
Centro de Investigación y de Estudios
Avanzados del Instituto Politécnico

Nacional

Unidad Zacatenco

Departamento de Computación

Análisis e implementación eficiente de

protocolos criptográficos de llave pública

Tesis que presenta

José Eduardo Ochoa Jiménez

para obtener el grado de

Doctor en Ciencias en Computación

Director de tesis

Dr. Francisco José Rambó Rodŕıguez Henŕıquez

Ciudad de México Febrero, 2019

ii

Center for Research and Advanced Studies of
National Polytechnic Institute

Zacatenco campus

Computer science department

Analysis and efficient implementation of public

key cryptographic protocols

Submitted by

José Eduardo Ochoa Jiménez

for the degree of

Ph.D. in Computer Science

Advisor

Francisco José Rambó Rodŕıguez Henŕıquez, Ph.D.

Mexico City February, 2019

iv

Dedication

To my family.

v

vi

Acknowledgements

I thank my advisor Francisco Rodŕıguez-Henŕıquez for his guidance and support during my
Ph.D. studies.

I also thank my friends from the cryptography laboratory for sharing their knowledge and
for having shared with me hard and good times.

I thank the Consejo Nacional de Ciencia y Tecnoloǵıa CONACyT for the scholarship pro-
vided to me during the period that I was a Ph.D. candidate at Cinvestav.

And finally, a special thanks to the Department staff who supported me during my Ph.D.
research.

vii

viii

Resumen

Durante las últimas cuatro décadas, el paradigma de la criptograf́ıa de llave pública
ha brindado soluciones elegantes a diversos problemas dif́ıciles que surgen de aplicaciones
contemporáneas de seguridad de la información. Ejemplos de estos problemas incluyen: au-
tenticación de entidades, anonimato, no repudio, por nombrar sólo algunos. No obstante, la
implementación eficiente de la criptograf́ıa de llave pública implica el cálculo de operaciones
aritméticas no triviales sobre operandos extremadamente grandes. Por tal motivo, el objetivo
principal de esta tesis es analizar cuidadosamente algunos de los protocolos criptográficos de
llave pública más populares, con la finalidad de identificar las operaciones cŕıticas que influ-
yen significativamente en el costo computacional de dichos esquemas. Una vez identificadas
estas operaciones, nuestro siguiente objetivo es proponer mejoras algoŕıtmicas y/o de imple-
mentación que permitan reducir significativamente el tiempo de ejecución de estos protocolos,
mientras se mantiene la seguridad en contra de ataques de canal lateral de los esquemas. Este
trabajo de investigación examina tres subáreas diferentes de la criptograf́ıa de llave pública, es
decir, esquemas basados en la factorización de números enteros, emparejamientos e isogenias.
Las primeras dos subáreas se han utilizado e implementado intensamente en innumerables
aplicaciones de seguridad de la información. Mientras que el último esquema es un candida-
to prometedor para realizar el intercambio de llaves secretas en un escenario post-cuántico,
donde se supone que ya se encuentran disponibles computadoras cuánticas suficientemente
poderosas. Nuestro estudio comienza realizando un análisis cuidadoso de la implementación
eficiente de la aritmética entera y de campos finitos en las micro-arquitecturas de los pro-
cesadores más recientes. Este análisis nos permitió diseñar una biblioteca de software que
es utilizada para implementar de manera segura el algoritmo de firma RSA. De la subárea
de criptograf́ıa basada en emparejamientos, se aborda el problema general del “hashing” de
tiempo constante hacia curvas eĺıpticas, donde se proponen algoritmos prácticos, eficientes y
seguros para realizar el “hashing” a los subgrupos de curva eĺıptica utilizados en este tipo de
protocolos. Además, se diseñó una biblioteca de software que implementa dos protocolos de
autenticación de dos factores, los cuales son seguros contra ataques simples de canal lateral.
Por otra parte, proponemos el uso de emparejamientos sobre curvas eĺıpticas con grado de
encajamiento uno para implementar el protocolo de firma corta propuesto por Boneh, Lynn
y Shacham (BLS). Nuestro esquema aprovecha el hecho de que la mejora algoŕıtmica para el
cálculo de logaritmos discretos, reportado recientemente por Kim y Barbulescu, no se aplica
al escenario cuando el “Discrete Logarithm Problem” (DLP) se calcula en campos finitos de
orden primo. En el caso de la criptograf́ıa basada en isogenias, se proponen diversas optimiza-
ciones algoŕıtmicas cuyo objetivo es mejorar el desempeño de las operaciones aritméticas de
curvas eĺıpticas y campos finitos. Estas optimizaciones producen una aceleración importante
del tiempo de ejecución del protocolo “Supersingular Isogeny Diffie-Hellman” (SIDH). Fi-
nalmente, se presenta una nueva construcción del protocolo SIDH, utilizando isogenias cuyo
grado no es una potencia de un primo, la cual permite conseguir una aceleración considerable
en su cálculo.

ix

x

Abstract

During the last four decades, the public-key cryptography paradigm has provided ele-
gant solutions to several difficult problems that arise in contemporary information security
applications. Examples of these problems include, entity authentication, anonymity, non-
repudiation to name just a few. Nevertheless, the efficient implementation of public-key
cryptography involves the computation of non-trivial arithmetic operations with extremely
large operands. Accordingly, the main research goal of this thesis is to carefully analyze some
of the most popular public key cryptographic protocols with the aim of identifying critical
operations that significantly influence the whole computational cost of those schemes. Once
that these operations were identified, our next objective was to propose algorithmic and/or
implementation improvements that allow us to obtain significant speedups in the running
time of those protocols, while keeping a sound security of those schemes against side-channel
attacks. In this research work, we examine three different sub-areas of public-key cryptog-
raphy, namely, Integer-factorization-based, pairing-based and isogeny-based cryptographic
schemes. The first two sub-areas have been intensively used and deployed in innumerable
information security applications. The last sub-area is a promising candidate for computing
secret key-exchange in a post-quantum scenario, where it is assumed that powerful quantum
computers are already available. Taking into account practical considerations, we started
our study by performing a careful analysis of the efficient implementation of integer and
finite field arithmetic over the newest desktop micro-architectures. In this study, different
techniques for the efficient computation of modular multiplication were especially analyzed
due to the large influence of this operation in the performance achieved by the cryptographic
schemes studied in this work. This study allows us to design a software library used for
implementing the RSA signature algorithm in a secure way. In the case of pairing-based
cryptography, we discuss the general problem of constant-time hashing into elliptic curves
and we propose practical, efficient, and secure algorithms for hashing values to elliptic curve
subgroups used in pairing-based cryptographic protocols. Moreover, we design a software
library that implements two pairing-based two-factor authentication protocols, which allows
to thwart simple side-channel attacks. Then, we also propose the usage of pairings over
elliptic curves with embedding degree one to implement the Boneh, Lynn and Shacham
(BLS) short signature protocol. Our scheme takes advantage of the fact that the algorithmic
improvement for computing discrete logarithms recently reported by Kim and Barbulescu,
do not apply to the scenario when the Discrete Logarithm Problem (DLP) is computed on
prime-order fields Fp. In the case of isogeny-based cryptography, we proposed several al-
gorithmic optimizations targeting both elliptic curve and finite field arithmetic operations.
These optimizations yielded an important speedup in the runtime cost of the Supersingular
Isogeny Diffie-Helmann (SIDH) protocol. Finally, we presented a new construction of the
SIDH using non-prime power degree isogenies in the Bob’s side, which allows us to achieve
a considerable speedup in its computation.

xi

Cinvestav xii

Contents

1. Introduction 13
1.1. Motivation . 15
1.2. Outline . 15

2. Mathematical background 17
2.1. Groups . 17

2.1.1. Subgroups . 19
2.1.2. Cyclic groups . 19
2.1.3. Cosets . 20
2.1.4. Group homomorphisms . 21
2.1.5. Discrete Logarithm Problem (DLP) 22

2.2. Rings . 22
2.2.1. Subrings, ideals and quotient rings . 23
2.2.2. Ring homomorphisms . 24

2.3. Fields . 24
2.3.1. Field extensions . 25

2.4. Elliptic curves . 26
2.4.1. The group law . 27
2.4.2. Elliptic curves over finite fields . 30

I Integer-factorization-based cryptography 33

3. Integer and finite field arithmetic 35
3.1. Representation of large integers . 35
3.2. Arithmetic instructions in processors . 36

3.2.1. AVX2 instruction set . 36
3.3. Integer arithmetic . 37

3.3.1. Addition and subtraction . 37
3.3.2. Multiplication . 38
3.3.3. Squaring . 41
3.3.4. Modular reduction . 43

3.4. RNS arithmetic . 46
3.4.1. Addition, subtraction and multiplication 47
3.4.2. Modular reduction . 47

3.5. Finite field arithmetic . 49
3.5.1. Addition and subtraction . 49

1

CONTENTS

3.5.2. Multiplication and squaring . 51
3.5.3. Exponentiation . 52

4. Protected implementation of RSA signature algorithm 55
4.1. RSA signature scheme . 55

4.1.1. Security . 56
4.2. Efficient implementation on CPU platforms 56

4.2.1. Montgomery based arithmetic . 57
4.2.2. RNS based arithmetic . 61

4.3. Efficient implementation on GPU platforms 64
4.3.1. RNS modular Multiplication . 65
4.3.2. RNS based RSA signature . 66

4.4. Conclusions . 67

II Pairing-based cryptography 69

5. Introduction to bilinear pairings 71
5.1. Bilinear pairings . 71

5.1.1. Types of pairings . 72
5.1.2. Curves for fast pairing software implementation 72
5.1.3. Security of pairings . 74

5.2. Main operations in pairing-based protocols 75
5.2.1. Pairing computation . 75
5.2.2. Scalar multiplication in G1 and G2 . 81
5.2.3. Hashing into elliptic curve groups . 84

6. Constant-time hashing into elliptic curves 89
6.1. Encoding functions to elliptic curves . 89

6.1.1. The Boneh-Franklin encoding . 90
6.1.2. Beyond supersingular curves . 90
6.1.3. The Shallue-van de Woestijne approach 91
6.1.4. Icart’s approach . 92

6.2. Hashing to pairing-friendly curves . 92
6.2.1. The issue of indifferentiability . 92
6.2.2. Hashing to subgroups . 93

6.3. Case study: the Barreto-Naehrig elliptic curves 95
6.3.1. Constant-time hashing to G1 . 95
6.3.2. Deterministic construction of points in E′(Fp2) for BN curves 97
6.3.3. Efficient hashing to G2 . 98

6.4. Implementation . 100
6.4.1. Intel processor . 100
6.4.2. ARM processor . 101

7. Protected implementation of pairing-based authentication protocols 103
7.1. Introduction . 103

7.1.1. Authentication . 104
7.2. Two-factor authentication protocols . 105
7.3. Implementation . 106

7.3.1. Hash into the groups G1 and G2 . 107
7.3.2. Scalar Multiplication and modular exponentiation 107
7.3.3. Pairing computation . 109

Cinvestav 2

CONTENTS

7.4. Results and conclusions . 109

8. Implementation of BLS signature protocol over curves with embedding
degree one 111
8.1. Introduction . 111
8.2. Elliptic curves with embedding degree one . 112

8.2.1. BLS signature algorithm for this pairings 112
8.2.2. Used constructions . 113

8.3. Finite field and elliptic curve arithmetic . 113
8.3.1. Finite field arithmetic . 113
8.3.2. Elliptic curve arithmetic . 116

8.4. Main building blocks of the BLS protocol . 118
8.4.1. Pairing . 118
8.4.2. Hash function to elliptic curve subgroup 120
8.4.3. Subgroup membership testing . 120

8.5. Results and conclusions . 120

III Isogeny-based cryptography 123

9. Introduction to the supersingular isogeny Diffie-Hellman protocol 125
9.1. Isogenies . 125
9.2. Elliptic curve models . 126

9.2.1. Montgomery curves and their arithmetic 126
9.2.2. Edwards curves and their arithmetic 128
9.2.3. Relation between Montgomery and Edwards curves 129

9.3. Supersingular isogeny Diffie-Hellman protocol 129
9.3.1. Security . 130
9.3.2. Critical operations . 131

10.A faster software implementation of the Supersingular Isogeny Diffie-Hellman
protocol 135
10.1. Introduction . 135
10.2. A novel algorithm for computing x(P + [k]Q) 136

10.2.1. Applying the new algorithm to the SIDH protocol 137
10.2.2. Recovering the y-coordinate of P + [k]Q 140

10.3. Optimization of point tripling in Montgomery curves 142
10.4. Finite field arithmetic implementation . 144

10.4.1. Exploiting the special form of the SIDH moduli 144
10.5. Implementation and benchmark results . 148

10.5.1. Related works . 148
10.5.2. Prime field arithmetic . 148
10.5.3. Impact of the P + [k]Q optimization 150
10.5.4. Point tripling impact . 150
10.5.5. Performance comparison of the SIDH protocol 151

10.6. Conclusions . 151

11.A parallel approach for the Supersingular Isogeny Diffie-Hellman protocol153
11.1. Introduction . 153
11.2. Extended SIDH . 154

11.2.1. eSIDH . 154
11.3. Parallel eSIDH . 155

Cinvestav 3

CONTENTS

11.3.1. eSIDH meets Chinese Remainder Theorem 156
11.4. Improving the construction and evaluation of isogenies 158

11.4.1. Tweaks for Isogeny construction . 158
11.4.2. Using yDBL and yADD . 159

11.5. Implementation and benchmarks results . 159
11.5.1. eSIDH prime Selection . 160
11.5.2. Parallelization of large-degree isogeny computation 160

11.6. Conclusion . 161

12.Conclusions and future work 163
12.1. Conclusions . 163
12.2. Future work . 164
12.3. List of publications . 164

12.3.1. Works in preparation . 165

Cinvestav 4

List of Figures

2.1. Point addition and point doubling computed geometricaly over R. 28

3.1. Schoolbook 3-word integer multiplication (product scanning strategy). 39

3.2. Schoolbook 3-word integer multiplication (operand scanning strategy). 40

3.3. Schoolbook 3-word integer squaring (operand scanning strategy). 42

4.1. Given two n-word integers a and b written as a = a0 + a1 · rn/2 and b = b0 +
b1 ·rn/2, respectively. The figure (a) shown a Karatsuba n-word multiplication
modulo R, and figure (b) shown a Karatsuba n-word multiplication divided
by R. The dashed rectangles shown the operations that are not computed. . . 59

4.2. Component-wise integer multiplication of two integers a and b in RNS repre-
sentation. 61

4.3. RNS multiplication/squaring using AVX2 instructions. 62

4.4. RNS addition/subtraction using AVX2 instructions. 62

4.5. Computation of RNS modular multiplication on a GPU platform. 65

5.1. Main operations of pairing base protocols. 76

5.2. Hashing into pairing-friendly elliptic curve subgroups. 85

5.3. A randomized variant of the SPEKE protocol. 88

7.1. Balanced two-factor authentication protocol [148]. 106

7.2. Unbalanced two-factor authentication protocol [149]. 106

9.1. SIDH protocol. Here ν represent the Velu’s formula whose entries are an
elliptic curve E and a point P ∈ E such that generates the kernel of the
output isogeny. 130

10.1. Calculating P + [12]Q, where the scalar is a 5-bit number (12)10 = (01100)2.
In Fig.10.1(a) we show the steps for the three-point ladder algorithm, and in
Fig.10.1(b) the steps for the ladder of Algorithm 36. If we remove the central
column in Fig.10.1(a), it becomes clear that the three-point ladder procedure
is in essence a classical Montgomery ladder. Also note that the column in the
center of Fig.10.1(b) shows a sequence of consecutive point doublings of Q.
When Q is a fixed point, this column can be precomputed. 139

5

LIST OF FIGURES

10.2. Multi-precision execution of C = REDC(T) for n = 12. Given the input
T = (t0, . . . , t23), REDC calculates n times the product q · (p+ 1), where p is
a 5-Montgomery-friendly prime. This implies that p + 1 can be expressed as
(p11, p10, p9, p8, p7, p6, p5, 0, 0, 0, 0, 0). In order to update T, at each iteration
the partial products lj = pjq, for 5 ≤ j < 12 are computed. The dependency
for calculating q at each iteration is highlighted with arrows. Notice that the
first five values of q only depends on the unmodified value of T (this fact is
represented by solid arrows). 145

11.1. Parallel version of the eSIDH protocol called PeSIDH. Here ν represent the Velu’s

formula whose entries are an elliptic curve E and a point P ∈ E such that generates

the kernel of the output isogeny. Notice that, computing RB , RC , R
′
B and R′

C can

be performed in parallel. 156
11.2. CRTeSIDH description. The parameters are the same as in the Theorems 11.1

and 11.2. The function ν is only to represent the Velu’s isogeny construction
which given a curve and a subgroup return an isogenous curve and an isogeny. 158

Cinvestav 6

List of Tables

2.1. Cayley’s table for Z∗7. 19
2.2. Cayley’s table for Z6. 20
2.3. Cayley’s table for Z12/4Z12. 21
2.4. Cayley’s tables for F5. 25
2.5. Cayley’s tables for F2[x]/(f(x)) with f(x) = x2 + x+ 1 ∈ F2. 26
2.6. Cost comparison between affine and mixed jacobian coordinates for point ad-

dition and doubling. 30

4.1. Security levels for RSA cryptosystem. 56
4.2. Comparison of timings for integer multiplication using Karatsuba and School-

book method. The timings are reported in number of word multiplications
(using MULX instructions) and clock cycles measured on a Haswell(HW) and
Skylake(SK) micro-architectures. 57

4.3. Comparison of timings for integer multiplication using Scott strategy [151]
against Karatsuba-Schoolbook method. The timings are reported in clock
cycles measured on a Haswell (HW) and Skylake (SK) micro-architectures. . 58

4.4. Timings of integer squaring using the Schoolbook and the Karatsuba meth-
ods. The timings are reported in number of word multiplications (using MUX

instructions) and clock cycles measured on a Haswell (HW) and Skylake (SK)
micro-architectures. 59

4.5. Timings for modular reduction, modular multiplication and modular squar-
ing. The timings are reported in clock cycles measured on Haswell (HW) and
Skylake (SK) micro-architectures. 60

4.6. Performance comparison of RSA signature implemented in CPU platforms
using Montgomery based arithmetic. 60

4.7. Comparison of timings for modular reduction, modular multiplication and
modular squaring based on Algorithm 7 and Algorithm 8 using the AVX2
instructions. All timings are reported in clock cycles measured on Haswell
(HW) and Skylake (SK) micro-architectures. 63

4.8. Timings for RSA signature algorithm using AVX2 instructions. The timings
are reported in millions of clock cycles measured on Haswell (HW) and Skylake
(SK) micro-architectures. 64

4.9. Performance comparison of RNS operations implemented in GPU platforms. . 66
4.10. Performance comparison of RSA private operation implemented in GPU plat-

forms. 67

5.1. Security levels for pairings over BN curves. 75

7

LIST OF TABLES

6.1. Cost of the main operations for hashing into G1 and G2 using BN curves at
the 128-bit security level over Intel processor. 100

6.2. Cost of the main operations for hashing into G1 and G2 using BN curves at
the 128-bit security level Over ARM processor. 101

7.1. Cost of main building blocks of the pairing-based protocols shown in §7.2. . . 110

7.2. Cost of authentication protocols taking into acount the communication overhead.110

8.1. Timings of the finite field operations for the different construccions of p. The
timings were measured in thousand of clock cycles on micro-architectures Intel
Haswell and Skylake. The parentesis costs corresponds to the aritmetic based
on the Barrett reduction. 116

8.2. Timings for the elliptic curve arithmetic. The timings are measured in thou-
sand of clock cycles. 118

8.3. Timings for the main bulding blocks that compose the BLS protocol. The
timings are presented in millions of clock cycles. 120

8.4. Timing of the BLS signature and verification phases. The timings are pre-
sented in millions of clock cycles. 121

9.1. Bit-size of p for a security level of 128, 192 and 256 bits for SIDH protocol. . 131

10.1. Algorithms for computing x(P+[k]Q) in the fixed- and variable-point scenario.
The third column shows ladder step arithmetic operation costs and the fourth
column shows the predicted acceleration factor. We assume that 1M=3m,
1S=0.66M, and 1s=0.8m. 141

10.2. Cost of point tripling formulas (in P1) for a Montgomery elliptic curve with
parameter A = A0/A1. 143

10.3. Performance comparison of different modular reduction algorithms. For Algo-
rithm 39, the admissible values of B for the prime pCLN = 23723239 − 1 were
measured. The timings are reported in clock cycles measured on a Skylake
micro-architecture. sh stands for the shifted technique as proposed in [25]. . . 147

10.4. Timing Performance of selected base field, quadratic and elliptic-curve arith-
metic operations. The last column shows the acceleration factor that our
library obtained in comparison with the SIDH v2 library [51]. All timings are
reported in clock cycles measured in Haswell micro-architectures. 149

10.5. Timing Performance of selected base field, quadratic and elliptic-curve arith-
metic operations. The last column shows the acceleration factor that our
library obtained in comparison with the SIDH v2 library [51]. All timings are
reported in clock cycles measured in Skylake micro-architectures. 149

10.6. Performance comparison of different methods to compute χ(P+[k]Q). The im-
plementation of Methods 1, 2 and 3 were taken from the SIDH-v2 library [51].
All timings are given in 106 clock cycles and were measured on a Haswell and
on a Skylake micro-architecture. 150

10.7. Performance comparison of the SIDH protocol. The running time is reported
in 106 clock cycles to compute the two phases of the SIDH protocol. Addi-
tionally, the speedup factor with respect to the SIDH v2 library [51] is also
reported. 151

11.1. Our proposals for PeSIDH primes in comparison with the current state-of the
art . 160

11.2. Arithmetic cost comparison. Timings are reported in clock cycles measured
over a Skylake processor at 4.0GHz. 161

Cinvestav 8

LIST OF TABLES

11.3. Timings are reported in clock cycles measured over a Skylake processor at
4.0GHz. 161

11.4. Performance comparison of the PeSIDH against the proposed in [94] and [3].
The running time is reported in 106 clock cycles measured in an Intel Skylake
proccessor at 4.0 GHz.Parallel version performance using 3 cores. The AF
column refers to the acceleration factor of the parallel version that is our
fastest implementation. 162

Cinvestav 9

LIST OF TABLES

Cinvestav 10

List of Algorithms

1. Integer addition . 37
2. Integer subtraction . 38
3. Schoolbook method for integer multiplication 38
4. Schoolbook method for integer squaring . 41
5. REDC algorithm. 44
6. Barrett reduction algorithm. 45
7. RNS Modular Reduction [97]. 48
8. RNS Montgomery Modular Reduction [108]. 50
9. Finite field addition . 51
10. Finite field subtraction . 51
11. Finite field multiplication . 52
12. Finite field multiplication . 52
13. Unsigned exponent regular recoding [101] . 53
14. Protected fixed-window modular exponentiation 53
15. RSA signature using CRT . 56
16. Miller’s Algorithm. 76
17. Optimal Ate pairing [6] . 79
18. ω-NAF representation of an integer k. 81
19. ω-NAF scalar multiplication method. 82
20. GLV scalar multiplication method. 83
21. GLS scalar multiplication method. 84
22. The try-and-increment algorithm . 87
23. Constant-time hash function to G1 on BN curves [65] 96
24. Blind factor version of the Hash function to G1 on Barreto-Naehrig curves [65] 96
25. Deterministic construction of points in E′(Fp2) for Barreto-Naehrig curves. . 97
26. Scalar multiplication in G1 protected against side-channel attacks. 108
27. Barrett reduction using the folding technique. 114
28. Sliding window modular exponentiation. 115
29. Atkin’s square root algorithm for p ≡ 5 mod 8 [4]. 115
30. Müller’s square root algorithm for p ≡ 1 mod 16 [4]. 116
31. Mixed point addition (Affine-Jacobian coordinates). 117
32. Point doubling (Jacobian coordinates). 117
33. Addition step in Miller’s loop. 119
34. Doubling step in Miller’s loop. 119
35. Montgomery ladder algorithm. 128
36. Variable-point multiplication of x(P + [k]Q). 137
37. Fixed-point multiplication of x(P + [k]Q). 138

11

LIST OF ALGORITHMS

38. Proposed algorithm to compute x(P + [k]Q) in the fixed-point scenario and
adapted to the elliptic curve parameters defined in [51]. Let I ∈ {A = Alice, B = Bob}
denote the SIDH protocol participant. 140

39. Modified modular reduction algorithm for a λ-Montgomery-friendly modulus. 146

Cinvestav 12

Chapter 1
Introduction

Nowadays we can find cryptography everywhere. An example of this are the security
mechanisms that rely entirely on it, and which are a fundamental part of any computer
system that seeks to provide a certain security level. For this reason, it is considered that
the field of modern cryptography involves much more than just establishing a secure com-
munication between two entities, which was the original purpose of classical cryptography.
Nowadays, the cryptographic community also tries to solve a variety of problems including,
message authentication, digital signatures, secret key exchange, entities authentication, elec-
tronic voting, or digital money. Bearing this in mind, we can define cryptography as “The
scientific study of the techniques used to keep digital information, electronic transactions,
and distributed calculations secure” [106].

The importance of cryptography lies in the fact that through it we can provide crucial
security services such as: authentication, which allows to certify that an entity is who it claims
to be, using mechanisms such as digital signatures or biometric features; confidentiality, which
ensures that private information can be consulted or manipulated only by authorized entities;
integrity that gives the certainty that a document has not been modified by unauthorized
entities; non-repudiation, which provides protection to an entity in the case that another
denies, subsequently, that a certain transaction was made; and access control that provides
the ability of allowing or denying the usage of a certain resource to a particular entity.

Such security services are generally implemented by means of crypto-schemes. A familiar
way of explaining a crypto-scheme is presented in the classical cryptographic scenario. In
that scenario two entities, which in the field of cryptography have been traditionally named
as Alice and Bob, wish to exchange messages in a secure way such that a third entity,
who is known as Eve, is not able to understand its content. To do this, they use the
following communication cryptographic scheme: Alice using an encryption algorithm and
a secret key that was previously agreed with Bob, transforms the original message into
an encrypted message incomprehensible for Eve, which is sent to Bob. On the other side,
when Bob receives the encrypted message, he transforms it to the original message by using a
decryption algorithm and the secret key agreed with Alice. This approach is called symmetric
cryptography or secret key cryptography, because it is necessary that Alice and Bob agree in
advance a shared secret, which is used to encrypt and decrypt messages.

Although the computation of this kind of cryptography is highly efficient, it has the
disadvantage that if n entities wish to securely communicate then the system administrator
has to provide O(n2) keys. This is because, the same secret key is used for both encrypting
and decrypting messages, and therefore, each key must be different for each pair of entities.
A non trivial problem left open in this paradigm is how to securely share the secret key
among the participant entities.

13

CHAPTER 1. INTRODUCTION

The aforementioned secret key cryptography shortcomings may be solved using the so-
called asymmetric cryptography paradigm, also known as public key cryptography. Unlike
secret key cryptography, in this paradigm each entity is assigned with a pair of keys: a
private key that is used to decrypt messages, which is only known by the owner entity; and
the public key used to encrypt messages, which is diffused to all the others. This implies that
a secure communication of a n-entity community can be achieved by using just O(2n) keys. It
is important to mention that these two keys keep a close relationship, since usually the public
key is directly constructed from the private key. Due to the above, and considering the fact
that all the entities know the public key of the other participants, it must be computationally
intractable deduce the private key from the sole information of the public key.

The security of public key schemes is based on the computational intractability of cer-
tain hard mathematical problems. Chronologically speaking, public key cryptography was
proposed in 1976 by Whitfield Diffie and Martin Hellman [57], who devised a novel scheme
that allows two entities to agree a secret key using an insecure communication channel, with-
out previously agreeing a secret. The security of this scheme lies on the difficulty of the
Discrete Logarithm Problem (DLP) defined on finite fields. One year later, in 1977, Ron
Rivest, Adi Shamir, and Leonard Adleman proposed the cryptographic scheme known as
RSA [143], which can be used as both, encryption scheme and digital signature scheme. The
RSA security is based on the difficulty of factoring large integers.

Before 1985, the public key schemes were based on elementary number theory, particularly
they used the multiplicative group of integers modulo a large integer (in RSA) or a prime
number (in the Diffie-Hellman scheme). In 1985 Neal Koblitz [112] and Victor Miller [127]
independently proposed the usage of elliptic curves for cryptographic proposes. This gave
birth to the field of Elliptic Curve Cryptography (ECC). Koblitz and Miller observed that
when an elliptic curve is defined over a finite field, the points on the elliptic curve form an
Abelian group, where the DLP results difficult to solve and which is even much more difficult
than its analogue in finite fields using the same group and field order. Bearing this in mind,
it is possible to offer the same security provided by the other existing public key schemes,
but using smaller fields. This fact means that it is feasible to use smaller key lengths and
also smaller bandwidth and memory for deploying crypto-systems on constrained devices.

Almost a decade later, Alfred J. Menezes, Tatsuaki Okamoto and Scott A. Vanstone [124],
proposed in 1993 the usage of the Weil pairing over elliptic curves as an attack method that
allows to solve the DLP in the group of points of a family of elliptic curves. This attack
reduces the problem to compute the DLP over a group of points belonging to an elliptic curve
to its analogue in finite fields. Around the year 2000, constructive cryptographic properties of
pairings were proposed in the seminal works of Joux [99]; Sakai, Ohgishi and Kasahara [144];
and Boneh and Franklin [22]. This gave birth to the field of pairing-based cryptography (PBC)
that bases its security on the difficulty of solving discrete logarithm problems in both, finite
fields and elliptic curves. Bilinear pairings have been considered to be one of the most suitable
mathematical tools to design secure and efficient crypto-schemes, in virtue of their powerful
bilinearity property. This property is useful to solve in an elegant way the problem of the
practical implementation of the so called identity-based cryptography (IBE) [22], which was
theoretically proposed by Adi Shamir in 1984 [153]. The IBE paradigm consist of using a
string associated to an entity, like a personal email address or phone number, as her public
key.

In the event of the deploying of sufficiently powerful quantum computers, all the cryp-
tographic schemes based on the DLP or the factorization of large integers would be deemed
completely insecure. This hypothetical situation has prompted during the last decade the
search for finding hard mathematical problems that would be presumably difficult to solve by
a quantum attacker creating a sub-discipline coined as quantum-safe cryptography. In Au-
gust 2015, the U.S. National Security Agency (NSA) released a major policy statement [11],
where it was stated that transition towards quantum-safe cryptography should be performed

Cinvestav 14

1.1. MOTIVATION

in the coming years. Reacting accordingly, the cryptographic community has proposed sev-
eral candidate schemes. One of such proposals is based on the hardness of finding an isogeny
map between two elliptic curves, a problem that provides the security guarantees of the
so-called isogeny-based cryptography. Reportedly Couveignes made the first suggestions to-
wards the usage of isogenies for cryptographic purposes in a seminar held in 1997, which
he later reported in [53]. Jao and Venkatesan showed techniques to provide a public-key
encryption system based on isogenies of Abelian varieties [93]. The first published work of a
concrete isogeny-based cryptographic primitive was presented by Charles, Lauter and Goren
in [34] where they introduced the hardness of path-finding in supersingular isogeny graphs
and its application to the design of hash functions. It has since been used as an assumption
for other cryptographic applications such as key-exchange and digital signature protocols.
Stolbunov studied in [156] the hardness of finding isogenies between two ordinary elliptic
curves defined over a finite field Fq, with q a prime power. The author proposed to use
this setting as the underlying hard problem for a Diffie-Hellman-like key exchange proto-
col. Nevertheless, Childs, Jao and Soukharev discovered in [39] a subexponential complexity
quantum attack against Stolbunov’s scheme. Finally, in 2011 Jao and De Feo proposed the
Supersingular Isogeny-based Diffie-Hellman (SIDH) key exchange protocol [95], which is a
promising candidate for quantum-safe cryptography.

1.1. Motivation

Although public key cryptography solves some problems found in secret key cryptogra-
phy, it has the disadvantage that the operations involved in this kind of cryptography turns
out to be very expensive in comparison with the operations required in secret key schemes.
Because of this reason, it is important to analyze these schemes to determine which oper-
ations have a greater influence in their total computational cost. In addition to this need
for acceleration, there exists also a great concern about the safety of implementations of
cryptographic operations. This is because there are attacks whose objective is not to break
the mathematical properties of a particular scheme, but rather to extract the secret key by
analyzing the leaked information obtained from the device where such operation is executed.
These techniques are generally known as side channel attacks. One avenue of attack using
side-channel techniques is to take advantage of the fact that the computations that compose
cryptographic operations vary from execution to execution. Hence, it is also considered of
crucial importance to perform implementations of cryptographic schemes in constant-time.
This countermeasure serves as a first line of defense against this type of attacks.

The main research purpose of this thesis is to closely examine cryptographic protocols
ranging from those based on elementary number theory to those based on computation of
isogenies of elliptic curves. This analysis focused on identifying the critical-performance
operations that have a major influence in the whole computational cost of those protocols.
Once that these operations have been identified, our objective is to propose algorithmic or
implementation improvements that allow us to obtain significant speedups in their running
time and, in addition, that allow us to generate secure implementations against side-channel
attacks.

1.2. Outline

The remainder of this document is organized as follows. In Chapter 2, we provide a
mathematical background where we present some helpful definitions and fundamental results
on the underlying theory and concepts of this thesis.

This thesis is divided into three parts. In the firs part, denoted Integer-factorization based
cryptography, we focused on the fast and secure software implementation of integer and finite

Cinvestav 15

CHAPTER 1. INTRODUCTION

field arithmetic and the efficient and protected implementation of the RSA signature scheme.
Chapter 3 is dedicated to show the practical considerations of an efficient implementation

of integer and finite field arithmetic over the newest desktop processors. Then, in Chapter 4
we shown the design of a software library used to implement the RSA signature scheme, using
an integer and Residue Number System based arithmetic over desktop processors and GPU.
The work in this chapter was realized along with Nareli C. Cortéz, Luis A. Rivera-Zamarripa
and Francisco Rodŕıguez-Henŕıquez. A part of this work was published in [48].

The second part of this thesis entitled pairing-based cryptography, presents the analy-
sis of hash functions into elliptic curves and a efficient and secure implementation of two
authentication protocols and the BLS signature scheme.

In Chapter 5 we present a a brief mathematical background about bilinear pairings over
elliptic curves. Then, in Chapter 6 we discussed the general problem of constant-time hashing
into elliptic curves. We propose practical, efficient, and secure algorithms for hashing values
to elliptic curve subgroups used in pairing-based cryptography protocols. This advances are
a joint work with Mehdi Tibouchi and Francisco Rodŕıguez-Henŕıquez and were published
in [135]. Through the Chapter 7, we proposed the design of a software library that imple-
ments two paring-based two-factor authentication protocols [148, 149] in a secure way, which
thwart simple side-channel attacks. This work was published in [98] and was performed
with Francisco Rodŕıguez-Henŕıquez. Finally, given that the security of the pairings on BN
curves have been affected by the work realized by Kim and Barbulescu in [109], in Chapter 8
we propose the usage of pairings over elliptic curves with embedding degree one. This is
because, the aforementioned improvements in algorithms for computing discrete logarithms
do not apply to the DLP in prime-order fields Fp provided that the prime p does not have a
special form. With this in mind, we present the design of a software library that implements
the digital signature algorithm BLS, constructed over elliptic curves with embedding degree
one. This work was performed with Francisco Rodŕıguez-Henŕıquez.

The third part of this thesis named isogeny-based cryptography is focused on the devel-
opment of techniques to accelerate the SIDH protocol running time performance.

In Chapter 9 we provide some mathematical background that is used through this part
of the thesis. Then, in Chapter 10 several algorithmic optimizations targeting both elliptic
curve and finite field arithmetic operations are proposed, in order to accelerate the SIDH
runtime performance. We accelerated the finite field operations, adapted the right-to-left
Montgomery ladder variant presented in [138] to the context of the SIDH protocol and
presented an improved formula for elliptic curve point tripling. This work was realized
along with Armando Faz-Hernández, Julio López and Francisco Rodŕıguez-Henŕıquez and
was published in [62]. Besides, in Chapter 11 we propose a new construction of the SIDH
protocol using non-prime power degree isogenies in the Bob’s side, that allow us to achieve
a considerable speedup in the computation of the SIDH protocol. This work was performed
with Daniel Cervantes-Vazquez and Francisco Rodŕıguez-Henŕıquez.

Finally, in Chapter 12, we conclude the thesis by listing more specifically our main con-
tributions an we list the possible future works.

Cinvestav 16

Chapter 2
Mathematical background

Most of cryptographic schemes are built on the foundations of algebra and number theory.
For this reason, it results important to know the definitions and properties of some mathe-
matical structures, which allow us to construct such cryptographic schemes. In this chapter,
we present some definitions and properties of the mathematical structures used through this
thesis such as groups, rings, fields and elliptic curves. For more details about the following
content, we refer the reader to consult [86, 155, 66].

2.1. Groups

The main subject of this section is introduces the notion of group, as well as, showing
some of its most important properties and features. We begin by defining a binary operation.

Definition 2.1 (Binary operation). A binary operation ? on a set G is a function mapping
G ×G into G. We will denote the operation ?(a, b) for a, b ∈ G by a ? b. Moreover, we say
that the binary operation ?

is commutative if a ? b = b ? a for all a, b ∈ G, and

is associative if (a ? b) ? c = a ? (b ? c) for all a, b, c ∈ G.

Example 2.1. The usual addition + is a binary operation on the set R, and the usual
multiplication · is a different binary operation on R.

Example 2.2. Considering the set R of real numbers. The usual subtraction − is a binary
operation non-commutative and non-associative because 7− (−7) 6= (−7)−7 and 7− ((−7)−
7) 6= (7− (−7))− 7, respectively.

In Example 2.1 the binary operations are defined for every pair (a, b) of elements in R,
however, sometimes a binary operation over a set G also provides a binary operation on a
subset H of G.

Definition 2.2 (Induced operation). Let ? be a binary operation on G and let H be a subset
of G. The subset H is closed under ? if for all a, b ∈ H we also have a ? b ∈ H. In this case,
the binary operation on H given by restricting ? to H is the induced operation of ? on H.

Example 2.3. The addition + on the set R of real numbers does not induces a binary
operation on the set R∗ of non-zero real numbers because 7 ∈ R∗ and −7 ∈ R∗, but 7+(−7) =
0 and 0 /∈ R∗. Thus, R∗ is not closed under ?.

17

CHAPTER 2. MATHEMATICAL BACKGROUND

Definition 2.3 (Group). A group (G, ?), denoted as G, is a set G closed under a binary
operation ?, such that the following properties are satisfied:

associativity: for all a, b, c ∈ G, we have (a ? b) ? c = a ? (b ? c);

identity: there exists an unique element e ∈ G such that for all a ∈ G, a?e = e?a = a;

inverse: for all a ∈ G there exists an unique element a′ ∈ G such that a?a′ = a′?a = e.

Definition 2.4 (Abelian group). A group G is Abelian if its binary operation is commutative.

When it is required to specify a group G, one must determine both the underlying set G
as well as the binary operation ?. However, generally the binary operation is implicit from
the context, and by abuse of notation we often refers to G = G as the group. For example,
when we discuss about the Abelian group Zn for a positive integer n, it is understood that
the binary operation is the addition, while when we talking about the Abelian group Z∗n it
is understood that the binary operation is the multiplication.

In addition, instead of using the symbol ? for the binary operation, generally we use the
regular addition “ + ” and multiplication “ · ” symbols. If an Abelian group is additively
written, then the identity element is denoted by 0G or just 0 if G is clear from the context;
the inverse of a element a ∈ G is denoted by −a; and for a, b ∈ G, a − b is calculated as
a+(−b). Conversely, if an Abelian group is multiplicatively written, then the identity element
is denoted by 1G or just 1 if G is clear from context; and the inverse of a element a ∈ G is
denoted by a−1.

Example 2.4. The set of integers Z closed under the addition forms an Abelian group, with
0 being the identity, and −a being the inverse of a ∈ Z.

Example 2.5. The set Z∗n of residue classes modulo a positive integer n, with gcd(a, n) = 1
for all a ∈ Z∗n, forms an Abelian group. Where 1 is the identity, and a−1 is the multiplicative
inverse of a modulo n.

Definition 2.5 (Group order). A group G may be finite or infinite. If the group is finite its
order is defined as the cardinality of the underlying set G, i.e. |G| = n ∈ N; otherwise, we
say that the group has infinite order.

Definition 2.6 (Order of a group element). Let G be a group. The order of an element
a ∈ G, is defined as the smallest positive integer n such that ?n(a) = eG

1. If such integer
exists, we say that a has a finite order (or that a is a torsion n element); otherwise, the
element a has infinite order.

A common way to represent a finite group is using a Cayley’s table, which describes the
group structure by arranging all possible results of the binary operation over all elements in
the group.

Example 2.6. Given the group Z∗7, its corresponding Cayley’s table is presented in Table 2.1.

From the Cayley’s table we can see that Z∗7 = {1, 2, 3, 4, 5, 6} and it has order 6. Moreover,
we can find the order of any element following the Cayley’s table: for the element 4 ∈ Z∗7, for
example, we compute 42 = 4 · 4 = 2 according to the Table 2.1, then we obtain 43 = 42 · 4 =
2 · 4 = 1. At this point, we know that the element 4 ∈ Z∗7 has order 3.

1?n(a) denotes the n-th application of the operation ? to a group element a.

Cinvestav 18

2.1. GROUPS

· 1 2 3 4 5 6

1 1 2 3 4 5 6
2 2 4 6 1 3 5
3 3 6 2 5 1 4
4 4 1 5 2 6 3
5 5 3 1 6 4 2
6 6 5 4 3 2 1

Table 2.1: Cayley’s table for Z∗7.

2.1.1. Subgroups

From this section onward, we will deal only with Abelian groups and, for simplicity, we
will say group instead of Abelian group.

Definition 2.7 (Subgroup). If a subset H of a group G is closed under the binary operation
of G and if H with the induced operation from G is itself a group, then H is a subgroup of G.
We shall let H ⊆ G denote that H is a subgroup of G, and H ⊂ G shall denote that H ⊆ G
but H 6= G.

Definition 2.8. Let G be a group. The subgroup H = G is called improper subgroup of G,
and all other subgroups are said to be proper subgroups of G. Furthermore, the subgroup {e}
containing only the identity element is called trivial subgroup, and all other subgroups are
called non-trivial subgroups of G.

Theorem 2.1 ([66, Theorem 5.14]). A subset H of a group G is a subgroup of G if and only
if

H is closed under the binary operation ?G,

the identity element eG is in H, and

for all a ∈ H it is true that a−1 ∈ H.

Example 2.7. For the group Z9 = {0, 1, 2, 3, 4, 5, 6, 7, 8}, the subset H = {0, 3, 6} is a
subgroup of Z9. The identity element 0 is in H, the additive inverse modulo 9 of elements
in H are also in H, and the set H is closed under the modular addition.

2.1.2. Cyclic groups

Let G be a group. From now on we will denote as an the application of the operation
“ · ” n− 1 times on an element a ∈ G (or na if the operation is “ + ”).

Theorem 2.2 ([66, Theorem 5.17]). Let G be a group and let a ∈ G. Then

H = {an | n ∈ Z}

is a subgroup of G and is the smallest subgroup of G that contains a, that is, every subgroup
containing a contains H.

Definition 2.9 (Cyclic subgroup). Let G be a group and let a ∈ G. Then the subgroup
{an | n ∈ Z} of G is called the cyclic subgroup of G generated by a, and denoted by 〈a〉.

Definition 2.10 (Cyclic group). An element a of a group G generates G and is a generator
for G if 〈a〉 = G. A group G is cyclic if there is some element a ∈ G that generates G.

Cinvestav 19

CHAPTER 2. MATHEMATICAL BACKGROUND

Example 2.8. The set Z6 closed under the operation of addition modulo 6 forms an Abelian
group. The Cayley’s table for this group is presented in Table 2.2. We can observe that
the group Z6 is cyclic because Z6 = 〈1〉 = 〈5〉, and moreover, it has the following cyclic
subgroups:

〈1〉 = 〈5〉 = {0, 1, 2, 3, 4, 5},
〈2〉 = 〈4〉 = {0, 2, 4}

〈3〉 = {0, 3}

+ 0 1 2 3 4 5

0 0 1 2 3 4 5
1 1 2 3 4 5 0
2 2 3 4 5 0 1
3 3 4 5 0 1 2
4 4 5 0 1 2 3
5 5 0 1 2 3 4

Table 2.2: Cayley’s table for Z6.

Theorem 2.3 ([66, Theorem 6.1]). Every cyclic group is Abelian.

Theorem 2.4 ([66, Theorem 6.6]). A subgroup of a cyclic group is cyclic.

Theorem 2.5 ([66, Theorem 6.10]). Let G be a cyclic group with generator a. If the order
of G is infinite, then G is isomorphic to (Z,+). If G has finite order n, then G is isomorphic
to (Zn,+n).

2.1.3. Cosets

In this section, a generalization of the notion of congruence relation is presented. Given a
group G, and a subgroup H of G. For all a, b ∈ G, we write a ≡ b mod H if a?b′ ∈ H, where
the element b′ as before represents the inverse of b. This binary relation is an equivalence
relation that partitions G into equivalences classes.

For an element a ∈ G we denote as [a]H the equivalence class containing a. This equiva-
lence class is defined as:

[a]H = a ? H = {a ? h | h ∈ H},
i.e. x ∈ [a]H ⇐⇒ x ≡ a mod H. Those equivalence classes are called cosets of H in G, and
any member of a coset is called a representative of the coset.

Example 2.9. Let G = Z12 be an additive Abelian group and given the subgroup H = 4Z12 =
{0, 4, 8} of G, then the cosets of H in G are

[0]H = {0 + h | h ∈ H} = {0, 4, 8},
[1]H = {1 + h | h ∈ H} = {1, 5, 9},
[2]H = {2 + h | h ∈ H} = {2, 6, 10},
[3]H = {3 + h | h ∈ H} = {3, 7, 11}.

Definition 2.11 (Quotient group). The set of all cosets of H in G, denoted as G/H,
is called the quotient group of G modulo H. The binary operation of G/H is defined as
[a]H ? [b]H = [a ? b]H .

Cinvestav 20

2.1. GROUPS

Example 2.10. Returning to the Example 2.9, the quotient group Z12/4Z12 has order
|Z12|/|4Z12| = 12/3 = 4 and its Cayley table is presented in Table 2.3.

+ [0]H [1]H [2]H [3]H

[0]H [0]H [1]H [2]H [3]H
[1]H [1]H [2]H [3]H [0]H
[2]H [2]H [3]H [0]H [1]H
[3]H [3]H [0]H [1]H [2]H

Table 2.3: Cayley’s table for Z12/4Z12.

In the table we can see that Z12/4Z12 is a group with the same structure that the group Z4.

From example 2.9 we can notice that every coset of a subgroup H in a group G has the
same order than H. This fact is described in the following theorem.

Theorem 2.6 (Lagrange’s theorem [66, Theorem 10.10]). Let G be a finite Abelian group,
and H a subgroup of G. The order of H divides the order of G.

Corollary 2.1. Given a finite group G and an element a ∈ G, the order of a is a divisor of
the order of G.

2.1.4. Group homomorphisms

In this section, we present maps that relate group structures. Such maps fulfill some
properties and provide some applications, which allow to understand the structure of a
certain group using features of another group.

Definition 2.12 (Group homomorphism). A group homomorphism is a map φ from an
Abelian group G to an Abelian group G′ such that

φ(a ?G b) = φ(a) ?G′ φ(b)

for all a, b ∈ G.

When we talk about a map φ : G→ G′ we are interested in the set φ(G) = {φ(a) | a ∈ G}
that is called the image of φ; and the set of all elements of G that are mapped to the identity
element eG′ known as the kernel of φ. Those two sets, generally, are denoted as Img(φ) and
Ker(φ), respectively.

Example 2.11. Let Z a group under the regular addition and Zn a group under the addition
modulo an integer n. Define φ : Z → Zn as φ(a) = [a]n, where [·]n denotes the operation a
mod n. Then, φ is an homomorphism because

φ(a) +Zn
φ(b) = [a]n +Zn

[b]n = [a+ b]n = φ(a+Z b).

The kernel of this homomorphism is nZ = {na | a ∈ Z} and its image is the set {φ(a) | a ∈
Z}.

Example 2.12. Let G a additively written group and m an integer. The map φ : G → G
defined as φ(a) = ma is an homomorphism, since

φ(a+ b) = m(a+ b) = ma+mb = φ(a) + φ(b).

The image of φ is the subgroup mG and its kernel is the subgroup G{m}. This map is
called the m-multiplication map on G (or the m-power map on G if the group is written
multiplicatively).

Cinvestav 21

CHAPTER 2. MATHEMATICAL BACKGROUND

Theorem 2.7 ([66, Theorem 13.12]). Let φ be a group homomorphism form the group G to
the group G′, then

If eG is the identity element of G, then φ(eG) = eG′ ,

if a ∈ G, then φ(−a) = −φ(a) if the groups were additively written and φ(a−1) =
φ(a)−1 if were multiplicatively written,

if a ∈ G, then φ(na) = nφ(a) if the groups were additively written and φ(an) = φ(a)n

if were multiplicatively written,

if H is a subgroup of G, then φ(H) is a subgroup of G′.

The group homomorphisms may be classified according to the way that its domain and
image are mapped to each other, this classification is summarized in the Definition 2.13.

Definition 2.13. Let φ : G→ G′ be a group homomorphism. We say that φ is a group:

monomorphism if φ is injective;

epimorphism if φ is surjective;

isomorphism if φ is bijective, and also we say that G is isomorphic to G′;

automorphism if φ is a isomorphism and G = G′.

Theorem 2.8. If φ is a group isomorphism of G with G′, then the inverse map φ−1 is a
group isomorphism of G′ with G.

Example 2.13. In the Example 2.10 we can see that the group Z12/4Z12 is isomorphic to
Z4, which is denoted as Z12/4Z12

∼= Z4.

2.1.5. Discrete Logarithm Problem (DLP)

The discrete logarithm problem is one of the most used mathematical problems in asym-
metric cryptography. This problem must be hard in well-chosen groups, so that secure-
enough cryptosystems can be build.

Definition 2.14 (Discrete Logarithm Problem (DLP)). Given an Abelian group G = (G, ·),
an element a ∈ G and a generator g of G. The discrete logarithm problem consist in finding
a solution for the equation gx = a ∈ G knowing the value of g and a.

2.2. Rings

In this section we introduce the the notion of a ring, which is basically an algebraic
structure with addition and multiplication operations. In particular we are interested in the
definition of a commutative ring with unity.

Definition 2.15 (Commutative ring with unity). A commutative ring with unity is con-
formed by a set R, and the binary operations of addition “ + ” and multiplication “ · ” on
R. Where such operations satisfy the following properties:

the set R under the addition forms an Abelian group, whose identity is 0R;

operation of multiplication is associative. i.e for all a, b, c ∈ R it holds that a(bc) =
(ab)c;

Cinvestav 22

2.2. RINGS

multiplication distributes over the addition. i.e. for all a, b, c ∈ R we have that a(b+c) =
ab+ ac and (b+ c)a = ba+ ca;

there exist a multiplicative identity. i.e. there is an element 1R ∈ R such that 1Ra =
a = a1R for all a ∈ R;

multiplication is commutative. i.e. for all a, b ∈ R we have that ab = ba.

If the last two properties are not satisfied, then we have the definition of a ring. Since we
will not work with general rings, we will say simply ring instead of commutative ring with
unit, and a ring will be denoted by R.

Example 2.14. The sets of integers Z, real numbers R and rational numbers Q are rings
under the usual rules of multiplication and addition on each set.

Example 2.15. The cyclic group Zn under the addition modulo n and the multiplication
modulo n forms a ring.

Definition 2.16 (Characteristic of R). Let R be a ring. If there exists a positive integer

n 6= 0 such that n1R =
∑n−1
i=0 1R = 0R, then the least positive integer that satisfy such

condition is called the characteristic of R. If such integer n does not exists for R, we say
that the characteristic of R is zero.

Example 2.16. The ring Z has characteristic zero, and the ring Zn has characteristic n.

Definition 2.17 (Unit). Let R be a ring. A unit is an element a ∈ R such that a | 1R (that
means that a divides 1R), i.e. ab = 1R for an element b ∈ R. The element b is unique and
is called the multiplicative inverse of a.

A ring R is an Abelian group with respect to the binary operation of addition, and a
subgroup of such group is called subgroup of the additive group of R. Moreover, the set of
units, denoted as R∗, is closed under the multiplication, and is an Abelian group with respect
to the multiplication operation called the multiplicative group of units of R.

Example 2.17. For the ring Z7 its multiplicative group of units is defined as Z∗7 = {1, 2, 3, 4, 5, 6},
and the subgroup of the additive group is Z7 = {0, 1, 2, 3, 4, 5, 6}.

Example 2.18. The ring Z only has two units ±1

2.2.1. Subrings, ideals and quotient rings

In this section, the definitions and notions of the concepts of subrings, ideals, principal
ideals and quotient rings are presented.

Definition 2.18 (Subring). Let R be a ring. A subset S of R is called a subring if satisfies
the following properties

1R ∈ S,

S is closed under multiplication, and

S is an additive subgroup of R.

From the above definition, we can observe that the subring S is also a ring where 0R is
the additive identity of S and 1R is the multiplicative identity of S. We may also call R an
extension ring of S.

Example 2.19. Q is a subring of R.

Cinvestav 23

CHAPTER 2. MATHEMATICAL BACKGROUND

Definition 2.19 (Ideal). Let R be a ring. An ideal I of R is an additive subgroup of R such
that ar ∈ I for all a ∈ I and r ∈ R.

Theorem 2.9. Let R be a ring and let a ∈ R, then aR = {ar | r ∈ R} is an ideal of R and
it is called the ideal of R generated by a.

Example 2.20. For the ring Zn the set mZ, for each m ∈ Z, is an additive subgroup of the
ring Zn and an ideal of this ring. An ideal of this form is called a principal ideal.

Let I be an ideal of a ring R. And given the set of equivalence classes with respect
to the congruence relation a ≡ b mod I, where a − b ∈ I. It forms a ring R/I, if we
define the multiplication and addition in R/I in terms of multiplication or addition of coset
representatives. Such ring is called a quotient ring and the elements of R/I are called residue
classes.

Example 2.21. The ring Zn is precisely the quotient ring Z/nZ for n ≥ 1.

2.2.2. Ring homomorphisms

Definition 2.20 (Ring homomorphism). A ring homomorphism is a map φ from a ring R
to a ring R′ if

φ is a group homomorphism with respect to the underlying additive groups of R and
R′,

for all a, b ∈ R it holds that φ(ab) = φ(a)φ(b), and

φ(1R) = 1R′ .

2.3. Fields

In the same way as ring, a field is an algebraic structure conformed by a set and two
binary operations. Formally, a field is defined as follows:

Definition 2.21 (Field). A field F is a ring where every non-zero element of F has a multi-
plicative inverse. The subgroup of the additive group of the field is the set F; and the subgroup
F−{0} is the multiplicative group of units of F. Moreover, the characteristic of F (see 2.16)
is either zero or a prime number.

For a field F, we say that F is a infinite field if its characteristic is zero; otherwise we say
that F is a finite field.

Theorem 2.10. The ring Z/pZ of residue classes of integers modulo the principal ideal
generated by a prime p, is a field.

Example 2.22. Given the ring Z/5Z = {0, 1, 2, 3, 4} under the binary operations of addition
and multiplication modulo 5. We can see that the additive Abelian group of Z/5Z has order 5
and the multiplicative group of units of Z/5Z has order 4. The Table 2.4 shows the Cayley’s
table for both groups.

In addition, the multiplication operation is associative, distributive over the addition, and
commutative. Moreover, every non-zero element in Z/5Z has an multiplicative inverse.
Therefore, the ring Z/5Z is a finite field with prime characteristic 5, and is denoted as
F5.

Cinvestav 24

2.3. FIELDS

+ 0 1 2 3 4

0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

· 1 2 3 4

1 1 2 3 4
2 2 4 1 3
3 3 1 4 2
4 4 3 2 1

Table 2.4: Cayley’s tables for F5.

Theorem 2.11. Every finite field F must have order pn, where p is prime, n is a positive
integer, and p is the characteristic of F.

Theorem 2.12. For every finite field Fp the multiplicative group F∗p of nonzero elements of
Fp is cyclic.

Definition 2.22 (Primitive element). A generator of the cyclic group F∗p is called a primitive
element of Fq.

The following theorems present very useful facts about number theory. The first is due
to Fermat and the second is a generalization of Fermat’s little theorem.

Theorem 2.13 (Fermat’s little theorem). For an element a ∈ Z and a prime number p such
that p does not divides a. It holds that ap−1 ≡ 1 mod p.

