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Resumen

La criptograf́ıa es la práctica y estudio de técnicas para asegurar las comunicaciones en pres-
encia de terceras personas llamadas adversarios. La criptograf́ıa toma como base “proble-
mas computacionalmente dif́ıciles” para proveer servicios como autenticación, confidencial-
idad, integridad, no repudio, entre otros. Se dice que un problema es computacionalmente
difćil si no existe un algoritmo polinomial (en complejidad y espacio) capaz de resolverlo
en un escenario factible.

Algunos problemas computacionales que son considerados d́ıciles en computadoras
clásicas podŕıan no ser dif́ıciles en computadoras cuánticas por ejemplo, la factorización
entera. El algoritmo de Shor puede resolver la factorización entera en tiempo polinomial
cuántico, más aún, también puede resolver el problema del logaritmo discreto. Hoy en d́ıa
muchos protocolos de seguridad están basados en esos dos problemas por lo que surge la
necesidad de encontrar problemas difćiles para computadoras cuánticas.

Recientemente los procotolos basados en isogenias han llamado la atención de los
criptógrafos por su capacidad de resistir las computadoras cuánticas. Las isogenias en-
tre curvas eĺıpticas con homomorphismos de grupo y para propoósitos criptográficos, es
posible definir un par de problemas computacionales dif́ıciles aún ante la amenaza de com-
putadoras cuánticas.

Si bien estudio de las isogenias en matemáticas no es nuevo, el uso de estas como una
primitiva criptográfica viable lo es. En éste trabajo presentamos un estudio de cómo las
isogenias son utilizadas en criptograf́ıa y de manera particular en la criptograf́ıa de llave
pública. Presentamos las cuatro clases de isogenia que existen en las curvas de Koblitz
definidas sobre F4 y como una de éstas (hasta donde sabemos no estudiada antes) contiene
un endomorfismo que permite una aceleración considerable en la multiplicación escalar en
dichas curvas. Se presenta un análisis de seguridad del protocolo SIDH tomando como
base el problema de encontrar colisiones en dos conjuntos, y con base en éste análisis se
proponen nuevos parámetros para ser utilizados en el protocolo SIDH. Además presentamos
algunas remediaciones ante ataques de fallo a la implementación del protocolo CSIDH y se
presenta la forma de obtener una implementación de tiempo constante. Se introduce el uso
de algoritmos aritméticos para mejorar el cómputo de isogenias de grado impar de la forma



d = 8k + r con r ∈ {1, 3, 5, 7}. Finalmente se estudia la inclusión del cómputo paralelo en
el protocolo SIDH la cuál nos permite desarrollar una variante del mismo llamada eSIDH
(“extended SIDH”). El cómputo paralelo en el contexto del cómputo de isogenias ha sido
estudiado antes pero nuestra variante introduce el uso de 3 primos en la configuración de
SIDH lo cuál permite tomar ventaja del cómputo paralelo en la generación de llaves y el
cómputo de isogenias. Más aún, tomamos ventaja de alguans propiedades de la escalera
de Montgomery para computar eficientemente múltiplos de la llave privada en paralelo y
en conjunto, todas estas mejoras derivan en una aceleración teórica cercana a computar el
protocolo eSIDH hasta 3 veces más rápido.



Abstract

Cryptography is the practice and study of techniques for secure communication in the
presence of third parties called adversaries [103]. Cryptography uses ”hard computational
problems” to provide security services such as authentication, confidentiality, integrity,
non-repudiation, among others. We say that a computational problem is hard if there is
no polynomial (time and space) algorithm able to solve it in a feasible scenario.

Some computational problems that are considered hard on non-quantum (classical)
computers could be not hard on quantum computers, for example, the integer factorization.
Shor’s algorithm can solve integer factorization in a quantum computer in polynomial time;
moreover, it can also break the discrete log problem. Nowadays, most security protocols are
based on those problems, and then there is a necessity to find hard problems for quantum
computing.

Recently, isogeny-based protocols took the attention of cryptographers due to its resis-
tance to quantum computers. Isogenies between elliptic curves are group homomorphisms,
and for cryptography purposes, it is possible to define a couple of hard computational prob-
lems even considering the quantum menace. The study of isogenies in mathematics is not
new, but the use as a viable cryptographic primitive is, in this work, we review how isoge-
nies are used in cryptography in particular, in public key cryptography. We present the 4
isogeny classes on Koblitz curves over F4 and how a no-studied-before (as far as we know)
class contains an efficient endomorphim which allows a considerable speed-up for scalar
multiplication computation on such curves. We present a security analysis of the SIDH
protocol based on the problem of found collitions on two sets and exhibe new parameters
to be used in SIDH protocol. We present some remediations to CSIDH implementation
against fault attacks an how we can achieve a constant-time implementation. We introduce
the use of some arithmetic algorithms to improve the computation of odd-degree isogenies
of the form d = 8k + r with r ∈ {1, 3, 5, 7}. Finally we introduce the use of parallel
computing in SIDH and we develop a variant of SIDH that we dubed as eSIDH (extended
SIDH). Parallel computing has been studies before in the isogeny computation context but
our novel variant of eSIDH introduces the use of 3 primes into the SIDH configuration,
allowing us to take more advantage of parallel computing in key generation and isogeny



computations. Furthermore we take advantage of some properties of Montgomery ladder
to compute multiples of the key in parallel and this all together derives in a theoretically
speed up of about 3 times faster than traditional SIDH.
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sin su apoyo no hubiera sido posible.

Finalmente a los amigos que me acompañaron durante ésta aventura, de manera pres-
encial en el departamento del Cinvestav y de manera virtual a mis amigos de DMX plus





CONTENTS

Resumen i

Abstract iii

Agradecimientos vii

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Mathematical Background 5

2.1 Algebraic Varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Elliptic Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Isogenies between elliptic curves . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Other models of curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4.1 Koblitz curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4.2 Normal Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4.3 Montgomery Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.4 Edwards Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Koblitz curves over quadratic fields 21

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Koblitz curves over F4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Extended Koblitz curves over F4 . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3.1 The twelve ordinary elliptic curves over F4 . . . . . . . . . . . . . . 23

3.3.2 A Novel endomorphism for the isogeny Class 3 . . . . . . . . . . . . 24

3.4 Semisplit µ4-normal form-Normal form . . . . . . . . . . . . . . . . . . . . . 25

3.5 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.6 Conclusion and future work . . . . . . . . . . . . . . . . . . . . . . . . . . . 27



4 An introduction to Isogeny-based cryptography 29

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 SIDH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.3 Sequential strategies for large smooth-degree isogenies . . . . . . . . . . . . 33

4.3.1 Walking across ∆e . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3.2 Sequential strategies for computing large smooth-degree isogenies . . 34

4.3.3 Linearizing strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.4 CSIDH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.4.1 The class group action . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.4.2 Class group action algorithm . . . . . . . . . . . . . . . . . . . . . . 41

4.4.3 Non-Interactive Key Exchange . . . . . . . . . . . . . . . . . . . . . 43

5 How to compute odd-degree isogenies 45

5.1 Twisted Edwards curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.1.1 Using NAF for reducing the computational cost of odd degree isogenies 48

5.1.2 Using modular arithmetic for reducing the computational cost of odd
degree isogenies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.1.3 Combining NAF and modular reduction . . . . . . . . . . . . . . . . 52

5.2 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6 On the Cost of Computing Isogenies Between Supersingular Elliptic
Curves 59

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.2 Computational Supersingular Isogeny Problem . . . . . . . . . . . . . . . . 60

6.2.1 CSSI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.3 Meet-in-the-Middle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.3.1 Basic method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.3.2 Depth-first search . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.4 Golden collision search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.4.1 Van Oorschot-Wiener parallel collision search . . . . . . . . . . . . . 62

6.4.2 Finding a golden collision . . . . . . . . . . . . . . . . . . . . . . . . 64

6.4.3 The attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.4.4 Implementation report . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.5 Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.5.1 Meet-in-the-middle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.5.2 Golden collision search . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.5.3 Mesh sorting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.5.4 Targetting the 128-bit security level . . . . . . . . . . . . . . . . . . 70

6.5.5 Targetting the 160-bit security level . . . . . . . . . . . . . . . . . . 72

6.5.6 Targetting the 192-bit security level . . . . . . . . . . . . . . . . . . 72



6.5.7 Resistance to quantum attacks . . . . . . . . . . . . . . . . . . . . . 73

6.5.8 SIDH performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7 Constant time CSIDH 77

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7.2 CSIDH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

7.2.1 The Meyer–Campos–Reith constant-time algorithm . . . . . . . . . 79

7.2.2 The Onuki–Aikawa–Yamazaki–Takagi constant-time algorithm . . . 80

7.3 Repairing constant-time versions . . . . . . . . . . . . . . . . . . . . . . . . 80

7.3.1 Fixing a leaking branch in Onuki–Aikawa–Yamazaki–Takagi . . . . . 83

7.4 Optimizing constant-time implementations . . . . . . . . . . . . . . . . . . 83

7.4.1 Addition chains for a faster scalar multiplication . . . . . . . . . . . 83

7.5 Removing dummy operations for fault-attack resistance . . . . . . . . . . . 84

7.6 Derandomized CSIDH algorithms . . . . . . . . . . . . . . . . . . . . . . . 86

7.7 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.8 Conclusion and perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . 90

8 Extended SIDH 93

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

8.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

8.2.1 The SIDH protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

8.3 The extended SIDH (eSIDH) Protocol . . . . . . . . . . . . . . . . . . . . . 95

8.3.1 A naive approach for computing eSIDH . . . . . . . . . . . . . . . . 96

8.3.2 A parallel approach for computing eSIDH . . . . . . . . . . . . . . . 98

8.3.3 A CRT-based approach for computing eSIDH . . . . . . . . . . . . . 101

8.4 Parameter selection and implementation aspects . . . . . . . . . . . . . . . 103

8.4.1 The hunting for efficient eSIDH Primes . . . . . . . . . . . . . . . . 103

8.4.2 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 104

8.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

9 Parallel Strategies for SIDH 111

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

9.2 Parallel strategies for large smooth-degree isogenies . . . . . . . . . . . . . . 114

9.2.1 Exploiting the parallelism of the horizontal edges . . . . . . . . . . . 115

9.2.2 Using Dynamic programming for finding parallel strategies . . . . . 116

9.2.3 Constructing and Traversing parallel strategies . . . . . . . . . . . . 116

9.3 Parallelizing the computation of the multiples of the SIDH secret points . . 122

9.4 Parallelizing the computation of the multiples of the point R0 for Bob . . . 126

9.4.1 Low-level implementation notes . . . . . . . . . . . . . . . . . . . . . 128

9.5 Cost estimates and experimental results . . . . . . . . . . . . . . . . . . . . 129



9.5.1 Cost estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
9.5.2 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

9.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

10 Summary and conclusions 137
10.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
10.2 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

Bibliography 140

A Node split vectors for the parallel strategies 155
A.1 Strategies for the SIKE prime p434 . . . . . . . . . . . . . . . . . . . . . . . 155
A.2 Strategies for the SIKE prime p751 . . . . . . . . . . . . . . . . . . . . . . . 156



LIST OF FIGURES

2.1 Commutative diagram of Theorem 2.3.3 . . . . . . . . . . . . . . . . . . . . 11

2.2 Two Examples of Montgomery curves over rational numbers . . . . . . . . . 15

2.3 Two examples of Edwards curves over rational numbers . . . . . . . . . . . 19

3.1 Diagram showing the behavior of the curves E0 and E1 when defined over
the field extensions of our interest . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Construction of the endomorphisms τ̄0 and τ̄1 . . . . . . . . . . . . . . . . . 25

4.1 Strategy to compute a degree-`e = 49 isogeny. The root point at row and
column zero, represents the elliptic curve point R0 of order 49. Each one
of the nine leaves at the bottom of the columns represent elliptic curve
points of order 4. The sequential cost of this strategy is of thirteen scalar
multiplications by four plus sixteen degree-4 isogeny evaluations. . . . . . . 31

4.2 The three smallest triangles, Subfigure 4.2a shows a size-1 triangle consisting
of its root and one horizontal edge. Subfigure 4.2b shows a size-1 triangle
consisting of its root and one vertical edge. Subfigure 4.2c shows the only
size-2 triangle having exactly two leaves. . . . . . . . . . . . . . . . . . . . . 35

4.3 Two basic strategies for computing a degree-`9 isogeny. Subfigures 4.3a-
4.3b illustrate a multiplicative-oriented approach and an isogeny-oriented
approach, respectively. Vertical blue lines indicate scalar multiplications by
`, whereas horizontal red lines indicate degree-` isogeny evaluations. . . . . 35

4.4 Using an optimal SIDH strategy as in [33], a triangular lattice ∆e is pro-
cessed by splitting it into two sub-triangles. After applying this splitting
strategy recursively, the cost of computing φ drops to approximately e

2 log2 e
scalar multiplications by `, e

2 log2 e degree-` isogeny evaluations, and e con-
structions of degree-` isogenous curves. . . . . . . . . . . . . . . . . . . . . . 37

4.5 Assuming that all the vertical and horizontal edges costs 1 unit, this fig-
ure shows an optimal strategy for traversing ∆9 on single-core processor
architectures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37



5.1 Given a supersingular elliptic curve E and an order-` point P ∈ E(Fq) this
diagram shows the main modules for computing a degree-` isogeneous curve
E′ and the image of a point Q ∈ E(Fq), subject to the condition that Q is
not in the kernel subgroup 6∈ 〈P 〉. The circles are drawn to scale the relative
computational costs of the modules. . . . . . . . . . . . . . . . . . . . . . . 46

6.1 Meet-in-the-middle attack for degree-2 isogeny trees. . . . . . . . . . . . . . 61
6.2 VW method: detecting a collision (x, x′). . . . . . . . . . . . . . . . . . . . 63
6.3 VW method: finding a collision (x, x′). . . . . . . . . . . . . . . . . . . . . . 64

8.1 Overview of an strategy for computing a degree-`eBB `eCC isogeny. Each isogeny
φB and φC can be computed using a traditional SIDH strategy as in [42].
The kernel of φB is the subgroup 〈[`eCC ]RBC〉, and the kernel of φC is the
subgroup 〈φB(RBC)〉. Figure 8.1a shows a naive way for computing the
`eBB `eCC -isogeny φBC = φC ◦ φB. Figure 8.1b shows a parallel-oriented ap-
proach for computing such strategy. . . . . . . . . . . . . . . . . . . . . . . 97

8.2 Overview of an eSIDH parallel instantiation with Bob’s secret points com-
puted in parallel. In the Key Generation phase Ker(φB) = 〈RB〉 and
Ker(φC) = 〈φB(RC)〉. In the Key Agrement phase Ker(φ′B) = 〈R′B〉 and
Ker(φ′C) = 〈φ′B(R′C)〉 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

9.1 Strategy to compute a degree-`e = 49 isogeny. The root point at row and
column zero, represents the elliptic curve point R0 of order 49. Each one of
the nine leaves at the bottom of the columns represent elliptic curve points
of order 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

9.2 A toy example of a parallel optimal-strategy search using dynamic program-
ming and the parameter set e = 5, p` = 1, q` = 1 and k = 2. 11 . . . . . . . 120

9.3 Representation of a k-core load distribution for the parallel computation of
the strategy SteA as stated in Proposition 9.3.3. The left-most blue dash-
rectangle computations are performed in parallel during the first phase of
this isogeny evaluation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

9.4 Parallel evaluation of an isogeny if the hardware resources are plentiful enough.125
9.5 Diagram showing the flow of the threads in our parallel eSIDH proposal for

Alice. This flow is only for the first b iterations, afterwards the flow is similar
but the thread computing RA is then joined to the threads computing point
evaluations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126



LIST OF ALGORITHMS

1 Left-to-Right Binary scalar multiplication . . . . . . . . . . . . . . . . . . . 9
2 Left-to-Right τ -NAF scalar multiplication . . . . . . . . . . . . . . . . . . . 13
3 Non-recursive walking across the Strategy Stn . . . . . . . . . . . . . . . . 40
4 The original CSIDH class group action algorithm for supersingular curves

over Fp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5 Odd degree isogenous codomain curve computation using NAF recoding. . . 51
6 The “random” function gn . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
7 The Onuki–Aikawa–Yamazaki–Takagi CSIDH algorithm . . . . . . . . . . . 81
8 Constant-time projective Elligator . . . . . . . . . . . . . . . . . . . . . . . 83
9 An idealized dummy-free constant-time evaluation of the CSIDH group action. 85
10 Dummy-free randomized constant-time CSIDH class group action . . . . . 87
11 get Parallel Strategy: Obtains the optimal parallel strategy for

∆e using k-cores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
12 Ev counts: Computes Eq.(9.1) for a given partition Sthe . . . . . . 118
13 get Min Parallel Strat: Finds an optimal Sthe splitting . . . . . . 119
14 Non-recursive walking across a Strategy Ste . . . . . . . . . . . . . . . . . . 121





Chapter 1

Introduction

-How long do you want these messages to remain
secret?[...]
+I want them to remain secret for as long as men
are capable of evil.

Neal Stephenson, Cryptonomicon

Cryptography is the practice and study of techniques for secure communication in the
presence of third parties called adversaries [103]. Cryptography uses ”hard computational
problems” to provide security services such as authentication, confidentiality, integrity,
non-repudiation, among others. We say that a computational problem is hard if there is
no polynomial (time and space) algorithm able to solve it in a feasible scenario. Algo-
rithms used in cryptography are commonly known as cryptographic algorithms, and the
combination of cryptographic algorithms to provide a security service is usually called a
cryptographic protocol.

Cryptographic protocols are divided into two main kinds, private key and, public key
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protocols. A natural way to explain both concepts is using two fictional characters, namely
Alice and Bob. Private key protocols are based on the assumption of Alice and Bob have a
common secret-key then if Alice wants to send a message to Bob she uses a cryptographic
algorithm using the common secret-key and then she sends the ciphertext to Bob. Once
Bob receives Alice’s message, he can decrypt the ciphertext using the shared secret key.
Notice that as long as only Alice and Bob know the secret key cryptography guarantees
that anyone can decrypt the message. The main issue of private key cryptography is that
in a real-world scenario, it could be challenging that Alice and Bob agree on a secret key.
Fortunately, the public key cryptography provides a solution to this problem. Public key
protocols scenario consider the use of two keys, one secret-key as in private key protocols,
and one public key. The public key is a key related to the secret one in the sense that
commonly the secret key is used to generate the public key but, anyone can derive the
secret key knowing the public key. If Alice wants to send a message to Bob, she encrypts
the message using Bob’s public key, and then she sends the message to Bob. One Bob
receives the message he uses his secret key to decrypt the message.

Chronologically speaking, public-key cryptography was proposed in 1976 by Whitfield
Diffie and Martin Hellman [39], who devised a novel scheme that allows two entities to agree
to a secret key using an insecure communication channel, without previously agreeing on
a secret. This scheme bases its security on the difficulty of discrete logarithm problem
(DLP) in finite fields. Time after that, in 1977 Ron Rivest, Adi Shamir, and Leonard
Adleman proposed the cryptographic scheme known as RSA [91], which can be used as both
encryption scheme and digital signature scheme. RSA security is based on the difficulty of
factoring large integers. Until 1985 the public key schemes were based on number theory,
particularly they used the multiplicative group of integers modulo a large integer (in RSA)
or a prime number (in the Diffie-Hellman scheme). In that year Neal Koblitz [57] and Victor
Miller [72] proposed the use of elliptic curves independently for cryptographic purposes,
giving in this way birth to the field of elliptic curve cryptography (ECC). They observed
that when an elliptic curve is defined over a finite field, the points on the elliptic curve form
an Abelian group, whose associated DLP results difficult to solve. Such DLP is even much
more difficult to solve than its analog in finite fields using the same group and field order.
Thus, it is possible to offer the same security provided by the other existing public-key
schemes, but using much smaller fields (rings for RSA).

As we mention, cryptographic protocols security relies on hard computational prob-
lems, and there are several alternatives to the discrete log and integer factorization. For
example, hash functions security is based on the assumption that it is difficult to find colli-
sions between two sets. This problem is considered hard even on the presence of quantum
computers because the only algorithm able to dramatically weakens hash functions secu-
rity is Grover’s. Quantum computing is the use of the quantum-phenomena to perform
computations. Some computational problems that are considered hard on non-quantum
(classical) computers could be not hard on quantum computers, for example, the integer
factorization. Shor’s algorithm can solve integer factorization in a quantum computer in

2
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polynomial time; moreover, it can also break the discrete log problem. Nowadays, most
security protocols are based on those problems, and then there is a necessity to find hard
problems for quantum computing.

Recently, isogeny-based protocols took the attention of cryptographers due to its resis-
tance to quantum computers. Isogenies between elliptic curves are group homomorphisms,
and for cryptography purposes, it is possible to define a couple of hard computational
problems even considering the quantum menace. The study of isogenies in mathematics is
not new, but the use as a viable cryptographic primitive is, in this work, we review how
isogenies are used in cryptography even when we did not call them isogenies1.

1.1 Motivation

Quantum computers seem to be a real treat to the current state of security. Among
quantum-resistant protocols, isogeny-based ones, are a promising candidate to be estab-
lished as a quantum-resistant standard. The main advantage of such protocols is the use of
short keys in comparison with the other competitors (Lattice-based, Codes-based, among
others). The main disadvantage is that isogeny computations are slower than others like
Lattice-based protocols. Another disadvantage is that isogenies, as a cryptographic prim-
itive, is a new area and there is no sufficient evidence about its security assumptions.On
the other hand, it is not clear when quantum computers could break current cryptography,
and then it is also necessary to improve classical cryptographic primitives.

1.2 Outline

The organization of the document is a follows. In Chapter Two, we introduce some mathe-
matical concepts related to isogenies between elliptic curves. In Chapter three, we study a
family of curves called Koblitz curves and how to isogenies helps to improve scalar multipli-
cation, which is the most important primitive in elliptic curve cryptography. Chapter four
introduce two isogeny-based protocols and present a brief recapitulation of state of the art
related to isogeny-based protocols. Chapter five review the NAF algorithm to be used into
isogeny computations. Chapter six shows a classical attack against SIDH. The security of
SIDH relies on the computational supersingular isogeny problem which is modeled as a col-
lision search in two sets. In Chapter seven, we analyze and propose a constant time csidh
secured against fault attacks. In chapter eight we present a variant of the SIDH protocol
that we dubbed as eSIDH(extended SIDH) which takes advantage of parallel computing
and makes use of a different structure of primes than SIDH primes. In the end, in Chapter
nine, we summarize all the work and present our conclusions.

1Isogenies are isogenies by definition but, cryptographic community maked use of a special kind of
isogenies called endomorphisms.
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Chapter 2

Mathematical Background

2.1 Algebraic Varieties

We define some concepts which arise in the study of algebraic geometry. This concepts
lead us to the next section when we define elliptic curves. The intention of this section is to
introduce the notion of affine and projective varieties over finite fields, for further reading
we refer the reader to [95],[47] and [43]. We set the following notation which will be used
throughout this document.

Fq Denotes a finite field of characteristic p, with q = pn elements.

F̄q Denotes the algebraic closure of Fq.

Along this chapter, m and n denote positive integers.

Definition 2.1.1. Affine n-space over Fq is the set of n-tuples

An =An(F̄q) = {P = (x1, x2, . . . , xn) | xi ∈ F̄q}.

Similarly, the set of Fq-rational points in An is the set

An(Fq) ={P = (x1, x2, . . . , xn) ∈ An | xi ∈ Fq}.
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Let F̄q[X] = F̄q[X1, . . . , Xn] be a polynomial ring in n variables, and let I ⊂ F̄q[X] be
an ideal. To each such I we associate a subset of An,

VI = {P ∈ An | f(P ) = 0 for all f ∈ I}.

Definition 2.1.2. An affine algebraic set is any set of the form VI . If V is an algebraic
set the ideal of V is given by

I(V ) = {f ∈ F̄q[X] | f(P ) = 0 for all P ∈ V }.

Al algebraic set is defined over Fq if its ideal I(V ) can be generated by polynomials in
Fq[X]. We denote this by V/Fq. If V is defines over Fq, the set of Fq-rational points of V
is the set

V (Fq) = V ∩ An(Fq).

Definition 2.1.3. An affine algebraic set V is called an affine variety if I(V ) is a prime
ideal in F̄q[X].

Lemma 2.1.1. The dimension of An is n, since F̄q(An) = F̄q(An) = F̄q(x1, . . . , xn). Simi-
larly, if V ⊂ An is given by a non-constant polynomial equation

f(X1, . . . , Xn) = 0,

then dim(V ) = n− 1.

Definition 2.1.4. Projective n-space over Fq, denoted Pn or Pn(F̄q), is the set of all
(n+ 1)-tuples

(x0, . . . , xn) ∈ An+1

such that at least one xi is non-zero, modulo the equivalence relation given by

(x0, . . . , xn) = (y0, . . . , yn)

if there exists a λ ∈ F̄q
∗

with xi = λyi for all i. An equivalence class

Definition 2.1.5. A polynomial f ∈ F̄q[X] = F̄q[X0, . . . , Xn] is homogeneous of degree d
if

f(λX0, . . . , λXn) = λdf(X0, . . . , Xn)

for all λ ∈ F̄q. An ideal I ⊂ F̄q[X] is homogeneous if it is generated by homogeneous
polynomials.

6
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For each homogeneous ideal I we associate a subset of Pn,

VI = {P ∈ Pn | f(P ) = 0 for all homogeneous f ∈ I}.

Definition 2.1.6. A projective algebraic set is any set of the form VI . If V is a projective
algebraic set, the homogeneous ideal of V , denoted I(V ), is the ideal in F̄q[X] generated
by

{f ∈ F̄q[X] | f is homogeneous and f(P ) = 0 for all P ∈ V }

Such a V is defined over Fq, denoted by V/Fq, if its ideal I(V ) can be generated by
homogeneous polynomials in K[X]. If V is defined over Fq, the set of Fq-rational points of
V is the set

V (K) = V ∩ Pn(K).

Definition 2.1.7. A projective algebraic set is called a projective variety if its homoge-
neous ideal I(V ) is a prime ideal in F̄q[X].

2.2 Elliptic Curves

In this section we overview the mathematical concepts related to elliptic curves and maps
between them. For further reading and more details we suggest to revise [106, 96]. Most
of the content of this section comes from the recommended lectures.

Definition 2.2.1. An elliptic curve over a field Fq is defined by an equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

where a1, a2, a3, a4, a6 ∈ Fq and ∆ 6= 0, where ∆ is the discriminant of E and is defined as
follows:

∆ =− d2
2d8 − 8d3

4 − 27d2
6 + 9d2d4d6

d2 =a2
1 + 4a2

d4 =2a4 + a1a3

d6 =a2
3 + 4a6

d8 =a2
1a6 + 4a2a6 − a1a3a4 + a2a3 − a2

4.

Above definition is the general Weierstrass equation, or model. There are different
models (equations) defining elliptic curves with different properties, in the rest of the
chapter, we discuss two short Weierstrass models, the Montgomery model and the Edwards
one.

From the point of view of the Algebraic geometry, an elliptic curve is a pair (E,∞),
where E is a projective variety of genus 1 and ∞ ∈ E. Since elliptic curves are projective
varieties, definition, notation and lemmas of previous section applies on it.

7
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Definition 2.2.2 (Short Weierstrass model (p > 3)). An elliptic curve in Weierstrass short
model over a finite field Fq where q = pm for some prime p > 3, is given by the equation

E/Fq : Y 2 = X3 +AX +B

where A,B ∈ Fq.

Definition 2.2.3 (Short Weierstrass model (p = 2)). An elliptic curve in Weierstrass short
model over a finite field Fq where q = 2m , is given by the equation

E/Fq : Y 2 +XY = X3 +AX2 +B

where A,B ∈ Fq. We say that this curve is a binary elliptic curve and we call binary field
to a field of characteristic two.

If we consider the set containing the set of Fq-rational points of an elliptic curve E/Fq
and the set containing a point at infinity {∞}, then we have an additive Abelian group
(E(Fq) ∪ {∞},+). This means that we can add and negate (additive inverse) points, the
case when we add a point with itself, we say that we doubling the point.

Definition 2.2.4 (Scalar multiplication). Let k be an positive integer and P be a point
in an elliptic curve E. We define the scalar multiplication on elliptic curves as

[k]P = P + P + · · ·+ P︸ ︷︷ ︸
k−1 times

.

If k < 0 then [k]P = [−k](−P ). For m = 0 then [0]P =∞.

Algorithm 1 computes [k]P using the binary representation of the scalar k = (kt−1, . . . , k1, k0)2,
on average half of the bits of k are 1, then the cost of computing [k]P using this algorithm
is t doublings and t/2 additions. In the literature, the scalar multiplication is also called
multiplication-by-k map.

Definition 2.2.5. Let P be a point in an elliptic curve E/Fq. The minimum integer m > 0
shuch that [m]P =∞ is called the order of P .

Definition 2.2.6. The subgroup generated by P is the set {P, [2]P, [3]P, . . . , [m− 1]P,∞}
and is denoted by 〈P 〉.

Definition 2.2.7. The m-torsion subgroup of an elliptic curve E/Fq is defined as

E[m] = {P ∈ E(Fq) | [m]P =∞}.

Definition 2.2.8. Let E to be an elliptic curve in short Weierstrass model. The j-invariant
of E is

j(E) = 1728
4A3

4A3 + 27B2
.

8
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Algorithm 1 Left-to-Right Binary scalar multiplication

Require: Integer k = (kt−1, . . . , k1, k0)2, Point P ∈ E(Fq).
Ensure: Point Q = [k]P .

1: Q← P ;
2: for i=t-1 down to 0 do
3: if ki = 1 then
4: Q← Q+ P ;
5: end if ;
6: Q← [2]Q;
7: end for;
8: return Q

Theorem 2.2.1 (Hasse). Let E be an elliptic curve over the finite field Fq. Then the order
of E(Fq) satisfies

| q + 1−#E(Fq) |≤ 2
√
q.

There are several ways to classify elliptic curves, the following definition exhibit one of
them.

Definition 2.2.9. An elliptic curve E/Fq is supersingular if

#E(Fq) = q + 1 + k · p.

Otherwise we say that E/Fq is ordinary.

2.3 Isogenies between elliptic curves

Isogenies are the main core of our work, in this section we introduce the definition and
some properties about isogenies between elliptic curves.

Definition 2.3.1. Let E0 and E1 be elliptic curves. An isogeny between E0 and E1 is a
morphism

ϕ : E0 → E1

satisfying ϕ(∞) = ∞. E0 and E1 are isogenous if there is an isogeny between them with
ϕ(E0) 6= {∞}.

Remark 1. An isogeny is a rational map but since elliptic curves are smooth curves then
this rational map turns into a morphism i.e. if ϕ : E0 → E1 is an isogeny then

ϕ(P +Q) = ϕ(P ) + ϕ(Q)

holds for all points P,Q ∈ E(Fq).

9
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Remark 2. As an isogeny is a morphism between elliptic curves, then we can define it
explicitly as

ϕ(x, y) = (r0(x), yr1(x)),

where r0 and r1 are rational functions. If the coefficients of r0 and r1 lie in Fq then we say
that ϕ is defined over Fq. As r0 is a rational function then we can write it as

r0(x) =
p(x)

q(x)

such that gcd(p(x), q(x)) = 1.

Lemma 2.3.1 (Tate’s theorem [99]). Let E0 and E1 be two isogenous elliptic curves over
a field Fq. The number of Fq-rational points of both curves is the same. The converse is
also true.

Definition 2.3.2. Let ϕ : E0 → E1 be an isogeny. We define the degree of ϕ to be

deg(ϕ) = max{deg(p(x)),deg(q(x))},

where p(x) and q(x) are like in Remark 2

Definition 2.3.3. Let ϕ : E0 → E1 be an isogeny. If the derivative r′0(x) is not identically
zero, we say that ϕ is separable, otherwise, we say that ϕ is inseparable.

Definition 2.3.4. Let ϕ : E0 → E1 be an isogeny. The Kernel of ϕ is

Ker(ϕ) = ϕ−1(∞).

Proposition 2.3.2. Let ϕ : E0 → E1 be an isogeny. If ϕ is separable, then

deg(ϕ) = # Ker(ϕ).

If ϕ is inseparable, then

deg(ϕ) > # Ker(ϕ).

In particular, the kernel of an isogeny is a finite subgroup of E0(F̄q).

Since elliptic curves are groups maps between them forms groups.

Definition 2.3.5. Let Hom(E0, E1) to be the set {ϕ | ϕ : E0 → E1is an isogeny}. Then
Hom(E0, E1) is a group under the addition law i.e. , let φ, ψ ∈ Hom(E0, E1) and P ∈ E(K)
then

(φ+ ψ)(P ) = φ(P ) + ψ(P ).

10
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E0 E1

E2

ϕ1

ϕ2
α

Figure 2.1: Commutative diagram of Theorem 2.3.3. If Ker(ϕ1) = Ker(ϕ2) then exists an
isomorphism α : E1 → E2.

Moreover, if E0 = E1 then we can also compose isogenies. Let E0 be an elliptic curve,
we define End(E0) to be Hom(E0, E0) then End(E0) is a ring with addition as above and
multiplication given by composition,

(φψ)(P ) = φ(ψ(P )).

This ring is called the endomorphism ring of E0. The invertible elements of End(E0) form
the automorphism group of E0, which is denoted Aut(E0).

Remark 3. The elements of End(E0) as in Definition 2.3.5 are called endomorphisms.

Theorem 2.3.3. Let E0, E1, E2 be elliptic curves over Fq and suppose that there exist
separable isogenies ϕ1 : E0 → E1 and ϕ2 : E0 → E2 defined over F̄q. If Ker(ϕ1) = Ker(ϕ2),
then E1 ≡ E2 over Fq. In fact, there is an isomorphism α : E1 → E2 such that α◦ϕ1 = ϕ2.
This is that, the diagram of Figure 2.1 commutes.

For now on, we only write E to refer us to an elliptic curve instead of E/Fq unless there
will be ambiguities.

2.4 Other models of curves

2.4.1 Koblitz curves

Content of this section is based on [46, §3.4].

Definition 2.4.1. Anomalous binary curves, generally referred to as Koblitz curves, are
elliptic curves satisfying the Weierstrass equation,

Ea : y2 + xy = x3 + ax2 + 1,

with a ∈ F2.

11
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Curve Model Doubling Addition

Lambda Coordinates 3M + 4S + 1C 11M + 2S
López-Dahab (a2 = 0) 2M + 5S + 1C 14M + 3S
López-Dahab (a2 = 1) 2M + 4S + 2C 13M + 3S

Twisted µ4-normal form 2M + 5S + 2C 9M + 2S
Semisplit µ4-normal form 2M + 5S + 2C 7M + 2S

Table 2.1: Cost to compute Doubling and Addition in different binary curve models. Con-
sidering binary field arithmetic, M refers to multiplication, S for squaring and C for
multiplication by constants.

For cryptographic purposes, one uses a subgroup of the group Ea(F2m) of F2m-rational
points for some extension field 2m with m prime.

Definition 2.4.2. A Koblitz curve Ea has almost-prime group order over F2m if #E(F2m) =
hn where n is prime and

h =

{
4 ifa = 0
2 ifa = 1.

h is called the cofactor.

Definition 2.4.3. Let Ea be a Koblitz curve. The Frobenius map τ : Ea(F2m)→ Ea(F2m)
is defined by

τ(∞) =∞, τ(x, y) = x2, y2.

