

Centro de Investigación y de Estudios Avanzados

del Instituto Politécnico Nacional

Unidad Guadalajara

Modelado y cómputo del comportamiento de

agentes interconectados usando redes de

Petri híbridas temporizadas

Tesis que presenta:

Gema Berenice Gudiño Mendoza

para obtener el grado de:

Doctora en Ciencias

en la especialidad de:

Ingeniería Eléctrica

Director de Tesis:

CINVESTAV
IPN

ADQUISICIÓN

LIBRO»

Dr. Luis Ernesto LópezMellado

CINVESTAV del IPN Unidad Guadalajara, Guadalajara, Jalisco, Agosto 2014.

CLASIF.. CTVX3 179

ADQUIS.. cs
-

p.7P,
~~

|
FECHA: 7P.-r.-r - ?^/c

ROCED.. ■z->c..-sr.ir

%

Modelado y cómputo del comportamiento de

agentes interconectados usando redes de

Petri híbridas temporizadas

Por:

Gema Berenice Gudiño Mendoza

Maestra en ciencias en Ingeniería Eléctrica

CINVESTAV 2005-2007

Director de Tesis:

Dr. Luis Ernesto LópezMellado

CINVESTAV del IPN Unidad Guadalajara, Agosto 2014

■■■'

Centro de Investigación y de Estudios Avanzados

del Instituto Politécnico Nacional

Unidad Guadalajara

Modeling and computing networked agents'
behavior using timed hybrid Petri nets

A thesis presented by:

Gema Berenice Gudiño Mendoza

to obtain the degree of:

Doctor in Science

in the subject of:

Ingeniería Eléctrica

Thesis Advisor:

Dr. Luis Ernesto LópezMellado

CINVESTAV del IPN Unidad Guadalajara, Guadalajara, Jalisco, August 2014.

Modeling and computing networked agents'
behavior using timed hybrid Petri nets

By:

Gema Berenice Gudiño Mendoza

Master of Science in Electrical Engineering

CINVESTAV 2005-2007

Thesis Advisor:

Dr. Luis Ernesto López Mellado

CINVESTAV del IPN Unidad Guadalajara, August 2014

Modelado y cómputo del comportamiento de agentes interconectados

usando redes de Petri híbridas temporizadas

RESUMEN

Esta tesis trata sobre el modelado, cómputo y simulación del comportamiento de sistemas de agentes

interconectados. Se propone un mareo de trabajo para el análisis de sistemas multi-agentes, cuyo

enfoque está basado en la representación interna del estado híbrido de cada agente a través de
modelos

de redes de Petri híbridas temporizadas (RPHT). La propuesta abarca tres etapas importantes: el

modelado de agentes y redes de agentes, el cálculo de la evolución del modelo de agente y la

simulación de redes de agentes idénticos.

Para el modelado se desarrolló una metodología que permite la estructuración de la red y una

arquitectura para el diseño de agentes reactivos multi-rol en la cual pueden distinguirse variables de

estado continuas y discretas. Una parte de esta metodología se enfoca en la descripción detallada de

la evolución del estado del agente representándolo como RPHT; siendo estametodología la base para

el análisis a través de simulación de la red de agentes.

Respecto a la parte de cómputo, se propone una caracterización matemática la cual permite calcular

el comportamiento no lineal de la parte continua de una RPHT mediante programación lineal mixta.

La caracterización permite abordar modelos con estructuras de redes cíclicas y con conflictos

estructurales; para esta última característica dos políticas pueden ser aplicadas: prioridades y

compartimiento.

Posteriormente, se definió una estrategia para simulación del modelo híbrido de una red de agentes

idénticos interconectados, la cual permite desarrollar una herramienta de software, donde se explota

la característica de agentes idénticos para calcular fuera de línea todos los estados de un agente a

través de la contribución antes descrita y posteriormente este cálculo se utiliza en la simulación de la

red de agentes evitando así un cómputo repetitivo durante la simulación.

Finalmente, mediante la estrategia de simulación se desarrolló un software para un caso de estudio

relacionado con redes de intercambio de energía. El software consiste de dos módulos: uno para el

cálculo de los estados posibles de la parte continua de la RPHT implementado en Matlab y el otro

para la simulación de la red de agentes, implementado en Java y JADE.

Modeling and computing of networked agent's behavior

using timed hybrid Petri nets

ABSTRACT

This thesis deals with modeling, computing and simulation of networked agent systems behavior. A

framework for the multi-agent systems analysis is proposed; it is focuses on agent's hybrid state

representation through timed hybrid Petri nets (THPN) models. The proposal has three important

stages: agent and agent network modeling, calculation of the agent model state evolution, and

identical agent network simulation.

For the modeling part, a methodology that allows structuring the network and an architecture for

designing reactive multi-role agents has been developed, in which state variables continuous and

discrete can be distinguished. One part ofthis methodology is focused on the description in detail the

agent's state evolution using THPN; this methodology is the basis for the analysis through simulation

of agents network.

Regarding the computing issue, a mathematical characterization to compute the non linear behavior

of the continuous part of a THPN through mixed linear integer programming (MLIP) is proposed.

Cyclic structures and structural conflicts can be included in the characterization; on this last feature

two policy resolutions can be applied: priorities and sharing.

Thereafter, a scheme for the simulation ofhybrid identical agent networked systems has been defined;

this scheme allows developing a software tool; where the characteristic of identical agents is exploited

by computing off-line all the possible states for only one agent using the contribution described above;

then this infonnation is used in the agents network simulation, allowing avoiding the repetitive

computing through the simulation.

Finally, through the simulation scheme, a software for a case study related to energy interchange

networks has been developed. The software has two main parts: one that computes the possible states

for the continuous part ofthe THPN, which has been implemented in Matlab, and the other one for

the agent network simulation, which has been has been implemented in Java and JADE.

AcademicAcknowledgments

I would like to extend my thanks to Dr. Manuel Silva and Dr. José Ángel

Bañares, for their invaluable and constructive suggestions on this project during

the research staying at the University ofZaragoza, Spain (May-Jul 2012). Their

willingness to give their time so generously has been very much appreciated.

Special thanks should be given to Prof. Hassane Alia for his professional

guidance, constructive recommendations and invaluable support during the

research staying at the University ofGrenoble, France (Jun-Jul 2013). Also for

his collaboration in the development on the submitted work: "A Linear

Characterization of the Switching Dynamic Behavior of Timed Continuous

Petri Nets with Structural Conflicts".

I would also like to express my deep gratitude to Dr. Ernesto LópezMellado my

thesis advisor, for their patient guidance, enthusiastic encouragement, and

professional assistance on the complete development ofthis work.

Finally, I wish to thank Conacyt for its financial support.

Agradecimientos

Me gustaría agradecer a mis compañeros del laboratorio de computación por su

compañía y consejo.

A mis padres y familia por su apoyo incondicional.

Y a mi esposo por su apoyo recibido tanto profesional como personalmente.

Contents

Introduction ■■

Chapter 1 Networked agents, Petri nets, linear modeling, and sensor networks 3

1.1. Networked Agents 4

1.2. Timed continuous Petri nets 4

1.2.1. Conflicts in TCPN 5

1.2.2. Expected behaviors in TCPN with conflicts 5

1.2.3. Expected behaviors in TCPN with diverse structures 7

1.3. Timed hybrid Petri nets 8

1.4. Linear constraints to represent continuous and discrete events 9

1.5. Sensor networks 10

Chapter 2 Agent architectures and behavioral analysis of Petri nets 12

2.1. Agent-Based architectures 13

2.1.1. Agents as intentional systems 13

2.1.2. Agents as abstract machines 13

2.1.3. Agents As dynamical systems 14

2.1.4. Discussion and proposals 14

2.2. Algorithms and mathematical formulations to describe TCPN's behavior 1 5

2.2.1. Speed calculation algorithms 15

2.2.2. First order hybrid Petri nets 17

2.2.2.1. Controlling FOHPN 17

2.2.2.2. FOHPN Decomposition technique 17

2.2.3. TCPN Event-Driven control 18

2.2.4. Discussion and proposal 18

Chapter 3 Modeling framework for networked agent systems 20

3.1. Properties ofthe system 21

3.1. Properties ofthe system

The proposed architecture is amultipurpose agent system, which is amodular representation
where

the dynamics ofeach entity ofthe system is represented by the interaction of continuous and discrete

variables [Gudiño-Mendoza,201 1]. Some relevant properties represented by the architecture are:

• Closed system; it is not possible to introduce additional agents. The number of agents is

fixed.

• The topology is fixed; each agent knows its neighbors all the time.

• The communication between the agents is one-hop nearest neighbors and bidirectional.

• Each agent in the system is an autonomous agent with computation, actuation, sensing,

and communication capabilities.

• No agent is controlled by another one.

3.2. General structure ofan agent and a networked agent system

An agent A, can be defined as a 3-tuple <P¡,Eh,Si>. Where:

• P¡ is the vector of perceptions; the messages received from others agents and the signals

received from the environment are mapped into this vector, P¡
=

[P¡d \ Pie], where P¡d(J)

e N and PiC(j) e K.

• EU is the vector of external information; each agent maintains and evolves the information

perceived through this vector, this information contains the outside agent's perception, EL

=

[EhD | Ele], where EIiD(j) e N and ELcQ) e E.

• S¡ is the vector state ofthe agent; it contains all the basic internal variables to describe the

agent, S¡
=

[SiD \ S,c], where SiD(j) e N and SiC(j) e E-

The networked agent system can be described as a directed graph G
=

(A, E}. Where:

A =

(A¡, A2, Ai, ...} is the set of agents in the system.

E (zA x A defines the topology ofthe agent network. The pair (Ai, A¡) e E ifthe agent./!/ can

receive information from the agenta/.

3.3. Agent internal architecture

From an external point ofview, the agent processes information coming from sensors and messages

sent from other agents; then it produces actions that may affect the environment and sends messages

to other networked agents. The scheme of Figure 3.1 describes the main components of an

autonomous agent and their relationships. Every module performs a key function in the behavior of

the agent.

21

6JL4. Illustrative example 58

63. Case study 67

Conclusions 78

AppendixA Documentation ofJava classes for THPN simulation 80

References 85

Introduction

Tbemuhi*--a^ntt tosed approach has l*enwidely heU

ln these kind* of application* the dí*tríbtrtíon emerge* naturally r>y i^wcm ing the device* as agents

ihat interactwí* the» neígW»w»

to perfora, complex individual tasks that involve the ínformatk» exchange wnhodiera^^

to achieve a collective task.

ln general, networked agents are reactive and muhírole entities whose reasoning ís based mainly

onan internal state and the current external information about the envíronmemimd from other agerrts.

These agents would be identical but capable ofperform different roles. State representation gather» a

set of integer and real variables that characterize the status ofevery cognitive process ín the a§ent.

Several agent architectures have been proposed for representing the agent behavior; they drflfer

according to; their field ofapplication, agents functioning, or tbe kind ofanalysis for dw networked

agent sysiem. Some works considers the agents as intentional systems [Ingrand,l992J,

(Bratman, 199ÍJ, [Fisher, 1996]; ín others works the agents are modeled as abstract machines

[Feber,1996J, [Yu¿006], [Coleri,2002]: other research group considers tbe agent* as dynamical

systems [Bos,l999], [Bosse,2rj07], fFregene^OOl], p*-íegenbora20061. On the other hand, several

analytical approaches have been developed focusíng on the analysis and control schemes for abstract

machines such as timed hybrid Petri nets (THPN), These works are based on mixed linear integer

programming (MLÍP) [Balduzzí,1999J, [BalduzzUOOOJ, [Balduzzí^OOlJ, [Dotolí^OOSJ,

[Dotolí.20091, [Níshí,2009J, [Julvez,2004).

ln this thesis *ve addressed the study of networked agents looking for an analytical framework

allowing a more formal analysis of their collective behavior. The proposal includes three

contributions regarding the modeling, computing, and simulation of identical interactive networked

agents, which exhibit a hybrid dynamics.

The modeling issue ís addressed by proposíng a modeling framework that includes a; guidelines

for structuring the network and bj an architecture for designing reactive agents ín which the types of

state variables are distinguished [Gudíno-Mendo*za,20 1 1 1, Later, a methodology for detaílíng the

agents' behavior ís developed ín which the agent'* state evolution i* represented by timed Hybrid

Petri net* (THPN). At difference of the above mentioned related works, our modeling proposal ís

focused ín establish the agent's state behavior as THPN. where the agent's dynamics ís driven by

continuous and discrete event*. [GijdíñV>--Mendoza,20l3|. The proposed approach ís illustrated

I

through a case study dealing with sensor networks. This was though as a basis for the analysis and

simulation of these kind of systems.

The computing issue is addressed by an analytical approach, it is a mathematical characterization

based on MLIP ofthe timed continuous Petri nets (TCPN)models issued from the switching behavior

the THPN. This proposal extends previous works by addressing TCPN models including a) a wider

set of resolution policies for structural conflicts, and b) cyclic structures [Gudino-Mendoza,2014].

Finally, the simulation issue is addressed through a simulation scheme based on the mathematical

characterization for networked identical agents. This scheme allows developing a software tool for

executing the hybrid model ofa whole agent network. The off-line computation ofall possible states

for one agent using the characterization for the TCPN is performed; then this information is used to

compute the overall networked agent system state's during the network simulation. Unlike the

algorithmic simulation proposed in [David,201 Oj, the analytical characterization allows obtaining all

the needed information for one agent before the simulation is performed; this information is then used

for all the agents avoiding the repetitive computing. The simulation scheme is tested using a

distributed energy household network system case study.

This thesis is organized as follows. Chapter 1 introduces the basic concepts of networked agent

systems, Petri nets, linear representation for continuous and discrete events, and sensor networks.

Chapter 2 describes several works related to the research proposals. Chapter 3 presents a general

framework formodeling agent networked systems focusing in the agent's hybrid state representation.

Chapter 4 presents a modeling technique based on TCPN for specifying the agent's evolution.

Chapter 5 shows TCPN behavior characterization using MLIP. And finally, Chapter 6 presents a

scheme for the simulation of identical networked agent system.

2

Chapter 1

Networked agents, Petri nets, linear modeling,

and sensor networks

Abstract. This section is devoted to cover all the primary notions in which is based the developed

work. Section 1.1 presents some basic concepts about networked agents in which the first two

modeling proposals presented in Chapter 3 and Chapter 4 are based on. Section 1.2 and Section 1.3

present notions in timed continuous and hybrid Petri nets for proposals from Chapter 4, Chapter 5

and Chapter 6. Section 1 .4 describes how to model some discrete and continuous behaviors using

linear restrictions with continuous and discrete variables, which are used for proposal in Chapter 5.

And the last section presents notions about sensor networks, the two study cases from Chapter 3 and

Chapter 4.

3

1.1. Networked Agents

Agents are a suitable paradigm through which exploit the possibilities presented by massive

distributed systems. A collection of these agents seem to be a natural metaphor for understanding and

building a wide range of complex systems.

Agents [Negenborn,2004] are problem solvers that have abilities to act, sense, reason, learn, and

communicate with each other in order to solve a given problem. Agents have an information set

containing their knowledge (including infonnation from sensing and communicating), and an action

set containing their skills.

A networked agent system [Wooldrige,2002] consists ofa number of agents, which interact with

another one, typically by exchanging messages. In the most general case, the agents in a networked

agent system will be representing or acting on behalfof users or owners with very different goals.

1.2. Timed continuous Petri nets

Timed continuous Petri nets (TCPN) is a model limit case of time discrete Petri nets. An

autonomous continuous Petri net can be defined [David,2010] as 5-uple R =< P,T, Pre, Post, M0 >

such that: P is a set ofplaces, T is a set of transitions, both sets finite and not empty, Pf\T are disjoint,

Pre:PxT-+Q+, Post.Px.T-^> Q + and M„ the initial marking. °7) will denote the set of input places to

Tj, m* the marking of place P¡, andMatrixijtiie corresponding valué ofMatrix in row i and column j

the same idea applies for vectors.

In a TCPN an additionally relation is added Spe: TxV where V is the maximalfiring speed (mfs)

associated to each transition. The set P of places may be divided into two subsets: P+(mk) the set of

places P¡ such that m¡>0 and P°(mk) the set ofplaces P¡ where m*=0. A macro-marking is the unión of

all markings mk with the same P+(mk) ofmarked places.

The evolution of a TCPN is divided is several invariant behavior states (EB-states), each one of

them has a duration (dtk) and a constant vector of instantaneous firing speeds (ifs) vk, where

0 < vk < V, and a macro-marking. The evolution marking of these nets is given as for the discrete

model by the evolutionmarking equation: mfc+1 = mk + W ■

vk
•

Atk, whereW = Post — Pre and

mk+1 > 0. A change of IB-State is because a place becomes empty, so the necessity ofa nonnegative

marking forces to change in vector vk. To compute ifs (y¡) for a transition Tj in a TCPN without

conflicts three conditions of enabling are necessary to consider:

• Strongly enabled, it means VP* e °7), m* > 0 or "Tj
= 0

o Vj
=

Vj
• Not enabled, it means 3P* E °Tp m*

= 0 and /• = 0, where /■ = 2¡7k6°p* Postik
■

vk

o Vj
= 0

• Weakly enabled, it means EP* 6 °7},m*
= 0 and /■ > 0

4

o v¡
= min [*=-*— -V/J

1.2 1 Corfkts n TCPN

An structural conflict in a TCPN can be defined as SC= <Pc, Tc>, where Pc={P¡) is one place in

conflict, and Tc={Ti,T2,...,Ts} c °Pc are the transitions involved in the conflict (Figure 1.1). To

establish the resolution by priority, the notation Ti<T2<...<Tsmeans that Ti is the transition withmore

priority, then T2 and so on until Ts; the input flow from Pc must satisfy first to transition Ti, the

remaining flow is applied now to T2 and so on until Ts. To establish the resolution by sharing the

notation [aiTi, 012T2 OsTs] is used, this notation indicates that the following relation must be

satisfied vi/ai= Vi/a2=...= Vs/ots, where ai is a real number. An actual conflict occurs when in a

structural conflict mv-=0 and the feeding speed h is not enough for firing all its output transitions, that

is, at least one ofthese transitions must slow down its ifs due to Pc; this case is illustrated through an

example in section 1.2.3.