Theorem 2.14 (Euler’s theorem). For an element a ∈ Z relative prime to n ∈ Z, i.e. with
gcd(a, n) = 1. It holds that aϕ(n) ≡ 1 mod n, where ϕ(n) is Euler’s totient function.

2.3.1. Field extensions

Let F be a field. A subset K of F that is itself a field under the operations of F will
be called a subfield of F. In this context, F is called an extension field of K. In the same
manner that for groups, if K 6= F we say that K is a proper subfield of F.

Definition 2.23 (Prime field). A field containing no proper subfields is called a prime field.

Theorem 2.15. Let Fq be the finite field with q = pn elements. Then every subfield of Fq
has order pm, where m is a positive divisor of n. Conversely, if m is a positive divisor of n,
then there is exactly one subfield of Fq with pm elements. Then, the field Fq is an extension
field of every subfield of Fq.

In order to exemplify the concept of extension field, first it is necessary to recall some
concepts as polynomial ring and irreducible polynomial.

Definition 2.24 (Polynomial ring). The set of polynomials in the variable x with coefficients
in a ring R under the operations of addition and multiplication of polynomials, is called the
polynomial ring over R and denoted by R[x].

Theorem 2.16. Let R be a ring. Then

R[x] is commutative if and only if R is commutative.

R[x] is a ring with identity if and only if R has identity.

R[x] is a finite field if and only if R is a finite field.

In the rest of this section we will deal exclusively with polynomials rings with coefficients
in a field F.

Cinvestav 25

CHAPTER 2. MATHEMATICAL BACKGROUND

Definition 2.25 (Irreducible polynomial). A polynomial f ∈ F[x] is said to be irreducible
in F[x] if f has positive degree and f = gh with g, h ∈ F[x] implies that either g or h is the
zero polynomial or a polynomial of degree zero.

Example 2.23. Compute the irreducible polynomials over F2 of degree 4. There are 24 = 16
polynomials in F[x] of degree 4. The irreducible polynomials of degree 4 are those without a
divisor of degree 1 or 2. Therefore, if we compute all products (a0 + a1x+ a2x

2 +x3)(b0 +x)
and (a0 + a1x+ x2)(b0 + b1x+ x2) with ai, bj ∈ F2, we obtain all reducible polynomials over
F2 of degree 4. Then, by removing these reducible polynomials from the set of polynomials of
degree 4, we obtain the irreducible polynomials x4 +x+1, x4 +x3 +1 and x4 +x3 +x2 +x+1.

Theorem 2.17. For f ∈ F[x], the quotient ring F[x]/(f(x)) is a field if and only if f is
irreducible in F[x].

Example 2.24. Let f(x) = x2 + x + 1 be an irreducible polynomial in F2[x]. Then, the
quotient ring F2[x]/(f(x)) with four elements {0, 1, x, y = x + 1} is a field according to the
Theorem 2.17. Table 2.5 shows the Cayley’s tables for the addition and multiplication of
polynomials modulo f(x).

+ 0 1 x y

0 0 1 x y
1 1 0 y x
x x y 0 1
y y x 1 0

· 0 1 x y

0 0 0 0 0
1 0 1 x y
x 0 x y 1
y 0 y 1 x

Table 2.5: Cayley’s tables for F2[x]/(f(x)) with f(x) = x2 + x+ 1 ∈ F2.

From the Example 2.24 we can observe that the field F22 = F2[x]/(f(x)) contains the
finite field F2, i.e. the set {0, 1} ⊂ {0, 1, x, x+ 1}. Therefore, F2 is a proper field of F22 , and
then F22 is an extension field of F2. Moreover, the finite field F2 is a prime field, since it
containing no proper subfields.

Definition 2.26 (Algebraic closure of a finite field). Let p be a prime number, the algebraic
closure of the finite field Fp, denoted as F̄p, is the infinite set of all field extensions. That is,
The algebraic closure of Fp is the union

⋃∞
i=1 Fpi .

2.4. Elliptic curves

In this section we introduce the definition of elliptic curves and some basic concepts
related to them, which will be used through this thesis.

Definition 2.27 (Elliptic curve). An elliptic curve is defined by the affine Weierstrass equa-
tion

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, (2.1)

where a1, . . . , a6 ∈ F̄. If the coefficients a1, . . . , a6 belongs to a finite field F, then we say E
is defined over F, and write this as E/F, the same goes for any extension field of F.

If the characteristic of the field is different than 2 or 3, it is possible to simplify the
equation given by the the Weierstrass using the following change of variables [82]

(x, y)→
(
x− 3a2

1 − 12a2

36
,
y − 3a1x

216
− a3

1 + 4a1a2 − 12a3

24

)
.

Cinvestav 26

2.4. ELLIPTIC CURVES

Which transforms Equation (2.1) into the following simplified equation called the short Weier-
strass equation

E : y2 = x3 + ax+ b, (2.2)

where a, b ∈ F and whose discriminant is ∆ = 4a3 + 27b2. It is necessary that ∆ 6= 0 in order
that E/F be an elliptic curve. This condition means that the polynomial x3 + ax+ b has no
double root, i.e. that this polynomial and its derivative polynomial are relative prime.

Remark 2.1. There exist other elliptic curve models such as the Montgomery and Edwards
forms, however we use the Weierstrass model to introduce the theory about elliptic curves.
Although, in Chapter 9 we describe and use these other curve models.

Definition 2.28 (j-invariant). Given an elliptic curve E : y2 = x3 + ax+ b, the j-invariant
of E, denoted as j(E), determines the isomorphism class of E and is defined as

j = −1728
(4a)3

∆
,

where ∆ = −16(4a3 + 27b2) is the curve discriminant.

Definition 2.29 (Points on the elliptic curve). Let F̄ be the algebraic closure of the field F
and given an elliptic curve E/F̄ defined using the Equation (2.2). The set of of the points in
E/F̄ is defined as

E(F̄) = {(x, y) | x, y ∈ F̄, y2 − x3 − ax− b = 0}

Definition 2.30 (F-rational points). For any extension field F, the set of F-rational points
of the elliptic curve E/F are defined as

E(F) = {(x, y) | x, y ∈ F, y2 − x3 − ax− b = 0}

An important observation is that, the set E(F) together with the point at infinity, denoted
as O, form an Abelian group additively written. From now on, when we will use E(F) we
refer to the Abelian group and not just to the set of F-rational points of E/F.

In an informal way we can place the the point at infinity at the lower and upper end of
the axis of the ordinates, in such a way that the vertical line to the point P in Figure 2.1b
intersects the point O.

2.4.1. The group law

In this section we introduce the elliptic curve group law, and for this purpose it is conve-
nient to view pictures of elliptic curves over R since are especially instructive.

The operations over points on the elliptic curve E/F are frequently described geomet-
rically as: given two points P,Q ∈ E(F), the addition R = P + Q is computed drawing a
straight line `P,Q through the points P and Q. This line intersects the elliptic curve in a
third point corresponding to the point −R, then R is obtained by reflecting −R over the
abscissas axis (line vR) as shown in Figure 2.1a; on the other hand, the doubling Q = [2]P
is computed drawing a tangent line `P,P to the point P , which intersects the curve in a
second point corresponding to −Q, then in order to obtain the point Q we reflect −Q over
the abscissas axis (line vQ) as shown in Figure 2.1b.

The algebraic formulas for the group law can be derived from the above description and
they are presented in the following points:

Identity: the identity element is the point at infinity O, and for all P ∈ E (F) holds
that P +O = O + P = P .

Cinvestav 27

CHAPTER 2. MATHEMATICAL BACKGROUND

P

•

Q •

−R
•

R = P +Q•

↑ O

↓ O

`P,Q

vR

x -4 -3 -2 0 1 2 3 4

y

-6

-5

-4

-3

-2

2

3

4

5

6

(a) Point addition.

P

•

−Q

•

Q = P + P•

↑ O

↓ O

`P,P

vQ

x-4 -3 -2 0 1 2 3 4

y

-6

-5

-4

-3

-2

2

3

4

5

6

(b) Point doubling.

Figure 2.1: Point addition and point doubling computed geometricaly over R.

Inverse: if P = (x, y) ∈ E (F), then (x, y) + (x,−y) = O. The point (x,−y) is denoted
as −P and is called the negative of P . Notice that −P is a point in E (F) in the same
way that ±O.

Point addition: for P = (xP , yP) ∈ E (F) and Q = (xQ, yQ) ∈ E (F), with P 6= ±Q.

The addition P +Q = (x, y), is computes as

x =

(
yQ − yP
xQ − xP

)2

− xP − xQ and y =

(
yQ − yP
xQ − xP

)
(xP − x)− yP .

Point doubling: for P = (xP , yP) ∈ E (F), where P 6= −P . The doubling [2]P = (x, y),
is computed as

x =

(
3x2

P + a

2yP

)2

− 2xP and y =

(
3x2

P + a

2yP

)
(xP − x)− yP .

From the point addition and doubling operations we can define an extra operation called
scalar multiplication.

Definition 2.31 (Scalar multiplication). Given a scalar k ∈ Z and a point P ∈ E(F), the
scalar multiplication denoted as [k]P consist in compute

[k]P = P + P + ...+ P︸ ︷︷ ︸
k−1 additions

.

There exist many algorithms to compute this operation, the most intuitive algorithm
consist in apply the Horner’s rule. Where we process the scalar k in its binary representation
bit by bit, and doubling in each step and adding if the i-th bit is one. In Chapter 5 and
Chapter 9 we will show different approaches to compute this operation efficiently.

2.4.1.1. Projective coordinates

In previous paragraphs we present the affine formulas for point addition and point dou-
bling. Those formulas require a field inversion that can be computed with the extended
Euclidean algorithm, however, this operation is considerably more costly that field multi-
plication. An option to perform the addition and doubling in an efficient way is using the
projective version of the corresponding formulas, where it is possible to avoid the inversion
at the price of computing more products.

Cinvestav 28

2.4. ELLIPTIC CURVES

Let F an finite field, and let c, d two positive integers. We can define a equivalence
relation in the set F3 \ {(0, 0, 0)} as: (X1, Y1, Z1) ∼ (X2, Y2, Z2) if X1 = λcX2, Y1 = λdY2

and Z1 = λZ2 for some λ ∈ F∗.
The equivalence class that contains (X,Y, Z) ∈ F3 \ {(0, 0, 0)} is:

(X : Y : Z) = {(λcX,λdY, λZ) | λ ∈ F∗},

where (X : Y : Z) is a class of projective points, while (X,Y, Z) denotes a representative
element of (X : Y : Z). The set of all projective points is denoted as P(F). Particularly, if
Z = 1, we have that (X/Zc, Y/Zd, 1) is a representative of the point (X : Y : Z), which is
the unique with coordinate Z = 1. Therefore, we have a one to one correspondence between
the set of projective points:

P(F)∗ = {(X : Y : Z) | X,Y, Z ∈ F, Z 6= 0}

and the set of affine points:

A(F)∗ = {(x, y) | x, y ∈ F}.

The set of projective points

P(F)0 = {(X : Y : Z) | X,Y, Z ∈ F, Z = 0}

is called line to the infinity because the points do not correspond to any affine points.
The projective form of the short equation of an elliptic curve 2.2, can be obtained by

substituting x = X/Zc, y = Y/Zd, and doing the reduction of denominators. The points
P(F)∗ satisfy the projective equation, while the set of points P(F)0 correspond to the infinity
point O.

Jacobian coordinates

In Jacobian coordinates the integers c and d take the values 2 and 3, respectively. Then,
the projective point (X,Y, Z), with Z 6= 0, corresponds to the affine point (X/Z2, Y/Z3). In
this coordinates the projective equation of the elliptic curve E is:

Y 2 = X3 + aXZ4 + bZ6.

The point at the infinity O is the corresponding to (1 : 1 : 0), while the negative point of
(X : Y : Z) is (X : −Y : Z).

The Jacobian coordinates are the most frequently used formulas for practical implemen-
tations, because the operations over the points of an elliptic curve are more efficient using this
system of coordinates. The most efficient way to perform a point addition is using mixed
coordinates, that means, taking a point in affine coordinates with Z = 1 and the other
in Jacobians. While the best manner to compute a point doubling is using just Jacobian
coordinates. In the next we present the formulas for this operations.

Let P = (X1 : Y1 : Z1) be a point with Z1 6= 0 and Q = (X2 : Y2 : 1) a point such that
P 6= ±Q, we have that the addition R = P +Q = (X3 : Y3 : Z3) can be computed using the
following formulas [82]:

X3 = (Y2Z
3
1 − Y1)2 − (X2Z

2
1 −X1)(X1 +X2Z

2
1)

Y3 = (Y2Z
3
1 − Y1)(X1(X2Z

2
1 −X1)2 −X3)− Y1(X2Z

2
1 −X1)3

Z3 = (X2Z
2
1 −X1)Z1

This equations have a cost of 3S and 8M, where S represents the cost of a field squaring and
M denotes the cost of a field multiplication. On the other hand, the point doubling of P is

Cinvestav 29

CHAPTER 2. MATHEMATICAL BACKGROUND

computed through the following equations:

X2 = (3X2
1 + aZ4

1)2 − 8X1Y
2
1

Y2 = (3X2
1 + aZ4

1)(4X1Y
2
1 −X3)− 8Y 4

1

Z2 = 2Y1Z1

This equations have a cost of 6S and 3M, although, when a = 0 this operation has a cost of
4S and 3M.

In Table 2.6 we compare the cost of the point addition and doubling using affine formulas
for a general Weierstrass curve versus these operations using jacobian coordinates. From
the table we can conclude that if the cost of an finite field inversion is more than 8 field
multiplications, then the computations in jacobian coordinates allow a better performance.

Coordinates Point addition Point doubling
Affine 2M + 1S + I 2M + 1S + I

Mixed jacobian 8M + 3S 3M + 6S

Table 2.6: Cost comparison between affine and mixed jacobian coordinates for point
addition and doubling.

2.4.2. Elliptic curves over finite fields

Let p a prime number and let q = pn, where n is a positive integer. Given a finite field
Fq with characteristic p, the Fq-rational points in the elliptic curve forms the group E(Fq),
such that for every affine point P = (xP , yP) ∈ E(Fq) the values xP and yP are elements in
Fq.

Definition 2.32 (Cardinality of the group E(Fq)). The cardinality of the group E(Fq),
denoted as #E(Fq), is the number of points that satisfy the elliptic curve equation and whose
coordinates belongs to Fq.

Given that Equation (2.2) has at most two solutions for each x ∈ Fq, we know that
#E (Fq) ∈ [1, 2q + 1]. However, the Hasse boundary establish more precise bounds for
#E (Fq):

Theorem 2.18. (Hasse boundary). Let E an elliptic curve defined over Fq, the interval

q + 1− 2
√
q ≤ #E(Fq) ≤ q + 1 + 2

√
q,

is called the Hasse boundary.

Alternatively, we can write the cardinality of E(Fq) as

#E(Fq) = q + 1− t,

where t represents the trace of an elliptic curve E over the finite field Fq. Since the trace is
bounded by 2

√
q ≤ t ≤ 2

√
q and it is relatively smaller than q we can say that #E(Fq) ≈ q.

Elliptic curves can be divided into two families: supersingular and ordinary elliptic curves.
The following definition highlights the difference between these two families:

Definition 2.33 (Supersingular and ordinary elliptic curve). Given an elliptic curve E/Fq
with q = pn and #E(Fq) = q + 1 − t, we say that E/Fq is supersingular [164] if p divides
t, that means, E is supersingular iff t ≡ 0 mod p, which is true iff #E(Fq) ≡ 1 mod p;
otherwise, the curve is called ordinary.

Cinvestav 30

2.4. ELLIPTIC CURVES

Definition 2.34 (Torsion points). Let E/Fp an elliptic curve and F̄p the algebraic closure
of Fp. For any positive integer r, we define the set of r-torsion points of E(F̄p), denoted as
E(F̄p)[r], as the set

E(F̄p)[r] = {P ∈ E(F̄p)|rP = O}.

Let n be a positive integer, the set of Fpn-rational points of r-torsion for Fp ⊆ Fpn ⊂ F̄p,
denoted as E(Fpn)[r], is:

E(Fpn)[r] = {P ∈ E(Fpn)|rP = O}.

Theorem 2.19 (Structure of the r-torsion group). Let E/F̄p be an elliptic curve defined
over a finite field of characteristic p. For any non-zero integer r relative prime to p, the
r-torsion group of E is isomorphic to the direct product Z/rZ × Z/rZ. On the other hand,
if r = pe for an integer e, then either E[r] ∼= {O} or E[r] ∼= Z/rZ.

Corollary 2.2 (Cardinality of the r-torsion group). For any non-zero integer r, the r-torsion
group of an elliptic curve contains r2 points.

Definition 2.35. (Embedding degree). For two prime numbers p and r, given the finite field
Fp and considering the elliptic curve E/Fp such that r | #E(Fp). Let k a positive integer,
we say that k is the embedding degree of E/Fp with respect to p and r, if k is the smaller
positive integer that satisfies r|pk − 1.

Proposition 2.1. Let r be an integer that divides the cardinality of an elliptic curve over a
finite field Fq and such that r does not divides q − 1. The r-torsion group is included in the
set of points of the elliptic curve whose coordinates belong to the extension of degree k of Fq
if and only if r divides qk − 1.

2.4.2.1. Twist of a curve

In this section we give the definition and a theorem that explicitly describes the equations
of the possible twisted elliptic curves.

Definition 2.36 (Twisted elliptic curve). Let E and E′ be two elliptic curves, we say that
E′ is the twist of E, if and only if E and E′ have the same j-invariant and are isomorphic
over the algebraic closure of a finite field F.

Particularly, given an elliptic curve E/Fp with embedding degree k, if the finite field E(Fp)
has a subgroup of prime order r, Hess et al. [85] show that, there exist a twist curve E′ of
E, defined over Fpk/d , where d|k, with r|#E′(Fpk/d), such that there exist an isomorphism:

Ψd : E′(Fpk/d)→ E(Fpk),

where the integer d is the degree of the twist curve E′.

Theorem 2.20. Let E be an elliptic curve defined by the short Weierstrass of Equation (2.2)
over an extension Fq of a finite field Fp, for a prime number p, k a positive integer such that
q = pk. According to the value of k, the potential degrees for a twist curve are d ∈ {2, 3, 4, 6}.

The explicit isomorphism Ψd : E′ → E are presented below:

d = 2. Let ν ∈ Fpk/2 be such that the polynomial X2 − ν is reducible over Fpk/2 . The
equation of E′ over Fpk/2 is E′ : νy2 = x3 + ax+ b. The isomorphism Ψ2 is given by

Ψ2 : E′(Fpk/2) → E(Fpk)

(x, y) 7→ (x, yν1/2).

Cinvestav 31

CHAPTER 2. MATHEMATICAL BACKGROUND

d = 3. The elliptic curve E admits a twist of degree 3 if and only if a = 0. Let ν ∈ Fpk/3

be such that the polynomial X3 − ν is irreducible over Fpk/3 . The equation of E′ is

y2 = x3 + b
ν . The isomorphism Ψ3 is given by

Ψ3 : E′(Fpk/3) → E(Fpk)

(x, y) 7→ (xν1/3, yν1/2).

d = 4. The elliptic curve E admits a twist of degree 4 if and only if b = 0. Let ν ∈ Fpk/4

be such that the polynomial X4 − ν is irreducible over Fpk/4 . The equation of E′ is
y2 = x3 + a

νx. The isomorphism Ψ4 is given by

Ψ4 : E′(Fpk/4) → E(Fpk)

(x, y) 7→ (xν1/2, yν3/4).

d = 6. The elliptic curve E admits a twist of degree 6 if and only if a = 0. Let ν ∈ Fpk/6

be such that the polynomial X6 − ν is irreducible over Fpk/6 . The equation of E′ is

y2 = x3 + b
ν . The isomorphism Ψ6 is given by

Ψ6 : E′(Fpk/6) → E(Fpk)

(x, y) 7→ (xν1/3, yν1/2).

Cinvestav 32

Part I

Integer-factorization-based
cryptography

33

Chapter 3
Integer and finite field arithmetic

A fundamental part of most cryptographic schemes is the set of operations on the ring of
integers Z. Because, once it is possible to compute operations as addition, subtraction, mul-
tiplication, and squaring in the integers; we can be able to build more complex mathematical
structures. For instance, in the case that we need to work with a cryptographic scheme based
on elliptic curves over a finite field, it is necessary first to build the finite field whose main
operations rely on integers, and then define the operations that compose the elliptic curve
structure over such field. Given that the associated cost of the operations in finite fields and,
therefore, the cost of the operations in elliptic curves are noticeably influenced by the cost
of the used algorithms for the underlying integer arithmetic. It results extremely important
that integer arithmetic be performed as efficiently as possible, in order to have an efficient
implementation of the cryptographic scheme.

The present chapter is dedicated to describe the practical considerations of an efficient
implementation of integer and finite field arithmetic. At first, we will explain how large inte-
gers can be represented internally on computers. Then we describe the main algorithms used
to compute arithmetic operations on those large integers. Finally, we inspect the algorithms
used in the finite field operations and its practical considerations of implementation.

3.1. Representation of large integers

The largest quantity that is possible to manipulate directly in a computer using the
processor instruction set, depends on the size in bits of the processor registers. Consequently
the size of a register, called a word, is one of the main characteristics of a processor to take
into account when we talking about implementation of arithmetic on large integers, because
the amount of work that the processor will perform to process such integers depends on
its size in words. In present-day computers commonly we found micro-architectures using
registers with words of w = {32, 64} bits, although, there may also be micro-architectures
with 8- or 16-bit words like that found in micro-controllers or smart cards.

Large integers refers to integers that need hundreds or thousands of bits to be represented,
which cannot be manipulated by a contemporary computer directly. We say that a single
precision or a 1-word integer is an integer that needs only one word to be represented, and
therefore, it can be manipulated using the processor instruction set of a computer. i.e. for
a w-bit micro-architecture, a 1-word integer a is an integer such that 0 ≤ a < 2w. On the
other hand, an integer that fits in more of one word is called a multi-precision integer. And
then, if such integer needs n words to be represented, we say that it is an n-word integer.
In order to represent a multi-precision integer a, we must first define a radix r ≥ 2. This

35

CHAPTER 3. INTEGER AND FINITE FIELD ARITHMETIC

value is commonly selected as r = 2w, where as before w represent the bit-size of a processor
register. Using this value r, we can write every integer a ≥ 0 in a unique way as the sum

a =

n−1∑
i=0

air
i = an−1r

n−1 + · · ·+ a1r + a0, (3.1)

where 0 ≤ ai < r, the coefficient an−1 has the largest index i for which an−1 > 0, and
n = ddlog2(a)e /re. The sum in Equation (3.1) corresponds to the representation of an
integer a in radix-r, and we will denoted as (an−1, . . . , a0)r.

3.2. Arithmetic instructions in processors

In order to reduce the latency of integer arithmetic operations, trough this chapter we
took advantage of the ADCX/ADOX and MULX instructions. Which were specially designed
for speeding-up integer multi-precision arithmetic operations, and that are available in the
newest Intel and AMD micro-architectures.

Starting from the Intel Haswell micro-architecture, the instruction MULX was introduced
as a part of the Bit Manipulation Instruction set (BMI2) [46]. MULX is an extension of
the traditional 64-bit multiplication instruction MUL, that computes the multiplication of
two unsigned 64-bit operands without affecting the arithmetic flags. This feature allows to
combine MULX with addition instructions without affecting the carry chain state. Additionally,
MULX uses a three-operand code that allows the programmer to choose the registers that will
be used for storing the upper and lower part of the output product. Thus allowing to preserve
the data stored in the input registers, and allowing to reduce the number of MOV instructions
used to move the operands to the input registers and the result to the desired output registers.

On the other hand, the set of instructions ADX was introduced from the Intel Broadwell
micro-architecture and includes the ADCX/ADOX instructions [76]. Which are extensions of
the traditional 64-bit addition instructions ADD/ADC, that were designed for handling two in-
dependent carry chains. These new instructions compute an unsigned 64-bit integer addition
without modifying the carry flag (CF) and the overflow flag (OF), respectively. In this way,
the additions can be computed using as carry the value stored in the CF and the OF flags,
allowing that ADCX and ADOX instructions can be executed concurrently.

In the remaining of this chapter we will study the combined usage of these novel instruc-
tions, in order to get an efficient implementation of the arithmetic operations on the integers
and finite fields.

3.2.1. AVX2 instruction set

We also take advantage of the AVX2 instruction set introduced in the Intel Haswell micro-
architecture [47]. AVX2 is an extension from AVX, which allows to compute Single Instruction
Multiple Data (SIMD) operations using 256-bit vector registers. This instruction set pro-
vides operations supporting integer arithmetic and other useful computations, that are able
to compute up to four simultaneous 64-bit operations over the values stored in the vector
registers. In terms of performance, we will expect a speedup factor of four from the simulta-
neous execution of 64-bit operations. Nevertheless, this acceleration can be attained only for
some instructions, because some factors like the execution latency and throughput, and the
number of execution units available in the target micro-architecture reduce this acceleration.
For example, in this chapter the expected acceleration is limited by the size of the AVX2

multiplier, among other factors.
For the main purposes of this chapter, we mainly benefit from the AVX2 instructions

detailed in the following: mm256 mul epu32 that is able to compute four products of 32 ×

Cinvestav 36

3.3. INTEGER ARITHMETIC

32 bits, storing the four 64-bit results on a 256-bit vector register; mm256 add epi32 and
mm256 sub epi32 that compute eight simultaneous 32-bit additions/subtractions, without
handling the input/output carry and borrow, respectively; mm256 slli epi32 and mm256 -

srli epi32 that compute eight 32-bit logical shifts using the same fixed shift displacement
for every word stored in the vector register; mm256 shuffle epi32 that shuffles 32-bit values
of the source vector in the destination vector at the locations selected by a control operand;
mm256 xor si256 and mm256 and si256 that compute the XOR/AND of two 256-bit vector
registers; mm256 cmpgt epi32 that returns a vector with the values 232−1 and zero depending
if the comparison of the 32-bit integers in the vector register is true or not.

3.3. Integer arithmetic

In this section we present how the algorithms used to compute the operations of addi-
tion, subtraction, multiplication and modular reduction over the integers, can be efficiently
performed taking advantage of the instructions presented in the previous section. Besides,
through this section we also detail some practical considerations to take into account when
a fast and secure implementation of these operations is desirable.

3.3.1. Addition and subtraction

Integer addition and subtraction of two multi-precision integers a and b can be performed
through Algorithms 1 and 2, respectively. In both algorithms, it is possible to fix to n the
number of words that the operands can have. This implies that, for adding or subtracting
integers with lengths less than n, we must first pad the integers with as many zeros as
necessary so that they have length n. The objective of fixing the number of words used to
represent an integer, is to be able of unroll the main loops in both algorithms in order to
obtain a constant-time implementation with a faster performance.

Algorithm 1 Integer addition

Input: Two n-word integers a = (an−1, . . . , a0)r and b = (bn−1, . . . , b0)r.
Output: The (n+ 1)-word integer c = (cn, . . . , c0)r such that c = a+ b.

1: carry ← 0
2: for i = 0 to n− 1 do
3: d← ai + bi + carry
4: ci ← d mod r . 0 ≤ ci < r
5: carry ← bd/rc . carry = 0 or 1
6: end for
7: cn ← carry
8: return c

Considering that, the operations in the lines inside the loops in both algorithms can be
performed using a single assembly instruction, when the instructions ADD/ADC or ADCX/ADOX
and SUB/SBB are available in the target processor. The Algorithms 1 and 2 can be imple-
mented at a cost of (n+ 1)-word additions and (n+ 1)-word subtractions, respectively.

Nevertheless, for the subtraction c = a− b when a < b, the (n+ 1)-th word of c stores −1
which means that the result corresponds to the two’s complement representation of a − b.
In order to obtain |a− b| we can conditionally compute a− b or b− a depending if a ≥ b or
b ≥ a, respectively. However, generally it is desirable to compute this operation in constant
time in order to thwart side-channel attacks. For this purpose, we can avoid the conditional
execution by computing unconditionally the subtraction c = a−b followed of the Algorithm 2
using as inputs ai = (∼ cn) & ci and bi = cn & ci for 0 ≤ i < n. At the end the sign of

Cinvestav 37

CHAPTER 3. INTEGER AND FINITE FIELD ARITHMETIC

Algorithm 2 Integer subtraction

Input: Two n-word integers a = (an−1, . . . , a0)r and b = (bn−1, . . . , b0)r.
Output: The (n+ 1)-word integer c = (cn, . . . , c0)r such that c = a− b.

1: borrow ← 0
2: for i = 0 to n− 1 do
3: d← ai − bi + borrow
4: ci ← d mod r . 0 ≤ ci < r
5: borrow ← bd/rc . borrow = 0 or − 1
6: end for
7: cn ← borrow
8: return c

the result is given by the value of the (n + 1)-th word of c. This procedure has a cost of
2(n+ 1)-word additions, 2n logical ANDs and one logical NOT instructions.

3.3.2. Multiplication

Multiplication is a very important operation in any arithmetic system. This is due to the
fact that the multiplication significantly influences the cost of some arithmetic operations
such as modular reduction, exponentiation, among others computations whose algorithms
depend to a large extent on the cost of the multiplication method that is used.

The most intuitive way to compute an integer multiplication is using the schoolbook
multiplication method shown in Algorithm 3, which has a quadratic complexity with respect
to the word-size of the operands. In the same manner that for the addition and subtraction
algorithms, we can fix the word-size of the operands to n and take advantage of the assem-
bly instructions MULX, ADD/ADC or ADCX/ADOX. By doing so, a naive implementation of the
Algorithm 3 would have a cost of n2 multiplications and 4n2 additions.

Algorithm 3 Schoolbook method for integer multiplication

Input: Two integers a = (an−1, . . . , a0)r and b = (bm−1, . . . , b0)r.
Output: The (n+m)-word integer c = (cn+m−1, . . . , c0)r such that c = a · b.

1: Set c equal to zero. . For the step 5
2: for i = 0 to n− 1 do
3: e← 0
4: for j = 0 to m− 1 do
5: d← ai · bj + ci+j + e . 0 ≤ d < r2

6: ci+j ← d mod r . Lower part of d
7: e← bd/rc . Highest part of d
8: end for
9: cm+i ← e

10: end for
11: return c

We can observe that the efficiency of this method mainly depends on the selection of the
partial products and the way that they are added. Commonly, integer multiplication can be
carried out following one of these strategies: the product scanning strategy in which all the
partial products used to obtain the final result of one column are computed and added; and
the operand scanning strategy where the multiplicand operand is multiplied by each word
of the multiplier, and after performing all multiplications, the partial products are properly
shifted and added to obtain the output product.

Cinvestav 38

3.3. INTEGER ARITHMETIC

When the product scanning strategy is used two drawbacks arise: first, it is necessary
to have enough processor registers to maintain all the partial products corresponding to a
determined column; and given that multiplications involved in the result of a column do not
share operands, then more MOV instructions are needed to place the operands in the input
registers used for MULX. For instance, multiplying two 3-word integers a = (a2, a1, a0)r and
b = (b2, b1, b0)r using this technique require to compute the value of the column c2 pointed out
in Figure 3.1. This computation can be done using the code shown in Listing 3.1 taking into
account that the results of the columns c0-c4 are stored in the registers r8-r12, respectively.

1 //c[rdi] = a[rsi] * b[rcx]

2 // rdx = 8(rcx)

3

4 mulx 8(rsi), rax , rbx

5 mov (rcx), rdx

6 mulx 16(rsi), r13 , r14

7 mov 16(rcx), rdx

8 mulx (rsi), r15 , rbp

9 add rax , r10

10 adc r14 , r11

11 adc 0, r12

12 add r13 , r10

13 adc rbx , r11

14 adc 0, r12

15 add r15 , r10

16 adc rbp , r11

17 adc 0, r12

Listing 3.1: Product scanning
strategy for multiplication.

×
a0

b0

a1

b1

a2

b2

a0 × b0
a1 × b0

a2 × b0
a0 × b1

a1 × b1
a2 × b1

a0 × b2
a1 × b2

a2 × b2

c0c1c2c3c4c5

Figure 3.1: Schoolbook 3-word integer
multiplication (product scanning

strategy).

From Listing 3.1 we can observe that the cost of compute the column c2 is three MULX,
two MOV and nine ADD/ADC instructions. Besides, it is not possible to take advantage of the
ADCX/ADOX instructions concurrency given the dependency between the addition operations.

On the other hand, when the operand scanning strategy is used those disadvantages
disappear. Because the partial products can be added as they are computed, taking full
advantage of ADCX/ADOX instructions as shown Listing 3.2. And moreover, given that a
word of the operand keeps fixed during the computation of a row, as shown Figure 3.2, it is
possible to save the MOV instructions needed to place the operands in the registers used by
MULX. Following this strategy the computation of the second row has a cost of three MULX,
one MOV, one XOR and seven ADCX/ADOX instructions.

Cinvestav 39

CHAPTER 3. INTEGER AND FINITE FIELD ARITHMETIC

1 //c[rdi] = a[rsi] * b[rcx]

2

3 xor r12 , r12

4 mov 8(rcx), rdx

5 mulx (rsi), rax , rbx

6 adcx rax , r9

7 adox rbx , r10

8 mulx 8(rsi), rax , rbx

9 adcx rax , r10

10 adox rbx , r11

11 mulx 16(rsi), rax , rbx

12 adcx rax , r11

13 adox rbx , r12

14 adc 0, r12

Listing 3.2: Operand scanning
strategy for multiplication.

×
a0

b0

a1

b1

a2

b2

a0 × b0
a1 × b0

a2 × b0
a0 × b1

a1 × b1
a2 × b1

a0 × b2
a1 × b2

a2 × b2

c0c1c2c3c4c5

Figure 3.2: Schoolbook 3-word integer
multiplication (operand scanning

strategy).

Nevertheless, both strategies are limited by the number of general purpose registers avail-
able in the target architecture, since these registers are used to maintain the multiplication
result and its partial products. For this reason and Algorithm 3 complexity the schoolbook
multiplication method is useful just for operands with a small word-size.

3.3.2.1. Karatsuba method for multiplication

The Karatsuba multiplication method [105], was proposed by Anatolii Karatsuba in 1963
for multi-digit numbers or polynomials multiplication. Using a divide and conquer strat-
egy, this method can be recursively used in order to significantly reduce the number of
multiplications required in a multiplication, at cost of increase in the number of needed ad-
ditions. The binary splitting of an n-word multiplication is performed writing the operands
as a = aL + aHx and b = bL + bHx where x = rn/2 and aL, aH , bL, and bH are n

2 -word
integers. Then, the values cL, cM and cH are computed as

cL = aL · bL, cM = (aL + aH) · (bL + bH), cH = aH · bH .

And finally, the multiplication c = a · b is calculated as

c = cL + (cM − cL − cH)x+ cHx
2, (3.2)

at a cost of three n
2 -word multiplications (instead of the four multiplications that would be

required when the schoolbook method is used), two n
2 -word additions, one n-word addition

and two n-word subtractions. However, computing the value cM could require an (n2 + 1)-
word multiplication, which can be performed as

cM = (aL + aH) · (bL + bH)

= (dL + dHx) · (eL + eHx)

= (dL · eL) + (dL · eH)x+ (eL · dH)x+ (dH · eH)x2

where dH and eH store the carry generated by aL + aH and bL + bH respectively. In this
way, the multiplication is carry out computing the product dL · eL and adding dLx, eLx, and
x2 to it conditionally, depending on the value of dH and eH .

Cinvestav 40

3.3. INTEGER ARITHMETIC

Given that the complexity of this method is O(nlog2 3) ≈ O(n1.58) when the word-size n
is even, it results very useful to multiply large integers. A technique that is generally used
to compute large integers multiplication consist of combining the schoolbook and Karat-
suba multiplication methods, in §4 we will presented an analysis and implementation of this
technique.

3.3.3. Squaring

Similarly to integer multiplication, squaring is a very important operation within an
arithmetic system. This importance can be seen mainly in the modular exponentiation
methods, which will be addressed latter in this chapter. However, unlike multiplication,
this operation can be performed in a more efficient way, given that consists of multiplying
the input operand by itself. This fact, allows us to save some partial products during the
squaring computation.

The schoolbook multiplication method can be used to perform a squaring, but taking
advantage of repeated partial products found during the computation. Such method is

shown in Algorithm 4 and has a complexity of O(n
2+n
2). Using the assembly instructions

described in previous paragraphs, a naive implementation should have a cost of n2−n
2 word

multiplications and n word squarings. However, since there is no squaring instruction in the
processors, the associated cost to the Algorithm 4 is given using only multiplications and

additions. Thus, the cost of the algorithm is n2+n
2 word multiplications and 9n2−5n

2 word
additions.

Algorithm 4 Schoolbook method for integer squaring

Input: An n-word integer a = (an−1, . . . , a0)r.
Output: The (2n)-word integer c = (c2n−1, . . . , c0)r such that c = a2.

1: Set c equal to zero.
2: for i = 0 to n− 1 do
3: d← a2 + c2i . 0 ≤ d < r2

4: c2i ← d mod r
5: e← bd/rc . 0 ≤ e < r
6: for j = i+ 1 to n− 1 do
7: d← 2(ai · aj) + ci+j + e . 0 ≤ d ≤ 2r(r − 1)
8: ci+j ← d mod r
9: e← bd/rc . 0 ≤ e ≤ 2(r − 1)

10: end for
11: cn+i ← e
12: end for
13: return c

The efficiency of Algorithm 4 depends on the way that the partial products are computed
and added, just like in the schoolbook multiplication algorithm. So, we can use the product
or operand scanning strategies for the integer squaring. Although, we found the same pros
and cons as those that arose for the schoolbook integer multiplication. Therefore, we used the
operand scanning strategy where the partial products can be added as they are computed.
In Figure 3.3 we can observe the example of the squaring of a 3-word integer a = (a2, a1, a0)r
using this strategy, on it, the red rectangles point out that the product must be multiplied
by 2 before we add it.

Cinvestav 41

CHAPTER 3. INTEGER AND FINITE FIELD ARITHMETIC

1 //c[rdi] = a[rsi] * a[rsi]

2

3 xor rax , rax

4 mov (rsi), rdx

5 mulx (rsi), r8 , r9

6 mulx 8(rsi), rax , r10

7 adox rax , rax

8 adox r10 , r10

9 adcx rax , r9

10 adc 0, r10

11 mulx 16(rsi), rax , r11

12 adox rax , rax

13 adox r11 , r11

14 adcx rax , r10

15 adc 0, r11

Listing 3.3: Operand scanning
strategy for squaring.

×
a0

a0

a1

a1

a2

a2

a0 × a0

a1 × a0

a2 × a0

a1 × a1

a2 × a1

a2 × a2

c0c1c2c3c4c5

Figure 3.3: Schoolbook 3-word integer
squaring (operand scanning strategy).

Listing 3.3 shown the assembly code used to compute the result of the row highlighted
in blue in Figure 3.3, taking into account that the results c0-c3 are stored in the registers
r8-r11, respectively. As can be observed the cost of the computation of the row is three
MULX, one MOV, one XOR and eight ADCX/ADOX instructions. Given the fact that squaring
algorithm needs more additions than the multiplication one, the Algorithm 4 could be useful
for integers with smaller word-sizes than the supported by the multiplication algorithm. This
directly depends on the cost associated with the processor’s addition instruction.

3.3.3.1. Karatsuba method for squaring

The Karatsuba multiplication method [105] can be also used in order to significantly
reduce the number of word multiplications required in a squaring, at cost of increase the
needed additions. The binary splitting of an n-word squaring is performed writing the input
operand as a = aL + aHx where x = rn/2, and aL and aH are n

2 -word integers. Then, the
values cL, cM and cH are computed as

cL = a2
L, cM = (aL + aH)2, cH = a2

H .

And finally the squaring c = a2 is calculated as

c = cL + (cM − cL − cH)x+ cHx
2, (3.3)

at cost of three n
2 -word squarings, two n

2 -word additions, one n-word addition and two n-
word subtractions. However, computing the value cM could require an (n2 +1)-word squaring
which can be performed as

cM = (aL + aH)2

= (dL + dHx)2

= d2
L + 2(dL · dH)x+ d2

Hx
2,

where dH stores the carry generated by the addition aL + aH . In this way, the squaring is
carry out computing the product d2

L and adding 2dLx and x2 to it conditionally, depending
on the value of dH .

A problem that arises when this method is used, is that the conditional addition must
be done in constant time in order to reduce the risk of side channel attacks, which increases
the cost of the operation. A way to perform the integer squaring, which does not needs a

Cinvestav 42

3.3. INTEGER ARITHMETIC

conditional addition and reduces the number of subtractions, is computing the Karatsuba
formula 3.3 as follow

c = cL + 2(aL · aH)x+ cHx
2, (3.4)

this can be done because

(cM − cL − cH) = (aL + aH)2 − cL − cH
= a2

L + 2(aL · aH) + a2
H − cL − cH

= 2(aL · aH).

Using this formula, Karatsuba has a cost of two n
2 -word squarings, one n

2 -word multipli-
cation, and two n-word additions.

In the same manner that for multiplication, we can use the technique that combines the
schoolbook and Karatsuba squaring methods to improve the performance of large integers
squaring. We will present an analysis of this technique for squaring in §4.

3.3.4. Modular reduction

Modular reduction is a fundamental part in the construction of finite field arithmetic,
because all operations in a finite field must be reduced modulo a prime number p. Therefore,
the cost of the chosen modular reduction algorithm significantly influences the associated cost
of operations such as modular multiplication, modular squaring and modular exponentiation.

Intuitively, this reduction could be performed using the Euclidean division algorithm and
then computing the corresponding remainder, but this method implies an integer division
which is a very costly operation. In this section we will see two approaches to perform the
modular reduction, which are based on the pre-computation of a particular value µ that is
closely related to the used modulo p. This pre-computed value is utilized to replace the
costly division by roughly the cost of a multiplication by µ.

3.3.4.1. Montgomery modular reduction

In 1985 Peter L. Montgomery proposed a novel method to compute the modular reduction
without using a division [131], the main idea behind of his method consists in changing the
numbers representation to the so called Montgomery domain. In order to do this change of
representation, it is necessary first to select a Montgomery radix R which is a power of two
such that rn−1 < p < rn. Generally, R = rn is chosen where as before r represents the size
of a processor register and n is the word-size of the used prime p. Finally, we can map an
element a ∈ Zp to its Montgomery’s representation ã by computing

ã = a ·R mod p.

Consequently, at the start and the end of the computations a transformation to and from
this representation is needed.

Given two elements a, b ∈ Zp in its Montgomery’s representation ã and b̃, respectively.

The integer multiplication ã · b̃ produces the value c′ = a · b · R2 with 0 ≤ c′ < p2, which
does not correspond to the Montgomery’s representation of c = a · b. Then, with the aim of
obtain the Montgomery’s representation of c, which is computed as c̃ = c′ ·R−1 mod p, we
use the following equation

c̃ =
c′ + (µ · c′ mod R) · p

R
≡ c′ ·R−1 mod p. (3.5)

Where the pre-computed value µ is calculated as µ = −p−1 mod R, and the modulo and
division operations by R can be efficiently performed using fast right/left n-word shift op-
erations. It can be shown that when 0 ≤ c′ < p2, the result c̃ in Equation (3.5) is in the
interval [0, 2p) and at most a single conditional subtraction is needed to obtain 0 ≤ c̃ < p.

Cinvestav 43

CHAPTER 3. INTEGER AND FINITE FIELD ARITHMETIC

The reduction algorithm for multi-precision arithmetic based on Equation (3.5), named
by its author as REDC, is presented in Algorithm 5. This algorithm can be implemented at
a cost of n2 +n word multiplications if the pre-computed Montgomery constant µ is adjusted
to µ = −p−1 mod r.

Algorithm 5 REDC algorithm.

Input: A 2n-word integer c′, the n-word modulo p and µ = −p−1 mod r.
Output: An n-word integer c̃ such that c̃ = c′ · r−n mod p.

1: for i = 1 to n do
2: t← c′ mod r
3: q ← t · µ mod r
4: c′ ← (c′ + q · p)/r
5: end for
6: c̃← c′

7: if c̃ ≥ p then
8: c̃← c̃− p
9: end if

10: return c̃

In a constant time implementation the conditional subtraction described above and
showed in the Step 8 of Algorithm 5, can be omitted by using the technique introduced
by Walter in [163]. This technique consist of using a redundant representation of the ele-
ments in Montgomery’s representation and select a Montgomery radix such that 4p < R.
For instance, if we allow that ã, b̃ belong to Z2p instead of Zp, then the value c̃ = ã · b̃ ·R−1

in the Step 6 of the REDC algorithm is also upper bounded by 2p and can be reused in
subsequent computations without the need of a conditional subtraction. At the end of the
whole computations the result is reduced at the cost of a single subtraction.

It is worth mentioning that the Montgomery reduction algorithm is also useful to convert
elements between normal and Montgomery representations. For instance, given an element
a ∈ Zp its Montgomery’s representation can be computed as ã = REDC(a ·R2), and in order
to convert the element ã to its normal representation we can compute a = REDC(ã).

Montgomery-friendly primes

In several works, different authors have exploited a special class of prime moduli, which
permit to reduce the number of word multiplications needed in the REDC algorithm [2, 80,
111, 119]. The modulus contained in this class are sometimes named as as Montgomery-
friendly, because they have the very useful property that every modulus p fulfill that p ≡ ±1
mod rm for a positive integer m < n. This property implies that µ = −p−1 mod rm ≡ ∓1
mod rm. In this way, ifm = 1 we can save the multiplication by µ in the Step 3 of Algorithm 5
and the REDC algorithm can be computed using only n2 word multiplications. In Chapter 5
and Chapter 9 we present how this kind of primes could improve the performance of a
cryptographic scheme.

3.3.4.2. Barrett modular reduction

Time after the proposal of Montgomery for modular reduction, Paul Barrett presented
in [15] an algorithm which does not require a change of representation. His proposal is based
on the following observation, let p be an n-word prime and let be 0 ≤ c′ < p2 a 2n-word
integer. The modular reduction c = c′ mod p can be computed as c = c′ − q · p, where q

represents the quotient q =
⌊
c′

p

⌋
.

Cinvestav 44

3.3. INTEGER ARITHMETIC

In order to efficiently compute this reduction method, it is necessary to pre-compute the

constant value µ =
⌊
r2n

p

⌋
< rn+1. Which will be used to approximate the quotient q through

the following equation

q̂ =

⌊⌊
c′/rn−1

⌋
· µ

rn+1

⌋
. (3.6)

This approximation of q is very close and it is possible to show that q − 2 ≤ q̂ ≤ q. Barrett
algorithm for modular reduction is presented in Algorithm 6, on it and in Equation (3.6) we
can observe that the computation of the approximation of the quotient q can be efficiently
performed using an integer multiplication µ and fast left/right shifts.

Algorithm 6 Barrett reduction algorithm.

Input: A 2n-word integer c′, the n-word modulo p and µ =
⌊
r2n/p

⌋
.

Output: The n-word integer c such that c = c′ mod p.

1: q̂ ←
⌊⌊
c′/rn−1

⌋
· µ/rn+1

⌋
2: s← c′ mod rn+1

3: t← (q̂ · p) mod rn+1

4: c← s− t
5: if c < 0 then
6: c← c+ rn+1

7: end if
8: while c ≥ p do
9: c← c− p

10: end while
11: return c

A straightforward optimization from the Algorithm 6 can be achieved, observing that the
multiplication by µ in Step 1 must be divided by rn+1, therefore, only the most significant
half of the product is needed. In the same way, for the multiplication by p we can observe
that the product must be reduced modulo rn+1, which means that only the least significant
half of that product is needed. Applying this optimizations, the Barrett reduction can be
computed at a cost of roughly two half multiplications of n-word by (n + 1)-word integers.
In Chapter 4.2 we will show how this half multiplications could be efficiently computed.

Folding technique

Although the Barrett reduction algorithm is a little bit more expensive than Montgomery
reduction, in our work we explored the use of this algorithm applying a further optimization.
The idea was proposed in 2007 by Hasenplaugh et al. in [84] and it is known as folding
technique. This optimization allows to reduce the number of multiplications needed in the
Barrett reduction, at a cost of additional pre-computation.

Given an n-word modulo p and a 2n-word integer c′, the folding technique consist in
pre-computing the value µ′ = r3n/2 mod p that is used to compute the value c̄ ≡ c′ mod p
through the following equation

c̄ = (c′ mod r3n/2) +

⌊
c′

r3n/2

⌋
· µ′.

In this way, we obtain a resultant value c̄ < r(3n/2)+1, at the cost of multiplying an n/2-word
by an n-word integer. After that, in order to reduce c̄ completely, the classical Barrett algo-
rithm is used. This technique can be used multiple times, however, according to the author

Cinvestav 45

CHAPTER 3. INTEGER AND FINITE FIELD ARITHMETIC

with only two folding steps we already achieve the best results. According to implementa-
tion, that will be presented in Chapter 5, we confirm that the best performance of Barrett
reduction algorithm can be obtained with two folding steps, for the cases studied in this
thesis.

3.4. RNS arithmetic

Due to its parallel-friendly nature, during the last few decades many researchers have
adopted the Residue Number System (RNS), which is particularly useful for performing fast
arithmetic over large integers. Because it distributes the overall arithmetic computation over
several small moduli, whose size in bits is frequently chosen to match the size of the registers
in the target platform.

The Residue Number System relies on the ancient Chinese Remainder Theorem presented
in Theorem 3.1. So, in order to use the Residue Number System arithmetic it is necessary to
define an RNS-basis B = {m1,m2, . . . ,ml}, which is a set of l pairwise relative prime moduli.

The number l of moduli to be used is such that the product M =
∏i=l
i=1mi must comply that

p < M , where p is the biggest number to operate. In the case of this thesis p corresponds to
a large prime number. In this way, an n-word number a ∈ ZM can be uniquely represented
by the l-tuple A = (a1, a2, . . . , al), where each ai is computed as the residue of a modulo mi

and l = n. In the remainder of this section, for simplicity, the operation a mod m will be
written as a = |a|m.

Theorem 3.1 (Chinese Remainder Theorem (CRT)). For an integer l ≥ 2, let m1,m2, . . . ,ml

be non-zero integers that are pairwise relative prime, i.e. gcd (mi,mj) = 1 for i 6= j. Then,
for any integers a1, a2, . . . , al the system of congruences

x ≡ a1 mod m1, x ≡ a2 mod m2, . . . , x ≡ al mod ml,

has a solution, and this solution is uniquely determined modulo m1,m2, . . . ,ml.

In the same way that for Montgomery modular arithmetic, when the RNS representation
is used, a transformation to and from the RNS representation is needed at the start and
the end of the computations. Let A = (a1, a2, . . . , al) be the RNS representation of a ∈
ZM , we can obtain its integer representation using the following recovery formula based on
Theorem 3.1,

a =

∣∣∣∣∣
l∑
i=1

∣∣ai ·M−1
i

∣∣
mi
·Mi

∣∣∣∣∣
M

, where Mi ,M/mi. (3.7)

A method to avoid the reduction modulo M in the evaluation of the right hand side of
Equation (3.7), is rewriting the value a as follow

a =

l∑
i=1

γi ·Mi − α ·M , with γi ,
∣∣ai ·M−1

i

∣∣
mi
. (3.8)

Where α is a positive integer, and by construction 0 ≤ a/M < 1. From Equation (3.8), we
can compute α as

α =

⌊
l∑
i=1

γi
mi

⌋
(3.9)

and since γi < mi, we have that 0 ≤ α < l.

Cinvestav 46

3.4. RNS ARITHMETIC

3.4.1. Addition, subtraction and multiplication

Let a and b be two n-word integers with a, b < M , represented as the RNS tuples
A = (a1, a2, . . . , al) and B = (b1, b2, . . . , bl). The RNS addition denoted by ⊕, subtraction
	 and the RNS multiplication ⊗ can be performed component wise as,

C = A⊕B = (|a1 + b1|m1
, . . . , |al + bl|ml

),

C = A	B = (|a1 − b1|m1
, . . . , |al − bl|ml

), (3.10)

D = A⊗B = (|a1 · b1|m1
, . . . , |al · bl|ml

).

We can observe that, the addition, subtraction and multiplication of elements in ZM can be
performed using smaller computations modulo mi, which are independent and can be carried
out in parallel. Therefore, if the target platform is equipped with l processing units, then
the computational cost of computing any RNS arithmetic operation in Equation (3.10) is
approximately the same that the cost of a single operation modulo mi.

3.4.1.1. Selection of moduli mi

For the sake of efficiency, the moduli mi are usually selected as

mi = 2w − µi,

where the µi values are chosen as small as possible and as before w represent the size in bits of
the processor register. If µi < 2bw/2c, then the reduction modulomi found in the computation
of D = (d1, d2, . . . , dl) in Equation (3.10) can be efficiently performed by repeating at most
twice the operation

di = ti mod 2w + µi · bti/2wc ,

where ti = ai · bi. Thereafter, it is guaranteed that di ∈ [0, 2w[. Since 2w > mi, one may
need to compute a final reduction, at a cost of at most one subtraction operation. In order
to assure a constant-time implementation, this reduction is carried out by executing two
unconditional reductions, followed by one conditionally subtraction.

3.4.2. Modular reduction

Modular multiplication generally is performed computing an integer multiplication fol-
lowed by a modular reduction modulo p, instead of modulo M as shown Equation (3.7). This
last step, can be performed using the modular reduction approach proposed in [18, 117] and
adapted to GPU platforms by Jeljeli in [97] (see also [96]).

Let D = A⊗B be the RNS representation of the integer multiplication of d = a · b with
0 ≤ d < M and p < M . The strategy proposed in [97] consist in to perform the modular
reduction d mod p directly applying the RNS recovery formula of Equation (3.8) as follows

z =
∑̀
i=1

γi · |Mi|p − |α ·M |p , where γi ,
∣∣di ·M−1

i ,
∣∣
mi
. (3.11)

Remark 3.1. Let a, b be n-word elements of ZM , the result of the integer multiplication
d = a · b can be uniquely recovered from its RNS representation if and only if d < M . In
general, given that the integer product 0 ≤ d < M2, it follows that the RNS representation
of a, b and d requires an RNS-basis composed of l w-bit moduli, with l = 2n.

We can get a good approximation of α, that at the same time can be efficiently computed,
by using the fact that mi ≈ 2w. Hence, the ratio γi/mi could be approximated considering

Cinvestav 47

CHAPTER 3. INTEGER AND FINITE FIELD ARITHMETIC

only the σ most significant bits of the quotient γi/2
w as follows,

α̂ ,

 l∑
i=1

⌊ γi
2w−σ

⌋
2σ

+ ∆

 , (3.12)

where σ is an integer in the range [1, w] and 0 < ∆ < 1 is an error correcting parameter [97,
108].

Remark 3.2. The integer part of the sum in Equation (3.12) can be efficiently computed by
considering the output carries produced by the addition of the σ most significant bits of the
γi values. Notice that the integer sum produces an integer in the range [0, l[.

This approach for modular reduction is shown in Algorithm 7. From Equation (3.11) we
can notice that the algorithm does not computes d mod p, but it produces an multiple of
it which is bounded by 2w · l · p. In practice this implies that the RNS vector Z must be
represented using at least two more moduli in the RNS-basis. Consequently, we increased the
size of the RNS-basis B from l to l+3 moduli. By taking this caution measure, one guarantees
that accumulating thousands of modular multiplications (required in the computation of a
typical RSA modular exponentiation), will not exceed the RNS upper bound M .

Algorithm 7 RNS Modular Reduction [97].

Input: An RNS vector D, an l-moduli RNS-basis B, a prime p, and the parameters w, σ,
and ∆.

Output: An RNS vector Z, such that it corresponds to the integer representation of z ≡ d
mod p.

Precomputation:
1: RNS vector

∣∣M−1
i

∣∣
mi

for i ∈ {1, . . . , l}
2: Table of RNS vectors |Mi|p for i ∈ {1, . . . , l}
3: Table of RNS vectors |α ·M |p for α ∈ {1, . . . , l − 1}

Computation:
4: for each processing unit i do

5: γi ←−
∣∣∣di · ∣∣M−1

i

∣∣
mi

∣∣∣
mi

. 1 RNS product

6: end for

7: α←−

∑l
j=1

⌊ γj
2w−σ

⌋
2σ

+ ∆

 . Addition of l σ-bit terms

8: for each processing unit i do

9: zi ←−
∣∣∣∣∑l

j=1 γj ·
∣∣∣|Mj |p

∣∣∣
mi

∣∣∣∣
mi

. l RNS products and (l − 1) RNS additions

10: zi ←−
∣∣∣∣zi − ∣∣∣|α ·M |p∣∣∣

mi

∣∣∣∣
mi

. 1 RNS subtraction

11: end for
12: return Z = (z1, . . . , zl)

3.4.2.1. Montgomery modular reduction

Another strategy to compute a modular reduction by a n-word prime number p, consist in
use the adaptation of Montgomery reduction presented in Equation (3.5) to RNS arithmetic
proposed by Posch [142] and analyzed in [108]. This adaptation requires to handle two
distinct RNS-basis B = {m1,m2, . . .ml} and B′ = {m′1,m′2, . . .m′l} such that gcd(M,M ′) =

Cinvestav 48

3.5. FINITE FIELD ARITHMETIC

gcd(M,p) = 1, where l = n, M =
∏l
i=1mi and M ′ =

∏l
i=1m

′
i. In addition, the constants

used in the Montgomery reduction Equation (3.5) must be redefined in order to use the RNS
arithmetic, thus R = M is used instead of R = rn and µ now is a vector that corresponds to
the RNS representation of −p−1 mod R in base B.