It is known that
(τ2 + 2)P = µτ(P ) for all P ∈ Ea(F2m),

where µ = (−1)1−a and τ l denotes the l-fold application of τ to P .

Remark 4. On Koblitz curves, Frobenius map is an endomorphism.

Scalar multiplication on Koblitz curves

From Definition 2.4.3 the Frobenius endomorphism can be viewed as a complex number
satisfying τ2 + 2 = µτ ; we choose τ = (µ+

√
−7)/2. Let Z[τ ] be the ring of polynomials in

τ with integer coefficients. Now, it makes sense multiply elements in E(F2m) by elements
in Z[τ ] as follows

(

l−1∑
i=0

uiτ
i)P =

l−1∑
i=0

uiτ
i(P ).

We can make use of the Frobenius endomorphism replacing [k]P by [k̄]P , where k̄ is
an element of Z[τ ]. There are different methods to transform an integer k into an element

12
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of Z[τ ] for example τ -NAF recoding. We refer the reader to [2, 11, 100, 102] for different
τ -NAF recodings. The main advantage of using the τ -NAF recoding in Algorithm 2 is that
we replace point doublings by τ evaluations which costs 2S saving on average 2M + 3S in
comparison with Algorithm 1 according to Table 2.1.

Algorithm 2 Left-to-Right τ -NAF scalar multiplication

Require: τ -NAF representation of integer k = (ut−1, . . . , u1, u0), Point P ∈ E(Fq).
Ensure: Point Q = [k]P .

1: Q← P ;
2: for i=t-1 down to 0 do
3: if ui = 1 then
4: Q← Q+ P ;
5: end if ;
6: if ui = -1 then
7: Q← Q− P ;
8: end if ;
9: Q← τ(Q);

10: end for;
11: return Q

2.4.2 Normal Form

In 2012 David Kohel [60] presented a new models of Binary Elliptic Curves called Z/4Z-
normal form and split µ4-normal form-normal based on the symmetries in curves presented
in [60]. This curve models are of particular interest because allows a faster addition and
doubling formulas1 as can be seen in 2.1. A Binary curve in Z/4Z-normal form is a curve
E/F2m in P3 given by the equations

(X0 +X1 +X2 +X3)2 = eX0X2 = eX1X3,

with e ∈ F2m and identity O = (1 : 0 : 0 : 1).

Definition 2.4.4. [61, Definition 1] An elliptic curve in µ4-normal form is a genus one
curve in the family

X2
0 + rX2

2 = X1X3, (X1 +X3)2 = X0X2,

with base point O = (1 : 1 : 0 : 1). An elliptic curve in semisplit µ4-normal form is a genus
one curve in the family

(X0 +X2)2 = X1X3, (X1 +X3)2 = sX0X2,

1in fact, there are a set of “rules” which derives in a four different addition formulas and four different
doubling formulas.
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with identity O = (1 : 1 : 0 : 1), and an elliptic curve is in split µ4-normal form if it takes
the form

(X0 +X2)2 = c2X1X3, (X1 +X3)2 = c2X0X2,

with identityO = (c : 1 : 0 : 1). There exists a transformation from the split µ4-normal form
to semisplit µ4-normal form setting s = c4 and it is given by

(X0, X1, X2, X3) 7→ (X0, cX1, cX2, X3),

and if we setting r = 1/s2 the transformation

(X0, X1, X2, X3) 7→ (X0, X1, sX2, X3)

maps the semisplit µ4-normal form to µ4-normal form.

Lemma 2.4.1. [60, Lemma 11] An elliptic curve in split µ4-normal form is isomorphic to
the curve

Y (Y +X)Z = X(X + c−2Z)2

in Weierstrass form. The linear map (X : Y : Z) = (c(X1 +X3) : X0 + cX1 +X2 : c4X2)
defines the isomorphism except at O.

Remark 5. The semisplit µ4-normal form is called µ4-normal form in [60].

Remark 6. One important fact about this normal forms is that the curve must have a
rational 4-torsion point T ([60, axiom 2]).

In [61] Kohel introduce a new model called Twisted-µ4-normal form-Normal form.

Lemma 2.4.2. [61, Lemma 11] Let Ct be a binary elliptic curve in twisted µ4-normal form

X2
0 + bX2

2 = X1X3 + aX0X1, (X1 +X3)2 = X0X2.

Then Ct is isomorphic to the elliptic curve

y2 + xy = x3 + ax2 + b,

in Weierstrass form via the map (X0 : X1 : X2 : X3) 7→ (X1 + X3 : X0 + X1 : X2). On
affine points (x, y) the inverse is (x, y) 7→ (x2 : x2 + y : 1 : x2 + x+ y).

2.4.3 Montgomery Curves

Content of this section is based on [28, 22].

An elliptic curve E over a field K written in Montgomery form is a curve such that

EA,B/K : By2 = x(x2 +Ax+ 1)

14
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(b) 3y2 = x(x2 + 7x + 1)

Figure 2.2: Two Examples of Montgomery curves over rational numbers

where A,B ∈ K are such that B 6= 0 and A2 6= 4. The negation map 	 is an automorphism

	 : E → E

	(P ) 7→ −P

The quotient E/ 〈	〉 is the 2-to-1 mapping x : E → P1 ∼= E/ 〈	〉 such that x(P ) = x(Q)
if and only if P = Q or P = 	Q. It is common to call P1 the x-line of E. We can consider
projective coordinates (X : Y : Z), with x = X/Z and y = Y/Z, and the projective
model E : BY 2Z = X(X2 + AXZ + Z2). Quotient map x in projective coordinates is
x(P ) = (xP : 1) for P = (xP , yP , 1) and x(P ) = (1 : 0) if P is the point at infinity
∞. In fact, there is no group structure in P in the sense that there is no map such that
(x(P ),x(Q)) 7→ x(P +Q). But as Montgomery observed, we can define an x-only addition
on P1 if we know x(P ),x(Q) and x(P−Q), we write this by xADD (x(P ),x(Q),x(P−Q)) =
x(P + Q). Also we can consider the degenerate case when P = Q and then we have
xDBL (x(P )) 7→ x([2]P ). Since 	 commute with [k] and by the x-only arithmetic we can
compute [k]x(P ) = x([k]P ) using the mythical Montgomery ladder. There are several
works explaining this in depth like [27, 116, 22]. The j-invariant of a Montgomery Curve
is the Fq element j(E) = 256(A2 − 3)3/(A2 − 4), which is totally dependent only of A.
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Isogenies

Lemma 2.4.3. Theorem 1 of [22] stablish that: Let P ∈ E(K̄) be a point of order d = 2`+1
on the Montgomery curve EA,B/K : By2 = x(x2 +Ax+ 1) and write

σ =
∑̀
i=1

1

x[i]P
− x[i]P and π =

∏̀
i=1

x[i]P .

The Montgomery curve

E′A′,B′/K : B′y2 = x(x2 +A′x+ 1)

with A′ = (6σ + A) · π and B′ = B · π2 is the codomain of the normalized d-isogeny
φ : E → E′ with Ker(φ) = 〈P 〉.
Moreover, also we can evaluate a point Q = (x : z) not in 〈P 〉 via

x′ =xQ ·

(∏̀
i=1

[
(xQ − zQ)(x[i]P + z[i]P ) + (xQ + zQ)(x[i]P − z[i]P )

])2

(2.1)

z′ =zQ ·

(∏̀
i=1

[
(xQ − zQ)(x[i]P + z[i]P )− (xQ + zQ)(x[i]P − z[i]P )

])2

(2.2)

which has a cost of 4`M + 2S + (4` + 2)A .

As we observe from Lemma 2.4.3, the Montgomery coefficient A′ depends of σ which
involves a field inversion which from the point of view of computational arithmeticians is
costly (several multiplications) then, in order to avoid this field inversion is convenient to
work with a projective coefficient A′ = (A : C) (abusing of the notation) where A′ = A/C.

Efficient Arithmetic

At the beginning of this section we introduce the x-only arithmetic but we did not give
explicit formulas for xADD and xDBL because the conventional ones, make use of the Mont-
gomery affine constant A and for this work purposes, we require formulas using projective
versions of the point and the Montgomery constant. The point doubling (xDBL ) and dif-
ferential addition (xADD ) operations proposed by Montgomery in [73], can be computed
as shown in Equations (2.3) and (2.4), where A24p = A+ 2C and C24 = 4C.

X[2]P = C24(XP + ZP )2(XP − ZP )2, (2.3)

Z[2]P = ((XP + ZP )2 − (XP − ZP )2)·
(C24(XP − ZP )2 +A24p((XP + ZP )2 − (XP − ZP )2)).

16
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XP+Q = ZP−Q [(XP − ZP )(XQ + ZQ) + (ZP + ZP )(XQ − ZQ)]2 (2.4)

ZP+Q = XP−Q [(XP − ZP )(XQ + ZQ)− (ZP + ZP )(XQ − ZQ)]2

The computational cost of xDBL (Equation 2.3) is 4M + 2S + 4A and for the xADD

(Equation 2.4) we get 4M + 2S + 6A . The current state-state-of the art indicates that
this formulas are the cheaper ones at least, for isogeny-based cryptography purposes.

2.4.4 Edwards Curves

Edwards curves were introduced by H. Edwards in 2007 [68]. Edwards curves are Elliptic
curves that can be written in the form

Ed/Fq : x2 + y2 = 1 + dx2y2,

with d 6= 1. Later in 2008 Bernstein-Lange [4] proposed a generalized model called Twisted
Edwards curves given by the equation

Ea,d/Fq : ax2 + y2 = 1 + dx2y2,

where a and d 6= 1 are distinct, non-zero elements of Fq.
Twisted Edwards curves and Montgomery curves are strongly related in the sense that

every twisted Edwards curve is birationally equivalent to a Montgomery curve over Fq [4,
Theorem 3.2], this equivalence is given by

φ : Ea,d → EA,B

(x, y) 7→
(

1 + y

1− y
,

1 + y

(1− yx)

)
,

where A := 2(a+d)
(a−d) and B := 4

a−d . Conversely,

ψ : EA,B → Ea,d

(x, y) 7→
(
x

y
,
x− 1

x+ 1

)
, (2.5)

where a := A+2
B and d := A−2

B . Let Ea,d be a Twisted Edwards curve then, there exists the
following correspondence with its equivalent Montgomery Curve E(A:C)

A24p := A+ 2C = a, A24m := A− 2C = d and C24 := 4C = a− d,

As we can see in map φ the x-coordinate of the image only depend of the y-coordinate of
the input and the opposite for the map ψ, then is natural to think in a y-only arithmetic
for Edwards curves. In order to avoid notation ambiguities, we will write the P1 projection

17
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of the y-coordinate of the point P ∈ Ea,d as (Yp : Tp). Let P ∈ E(A:C), from equation 2.5
we have the map,

(XP : ZP ) 7→ (XP − ZP : XP + ZP ) = (YP : TP ) (2.6)

A work of Castrick, Galbraith and Farashahi[13] put this in practice and propose a
Y T -doubling for Edwards curves given by

Y[2]P :=− (T 4
P + dY 4

P ) + 2Y 2
PT

2
P ,

T[2]P :=(T 4
P + dY 4

P )− 2dY 2
PT

2
P ,

Which can be computed at cost of 1M + 3S + 3C2 if d is a square and 5S + 2C if d is
non-square. For Twisted Edwards curves they said that the cost is 1M + 3S +6C if a · d
is square and 5S + 4C in general.

Isogenies

Dustin Moody presented formulas for isogenies between Edwards curves [74] and more
precisely, twisted Edwards curves which are of our particular interest.

Lemma 2.4.4. ([74, Corollary 1]) Suppose F is a subgroup of the twisted Edwards curve
Ea,d with odd order s = 2`+ 1, where F is the set of points

F = {(∞), (±α1, β1), . . . , (±α`, β`)}

Define

ψ(Q) =

 ∏
P∈F\{∞}

xQ+P

xP
,

∏
P∈F\{∞}

yQ+P

yP

 .

Then ψ is an s-isogeny, with kernel F , from the curve Ea,d to the curve Ea′,d′ where

a′ := as, d′ = B8ds and B =
∏`
i=1 βi.

We can observe, as was pointed by Meyer and Reith [70] ,that parameters a′ and d′

depend only of a, d and the y-coordinates of points in F , so we can also consider Edwards
Y T -coordinates i.e. , consider y(P ) := βi = (YPi : TPi) for P ∈ F \ ∞ and obtain that
a′ := B8

Ta
s and d′ := B8

Y d
s where BY :=

∏`
i=1 YPi and BT :=

∏`
i=1 TPi . The cost of

computing this point-projective version of a′ and d′ is about (2` + 2 + log(s)/2)M +
(6 + log(s))S .

2C is the cost of compute multiplication by a constant, in this case, one multiplication by d

18
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(a) x2 + y2 = 1− x2y2
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(b) x2 + y2 = 1− 30x2y2

Figure 2.3: Two examples of Edwards curves over rational numbers
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Chapter 3

Koblitz curves over quadratic fields

3.1 Introduction

In 1985, Victor Miller[72] and Neal Koblitz [57] independently show that th e group of
points in an elliptic curve defined over a finite field could be used for designing a public key
cryptosystem, having the DLP in that group as underlying hard computational problem.
This was the birth of Elliptic Curve Cryptography (ECC), which during which across the
years has become one of the most intensively analyzed public key schemes in our discipline1.

Since their introduction in 1991 by Koblitz [58], these curves have been extensively
studied for their additional structure that allows, in principle, a performance speedup
in the computation of the elliptic curve point multiplication operation. Koblitz curves
defined over an extension of F2 were also proposed in [58]. Nevertheless, until now the
research works related to binary elliptic curves such as the binary curves standarized by
NIST [76, 79, 77] or the suite of elliptic curves supported by the TLS protocol [38, 10], have
exclusively analyzed the security and performance of curves defined over binary extension
fields F2m , with m a prime number (for recent examples see [2, 11, 100, 107]).

1see [59] for a historical recount of the first three decades of elliptic curve cryptography
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Koblitz curves over quadratic fields

We find interesting to explore the cryptographic usage of Koblitz curves defined over F4 due
to their inherent usage of quadratic field arithmetic. Indeed, it has been recently shown [67,
82, 84] that quadratic field arithmetic is extraordinarily efficient when implemented in
software. This is because one can take full advantage of the Single Instruction Multiple
Data (SIMD) paradigm, where a vector instruction performs simultaneously the same
operation on a set of input data items.

Quadratic extensions of a binary finite field Fq2 can be defined by means of a monic
polynomial of degree two h(u) ∈ F2[u] irreducible over Fq. The field Fq2 is isomorphic
to Fq[u]/(h(u)) and its elements can be represented as a0 + a1u, with a0, a1 ∈ Fq. The
addition of two elements a, b ∈ Fq2 , can be performed as c = (a0 + b0) + (a1 + b1)u. Using
h(u) = u2 + u+ 1, the multiplication of a, b can be computed as, d = a0b0 + a1b1 + ((a0 +
a1) · (b0 + b1) + a0b0)u. By carefully organizing the code associated to these arithmetic
operations, one can greatly exploit the instruction-level parallelism of the pipelines that
are available in contemporary high-end processors.

3.2 Koblitz curves over F4

Koblitz curves over F4 are defined by the following equation

Ea : y2 + xy = x3 + aγx2 + γ, (3.1)

where γ ∈ F4 satisfies γ2 = γ + 1 and a ∈ {0, 1}. The number of points in the curves
E0/F4 and E1/F4 are 4 and 6, respectively. For cryptographic purposes, one uses Eq. (3.1)
operating over binary extension fields of the form Fq, with q = 4m, and m a prime number.

The Frobenius map τ : Ea(Fq)→ Ea(Fq) defined by τ(∞) =∞, τ(x, y) = (x4, y4), is a
curve automorphism satisfying (τ2 + 4)P = µτ(P ) for µ = (−1)a and all P ∈ Ea(Fq). By
solving the equation τ2 + 4 = µτ , the Frobenius map can be seen as the complex number
τ = (µ±

√
−15)/2.

Remark 7. Notice that the Frobenius map of Definition 2.4.3 is not an endomorphism on
this curves and we need to adapt it to the F4 case.

3.3 Extended Koblitz curves over F4

There exist several ordinary elliptic curves over F4 that strictly speaking cannot be con-
sidered Koblitz curves in the way that they were defined in § 3.2. Since some of these
additional curves come out equipped with additional endomorphisms, they are also of
cryptographic interest. This extended set of Koblitz curves can be better described using
isogeny classes as discussed next. It is known that two curves E0 and E1 are isogenous
over K if and only if they have the same number of points [99, Theorem 1]. This fact helps
to classify elliptic curves by isogeny classes, i.e, by their point cardinality.

22
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3.3.1 The twelve ordinary elliptic curves over F4

The description of Koblitz curves given in § 3.2 define four ordinary elliptic curves. Nev-
ertheless, there exist a total of twelve ordinary elliptic curves over the field F4. As shown
in Table 3.1, these twelve ordinary elliptic curves define four different isogeny classes.

E(a,b)/F4 : y2 + xy = x3 + ax2 + b

Isogeny class 0 1 2 3

#E(a,b) 8 6 4 2

Parameters (a, b)
(1, 1),
(0, 1).

(γ, γ),
(γ2, γ2),
(γ, γ2),
(γ2, γ).

(1, γ),
(1, γ2),
(0, γ),
(0, γ2).

(γ, 1),
(γ2, 1).

Table 3.1: The twelve ordinary elliptic curves E(a,b)/F4 : y2 + xy = x3 + ax2 + b, define
four isogeny classes. The curve parameters a, b ∈ F4, can take the values [0, 1, γ, γ2], with
γ ∈ F4 \ F2.

Notice that the Koblitz curves described in § 3.2 corresponds to the isogeny classes 1
and 2 of Table 3.1, with curve parameters (a, b) given as, (γ, γ), (γ2, γ2), (0, γ), and (0, γ2).
Since these two classes were already studied, in the following we will focus our attention
to the isogeny classes 0 and 3.

The curves E(1,1) and E(0,1) are the only two members of the isogeny class 0. Notice
that the curve parameters a, b of these curves lie in F2. Furthermore, it can be shown that
E(1,1) and E(0,1) become isomorphic over F4 and that (#E(0,1)(F2) ·#E(1,1)(F2)) | #E0(F4),
where E0 is the Koblitz curve defined in Eq. (3.1) with a = 0. This observation can be
generalized to prove that (#E(0,1)(F2m) · #E(1,1)(F2m)) | #E0(F4m).We sketch the proof
as follows. Figure 3.1 shows the relation between the curves E0 and E1, we know that
points lying in E0(F2m) belongs to the rational points of E0 over (F4m), moreover is a
subgroup of E0(F4m). Same argues are valid for the curve E1 when defined over F2,F2m

and F4m . Now, as E0/F4m and E1/F4m are isomorphic, then #E0(F4m) = #E1(F4m). As
we state before, E0(F2m) is a subgroup of E0(F4m) then, #E0(F2m) | #E0(F4m) moreover,
#E0(F2m) | #E1(F4m) because E0 ≡ E1 when defined over F4m . Therefore (#E(0,1)(F2m) ·
#E(1,1)(F2m)) | #E0(F4m). A direct consequence of this relation is that the largest prime
factor of #E0(F4) must be smaller than #E(0,1)(F2m) ≈ #E(1,1)(F2m) ≈ 2m. Thus, when
the two curves in the isogeny class 0 are defined over the field F4m one can only hope to
achieve at most an m

2 -bit security level. We conclude that the isogeny class 0 is of little or
no cryptographic value.
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E0/F4m

E0/F2m

E0/F2

E1/F4m

E1F2m

E1/F2

Figure 3.1: Diagram showing the behavior of the curves E0 and E1 when defined over the
field extensions of our interest

3.3.2 A Novel endomorphism for the isogeny Class 3

The curves E(γ,1) and E(γ2,1) are the only two members of the isogeny class 3 shown
in Table 3.1. Both of these two curves are equipped with an efficient endomorphism as
discussed next.

It can be seen that the Frobenius mapping τ2 : E(a,b)(Fq) → E(a′,b′)(Fq) defined
by τ(∞) = ∞, τ(x, y) = (x2, y2), is a two-degree isogeny such that, τ2(E(γ,1)(Fq)) =
E(γ2,1)(Fq), and τ2(E(γ2,1)(Fq)) = E(γ,1)(Fq).

Moreover, the curves E(γ,1) and E(γ2,1) are also isomorphic, since one can define the
isogenies, φ0 : E(γ,1) → E(γ2,1) and φ1 : E(γ2,1) → E(γ,1) such that, φ0(x, y) = (x, y + γ · x)
and φ1(x, y) = (x, y+ γ2 · x). As illustrated in Figure 3.2, for each one of the curves in the
class 3 one can therefore build two novel endomorphisms τ̄0, τ̄1 as follows,

τ̄0(x, y) = (φ0 ◦ τ2)(x, y) = (x2, y2 + γ · x2)

τ̄1(x, y) = (φ1 ◦ τ2)(x, y) = (x2, y2 + γ2 · x2).

Using affine λ-coordinates as defined in [84], the endomorphisms τ̄0 and τ̄1 can be written
as, τ̄0(x, λ) = (x2, λ2 + γ) and τ̄0(x, λ) = (x2, λ2 + γ2), respectively. Using projective λ-
coordinates they become τ̄0(x, λ, z) = (x2, λ2 +γ ·z2, z2) and τ̄0(x, λ) = (x2, λ2 +γ2 ·z2, z2),
respectively.

Since τ̄0 and τ̄1 satisfy the same properties we will use in the following τ̄ to refer both
of them. We stress that τ̄ is computationally cheaper than the endomorphism τ of the
Koblitz curves discussed in the previous §. Indeed, the computational cost of τ̄ is of two
squaring operations instead of the four squaring operations associated to τ. As it will be
further discussed in §3.5, this computational saving induces an important reduction in the
number of pre-computed points for the point multiplication Q = [k]P that uses a width-w
τNAF scalar representation.
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E(γ,1)

E(γ2,1)

τ2 φ0

E(γ2,1)

E(γ,1)

τ2 φ1

Figure 3.2: Construction of the endomorphisms τ̄0 and τ̄1 for the isogeny class 3 elliptic
curves E(γ,1) and E(γ2,1).

Another interesting property of the τ̄ endomorphism is that, τ̄2(x, y) = (x4, y4 + x4) =
−τ(x, y). Moreover, for the elliptic curves in the isogeny class 3, τ satisfies the equation
τ2 + 4 = 3τ , which implies that, τ̄2 + τ̄ = −2. It also follows that, τ̄ = (1 +

√
( − 7))/2.

Since the ring Z[(−1+
√
−7)/2] has been extensively studied in the literature, we can adopt

the same existing methods reported in [2, 11, 100, 102] for performing the τw-NAF scalar
recoding.

We computed the cardinality of the elliptic curves belonging to the isogeny class 3
defined over the field F4m with m a prime extension in the range [127, 191]. From this
experiment we found out that the only extension of cryptographic interest is m = 163.
Indeed, for this extension field F4163 , the cardinality of the elliptic curves in the class 3 has
the following integer factorization,

0x2 · 0x28D · 0xC8B90A95C20EE5BBC91D671B0CEFED2E\
A701F5CE9AAA522F37A4E0D020A19EBBDC1D0437C458139.

The largest prime factor above has a size of 316 bits. Hence, its associated security level
is of around 158 bits. This curve is comfortably above the 128-bit security level (even
considering the criterion that for a given field extension m, a binary curve offers 10 bits
less of security than the number bm2 c).

3.4 Semisplit µ4-normal form-Normal form

In this section we study how to send our curve E(0,u) to a µ4-normal form in particular
to a semisplit µ4-normal form because as Kohel mentioned in [60, Appendix] there are
addition formulas free of multiplication by constants. Our landscape is as follows, we know
how to send a Koblitz curve to a Twisted µ4-normal form (Lemma 2.4.2), how to send a
µ4-normal form to a Koblitz curve (Lemma 2.4.1), how to map a split µ4-normal form into a
semisplit µ4-normal form and how to map a semisplit µ4-normal form into a µ4-normal form.

If we apply Lemma 2.4.2 to our curve E0,u we get the curve

X2
0 + uX2

2 = X1X3, X2
1 +X2

3 = X0X2,
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which is in µ4-normal form with parameter r = u. If we setting s = 1/r = u we claim that
the transformation

(X0, X1, X2, X3) 7→ (X0, X1, cX2, X3),

maps the split µ4-normal form to the semisplit µ4-normal form.

Lemma 3.4.1. Let C be a binary elliptic curve in semisplit µ4-normal form

(X0 +X2)2 = X1X3, (X1 +X3)2 = bX0X2.

Then C is isomorphic to the elliptic curve

y2 + xy = x3 + b,

in Weierstrass form via the map (X0 : X1 : X2 : X3) 7→ (X1 + X3 : X0 + X1 : bX2). On
affine points (x, y) the inverse is (x, y) 7→ (x2 : x2 + y : b2 : x2 + x+ y).

Proof. This map is the result of the composition of the map from Lemma 2.4.2 and the
inverse of the map on Definition 2.4.4.

Then we can make use of the faster doubling and addition formulas proposed in [60].

3.5 Results and discussion

Our software library was designed for 64-bit high-end desktops, provided with SSE 4.1-
equivalent vector instructions and a 64-bit carry-less multiplier. The timings were measured
in an Intel Core i7 4770k 3.50 GHz machine (Haswell architecture) with the Turbo Boost
and Hyper-Threading technologies disabled. The implementation was coded in the GNU11
C and Assembly languages. We compiled our code with the GCC (Gnu Compiler Collec-
tion) version 5.4 with the optimization flags --march=haswell -fomit-frame-pointer

-O3.

We present in Table 3.2 our results of scalar multiplication for curve E(u,1)/F4163 and
different width w for window τ -NAF using left-to-right and right-to-left scalar multiplica-
tion. We observe that the Right-to-left method using a window size of w = 4 give us the
best result. Table 3.3 show the comparison against the current state-of-the-art of 128-bit
secure timing-resistant scalar multiplication on binary and prime curves.

Our E(u,1)/F4163 is only 6,000 clock cycles more expensive than the K-283 implemen-
tation in [82], but offers about 15 extra bits of security. Both curves works with the same
Frobenius endomorphism τ and we can see that the quadratic field arithmetic plays an
important role in the efficiency of the field arithmetic.
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Left-to-right τ -NAF cost (clock cycles) ratio cycles/bit

w = 2 234,880 752.56
w = 3 144,988 464.70
w = 4 116,560 373.58
w = 5 115,420 369.93

Right-to-left τ -NAF cost (clock cycles) ratio cycles/bit

w = 2 221,132 708.75
w = 3 128,980 413.39
w = 4 105,952 339.58
w = 5 116,888 374.64

Table 3.2: Timings (in clock cycles) for the τ -NAF scalar multiplication on E(0,u)/F4163

Curve/Method Timings

Koblitz over F2283 (τ -and-add, 5-τ -NAF) [82] 99,000
GLS over F4127 (2-GLV double-and-add, 5-NAF) [83] 48,300

Twisted Edwards over F(2127−1)2 (double-and-add) [24] 56,000

Kummer genus-2 over F2127−1 (Kummer ladder) [6] 60,556
Koblitz over F4149 (τ -and-add, 3-τNAF) [85] 82,872

Koblitz over F4163 (τ -and-add, 4-τNAF) (this work) 105, 952

Table 3.3: A comparative between state-of-the-art software implementations of 128-bit
secure timing-resistant scalar multiplication. The timings were measured in the Haswell
platform and are given in clock cycles

3.6 Conclusion and future work

In this section we present a new kind of Koblitz curves defined over F4 and a taxon-
omy of all ordinary curves defined over the same field. This taxonomy is based on the
isogeny class of such curves. We present a novel endomorphism which allows some Koblitz
curves over F4 use the well-known τ -NAF and it variants for Koblitz curves defined over
F2. This endomorphism is more efficient than the Frobenius map for the classical Koblitz
curves over F4 (class 1 and 2 of) allowing class 3 to be a good candidate for cryptographic
purposes. Our curve E(u,1)/F4163 offers more security than the current state-of-the-art al-
lowing a conservative and faster alternative to the standard curves. Regarding to semisplit
µ4-normal form-normal form, we did not implemented because, even when those curves
have a faster addition formulas, they require to operate in four coordinates instead of the
three used in proyective lambda coordinates. This increase the size of the tables and the
cost of the countermeasures for cache attacks. Nevertheless, as a future work we need to
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compare the faster ladder proposed by Kohel in [60] against the one we used. The class 1
of Table 3.1 has been studied in the state-of-the-art, and in this document we analyze the
class 3, but there is necessary a study of class 2 or even to make a taxonomy for curves
defined over other extensions like F23 or F24 .
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Chapter 4

An introduction to Isogeny-based

cryptography

“Stranger”, replied the Man Who Counted, “I do not disapprove of this curiosity that
disturbs the peace of my thoughts and calculations. And now that you have spoken to
me with such courtesy and graciousness, I am going to accede to your wishes. But first I
must tell you”[...] (about isogenies)1

Malba Tahan - The Man Who counted

4.1 Introduction

Isogeny-based cryptography was proposed by Couveignes in 1997. Complete details of his
proposal were eventually reported in [29] . In 2006, Couveignes’ protocol was independently

1Original quote:“Stranger,” replied the Man Who Counted, “I do not disapprove of this curiosity that
disturbs the peace of my thoughts and calculations. And now that you have spoken to me with such
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rediscovered by Rostovtsev and Stolbunov in [92, 97]. Also in 2006, Charles-Lauter-Goren
introduced in [18] the hardness of path-finding in supersingular isogeny graphs and its
application to the design of hash functions. Later in 2011, the Supersingular Isogeny-based
Diffie-Hellman key exchange protocol (SIDH) was proposed by Jao and de Feo in [53].
Later in 2017, the Supersingular Isogeny Key Encapsulation (SIKE) protocol, which can
be seen as a descendant of SIDH, was submitted to the NIST post-quantum cryptography
standardization project [3]. The isogeny-based protocol SIKE is one of the seventeen key-
exchange schemes accepted for the second round of the NIST contest.

The two most costly computational tasks of SIDH are, (i) the computation of large
smooth-degree isogenies of supersingular elliptic curves along with the evaluation of the
image of elliptic curve points in those isogenies and; (ii) elliptic curve scalar multiplication
computations via three-point Montgomery ladder procedures. The optimal computation
of large degree isogenies for single-core processors was presented and solved in [33]. Also,
efficient algorithms for computing the SIDH three-point scalar multiplications can be found
in [53, 40]. Several general ideas for a sensible improving of the SIDH performance were
introduced in [25].

Let E be a supersingular elliptic curve defined over the quadratic extension field Fp2 . Let
S = 〈R0〉 be an order-`e subgroup of E[`e], where R0 ∈ E(Fp2), is a point of order `e, e is a
positive number, and ` is a (power) of a small prime. Then there exists a degree-`e isogeny
φ : E → E′ having kernel S. The image curve E′ is also a supersingular elliptic curve
defined over Fp2 . Moreover, #E = #E′ [99, Theorem 1]. In this thesis, the computational
task of finding E′ will be referred as isogeny construction. Furthermore, given a point
P ∈ E(Fp2) such that P 6∈ Ker(φ), a closely related problem is that of finding φ(Q), i.e.,
the image of the point Q over E′. We will refer to this computation as isogeny evaluation.

In [33], optimal strategy techniques were introduced to efficiently compute degree-`e

isogenies at a cost of approximately e
2 log2 e scalar multiplications by `, e

2 log2 e degree-
` isogeny evaluations, and e constructions of degree-` isogenous curves.1 The strategies
described in [33] are provable optimal for those architectures equipped with a single unit of
processing, i.e., single-core platforms. Virtually all SI(DH/KE) implementations published
as of today, compute degree-`e isogenies using optimal strategies.

Optimal strategies can be depicted as a weighted directed graph whose vertices are
elliptic curve points and whose vertical and horizontal edges have as associated weight the
cost of performing one scalar multiplication by ` and one degree-` isogeny, respectively.
That weighted directed graph can be drawn as a right triangular lattice ∆e having e(e+1)

2
points distributed in e columns and rows. A leaf is defined as the most bottom point of
a given column in that lattice. All vertical edges must be computed sequentially, whereas
all the horizontal edges can be computed in parallel. At the beginning of the isogeny

courtesy and graciousness, I am going to accede to your wishes. But first I must tell you the story of my
life. ”

1An analysis of the computational cost of small degree isogeny construction and evaluation can be found
in [25, 22, 17].
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Figure 4.1: Strategy to compute a degree-`e = 49 isogeny. The root point at row and
column zero, represents the elliptic curve point R0 of order 49. Each one of the nine leaves
at the bottom of the columns represent elliptic curve points of order 4. The sequential cost
of this strategy is of thirteen scalar multiplications by four plus sixteen degree-4 isogeny
evaluations.

computation, only the point R0 of order `e is known. The isogeny computation is carried
out by obtaining from left to right, each one of the leaves in ∆e until the farthest right
one, Re−1, is computed. Then, φ : E → E′ can be found by calculating a degree-` isogeny
with kernel Re−1.

An interesting consequence of the weighted directed graph representation is that one
can abstract oneself from the cryptographic nature of the isogeny computation problem,
and solely focus in the combinatorial structure associated to the graph.

As an illustrative example, consider the toy example depicted in Figure 9.1 using the
parameters `e = 49. In the event that that strategy is executed on a single-core platform, it
would have an associated timing cost of thirteen scalar multiplications by 4 (corresponding
to the thirteen vertical blue edges shown in the graph), plus sixteen degree-4 isogeny eval-
uations (corresponding to the sixteen horizontal red edges shown in the graph).2 However,
if one happens to have four cores available for performing this task, then the timing cost
can be reduced to thirteen scalar multiplications by 4, plus just eight degree-4 isogeny
evaluations.

4.2 SIDH

The security of the SIDH key agreement protocol is based on the intractability of the Com-
putational Supersingular Isogeny (CSSI) problem, which consists of computing Fp2-rational
isogenies of degrees 2e and 3e between pairs of supersingular elliptic curves defined over

2The cost of computing the strategy shown in Figure 9.1 also includes ten degree-` isogeny constructions
not relevant for the discussion here.

31



CHAPTER 4. AN INTRODUCTION TO ISOGENY-BASED CRYPTOGRAPHY

Fp2 . It is believed [1, 55] that the van Oorschot-Wiener golden collision finding algorithm is

the best classical or quantum attack on CSSI, having an expected running time of O(p1/4).

Because of its credible security arguments, the supersingular-isogeny Diffie-Hellman
protocol (SIDH) has become a strong candidate for post-quantum cryptography. In ad-
dition, thanks to the high complexity of its underlying hard problem, SIDH provides key
sizes comparable to those of the public-key cryptosystems currently in use.

The main computational tasks associated to the implementation of the SIDH protocol
include the computation of large degree isogenies and the evaluation of elliptic curve points
in those isogenies. Another important task of this scheme is to compute several elliptic
curve scalar multiplications over the quadratic field Fp2 . It is noticed that in a typical
software or hardware implementation of SIDH, the isogeny computations and evaluations
can take 70-80% of the whole computation, whereas the elliptic curve scalar multiplications
may require up to 30% of the total computational cost of the SIDH protocol.

