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Resumen

Muchos problemas multiobjetivo del mundo real tienen cientos e incluso miles de

variables de decisión, por lo cual la escalabilidad es un tema de gran importancia.

Esto, sin embargo, contrasta con los modelos evolutivos existentes para optimización

multiobjetivo los cuales suelen validarse con problemas de prueba con un número

relativamente bajo de variables de decisión (normalmente no más de 30). En la

actualidad la investigación existente en el área de algoritmos evolutivos multiobjetivo

suele enfocar su atención a la escalabilidad en el espacio de las funciones objetivo

(esta área se conoce como “many-objective optimization”), sin poner mucha atención

a la escalabilidad en el espacio de las variables de decisión.

En esta tesis se proponen nuevos esquemas que permite que un algoritmo evolutivo

multiobjetivo sea capaz de lidiar con problemas de alta dimensionalidad en el espacio

de las variables de decisin. Para validar el algoritmo propuesto se usó un conjunto

de funciones de prueba que es escalable en el número de variables de decisin y se

compararon resultados con respecto a algoritmos representativos del estado del arte

en al rea utilizando un nmero de variables de decisión que va de las 200 hasta las

1000.
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Abstract

Many real-world multi-objective optimization problems have hundreds and even

thousands of decision variables, which turns scalability into a very important topic.

This, however, contrasts with the currently available evolutionary models for multi-

objective optimization, which are normally validated with test problems having a

relatively low number of decision variables (normally, no more than 30). Nowadays,

research on multi-objective evolutionary algorithms has focused on scalability in

objective function space (this area is known today as “many-objective optimization”),

disregarding scalability in decision variable space.

In this thesis, we propose new schemes that allows a multi-objective evolutionary

algorithm to be able to deal with problems having a large dimensionality in decision

variable space. In order to validate the proposed approach, we adopted a set of test

problems that are scalable in decision variable space, and we compared results with

respect to those obtained by other MOEAs representative of the state-of-the-art in

the area using a number of decision variables that goes from 200 up to 1000.
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Aunque quizás algún nombre no este escrito, les doy mis más sinceros agradecimientos

a todos y cada uno de ellos.

Quiero dedicar este trabajo a mi esposa, Karina C. Muñoz Salas, como
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Chapter 1

Introduction

In the real word there are many problems that require the optimization of two or more

objective functions at the same time. These are known as multi-objective optimization

problems (MOPs), and their solution involves finding a set of solutions that represent

the best possible trade-offs among the objective functions being optimized. This set of

solutions is called the Pareto optimal set, and their corresponding objective function

values form the so-called Pareto front.

MOPs have been solved during many years, using mathematical programming

techniques [1]. However, the fact that a wide variety of MOPs in real-world

applications tend to be nonlinear, and perhaps even non-differentiable, has made

the use of metaheuristics increasingly popular. From the many metaheuristics in

current use, Evolutionary Algorithms (EAs) are the most popular in specialized

literature. Multi-objective evolutionary algorithms (MOEAs) have the advantage of

being population-based, which allows them to generate several elements of the Pareto

optimal set in a single run, whereas mathematical programming techniques tend to

produce a single element per run.

MOEAs are stochastic search techniques, inspired on the natural evolution, where

a a set of candidate solutions to the problem is consider to be our population. In a

general form, MOEAs work in the next way. First they create a (randomly generated)

initial population. Thereafter, variation operators (crossover and mutation) are

1



2 Chapter 1

applied to the current population to generate new solutions to the MOP and, finally,

a selection procedure to choose the solutions which will be part of the next generation

takes place. This process is repeated for a specific number of generations.

The current practice to validate the performance of a MOEA is by using

benchmark problems such as the Zitzler-Deb-Thiele (ZDT) [2], the Deb-Thiele-

Laumanns-Zitzler (DTLZ) [3] and the Walking-Fish-Group (WFG) [4] test suites,

which are normally adopted with a relatively low number of decision variables (usually,

up to 30). However, many real-world problems have hundreds or even thousands of

decision variables.

In this thesis we are interested in the study of new schemes capable of dealing

with large scale (in decision variables space) MOPs. Thus, we study here the effect of

scalability in MOEAs and we investigate the improvements that these algorithms can

achieve. The hypothesis under which we will work is that it is possible to propose new

schemes to solve in a better way (i.e., more efficiently and more effectively) large-scale

(in the space of the decision variables) multi-objective optimization problems using

evolutionary algorithms.

1.1 Problem statement

The motivation of this thesis is that, although in real-world applications, many MOPs

have hundreds or even thousands of decision variables, the effect of the scalability in

decision variables space in modern MOEAs has not been properly addressed. In fact,

scalability in decision variables space is a topic that has been only scarcely studied in

the context of multi-objective optimization using MOEAs. This is perhaps motivated

by the fact that most researchers assume that the currently available MOEAs should

be able to work properly with a large number of decision variables. Nevertheless,

there exists empirical evidence that indicates that most of the currently available

MOEAs significantly decrease their efficacy as the number of decision variables of a

MOP increases [5, 6].

Cinvestav Departamento de Computación



Introduction 3

1.2 Objectives

The overall objective of this thesis is to contribute to the advancement of the state of

the art with respect to large scale evolutionary multi-objective optimization (decision

variables space). We aim to find out what is the main source of difficulty for solving

large scale multi-objective optimization problems using evolutionary algorithms as

well as to propose new schemes to deal in a better way with this sort of problems.

1.2.1 Specific goals

• Identify the best way to tackle large scale MOPs when using an evolutionary

algorithm.

• Find the main causes of difficulty when dealing with MOPs having hundreds or

even thousands of decision variables.

• Design a scheme able to deal with the difficulties of the large scale MOPs in a

more efficient manner.

1.2.2 Expected contributions

• An analysis of the existing algorithms which allow us to identify which

approaches are more suitable to be adapted for large scale multi-objective

optimization.

• An analysis of the difficulties that MOEAs have when dealing with large scale

MOPs

• A new MOEA specifically created to deal with large-scale MOPs.

• A detailed analysis of the advantages and disadvantages of the proposed MOEA.

This analysis will consider comparisons with well-known MOEAs, standard

test functions and performance measures commonly adopted in the specialized

literature.

Cinvestav Departamento de Computación



4 Chapter 1

1.3 Structure of the Document

This document is organized as follows. Chapter 2 presents a brief introduction to

multi-objective optimization, including basic concepts and some methods to solve

multi-objective optimization problems. In Chapter 3, we describe a general multi-

objective evolutionary algorithm (MOEA) as well as the way in which the performance

of MOEAs is assessed. Chapter 4 presents the state of the art in large scale multi-

objective optimization. In Chapters 5, we present the basic concepts related to

coevolution and some of its most representative multi-objective implementations.

This review is relevant because we adopt many ideas from coevolution in most of

the proposals presented in this thesis. Chapter 6 presents novel evolutionary schemes

to deal with large scale MOPs. Such approaches are evaluated and compared with

respect to well-known MOEAs. Finally, in Chapter 7, we present our conclusions and

some possible paths for future work.

Cinvestav Departamento de Computación



Chapter 2

Basic concepts

A large number of problems that arise in academic and industrial areas have several

conflicting objectives that need to be optimized simultaneously [7]; they are called

multi-objective optimization problems (MOPs).

In the case of single-objective optimization, we can determine if one solution is

better than another one by comparing their obtained values when evaluating the

objective function. Therefore, we usually obtain a single (global) optimal solution.

However, in MOPs in which the objective functions are in conflict, the notion of

optimality changes. Solving MOPs implies finding good trade-offs among all the

objective functions. That is to say, one wants to obtain a set of optimal solutions

instead of a single one as in the case of single-objective problems.

This chapter presents the required concepts related to multi-objective optimization

to understand the work presented here as well as the most commonly used

optimization methods to solve MOPs. The most important aim of this chapter is

that the reader familiarizes with the basic concepts, definitions and notations used in

the remainder of this document.

5



6 Chapter 2

2.1 Multi-Objective Optimization

Formally, a multi-objective optimization problem (MOP) is defined as follows 1:

minimize~f(~x) = [f1(~x), f2(~x), . . . , fk(~x)]T (2.1)

subject to:

gi(~x) ≤ 0 i = 1, 2, . . . ,m (2.2)

hi(~x) = 0 i = 1, 2, . . . , p (2.3)

where k is the number of objective functions fi : Rn → R, gi, hj : Rn →

R, i = 1, ...,m, j = 1, ..., p are the constraint functions of the problem and ~x =

[x1, x2, . . . , xn]T is the vector of decision variables. We thus wish to determine from

the set Ω (where Ω is the feasible region) of all the vectors that satisfy (2.2) and (2.3)

to the vector ~x∗ = [x∗1, x
∗
2, . . . , x

∗
n]T of solutions that are Pareto optimal.

Next we give a more detailed description of each component of a MOP.

Decision variables: Decision variables are the numerical quantities for which values

are to be chosen in an optimization problem. The vector ~x of n decision variables

is represented by: ~x = [x1, x2, · · · , xn]T .

Decision variables space: The decision variables space is the n-dimensional space

of the decision variables, in which each coordinate axis corresponds with one

component of vector ~x.

Objective functions: The objective functions evaluate how good a given solution

is. They are usually denoted as fi(~x) : Rn → R. In MOPs, we want to

optimize more than one objective function at the same time, so in this case

1Without loss of generality, we will assume only minimization problems.

Cinvestav Departamento de Computación
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Objective functions spaceDecision variables space

~f : Rn → Rk

x2 f2

f1x1

~f(~x)
~x

Figure 2.1: Search spaces for a multi-objective optimization problem with two decision
variables (x1 and x2) and two objective functions (f1 and f2). The gray area denotes
the feasible region Ω.

we have an objective function vector: ~f(~x) = [f1(~x), f2(~x), · · · , fk(~x)]T , where

~f(~x) : Rn → Rk.

Objective functions space: Objective functions space is the k-dimensional space

of the objective functions, in which each coordinate axis corresponds with one

component of the vector ~f(~x).

Feasible region: The feasible region, Ω ∈ Rn, is determined by m inequality

constraint functions: gi(~x) ≤ 0 such that i = 1, 2, · · · ,m and p equality

constraint functions: hj(~x) = 0 such that j = 1, 2, · · · , p. We say that a vector

~x is feasible, if it satisfies all constraint functions of the problem (~x ∈ Ω).

Figure 2.1 illustrates the above definitions for a MOP with two decision variables

and two objective functions.

According to the type of the functions f , g and h, we can classify MOPs as follows:

Multi-objective linear programming: When all the objective functions and the

constraint functions are linear, then the multi-objective optimization problem

is called linear.

Nonlinear multi-objective optimization: If at least one of the objective func-

tions or the constraint functions is nonlinear, the problem is called nonlinear.

Cinvestav Departamento de Computación



8 Chapter 2

Convex multi-objective optimization: The multi-objective optimization prob-

lem is convex if all the objective functions and the feasible region are convex.

In this thesis our main interest is to solve nonlinear unconstrained MOPs with a

large number of decision variables.

2.2 Pareto Optimality

As mentioned before, it is not possible to find a single optimal solution for all the

objective functions simultaneously when dealing with objectives which are in conflict

with each other. In MOPs, we only produce partially ordered sets of solutions (for

instance, we can say that (0, 0)T is less than (5, 5)T , but (0, 5)T and (5, 0)T are

incomparable).

In other words, MOPs do not have a single solution, but a set of them, representing

the best possible trade-offs among all the objective functions of the problem. The

notion of optimality that has been most commonly adopted in multi-objective

optimization is Pareto optimality [8], which refers to finding the best possible trade-

offs among the objective functions of a MOP. These solutions constitute the so-called

Pareto optimal set. The image of the Pareto optimal set is called the Pareto front.

Among the different techniques available to solve MOPs, multi-objective evolutionary

algorithms (MOEAs) have become very popular, mainly due to their flexibility,

capability of approximating the entire Pareto set in one single run and effectiveness

in a wide variety of problems. When solving a MOP, we normally aim to minimize

the distance between the approximation found and the true Pareto Front (PF), while

obtaining a distribution of solutions as uniform as possible along the PF. Next, we

present some important concepts related to Pareto optimality.

To describe the concept of optimality that we will adopt, we need to introduce a

few additional definitions.

Definition 2.1. Pareto dominance: We say that a vector ~x = [x1, . . . , xn]T

Cinvestav Departamento de Computación



Basic concepts 9

~b

f2

~a

~c ~d

f1

Figure 2.2: Pareto dominance relation. ~c ≺≺ ~b, ~c ≺ ~a, ~c ≺ ~d, ~d ≺ ~b, ~a � ~c, ~d � ~c and
~b � ~d.

dominates vector ~y = [y1, . . . , yn]T , denoted by ~x ≺ ~y, if and only if fi(~x) ≤ fi(~y) for

all i ∈ {1, ..., k} and there exists an i ∈ {1, . . . , k} such that fi(~x) < fi(~y).

Definition 2.2. Weak dominance: We say that a vector ~x = [x1, . . . , xn]T weakly

dominates vector ~y = [y1, . . . , yn]T , denoted by ~x � ~y, if ~x is not worse than ~y in all

objectives.

Definition 2.3. Strict dominance: We say that a vector ~x = [x1, . . . , xn]T scrictly

dominates vector ~y = [y1, . . . , yn]T , denoted by ~x ≺≺ ~y, if and only if fi(~x) < fi(~y)

for all i ∈ {1, ..., k}.

Definition 2.4. Pareto optimal: A point ~x∗ ∈ Ω is Pareto optimal, if there is no

other solution ~x ∈ Ω such that ~x ≺ ~x∗.

Definition 2.5. Weak Pareto optimality: A point ~x∗ ∈ Ω is weakly Pareto

optimal if there is no ~x ∈ Ω such that ~x ≺≺ ~x∗.

Figure 2.2 illustrates the Pareto dominance relation for solutions a, b, c and d of

a MOP with two objective functions.

Definition 2.6. Kuhn-Tucker conditions for noninferiority: If a solution ~x to

the general MOP is noninferior, then there exist wl ≥ 0, l = 1, · · · , k (wl must be
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strictly positive for some l = 1, · · · , k), and λi ≥ 0, i = 1, · · · ,m, such that:

k∑
l=1

wl∇fl(~x)−
m∑
i=1

λi∇gi(~x) = 0 and (2.4)

~x ∈ Ω

λigi(~x) = 0, i = 1, · · · ,m

These conditions are necessary for a noninferior solution, and when all of the fl(~x)

are concave and Ω is a convex set, they are sufficient as well.

Definition 2.7. Pareto optimal set: For a given MOP, ~f(~x), the Pareto optimal

set is defined as: P∗ = {~x ∈ Ω|¬∃~y ∈ Ω : ~f(~y) ≺ ~f(~x)}.

Definition 2.8. Pareto front: Let ~f(~x) be a given MOP and P∗ the Pareto optimal

set. Then, the Pareto Front is defined as: PF∗ = {~f(~x) | ~x ∈ P∗}.

Figure 2.3 shows some of the above definitions related to the Pareto dominance

concept in a MOP with two decision variables and two objective functions.

Definition 2.9. Ideal objective vector: The ideal objective vector is denoted by

~z∗ = [z∗1 , z
∗
2 , · · · , z∗k]T and it is obtained by minimizing each of the objective functions

individually subject to the constraints (i.e., z∗i = min fi(~x) subject to ~x ∈ Ω).

Definition 2.10. Utopian objective vector: The utopian objective vector is

denoted by ~z∗∗ = [z∗∗1 , z
∗∗
2 , · · · , z∗∗k ]T . It is an infeasible objective vector whose

components are formed by ~z∗∗i = ~z∗i −εi where ~z∗i is a component of the ideal objective

vector and εi > 0 is a relatively small but computationally significant scalar.

Definition 2.11. Nadir objective vector: The nadir objective vector is denoted

by ~znad = [znad1 , znad1 , · · · , znadk ]T and its components are the upper bounds of the

Pareto optimal set.
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Decision variables space Objective functions space

~f : Rn → Rk

x2 f2

f1x1

Figure 2.3: Pareto dominance illustration. Black points are nondominated solutions
and they define the Pareto optimal set in decision variables space and the Pareto
front in objective function space. White points are dominated solutions (dominated
black point). The gray point is a graphic representation of a weakly Pareto optimal
solution.

~znad can be estimated from a payoff table which is formed by using the decision

vector obtained when calculating the ideal objective vector. Row i of the payoff table

displays the values of all objective functions calculated at the point where fi obtained

its minimal value. The value of the component znadj can be estimated by using the

maximum value of the column j. Figure 2.4 illustrates the ideal vector, the utopian

vector and the nadir vector for a MOP with two objective functions.

2.3 Optimization Methods to Solve MOPs

In general, it is not easy to find an analytical expression of the line or surface that

defines the Pareto front and in most cases, it turns out to be impossible since the size

of the Pareto optimal set might be infinite. Therefore, the goal of most optimization

methods is to find an approximation of the Pareto optimal front.

An approximation of the Pareto front is a subset of the objective space Z composed

of mutually nondominated vectors (e.g., A ⊂ Z such that for any two vectors

~z1, ~z2 ∈ A is true that ~z1 ⊀ ~z2 and ~z2 ⊀ ~z1).

Currently, it is well-accepted that the quality of an approximate Pareto front is
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f1

~z∗∗

vecz∗

f2 ~znad

Figure 2.4: Ideal vector (~z∗), utopian vector (~z∗∗) and nadir vector (~znad) for a MOP
with two objective functions.

determined by one of the following criteria:

• Minimizing the distance of the approximate Pareto front with respect to the

true Pareto front.

• Maximizing the spread of solutions, so that one can have a distribution of vectors

as smooth and uniform as possible and.

• Maximizing the number of elements of the approximate Pareto front.

The optimization methods to solve MOPs can be classified in many ways according

to different criteria. Next, we present a classification of methods taken from [7].

Enumerative methods: these are the simplest search methods. They evaluate each

possible solution within some finite search space. However, these methods are

infeasible when the search space is too large or continuous, which is evidently

the case of the large scale MOPs we are interested in solving in this thesis.

Deterministic methods: these approaches incorporate problem domain knowl-

edge. Some examples of this type of algorithms are: greedy methods which

make locally optimal choices and hill-climbing methods which use the direction

of steepest ascent from the current position. Deterministic algorithms have
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been successfully used in solving a wide variety of problems. However, when

the MOP is high-dimensional, discontinuous, multimodal, and/or NP-complete,

they are often ineffective.

Stochastic methods: these methods require a function to assign fitness values

to the possible solutions of the problem, as well as a mechanisms for

encoding/decoding, in order to perform the mapping between the problem

and the domain of the algorithm. Stochastic methods can eventually find the

optimum but they cannot guarantee to find always the optimal solution. In

general, they provide good solutions to a wide range of optimization problems

for traditional deterministic search methods that are difficult to solve.

Since many real world multi-objective optimization problems are irregular,

stochastic search and optimization approaches such as simulated anneling, Monte

Carlo methods, tabu search and evolutionary algorithms have been adopted as

alternative approaches for solving them. In this thesis, we are interested in solving

MOPs using evolutionary algorithms.

The operations research community has proposed several optimization techniques

(deterministic and stochastic) to solve MOPs which are known as mathematical

programming techniques. These techniques can be linear or nonlinear. Linear

programming is designed to solve problems in which the objective functions and all

constraint relations are linear. Nonlinear programming techniques solve MOPs which

do not meet those restrictions but usually require convex constraint functions. Finally,

stochastic programming is used when random-valued parameters and objective

functions subject to statistical perturbations are part of the problem formulation.

Cohon and Marks [9] proposed one of the most popular classifications of techniques

within the operations research community:

A priori methods: In this sort of techniques, a decision maker must define the

preferences of the objective functions before starting the search. When the

Cinvestav Departamento de Computación



14 Chapter 2

decision maker has not properly defined her/his expectations, this type of

methods are not recommended.

A posteriori methods: These methods start by obtaining an approximate Pareto

front, and then, this approximation is presented to the decision maker, who

selects the most preferred solutions according to her/his preferences. Some

disadvantages of this type of methods are that: they are computationally

expensive, and it is difficult to generate well-distributed solutions along the

Pareto front using them. Also, it is hard for the decision maker to select from

a large set of alternatives.

Interactive methods: In these approaches, both the optimizer and the decision

maker work progressively. The optimizer produces solutions and the decision

maker provides preference information. These methods do not require to

have any previous knowledge about the preference structure. However, the

information which is presented to the decision maker should be meaningful and

easy to understand.

Next, we present some instances of the aforementioned schemes.

2.3.1 A priori methods

• Goal Programming. The ideas of this method were originally introduced by

Charles et al. [10], but the term goal programming was introduced by Charnes

and Cooper [11]. It was one of the first methods explicitly created for multi-

objective optimization. In this method, the decision maker specifies aspiration

levels z̄i(i = 1, · · · , k) for each objective function and any deviations from

these aspiration levels are minimized. An objective function jointly with an

aspiration level forms a goal. This method has several variants (e.g., weighted

and lexicographic approaches). In the weighted approach, we must solve the
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following problem:

min
k∑
i=1

wi|fi(~x)− z̄i|, subject to: ~x ∈ Ω (2.5)

In the lexicographic approach, the decision maker must specify a lexicographic

order on the goals in addition to the aspiration levels. A combination of

the weighted and the lexicographic approaches is quite popular. In this case,

several objective functions may belong to the same class of importance in the

lexicographic order. In each priority class, a weighted sum of the deviational

variables is minimized.

Since goal-setting is an understandable and easy way of making decisions, goal

programming is a widely used method to solve practical MOPs. However, the

specification of the weighted coefficients or the lexicographic ordering may be

difficult. Goal programming is not appropiate if we wish to obtain trade-offs.

More details of this method can be found in [12].

• Lexicographic Method. In the lexicographic method [13], the objective

functions are ranked in order of importance by the decision maker (from best

to worst). After ranking, the most important objective function is minimized

subject to the original constraints. If this problem has a unique solution, it is

the solution of the whole MOP. Otherwise, the second most important objective

function is minimized but a new constraint is added. The new constraint

guarantees that the most important objective function preserves its optimal

value. If this problem has a unique solution, it is the solution of the original

MOP. Otherwise, the process goes on as above. Suppose that f1 is the most

important objective function. Then, the first problem is formulated as follows:

min f1(~x), subject to gj(~x) ≤ 0; j = 1, 2, · · · ,m (2.6)

Let ~x∗1, f ∗1 = f1(~x∗1) be the solution to the first problem (eq. 2.6) and f2 is
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the second most important objective function. Then, the second problem is

formulated as follows:

min f2(~x), subject to (2.7)

gj(~x) ≤ 0; j = 1, 2, · · · ,m

f1(~x) = f ∗1

This process continues until all k objectives have been considered. The solution

to the lexicographic problem is Pareto optimal. However, this method has

several disadvantages. The decision maker may have difficulties in establishing

an absolute order of importance among the objective functions. Also, it is

very likely that the least important objective functions are not taken into

consideration at all.

2.3.2 A posteriori methods

• Weighting Method. It was presented by Gass and Saaty [14]. This method

associates to each objective function one weighting coefficient and its goal is

to minimize the weighted sum of the objectives. The weighting coefficients wi

are real numbers and they are normalized. In this way, the multi-objective

optimization problem is transformed into a single objective function as follows:

min
k∑
i=1

wifi(~x), subject to ~x ∈ Ω (2.8)

where wi ≥ 0 for all i = 1, · · · , k and
∑k

i=1wi = 1. Zadeh [15] was the first to

show that the third of the Kuhn-Tucker conditions for noninferior solutions

implies that these noninferior solutions might be found by solving a scalar

optimization problem in which the objective function is a weighted sum of

the components of the original vector-valued function. Indeed, the weighting
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method is a simple way to generate different Pareto optimal solutions. Pareto

optimality is guaranteed if the weighting coefficients are positive or the solution

is unique. The weakness of the weighting method is that not all of the Pareto

optimal points can be found if the problem is nonconvex. The same weakness

may also occur in problems with discontinuous objective functions. More details

of this method can be found in [12].

• ε-Constraint Method. This method was introduced by Haimes et al. [16].

It also follows directly from the Kuhn-Tucker conditions for noninferior

solutions. The idea of this method is to minimize one (the most preferred

or primary) objective function at a time, considering the other objectives as

constraints bounded by some allowable levels εj. By varing theses levels εj, the

nondominated solutions of the problem can be obtained. The problem to be

solved is now of the form:

min fi(~x), subject to (2.9)

fj(~x) ≤ εj for all j = 1, · · · , k, j 6= i,

~x ∈ Ω

where i = 1, · · · , k. Thus, every Pareto optimal solution of any MOP

can be found by the ε-constraint method by altering the upper bounds and

the function to be minimized. In fact, even the existence of duality gaps

in nonconvex problems does not disturb the functioning of the ε-constraint

method. However, computationally speaking, this method is expensive, i.e.,

the ε-constraint method needs to perform k optimizations each of the objective

functions in order to generate one Pareto optimal solution.

• Method of weighted metrics. This method, also known as compromise

programming [17], obtains different solutions by altering the weighted
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coefficients wi in the weighted Lp− and Tchebycheff metrics. The weighted

Lp-problem for minimizing distances is:

min

(
k∑
i=1

wi|fi(~x)− z∗i |p
)1/p

, subject to ~x ∈ Ω (2.10)

for 1 ≤ p < ∞. The weighted Tchebycheff problem was originally introduced

by Bowman [18] and it is of the form:

min max
i=1,··· ,k

[wi|fi(~x)− z∗i |], subject to ~x ∈ Ω (2.11)

If p = 1, the problem to be solved is equal to the weighted problem except for a

constant (if ~z∗ is known globally). If p = 2, we have a method of least squares.

As p gets larger, the minimization of the largest deviation becomes more and

more important. Finally, when p = ∞, the only thing that matters is the

weighted relative deviation of one objective function. Although the weighted

Tchebycheff problem can find every Pareto optimal solution, weakly Pareto

optimal solutions may also be included and they need to be filtered out. More

details of this method can be found in [12].

2.3.3 Interactive methods

• Tchebycheff Method. This method was refined by Steuer [19] and is an

interactive weighting vector space reduction method. It is easy to use and it

does not require complicated information. It starts by establishing an utopian

vector below the ideal vector. Then, the distance from the utopian vector to

the feasible region, measured by a weighted Tchebycheff metric, is minimized.

Different solutions are obtained with different weighting vectors in the metric.

The solution space is reduced by working with sequences of smaller and smaller

subsets of the weighting vector space. Thus, the idea is to develop a sequence

of progressively smaller subsets of the Pareto optimal set until a final solution is

Cinvestav Departamento de Computación



Basic concepts 19

located. At each iteration, different alternative objective vectors are presented

to the decision maker and (s)he must select the most preferred of them. The

feasible region is then reduced and alternatives from the reduced space are

presented to the decision maker for selection. We know that some of the

generated solutions may be weakly Pareto optimal. However, producing weakly

Pareto optimal solutions is overcomed in the Tchebycheff method by formulating

the distance problem as a lexicographic weighted Tchebycheff problem.

• GUESS Method. This method was proposed by Buchanan in [20]. It requires

that the ideal vector ~z∗ and the nadir vector ~znad are available. The general

idea is to maximize the minimum weighted deviation from the nadir objective

vector. In this case, the decision maker specifies a reference point (or a guess)

~zh and a solution with equal proportional achievements is generated. Then, the

decision maker specifies a new reference point and the iteration continues until

the decision maker is satisfied with the solution produced. The scales of the

objective functions are normalized:

znadi − fi(~x)

znadi − z∗i
for all i = 1, · · · , k; (2.12)

The weighted max-min problem to be solved is:

max min
i=1,··· ,k

[
1

wi

znadi − fi(~x)

znadi − z∗i

]
subject to ~x ∈ Ω (2.13)

where the weighting coefficients wi are positive and they must not be equal to

zero. If whi =
znad
i −z̄hi
znad
i −z∗i

for all i = 1, · · · , k, we can write the problem to be solved

in the form:

max min
i=1,··· ,k

[
znadi − fi(~x)

znadi − zhi

]
subject to ~x ∈ Ω (2.14)

Therefore, the GUESS method is based on a trial and error procedure. The

decision maker can examine what kind of an effect her or his input has on the
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solution obtained and then modify the input. The system does not provide

any additional or supporting information about the problem to be solved. The

weakness of the GUESS method is its heavy reliance on the availability of the

nadir objective vector and we know that it is not easy to determine it (it is

usually only an approximation). More details of this method can be found in

[12].

Mathematical programming techniques have some disadvantages when solving

certain types of MOPs. For instance, these techniques cannot be applicable or

have a poor performance in some problems in which the objective functions are

non-differentiable or obtained from a simulation model. Also, most mathematical

programming techniques need to be run several times to obtain several elements of

the Pareto optimal set and many of them require specific domain knowledge about

the problem to be solved (e.g, the derivatives of the objectives). Additionally, some

of them are very sensitive to the shape or continuity of the Pareto front. As an

alternative, in recent years, a number of stochastic optimization techniques have been

used to solve MOPs, such as simulated annealing, tabu search, ant colony optimization

and evolutionary algorithms among many others.
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Evolutionary Algorithms for

Multi-Objective Optimization

Evolutionary algorithms (EAs) are stochastic search techniques that operate on a

population of solutions and simulate a reproduction process to generate new solutions.

They adopt a selection mechanism to decide which solutions are better and use such

good solutions to guide the search process. EAs are very suitable for solving MOPs,

since they can find several members of the Pareto optimal set in a single run through

an appropriate use of their population. Another advantage of using MOEAs is that

they require very little knowledge about the problem that we want to solve and

they are also less susceptible to the shape or continuity of the Pareto front than

mathematical programming techniques. Furthermore, they are easy to implement,

robust, and can be easily implemented in a parallel environment.

Rosenberg [21] was the first to propose the use of genetic algorithms to solve

MOPs at the end of the 1960s. However, it was until 1984, when David Schaffer [22]

proposed the first actual implementation of what it is now called a Multi-Objective

Evolutionary Algorithm (MOEA). After that, several different algorithms have been

proposed and successfully applied to a wide variety of problems [23, 24, 25, 26, 27,

28, 29, 30, 31].