In the same manner that for the Montgomery reduction presented in Equation (3.5), in the
RNS version of Montgomery is also possible to use the method introduced by Walter in [163]
to avoid the required conditional subtraction. In this case, a redundant representation of
the elements in Montgomery’s representation is achieved by choosing a Montgomery radix
such that 4p < R and a RNS-basis B′ such that 2p < M ′ as is noted in [107, 108]. And also,
at the end of the whole computations the result can be normalized at the cost of a single
subtraction.

The procedure to compute the Montgomery modular reduction in RNS is presented in
Algorithm 8. We can observe from it, that the multiplication DB by µ is carried out in base
B in Step 5, therefore, the modulo R is automatically applied to the computation and the
result is equivalent to compute µ · d mod R of Equation (3.5). After that, in Step 11 the
value equivalent to d + (µ · d mod R) · p from Equation (3.5) is computed. This operation
is performed in base B′ because its result is always a multiple of R and thus is always 0 in
base B. Finally, in Step 12 the division by R is computed, which corresponds to the RNS
representation of d ·R−1 mod p in base B′. This computation is performed in base B′, since
the value M−1 does not exist in base B. Through the algorithm it is necessary to perform
two base extensions, which consist in transforming a number in either base B or base B′
into a number in base B ∪ B′. The first base extension (Steps 6 to 10) is made to derive an
approximation δ from the value of γ in Step 5, that allows to compute the value (d+ (µ · d
mod R) · p)/R in base B′. The second base extension (Steps 13 to 17) is performed at the
end of the algorithm, in order to obtain the RNS representation of the result computed in
Step 12 in base B. As can be seen, modular arithmetic based on RNS Montgomery modular
reduction requires that all the operations should be performed in both RNS-basis B and B′
to maintain compatibility with the reduction algorithm.

3.5. Finite field arithmetic

From the fact that the ring Z/pZ of residue classes of integers modulo a prime number
p is a field (Theorem §2.10), which is denoted as Fp. We can represent the residue class
[a]p ∈ Z/pZ by the unique integer a in the interval [0, p − 1], that is in the residue class of
[a]p. From now on, we will say that such integer a belongs to Fp. Although depending on
our purposes, some times we will also use an incompletely reduced integer to represent the
residue class [a]p, which is not uniquely determined since it belongs to an interval of length
greater than p.

In the following, we detail how the operations over elements in a finite field can be fast
and securely implemented.

3.5.1. Addition and subtraction

The operations in finite fields of addition and subtraction can be computed combining
Algorithms 1 and 2 for integer addition and subtraction. For example, given two n-word
elements a, b ∈ Fp, the addition in the finite field is computed using Algorithm 1 to obtain
the value c = a + b < 2p, at the end if the resultant value is greater than p we use the
Algorithm 2 to compute c − p in order to obtain a result in the interval [0, p − 1]. On the
other hand, the finite field subtraction of a and b is computed using Algorithm 2 to obtain
c = a − b, which can be less than 0. In this case we use Algorithm 1 to compute c + p in
order to obtain the subtraction in the interval [0, p− 1].

Cinvestav 49

CHAPTER 3. INTEGER AND FINITE FIELD ARITHMETIC

Algorithm 8 RNS Montgomery Modular Reduction [108].

Input: The RNS vectors DB and DB′ , the l-moduli RNS-basis B and B′, a prime p.
Output: The RNS vectors ZB and ZB′ that corresponds to the integer representation of

z ≡ d mod p.

Precomputation:

1: RNS vectors
∣∣M−1

i

∣∣
mi

,
∣∣∣M ′−1

i

∣∣∣
m′i

,
∣∣M−1

∣∣
m′i

and |p|m′i for i ∈ {1, . . . , l}

2: Matrices of vectors |Mi|m′j and |M ′i |mj
for i, j ∈ {1, . . . , l}

3: Tables of RNS vectors |α · (−M)|m′i and |α · (−M ′)|mi
for α, i ∈ {1, . . . , l}

Computation:
4: for each processing unit i do
5: γi ←−

∣∣DBi · |µi|mi

∣∣
mi

. 1 RNS product

6: θi ←−
∣∣∣γi · ∣∣M−1

i

∣∣
mi

∣∣∣
mi

. 1 RNS product

7: end for

8: α←−

∑l
j=1

⌊
θj

2w−σ

⌋
2σ

 . Addition of l σ-bit terms

9: for each processing unit i do

10: δi ←−
∣∣∣∣∑l

j=1

∣∣∣|Mi|m′j · θj
∣∣∣
m′i

+ |α(−M)|m′i

∣∣∣∣
m′i

. l RNS products and l RNS

additions
11: γi ←−

∣∣∣DB′i +
(
δi · |p|m′i

)∣∣∣
m′i

. 1 RNS product and 1 RNS addition

12: ZB′i ←−
∣∣∣γi · ∣∣M−1

∣∣
m′i

∣∣∣
m′i

. 1 RNS product and 1 RNS addition

13: θi ←−
∣∣∣∣ZB′i · ∣∣∣M ′−1

i

∣∣∣
m′i

∣∣∣∣
m′i

. 1 RNS product

14: end for

15: α←−

∑l
j=1

⌊
θj

2w−σ

⌋
2σ

+ 0.5

 . Addition of l σ-bit terms

16: for each processing unit i do

17: ZBi ←−
∣∣∣∣∑l

j=1

∣∣∣|M ′i |mj
· θj
∣∣∣
mi

+ |α(−M ′)|mi

∣∣∣∣
mi

. l RNS products and l RNS

additions
18: end for
19: return ZB and ZB′

Cinvestav 50

3.5. FINITE FIELD ARITHMETIC

As can be seen in the above described procedures, it results necessary to compute a
conditional addition or subtraction in order to obtain the field addition or field subtraction,
respectively. However, given that these conditional operations could allow some side channel
attacks, it is desirable to implement them in constant time in order to prevent such attacks.
In Algorithm 9 and 10 we shown how these field operations can be securely performed.

Algorithm 9 Finite field addition

Input: The elements a, b ∈ Fp and the n-word prime number p.
Output: The element c ∈ Fp such that c = a+ b.

1: c′ ← IntegerAddition(a, b) . Algorithm 1
2: c′ ← IntegerSubtraction(c′, p) . Algorithm 2
3: for i = 0 to n− 1 do
4: d← pi & c′n
5: end for
6: c← IntegerAddition(c′, d) . Algorithm 1
7: return c

Algorithm 10 Finite field subtraction

Input: The elements a, b ∈ Fp and the n-word prime number p.
Output: The element c ∈ Fp such that c = a− b.

1: c′ ← IntegerSubtraction(a, b) . Algorithm 2
2: for i = 0 to n− 1 do
3: d← pi & c′n
4: end for
5: c← IntegerAddition(c′, d) . Algorithm 1
6: return c

The field addition presented in Algorithm 9 can be implemented at a cost of 2(n +
1) word additions, (n + 1) word subtractions and n logical ANDs instructions. While, the
implementation of the field subtraction in Algorithm 10 can have a cost of (n + 1) word
additions, (n+ 1) word subtractions and n logical ANDs instructions.On the other hand, the
non-constant time version of these operations can be implemented at a cost of (n+ 1) word
additions and (n+ 1) word subtractions each one.

It is worth mentioning that, Montgomery based arithmetic is also compatible with these
algorithms for finite field addition and subtraction. However, given that the elements ã and
b̃, that correspond to the Montgomery representation of a, b ∈ Fp, are upper-bounded by 2p
when it is desirable to avoid the conditional subtraction in the REDC algorithm. Then, it is
necessary to subtract or add the value 2p instead of p, in order to obtain the results of the
field addition or subtraction in the interval [0, 2p− 1].

3.5.2. Multiplication and squaring

There exist two different methods to compute the field multiplication, by performing
the multiplication and reduction in a interleaved way [42, Algorithm, 11.1 and 11.3], or
performing the integer multiplication and the modular reduction in two separated steps. In
this thesis, we used the last method because it allows us to employ the best algorithms for
both integer multiplication/squaring and modular reduction (explained in previous sections)
in order to get a better performance.

The field multiplication and squaring can be straightforward implemented. This because,
we can use the strategies described in §3.3.2 and §3.3.3 to compute the integer multiplication

Cinvestav 51

CHAPTER 3. INTEGER AND FINITE FIELD ARITHMETIC

and squaring, respectively. Followed by the Barrett modular reduction or the Montgomery
modular reduction, as can be seen in Algorithm 11 and Algorithm 12.

Algorithm 11 Finite field multiplication

Input: The elements a, b ∈ Fp and the n-word prime number p.
Output: The element c ∈ Fp such that c = a · b.

1: c′ ← IntegerMultiplication(a, b)
2: c← ModularReduction(c′, p) . Algorithm 6 or Algorithm 5
3: return c

Algorithm 12 Finite field multiplication

Input: The element a ∈ Fp and the n-word prime number p.
Output: The element c ∈ Fp such that c = a2.

1: c′ ← IntegerSquaring(a)
2: c← ModularReduction(c′, p) . Algorithm 6 or Algorithm 5
3: return c

3.5.3. Exponentiation

There are differents methods to compute the modular exponentiation c = ae mod p,
which depend on the nature of the base a ∈ Fp and the integer exponent e. When these two
values vary from one computation to another, an intuitive method to perform the exponen-
tiation is to scan the bits of the exponent e either from left to right or from right to left.
Where, at each step we perform a squaring and, depending on the scanned bit value, we per-
form a subsequent multiplication. This binary method requires k− 1 squarings and 1

2 (k− 1)
multiplications in average, for a k-bit exponent e with its most significant bit equal to one.
However, there are methods that tend to decrease the number of multiplications, leading to a
considerable speedup in the exponentiation computation at a cost of some pre-computations.
These methods consist of slicing the binary representation of e into pieces using a window of
length ω and to process the windows one by one. For instance, in the 2ω-method [42] it is
necessary to pre-compute the values ai for i in the interval [0, 2ω − 1], thus the cost of this
method is k−ω squarings,

(
k
ω − 1

) (
1− 1

2ω

)
multiplications1 and 2ω−2 multiplications from

pre-computations. A further improvement to the 2ω-method is the strategy known as the
sliding windows method [32], that allows nonzero windows of variable length with the aim
of increase the occurrence of zero windows, which implies to decrease even more the number
of multiplications. Besides, given that the nonzero windows are formed in such way that
correspond to odd integers, the pre-computed values needed for exponentiation are reduced
a half.

Nevertheless, for the methods described above it can be possible to retrieve each bit
(or some useful information) of the exponent from the exponentiation computation. This
has serious consequences when the exponent is some secret key. A well known method for
efficiently performing this exponentiation is by considering a variant of the fixed-window
exponentiation method, which first produces a regular recoding of the exponent. This re-
coding is performed using the unsigned recoding proposed by Joye and Tunstall in [101] and
shown in Algorithm 13. Given a k-bit exponent the recoding provides an encoding of length
n =

⌈
k
ω

⌉
+ 1 whose digits belong to the set {1, 2, . . . , 2ω}, where ω is the window size used

for the recoding.

1The factor
(
1− 1

2ω

)
corresponds to the probability that the processed windows be different than zero.

Cinvestav 52

3.5. FINITE FIELD ARITHMETIC

Algorithm 13 Unsigned exponent regular recoding [101]

Input: A k-bit exponent e, window size ω.
Output: f = (fn−1, . . . , f0) with fi ∈ {1, 2, . . . , 2ω} for 0 ≤ i < n.

1: i← 0 j ← 1
2: while e ≥ 2ω + 1 do
3: d← e mod 2ω

4: d′ ← d+ j + 2ω − 2
5: fi ← (d′ mod 2ω) + 1
6: j ← bd′/2ωc
7: e← be/2ωc
8: i← i+ 1
9: end while

10: fi ← e+ j − 1
11: return f

Algorithm 13 allows us to perform a regular modular exponentiation, which can prevent
timing side-channel attacks. However, given that the windowed exponentiation algorithms
require to access to a pre-computation table, it is necessary to implement a mechanism that
protects this access. Since, a naive implementation of the access to the pre-computation table
could produce a RSA signature vulnerable to cache side-channel attacks. In order to prevent
this kind of attacks, whenever the pre-computed table is accessed we perform a linear pass
memory access as a protective counter-measure [139]. This technique consists of traversing
the entire pre-computing table every time that a certain position is accessed. In this way,
we prevent that accesses to memory have a different running time, due to the cache miss or
cache hits. The protected modular exponentiation that computes y = xe mod p is shown in
Algorithm 14. This algorithm in average has a cost of

⌊
k
ω

⌋
modular multiplications and k−1

modular squarings.

Algorithm 14 Protected fixed-window modular exponentiation

Input: The k-bit integers x, e and p, and the window size ω.
Output: A k-bit integer y such that y = xe mod p.

Precomputation:
1: Recode e using Algorithm 13 to obtain the encode f of length n =

⌈
k
ω

⌉
+ 1.

2: Compute Γ[i]← xi mod p for i ∈ {0, . . . , 2ω}
Computation:

3: y ← Perform a linear pass to recover Γ[fn−1]
4: for i = n− 2 down to 0 do
5: y ← y2ω

6: z ← Perform a linear pass to recover Γ[fi]
7: y ← y · z
8: end for
9: return y

Cinvestav 53

CHAPTER 3. INTEGER AND FINITE FIELD ARITHMETIC

Cinvestav 54

Chapter 4
Protected implementation of RSA

signature algorithm

Proposed by Ron Rivest, Adi Shamir, and Len Adleman in 1978 [143], RSA has become
the most deployed public key cryptosystem in practical applications. An intensively used
security application of RSA is the signing and verification of digital certificates. However,
RSA is a relatively slow algorithm and therefore it must be carefully implemented to become
competitive in terms of timing performance and memory usage. On the top of that, the
computation of RSA main primitives, quite especially its modular exponentiation, must
be run in constant-time. This feature presents a first line of defense against side-channel
attacks [113].

In this section we focused on the efficient and secure implementation of the RSA signature
algorithm using CPU and GPU platforms. First, we present the signature algorithm and the
size of the keys used to implement it at different security levels. Finally, we compare two
approaches to implement the modular arithmetic; using the Montgomery based arithmetic
described in §3.3 and the RNS based arithmetic described in §3.4.

4.1. RSA signature scheme

The most used public key cryptosystem is RSA [143], which is generally used for digital
signing of documents in day-to-day Internet applications. This intensive usage is mainly
due to a large number of Internet certificates verified with RSA public keys, moreover, most
certificate authorities only issue RSA certificates. Currently, RSA key exchange is used in
most popular communication protocols like the Transport Layer Security (TLS) [56]. The
RSA cryptosystem consists of three main algorithms.

Key generation algorithm: given a security parameter it produces the public and
private keys by constructing a 2k-bit modulo N = p · q, where p, q are two k-bit prime
numbers. The RSA public key is the tuple composed by the modulus N and the public
exponent e, which is generally chosen as e = 216 + 1. The RSA private exponent is defined
as, d = e−1 mod φ(N), where φ(·) stands for the Euler’s totient function.

Signature algorithm: given the RSA private key (d,N) and a message m, the Full
Domain Hash (FDH) signature s of m is computed as s = H(m)d mod N , where H(·)
represents a hash function that maps m to ZN . It has been shown that the FDH RSA
signature is provably secure [45]. A standard trick to compute the signature s is to use the
Chinese Remainder Theorem, which allows us to compute a 2k-bit RSA exponentiation using

55

CHAPTER 4. PROTECTED IMPLEMENTATION OF RSA SIGNATURE
ALGORITHM

two independent k-bit modular exponentiations that can be computed concurrently. This
standard trick is shown in Algorithm 15.

Verification algorithm: knowing the public key (e,N) and a signature s of some
message m, this algorithm consists in verifying that H(m) and se mod N are equal.

Algorithm 15 RSA signature using CRT

Input: A private key {N = p · q, d}, qinv = q−1 mod p and h = H(m).
Output: The signature s of the message m.

1: s1 = hd mod (p−1) mod p
2: s2 = hd mod (q−1) mod q
3: t = qinv · (s1 − s2) mod p
4: s = s2 + t · q
5: return s

Through this section, we use two different approaches to compute the modular arithmetic
required for the implementation of the RSA signature algorithm. These approaches are
the Montgomery’s representation based arithmetic presented in §3.3.4.1 and the arithmetic
based on the Residue Number System described in §3.4. In both methods, we use a 2k-
bit RSA modulo N which is computed as N = p · q, where p and q are distinct k-bit
prime numbers. Nevertheless, given that RSA exponentiation modulo N can be computed
using two independent k-bit exponentiations modulo p and q, respectively. We focus on the
computation of a = be mod p, where the numbers a, b and p we assume that have a bit-length
of k bits.

4.1.1. Security

Although breaking RSA is not known to be equivalent to factoring the RSA modulus, it
is common to approximate the RSA security according to the complexity of the best known
algorithm for integer factorization. From the latest results of state-of-the-art integer factor-
ization algorithms, it is believed that RSA-1024 offers (much) less than 80 bits of security [5].
Therefore, the National Institute of Standards and Technology (NIST) recommended in [11]
the usage of the following RSA modulus sizes.

RSA modulus size in bits Bits of security Term
1024 80 until 2010
2048 112 until 2030
3072 128 from 2030

Table 4.1: Security levels for RSA cryptosystem.

Hence, in order to perform an urgently needed migration to higher levels of security, it
would be required to achieve highly-optimized implementations of the RSA cryptosystem
and its associated building blocks, so that the key exchange operation as well as the signing
and signature verification of documents can be executed at a speed that is able to cope with
Internet’s high-volume data exchange.

4.2. Efficient implementation on CPU platforms

In this section we describe how the RSA signature algorithm can be efficiently imple-
mented in CPU platforms. Particularly, we focus in the relatively newest Haswell and Skylake

Cinvestav 56

4.2. EFFICIENT IMPLEMENTATION ON CPU PLATFORMS

Intel micro-architectures. For this purpose, we present how Montgomery based arithmetic
can be implemented, taking advantage of the instructions specially developed for arithmetic
over large integers. Besides, we present a comparison between the RNS arithmetic based on
the reduction Algorithm 7 and the reduction Algorithm 8, and we also shown how this RNS
arithmetic can be efficiently implemented benefiting from the set of instructions AVX2.

4.2.1. Montgomery based arithmetic

With the aim of efficiently compute the integer multiplication, squaring and the opera-
tions required by the Montgomery’s reduction, we take advantage of the instruction MULX and
the set of instructions ADX described in §3.2 following the techniques explained in previous
sections.

4.2.1.1. Integer multiplication

Given that our target architectures permit to use up to 15 general purpose registers for
the computations, it is possible to perform up to one 8-word multiplication maintaining
all the partial results in registers. This is because, during the computation we need three
registers for the operands and the output, one register for the implicit operand of MULX,
two accumulators, and nine registers for storing the partial result of the multiplication of
the multiplicand operand by a word of the multiplier. This fact, allows us to perform an
Schoolbook integer multiplication that outperforms the Karatsuba ones when the operands
have a word-size 0 < n ≤ 8, as shown Table 4.2.

n
MULX Clock cycles

Karatsuba Schoolbook
Karatsuba Schoolbook
HW SK HW SK

2 3 4 20 14 12 8
3 9 9 28 28 20 16
4 12 16 60 43 32 24
6 27 36 112 87 84 48
8 48 64 196 137 184 87

12 121 - 400 278 - -
16 209 - 692 419 - -
24 376 - 1328 960 - -

Table 4.2: Comparison of timings for integer multiplication using Karatsuba and
Schoolbook method. The timings are reported in number of word multiplications (using

MULX instructions) and clock cycles measured on a Haswell(HW) and Skylake(SK)
micro-architectures.

On the other hand, an n-word multiplication when n > 8 is computed using the Karatsuba
multiplication method [105]. This method was recursively used to compute n-word multi-
plications for n ∈ {16, 24}. For the 16-word multiplication we applied one Karatsuba level
(for going from 16- to 8-word multiplications). Analogously, for an 24-word multiplication
we utilized two Karatsuba levels (for going from 24 to 12, then to 6-word multiplications).
The results obtained from the Karatsuba approach are also presented in Table 4.2.

4.2.1.2. Comparison with other approach

In 2015, Michael Scott in [151] realized the study and implementation of a Karatsuba
variant proposed by Weimerskirch and Paar [166], which is used for multiplication of arbi-

Cinvestav 57

CHAPTER 4. PROTECTED IMPLEMENTATION OF RSA SIGNATURE
ALGORITHM

trary degree polynomials, that means, polynomials without a power of 2 degree. Scott used
such method known as Arbitrary degree Karatsuba (ADK) in the reduced-radix scenario,
where a number is represented using a word size lower than the one belonging to the target
processor. This method has the advantage that the partial products can be accumulated
without worrying about the carries.

We implemented this strategy using a word size of r = 262 bits, which was proposed
by the author. A comparison of the results of our implementation of this strategy against
the results obtained using our proposed combination of Karatsuba and Schoolbook method
is reported in Table 4.3. In it we can observe that our proposed method achieves better
performance than the reported by Scott for the n-word multiplications used in this work.

n-word multiplication
Clock cycles

Scott [151] Our method
HW SK HW SK

2 × 2 36 38 12 8
3 × 3 56 58 20 16
4 × 4 76 77 32 24
6 × 6 128 119 84 48
8 × 8 228 189 184 87

12 × 12 376 312 400 278
16 × 16 600 503 692 419
24 × 24 1224 1006 1328 960

Table 4.3: Comparison of timings for integer multiplication using Scott strategy [151]
against Karatsuba-Schoolbook method. The timings are reported in clock cycles measured

on a Haswell (HW) and Skylake (SK) micro-architectures.

4.2.1.3. Integer squaring

We used the Schoolbook method with the operand-scanning strategy described in §3.3.3
for n-word multiplications when n < 6. While, for the squaring computation of operands
with a word-size n ≥ 6 we used a variant of the Karatsuba method that takes advantage of
the repeated products.

The implementation of an n-word squaring for n = 24 was conducted using three Karat-
suba levels (for going from 24- to 12-, then to 6-word and finally 3-word multiplication-
s/squarings), which requires to compute eighteen squaring and nine multiplications of 3-
words operands; the squaring of operands with word-size n = 12 was performed using two
Karatsuba levels (for going from 16- to 8- and then to 4-word multiplications/squarings),
with a cost of six squarings and three multiplications of 4-word operands; and for the 8-word
squaring we occupied one Karatsuba level (for going from 8- to 4-word multiplications/squar-
ings) using two squarings and one multiplication of 4-word operands.

According to our experiments, we observed that for squaring computation of up to 4-word
operands a better performance is obtained using the Schoolbook method, and for operands
with a word-size n ≥ 6 the best approach is to use the Karatsuba method. This results can
be observed in Table 4.4.

4.2.1.4. Montgomery modular reduction

The computation of the modular reduction presented in Equation (3.5) requires to com-
pute two n-word multiplications, which are divided or reduced modulo R = rn. A straight-
forward optimization can be applied observing that for the multiplication µ · c′ mod R is

Cinvestav 58

4.2. EFFICIENT IMPLEMENTATION ON CPU PLATFORMS

n
Word muls Clock cycles

Karatsuba Schoolbook
Karatsuba Schoolbook
HW SK HW SK

2 3 3 8 6 8 6
3 6 6 20 14 20 14
4 10 10 29 26 28 23
6 21 21 60 55 60 51

8 36 - 123 109 - -
12 57 - 274 194 - -
16 100 - 511 331 - -
24 235 - 1024 713 - -

Table 4.4: Timings of integer squaring using the Schoolbook and the Karatsuba methods.
The timings are reported in number of word multiplications (using MUX instructions) and

clock cycles measured on a Haswell (HW) and Skylake (SK) micro-architectures.

only necessary to compute the least significant half of the result; and for (µ · c′ mod R) · p
only the most significant half of the product is needed because it is divided by R.

In the same manner that for integer multiplication, these operations were performed
using the Schoolbook multiplication method for the cases when n ≤ 8. Thus, an n-word
multiplication divided by R is computed using n(n+ 1)/2 + n word multiplications; and an
n-word multiplication modulo R is computed using n(n+ 1)/2 word multiplications. On the
other hand, for the cases when n > 8 we used up to two levels of the Karatsuba method,
however, in each level it is necessary to compute one n/2-word multiplication and two half
n/2-word multiplications as shown in Figure 4.1.

×
a0

b0

a1

b1

a0 × b0
a1 × b0
a0 × b1

a1 × b1

(a× b) mod R

(a)

×
a0

b0

a1

b1

a0 × b0
a1 × b0
a0 × b1

a1 × b1

(a× b)/R

(b)

Figure 4.1: Given two n-word integers a and b written as a = a0 + a1 · rn/2 and
b = b0 + b1 · rn/2, respectively. The figure (a) shown a Karatsuba n-word multiplication
modulo R, and figure (b) shown a Karatsuba n-word multiplication divided by R. The

dashed rectangles shown the operations that are not computed.

Following the strategies described above, we implemented the Montgomery modular re-
duction, thus as the modular multiplication and squaring. In Table 4.5 we present the
associated cost to perform these operations.

Cinvestav 59

CHAPTER 4. PROTECTED IMPLEMENTATION OF RSA SIGNATURE
ALGORITHM

Algorithm
Clock cycles

8-word 16-word 24-word
HW SK HW SK HW SK

Montgomery reduction 232 224 900 728 1864 1582
Modular multiplication 424 349 1628 1233 3132 2688

Modular squaring 420 338 1500 1131 2820 2395

Table 4.5: Timings for modular reduction, modular multiplication and modular squaring.
The timings are reported in clock cycles measured on Haswell (HW) and Skylake (SK)

micro-architectures.

4.2.1.5. Montgomery based RSA signature

The RSA signature show in Algorithm 15 was performed using Montgomery based arith-
metic. We computed the RSA modular exponentiations using the protected exponentiation
method shown in Algorithm 14 and also were computed concurrently using the OpenMP
library. The 8-word modular exponentiations for RSA-1024 were performed using a window
size ω = 4, and for the 16- and 24-word modular exponentiations we employed a window size
of ω = 5 for RSA-2048 and RSA-3072, respectively.

In Table 4.6 we report the latency achieved by our library for RSA signatures using 1024-,
2048, and 3072-bit keys. In the table we can see a comparison of our results against related
works previously reported in the open literature on CPU platforms. Particularly, we compare
our work with the presented by Bos et al. in [26] where the Montgomery multiplication is
computed by splitting the Montgomery algorithm into two parts, which can be executed in
parallel using the SIMD instructions. The authors in the same work, present their obtained
results for an RSA signature using a serial implementation. We also compare with the
work of Gueron and Krasnov [81] where they reported an RSA implementation that benefits
from the redundant integer representation that avoids the carry propagation in the addition
computations, using operands composed by digits of 29-bit words each one. In both works,
the authors do not mention that its implementation is completely protected against side
channel attacks.

Work
Clock cycles (Millions)

P
RSA-1024 RSA-2048 RSA-3072

Bos [26]1 (SSE) 2.09 12.21 - 7
Bos [26]1 0.88 4.92 - 7

Gueron [81]3 - 2.1 9.6 7
Gueron [81]4 - 1.9 6.0 7
This work3 0.29 1.92 5.93 3
This work4 0.25 1.65 5.02 3

1Sandy Bridge, 2 Ivy Bridge, 3 Haswell, 4 Skylake

P = Protected Implementation.

Table 4.6: Performance comparison of RSA signature implemented in CPU platforms
using Montgomery based arithmetic.

Cinvestav 60

4.2. EFFICIENT IMPLEMENTATION ON CPU PLATFORMS

4.2.2. RNS based arithmetic

In order to perform an efficient implementation of the RNS based arithmetic presented
in §3.4, we took advantage of the AVX2 instruction set introduced in §3.2.1. Due that,
multiplication in the AVX2 instruction set is defined for 32-bit integers we use a word size
w = 32, and therefore, numbers are represented in radix r = 2w. In this way, the operations
used in RSA signature with 1024-, 2048- and 3072-bit keys must be computed using integers
with a word-size n ∈ {16, 32, 48}. On the other hand, depending of the used RNS modular
reduction algorithm (see §3.4), we need to use a different size for the RNS-basis. For instance,
when the RNS reduction Algorithm 7 is applied we used an RNS-basis of size l = 2n+3, and
if the RNS reduction Algorithm 8 is employed we used two RNS-basis of size l = n. Given two
n-word integers a and b in their RNS representation A and B in base B = {m1, . . . ,ml} (or
in base B = {m1, . . . ,ml} and B′ = {m′1, . . . ,m′l} if the reduction Algorithm 8 is used). The
implementation of the main operations in the RNS based arithmetic, which takes advantage
of the AVX2 instructions described in §3.4, is presented in the following sections.

4.2.2.1. Main operations in RNS representation

Operations of addition, subtraction, and multiplication of two integers a and b in RNS
representation are performed in component-wise as shown Equation (3.10). In the remainder
of this section we present how these operations can be implemented using the above described
AVX2 instructions. Considering our target micro-architectures, we can compute up to eight
operations modulo mi simultaneously, therefore, all the computations described below must
be performed for each vector used to store the RNS-basis B, i.e. for the

⌈
l
8

⌉
vectors.

Multiplication and squaring in RNS are the most complicated operations, because the
AVX2 instruction mm256 mul epu32 only computes four 32 × 32-bit multiplications. Hence,
in order to compute the component-wise integer multiplication of the RNS vectors A and
B, we use the mm256 mul epu32 instruction to calculate the products of the of odd indexes,
that are stored in a vector D0. Then, we employ the instruction mm256 shuffle epi32 to
reorder the 32-bit values in the A and B vector registers to compute the products of the even
indexes, which are stored in vector D1 as shown in Figure 4.2.

mul

D0

a1

b1

a2

b2

a3

b3

a4

b4

a5

b5

a6

b6

a7

b7

a8

b8

a1 × b1a3 × b3a5 × b5a7 × b7

mul shuffle

D1

a2

b2

a1

b1

a4

b4

a3

b3

a6

b6

a5

b5

a8

b8

a7

b7

a2 × b2a4 × b4a6 × b6a8 × b8

Figure 4.2: Component-wise integer multiplication of two integers a and b in RNS
representation.

The modular reduction by each mi = 2w − µi in B is computed as it was described
in §3.4.1.1. Given the two vectors D0 and D1 computed as in Figure 4.2 and the vector M
composed by the µi small values chosen in §3.4.1.1. First, we used the mm256 shuffle epi32

instruction to reorder the 32-bit values in the D0, D1 and M vectors. Then, we apply the
instruction mm256 mul epu32 to obtain the values µi ·bti/2wc with ti = ai ·bi, which are stored
in the vectors E0 and E1. After, we apply the mm256 srli epi32 instruction to E0 and E1

using an offset of 32 to get the vectors F0 and F1, which are added using mm256 add epi64 to
D0 and D1 to obtain the values di = ti mod 2w+µi · bti/2wc. Finally, after two executions of
the above procedure these di values stored in D0 and D1 correspond to ti mod mi. Therefore,
it is necessary to mix the final vectors D0 and D1 to get the vector D that stores the values
of A⊗B. This procedure is shown in the bottom of Figure 4.3.

On the other hand, addition and subtraction can be straightforward implemented using
the vector operations included in the AVX2 instruction set. Initially, we compute the integer

Cinvestav 61

CHAPTER 4. PROTECTED IMPLEMENTATION OF RSA SIGNATURE
ALGORITHM

shuffle

mul

srli

add64

xor

A⊗B

slli0

f02
f12

d02 d12

µ2

d11

0 0

d01
d11

µ1

0

f04
f14

d04
d14

µ4

d13

0 0

d03
d13

µ3

0

f06
f16

d06
d16

µ6

d15

0 0

d05
d15

µ5

0

f08
f18

d08
d18

µ8

d17

0 0

d07
d17

µ7

d01

µ1

e01

e01

d01

d1

e11

e11

d11

0

µ2

e02

e02

d02

d2

e12

e12

d12

d03

µ3

e03

e03

d03

d3

e13

e13

d13

0

µ4

e04

e04

d04

d4

e14

e14

d14

d05

µ5

e05

e05

d05

d5

e15

e15

d15

0

µ6

e06

e06

d06

d6

e16

e16

d16

d07

µ7

e07

e07

d07

d7

e17

e17

d17

0

µ8

e08

e08

d08

d8

e18

e18

d18

Figure 4.3: RNS multiplication/squaring using AVX2 instructions.

addition or subtraction with the mm256 add epi32 or mm256 sub epi32 instructions, which
is stored in a vector C. Then, the modular reduction by each moduli mi in the base B can be
computed in constant time as follows: using the mm256 cmpgt epi32 instruction we catch the
carry or borrow produced by the integer addition or subtraction, that is stored in a vector
CB; then, with the instruction mm256 and si256 we compute the logic AND of CB and the
vectorM of moduli mi, whose reult is stored in a vector D; finally, the vector D is subtracted
or added to the value obtained from the above addition or subtraction, respectively. The
computation of C = A⊕B and C = A	B is shown Figure 4.4.

add/sub

cmpgt

and

sub/add

A⊕B/A	B

a1

b1

c1

cb1

m1

d1

c1

d1

c1

a2

b2

c2

cb2

m2

d2

c2

d2

c2

a3

b3

c3

cb3

m3

d3

c3

d3

c3

a4

b4

c4

cb4

m4

d4

c4

d4

c4

a5

b5

c5

cb5

m5

d5

c5

d5

c5

a6

b6

c6

cb6

m6

d6

c6

d6

c6

a7

b7

c7

cb7

m7

d7

c7

d7

c7

a8

b8

c8

cb8

m8

d8

c8

d8

c8

Figure 4.4: RNS addition/subtraction using AVX2 instructions.

Cinvestav 62

4.2. EFFICIENT IMPLEMENTATION ON CPU PLATFORMS

4.2.2.2. RNS modular reduction

Modular reduction was performed using Algorithm 7 as was proposed by Jeljeli [97] and
Algorithm 8 as was described by Kawamura [108]. In both algorithms it is necessary to
compute the approximation α̂ presented in Equation (3.12), which was computed following
the Remark 3.2. In order to compute α̂, for each vector employed to store Γ = (γ1, . . . , γl)
(see Remark 3.2) we compute an mm256 srli epi32 instruction with offsets of 5 for RSA-
1024 and 25 for RSA-2048 and RSA-3072, when Algorithm 7 is used; and with offsets of
18 for RSA-1024 and RSA2048, and 16 for RSA-3072 when Algorithm 8 is used. After
that, we apply to each vector the mm256 slli epi32 instruction using offsets that allow to
maintain the subsequent additions in the interval [0, 232−1]. For instance, when Algorithm 7
is used the offsets are 19 for RSA-1024, and 17 for RSA-2048 and RSA-3072; and when
Algorithm 8 is employed the offsets are 14, 10 and 8 for RSA with 1024-, 2048- and 3072-bit
keys respectively. Finally, all vectors are added using mm256 add epi32 instructions, and the
values of the resultant vector are also added in order to obtain a 32-bit value that is shifted
to the right by an offset of 24.

The multiplications of matrix-vector needed in both algorithms can be performed using
l RNS multiplications followed by l − 1 RNS additions, as shown in §3.4. The matrix mul-
tiplication in Step 9 of Algorithm 7 can be done in straightforward. However, the matrix
multiplications in Steps 10 and 13 in Algorithm 8 require to transpose the matrices |Mi|m′j
and |M ′i |mj

. The results of the implementation of both algorithms are presented in Table 4.7.

We can observe that the Montgomery reduction in RNS version is two times faster than the
Jeljeli’s RNS reduction. This is due mainly to the fact that for the RNS Montgomery re-
duction the basis used to represent the numbers are of size n, while the base used in Jeljeli’s
RNS reduction has a size of 2n+ 3.

Algorithm
Clock cycles

8-word 16-word 24-word
HW SK HW SK HW SK

Algorithm 7 3,322 2,943 11,862 10,059 26,046 22,420
Modular mult 3,522 3,039 12,066 10,332 27,450 22,627
Modular sqr 3,402 3,008 12,050 10,270 26.314 22,589

Algorithm 8 1,434 1,330 4,902 4,012 12,042 10,571
Modular mult 1,498 1,385 5,074 4,131 12,350 10,776
Modular sqr 1,494 1,382 5,066 4,123 12,206 10,750

Table 4.7: Comparison of timings for modular reduction, modular multiplication and
modular squaring based on Algorithm 7 and Algorithm 8 using the AVX2 instructions. All

timings are reported in clock cycles measured on Haswell (HW) and Skylake (SK)
micro-architectures.

4.2.2.3. RNS based RSA signature

We perform the RSA signature using two different approaches: an arithmetic based on the
reduction proposed by Jeljeli [97]; and an arithmetic based on Montgomery as was introduced
by Kawuamura [108]. As before, we computed the RSA modular exponentiations using the
protected exponentiation method shown in Algorithm 14 concurrently using the OpenMP
library. The modular exponentiations for RSA-1024 were performed using a window size
ω = 4, and for modular exponentiations used in RSA-2048 and RSA-3072 we employed a
window size of ω = 5. In Table 4.8, we report the latency achieved by our library when

Cinvestav 63

CHAPTER 4. PROTECTED IMPLEMENTATION OF RSA SIGNATURE
ALGORITHM

RSA signatures for 1024-, 2048, and 3072-bit keys are implemented. We can observe that
RSA signature based on RNS Montgomery arithmetic is two times faster than RSA signature
based on Jeljelis RNS reduction. Besides, the best results in Table 4.8 are slower by a factor
of 0.2x, 3.1x and 3.9x than our best results reported in Table 4.6 for RSA-1024, RSA-2048
and RSA-3072.

RNS reduction
Clock cycles (Millions)

PRSA-1024 RSA-2048 RSA-3072
algorithm HW SK HW SK HW SK
Jeljeli [97] 2.3 2.0 15.1 12.9 48.7 41.9 3

Montgomery [108] 0.99 0.90 6.3 5.1 22.5 19.8 3

P = Protected Implementation.

Table 4.8: Timings for RSA signature algorithm using AVX2 instructions. The timings
are reported in millions of clock cycles measured on Haswell (HW) and Skylake (SK)

micro-architectures.

4.3. Efficient implementation on GPU platforms

Graphic Processing Units (GPU) are massively parallel processors consisting of hundreds
or even thousands of cores. This contrasts with contemporary general purpose CPUs, which
can only host at most tens of cores. It is then conceivable that taking advantage of the
massively parallel architecture of the GPUs, one can speed up several computations where
high computing power is required. A chief example of this, is the efficient implementation of
cryptographic applications.

In 2006 NVIDIA introduced a parallel computing framework named CUDA, which was es-
pecially designed for GPU environments. CUDA defines three important features: a threading
model, a set of conventions for calling native GPU’s functions, and a hierarchical memory
infrastructure. In a GPU architecture the basic computational and resource allocation units
are threads. Threads can be grouped into blocks, which in turn can be grouped into a grid.
Threads in a block are partitioned into warps. For all GPU architectures a warp is com-
posed by 32 threads that run concurrently. A GPU architecture utilizes the Single Instruction
Multiple Thread (SIMT) programming model paradigm, where all threads inside a warp can
execute the same instruction at the same time. The general programming model consists of
code sequences called kernels. A kernel execution can be synchronous or asynchronous. This
allows programmers to manage concurrent execution through the completion of command
sequences called streams.

With the aim to produce a fast and efficient implementation of the RSA signature al-
gorithm, in this section we make extensive use of the following assembly instructions: addc

that adds two 32/64-bits values taking into account an input carry bit and producing an
output carry bit; subc that performs a 32/64-bits subtraction operation with input borrow
and producing an output borrow bit; mul.lo that multiplies two 32/64-bits values and re-
turns xi × yi mod 2w, where xi and yi are both non-negative integers, and w is typically
selected to be the GPU word size; mul.hi that multiplies two 32/64-bits values and returns
xi × yi/2w, where xi and yi are both non-negative integers; mad.(hi,lo).cc which multi-
ply two 32/64-bits values, extracts the higher or lower half of the result, and adds a third
32/64-bit value producing an output carry.

Cinvestav 64

4.3. EFFICIENT IMPLEMENTATION ON GPU PLATFORMS

4.3.1. RNS modular Multiplication

In the following, we describe how the RSA signature operations were carried out in the
GPU platform. Initially, we consider a pre-computation step performed in the CPU server
that host the GPU. In this step, the set of pair-wised relative prime moduli composing
the RNS-basis B are chosen. Then, all the RSA signature operands and pre-computations
are converted in their RNS representations. And finally, these values are sent to the GPU
platform.

Modular multiplication is performed by launching l blocks with l threads, which compute
redundantly an RNS integer multiplications of the form C = A ⊗ B where A, B and C
correspond to the RNS representation of some integers. This arrangement is depicted in
Figure 4.5(a), where it is shown that each thread is in charge of processing a modular
product |ai · bi|mi

. Since each warp executes the same instruction, this arrangement avoids
thread’s divergence. Besides, all the threads can efficiently access each coordinate of the
RNS vectors since these values are allocated on contiguous segments of memory. Finally,
each thread stores the output of its modular multiplication computation on a register, thus
avoiding the costly access to global memory.

Block 1

d1 = |a1 × b1|m1

Thread 1

...

Block l

. . .

Block 1Operations to obtain z1 Block lOperations to obtain zl

. . .

Block 1 Block l

. . .

Block 1 Block l

. . .

Block 1 Block l

. . .

(b)

(c)

(d)

(e)

Redundant Computation

RNS Multiplication

RNS Modular Reduction

(a)dl = |al × bl|ml

Thread l

d1 = |a1 × b1|m1

Thread 1

. . .dl = |al × bl|ml

Thread l

γ1 = |d1 × v1|m1

Thread 1

. . .γl = |dl × vl|ml

Thread l

γ1 = |d1 × v1|m1

Thread 1

. . .γl = |dl × vl|ml

Thread l

γ1 × ||M1|p|m1

Thread 1

. . .γl × ||Ml|p|m1

Thread l

γ1 × ||M1|p|ml

Thread 1

. . .γl × ||Ml|p|ml

Thread l

bγ1/2w−σc
2σ

Thread 1

. . . bγl/2w−σc
2σ

Thread l

bγ1/2w−σc
2σ

Thread 1

. . . bγl/2w−σc
2σ

Thread l

Operations to obtain α Operations to obtain α

∣∣∣∣z1 − ∣∣∣|α ·M |p∣∣∣m1

∣∣∣∣
m1

Thread 1

z1 ∣∣∣∣zl − ∣∣∣|α ·M |p∣∣∣ml

∣∣∣∣
ml

Thread 1

zl

Time

vj = |M−1
j |mj

vj = |M−1
j |mj

Figure 4.5: Computation of RNS modular multiplication on a GPU platform.

After all threads have completed the integer multiplication step, a modular reduction
by the modulus p must be applied. This modular reduction can be performed using the
Algorithm 7 proposed by Jeljeli in [97] or using the Algorithm 8 proposed by Kawuamura
in [108]. Both algorithms presented in §3.4 are very similar, and we can consider that the
Algorithm 8 performs roughly two times the operations used in Algorithm 7. For this reason,

Cinvestav 65

CHAPTER 4. PROTECTED IMPLEMENTATION OF RSA SIGNATURE
ALGORITHM

in the next we just explain how the Algorithm 7 can be implemented in GPU platforms.

The modular reduction algorithm requires the pre-computation of several values (Steps
1-3 of Algorithm 7), which are processed in the hosting CPU and sent to the GPU before the
main computation starts. The RNS vector |M−1

i |mi and the RNS table |Mi|p in Steps 1-2 are
both stored in the GPU shared memory so that it can be available for all the threads. The
third pre-computed value is the table containing the RNS vectors |α·M |p, for α = 1, . . . , l−1.
This table is mapped to the GPU texture memory because only few threads have to query
it.

The multiplication operation required in Step 5 is also computed redundantly, with the
aim of avoid the broadcasting of the γi values to all the threads for the subsequent compu-
tations (illustrated in Fig. 4.5b). Then in Step 9, the most expensive task of the reduction
algorithm is performed, requiring the computation of l and l − 1 RNS multiplications and
additions, respectively. This calculation is performed in parallel by launching l blocks with
l threads each (illustrated in Fig. 4.5c). If there are more than 32 active threads, then an
explicit barrier must be placed in order to synchronize all threads of each block, and one
must wait until all the threads have completed their execution. This allows a correct addition
of partial results. Once that all the partial results have been obtained by each block, each
thread stores its result in the shared memory. After all the partial results are obtained, they
must be added using a binary addition tree strategy [83]. Step 7 of Algorithm 7 calculates
l copies of α using l blocks as shown in Figure 4.5(d). The l − 1 additions are computed
collaboratively as previously mentioned. Finally, in Step 10 of Algorithm 7, a single thread of
each one of the l blocks, performs an RNS subtraction saving the final result of the modular
reduction into the global memory (see Figure 4.5e). This avoids that threads compete to
each other for writing into the same memory address.

In Table 4.9 we present the latency achieved by our software library for the operations of
modular reduction and modular multiplication. On it we can observe that the cost of these
operations based on the Algorithm 8 is roughly twice more expensive than the cost of the
operations based on Algorithm 7.

Algorithm
Latency (µs)

8-word 16-word 24-word
Mont Jeljeli Mont Jeljeli Mont Jeljeli

Modular reduction 2.8 0.9 3.4 1.2 3.7 1.3
Modular mult 3.1 0.9 3.5 1.3 3.8 1.3

Table 4.9: Performance comparison of RNS operations implemented in GPU platforms.

4.3.2. RNS based RSA signature

We perform the RSA signature using two different approaches: an arithmetic based on the
reduction proposed by Jeljeli [97]; and an arithmetic based on Montgomery as was introduced
by Kawuamura [108]. As before, we computed the RSA modular exponentiations using
the protected exponentiation method shown in Algorithm 14 concurrently. The modular
exponentiations for RSA-1024, RSA-2048 and RSA-3072 were implemented employing a
window size of ω = 5. In Table 4.10, we report the latency achieved by our library when
RSA signatures for 1024-, 2048, and 3072-bit keys are implemented. We can observe that
RSA signature based on Jeljeli’s modular arithmetic is two times faster than RSA signature
based on Montgomery RNS reduction.

Cinvestav 66

4.4. CONCLUSIONS

Work
Latency (ms)

P∗
RSA-1024 RSA-2048 RSA-3072

Jang et al. [92] 3.8 13.8 - 7
Fadhil et al. [59] 2.8 17.2 50.1 7
Yang et al. [167] 2.6 6.5 - 7
Dong et al. [58] - 10.8 26.6 7

This work Algorithm 7 1.0 2.1 3.4 3
This work Algorithm 8 2.3 5.0 8.2 3
∗Protected implementation.

Table 4.10: Performance comparison of RSA private operation implemented in GPU
platforms.

4.4. Conclusions

In this section, we report a parallel implementation of the RSA private operation after a
careful examination of the most suited arithmetic algorithms for both, CPU and GPU high-
end platforms. In spite of its massive parallelism, we observe that GPU implementations
of RSA are slower than their CPU counterparts. However, the usage of the RNS arith-
metic for GPU implementation enjoys a sub-quadratic complexity in the cost of the RSA
exponentiation with respect to the size of its key. Thus, we believe that for those multipli-
cation applications where extremely large operands are required, such as fully-homomorphic
encryption, our RNS arithmetic library could be of interest.

Finally, we observe that the performance evaluation of our library shows that our imple-
mentation achieves a competitive latency, which is faster than previous works that implement
the RSA private operation on GPU and CPU platforms using key lengths of 1024, 2048 and
3072 bits.

Cinvestav 67

CHAPTER 4. PROTECTED IMPLEMENTATION OF RSA SIGNATURE
ALGORITHM

Cinvestav 68

Part II

Pairing-based cryptography

69

Chapter 5
Introduction to bilinear pairings

Initially used in cryptography with destructive purposes, bilinear pairings over elliptic
curves have been a very active area of research in cryptography. Because, pairings enabled
the design of many novel cryptographic protocols that had not previously been feasible.
For example, the practical achievement of the identity-based cryptography proposed by Adi
Shamir in [153], the one-round three-party key agreement, and the aggregate signatures. For
a survey of pairing-based protocols, and of the problems on which these protocols are based,
we refer the reader to [140].

Since the introduction of cryptographic pairings as a constructive cryptographic prim-
itive, the efficient implementation of pairing-based protocols has become an increasingly
important research topic. For this reason, this chapter is dedicated to show, first, a brief
mathematical background about bilinear pairings over elliptic curves. Then, to show the
main algorithms that are used to securely implement the main operations found in most
pairing-based protocols.

5.1. Bilinear pairings

A bilinear pairing can be defined as follow: let G1 = (G1,+), G2 = (G2,+) and GT =
(GT , ·) be cyclic abelian groups of prime order r. A bilinear pairing e is defined as a map:

e : G1 ×G2 → GT , (5.1)

having the following properties:

Non-degenerate. A pairing is non-degenerate, if for all A ∈ G1 exist an element
C ∈ G2, such that e(A,C) 6= 1GT

with A 6= 0G1
and C 6= 0G2

.

Bilinear. Given two elements A,B ∈ G1 and two elements C,D ∈ G2, where A,B,C
and D are different than the identity element. we have that

e(A+B,C) = e(A,C) · e(B,C) and

e(A,C +D) = e(A,C) · e(A,D),

so that,
e(A+A,C) = e(A,C + C) = e(A,C) · e(A,C).

An immediate property of the bilinearity is that for any two integers m and n, it holds
that:

e([m]Q, [n]P) = e([m · n]Q,P) = e(Q, [m · n]P) = e(Q,P)m·n.

71

CHAPTER 5. INTRODUCTION TO BILINEAR PAIRINGS

Additionally to these mathematical properties, a pairing e suitable for use in cryptography
furthermore must be easy to compute and hard to invert. Inverting a pairing e means
given z ∈ GT to find P ∈ G1 and Q ∈ G2 such that e(P,Q) = z.

5.1.1. Types of pairings

The most efficient cryptographic pairings currently known come from elliptic curves,
where the groups G1 and G2 are groups on elliptic curves and the group GT is the multi-
plicative group of a finite field. In the work in [71] Galbraith, Patterson and Smart have
defined three types of pairings according to the nature of the groups G1 and G2.

Type 1: it is consider a pairing of type 1 if G1 = G2;

Type 2: when G1 6= G2 but an efficiently computable isomorphism φ : G2 → G1 is
known, while none is known in the contrary direction;

Type 3: when G1 6= G2 and no efficiently computable isomorphism is known between
G1 and G2, in either direction.

In most of this thesis we consider pairings of type 3 (except for §8), because they are
compatible with several computational assumptions such as the Desicion Diffie-Hellman in
G1 and G2.

5.1.2. Curves for fast pairing software implementation

Cryptosystems based on pairings require elliptic curves that are secure and enable efficient
pairing computation. In order to guarantee an efficient arithmetic on the elliptic curve E/Fp,
it is important that the prime order r of the group E(Fp) be a large factor of #E(Fp). A

formalization of this idea consist of considering the quantity ρ = log p
log r . In this way, for a

large p the cardinality of E(Fp) has roughly the same bit size that p, so ρ measures the ratio
between the size of #E(Fp) and the size of r. Now, if #E(Fp) is prime ρ ≈ 1 and it is
consider an ideal case. In general, the value of ρ should be reasonably close to 1.

The value of the embedding degree k is entirely determined by ρ and the choice of the
bit sizes for r and pk, since log pk/ log r = kρ. For instance, if it is desirable a security level
of 128 bits, it is necessary that r has a size of 256 bits, pk should have a size between 3000
to 5000 bits, then the embedding degree k should be in the interval 12-20 [67].

Based on the above paragraphs, Freeman, Scott and Teske [67] gave the following defini-
tion of pairing-friendly elliptic curves:

Definition 5.1 (Pairing-friendly elliptic curves). An elliptic curve E/Fp is pairing-friendly
if the following two conditions hold:

1. #E(Fp) has a prime factor r ≥ √p,

2. the embedding degree of E with respect to r is less than log r/8.

This type of curves are constructed through the Complex Multiplication method (CM) [75].
In this method the embedding degree is fixed and subsequently the integers p, r and t are
calculated. In order to construct pairing friendly ordinary elliptic curves we need that the
previous integers satisfy the following conditions:

1. p is prime or a power of a prime,

2. r is prime,

3. t is relative prime to p,

Cinvestav 72

5.1. BILINEAR PAIRINGS

4. r divides q + 1− t,

5. r | pk − 1 and r - pi − 1 for 1 ≤ i < k,

6. 4p− t2 = Df2, for some sufficiently small positive integer D and some integer f .

The above conditions allow to define an ordinary elliptic curve E over a finite field Fp
with embedding degree k and #E(Fp) = p + 1− t, such that r|#E(Fp). Besides, the curve
equation can be determined by the value of D in the point 6. The more common cases
are [17]

D = 1, defining a curve with equation E : y2 = x3 + ax,

D = 3, defining a curve with equation E : y2 = x3 + b.

The elliptic curve families are perametrized by the tuple of functions (p(z), r(z), t(z))
that satisfy the above conditions for an integer z. According to the equation in condition 6,
we say that a family of elliptic curves is complete if there exist a polynomial f(z) such that
4p(z)− t(z)2 = Df(z)2, otherwise it is called a disperse family [67].

Some examples of complete families of pairing-friendly elliptic curves are: BN (Barreto-
Naehrig) [13], BW (Brezing-Weng) [29], KSS (Kachisa-Schaefer-Scott) [103] and BLS (Barreto-
Lynn-Scott) [12], which are consider for the efficient implementation of bilinear pairings.
Particularly, in this thesis we use the family of curves proposed by Barreto-Naehrig.

5.1.2.1. Barreto-Naehrig elliptic curve family

The Barreto-Naehrig (BN) family of elliptic curves was consider ideal from the implemen-
tation point of view. However, after the attacks by Kim and Barbulescu [109] BN curves are
not anymore ideal (see §5.1.3). These curves have an embedding degree k = 12 and ρ-value
1, this facts made them perfectly suited for a security level of 128 bits. Besides, this family
of curves facilitate the generation and adjustment of curve parameters, in order to obtain an
optimal performance.

This family define elliptic curves with prime order and the characteristic p of the finite
field, the order r of the group and the Frobenius trace are parametrized by the following
equations:

p(z) = 36z4 + 36z3 + 24z2 + 6z + 1, (5.2)

r(z) = 36z4 + 36z3 + 18z2 + 6z + 1, (5.3)

t(z) = 6z2 + 1. (5.4)

On this curves the equation 4p − t2 = Df2 holds for f(z) = 6z2 + 4z + 1 and D = 3,
therefore, given an integer z the Equation (5.2) and Equation (5.3) produce prime numbers.
The form of the curve equation is

E/Fp : y2 = x3 + b, (5.5)

moreover, this elliptic curve is isomorphic to the twist curve of degree d = 6 defined as

E′/Fp2 : Y 2 = X3 + b/ξ (5.6)

where the elements b ∈ Fp and ξ ∈ Fp2 are not quadratic residues and are not cubic residues
over Fp and Fp2 , respectively.

Cinvestav 73

CHAPTER 5. INTRODUCTION TO BILINEAR PAIRINGS

Pairing groups for BN curves

Considering the BN ordinary elliptic curve E/Fp with embedding degree k, which defines
the group E(Fp) of order p+ 1− t = r, where r is a prime number. The groups involved in
the pairing computation are defined as:

G1 is the additive group composed by the r-torsion points in E(Fp).

G2 is the additive group generated by the point Q, that means, G2 = 〈Q〉, where
given the element Q′ ∈ E′(Fpk/d)[r], such that G′2 = 〈Q′〉 the point Q is defined as
Q = Ψ6(Q′) (see §2.4.2.1).

GT is the subgroup of F∗pk multiplicatively written, denoted as F×
pk

, composed by the
set of the r-th roots of the unity in the group F∗pk .

The definition of the group G2 allows us to do part of the pairing computations in the
subfield Fp2 rather than in Fpk . It is important to say that this definition is possible by the
following theorem, that allows to speed up the pairing computation using twist curves.