T1 1 \ T2 1 i
■

Tsr i

Figure 1.1 TCPN with structural conflict

Below we present some expected behaviors considering different kind of structures and conflict

resolution policies; these behaviors all fully covered by the proposal described in Chapter 5.

1.2.2 Exaectec behaviors inTC-N with corfíicts

Table 1.1 shows three possible behaviors ofa TCPN with a structural conflict. In each case the

policy to solve the conflict is indicated. The TCPN's structure in Figure 1.2 serves for illustrating

the three cases.

Cases Examples T4<Ts<Ti lT4,Ts,T6¡

A. There is not

actual conflict

A.l Mo=[0 m2 0], V=[2 3 12 2 2] v=[2 3 12 2 1] v=[2 3 122 1]

A.2 Mo=[0 m2 m3], V=[2 3 12 2 2] v=[2 3 12 2 2] v=[2 3 12 2 2]

A.3 Mó=[0 0 0], V=[2 9 2 3 2 2] v=[2 9 2 3 2 2] v=[2 9 2 3 2 2]

B. There is an

actual conflict.

B.l Ma=[0 0 0], V=[2 3 12 2 2] v=[2 3 12 10] v=[2 3 1111]

C There is an

actual conflict

C.l A*fo=[0 0 0], V=[0.5 3 12 2 2] v=[0.5 3 1 0.5 2 0.5] v=[0.5 3 10.5 1.25 1.25]

C.2 Mg=[0 0 0], V=[2 3 12 2 0.5] v=[2 3 12 10] v=[2 3 1 1.25 1.25 0.5]

C.3 A/o=[0 0 0], V=[0.5 3 0.4 2 3 2] v=[0.5 3 0.4 0.5 2.5 0] v=[0.5 3 0.4 0.5 2.10.4]

Table 1.1 Solutions for cases A-C

5

TU

T4C

Figure 1.2 TCPN »ith structural conflict cases A-C

Case A is exhibited when the place in conflict (P2) is marked (A. 1 and A.2) orwhen the input flow

to Pc is enough to satisfy the flow for the transitions in the conflict (A.3), for these cases the solution

of ifa is the same (because the rule does not need to be applied) the ifs for the transitions in the conflict

is established according to its own mfa (A.2 and A.3) or limited by an input flow (A.l), in this case

v-, is limited by b=l .

Case B describes a situation in which the resolution rule is in fact fully applied to all the transitions,

Pc limits the input flow to all transitions in Tc; in this case, for all transitions in the conflict, the

minimum input flow is given by l2=V2=3. In the resolution by priority, T4 has the highest priority, it

goes to its mfa 2; then it remains only 1 for Ts and 0 for T6. In sharing all the transitions goes to the

same instantaneous firing speed 1, the constraint V4=vs=V6 is satisfied.

Case C illustrates a problem that arises when some transitions in the conflict are limited by other

input flow (C.l, C.3) or by ¡ts own mfa (C.2), Pc limits the input flow to some transitions in Tc; this

is because, first, the ifa for these transitions must be set before, and then the remaining flow must be

assigned to the other transitions in the conflict in compliance with the resolution rule. For case C. 1 in

resolution by priority, the ifa for T4 is limited by Ii; this transition has the highest priority, thus V4=0.5.

For the remaining flow 2.5, vs=2 is assigned, and then V6=0.5. In the same case, in the resolution by

sharing, h=3 must be shared between the three transitions in the conflict, but T4 cannot consume its

part because it is limited by Ii; henee v4=0.5 and the remaining flow 2.5 must be shared between the

other two transitions. The constraint to fulfill in this case must be vs=V6; then their ifa are 1 .25. In case

C.2 T4 is limited by ¡ts own mfa, so in this case in the resolution by priority establishes V4=2, vs=l

and V6=0. In resolution by sharing, now Tt cannot use its part because Vé=0.5 then V6=0.5 and the

constraint to satisfy is V4=vs; thus both transitions fires at 1 .25. Finally in C.3, T» is limited by Ii=0.5;

in resolution by priority it results in V4=0.5 and vs=2.5 and V6=0, and applying resolution by sharing

the flows T4 and Té are limited by the input flows Ii=0.5 and 13=0.4 respectively, consequently V4=0.5,

Vé=0.4 and the remaining flow from I2 can be assigned to vs=2. 1 , here non restrictionmust be satisfied.

All the situations described ¡n the above cases may appear during the evolution ofa TCPN model,

then it is necessary a strategy tomanage the application ofthe conflict resolution policies. Using some

discrete and continuous variables it is possible to represent this behavior.

6

1.2.3. Expected behaviors in TCPN with diverse structures

When the TCPN has circuits or a cyclic structure (Figure 1.3), sometimes there exist some

dependencies when ifa are calculated. Three cases are presented in Table 1.2 to show the main

problems faced with these structures. For Case D (Figure 1.3(a)) there is a dependency: the feeding

of T2 depends on the firing of Ti and also Ti needs V2>0 to be fired; in this case Ti cannot be fired

because P3 never will be fed. This is an important consideration when ifa are calculated, in the

formulation ofthe solution must be established that V2 cannot be fired because P3 never will be fed;

in fact Pi and P3 form an unmarked P-component.

In Case E. 1 (Figure 1 .3(b)), T3 is strongly enabled, then V3=l ; for the resolution policy Ti<T2, first

Vi=l, then the remaining flow is equal to zero, so V2=0 and V4=0; for the resolution policy [Ti,T2]

the following behavior is observed: the strongly enabled transition T3 creates an input flow Ii=l, this

flow is shared between Ti and T2, so vi=0.5 and v2=0.5; this causes V4=0.5, now Ii=1.5, again the

flow is shared and vi=0.75 and V2=0.75, so T4 increases its flow to 0.75; with this Ii=1.75, and

vi=0.875 and V2=0.875; this behavior leads to have ifa of 1 for all the transitions. In Case E.2, for

resolution Ti<Tz again T3 is strongly enabled so V3=2 and Ii=2, this flow allows the firing ofTi at its

mfa vi=l and the remaining flow is assigned to T2, V2=l and then V4=l; now Ii=3, with this flow both

transitions in the conflict can be fired at their maximal speed. For the resolution by sharing at the

beginning the input flow Ii=2 ¡s shared between Ti and T2 leading to vi=V2=l ; it makes V4=l and now

Ii=3, with this input flow Ti and T2 can fire at the maximal speed. In fact in Case E.2, there is no

actual conflict.

(a). Case D. So-conflict (b) Case E. Structural conflici

Figure 1.3. TCPN v»ith structural conflicts cases D and F.

7

Cásea Examples Solution

A No-conflkt V=[l 3] v=[0 0]

£. Structural conflict Ti<T¡ m,T2i

E.1 A/a=[0 1112 0], V=[2 2 1 1.5] v=[l 0 1 0] V=[l 1 1 1]

EJA/o=[Om2 0],V=[12 2 1] v=[12 2 1] v=[12 2 1]

Table 1.2. Solutions for cases D and E

1.3 Timed hybrid Petri nets

A marked autonomous hybrid Petri net (HPN) [David,2010] can be defined as a 6-uple R =<

P,T,Pre.Post_,M0,h >; h: P uT -*■ {D, C), called "hybrid function", indicates for every node

whether it is a discrete node (sets P° and 1°) or a continuous one (sets Pc and 7°); and Mo: P -> R~

or N is the initial marking.

In the definitions ofPre, Post, andMu, its domain depends ofthe kind node ofnode, N corresponds

to the case where Pi <= P°, and Q+ or R+ corresponds to the case where P¡ e Pc. Pre and Post

functions must meet the following criterion: if P¡ and 7} are such that P¡ e P° and T¡ e 1C, then

Pre(Pi.T¡)
=

Post(Pi.TJ must be verified. The enabling condition for the proper evolution ofthe HPN

is defined for each kind of transition: A discrete transition in a HPN is enabled if each inning place

P.toTj has the following condition: m, > Pre(P,,T_); a continuous transition in a HPN is enabled if

each inning place P, to T, has the following condition: m, >Pre(P„Tj), ifP, eP°; and ifP, e/^.the

enabling conditions described in section 1 .2 for TCPN are applied.

A timed HPN (THPN) is a pair (R, lempo) where:

• R is a marked HPN.

• lempo is a function from the set T of transitions to the set of positive or zero rational

numbers

o if Tj e J°, dj = tempofTj
=

timing associated with Tf,

o HT1e1c,U,= lYtempoíTj
= flow rate associated with T¡.

The fundamenta] equation to evolve marking ofa THPN is the same than that for a TCPN in which

vector entries elements mk+1. mk may be positive real or integer numbers, and W may have rational

or integer numbers (It depends if elements are continuous or discrete). In a more explicit way the

fundamental equation for a THPN can be rewritten as:

8

Where 0£t¡ £t2, and tpt is the vector whose components correspond to the number of firings of

each discrete transition from time 0 to time t, and V(u) is the vector whose components correspond

to the instantaneous firing speed for continuous transitions.

For the calculus ofthe instantaneous firing speed, first it is necessary to obtain the maximal firing

speed (V¡). It is the product ofthe flow rate by the D-enabling degree: V¡
=

U¡ D(Tj, m), where

D(Tj,m)= min
\ 1 J

P.tz'TjCXP» Pre(PitTj)

1.4. Linear constraints to represent continuous and discrete events

When we analyze the behavior of a system, the objective is to find the simplest model; for this

purpose linear models are often used because they are easier to solve. However, many systems can

exhibit complex behaviors and the use of real variables is not enough for representing such behaviors;

in this case expressions including binary variables allow representing non linear situation as linear,

At a first look, this artífice makes appear the problem as non linear; but there exist powerful

algorithms based in linear programming techniques to solve this kind of problems.

In order to compute the behavior ofa TCPN, it is necessary to calcúlate the ifs; these velocities are

constant for periods of time, but they may change abruptly due to changes in the marking of places;

these jumps make the system non linear. Additionally, other important issue in TCPN is computing

ifs for transitions involved in a structural conflict. Every conflict has a policy resolution (sharing or

priorities), then solving the conflict requires including in the model some conditional expressions (if-

then).

The basic non-linear statements used in this work, transformed to linear constraints are listed

below. For more details the reader can consult [William, 1999], [Glover, 1975], [Floudas,2004] or

[Bemporad,1999].

Nonlinear Is equivalent to

Wh (\) Aa + A2 > 1

yi
=

y2
■

ys (2) \log2(.Max (y2))l

y3
= Y. 2Í'A¡

i=0

Vi
= k

■

yi (3) y-i
< Max(y2)

■

K_

(4) y_>Min(y2)-?i_

(V yi<y2-Min(y2)-(\-Xí)

(6) yi
> y2

~ Max(y2)
■

(1
-

A-J

fri = z-JVLy-t = x2]

•V[y1=xn]

0) -A
yi

=

2/f'A-

2> =1

1=1

[yi < o] -» [xt = i] (9) ftÍi + («*lW-i)'í.

Where Min(y¡) <y* <Afouc(yt)

y*,x(e K

A*e{0,l}

Table 1.3. Logic statements expressed in linea i constraints

1.5 Sensor networks

A generic model [Anastasi,2009] for Sensor Networks (Figure 1 -4(a)) consists of sensing devices

distributed in a wide area, which are interconnected and coordinate together for transmitting sensor

data to a sink node (or base station) that will produce meaningful information. Sensor networks are

usually composed of a large number ofwireless identical sensors; this characteristic facilitates the

design, analysis, and operation of this kind of systems. A basic sensor node (Figure 1.4(b)) is

composed by five main components [Holger,2005]:

• A processor unit to process all the relevant data.

• Some memory to store programs and intermediate data.

• Sensors and actuators, which are the actual interface to the physical world: devices that

can observe or control physical parameters ofthe environment.

• A communication device for sending and receiving information over a wireless channel.

Usually these modes opérate in a mutual exclusión way.

• Usually no tethered power supply is available; some form of batteries is necessary to

provide energy. Sometimes, recharging capabilities allows obtaining energy from the

environment (e.g. solar cells).

Senso- Networt-

Sensor Node

Communication

Device

Sensor/

Actuator

Processor

Unit
Memory

'

la) Sensor network

Figure 1.4. Sensors

(b) Sensor node

Each of these components has to opérate balancing the trade-off between the reduction of energy

consumption as possible and the need to achieve their tasks. Energy consumption of a sensor node

must be tightly controlled. The battery has small capacity and recharging by energy scavenging is

complicated and volatile.

10

The crucial observation for proper operation is that most of the time a wireless sensor node has

nothing to do. Henee, it is best to turn it off. Therefore, completely turning offa node is not possible,

but rather, its operational state can be adapted to the tasks at hand. Introducing and using múltiple

states of operation with reduced energy consumption in return for reduced functionality is the core

technique for energy-efficient wireless sensor node.

The main task ofa sensor node is to sense information and transmit it to a sink node. In order to

accomplish this task, one solution possible can be for each node to transmit its data directly to the

sink node. However, ifthe network is deployed in a wide región, this one hop transmission is costly

and nodes die very quickly. Another approach is to use multi-hop forwarding. In the common multi

hop configuration, sensor nodes form a routing tree, each node forwards data of its own and its

children to hs parent in the tree.

11

Chapter 2

Agent architectures and behavioral analysis of

Petri nets

Abstract. In this chapter is presented the background and the motivation for the research addressed

in this thesis. First some important agent-based system architectures in Section 2.1 is revised; this

works correspond to the related work for proposals from Chapter 3 and Chapter 4. Section 1.2

mentions the most important works related to the proposal presented in Chapter 5 and an algorithmic

approach for the simulation ofTCPN is the reference for Chapter 6.

12

2.1. Agent-Based architectures

There are several proposals for agent-base systems architectures. Three approaches are addressed:

Agents as intentional systems, agents as abstract machines and agents as dynamical systems.
All of

them proposes a way to model internally an agent and how interact with the environment and other

agents.

2 1.1.Agents as ntentional systems

In this approach, agents are endowed with: beliefs, desires, and intentions (BDI). Its behavior is

predicted and explained through these mental states. Three ofthe most important works in this are

described in the following lines.

[Ingrand, 1992] presents a generic architecture: the Procedural Reasoning System (PRS). It consists

ofa datábase containing the systems current beliefs about the world, a set of current goals, a library

ofplans or procedures (Sequences of actions) and an intention structure (Plans chosen for execution

at run time).

In proposal [Bratman, 1998] a high-level specification ofthe practical-reasoning component for a

resource-bounded rational agent is presented. This architecture has four key symbolic data structures:

a plan library, and explicit representations of beliefs, desires, and intentions. Additionally, the

architecture has: a reasoner, for reasoning about the world; a means-ends analyzer, for determining

which plans might be used to achieve the agent's intentions; an opportunity analyzer, which monitors

the environment in order to determine further options for the agent; a filtering process; and a

deliberation process.

The proposal [Fisher, 1996] called INTERRAP, combines the BDI style and a layered architecture.

It models the agent's ability to interact, react, deliver and cooperate (With other agents). INTERRAP

describes an agent by its world's interface, control unit and a knowledge base.

2 1.2.Agents as aostract machines

In proposal [Feber,1996] a general theory of action in networked agent systems not based on

agent's mental states ís presented. It relies on a clear distinction between influences, which are

produced by agents' behavior, and the reaction ofthe environment. This theory describes complex

interactions between situated agents. It provides specific tupies and functions to describe and evolve

the internal state ofan agent and a networked agent system.

In work [Yu,2006] an ADL (Architecture Description Language) for a multi-agent system

(ADLMAS) is proposed. It adopts Object-Oriented Petri nets (OPN) as a formal theory basis.

ADLMAS can visually and intuitively depict a formal framework for networked agent systems from

the agent level and society level, describe the static and dynamic semantics, and analyze, simúlate

13

and validate networked agent system and interactions among agents with formal methods. It studies

a networked agent system from the point ofview of software architecture.

In [Coleri,2002] a modelling methodology for a sensor network is proposed. They present how to

model TinyOS (Event-based operating system for sensors) through a hybrid autómata. Once an agent

is modeled, some properties like the reachability problem can be verified using HyTech (a tool for

the automated analysis of embedded systems). A simulation ofa sensor network is provided and an

energy conservation analysis over this example.

V 1.3.Agents As dynamical systems

In proposal [Bos,1999] a networked agent system is seen as a collection of distributed control

system or decisión makers operating on a dynamic system. A visual scheme and generic equations

are proposed to describe the internal agent state and its communication with other agents.

In [Bosse,2007] is presented and integrative approach to simúlate and analyze complex systems

integrating quantitative, numerical and qualitative logical aspects within one expressive temporal

specification language: Leadsto. Also, it proposes techniques for analysis ofhybrid systems.

