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Resumen

En el mundo real existen muchos problemas de optimización en diversas disciplinas

dentro de las ciencias, la ingenieŕıa y la industria. Muchos de estos problemas

requieren de la optimización simultánea de varias funciones objetivo las cuales suelen

estar en conflicto entre śı. A éstos se les conoce como Problemas de Optimización

Multi-Objetivo y no tienen una solución única, sino un conjunto de ellas, las cuales

representan los mejores compromisos posibles entre todos los objetivos (es decir,

soluciones en las cuales no es posible mejorar un objetivo sin empeorar otro). A

dicho conjunto se le denomina óptimos de Pareto y su imagen en el espacio de las

funciones objetivo se conoce como frente de Pareto.

Aunque existen diversas técnicas de programación matemática para resolver

problemas multi-objetivo, éstas presentan varias limitantes, de entre las que destacan

su sensibilidad a la forma y continuidad del frente de Pareto. Adicionalmente, la

mayoŕıa de estas técnicas suelen generar un elemento del conjunto de óptimos de

Pareto por ejecución. Estas limitantes han motivado el uso de algoritmos evolutivos

para resolver problemas multi-objetivo, pues presentan mayor generalidad y requieren

poca información del problema.

En años recientes, la incorporación de buscadores locales a algoritmos evolutivos

multi-objetivo se ha vuelto un área atractiva para varios investigadores, dando pie a

los denominados algoritmos meméticos multi-objetivo. Sin embargo, la mayor parte

de este trabajo se ha enfocado a problemas discretos y a la fecha existe muy poca

investigación en torno a la solución de problemas continuos. La motivación principal

para desarrollar algoritmos meméticos multi-objetivo es acelerar la convergencia hacia

el frente de Pareto verdadero. No obstante, el diseño de estos algoritmos dista de lo

trivial, pues es importante diseñar buenos buscadores locales y saber equilibrar su

uso con respecto al buscador global. Adicionalmente, muchos problemas del mundo

real tienen funciones objetivo costosas, las cuales pueden resolverse más eficazmente

utilizado Unidades de Procesamiento Gráfico (GPUs, por sus siglas en inglés), cuyo

costo económico es mucho más bajo que el de otras tecnoloǵıas disponibles para

implementar algoritmos paralelos.

En esta tesis se utiliza el indicador de desempeño denominado Inverted

Generational Distance plus (IGD+) para guiar el motor de búsqueda local de un

algoritmo memético multi-objetivo, incorporando el uso de GPUs. Se proponen dos

nuevos algoritmos basados en IGD+, los cuales se muestra que son competitivos con

respecto a los algoritmos evolutivos multi-objetivo del estado del arte. El primero
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de ellos combina un optimizador global basado en el uso del hipervolumen y un

motor de búsqueda local basado en IGD+. Esta primera propuesta se compara con

respecto al S-Metric Selection Evolutionary Multiobjective Optimization Algorithm

(SMS-EMOA), siendo capaz de superarlo. Debido a que el uso del hipervolumen

resulta computacionalmente costoso, se propone realizar una implementación paralela

de este algoritmo mediante el uso de GPUs.

El segundo algoritmo propuesto en esta tesis consiste de una mejora del primero, de

tal forma que puedan resolverse adecuadamente problemas multi-objetivo con frentes

de Pareto complicados (p.ej., frentes de Pareto con geometŕıas irregulares). Esta

segunda propuesta incorpora un mecanismo para guiar el proceso de optimización,

el cual se adapta a cualquier forma geométrica del frente de Pareto. Este

segundo algoritmo fue validado usando varios conjuntos de prueba, comparándose

su desempeño con respecto al de nuestra primera propuesta. Adicionalmente, se le

validó en un problema de diseño de veh́ıculos en el que se busca maximizar la seguridad

contra choques. El algoritmo propuesto no sólo es capaz de resolver éxitosamente una

amplia variedad de problemas multi-objetivo, sino que también logra una aceleración

significativa (de hasta 22 veces) mediante el uso de GPUs.
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Abstract

Many real-world optimization problems exist in a wide variety of disciplines within

science, engineering and industry. Many of these problems require the simultaneous

optimization of several objective functions which are normally in conflict with each

other. These are the so-called Multi-Objective Optimization Problems and they do

not have a single solution, but a set of them, representing the best possible trade-offs

among all the objectives (i.e., solutions in which it is not possible to improve one

objective without worsening another one). This is the so-called Pareto Optimal set,

and its image in objective function space is known as the Pareto front.

In spite of the existence of several mathematical programming techniques for

solving multi-objective problems, they have several limitations, from which the main

one is their sensitivity to the shape and continuity of the Pareto front. Additionally,

most of these techniques generate a single element of the Pareto optimal set per

run. These limitations have motivated the use of evolutionary algorithms for solving

multi-objective problems, since they provide a greater generality and require little

domain-specific information.

In recent years, the incorporation of local search engines into multi-objective

evolutionary algorithms has become an attractive area for several researchers, giving

rise to the so-called multi-objective memetic algorithms. However, most of this work

has focused on discrete problems and to date, there is very little research related

to the solution of continuous problems. The main motivation to develop multi-

objective memetic algorithms is to speed up convergence towards the true Pareto

front. Nevertheless, the design of these algorithms is far from trivial, because it is

important to design good local search engines and to know how to balance their

use with respect to that of the global search engine. Additionally, many real-

world problems can be solved in a more efficient manner using Graphics Processing

Units (GPUs) which have a lower cost than that of other technologies available for

implementing parallel algorithms.

In this thesis, the performance indicator called Inverted Generational Distance

plus (IGD+) is adopted to guide the local search engine of a multi-objective memetic

algorithm, incorporating the use of GPUs. Two new algorithms based on IGD+ are

proposed, both of which are found to be competitive with respect to state-of-the-art

multi-objective evolutionary algorithms. The first algorithm combines a global search

engine based on the use of the hypervolume and a local search engine based on IGD+.

This first proposal is compared with respect to the S-Metric Selection Evolutionary
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Multi-objective Optimization Algorithm (SMS-EMOA), being able to outperform it.

Since the use of the hypervolume involves a high computational cost, we propose a

parallel implementation of this algorithm using GPUs.

The second algorithm proposed in this thesis consists of an improved version of the

first one, such that it can properly solve multi-objective problems with complicated

Pareto fronts (e.g., Pareto fronts with irregular geometries). This second proposal

incorporates a mechanism to guide the optimization process, which is able to adapt

to any geometrical shape of the Pareto front. This second algorithm was validated

using several test problems, comparing its performance with respect to that of our

first proposed algorithm. Additionally, it was validated using a vehicle design problem

in which the aim is to maximize safety against collisions. Our proposed algorithm

is not only able to successfully solve a wide variety of multi-objective optimization

problems, but it can also achieve a significant speed up (of up to 22 times) through

the use of GPUs.
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Chapter 1

Introduction

Most practical real-world problems have several objectives (these objectives are often

in conflict) which need to be optimized at the same time. These types of problems

appear in many areas of our life such as engineering, chemistry, medicine and ecology,

just to name a few. These sort of problems are known as Multi-objective Optimization

Problems (MOPs) and their solution involves finding the best possible trade-offs

among all the objectives. This set of trade-offs, when defined in decision variable

space, is known as the Pareto optimal set (PS). The image of the Pareto optimal set

is called the Pareto front (PF).

Mathematical programming techniques have been found to be very effective

technique for solving MOPs, at a reasonably low computational cost. However, in real-

world applications, there exist several MOPs for which mathematical programming

techniques cannot guarantee that the solution obtained is optimum. These methods

can be inefficient and inapplicable for solving these sort of problems. A possible way

to deal with more complex optimization problems is to use meta-heuristics. One

of them is the well-known Multi-Objective Evolutionary Algorithms (MOEAs). In

the last 30 years, MOEAs have become very popular because of their conceptual

simplicity and efficiency for solving MOPs.

However, there exists evidence that several types of MOPs are still very challenging

to solve even for meta-heuristics. For example, in some MOPs, the Pareto optimal

solutions are clustered in a small region of the search space. There are also MOPs with

very complex Pareto front geometries (i.e., MOPs with irregular Pareto front shapes).

The success of local search techniques in the solution of complex combinatorial

optimization problems has motivated their incorporation into MOEAs, giving rise

to the so-called Multi-Objective Memetic Algorithms (MOMAs) (see for example

[1, 2]). The main advantage of adopting this sort of hybridization is to speed up

1



2 Chapter 1

convergence towards the Pareto front. However, the use of MOMAs introduces new

issues, such as how to select the solutions to which the local search engine will be

applied. In combinatorial optimization, there exists a lot of evidence indicating that

the hybridization of the global optimizer with a local search engine is relatively easy

to achieve (it is possible to establish a discrete neighborhood for each solution)1.

However, it is not trivial to implement a local search engine for solving MOPs

in continuous spaces, since in this case, defining a neighborhood structure is more

difficult.

1.1 Problem Statement

Some researchers, such as [3], have raised some specific questions related to the

effectiveness and efficiency of local search engines:

• How often should the local search (LS) be applied based upon a probability,

PLS?

• On which k solutions should LS be used given a neighborhood N(x) where x is

a current solution?

• How long should LS be applied defined by a time period T?

• How efficient does LS need to be versus its effectiveness?

These questions involve some difficulties in designing new MOMAs. It is worth

mentioning that combining a global optimizer with a local search technique for specific

MOPs is critical to achieving good results, if the fitness function computation in

real-world MOPs takes a considerable amount of running time. Nowadays, these

limitations can be addressed using massive parallel processors such as a Graphics

Processing Units (GPUs), since there is plenty of evidence that indicates that GPU-

based approaches can reduce the running time without losing the advantages of CPU-

based approaches (for more details see [4, 5, 6])).

1.2 Our proposal

Although MOMAs are very useful in solving complex MOPs, these sort of algorithms

require more function evaluations than other multi-objective evolutionary algorithms,

1The neighborhood is used for establishing the region on which the local search will explore the
solutions.
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which makes them computationally expensive. For this reason, the main motivation

of this work arises from the need to solve real-world MOPs more efficiently without

losing the features of CPU-based memetic algorithms. In this thesis, we investigate

different strategies to hybridize a global optimizer with a local search engine, in order

to create a new MOMA based on the use of a GPU. The resulting GPU-based MOMA

should be able to solve complicated MOPs more efficiently than its sequential version.

1.3 General and Specific goals

1.3.1 Main Goals

Since the main goal of this research is to advance the state-of-the-art, we create

different strategies for the design of a new multi-objective memetic algorithm. To

decrease its running time, we adopt the use of Graphics Processing Units. The aim

was to create a new GPU-based MOMA, which is able to solve complex MOPs (i.e.,

MOPs with complicated Pareto front shapes).

1.3.2 Specific Goals

• Study the state-of-the-art multi-objective memetic algorithms, analyzing their

main advantages and disadvantages with the aim of creating a new multi-

objective memetic algorithm for continuous search spaces.

• Propose at least one new multi-objective memetic algorithm. This algorithm

should be competitive with respect to state-of-the-art multi-objective evolution-

ary algorithms.

• Propose at least one GPU-based multi-objective memetic algorithm, which

should be able to decrease the running time of its CPU-based version.

• Evaluate the proposed algorithms using standard test problems and perfor-

mance indicators reported in the specialized literature.

• Perform a detailed statistical study of the proposed algorithms to determine the

parameters to which they are most sensitive.

• Apply the proposed multi-objective memetic algorithm to solve a real-world

multi-objective optimization problem.
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1.4 Contributions

In the following, we present the publications obtained during the development of this

thesis.

• Edgar Manoatl Lopez and Carlos A. Coello Coello. IGD+-EMOA: A Multi-

Objective Evolutionary Algorithm based on IGD+, in 2016 IEEE Congress on

Evolutionary Computation (CEC-2016), pp. 999-1006, IEEE Press, Vancouver,

Canada, 24-29 July, 2016, ISBN 978-1-5090-0623-9.

• Edgar Manoatl Lopez and Carlos A. Coello Coello. A Parallel Multi-objective

Memetic Algorithm Based on the IGD+ Indicator, in Julia Handl, Emma

Hart, Peter R. Lewis, Manuel Lopez-Ibaez, Gabriela Ochoa and Ben Paechter

(Editors), Parallel Problem Solving from Nature PPSN XIV, 14th International

Conference, pp. 473-482, Springer. Lecture Notes in Computer Science Vol.

9921, Edinburgh, UK, September 17-21, 2016, ISBN 978-3-319-45822-9.

• Edgar Manoatl Lopez and Carlos A. Coello Coello. Improving the integration

of the IGD+ indicator into the selection mechanism of a Multi-objective

Evolutionary Algorithm, in 2017 IEEE Congress on Evolutionary Computation

(CEC 2017), IEEE Press, San Sebastian, Spain 5-8 June 2017, 2017, ISBN

978-1-5090-4601-0.

• Edgar Manoatl Lopez and Carlos A. Coello Coello. An Improved Version of a

Reference-Based Multi-Objective Evolutionary Algorithm based on IGD+, in

2018 Genetic and Evolutionary Computation Conference (GECCO’2018), IEEE

Press, Kyoto, Japan July 15–19 2018, 2018, ISBN 978-1-4503-5618-3

• Edgar Manoatl Lopez and Carlos A. Coello Coello. Use of Reference Point

Sets in a Decomposition-based Multi-Objective Evolutionary Algorithm, in

Parallel Problem Solving from Nature PPSN XV, 15th International Conference,

Coimbra, Portugal September 8–12 2018, 2018, ISBN 978-3-319-99258-7

1.5 Structure of the Thesis

This document is organized in ten chapters. In Chapter 2 we describe a brief

introduction of optimization, including basic concepts and some methods to solve

optimization problems. Chapter 3 presents a introduction of multi-objective

optimization, including the definition of some performance indicators. In Chapter
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4 we define the structure of multi-objective memetic algorithms and we review the

most representative multi-objective memetic algorithms reported in the specialized

literature. Our proposed multi-objective evolutionary algorithm based on the IGD+

indicator and some strategies to create multi-objective evolutionary algorithms

are described in detail in the Chapter 5 and Chapter 6, respectively. Our first

proposal of a new multi-objective memetic algorithm is presented in Chapter 7. Our

improved version of our proposed IGD+-based multi-objective evolutionary algorithm

is presented in Chapter 8. Chapter 9 presents an improved version of our IGD+-based

multi-objective memetic algorithm. Finally, we provide our final remarks and some

possible paths for future work in Chapter 10.

Cinvestav Departamento de Computación



6 Chapter 1

Cinvestav Departamento de Computación



Chapter 2

Background

This chapter presents some concepts related to optimization. The most important

objective of this chapter is that the reader familiarizes with the basic concepts

required to understand the contents of this thesis. The remainder of this chapter

is organized as follows. Section 2.1 provides the conceptual and theoretical basis for

global optimization. Likewise, a classification of different mathematical programming

methods for nonlinear optimization problems is presented in Section 2.2. Finally,

Section 2.3 describes a generic Evolutionary Algorithm (EA), and we also show the

main advantages and disadvantages of this technique.

2.1 Optimization Problem

In mathematics, optimization refers to the process of finding the minimum or

maximum point of a function, probably subject to some constraints on its decision

variables. Throughout this document, we use the following notation:

• ~x is the vector of decision variables, also called parameters.

• f is the objective function, that we want to maximize or minimize.

• g and h represent constraints imposed on the objective function.

An optimization problem can be formally stated as follows:

Definition 2.1. Find the vector ~x which minimizes the function f(~x) subject to

~x ∈ Ω ⊆ Nn, where Ω is the feasible region which satisfies the p inequality constraints:

gi(~x) ≤ 0; i = 1, ..., p

7



8 Chapter 2

and the q equality constraints:

hj(~x) = 0; j = 1, ..., q

The feasible solution ~x∗ ∈ Ω which corresponds to the minimum value of the

objective function in all the search space is called “global optimum”.

Optimization problems can be classified according to the nature of the

objective function and constraints (e.g., linear, nonlinear, convex), the number of

decision variables (large or small) and to the features of the objective function

(i.e., differentiable or non-differentiable). Although most problems in real-world

applications have constraints, in this thesis we only deal with unconstrained

optimization problems.

2.1.1 Notions of Optimality

It is necessary to introduce some relationships among the objective function, the

constraints and the range of the decision variables. To make of this a self-contained

chapter, we present next some basic concepts frequently used in optimization.

Definition 2.2. Global minimum: Given a function f : Ω ⊆ Rn → R, for ~x∗ ∈ Ω

the value f ∗ = f(~x∗) > −∞ is called global minimum, if and only if:

∀~x ∈ Ω : f(~x∗) ≤ f(~x) (2.1)

where ~x∗ is a global minimum vector.

Definition 2.3. Local minimum: Given a function f : Ω ⊆ Rn → R, a solution

~xo ∈ Ω is called local minimum point, if and only if:

∀~x ∈ Ω : f(~xo) ≤ f(~x), (2.2)

such that ||~x− ~xo|| < ε, where ε ∈ R and the value f(~xo) is called local minimum.

2.1.2 Convexity

The concept of convexity is fundamental in optimization. It implies that it is possible

to find in an exact manner the globally optimal solution. The formal definition of

convex function is the following:

Cinvestav Departamento de Computación



Background 9

Definition 2.4. Convex function: A function f : Rn → R is called convex, where

λ ∈ R, if for any two vectors ~x, ~y ∈ Rn satisfies:

f(λ~x+ (1− λ)~y) ≤ λf(~x) + (1− λ)f(~y), (2.3)

The term convex programming is used to describe a special case of the constrained

optimization problem in which:

• The objective function is convex

• The equality constraint functions are linear

• The inequality constraint functions are concave

On the other hand, if the function is non-convex, the optimization problem is much

more difficult to solve, because the search space will be more difficult to explore.

2.1.3 Optimality Criterion

When the function f is smooth, there are several efficient and practical ways to

identify the local minima. In particular, if f is twice continuously differentiable [7],

the necessary conditions for optimality are derived by assuming that ~x∗ is a local

minimizer.

Definition 2.5. First-Order Necessary Conditions: If ~x is a local minimizer and f is

continuously differentiable in an open neighborhood of ~x∗, then ∇f(~x∗) = 0.

Definition 2.6. Second-Order Necessary Conditions: Suppose that ∇2f is

continuous in an open neighborhood of ~x∗ and that ∇f(~x∗) = 0 and ∇2f(~x∗) is

positive definite. Then ~x∗ is a strict local minimizer of f .

Although in some cases the necessary conditions are also sufficient for optimality,

in general, additional information is necessary such as the derivative. Therefore,

certain additional convexity assumptions are needed to guarantee that the solution

~x∗ is optimal.

2.2 Classical Optimization Algorithms

Throughout the years, many mathematical programming techniques for solving

optimization problems have been proposed. The classical or mathematical
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programming methods are deterministic algorithms, which exploit certain features

of the optimization problems (e.g., convexity) and use additional information (e.g.,

the gradient). It is worth mentioning that these methods have been successfully used

to solve engineering problems.

There are many techniques based on gradient information to solve nonlinear

optimization problems such as Cauchy’s method [8], Newton’s method [9], and

Fletcher and Reeves’s method [10]. Although all of them solve optimization problems

in a few steps, these techniques need that the search starts from an initial feasible

point. On the other hand, there exist other techniques to solve non-differential

problems which are called non-gradient techniques. Non-gradient methods or direct

search methods, are techniques that do not require any information of the derivatives

of the objective function. These sort of techniques constitute a good alternative when

the problem is not differentiable and are also designed to solve one-dimensional and

multi-dimensional optimization problems (see [11, 12]). Unfortunately, none of these

mathematical methods guarantees convergence to the global optimum when dealing

with the general nonlinear optimization problem. In most cases, these methods rely on

an initial search point and, when dealing with multi-modal problems (i.e., problems

that have several local optima) most of them get easily trapped in local optima

and are unable to reach the global optimum. Despite the considerable variety of

techniques developed in mathematical programming research and other disciplines to

tackle those issues, the general nonlinear optimization problems calls for the use of

remains alternative approaches to try to solve it.

2.3 Evolutionary Algorithms

Evolutionary Algorithms (EAs) are methods inspired on natural selection,(

particularly, the “survival of the fittest” principle1), which are used to solve

optimization problems. EAs operate on a population of solutions, i.e., they operate

on a set of solutions instead of operating on one solution at a time, as traditional

optimization methods. At each iteration of the EA, a competitive selection mechanism

that tends to preserve the fittest individuals, is applied during the evolutionary

process. The individuals with the highest fitness values have a higher probability

to apply evolutionary operators to form new individuals, which are expected to be

better than their predecessors. This process is repeated until reaching a maximum

1The survival of the fittest principle was proposed by Charles Darwin in his evolutionary theory
[13].
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(pre-defined) number of generations. The evolutionary operators associated with EAs

are mutation and recombination. According to [3], an EA is described as follows:

Definition 2.7. Evolutionary Algorithm : Let I be an non-empty set (the

individual space), {µ(i)} where i ∈ N a sequence in Z+ (the parent population

sizes), {µ′(i)} a sequence in Z+ (the offspring population sizes), Φ :−→ R a

fitness function,
⋃∞
i=1(Iµ)(i) −→ {true, false} (the termination criterion), X ∈

{true, false}, r a sequence {r(i)} of recombination operators r(i) : X(i)
r −→

T
(

Ω
(i)
r , T

(
Iµ

(i)
, Iµ

′(i)
))

, m a sequence {m(i)} of mutation operators m(i) : X(i)
m −→

T
(

Ω
(i)
m , T

(
Iµ

(i)
, Iµ

′(i)
))

, s a sequence {s(i)} of selection operators s(i) : X(i)
s ×

T (I,R) → T
(

Ω
(i)
s , T

((
Iµ

′(i)+Xµ(i)
)
, Iµ(i+1)

))
, Θ ∈ X(i)

r (the recombination

parameters), Θ
(i)
m ∈ X (i)

m (the mutation parameters), and θ
(i)
s ∈ X(i)

s (the selection

parameters). Then Algorithm 1 shows the pseudo-code of an Evolutionary Algorithm.

Algorithm 1 Evolutionary Algorithm
1: t := 0;
2: initialize P (0) := {~a1, ..., ~aµ} ∈ Iµ

(0)
;

3: while l({P (0), ..., P (t)}) 6= True do

4: recombine P
′
(t) := r

(t)

Θ
(t)
r

(P (t));

5: mutate P
′′
(t) := m

(t)

Θ
(t)
m

(P
′
(t));

6: select:
7: if X then
8: P (t+ 1) := s

(t)

(θ
(t)
s ,Φ)

(P
′′
(t));

9: else
10: P (t+ 1) := s

(t)

(θ
(t)
s ,Φ)

(P
′′
(t) ∪ P (t));

11: end if
12: t := t+ 1;
13: end while

EAs are stochastic search methods. This implies that they cannot guarantee

convergence to the global optimum of the problem. However, the use of evolutionary

algorithms to solve optimization problems has been motivated mainly because of

their population-based nature which allows them to generate several solutions in

a single run. Additionally, evolutionary algorithms do not require specific domain

information, which makes them a more general optimizer.
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2.4 Evolutionary Computation Paradigms

The term Evolutionary Computation refers to a set bio-inspired techniques (which

are based Darwin’s evolutionary theory). In general terms, in order to simulate the

evolutionary process it is worth to consider the following elements:

• Encoding

• Evolutionary Operators

• Fitness Function

• Selection Mechansim

Nowadays, there exist three main paradigms: a) Evolution strategies (ESs), b)

Evolutionary Programming (EP) and c) Genetic Algorithms (GAs). These paradigms

adopt all the conditions mentioned before. In the following we will briefly describe

about the most important aspects of each of them.

2.4.1 Evolution Strategies

Evolution Strategies (ES) were developed by Rechenberg and Schwefel in Germany

[14]. This algorithm was originally designed to solve hydrodynamic optimization

problems. The original algorithm called (1+1)-ES adopted a single a father, which

was mutated to create a single offspring. Although, the original proposal used a single

solution, population-based ESs were introduced a few years later [14]. Rechenberg

proposed the 1/5 rule in order to adjust the standard deviation value used to apply a

Gaussian mutation during the evolutionary process for guaranteeing convergence to

the global optimum (under certain assumptions).

2.4.2 Evolutionary Programming

Evolutionary Programming was proposed by Fogel in the USA [15]. The core idea

of this algorithm is to simulate natural evolution as a learning process. EP uses

a deterministic parent selection mechanism and each new member is created via

mutation. In this paradigm, crossover is not used because evolution is simulated at a

species level, and different species can’t be recombined.
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2.4.3 Genetic Algorithms

Genetic Algorithm were proposed in the early 1960s by Holland in the USA [16]. This

algorithm was designed to solve machine learning problems. This sort of evolutionary

algorithm adopts binary encoding of the individuals in the population. It uses a

probabilistic selection mechanism and the crossover operator is considered its main

evolutionary operator. However, a mutation operator is also adopted to improve the

exploratory capabilities of the algorithm. Nowadays, the GA is the most popular

evolutionary algorithm having an important number of applications [17, 18].

2.5 Advantages and Disadvantages of Evolution-

ary Algorithms

Evolutionary Algorithms have the advantage that their implementation is not

complicated, because they are conceptually simple. EAs can be applied to any

sort optimization problem without requiring problem specific information. EAs have

been used to solve many real-world optimization problems in different areas such as

Finance, Chemistry and Physics just to name a few. The complexities of many real-

world problems (e.g., non-differentiable objectives, high dimensionality , etc.) makes

them difficult to tackle using mathematical programming techniques. In contrast, EAs

have been found to be a good choice to solve these problems. Their simplicity makes

EAs easy to hybridize with other optimization approaches (e.g., classical optimization

techniques). Additionally, EAs have little data dependency, which makes them easy

to parallelize so that they can deal with problems having computationally expensive

objectives. Classical optimization methods are not robust to dynamic changes in the

environment and often require to restart the optimization process in order to provide

a solution when such changes occur. In contrast, EAs can be used to adapt solutions

to changing enviroments, which makes them advantageous to deal with dynamic

environments. However, EAs require a fine-tuning of their parameters since it is

not trivial to establish appropriate values for a specific problem. This is considered

one of the main drawbacks of EAs. Furthermore, EAs do not guarantee convergence

towards an optimal solution in a finite amount of time (i.e., generations). Finally,

because of their stochastic nature, EAs need to be run several times in order to

produce a statistically significant solution [3].
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2.6 Other Bio-inspired Optimization Algorithms

Some researchers have proposed other bio-inspired approaches which have been widely

used to solve optimization problems such as : Artificial Immune Systems (AIS) [19],

Ant Colony Optimization (ACO) [20], Artificial Bee Colony (ABC) [21] and Particle

swarm Optimization (PSO) [22].

Artificial Immune Systems are inspired by biological immune systems. They

simulate the efficient immune system response when an animal is exposed to antigens.

The response consists in generating antibodies with a high affinity to the antigens.

The antibodies having the highest affinity are mutated (using a process known as

hyper-mutation) and cloned. This model is known as clonal selection [19] and is

the most popular in the specialized literature. Artificial immune systems have been

adopted to solve classification and optimization problemas.

Ant Colony Optimization (ACO) was proposed in order to solve hard

combinatorial optimization problems [20]. The inspiring source of ACO is the

pheromone trails laid down by real ants which use pheromone as their communication

channel. ACO implements a randomized construction bio-inspired heuristic which

makes probabilistic decisions as a function of artificial pheromone. The artificial

pheromone in ACO serves as numerical information which the ants use to construct

solutions to an optimization problem.

The Artificial Bee Colony algorithm creates a colony which consists of three groups

of bees: (1) employed bees, (2) onlookers and (3) scouts. The first half of the colony

consists of the employed artificial bees and the second half includes the onlookers.

For every food source there is only one employed bee. The artificial Bee Colony

algorithm is considered as a swarm-based optimization algorithm, because all the

bees work together in order to solve an optimization problem.

Particle Swarm Optimization simulates a swarm social model (to be more specific

a bird flock or a fish school). Birds and fish adjust their physical movement to

avoid predators, seek food and mate, which makes them to optimize environmental

parameters such as temperature. In the conventional PSO, each particle in a swarm

population updates its position in the search space according to the best particle, that

has been found so far. The main core of PSO is to use particles with the best known

positions to lead the swarm population in order to converge towards a single optimum

in the search space. Particle swarm optimization is an algorithm that seems to be

efficient and effective for optimizing a wide range real-world problems. Compared to

evolutionary algorithms, PSO does not use evolutionary operators (i.e., crossover and
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mutation).

As we can see, there are several techniques for solving optimization problems. In

this thesis we only will make reference to evolutionary algorithms, which are by far,

the most popular bio-inspired meta-heuristic currently used for optimization.
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Chapter 3

Multi-Objective Optimization

A large number of real-world problems that arise in academic and industrial areas,

have several (often conflicting) objectives which need to be optimized at the same

time. They are generically called Multi-objective Optimization Problems (MOPs) and

their solution involves finding the best possible trade-offs among all their objectives.

Formally a MOP is described as follows1:

minimize ~f(~x) := [f1(~x), f2(~x), . . . , fm(~x)]T (3.1)

subject to:

gi(~x) ≤ 0, i = 1, 2, . . . , p (3.2)

hj(~x) = 0, j = 1, 2, . . . , q (3.3)

where ~x = [x1, x2, . . . , xn] is the vector of decision variables, fk : Rn → R,

k = 1, . . . ,m are the objective functions and gi, hj : Rn → R, i = 1, . . . , p, j = 1, . . . , q

are the constraint functions of the problem. Equations (3.2) and (3.3) determine the

feasible region, which is described by Ω ∈ Rn and any decision vector ~x ∈ Ω defines

a feasible solution of the MOP.

However, the decision variables xi∀i = 1, ..., n can be continuous or discrete. It

is worth mentioning that in this work we are only interested in continuous domains

which are contained on Rn. When the functions gi and hi are not present in the

MOP, the problem is called unconstrained MOP. On the other hand, if all functions

and the constraint functions are linear, the problem is called a linear MOP. Thus, if

at least one of the functions is nonlinear, the problem is named a nonlinear MOP. As

1We assume, without loss of generality, that all objectives are to be minimized.
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mentioned before, in single-objective optimization, it is possible to determine between

any given pair of solutions if one is better than any other (comparing their objective

function values). As a result, we usually obtain a single optimal solution. On the

other hand, solving a MOP involves finding the best possible trade-offs among all

objectives of the MOP. These trade-offs, when defined in decision variable space,

constitute the so-called Pareto optimal set. The image of the Pareto optimal set is

called the Pareto front (PF). According to the type of the functions f , g and h, we

can classify MOPs as follows:

• Multi-objective linear programming. The objective functions and

constraint functions, which are used on the MOP, are linear.

• Nonlinear Multi-objective Optimization. If at least one of the objective

functions or constraint functions are nonlinear, the MOP is called nonlinear.

• Convex Multi-Objective Optimization. A multi-objective optimization

problem is considered convex if all the objective functions and the feasible region

are convex.

In this work we are interested in solving nonlinear unconstrained multi-objective

optimization problems.