Theorem 5.1. Let E be an ordinary elliptic curve over Fp admitting a twist of degree d.
Assume that r is an integer such that r | #E(Fp) and let k > 2 be the embedding degree.Then
there is an unique twist E′ such that r | #E′(Fpm), where m = k/ gcd(k, d). Furthermore, if
we denote by G′2 the unique subgroup of order r of E′(Fpm) and by Ψ : E′ → E the twisting
isomorphism, the subgroup G2 is given by G2 = Ψ(G′2).

5.1.3. Security of pairings

The DLP is believed to be intractable for certain groups carefully chosen; including the
multiplicative group of a finite field (Definition 2.1.5), and the group of points on an elliptic
curve defined over a finite field (Definition 2.1.5). The closely related Diffie-Hellman problem
(DHP) consist in compute [ab]P given P , [a]P and [b]P . It is generally assumed that the
DLP reduces in polynomial time to the DHP.

The security of many pairing-based protocols is dependent on the in tractability of the
following problem:

Definition 5.2 (Bilinear Diffie-Hellman problem (BDHP)). Let e be a bilinear pairing on
(G,GT). The bilinear Diffie-Hellman problem (BDHP) is the following: Given the points P ,
[a]P , [b]P , [c]P ∈ G, compute e(P, P)abc ∈ GT .

Hardness of the BDHP implies the hardness of the DHP in both G and GT . First, if
the DHP in G can be efficiently solved, then one could solve an instance of the BDHP
by computing [ab]P and then e([ab]P, [c]P) = e(P, P)abc. Also, if the DHP in GT can
be efficiently solved, then the BDHP instance could be solved by computing g = e(P, P),
gab = e([a]P, [b]P), gc = e(P, [c]P) and then gabc.

The best generic algorithm known for solving the ECDLP is the Pollard’s rho method [141]
which has an expected running time of O(

√
r), where as before r is the cardinality of the

group E(Fp)[r]. Therefore, in order to offer a security level of 128 bits, we must chose a
group with order r with a size of 256 bits. On the other hand, recent improvements on the
computation of the DLP in a finite field of composite extension degree, reduce the asymptotic
complexity of the NFS algorithm. Particularly, in the work of Kim and Barbulescu presented
at CRYPTO’16 [109] introduced the extended tower-NFS technique. In this technique if the
field characteristic p also has an special form, which is the case for pairings over BN curves,
then the asymptotic complexity is O(exp(1.56 · (log pk)1/3 · (log log pk)2/3)).

However, the works presented in §6 and §7 were done before the work of Kim and Bar-
bulescu, when the asymptotic complexity of the NFS algorithm was O(exp(1.92 · (log pk)1/3 ·

Cinvestav 74

5.2. MAIN OPERATIONS IN PAIRING-BASED PROTOCOLS

(log log pk)2/3)). The only work in this chapter that is immune to this kind of attacks is the
presented in §8. In Table 5.1 we present the bit size of the field Fpk that is necessary to resist
the extended tower-NFS technique.

log p log pk NFS Before Kim-Barbulescu Ext. Tower-NFS
256 3072 ≈ 2139−δ1 ≈ 2110−δ2

384 4608 ≈ 2164−δ1 ≈ 2130−δ2

448 5376 ≈ 2175−δ1 ≈ 2139−δ2

512 6144 ≈ 2185−δ1 ≈ 2147−δ2

Table 5.1: Security levels for pairings over BN curves.

The numbers in Table 5.1 should be read as follows: a 256-bit finite field Fp that produces
an extension field Fpk of 3072 bits, will provide approximately a security level of 2139−δ1 ,
where δ1 depends on the curve and on the implementation of the NFS variant. The order of
magnitude of this δ value is usually of a dozen. Therefore, if it is desirable to offer a 128-bit
security level then a prime p of 448 bits should be used to avoid extended tower-NFS attack
(and a 2565-bit prime p when the NFS Before Kim-Barbulescu column is consider).

5.2. Main operations in pairing-based protocols

In this section we introduce the main operations involved in most pairing-based proto-
cols. Besides, we present the algorithms and techniques used to implement them. As was
previously mentioned, in most of this thesis we are interested in pairing-based protocols over
BN curves, therefore, the operations are addressed for this family of elliptic curves.

BLS short signature scheme

Proposed by Boneh, Lynn, and Shacham in 2001 [24], the BLS signature scheme remains
the efficient scheme that achieves the shortest signature length to this day: about 160 bits
at the 80-bit security level. Its public parameters are a bilinear pairing e : G1 × G2 → GT
between groups of order r, generators G1, G2 of G1 and G2, and a hash function H1 :
{0, 1}∗ → G1 modeled as a random oracle. The secret key is a randomly selected element
x ∈ Z/rZ, the public key is the group element P = [x]G2. A signature on a message
m ∈ {0, 1}∗ is obtained as S = [x]H(m). While, any entity possessing the public key P
can verify the signature simply checking whether e(H(m), P) = e(S,G2). Boneh, Lynn,
and Shacham proved that this scheme is secure under the Computational Diffie–Hellman
assumption when H is modeled as a random oracle.

As can be seen above paragraph, the BLS signature scheme public key and signature
are computed through a scalar multiplication on the groups G2 and G1, respectively. For
the signature is necessary to obtain the image of m under a hash function H1(·). Finally,
the computation of a pairing is needed for the verification of a given signature. These
operations can be found in most pairing-based schemes, although, also a G2-valued hash
function H2 is needed in many other pairing-based cryptosystems including IBE and HIBE
schemes [10, 73, 87], signature and identity-based signature schemes [21, 23, 24, 33, 169], and
identity-based signcryption schemes [28, 120]. Such operations are illustrated in Figure 5.1.

5.2.1. Pairing computation

Let p be a prime number, let E be an elliptic curve defined over the finite field Fp with
embedding degree k, and let F̄p be the algebraic closure of Fp. We can say that f(x, y)

Cinvestav 75

CHAPTER 5. INTRODUCTION TO BILINEAR PAIRINGS

Pairing function e(·, ·)

H2 [a]Q [b]P H1

{0, 1}∗ {0, 1}∗

F×p

Figure 5.1: Main operations of pairing base protocols.

is a rational function on E/Fp if there exists a point P = (xP , yP) ∈ E(F̄p) such that
f(xP , yP) = O. The set of rational functions on E/Fp is denoted as F̄p(E) and for all
f ∈ F̄p(E) it holds that f(P) ∈ {F̄p ∪ O}.

Definition 5.3 (Miller function). Let R be an element in E(Fpk) and let s be a non-negative
integer. A Miller function fs,R of length s is a rational function in Fpk(E) with divisor
(fs,R) = s(R) − ([s]R) − (s − 1)(O). Let uO be an Fp-uniformizing parameter for O. A
function f ∈ Fpk(E) is said to be normalized if lcO(f) = 1, where lcO(f) = (u−`O f)(O) and
` is the order of f at O.

Lemma 5.1. Let fs,R a Miller function, let `[a]R,[b]R be the line trough the points [a]R and
[b]R in E(Fpk), and let vR be the vertical line through the point R. For all a, b ∈ Z it holds
that:

fa+b,R = fa,R · fb,R · `[a]R,[b]R/v[a+b]R,

fab,R = fab,R · fa,[b]R,

f1,R = c for some constant c (for example c = 1).

Let P,Q ∈ E[r]. Victor Miller in [128] described an algorithm for evaluating a normalized
Miller function fr,P at the point Q, which repeatedly uses the Lemma 5.1 over the binary
representation of r.

Algorithm 16 Miller’s Algorithm.

Input: P,Q ∈ E[n] \ O and r = (rl−1, . . . , r0)2.
Output: fr,P (Q).

1: f ← 1, g ← 1, T ← P
2: for i← l − 2 downto 0 do
3: T ← [2]T
4: f ← f2 · `T,T (Q)
5: g ← g2 · v[2]T (Q)
6: if ri = 1 then
7: T ← T + P
8: f ← f · `T,P (Q)
9: g ← g · vT+P (Q)

10: end if
11: end for
12: return f/g

Cinvestav 76

5.2. MAIN OPERATIONS IN PAIRING-BASED PROTOCOLS

When Algorithm 16 is used to compute fr,P (Q), one might obtain a value of 0 in the
numerator or denominator. This occurs only if Q happens to be a root of one of the line
functions `, v encountered during the computation. Since the roots of ` and v must lie in
〈P 〉, therefore, the Miller function computation can only fail if Q ∈ 〈P 〉.

5.2.1.1. Weil pairing

The Weil pairing is usually not used in practice for cryptography. However, it is important
to define it because the original construction of the Tate pairing uses the Weil pairing. This
construction was the first pairing on elliptic curves and as its name points out was defined
by André Weil [165].

Theorem 5.2. Let E be an elliptic curve defined over a finite field F, let r be an integer
relative prime to the characteristic of F, and let P and Q be points of r-torsion on E. The
Weil pairing is defined as

eW (P,Q) = (−1)r
fr,P (Q)

fr,Q(P)
. (5.7)

eW is well defined when P 6= Q and P,Q 6= O. Furthermore, eW (P,O) = eW (O, P) =
eW (P, P) for all P ∈ E[r].

5.2.1.2. Tate pairing

The Tate pairing introduced by John Tate for number fields [158], and applied by Rück
and Frey [68] to cryptography, is defined as follows:

Theorem 5.3. Let E be an elliptic curve, let r be a prime number dividing #E(Fp), let
P ∈ E(Fpk)[r] and Q ∈ E(Fpk)/rE(Fpk), and let R be any point in E(Fpk) such that {R,Q+
R} ∩ {P,O} = ∅. Then, the Tate pairing defined as

eT (P,Q) =

(
fr,P (Q+R)

fr,P (R)

) pk−1
r

is well defined and does not depends on R.

In practice, for the Tate pairing when Q is not a multiple of P we can take R = O, so
the Tate pairing can be computed as

eT (P,Q) = fr,P (Q)
pk−1

r (5.8)

In this way, we can use Algorithm 16 to compute fr,P (Q) and then we do the final exponen-
tiation by a fast exponentiation algorithm. Besides, in the Miller’s algorithm it is possible
to eliminate the denominator in the Step 12 according to the work of Barreto et al. [14],
omitting the calculation of the Steps 5 and 9 in Algorithm 16.

5.2.1.3. Ate pairing

From the Tate pairing definition Hess et al. in [85] showed that for all positive integer m
such that r - m, it holds that

eT (Q,P)m = fr,Q(P)m(pk−1)/r ∈ F∗pk

is a non-degenerate bilinear pairing. By using Lemma 5.1 and from the fact that [r]Q = O
we have that fmr,Q(P) = fmr,Q(P). Thus, if λ is a positive integer such that λ ≡ p mod r,

then λk − 1 ≡ pk − 1 mod r. In this way, if we use mr = λk − 1 then

fmr,Q(P) = fλk−1,Q(P) = fλk,Q(P).

Cinvestav 77

CHAPTER 5. INTRODUCTION TO BILINEAR PAIRINGS

Considering that for all Q ∈ E′[r] it holds that [λi]Q = [pi]Q and using again Lemma 5.1,
the rational function fλk,Q(P) can be expressed as follows:

fλk,Q(P) =

k−1∏
i=0

fλ,Q(P)λ
k−1−ipi = fλ,Q(P)

∑k−1
i=0 λ

k−1−ipi .

Now, from the Hasse boundary (Theorem 2.18) we have that t− 1 ≡ p mod r, and then
we can substitute λ by t− 1, thus

eT (Q,P)m = ft−1,Q(P)c(p
k−1)/r

where c =
∑k−1
i=0 λ

k−1−ipi and r - c.

Theorem 5.4. Let E be an elliptic curve, let r be a prime number dividing #E(Fp) and let
P ∈ E(Fpk)[r] and Q ∈ E′(Fpk/d). Then, the Ate pairing is defined as

eA(Q,P) = ft−1,Q(P)(pk−1)/r.

By Hasse’s boundary the trace of Frobenious t is such that |t| ≤ 2
√
p. If t is suitably

small with respect to r, then the Ate pairing can be computed using a Millers’ loop of shorter
size and thus faster than the Tate pairing.

Optimal Ate pairing

The optimal Ate pairing was proposed by Vercauteren in [162], his idea consist in looking
for amultiple cr of r so that we can write cr =

∑
cip

i with ci small coefficients. Then, one
can use a suitable combination of Miller functions fci,Q to construct a bilinear pairing that
is a power m of the Tate pairing, where r - m.

Theorem 5.5. Let E be an elliptic curve, let r be a prime number dividing #E(Fp), let

P ∈ E(Fpk)[r] and Q ∈ E′(Fpk/d), and et λ =
∑ϕ(k)−1
i=0 cip

i such that λ = mr, for some
integer m. Then the optimal Ate pairing can be defined as

ê(Q,P) =

ϕ(k)−1∏
i=0

fp
i

ci,Q
(P) ·

ϕ(k)−1∏
i=0

`[si+1]Q,[cipi]Q(P)

v[si]Q(P)

(pk−1)/r

(5.9)

with si =
∑ϕ(k)−1
j=i cjp

j.

The idea for searching the coefficients ci, such that they are as small as possible, is
by computing short vectors for the lattice given in Equation (5.10), by using an available
implementation of the LLL algorithm.

r 0 0 · · · 0
−p 1 0 · · · 0
−p2 0 1 · · · 0

...
...

...
. . .

...
pϕ(k)−1 0 0 · · · 1

 (5.10)

Cinvestav 78

5.2. MAIN OPERATIONS IN PAIRING-BASED PROTOCOLS

5.2.1.4. Optimal Ate pairing for BN curves

As it was mention before, in this thesis we are interested in the BN family of curves
parametriced as shown in §5.1.2.1. For this family of curves Vercauteren in [162] showed
that the short vector used to apply the Theorem 5.5 is

[6x+ 2, 1,−1, 1]

where 3 out of the four coefficients in the short vector are trivial. Then, the optimal Ate
pairing for BN curves is given by the simple formula

ê(Q,P) =
(
fz,Q(P) · `[z]Q,Ψ6(Q)(P) · `[z]Q+Ψ6(Q),−Ψ2

6(Q)(P)
) p12−1

r

(5.11)

with z = 6x+2, Ψ6 the homomorphism on G2, line functions `T,Q passing through the points
T,Q, and the groups G1,G2,GT as previously defined. A specialization of Miller’s algorithm
for computing the optimal Ate pairing can be found in Algorithm 17, which is presented as
was proposed by Aranha et al. in [6].

Algorithm 17 Optimal Ate pairing [6]

Input: P ∈ G1 and Q ∈ G2

Output: f = ê(Q,P) ∈ GT .

1: s← 6x+ 2 with s =
∑l−1
i=0 si2

i and si ∈ {0, 1}
2: f ← 1; T ← Q
3: for i = l − 2 down to 0 do
4: f ← f2 · `T,T (P); T ← [2]T
5: if si = 1 then
6: f ← f · `T,Q(P); T ← T +Q
7: end if
8: end for
9: R0 ← Ψ6(Q); R1 ← Ψ6(Q)

10: if s < 0 then
11: T ← −T ; f ← fp

6

12: end if
13: f ← f · `T,R0(P); T ← T +R0

14: f ← f · `T,−R1
(P); T ← T −R1

15: f ← f (p12−1)/r

16: return f

The final exponentiation shown in Step 15 of Algorithm 17 has a considerable cost,
however, this cost can be significantly reduced by factorize the exponent as

p12 − 1

r
= (p6 − 1)(p2 + 1)

(
p4 − p2 + 1

r

)
.

The power g = f (p6−1)(p2+1) ∈ Fp12 can be computed using two fast applications of the
Frobenius operator, two multiplications and one inversion in Fp12 . This happens because
p12 − 1 = (p6 − 1)(p6 + 1), then for an element f ∈ Fp12 whose order does not divides to

p6 − 1, if h = fp
6−1 we have that

hp
6+1 = f (p6−1)(p6+1) = 1

and thus, hp
6

= 1/h. Notice that by choosing a suitable quadratic irreducible polynomial
with a primitive root i, the field Fp12 can be see as a quadratic extension of Fp6 . This field

Cinvestav 79

CHAPTER 5. INTRODUCTION TO BILINEAR PAIRINGS

towering allows us to represent the element h as h = h0 + h1 · i, where h0, h1 ∈ Fp6 . By

taking advantage of the Frobenius operator properties, the operation hp
6

can be performed
by a simple conjugation

hp
6

= h0 − h1 · i = 1/h.

The called hard power by the exponent d = (p4−p2 +1)/r is computed using the Fuentes-
Castañeda et al. method [69]. The main idea of this method is based on the observation
that: a fixed power of a pairing is a pairing. In this way, instead of raising g to the power d
we can compute gd

′
, where d′ = md and such that r - m.

The method consist of representing polynomially the exponent as d(x) = (p(x)4−p(x)2 +
1)/r(x), where p(x) and r(x) are the polynomials parameterizing the BN curves (see §5.1.2.1).
Then, the exponent can be written as

d(x) = − 36x3 − 30x2 + 18x− 2

+ p(x)(−36x3 − 18x2 − 12x+ 1)

+ p(x)2(6x2 + 1)

+ p(x)3

and mapped to Z16 as d(x) 7→ [−36,−30,−18,−2,−36,−18,−12, 1, 0, 6, 0, 1, 0, 0, 0, 1]. After
that, the authors define the matrixM shown below from the basis {d(x), xd(x), 6x2d(x), 6x3d(x)}
that allows us to represent all possible products m(x)d(x).

M =

−36 −30 −18 −2 −36 −18 −12 1 0 6 0 1 0 0 0 1

6 6 4 1 18 12 7 0 6 0 1 −1 0 0 1 0
0 0 0 −1 −36 −30 −18 −2 −36 −18 −12 2 0 6 0 1
0 0 −1 0 6 6 4 1 18 12 8 0 6 0 1 −1

Any non-trivial integer linear combination of the rows of M corresponds to an exponent
that produces an element g of order r. Then, using the LLL algorithm a linear combination
of the short vectors of M are searched [69]. One of these vectors produced by the linear
combination of short vectors is

[12, 12, 6, 1, 12, 6, 4, 0, 12, 6, 6, 0, 12, 6, 4,−1],

which corresponds to the multiple d′(x) = λ0 + λ1p + λ2p
2 + λ3p

3 = 2x(6x2 + 3x + 1)d(x),
where

λ0(x) = 12x3 + 12x2 + 6x+ 1

λ1(x) = 12x3 + 6x2 + 4x

λ2(x) = 12x3 + 6x2 + 6x

λ3(x) = 12x3 + 6x2 + 4x− 1

The exponentiation gd
′(x) can be computed applying the following strategy. First, the

following exponentiations are computed

gx 7→ g2x 7→ g4x 7→ g6x 7→ g6x2

7→ g12x2

7→ g12x3

,

at a cost of three exponentiations by x, three squarings, and one multiplication. Then, the
values a = g12x3 · g6x2 · g6x and b = a · (g2x)−1 are computed using three multiplications.
Finally, the result gd

′
is obtained by computing,

(a · g6x2

· g)(b)p(a)p
2

(b · g−1)p
3

,

using six extra multiplications.The total cost of compute gd
′

is of three exponentiations by
x, three squarings, 10 multiplications and three Frobenius applications.

Cinvestav 80

5.2. MAIN OPERATIONS IN PAIRING-BASED PROTOCOLS

5.2.2. Scalar multiplication in G1 and G2

In this section we discus the scalar multiplication [k]P , for a integer scalar k and a point
P in the groups G1 and G2 defined over BN elliptic curves. This family of curves allow us
to use the Gallant-Lambert-Vanstone (GLV) [72] and the Galbraith-Lin-Scott (GLS)[70] de-
composition techniques of dimensions 2 and 4, which permit to speed up scalar multiplication
in those pairing groups.

5.2.2.1. ω-NAF scalar multiplication

In the same way as for exponentiation (see §3.5.3), scalar multiplication can be speed up
by using a recoded representation of the scalar. Because, it tends to decrease the number
of point additions at a cost of some pre-computations. Moreover, given that subtraction
of points on an elliptic curve is just as efficient as addition, it is possible to use a signed
digit representation of k. A particularly useful signed digit representation is the windowed
non-adjacent form ω-NAF, which is defined as follow:

Definition 5.4 (ω-NAF representation [82]). Let ω be a positive integer such that ω ≥ 2. The

ω-NAF representation of an integer k is an expression k =
∑l−1
i=0 ki2

i where each each non-
zero coefficient ki is odd, 0 ≤ ki < 2ω−1, the most significant coefficient in the representation
kl 6= 0, and at most one of any ω consecutive digits is non-zero.

The ω-NAF representation of an integer k can be efficiently computed using Algorithm 18.

Algorithm 18 ω-NAF representation of an integer k.

Input: A positive integer k and the size of window ω.
Output: The representation ω-NAF of k of length l.

1: i← 0
2: while k ≥ 1 do
3: if k is odd then
4: ki ← k mods 2ω; k ← k − ki
5: else
6: ki ← 0
7: end if
8: k ← k/2; i← i+ 1
9: end while

10: return (kl−1, kl−2, . . . , k1, k0)

Theorem 5.6 (Properties of the ω-NAF representation). Let k be a positive integer,

1. k has an unique representation ω-NAF,

2. The length of the ω-NAF representation of k is at most one more than the length of
the binary representation of k.

3. The average density of nonzero digits among all ω-NAFs of length l is approximately
1/(ω + 1).

The ω-NAF scalar multiplication is shown in Algorithm 19, which is a modification of
the intuitive binary method.

It follows from the properties (2) and (3) of Theorem 5.6 That the expected running time
of Algorithm 19 is approximately[

1D + (2ω−2 − 1)A
]

+

[
`

ω + 1
A+ `D

]
,

Cinvestav 81

CHAPTER 5. INTRODUCTION TO BILINEAR PAIRINGS

Algorithm 19 ω-NAF scalar multiplication method.

Input: A positive integer k, a point P ∈ E(Fq) with q = pn for n ∈ Z+ and the size of
window ω.

Output: Q = [k]P .

Precomputation:
1: Compute the ω-NAF representation s of k with length l.
2: Compute Pi = [i]P para i ∈ [±1,±3,±5, . . . ,±2ω−1 − 1]

Computation:
3: Q← O
4: for i = l − 1→ 0 do
5: Q← [2]Q
6: if si 6= 0 then
7: Q← Q+ Psi
8: end if
9: end for

10: return Q

where ` = dlog2 ke, D represents the cost of a point doubling and A denotes the cost of
a point addition. The first term of the expression of the running time corresponds to pre-
computation cost , while the second term represents the cost of the computations in the
Algorithm 19.

5.2.2.2. GLV scalar multiplication

The GLV method introduced by Gallant, Lambert and Vanstone [72] relies on endomor-
phisms that are specific to the special shape of the curve E. This method, allow us to speed
up the scalar multiplication [k]P in the group G1 = E(Fp)[r].

For our case of interest, given the BN elliptic curve E/Fp : y2 = x3 + b parametrized as
shown §5.1.2.1 with p ≡ 1 mod 3. We can use the GLV endomorphism φ : (x, y) 7→ (βx, y)
in G1, where β3 = 1 for an element β ∈ Fp different than 1. In this case the endomorphism
φ satisfies φ2 + φ+ 1 = 0 in the endomorphism ring End(E) of E, therefore, φ corresponds
to the scalar multiplication by λ = −36x4 + 1. Thus, λ2 + λ+ 1 ≡ 0 mod r means that we
have a 2-dimentional decomposition in G1.

In this way, the GLV method is used to split the `-bit scalar k in two sub-scalars k1 and
k2, such that k ≡ (k1+λk2) mod r where the length of sub-scalars is `/2-bits approximately.
So, the scalar multiplication [k]P can be efficiently computed as

[k]P = [k0]P + [k1]φ(P)

using simultaneous scalar multiplication techniques.
This method requires some pre-computations. However, its efficiency lies in that reduces

the number of point doublings in a half, in comparison with the binary method. Besides,
the GLV can be combined with the ω-NAF strategy, in order to reduce the number of point
additions as can be see it in Algorithm 20.
The cost of Algorithm 20 is

[
2D + (2ω−1 − 2)A

]
+

[
`

ω + 1
A+

`

2
D

]
,

where ` = dlog2 ke. The first term of the expression corresponds to the pre-computation and
the second term denotes the cost of the computation.

Cinvestav 82

5.2. MAIN OPERATIONS IN PAIRING-BASED PROTOCOLS

Algorithm 20 GLV scalar multiplication method.

Input: A positive integer k, a point P ∈ E(Fq) with q = pn for n ∈ Z+, the size of window
ω and the endomorphism φ over E(Fp)[r].

Output: R = [k]P .

Precomputation:
1: Decompose the scalar k in sub-scalars k1, k2 using the GLV method.
2: Compute the ω-NAF representation s, s′ of k1, k2 with length l.
3: Compute Pi = [i]P,Qi = φ(P) para i ∈ [±1,±3,±5, . . . ,±2ω−1 − 1]

Computation:
4: Q← O
5: for i = l − 1→ 0 do
6: R← [2]R
7: if si 6= 0 then
8: R← R+ Psi
9: end if

10: if s′i 6= 0 then
11: R← R+Qs′i
12: end if
13: end for
14: return R

5.2.2.3. GLS scalar multiplication

The GLS method introduced by Galbraith, Lin and Scott [70] works over extension fields
where the p-power Frobenius becomes non-trivial, so it does not rely on a determined shape
of the curve E. However, if E has a special shape as in the case in the GLV method, these
two strategies can be combined to give higher-dimensional decompositions. This method,
allow us to speed up the scalar multiplication [k]P in the group G2 = E′(Fp2)[r].

In the BN curves the group G′2 is always defined over an extension field, then we can
combine the GLV endomorphism and the Frobenius map to get the GLS decomposition. The
endomorphism in G2 is defined as ψ : Ψ ◦ πip ◦Ψ−1, where πip represents the i-th application
of Frobenius endomorphism and Ψ represents an isomorphism Ψ : E′(Fp2) → E(Fp12). The
endomorphisms satisfies the degree-four characteristic polynomial ψ4 − ψ2 + 1 = 0 in the
endomorphism ring End(E) of E, therefore, ψ corresponds to the scalar multiplication by
λ = p and given that p ≡ t− 1 mod r then λ = t− 1 = 6x2.

This method, allows us to split an `-bit scalar k into sub-scalars k1, k2, k3 and k4, such that
k ≡ (k1+λk2+λ2k3+λ3k4) mod r where the length of sub-scalars is `/4-bits approximately.
So, the scalar multiplication [k]P can be efficiently computed as

[k]P = [k1]P + [k2]ψ(P) + [k3]ψ2(P) + [k4]ψ3(P).

The efficiency of this method lies in that reduces the number of point doublings in a
quarter, in comparison with the binary method. Besides, the GLS can be also combined
with the ω-NAF strategy, in order to reduce the number of point additions. This strategy is
shown in Algorithm 21.
The cost of Algorithm 21 is

[
4D + 4(2ω−2 − 1)A

]
+

[
`

ω + 1
A+

`

4
D

]
,

where ` = dlog2 ke. The first term of the expression corresponds to the pre-computation and
the second term denotes the cost of the computation.

Cinvestav 83

CHAPTER 5. INTRODUCTION TO BILINEAR PAIRINGS

Algorithm 21 GLS scalar multiplication method.

Input: A positive integer k, a point P ∈ E(Fq) with q = pn for n ∈ Z+, the size of window
ω and the endomorphism ψ over G2.

Output: R = [k]P .

Precomputation:
1: Decompose the scalar k in sub-scalars k1, k2, k3, k4 using the GLS method.
2: Compute the ω-NAF representation si of ki with length l for 0 < i ≤ 4.
3: Compute P ji = [i]Pj para i ∈ [±1,±3,±5, . . . ,±2ω−1 − 1] and 0 < j ≤ 4

Computation:
4: Q← O
5: for i = l − 1→ 0 do
6: R← [2]R
7: for j = 0→ 4 do
8: if sj,i 6= 0 then
9: R← R+ P jsj,i

10: end if
11: end for
12: end for
13: return R

5.2.3. Hashing into elliptic curve groups

This Section discusses the general problem of hashing into elliptic curves groups, partic-
ularly in the context of pairing-based cryptography. The goal of this section is to present
some algorithms for hashing values to elliptic curve subgroups G1 and G2 that can be used
in pairing-based cryptography protocols.

The general approach taken in this section to construct secure hash functions to the
subgroups G1 and G2 of a pairing-friendly elliptic curve E is illustrated in Figure 5.2, and
consists of three main steps. The first step takes an arbitrary message m to some element
h(m) of a set S that is easy to hash to, in the sense that the function h : {0, 1}∗ → S can be
easily obtained from a traditional cryptographic hash function like SHA-2 or SHA-3. In our
case of interest, the set S is the base field Fq with q a power of a prime p. The second step

maps the resulting value h(m) to a point Q̃ = H(m) = f(h(m)) in the elliptic curve group
E(Fq) using a map f : S → E(Fq) called an encoding function. Finally, the last step takes

the point Q̃ (which can lie anywhere on the curve) and maps it to a point Q′ in the group
G1 or G2.

5.2.3.1. A naive construction

We would like to construct a hash function H : {0, 1}∗ → G to an elliptic curve group G,
which we can assume is cyclic of order r and generated by a given point G. The simplest, most
naive way to do so is probably to start from an integer-valued hash function h : {0, 1}∗ →
Z/rZ (for which reasonable instantiations are easy to come by) and to define H as:

H(m) = [h(m)]G. (5.12)

This is, however, a bad idea on multiple levels.
On the one hand, it is easy to see why this will typically break security proofs in the

random oracle model. Indeed, at some point in a random oracle model security reduction,
the simulator will typically want to program the random oracle by setting some of its outputs
to specific values. In this case, it will want to set the value H(m) for some input m to a
certain elliptic curve point P . However, if H is defined as in Equation (5.12), the simulator

Cinvestav 84

5.2. MAIN OPERATIONS IN PAIRING-BASED PROTOCOLS

h
(m

)

Strings m ∈ {0, 1}∗ E(Fq)

Q̃ = H(m) = f(h(m)) Q′ = c · Q̃

S = Fq

E(Fq)[r]

Figure 5.2: Hashing into pairing-friendly elliptic curve subgroups.

should actually program the integer-valued random oracle h to satisfy [h(m)]G = P . In other
words, it should set h(m) to the discrete logarithm of P with respect to G. But this discrete
logarithm is not usually known to the simulator, and it cannot be computed efficiently,
therefore, the security reduction breaks down.

On the other hand, it is often not clear how this problem translates into an actual
security weakness for a protocol using the hash function H, one could think that it is mostly
an artifact of the security proof. Nevertheless, a construction like Equation (5.12) leaks the
discrete logarithm of H(m) whenever m is known, which certainly feels uncomfortable from
a security standpoint. We demonstrate below that this discomfort is entirely warranted, by
showing that the Boneh-Lynn-Shacham signature scheme [24] presented in §5.2, becomes
completely insecure if the hash function involved is instantiated as in Equation (5.12).

Now consider the case when H is instantiated as in Equation (5.12). Then, the signature
on a message m can be written as:

S = [x]H(m) = [xh(m)]G = [h(m)]P

and hence, one can forge a signature on any message using only publicly available data.
There is no security left at all when using the trivial hash function construction.

A slightly less naive variant of the trivial construction consists in defining H as:

H(m) = [h(m)]Q

where Q ∈ G2 is an auxiliary public point distinct from the generator G2 and whose discrete
logarithm α with respect to G2 is not published. Using this alternate construction for H
thwarts the key-only attack described above against BLS signatures. However, the scheme
remains far from secure. Indeed, the signature on a message m can be written as:

S = [xh(m)]Q = [αxh(m)]G = [h(m)][α]P.

Now suppose an attacker knows a valid signature S0 on some message m0. Then the signature
S on an arbitrary m is simply

S =

[
h(m)

h(m0)

]
[h(m0)][α]P =

[
h(m)

h(m0)

]
S0,

where the division is computed in Z/rZ. Thus, even with this slightly less naive construction,
knowing a single valid signature is enough to produce forgeries on arbitrary messages: again,
a complete security breakdown.

Cinvestav 85

CHAPTER 5. INTRODUCTION TO BILINEAR PAIRINGS

5.2.3.2. Hashing by random trial

A classical construction of a hash function to elliptic curves that does work (and one
variant of which is suggested by Boneh, Lynn, and Shacham in the original short signatures
paper [24]) is the so-called try-and-increment algorithm.

Consider an elliptic curve E over a finite field Fq of odd characteristic, defined by the
Weierstrass equation E : y2 = x3 + ax2 + bx+ c for some a, b, c ∈ Fq. A probabilistic way to
find a point on E(Fq) is to pick a random x ∈ Fq, check whether t = x3 + ax2 + bx+ c is a
square in Fq, and if so, set y = ±

√
t and return (x, y). If t is not a square, then x is not the

abscissa of a point on the curve: then one can pick another x and try again.
It is an easy consequence of the Hasse bound presented in Theorem 2.18 that the success

probability of a single trial is very close to 1/2. Indeed, if we denote by χq the non-trivial
quadratic character of F∗q , extended by 0 to Fq, we have:

#E(Fq) = 1 +
∑
x∈Fq

(1 + χq(x
3 + ax2 + bx+ c)) = q + 1 +

∑
x∈Fq

χq(x
3 + ax2 + bx+ c).

On the other hand, the success probability w of a single iteration of this point construction
algorithm is the proportion of x ∈ Fq such that χq(x

3 + ax2 + bx+ c) = 1 or 0, namely:

w =
α

2q
+

1

q

∑
x∈Fq

1 + χq(x
3 + ax2 + bx+ c)

2

where α ∈ {0, 1, 2, 3} is the number of roots of the polynomial x3 + ax2 + bx+ c in Fq. This
gives:

w =
1

2
+

#E(Fq − q − 1 + α)

2q
=

1

2
+O

(
1
√
q

)
.

Now this point construction algorithm can be turned into a hash function based on an
Fq-valued random oracle h : {0, 1}∗ → Fq. To hash a message m, the idea is to pick the x-
coordinate as, essentially, h(m) (which amounts to picking it at random once) and carry out
the point construction above. However, since one should also be able to retry in case the first
x-coordinate that is tried out is not the abscissa of an actual curve point, we rather let x←
h(c||m), where c is a fixed-length counter initially set to 0 and incremented in case of a failure.
Since there is a choice of sign to make when taking the square root of t = x3 + ax2 + bx+ c,
we also modify h to output an extra bit for that purpose: h : {0, 1}∗ → Fq × {0, 1}. This
is the try-and-increment algorithm, described more precisely in Algorithm 22 (and called
MapToGroup in [24]). The failure probability after up to ` iterations is about 2−` by the
previous computations, so choosing the length of the counter c to be large enough for up to
` ≈ 128 iterations, say, is enough to ensure that the algorithm succeeds except with negligible
probability.

Boneh, Lynn, and Shacham proved that this construction can replace the random oracle
H : {0, 1}∗ → E(Fq) in BLS signatures without compromising security. In fact, it is not hard
to see that it is indifferentiable from such a random oracle, in the sense of Maurer, Renner,
and Holenstein [123]: This ensures that this construction can be plugged into almost all
protocols requiring a random oracle H : {0, 1}∗ → E(Fq) while preserving random oracle
security proofs.

Nevertheless, there are various reasons why Algorithm 22 is not a completely satisfactory
construction for hash functions to elliptic curves. There is arguably a certain lack of mathe-
matical elegance in the underlying idea of picking x-coordinates at random until a correct one
is found, especially as the length of the counter, and hence the maximum number of trials,
has to be fixed (to prevent collisions). More importantly, this may have adverse consequences
for the security of physical devices implementing a protocol using this construction: for ex-
ample, since the number of iterations in the algorithm depends on the input m, an adversary

Cinvestav 86

5.2. MAIN OPERATIONS IN PAIRING-BASED PROTOCOLS

Algorithm 22 The try-and-increment algorithm

Input: the message m ∈ {0, 1}∗ to be hashed.
Output: the resulting point (x, y) on the curve E/Fq : y2 = x3 + ax2 + bx+ c.

1: c← 0 . c is represented as a dlog2 `e-bit bit string
2: (x, b)← h(c||m) . h is a random oracle to Fq × {0, 1}
3: t← x3 + ax2 + bx+ c
4: if t is a square in Fq then
5: y ← (−1)b ·

√
t . define

√
· as the smaller square root wrt some ordering

6: return (x, y)
7: else
8: c← c+ 1
9: if c < ` then

10: Goto step 2
11: end if
12: end if
13: return ⊥

can obtain information on m by measuring the running time or the power consumption of a
physical implementation.

5.2.3.3. The issue of timing attacks

A concrete situation in which this varying running time can be a serious issue is the case
of embedded devices (especially e-passports) implementing an elliptic curve-based Password-
Authenticated Key Exchange (PAKE) protocol.

PAKE is a method for two parties sharing a common low-entropy secret (such as a four-
digit PIN, or a self-picked alphabetic password) to derive a high-entropy session key for
secure communication in an authenticated way. One of the main security requirements is,
informally, that an attacker should not be able to gain any information about the password,
except through a brute force online dictionary attack (i.e., impersonating one of the parties
in the protocol and attempting to authenticate with each password, one password at a time),
which can be prevented in practice by latency, smart card blocking, and other operational
measures. In particular, a PAKE protocol should be considered broken if a passive adversary
can learn any information about the password.

Now consider the PAKE protocol described in Figure 5.3, which is essentially Jablon’s
Simple Password-base Exponential Key Exchange (SPEKE) [90] implemented over an elliptic
curve, except with a random salt as suggested in [91]. The public parameters are an elliptic
curve group G of prime order p and a hash function H : {0, 1}∗ → G. The two parties share
a common password π, and derive a high-entropy K ∈ G using Diffie-Hellman key agreement
in G but with a variable generator G ∈ G computed by hashing the password.

But if the hash function H is instantiated by the try-and-increment construction and an
eavesdropper is able to measure the running time of one of the parties, she will find different
running times or different power traces depending on how many trials it takes to find a
suitable x-coordinate in the computation of H(s||π). Since it takes a single iteration with
probability close to 1/2, an execution of the protocol provides at least one bit of information
about π to the adversary (and about

∑
k≥1 2−k log2(2−k) = 2 bits on average).

This leads to a so-called partition attack, conceptually similar to those described by Boyd
et al. in [27]: The adversary can count the number of iterations needed to compute H(s||π0)
for each password π0 in the password dictionary, keeping only the π0’s for which this number
of iterations matches the side-channel measurement. This reduces the search space by a
factor of at least 2 (and more typically 4) for each execution of the protocol, as the running

Cinvestav 87

CHAPTER 5. INTRODUCTION TO BILINEAR PAIRINGS

Alice (passport) Bob (reader)

s←−−−−−−−−−− s
$←− {0, 1}k

G←− H(s||π) G←− H(s||π)

rA
$←− Zp rB

$←− Zp

A←− [rA]G
A−−−−−−−−−−→
B←−−−−−−−−−− B ←− [rB]G

K ←− [rA]B K ←− [rB]A

Figure 5.3: A randomized variant of the SPEKE protocol.

times for different values of s are independent. As a result, the eavesdropper can typically
reduce his search space to a single password after at most a few dozen executions of the
protocol!

A rather inefficient countermeasure that can be considered is to run all ` iterations of the
try-and-increment algorithm every time. However, even that is probably insufficient to thwart
the attack: indeed, the usual algorithm (using quadratic reciprocity) for testing whether an
element of Fq is a square, as is done in Step 4 of Algorithm 22, also has different running
times depending on its input. This can provide information to the adversary as well, unless
this part is somehow tweaked to run in constant time1, which seems difficult to do short
of computing the quadratic character with an exponentiation and making the algorithm
prohibitively slow with ` exponentiations every time. In principle, padding the quadratic
reciprocity-based algorithm with dummy operations might provide a less computationally
expensive solution, but implementing such a countermeasure securely seems quite daunting.
A construction that naturally runs in constant time would certainly be preferable and this
is the objective of the §6.1.

1By constant time, we mean “whose running time does not depend on the input” (once the choice of
parameters like E and Fq is fixed), and not O(1) time in the sense of complexity theory.

Cinvestav 88

Chapter 6
Constant-time hashing into elliptic

curves

In all pairing based protocols, the hash functions are modeled as random oracles [16] in
security proofs. However, it is not immediately clear how such a hash function can be instan-
tiated in practice. Indeed, random oracles to groups like (Z/pZ)∗ can be easily constructed
from random oracles to fixed-length bit strings, for which conventional cryptographic hash
functions usually provide acceptable substitutes. On the other hand, constructing random or-
acles to a elliptic curves, even from random oracles to bit strings, appears difficult in general,
and some of the more obvious instantiations actually break security completely. Therefore
in this section is discuss how it can be done correctly, both from a theoretical and a very
concrete standpoint.

6.1. Encoding functions to elliptic curves

A natural way to construct a constant-time hash function to an elliptic curve E would
be to use, as a building block, a suitable function f : Fq → E(Fq) that can be efficiently
computed in constant time. Then, combining f with a hash function h : {0, 1}∗ → Fq, we
can hope to obtain a well-behaved hash function to E(Fq).

Of course, not all such functions f are appropriate: for example, when q = p is prime,
the trivial encoding described in §5.2.3.1 is essentially of that form, with f : u 7→ [û]G (and
u 7→ û any lifting of Fp to Z).

On the other hand, if f is a bijection between Fq and E(Fq) whose inverse is also efficiently
computable, then the following construction:

H(m) = f(h(m)) (6.1)

is well-behaved, in the sense that if h is modeled as a random oracle to Fq, then H can replace
a random oracle to E(Fq) in any protocol while preserving proofs of security in the random
oracle model. Indeed, contrary to what happens in the case of the trivial encoding (where
programming the random oracle would require computing discrete logarithm), a simulator
can easily choose a value H(m0) = P0 by setting h(m0) = f−1(P0). More generally, such a
construction is, again, indifferentiable from a random oracle to E(Fq).

The same holds if f induces a bijection from Fq \ T to E(Fq) \ W for some finite or
negligibly small sets of points T and W .

89

CHAPTER 6. CONSTANT-TIME HASHING INTO ELLIPTIC CURVES

More generally, we will be considering cases where f is not necessarily an efficiently
invertible bijection but only a so-called samplable mapping, in the sense that for each P ∈
E(Fq), one can compute a random element of f−1(P) in probabilistic polynomial time.

6.1.1. The Boneh-Franklin encoding

It was actually one of the first papers requiring hashing to elliptic curves, namely Boneh
and Franklin’s construction [22] of identity-based encryption from the Weil pairing, that
introduced the first practical example of a hash function of the form presented in Equa-
tion (6.1). Boneh and Franklin used elliptic curves of a very special form:

E : y2 = x3 + b

over a field Fq such that q ≡ 2 mod 3. In Fq, u 7→ u3 is clearly a bijection, and thus each
element has a unique cube root. This makes it possible, following Boneh and Franklin, to
define a function f as:

f : Fq → E(Fq)

u 7→
(

(u2 − b)1/3, u
)
.

In other words, instead of picking the x-coordinate and trying to deduce the y-coordinate by
taking a square root (which may not exist) as before, we first choose the y-coordinate and
deduce the x-coordinate by taking a cube root (which always exists).

Obviously, the function f is a bijection from Fq to all the finite points of E(Fq). In
particular, this implies that #E(Fq) = 1 + #Fq = q+ 1; thus, E is supersingular (and hence
comes with an efficient symmetric pairing). This also means that f satisfies the conditions
mentioned in the previous section; therefore, construction in Equation (6.1) can replace the
random oracle H required by the Boneh-Franklin IBE scheme, or any other protocol proved
secure in the random oracle model. And it can also easily be computed in constant time: It
suffices to compute the cube root as an exponentiation to a fixed power α such that 3α ≡ 1
mod (q − 1).

Note that in fact, the group G considered by Boneh and Franklin isn’t E(Fq) itself, but
a subgroup G ⊂ E(Fq) of prime order. More precisely, the cardinality q of the base field is
chosen of the form 6r − 1 for some prime r 6= 2, 3. Then E(Fq) has a unique subgroup G of
order r (the curve has cofactor 6), which is the group actually used in the scheme. Hashing
to G rather than E(Fq) is then easy:

H(m) = f ′(h(m)) where f ′(u) = [6]f(u). (6.2)

The encoding f ′ defined in that way isn’t injective but it is samplable: indeed, to compute a
random preimage of some point P ∈ G, we can simply compute the six points Qi such that
[6]Qi = P , and return f−1(Qi) for a random index i. Using that observation, Boneh and
Franklin prove that construction in Equation (6.2) can replace the random oracle to G in
their IBE scheme. More generally, it is easy to see that it is indifferentiable from a random
oracle in the sense of Maurer et al. [123].

6.1.2. Beyond supersingular curves

The previous example suggests that a sensible first step towards constructing well-behaved
constant-time hash functions to elliptic curves is to first obtain mappings f : Fq → E(Fq) that
are computable in deterministic polynomial time and samplable, and admit constant-time
implementations. We will refer to such mappings as encoding functions or simply encodings.

Cinvestav 90

6.1. ENCODING FUNCTIONS TO ELLIPTIC CURVES

Note that despite what the name might suggest, there is no assumption of injectivity for
those mappings.

It turns out that constructing encodings to elliptic curves beyond special cases such as
Equation (6.2) is far from an easy task. In fact, Schoof mentioned the presumably easier
problem of constructing a single non-identity point on a general elliptic curve over a finite
field as open in his 1985 paper on point counting [146], and little progress was made on
this problem before the 2000s. Nevertheless, we now know how to construct encodings to
essentially all elliptic curves thanks to the work of numerous researchers.

We now present the two most important constructions, due to Shallue and van de Woesti-
jne on the one hand, and Icart on the other.

6.1.3. The Shallue-van de Woestijne approach

In a paper presented at ANTS in 2006, Shallue and van de Woestijne [152] proposed
a general construction of an encoding function that applies to all elliptic curves over finite
fields of odd characterstic.

Consider the general Weierstrass equation for an elliptic curve in odd characteristic (pos-
sibly including 3):

E : y2 = x3 + ax2 + bx+ c.

Let further g(x) = x3 +ax2 + bx+ c ∈ Fq[x]. It is possible to construct an encoding function
to E(Fq) from a rational curve on the three-dimensional variety:

V : y2 = g(x1)g(x2)g(x3)

(which, geometrically, is the quotient of E × E × E by (Z/2Z)2, where each non-trivial
element acts by [−1] on two components and by the identity on the third one). Indeed, if
φ : A1 → V , t 7→ (x1(t), x2(t), x3(t), y(t)) is such a rational curve (i.e., a rational map of the
affine line A1, parametrized by t, to the variety V), then for any u ∈ Fq that is not a pole of
φ, at least one of g(xi(u)) for i = 1, 2, 3 is a quadratic residue (because the product of three
quadratic non-residues is not a square, and hence cannot be equal to y(u)2). This yields a

well-defined point
(
xj(u),

√
g(xj(u))

)
∈ E(Fq) where j is the first index such that g(xj(u))

is a square, and thus we obtain the required encoding function.
Then, Shallue and van de Woestijne show how to construct such a rational curve φ (and

in fact a large number of them). They first obtain an explicit rational map ψ : S → V , where
S is the surface of equation:

S : y2 ·
(
u2 + uv + v2 + a(u+ v) + b

)
= −g(u),

which can also be written, by completing the square with respect to v, as:[
y(v +

1

2
u+

1

2
a)

]2

+

[
3

4
u2 +

1

2
au+ b− 1

4
a2

]
y2 = −g(u).

Now observe that for any fixed u ∈ Fq, the previous equation defines a curve of genus 0 in
the (v, y)-plane. More precisely, it can be written as:

z2 + αy2 = −g(u)

with z = y(v + 1
2u + 1

2a) and α = 3
4u

2 + 1
2au + b − 1

4a
2. This is a non-degenerate conic as

soon as α and g(u) are both non-zero (which happens for all u ∈ Fq except at most 5), and
then admits a rational parametrization, yielding a rational curve A1 → S. Composing with
ψ, we get the required rational curve on V , and hence an encoding, provided that q > 5.

Cinvestav 91

CHAPTER 6. CONSTANT-TIME HASHING INTO ELLIPTIC CURVES

6.1.4. Icart’s approach

In [89], Icart introduced an encoding function based on a very different idea, namely,
trying to adapt the Boneh-Franklin encoding discussed in §6.1.1 to the case of an ordinary
elliptic curve. More precisely, consider again an elliptic curve E given by a short Weierstrass
equation:

E : y2 = x3 + ax+ b

over a field Fq of odd characteristic with q ≡ 2 mod 3. The idea is again to reduce the
equation to a binomial cubic, which can be solved directly in Fq (where u 7→ u3 is a bijection).

Unlike the simple case considered by Boneh and Franklin, this cannot be done by picking
y as a constant: doing so results in a trinomial cubic which does not always have a root in
Fq. Icart’s idea is to set y = ux+ v for two parameters u, v to be chosen later. This gives:

x3 − u2x2 + (a− 2uv)x+ b− v2 = 0

and after completing the cube:(
x− u2

3

)3

+

(
a− 2uv − u4

3

)
x = v2 − b− u6

27
,

Thus, by setting v = (a− 3u4)/(6u), it is possible to cancel the term of degree 1 and obtain
a binomial cubic equation: (

x− u2

3

)3

= v2 − b− u6

27
,

which is easy to solve for x in Fq. This gives Icart’s encoding, described as follow:

f : Fq → E(Fq)

u 7→

((
v2 − b− u6

27

)1/3

+
u2

3
;ux+ v

)

where v = (a− 3u4)/(6u). By convention, f(0) = O, the identity element.
This encoding applies to a more restricted setting than the Shallue-van de Woestijne

encodings, due to the requirement that q ≡ 2 mod 3, but it has the advantage of being very
easy to describe and implement in constant time.

6.2. Hashing to pairing-friendly curves

In the previous section, we have described several constructions of encoding functions to
elliptic curves. It is not clear, however, that they solve our initial problem of hashing to
elliptic curve groups. There are two issues at play: the first is the lack of indifferentiability,
and the second is the fact that we want to map to the subgroup G1 or G2 rather than the
whole curve.

6.2.1. The issue of indifferentiability

The basic construction of a hash function H : {0, 1}∗ → E(Fq) from an Fq-valued random
oracle h : {0, 1}∗ → Fq and an encoding f : Fq → E(Fq), as suggested in previous paragraphs,
is simply:

H(m) = f(h(m)). (6.3)

However, unlike what happens for the Boneh-Franklin encoding, the resulting hash function
H does not necessarily have strong security properties.

Cinvestav 92

6.2. HASHING TO PAIRING-FRIENDLY CURVES

Consider the case when f is Icart’s encoding, for example (most other encodings are
similar). One can then prove some limited security properties on H, such as that H is one-
way if h is [89, Lemma 5]. However, unlike the Boneh-Franklin encoding, f is not a surjective
or “almost” surjective function to the target group E(Fq). Indeed, in his original paper [89],
Icart could only show that the image f(Fq) satisfies #f(Fq) & (1/4)·#E(Fq), and conjectured
that, in fact, #f(Fq) ≈ (5/8) ·#E(Fq) (a conjecture which was later proved in [61, 64]). As
a result, the hash function H constructed from f using formula in Equation (6.3) is easily
distinguished from a random oracle!

To see this, note that since f is an algebraic function, we can efficiently compute f−1(P)
for any P ∈ E(Fq) by solving a polynomial equation over Fq. In particular, it is possible
to decide efficiently whether P is in the image of f or not. Therefore, we can construct a
distinguisher D between H0 = H and a random oracle H1 to E(Fq) as follows. D is given as
input P = Hb(m) ∈ E(Fq) for some message m and a random bit b ∈ {0, 1}. It answers with
a guess of the bit b, as b = 0 if P is in f(Fq) and b = 1 otherwise. Then D has a constant
positive advantage. Indeed, it answers correctly with probability 1 if P /∈ f(Fq), and with
probability 1/2 otherwise, hence it has a non-negligible advantage in the distinguishing game.
Thus, clearly, construction in Equation (6.3) does not behave like a random oracle when f is
Icart’s encoding (or most other encodings), and cannot replace a random oracle in a generic
way.

In many protocols requiring a hash function to an elliptic curve group, this is actually
not much of a problem, and an encoding with an image size that is a constant fraction of
#E(Fq) is often good enough. The reason is that, in a random oracle proof of security, the
simulator programs the random oracle by setting the hash of some message m to a value
P , but that point P itself can usually be anything depending on some randomness. So the
simulator might typically want to set H(m) to P = [r]G for some random r, say. Now if H
is defined in the protocol using a construction like Equation (6.3), the simulator would pick
a random r and set h(m) to one of the preimages u ∈ f−1(P) if P ∈ f(Fq). If, however, P
is not in the image of f , the simulator would pick another random r and try again.

Nevertheless, it seems difficult to give formal sufficient conditions on a protocol for it to
remain secure when the elliptic curve-valued random oracle is replaced by a construction like
Equation (6.3). One can actually find protocols that are secure in the random oracle model,
but in which using that construction instead breaks security completely [30].

Therefore, it would be desirable to obtain from the encodings discussed thus far a con-
struction that does satisfy the indifferentiability property mentioned in §5.2.3.2, and can
thus be used as a plug-in replacement for elliptic curve-valued random oracles in a very large
class of protocols. The problem was solved by Brier et al. [30] in the case of Icart’s function,
and by Farashahi et al. [60] in general. They prove that the following construction achieves
indifferentiability from a random oracle:

H(m) = f(h1(m)) + f(h2(m)) (6.4)

where h1 and h2 are modeled as random oracles {0, 1}∗ → Fq (and the addition is the usual
group operation in E(Fq)). As a result, to obtain an efficient indifferentiable hash function
construction, it suffices to know how to compute a function of the form of Equation (6.3)
efficiently: do it twice, add the results together, and you get indifferentiability. Therefore,
and since in many cases it is sufficient by itself, the form in Equation (6.3) is what the rest
of this chapter will focus on.

6.2.2. Hashing to subgroups

Most of the discussion so far has focused on the problem of hashing to the whole group
E(Fq) of points on the elliptic curve E. But this is not in fact what we need for pairing-based

Cinvestav 93

CHAPTER 6. CONSTANT-TIME HASHING INTO ELLIPTIC CURVES

cryptography: The groups we would like to hash to are pairing groups G1 and G2, which are
subgroups of an elliptic curve group. Let us review how hashing to those subgroups works.

6.2.2.1. Hashing to G1

This case is simpler. Consider a pairing-friendly curve E/Fp over a prime field. The group
G1 is just the group E(Fp)[r] of r-torsion points in E(Fp), for some large prime divisor r of
#E(Fp). If we denote by c the cofactor of E, i.e., the integer such that #E(Fp) = c · r, then
c is always coprime to r, and G1 can thus be obtained as the image of the homomorphism
[c] of multiplication by c in E(Fp).

Now suppose we are given some well-behaved hash function H : {0, 1}∗ → E(Fp). Then
we can construct a map H1 : {0, 1}∗ → G1 by defining H1(m) = [c]H(m), and it turns out
that H1 is still a well-behaved hash function. For example, Brier et al. [30] show that if
H is indifferentiable from a random oracle, then so is H1. This results from the fact that
the muliplication-by-c homomorphism is efficiently computable, regular (all elements of G1

have the same number of preimages, namely c), and efficiently samplable (we can sample
a uniformly distributed preimage of an element in G1 by adding to it a random element of
order c in E(Fp), which we can, for example, generate as [r]P for P , a uniformly sampled
random point).

As a result, to hash to G1 efficiently, we simply need an efficient way of computing some
curve-valued hash function H, and an efficient way of evaluating the multiplication-by-c map.
The latter is typically quite cheap.

6.2.2.2. Hashing to G2

This case is more complicated in general. Indeed, generally speaking, G2 is one specific
subgroup of order r in the group E(Fpk)[r] of r-torsion points of E over the embedding field
Fpk . But since E(Fpk)[r] is isomorphic to (Z/rZ)2, there are many subgroups of order r, and
one cannot just multiply by some cofactor to map into G2. The approach used to hash to G2

will differ according to which of the three pairing types, in the sense of Galbraith, Paterson,
and Smart [71], we are working with.

For Type I pairings, the distortion map provides an efficiently computable isomorphism
from G1 to G2. Therefore, we can simply hash to G1 as above and compose with the
distortion map to obtain a hash function to G2.

For Type II pairings, G2 is not the image of any efficiently computable homomorphism,
and as a result, there is in fact no way of efficiently hashing to that group. One cannot
instantiate protocols that require hashing to G2 in the Type II setting. In rare cases where
one really needs both the ability to hash to G2 and the existence of a one-way isomorphism
G2 → G1, a possible workaround is to replace G2 with the entire group E(Fpk)[r] of order
r2, which we can hash to as above using the multiplication by #E(Fpk)/r2 in E(Fpk). This
is usually called the Type IV pairing setting [38, 36]. The cofactor multiplication in that
case is quite costly, so it may be interesting to optimize it. However, it is usually possible to
convert such protocols to the significantly more efficient Type III setting [37], so we will not
consider that case further in the rest of this chapter.

