure 4.6: Pareto fronts of the DTLZ2 function computed by the different methods

4.2.7 DTLZ2 Function

We will now test on DTLZ2 which is a box constrained k-objective function. For the
purposes of this demonstration we restrict it to three objectives. Its definition is as
follows:

f1(x) = cos(
π

2
x1) . . . cos(

π

2
xk−1)(1 + g(x))

f2(x) = cos(
π

2
x1) . . . sin(

π

2
xk−1)(1 + g(x))

f3(x) = sin(
π

2
x1)(1 + g(x)) (4.7)

g(x) =
n∑
i=k

(xi − 0.5)2

s.t. 0 ≤ xi ≤ 1, i = 1, . . . , n.

For this example we set n = 3. Once again, the DZZ method is not applicable to
this kind of functions. Hence the comparison shown in Table 4.7 considers only EDS
and NSGA-II algorithms.

Cinvestav Computer Science Department



62 Chapter 4

Algorithm Int. Var. Real Var. Sols Feval 42 43 Funeval/Sol
EDS 0 3 1538 6375 0.152 0.157 4
NSGA-II 0 3 1500 25500 0.1861 0.1863 17

Table 4.7: Summarized results for DTLZ2 function

The above results show that the overall performance of the EDS method is bet-
ter than the one of NSGA-II. It is important to recall that in order to make the
comparison between the EDS method and NSGA-II algorithm as fair as possible a
budget of four times the number of functions evaluations spent by EDS was assigned
to NSGA-II. Pictures of the Pareto fronts obtained are shown in Figure 4.7.

(a) EDS (b) NSGA-II

Figure 4.7: Pareto fronts of the DTLZ2 function computed by the different methods

4.3 Integer Models

In this section we will present some integer problems solved by the EDS method. As
for the case of continuous problems, a comparison between EDS, DZZ and NSGA-II
algorithms is presented for each test problem.

Cinvestav Computer Science Department



Numerical Results and Experiments 63

4.3.1 Binh Integer Function

This function is based on the previously introduced Binh function but considering
an integer search space. Pareto front and Pareto set remain the same, the formal
definition of the function is:

f1(x) = ||x− a1||22
f2(x) = ||x− a2||22, (4.8)

where a1 = (1, . . . , 1)T ∈ Rn and a2 = −a1 for n = 10 and x ∈ Zn. The results
obtained by EDS, NSGA-II and DZZ are summarized in Table 4.8.

Algorithm Int. Var. Real Var. Sols Feval 42 43 Funeval/Sol
EDS 0 10 21 240 29.26 42.35 11.5
NSGA-II 0 10 20 1000 39.09 49.20 50
DZZ 0 10 41 529 17.28 39.09 13

Table 4.8: Summarized results for Binh Integer function

As can be observed by the results in Table 4.8, EDS and DZZ methods display
similar results, being the EDS method slightly better in terms of function evaluations
while the DZZ method is better in terms of the 4p performance indicator. The DZZ
was able to compute as twice points as the EDS method, this explains the better
values of the 4p indicator for the DZZ results. As for the NSGA-II algorithm, it
can be observed that both EDS and DZZ methods have a better overall performance.
Pictures of the fronts computed by each method are shown in Figure 4.8. Note that
both EDS and DZZ methods computed smooth fronts.

Cinvestav Computer Science Department



64 Chapter 4

(a) EDS (b) NSGA-II (c) DZZ

Figure 4.8: Pareto fronts of the Convex integer function computed by the different
methods

4.3.2 Dent Integer Function

Next, we test on a discrete version of the Dent function previously introduced. The
definition of this function is:

f1(x) =
1

2
(
√

1 + (x1 + x2)2 +
√

1 + (x1 − x2)2 + x1 − x2) + λ · e−(x1−x2)

f1(x) =
1

2
(
√

1 + (x1 + x2)2 +
√

1 + (x1 − x2)2 − x1 + x2) + λ · e−(x1−x2). (4.9)

The Pareto set of this function is a line and the Pareto front is convex-concave
for λ = 0.85 as chosen here. We use the same setting as for the continuous case but
setting x ∈ Zn. Table 4.9 shows the results obtained by EDS, DZZ and NSGA-II.

Algorithm Int. Var. Real Var. Sols Feval 42 43 Funeval/Sol
EDS 0 2 8 35 0.70 0.99 4.5
NSGA-II 0 2 20 140 1.11 1.33 14
DZZ 0 2 7 19 1.64 2.12 3

Table 4.9: Summarized results for Dent integer function

From the results in Table 4.9 it is observable that the EDS method performed
better than the DZZ and NSGA-II methods. In fact, the DZZ method was not able

Cinvestav Computer Science Department



Numerical Results and Experiments 65

to compute the entire Pareto front for this problem, which can be observed, along
with the Pareto fronts of EDS and NSGA-II algorithms, in Figure 4.9.