In this chapter we present a description of the way in which a MOEA works, as
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well as the way in which we assess its performance. Also, we present the most popular

MOEAs in current use, together with their advantages and disadvantages.

3.1 Multi-objective Evolutionary Algorithms

Single objective EAs and MOEAs share a similar structure. The main difference is

the fitness assignment mechanism that each kind of algorithm adopts. For the case

of MOEAs, they deal with more than one objective function at a time. Finding an

approximate Pareto optimal front is itself a bi-objective problem with the following

objectives: Minimize the distance of the generated solutions to the optimal Pareto

Front and maximize the diversity among the solutions as much as possible.

Therefore, the fitness assignment mechanism of a MOEA must consider these two

objectives. The general framework of a MOEA is presented in Algorithm 1. Usually,

the initial population is generated in a random manner. The fitness assignment is

used to rank individuals by means of a preference relation on the objective functions.

Pareto optimality is in general the most common preference relation adopted in

MOEAs, but it’s not the only one. The selection of individuals for reproduction

is normally based on the preference relation adopted for ranking the population, but

a density estimator can also be adopted to generate different solutions in a single run

of a MOEA.

Algorithm 1 A generic Multi-objective Evolutionary Algorithm

t← 0
Create an initial population (P(t))
while Stopping criterion is not fulfilled do

Evaluate the objective vector ~f for each individual in P(t)
Assign the fitness of each individual in P(t)
Select from P(t), a group of parents (P ′(t)), preferring the fitter ones
Recombine individuals of P ′(t) to obtain an offspring population (P ′′(t))
Mutate individuals in P ′′(t)
Combine P and P ′′(t) and select the best individuals to get
the new population (P (t+ 1))
t← t+ 1

end while
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The essential elements of a MOEA are:

1. Fitness assignment. In a MOEA, we need an additional process to transform

a fitness vector into a scalar value. Mainly, there are three schemes to carry out

this process:

• Criterion-based. This approach alternately chooses each of the objective

functions during the selection stage, i.e., in order to select an individual

or group of individuals, only one objective is considered. The Vector

Evaluated Genetic Algorithm (VEGA) [22] is an example of this technique.

VEGA divides the population into k subpopulations (where k is the

number of objectives of the MOP) and a different objective is used to

assign fitness within each subpopulation.

• Aggregation-based. In this case, the objective functions are aggregated

or combined into a single scalar value. During the optimization process, the

parameters are systematically varied to generate different elements of the

Pareto optimal set. Note that, although an aggregation-based approach

can be formulated as a preference relation, the solutions are not compared

in objective function space (vectors are mapped from Rk to R before the

comparison).

• Preference-based. In this method, a preference relation is used to induce

a partial order of the population in objective function space. Then, one

rank (scalar score) is assigned to each solution based on how one solution

compares with respect to the other solutions. Pareto dominance is the

preference relation most commonly adopted in MOEAs.

• Indicator-based. This approach uses performance indicators (also called

quality indicators) to assign the fitness of each individual based on how

much a solution contributes to a given indicator. The hypervolume

indicator has been the most popular quality indicator used for this

purpose [32, 31, 33, 34, 35]. However, in recent years other quality
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indicators such as R2 [36, 37, 38] or ∆p [39, 40, 41] have also been adopted.

2. Elitism. It refers to retaining the best solutions during the optimization

process since they could be lost when applying the evolutionary operators.

This concept plays an important role in modern MOEAs since, along with

mutation, guarantees global convergence[42]. In multi-objective optimization,

the implementation of elitism is more complicated than in single-objective

optimization because we have several solutions that are equally good (i.e., the

elements of the Pareto optimal set) and their number can significantly grow

over time. There are two main approaches to implement elitism:

• To combine the offspring and parents populations, and then use a

deterministic selection mechanism to preserve the best solutions for the

next generation.

• To mantain an external set of individuals called “archive” which stores

the nondominated solutions found during the search process. It is worth

emphasizing that the size of this external archive is normally bounded,

because if it grows too much, it may dilute the selection pressure.

3. Density Estimators. As we already know, one challenge of MOEAs is to

obtain a set of nondominated solutions which are well distributed along the

Pareto front. For this reason, several techniques to maintain diversity in the

population have been proposed. Some of them are:

• Fitness sharing / Niching approach. The idea of this technique is to

consider fitness as a resource that needs to be shared among individuals

in the same niche. The size (or radius) of a neighborhood (or niche) is

controlled through the σshare value (niche radius). Then, one must count

how many solutions are located within the same niche, and the fitness is

decreased proportionally to the number of individuals sharing the same

neighborhood [43, 44]. Formally, the shared fitness FSi of individual i is

Cinvestav Departamento de Computación



Evolutionary Algorithms for Multi-Objective Optimization 25

defined by:

fSi =
fi∑N

j=1 φ(dij)
, (3.1)

where fi is the fitness of individual i, and φ(dij) is the sharing function,

defined by:

φ(dij) =

 1−
(

dij
σshare

)
, dij < σshare

0, otherwise
(3.2)

where dij is the distance between individuals i and j. Note the following:

– The definition of the σshare parameter is critical.

– Distances between solutions can be measured in genotypic or

phenotypic space.

– It is possible to adopt different topologies for defining neighborhoods.

• Hypergrids. A hypergrid divides objective function space in regions

called hypercubes. Each nondominated solution occupies a hypercube.

The idea is to accept nondominated solutions belonging to underpopulated

hypercubes. Although the number of divisions in the hypergrid in each

dimension is constant, the position and extension of the grid can be

adapted during the search process.

• Clustering. A clustering technique partitions a set of points in groups

(clusters). The idea is that each cluster contains points very similar to each

other and, the points of one cluster are very different from the points of

other clusters. In a MOEA, we use clustering as follows: First, we partition

the population using a clustering technique. Second, we select the most

representative individual of each cluster (i.e., the centroid). Finally, we

remove all the other individuals in the cluster.

• Relaxed forms of Pareto dominance. Laumanns et al. [45] proposed

a relaxed form of Pareto dominance called ε-dominance. ε-dominance

defines a set of boxes of size ε and only one nondominated solution is

retained for each box (e.g., the one closest to the lower left-hand corner if
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all the objetives are being minimized). The use of ε-dominance guarantees

that the retained solutions are nondominated with respect to all solutions

generated during the run.

Next, we present the most representative MOEAs of the state of the art as well as

the most popular MOEAs in current use according to a general classification based

on the way fitness assignment is implemented and on their selection mechanism.

3.1.1 Non-Elitist Non-Pareto-based Methods

These type of MOEAs do not adopt Pareto dominance in their selection mechanism.

These approaches are very simple nor elitism and computationally efficient, but they

have no explicit mechanism to maintain diversity, which limits their applicability.

Next, we present a representative example of this group.

VEGA: The Vector Evaluated Genetic Algorithm (VEGA) [22], is considered

the first actual implementation of what it is now called a Multi-Objective

Evolutionary Algorithm (MOEA). The parent selection in VEGA is performed

in the following manner. First, the population is randomly split into k

subpopulations (where k is the number of objective of the problems) of equal

size. Each subpopulation is associated with a different objective function of

the problem. Therefore, the individuals belonging to each objective function

are ranked according to their performance in such objective. VEGA creates

a mating pool by means of the proportionate selection method proposed in

[46]. Thereafter, subpopulations are combined to apply the variation operators.

VEGA suffers from some bias towards extreme points due to its association

mechanism and when proportionate selection is used VEGA’s selection

mechanism behaves similarly to a linear aggregating function.Therefore, it

cannot generate non-convex portions of the Pareto front. Also, VEGA’s

selection mechanism actually opposes the notion of Pareto optimality, because

a solution that represents a good trade-off among all the objectives may not be
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the best in any of them so it won’t be favored by its selection mechanism.

3.1.2 Non-Elitist Pareto-based Methods

These MOEAs rank populations using Pareto dominance, but do not incorporate

elitism. In this case, all non-dominated individuals should get the highest rank so

that they have the same survival probability. In order to maintain diversity, this

kind of MOEAs adopt a density estimator in order to avoid convergence to a single

solution, and to generate different elements of the Pareto optimal set in a single run.

Non-dominated sorting is the most common, but not the only scheme possible

to rank solutions based on Pareto optimality. So, within this group of MOEAs

we describe those that adopt a Pareto-based selection mechanism, but that do not

incorporate elitism. These early Pareto-based MOEAs are easy to implement, but

they are not very effective in problems having more than two or three objectives.

MOGA: The Multi-Objective Genetic Algorithm (MOGA) is an example of a non-

elitist Pareto-based method. First presented in [27], MOGA ranks individuals

according to the number of solutions that dominate them. According to this

ranking, the fitness is computed and aims to be maximized (ranging in the

interval [0, 1]). MOGA adopts a polynomial equation to estimate the value of

the niche radius, for a fitness sharing density estimator. Parent selection is then

restricted to individuals with similar fitness values.

NSGA: The Non-dominated Sorting Genetic Algorithm (NSGA) [24] is another

example of this kind of approaches. NSGA adopts a large dummy fitness value

assigned to the first layer of non-dominated solutions (i.e., those which are

non-dominated with respect to the entire population). The first layer is then

removed, so that a second set of non-dominated solutions is identified. Such

solutions receive dummy fitness values which are lower than those from the first

layer. This process continues until the whole population has been classified.

With this idea, fitness values are shared among solutions lying in the same
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layer. Parents are chosen using a stochastic remainder proportionate selection

based on the individuals’ fitness values. NSGA adopts a fitness sharing strategy

in decision variable space.

NSGA needs of specifying the parameter σshare and has a high computational

complexity of O(k|P |3), where |P | is the population size and k is the number

of objectives.

3.1.3 Elitist Pareto-based Methods

These MOEAs have a Pareto-based selection method, but also incorporate elitism

The density estimators adopted in this group are also more sophisticated and, in

some cases, even parameter-free. In fact, some of the MOEAs in this group are still

in use today. Their main limitation is that most of them are not effective when

dealing with problems having more than 3 objectives (the so-called many-objective

optimization problems). Next, we give some examples of such approaches.

SPEA: The Strength Pareto Evolutionary Algorithm (SPEA) [25], incorporates

elitism through the use of an external archive containing the non-dominated

solutions, generated during the search process. This archive is pruned when it

exceeds a (pre-defined) size using the average linkage method (i.e., a clustering

method). Parent selection is accomplished by binary tournaments, where the

union of the main population and the external archive is performed. The

strenght of an individual in the external archive is computed as the number

of population members that it covers divided by the size of the population,

plus one. The fitness of idividuals of the main population corresponds to the

accumulated strengths of the external individuals that cover it, plus one. Here,

the cover relation relies on Pareto dominance, in the next way: given x,y ∈ X .

it is said that x covers y iff x ≺ y or x = y.

The aim of this fitness assignment mechanism is to maintain diversity in the

population. Ideally, the individuals of the external archive will cover the same
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number of population members. However, this only works if the external archive

is uniformly distributed by the clustering method.

NSGA-II: Another MOEA within this category is the Non-dominated Sorting

Genetic Algorithm II (NSGA-II) [29]. This approach alleviates the main

drawbacks of the original NSGA. A more efficient non-dominated sorting

algorithm is implemented and fitness sharing is replaced by crowding distance,

which operates in objective space and can be seen as the perimeter of the

cuboid formed by the nearest neighbors surrounding a particular solution. The

crowding distance is computed as the average distance between the two points

on either side of a solution along each objective (solutions need to be sorted with

respect to one objective). In NSGA-II, instead of fitness values, a preference

relation is used, favoring those individuals with lower ranks and higher crowding

distances. For the mating pool selection, binary tournaments are adopted. The

survival selection is elitist since the best half from the union of the parents and

the offspring populations is retained.

3.1.4 Elitist Non-Pareto-based Methods

These MOEAs also incorporate elitism but their selection mechanism is not based on

Pareto dominance. Next we give some examples and subgroups for this classification.

Decomposition-based Methods: These approaches adopt a MOP transformation.

They decompose a MOP into several single-objective subproblems, which are

solved simultaneously. Each subproblem is associated with a different target

direction or weight vector in order to obtain a wide range of solutions. For this

sake, they adopt a set of weight vectors uniformly distributed in the [0, 1]k space.

The most famous approach of this category is the Multi-Objective Evolutionary

Algorithm based on Decomposition (MOEAD), proposed by Zhang and Li [30].

MOEA/D decomposes the MOP into a set of single-objective subproblems and

solves these subproblems simultaneously using an evolutionary algorithm. Such
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decomposition is based on a set of weights each of which corresponds to a

single subproblem. Each weight vector is used as a search direction to define a

scalar function. For this sake, the so called Tchebycheff decomposition is the

most widely used. Given a weight vector λ = [λ1, . . . , λn]T the corresponding

subproblem is defined as:

minimize gte(x|λ, z∗) = max
1≤i≤n

λi|fi(x)− z∗i | (3.3)

where z∗ is the reference point chosen as the minimum of the objective function

values found during the evolutionary process. The main advantage of the

Tchebycheff approach is that it works regardless of the shape of the Pareto front,

while other decomposition approaches (such as the weighted sum approach)

only work for convex Pareto fronts. The weights are also used to define

neighborhoods of the subproblems. The neighborhood relations among these

subproblems are defined based on the distances between their aggregation

coefficient vectors. At each generation, a new individual is generated and

evaluated using its own neighborhood of weights, with the idea that any

information about these closest weight vectors should be helpful for optimizing

the current individual’s subproblem. Once this new individual is created, it is

compared to its parent and in case the offspring is better, it replaces the parent.

Moreover, it is also compared to other individuals in its neighborhood and is

allowed to replace some of them. Therefore, at each generation, the population

is composed of the best solution found so far (i.e., since the start of the run of

the algorithm) for each subproblem.

Indicator-based Methods: Performance indicators [47] were developed to evaluate

the quality of an approximation to the Pareto optimal front, regarding

convergence and/or diversity. Also, indicators have been mainly used to

compare the effectiveness of optimizers, and recently, they have been adopted
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into the selection mechanism of MOEAs.

The S Metric Selection Evolutionary Multi-objective Algorithm (SMS-EMOA)

[31] is an example of such idea. SMS-EMOA adopts NSGA-II components

along an archiving strategies proposed in [48]. Parent selection is performed

randomly and the survival selection mechanism relies on a (µ+ 1) scheme. The

core idea of this algorithm is to integrate new solutions into the population

if replacing a member of the population increases the hypervolume value of

the entire population. SMS-EMOA ranks the population according to NSGA-

II, and the density estimator corresponds to the hypervolume contribution.

At each iteration, the individual belonging to the worst rank and having the

lowest hypervolume contribution is removed from the population. It is worth

mentioning that the hypervolume contribution is calculated only when there is

more than one solution having the worst rank.

Reference Point-based Methods: These approaches use predefined reference

points as a guide for the population, with the aim of ensuring diversity.

Therefore, they are usually coupled with other strategies to achieve convergence

(e.g., Pareto dominance or an indicator-based mechanism). The reference points

can either be supplied by the user or predefined in a structured manner by some

predefined mechanism.

The most representative MOEA within this group is the Non-dominated Sorting

Genetic Algorithm III (NSGA-III) [49], which is an extension of NSGA-II,

modified to deal with many-objective optimization problems. NSGA-III keeps

the non-dominated sorting algorithm for ranking the population but replaces

the crowding distance by a niching strategy that uses a set of reference points,

which are adaptively updated according to the extent of the population. In

NSGA-III, the population is normalized and associated with the lines passing

through the origin and the reference points. Those individuals having the closest

perpendicular distance to segregated lines are chosen for the next generation.
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NSGA-III’s parent selection mechanism is conducted by random sampling.

3.2 Performance Assessment of Multi-objective

Optimizers

The comparison of the performance of different MOEAs is an important issue in

multi-objective optimization in order to measure the performance of every approach.

The notion of performance includes both the quality of the outcome and the

computational cost for generating this outcome. Regarding the latter aspect,

we can monitor either the number of fitness evaluations or the overall runtime on a

particular computer. In this sense, there is no difference between single and multi-

objective optimization. However, in the quality aspect, there are some differences:

• In single-objective optimization, we can define quality by means of the objective

function: the smaller (to minimize) or larger (to maximize) value is a better

solution.

• In multi-objective optimization, we can use the concept of Pareto dominance

but there is the possibility that two solutions are incomparable.

However, it gets even more complicated when we compare two sets of solutions because

some solutions in either set may be dominated by solutions in the other set, while

others may be incomparable. According to the goals of a MOEA, we need to consider

the following aspects to design a good quality measure:

• Minimize the distance of the Pareto front approximation produced by our

algorithm with respect to the true Pareto front (assuming we know its location),

• Maximize the spread of solutions found, so that we can have a distribution of

vectors as smooth and uniform as possible.

• Maximize the number of elements of the approximation of the Pareto-optimal

set obtained by the MOEA.

Cinvestav Departamento de Computación



Evolutionary Algorithms for Multi-Objective Optimization 33

Several quality measures have been proposed. The most popular are unary quality

measures. In this case, the measure assigns each approximation set a number that

reflects a certain quality aspect, and usually a combination of them is used, e.g.,

[50, 51]. Other methods are based on binary quality measures, which assign numbers

to pairs of approximation sets, e.g., [52]. Finally, we have the attainment function

approach [53], which consists of estimating the probability of attaining arbitrary goals

in objective space from multiple approximation sets.

For the purposes of this section it is sufficient to deal with objective function

space. For each objective vector ~z = [z1, z2, · · · , zk], there is a decision vector ~x

such that ~z = ~f(~x) = [f1(~x), · · · , fk(~x)]. Also, we consider the outcome of a MOEA

(or other heuristic) as a set of incomparable solutions, which will be denoted as

approximation set.

Definition 3.1. Let A ⊆ Ω be a set of objective vectors. A is called an

approximation set if any element ofA does not weakly dominate any other objective

vector in A. The set of all approximation sets is denoted by Ω.

It is hard to evaluate an approximation set considering all aspects such as closeness

to the Pareto optimal set, diversity, etc. However, we can make statements about the

quality of approximation sets in comparison to other approximation sets.

Weak dominance (A � B) means that any objective vector in B is weakly

dominated by a vector in A. In this case, we cannot say that A is better than B.

Instead, the relation B can be used. If A weakly dominates B, then either A is better

than B or they are equal. In the same Figure, we can see thatA1 is better thanA2 and

A3 and, A2 is better than A3. The dominance relation (A ≺ B) is a straightforward

extension of Pareto dominance to approximation sets. It does not allow that two

objective vectors in A and B are incomparable, and therefore is stricter than what

we usually require. A1 and A2 dominate A3, but A1 does not dominate A2. Strict

dominance stands for the highest level of superiority and means an approximation

set is superior to another approximation set in the sense that for any objective vector

in the latter there exists a vector in the former that is better in all objectives. For
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example, A1 strictly dominates A3, but A2 does not since the objective vector (11,4)

is not strictly dominated by any objective in A2. Note that there is a natural ordering

among the relations: A ≺≺ B ⇒ A ≺ B ⇒ A B B ⇒ A � B.

3.2.1 Quality indicators

Quality measures have been introduced to compare the outcomes of multi-objective

optimizers in a quantitative manner. They map approximation sets to the set of real

numbers.

Definition 3.2. Quality Indicator An m-ary quality indicator I is a function

I : Ωm → R, which assigns each vector (A1,A2, · · · ,Am) of m approximation sets a

real value I(A1, · · · ,Am).

Not a single indicator but rather a combination of different quality indicators is

often used in order to assess approximation sets. Van Veldhuizen and Lamont [50]

applied a combination of three indicators I = (IGD, IS, IONV G), where IGD(A) denotes

the average distance of objective vectors in A to the Pareto optimal set, IS(A)

measures the variance of distances between neighboring objective vectors in A, and

IONV G(A) gives the number of elements in A.

An interpretation function maps vectors of real numbers to booleans, e.g., we

would define E(IGD(A), IGD(B)) := (IGD(A) = 0 ∧ IGD(B) > 0). E is true if

and only if IGD(A) = 0 and at the same time IGD(B) > 0 (all objective vectors in A

have a zero distance to the Pareto optimal set P , and therefore A ⊆ P and B � A

for any approximation set B * P). A combination of one or more quality indicators,

I, and an interpretation function E is also called a comparison method CI,E. The

comparison method is CIGD,E(A,B) = E(IGD(A), IGD(B)) and the conclusion is that

CIGD,E(A,B) ⇔ A ⊆ P ∧ B * P ∧ B � A. The comparison method is formally

defined as follows:

Definition 3.3. Comparison Method Let A, B ∈ Ω be two approximation sets,

I = (I1, I2, · · · , Ik) a combination of quality indicators, and E : Rk × Rk →
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{false, true} an interpretation function which maps two real vectors of length k to a

Boolean value. If all indicators in I are unary, the comparison method CI,E defined

by I and E is a function of the form

CI,E(A, B) = E(I(A), I(B)) (3.4)

where I(A′) = (I1(A′), I2(A′), · · · , Ik(A′)) for all A′ ∈ Ω. If I contains only binary

indicators, the comparison method CI,E is defined as a function of the form

CI,E(A, B) = E(I(A, B), I(B,A)) (3.5)

where I(A′, B′) = (I1(A′, B′), I2(A′, B′), · · · , Ik(A′, B′)) for all A′, B′ ∈ Ω.

3.2.2 Linking comparison methods and dominance relations

It is important to know if a comparison method CI,E(A,B) is a sufficient condition

to say that A is better than B, i.e., CI,E(A,B) ⇒ A B B, and, if CI,E(A,B) is,

in addition, a necessary condition for A B B, i.e., CI,E(A,B) ⇔ A B B. The

compatibility and completeness terms are used in order to characterize a comparison

method.

Definition 3.4. Compatibility and Completeness Let I be an arbitrary binary

relation on approximation sets. The comparison method CI,E is denoted as I

−compatible if either for any A,B ∈ Ω

CI,E(A,B)⇒ A I B

or for any A,B ∈ Ω

CI,E(A,B)⇒ B I A

The comparison method CI,E(A,B) is denoted as I −complete if either for any
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A,B ∈ Ω

A I B ⇒ CI,E(A,B)

or for any A,B ∈ Ω

B I A ⇒ CI,E(A,B)

Let’s assume that we have a comparison method that is B −complete but not

compatible with respect to the B relation. If we use this comparison method to

compare two sets A and B with A B B (A is better than B), then our comparison

method returns true. However, there are also sets A and B with A 7 B (A is

not better than B) for which the comparison method returns true. If we use a

comparison method that is B −compatible, then the above situation is safe: if our

comparison method yields true, we can be sure that A is better than B. However, if

the comparison method is not B −complete, there may be sets A and B where A is

better than B, but our comparison method returns false. Zitzler et al. [47] presented

the following key results.

• Unary quality indicators are, in general, not capable of indicating whether an

approximation set is better than another, even if we use several of them. This

also holds, if we consider approximation sets containing a single objective vector

only.

• There are unary indicators which allow to infer if an approximation set is not

worse than another, e.g., the distance indicator by Czyzak and Jaszkiewicz [54],

the hypervolume indicator by Zitzler and Thiele [52], or the unary ε-indicator

presented in [47].

• Binary indicators in principle do not possess the theoretical limitations of unary

indicators. The binary ε-indicator proposed in [47] is capable of detecting

whether an approximation set is better than another. However, not all existing

binary indicators have this property.

Knowles et al. [55] presented a similar idea on the performance assessment
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of stochastic multi-objective optimizers in which they recommend having quality

indicators that are only Pareto dominance compliant (or Pareto compliant).

Definition 3.5. Pareto compliant An indicator I : Ω → R is Pareto compliant if

for all A,B ∈ Ω : A � B ⇒ I(A) ≥ I(B), assuming that greater indicator values

correspond to higher quality (otherwise A � B ⇒ I(A) ≤ I(B)). In the context

of order theory, a Pareto compliant indicator I is an order-preserving function from

(Ω,�) to (R,≥) (respectively, (R,≤)).

Many of the indicators that are employed in the MOEA literature are not Pareto

compliant. Several popular indicators are designed to assess just one isolated aspect

of an approximation sets quality, e.g., its proximity to the Pareto optimal front, or

its spread in objective space. These quality indicators are known as Pareto non-

compliant.

Definition 3.6. Pareto Noncompliant Any indicator that can yield for any

approximation sets A,B ∈ Ω a preference for A over B, when B is preferable to

A with respect to weak Pareto dominance (B � A ∧ A � B, or B C A for short), is

Pareto non-compliant.

3.2.3 Unary quality indicators

Let PF be the Pareto optimal front and A an approximation of the Pareto optimal

set, we define some unary quality indicators as follows:

• Error Ratio (IER): It reports the percentage of the number of vectors in A

that are not members of PF [56, 57]. IER is Pareto compliant and it is defined

as follows:

IER =

∑|A|
i=1 ei
A

(3.6)

where ei = 0 when the ith vector of A is an element of PF and ei = 1 when the

ith vector of A is not an element of PF . If IER = 0 then A ⊆ PF ; but when

IER = 1 none of the points in A are in PF . A lower IER is better.
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• Generational Distance (IGD): It reports how far, on average, A is from

PF [42, 58, 56]. IGD is Pareto non-compliant and it is defined as:

IGD =
1

|A|

 |A|∑
i=1

dpi

 1
p

(3.7)

where |A| is the number of vectors inA, p = 2 and di is the euclidean phenotypic

distance between each member, i, of A and the closest member in PF to that

member, i. If IGD = 0, A ⊆ PF .

• Inverted Generational Distance (IIGD). It does not only indicate the

proximity of the set A to PF , but also gives a certain sense about its

extension [59]. IIGD is Pareto non-compliant and it is analogous to GD, but

measured from PF to A. IIGD is defined by:

IIGD =
1

|PF|

|PF|∑
i=1

dpi

 1
p

(3.8)

where |PF| is the number of vectors in PF , p = 2 and di is the euclidean

phenotypic distance between each member, i, of PF and the closest member in

A to that member, i. If IIGD = 0, A = PF .

• Spacing (IS): It describes the spread of the vectors in A [42, 60]. This Pareto

non-compliant indicator measures the distance variance of neighboring vectors

in A. Formally, IS is defined as follows:

IS =

√√√√ 1

|A| − 1

|A|∑
i=1

(d̄− di)2 (3.9)

where di = minj=1··· ,|A|,i 6=j
∑k

m=1 |f im − f jm|, i, j = 1, · · · , |A|, k is the number

of objective functions and d̄ is the mean of all di. When IS = 0, all members

are spaced evenly apart. Note that this indicator assumes that a MOEA has
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already converged to the true Pareto front.

• Hypervolume (IH). It was originally proposed by Zitzler and Thiele in [52],

and it’s defined as the size of the space covered by the approximation obtained

of the Pareto optimal front. If Λ denotes the Lebesgue measure, IH is defined

as:

IH(A, ~zref ) = Λ

(⋃
~z∈A

{~y | ~z ≺ ~y ≺ ~zref}

)
(3.10)

where ~zref ∈ Rk denotes a reference point that should be dominated by all the

Pareto optimal points. A high IH value, indicates that A is close to PF and

has a good spread towards the extreme portions of the PF . This is the only

unary indicator that is known to be Pareto compliant.

• R2-Indicator. It belongs to the family of R indicators proposed by Hansen and

Jaszkiewicz [61]. R-indicators use utility functions for evaluating approximation

Pareto sets. The R2-indicator is weakly monotonic and simultaneously

evaluates several desired aspects of a Pareto front approximation. Let U be

a set of general utility functions, the R2-indicator is thus defined as [62]:

IR2(A, U) = − 1

|U |
∑
u∈U

max
~a∈A
{u(~a)} (3.11)

Regarding the choice of the utility functions u, there are several possibilities,

such as: weighted sum, least squares, weighted Tchebycheff metric, etc. These

utility functions have an associated set of uniformly distributed weight vectors

W and a reference point ~z∗, in order to maintain diversity. The most common

utility function is the weighted Tchebycheff metric:

R2(A : W,~z∗) =
1

|W |
∑
~w∈W

min
~a∈A

[
max
i=1,··· ,k

wi|ai − z∗i |
]

(3.12)

• Delta p Indicator (I∆p). It was proposed by Schütze et al. [63]. It can be

seen as an “averaged Hausdorff distance” between the approximate Pareto front
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and the Pareto optimal front. It is composed of slight modifications of two

well-known performance indicators: generational distance (IGD) and inverted

generational distance (IIGD). I∆p is defined as:

I∆p = max(IGDp , IIGDp) (3.13)

I∆p simultaneously evaluates proximity to the Pareto optimal front and spread

of solutions along it. I∆p is Pareto non-compliant.

3.2.4 Binary Quality Indicators

• ε-Indicator (Iε). It is a Pareto compliant measure. Given two approximate

sets, A and B, the ε-indicator measures the smallest amount, ε, that must be

used to translate the set A, so that every point in B is covered [47].

Definition 3.7. Let’s assume, without loss of generality, a minimization

problem with k objective functions, then, an objective vector ~z1 = [z1
1 , · · · , z1

k]

is said to ε-dominate another objective vector ~z2 = [z2
1 , · · · , z2

k], denoted by

~z1 �ε ~v2, if and only if ∀1 ≤ i ≤ k : ui ≤ ε · vi for a given ε > 0.

Loosely speaking, a vector ~z1 is said to ε-dominate another vector ~z2, if we can

multiply each objective value in ~z2 by a factor ε and the resulting objective

vector is still weakly dominated by ~z1. Therefore, ~z1 ≺≺ ~z2 implies that there

exists an ε < 1 such that ~z1 ε-dominates ~z2. We define the binary ε-indicator Iε

as:

Iε(A,B) = min{ε ∈ R | ∀~b ∈ B ∃~a ∈ A : ~a ≺ε ~b} (3.14)

So, when Iε(A,B) < 1, all solutions in B are dominated by a solution in A.