For Type III pairings, G2 ⊂ E(Fpk)[r] is the eigenspace of the Frobenius endomorphism
π associated with the eigenvalue q, and the complementary subspace of G1 (which is the
eigenspace for the eigenvalue 1). As a result, G2 is the image of the efficient endomorphism
π−Id
q−1 of E(Fpk)[r]. Therefore, we can hash to G2 by cofactor multiplication to get into

E(Fpk)[r], composed with that endomorphism. In practice, however, it is much more prefer-
able to represent G2 as a subgroup in the degree-d twist E′ of E over a lower degree extension
Fpk/d . Doing so, G2 simply appears as the subgroup E′(Fpk/d)[r] of r-torsion points on that
curve, and hashing can be done exactly as in the case of G1. Contrary to the case of G1,

Cinvestav 94

6.3. CASE STUDY: THE BARRETO-NAEHRIG ELLIPTIC CURVES

however, the cofactor in this case is usually quite large, and it is thus a major concern to
make it as fast as possible. This is one of the main issues discussed in the coming sections.

6.3. Case study: the Barreto-Naehrig elliptic curves

In this section we discuss how to apply the the Shallue and van de Woestijne encoding
described in §6.1.3 along with the hashing techniques discussed in §6.2, in order to construct
points that belong to the groups of a popular instantiation of Type III pairings, namely,
bilinear pairings implemented over the BN elliptic curves defined in §5.1.2.1.

6.3.1. Constant-time hashing to G1

In Latincrypt 2012, Fouque and Tibouchi [65] presented a specialization of the procedure
proposed by Shallue and van de Woestijne [152] applied to Barreto-Naehrig curves, which
are defined over the finite field Fp, with p ≡ 7 mod 12, or p ≡ 1 mod 12. The mapping
covers a 9/16 fraction of the prime group size r = #E(Fp). In a nutshell, the procedure
proposed in [65] consists in the following.

Let t be an arbitrary non-zero element in the base field F∗p such that x1, x2, x3 ∈ Fp∗ are
defined as

x1 =
−1 +

√
(− 3)

2
−
√
−3 · t2

1 + b+ t2
,

x2 =
−1−

√
(− 3)

2
+

√
−3 · t2

1 + b+ t2
,

x3 = 1− (1 + b+ t2)2

3t2
.

The Shallue-van de Woestijne encoding applied to the Barreto-Naehrig curves of the form
E : y2 = g(x) = x3 + b is given by the following projection:

f : F∗p → E(Fp)

t 7→
(
xi, χp(t) ·

√
g(xi)

)
,

where the index i ∈ {1, 2, 3} is the smallest integer such that g(xi) is a square in Fp and
the function χp : {−1, 0, 1}, computes the non-trivial quadratic character over the field
F∗p, also known as quadratic residuosity test. The procedure just outlined is presented in
Algorithm 23.

Remark 6.1 (The Barreto-Naehrig curve G1 subgroup). Notice that the Barreto-Naehrig
curves are exceptional in the sense that the subgroup G1 is exactly the same as E(Fp). In
other words, for this case, the cofactor c is equal to one, and therefore, the procedure presented
in Algorithm 23 effectively completes the hashing to G1.

Remark 6.2 (Implementation aspects). All the computations of Algorithm 23 are performed
over the base field Fp at a cost of two field inversions, three quadratic character tests, one

square root, and few field multiplications. Notice that the values
√
−3 and −1+

√
−3

2 are
precomputed offline in Steps 1–2. Moreover, when p is chosen such that p ≡ 3 mod 4, the

square root
√
x3 + b (line 10) can be computed by the power (x3

i + b)
p+1
4 .

In order to ensure a constant-time behavior, the quadratic residuosity test of a field

element a can be computed by performing the exponentiation a
p−1
2 . Alternatively, one

can performs the quadratic residuosity test by recursively applying Gauss’ law of quadratic

Cinvestav 95

CHAPTER 6. CONSTANT-TIME HASHING INTO ELLIPTIC CURVES

Algorithm 23 Constant-time hash function to G1 on BN curves [65]

Input: t ∈ F∗p, parameter b ∈ Fp of E/Fp : y2 = x3 + b.
Output: A point Point P = (x, y) ∈ G1

Precomputation:
1: sqrt3 ←

√
−3

2: j ← (−1 + sqrt3)/2
Computation:

3: w ← sqrt3 · t
1+b+t2

4: x1 ← j − t · w
5: x2 ← −1− x1

6: x3 ← 1 + 1/w2

7: α← χq(x
3
1 + b) . Using Euler’s Criterion: (x3

1 + b)
p−1
2

8: β ← χq(x
3
2 + b) . Using Euler’s Criterion: (x3

2 + b)
p−1
2

9: i← [(α− 1) · β mod 3] + 1

10: return P ←
(
xi, χp(t) ·

√
x3
i + b

)
. Using Euler’s Criterion: t

p−1
2

reciprocity at a computational cost similar to computing the greatest common divisor of a
and p. Unfortunately, it is difficult to implement it in constant-time. That is why the authors
of [65] suggested using blinding techniques in order to thwart potential timing attacks. This
variant was adopted in several papers such as [41, 168] and implemented in Algorithm 24.

Algorithm 24 Blind factor version of the Hash function to G1 on Barreto-Naehrig curves [65]

Input: t ∈ F∗p, parameter b ∈ Fp of E/Fp : y2 = x3 + b.
Output: A point Point P = (x, y) ∈ G1

Precomputation:
1: sqrt3 ←

√
−3

2: j ← (−1 + sqrt3)/2
Computation:

3: w ← sqrt3 · t
1+b+t2

4: x1 ← j − t · w
5: x2 ← −1− x1

6: x3 ← 1 + 1/w2

7: r1, r2, r3
$← F∗p

8: α← χq(r
2
1 · (x3

1 + b)) . Using blind factor approach
9: β ← χq(r

2
2 · (x3

2 + b)) . Using blind factor approach
10: i← [(α− 1) · β mod 3] + 1

11: return P ←
(
xi, χp(r

2
3 · t) ·

√
x3
i + b

)
. Using blind factor approach

Remark 6.3 (On the security of Algorithm 24). Strictly speaking, the blinding factor pro-
tection of Algorithm 24 is not provably secure against timing attacks. This is because even if
the blinding factors are uniformly distributed in the base field, and kept unknown to the ad-
versary, the input of the algorithm computing the quadratic characther χp, is not uniformly
distributed in all of F∗p, but only among its quadratic residues or quadratic non-residues.
Practically speaking, this is not very significant: Very little secret information can leak in
that way. Moreover, if the quadratic residuosity test is performed in constant-time, then
no information will be leaked at all. Nevertheless, it is always possible to achieve provable
protection through additional blinding. For example, one can randomly multiply by a blind

Cinvestav 96

6.3. CASE STUDY: THE BARRETO-NAEHRIG ELLIPTIC CURVES

factor that is a known square/non-square with probability 1/2, and then adjust the output
accordingly.

6.3.2. Deterministic construction of points in E ′(Fp2) for BN curves

The Barreto-Naehrig family of elliptic curves has an embedding degree of k = 12, and an
associated twist curve E′ with degree d = 6. This defines the group G2 as

G2 = E′(Fpk/d)[r] = E′(Fp2)[r].

As already mentioned, the encoding described by Fouque and Tibouchi in [65] applies over
finite fields Fp, where p ≡ 7 mod 12 or p ≡ 1 mod 12. In the case of the Barreto-Naehrig
curves, one observes that since p ≡ 7 mod 12, then p2 ≡ 1 mod 12. As a result, the
encoding presented in [65] can be applied as it is in order to find random points over E′/Fp2 ,
except that several computations must be performed over the quadratic field extension Fp2 .
The corresponding procedure is shown in Algorithm 25.

Algorithm 25 Deterministic construction of points in E′(Fp2) for Barreto-Naehrig curves.

Input: t ∈ F∗p, parameter B = b0 + b1u ∈ Fp2 of E′/Fp2 : Y 2 = X3 +B.
Output: A point Point Q = (x, y) ∈ E′(Fp2)

Precomputation:
1: sqrt3 ←

√
−3

2: j ← (−1 + sqrt3)/2
Computation:

3: a0 ← 1 + b0 + t2

4: a1 ← b1
5: A← 1/A . with A = a0 + a1u ∈ Fp2
6: c← sqrt3 · t
7: W ← (c · a0) + (c · a1)u . with W = w0 + w1u ∈ Fp2
8: a0 ← w0 · t
9: a1 ← w1 · t

10: X1 ← (j − a0)− a1u . with X1 = x1,0 + x1,1u ∈ Fp2
11: X2 ← (−xi,0 − 1)− x1,1u . with X2 = x2,0 + x2,1u ∈ Fp2
12: X3 ← 1/W 2 . with X3 = x3,0 + x3,1u ∈ Fp2
13: X3 ← (1 + x3,0) + x3,1u
14: α← χp2(X3

1 +B)
15: β ← χp2(X3

2 +B)
16: i← [(α− 1) · β mod 3] + 1

17: return Q←
(
Xi, χp2(t) ·

√
X3
i +B

)
Notice that all the operations of Algorithm 25 are performed over the base field Fp

and its quadratic extension Fp2 = Fp[u]/u2 − β, where β = −1 is not a square over Fp. In
particular, the steps 14 and 15 of Algorithm 25 must compute in constant-time the quadratic
character χp2(·) over the extension field Fp2 . To this end, one can use the procedure described
in [4], which is an improvement over the work made by Bach and Huber [9]. The authors
of [4] proposed to compute the quadratic character over the quadratic field extension Fp2 by
descending the computation to the base field Fp, using the following identity:

χp2(a) = a
p2−1

2 = (a · ap)
p−1
2 (6.5)

= (a · ā)
p−1
2 = χp(a · ā) = χp(|a|)

Cinvestav 97

CHAPTER 6. CONSTANT-TIME HASHING INTO ELLIPTIC CURVES

where ā = a0 − a1u and |a| is the conjugate and the norm of a, respectively. The above
computation can be carried out at a cost of two squarings, one addition, and the computation
of the quadractic character χp(|a|). As before, χp(|a|) can be computed either by performing
one exponentiation over the base field Fp, or alternatively, by applying blinding techniques.

Furthermore, in line 17 of Algorithm 25 one needs to extract a square root over the
quadratic field Fp2 . This operation can be efficiently computed in constant-time using the
complex method proposed by Scott in [147].

Remark 6.4. Notice that in line 17 of Algorithm 25, the procedure proposed in [65] guar-
antees that the term X3

i + B is always a quadratic residue over the field Fp2 . Hence, one
can safely omit the steps that verifies if the square root exists in the method proposed by
Scott [147].

6.3.3. Efficient hashing to G2

In this section we are interested in the efficient computation of the third mapping shown
in Figure 5.2, namely, the computation of the scalar multiplication, Q′ = [c]Q̃.

Let E′(Fpk/d) be an abelian group of order #E′(Fpk/d) = c · r, where c is a composite
integer known as the cofactor of the twist elliptic curve E′. As we have seen, hashing to G2

can be done by deterministically selecting a random point Q̃ in E′(Fpk/d) we have that

{[c]Q̃ | Q̃ ∈ E′(Fpk/d)} = {Q′ ∈ E′(Fpk/d) | [r]Q′ = O}.

However, since in most pairing-friendly elliptic curves the cofactor c in the group G2 has
a considerably large size, which is certainly much larger than the prime order r, a direct
computation of such scalar multiplication will be quite costly.

In the rest of this section, we describe a method which for several families of pairing-
friendly elliptic curves, allows us to compute the scalar multiplication Q′ = [c]Q̃ on a time-
computational complexity of O(1/ϕ(k) log c). The following material closely follows the
discussion presented in [150, 69, 110].

6.3.3.1. The Fuentes et al. method

Observe that a multiple c′ of the cofactor c such that c′ 6≡ 0 (mod r) will also hash
correctly to the group G2, since the point [c′]Q̃ is also in E(Fpk/d)[r]. The method presented
in [69, 110] is based in the following theorem.

Theorem 6.1. Since p ≡ 1 mod d and E′(Fpk/d) is a cyclic group, then there exists a

polynomial h(z) = h0 + h1z + · · ·+ hϕ(k)−1z
ϕ(k)−1 ∈ Z[z] such that [h(Ψ)]P is a multiple of

[c]P for all P ∈ E′(Fpk/d) and |hi|ϕ(k) ≤ #E′(Fpk/d)/r for all i.

This Theorem proved in [69] by means of the following two auxiliary lemmas.

Lemma 6.1. Let d be the degree of the twist curve E′, if p ≡ 1 mod d, then Ψ(Q̃) ∈
E′(Fpk/d), for all Q̃ ∈ E′(Fpk/d).

The above lemma proves that the endomorphism Ψ : E′ → E, defined over Fqd , fixes

Ẽ(Fq) as a set. The next lemma shows the effect of ψ on elements in Ẽ(Fq).

Lemma 6.2. Let t2 − 4p = Df2 and t̃ − 4q = Df̃2, for some value of f and f̃ , where
q = pk/d and D is the discriminant of the curve E. Also, let ñ = #E′(Fpk/d). If the
following conditions are satisfied,

p ≡ 1 mod d,

Cinvestav 98

6.3. CASE STUDY: THE BARRETO-NAEHRIG ELLIPTIC CURVES

gcd(f̃ , ñ) = 1,

E′(Fpk/d) is cyclic,

then ψ(Q̃) = [a]Q̃ for all Q̃ ∈ E′(Fpk/d), where, a = (t± f(t̃− 2)/f̃)/2.

Once the value of a such that [a]Q̃ = ψ(Q̃) has been computed, it is necessary to find the
polynomial h ∈ Z[w], with the smallest coefficients, such that h(a) ≡ 0 mod c. To this end,
one needs to consider a matrix M , with rows representing the polynomials hi(w) = wi − ai,
such that hi(a) ≡ 0 mod c. Hence, any linear combination of the rows of the matrix M will
correspond with a polynomial h′(w) that satisfies the above condition.

Since the Frobenius endomorphism π acting over E(Fpk) has order k, and since ψ is an
endomorphism that acts on the cyclic group E′(Fpk/d), then ψ operating over E′(Fpk/d) also
has order k. Furthermore, since the integer number a satisfies the congruence Φk(a) ≡ 0
mod ñ, where Φk is the k-th cyclotomic polynomial, then the polynomials h(w) = wi − ai
with i ≥ ϕ(k) can be written as linear combinations of w− a, . . . , wϕ(k)−1 − aϕ(k)−1 mod c,
where ϕ(·) is the Euler’s totient function. Because of the aforementioned argument, only the
polynomials with degree less than ϕ(k) are considered, as follow.

a0 a1 a2 · · · aϕ(k)−1

M =

c 0 0 · · · 0
−a 1 0 · · · 0
−a2 0 1 · · · 0

...
...

. . .

−aϕ(k)−1 0 0 · · · 1

−→

c ≡ 0 mod c
−a+ a ≡ 0 mod c
−a2 + a2 ≡ 0 mod c

...
...

...
−aϕ(k)−1 + aϕ(k)−1 ≡ 0 mod c

In this case, the rows of the matrix M can be seen as vectors, which form a lattice basis.
Now, the Lenstra-Lenstra-Lovász algorithm [118] can be applied to M in order to obtain
an integer basis for M with small entries. According to the Minkowski’s theorem [129], a
vector v that represents a linear combination of the basis of the lattice L, will be found. This
solution will correspond to the polynomial h with coefficients smaller than |c|1/ϕ(k).

In the rest of this Section, explicit equations for computing the hash to the group G2 on
the BN curves [13] with embedding degree k = 12.

6.3.3.2. Barreto-Naehrig curves

For the Barreto-Naehrig elliptic curves, the group order ñ = #E′(Fp2) and the trace of
the twist E′ over Fp2 , are parametrized as follows:

ñ = (36x4 + 36x3 + 18x2 + 6x+ 1)(36x4 + 36x3 + 30x2 + 6x+ 1),

t̃ = 36x4 + 1

where ñ(x) = r(x)c(x). Using Lemma 6.2, we find that

a(x) = −1

5
(3456x7 + 6696x6 + 7488x5 + 4932x4 + 2112x3 + 588x2 + 106x+ 6).

It is interesting to notice that a(x) ≡ p(x) mod r(x) and ψ(Q′) = [a(x)]Q′ = [p(x)]Q′ for
all Q′ ∈ Ẽ(Fp2)[r]. Note that a(x) ≡ p(x)(mod r) and thus ψQ = [a(x)]Q = [p(x)]Q for all

Q ∈ Ẽ(Fq)[r].
Following the strategy mentioned above, the lattice L can be built, and then reducing

−a(x)i modulo c(x), one obtains
c(x) 0 0 0
−a(x) 1 0 0
−a(x)2 0 1 0
−a(x)3 0 0 1

→

36x4 + 36x3 + 30x2 + 6x+ 1 0 0 0
48/5x3 + 6x2 + 4x− 2/5 1 0 0
36/5x3 + 6x2 + 6x+ 1/5 0 1 0

12x3 + 12x2 + 8x+ 1 0 0 1

 .
Cinvestav 99

CHAPTER 6. CONSTANT-TIME HASHING INTO ELLIPTIC CURVES

From this lattice, one finds the polynomial h(x) = x+3xz+xz2 +z3. Working modulo ñ(x),
we have that

h(a) = −(18x3 + 12x2 + 3x+ 1)c(x),

and since gcd(18x3 + 12x2 + 3x + 1, r(x)) = 1, the following map is a homomorphism of
Ẽ(Fq) with image Ẽ(Fq)[r]:

Q 7→ [x]Q+ ψ([3x]Q) + ψ2([x]Q) + ψ3(Q).

We can compute Q 7→ [x]Q 7→ [2x]Q 7→ [3x]Q using one doubling, one addition, and one
multiply-by-x. Given Q, [x]Q, [3x]Q, we can compute [h(a)]Q using three ψ-maps, and three
additions. In total, we require one doubling, four additions, one multiply-by-x, and three
ψ-maps.

6.4. Implementation

This section presents an implementation of the hashing to the groups G1 and G2 pro-
cedures, as defined in the Barreto-Naehrig curves. We decided to use the Barreto-Naehrig
curves, mainly because they are the preferred curves for efficient implementations of bilinear
pairings in many pairing libraries, such as [6, 130, 168].

6.4.1. Intel processor

Table 6.1 reports the timings (in 103 clock cycles) achieved by our software implemen-
tation of all the required building blocks for computing the hash functions to the Barreto-
Naehrig curve subgroups G1 and G2. Our library was written in the C and C++ languages
and compiled with gcc 4.9.2. It was run on a Haswell Intel core i7-4700MQ processor
running at 2.4 GHz, with both the Turbo-Boost and Hyper-threading technologies disabled.

We used two values of the Barreto-Naehrig parameter x, namely, x0 = −(262 + 255 + 1),
which is a standard choice recommended in [74] and used in many pairing libraries, such
as [6, 130, 168]. We also report the timings for the parameter choice: x1 = −(262 + 247 +
238 + 237 + 214 + 27 + 1), which is the value recommended in [149] to avoid subgroup attacks
in the group GT .

Group Operation
Parameter x for BN curves
x0 x1

Fp SHA256 1.81 1.81

G1

Algorithm 23 122.81 156.48
Algorithm 24 95.83 104.83
Hash G1 with Alg. 23 124.62 158.29
Hash G1 with Alg. 24 97.64 106.64

G2

[c]Q̃ 161.63 175.02
Alg. 25 (in CT) 186.71 236.94
Alg. 25 (with BF) 134.03 153.12
Hash G2 with Alg. 25 (in CT) 344.82 408.24
Hash G2 with Alg. 25 (with BF) 293.29 322.21

Table 6.1: Cost of the main operations for hashing into G1 and G2 using BN curves at the
128-bit security level over Intel processor.

Cinvestav 100

6.4. IMPLEMENTATION

6.4.2. ARM processor

Table 6.2 reports the timings (in 103 clock cycles) achieved by our software implemen-
tation of all the required building blocks for computing the hash functions to the Barreto-
Naehrig curve subgroups G1 and G2. Our library was written in the C language, taking
advantage of the NEON technology, and compiled using the android-ndk-r10b Native De-
velopment Kit, and executed on an ARM Exynos 5 Cortex-A15 platform running at 1.7GHz.
Once again, we used the two values for the x parameters chosen for the Intel processor in
the preceding section.

Group Operation
Parameter x for BN curves
x0 x1

Fp SHA256 8.67 8.67

G1

Algorithm 23 1047.80 1357.71
Algorithm 24 655.32 709.40
Hash G1 with Alg. 23 1056.43 1366.23
Hash G1 with Alg. 24 664.02 718.12

G2

[c]Q̃ 754.10 806.06
Alg. 25 (in CT) 1337.21 1717.81
Alg. 25 (with BF) 809.01 863.29
Hash G2 with Alg. 25 (in CT) 2099.95 2530.20
Hash G2 with Alg. 25 (with BF) 1570.75 1680.37

Table 6.2: Cost of the main operations for hashing into G1 and G2 using BN curves at the
128-bit security level Over ARM processor.

Cinvestav 101

CHAPTER 6. CONSTANT-TIME HASHING INTO ELLIPTIC CURVES

Cinvestav 102

Chapter 7
Protected implementation of

pairing-based authentication protocols

In this section the problem of authentication is addressed, which is undoubtedly one of
the most important goals of modern cryptography. Throughout this section we describe a
software implementation of paring-based two-factor authentication protocols performed in a
secure way, in order to thwart simple side-channel attacks. Such protocols allow authenticate
two entities using a four-digit password and a software token. The implementation takes
advantage of the ARM Cortex-A processors features found in recent mobiles devices, and
also of the Intel Haswell processors found in contemporary laptops models.

7.1. Introduction

In recent years, it has massively increased the use of mobile devices such as smart phones
and tablets, which allow to perform financial transactions, multimedia processing, and a large
number of tasks, since they are equipped with powerful processors. For this reason, they have
become a target for attackers because users not only use them as communication devices,
but also as devices where its sensitive information is stored. Considering this, it becomes
necessary to provide security services such as authentication, confidentiality, integrity, non-
repudiation, and access control that protect the data used in such devices. This security
services generally are performed through cryptographic protocols that require efficient, fast
and protected implementations.

Specifically referring to elliptic curve or pairing based protocols, which are the main in-
terest in this section, we found that most works in the state-of-the-art are focused on just
implementing the main primitives used in this kind of protocols, such as point scalar multi-
plication or the pairing function, leaving aside the implementation of complete protocols.

For example, in 2012 Tolga Acar et al. [1] implemented the optimal Ate pairing over the
family of curves Barreto-Naehrig (BN) offering a security level of 128- and 192-bits. The
authors used affine and projective coordinates for its computations on an ARM Cortex-A9
processor, concluding that affine coordinates are more efficient that projective ones when
it is used a security level higher than 128-bits; later, Gurleen Grewal et al. [79], in the
same year, presented an implementation of optimal Ate pairing also in BN curves using
different security levels over ARM processors. They observed that projective homogeneous
coordinates are unequivocally the best choice for pairing computation, when a security level
of 128-bits and high optimization levels are used; in 2014, Faz-Hernández et al. [63] proposed
an algorithm for computing point scalar multiplications in a secure way in order to thwart

103

CHAPTER 7. PROTECTED IMPLEMENTATION OF PAIRING-BASED
AUTHENTICATION PROTOCOLS

side-channel attacks. Also they apply a novel technique that interleaves ARM and NEON
instructions to perform a fast finite field arithmetic.

One of the few works of which we have knowledge that a complete protocol was imple-
mented on mobile devices is the performed by Sánchez et al. [145], where the authors imple-
mented an unprotected cryptographic library that supports an attribute-based encryption
protocol, offering a security level of 127-bits using the NEON technology of ARM platforms.

We present in this section an implementation of a software library that supports two
pairing-based multi-factor authentication protocols, which were proposed by Michael Scott
in [148, 149]. Our implementation is efficient and protected against timing-attacks since we
used the following strategies: the library was designed and adapted specifically to compute
optimal pairings over BN curves. We performed a protected point scalar multiplication and
we used a constant-time implementation of hashing into the groups G1 and G2 (see §6.1).
In both implementations we offered a security level of 127-bits and regular executions are
guaranteed on secret data, i.e. constant-time execution. In addition, we demonstrate that
implementation of these protocols is feasible in mobile devices with restricted computing
capacity, particularly those equipped with an ARM Cortex-A15 processor, which allows the
usage of the NEON instruction set, and those equipped with with an Intel Core i7 processor.

7.1.1. Authentication

Authentication is undoubtedly one of the most important goals of modern cryptography.
This security service allows to certify the identity of the participants in a communication
protocol, using mechanisms such as digital signatures, passwords, or biometric characteristics.
Generally, the authentication process consist of two phases: first, the identification phase
that corresponds to the assignment of an unique identifier for each user; and the verification
phase that consist of generating information from an identifier to validate the relationship
user-identifier.

In a client-server scenario, identifying a server using public key cryptographic methods is
considered a solved problem. However, the process that a client should follow in order to be
authenticated is more problematic. There exist systems that rely in passwords to perform
such authentication. However, those systems are faced with the fact that users find it difficult
to handle long passwords, so typically they choose short and easy to remember passwords
that have low entropy. This fact in turn has an impact in the security of computer systems,
because this systems becomes vulnerable to dictionary or exhaustive search attacks.

One way to solve the above problem is using multi-factor authentication that is a tech-
nique that has proven to be difficult to infringe. However, this kind of authentication has as
disadvantage the high cost associated with its implementation in a system.

7.1.1.1. Multi-factor authentication

Multi-factor authentication consist in verifying two or more aspects about the user. An
example of this is the two-factor authentication process realized at ATMs, where a bank card
and a four-digit Personal Identification Number (PIN) is used. Generally, the factors that are
verified during the authentication refer to one of the following user’s aspects: something that
the user knows, for example a password; something that the user has, could be a physical
token, smart card or USB memory; or something that the user is, which refers to a biometric
feature such as its fingerprint or its iris image, among many others.

Most multi-factor authentication protocols use passwords and smart cards, because they
can take advantage of characteristics provided by the smart cards such as its computing
capacity and difficulty of cloning. However, this cards have some disadvantages derived of
the cost of purchase, issuance, and management of tokens. Besides, from the users point
of view, employing more than one authentication factor requires the management of several

Cinvestav 104

7.2. TWO-FACTOR AUTHENTICATION PROTOCOLS

tokens, which can be complicated. A more accessible alternative is to use mobile devices as
tokens, since they have computing capacity and allow to include useful information to deal
with different systems that implement this type of authentication. This alternative is the
one studied in the rest of the section.

7.2. Two-factor authentication protocols

Recently, Michael Scott proposed [148, 149] a pair of pairing-based authentication proto-
cols that use as factors a four-digit PIN and a software token. This latter factor, allows to
use a mobile device as physical token to perform multi-factor authentication in one or more
systems, keeping the tokens in a single device. In the following we detail the protocols used
in this work.

In 2012, Michael Scott [148] proposed the protocol shown in Figure 7.1 which is balanced,
in the sense that the operations performed by the client and the server are the same. So, it
is advisable to use this protocol in devices with sufficient resources such as computational
power and memory. On the other hand, in 2013 the author presented the protocol shown in
Figure 7.2 which is unbalanced, because it was designed to be used on a client device with
restricted resources. In this way, the client performs the minimum number of operations,
and the server having sufficient resources, performs the most expensive operations. Next,
the three main blocks of these protocols are described in detail.

Registry

This registry phase is the same for both protocols. In this phase, the identity-based
secrets for both clients and servers are provided. In order to perform this task the existence
of a certifying authority (CA) is assumed, which using its secret key s computes the identity-
based secrets as Sc = [s]C ∈ G1 and Sc = [s]C ∈ G1 for clients and servers, respectively. In
the scalar multiplications C and S represent the evaluation of client’s identity Idc ∈ {0, 1}∗
and server’s identity Ids ∈ {0, 1}∗ in the functions H1 and H2 that computes the hash to
the groups G1 and G2 (see §6.1), respectively.

Authentication phase

Once the registration phase is finished and before the authentication process begins, the
client must compute its token using a four-digit PIN as follows Token = Sc− [PIN]C. After
that, the client and server can authenticate each other and agree a secret key K to encrypt
subsequent communications using Figure 7.1 or 7.2 protocol. In such figures, r denotes the
order of the groups involved in the pairing computation and h(·) represent the standard hash
function h : {0, 1}∗ → Zr.

PIN change and PIN recovery

Note that in both protocols to change the client’s PIN the server participation is not
necessary. Therefore, when the client decide to change its current PIN α for a new one β it
must compute a new Token = Sc− [β]C. It should be noted that the previous token cannot
be used to complete the authentication process if α is unknown.

On the other hand, when a client wants to recover a forgotten PIN he needs to interacts
with the server in order to obtain its PIN. Thus, the server deliberately creates a situation
where the she can perform exhaustive search attack over the set of PINs. For example, in
the case of Figure 7.1 protocol this process is carried out as follows: the client computes
X = h(e(Token+ [g]C, S)), where g is a notion of the forgotten PIN, and sends its identity
and X to the server; afterwards, the client proves its identity to the server by answering

Cinvestav 105

CHAPTER 7. PROTECTED IMPLEMENTATION OF PAIRING-BASED
AUTHENTICATION PROTOCOLS

a question, whose answer only the client knows. After that, the server goes offline and
computes the value Y = h(e(C, Ss − [i]S)) for all possible values of i until it obtains a Y
value such that X = Y ; then, the server sends i to the client, which is the difference between
the correct PIN α and g; finally, the client computes its forgotten PIN as α = i+ g.

Note that, the PIN α is never revealed to the server because he does not know the value
g used.

Client Server

x
$←− Zr y, w

$←− Zr
Idc ←−−−−−−−−→ Ids
C ←− H1(Idc) S ←− H2(Ids)
S ←− H2(Ids) C ←− H1(Idc)
Pc ←− [x]C ←−−−−−−−−→ Ps ←− [y]S, Pg ←− [w]C
πc ←− h(Pc||Ps||Pg) πs ←− h(Ps||Pc||Pg)
πs ←− h(Ps||Pc||Pg) πc ←− h(Pc||Ps||Pg)
R←− Token+ [PIN]C
a←− [x+ πc]
k ←− e([a]R, [πs]S + Ps) k ←− e([πc]C + Pc, [y + πs]Ss)
t←− h(k||[x]Pg) t←− h(k||[w]Pc)

K ←− h(Idc||Ids||t)

Figure 7.1: Balanced two-factor authentication protocol [148].

Client Server

x,m
$←− Zr y, n

$←− Zr
C ←− H1(Idc)
R←− Token+ [PIN]C
Z ←− [m]R, U ←− [x]C S ←− H2(Ids)
Idc, U, Z −−−−−−−−−−→ C ←− H1(Idc)

t←− e([n]Z, S)
←−−−−−−−−−− y, t

V ←− [−(x+ y)]R −−−−−−−−−−→ w ←− e([n]V, S)
k ←− t(x+y)/m k ←− e([n](U + [y]C), Ss)

if w · k 6= 1GT
then fail!

K ←− h(k) otherwise K ←− h(k)

Figure 7.2: Unbalanced two-factor authentication protocol [149].

7.3. Implementation

In this section we discuss aspects to take into a count when the protocols described in §7.2
are implemented in a secure way, such that it is possible to thwart some simple side-channel
attacks.

Cinvestav 106

7.3. IMPLEMENTATION

7.3.1. Hash into the groups G1 and G2

Hash to G1 also known as the map-to-point primitive, was defined by Boneh and Franklin
as H1 : {0, 1}∗ → G1 in [22]. For this section purposes, map-to-point operation was imple-
mented using the techniques presented in §6.1 for Barreto-Naehrig elliptic curves. Where, a
standard hash function h is used to project the identity Id{c,s} to an element t ∈ F∗p, and
then we evaluate t in the deterministic coding proposed by Fouque and Tobouchi [65] shown
in Algorithm 23 presented in §6.

The hash function into the group G2 consist of finding a point Q ∈ G2 starting whit
a random point in E′(Fp2) as we saw in §6.1, also over Barreto-Naehrig curves. In order
to implement this operation we used a standard hash function h that project the identity
Id{c,s} to an element t ∈ F∗p2 . Then we evaluate t as show in Algorithm 25 in order to obtain

a random point Q′ in E′(Fp2). Finally, using the Fuentes et al. [69] method we get the point
Q ∈ G2.

7.3.2. Scalar Multiplication and modular exponentiation

In this section we present the methods used to perform the protected computation of
scalar multiplication Q = [k]P where k = (k`−1, . . . , k0)2 ∈ Zr and the point P belongs
to G1 or G2. Also we present the method used to implement the modular exponentiation
fk ∈ GT with k as above.

7.3.2.1. Scalar multiplication in G1 and G2

In order to perform a scalar multiplication in the group G1 we used the method GLV in-
troduced by Gallant et al. [72], which was detailed in §5.2.2.2. This method take advantage of
the existence of an efficiently computable endomorphism ψ(P) = [λ]P over the elliptic curve,
for any order-r point P and some λ ∈ Zr. Then, the GLV method is used to split the scalar
k into two sub-scalars k1 and k2 where the length of the sub-scalars is `/2 approximately. In
that way, scalar multiplication [k]P can be efficiently computed as [k]P = [k1]P + [k2]ψ(P)
using simultaneous scalar multiplication techniques.

On the other hand, the scalar multiplication in the group G2 was performed using the
method proposed by Galbraith et al. in [70], which generalizes the GLV approach described
above (see §5.2.2.3). This method takes advantage of the endomorphism in G2 defined
as ψ : Ψ ◦ πi ◦ Ψ−1, where πi represents the i-th application of Frobenius endomorphism
and Ψ represents the isomorphism φ : E′(Fp2) → E(Fp12). The GLS technique allows
to split the scalar into four sub-scalars k1, k2, k3 and k4 where the length of sub-scalars
ki is approximately `/4. In this way, the scalar multiplication [k]P can be performed as
[k]P = [k1]P + [k2]ψ(P) + [k3]ψ2(P) + [k4]ψ3(P).

7.3.2.2. Modular exponentiation in GT

Exponentiation in the group GT was performed using the method proposed by Gal-
braith et al. [70]. The endomorphism used in the group GT is simply the Frobenius endo-

morphism, which allows computing the operation fk as fk = fk1 + fk2
p

+ fk3
p2

+ fk4
p3

.
Were the length of sub-scalars ki is approximately `/4.

7.3.2.3. Protection against side-channel attacks

Despite the computational improvement offered by the methods described above, those
procedures do not offer protection against side-channel attacks. A countermeasure to this
situation consists of applying an scalar recoding technique. Particularly, in this section
we used the scalar recoding technique proposed by Joye and Tunstall in [101], where they

Cinvestav 107

CHAPTER 7. PROTECTED IMPLEMENTATION OF PAIRING-BASED
AUTHENTICATION PROTOCOLS

observed that any odd integer i in the interval [0, 2w) can be written as i = 2w−1 +(−(2w−1−
1)). Then, dividing repeatedly an `′-bit integer n = n − ((n mod 2w) − 2w−1) by 2w−1 its
parity remains and the obtained residues are in the set {±1,±3, . . . ,±2w−1 − 1} producing
in this way a regular representation of length ` = 1+ `′/(w−1) with a non-zero digit density
of 1/(w − 1).

In addition, in order to achieve a regular execution of the scalar multiplication algorithms
which is desirable to obtain a protected implementation against simple side-channel attacks,
conditional sentences were avoided. The result of this procedure is shown in Algorithm 26
for the case of G1. Such algorithm can be easily generalized to the case of G2.

Algorithm 26 Scalar multiplication in G1 protected against side-channel attacks.

Input: P ∈ G1, the scalar k ∈ Zr with n = dlog2 ke, ψ : (x, y) 7→ (β · x, y) and the window
size w.

Output: Q = [k]P ∈ G1.

Precomputation:
1: Compute R[j] = [i]P with i ∈ {1, . . . , 2w−1 − 1} and 0 ≤ j < 2w−2.

Scalar regular recoding:
2: Decompose k as k = (k0 + λk1) mod r using the GLV method.
3: pari ← (ki[0]&0x01)⊕ 0x01; ki ← ki − pari for i = 0, 1.
4: Convert ki to the Joye and Tunstall [101] regular recoding of length ` for i = 0, 1.

Computation:
5: Q← R [n0[`− 1 >> 1]] + ψ (−R [n1[`− 1 >> 1]])
6: for i← `− 2 down to 0 do
7: for j ← 0 to w − 1 do
8: Q← [2]Q
9: end for

10: s← (n0[i] >> 1); t← (n0[i]⊕ s)− s . s = sign of n0[i] and t = abs(n0[i]).
11: tmp = R[t >> 1]
12: tmpy0 ← tmp[1]; tmpy1 = −tmp[1] . tmp[1] is the y-coordinate of point tmp
13: tmp[1] = tmpys&0x1

+ tmpys&0x1
+ tmpys&0x1

14: Q← Q+ tmp
15: s← (n1[i] >> 1); t← (n1[i]⊕ s)− s . s = sign of n1[i] and t = abs(n1[i]).
16: tmp← ψ(R[t >> 1])
17: tmpy0 ← tmp[1]; tmpy1 = −tmp[1] . tmp[1] is the y-coordinate of point tmp
18: tmp[1] = tmpys&0x1

+ tmpys&0x1
+ tmpys&0x1

19: Q← Q+ tmp
20: end for
21: tmp0 ← Q; tmp1 ← Q+ P ; Q← tmppar0
22: tmp0 ← Q; tmp1 ← Q+ ψ(−P); Q← tmppar1
23: return Q

For our implementation, we used a value of w equal to 5, because in this way we obtained
the best balance between speed and memory. Such choice of w produces a computational
cost of 1D+7A for pre-computation and 124D+65A+33Mβ for scalar multiplication in G1,
where Mβ represents the multiplication by λ. On the other hand, for scalar multiplication in
G2 and modular exponentiation in GT the same techniques were implemented, producing a
computational cost of 1D+7A or 1S+7M for pre-computation and 64D+71A+18ψ or 64D+
71A+ 18π for evaluation of scalar multiplication or modular exponentiation, respectively. In
all cases, we only store 8 pre-computed values.

Cinvestav 108

7.4. RESULTS AND CONCLUSIONS

7.3.3. Pairing computation

In this section we used the optimal Ate pairing shown in Algorithm 17, as was proposed by
Aranha et al. in [6]. This pairing is defined over BN elliptic curves, which are perametrized
as show in §5.1.2.1. For our implementation we used two different values for the x parameter
that defines the prime p and the group order r (see Equations (5.5)). In the implementation
of Figure 7.1 protocol we used x1 = −(262 + 255 + 1) that produces a Miller’s loop (lines 3-8
of Algorithm 17) of length equal to s = −(264 + 263 + 257 + 256 + 22). This parameter x1

cannot be used to perform the protocol in Figure 7.2, because it produces a implementation
vulnerable to the attack known as “small subgroup attack”.

This attack takes advantage of the fact that in the field Fp12 there exist relatively few
elements of order r. Therefore, the possible orders are the divisors of p12 − 1 = (p6 −
1)(p2 + 1)((p4 − p2 + 1)/r). Using this information, the attack consists of impersonating
the server, causing that the value k generated during the protocol has small order. In this
way, the fake server can exhaustively search the correct value of k in order to successfully
complete the protocol. For example, if we use x1 the value ((p4−p2 +1)/r) can be factorized
as 13 · 3793 · 29173 · 716953 · 569360689 · C205, which allows that a fake server implement
such attack using a value of k with order 13. For this reason, we decided to use x2 =
−(262 + 247 + 238 + 237 + 214 + 27 + 1) that produces a Miller’s loop of length equal to
s = −(264+263+249+248+241+238+216+215+29+28+22) and assures that ((p4−p2+1)/r)
is a prime number. This choice avoids the attack just described.

The exponentiation f (p12−1)/r computed in step 12 of Algorithm 17, called final exponen-
tiation, was implemented using the lattice basis reduction approach proposed by Fuentes et
al. [69] with a computational cost of three Frobenius endomorphism applications , three
exponentiations by x, twelve multiplications, 3 squarings and one inversion in Fp12 . Such
arithmetic operations were performed using towering technique where the finite field Fp12 is
represented as:

Fp2 = Fp[u]/(u2 − β), with β = −1,

Fp4 = Fp2 [V]/(V 2 − ξ),
Fp6 = Fp2 [V]/(V 3 − ξ), with ξ = u+ 1,

Fp12 = Fp6 [W]/(W 2 − γ), with γ = V,

7.4. Results and conclusions

We implemented the protocols in Figures 7.1 and 7.2 following the techniques described
above, using as client a Arandale development card equipped with an ARM Cortex-A15
processor at 1.7 GHz, and using as server a laptop with an Intel Core i7 processor at 2.4
GHz. All presented results were measured disabling the Turbo-Boost and Hyper-Threading
technologies.

In Table 7.1 it is shown the associated cost to the operations of: point addition, point
doubling, scalar multiplication in G1 and G2; hash functions H1 and H2; modular exponen-
tiation in GT ; and the operations that compose the optimal Ate pairing computation. All
costs are given in thousand of clock cycles.

Finally, Table 7.2 shows the cost of the authentication process for both protocols. It can
be seen that for the protocol in Figure 7.2, our implementation is superior in comparison
with the author’s implementation, although the comparison with the results of the author is
a bit unfair since he reports his results using java script. On the other hand, for the protocol
in Figure 7.1 we consider that our results are competitive taking into account that the author
reports his results using an Intel core i5 processor at 2.4 GHz for both client and server.

In this work we show how to carry out efficient implementations of two pairing-based

Cinvestav 109

CHAPTER 7. PROTECTED IMPLEMENTATION OF PAIRING-BASED
AUTHENTICATION PROTOCOLS

Group Operation Method
Client Server

x1 x2 x1 x2

G1

ADD Mix. Coord. 4.25 1.08
DBL Jac. Coord. 3.21 0.84

Scalar Mult.
GLV-NAF 775 207.910
GLV-Reg 832 208.254

H1 Alg. 23 1056.4 1366.2 124.62 158.29

G2

ADD Mix. Coord. 12.1 3.05
DBL Jac. Coord. 7.79 2.02

Scalar Mult.
GLS-NAF 1,511 419.597
GLS-Reg 1,712 425.707

H2 Alg. 25 2,099.9 2,530.2 344.82 408.24
GT Exponentiation GS 3,485 790.660

Pairing
Miller loop 3,214 3,423 720.43 769.13
Final exp. Fuentes [69] 2,238 2,245 458.39 561.73
Optimal Ate Alg. 17 5,549 5,746 1,164 1,317

Table 7.1: Cost of main building blocks of the pairing-based protocols shown in §7.2.

Work Protocol Client Server

Author
Figure 7.1 4.1 ms 4.4 ms
Figure 7.2 3 seg. “few” ms

Our
Figure 7.1 7.2 ms 7.3 ms
Figure 7.2 4.2 ms 4.4 ms

Table 7.2: Cost of authentication protocols taking into acount the communication
overhead.

two-factor authentication protocols, which are protected against time analysis attacks, over
restricted platforms in terms of computational resources. In such way that it is possible to
maintain a secure authentication scheme without sacrificing efficiency using a relatively low
computational cost.

Cinvestav 110

Chapter 8
Implementation of BLS signature

protocol over curves with embedding
degree one

In this section, we present how to efficiently implement the main building blocks found in
the BLS digital signature algorithm, which was introduced in §5.2. Particularly, we focused
in its implementation, using bilinear pairings defined over elliptic curves with embedding
degree one, which does not have any of the speedups that come from working in a subfield
during the pairing computation.

8.1. Introduction

Since the discovery of its constructive cryptographic properties, pairings have been used
to design several cryptographic protocols. Because, they allow to solve in an elegant way the
problem of the Identity Based Encryption, which was proposed by Shamir in 1984 [153]. Bi-
linear pairings are frequently constructed using elliptic curves with small embedding degrees,
i.e. Using an elliptic curve E defined over a finite field Fp, whose embedding degree k is the
smaller positive integer such that n | pk − 1 for a prime number r that divides #E(Fp). A
necessary condition for the security of the pairings, is that the Discrete Logarithm Problem
must be intractable in the finite field Fkp. Until 2015, the assumption was that the fastest
algorithm for computing logarithms in small-characteristic finite fields Fp was Coppersmith’s
algorithm [44] with a running time O(exp(1.52 · (log pk)1/3 · (log log pk)2/3)), while the fastest
algorithm for computing logarithms in large-characteristic finite fields Fp was the Number
Field Sieve (NFS) [77] with running time O(exp(1.92 · (log pk)1/3 · (log log pk)2/3)). How-
ever, in these year Kim-Barbulescu [109] presented in CRYPTO’16 the extended tower-NFS
technique. In this technique if the field characteristic p has a medium-size and has an spe-
cial form, which is the case for the popular pairings over BN curves, then the asymptotic
complexity is O(exp(1.56 · (log pk)1/3 · (log log pk)2/3)). From their experiments Kim and
Barbulescu show that DLP in Fp2 is significantly easier than the DLP in Fp. This analysis
cast some suspicions to the intractability of the DLP in field extension Fpk when p has an
special form.

According with the work performed by Chatterjee, Menezes and Rodŕıquez-Henŕıquez [35]
the aforementioned improvements in algorithms for computing discrete logarithms do not
apply to the DLP in prime-order fields Fp provided that the prime p does not have a special

111

CHAPTER 8. IMPLEMENTATION OF BLS SIGNATURE PROTOCOL OVER
CURVES WITH EMBEDDING DEGREE ONE

form. In this way, the fastest general purpose algorithm for the DLP in Fp has a complexity
O(exp(1.92 · (log pk)1/3 · (log log pk)2/3)). In consequence, elliptic curves with embedding
degree one can be used to implement pairing based protocols. Because, the group GT in
these pairings is an order-r subgroup of F∗p. Hence, its security is not directly affected by the
improvements using the algorithms for computing logarithms in extension fields.

In this section we present the implementation of the digital signature algorithm BLS,
constructed over elliptic curves with embedding degree one. With the aim of offering a
security level of 128-bits we use a prime number of 3072 bits.

8.2. Elliptic curves with embedding degree one

Elliptic curves with embedding degree one, which are the core of this section, can be
constructed as follows:

Definition 8.1 (Elliptic curves with embedding degree one). Let p be a prime number
computed as p = A2 + 1 with A = h · r, where r is a prime number and such that r ≡ 3
mod 4. The elliptic curve

E/Fp : y2 = x3 + ax (8.1)

wehre a can take the values −1 and −4 depending on the nature of A, i.e. if A ≡ 0 mod 4
then a = −1 and if A ≡ 2 mod 4 then a = −4. The ordinary elliptic curve E has trace 2
and the cardinality of the group E(Fp) is p− 1.

Theorem 8.1. The elliptic curve group E(Fp) is isomorphic to Z/AZ⊕Z/AZ. In addition,
the map ψ : (x, y) 7→ (−x,Ay) is a distortion map on this group. In other words, if a
P ∈ E[r]/O then ψ(P) /∈ 〈P 〉. Thus, for any P ∈ E[r]/O, the pair of points (P,ψ(P))
generate E[r].

Pairing in these curves

Let G1 an arbitrary order-r subgroup of E(Fp) and let G2 = E[r]. Let P ∈ G1 and
Q ∈ G2, then the Weil and Tate pairing are defined as follows:

eW (P,Q) = (−1)n
fr,P (Q)

fr,Q(P)
,

that is degenerate if Q ∈ 〈P 〉; and

eT (P,Q) = (fr,P (Q))(p−1)/r,

which is degenerate if Q ∈ 〈ψ(P)〉, respectively.

8.2.1. BLS signature algorithm for this pairings

Given as public parameters a bilinear pairing e : G1 ×G2 → GT , the generators G1, G2

of G1 and G2, and a hash function H1 : {0, 1}∗ → G2. The secret key is a randomly selected
element x ∈ Z/rZ, the public key is the group element P = [x]G1. A signature on a message
m ∈ {0, 1}∗ is obtained as S = [x]H(m). While, any entity possessing the public key P can
verify the signature simply checking whether e(G1, S) = e(P,H(m)).

Cinvestav 112

8.3. FINITE FIELD AND ELLIPTIC CURVE ARITHMETIC

8.2.2. Used constructions

We used three different methods to construct the characteristic p of the finite field Fp,
these methods are described below:

Construction A: we use the prime number r = 2256 +296−1 such that r ≡ 3 mod 4,
as cofactor h we use a randomly generated 1280-bit number. The prime p generated
satisfies p ≡ 1 mod 16. This construction of p allows us to speedup the membership
subgroup test; the scalar multiplication since the scalars has 256 bits of length; the
Miller’s algorithm because the loop length is r. However, this prime increase the cost
of the hash function to the elliptic curve group E(Fp)[r] and the final exponentiation
when the Tate pairing is used.

Construction B: for this method we choose a 1536-bit prime number r and a cofactor
h = 2. The prime p generated is such that p ≡ 5 mod 8. This construction just allows
us to speedup the computation of the hash function to the elliptic curve group E(Fp)[r].

Construction C: we use the prime number r = 2256 + 296 − 1, the cofactor h was
randomly chosen such that the least significant half of the binary representation of h is
equal to zero. In this way, the prime p generated using this method is a Montgomery-
friendly prime. This, allows us to use the specialized reduction Algorithm 39, which
improves the finite field arithmetic and therefore the overall cost of the protocol.

8.3. Finite field and elliptic curve arithmetic

This section is dedicated to show the main algorithms used to construct the finite field
and elliptic curve arithmetic. Besides we show the implementation results of each of the
operations in both arithmetics.

8.3.1. Finite field arithmetic

A fundamental part of the implementation of the BLS signature protocol is the efficient
computation of the finite field arithmetic. For this purpose, we used the techniques presented
in §3.3 to compute the multiplication and squaring over the integers. It is important to men-
tion that, the size of the integers to be operated is 48 64-bit words. Then for multiplication
and squaring an extra Karatsuba level is necessary. The modular reduction was performed
using the Barrett algorithm for the constructions A and B, while the Montgomery reduction
algorithm was used for the three constructions. We implemented both reduction algorithms
in order to compare the costs and thus choose the one that gives the best performance. All
the algorithms were implemented taking advantage of the assembly instructions described
in §3.2.

8.3.1.1. Barrett modular reduction

Although the Barrett modular reduction algorithm is slightly more expensive than the
Montgomery algorithm, in our work we explored to use this algorithm applying a further
optimization known as folding technique. This technique was introduced in §3.3.4.2 and is
presented in Algorithm 27.

This algorithm can be improved using the techniques described in §3.3.4.2 for the classical
Barrett reduction algorithm. Thus, the multiplications in Steps 11 and 13 have a cost of
3n2+λn

2λ2 and 2n2+n
2λ − n2

2λ2 + 1 word multiplications for λ = 2F , respectively. In this way, the

cost of the Algorithm 27 is
∑F
i=1 n/2

i + n2

λ2 + n2+n
λ + 1 word multiplications, taking into

account the multiplications in the Step 9. For our purposes, we used F = 2, i.e. two folding
steps, because experimentally this value give us a better performance.

Cinvestav 113

CHAPTER 8. IMPLEMENTATION OF BLS SIGNATURE PROTOCOL OVER
CURVES WITH EMBEDDING DEGREE ONE

Algorithm 27 Barrett reduction using the folding technique.

Input: A 2n-word integer c = (c2n−1, . . . , c0)r, the n-word modulo p = (pn, . . . , p0)r and
the number of folding steps F .

Output: The n-word integer c′ = (c′n, . . . , c
′
0)r s.t. c′ = c mod p.

Precomputation:

1: µ← br(1+2−F)n/pc
2: for i← 1 to F do
3: Pi ← r(1+2−i)n mod p
4: end for

Computation:
5: N0 ← c
6: for i← 1 to F do
7: c′1 ← Ni−1 mod r(1+2−i)n

8: c′2 ← bNi−1/r
(1+2−i)nc

9: Ni ← c′1 + c′2 · Pi
10: end for
11: q̂ ← bbNF /rnc · µ/r2−Fnc
12: c′1 ← NF mod rn+1

13: c′2 ← (q̂ · p) mod rn+1

14: c′ ← c′1 − c′2
15: while c′ ≥ p do
16: c′ ← c′ − p
17: end while
18: return c′

8.3.1.2. Exponentiation

Exponentiation was constructed using the sliding window exponentiation method, which
consist of decomposing the exponent into non-zero windows with maximum length ω bits,
and variable length zero windows. This method reduces the number of multiplications at the
extra cost of some pre-computations, Algorithm 28 shown the sliding window exponentiation.
In our work, ω = 4 achieve the best performance of this algorithm and just stores seven values
as pre-computation.

8.3.1.3. Square root

The way to compute an square root depends on the nature of the prime p [4]. In the
case of the construction B, the prime p generated is such that p ≡ 5 mod 8. For this
type of prime the best algorithm to compute the square root is the proposed by Atkin [7],
presented in Algorithm 29, which has a cost of one exponentiation, two squarings and and 5
multiplications in Fp.

On the other hand, the constructions A and C generate primes p such that p ≡ 1 mod 16.
For this type of primes there is not specialized method to compute the square root. Then it
is necessary to use a costly generic algorithm. There are two generic algorithms to perform
this operation the Tonelli-Shanks [154, 160] and the Müller [134] algorithm. The efficiency
of the Tonelli-Shanks algorithm depends on the value s obtained by write p− 1 = 2st, where
t is an odd integer. Therefore, this method is useful just for small values of s. For our
purposes the value s = n/2, where n is the size in bits of p. Consequently, the Tonelli-
Shanks becomes inefficient. For this reason we adopt the Müller algorithm, which computes
the square root using a Lucas sequence. This method is presented in Algorithm 30 and has
a cost of three quadratic residuosity tests χp, one evaluation of the Lucas sequence, one

Cinvestav 114

8.3. FINITE FIELD AND ELLIPTIC CURVE ARITHMETIC

Algorithm 28 Sliding window modular exponentiation.

Input: x ∈ Fp, an exponent e = (en−1, . . . , e0)2 and a widow size ω ≥ 1.
Output: c = xe mod p.

Precomputation:
1: Compute the values x3, x5, . . . , x2ω−1.

Computation:
2: c← 1; i← n− 1
3: while i ≥ 0 do
4: if ei = 0 then
5: c← c2; i← i− 1
6: else
7: s← max{i− ω + 1, 0}
8: while es = 0 do
9: s← s+ 1

10: end while
11: u← 0
12: for h← i to i− s+ 1 do
13: c← c2 u← 2u+ eh
14: end for
15: c← c · xu i← s− 1 . u is always odd and xu was pre-computed.
16: end if
17: end while
18: return c

Algorithm 29 Atkin’s square root algorithm for p ≡ 5 mod 8 [4].

Input: An element a ∈ F∗p.
Output: c satisfying c2 = a if it exists and false otherwise.

Precomputation:

1: t← 2
p−5
8

Computation:

2: a1 ← a
p−5
8

3: (a2
1a)2

4: if a0 = −1 then
5: return false
6: end if
7: b← ta1

8: i← 2(ab)b
9: c← ab(i− 1)

10: return c

inversion, two multiplications and two squarings in Fp.

8.3.1.4. Inversion

Depending on the used modular reduction algorithm, the multiplicative inverse of an ele-
ment in Fp is computed using the binary extended Euclidean algorithm [82, Algorithm 2.22,
p. 41] when the modular arithmetic uses the Barrett reduction algorithm; or the Montgomery
inversion algorithm as was defined by Kaliski in [104] if the Montgomery reduction algorithm
was used.

Cinvestav 115

CHAPTER 8. IMPLEMENTATION OF BLS SIGNATURE PROTOCOL OVER
CURVES WITH EMBEDDING DEGREE ONE

Algorithm 30 Müller’s square root algorithm for p ≡ 1 mod 16 [4].

Input: a ∈ F∗p.
Output: c satisfying c2 = a if it exists and false otherwise.

1: t← 1
2: a1 ← χp(a− 4)
3: while a1 = 1 do
4: Select randomly t ∈ F∗p \ {1}
5: if at2 − 4 = 0 then
6: return 2t−1

7: end if
8: a1 ← χp(at

2 − 4)
9: end while

10: α← at2 − 2
11: c← V p−1

4
(α, 1)/t

12: a0 ← c2 − a
13: if a0 6= 0 then
14: return false
15: end if
16: return c

8.3.1.5. Implementation results of finite field arithmetic

In this section we show the timings obtained from the implementation of the finite field
operations described in previous sections. As was mentioned before, we used Barrett based
arithmetic just for the constructions A and B, and Montgomery based arithmetic for all
the three constructions. From Table 8.1 we can observe that Montgomery based arith-
metic achieves a better performance against the Barrett based arithmetic using the folding
technique. Therefore, in the following, only the costs corresponding to Montgomery based
arithmetic will be presented.