Since the publication of [53], researchers have focused their efforts on trying to come
out with algorithmic improvements for the SIDH protocol. Efficient algorithms for com-
puting the SIDH three-point scalar multiplications can be found in [53, 40]. Likewise, the
computation of large degree isogenies for single-core processors was thoroughly addressed
in [53, 33].

SIDH protocol description

Let p = 4eA3eB − 1 be a prime, so that 4eA ≈ 3eB ≈ p1/2. Let E be a supersingular
elliptic curve defined over Fp2 with #E(Fp2) = (p+ 1)2. In addition, let PA, QA ∈ E[4eA ]
be two points of order 4eA , and PB, QB ∈ E[3eB ] be two points of order 3eB such that
E[4eA ] = 〈PA, QA〉 and E[3eB ] = 〈PB, QB〉. In SIDH, eA, eB, p and E and the bases
{PA, QA} and {PB, QB}, are all considered public domain parameters.

Alice begins the key generation phase by selecting her secret mA ∈R [0, 4eA − 1]. Then
she computes RA = PA+[mA]QA. Thereafter, Alice constructs the isogeny φA : E → E/A
and while computing E/A, simultaneously evaluates Bob’s public points PB, QB. Alice
keeps secret, mA and RA. Then she transmits to Bob, E/A, φA(PB) and φA(QB).

Analogously, Bob selects mB ∈R [0, 3eB − 1] to compute RB = PB + [mB]QB. Bob
then constructs the isogeny φB : E → E/B, and while computing E/B, simultaneously
evaluates Alice’s public points PA, QA. He keeps secret, mB and RB. Then he transmits to
Alice E/B, φB(PA) and φB(QA). This action ends the SIDH key generation phase.

Starting the SIDH shared secret phase, Alice computes φB(RA) = φB(PA)+[mA]φB(QA)
and uses this point to construct (E/B)/〈φB(RA)〉. Meanwhile, Bob computes φA(RB) =
φA(PB) + [mB]φA(QB) and uses this point to construct (E/A)/〈φA(RB)〉.

These two actions complete the secret shared phase. As a result, both of the composi-
tions of isogenies E → E/A→ (E/A)/〈φA(RB)〉 and E → E/B → (E/B)/〈φB(RA)〉, have
kernel 〈RA, RB〉. Hence, the elliptic curves computed by Alice and Bob are isomorphic
over Fp2 , and their shared secret is the j-invariant of these curves.
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Remark 8. In the SIDH key exchange protocol, the key generation phase is always more
expensive than the shared secret one. This is because in the former phase Alice and Bob
must compute not only the isogenies φA, φB, but they also have to evaluate the other
party’s public points namely, (φB(PA), φB(QA)) and (φA(PB), φA(QB)) , respectively

Remark 9. In order to compute the points RA, φB(RA), RB and φA(RB), Alice and Bob
must perform each, two three-point scalar multiplication procedures, which can be ef-
ficiently computed using a right-to-left Montgomery ladder procedure [40]. This Mont-
gomery ladder has a per-step cost of one point addition and one point doubling. Due to
the fact that these two operations are usually performed in the projective space P1, we will
refer to them as the xADD and the xDBL operations, respectively.

Remark 10. Since for current SIDH state-of-the-art implementations it is observed that the
costs of xDBL and xADD are about the same, one can assume that the per-step compu-
tational cost of the three-point Montgomery ladder is essentially of two xDBL operations.
It follows that the cost of computing RA is of 4eA xDBL operations.

4.3 Sequential strategies for large smooth-degree isogenies

As mentioned in the introduction, any strategy that successfully constructs/evaluates a
degree-`e isogeny can be associated with a subgraph Ste of a weighted directed graph ∆e.
In this thesis, ∆e is depicted as a right triangular lattice with e rows and columns. The
triangular lattice ∆e has exactly e(e+1)

2 points and e leaves, which are defined as the most
bottom points in each one of the e columns of the lattice. For the sake of convenience, we
will often refer to the directed graph ∆e as a triangle of size e. The points of ∆e represent
elliptic curve points. The vertical lines indicate scalar multiplications by `, whereas the
horizontal lines represent degree-` isogeny evaluations that could in principle be computed
in parallel.

Several basic definitions and other useful properties of the lattice ∆e are summarized
in the following subsection.

4.3.1 Walking across ∆e

Aiming to find a strategy Ste able to compute degree-`e isogenies, the following navigation
rules to walk across the triangular grid ∆e must be observed.

1. All the vertices of ∆e are represented as nodes (i, j), with 0 ≤ i, j ≤ e− 1. The root
of Ste is the vertex (0, 0) and represents a point R0 of order `e.

2. All the nodes in a row i with i = 0, 1, . . . , e−1, represent points belonging to different
elliptic curves. Likewise, all the nodes in a column j with j = 0, 1, . . . , e−1, represent
points that belong to the same elliptic curve. All nodes having the same Manhattan
distance to the vertex (0, 0), represent points having the same order.
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3. A Vertical edge corresponds to a scalar multiplication by `. For example in Figure 9.1,
the edge [(2, 0), (3, 0)] indicates that starting from the node [`2]R0, one arrives to the
node [`3]R0. Every vertical edge has the same weight p`, which is the computational
cost associated to one scalar multiplication by `.

4. A Horizontal edge corresponds to a degree-` isogeny evaluation. For example in
Figure 9.1, the edge [(3, 0), (3, 1)] indicates that starting from the node [`3]R0 one
arrives to the node φ0([`3]R0). Every horizontal edge has the same weight q`, which
is the computational cost associated to one degree-` isogeny evaluation.

5. The depth at column j for j ∈ [0, e−1], defined as its number of vertices, is of e−1−j
vertices.

6. One can only compute a horizontal edge [(i, j)(i, j + 1)] with i ∈ [0, e − 2] and
j ∈ [0, e− i− 2], provided that one has previously reached the leave of the column j,
represented by the vertex (e− j − 1, j).

7. All horizontal edges [(i, j), (i, j + 1)] are independent of each other and therefore can
be computed in parallel.

8. One can only compute the vertical edge [(i, j), (i + 1, j)] for i ∈ [0, e − 2] and j ∈
[0, e− i− 2], if either i = 0 or the predecessor edge [(i− 1, j), (i, j)] has already been
visited. Thus, vertical edges in the same column have computational dependencies
among them and in general must be computed sequentially.

9. A split node is a node that has both a vertical edge and a horizontal edge leaving
from it. The weight of a split node is the number of nodes between it and either the
next split node in the column or the leave in the column. There are always e−1 split
nodes in any valid strategy.

10. By definition, there are two possible triangles ∆1 of size one, but only one triangle
∆2 of size two (cf. Figure 4.2).

4.3.2 Sequential strategies for computing large smooth-degree isogenies

Let ∆e be the upper-left right triangle of an e × e grid, so that ∆e has e(e+1)
2 points

distributed in e rows and columns. The optimal strategy problem consists of finding a
directed-rooted-weighted subtree Ste, such that

∑
E∈Edges(Ste)w(E) is minimum. Here

w(E) ∈ {p`, q`} represents the weight of the edge E ∈ Edges(Ste).

In the remaining of this subsection, we start by describing first two naive strategies,
followed by an approach that finds optimal strategies as presented in [33]

34



4.3. SEQUENTIAL STRATEGIES FOR LARGE SMOOTH-DEGREE ISOGENIES

(a) ∆1 (b)
∆1

(c) ∆2

Figure 4.2: The three smallest triangles, Subfigure 4.2a shows a size-1 triangle consisting
of its root and one horizontal edge. Subfigure 4.2b shows a size-1 triangle consisting of its
root and one vertical edge. Subfigure 4.2c shows the only size-2 triangle having exactly
two leaves.
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Figure 4.3: Two basic strategies for computing a degree-`9 isogeny. Subfigures 4.3a-4.3b il-
lustrate a multiplicative-oriented approach and an isogeny-oriented approach, respectively.
Vertical blue lines indicate scalar multiplications by `, whereas horizontal red lines indicate
degree-` isogeny evaluations.
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Two naive strategies

Two natural albeit naive strategies for computing a degree-`e isogeny can be summarized
as follows.

Suppose that R ∈ E(Fp2) has order `e, e ≥ 1. Then the isogeny φ : E → E/〈R〉
can be computed as follows. Define E0 = E and R0 = R. For j = 0, 1, . . . , e − 1, let
φj : Ej → Ej+1 be the degree-` isogeny with kernel 〈`e−1−jRi〉, and let Rj+1 = φi(Rj).
Then φ = φe−1 ◦ · · · ◦φ0. The computational cost associated to the multiplicative-oriented

procedure described above is of e(e−1)
2 scalar multiplications by `, e−1 isogeny evaluations

and e isogeny constructions.
A second naive approach to compute a degree-`e isogeny can be formulated as follows.
Define E0 = E. For i = 0, 1, . . . , e − 1, compute and store all the e points R0

i =
[`i]R. Compute φ0 : E0 → E1 such that Ker(φ0) =

〈
R0
e−1

〉
. For j = 1, . . . , e − 1 and

for i = 0, . . . , e − 1 − j, compute Rji = φj−1(Rj−1
i ); followed by φj : Ej → Ej+1 such

that Ker(φj) =
〈
Rje−1−j

〉
. The computational cost associated to the isogeny-oriented

procedure described above is of e(e−1)
2 isogeny evaluations, e− 1 scalar multiplications by

` and e isogeny constructions.
Instantiated for the computation of a degree-`9 isogeny, Figure 4.3 illustrates the com-

putations that one must perform for the two basic methods previously outlined.
However, we can do much better as discussed next.

Optimal strategies for SIDH

Optimal strategies as defined in [33] exploit the fact that a triangle ∆e can be optimally
and recursively decomposed into two sub-triangles ∆h and ∆e−h as shown in Figure 4.4.
Let us denote as ∆h

e the design decision of splitting a triangle ∆e at row h. Then, the
sequential cost of walking across the strategy Ste, which is a direct subgraph of ∆e, is
given as

C(Sthe ) = C(Sth) + C(Ste−h) + (e− h) · q` + h · p`.

We say that Sĥe is optimal if C(Stĥe ) is minimal among all Sthe for h ∈ [1, e− 1].
Applying this strategy recursively leads to a procedure that computes a degree-`e

isogeny at a cost of approximately e
2 log2 e scalar multiplications by `, e

2 log2 e degree-`
isogeny evaluations, and e constructions of degree-` isogenous curves.

As an illustrative example, consider the strategy shown in Figure 4.5. Assuming that
all the vertical and horizontal edges costs 1 unit, then Subfigure 4.5a shows an optimal
partition of ∆9 into two subtriangles ∆6 and ∆3, which can in turn be subdivided into two
subtriangles ∆4 and ∆2; and ∆2 and ∆1, respectively. The strategy shown in Subfigure 4.5b
is optimal to traverse ∆9 for single-core processor platforms.

Remark 11. (cost of computing an `e-isogeny) As shown in [115], a ‘balanced strategy’
for computing a degree-`e isogeny requires approximately e

2 log2 e point multiplications by
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h scalar muls by `
h
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e− h degree-` isogeny evaluations
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∆e

Figure 4.4: Using an optimal SIDH strategy as in [33], a triangular lattice ∆e is processed
by splitting it into two sub-triangles. After applying this splitting strategy recursively, the
cost of computing φ drops to approximately e

2 log2 e scalar multiplications by `, e
2 log2 e

degree-` isogeny evaluations, and e constructions of degree-` isogenous curves.
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Figure 4.5: Assuming that all the vertical and horizontal edges costs 1 unit, this figure
shows an optimal strategy for traversing ∆9 on single-core processor architectures.
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`, e
2 log2 e degree-` isogeny evaluations, and e constructions of degree-` isogenous curves.

Also presented in [115] is a slightly faster ‘optimal strategy’ that accounts for the relative
costs of a point multiplication and a degree-` isogeny evaluation.

4.3.3 Linearizing strategies

In SIKE specification [3, §1.3.7], computational strategies Ste for constructing/evaluating
isogenies are described by means of a full binary tree on e − 1 nodes. The authors of [3]
represent such a tree using a so-called linear representation, which can be obtained by
walking through the tree according to a depth-first left-first ordering and outputting the
bifurcations as they are encountered. It is straightforward to apply the same linearization
process to the right triangular lattices adopted in this thesis. To this end, one just needs to
record the weight of all the split nodes (see Rule 9 in §4.3.1) as they are encountered when
combing the triangular lattice by columns from j = 0 to e − 2. This process is illustrated
in the following examples.

Example 1. Referring to the strategies depicted in Figure 9.1 its linear representation
is given by (4, 2, 1, 1, 1, 2, 1, 1). The first column has four split nodes of weight 4, 2, 1, 1,
respectively. The other four split nodes are located in the columns three (one), five (two)
and seven (one). all of these four split node have weight one, except the first split node of
column 5, whose first split node has weight two.

Example 2. Referring to the strategies depicted in Figure 4.3, their linear representation
is given as follows,

• Subfigure 4.3a: (8, 7, 6, 5, 4, 3, 2, 1). Each one of the first eight columns of this strategy
has only one split node of weight equal to 8− j, for j = 0, . . . , 7.

• Subfigure 4.3b: (1, 1, 1, 1, 1, 1, 1). All the eight split nodes of this strategy have weight
one and are located in the column zero.

Example 3. Referring to the strategies depicted in Figure 4.5 its linear representation is
given by (3, 2, 1, 1, 1, 1, 1, 1). The first column has five split nodes of weight 3, 2, 1, 1, 1,
respectively. The other three split nodes are located in the columns four (one) and six
(two) and all three of them have weight one.

Executing linearized strategies

A strategy specified as a vector of e − 1 split nodes, can be processed as described in
Algorithm 14. Algorithm 14 performs a non-recursive walk across the parallel strategy Ste
for computing a degree-`e isogeny.3 A general procedure for computing linearized strategies
is described next.

3The interested reader is also referred to [3, Algorithm 19].
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1. Initialize the three counters i, j, k = 0. Also, initialize a stack Points, with the point
R0.

2. Process the element Ste[i] as follows

(a) Get the top element in Points, namely Rt and compute R′t = [`Ste[i]]Rt. Then
store R′t in Points.

(b) Assign j = j + Ste[i] and i = i+ 1.

3. Repeat Step 2 until j = e− 1− k.
// The leaf node is reached when j = e− 1− k.//

4. Construct a degree-` isogeny φ using the top element in Points, then remove that
element.

5. Find the image of all the points stored in Points under the isogeny φ.
//This computes all the horizontal edges from column k to column k+ 1 that belong
to the strategy Ste.//

6. Assign k = k + 1 and j = j − Ste[i− 1].
// This indicates the algorithm that a new column will start being processed. Now
j indicates the position in the grid of the top element of Points corresponding to the
vertex (j, k).

7. If k ≤ e − 2, then repeat Step 2. If k = e − 1 go to step 3 and then finish the
procedure.

4.4 CSIDH

Commutative Supersingular Isogeny Diffie Hellman (CSIDH) is an isogeny-based proto-
col a la Diffie-Hellman that can be used for key exchange and encapsulation [14], signa-
tures [32, 37, 9], and other more advanced protocols. When we review current cryptographic
protocols[54, 34], CSIDH seem to be the slowest among them, but it is compensate by the
fact that is the one with smaller keys. CSIDH also support an easy key validation procedure
and allows a static-static key exchange.

CSIDH as SIDH does, use supersingular curves but in contrast to SIDH, it works on
Fp instead of Fp2 . As in SIDH, we make use of an special prime, this time defined by

p := 4

n∏
i=1

`i − 1
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Algorithm 3 Non-recursive walking across the Strategy Stn

Require: A strategy Ste obtained from algorithm 11, Elliptic Curve E0, Point R ∈ E0 of
order `e.

Ensure: Elliptic Curve Ee such that there is a degree-`e-isogeny between E0 and Ee.
1: idx := 0;
2: i := 1;
3: points := [[R, 0]];
4: for row := 0 to e− 1 do
5: while idx< n - row do
6: Rt := [dSt[i]]Rt;
7: idx +:= St[i];
8: Append(points, [Rt, idx]);
9: i +:=1;

10: end while
11: Compute φrow and Erow+1 using Erow and Rt.
12: Prune(points);
13: for j := 1 to #points do //PARALLEL FOR

14: points[j, 1] := φrow(points[j, 1]);
15: end for
16: [Rt, idx] :=Pop(points);
17: end for
18: Compute φe−1 and Ee using Ee−1 and Rt.
19: return Ee;
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with `1, . . . , `n a set of small odd primes. The original proposal of CSIDH [14] works with
a prime of 511 bits using 74 odd primes, where `1, `2, . . . , `73 are the first 73 odd primes
and `74 = 587.

CSIDH works on Montgomery curves over Fp, i.e. , the A coefficient is on Fp. The
endomorphism ring of these curves are isomorphic to order in the imaginary quadratic
field Q(

√
−4p). Castryck et al. [14] choose to restrict the public keys to the horizontal

isogeny class4 of the curve with A = 0, so that all endomorphism rings are isomorphic to
Z[
√
−p].

4.4.1 The class group action

Let E/Fp be an elliptic curve with End(E) ∼= Z[
√
−p]. If a is a nonzero ideal in Z[

√
−p],

then it defines a finite subgroup E[a] =
⋂
α∈a ker(α), where we identify each α with its

image in End(E). We then have a quotient isogeny φ : E → E′ = E/E[a] with kernel a;
this isogeny and its codomain is well-defined up to isomorphism. If a = (α) is principal,
then φ ∼= α and E/E[a] ∼= E. Hence, we get an action of the ideal class group Cl(Z[

√
−p])

on the set of isomorphism classes of elliptic curves E over Fp with End(E) ∼= Z[
√
−p]; this

action is faithful and transitive. We write a ∗E for the image of (the class of) E under the
action of a, which is (the class of) E/E[a] above.

For CSIDH, we are interested in computing the action of small prime ideals. Consider
one of the primes `i dividing p+1; the principal ideal (`i) ⊂ Z[

√
−p] splits into two primes,

namely li = (`i, π − 1) and l̄i = (`i, π + 1), where π is the element of Z[
√
−p] mapping to

the Frobenius endomorphism of the curves. Since l̄ili = (`i) is principal, we have l̄i = l−1
i

in Cl(Z[
√
−p]), and hence

l̄i ∗ (li ∗ E) = li ∗ (̄li ∗ E) = E

for all E/Fp with End(E) ∼= Z[
√
−p].

4.4.2 Class group action algorithm

The main core of the CSIDH protocol is the evaluation of an action of the class group on
any supersingular curve over Fp. To fix ideas, this is the equivalent to exponentiation on the
classical Diffie-Hellman. The input of the algorithm is the A coefficient of a Montgomery
curve over Fp and a list of exponents (ei, . . . , en) ∈ Zn. The output is the A-coefficient of
the elliptic curve a∗E = le11 ∗ · · · ∗ lenn ∗E. Isogenies can be computed using Velu’s formulae
on Montgomery curves or Edwards curves(§2.4.3,2.4.4). As we mention before, in order to
compute an isogeny using Velu’s formulae, we need the curve an a subgroup that will be
the kernel of the isogeny, then we look for points Ri for i = 1, . . . , n such that

Ri

{
Point of order `i of the form (x, i · y) in the kernel of π + 1 if ei < 0
Point of order `i in E(Fp) in the kernel of [`i] if ei > 0

4Isogenies of non-even degree
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and use < Ri > as kernel for the isogenies. In the sequel we assume that we are given an
algorithm QuotientIsogeny which, given a curve E/Fp φ : E → E′ ∼= E/〈R〉, and returns
the pair (φ,E′). We refer to this operation as isogeny computation. Algorithm 4, taken
from the original CSIDH article [14], computes the class group action. For cryptographic

Algorithm 4 The original CSIDH class group action algorithm for supersingular curves
over Fp where p = 4

∏n
i=1 `i−1. The choice of ideals li = (`i, π−1), where π is the element

of Q(
√
−p) is mapped to the p-th power Frobenius endomorphism on each curve in the

isogeny class, is a system parameter. This algorithm constructs exactly |ei| isogenies for
each ideal li.

Require: A ∈ Fp such that EA : y2 = x3 + Ax2 + x is supersingular, and an integer
exponent vector (e1, . . . , en)

Ensure: B such that EB : y2 = x3 +Bx2 + x is le11 ∗ · · · ∗ lenn ∗ EA,
B ← A
while some ei 6= 0 do

Sample a random x ∈ Fp
s← +1 if x3 +Bx2 + x is square in Fp, else s← −1
S ← {i | ei 6= 0, sign(ei) = s}
if S 6= ∅ then
k ←

∏
i∈S `i

Q← [(p+ 1)/k]P , where P is the projective point with x-coordinate x.
for i ∈ S do
R← [k/`i]Q //Point to be used as kernel generator

if R 6=∞ then
(EB, φ)← QuotientIsogeny(EB, R)
Q← φ(Q)
(k, ei)← (k/`i, ei − s)

end if
end for

end if
end while
return B

purposes, the exponent vectors (e1, . . . , en) must be taken from a space of size at least
22λ, where λ is the (classical) security parameter. The CSIDH-512 parameters in [14] take
n = 74, and all ei in the interval [−5, 5], so that 74 log2(2 · 5 + 1) ' 255.99, consistent with
the NIST-1 security level.
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4.4.3 Non-Interactive Key Exchange

The setup of CSIDH is a prime of the form p := 4`1 · · · `n − 1 where `i are small disctint
odd primes and the supersingular curve E0 : y2 = x3 + x over Fp with endomorphism ring
O = Z[π]. For the public key generation step Alice chooses a randomly sampled n-tuple
(e1, . . . , en) from a range (−m,m) representing the ideal class [a] = [le11 · · · l

ei
i ] ∈ Cl(O).

Alice compute her public key using Algorithm 4 with inputs A = 0 and (e1, . . . , en) and
gets the public key Aa associated to [a]E0. Bob do the same, in order to get his public
key Ab associated to the curve [b]E0. For the key exchange step, Alice use Algorithm 4
with inputs A = Ab and her n-tuple generated in previous step in order to compute the
Montgomery coefficient of the curve [a · b]E0. Bob imitates Alice and get the Montgomery
coefficient of the curve [b · a]E0. As the ideals of Cl(O) commutes then both curves are the
same and the shared key is the Montgomery coefficient Aab = Aba.
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Chapter 5

How to compute odd-degree isogenies

In the last few years there has been an intense interest in finding efficient formulas for com-
puting odd degree isogenies using different models of elliptic curves. Several authors have
found efficient formulas for computing isogenies using Weierstrass curves [105], Edwards,
Twisted Edwards and Huff curves [75], Montgomery curves [22], and more recently, Hes-
sian and twisted Hessian curves [31]. Nonetheless, designers of isogeny-based protocols such
as SIDH[52], CSIDH[14, 71] and BSIDH[20], regularly prefer to adopt Montgomery and
twisted Edwards curve models for their schemes. This is because it is widely believed that
for isogeny-based protocols these two elliptic curve models provide a much more efficient
curve arithmetic.

Let q = pn, where p is a prime number and n a positive integer; and let ` be an
odd number ` = 2s + 1, with s > 1. Let E and E′ be two supersingular elliptic curves
defined over Fq for which there exists a separable degree-` isogeny φ : E → E′ defined over
Fq. This implies that there must exist an `-order point P ∈ E(Fq) such that Ker(φ) =
{∞,±P,±[2]P, . . . ,±[s]P}. Given the domain elliptic curve E and an `-order point P ∈
E(Fq), in this note we are interested in the problem of computing the co-domain elliptic
curve E′. Furthermore, given a point Q ∈ E(Fq) such that Q 6∈ Ker(φ), a closely related
problem is that of finding φ(Q), i.e., the image of the point Q over E′.1

1We will sometimes refer to these two problems as the isogeny construction and the isogeny evaluation
computations, respectively.



CHAPTER 5. HOW TO COMPUTE ODD-DEGREE ISOGENIES

KPS CODOM

PEVAL

point P
of order `

Point Q 6∈ 〈P 〉

Constants of
domain curve
E Constants of

co-domain curve E′

φ(Q), image of
point Q over E′

Figure 5.1: Given a supersingular elliptic curve E and an order-` point P ∈ E(Fq) this
diagram shows the main modules for computing a degree-` isogeneous curve E′ and the
image of a point Q ∈ E(Fq), subject to the condition that Q is not in the kernel subgroup
6∈ 〈P 〉. The circles are drawn to scale the relative computational costs of the modules.

In order to find efficient formulations for the above two problems and inspired in the
notation used in [49, Table 1], we define KPS as the task of computing the first s multiples of
the point P , namely, the set {P, [2]P, . . . , [s]P}. Using KPS as a building block, the module
CODOM computes the per-field constants that determine the co-domain curve E′ defined
over Fq. Also, using KPS as a building block, PEVAL computes the image point φ(Q).

Figure 5.1 shows the dependencies among the KPS , CODOM and PEVAL primitives, where
the circles are drawn to scale the relative costs of these three tasks.2. Both CODOM and
PEVAL require the points in Ker(φ) as input parameters, which are computed by the
KPS primitive. Notice that since CODOM and PEVAL show no dependencies between them,
once that the kernel points have been computed, it is possible to compute CODOM and
PEVAL in parallel. Furthermore, when evaluating an arbitrary number of points in E that
do not belong to the Ker(φ) subgroup, KPS must be computed only once. Hence, the com-
putational cost associated to KPS gets amortized when computing the image of two or more
points.

A Montgomery curve [73] is defined by the equation EA,B : By2 = x3 + Ax2 + x, such
that B 6= 0 and A2 6= 4. For the sake of simplicity, we will write EA for EA,1. Moreover,
it is customary to represent the constant A in the projective space P1 as (A′ : C ′), such
that A = A′/C ′ (see [25]). In [5] it was shown that every Montgomery curve EA,B : By2 =
x3+Ax2+x is birationally equivalent to a twisted Edwards curve Ea,d : ax2+y2 = 1+dx2y2.
The curve constants are related by

(A,B) =

(
2(a+ d)

a− d
,

4

a− d

)
and (a, d) =

(
A+ 2

B
,
A− 2

B

)
.

2In fact, KPS becomes more expensive than PEVAL starting from ` ≥ 11 for ` a prime number. When
` ≤ 7, the block KPS is considerably cheaper or even free of cost for the case ` = 3.
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Primitive M S
A

Montgomery[22] Edwards[15]
KPS 4(s− 1) 2(s− 1) 6s− 2 6s− 2
PEVAL 4s 2 6s 2s+ 4

Table 5.1: Current State-of-the-art costs for KPS and PEVAL . Field multiplication (M )
and squaring (S ) costs are taken from [22] and [15]. We are using the fact that KPS can be
computed by performing one point doubling and s−2 point additions. The computational
costs associated to the point addition and point doubling operations is of 4M + 2S +
6A and 4M + 2S + 4A , respectively.

Table 5.1 summarizes the field arithmetic costs associated to the KPS and PEVAL opera-
tions. Note that KPS is a straightforward computation that can be performed at the cost of
one point doubling and k − 2 point additions. Efficient formulas for computing PEVAL can
be found in [22] and [15] for Montgomery and twisted Edwards curves, respectively.

In the remainder of this note, different strategies for the efficient computation of the
CODOM operation will be discussed. A Magma implementation of all the procedures de-
scribed here along with the KPS , CODOM and PEVAL primitives, are available at, https:
//github.com/dcervantesv/Odd_Degree_Isogenies.

5.1 Twisted Edwards curves

In [75], Moody and Shumov presented à la Vélu formulas for computing isogenies on
Edwards, twisted Edwards and Huff curves. Later, Meyer and Reith in [71] utilized a
projective version of those formulas working on twisted Edwards YZ-coordinates. Arguably,
these formulas are more efficient than the corresponding to Montgomery curves [22]. In
the following, the projective version of Corollary 1 of [75] using Edwards YZ-coordinates
will be assumed.

Proposition 5.1.1. Let us suppose that F is a subgroup of the twisted Edwards curve
Ea,d with odd order ` = 2s + 1, s > 1. Let the points in F be given in twisted Edwards
Y Z-coordinates as the set,

{(Y1 : Z1), . . . , (Ys : Zs)}.

Then, there exists a degree-` isogeny ψ with kernel F that takes us from the curve Ea,d to
the curve Ea′,d′ . The constants a′, d′ can be computed as,

By =
s∏
i=1

Yi; Bz =
s∏
i=1

Zi; a′ = a`B8
z ; d′ = B8

yd
`. (5.1)

Proof. From Corollary 1 of [75], if we consider F ′ = {∞, (±α1, β1), . . . (±αs, βs)}, then
from the curve Ea,d to the curve Eā,d̄ there exists a degree-` isogeny ψ′ with kernel F ′ that
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can be computed as,

B =

s∏
i=1

βi; ā = a`; d̄ = B8d`. (5.2)

Using βi = Yi/Zi and plugging in into Eq. (5.2) yields,

B =
s∏
i=1

Yi
Zi

=

∏s
i=1 Yi∏s
i=1 Zi

=
By
Bz

; ā = a`; d̄ = (
By
Bz

)8d`.

It is known from [5] that Ea,d ∼= E1,d/a. This implies that

Eā,d̄
∼= E

1,
(
By
Bz

)8d`

a`

∼= E
1,

B8
yd`

B8
za

`

∼= Ea′,d′ .

The computational costs associated to Eq. (5.1) can be upper bounded by assuming
that the exponentiations to the power ` are performed independently and by means of
the binary method. Let H(`) and λ(`) denote the Hamming weight and the bit-length of
the integer `, respectively. Hence, the cost of computing the co-domain curve is given as
follows. The values B8

y and B8
z can be computed at a cost of 2(s−1)M + 6S . When using

the binary method the overall cost of the exponentiations a` and d` is of 2(H(`)− 1)M +
2(λ(`)−1)S . Two more multiplications are required to obtain a′ and d′. Therefore, the cost
of computing the constants a′ and d′ of Eq. (5.1), which define the co-domain isogenous
curve is upper bounded by

2(s+ H(`)− 1)M + 2(λ(`) + 2)S .

In the remaining of these note, several methods for improving the above upper bound will
be discussed.

5.1.1 Using NAF for reducing the computational cost of odd degree iso-
genies

By exploiting once again the property Ea,d ∼= E1,d/a, one can in general reduce the compu-
tation of the exponentiations of Eq. (5.1) using any signed representation of the exponents
such as the well-known Non-adjacent Form (NAF). Let us recall that the NAF representa-
tion of a positive integer ` is an expression ` =

∑n−1
i=0 `i2

i, where `i ∈ {0,±1}, `n−1 6= 0 and
no two consecutive digits `i are nonzero [46]. Let L = NAF (`). In the case of Eq. (5.5),
one can notice that the positive and negative values of the NAF representation of ` can be
split as,

L = Lp − Lm, where Lp =

n−1∑
i=0|ki>0

`i2
i, and Lm = −

n−1∑
i=0|ki<0

`i2
i. (5.3)
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As an illustrative example, let us consider the representations of the integer 353,

(353)2 = (1, 0, 1, 1, 0, 0, 0, 0, 1);

L = NAF (353) = (1, 0, 1̄, 0, 1̄, 0, 0, 0, 0, 1);

(Lp)2 = (1, 0, 0, 0, 0, 0, 0, 0, 0, 1);

(Lm)2 = (0, 0, 1, 0, 1, 0, 0, 0, 0, 0).

Using the above split NAF representation, one can compute n` as nLpn−Lm . Moreover,
exploiting Ea,d ∼= E1,d/a, one can compute a′ = a`B8

z and d′ = B8
yd
` as,

a′ = B8
za
LpdLm , d′ = B8

ya
LmdLp . (5.4)

Notice that the two exponentiations aLpdLm and aLmdLp of Eq. 5.4 can be computed
simultaneously (cf. [46, §3.3.3.]), by using a right-to-left exponentiation approach that
allows us to share the squaring operations. Moreover, since the positive bit exponentiations
aLp and dLp of Eq. 5.4 share the same exponent, they are naturally synchronized. The same
can be said about the negative bit exponentiations dLm and aLm .

We carefully exploit the dependencies on these four exponentiations as shown in Algo-
rithm 5. The accumulators for the exponentiations (aLp , aLm) and (dLp , dLm), are stored
into the two-entry arrays Ta and Td, respectively. Notice that in lines 6-7, these arrays are
initialized to one. As we are dealing with odd `, this implies that the least significant bit of
NAF (`) is always non-zero. This observation is used to save two multiplications as shown
in line 9. Depending on the sign of L[0], in line 9 only the entries that will store the positive
(or the negative) bit exponentiations get initialized with a and d, respectively. The other
entries are only initialized when a sign change is detected. To simplify the algorithm, this
change of sign can be pre-computed off-line, by recording the exact position ω where this
change occurs. The two input parameters a, d are rewritten to accumulate the squaring
operations by updating them at each iteration of the two main loops in lines 10 and 21.
They are also updated in line 18 when a sign change has been detected. It can be shown
that the cost of computing a′ and d′ using Algorithm 5 is given as,

2(s+ H(L))M + 2(#L+ 2)S ,

where L = NAF (`). The above cost is often cheaper than the one presented in the previous
section for a binary representation. This is due to the fact that the average non-zero density
1/3 of the NAF representation, is cheaper than the average non-zero density 1/2 of the
binary representation.

If the NAF expansion of ` contains no 1̄, then NAF (`) = (`)2 and a simple binary
exponentiation suffices. In this case the computational expense of Algorithm 5 becomes
2(s+H(`)−1)M + 2(λ(`)+2)S . Therefore, it can be concluded that computing an isogeny
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using Algorithm 5 adds no extra costs, but savings due to the fact that the NAF recoding
guarantees a smaller non-zero density in comparison to the binary method.3

As a relevant practical example, consider all the prime factors in the factorization of
(p512 + 1)/4 where p512 is the prime used in the CSIDH-512 protocol [14]. The NAF trick
discussed here will have the same computational cost as the one associated to the binary
representation for those primes in the set {5, 17, 37, 41, 73, 137, 149, 257, 277, 293, 337}. For
all the other 63 prime factors of (p512 + 1)/4, the NAF representation produces savings
compared with the cost of the binary one. The Magma code of Algorithm 5 is available
at, https://github.com/dcervantesv/Odd_Degree_Isogenies.

Remark 12. When Algorithm 5 deals with the case `2 = NAF (`), the variable wL must
be set to any position in the vector L with value zero. This way, the assignment on lines
19-20 does not interfere with the positive accumulator as the sign computed in Line 17 is
the opposite of the first sign computed (that must be positive as `2 = NAF (L)). On Line
29 if L[ωL] = 0, then a′ and d′ are computed as in Equation 5.1. Otherwise, a′ and d′ are
computed as in Equation 5.4.

Remark 13. We are not aware of any isogeny-based protocol where the input parameter
` of Algorithm 5 must remain secret. Hence, no efforts to protect this procedure against
timing-attacks were attempted.

5.1.2 Using modular arithmetic for reducing the computational cost of
odd degree isogenies

As previously discussed, the computation of Eq. (5.1) requires two exponentiations to the
power `. These computational expenses can be reduced as follows.

Corollary 5.1.1.1. Let Ea,d, F and ` be given as in Corollary 5.1.1. Let us define k =
b`/8c, and r = ` mod 8. Then, from the curve Ea,d to the curve Ea′,d′ there exists a
degree-` isogeny ψ with kernel F, where the constants a′, d′ can be computed as

a′ = (akBz)
8ar; d′ = (dkBy)

8dr; , By =

s∏
i=1

Yi; and Bz =

s∏
i=1

Zi. (5.5)

Proof. It follows immediately from Proposition 5.1.1 and the property Ea,d ∼= E1,d/a.