HICA [Fregene,2001] combines concepts from hybrid control and networked agent systems to

build agents which are especially suitable for multimode control purposes, applicable to diverse

domains. The HICA agent essentially consist of an intelligent agent built around a hybrid control

system core which is intended to provide a 'bare-bones' structure to facilitate controller synthesis.

The HICA agent combines deliberative planning/coordination with reactivity.

In [Negenborn,2006] a networked agent model predictive control for transportation networks like

road traffic networks, power distribution networks orwater distribution networks is presented. These

transportation networks are considered at a generic level, at which commodity is brought into the

network at sources, flows over links to sinks, and is influenced in its way of flowing by elements

inside the network. This work considers both continuous and discrete elements, as control goals

includes avoiding congestión of links, minimizing costs of control actions, maximizing throughput,

etc.

JJ.l &. Discussion and proposals

The most part of these works are generic tools to be used in a wide range of applications

[Ingrand,1992], [Bratman, 1998], [Fisher, 1996], [Feber,1996], [Yu,2006], [Bos,1999], [Bosse,2007]

and [Fregene,2001]. They can be seen as descriptive ways to formally specify an agent's internal state

and their interrelationships with other agents and its environment. Modeling is their primary

objective, some of them go beyond and present simulations through an example.

14

The first proposal of this thesis (Chapter 4) takes inspiration of the works [Ingrand,1992],

[Bratman, 1998] and [Fisher,1996] in the sense ofpresent in a modular way, the internal stmcture of

an agent The modeling framework proposed differs from these works in (he representation ofthe

evolution ofan agent; it is not based in logic aspects as in them, its evolution is established through

generic functions to express continuous and discrete events.

Trying to find a way to speciiy formally these generic functions (second proposal Chapter 4),

several works regarding Id represent an agent with continuous and discrete dynamics where study:

[Feber,1996], [Yu¿006], [Bos,1999], [Bosse,2007], [Fregene,20011, [Coleri, 2002] and

[Negenbom¿006].

Formalism like [Feber,1996] introduce its own abstract machines, and [Yu¿006] uses the

formalism of Petri nets. The advantages of use a proprietary formalism is that they can be more

suitable to the problem, and tools like Petri nets are necessary to extend and adapt; but some previews

studies in these nets, allows further analysis and simulation.

Works like [Bos,1999], [Bosse.2007] and [Fregene,2001] allows to specify an agent as a set of

variables evolving through differential equations, in the sameway as the formalism ofPetri nets there

is interesting theory to introduce analysts techniques in the networked agent systems. Works like

[Cokri¿002] and [Negenborn^2006] are completely focused in address a specific problem; the first

one analyzes energy consumption and the other one controls the flow between agents. In particular

[Negenbora^006] ifs an interesting work; here rhe hybrid dynamic of each agent is modeled with

mixed linear integer programming The behavior of a THPN, formalism taken for the second

proposal; it is govemed by discrete and continuous events and calcúlate the evolution ofthese events

is not an easy tek. The third proposal starts here, as a way to characterize this net's behavior. The

developed work has been in TCPN, the continuous part ofthe net Focused in Ihis line, the following

section presents several works regarding this.

2.2 Aigorithris and ¡T.st'-¡emaí¡c3¡ formulations to describe TCPN's behavior

2 2.1 JJ-oeea cacu at or algor.thms

In [DavidL^Ol 0] five algorithms of speed calculation for one IB-state are presented, which serve

as an algorithmic tool for TCPN simulation. The calculation ofthe ifs must be performed by solving

a linear programming problem (LPP) in each IB-state. The set of constraints for the LPP depends on

ifthe net has or has not conflicts.

The constraints in the LPP are ihe following:

• Cl. Speed limits. mfa

15

• C2. Non-negative balances. For empty places their marking must not be negative, so the

output flow must be equal or less than the input flow.

• C3. Transitions whose instantaneous speed is zero and surely firable transitions. Some

weakly enabled transitions may not be fired because all its input places could not receive

flow, so the firing velocity for these transitions must be set to zero. In nets whh structural

conflicts, in order to obtain this information it is required to solve several times a LPP. This

restriction is needed as mentioned before in Section 1.2.3, Case E.l.

Solving the LPP implies maximizeYr¡er vj given C1,C2 and C3.

Ifthe net has not conflicts, then the set of constraints is obtained with Algorithm 1 (See below).

The following four algorithms require several passages (several computations of a LPP) in order to

obtain the ifa. All the algorithms receive as input data the incidence matrix, the mfa, and ihe marking

at the beginning of the IB-state. For TCPN with conflicts is necessary to provide the conflict

resolution rule. The output ofeach algorithm is a vector containing the ifa.

The general characteristics are summarized in Algorithms 1-5. Also an additional iterative

algorithm is used to obtain the information for all IB-states. At the beginning, this algorithm divide

the complete net according to some rules and the ifa of each subnet is calculated by one of the 5

algorithms according to its structure and conflict resolution ifthe subnet requires it

Algorithm I: Finding ifa in TCPN without structural conflicts

Input: W, mfa, M0

Output: ifs

1 . Determine C3 for not firable transitions according to the flow propagation through the net according
to the current marking.

2. Solve the LPP.

Algorithm 2: Finding ij\ in TCPN «ith structural conflicts solved by priorities

Input: W, mfa, M0, conflict resolution

Output: ifs

1. Determine C3 for not firable transitions in several passages based on the priority resolution rule

established.

2. In each passage solve a LPP to determine if a transition with less priority can be fired in the next

passage.

Algorithm 3: Finding//»; in TCPN «ith one structural conflict of two transitions solved b> sharing

Input: W, mfa, M0, conflict resolution

16

Output: ifa

1 . In a sharing between two transitions Ti and T2, speed vectors are calculated successively assuming
that TrgTj and later assuming that T2<T|.

Algorithm 4: Finding ifa in TCPN with structural conflicts and without a circuit solved by sharing

Input: W, mfa, M0, conflict resolution

Output: ifa

1. With this kind of stmcture it is possible to calcúlate the speeds dividing the net in three subnets:

transitions and place in conflict, the upstream subnet from the transitions in the conflict and the

downstream subnet from the transitions in the conflict.

2. First, the ifs for the upstream subnet is calculated, then the ifa for the transitions in the conflict, and

finally the ifs fbr the transitions in downstream net. For the upstream and downstream subnets any

previous algorithm can be used. And for the transitions in the conflict a procedure iterative is given
to share the input flow between the transitions in the conflict.

Algorithm 5: Finding ifa in TCPN with structural conflicts solved by sharing and priorities

Input: W, mfa, M0, conflict resolution

Output: ifa

I. Each net is divided into groups (subnets). The ifa of each group are calculated separately using any
ofthe previous algorithms.

2.2.2. First order hybrid Detn nets

First-Order Hybrid Petri Net (FOHPN) is a formalism very similar to Timed Hybrid Petri Nets in

which the continuous part dynamics is piecewise constant like in TCPN. However it has two slightly

differences: a) it is used mainly to solve some optimization problems, by allowing the transitions to

take valúes between an interval to compute the ifa. b) the continuous part ofthe net is only disabled

by the discrete part.

2.2.2.1. Con tro Iling FOHPN

In [Dotoli,2008] and [Balduzzi,2000] several linear programming models are proposed to control

the continuous part of the FOHPN when it has a fixed discrete marking (Operational mode). The

authors provide a technique to maximize flows in the continuous transitions and minimize stored

flows in the places; several examples for the manufacturing area are presented. In this work the

solution found is a piecewise optimal solution. When there are conflicts in the net a more general

schema than the resolution established in [David,2010] is proposed; furthermore the optimization

function itselfgives the policy used en each IB-state.

2.2.2.2. FOHPN Decomposition technique

In [Nishi,2009] a general decomposition method for transition firing sequence problems in FOHPN

is proposed. The dynamics ofthe net is formulated as a MLIP problem, and this problem is solved

17

with a decomposition method. Regarding the modelling there are two interesting features: a) the

complete behavior is represented through linear equations, and b) the time in the model evolves in

fixed discrete time intervals; usually a small valué is chosen. At the end of this stage the obtained

results, the marking evolution and the firing speeds, are numerous, and an additional procedure is

necessary to identify each IB-state. This MLIP is used to optimize time to reach a desired marking.

2.2. 3 TCPN Event-Driven control

In [Julvez,2004] a strategy to control a TCPN as an event-driven mixed logical dynamical system

is proposed. The main difference with the preview work (besides ofthe kind ofnets) is fhat the time

evolution is driven by the occurrence ofevents in the TCPN; this reduces the number of steps to reach

an optimal sequence. Also this work presents several optimization criterions, for example time to

reach a desired marking and throughput maximization. When there are structural conflicts

(<{Pc}.{Ti,T2}>) in the net the resolution policy is equal sharing([Ti,T2]). For this case an example

with two transitions is presented.

_ I.-.D;scxss¡on and prcoosai

In Table 2.1 a brief summary ofthe works described before as well as our proposal is presented.

Related Work Objective Solution Optimization
criteria

Time

Modeling

Class of
net

Policy
Resolution

[David.2010] Compute ifs,

marking, IB-

state

duration

LPP TCPN Priorities (Any

structure)

Sharing (2
transitions any

structure, 2 or

more transitions

with a structure

without a

circuit)

[Dotoli,2008] Optimization
in each IB-

state.

LPP Optimal time,

throughput,
maximize

flows

FOHPN Ruled by the

optimization
function

[Nishi,2009] Global

Optimization

MLIP Optimal time Discrete-

Time

FOHPN Ruled by the

optimization
function

[Julvez¿004] Global

Optimization

MLIP Optimal time,

throughput,

steady state

Continuous-

Time

TCPN Equal sharing

Proposal Compute ifa,

marking, IB-

state

duration

MLIP Continuous-

Time

TCPN Priorities

(Simple Petri

nets)

Sharing (Simple
Petri nets)

Table 2.1. Comparative: Related work and proposal

Most ofthe related works do not include a fixed policy resolutionwhen there is a structural conflict,

with the exception of [Julvez,2004] where the considered policy is equal sharing for two transitions

18

ín conflict; however the situations in whkh there exist more than two transitions, such as the case C

analyzed in Section 1 .2.2, are not addressed.

The proposal described in Chapter 5 presents a method for computing firing speed, the marking

and the IB-state duration in TCPN. It addresses awiderclass ofconflict resolution policies than those

handled in related works. Structurally these petri nets can be simple petri nets, ín which each transition

may be involved in at most one conflict Both sharing and priorities policies involving any number

of transitions are dealt. Although this proposal has common features whh works described above,

such as the use of MLIP and time management, the proposed method copes with more general

structures that include conflict resolution policies. Furthermore, the method allows the systematic

statement ofthe MILP.

19

Chapter 3

Modeling framework for networked agent

SYSTEMS

Abstract In this chapter a general architecture [Gudiño-Mendoza,2011] for a subclass of

networked agent systems is presented. First, properties ofthe modeled system are presented. Then

the general structure of an agent is defined as well as the structure of the multi-agent system.

Furthermore the agent internal architecture and its internal state representation are presented. Later

communication between agents is described. And finally, a case study illustrates Ihe proposed

schemes.

20

3.1. Properties of the system

The proposed architecture is amultipurpose agent system, which is amodular representation
where

the dynamics ofeach entity ofthe system is represented by the interaction of continuous and discrete

variables [Gudiño-Mendoza,201 1]. Some relevant properties represented by the architecture are:

• Closed system; it is not possible to introduce additional agents. The number of agents is

fixed.

• The topology is fixed; each agent knows its neighbors all the time.

• The communication between the agents is one-hop nearest neighbors and bidirectional.

• Each agent in the system is an autonomous agent with computation, actuation, sensing,

and communication capabilities.

• No agent is controlled by another one.

3.2. General structure of an agent and a networked agent system

An agent A, can be defined as a 3-tuple <Pi,EI¡,Si>. Where:

• P¡ is the vector of perceptions; the messages received from others agents and the signals

received from the environment are mapped into this vector, P¡
=

[P¡d \ P¡cJ, where PídQ)

e N and P¡c(j) e K.

• EL is the vector ofexternal information; each agent maintains and evolves the information

perceived through this vector, this information contains the outside agent's perception, EL

=

[EIíd | EIíc], where ELdQ) e N and EI¡cO) ■*■- K*

• Si is the vector state ofthe agent; it contains all the basic internal variables to describe the

agent, S¡
=

[SiD \ Se], where SiD(j) e N and S¡c(j) e E.

The networked agent system can be described as a directed graph G
=

(A, E}. Where:

A =

{Ai, A2, A¡, ..J is the set of agents in the system.

E crA xA defines the topology ofthe agent network. The pair (A¡, Aj) e E ifthe agent A¡ can

receive information from the agentA,.

3.3. Agent internal architecture

From an external point ofview, the agent processes information coming from sensors and messages

sent from other agents; then it produces actions that may affect the environment and sends messages

to other networked agents. The scheme of Figure 3.1 describes the main components of an

autonomous agent and their relationships. Every module performs a key function in the behavior of

the agent.

21

El.

1+

Evolution

Rules fot

El

Sensors

/Messages^ I ¡rf™"»««

Evolution

Rules for

S

f*1

Perception
Function

Comunica tion

Function

Actuators/

Metessages

Figure 3.1. Agent Architecture

Environment Information. This repository stores the information received from other agents or

from sensors. The perceived information is local; the agent cannot know the overall system state.

Perception Function. This module maps the information stored in Environment Information into a

hybrid vector P

Evolution Rulesfor El (External Information). This module contains a set of rules to update the

visión that the agent has from the outside.

Evolution Rulesfor S (Agent's state). This module performs the evolution ofthe agent's state S.

The state is influenced by the hybrid vectors El', P, and the current state S. These rules and the

Evolution RulesforEl are fixed; they do not change during the evolution ofthe system.

Communication Function. This function performs pertinent actions on the environment and/or

sends messages to other agents according to valúes ofthe hybrid vectors IE ', S, and P.

The interaction between the modules is performed as follows. An agent can receive information

from outside through sensors or messages. This information is stored in the repository Environment

Information. Through Perception Function, the received perceptions are mapped in a vector named

P, allowing translating the received information into continuous and discrete variables.

The module Evolution Rules for El, takes as input current valúes in El, S and P to evolve the vector

El to El'. According to the new valúes in El' and the current valúes of S, the state evolves to S'

through Evolution Rules for S. In this new state, actions and messages can be sent to the outside

though the Communication Function module Agent internal state representation

State representation and updating is an important feature for the agent operation exhibiting

intelligent behavior, since most ofthe decisión making functions are based on agent's state.

22

In general, the state evolves according to the dynamics ofthe diverse internal behaviors represented

for achieving the assigned tasks. It can be viewed as a state equation in which a complex function/

= Ifüfocfcofc] computes the next state:

\fD(EID,SD,PD)-\
focíElSP)

fCD(EI,S,P)
S =

$cd'

Sc' _fc(EIc,Sc,Pc)\

fü : Represents the puré discrete dynamic ofthe agent. Fd ■' EId x Sd x Pd -> Sd. Sd(¡) ■= N.

Fdc: Represents the discrete dynamic ofthe agent influenced by continuous and discrete variables.

Fdc:EI*S*P-> Sdc. Sdc(¡) e N.

Fcd: Represents the continuous dynamic of the agent influenced by continuous and discrete

variables. Fcd: EI*SxP^SCd. SCd(¡) e R.

Fc: Represents the puré continuous dynamic ofthe agent. Fc : Ele x Sc * Pc-) So Sc(j) e R-

Figure 3.2 presents in more detail the module Evolution Rulesfor S, showed in Figure 3. 1 . In this

module the agent state is evolved. El', S and P are the inputs to the module. Each vector is

decomposed in its continuous and discrete parts. All the discrete parts (Vd) are evaluated in the

function/£> to produce the discrete part oíS'(Sd ")• Pre is a verification vector ofthe discrete elements

and Post is an output vector ofthe discrete elements. With the function fac evolves all the discrete

states Sdc, influenced by the continuous and discrete variables (Vc, Vd). Pre verifies the discrete part

and EVc evaluates the continuous elements to produce g, a continuous function to specify the behavior

ofthe continuous part.

cr__

F
L .

Vd
- fo= Post, lf Pre (VD)is verified

Sq, otherwise

>«

Vo,

i __i

v<
,
foc= Post, ¡f(Pre(VD)AEvc(Vc))

S^ otherwise

So'
"

S^'

s — *

Sd
K

Hl

•'DC

Sc

¡V
1

,£■ Ico- g(Vcv). if(Pre(VD)AEvc(Vc))

SCD, otherwise

p
— *

Pd
a****—•

v.

fc= jh(Vd
Pc

1 >

[

Figure 3.2. Module Evolution Rules for S

23

fcD updates Seo, continuous part influenced by the continuous and discrete variables (Vc, Vd).

Finally,/t ¡s a continuous function to evolve the puré continuous part ofthe state Sc-

3.4. Interfacing

A message sent between the agents can be specified by a 4-tuple <A¡,Aj,TM,SI> where:

• A, is the agent who transmits the message and A¡ is the agent who receives the message,

both Ai, Aj e A.

• TM e {0, 1 } ; where 0 means agent A¡ request a task from agent A¡, and 1 means that agent

Ai informs an status to agent A¡.

• SI is a vector containing the information sent, SI=[SId, SIcJ, where Sh(j) e N and SIcQ)

e W\.