Op.
Haswell Skylake

A B C A B C
Mul 10.3 (10.4) 10.4 (10.5) 6.8 8.7 8.7 6.1
Sqr 9.7 (9.8) 9.7 (9.8) 6.1 8.3 8.1 5.4
Exp 32,804 (33,521) 17,975 (18,332) 19,075 27,916 15,363 17,282
Inv 1,991 (2,802) 1,997 (2,053) 1,399 1,889 1,903 1,301
Sqrt 64,771 (65,332) 35,768 (36,459) 43,695 56,196 30,554 39,383

Table 8.1: Timings of the finite field operations for the different construccions of p. The
timings were measured in thousand of clock cycles on micro-architectures Intel Haswell and
Skylake. The parentesis costs corresponds to the aritmetic based on the Barrett reduction.

8.3.2. Elliptic curve arithmetic

In this section we present the algorithms used to compute a point addition, point doubling
and the scalar multiplication. Besides, we show the associated cost to these algorithms using
M, S and I to represent the operations of multiplication, squaring and inversion in Fp,
respectively.

Cinvestav 116

8.3. FINITE FIELD AND ELLIPTIC CURVE ARITHMETIC

8.3.2.1. Point addition and point doubling

With the aim of avoid costly inversions in Fp, we represent the points in E(Fp) using
modified Jacobian coordinates [43, 40], where a point (X,Y, Z,W = Z2) corresponds to the
point (x, y) in affine coordinates with x = X/Z2 y y = Y/Z3. Furthermore, in order to have
a better performance we used mixed coordinates for the point addition. Thus the mixed
point addition in Algorithm 31 has a cost of 7M and 4S en Fp. On the other hand, point
doubling was performed using modified Jacobian coordinates as shown in Algorithm 32 at a
cost of 1M and 8S.

Algorithm 31 Mixed point addition (Affine-Jacobian coordinates).

Input: The points P = (XP , YP , ZP ,WP) in modified Jacobian coordinates and Q =
(xQ, yQ) in affine coordinates.

Output: R = P +Q = (XR, YR, ZR,WR) in modified Jacobian coordinates.

1: t1 ← xQ ·WP

2: t2 ← yQ · ZP ·WP

3: t3 ← t1 −XP

4: t4 ← t23
5: t5 ← 4t4
6: t6 ← t3 · t5
7: t7 ← t2 − YP
8: t8 ← 2t7
9: t9 ← t27

10: t10 ← 4t9
11: t11 ← XP · t5
12: XR ← t10 − t6 − 2t11

13: YR ← t8 · (t11 −XR)− 2(YP · t6)
14: ZR ← (ZP + t3)2 −WP − t4
15: WR ← Z2

R

16: return R = (XR, YR, ZR,WR)

Algorithm 32 Point doubling (Jacobian coordinates).

Input: The point P = (XP , YP , ZP ,WP) in modified Jacobian coordinates and the coeffi-
cient a of the curve.

Output: Q = 2P = (XQ, YQ, ZQ,WQ) in modified Jacobian coordinates.

1: t1 ← X2
P

2: t2 ← Y 2
P

3: t3 ← t22
4: t4 ←W 2

P

5: t5 ← 2((XP + t2)2 − t1 − t3)
6: t6 ← 3t1 + at4
7: XQ ← t26 − 2t5
8: YQ ← t6 · (t5 −XQ)− 8t3
9: ZQ ← (YP + ZP)2 − t2 −WP

10: WQ ← Z2
Q

11: return Q = (XQ, YQ, ZQ,WQ)

Cinvestav 117

CHAPTER 8. IMPLEMENTATION OF BLS SIGNATURE PROTOCOL OVER
CURVES WITH EMBEDDING DEGREE ONE

8.3.2.2. Scalar multiplication

This operation was performed using the ω-NAF scalar multiplication method described
in §5.2.2.1. Given the cost of the Algorithm 18 presented in that section, the scalar multi-
plication used in this work has a cost of 310A+ 1537D when log(r) = 1536 and 54A+ 257D
when log(r) = 256, using in both cases a window ω = 4.

8.3.2.3. Implementation results of elliptic curve arithmetic

In Table 8.2 we show the timings for the elliptic curve arithmetic. The scalars used to
compute the scalar multiplication are presented below:

Construction A y C: in both constructions we used a 256-bit integer r with a
Hamming weight of 3, and a 1280-bit integer h. Although, for construction C the
binary representation of the integer h has the less significant half in zero.

Construction B: here we used a 1536-bit integer r with a Hamming weight of ap-
proximately 768 bits, and h = 2.

Operations
Haswell Skylake

A B C A B C
Addition 113.1 112.2 74.0 95.8 95.3 66.3
Doubling 90.3 90.1 59.0 75.5 76.1 52.3
SM by r 23,180 171,426 15,203 19,667 145,913 13,477
SM by h 143,556 90.2 85,410 121,964 76.3 75,321

SM 39,735 172,742 26,358 34,012 145,692 23,541

Table 8.2: Timings for the elliptic curve arithmetic. The timings are measured in
thousand of clock cycles.

8.4. Main building blocks of the BLS protocol

In this section we show the building blocks necessary to construct the BLS signature
protocol described in §8.2.1. As we can observe, in the protocol is necessary to compute a
scalar multiplication, a pairing and a hash function to the group E[r]. It is also necessary to
verify that the point corresponding to the signature belongs to the correct subgroup. This
operation is called the subgroup membership test.

8.4.1. Pairing

The pairing computation is performed using the Weil and the Tate pairing described
in §5.2.1.1 and §5.2.1.2, respectively. The core of these pairings is the Miller Algorithm
whose efficiency depends on the addition step (lines 7-9 of Algorithm 16) and the doubling
step (lines 3-5 of Algorithm 16). These two operations were performed using the formulas
proposed by Hu et al. [88] in Jacobian coordinates, which have a cost of 12M + 5S and
8M + 10S for the addition step presented in Algorithm 33 and the doubling step shown in
Algorithm 34 respectively.

In this way, the Miller Algorithm has a cost of (n−1)(8M+10S)+(m−1)(12M+5S)+2M+I
for a n-bit integer r with a Hamming weight m. The costs of the Miller Algorithm for the
different constructions of p used in this work are presented below:

Cinvestav 118

8.4. MAIN BUILDING BLOCKS OF THE BLS PROTOCOL

Algorithm 33 Addition step in Miller’s loop.

Input: The points T = (XT , YT , ZT ,WT) in modified Jacobian coordinates, P = (xP , yP)
and Q = (xQ, yQ) in affine coordinates and the Miller values f, g ∈ Fp.

Output: T = T +P = (XT , YT , ZT ,WT) in modified Jacobian coordinates and updates the
values f, g.

1: t1 ← xP ·WT

2: t2 ← yP · ZT ·WT

3: t3 ← t1 −XT

4: t4 ← t23
5: t5 ← 4t4
6: t6 ← t3 · t5
7: t7 ← t2 − YT
8: t8 ← 2t7
9: t9 ← t27

10: t10 ← 4t9
11: t11 ← XT · t5
12: XT ← t10 − t6 − 2t11; YT ← t8 · (t11 −XT)− 2(YT · t6)
13: ZT ← (ZT + t3)2 −WT − t4; WT ← Z2

T

14: t12 ← (t7 + ZT)2 − t9 −WT

15: l←WT · (yQ − yP)− t12 · (xQ − xP) v ←WT · xQ −XT

16: f ← f · l; g ← g · v
17: return T = (XT , YT , ZT ,WT), f, g

Algorithm 34 Doubling step in Miller’s loop.

Input: The points T = (XT , YT , ZT ,WT) in modified Jacobian coordinates, Q = (xQ, yQ)
in affine coordinates, the Miller values f, g ∈ Fp and the coefficient a of the curve.

Output: T = 2T = (XT , YT , ZT ,WT) in modified Jacobian coordinates and updates the
values f, g.

1: t1 ← X2
T

2: t2 ← Y 2
T

3: t3 ← t22
4: t4 ←W 2

T

5: t5 ← 2((XT + t2)2 − t1 − t3)
6: t6 ← 3t1 + at4
7: XT ← t26 − 2t5; YT ← t6 · (t5 −XT)− 8t3
8: ZT ← (YT + ZT)2 − t2 −WT ; WT ← Z2

T

9: t7 ←WT · xQ −XT

10: l← ZT ·WT · yQ + YT − t6 · t7
11: v ← ZT · t7
12: f ← f2 · l; g ← g2 · v
13: return T = (XT , YT , ZT ,WT), f, g

Construction A y C: we used a 256-bit integer r with Hamming weight 3, thus, the
Miller algorithm has a cost of 2066M + 2560S + I.

Construction B: using a 1536-bit integer r with a Hamming weight of approximately
768 bits the Miller algorithm has a cost of 21486M + 19185S + I.

Therefore, given that the Weil pairing is computed using two applications of the Miller
algorithm, one multiplication and one inversion in Fp, the total cost of the Weil pairing for
the constructions A and C is 4133M + 5120S + 3I. While, for the construction B this pairing

Cinvestav 119

CHAPTER 8. IMPLEMENTATION OF BLS SIGNATURE PROTOCOL OVER
CURVES WITH EMBEDDING DEGREE ONE

has a cost of 42973M + 38370S + 3I. On the other hand, the cost of the Tate pairing is the
cost of one application of the Miller algorithm plus one exponentiation by (p− 1)/r.

8.4.2. Hash function to elliptic curve subgroup

This operation was performed using the algorithm proposed by Boneh, Lynn y Shacham [24],
called try-and-increment. This algorithm was presented in §5.2.3.2 and basically consist in
given the equation of the curve E/Fp : x2 + ax pick randomly an element x ∈ Fp, check
whether t = x3 + ax is a square, then if so, set y = ±t and return the point [h](x, y) ∈ E[r].
If t is not a square, then one can pick another x and try again. The cost of this procedure
is dominated by the cost of the square root and the scalar multiplication by h.

8.4.3. Subgroup membership testing

Given P,Q ∈ E[r]/O. The subgroup membership testing consist in testing whether Q ∈
〈P 〉. According to the Weil pairing properties the point Q ∈ 〈P 〉 if and only if eW (P,Q) = 1.
On the other hand for the Tate pairing is no guaranteed that eT (P, P) = 1, however if E is
an trace-2 elliptic curve then the point Q ∈ 〈P 〉 if and only if eT (P,ψ(Q)) = 1 [35]. Thus,
the cost of the subgroup membership testing is of one pairing computation.

8.5. Results and conclusions

In this section we present the results obtained from our software library for the imple-
mentation of the BLS signature algorithm, using the algorithms and techniques shown in the
previous sections. All the timings were measured in the processors Intel i7-4700 at 2.4 GHz.
with Haswell micro-architecture and Intel i7-6700 at 3.0 GHz. with micro-architecture Sky-
lake. Both with the Turbo-Boost and Hyper-Threading technologies disabled. Our library
was compiled using GCC in its version 6.3 and using the compilation flag -03.

In Table 8.3 it is reported the associated timings to the construction of the Miller’s
algorithm, Weil and Tate pairings, and the cost of the Hash function to elliptic curves. We
can observe, as was expected, the Tate pairing achieves a better performance than the Weil
pairing by a factor of ×1.2 for constructions A and C and a factor ×1.9 for construction C.

Operations
Haswell Skylake

A B C A B C
Addition Step 0.175 0.174 0.115 0.149 0.148 0.104
Doubling Step 0.181 0.181 0.119 0.153 0.153 0.107
Miller Algorithm 16 48.5 418.5 32.01 41.41 355.75 28.73
Weil pairing 98.64 840.08 65.33 84.76 713.53 58.90
Tate pairing 81.30 435.73 51.17 69.36 374.47 45.98
Hash function 210.3 37.9 130.5 180.1 32.5 116.0

Table 8.3: Timings for the main bulding blocks that compose the BLS protocol. The
timings are presented in millions of clock cycles.

Table 8.4 shown the costs in millions of clock cycles of the signature and verification
phases of the BLS signature protocol. The verification phase was implemented using both
Weil and Tate pairings. However as it was observed before, the Tate pairing offers the best
performance. The best results for the BLS protocol are obtained with the construction C, but
an analysis of the security of this construction is necessary to be sure of thwart application

Cinvestav 120

8.5. RESULTS AND CONCLUSIONS

of special NFS algorithm. If it turns out that construction C is vulnerable, then construction
A is the best option.

Operations
Haswell Skylake

A B C A B C
Signature 250.1 210.6 156.9 214.1 178.2 139.5
Verification (Weil) 512.1 2,325.2 327.6 438.6 1,980.0 293.3
Verification (Tate) 477.5 1,516.5 299.3 407.8 1,301.9 267.4

Table 8.4: Timing of the BLS signature and verification phases. The timings are
presented in millions of clock cycles.

Cinvestav 121

CHAPTER 8. IMPLEMENTATION OF BLS SIGNATURE PROTOCOL OVER
CURVES WITH EMBEDDING DEGREE ONE

Cinvestav 122

Part III

Isogeny-based cryptography

123

Chapter 9
Introduction to the supersingular
isogeny Diffie-Hellman protocol

The hypothetical existence of a sufficiently powerful quantum computer would mean
that currently used public key cryptography is completely insecure. This is so because, an
implementation of Shor’s algorithm in such computer would easily break the cryptosystems
based on the Discrete Logarithm Problem and integer factorization. As a reaction to this
situation the cryptographic community has proposed alternative problems that could resist
a quantum attacker, one of such proposals is the hardness of finding an isogeny map between
supersingular elliptic curves which is known as isogeny-based cryptography.

The supersingular isogeny Diffie-Hellman (SIDH) [95] key exchange protocol has posi-
tioned itself as a promising candidate for post-quantum cryptography. One salient feature
of the SIDH protocol is that it requires exceptionally short key sizes. However, the latency
associated to SIDH is higher than the ones reported for other post-quantum cryptosystem
proposals. Aiming to accelerate the SIDH runtime performance, in the following chapters
several algorithmic optimizations targeting finite field and elliptic curve arithmetic, and pro-
tocol operations are presented.

9.1. Isogenies

Isogenies are homomorphisms between elliptic curves, which play a fundamental role in
the theory of elliptic curves and cryptography since they allow us to relate one elliptic curve
to another.

Definition 9.1 (Isogeny). Let E1 and E2 be elliptic curves over a finite field Fq. An isogeny
from E1 to E2 is a non-constant homomorphism φ : E1(Fq)→ E2(Fq) that is given by rational
functions defined over Fq. This means that φ(P +Q) = φ(P) + φ(Q) for all P,Q ∈ E1(Fq).

Proposition 9.1. Two elliptic curves E1 and E2 defined over Fq are said to be isogenous
over Fq if there exists an isogeny φ : E1 → E2 defined over Fq. Besides, two curves E1 and
E2 are isogenous over Fq if and only if #E1(Fq) = #E2(Fq).

From Definition 9.1 we know that there are rational functions r1 and r2 such that if
φ(x1, y1) = (x2, y2) then (x2, y2) = (r1(x1), y1r2(x1)), for (x1, y1) ∈ E1(Fq) and (x2, y2) ∈
E2(Fq). Moreover, if we write r1(x) = s(x)/t(x) using polynomials s(x), t(x) that do not
have a common factor. The degree of the isogeny φ is defined as

deg(φ) = max{deg s(x),deg t(x)}.

125

CHAPTER 9. INTRODUCTION TO THE SUPERSINGULAR ISOGENY
DIFFIE-HELLMAN PROTOCOL

If the derivative r′1(x) is not identically 0, we say that φ is separable.

Proposition 9.2. Let φ : E1 → E2 be an isogeny. If φ is separable, then

deg φ = # ker(φ).

If φ is not separable, then

deg φ > # ker(φ).

In particular, the kernel of an isogeny is a finite subgroup of E1(Fq).

The following proposition tells us that an elliptic curve isogenous to an elliptic curve E
is essentially uniquely determined by the kernel of the isogeny to it.

Proposition 9.3. Let E1, E2 and E3 be elliptic curves over a finite field Fq and suppose
that there exist separable isogenies φ2 : E1 → E2 and φ3 : E1 → E3 defined over Fq. If
kerφ2 = kerφ3, then E2 is isomorphic to E3 over Fq. In fact, there is an isomorphism
β : E2 → E3 such that β ◦ φ2 = φ3.

A very important property of isogenies is the existence of dual isogenies.

Theorem 9.1. Let φ : E1 → E2 be an isogeny of elliptic curves. Then, there exists a dual
isogeny φ̂ : E2 → E1 such that φ̂ ◦ φ is multiplication by deg φ on E1.

Since every isogeny has a dual isogeny, the property of being isogenous over Fq is an
equivalence relation on the finite set of F̄q-isomorphism classes of elliptic curves defined over
Fq. Accordingly, we define an isogeny class to be an equivalence class of elliptic curves,
taken up to F̄q-isomorphism, under this equivalence relation. Curves in the same isogeny
class are either all supersingular or all ordinary. In this chapter we assume that we are in
the supersingular case.

Proposition 9.4. Supersingular curves are all defined over Fp2 , and for every prime ` - p,
there exist `+ 1 isogenies counting multiplicities of degree ` originating from any given such
supersingular curve.

Due to the work of Velú [161], given an elliptic curve E and a subgroup H of E(Fq) it is
possible to construct an isogeny. Velú provided us with a formula that can be used to find
the isogeny φ and the isogenous curve E/H. In the following sections we present the explicit
formulas to compute an isogeny for the Montgomery and Edwards elliptic curve models.

9.2. Elliptic curve models

There exist diverse forms of elliptic curves. However, in this chapter we focus on Mont-
gomery and twisted Edwards curves defined over the field Fq where q = p2.

9.2.1. Montgomery curves and their arithmetic

Given a finite field Fq, Montgomery elliptic curves are defined by the equation:

EA,B/Fq : By2 = x3 +Ax2 + x , (9.1)

such that A,B ∈ Fq, A2 6= 4 and B 6= 0. The j-invariant of EA,B is calculated as,

j(E) = 256
(A2 − 3)3

A2 − 4
.

Cinvestav 126

9.2. ELLIPTIC CURVE MODELS

Moving to projective coordinates (P2) implies that an affine point (x, y) is represented
by (λX : λY : λZ) such that λ 6= 0, x = X/Z and y = Y/Z. The point at infinity is a special
case that is written as O = (0: 1 : 0). Points can also be mapped to P1 using1

x : P2 → P1

(X : Y : Z) 7→ (X : Z) (9.2)

O 7→ (1 : 0) .

We write x(P) = (X : Z) ∈ P1(Fp) when both X and Z belong to the field Fp.
In his landmark paper [132], Montgomery introduced the concept of a differential addition

operation, which given x(P), x(Q), and x(P − Q), calculates x(P + Q). It is noticed that
this formula fails whenever P −Q ∈ {O, (0, 0)}.

Let P,Q ∈ EA,B(Fq) and R0, R1, R2 ∈ P1. We denote a point doubling operation as [2]R0

and can be computed by

4XR0
ZR0

= (XR0
+ ZR0

)2 − (XR0
− ZR0

)2,

X[2]R0
= (XR0

+ ZR0
)2(XR0

− ZR0
)2,

Z[2]R0
= (4XR0

ZR0
)((XR0

− ZR0
)2 + ((A+ 2)/4)(4XR0

ZR0
)).

This operation has a cost of 2M+2S [52] where M corresponds to the cost of a multiplication
and S represent a squaring in the finite field.

On the other hand, a differential addition denoted as R0 +(R2) R1, such that R0 = x(P),
R1 = x(Q), and R2 = x(P −Q) can be computed as follows

XR0+(R2)R1
= ZR2

((XR0
− ZR0

)(XR1
+ ZR1

) + (XR0
+ ZR0

)(XR1
− ZR1

))2,

ZR0+(R2)R1
= XR2

((XR0
− ZR0

)(XR1
− ZR1

) + (XR0
+ ZR0

)(XR1
− ZR1

))2.

at a cost of 4M+2S. When performing a differential addition one multiplication can be saved
whenever ZP−Q = 1 [52].

Montgomery also introduced in [132] a procedure that calculates x([k]P) from x(P) and
an integer k. This procedure is better known as the Montgomery ladder. A high level
description of the Montgomery ladder is shown in Algorithm 35. To recover the y-coordinate
of [k]P one can use the Okeya-Sakurai technique [136], which extends the y-recovery formula
of López-Dahab that applies to the binary elliptic curve case [121]. The Okeya-Sakurai
formula calculates the y-coordinate of [k]P from the y-coordinate of P, x([k]P) and x([k+1]P)
(this latter value is also computed by the Montgomery ladder).

The Montgomery ladder processes the scalar k from the most significant to the least sig-
nificant bit updating at each iteration the accumulators R0 and R1. The bits of the scalar
determine which of the accumulators is updated by the results of the point doubling or the
differential addition operations. Each step of the ladder performs the same number of oper-
ations preserving the relation R0 −R1 = P . This is an advantageous property, since usually
the scalar k is a secret value. Therefore, a regular execution pattern helps to prevent threats
caused by some simple side-channel attacks. Let k be a t-bit number. Then Algorithm 35
takes 5tM+4tS, which in practice translates to a 7.6 M-per-bit cost, under the assumption
that 1S ≈ 0.66M in Fq.

Performing all elliptic curve operations in P1 minimizes the use of multiplicative inverses,
which tend to be quite costly. Hence, it is desirable to perform the scalar multiplication
computations required by the SIDH using this strategy.

1This map sets O = (1: 0) since (0 : 0) /∈ P1, see [52, §3].

Cinvestav 127

CHAPTER 9. INTRODUCTION TO THE SUPERSINGULAR ISOGENY
DIFFIE-HELLMAN PROTOCOL

Algorithm 35 Montgomery ladder algorithm.

Input: (k,x(P)), where k is a t-bit number, and x(P) ∈ P1 is a representation of P ∈
EA,B(Fq).

Output: x([k]P) ∈ P1.

1: Initialize R0 ← x(O), R1 ← x(P), and R2 ← x(P).
2: for i← t− 1 to 0 do
3: if ki = 1 then
4: (R0, R1)← (R0 +(R2) R1, 2R1)
5: else
6: (R0, R1)← (2R0, R0 +(R2) R1)
7: end if
8: end for
9: return R0 . For y-coordinate recovery, return also R1.

9.2.2. Edwards curves and their arithmetic

Introduced by H. Edwards in 2007 [122] this model of curves defined over a finite field Fq
is defined by

Ed/Fq : x2 + y2 = 1 + dx2y2,

with d 6= 1. Laater in 2008 Bernstein-Lange [20] proposed a generalized model called Twisted
Edwards curves which are defined by the equation

Ea,d/Fq : ax2 + y2 = 1 + dx2y2, (9.3)

for two distinct non-zero elements of Fq a and d 6= 1. The j-invariant of Ea,d is calculated
as,

j(E) =
16(a2 + 14ad+ d2)3

ad(a− d)4
, .

In the same way as Montgomery curves, we can move to projective coordinates (P2) that
implies that an affine point (x, y) is represented by (λX : λY : λZ) such that λ 6= 0, x = X/Z
and y = Y/Z. The point at infinity is a special case that is written as O = (0: 1 : 0). Points
can also be mapped to P1 as was point out by Castrick, Galbraith and Farashahi [31]

y : P2 → P1

(X : Y : Z) 7→ (Y : Z) (9.4)

O 7→ (1 : 0).

Let P,Q ∈ Ea,d(Fq) and R0, R1 ∈ P1. The point doubling operation denoted as [2]R0

can be computed by

Y[2]R0
= −c2dY 4

R0
+ 2Y 2

R0
Z2
R0
− c2Z4

R0
,

Z[2]R0
= dY 4

R0
− 2c2dY 2

R0
Z2
R0

+ Z4
R0
.

This operation has a cost of 1M+4S [102].
On the other hand, a differential addition denoted as R0 +(R2) R1, such that R0 = y(P),

R1 = y(Q), and R2 = y(P −Q) can be computed as follows

YR0+(R2)R1 = ZR2(Y 2
R0

(Z2
R1
− c2dY 2

R1
) + Z2

R0
(Y 2
R1
− c2Z2

R1
)),

ZR0+(R2)R1
= YR2

(dY 2
R0

(Y 2
R1
− c2Z2

R1
) + Z2

R0
(Z2

R1
− c2dY 2

R1
)).

at a cost of 6M+4S [102].

Cinvestav 128

9.3. SUPERSINGULAR ISOGENY DIFFIE-HELLMAN PROTOCOL

9.2.3. Relation between Montgomery and Edwards curves

Twisted Edwards curves and Montgomery curves are strongly related in the sense that
every twisted Edwards curve is birationally equivalent to a Montgomery curve over Fq. This
was proven in [20] and this equivalence is given via

φ : Ea,d → EA,B

(x, y) 7→
(

1 + y

1− y
,

1 + y

(1− yx)

)
,

where A := 2(a+d)
(a−d) and B := 4

a−d . Conversely

ψ : EA,B → Ea,d

(x, y) 7→
(
x

y
,
x− 1

x+ 1

)
,

where a := A+2
B and d := A−2

B .
In projective coordinates, particularly for the Montgomery XZ-only-coordinates and the

twisted Edwards Y Z-only-coordinates these maps become remarkably simple. A point (XM :
ZM) on a Montgomery curve can be transformed to the correspondent twisted Edward point
(YE , ZE) and vice versa by

(XM : ZM) → (YE , ZE) = (XM − ZM : XM + ZM), (9.5)

(YE : ZE) → (XM , ZM) = (YE + ZE : YE − ZE).

at a cost of only two additions in Fp each.

9.3. Supersingular isogeny Diffie-Hellman protocol

The main purpose of the classical Diffie-Hellman protocol is that two entities securely
agree on a shared secret over a public communication channel that is considered insecure
under passive attacks. In the case of the SIDH protocol this secret is obtained by computing
the j-invariant of two isomorphic supersingular elliptic curves generated by Alice and Bob
that happens to be isogenous to an initial supersingular curve E0.

The SIDH domain parameters are given as follows. Choose a supersingular elliptic curve
E over Fp2 , where p is a large prime of the form,

p = (lA)eA(lB)eBf ± 1,

and where lA and lB are small prime numbers, eA and eB are positive integers, and f is a small
cofactor. Then the cardinality of E is given as, #E = (lA

eA lB
eBf)

2
. To simplify the notation

let us define rA = lA
eA and rB = lB

eB . One then chooses two pairs of independent elliptic
curve points so that the subgroups E[rA] and E[rB] are generated as, 〈PA, QA〉 = E[rA]
and 〈PB , QB〉 = E[rB]. Notice that the prime p, the curve E and the generating points
PA, QA, PB , and QB , are all considered public domain parameters.

The SIDH key exchange protocol consists of two main phases which are illustrated in
Figure 9.1. In the first one, also known as the key generation phase, both parties proceed as
follows:

Alice selects a random number nA ∈ ZrA and computes the isogeny φA : E0 → EA with
kernel 〈PA + [nA]QA〉 = 〈RA〉. Then Alice calculates {φA(PB), φA(QB)} and sends to
Bob these points together with her computed curve EA;

Cinvestav 129

CHAPTER 9. INTRODUCTION TO THE SUPERSINGULAR ISOGENY
DIFFIE-HELLMAN PROTOCOL

analogously, Bob selects nB ∈ ZrB randomly and computes the isogeny φB : E0 → EB
with kernel 〈PB+[nB]QB〉 = 〈RB〉. Then Bob calculates {φB(PA), φB(QA)} and sends
to Alice these points together with his computed curve EB .

In the second phase of the protocol, Alice and Bob compute a shared secret as follows:

once Alice receives {EB , φB(PA), φB(QA)} from Bob, she calculates the isogeny φAB : EB →
EAB with kernel 〈φB(PA)+[nA]φB(QA)〉 = 〈φB(RA)〉. Finally Alice obtains the shared
secret as the j-invariant of EAB ;

once Bob receives {EA, φA(PB), φA(QB)} from Alice, he calculates the isogeny φBA : EA →
EBA that has kernel 〈φA(PB) + [nB]φA(QB)〉 = 〈φA(RB)〉. Finally Bob obtains the
shared secret as the j-invariant of EBA.

Alice Bob

Choose nA ∈ ZrA Choose nB ∈ ZrB
RA = PA + [nA]QA RB = PB + [nB]QB

EA, φA = ν(E,RA) EB , φB = ν(E,RB)

EA, φA(PB), φA(QB)
−−−−−−−−−−→

EB , φB(PA), φB(QA)
←−−−−−−−−−−

R′A = φB(PA) + [nA]φB(QA) R′B = φA(PB) + [nB]φA(QB)

EAB , φ
′
A = ν(EB , R

′
A) EBA, φ

′
B = ν(EA, R

′
B)

sA = j(EBCA) sB = j(EABC)
sA = sB

Figure 9.1: SIDH protocol. Here ν represent the Velu’s formula whose entries are an
elliptic curve E and a point P ∈ E such that generates the kernel of the output isogeny.

One can instantiate the SIDH protocol using different elliptic curve forms such as the
Edwards or the Montgomery curves. In this chapter we will focus in the latter form due to
its generally more efficient isogeny and elliptic curve arithmetic operations.

9.3.1. Security

The security of the Jao-De Feo Supersingular Isogeny Diffie-Hellman [55] protocol is based
on the intractability of the Computational Supersingular Isogeny (CSSI) problem, which is
defined as follows

Definition 9.2 (Computational Supersingular Isogeny (CSSI) problem [55]). Let φA : E0 →
EA be an isogeny whose kernel is 〈PA + [nA]QA〉, where nAis chosen at random from ZrA
and not divisible by lA. This problem consist in that given EA, and the values φA(PB) and
φA(QB), find a generator RA of 〈PA + [nA]QA〉.

It is important to mention that, given a generator RA = PA + [nA]QA it is easy to solve
for nA, since E0 has smooth order and thus extended discrete logarithms are easy in E0 [159].

There are two approaches to estimate the size of the prime p necessary to offer a certain
security level. According with De Feo et al. [55], it is believed that solve the CSSI problem

Cinvestav 130

9.3. SUPERSINGULAR ISOGENY DIFFIE-HELLMAN PROTOCOL

has a complexity of O(p1/4) and O(p1/6) against classical meet-in-the-middle and quantum
Claw finding attacks, respectively. However, in the work presented by Adj et al. [3] in 2018,
it was observed that despite the van Oorschot-Wiener golden collision finding algorithm
has a higher running time, it has a lower cost in comparison with the meet-in-the-middle
attack. Then, this algorithm should be used to evaluate the security of SIDH protocol against
classical attacks.

In Table 9.1 we show the necessary size in bits for the prime p that offers a determined
security level.

Approach
Security level

≈ 2128 ≈ 2160 ≈ 2192 ≈ 2256

According [55] 503 - 751 964
According [3] 434 546 - 610

Table 9.1: Bit-size of p for a security level of 128, 192 and 256 bits for SIDH protocol.

9.3.2. Critical operations

In this section we present the performance-critical operations that are performed in the
SIDH protocol and which should be analyzed and carefully implemented.

9.3.2.1. Computation of P + [k]Q

At each stage of the SIDH protocol, Alice and Bob must compute the kernel of an isogeny
by calculating the point P + [k]Q, where P and Q are linearly independent points of order r
and k ∈ Zr is a secret.

Since it is generally more efficient to perform the SIDH scalar point multiplications using
P1 arithmetic, we will review in the following two common strategies to compute x(P+[k]Q).

Method 1: Given P , Q, and k, use the classical Montgomery ladder (Algorithm 35)
for computing the x-coordinate of [k]Q followed by the application of the Okeya-Sakurai
formula to recover the y-coordinate of [k]Q. Finally, perform a projective point addition
of the points (xP : yP : 1) and (X[k]Q : Y[k]Q : Z[k]Q) to obtain x(P + [k]Q). This strategy
requires the knowledge of the y-coordinate of the points P and Q. The time computational
expense of this algorithm is given by the execution cost of the Montgomery ladder plus a
constant number of prime field multiplications (< 30M).

Method 2 (three-point ladder): In [55], De Feo et al. proposed a three-point ladder
procedure that given the x-coordinate of the points P , Q, and Q−P, computes x(P + [k]Q).
This method performs two differential additions and one doubling per bit of the scalar k.
This is the same number of operations as computing [m]P + [n]Q using the Bernstein’s two-
dimensional ladder algorithm [19]. One advantage of the three-point ladder is that all elliptic
curve operations are performed using only the x-coordinate of the involved points.

To improve the computation of the SIDH protocol, these two methods can be combined as
follows. Notice that during the SIDH key generation phase the initial points are fixed. This
situation allows us to apply the Method 1 efficiently since the y-coordinate of the points are
known in advance. On the other hand, during the SIDH shared secret phase Alice and Bob
exchange points in P1. Hence, in order to use Method 1 Alice must recover the y-coordinate of
the points sent by Bob. However, this will increase the protocol’s latency and/or bandwidth.
Therefore, Method 2 emerges as a suitable alternative for this scenario, and in fact the three-
point ladder algorithm has been adopted by most if not all state-of-the-art implementations
of the SIDH protocol (see [51, 54, 116, 50]).

Cinvestav 131

CHAPTER 9. INTRODUCTION TO THE SUPERSINGULAR ISOGENY
DIFFIE-HELLMAN PROTOCOL

In §10 we introduce in the context of the SIDH protocol, novel strategies for computing
x(P + [k]Q). Our approach performs fewer elliptic curve operations than the methods pre-
sented above. Moreover, our algorithms can be used to improve the running time of both,
the key generation and the shared secret computation phases of the SIDH protocol.

9.3.2.2. Computing large degree isogenies

Another performance-critical operation is found when Alice and Bob compute and eval-
uate the isogenies. Let E be an elliptic curve, and let R be a point of order le, our goal is to
compute the image curve E/〈R〉 and evaluate the isogeny φ : E → E/〈R〉 at some points of
E.

The complexity of Velú’s formulas scales linearly with respect to the size of the kernel
subgroup. Therefore, it is convenient to decompose an le-isogeny into e isogenies of degree l
for computational efficiency.

Given a point R of order le, an isogeny φ : E → E/〈R〉 is calculated as a composition
of l-degree isogenies φ = φe−1 ◦ · · · ◦ φ0, as follows2. Let E0 = E and R0 = R, then for
0 ≤ i < e, compute: Ei+1 = Ei/〈le−i−1Ri〉, φi : Ei → Ei+1, and Ri+1 = φi(Ri). Thus,
E/〈R〉 = Ee. Using the point le−i−1Ri, the curve Ei+1 and the isogeny φi can be readily
computed in polynomial time by means of Vélu’s formulas (see[164, theorem 12.16]).

Formulas for constructing and evaluate isogenies

In this section we give explicit formulas for compute and evaluate isogenies of Montgomery
and twisted Edwards curves.

Lemma 9.1. Theorem 1 of [49] establish that: Let P ∈ E(F̄q) be a point of order d = 2l+ 1

on the Montgomery curve EA,B/Fq : By2 = x(x2+Ax+1) and write σ =
∑l
i=1 1/x[i]P−x[i]P

and π =
∏l
i=1 x[i]P . The Montgomery curve

E′A′,B′/Fq : B′y2 = x(x2 +A′x+ 1)

with A′ = (6σ+A)·π and B′ = B ·π2 is the codomain of the normalized d-isogeny φ : E → E′

with ker(φ) = 〈P 〉. Moreover, we can evaluate a point Q = (x : z) not in 〈P 〉 via

x′ = xQ ·
(∏`

i=1

[
(xQ − zQ)(x[i]P + z[i]P) + (xQ + zQ)(x[i]P − z[i]P)

])2

z′ = zQ ·
(∏`

i=1

[
(xQ − zQ)(x[i]P + z[i]P)− (xQ + zQ)(x[i]P − z[i]P)

])2

which has a cost of 4lM + 2S + (4l + 2)A, where A stands for the cost of an addition in Fq.

Moody presented formulas for isogenies between Edwards curves [133] and more precisely,
twisted Edwards curves which are of our particular interest.

Lemma 9.2. ([133, Corollary 1]) Suppose F is a subgroup of the twisted Edwards curve
Ea,d with odd order s = 2l + 1, where F is the set of points

F = {(O), (±α1, β1), . . . , (±αl, βl)}

Define

ψ(Q) =

 ∏
P∈F\{O}

xQ+P

xP
,

∏
P∈F\{O}

yQ+P

yP

 .

Then ψ is an s-isogeny, with kernel F from the curve Ea,d to the curve Ea′,d′ where a′ :=

as, d′ = B8ds and B =
∏l
i=1 βi.

2See [55] for a comprehensive discussion on optimal approaches for computing a le-degree isogeny.

Cinvestav 132

9.3. SUPERSINGULAR ISOGENY DIFFIE-HELLMAN PROTOCOL

We can observe, as was pointed by Meyer and Reith[125] that parameters a′ and d′

depend only of a, d and the y-coordinates of points in F . So, we can make use of this formulas
switching to Montgomery curves for curve arithmetic purposes using the maps from §9.2.3
which are almost-free-of-cost. We can consider Montgomery projective coordinates and we
get that A := 2(a + d) and C := a− d then we can also consider Edwards Y Z-coordinates,
i.e., consider y(P) := βi = (yPi

: zPi
) for P ∈ F \ O and obtain that a′ := B8

za
s and

d′ := B8
yd
s where By :=

∏l
i=1 yPi

and Bz :=
∏l
i=1 zPi

. The cost of computing this projective
version of a′ and d′ is about (2l + 2 + log(s)/2)M + (6 + log(s))S.

Cinvestav 133

CHAPTER 9. INTRODUCTION TO THE SUPERSINGULAR ISOGENY
DIFFIE-HELLMAN PROTOCOL

Cinvestav 134

Chapter 10
A faster software implementation of the

Supersingular Isogeny Diffie-Hellman
protocol

Since its introduction by Jao and De Feo in 2011, the supersingular isogeny Diffie-Hellman
(SIDH) key exchange protocol has positioned itself as a promising candidate for post-quantum
cryptography. One salient feature of the SIDH protocol is that it requires exceptionally short
key sizes. However, the latency associated to SIDH is higher than the ones reported for other
post-quantum cryptosystem proposals. Aiming to accelerate the SIDH runtime performance,
we present in this work several algorithmic optimizations targeting both elliptic-curve and
field arithmetic operations.

10.1. Introduction

Over the last decade there has been an intense research effort to find hard mathematical
problems that would be presumably hard to solve by a quantum attacker and at the same
time could be used to build reasonably efficient public-key cryptoschemes. One such proposal
is the hardness of finding an isogeny map between two elliptic curves, i.e., given two elliptic
curves E0 and E1, the problem of finding a morphism φ : E0 → E1 that maps points from
E0 to E1 while preserving φ(OE0

) = OE1
. This proposal has spawned a new line of research

generally known as isogeny-based cryptography.
In 2011, Jao and De Feo proposed the problem of finding the isogeny map between two

supersingular elliptic curves, a setting where the attack in [39] does not apply anymore.
This proposal led to the Supersingular Isogeny-based Diffie-Hellman key exchange protocol
(SIDH) [95] (see also [55]). As of today, the best-known algorithms against the SIDH protocol
have an exponential time complexity for both classical and quantum attackers.1

Although the SIDH public key size for achieving a 128-bit security level in the quantum
setting was already reported as small as 564 bytes in [51], this SIDH public key size was
recently further reduced in [50] to just 330 bytes. However impressive, these key size creden-
tials have to be contrasted against SIDH relatively slow runtime performance. Indeed, the
SIDH key exchange protocol has a latency in the order of milliseconds when implemented
in high-end Intel processors. This timing is significantly higher than the one achieved by
several other quantum-resistant cryptosystem proposals. Consequently some recent works

1See §9.3 for a detailed description of the SIDH protocol.

135

CHAPTER 10. A FASTER SOFTWARE IMPLEMENTATION OF THE
SUPERSINGULAR ISOGENY DIFFIE-HELLMAN PROTOCOL

have focused on devising strategies to reduce the runtime cost of the SIDH protocol. For
example, Koziel et al. presented a parallel evaluation of isogenies implemented on an FPGA
architecture [115, 114], reporting important speedups for this protocol. These developments
show the increasing research interest on developing techniques able to accelerate the SIDH
protocol software and hardware implementations.

In order to reduce the running time of the SIDH protocol it is important to identify
performance-critical operations. Upon initial inspection it is noted that this scheme computes
a shared secret by performing a high number of elliptic curve and field arithmetic operations.
Taking into consideration the above, our main contributions for accelerating the performance
of the SIDH key exchange protocol can be summarized as follows:

Building on the scalar multiplication procedures reported in [138], we propose a right-
to-left Montgomery ladder that efficiently computes the elliptic curve scalar multipli-
cation P + [k]Q required by the two main phases of the SIDH protocol. Our strategy
achieves a factor 1.4 speedup compare with the well-known three-point ladder algorithm
presented in [55]. Further, when the base point Q is known in advance our algorithm
can take advantage of a precomputed look-up table derived from Q, which in principle
allows us to accelerate the aforementioned computation. Nevertheless, this approach
led us to discover several unforeseen implementation difficulties which are somewhat
related to the parameter selection used by Costello et al. in [51]. We describe how
these issues were efficiently circumvented allowing us to also report a higher speedup
factor for the SIDH fixed-point scalar multiplication computation.

We present an optimized point tripling formula specialized for Montgomery elliptic
curves. We consider the case when the elliptic curve parameter A that defines the
elliptic curve equation is expressed as a quotient A = A0/A1. Our formulation saves
one multiplication at the cost of one squaring and one addition, which are performed
in the quadratic extension field Fp2 . This saving is valuable if one considers that Bob
has to perform hundreds of point tripling computations in both phases of the SIDH
protocol.

We developed an optimized prime field arithmetic that takes advantage of the recent
instructions devoted to achieve ultra fast integer arithmetic computations, such as the
Bit Manipulation Instructions (BMI2) and the addition instructions with independent
carry chains (ADX) supported by high-end Intel and AMD 64-bit processors described
in §3.2.

Combining all the above improvements, the execution of our library achieves a factor 1.33
speedup compared with the running time associated to the fastest SIDH software implemen-
tation reported in the literature (see §10.5 for more details about the performance achieved
by our library).

10.2. A novel algorithm for computing x(P + [k]Q)

The Montgomery ladder (Algorithm 35) is known as a left-to-right algorithm, since it
computes [k]P by scanning the bits of the scalar k from the most-significant to the least-
significant bit. A right-to-left evaluation of the Montgomery ladder was recently introduced
to accelerate the scalar multiplication operation in the fixed-point scenario. This approach
was first applied in the context of binary elliptic curves [100, 137], and then, it was further
extended to Montgomery curves [138]. Building on the right-to-left ladder technique of [138]
we present here an algorithm that computes x(P + [k]Q) efficiently.

The proposed approach is shown in Algorithm 36, which given the points x(P), x(Q),
and x(Q−P) computes x(P +[k]Q) provided that P,Q−P /∈ {O, (0, 0)}. Algorithm 36 uses

Cinvestav 136

10.2. A NOVEL ALGORITHM FOR COMPUTING X(P + [K]Q)

Algorithm 36 Variable-point multiplication of x(P + [k]Q).

Input: (k,x(P),x(Q),x(Q−P)), where k is a t-bit number; and x(P),x(Q),x(Q−P) ∈ P1

are a representation of P,Q,Q− P ∈ E(Fq), respectively.
Output: x(P + [k]Q).

1: Initialize R0 ← x(Q), R1 ← x(P) and R2 ← x(Q− P)
2: for i← 0 to t− 1 do
3: if ki = 1 then
4: R1 ← R0 +(R2) R1

5: else
6: R2 ← R0 +(R1) R2

7: end if
8: R0 ← [2]R0

9: end for
10: return R1

three accumulators, namely R0, R1, R2 ∈ P1, and scans the bits of k from the least-significant
to the most-significant bit. At the i-th iteration, the ki bit value determines whether R0 must
be accumulated in R1 or in R2. Thereafter R0 is doubled unconditionally. Accumulators
are updated by one differential addition and one point doubling and they always preserve
the relation R0 − R1 = R2. This is the same invariant relation that holds for the classical
Montgomery ladder of Algorithm 35. However notice that in the case of Algorithm 36, the
value stored in R2 may vary between iterations, unlike Algorithm 35 where R2 is always
fixed to x(P). In summary, Algorithm 36 performs 6tM+4tS, which for a practical software
implementation implies a cost of approximately 8.6 M-per-bit.

As observed in [138], in the case that Q is a fixed point known in advance, one can
construct a look-up table T (Q) by precomputing constants that are obtained from the x-
coordinate of multiples of the point Q as,

T (Q) = (T0, . . . , Tt−1), where Ti =
xi + 1

xi − 1
, and (xi, yi) = [2i]Q, (10.1)

for 0 ≤ i < t, where t is the size in bits of the scalar k. Using this approach, the point doubling
computation in line 8 of Algorithm 36 can be replaced by a query to the look-up table T .
For completeness, we show in Algorithm 37 the fixed-point version of Algorithm 36. The
differential additions in lines 5 and 7 of Algorithm 37 are computed more efficiently (using
3M+2S) using the precomputed value Ti as input [138]. It is worth to mention that the look-
up table queries of Algorithm 37 use non-secret indexes. This is in stark contrast with other
fixed-point multiplication algorithms where protecting look-up table accesses is mandatory,
a measure that unavoidably introduces performance overheads. The computational cost of
Algorithm 37 for computing x(P + [k]Q) drops to 3tM+2tS, which is around 4.3 M-per-bit.

As in the case of the classical Montgomery ladder we show how to recover the y-coordinate
of P + [k]Q from the values computed by the right-to-left ladder algorithm. This method
will be discussed at length in §10.2.2.

10.2.1. Applying the new algorithm to the SIDH protocol

As already mentioned, the P + [k]Q operation must be performed in both phases of the
SIDH protocol. During the key generation phase, this operation uses points that are known
in advance. Conversely, during the shared secret generation phase operations are performed
over unknown points. In the remaining of this section we describe the application of our
algorithms to these scenarios and we also discuss some relevant issues that appeared on their
implementations. We present first the description of the variable point case.

Cinvestav 137

CHAPTER 10. A FASTER SOFTWARE IMPLEMENTATION OF THE
SUPERSINGULAR ISOGENY DIFFIE-HELLMAN PROTOCOL

Algorithm 37 Fixed-point multiplication of x(P + [k]Q).

Input: (k,x(P),x(Q − P)), where k is a t-bit number; and x(P),x(Q − P) ∈ P1 are a
representation of P,Q− P ∈ E(Fq), respectively.

Output: x(P + [k]Q).

Precomputation:
1: T (Q) is a look-up table defined as in Equation (10.1).

Computation:
2: Initialize R1 ← x(P), and R2 ← x(Q− P).
3: for i← 0 to t− 1 do
4: if ki = 1 then
5: R1 ← Ti +(R2) R1

6: else
7: R2 ← Ti +(R1) R2

8: end if
9: end for

10: return R1 . For y-coordinate recovery, return also R2.

10.2.1.1. Computing P + [k]Q in the variable-point scenario

During the secret generation phase, Alice2 receives x(φB(PA)), x(φB(QA)) from Bob.
Afterwards, Alice must calculate x(φB(PA) + [nA]φB(QA)). To that end, Method 1 could
be applied in this scenario. Nevertheless, this would require that Alice must know the
y-coordinate values of the points φB(PA) and φB(QA). To circumvent this difficulty, Bob
could send the y-coordinate of these two points, but this would increase the public key sizes
considerably. Alternatively, Bob could encode the y-coordinate of each point into one bit.
However, this would force Alice to decompress a point using time-consuming square-roots
over Fq. We conclude that Method 1 becomes an inadequate choice for this scenario.

On the other hand if Bob additionally sends x(φB(PA − QA)), then Alice can perform
the three-point ladder algorithm [55] (corresponding to Method 2 described in the previous
section). This is the mechanism followed by most of the state-of-the-art implementations,
such as [51, 54, 116, 50]. Nevertheless notice that the three-point ladder algorithm has a
higher computational cost as compared to Method 1.

A more efficient approach consists of applying Algorithm 36 since it provides a significant
saving of field arithmetic operations when compared to Method 1 or Method 2. Furthermore
given the same input values, Algorithm 36 and the three-point ladder procedure produce
the same output. This implies that both algorithms can share the same interface, which
is especially valuable for minimizing the changes of existent software implementations. An
extra advantage of adopting Algorithm 36 is that it does not increase the public key size.
Figure 10.1 shows an example contrasting the execution of Algorithm 36 and the three-point
ladder procedure when processing the same scalar k = 12.

By replacing the three-point ladder algorithm with Algorithm 36, we estimate to achieve a
factor 1.38 speedup (Table 10.1). In §10.5, this prediction is experimentally verified through
the benchmarking of our SIDH protocol implementation.

10.2.1.2. Computing P + [k]Q in the fixed-point scenario

In this phase, one can exploit more avenues for further optimizations. First of all, the
involved points are fixed, allowing us to use precomputed look-up tables that could possi-
bly accelerate operations. In this scenario it is clear that Method 1 is more efficient than

2Since the same analysis applies to Bob by just swapping sub-indexes, in this section we only summarize
the operations performed by Alice.

Cinvestav 138

10.2. A NOVEL ALGORITHM FOR COMPUTING X(P + [K]Q)

R0 = O R1 = P R2 = Q− PR2 = Q

k4 = 0 O QP

k3 = 1 Q 2QP +Q

k2 = 1 3Q 4QP + 3Q

k1 = 0 6Q 7QP + 6Q

k0 = 0 12Q 13QP + 12Q

(a) Three-point ladder from [55].

R1 = P R0 = Q R2 = Q− P

k0 = 0 2QP 2Q− P

k1 = 0 4QP 4Q− P

k2 = 1 8QP + 4Q 4Q− P

k3 = 1 16QP + 12Q 4Q− P

k4 = 0 32QP + 12Q 20Q− P

(b) Algorithm 36 (our work)

Figure 10.1: Calculating P + [12]Q, where the scalar is a 5-bit number (12)10 = (01100)2.
In Fig.10.1(a) we show the steps for the three-point ladder algorithm, and in Fig.10.1(b)

the steps for the ladder of Algorithm 36. If we remove the central column in Fig.10.1(a), it
becomes clear that the three-point ladder procedure is in essence a classical Montgomery

ladder. Also note that the column in the center of Fig.10.1(b) shows a sequence of
consecutive point doublings of Q. When Q is a fixed point, this column can be

precomputed.

Method 2. However, it is not obvious how these two strategies could benefit from precom-
putation techniques.

Taking advantage of the fact that the points are known in advance one can directly apply
Algorithm 37. Using this procedure one can expect a factor 1.77 speedup when compared
with Method 1 (Table 10.1). Hence, the SIDH key generation phase can be also accelerated
in a similar way as it happens in the ECDH protocol implementation reported in [138].

Algorithm 37 was designed to perform arithmetic operations over Fq, where in the general
setting q = p2. However, Algorithm 37 can also be useful in the setting q = p. For the rest
of this section, we adhere to the elliptic curve parameters proposed by Costello et al. [51].

Let PA = (xPA
, yPA

) and PB = (xPB
, yPB

) be the base points of Alice and Bob, respec-
tively. By construction, the authors of [51] selected PA and PB in such a way that their
affine coordinates lie in Fp. Using the distortion map action, they obtained the points
QA = (−xPA

, yPA
i) and QB = (−xPB

, yPB
i), which happen to be linearly independent

to PA and PB , respectively. Let us recall that Alice’s points have order rA = 2eA , while
Bob’s points have order rB = 3eB . Under these conditions, Costello et al. [51] employed the
following method to compute x(P + [k]Q) in the fixed-point scenario.

Method 3: Compute the Montgomery ladder algorithm in Fp to obtain x([k]Q) ∈ P1(Fp).
Then recover the y-coordinate of [k]Q, and finally perform a projective point addition to
obtain x(P + [k]Q). The cost of Method 3 is of about 8.2m-per-bit, where m denotes a
multiplication in Fp. Assuming 1M = 3m, one concludes that Method 3 takes around one
third of the cost of Method 1.

Sticking to the same conditions, we consider to perform operations of Algorithm 37 over
Fp. To that end, this procedure requires x(Q− P) ∈ P1(Fp). Unfortunately, this is not the
case for the points selected using the parameter generation of [51]. Indeed, note that one of
the projective coordinates of x(Q−P) = ((x2

P + 1)i : 2xP) is not in Fp. As a consequence, it
would appear that the point selection method used in [51] restricts the use of Algorithm 37.

However, not all is lost. We prevent these issues and propose an alternative solution that
combines the efficiency offered by Algorithm 37 and the parameter selection described above.

Our idea consists of employing Algorithm 37 to compute x(S+[k′]Q) for an order-d point
S ∈ E(Fp2), such that x(Q− S) ∈ P1(Fp) and k′ ≡ k/d mod r. Thereafter one can compute
x([k]Q) = [d]x(S + [k′]Q), followed by the recovery of the y-coordinate of [k]Q, and finally
the addition of the point P (as in Method 3) to end up with x(P + [k]Q). We must ensure

Cinvestav 139

CHAPTER 10. A FASTER SOFTWARE IMPLEMENTATION OF THE
SUPERSINGULAR ISOGENY DIFFIE-HELLMAN PROTOCOL

that S /∈ 〈Q〉, and for efficiency reasons we also impose the restriction that the point S must
have a low order d 6= 2. These steps are summarized in Algorithm 38.

Algorithm 38 Proposed algorithm to compute x(P + [k]Q) in the fixed-point scenario
and adapted to the elliptic curve parameters defined in [51]. Let I ∈ {A = Alice, B = Bob}
denote the SIDH protocol participant.

Input: (k, tI , PI , QI , SI), where k is an tI -bit number (tA = 372 and tB = 379), PI and QI
are points of order rI (defined as in [51]), and SI is a point of order dI (defined as in
Equation (10.2)).

Output: x(PI + [k]QI).

Precomputation:
1: Compute a look-up table T (QI) defined as in Equation (10.1). Compute U0, U1, V0, V1

∈ E(Fp2) defined as in Equation (10.5).
Computation:

2: k′ ← k/dI mod rI
3: if I = Alice then . §10.2.2.1.
4: (α, β, k′)← (k′eA−1, k

′
eA−2, k

′ mod 2eA−2)
5: end if
6: R1, R2 ← Algorithm37q=p,T (QI)(k

′,x(SI), x(QI − SI)) . R1 = x(SI + [k′]QI)
7: R1 ← [dI]R1, R2 ← [dI]R2

8: (XR1 : YR1 : ZR1)← y-Recover(R1, R2) . §10.2.2.
9: if I = Alice then . §10.2.2.1.

10: U ← cmove(α,U0, U1)
11: V ← cmove(β, V0, V1)
12: R3 ← (XR1

: YR1
: ZR1

) + U + V
13: else if I = Bob then
14: R3 ← (XR1 : YR1 : ZR1) + PB
15: end if
16: return x(R3)

Looking for a suitable point S the most natural choice to obtain low order points is that
Alice uses Bob’s points and vice versa. Hence, let us define the following points,

S =

{
SA = [3eB−1]QB , for Alice;

SB = [2eA−2]QA , for Bob.
(10.2)

By construction SA and SB were chosen such that both x(QA−SA) and x(QB −SB) are in
P1(Fp).

The cost of Algorithm 38 is similar to the cost of Algorithm 37 plus a constant number
of multiplications (< 30M). However, the scalar multiplication operations are performed
over Fp resulting in a cost of approximately 4.6m-per-bit. Thus, Algorithm 38 provides an
acceleration of a factor 1.78 speedup compared to the performance of Method 3.

Table 10.1 summarizes the computational costs of the algorithms discussed in this section.
We considered two scenarios: the first one is when points are fixed and known in advance;
and the second one when dealing with unknown points. For both scenarios our methods
outperform the techniques used in state-of-the-art implementations [51, 54, 116, 50]. In §10.5,
we report the impact yielded by these algorithms on the SIDH protocol overall performance.

10.2.2. Recovering the y-coordinate of P + [k]Q

As in the classical Montgomery ladder, one can recover the y-coordinate of P +[k]Q using
the values computed in the last iteration of the right-to-left algorithm. This can be done by

Cinvestav 140

10.2. A NOVEL ALGORITHM FOR COMPUTING X(P + [K]Q)

Scenario Field Mult-per-bit AF Algorithms

Fixed-
point

Fp2
7.6M Method 1
4.3M 1.77 Alg. 37 (our work)

Fp
8.2m Method 3 [51]
4.6m 1.78 Alg. 38 (our work)

Variable-
point

Fp2
11.9M 3-point ladder [55]
8.6M 1.38 Alg. 36 (our work)

Table 10.1: Algorithms for computing x(P + [k]Q) in the fixed- and variable-point
scenario. The third column shows ladder step arithmetic operation costs and the fourth

column shows the predicted acceleration factor. We assume that 1M=3m, 1S=0.66M, and
1s=0.8m.

restating the formula given in Okeya-Sakurai’s paper [136, Corollary 2] as discussed next.
Let us consider an affine point (x, y) with y 6= 0, and the points Pi = (Xi : Zi) ∈ P1, for

i = 1, 2, 3 such that, (X2 : Z2) = (X1 : Z1)− (x, y), and (X3 : Z3) = (X1 : Z1) + (x, y). Then
one can compute,

X ′1 = 4ByZ1Z2Z3X1

Y ′1 = (X2Z3 − Z2X3)(X1 − Z1x)2 (10.3)

Z ′1 = 4ByZ1Z2Z3Z1 ,

such that the point (X ′1 : Y ′1 : Z ′1) ∈ P2 belongs to the same equivalence class of the point
(X1 : Z1) ∈ P1.