If Iε(A,B) = 1 and Iε(B,A) = 1, then A and B represent the same Pareto

front approximation. If Iε(A,B) > 1 and Iε(B,A) > 1, then A and B are

incomparable because they both contain solutions not dominated by the other

set.
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• Two Set Coverage (ICS). It was proposed by Zitzler et al. [64] and it is a

Pareto compliant indicator. Let A,B be two approximate sets, ISC is defined

as follows:

ISC(A,B) =
|~b ∈ B such that ∃~a ∈ A with ~a ≺ ~b|

|B|
(3.15)

If all points in A dominate or are equal to all points in B, then by definition

ICS = 1. ICS = 0 implies that no element in B is dominanted by any element

of A. In general, both ICS(A,B) and ICS(B,A) have to be considered due to

set intersections not being empty.
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Large Scale Multi-objective

Optimization

Large-scale multi-objective optimization refers to the solution of MOPs that involve

hundreds or even thousands of decision variables. As explained by Weise et al.

[65], several factors make large-scale optimization problems extremely difficult. For

instance, when the number of decision variables of a problem increases, the volume

of the search space grows exponentially, and the complexity of the fitness landscape

increases rapidly as well. However, the major difficulty comes from the interactions

between decision variables, better known as non-separability. In a more formal way,

an objective function f(~x) is said to be separable with respect to a decision variable

xk if the following condition is fulfilled [66]:

f(~x) < f(~x′)→ f(~y) < f(~y′) (4.1)

where ~x = [x1, ..., xk, ..., xn]T , ~x′ = [x′1, ..., x
′
k, ..., x

′
n]T , ~y = [y1, ..., xk, ..., yn]T

and ~y′ = [y′1, ..., x
′
k, ..., y

′
n]T are four different decision vectors. Otherwise, f(~x)

is considered to be non-separable with respect to xk, which means that xk has

interactions with one or more other decision variables. Specially, if the decision

variables only interact with some (rather than all) of the other decision variables, the
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objective function f(~x) is known as a partially separable function. Several important

observations can be made with regard to separability, non-separability and partial

separability [67], which are listed below.

A decision variable xk can be optimized independently iff the objective function

f(~x) is separable with respect to it:

argmin
~x

f(~x) = (argmin
xk

f(~x), argmin
∀xj ,j 6=k

f(~x)) (4.2)

The decision variables can be optimized component-wise independently iff an

objective function f(x) is partially separable:

argmin
~x

f(~x) = (argmin
x1

f(x1, . . . ), . . . , argmin
xm

f(. . . , xm)) (4.3)

where x1, . . . , xm are disjoint sub-vectors of ~x, and the interactions only exist

among decision variables inside each sub-vector, but the decision variables in different

sub-vectors do not interact with each other.

In this chapter, we present the works present in the state of the art, related to the

solution of large scale MOPs.

4.1 Studies on Large Scale Multi-objective Opti-

mization

In the evolutionary multi-objective optimization community, objective function

scalability has been a hot research topic in recent years [68, 69]. In contrast with

this, parameter scalability has been rarely considered before. Regarding studies

of decision variables scalability, the most significant ones presented in the state of

the art that we are aware of are those reported by Durillo et al. [5, 6]. In this

works the behavior and effect of decision variables scalability over eight state-of-

the-art multi-objective metaheuristics is analyzed. Such metaheuristics include three

genetic algorithms (GAs) (NSGA-II, SPEA2 and PESA-II), an evolution strategy
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(PAES), a PSO algorithm (OMOPSO), a cellular GA (MOCell), an algorithm based

on differential evolution (GDE3) and a Scatter Search algorithm (AbYSS). All of these

approaches were among the most representative of the state-of-the-art in evolutionary

multi-objective optimization by the time of these works, and were studied when

solving a benchmark of parameter-wise scalable problems, the ZDT [2] test suite.

The authors analyzed the behavior of these eight multi-objective metaheuristics over

parameter scalability, using a number of decision variables that ranged from 8 up to

2048. The hypervolume performance indicator [70] was adopted to define a stopping

criterion. The study paid particular attention to the computational effort required by

each algorithm for reaching the true Pareto front of each problem, an algorithm was

considered successful when the hypervolume of its current population (or archive,

depending on the algorithm) was higher than the 95% of the hypervolume of the

Pareto front. Authors performed 100 independent runs using 10,000,000 function

evaluations in all the runs. Among all the compared metaheuristics, the study

revealed that differential evolution and particle swarm optimization are the most

promising approaches to deal with the scalable problems adopted by the authors, since

GDE3 and OMOPSO were the ones showing the best efficiency, although the showed

poor performance on multi-frontal MOPs. These papers provide the first empirical

evidence of the decrease in efficacy and efficiency that multi-objective metaheuristics

have when dealing with MOPs with a large number of decision variables, as it is

shown in their results. Next we present the works devoted to solve large scale decision

variables MOPs.

4.2 MOEA/D

One of the first works to take a look at large scale MOPs was a small study presented

in [30], where ZDT1 is solved with up to 100 decision variables using MOEA/D. The

multi-objective evolutionary algorithm based on decomposition (MOEA/D) [30] has

been one of the most adopted approaches for the community, due to its simplicity and
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to its effectiveness when applied to a broad range of MOPs. MOEA/D decomposes

the MOP into a set of single-objective subproblems and solves these subproblems

simultaneously using an evolutionary algorithm. Such decomposition is based on

a set of weights each of which corresponds to a single subproblem. Each weight

vector is used as a search direction to define a scalar function. For this sake, the

so called Tchebycheff decomposition is the most widely used. Given a weight vector

λ = [λ1, . . . , λn]T the corresponding subproblem is defined as:

minimize gte(x|λ, z∗) = max
1≤i≤n

λi|fi(x)− z∗i | (4.4)

where z∗ is the reference point chosen as the minimum of objective function values

found during the evolution. The main advantage of the Tchebycheff approach is

that it works regardless of the shape of the Pareto front, while other decomposition

approaches (like the weighted sum approach) only work for convex Pareto fronts. The

weights are also used to define neighborhoods of the subproblems. The neighborhood

relations among these subproblems are defined based on the distances between their

aggregation coefficient vectors. At each generation, a new individual is generated and

evaluated using its own neighborhood of weights, with the idea that any information

about these closest weight vectors should be helpful for optimizing the current

individual’s subproblem. Once this new individual is created, it is compared to its

parent and in case the offspring is better, it replaces the parent. Moreover, it is also

compared to other individuals in its neighborhood and is allowed to replace some of

them. Therefore, at each generation, the population is composed of the best solution

found so far (i.e., since the start of the run of the algorithm) for each subproblem.

MOEA/D can be summarized as follows:

Input:

• The MOP

• N : The number of subproblems considered in MOEA/D
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• S: The number of species for decision variables decomposition

• A set of N uniform spread weight vectors:

λ1, . . . , λN

• T : The neighborhood size

Output:

• PS: the final solutions found during the search

Step 1) Initialization:

Step 1.1) Set the external population of final solutions PS = ∅.

Step 1.2) Find the T closest weight vectors to each weight vector. For each

i = 1, . . . , N , set B(i) = {i1, . . . , iT}, where λi1 , . . . , λiT are the T closest

weight vectors to λi .

Step 1.3) Generate an initial population x1, . . . xN randomly or by a problem-

specific method. Set FV i = f(xi).

Step 1.4) Initialize z = [z1, . . . , zk]
T , where zi is the best value found so far

for objective fi.

Step 2) Update:

For i = 1, . . . , N do

Step 2.1) Crossover and Mutation:

For j = 1, . . . , S do

Step 2.1.1) Randomly select two indexes p, q from B(i), and then

generate a new solution y from xp and xq using crossover.

Step 2.1.2) Apply a problem-specific repair improvement heuristic on y

to produce y′.

Step 2.2) For each j = 1, . . . , k, if zj > fj(y
′), then set zj = fj(y

′).
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Step 2.3) Update of Neighboring Solutions: For each index j ∈ B(i), if

gte(y′|λj, z∗) < gte(xj|λj, z∗), then FV j = f(y′).

Step 2.4) Remove from the external population PS all the vectors dominated

by f(y′). Add f(y′) to PS if no vectors in PS dominate it.

Step 3) Stopping Criterion: Stop if the termination criterion is satisfied.

Otherwise, go to Step 2.

In their work, authors of MOEA/D analyze how the computational cost over this

approach, in terms of the number of function evaluations, increases as the number of

decision variable of the problem increases. This is shown using a number of decision

variables that ranges from 10 up to 100 variables. They used as a performance index

the average number of function evaluations used by MOEA/D for reducing the D-

metric [71] and concluded that the average number of function evaluations linearly

scales up, as the number of decision variables increases.

They attributed these results to two facts:

1. The number of scalar optimization sub-problems in MOEA/D is fixed to be

100, regardless of the number of decision variables of the problem.

2. The complexity of each scalar optimization could scale up linearly with the

number of decision variables.

However, this study is too small to show a general behavior of MOEA/D over

large scale (in decision variables space) MOPs.

4.3 Cooperative coevolutionary MOEA for large

scale Multi-objective Optimization

The first algorithm created with the specific task of dealing with large scale (in

decision variables space) MOPs was presented in [72]. Authors adopted the CCGA
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[73] framework (adapted for multi-objective optimization) and GDE3 [74] (as its

basic multi-objective optimizer) to create the Cooperative Coevolutionary GDE3

(CCGDE3), with the idea of decomposing large scale problems into subproblems

which are easier to deal with MOPs decision variables scalability. CCGDE3 works as

follows: at the beginning, it divides the vector of decision variables ~x of dimension

D ∈ N into S ∈ N subcomponents of equal size. Each subcomponent is created from a

random grouping of decision variables in order to increase the probability of grouping

interacting variables in non-separable problems. At the same time, S subpoputaions

(species) are created, each one with NP individuals, and these S subpopulations are

assigned their corresponding decision variables in a random way. This means that

to each subpopulations, it corresponds a subcomponent from the S which have been

already done. Thus, every subpopulation will have a total of m decision variables.

Once the subpopulations are created, the algorithm does a random initialization of

all the individuals across all subpopulations. Then, the algorithm performs the cycles

in which the evolution of each of the subpopulations is done for a given number of

generations. This will continue until the stop condition is reached, and at the end, the

solutions that are globally nondominated (i.e., with respect to all the subpopulations),

constitute the outcome of the algorithm.

The collaboration among the subpopulations takes place in the next way: in

the first generation, random collaborations are formed and evaluated, obtaining a

random individual from each subpopulation and forming a complete set of solutions

to be evaluated in their objective functions. Then, the results from the evaluation

are assigned back to the individual under evaluation. After the first generation, the

resulting child subpopulations Q1 to QS will be evaluated by forming collaborations

with randomly selected components from the best non-dominated levels in the

subpopulations, P1 to PS, of the previous generation. The algorithm iterates until

some termination condition is fulfilled (usually when a certain predefined number of

cycles is reached). At the end, we apply a fast non-dominated sorting procedure as

in the NSGA-II [75] to the best non-dominated levels of each subpopulations in order
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to obtain a final set of solutions for the problem being solved. A summary of the way

in which CCGDE3 works is presented in Algorithm 9.

Algorithm 2 Cooperative Coevolutionary Framework

Input: NP , Cycles, Gmax, NumEsp
Output: SolutionSet
Pobs← Populations(NP,NumEsp)
InitializeSpecies(Pobs)
for j ← 1 to Cycles do

for i← 1 to NumEsp do
for k ← 1 to Gmax do
MOEA(Pobs[i])

end for
end for

end for
SolutionSet← ObtainNonDominatedSet(Pobs)
return SolutionSet

CCGDE3 was compared with respect to two MOEAs: GDE3 [74] and NSGA-

II [75]. In the authors’ experiments, they use a large number of decision variables

that ranges from 200 up to 5000 when solving ZDT1, ZDT2, ZDT3 and ZDT6 (from

the ZDT test suite [2]). Adopting the hypervolume performance indicator [76], each

MOEA was run until they obtained an approximation of the Pareto front that has a

hypervolume of 95% with respect to the true Pareto front or by using a maximum

of 10,000,000 function evaluations. Results showed that CCGDE3 was the fastest

algorithm, scaling better than GDE3 and NSGAII when the number of variables is

large, not only in terms of the number of evaluations, but also in terms of CPU time.

4.4 MOEA Based on Decision Variables Analyses

An algorithm based on interdependence variable analysis and control variable analysis

to deal with large scale MOPs is presented in [77]. This approach decomposes the

MOPs with high dimensionality into a set of simpler sub-MOPs with low-dimensional

subcomponents. Based on interdependent analysis between two variables, decision

variables are decomposed into several low-dimensional subcomponents. Each sub-
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MOP independently optimizes subcomponents one by one. Therefore, the approach,

called MOEA/DVA is expected to have an advantage over most MOEAs which

optimize all of the decision variables as a whole. Authors claim that the key issue

of reducing the difficulty of a large scale MOP is to detect the variable interactions.

Inspired by the fact that in MOPs some decision variables control the convergence

aspect of the obtained solutions, while some others decision variables determine

the spread aspect of the obtained solutions, authors work with three different

classifications of the decision variables of a MOP:

Position variable: A decision variable xi is called position variable if and only if

changing xi in ~x = [x1, . . . , xn]T can only cause a vector that is incomparable

or equivalent to ~x. Changing a position variable on its own never causes a

dominated or dominating decision vector.

Distance variable: If changing xi in ~x = [x1, . . . , xn]T can only result in a decision

vector which equals ~x, dominates ~x, or is dominated by ~x, then xi is called a

distance variable. That is to say, changing a distance variable on its own will

never cause incomparable decision vectors.

Mixed variable: All decision variables which are neither position nor distance

variables are called mixed variables. Furthermore, changing a mixed variable

on its own can cause a change in distance or position.

The difference among the three kinds of variables is depicted in Fig. 4.1. In fact

for continuous ZDT, DTLZ, UF, and MOP [78] problems has been defined, such that

the number of position variable(s) and mix variable(s) is k − 1, while the number of

distance variable(s) is n − k + 1. Where k is the number of objective functions in

MOP (3) and n is the number of decision variables.

Taking this idea, authors developed a control property analysis and variable

linkage analysis. Based on diverse variables (position variables and mixed variables),

MOEA/DVA decomposes a complicated MOP into a set of simpler sub-MOPs. The
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Pareto front

f1(~x)

Only changing x1

Only changing x3

f2(~x)

Only changing x2

Figure 4.1: Plot of a set of sampling points generated by changing one variable at a
time while the others are fixed, for a MOP with two objective functions with three
decision variables ~x = [x1, x2, x3]. For any fixed x2,x3, changing the value of x1 on
its own in ~x results in a set of incomparable or equivalent solutions. Therefore, x1 is
a position variable for the used MOP. For any fixed x1, x2 , only changing x3 in
~x will never result in incomparable solutions. Therefore, x3 is a distance variable
for the used MOP. Finally, changing the value of x2 in ~x results in a set of solutions
including dominated solutions and nondominated solutions. Therefore, x2 is a mixed
variable for the used MOP.

core of MOEA/DVA are two kinds of decompositions: decomposition of distance

variables into a set of low-dimensional sub-components and MOP decomposition

based on diverse variables with uniformly distributed values. The distance variables

are divided into several low-dimensional subcomponents based on learned variable

linkages. Each sub-MOP independently optimizes subcomponents one by one.

The process of MOEA/DVA is summarized next.

1. Decision Variable Analyses: There are two variable analyses: i) control property

analysis and ii) interaction analysis. Interaction analysis provides the variable

linkages for decomposition of distance variables, while control property analysis

provides diverse variables (position variables and mixed variables) for MOP

decomposition and offers distance variables for decomposition of distance

variables.

2. Decomposition of Distance Variables: Decompose high-dimensional distance
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variables into several low-dimensional subcomponents which can be optimized

more easily.

3. MOP Decomposition Based on Diverse Variables: A MOP is decomposed into a

set of sub-MOPs with uniformly distributed values of diverse variables (position

variables and mixed variables).

4. Subcomponent Optimization: Optimize each subcomponent independently to

improve the convergence speed of population.

5. Uniformity Optimization: Optimize all the decision variables including position

variables and mixed variables. Its aim is to improve the uniformity of population

in the objective space.

For the subcomponent optimization, authors use the evolutionary operator of

MOEA/D. In their experiments ZDT, DTLZ and UF test problems are solved with

up to 1000 decision variables. MOEA/DVA is benchmarked against NSGA-III, SMS-

EMOA and MOEA/D. MOEA/DVA could outperformed all MOEAs when adopting

the IGD-metric

4.5 A Decision Variable Clustering Based MOEA

An evolutionary algorithm for tackling large-scale MOPs based on a decision variable

clustering method is presented in [79]. Following the idea of MOEA/DVA (already

mention in the previous section 4.4), the proposed approach called LMEA uses a

decision variable clustering method to divide the decision variables into convergence-

related and diversity-related ones. Different from MOEA/DVA, instead of adopting

a decision variable analysis method based on dominance based relationships, LMEA

adopts a decision variable clustering method based on the k-means method with

features measured by the angles between the sample solutions and the direction of

convergence, where smaller angles indicate more contributions to convergence and
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larger angles to diversity. Consequently, a decision variable can only be divided

as either convergence-related or diversity-related, thus addressing the open issue

that decision variables related to both convergence and diversity can not be further

distinguished.

Once the categorization has been performed, LMEA adopts two optimization

strategies to deal with the two types of decision variables separately: the convergence

optimization strategy and the diversity optimization strategy. Both strategies adopt

non-dominated sorting as the first selection criterion but differ in the secondary

selection criterion. In order to enhance convergence, this secondary selection in

the convergence optimization strategy is based on the Euclidean distances from the

candidate solutions to the ideal point; to man-age diversity, the secondary selection

in the diversity optimization strategy is based on the angles between the candidate

solutions.

In general LMEA can be summarized in the next way: first, a population of N

candidate solutions is randomly initialized. Then, the developed decision variable

clustering method is applied to divide the variables into two groups, convergence-

related variables and diversity-related variables. Thereafter, the convergence-related

variables are further divided into several subgroups based on the interaction between

these variables, where the variables are interacted with each other inside one subgroup

but not interacted with those in any other subgroups. The variables in each subgroup

are also known as interacting variables, as they can not be optimized separately

due to the interactions between each other. Once the interaction analysis is done,

LMEA starts to optimize each subgroup of variables one by one using a convergence

optimization strategy, while the diversity-related variables are optimized using a

diversity optimization strategy.

To assess the performance of the proposed LMEA, empirical evaluations were

conducted on a variety of benchmark problems (among DTLZ, WFG and UF) in

comparison with several state-of-the-art MOEAs for solving large-scale MOPs, for this

sake authors adopted two performance indicators, the inverted generational distance
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and the hypervolume. Results demonstrate that LMEA is well suited for solving

large-scale MOPs having up to 5000 decision variables.
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Coevolution

Although parameter scalability is a topic that has been only scarcely studied in the

evolutionary multi-objective optimization field, large-scale optimization has been the

focus of an important amount of research in global (single-objective) optimization

using evolutionary algorithms. The currently available approaches for large-scale

global optimization can be roughly divided in two groups:

• Those that decompose a high-dimensional decision variables vector into small

subcomponents which can then be handled by conventional EAs (see for

example [66, 80]).

• Those that approach the problem by disturbing the population of the EA or by

combining different evolutionary methods (see for example [81, 82, 83, 84]).

From these methods, cooperative coevolution has been found to be one of the

most successful approaches for solving large and complex problems, through the use

of problem decomposition. There is plenty of evidence of the success of this sort

of approach in large scale global optimization [85, 86, 66]. In fact, a cooperative

coevolutionary algorithm for large scale multi-objective optimization is presented in

[72].

Coevolutionary algorithms (CAs) are natural extensions of traditional evolution-

ary algorithms (EAs). The main elements of these extensions lay in the adaptive
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nature of fitness evaluation for the members of coevolutionary systems where indi-

viduals are assigned fitness values based on interactions with other individuals from

other species. Coevolution then refers to a reciprocal evolutionary exchange between

species that interact with each other. The idea of CAs comes from the biological ob-

servation which shows that coevolving some number of species defined as collections of

phenotypically similar individuals is more realistic than simply evolving a population

containing representatives of one species [87]. So, instead of evolving a population

(globally or spatially distributed) of similar individuals representing a global solution,

it is more appropriate to coevolve subpopulations of individuals representing specific

parts of the global solution.

A coevolutionary search involves the use of multiple species as the representation of

a solution to an optimization problem. Each species can either compete or cooperate

during the search process. Therefore, such models have been historically categorized

as competitive or cooperative. In the case of cooperative algorithms, individuals

are rewarded when they work well with other individuals and punished when they

perform poorly together [88]. Each population represents a piece of a larger problem,

and it is the task of those populations to evolve increasingly more fitter pieces for

the larger problem. In the case of competitive algorithms, individuals are rewarded

at the expense of those with which they interact [89]. An example of a competitive

approach is the predator-prey model, in which individuals in one population represent

some kind of device and individuals in another population represent some kind of

input for that device. Then, the objective of the first population is to evolve better

devices to handle the input, while the objective of the second population is to evolve

increasingly difficult inputs for such devices.

Recent work in coevolutionary algorithms (CAs) research considers coevolution

as a form of multi-objective optimization [90, 42, 91]. However, it is worth noting

that most of these approaches were not created with the specific purpose of dealing

with a large number of decision variables. This chapter is devoted to describe how

coevolution has been used to deal with MOPs.
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5.1 Coevolutionary Multi-objective Evolutionary

Algorithms

In nature, coevolution is the process of reciprocal genetic change in one species, or

group, in response to another. That is, coevolution refers to a reciprocal evolutionary

exchange between species that interact with each other. The term coevolution arises

from a study about the interaction between plants and butterflies conducted by

Ehrlich and Raven [92] in which the coevolutionary responses of ecologically intimate

organisms and community evolution in general were observed.

The relationships between the populations of two different species X and Y can

be described considering all their possible types of interactions. Such interactions can

be positive or negative depending on the consequences that such interaction produces

on individuals of the population. Coevolution is then used as the biological process

responsible for speciation, maintaining population diversity, introducing arms races

and open-ended evolution. The main issue in coevolutionary algorithms is that the

fitness of an individual in a population depends on the individuals of a different

population. Depending of the way in which fitness is computed, there are two main

classes of coevolutionary algorithms in the evolutionary computation literature:

• Those based on competition relationships: In this case, the fitness of an

individual is the result of a series of encounters with other individuals [89].

• Those based on cooperation relationships: In this case, the fitness of an

individual is the result of a collaboration with individuals of other species (or

populations) [73, 88].

Competition and cooperation between groups species in nature has inspired re-

searchers to incorporate coevolutionary dynamics into MOEAs. Evolutionary com-

putation researchers have developed many coevolutionary approaches, in which two

or more species (i.e., populations) that relate to each other are applied to deal with

MOPs, using one of the previously indicated schemes. Also, in most cases, these
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Figure 5.1: Taxonomy for CMOEAs, based on the ways coevolution has been adopted.

species evolve independently by means of an evolutionary algorithm and interaction

occurs when individuals need to be evaluated. Figure 5.1 presents a taxonomy for

CMOEAs, based on the main ways in which coevolution has been applied to MOEAs.

In this thesis our interest is on the cooperative version of coevolutionary

algorithms, since these are the ones which are normally applied in large scale single-

objective optimization.

5.1.1 Cooperative Coevolutionary MOEAs

Potter and De Jong opened the door for doing research on cooperative CEAs in 1994

by developing the first framework of cooperative coevolution (CC) utilized within

evolutionary algorithms [73] with their Cooperative Coevolutionary Genetic Algorithm

(CCGA). This approach was first applied to static function optimization and later to

neural network learning [88]. Potter’s framework uses a divide-and-conquer approach

to split the decision variables into subpopulations of smaller size, so that each of these

subpopulations is optimized with a separate EA. The main idea was to decompose a

high-dimensional problem into several low-dimensional subcomponents and evolve

these subcomponents cooperatively for a predefined number of cycles. Here, a

cycle consists of one complete evolution of all subcomponents. For the problem

decomposition, Potter and De Jong took each decision variable of the problem as a

subcomponent.

In Potter’s model, each population contains individuals representing a component
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of a larger solution, and evolution of these populations occurs almost independently,

in tandem with one another, interacting only to obtain fitness. Such process can be

static, in the sense that the divisions for the separate components are decided a priori

and never altered, or dynamic, in the sense that populations of components may be

added or removed as the run progresses [93]. After Potter’s work, there were many

more cooperative coevolutionary approaches, most of which were aimed for large scale

global optimization, since it was found that this was a good framework for solving

such problems [85, 86, 66, 94, 80].

In general, the most common cooperative coevolutionary framework for global

(single-objective) optimization using EAs can be summarized as follows:

1. Decompose the vector of decision variables of the problem into m low

dimensional subcomponents.

2. Set j = 1 to start a new cycle.

3. Optimize the jth subcomponent with a certain EA for a predefined number of

fitness evaluations (FEs).

4. If j < m then j + +, and go to Step 3.

5. Stop if the stopping criteria are satisfied; otherwise go to Step 2 for the next

cycle.

The coevolutionary effect in the CCGA is produced by a cooperation among all

species.

Since the cooperative coevolutionary framework can be extended in a relatively

easy way to multi-objective optimization, a number of approaches which incorporate

this framework have been proposed to improve the performance of multi-objective

EAs. As the nature of MOPs changes, the decomposition can be made not only in

decision variable space, but also in objective function space or a mix of both. Next, we

will review some cooperative coevolutionary approaches currently available in order
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to have a better understanding of the way this approach has been used in the context

of multi-objective optimization.

5.1.2 Cooperative CMOEAs based on decision variables

decomposition

In Cooperative CMOEAs based on decision variables decomposition, the MOP is

decomposed along the search space of the problem. So, every decision variable of the

problem is assigned to a species population and each species population optimizes

one or more decision variables at the same time.

In other words, each population has individuals which represent a particular part

(in decision variables space) of the MOP. Thereafter, every member from each pop-

ulation is needed in order to assemble a full solution to the problem. The evaluation

of individuals from a particular species’ population is then performed by making the

individual collaborate with members from the other species. The drawback with

this kind of problem decomposition approach is that information about the ideal

number of components or the optimal way to assign them is, in most cases, not

known a priori. Also, many problems present highly complex interdependencies and

the decomposition becomes harder to perform. A graphical description of the deci-

sion variables decomposition is presented in Figure 6.22. Next, we present the most

representative approaches within this category, but more examples can be found in

[95, 96, 72, 91, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107].

Multi-objective Co-operative Co-evolutionary Genetic Algorithm (MOC-

CGA)

The MOCCGA [96] is a multi-objective evolutionary algorithm proposed by

Keerativuttitumrong et.al. It integrates Potter and De Jong’s cooperative

coevolutionary framework (presented in their CCGA [73]) with Fonseca and Fleming’s
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Figure 5.2: Graphical representation of the species creation.

MOGA [27]. In the same way as in CCGA, each species in the MOCCGA represents

a decision variable of the problem which is needed to be optimized. Here, instead

of assigning a fitness value to the individual of interest which participates in the

construction of a complete possible solution, a rank value is determined first. The

MOCCGA uses a dominance rank for individuals, in which a count of the number of

individuals dominating others is the fitness criterion. Similar to the MOGA, the rank

of each individual is obtained after comparing it with the remaining individuals of the

same species and they are ranked only within the same subpopulation (species). Then

a fitness value can be interpolated onto the individual. Here, a fitness sharing strategy

is also used and is carried out in objective space. For further details, a comprehensive

description of the MOGA can be found in [27]. In MOCCGA, the objectives are

evaluated twice for each individual, both with the best ranked individuals from

each subpopulation, as well as with randomly selected individuals. This follows the

approach described by Potter and De Jong, which aims to decrease the premature

convergence observed on some test problems adopted with the original cooperative

coevolutionary framework. However, in this way the number of evaluations over the

objective functions duplicates. The performance of MOCCGA was assessed using
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the Zitzler-Deb-Thiele (ZDT) test suite [2] and was benchmarked against MOGA. In

Keerativuttitumrong et al.’s investigation, each algorithm was run only five times and

the results from these runs were combined to extract the non-dominated solutions

from the overall results. They concluded from these results that their approach

improves the performance of MOGA in the context of the Pareto front coverage and

on the closeness of non-dominated solutions to the true Pareto optimal solutions. It

is important to mention that the number of evaluations adopted by the authors and

some parameter settings such as the number of individuals used for each species are

not reported anywhere in the paper. A summary of the way in which this approach

works is presented in Algorithm 3.

Algorithm 3 MOCCGA

Input: a multiobjective optimization problem MOP , the population size for the
species PS, the number of generations Gmax, the crossover probability cp, the
mutation probability mp

Output: SolutionSet
gen← 0
NumSpecies← GetNumberOfV ariables(MOP )
Species← CreateSpecies(PS,NumSpecies)
for i = 1 to NumSpecies do
RandomInitializationOfPopulations(Species[i], PS)
EvaluateF itnessOfIndividuals(Species[i], PS)

end for
while termination condition = false do
gen← gen+ 1
for each species S in Species do
MOGA(S,Gmax, cp,mp)

end for
end while
SolutionSet← Species
return SolutionSet

The main drawback of this approach is the bad distribution of the solutions that

it produces. Although its authors do not include any indicator to assess the spread of

the solutions, their graphical results clearly indicate that MOCCGA can not produce

solutions in some parts of the Pareto fronts of the adopted problems.

Cinvestav Departamento de Computación



Coevolution 65

A Coevolutionary Multi-Objective Evolutionary Algorithm (CO-MOEA)

Another cooperative coevolutionary approach for multi-objective evolutionary

optimization (CO-MOEA) is presented in [108]. The main idea of this approach is to

concentrate the search efforts on promising regions that arise during the evolutionary

process as a byproduct of a mechanism that subdivides decision variable space based

on an estimate of the relative importance of each decision variable. In order to

determine what regions of the search space are promising, this algorithm performs a

relatively simple analysis of the current Pareto front. They divide the evolutionary

process of their approach in four stages (i.e., the total number of generations is divided

by four), and each stage is allocated one of these four parts. The change between

each stage is controlled by a certain number of generations during which the algorithm

works. The overall procedure is described next.