3.5. A case study

In this section an illustrative example related to a sensor network application is dealt. This example

is based on that presented in [Franceschelli,2011]. The purpose is to solve the consensus on the

average valué measured by agents in a sensor network through a gossip algorithm based on broadcast.

The network topology is fixed, thus each node knows its out-degree at any time. Each node can be

then either transmitting information, receiving information, or in an idle state during the process of

computing the average ofthe sensed valué of sensors.

The network operates iteratively as follows:

• One transmitter node I is chosen randomly and it broadcasts its state valué Sx¡(f) to

all neighbor nodes to whom agent I is able to communicate. Also, it broadcasts a

valué Szi(t) and the number ofall nodes that receive information from node I (80Ut,¡).

The transmitter node I does not change its valué of Sx¡(f) while it resets to 0 the

companion variable Sz¡(t).

• The receiver nodey update their Sxj(t) by computing the average between their own

valué and the received state valué. Furthermore, it correets its updated valué by a

fraction of their companion variable Sz¡(f) by adding up several terms, designed to

preserve the average ofthe network at each iteration while converging to the average

ofthe initial measurements.

• For the idle nodes that neither transmit ñor receive information, both variables Sx

and Sz remain unchanged.

Besides the previous specification we consider an additional feature: the battery level of each node

is computed as a function ofthe agent activity (messages transmitted and received).

24

Now we can define a model for the system based on the proposed framework. Two kinds of basic

agents are defined, one to model the transmitter, receiver, and idle nodes (Agent A), and other to

choose the transmitter node (Agent B).

AgentA has the vectors: Perception (Pa), External Information (Eh) and State (Sa). These elements

are shown in Table 3.1. In the perception vector Pa, the discrete variables are: Pb, Pe¡ and Pa.

Vector Variable Domain Description

Pa

Pb {0,1} Perform Broadcast

Pe, {0,1,2} Status ofAgent 1

{0,1,2}

Pe„ {0,1,2} Status ofAgent n

Pa Pa e E Transmitter agent's index

Px E Sxra valué

Pd E SzrJAgent Pa outdegree

EIa

Eid 01(/J) 6 E} Neighbors of agent

Eiei {0,1,2} Status of agent 1 e Eid

{0,1,2}

Eie„ {0,1,2} Status of agent n e Eid

Sa

Sx E Sensed valué (Average)
Sz E Companion variable

Sb E Agent's Battery

Table 3.1. Vectors for Agent A

• Pb indicates ifthe agent is a transmitter node (it will emit the broadcast).

• Pe¡ indicates the received status of agent y; agents./ are all the receiver nodes to whom

agent / is able to communicate. For this variable: 0 means that the agent j has not executed

the calculation, 1 means that the agentj has performed the calculation, and 2 means that

agenty is out of battery.

• Pa is the index ofthe transmitter node, as a reference for the receiver nodes.

• The continuous variables are: Px and Pd; these variables are the sent valúes Sx and Sz/dout,i

from the transmitter to the receivers.

• External information vector EIa has only discrete valúes.

• Eid maintains a list of all its neighbors (It remains unchanged during the execution since

the topology never change).

• Eiej maintains the status of agent,/'. This information is relevant for the transmitter node.

• The state vector Sa is composed by the continuous valúes Sx, Sz, and Sb for the valué of

level battery.

Some status variables like Pe¡ and Eie¡ are not modeled in [Franceschelli, 2011], but they are

necessary to coordinate the behavior of each agent.

Table 3 .2 shows the relationship between the messages and the conditions to genérate the messages

sent by Agent A. The first message is sent by the transmitter to request a calculus and the two

25

following messages are sent by the receivers to indicate their status to the transmitter. The last

message is sent by the transmitter to the Agent B to indicate that all the agents have performed the

computation and a new transmitter can be chosen again.

Message Condition

{ij,Q,{i,SxJSz,\EicH}), Where/ € Eid Pb=\

a/'a.um Pa<>0ASb>0

ÍUVU.I2M Pa<>0/\Sb = 0

{IAUl}} (Eiei
= 1 || £/«?■■= 2) a ... a (Eie„

= 1 1| Eie„
=

2)

Table 3.2. Message Function for Agent A

The vector perception changes according to the received messages. This relation is shown in Table

3.3. The evolution rules for EIA are given in Table 3.4.

Variable Valué Condition

Pb' 1 {B,i,0,{\}}

0 Otherwise

Pe/ V {/,/', l,{v}}

0 Otherwise

Pa' a {a,i,Q,{a_xa,za,da} }
0 Otherwise

xa {a,ifi,{a_xa_za,da) }
0 Otherwise

Pd' zalda {a,i,0,{a_xa_za,da} }
o Otherwise

Iable 3.3. Perception Function for Afient A

Variable Valué

Eid' Eid

Eie¡
'

Pe,

Eie„' Pen

Table 3.4. Evolution of External Information for Agent A

The evolution rules for S are given in Figure 3.3. Observe that the state is continuous, but the

influence is continuous and discrete. The agent's battery level has been expressed as a function (gi)

of its own battery when the agent is receiver, and as a function (&) of its own battery level and Smij

when the agent is the transmitter.

26

El'_

Eid'

t

=JISx
y»

Sk* =J ISx * M/2 * <Sz ft) r- (Pd/2), lf Pb = O a Sb > O

, Otherwise

(Sx-Px)ft + tSzft)+IPdft),lfPb=OrrSb>0

O ,//Po = l a Sb>0

Sz . Otherwise

SilSb)

g¡ISb. ICId'll
O

l/Pb=0 Sb>0

, ¡¡Pb- 1 Sb>0

,
Otherwise

Sx'

Sz'

Sb'

S'

Figure 3.3. F.\olution state for Agent A

Vector Variable Domain Description

Pb Pe A Transmitter agent Status

EIb Eia {/1/e/f} Set of agents system (A)

Sb Sr A Agent chosen randomly to execute broadcast

Table 3.5. Vectors fot* Agent lí

Message Condition

{B,Sr',R,{l}} Pe=\

Table 3.6. Messages function for Agent B

Vector Variable Valué Condition

P¡' Pe
1 {1,B,I,{\}}

0 Othewise

Table 5J. Perception function for Agent B

Vector Variable Valué Condition

S¡' Sr'
Random(Eia) Pe=\

Sr Otherwise

Table 3.8. Evolution State for Agent B

The purpose ofAgent B is to select the transmitter agent. The agent has the vectors shown in Table

3.5. The messages function, perception function, and state evolution are shown in Table 3.6, 3.7 and

3.8 respectively.

27

Chapter 4

modeung networked agent systems using timed

hybrid Petri nets

Abstract. The work presented in this chapter deals with the modelling of networked identical

agents. A framework for modelling this kind of systems specified by timed hybrid Petri nets (THPN)

is presented. The state of an agent, expressed as a set of variables that can be either integer or real

valued are represented in a THPN model, as well as their updating functions. The framework is

illustrated through a case study regarding a sensor network. [Gudiño-Mendoza,2013].

28

4.1. State representation

The networked agent system evolution (mA) can be seen as a THPN where the evolution is

performed by the fundamental equation, where the marking will be the state ofthe system, and the

incidence matrix will establish the inner relations ofeach agent element (WA1) and the communication

between the agents (WR).

flO)

mAt2 = mAn +
'WA1

0

0 0

0 WR

. 0 0 WAn .

According to the agent generic scheme described in Figure 3.2 the agent state evolution (mAt) can

be represented by the following equation:

**t2

mSt2

mElt2

mPt2

,mCf2

mSn

mEItl

mPn

mCtl

♦fflH-IS-l

The marking in each agent represents its own state (mS), its knowledge about environment and

other agents (mEI), and its relations with other agents (mP and mC). The incidence matrix is divided

in two parts: WA' establishes the relation among the elements of the agent itself and WR' its

relationships with other agents. The vector SA' contains the number of firings for discrete transitions

and the firing velocities for continuous transitions; all these transitions are inner part ofthe agent. SR

includes transitions that mark (unmark) places to transmit (receive) information between agents in

communication; also, these transitions can be related with mS or mEI, a required marking for their

firing.

4.2. Sensor networks representation

4.2.1.Generic sensor node representation

The Figure 4.1 shows the THPN model for a sensor node; it represents its basic parts:

Communication (Pl 1-P16, Tl 1-T18), sensor (T6), memory (P7-P10, T9-T10), and battery (Pl, TI

TO). There are also three operational modes (P2-P4). Basically, the memory part is modelled with

two places, one of them controls the capacity of the memory (P8) and the other one the stored

information (P7); this data comes from the sensor (T6) itself or from other sensors (P16, T18). This

component has also a mechanism to transmit onlywhen there is sufficient information in the memory

(P9); similarly when there is enough space in the memory, incoming information is allowed (PÍO).

29

Figure 4.1 State representation for a Sensor node

The communication component is modelled by a mutual exclusión structure through places (Pl 1-

P12). When there is enough information to transmit (Min_Data_T) the sensor can transmit its data

(P13). When the sensor has enough space in the memory (MinMemoryR), it marks place (PÍO)

indicating that it is ready to receive (P 14); places (P 1 5) and (P 1 6) represent the transfer of information

from one sensor to another one.

For this model three basic operational modes are considered: idle, receive, and transmit. The sensor

may switch from one operational mode to another, but this switching has a cost in time and energy

(P5-P6, T4-T5). The battery (Pl) discharges according to the current operational mode (T1-T3) and

also due to the sensing operation (T6). Table 4. 1 shows a summarized description ofthe THPN nodes;

using this notation the state evolution is described in the following section.

Component Nat Description Node Component Nat Description Node

Battery C Battery Pl (Bl) Memory C Memory P7 (MI)
C DischargingJBattery

Transmit Tl

C

Memory Capacity P8 (M2)

30

C Discharging_Battery
Receive T2

D Memory_Ready_
Transmit P9 (M3)

C Discharging Battery
Idle T3

D Memory_Ready_
Receive PÍO (M4)

D Discharge_Battery_
Cost I-T T4 (dl)

D Enab!ing_Memory_

Ready Receive T9

D Discharge_Battery_
Cost I-R T5(d2)

D Enabling_Memory_

Ready Transmit TlO

Sensor D

Sensing T6(d3)

Communication D Enabled_Internal_
Transmission Pll (Cl)

Operational
Mode

D

Idle P2 (Oml)

D Enabled_Intemal_
Reception P12 (C2)

D Transmit P3 (Om2) D Allow Transmit P13 (C3)

D Receive P4 (Om3) D Allow Receive P14 (C4)

D Transition Idle-

Transmit P5(Om4)

C

Transmitted Data P15 (C5)

D Transition Idle-

Receive P6 (Om5)

C

Received Data P16(C6)

D Change Idle-

Transmit 77

D Enabling_Internal_
Transmition TI5

D Changeldle-
Receive TS

D Enabling^Internal_

Reception T16

D Change Transmit

Idle Til

C

Transmiting Data T17

D Change Receive

Idle T12

C Receiving_Data T18

D Stay Transmit

Mode T13

D Stay Receive Mode T14

Table 4.1 Basic set of constraints for a TCPN

The making evolution for the sensor node can be described by the following marking evolution equation:

\ln 1
'

«11

OmXn a-i,,

OmSa Omí„

ma mn

M4a

=

A*M„

Cía Cin

dn "ri

C6,_,
.

C6<1
.

WÁ
wr! WÁ =

Mo = [max
U = \fdt fdr

d = [o 0 0

_B

/di

idi .

10 0 0 0 0

ooooooooo

idi i ts lei l

0 0 0 0 0 0 0 0

-X -X -i -dX -dl -di 0 0 0 0 1 1 0 0 0 0 0 0

0 0 0 0 0 0 -1 -1 0 0 -1 0 0 0 0 0 0 0

0 0 0 10 0 0 0 0 0 0 -1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0-10 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0-1 0 0 1 0 0 0 0 0 0 0 0 -1 1

0 0 0 0 0 1 0 0 0 0 0 0 n 0 0 0 1 -1

0 0 0 0 0 -1 0 0 0 0 WR' =
1 0 i 0 -1 0 0 0

0 0 0 0 0 0 0 0 -1 1 0 1 0 1 0 -10 0

0 0 0 0 0 0 0 0 1 -1 -1 -i 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 -

1 0 1 0 1 0 0

0 0 0 0 0 0 0 0 0 0
I

0

0

-1

1

0

0 -1

0

0 0 0

1 0 0

max_M 0 1 0 0 0 0 c ol
0

0

0

0

0

0

0

0

0

0

0 1 0

0 0-1

0 0 0 0 fl fr\

lei_r lm_r tm_l lct_i tcrJt 0 0 tei_t tei_r 0 ü]

In the initial markingMo,maxB and max_Mdefine respectively the maximal battery and maximal

memory capacity for the sensor node.

S contains a count ofthe number of firings from Tl to T2 and the firing velocity for continuous

transitions; for this net the discrete places only can have at most one mark, so D-enabling degree

always will be 1 or 0; thus, the maximal firing speed for continuous transitions is zero or the flow rate

31

associated with Tj. The flows fdt, fdr, and fdi are the battery discharging flows corresponding

respectively to the states transmit, receive, and idle; ñawsft andyi1, are the flows to receive or transmit

data. The vector d represents the delays associated to discrete transitions, especially ts, denotes the

testing frequency for the sensor node.

32

Chapter 5

Computing the switching dynamic behavior of

TCPN using MLIP

Abstract. The behavior of timed continuous Petri nets (TCPN) can be ruled by linear equations

during certain time elapses (IB-states), but changes in the marking and conflict solving policies make

non linear the complete computation ofthe behavior. In this chapter the switching behavior ofTCPN

is analyzed through Mixed Linear Integer Programming (MLIP); basic constraints sets for TCPN

without conflicts and with structural conflicts are considered, as well as cyclic structures.

33

5.1. Characterization of the behavior of a TCPN

The MILP is stated according to parameters issued from the following data: Incidence matrix (W),

initial marking (Mo), mfa (V), máximum time ofcomputation (tQ, minimum (sE) and máximum (bE)

durations for an IB-state, marking upper bound of places (mM), and number of IB-states (K).

The marking upper bound of places (mM) along tC is a necessary information regardless the

boundedness ofthe Petri net. The calculation is performed for a period oftime (tQ. At the beginning,

the number of IB-states is not known although it is at most 2|P|, where |P| is the number of places in

the TCPN. K can be initialized to 2PI. When the computed IB-states have the same ifs vector, they

correspond to an actual IB-state; it is illustrated in Example 2.

The examples presented in this chapter were solved by a PC Í7-2600 3.4Ghz using the CPLEX

12.4 package solver running underMatlab 7.9.0. [Cplex,2013].

5.2 TCPN without structural conflicts

The Table 5.1 describes the first set of constraints in the MILP for analyzing a TCPN without

structural conflicts. Constraints (13), (14), fl 6), and (19) are still nonlinear, in the following section

the transformation to linear constraints is presented. The evolution marking (Yl) is expressed through

the vector fi, (13) those entries represent the flow of every transition in an IB-state k. This bilinear

relation is transformed into a linear one using relations (2) and (3)-(6). The ifs (14) acts as a selector

between all the possible valúes that it may have; it considers the mfa and all the input flows from the

input places to each Tj (15>. Through discrete variables (X) only one valué is selected (li). Ifthe

transition has input unmarked places, then the minimum flow is chosen according to (14) and (15j,

and for the non negative marking in places (22; is used (empty places input flow must be bigger than

or equal to the output flow). If a place is marked then this flow must not be considered (Restriction

(16)). If all the input places to a transition are unmarked and its input flows are equal to zero, then

the transition must not be fired; this is stated with restriction (\1), which considers case D illustrated

in Section 1.2.3. dtk is discretized according to sE (Minimum duration for an BB-state); with this, it is

possible to transform the nonlinear restriction (1 3) into a linear one. Restriction (2 1) is an upper bound

ofthe total duration ofthe results. Finally, the optimization function tries to find the biggest amount

of time for each IB-state.

Evolution marking (Yl) mk+1
=

Tnk + W-fk

Flow ln the interval time k OV fk=vkdtk

Instantaneousfiring speed

Vk
= [Vk,l-Vk,\TÍ\

°4)
vkj

= W¡-X1,kJ,0+ £ Wi,fc,,-.¡

Pfi'Tj

34

ov
¡tJ^Plposmw.Vkih)where

Pre(Pt,Tj)
J

(16; if [m(F() > 0, VP¡ 6 'Tj or °7)
= 0] - [X1Mfl

= 1]

(17; lf [m(P-) - 0 A /, = 0, VP* G T,] -» [vkJ
= 0]

(is;
™

^ ^l.*JA
~ 1

1= 1

Duration oftime k IB-state •T9; rio,7j(i)í/iB)i

Atk = sF £ 2'A2,M
1=0

(IQ) \log2(.bE/sE)]

i=0

Máximum time of

computation

(21;
*

> At* < tC

i=l

s.L (22) 0 < mk < mMax

0<vk<V

mk,vk,AtkelR

A 6 {0,1}

Optimizationfunction (23;
*

Maxf= > At¡

i=l

Table 5.1 Basic set of constraints for a TCPN

The idea of restriction (14; is illustrated in Figure 5.1. All the places are unmarked, which means

that T*j is weakly enabled and Ti T2 and T3 are strongly enabled. The constraints used to calcúlate the

ifs are shown in the Table 5.2. Notice that T1-T3 fire at their maximal speed, thus the firing of T4

depends on the input flow from Pi(Ii=3), P2(h=2) and P3(l3=l) and its own mfa (V4=4); flows 4, 3,

and 2 cannot be chosen because this would cause the marking ofplace P3 become negative (its input

flow is 1), so the selected valué is V4=l.