At first glance it may appear that compared with Eq. 5.1, the computational cost of
Eq. (5.5) has been increased by the addition of two extra multiplications and two expo-
nentiations by r. Nevertheless, we will argue in the following that the new formulation of
Eq. (5.5) can save up to 6S compared with the costs associated to Eq. 5.1. To this end,
let us first analyze the computation of ar and dr. Since we are dealing with odd degree
isogenies, there are only four possible remainders modulo 8, namely, r = 1, 3, 5, 7. The

3It may incur though, to one extra squaring due to the extra bit associated to NAF [46]
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Algorithm 5 Odd degree isogenous codomain curve computation using NAF recoding.

Require: Integer ` = 2s + 1, Integer vector L = NAF (`), Integer ωL ∈ [0..(#L − 1)] in
which the first change of sign occurs. Edwards curve constants a and d, Subgroup F =
(Y1 : Z1), . . . , (Ys : Zs).

Ensure: a′ and d′ defining the Twisted Edwards curve Ea′,d′ isogenous to Ea,d as in Corollary
5.1.1.

1: By ← Y1;
2: Bz ← Z1;
3: for i=2 to s do
4: By ← ByYi; Bz ← BzZi;
5: end for
6: Ta ← [1, 1] //Initialization of Ta which will hold ap and am
7: Td ← [1, 1] //Initialization of Td which will hold dp and dm
8: Sign← L[0]+1

2 ;
9: Ta[Sign] = a ; Td[Sign] = d;

10: for i := 1 to (ωL − 1) do
11: a← a2; d← d2;
12: if L[i] 6= 0 then
13: Ta[Sign]← Ta[Sign] · a;
14: Td[Sign]← Td[Sign] · d;
15: end if
16: end for
17: Sign← (Sign+ 1) mod 2; //The opposite of the Sign of L[0]
18: a← a2; d← d2;
19: Ta[Sign]← a;
20: Td[Sign]← d;
21: for i := (ωL + 1) to (#(L)− 1) do
22: a← a2; d← d2;
23: if L[i] 6= 0 then

24: Sign← L[i]+1
2

25: Ta[Sign]← Ta[Sign] · a;
26: Td[Sign]← Td[Sign] · d;
27: end if
28: end for
29: if L[wL] = 0 then
30: a′ ← B8

z · Ta[1].
31: d′ ← B8

y · Td[1].
32: else
33: a′ ← B8

z · Ta[1] · Td[0].
34: d′ ← B8

y · Ta[0] · Td[1].
35: end if
36: return a′, d′.
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cheapest case occurs when r = 1, because we do not incur in any additional multiplication
and we trade two exponentiations to the power ` in Eq. (5.1), by two exponentiations to the
power k = b l8c in Eq. (5.5). Further, one can compute the other three possible reminders
at a cost of only two extra multiplications as shown in Eq. 5.6.

[a′, d′] =


[((akBz)

4a)2a, ((dkBy)
4d)2d] r = 3

[((akBz)
2a)4a, ((dkBy)

2d)4d] r = 5
[(akBza)8d, (dkByd)8a] r = 7

(5.6)

Then, the cost of computing a′ and d′ as in Corollary 5.1.1.1 and assuming k > 0 is given
as {

2(H(k) + s)M + 2(λ(k) + 2)S if r = 1
2(H(k) + s+ 1)M + 2(λ(k) + 2)S otherwise

. (5.7)

We dub this method as the div8 approach.

Remark 14. Equation 5.7 holds for k > 0. When k = 0 one can save one extra multipli-
cation. Therefore, the specialized cost for a degree-3, -5 and -7 isogeny computation using
the div8 approach is of 4M + 6S , 6M + 6S and 8M + 6S , respectively.

5.1.3 Combining NAF and modular reduction

In §5.1.1, it was observed that the NAF representation applied to the exponent ` is advan-
tageous for constructing odd degree isogenies. In §5.1.2 an efficient isogeny construction
by considering the exponent ` divided by eight and its respective remainder was described.
The next natural step is to apply the NAF representation to the exponent k along the lines
of the div8 approach.

Corollary 5.1.1.2. Let Ea,d, F and ` = 2d + 1 as in Corollary 5.1.1. Compute K =
NAF (bl/8c) and consider

Kp =
n−1∑

i=0|Ki>0

ki2
i, and Km = −

n−1∑
i=0|ki<0

ki2
i. (5.8)

Then, from the curve Ea,d to the curve Ea′,d′ there exists a degree-` isogeny ψ with kernel
F where

a′ = (aKpdKmBz)
8ar; d′ = (aKmdKpBy)

8dr;

By =
s∏
i=1

Yi; and Bz =
s∏
i=1

Zi.

The proof is the same as in Corollary 5.1.1.1 along with a straightforward computation.
The cost of computing this new rearrange is given by{

2(H(K) + s)M + 2(#K + 2)S if r = 1
2(H(K) + s+ 1)M + 2(#K + 2)S otherwise

(5.9)

52



5.2. COMPARISON

The computational cost of the Corollary 5.1.1.2 given in Eq. (5.9) can be justified as follows,

• Again, in order to compute By and Bz one requires to perform 2(s− 1)M .

• In this case, it is unknown whether the first bit of K is zero or not, but one can
pre-compute off-line, how many zeros happen to be before the first non-zero ele-
ment. Then after initializing the accumulator, one can follow a similar strategy as in
Algorithm 5 to compute aKp , aKm , dKp and dKm . This will help us to save two mul-
tiplications. The computational cost of this step is 2(H(K)− 2)M + 2(#K − 1)S .

• Once we have Bz, By, a
r, dr, aKp , aKm , dKp and dKm , the cost of computing a′ and d′

is 6M + 6S .

• Using the result of Eq.(5.6), it can be seen that two extra multiplications are required
to compute ar and dr for r ∈ {3, 5, 7}, and no extra cost for the case r = 1.

The addition of the above computational expenses gives the result presented in Eq. (5.9).

5.2 Comparison

For the sake of fairness, in this section the isogeny construction methods that have been
proposed by different authors using their cheapest version for as many odd values ` as pos-
sible, are reported. Table 5.2 shows the operation counts for several state-of-the-art isogeny
construction algorithms using different elliptic curve models. Note that the a from alpha

approach proposed in [22], computes an isogeny construction using the image of a two-
torsion point in a Montgomery curve different than the point (0, 0). This approach can
only be used when considering rational points over an extension of the base field Fp. Al-
gorithm 3 point recover[22] requires to know in advance the x-coordinates of the points
x(P ), x(P ) and x(P −Q) for some P and Q belonging to the co-domain curve. It appears
that this approach cannot be easily extended to a general scenario other than the key gen-
eration phase of the SIDH protocol, where primes of the form p = `eaa `

eb
b f − 1 with `i < 5

are used. The rest of the algorithms reported in Table 5.2 can easily be applied to more
generic settings.

We did not consider hybrid cases where curve constants must be translated into another
model of curve or to a better representation of the constants. For example, Onuki and
Takagi algorithm [88] returns the constant (A : C). The cost of computing the constants
A24 and C24 required for fast Montgomery curve-arithmetic is not taken into account
here. Also for the Edwards curves, the computation of the constant e = a − d used in
[15] to attain faster curve arithmetic is disregarded. Table 5.3 summarizes the operation
counts of optimized formulas for certain specific isogeny degrees. Among all state-of-the-
art algorithms, only [22] reports one specialized algorithm for a specific isogeny degree. In
Remark 14 of this note, concrete isogeny computation formulas for three specific degrees
are given.
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Work Model
Cost

M S A
a from alpha [22] Mont 4s 4 4s+ 3
3 point recover [22] Mont 8 5 11
CSIDH [14] Mont 6s− 2 3 4
Meyer-Reith [71] Ed 2(s+ H(`) 2(λ(`) + 2) 0
Onuki-Takagi [88] Mont 5s− 1 2 s+ 5

NAF exp (Algorithm 5) Ed 2(s+ H(L)− 1) 2(#L+ 2) 0
div8 r = 1 (§5.1.2) Ed 2(H(k) + s) 2(λ(k) + 2) 0
div8 r = 3, 5, 7 (§5.1.2) Ed 2(H(k) + s+ 1) 2(λ(k) + 2) 0
div8NAF r = 1 (§5.1.3) Ed 2(H(K) + s) 2(#K + 2) 0
div8NAF r = 3, 5, 7 (§5.1.3) Ed 2(H(K) + s+ 1) 2(#K + 2) 0

Table 5.2: General costs for different state-of-the-art isogeny construction algorithms
(dubbed CODOM in Fig 5.1). Notice that the algorithms from [22] require extra input data
to compute the co-domain curve, and might not be useful on the CSIDH framework. Here
` = 2s+ 1, k = b`/8c, r = ` mod 8, L = NAF (`) and K = NAF (k).

Work Degree
Cost

M S A
Costello-Hisil [22] 3 2 3 14

This work (Remark 14) 3 4 6 0
This work (Remark 14) 5 6 6 0
This work (Remark 14) 7 8 6 0

Table 5.3: Specialized formulas for certain odd degree isogenies.
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degree Costello-Hisil [22] Onuki-Takagi [88] Meyer-Reith [71] div8

3 5.1(*) 5.9 10.4 8.8(*)
5 11.75 10.95 14 10.8(*)
7 15.95 16 18 12.8(*)
9 20.15 21.05 19.6 14.8
11 24.35 26.1 23.6 18.8

Table 5.4: Costs assuming S = 0.8M and A = 0.05M . All costs are given Using M as
unit of measure. Costs with(*) indicate that we are using the operation counts reported
in Table 5.3. The shaded cells indicate the minimum cost for each degree.

degree Costello-Hisil[22] Onuki-Takagi[88] Meyer-Reith [71] div8

3 5.7(*) 6.300 12 10(*)
5 12.55 11.35 16 12(*)
7 16.75 16.40 20 14(*)
9 20.95 21.45 22 16
11 25.15 26.50 26 20

Table 5.5: Costs assuming S = M and A = 0.05M . All costs are given Using M as unit
of measure. Costs with (*) indicate that we are using the operation counts reported in
Table 5.3. The shaded cells indicate the minimum cost for each degree.

Tables 5.4 and 5.5 report the costs of computing the co-domain curve using M as cost
metric. In Table 5.4 it is assumed that S =0.8M as in [88]. For this setting, it is observed
that the div8 approach introduced in §5.1.2 outperforms the other strategies for all the
degrees except when computing isogenies of degree 3, where the specialized formula of
Costello and Hisil [22] is optimal. Arguably, the assumption of the ratio S =0.8M for
the field arithmetic is a bit unrealistic.4 Hence in Table 5.5 a more realistic scenario for
Fp arithmetic is considered by assuming S =M . In this setting the algorithm by Onuki
and Takagi [88] emerges as the optimal method when constructing degree-5 isogenies. In
the case of degree-3 isogeny constructions, the approach by Costello and Hisil [22] remains
unbeatable.

We executed our Magma scripts for determining the associated computational costs
for div8 , NAFexp and div8NAF . We also report the computational costs for Onuki and
Takagi [88] and Meyer-Reith [69] analyzed trough all the prime numbers in the interval
[11, 220]. The corresponding computational costs are summarized in Tables 5.6 and 5.7.

The large interval considered in Tables 5.6 and 5.7 can be of interest for the search
of more conservative parameters for the CSIDH protocol. Moreover, BSIDH[20] uses `-
isogenies where the biggest bit-length of ` is of about 22 bits. Furthermore, recently the
SÉTA protocol, a new isogeny-based protocol, was introduced in [36]. The SÉTA protocol
seems to make use of `-isogenies where the largest ` is about 214.

Remark 15. We only consider odd prime degree isogenies due to the following observation.

4We still consider S = 0.8M because this might be about the correct ratio for the Fp2 quadratic field
arithmetic.

55



CHAPTER 5. HOW TO COMPUTE ODD-DEGREE ISOGENIES

Vs. Meyer-Reith [71] Onuki-Takagi [88] NAFexp div8 div8NAF

Meyer-Reith [71] - 100 6.163 0 0
Onuki-Takagi [88] 0 - 0.001 0 0

NAFexp 77.649 99.998 - 24.004 0
div8 100 100 62.254 - 9.408

div8NAF 100 100 100 67.239 -

Table 5.6: Comparison of different algorithms to compute CODOM , assuming S = M and
`2 6= NAF (`) for a prime ` ∈ [11, 220]. All numbers report the winning percentage when
comparing the algorithm in row i versus the algorithm in column j. Since for some degrees
there are ties, it may occur that the addition of the cells (i, j)+(j, i) could be smaller than
100.

Vs. Meyer-Reith [71] Onuki-Takagi [88] NAFexp div8 div8NAF

Meyer-Reith [71] - 100 6.163 0 0
Onuki-Takagi [88] 0 - 0 0 0

NAFexp 87.379 100 - 37.745 0
div8 100 100 62.254 - 9.408

div8NAF 100 100 100 79.884 -

Table 5.7: Comparison of different algorithms to compute CODOM assuming S = 0.8M and
`2 6= NAF (`) for a prime ` ∈ [11, 220]. All numbers report the winning percentage when
compare the algorithm in row i versus the algorithm in column j. Since for some degrees
there are ties, it may occur that the addition of the cells (i, j)+(j, i) could be smaller than
100.

Let us assume that one wants to compute a composite odd degree-` isogeny with ` =∏r
i=1 `i, `i being distinct prime numbers and r > 1 a positive integer. Such isogeny can

be computed as the composition of the r degree-`i isogenies. It is not hard to see that
using that composition approach, the associated computational complexity is linear5 with
respect to

∑r
i=1 `i. If one would try to compute the `-degree isogeny by directly applying

the formulas presented in this document, the computational complexity is also linear but
this time with respect to

∏r
i=1 `i. The latter is a much larger number than the one associated

to the composition approach.

5.3 Conclusion

The cost of constructing odd-degree isogenies on Edwards curves is closely related to the
problem of the simultaneous computation of several exponentiations over Fq. In this note
we review three strategies to compute such exponentiations. Our results show that for most

5And possibly linear-logarithmic with respect to
∏r

i=1 `i, if we employ a multiplicative strategy to
compute such composition (as in the CSIDH protocol).
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prime numbers in the interval [11, 220] the div8NAF approach described in this note appears
to be the best option for computing odd degree isogenies on Edwards curves. On the other
hand, if we focus on the prime numbers that appear in the factorization of the prime p512+1
used in [14], it seems that the div8 approach is the best (See Appendix A). Moreover, for the
relevant case of isogenies of degree 3, the best algorithm is the one provided by Costello and
Hissil in [22]. The best approach for constructing degree-5 isogenies is contested between
our div8 approach and the Onuki and Takagi [88] algorithm. The former strategy is better
when it is assumed that S =0.8M , but the latter is cheaper when S =M .

The main contribution of this note is the introduction of the NAF exponentiation into
the Edwards co-domain curve computation (§5.1.1) and the div8 (§5.1.2) and div8NAF (§5.1.3)
approaches. As a future work we will explore the use of wNAF recodings into the construc-
tion of large odd degree isogenies and the use of parallel computation of the three building
blocks depicted in Fig. 5.1.
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Chapter 6

On the Cost of Computing Isogenies

Between Supersingular Elliptic Curves

6.1 Introduction

The Supersingular Isogeny Diffie-Hellman (SIDH) key agreement scheme was proposed by
Jao and De Feo [120] (see also [115]). It is one of 69 candidates being considered by the
U.S. government’s National Institute of Standards and Technology (NIST) for inclusion
in a forthcoming standard for quantum-safe cryptography [119]. The security of SIDH
is based on the difficulty of the Computational Supersingular Isogeny (CSSI) problem,
which was first defined by Charles, Goren and Lauter [110] in their paper that introduced
an isogeny-based hash function. The CSSI problem is also the basis for the security of
isogeny-based signature schemes [117, 136] and an undeniable signature scheme [121].

Let p be a prime, let ` be a small prime (e.g., ` ∈ {2, 3}), and let E and E′ be two
supersingular elliptic curves defined over Fp2 for which a (separable) degree-`e isogeny
φ : E → E′ defined over Fp2 exists. The CSSI problem is that of constructing such an

isogeny. In [115], the CSSI problem is assessed as having a complexity of O(p1/4) and
O(p1/6) against classical and quantum attacks [132], respectively. The classical attack is a
meet-in-the-middle attack (MITM) that has time complexity O(p1/4) and space complexity
O(p1/4). We observe that the (classical) van Oorschot-Wiener golden collision finding
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algorithm [125, 126] can be employed to construct φ. Whereas the time complexity of the
van Oorschot-Wiener algorithm is higher than that of the meet-in-the-middle attack, its
space requirements are smaller. Our cost analysis of these two CSSI attacks leads to the
conclusion that, despite its higher running time, the golden collision finding CSSI attack
has a lower cost than the meet-in-the-middle attack, and thus should be used to assess the
security of SIDH against (known) classical attacks.

The remainder of this Chapter is organized as follows. The CSSI problem and relevant
mathematics background are presented in §6.2. In §6.3 and §6.4, we report on our imple-
mentation of the meet-in-the-middle and golden collision search methods for solving CSSI.
Our implementations confirm that the heuristic analysis of these CSSI attacks accurately
predicts their performance in practice. Our cost models and cost comparisons are presented
in §6.5. Finally, in §6.6 we make some concluding remarks.

6.2 Computational Supersingular Isogeny Problem

6.2.1 CSSI

The challenge faced by a passive adversary is to compute the kernel of Alice (or Bob) secret
isogeny given the public parameters, E/A, E/B, φA(PB), φA(QB), φB(PA) and φB(QA). A
necessary condition for hardness of this problem is the intractability of the Computational
Supersingular Isogeny (CSSI) problem: Given the public parameters `A, `B, eA, eB, p, E,
PA, QA, PB, QB, the elliptic curve E/A, and the auxiliary points φA(PB) and φA(QB),
compute the Vélu isogeny φA : E → E/A (or, equivalently, determine a generator of A).

An assumption one makes (e.g., see [115]) is that the auxiliary points φA(PB) and
φA(QB) are of no use in solving CSSI. Thus, we can simplify the statement of the CSSI
problem to the following:

Problem 1 (CSSI). Given the public parameters `A, `B, eA, eB, p, E, PA, QA, and the
elliptic curve E/A, compute a degree-`eAA isogeny φA : E → E/A.

6.3 Meet-in-the-Middle

For the sake of simplicity, we will suppose that e is even. We denote the number of order-
`e/2 subgroups of E[`e] by N = (`+ 1)`e/2−1 ≈ p1/4.

Let E1 = E and E2 = E/A. Let R denote the set of all j-invariants of elliptic curves
that are isogenous to E1; then #R ≈ p/12 [129]. Let R1 denote the set of all j-invariants
of elliptic curves over Fp2 that are `e/2-isogenous to E1. Since #R� N , one expects that

the number of pairs of distinct order-`e/2 subgroups (A1, A2) of E1[`e] with j(E1/A1) =
j(E1/A2) is very small. Thus, we shall assume for the sake of simplicity that #R1 =
N . Similarly, we let R2 denote the set of all j-invariants of elliptic curves that are `e/2-
isogenous to E2, and assume that #R2 = N . Since E1 is `e-isogenous to E2, we know that
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R1∩R2 6= ∅. Moreover, since #R1 � #R and #R2 � #R, it is reasonable to assume that
#(R1 ∩ R2) = 1; in other words, we can assume that there is a unique degree-`e isogeny
φ : E1 → E2.

6.3.1 Basic method

The meet-in-the-middle attack on CSSI [115], which we denote by MITM-basic, proceeds
by building a (sorted) table with entries (j(E1/A1), A1), where A1 ranges over all order-`e/2

subgroups of E1[`e]. Next, for each order-`e/2 subgroup A2 of E2[`e], one computes E2/A2

and searches for j(E2/A2) in the table (see Figure 6.1). If j(E2/A2) = j(E1/A1), then the
composition of isogenies

φA1 : E1 → E1/A1, ψ : E1/A1 → E2/A2, φ̂A2 : E2/A2 → E2,

where ψ is an Fp2-isomorphism and φ̂A2 denotes the dual of φA2 , is the desired degree-`e

isogeny from E1 to E2. The worst-case time complexity of MITM-basic is T1 = 2N , where
a unit of time is a degree-`e/2 Vélu isogeny computation (cf. Remark 11). The average-case
time complexity is 1.5N . The attack has space complexity N .

E1

E1,2

E1,2,1
· · ·

· · ·

E1,2,0
· · ·

· · ·

E1,1

E1,1,1
· · ·

· · ·

E1,1,0
· · ·

· · ·

E1,0

E1,0,1
· · ·

· · ·

E1,0,0
· · ·

· · ·

3 · 2e/2−1 leaves3 · 2e/2−1 leaves

E1/A1 isomorphism
ψ

E2

E2,2

E2,2,1

· · ·

· · ·

E2,2,0

· · ·

· · ·

E2,1

E2,1,1

· · ·

· · ·

E2,1,0

· · ·

· · ·

E2,0

E2,0,1

· · ·

· · ·

E2,0,0

· · ·

· · ·

3 · 2e/2−1 leaves

E2/A2

Figure 6.1: Meet-in-the-middle attack for degree-2 isogeny trees.

6.3.2 Depth-first search

The set of pairs (j(E/A), A), with A ranging over all order-`e/2 subgroups of E[`e], can
also be generated by using a depth-first search (DFS) to traverse the tree in the left of
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Figure 6.1 (and also the tree in the right of Figure 6.1). We denote this variant of the
meet-in-the-middle attack by MITM-DFS. We describe the depth-first search for ` = 2.1

Let {P,Q} be a basis for E[2e/2]. Let R0 = 2e/2−1P , R1 = 2e/2−1Q, R2 = R0 + R1

be the order-2 points on E. For i = 0, 1, 2, the degree-2 isogenies φi : E → Ei = E/〈Ri〉
are computed, as are bases {P0 = φ0(P ), Q0 = φ0(2Q)}, {P1 = φ1(Q), Q1 = φ1(2P )},
{P2 = φ2(P + Q), Q2 = φ2(2P )} for E0[2e/2−1], E1[2e/2−1], E2[2e/2−1], respectively. A
memory stack is initialized with the tuples (E0, 0, P0, Q0), (E1, 1, P1, Q1), (E2, 2, P2, Q2),
and the tuple on the top of the stack is processed recursively as described next.

Suppose that we have to process (Ex, x, Px, Qx), where x ∈ {0, 1, 2} × {0, 1}n−1 and
1 ≤ n ≤ e/2−1. Let B0 = 2e/2−n−1Px, B1 = 2e/2−n−1Qx and B2 = B0 +B1 be the order-2
points on Ex. Let Rx0 = B0 and Rx1 = B2 (B1 is the backtracking point), and compute
the degree-2 isogenies φxi : Ex → Exi = Ex/〈Rxi〉 for i = 0, 1. Then two cases arise:

(i) If n < e/2− 1, then let Px0 = φx0(Px), Qx0 = φx0(2(Px +Qx)), Px1 = φx1(Px +Qx),
Qx1 = φx1(2Px); one can check that {Pxi, Qxi} is a basis for Exi[2

e/2−n−1] for i = 0, 1.
Then, (Ex1, x1, Px1, Qx1) is added to the stack and (Ex0, x0, Px0, Qx0) is processed
next.

(ii) If n = e/2 − 1, the leaves (j(Ex0), x0) and (j(Ex1), x1) of the tree are stored in the
table. If the stack is non-empty, then its topmost entry is processed next; otherwise
the computation terminates.

The cost of building each of the two depth-first search trees is approximately 2N degree-
2 isogeny computations, 2N degree-2 isogeny evaluations, N/2 point additions, and 2N
point doublings (where N = 3 · 2e/2−1).

In contrast, the cost of building the table in MITM-basic (with ` = 2) is approximately
Ne
2 2-isogeny computations, Ne4 log2

e
2 2-isogeny evaluations, and Ne

4 log2
e
2 point doublings

(cf. Remark 11). A count of Fp2 multiplications and squarings yields the following costs
for the core operations when Jacobian coordinates are used for elliptic curve arithmetic,
isogeny computations, and isogeny evaluations: 8 (2-isogeny computation), 12 (2-isogeny
evaluation), 14 (point addition), 9 (point doubling). This gives a per-table cost of ap-
proximately 5.25Ne log2 e for MITM-basic, and a cost of 65N for MITM-DFS. Thus, the
depth-first search approach yields a speedup by a factor of approximately e

12.4 log2 e.

6.4 Golden collision search

6.4.1 Van Oorschot-Wiener parallel collision search

Let S be a finite set of cardinality M , and let f : S → S be an efficiently-computable
function which we shall heuristically assume is a random function. The van Oorschot-

1For the sake of concreteness, all implementation reports of CSSI attacks in this document are for the
case ` = 2. However, all conclusions about the relative efficiencies of classical and quantum CSSI attacks
for ` = 2 are also valid for the ` = 3 case.
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Wiener (VW) method [126] finds a collision for f , i.e., a pair x, x′ ∈ S with f(x) = f(x′)
and x 6= x′.

Define an element x of S to be distinguished if it has some easily-testable distinguishing
property. Suppose that the proportion of elements of S that are distinguished is θ. For
i = 1, 2, . . ., the VW method repeatedly selects xi,0 ∈R S, and iteratively computes a
sequence xi,j = f(xi,j−1) for j = 1, 2, 3, . . . until a distinguished element xi,a is encountered.
In that event, the triple (xi,a, a, xi,0) is stored in a table sorted by first entry. If xi,a was
already in the table, say xi,a = xi′,b with i 6= i′, then a collision has been detected (see
Figure 6.2). The two colliding table entries (xi,a, a, xi,0), (xi′,b, b, xi′,0) can then be used
to find a collision for f by iterating the longer sequence (say the ith sequence) beginning
at xi,0 until it is the same distance from xi,a as xi′,0 is from xi′,b, and then stepping both
sequences in unison until they collide (see Figure 6.3).

xi′,b

xi,0 xi′,0

x′
x

xi,a

Figure 6.2: VW method: detecting a collision (x, x′).

By the birthday paradox, the expected time before a collision occurs is
√
πM/2, where a

unit of time is an f evaluation. After a collision has occurred, the expected time before it is
detected is 1/θ, and thereafter the expected time to find the collision is approximately 3/θ.
Thus, the expected time complexity of the VW method is approximately

√
πM/2 + 4/θ.

The expected storage complexity is θ
√
πM/2. The parameter θ can be selected to control

the storage requirements.

The collision detecting stage of the VW method can be effectively parallelized. Each
of the available m processors computes its own sequences, and the distinguished elements
are stored in shared memory. The expected time complexity of parallelized VW is then
1
m

√
πM/2 + 2.5

θ . The space complexity is θ
√
πM/2.
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xi′,b

x

xi,a

xi′,0

x′

xi,0

Figure 6.3: VW method: finding a collision (x, x′).

6.4.2 Finding a golden collision

A random function f : S → S is expected to have (M −1)/2 unordered collisions. Suppose
that we seek a particular one of these collisions, called a golden collision; we assume that the
golden collision can be efficiently recognized. Thus one continues generating distinguished
points and collisions until the golden collision is encountered. The expected time to find q
collisions is only about

√
q times as much as that to find one collision. However, since not

all collisions are equally likely and the golden collision might have a very low probability
of detection (see [125]), it is necessary to change the version of f periodically.

Suppose that the available memory can store w triples (xi,a, a, xi,0). When a distin-
guished point xi,a is encountered, the triple (xi,a, a, xi,0) is stored in a memory cell deter-
mined by hashing xi,a. If that memory cell was already occupied with a triple holding a
distinguished point xi′,b = xi,a, then the two triples are used to locate a collision.

Van Oorschot and Wiener proposed setting

θ = α
√
w/M (6.1)

and using each version of f to produce βw distinguished points. Experimental data pre-
sented in [126] suggested that the total running time to find the golden collision is minimized
by setting α = 2.25 and β = 10. Then, for 210 ≤ w ≤ M/210, the expected running time
to find the golden collisions when m processors are employed is slightly overestimated as

1

m
(2.5

√
M3/w). (6.2)

Remark 16. (verifying the VW heuristic analysis) The running time estimate (6.2) relies
on several heuristics, the most significant of which is that when 210 ≤ w ≤ M/210 then
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each version of f generates approximately 1.3w collisions, of which approximately 1.1w
are distinct. The numbers 1.3w and 1.1w were determined experimentally in [126]. Then
the probability that a particular version of f yields the golden collision is approximately
1.1w/(M/2), whence the expected number of function versions needed to locate the golden
collision is approximately 0.45M/w, and the expected total time is

0.45
M

w
× 10w × 1

2.25

√
M/w ≈ 2

√
M3/w.

To verify these numbers, we ran some experiments using a “random” function fn,v :
{0, 1}n → {0, 1}n (so M = 2n), where v is a string identifying the function version, and
fn,v(X) is defined to be the n most significant bits of MD5(v,X). Table 6.1 lists the
numbers of collisions and distinct collisions that were found for different values of (n,w),
confirming the 1.3w and 1.1w numbers reported in [126].

w 22 23 24 25 26 27 28 29 210 211 212 213 214 215 216 217 218

M = 220

c1 1.66 1.30 1.48 1.30 1.48 1.38 1.28 1.27 1.29 1.27 1.28 1.27 1.24 1.18 1.08 — —

c2 1.31 1.14 1.26 1.11 1.22 1.15 1.08 1.05 1.03 1.02 1.03 1.00 0.94 0.83 0.61 — —

M = 224

c1 1.38 1.36 1.38 1.37 1.33 1.31 1.31 1.36 1.32 1.33 1.31 1.30 1.30 1.29 1.29 1.27 1.24

c2 1.21 1.14 1.16 1.16 1.12 1.10 1.11 1.13 1.11 1.11 1.09 1.06 1.06 1.05 1.04 1.00 0.95

M = 228

c1 1.09 1.21 1.33 1.35 1.36 1.35 1.30 1.34 1.32 1.34 1.33 1.34 1.33 1.32 1.31 1.31 1.30

c2 0.98 1.06 1.10 1.15 1.15 1.12 1.09 1.12 1.12 1.13 1.12 1.13 1.12 1.10 1.08 1.07 1.07

M = 232

c1 1.21 1.44 1.35 1.35 1.35 1.31 1.30 1.32 1.33 1.35 1.33 1.34 1.33 1.34 1.33 1.33 1.32

c2 1.00 1.18 1.17 1.12 1.16 1.10 1.10 1.11 1.13 1.13 1.13 1.13 1.12 1.13 1.12 1.12 1.11

M = 236

c1 1.34 1.31 1.29 1.32 1.38 1.34 1.31 1.32 1.35 1.32 1.33 1.34 1.33 1.33 1.33 1.33 1.33

c2 1.10 1.10 1.08 1.13 1.16 1.13 1.11 1.10 1.13 1.12 1.12 1.13 1.13 1.13 1.13 1.13 1.13

Table 6.1: Observed number c1w of collisions and number c2w of distinct collisions per
version v of the MD5-based random function fn,v : {0, 1}n → {0, 1}n. The numbers are
averages for 20 function versions when w ≤ 28 and 10 function versions when w ≥ 29.
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6.4.3 The attack

Let I = {1, 2, . . . , N} and S = {1, 2}×I. For i = 1, 2, let Ai denote the set of all order-`e/2

subgroups of Ei[`
e], define fi : Ai → Ri by fi(Ai) = j(Ei/Ai), and let hi : I → Ai be

bijections. Let g : R→ S be a random function. Finally, define f : S → S by

f : (i, x) 7→ g(fi(hi(x))).

Then one can view f as a “random” function from S to S.
Recall that one expects there are unique order-`e/2 subgroups A1, A2 of E1[`e], E2[`e],

respectively, with j(E1/A1) = j(E2/A2). Let y1 = h−1
1 (A1) and y2 = h−1

2 (A2). Then the
collision for f that we seek is the golden collision (1, y1), (2, y2). Using m processors and
w cells of memory, the VW method can be used to find this golden collision in expected
time

1

m
(2.5

√
8N3/w) ≈ 7.1p3/8/(w1/2m).

Remark 17. (finding any collision vs. finding a golden collision) The problem of finding a
collision for a hash function H : {0, 1}∗ → {0, 1}n and the problem of computing discrete
logarithms in a cyclic group G can be formulated as problems of finding a collision for a
random function f : S → S, where #S = 2n for the first problem and #S = #G for the
second problem (see [126]). For both formulations, any collision for f yields a solution to
the original problem. Thus, letting N = 2n or N = #G, the problems can be solved using
van Oorschot-Wiener collision search in time approximately

1

m
N1/2.

In contrast, the only formulation of CSSI as a collision search problem for f : S → S
that we know requires one to find a golden collision for f . For this problem, the van
Oorschot-Wiener algorithm has running time approximately

N3/2/(w1/2m).

6.4.4 Implementation report

The VW attack (for ` = 2) was implemented in C, compiled using gcc version 4.7.2, and
executed on an Intel Xeon processor E5-2658 v2 server equipped with 20 physical cores and
256 GB of shared RAM memory. We used fopenmp for the parallelization and openssl’s
MD5 implementation. The CSSI challenges were the same as the ones in §3.3.

Let {P1, Q1}, {P2, Q2} be bases for E1[2e/2], E2[2e/2], respectively. Noting that N =
3 · 2e/2−1, we identify the elements of I = {1, 2, . . . , N} with elements of I1 × I2 where
I1 = {0, 1, 2} and I2 = {0, 1, . . . , 2e/2−1 − 1}. The bijections hi : I1 × I2 → Ai for i = 1, 2
are defined by

hi : (b, k) 7→
{
Pi + (b2e/2−1 + k)Qi, if b = 0, 1,
(2k)Pi +Qi, if b = 2.
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Let S = {1, 2} × I1 × I2. For n ∈ {0, 1}64, we let gn : R → S be the function computed
using Algorithm 6. We then define the version fn : S → S of f by (i, x) 7→ gn(fi(hi(x))).

Algorithm 6 The “random” function gn
Require: n ∈ {0, 1}64 and j ∈ Fp2 .
Ensure: Output c ∈ {1, 2}, b ∈ I1, k ∈ I2.
1: counter := 0.
2: repeat
3: h := MD5(1, j, n, counter).
4: Let h′ be the e/2 + 2 least significant bits of h, and parse h′ as (k, c, b), where k, c, b have

bitlengths e/2− 1, 1, and 2, respectively.
5: counter := counter + 1.
6: until b 6= 11
7: return (c+ 1, b, k).

We set θ = 2.25
√
w/2N , where w = 2t, and declare an element X ∈ S to be distin-

guished if the integer formed from the 32 least significant bits of MD5(2, X) is ≤ 232θ. If
X is distinguished, then it is placed in memory cell s, where s is the integer determined by
the t least significant bits of MD5(3, X). If a distinguished point is not encountered after
10/θ iterations, then that trail is abandoned and a new trail is formed.

Table 6.2 shows the time expended for finding 2e-isogenies for e ∈ {32, 34, 36, 38,
40, 42, 44} with the VW attack. These experimental results confirm the accuracy of the
VW attack’s heuristic analysis.

To gain further confidence that the VW attack’s heuristic analysis is accurate for
cryptographically-interesting CSSI parameters (e.g., e = 256), we ran some experiments
to estimate the number of collisions and distinct collisions for functions fn when e =
50, 60, 70, 80. The results, listed in Table 6.3, confirm the 1.3w and 1.1w estimates in [126].