1) During the first stage, the algorithm explores all of the search space with a

population of individuals using Fonseca and Fleming’s Pareto ranking scheme [27]

and the adaptive grid proposed in [109]. At the end of this first stage, the algorithm

analyzes the current Pareto front stored in the adaptive grid to determine what

variables of the problem are more critical. This analysis consists of looking at the

values of the decision variables corresponding to the current Pareto front and is

performed independently for each decision variable. With this, they try to determine

if the values corresponding to a certain variable are distributed along all the allowable

interval or if such values are concentrated on a narrower range. If the whole interval

is being used, the algorithm keeps the entire interval for that variable, but if only

a narrow portion is being used, then the algorithm tries to identify portions of the

interval that can be discarded from the search process. As a result of this analysis,

the algorithm determines whether is convenient or not to subdivide the interval of a

certain decision variable and determines how many subdivisions to perform. Each of

these different regions are then assigned to a different population (species).

2) In the second stage, the algorithm uses the species created in the first stage to

search at the different regions of the search space. At each generation, the evolution
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of all the populations takes place independently and then the nondominated elements

from each population are sent to the adaptive grid where they cooperate and compete

in order to conform a single Pareto front with respect to all the search space. After

the first generation of the second stage, all the populations that do not provide any

individual to the current Pareto front are automatically eliminated and the sizes of

the other populations are properly adjusted giving more individual to those species

that contribute more to the current Pareto front and decreasing the population size of

those who contribute less (i.e, each population is assigned or removed individuals such

that its final size is proportional to its contribution to the current Pareto front). Thus,

populations compete with each other to get as many extra individuals as possible.

3) At the third stage, the algorithm checks on the current populations in order to

determine how many and which of them will continue depending on the contribution of

their individuals to the current Pareto front. Then, over these populations, the same

process from the second stage is applied (i.e., the intervals of the decision variables

will be further subdivided and more populations will be created in order to exploit

these regions of the search space). In this stage, a minimum population size for each

species is defined and this size is enforced for all populations at the beginning of this

third stage. After the first generation of this stage, the size will be adjusted based on

the same criteria as before (i.e., the size of the populations will be modified based on

their contribution to the current Pareto front).

4) Finally, during the fourth stage, the same procedure of the third stage is

repeated in order to allow the application of a fine-grained search is applied.

The proposed CO-MOEA was validated using three test functions taken from

the specialized literature (see [108] for further details about the test functions) and

was compared with respect to three representative MOEAs of the state-of-the-art at

that time: the microGA for multiobjective optimization [110], the Pareto Archived

Evolution Strategy (PAES) [111] and the Non-dominated Sorting Genetic Algorithm

II (NSGA-II) [75]. They used a fixed number of generations over each problem and

the performance of each algorithm was assessed using four indicators: the two set
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coverage (SC) [112], spacing (SP) [60], generational distance (GD) [50] and the error

ratio (ER) [57]. Their comparative study showed that CO-MOEA was competitive

with respect to the three other algorithms. The main drawback of CO-MOEA is the

number of populations that it could potentially need to handle. A summary of the

way in which this approach works is presented in Algorithm 4.

Algorithm 4 CO-MOEA

Input: the crossover rate pc, the mutation rate pm, the maximum number of
generations Gmax, size of initial population for the first stage popsizeinit, minimum
size of species’s population for further stages popsizesec

Output: SolutionSet
gen← 0
NumberOfPopulations← 1
populations← CreateInitialPopulation(popsizeinit)
while gen < Gmax do

if (gen = Gmax/4)or(Gmax/2)or(3 ∗Gmax/4) then
CheckActivePopulations(Populations)
AnalysisOfDecisionV ariables()
ComputeNumberOfSubdivisions()
CreateNewSubpopulations(Populations)
UpdatePopulations(Populations, popsizesec)

end if
for i← 1 to NumberOfPopulations do

if Populations[i] contributes to the current Pareto front then
EvolveAndCompete(Populations, i, pc, pm)

end if
end for
gen← gen+ 1

end while
SolutionSet← Populations
return SolutionSet

Airframe Design Using a Co-Evolutionary Multiobjective Genetic Algo-

rithm

Parmee and Watson [113] proposed a collaborative multiobjective optimization

scheme for the preliminary design of airframes. Here, they used one population

to optimize each of the objective functions of the problem. The method utilizes
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individual genetic algorithms (GAs) for the optimization of each objective to reduce

the problem to a number of concurrent co-evolutionary tasks specific to the overall

design domain.

The fitness measure for individuals within each GA is adjusted at each generation

by comparing the values of the variable parameters of identified solutions relating to

a single objective with those of the solutions of the other GAs. The fitness for each

objective is normalized relative to the maximum and minimum values found during

each GA run with a constant adjustment of new upper and lower limits. A penalty

relating to the degree of diversity of their variable values as compared to those of the

other GA processes is applied using a generational parameter constraint map in such a

way that if a variable is outside a range defined by this constraints map, it is adjusted

using a penalty function. The range constraints map works as follows: Initially the

map must allow each GA to produce an optimal solution based on its own specified

objective by setting the value of the map to 1.0, allowing each GA to use the whole

range for each variable. As the run progresses, the map increasingly reduces variable

diversity (through the use of penalties) in order to draw all concurrent GA searches

from their separate objectives towards a single (ideal) trade-off solution where all

objectives are best satisfied. The constraint maps include a linear decrease in range

constraint and a range constraint reduction based on a sine curve and allow some

difference in variable values for each GA towards the end of a run to provide space

within which the method can search for an overall optimal solution. This is achieved

by setting a minimum value for the range constraint. The number of generations

allocated to this final phase of exploration is tested using 2 values i.e., 10% and 50%

of the maximum number generations.

This process is described next for the case of a MOP with two objective functions

f1 and f2:

1. Rank the fitness of population P1 using f1.

2. Rank the fitness of population P2 using f2.
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3. Starting with individual number 1 (the fittest), variable 1, compare the value

with the equivalent variable of the best individual in P2. Return the difference

between the two values divided by the total range defined for the variable being

examined.

4. Compare the returned value against the value given by the range constraint

map for the generation number.

5. If the returned value is greater than the constraint map value, apply a fitness

penalty to individual 1.

6. Repeat steps 3-5 for all variables in individual 1.

7. Repeat steps 3-6 for all individuals in P1.

Note that the process is repeated for all individuals in population P2, which are

compared with the best individual in P1.

An online sensitivity analysis which ranks the variables according to their influence

upon each objective is also introduced. This design sensitivity ranking is used to

adjust the fitness of each solution and to ensure that the values of the most influential

variables are within the range defined by the constraint map. Solutions are assigned

the highest fitness penalty where their most influential variables lie outside of the

current constraint map range. With this, the authors of this approach try to ensure

that subsequent populations contain high levels of feasible solutions in terms of the

most influential variables and relatively redundant variables have little or even no

effect on the overall solution’s fitness. The authors also store solutions produced

during the evolutionary process so that the user can analyze the historical paths

traversed by the algorithm. In their experiments they used roulette wheel selection

with one elite individual as the reproduction method. A summary of the overall way

in which this approach works is presented in Algorithm 5.

There exist some other examples of the use of cooperative coevolution as a

framework, but most of them work in a similar way as the ones we have described
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Algorithm 5 Co-Evolutionary Multiobjective Genetic Algorithm for Airframe
Design

Input: A multiobjective optimization problem MOP , population size for the species
PS, crossover rate pc, mutation rate pm, maximum number of generations Gmax,
fitness penalty FP

Output: TradeOffSolution
gen← 0
NumPops← GetNumberOfObjetives(MOP )
Pops← CreateSubpopulations(PS,NumPops)
for i = 1 to NumPops do
RandomInitializationOfPopulations(Pops[i], PS)
EvaluateF itnessOfIndividuals(Pops[i], PS)

end for
while gen < Gmax do
gen← gen+ 1
for each subpopulation SubPop in Pops do

select SubPop(gen) from SubPop(gen− 1) based on fitness
ApplyGeneticOperators(SubPop(gen), pc, pm)
EvaluateF itnessOfIndividuals(SubPop(gen), FP )

end for
end while
TradeOffSolution← GetTradeOffSolution(Pops)
return TradeOffSolution
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in this section. Besides, none of them focuses on the solution of MOPs with a high

number of decision variables, which is the main motivation of this work and therefore,

their discussion was omitted.

Interactive Coevolutionary Genetic Algorithm (ICGA)

In [95], Barbosa and Barreto presented the Interactive Coevolutionary Genetic

Algorithm (ICGA) for multi-objective optimization problems applied to graph layout

generation. ICGA maintains two populations: one representing the graph layout

population, which contains the coordinates of all vertices in the graph, and another

representing a set of weights for the vertices’ connections. In ICGA, each population

is evolved by an independent genetic algorithm and their evolution is based on

their fitness evaluation, which involves active user intervention. For each layout,

several objectives are mathematically defined such that final fitness of each solution

is obtained using the current set of weights. After that, the layout population evolves

for a given number of iterations, with its fitness being calculated using a fixed set of

weights. Then, a sample of layouts from the current population is shown to the user

for its inspection; at that point, the user ranks each solution according to his/her

personal preferences. So, it could be the case where the ranking given by the user

is different from the current ranking in the population. Then, the population of the

set of weights evolves, while the current layout population is kept frozen, according

to a fitness value. Such fitness is computed based on how well a given set of weights

ranks the population of layouts as compared to the ranking periodically given by the

user. The aim is to find the set of weights whose ranking is the closest to the one

provided by the user. This is done in the next way: each set of weights evaluates

the population of layouts and provides its own ranking. The fitness of a given set of

weights is considered better when its ranking is closer to the ranking provided by the

user. Also, a set of weights that ranks a layout in a very different order from that

of the user is considered as a bad solution and thus has a low fitness value. After

an improved set of weights is obtained, the layouts population is evolved with its
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fitness evaluation being now performed using the new set of weights. This process

is performed for a predefined number of cycles or until a satisfactory graph layout is

obtained.

In ICGA, the coevolutionary process occurs when the fitness of an element in the

layout population is computed based on the current set of weights, which at the same

time depends on the evolution of the population containing the set of weights, whose

fitness in turn, relies on how close the current set of weights mirrors the preferences

provided by the user for each of the graph layouts. That is to say, the evolution of the

layout population occurs in a fitness landscape that is constantly changing. In fact, it

changes every time that a new set of weights is presented by the weights population.

On the other hand, the fitness landscape of the weights population changes every

time the user provides a new ranking for the current layout population. Compared to

previous interactive evolutionary algorithms, this interactive coevolutionary GA can

use a bigger population for the application in turn since the user only has to rank a

sample from the corresponding population. In this approach, a genetic algorithm is

the only EA used for both tasks: searching for a good solution (a graph layout) of

the MOP and learning the user’s preferences. One observation about this approach

is that authors do not report how expensive is the algorithm, in terms of function

evaluations. Also, it is not clear what is the impact of the user intervention and if

this mechanism brings any advantage to the algorithm.

Cooperative Coevolutionary GDE3 (CCGDE3)

A cooperative CMOEA for large scale multi-objective optimization is proposed

by Miguel and Coello in [72], the so-called Cooperative Coevolutionary GDE3

(CCGDE3). This Algorithm uses the CCGA [73] framework (adapted to multi-

objective optimization) and GDE3 [74] as the main multi-objective optimizer.

CCGDE3 includes the following processes: it starts with a division of the decision

variables space where the vector ~x representing the set of D ∈ N decision variables

is divided into d ∈ N smaller vectors of equal size. Each subcomponent is created
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using a random assignment of decision variables, so that the probability of grouping

interacting variables into the same species in non-separable problems is increased.

Also, d species ofNP individual are created. Then, each of these d species are assigned

a D/d number of different decision variables in a random way. In other words, each

subpopulation is in charge of a subcomponent from D. After the subpopulations

are created, a random initialization of all the species’ populations is performed.

Thereafter, CCGDE3 performs the evolution of each of the subpopulations for a

given number of generations, throughout a certain number of cycles. Such process

continues for a certain (pre-defined) number of cycles and generations or until a

stopping criterion is fulfilled. The outcome of the algorithm is the set of solutions that

are globally non-dominated, v.g., with respect to all of the non-dominated solutions

from all the species’ populations. The way cooperation between subpopulations is

performed is described next. At the start of the algorithm, when no knowledge

has been acquired, collaborations are performed in a random way, by selecting a

random individual from each species and assembling a complete set of solutions to be

evaluated in the set of objective functions of the MOP. Thereafter, the results from the

evaluations are given back to each individual. After the first generation, collaborations

will take place when the resulting offspring subpopulations need to be evaluated.

Therefore, evaluation is performed by joining the individual under evaluation with

randomly selected components from the set of non-dominated solutions of the other

species and then applying this new assembled solutions to the objective functions.

At the end, the non-dominated solutions from the set of non-dominated solutions

of each species’ populations is computed and given as the final result. CCGDE3

was benchmarked with respect to GDE3 [74] and NSGA-II [75]. The authors used

a number of decision variables that ranged from 200 up to 5000 when solving

ZDT1, ZDT2, ZDT3 and ZDT6 [64]. Adopting the hypervolume as the performance

indicator [25], each MOEA was run until it obtained an approximation of the Pareto

front that had a hypervolume value of 95% with respect to the true Pareto front.

Results showed that CCGDE3 was the fastest algorithm, scaling better than GDE3
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and NSGA-II when the number of variables was large. A summary of the overall way

in which this approach works is presented in Algorithm 6.

Algorithm 6 Cooperative Coevolutionary GDE3

Input: NP , Cycles, Gmax, NumEsp
Output: SolutionSet
Pobs← Populations(NP,NumEsp)
InitializeSpecies(Pobs)
for j ← 1 to Cycles do

for i← 1 to NumEsp do
for k ← 1 to Gmax do
MOEA(Pobs[i])

end for
end for

end for
SolutionSet← ObtainNonDominatedSet(Pobs)
return SolutionSet

The main drawback of this approach is that it is not able to deal with multi-frontal

MOPs, such as ZDT4. Since the problem is divided along decision variables space, it

makes it harder for the framework to give solutions in this kind of problems. In fact

it was observed that CCGDE3 tends to have premature converge in these cases.

5.1.3 Cooperative CMOEAS based on objective functions

decomposition

In this case, the MOP is decomposed along the objective functions of the problem.

Each objective function of the problem is assigned to a certain species’ population and

all populations cooperate to approximate the whole Pareto Front. Each species has a

population formed by individuals that represent a solution to the MOP. Individuals

from each species compute all the objective functions evaluations in the same way

as traditional MOEAs. However, the main difference is that the fitness value of an

individual in a certain species is given only by its corresponding objective function.

Hence, individuals are guided by their specific objective function, in order to search

in different regions of the Pareto Front. Figure 5.3 shows the way collaboration is
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Figure 5.3: Cooperative collaboration based on an objective function decomposition
architecture. Here, each species is representing a single objective function. In order
to obtain its fitness value, a solution from species 1 is joined with the representatives
of each species and then is evaluated under the domain model of each species, i.e.,
over their corresponding objective function.

performed in order to create the coevolutionary effect. Next, we present the most

representative approaches within this category, but more examples can be found in

[114, 115].

Multiple Populations for Multiple Objectives (MPMO)

A cooperative CMOEA which uses Multiple Populations for Multiple Objectives

(MPMO) was presented in [116]. MPMO creates multiple species’ populations to

deal with the several objectives of the MOP, in such way that each species represents

only one objective function and all species cooperate to approximate the whole

Pareto Front. MPMO is considered a cooperative coevolutionary approach because

it uses multiple species (populations) to solve problems in a cooperative way. At

each generation, individuals from each species are evaluated using all the objective

functions as done in traditional MOEAs. Nevertheless, once evaluated, the fitness

value of an individual from the sth species is assigned by the sth objective function of
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the MOP, where 1 ≤ s ≤ S and S is the number of species and objective functions

of the MOP. This way, individuals search along their respective objective function,

assigned to their corresponding species, so that making use of all the S species MPMO

will search different regions of the Pareto Front at the same time. Since every species

is assigned a different objective function, an information-sharing mechanism is used

to share their search knowledge and communicate it among each other.

The authors of this approach adopt PSO as their optimizer for each species’

population and create a coevolutionary multi-swarm PSO (CMPSO) making use

of the MPMO scheme to solve MOPs. CMPSO adopts an external archive as

the instance of the information-sharing mechanism from MPMO, with two extra

techniques to enhance the approach’s performance. One is used to modify the way

in which velocity of the particles is updated. Such modification consists on the use

of the information obtained from the external archive. The shared archive stores

the non-dominated solutions found so far by different species and is updated at each

cycle of CMPSO. The velocity and position of a particle from each species’ swarm

are updated by taking into account its personal experience as well as the swarm’s

global experience in addition to the experience taken from the external archive of

non-dominated solutions. In this way, all the species can share their knowledge to

speed up convergence towards the whole Pareto Front. The second approach is to

adopt an elitist learning strategy (ELS), which updates the archive in order to produce

an appropriate diversity so that CMPSO is able to deal with MOPs having multiple

local Pareto Fronts or with complicated Pareto sets.

The main advantages of the CMPSO algorithm are the following:

• To prevent the difficulty of performing fitness assignment and at the same

time to obtain a benefit from having each swarm with a conventional PSO,

or an improved PSO algorithm for optimizing a single objective, each swarm in

CMPASO is in charge of only one objective.

• As an external archive is adopted to store the non-dominated solutions found
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so far in the process, each swarm can communicate with the others through this

mechanism and, therefore, they can use the knowledge obtained by the other

species.

• As an elitist strategy is used in the archive update mechanism, the algorithm

is able to deal with MOPs having multiple local fronts.

CMPSO is benchmarked against some state-of-the-art MOEAs and MOPSOs

(see [116] for further details about the test functions adopted) and results

are compared using the Inverted Generational Distance (IGD) [117] indicator.

Experimental results show how CMPSO outperforms, in most cases, the other

algorithms on the ZDT test problems [64]. Also, it shows a remarkably better

performance on the DTLZ [3] and WFG [4] test problems. When dealing with the

UF [118] test problems, which has complicated Pareto sets, CMPSO is also one of

the most outstanding approaches.

The main drawback of CMPSO is that, since each species optimizes only one

objective function, this might contribute to the creation of more solutions on the

extreme values of each objective, resulting in a poor approximation of the whole

Pareto Front. Also, it has a poor performance in multi-frontal problems. Another

observation has to be made over the selection method that its authors adopt when

using archive information, since a random selection is misleading and can lead to

undesired waste of resources (by means of function evaluations).

Preference-inspired co-evolutionary algorithm using weight vectors

A preference-inspired co-evolutionary algorithm using weight vectors (PICEA-w)

is presented in [119]. PICEA-w was created with the objective of alleviating the

difficulties that decomposition-based approaches have when dealing with MOPs

having complex Pareto front geometries. This approach adopts a decomposition of

the problems methodology that decomposes a MOP into a set of single objective
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subproblems defined by means of several scalarizing functions with different weights,

where each weight vector is used as a search direction to define a scalar function.

In PICEA-w, weights are adaptively modified by co-evolving them with candidate

solutions along the search process, in order to construct suitable weights in an

adaptively manner during the optimization process and with this guide candidate

solutions towards the Pareto optimal front effectively. In PICEA-w, candidate

solutions are ranked by each of the weighted scalarizing functions, therefore, a ranking

matrix is created. Then, the fitness of candidate solutions is computed based on

such ranking matrix. Thereafter, weight vectors are coevolved with the candidate

solutions to create an optimal distribution, and these at the same time work to create

a balance between exploration and exploitation. For each selected solution, a weight

which ranks this solution as the best is selected. Such weight must maintain the

convergence and exploitation as well as its distant from the solution.

PICEA-w is implemented within a (µ + λ) elitist framework. Populations of

candidate solutions and weight vectors, S and W (of size N and Nw) respectively, are

evolved for a fixed number of generations. At each generation, parents are subjected

to genetic variation operators to produce N offspring (Sc). At the same time, Nw new

weight vectors (Wc), are randomly generated. Thereafter, S
⋃
Sc and W

⋃
Wc are

sorted according to fitness and a truncation selection procedure is applied to select

the best N solutions and Nw weight vectors are the new elements of PICEA-w for

the next generation. Additionally, an offline archive is adopted to store all the non-

dominated solutions found during the search. In order to obtain a good distribution

of solutions, SPEA2’s [120] clustering technique is applied after the optimization

process has been performed. PICEA-w was benchmarked against 4 variations of its

framework (see [119] for further details) when solving 8 test problems constructed

by applying different shape functions provided in the WFG toolkit to the standard

WFG4 benchmark problem [4]. The WFG parameters k (position parameter) and

l (distance parameter) were set to 18 and 14 respectively, creating MOPs with

n = k + l = 32 decision variables. These problems were adopted with 2, 4 and 7
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Table 5.1: Summary of Cooperative CMOEAs

Reference Algorithm Type of decomposition Subpopulations Representation Optimizer

[96] MOCCGA Decision variables space One per decision variable Real MOGA

[72] CCGDE3 Decision variables space Groups of decision variables Real GDE3

[95] ICGA Decision variables space Two populations Graph layout Genetic Algorithm

[116] MPMO Objective space One per objective function Real PSO

[119] PICEA-w Objective space Two populations Real Evolution Strategies

objective functions. PICEA-w showed to be less sensitive to the problem geometry,

and outperformed other leading decomposition-based algorithms on problems with

more than 4 objectives (many-objective instances). Moreover, it showed that when

guiding candidate solution towards the Pareto optimal front, weights also evolve

towards the optimal distribution when adopting a coevolutionary strategy. One of

the observations about this approach is that their study does not include additional

MOP difficulties other than geometrical ones. Also, a comparison against state of

the art MOEAs is needed to have a more general idea about the efficiency of this

approach.

Table 5.1 summarizes the cooperative CMOEAs we have just described.

5.2 Pathologies of The Coevolutionary Framework

Since evaluation in CMOEAs is based on coevolving individuals, coevolution settings

may cause inaccurate evaluation, leading to problems such as over-specialization, red

queen effect, disengagement, etc [121, 122, 123]. Next we briefly describe some of these

pathologies in order to understand some of the issues that may arise when adopting

CMOEAs.

5.2.1 Instransitivity

One problem feature that has received particular interest in the past is that of

intransitivity [124]. As described by De Jong, a relation R is transitive if aRb ∧ bRc

implies aRc; if this cannot be guaranteed, the relation is then intransitive. The

existence of such intransitive relations in a coevolution problem can lead to cycling,
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i.e., the recurrence of previously visited states of the species. Intransitivity has been

viewed as an inherent feature of coevolution that can make CMOEAs unreliable.

Indeed, the resulting problem of cycling has been thought of as an obstacle that

could prevent coevolution from becoming a reliable problem solving technique, which

is believed that, like the local minima problem in gradient-descent methods, is an

intrinsic problem that cannot be completely eliminated[125].

5.2.2 Disengagement

Coevolutionary disengagement takes place when one population outperforms another

to the extent that individuals from the same species become indistinguishable from

one another (in terms of fitness) [126]. When this occurs, coevolved subpopulations

become disassociated and selection acts with no specific direction, causing the

coevolutionary process to drift and, in many cases, without any possibility of

generating acceptable results.

5.2.3 Red Queen effect

Coevolutionary algorithms can suffer from the so-called red queen effect. This

happens when, through their interaction, species alter each other’s fitness landscapes

[127]. Such effect significantly affects the performance of the coevolutionary process,

creating fitness ambiguities that cause improvements in the performance of individuals

to be considered as undesired changes and vice versa.
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Large Scale Optimization Schemes

As discussed in the previous chapter, cooperative coevolution is an approach for

evolving solutions from different populations which are evaluated based on how well

they perform together. The advantage of cooperative coevolutionary algorithms is

the decomposition of the problem which allows us to learn different parts of the

problem instead of the whole problem at once. Also, cooperative coevolution has

already shown to be a very good alternative to deal with large scale MOPs [72].

However, previous research within the field of global optimization has shown that

cooperative coevolutionary algorithms are biased towards equilibrium states. Since

studies concerning cooperative coevolutionary algorithms used for solving multi-

objective optimization problems were initiated, no attention had been paid to this

issue. Next, we provide empirical evidence of the existence of these problems within

the multi-objective optimization field and present a novel cooperative coevolution

framework which, through the use of the concept of Nash equilibrium, alleviates

some of those optimization-related pathologies present in cooperative coevolutionary

algorithms.
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6.1 Selection scheme for a faster converge in

cooperative coevolution

In order to describe and perform experiments over a new model selection scheme

for cooperative coevolution, with the aim of being fitter for large scale MOPs, we

adopt the cooperative coevolutionary model proposed by Potter [73], where each

population contains individuals that represent a particular component (in decision

varibles space) of the problem, so that one member from each population is needed in

order to assemble a complete solution. Evaluation of an individual from a particular

population is performed by joining the individual with collaborating partners from

other populations. Aside from evaluation, the populations are evolved independently.

An abstract mathematical model for this system comes from evolutionary game

theory (EGT). EGT is seen as a way of thinking about evolution at the phenotypic

level when the fitness of particular individuals depend on their frequencies in the

population [128]. As used by NSCCGA and MOCCGA, the common way to perform

the evaluation of each individual is by taking one representative from the other

populations that belongs to the best set of solutions found so far. We believe that

this way of doing collaboration is the main cause for the aforementioned pathologies,

because each species is choosing representatives from other populations having in

mind only the performance of the species alone and not as a whole team among

all of the species. This kind of interaction makes coevolution to explore only

narrow regions of the collaboration space, which suggests that evolution is strongly

attracted to certain regions of the search space. However, these regions do not

necessarily correspond to (fitness-based) optimal solutions, and coevolution often

converges to sub-optimal equilibria. Since in multi-objective optimization, objectives

are in conflict, we believe that making use of Nash equilibrium for finding better

collaborations is the best option, since it gives a solution of a non-cooperative game.

According to Nash, each participant of the game has his own strategy set and objective

function. Then, during the game, each player searches for the optimal strategy while
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other players’ strategies are fixed. The game is conducted in this frame and when

no player can further improve his criterion, the system is regarded as having reached

a state of equilibrium, known as Nash equilibrium. This is exactly the way MOPs

are managed by EAs, so this idea can be applied to develop a novel CC framework,

which, instead of looking for best collaborations from the point of view of an specific

species, will look for ideal collaborations which take into account all of the objectives

in order to perform better interactions among species. Our proposed approach is

described next.

6.1.1 Description of the proposed approach

Our approach works as follows: at the beginning, it divides the vector of decision

variables ~x of dimension D ∈ N into S ∈ N subcomponents, where S is equal to

the number of objective functions in the problem. Each subcomponent is created

from a random grouping of decision variables in order to increase the probability

of grouping interacting variables in non-separable problems. At the same time, S

subpopulations (species) are created, each one with NP individuals, and these S

subpopulations are assigned their corresponding decision variables in a random way.

This means that to each subpopulation, it corresponds a subcomponent from S which

had been already created. Thus, every subpopulation will have a total of m decision

variables. At the same time, each species will be assigned with an specific objective

function, so that there will be as many species as objective functions and each of

them will do the fitness assignment of their individuals according to that, as will be

described next. Once the subpopulations are created, the algorithm does a random

initialization of all the individuals across all subpopulations. Then, the algorithm

performs the cycles in which the evolution of each of the subpopulations is done for

a given number of generations. This will continue until the stopping condition is

reached, and at the end, the solutions that are globally non-dominated (i.e., with

respect to all the subpopulations), constitute the outcome of the algorithm. The

collaboration among the subpopulations takes place in the next way: in the first
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generation, random collaborations are formed and evaluated, obtaining a random

individual from each subpopulation and forming a complete set of solutions to be

evaluated in their objective functions. Then, the results from the evaluation are

assigned back to the individual under evaluation. After the first generation, the

resulting child subpopulations Q1 to QS will be evaluated by forming collaborations

with individuals from the other species which are in a Nash equilibrium according to

their fitness values. As mentioned before, the usual way to perform collaborations is

by selecting representatives from other species which perform the best according to

their respective subpopulation. However, we believe that this is the main cause for

the tendency of CCAs to fall in ESS. So, we propose to find an ideal collaboration by

making use of Nash equilibrium. Next, we give a brief description of such concept.

6.1.2 Equilibriums for selection of strategies

The formal description of Nash equilibrium is presented next.

Definition 6.1. Normal form game

Let P = {1, . . . , n} be the set of players, i ∈ P , aix ∈ Σi be an element of the set of

simple plays, and six be a strategy of player i, six ∈ Si; let G = (S1, . . . , Sn;u1, . . . , un)

be the game in normal form [129] where:

• A strategy is a sequence of actions six = ai1 . . . a
i
n.

• A strategy profile is an n-tuple of strategies (s1, . . . , sn); one strategy per player.

• Si is the set of strategies for the ith player.

• {S1, . . . , Sn} is the set of all the Si strategies.

• {u1, . . . , un} is the set of all payoff functions; one per player.

• ui(s1, . . . , sn) = r, where (s1, . . . , sn) ∈ S1 × · · · × Sn, r ∈ R.
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6.1.3 Nash equilibrium

The Nash equilibrium [129] is a widely used mathematical concept, especially in the

modelling of non-cooperative games. To identify the strategy profiles that fit the

condition of Nash equilibrium, every strategy profile is evaluated with the payoff

functions of the players. Then, the chosen profiles are those that, for every player,

are the options that produce the lowest loss for each one, individually, in a non-

cooperative way. In a more formal way, let s∗1, . . . , s
∗
n and s∗i be the non-cooperative

player’s strategies from i to the n− 1 other players’ strategies. So (s∗1, . . . , s
∗
i , . . . , s

∗
n)

fits the Nash equilibrium condition, if and only if it maximizes the corresponding

payoff function:

ui(s
∗
1, . . . , s

∗
i , . . . , s

∗
n) ≥ ui(s

∗
1, . . . , si, . . . , s

∗
n)

∀i ∈ P, si ∈ Si.
(6.1)

Every strategy profile is a payoff function valued and is compared with all the

others, to determine whether or not it is dominated. Given a strategy profile x1 for

each player i, the strategy profile is modified by altering the player’s current strategy

while keeping the strategies of the other n − 1 players unchanged; if any deviation

from x1, evaluated by ui, dominates it, that means that player i’s profit is higher by

ui(x2). So, x1 is dominated by x2’s profile and, therefore, x1 is discarded. All the

dominated profiles are discarded and the non-dominated profiles are the ones that fit

the Nash equilibrium. Any game in (finite) normal form has at least one strategy

profile that fits the Nash equilibrium [129]. Observe that in Nash equilibrium, every

player is applying a non-cooperative perspective which turns out to be not as bad for

him as the other players’ strategies.