(a) EDS (b) NSGA-II (c) DZZ

Figure 4.9: Pareto fronts of the Dent integer function computed by the different
methods

4.3.3 ZDT1 Integer Function

Now we test on a discretized version of the ZDT1 function which proposed by Dr.
Wang for his experiments with the DZZ method on [41]. We will use the same setting
as the one proposed in [41], the function is defined in the following way:

f1(x) =
x1
100

f2(x) = g(x)

(
1−

√
f1(x)

g(x)

)
(4.10)

g(x) = 1 + 9 · x2 − x1
100

2

s.t. 0 ≤ xi ≤ 100, i = 1, . . . , n.

where n = 2 and x ∈ Zn. This function has a convex Pareto front, the solution set is
contained within the domain [0, 100]× [0, 100]. The results for the three methods are
displayed in Table 4.10.

It can be observed by the results presented in Table 4.10 that the three methods
computed good solutions, being the4p values of the three quite similar. Nevertheless,

Cinvestav Computer Science Department



66 Chapter 4

Algorithm Int. Var. Real Var. Sols Feval 42 43 Funeval/Sol
EDS 0 2 122 268 0.0168 0.0324 2
NSGA-II 0 2 120 1080 0.0165 0.0295 9
DZZ 0 2 100 400 0.0100 0.0214 4

Table 4.10: Summarized results for ZDT1 Integer function

it can also be observed that the EDS method was the most efficient of the three
methods, using up to four times less function evaluations than NSGA-II and half the
number of function evaluations of the DZZ method. The Pareto fronts obtained by
each method are shown in Figure 4.10.

(a) EDS (b) NSGA-II (c) DZZ

Figure 4.10: Pareto fronts of the ZDT1 integer function computed by the different
methods

4.3.4 ZDT2 Integer Function

Our next test is conducted on a discretized version of the ZDT2 function proposed
in [41]. Once again we will use the same setting as the one proposed in [41]. The
function is defined in the as follows:

Cinvestav Computer Science Department



Numerical Results and Experiments 67

f1(x) =
x1
100

f2(x) = g(x) ·

(
1−

√
f1(x)

g(x)

)2

(4.11)

g(x) = 1 +
( x2

100

) 1
4

s.t. 0 ≤ xi ≤ 100, i = 1, . . . , n.

where n = 2 and x ∈ Zn. This function has a concave Pareto front, the solution set
is contained within the square [0, 100] × [0, 100]. The results for the three methods
are displayed in Table 4.11.

Algorithm Int. Var. Real Var. Sols Feval 42 43 Funeval/Sol
EDS 0 2 24 49 0.044 0.065 2
NSGA-II 0 2 20 200 0.15 0.21 10
DZZ 0 2 26 106 0.031 0.051 4

Table 4.11: Summarized results for ZDT2 Integer function

The results presented in Table 4.11 demonstrate, once again, that the results
obtained by the EDS and the DZZ methods are similar with respect to the 4p indi-
cator. Nevertheless, the EDS method uses half of the function evaluations that the
DZZ method uses. NSGA-II is again outperformed by both methods. The Pareto
fronts obtained by each method are shown in Figure 4.11.

(a) EDS (b) NSGA-II (c) DZZ

Figure 4.11: Pareto fronts of the ZDT2 Integer function computed by the different
methods

Cinvestav Computer Science Department



68 Chapter 4

4.4 A Mixed-Integer Model

Finally, in this section we present one mixed-integer problem solved by the EDS
method. A comparison between EDS and NSGA-II algorithms is presented. No
comparison against the DZZ method is possible since this is a tri-objective problem.
This test problem is a modified version of Problem (4.6) but now considering some
variables integer and some real. The shape of the Pareto front is similar to the one
of Function (4.6). Its definition is as follows:

f1(x) = ||x− a1||22
f2(x) = ||x− a2||22 (4.12)

f3(x) = ||x− a3||22,

for a1 = (20, . . . , 20) ∈ Rd, a2 = −a1 and a3 = (20, . . . , 20︸ ︷︷ ︸
m times

,−20, . . . ,−20︸ ︷︷ ︸
n-m times

) ∈ Rd for

m = d(ed/2), d = d1 + d2, d1 = 3, d2 = 2, and x ∈ Rd1 × Zd2 . For this particular
function x1, x2andx3 are real valued and x4, x5 are integer valued. This function
has a convex Pareto front. Since comparison against DZZ is not possible, only the
comparison against NSGA-II is presented. The results of such comparison are shown
in Table 4.12.