6.5 Comparisons

There are many factors that can affect the efficacy of an algorithm.

1. Time: the worst-case or average-case number of basic arithmetic operations per-
formed by the algorithm.

2. Space: the amount of storage (RAM, hard disk, etc.) required.

3. Parallelizability : the speedup achievable when running the algorithm on multiple
processors. Ideally, the speedup is by a factor equal to the number of processors, and
the processors do not need to communicate with each other; if this is the case then
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median average

expected number measured clock measured clock

eA eB d w time of runs # fn’s time cycles # fn’s time cycles

32 20 23 29 223.20 25 180 223.55 240.79 319 224.38 241.62

34 21 109 29 224.70 25 256 224.54 241.89 714 226.02 243.37

36 22 31 210 225.70 25 369 226.06 243.51 838 227.25 244.70

38 23 271 211 226.70 25 196 226.15 243.70 567 227.69 245.23

40 25 71 211 228.20 25 162 226.36 243.99 1015 229.01 246.64

42 26 37 212 229.20 25 477 228.92 246.52 1940 230.95 248.55

44 27 37 213 230.20 25 431 229.78 247.46 942 230.91 248.58

Table 6.2: Van Oorschot-Wiener golden collision search for finding a 2eA-isogeny between
two supersingular elliptic curves over Fp2 with p = 2eA · 3eB · d − 1. For each p, the
listed number of CSSI instances were solved and the median and average of the results are
reported. The #fn’s column indicates the number of random functions fn that were tested
before the golden collision was found. The expected and measured times list the number
of degree-2eA/2 isogeny computations.

the parallelization is said to be perfect2.

4. Communication costs: the time taken for communication between processors, and the
memory access time for retrieving data from large storage devices. Memory access
time can be a dominant cost factor when using extremely large storage devices [108].

5. Custom-designed devices: the possible speedups that can be achieved by executing
the algorithm on custom-designed hardware. Examples of such devices are TWIN-
KLE [130] and TWIRL [131] that were designed for the number field sieve integer
factorization algorithm.

In this section we analyze and compare the efficacy of the meet-in-the-middle algorithm,
VW golden collision search, and a mesh sorting algorithm for solving CSSI. We make two
assumptions:

1. The number m of processors available is at most 264.

2. The total amount of storage w available is at most 280 units.

Our analysis will ignore communication costs, and thus our running time estimates can be
considered to be lower bounds on the “actual” running time.

2If the processors share the same storage space, then frequent storage accesses might decrease the
parallelizability of the algorithm.
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e p w 28 210 212 214 216

50 250331179− 1 c1 1.37 1.36 1.37 1.41 1.49

c2 1.14 1.12 1.12 1.11 1.09

60 26033731− 1 c1 1.37 1.34 1.34 1.35 1.36

c2 1.15 1.13 1.13 1.12 1.12

70 270332127− 1 c1 1.33 1.34 1.34 1.34 1.34

c2 1.13 1.14 1.13 1.13 1.13

80 28032571− 1 c1 1.35 1.32 1.33 1.34 1.33

c2 1.14 1.12 1.13 1.13 1.13

Table 6.3: Observed number c1w of collisions and number c2w of distinct collisions per
CSSI-based random function fn. The numbers are averages for 25 function versions (except
for (e, w) ∈ {(80, 212), (80, 214), (80, 216)} for which 5 function versions were used).

Remark 18. (feasible amount of storage and number of processors) The Sunway TaihuLight
supercomputer, the most powerful in the world as of March 2018, has 223.3 CPU cores [135].
In 2013, it was estimated that Google’s data centres have a total storage capacity of about
a dozen exabytes3 [135]. Thus it is reasonable to argue that acquiring 264 processors and
a storage capacity (with low access times) of several dozen yottabytes4 for the purpose of
solving a CSSI problem will be prohibitively costly for the foreseeable future.

6.5.1 Meet-in-the-middle

As stated in §6.3, the running time of MITM-basic and MITM-DFS is approximately 2N
and the storage requirements are N , where N ≈ p1/4. Since for N ≥ 280 the storage
requirements are infeasible, we deem the meet-in-the-middle attacks to be prohibitively
expensive when N � 280.

Of course, one can trade space for time. One possible time-memory tradeoff is to
store a table with entries (j(E1/A1), A1), where A1 ranges over a w-subset of order-`e/2

subgroups of E1[`e]. Next, for each order-`e/2 subgroup A2 of E2[`e], E2/A2 is computed
and j(E2/A2) is searched in the table. If no match is found, then the algorithm is repeated
for a disjoint w-subset of order-`e/2 subgroups of E1[`e], and so on. The running time of
this time-memory tradeoff is approximately

(w +N)
N

w
≈ N2/w.

3An exabyte is 260 bytes.
4A yottabyte is 280 bytes.
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For MITM-basic, the unit of time is an `e/2-isogeny computation. For MITM-DFS, the
running time (for ` = 2) can be scaled to `e/2-isogeny computations by dividing by e

12.4 log2 e
(cf. §3.2). One can see that this time-memory-tradeoff can be parallelized perfectly.

Another possible time-memory tradeoff is to store (j(E1/A1), A1), where A1 ranges
over all order-`c subgroups of E1[`e] and c ≈ log`w. Let d = e− c. Then, for each order-`d

subgroup A2 of E2[`e], E2/A2 is computed and j(E2/A2) is searched in the table. One
can check that the running time of this time-memory tradeoff is approximately N2/w,
and that it can be parallelized perfectly. Note that the unit of time here is an `d-isogeny
computation instead of an `e/2-isogeny computation. The larger tree of `d-isogenies can
be traversed using a depth-first search; the running time is then the same as that of the
MITM-DFS variant described in the previous paragraph.

6.5.2 Golden collision search

As stated in §4.3, the running time of van Oorschot-Wiener golden collision search is
approximately

N3/2/w1/2.

The algorithm parallelizes perfectly.

6.5.3 Mesh sorting

The mesh sorting attack is analogous to the one described by Bernstein [108] for finding
hash collisions. Suppose that one has m processors arranged in a two-dimensional grid.
Each processor only communicates with its neighbours in the grid. In one unit of time, each
processor computes and stores pairs (j(E1/A1), A1), where A1 is an order-`e/2 subgroup of
E1[`e]. Next, these stored pairs are sorted in time ≈ m1/2 (e.g., see [128]). In the next stage,
a second two-dimensional grid of m processors computes and stores pairs (j(E2/A2, A2),
where A2 is an order-`e/2 subgroup of E2[`e], and the two sorted lists are compared for a
match. This is repeated for a disjoint m-subset of order-`e/2 subgroups A2 until all order-
`e/2 subgroups of E2[`e] have been tested. Then, the process is repeated for a disjoint
subset of order-`e/2 subgroups A1 of E1[`e] until a match is found. One can check that the
calendar running time5 is approximately(

m1/2 +m1/2N

m

)
N

m
≈ N2/m3/2.

6.5.4 Targetting the 128-bit security level

The CSSI problem is said to have a 128-bit security level if the fastest known attack has
total time complexity at least 2128 and feasible space and hardware costs.

5Calendar time is the elapsed time taken for a computation, whereas total time is the sum of the time
expended by all m processors.
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Suppose that p ≈ 2512, whereby N ≈ 2128; this would be a reasonable choice for the
bitlength of p if the meet-in-the-middle attacks were assessed to be the fastest (classical)
algorithm for solving CSSI. However, as noted above, the storage costs for the attacks
are prohibitive. Instead, one should consider the time complexity of the time-memory
tradeoffs, VW golden collision search, and mesh sorting under realistic constraints on the
storage space w and the number m of processors. Table 6.4 lists the calendar time and
the total time of these CSSI attacks for (m,w) ∈ {(248, 264), (248, 280), (264, 280)}. One sees
that in all cases the total time complexity is significantly greater than 2128, even though
we have ignored communication costs.

p ≈ 2512 p ≈ 2448

# processors space calendar total calendar total
m w time time time time

Meet-in-the-middle (DFS) 48 64 138 186 106 154
time-memory tradeoff 48 80 122 170 90 138

64 80 106 170 74 138

Van Oorschot-Wiener 48 64 112 160 88 136
golden collision search 48 80 104 152 80 128

64 80 88 152 64 128

Mesh sorting 48 — 184 232 152 200
64 — 160 224 128 192

Table 6.4: Time complexity estimates of CSSI attacks for p ≈ 2512 and p ≈ 2448, and ` = 2.
All numbers are expressed in their base-2 logarithms. The unit of time is a 2e/2-isogeny
computation.

Since the total times for p ≈ 2512 in Table 6.4 are all significantly greater than 2128,
one can consider using smaller primes p while still achieving the 128-bit security level.
Table 6.4 also lists the calendar time and the total time of these CSSI attacks for (m,w) ∈
{(248, 264), (248, 280), (264, 280)} when p ≈ 2448 and N ≈ 2112. One sees that all attacks have
total time complexity at least 2128, even though we have ignored communication costs. We
can conclude that selecting SIDH parameters with p ≈ 2448 provides 128 bits of security
against known classical attacks. For example, one could select the 434-bit prime

p434 = 22163137 − 1;

this prime is balanced in the sense that 3137 ≈ 2217, thus providing maximal resistance to
Petit’s SIDH attack [127].

Remark 19. (communication costs) Consider the case p ≈ 2448, e = 224, m = 264, w = 280.
From (6.1) and (6.2) we obtain θ ≈ 1/215.62 and an expected running time of 2131.7. For
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each function version, the 264 processors will generate approximately 248.4 distinguished
points per unit of time (i.e., a 2112-isogeny computation). So, on average, the 280 storage
device will be accessed 248.4 times during each unit of time. The cost of these accesses will
certainly dominate the computational costs. Thus our security estimates, which ignore
communication costs, should be regarded as being conservative.

6.5.5 Targetting the 160-bit security level

Using similar arguments as in §5.4, one surmises that SIDH parameters with p ≈ 2536 offer
at least 160 bits of CSSI security against known classical (see Table 6.5). For example, one
could select the 546-bit prime

p546 = 22733172 − 1;

this prime is nicely balanced since 3172 ≈ 2273.

p ≈ 2536 p ≈ 2614

# processors space calendar total calendar total
m w time time time time

Meet-in-the-middle (DFS) 48 64 150 198 188 236
time-memory tradeoff 48 80 134 182 172 220

64 80 118 182 156 220

Van Oorschot-Wiener 48 64 121 169 149 197
golden collision search 48 80 113 161 141 189

64 80 97 161 125 189

Mesh sorting 48 — 196 244 234 282
64 — 172 236 210 274

Table 6.5: Time complexity estimates of CSSI attacks for p ≈ 2536 and p ≈ 2614, and ` = 2.
All numbers are expressed in their base-2 logarithms. The unit of time is a 2e/2-isogeny
computation.

6.5.6 Targetting the 192-bit security level

Using similar arguments as in §5.4, one surmises that SIDH parameters with p ≈ 2614 offer
at least 192 bits of CSSI security against known classical (see Table 6.5). For example, one
could select the 610-bit prime

p610 = 23053192 − 1;

this prime is nicely balanced since 3192 ≈ 2304.
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6.5.7 Resistance to quantum attacks

The appeal of SIDH is its apparent resistance to attacks by quantum computers. What
remains to be determined then is the security of CSSI against quantum attacks.

The fastest known quantum attack on CSSI is Tani’s algorithm [132]. Given two generic
functions g1 : X1 → Y and g2 : X2 → Y , where #X1 ≈ #X2 ≈ N and #Y � N , Tani’s
quantum algorithm finds a claw, i.e., a pair (x1, x2) ∈ X1×X2 such that g1(x1) = g2(x2) in
time O(N2/3). The CSSI problem can be recast as a claw-finding problem by defining Xi

to be the set of all degree-`e/2 isogenies originating at Ei, gi to be the function that maps
a degree-`e/2 isogeny originating at Ei to the j-invariant of its image curve, and Y = R.
Since #X1 = #X2 = N ≈ p1/4, this yields an O(p1/6)-time CSSI attack.

CSSI can also be solved by an application of Grover’s quantum search [118]. Recall
that if g : X → {0, 1} is a generic function such that g(x) = 1 for exactly one x ∈ X, then
Grover’s algorithm can determine the x with g(x) = 1 in quantum time O(

√
#X). The

CSSI problem can be recast as a Grover search problem by defining X to be the set of
all ordered pairs (φ1, φ2) of degree-`e/2 isogenies originating at E1, E2, respectively, and
defining g(φ1, φ2) to be equal to 1 if and only if the j-invariants of the image curves of φ1

and φ2 are equal. Since #X = N2 ≈ p1/2, this yields an O(p1/4)-time quantum attack on
CSSI.

The Jao-De Feo paper [120] that introduced SIDH identified Tani’s claw-finding algo-
rithm as the fastest known attack, whether classical or quantum, on CSSI. The subsequent
literature on SIDH used the simplified running time p1/6 of Tani’s algorithm (i.e., ignoring
the implied constant in its O(p1/6) running time expression) to select SIDH primes p for a
desired level of security. In other words, in order to achieve a b-bit security level against
known classical and quantum attacks, one selects an SIDH prime p of bitlength approx-
imately 6b. For example, the 751-bit prime p = 23723239 − 1 was proposed in [114] for
the 128-bit security level, and this prime has been used in many subsequent works, e.g.,
[123, 112, 113, 119, 138]. Also, the 964-bit prime p = 24863301 − 1 was proposed in [119]
for the 160-bit security level.

However, this assessment of SIDH security does not account for the cost of the O(p1/6)
quantum space requirements of Tani’s algorithm, nor for the fact that Grover’s search does
not parallelize well — using m quantum circuits only yields a speedup by a factor of

√
m

and this speedup has been proven to be optimal [137]. Some recent work [1, 122] sug-
gests that Tani’s and Grover’s attacks on CSSI are costlier than the van Oorschot-Wiener
golden collision search algorithm. If this is indeed the case, then one can be justified in
selecting SIDH primes p434 (instead of p751), p546 (instead of p964) and p610 in order to
achieve the 128-, 160- and 192-bit security levels, respectively, against both classical and
quantum attacks. Furthermore, SIDH parameters with p434 could be deemed to meet the
security requirements in NIST’s Category 2 [124] (classical and quantum security compa-
rable or greater than that of SHA-256 with respect to collision resistance), and p610 could
be deemed to meet the security requirements in NIST’s Category 4 [124] (classical and
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quantum security comparable to that of SHA-384).

6.5.8 SIDH performance

A significant benefit of using smaller SIDH primes is increased performance. The reasons
for the boost in SIDH performance are twofold. First, since the computation of the ground
field Fp multiplication operation has a quadratic complexity, any reduction in the size of p
will result in significant savings. Since high-end processors have a word size of 64 bits, the
primes p751, p546 and p434 can be accommodated using twelve, nine and seven 64-bit words,
respectively. Hence, if Fp multiplication using p751 can be computed in T clock cycles, then
a rough estimation of the computational costs for Fp multiplication using p434 and p546 is
as low as 0.34T and 0.56T , respectively. Second, since the exponents of the primes 2 and
3 in p434 and p546 are smaller than the ones in p751, the computation of the isogeny chain
described in §2.2 (see Remark 11) is faster.

Table 6.6 lists timings for SIDH operations for p434, p546 and p751 using the SIDH
library of Costello et al. [111]. The timings show that SIDH operations are about 4.8 times
faster when p434 is used instead of p751.

Protocol CLN library [114] CLN + enhancements
phase p751 p434 p546 p751 p434 p546

Key
Gen.

Alice 35.7 7.51 13.20 26.9 5.3 10.5

Bob 39.9 8.32 14.84 30.5 6.0 11.7

Shared
Secret

Alice 33.6 7.01 12.56 24.9 5.0 10.0

Bob 38.4 7.94 14.35 28.6 5.8 11.5

Table 6.6: Performance of the SIDH protocol. All timings are reported in 106 clock cycles,
measured on an Intel Core i7-6700 supporting a Skylake micro-architecture. The “CLN +
enhancements” columns are for our implementation that incorporates improved formulas
for degree-2 and degree-3 isogenies from [112] and Montgomery ladders from [116] into the
CLN library.

6.6 Concluding remarks

Our implementations of the MITM and golden collision search CSSI attacks are, to the best
of our knowledge, the first ones reported in the literature. The implementations confirm
that the performance of these attacks is accurately predicted by their heuristic analysis.

Our concrete cost analysis of the attacks leads to the conclusion that golden collision
search is more effective that the meet-in-the-middle attack. Thus one can use 448-bit primes
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and 536-bit primes p in SIDH to achieve the 128-bit and 160-bit security levels against
known classical attacks on the CSSI problem. We emphasize that these conclusions are
based on our understanding of how to best implement these algorithms, and on assumptions
on the amount of storage and the number of processors that an adversary might possess.
On the other hand, our conclusions are somewhat conservative in that the analysis does
not account for communication costs. Moreover, whereas it is generally accepted that
the AES-128 and AES-256 block ciphers attain the 128-bit security level in the classical
and quantum settings, the time it takes to compute a degree-2112 isogeny (which is the
unit of time for the golden collision search CSSI attack with balanced 448-bit prime p) is
considerably greater than the time for one application of AES-128 or AES-256.
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Chapter 7

Constant time CSIDH

7.1 Introduction

Isogeny-based cryptography was introduced by Couveignes [30], who defined a key exchange
protocol similar to Diffie–Hellman based on the action of an ideal class group on a set of
ordinary elliptic curves. Couveignes’ protocol was independently rediscovered by Rostovt-
sev and Stolbunov [93, 98], who were the first to recognize its potential as a post-quantum
candidate. Recent efforts to make this system practical have put it back at the forefront
of research in post-quantum cryptography [35]. A major breakthrough was achieved by
Castryck, Lange, Martindale, Panny, and Renes with CSIDH [14], a reinterpretation of
Couveignes’ system using supersingular curves defined over a prime field.

The first implementation of CSIDH completed a key exchange in less than 0.1 seconds,
and its performance has been further improved by Meyer and Reith [71]. However, both [14]
and [71] recognized the difficulty of implementing CSIDH with constant-time algorithms,
that is, algorithms whose running time, sequence of operations, and memory access patterns
do not depend on secret data. The implementations of [14] and [71] are thus vulnerable to
simple timing attacks.

The first attempt at implementing CSIDH in constant-time was realized by Bernstein,
Lange, Martindale, and Panny [8], but their goal was to obtain a fully deterministic re-
versible circuit implementing the class group action, to be used in quantum cryptanalyses.
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The distinct problem of efficient CSIDH implementation with side-channel protection was
first tackled by Jalali, Azarderakhsh, Mozaffari Kermani, and Jao [50], and independently
by Meyer, Campos, and Reith [69], whose work was improved by Onuki, Aikawa, Yamazaki,
and Takagi [87].

The approach of Jalali et al. is similar to that of [8], in that they achieve a stronger
notion of constant time (running time independent from all inputs), at the cost of allowing
the algorithm to fail with a small probability. In order to make the failure probability
sufficiently low, they introduce a large number of useless operations, which make the per-
formance significantly worse than the original CSIDH algorithm. This poor performance
and possibility of failure reduces the interest of this implementation; we will not analyze it
further here.

Meyer et al. take a different path: the running time of their algorithm is independent
of the secret key, but not of the output of an internal random number generator. They
claim a speed only 3.10 times slower than the unprotected algorithm in [71]. Onuki et al.
introduced new improvements, claiming a speed-up of 27.35% over Meyer et al., i.e., a net
slow-down factor of 2.25 compared to [71].

Our contribution. In this Chapter we take a new look at side-channel protected im-
plementations of CSIDH. We start by reviewing the implementations in [69] and [87]. We
highlight some flaws that make their constant-time claims disputable, and propose fixes for
them. Since these fixes introduce some minor slow-downs, we report on the performance
of the revised algorithms.

Then, we introduce new optimizations to make both [69] and [87] faster: we improve
isogeny formulas for the model, and we introduce the use of optimal addition chains in the
scalar multiplications. With these improvements, we obtain a version of CSIDH protected
against timing and some simple power analysis (SPA) attacks that is 25% more efficient
than [69] and 15% more efficient than a repaired version of [87].

Then, we shift our focus to stronger security models. All constant-time versions of
CSIDH presented so far use so-called “dummy operations”, i.e., computations whose result
is not used, but whose role is to hide the conditional structure of the algorithm from
timing and SPA attacks that read the sequence of operations performed from a single power
trace. However, this countermeasure is easily defeated by fault-injection attacks, where the
adversary may modify values during the computation. We propose a new constant-time
variant of CSIDH without dummy operations as a first-line defence. The new version is
only twice as slow as the simple constant-time version.

We conclude with a discussion of derandomized variants of CSIDH. The versions dis-
cussed previously are “constant-time” in the sense that their running time is uncorrelated
to the secret key, however it depends on some (necessarily secret) seed to a PRNG. While
this notion of “constant-time” is usually considered good enough for side-channel protec-
tion, one may object that a compromise of the PRNG or the seed generation would put
the security of the implementation at risk, even if the secret was securely generated before-
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hand (with an uncomprised PRNG) as part of a long-term or static keypair. We observe
that this dependence on additional randomness is not necessary: a simple modification of
CSIDH, already considered in isogeny-based signature schemes [32, 37], can easily be made
constant-time and free of randomness. Unfortunately this modification requires increasing
substantially the size of the base field, and is thus considerably slower and not compati-
ble with the original version. On the positive side, the increased field size makes it much
more resistant to quantum attacks, a non-negligible asset in a context where the quantum
security of CSIDH is still unclear; it can thus be seen as CSIDH variant for the paranoid.

Organization. In §7.2 we briefly recall ideas, algorithms and parameters from CSIDH [14].
In §7.3 we highlight shortcomings in [69] and [87] and propose ways to fix them. In §7.4 we
introduce new optimizations compatible with all previous versions of CSIDH. In §7.5 we
introduce a new algorithm for evaluating the CSIDH group action that is resistant against
timing and some simple power analysis attacks, while providing protection against some
fault injections. Finally, in §7.6 we discuss a more costly variant of CSIDH with stronger
security guarantees.

Notation. M, S, and A denote the cost of computing a single multiplication, squaring,
and addition (or subtraction) in Fp, respectively. We assume that a constant-time equality
test isequal(X,Y ) is defined, returning 1 if X = Y and 0 otherwise. We also assume that
a constant-time conditional swap cswap(X,Y, b) is defined, exchanging (X,Y ) if b = 1 (and
not if b = 0).

7.2 CSIDH

We refer the reader to section 4.4 for CSIDH information, now we depict some improve-
ments to the original protocol.

7.2.1 The Meyer–Campos–Reith constant-time algorithm

As Meyer, Campos and Reith observe in [69], Algorithm 4 performs fewer scalar multipli-
cations when the key has the same number of positive and negative exponents than it does
in the unbalanced case where these numbers differ. Algorithm 4 thus leaks information
about the distribution of positive and negative exponents under timing attacks. Besides
this, analysis of power traces would reveal the cost of each isogeny computation, and the
number of such isogenies computed, which would leak the exact exponents of the private
key.

In view of this vulnerability, Meyer, Campos and Reith proposed in [69] a constant-
time CSIDH algorithm whose running time does not depend on the private key (though,
unlike [50], it still varies due to randomness). The essential differences between the algo-
rithm of [69] and classic CSIDH are as follows. First, to address the vulnerability to timing
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attacks, they choose to use only positive exponents in [0, 10] for each `i, instead of [−5, 5]
in the original version, while keeping the same prime p =

∏74
i=1 `i − 1. To mitigate power

consumption analysis attacks, their algorithm always computes the maximal amount of
isogenies allowed by the exponent, using dummy isogeny computations if needed.

Since these modifications generally produce more costly group action computations, the
authors also provide several optimizations that limit the slow-down in their algorithm to a
factor of 3.10 compared to [71]. These include the Elligator 2 map of [7] and [8], multiple
batches for isogeny computation (SIMBA), and sample the exponents ei from intervals of
different sizes depending on `i.

7.2.2 The Onuki–Aikawa–Yamazaki–Takagi constant-time algorithm

Still assuming that the attacker can perform only power consumption analysis and timing
attacks, Onuki, Aikawa, Yamazaki and Takagi proposed a faster constant-time version of
CSIDH in [87].

The key idea is to use two points to evaluate the action of an ideal, one in ker(π − 1)
(i.e., in E(Fp)) and one in ker(π+ 1) (i.e., in E(Fp2) with x-coordinate in Fp). This allows
them to avoid timing attacks, while keeping the same primes and exponent range [−5, 5]
as in the original CSIDH algorithm. Their algorithm also employs dummy isogenies to
mitigate some power analysis attacks, as in [69]. With these improvements, they achieve a
speed-up of 27.35% compared to [69].

We include pseudo-code for the algorithm of [87] in Algorithm 7, to serve both as a
reference for a discussion of some subtle leaks in §7.3 and also as a departure point for our
dummy-free algorithm in §7.5.

7.3 Repairing constant-time versions

Projective Elligator

Both [69] and [87] use the Elligator 2 map to sample a random point on the current curve EA
in step 6 of Algorithm 7. Elligator takes as input a random field element u ∈ {2, . . . , p−1

2 }
and the Montgomery A-coefficient from the current curve and returns a pair of points in
EA[π − 1] and EA[π + 1] respectively.

To avoid a costly inversion of u2 − 1, instead of sampling u randomly, Meyer, Campos
and Reith1 follow [8] and precompute a set of ten pairs (u, (u2 − 1)−1); they try them
in order until one that produces a point Q passing the test in Step 12 is found. When
this happens, the algorithm moves to the next curve, and Elligator can keep on using
the next precomputed value of u, going back to the first value when the tenth has been
reached. This is a major departure from [8], where all precomputed values of u are tried for

1Presumably, Onuki et al. do the same, however their exposition is not clear on this point, and we do
not have access to their code.
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Algorithm 7 The Onuki–Aikawa–Yamazaki–Takagi CSIDH algorithm for supersingular
curves over Fp, where p = 4

∏n
i=1 `i − 1. The ideals li = (`i, π − 1), where π maps to

the p-th power Frobenius endomorphism on each curve, and the exponent bound vec-
tor (m1, . . . ,mn), are system parameters. This algorithm computes exactly mi isogenies
for each `i.

Require: A supersingular curve EA : y2 = x3 +Ax2 + x over Fp, and an integer exponent
vector (e1, . . . , en) with each ei ∈ [−mi,mi].

Ensure: EB : y2 = x3 +Bx2 + x such that EB = le11 ∗ · · · ∗ lenn ∗ EA.
1: (e′1, . . . , e

′
n)← (mi − |e1|, . . . ,mi − |en|) //Number of dummy computations

2: EB ← EA
3: while some ei 6= 0 or e′i 6= 0 do
4: S ← {i | ei 6= 0 or e′i 6= 0}
5: k ←

∏
i∈S `i

6: (T−, T+)← Elligator(EB, u) //T− ∈ EB[π − 1] and T+ ∈ EB[π + 1]
7: (P0, P1)←

(
[(p+ 1)/k]T+, [(p+ 1)/k]T−

)
8: for i ∈ S do
9: s← sign(ei) //Ideal lsi to be used

10: Q← [k/`i]P 1−s
2

//Secret kernel point generator

11: P 1+s
2
← [`i]P 1+s

2
//Secret point to be multiplied

12: if Q 6=∞ then
13: if ei 6= 0 then
14: (EB, ϕ)← QuotientIsogeny(EB, Q)
15: (P0, P1)←

(
ϕ(P0), ϕ(P1)

)
16: ei ← ei − s.
17: else //Dummy operations

18: EB ← EB
19: P 1−s

2
← [`i]P 1−s

2

20: e′i ← e′i − 1
21: end if
22: end if
23: k ← k/`i
24: end for
25: end while
26: return B
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each isogeny computation, and the algorithm succeeds if at least one passes the test. And
indeed the implementation of [69] leaks information on the secret via the timing channel:2

since Elligator uses no randomness for u, its output only depends on the A-coefficient of
the current curve, which itself depends on the secret key; but the running time of the
algorithm varies and, not being correlated to u, it is necessarily correlated to A and thus
to the secret.

Fortunately this can be easily fixed by (re)introducing randomness in the input to
Elligator. To avoid field inversions, we use a projective variant: given u 6= 0, 1 and assuming
A 6= 0, we write V = (A : u2 − 1), and we want to determine whether V is the abscissa of
a projective point on EA. Plugging V into the homogeneous equation

EA : Y 2Z2 = X3Z +AX2Z2 +XZ3

gives

Y 2(u2 − 1)2 =
(
(A2u2 + (u2 − 1)2

)
A(u2 − 1).

We can test the existence of a solution for Y by computing the Legendre symbol of the
right hand side: if it is a square, the points with projective XZ-coordinates

T+ = (A : u2 − 1), T− = (−Au2 : u2 − 1)

are in EA[π − 1] and EA[π + 1] respectively, otherwise their roles are swapped.

We are left with the case A = 0. Following [8], Meyer, Campos and Reith precompute
once and for all a pair of generators T+, T− of E0[π − 1] and E0[π + 1], and output those
instead of random points. This choice suffers from a similar issue to the previous one: be-
cause the points are output in a deterministic way, the running time of the whole algorithm
will be correlated to the number of times the curve E0 is encountered during the isogeny
walk.

In practice, E0 is unlikely to ever be encountered in a random isogeny walk, except as
the starting curve in the first phase of a key exchange, thus this flaw seems hard to exploit.
Nevertheless, we find it not significantly more expensive to use a different approach, also
suggested in [8]: with u 6= 0, only on E0, we define the output of Elligator as T+ = (u :
1), T− = (−u : 1) when u3 + u is a square, and we swap the points when u3 + u is not a
square.

With these choices, under reasonable heuristics experimentally verified in [8], the run-
ning time of the whole algorithm is uncorrelated to the secret key as long as the values
of u are unknown to an adversary. We summarize our implementation of Elligator in
Algorithm 8, generalizing it to the case of Montgomery curves represented by projective
coefficients (see also Section 2.4.3).

2The Elligator optimization is described in §5.3 of [69]. The unoptimized constant-time version described
in Algorithm 2 therein is not affected by this problem.
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Algorithm 8 Constant-time projective Elligator

Require: A supersingular curve E(A′:C′) : C ′y2 = C ′x3 + A′x2 + C ′x over Fp, and an

element u ∈ {2, . . . , p−1
2 }.

Ensure: A pair of points T+ ∈ E(A′:C′)[π − 1] and T− ∈ E(A′:C′)[π + 1].

1: t← A′
(
(u2 − 1)u2A′2C ′ + ((u2 − 1)C ′)3

)
2: a← isequal(t, 0) //t = 0 iff A′ = 0
3: α, β ← 0, u
4: cswap(α, β, a) //α = 0 iff A′ 6= 0
5: t′ ← t+ α(u2 + 1) //t′ 6= 0
6: T+ ← (A′ + αC ′(u2 − 1) : C ′(u2 − 1))
7: T− ← (−A′u2 − αC ′(u2 − 1) : C ′(u2 − 1))
8: b← Legendre symbol(t′, p) //b = ±1
9: c← isequal(b,−1)

10: cswap(T+, T−, c)
11: return (T+, T−)

7.3.1 Fixing a leaking branch in Onuki–Aikawa–Yamazaki–Takagi

The algorithm from [87], essentially reproduced in Algorithm 7, includes a conditional
statement at Line 12 which branches on the value of the point Q computed at Line 10. But
this value depends on the sign s of the secret exponent ei, so the branch leaks information
about the secret. We propose repairing this by always computing both Q0 ← [k/`i]P0

and Q1 ← [k/`i]P1 at Line 10, and replacing the condition in Line 12 with a test for
(Q0 = ∞) or (Q1 = ∞) (and using constant-time conditional swaps throughout).3 This
fix is visible in Line 12 of Algorithm 10.

7.4 Optimizing constant-time implementations

In this subsection we propose several optimizations that are compatible with both non-
constant-time and constant-time implementations of CSIDH.

7.4.1 Addition chains for a faster scalar multiplication

Since the coefficients in CSIDH scalar multiplications are always known in advance (they
are essentially system parameters), there is no need to hide them by using constant-time
scalar multiplication algorithms such as the classical Montgomery ladder. Instead, we can

3We also found a branch on secret data in the code provided with [69] at https://zenon.cs.hs-rm.de/
pqcrypto/faster-csidh, during the 3-isogeny computation, when computing [`]P = [(` − 1)/2]P + [(` +
1)/2]P . This can be easily fixed by a conditional swap, without any significant impact on running time.
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use shorter differential addition chains.4

In the CSIDH group action computation, any given scalar k is the product of a subset of
the collection of the 74 small primes `i dividing p+1

4 . We can take advantage of this structure
to use shorter differential addition chains than those we might derive for general scalars
of a comparable size. First, we pre-computed the shortest differential addition chains for
each one of the small primes `i. One then computes the scalar multiplication operation
[k]P as the composition of the differential addition chains for each prime ` dividing k.

Power analysis on the coefficient computation might reveal the degree of the isogeny
that is currently being computed, but, since we compute exactly one `i-isogeny for each `i
per loop, this does not leak any secret information.

This simple trick allows us to compute scalar multiplications [k]P using differential
addition chains of length roughly 1.5dlog2(k)e. This yields a saving of about 25% compared
with the cost of the classical Montgomery ladder.

7.5 Removing dummy operations for fault-attack resistance

The use of dummy operations in the previous constant-time algorithms implies that the
attacker can obtain information on the secret key by injecting faults into variables during
the computation. If the final result is correct, then she knows that the fault was injected
in a dummy operation; if it is incorrect, then the operation was real. For example, if one of
the values in in Line 20 of Algorithm 7 is modified without affecting the final result, then
the adversary learns whether the corresponding exponent ei was zero at that point.

Fault injection attacks have been considered in the context of SIDH ([44], [101]), but
to the best of our knowledge, they have not been studied yet on dummy operations in
the context of CSIDH. Below we propose an approach to constant-time CSIDH without
dummy computations, making every computation essential for a correct final result. This
gives us some natural resistance to fault, at the cost of approximately a twofold slowdown.

Our approach to avoiding fault-injection attacks is to change the format of secret ex-
ponent vectors (e1, . . . , en). In both the original CSIDH and the Onuki et al. variants,
the exponents ei are sampled from an integer interval [−mi,mi] centered in 0. For naive
CSIDH, evaluating the action of leii requires evaluating between 0 and m isogenies, cor-
responding to either the ideal li (for positive ei) or l−1

i (for negative ei). If we follow
the approach of [87], then we must also compute k − |ei| dummy `i-isogenies to ensure a
constant-time behaviour.

For our new algorithm, the exponents ei are uniformly sampled from sets

S(mi) = {e | e = mi mod 2 and |e| ≤ mi},
4A differential addition chain is an addition chain such that for every chain element c computed as a+ b,

the difference a− b is already present in the chain.
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i.e., centered intervals containing only even or only odd integers. The interesting property
of these sets is that a vector drawn from S(m)n can always be rewritten (in a non-unique
way) as a sum of m vectors with entries {−1,+1} (i.e., vectors in S(1)n). But the action of
a vector drawn from S(1)n can clearly be implemented in constant-time without dummy
operations: for each coefficient ei, we compute and evaluate the isogeny associated to li if
ei = 1, or the one associated to l−1

i if ei = −1. Thus, we can compute the action of vectors
drawn from S(m)n by repeating m times this step.