Figure 5.1. TCPN lo illustrate the basic sel of constraints

35

Constraints

Vl
= 3 •

Ai_q, A-t.o = 1

v2
= 2 ■

A2,o, ¿2,0 = 1

v3
— 1 *

A3i0, A3.0 - 1

v*
= 4*4,0 +■ 3 ■

Aa»,! + 2 •

kt_2 + 1 A4J

A4.O + *4.1 + *4.2 + ^4.3 := 1

Solution

v,=3 v2
= 2,v3 = l,v4 = 1

Table 5.2. Constraints and solution for Figure 5.1

5. 2. i. Linear constraints for ogical and nonlinear restrictions

The bilinear relations (13) and (14) and the logical sentences (16) and (19) are equivalent to the

linear constraints presented in Table 5.3. Variables initialized as AC are additional continuous

variables.

NonUnear constraint Equivalent linear constraints

Flow in the interval time k (13)

fk = vkdtk

(*¡a¡* 'laftCK'al'l

/. = £ aiClu

1*25/ AC1», -'Mat(»,) iuj S 0

(2tV ¿Cl^-sE y, £0

(27J -4Cl,j + jf
■

u,
-

Mojr(F,)
■

(1
-

¿¡ju) < 0

vt e |l.#f)

Instantaneous firing speed (14)

vk.¡
=

^
•

A1Jkj*0 + y /■ •

A^ji
P-6T,

W
>V***-V,**W.+ Y_*CZ___

'<"l

(B) AC2,jj
-

Max(/,)
*

iyjj S 0

f«V /U^-lE-a^SO
(3I> -4C2U, +!£•!,- «01(1,) -(1-aVuJSO

Instantaneous firing speed (16)

i/K.i>0l-> [Aaj*,,*, = 0]

py nv,£ a-aVwj-m*»

Instantaneous firing speed (19)

i/K,¡ = 0 A/* = u.vP-e°7}]
-» K/ = 0]

•rsc, TiCTC, **,e-*, rn****:, /

ite**, ri-*-***,

¿]*»MjS(l--'aja)*(«+-«**««l2]^*Jl
l-> *-i /

2,1uU2(--'».)+««(*5)
PW 4,5(1-14,)/,

Table 5.3 Nonlinear constraint* for a TCP\ without conflicts expressed in linear constraints

The equivalent constraints for (13) and (14) are the same because both contain a binary variable

multiplied by a continuous variable. Chapter 2 can serve as reference for these transformations as

well as for (16).

A strongly enabled transition can be fired at its mfa because of (1 6) and (1 8). Also these constraints

allow the condition of weakly enabled; but when there is an unmarked cycle, with just these

constraints is not enough. See TCPN for Figure 3(a), Case D, it has only one IB-State where ifs is [0,

0], but without constraint (19), there are two possible solutions [0,0] and [1,1], any ofthem satisfy all

constraints. This is why (19) is necessary.

The transformation of (19) requires some definitions [Desel, 1995]. Let F a flow relation on P U

T, based on the incidence matrix. A circuit of a Petri net is a nonempty sequence X\ ... x-y of nodes

36

which satisfies(x1,x2). (xn-xi) G F and no elements (exceptXj) occurs more than once in it. Let

Cjand C2 the sets containing the elements of two circuits, if Ct £ C2, Ct is called maximal circuit.

Let Tu a transition in a relation Pre(P*TiJ, where P¡ 6 C¡ and Th £ C¡, then Th 6 TCt. Where TQ

represent the set ofall transitions connected to the circuit Cj that eventually could mark it.

In order to establish the transitions whose ifa will be zero, it is necessary to find all the maximal

circuits in the net And for each transition included in a maximal circuit the following clause must be

added:

(39;

PfX__ r,*rrc,

Z 111*.,+ y, »«=° v~v Y, m«+ Z vw=0

.•-eq, TieTC,

Kj = 0\,whereTj 6 C, ,„.,andT¡ € C^

This is equivalent to (19); in other words it means: For each maximal circuit (C1(C2, ... , Cn)

containing transition 7". it is necessary to verify ifthe circuit is unmarked (the term Z-»¡eCl mk_ in (45)),

and if it does not receive any other incoming flow that could mark the circuit (the term Zr-ei-c, vu m

(45)). If this is true for at least one circuit in which T, is involved, then hs ifs must be zero.

Let's see an example. Figure 5.2 shows a TCPN with two maximal circuits Cx = {P-., T2, P2, T3 }

and C2 - {Ps, T4. P4, Ts }, all the places are unmarked and V=[3 3 121]; circuit Cx can be marked by

Tx, so TCa = {Tj). Adding diese constraints to the MILP, the solution shown in Table 5.4 can be

obtained. ln spite ofthe unmarked places in C1? through 7^; vx,v2 and v3 acquire velocity; which

does not occur with vA and vs. C2 is unmarked and it will remain like that.

Constraints Solution

[m, + m2 + i»i
= 0] -» [1% = 0]; [m_ + m2 + v_

= 0] -» _v_,
= 0];

[ms + iu, = 0] -» [v4 = 0]; [ms +m, = 0] -» [vs = 0]
v1
= 3,v2 = 3,173 = 1,1/4 = 0."s = °

Table 5.4 Constrains for Fisure 1 1

Constraint (39) is still nonlinear, it is transformed to the basic constraints shown in Table 5.5.

Constraint (40) associates an additional binary variable to each marking and velocity involved in a

circuit; the results ofdie disjunctions are assigned to other logical variable X__ (4 1); and ¡t only remains

to verify: ifA4 is true then ifs for 7} must be equal to 0 (42).

37

Figure 5.2. TCPN with two maximal circuits

Basic logical sentences Linear constraints

(4o;

Z m(/>w) + Z Vfci
= °

PfiCj T-ETC/

M [-*3.kJ = 1]

(34) and <35)

(4 1; [A3.*.i = 1] v ... v [X3,kj = 1] <-» [A4,k = 1] (36) and (37)

(42) [A4,k = 1] -*. K, = 0] (38)

Table 5.5 Equivalent logical sentences for (39)

5.2.2. Examples

These examples are based on the same structural model without conflicts (Figure 5.3). Its behavior

is stated using the basic constraints (\2)-(22) and the optimization function (23). The information that

represents each IB-state is computed and listed in the Table 5.6: (IB-S) is the number ofthe DB-state,

dt is the duration ofthe IB-state, v is the ifs, and m is the marking at the end ofthe IB-state. The valué

between parenthesis in each case is the time required to compute the results.

Example 1 shows the information ofthe two IB-states covered in 20 units of time. In Example 2,

ATwas increased to show how two consecutive IB-states (1 and 2) have the same ifa; this information

must be interpreted as one IB-state. In Example 3 the initial marking was modified to show what

happen ifthe time of computation cannot be covered by the given number of total IB-states (K); in

38

the last IB-states (In this case is 2) the ifa will be O and the marking will remain the same as in

previous one.

Figure 5.3. Basic TCPN without conflicts

Initial data
Results

IBS At V m

Example I (0.2001 s)

Mo=[6 0 0 0 0 0 10]

V=[3 3 122 1]

tC=20, sE=l, bE=20, mM= 50, K=2

1 6 [221020] [006600 190]

2 14 [1 1 102 01 [006200143301

Example 2 (0.1930 s)

A/o=[6 0 0 0 0 010]

V=[3 3 12 2 1]

tC=20, sE=l, bE=20, mM= 50, K=3

1 1 [2 2 1 0 2 01 [5 0 1 1 0 0 4 01

2 5 [2 2 1 0 2 01 [0 0 6 6 0 0 19 01

3 14 [1 1 102 01 fO 0 6 20 0 14 33 01

Example 3 (0.0470 s)

Me=[Q 0 0 0 0 0 10]

V=[3 3 12 2 1]
tC=20, sE=0.1, bE=20, mM= 50, K=2

1 0.5 [000020] [0 0 0 0 0 1 0 01

2 19.5 [000000] [00000100]

Table 5.6. Several examples for TCPN of Figure 5.3

5.3. TCPN with conflicts

In the following two sections some additional constraints are presented in order to compute the ifa

for transitions in a conflict SC= <Pc, Tc>. The TCPN can have several conflicts in its structure but

only one place can be involved in just one conflict as well as the transitions. This means that for a

TCPN with the following conflicts SCi,SC2, ..., SC, the sets Pc^ D Pc2 ... fl Pcs = 0 and Tq n

Tc2 ... n Tcs = 0.

5.3.1. Resolution by priorities

For a TCPN with a conflict SC= <Pc, Tc> where the conflict is solved by priority (Ti<T2<...<Ts),

constraints (43>(45; replace restriction (14;.

(43)
"*,;

=

vj
"

-*iJ-.o + X Ici
-

h.k,i

P-ST,

f44j ¡Pi í Pci -» [lc, = /,-]

Í45)

[Pi6Pc)-> ict = ¡t
-

2j Vh

T__£Tc and Ti_<T)

Table 5.7. Set of constraints for a TCPN with resolution by priority

The basic idea is illustrated through the example of Figure 5.4. This net has the resolution rule

T2<T3. The constraints that determine the ifs for Ti are (43; and (16;; this valué only depends on the

mfa, there is no place restricting the flow. For transitions T2 and T3 the constraints (43; and (45; are
j

applied. The ifs of T2 (with the highest priority) is computed by considering its maximal speed and

the incoming flow from Pi. The ifa of T3 (with low priority) is computed by considering its own mfa

and the remaining flow in Pi after satisfying V2; thus V3=0.

T1 1

j
i

T2< l T3I l

Figure 5.4. Basic TCPN without conflicts

Constraints Solution

v-i
= 1 •

Ai,o

v2
= 2 •

A2 0 + 1 ■

A2,i

v3
= 1 ■

A3,0 + (J_
-

v2)
■

A31

v_
= l,v2 = \,v_ = 0

Table 5.8. Constraints and solution for Figure 5.4.

5.3.1.1. Examples

For examples 4 and 5 the resolution rule T><T5 is applied (Figure 5 .5). In order to solve this model,

constraints (12), (13;, (\5)-(22), (43)-(45; and optimization function (23) are considered. In Example

4, conformed by only one IB-state, there is not actual conflict; this is because the flow of the two

40

places in conflict is limited by places Pi and P3 respectively. For Example 5, the two possible

behaviors for a transition in conflict are shown. Three parameters have been modified Mo, V and k.

Each IB-state shows different characteristics; the first one with all places marked, all the transitions

go at the mfa; in the second, P3 becomes empty and it makes Ts weakly enabled, then P3 limits the

flow ofTs to vs=2. .Aiter 8 units of time, place P2 becomes empty and the resolution rule is applied;

Ts must reduce its ifa to 1, satisfying first the flow V4=5 for T4.

Tic

T4t T5C

Figure 5.5. TCPN with a conflict resolution by priorities

Initial data
Results

IBS At v «

Example 4 (0.0630 s)

A/o=[0 0 0]

V=[2 62 5 3]

tC=20, sE=l, bE=20, mM= 50, K=l

1 20 [26222] [0 40 0]

Example 5 (0.0310 s)

Mif=[6 10 1]

V=[5 62 5 3]

tC=20, sE=l, bE=20, mM= 50, K=3

1 1 [5 6 2 5 31 [6 8 0]

2 8 [5 6 2 5 21 [6 0 0]
3 11 [5625 1] [6 0 111

Table 5.9. Several examples for Figure 5.5.

5.3.2. Resolten by priorities Jn a cyclic TCPN

These nets are similar to that in case E.2 in Section 1 .2.3 and the calculation of ifa requires some

additional constraints. The idea is based in the iterative Algorithm 2 presented in Section 2.2.1. The

calculation ofthe ifa for one IB-state is performed in several passages 1 = 1,2, ... , s. For a TCPN with

a conflict SC= <Pc, Tc> where it is solved by priority (Ti<T2<...<Ts), s passages will be required.

In the first passage ¿ = 1, all the transitions in the conflict are forced to fire at 0 except Ti (53;, vr >

0, v2
= 0,v3 = 0, ...,vs

= 0. For passage l = 2,v3 = 0,v4 = 0, ..., vs = 0 and so on; in the last

passage l
— sno transition is limited. In each passage, the ifa is computed as for a TCPN with conflicts

solved by priority (46)-(48); an additional variable called balance Bc of the place in conflict Pc is

calculated (49)-(5 1); this valué represents the remaining flow in Pc after the firing all the transitions

in the conflict that are allowed to fire. IfBc >0, then T2 is allowed to fire in the next passage. In each

passage one transition in the conflict having the highest prioritymay be fired (53;, but their ifa always

will be limited by Bc (52). The remaining flow after fire the transitions with the highest priority. The

ifa ofthe last passage will be the ifa ofthe IB-state (55;.

41

r46;

p*eTj_

(V) \Pt € Pci - [/«e, = //l

(«,%)

[P.fPc]--*

r*,ere and 7"*,<7"/

(49; B'c = /lc*-0'c¡

(so; (Zr-.e'P, Post(Pt, Th) -

vk *,)

PU
O'c* = ^ v'h

fuere

(52;
s s

i=2 i=2

f53; Vy > l, vlk¡ = 0

P4j Where 1 = 1,2, ...s

rss; »*./
= vs*./

Table 5.10. Set of constraints for a TCPN with a circuit and resolution by priority

5.3.2.1. Example

Example 6 (Figure 5.5) shows the results ofthe computation ofthe MLIP with constraints (12),

(13;, (16;-(22;, (46>(55; and the optimization function (23). This net has the resolution rule

Ti^T2<T3. In the first two IB-states there is no actual conflict the ifs for the transitions in the conflict

are the mfa. In the IB-state 3 the incoming flow Ii only allows firing Ti at máximum. The last IB-state

vi is restricted to 1 .

Figure 5.6. TCPN with a conflict and a circuí!, resolution rule by priorities

Initial data
Results

IBS At V m

Example 6(0.3280)

Mo=[0 0 2 12]

V=[2 3 1 1 1 5]

1 3 [231115] [3 3 8 01

2 1 [2311111 [0 4 10 01

3 10 [2 0 0 1 1 01 [0 14 0 01

42

tC=20, sE=l, bE=20,

mM= 14, K=4

4 6 [10 0 10 0] [0 14 0 0]

Table 5.1 1. I.vainple for Figure 5.5

5.3.3. Resolution by sharing

In a TCPN with a conflict SC= <Pc, Tc> which is solved by sharing ([a.\Ti, a27í,...< a.r,),

restriction (14; is substituted by (56>(57;. The idea is to characterize the three possible cases

presented in Section 1.2.2. Restriction (56; is in fact the same than (14); it means that for all the

transitions not involved in a conflict the calculation of v¡ remains the same.

W
if (Tj C Tc] -» vkJ

=

V,
•

aw,0 +]T 'i
■

Kkj.i

(S1)
if [T¡ e Tc] - pcvkJ

= V¡
•

Alik,y,0 + JT Ist
■

X1M¡1

&*) (Si-.e-P, PostCPi. T-.) ■

Vfc h)
¡si =

K Th* P'

,

* kAJ
where P, 6 T, and P, =■* Pc

Pre(P_,T_)
'

(S9)

if ¿Vvfc,;á< V [mc > 0] -» [vkJ = pcvfcj]

r6Q) else Ef=1i;,=/e]

(6\) if [vkJ = pcvkJ] -» [3 ahvh > UjVj]

(62) else if [vfc,; < pcvkJ] A [vkJí < pcvk,h] -> [a¡v¡ = ahvh]
where The Tc

Table 5.12. Set of constraints for a TCPN with a circuit and resolution by sharing

In this solution policy it is introduced a new variable called previous calculus of v¡ , pcVj (Sl). It

stores the limit flow ofv,without considering the input flow from the place in conflict (Si). The block

if...then (59)-(62; represents the constraints that must be considered according to some conditions.

As mentioned before, the assignation to v¡ must be restricted differently when one of three cases is

presented:

• There is no actual conflict (Case A from Section 1 .2.2), v¡
=

\ocv¡, (59;

• There is an actual conflict no matter how the input flow Ic is shared among all the transitions

in Tc, the total flow must be assigned to all of them (60), similarly to Cases B and C (Section

1 .2.2). lc = v4 + vs + v6
= 3 . And then:

o If some transition in Tc is restricted by other flow different from Pc, this is because

there exist at least other transition taking more than its corresponding portion. See

Case C.l. [v4 = pcv^] -* [vs > v4],u4 = !__ = 0.5, v5
= 1.25; recall that in this

case a-i
=
a2

=

a3
= 1.

o If there are two transitions in the conflict taking less flow than the previously

calculated, then the portion taking from Ic must be shared according to the resolution

rule. In Case C.l [vs < pcvs] A [v6 < pcv6] -» [a5vs = a6v6],v5 = v6
= 1.25.

43

For case C.3, the constraints apply in the following way: pcv4
+ pcvs + pcv6

= 0.5 + 3-1- 0.4 =

3.9 > lc; so there is an actual conflict, constraints (60; and (6i;
must be considered. T4 and Té cannot

consume its corresponding flow from I2 (the shared place), since both are restricted by other input
*>

places. The restriction (6i; applies for both [v4 = pev*] -* [vs > v4],v4 = /j = 0.5, vs = 2.1

and[v6 = pcv6] -» [vs > v6],v4 = /-*. = 0.4, vs = 2.1; in this case restriction (62) does not apply

because there are not two transitions taking less flow than the previously calculated pev. Restriction

(60; assigns the valué 2.1 to v5.