With all this in mind, we propose to make collaborations by finding the best unions

according to the previous objective values found so far. For this purpose, we create all

the combinations from the function of the individual being evaluated and the posible
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values given by the rest of the other populations. The way combinations are formed

is depicted in Figure 6.1, in which we show an example of a three-dimensional MOP

using 2 individuals for each population. Once we have this, we consider that for our

purpose, each objective function value can be used as an strategy. With this, we can

build a utility function from each species point of view, in order to create a non-

cooperative game where each player is an species, and its interest is focused on its

specific objective function. For this purpose, we adopted SPEA2’s fitness assignment

strategy [120] within each species. Fitness assignment operates as follows: having

an individual i which belongs to the Qj species being evolved, we will create all the

combinations of the objectives from the current species with the objectives of the

other species. Having this composed objective vectors we will evaluate each of these

combinations according to the current species population. Thus, at the end we will

have a set of strategies from which we will find the Nash equilibrium according to

the fitness values that will be used as the utility functions values. So, the individuals

which bring a Nash equilibrium will be selected from the subpopulations, P1 to PS,

of the previous generation in order to collaborate. This will allow us to evaluate the

new individual. The collaboration procedure is shown in Figure 6.2. The way Nash

strategy profiles are obtained is shown in Algorithm 7.

Algorithm 7 Nash equilibrium algorithm for selection of strategies for CC
collaborations.

Input: Input each strategy profile and its payoff value
1: for all x = (x1, . . . , xm) strategy profiles do
2: for all player i = (1, . . . , n) do
3: if x is labeled as non-dominated then
4: Do the derivations in x for player i
5: if x is dominated by at least one derivation of i then
6: label x as dominated {move to the next strategy profile}
7: end if
8: else
9: {move to the next strategy profile}
10: end if
11: end for
12: end for
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f1,S11 f2,S11 f3,S11

f1,S12 f2,S12 f3,S12

Species 1

f1,S11 f2,S21 f3,S31

f1,S11 f2,S21 f3,S32

f1,S11 f2,S22 f3,S31

f1,S11 f2,S22 f3,S32

Strategies

f1,S22 f2,S22 f3,S22

f1,S21 f2,S21 f3,S21

Species 2

f1,S31 f2,S31 f3,S31

f1,S32 f2,S32 f3,S32

Species 3

Figure 6.1: Strategies for the creation of one individual in a CCA with 3 Species
(objective functions) and 2 individuals in each subpopulation.

The algorithm iterates until some termination condition is fulfilled (usually when

a certain predefined number of cycles is reached). At the end, we get the non-

dominated solutions from the non-dominated individuals of each subpopulations, in

order to obtain a final set of solutions for the problem being solved. A summary of

the way in which our approach works is presented in Algorithm 9.

6.1.4 Experimental Studies

For the purposes of this study, we adopted the Zitzler-Deb-Thiele (ZDT) [2] and the

Deb-Thiele-Laumanns-Zitzler (DTLZ) test suites [3] with two and three objectives,

respectively. Since the main objective is to evaluate the performance of our approach

in terms of efficiency when solving MOPs, we will analyze our results with respect

to those of the NSCCGA [97] and GCEA [130]. For this sake, we established a

predefined number of function evaluations that the algorithms can use, to analyze
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Population

Representative

EA
Individual

fitness

Species 1
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      to be

  evaluated Population

EA

Representante
Sort

Collaboration

Domain

Model

Species 3

Representante

Population

EA

EA

Species S

Population

Representative

Figure 6.2: Cooperative coevolutionary collaboration architecture from the
perspective of species number 1. Here, we assume that we have S species, where the
representative of each species for collaboration is the one that fits a Nash equilibrium.

how they behave with the same resources. For assessing our results we adopted the

hypervolume performance indicator [76]. The hypervolume is obtained by computing

the volume (in objective function space) of the non-dominated set of solutions Q

that minimize a MOP. For every solution i ∈ Q, a hypercube vi is generated with a

reference point W and the solution i as its diagonal corner of the hypercube. The

reference point W can be generated by building a vector of worst possible objective

function values. Then, the hypervolume (HV) is computed as the union of all the

found hypercubes as follows:

HV = volume

 |Q|⋃
i=1

vi

 (6.2)

The aim of this study is to identify which of the MOEAs being compared is able

to get closer to the true Pareto front using the same number of objective function

evaluations.
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Algorithm 8 Cooperative Coevolutionary Framework

Input: NP , Cycles, Gmax, NumEsp
Output: SolutionSet
Pobs← Populations(NP,NumEsp)
InitializeSpecies(Pobs)
for j ← 1 to Cycles do

for i← 1 to NumEsp do
for k ← 1 to Gmax do
MOEA(Pobs[i])

end for
end for

end for
SolutionSet← ObtainNonDominatedSet(Pobs)
return SolutionSet

6.1.5 Parameterization

The parameters of each MOEA used in our study were chosen in such a way that we

could do a fair comparison among them. Although all the algorithms used for our

comparative study are CCAs, the specific nature of each of them requires different

parameters. Thus, for our approach and for GCEA there will be as many species

as objective functions, whereas for NSCCGA there are as many species as decision

variables. For all the algorithms we used a small populations size of 16 individuals for

each subpopulation (species). This was done, in order to set an environment where

the aforementioned pathologies arise. For the ZDT test suite, we used 67 cycles and

the number of species for NSCCGA was set to 30, since that is the number of decision

variables for these problems. The exception is ZDT4 where the number of decision

variables is 10. For this problem, we used 200 cycles since this was enough to bring

a good converge to the Pareto front. For our approach (NashCC) and GCEA, the

number of species was set to 2, because the ZDT problems have 2 objectives. The

number of cycles was set to 1000. For the DTLZ test suite, we could only compare

results against CCNSGA since GCEA is not able to scale to more than two objectives.

The number of species for NSCCGA was set to 12, since the DTLZ problems use by

default that number of decision variables. In this case, 1250 cycles were used. For
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our proposed NashCC, the number of species was set to 3, since these problems have

3 objectives. The number of cycles was set to 5000. For all algorithms and problems,

the distribution indexes for the SBX and polynomial-based mutation operators [75],

were set as: ηc = 20 and ηm = 20, respectively. The crossover probability was set to

pc = 0.9 and the mutation probability was set to pm = 0.01. Finally, we used just one

generation for each species per cycle for all approaches. All of this in order to use the

same number of function evaluations in all CCAs and to allow for a fair comparison

of results.

6.1.6 Analysis of results

In our experiments, we obtained the hypervolume value over the 25 independents runs

performed. Tables 6.1 and 6.3 show results of the hypervolume measure for the ZDT

and DTLZ test suites, respectively, as well as the reference points used for each of

the problems. To ease the analysis of the results in these tables, the cells containing

the best hypervolume value for each problem have a grey colored background.

From Figures 6.3 to 6.29, we plot the results of the median of the 25 runs. These

plots are shown for the ZDT and the DTLZ test problems, respectively. We can

observe that, using the same number of function evaluations, our proposed NashCC

is able to get closer than NSCCGA and GCEA to the true Pareto front in all the

problems. It is clear that NashCC is much faster than the other two algorithms in

terms of number of evaluations. As can be observed, NSCCGA and GCEA have

premature converge in most problems, which makes them fall in false fronts in the

case of multi-frontal problems such as ZDT4. This confirms that the tendency of

CCAs to fall into ESS is also present when dealing with MOPs and that looking for

good collaborations is an effective way to alleviate this problem.
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Table 6.1: Hypervolume values for the ZDT test suite

ZDT1 ZDT2 ZDT3 ZDT4 ZDT6

Algorithm NashCC CCNSGA CCGT NashCC CCNSGA CCGT NashCC CCNSGA CCGT NashCC CCNSGA CCGT NashCC CCNSGA CCGT

Ref. Points (1 8) (1 9) (1 9) (1 900) (1 10)

Best 7.6285 7.0870 5.4413 8.3108 7.8108 2.5263 9.0247 8.4213 4.2544 899.6179 890.5287 532.1361 6.7281 3.7310 0.7373

7.6269 7.0843 4.0366 8.3106 7.7170 2.5197 9.0188 8.4140 3.9618 899.6039 889.9144 517.7009 6.7246 3.7002 0.4183

7.6268 7.0667 3.3556 8.3089 7.7149 2.4991 9.0185 8.3796 3.7482 899.5833 886.6908 484.3817 6.7196 3.4643 0.4033

7.6264 7.0632 3.0911 8.3082 7.6785 2.4911 9.0146 8.3700 3.7173 899.4977 885.5299 454.5236 6.7187 3.3439 0.3968

7.6256 7.0305 3.0564 8.3070 7.6688 2.4911 9.0141 8.3097 3.7161 899.4590 884.8965 443.1219 6.7186 3.3223 0.3579

7.6253 6.9974 2.9899 8.3053 7.6135 2.4712 9.0137 8.2885 3.6335 899.4424 884.8232 425.7738 6.7181 3.3147 0.3444

7.6244 6.9758 2.9129 8.3012 7.6082 2.0796 9.0119 8.2882 3.5062 899.4239 884.8077 420.1604 6.7163 3.3110 0.3347

7.6241 6.9534 2.9070 8.3010 7.5968 2.0732 9.0112 8.2664 3.4547 899.2720 884.7901 418.4893 6.7094 3.2766 0.3298

7.6239 6.9454 2.6500 8.2991 7.5676 1.8883 9.0047 8.2413 3.4528 899.2685 884.3186 415.4923 6.7057 3.2499 0.3197

7.6233 6.9338 2.5859 8.2987 7.5648 1.8712 9.0040 8.1980 3.4151 899.2629 880.8902 413.5572 6.7055 3.2174 0.3132

7.6228 6.9297 2.5426 8.2982 7.5565 1.7314 9.0035 8.1663 3.2693 899.2607 879.9972 411.7965 6.6999 3.1605 0.2874

7.6226 6.9118 2.5214 8.2964 7.5375 1.7263 9.0001 8.1254 3.2510 899.2540 878.8118 410.1775 6.6987 3.0051 0.2680

Median 7.6225 6.9105 2.4754 8.2944 7.5193 1.6522 8.9982 8.0892 3.2009 899.2539 878.0266 375.7467 6.6984 2.9893 0.2642

7.6212 6.9095 2.2863 8.2943 7.4892 1.6327 8.9924 8.0647 3.0842 899.2509 877.0857 366.9912 6.6962 2.9829 0.2334

7.6210 6.8809 2.1792 8.2940 7.4726 1.6086 8.9717 8.0465 2.9459 899.2400 877.0416 366.0214 6.6891 2.8825 0.2130

7.6198 6.8771 2.0903 8.2934 7.4721 1.5961 8.9706 7.9992 2.9135 899.2394 876.6987 338.2662 6.6840 2.8581 0.1778

7.6188 6.8707 2.0473 8.2934 7.4207 1.5661 8.9697 7.9949 2.8526 899.2325 876.6007 336.7565 6.6812 2.7485 0.1693

7.6185 6.8668 2.0357 8.2921 7.3748 1.5278 8.9682 7.9943 2.8100 899.0523 876.0462 333.4452 6.6667 1.9087 0.0928

7.6183 6.8500 2.0352 8.2920 7.3586 1.4419 8.9649 7.9875 2.7137 899.0446 873.8957 330.1884 6.6563 1.9012 0.0798

7.6158 6.8195 2.0239 8.2908 7.3559 1.4396 8.9584 7.9737 2.6660 899.0429 873.8497 326.3380 6.6543 1.8504 0.0503

7.6153 6.8105 2.0183 8.2904 7.3497 1.3578 8.9512 7.9686 2.6425 899.0254 872.5329 325.2272 6.6456 1.7674 0.0367

7.6152 6.7614 1.9923 8.2893 7.2987 1.3367 8.9507 7.9513 2.5738 898.8857 871.4517 322.9623 6.6377 1.7088 0.0343

7.6138 6.7308 1.9235 8.2888 7.2484 1.1220 8.9482 7.9195 2.5155 898.8794 870.6939 306.6790 6.6339 0.9597 0.0243

7.6112 6.6191 1.8730 8.2830 7.2318 1.0963 8.9120 7.8683 2.4955 898.8418 866.3119 290.3387 6.6194 0.9265 0.0150

Worst 7.5758 6.6184 1.4873 8.2790 7.0012 1.0383 8.2848 7.8366 2.4719 898.2626 857.3100 281.6815 6.5977 0.8791 0.0059

Average 7.6195 6.9002 2.5823 8.2968 7.4891 1.7914 8.9592 8.1265 3.1707 899.2079 878.5418 385.9181 6.6849 2.6584 0.2363

STD 0.0102 0.1273 0.8232 0.0084 0.1833 0.4819 0.1435 0.1794 0.5050 0.2949 7.6306 68.3190 0.0363 0.8878 0.1727
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Table 6.2: Hypervolume values for the DTLZ test suite

DTLZ1 DTLZ2 DTLZ3 DTLZ4 DTLZ5 DTLZ6 DTLZ7

Algorithm NashCC CCNSGA NashCC CCNSGA NashCC CCNSGA NashCC CCNSGA NashCC CCNSGA NashCC CCNSGA NashCC CCNSGA

Ref. Points (35 35 35) (1.2 1.2 1.2) (50 50 50) (1.2 1.2 1.2) (1.2 1.2 1.2) (7 7 7) (7 7 7)

Best 42876.2811 42861.9638 1.0987 1.0976 124999.3152 124975.9658 1.0628 0.7717 0.7180 0.7027 334.8787 323.5990 498.3214 469.9119

42874.8800 42847.0050 1.0971 1.0928 124999.1670 124865.7086 1.0294 0.7716 0.7172 0.7019 334.8272 319.1156 498.0460 449.7765

42874.8800 42819.1787 1.0963 1.0926 124997.6336 124715.7241 0.9992 0.7691 0.7169 0.7018 334.7990 315.1843 497.8648 430.2499

42874.8431 42804.0798 1.0958 1.0925 124994.5279 124655.8189 0.9992 0.7685 0.7169 0.6986 334.7064 311.0600 497.5445 417.8822

42874.8248 42742.8616 1.0956 1.0922 124994.3927 124623.6335 0.9992 0.7681 0.7169 0.6977 334.6832 310.9483 497.3881 415.6720

42874.7272 42707.8119 1.0924 1.0896 124993.7485 124565.9743 0.9991 0.7671 0.7165 0.6969 334.6208 309.8232 497.3302 400.1097

42874.5948 42596.9558 1.0912 1.0886 124991.6194 124355.8553 0.9991 0.7646 0.7164 0.6967 334.5886 304.8691 497.1576 398.6594

42874.5795 42525.9315 1.0897 1.0877 124990.9612 123498.8561 0.9591 0.2880 0.7164 0.6962 334.5622 302.2213 496.9787 392.3261

42873.8784 42501.7135 1.0890 1.0864 124990.5698 123367.9406 0.7627 0.2880 0.7161 0.6962 334.4871 294.6850 496.4218 390.9044

42873.8354 42490.1736 1.0885 1.0858 124990.2125 122602.1798 0.7627 0.2880 0.7155 0.6944 334.4834 286.5837 496.2432 388.2298

42872.9553 42440.4895 1.0858 1.0857 124989.1850 122528.6792 0.7627 0.2880 0.7153 0.6934 334.4430 286.5616 496.2147 383.3258

42872.1874 42395.1893 1.0855 1.0817 124988.6998 122354.9181 0.7621 0.2880 0.7149 0.6929 334.3872 278.2876 494.8938 382.6247

Median 42872.1758 42252.9449 1.0850 1.0815 124988.2743 122249.1144 0.7621 0.2880 0.7148 0.6917 334.3602 271.4169 494.8744 382.3463

42872.0777 42251.2821 1.0843 1.0801 124986.7070 121018.5017 0.7621 0.2880 0.7146 0.6912 334.3265 260.2275 494.8650 381.6034

42872.0042 42240.1745 1.0841 1.0798 124984.5723 120204.4051 0.7584 0.2880 0.7138 0.6911 334.1917 256.5397 494.8056 379.4380

42871.5896 42136.6736 1.0829 1.0772 124981.2659 120090.9469 0.7584 0.2880 0.7133 0.6907 334.1842 255.3988 494.7458 378.7837

42871.4296 42041.5760 1.0821 1.0759 124979.7506 118446.6267 0.7584 0.2880 0.7130 0.6903 334.1492 252.3305 494.7171 373.3755

42870.9092 42000.2356 1.0812 1.0747 124978.5341 111578.2296 0.7578 0.2880 0.7126 0.6892 334.0760 249.2532 494.6616 369.2247

42870.6630 41934.0698 1.0807 1.0702 124977.9124 111355.0424 0.7578 0.2880 0.7121 0.6884 334.0601 243.9649 494.6347 368.6373

42867.1791 41635.6971 1.0795 1.0674 124964.3519 110351.6186 0.7578 0.2880 0.7121 0.6876 334.0141 243.1744 494.5831 364.3375

42859.6049 41503.9476 1.0768 1.0611 124959.8377 110256.5113 0.7461 0.2880 0.7121 0.6842 334.0050 241.0774 494.5474 361.4942

42858.2116 41479.6057 1.0746 1.0605 124950.1114 95709.7965 0.7461 0.2880 0.7111 0.6827 333.9971 235.3766 494.4941 353.6972

42853.2824 40617.4194 1.0725 1.0592 124943.0481 89891.5783 0.7461 0.2880 0.7108 0.6773 333.9491 221.5874 494.2884 352.4184

42845.1465 38400.6563 1.0718 1.0562 124913.3725 73378.8013 0.7461 0.2880 0.7092 0.6765 333.9080 202.3386 494.0993 335.0071

Worst 42780.3090 32070.8457 1.0703 1.0483 124894.8008 55886.0385 0.7451 0.2843 0.7077 0.6760 333.0167 128.6456 494.0689 327.5270

Average 42866.28 41691.94 1.09 1.08 124976.90 113901.14 0.84 0.42 0.71 0.69 334.31 268.17 495.75 385.90

STD 19.4845 2210.2745 0.0083 0.0133 26.4582 17546.1981 0.1202 0.2204 0.0027 0.0076 0.4015 44.3675 1.4275 32.6220
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Figure 6.3: Pareto front approximations generated by NSCCGA, NashCC and GCEA
of CCAs for ZDT1.
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Figure 6.4: Pareto front approximations generated by NSCCGA, NashCC and GCEA
for ZDT2.
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Figure 6.5: Pareto front approximations generated by NSCCGA, NashCC and GCEA
for ZDT3.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

NSCCGA

NashCC

GCEA

Figure 6.6: Pareto front approximations generated by NSCCGA, NashCC and GCEA
for ZDT4.
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Figure 6.7: Pareto front approximations generated by NSCCGA, NashCC and GCEA
for ZDT6.
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Figure 6.8: Pareto front approximations generated by NSCCGA and NashCC for
DTLZ1.
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Figure 6.9: Pareto front approximations generated by NSCCGA and NashCC for
DTLZ2.
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Figure 6.10: Pareto front approximations generated by NSCCGA and NashCC for
DTLZ3.
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Figure 6.11: Pareto front approximations generated by NSCCGA and NashCC for
DTLZ4.
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Figure 6.12: Pareto front approximations generated by NSCCGA and NashCC for
DTLZ5.
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Figure 6.13: Pareto front approximations generated by NSCCGA and NashCC for
DTLZ6.
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Figure 6.14: Pareto front approximations generated by NSCCGA and NashCC for
DTLZ7.
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6.2 Indicator Based Cooperative Coevolution for

Multi-objective Optimization

Following the previous path. We developed another kind of cooperation scheme which,

not only improves the performance of coevolution, but also allows to form more species

than objectives functions in the MOPs being solved. As we have mention before, one

of the main challenges when adapting cooperative coevolutionary framework to solve

MOPs consists on how to select individuals from the other populations to assemble

a complete solution. Previous work with the CCA on single objective problems has

primarily selected the current best components from each species to merge into a

collaboration, or performed a tournament with candidate solutions formed with the

current best and randomly selected components. In a multi-objective scenario, there

may be a number of individuals in each sub-population which are parts of overall

solutions that are non-dominated in relation to each other, so the question is: how

can we select one over the other?. The usual mechanism used by CCMOEAs is

to select collaborators randomly from the set of non-domination solutions found so

far in each especies’ sub-population. However, this way of selecting individuals for

collaboration make coevolving populations to be attracted to areas of the search

space in which there are many strategies that perform well when combined with

individuals from the other populations and this tends to generate individuals that

have poor performance in the general context. So far, there is no mechanism which

selects an individual to form a collaboration based on the contribution of the solution

components and this would be a more suitable way to create collaborations in a multi-

objective scenario. In this chapter we propose to make use of an indicator-based

selection scheme to look for better collaborations into the CC framework. With this,

we aim to get an improvement on the performance of the CC framework for multi-

objective optimization.
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6.3 Description of The Proposed Approach

Our approach to cooperative coevolution uses the first cooperative coevolution scheme

proposed by Potter [73], where each population contains individuals that represent a

particular component (in decision variables space) of the problem, so that one member

from each population is needed in order to assemble a complete solution. Evaluation

of an individual from a particular population is performed by joining the individual

with collaborating partners from other populations. As mention before, the common

way to perform the evaluation of each individual is by taking one representative

from the other populations that belongs to the best set of non-dominated solutions

found so far. However, there is a potential problem with this approach; there is

no mechanism which awards a ranking based on the contribution of the solution

components. Without such a mechanism, potentially good solutions are lost because

species may participate with individuals which create poor new components in a

candidate solution. Besides, this kind of interaction makes coevolution to only

explore narrow regions of the collaboration space, which suggests that evolution is

strongly attracted to certain regions of the search space. However, these regions do

not necessarily correspond to (fitness-based) optimal solutions, and coevolution often

converges to sub-optimal equilibria. Several recent studies have shown that Pareto-

based multi-objective evolutionary algorithms (MOEAs) do not perform properly

when dealing with problems having more than three objectives [68]. This has

motivated the development of new selection schemes from which the use of quality

assessment indicators has been the most promising choice [131]. The idea when

using indicator-based selection is to maximize a quality assessment indicator that

provides a good ordering among sets that represent Pareto approximations. We

believe that taking this indicator-based approach into the selection mechanism for

collaboration that CCMOEAs use, one can get an improvement on the performance

of this sort of algorithms. So we use this idea to develop a new CCMOEA which

uses a novel selection mechanism for collaborations, which, instead of looking for
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best non-dominated solutions, will look for collaborations which take into account

the contribution of the solution components over a quality assessment indicator.

Such approach works as follows: at the beginning, it divides the vector of decision

variables ~x of dimension D ∈ N into S ∈ N subcomponents, where S is equal to the

number of objective functions in the problem. Each subcomponent is created from a

random grouping of decision variables in order to increase the probability of grouping

interacting variables in non-separable problems. At the same time, S subpopulations

(species) are created, each one with NP individuals, and these S subpopulations

are assigned their corresponding decision variables in a random way. This means

that to each subpopulation, it corresponds a subcomponent from S which had been

already created. Thus, every subpopulation will have a total of m decision variables.

Once the subpopulations are created, the algorithm does a random initialization of

all the individuals across all subpopulations. Aside from evaluation, the populations

are evolved independently using independent MOEAs for each species. Then, the

algorithm performs the cycles in which the evolution of each of the subpopulations

is done for a given number of generations. This process continues until the stopping

condition is reached, and at the end, the solutions that are globally non-dominated

(i.e., with respect to all the subpopulations), constitute the outcome of the algorithm.

Collaboration among the subpopulations takes place in the next way: in the first

generation, random collaborations are formed and evaluated, obtaining a random

individual from each subpopulation and forming a complete set of solutions to be

evaluated in their objective functions. Then, the results from the evaluation are

assigned back to the individual under evaluation. After the first generation, the

resulting child subpopulations Q1 to QS will be evaluated by forming collaborations

with individuals from the other species which have the best contribution to a quality

assessment indicator.

Within the cooperative coevolutionary framework, we can use this idea to take,

as a member for collaboration from each species, the individual which contributes the

most on the hypervolume indicator. So, we propose to make collaborations by finding
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the best individuals according to the hypervolume indicator contribution values of the

solutions found so far in each species. A summary of the way in which our approach

works is presented in Algorithm 9.

As mention before, aside from evaluation, the populations are evolved

independently using independent MOEAs for each species. For this sake, we adopt

the use of differential evolution algorithm [132] operators, along some NSGA-II[75]

techniques, as the multi-objective optimizer used by each species. The MOEA

operates as follow: It starts with a population of random solutions, which becomes the

current population. At each generation, an offspring population is created using the

differential evolution operators; then, the current population for the next generation

is updated using the solutions of both, the offspring and the parent populations.

Before proceeding to the next generation, the size of the population is reduced using

non-dominated sorting and a pruning technique aimed at diversity preservation, in a

similar way as NSGA-II.

Algorithm 9 CCMOEA

Input: NP , Cycles, Gmax, NumEsp
Output: SolutionSet
Pobs← Populations(NP,NumEsp)
InitializeSpecies(Pobs)
for j ← 1 to Cycles do

for i← 1 to NumEsp do
for k ← 1 to Gmax do
MOEA(Pobs[i])

end for
end for

end for
SolutionSet← ObtainNonDominatedSet(Pobs)
return SolutionSet

6.3.1 Experimental Studies

For the purposes of this study, we adopted the Deb-Thiele-Laumanns-Zitzler (DTLZ)

test suite [3], with MOPs of three objective functions and 12 decision variables. The
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main characteristics of these problems are described next: DTLZ1 is a separable and

multi-modal problem with a linear Pareto front. DTLZ2 is a separable and uni-modal

problem with a concave Pareto front. DTLZ3 is a separable and multi-modal problem

with a concave Pareto front. DTLZ4 is a separable and uni-modal problem with a

concave Pareto front. DTLZ5 is a uni-modal problem with a degenerated arc Pareto

front. DTLZ6 is an uni-modal problem with a degenerated arc front. Finally, DTLZ7

has a disconnected and mixed Pareto front.

6.3.2 Methodology

Since the main objective of this work is to study the impact selection mechanism for

collaboration has in a CCMOEA and evaluate the performance of our approach,

we will analyze our results with respect to those of the same new approach we

just described, but using the usual selection mechanism for collaboration which

takes one representative from the other populations that belongs to the set of non-

dominated solutions found so far. We decided to called both versions as, Indicator-

based CCMOEA (IBCCMOEA) and Pareto-based CCMOEA (PBCCMOEA). We

established a predefined number of function evaluations that the algorithms can use,

to analyze how they behave with the same resources. For measuring the results

we adopted the hypervolume, but this time as a performance indicator [76]. The

hypervolume is obtained by computing the volume (in objective function space) of

the non-dominated set of solutions, given as the final result, of each CCMOEA. The

aim of this study is to identify which of the CCMOEAs being compared is able

to get closer to the true Pareto front using the same number of objective function

evaluations.

6.3.3 Parameterization

The parameters of each CCMOEA used in our study were chosen in such a way that

we could do a fair comparison among them. Since both CCMOEAs are of the same
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nature, we will use the same parameters for both approaches. We used 2 species for

each problem with a populations size of 50 individuals for each species population.

Each CCMOEA used 50 cycles and just one generation for each species per cycle

for both approaches (which means each CCMOEA used 5000 function evaluations in

the experiments). Finally, the F and CR values for differential evolution, used by

the multi-objective species optimizer, were set to 0.5 and 0.5 respectively. All of this

in order to use the same number of function evaluations in both CCMOEAs and to

allow for a fair comparison of results.

6.3.4 Analysis of results

In our experiments, we obtained the hypervolume value over the 25 independents

runs performed. Table 6.3 shows the average hypervolume of each of the CCMOEAs

being compared for each test problem adopted, as well as the results of the statistical

analysis that we made to validate our experiments, for which we used Wilcoxon’s

rank sum. To ease the analysis of the results in these tables, the cells containing the

best hypervolume mean value for each problem have a grey colored background.

From Figures 6.23 to 6.29, we plot the results of the median of the 25 runs.

We can observe that, using the same number of function evaluations, our proposed

IBCCMOEA is able to get closer than PBCCMOEA to the Pareto front in all

the problems. It is clear our approach has a better performance than the Pareto

based approach, in terms of number of function evaluations and according to the

Wilcoxon’s rank sum test results, the null hypothesis (“medians are equal”) can be

rejected. Therefore, results confirm that the way selection is done for collaborations

in CCMOEAs has an important effect. The new indicator-based approach presented

here showed to very effective in improving CCMOEA performance.
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Table 6.3: Average of the hypervolume indicator values of the results obtained for the DTLZ test problems.
We show average (mean) values over 25 independent runs, as well as the standard deviation (SD) for each problem’s
results. The cells containing the best hypervolume value for each problem have a grey colored background. The P(H)
columns show the results of the statistical analysis applied to our experiments using Wilcoxon’s rank sum. P is the
probability of observing the given result (the null hypothesis is true). Small values of P cast doubt on the validity
of the null hypothesis. H = 0 indicates that the null hypothesis (“medians are equal”) cannot be rejected at the 5%
level. H = 1 indicates that the null hypothesis can be rejected at the 5% level.

Algorithm IBCCMOEA PBCCMOEA IBCC-PBCC

Mean SD Mean SD P(H)

Problem DTLZ1

3.3136 0.0295 1.6261 0.5835 0.000000 (1)

DTLZ2

2.5789 0.1207 2.4674 0.0367 0.000275 (1)

DTLZ3

2.6911 0.0105 2.4665 0.0220 0.000000 (1)

DTLZ4

2.6061 0.0984 2.4689 0.1282 0.000117 (1)

DTLZ5

2.0235 0.0076 1.9940 0.0055 0.000000 (1)

DTLZ6

2.0260 0.0109 1.9835 0.0069 0.000000 (1)

DTLZ7

2.2282 0.0442 2.2078 0.0168 0.012087 (1)
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Figure 6.15: Plot of CCMOEAs for DTLZ1.
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Figure 6.16: Plot of CCMOEAs for DTLZ2.
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Figure 6.17: Plot of CCMOEAs for DTLZ3.
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Figure 6.18: Plot of CCMOEAs for DTLZ4.
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Figure 6.19: Plot of CCMOEAs for DTLZ5.
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Figure 6.20: Plot of CCMOEAs for DTLZ6.