Definition 3.1. Decision Variables. The decision variables are the numerical

quantities for which values are to be chosen in an optimization problem. The vector

~x of n decision variables is presented by ~x = [x1, x2, . . . , xn].

Definition 3.2. Decision variable space. The decision variable space is the n-

dimensional space of the decision variables, in which each coordinate axis corresponds

with one component of the vector ~x.

Definition 3.3. Objective functions. The objective functions evaluate how good

a given solution is. Normally, they are denoted as fi : Rn → R. In MOPs, we have

an objective function vector ~f(~x) = [f1(~x), f2(~x), . . . , fm(~x)].

Definition 3.4. Objective function Space. The objective function space is

the m-dimensional space of the objective functions, in which each coordinate axis

corresponds with one element of the objective function vector ~f(~x).

Definition 3.5. Feasible Region. We say that the feasible region is defined by

all feasible vectors ~x, where each vector ~x is feasible, if it satisfies all the constraints

functions of the problem.
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3.1 Notions of Optimality in Multi-Objective

Optimization

As mentioned before, it is not possible to find a single solution that would be optimal

for all the objective functions simultaneously when such objectives are in conflict

with each other. Thus, in order to describe the concept of optimality in which we are

interested on, the following concepts are introduced as follows:

Definition 3.6. Pareto Dominance. Let ~x, ~y ∈ Rm, we say that ~x “dominates” ~y

(denoted by ~x ≺ ~y ), if and only if: i) xi ≤ yi for all i ∈ {1, . . . ,m} and ii) xj < yj

for at least one j ∈ {1, . . . ,m}.

Definition 3.7. Weak Dominance. We say that a vector ~x weakly dominates

vector ~y , denoted by ~x � ~y, if ~x is not worse than ~y in all objectives.

Definition 3.8. Strict Dominance. We say that a vector ~x strictly dominates

vector ~y , denoted by ~x ≺≺ ~y, if and only if fi(~x) < fi(~y) for all i ∈ {1, . . . ,m}.

Definition 3.9. We say that a vector of decision variables ~x ∈ X ⊂ Rn is “non-

dominated” with respect to X , if there does not exist another ~x′ ∈ X such that
~f(~x′) ≺ ~f(~x).

Definition 3.10. We say that a vector of decision variables ~x ∈ F ⊂ Rn (where F
is the feasible region) is “Pareto optimal” if it is non-dominated with respect to F .

Definition 3.11. The Pareto Optimal Set P∗ is defined by:

P∗ = {~x ∈ F|~x is Pareto optimal}

Definition 3.12. The “Pareto Front” PF∗ is defined as follows:

PF∗ = {~f(~x) ∈ Rm|~x ∈ P∗}

In general, it is not possible to find an analytical expression that defines the PF
of a MOP. Thus, the most common way to obtain the PF is to compute a sufficient

number of points in the feasible region. Usually, we are interested in Pareto optimal

solutions and can disregard the other feasible solutions. Exceptions to this practice

are problems where one of the objective functions is an approximation of an unknown

function. Then, the real Pareto optimal set is unknown.
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Definition 3.13. Ideal Objective Vector. The ideal objective vector is denoted

by ~z∗ = [z∗1 , z
∗
2 , . . . , z

∗
k]
T and is obtained by minimizing each of the objective functions

individually, subject to the constraints (i.e., ~z∗ = min fi(~x) subject to ~x ∈ Ω).

Definition 3.14. Utopian Objective Vector. The utopian objective vector is

denoted by ~z∗∗ = [z∗∗1 , z
∗∗
2 , . . . , z

∗∗
k ]T . It is an infeasible objective vector whose

components are formed by z∗∗i = z∗i − εi, where z∗i is the ith component of the ideal

objective vector and εi is a relatively small but computational significant scalar.

Definition 3.15. Nadir Objective Vector. The nadir objective vector is denoted

by ~znad = [znad1 , znad2 , . . . , znadk ]T and its components are the upper bounds of the

Pareto optimal set.

3.2 Optimization Methods for solving MOPs

The goal of most optimization methods is to find a reasonably good approximation

of the Pareto optimal front. Currently, some researchers such as Zitzler et al. [23, 24]

have suggested three desirable aspects of non-dominated sets, which are described as

follows:

• Convergence: The distance between Pareto front approximation and Pareto

optimal front should be minimized.

• Distribution: The distance between each point of the approximation should

be as uniform as possible.

• Spread: The extent of the Pareto front approximation should be maximized

(i.e., for each objective, a wide range of values should be covered by the

approximation).

The optimization methods to solve MOPs can be classified in many ways such

as enumerative, deterministic and stochastic methods [3]. Enumerative methods

are considered as the simplest search strategies, since they evaluate each possible

solution within some finite search space. It is worth mentioning that these methods

become impractical when the search space is too large. Deterministic methods

incorporate problem-domain knowledge. Some examples of this sort of algorithms

are greedy methods, hill-climbing methods or gradient methods. These algorithms

have been successfully used in solving a wide variety of MOPs, but when the MOP

is high-dimensional, discontinuous or multimodal, they are often ineffective. On the
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Figure 3.1: Examples of deficiency in the PFs

other hand, stochastic methods such as sampling methods, simulated annealing, tabu

search, evolutionary algorithms and memetic algorithms have been developed to solve

irregular MOPs. These sort of methods require a function to assign fitness values to

the possible solutions of the MOP. They adopt some mechanisms in order to map

between the problem and the domain of the algorithm. Stochastic methods cannot

guarantee finding the optimal solution, but they can eventually find a local optimal.

Nowadays, stochastic search methods provide good solutions to a wide range MOPs

which traditional traditional deterministic search methods cannot properly solve.

3.3 Multi-Objective Evolutionary Algorithms

The first suggestion for using EAs to solve Multi-Objective Optimization Problems

was hinted at the end of the 1960s by Rosenberg [25]. However, it was until 1984, when

David Schaffer [26] proposed the first actual implementation of a Multi-Objective

Evolutionary Algorithm (MOEA).

Evolutionary algorithms seem particularly suitable to solve MOPs, because they

can deal simultaneously with a set of possible solutions (the so-called population).

This allows finding several members of the Pareto optimal set in a single run of the

algorithm, instead of having to perform a series of separate runs as in the case of

traditional mathematical programming techniques [3]. Additionally, MOEAs are less

susceptible to the shape or continuity of the Pareto front which means that they

can properly deal with discontinuous or concave Pareto fronts. On the other hand,

mathematical programming techniques normally have difficulties to deal with such
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problems.

EAs and MOEAs share a similar structure. Their main difference is the fitness

assignment mechanism because a MOEA deals with more than one objective function

at the same time. Therefore, the fitness assignment scheme must consider different

desirable aspects of non-dominated solutions. MOEAs have been classified into three

major categories. These categories and the specific techniques within each of them

are commonly classified based on how and when they incorporate preferences from

the Decision Maker (DM) into the search process. The classification is the following:

• A Priori Approaches. The DM defines the importance of the objectives

before starting the search. Some examples are the Lexicographic method, linear

fitness aggregation methods, and nonlinear fitness aggregation methods.

• Progressive Techniques. A search techniques produces solutions and the DM

progressively provides preference information to narrow down the search so that

the most preferred solutions can be found.

• A Posteriori Techniques. The optimizer produces non-dominated solutions

and then the DM chooses the most preferred solutions according to his

preferences. Some examples are Pareto-based MOEAs, niche-based MOEAs,

aggregation-based MOEAs and Indicator-based MOEAs, just to named a few.

As mentioned before, the goal of MOEAs is to minimize the distance of the

solutions obtained to the true Pareto front as well as to make the distribution of

the solutions as uniform as possible Pareto front. Therefore, the fitness assignment

of MOEAs must consider a way to evaluate those goals. In a MOEA, we need an

additional process to transform a fitness vector into a scalar value. Thus, the selection

mechanism of MOEAs is affected based on the fitness assignment scheme that is

adopted. This implies that MOEAs can be classified in different groups. In the

following, we present the most popular MOEAs developed over the years, some of

which are referred to in this thesis:

1. Pareto-based MOEAs. These approaches adopt Pareto optimality in their

selection mechanism in order to evaluate each individual from the population.

2. Decomposition-based MOEAs. These techniques transform a MOP into

several scalar optimization subproblems, all of which are simultaneously solved.
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3. Indicator-based MOEAs. These approaches use performance indicators (also

called quality indicators) to assign the fitness of each individual based on how

much a solution contributes to a given indicator.

3.4 Performance Assessment

The comparison of the performance of different MOEAs is an important issue in

multi-objective optimization. Since the comparison needs to satisfy the three criteria

mentioned before (see subsection 3.2), there exist different performance measures

which allow a quantitative comparison of results among the different algorithms.

Thus, the performance measure or Indicator I(.) is a mapping from a set of objective

vectors to a real number. Mathematically, we can say that I := Rm×k −→ R, where

m is the number of objectives and k is number of members in the non-dominated

set. In order to describe the indicators which area used in this document, we need to

provide first some definitions.

Definition 3.16. Pareto Compliant Indicator, if A B B holds between two non-

dominated sets A and B, I(A) < I(B) always holds: ABB =⇒ I(A) < I(B).

Definition 3.17. Weak Pareto Compliant Indicator, if A � B holds between two

non-dominated sets A and B, I(A) ≤ I(B) always holds: A � B =⇒ I(A) ≤ I(B).

We expect that performance indicators must have compatibility with the Pareto

dominance relation. However, many of them are Pareto non-compliant. Next, we

introduce some performance indicators which are used in this document.

3.4.1 Hypervolume Indicator

The hypervolume has become very popular in current multi-objective optimization

research (see [27]). The hypervolume is able to assess convergence and maximum

spread along the Pareto front and it is Pareto complaint. Because of its highly

desirable features, it has been used not only as a quality measure for comparing final

results of multi-objective evolutionary algorithms (MOEAs), but also as a selection

operator (it is, for example, very suitable for many-objective optimization problems).

However, it has one serious drawback: computing the exact hypervolume is highly

costly. The best known algorithms to compute the hypervolume are polynomial in the

number of points, but their cost grows exponentially with the number of objectives.
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Mathematically if Λ denotes the Lebesgue measure, the hypervolume can be

described as:

IH(A, ~yref ) = Λ

⋃
~y∈A

{~x| ~y ≺ ~x ≺ ~yref}

 (3.4)

where A is the approximation of the Pareto front optimal set and ~yref ∈ Rk denotes

the reference point. The hypervolume is obtained by computing the union of whole

hypercubes in the objective space, where each hypercube is generated by every

solution in A and the reference point ~yref .

3.4.2 Generational Distance Indicator

The Generational Distance indicator (GD [28]) is defined as the averaged semi-

distance from the image of a candidate set A to our discretization of the true Pareto

front (i.e., the reference point set Z). Next, we present its formal definition.

Given a candidate set A ⊂ Rm and a reference set Z ⊂ Rm, then:

GD(A,Z) =
1

|A|

 |A|∑
j=1

dj(~z,~a)p

1/p

(3.5)

where dj denotes the nearest Euclidean distance from ai ∈ A to Z.

3.4.3 Inverted Generational Distance Indicator

The Inverted Generational Distance indicator, which is also called IGD indicator, is

similar to the GD indicator, since both need a reference point set Z. The formal

definition of the IGD indicator is the following [29]:

IGD(A,Z) =
1

|Z|

 |Z|∑
j=1

d′j(~z,~a)
p

1/p

(3.6)

where d′j denotes the minimal Euclidean Distance from zj ∈ Z to A.

∆p Indicator

Another reference set-based indicator is ∆p [30], which is considered as an “Averaged

Hausdorff Distance” between the approximate set and the reference set. This
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indicator is based on both GD and IGD. It is defined as:

∆p = max(GD(A,Z), IGD(A,Z)) (3.7)

In spite of the fact that ∆p is a pseudo-metric which simultaneously evaluates

proximity to the Pareto front and spread of solutions along it. It is not Pareto

compliant.

3.4.4 R2 Indicator

This indicator belongs to the family of R indicators proposed by Hansen and

Jaszkiewicz [31, 32]. This family of indicators use utility functions for evaluating

approximate Pareto fronts. The R2-indicator is weakly monotonic and simultaneously

evaluates several desired aspects of an approximate Pareto front. The formal

definition of the R2-indicator is:

IR2(A,U) = − 1

|U|

(∑
u∈U

max
~a∈A
{u(~a)}

)
(3.8)

where U denotes a utility function. The most commonly adopted utility function is the

weighted Tchebycheff metric. The R2-indicator is defined in terms of the Tchebycheff

metric as follows:

R2(A,W , ~z∗) =
1

|W|
∑
~w∈W

min
~a∈A

(
max
i=1,...,k

{wi|ai − z∗i |}
)

(3.9)

3.4.5 The modified Inverted Generational Distance Indicator

Recently, a variation of the well-known Inverted Generational Distance (IGD) was

introduced in [33, 34]. This indicator, which is called IGD+ was shown to be weakly

Pareto compliant, and represents some evident advantages with respect to the original

IGD indicator. The IGD+ indicator is defined as follows:

IGD+(A,Z) =
1

|Z|

 |Z|∑
j=1

d′ +j (~z,~a)
p

1/p

(3.10)
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where d′+ is the nearest modified Euclidean distance from zj ∈ Z to A and the

modified Euclidian distance d+ (~z,~a) is defined as:

d+ (~z,~a) =
√

(max{a1 − z1, 0})2 + · · ·+ (max{am − zm, 0})2. (3.11)

Therefore, a low IGD+ value means that the set A constitutes a better approximation

to the real PF if we consider the reference set as PFTrue. The Pareto compliance

property between two objective vectors (i.e., ~a ≺ ~b =⇒ I(~a, ~z) < I(~b, ~z)) does

not always hold when the Euclidean distance is used. The authors of IGD+ proved

that it is weakly Pareto compliant. Additionally, they also showed that IGD and ∆p

have inconsistencies with respect to the Pareto dominance relation since if a reference

point ~z and an objective vector ~a are non-dominated with each other, it is possible to

obtain I(~a, ~z) > I(~b, ~z) for ~a ≺ ~b. The IGD+ indicator overcomes the main drawbacks

of both IGD and ∆p.

3.5 Multi-Objective Evolutionary Algorithms based

on a Reference Set

For several years, MOEAs adopted selection mechanisms based on Pareto optimality.

However, in recent studies, it has been found that Pareto-based MOEAs can not

properly solve many-objective problems (problems with more than three objectives)

[35]. This has motivated the development of indicator-based selection mechanisms,

since this sort of mechanism seems to work properly in many-objective problems.

Previously, we said that the performance indicator which has been most commonly

used for the selection mechanism of a MOEA, is the hypervolume [36, 37].

One of the best hypervolume-based selection mechanisms currently available is the

one incorporated in the S Metric Selection-Evolutionary Multi-Objective Optimization

Algorithm (SMS-EMOA) [38]. However, the high cost involved in computing exact

hypervolume contributions limits the practical use of SMS-EMOA in many-objective

problems. In order to address these limitations, some researchers have developed

different alternatives, such as the use of reference sets. Next, we will briefly discuss

some reference-based MOEAs. Our discussion will focus specifically on approaches

that adopt reference weight vectors for leading the optimization process. The

approaches discussed next are divided in two main groups: (a) decomposition-based

MOEAs and (b) indicator-based MOEAs which rely on the use of reference sets.

The Multi-objective Evolutionary Algorithm Based on Decomposition (MOEA/D)
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[39] is the best well-known decomposition-based MOEA. MOEA/D divides the whole

PF into a group of sub-spaces, each of which can be regarded as a sub-MOP.

Another example of a MOEA that belongs in this category is NSGA-III [40], which

uses a distributed set of reference points to manage the diversity of the candidate

solutions, whose aim is to improve convergence. Although NSGA-III has been found

to be a very competitive many-objective optimizer, its implementation is not trivial,

being particularly sensitive to the construction of the hyper-planes. There is also

an extension of MOEA/D which includes the Pareto dominance relation to select

candidate solutions. This MOEA is called MOEA/DD [41], and is able to outperform

the original MOEA/D, particularly in many-objective problems (the authors of

MOEA/DD validated it with unconstrained and constrained benchmark problems

having up to 15 objectives). The Reference Vector Guided Evolutionary Algorithm

(RVEA) [42] is a very promising MOEA that provides very competitive results in

MOPs with complicated Pareto fronts (i.e., MOPs with irregular Pareto front shapes).

RVEA incorporates a novel method to preserve good candidate solutions, which

consists of an adaptive technique for adjusting the reference vectors in order to balance

the convergence and diversity of the solutions in high-dimensional objective spaces.

Regarding indicator-based MOEAs which rely on the use of reference sets, our

discussion will focus specifically on approaches that adopt either IGD+ or ∆p (both

of which are based on the use of reference sets). The first MOEA based on ∆p

was DDE [43], which uses differential evolution (DE) as its search engine. Its authors

showed that DDE was able to converge rapidly towards the true Pareto front and that

it could properly solve many-objective problems. However, this approach had some

limitations related to the use of ∆p (e.g., it does not properly work with multi-frontal

and degenerate MOPs). On the other hand, ∆p-EMOA [44] is another approach

based on the use of ∆p, which is inspired on SMS-EMOA [38] and incorporates a novel

mechanism for building the reference set. This algorithm builds a reference point set

by linearizing the non-dominated front of the current population. ∆p-EMOA was

designed to solve only bi-objective problems. Nevertheless, there is an extension

of this approach, which is able to solve three-objective problems [45]. Another

approach based on the ∆p indicator is the Reference Indicator-Based Evolutionary

Multi-Objective Algorithm (RIB-EMOA) [46]. This MOEA integrates a mechanism for

building a reference set by using a family of curves. RIB-EMOA uses a weight vector

set for approximating the reference point set. Although promising for many-objective

optimization, this approach is not able to solve MOPs with complicated Pareto fronts.

Another MOEA based on ∆p was proposed in [47]. This algorithm uses ε-dominance
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in order to build a reference point set. This novel algorithm was validated using

standard test functions, having from three to six objective functions. Its authors

showed that this algorithm is able to solve convex, concave and disconnected MOPs.

Additionally, they provided a promising solution to avoid the use of reference weight

vectors for guiding the optimization process.

In recent years, some researchers have proposed other types of indicator-based

reference-based MOEAs, such as R2-MOEA, which is based on the R2 indicator [31].

Same as when using ∆p, the use of R2 requires a reference set of weights in order to

compute its value. Another R2-based MOEA is the Many Objective Meta-heuristic

Based on the R2 indicator (MOMBI) [48]. This algorithm adopts the use of weight

vectors and the R2 indicator [31], and both mechanisms lead the optimization process.

Although MOMBI is very competitive, it loses diversity in high dimensionality. This

motivated the development of an improved version of this approach, called MOMBI-II

[49], which uses an aggregation function and statistical information for selecting the

candidate solutions.

In this thesis, our proposed MOEAs are categorized as indicator-based MOEAs

which rely on the use of reference sets. To be more specific, our MOEAs are based on

IGD+. In Chapter 5 and Chapter 8, we provide more details about these MOEAs.
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Multi-Objective Memetic

Algorithms

In order to design Multi-objective Evolutionary Algorithms (MOEAs) that are more

efficient for solving real-world problems, some researchers have proposed to hybridize

local search engines with MOEAs in order to drive the search toward the true Pareto

front more effectively and efficiently, giving rise to the so-called Multi-Objective

Memetic Algorithms (MOMAs). The main advantage of adopting this sort of

hybridization is to speed up convergence to the Pareto front. However, the use of

MOMAs introduces new issues, such as how to select the solutions to which the local

search will be applied and for how long to run the local search engine (the use of such

a local search engine has an extra computational cost). This chapter deal with the

design of new MOMAs. We start by providing a brief definition of a Multi-Objective

Memetic Algorithm and by explaining how it works. Additionally, we describe the

advantages and disadvantages of MOMAs and we review some examples of them that

have been proposed in the specialized literature.

4.1 About Multi-Objective Memetic Algorithms

The term “memetic” has its roots in the word “meme”, which was originally described

by Richard Dawkins in his classical book “The Selfish Gene” [3]. Pablo Moscato

introduced the concept of “Memetic Algorithm” to denote the combination of local

search heuristics with a population-based strategy. According to Moscato [50],

the hybridization of a global optimizer (e.g., an evolutionary algorithm) with a

Local Search engine (LS) is called a Memetic Algorithm (MA). These methods are
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inspired by models of natural systems which combine the evolutionary adaptation

of a population with individual learning. In the case of MAs, “meme” refers to

the strategies (e.g., local refinement or perturbation, just to name a few.) that

are employed to improve individuals (or solutions). The success of local search

techniques in the solution of combinatorial optimization problems [51, 52, 53, 54]

has motivated their incorporation into MOEAs, giving arise the well-known Multi-

Objective Memetic Algorithms (MOMAs). MAs and MOMAs share the same

structure (i.e., both include a global optimizer and local search engine). However,

MAs are able to solve single-objective optimization problems and the local search

engine is applied to a certain percentage of solutions. The neighborhood, where the

local search is applied, is created in an implicit way. On the other hand, MOMAs

need to create, in an explicit way, the neighborhood, since solving MOPs involves

finding a set of optimal solutions. The obvious choice for creating the neighborhood,

is to cluster solutions into different regions of the objective space. Although MAs and

MOMAs share the same structure, both change the rule of creating the neighborhood

for applying the local search engine. It is worth mentioning that combining a global

optimizer with a local search technique for specific MOPs is critical to achieve good

results, if the fitness function computation in real-world MOPs takes a considerable

amount of running time.

Thus, some researchers, such as [3], have raised some specific questions related to

the effectiveness and efficiency of Local Search (LS) engines:

• How often should the LS be applied based upon a probability, PLS?

• On which k solutions should LS be used given a neighborhood N(x) where x is

a current solution?

• How long should LS be run, defined by a time period T?

• How efficient does LS need to be versus its effectiveness?

These questions raise several issues when designing new MOMAs and it is worth

mentioning that we need to consider them for developing a MOMA. MOMAs are

employed both to explore and to exploit the objective space. A generic MOMA

is described in Algorithm 2 [3]. The algorithm starts with a population Pg which

contains N randomly generated individuals. The algorithm is divided into two main

processes: (1) the global optimizer and (2) the local search engine (LS). The aim of the

global optimizer is to explore the objective space. On the other hand, the local search

engine refines the optimization search along the Pareto front. LS techniques employ

Cinvestav Departamento de Computación



Multi-Objective Memetic Algorithms 31

Algorithm 2 Multi-Objective Memetic Algorithm

1: Randomly initialize population Pg with N individuals;

2: Evaluate fitness ~fm(~x) of each individual ~x ∈ Pg ;
3: while Termination condition false do
4: g = g + 1;
5: Select P′

g from P(g−1) based on fitness ~fk(~x) (k = number of objectives);

6: Apply evolutionary operators to P′
g −→ P′′

g ;

7: Local Search in P′′
g neighborhood; P′′

g −→ P′′′
g ;

8: Evaluate fitness ~fm(~x) of each individual in (P′′
g ,P

′′′
g );

9: Select Pg from (P(g−1),P
′
g,P

′′
g ,P

′′′
g );

10: end while

decision space neighborhoods whose selected points generate vectors in objective

space. As mentioned before, the local search process is controlled by a certain number

of iterations T and it is applied based upon a probability, PLS. The structure of a

generic MOMA has been used for solving combinatorial MOPs. However, to design

new MOMAs for solving MOPs in continuous spaces is not trivial, since to establish

the neighborhood we need to define regions of the objective space in an explicit way.

A possible way to deal with this problems is to cluster solutions (i.e., applying a

niching technique) or to establish reference points (see Figure 4.1). There is plenty

of evidence regarding the difficulties to improve a candidate solution when the LS

engine is launched within a MOMA [55, 56, 57, 58], since finding the direction on

which the LS engine has to make its next move depends on the following criteria: 1)

the definition of the neighborhood (i.e., the size of the neighborhood and the selection

the candidate solutions), 2) the number decision variables, and 3) the number of

objectives.

For the purposes of this thesis, we classify MOMAs depending on the type

of adopted LS engine. The two main categories are: mathematical programming

techniques and stochastic techniques. Figure 4.2 shows a taxonomy of MOMAs,

where each category is divided by the type of LS engine adopted. The use of

mathematical programming methods into MOMAs ensures finding local optimal

solutions (occasionally in a few steps), since they have specific rules to move from one

solution to another. However, these types of MOMAs have some limitations (e.g.,

they use gradient information to guide the search). On the other hand, MOMAs

based on stochastic techniques are able to solve non-differentiable MOPs. These are

considered as derivative free-based MOMAs. Both types of MOMAs constitute a good

alternative for solving MOPs in continuous search spaces, but it is worth mentioning
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Cluster 1

Cluster 2

Cluster 3 
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Figure 4.1: Graphical representation of two scenarios for applying the LS engine. The
left hand figure shows a case in which the LS engine is launched using several clusters
and the right hand figure shows the cases in which the LS is led by the reference
point. Both mechanisms are applied in objective space.

that the use of a particular type of MOMA depends on the type of MOP that we aim

to solve.

In the following, we review MOMAs, which are divided by two groups. The

first group includes the MOMAs based on the use of mathematical programming

techniques, which are shown in Section 4.2. On the other hand, Section 4.3 shows the

second group, which is composed by MOMAs based on the use of stochastic search

techniques.

4.2 Multi-Objective Memetic Algorithms based

on Mathematical Programming techniques

Gradient-based optimizers are very efficient at finding local minima in a few steps,

when the optimization problem being solved fulfills certain mathematical properties

(e.g., convexity). In single-objective numerical optimization, the gradient of the

function f to be optimized transmits useful information. For any dimensional point

~y, the gradient at the point ~x (∇f(~y)) is the direction of the greatest decrease of

f starting from point ~y. Hence, this direction can be used in an algorithm to find

the local minimum of f . An obvious question, therefore, is how to extend gradient-

based techniques to a multi-objective setting in an attempt to improve upon existing

MOEAs. In multi-objective optimization, the situation is evidently more complicated.

For instance, there are several good directions towards which we can possibly move

(at least one by each objective) based on gradient information. Nowadays, several
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Multi-Objective Memetic Algorithms (MOMAs)

MOMAs based on Mathematical Programming

Derivative-based

Steepest Descent Method

Conjugate Gradient Method

Continuation Method

Newton Method

Direct Search

Hooke-Jeeves Method

Nelder-Mead Method

MOMAs based on Stochastic Techniques

Scatter Search

Simulated Annealing

Tabu Search

Hill Climber

Population-based Techniques

Evolutionary Algorithms

Particle Swarm Optimization

Figure 4.2: Taxonomy of Multi-Objective Memetic Algorithms.
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researchers have proposed to hybridize a global optimizer with a gradient-based

technique or a direct-based method. They have shown that the use of these techniques

can address the optimization process with or without gradient information. In the

following, we review state-of-the-art MOMAs based on mathematical programming

techniques. We place special emphasis on the hybridization of MOEAs with gradient-

based LS engines and non-gradient-based LS engines (see Table 4.1).

4.2.1 Exploiting Gradient Information in Numerical Multi-

Objective Evolutionary Optimization

This MOMA was proposed by Bosman et al. [59]. This memetic algorithm

hybridizes the extension of the Estimation of Distribution Algorithm (EDA2), called

MIDEA [66], with a gradient-based LS engine. The LE engine adopts the conjugate

gradient method for leading the optimization process. The LS engine is applied to a

randomly chosen objective using the gradient of the current objective function. The

authors named the resulting strategy as Random-Objective Conjugate Gradients.

The hybridization scheme that they employed is a generational one. At the end

of a generation, i.e., after one step of selection, variation and re-evaluation are

finished, a set of candidate solutions is determined. The proposed MOMA launches

the gradient-based LS engine for each candidate solution, where each of them is

considered as a starting point. To launch the LS engine, the authors proposed to

adopt a clustering technique for defining the ratio ρp of the neighborhood. The

gradient-based local search operator is applied only as long as the current ratio is

below a certain percentage. Their experiments showed that the best way to exploit

gradient information in multi-objective optimization is to use a set of non-dominated

solutions. This MOMA is capable of improving multiple solutions at the same time,

which leads to a lower number of evaluations. Although they tested their approach

on differentiable MOPs, this MOMA, it was not adopted to solve real-world MOPs.

4.2.2 Combining Gradient Techniques for Numerical Multi-

Objective Evolutionary Optimization

This MOMA, which was proposed by Bosman et al. [60], is an extension of [59],

where the authors proposed to use a line search method as an LS engine. The LS

2Estimation of distribution algorithms (EDAs) are a class of evolutionary algorithms that build
at each generation a probabilistic model from the selected solutions (for more details about EDAs
see [66]).
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MOMA Global Opti-
mizer

LS engine Gradient
Informa-
tion

MOP Performance
Evaluation

Year

MOMA based
on MIDEA [59]

EDA Conjugate gradient
method

Yes No Generational
Distance
(GD)

2005

MOMA based
on MIDEA [60]

EDA Conjugate gra-
dient Method
and Combined-
Objectives repeated
Line-Search (CORL)

Yes No Generational
Distance
(GD)

2006

MOMA based
on NSGA-II
[61]

NSGA-II Schaffler’s Stochastic
Method (SSM)
and Timmel’s
Population-Based
Method (TPM)

Yes ZDT test
suite

Generational
Distance
(GD), spread,
and binary ε
indicator

2009

MOMA based
on SMS-EMOA
[58]

SMS-EMOA Steepest Descent
method and Hooke-
Jeeves method

Yes ZDT test
suite

Hypervolume 2009

MOMA based
on HCS [62]

NSGA-II and
SPEA

Hill Climber with
Sidestep (HCS)

Yes DTLZ and
ZDT test
suites

Generational
Distance
(GD) and
Inverted
Generartional
Distance
(IGD)

2010

MOMA based
on hypervolume
Indicator [63]

SMS-EMOA Newton’s method
and Ordinary Dif-
ferential Equation
(ODE) maximizing
the Hpervolume
indicator

Yes Convex
and dif-
ferentiable
MOPs

Hypervolume 2013

MOMA based
on MOEA/D
[64]

MOEA/D Directed Search
method and Contin-
uation method

Yes ZDT test
suite

∆p 2015

RDS-NSGA-II
[65]

R-NSGA-II Directed search
method (DS) and
Niching technique.

Yes1 DTLZ and
ZDT test
suites

Inverted Gen-
erational Dis-
tance (IGD)

2017

Table 4.1: Gradient-based MOMAs.
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engine tries to find non-dominated solutions using the gradient descent direction.

This MOMA shares the same structure of its predecessor. The LS engine optimizes

a single objective and finds the best non-dominated solution. This strategy is called

Combined-Objectives Repeated Line-Search (CORL). The global optimizer adopted

by this MOMA is MIDEA. The naive MIDEA uses a simple univariate factorized

probability distributions in each cluster, where each cluster is used for creating

the neighborhood of the LS engine. The authors only tested their MOMA using

differentiable MOPs, and they adopted the Generational Distance (GD) indicator

for assessing its performance. Their experiments showed that the proposed MOMA

was able to adapt the line search method to different types of MOPs. Additionally,

this proposed approach is able to adapt the line search algorithm for decreasing the

number of function evaluations performed.