5.3.4. Linear constraints for ogical restrictions

Table 5.13 summarizes the equivalent constraints for each nonlinear equation presented in the

previous section.

Nonlinear constraint Equivalent linear constraints

No actual conflict (59) av

'»í
-

¿, p™*/ a Min(]£ f**t I '"**«
Tv*

■f 1/ PCVkj ¿ lk.c V [mkx > 0] -» [vkJ = pcvkJ] (M)

r,nc \r,tTc ¡

V* (Cv \ \
Lf=í J I».l

-

2, P"u S -** + 1 ""«1 > P">ki 1 + mM 1 *

(1
-

Vj)
rprc \ \r^rc 1 1

(65) n"*.t*S(l-V,a)*m*1'
(66; ".a(Jtt.-i)-f
(61) ~¿5XI +V./ *s 0

(6%) -í«rH*já»
(69) V./ +*V*

~

V. ■ ^ x

(10) %■ £ pe»*.*

OX) »».i
-

pe»*.* £ -£ + (-li + £)
*

Vl

Actual conflict (60)
else Eí=,v*=/C]

cn.)
Y v,

-

;, -s (1
-

V;)
■ Max (Y x>,

= /,)
t-l \l=í /

(Ti)

j v,
-

;, *> (1 - V;)
■ -Max (Y •>,

= ;c)
Partial rule application (61) ov PCV»J

-

*«./ £ -14
*

V + £
*

(1
-

Va)

ifKj = P^k.j] -* [3 <*hVk,h
> a/Vfc,y]

(75;

06)

P*"ij
-

»».; £ (1
-

Ve)
*

"»
<■■

*

»«
-

«,
*

"», a -»*,
*

V* + £
■

(i
-

U
OV "1

*

»*.l
-

"a
*

»», *S a»,
*

(1
-

V*c)
ov

J]Vj«.aS(SC + l)A1I1J,iI

ov ie

/ .
V^.a a V*.e

(SOJ (1
-

VJ + (1 - Va) + -W« & 1

Rule applicationf'62) (IX) "x
'

"u
-

"p
■

»».•. S (1
-

Va»)
*

M*u*(<r,
*

i*,.,
-

a,
■

i*,,)

else if [vkj < pcvkJ] A [vk_h < pcvkih] -*> [afvkJ =
(S*y

fl»)

"i
*

»».i
-

«,* ■>*, a £ + (M(n(<r, ■

Vn,
-

a,
■

-*„,,,) -

i)
■

Vu,
-a,

■

vu + a,
■

t*», *S (1
-

/W.ü>)
*

M-u-C-r,
■

i*w
-

a,
■

v,,,)

«hVk,k]. where The Tc
(84; -a,

■

i*,., + a,
■

»», a £ + (M¡n(<r, ■

i*,,,
-

or„
■

vM) -

e)
•

A,,,,,,,
(ss; "ü

-

pe"».i S «'"("Y* - pevk.r) ■

Xux, + £(1
-

i,„j)
(86; »u

"

P£"*j S Moz(tu - pev,,,) •

(1
-

A1!JU)
(87; (V^ - 1) + W,2.«.,

-

1) + (V... - 1) + V..i.D a i

Table 5.13 Nonlinear constraints for a TCPN \villi conflicts solved by sharins; expressed as linear
constraints

The constraints are described for TCPN with one conflict SC= <Pc, Tc> which is solved by

sharing ([aiT¡, 00X2, ...< asTs), but it can be easily extended to cases where there is more than one

conflict.

These nonlinear constraints can be translated in two steps:
1 . Associating to each clause an additional logic variable and creating a dependency relation

between these statements.

44

2. Translating these more basic logical relations using Table 4 into linear constraints.

Table 5. 14 summarizes the conversión for constraints (59) and (60). is is true when the input flow

in the place in conflict is not enough to satisfy the flows for all the transitions in the conflict (93); <1¿

is true when the place in conflict is unmarked (94); X? is true when there is an actual conflict (95); v,

will always be at most pc\; (96) whether or not there is a conflict, but when diere is no conflict the

flow chosen must be pev, and this is achieved with constraint (97). Additionally, when there is a

conflict the incoming flow U must be shared among the transitions in the conflict (98).

Bmsic logical sentences Linear constraints

<**)

[*5W=°]

(63) and (64)

fl»; l*c > 0]

[*k*ac = 0] (65) and (66)

(90) [*7j^ = l]"[^,*=l]A[aW = l] (67K69)

<9\) pfcj
<
pcvkJ

W) [A7Xc = Ol ->K, > pcvkJ]

f70) and (71)

(93;

[hx* = 1] £,=,
íi=___

(72) and (73)

Table 5.14 Equivalen! logical sentences for (59) and Í60)

Table 5.15 summarizes the conversión for (61) into logical sentences. In (94) the equality vki =

pcv/ij is associated to a binary variable alg; (95) allows to associate a binary variable for each pair of

transitions in the conflict;Xw=l means there exist at least one \ahvkh > a¡vk_¡\, now only it remains

(97), which means: if there is a conflict (/.-=/) and the transition is taken the flow previously

calculated (vki = pcv¡_j), then there exist at least one transition taking more flow than it is allowed

Basic logical sentences Unear construías

(94; f-W = ll «"» Wx = P<*kj\ (74) and (75)

(95; faja* = ll « ai-vlu-fl-J,-i»kj,<o]-w.*u?r.?7,i *1» (76) and (77)

(96;

[XlOJcjc — lj *~* ^A,^>1
•7=1

(78) and (79)

(97; [A7*x = 1] A [**** = 1] - [WC = lj (80)

Table 5.15 Equivalent logical sentences for (61)

In Table 5.16 it can be found three equivalent logical sentences for (62). In (98) a true valué is

assigned to Xn when the sharing policy applies to two transitions in the conflict In (99) Xn is true

when the ifa for a transition is lower than the previously calculated. Finally, in (100) if there is a

conflict (lr=/) and two transitions are taking less flow than the previously calculated (-1/2=7) then its

flows must accomplish whh the sharing policy established.

45

Basic logical sentences Linear constraints

(98; [huaa = ll ♦+ Wi ■

vk.t
-

«p
•

Vfc,p
= 0];where Tt * Tv (81)-(84)

(99) Ul2.k.l = l] ♦* Kl < PCVfc,¡] (85)(86)

(íoo; [-W = 1] A [A12,fc,, = l] A [A12,fc,p = l] -> [AUifc,,iP = l] (87)

Table 5.16 Equivalen! logical sentences for (62)

5.5.4J. Examples

In the model of Example 7 (Figure 5.7), the set of constraints (12), (13;, (16) -(22;, (56>(62) and

optimization function (23) are considered. The resolution rule [T4.T5.T6] is applied. In the first IB-

state, Ti, T2, and T3 go at their mfa, then Is=9 must be shared among T4, T5 and Té, but there are other

considerations: T4 is limited by k=2 and Ts is limited by its own mfa (V5=l), which causes V4=2 vs=l

and the remaining flow from I5 V6=6; at the end ofthe IB-state P3 becomes zero and Pé has increased

¡ts marking. In the second IB-state, these events disable T3 and the vector ifa for the transitions in the

conflict remain unchanged. In the third IB-state, Pi and Pó become empty, which disables Ti, T3, T4

and Té; only T2 and Ts goes at their mfa. At the beginning ofthe last IB-state only Ps is marked, T5 is

strongly enabled (vs=l), and all the other transitions are disabled; this period ends after 40 time units.

P1y*=-*v P2,-S=***x P3,

Figure 5.7. TCPN with a conflict and resolution by sharing

Initial data
Results

IBS At V nt

Example 7 (0.0780)

Mo=[10 90 30 0 0 0]

V=[2 9 10 3 19]

tC=50, sE=l, bE=50, mM= 90, K=4

1 3 [2 9 10 2 1 6] [4 63 0 0 0 121
2 2 [290216] [0 45 0 0 0 0]

3 5 [0 9 0 0 1 01 [0 0 0 0 40 01

4 40 [000010] [0 0 0 0 0 01

Table 5.17. Example for Figure 5.8

Example 8 (Figure 5.8) deals with a TCPN that includes a circuit in its structure; this case it is not

considered by the algorithms proposed in the related works presented in Section 1.2.3. This is a net

where the resolution ofthe conflict (<{P2},{T*,T5,T6}>) depends on the computation of some other

transitions (Ti,T2,T3) and this calculation, at the same time, depends on the computation ofthe ifa for

the transitions in the conflict. This behavior is calculated using the same set of constraints as in

Example 6. The flow propagation in this net is as follows. At the beginning only P5 is marked at this

46

point, then only T5 can be fired at 4 (its mfa), P,, P2 and P3 are fed, then Tt, T2 and T3 can be fired at

vi=3, v2=4 and v3=3 respectively; now P4 and P6 are fed at 3, allowing the firing ofT4 and T6. Now,

there is not actual conflict T,, T5 and Tfi go at the mfa; with these flows T2 can go at its mfa 6. This

final result it is correctly calculated by the MLIP model. After 1 time unit, P5 becomes empty and

then there is a conflict; the places marked are Pi,P2 and P3, so v,, v2 and v3 go at the mfa, and then the

flow Is must be shared among the transitions in the conflict, thus V4=v5=V6=2. At the end ofthe IB-

state, Pi and P3 become empty and P4 and P6 become marked; so in the following IB-state, the

transitions in the conflict again share the incoming flow I5=6 (v4=V5=v6=2); now Ti and T3 are weakly

enabled, so its ifa depend on 7/ and h respectively, thus vi=v3=2. As it can be noticed the fourth IB-

state presents the same valúes for v and m; this means that the TCPN has reached an equilibrium state.

Initial data
Results

IBS | At | v j m

Example 8(0.3580)

Md=[0 0 0 0 4 0]

V=[3 6 3 3 4 3]

tC=10, sE=l, bE=10, mM= 5, K=4

1 1 [3 63 3 4 31 [1 4 1 0 0 01

2 1 [363222] [040101]
3 6 [262222] [040 10 11
4 2 [262222] [040101]

Table 5.18. F.xample for Figure 5.8

47

Chapter 6

Simulation of networked agent systems models

Abstract. This chapter presents a scheme for executing the model of a networked agent system

modeled as a THPN. It is based on the modeling presented in Chapter 3, 4 and also in the MLIP

solution presented in Chapter 5. At the end, a study case about distributed energy household networks

is presented.

48

6.1. Overview

Modeling a networked agent system as a THPN can result in a huge net; thus performing the

calculation of the ifa for the continuous transitions is a complex task whose computational time

increases exponentiallywith the number ofplaces and transitions.
The herein proposed scheme allows

developing systematically the necessary software to simúlate a networked agent system modeled as

a THPN. This scheme is composed by two main parts; the first one is the computation of ifa for all

possible macro-markings in a THPN, which is implemented in Matlab using the solver Cplex. The

second one is a procedure to compute the agent's IB-states implemented in Java using the

development framework JADE.

This simulation is based on the assumption that all the agents are identical; consequently, the

complete THPN model will result in several identical structures interconnected. Then the calculation

of the ifa can be performed over the THPN model of one agent, and later considering the agent

interactions; thus the number ofequations to solve the state's networked agent system will be reduced.

Several considerations must be taken into account for creating a simpler way to compute the state

ofthe agent's system:

• Referring to the networked agent system:

o The number of agents is fixed

o The agent network topology is known and does not change during the system's operation

o The continuous interactions between agents are performed only in one direction,

meanwhile the discrete interaction can be in both ways

• Regarding the agents:

o They are identical

o In the THPN, the continuous part is ruled by linear equations and the discrete part

enables/disables the continuous part

• and regarding the Petri net:

o The Petri net structure is a simple Petri net, it means that each transition can only be

concerned by one conflict at the most

o The discrete part is 1-bounded

6.2. General description system

This section presents a general description ofthe proposed scheme, starting with the explanation

ofthe main functional units, following with the detailed activities performed by these units, the class

design for the Java part, and a small example to illustrate a particular implementation, where it can

49

be seen from the modeling part, the input information to the system, the generated ifa table for an

agent, and the agent action and interaction
with other agents to perform the simulation.

6.2.1. Functional units

As mentioned before, the general objective ofthe scheme is to perform the simulation ofa THPN

model as a networked agent system; the input data includes only THPN matrix information; then a

csv file with the IB-State information for the complete system is obtained.

The use case diagram from Figure 6.1 shows the main functional units ofthe system. It can be

divided in two main parts: one of them, represented at the leftside, is performed in Matlab

environment (Instantaneous Firing Speed for macro-makings) and the other one in Java (THPN

Simulation).

Its

for mac-o-marVings

THPN Simulation

Figure 6.1. Use case diagram

In order to perform an agent networked system simulation, the modeler can use the methodology

from Chapter 3 and 4 to represent the system as a THPN; this information is uploaded into the

simulation environment. The ifa for macro-markings perform the functions described in Table 6. 1 to

obtain an ifs table, this table contains all the possible ifa for a THPN.

Use Case Description

MLIPP formulation With Pre and Post matrix, Mo, maximal firing speeds V, and policy resolution data

given by the modeler, the system can construct a set of constraints according to the

structural characteristics ofthe net.

Problem solution Using CPLEX solver, the solution from the MLIPP is found.

(/Stable
construction

With the solution given, the ifs table is stored in a csv file.

Table 6.1. Functional units from ifs for macro-markings

50

The simulation of each agent can be performed through a Java program. Table 6.2 describes the

necessary functions to run this simulation.

Use Case Description

Upload information In order to perform a simulation, the following infonnation is needed: ifs table, Pre

and Post (Representing one generic agent), WA =

Pre-Post, WR (incidence matrix that

represents agent communication), dTiming (timing associated to each discrete

transition), Mu (Initial marking), the hybrid function and also the simulation time. This

infonnation is represented in an internal form.

Agent simulation All the necessary agents are created; each one of them is going to perform a part ofthe

simulation for the agent system. At the beginning, all of them receive the same input
infonnation (since they have the same structure), but the initial marking; this can lead

the agents behaving differently, in despite ofbe identical.

Each agent can opérate in two ways according to its operation mode (Leafor no leaf).
In both operation modes they deliver at the end of simulation the IB-state infonnation:

initial marking, ifs, and the IB-state duration dt.

Initial events This process is executed at the beginning for all agents; it performs initial immediate

discrete events.

Leafbehavior This behavior is performed by agents who do not receive input communication; they
can independently obtain its own IB-state information.

No leaf behavior This other behavior is performed by agents receiving input communication. They must

always be listening for changes in the input flows from incoming neighbors.

Table 6.2. Functional linits from THPN simulation

£.2.2. Act-vities step oy step

Figure 6.2 shows the general activity diagram ofthe complete software. This diagram details the

activities and actions performed in each use case described before; the ñame of activities that appear

underlined will be described later. The ifa macro-makings procedure performs the following steps:

reads the input information, represents it in an internal form, creates the necessary information for

each variable in the problem, constructs the equations, solves the problem, and finally the information

is presented to the user in a csv file. For the THPN simulation, after the input information is read, all

the agents are created, each agent perform the simulation of its part, and when all the agents are finish,

the simulation ends, and the IB-state information is obtained.

51

mt macro-markir"O» THPN Simulation

[Not all the

agents have

been killed]

T
Load and rapaeaant

*

intarnally
Pra matrix

Post matrix

WA • Po»t.P>a

WR

ih tabla

dTiming
MO J

t
M

\

Loa-) and repraaent

Intatnally

Pra matrix

Pest matrix

MO

V

polit-y -aaolutton '

[There ¡s no

l l ¡'—i
'

1 ►
r

Craala infonnation for

aach variarla Mama

Typa (eontlnou*-.

diacrate). Uppar bound

t
'

to créate]

/

tagents to créate] , i

1 '

1
r

Créate n*-wAgent with

its aonesponding

atgumentlC-eate equations
[All the agentsT
have been 1

1 i

killed] A
Í)
xf)

' ' ,-

*

C-eate objactiva

fundion

StartAgent

■x '

1 '
AoentSetuo

-

Selve MLIPP

1 '

1f ~x

Store ifi tabla

Figure 6.2. General activity diagram

The activity Agent Setup establishes agent's initializations; the activities performed in this part are

shown in Figure 6.3.

52

Aaent Setup

?
C >

Internally store agent

arguments

V

Set initial valúes:
^

dt=infinite

#¡b**tate=C

abstime*=0

i. Pn neighbors >0]

/s >
ModifyWA according to

WR
•a. i\

r

[No ln neighbors]
V

i '

r ~\

Créate incoming

neighbors ñames

«a- i

-**.

Add Initial events and

leaf behavior
a-

y '

(^
Add Initial events and

no leaf behavior
L

^J *

,
[Out neighbors >0]

<
\

a
Créate outgoing

neighbors ñames/
*

[No out neigbor.M

1 , 1

•
Figure 6.3. Setup Agent activity diagram

When an agent is created, at the beginning, all the information regarding to its THPN is stored in

an internal representation, also the variables dt, #ibstate and abstime are set at their initial valúes

abstime makes reference to its own time. In the first IB-state when the information is still not

calculated, the duration ofthe IB-state, is considered as infinite. For agents with incoming neighbors;

it is necessary to modify WA matrix to add the corresponding incoming transitions, this information

is obtained through WR. A list with all the incoming neighbors is created and also the procedures

53

Initial events and noleafnode behavior are set. For agents with no incoming neighbors the procedures

Initial events and leaf behavior are added. At the end, ifthe agent has outgoing neighbors, a list with

their ñames must be constructed for future communication.