Cinvestav Departamento de Computación



Large Scale Optimization Schemes 109

 0
 0.1

 0.2
 0.3

 0.4
 0.5

 0.6
 0.7

 0.8
 0.9 0

 0.1
 0.2

 0.3
 0.4

 0.5
 0.6

 0.7
 0.8

 0.9

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

PBCCMOEA

IBCCMOEA

Figure 6.21: Plot of CCMOEAs for DTLZ7.

6.4 MOEA based on double decomposition

If we analyze the two previous frameworks, we can conclude that even though both

approaches improve the performance of the cooperative coevolutionary framework

based on Pareto optimal concept, these approaches make use of an unaffordable

computational time when dealing with a large number of decision variables. This

since, dealing with more decision variables implies to make use of more species, which

at the same time means to make use of more collaborations between species and

this in conclusion takes more time and computational resources. This drawback asks

for another alternative to make use of the cooperative coevolutionary framework,

which make us to look towards another kind of decomposition or transformation

of the MOP. Decomposition, in terms of objective functions, is a well-established

mathematical programming technique for dealing with multi-objective optimization

problems (MOPs), which has been found to be extremely efficient and effective

when coupled to evolutionary algorithms, as evidenced by MOEA/D. MOEA/D
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decomposes a MOP into several single-objective subproblems by means of well-defined

scalarizing functions. It has been shown that MOEA/D is able to generate a set of

evenly distributed solutions for different multi-objective benchmark functions with a

relatively low number of decision variables. Next we study the effect of parameter

scalability in MOEA/D and show how its efficacy decreases as the number of decision

variables of the MOP increases. Thereafter, we investigate the improvements that

MOEA/D can achieve when combined with cooperative coevolutionary techniques,

giving rise to a novel MOEA which decomposes the MOP both in objective and in

decision variables space.

The main idea of our proposed approach is to make use of the divide-and-conquer

technique, used by the cooperative coevolutionary framework for large scale single

objective optimization, and incorporate such concept into MOEA/D. Our motivation

is that it is very natural to use scalar optimization methods in MOEA/D, since

each solution is associated with a scalar optimization problem, in contrast with non-

decomposition MOEAs where in most cases there is no easy way for them to take

advantage of scalar optimization methods. Next, we give a brief description of both

MOEA/D and cooperative coevolution.

6.4.1 MOEA/D

The multi-objective evolutionary algorithm based on decomposition (MOEA/D) [30]

has gained growing interest from the community, due to its simplicity and to its

effectiveness when applied to a broad range of MOPs. MOEA/D decomposes

the MOP into a set of single-objective subproblems and solves these subproblems

simultaneously using an evolutionary algorithm. Such decomposition is based on

a set of weights each of which corresponds to a single subproblem. Each weight

vector is used as a search direction to define a scalar function. For this sake, the

so called Tchebycheff decomposition is the most widely used. Given a weight vector

λ = [λ1, . . . , λn]T the corresponding subproblem is defined as:
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minimize gte(x|λ, z∗) = max
1≤i≤n

λi|fi(x)− z∗i | (6.3)

where z∗ is the reference point chosen as the minimum of the objective function

values found during the evolutionary process. The main advantage of the Tchebycheff

approach is that it works regardless of the shape of the Pareto front, while other

decomposition approaches (like the weighted sum approach) only work for convex

Pareto fronts. The weights are also used to define neighborhoods of the subproblems.

The neighborhood relations among these subproblems are defined based on the

distances between their aggregation coefficient vectors. At each generation, a new

individual is generated and evaluated using its own neighborhood of weights, with

the idea that any information about these closest weight vectors should be helpful for

optimizing the current individual’s subproblem. Once this new individual is created,

it is compared to its parent and in case the offspring is better, it replaces the parent.

Moreover, it is also compared to other individuals in its neighborhood and is allowed

to replace some of them. Therefore, at each generation, the population is composed

of the best solution found so far (i.e., since the start of the run of the algorithm) for

each subproblem.

6.4.2 Description of our proposed approach

If we are to extend the basic computational model of cooperative coevolution into an

approach that already uses a decomposition strategy as the one adopted by MOEA/D,

we must address the issues of a second problem decomposition, as well as other issues

such as the interdependencies among subcomponents, credit assignment, and the

maintenance of diversity. In order to do so and to provide reasonable opportunities

for the success of coadapted subcomponents and an increase in efficiency when dealing

with large scale MOPs, we can not use the whole model of cooperative coevolution,

since it would be much more costly (due to the use of multiple subpopulations)
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than the use of MOEA/D as a standalone algorithm. Instead, we only incorporate

into MOEA/D a coevolutionary step where we make use of the divide-and-conquer

technique that splits the MOP to be solved, but in decision variables space.

Problem decomposition in the decision variables context consists in determining

an appropriate number of subcomponents and the role that each of them will play in

the overall search process. For some problems, an appropriate form of decomposition

may be known a priori but for others, this may not be possible. Let’s consider the

problem of optimizing a function of m independent variables. It may be reasonable

to decompose the problem into m subtasks, with each of them being assigned to the

optimization of a single variable. However, there are many problems for which we have

little or no information related to the number or roles of subcomponents that should

be in the decomposition. This occurs in non-separable functions. Here, non-separable

means that the vector of decision variables is composed by elements that interact with

each other and are not independent. As a response to this problem, it has been found

that dividing the problem into random groups provides better results than applying

a deterministic division scheme, when dealing with non-separable functions [85, 86].

Motivated by this previous work, our proposed approach divides the vector of

decision variables into S subcomponents (species), each one representing a subset

of all the decision variables at a time rather than taking only one variable per

subcomponent. We assign each decision variable to its correspondent subcomponent

in a random way, trying to increase the chance of optimizing some interacting variables

together. However, it is important to note that the cooperative coevolutionary

adaptation presented here does not work as in the original framework, since we

do not intend to use several subpopulations for each subcomponent of the problem

and we will not need individuals from the other species to assemble a complete

solution in order to perform a fitness evaluation. Here, we only use decision variable

decomposition to make operations (crossover and mutation) more effective and with

this, we can manage in a better way the curse of dimensionality (the performance

of an evolutionary algorithm deteriorates rapidly as the dimensionality of the search
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Figure 6.22: Graphical representation of the subcomponents (species) creation. Here,
we assume a vector of decision variables of dimension D which is divided into S
subcomponents of dimension m, created in a random way from the original vector of
decision variables and assigned to the S existing species, where D = m ∗ S.

space increases [133]) present in MOEAs. So, individuals will still be representing a

whole solution, but operators will be applied based on the corresponding species, and

not based on the individuals. The algorithm of our proposed MOEA based on double

decomposition (MOEA/D2) works as follows:

Input:

• The MOP

• N : The number of subproblems considered in MOEA/D

• S: The number of species for decision variables decomposition

• A set of N uniform spread weight vectors:

λ1, . . . , λN

• T : The neighborhood size

Output:

• PS: the final solutions found during the search

Step 1) Initialization:

Step 1.1) Set the external population of final solutions PS = ∅.
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Step 1.2) Find the T closest weight vectors to each weight vector. For each

i = 1, . . . , N , set B(i) = {i1, . . . , iT}, where λi1 , . . . , λiT are the T closest

weight vectors to λi .

Step 1.3) Generate an initial population x1, . . . xN randomly or by a problem-

specific method. Set FV i = f(xi).

Step 1.4) Divide the problem into S subcomponents c1, . . . , cS each one of

dimension m, created in a random way from the original vector of decision

variables x of dimension D (as shown in Figure 6.22), where D = m ∗ S,

such that, for each j = 1, . . . , N , xj = [c1
j , . . . , c

S
j ].

Step 1.5) Initialize z = [z1, . . . , zk]
T , where zi is the best value found so far

for objective fi.

Step 2) Update:

For i = 1, . . . , N do

Step 2.1) Crossover and Mutation:

For j = 1, . . . , S do

Step 2.1.1) Randomly select two indexes p, q from B(i), and then

generate a new solution yjc from cjp and cjq using crossover.

Step 2.1.2) Apply a problem-specific repair improvement heuristic on yjc

to produce y′jc.

Step 2.2) Assemble y′ from [y′1c , . . . , y
′S
c ], sorting the subcomponents to form

the original vector of decision variables.

Step 2.3) For each j = 1, . . . , k, if zj > fj(y
′), then set zj = fj(y

′).

Step 2.4) Update of Neighboring Solutions: For each index j ∈ B(i), if

gte(y′|λj, z∗) < gte(xj|λj, z∗), then FV j = f(y′).

Step 2.5) Remove from the external population PS all the vectors dominated

by f(y′). Add f(y′) to PS if no vectors in PS dominate it.
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Step 3) Stopping Criterion: Stop if the termination criterion is satisfied.

Otherwise, go to Step 2.

Since cjp and cjq in Step 2.1.1 are the current best subcomponent (in decision

variables space) solutions to neighbors of the ith subproblem (in objective function

space) and their dimensions are less than the original vector of decision variables x,

their offspring y′jc (already improved by mutation) should be a good contribution to

the complete assemble of the new final solution y′. Therefore, the resultant solution

is very likely to have a lower (improved) function value for the neighbors of the

ith subproblem. Also, by using only the decomposition nature of the cooperative

coevolutionary framework, there is no need for extra function evaluations. Therefore,

the efficiency of MOEA/D is not lost.

6.4.3 Experimental Results

We validated MOEA/D2 comparing its performance with respect to that of the

original MOEA/D and with respect to GDE3 [74]. Although GDE3 is not a

decomposition based algorithm, in the studies of parameter scalability presented in [6]

this differential evolution based MOEA obtained the best overall results, which is the

reason why we decided to include it in our comparative study.

GDE3

GDE3 is the third version of the so-called Generalized Differential Evolution (GDE)

algorithm [134], which is able to deal with multiple objectives. It starts with

a population of random solutions, which becomes the current population. At

each generation, an offspring population is created using the differential evolution

operators; then, the current population for the next generation is updated using the

solutions of both, the offspring and the parent populations. Before proceeding to the

next generation, the size of the population is reduced using non-dominated sorting

and a pruning technique aimed at diversity preservation, in a similar way as NSGA-II,
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although the pruning used in GDE3 modifies the crowding distance of NSGA-II in

order to solve some of its drawbacks when dealing with problems having more than

two objectives.

Methodology

For the purposes of this study, we adopted the Deb-Thiele-Laumanns-Zitzler (DTLZ)

test suite [135] with instances of three objectives with a number of decision variables

that ranges from 200 to 1200. In order to assess the performance of each approach, we

selected the hypervolume indicator [70], since this measure can differentiate between

degrees of complete outperformance of two sets.

The aim of this study is to identify which of the algorithms being compared is able

to get closer to the true Pareto front using the same number of objective function

evaluations and how they behave as the dimensionality of the MOP increases.

6.4.4 Parameterization

The parameters of each algorithm used in our study were chosen in such a way that we

could do a fair comparison among them. For MOEA/D2 and MOEA/D, we adopted

SBX and polynomial-based mutation [75] as the crossover and mutation operators,

respectively. The mutation probability was set to pm = 1/l, where l is the number

of decision variables; the distribution indexes for SBX and the polynomial-based

mutation were set as: ηc = 20 and ηm = 20. For the case of MOEA/D2, different

numbers of species were used for each problem instance, in order to have 2 decision

variables per species. So, for problems with 200 decision variables, 100 species were

used, for problems with 400 decision variables 200 species were used, and so on. The

maximum number of iterations adopted for all problems and MOEAs was set to 1000,

regardless of their dimensionality. The F and CR values for GDE3 were set to 0.5.

Finally, the population size for all algorithms in all problems instances was set to 100.
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6.4.5 Discussion of Results

In our experiments, we obtained the hypervolume value over the 25 independents

runs performed. Table 6.3 shows the average hypervolume of each of the MOEAs

being compared for each test problem adopted, as well as the results of the statistical

analysis that we conducted to validate our experiments, for which we used Wilcoxon’s

rank sum. Also, we show the improvement on the hypervolume value that our

approach was able to obtain against the other algorithms. From Figures 6.23 to 6.29,

we plotted the results of the median of the 25 runs for MOEA/D2 and MOEA/D for

the DTLZ test problems with 1200 decision variables. GDE3 presented the poorest

performance in all problem instances. MOEA/D produced competitive results for

DTLZ2 and DTLZ4, although it could not outperform our approach in any problem

instance. According to Wilcoxon’s test, we cannot reject the null hypothesis in only

two cases when comparing our approach to MOEA/D, DTLZ2 and DTLZ4 with 200

decision variables, which means that in these cases both algorithms have a similar

behavior. Respect to all other cases, our approach outperfomed MOEA/D and GDE3,

and as the results show, as the dimensionality of the problems grows, the improvement

obtained by our approach on the hypervolume value increases. Based on the results of

Wilcoxon’s test, we can confirm that the null hypothesis can be rejected, so MOEA/D2

yields the best overall results. Also, from Figures 6.23 to 6.29 we can observe that,

using the same number of function evaluations, MOEA/D2 is able to get closer than

MOEA/D to the true Pareto front in all problems.

6.5 MOEA/D2 against cooperative coevolution

and MOEADVA

Next, we validate MOEA/D2 against two MOEAs created to deal with large scale

MOPs, an improved version of CCDE3 described in Section 4.3 of this thesis (which

changes differential evolution operators by SBX and PBM operators) and against the
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MOEA/D2 MOEA/D MOEA/D2-MOEA/D MOEA/D2-MOEA/D GDE3 MOEAD2-GDE3 MOEAD2-GDE3

Function No. Vars HV HV Improvement P(H) HV Improvement P(H)

DTLZ1 200 124999991998953.0000 124999970289543.0000 21709410.2344 0.000000 (1) 124923656113375.0000 76335885578.2031 0.000000 (1)

400 124999755014274.0000 124999298073533.0000 456940740.9063 0.000000 (1) 124181465622337.0000 818289391936.5000 0.000000 (1)

600 124998478272908.0000 124996030413092.0000 2447859816.0625 0.000000 (1) 122039040800943.0000 2959437471964.5000 0.000000 (1)

800 124995060011719.0000 124985536236730.0000 9523774988.8594 0.000000 (1) 117702084444497.0000 7292975567222.5300 0.000000 (1)

1000 124986970597954.0000 124955356063479.0000 31614534475.2500 0.000000 (1) 110256296271387.0000 14730674326567.2000 0.000000 (1)

1200 124970550659900.0000 124894718579624.0000 75832080276.4531 0.000000 (1) 99191612716078.9000 25778937943821.2000 0.000000 (1)

DTLZ2 200 728999.3904 728999.3862 0.0043 0.712386 (0) 728989.2937 10.0967 0.000000 (1)

400 728999.3808 728999.3680 0.0128 0.043602 (1) 728321.7458 677.6350 0.000000 (1)

600 728999.3605 728999.3085 0.0520 0.000000 (1) 721831.2296 7168.1309 0.000000 (1)

800 728999.2870 728999.1289 0.1581 0.000000 (1) 698874.5807 30124.7063 0.000000 (1)

1000 728999.0954 728998.4267 0.6687 0.000000 (1) 653788.8012 75210.2941 0.000000 (1)

1200 728998.4393 728994.9746 3.4647 0.000000 (1) 571671.4472 157326.9921 0.000000 (1)

DTLZ3 200 1727999970755560.0000 1727999849624200.0000 121131355.7500 0.000000 (1) 1727222040269000.0000 777930486563.2500 0.000000 (1)

400 1727996400439630.0000 1727991944817710.0000 4455621923.0000 0.000000 (1) 1716392835963730.0000 11603564475898.3000 0.000000 (1)

600 1727970985655110.0000 1727945403715830.0000 25581939288.2500 0.000000 (1) 1679379508439150.0000 48591477215964.8000 0.000000 (1)

800 1727890440027340.0000 1727805158813020.0000 85281214323.2500 0.000000 (1) 1597662758376130.0000 130227681651214.0000 0.000000 (1)

1000 1727715593620590.0000 1727460212199730.0000 255381420857.2500 0.000000 (1) 1463152563598520.0000 264563030022069.0000 0.000000 (1)

1200 1727363193497010.0000 1726773363259150.0000 589830237867.0000 0.000000 (1) 1259639566256750.0000 467723627240265.0000 0.000000 (1)

DTLZ4 200 728999.4140 728999.4078 0.0062 0.277231 (0) 728991.3901 8.0240 0.000000 (1)

400 728999.4065 728999.3896 0.1154 0.000000 (1) 728201.9349 434.6057 0.000000 (1)

600 728999.3788 728999.3464 0.0324 0.000000 (1) 720704.2965 8295.0824 0.000000 (1)

800 728999.3150 728999.1945 0.1206 0.000000 (1) 696046.7161 32952.5989 0.000000 (1)

1000 728999.1477 728998.6192 0.5285 0.000000 (1) 644641.3868 84357.7609 0.000000 (1)

1200 728998.5780 728994.9171 3.6609 0.000000 (1) 559363.2154 169635.3626 0.000000 (1)

Table 6.4: Average of the hypervolume indicator values of the results obtained for the DTLZ1, DTLZ2, DTLZ3 and
DTLZ4 test problems. We show average values over 25 independent runs. The cells containing the best hypervolume
value for each problem have a grey colored background. The improvement columns show the improvement on the
hypervolume value that our approach was able to get against the other algorithms. The P(H) columns shows the
results of the statistical analysis applied to our experiments using Wilcoxon’s rank sum. P is the probability of
observing the given result (the null hypothesis is true). Small values of P cast doubt on the validity of the null
hypothesis. H = 0 indicates that the null hypothesis (“medians are equal”) cannot be rejected at the 5% level. H = 1
indicates that the null hypothesis can be rejected at the 5% level.
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MOEA/D2 MOEA/D MOEA/D2-MOEA/D MOEA/D2-MOEA/D GDE3 MOEAD2-GDE3 MOEAD2-GDE3

Function No. Vars HV HV Improvement P(H) HV Improvement P(H)

DTLZ5 200 1727866.0538 1727865.9384 0.1154 0.013007 (1) 1727431.4481 434.6057 0.000000 (1)

400 1727865.5061 1727864.6278 0.8784 0.000000 (1) 1721336.0150 6529.4911 0.000000 (1)

600 1727863.4153 1727859.1967 4.2187 0.000000 (1) 1697620.6971 30242.7183 0.000000 (1)

800 1727857.2346 1727840.7092 16.5255 0.000000 (1) 1635056.7976 92800.4370 0.000000 (1)

1000 1727837.7148 1727760.3047 77.4101 0.000000 (1) 1510727.5139 217110.2010 0.000000 (1)

1200 1727773.5677 1727524.1382 249.4296 0.000000 (1) 1313095.5122 414678.0555 0.000000 (1)

DTLZ6 200 999967922.4861 999899450.4162 68472.0699 0.000000 (1) 999330750.1795 637172.3066 0.000000 (1)

400 998891441.7157 996820925.0570 2070516.6587 0.000000 (1) 987305237.5147 11586204.2010 0.000000 (1)

600 990768252.6193 981381295.3432 9386957.2761 0.000000 (1) 948509739.2585 42258513.3608 0.000000 (1)

800 964064335.0353 937687686.8457 26376648.1896 0.000000 (1) 874883514.5826 89180820.4527 0.000000 (1)

1000 906131328.8124 855654049.3429 50477279.4695 0.000000 (1) 744576613.9787 161554714.8337 0.000000 (1)

1200 803763312.2166 712087777.8538 91675534.3628 0.000000 (1) 551828946.6234 251934365.5932 0.000000 (1)

DTLZ7 200 2203.4849 2203.4656 0.0193 0.000000 (1) 2055.0598 148.4252 0.000000 (1)

400 2193.4627 2192.7324 0.7303 0.000000 (1) 1699.4438 494.0190 0.000000 (1)

600 2090.3379 2067.9036 22.4343 0.000413 (1) 1338.1314 752.2065 0.000000 (1)

800 1842.2642 1815.7768 26.4875 0.013007 (1) 1059.6383 782.6260 0.000000 (1)

1000 1605.8489 1526.3840 79.4649 0.000001 (1) 855.6279 750.2210 0.000000 (1)

1200 1398.8865 1352.2878 46.5987 0.006223 (1) 718.3771 680.5094 0.000000 (1)

Table 6.5: Average of the hypervolume indicator values of the results obtained for the DTLZ5, DTLZ6 and
DTLZ7 test problems. We show average values over 25 independent runs. The cells containing the best hypervolume
value for each problem have a grey colored background. The improvement columns show the improvement on the
hypervolume value that our approach was able to get against the other algorithms. The P(H) columns shows the
results of the statistical analysis applied to our experiments using Wilcoxon’s rank sum. P is the probability of
observing the given result (the null hypothesis is true). Small values of P cast doubt on the validity of the null
hypothesis. H = 0 indicates that the null hypothesis (“medians are equal”) cannot be rejected at the 5% level. H = 1
indicates that the null hypothesis can be rejected at the 5% level.
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Figure 6.23: Pareto front approximations obtained by MOEA/D and MOEA/D2 for DTLZ1 with 1200 decision
variables.
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Figure 6.24: Pareto front approximations obtained by MOEA/D and MOEA/D2 for DTLZ2 with 1200 decision
variables.
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Figure 6.25: Pareto front approximations obtained by MOEA/D and MOEA/D2 for DTLZ3 with 1200 decision
variables.
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Figure 6.26: Pareto front approximations obtained by MOEA/D and MOEA/D2 for DTLZ4 with 1200 decision
variables.
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Figure 6.27: Pareto front approximations obtained by MOEA/D and MOEA/D2 for DTLZ5 with 1200 decision
variables.
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Figure 6.28: Pareto front approximations obtained by MOEA/D and MOEA/D2 for DTLZ6 with 1200 decision
variables.
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Figure 6.29: Pareto front approximations obtained by MOEA/D and MOEA/D2 for DTLZ7 with 1200 decision
variables.

MOEADVA, described in Section 4.4.

Methodology

For the purposes of this study, we adopted the Zitzler-Deb-Thiele (ZDT) [2], the

Deb-Thiele-Laumanns-Zitzler (DTLZ) [3] and the Walking-Fish-Group (WFG) [4]

test suites (see Appendix A for further details about the adopted problems), with

instances of two objectives for the ZDT problems and three objectives for the DTLZ

and WFG test problems with a number of decision variables that ranges from 200 to

1000. In order to assess the performance of each approach, we again make use of the

hypervolume indicator [70], since this measure can differentiate between degrees of

complete outperformance of two sets.

The aim of this study is to identify which of the algorithms being compared is able

to get closer to the true Pareto front using the same number of objective function

evaluations and how they behave as the dimensionality of the MOP increases.
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6.5.1 Parameterization

The parameters of each algorithm used in our study were chosen in such a way that

we could do a fair comparison among them. For MOEA/D2 and the Cooperative

Coevolutionary algorithm (CCMOEA), we adopted SBX and polynomial-based

mutation [75] as the crossover and mutation operators, respectively. The mutation

probability was set to pm = 1/l, where l is the number of decision variables; the

distribution indexes for SBX and the polynomial-based mutation were set as: ηc = 20

and ηm = 20. For the case of our approach1, different numbers of species were used

for each problem instance, in order to have 2 decision variables per species. So, for

problems with 200 decision variables, 100 species were used, for problems with 400

decision variables 200 species were used, and so on. For the case of CCMOEA, we

adopt a number of species which let us create species of 10 decision variables, so for

problems with 200 decision variables, 20 species were used, for problems with 400

decision variables 40 species were used, and so on. In all cases a population size

of 52 individual per species was adopted and one generation per cycle was use in

order to allow the maximal number of collaborations between species. For the case of

MOEADVA and MOEAD, we use a population size of 100 individuals for problems

with 2 objectives functions and 120 individuals for problems with 3 objectives. The

maximum number of function evaluations for each dimensionality in shown in Table

6.6.

6.5.2 Discussion of Results

In our experiments, we obtained the hypervolume value over the 25 independents

runs performed. Tables 6.7 to ?? shows the average hypervolume of each of the

MOEAs being compared for each test problem adopted, as well as the results of

the statistical analysis that we conducted to validate our experiments, for which we

used Wilcoxon’s rank sum. Also, we show the improvement on the hypervolume

1To have a better understanding of the parameters of MOEA/D2, a sensitivity analysis of
parameters is presented in Appendix B.
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No. Vars FEs

200 400000

400 1500000

600 3300000

800 5800000

1000 9100000

Table 6.6: Number of function evaluations adopted for each problem dimension.

value that our approach was able to obtain against the other algorithms. When

a cero values is presented, the algorithm could not obtained any solution which

dominates the adopted reference points2 for the hypervolume computation. From

Figures 6.30 to 6.50, we plotted the results of the median of the 25 runs for

MOEA/D2 and MOEA/D for the DTLZ test problems with 200 decision variables.

CCMOEA presented the poorest performance in all problem instances, although it

was very competitive against MOEADVA. According to Wilcoxon’s test, we cannot

reject the null hypothesis in most ZDT problems, which means that in these cases

the three approaches have a similar behavior. Respect to all other cases, our

approach outperfomed MOEADVA and CCMOEA, and as the results show, as the

dimensionality of the problems grows, the improvement obtained by our approach

on the hypervolume value increases. Based on the results of Wilcoxon’s test, we can

confirm that the null hypothesis can be rejected, so MOEA/D2 yields the best overall

results. Also, from Figures 6.30 to 6.50, we can observe that, using the same number

of function evaluations, MOEA/D2 is able to get closer than MOEADVA to the true

Pareto front in all problems. We did not include CCMOEA in these Figures since

in some cases it it so far from the others that makes it difficult to appreciate the

results of the other two approaches. Tables 6.12 to 6.14 shows the computational

time of each algorithm in minutes, as can be observed the one that takes more time

is MOEA/D2, this since the nature of the improvement of the crossover technique it

2The adopted reference points were [1.2, 16.1] and [200.1200.1200.1] for two and three objective
problems respectively
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Figure 6.30: Pareto front approximations obtained by MOEADVA and MOEA/D2 for ZDT1 with 200 decision
variables.

adopts uses more computational resources than the other techniques, however this

resources are not function evaluations, therefore is an allowable spend.