4.2.3 Gradient Based Stochastic Mutation Operators in

Evolutionary Multi-objective Optimization

This MOMA, proposed by Shukla et al. [61], is constituted by the hybridization of

the Non-dominated Sorting Genetic Algorithm-II (NSGA-II) [67] and two classical

LS engines. The first LS engine incorporates the use of Scheffler’s Stochastic Method

(SSM). SSM is based on the solution of a set of stochastic differential equations. This

LS engine requires the objective functions to be twice continuously-differentiable,

where the gradients are obtained using a stochastic perturbation method (i.e., by

the mutation operator). On the other hand, the second LS engine adopts the

use of Timmel’s Population-Based Method (TPM). TPM creates feasible solutions

using the descent direction and a step size. This method guarantees finding non-

dominated solutions along the Pareto front. The authors proposed the use of the

Finite Differences (FD) method for estimating the gradient information. The authors

only tested their MOMA using the ZTD test suite, and adopted the Generational

Distance (GD), and the binary ε indicator indicator for assessing its performance.

Their numerical results show that multi-frontal MOPs affect the performance of the

LS engines since both of them converge towards local regions when dealing with such

problems.
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4.2.4 On the Hybridization of SMS-EMOA and Local Search

for Continuous Multi-Objective Optimization

This MOMA was proposed by Beume et al. [58], which hybridizes the S-Metric

Selection Evolutionary Multi-Objective Algorithm (SMS-EMOA [38]) with a gradient-

based LS engine and with a direct search-based LS engine. The first LS engine is based

on the use of the steepest descent method and the second LS engine uses the Hooke-

Jeeves method to lead the optimization process. The authors adopted both methods

to compare the performance of each LS engine in different scenarios (i.e., uni-modal

MOPs and multi-frontal MOPs). To apply the steepest descent method, the authors

proposed to compute the Jacobian of the MOP (i.e., Jf = ∇f1 · · · ∇fm). The LS

search engine computes a descent direction υ using the gradient information from the

Jacobian at a point x. The MOMA is based on a parameterized probability function to

control the LS engine. The authors only tested their MOMA using the ZTD test suite,

and they adopted the hypervolume indicator for assessing its performance. Their

experimental results on academic test functions showed an increased convergence

speed as well as an improved accuracy of the solutions set with respect to the stand-

alone SMS-EMOA. Their authors showed that the use of a direct search method

provides better performance than the use of the steepest descent method when it

solves multi-frontal MOPs.

4.2.5 HCS: A New Local Search Strategy for Memetic Multi-

objective Evolutionary Algorithms

This approach was proposed by Lara et al. [62], and hybridizes the Hill Climber

with Sidestep (HCS), used as an LS engine, with the Non-dominated Sorting

Genetic Algorithm-II (NSGA-II) and the Improved the Strength Pareto Evolutionary

Algorithm 2 (SPEA2 [68]). The authors proposed two ways to apply the hill climber

method: 1) with gradient information and 2) without gradient information. Gradient-

based HCS is capable of finding the descent direction using a QR-factorization of

the transposed of the Jacobian matrix of the MOP at the point ~x. On the other

hand, non-gradient-based HCS generates randomly descent direction υ, which are

computed by the geometry of the directional cones. The gradient-based LS engine uses

a continuation method for linearizing the Pareto front to refine the current solution.

The authors proposed to use the finite-difference method for approximating the

gradient of the MOP. The LS engine is launched when certain probability is reached

and is applied for each solution from the main population. The authors showed that
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the use of HCS as an LS engine combined with an MOEA improves performance.

However, the numerical results show that this MOMA has some difficulties when it

tries to solve multi-frontal MOPs. It is worth mentioning that this approach only

works with bi-objective MOPs.

4.2.6 The hypervolume based directed search method for

multi-objective optimization problems

As mentioned before, performance indicators have been used in the selection process

of a MOEA, giving rise the well-known indicator-based MOEAs. These types of

MOEAs have been shown to have good performance when solving complex MOPs. In

this work, the authors made the first attempt to incorporate a performance indicator

into an LS engine. This approach was proposed by Schütze et al. [63], and was called

SMS-EMOA-HVDS. The authors proposed to adopt the SMS-EMOA as a global

optimizer and Newton’s Method for the local search engine. Newton’s method uses

the gradient and the Hessian of the hypervolumen indicator for maximizing its value.

Thus, this local search engine is applied to whole solutions of the population at the

same time. It is worth mentioning that it is not trivial to compute the first and

the second derivative of the hypervolume indicator. For this reason, this approach

only works with bi-objective problems. The authors showed that the local search

significantly improves the performance of SMS-EMOA. Likewise, they showed that it

is possible to drive the search of LS using multi-objective performance indicators such

as the hypervolume. This approach is considered as an indicator-based LS engine.

This MOMA was tested using convex and differentiable MOPs, and it would be

interesting to extend it for solving many-objective problems.

4.2.7 The directed search method for multi-objective memetic

algorithms

This approach was proposed by Schütze et al. [69], and consisted of two mechanisms

to adopt a Direct search method: 1) using a gradient-based line search method to lead

the LS engine towards the Pareto front and 2) using the gradient-based continuation

method for sampling the shape of the Pareto front. For gradient-based line search,

the authors proposed to solve a root finding problem, which was defined as J(~x)υ = 0

(where J(~x) defines the Jacobian of the MOP at the point ~x). The authors established

that the greedy direction υ is maximized when < J(~x, υ) >= 0, i.e., the direction
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υ is orthogonal to the Jacobian at the point ~x. The authors used υ as the descent

direction for the LS engine. On the other hand, the continuation method adopted

two main procedures. The first procedure finds the predicted direction on which the

continuation method has to move. In order to predict the direction, the authors

proposed to compute the QR-factorization of the Jacobian vector at the point ~x.

After that, the continuation method corrects the predicted point along the Pareto

front. These LS engines were hybridized with MOEA/D [39], where the LS engine

is applied when certain percent is reached. Their experimental results on the ZDT

test suite showed an increased convergence speed as well as improved accuracy of the

solution set with respect to the use of the stand-alone MOEA/D.

4.2.8 A Multi-objective GA-Simplex Hybrid Algorithm

This MOMA, proposed by Zapotecas et al. [70], belongs to the class of MOMAs

based on the use of a direct search method. This approach was proposed by Koduru

et al. [71], and adopts a fuzzy dominance and the nonlinear simplex search algorithm

(normally called Nelder-Mead algorithm) [12]. The proposed algorithm combines the

exploratory nature of genetic algorithms with the exploitative behavior of simplex

search. The proposed memetic approach is employed to estimate the parameters of

a gene regulatory network for flowering time control in rice. The authors showed

that their hybridization worked as they expected. They showed that their approach

outperforms SPEA [68].

4.2.9 Diversifying Multi-Objective Gradient Techniques and

their Role in Hybrid Multi-Objective Evolutionary

Algorithms

This MOMA was proposed by Pirpinia et al. [72], the authors proposed a

diversification technique to exploit the objective space using gradient information. For

this sake, they used a Monte-Carlo method to obtain a discrete, spatially-uniformly

distributed approximation of the Pareto-optimal set. This memetic algorithm adopts

an Estimation of Distribution Algorithm (EDA) as its global optimizer. As mentioned

before, EDAs are among the most robust and powerful optimization algorithms,

providing the best balance between proximity and diversity. Their experimental

results show that this MOMA is able to successfully solve deformable medical image

registration problems.
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4.3 Multi-Objective Memetic Algorithms based

on Stochastic Algorithms

These MOMAs adopt a stochastic algorithm (e.g., an evolutionary algorithm,

simulated annealing or tabu search ) as an LS engine which is combined with a Multi-

Objective Evolutionary Algorithm which acts as the global optimizer. In the last

few years, the development of MOEAs hybridized with stochastic search methods has

attracted the attention of several researchers mainly because in this case no derivatives

are required to guide the search. In the following, we present some approaches that

have reported improvements with respect to the use of a stand-alone MOEA .

4.3.1 A Scatter Tabu Search Procedure for Non-Linear

Multi-objective Optimization

The authors proposed a Scatter Tabu Search Procedure for Non-Linear Multi-

objective Optimization (SSPMO) [55], which adopts scatter search as an LS engine.

This LS engine adopts the ||~x||∞ for guiding the search along the Pareto front. It

mimics the updating process used in a traditional scatter search implementation for

single objective optimization (this makes the LS engine to optimize a single objective

at a time, i.e., the approach LS engine optimizes the Lebesgue metric). The adopted

global optimizer is a multi-objective tabu search algorithm [73], which utilizes a

tabu list for avoiding repeated candidate solutions. It is worth mentioning that

this is a continuous version of tabu search (i.e., it can solve continuous MOPs) of

its original implementation. The authors mention that the scatter search phase of

SSPMO is designed to address the main problem found in the approximation methods

for multi-objective optimization (i.e., premature convergence towards local regions).

Their experimental results on the ZDT and the DTLZ test suites show an increased

convergence speed as well as an improved accuracy of the solution set with respect

to the use of a stand-alone optimization algorithm.

4.3.2 An Improved Particle Swarm Pareto Optimizer with

Local Search and Clustering

This is another stochastic-based MOMA, which was created by Ching et al. [74]. The

authors proposed to use of a Multi-Objective Particle Swarm Optimizer (MOPSO)

[57] as a global optimizer and simulated annealing as an LS engine. The main idea
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of the LS engine is to find new candidate solutions without converging towards local

regions. This MOMA adopts the Hierarchical clustering algorithm [56], which uses

a linkage criterion to determine the distance between two sets. The neighborhood

of the LS engine is created explicitly by the clustering algorithm. The authors show

that their proposed approach can avoid premature convergence, and the clustering

technique maintains diversity in the population. Their experimental results show

that this MOMA outperforms the stand-alone MOPSO regarding spread, spacing,

and convergence.

4.3.3 Multi-objective memetic algorithm based on decompo-

sition

This approach was proposed by Wali et al. [75], and hybridizes a decomposition-based

MOEA with a Particle Swarm Optimization (PSO) algorithm [22]. PSO acts as an LS

engine and it is able to refine the candidate solutions obtained by the global optimizer.

The LS engine starts when certain percentage is reached, and its neighborhood is

defined in an implicit way by the niche of the MOEA/D [76] (they adopt a version

on differential evolution). The authors conclude that the power of the Differential

Evolution (DE) operator is a good option for creating a global optimizer and that

PSO refines the optimization search along the Pareto front. Although this MOMA

outperforms MOEA/D when it solves some ZDT problems, this sort of hybridization

cannot solve some instances from the UF test suite [77].

4.3.4 MOEA/D with opposition-based learning for multi-

objective optimization problem

In this work, the authors proposed an Opposition-Based Learning technique (OBL)

as an LS engine, which considers an estimate and its corresponding opposite value

synchronously to obtain a better approximation for the optimal solution. The authors

show that opposite points are more likely to approach the optimal solution than

randomly generated points. The opposition-based learning strategy combines the

evolutionary operators (to be more specific the differential evolution operator) to

speed up the convergence of MOEA/D (i.e., the global optimizer). The opposition-

based operator is used to initialize the population, and it creates multiples initial

solutions to launch multiple LS engines. The opposition-based LS engine creates a

neighborhood based on the use of a hyper-rectangle, which is formed by an interval.
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The authors proposed a mechanism for changing the probability of applying the LS

engine. This mechanism can select on which moment the global optimizer or the

LS engine will be launched. This MOMA was tested on the ZDT, DTLZ and WFG

test suites. Their numerical results show that this MOMA outperforms MOEA/D in

terms of the IGD and hypervolume indicators.

4.3.5 A Decomposition based Memetic Multi-objective Al-

gorithm for Continuous Multi-objective Optimization

Problem

This MOMA was proposed by Wang et al. [78], and was one the first attempts

to hybridize a decomposition-based MOEA with a greedy algorithm based on DE

operators. The LS engine works as a hill climber method, but it uses the DE operators

to create new candidate solutions. The neighborhood of the LS engine shares the same

neighborhood structure of the global optimizer. The LS engine is applied when certain

percentage of the total number of function evaluations is reached for each generation

of the MOEA/D. This MOMA was tested on the ZDT test suites and Fonseca’s

test problem [79]. The experimental results show that this MOMA produces better

solutions than MOEA/D regarding IGD and hypervolume. This hybridization turns

of to be a good stochastic-based MOMA for solving muti-frontal MOPs.

4.3.6 Multi-objective Hybrid PSO Using ε-Fuzzy Dominance

This MOMA, proposed by Koduru et al. [80], hybridizes the Nelder-Mead algorithm

with a Particle Swarm Optimizer (PSO, for more details, see [81]) algorithm, where

PSO algorithm works as a global optimizer. A Nelder-Mead-based LS engine creates

each neighborhood using a clustering technique (to be more specific, the k-means

algorithm). The authors split the main population into smaller subpopulations (or

clusters), where each sub-population is improved separately. The MOMA is shown

to perform better than the original PSO on several test problems (from the DTLZ

and ZDT test suites) as well as for the optimization of a genetic model for flowering

time control.

In this thesis, we are interested in designing stochastic-based MOMAs that rely on

the use of performance indicators, since as mentioned before there is some evidence

that leads to believe that indicator-based MOMAs have shown to have a better
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performance with respect to other MOMAs (e.g., gradient-based MOMAs). Chapters

7 and 9 provide more details about our proposed MOMAs.

Cinvestav Departamento de Computación



44 Chapter 4

Cinvestav Departamento de Computación



Chapter 5

Multi-Objective Algorithm based

on the IGD+ Indicator

As mentioned before, Multi-Objective Evolutionary Algorithms (MOEAs) have been

developed during the last 30 years, from which the last 15 years, have had a very

intense activity [82, 83]. For several years, MOEAs adopted selection mechanisms

based on Pareto optimality [17, 23, 35]. However, recent studies have shown that

Pareto-based multi-objective evolutionary algorithms do not perform properly when

dealing with problems having more than three objectives (the so-called many-objective

optimization problems) [35]. For this reason, some researchers have investigated

the development of new selection schemes. One of the current research trends in

this area is to use a performance indicator in the current selection mechanism of

a MOEA because they provide a good ordering among sets that represent Pareto

approximations. A number of performance indicators have been proposed, from

which the hypervolume is, with no doubt, the most popular so far, mainly because

of its nice mathematical properties (it’s the only unary indicator which is known

to be Pareto compliant [36, 84, 31]). However, the main drawback of hypervolume-

based MOEAs is the high computational cost associated with the computation of

the exact hypervolume contributions, which becomes unaffordable in many-objective

optimization problems.

A possible way to deal with this limitation is to adopt a different indicator to

select solutions in a MOEA such as reference-based performance indicators. Here,

we propose a selection scheme based on the modified inverted generational distance

(IGD) indicator, which was recently proposed by Ishibuchi [33, 34] (for more details

see Chapter 2). This new version, called IGD+ has a very low computational cost,

even in high dimensional problems. Although, IGD+ is weakly Pareto compliant,
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its main drawback is that it requires a reference set to compute the indicator value.

In this chapter, we propose a MOEA based on the use of IGD+. We also propose a

technique to construct such a reference set and we show that the resulting MOEA has

a competitive performance with respect to two state-of-the-art MOEAs ( SMS-EMOA

[38] and MOEA/D [39]), even when dealing with problems having a high number of

objectives, while keeping a very affordable computational cost. The main goal of this

chapter is to analyze and exploit the properties of the IGD+ indicator. We show that

the IGD+ indicator is able to properly drive the search towards the Pareto Front of

a MOP. In the following section, we describe in detail our proposed approach.

5.1 General Framework

Our approach starts with a population Pt which contains N randomly generated

individuals. A new offspring is created by choosing two different parents from P . The

parents are recombined using Simulated Binary Crossover (SBX) and the resulting

offspring are mutated (in this case, using Polynomial-Based Mutation [85]). This

process is repeated until having λ offspring. The second step is to combine the

parents and the offspring population to form the so-called Q set. The new population

at generation t + 1 is generated using an IGD+-based selection mechanism. The

pseudo-code of the multi-objective approach is illustrated by Algorithm 3. Next, we

will provide more details of our proposed approach.

5.2 Selection Mechanism

Since we intend to use IGD+ in the selection mechanism of a MOEA, we propose

to transform the selection mechanism into a linear assignment problem (LAP). The

LAP is the problem of choosing an optimal assignment of n items (e.g., jobs) to m

machines (or workers). Formally, the LAP can be expressed as:

Given two sets, A = {a1, . . . , an} and T = t1, . . . , tn with the same cardinality, and

a cost function C : A × T → R and having Φ : A → T as the set of all bijections

between A and T , the LAP can be formulated as follows:

min
φ∈Φ

∑
a∈A

C(a,Φ(a)) (5.1)

Normally, the cost is also presented as a squared matrix C, where each element

Ci, j = C(ai, tj) represents the relationship between ai and tj.
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Algorithm 3 General Framework

Input: A MOP (F ), a stopping criterio, an uniform spread of N weight reference
vectors: λ1 . . . λN .

Output: Approximation of the MOP
1: t← 0;
2: Generate an initial population randomly (xi, . . . , xN) ∈ X to create P0 ;
3: while t < genmax do
4: Q ← Pt;
5: for each new offspring do
6: Apply evolutionary operators: Randomly select two parents from Pt to

produce ui;
7: Q ← Q

⋃
{F (ui)};

8: end for
9: Create the reference set (Z) using the supersphere curve method with the

current population Q;
10: Pt+1 ← IGD+-based selection mechanism (Z,Q); /*for more details see section

5.2*/
11: t← t+ 1;
12: end while
13: Q ← non-Dominated Pt;
14: return Q;

A linear assignment problem can be created in terms of a MOP, by using the

m-dimensional objective vectors which represent individuals from the population and

the reference set. So, a cost matrix is created using the modified distance d+ between

each element in the reference set and all objective vectors in the population. This

transformation aims to find the best relationship between them. As evidenced in [86],

the solution of this LAP allows convergence to the true Pareto front and, at the same

time, produces a good distribution of solutions along the Pareto front. It is worth

noticing, however, that the reference set needs to be well-distributed in objective

function space and needs to dominate our current approximation of the Pareto front.

In order to solve the LAP, we can make use of the Kuhn-Munkres Algorithm, also

known as the Hungarian algorithm, which is able to solve LAP instances in polynomial

time (it is O(n3) [87] for squared matrices). An extension of this algorithm for

rectangular matrices was introduced by Bourgeois [88]. The extension to rectangular

matrices allows the algorithm to operate in situations where the numbers of reference

points and individuals from the population are not equal.

We need to normalize the objective vectors of the current population, in order to
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handle objectives having different units. This normalization can be expressed as:

f ′i =
fi
ui

(5.2)

where ~u ∈ Rm and its ith-element is defined as ui = max
j=1,...,µ+λ

fi(~xj), i = 1, . . . ,m. The

second step is to compute the C cost matrix and we can then express each element

of the C cost matrix as follows:

Ci,j = d+(ai, zj), i = 1, . . . , n, j = 1, . . . , n. (5.3)

The solution to our assignment problem is found by identifying the combination

of values in C resulting in the smallest sum. This solution corresponds to the best

relationship of the current points of the population with respect to a reference set.

5.3 Approximating the Reference Set

In most multi-objective optimization problems, the geometrical shape of the true PF

is unknown. However, we can approximate certain types of PFs (i.e., at least those

having a smooth convex or concave surface) using superspheres. A γ-supersphere is

a type of curve and it is defined as follows:

{(y1, . . . , ym) ∈ Rm
+ | yγ1 + · · ·+ yγm = 1} (5.4)

where γ ∈ R+ is an arbitrary and fixed value. We only consider the “positive”

parts of the γ-superspheres. According to [89], we can view the positive parts of the

γ-superspheres as concave if γ > 1 or as convex if 0 < γ < 1.

Clearly, we can see that a set of weight vectors satisfies equation (5.4) when γ = 1,

since a weight vector is defined as:

Definition 5.1. Let ~w = [w1, . . . , wm] ∈ Rm. We say that ~w is a weight vector if∑m
j=1 wj = 1 and wj ≥ 0.

In order to build the reference set, we assume that we have a set of weight vectors

which is used to construct the reference set. We need to find the γ-value which will

be used to transform the weights set into the reference set.
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Clearly, in order to find the γ-value, equation (5.4) would be come a root-finding

problem and we can say that the γ-value needs to satisfy:

yγ1 + · · ·+ yγm − 1 = 0 (5.5)

For solving equation (5.5), we propose to use Newton’s method for approximating

the γ-value. Now, we can see that the next approximation to the root is defined as:

γk+1 = γk −
(
∑m

j=1 y
γk
j )− 1∑m

j=1 y
γk
j log(yj)

(5.6)

Then, the computation of the reference set is described according to the following

description.

Let Q be the current set which was created combining the parent and offspring

population. Thus, the reference set is created by Algorithm 4.

Algorithm 4 Computation of the reference set which is based on supersphere curves

Input: A current set Q ⊂ Rm and a set of weighted vec-
tors W ⊂ Rm, where m is the number of objectives

Output: The reference set Z which is the best approximation of the set Q
1: Finding the nondominated points from Q and

save to Q′
2: for each ~p ∈ Q′ do
3: for each ~w ∈ W do
4: Compute d⊥(~p, ~w) =‖ ~p− ~wT~s~w/ ‖ ~w ‖2‖
5: end for
6: Assign r(w) = argmin

~p∈Q′
d⊥(~p, ~w)

7: end for
8: j ← 0
9: for each ~w ∈ W do

10: stepsize← ~pr(~w)· ~w/ ‖ ~w ‖
11: ~y ← stepsize ∗ ~w
12: Approximate the γ value using equation (5.5)
13: Compute a supersphere point as zj,k ← wγj,k for all j = 1, . . . ,m
14: j ← j + 1
15: end for

In the first part of the algorithm, we find the non-dominated points which will be

used as a reference for building the curve (these points establish the non-dominated

region). After that, we search the best relationship between each weighted vector

~w and the non-dominated points. For this reason, we calculate the perpendicular
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distance between both sets. In order to construct the reference surface, we project

the nearest non-dominated point to a specific weight vector ~w. Once this is done, we

can search the γ-value using Newton’s method, which is described by equation (5.6).

Finally, the reference point is computed using the γ-value. We can see that this

process is repeated for all weight vectors of set Z.

It is worth noting that this approach uses a predefined set of weights in order

to ensure diversity. We adopted Das and Dennis’ approach which places points on

an (m − 1)-dimensional hyperplane [90]. The total number of vectors is represented

by the combinatorial number CH+m−1
m−1 , where H is the number of divisions of the

objective space.

5.4 Experimental results

We compare the performance of our proposed algorithm with respect to that of

two state-of-the-art MOEAs. The first is the S Metric Selection-Evolutionary Multi-

objective Optimization Algorithm (SMS-EMOA) [38]. SMS-EMOA is a steady state

evolutionary algorithm in which each newly created solution is ranked and a solution

is removed from the worst ranked front in order to keep the same population size. The

solution that contributes the least to the hypervolume of the worst ranked front is then

discarded (see [38] for details). We use here a version that incorporates the algorithm

proposed in [91] for estimating the hypervolume using Monte Carlo sampling,

instead of the exact hypervolume calculations adopted in the original implementation

of SMS-EMOA. The second approach adopted for our comparative study is the

multi-objective evolutionary algorithm based on decomposition (MOEA/D) [39],

which transforms a multi-objective problem into several single-objective optimization

problems which are simultaneously optimized.

5.4.1 Test problems

For our comparative study, we adopted two benchmarks: the Deb-Thiele-Laumanns-

Zitzler (DTLZ) test suite [92] and the Walking-Fish-Group (WFG) test suite [93].

These problems include aspects such as separability and multifrontality which make

them more difficult to solve.
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Problem Reference points
DTLZ1 (1, 1, 1, . . . , 1)

DTLZ2-6 (2, 2, 2, . . . , 2)

Table 5.1: Reference points used for the hypervolume indicator.

5.4.2 Methodology

For our comparative study, we decided to adopt the hypervolume indicator, which

assesses both convergence and maximum spread along the Pareto front. To compute

the hypervolume indicator, we used the reference points shown in Table 5.1.

Additionally, we also compared the running time of each MOEA, which was

measured in seconds.

5.4.3 Parameterization

In the DTLZ test suite, the total number of decision variables is given by n = m+k−1,

where m is the number of objectives and k was set to 5 for DTLZ1 and to 10 for

DTLZ2-6. The number of decision variables in WFG was set to 24, and the position-

related parameter was set to m− 1.

The parameters of each MOEA used in our study were chosen in such a way that

we could do a fair comparison among them. The distribution indexes for the SBX and

polynomial-based mutation operators [85], used by our approach and SMS-EMOA,

were set as: ηc = 20 and ηm = 20, respectively. The crossover probability was set to

pc = 0.9 and the mutation probability was set to pm = 1/L, where L is the number of

decision variables. Otherwise, the number of samples was set to 100,000. The total

number of function evaluations was set in such a way that it did not exceed 60,000.

In MOEA/D and our proposed approach, the number of weight vectors was set

to the same value as the population size. The population size N is dependent on H

which specifies the number of divisions in objective space. H was set in such a way

that N took a value not greater than 130. MOEA/D used the Tchebycheff approach

with a neighborhood size of 20. The main characteristics of the hardware used for

the experiments are the following: An Intel Core i7-3930k CPU running at 2.30 GHz,

with 8GB of RAM.
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Objectives H Population size
2 119 120
3 14 120
4 7 120
5 5 126
6 4 126
7 3 84
8 3 120

Table 5.2: Parameterization values

5.5 Discussion of Results

Table 5.3 provides the average hypervolume over the 30 independent executions of

each compared MOEA for each instance of the DTLZ test suite. The best results are

presented in boldface. We used Wilcoxon’s rank sum for the statistical assessment

of our results. It is clear that the winner in this experimental study is our proposed

approach, since it was able to outperform SMS-EMOA-HYPE in all problems. We

can observe that the null hypothesis can be rejected in all cases (the medians of

two results are distinct), which means that the differences obtained are statistically

significant.

Table 5.4 shows the comparison of results with respect to MOEA/D. As can be

observed, our approach was able to outperform MOEA/D in twenty-four cases and

in a few more, both approaches obtained similar results. The null hypothesis cannot

be rejected in only three cases (DTLZ2 and DTLZ6 with 7, 2 and 6 dimensions,

respectively). In the other cases, the differences obtained are statistically significant.

For DTLZ5, MOEA/D performs better than our proposed approach in all the

instances of this problem. The reason is probably that the true Pareto front of

this problem is linear, which makes the approximations produced by our approach to

converge to a single region. Table 5.5 provides the average running time over the 30

independent executions of each compared MOEA. Table 5.5 indicates that MOEA/D

has the lowest average running times. However, our proposed approach was able to

solve the problems in a reasonably low running time (if we consider the running time of

SMS-EMOA, which would be significantly higher if exact hypervolume contributions

had been computed). Overall, our proposed approach produced results that are very

competitive, while requiring a reasonably low computational cost.

Figures 5.1, 5.2, 5.3, 5.4 present a graphical representation of the approximations

of the Pareto front obtained by our proposed approach in some of the WFG test

problems adopted with 24 variables and 3 objectives. These plots correspond to the
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mean hypervolume value from 30 independent executions. It is interesting to note that

our proposed approach is able to properly converge to the true Pareto front of WFG2

which is disconnected. This confirms that the tendency of selection mechanism based

on indicators such as IGD+ is an effective way to solve many-objective problems.
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Figure 5.1: Solutions obtained by
IGD+-EMOA for WFG2.

 0  0.5  1  1.5  2  2.5  3  0  0.5  1  1.5  2  2.5

 0

 1

 2

 3

 4

 5

 6

 7

 f3

WFG3

 f1
 f2

 f3

Figure 5.2: Solutions obtained by
IGD+-EMOA for WFG3.
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Figure 5.3: Solutions obtained by
IGD+-EMOA for WFG4.
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Figure 5.4: Solutions obtained by
IGD+-EMOA for WFG5.

5.6 Final Remarks

We have proposed a new indicator-based approach, which relies on the use of reference

sets, for solving many-objective problems. This method constitutes a proof-of-

principle regarding the suitability of the IGD+ indicator to approximate the true

Pareto Front of a MOP. The core idea of our proposed algorithm is to adopt the

IGD+ performance indicator in the selection mechanism of a MOEA. Our proposal

includes a new method for constructing the reference set which is based on Newton’s

Method using super-spheres. Our results indicate that our proposed approach is

very competitive with respect to two state-of-the-art MOEAs (SMS-EMOA and
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MOEA/D), while requiring a relatively low computational cost (lower than that

required by SMS-EMOA). It is worth noticing that the technique for building the

reference set produces a good approximations to problems with concave, convex and

disconnected Pareto fronts.

The main motivation for the algorithm presented in this chapter, has been to show

that it is possible to design a competitive MOEA based on the IGD+ indicador. This

fact implies that it is possible to create a new Multi-Objective Memetic Algorithm

based on the IGD+ indicator, where the local search engine is led by a reference point

set. It is worth mentioning that the reference point set could be established by the

Decision Maker, which would allow to explore only a single region of the search space

rather than all of it.