More generally, we want to evaluate the action of vectors (e1, . . . , en) drawn from
S(m1)×· · ·×S(mn). Algorithm 9 achieves this in constant-time and without using dummy
operations. The outer loop at line 1 is repeated exactly max(mi) times, but the inner “if”
block at line 3 is only executed mi times for each i; it is clear that this flow does not depend
on secrets. Inside the “if” block, the coefficients ei are implicitly interpreted as

|ei| = 1 + 1 + · · ·+ 1︸ ︷︷ ︸
ei times

+ (1− 1)− (1− 1) + (1− 1)− · · ·︸ ︷︷ ︸
mi−ei times

,

i.e., the algorithm starts by acting by l
sign(ei)
i for ei iterations, then alternates between

li and l−1
i for mi − ei iterations. We assume that the sign : Z → {±1} operation is

implemented in constant time, and that sign(0) = 1. If one is careful to implement
the isogeny evaluations in constant-time, then it is clear that the full algorithm is also
constant-time.

Algorithm 9 An idealized dummy-free constant-time evaluation of the CSIDH group
action.

Require: Secret vector (e1, . . . , en) ∈ S(m1) × · · · × S(mn) (t1, . . . , tn) ←
(sign(e1), . . . , sign(en)) (Secret) (z1, . . . , zn)← (m1, . . . ,mn) (Not secret)

1: while some zi 6= 0 do
2: for i ∈ {1, . . . , n} do
3: if zi > 0 then
4: Act by ltii
5: b = isequal(ei, 0)
6: ei ← ei − ti
7: ti ← (−1)b · ti //Swap sign when ei has gone past 0
8: zi ← zi − 1
9: end if

10: end for
11: end while

However, Algorithm 9 is only an idealized version of the CSIDH group action algorithm.
Indeed, like in [69, 87], it may happen in some iterations that Elligator outputs points of
order not divisible by `i, and thus the action of li or l−1

i cannot be computed in that
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iteration. In this case, we simply skip the loop and retry later: this translates into the
variable zi not being decremented, so the total number of iterations may end up being larger
than max(mi). Fortunately, if the input value u fed to Elligator is random, its output is
uncorrelated to secret values5, and thus the fact that an iteration is skipped does not leak
information on the secret. The resulting algorithm is summarized in Algorithm 10.

To maintain the security of standard CSIDH, the bounds mi must be chosen so that the
key space is at least as large. For example, the original implementation [14] samples secrets
in [−5, 5]74, which gives a key space of size 1174; hence, to get the same security we would
need to sample secrets in S(10)74. But a constant-time version of CSIDH à la Onuki et al.
only needs to evaluate five isogeny steps per prime `i, whereas the present variant would
need to evaluate ten isogeny steps. We thus expect an approximately twofold slowdown
for this variant compared to Onuki et al., which is confirmed by our experiments.

7.6 Derandomized CSIDH algorithms

As we stressed in Section 7.3, all of the algorithms presented here depend on the availability
of high-quality randomness for their security. Indeed, the input to Elligator must be
randomly chosen to ensure that the total running time is uncorrelated to the secret key.
Typically, this would imply the use of a PRNG seeded with high quality true randomness
that must be kept secret. An attack scenario where the attacker may know the output
of the PRNG, or where the quality of PRNG output is less than ideal, therefore degrades
the security of all algorithms. This is true even when the secret was generated with a
high-quality PRNG if the keypair is static, and the secret key is then used by an algorithm
with low-quality randomness.

We can avoid this issue completely if points of order
∏
`
|mi|
i , where |mi| is the maximum

possible exponent (in absolute value) for `i, are available from the start. Unfortunately this
is not possible with standard CSIDH, because such points are defined over field extensions
of exponential degree.

Instead, we suggest modifying CSIDH as follows. First, we take a prime p = 4
∏n
i=1 `i−1

such that dn log2(3)e = 2λ, where λ is a security parameter, and we restrict to exponents of
the private key sampled from {−1, 0, 1}. Then, we compute two points of order (p+ 1)/4
on the starting public curve, one in ker(π − 1) and the other in ker(π + 1), where π is
the Frobenius endomorphism. This computation involves no secret information and can
be implemented in variable-time; furthermore, if the starting curve is the initial curve
with A = 0, or a public curve corresponding to a long term secret key, these points can
be precomputed offline and attached to the system parameters or the public key. We also
remark that even for ephemeral public keys, a point of order p+1 must be computed anyway
for key validation purposes, and thus this computation only slows down key validation by
a factor of two.

5Assuming the usual heuristic assumptions on the distribution of the output of Elligator, see [69].
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Algorithm 10 Dummy-free randomized constant-time CSIDH class group action for su-
persingular curves over Fp, where p = 4

∏n
i=1 `i−1. The ideals li = (`i, π−1), where π maps

to the p-th power Frobenius endomorphism on each curve, and the vector (m1, . . . ,mn) of
exponent bounds, are system parameters. This algorithm computes exactly mi isogenies
for each ideal li.

Require: A supersingular curve EA over Fp, and an exponent vector (e1, . . . , en) with
each ei ∈ [−mi,mi] and ei ≡ mi (mod 2).

Ensure: EB = le11 ∗ · · · ∗ lenn ∗ EA. (t1, . . . , tn) ←
(
sign(e1)+1

2 , . . . , sign(en)+1
2

)
(Secret)

(z1, . . . , zn)← (m1, . . . ,mn) (Not secret)
1: EB ← EA
2: while some zi 6= 0 do
3: u← Random

({
2, . . . , p−1

2

})
4: (T1, T0)← Elligator(EB, u) //T1 ∈ EB[π − 1] and T0 ∈ EB[π + 1]
5: (T0, T1)← ([4]T0, [4]T1) //Now T0, T1 ∈ EB [

∏
i `i]

6: for i ∈ {1, . . . , n} do
7: if zi 6= 0 then
8: (G0, G1)← (T0, T1)
9: for j ∈ {i+ 1, . . . , n} do

10: (G0, G1)← ([`j ]G0, [`j ]G1)
11: end for
12: if G0 6=∞ and G1 6=∞ then
13: cswap(G0, G1, ti) //Secret kernel point generator: G0

14: cswap(T0, T1, ti) //Secret point to be multiplied: T1

15: (EB, φ)← QuotientIsogeny(EB, G0)
16: (T0, T1)←

(
φ(T0), φ(T1)

)
17: T1 ← [`i]T1

18: cswap(T0, T1, ti)
19: b← isequal(ei, 0)
20: ei ← ei + (−1)ti

21: ti ← ti ⊕ b
22: zi ← zi − 1
23: else if G0 6=∞ then
24: T0 ← [`i]T0

25: else if G1 6=∞ then
26: T1 ← [`i]T1

27: end if
28: end if
29: end for
30: end while
31: return B
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Since we have restricted exponents to {−1, 0, 1}, every `i-isogeny in Algorithm 7 can be
computed using only (the images of) the two precomputed points. There is no possibility
of failure in the test of Line 12, and no need to sample any other point.

We note that this algorithm still uses dummy operations. If fault-injection attacks are a
concern, the exponents can be further restricted to {−1, 1}, and the group action evaluated
as in (a stripped down form of) Algorithm 10. However this further increases the size of
p, as n must now be equal to 2λ.

This protection comes at a steep price: at the 128 bits security level, the prime p goes
from 511 bits to almost 1500. The resulting field arithmetic would be considerably slower,
although the global running time would be slightly offset by the smaller number of isogenies
to evaluate.

On the positive side, the resulting system would have much stronger quantum security.
Indeed, the best known quantum attacks are exponential in the size of the key space
(≈ 22λ here), but only subexponential in p (see [19, 35, 14]). Since our modification more
than doubles the size of p without changing the size of the key space, quantum security
is automatically increased. For this same reason, for security levels beyond NIST-1 (64
quantum bits of security), the size of p increases more than linearly in λ, and the variant
proposed here becomes natural. Finally, parameter sets with a similar imbalance between
the size of p and the security parameter λ have already been considered in the context of
isogeny based signatures [32], where they provide tight security proofs in the QROM.

Hence, while at the moment this costly modification of CSIDH may seem overkill, we
believe further research is necessary to try and bridge the efficiency gap between it and the
other side-channel protected implementations of CSIDH.

7.7 Experimental results

Tables 7.1 and 7.2 summarize our experimental results, and compare our algorithms with
those of [14], [69], and [87]. Table 7.1 compares algorithms in terms of elementary field
operations, while Table 7.2 compares cycle counts of C implementations. All of our ex-
periments were ran on a Intel(R) Core(TM) i7-6700K CPU 4.00GHz machine with 16GB
of RAM. Turbo boost was disabled. The software environment was the Ubuntu 16.04
operating system and gcc version 5.5.

In all of the algorithms considered here (except the original [14]), the group action is
evaluated using the SIMBA method (Splitting Isogeny computations into Multiple BAtches)
proposed by Meyer, Campos, and Reith in [69]. Roughly speaking, SIMBA-m-k partitions
the set of primes `i into m disjoint subsets Si (batches) of approximately the same size.
SIMBA-m-k proceeds by computing isogenies for each batch Si; after k steps, the unreached
primes `i from each batch are merged.
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Castryck et al. We used the reference CSIDH implementation made available for down-
load by the authors of [14]. None of our countermeasures or algorithmic improvements
were applied.

Meyer–Campos–Reith. We used the software library freely available from the authors
of [69]. This software batches isogenies using SIMBA-5-11. The improvements we describe
in §7.3 and §7.4 were not applied.

Onuki et. al. Unfortunately, the source code for the implementation in [87] was not
freely available, so direct comparison with our implementation was impossible. Table 7.1
includes their field operation counts for their unmodified algorithm (which, as noted in §7.3,
is insecure) using SIMBA-3-8, and our estimates for a repaired version applying our fix
in §7.3. We did not apply the optimizations of §7.4 here. (We do not replicate the cycle
counts from [87] in Table 7.2, since they may have been obtained using turbo boost, thus
rendering any comparison invalid.)

Our implementations. We implemented three constant-time CSIDH algorithms, using
the standard primes with the exponent bounds mi from [87, §5.2].

MCR-style This is essentially our version of Meyer–Campos–Reith (with one torsion
point and dummy operations, batching isogenies with SIMBA-5-11), but applying
the techniques of §7.3 and §7.4.

OAYT-style This is essentially our version of Onuki et. al. (using two torsion points and
dummy operations, batching isogenies with SIMBA-3-8), but applying the techniques
of §7.3 and §7.4.

No-dummy This is Algorithm 10 (with two torsion points and no dummy operations),
batching isogenies using SIMBA-5-11.

In each case, the improvements and optimizations of §7.3-7.4 are applied, including pro-
jective Elligator, short differential addition chains, and twisted Edwards arithmetic and
isogenies. Our software library is freely available from

https://github.com/JJChiDguez/csidh .

The field arithmetic is based on the Meyer–Campos–Reith software library [69]; since the
underlying arithmetic is essentially identical, the performance comparisons below reflect
differences in the CSIDH algorithms.
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Results. We see in Table 7.2 that the techniques we introduced in §7.3 and §7.4 produce
substantial savings compared with the implementation of [69]. In particular, our OAYT-
style implementation yields a 25% improvement over [69]. Since the implementations use
the same underlying field arithmetic library, these improvements are entirely due to the
techniques introduced in this thesis. While our no-dummy variant is (unsurprisingly)
slower, we see that the performance penalty is not prohibitive: it is less than twice as slow
as our fastest dummy-operation algorithm, and only 44% slower than [69].

Table 7.1: Field operation counts for constant-time CSIDH. Counts are given in millions
of operations, averaged over 1024 random experiments. The counts for a possible repaired
version of [87] are estimates, and hence displayed in italics. The performance ratio uses [69]
as a baseline, considers only multiplication and squaring operations, and assumes M = S.

Implementation CSIDH Algorithm M S A Ratio

Castryck et al. [14] unprotected, unmodified 0.252 0.130 0.348 0.26

Meyer–Campos–Reith [69] unmodified 1.054 0.410 1.053 1.00

Onuki et al. [87]
unmodified 0.733 0.244 0.681 0.67

repaired as in §7.3 0.920 0.338 0.867 0.86

This work
MCR-style 0.901 0.309 0.965 0.83
OAYT-style 0.802 0.282 0.900 0.74
No-dummy 1.525 0.526 1.686 1.40

Table 7.2: Clock cycle counts for constant-time CSIDH implementations, averaged over
1024 experiments. The ratio is computed using [69] as baseline implementation.

Implementation CSIDH algorithm Mcycles Ratio

Castryck et al. [14] unprotected, unmodified 155 0.39

Meyer–Campos–Reith [69] unmodified 395 1.00

This work
MCR-style 337 0.85
OAYT-style 300 0.76
No-dummy 569 1.44

7.8 Conclusion and perspectives

We studied side-channel protected implementations of the isogeny based primitive CSIDH.
Previous implementations failed at being constant time because of some subtle mistakes.
We fixed those problems, and proposed new improvements, to achieve the most efficient
version of CSIDH protected against timing and simple power analysis attacks to date. All
of our algorithms were implemented in C, and the source made publicly available online.
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We also studied the security of CSIDH in stronger attack scenarios. We proposed a
protection against some fault-injection and timing attacks that only comes at a cost of a
twofold slowdown. We also sketched an alternative version of CSIDH “for the paranoid”,
with much stronger security guarantees, however at the moment this version seems too
costly for the security benefits; more work is required to make it competitive with the
original definition of CSIDH.
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Chapter 8

Extended SIDH

8.1 Introduction

In this Chapter, a variant of the SIDH protocol that allows us to accelerate Bob’s compu-
tations on single and multi-core platforms without modifying the formats and lengths of
its private/public keys is presented. The SIDH variant proposed in this Chapter is dubbed
Extended-SIDH (eSIDH),1 because of the pair of primes assigned to Bob for performing his
isogeny computations. The eSIDH domain parameters are a supersingular elliptic curve
E/Fp2 , where p is a prime of the form,

p = 4eA`eBB `eCC f − 1. (8.1)

Here `B, `C are two small prime numbers;2 f is a cofactor that for efficiency reasons is
usually selected as a power of two. Finally, eA, eB and eC are positive integers such that
4eA ≈ `eBB `eCC .

Just as it would happen in SIKE, in eSIDH Alice limits herself to compute degree-4eA

isogenies. This naturally implies that Alice can still take advantage of the cheap cost asso-
ciated to the fast degree-4 isogeny arithmetic. On the other hand, Bob is now responsible

1Pronounced it spelling out all the letters.
2In the eSIDH instantiations described in this Chapter we always choose `B = 3, `C = 5.
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of computing degree-`eBB `eCC isogenies. At first glance it would appear that Bob’s task in
eSIDH has just become more expensive than what used to be his computational role on
a traditional SIDH scheme. Nonetheless, we will show in this Chapter that Bob’s eSIDH
tasks offer several advantages such as a faster underlying field arithmetic, and novel oppor-
tunities for exploiting the parallelism associated to his new computational responsibilities.

Indeed, the rich abundance of the family of primes given in Eq. 8.1, produces for cer-
tain instantiations of eSIDH a faster field arithmetic by taking advantage of friendlier
Montgomery-friendly primes [12, 116]. Our experimental results show that the computa-
tional advantages of eSIDH more than well compensate the extra calculations demanded by
this variant. For example, using a single-core SIKE prime p751 implementation as a base-
line, a comparable eSIDH prime p765 instantiation yields an acceleration factor of 1.05, 1.30
and 1.41, when implemented on k = {1, 2, 3}-core processors.

As of today, relatively few works have attempted to exploit the rich opportunities that
SIDH main computations can offer for parallel computations. In this direction, we are
only aware of the works reported in [65, 48], where explicit efforts for parallelizing the
computations of the SIDH protocol were attempted and/or exploited. Using a similar
approach as the one followed in [65, 48], in this Chapter we report that with respect
to a sequential implementation, a two-core and a three-core parallel implementation of
the SIDH p751 instantiation yields a speedup factor of 1.118 and 1.216, respectively. To
our knowledge this work reports the first multi-core implementation of SIDH. In addition
when both protocols are implemented on k = {1, 2, 3}-core processors, eSIDH p765 yields
an acceleration factor of 1.050, 1.160 and 1.162 over SIDH.

The remainder of this Chapter is organized as follows. In §8.2 a summary of the
SIDH protocol and associated implementations aspects is presented. In §8.3 three different
approaches for implementing the eSIDH protocol are presented. In §8.4 several relevant
eSIDH implementations aspects on single-core and multi-core processors are discussed. We
draw our concluding remarks in §8.5.

8.2 Preliminaries

In this section, a brief summary of the SIDH protocol and its optimal strategies is given.
For more in-deep details see [42, 51] and Chapter 4.

8.2.1 The SIDH protocol

The most popular key exchange SIDH protocol instantiation operates on supersingular el-
liptic curves defined over Fp2 , where p is a large prime number of the form p = 4eA3eB − 1.
The exponents eA and eB are typically chosen such that 4eA ≈ 3eB . Let us define the con-
stants rA = 4eA and rB = 3eB . The public parameters of SIDH are given by a supersingular
base curve E0, and the basis points PA, QA, PB, QB ∈ E0, such that 〈PA, QA〉 = E0[rA]
and 〈PB, QB〉 = E0[rB].
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During the initial Key Generation phase, Alice chooses a random integer mA ∈ [1, rA−
1], which acts as her secret key. Thereafter, Alice computes a secret key RA = PA+[mA]QA
and a degree-4eA isogeny public curve EA such that φA : E0 → EA with Ker(φA) = 〈RA〉.
Likewise, Bob chooses a secret random integer mB ∈ [1, rB − 1]. Then, Bob computes a
secret key RB = PB + [mB]QB and a degree-3eB isogeny public curve EB such that φB :
E0 → EB with Ker(φB) = 〈RB〉. These computations complete the Key Generation phase.

During the SIDH second phase, known as the Key Agrement phase, Alice sends Bob
the tuple [EA, φA(PB), φA(QB)], whereas Bob sends Alice the tuple [EB, φB(PA), φB(QA)].3

Alice uses Bob’s information to recover the image of her secret key under Bob’s curve EB,
as φB(RA) = φB(PA) + [mA]φB(QA). Then Alice computes the curve EBA such that there
is a degree-4eA isogeny φBA : EB → EBA with Ker(φBA) = 〈φB(RA)〉. Similarly, Bob’s
recovers the image of his secret key under Alice’s curve EA by computing φA(RB) =
φA(PB) + [mB]φA(QB). Bob then computes the isogenous curve EAB such that there is a
degree-3eB isogeny φAB : EA → EAB with Ker(φAB) = 〈φA(RB)〉. This ends the SIDH
protocol. Alice and Bob can now create a shared secret by computing the j-invariant of
their respective curves, using the fact that EBA ∼= EAB implies j(EBA) = j(EAB).

Remark 20. The most prominent SIDH computational tasks include the computation of
large degree isogenies and the evaluation of elliptic curve points in those isogenies. Another
large operation of this scheme is the computation of four three-point scalar multiplications.
For a typical software or hardware implementation of SIDH, the isogeny computations and
associated point evaluations on one hand, along with the three-point scalar multiplications
on the other hand, may take 70-80% and 20-30% of the overall protocol’s computational
cost, respectively.

Remark 21. In order to compute the points RA, φB(RA) (resp. RB, φA(RB)), Alice (resp.
Bob) must perform two three-point scalar multiplication procedures using a right-to-left
Montgomery ladder algorithm [53, 116]. This kind of Montgomery ladder has a per-step
cost of one point addition (xADD) and one point doubling (xDBL), which are usually
performed in the projective space P1. Noticing that for current state-of-the-art SIDH im-
plementations the costs of xDBL and xADD are about the same, one can assume that the
per-step computational cost of the three-point Montgomery ladder is essentially that of
two xDBL operations. It follows that the cost of computing RA or φB(RA) (resp. RB or
φA(RB)) is of 4eA (resp. 2 log2(3)eB) xDBL operations.

8.3 The extended SIDH (eSIDH) Protocol

The extended SIDH (eSIDH) Protocol operates on supersingular elliptic curves defined
over Fp2 , where p is a large prime number of the form p = 4eA`eBB `eCC − 1. The exponents

3State-of-the-art SIDH implementations use differential point arithmetic on Montgomery curves. Con-
sequently, Alice and Bob evaluate and transmit three points each, namely, x(PA), x(QA), x(PA −QA); and
x(PB), x(QB), and x(PB −QB), respectively [25].
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Protocol Single Core processor Two-Core processor
required number of xDBL required number of xDBL

operations operations

SIDH [42] 16λ
4

16λ
4

Naive §8.3.1 16λ
4

16λ
4

Parallel §8.3.2 16λ
4

11λ
4

CRT-based §8.3.3 15λ
4

13λ
4

Table 8.1: Let λ = dlog2(p)e be the bit-length of the eSIDH prime p. This table reports the
approximate number of xDBL operations processed by the SIDH protocol of [42] compared
against the three eSIDH variants discussed in this section (for the experimental clock cycle
cost of xDBL see Table 8.3).

eA, eB and eC are chosen so that 4eA ≈ `eBB `eCB . The eSIDH protocol flow is quite similar to
the one of a traditional SIDH as described in §8.2.1. Alice must still compute degree-4eA

isogenies, but now Bob is responsible for computing degree-`eBB `eCC isogenies.

In this section, three different approaches for computing the eSIDH protocol are pre-
sented. We start in §8.3.1 with the description of a simple naive eSIDH approach that is
relatively expensive and offers little opportunities for exploiting parallelism. In §8.3.2, an
eSIDH approach especially designed for exploiting parallelism opportunities is presented.

Table 8.1 shows the estimated scalar multiplication expenses incurred by SIDH and the
two eSIDH instantiations discussed in this section. All the costs are given in number of
xDBL operations.4

In the case of two-core implementations, the parallel eSIDH described in §8.3.2, is
significantly faster than the SIDH implementation of [51] and any other eSIDH instantiation
discussed here.

8.3.1 A naive approach for computing eSIDH

Mimicking his role in SIDH, in a naive eSIDH instantiation Bob can first choose a basis
for 〈PBC , QBC〉 = E[`eBB · `

eC
C ]. Thereafter, Bob computes his secret point as RBC =

PBC +[mBC ]QBC followed by the computation of a degree-`eBB `eCC isogeny using an optimal
strategy à la SIDH as shown in Figure 8.1a.

Alice’s eSIDH computational expenses are exactly the same as in SIDH. In the case of
Bob, we stress that the computational expense of computing his eSIDH secret point RBC

4We do not account for isogeny computations, because the computational cost associated to this task is
about the same for all the two variants of eSIDH and the SIDH protocol.
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RBC

[`eCC ]

φB

[`eCC ]RBC
Computing
an `eBB -
isogeny φB

φB(RBC)

Computing
an `eCC -
isogeny φC

(a)

RC
φB

RB
Computing
an `eBB -
isogeny φB

φB(RC)

Computing
an `eCC -
isogeny φC

(b)

Figure 8.1: Overview of an strategy for computing a degree-`eBB `eCC isogeny. Each isogeny
φB and φC can be computed using a traditional SIDH strategy as in [42]. The kernel of φB
is the subgroup 〈[`eCC ]RBC〉, and the kernel of φC is the subgroup 〈φB(RBC)〉. Figure 8.1a
shows a naive way for computing the `eBB `eCC -isogeny φBC = φC ◦ φB. Figure 8.1b shows a
parallel-oriented approach for computing such strategy.
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as defined above, is about the same of computing Bob’s SIDH secret point RB as given
in §8.2.1.

Figure 8.1a depicts an optimal strategy procedure for computing Bob’s degree-`eBB `eCC .
The computational cost of this isogeny is of about eB

2 log2 eB,
eC
2 log2 eC scalar multiplica-

tions by `B and `C , eB2 log2 eB degree-`B and eC
2 log2 eC degree-`C isogeny evaluations, and

eB and eC constructions of degree-`B and degree-`C isogenous curves, respectively. This
computational expense is nearly the same as the one required by Alice for computing a
degree-4eA isogeny, using the optimal strategies described in §4.3.2 and Figure 4.4.

There seems to be no obvious way of parallelizing the main computation of this naive
eSIDH instantiation. In the following two subsections, two eSIDH instantiations more
amenable for parallelization are described.

8.3.2 A parallel approach for computing eSIDH

As mentioned before, eSIDH offers rich opportunities for exploiting its inherent paral-
lelism. In this subsection an eSIDH instantiation specifically designed for the concurrent
computation of this protocol’s scalar multiplication operations will be presented.

As before, let λ = dlog2(p)e be the bit-length of the eSIDH prime p = 4eA`eBB `eCC −1. For
the sake of compactness let us define rB = `eBB and rB = `eCC . Rather than defining Bob’s
secret point RBC as in the previous subsection, Bob has now two secret points that he can
calculate by choosing two pairs of bases such that 〈PB, QB〉 = E[rB] and 〈PC , QC〉 = E[rC ].
Afterwards, Bob randomly chooses two integers mB ∈ [1, rB − 1] and mC ∈ [1, rC − 1] to
compute his secret points as,

RB = PB + [mB]QB; RC = PC + [mC ]QC . (8.2)

Now, by picking `B, `C , eB and eC such that log2(`B)rB ≈ log2(`C)rC , it follows that
the cost of computing RB is of about 2λ

4 xDBL operations (cf. remark 21), which is
nearly the same cost of computing RC , and about half of the cost of computing Alice’s
secret point RA. Furthermore, the calculations of Bob’s secret points RB and RC are
fully independent. Therefore, one can compute them in parallel on multi-core platforms.
Moreover, the isogeny φBC = φC ◦ φB can now be determined without performing the
multiplication by rC depicted in Figure 8.1a. This computational saving comes from the
facts that gcd(rB, rC) = 1 and that RB, RC are points of order rB and rC , respectively.
Hence as shown in Figure 8.1b, RB and φB(RC) can serve to generate the kernels of the
isogenies φB and φC , respectively. This observation yields a significant saving of about λ

4
xDBL operations.

Reducing the public-key size of the parallel instantiation of eSIDH

Seemingly, an important drawback of using two secret points for Bob is that in the Key
Agrement phase, this design decision forces Bob to know the images of his public points
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PB, QB, PC and QC , all of them evaluated under Alice’s degree-4eA isogeny φA. Sending
these four points implies an increment on the data to be transfered from Alice to Bob.
This in turn implies an increment on Alice’s computational load since now, she would need
to find the isogeny images of four points (instead of two as in the original SIDH).5

Alternatively, one can reduce the eSIDH public-key size at the same time that Alice’s
extra work is prevented. This can be done by defining two auxiliary public points that
while codifying Bob’s public points PB, QB, PC and QC , provide an efficient way to recover
them. Let us re-define Bob’s public points as S = PB+PC and T = QB+QC . This implies
that,

[rB]S = [rB]PC , [rC ]S = [rC ]PB,

[rB]T = [rB]QC , and [rC ]T = [rC ]QB. (8.3)

Hence, given the points S, T, one can recover multiples of Bob’s original four public points
by performing four scalar multiplications. Notice that all four of these scalar multiplications
are fully independent. Nonetheless, we can do better as discussed below.

Remark 22. From the multiples [rC ]PB and [rC ]QB, one can recover the points PB, QB, by
multiplying them by the scalars r−1

C mod rB and r−1
B mod rC , respectively. However, it is

easier to directly use [rC ]PB and [rC ]QB to generate the point R′B = [rC ]PB+[mB]([rC ]QB).
Provided that gcd(rC , rB) = 1, it follows that R′B = [rC ]RB. Thus, 〈R′B〉 = 〈RB〉, which
implies that the degree-rC isogenies with kernels 〈R′B〉 and 〈RB〉, are one and the same.
Similarly, the point R′C = [rB]PC + [mC ]([rB]QC), is sufficient to generate the degree-rB
isogeny with kernel 〈RC〉.

The observation stated in Remark 22 along with the relations given in Eq. (8.3.2)
suggest an approach where Bob can efficiently recover the points R′B, R

′
C , by the direct

computation of,

R′B = [rC ](S + [mB]T ) and R′C = [rB](S + [mC ]T ). (8.4)

Remark 23. Eq. (8.4) is useful during the eSIDH Key Agrement phase. For the eSIDH Key
Generation phase, it results more efficient to compute the points RB and RC as discussed
at the beginning of Subsection 8.3.2.

Figure 8.2 shows a general overview of the eSIDH parallel instantiation described in
this subsection. Assuming that a multi-core platform is available for the execution of this
eSIDH instantiation, most Bob’s scalar multiplications can be computed in parallel.

Remark 24. eSIDH security: Recall that gcd(rB, rC) = 1 and rA ≈ log2(`B)rB·log2(`C)rC .
Given the points S and T, computing a degree-rBrC isogeny between E0 and EBC should
have the same computational complexity as the problem of, given the points PA and QA,

5In practice one uses differential point arithmetic on Montgomery curves. Hence, Alice would need to
evaluate and transmit six points, namely, x(PB), x(QB), x(PB −QB), x(PC), x(QC), and x(PB −QB).
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R′B = [rC ](φA(S) + [mB ]φA(T ))

R′C = [rB ](φA(S) + [mC ]φA(T ))
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Figure 8.2: Overview of an eSIDH parallel instantiation with Bob’s secret points computed
in parallel. In the Key Generation phase Ker(φB) = 〈RB〉 and Ker(φC) = 〈φB(RC)〉. In
the Key Agrement phase Ker(φ′B) = 〈R′B〉 and Ker(φ′C) = 〈φ′B(R′C)〉

finding a degree-rA isogeny between E0 and EA. Furthermore, provided that 4eA ≈ `eBB ·`
eC
C ,

the heuristic polynomial time key recovery attacks presented in [90] do not appear to apply
against eSIDH.

Computational cost of the eSIDH parallel instantiation

As in Table 8.1, the eSIDH required number of xDBL operations will be used as cost metric.
We further assume that log2(`B)rB ≈ log2(`C)rC ≈ rA

2 ≈
λ
4 .

Note that the private/public key sizes of eSIDH are the same as the traditional SIDH
protocol of [42]. Moreover, Alice’s isogeny computations are exactly the same for both
protocols. Nevertheless, Bob can compute his two degree-`eBB `eCC isogenies using the com-
putational trick shown in Figure 8.1b. This approach yields a saving of about 2λ

4 xDBL
operations compared against the performance cost required by the SIDH strategy shown
in Figure 4.4, without incurring in any extra computational overhead.

The scalar multiplications computational expenses of the parallel eSIDH variant are
dispensed as discussed next. As in the traditional SIDH, Alice must perform two 2λ

4 -

bit scalar multiplications that involve the computation of about 8λ
4 xDBL operations (cf.

Remark 21). Moreover,

during the Key Generation phase, Bob computes the points RB and RC , by performing
4λ
4 and 2λ

4 xDBL operations for a single-core and two-core implementation, respectively.
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During the Key Agrement phase, Bob computes the points R′B, R
′
C , by performing 6λ

4 and
3λ
4 xDBL operations for a single-core and two-core implementation, respectively.

Thus, the eSIDH combined scalar multiplication effort of Alice and Bob for a a single-
core and two-core implementation is of 16λ

4 and 11λ
4 , respectively (see Table 8.1).

8.3.3 A CRT-based approach for computing eSIDH

Another instantiation of eSIDH can be constructed by taking advantage of the Chinese
Remainder Theorem (CRT). As in §8.3.2, let λ = dlog2(p)e be the bit-length of the eSIDH
prime p = 4eA`eBB `eCC − 1. For the sake of compactness let us define rB = `eBB and rB = `eCC .
A CRT-based approach for eSIDH can be computed as explained in the remainder of this
subsection.

First choose a pair of random integers under the following restrictions. Pick randomly
mB ∈ [1, rB] and mC ∈ [1, rC ] such that, gcd(mB, rC) = gcd(mC , rB) = 1. Then compute
the following integers,

m̂B = m−1
B mod rC ; m̂C = m−1

C mod rB; (8.5)

m̄B = mB · m̂B mod rB; m̄C = mC · m̂C mod rC ;

mBC = mB · m̂B ·mC · m̂C mod (rB · rC).

From Eq. (8.5) it follows that mBC ≡ m̄B mod rB and mBC ≡ m̄C mod rC .

For the execution of the eSIDH Key Generation phase the following two points are
computed, RB = PB + [m̄B]QB and RC = PC + [m̄C ]QC . Thereafter, one can compute
φBC as shown in Figure 8.1b, such that the kernel of φB is generated by RB and the kernel
of φC is generated by φB(RC). Since |mB| ≈ |mC | ≈ |mA|

2 = λ
4 ,

6 the combined cost of
computing RB and RC is about the same as the cost of computing RA. As a side effect,
note that these computations imply a saving of rC ≈ λ

4 xDBL operations corresponding to
the left most vertical edge between the points RC and RB shown in Figure 8.1b.

For the computation of the eSIDH Key Agrement phase as in §8.3.2, let us define the
auxiliary public points S = PB + PC and T = QB + QC . It turns out that the generators
of the subgroups 〈RB〉 and 〈RC〉 can be recovered by invoking the CRT and Remark 22
applied on the integers given in Eq. (8.5).

Proposition 8.3.1. Let PB, QB, PC , QC , m̄B, m̄C , mBC , RB as RC be defined as
before, and fix S = PB + PC and T = QB + QC . Then [rC ]RB = [rC ](S + [mBC ]T ) and
[rB]RC = [rB](S + [mBC ]T ).

6The operator | · | evaluates the bit-length of its operand.
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Proof. By straightforward substitution we get,

[rC ](S + [mBC ]T ) =[rC ](PB + PC + [mBC ]QB + [mBC ]QC))

=[rC ](PB + [mBC ]QB)

=[rC ](PB + [mBC mod rB]QB)

=[rC ](PB + [m̄B]QB)

=[rC ]RB.

Using an analogous procedure one can show that [rB]RC = [rB](S + [mBC ]T ).

Using Proposition 8.3.1, one can recover the generator R′B of the subgroup Ker(φ′B)
and φ′B(R′C), the generator of the subgroup Ker(φ′C). To this end, one can compute,

R′B = [rC ](φA(S) + [mBC ]φA(T )) = φA([rC ]RB);

R′C = [rB](φA(S) + [mBC ]φ(T )) = φA([rB]RC).

Nevertheless, these computations have a steep cost of 10λ
4 xDBL operations. Fortu-

nately, there is an efficient way to reduce this expense.

Proposition 8.3.2. Fix R′B = [rC ](φA(S)+[mBC ]φA(T )) = [rC ]R′. The point φ′B(R′) has
order rC and φ′B(R′) = φ′B((φA(RC)).

Proof. By virtue of Proposition 8.3.1, the order-rB point RB generates the kernel of the
degree-rB isogeny φ′B, that is, Ker(φ′B) = 〈R′B〉. By straightforward substitution we get,

R′ =φA(S + [mBC ]T )

=φA(PB + [mBC ]QB + PC + [mBC ]QC)

=φA(RB +RC).

It follows that

φ′B(R′) =φ′B((φA(RB +RC))

=φ′B((φA(RB) + φA(RC))

=φ′B((φA(RC)),

which yields an order-rC point.