Algorithm Int. Var. Real Var. Sols Feval 42 43 Funeval/Sol
EDS 2 3 434 6995 135.88 150.74 9
NSGA-II 2 3 450 27000 136.69 145.36 38

Table 4.12: Summarized results for Binh3 MI function

As the data in Table 4.12 shows, both methods, the EDS method and the NSGA-II
algorithm deliver similar quality solutions. Nevertheless it is important to note that
the EDS method used four times less function evaluations than NSGA-II to reach
the same quality of solutions. The high values on the 4p values of each method are
due to the scale of the objective space, going up to 8000 units in one of the objective
functions. The fronts computed by both methods are shown in Figure 4.12.

Cinvestav Computer Science Department



Numerical Results and Experiments 69

(a) EDS (b) NSGA-II

Figure 4.12: Pareto fronts of the Binh3 MI function computed by the different meth-
ods

It can be observed in the above pictures that the EDS method had some diffi-
culties computing the narrow parts of the Pareto front, nevertheless, it can also be
observed that the solutions of the EDS method are more evenly distributed than
those computed by the NSGA-II. This explains why the 4p values of both methods
are similar. The higher values of the 43 indicator on the EDS method are due to the
fact that as p increases in the p-norm, outliers are penalized more (see Section 2.6.4
in page 24).

Cinvestav Computer Science Department



70 Chapter 4

Cinvestav Computer Science Department



Chapter 5

Conclusions and Future Work

This chapter summarizes the thesis work, discusses its findings and contributions
and points out its limitations. In a second part of this chapter directions for future
research are outlined.

5.1 Obtained Results

Here we will briefly discuss the main results obtained by this thesis work.

First of all, the EDS method has a better, more reliable mechanism for determining
critical points than the one in the DS method, namely the δ threshold (see Section
3.3.2 in page 35). By defining suitable boundaries (which are problem dependent)
on the value of δ the EDS corrector is capable of approximating critical points as
described in Section 3.3.2 in page 35. Of course, the boundaries on the δ threshold
will define the quality of the computed solutions, small values for the δ thresholds
may improve the quality of the computed solutions but may also make the whole
process more costly in terms of function evaluations or may even make infeasible for
the corrector phase to compute a critical point. On the other hand, loose boundaries
may lead to the computations of suboptimal or even dominated solutions. Thus, some
effort may be necessary when defining the values for the δ thresholds.

In addition to the mechanism for determining critical points, the EDS method
has an improved efficiency over the classical DS method. This is achieved by using
neighboring information for the computation of the Jacobian matrix J(x). Such
strategy helps EDS method to use less function evaluations during its computations.
Furthermore, the EDS method can also be used for solving problems with more
than two objectives. This feature was desirable since this was one of the major
drawbacks of the DZZ which can only be used for solving bi-objective problems. By

71



72 Chapter 5

making use of the steering properties of the EDS method and using the data structure
described in Section 3.4.1 in page 37 the EDS method can perform this task in an
efficient an easy to implement manner. Together, this two features help make the EDS
method a reliable and robust continuation method for the computation of connected
components of the Pareto front.

Finally, and perhaps the most important contribution of this thesis work is the
capability of the EDS method for dealing with MMOPs. This is achieved by making
use of the rounding strategy described in Section 3.6 in page 45.

5.2 Conclusions

From the results mentioned in Section 5.1 we can make the following discussion.

The EDS method is indeed a better version of the classical EDS method. Since, as
mentioned in the last section, the EDS method incorporates the whole functionality
of the DS method but has several improvements over it. For instance, a more reliable
mechanism for the computation of the critical points and the use of neighboring
information. It is this set of features that make this method an enhanced version of
the DS method.

With respect to the comparisson between the EDS method and its closest competi-
tor the DZZ method, experiments in Section 4 in page 53 help us demonstrate that
the former performs way better than the latter. Firstly because the EDS method is
capable of solving multi-objective problems with more than two objectives while DZZ
is only capable of solving bi-objective problems. Second, because as the experiments
demonstrated, the EDS method obtained better results than the DZZ in most of the
test functions. This gives clear evidence that the EDS can be applied to problems
that can be solved by the DZZ and obtain as good results as it and furthermore, that
the EDS method can be applied for solving problems that are impossible to solve for
the DZZ method.

Finally, we would like to point out that, according to this discussion, our main
objective, namely the development of a novel continuation method for the treatment
of MMOPs, was accomplished. The Enhanced Directed Search (EDS), as we call our
method, follows the ideas proposed by the original Directed Search (DS) method [22].
Nevertheless, as indicated by its name, the EDS method has several improvements
over the classical DS method.