Cinvestav Departamento de Computación



Large Scale Optimization Schemes 127

MOEA/D2 MOEADVA MOEA/D2-MOEADVA MOEA/D2-MOEADVA CCMOEA MOEA/D2-CCMOEA MOEA/D2-CCMOEA

Problem No. Vars HV HV Improvement P(H) HV Improvement P(H)

ZDT1 200 18.967 18.87 0.097 0.750832 (0) 18.86 0.107 0.402504 (0)

ZDT1 400 18.967 18.922 0.045 0.623605 (0) 18.875 0.092 0.544370 (0)

ZDT1 600 18.967 18.894 0.073 0.794969 (0) 18.876 0.091 0.976965 (0)

ZDT1 800 18.967 18.874 0.093 0.795012 (0) 18.881 0.086 0.795012 (0)

ZDT1 1000 18.967 18.875 0.092 0.623378 (0) 18.886 0.081 0.370532 (0)

ZDT2 200 18.633 18.428 0.205 1.000000 (0) 18.547 0.086 0.435731 (0)

ZDT2 400 18.633 18.524 0.109 0.930957 (0) 18.57 0.063 0.125857 (0)

ZDT2 600 18.633 18.467 0.166 0.156852 (0) 18.581 0.052 0.839722 (0)

ZDT2 800 18.633 18.437 0.196 0.750570 (0) 18.583 0.050 0.435231 (0)

ZDT2 1000 18.633 18.439 0.194 0.976945 (0) 18.588 0.045 0.750517 (0)

ZDT3 200 19.488 19.384 0.104 0.402504 (0) 19.386 0.102 0.193931 (0)

ZDT3 400 19.488 19.442 0.046 0.839826 (0) 19.384 0.104 0.435631 (0)

ZDT3 600 19.488 19.414 0.074 0.125940 (0) 19.414 0.074 0.236482 (0)

ZDT3 800 19.488 19.389 0.099 0.583360 (0) 19.428 0.060 0.214494 (0)

ZDT3 1000 19.488 19.391 0.097 0.930972 (0) 19.447 0.041 0.435631 (0)

ZDT4 200 11.536 0 11.536 0.021978 (1) 0 11.536 0.021978 (1)

ZDT4 400 14.802 0 14.802 0.021978 (1) 0 14.802 0.021978 (1)

ZDT4 600 16.064 0 16.064 0.021978 (1) 0 16.064 0.021978 (1)

ZDT4 800 16.463 0 16.463 0.021978 (1) 0 16.463 0.021978 (1)

ZDT4 1000 16.463 0 16.463 0.021978 (1) 0 16.463 0.021978 (1)

ZDT6 200 14.37 11.106 3.264 0.795012 (0) 12.744 1.626 0.707454 (0)

ZDT6 400 14.383 11.52 2.863 0.839826 (0) 13.11 1.273 0.583279 (0)

ZDT6 600 14.387 11.27 3.117 0.435631 (0) 13.252 1.135 0.174760 (0)

ZDT6 800 14.388 11.421 2.967 0.461538 (0) 13.38 1.008 0.193931 (0)

ZDT6 1000 14.388 11.537 2.851 0.461538 (0) 13.462 0.926 0.174760 (0)

Table 6.7: Average of the hypervolume indicator values of the results obtained for the ZDTs test problems. We
show average values over 25 independent runs. The cells containing the best hypervolume value for each problem have
a grey colored background. The improvement columns show the improvement on the hypervolume value that our
approach was able to get against the other algorithms. The P(H) columns shows the results of the statistical analysis
applied to our experiments using Wilcoxon’s rank sum. P is the probability of observing the given result (the null
hypothesis is true). Small values of P cast doubt on the validity of the null hypothesis. H = 0 indicates that the null
hypothesis (“medians are equal”) cannot be rejected at the 5% level. H = 1 indicates that the null hypothesis can be
rejected at the 5% level.
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MOEA/D2 MOEADVA MOEA/D2-MOEADVA MOEA/D2-MOEADVA CCMOEA MOEA/D2-CCMOEA MOEA/D2-CCMOEA

Problem No. Vars HV HV Improvement P(H) HV Improvement P(H)

DTLZ1 200 7272532.054 1538881.298 5733650.756 0.000000 (1) 0 7272532.054 0.000000 (1)

DTLZ1 400 7759193.731 637053.009 7122140.722 0.000000 (1) 0 7759193.731 0.000000 (1)

DTLZ1 600 7980879.18 0 7980879.180 0.000000 (1) 0 7980879.180 0.000000 (1)

DTLZ1 800 8009893.971 0 8009893.971 0.000000 (1) 0 8009893.971 0.000000 (1)

DTLZ1 1000 8011818.42 0 8011818.420 0.000000 (1) 0 8011818.420 0.000000 (1)

DTLZ2 200 8011978.698 8011949.081 29.617 0.000000 (1) 8011940.199 38.499 0.000000 (1)

DTLZ2 400 8011979.811 8011937.398 42.413 0.000000 (1) 8011889.452 90.359 0.000000 (1)

DTLZ2 600 8011976.993 8011936.571 40.422 0.000000 (1) 8011127.899 849.094 0.000000 (1)

DTLZ2 800 8011977.857 8011928.385 49.472 0.000000 (1) 8008194.338 3783.519 0.000000 (1)

DTLZ2 1000 8011978.256 8011927.397 50.859 0.000000 (1) 7998530.71 13447.546 0.000000 (1)

DTLZ3 200 5918889.483 0 5918889.483 0.000000 (1) 0 5918889.483 0.000000 (1)

DTLZ3 400 7752924.148 0 7752924.148 0.000000 (1) 0 7752924.148 0.000000 (1)

DTLZ3 600 8007318.671 0 8007318.671 0.000000 (1) 0 8007318.671 0.000000 (1)

DTLZ3 800 8011733.405 0 8011733.405 0.000000 (1) 0 8011733.405 0.000000 (1)

DTLZ3 1000 8011912.048 0 8011912.048 0.000000 (1) 0 8011912.048 0.000000 (1)

DTLZ4 200 8011966.489 8011841.928 124.561 0.000000 (1) 8007979.705 3986.784 0.000000 (1)

DTLZ4 400 8011948.377 8011845.097 103.280 0.000000 (1) 8007866.512 4081.865 0.000000 (1)

DTLZ4 600 8011936.587 8011831.641 104.946 0.000000 (1) 8011507.33 429.257 0.000000 (1)

DTLZ4 800 8011932.566 8011832.866 99.700 0.000000 (1) 8008491.248 3441.318 0.000000 (1)

DTLZ4 1000 8011929.679 8011836.416 93.263 0.000000 (1) 7999003.194 12926.485 0.000000 (1)

Table 6.8: Average of the hypervolume indicator values of the results obtained for the DTLZ1-4 test problems.
We show average values over 25 independent runs. The cells containing the best hypervolume value for each problem
have a grey colored background. The improvement columns show the improvement on the hypervolume value that
our approach was able to get against the other algorithms. The P(H) columns shows the results of the statistical
analysis applied to our experiments using Wilcoxon’s rank sum. P is the probability of observing the given result (the
null hypothesis is true). Small values of P cast doubt on the validity of the null hypothesis. H = 0 indicates that the
null hypothesis (“medians are equal”) cannot be rejected at the 5% level. H = 1 indicates that the null hypothesis
can be rejected at the 5% level.
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MOEA/D2 MOEADVA MOEA/D2-MOEADVA MOEA/D2-MOEADVA CCMOEA MOEA/D2-CCMOEA MOEA/D2-CCMOEA

Problem No. Vars HV HV Improvement P(H) HV Improvement P(H)

DTLZ5 200 8011770.318 8011729.558 40.760 0.000000 (1) 8011602.836 167.482 0.000000 (1)

DTLZ5 400 8011774.982 8011683.191 91.791 0.000000 (1) 8010964.755 810.227 0.000000 (1)

DTLZ5 600 8011758.987 8011678.262 80.725 0.000000 (1) 8008683.843 3075.144 0.000000 (1)

DTLZ5 800 8011763.281 8011676.16 87.121 0.000000 (1) 8004408.088 7355.193 0.000000 (1)

DTLZ5 1000 8011765.653 8011675.234 90.419 0.000000 (1) 7991717.465 20048.188 0.000000 (1)

DTLZ6 200 8010016.614 6645759.081 1364257.533 0.000000 (1) 5127288.267 2882728.347 0.000000 (1)

DTLZ6 400 8009820.7 1201970.295 6807850.405 0.000000 (1) 0 8009820.700 0.000000 (1)

DTLZ6 600 8008743.839 0 8008743.839 0.000000 (1) 0 8008743.839 0.000000 (1)

DTLZ6 800 8007469.038 0 8007469.038 0.000000 (1) 0 8007469.038 0.000000 (1)

DTLZ6 1000 8006158.393 0 8006158.393 0.000000 (1) 0 8006158.393 0.000000 (1)

DTLZ7 200 7901714.043 7886137.17 15576.873 0.000000 (1) 7781840.636 119873.407 0.000000 (1)

DTLZ7 400 7901723.838 7893094.014 8629.824 0.000000 (1) 7745357.704 156366.134 0.000000 (1)

DTLZ7 600 7906767.656 7887652.596 19115.060 0.000000 (1) 7710787.753 195979.903 0.000000 (1)

DTLZ7 800 7906767.197 7891466.363 15300.834 0.000000 (1) 7698037.71 208729.487 0.000000 (1)

DTLZ7 1000 7906767.371 7892924.008 13843.363 0.000000 (1) 7659711.369 247056.002 0.000000 (1)

Table 6.9: Average of the hypervolume indicator values of the results obtained for the DTLZ5-7 test problems.
We show average values over 25 independent runs. The cells containing the best hypervolume value for each problem
have a grey colored background. The improvement columns show the improvement on the hypervolume value that
our approach was able to get against the other algorithms. The P(H) columns shows the results of the statistical
analysis applied to our experiments using Wilcoxon’s rank sum. P is the probability of observing the given result (the
null hypothesis is true). Small values of P cast doubt on the validity of the null hypothesis. H = 0 indicates that the
null hypothesis (“medians are equal”) cannot be rejected at the 5% level. H = 1 indicates that the null hypothesis
can be rejected at the 5% level.
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MOEA/D2 MOEADVA MOEA/D2-MOEADVA MOEA/D2-MOEADVA CCMOEA MOEA/D2-CCMOEA MOEA/D2-CCMOEA

Problem No. Vars HV HV Improvement P(H) HV Improvement P(H)

WFG1 200 7922873.746 7835726.48 87147.266 0.000000 (1) 7871404.772 51468.974 0.000000 (1)

WFG1 400 7927101.242 7836910.834 90190.408 0.000000 (1) 7875468.421 51632.821 0.000000 (1)

WFG1 600 7927967.952 7835874.895 92093.057 0.000000 (1) 7879724.58 48243.372 0.000000 (1)

WFG1 800 7928807.4 7836348.646 92458.754 0.000000 (1) 7882709.959 46097.441 0.000000 (1)

WFG1 1000 7928194.311 7836868.956 91325.355 0.000000 (1) 7884204.399 43989.912 0.000000 (1)

WFG2 200 7990940.294 7956269.877 34670.417 0.000000 (1) 7950331.56 40608.734 0.000000 (1)

WFG2 400 7987179.889 7954683.512 32496.377 0.000000 (1) 7946993.508 40186.381 0.000000 (1)

WFG2 600 7986616.815 7951500.139 35116.676 0.000000 (1) 7943972.594 42644.221 0.000000 (1)

WFG2 800 7986203.275 7944821.24 41382.035 0.000000 (1) 7945270.074 40933.201 0.000000 (1)

WFG2 1000 7985901.771 7952169.208 33732.563 0.000000 (1) 7952829.666 33072.105 0.000000 (1)

WFG3 200 7985262.217 7979580.302 5681.915 0.000000 (1) 7972722.929 12539.288 0.000000 (1)

WFG3 400 7982286.141 7980830.47 1455.671 0.000000 (1) 7967912.231 14373.910 0.000000 (1)

WFG3 600 7981557.8 7975331.333 6226.467 0.000000 (1) 7962232.451 19325.349 0.000000 (1)

WFG3 800 7981287.38 7959773.467 21513.913 0.000000 (1) 7962962.917 18324.463 0.000000 (1)

WFG3 1000 7988856.468 7981036.671 7819.797 0.000000 (1) 7960257.929 28598.539 0.000000 (1)

WFG4 200 8011540.032 7923442.247 88097.785 0.000000 (1) 7982122.934 29417.098 0.000000 (1)

WFG4 400 8011569.601 7924408.716 87160.885 0.000000 (1) 7978893.296 32676.305 0.000000 (1)

WFG4 600 8011520.509 7924079.898 87440.611 0.000000 (1) 7977200.288 34320.221 0.000000 (1)

WFG4 800 8011533.212 7924377.544 87155.668 0.000000 (1) 7977115.255 34417.957 0.000000 (1)

WFG4 1000 8011523.357 7924722.19 86801.167 0.000000 (1) 7976237.29 35286.067 0.000000 (1)

WFG5 200 8005490.116 7974477.965 31012.151 0.000000 (1) 7966328.97 39161.146 0.000000 (1)

WFG5 400 8005531.567 7975345.255 30186.312 0.000000 (1) 7960925.545 44606.022 0.000000 (1)

WFG5 600 8005518.595 7974910.438 30608.157 0.000000 (1) 7958685.006 46833.589 0.000000 (1)

WFG5 800 8005524.006 7975258.84 30265.166 0.000000 (1) 7957232.91 48291.096 0.000000 (1)

WFG5 1000 8005537.837 7975527.59 30010.247 0.000000 (1) 7958307.011 47230.826 0.000000 (1)

Table 6.10: Average of the hypervolume indicator values of the results obtained for the WFG1-5 test problems.
We show average values over 25 independent runs. The cells containing the best hypervolume value for each problem
have a grey colored background. The improvement columns show the improvement on the hypervolume value that
our approach was able to get against the other algorithms. The P(H) columns shows the results of the statistical
analysis applied to our experiments using Wilcoxon’s rank sum. P is the probability of observing the given result (the
null hypothesis is true). Small values of P cast doubt on the validity of the null hypothesis. H = 0 indicates that the
null hypothesis (“medians are equal”) cannot be rejected at the 5% level. H = 1 indicates that the null hypothesis
can be rejected at the 5% level.
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MOEA/D2 MOEADVA MOEA/D2-MOEADVA MOEA/D2-MOEADVA CCMOEA MOEA/D2-CCMOEA MOEA/D2-CCMOEA

Problem No. Vars HV HV Improvement P(H) HV Improvement P(H)

WFG6 200 8010650.276 7980329.793 30320.483 0.000000 (1) 7960448.383 50201.893 0.000000 (1)

WFG6 400 8011180.054 7985703.349 25476.705 0.000000 (1) 7953347.477 57832.577 0.000000 (1)

WFG6 600 8011312.014 7988445.759 22866.255 0.000000 (1) 7952137.625 59174.389 0.000000 (1)

WFG6 800 8011414.494 7989607.939 21806.555 0.000000 (1) 7951605.716 59808.778 0.000000 (1)

WFG6 1000 8011254.828 7990518.412 20736.416 0.000000 (1) 7946826.852 64427.976 0.000000 (1)

WFG7 200 8011362.288 8008668.662 2693.626 0.000000 (1) 7968167.391 43194.897 0.000000 (1)

WFG7 400 8011430.934 8007615.846 3815.088 0.000000 (1) 7963801.944 47628.990 0.000000 (1)

WFG7 600 8011462.834 8005213.926 6248.908 0.000000 (1) 7962932.903 48529.931 0.000000 (1)

WFG7 800 8011452.828 7993359.968 18092.860 0.000000 (1) 7961273.928 50178.900 0.000000 (1)

WFG7 1000 8011481.764 8005913.608 5568.156 0.000000 (1) 7961182.174 50299.590 0.000000 (1)

WFG8 200 7996726.765 7962918.085 33808.680 0.000000 (1) 7968797.162 27929.603 0.000000 (1)

WFG8 400 7996271.274 7968218.982 28052.292 0.000000 (1) 7964974.147 31297.127 0.000000 (1)

WFG8 600 7996282.528 7970145.483 26137.045 0.000000 (1) 7962911.357 33371.171 0.000000 (1)

WFG8 800 7996317.726 7972277.2 24040.526 0.000000 (1) 7962816.827 33500.899 0.000000 (1)

WFG8 1000 7996627.817 7972176.163 24451.654 0.000000 (1) 7962723.827 33903.990 0.000000 (1)

WFG9 200 8009971.451 7997740.588 12230.863 0.000000 (1) 7959506.023 50465.428 0.000000 (1)

WFG9 400 8009584.103 7995020.482 14563.621 0.000000 (1) 7950343.561 59240.542 0.000000 (1)

WFG9 600 8009417.728 7975631.928 33785.800 0.000000 (1) 7950172.817 59244.911 0.000000 (1)

WFG9 800 8009428.918 7987722.583 21706.335 0.000000 (1) 7949128.124 60300.794 0.000000 (1)

WFG9 1000 8009713.817 7987623.583 22090.234 0.000000 (1) 7951823.91 57889.907 0.000000 (1)

Table 6.11: Average of the hypervolume indicator values of the results obtained for the WFG6-9 test problems.
We show average values over 25 independent runs. The cells containing the best hypervolume value for each problem
have a grey colored background. The improvement columns show the improvement on the hypervolume value that
our approach was able to get against the other algorithms. The P(H) columns shows the results of the statistical
analysis applied to our experiments using Wilcoxon’s rank sum. P is the probability of observing the given result (the
null hypothesis is true). Small values of P cast doubt on the validity of the null hypothesis. H = 0 indicates that the
null hypothesis (“medians are equal”) cannot be rejected at the 5% level. H = 1 indicates that the null hypothesis
can be rejected at the 5% level.
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Figure 6.31: Pareto front approximations obtained by MOEADVA and MOEA/D2 for ZDT2 with 200 decision
variables.
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Figure 6.32: Pareto front approximations obtained by MOEADVA and MOEA/D2 for ZDT3 with 200 decision
variables.
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Figure 6.33: Pareto front approximations obtained by MOEADVA and MOEA/D2 for ZDT4 with 200 decision
variables.
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Figure 6.34: Pareto front approximations obtained by MOEADVA and MOEA/D2 for ZDT6 with 200 decision
variables.
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Figure 6.35: Pareto front approximations obtained by MOEADVA and MOEA/D2 for DTLZ1 with 200 decision
variables.
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Figure 6.36: Pareto front approximations obtained by MOEADVA and MOEA/D2 for DTLZ2 with 200 decision
variables.
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Figure 6.37: Pareto front approximations obtained by MOEADVA and MOEA/D2 for DTLZ3 with 200 decision
variables.
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Figure 6.38: Pareto front approximations obtained by MOEADVA and MOEA/D2 for DTLZ4 with 200 decision
variables.
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Figure 6.39: Pareto front approximations obtained by MOEADVA and MOEA/D2 for DTLZ5 with 200 decision
variables.
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Figure 6.40: Pareto front approximations obtained by MOEADVA and MOEA/D2 for DTLZ6 with 200 decision
variables.
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Figure 6.41: Pareto front approximations obtained by MOEADVA and MOEA/D2 for DTLZ7 with 200 decision
variables.
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Figure 6.42: Pareto front approximations obtained by MOEADVA and MOEA/D2 for WFG1 with 200 decision
variables.
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Figure 6.43: Pareto front approximations obtained by MOEADVA and MOEA/D2 for WFG2 with 200 decision
variables.
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Figure 6.44: Pareto front approximations obtained by MOEADVA and MOEA/D2 for WFG3 with 200 decision
variables.
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Figure 6.45: Pareto front approximations obtained by MOEADVA and MOEA/D2 for WFG4 with 200 decision
variables.
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Figure 6.46: Pareto front approximations obtained by MOEADVA and MOEA/D2 for WFG5 with 200 decision
variables.
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Figure 6.47: Pareto front approximations obtained by MOEADVA and MOEA/D2 for WFG6 with 200 decision
variables.
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Figure 6.48: Pareto front approximations obtained by MOEADVA and MOEA/D2 for WFG7 with 200 decision
variables.
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Figure 6.49: Pareto front approximations obtained by MOEADVA and MOEA/D2 for WFG8 with 200 decision
variables.
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Figure 6.50: Pareto front approximations obtained by MOEADVA and MOEA/D2 for WFG9 with 200 decision
variables.
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Problem No. Vars MOEA/D2 MOEADVA CCMOEA

ZDT1 200 0.401 0.018 0.037

ZDT1 400 3.174 0.181 0.260

ZDT1 600 10.857 0.503 1.002

ZDT1 800 21.685 1.117 2.419

ZDT1 1000 41.888 2.093 4.509

ZDT2 200 0.273 0.018 0.039

ZDT2 400 2.225 0.180 0.256

ZDT2 600 8.025 0.500 1.003

ZDT2 800 17.315 1.109 2.547

ZDT2 1000 33.406 2.098 4.604

ZDT3 200 0.467 0.019 0.036

ZDT3 400 2.869 0.182 0.261

ZDT3 600 11.451 0.505 0.963

ZDT3 800 21.613 1.118 2.365

ZDT3 1000 37.757 2.127 4.577

ZDT4 200 0.352 0.068 0.103

ZDT4 400 2.453 0.661 0.915

ZDT4 600 8.115 2.056 3.863

ZDT4 800 19.037 4.816 8.639

ZDT4 1000 35.664 9.320 22.336

ZDT6 200 0.306 0.021 0.046

ZDT6 400 2.185 0.204 0.318

ZDT6 600 7.140 0.566 1.294

ZDT6 800 17.007 1.265 2.217

ZDT6 1000 32.238 2.385 5.475

Table 6.12: Average of the computational time (in minutes) of each algorithm when solving ZDT test suite.
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Problem No. Vars MOEA/D2 MOEADVA CCMOEA

DTLZ1 200 0.640 0.079 0.108

DTLZ1 400 6.611 0.854 0.945

DTLZ1 600 12.307 2.653 3.911

DTLZ1 800 25.876 6.204 7.187

DTLZ1 1000 46.969 11.948 22.429

DTLZ2 200 0.581 0.025 0.051

DTLZ2 400 3.981 0.241 0.397

DTLZ2 600 10.392 0.680 1.431

DTLZ2 800 21.553 1.534 3.367

DTLZ2 1000 38.880 2.906 7.088

DTLZ3 200 0.560 0.080 0.101

DTLZ3 400 4.370 0.858 0.901

DTLZ3 600 11.431 2.679 3.504

DTLZ3 800 24.528 6.248 9.740

DTLZ3 1000 44.646 11.984 19.799

DTLZ4 200 0.562 0.028 0.064

DTLZ4 400 3.822 0.251 0.452

DTLZ4 600 11.896 0.702 1.456

DTLZ4 800 22.145 1.558 3.905

DTLZ4 1000 39.293 2.928 9.884

DTLZ5 200 0.587 0.029 0.052

DTLZ5 400 3.464 0.298 0.372

DTLZ5 600 9.664 0.862 1.430

DTLZ5 800 20.187 1.957 3.851

DTLZ5 1000 36.926 3.701 7.943

DTLZ6 200 0.471 0.108 0.164

DTLZ6 400 3.799 1.079 1.167

DTLZ6 600 10.694 3.396 5.111

DTLZ6 800 23.173 7.946 12.286

DTLZ6 1000 43.950 15.337 25.866

DTLZ7 200 0.534 0.021 0.061

DTLZ7 400 5.112 0.189 0.328

DTLZ7 600 10.257 0.518 2.095

DTLZ7 800 20.888 1.152 2.706

DTLZ7 1000 38.434 2.123 5.562

Table 6.13: Average of the computational time (in minutes) of each algorithm when solving DTLZ test suite.
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Problem No. Vars MOEA/D2 MOEADVA CCMOEA

WFG1 200 0.852 0.319 0.795

WFG1 400 5.830 2.875 5.661

WFG1 600 17.537 8.784 21.852

WFG1 800 38.798 20.042 61.693

WFG1 1000 74.124 38.343 139.664

WFG2 200 1.520 0.860 1.009

WFG2 400 10.598 6.912 10.316

WFG2 600 32.562 22.146 30.711

WFG2 800 72.749 51.482 85.584

WFG2 1000 149.247 99.002 169.681

WFG3 200 1.532 0.916 1.037

WFG3 400 10.915 6.899 8.929

WFG3 600 35.006 22.157 35.369

WFG3 800 78.331 50.137 95.147

WFG3 1000 151.851 99.405 177.624

WFG4 200 0.911 0.262 0.645

WFG4 400 6.010 1.915 4.748

WFG4 600 18.261 5.796 17.594

WFG4 800 40.089 13.252 45.641

WFG4 1000 153.642 25.114 99.873

WFG5 200 0.717 0.193 0.524

WFG5 400 5.075 1.311 3.939

WFG5 600 15.627 3.811 15.083

WFG5 800 34.430 8.360 37.665

WFG5 1000 132.923 15.436 78.130

Table 6.14: Average of the computational time (in minutes) of each algorithm when solving WFG test suite.
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Conclusions and Future Work

In this thesis, we have studied the way some approaches and frameworks can be

adopted to develop MOEAs for large scale MOPs.

First, we have developed a new cooperative coevolutionary framework for solving

MOPs using a novel cooperation strategy based on the Nash equilibrium. With this,

we presented a novel cooperative coevolutionary MOEA, called NashCC, which was

shown to be able to successfully deal with the ZDT and DTLZ test suites. We

have studied the convergence rate of our proposed NashCC with respect to that of

NSCCGA and GCEA. The results confirmed that our proposed approach outperforms

the other two CCAs and that the collaboration framework has a great impact in

CCAs. We confirm that the tendency of CCAs to fall into ESS is also present when

dealing with MOPs and that looking for ideal collaborations is a good way to alleviate

this problem.

Another outstanding example is the development of a novel decomposition-based

MOEA called MOEA/D2, which adopts decomposition based techniques used by co-

operative coevolutionary algorithms.

MOEA/D2 uses a double decomposition of the MOP, one in objective functions space,

as MOEA/D, and another in decision variables space. Our experimental results in-

dicate that MOEA/D2 clearly outperforms MOEA/D, MOEADVA, CCMOEA and

GDE3 in MOPs having from 200 up to 1200 decision variables. This approach was
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able to deal with all the difficulties presented in the ZDT, DTLZ and WFG test suite,

even in high dimensionality. The results confirmed that our proposed approach is very

effective and efficient in tackling large scale MOPs.

As part of our future work, we intend to study other decomposition techniques

for decision variable space. We are also interested in studying the possible use of

other (computationally inexpensive) methods to generate a set of weight vectors

more uniformly distributed for MOEA/D2. Also, we aim to develop a parallel version

of some of the proposed approaches in order to increase their efficiency and save

computational time.
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Appendix A

Test Problems

A.1 Zitzler-Deb-Thiele Test Suite

The Zitzler-Deb-Thiele Test (ZDT) test suite [2] includes 5 representative bi-objective

test problems for comparing optimizers, which are scalable to any number of decision

variables. The majority of these problems are separable, including degenerated and

multimodal Pareto optimal fronts, of which the exact shape and location are known.

A.1.1 ZDT1

The test function ZDT1 has a convex Pareto-optimal front (see Figure A.1):

Given ~x = {x1, x2, . . . , xm}

Minimize f1(x1) = x1

where g(x2, . . . , xm) = 1 + 9 ·
m∑
i=2

xi/(m− 1)

h(f1, g) = 1−
√
f1/g

subject to 0 ≤ xi ≤1, for i = 1, 2, . . . ,m.

(A.1)

where m is the number of decision variables. The Pareto-optimal front is formed with

g(~x) = 1.
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Figure A.1: ZDT1 Pareto optimal front.

A.1.2 ZDT2

The test function ZDT2 is the nonconvex counterpart to ZDT1 (see Figure A.2) :

Given ~x = {x1, x2, . . . , xm}

Minimize f1(x1) = x1

where g(x2, . . . , xm) = 1 + 9 ·
m∑
i=2

xi/(m− 1)

h(f1, g) = 1− (f1/g)2

subject to 0 ≤ xi ≤1, for i = 1, 2, . . . ,m.

(A.2)

where m is the number of decision variables. The Pareto-optimal front is formed with

g(~x) = 1.

Cinvestav Departamento de Computación



Test Problems 151

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

f 2

f1

Figure A.2: ZDT2 Pareto optimal front.

A.1.3 ZDT3

The test function ZDT3 represents the discreteness feature; its Pareto-optimal front

consists of several noncontiguous convex parts (see Figure A.3):

Given ~x = {x1, x2, . . . , xm}

Minimize f1(x1) = x1

where g(x2, . . . , xm) = 1 + 9 ·
m∑
i=2

xi/(m− 1)

h(f1, g) = 1−
√
f1/g − (f1/g) sin(10πf1)

subject to 0 ≤ xi ≤1, for i = 1, 2, . . . ,m.

(A.3)

where m is the number of decision variables. The Pareto-optimal front is formed

with g(~x) = 1. The introduction of the sine function in h causes discontinuity in the

Pareto-optimal front. However, there is no discontinuity in the parameter space.

Cinvestav Departamento de Computación



152 Chapter A

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

f 2

f1

Figure A.3: ZDT3 Pareto optimal front.

A.1.4 ZDT4

The test function ZDT4 contains 219 local Pareto-optimal fronts (see Figure A.4)

and, therefore, tests for the MOEAs ability to deal with multimodality:

Given ~x = {x1, x2, . . . , xm}

Minimize f1(x1) = x1

where g(x2, . . . , xm) = 1 + 10(m− 1) +
m∑
i=2

(x2
i − 10 cos(4πxi))

h(f1, g) = 1−
√
f1/g

subject to 0 ≤ x1 ≤1

−5 ≤ xi ≤5, for i = 2, . . . ,m.

(A.4)

where m is the number of decision variables. The Pareto-optimal front is formed with

g(~x) = 1.25. Note that not all local Pareto-optimal sets are distinguishable in the

objective space.
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Figure A.4: ZDT4 Pareto optimal front.

A.1.5 ZDT6

The test function ZDT6 includes two difficulties caused by the nonuniformity of the

search space: first, the Pareto-optimal solutions are nonuniformly distributed along

the global Pareto front (the front is biased for solutions for which f1(~x) is near one);

second, the density of the solutions is lowest near the Pareto-optimal front and highest

away from the front (see Figure A.5):

Given ~x = {x1, x2, . . . , xm}

Minimize f1(x1) = 1− exp(−4x1) sin6(6πx1)

where g(x2, . . . , xm) = 1 + 9 · ((
m∑
i=2

xi)/(m− 1))0.25

h(f1, g) = 1− (f1/g)2

subject to 0 ≤ xi ≤1, for i = 1, 2, . . . ,m.

(A.5)

where m is the number of decision variables. The Pareto-optimal front is formed with

g(~x) = 1 and is nonconvex.
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Figure A.5: ZDT6 Pareto optimal front.

A.2 Deb-Thiele-Laumanns-Zitzler Test Suite

The Deb-Thiele-Laumanns-Zitzler (DTLZ) test suite [3] includes nine representative

test problems for comparing optimizers, which are scalable to any number of decision

variables and objectives. The majority of these problems are separable, including

degenerated and multimodal Pareto optimal fronts, of which the exact shape and

location are known. Next, we present the seven unconstrained problems of the DTLZ

test suite. Here, the total number of decision variables is given by n = m+k−1, where

m represents the number of objectives and k is the number of distance parameters.
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A.2.1 DTLZ1

This test problem is separable and multimodal. Its Pareto optimal front is linear and

is given by the following expression:

Given~x = {x1, . . . , xm−1, xm, . . . , xn}

Minimize f1(~x) = 0.5(1 + g(~y))
m−1∏
i=1

xi

fj=2:m−1(~x) = 0.5(1 + g(~y))(1− xm−j+1)

m−j∏
i=1

xi

fm(~x) = 0.5(1 + g(~y))(1− x1)

whereyi=1:k = {xm, xm+1, . . . , xn}

g(~y) = 100

[
k +

k∑
i=1

(yi − 0.5)2 − cos(20π(yi − 05))

]
subject to 0 ≤xi ≤ 1, for i = 1, 2, . . . , n.

(A.6)

The number of decision variables is given by n = m + k − 1. All objective function

values lie on the linear hyper-plane
∑m

i=1 fi = 0.5. The Pareto optimal solution

corresponds to ~y = (0, 0, . . . )T . The difficulty in this problem is to converge to the

hyper-plane. The search space contains (11k− 1) local Pareto optimal fronts, each of

which can attract an optimizer. The Pareto optimal front is shown in Figure A.6.
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Figure A.6: Pareto optimal front of DTLZ1 with 3 objective functions.

A.2.2 DTLZ2

This problem is separable and unimodal. The geometry of its Pareto optimal front is

concave (see Figure A.7), and is defined as follows:

Given ~x = {x1, . . . , xm−1, xm, . . . , xn}

Minimize f1(~x) = (1 + g(~y))
m−1∏
i=1

cos
(xiπ

2

)
fj=2:m−1(~x) = (1 + g(~y))

(
m−j∏
i=1

cos
(xiπ

2

))
sin
(xm−j+1π

2

)
fm(~x) = (1 + g(~y)) sin

(x1π

2

)
where yi=1:k = {xm, xm+1, . . . , xn}

g(~y) =
k∑
i=1

(yi − 0.5)2

subject to 0 ≤ xi ≤ 1, for i = 1, 2, . . . , n.

(A.7)

The number of decision variables is given by n = m + k − 1. The Pareto optimal

solutions correspond to ~y = (0.5, 0.5, . . . )T and all objective functions values must
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Figure A.7: Pareto optimal front of DTLZ2 with 3 objective functions.

satisfy that
∑m

i=1(fi)
2 = 1.