Recall that the loop-invariant of the right-to-left ladder is R0 − R1 = R2. Thus, the
accumulators in the i-th iteration hold the values R0 = [2i]Q, R1 = P + [k mod 2i]Q, and
R2 = [2i − (k mod 2i)]Q− P , respectively. Since k is a t-bit number, then after t iterations
one can compute R3 = R0 +(R2) R1 and use the points stored in those four accumulators to
apply Equation (10.4) as: (x, y)← R0; (X1 : Z1)← R1; (X2 : Z2)← R2; and (X3 : Z3)← R3.
This allows the recovery of the y-coordinate of the point R1 = P + [k]Q. The cost of the
y-coordinate recovering just described is one differential addition more than the original
Okeya-Sakurai technique. Thus, the only requirement is to have a previous knowledge of the
point [2t]Q.

In the fixed-point scenario, the point [2t]Q can be saved together with the look-up table
constants. This enables the usage of Algorithm 37 as a subroutine of Algorithm 38 for
accelerating the P + [k]Q operation in the fixed-point scenario. Nonetheless, the fact that
Alice uses points of 2-smooth order produces some troubles for recovering the y-coordinate
of [k]QA. We dedicate the next subsection for exposing this issue and the solution that we
found to it.

10.2.2.1. An implementation issue: Alice’s y-coordinate recovering

We found a subtle issue when Alice tries to recover the y-coordinate of [k]QA. Since QA
has order 2eA then R0 = [2i]QA = O for all i ≥ eA. Note that for a t-bit scalar k, the point
R0 = [2t]Q is directly involved in the recovery of the projective coordinates of the point
P + [k]Q. Hence, after running eA steps of the right-to-left ladder we end up having yR0 = 0,
which makes the usage of Equation (10.4) impossible. In order to overcome this problem
we propose the solution described in Algorithm 38. The main idea consists of running only
t′ iterations of Algorithm 37, where t′ is the largest number such that t′ < eA and the y-
coordinate of R0 = [2t

′
]Q is different than 0. This allows us to recover the y-coordinate

Cinvestav 141

CHAPTER 10. A FASTER SOFTWARE IMPLEMENTATION OF THE
SUPERSINGULAR ISOGENY DIFFIE-HELLMAN PROTOCOL

using Equation (10.4). However notice that if we set t′ = eA − 1, then R0 becomes a point
of order two, i.e. yR0 = 0. For this reason, we chose t′ = eA − 2, since then R0 = [2t

′
]QA,

and yR0 6= 0. The points corresponding to the last two missing steps of the ladder can be
conditionally added together with the point PA.

Referring to Algorithm 38, in step 1 the scalar k′ is computed. Then in steps 2-4 the
values of the two most significant bits of k′ are saved as α = k′eA−1 and β = k′eA−2. Also
k′ is updated to consider only its t′ least significant bits. Then, Algorithm 37 computes
SA + [k′]QA performing exactly t′ iterations. After clearing SA, the accumulators hold
R0 = R1 + R2 = [2eA−2]QA and yR0

6= 0. This allows to recover the y-coordinate of [3(k′

mod 2eA−2)]QA using Equation (10.4). Thereafter, in steps 9-11 the points 3k′eA−12eA−1QA
and 3k′eA−22eA−2QA are conditionally added to obtain [3k′]QA = [k]QA. Finally the proce-
dure returns x(PA + [k]QA).

The conditional point additions of steps 9-11 must be computed in a secure way. One
common technique is to conditionally select U ∈ E(Fq) from {U,O} according to the bit value
(this can be securely implemented using a conditional move or conditional swap). However,
there is an issue when the bit chooses O due to the projective point addition is not complete,
i.e. it can not handle the point at infinity. To remedy this situation, we precompute the
following points:

U0 = −PA , U1 = U0 + [3× 2eA−1]QA , (10.4)

V0 = [2]PA , V1 = V0 + [3× 2eA−2]QA.

Steps 10-12 of Algorithm 38 show how to select these points by using the auxiliary function
cmove, which conditionally moves the points according to the input bit value. Note that
regardless the bit values, our procedure always add PA.

The overhead caused by these modifications in Alice’s side is negligible in comparison
with Bob’s method. By using this approach, both Alice and Bob can benefit from the usage
of a precomputation table to accelerate the key generation phase.

10.3. Optimization of point tripling in Montgomery curves

As we see in §9.3.2.2, the calculation of large-degree isogenies requires to compute either
[2i]x(P) or [3i]x(P) for some point P ∈ E(Fq) and some integer i. These operations are
computed repeatedly applying point doubling or tripling algorithms using projective formulas
in P1. For the sake of efficiency, we look for an optimized formula that computes the point
tripling operation faster.

A common technique to compute [3]P consists of performing a point doubling followed
by a differential point addition, i.e. [3]P = [2]P +(P) P . This method has a cost of 7M + 4S
+ 8A field arithmetic operations. Recently, Subramanya Rao [157] showed a more efficient
formula to compute a point tripling. Given P = (X1 : Z1) and let A be the Montgomery
curve parameter, such a formula calculates [3]P = (X3 : Z3) as follows:

λ =
(
X1

2 − Z1
2
)2

γ = 4(X1
2 + Z1

2 +AX1Z1) (10.5)

X3 = X1

(
λ− γZ1

2
)2

Z3 = Z1

(
λ− γX1

2
)2

.

This formula is derived by coalescing the point doubling and differential addition and its
computational cost is 6M + 5S + 9A field operations.

Cinvestav 142

10.3. OPTIMIZATION OF POINT TRIPLING IN MONTGOMERY CURVES

In the SIDH context, the parameter A of the Montgomery elliptic curve (see Equa-
tion (9.1)) is not fixed, since it may change due to the computation of isogenies. Because of
this, the parameter A is represented as a quotient A = A0/A1. This representation, which
was introduced in [51], avoids the usage of inversions for the computation of large-degree iso-
genies. Therefore, tripling formulas must be modified to operate with A0 and A1. Table 10.2
shows the cost of several tripling formulas reported in the literature.

A = A0/A1 Cost Precomputation Reference

A1 = 1
7M + 4S + 8A {(A+ 2)/4} [132]

6M + 5S + 9A ∅ [157]

A1 arbitrary

8M + 4S + 8A {A0 + 2A1, 4A1} [51]

7M + 5S + 10A {A0 ± 2A1} [49]

7M + 5S + 9A {A0 − 2A1, 2A1} Our work

Table 10.2: Cost of point tripling formulas (in P1) for a Montgomery elliptic curve with
parameter A = A0/A1.

We optimize the calculation of the tripling formula observing that 2X1Z1 can be calcu-
lated from X1

2, Z1
2, and (X1 + Z1)2 as:

2X1Z1 = (X1 + Z1)2 − (X1
2 + Z1

2) ; (10.6)

thus, λ from (10.5) can be also calculated using (10.6) as follows:

λ = (X1 + Z1)2(X1 − Z1)2

= (X1 + Z1)2
[
(X1

2 + Z1
2)− 2X1Z1

]
;

(10.7)

likewise, γ from (10.5) is given as:

γ = 4
(
X1

2 + Z1
2 +AX1Z1

)
= 2

[
2(X1

2 + Z1
2 +AX1Z1)

]
= 2

[
2(X1 + Z1)2 + (A− 2)(2X1Z1)

]
.

(10.8)

Using Equations (10.6))-((10.8) and considering that A = A0/A1, we calculate [3]P =
(X3 : Z3) as follows:

λ = (2A1)(X1 + Z1)2
[
(X1

2 + Z1
2)− 2X1Z1

]
γ = 4

[
(2A1)(X1 + Z1)2 + (A0 − 2A1)(2X1Z1)

]
X3 = X1

(
λ− γZ1

2
)2

Z3 = Z1

(
λ− γX1

2
)2

.

(10.9)

Assuming A′0 = A0 − 2A1 and A′1 = 2A1 are precomputed, then our point tripling formula
(Equation (10.9)) requires 7M + 5S + 9A using the following sequence of operations:

1 : t0 ← (X1)2 8 : t2 ← A′1 × t2 15 : t2 ← t2 × t4
2 : t1 ← (Z1)2 9 : t5 ← t2 + t5 16 : t0 ← t2 − t0
3 : t2 ← X1 + Z1 10 : t5 ← t5 + t5 17 : t1 ← t2 − t1
4 : t2 ← (t2)2 11 : t5 ← t5 + t5 18 : t0 ← (t0)2

5 : t3 ← t0 + t1 12 : t0 ← t0 × t5 19 : t1 ← (t1)2

6 : t4 ← t2 − t3 13 : t1 ← t1 × t5 20 : X3 ← X1 × t1
7 : t5 ← A′0 × t4 14 : t4 ← t3 − t4 21 : Z3 ← Z1 × t0

Cinvestav 143

CHAPTER 10. A FASTER SOFTWARE IMPLEMENTATION OF THE
SUPERSINGULAR ISOGENY DIFFIE-HELLMAN PROTOCOL

It can be seen that our formula improves point tripling computation by 1M - 1S - 1A with
respect to the formula used by Costello et al. in [51] (Table 10.2). Independent work of
Costello and Hisil [49] gives formulas for point tripling; however, our formulas are one field
addition faster.

Bob’s isogeny computations require the frequent computation of point tripling operations
to calculate points of the form [3i]P . Therefore, one can see that any improvement in the
tripling formula impacts directly the calculation of large-degree isogenies, which are by far
the most time-consuming operations in the SIDH protocol.

10.4. Finite field arithmetic implementation

The instantiation of the SIDH protocol by Costello et al. [51] uses a prime modulus of
the form, pCLN = 23723239 − 1. Notice that this prime can be represented using twelve 64-bit
words.

Since the SIDH protocol computes isogenies of supersingular elliptic curves defined over
the field Fp2 , a sensible implementation of the SIDH protocol must implement fast arithmetic
in the quadratic field Fp2 . Quadratic field arithmetic can be performed more efficiently by
means of a field towering approach that relies on an optimized implementation of the base
field arithmetic Fp. For example, the multiplication and squaring operations in the quadratic
extension field translate to the computation of three and two field multiplications in the base
field Fp as discussed next.

Let Fq=p2 = Fp[i]/(i2 + 1), where i2 + 1 is an irreducible binomial3 in Fp[i]. The field
elements a, b ∈ Fq can be written as a = a0 + a1 · i and b = b0 + b1 · i. Using a Karatsuba
approach the field multiplication c = a · b = c0 + c1 · i can be computed as,

c0 = a0 · b0 − a1 · b1,
c1 = (a0 + a1)(b0 + b1)− a0 · b0 − a1 · b1,

(10.10)

which can be performed at a cost of three integer multiplications, five integer additions and
two modular reductions. Similarly the field squaring operation, for a ∈ Fq, is computed as

a2 = (a0 + a1 · i)2
= (a0 + a1) · (a0 − a1) + 2a0a1 · i at a cost of two integer multiplications,

two modular reductions and three integer additions.
In order to get a fast implementation of the field multiplication and squaring operations

in the base field Fp, we used the techniques explained in §3.3 taking advantage of the novel
instruction sets recently introduced in modern Intel and AMD processors, which have been
especially designed for achieving a faster execution of multi-precision integer arithmetic. For
the sake of concreteness our description will be mainly focused on the popular prime modulus
pCLN striving to exploit its very special form, which allows us to use the technique introduced
in §3.3.4.1.

10.4.1. Exploiting the special form of the SIDH moduli

The main algorithmic idea of the REDC multi-precision version shown in Algorithm 5 is
that of calculating a quotient q that makes T + q · p divisible by 2w. This allows to update
T as (T + q · p)/2w, which implies that at each iteration of Algorithm 5, the size of T is
decreased by one word. Notice that the value of q in step 3 directly depends on the updated
value of T . This situation is commonly known as a loop-carried dependency that prevents a
further parallelization of Algorithm 5. Therefore, this procedure can only process one q · p
product per iteration with an associated cost of one 1× n digit multiplication.

Nevertheless, when Algorithm 5 is executed using a λ-Montgomery-friendly modulus the
loop-carried dependency can be avoided in up to λ iterations of the main loop. To see how

3Always true whenever p mod 4 = 3.

Cinvestav 144

10.4. FINITE FIELD ARITHMETIC IMPLEMENTATION

this trick works notice that in step 2 the value t is assigned with the least significant word
of T. If p is a λ-Montgomery-friendly modulus and p′ = 1. This implies that in step 3 there
is no multiplication to be performed but a simple assignment q = t. It follows that step 4
can be computed as,

(T + q · p)
2w

=
(T + t · p)

2w
=

(T + t · (p− 1)− t)
2w

.

Since p + 1 can be represented as (pn−1, . . . , p0), where pi = 0 for 0 ≤ i < λ, the λ least-
significant words of the product t · (p + 1) are all equal to zero. This implies that we can
compute step 4 of Algorithm 5 by multiplying t with the n − λ most-significant words of
p+1, adding the resulting product with T, and completely ignoring the least-significant word
of this computation. In other words,

(T + q · p)
2w

=
(T + t · (p+ 1)− t)

2w
=

⌊
T + t · (p+ 1)

2w

⌋
.

We observe that since the least-significant words of T are not modified, then the value of q for
the next iteration can be obtained in advance, thus breaking the loop-carried dependency. In
general, for a λ-Montgomery-friendly prime one can calculate the value of q for λ iterations
without the knowledge of the values that T will be getting in those iterations.

We illustrate in Figure 10.2 the execution of the multi-precision REDC algorithm using
as a modulus p = pCLN, which is a 5-Montgomery-friendly modulus that has a size of n = 12
words. At the i-th iteration of the REDC algorithm an updated value of q is calculated and
multiplied by p+ 1. Then, the result is added to T (on top), and the least-significant word
of T is removed. After n iterations, the final result is stored in C, which is composed of the
twelve most-significant words of T .

t0t1t2t3t4t5t6t7t8t9t10t11t12t13t14t15t16t17t18t19t20t21t22t23

c0c1c2c3c4c5c6c7c8c9c10c11

l5l6l7l8l9l10l11 q i = 0

l5l6l7l8l9l10l11 q i = 1

l5l6l7l8l9l10l11 q i = 2

l5l6l7l8l9l10l11 q i = 3

l5l6l7l8l9l10l11 q i = 4

l5l6l7l8l9l10l11 q i = 5

l5l6l7l8l9l10l11 q i = 6

l5l6l7l8l9l10l11 q i = 7

l5l6l7l8l9l10l11 q i = 8

l5l6l7l8l9l10l11 q i = 9

l5l6l7l8l9l10l11 q i = 10

l5l6l7l8l9l10l11 q i = 11

Figure 10.2: Multi-precision execution of C = REDC(T) for n = 12. Given the input
T = (t0, . . . , t23), REDC calculates n times the product q · (p+ 1), where p is a

5-Montgomery-friendly prime. This implies that p+ 1 can be expressed as
(p11, p10, p9, p8, p7, p6, p5, 0, 0, 0, 0, 0). In order to update T, at each iteration the partial

products lj = pjq, for 5 ≤ j < 12 are computed. The dependency for calculating q at each
iteration is highlighted with arrows. Notice that the first five values of q only depends on

the unmodified value of T (this fact is represented by solid arrows).

The vertical arrows denote the dependencies associated to the computation of q. Since
p is a 5-Montgomery-friendly prime, from the first to the fifth iteration q only depends on

Cinvestav 145

CHAPTER 10. A FASTER SOFTWARE IMPLEMENTATION OF THE
SUPERSINGULAR ISOGENY DIFFIE-HELLMAN PROTOCOL

the original value of T . However in the sixth iteration q depends on T and on the value
of q · (p + 1) from the first iteration (this fact is highlighted by the dashed arrows and the
vertical rectangles). As can be seen, no loop-carried dependencies appear during the first
five iterations, allowing to compute up to five q · (p+ 1) products before updating T becomes
necessary. These products can be viewed as a 7× 4 digit multiplication followed by a 64-bit
left-shift in the case of pCLN modulus (these operations are highlighted in the shadowed
area). Thus, after performing three 7×4 digit multiplications and three 64-bit left-shifts the
modular reduction is completed. This latter observation inspired us to come out with the
modified version of Algorithm 5 shown in Algorithm 39.

Algorithm 39 Modified modular reduction algorithm for a λ-Montgomery-friendly modulus.

Input: T , an integer such that 0 ≤ T < Rp, R = 2wn, p is a λ-Montgomery-friendly modu-
lus, and 0 < B ≤ λ.

Output: C, an integer such that C = TR−1 mod p.

1: λ0 ← bn/Bc
2: λ′0 ← n mod B
3: M ← b(p+ 1)/2λ·wc
4: for i← 1 to λ0 do
5: Q← T mod 2B·w

6: T ← bT/2B·wc+ 2(λ−B)·wQ ·M
7: end for
8: if λ′0 6= 0 then
9: Q← T mod 2λ

′
0·w

10: T ← bT/2λ′0·wc+ 2(λ−λ′0)·wQ ·M
11: end if
12: C ← T
13: if C ≥ p then
14: C ← C − p
15: end if
16: return C

The modified REDC procedure is presented in Algorithm 39. Given a λ-Montgomery-
friendly modulus p, the number of iterations without loop-carried dependency can be chosen
as, 0 < B ≤ λ (this value B is equals four for the example in Figure 10.2). In step 5 of
Algorithm 39 the value Q = T mod 2B·w is computed. Thereafter Q is multiplied by the
λ1 = n − λ most-significant words of p + 1 given by M = b(p + 1)/2λ·wc. It is noticed that
Q is a B-digit number. Hence, Q ·M can be calculated as a B × λ1 digit product. At this
point, the value 2(λ−B)·wQ ·M is added to bT/2B·wc. Hence, the B least-significant digits
of T are discarded. Repeating this procedure λ0 = b nB c times, the size of T is decreased
by Bλ0 words. In the case that n mod B = 0, the modular reduction has been completed.
Otherwise, λ′0 = n mod B digits of T must still be reduced by applying one extra iteration
using B = λ′0 (lines 8-11 of Algorithm 39).

Algorithm 39 shares similar ideas as the ones presented by Bos and Friedberger in [25].
In particular, the strategy named shifted (sh) in [25] that allows to trade multiplications by
right-shift operations can be easily adapted to our setting.

10.4.1.1. Correctness

From the previous discussion, it follows that the first B iterations of the multi-precision
REDC Algorithm 5 do not show loop-carried dependencies. Thus, the first B values of q
can be computed at once, by setting Q = T mod 2B·w (line 5 of Algorithm 39). Then T
is updated with bT/2λ′0·wc + 2(λ−λ′0)·wQ ·M . In this way the B least-significant words of

Cinvestav 146

10.4. FINITE FIELD ARITHMETIC IMPLEMENTATION

T are removed. After λ0 iterations, the size of T will be reduced Bλ0 words exactly as it
would happen after n − λ′0 iterations of a regular execution of the multi-precision REDC
algorithm. Whenever B - n, one additional iteration is processed to reduce the remaining
λ′0 digits. Since Algorithm 39 performs the same reduction that Algorithm 5 computes, the
final conditional subtraction step of lines 13-15 is also required.

10.4.1.2. Case Study pCLN = 23723239 − 1

Here we focus our attention to the problem of fine-tuning the design parameters of Algo-
rithm 39 when dealing with the modulus pCLN.

We performed several experiments with different values of the parameter B trying to
determine the optimal value of this parameter that yields the modular reduction with the
smallest latency. In order to provide a fair comparison, we performed the implementation of
this operation using three different variants, which mainly differ in the type of x86 64 arith-
metic instructions that were used. The benchmarked timings obtained from our experiments
are reported in Table 10.3. It can be seen that the best results were obtained using the
combination of MULX and ADCX/ADOX instructions and setting B = 4, along with the shifted
technique, this latter technique was proposed in [25]. Using this design choice, the modular
reduction has a cost of three 6×4 64-bit multiplications, three 52-bit right-shifts over 10-word
operands, and three additions over 11-word operands. The measured latency is of 156 clock
cycles.

Ref. B Instr. Set
Operation Counts Clock

CyclesMul Add Mov Other

T
h

is
w

o
rk

1
mul/adc 84 251 204 8 281
mulx/adc 84 191 24 8 232
mulx/adx 84 191 24 8 230

2
mul/adc 84 289 207 10 244
mulx/adc 84 257 27 10 208
mulx/adx 84 149 27 16 187

3
mul/adc 84 301 210 10 227
mulx/adc 84 281 34 10 210
mulx/adx 84 137 34 18 193

4
mul/adc 84 307 210 10 218
mulx/adc 84 292 36 10 191
mulx/adx 84 130 42 17 162

4 + (sh)
mul/adc 72 265 186 46 204
mulx/adc 72 253 36 46 189
mulx/adx 72 118 36 55 156

[25]

1 mul/adc 84 332 157 41 254

2 mul/adc 84 358 202 61 275

1+(sh) mul/adc 72 299 223 86 240

Table 10.3: Performance comparison of different modular reduction algorithms. For
Algorithm 39, the admissible values of B for the prime pCLN = 23723239 − 1 were measured.

The timings are reported in clock cycles measured on a Skylake micro-architecture. sh
stands for the shifted technique as proposed in [25].

Cinvestav 147

CHAPTER 10. A FASTER SOFTWARE IMPLEMENTATION OF THE
SUPERSINGULAR ISOGENY DIFFIE-HELLMAN PROTOCOL

Our fastest modular reduction timing (reported in Table 10.3) is more efficient by a factor
1.6 than the one achieved in [25] with B = 1, which corresponds to the modular reduction
based in the product scanning multiplication as presented in Costello et al. [51]. Moreover,
we obtained a modular reduction that is faster by a factor 1.5 than the one reported in [25]
with B = 1 and the shifted technique (sh). This latter result somewhat contradicts the
conjecture that a value B > 1, may lead to a lower performance than the one associated with
the choice B = 1, adopted by Bos and Friedberger in [25].

10.5. Implementation and benchmark results

We benchmarked our software on an Intel Core i7-4770 processor supporting the Haswell
micro-architecture and on an Intel Core i7-6700K processor that supports the Skylake micro-
architecture. To guarantee the reproducibility of our measurements, the Intel Hyper-Threading
and Intel Turbo Boost technologies were disabled. Our source code was compiled using the
GNU C Compiler (gcc) v6.1.0 with the -O3 optimization flag and using the options -mbmi2

-fwrapv -fomit-frame-pointer and -mbmi2 -madx -fwrapv -fomit-frame-pointer for
the Haswell and Skylake micro-architectures, respectively. Our code is available at: [
http://github.com/armfazh/flor-sidh-x64].

10.5.1. Related works

Due to the novelty of the SIDH protocol only a few software and hardware implemen-
tations have so far been reported. Several of these implementations use different elliptic
curve parameters, which makes it difficult to come out with a fair comparison. The publicly-
available implementation of Costello et al. [51] is a portable software library called SIDH
v2.0. This library includes optimized 64-bit code for field arithmetic, public key compres-
sion algorithms and an instantiation of the Diffie-Hellman protocol. SIDH v2.0 is widely
considered the state-of-the-art software library for implementing the SIDH protocol. Other
SIDH publicly available software libraries include [54, 8]. In [54], De Feo reports an im-
plementation of the SIDH protocol supporting several prime sizes [54]. His implementation
relies on the GMP library [78] as a modular arithmetic back-end. The implementation by
Azarderakhsh et al. [8] is also publicly available. However, the performance of this library is
significant slower than the library presented in [51].

In this chapter, we rely on the software library of Costello et al. [51], since it is the fastest
one reported in the open literature. Further, in order to report a more complete picture
of the SIDH protocol acceleration provided by the techniques presented in this chapter, we
plugged-in our elliptic curve and field arithmetic functions in that library.

10.5.2. Prime field arithmetic

In Table 10.4 and Table 10.5, the running time of relevant prime field and elliptic curve
operations for the Haswell and Skylake micro-architectures are reported.

Comparing with the implementation of Costello et al., the multiplication in the quadratic
extension field Fp2 , which is a performance-critical operation, was consistently accelerated
by a factor 1.32-1.34 speedup in both platforms. This improvement produces an immediate
acceleration of all elliptic curve operations, yielding a factor 1.13-1.25 speedup in the Haswell
micro-architecture. For Skylake, the impact of our implementation is higher, since our library
benefits from more specialized multi-precision arithmetic instructions. In Skylake, the elliptic
curve operations achieved a factor 1.14-1.32 speedup.

Cinvestav 148

http://github.com/armfazh/flor-sidh-x64

10.5. IMPLEMENTATION AND BENCHMARK RESULTS

Domain Operation CLN [51] Our work AF

Fp

Modular reduction 279 242 1.15
Multiplication 670 605 1.11
Squaring 724 526 1.38
Inversion 622,761 462,099 1.35

Fp2
Multiplication 2,143 1,626 1.32
Squaring 1,420 1,256 1.13
Inversion 625,904 463,773 1.35

E(Fp2)

Dif. Addition 10,160 8,316 1.22
Point Doubling 12,019 9,619 1.25
Point Tripling 24,024 19,247 1.25
Ladder Step (Fp2) 19,715 16,123 1.22
Ladder Step (Fp) 7,403 6,085 1.22
Iso. Gen. 3-degree 11,678 9,737 1.19
Iso. Gen. 4-degree 8,174 7,252 1.13
Iso. Eval. 3-degree 15,817 12,842 1.23
Iso. Eval. 4-degree 21,480 17,154 1.25

Table 10.4: Timing Performance of selected base field, quadratic and elliptic-curve
arithmetic operations. The last column shows the acceleration factor that our library

obtained in comparison with the SIDH v2 library [51]. All timings are reported in clock
cycles measured in Haswell micro-architectures.

Domain Operation CLN [51] Our work AF

Fp

Modular reduction 212 156 1.36
Multiplication 486 415 1.17
Squaring 523 395 1.32
Inversion 456,621 354,373 1.29

Fp2
Multiplication 1,582 1,183 1.34
Squaring 1,026 880 1.16
Inversion 458,706 355,889 1.29

E(Fp2)

Dif. Addition 7,371 5,896 1.25
Point Doubling 8,855 6,969 1.27
Point Tripling 17,799 13,528 1.32
Ladder Step (Fp2) 14,384 11,802 1.22
Ladder Step (Fp) 5,259 4,327 1.21
Iso. Gen. 3-degree 8,537 6,873 1.24
Iso. Gen. 4-degree 5,980 5,241 1.14
Iso. Eval. 3-degree 11,864 9,369 1.27
Iso. Eval. 4-degree 15,932 12,377 1.29

Table 10.5: Timing Performance of selected base field, quadratic and elliptic-curve
arithmetic operations. The last column shows the acceleration factor that our library

obtained in comparison with the SIDH v2 library [51]. All timings are reported in clock
cycles measured in Skylake micro-architectures.

Cinvestav 149

CHAPTER 10. A FASTER SOFTWARE IMPLEMENTATION OF THE
SUPERSINGULAR ISOGENY DIFFIE-HELLMAN PROTOCOL

10.5.3. Impact of the P + [k]Q optimization

We measured the performance rendered by the ladder algorithms presented in §9.3.2.1.
To that end, we take as a baseline the original SIDH v2 library and plugged in our algorithms
using the same prime field arithmetic interface.

The benchmarked timings are summarized in Table 10.6. In all the cases, we were
able to corroborate the theoretical predictions summarized in Table 10.1. For example
for the variable-point scenario, the SIDH v2 library computes the three-point ladder in
11.2×106 Haswell clock cycles. Our software accelerates this timing by a factor 1.38 speedup
to compute the same operation. Thank to this, Alice and Bob shared-secret time perfor-
mance are accelerated by around 6-7% (Table 10.7). In the case of the fixed-point scenario
it can be observed that using either Algorithm 37 or Algorithm 38 our approach is ≈ 1.7
faster than the methods implemented in the SIDH v2 library. Once again these results con-
firm the theoretical estimates given in Table 10.1. The pre-computed look-up tables have a
size of around 35 KB. This relatively moderate size permits that a large part of the look-up
tables can fit in the Level-1 Data cache memory of the target platforms (which have a size
of 32 KB).

Regarding side-channel protection, we want to note that the right-to-left algorithms were
implemented considering classic countermeasures; for example, using a straight and a regular
execution of instructions. Moreover, no secret values were used to index look-up tables or to
bifurcate the execution of any function.

Scenario Field Haswell Skylake Algorithm

Fixed-point
Fp2

6.7 4.9 Method 1
3.9 2.9 Alg. 37 (our work)

Fp
2.5 1.7 Method 3
1.5 1.0 Alg. 38 (our work)

Variable-point Fp2
11.2 8.1 3-point ladder
8.0 5.9 Alg. 36 (our work)

Table 10.6: Performance comparison of different methods to compute χ(P + [k]Q). The
implementation of Methods 1, 2 and 3 were taken from the SIDH-v2 library [51]. All

timings are given in 106 clock cycles and were measured on a Haswell and on a Skylake
micro-architecture.

10.5.4. Point tripling impact

Clearly, the most time consuming SIDH operation is the calculation of large-degree iso-
genies. In the case of Bob, this process implies to perform a large number of point tripling
computations.

Our implementation of the point tripling formula proposed in §10.3 saves up to 400 clock
cycles, corresponding to the difference 1M - 1S - 1A (Tables 10.4 and 10.5). This reduction
in the cost of the point tripling computation yields a small but noticeable acceleration of the
whole protocol. More concretely, replacing the tripling formula implemented in the SIDH
v2 library by our proposed formula yields a speedup of around 1-2% in the SIDH protocol
execution.

Cinvestav 150

10.6. CONCLUSIONS

10.5.5. Performance comparison of the SIDH protocol

In Table 10.7, the running timings associated with the execution of both phases of the
SIDH protocol are reported. It is noted that the achieved speedups are highly correlated
with the ones obtained for the multiplication operation in the quadratic extension field Fp2 .
This confirms the high-impact of this operation in the performance of the whole protocol.
For all of the SIDH operations, the performance measured on Skylake was between 1.38
to 1.41 times faster than the one measured on the Haswell processor (Table 10.7). This
acceleration can be seen as a consequence of the higher performance achieved by the latest
integer arithmetic instruction sets (which are available in Skylake but not in Haswell).

Protocol
Phase

Haswell Skylake

CLN This
AF

CLN This
AF

[51] work [51] work

Key
Gen.

Alice 48.3 38.0 1.27 35.7 26.9 1.33

Bob 54.5 42.8 1.27 39.9 30.5 1.31

Shared
Secret

Alice 45.7 34.3 1.33 33.6 24.9 1.35

Bob 52.8 39.6 1.33 38.4 28.6 1.34

Table 10.7: Performance comparison of the SIDH protocol. The running time is reported
in 106 clock cycles to compute the two phases of the SIDH protocol. Additionally, the

speedup factor with respect to the SIDH v2 library [51] is also reported.

10.6. Conclusions

In this chapter we presented a number of optimizations targeting the supersingular
isogeny-based Diffie-Hellman protocol. We focused our attention on optimizing both the
finite field and the elliptic curve arithmetic layers.

We accelerated operations in the base field Fp and in its quadratic extension Fp2 , using
the newest arithmetic instruction sets available in modern Intel processors and also, by
taking advantage of the special form of the pCLN prime chosen in [51]. The combination
of these techniques allowed us to compute finite field arithmetic about 1.38 faster than the
performance obtained by running the library of [51] on the same Intel processor architectures.

Building on [138], we adapted a right-to-left Montgomery ladder variant to the context
of the SIDH protocol, where the elliptic curve operation P + [k]Q must be computed. In the
case when the involved points are known in advance, our algorithm enables for the first time
the usage of precomputed look-up tables to accelerate the SIDH key generation phase. We
also presented an improved formula for elliptic curve point tripling. Our formula permits to
save one multiplication at the cost of one extra squaring and one extra addition performed
in the quadratic extension Fp2 .

Executing our software on an Intel Skylake Core i7-6700 processor we are able to compute
the two phases of the SIDH protocol, namely, key generation and shared secret, in less than
51.8 and 59.1 millions of clock cycles for Alice’s and Bob’s computations, respectively. This
gives us a 1.33 times speedup against the software implementation of Costello et al.

Cinvestav 151

CHAPTER 10. A FASTER SOFTWARE IMPLEMENTATION OF THE
SUPERSINGULAR ISOGENY DIFFIE-HELLMAN PROTOCOL

Cinvestav 152

Chapter 11
A parallel approach for the

Supersingular Isogeny Diffie-Hellman
protocol

In the same way as in the previous section, our objective is to improve the running time
performance of the SIDH protocol developed by David Jao et al. [55]. Because, the latency
associated to SIDH is higher in comparison with other post-quantum proposals. In order to
reduce its running time, in this section we present a fast SIDH variant called eSIDH that
uses primes of the form p = 2eA leBB leCC f − 1. This new version allow us to take advantage
of software parallelism. Besides, we propose some improvements that allow us reduce the
cost of construction and evaluation of isogenies, which contribute to decrease the overall
performance of SIDH.

11.1. Introduction

Nowadays, the isogeny-based cryptosystems have become popular among the post-quantum
candidates. A strong isogeny-based competitor is the SIDH cryptosystem proposed by David
Jao and Luca de Feo [55] described in the previous section, whose security is based on the
CSSI problem which is hard to compute in classical and quantum computers [3]. The main
operation in both cryptosystems is the computation of isogenies between curves, when the
kernel of the isogeny is known. This operation can be performed thanks to Velú [161], who
developed a formula to compute isogenies between Weierstrass curves using a given subgroup
which will be the kernel of the isogeny. As far as we know, there are few works focused on
compute isogenies in other curve models such as the Moody studying Huff and the Edwards
models [133]. Costello and Hisil [49] developed a general formula to compute odd-degree
isogenies in Montgomery curves which is basically the main core of this section.

In order to reduce the running time of the SIDH protocol we focused on performance-
critical operations, such as the elliptic curve scalar multiplication P + [k]Q required by
the two main phases of the SIDH protocol, the isogeny constructions and evaluations, and
their inherent field arithmetic operations. With that in mind, our main contributions for
accelerating the performance of the SIDH protocol can be summarized as follows:

We propose a particular way to perform SIDH protocol using a non-prime power degree
isogenies in the Bob’s side. This construction of the SIDH protocol is called eSIDH.

153

CHAPTER 11. A PARALLEL APPROACH FOR THE SUPERSINGULAR ISOGENY
DIFFIE-HELLMAN PROTOCOL

This variant at first sight looks more costly than the original SIDH, but by improve
the isogeny constructions and evaluations and using software parallelism, it is possible
achieve a considerable speedup.

We propose λ-Montgomery-friendly primes as an alternative to those recommended in
the current state-of-the-art, which maintain the same security level. This new primes
allow us to perform a better modular reduction which yields a better performance of
whole protocol.

11.2. Extended SIDH

Here, we present a novel technique that allows us to improve the Bob’s computations
in the SIDH protocol [55], but without altering the format and length of the public keys.
The main core of this technique is the use of what we call a composite-isogeny which is a
non-prime power degree isogeny.

The eSIDH domain parameters are a supersingular elliptic curve E/Fp2 , where p is a
large prime of the form

p = (lA)eA(lB)eB (lC)eCf ± 1,

where lA, lB and lC are different small prime numbers; eA , eB and eC are positive integers
such that leAA ≈ (leBB leCC); and f is a small cofactor.

In addition to the form of the prime p, the main difference of the eSIDH in comparison
with the Jao’s et al. protocol is that Bob now needs to compute an isogeny of degree
(lB)eB (lC)eC . However, if Bob choose public points PBC and QBC such that E[leBB leCC] =
〈PBC , QBC〉, then the protocol is the same as that devised by Jao et al. In the following,
we propose three ways to compute this isogeny, which are denoted as eSIDH, PeSIDH and
CRTeSIDH.

11.2.1. eSIDH

At first glance if eB = eC then Bob should compute a chain of (lBlC)-degree isogenies,
but this could be different in practice. For the sake of simplicity let us assume that eC < eB
and k = eB − eC . With these settings, Bob can compute an lkB-isogeny φB0

followed by an
(lBlC)eC -isogeny φB1

or vice versa. At this point the protocol turns a little bit complicated,
because Bob needs to calculate the kernel of φB0

and once Bob computes this lkB-isogeny,
then he needs to compute kernel of the (lBlC)eC -isogeny φB1 .

With the aim of generating the kernel of his secret isogeny φB , Bob choose a random
integer nB ∈ [1, leBB leCC] and computes the point R = PB + [nB]QB whose order is (leBB leCC).
After that, he calculates RB = [(lBlC)eB]R whose order is lkC . In this way, the isogeny φB in
Figure 9.1 is generated as follows: Bob calculates the point RB and constructs the isogeny
φB0

, then he evaluates φB0
(R) that produces a point of order (lBlC)eC that is the kernel of

φB1
, and finally φB = φB0

◦φB1
. (the same procedure is used to compute φ′B in Figure 9.1).

We sketch a brief analysis on the cost of performing the above procedure. As we see, it
is necessary to perform two scalar multiplications one to get the value of R and other to get
RB . The cost of this scalar multiplication is shown in next using as unit of measurement:

A full-ladder if the scalar has about log(p1/2) ≈ log(leAA) ≈ log(leBB leCC),

A demi-ladder if the scalar has about log(p1/4) ≈ log(leBB) ≈ log(leCC).

Thus, the cost associated to compute the point R is of a full-ladder, while the cost
of compute RB is a little over a demi-ladder. More precisely, the cost of compute RB is
about a full-ladder minus a ladder of log(lkB) bits. One way of saving operations during

Cinvestav 154

11.3. PARALLEL ESIDH

the computation of the chain of (lBlC)-degree isogenies, is changing the order in that these
isogenies are computed, i.e. computing the (lBlC)eC -isogeny first and then the lkB-isogeny,
however, doing this implies that eC evaluations of (lBlC)-degree isogenies must be performed
instead of k lB-degree isogeny evaluations in the first approach described before.

11.3. Parallel eSIDH

The new construction of the SIDH protocol shown in previous section looks very simple.
In the sense that (almost) follows the structure of the protocol devised by Jao et al. [55].
However, eSIDH allows us to improve the performance of the protocol by doing more changes
in its structure. The main core of PeSIDH (Parallel eSIDH) construction is to use two private
keys, and two bases instead of one in the Bob’s side. Then, our new Bob’s public setting
will be the points PB , QB , PC , QC such that 〈PB , QB〉 = E[rB] and 〈PC , QC〉 = E[rC] where
rB = leBB and rC = leCC . With this new parameters, now we are able to sketch the PeSIDH:

Public Parameters

• Prime p = (lA)eA(lB)eB (lC)eCf ± 1,

• Curve E0,

• Points PA, QA, PB , QB , PC , and QC .

Key Generation

• Alice randomly choose nA ∈ [1, leAA] and computes RA = PA + [nA]QA. Then,
she computes the public curve EA and the isogeny φA : E0 → EA such that
ker(φA) = 〈RA〉 and sends to Bob φA(PB), φA(QB), φA(PC) and φA(QC).

• Bob randomly chooses nB ∈ [1, rB] and nC ∈ [1, rC], then he computes RB =
PB + [nB]QB and RC = PC + [nC]QC . After that, Bob computes the private
isogenous curve EB and the isogeny φB : E0 → EB such that ker(φB) = 〈RB〉.
Finally, Bob computes the public curve EBC and the isogeny φBC : EB → EC
such that ker(φBC) = 〈φB(RC)〉, and send to Alice φBC(PA) and φBC(QA).

Key Agreement

• Alice recovers her private key as R′A = φBC(PA) + [nA]φBC(QA) and using it
computes the curve EBCA.

• Bob recovers his both private keys as R′B = φA(PB) + [nB]φA(QB) and R′C =
φA(PC)+[nC]φA(QC). Then, he computes the private curve EAB and the isogeny
φ′B : EA → EAB such that ker(φ′B) = 〈R′B〉. At the end, Bob computes the curve
EABC using φ′B(R′C) as kernel of the isogeny φ′C : EAB → EABC .

• The Secret shared is j(EABC) = j(EBCA).

Now we have four public points for Bob instead of two, this could be a problem because
this implies a bigger size in the public settings at beginning and in the middle part of the
protocol. We solved this issue by fixing the points

S = PB + PC , T = QB +QC .

This overcome the size problem because Alice just needed to evaluate two points for Bob,
but brings a new problem that we call the Key-Recovering problem. This problem consist
of recovering the image of the Bob’s isogeny kernel through the Alice isogeny φA, by using

Cinvestav 155

CHAPTER 11. A PARALLEL APPROACH FOR THE SUPERSINGULAR ISOGENY
DIFFIE-HELLMAN PROTOCOL

only the knowledge of φA(S) and φA(T). Just looking at the order of the points involved,
we can solve this problem in an easy (but not cheap) way. We have the following equations

[rB]S = [rB]PC , [rC]S = [rC]PB , [rB]T = [rB]QC , [rC]T = [rC]QB .

Then making use of those equalities we have that:

[rC](S + [nB]T) = [rC](PB + [nB]QB) [rB](S + [nC]T) = [rB](PC + [nC]QC).

Using the fact that if R is an n-order point and is the kernel of an isogeny, then for an
integer m such that gcd(m,n) = 1 we have that [m]R generates the same isogeny (up to
isomorphism). Then, we are able to recover Bob’s private keys or more precisely, a multiple
of both keys which generate the same isogenies (up to isomorphism).

As we can see, this key-recovering method is effective but maybe not be efficient, because
in order to recover the key we need 4 demi-ladders making this more costly than the eSIDH
approach. On the other hand, we can see that computing R′B = [rC](S + [nB]T) is indepen-
dent of computing R′C = [rB](S + [nC]T). This fact, bring us the possibility of compute R′B
and R′C in parallel. If we consider that invoking parallelism is cost-free, then computing R′B
and R′C has the cost of two demi-ladders, which is approximate the cost of one full-ladder. In
the same way, for the Key agreement phase we can compute RB and RC in parallel at a cost
of one demi-ladder, which directly improves the cost of computing the kernel in the original
SIDH [55]. Figure 11.1 shown how this variant of eSIDH could be performed. Here we only
need two cores to perform the computations, however, in §11.5.2 we show other places which
could also benefit by parallelism.

Alice Bob

Choose nA ∈ ZrA Choose nB ∈ ZrB and nC ∈ ZrC
RA = PA + [nA]QA RB = PB + [nB]QB , RC = PC + [nC]QC

EA, φA = ν(E,RA) EB , φB = ν(E,RB)

EBC , φC = ν(EB , φB(RC))

EA, φA(S), φA(T)
−−−−−−−−−−→

EBC , φC(φB(PA)), φC(φB(QA))
←−−−−−−−−−−

R′A = φC(φB(PA)) + [nA]φC(φB(QA)) R′B = [rC](φA(S) + [nB]φA(T))

EBCA, φ
′
A = ν(EBC , R

′
A) R′C = [rB](φA(S) + [nC]φA(T))

EAB , φ
′
B = ν(EA, R

′
B)

EABC , φ
′
C = ν(EAB , φ

′
B(R′C))

sA = j(EBCA) sB = j(EABC)
sA = sB

Figure 11.1: Parallel version of the eSIDH protocol called PeSIDH. Here ν represent the Velu’s
formula whose entries are an elliptic curve E and a point P ∈ E such that generates the kernel of
the output isogeny. Notice that, computing RB , RC , R

′
B and R′

C can be performed in parallel.

11.3.1. eSIDH meets Chinese Remainder Theorem

In the PeSIDH construction we exploited the usage of parallelism to achieve a faster
kernel generation and to maintain the cost same to the original key agreement phase of
SIDH. We are aware that not all devices have two cores, having this in mind we propose a

Cinvestav 156

11.3. PARALLEL ESIDH

better single-core version, more precisely, an eSIDH construction whose cost is less than 2
full-ladders in the key agreement phase.

Our strategy is to use the ancient Chinese Remainder Theorem (Theorem 3.1) to modify
the private key generation phase. Unlike the previous approach where we only choose a
pair of random values for Bob to compute the kernels, in our CRT based construction it is
necessary to perform some calculations on those random values. Thus, the secret key used
in the key generation phase and the secret key used in the key agreement phase must be
constructed in the following special way:

Randomly choose nB ∈ [1, rB] and nC ∈ [1, rC] such that gcd(nB , rC) = gcd(nC , rB) =
1.

Compute n̂B = n−1
B mod rC , n̂C = n−1

C mod rB

Finally compute the private keys

• (n̄B = nB · n̂B mod rB , n̄C = nC · n̂C mod rC) for the key generation phase,

• nBC = nB · n̂B · nC · n̂C mod (rB · rC) for the key agreement phase.

Remark 11.1. By construction and by the Chinese Remainder Theorem(CRT) we have that
nBC ≡ n̄B mod rB and nBC ≡ n̄C mod rC .

For the key generation phase we should compute the points RB = PB + [n̄B]QB and
RC = PC+[n̄C]QC , whose orders are rB and rC , respectively. Once we compute both points,
it is possible compute the isogenies φB and φC , such that φB = 〈RB〉 and φC = 〈φB(RC)〉.
As we can observe, in this part of the protocol we have computed two demi-ladders, just like
in the previous approach.

The Bob’s Key-recovering problem in this case is a little bit different because we want to
use this new key-style to save some operations. For this aim we proposed a solution based
in the following theorem.

Theorem 11.1. Let PB, QB, PC , QC , n̄B, n̄C , nBC , RB, RC , S and T as before, then
[rC]RB = [rC](S + [nBC]T) and [rB]RC = [rB](S + [nBC]T).

Proof. By straightforward computation we have that:

[rC](S + [nBC]T) =[rC](PB + PC + [nBC]QB + [nBC]QC)

=[rC](PB + [nBC]QB)

=[rC](PB + [nBC mod rB]QB)

=[rC](PB + [n̄B]QB)

=[rC]RB .

The proof for [rB]RC = [rB](S + [nBC]T) can be realized in an analogous way.

Using the Theorem 11.1 we can solve the Key-Recovering problem settingR′B = [rC](φA(S)+
[nBC]φA(T)) = φA([rC]RB) and R′C = [rB](φA(S) + [nBC]φ(T)) = φA([rB]RC). Despite the
fact that we solve the problem, we compute one full-ladder and two demi-ladders which is
more costly than the the first approach. However, we can exploit one more time the CRT
property mentioned in the Remark 11.1 to overcome this overhead.

Theorem 11.2. Fixing R′ = φA(S)+[nBC]φA(T) and R′C as before, the isogeny φ′C such that
ker(φ′C) = 〈R′C〉 produces a point φ′C(R′) with order rB, moreover φ′C(R′) = φ′C((φA(RB)).

Cinvestav 157

CHAPTER 11. A PARALLEL APPROACH FOR THE SUPERSINGULAR ISOGENY
DIFFIE-HELLMAN PROTOCOL

Proof. By straightforward computation and using Theorem 11.1 we get that

R′ =φA(S + [nBC]T)

=φA(PB + [nBC]QB + PC + [nBC]QC)

=φA(RB +RC).

Then φ′C(R′) = φ′C((φA(RB)) which is a point with order rB .

Using Theorem 11.2 we can save one demi-ladder because the evaluation of φ′C performs
it automatically. Now, we have the tools to describe how this changes can be applied to the
eSIDH protocol, in Figure 11.2 we shown this construction, that we call CRTeSIDH, which
could be used in practice in a similar way as the SIDH protocol.

Alice Bob

Choose nA ∈ ZrA Choose nB ∈ ZrB and nC ∈ ZrC
RA = PA + [nA]QA Such that (nB , rC) = (nC , rB) = 1.
EA, φA = ν(E,RA) Compute:

n̂B = n−1
B mod rC , n̂C = n−1

C mod rB ,
nBC = nB · n̂B · nC · n̂C mod (rB · rC).

n̄B = nB · n̂B and n̄C = nC · n̂C .
RB = PB + [n̄B]QB , RC = PC + [n̄C]QC

EB , φB = ν(E,RB)

EC , φC = ν(EB , φB(RC))

EA, φA(S), φA(T)
−−−−−−−−−−→

EC , φC(φB(PA)), φC(φB(QA))
←−−−−−−−−−−

R′A = φC(φB(PA)) + [nA]φC(φB(QA)) R′ = (φA(S) + [nBC]φA(T)), R′B = [rC]R′

EBA, φ
′
A = ν(EB , R

′
A) EAB , φ

′
B = ν(EA, R

′
B)

EABC , φ
′
C = ν(EAB , φ

′
B(R′))

sA = j(EBA) sB = j(EABC)

Figure 11.2: CRTeSIDH description. The parameters are the same as in the
Theorems 11.1 and 11.2. The function ν is only to represent the Velu’s isogeny

construction which given a curve and a subgroup return an isogenous curve and an isogeny.

11.4. Improving the construction and evaluation of iso-
genies

In this section we propose two strategies that allow reduce the cost of compute and
evaluate isogenies. We based these strategies in the work of Meyer et al. [125, 126], where
the authors proposed to switch between Montgomery and Edwards curves whenever it is
possible to obtain a speedup in the computations. In the following we present how to exploit
the Edwards isogeny-construction and some tweaks on it.

11.4.1. Tweaks for Isogeny construction

In §9.2 we estimate the complexity of computing the image of the curve using Moody’s
formula, but we can make some tiny tweaks in order to reduce the operations count (ignoring
the obvious parallel approach of compute a′ and d′). We have two basic cases divided by the

Cinvestav 158

11.5. IMPLEMENTATION AND BENCHMARKS RESULTS

isogeny degree, in the following the degree is expressed as s = 2l+ 1. First, if s > 8 then we
simply can compute

a′ = (Bza)8as−8 and d′ = (Byd)8ds−8,

saving 6S, more precisely changing 6S by 2M. In this way, the new complexity is about
(2l+ 2 + log(s− 8)/2)M + (6 + log(s− 8))S; The other case is for odd-degree isogenies with
s < 8, in this case we only have 3 cases but we will ignore the case when s = 3 because the
particular formula in Montgomery curves [49] is better. For s = 5 we can compute

a′ = (B2
za)4a and d′ = (B2

yd)4d,

and for s = 7 we have

a′ = (Bza)8d and d′ = (Byd)8a.

In both cases the cost of compute a′ and d′ is 6S + 4M.
From §9.2.2 we can also observe that given a twisted Edwards curve Ea,d, there exists

the following correspondence with its equivalent Montgomery Curve EA,C

A24p = A+ 2C = a, A24m = A− 2C = d and C24 = 4C = a− d,

which is useful for eSIDH because through the isogeny computation it is better to maintain
this constants instead of (A : C) (For scalar multiplication purposes).

11.4.2. Using yDBL and yADD

Looking at the Costello-Hisil [49] formula for isogeny evaluation, we observe that for each
point Pi in the Kernel we have the quantities Xi −Zi and Xi +Zi which corresponds to the
Edwards Y Z-coordinates (see §9.2.3). Moreover, we observed that once we send the kernel
points to its respective Edwards coordinates is not necessary turning back to Montgomery.
Then, we can easily modify xDBL into an yDBL version and also the xADD into a yADD
version preserving all operation counts (including additions) using maps presented in §9.2.2
and by replacing A24p and C24 in xDBL by a and a− d.

Therefore, if we have the kernel points in Y Z-coordinates we can rewrite the Costello-Hisil
evaluation formula as

x′ =xQ ·

(∏̀
i=1

[
zQy[i]P + yQz[i]P

])2

z′ =zQ ·

(∏̀
i=1

[
zQy[i]P − yQz[i]P

])2

.

Where xQ and zQ corresponds to XZ-coordinates of point Q (to be evaluated), and yQ,
zQ are the Edwards Y Z-coordinates of Q. Notice that x′ and z′ correspond to the XZ-
coordinates of the image of Q, therefore, we can save 2l additions in the construction and
evaluation of isogenies.

11.5. Implementation and benchmarks results

In this section we present some considerations for the implementation of the PeSIDH
construction, we also propose new λ-Montgomery-friendly primes p that allow us to perform
a better base field arithmetic. Besides, we show the timings of our software library and its
behavior in comparison with the state-of-the-art works.

Cinvestav 159

CHAPTER 11. A PARALLEL APPROACH FOR THE SUPERSINGULAR ISOGENY
DIFFIE-HELLMAN PROTOCOL

11.5.1. eSIDH prime Selection

The common choice of primes for SIDH are those of the form p = 2eA3eBf −1. There are
at least two reasons for this choice, one is the fast arithmetic that can be achieved using a
specialized Montgomery reduction algorithm [62]. The second one is that there are efficient
formulas to compute 4- and 3-degree isogenies [49]. In our work the primes for the PeSIDH
are of the form p = leAA leBB leCC f − 1 consecuently we have many forms to choose p. However,
we preserve the classical lA = 2 in order to preserve the fast arithmetic. Moreover, as we
have many other options for lB and lC , we look for primes such that if N = ddlog2(p)e/64e is
the minimum number of 64-bit-words needed to represent p, then the value p+ 1 have N/2
64-bit-words in zero. This choice allows to achieve a better reduction algorithm using the
Algorithm 39.

Now for Bob’s side there exists a trade-off between the size of the base-prime (lB and
lC in our case) and the exponent (eB and eC respectively) because the base-prime defines
the size of the step and the exponent defines how many steps we must compute. Then we
can make a few big steps or many small steps. In order to take advantage of the parallelism
in kernel generation and key recovery, we try to balance the pair (leBB , leCC). Because, if
leBB >> leCC then the value of lkB is such that log(lkB) ≈ log(leBB leCC), and then we should
compute a full-ladder for kernel generation and a bit more than one full ladder for the key
recovering.

For all instances used in this section, we use primes computed as p = 2eA leBB leCC f −1 such
that eA ≈ log(leBB leCC). The value of eA is the same as in the SIKE specifications sent to NIST
and the ones proposed in [3]. While, the value f = 2kc was chosen so that k represents the
value that allows contstruct N/2-Montgomery friendly primes. Table 11.1 shown our prime
selection, which preserve the security proposed in [94] and [3] (see Table 9.1).

Our proposals [94] proposals
P508 = 2258374557 − 1 P503 = 22503159 − 1
P764 = 23913121578 − 1 P751 = 23723239 − 1
P1013 = 251231575108 − 1 P964 = 24863301 − 1

[3] proposals
P443 = 2222373545 − 1 P434 = 22163137 − 1
P557 = 2280386561 − 1 P546 = 22733172 − 1

Table 11.1: Our proposals for PeSIDH primes in comparison with the current state-of the
art

For the primes proposed in table Table 11.1 we implemented the base field arithmetic.
In Table 11.2 and Table 11.3 we shown the cost of the quadratic finite field and the ellip-
tic curve main operations. That results were measured in an Intel core i7-6700K processor
with micro-architecture Skylake, using the Clang-3.9 compiler and the flags -Ofast -fwrapv

-fomit-frame-pointer -march=native -madx -mbmi2. On these tables we can observe
that our arithmetic operations using the N/2-Montgomery-friendly primes have better per-
formance that those proposed in [94] and [3].

11.5.2. Parallelization of large-degree isogeny computation

On our eSIDH scenario, we need to compute 2e2- , 3e3- and 5e5-degree isogenies. In order
to get an efficient computation of those isogenies, it is possible to use an efficient dynamic
programming strategies as in [51, 94]. The main idea of using those strategies is to keep a
points list L which will be evaluated through the d-degree isogenies to get an d-order point
easily. The number of points in the lists L are very much related to the isogeny degree

Cinvestav 160

11.6. CONCLUSION

Operation
[94] Ours [94] Ours Ours
p503 p509 p751 p765 p1013

Mult Fp2 557 500 1,054 972 1,610
Sqr Fp2 411 370 769 711 1,217
Inv Fp2 110,927 102,530 314,354 250,131 675,623
Doubling 3,404 3,111 6,168 5,789 9,412
Tripling 6,502 5,948 11,941 11,232 18,349
Quintupling - 8,555 - 16,192 26,589
3-IsoGen 3,256 3,053 5,700 5,398 8,536
3-IsoEval 3,191 2,922 5,935 5,591 9,220
4-IsoGen 2,060 1,914 3,646 3,405 5,559
4-IsoEval 4,588 4,202 8,392 7,912 12,879
5-IsoGen - 9,074 - 17,160 27,941
5-IsoEval - 5,171 - 9,890 16,363

Table 11.2: Arithmetic cost comparison. Timings are reported in clock cycles measured
over a Skylake processor at 4.0GHz.