Motivated by the last advantage of this proposed approach, in Chapter 6, we

describe a proposal that incorporates the IGD+ indicator into a MOMA.
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Objectives IGD+-EMOA (IH) SMS-EMOA (IH) P (H)
m DTLZ1
2 0.873783426 0.603475637 0.0000(1)
3 0.97402027 0.630213232 0.0000(1)
4 0.994388397 0.661586784 0.0000(1)
5 0.9919105 0.768368948 0.0000(1)
6 0.892359232 0.776399218 0.0000(1)
7 0.854507595 0.738417486 0.0000(1)
8 0.861695367 0.814606014 0.0000(1)

DTLZ2
2 3.210821317 1.863197179 0.0000(1)
3 7.421812488 3.375262182 0.0000(1)
4 15.56741135 6.747488035 0.0000(1)
5 31.66763799 14.90159836 0.0000(1)
6 58.07564274 33.83189984 0.0000(1)
7 116.7077942 65.20591399 0.0000(1)
8 201.1809779 150.6662452 0.0000(1)

DTLZ3
2 3.204155341 1.88237071 0.0000(1)
3 7.355071834 6.411731511 0.0000(1)
4 15.53694896 14.12060072 0.0000(1)
5 31.63537503 30.64233556 0.0000(1)
6 56.53710167 59.64630155 0.0000(1)
7 96.20407137 60.7350761 0.0000(1)
8 198.890958 129.4343786 0.0000(1)

DTLZ4
2 3.210795477 2.083725111 0.0000(1)
3 7.082647895 3.866538974 0.0000(1)
4 15.20291716 7.715636261 0.0000(1)
5 29.27224775 17.69125542 0.0000(1)
6 59.24047887 39.52867707 0.0000(1)
7 113.5313178 74.07283972 0.0000(1)
8 245.9811967 168.8209989 0.0000(1)

DTLZ5
2 3.210822115 1.859887057 0.0000(1)
3 4.042831297 3.575537122 0.0000(1)
4 8.003414255 6.12118542 0.0000(1)
5 16.00248339 11.30170488 0.0000(1)
6 31.99996981 21.59984771 0.0000(1)
7 63.99998659 39.53980236 0.0000(1)
8 127.999845 80.08300234 0.0000(1)

DTLZ6
2 3.106126387 1.714714707 0.0000(1)
3 5.66835877 3.019997564 0.0000(1)
4 7.437133923 5.724252402 0.0000(1)
5 14.82343849 10.70214298 0.0000(1)
6 29.76776111 20.11681978 0.0000(1)
7 58.53573762 36.44267101 0.0000(1)
8 117.596708 75.84189126 0.0000(1)

Table 5.3: Results obtained in the DTLZ test problems by SMS-EMOA(Hype)
and our proposed IGD+-EMOA, using the hypervolume indicator (IH). The third
column shows the results of the statistical analysis applied to our experiments using
Wilcoxon’s rank sum, where P is the probability of observing the given result (the
null hypoteshis is true). If the P-value is small, this indicates that the null hypothesis
can be rejected at the 5% level and we can conclude that the two results are distinct
(H = 1) and their difference is statistically significant.
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Objectives IGDplus-EMOA (IH) MOEA/D (IH) P (H)
m DTLZ1
2 0.873783426 0.873862461 0.0000(1)
3 0.97402027 0.968914097 0.0000(1)
4 0.994388397 0.970400938 0.0000(1)
5 0.9919105 0.724927498 0.0000(1)
6 0.892359232 0.762830249 0.0001(1)
7 0.854507595 0.656643222 0.0000(1)
8 0.861695367 0.402984134 0.0000(1)

DTLZ2
2 3.210821317 3.210869248 0.0000(1)
3 7.421812488 7.382922569 0.0000(1)
4 15.56741135 13.31884553 0.0000(1)
5 31.66763799 27.15582568 0.0000(1)
6 58.07564274 53.83549288 0.0000(1)
7 116.7077942 115.8005853 0.2890(0)
8 201.1809779 216.0379868 0.0000(1)

DTLZ3
2 3.204155341 3.206666982 0.0009(1)
3 7.355071834 7.374166479 0.0215(1)
4 15.53694896 12.91659236 0.0000(1)
5 31.63537503 24.2992914 0.0000(1)
6 56.53710167 48.35142688 0.0000(1)
7 96.20407137 100.9289111 0.0000(1)
8 198.890958 224.3638975 0.0000(1)

DTLZ4
2 3.210795477 2.395550932 0.0001(1)
3 7.082647895 6.233954506 0.0003(1)
4 15.20291716 11.7039561 0.0000(1)
5 29.27224775 22.23443593 0.0000(1)
6 59.24047887 47.35243703 0.0000(1)
7 113.5313178 93.66821328 0.0000(1)
8 245.9811967 184.5468339 0.0000(1)

DTLZ5
2 3.210822115 3.210869361 0.0000(1)
3 4.042831297 6.091452678 0.0000(1)
4 8.003414255 10.80302487 0.0000(1)
5 16.00248339 16.15695638 0.0037(1)
6 31.99996981 37.8234936 0.0000(1)
7 63.99998659 78.10923993 0.0000(1)
8 127.999845 150.5444428 0.0000(1)

DTLZ6
2 3.106126387 3.056665166 0.0000(1)
3 5.66835877 5.801128621 0.5792(0)
4 7.437133923 8.877262691 0.0000(1)
5 14.82343849 11.95437872 0.0000(1)
6 29.76776111 28.53823221 0.5793(0)
7 58.53573762 71.77293638 0.0000(1)
8 117.596708 131.4029039 0.0000(1)

Table 5.4: Results obtained in the DTLZ test problems by MOEA/D and our
proposed IGD+-EMOA, using the hypervolume indicator (IH). The third column
shows the results of the statistical analysis applied to our experiments using
Wilcoxon’s rank sum, where P is the probability of observing the given result (the
null hypothesis is true). If the P-value is large, the data do not give any reason to
reject the null hypothesis and we can conclude that the two results are the same
(H = 0). Otherwise, if the P-value is small, the null hypothesis can be rejected at the
5% level and the two results are distinct (H = 1) and their difference is statistically
significant.
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Objectives IGD+-EMOA MOEA/D SMS-EMOA
m DTLZ1
2 5.638792 0.451672 929.482702
3 10.521783 0.529422 1230.958571
4 13.902771 0.245426 2111.873245
5 28.46273 0.435324 2014.102227
6 32.162026 0.566348 2082.745213
7 19.710173 0.27731 3510.322044
8 46.412152 0.067746 5038.534303

DTLZ2
2 29.264559 0.618055 1259.578953
3 42.169365 0.694392 2200.86988
4 54.027164 0.32018 3689.959608
5 90.588769 0.575118 4539.503577
6 107.13428 0.86347 5563.185747
7 12.719386 0.337427 5290.054592
8 27.656435 0.085446 6934.750096

DTLZ3
2 8.252379 0.573409 800.213934
3 49.478735 0.662682 999.843201
4 23.923694 0.295604 1185.619497
5 48.132021 0.533946 1052.808177
6 74.052142 0.733004 1505.031887
7 15.886005 0.337056 3180.209343
8 27.307364 0.076317 4069.487323

DTLZ4
2 7.620927 0.49825 1353.118432
3 10.11606 0.698973 2337.602668
4 13.871761 0.265944 3948.222166
5 22.35422 0.55728 4213.046424
6 25.576331 0.78043 5512.432487
7 15.039888 0.315422 5241.15327
8 31.035888 0.070369 6897.864537

DTLZ5
2 7.983771 0.600385 1238.279526
3 26.447281 0.714718 1977.824246
4 19.755846 0.242651 4047.525445
5 22.538165 0.315002 3862.21531
6 21.331467 0.334229 6723.838925
7 72.28353 0.347957 6149.572591
8 23.338065 0.397939 8314.476698

DTLZ6
2 7.171413 0.578733 2007.65159
3 33.712275 0.623824 2526.082216
4 44.556186 0.200934 3039.004372
5 52.202535 0.472714 3307.124979
6 56.476568 0.349478 3985.982441
7 43.149346 0.296292 4645.460144
8 99.324617 0.384934 7241.438203

Table 5.5: Here, we show the computational time (measured in seconds) required by
each execution of the MOEAs compared. All algorithms were compiled using the
GNU C compiler and they were executed on the same computer.

Cinvestav Departamento de Computación



58 Chapter 5

Cinvestav Departamento de Computación



Chapter 6

A new selection mechanism based

on the IGD+ Indicator

6.1 Introduction

In this chapter, we propose a selection mechanism (called IGD+-H) which is based

on the combination of the Inverted Generational Distance+ (IGD+) indicator [33, 34]

and the Kuhn-Munkres’ (Hungarian) algorithm to solve Linear Assignment Problems

(LAPs). The proposed selection scheme is compared with respect to other selection

mechanisms (i.e., steady-state selection mechanism) based on the IGD indicator and

with respect to the use of the ∆p indicator. Our proposed technique is incorporated

into a MOEA and is validated using standard test problems. We show that our

proposed IGD+-H-based selection mechanism is able to achieve a significant speedup

(of up to 200x) with respect to the exclusive use of any of the indicators adopted

in our study. We analyze here the impact on this selection mechanism (using

a transformation to a linear assignment problem) when it interacts with different

indicators based on reference sets and we show that such a mechanism is able to

drive the search towards the Pareto Front. Indeed, it is possible to incorporate our

proposed IGD+-H selection mechanism into a multi-objective memetic algorithm as

we will see later on. This chapter is organized as follows. Section 6.2 describes our

proposed approach. Our experimental study is presented in Section 6.3. Finally,

Section 6.4 provides our final remarks.
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6.2 Our Proposed Approach

6.2.1 General Framework

In Chapter 5, we described a new MOEA based on the use of the IGD+ indicator.

Here we adopt the same structure of the general framework previously proposed

(i.e., the general framework of IGD+-MOEA), which starts with a population Pt
which contains N randomly generated individuals. A new offspring is created by

choosing two different parents from P . The parents are recombined using evolutionary

operators (we adopted Simulated Binary Crossover (SBX) and Polynomial-based

Mutation [85]). Thereafter, the resulting offspring are added to the new set. This

process is repeated until having a total of λ offspring. After that, the algorithm

combines the parents and the offspring populations to form the so-called Q set. The

new population at generation t+ 1 is generated using different selection mechanisms.

The pseudo-code of the multi-objective approach is presented in Algorithm 5. Next,

we will provide more details of the technique that we propose for selecting the new

population.

Algorithm 5 General Framework

Input: A MOP (F ), a stopping criterion and a uniform spread of N reference vectors
Z.

Output: Approximation of the MOP
1: t← 0;
2: Generate an initial population randomly (xi, . . . , xN) ∈ X to create P0 ;
3: while t < genmax do
4: Q ← Pt;
5: for each new offspring do
6: Apply evolutionary operators: Randomly select two parents from Pt to

produce ui;
7: Q ← Q

⋃
{F (ui)};

8: end for
9: Pt+1 ← IGD+-based selection mechanism (Z,Q);

10: t← t+ 1;
11: end while
12: Q ← non-Dominated Pt;
13: return Q;
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6.2.2 Selection Mechanism

We propose to use two different selection techniques. The first technique transforms

the selection mechanism into a Linear Assignment Problem (LAP), which uses

different cost functions for defining the LAP. This selection mechanism is the same

that uses the IGD+-EMOA (see Chapter 5). In order to explain our technique, we

need to provide first more details about the LAP.

The LAP consists choosing an optimal assignment of n items (e.g., jobs) to m

machines (or workers). Mathematically, the LAP can be expressed as: Given two

sets, A = {a1, . . . , an} and T = {t1, . . . , tn} with the same cardinality, and a cost

function C : A× T → R and having Φ : A→ T as the set of all bijections between A

and T , the LAP can be formulated as follows:

min
φ∈Φ

∑
a∈A

C(a,Φ(a)) (6.1)

Normally, the cost of the problem is also described as a squared matrix C, where

each element Ci,j = C(ai, tj) represents the relationship between ai and tj. The multi-

objective selection mechanism seems to be very related to the LAP. Since the LAP is

commonly solved using jobs and workers, here we want to find the best relationship

between reference points and candidate solutions.

The cost matrix in terms of a MOP is created as:

Ci,j = d+ (ai, zj), i = 1, . . . , |A|, j = 1, . . . , |Z|. (6.2)

where ai ∈ Q is the ith point from the population Q, zj ∈ Z is the reference point and

d+ is the modified Euclidean distance. Analogously, that process can be combined

with the normal Euclidean distance.

In order to solve the LAP, we can make use of the Kuhn-Munkres Algorithm,

also known as the Hungarian algorithm, which is able to solve LAP instances in

polynomial time O(n3) [87] for squared matrices. An extension of this algorithm for

rectangular matrices was introduced by Bourgeois [88]. The extension to rectangular

matrices allows the algorithm to operate in situations where the numbers of reference

points and individuals from the population are not equal. The optimal solution to

our assignment problem is found by identifying the combination of values in the

cost matrix C resulting in the smallest sum. This solution corresponds to the best

relationship between the current points of the population and the elements of a

reference set. Example 6.1 (see Figure 6.1) shows a cost matrix with 9 rows and
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

0.350 0.727 0.007 0.165 0.221
0.007 0.943 0.223 0.381 0.064
0.485 0.567 0.138 0.006 0.356
0.663 0.011 0.317 0.183 0.534
0.130 0.884 0.163 0.322 0.005
0.671 0.061 0.325 0.191 0.542
0.677 0.025 0.331 0.197 0.548
0.349 0.726 0.006 0.164 0.219
0.360 0.722 0.014 0.160 0.231


Figure 6.1: Initial Cost matrix with 9 solutions and 5 reference points, which was
generated using the modified Euclidean distance for DTLZ2.

0.343 0.717 0.002 0.159 0.216
0.000 0.933 0.217 0.375 0.059
0.478 0.556 0.133 0.000 0.351
0.656 0.000 0.311 0.177 0.529
0.124 0.873 0.157 0.316 0.000
0.665 0.050 0.320 0.185 0.538
0.671 0.014 0.325 0.191 0.544
0.342 0.715 0.000 0.158 0.215
0.353 0.711 0.008 0.153 0.226


Figure 6.2: Final Cost matrix with 9 solutions and 5 reference points, which contains
the optimal solution of the LAP for DTLZ2.

5 columns, where the number of columns expresses the cardinality of the reference

set. We can see in Figure 6.2 that the ith row from the final cost matrix with zero

values represents the selected candidate solution. The optimal solution of the LAP

is obtained by selecting the solutions 1, 2, 3, 4 and 7 from the final cost matrix. The

smallest sum of the cost matrix is 0.007+0.006+0.011+0.005+0.006 = 0.035, which

represents the best relationship between the reference set and the objective solutions.

Figure 6.3 shows an example of how the selection technique works. In this case,

each reference point is represented by a white square and the optimal solution of the

LAP is indicated using black circles. Our proposed selection mechanism works in the

same manner as the one proposed in Chapter 5, but with one important difference:

here, the construction of the reference set is performed at the beginning of the search

and remains static (i.e., without changes), whereas we mentioned that it is possible

to compute the reference set at each generation.

Finally, we adopted another way to reduce the size of the current population Q
(for more details see [46]). This selection mechanism chooses the N best individuals
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Figure 6.3: Example of our proposed selection mechanism based on IGD+ and the
Hungarian Algorithm for DTLZ1 with 20 reference points.

from Q using any performance indicator such as IGD, ∆p or IGD+. This selection

mechanism works as the one adopted by SMS-EMOA, which discards one solution

from the population. In SMS-EMOA, the individual that is removed is the one that

minimizes the exclusive contribution of the hypervolume indicator. This algorithm

adopts a steady-state selection mechanism. The exclusive contribution of a solution

using any reference set indicator (Ix) is described as:

EIx(a,A,Z) = Ix(A\{a},Z). (6.3)

where A is the population and Z is the reference set. However, this process works

only if the cardinality of the offspring population is one. As mentioned before, this

selection mechanism woks with the IGD, ∆p and IGD+ indicators.

6.2.3 Approximating the Reference Set

There are several methods available for building the reference set. One of them was

proposed by Menchaca et al. in [47], and uses ε-dominance to establish a lower region.

They proposed to use an identification vector for splitting the space into hypercubes.

Each component of the vector keeps the ε distance, which is established for each

dimension of the space. This is a novel approach but, unfortunately, it does not

provide solutions with a good (i.e., uniform) distribution. There is another approach,

which was explained in Chapter 5, which tries to approximate the reference set using

super-spheres.

In this study, we aim to analyze the impact of using different selection mechanisms

based on reference sets. For this reason, in order to approximate the reference set,
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Figure 6.4: Performance comparison among MOEAs, where each plot was obtained
from 30 independent executions solving DTLZ1 and DTLZ2 with 2 to 8 objectives.

we used a sample of the true Pareto front, which was randomly generated with 3000

points. The size of the reference set was also reduced to N points. Indeed, we

selected the N points that maximize the hypervolume indicator. In order to do this,

we adopted a greedy algorithm based on the hypervolume contributions to reduce the

number of reference points to a certain specific size.

6.3 Experimental results

We compared the performance of each selection mechanism previously discussed.

For this sake, each selection mechanism was included into a general MOEA (see

subsection 6.2.1). The parameters of each MOEA used in our study were chosen in

such a way that we could do a fair comparison among them and we could adopt the

same evolutionary operators for each version of the MOEA.

6.3.1 Test problems

For our comparative study, we adopted the Deb-Thiele-Laumanns-Zitzler (DTLZ)

test suite [92]. This set of problems includes aspects such as separability and multi-
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Figure 6.5: Performance comparison among MOEAs, where each plot was obtained
by 30 independent executions solving DTLZ5 and DTLZ6 with 2 to 7 objectives.
Table 6.1: Reference points used to compute the Hypervolume indicator for each
DTLZ test problem.

Problem Reference points
DTLZ1 (1, 1, 1, . . . , 1)

DTLZ2-6 (2, 2, 2, . . . , 2)

frontality which make them more difficult to solve. We selected problems in such a

way that we had different Pareto front shapes such as linear, concave and degenerate

linear, since we aimed to observe the impact of each of the selection mechanisms

previously discussed.

6.3.2 Methodology

For our comparative study, we decided to adopt the hypervolume indicator, which

assesses both convergence to the true Pareto front and maximum spread along it.

To compute IH , we used the reference points shown in Table 6.1. Additionally, we

also compared the running time of each version of MOEA, which was measured in

minutes.
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6.3.3 Parameterization

In the DTLZ test suite, the total number of decision variables is given by n = m+k−1,

where m is the number of objectives and k was set to 5 for DTLZ1 and to 10 for

DTLZ2 to DTLZ6. The number of objectives was set from 2 to 8. The parameters of

each MOEA used in our study were chosen in such a way that the MOEAs were able

to converge to the true Pareto Front of the test instances adopted. The distribution

indexes for the SBX and polynomial-based mutation operators [85], adopted by each

MOEA, were set as: ηc = 20 and ηm = 20, respectively. The crossover probability

was set to pc = 0.9 and the mutation probability was set to pm = 1/L, where L

is the number of decision variables. The total number of function evaluations was

not allowed to exceed 50,000. We used a population size of 110 individuals and we

iterated during 450 generations. For each MOEA, we used the same reference set,

which was generated for each test problem (DTLZ1 to DTLZ6). Our experiments

were run on a computer with an Intel Core i5-3930k processor running at 2.70 GHz,

with 8GB of RAM.

6.3.4 Numerical Results

Table 6.2 provides the average hypervolume value over the 30 independent executions

of each compared MOEA for each instance of the DTLZ test suite. The best results

are presented in boldface and grey-colored cells show the second best results. The

running time is shown in parentheses. It is clear that the winner in this experimental

study is the IGD+-based selection mechanism since the IGD+-based MOEAs were

able to outperform both the IGD-based MOEAs and the ∆p-based MOEA in all the

test problems in terms of the hypervolume indicator.

We can observe in Figures 6.4 and 6.5 that the medians and variances of all results

are different, which means that the differences obtained are statistically significant.

Likewise, we can see that the ∆p-based MOEA has a lower hypervolume value than

both the IGD+-H-based MOEA and the IGD-H-based MOEA. It is worth noting

that, since ∆p adopts both IGD and GD, the GD indicator affects the performance

of the ∆p indicator. The reason is that GD calculates the average distance from each

solution to its closest reference point, and this causes the selection mechanism based

on the ∆p indicator to select dominated solutions. For this reason, the ∆p-based

MOEA is not able to converge. As can be observed in Figures 6.4 and 6.5, the ∆p-

based selection mechanism incorporates a change between GD an IGD which makes

the variance to increase, since these two selection schemes perform differently.
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As shown in Table 6.2, IGD+-H-MOEA and ExIGD+-MOEA were able to

outperform IGD-H-EMOA, ExIGD-EMOA and Ex∆p-EMOA in all cases. These

two approaches (IGD+-H-MOEA and ExIGD+-MOEA) obtained similar results.

Although IGD-H-EMOA works similarly to IGD+-H-EMOA (since both incorporate

the same selection mechanism based on LAP, but have a different cost function), IGD-

H-EMOA was not able to converge to the true Pareto front, whereas IGD+-H-EMOA

was able to do it. The main reason for this is that the use of the Euclidean distances

affects the dominance relation because the calculation of the Euclidean distance is

inconsistent with the Pareto dominance relation when the reference point does not

dominate the solutions. This makes the IGD-based selection mechanism to choose

solutions which are close to the reference set, and avoids selecting non-dominated

solutions. ExIGD-EMOA and Ex∆p-EMOA are unable to converge to the Pareto

front in DTLZ5 and DTLZ6 with 5, 6, 7 and 8 objectives since the use of Euclidean

distances affects their selection mechanisms.

The main reason for which the IGD+-based MOEAs showed a better performance

than MOEAs based on IGD and ∆p, is the incorporation of the modified Euclidean

distance since this distance adopts an inferiority vector, which can be viewed as the

minimum amount of the increase from a z reference point so that the result vector

is weakly dominated by the objective point. That modification makes possible to

consider non-dominated points when the IGD+ indicator is used as our selection

mechanism. The modified Euclidean distance solves the drawbacks of IGD and ∆p.

We showed that the use of the modified Euclidean distance significantly improves

the performance of the selection mechanism. Notwithstanding, the running time of

ExIGD+-EMOA is higher than that of IGD+-H-EMOA.

Table 6.2 indicates that IGD+-H-EMOA has the lowest running times. However,

ExIGD+-EMOA was able to solve the test problems adopted in a reasonably low

running time (particularly for the instances having 2 and 3 objectives).

Figures 6.6 and 6.7 present a graphical representation of the running time of

each MOEA for DTLZ1 and DTLZ5. These plots correspond to the average time

value from 30 independent executions. We can observe that the LAP reduces the

running time of a MOEA since the optimal solution of the LAP guarantees the

best relationship between the reference point and the solutions. This allows this

selection mechanism to converge faster than the use of the Exclusive-based selection

mechanism.

Thus, IGD+-H-EMOA is computationally cheaper than ExIGD-EMOA, ExIGD+-

EMOA and Ex∆p-EMOA. It is worth indicating that IGD+-H-EMOA is able to
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Figure 6.6: Graph showing the running time of each MOEA for DTLZ1.
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Figure 6.7: Graph showing the running time of each MOEA for DTLZ5.
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achieve a significant speedup (of up to 200x) with respect to ExIGD+-EMOA. This

confirms that the use of a selection mechanism based on IGD+ is an effective way to

solve some many-objective problems.

IGD+-H-EMOA IGD-H-EMOA ExIGD+-EMOA ExIGD-EMOA Ex∆p-EMOA
m DTLZ1
2 0.87343 ( 0.0117 min) 0.87345 ( 0.0126 min) 0.87358 ( 2.8401 min) 0.87345 ( 2.8238 min) 0.86872 ( 1.9446 min)
3 0.97371 ( 0.0674 min) 0.97338 ( 0.0738 min) 0.97386 ( 3.7193 min) 0.97351 ( 4.075 min) 0.97266 ( 4.9237 min)
4 0.99379 ( 0.1442 min) 0.99353 ( 0.1411 min) 0.99386 ( 4.5933 min) 0.99308 ( 4.3992 min) 0.99121 ( 8.3803 min)
5 0.99371 ( 0.2163 min) 0.99275 ( 0.2103 min) 0.99404 ( 5.6831 min) 0.99223 ( 5.6811 min) 0.99045 ( 12.1779 min)
6 0.99054 ( 0.2517 min) 0.98847 ( 0.2612 min) 0.99057 ( 5.2241 min) 0.98726 ( 5.1929 min) 0.98831 ( 14.1643 min)
7 0.99776 ( 0.2471 min) 0.99592 ( 0.2386 min) 0.99783 ( 7.4982 min) 0.99479 ( 7.3405 min) 0.99462 ( 18.6716 min)
8 0.99586 ( 0.2801 min) 0.99344 ( 0.2792 min) 0.9958 ( 6.9452 min) 0.9921 ( 7.0153 min) 0.99168 ( 18.8965 min)

DTLZ2
2 3.21147 ( 0.0125 min) 3.21151 ( 0.0113 min) 3.21156 ( 4.7688 min) 3.21153 ( 4.7642 min) 3.12112 ( 3.8215 min)
3 7.43104 ( 0.0301 min) 7.43073 ( 0.0276 min) 7.43113 ( 5.9651 min) 7.4308 ( 7.2221 min) 7.42677 ( 8.182 min)
4 15.58708 ( 0.0451 min) 15.5851 ( 0.0396 min) 15.58732 ( 6.2784 min) 15.5852 ( 6.3927 min) 15.58049 ( 9.9203 min)
5 31.69208 ( 0.0559 min) 31.68537 ( 0.0477 min) 31.69251 ( 8.1911 min) 31.68585 ( 8.4751 min) 31.68244 ( 13.9195 min)
6 63.76177 ( 0.0608 min) 63.74695 ( 0.0482 min) 63.76286 ( 9.2453 min) 63.74789 ( 9.2507 min) 63.71765 ( 18.4489 min)
7 127.81248 ( 0.0725 min) 127.78877 ( 0.054 min) 127.81384 ( 10.7463 min) 127.7894 ( 10.9737 min) 127.76065 ( 20.8394 min)
8 255.83892 ( 0.0756 min) 255.76216 ( 0.059 min) 255.84114 ( 11.7623 min) 255.76964 ( 18.0689 min) 255.71304 ( 21.9143 min)

DTLZ5
2 3.21127 ( 0.0167 min) 3.21123 ( 0.0138 min) 3.21131 ( 7.2897 min) 3.21131 ( 7.3568 min) 3.132 ( 4.0653 min)
3 6.1043 ( 0.0255 min) 6.10427 ( 0.021 min) 6.10436 ( 4.4098 min) 6.10441 ( 5.388 min) 5.92074 ( 5.0434 min)
4 12.00938 ( 0.0462 min) 12.00646 ( 0.0323 min) 12.00975 ( 4.6598 min) 12.00786 ( 4.6972 min) 11.92451 ( 8.201 min)
5 23.82496 ( 0.0476 min) 23.81727 ( 0.0332 min) 23.82717 ( 6.24 min) 23.81817 ( 6.2444 min) 23.75192 ( 12.6418 min)
6 47.39216 ( 0.0496 min) 47.35934 ( 0.0365 min) 47.39692 ( 7.0745 min) 47.36511 ( 7.2339 min) 46.70794 ( 14.7261 min)
7 91.66916 ( 0.0653 min) 91.47108 ( 0.0468 min) 91.66848 ( 8.3923 min) 91.45174 ( 8.5274 min) 89.56395 ( 16.1746 min)
8 145.92603 ( 0.107 min) 145.63295 ( 0.0765 min) 145.87716 ( 8.555 min) 135.55127 ( 8.6648 min) 126.21945 ( 17.3731 min)

DTLZ6
2 3.08569 ( 0.0303 min) 3.0933 ( 0.031 min) 3.09634 ( 3.7122 min) 3.08765 ( 3.6532 min) 2.9441 ( 6.0076 min)
3 5.9579 ( 0.2248 min) 5.91691 ( 0.1842 min) 5.94636 ( 2.4423 min) 5.85907 ( 2.4041 min) 5.72483 ( 5.5973 min)
4 11.50411 ( 0.3443 min) 11.53968 ( 0.2563 min) 11.62126 ( 3.9025 min) 0 ( 3.9697 min) 11.92451 ( 7.6791 min)
5 21.77326 ( 0.3251 min) 21.6063 ( 0.2376 min) 22.29951 ( 5.6863 min) 0 ( 5.6109 min) 0 ( 12.0119 min)
6 41.68516 ( 0.3037 min) 40.5511 ( 0.2284 min) 41.98876 ( 6.5304 min) 0.56907 ( 6.7096 min) 2.36595 ( 13.8672 min)
7 84.29418 ( 0.3171 min) 81.75814 ( 0.2262 min) 84.2936 ( 7.5512 min) 0 ( 7.441 min) 0 ( 15.1196 min)

Table 6.2: Results obtained in the DTLZ test problems by each MOEA. We compared
the performance of each MOEA using the hypervolume indicator. The values in
parentheses correspond to the computational time (measured in minutes) required
by each execution of the MOEAs compared. This table was obtained from 30
independent runs. All the algorithms were compiled using the GNU C compiler
and they were executed on the same computer.

6.4 Final Remarks

We have proposed several selection mechanisms for indicator-based MOEAs which

use a reference set. The core idea of our proposed algorithm is to adopt the IGD+

performance indicator in the selection mechanism of a MOEA. Here, we showed that

the use of the modified Euclidean distance significantly improves the performance of

the selection mechanism. Additionally, the transformation of the selection mechanism

into a LAP reduces the running time, which makes possible a significant speedup (of
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up to 200x). Our experimental results showed that a selection mechanism based

on ∆p has some drawbacks when it tries to solve problems with degenerate Pareto

fronts. This selection mechanism was not able to solve degenerate multi-objective

problems with more than 5 objectives. As can be observed, the Pareto compliant

property between two-objective vectors is of utmost importance and improves the

performance of the selection mechanism of a MOEA. Our preliminary experimental

results showed that our proposed IGD+-based selection mechanism is an effective way

to lead the search to a single region of the objective space. Thus, we will design a

local search engine based on the IGD+ indicator. In the next chapter, we elaborate on

this assumption, and we show that it is possible to create a multi-objective memetic

algorithm based on the IGD+ indicator.
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Multi-Objective Memetic

Algorithm based on the IGD+

Indicator

In this chapter, we propose a new Multi-Objective Memetic Algorithm (MOMA)

which uses a Local Search technique (LS) based on the modified inverted generational

distance (IGD+) combined with a hypervolume-based global optimizer [38]. We want

to combine different properties of each indicator for improving the performance of

the overall MOMA. This is possible, since these indicators have nice properties (i.e.,

hypervolume is Pareto compliant and IGD+ is weakly Pareto compliant). However,

the main drawback of the hypervolume is the high computational cost associated

with its computation. This high computational cost limits the use of this indicator,

particularly in problems having many objectives. On the other hand, IGD+ has a

very low computational cost, even in high dimensional problems. As mentioned before

(see Chapter 6), the IGD+ indicator is able to lead the optimization process toward

the Pareto front, and it is possible to use this indicator for leading the optimization

of the local search engine. In spite of the fact that this hybridization is possible (i.e.,

hybridize the hypervolume indicator and the IGD+ indicator), there are still some

drawbacks which limit the use of this type of combination, since computing the exact

hypervolume contribution is highly costly.

Nowadays, this sort of limitations can be addressed by using massive parallel

processors such as Graphics Processing Units (GPUs). There is plenty of evidence

that indicates that GPU-based approaches can reduce the running time without

losing the advantages of CPU-based approaches (for more details see [4, 5, 6]). For

this reason, we develop here a parallel implementation of our MOMA and illustrate
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its performance when using both indicators. We hypothesized that an appropriate

combination could improve the performance of a MOMA and the experiments

reported in this chapter validate our hypothesis.

This chapter is organized as follows. Section 7.2 describes our proposed approach.

The experimental study is presented in Section 7.3. Finally, Section 7.4 provides our

final remarks.

7.1 Graphics Processing Units

Before explaining our proposed approach we need to provide more details about

Graphics Processing Units (GPUs), which are many-core processors capable of

achieving high-performance computing [94]. More specifically, GPUs are well-suited

for addressing problems that can be expressed as data-parallel computations, since

the same program is executed on many data elements in parallel. Data-parallel

processing maps data elements to parallel processing threads. Many applications

that process large data sets can use a data-parallel programming model to speed up

the computations. Some real-world applications solved using GPUs, are 3D rendering,

video encoding and decoding, image scaling, stereo vision, and pattern recognition.

Although GPUs were created accelerate image and video processing, it is possible

to use them to tackle other types of problems (i.e., numerical application problems,

which typically appear of science and engineering). Nowadays, GPUs are general-

purpose processors with specially designed APIs like CUDA [95] and OpenCL [96].