The underlined procedures Initial events. leaf behavior and no leaf behavior are described in

Figures 6.4, 6.5 and 6.6 respectively. Initial events performs any discrete event occurring in time 0

and send a message to all outgoing neighbors with discrete communication.

Initial events

T
r -y

Determine initial

disarete events

J

1 '

r '**

Update initial marking

a.

\ '

"Send a message to all
"•

outNeig hbors with

Ld ¡serete communicati on.

4
Figure 6.4. Initial events activity diagram

Leaf behavior is for those agents with no incoming neighbors. The main activities are made in a

General Node Procedure. it performs the necessary steps to construct the information for the IB-state.

After this procedure is done, if it is not the end of simulation, its time is updated (abstime) and the

agent behavior is blocked until dt has passed, otherwise dt is updated to accomplish with the time of

end of simulation, and the agent is killed.

54

Leaf behavior

T
k

r* ">
GeneíaINode

Procedu-re

abstime = abstime + dl

l a
.

<>

[lt is the end of simulaton]

1 f

[Risnotttteend

of simulation]

f
Bloc» the agent urtfil dl

has (in ii.it

*>.

V

Update dt tom the test"

IB-saie. a: tne e-MS c<

L
sírm-Éotion

_

y '

Seve IB-state

informstkxi te car file

■. i

1 r
*"

■>

Kill Agent

4 S>
Figure f».5. L**f beba* ior acti> ily diagram

No leafbehavior starts getting the incomingmessages; all the messages are stored. For the first IB-

state it is necessaiy to receive all the incoming messages (Discrete and continuous ones) in order to

obtain IB-state infonnation, when it does not occur, the agent is blocked until it receives a new

message. lfh is not tbe first IB-state or all tbe incoming flows were received, then the General Node

Procedure can be performed: if it is not the end of simulation the agent is blocked until it receives a

message or «ir has passed. Otherwise. as stated for leaf behavior. «iris updated tothe time ofend of

simulation, and the agent is killed.

55

No Leaf behavior

i
Get inooming messages

{dt has passed]

[Messages received]

r.

Store mes-ages>

1

General Mode

Procedure

[lt is not the first IB-state or

all incoming messages

were received]

'Update abstime anti oV

acoo-ding to the

received

Update dt from the last''

IB-state, at the end of

simulation

[lt is the end of

simulation]

Ss«s IB-state

information in csv file

[Itis notthe encfof

simulation]

abstime

abstime + dt

Kill Agent

[lt is the first IB-state and not all

incoming messages were received]

Bloc* until the agent

receives a message ar dt

has passed

Figure 96. No Leaf behavior activity diagram

Notice that both behaviors, leaf and no leaf, share a common procedure: General Node Procedure.

Figure 6.7 presents its steps. First the marking at the current IB-state is calculated, the last IB-state

information is used to do that (marking, ifa and discrete events); of course, if it is the first IB-state,

the initial marking is considered; from here, ifa can be obtained. Now, it is necessary to determine the

following discrete and continuous events and then dt is set to the valué ofthe minimum event. Finally,

if the agent has outgoing neighbors and there is a change to communicate, like a change in the

outgoing flow from a continuous transition or the firing ofa discrete transition, then a message is sent

to the outgoing neighbors; otherwise the number of IB-state is increased.

56

r
General Node Procedure

[itis not the first

IB-state] .

Calcúlate the martung ai

[it is the first

IB-state]

the begining ofthe

current IB-state

Get v from ¡fs tsble

[Outneighbors>0]

►

[Out neighbors = 0]

Uodate v with

¡noomming flows

—

\

£

Determine the following

oontinuous Bnd d¡screte

events

Calcúlate dt

Store the IB-state

information m, v, the

next discrete events and

dt

[No out neighbors or

there is nothing to

communicate]

[The agent has out neighbors and there was

a change to communicate]

Send a message to all

outgoing neighbors

V ^

««IB-State = «IB-State-1

Figure 107. General node procedure activity diagram

57

6. 2. 3.Class diagram

Figure 6.8 shows the class diagram including the classes implemented for the THPN simulation.

The main class Init begins with the simulation, InputDataGui provides a user interface to introduce

the routing information, Simulation performs the agents simulation by creating the ThpnAgents

through class AgentContainer. This class includes: initialEvents, leafNode and noleafNode. For

further information about these classes and ¡ts methods please refer to Appendix A at the end ofthis

document.

1 aCtt.IrtmMialo pMMMHj
«Crf> .«fmxno 1 *' InptaflMaOulO

• thMt*OUQ a n***o

a toanpialMrbO

rf AgwtConMrwrO

• KkMiVlltiftemO

• «««NimeO

• eetSMeO

• tmovtn*.trtrri.*lMxitrQ

m r«umeO

• 1*10

• suspendo

J^^~ 1

Y

e enaUStO

• 0ehX)

• S«MO

e a*NntEvO

• atMlmpcO

• pddO

• 9*0

é usuno

• MwcTcFltCSVO

• seaastMBO

• up-JoleNe-IEvO

/

WmrA&rt

acafc

"

"'^npoqnr1'''"*'
estafeta

• acuno
'

a dEvotOO

B atiFaenro

a tprwaMotWHoceduraO

,> cwtA^eríCortwnerd

a geiHntto

a sevwOitcMigO

,-» Mt>>V9einlCvttMneiT)

a «.•:<•<)

a m«UO

« «•'*<■

* liíl-wíav^- ■

•matamba»

ThpoA(jert

• «Cuarto

• danao

é MiMMgeiO

• oetCurertlrfiowsO

• G*etNuDttarOtJ^KUO

• gefVaiueOUcFIteO

• (jetVetu-fto*U ,

• TWtéQ

'QnettriÑodT
chitard-Me.- Tr*pnA-*jen(0.1

• aKhOfXl

• doneO

9 ;«C*Jrrw*rf*o*-ví

• stor*Men*geoO

)

Figure 6.8. Class diagram for THPN simulation

6.2.^. llastratJve exarnpie

This section presents a simple example to explain in detail the procedure described before. This

agent network is composed by four identical agents and its topology is shown in Figure 6.9(a). The

internal dynamics of each agent is represented by the TCPN in Figure 6.9b.

C W *m J

(a) Agenl network lopolog**

representation

3*14*=»

(b) TCPN agent

Figure 6.'). Networked Agent system

58

Formally this networked agent system can be described by the directed graph G ■= {{Ai,A2,A3,

A4},{(A2.A4), (<^,aA4),(a*\4,Ai)}}. Figure 6.10 shows the connection nodes between the agents.

Figure 6.10. Networked Agent system

This configuration can be expressed by Matrix WR:

WR =

0 0 0 1"

0 0 0 0

0 0 0 0

0 1 1 0.

In this example one place (P3) and one transition (T4) of every agent model will receive/transmit

flow ftom/to other(s) agent(s). Each column corresponds to T* and each row to P3 from each agent

respectively.

The incidence matrix WA' for one isolated agent is:

WAl =

-1 0 0 1

0 -1 0 0

0 0 -1 0

.
1 1 1 -1

The perception and communication parts are unique, because ofthis, only one kind ofmessage is

necessary <At,Aj,abstime, v*>. The complete networked agent system modeled with TCPN is shown

in Figure 6.11.

Once the system is modeled, it is necessary to compute all the possible ifa for each macro-marking.

For this, consider a TCPN generic agent. This piece ofnet must represent any agent in the networked

system. In order to determine all the ifa for the possible macro-markings, it is necessary to know all

possible incoming flows. The agent that receives more incoming flows is A4, so this agent will serve

as generic agent (Figure 6.12). The transitions Ii and h will represent all the possible incoming flows

that an agent ofthis net can receive.

59

Figure 6.1 1. Networked Agent system modeled with TCPN

* *

Ju3=3

3u4=9

Figure 6.12. TCPN generic agent

Let us suppose V=[4 2 3 9]T and the following initial marking

60

• mAi=[10 00 50]T

• mA2=[020 0 0]T

• mA*r=[010 0 0]T

• mA4=[0000]T

The sequence for simulating mis scenario will be presented for clarity in several sequence

diagrams. Figure 6.13 shows the interaction with ifa macro-markings, to obtain ifa table.

Modeler j ifs ma

gedbTableO rsv files

TT*

1

Figure 6.13. lfs macro-marking sequence diagram

This piece of net has not conflicts so basic constraints (\2)-(22) can be selected to obtain Table

6.3. The first 16 rows consider the incoming flow 0. From here, now it is possible to know all the

valúes for v4 (the outgoing flow, that at the same time will become the incoming flow for other

agents). these possible valúes can be 0, 4, 6, 7 and 9. A new computation is needed, considering all

the 2 -combination. but in this particular case considering only Ii=4, h=0 and li=0, h=4 is enough to

cover all the cases because V.-=3. and any incoming flow bigger than 3 will not genérate a different

table than the one presented in the rows 17-32.

Macro-

marking

Incoming
Flow

& OtOgqmg
Flow

Pi P2 Pj Pa I1 + I2 Vl V2 V3 va V4

1 0 0 0 0 0 0 0 0 0 0

2 0 0 0 1 0 4 0 0 9 9

3 0 0 1 0 0 4 0 3 7 7

4 0 0 1 1 0 4 0 3 9 9

5 0 1 0 0 0 4 2 0 6 6

6 0 1 0 1 0 4 2 0 9 9

7 0 1 1 0 0 4 2 3 9 9

8 0 1 1 l 0 4 2 3 9 9

9 0 0 0 0 4 0 0 4 4

10 0 0 1 0 4 0 0 9 9

11 0 1 0 0 4 0 3 7 7

12 0 1 1 0 4 0 3 9 9

13 1 0 0 0 4 2 0 6 6

14 1 0 1 0 4 2 0 9 9

15 1 1 0 0 4 2 3 9 9

16 1 1 1 0 4 2 3 9 9

17 0 0 0 0 4 4 0 3 7 7

18 0 0 0 1 4 4 0 3 9 9

19 0 0 1 0 4 4 0 3 7 7

20 0 0 1 1 4 4 0 3 9 9

61

5

21 0 1 0 0 4 4 2 3 9 9

22 0 1 0 1 4 4 2 3 9 9

23 0 1 1 0 4 4 2 3 9 9

24 0 1 1 1 4 4 2 3 9 9

25 0 0 0 4 4 0 3 7 7

26 0 0 1 4 4 0 3 9 9

27 0 1 0 4 4 0 3 7 7

28 0 1 1 4 4 0 3 9 9

29 1 0 0 4 4 2 3 9 9

30 1 0 1 4 4 2 3 9 9

31 1 1 0 4 4 2 3 9 9

32 1 1 1 4 4 2 3 9 9

Table 6.3. ifs Table

Once the ifa table is obtained, the THPN simulation can be performed. Figure 6.14 shows the first

steps; the initial procedure Init begins creating an user interface usrlnterface to obtain the location of

the files: Pre, Post, WA, WR, Mo, ifs table, dTiming, and the simulation time. Now the simulation

can be performed through the object sim. An object ibs from the class ibState is created to store the

IB-state information; the agents are created through the object mc (the agentController). For this

process each agent is created and startedby the object sim; the controller agentmanages the interaction

with the objects Agents ofthe class ThpnAgent ("Créate new agent" and "Start Agent"); this process

is not specifically described here because class AgentController is provided by JADE; for further

information the reader can consult JADE's documentation [JADE,2014].

][
ujrlnte-rfece

InputOataOui

I-:

'Request it<

^

D
jirr Simulation

Receives Inlere-dion arm the modeler

!*=>

il» : IbStata

*— I

ibStateO

i Agent* o t-c lletl -

loop) \ "h re are more agente to t re íej

Créete* e fcgentü

•gent > troller

T

me.

AgentCor-trclleSn***!-*, I ¡^-*ThpnAB^|

return ag u Controller

T

! "Oeste new .igent"

'Start agent"

Figure 6.14. initial steps T/IPX simulation sequence diagram

62

For leafnodes the agent must acquires leafNode behavior, otherwise it acquires
noleafNode behavior

and créate an inMsg object (Figure 6.15). For this example, procedure InicialEvents
is not performed;

this is because the Petri net only contains continuous nodes. Following the example, leaf nodes are

Agents 2 and 3; and no leafnodes are Agents 1 and 4.

Agent: ThpnAgent
¡nMsgsl : 1

lnMessages |
:noleafNode : leafNode

alt [Agent is a leaf node]

leafNodeO
lh
■i

i nMessages!)
(else]

leO
^

1

Pl

noleaH

P

L L i ^

Figure 6.15. Setupfor agents sequence diagram

Each leafNode performs the following sequence (Figure 6.16): In the first IB-state v is obtained,

the next continuous event is calculated, the information is stored (Mbstate, Agent, marking, dt, ifs),

and ifthe agent has outgoing neighbors, a message to each one of them is sent. As mentioned before

the message contains <Ai,Aj,abstime, outputflow>. After the first IB-state, it is necessary to know the

last information stored, then v is obtained again, the following continuous event is calculated, and the

new IB-state information can be stored and sent to the outgoing neighbors as long as the outgoing

flow has changed. This process is performed until the end of simulation or when the last IB-state is

infinite. Finally, the last dt IB-state is updated at the end of simulation and all the IB-states

information are stored in a csv file. The agent is killed and this is notified to theAgentController.

63

Agerú leaMode

T

_a.

ib» tosíate

!

Agent ndeafHode

^7
f «6»tim<t<«nd*Simuli

opt T
-f

'

; lt is not tne fiU Bátate

getMaMoatat*-
■ ■ So-n-pteMasnx

getv-ansa-tat*-*! , S*-**-cl*M«trix

;*C* *a,9fut*-": Sa-npieMatn-L

'uiuT M » at

tettoStatciof Agent m. at.

00t I [oilííetghioañdoüw» í ¡ray has *a»iged]

Sen-aliti i* ge

-paateOt»»»Bsiai*-* Agen at

saveT-sF.leCS"/ Ag-trr, Pl
Pt

ar tfl^infSnrte 1

_

mc AgefrtConlroller

I

Agent rjir

Kiüurt 6.16. -k //*/«////■ lea) nades »c<juinct diagram

Figure 6.17 shows the sequence of actions of no LeafNodes. There is a loop and it ís performed

until the end of simulation. This loop ís composed by two optional procedures: storage received

messages, when a message is received; or determine IB-state information, when dt has passed.

In the first IB-state dt ís set at infinite, because it is necessary to receive all the infonnation from

the incoming neighbors (Incoming flows or discrete fires). When all the incoming messages were

received and stored, then dt ís updated at 0 and the second procedure can be performed: v is obtained,

the following continuous event ís calculated, die information is stored (ibs, Agent, m, dt, ifa) and if

the agent has outgoing neighbors, a message to each one ofthem ís sent.

In a posterior IB-state ifa message was received it is stored, the last IB-state ís updated, because

the end of this IB-state ís going to be due to an external event, not because an interna! event as

previously calculated. Then the second procedure can be performed. At the end of simulation, the

last dt IB-state is updated at the end ofsimulation and all the IB-states information are stored in a csv

file. The agent is killed and this is notified to the y-VgentController.

64

In figures 6.18 and 6.19 the marking evolution of
each place and the ifa evolution are shown. The

data omitted is because it remains in zero.

Evolution marking

ra

£

>Ml_Agl

■M3_Agl

■M4_Agl

•Ml_Ag2

■M2_Ag2

•Ml_Ag3

•M2_Ag3

•Ml_Ag4

■M3_Ag4

0

10

0

50

0

20

0

10

o

o

5 10 25

35 60 135

20 40 100

40 30 0

10 20 20

10 0 0

10 10 10

0 0 0

15 30 75

45 80

Time

155

75

!85

S00

0

20

0

10

0

225

405

285

300

0

20

0

Figure 6.18. Evolution marking

66

10

ifs evolution

9 at at

7 *> • »

XrX r
«a- b

—*

i ■

10 20 30 40 50

Time

60 70

vl_Agl

v3_Agl

■É v4_Agl

-•JK- v4_Ag2

^^^— vl_Ag4

» v4_Ag4

Fi«iirc 6.19. ifs evolution

6.3 Case study

In this section a networked agent system for simulating energy households is considered. This is

academic example is based on the system functioning described in [Negenborn,2007]

The electricity systems ofmany countries are currently undergoing a process of transformation,

due to market liberalization and environmental regulations. New technologies such as renewable

energy and micro combined heat and power (pCHP) are emerging [Pehnt,2006]. In particular pCHPs

allow becoming a household in a distributed energy resource, comprising power and heat generators

with its corresponding storage units. Households can opérate independently of energy suppliers, and

they can buy and/or sell power among them.

Figure 6.20 shows an overview ofthe system under study. A uCHP can produce both electricity

and usable thermal energy. This fiCHP consists of a conversión unit 1 which converts gas into

electricity and heat, and a conversión unit 2 acting as an auxiliary burner, producing only heat. Both

67

conversión units are equipped with built-in fixed controllers that are designed to keep the level of

heat storage between predefined upper and lower bounds.

The electricity is stored in a battery and it can be used directly by the household or it can be sold;

also it can be imported from another household. The generated heat is supplied to a heat storage unit

in the form ofhot water, which is used for the own household.

■ ■

UCHP Exp

e-storage

Imp

i ana i

Conversión 2 ,1 Heat

(MOtbumer) I ^B^B

Figure 6.20. (onceptual meniev. of the system

The network under study consists of five households with the topology shown in Figure 6.21 . Each

one of them have a _iCHP installed, this allows them produce, store, consume and interchange energy.