A.2.3 DTLZ3

This problem is the same as DTLZ2 except for a new g function, that makes it

multimodal. The definition is given as follows:

Given ~x = {x1, . . . , xm−1, xm, . . . , xn}

Minimize f1(~x) = (1 + g(~y))
m−1∏
i=1

cos
(xiπ

2

)
fj=2:m−1(~x) = (1 + g(~y))

(
m−j∏
i=1

cos
(xiπ

2

))
sin
(xm−j+1π

2

)
fm(~x) = (1 + g(~y)) sin

(x1π

2

)
where yi=1:k = {xm, xm+1, . . . , xn}

g(~y) = 100

[
k +

k∑
i=1

(yi − 0.5)2 − cos(20π(yi − 05))

]
subject to 0 ≤ xi ≤ 1, for i = 1, 2, . . . , n.

(A.8)
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Figure A.8: Pareto optimal front of DTLZ3 with 3 objective functions.

The above function g introduces (3k − 1) local Pareto optimal fronts, and one global

Pareto optimal front (see Figure A.8). All local Pareto optimal fronts are parallel to

the global Pareto optimal front and an optimizer can get stuck at any of these local

Pareto optimal fronts, before converging to the global Pareto optimal front at g = 0.

The global Pareto optimal front corresponds to ~y = (0.5, 0.5, . . . )T . The next local

Pareto optimal front is at g = 1.

A.2.4 DTLZ4

This problem is concave, separable and unimodal (see Figure A.9). It tests an

optimizer’s ability to maintain a good distribution of solutions, and is defined as
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follows:

Given

~x = {x1, . . . , xm−1, xm, . . . , xn}

Minimize

f1(~x) = (1 + g(~y))
m−1∏
i=1

cos

(
xαi π

2

)

fj=2:m−1(~x) = (1 + g(~y))

(
m−j∏
i=1

cos

(
xαi π

2

))
sin

(
xαm−j+1π

2

)
fm(~x) = (1 + g(~y)) sin

(
xα1π

2

)

where

yi=1:k = {xm, xm+1, . . . , xn}

g(~y) =
k∑
i=1

(yi − 0.5)2

subject to 0 ≤ xi ≤ 1, for i = 1, 2, . . . , n.

(A.9)

This problem allows a dense set of solutions to exist near the fm − f1 plane. It is

interesting to note, that although the search space has a variable density of solutions,

the classical weighted- sum approaches or other directional methods may not have

any added difficulty in solving this problem compared to DTLZ2.
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Figure A.9: Pareto optimal front of DTLZ4 with 3 objective functions.

A.2.5 DTLZ5

This problem is unimodal and degenerated (see Figure A.10). It is defined as:

Given ~x = {x1, . . . , xm−1, xm, . . . , xn}

Minimize

f1(~x) = (1 + g(~y))
m−1∏
i=1

cos
(xiπ

2

)
fj=2:m−1(~x) = (1 + g(~y))

(
m−j∏
i=1

cos

(
θiπ

2

))
sin

(
θm−j+1π

2

)
fm(~x) = (1 + g(~y)) sin

(x1π

2

)
where yi=1:k = {xm, xm+1, . . . , xn}

θi =

 xi, i = 1

1+2g(~y)xi
2(1+g(~y))

, for i = 2, . . . ,m− 1

g(~y) =
k∑
i=1

(yi − 0.5)2

subject to 0 ≤ xi ≤ 1, for i = 1, 2, . . . , n.

(A.10)
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Figure A.10: Pareto optimal front of DTLZ5 with 3 objective functions.

This problem tests the optimizer’s ability to converge to a curve. The Pareto optimal

front corresponds to ~y = (0.5, 0.5, . . . )T , and all objective function values must satisfy∑m
i=1(fi)

2 = 1.
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A.2.6 DTLZ6

Modifying DTLZ5, a harder problem evolves by changing the function g. The

resulting problem is unimodal and degenerated:

Given ~x = {x1, . . . , xm−1, xm, . . . , xn}

Minimize

f1(~x) = (1 + g(~y))
m−1∏
i=1

cos
(xiπ

2

)
fj=2:m−1(~x) = (1 + g(~y))

(
m−j∏
i=1

cos

(
θiπ

2

))
sin

(
θm−j+1π

2

)
fm(~x) = (1 + g(~y)) sin

(x1π

2

)
where yi=1:k = {xm, xm+1, . . . , xn}

θi =

 xi, i = 1

1+2g(~y)xi
2(1+g(~y))

, for i = 2, . . . ,m− 1

g(~y) =
k∑
i=1

y0.1
i

subject to 0 ≤ xi ≤ 1, for i = 1, 2, . . . , n.

(A.11)

The Pareto optimal front corresponds to ~y = (0, 0, . . . )T and is shown in Figure

A.11. The lack of convergence to the Pareto optimal front in this problem makes

optimizers to find a dominated surface as the obtained front, whereas the true Pareto

optimal front is a curve. In real-world problems, this aspect may provide misleading

information about the properties of the Pareto optimal front.

A.2.7 DTLZ7

This problem has a disconnected set of 2m?1 Pareto optimal regions in the search space

and will test an algorithm?s ability to maintain subpopulations in different Pareto
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Figure A.11: Pareto optimal front of DTLZ6 with 3 objective functions.

optimal regions.

Given ~x = {x1, . . . , xm−1, xm, . . . , xn}

Minimize

fj=1:m−1(~x) = xm

fm(~x) = (1 + g(~y))(m−
m−1∑
i=1

[
fi

1 + g(~y)
(1 + sin(3πfi))

]
)

where yi=1:k = {xm, xm+1, . . . , xn}

g(~y) = 1 +
9

k

k∑
i=1

yi

subject to 0 ≤ xi ≤ 1, for i = 1, 2, . . . , n.

(A.12)

The Pareto optimal front corresponds to ~y = (0, 0, . . . )T and is shown in Figure A.12.
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Figure A.12: Pareto optimal front of DTLZ7 with 3 objective functions.

A.3 Walking Fish Group Test Suite

The Walking-Fish-Group test suite [4], suggests nine multi-objective test problems

(WFG1-WFG9), that are scalable with respect to both objectives and decision

variables, and have known Pareto optimal sets. These problems include a wide

variety of Pareto optimal geometries. Moreover, characteristics such as bias, multi-

modality, and non-separability are defined by a set of transformations. Next, we

present these benchmark problems. Here, m represents the number of objectives,

and each problem is defined in terms of an underlying vector of parameters ~x ∈ Rm

that defines the fitness space. xm is known as the underlying distance parameter,

and x1 : m − 1 are the underlying position parameters. The vector ~x is derived,

via a series of transition vectors, from a vector of working parameters ~z ∈ Rn (also

known as vector of variables). It is worth noting that n ≥ m and the number of

decision variables is given by n = k+ l. The first k ∈ {m− 1, 2(m− 1), 3(m− 1), . . . }

working parameters are the position related parameters and the last l ∈ {1, 2, . . . }

working parameters are the distance related parameters. Each transition vector adds

complexity to the underlying problem. The optimizer directly manipulates ~z, through
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which ~x is indirectly manipulated.

A.3.1 WFG1

This problem is separable and unimodal, but it has a polynomial and flat region. It

is strongly biased toward small values of the variables, which makes it very difficult

for some optimizers. It is defined as follows:

Given ~z = {z1, . . . , zk, zk+1, . . . , zn}

Minimize f1(~x) = xm + 2
m−1∏
i=1

(
1− cos

(xiπ
2

))
fj=2:m−1 = xm + 2j

(
m−j∏
i=1

(
1− cos

(xiπ
2

)))(
1− sin

(xm−j+1π

2

))
fm(~x) = xm + 2m

(
1− x1 −

cos
(

10πx1
2

)
10π

)

where

xi=1:m−1 = r sum

(
{y(i−1)k/(m−1)+1, . . . , yik/(m−1)},

{
2(i− 1)k

(m− 1)
+ 1, . . . ,

2ik

(m− 1)

})
xm = r sum ({yk+1, . . . , yn}, {2(k + 1), . . . , 2n})

yi=1:n = b poly(y′i, 0.02)

y′i=1:k = y′′i

y′i=k+1:n = b flat(y′′i , 0.8, 0.75, 0.85)

y′′i=1:k =
zi
2i

y′′i=k+1:n = s linear
( zi

2i
, 0.35

)
subject to 0 ≤ xi ≤ 1, for i = 1, 2, . . . ,m.

0 ≤ zi ≤ 2i, for i = 1, 2, . . . , n.

(A.13)

The Pareto optimal front is shown in Figure A.13.
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Figure A.13: Pareto optimal front of WFG1 with 3 objective functions.
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A.3.2 WFG2

This problem is separable and multimodal. The Pareto optimal front is disconnected

(see Figure A.14)

Given ~z = {z1, . . . , zk, zk+1, . . . , zn}

Minimize f1(~x) = xm + 2
m−1∏
i=1

(
1− cos

(xiπ
2

))
fj=2:m−1 = xm + 2j

(
m−j∏
i=1

(
1− cos

(xiπ
2

)))(
1− sin

(xm−j+1π

2

))
fm(~x) = xm + 2m

(
1− x1 cos2(5x1π)

)
where

xi=1:m−1 = r sum
(
{y(i−1)k/(m−1)+1, . . . , yik/(m−1)}, {1, . . . , 1}

)
xm = r sum

(
{yk+1, . . . , yk+l/2}, {1, . . . , 1}

)
y′i=1:k = y′i

y′i=k+1:k+l/2 = r nonsep({y′k+2(i−k)−1, y
′
k+2(i−k)}, 2)

y′i=1:k =
zi
2i

y′i=k+1:n = s linear
( zi

2i
, 0.35

)
subject to 0 ≤ xi ≤ 1, for i = 1, 2, . . . ,m.

0 ≤ zi ≤ 2i, for i = 1, 2, . . . , n.

(A.14)
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Figure A.14: Pareto optimal front of WFG2 with 3 objective functions.
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A.3.3 WFG3

This problem is nonseparable but unimodal. It has a linear and degenerated Pareto

optimal front (see Figure A.15), which is given by the following expression:

Given ~z = {z1, . . . , zk, zk+1, . . . , zn}

Minimize f1(~x) = xm + 2
m−1∏
i=1

(xi)

fj=2:m−1 = xm + 2j

(
m−j∏
i=1

xi

)
(1− xm−j+1)

fm(~x) = xm + 2m(1− x1)

where xi=1 = ui

xi=2:m−1 = xm(ui − 0.5) + 0.5

xm = r sum
(
{yk+1, . . . , yk+l/2}, {1, . . . , 1}

)
ui = r sum

(
{y(i−1)k/(m−1)+1, . . . , yik/(m−1)}, {1, . . . , 1}

)
y′i=1:k = y′i

y′i=k+1:k+l/2 = r nonsep({y′k+2(i−k)−1, y
′
k+2(i−k)}, 2)

y′i=1:k =
zi
2i

y′i=k+1:n = s linear
( zi

2i
, 0.35

)
subject to 0 ≤ xi ≤ 1, for i = 1, 2, . . . ,m.

0 ≤ zi ≤ 2i, for i = 1, 2, . . . , n.

(A.15)
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Figure A.15: Pareto optimal front of WFG3 with 3 objective functions.

A.3.4 WFG4

In this case, the problem is separable, but highly multimodal. The Pareto optimal

front is concave (see Figure A.16) and is defined as follows:

Given ~z = {z1, . . . , zk, zk+1, . . . , zn}

Minimize f1(~x) = xm + 2
m−1∏
i=1

(sin(xiπ/2))

fj=2:m−1 = xm + 2j

(
m−j∏
i=1

sin(xiπ/2)

)
cos(xm−j+1π/2)

fm(~x) = xm + 2m cos(x1π/2)

where xi=1:m−1 = r sum
(
{y(i−1)k/(m−1)+1, . . . , yik/(m−1)}, {1, . . . , 1}

)
xm = r sum ({yk+1, . . . , yn}, {1, . . . , 1})

yi=1:n = s multi (zi/2i, 30, 10, 0.35)

subject to 0 ≤ xi ≤ 1, for i = 1, 2, . . . ,m.

0 ≤ zi ≤ 2i, for i = 1, 2, . . . , n.

(A.16)
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Figure A.16: Pareto optimal front of WFG4 with 3 objective functions.

A.3.5 WFG5

A deceptive and separable problem. The Pareto optimal front is concave (see Figure

A.17) and is defined by the following expression:

Given ~z = {z1, . . . , zk, zk+1, . . . , zn}

Minimize f1(~x) = xm + 2
m−1∏
i=1

(sin(xiπ/2))

fj=2:m−1 = xm + 2j

(
m−j∏
i=1

sin(xiπ/2)

)
cos(xm−j+1π/2)

fm(~x) = xm + 2m cos(x1π/2)

where xi=1:m−1 = r sum
(
{y(i−1)k/(m−1)+1, . . . , yik/(m−1)}, {1, . . . , 1}

)
xm = r sum ({yk+1, . . . , yn}, {1, . . . , 1})

yi=1:n = s decept (zi/2i, 0.35, 0.001, 0.05)

subject to 0 ≤ xi ≤ 1, for i = 1, 2, . . . ,m.

0 ≤ zi ≤ 2i, for i = 1, 2, . . . , n.

(A.17)
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Figure A.17: Pareto optimal front of WFG5 with 3 objective functions.

A.3.6 WFG6

This problem is nonseparable and unimodal. Its Pareto optimal front is concave (see

Figure A.18), and is defined as follows:

Given ~z = {z1, . . . , zk, zk+1, . . . , zn}

Minimize f1(~x) = xm + 2
m−1∏
i=1

(sin(xiπ/2))

fj=2:m−1 = xm + 2j

(
m−j∏
i=1

sin(xiπ/2)

)
cos(xm−j+1π/2)

fm(~x) = xm + 2m cos(x1π/2)

where xi=1:m−1 = r nonsep
(
{y(i−1)k/(m−1)+1, . . . , yik/(m−1)}, {1, . . . , 1}

)
xm = r nonsep ({yk+1, . . . , yn}, {1, . . . , 1})

yi=1:k = zi/2i

yi=k+1:n = s linear (zi/2i, 0.35)

subject to 0 ≤ xi ≤ 1, for i = 1, 2, . . . ,m.

0 ≤ zi ≤ 2i, for i = 1, 2, . . . , n.

(A.18)
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Figure A.18: Pareto optimal front of WFG6 with 3 objective functions.
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A.3.7 WFG7

Having a parameter dependent bias, this problem is also separable and unimodal.

The concave Pareto optimal front is depicted in Figure A.19, and is defined as:

Given ~z = {z1, . . . , zk, zk+1, . . . , zn}

Minimize f1(~x) = xm + 2
m−1∏
i=1

(sin(xiπ/2))

fj=2:m−1 = xm + 2j

(
m−j∏
i=1

sin(xiπ/2)

)
cos(xm−j+1π/2)

fm(~x) = xm + 2m cos(x1π/2)

where xi=1:m−1 = r sum
(
{y(i−1)k/(m−1)+1, . . . , yik/(m−1)}, {1, . . . , 1}

)
xm = r sum ({yk+1, . . . , yn}, {1, . . . , 1})

yi=1:k = y′i

yi=k+1:n = s linear (y′i, 0.35)

y′i=1:k = b param({zi/2i, r sum ({zi+1/(2(i+ 1)), . . . , zn/2n}, {1, . . . , 1}) ,

0.98/49.98, 0.02, 50)

y′i=k+1:n = zi/2i

subject to 0 ≤ xi ≤ 1, for i = 1, 2, . . . ,m.

0 ≤ zi ≤ 2i, for i = 1, 2, . . . , n.

(A.19)
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Figure A.19: Pareto optimal front of WFG7 with 3 objective functions.
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A.3.8 WFG8

This problem has a parameter dependent bias, but is nonseparable and unimodal.

The concave Pareto optimal front (see Figure A.20) is given by the expression:

Given ~z = {z1, . . . , zk, zk+1, . . . , zn}

Minimize f1(~x) = xm + 2
m−1∏
i=1

(sin(xiπ/2))

fj=2:m−1 = xm + 2j

(
m−j∏
i=1

sin(xiπ/2)

)
cos(xm−j+1π/2)

fm(~x) = xm + 2m cos(x1π/2)

where xi=1:m−1 = r sum
(
{y(i−1)k/(m−1)+1, . . . , yik/(m−1)}, {1, . . . , 1}

)
xm = r sum ({yk+1, . . . , yn}, {1, . . . , 1})

yi=1:k = y′i

yi=k+1:n = s linear (y′i, 0.35)

y′i=k = zi/2i

y′i=k+1:n = b param({zi/2i, r sum ({z1/2, . . . , zi−1/2(i− 1)}, {1, . . . , 1}) ,

0.98/49.98, 0.02, 50)

subject to 0 ≤ xi ≤ 1, for i = 1, 2, . . . ,m.

0 ≤ zi ≤ 2i, for i = 1, 2, . . . , n.

(A.20)

A.3.9 WFG9

The last problem of the suite is nonseparable, multimodal, deceptive, and has a

parameter dependent bias. All these features make it a very difficult problem. This

Cinvestav Departamento de Computación



Test Problems 177

 0

 0.5

 1

 1.5

 2

 2.5

 3  0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 0

 1

 2

 3

 4

 5

 6

 7

f1

f2

f3

Figure A.20: Pareto optimal front of WFG8 with 3 objective functions.

problem has a concave Pareto optimal front (see Figure A.21) and is defined as:

Given ~z = {z1, . . . , zk, zk+1, . . . , zn}

Minimize f1(~x) = xm + 2
m−1∏
i=1

(sin(xiπ/2))

fj=2:m−1 = xm + 2j

(
m−j∏
i=1

sin(xiπ/2)

)
cos(xm−j+1π/2)

fm(~x) = xm + 2m cos(x1π/2)

where xi=1:m−1 = r nonsep
(
{y(i−1)k/(m−1)+1, . . . , yik/(m−1)}, {1, . . . , 1}

)
xm = r nonsep ({yk+1, . . . , yn}, {1, . . . , 1})

yi=1:k = s decept(y′i, 0.35, 0.001, 0.05)

yi=k+1:n = s multi(y′i, 30, 95, 0.35)

y′i=1:n−1 = b param({zi/2i, r sum ({zi+1/(2(i+ 1)), . . . , zn/(2n)}, {1, . . . , 1}) ,

0.98/49.98, 0.02, 50)

y′i=n = zn/2n

subject to 0 ≤ xi ≤ 1, for i = 1, 2, . . . ,m.

0 ≤ zi ≤ 2i, for i = 1, 2, . . . , n.

(A.21)
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Figure A.21: Pareto optimal front of WFG9 with 3 objective functions.
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Appendix B

Sensitivity Analysis of Parameters

Next we study the sensitivity that MOEA/D2 has over the following parameters: the

number of species, the neighborhood size and the populations size.

To study how MOEA/D2 is sensitive to the above parameters, multiple data for

each parameter have been tried. Four values of the neighborhood: 5, 10, 15 and

20. Four values of the number of species: 5, 10, 25 and 50. Four values of the

population size: 50, 100, 150 and 200. We analyze this values when solving ZDT1

test problem with 100 decision variables. 30 independent runs have been conducted

for each configuration on the MOP, this restricted by the computational time of each

of the experiments. Therefore, as the data of 30 independent executions is clearly

not Normal, we adopted Bootstrapping [136] with 1000 resamplings from the 30

executions of each combination from which we obtained: the hypervolume mean, the

standard error, the bias, and the confidence intervals of 95% for each sample. Table

B.1 show the obtained results.

Niche Species PopSize MaxGen Mean Bias SE CI

5 5 50 400 3.120546 0.000480 0.027549 (3.069,3.176)

5 5 100 200 2.937600 -0.000235 0.025049 (2.886,2.986)

5 5 150 133 2.772640 0.000516 0.018781 (2.737,2.811)

5 5 200 100 2.667199 -0.000443 0.017679 (2.633,2.702)

5 10 50 400 3.193081 0.000494 0.018466 (3.158,3.231)

5 10 100 200 3.097153 -0.000044 0.017172 (3.060,3.128)
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5 10 150 133 2.927517 -0.000305 0.017996 (2.892,2.962)

5 10 200 100 2.820841 -0.000416 0.017682 (2.790,2.859)

5 25 50 400 3.285972 -0.000575 0.021485 (3.236,3.323)

5 25 100 200 3.167240 -0.000277 0.015155 (3.141,3.198)

5 25 150 133 3.025194 0.000261 0.015874 (2.994,3.057)

5 25 200 100 2.916356 0.000009 0.017005 (2.883,2.949)

5 50 50 400 3.294808 0.000497 0.019255 (3.256,3.329)

5 50 100 200 3.191176 -0.000360 0.017123 (3.152,3.219)

5 50 150 133 3.033892 0.000273 0.012931 (3.008,3.058)

5 50 200 100 2.918768 0.000355 0.016551 (2.886,2.951)

10 5 50 400 3.210825 -0.000121 0.025451 (3.158,3.259)

10 5 100 200 3.105953 0.000982 0.031779 (3.043,3.165)

10 5 150 133 2.969539 0.000127 0.028132 (2.905,3.015)

10 5 200 100 2.869539 0.000764 0.022936 (2.829,2.917)

10 10 50 400 3.228278 0.001742 0.024554 (3.177,3.271)

10 10 100 200 3.204958 0.000116 0.017138 (3.172,3.241)

10 10 150 133 3.132529 0.000551 0.023225 (3.084,3.175)

10 10 200 100 3.011906 0.000887 0.019007 (2.975,3.048)

10 25 50 400 3.281102 0.000290 0.026095 (3.218,3.325)

10 25 100 200 3.232674 0.000651 0.017708 (3.195,3.266)

10 25 150 133 3.187071 -0.000841 0.025903 (3.124,3.227)

10 25 200 100 3.130193 -0.000311 0.018740 (3.093,3.167)

10 50 50 400 3.263799 0.000295 0.020146 (3.223,3.303)

10 50 100 200 3.265180 0.000184 0.021240 (3.222,3.304)

10 50 150 133 3.230954 0.000202 0.016822 (3.194,3.259)

10 50 200 100 3.174513 0.001003 0.017887 (3.137,3.208)

15 5 50 400 3.238675 0.000437 0.020173 (3.192,3.272)

15 5 100 200 3.122657 0.001129 0.026264 (3.057,3.167)

15 5 150 133 3.061123 0.000474 0.022979 (3.010,3.103)

15 5 200 100 3.029161 -0.000502 0.020045 (2.990,3.072)

15 10 50 400 3.284053 0.000988 0.020370 (3.248,3.326)

15 10 100 200 3.213139 0.000906 0.026120 (3.156,3.258)

15 10 150 133 3.181154 -0.000627 0.019448 (3.142,3.217)
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15 10 200 100 3.099957 -0.001031 0.028583 (3.041,3.155)

15 25 50 400 3.312518 0.000151 0.018904 (3.273,3.350)

15 25 100 200 3.290444 0.000909 0.017617 (3.254,3.324)

15 25 150 133 3.235889 0.000251 0.018752 (3.196,3.271)

15 25 200 100 3.217832 0.000094 0.020774 (3.176,3.259)

15 50 50 400 3.277960 -0.000393 0.023350 (3.219,3.317)

15 50 100 200 3.285106 -0.000743 0.015696 (3.254,3.314)

15 50 150 133 3.284448 -0.000295 0.022088 (3.239,3.325)

15 50 200 100 3.250647 -0.000215 0.020404 (3.202,3.285)

20 5 50 400 3.284726 -0.000201 0.018326 (3.246,3.318)

20 5 100 200 3.215011 -0.000136 0.025099 (3.165,3.263)

20 5 150 133 3.154259 0.000164 0.017647 (3.121,3.190)

20 5 200 100 3.097857 -0.000619 0.016838 (3.065,3.130)

20 10 50 400 3.305992 -0.000119 0.022581 (3.252,3.343)

20 10 100 200 3.233349 -0.000060 0.018517 (3.194,3.267)

20 10 150 133 3.203719 -0.000435 0.020129 (3.166,3.244)

20 10 200 100 3.121219 0.000934 0.028804 (3.066,3.179)

20 25 50 400 3.324003 -0.000028 0.016223 (3.289,3.353)

20 25 100 200 3.276982 -0.001890 0.017912 (3.242,3.313)

20 25 150 133 3.292737 0.000306 0.017269 (3.257,3.325)

20 25 200 100 3.213864 0.000507 0.020900 (3.169,3.252)

20 50 50 400 3.331659 0.000021 0.019033 (3.290,3.367)

20 50 100 200 3.306242 0.000021 0.025083 (3.248,3.349)

20 50 150 133 3.294139 -0.000252 0.017128 (3.264,3.331)

20 50 200 100 3.267183 0.000335 0.017770 (3.230,3.300)

Table B.1: Results for the sensitivity analysis of MOEA/2 parameters.
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2765, Cancún, México, 20-23 June 2013. IEEE Press. ISBN 978-1-4799-0454-9.

[73] Mitchell A. Potter and Kenneth A. De Jong. A cooperative coevolutionary

approach to function optimization. In Proceedings of the International

Conference on Evolutionary Computation. The Third Conference on Parallel

Problem Solving from Nature: Parallel Problem Solving from Nature, PPSN

III, pages 249–257, London, UK, UK, 1994. Springer-Verlag.

[74] Saku Kukkonen and Jouni Lampinen. GDE3: The third Evolution Step of

Generalized Differential Evolution. In 2005 IEEE Congress on Evolutionary

Computation (CEC’2005), volume 1, pages 443–450, Edinburgh, Scotland,

September 2005. IEEE Service Center.

[75] Kalyanmoy Deb, Samir Agrawal, Amrit Pratap, and T. Meyarivan. A

Fast Elitist Non-Dominated Sorting Genetic Algorithm for Multi-Objective

Optimization: NSGA-II. KanGAL report 200001, Indian Institute of

Technology, Kanpur, India, 2000.

Cinvestav Departamento de Computación



194 BIBLIOGRAPHY

[76] Eckart Zitzler and Lothar Thiele. Multiobjective Evolutionary Algorithms:

A Comparative Case Study and the Strength Pareto Approach. IEEE

Transactions on Evolutionary Computation, 3(4):257–271, November 1999.

[77] X. Ma, F. Liu, Y. Qi, X. Wang, L. Li, L. Jiao, M. Yin, and M. Gong.

A multiobjective evolutionary algorithm based on decision variable analyses

for multiobjective optimization problems with large-scale variables. IEEE

Transactions on Evolutionary Computation, 20(2):275–298, April 2016.

[78] Hai-Lin Liu, Fangqing Gu, and Qingfu Zhang. Decomposition of a

multiobjective optimization problem into a number of simple multiobjective

subproblems. 18:450–455, 06 2014.

[79] Xingyi Zhang, Ye Tian, Ran Cheng, and Yaochu Jin. A decision

variable clustering based evolutionary algorithm for large-scale many-objective

optimization. PP, 08 2016.

[80] Zhenyu Yang., Ke Tang., and Xin Yao. Multilevel Cooperative Coevolution for

Large Scale Optimization. In Evolutionary Computation, 2008. CEC 2008.

(IEEE World Congress on Computational Intelligence). IEEE Congress on,

pages 1663–1670, 2008.

[81] S. Rahnamayan, H.R. Tizhoosh, and M.M.A. Salama. Opposition-based

differential evolution. Evolutionary Computation, IEEE Transactions on,

12(1):64–79, 2008.

[82] Nasimul Noman and Hitoshi Iba. Enhancing differential evolution performance

with local search for high dimensional function optimization. In Proceedings of

the 2005 conference on Genetic and evolutionary computation, GECCO 2005,

pages 967–974, New York, NY, USA, 2005. ACM.

Cinvestav Departamento de Computación



BIBLIOGRAPHY 195

[83] Weicai Zhong, Jing Liu, Mingzhi Xue, and Licheng Jiao. A multiagent genetic

algorithm for global numerical optimization. Systems, Man, and Cybernetics,

Part B: Cybernetics, IEEE Transactions on, 34(2):1128–1141, 2004.

[84] Janez Brest, Ales Zamuda, Iztok Fister, and Mirjam Sepesy Maucec. Large

scale global optimization using self-adaptive differential evolution algorithm.

Evolutionary Computation, IEEE Transactions on, 12(2032-2039):1–8, July

2010.

[85] Xin Yao Zhenyu Yang, Ke Tang. Differential evolution for high-dimensional

function optimization. In Evolutionary Computation, 2007. CEC 2007. IEEE

Congress on, volume 1, sept. 2007.

[86] Xin Yao Mohammad Nabi, Zhenyu Yang. Cooperative co-evolution for large

scale optimization through more frequent random grouping. In Evolutionary

Computation (CEC), 2010 IEEE Congress on, volume 1, pages 1– 8 Vol.1,

sept. 2010.

[87] Jan Paredis. Coevolutionary computation. Artif. Life, 2(4):355–375, August

1995.

[88] Mitchell A. Potter and Kenneth A. De Jong. Cooperative coevolution: An

architecture for evolving coadapted subcomponents. Evol. Comput., 8(1):1–29,

March 2000.

[89] C Rosin and R Belew. New methods for competitive coevolution. Evolutionary

Computation, 5(1):1–29, March 1997.

[90] SevanGregory Ficici. Multiobjective optimization and coevolution. In

Multiobjective Problem Solving from Nature, Natural Computing Series, pages

31–52. Springer Berlin Heidelberg, 2008.

[91] Luis Miguel Antonio and Carlos A. Coello Coello. A Non-cooperative

Game for Faster Convergence in Cooperative Coevolution for Multi-objective

Cinvestav Departamento de Computación



196 BIBLIOGRAPHY

Optimization. In 2015 IEEE Congress on Evolutionary Computation

(CEC’2015), pages 109–116, Sendai, Japan, 25-28 May 2015. IEEE Press. ISBN

978-1-4799-7492-4.

[92] Paul R. Ehrlich and Peter H. Raven. Butterflies and Plants: A Study in

Coevolution. Evolution, 18(4):586–608, 1964.

[93] R.R.N. Mohammad and Z. Kobti. A new strategy to detect variable interactions

in large scale global optimization. In Swarm Intelligence (SIS), 2014 IEEE

Symposium on, pages 1–8, Dec 2014.

[94] Ales Zamuda, Janez Brest, Borko Boskovic, and Viljem Zumer. Large

scale global optimization using differential evolution with self-adaptation and

cooperative co-evolution. In IEEE Congress on Evolutionary Computation,

pages 3718–3725. IEEE, 2008.
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