The main key abstractions in the GPU are: (1) a hierarchy of thread groups, (2)

a hierarchy of memory and (3) barrier synchronization. These abstractions provide

fine grained data parallelism and thread parallelism, those are nested within coarse

grained data parallelism and task parallelism. GPUs are able to split the problem into

coarse sub-problems that can be solved independently in parallel by blocks of threads,

where each sub-problem can be solved cooperatively in parallel by all threads within

the block. Here, we propose to incorporate the use of GPUs into a multi-objective

memetic algorithm for decreasing its running time. Next, we will provide more details

about the way in which our proposal works.

7.2 Multi-Objective Memetic Algorithm

Our MOMA consists of two different approaches. The first one is a global optimizer

which is based on SMS-EMOA [38]. The second method is our local search (LS)
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technique which uses an IGD+-based search engine. A local search method can

improve a candidate solution very quickly, but its aims to find only local optima

(i.e., solutions which are optimal in a certain region of the objective space close to

the candidate solution from which the local search is launched). On the other hand,

a global optimizer is meant to explore the whole search space for finding different

regions, and eventually, the global optimum (or a good approximation of it).

7.2.1 Our Global Optimizer

Our global optimizer starts with an initial population of N individuals. Then, a

new individual is created through the use of evolutionary operators (i.e., SBX and

polynomial-based mutation). This new individual will become a member of the

next population, if replacing an existing individual leads to a higher quality of the

population with respect to the hypervolume contribution. Afterwards, one individual

is discarded from the worst ranked front in order to maintain the same population

size. If the cardinality of this front is larger than 1, the individual which minimizes

the hypervolume contribution is eliminated. The LS technique is launched when a

certain percentage of the total number of generations is reached. Next, we will provide

more details of the way in which our LS works. The pseudo-code of our proposed

memetic approach is presented in Algorithm 7.

Algorithm 6 General Framework

Input: A MOP, a stopping criterion and a uniform spread of N reference vectors
Output: Approximation of the MOP

1: P0 ← init();
2: t← 0;
3: while t < genmax do
4: Qt+1 ← generate(Pt); /*Generate offspring using evolutionary operators*/
5: /*Hypervolume-based selection mechanism for finding N best individuals*/
6: Pt+1 ← reduce(Pt ∪ {Qt+1});
7: if PL > Ppercent then
8: /*Applying Local Search Engine*/
9: Pt+1 ← LS Engine(Pt+1);

10: end if
11: t← t+ 1;
12: end while
13: return Pt;
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7.2.2 Our Local Search Engine

We can see that if we attempt to find the solution of a MOP, the resulting points in

PF are clustered in various regions of objective space. Thus, it is possible to compute

new points using local search engines which exploit certain regions of objective space.

Local search techniques have been proposed to lead the search within a certain region

towards the PF more effectively and efficiently.

We focused on how to select the kth solution to which LS should be applied.

A straightforward solution is to apply LS to all the individuals in the population.

Although this involves a higher computational cost, in our case, this sort of scheme is

possible using a GPU-based implementation. Thus, our proposal is to apply several

local search engines on different regions of the search space, which are specified

by a clustering technique, based on the IGD+ indicator. It is worth noting that

this indicator requires a reference set Z. Our proposed approach creates different

neighborhoods for each point in the reference set. The ith neighborhood is created

by N points from the population. Such points have the nearest distance with respect

to the ith reference point in terms of the d+ distance (see equation (3.11)). Our

LS technique starts with a population P which contains N individuals obtained by

our global search engine. The new ith offspring is created by choosing three different

parents from its neighborhood. The parents are recombined using the differential

evolution operator, where the first parent is selected by the nearest distance in terms

of the d+ distance and the rest of the parents are randomly chosen. The second

step is to combine the parents and the offspring of each neighborhood to form the

so-called Q set. The new population at generation t + 1 is generated by finding the

nearest point from Q for each z reference point in Z. This process is repeated until

the stopping criterion is satisfied (we use a maximum number of iterations as our

stopping criterion).

7.2.3 Reference Set

As mentioned in Chapter 5, we can approximate the geometrical shape of certain

types of Pareto Fronts (PFs) using superspheres. In order to build the reference set,

we adopt the same technique presented in Chapter 5, thus we assume that we have a

set of weight vectors which is used to construct the reference set. We need to find the

γ-value which will be used to transform the weights set into the reference set. Clearly,

in order to find the γ-value, equation (5.4) (for more details see Chapter 5) would
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become a root-finding problem and we can say that the γ-value needs to satisfy:

yγ1 + · · ·+ yγm − 1 = 0 (7.1)

For solving equation (7.1), we use Newton’s method for approximating the γ-value.

Now, we can see that the next approximation to the root is defined as:

γk+1 = γk −
(
∑m

j=1 y
γk
j )− 1∑m

j=1 y
γk
j log(yj)

(7.2)

Let Q be the current set which was created combining the parent and offspring

population. Thus, the reference set is created by Algorithm 7. We added some

new operations for building the reference point set. Particularly, we added to provide

expand and translate operations.

Algorithm 7 Computation of the reference set which is based on supersphere curves

Input: A current set Q ⊂ Rm, a set of weighted vectors
W ⊂ Rm, where m is the number of objectives, expand value e ⊂ R and translate
value t ⊂ R

Output: The reference set Z which is the best approximation of the set Q
1: Find the nondominated points from Q and

save to Q′
2: for each ~p ∈ Q′ do
3: for each ~w ∈ W do
4: Compute d⊥(~p, ~w) =‖ ~p− ~wT~p~w/ ‖ ~w ‖2‖
5: end for
6: Assign r(w) = argmin

~p∈Q′
d⊥(~p, ~w)

7: end for
8: j ← 0
9: for each ~w ∈ W do

10: stepsize← ~pr(~w)· ~w/ ‖ ~w ‖2

11: ~y ← stepsize ∗ ~w
12: Approximate the γ value using equation (7.1)
13: Compute the supersphere point as zj,k ← e(wγj,k)− t for all j = 1, . . . ,m
14: j ← j + 1
15: end for

In the first step of the algorithm, we find the non-dominated points from set Q
which will establish the non-dominated region. After that, in the first loop, we search

the nearest perpendicular distance between each weighted vector ~w and the non-

dominated points (we find the best relationship between each weighted vector and
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each non-dominated point). In order to construct the reference surface, we project the

nearest non-dominated point to a specific weighted vector ~w. Once this is done, we

can search the γ-value using Newton’s method, which is described by equation (7.2).

Finally, the reference point is computed using the γ-value. After that, we apply

the expand and translate operations. These operations transform the surface for

spreading the reference set along the objective space. We can see that this process is

considered as a generation and is repeated for each weighted vector. For generating

the weighted vectors, we adopted Das and Dennis’ approach [90] and the number of

weighted vectors was set to N . However, it is possible to adopt another algorithm for

creating the weighted vectors.

7.2.4 Parallel Multi-Objective Memetic Algorithm

The main idea of our parallel implementation is to use all the available hardware

resources for improving the performance of our proposed MOMA. For this reason, in

order to simplify the parallelization we focused only on the most time-consuming

parts of the algorithm. Our implementation is based on two different parallel

implementations, one for handling the local search technique, and another one, which

is responsible of computing the hypervolume contribution from the global search

engine. As we indicated in Section 7.2.2, the LS procedure is composed by a clustering

technique, a procedure for generating new offspring as well as one for the evaluation

of the objective functions. This process is repeated for a certain number of iterations.

The main idea is to apply the LS technique to all the individuals of the population.

For this reason, the parallelization of this procedure is done in the following way: we

adopt a SIMD1 model to apply the clustering technique to create each sub-region on

the objective space at the same time. Thus, this procedure creates different blocks of

threads, where each thread computes the d+ value (see equation (3.11)) between each

reference point in Z and each current point in the population Q. After that, each

block searches the nearest distance (this process is repeated until having b elements

for building the clustering region). After this is done, we create m offspring, each of

them residing in a specific sub-region (the ith neighborhood) using a thread of the

GPU for each of them. Thus, each thread in the block can assess the new offspring

in the neighborhood. It is worth mentioning that this process needs to normalize all

points for each generation of the local search technique, in order to handle objectives

having different units.

1SIMD (Single Instruction Multiple Data) is a computer architecture which can handle only one
instruction but applies it to many data streams simultaneously [97].
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Figure 7.1: Block diagram of GPU-based MOMA.

In [4], the use of a GPU-based approach showed that it is possible to find a good

approximation of MOPs using the hypervolume indicator as a selection mechanism

without losing the advantages of a sequential approach. For this reason, we adopted

this approach for implementing the second part of our MOMA.2 Figure 7.1 describes

the flow of our proposed parallel proposed approach, which gives more details on how

the GPU-based implementation works.

7.3 Experimental Results

We compare the performance of our memetic algorithm with respect to SMS-EMOA

which has two different variants. The first version uses exact calculation of the

hypervolume contribution for each generation of the search process. The second

version incorporates the algorithm proposed in [91] for estimating the hypervolume

using Monte Carlo sampling, instead of the exact hypervolume calculations adopted

in the original implementation of SMS-EMOA. Our MOMA was compared with

respect to its GPU-based implementation. Our proposed approach was implemented

in CUDA-C.3

2The GPU-based approach computes in a faster way the hypervolume contribution of a point.
3The GPU platform and API developed by Nvidia called CUDA [95] (Computer Unified Device

Architecture), which is the one adopted in this work, is based on the CUDA-C language, which is
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7.3.1 Test problems

For our comparative study, we adopted two benchmarks: (1) the Deb-Thiele-

Laumanns-Zitzler (DTLZ) test suite [92] and (2) the Walking-Fish-Group (WFG)

test suite [93]. These problems include different aspects which make them more

difficult to solve (for more details see [92, 93]).

7.3.2 Methodology

For our comparative study, we decided to adopt the hypervolume indicator, which

assesses both convergence and maximum spread along the Pareto front. In order to

compute IH , we used different reference points for each test suite, which were set to

(1, . . . , 1) for DTLZ1, (2, . . . , 2) for DTLZ2 to DTLZ6, (2, . . . , 2, 7) for DTLZ7 and

(3, 5, . . . , 2m + 1) for the WFG test problems. Additionally, we also compared the

running time of each MOEA, which was measured in minutes. We also incorporated

the speedup for comparing our GPU-based MOMA with each of its competitors.

7.3.3 Parameterization

For the DTLZ test suite, the total number of decision variables is given by n =

m + k − 1, where m is the number of objectives and k was set to 5 for DTLZ1, to

10 for DTLZ2 to DTLZ6 and to 20 for DTLZ7. The number of decision variables in

the WFG test problems was set to 24, and the position-related parameter was set to

m− 1. Instances with two and three objectives were adopted.

The parameters of each MOEA used in our study were chosen in such a way

that we could do a fair comparison among them. The distribution indexes for

the SBX and polynomial-based mutation operators [85] were set as: ηc = 20 and

ηm = 20, respectively. The crossover probability was set to pc = 0.9 and the mutation

probability was set to pm = 1/L, where L is the number of decision variables. In

the SMS-EMOA-HyPE, the number of samples was set to 50,000. The number of

generations of the LS technique was set to 50 for the DTLZ test problems and to

80 for the WFG test problems, where at each generation, the LS is applied for each

reference point. The control parameter F was set to 0.5 for the differential evolution

operator. The total number of function evaluations was set in such a way that it did

not exceed 30,000 for the DTLZ test problems and 50,000 for the WFG test suite.

All the implementations were tested on the same computer which has the following

an extension of C that allows the development of GPU routines called kernels. Each kernel defines
instructions that are executed on the GPU by many threads at the same time.
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Problem m SMS-EMOA SMS-EMOA-HYPE IGD+-MA IGD+-MA(GPU)
Test Suite 1

DTLZ1 2 0.8732805 0.8725481 0.8726563 0.8709863
3 0.974249 0.9666142 0.9737887 0.9731913

DTLZ2 2 3.2109678 3.2095071 3.2109715 3.2109601
3 7.4313536 7.4260692 7.4312298 7.4312795

DTLZ3 2 1.9302655 2.7552999 2.8205047 2.8444797
3 6.8129142 5.0821156 7.0065842 6.9233977

DTLZ4 2 2.9687737 2.8466417 2.9082368 2.9478005
3 6.927273 6.9031298 6.9659859 7.0188906

DTLZ5 2 3.2109635 3.2095599 3.2109646 3.210965
3 6.1052922 6.1009119 6.1050065 6.1050063

DTLZ6 2 3.0727714 3.0898 2.9075032 2.8973674
3 5.6964296 5.2659912 5.2550039 5.2817297

DTLZ7 2 4.4180206 4.3527739 4.4174787 4.417529
3 12.8437627 12.7603802 7.878233 7.5641662

Test Suite 2
WFG1 2 7.0150395 6.6915866 7.4293168 7.3778004

3 62.566032 53.1739159 62.4667318 62.4431766
WFG2 2 11.4297746 11.4126833 11.4304887 11.429895

3 100.9053244 100.3897934 100.9423556 100.8915152
WFG3 2 10.9301202 10.8957265 10.9346344 10.9320503

3 76.0218553 74.3412533 76.0301204 76.0650755
WFG4 2 8.6759874 8.6474796 8.6749735 8.6751788

3 77.3490714 76.1356581 77.2287144 77.236047
WFG5 2 8.2444335 8.2422967 8.2653013 8.2702657

3 74.1569177 73.3959324 74.1328251 74.1289772
WFG6 2 8.3786401 8.3522619 8.3785062 8.3762176

3 74.5010368 73.4821868 74.5165829 74.6646198
WFG7 2 8.685331 8.6549507 8.6863782 8.6863691

3 77.6304566 76.4916201 77.5775899 77.5752613
WFG8 2 8.3184115 8.2791368 8.3251368 8.3208976

3 73.6151505 72.5266533 73.5156236 73.5167815
WFG9 2 8.5957132 8.4786182 8.5693595 8.5555043

3 76.279433 73.9882086 76.3432385 76.3733424

Table 7.1: Comparison of results for each test suite, using the average hypervolume
indicator.

characteristics: an Intel Core i7-3930k CPU running at 3.20 GHz, with 8GB of RAM

1600 MHz DDR3. Our GPU was a Geforce GTX 680, and we ran our experiments in

Fedora 18 (64-bit version).

7.3.4 Numerical Results

Table 7.1 provides the average hypervolume over the 30 independent executions of

each approach for each test suite. Additionally, we show the average time, which was

measured in minutes, needed to perform the maximum number of function evaluations

in each case and the speedup achieved (in parentheses). The best results are presented

in boldface and the grey-colored cells indicate the second best results.

It is clear that the winner in this experimental study is our GPU-based MOMA
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Problem m SMS-EMOA SMS-EMOA-HYPE IGD+-MA IGD+-MA(GPU)
Test Suite 1

DTLZ1 2 0.2353 (2.22x) 1.1378 (10.74x) 0.1571 (1.48x) 0.1059
3 1.3434 (2.54x) 0.7481 (1.41x) 0.9396 (1.78x) 0.5290

DTLZ2 2 0.3145 (2.36x) 5.1541 (38.69x) 0.2720 (2.04x) 0.1332
3 3.5239 (2.26x) 14.3901 (9.21x) 2.9234 (1.87x) 1.5616

DTLZ3 2 0.1349 (1.33x) 0.2886 (2.85x) 0.1488 (1.47x) 0.1014
3 1.2725 (1.95x) 1.2460 (1.91x) 0.8001 (1.22x) 0.6534

DTLZ4 2 0.2803 (2.11x) 3.6041 (27.11x) 0.2221 (1.67x) 0.1329
3 2.9593 (2.67x) 10.6125 (9.59x) 2.0486 (1.85x) 1.1070

DTLZ5 2 0.3151 (2.38x) 5.1250 (38.66x) 0.2710 (2.04x) 0.1325
3 2.2238 (2.4x) 10.8695 (11.71x) 1.4279 (1.54x) 0.9283

DTLZ6 2 0.1501 (1.56x) 0.6505 (6.76x) 0.1114 (1.16x) 0.0962
3 1.7579 (2.51x) 4.2780 (6.12x) 1.2497 (1.79x) 0.6993

DTLZ7 2 0.3111 (2.66x) 3.5508 (30.4x) 0.2026 (1.74x) 0.1167
3 2.8511 (3.31x) 11.2552 (13.07x) 1.6282 (1.89x) 0.8611

Test Suite 2
WFG1 2 0.4365 (2.03x) 1.9709 (9.17x) 0.3661 (1.7x) 0.2149

3 6.1682 (3.25x) 17.4731 (9.2x) 4.5742 (2.41x) 1.8995
WFG2 2 0.6315 (2.64x) 3.8164 (15.94x) 0.4441 (1.86x) 0.2393

3 7.1067 (3.46x) 4.9679 (2.42x) 5.1835 (2.52x) 2.0555
WFG3 2 0.6760 (2.51x) 4.9836 (18.51x) 0.6065 (2.25x) 0.2692

3 6.4021 (2.75x) 17.4964 (7.53x) 5.7263 (2.46x) 2.3238
WFG4 2 0.7430 (2.78x) 7.4647 (27.92x) 0.5865 (2.19x) 0.2673

3 8.5252 (3.22x) 13.9963 (5.29x) 5.8787 (2.22x) 2.6452
WFG5 2 0.7245 (2.49x) 9.0330 (31.02x) 0.7122 (2.45x) 0.2912

3 8.1814 (3.15x) 14.4043 (5.55x) 5.9147 (2.28x) 2.5967
WFG6 2 0.5864 (2.31x) 6.1397 (24.17x) 0.5381 (2.12x) 0.2540

3 6.0747 (2.8x) 12.14762 (5.6x) 5.1019 (2.35x) 2.1701
WFG7 2 1.1146 (3.32x) 12.5224 (37.31x) 0.8211 (2.45x) 0.3356

3 8.4301 (2.53x) 19.5875 (5.89x) 7.6072 (2.29x) 3.3255
WFG8 2 0.5485 (2.43x) 3.9599 (17.56x) 0.4466 (1.98x) 0.2255

3 4.6612 (2.69x) 8.9829 (5.18x) 4.6498 (2.68x) 1.7358
WFG9 2 0.9392 (2.91x) 10.4772 (32.51x) 0.7952 (2.47x) 0.3222

3 8.8769 (2.67x) 18.8293 (5.67x) 7.8688 (2.37x) 3.3232

Table 7.2: Computational time (measured in minutes) required by each execution of
the MOEAs compared. In the parentheses we show the speedup achieved.

in terms of CPU time. We are also able to obtain the same results as the sequential

version, which verifies that our parallel implementation is working as expected (see

Table 7.2). We can see that our MOMA is able to converge faster than SMS-EMOA

on some test problems (e.g., in the multi-frontal problems) and it outperforms SMS-

EMOA-HYPE in all instances. This confirms that our proposed IGD+-based LS is an

effective way to solve MOPs. It is worth noting, however, that for DTLZ5, DTLZ6

and DTLZ7, SMS-EMOA performs better than our MOMA. The reason is probably

that the true Pareto front of these problems is linear and disconnected, which makes

the approximations produced by our approach to converge to a single region of the

search space.
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7.4 Final Remarks

We have proposed a new Multi-Objective Memetic Algorithm which has an IGD+-

based local search engine. The core idea of our proposed algorithm is to combine

properties of two different performance indicators. Our proposal includes a GPU-

based implementation which makes it possible to launch multiple local search

processes at the same time. We showed that the used of GPUs helps to improve the

performance of MOMA and avoids to select on which solutions we need to launch the

local search engine. Our results indicate that it is possible to improve the convergence

of a hypervolume-based approach in multi-frontal problems. Our proposed GPU-

based multi-objective memetic algorithm is able to achieve a significant speedup (of

up to 38x) with respect to SMS-EMOA. The proposed approach has a few drawbacks

on some problems, because computing the IGD+ indicator requires a reference point

set. Thus, the behavior of our proposed approach depends on the approximation of

the reference point set. For this reason, we aim to overcome this limitation and we

will provide more details on how to do it in the next chapter.
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Chapter 8

An Improved Version of a

Reference-Based Multi-Objective

Evolutionary Algorithm based on

IGD+

In recent years, the design of new selection mechanisms has become a popular trend in

the development of Multi-Objective Evolutionary Algorithms (MOEAs). This trend

has been motivated by the aim of maintaining a good balance between convergence

and diversity of the solutions. Reference-based selection is, with no doubt, one of the

most promising schemes in this area. However, reference-based MOEAs are known to

have difficulties for solving multi-objective problems with complicated Pareto fronts

(i.e., multi-objective problems with irregular Pareto front shapes), mainly because

they rely on the consistency between the Pareto front shape and the distribution

of the reference weight vectors. In this chapter, we propose an improved version of

a reference-based MOEA, which uses the modified Inverted Generational Distance

(IGD+) indicator. The proposed approach adopts a novel method for approximating

the reference set, based on an hypercube-based method. Our reference-based method

is able to sample uniformly any Pareto front shape, which is incorporated in the

IGD+-EMOA. We addressed the drawbacks of the original IGD+-EMOA (see Chapter

5 for more details), and our results indicate that our proposed approach is able to

obtain solutions of a similar quality to those obtained by RVEA [42], MOEA/DD [41],

NSGA-III [40] and MOMBI-II [49] in several test problems traditionally adopted in

the specialized literature. Our proposed approach is able to outperform these other
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algorithms in more than 50 percent of the 18 benchmark problems adopted.

This chapter is organized as follows. Our proposed approach is described in Section

8.2. Then, Section 8.3 shows our experimental study. Finally, Section 8.5 provides

our final remarks.

8.1 Introduction

As mentioned before, for several years, MOEAs adopted selection mechanisms based

on Pareto optimality. However, it has been found that Pareto-based MOEAs can not

properly solve many-objective problems (problems with more than three objectives)

[35]. This has motivated the development of new strategies for dealing with many-

objective problems such as reference-based MOEAs [42, 40, 98, 41]. Reference-based

MOEAs can be classified into two main groups: (1) decomposition-based MOEAs and

(2) indicator-based MOEAs which rely on the use of reference sets. Decomposition-

based MOEAs transform a MOP into a group of sub-problems, in such a way that each

sub-problem is defined by a reference weight point. Then, all these sub-problems are

simultaneously solved using a single-objective optimizer [39]. They are able to solve

MOPs efficiently. However, the main disadvantage of decomposition-based MOEAs

is that the diversity of its selection mechanism is led explicitly by the reference

weight vectors (normally the weight vectors are distributed in a unit simplex). This

makes them unable to properly solve MOPs with complicated Pareto fronts. On the

other hand, MOEAs based on the hybridization of a reference set and a performance

indicator have shown to be promising schemes for solving many-objective optimization

problems [48, 49, 99]. When compared to hypervolume-based MOEAs1 [38, 100],

reference-based MOEAs have a significantly lower computational cost and are able to

obtain approximations of a similar quality to hypervolume-based MOEAs. Although

effective and suitable for many-objective optimization, reference-based MOEAs in

general require the generation of a set of reference weight vectors, analogously to

decomposition-based MOEAs. In general, if the set of weight vectors and the Pareto

front of a MOP share the same distribution, it is possible to obtain well-distributed

approximations. There is, however, experimental evidence that indicates that the

weight vectors most commonly used by these MOEAs adopt a simplex-like shape.

This sort of scheme works well for Pareto fronts with regular shapes (e.g., a triangle

1The main drawback of hypervolume-based MOEAs is the high computational cost associated
with the computation of the exact hypervolume contributions, which becomes unaffordable when
trying to solve many-objective optimization problems.
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or a sphere). Unfortunately, this scheme doesn’t work properly with some complicated

Pareto fronts (e.g., disconnected, degenerate, inverted simplex-like or badly-scaled).

Empirical studies have shown that decomposition-based MOEAs and some indicator-

based MOEAs have difficulties to solve these MOPs with complicated Pareto fronts,

such as MOEA/D, IGD+-EMOA, ∆p-EMOA and MOMBI just to name a few. This

motivated the work reported here, in which we propose a novel MOEA which uses

an adaptive method for building the reference point set. This method is based on

the creation of hypercubes. We show that the resulting MOEA has a competitive

performance with respect to state-of-the-art MOEAs, and that is able to properly

deal with MOPs having complicated Pareto fronts. Next, we give more details about

how our approach works.

8.2 Our Proposed Approach

8.2.1 General Framework

Our approach adopts the same structure of the original IGD+-EMOA, but we include

some improvements in order to solve MOPs with complicated Pareto fronts. Our

approach has the following features: (1) An archiving process for preserving candidate

solutions which will form the reference set; (2) a method for adapting the reference

set in order to sample uniformly the Pareto front; and (3) a rule for updating the

reference set.

The general framework of the MOEA starts with a population P0 which containsN

randomly generated individuals. A new offspring is created by choosing two different

parents from P . The parents are recombined using evolutionary operators.2 After

that, the resulting offspring are added to the new set. This process is executed until

having a total of λ offspring. Thereafter, the algorithm combines the parents and

the offspring populations to form the so-called A set. In order to select the next

population, we apply our LAP-based selection mechanism.

8.2.2 Selection Mechanism

Since we intend to use the IGD+ indicator in the selection mechanism of our MOEA,

we adopted the same selection mechanism proposed by IGD+-EMOA [99] (for more

details see Chapters 5 and 6).

2In our implementation, we adopted SBX (Simulated Binary Crossover) and Polynomial-based
Mutation [85].

Cinvestav Departamento de Computación



86 Chapter 8

This selection mechanism transforms the environmental selection mechanism into

a Linear Assignment Problem (LAP). In terms of MOP the LAP is created using a

cost matrix, where each element Ci,j = C(ai, tj) represents the relationship between

ai and tj. Thus, the cost matrix is defined as:

Ci,j = d+(ai, zj), i = 1, . . . , |A|, j = 1, . . . , |Z|. (8.1)

where ~ai ∈ A is the ith vector point from the population A, ~zj ∈ Z is the reference

point and d+ is the modified Euclidean distance.

In order to build the reference point set, the algorithm consists of two main

procedures: (1) A procedure to maintain non-dominated solutions into an archive;

and (2) A mechanism to remove non-candidate solutions with a poor distribution

from the archive. Next, we provide more details about these two procedures.

8.2.3 Archiving Process

The archive has a pre-set capacity to store the non-dominated solutions, and the

maximum number of solutions that are allowed in the archive is defined by a specific

p value. When the archive reaches its maximum capacity, the approximation reference

algorithm is executed for selecting candidate solutions (these candidate solutions will

form the so-called reference set). After that, the archive is cleared and the archiving

process continues until reaching a maximum number of generations. It is worth

mentioning that the archiving process is applied at each generation of the MOEA.

8.2.4 Building the Reference Set

In IGD+-EMOA, we aim to select the best reference points whose directions are

promising (i.e., directions with good distribution and spread). In order to do that, we

adopted a greedy algorithm based on the hypercube contributions to select a certain

number of reference points from the archive. This greedy algorithm executes a density

estimator for computing the hypercubes. Its pseudo-code is shown in Algorithm 8.

The algorithm is organized as three consecutive loops, and is invoked with a set of

non-dominated candidate points (called A set) and the maximum number of reference

points that we aim to find. In the first loop, we create a set of initial candidate

solutions to form the so-called Q set. Thus, the solutions from A that form part of

Q, will be removed from A. After that, the greedy algorithm starts to find the best

candidate solutions which will form the reference set Z. In order to find the candidate
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reference points, the selection mechanism computes the hypercube contributions of

the current reference set Q.

Algorithm 8 ComputeReferenceSet(A, zsize)
Input: A current non-dominated set A ⊂ Rm and maximum number of reference

points zsize.
Output: Reference point set Z ⊂ Rm with |Z| = zsize
yref ← FindMaxV alue(A) + ε;
Q ← {};
while |Q| < (zsize + 1) do
~a← pop(A);
Q
⋃
{~a} ;

end while
while A! = {} do
maxHypercube← HCB(Q, yref );
for each ~qi ∈ Q do
ContHyperCube[i]← maxHypercube−HCB(Q\{~qi}, yref );

end for
imin ← argminContHyperCube;
Q\{qimin

};
~a← pop(A);
Q
⋃
{~a};

end while
Z ← {};
for each ~q ∈ Q do
Z
⋃
{~q ∗ ε−~l};

end for
return Z;

Once this is done, we remove the ith solution that minimizes the hypercube

value and we add a new candidate solution from A to Q. This process is executed

until the cardinality of A is equal to zero. In the last loop, we apply the expand

and translate operations. These operations transform the surface for spreading the

reference set along objective function space. Figure 8.1 shows a graphical example of

how Algorithm 8 works, where the the bigger points, from the Q set, are selected for

the steady-state algorithm.

A hypercube is generated by the union of all the maximum volumes covered by

a reference point. The ith maximum volume is described as “the maximum volume

generated by a set of candidate points” (these candidate points are obtained from the

archive and a reference point yref ). The hypercube is computed using Algorithm 9.

In the first part of Algorithm 9, we validate if Q contains one element. If that
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Reference Points

f1

f 2f 2

f1

~yref ~yref

Figure 8.1: Applying the hypercube-based selection mechanism.

Algorithm 9 HCB(Q, yref )
Input: A current set Q ⊂ Rm and a reference point yref
Output: Hypercube value

if |Q| = 1 then
return vol(Q, yref );

end if
V olList← {};
for each ~p ∈ Q′ do
V olList

⋃
{vol(~p, yref )};

end for
imax ← argmaxV olList;
~qmax ← Q[imax] ;
Y ← SplitReferencePoint (~qmax, yref );
Q\{~qmax};
hypercube← 0;
for each ~ynew ∈ Y do
Qnew ← CoverPoints (Q, ~ynew);
hypercube← hypercube+HCB(Qnew, ~ynew);

end for
return hypercube+max(V olList);
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is the case, we compute the volume generated by yref and ~q ∈ Q. Otherwise, we

compute the union of all the maximum hypercubes. In order to apply this procedure,

we find the vector ~qmax that maximizes the hypercube. Once this is done, we create

m reference points which will form the so-called Y . In order to create the set Y , we

combine the current reference point yref and the point ~qmax. For each reference point

from Y , we reduce the set Q into a small subset in order to form the set Qnew. Thus,

we have to split any point from Q, whose components are not covered by the ~ynew. In

order to split the ith point from set Q, we invoke the method “CoverPoints”, which

is described by Algorithm 11. Once this is done, we proceed to compute recursively

the hypercube value of the new set formed by the subset Qnew and the new reference

point ynew. Algorithm 9 provides an efficient way of estimating the hypercube value.

It is worth noting that this value allows to measure the relationship among each

element of a non-dominated set. The hypercube is not considered as hypervolume

value, however it is considered as another sort of estimation.

Algorithm 10 SplitReferencePoint(~qmax, yref )

Input: A vector ~qmax, which contains the maximum volume from the set Q and a
reference point yref

Output: Y
Y ← {};
for each i ∈ m do
ynew ← {};
for each j ∈ m do

if i == j then
ynew.append(ymax[j]);

else
ynew.append(ref [j]);

end if
end for
Y .append(ynew);

end for
return Y ;

8.2.5 Update Frequency

The timing and frequency of updating the reference set plays an important role

in this MOEA. The generated reference point set does not always contribute in a

good way because a frequent updating can significantly affect the performance of

the algorithm. Therefore, we propose two additional mechanisms for updating the
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Algorithm 11 CoverPoints (Q, ~ynew,m current)

Input: A current set Q ⊂ Rm, a current vector ynew and the current dimension for
slicing m current

Output: Qnew
Qnew ← {};
for each ~q ∈ Q do

if q[m current] < ynew[m current] then
Qnew.append(~q);

end if
end for
return Qnew;

reference set. The first one consists in updating the reference set if the variance of

the hypercube contribution of the new reference set is lower than the variance of

the previous reference set. In the second mechanism, if the hypercube value of the

previous reference set is less than the hypercube value of the new reference set, then

the new reference set is replaced by the previous one. It is worth indicating that these

two mechanisms are adopted in our proposed approach.