Note that the points R′B and φ′B(R′) can serve as the kernel generators of Bob’s key-
agreement phase isogenies φ′B and φ′C , respectively. Moreover, the cost of computing those
two points is of about 5λ

4 xDBL operations. There seems to be no obvious way to parallelize
these two calculations.
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Computational cost of the CRT-based eSIDH instantiation

As in §8.3.2, the eSIDH required number of xDBL operations will be used as cost metric,
and we will assume that log2(`B)rB ≈ log2(`C)rC ≈ rA

2 ≈
λ
4 . Also, as argued in §8.3.2, the

private/public key sizes of eSIDH and Alice’s isogeny computations are exactly the same as
in SIDH. Bob can compute his two degree-`eBB `eCC isogenies using the computational trick
shown in Figure 8.1b, obtaining a saving of about 2λ

4 xDBL operations compared against
SIDH.

The scalar multiplications computational expenses of the CRT-based eSIDH variant are
dispensed as discussed next. Let us consider the eSIDH instantiation depicted in Figure 8.2.
Then, as in the traditional SIDH, Alice must perform two 2λ

4 -bit scalar multiplications that

involve the computation of about 8λ
4 xDBL operations (cf. Remark 21).

During the Key Generation phase, Bob computes the points RB, RC , by performing
4λ
4 and 2λ

4 xDBL operations for a single-core and two-core implementation, respectively.

During the Key Agrement phase, Bob computes the points R′, R′B, by performing 5λ
4 xDBL

operations for either a single-core or a two-core implementation.

Thus, the eSIDH combined scalar multiplication effort of Alice and Bob for a single-core
and a two-core implementation is of 15λ

4 and 13λ
4 , respectively (see Table 8.1).

8.4 Parameter selection and implementation aspects

8.4.1 The hunting for efficient eSIDH Primes

Let N = ddlog2(p)e/we be the minimum number of 64-bit words needed to represent an
eSIDH prime p. In this Chapter it is assumed w = 64. We say that a modulus p is γ-
Montgomery-friendly if p ≡ ±1 mod 2γ·w for a positive integer γ [45, 56]. This property
implies that −p−1 ≡ ∓1 mod 2γ·w, which is conveniently exploited to produce savings in
the Montgomery’s REDC reduction algorithm [12].

SIKE uses primes of the form p := 4eA3eB − 1. There are at least two computer arith-
metic reasons for this choice. One of them, is that this family of primes are Montgomery-
friendly, which implies that they admit fast Montgomery Reduction [116, 12]. The second
advantage is that there exist highly efficient formulas for computing degree-3 and degree-
4 isogenies [22, 17]. The eSIDH primes proposed in this Chapter are of the form p :=
4eA`eBB `eCC f − 1, which are much more flexible and abundant than the SIKE primes. Then,
given some fixed values for N and the primes `B and `C , one searches for N

2 -Montgomery-
friendly primes (if they exist) by varying eB, eC and f. These friendlier Montgomery-
friendly primes achieve a faster Montgomery reduction (see [116, Algorithm 6]) than the
ones that could possibly be obtained from comparable SIKE primes.

Another important design aspect to be considered is that on Bob’s side, there exists a
trade-off between the size of the base-primes `B and `C and their corresponding exponents
eB and eC , respectively. The base-primes define the size of the step, whereas their exponents
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eSIDH primes proposed here N γ SIKE primes as in [51] N γ

p434 = 2218370545 − 1 7 3 p434 = 22163137 − 1 7 3
p507 = 2256379554 − 1 8 4 p503 = 22503159 − 1 8 3
p632 = 23213965677− 1 10 5 p610 = 23053192 − 1 10 4
p765 = 23913119581 − 1 12 6 p751 = 23723239 − 1 12 5

Table 8.2: Our selection of eSIDH primes matching the four security levels offered by the
SIKE primes included in [51], where N = ddlog2(p)e/64e, and γ is the largest integer for
that N such that p ≡ −1 mod 2γ·64 holds.

determine how many steps one must perform for isogeny evaluations and constructions.
Depending on the exact choice of these parameters, one can make a few big steps or
many small steps. Furthermore as discussed in §8.3.2, in order to take full advantage of
parallel computing and also for security reasons (cf. Remark 24), it is important to choose
log2(`B)rB ≈ log2(`C)rC .

For all the eSIDH instances considered in this Chapter, we use primes of the form
p = 4eA`eBB `eCC f − 1, such that 2eA ≈ log2(`eBB `eCC ), and where eA is chosen so that the
security level offered by the SIKE primes as specified in [51] is matched (see also [1]).
The cofactor f = 2kc is carefully selected so that p qualifies as an N

2 -Montgomery-friendly
prime (if at all possible). Table 8.2 shows our selection of four eSIDH primes matching the
four security levels specified in [51]. When searching for eSIDH primes with comparable
security as the one offered by the p434 SIKE prime, the best choice that we were able to
find is eSIDH-p434 as specified in Table 8.2. Both of them, SIKE-p434 and eSIDHp434, fit in
seven 64-bit words and they are 3-Montgomery-friendly primes. This implies that the field
arithmetic costs associated to SIKE-p434 and eSIDH-p434 are fairly similar (cf. Table 8.3).
Luckily, for the other three security levels we managed to find eSIDH N

2 -Montgomery-
friendly primes sharing the same security level as their SIKE prime counterparts.

8.4.2 Results and discussion

In this subsection, a full implementation of the eSIDH protocol proposed in this work is pre-
sented. We mainly focus ourselves on the eSIDH parallel instantiation discussed in §8.3.2,
and we use the SIDH implementation of [51] as a baseline to compare the acceleration factor
achieved by the eSIDH scheme. Building on the techniques proposed in [48], we also report
a multi-core implementation of the SIDH protocol. To the best of our knowledge this is the
first reported software implementation of SIDH.7 Our two case studies targeted p434 and
p751, the smallest and largest SIKE primes that are included in the SIKE specification [51].

All the timings were measured using an Intel core i7-6700K processor with micro-
architecture Skylake at 4.0 GHz. Using the Clang-3.9 compiler and the flags -Ofast

-fwrapv -fomit-frame-pointer -march=native -madx -mbmi2.

7A reconfigurable hardware parallel version of SIDH was previously reported in [65].
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Operation p434 p751 p765 AF

Reduction Fp 78 154 137 1.12
Mult Fp2 466 1,029 977 1.05
Sqr Fp2 349 780 716 1.08
Inv Fp2 77,764/77025 (*) 317,655 251,366 1.26

Doubling 2,961 6,186 5,845 1.12
4-IsoGen 1,793 3,691 3,442 1.07
4-IsoEval 3,955 8,407 7,972 1.05
Tripling 5,595 11,999 11,292 1.06
3-IsoGen 2,850 5,720 5,418 1.05
3-IsoEval 2,717 5,944 5,612 1.05
Quintupling 7,995 - 16,285 -
5-IsoGen 7,951 - 16,179 -
5-IsoEval 4,703 - 9,682 -

Table 8.3: Timing performance of selected quadratic field arithmetic operations and isogeny
evaluations and constructions. Timings are reported in clock cycles measured on a Skylake
processor at 4.0GHz. (*) In this cell the left number indicates the cost of quadratic-
field inversion for SIKE-p434 whereas the right number indicates the cost of quadratic-field
inversion for P434eSIDH-p434. Right most column shows the Acceleration factor when
comparing p751 versus p765
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SIKE-p434 eSIDH-p434

Phase
Cores number Cores number

1 2 3 1 2 3

Alice Key Generation 5.93 5.62 5.36 5.88 5.60 5.36
Bob Key Generation 6.54 6.20 5.88 6.56 4.89 4.43
Alice Key Agrement 4.80 4.49 4.22 4.75 4.48 4.20
Bob Key Agrement 5.50 5.14 4.82 6.16 4.73 4.47

Total 22.77 21.45 20.28 23.35 19.70 18.46

Table 8.4: Performance comparison of the SIKE prime p434 against the eSIDH prime p434.
All timings are reported in 106 clock cycles measured on an Intel Skylake proccessor at 4.0
GHz.

SIKE-p434 eSIDH-p434

Phase
Cores number Cores number

1 2 3 1 2 3

Key Generation 6.54 6.16 5.87 6.63 4.92 4.42
Encapsulation 10.75 10.12 9.54 10.77 10.09 9.56
Decapsulation 11.44 10.75 10.14 12.19 10.34 9.83

Total 28.73 27.03 25.55 29.59 25.35 23.81

Table 8.5: Performance comparison of SIKE protocol comparing the SIKE prime p434

against the eSIDH prime p434. All timings are reported in 106 clock cycles measured on an
Intel Skylake proccessor at 4.0 GHz.

Our software library is freely available from https://github.com/dcervantesv/eSIDH

Quadratic field arithmetic and isogeny computations

Table 8.3 presents a comparison of the field arithmetic costs associated to the SIKE primes
p434 and p751 against the ones exhibit by the eSIDH primes p434 and p765, respectively.
Note that our eSIDH prime p765 field arithmetic gets noticeable timing speedups compared
against the SIKE p751 field arithmetic. This acceleration is justified from the fact that since
p765 is a friendlier Montgomery-friendly prime, it has a faster modular reduction than p751.

Parallelizing the SIDH protocol

Using a similar approach as the one followed in [65, 48], in this work we parallelize the SIDH
implementation of [51] as follows. Alice and Bob isogeny evaluations and constructions
were computed using the optimal strategy of [42]. Optimal strategies typically produce an
average of four points per curve whose isogeny images can be processed concurrently [65].
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p751 p765

Phase
Cores number Cores number

1 2 3 1 2 3

Alice Key Generation 23.59 21.74 19.88 22.27 20.19 18.89
Bob Key Generation 26.74 23.71 22.24 24.34 17.76 15.79
Alice Key Agrement 19.37 17.49 15.64 18.21 16.12 14.83
Bob Key Agrement 22.76 19.74 18.25 23.24 17.16 15.94

Total 92.46 82.67 76.01 88.05 71.23 65.42

Table 8.6: Performance comparison of the SIKE prime p751 against the eSIDH prime p765.
All timings are reported in 106 clock cycles measured on an Intel Skylake proccessor at 4.0
GHz.

SIKE-p751 eSIDH-p765

Phase
Cores number Cores number

1 2 3 1 2 3

Key Generation 26.66 23.52 22.17 24.20 17.83 15.77
Encapsulation 42.98 37.99 36.25 40.29 36.23 33.65
Decapsulation 46.35 40.96 38.05 44.92 37.16 34.70

Total 115.99 105.61 96.47 109.35 91.22 84.12

Table 8.7: Performance comparison of SIKE protocol comparing the SIKE prime p751

against the eSIDH prime p765. All timings are reported in 106 clock cycles measured on an
Intel Skylake proccessor at 4.0 GHz.

Hence, our two- and three-core implementations actively strove for concurrently performing
as many isogeny evaluations as possible.8

Table 8.4 shows that with respect to a sequential implementation, a two-core and a
three-core parallel implementation of the SIDH p434 instantiation yields a speedup factor of
1.062 and 1.123, respectively. Likewise, Table 8.6 reports that with respect to a sequential
implementation, a two-core and a three-core parallel implementation of the SIDH p751

instantiation yields a speedup factor of 1.118 and 1.216, respectively.

Performance evaluation of the eSIDH parallel instantiation

Table 8.4 reports the performance timing achieved by the eSIDH p434 parallel instantiation.
Using a single-core SIDH p434 implementation as a baseline, it can be seen from Table 8.4
that a parallel eSIDH p434 implementation yields an acceleration factor of 0.97, 1.15 and
1.23, when executed on k = {1, 2, 3}-core processors. On the other hand, eSIDH p434 yields

8Parallel canonical strategies for SIDH are studied and proposed in [48].
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an acceleration factor of 0.971, 1.073 and 1.086, when both protocols are implemented on
k = {1, 2, 3}-core processors. Hence for a single-core implementation, eSIDH p434 is slower
than its SIDH p434 counterpart.

Using a single-core SIDH p434 implementation as a baseline, it can be seen from Ta-
ble 8.5 that a parallel eSIDH p434 implementation yields an acceleration factor of 0.97, 1.13
and 1.20, when executed on k = {1, 2, 3}-core processors. On the other hand, eSIDH p434

yields an acceleration factor of 0.97, 1.06 and 1.07, when both protocols are implemented
on k = {1, 2, 3}-core processors.

Table 8.6 reports the performance timing achieved by the eSIDH p765 parallel instan-
tiation. Using a single-core SIDH p751 implementation as a baseline, It can be seen that
a parallel implementation of eSIDH p765 yields an acceleration factor of 1.05, 1.29 and
1.41, when executed on k = {1, 2, 3}-core processors. Furthermore, eSIDH p765 yields
an acceleration factor of 1.050, 1.160 and 1.161. when both protocols are implemented on
k = {1, 2, 3}-core processors. Table 9.8 reports the performance timing achieved by the
eSIDH p765 parallel instantiation. Using a single-core SIKE p751 implementation as a base-
line, it can be seen that a parallel implementation of SIKE using eSIDH p765 prime, yields
an acceleration factor of 1.06, 1.27 and 1.37, when executed on k = {1, 2, 3}-core proces-
sors. Furthermore, eSIDH p765 yields an acceleration factor of 1.06, 1.15 and 1.14. when
both protocols are implemented on k = {1, 2, 3}-core processors. We stress that even for
a single-core implementation of this case study, our eSIDH variant produces a modest but
noticeable speedup of about 5% in SIKE protocol and %6 in the SIDH protocol.

As a general summary we note that for single-core implementations, Bob’s 3e35e5

isogeny computation has no overhead impact on the Key Generation phase. However,
the public key recovery mechanism (cf. §8.3.2) proves to be relatively expensive on the
Key Agrement phase. On the other hand, for two- and three-core implementations, our
eSIDH instantiation clearly outperforms SIDH on all Bob’s computations. In Table 8.6,
the comparison of SIDH p751 against eSIDH p765 reveals the superiority of the latter over
the former in all the phases of the protocol, even for a sequential implementation. The one
exception being Bob’s Key Agrement phase. For the two- and three- core implementations,
Bob’s Key Agrement for eSIDH p765 is even faster than Alice’s Key Agrement for SIDH
p751.

Performance evaluation of the CRT-based eSIDH instantiation

A shown in Table 8.1, the CRT-based eSIDH instantiation presented in §8.3.3 offers less
parallelism opportunities than the ones enjoyed by the eSIDH parallel instantiation dis-
cussed in 8.3.2. However, according to the estimates given in Table 8.1, the CRT-based
eSIDH instantiation is a promising economical scheme for a sequential single-core proces-
sor. As before, let λ = dlog2(p)e. Referring to Table 8.1, the computational cost of the
CRT-based eSIDH instantiation saves ≈ λ

4 xDBL operations.
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Case study p443

Based on the timing computational costs reported in Table 8.3, the expected computational
saving for a single-core implementation of SIDH p434 with respect to eSIDH p443 is given
as,

eC ·Quintupling = 45 · 7995

= 359, 775 clock cycles.

This implies that compared against a single-core SIDH p434 implementation, a single-core
CRT-based eSIDH p443 implementation is expected to produce a 1.02 speedup factor.
Case study p765

Based on the prime specifications given in 8.2 and the timing computational costs reported
in Table 8.3, the expected computational saving for a single-core implementation of eSIDH
p765 with respect to SIDH p751 is given as,

eC ·Quintupling = 81 · 16285

= 1, 319, 085 clock cycles.

This saving combined with the experimental results reported in Table 8.6 implies that
compared against a single-core SIDH p751 implementation, a single-core CRT-based eSIDH
p765 implementation is expected to produce a 1.07 speedup factor.

8.5 Conclusions

In this Chapter, the extended SIDH scheme, a variant of the SIDH protocol in [42], was
presented. Our experimental results show that an eSIDH parallel implementation is faster
than a corresponding parallel version of SIDH.

Our future work includes to expand the search of more efficient eSIDH primes for all
the four security levels considered in [51]. Building on the work presented in [48], we
would also like to explore more aggressive approaches for parallelizing the SIDH isogeny
computations and evaluations. The algorithmic ideas discussed here might be useful for
the B-SIDH construction [21], where given the large size of the prime factors involved in
the factorization of p ± 1, parallel implementations of SIDH become mandatory. We also
would like to explore applications of eSIDH to the client-server scenarios discussed in [21].
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Chapter 9

Parallel Strategies for SIDH

9.1 Introduction

Isogeny-based cryptography was proposed by Couveignes in 1997. Complete details of his
proposal were eventually reported in [29]. In 2006, Couveignes’ protocol was independently
rediscovered by Rostovtsev and Stolbunov in [92, 97]. Also in 2006, Charles-Lauter-Goren
introduced in [18] the hardness of path-finding in supersingular isogeny graphs and its ap-
plication to the design of hash functions. In 2011, the Supersingular Isogeny-based Diffie-
Hellman key exchange protocol (SIDH) was proposed by Jao and de Feo in [53]. Later
in 2017, the Supersingular Isogeny Key Encapsulation (SIKE) protocol was submitted to
the NIST post-quantum cryptography standardization project [3]. On July 2020, NIST
announced the results of its third round evaluation, naming SIKE as an alternative can-
didate. SIKE allows public key encryption and comprises a key encapsulation mechanism
that is protected against chosen-ciphertext attacks.

The two most costly computational tasks of SIDH are, (i) the computation of large
smooth-degree isogenies of supersingular elliptic curves along with the evaluation of the
image of elliptic curve points in those isogenies and; (ii) elliptic curve scalar multiplication
computations via three-point Montgomery ladder procedures. Optimal computation of
large degree isogenies for single-core processors was presented and solved in [33]. Also,
efficient algorithms for computing the SIDH three-point scalar multiplications can be found
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in [53, 40]. Several general ideas for a sensible improving of the SIDH performance were
introduced in [25].

Let A be a Montgomery coefficient of an elliptic curve E : y2 = x3 + Ax2 + x, defined
over the quadratic extension field Fp2 . Let S = 〈R0〉 be an order-`e subgroup of E[`e], where
R0 ∈ E(Fp2), is a point of order `e, e is a positive number, and ` is a small prime. Then
there exists a degree-`e isogeny φ : E → E′ having kernel S. The image curve E′ is also a su-
persingular elliptic curve defined over Fp2 . Moreover, Order(E(Fp2)) = Order(E′(Fp2)) [99,
Theorem 1]. Let Q ∈ E(Fp2)\〈P 〉. Computing the Montgomery coefficient A′ ∈ Fp2 of
the codomain curve E′ : y2 = x3 + A′x2 + x, and the image point φ(Q), is referred in
this chapter as the isogeny construction and the isogeny evaluation computational tasks,
respectively.

In [33], optimal strategy techniques were introduced to efficiently compute degree-`e

isogenies at a cost of approximately e
2 log2 e scalar multiplications by `, e

2 log2 e degree-`
isogeny evaluations, and e constructions of degree-` isogenous curves.1 Virtually all SIDH
and SIKE implementations published as of today, compute degree-`e isogenies using optimal
strategies, which are provable optimal for those architectures equipped with a single unit
of processing, i.e., single-core platforms.

In [33], optimal strategies were depicted as a weighted directed graph whose vertices
are elliptic curve points and whose left and right edges have as associated weight the cost
of performing one scalar multiplication by ` and one degree-` isogeny, respectively. That
weighted directed graph was drawn in Chapter 4, as a right triangular lattice ∆e having
e(e+1)

2 points distributed in e columns and rows. A leaf is defined as the most bottom
point of a given column in that lattice. All vertical edges must be computed sequentially,
whereas all the horizontal edges can be computed in parallel. At the beginning of the
isogeny computation, only the point R0 of order `e is known. The isogeny computation is
carried out by obtaining from left to right, each one of the leaves in ∆e until the farthest
right one, Re−1, is computed. Then, φ : E → E′ can be found by calculating a degree-`
isogeny with kernel Re−1.

An interesting consequence of the weighted directed graph representation is that one
can abstract oneself from the cryptographic nature of the isogeny computation problem,
and solely focus on the combinatorial structure associated to the graph.

As an illustrative example, consider the toy example depicted in Figure 9.1 using the
parameters `e = 49. In the event that that strategy is executed on a single-core platform, it
would have an associated timing cost of thirteen scalar multiplications by 4 (corresponding
to the thirteen vertical blue edges shown in the graph), plus sixteen degree-4 isogeny eval-
uations (corresponding to the sixteen horizontal red edges shown in the graph).2 However,
if one happens to have four cores available for performing this task, then the timing cost

1An analysis of the computational cost of small degree isogeny construction and evaluation can be found
in [25, 22, 17].

2The cost of computing the strategy shown in Figure 9.1 also includes ten degree-` isogeny constructions
not relevant for the discussion here.

112



9.1. INTRODUCTION

0
0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

Figure 9.1: Strategy to compute a degree-`e = 49 isogeny. The root point at row and
column zero, represents the elliptic curve point R0 of order 49. Each one of the nine leaves
at the bottom of the columns represent elliptic curve points of order 4.

can be reduced to thirteen scalar multiplications by 4, plus just eight degree-4 isogeny
evaluations.

Parallel computations of SIDH

The chief criticism made against SIDH, is that its latency is much higher than the ones
associated to several other candidates of the NIST standardization project [80]. Motivated
by this, numerous efforts to speed up the performance of SIDH both in software [25, 66,
40, 94], and in hardware [63, 64], have been reported. Nonetheless, to our knowledge only
the works presented in [63, 48, 62], have attempted to exploit the rich opportunities for
parallelism that SIDH has to offer.

In [63], a hardware implementation of SIDH on an FPGA device was presented. The
authors’ architecture was able to concurrently process an average of four degree-4 isogeny
evaluations. Using the 751-bit prime SIKEp751 = 2372 ·3239−1,3 these parallel calculations
accounted for a saving of 36.5% in the number of clock cycles required for computing degree-
4186 isogenies over Fp2 .

The noticeable speedup reported in [63] can however be considered sub-optimal, in the
sense that for a degree-4186 isogeny computation, the authors adapted a strategy origi-
nally conceived for a sequential execution (as opposed to explicitly designing a parallel
strategy for that purpose). Pointing out this limitation, the authors of [48] proposed the
usage of provable optimal strategies specifically conceived for the parallel computation of
large degree isogenies in SIDH. From a careful theoretical analysis, the authors concluded
that an eight-core parallel implementation of the SIDH isogeny computation using their
approach, should achieve a performance speedup of up to 55% compared against a sequen-
tial version of SIDH. However, this acceleration factor was achieved by assuming isogeny

3A SIKE instantiation using the prime SIKEp751, achieves the NIST’s category 5 security level [3].
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and scalar multiplication costs that not necessarily correspond to the ones observed in the
most efficient software and hardware implementations reported for SIDH. Moreover, the
authors of [48] focused all their attention to the efficient parallelization of the SIDH isogeny
computations, leaving out attempts for concurrently executing other SIDH computational
tasks, such as three-point Montgomery ladders.

A variant of SIDH named eSIDH in Chapter 8, permits to accelerate Bob’s computa-
tions on single and multi-core platforms. Remarkably, eSIDH uses Montgomery-friendly
primes of the form p = 4eA3eB5eCf − 1, which offer a faster field arithmetic than the
one associated to comparable SIKE primes. Comparing against a SIKEp751 sequential
instantiation of SIDH, the authors reported an acceleration factor of 1.05, 1.30 and 1.41,
when eSIDH was implemented on k = {1, 2, 3}-core processors, respectively. However, the
approach proposed in Chapter 8 does not per se provide speedups for Alice SIDH compu-
tations. Moreover, as in [48], eSIDH does not attempt to compute concurrently three-point
Montgomery ladders with large degree isogeny computations.

Contributions and organization of this chapter

The main contribution of this chapter is the proposal of a concrete, efficient and practical
strategy for a parallelized computation of the SIDH and SIKE protocols. The strategies
presented in this work strive for concurrently computing the two most prominent SIDH
primitives, namely, the evaluation/construction of large degree isogenies and the compu-
tation of right-to-left three-point Montgomery ladders. We propose efficient core load
distributions for evaluating large degree isogenies using k cores. Furthermore, we report
experimental results showing that a three-core implementation of our parallel approach
achieves an acceleration factor of 1.45 compared against a sequential implementation of
SIKE (cf. Table 9.8).

The remainder of this chapter is organized as follows. A general description of sequential
and parallel strategies for computing large smooth-degree isogenies are presented in §9.2
(an interested reader must also see §4.3). In §9.3, it is observed that the multiples of
Alice and Bob secret points, which are always required in any valid strategy for computing
isogenies, can be calculated independently and concurrently. The performance implications
of this trick are further discussed in §9.3. Estimates and experimental results are presented
in §9.5. Finally, some concluding remarks are drawn in §9.6. We recall that an interested
reader must see the Chapter 4 for further reading about SIDH and strategies.

9.2 Parallel strategies for large smooth-degree isogenies

In this section, the problem of designing parallel strategies and associated criteria to decide
when a parallel strategy is optimal are presented. We say that an strategy Ste is better
than another strategy St′e, if the cost of computing Ste is lesser than the cost of computing
St′e when executed on a k-core platform.
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In a nutshell, our approach to parallelize isogeny computations exploits two main tricks:
(i) As per Rule 7 of §4.3.1, one can make use of all of the k available cores to concurrently
compute the horizontal edges associated to any given column; (ii) As it was done in the
sequential setting in [33], one can use dynamic programming to translate the problem of
optimizing a strategy ∆e to the simpler problem of optimizing the sub-triangles Te−h and
Th, for h ∈ {1, 2, . . . , e−1}. This process must carefully consider the parallel computational
cost of the strategy.

In the remaining of this Section, we describe in detail both of these two options.

9.2.1 Exploiting the parallelism of the horizontal edges

In order to measure strategy costs the following proposition becomes useful.

Proposition 9.2.1. Let q` be the timing cost associated to the computation of a degree-`
isogeny. Let us define a set of horizontal edges for a fixed index j ∈ {0, 1, . . . , e − 2} by
Colj(St) = {[(i, j), (i, j+1)] ∈ Edges(Ste) | i ∈ [0, e−j−2]}. The timing cost of computing
all horizontal edges in Colj(Ste) using k cores is of⌈

#Colj(Ste)

k

⌉
· q`

Proof. Let us say that #Colj(Ste) = m. If k ≥ m then one can compute all m edges
at once, at an equivalent cost of one isogeny evaluation q`. Otherwise, the equivalent of
a = dmk e isogeny evaluations q` suffice for computing all the horizontal edges in column j
of strategy Ste.

Using the previous Proposition one can compute the cost of all the horizontal edges of
Stt using k cores, denoted by Ck(Ste), by applying the following Lemma.

Lemma 9.2.2. Let us define the set of horizontal edges from the column j to the column
j + 1 as in Proposition 9.2.1. The cost of all evaluations defined by Ste using k cores is
given by

e−2∑
j=0

⌈
#Colj(Ste)

k

⌉
· q`

Now the cost of evaluating Ste using k cores is given as

Ck(Ste) =

e−1∑
j=0

⌈
#Colj(Ste)

k

⌉
· q` + #V (Ste) · p`,

where V (Ste) is the set of all vertical edges in Ste, and as before p` and q` represent the
costs of computing one scalar multiplication by ` and evaluating one degree-` isogeny.
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Lemma 9.2.3. An e− 1-core platform can compute an `e isogeny at a cost of e− 1 scalar
multiplications by `, e degree-` isogeny evaluations and e degree-` isogeny constructions.

Proof. Using of the isogeny-oriented strategy described in § 4.3.2 (cf. Subfigure 4.3b), this
cost can be justified as follows. Compute and store all vertices (0, i) for i = 0 to e−1. This
operation costs e − 1 scalar multiplications by `. Now, for i = 0 to e − 2 using e − 1 − i
cores one can perform the isogeny evaluation of the per-column e− 1− i points in parallel.
Moreover, at each one of the e columns, one isogeny construction must be performed. The
last degree-` isogeny with kernel given by the point in the vertex (0, e − 1) is computed
using only one core.

9.2.2 Using Dynamic programming for finding parallel strategies

Lemma 9.2.4. [33] Given a triangle ∆e and its decomposition into ∆h and ∆e−h, the
sequential cost of traversing Ste using this particular decomposition is given as,

C1(Sthe ) = C1(Sth) + C1(Ste−h) + (e− h) · q` + h · p`.

We say that Ste is an optimal strategy if C1(Sthe ) is minimal among all Sthe for h ∈ [1, e−1].

This lemma is illustrated in Figure 4.4. Lemma 9.2.4 can be generalized in a natural
way to k cores as follows.

Lemma 9.2.5. The cost of traversing Sthe using k cores is given as,

Ck(Sthe ) = Ck(Ste−h) + Ck(Sth) +
(e− h) · q`

k
+ h · p`, (9.1)

We say that Sthe is an optimal parallel strategy if Ck(Sthe ) is minimum among all Sthe for
h ∈ [1, e− 1].

The cost above can be justified by the fact that one can include the (e − h) extra
degree-` isogeny evaluations into the computation of the horizontal edges of Ste−h. Since
the cost Ck(Sth) depends on two sets, namely, the set of all columns of Sth and the set of
all vertical edges V (Sth), a precise way to keep track of both sets must be put in place as
discussed next.

9.2.3 Constructing and Traversing parallel strategies

Let us assume that the parameters e, k, p`, q`, corresponding to the size of the tree ∆e, the
number of available cores, the cost of performing one scalar multiplication by ` and the cost
of performing one degree-` isogeny, respectively, are all given. Then Algorithms 12, 13 and
Algorithm 11, find an optimal parallel strategy for Ste by using a bottom-up approach.
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Algorithm 11 is essentially the same as Algorithm 46 in [3, Appendix C]. Algorithm 11
produces as an output, a linear vector of the split nodes included in the optimal parallel
strategy Ste. To this end, Algorithm 11 invokes Algorithm 13 at Line 6.

Algorithm 13 iteratively finds the row h ∈ [1, e − 1] that produces a minimum cost
strategy Ste composed of the two sub-strategies Ste−h and Sth (cf. Figure 4.4). For
this purpose, Algorithm 13 invokes Algorithm 12, which uses Eq. (9.1) to calculate the
computational expenses associated to the strategies Sth and Ste−h.

We stress that Algorithm 13 follows a bottom-up approach by constructing optimal
parallel strategies of size 1, 2, . . . , e − 1, in that order. To illustrate the process outlined
above consider the following toy example.

Algorithm 11 get Parallel Strategy: Obtains the optimal parallel strategy

for ∆e using k-cores

Require: e: the number of leaves, p`: Cost of the scalar multiplications by `, q`: the cost
of a degree-` isogeny evaluation, K: number of available cores)

Ensure: S: Strategy to traverse ∆e.
1: E := [[], [1]]; //Set of set of horizontal edges

2: M := [0, 1]; //Set of multiplication counts

3: S := [[], [1]]; //Set to keep the partial strategies

4: 4C := [0, p` + q`]4; //Set to keep the cost of partial strategies

5: for i ∈ [3..(e+ 1)] do
6: cost, h,Ei,muls := GMPS(C,E,M, i, p`, q`,K);

//Algorithm 13

7: Append(∼C, cost); //getting cost;

8: Append(∼E,Ei); //updating the set of sets of horizontal edges

9: Append(∼M,muls); //updating the set of Muls.

10: Append(∼S, [b] cat S[i−b] cat S[b]);//building the new strategy

11: end for
12: return S[e+ 1];

Example 4. Let us assume e = 6, p` = 1, q` = 1 and k = 2. Algorithm 11 uses the following
construction to discover an efficient parallel-strategy St6.

1. Figure 9.2a shows the initial setting of size-1 triangles.

2. Figure 9.2b shows the two size-3 strategies considered by algorithm 13 for e = 3. The
parallel cost of the left and right strategies is 4 and 5, respectively. Hence, the left
one is chosen. The output vector S is set to S = [[], [1], [1, 1]].

3. Figure 9.2c shows the three size-4 strategies considered by algorithm 13 for e = 4.
The parallel cost of the first and second strategies is of 7 units. Algorithm 13 chooses
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Algorithm 12 Ev counts: Computes Eq.(9.1) for a given partition Sthe

Require: H0 and H1 are sets of horizontal edges counts, k is the number of cores available
Ensure: He: The new set of horizontal edges generated by H0 and H1. evs: The number

of evaluations required to compute the set of edges He when k cores are available.
1: if H0 is empty then //Merging both strategies

2: He := [1] cat [i : i ∈ H1];
3: else
4: He := [i+ 1 : i ∈ H0] cat [1] cat H1;
5: end if
6: evs := 0;
7: if k = 1 then //getting the cost of He when k cores used

8: evs :=
∑
e∈He

e;

9: else
10: for i ∈ He do
11: if i ≤ k then //Using Lemma 9.2.5

12: evs +:= 1;
13: else
14: evs +:= di/ke;
15: end if
16: end for
17: end if
18: return evs,He;
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Algorithm 13 get Min Parallel Strat: Finds an optimal Sthe splitting

Require: C: Set of costs, E: Set of sets of horizontal edges, V : Set of Multiplication
operations, e: number of leaves , p`: Cost of one scalar multiplication by `, q`: Cost of
one evaluation by a degree-` isogeny, k: number of available cores.

Ensure: minC: The cost of the minimum strategy for e leaves using k cores. minEn: The
new set of edges for the minimum strategy for e leaves using k cores. minM : The
multiplication counts for the minimum strategy for e leaves using k cores.

1: minC := e2∗(p`+q`); //just an upper bound

2: for b := 1 to e− 1 do
3: ev counts temp, St temp := Ev Counts(E[e − b], E[b], k);

//Algorithm 12

4: muls temp := (V [e− b] + V [b] + b); //number of multiplications on St temp
5: cost temp := (ev counts temp ∗ q`) + (muls temp ∗ p`);
6: if cost temp < minC then
7: split := b;
8: minC := cost temp;
9: minEn := E temp;

10: minV := muls temp;
11: end if
12: end for;
13: return minC, split,minEn,minV ;
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Figure 9.2: A toy example of a parallel optimal-strategy search using dynamic programming
and the parameter set e = 5, p` = 1, q` = 1 and k = 2. 11
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Algorithm 14 Non-recursive walking across a Strategy Ste

Require: A strategy Ste obtained from algorithm 11, Elliptic Curve E0, Point R ∈ E0 of
order `e.

Ensure: Elliptic Curve Ee such that there is a degree-`e-isogeny between E0 and Ee.
1: idx := 0;
2: i := 1;
3: points := [[R, 0]];
4: for row := 0 to e− 1 do
5: while idx < n− row do
6: Rt := [`St[i]]]Rt;
7: idx +:= St[i];
8: Push(points, [Rt, idx]);
9: i +:= 1;

10: end while
11: Compute φrow and Erow+1 using Erow and Rt.
12: Prune(points);
13: for j := 1 to #points do //PARALLEL FOR

14: points[j, 1] := φrow(points[j, 1]);
15: end for
16: [Rt, idx] := Pop(points);
17: end for
18: Compute φe−1 and Ee using Ee−1 and Rt.
19: return Ee;

121



CHAPTER 9. PARALLEL STRATEGIES FOR SIDH

the first one because in Line 6 of this procedure there is a strict less condition. If one
relaxes this condition to a strict less or equal comparison, then the second strategy
would be used. Now the output vector is set to: S = [[], [1], [1, 1], [1, 1, 1]].

4. Figure 9.2d shows the four different size-5 strategies for n = 5. In this case, the
first three strategies cost 10 units. Again, Algorithm 13 chooses the first one. Now,
the output vector is set to S = [[], [1], [1, 1], [1, 1, 1], [1, 1, 1, 1]] and the optimal par-
allel strategy output by Algorithm 13 is completely defined by the linearized vector,
St5 = [1, 1, 1, 1].