All in all, we strongly believe that the EDS method has some serious potential
for real-world applications, nevertheless, further experiments and some additional
features are needed in order to guarantee its success when dealing with real-world
problems. Such features and improvements are discussed in the next section.

Cinvestav Computer Science Department



Conclusions and Future Work 73

5.3 Future Work

Several improvements and lines of research arise from the development of the EDS
method. One of our major concerns for the future deals with the corrector step. Al-
though the current corrector works properly, we believe that some other techniques,
e.g., the application of classical continuation methods for tracing the solution curve
of the zero set that leads to a critical point as in [22] and [53], are worth the attempt.
Fortunately, modifying the corrector would have no impact in the rest of the compo-
nents of the EDS method, since the corrector phase is a task completely decoupled
from the rest of the algorithm.

So far, the EDS method heavily relies on four user defined parameters, i.e., the
min δ and max δ thresholds (see Section 3.3.2 in page 35), the λ threshold (see Section
3.6 in page 45) and the size of neighborhood N(x) (see Section 3.5 in page 42). We
are aware that the tuning of such parameter may become a time consuming task.
Therefore, further analysis on each of the aforementioned parameters is required on
order to either define tight boundaries for the values of each parameter or get rid of
them making EDS a much more user friendly method. For instance, further analysis
on the δ thresholds may lead to the definition of suitable values for both thresholds.

A detailed analysis of the convergence rate and asymptotic time complexity of
the EDS method is also encouraged for a better comprehension of the strengths and
weaknesses of our proposals. The convergence analysis should determine whether
if given a predictor point, and a direction pointing towards the Pareto front, will
the corrector phase be always successful in finding a critical point? Furthermore,
how many function evaluations may be needed in order to get such critical point?
Although the experiments conducted in this thesis project may give an insight of the
answer of such questions a formal framework that supports our claims is still needed.

The treatment of constrained problems is equally interesting. While some ideas
are being currently explored, they are left out of the scope of this thesis project. The
handling of constraints is of great importance for any method, since many of the
real-world problems usually consider at least one constraint. It is therefore important
to develop techniques that allow the EDS method to handle constrained problems.
In particular the use of slack variables [36] is worth to explore.

Another interesting topic that arises from the development of the EDS method is
that of parallelization. Given the way predictors and correctors are computed (Sec-
tions 3.2 in page 29 and 3.3 in page 31) and thanks to the successfully implementation
of the data structure proposed in [53] we believe that parallelizing the computation
of predictors and correctors is an attainable task. A parallel implementation of the
EDS method should boost the speed and the overall performance of it, allowing it to
deal in a more efficient way with problems whose function evaluation time is high.

Cinvestav Computer Science Department



74 Chapter 5

Finally, we would like to stress that the EDS method (as all continuation methods)
is of local nature. It is thus conceivable to hybridize the algorithm with a global
strategy such as specialized MOEAs in order to obtain a fast and reliable procedure.
Furthermore, the use of neighboring information can be exploited more with the use
of memetic strategies where the solutions computed by the MOEA can be reused. So
far we have only tested our method on academic examples, but the true purpose of
this research is to apply the new knowledge to real-world applications. We expect
that the hybridized approach has more probabilities of success in this environment.
Regarding this matter, a starting point for hybridization can be the approach taken
in [22].

Cinvestav Computer Science Department



Appendices

75





Appendix A

Parameter Setting for the
Experiments

In this appendix we present the parameter setting used for the EDS, DZZ and NSGA-
II algorithms in Chapter 4. A table displaying the values of the parameters for each
algorithm is displayed for each of the test problems.

A.1 Parameter Setting of the DZZ Method

Here we present the parameter setting of the DZZ method for the experiments with
the test functions in Chapter 4. The N(x)-zig denotes the size of the neighborhood
for the zig step while the N(x)-zag denotes the size of the neighborhood for the zag
step. For further details please see Section 2.4.

Function N(x)-zig N(x)-zag
Binh 0.5 0.5
Fonseca 0.1 0.1
Dent 0.1 0.1
ZDT1 0.1 0.1
Binh Int 1 1
Dent Int 1 1
ZDT1 Int 1 1
ZDT2 Int 1 1

Table A.1: Parameter setting of the DZZ method for the test functions

77



78 Appendix A

A.2 Parameter Setting of the EDS Method

Here we present the parameter setting of the EDS method for the experiments with the
test functions in Chapter 4. The τ value indicates the spreadness of the solutions, the
epsilon-tolerance is the deviation tolerance used for the computation of the corrector,
the min δ and max δ thresholds are the values used as boundaries for δ in order to
determine new Pareto critical points, α-tolerance is used to determine when to stop
computing predictors from a particular point, N(x) is the size of the neighborhood
used to approximate the Jacobian matrix, finally, the λ-tolerance is used as a lower
bound of when to round the value of a component during the conversion to integer
step. For further details on each parameter see Chapter 3.