Operation
[3] Ours [3] Ours
p434 p443 p546 p557

Mult Fp2 509 467 774 680
Sqr Fp2 345 340 519 515
Inv Fp2 79,018 80,253 207,854 154,931
Doubling 3,084 2,920 4,627 4,145
Tripling 6,002 5,551 8,848 8,003
Quintupling - 7,995 - 11,487
3-IsoGen 3,103 2,836 4,664 3,944
3-IsoEval 3,793 2,717 5,773 3,959
4-IsoGen 2,271 1,758 3,284 2,502
4-IsoEval 5,334 3,921 8,136 5,627
5-IsoGen - 8,472 - 12,135
5-IsoEval - 4,835 - 7,004

Table 11.3: Timings are reported in clock cycles measured over a Skylake processor at
4.0GHz.

and there are about log(ded), althougth usually is a bit bigger than that. In the Parallel
eSIDH scenario, we exploit, if it is possible, the parallelism on software to compute and
recover the private key. Besides, we parallelize in an intuitive way all point evaluations
of L in parallel. These strategies together with the parallel eSIDH allows us to obtain a
considerable speed up in comparison with the SIDH. In Table 11.4 we show the results of
our software implementation of the PeSIDH protocol and we compare our results with the
state-of-the-art works.

11.6. Conclusion

Using the techniques and algorithms presented in above sections we implemented the
variant of SIDH protocolo PeSIDH, because it is the most promising version of SIDH. We
can observe from Table 11.4 that our implementations achieve an acceleration factor of up to
1.73 and 1.44 against the Bob’s key gaeneration and Bob’s key agreement from the original

Cinvestav 161

CHAPTER 11. A PARALLEL APPROACH FOR THE SUPERSINGULAR ISOGENY
DIFFIE-HELLMAN PROTOCOL

8-word primes
Alice KeyGen Bob KeyGen Alice KeyAgr Bob KeyAgr
NP P AF NP P AF NP P AF NP P AF

P503 [94] 8.24 9.13 6.70 7.71
2256 · 379 · 554 · 1− 1 7.51 5.97 1.38 8.09 5.44 1.67 6.12 5.49 1.40 7.63 5.59 1.37
2258 · 374 · 557 · 1− 1 7.50 5.92 1.39 8.04 5.46 1.67 6.11 5.38 1.43 7.58 5.55 1.38
2256 · 378 · 745 · 5− 1 7.49 5.92 1.39 8.44 5.65 1.61 6.11 5.36 1.43 7.89 5.76 1.33

12-word primes
Alice KeyGen Bob KeyGen Alice KeyAgr Bob KeyAgr

NP P AF NP P AF NP P AF NP P AF
P751 [94] 23.72 26.70 19.38 22.81

2388 · 3119 · 581 · 1− 1 22.28 16.74 1.42 24.36 15.87 1.68 18.37 15.42 1.25 23.00 16.36 1.39
2391 · 3121 · 578 · 1− 1 22.27 16.72 1.42 24.10 15.43 1.73 18.35 15.32 1.26 22.77 15.78 1.44
2389 · 3116 · 768 · 1− 1 22.27 16.73 1.42 25.53 16.58 1.61 18.36 15.30 1.27 23.84 16.91 1.35

16-word primes
Alice KeyGen Bob KeyGen Alice KeyAgr Bob KeyAgr
NP P NP P NP P NP P

2512 · 3157 · 5108 · 1− 1 49.27 36.44 54.79 34.57 40.84 33.26 51.78 35.40
2520 · 3148 · 790 · 5− 1 49.28 36.48 56.16 35.53 40.85 33.15 52.58 36.26
2524 · 3159 · 784 · 1− 1 49.27 36.57 55.96 35.59 40.87 33.28 52.56 36.56

7-word primes
Alice KeyGen Bob KeyGen Alice KeyAgr Bob KeyAgr
NP P AF NP P AF NP P AF NP P AF

P434 [3] 5.3 5.9 5.0 5.8
2222 · 373 · 545 · 1− 1 5.93 4.68 1.13 6.60 4.61 1.28 4.79 4.27 1.17 6.17 4.69 1.23

9-word primes
Alice KeyGen Bob KeyGen Alice KeyAgr Bob KeyAgr
NP P AF NP P AF NP P AF NP P AF

P546 [3] 10.6 11.6 9.9 11.3
2280 · 386 · 561 · 1− 1 11.17 8.63 1.23 12.45 8.29 1.40 9.09 7.83 1.26 11.65 8.48 1.33

Table 11.4: Performance comparison of the PeSIDH against the proposed in [94] and [3].
The running time is reported in 106 clock cycles measured in an Intel Skylake proccessor at

4.0 GHz.Parallel version performance using 3 cores. The AF column refers to the
acceleration factor of the parallel version that is our fastest implementation.

SIDH protocol, respectively. Besides, we report our results for the prime p1013 as an option
that can be compared with the p964 proposed in [94], however we have no access to an
implementation of this prime to realize a comparison.

Cinvestav 162

Chapter 12
Conclusions and future work

In this chapter we present a general analysis of the work presented in this thesis and we
consider the problems left for future research.

12.1. Conclusions

In this thesis we design software libraries that implement integer and finite field arith-
metic. In order to obtain the best possible performance, we experiment with different set-
tings. First, we implemented the arithmetic using the fastest assembly instructions ADX/ADOX
and MULX that were designed specifically for arithmetic over large integers. Then, we imple-
mented the arithmetic based on the Residue Number System using the AVX2 instructions
that follow the Single Instruction Multiple Data paradigm and also using Graphical Process-
ing Units (GPUs).

These software libraries were used to implement the RSA signature algorithm. The perfor-
mance achieved by our libraries yield faster timings than previous works that implemented
the RSA signature on CPU and GPU platforms. However, our results allow us to assess
that when is desirable to compute arithmetic operations over large integers with lengths of
{1024, 2048, 3072} bits. A better performance is achieved by using the assembly instructions
ADX/ADOX and MULX. Although, the usage of the RNS arithmetic for GPU implementation
enjoys a sub-quadratic complexity in the cost of the RSA exponentiation with respect to the
size of its key. Thus, we believe that for those multiplication applications where extremely
large operands are required.

On the other hand, we propose practical, efficient, and secure algorithms for hashing
values to elliptic curve subgroups used in pairing-based cryptography protocols, which have
the indifferentiability property. We also detailed the implementation of two paring-based
two-factor authentication protocols, which is secure against simple side-channel attacks. Our
implementation takes advantage of processors found in recent mobiles devices, and also of the
desktop processors found in contemporary laptops models. From these works, we conclude
that it is possible to carry out an efficient implementations of pairing-based protocols, which
are protected against time analysis attacks without sacrificing efficiency using a relatively
low computational cost.

We also propose the use of pairings over elliptic curves with embedding degree one,
since the improvements in algorithms for computing discrete logarithms repotred by Kim
and Barbulescu in [109] do not apply to the DLP in prime-order fields Fp. This because, the
prime p does not have a special form. Moreover, we present the results of the implementation
of the BLS signature algorithm for a 3072-bit prime p.

163

CHAPTER 12. CONCLUSIONS AND FUTURE WORK

Besides, we proposed several algorithmic optimizations targeting both elliptic curve and
finite field arithmetic operations, in order to accelerate the SIDH runtime performance. We
accelerated the finite field operations, using the newest arithmetic instruction sets available
in modern Intel processors and also, by taking advantage of the special form of the pCLN

prime chosen in [51]. We adapted the right-to-left Montgomery ladder variant presented
in [138] to the context of the SIDH protocol. We proposed an algorithm that enables for first
time the usage of precomputed look-up tables to accelerate the SIDH key generation phase.
Finally, we presented an improved formula for elliptic curve point tripling.

Finally, we proposed a new construction of the SIDH protocol using non-prime power de-
gree isogenies in the Bob’s side. At first sight, this construction of the SIDH protocol called
eSIDH looks more costly than the original SIDH, but by improve the isogeny constructions
and evaluations, and using software parallelism it is possible achieve a considerable speedup.
Moreover, We propose new λ-Montgomery-friendly primes as an alternative to those recom-
mended in the current state-of-the-art, which maintain the same security level. These new
primes allow us to perform a better modular reduction, which yields a better performance
of whole protocol.

12.2. Future work

In this section we present some problems that we consider left for future research.

Perform an efficient and secure implementation of the integer and finite field arithmetic
based on RNS, using the AVX512 instruction set. We believe that this implementation
could achieve competitive or even better timings than those reported in Chapter §3.

Perform a protected version of the BLS signature protocol implemented in Section §8.
For this purpose, it is necessary to analyze if it is possible to construct a constant-time
encoding that allows to define a hash function to the group E[r] used in the pairings
defined over elliptic curves with embedding degree one.

Perform a security analysis of the pairings over elliptic curves with embedding degree
one, when they are constructed using a Montgomery-friendly prime. In order to verify
if it is possible or not apply a special version of the NFS algorithm for compute discrete
logarithms.

Build an eSIDH version using primes p = leAA
∏n
i=3 l

ei
i · f ± 1, with the aim of verify

the maximum value of n for which there is still a significantly reduction of the running
time of the protocol.

Design a parallel strategy that allows to efficiently compute large degree isogenies.

12.3. List of publications

Book chapter: Eduardo Ochoa-Jiménez, Mehdi Tibouchi, and Francisco Rodŕıguez-
Henŕıquez. Guide to Pairing-Based Cryptography, chapter Hashing into elliptic curves.
Chapman & Hall/CRC, 2016.

Article: A. Faz-Hernández, J. López, E. Ochoa-Jiménez, and F. Rodŕıguez-Henŕıquez.
A faster software implementation of the supersingular isogeny diffie-hellman key ex-
change protocol. IEEE Transactions on Computers, pages 1–1, 2018.

Article: J. E. Ochoa Jiménez and F. Rodŕıguez Henŕıquez. Protected implementation
of pairing based two factor authentication protocols. IEEE Latin America Transactions,
14(9):4173–4180, 2016.

Cinvestav 164

12.3. LIST OF PUBLICATIONS

Article: Nareli Cruz Cortés, Eduardo Ochoa-Jiménez, Luis Rivera-Zamarripa, and
Francisco Rodŕıguez-Henŕıquez. A GPU parallel implementation of the RSA private op-
eration. In High Performance Computing - Third Latin American Conference, CARLA,
volume 697 of Communications in Computer and Information Science, pages 188–203,
2016.

12.3.1. Works in preparation

Protected implementation of RSA signature algorithm. In this work we performed an
efficient and secure implementation of the RSA signature algorithm using CPU and
GPU platforms, experimenting with Montgomery and RNS based arithmetic. This
work was realized along with Nareli C. Cortéz, Luis A. Rivera-Zamarripa and Francisco
Rodŕıguez-Henŕıquez.

Implementation of BLS signature protocol over curves with embedding degree one. In
this work we design a software library that implements the digital signature algorithm
BLS, constructed over elliptic curves with embedding degree one. Our library offers a
security level of 128-bits by using a prime number of 3072 bits to define the finite field
Fp. This work was realized along with Francisco Rodŕıguez-Henŕıquez.

A parallel approach for the Supersingular Isogeny Diffie-Hellman protocol. In this
work we propose a new construction of the SIDH protocol using non-prime power
degree isogenies in the Bob’s side. This construction allow us to benefit from software
parallelism and allows us to achieve a considerable speedup in the computation of the
SIDH protocol. This work was performed with Daniel Cervantes-Vazquez and Francisco
Rodŕıguez-Henŕıquez.

Cinvestav 165

CHAPTER 12. CONCLUSIONS AND FUTURE WORK

Cinvestav 166

Bibliography

[1] Tolga Acar, Kristin E. Lauter, Michael Naehrig, and Daniel Shumow. Affine pairings on
ARM. In Pairing-Based Cryptography - Pairing 2012 - 5th International Conference,
volume 7708 of Lecture Notes in Computer Science, pages 203–209. Springer, 2012.

[2] Tolga Acar and Dan Shumow. Modular Reduction without Pre-computation for Special
Moduli. Technical report, Microsoft Research, 2010.

[3] Gora Adj, Daniel Cervantes-Vázquez, Jesús-Javier Chi-Domı́nguez, Alfred Menezes,
and Francisco Rodŕıguez-Henŕıquez. On the cost of computing isogenies between
supersingular elliptic curves. Cryptology ePrint Archive, Report 2018/313, 2018.
https://eprint.iacr.org/2018/313.

[4] Gora Adj and Francisco Rodŕıguez-Henŕıquez. Square root computation over even
extension fields. IEEE Trans. Computers, 63(11):2829–2841, 2014.

[5] David Adrian, Karthikeyan Bhargavan, Zakir Durumeric, Pierrick Gaudry, Matthew
Green, J. Alex Halderman, Nadia Heninger, Drew Springall, Emmanuel Thomé, Luke
Valenta, Benjamin VanderSloot, Eric Wustrow, Santiago Zanella Béguelin, and Paul
Zimmermann. Imperfect forward secrecy: How diffie-hellman fails in practice. In
Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications
Security, pages 5–17, 2015.

[6] Diego F. Aranha, Koray Karabina, Patrick Longa, Catherine H. Gebotys, and Julio
López. Faster explicit formulas for computing pairings over ordinary curves. In Ad-
vances in Cryptology - EUROCRYPT 2011 - 30th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, volume 6632 of Lecture
Notes in Computer Science, pages 48–68. Springer, 2011.

[7] A. Atkin. Probabilistic primality testing, summary by F. Morain. Research Report
1779, INRIA, pages 159–163, 1992.

[8] Reza Azarderakhsh, Dieter Fishbein, and David Jao. Efficient Implementation of a
Quantum-Resistant Key-Exchange Protocol on Embedded Systems. Technical Report
CACR 2014-20, Center of Applied Cryptographic Research (CACR), 2014.

[9] Eric Bach and Klaus Huber. Note on taking square-roots modulo N. IEEE Trans.
Information Theory, 45(2):807–809, 1999.

[10] Joonsang Baek and Yuliang Zheng. Identity-based threshold decryption. In Public
Key Cryptography - PKC 2004, 7th International Workshop on Theory and Practice

167

https://eprint.iacr.org/2018/313

BIBLIOGRAPHY

in Public Key Cryptography, volume 2947 of Lecture Notes in Computer Science, pages
262–276. Springer, 2004.

[11] Elaine Barker. Recommendation for key management, NIST special publication 800-57
part 1 revision 4. Technical report, NIST, Gaithersburg, MD, United States, January
2016.

[12] Paulo Barreto, Ben Lynn, and Michael Scott. Constructing Elliptic Curves with Pre-
scribed Embedding Degrees. Security in Communication Networks, 2576:257–267, 2003.

[13] Paulo Barreto and Michael Naehrig. Pairing-friendly elliptic curves of prime order.
Selected Areas in Cryptography – SAC 2005, 3897:319–331, 2006.

[14] Paulo S. L. M. Barreto, Ben Lynn, and Michael Scott. On the selection of pairing-
friendly groups. In Selected Areas in Cryptography, 10th Annual International Work-
shop, SAC, volume 3006 of Lecture Notes in Computer Science, pages 17–25. Springer,
2003.

[15] Paul Barrett. Implementing the Rivest Shamir and Adleman public key encryption
algorithm on a standard digital signal processor. In Proceedings of Advances in Cryp-
tology, volume 263 of Lecture Notes in Computer Science CRYPTO ’86, pages 311–323.
Springer, 1987.

[16] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for
designing efficient protocols. In CCS ’93, Proceedings of the 1st ACM Conference on
Computer and Communications Security, pages 62–73. ACM, 1993.

[17] Naomi Benger and Michael Scott. Constructing Tower Extensions of Finite Fields for
Implementation of Pairing-Based Cryptography. Arithmetic of Finite Fields, 6087:180–
195, 2010.

[18] Daniel J. Bernstein. Multidigit modular multiplication with the explicit chinese re-
mainder theorem. Technical report, 1995.

[19] Daniel J. Bernstein. Differential addition chains, February 2006.

[20] Daniel J. Bernstein, Peter Birkner, Marc Joye, Tanja Lange, and Christiane Pe-
ters. Twisted edwards curves. In Serge Vaudenay, editor, Progress in Cryptology –
AFRICACRYPT 2008, pages 389–405, Berlin, Heidelberg, 2008. Springer Berlin Hei-
delberg.

[21] Alexandra Boldyreva. Threshold signatures, multisignatures and blind signatures based
on the gap-diffie-hellman-group signature scheme. In Public Key Cryptography - PKC
2003, 6th International Workshop on Theory and Practice in Public Key Cryptography,
volume 2567 of Lecture Notes in Computer Science, pages 31–46. Springer, 2003.

[22] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the weil pairing.
SIAM J. Comput., 32(3):586–615, 2003.

[23] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate and verifiably
encrypted signatures from bilinear maps. In Advances in Cryptology - EUROCRYPT
2003, International Conference on the Theory and Applications of Cryptographic Tech-
niques, volume 2656 of Lecture Notes in Computer Science, pages 416–432. Springer,
2003.

Cinvestav 168

BIBLIOGRAPHY

[24] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the weil pairing.
In Advances in Cryptology - ASIACRYPT 2001, 7th International Conference on the
Theory and Application of Cryptology and Information Security, volume 2248 of Lecture
Notes in Computer Science, pages 514–532. Springer, 2001.

[25] J. W. Bos and S. Friedberger. Fast Arithmetic Modulo 2xpy − 1. In 2017 IEEE 24th
Symposium on Computer Arithmetic (ARITH), pages 148–155, July 2017.

[26] Joppe W. Bos, Peter L. Montgomery, Daniel Shumow, and Gregory M. Zaverucha.
Montgomery multiplication using vector instructions. In Selected Areas in Cryptography
- SAC 2013 - 20th International Conference, Burnaby, BC, Canada, August 14-16,
2013, Revised Selected Papers, pages 471–489, 2013.

[27] Colin Boyd, Paul Montague, and Khanh Quoc Nguyen. Elliptic curve based pass-
word authenticated key exchange protocols. In Information Security and Privacy, 6th
Australasian Conference, ACISP, volume 2119 of Lecture Notes in Computer Science,
pages 487–501. Springer, 2001.

[28] Xavier Boyen. Multipurpose identity-based signcryption (A swiss army knife for
identity-based cryptography). In Advances in Cryptology - CRYPTO 2003, 23rd An-
nual International Cryptology Conference, volume 2729 of Lecture Notes in Computer
Science, pages 383–399. Springer, 2003.

[29] Friederike Brezing and Annegret Weng. Elliptic Curves Suitable for Pairing Based
Cryptography. Designs, Codes and Cryptography, 37:133–141, 2005.

[30] Eric Brier, Jean-Sébastien Coron, Thomas Icart, David Madore, Hugues Randriam,
and Mehdi Tibouchi. Efficient indifferentiable hashing into ordinary elliptic curves. In
Advances in Cryptology - CRYPTO 2010, 30th Annual Cryptology Conference, volume
6223 of Lecture Notes in Computer Science, pages 237–254. Springer, 2010.

[31] Wouter Castryck, Steven Galbraith, and Reza Rezaeian Farashahi. Efficient arith-
metic on elliptic curves using a mixed edwards-montgomery representation. Cryptology
ePrint Archive, Report 2008/218, 2008. https://eprint.iacr.org/2008/218.

[32] Ç. K. Koç. High-speed RSA implementation. Technical report, TR 201, RSA Labora-
tories, November 1994. http://cryptocode.net/docs/r01.pdf.

[33] Jae Choon Cha and Jung Hee Cheon. An identity-based signature from gap diffie-
hellman groups. In Public Key Cryptography - PKC 2003, 6th International Workshop
on Theory and Practice in Public Key Cryptography, volume 2567 of Lecture Notes in
Computer Science, pages 18–30. Springer, 2003.

[34] Denis X. Charles, Kristin E. Lauter, and Eyal Z. Goren. Cryptographic Hash Functions
from Expander Graphs. Journal of Cryptology, 22(1):93–113, Jan 2009.

[35] S. Chatterjee, A. Menezes, and F. Rodŕıguez-Henŕıquez. On instantiating pairing-
based protocols with elliptic curves of embedding degree one. IEEE Transactions on
Computers, 66(6):1061–1070, June 2017.

[36] Sanjit Chatterjee, Darrel Hankerson, and Alfred Menezes. On the efficiency and se-
curity of pairing-based protocols in the type 1 and type 4 settings. In Arithmetic of
Finite Fields, Third International Workshop, WAIFI, volume 6087 of Lecture Notes in
Computer Science, pages 114–134. Springer, 2010.

Cinvestav 169

https://eprint.iacr.org/2008/218
http://cryptocode.net/docs/r01.pdf

BIBLIOGRAPHY

[37] Sanjit Chatterjee and Alfred Menezes. On cryptographic protocols employing asymmet-
ric pairings - the role of Ψ revisited. Discrete Applied Mathematics, 159(13):1311–1322,
2011.

[38] Liqun Chen, Zhaohui Cheng, and Nigel P. Smart. Identity-based key agreement pro-
tocols from pairings. Int. J. Inf. Sec., 6(4):213–241, 2007.

[39] Andres Childs, David Jao, and Vladimir Soukharev. Constructing elliptic curve isoge-
nies in quantum subexponential time. Journal of Mathematical Cryptology, 8(1):1–29,
February 2014.

[40] D.V Chudnovsky and G.V Chudnovsky. Sequences of numbers generated by addition in
formal groups and new primality and factorization tests. Adv. Appl. Math., 7(4):385–
434, December 1986.

[41] Chitchanok Chuengsatiansup, Michael Naehrig, Pance Ribarski, and Peter Schwabe.
Panda: Pairings and arithmetic. In Pairing-Based Cryptography - Pairing 2013 - 6th
International Conference, volume 8365 of Lecture Notes in Computer Science, pages
229–250. Springer, 2013.

[42] Henri Cohen, Gerhard Frey, Roberto Avanzi, Christophe Doche, Tanja Lange, Kim
Nguyen, and Frederik Vercauteren. Handbook of Elliptic and Hyperelliptic Curve Cryp-
tography, Second Edition. Chapman & Hall/CRC, 2nd edition, 2012.

[43] Henri Cohen, Atsuko Miyaji, and Takatoshi Ono. Efficient elliptic curve exponentiation
using mixed coordinates. In Proceedings of the International Conference on the Theory
and Applications of Cryptology and Information Security: Advances in Cryptology,
ASIACRYPT ’98, pages 51–65, London, UK, UK, 1998. Springer-Verlag.

[44] D. Coppersmith. Fast evaluation of logarithms in fields of characteristic two. IEEE
Transactions on Information Theory, 30(4):587–594, July 1984.

[45] Jean-Sébastien Coron. On the exact security of full domain hash. In Advances in
Cryptology - CRYPTO 2000, 20th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 20-24, 2000, Proceedings, pages 229–235, 2000.

[46] Intel Corporation. Intel 64 and IA-32 Architectures Optimization Reference Man-
ual, November 2018. https://www.intel.com/content/dam/www/public/us/en/

documents/manuals/64-ia-32-architectures-optimization-manual.pdf.

[47] Intel Corporation. Intel Advanced Vector Extensions Programming Reference, Novem-
ber 2018. https://software.intel.com/sites/default/files/4f/5b/36945.

[48] Nareli Cruz Cortés, Eduardo Ochoa-Jiménez, Luis Rivera-Zamarripa, and Francisco
Rodŕıguez-Henŕıquez. A GPU parallel implementation of the RSA private operation.
In High Performance Computing - Third Latin American Conference, CARLA, volume
697 of Communications in Computer and Information Science, pages 188–203, 2016.

[49] Craig Costello and Hüseyin Hisil. A Simple and Compact Algorithm for SIDH with
Arbitrary Degree Isogenies. In Advances in Cryptology – ASIACRYPT 2017: 23nd
International Conference on the Theory and Application of Cryptology and Information
Security, Hong Kong, China, December 3-7, 2017, Proceedings, December 2017.

[50] Craig Costello, David Jao, Patrick Longa, Michael Naehrig, Joost Renes, and David
Urbanik. Efficient Compression of SIDH Public Keys. In Jean-Sébastien Coron and
Jesper Buus Nielsen, editors, Advances in Cryptology – EUROCRYPT 2017: 36th

Cinvestav 170

https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
https://software.intel.com/sites/default/files/4f/5b/36945

BIBLIOGRAPHY

Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Paris, France, April 30 – May 4, 2017, Proceedings, Part I, pages 679–
706, Cham, 2017. Springer International Publishing.

[51] Craig Costello, Patrick Longa, and Michael Naehrig. Efficient Algorithms for Super-
singular Isogeny Diffie-Hellman. In Matthew Robshaw and Jonathan Katz, editors,
Advances in Cryptology – CRYPTO 2016: 36th Annual International Cryptology Con-
ference, Santa Barbara, CA, USA, August 14-18, 2016, Proceedings, Part I, pages
572–601, Berlin, Heidelberg, 2016. Springer Berlin Heidelberg.

[52] Craig Costello and Benjamin Smith. Montgomery curves and their arithmetic. Journal
of Cryptographic Engineering, pages 1–14, 2017.

[53] Jean-Marc Couveignes. Hard Homogeneous Spaces. Cryptology ePrint Archive, Report
2006/291, 2006. http://eprint.iacr.org/2006/291.

[54] Luca De Feo. Software for “Quantum-Resistant Cryptosystems from Supersingular
Elliptic Curve Isogenies”, 2011. http://github.com/defeo/ss-isogeny-software.

[55] Luca De Feo, David Jao, and Jérôme Plût. Towards Quantum-Resistant Cryptosys-
tems from Supersingular Elliptic Curve Isogenies. Journal of Mathematical Cryptology,
8(3):209–247, september 2014.

[56] T. Dierks and E. Rescorla. The transport layer security (TLS) protocol version 1.2,
RFC 5246. Network Working Group, IETF, 2008.

[57] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE Trans-
actions on Information Theory, 22(6):644–654, 1976.

[58] Jiankuo Dong, Fangyu Zheng, Wuqiong Pan, Jingqiang Lin, Jiwu Jing, and Yuan
Zhao. Utilizing the double-precision floating-point computing power of GPUs for RSA
acceleration. Security and Communication Networks, 2017, September 2017.

[59] Heba Mohammed Fadhil and Mohammed Issam Younis. Parallelizing RSA algo-
rithm on multicore CPU and GPU. International Journal of Computer Applications,
87(6):15–22, February 2014.

[60] Reza Rezaeian Farashahi, Pierre-Alain Fouque, Igor E. Shparlinski, Mehdi Tibouchi,
and José Felipe Voloch. Indifferentiable deterministic hashing to elliptic and hyperel-
liptic curves. Math. Comput., 82(281):491–512, 2013.

[61] Reza Rezaeian Farashahi, Igor E. Shparlinski, and José Felipe Voloch. On hashing into
elliptic curves. J. Mathematical Cryptology, 3(4):353–360, 2009.

[62] A. Faz-Hernández, J. López, E. Ochoa-Jiménez, and F. Rodŕıguez-Henŕıquez. A faster
software implementation of the supersingular isogeny diffie-hellman key exchange pro-
tocol. IEEE Transactions on Computers, pages 1–1, 2018.

[63] Armando Faz-Hernández, Patrick Longa, and Ana H. Sánchez. Efficient and secure
algorithms for glv-based scalar multiplication and their implementation on GLV-GLS
curves (extended version). J. Cryptographic Engineering, 5(1):31–52, 2015.

[64] Pierre-Alain Fouque and Mehdi Tibouchi. Estimating the size of the image of deter-
ministic hash functions to elliptic curves. In Progress in Cryptology - LATINCRYPT
2010, First International Conference on Cryptology and Information Security in Latin
America, volume 6212 of Lecture Notes in Computer Science, pages 81–91. Springer,
2010.

Cinvestav 171

http://eprint.iacr.org/2006/291
http://github.com/defeo/ss-isogeny-software

BIBLIOGRAPHY

[65] Pierre-Alain Fouque and Mehdi Tibouchi. Indifferentiable hashing to barreto-naehrig
curves. In Progress in Cryptology - LATINCRYPT 2012 - 2nd International Conference
on Cryptology and Information Security in Latin America, volume 7533 of Lecture
Notes in Computer Science, pages 1–17. Springer, 2012.

[66] John B. Fraleigh and Victor J. Katz. A first course in abstract algebra. Addison-Wesley,
7 edition, 2003.

[67] David Freeman, Michael Scott, and Edlyn Teske. A Taxonomy of Pairing-Friendly
Elliptic Curves. Journal of Cryptology, 23:224–280, 2010.

[68] Gerhard Frey and Hans-Georg Rück. A remark concerning m-divisibility and the
discrete logarithm in the divisor class group of curves. Math. Comput., 62(206):865–
874, April 1994.

[69] Laura Fuentes-Castañeda, Edward Knapp, and Francisco Rodŕıguez-Henŕıquez. Faster
hashing to ${\mathbb G} 2$. In Selected Areas in Cryptography - 18th International
Workshop, SAC, volume 7118 of Lecture Notes in Computer Science, pages 412–430.
Springer, 2011.

[70] Steven D. Galbraith, Xibin Lin, and Michael Scott. Endomorphisms for faster elliptic
curve cryptography on a large class of curves. J. Cryptology, 24(3):446–469, 2011.

[71] Steven D. Galbraith, Kenneth G. Paterson, and Nigel P. Smart. Pairings for cryptog-
raphers. Discrete Applied Mathematics, 156(16):3113–3121, september 2008.

[72] Robert P. Gallant, Robert J. Lambert, and Scott A. Vanstone. Faster point multi-
plication on elliptic curves with efficient endomorphisms. In Advances in Cryptology
- CRYPTO 2001, 21st Annual International Cryptology Conference, volume 2139 of
Lecture Notes in Computer Science, pages 190–200. Springer, 2001.

[73] Craig Gentry and Alice Silverberg. Hierarchical id-based cryptography. In Advances
in Cryptology - ASIACRYPT 2002, 8th International Conference on the Theory and
Application of Cryptology and Information Security, volume 2501 of Lecture Notes in
Computer Science, pages 548–566. Springer, 2002.

[74] C. C. F. Pereira Geovandro, Marcos A. Simpĺıcio Jr., Michael Naehrig, and Paulo S.
L. M. Barreto. A family of implementation-friendly BN elliptic curves. Journal of
Systems and Software, 84(8):1319–1326, 2011.

[75] Shafi Goldwasser and Joe Kilian. Primality Testing Using Elliptic Curves. J. ACM,
46:450–472, 1999.

[76] V. Gopal, J.D. Guilford, G.M. Wolrich, W.K. Feghali, E. Ozturk, M.G. Dixon, S.P.
Mirkes, M.C. Merten, T. Li, and T.T.I. Bret. Addition instructions with independent
carry chains, January 9 2014. US Patent App. 13/993,483.

[77] Daniel M. Gordon. Discrete logarithms in gf(p) using the number field sieve. SIAM J.
Discret. Math., 6(1):124–138, February 1993.

[78] Torbjörn Granlund and the GMP development team. GNU MP: The GNU Multiple
Precision Arithmetic Library, 6.1.0 edition, 2016. http://gmplib.org/.

[79] Gurleen Grewal, Reza Azarderakhsh, Patrick Longa, Shi Hu, and David Jao. Efficient
implementation of bilinear pairings on ARM processors. In Selected Areas in Cryp-
tography, 19th International Conference, SAC 2012, volume 7707 of Lecture Notes in
Computer Science, pages 149–165. Springer, 2012.

Cinvestav 172

http://gmplib.org/

BIBLIOGRAPHY

[80] Shay Gueron and Vlad Krasnov. Fast prime field elliptic-curve cryptography with
256-bit primes. Journal of Cryptographic Engineering, pages 1–11, 2014.

[81] Shay Gueron and Vlad Krasnov. Speed records for multi-prime RSA using AVX2 archi-
tectures. In Information Technology: New Generations: 13th International Conference
on Information Technology, pages 237–245. Springer International Publishing, 2016.

[82] Darrel Hankerson, Alfred J. Menezes, and Scott Vanstone. Guide to Elliptic Curve
Cryptography. Professional Computing. Springer, 2004.

[83] M. Harris. Optimizing parallel reduction in CUDA. Technical report, nVidia, 2008.

[84] William Hasenplaugh, Gunnar Gaubatz, and Vinodh Gopal. Fast modular reduction.
In Proceedings of the 18th IEEE Symposium on Computer Arithmetic, ARITH ’07,
pages 225–229, Washington, DC, USA, 2007. IEEE Computer Society.

[85] Florian Hess, Nigel Smart, and Frederik Vercauteren. The Eta Pairing Revisited. IEEE
Transactions on Information Theory, 52:4595–4602, 2006.

[86] Jeffrey Hoffstein, Jill Pipher, and J.H. Silverman. An Introduction to Mathematical
Cryptography. Springer Publishing Company, Incorporated, 1 edition, 2008.

[87] Jeremy Horwitz and Ben Lynn. Toward hierarchical identity-based encryption. In
Advances in Cryptology - EUROCRYPT 2002, International Conference on the The-
ory and Applications of Cryptographic Techniques, volume 2332 of Lecture Notes in
Computer Science, pages 466–481. Springer, 2002.

[88] Zhi Hu, Lin Wang, Maozhi Xu, and Guoliang Zhang. Generation and Tate Pairing
Computation of Ordinary Elliptic Curves with Embedding Degree One, pages 393–403.
Springer International Publishing, 2013.

[89] Thomas Icart. How to hash into elliptic curves. In Advances in Cryptology - CRYPTO
2009, 29th Annual International Cryptology Conference, volume 5677 of Lecture Notes
in Computer Science, pages 303–316. Springer, 2009.

[90] David P. Jablon. Strong password-only authenticated key exchange. Computer Com-
munication Review, 26(5):5–26, 1996.

[91] David P. Jablon. Extended password key exchange protocols immune to dictionary
attacks. In 6th Workshop on Enabling Technologies (WET-ICE ’97), Infrastructure
for Collaborative Enterprises, pages 248–255. IEEE, 1997.

[92] Keon Jang, Sangjin Han, Seungyeop Han, Sue Moon, and KyoungSoo Park.
SSLShader: Cheap ssl acceleration with commodity processors. In Proceedings of the
8th USENIX Conference on Networked Systems Design and Implementation, NSDI’11,
pages 1–14, Berkeley, CA, USA, 2011. USENIX Association.

[93] D. Jao and R. Venkatesan. Use of isogenies for design of cryptosystems, May 5 2005.
US Patent App. 10/816,083.

[94] David Jao, Reza Azarderakhsh, Matthew Campagna, Craig Costello, Luca De Feo,
Basil Hess, Amir Jalali, Brian Koziel, Brian LaMacchia, Patrick Longa, Michael
Naehrig, Joost Renes, Vladimir Soukharev, and David Urbanik. Supersingular isogeny
key encapsulation, 2017. sike.org.

Cinvestav 173

sike.org

BIBLIOGRAPHY

[95] David Jao and Luca De Feo. Towards Quantum-Resistant Cryptosystems from Super-
singular Elliptic Curve Isogenies. In Bo-Yin Yang, editor, Post-Quantum Cryptography:
4th International Workshop, PQCrypto 2011, Taipei, Taiwan. Proceedings, pages 19–
34, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[96] Hamza Jeljeli. Accélérateurs logiciels et matériels pour l’algèbre linéaire creuse sur les
corps finis. PhD thesis, Inria Nancy - Grand Est, LORIA - ALGO - Department of
Algorithms, Computation, Image and Geometry, available at: https://hal.inria.

fr/tel-01178931, 2015.

[97] Hamza Jeljeli. Accelerating Iterative SpMV for the Discrete Logarithm Problem Using
GPUs, volume 9061 of Lecture Notes in Computer Science, pages 25–44. Springer
International Publishing, 2015.

[98] J. E. Ochoa Jimenez and F. Rodriguez Henriquez. Protected implementation of pair-
ing based two factor authentication protocols. IEEE Latin America Transactions,
14(9):4173–4180, 2016.

[99] Antoine Joux. A one round protocol for tripartite diffie-hellman. J. Cryptology,
17(4):263–276, 2004.

[100] Marc Joye. Highly Regular Right-to-Left Algorithms for Scalar Multiplication. In
Pascal Paillier and Ingrid Verbauwhede, editors, Cryptographic Hardware and Embed-
ded Systems - CHES 2007: 9th International Workshop, Vienna, Austria, September
10-13, 2007. Proceedings, pages 135–147, Berlin, Heidelberg, 2007. Springer Berlin
Heidelberg.

[101] Marc Joye and Michael Tunstall. Exponent recoding and regular exponentiation algo-
rithms. In Proceedings of the 2nd International Conference on Cryptology in Africa,
2009, AFRICACRYPT ’09, pages 334–349, Gammarth, Tunisia, 2009. Springer.

[102] Benjamin Justus and Daniel Loebenberger. Differential addition in generalized edwards
coordinates. Cryptology ePrint Archive, Report 2009/523, 2009. https://eprint.

iacr.org/2009/523.

[103] Ezekiel Kachisa, Edward Schaefer, and Michael Scott. Constructing Brezing-Weng
Pairing-Friendly Elliptic Curves Using Elements in the Cyclotomic Field. Pairing-
Based Cryptography - Pairing 2008, 5209:126–135, 2008.

[104] B. S. Kaliski. The montgomery inverse and its applications. IEEE Transactions on
Computers, 44(8):1064–1065, Aug 1995.

[105] Anatolii Karatsuba and Yuri Ofman. Multiplication of Multidigit Numbers on Au-
tomata. Soviet Physics-Doklady, 7:595–596, 1963.

[106] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography, Second
Edition. Chapman & Hall/CRC, 2014.

[107] Shinichi Kawamura, Masanobu Koike, Fumihiko Sano, and Atsushi Shimbo. Cox-
rower architecture for fast parallel montgomery multiplication. In Bart Preneel, editor,
Advances in Cryptology — EUROCRYPT 2000, pages 523–538, Berlin, Heidelberg,
2000. Springer Berlin Heidelberg.

[108] Shinichi Kawamura, Yuichi Komano, Hideo Shimizu, and Tomoko Yonemura. RNS
montgomery reduction algorithms using quadratic residuosity. Journal of Crypto-
graphic Engineering, September 2018.

Cinvestav 174

https://hal.inria.fr/tel-01178931
https://hal.inria.fr/tel-01178931
https://eprint.iacr.org/2009/523
https://eprint.iacr.org/2009/523

BIBLIOGRAPHY

[109] Taechan Kim and Razvan Barbulescu. Extended tower number field sieve: A new
complexity for the medium prime case. In Matthew Robshaw and Jonathan Katz,
editors, Advances in Cryptology – CRYPTO 2016, pages 543–571, Berlin, Heidelberg,
2016. Springer Berlin Heidelberg.

[110] Edward Knapp. On the Efficiency and Security of Cryptographic Pairings. PhD thesis,
University of Waterloo, Ontario, Canada, 2012.

[111] Miroslav Knežević, Frederik Vercauteren, and Ingrid Verbauwhede. Speeding Up Bipar-
tite Modular Multiplication. In M. Anwar Hasan and Tor Helleseth, editors, Arithmetic
of Finite Fields: Third International Workshop, WAIFI 2010, Istanbul, Turkey, June
27-30, 2010. Proceedings, pages 166–179, Berlin, Heidelberg, 2010. Springer Berlin
Heidelberg.

[112] Neal Koblitz. Elliptic curve cryptosystems. Mathematics of Computation, 48(177):203–
209, 1987.

[113] Paul C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and
other systems. In Proceedings of the 16th Annual International Cryptology Conference
on Advances in Cryptology, CRYPTO ’96, pages 104–113, London, UK, 1996. Springer-
Verlag.

[114] B. Koziel, R. Azarderakhsh, M. Mozaffari Kermani, and D. Jao. Post-Quantum Cryp-
tography on FPGA Based on Isogenies on Elliptic Curves. IEEE Transactions on
Circuits and Systems I: Regular Papers, 64(1):86–99, Jan 2017.

[115] Brian Koziel, Reza Azarderakhsh, and Mehran Mozaffari-Kermani. Fast Hardware
Architectures for Supersingular Isogeny Diffie-Hellman Key Exchange on FPGA. In
Orr Dunkelman and Somitra Kumar Sanadhya, editors, Progress in Cryptology – IN-
DOCRYPT 2016: 17th International Conference on Cryptology in India, Kolkata, In-
dia, December 11-14, 2016, Proceedings, pages 191–206, Cham, 2016. Springer Inter-
national Publishing.

[116] Brian Koziel, Amir Jalali, Reza Azarderakhsh, David Jao, and Mehran Mozaffari-
Kermani. NEON-SIDH: Efficient Implementation of Supersingular Isogeny Diffie-
Hellman Key Exchange Protocol on ARM. In Sara Foresti and Giuseppe Persiano,
editors, Cryptology and Network Security: 15th International Conference, CANS 2016,
Milan, Italy, November 14-16, 2016, Proceedings, pages 88–103, Cham, 2016. Springer
International Publishing.

[117] Peter L. Montgomery and Robert D. Silverman. An FFT extension to the P - 1
factoring algorithm. 54:839–854, 04 1990.

[118] A. K. Lenstra, H. W. Lenstra, and L. Lovasz. Factoring polynomials with rational
coefficients. Mathematische Annalen, 261(4):515–534, 1982.

[119] Arjen K. Lenstra. Generating RSA Moduli with a Predetermined Portion. In Kazuo
Ohta and Dingyi Pei, editors, Advances in Cryptology — ASIACRYPT’98: Interna-
tional Conference on the Theory and Application of Cryptology and Information Secu-
rity Beijing, China, October 18–22, 1998 Proceedings, pages 1–10, Berlin, Heidelberg,
1998. Springer Berlin Heidelberg.

[120] Benôıt Libert and Jean-Jacques Quisquater. Efficient signcryption with key privacy
from gap diffie-hellman groups. In Public Key Cryptography - PKC 2004, 7th Interna-
tional Workshop on Theory and Practice in Public Key Cryptography, volume 2947 of
Lecture Notes in Computer Science, pages 187–200. Springer, 2004.

Cinvestav 175

BIBLIOGRAPHY

[121] Julio López and Ricardo Dahab. Fast Multiplication on Elliptic Curves Over GF(2m)
without precomputation. In Çetin K. Koç and Christof Paar, editors, Cryptographic
Hardware and Embedded Systems: First International Workshop, CHES’99 Worcester,
MA, USA, August 12–13, 1999 Proceedings, pages 316–327, Berlin, Heidelberg, 1999.
Springer Berlin Heidelberg.

[122] Harold M. Edwards. A normal form for elliptic curves. 44:393–423, 07 2007.

[123] Ueli M. Maurer, Renato Renner, and Clemens Holenstein. Indifferentiability, impos-
sibility results on reductions, and applications to the random oracle methodology. In
Theory of Cryptography, First Theory of Cryptography Conference, TCC, volume 2951
of Lecture Notes in Computer Science, pages 21–39. Springer, 2004.

[124] Alfred Menezes, Tatsuaki Okamoto, and Scott A. Vanstone. Reducing elliptic curve
logarithms to logarithms in a finite field. IEEE Trans. Information Theory, 39(5):1639–
1646, 1993.

[125] Michael Meyer and Steffen Reith. A faster way to the csidh. Cryptology ePrint Archive,
Report 2018/782, 2018. https://eprint.iacr.org/2018/782.

[126] Michael Meyer, Steffen Reith, and Fabio Campos. On hybrid sidh schemes us-
ing edwards and montgomery curve arithmetic. Cryptology ePrint Archive, Report
2017/1213, 2017. https://eprint.iacr.org/2017/1213.

[127] Victor S. Miller. Use of elliptic curves in cryptography. In Advances in Cryptology -
CRYPTO ’85, Proceedings, volume 218 of Lecture Notes in Computer Science, pages
417–426. Springer, 1986.

[128] Victor S. Miller. The weil pairing, and its efficient calculation. Journal of Cryptology,
17(4):235–261, September 2004.

[129] Hermann Minkowski. Geometrie der Zahlen. Leipzig und Berlin, Druck ung Verlag
von B.G. Teubner, 1910.

[130] Shigeo Mitsunari. A fast implementation of the optimal ate pairing over BN curve on
Intel Haswell processor. IACR Cryptology ePrint Archive, 2013:362, 2013.

[131] Peter L. Montgomery. Modular multiplication without trial division. Mathematics of
Computation, 44(170):519–521, April 1985.

[132] Peter L. Montgomery. Speeding the Pollard and Elliptic Curve Methods of Factoriza-
tion. Mathematics of Computation, 48(177):243–264, 1987.

[133] Dustin Moody and Daniel Shumow. Analogues of velu’s formulas for isogenies on
alternate models of elliptic curves. Cryptology ePrint Archive, Report 2011/430, 2011.
https://eprint.iacr.org/2011/430.

[134] S. Müller. On the computation of square roots in finite fields. J. Design, Codes and
Cryptography, 31:301–312, 2004.

[135] Eduardo Ochoa-Jiménez, Mehdi Tibouchi, and Francisco Rodŕıguez-Henŕıquez. Guide
to Pairing-Based Cryptography, chapter Hashing into elliptic curves. Chapman & Hal-
l/CRC, 2016.

[136] Katsuyuki Okeya and Kouichi Sakurai. Efficient Elliptic Curve Cryptosystems from a
Scalar Multiplication Algorithm with Recovery of the y-Coordinate on a Montgomery-
Form Elliptic Curve. In Çetin K. Koç, David Naccache, and Christof Paar, editors,

Cinvestav 176

https://eprint.iacr.org/2018/782
https://eprint.iacr.org/2017/1213
https://eprint.iacr.org/2011/430

BIBLIOGRAPHY

Cryptographic Hardware and Embedded Systems — CHES 2001: Third International
Workshop Paris, France, May 14–16, 2001 Proceedings, pages 126–141, Berlin, Heidel-
berg, 2001. Springer Berlin Heidelberg.

[137] Thomaz Oliveira, Diego F. Aranha, Julio López, and Francisco Rodŕıguez-Henŕıquez.
Fast Point Multiplication Algorithms for Binary Elliptic Curves with and without
Precomputation. In Antoine Joux and Amr Youssef, editors, Selected Areas in Cryp-
tography – SAC 2014: 21st International Conference, Montreal, QC, Canada, August
14-15, 2014, Revised Selected Papers, pages 324–344, Cham, 2014. Springer Interna-
tional Publishing.

[138] Thomaz Oliveira, Julio López, Hüseyin Hışıl, Armando Faz-Hernández, and Francisco
Rodŕıguez-Henŕıquez. How to (pre-)compute a ladder. In Jan Camenisch and Carlisle
Adams, editors, Selected Areas in Cryptography – SAC 2017: 24th International Con-
ference, Ottawa, Ontario, Canada, August 16 - 18, 2017, Revised Selected Papers.
Springer International Publishing, August 2017.

[139] Thomaz Oliveira, Julio López, and Francisco Rodŕıguez-Henŕıquez. Software imple-
mentation of koblitz curves over quadratic fields. In Benedikt Gierlichs and Axel Y.
Poschmann, editors, Cryptographic Hardware and Embedded Systems – CHES 2016,
pages 259–279, Berlin, Heidelberg, 2016. Springer Berlin Heidelberg.

[140] K. G. Paterson. Cryptography from Pairings, volume 317 of London Mathematical
Society Lecture Notes, chapter X, pages 215–251. Cambridge University Press, 2005.

[141] John Pollard. Monte Carlo methods for Index Computation (mod p). Mathematics of
Computation, 32:918–924, 1978.

[142] K. C. Posch and R. Posch. Modulo reduction in residue number systems. IEEE
Transactions on Parallel and Distributed Systems, 6(5):449–454, May 1995.

[143] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining
digital signatures and public-key cryptosystems. Commun. ACM, 21(2):120–126, 1978.

[144] Ryuichi Sakai, Kiyoshi Ohgishi, and Masao Kasahara. Cryptosystems based on pairing.

[145] Ana Helena Sánchez and Francisco Rodŕıguez-Henŕıquez. NEON implementation of an
attribute-based encryption scheme. In Applied Cryptography and Network Security -
11th International Conference, ACNS 2013, volume 7954 of Lecture Notes in Computer
Science, pages 322–338. Springer, 2013.

[146] René Schoof. Elliptic curves over finite fields and the computation of square roots mod
p. Mathematics of Computation, 44(170):483–494, 1985.

[147] Michael Scott. Implementing cryptographic pairings. In Pairing-Based Cryptography
- Pairing 2007, volume 4575 of Lecture Notes in Computer Science, pages 177–196.
Springer, 2007.

[148] Michael Scott. Client-server authentication using pairings. IACR Cryptology ePrint
Archive, 2012:148, 2012.

[149] Michael Scott. Unbalancing pairing-based key exchange protocols. IACR Cryptology
ePrint Archive, 2013:688, 2013.

[150] Michael Scott, Naomi Benger, Manuel Charlemagne, Luis J. Dominguez Perez, and
Ezekiel J. Kachisa. Fast hashing to G2 on pairing-friendly curves. In Pairing-Based
Cryptography - Pairing 2009, Third International Conference, volume 5671 of Lecture
Notes in Computer Science, pages 102–113. Springer, 2009.

Cinvestav 177

BIBLIOGRAPHY

[151] Mike Scott. Missing a trick: Karatsuba revisited. IACR Cryptology ePrint Archive,
2015:1247, 2015.

[152] Andrew Shallue and Christiaan van de Woestijne. Construction of rational points
on elliptic curves over finite fields. In Algorithmic Number Theory, 7th International
Symposium, ANTS-VII, volume 4076 of Lecture Notes in Computer Science, pages
510–524. Springer, 2006.

[153] Adi Shamir. Identity-based cryptosystems and signature schemes. Proceedings of
CRYPTO’84 on Advances in cryptology, pages 47–53, 1984.

[154] D. Shanks. Five number-theoretic algorithms. Proceedings of the second Manitoba
conference on numerical mathematics, pages 51–70, 1972.

[155] Victor Shoup. A Computational Introduction to Number Theory and Algebra. Cam-
bridge University Press, New York, NY, USA, 2 edition, 2009.

[156] Anton Stolbunov. Constructing public-key cryptographic schemes based on class group
action on a set of isogenous elliptic curves. Advances in Mathematics of Communica-
tions, 4(2):215–235, 2010.

[157] Srinivasa Rao Subramanya Rao. Three Dimensional Montgomery Ladder, Differential
Point Tripling on Montgomery Curves and Point Quintupling on Weierstrass’ and
Edwards Curves. In David Pointcheval, Abderrahmane Nitaj, and Tajjeeddine Rachidi,
editors, Progress in Cryptology – AFRICACRYPT 2016: 8th International Conference
on Cryptology in Africa, Fes, Morocco, April 13-15, 2016, Proceedings, pages 84–106,
Cham, 2016. Springer International Publishing.

[158] John Tate. Wc-groups over p-adic fields. Exposé 156, Séminaire Bourbaki, 1957.

[159] Edlyn Teske. The pohlig—hellman method generalized for group structure computa-
tion. J. Symb. Comput., 27(6):521–534, June 1999.

[160] A. Tonelli. Bemerkung uber die auflosung quadratischer congruenzen. Götinger
Nachrichten, pages 344–346, 1891.

[161] Jacques Vélu. C. R. Acad. Sci. Paris Sér. A-B, 273:A238–A241, 1971.

[162] F. Vercauteren. Optimal pairings. IEEE Transactions on Information Theory,
56(1):455–461, 2010.

[163] C. D. Walter. Montgomery exponentiation needs no final subtractions. Electronics
Letters, 35(21):1831–1832, Oct 1999.

[164] Lawrence C. Washington. Elliptic Curves: Number Theory and Cryptography. Chap-
man & Hall/CRC, second edition, 2008.

[165] André Weil. Sur les fonctions algebriques á corps de constantes finis, volume I, pages
257–259. Oeuvres Scientifiques, Paris, 1940.

[166] André Weimerskirch and Christof Paar. Generalizations of the karatsuba algorithm for
efficient implementations. Cryptology ePrint Archive, Report 2006/224, 2006. http:

//eprint.iacr.org/2006/224.

[167] Yang Yang, Zhi Guan, Huiping Sun, and Zhong Chen. Accelerating RSA with fine-
grained parallelism using GPU. In Proceedings of the Information Security Practice and
Experience: 11th International Conference, 2015, ISPEC’15, pages 454–468, Beijing,
China, 2015. Springer.

Cinvestav 178

http://eprint.iacr.org/2006/224
http://eprint.iacr.org/2006/224

BIBLIOGRAPHY

[168] Eric Zavattoni, Luis J. Dominguez Perez, Shigeo Mitsunari, Ana H. Sánchez-Ramı́rez,
Tadanori Teruya, and Francisco Rodŕıguez-Henŕıquez. Software implementation of an
attribute-based encryption scheme. IEEE Trans. Computers, 64(5):1429–1441, 2015.

[169] Fangguo Zhang and Kwangjo Kim. Id-based blind signature and ring signature from
pairings. In Advances in Cryptology - ASIACRYPT 2002, 8th International Conference
on the Theory and Application of Cryptology and Information Security, volume 2501
of Lecture Notes in Computer Science, pages 533–547. Springer, 2002.

Cinvestav 179

	Introduction
	Motivation
	Outline

	Mathematical background
	Groups
	Subgroups
	Cyclic groups
	Cosets
	Group homomorphisms
	Discrete Logarithm Problem (DLP)

	Rings
	Subrings, ideals and quotient rings
	Ring homomorphisms

	Fields
	Field extensions

	Elliptic curves
	The group law
	Elliptic curves over finite fields

	I Integer-factorization-based cryptography
	Integer and finite field arithmetic
	Representation of large integers
	Arithmetic instructions in processors
	AVX2 instruction set

	Integer arithmetic
	Addition and subtraction
	Multiplication
	Squaring
	Modular reduction

	RNS arithmetic
	Addition, subtraction and multiplication
	Modular reduction

	Finite field arithmetic
	Addition and subtraction
	Multiplication and squaring
	Exponentiation

	Protected implementation of RSA signature algorithm
	RSA signature scheme
	Security

	Efficient implementation on CPU platforms
	Montgomery based arithmetic
	RNS based arithmetic

	Efficient implementation on GPU platforms
	RNS modular Multiplication
	RNS based RSA signature

	Conclusions

	II Pairing-based cryptography
	Introduction to bilinear pairings
	Bilinear pairings
	Types of pairings
	Curves for fast pairing software implementation
	Security of pairings

	Main operations in pairing-based protocols
	Pairing computation
	Scalar multiplication in G1 and G2
	Hashing into elliptic curve groups

	Constant-time hashing into elliptic curves
	Encoding functions to elliptic curves
	The Boneh-Franklin encoding
	Beyond supersingular curves
	The Shallue-van de Woestijne approach
	Icart's approach

	Hashing to pairing-friendly curves
	The issue of indifferentiability
	Hashing to subgroups

	Case study: the Barreto-Naehrig elliptic curves
	Constant-time hashing to G1
	Deterministic construction of points in E'(Fp2) for BN curves
	Efficient hashing to G2

	Implementation
	Intel processor
	ARM processor

	Protected implementation of pairing-based authentication protocols
	Introduction
	Authentication

	Two-factor authentication protocols
	Implementation
	Hash into the groups G1 and G2
	Scalar Multiplication and modular exponentiation
	Pairing computation

	Results and conclusions

	Implementation of BLS signature protocol over curves with embedding degree one
	Introduction
	Elliptic curves with embedding degree one
	BLS signature algorithm for this pairings
	Used constructions

	Finite field and elliptic curve arithmetic
	Finite field arithmetic
	Elliptic curve arithmetic

	Main building blocks of the BLS protocol
	Pairing
	Hash function to elliptic curve subgroup
	Subgroup membership testing

	Results and conclusions

	III Isogeny-based cryptography
	Introduction to the supersingular isogeny Diffie-Hellman protocol
	Isogenies
	Elliptic curve models
	Montgomery curves and their arithmetic
	Edwards curves and their arithmetic
	Relation between Montgomery and Edwards curves

	Supersingular isogeny Diffie-Hellman protocol
	Security
	Critical operations

	A faster software implementation of the Supersingular Isogeny Diffie-Hellman protocol
	Introduction
	A novel algorithm for computing x(P+[k]Q)
	Applying the new algorithm to the SIDH protocol
	Recovering the y-coordinate of P+[k]Q

	Optimization of point tripling in Montgomery curves
	Finite field arithmetic implementation
	Exploiting the special form of the SIDH moduli

	Implementation and benchmark results
	Related works
	Prime field arithmetic
	Impact of the P+[k]Q optimization
	Point tripling impact
	Performance comparison of the SIDH protocol

	Conclusions

	A parallel approach for the Supersingular Isogeny Diffie-Hellman protocol
	Introduction
	Extended SIDH
	eSIDH

	Parallel eSIDH
	eSIDH meets Chinese Remainder Theorem

	Improving the construction and evaluation of isogenies
	Tweaks for Isogeny construction
	Using yDBL and yADD

	Implementation and benchmarks results
	eSIDH prime Selection
	Parallelization of large-degree isogeny computation

	Conclusion

	Conclusions and future work
	Conclusions
	Future work
	List of publications
	Works in preparation