5. Figure 9.2e shows the 5 different size-6 strategies for n = 6. In this case, the third
and four strategies cost 13 units. Again, Algorithm 13 chooses the first one of both.
Now, the output vector is set to S = [[], [1], [1, 1], [1, 1, 1], [1, 1, 1, 1], [3, 1, 1, 1, 1]] and
the optimal parallel strategy output by Algorithm 13 is completely defined by the
linearized vector, St5 = [1, 1, 1, 1].

6. The vector St6 = [3, 1, 1, 1, 1] as well as the base curve E and the order-`e point
R ∈ E(Fq), are the input parameter required by Algorithm 14 for computing a
degree-`e isogeny.

9.3 Parallelizing the computation of the multiples of the
SIDH secret points

In this section, an interesting property of the Montgomery ladders is exploited. This prop-
erty allows us to extract more parallelism opportunities from the SIDH main computations.
For the sake of simplicity, optimization opportunities for computing Alice’s degree-4eA iso-
genies are mostly discussed. Details of Bob’s degree-3eB isogeny computations are given in
Appendix 9.4.

Let us recall that in order to compute a scalar multiplication of the form P + [m]Q,
the three-point Montgomery ladder used in SIDH has a per-step cost of 1 xADD and 1
xDBL [40]. The cost of this ladder (cf. Remark 21), is essentially of two xDBL operations
per step, which implies that the computation of Alice’s secret point RA costs about 4eA
xDBL operations.

In §4.3, it was discussed that starting from the root point RA of order-4eA , any strategy
Ste must compute the multiples [4i]RA belonging to its first column, for i = 1, . . . , e − 1.
Hence, a naive iterative approach for computing the point multiple [4i]RA, would compute
first the point RA. Thereafter, from RA the desired multiple can be obtained by performing
2i doubling operations. The computational cost of such approach is of about,

4eA xDBL + 2i xDBL = (4eA + 2i) xDBL operations.
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Note that this approach also finds as by-products, the multiples [4j ]RA for j = 1, . . . , i−1.
However using the approach discussed in [86] (see also [40]), there exists a more efficient
strategy for computing any multiple of RA.

Proposition 9.3.1. Let PA, QA,mA, RA be the public and private keys of Alice where
RA = PA + [mA]QA, and Order(PA)= Order(QA)= Order(RA) = 4eA . Then, for i =
1, . . . , eA − 1, the computation of the point [4i]RA costs 2(eA − i) xDBL operations.

Proof. Since PA and QA are public parameters, one can pre-compute all the multiples
[4i]PA and [4i]QA for i = 1, . . . , eA − 1. From a direct manipulation one can write,

[4i]RA = [4i]PA + [mA]([4i]QA).

Observing that the point [4i]QA has order 4eA−i, then mA can be replaced by m̄A where
m̄A = mA mod 4eA−i, which is a 2(eA − i)-bit long integer and compute

[4i]RA = [4i]PA + [m̄A][4i]QA,

using the fixed-point three-point Montgomery ladder of [86, 40], at a cost of about 1 xADD
(≈ 1xDBL) per bit.4

Proposition 9.3.2. Let PA, QA be the public keys of Alice with Order(PA)= Order(QA)
= 4eA . Let φB(PA) and φB(QA) be the public points that Alice receives from Bob, and
let mA be Alice’s secret scalar. Then, for i = 1, . . . , eA − 1, the computation of the point
[4i]φB(RA) costs (4eA − 2i) xDBL operations.

Proof. From a direct manipulation one can write,

[4i]φB(RA) =[4i](φB(PA) + [mA]φB(QA))

=[4i]φB(PA) + [mA]([4i]φB(QA)).

Similar to Proposition 9.3.1, the multiple [4i]φB(QA) has order 4eA−i. Then, one can replace
mA by m̄A, where m̄A = mA mod 4eA−i which has 2(eA− i) bits. One can compute (PA+
[m̄A]QA) using a three-point Montgomery ladder at a cost of 4(eA − i) xDBL operations.
As φB(PA) and φB(QA) both depend on Bob’s secret key, it is not possible to pre-compute
off-line anything relevant. Thus, one needs to compute [4i](φB(PA) + [mA]φB(QA)), which
can be done by repeatedly doubling φB(PA)+[m̄A]φB(QA). This has a computational cost
of 2i doublings. Adding this to the cost of the three-point ladder gives us the desired result
of (4(eA − i) + 2i) = (4eA − 2i) xDBL operations.

Propositions 9.3.1 and 9.3.2, state that the multiples [4i]RA and [4i]φB(RA) for i ∈
{1, . . . , eA−1}, can be computed at a cheaper cost than the one associated to the calculation

4A detailed low level description of this computation for both, Alice and Bob, is given in §9.4.1.
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of the points RA and φB(RA), respectively. As a way of illustration, in Figure 9.3, one
core can be devoted to compute RA. A second core can compute concurrently the multiple
[4e−b]RA, requiring 2b less xDBL operations than the calculation performed by the first
core.

Remark 25. Using an e-core architecture, one can concurrently compute all multiples [4i]RA
or [4i]φB(RA), for i = 0, 1, . . . , e − 1, at an equivalent computational cost of 2eA and 4eA
xDBL operations, respectively.

Let us assume that one disposes of a k-core processing unit. Since the computation
of any of the multiples of the point RA is more economical than the computation of RA,
it just makes sense to devote one core to the relatively expensive task of computing RA,
while the other k−1 cores can team up to concurrently compute the smaller lower triangle
shown in Figure 9.3, which is done by means of a parallel strategy Stb. Note that to be
able to compute such triangle, the multiple [4e−b]RA must be computed first. For efficiency
reasons all the costs associated to these tasks, must be carefully balanced as formalized in
the following proposition.

Proposition 9.3.3. Let PA, QA,m,RA be the public and private keys of Alice where
RA = PA + [m]QA, and let k be the number of cores available to compute a 4eA-isogeny.
Let p4 = 2 xDBL be the cost of computing a point multiplication-by-4, and r4 be the
cost of a degree-4 isogeny construction. Then, one can compute a 4b-isogeny by means of
a parallel strategy Stb that uses k − 1 cores, at the same time that one core is devoted to
compute RA (resp. φB(RA)), where b is given as,

b = max
i:=1,2,...,

eA−1

2

{i | Ck−1(Sti) + i · p4 + i · r4 ≤ eAp4} (9.2)

For the key generation and the key agreement phases.

Proof. Let Ck−1(Sti) denote the cost of a parallel strategy Sti using k− 1 cores (cf. §9.2).
In the case of the key generation phase, the result of Proposition 9.3.1 states that the
computation of RA and [4e−i]RA require eA · p4 and i · p4 operations, respectively. Then,
the cost of computing a 4b-isogeny using k−1 cores is approximately the same of computing
RA with a single core, for the maximum value i such that the inequality of Eq. (9.2) still
holds.

In the case of the key agreement phase, the result of Proposition 9.3.2 states that
computing φB(RA) and [4e−i]φB(RA) require 2eA·p4 and (ea+i)·p4 operations, respectively.
Hence, once again Eq. (9.2) gives the approximately crossover point where computing RA
costs about the same of calculating a 4b-isogeny.

Figure 9.3 illustrates how the result of Proposition 9.3.3 can be used to compute a
degree-4eA isogeny using a core-k processing unit. One core is exclusively dedicated to the
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Figure 9.3: Representation of a k-core load distribution for the parallel computation of the
strategy SteA as stated in Proposition 9.3.3. The left-most blue dash-rectangle computa-
tions are performed in parallel during the first phase of this isogeny evaluation.
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Figure 9.4: Parallel evaluation of an isogeny if the hardware resources are plentiful enough.

computation of the point RA. At the same time, the other k − 1 cores compute the lower
subtriangle shown in Figure 9.3, using a parallel strategy Stb. The size of this subtriangle
has been chosen according to Proposition 9.3.3 so that both of these two computations are
completed at roughly the same time. After that, φ(RA), a degree-4b isogeny evaluation
of the point RA is sequentially computed as the single-core step shown in Figure 9.3.
Thereafter, the upper subtriangle of Figure 9.3 can be computed using a k-core parallel
strategy Ste−b. This completes the parallel evaluation of a strategy SteA using k cores. It
is worth mentioning that the multiples of the point [4i]RA, for i = 1, . . . , e − b − 1, are
completely skipped in this computation. See §9.4.1 for a discussion of practical low-level
aspects associated to the k-core parallel implementation of Figure 9.3.

From Proposition 25, if e cores are available for the computation of SIDH, then one can
compute [4i]R for i = 0 to e− 1 in parallel at the same cost of computing one three-point-
ladder of e log2(`)-bits. Then all vertices (0, i) for i = 0 to e − 1 of a given strategy can
be computed at once. Let p`, q` and r` be the cost of a multiplication-by-`, and the cost
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Figure 9.5: Diagram showing the flow of the threads in our parallel eSIDH proposal for
Alice. This flow is only for the first b iterations, afterwards the flow is similar but the
thread computing RA is then joined to the threads computing point evaluations.

of a degree-` isogeny evaluation and construction, respectively. Now if r` < p` then the
core that computes [`e−1]R can also compute the first isogeny construction and from then
on, this core can be dedicated to compute all remaining codomain curves. Since r` < q`,
then, r` is dominated by q` and its associated cost is dominated by the computation of the
codomain curve and evaluations in parallel. The assumptions r` < q` and r` < p` are valid
for ` = 3, 45

In summary, if e cores are available for the computation of SIDH, then the computation
of an `e isogeny costs e− 1 `-isogeny evaluations plus one three-point ladder as illustrated
in Figure 9.4.

5This assumption is in general true, but for ` ≥ 5 there is an extra cost associated to the kernel points
generation because the corresponding kernel subgroup has more than one point.
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9.4 Parallelizing the computation of the multiples of the
point R0 for Bob

In the following, Propositions 9.3.1 and 9.3.2 are generalized to consider multiplications by
` different than 4.

Proposition 9.4.1. Let P,Q,R be points on an elliptic curve E, m, ` and e be integers
such that Order(P ) = Order(Q) = Order(R) = `e, R = P + [m]Q, and m < `e. Then
computing [`i]R for i = 0 to e − 1, costs about (2e − i) log2(`) xDBL. This implies that
computing the multiple [`i]R for i = 1 to e−1, costs less than the computation of the point
R. If points are known in advance, computing R = P + [m]Q costs about (2e − i) log2(`)
xDBL

Proof. The cost of computing R is of about 2e log2(`) xDBL because m is at most an
(e log2(`))-bit long integer. As in Proposition 9.3.2, one has

[`i]R = [`i](P + [m mod `e−i]Q).

Here, m mod `e−i has at most log2(`e−i) bits. Then computing P + [m mod `e−i]Q costs
2(e − i) log2(`) xDBL. By adding i scalar multiplications by ` at a cost of i log2(`), the
claimed result is obtained. Now if P and Q are known in advance, one can mimic portions
of the proof of Proposition 9.3.1. More precisely, the three-point-ladder costs one xDBL
per bit. Now changing this cost to the previous steps, we end with log2(`e−i)xDBL for the
three-point-ladder computing ([`i]P ) + [m mod `e−i]([`i]Q)). Notice that as P and Q are
know in advance, in this case the points [`i]P and [`i]Q can be precomputed off-line giving
us the desired cost.

Remark 26. In fact the above result is an upper bound because for scalar multiplications
by ` = 3, 4, 5, there exist formulas with a cost less than 1.5 log2(`) xDBL. Moreover,
depending on the specific setting, one can pre-compute off-line point multiples that may
lead to a further reduction of the computational cost given in Proposition 9.3.1.

Now the Proposition 9.3.3 is extended to include isogenies of degree different than 4.

Proposition 9.4.2. Let PB, QB,mB, RB be the public and private keys of Bob where
RB = PB + [mB]QB, and let k be the number of cores available to compute a deB -isogeny
where d is a prime number different than 2. Let pd be the cost of computing a point
multiplication-by-d, qd be the cost of a degree-d isogeny evaluation and p2 the cost of
computing a multiplication-by-2. Then, one can compute a db-isogeny by means of a
parallel strategy Stb that uses k − 1 cores, at the same time that one core is devoted to
compute RB (or φA(RB)), where b is given as,

b = max
i:=1,2,...,

eB−1

3

{i | Ck−1(Sti) + log2(di) · p2

+ i · qd ≤ log2(dnB )p2}.
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For the Key Generation phase; and

b = max
i:=1,2,...,

eB−1

2

{i | Ck−1(Sti) + 2 log2(di) · p2

+ (e− i) · pd + i · qd ≤ 2 · log2(dnB )p2}.

For the Key Agreement phase.

9.4.1 Low-level implementation notes

Several low-level design aspects and implementation notes are described next.

Synchronization effort for computing Figure 9.3 in parallel

In practice, the implementation of Figure 9.3 requires a delicate synchronization effort due
to the different tasks that each core must execute.

Figure 9.5 depicts the computational flow of k threads concurrently evaluating the
isogeny SteA shown in Figure 9.3. One core is assigned to the computation of the point
RA. Meanwhile, the rest of the k−1 cores evaluate the lower subtriangle Stb of Figure 9.3.
At each iteration, one column of the subtriangle Stb of Figure 9.3 is processed. After
performing b iterations, the image point φ(RA) is sequentially computed. Then, a similar
flow is performed but this time using all the k available cores. Barriers mechanisms are
used abundantly to ensure the correct synchronization of the k threads.

Precomputation and memory requirements

In the following, low-level details of the Montgomery ladders computations associated to
the key generation points RA and [4eA−b]RA using pre-computed tables are given.

Introduced in [86], the coefficients µi, for i = 1, . . . , n are the most efficient pre-
computation technique reported in the literature for n-step Montgomery ladders. If one
wants to compute the scalar multiplication R = kP, these coefficients are defined as,

µi =
xi + 1

xi − 1
, where xi = x([2i]P ) (9.3)

In the context of SIDH, since the x-coordinate of the SIDH points are defined over Fp,
so are the coefficients µi. Hence, a total of 2eA and log2 3eB field elements for Alice and
Bob, must be pre-computed and stored.

Following the approach reported in [86], a Montgomery Ladder step can be compute
at cost of (3M + 2S) field operations.6 Hence, the computational cost of calculating the
secret points RA and RB is of 2eA(3M+2S) and log2 3 · eA(3M+2S), respectively.

6Here M and S stand for a field multiplication and a field squaring, respectively.
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Alice Bob

Memory 376 field elements (69KB)
383 + log2(3b)
field elements (
about 82KB)

Savings 372(5M + 2S) 379(5M + 2S)

Table 9.1: Precomputation memory costs (in kilo bytes) and field operation savings when
using the SIKE prime p751. M stands for a field multiplication and S for a field squaring.

The point [4eA−b]RA (cf. propositions 9.3.2-9.3.3) can be computed as

[4eA−b]RA = [4eA−b](PA + [mA mod 4b]QA)

Since the µi values have been already stored for the computation of RA, one can compute
PA + [mA mod 4b]QA re-using those coefficients. Moreover, since PA and QA are public
parameters, one can also compute [4eA−b]RA as

[4eA−b]RA = [4eA−b]PA + [mA mod 4b]([4eA−b]QA) (9.4)

Thus, for an efficient computation of the Montgomery ladder associated to Equation 9.4,
one re-uses the coefficients µi+eA−b, which have been already stored, the pre-computed
points [4eA−b]PA and [4eA−b](PA−QA) and the scalarmA mod 4b. This approach only adds
two XZ-Proyective points to the pre-computed table (equivalent to four field elements).

The derivation described above, is completely analogous for computing RB, Bob’s secret
point in the key generation phase. However, Bob’s coefficients µi for the computation of
the multiple [3eB−b]RB cannot be reused, due to the fact that

{[2i]([3b3 ]Q3)|i∈[1..db log2(3)e]}6⊂{[2i]Q3|i∈[1..de3 log2(3)e]}

Hence, one needs to store db log2(3)e extra µ-coefficients to compute a three-point-ladder
as in Eq. (9.4).

Table 9.1 reports the memory expenses associated to the pre-computation efforts for
Alice and Bob discussed here, along with the computational savings in term of field oper-
ations associated to them.

9.5 Cost estimates and experimental results

In this section we present concrete cost estimates and experimental results associated to
the execution of SIDH and SIKE when they are instantiated with the SIKE prime p751.
We also include in our experiments the Extended-SIDH protocol presented in Chapter 8
instantiated with the eSIDH prime p765.
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We begin by giving cost estimates for performing the key agreement phase of SIDH
using the parallel tricks discussed in §§ 9.2-9.3. Then, we present experimental results for
performing the key agreement phase of SIDH and the three main phases of SIKE, namely,
Key generation, Encapsulation and Decapsulation.

We benchmarked our software on an Intel(R) Core(TM) i7-6700K processor at 4.00GHz
supporting the Skylake micro-architecture. To guarantee the reproducibility of our mea-
surements, the Intel Hyper-Threading and Intel Turbo Boost technologies were disabled.
We used the OpenMP v4.5 API for parallel tasks and POSIX threads. Our source code
was compiled using Clang v6.0 with the -O3 optimization flag and using the options
-mbmi2 -madx -fwrapv -fomit-frame-pointer -fopenmp -pthread. Our software li-
brary is freely available from,

https://github.com/dcervantesv/eSIDH

9.5.1 Cost estimates

The cost estimates and experimental results presented in this section focus on two case
studies,

• SIKE Prime p751 = 41863239 − 1.

• e4 = 186,

• p4 = 6186 · 2,

• q4 = 8407,

• r4 = 3691,

• Fp2751 inversion = 317655

• e3 := 239

• p3 := 11999

• q3 := 5944

• r3 := 5720

Where r4 is the cost of constructing a degree-4 isogenous curve. All the costs above are
given in Skylake clock cycles.

Tables 9.2, 9.3, 9.4 and 9.5 show our cost estimates for Alice’s and Bob’s SIDH key
Generation, and Alice’s and Bob’s SIDH key agreement phases using the SIKE prime p751,
respectively. The estimates reported in those tables were organized as follows. The first
column gives the number of cores used by the parallel strategy. The second and third
columns show the equivalent timing cost associated to the computation of degree-4 isogeny
evaluations when using a single and k cores, respectively. The unit of measure for these
costs are given in terms of equivalent isogeny evaluations. The fourth column indicates
the number of scalar multiplications performed by both, the single-core and the multi-
core processors. The fifth column reports the value b as defined in Propositions 9.3.3 and
9.4.2. This parameter indicates the height of the lower subtriangle in Figure 9.3. The sixth
column reports the expected computational cost of Alice’s (resp. Bob’s) key generation
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Evaluations
Cores Serial Parallel Muls b Cost AF

1 784 —- 636 0 22.45 1
2 929 531 490 32 15.13 1.48
3 1128 447 423 38 12.39 1.81
4 1266 390 394 41 11.27 1.99
5 1395 356 373 43 10.75 2.08
8 1855 313 325 47 9.84 2.28
10 1988 283 317 48 9.51 2.35

61 9519 247 184 62 7.69 2.91

122 9519 184 184 62 7.18 3.12

185 9519 184 184 62 7.18 3.12

Table 9.2: Estimate costs (in millions of clock cycles) of Alice’s Key Generation SIDH
phase for the prime p751. The AF column is the quotient of the Single core cost and the
parallel cost using k cores. The parameter b is given as defined in Proposition 9.3.3

(resp. key agreement) phase (given in millions of Skylake clock cycles), including the
expenses associated to walking across St186 (resp. St239) in both phases, plus the cost of
computing the x-only-coordinate public points (one quadratic field inversion) in the key
generation phase, the expenses of obtaining in the Key Agreement phase the Montgomery
constant for the curve EA (EB) and the j-Invariant of the curve EAB(EBA) (essentially
two field inversions). The cost of evaluating φA(RB)(φB(RA)) in Alice’s (Bob’s) Key
Generation (by computing 3eA(eB) 4-(3-)isogeny evaluations). The expenses of computing
186 degree-4 (resp. 239 degree-3 ) isogenies in both Alice’s phases (resp. Bob’s phases).
Finally, the seventh column reports the Acceleration Factor (AF) achieved by the parallel
strategy compared against a sequential single-core implementation.

The estimates given in Tables 9.2, 9.3, 9.4 and 9.5 theoretically predict that an accel-
eration factor of 2.02 is achievable provided that a 10-core processing unit is available to
compute a SIKE prime p751 instantiation of SIDH. Also, it is observed that the maximum
AF for Alice in both phases is achieved when 122 cores are available. For Bob’s key gener-
ation and key agreement phases, the maximum parallelism is achieved when 167 cores and
179 cores are available, respectively. By considering those core numbers we can observe
that if there are 179 cores availables to compute SIDH protocol, the maximum AF that
one can achieve using the approach discussed here is 2.64.

9.5.2 Experimental results

Table 9.6 presents a comparison of estimated versus experimental costs for the computation
of the key agreement phase of SIDH, instantiated with the prime p751. The data in this
table was organized as follows. The first column reports the number k of cores. The second
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Evaluations
Cores Serial Parallel Muls b Cost AF

1 1226 —- 755 0 24.63 1
2 1529 863 581 37 17.03 1.44
3 1812 701 521 43 14.24 1.73
4 2085 621 484 46 13.10 1.87
6 2638 542 434 50 12.07 2.04
8 2944 474 413 52 11.44 2.15
10 3187 427 403 54 11.04 2.22

57 16881 417 237 67 9.12 2.69

71 16584 358 237 70 8.77 2.80

167 16584 237 237 70 8.05 3.05

238 16584 237 237 70 8.05 3.05

Table 9.3: Estimate costs (in millions of clock cycles) of Bob’s Key Generation SIDH phase
for the prime p751. The AF column is the quotient of the Single core cost and the parallel
cost using k cores. The parameter b is given as defined in Proposition 9.4.2

Evaluations
Cores Serial Parallel Muls b Cost AF

1 784 —- 636 0 20.06 1
2 929 531 490 32 14.88 1.34
3 1128 447 423 38 13.43 1.49
4 1266 390 394 41 12.67 1.58
6 1565 339 353 45 11.80 1.69
8 1855 313 325 47 11.29 1.77
10 1988 283 317 48 10.97 1.82

28 4243 244 256 55 10.02 2.00

61 9519 247 184 62 9.27 2.16

122 9519 184 184 62 8.76 2.29

185 9519 184 184 62 8.76 2.29

Table 9.4: Estimate costs (in millions of clock cycles) of Alice’s Key Agreement SIDH phase
for the prime p751. The AF column is the quotient of the Single core cost and the parallel
cost using k cores. The parameter b is given as defined in Proposition 9.3.3
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Evaluations
Cores Serial Parallel Muls b Cost AF

1 1226 —- 755 0 22.72 1
2 1518 847 590 31 17.42 1.30
3 1864 714 519 36 15.85 1.43
4 2062 612 492 39 14.95 1.51
6 2675 548 436 42 13.95 1.62
8 3003 481 414 44 13.31 1.70
10 3259 434 404 45 12.94 1.75

44 11568 385 285 56 11.33 2.00

56 16032 408 248 58 11.05 2.05

60 17880 415 237 58 10.98 2.06

179 17880 237 237 58 9.92 2.28

238 17880 237 237 58 9.92 2.28

Table 9.5: Estimate costs (in millions of clock cycles) of Bob’s Key Agreement SIDH phase
for the prime p751. The AF column is the quotient of the Single core cost and the parallel
cost using k cores. The parameter b is given as defined in Proposition 9.4.2

# of cores Parallel Strategy including R Serial Strategy
1 19.55 19.55 19.55
2 17.02 15.16 17.25
3 15.7 13.86 16.55

Table 9.6: Estimated Vs. experimental costs for the computation of the key agreement
phase of SIDH instantiated with the prime p751. All estimates and experimental results
are given in 106 clock cycles.
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and third columns report the estimated and experimental SIDH key agreement costs using
parallel strategies, with and without the computation of multiples of the secret point R in
parallel, respectively. The last column reports the estimated costs of a parallelized version
of SIDH using the sequential optimal strategies of [33].

The relatively complex synchronization of the core loads, has so far prevented us to
experimentally achieve the expected theoretical speedups for k = 2, 3. Nonetheless, our ex-
periments show that the parallel strategies reported in Appendix A.2 yields an acceleration
factor of 1.14, and 1.24 when using two and three cores respectively when compared with a
single core implementation. Including the trick of computing the multiples of R in parallel,
provides an acceleration factor of 1.28 and 1.41 when using two and three cores respec-
tively, again when compared with a single core implementation. Our method achieves an
acceleration factor of 1.13 and 1.19 when compared with a parallel version of SIDH without
any of the improvements included in this thesis using two and three cores respectively.

Using the parallelization techniques discussed in §§9.2-9.3, we also implemented all
three phases of the SIKE protocol instantiated with the SIKE prime p751 [3] and the eSIDH
prime p765 Chapter 8. In all of our comparisons, we use a sequential SIDH implementation
instantiated with the prime p751 as a baseline. As reported in Table 9.7, we implemented
all four phases of SIDH using the parallelization techniques discussed in §§9.2-9.3. For a
three-core implementation of eSIDH (Chapter 8), an acceleration factor of about 1.56 was
observed. Also in Table 9.7, one can observe that our three-core implementation of SIDH
for the prime p751, which included the parallel computation of the points RA, RB, φB(RA)
and φA(RB) achieved an acceleration factor of 1.46.

In all of our comparisons, we use a sequential SIKE implementation instantiated with
the prime p751 as a baseline. Table 9.8 reports that a three-core implementation of SIKE
instantiated with the prime p765 achieves an acceleration factor of 1.56. Similarly, an accel-
eration factor of 1.45 is achieved when our approach for a three-core SIKE implementation
using the prime p751 is chosen.

9.6 Conclusion

In this work, we presented a framework that permits an acceleration of the execution of the
SIDH and SIKE protocols when they are executed on multi-core platforms. Our approach
combines the concurrent computation of degree-`e isogenies and three-point Montgomery
ladders. Our experiments shows that compared against their sequential counterparts, our
proposed SIDH and SIKE parallel variants achieve important acceleration factors.

It appears that there exist several other parallelization opportunities that were not
considered in this work. For example, we did not consider the design decision of reserving
k − 1 cores for the computation of the vertices (0, i) of the subtriangle ∆b in Figure 9.3.
One can then compute in parallel the intermediate points of the strategy associated to ∆b,
which would produce a reduction in its computational cost. Since this approach appears
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p751 p765

Phase
Number of cores Number of cores

1 2 3 1 2 3

Alice KeyGen 23.59 16.73 15.26 22.27 15.93 14.80
Bob KeyGen 26.74 18.97 17.55 24.34 17.76 15.79
Alice KeyAg 19.37 15.04 13.91 18.21 14.30 13.07
Bob KeyAg 22.76 18.15 16.62 23.24 17.16 15.94

Total 92.46 68.89 63.34 88.05 65.15 59.06

Table 9.7: SIDH experimental timings for a SIKE prime p751 and an eSIDH prime p765

instantiation. All timings are given in 106 clock cycles measured on an Intel Skylake
proccessor at 4.0 GHz.

p751 p765

Phase
Number of cores Number of cores

1 2 3 1 2 3

KeyGen 26.71 19.10 17.62 24.78 17.71 15.93
Encaps 43.01 31.96 29.86 40.43 29.95 27.64
Decaps 46.34 35.05 32.34 45.58 32.92 30.79

Total 116.06 86.11 79.82 110.79 80.58 74.36

Table 9.8: SIKE experimental timings for a SIKE prime p751 and an eSIDH prime p765

instantiation. All timings are given in 106 clock cycles measured on an Intel Skylake
proccessor at 4.0 GHz.
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to be a non-trivial design task, we leave this option as a future work.
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Chapter 10

Summary and conclusions

“We are nothing more than the sum of our memories and experiences”

Michael Scott, The Sorceress

This document was intended to show how isogenies can be used in public-key cryp-
tography. There are other uses of isogenies in cryptography like point counting [139], but
our principal goal was to improve the performance of Elliptic curves protocols and isogeny
based ones. We also study the hard problem associated with the SIDH protocol and provide
a concrete analysis of the used parameters.

We presented a complete taxonomy of Binary elliptic curves over F4 classifying it into
four classes, providing class three with an efficiently computable endomorphism. This
endomorphism allows our curve to compete with the current state-of-the-art curves in
performance but offering more security. Also, this curve can use the well know τ -NAF
scalar multiplication of Koblitz curves over F2.

We present an analysis on how to attack SIDH protocol using the Van Oorschot-Wiener
golden collision search. Such analysis derives a reduction of the primes used, that is, the
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assumed security was overestimated. This reduction in parameters implies a direct speed-
up to the protocol because isogeny computation and private key generation depend on the
prime bit-size. We study how to improve the isogeny computation of isogenies of degree
d > 3 using twisted Edwards curves. We specialize the case for d = 5, 7 and in general
for integers of the form d = 8k + q. Furthermore, we also study how to take advantage
of parallel computing to reduce SIDH latency. We present an algorithm able to compute
optimal parallel strategies for SIDH taking the benefit of parallel computing. This allows
us to present another parallelism choice for SIDH, our eSIDH, which use isogenies of degree
three and five for Bob’s side. Our eSIDH can be seen as a particular case of a strategy,
but the inclusion of two primes for Bob allows a new way to parallelize the private key
computation giving Bob’s computations a speed up. As a novel inclusion, we discovered
that we could also compute multiples of the private key, used in isogeny computation,
in parallel. Both private key computation and strategies can be mixed deriving into a
powerful strategy.

As conclusión of this thesis we have the following statements

• Scalar multiplication can be improved on a particular set of Koblitz curves over F4

making those curves competitive when compared with state-of-the-art curves.

• At the moment of this thesis, the SIDH protocol classical security is well defined
using the Van-Oorschot -Wiener attack to solve the CSSI problem by considering the
storage limits to make an attack feasible.

• SIDH protocol can be benefit from other programming paradigms such as parallel
computing to improve the performance of the protocol by taking advantage of the
architecture and parallel algorithms (such as the ones using in parallel strategy con-
structions).

• SIDH protocol can be modified to take advantage of the hardware and parallel algo-
rithms to improve the performance. As evidence, we present in this thesis the eSIDH
protocol.

• There are other isogeny-based protocols that can be secured in terms of implemen-
tation like our proposal for CSIDH implementation.

10.1 Future work

Despite we try to cover different aspects of isogeny-based protocols, as there is a new field
in cryptography there are new isogeny-based protocols that can be improved using our
algorithms and other problems that for limitations on the scope of this thesis can not be
covered. In the following, we list some points that can be cover in the future as an extension
of this thesis.
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• To search for efficient isogenies for Koblitz curves over other extensions like F8 or
F16.

• To implement and compare the curves in normal form. As a recall, those curves have
the benefit of faster addition formulas but represent the points using 4 coordinates
which could derive in a slow performance in implementation.

• In this thesis, we present two tricks to improve both (but separate) Alice and Bob each
one taking benefit of parallel computing in different ways, but the trick associated
with Alice is independent to the degree of Alice´s isogenies thus it could be applied
in both Bob phases in eSIDH. We left as a future work the study of the performance
of merging both algorithms and the possible implementation of it.

10.2 Publications

As a part of this thesis we produce the following papers:

• Thomaz Oliveira, Julio López, Daniel Cervantes-Vázquez, Francisco Rodŕıguez-Henŕıquez,Koblitz
Curves over Quadratic Fields. J. Cryptology 32(3), p867-894 (2019).[85]

• Gora Adj, Daniel Cervantes-Vázquez, Jesús-Javier Chi-Domı́nguez, Alfred Menezes,
Francisco Rodŕıguez-Henŕıquez, On the Cost of Computing Isogenies Between Super-
singular Elliptic Curves. SAC 2018, p322-343. [1]

• Daniel Cervantes-Vázquez, Mathilde Chenu, Jesús-Javier Chi-Domı́nguez, Luca De
Feo, Francisco Rodŕıguez-Henŕıquez, Benjamin Smith:,Stronger and Faster Side-Channel
Protections for CSIDH. CoRR abs/1907.08704 (2019). [15]

• Daniel Cervantes-Vázquez, Eduardo Ochoa-Jiménez, Francisco Rodŕıguez-Henŕıquez.
Parallel strategies for SIDH: Towards computing SIDH twice as fast. IEEE Transac-
tions on Computers (To be published)

• Daniel Cervantes-Vázquez, Eduardo Ochoa-Jiménez, Francisco Rodŕıguez-Henŕıquez.eSIDH:
the revenge of the SIDH. IET Information Security (To be published)
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Node split vectors for the parallel

strategies

We report several parallel strategies generated using the algorithms presented in § 9.2.3.

A.1 Strategies for the SIKE prime p434

• 2 cores [ 39, 21, 18, 10, 8, 4, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1,

1, 1, 1, 3, 3, 1, 1, 1, 1, 1, 1, 1, 8, 3, 3, 1, 1, 1, 1, 1, 1, 1, 3, 2,

1, 1, 1, 1, 1, 8, 5, 3, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 1, 1,

1, 13, 8, 8, 3, 3, 1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 3, 2, 1, 1,

1, 1, 1, 5, 3, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1 ]

• 9 cores [ 10, 10, 10, 10, 10, 10, 10, 10, 10, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]

• 55 cores [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,



APPENDIX A. NODE SPLIT VECTORS FOR THE PARALLEL STRATEGIES

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]

The following strategies include the parallel computation of the multiples of RA:

• 2 cores [ 86, 10, 5, 3, 2, 1, 1, 1, 1, 2, 1, 1, 1, 5, 2, 1, 1, 1, 2, 1,

1, 1, 28, 19, 13, 8, 8, 3, 3, 1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1,

3, 2, 1, 1, 1, 1, 1, 5, 3, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 8, 4, 3, 1, 1,

1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 8, 8, 4, 3, 2, 1, 1, 1, 1, 1, 1,

1, 1, 3, 2, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1 ]

• 20 cores [ 74, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 21, 14, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]

A.2 Strategies for the SIKE prime p751

• 2 cores [57, 42, 28, 21, 12, 8, 8, 3, 3, 1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1,

1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 4, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 8, 5, 3,

2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 8, 8, 4, 3, 2, 1, 1,

1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 14, 8, 8, 4,

3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1,

6, 3, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 18, 13, 8, 8, 3, 3, 1, 1, 1, 1, 1,

1, 1, 3, 2, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 5, 3, 2, 1, 1, 1, 1, 1,

2, 1, 1, 1, 8, 3, 3, 1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1]

• 9 cores[ 20, 18, 18, 18, 14, 10, 10, 10, 10, 10, 10, 10, 10, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]

• 94 cores [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
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1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]

The following strategies include the parallel computation of the multiples of RA:

• 2 cores [ 152, 16, 9, 4, 2, 1, 1, 1, 2, 1, 1, 4, 2, 1, 1, 1, 2, 1, 1, 7,

4, 2, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 1, 1, 44, 39, 21, 18, 10, 8, 4, 3, 2,

1, 1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 1, 1, 1,

8, 3, 3, 1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 8, 5, 3, 2, 1, 1, 1,

1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 13, 8, 8, 3, 3, 1, 1, 1, 1, 1, 1,

1, 3, 2, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 5, 3, 2, 1, 1, 1, 1, 1, 2,

1, 1, 1, 16, 8, 8, 4, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1,

3, 2, 1, 1, 1, 1, 1, 8, 3, 2, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1 ]

• 22 cores[ 131, 14, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 23, 23, 23, 19, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]

• 62 cores [ 123, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]
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