Function τ ε-tolerance min δ max δ α-tolerance N(x) λ-tolerance
Binh 1 0.9 10−2 10−1 10−5 0.1 1
Fonseca 0.05 0.9 10−4 10−2 10−5 0.01 1
Dent 0.5 0.9 10−4 10−2 7.5 ∗ 10−3 0.1 1
ZDT1 0.05 0.5 10−1 1 10−5 0.01 1
Binh tri 0.3 0.8 10−3 10−1 10−2 0.1 1
DTLZ1 0.03 0.9 10−3 10−1 10−2 0.05 1
DTLZ2 0.05 0.9 10−3 10−1 10−2 0.05 1
Binh Int 1 0.9 10−2 10−1 10−5 1 0.5
Dent Int 1 0.9 10−2 10−1 7.5 ∗ 10−3 1 0.5
ZDT1 Int 0.01 0.3 5 ∗ 10−6 10−4 10−5 3 0.5
ZDT2 Int 0.1 0.3 10−3 10−1 10−3 1 0.5
Binh tri MI 300 0 12 10−1 10 3 0

Table A.2: Parameter setting of the EDS method for the test functions

A.3 Parameter Setting of the NSGA-II Algorithm

As for the NSGA-II the following values were used for all of the problems:

• Crossover fraction: 2/numVar

• Mutation fraction: 2/numVar

where numVar is the number of variables in the problem. This was done this
way since our aim was just to demonstrate that the EDS method can obtain as good
solutions as the NSGA-II algorithm. The rest of the parameters are taken from the
setting in [55].

Cinvestav Computer Science Department



Appendix B

Reference Pareto Fronts of the
Test Problems

Here we present the reference Pareto fronts of the test functions used in Chapter 4.
This fronts were used as reference fronts for the computation of the 4p performance
indicator (see Section 2.6). They are discretizations of the real Pareto fronts for each
problem.

B.1 Binh Function

Figure B.1: Real Pareto front of the Binh function

79



80 Appendix B

B.2 Fonseca Function

Figure B.2: Real Pareto front of the Fonseca function

B.3 Dent function

Figure B.3: Real Pareto front of the Dent function

Cinvestav Computer Science Department



Reference Pareto Fronts of the Test Problems 81

B.4 ZDT1 Function

Figure B.4: Real Pareto front of the ZDT1 function

B.5 Binh tri-objective function

Figure B.5: Real Pareto front of the Binh tri-objective function

Cinvestav Computer Science Department



82 Appendix B

B.6 DTLZ1 Function

Figure B.6: Real Pareto front of the DTLZ1 function

B.7 DTLZ2 Function

Figure B.7: Real Pareto front of the DTLZ2 function

Cinvestav Computer Science Department



Reference Pareto Fronts of the Test Problems 83

B.8 Binh Integer Function

Figure B.8: Real Pareto front of the Binh Integer function

B.9 Dent Integer Function

Figure B.9: Real Pareto front of the Dent Integer function

Cinvestav Computer Science Department



84 Appendix B

B.10 ZDT1 Integer Function

Figure B.10: Real Pareto front of the ZDT1 Integer function

B.11 ZDT2 Integer Function

Figure B.11: Real Pareto front of the ZDT2 Integer function

Cinvestav Computer Science Department



Reference Pareto Fronts of the Test Problems 85

B.12 Binh Mixed-Integer Function

Figure B.12: Real Pareto front of the Binh3 MI function

Cinvestav Computer Science Department



86 Appendix B

Cinvestav Computer Science Department



Bibliography

[1] V. Pareto. Manual of Political Economy. A. M. Kelley, 1971.

[2] S. Ghodsypour and C. O’Brien. The Total Cost of Logistics in Supplier Se-
lection under Conditions of Multiple Sourcing, Multiple Criteria and Capacity
Constraints. International Journal of Production Economics, 73(1):15–27, 2001.

[3] B. Karpak, R. Kasuganti, and E. Kumzu. Multi-objective Decision Making in
Supplier Selection: An Application of Visual Interactive Goal Programming. The
Journal of Applied Business Research, 15(2):57–72, 1999.

[4] M. Ekhtiari and S. Poursafaryi. Multi-objective Stochastic Programming for
Mixed Integer Vendor Selection Problem using Artificial Bee Colony Algorithm.
ISRN Artificial Intelligence, 2013(1):1–13, 2013.