8.3 Experimental Study

We compare the performance of our proposed IGD+-EMOA with respect to that

of four state-of-the-art MOEAs: NSGA-III [40], RVEA [42], MOMBI-II [49] and

MOEA/DD [41]. These MOEAs had been found to be competitive on MOPs with a

variety of Pareto front shapes.

8.3.1 Test problems

We aimed to study the performance of our proposed approach when solving MOPs

with complicated Pareto front shapes. For this reason, we selected 18 test problems

with a variety of representative Pareto front shapes from some well-known and

recently proposed test suites (i.e., the DTLZ test suite [92], the WFG test suite [93],

the MAF test suite [101] and the VNT test suite [28]). Based on the properties of their

Pareto fronts, we categorized the test problems adopted into different groups: convex,

concave, inverted simplex-like, disconnected, degenerate and badly-scaled (see Table

8.1).
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Properties Problems
Linear DTLZ1

Convex and Concave DTLZ2-3, MAF2-5, WFG1
Inverted Simplex-like MAF1

Disconnected DTLZ7, WFG2
Degenerate DTLZ5-6, VNT2-3, WFG3

Badly-scaled MAF4-5

Table 8.1: Main properties of the 18 test problems adopted

Problem Reference point Problem Reference point
DTLZ1 (1,1,1) VNT1 (5, 6, 5)

DTLZ2-6 (2,2,2) VNT2 (5, -15, -11)
DTLZ7 (2, 2, 7) VNT3 (9, 18, 5)
MAF1-3 (2,2,2) WFG1 (3, 5, 7)
MAF4 (3,5, 9 ) WFG2 (2, 4, 7)
MAF5 (9, 5, 3 ) WFG3 (2, 3, 7)

Table 8.2: Reference points used for the hypervolume indicator

8.3.2 Methodology

For our comparative study, we decided to adopt the hypervolume indicator, which

assesses both convergence and maximum spread along the Pareto front. To compute

IH , we used the reference points shown in Table 8.2.

8.3.3 Parameterization

In the DTLZ and MAF test suites, the total number of decision variables is given by

n = m + k − 1, where m is the number of objectives and k was set to 5 for DTLZ1

and MAF1, and to 10 for DTLZ2-6, and MAF2-5. The number of decision variables

in the WFG test problems was set to 24, and the position-related parameter was set

to m− 1. The parameters of each MOEA adopted in our study were chosen in such

a way that we could do a fair comparison among them. The distribution indexes

for the SBX and polynomial-based mutation operators [85], used by all algorithms,

were set to: ηc = 20 and ηm = 20, respectively. The crossover probability was set to

pc = 0.9 and the mutation probability was set to pm = 1/L, where L is the number

of decision variables. The total number of function evaluations was set in such a way

that it did not exceed 60,000. In MOEA/DD, MOMBI-II and NSGA-III, the number

of weight vectors was set to the same value as the population size. The population
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size N is dependent on H which specifies the number of divisions in objective space.

H was set in such a way that N took a value not greater than 120. In RVEA, the

rate of changing the penalty function and the frequency to conduct the reference

vector adaptation were set to 2 and 0.1, respectively. The main characteristics of the

hardware used for the experiments were the following: an Intel Core i7-3930k CPU

running at 2.30 GHz, with 8GB of RAM.

8.4 Discussion of Results

Table 8.3 provides the average hypervolume over the 30 independent executions of

each compared MOEA for each instance of the DTLZ, WFG, VNT and MAF test

suites. The best results are shown in boldface and grey-colored cells show the

second best results. The variance is shown in parentheses. The Wilcoxon rank

sum test was adopted to compare the results obtained by IGD+-EMOA and its

competitors at a significance level of 0.05, where the symbol “+” indicates that the

compared algorithm is significantly outperformed by IGD+-EMOA. On the other

hand, the symbol “-” means that our approach is significantly outperformed by its

competitor. Finally, “≈” means that there is no statistically significant difference

between the results obtained by IGD+-EMOA and the compared algorithm. It is

clear that the winner in this experimental study is our proposed IGD+-EMOA since

it was able to outperform MOEA/DD, RVEA, MOMBI-II and NSGA-III in ten cases

and in a few more, it obtained very similar results to those of the best performer.

Figures 8.2, 8.3, 8.4 and 8.5 present a graphical representation of the approximations

to the Pareto front obtained by each MOEA in some instances of the MAF and

VNT test problems adopted with 3 objectives. On the MOPs with inverted Simplex-

like Pareto fronts, IGD+-EMOA showed a clear advantage over its competitors (see

Figure 8.2). Figures 8.2.a to 8.2.e show that the solutions produced by all the MOEAs

adopted have a good coverage of the Pareto front. However, the solutions of MOMBI-

II and NSGA-III are not distributed very uniformly, while the solutions of RVEA and

MOEA/DD are distributed uniformly but their number is apparently less than their

population size. On MOPs with degenerate Pareto fronts, our proposed approach

had also a good performance. Table 8.3 indicates that IGD+-EMOA was able to

outperform its competitors in this type of MOPs since its solutions are distributed

more uniformly (see Figure 8.4 which shows the results obtained for VNT2). MOMBI-

II, RVEA and IGD+-EMOA are able to obtain solutions of a similar quality when

they solve MOPs with badly-scaled Pareto fronts, but our approach was not able
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Figure 8.2: Graphical representation of the final set of solutions obtained by each
MOEA on MAF1 with 3 objectives

to outperform MOMBI-II in MAF4. However, IGD+-EMOA was better than its

competitors when solving MAF5. On the other hand, it is well-known that MOMBI-

II, RVEA and NSGA-III can solve efficiently MOPs with simplex-like Pareto fronts.

In this regard, it is worth mentioning that in these MOPs, our proposed IGD+-

EMOA was able to obtain approximations of a similar quality to those obtained by

its competitors. For DTLZ7, IGD+-EMOA did not perform better than the other

MOEAs. The reason is probably that the Pareto front shape of this problem is

disconnected, which makes the approximations produced by our approach to converge

to a single region. We can see in Table 8.3 that the variance obtained by IGD+-

EMOA significantly increases in this MOP. We can conclude that the construction

of our reference point set is very sensitive to this sort of scenarios, which is a clear

weakness of our proposed approach.

Table 8.4 shows a preliminary study on degenerate many-objective problems by

considering DTLZ5 with 3 up to 10 objectives. We can see that our proposed approach

significantly outperformed its competitors, since MOMBI-II, RVEA, MOEA/DD and

NSGA-III were not able to converge to the true Pareto front as the number of

objectives was increased. We can see in Table 8.4 that the performance of MOMBI-II,

RVEA, MOEA/DD and NSGA-III is not consistent when the number of objectives

is greater than 8. Figure 8.7 presents a graphical representation (using parallel

coordinates plots) of the approximations of the Pareto front obtained by each MOEA

solving DTLZ5 with 10 objectives. We can see that our proposed IGD+-EMOA was

able to obtain the best results in terms of the hypervolume indicator, which means

that our approach can solve MOPs with degenerate shapes even in many-objective

instances. In general, we can see that our hypercube-based method for building

the reference set is able to properly deal with complicated Pareto fronts in high-

dimensional objective function spaces.
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Problems MOMBI-II RVEA MOEA/DD IGD+-EMOA NSGA-III
DTLZ1 0.96622 ( 0.000001 ) + 0.66911 ( 0.000152 ) + 0.97379 ( 0.000000 ) ≈ 0.97381 ( 0.000000 ) 0.96256 ( 0.001064 ) +
DTLZ2 7.36755 ( 0.000028 ) + 7.42224 ( 0.000000 ) + 7.42225 ( 0.000000 ) + 7.42736 ( 0.000016 ) 7.41893 ( 0.000000 ) +
DTLZ3 7.38843 ( 0.000084 ) - 7.40582 ( 0.000084 ) - 7.4118 ( 0.000047 ) - 7.2211 ( 0.006505 ) 7.38048 ( 0.000258 ) -
DTLZ4 7.3593 ( 0.036144 ) - 7.42226 ( 0.000000 ) - 7.42224 ( 0.000000 ) - 6.76942 ( 0.236529 ) 7.10506 ( 0.227356 ) ≈
DTLZ5 6.00978 ( 0.000000 ) + 5.9632 ( 0.000369 ) + 6.02456 ( 0.000062 ) + 6.1033 ( 0.000000 ) 5.84002 ( 0.05518 ) +
DTLZ6 5.79608 ( 0.00523 ) + 5.13815 ( 0.016264 ) + 5.6037 ( 0.006442 ) + 5.92189 ( 0.005444 ) 5.49135 ( 0.023354 ) +
DTLZ7 13.37473 ( 0.000091 ) - 13.0605 ( 1.283746 ) ≈ 12.99409 ( 0.015542 ) ≈ 12.37989 ( 2.217964 ) 13.32733 ( 0.002554 ) ≈
VIE1 61.44939 ( 0.000533 ) + 60.51323 ( 0.011862 ) + 60.55111 ( 0.021176 ) + 61.98616 ( 0.000514 ) 61.19214 ( 0.011932 ) +
VIE2 7.79702 ( 0.000001 ) + 7.7712 ( 0.000368 ) + 7.80468 ( 0.000037 ) + 7.84583 ( 0.000012 ) 7.77446 ( 0.000935 ) +
VIE3 15.11767 ( 0.000262 ) + 15.03082 ( 0.000422 )+ 15.06016 ( 0.000114 ) + 15.16248 ( 0.000258 ) 15.12629 ( 0.000502 ) +
MAF1 5.44926 ( 0.000019 ) + 5.37408 ( 0.000659 ) + 5.37139 ( 0.00009 ) + 5.50322 ( 0.000193 ) 5.4129 ( 0.000875 ) +
MAF2 5.08952 ( 0.000056 ) + 5.1583 ( 0.000058 ) - 5.11373 ( 0.000003 ) + 5.13305 ( 0.000019 ) 5.09758 ( 0.000043 ) +
MAF3 7.90637 ( 0.000043 ) - 7.91154 ( 0.004847 ) - 7.64261 ( 1.915744 ) + 7.79256 ( 0.020172 ) 7.89441 ( 0.00452 ) -
MAF4 84.87316 ( 0.151259 ) ≈ 83.53436 ( 29.511151 ) ≈ 51.80943 ( 1120.296924 ) + 84.46979 ( 2.762969 ) 83.73257 ( 1.377427 ) ≈
MAF5 95.97704 ( 52.294491 ) + 96.66782 ( 53.122845 ) + 96.95207 ( 0.017991 ) + 98.27521 ( 0.000549 ) 88.72762 ( 237.475764 ) +
WFG1 50.38691 ( 7.353216 ) ≈ 51.68413 ( 5.001739 ) ≈ 41.77398 ( 7.334821 ) + 48.54235 ( 50.414084 ) 44.95726 ( 10.36034 ) +
WFG2 48.72516 ( 12.06217 ) - 51.14414 ( 0.045119 ) - 44.23925 ( 3.146579 ) + 45.58634 ( 7.395813 ) 48.14747 ( 12.622738 ) ≈
WFG3 24.28138 ( 0.007298 ) ≈ 22.12339 ( 0.086504 ) + 21.04349 ( 0.178677 ) + 24.34142 ( 0.015209 ) 23.54542 ( 0.037132 ) +

Table 8.3: Performance comparison among several MOEAs using the average
hypervolume indicator obtained from 30 independent executions solving 18
benchmark problems.

m MOMBI-II RVEA MOEA/DD IGD+-EMOA NSGA-III
3 6.00978 ( 0.000000 ) + 5.9632 ( 0.000369 ) + 6.02456 ( 0.000062 ) + 6.1033 ( 0.000000 ) 5.84002 ( 0.05518 ) +
5 21.79297 ( 0.001846 ) + 23.30876 ( 0.003765 ) + 20.09359 ( 0.702607 ) + 23.48784 ( 0.006147 ) 20.73826 ( 0.862548 ) +
8 167.75169 ( 1.3931 ) + 166.28627 ( 311.052362 ) + 144.38434 ( 32.923411 ) + 180.36716 ( 24.078975 ) 108.75498 ( 416.448268 ) +
10 686.39987 ( 203.794132 ) + 551.2682 ( 9825.611555 ) + 489.97082 ( 805.137545 ) + 718.77776 ( 8.701444 ) 358.05289 ( 19458.130567 ) +

Table 8.4: Performance comparison among several MOEAs using the average
hypervolume indicator obtained from 30 independent executions solving DTLZ5 with
3 up to 10 objectives.

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

f3

f1f2

f3

(a) IGD+-EMOA

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

f3

f1f2

f3

(b) MOMBI-II

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

f3

f1f2

f3

(c) NSGA-III

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

f3

f1f2

f3

(d) RVEA

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

f3

f1f2

f3

(e) MOEA/DD

Figure 8.3: Graphical representation of the final set of solutions obtained by each
MOEA on MAF2 with 3 objectives
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Figure 8.4: Graphical representation of the final set of solutions obtained by each
MOEA on VNT2 with 3 objectives
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Figure 8.5: Graphical representation of the final set of solutions obtained by each
MOEA on MAF5 with 3 objectives
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Figure 8.6: Graphical representation of the final set of solutions obtained by each
MOEA on WFG3 with 3 objectives
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Figure 8.7: Graphical representation of the final set of solutions obtained by the five
MOEAs used in our study on DTLZ5 with 10 objectives.
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8.5 Final Remarks

We have proposed a reference-based MOEA for solving many-objective problems with

a particular emphasis on those having complicated Pareto front shapes. The core idea

of our proposed approach is to adopt the IGD+ performance indicator in its selection

mechanism. Additionally, our proposal introduces a novel method for building the

reference set which is based on the use of hypercubes. Our results indicate that the

use of hypercubes significantly improves the performance of IGD+-EMOA. As can

be observed, the reference set is of utmost importance since our approach guides its

search process using a set of reference points. Our results indicate that IGD+-EMOA

is very competitive with respect to MOMBI-II, RVEA, MOEA/DD and NSGA-III,

being able to outperform them in more than 50 percent of the 18 benchmark problems

adopted. Based on such results, we claim that our proposed approach is a competitive

alternative to deal with MOPs having complicated Pareto front shapes, even in high-

dimensional objective spaces. For this reason, we conclude that incorporating our

hypercube-based method in order to sample the Pareto front shape of any MOP is a

viable alternative to improve the performance of a MOEA.

Cinvestav Departamento de Computación



Chapter 9

An Improved Version of a

Multi-Objective Memetic

Algorithm

Multi-Objective Memetic Algorithms (MOMAs) have shown to have a good

performance when solving multi-objective optimization problems. They are able to

drive the search process towards the Pareto front more effectively and efficiently than

Multi-objective Evolutionary Algorithms (MOEAs), because they are constituted

by the hybridization of a local search engine with a global optimizer. The main

advantage of adopting this sort of hybridization is to speed up convergence towards

the Pareto front. However, the use of MOMAs introduces new issues, such as how

to select the solutions to which the local search will be applied and for how long

to run the local search engine, since its use has an extra computational cost. In

Chapter 7, we showed that it is possible to combine the hypervolume indicator with

the IGD+ indicator in order to build a new MOMA. Our MOMA was able to solve

efficiently multi-objective optimization problems. However, the main disadvantage of

our proposed MOMA is that the diversity of its selection mechanism is led explicitly

by the hypervolume indicator (usually, a hypervolume-based selection mechanism

distributes solutions around the knee of the Pareto front). The use of a hypervolume-

based selection mechanism causes that our proposed MOMA cannot properly find

well-distributed solutions along the Pareto front when solving MOPs with complicated

Pareto fronts (i.e., Pareto fronts with irregular shapes). However, the original MOMA

is appropriate for solving MOPs with regular Pareto fronts (i.e., those sharing the

same shape of a unit simplex).

Here, we propose a new Multi-Objective Memetic Algorithm which uses a Local

97



98 Chapter 9

Search technique (LS) based on the modified inverted generational distance (IGD+)

combined with a hypervolume-based global optimizer. However, the global optimizer

uses a modified hypervolume-based selection mechanism, which is able to select

well-distributed solutions. The selection mechanism adopts the use of an angle

distance for choosing the worst candidate solutions to apply the hypervolume-based

estimator. This improvement makes the hypervolume-based selection mechanism to

be more efficient than its original version. We show that the resulting MOMA has a

competitive performance with respect to its original version in several test problems

traditionally adopted in the specialized literature. Our MOMA is able to properly

deal with MOPs having complicated Pareto fronts since it can sample uniformly any

Pareto front shape. We hypothesized that an appropriate combination could improve

the performance of a MOMA and the experiments reported in this chapter validate

our hypothesis. We also study the performance of our proposed MOMA when it

tries to solve a structural optimization problem (i.e., the structural optimization of

the frontal structure of a vehicle for crash-worthiness [102]). With this example, we

show that our proposed MOMA is a suitable candidate for solving real-world multi-

objective optimization problems.

This chapter is organized as follows. Our proposed approach is described in Section

9.1. Then, Section 9.2 shows our experimental study. Our experimental study using

a real-world MOP is presented in the Section 9.3. Section 9.4 presents an Analysis of

Variance (ANOVA) of our proposed approach. Finally, Section 9.5 provides our final

remarks.

9.1 Our Proposed Approach

Our MOMA consists of two different approaches. The first one is a global optimizer

which is based on a modified hypervolume-based selection mechanism. A global

optimizer is meant to explore the whole search space for finding different regions, and

eventually, the global optimum (or a good approximation of it). The second method is

our local search (LS) technique which uses an IGD+-based search technique. A local

search method can improve a candidate solution very quickly, but aims to find only

local optima (i.e., solutions which are optimal in a specific region of the objective space

close to the candidate solution from which the local search is launched). Our approach

adopts the same structure of our original MOMA (see Chapter 7), but we include

some improvements to solve MOPs with complicated Pareto fronts. Our approach

has the following features: (1) a new hypervolume-based selection mechanism, which
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adopts the angle distance for decreasing the computation of the exact hypervolume

contribution; (2) an archiving process for preserving candidate solutions to sample

the Pareto front shape; (3) a method for splitting the objective space into different

regions for building the reference vectors, which are used by the local search engine;

and (3) a rule for updating the reference set.

9.1.1 Our Global Optimizer

Our global optimizer uses the same structure of SMS-EMOA [38], which starts with

an initial population of N individuals. Each new individual is created through the

use of evolutionary operators (i.e., SBX and polynomial-based mutation). The new

offspring will become a member of the population, but one individual is discarded

from the population in order to maintain the same population size. The individual

which minimizes the hypervolume contribution is eliminated. Here, the hypervolume

contribution is computed by estimating the angle distance for each solution from

the population in order to select solutions on which we apply the computation. To

compute the hypervolume contribution, we propose to find the k nearest solutions

in terms of angle distance to the ith candidate individual. This process is repeated

for each generation of the evolutionary algorithm, and each new candidate solution

is kept into the archive to sample the Pareto front shape.

The archive stores candidate solutions, up to a maximum number of solutions

defined by the “ArchiveSize” value (psize). The reference set is computed by finding

the best uniform distributed solutions which sample the Pareto front shape of the

MOP. Our LS technique starts when a certain percentage of the total number of

generations is reached using the reference vectors found so far. Next, we will provide

more details of the way in which our LS engine works. The pseudo-code of our

proposed MOMA is presented in Algorithm 12.

9.1.2 Modified Hypervolume-based Selection Mechanism

Our proposed algorithm improves the exact computation of the hypervolume

contribution, and has the following features: (1) it identifies the n candidate solutions

which have the nearest angle distance; and (2) for each candidate solution, it applies

the hypervolume contribution with l elements (in this case, we propose to select

five solutions). The main idea is to reduce the running time of its original version.

Algorithm 13 provides the pseudo-code of the algorithm to compute the hypervolume

contributions which is invoked with a set of candidate points (called D set) and a
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Algorithm 12 General Framework of our proposed MOMA

Input: A MOP, a stopping criterion and a uniform spread of N reference vectors
Output: Approximation of the MOP

1: P0 ← init();
2: t← 0;
3: A ← {};
4: while t < genmax do
5: Qt+1 ← generate(Pt); /*Generate an offspring using evolutionary operators*/
6: if PL > Ppercent then
7: if |A| < psize then
8: A ∪Qt+1;
9: else

10: /*Applying Local Search Engine*/
11: Pt+1 ← LS Engine(Pt+1);
12: A ← {};
13: end if
14: end if
15: D ← Pt ∪ {Qt+1};
16: /*Modified hypervolume-based selection mechanism for finding the N best

individuals*/
17: Pt+1 ← reduce(D);
18: t← t+ 1;
19: end while
20: return Pt;
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reference point ~yref .

The algorithm is organized into two main parts. In the first loop, we compute

the angle distance between solutions ~di and ~dj from the set D, where ~di and ~dj

should not be equal (i.e., i 6= j). Then, we find the k solutions with the worst angle

distance value, which will form a subset B. After that, for each solution from the

subset B we proceed to compute the exact hypervolume contribution with l nearest

solutions for the ith element. In this case, we propose to apply the hypervolume

contribution, whose cardinality of the set must contain five solutions. Once this is

done, we assign a maximum value for the solutions which are not candidates for

computing the hypervolume contribution.

Algorithm 13 AngleDistanceHypervolumeContribution(D, ~yref )

Input: A current non-dominated set D ⊂ Rm and a reference vector ~yref .
Output: Set of hypervolume Contribution values HvC.

1: DistanceMatrix← init();

2: for ~di ∈ D do
3: for ~dj ∈ D do

4: if ~di 6= ~dj then

5: DistanceMatrix[i][j]← AngleDistance(~di, ~dj);
6: else
7: DistanceMatrix[i][j]← maxValue;
8: end if
9: end for

10: end for
11: F ← FindWorstPoints(DistanceMatrix); /*Find the l points with the worst angle

distance*/

12: for ~fi ∈ F do
13: sort(DistanceMatrix[i]);

14: B ← FindNearestPoints(~fi, DistanceMatrix[i]);

15: HvC[~fi]← HVContribution(B, ~yref );
16: end for
17: for ~di ∈ D do
18: if ~dinot inF then
19: HvC[~di]← maximunValue;
20: end if
21: end for
22: return HvC;

Algorithm 13 shows an efficient way to approximate the hypervolume contribution

given a set D with non-dominated points. This algorithm allows to apply the
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hypervolume computation to specific solutions (i.e., solutions whose angle distance is

minimal).

9.1.3 Our Local Search Engine

As mentioned before, the local search engine uses a reference set for leading the

optimization process. The reference set establishes the regions on which local search

will explore the solutions. To create the reference set, we propose to sample the Pareto

front shape using an archive. Once the archive is created, we proceed to find the best

candidate points whose directions are promising. Our proposed approach creates

different neighborhoods for each point in the reference set. The ith neighborhood is

created by N vector points from the archive. Such points have the nearest distance

with respect to the ith reference point in terms of the d+ distance (see equation (3.11)).

Our local search technique starts with a population P which contains n individuals.

The new ith offspring is created by choosing three different parents from its

neighborhood. The parents are recombined using the differential evolution operator,

where the first parent is selected by the nearest distance in terms of the d+ distance

and the rest of the parents are randomly chosen. The second step is to combine the

parents and the offspring of each neighborhood. The new population at generation

t+1 is generated by finding the nearest point from the population for each z reference

point in Z. This process is repeated until the stopping criterion is satisfied.

9.1.4 Archiving Process

As mentioned before, the archive stores non-dominated solutions, up to a maximum

number of solutions defined by the “ArchiveSize” value (or psize). When the archive

reaches its maximum capacity, the approximation reference algorithm is executed

for selecting candidate solutions (these candidate solutions will form the so-called

candidate reference set). After that, the archive is cleaned, and the archiving process

continues until reaching a maximum number of updates. The archiving process is

applied after 60% of the total number of generations.

9.1.5 Reference Set

In our approach, we aim to select the best candidate points whose directions are

promising (these candidate solutions will sample the Pareto front as uniformly as

possible). For this reason, we propose to use a steady-state algorithm based on
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the hypercube contributions to select a certain number of reference points from the

archive. Algorithm 14 provides the pseudo-code of an approach that is invoked with

a set of non-dominated candidate points (called A set) and the maximum number of

reference points that we aim to find. The algorithm is organized into two main parts.

In the first loop, we create a set of initial candidate solutions to form the so-called Q
set. Thus, the solutions from A that constitute part of Q will be removed from A.

After that, the algorithm starts to find the best candidate solutions which will form

the reference set Z. To find the candidate reference points, the selection mechanism

computes the hypercube contributions of the current reference set Q. Once this is

done, we remove the ith solution that minimizes the hypercube value, and we add a

new candidate solution from A to Q. This process is executed until the cardinality

of A is equal to zero. In the line 20 of Algorithm 14, we apply the expand and

translate operations. A hypercube is generated by the union of all the maximum

volumes covered by a reference point. The ith maximum volume is described as “the

maximum volume generated by a set of candidate points” (these candidate points are

obtained from the archive using a reference point yref ).

9.1.6 Update Frequency

The timing and frequency of updating the reference set play an important role in

this approach. The generated reference point set does not always contribute in a

good way because a frequent updating can significantly affect the performance of

the algorithm. Therefore, we propose two additional mechanisms for updating the

reference set. The first one consists in updating the reference set if the variance of

the hypercube contribution of the new reference set is lower than the variance of

the previous reference set. In the second mechanism, if the hypercube value of the

previous reference set is less than the hypercube value of the new reference set, then

the new reference set is replaced by the previous one. It is worth indicating that these

two mechanisms are adopted in our proposed approach.

9.2 Experimental Study I

We compared the performance of our improved multi-objective memetic algorithm

(MOMA-II) with respect to its original version (for more details see Chapter 7).

We evaluate the running time of each version (i.e., a sequential and a parallel
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Algorithm 14 ComputeReferenceSet(A, zsize)
Input: A current non-dominated set A ⊂ Rm and maximum number of reference

points zsize.
Output: Reference point set Z ⊂ Rm with |Z| = zsize

1: yref ← FindMaxV alue(A) + ε;
2: Q ← {};
3: while |Q| < (zsize + 1) do
4: ~a← pop(A);
5: Q

⋃
{~a} ;

6: end while
7: while A! = {} do
8: i← 0;
9: for each ~q ∈ Q do

10: ContHyperCube[i]← AngleDistanceHypervolumeContribution(Q\{~q}, yref );

11: i← i+ 1;
12: end for
13: imin ← argminContHyperCube;
14: Q\{qimin

};
15: ~a← pop(A);
16: Q

⋃
{~a};

17: end while
18: Z ← {};
19: for each ~q ∈ Q do
20: Z

⋃
{~q ∗ ε−~l};

21: end for
22: return Z;
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Properties Problems
Linear DTLZ1

Convex and Concave DTLZ2-3, MAF2-5, WFG1
Inverted Simplex-like MAF1

Disconnected DTLZ7, WFG2
Degenerate DTLZ5-6, VNT2-3, WFG3

Badly-scaled MAF4-5

Table 9.1: Main properties of the 18 test problems adopted

Problem Reference point Problem Reference point
DTLZ1 (1,1,1) VNT1 (5, 6, 5)

DTLZ2-6 (2,2,2) VNT2 (5, -15, -11)
DTLZ7 (2, 2, 7) VNT3 (9, 18, 5)
MAF1-3 (2,2,2) WFG1 (3, 5, 7)
MAF4 (3,5, 9 ) WFG2 (2, 4, 7)
MAF5 (9, 5, 3 ) WFG3 (2, 3, 7)

Table 9.2: Reference points used for the hypervolume indicator

implementation1).

9.2.1 Test problems

We aimed to study the performance of our proposed approach when solving MOPs

with complex Pareto front shapes (i.e., convex, concave, inverted simplex-like,

disconnected, degenerate and badly-scaled Pareto fronts). For this reason, we selected

some test problems with a variety of representative Pareto front shapes from some

well-known and recently proposed test suites. To be more specific, we adopted the

DTLZ test suite [92], the WFG test suite [93], the MAF test suite [101] and the VNT

test suite [28] (see Table 9.1).

9.2.2 Methodology

For our comparative study, we decided to adopt the hypervolume indicator, which

assesses both convergence and maximum spread along the Pareto front. To compute

IH , we used the reference points shown in Table 9.2.

Likewise, we propose to measure the distribution of the approximation set. For

1The parallel implementation is the same that we proposed in the Chapter 7. However, in this
approach, we include a parallel algorithm for computing the hypervolume contribution.
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this reason, we decided to include the use of the spacing indicator. The spacing

indicator suggested by Schott [83] is computed as a relative distance measure between

consecutive solutions in the obtained non-dominated set. The definition of this

indicator is as follows:

s =

√√√√ 1

|Q|

|Q|∑
i=0

(di − d̄)2 (9.1)

where, di = mink∈Q∧
k 6=i
(∑m

i=1 |f im − fkm|
)

and d̄ is the average value of the above

distance measure.

We also include the modified spacing indicator, which adopts the angle distance

for measuring the range between each non-dominated solution from the set Q. We

intend to measure the variance of each minimal angle distance. The angle distance is

described as:

ad(~qi, ~qj) = arccos

(
~qi· ~qj
‖~qi‖‖~qj‖

)
(9.2)

Additionally, we also compared the running time of each MOEA, which was

measured in minutes. We also incorporate the speed up for comparing the parallel

implementation of our MOMA with respect to each of its competitors.

9.2.3 Parameterization

In the MAF and DTLZ test suites, the total number of decision variables is given by

n = m + k − 1, where m is the number of objectives and k was set to 5 for DTLZ1

and MAF1, and to 10 for DTLZ2-6, and MAF2-5. The number of decision variables

in the WFG test suite was set to 24, and the position-related parameter was set to

m − 1. The parameters of each MOMA adopted in our study were chosen in such

a way that we could do a fair comparison among them. The distribution indexes

for the Simulated Binary crossover and the polynomial-based mutation operators [85]

adopted by all algorithms, were set to: ηc = 20 and ηm = 20, respectively. The

crossover probability was set to pc = 0.9 and the mutation probability was set to

pm = 1/L, where L is the number of decision variables. The total number of function

evaluations for each memetic algorithm was set in such a way that it did not exceed

60,000 and the population size was set to 120 for each MOMA. The maximum number

of solution for the archive was set to 500, for MOMA-II. All the implementations were
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tested on the same computer which has the following characteristics: an Intel Core

i7-3930k CPU running at 3.20 GHz, with 8GB of RAM 1600 MHz DDR3. Our GPU

was a Geforce GTX 680, and we ran our experiments in Fedora 18 (64-bit version).