[5] W. Pan and F. Wang. A Multi-objective Model of Order Allocation under Con-
sidering Disruption Risk and Scenario Analysis in a Supply Chain Environment.
In International Conference on Global Economy, Commerce and Service Science,
volume 1, pages 325–327, Phuket, Thailand, 2014. Atlantis Press.

[6] P. McMullen and G. Frazier. Using Simulated Annealing to Solve a Multi-
objective Assembly Line Balancing Problem with Parallel Workstations. In-
ternational Journal of Production Research, 36(10):2717–2741, 1998.

[7] K. Miettinen. Non Linear Multiobjective Optimization. Springer, 1999.

[8] G. Eichfelder. Addaptative Scalarization Methods in Multiobjective Optimization.
Springer, 2008.

[9] R. Marler and J. Arora. The Weighted Sum Method for Multi-objective
Optimization: New Insights. Structural and Multidisciplinary Optimization,
41(6):853–862, 2010.

[10] J. Fliege. Gap Free Computation of Pareto Points by Quadratic Scalarizations.
Mathematical Methods of Operations Research, 59(1):69–89, 2004.

87



88 BIBLIOGRAPHY

[11] I. Das and J. Dennis. Normal Boundary Intersection: A New Method for Gen-
erating the Pareto Surface in Nonlinear Multicriteria Optimization Problems.
SIAM Journal on Optimization, 8(3):631–657, 1998.

[12] A. Zhou et al. Multiobjective Evolutionary Algorithms: A Survey of the State
of the Art. Swarm and Evolutionary Computation, 1(1):32–49, 2011.

[13] C. Coello, G. Lamont, and D. Van Veldhuizen. Evolutionary Algorithms for
Solving Multi-Objective Problems. Springer, 2007.

[14] K. Deb. Multi-Objective Optimization using Evolutionary Algorithms. Wiley
Interscience Series in Systems and Optimization. John Wiley & Sons, 2001.

[15] Oliver Schütze, Marco Laumanns, Emilia Tantar, Carlos A. Coello Coello, and
El-Ghazali Talbi. Computing Gap Free Pareto Front Approximations with
Stochastic Search Algorithms. ACM Journal in Evolutionary Computation,
18(1):65–96, 2010.

[16] M. Dellnitz, O. Schütze, and T. Hestermeyer. Covering Pareto Sets by Multi-
level Subdivision Techniques. Journal of Optimization Theory and Applications,
124(1):113–136, 2005.

[17] J. Jahn. Multiobjective Search Algorithm with Subdivision Techniques. Com-
putational Optimization and Applications, 35(2):161–175, 2006.

[18] C. Hernandez, Y. Naranjani, Y. Sardahi, W. Liang, O. Schütze, and J. Q. Sun.
Simple Cell Mapping Method for Multi-objective Optimal Feedback Control De-
sign. International Journal of Dynamics and Control, 1(3):231–238, 2013.

[19] C. Hernandez, O. Scütze, and J. Q. Sun. Computing the Set of Approximate
Solutions of a Multi-objective Optimization Problem by Means of Cell Mapping
Techniques. In EVOLVE - A Bridge between Probability, Set Oriented Numerics
and Evolutionary Computation, volume 4 of Advances in Intelligent Systems and
Computing, pages 171–188. Springer, 2013.

[20] J. Fliege, L. Drummond, and B. Svaiter. Newton’s Method for Multi-objective
Optimization. SIAM Journal on Optimization, 20(2):602–626, 2009.

[21] Z Povalej. Quasi-Newton’s Method for Multi-objective Optimization. Journal of
Computational and Applied Mathematics, 255(1):765–777, 2014.

[22] O. Schütze, A. Lara, and C. Coello. The Directed Search Method for Multi-
objective Optimization Problems. In EVOLVE - A Bridge between Probability,
Set Oriented Numerics and Evolutionary Computation, volume 2 of Studies in
Computational Intelligence, pages 153–168. Springer, 2013.

Cinvestav Computer Science Department



BIBLIOGRAPHY 89

[23] J. Rakowska, T. Haftka, and L. Watson. Multi-objective Control-Structure Opti-
mization via Homotopy Methods. SIAM Journal on Optimization, 3(3):654–667,
1993.

[24] B. Martin, A. Goldsztejn, L. Granvilliers, and C. Jermann. On Continuation
Methods for Non-linear Bi-objective Optimization: Towards a Certified Interval-
Based Approach. Journal of Global Optimization, pages 1–14, 2014.

[25] A. Potschka, F. Logist, J. Van Impe, and H. Bock. Tracing the Pareto Frontier in
Bi-objective Optimization Problems by ODE Techniques. Numerical Algorithms,
57(2):217–233, 2011.