9.2.4 Discussion of Results

Table 9.3 provides the average hypervolume over the 30 independent executions of

each compared MOMA for each instance of the DTLZ, WFG, VNT, and MAF test

suites. Likewise, Tables 9.4 and 9.5 provide the average spacing and modified spacing

respectively over the 30 independent executions. The best results are shown in

boldface and grey-colored cells show the second best results. The variance is given

in parentheses.

It is clear that the winner in this experimental study is our proposed MOMA-I

since it was able to outperform MOMA-II in more than fifty percent in terms of

the hypervolume indicator, but MOMA-II obtained very similar results to MOMA-

I. MOMA-II is able to outperform its original version in terms of distribution since

MOMA-II and MOMA-II/Parallel can generate solutions which are well-distributed

along the Pareto front. It is worth noting that MOMA-I generates solutions edges

and the knee regions of the Pareto front. MOMA-I is not able to spread solutions

along the Pareto front although MOMA-I surpasses its competitors regarding the

hypervolume indicator. Figures 9.1-9.15 present a graphical representation of the

approximations to the Pareto front obtained by each MOMA in some instances of the

DTLZ, MAF, and VNT test problems adopted with three objectives.

On the MOPs with regular (i.e., convex, concave and linear shapes) Pareto fronts,

MOMA-II shows a clear advantage over its competitors, since MOMA-II generates

well-distributed solutions and it avoids to keep solutions in the knee regions. However,

MOMA-I is able to create well-distributed solutions in the edge and in the knee regions

and it outperforms MOMA-II in terms of the hypervolume indicator (see Figures 9.1,

9.2, 9.3, 9.4). Tables 9.4 and 9.5 show that the obtained distribution by MOMA-II

outperforms MOMA-I in these problems.

On the MOPs with inverted Simplex-like Pareto fronts, MOMA-I performs better

than MOMA-II regarding the hypervolume indicator. Its parallel version works very

similarly to our CPU-based MOMA (see Figure 9.11). Figure 9.11 shows that the

solutions produced by the adopted MOMAs have good coverage of the Pareto front.

On MOPs with degenerate Pareto fronts (i.e., DTLZ5, DTLZ6, VNT2, and

VNT3), our proposed approach outperforms its original version. Table 9.3 indicates

that MOMA-II was able to drive the optimization process using the angle distance,
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Figure 9.1: Graphical representation of the final set of solutions obtained by each
Multi-Objective Memetic Algorithm on DTLZ1 with 3 objectives

since its solutions are distributed more uniformly (see Figures 9.5, 9.5, 9.9 and 9.10).

MOMA-I and MOMA-II can obtain solutions of similar quality when they solve

MOPs with badly-scaled Pareto fronts, but our approach outperforms its original

version in MAF4 and MAF5. On the other hand, as mentioned before, MOMA-

I can solve MOPs with simplex-like Pareto fronts in an efficient manner. In this

regard, it is worth mentioning that in these MOPs, our proposed MOMA was able

to obtain approximations of a similar quality to those obtained by its competitors.

For DTLZ7, MOMA-II performs better than its competitor. Our proposed approach

is able to sample the Pareto front shape as uniformly as possible using the angle

distance. The construction of our reference point set works very well in this sort of

scenarios (i.e., irregular Pareto front shapes). On the other hand, MOMA-I generates

well-distributed solutions in the edge regions, and it is not able to spread solutions

along the Pareto front (see Tables 9.4 and 9.5). It is worth mentioning that this sort

of problem is very difficult to solve since the Pareto front shape is disconnected and

irregular. However, our proposed approach has a good convergence in spite of this

difficulty.

Table 9.6 shows a study of the running time of each MOMA. It is clear that the

winner of this experimental study is our MOMA-II/Parallel regarding CPU time. We

are also able to obtain the same results as the CPU-based MOMA, which verifies that

our parallel implementation is working as expected. Our MOMA-II/Parallel is able

to obtain solutions of a similar quality as MOMA-I. On the other hand, this study

confirms that our proposed IGD+-based LS is an effective way to solve complicated

MOPs, but the LS depends on the definition of well-distributed reference points.

9.3 Solving a real-world optimization problem

In this section, we evaluate our MOMA-II on a multi-objective optimization problem

that models crash safety design of vehicles. This MOP aims at the design of the frontal
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Problems MOMA-I MOMA-II MOMA-II/Parallel
DTLZ1 0.974498(0.0) 0.967744(5e-06) 0.965165(6e-05)
DTLZ2 7.43048(0.0) 7.407862(0.000153) 7.401935(0.000261)
DTLZ3 6.488775(3.053799) 7.331207(0.015623) 7.34676(0.001596)
DTLZ4 6.909481(0.25347) 7.292107(0.387131) 7.16539(0.743282)
DTLZ5 5.008962(0.065273) 6.09001(7.3e-05) 6.095326(6.7e-05)
DTLZ6 5.276411(0.475358) 5.89638(0.003954) 5.916629(0.005026)
DTLZ7 10.944332(4.124945) 12.72887(1.531952) 13.065952(0.887248)
MAF1 5.531737(2e-06) 5.400789(0.001865) 5.385073(0.00225)
MAF2 5.13774(0.0) 5.054947(0.000822) 5.049649(0.00109)
MAF3 7.953254(0.0) 7.908287(0.00125) 7.904027(0.003435)
MAF4 83.604422(1.49467) 85.032317(1.148134) 85.261421(0.258035)
MAF5 86.342127(295.925351) 86.320354(813.912931) 94.732153(227.092937)
WFG1 71.958616(2.72051) 54.74326(4.565736) 53.314301(3.953018)
WFG2 101.136803(0.005187) 99.813961(0.068134) 99.967004(0.03222)
WFG3 76.278619(0.002793) 73.198446(0.313928) 72.950653(0.312567)
WFG4 77.488835(0.001871) 75.759379(0.033253) 75.892545(0.04884)
WFG5 74.183962(1.1e-05) 72.640281(0.215921) 72.428069(0.237723)
WFG6 74.731767(0.145603) 73.377549(0.224466) 73.320232(0.180422)
WFG7 77.664878(2.5e-05) 76.209886(0.036435) 76.256588(0.059257)
WFG8 73.968437(0.007002) 72.197654(0.093873) 72.23113(0.10217)
WFG9 76.654169(0.08226) 72.644709(1.375751) 72.551441(1.680141)
VIE1 61.903108(0.036651) 61.168247(0.019782) 61.156076(0.017319)
VIE2 7.851557(0.0) 7.826619(2.8e-05) 7.824563(6.2e-05)
VIE3 15.180549(1.6e-05) 15.126093(0.001393) 15.135716(0.000326)

Table 9.3: Performance comparison among several MOMAs using the average
hypervolume indicator obtained from 30 independent executions solving 24
benchmark problems.

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

f3

f1
f2

f3

(a) MOMA-I

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

f3

f1
f2

f3

(b) MOMA-II

 0
 0.1

 0.2
 0.3

 0.4
 0.5

 0.6
 0.7

 0.8
 0.9

 1

 0
 0.1

 0.2
 0.3

 0.4
 0.5

 0.6
 0.7

 0.8
 0.9

 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

f3

f1
f2

f3

(c) MOMA-II/Parallel

Figure 9.2: Graphical representation of the final set of solutions obtained by each
Multi-Objective Memetic Algorithm on DTLZ2 with 3 objectives
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Figure 9.3: Graphical representation of the final set of solutions obtained by each
Multi-Objective Memetic Algorithm on DTLZ3 with 3 objectives
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Problems MOMA-I MOMA-II MOMA-II/Parallel
DTLZ1 0.00549(0.0) 0.029316(0.004157) 0.043394(0.009272)
DTLZ2 0.042087(3e-06) 0.032824(1.9e-05) 0.031573(3.3e-05)
DTLZ3 1.088404(18.70655) 0.720126(12.206421) 0.095582(0.050677)
DTLZ4 0.023307(0.000301) 0.032229(8.6e-05) 0.031795(0.000101)
DTLZ5 0.006532(9e-06) 0.006278(1e-06) 0.005966(1e-06)
DTLZ6 0.01089(5e-05) 0.057337(0.001525) 0.043129(0.000447)
DTLZ7 0.058786(0.000185) 0.047437(0.000228) 0.048478(8.5e-05)
MAF1 0.01435(1e-06) 0.025076(1.2e-05) 0.025462(7e-06)
MAF2 0.021896(2e-06) 0.017055(9e-06) 0.016873(1.1e-05)
MAF3 0.014218(2e-06) 0.686561(3.607834) 0.49651(4.407834)
MAF4 3.696129(348.04145) 1.365616(26.095513) 0.218978(0.000516)
MAF5 0.124541(0.003563) 0.1663(0.004588) 0.177499(0.001266)
WFG1 0.137122(0.003864) 0.079512(0.000595) 0.073165(0.00043)
WFG2 0.084556(0.000526) 0.163593(0.000852) 0.169295(0.000503)
WFG3 0.121439(6.6e-05) 0.091632(0.000204) 0.092781(0.000281)
WFG4 0.149812(4.5e-05) 0.156329(0.000307) 0.148194(0.000265)
WFG5 0.149747(3.4e-05) 0.143176(0.000224) 0.140333(0.000274)
WFG6 0.146962(6.1e-05) 0.158453(0.000285) 0.151972(0.000278)
WFG7 0.148852(5.3e-05) 0.15137(0.000211) 0.15396(0.000451)
WFG8 0.157233(8.7e-05) 0.157762(0.000661) 0.158087(0.00043)
WFG9 0.151543(8.1e-05) 0.152307(0.00042) 0.150543(0.000393)
VIE1 0.089613(0.000446) 0.151537(0.001044) 0.151101(0.000701)
VIE2 0.024476(8.9e-05) 0.077188(0.000497) 0.072312(0.00047)
VIE3 0.020918(5.4e-05) 0.071089(0.000331) 0.068556(4.9e-05)

Table 9.4: Performance comparison among several MOMAs using the average spacing
indicator obtained from 30 independent executions solving 24 benchmark problems.
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Figure 9.4: Graphical representation of the final set of solutions obtained by each
Multi-Objective Memetic Algorithm on DTLZ4 with 3 objectives
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Figure 9.5: Graphical representation of the final set of solutions obtained by each
Multi-Objective Memetic Algorithm on DTLZ5 with 3 objectives
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Problems MOMA-I MOMA-II MOMA-II/Parallel
DTLZ1 0.000414(0.0) 0.000826(0.0) 0.001223(2e-06)
DTLZ2 0.001121(0.0) 0.000799(0.0) 0.000742(0.0)
DTLZ3 0.001548(1e-06) 0.00102(0.0) 0.001082(0.0)
DTLZ4 0.000598(0.0) 0.000775(0.0) 0.000867(0.0)
DTLZ5 0.000155(0.0) 8.9e-05(0.0) 8.8e-05(0.0)
DTLZ6 0.000183(0.0) 0.000817(1e-06) 0.000526(0.0)
DTLZ7 1.8e-05(0.0) 5.4e-05(0.0) 5.4e-05(0.0)
MAF1 0.00022(0.0) 0.000293(0.0) 0.000293(0.0)
MAF2 0.000227(0.0) 0.000225(0.0) 0.000227(0.0)
MAF3 0.000847(0.0) 0.001085(0.0) 0.001673(4e-06)
MAF4 0.000297(0.0) 0.000947(0.0) 0.000781(0.0)
MAF5 0.001658(1e-06) 0.002076(1e-06) 0.002592(1e-06)
WFG1 0.000531(0.0) 0.000547(0.0) 0.00037(0.0)
WFG2 0.00082(0.0) 0.001499(0.0) 0.001489(0.0)
WFG3 0.000588(0.0) 0.000419(0.0) 0.000432(0.0)
WFG4 0.002137(0.0) 0.001647(0.0) 0.001552(0.0)
WFG5 0.00185(0.0) 0.001533(0.0) 0.001602(0.0)
WFG6 0.002206(1e-06) 0.001834(1e-06) 0.001637(0.0)
WFG7 0.002002(0.0) 0.001714(0.0) 0.001996(1e-06)
WFG8 0.002774(1e-06) 0.001649(0.0) 0.001803(0.0)
WFG9 0.005365(3e-06) 0.002229(1e-06) 0.001914(1e-06)
VIE1 0.000116(0.0) 0.000288(0.0) 0.000295(0.0)
VIE2 3e-06(0.0) 8e-06(0.0) 5e-06(0.0)
VIE3 4e-06(0.0) 2.4e-05(0.0) 2.5e-05(0.0)

Table 9.5: Performance comparison among several MOMAs using the average of
the modified spacing indicator obtained from 30 independent executions solving 24
benchmark problems.
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Figure 9.6: Graphical representation of the final set of solutions obtained by each
Multi-Objective Memetic Algorithm on DTLZ6 with 3 objectives
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Figure 9.7: Graphical representation of the final set of solutions obtained by each
Multi-Objective Memetic Algorithm on DTLZ7 with 3 objectives
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Problems MOMA-I MOMA-II MOMA-II/Parallel
DTLZ1 9.4274 (12.263x) 1.899331 (2.471x) 0.76874
DTLZ2 10.892649 (15.211x) 2.132161 (2.977x) 0.716115
DTLZ3 1.670008 (2.588x) 1.020812 (1.582x) 0.645277
DTLZ4 10.557177 (15.846x) 2.058528 (3.09x) 0.666255
DTLZ5 8.849651 (16.201x) 1.550911 (2.839x) 0.54625
DTLZ6 8.271462 (13.772x) 1.35217 (2.251x) 0.600583
DTLZ7 11.192558 (13.297x) 2.433561 (2.891x) 0.841717
MAF1 14.924303 (16.702x) 2.426999 (2.716x) 0.893588
MAF2 20.617702 (21.457x) 2.826771 (2.942x) 0.960879
MAF3 11.381151 (14.976x) 1.623884 (2.137x) 0.759954
MAF4 7.029891 (10.172x) 1.202022 (1.739x) 0.691107
MAF5 15.33621 (18.216x) 2.415801 (2.87x) 0.841887
WFG1 14.044311 (15.133x) 2.081011 (2.242x) 0.928058
WFG2 15.851603 (16.685x) 2.562334 (2.697x) 0.950071
WFG3 19.39901 (19.17x) 3.566729 (3.525x) 1.011963
WFG4 22.195684 (21.653x) 2.793638 (2.725x) 1.025083
WFG5 22.459885 (22.003x) 2.752031 (2.696x) 1.020747
WFG6 20.409212 (21.086x) 2.357306 (2.436x) 0.967892
WFG7 25.308688 (22.018x) 3.389747 (2.949x) 1.149461
WFG8 15.601784 (16.779x) 2.137104 (2.298x) 0.929813
WFG9 25.111543 (22.232x) 3.995938 (3.538x) 1.129505
VIE1 6.408723 (8.226x) 2.977246 (3.821x) 0.779104
VIE2 5.030915 (7.143x) 2.37711 (3.375x) 0.70427
VIE3 4.021957 (7.209x) 1.600258 (2.868x) 0.557919

Table 9.6: Performance comparison among several MOMAs using the average time
obtained from 30 independent executions solving 24 benchmark problems.
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Figure 9.8: Graphical representation of the final set of solutions obtained by each
Multi-Objective Memetic Algorithm on VNT1 with 3 objectives
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Figure 9.9: Graphical representation of the final set of solutions obtained by each
Multi-Objective Memetic Algorithm on VNT2 with 3 objectives
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Figure 9.10: Graphical representation of the final set of solutions obtained by each
Multi-Objective Memetic Algorithm on VNT3 with 3 objectives
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Figure 9.11: Graphical representation of the final set of solutions obtained by each
Multi-Objective Memetic Algorithm on MAF1 with 3 objectives
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Figure 9.12: Graphical representation of the final set of solutions obtained by each
Multi-Objective Memetic Algorithm on MAF2 with 3 objectives
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Figure 9.13: Graphical representation of the final set of solutions obtained by each
Multi-Objective Memetic Algorithm on MAF3 with 3 objectives
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Figure 9.14: Graphical representation of the final set of solutions obtained by each
Multi-Objective Memetic Algorithm on MAF4 with 3 objectives
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Figure 9.15: Graphical representation of the final set of solutions obtained by each
Multi-Objective Memetic Algorithm on MAF5 with 3 objectives

structure of vehicle for crash-worthiness [102]. It considers five design variables, which

are defined by the thickness of each member (i.e., structural pieces of the vehicle)

around the frontal structure. This optimization problem involves minimizing the

mass of the vehicle, deceleration during the full frontal crash (which is proportional

to biomechanical injuries caused to the occupants) and toe board intrusion in the

offset-frontal crash (which accounts for the structural integrity of the vehicle).
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This real-world multi-objective optimization problem is formulated as follows:

Given

~x = {x1, x2, x3, x4, x5}
Minimize

f1(~x) = 1640.2823 + 2.3573285x1 + 2.3220035x2

+ 4.5688768x3 + 7.7213633x4 + 4.4559504x5

f2(~x) = 6.5856 + 1.15x1 − 1.0424x2

+ 0.9738x3 + 0.8364x4 − 0.3695x1x4+

0.0861x1x5 + 0.3628x2x4 − 0.1106x2
1

− 0.3437x2
3 + 0.1764x2

4

f3(~x) = −0.0551 + 0.0181x1 + 0.1024x2

0.0421x3 − 0.0073x1x2 + 0.024x2x3

0.0118x2x4 − 0.0204x3x4 − 0.008x3x5

− 0.0241x2
2 + 0.0109x2

4

Where

f1 = Mass

f2 = Ain

f3 = Intrusion

Subject to

1 ≤ xi ≤ 3,∀i = 1, 2, . . . , 5.

(9.3)

In order to evaluate the performance of our MOMA in this scenario, the total

number of function evaluations for our MOMA was set in such a way that it did

not exceed 50,000. The population size was set as 120 individuals. To validate the

performance of our MOMA, we adopted the hypervolume indicator. Table 9.7 shows

that our selection mechanism based on angle distance works as we expected because

MOMA-II outperforms its original version in terms of the hypervolume indicator.

Figure 9.16 presents a graphical representation of the approximations to the Pareto

front obtained by each MOMA in the real-world MOP, from which we can conclude

that MOMA-II is able to sample as uniformly as possible the solutions along the

Pareto front. Meanwhile, MOMA-I leads the search towards the edge of the Pareto

front.
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Spacing Modified Spacing Hypervolume
MOMA-I 0.15472(0.002832) 6e-06(0.0) 132.269572(0.209582)
MOMA-II 0.26061(0.006171) 2e-05(0.0) 139.794453(0.078125)

MOMA-II/Parallel 0.355658(0.045455) 3.3e-05(0.0) 139.152724(0.410714)

Table 9.7: Performance comparison among several MOMAs using the average
of modified spacing, spacing and the hypervolume indicators obtained from 30
independent executions when solving a real-world multi-objective optimization
problem.
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Figure 9.16: Graphical representation of the final set of solutions obtained by each
Multi-Objective Memetic Algorithm on a real-world multi-objective optimization
problem.

9.4 Experiment Study II: Analysis of Variance

The one-way s (ANOVA) [103, 104] was used to validate the sensitivity of our MOMA-

II to its parameters (psize and l factor) as well as to analyze the way in which these

parameters affect the value of the hypervolume indicator. As mentioned before, the

parameter psize defines the size of the archive. The archive stores the solutions

to sample the Pareto front shape of the MOP (these solutions will form the so-

called reference point set). On the other hand, the l factor controls the selection of

the n candidate solutions with the nearest angle distance. This factor affects the

distribution of solutions for the reference set. In this context, we intend to observe

the secondary effects of the selection value for each parameter. In this experimental

study, we selected a set of MOPs where our proposed MOMA-II had a good, regular

and bad performance. We adopted DTLZ1, DTLZ2, DTLZ5, DTLZ6, MAF1, MAF2,

MAF5, WFG2 and WFG4 (these problems are complicated to solve and have different

Pareto front shapes). We intend to analyze the parameters settings of our MOMA-II.

For this reason, the ANOVA requires to establish different levels for each parameter.

These levels were selected based on prior knowledge, which was determined by the

previous experimental study (see Section 9.2). The design of the ANOVA is described

as follows:

Cinvestav Departamento de Computación



An Improved Version of a MOMA 117

Combination psize l Combination psize l
C1 300 2 C10 500 20
C2 300 5 C11 500 50
C3 300 10 C12 500 120
C4 300 20 C13 700 2
C5 300 50 C14 700 5
C6 300 120 C15 700 10
C7 500 2 C16 700 20
C8 500 5 C17 700 50
C9 500 10 C18 700 120

Table 9.8: Resulting combinations for each pair of parameters (psize and l).

• Levels for each parameter are defined as:

– p = {300, 500, 700}

– l = {2, 5, 10, 20, 50, 120}

Base on these levels, we created 18 combinations for each pair of parameters. Each

pair is shown in Table 9.8. To test our MOMA-II, we used a significance evidence level

α = 0.05 (i.e., the confidence level is 95%). The hypervolume value was computed

over 30 independent executions performed for each MOP. For the rest of the parameter

values of our MOMA, we adopted the same values indicated before. The hypotheses

used by the ANOVA are the following:

• Null hypothesis (H0): The means among all groups are equal (i.e., µ1 = µ2 =

, . . . ,= µn). In other words, the H0 hypothesis implies that there is not enough

evidence to claim that the mean of the hypervolume is different from another.

• Alternative hypothesis (HA): There are some statistically significant differences

between the means of each group (or population). This means that there are one

or more combinations that are different regarding the hypervolume indicator.

Likewise, it is important to realize that the one-way ANOVA is a statistical test,

which cannot tell that specific populations are significantly different from each other.

ANOVA only indicates whether at least two or more groups are different. If the

ANOVA leads to the conclusion that there is evidence that populations are not equal,

we need to use a post hoc test, to determine which specific groups differed from each

other. The Tukey multiple comparison test is one of the several post hoc tests that

can be used to determine which group differs from among the rest [104]. This analysis
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Problem F -value P -value Null Hypothesis
DTLZ1 32.916522 2.079494e-71 False
DTLZ2 1.412057 1.248502e-01 True
DTLZ5 17.936218 4.537211e-42 False
DTLZ6 1.962303 1.195673e-02 False
DTLZ7 0.882281 5.955787e-01 True
WFG2 2.115254 5.732081e-03 False
WFG4 19.988917 1.540276e-46 False
MAF1 3.229930 1.454899e-05 False
MAF2 2.767108 1.926622e-04 False
MAF5 3.041358 4.223093e-05 False

Table 9.9: Table for describing the ANOVA results for each MOP.

compares the difference between each pair (i.e., adopting two combinations for each

level) of means with appropriate adjustment for the multiple testing. The obtained

results are presented using a confidence interval graph, in which each confidence

interval corresponds to each pair. In this graph, if the confidence interval intersects

with zero then, there is no statistically significant difference between each of the

compared populations. On the other hand, if the confidence interval does not cross

with zero, there is a statistically significant difference between the means of each

compared group.

The obtained results reject the null hypothesis (H0) for DTLZ1, DTLZ5, DTLZ6,

WFG2, WFG4, MAF1, MAF2 and MAF5, but H0 is only true for DTLZ2 and

DTLZ7 (see Table 9.9). Our results indicate that our MOMA-II does not have

perturbations when the problem is concave and unimodal. Although DTLZ7 is

considered a complicated MOP (i.e., it has a disconnected Pareto front shape), the

null hypothesis is true. We want to analyze the results when ANOVA rejects the

null hypothesis (i.e., the alternative hypothesis). In this case, we adopt the use of

box plots and interval plots to see the effects generated into our MOMA-II by each

combination of parameter values. Figures 9.17, 9.18 and 9.19 show an example of box

plot and interval plot for DTLZ5. The rest of Figures of this experimental study are

shown in Appendix B. The description for each test where the ANOVA rejects the

null hypothesis is the following:

DTLZ test suite : In this test suite, the performance of our MOMA-II did not

show sensitivity to its parameters. However, we can see that some values of l

affect the performance of our proposed approach (i.e., when l > 50). In this

experimental study we showed that the size of the archive does not significantly
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combination for each pair of parameters.
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affect the search process.

• For DTLZ5, the best performance of our MOMA-II is in the combinations

C5, C11, and C17, since the variance has the lowest value and the Tukey

test verifies that there is a statistically significant difference. However, in

C6, C12, and C18, our approach is affected by the number of candidate

solutions when l = 120. For the rest of combinations, the performance of

our MOMA-II is quite similar.

• For DTLZ6, although this problem is unimodal and degenerated, the

performance of our approach is similar for all cases. The size of the archive

and the number of candidate solutions do not affect the search process.

WFG test suite : In this test suite, we found that the performance of our algorithm

depends on the type of MOP (i.e., if a MOP is unimodal or is multimodal). The

Tukey test shows that the relation between l and psize does not exist, since the

l parameter considerably affects the behavior of our MOMA.

• For WFG2, the obtained results by our MOMA-II did not change since for

each paired combination (C1-C18) of parameter values, the performance

of our proposed MOMA is not affected.

• For WFG4, although this problem is multimodal, the best performance

of our algorithm appears with C1, C7, and C13, since the hypervolume

value increases in these scenarios. We can see that our algorithm has a

regular performance when 2 ≤ l ≤ 50. However, in C6, C12, and C18,

our approach is affected since the variance our approach is considerably

increased (i.e., when l ≥ 50).

MAF test suite : In this test suite, we found that some combinations do not have

any effect on performance, and the best performance of our MOMA is obtained

when the parameters are 2 ≤ l ≤ 50 and 300 ≤ psize ≤ 700.

• For MAF1, C12 is the best combination found to solve MOPs with inverted

simplex-like Pareto front shapes. It is worth noting that the performance

of our proposed algorithm is very similar for each combination (i.e., C1-C11

and C13-C18). In this case, we suggest to use psize = 500 and l = 120.

• In the experimental study for MAF2, we found that the combination C6

affects the performance of our MOMA, since the variance increases when
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l = 120. On the other hand, when we adopt C1-C9, our approach is able to

obtain similar results. The Tukey test shows that there is no evidence that

any combination of parameter values can produce a better approximations.

• For MAF5, the Tukey test shows that the C6 combination, as mentioned

before, is the worst configuration to use in our MOMA. We can see that

psize does not affect the performance of the proposed approach. However,

if l > 50, the performance of our algorithm is not steady (i.e., the variance

of the hypervolume presents a considerable increase).

9.5 Final Remarks

We have proposed a new Multi-Objective Memetic Algorithm which has an IGD+-

based local search engine. Our algorithm adopts a novel method for computing the

hypervolume contribution, which is based on the used of angle distances. MOMA-II

avoids keeping solutions in the knee regions, and it is able to spread the solutions along

the Pareto front as uniformly as possible. We tested our MOMA on a multi-objective

optimization problem for the crash safety design of vehicles, where we showed that

the modified hypervolume-based approach is able to properly sample the Pareto front

shape. Based on such results, we claim that our proposed approach is a competitive

alternative to deal with MOPs having irregular Pareto front shapes, even in real-

world MOPs. Our results indicate that it is possible to improve the behavior of

its original version (i.e., MOMA-I) for solving MOPs with complicated Pareto front

shapes. Our proposal includes a parallel implementation which makes it possible to

launch multiple local search processes at the same time. We showed that the use

of multiple processors helps to improve the performance of MOMA and avoids to

select the solutions on which we need to launch the local search engine. It is worth

emphasizing that our proposed Parallel multi-objective memetic algorithm is able to

achieve a significant speedup (of up to 22x) with respect to its original version.
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Figure 9.18: Graphical representation of each confidence interval obtained by the
Tukey test for DTLZ5, where each confidence interval intersects with zero.
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Figure 9.19: Graphical representation of each confidence interval obtained by the
Tukey test for DTLZ5, where each confidence interval does not intersect with zero.
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Chapter 10

Conclusions and Future Work

In this work, we have presented the contributions developed so far for improving

Multi-Objective Evolutionary Algorithms by using a local search technique based on

the IGD+ indicator. Such contributions follow two main goals:

• To approximate a good representation of the Pareto front (PF).

• Decrease the running time of the Multi-Objective Memetic Algorithm.

Throughout this work, we showed the capabilities of the IGD+ indicator

when was used for driving the optimization process. Furthermore, we introduced

different strategies to hybridize the IGD+ indicator with a Multi-Objective Memetic

Algorithm. In the following, we present the final remarks derived from in this study.

10.1 Conclusions

We have proposed a new indicator-based approach for solving many-objective

problems. This method indicates that the IGD+ indicator constitutes a good choice

to approximate the True Pareto Front. As can be observed in Chapter 5, the

Pareto compliant property between two-objective vectors is of utmost importance

and improves the performance of the selection mechanism of a MOEA. Our study

showed that an IGD+-based selection mechanism is an effective way to lead the search

towards a single region of the objective space. Likewise, we have proposed a new

Multi-Objective Memetic Algorithm which has an IGD+-based local search engine

(see Chapter 7). The core idea of our proposed algorithm is to combine properties

of two different performance indicators (the hypervolume indicator and the IGD+

indicator). For this reason, we created a local search engine based on the IGD+
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indicator and a global optimizer based on hypervolume indicator. We proposed a

GPU-based MOMA which makes it possible to launch multiple local search processes

at the same time. We showed that the use of GPUs helps to improve the performance

of the MOMA and avoids the problem of deciding on which solutions we need to

launch the local search engine. Our results indicate that it is possible to improve the

convergence of a MOEA if the global optimizer incorporates an indicator-based local

search engine.

In Chapter 9, we proposed an improvement to our MOMA. MOMA-II adopts

a novel method for computing the hypervolume contribution, which can lead the

optimization process to sample the solutions as uniformly as possible. MOMA-II

avoids to keep solutions in knee regions, and it is able to provide a good spread of

solutions along the Pareto front. Our results indicate that it is possible to improve

the behavior of its original version (i.e., MOMA-I) in MOPs with complex Pareto

front shapes. We tested our MOMA on a MOP that models the crash safety design

of vehicles, where we showed that the modified hypervolume-based approach is able

to properly sample the Pareto front shape of a real-world problem. We can conclude

that our proposed approach is a competitive alternative to deal with MOPs having

irregular Pareto front shapes, and even complicated real-world MOPs.

10.2 Future Work

As part of our future work, we would like to validate our improved MOMA in many-

objective optimization problems, in order to observe its performance. Additionally,

we would like to test our GPU-based MOMA in more real-world MOPs. We would

also like to study the use of other performance indicators (or combinations of them)

to design local search engines. Some possible options are δp and R2.
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Appendix A

Test problems

In this Appendix, we review some test suites, which are commonly used in many-

objective optimization. Here, we describe the DTLZ [92], WFG [93], MAF [101] and

VNT [28] test suites, which are defined for real-valued and unconstrained problems.

These test suites proposed different Pareto front shapes, which are attractive to use for

assessing the performance of MOEAs. These test suites are based on the properties of

their Pareto fronts. We categorized the test problems adopted into different groups:

convex, concave, inverted simplex-like, disconnected, degenerate and badly-scaled.

Here, we describe the definition of each test problem used in this thesis.

A.1 Deb-Thiele-Laumanns-Zitzler Test Suite

The Deb-Thiele-Laumanns-Zitzler (DTLZ) Test Suite [92] includes nine representa-

tive test problems for comparing multi-objective optimizers, which are scalable to any

number of decision variables and objectives. In the following, we present the seven

unconstrained problems of the DTLZ test suite. In this test suite, the number of

objectives is represented by m. The total number of decision variables is given by

n = m+ k − 1, where k is the number of distance parameters.
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A.1.1 DTLZ1

This test problem is separable and multimodal. Its Pareto optimal front is linear and

is defined by the following expression:

Given

~x = {x1, . . . , xm−1, xm, . . . , xn}
Minimize

f1(~x) = 0.5(1 + g(~y))
m−1∏
i=1

xi

fj=2:m−1(~x) = 0.5(1 + g(~y))(1− xm−j+1)

m−j∏
i=1

xi

fm(~x) = 0.5(1 + g(~y))(1− x1)

Where

yi=1:k = {xm, xm+1, . . . , xn}

g(~y) = 100

[
k +

k∑
i=1

(yi − 0.5)2 − cos(20π(yi − 05))

]
Subject to

0 ≤ xi ≤ 1,∀i = 1, 2, . . . , n.

(A.1)

All objective function values lie on the linear hyper-plane
∑m

i=1 fi = 0.5. The

difficulty in this problem is to converge to the hyper-plane, since the search space

contains (11k−1) local Pareto optimal fronts. The authors suggest to use k = 5. The

Pareto optimal front is shown in Figure A.1.
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Figure A.1: Pareto optimal front with three objective functions corresponding to
DTLZ1
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A.1.2 DTLZ2

This problem is separable and unimodal. The geometry of its Pareto optimal front is

concave. DTLZ2 is defined as follows:

Given

~x = {x1, . . . , xm−1, xm, . . . , xn}
Minimize

f1(~x) = (1 + g(~y))
m−1∏
i=1

cos
(xiπ

2

)
fj=2:m−1(~x) = (1 + g(~y))

(
m−j∏
i=1

cos
(xiπ

2

))
sin
(xm−j+1π

2

)
fm(~x) = (1 + g(~y)) sin

(x1π

2

)
Where

yi=1:k = {xm, xm+1, . . . , xn}

g(~y) =
k∑
i=1

(yi − 0.5)2

Subject to

0 ≤ xi ≤ 1,∀i = 1, 2, . . . , n.

(A.2)

The Pareto optimal solutions are produced when ~y = (0.5, 0.5, . . . )T and all objective

functions values must satisfy that
∑m

i=1(fi)
2 = 1. The authors of this problem suggest

to use k = 10 (see Figure A.2).

Cinvestav Departamento de Computación



Test problems 131

A.1.3 DTLZ3

This problem is defined as DTLZ2 but it includes a new g function, that makes it

multifrontal. The definition is given as follows:

Given

~x = {x1, . . . , xm−1, xm, . . . , xn}
Minimize

f1(~x) = (1 + g(~y))
m−1∏
i=1

cos
(xiπ

2

)
fj=2:m−1(~x) = (1 + g(~y))

(
m−j∏
i=1

cos
(xiπ

2

))
sin
(xm−j+1π

2

)
fm(~x) = (1 + g(~y)) sin

(x1π

2

)
Where

yi=1:k = {xm, xm+1, . . . , xn}

g(~y) = 100

[
k +

k∑
i=1

(yi − 0.5)2 − cos(20π(yi − 05))

]
Subject to

0 ≤ xi ≤ 1,∀i = 1, 2, . . . , n.

(A.3)

The above function g introduces (3k − 1) local Pareto optimal fronts, and one

global Pareto optimal front. Each of these local Pareto fronts are parallel to the

global Pareto optimal front. This makes optimizers to converge towards local Pareto

optimal fronts. The global Pareto optimal front corresponds to ~y = (0.5, 0.5, . . . )T

(see Figure A.3).
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A.1.4 DTLZ4

This problem is concave, separable and unimodal, and it is defined as follows:

Given

~x = {x1, . . . , xm−1, xm, . . . , xn}

Minimize

f1(~x) = (1 + g(~y))
m−1∏
i=1

cos

(
xαi π

2

)

fj=2:m−1(~x) = (1 + g(~y))

(
m−j∏
i=1

cos

(
xαi π

2

))
sin

(
xαm−j+1π

2

)
fm(~x) = (1 + g(~y)) sin

(
xα1π

2

)
Where

yi=1:k = {xm, xm+1, . . . , xn}

g(~y) = 100

[
k +

k∑
i=1

(yi − 0.5)2 − cos(20π(yi − 05))

]
Subject to 0 ≤ xi ≤ 1,∀i = 1, 2, . . . , n.

(A.4)

The parameters α = 100 and k = 10 are suggested here. This problem allows

a dense set of solutions to exist near the fm − f1 plane. Figure A.4 shows the true

Pareto front shape with three objective functions.
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A.1.5 DTLZ5

This problem is unimodal and degenerated. DTLZ5 is defined as:

Given

~x = {x1, . . . , xm−1, xm, . . . , xn}

Minimize

f1(~x) = (1 + g(~y))
m−1∏
i=1

cos

(
θiπ

2

)

fj=2:m−1(~x) = (1 + g(~y))

(
m−j∏
i=1

cos

(
θiπ

2

))
sin

(
θm−j+1π

2

)
fm(~x) = (1 + g(~y)) sin

(
θ1π

2

)
Where

yi=1:k = {xm, xm+1, . . . , xn}

θi =

{
xi i = 1

1+2g(~y)
2(1+g(~y))

xi ∀i ∈ {2, 3, . . . ,m− 1}

g(~y) =
k∑
i=1

(yi − 0.5)2

Subject to 0 ≤ xi ≤ 1,∀i = 1, 2, . . . , n.

(A.5)

The g function with k = 10 variables is suggested. The Pareto optimal front

corresponds to ~y = (0.5, . . . , 0.5)T , and all objective function values must satisfy∑m
i=1(fi)

2 = 1 (see Figure A.5).
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Figure A.5: Pareto optimal front with three objective functions corresponding to
DTLZ5
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A.1.6 DTLZ6

This problem is a modified version of DTLZ5. The resulting problem is unimodal

and degenerated and it is defined as follows:

Given

~x = {x1, . . . , xm−1, xm, . . . , xn}

Minimize

f1(~x) = (1 + g(~y))
m−1∏
i=1

cos

(
θiπ

2

)

fj=2:m−1(~x) = (1 + g(~y))

(
m−j∏
i=1

cos

(
θiπ

2

))
sin

(
θm−j+1π

2

)
fm(~x) = (1 + g(~y)) sin

(
θ1π

2

)
Where

yi=1:k = {xm, xm+1, . . . , xn}

θi =

{
xi i = 1

1+2g(~y)
2(1+g(~y))

xi ∀i ∈ {2, 3, . . . ,m− 1}

g(~y) =
k∑
i=1

y0.1
i

Subject to 0 ≤ xi ≤ 1,∀i = 1, 2, . . . , n.

(A.6)

The Pareto optimal front corresponds to ~y = (0, . . . , 0)T . The value of k is chosen

as 10. Figure A.6 shows the true Pareto front shape of this problem.
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A.1.7 DTLZ7

This problem has a disconnected Pareto front shape consisting of 2m−1 Pareto optimal

regions. This problem is a good example for simulating a multi-objective real-world

problem. DTLZ7 is defined as follows:

Given

~x = {x1, . . . , xm−1, xm, . . . , xn}

Minimize

fj=1:m−1(~x) = fi

fm(~x) = (1 + g(~y))

(
m−

m−1∑
i=1

(
fi

1 + g(~y)
(1 + sin(3πfi))

))

Where

yi=1:k = {xm, xm+1, . . . , xn}

g(~y) = 1 +
9

k

k∑
i=1

yi

Subject to

0 ≤ xi ≤ 1,∀i = 1, 2, . . . , n.

(A.7)

The function g requires k = 10. The Pareto optimal solutions correspond to

~y = (0, . . . , 0)T . Figure A.7 shows the true Pareto front shape of DTLZ7.
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Figure A.7: Pareto optimal front with three objective functions corresponding to
DTLZ7

A.2 Walking Fish Group Test Suite (WFG)

The Walking-Fish-Group test suite was published in 2005 by Huband et al. [93]. This

test suite suggests nine multi-objective test problems (WFG1 to WFG9), which are

scalable with respect to both the number of decision variables and the number of

objectives. These problems include a wide variety of Pareto front shapes. Moreover,

characteristics such as bias, multi-modality, and non-separability, are defined by a set

of transformations. In the following, we present this test suite. Here, m represents

the number of objectives, and each problem is defined in terms of a decision vector

~x ∈ Rn. All xi ∈ ~x will have a domain [0, 1]. In this test suite, xm is known as the

underlying distance parameter, and x1:m−1 are the underlying position parameters.

The vector ~x is derived from a vector of working parameters ~z ∈ Rn. The domain of

all zi ∈ ~z is [0, 2i]. It is worth nothing, that the number of variables n is defined as

n ≤ m and n = k+ l, where k ∈ {m−1, 2(m−1), 3(m−1), . . . } is the position related

parameter, and l is known as the distance related parameter. Each transition vector

adds complexity to the underlying problem. The multi-objective optimizer directly

manipulates the ~z vector, through which ~x is indirectly manipulated.

A.2.1 WFG1

WFG1 is separable and unimodal, but it has a polynomial and flat region. It is

strongly biased toward small values of the variables, which makes it very difficult to
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solve (see Figure A.8). Its definition is given as:

Given

~z = {z1, . . . , zk, zk+1, . . . , zn}
Minimize

f1(~x) = xm + 2
m−1∏
i=1

(
1− cos

(xiπ
2

))
fj=2:m−1(~x) = xm + 2j

(
m−j∏
i=1

(
1− cos

(xiπ
2

)))(
1− sin

(xm−j+1π

2

))
fm(~x) = xm + 2m

(
1− x1 −

cos
(

10πx1
2

)
10π

)

Where

xi=1:m−1 = r sum

(
{y(i−1)k/(m−1)+1, . . . , yik/(m−1)},

{
2(i− 1)k

(m− 1)
+ 1, . . . ,

2ik

(m− 1)

})
xm = r sum ({yk+1, . . . , yn}, {2(k + 1), . . . , 2n})

yi=1:n = b poly(y′i, 0.02)

y′i=1:k = y′′i

y′i=k+1:n = b flat(y′′i , 0.8, 0.75, 0.85)

y′′i=1:k =
zi
2i

y′′i=k+1:n = s linear
( zi

2i
, 0.35

)
(A.8)
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Figure A.8: Pareto optimal front with three objective functions corresponding to
WFG1
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Figure A.9: Pareto optimal front for three objectives corresponding to WFG2
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A.2.2 WFG2

This problem is non-separable and multimodal. The Pareto optimal front shape is

disconnected (see Figure A.9). It is given by the following expression:

Given

~z = {z1, . . . , zk, zk+1, . . . , zn}
Minimize

f1(~x) = xm + 2
m−1∏
i=1

(
1− cos

(xiπ
2

))
fj=2:m−1(~x) = xm + 2j

(
m−j∏
i=1

(
1− cos

(xiπ
2

)))(
1− sin

(xm−j+1π

2

))
fm(~x) = xm + 2m

(
1− x1 cos2(5x1π)

)
Where

xi=1:m−1 = r sum
(
{y(i−1)k/(m−1)+1, . . . , yik/(m−1)}, {1, . . . , 1}

)
xm = r sum

(
{yk+1, . . . , yk+l/2}, {1, . . . , 1}

)
y′i=1:k = y′i

y′i=k+1:k+l/2 = r nonsep({y′k+2(i−k)−1, y
′
k+2(i−k)}, 2)

y′i=1:k =
zi
2i

y′i=k+1:n = s linear
( zi

2i
, 0.35

)
(A.9)
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A.2.3 WFG3

This problem is non-separable but unimodal. It has a linear and degenerate Pareto

front shape (see Figure A.10). It is given by the following expression:

Given

~z = {z1, . . . , zk, zk+1, . . . , zn}
Minimize

f1(~x) = xm + 2
m−1∏
i=1

(xi)

fj=2:m−1(~x) = xm + 2j

(
m−j∏
i=1

xi

)
(1− xm−j+1)

fm(~x) = xm + 2m(1− x1)

Where xi=1 = ui

xi=2:m−1 = xm(ui − 0.5) + 0.5

xm = r sum
(
{yk+1, . . . , yk+l/2}, {1, . . . , 1}

)
ui = r sum

(
{y(i−1)k/(m−1)+1, . . . , yik/(m−1)}, {1, . . . , 1}

)
y′i=1:k = y′i

y′i=k+1:k+l/2 = r nonsep({y′k+2(i−k)−1, y
′
k+2(i−k)}, 2)

y′i=1:k =
zi
2i

y′i=k+1:n = s linear
( zi

2i
, 0.35

)

(A.10)
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Figure A.10: Pareto optimal front for three objectives corresponding to WFG3
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Figure A.11: Pareto optimal front for three objectives corresponding to WFG4
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A.2.4 WFG4

WFG4 is separable, but highly multimodal. Its Pareto front shape is concave (see

Figure A.11) and is defined as follows:

Given

~z = {z1, . . . , zk, zk+1, . . . , zn}
Minimize

f1(~x) = xm + 2
m−1∏
i=1

sin (xiπ/2)

fj=2:m−1(~x) = xm + 2j

(
m−j∏
i=1

sin(xiπ/2)

)
cos(xm−j+1π/2)

fm(~x) = xm + 2m cos(x1π/2)

Where

xi=1:m−1 = r sum
(
{yk+1, . . . , yik/(m−1)}, {1, . . . , 1}

)
xm = r sum ({yk+1, . . . , yn}, {1, . . . , 1})

yi=1:n = s multi
( zi

2i
, 30, 10, 0.35

)

(A.11)
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A.2.5 WFG5

This problem is deceptive and separable, and its Pareto front shape is concave (see

Figure A.12). WFG5 is defined by the following expression:

Given

~z = {z1, . . . , zk, zk+1, . . . , zn}
Minimize

f1(~x) = xm + 2
m−1∏
i=1

sin (xiπ/2)

fj=2:m−1(~x) = xm + 2j

(
m−j∏
i=1

sin(xiπ/2)

)
cos(xm−j+1π/2)

fm(~x) = xm + 2m cos(x1π/2)

Where

xi=1:m−1 = r sum
(
{yk+1, . . . , yik/(m−1)}, {1, . . . , 1}

)
xm = r sum ({yk+1, . . . , yn}, {1, . . . , 1})

yi=1:n = s decept
( zi

2i
, 0.35, 0.001, 0.05

)

(A.12)
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Figure A.12: Pareto optimal front for three objectives corresponding to WFG5
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Figure A.13: Pareto optimal front for three objectives corresponding to WFG6
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A.2.6 WFG6

This problem is deceptive and separable, and its Pareto front shape is concave (see

Figure A.13). It is defined by the following expression:

Given

~z = {z1, . . . , zk, zk+1, . . . , zn}
Minimize

f1(~x) = xm + 2
m−1∏
i=1

sin (xiπ/2)

fj=2:m−1(~x) = xm + 2j

(
m−j∏
i=1

sin(xiπ/2)

)
cos(xm−j+1π/2)

fm(~x) = xm + 2m cos(x1π/2)

Where

xi=1:m−1 = r nonsep
(
{y(i−1)k/(m−1)+1, . . . , yik/(m−1)}, {1, . . . , 1}

)
xm = r nonsep ({yk+1, . . . , yn}, l)

yi=1:k =
zi
2i

yi=k+1:n = s decept
( zi

2i
, 0.35

)

(A.13)
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A.2.7 WFG7

This problem is separable and unimodal. It has a concave Pareto optimal front which

is shown in Figure A.14. It is defined as follows:

Given

~z = {z1, . . . , zk, zk+1, . . . , zn}
Minimize

f1(~x) = xm + 2
m−1∏
i=1

sin (xiπ/2)

fj=2:m−1(~x) = xm + 2j

(
m−j∏
i=1

sin(xiπ/2)

)
cos(xm−j+1π/2)

fm(~x) = xm + 2m cos(x1π/2)

Where

xi=1:m−1 = r sum
(
{y(i−1)k/(m−1)+1, . . . , yik/(m−1)}, {1, . . . , 1}

)
xm = r sum ({yk+1, . . . , yn}, {1, . . . , 1})

yi=1:k = y′i

yi=k+1:n = s linear(y′i, 0.35)

y′i=1:k = b param(zi/(2i), r sum({zi+1/(2(i+ 1)), . . . , zn/2n},

{1, . . . , 1}), 0.98

49.98
, 0.02, 50)

yi=k+1:n =
zi
2i

(A.14)
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Figure A.14: Pareto optimal front for three objectives corresponding to WFG7
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A.2.8 WFG8

This problem has a parameter dependent bias, and is non-separable and unimodal.

The Pareto optimal front shape is concave (see Figure A.15), and is defined as:

Given

~z = {z1, . . . , zk, zk+1, . . . , zn}
Minimize

f1(~x) = xm + 2
m−1∏
i=1

sin (xiπ/2)

fj=2:m−1(~x) = xm + 2j

(
m−j∏
i=1

sin(xiπ/2)

)
cos(xm−j+1π/2)

fm(~x) = xm + 2m cos(x1π/2)

Where

xi=1:m−1 = r sum
(
{y(i−1)k/(m−1)+1, . . . , yik/(m−1)}, {1, . . . , 1}

)
xm = r sum ({yk+1, . . . , yn}, {1, . . . , 1})

yi=1:k = y′i

yi=k+1:n = s linear(y′i, 0.35)

yi=1:k =
zi
2i

y′i=k+1:n = b param(zi/(2i), r sum({z1/2, . . . , zi−1/(2(i− 1))},

{1, . . . , 1}), 0.98

49.98
, 0.02, 50)

(A.15)
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A.2.9 WFG9

WFG9 is non-separable, multimodal, deceptive, and has a parameter dependent bias.

These features make it a very difficult problem. The Pareto optimal front shape is

concave, but in the edge of the shape is flat (see Figure A.16). This problem is defined

as:

Given

~z = {z1, . . . , zk, zk+1, . . . , zn}
Minimize

f1(~x) = xm + 2
m−1∏
i=1

sin (xiπ/2)

fj=2:m−1(~x) = xm + 2j

(
m−j∏
i=1

sin(xiπ/2)

)
cos(xm−j+1π/2)

fm(~x) = xm + 2m cos(x1π/2)

Where

xi=1:m−1 = r nonsep
(
{y(i−1)k/(m−1)+1, . . . , yik/(m−1)}, k/(m− 1)

)
xm = r nonsep ({yk+1, . . . , yn}, l)

yi=1:k = s decept(y′i, 0.35, 0.001, 0.05)

yi=k+1:n = s multi(y′i, 30, 95, 0.35)

y′i=1:n−1 = b param(zi/(2i), r sum({zi+1/(2(i− 1), . . . , zn/2n)},

{1, . . . , 1}), 0.98

49.98
, 0.02, 50)

y′n =
zn
2n

(A.16)

The previous problems are defined in terms of a set of transformation functions,

which map parameters with domain [0, 1] onto the range [0, 2i]. There are three

types of transformation functions: bias, shift and reduction functions. For more

details about of these functions, see [93].

A.3 MAF test suite

Benchmark problems play an important role in order in understanding the weaknesses

and strengths of multi-objective evolutionary algorithms. As mentioned before,

Cinvestav Departamento de Computación



152 Chapter A

 0

 0.5

 1

 1.5

 2

 2.5

 3  0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 0
 1
 2
 3
 4
 5
 6
 7

f3

WFG8

PFTrue

f1

f2

f3

Figure A.15: Pareto optimal front for three objectives corresponding to WFG8
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Figure A.16: Pareto optimal front for three objectives corresponding to WFG9

several scalable continuous test problems, such as those in the DTLZ test suite [92]

and the WFG test suite [93], have been commonly used. However, all of these test

suites only represent one or several aspects of real-world scenarios, but they typically

have a “regular” Pareto front shapes. For instance, the Pareto front of most of the

DTLZ and WFG test problems is similar to a simplex-like shape. Cheng et al. [101]

proposed 15 benchmark problems. These problems have diverse properties which

cover a good representation of various real-world scenarios, such as being multimodal,

disconnected, degenerate, non-separable, and “irregular” Pareto front shapes. Here,
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we only present five of those problems (MAF1 up to MAF5).

A.3.1 MAF1 (modified inverted DTLZ1)

This test problem has an inverted linear Pareto front, it is separable and multifrontal.

It is defined by the following expression:

Given

~x = {x1, . . . , xm−1, xm, . . . , xn}
Minimize

f1(~x) = (1 + g(~y))
m−1∏
i=1

xi

fj=2:m−1(~x) = (1 + g(~y))(1− xm−j+1)

m−j∏
i=1

xi

fm(~x) = (1 + g(~y))(x1)

where

g(~x) =
k∑
i=1

(xi − 0.5)2

Subject to 0 ≤ xi ≤ 1, para i = 1, 2, . . . , n.

(A.17)

The number of decision variables is given by n = m+ k − 1, where k denotes the

distance parameters and it should be set as k = 5. This test problem has an linear

inverted Pareto Front shape, while the Pareto optimal set is relatively simple. In

spite of this problem being linear, some multi-objective evolutionary algorithms are

not able to solve it.
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A.3.2 MAF2 (Badly-scaled DTLZ2)

This test problem is a modified version of DTLZ2, which increases the difficulty of

its original version. MAF2 is separable and unimodal, and its Pareto front shape is

badly-scaled concave. The authors of this test problem suggest to use k = 10 for the

distance parameter. It is defined as follows:

Given

~x = {x1, . . . , xm−1, xm, . . . , xn}
Minimize

f1(~x) = (1 + g(~y))
m−1∏
i=1

cos (θi)

fj=2:m−1(~x) = (1 + g(~y))

(
m−j∏
i=1

cos (θi)

)
sin (θi)

fm(~x) = (1 + g(~y)) sin (θ1)

where

θi =
π

2

(
xi
2

+
1

4

)

gi(~x) =

m+in+m+1
m

−1∑
j=m+(i−1)n+m+1

m

(
xj
2

+
1

4

)2

subject to 0 ≤ xi ≤ 1, for all i = 1, 2, . . . , n.

(A.18)
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A.3.3 MAF3 (convex DTLZ3)

MAF3 is a modified version of DTLZ3. The resulting problem includes a factor p to

transform the Pareto front shape. The definition is given as follows:

Given

~x = {x1, . . . , xm−1, xm, . . . , xn}
Minimize

f1(~x) =

(
(1 + g(~y))

m−1∏
i=1

cos
(xiπ

2

))4

fj=2:m−1(~x) =

(
(1 + g(~y))

(
m−j∏
i=1

cos
(xiπ

2

))
sin
(xm−j+1π

2

))4

fm(~x) =
(

(1 + g(~y)) sin
(x1π

2

))2

where

yi=1:k = {xm, xm+1, . . . , xn}

g(~y) = 100

[
k +

k∑
i=1

(yi − 0.5)2 − cos(20π(yi − 05))

]
subject to

0 ≤ xi ≤ 1, para i = 1, 2, . . . , n.

(A.19)

The above function g introduces (3k − 1) local Pareto optimal fronts, and one global

Pareto optimal front. All the local Pareto fronts are parallel to the global Pareto

optimal front. This makes optimizers to converge towards a local Pareto front.
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A.3.4 MAF4 (inverted badly scaled DTLZ3)

This problem is a modified version of DTLZ3, which includes a factor a in order to

scale the Pareto front shape. The problem is described as follows:

Given

~x = {x1, . . . , xm−1, xm, . . . , xn}
Minimize

f1(~x) = a

(
(1 + g(~y))

(
1−

m−1∏
i=1

cos
(xiπ

2

)))

fj=2:m−1(~x) = am−j

(
(1 + g(~y))

(
1−

m−j∏
i=1

cos
(xiπ

2

))
sin
(xm−j+1π

2

))
fm(~x) = am

(
(1 + g(~y))

(
1− sin

(x1π

2

)))
where

yi=1:k = {xm, xm+1, . . . , xn}

g(~y) = 100

[
k +

k∑
i=1

(yi − 0.5)2 − cos(20π(yi − 05))

]
subject to

0 ≤ xi ≤ 1, para i = 1, 2, . . . , n.

(A.20)

The authors propose to use a = 2. The landscape of this test problem is highly

multifrontal, containing (3k − 1) local Pareto optimal fronts.
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A.3.5 MAF5 (Convex badly-scaled DTLZ4)

MAF5 adopts the same structure of DTLZ4, which is separable and unimodal. The

Pareto front shape is convex and it is described as follows:

Given

~x = {x1, . . . , xm−1, xm, . . . , xn}
Minimize

f1(~x) = am

(
(1 + g(~y))

(
1−

m−1∏
i=1

cos

(
πxαi

2

)))4

fj=2:m−1(~x) = am−1

(
(1 + g(~y))

(
m−j∏
i=1

cos

(
πxαi

2

))
sin

(
πxαm−j+1

2

))4

fm(~x) = a

(
(1 + g(~y))

(
sin

(
πxα1

2

)))4

where

yi=1:k = {xm, xm+1, . . . , xn}

g(~y) =
k∑
i=1

(yi − 0.5)2

subject to

0 ≤ xi ≤ 1, para i = 1, 2, . . . , n.

(A.21)
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A.4 Viennet Test Suite

A.4.1 Viennet1

Viennet1 is a mutil-objective problem with three objectives [28]. The Pareto optimal

set is connected and symmetric, but the Pareto optimal front is a degenerated curved

surface (see Figure A.17). It is defined as follows:

Given

~x = {x1, x2}
Minimize

f1(~x) = x2
1 + (x2 − 1)2

f2(~x) = x2 + (y + 1)2 + 1

f3(~x) = (x1 − 1)2 + x2
2 + 2

subject to

− 2 ≤ xi ≤ 2,∀i = 1, 2

(A.22)
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Figure A.17: Graphical representation of Viennet1
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A.4.2 Viennet2

Viennet2 has a connected Pareto optimal front shape, but it is degenerated (see Figure

A.19) [28]. It is defined as follows:

Given

~x = {x1, x2}
Minimize

f1(~x) =
(x1 − 1)2

2
+

(x2 + 1)2

13
+ 3

f2(~x) =
(x1 + x2 − 3)2

36
+

(−x1 + x2 + 2)2

8
− 17

f3(~x) =
(x1 + 2x2 − 1)2

175
+

(−2x2 + x1)2

17
− 13

subject to

− 4 ≤ xi ≤ 4,∀i = 1, 2

(A.23)
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Figure A.18: Graphical representation of Viennet2

Cinvestav Departamento de Computación



160 Chapter A

A.4.3 Viennet3

The Pareto optimal set is disconnected and un-symmetric, and its Pareto optimal

front shape of Viennet3 is degenerated (see Figure A.19) [28]. It is defined as follows:

Given

~x = {x1, x2}
Minimize

f1(~x) =
1

2
(x2

1 + x2
2) + sin(x2

1 + x2
2)

f2(~x) =
(3x12x2 + 4)2

8
+

(x1 + x2 + 1)2

27
+ 15

f3(~x) =
1

(x2
1 + x2

2 + 1)
− 1.1e(−x21−x22)

subject to

− 3 ≤ xi ≤ 3,∀i = 1, 2

(A.24)
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Figure A.19: Graphical representation of Viennet3
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Appendix B

Experimental Results of the

Analysis of Variance (ANOVA)

In this Appendix, we show the box plots and the interval plots, which were obtained

by the Tukey test. This appendix B includes all graphs for each selected MOP.
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Figure B.1: Descriptive statistics for MOMA-II solving DTLZ1 with each combination
for each pair of parameters.
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Figure B.2: Graphical representation of each confidence interval obtained by the
Tukey test for DTLZ1, where each confidence interval intersects with zero.
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Figure B.3: Graphical representation of each confidence interval obtained by the
Tukey test for DTLZ1, where each confidence interval does not intersect with zero.
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Figure B.4: Descriptive statistics for MOMA-II solving DTLZ2 with each combination
for each pair of parameters.
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Figure B.5: Descriptive statistics for MOMA-II solving DTLZ6 with each combination
for each pair of parameters.
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Figure B.6: Graphical representation of each confidence interval obtained by the
Tukey test for DTLZ6, where each confidence interval intersects with zero.
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Figure B.7: Graphical representation of each confidence interval obtained by the
Tukey test for DTLZ6, where each confidence interval does not intersect with zero.
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Figure B.8: Descriptive statistics for MOMA-II solving DTLZ7 with each combination
for each pair of parameters.
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Figure B.9: Descriptive statistics for MOMA-II solving MAF1 with each combination
for each pair of parameters.
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Figure B.10: Graphical representation of each confidence interval obtained by the
Tukey test for MAF1, where each confidence interval intersects with zero.
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Figure B.11: Graphical representation of each confidence interval obtained by the
Tukey test for MAF1, where each confidence interval does not intersect with zero.
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Figure B.12: Descriptive statistics for MOMA-II solving MAF2 with each
combination for each pair of parameters.
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Figure B.13: Graphical representation of each confidence interval obtained by the
Tukey test for MAF2, where each confidence interval intersects with zero.
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Figure B.14: Graphical representation of each confidence interval obtained by the
Tukey test for MAF2, where each confidence interval does not intersect with zero.
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Figure B.15: Descriptive statistics for MOMA-II solving MAF5 with each
combination for each pair of parameters.
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Figure B.16: Graphical representation of each confidence interval obtained by the
Tukey test for MAF5, where each confidence interval intersects with zero.
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Figure B.17: Graphical representation of each confidence interval obtained by the
Tukey test for MAF5, where each confidence interval does not intersect with zero.

Cinvestav Departamento de Computación



Experimental Results of the Analysis of Variance (ANOVA) 179

97 97.5 98 98.5 99 99.5 100

c1

c2

c3

c4

c5

c6

c7

c8

c9

c10

c11

c12

c13

c14

c15

c16

c17

c18

Box Plot of WFG2 for each configuration

Hypervolume

C
on
fig
ur
at
io
n

Figure B.18: Descriptive statistics for MOMA-II solving WFG2 with each
combination for each pair of parameters.
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Figure B.19: Graphical representation of each confidence interval obtained by the
Tukey test for WFG2, where each confidence interval intersects with zero.
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Figure B.20: Graphical representation of each confidence interval obtained by the
Tukey test for WFG2, where each confidence interval does not intersect with zero.
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Figure B.21: Descriptive statistics for MOMA-II solving WFG4 with each
combination for each pair of parameters.
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Figure B.22: Graphical representation of each confidence interval obtained by the
Tukey test for WFG4, where each confidence interval intersects with zero.
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Figure B.23: Graphical representation of each confidence interval obtained by the
Tukey test for WFG4, where each confidence interval does not intersect with zero.
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Guimarães, Portugal, March 29 - April 1 2015.

[87] H. W. Kuhn and Bryn Yaw. The hungarian method for the assignment problem.

Naval Res. Logist. Quart, pages 83–97, 1955.

[88] François Bourgeois and Jean-Claude Lassalle. An extension of the munkres

algorithm for the assignment problem to rectangular matrices. Commun. ACM,

14(12):802–804, December 1971.

[89] Michael T.M. Emmerich and André H. Deutz. Test Problems Based on
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