[26] H. Wang. Zigzag Search for Continous Multi-objective Optimization. INFORMS
Journal on Computing, 25(4):654–665, 2013.

[27] C. Hillermeier. Nonlinear Multiobjective Optimization: A Generalized Homoto-
phy. Springer, 2001.

[28] L. Loomis and S Sternberg. Advanced Calculus. World Scientific, 2014.

[29] J. Onwunalu and L. Durlofsky. Application of a Particle Swarm Optimization
Algorithm for Determining Optimum Well Location and Type. Computational
GeoScience, 6(1):183–198, 2010.

[30] H. Wang, D. Echeverria, L. Durlofsky, and A. Cominelli. Optimal Well Place-
ment under Uncertainty using a Retrospective Optimization Framework. Society
of Petroleum Engineers Journal, 17(1):112–121, 2012.

[31] R. Gutierrez, G. Valencia, O. Rodŕıguez, and L. Trujillo. Systematic Selection of
Tuning Parameters for Efficient Predictive Controllers using a Multi-objective
Evolutionary Algorithm. Technical report, ITT, Tijuana, Mexico, 2014.

[32] E. Bjornson and E. Jorswieck. Optimal Resource Allocation in Coordinated
Multi-cell Systems. Foundations and Trends in Communications and Informa-
tion Theory, 9(3):113–381, 2013.

[33] O. Schütze, X. Esquivel, A. Lara, and C. Coello. Using the Averaged Hausdorff
Distance as a Performance Measure in Evolutionary Multiobjective Optimiza-
tion. IEEE Transactions on Evolutionary Computation, 16(4):504–522, 2012.

[34] O. Schütze, S. Alvarado, C. Segura, and R. Landa. Gradient Subspace Approx-
imation: A Directed Search Method for Memetic Computing. Technical report,
Computer Science Department, CINVESTAV-IPN, Mexico D.F., 2014.

[35] O. Schütze, A. Dell’Aere, and M. Dellnitz. On Continuation Methods for the
Numerical Treatment of Multi-objective Optimization Problems. In Practical
Approaches to Multi-Objective Optimization, Internationales Begegnungs und
Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany, 2005.

Cinvestav Computer Science Department



90 BIBLIOGRAPHY

[36] J. Nocedal and S. Wright. Numerical Optimization. Springer, 2006.

[37] C. Coello. Evolutionary Multiobjective Optimization: A Historical View of the
Field. IEEE Computational Intelligence Magazine, 1(1):28–36, 2006.

[38] H. Kuhn and A. Tucker. Nonlinear Programming. In Proceedings of the Second
Berkeley Symposium on Mathematical Statistics and Probability, pages 481–492,
Berkeley, California, 1951. University of California Press.

[39] E. Algower and K. Georg. Introduction to Numerical Continuation Methods.
Classics in Applied Mathematics. SIAM, 2003.

[40] A. Björck. Numerical Methods for Least Squares Problems. SIAM, 1996.

[41] H. Wang. Zigzag Search for Discrete Multi-objective Optimization. Technical
report, Industrial and Systems Engineering, Busch Campus, Rutgers University,
N. J., USA, 2014.

[42] R. Hooke and T. Jeeves. Direct Search Solution of Numerical and Statisti-
cal Problems. Journal of the Association for Computing Machinery (ACM),
8(2):212–229, 1961.

[43] A. Engelbrecht. Computational Intelligence, an Introduction. WILEY, 2007.

[44] R. Eberhart and Y. Shi. Computational Intelligence, Concepts to Implementa-
tions. Morgan Kaufmann, 2007.

[45] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A Fast and Elitist Multi-
objective Genetic Algorithm: NSGA-II. IEEE Transactions on Evolutionary
Computation, 6(2):182–197, 2002.

[46] Q. Zhang and H. Li. MOEA/D: A Multiobjective Evolutionary Algorithm Based
on Decomposition. IEEE Transactions on Evolutionary Computation, 11(6):712–
731, 2007.

[47] D. Van Veldhuizen. Multi-objective Evolutionary Algorithms: Classifications,
Analysis and New Innovations. PhD thesis, Department of Electrical and Com-
puter Engineering. Graduate School of Engineering. Air Force Institute of Tech-
nology, Wright-Patterson AFB, Ohio, May, 1999.

[48] C. Coello and N. Cruz. Solving Multi-objective Optimization Problems using
an Artificial Immune System. Genetic Programming and Evolvable Machines,
6(2):163–190, 2005.

[49] D. Huttenlocher, G. Klanderman, and W. Rucklidge. Comparing Images using
the Hausdorff Distance. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 15(9):850–863, 1993.

Cinvestav Computer Science Department



BIBLIOGRAPHY 91

[50] O. Schütze and A. Mart́ın. Directed Search 2. Technical report, Computer
Science Department at CINVESTAV Zacatenco, Mexico, 2014.

[51] fmincon Function Description. http://www.mathworks.com/help/optim/ug/

fmincon.html#bribv6f. Accessed: November, 2015.

[52] S. Schäffler, R. Schultz, and K. Weinzierl. A Stochastic Method for the Solution of
Unconstrained Vector Optimization Problems. Journal of Optimization: Theory
and Applications, 114(1):209–222, 2002.

[53] A. Mart́ın. Pareto Tracer: A Predictor Corrector Method for Multi-objective
Optmization Problems. Master’s thesis, Computer Science Department at CIN-
VESTAV Zacatenco, 2014.

[54] NGPM: A NSGA-II Program in Matlab. http:

//www.mathworks.com/matlabcentral/fileexchange/

31166-ngpm-a-nsga-ii-program-in-matlab-v1-4. Accessed: November,
2015.

[55] L. Song. NGPM: A NSGA-II Program in Matlab. Technical report, College of
Astronautics at Northwestern Polytechnical University, China, 2011.

[56] K. Witting. Numerical Algorithms for the Treatment of Parametric Multi-
objective Optimization Problems and Applications. PhD thesis, Universität Pad-
derborn, Febraury, 2012.

[57] E. Zitzler, K. Deb, and L Thiele. Comparison of Multi-objective Evolutionary
Algorithms: Empirical Results. Evolutionary Computation, 8(2):173–195, 2000.

Cinvestav Computer Science Department

http://www.mathworks.com/help/optim/ug/fmincon.html#bribv6f
http://www.mathworks.com/help/optim/ug/fmincon.html#bribv6f
http://www.mathworks.com/matlabcentral/fileexchange/31166-ngpm-a-nsga-ii-program-in-matlab-v1-4
http://www.mathworks.com/matlabcentral/fileexchange/31166-ngpm-a-nsga-ii-program-in-matlab-v1-4
http://www.mathworks.com/matlabcentral/fileexchange/31166-ngpm-a-nsga-ii-program-in-matlab-v1-4

	List of Figures
	List of Tables
	List of Algorithms
	List of Acronyms
	Introduction
	Motivation
	The Problem
	Aims of the Thesis
	Final Contributions
	Organization of the Thesis

	Background and Related Work
	Theoretical Background
	Multi-objective Optimization
	The Karush-Kuhn-Tucker Optimality Conditions for Multi-objective Optimization
	Mixed-Integer Multi-objective Optimization

	Continuation Methods
	Hillermeier's Predictor-Corrector Method

	The Directed Search Method
	Directed Search Descent Method
	Directed Search Predictor-Corrector Method

	Direct Zig Zag Method
	Multi-objective Optimization Evolutionary Algorithms
	Performance Indicators
	Generational Distance
	Inverted Generational Distance
	Hausdorff Distance
	Averaged Hausdorff Distance p


	The Enhanced Directed Search Method
	Following a Direction in Objective Space
	Predictor
	Corrector
	Corrector Step Size
	Determining Critical Points

	The Enhanced Directed Search Method
	Determining Points Already Covered by EDS
	Handling Box Constrained Problems
	Stopping Criteria for the EDS Method

	Using Neighborhood Information
	Handling Mixed-Integer Problems
	An Example of the EDS Method
	On the Impact of the  Thresholds
	On the Impact of the Size of the Neighborhood N(x)


	Numerical Results and Experiments
	General Setting
	Continuous Models
	Binh Function
	Fonseca Function
	Dent Function
	ZDT1 Function
	Binh tri-objective Function
	DTZL1 Function
	DTLZ2 Function

	Integer Models
	Binh Integer Function
	Dent Integer Function
	ZDT1 Integer Function
	ZDT2 Integer Function

	A Mixed-Integer Model

	Conclusions and Future Work
	Obtained Results
	Conclusions
	Future Work

	Appendices
	Parameter Setting for the Experiments
	Parameter Setting of the DZZ Method
	Parameter Setting of the EDS Method
	Parameter Setting of the NSGA-II Algorithm

	Reference Pareto Fronts of the Test Problems
	Binh Function
	Fonseca Function
	Dent function
	ZDT1 Function
	Binh tri-objective function
	DTLZ1 Function
	DTLZ2 Function
	Binh Integer Function
	Dent Integer Function
	ZDT1 Integer Function
	ZDT2 Integer Function
	Binh Mixed-Integer Function

	References