The arrows indicate the allowed electricity flows between households, but also discrete

communication is performed in both directions between them, for the electricity interchange.

Figure 6.21. iction fnr mi leaf nades sequence di-igraní

The internal dynamics of each agent is modeled with the THPN shown in Figure 6.22; the named

elements Td and Pd represent discrete nodes, and the elements Tc and Pc are the continuous ones.

This THPN models the four functionalities: Production, storage, consumption, and interchange of

energy between households.

68

Figure 6.22 Actionfor no leafnodes sequence diagram

Electricity production (Unit 1) is modeled by Tci, and the heat production by TC2 (Unit 1) and TC3

(Unit 2). The nodes Pd7, Pds and Tds-Td7, turn on and off units 1 and 2. When the heat storage is

lower than 5, both units are turned on (Tds fires), when the level arrives at 7, unit 2 is turned off (Tdó

fires); and when it arrives at 9, unit 1 is now turned off (Td7 fires).

Electricity storage is modeled by Pci and Pc2, these two places allow limiting the storage capacity

(For this example it is 6); in the same way PC3 and Pc4 model the heat storage (The heat limit capacity

for this example is 9).

Three different type electricity consumptions are considered through the day: at afternoon Tc4, at

night Tcó and at morning Tes. For heat consumption, only one type of consumption is considered

during the morning TC7. The discrete nodes Pdi-Pd3 and Td--Td3, perform these changes.

Electricity can be exported using transitions Tes and Tc<>, and imported through transition Tc¡o. The

discrete nodes Pdt, Pd<>, Pd*o and Td<*-Tdi2, allow interchanging energy. Figure 6.23 shows the

interconnection of agents between these nodes; for every agent only the interacting nodes of their

models are depicted.

69

The purchase request from a household is modeled with PcU and TcU; when the place is marked

and the storage energy level is lower than 2, Td4 is fired; this event marks the place Pd9 or Pdio from

another agent. For example: firing ToU from Agent 2, marks Pd9 in Agent 1 and TcU from Agent 3

marks Pdio in Agent 1. These events allow exporting electricity, enabling Tes and Teo in Agent 1.

After 4 units of time Td9 and Tds are fired, marking the places PcU in Agents 2 and 3.

Figure 6.23 Communication nodes in the netxvorked agent system

Pdi share the enabling of two continuous transitions, Tcó and TC7. When the continuous transitions

are enabled at the same time, the marking of Pdi influences the firing velocity of these transitions as

ifthe marks were split, by reducing their firing velocities by half (Refer to one server semantics in

[David,2010]). With the aim of do not increase the complexity to the presented model, the

instantaneous firing speeds of Tcó or Tc7 are never reduced, as if Pds was duplicated, just connected

to one continuous transition. These duplicated nodes are omitted. The same case applies to Pds, Tci

and Tc2-

For the simulation, the flow rate and the timing associated to each transition are those shown in

Figure 5.23. The initial marking considered for each agent is:

• mAi=[0100001100339 0]T

mA2=[0 1 0 1 0 0 0 1 1 0 0 2 4 4.5 4.5]
T

mA3=[0 1 0 1 0 0 0 1 1 0 0 2.5 3.5 4.5 4.5]T

• mA4=[0 1 0 1 000 1 1 0 042 8 1]
T

mA5=[0 1 0 1 00 0 1 10 024 8 1]T

70

The following policy resolutions are considered: [Tc4, Tc5, Tc6] < [Tc8 Tc9], TclO < Tel and

Tc2 < Tc3. The energy units considered are kWh and the time for simulation is 24 hrs.

The simulation results are presented in the following graphs. Figures 6.24-6.28 show the energy

level storage for all agents.

10.00

9.00

8.00

7.00

0*

oo

o

5!

6.00

5.00

4.00

3.00

2.00

1.00

0.00

Agent 1

0.00 4.00 6.00

"Electricity" 3.00 2.00 1.60

•Heat 9.00 9.00 9.00 9.00

6.79 10.79 12.00 14.53 14.79 14.79 16.00 18.53 18.79 22.79 24.00

1.56 1.16 1.04 0.53 0.47 0.47 0.17 0.29 0.32 0.72 0.90

9.00 9.00 9.00 6.47 6.21 6.21 5.00 5.25 5.28 5.68 5.80

Time

Figure 6.24 Levels of energy storage, Agent l

1

10.00

9.00

8.00

7.00

6.00

5.00

4.00

3.00

2.00

1.00

Agent 2

Ü.UO

0.00 2.27

2.23

4.00 4.60 6.00 6.79 8.00 10.79 12.00 14.79 16.00 18.79 20.00 22.79 24.00

—♦—"Electricity" 2.00 2.40 2.43 2.08 2.00 1.94 1.80
|
1.74

|
1.32 1.14 J 1.56 j

1,74
'

2.16 1 2.28 1

—•—Heat 4.50 7.00 8.49 9.00 9.00 9.00 9.00 9.00 ¡ 9.00 i 6.21 ¡ S.00 5.28
'

5.40 5.68 5.80

Time

Figure 6.25 Levels ofenergy storage, Agent 2

71

Agent 3

10.00

9.00

8.00

7.00

6.00

5.00

4.00

3.00

2.00

1.00

0.00

•"Electricity"

•Heat

0.00

2.50

4.50

2.27

2.73

7.00

4.60

2.96

9.00

6.00

2.68

9.00

12.00

2.38

9.00

Time

14.53 16.00

2.00 1.85

6.47 5.00

18.53 24.00

2.36 3.18

5.25 5.80

Figure 6.26 Levels ofenergy storage, Agent 3

Agent 4

■"Electriaty"

•Heat

Time

Figure 6.27 Levels of energy storage, Agent 4

Agent 5

9 00

8.00

700

6.00

5.00

4.00

3.00

2 00

1.00

0.00

"Electricity"

^v

—••

""

0.00 4.00 6.00 8.00 12.00 15.00 16.00 20.00

2.00 1.40 1.10 1.10 1.10 0.80 1.00 1.80

24.00

2.60

Heat 8.00 -

8.00 8.00 8.00 8.00 5.00 S.10 5.50 5.90

Time

Figure 6.28 Levels of eiiergv storage, Agent 5

72

Figures 6.29-6.3 1 present the energy production of units 1 and 2. The production only depends on

the level ofthe heat storage, influenced by the heat production and heat consumption both flows do

not depend of external events, only internal. Agents 2 and 3 start with the same initial marking for

heat storage, thus the graphs for Agents 2 and 3 are the identical; similarly this situation occurs for

Agents 4 and 5.

Agent 1

1.00

0.90

0.80

0.70

o 0.60

1 0.50
*o

S 0.40
o.

0.30

0.20

0.10

0.00

0.00 5.00 10.00 15.00 20.00

Time

■ Electricity Heat Unit 1 ■ Heat Unit 2

Figure 6.29 Levéis of energy storage, Agent I

Agents 2 and 3

20

— Electricity Heat Unit 1 — -Heat Unit 2

Figure 6.30 Levels of energy storage, Agents 2 and 3

73

Agents 4 and 5

1.00

0.90

0.80

0.70

.2 0.60

1 °-50

2 0.40
"■

0.30

0.20

0.10

0.00

10 15 20

Time

Heat Unit 1 •Heat Unit 2Electricity •>

Figure 6.31 Levels ofenergy storage, Agents 4 and 5

Figures 6.32 and 6.33 present the exported electricity from agents 1 and 2, these corresponding

flows are the imported electricity from agents 2, 3, 4 and 5.

Agent 1

10 15 20

Time

Agent 2 Agent3

Figure 6.32 Exported electricity, Agent 1

74

0.06

Agent 2

0.05

0.04
>-
■*-»

j= 0.03
o

lxl

0.02

0.01

0.00

10 15 20

Time

•—— Agent 4 Agent 5

Figure 6.33 Exported electricity, Agent 2

The table 6.5 describes the events generated in each agent, the information is organized in the

columns: simulation time, agent, event occurred in the THPN, its meaning in the household system,

and the graphs where this event can be observed. Notice that the three first events are performed in

all agents, the electricity consumptions.

Time Agent Event in

THPN

Meaning in the system Graphs

6 All Tds From afternoon to night Figures 6.24-6.28, data: Electricity
12 All Tdi From night to morning Figure 6.24-6.28, data: Electricity
24 All Td2 From morning to afternoon Figure 6.24-6.28, data: Electricity
16 Agent 1 Tds Storage heat level less or equal to S.

It switches on unit 1 and 2.

Figure 6.24, data: Heat

Figure 6.29

0 Agent 2 Td4 Storage electricity level less or equal
to 2. It starts importing.

Figure 6.25, data: Electricity
Figure 6.32, data: Agent 2

4 Agent 2 Td12 Importation electricity ends Figure 6.25, data: Electricity
Figure 6.32, data: Agent 2

6.79 Agent 2 Td4 Storage electricity level less or equal
to 2. It starts importing.

Figure 6.25, data: Electricity
Figure 6.32, data: Agent 2

10.79 Agent 2 Tdu Importation electricity ends Figure 6.25, data: Electricity
Figure 6.32, data: Agent 2

10.79 Agent 2 Td4 Storage electricity level less or equal
to 2. It starts importing.

Figure 6.25, data: Electricity
Figure 6.32, data: Agent 2

14.79 Agent 2 Tdi2 Importation electricity ends Figure 6.25, data: Electricity
Figure 6.32, data: Aeent 2

14.79 Agent 2 Td4 Storage electricity level less or equal
to 2. It starts importing.

Figure 6.25, data: Electricity
Figure 6.32, data: Agent 2

18.78 Agent 2 Tdi2 Importation electricity ends Figure 6.25, data: Electricity
Figure 6.32, data: Agent 2

75

18.78 Agent 2 TcU Storage electricity level less or equal
to 2. It starts importing.

Figure 6.25, data: Electricity

Figure 6.32, data: Agent 2

22.79 Agent 2 Tdiz Importation electricity ends Figure 6.25, data: Electricity

Figure 6.32, data: Agent 2

0 Agent 2 and 3 Tds Storage heat level less or equal to 5.

It switches on unit 1 and 2.

Figure 6.25 and 6.26, data: Heat

Figure 6.30

2.27 Agent 2 and 3 Tds Storage heat level has reach 7 units. It

switches offunit 2.

Figure 6.25 and 6.26, data: Heat

Figure 6.30: Heat Unit 2

4.6 Agent 2 and 3 Td? Storage heat level has reach 9 units. It

switches offunit 1.

Figure 6.25 and 6.26, data: Heat

Figure 6.30: Electricity, Heat Unit 1

16 Agent 2 and 3 Tds Storage heat level less or equal to 5.

It switches on unit 1 and 2.

Figure 6.25 and 6.26, data: Heat

Figure 6.30

14.53 Agent 3 Td4 Storage energy level less or equal to

2. It starts importing.

Figure 6.26, data: Electricity

Figure 6.32, data: Agent 3

18.53 Agent 3 Tdi: Importation energy ends. Figure 6.26, data: Electricity

Figure 6.32, data: Agent 3

15 Agent 4 and 5 Tds Storage heat level less or equal to 5.

It switches on unit 1 and 2.

Figure 6.27 and 6.28, data: Heat

Figure 6.31

0 Agent 5 Td4 Storage energy level less or equal to

2. It starts importing.

Figure 6.28, data: Electricity

Figure 6.33, data: Agent 5

4 Agent 5 Tdl2 Importation energy ends. Figure 6.28, data: Electricity

Figure 6.33, data: Agent 5

4 Agent 5 Td4 Storage energy level less or equal to

2. It starts importing.

Figure 6.28, data: Electricity

Figure 6.33, data: Agent 5

8 Agent 5 Tdi2 Importation energy ends Figure 6.28, data: Electricity

Figure 6.33, data: Agent 5

8 Agent 5 Td4 Storage energy level less or equal to

2. It starts importing.

Figure 6.28, data: Electricity

Figure 6.33, data: Agent 5

12 Agent 5 Tdi2 Importation energy ends Figure 6.28, data: Electricity

Figure 6.33, data: Agent 5

12 Agent 5 Td» Storage energy level less or equal to

2. It starts importing.

Figure 6.28, data: Electricity

Figure 6.33, data: Agent 5

16 Agent 5 Tdl2 Importation energy ends Figure 6.28, data: Electricity

Figure 6.33, data: Agent 5

16 Agent 5 Td4 Storage energy level less or equal to

2. It starts importing.

Figure 6.28, data: Electricity

Figure 6.33, data: Agent 5

20 Agent 5 Tdu Importation energy ends Figure 6.28, data: Electricity

Figure 6.33, data: Agent 5

20 Agent 5 Td4 Storage energy level less or equal to

2. It starts importing.

Figure 6.28, data: Electricity

Figure 6.33, data: Agent 5

24 Agent 5 Tdl2 Importation energy ends Figure 6.28, data: Electricity
Figure 6.33, data: Agent 5

Table 6.5 Generated events in the networked system

Through the simulation the following behaviorwas observed. Agent 1 attends the exporting energy

request from Agent 2 at the beginning ofthe simulation and again in time 6.79. From this time until

22.79, the electricity level from Agent 2 remains lower or equal than 2 units; every 4 units of time

(Delay from transition Tds, in Agent 1) Pd4 in Agent 2 is marked and immediately TcU is fired

requesting electricity from Agent 1. For Agent 3, only in time 14.53 an electricity request is made.

Agent 4 never requests electricity because its electricity level always is bigger than 2. And for Agent

5 occurs something similar to Agent 2, its electricity level is lower or equal than 2 all the time, except

at the end of simulation, at time equal to 24, and every 4 units of time, an electricity request to Agent

76

2 is made. As it can be seem in Figures 6.24-6.28 the electricity level storage is never empty for any

agent. It means that the consumptions and the interchange of electricity is satisfied all the time.

Simulating continuous and discrete events systems is not an easy task; the described scheme

removes a part of its complexity by computing off-line all the possible ifa for one agent, and latter

using this information in the simulation part. The software allows to simúlate each agent, giving them

calculation autonomy of its own IB-state information. Only when there is a change in an Agent on

the continuous flows or a discrete event occurs affecting their neighbors, communication is

performed, interrupting the simulation of each neighbor agent; then the other agents must consider

these new events, allowing them to build together the correct computation ofthe overall networked

agent system.

77

Conclusions

A general framework for the analysis ofnetworked agent systems has been presented; it addressed

modeling, computing and simulation ofnetworks of identical interactive multi-role agents. It supports

the design process and analysis ofnetworked agent systems. The main feature ofthis approach is the

possibility to address agent applications in which a hybrid state representation and updating is

required. The identical characteristic of these agents does not restrict them of performing different

activities, since a multirole execution can be performed by them through the interaction of discrete

and continuous events; several operational modes can be set in the agent's model.

The proposedmodelingmethodology allows describing the agent's internal statewhere the discrete

and continuous components may be distinguished and their interactions may be clearly established.

In the methodology an important stage is focused on the agent's state representation as THPN. It

provides a support for the analysis of agent network systems through simulation. Two study cases

about sensor networks illustrate this part.

In order to cope with the non linear computation of TCPN models, a mathematical representation

based on MILP has been proposed. It allows building systematically MILP problems allowing the

computation of IB-state information: marking, transition firing speeds and duration. In the

representation both structural conflicts and cycles are included; resolution policies known as sharing

and priorities have been addressed. The tests performed on models of diverse complexity using

Matlab and CPLEX demonstrated the feasibility ofthe mathematical representation and its efficiency.

Finally, a scheme for the simulation of identical networked agent system is presented. An off-line

procedure based on the mathematical representation mentioned above, obtains all the possible IB-

states for one agent. Using this information a simulation of the overall networked agent system is

performed, where the continuous and discrete parts of the agents are included. The developed

software for the simulation was implemented in Java, using the framework JADE. This approach

overcomes the performance ofalgorithmic procedures, proposed in literature, since the instantaneous

firing speeds for one agent are off-line computed; this avoids the necessity of repeat this computation

for the overall network. A case study about distributed energy household networks was presented.

The work herein presented goes ahead the current research in literature on the addressed problems.

However, there is a lot of challenges regarding such problems; for example it could be useful to study

more complex agent interconnections, even the possibility to include in the system different kind of

agents. This is absolutely possible since the computation of all IB-states for one agent can be

performed by knowing all the possible incoming entrances through the time for one agent. Also,

78

regarding the simulation issue, the scheme has the bare bones for a distributed simulation, but new

communication protocols must be developed to cope with the asynchronous independent processing

of each agent and the absence ofa global clock.

79

Appendix A Documentation of Java classes for

THPN simulation

public class Init

extends Cfc- ect

Main initial class. creates an InputDataGui

Static

void

i Public

in() Shows Gui in the screen Stringll fin] aras

public class InputDataGui

extends rrrame

This class shows the Gil interface for the input cs\ files: HA. MO. WR_ ifa Table and time
for simulation

Method Notas Tu ■■ilm

InputDataGui ()

Package

Constructor

showGui () void

Public

Method to showGui

public class Simulation

extends Wfc-ecr

Class to perform the simulation

Method Netas l*n ii li 1 1

performSimulation ¡Method to store all the cvs files in to

i () void SimpleMatrix and creates all the agents
Public

readFile () void Creates and internal Arrax List for each cvs

Private (file

StriiiE rin] file

the csv fi les ñame

Strinsj [in] var

kind ofvariable to be store

toSimpleMatrix () Method to convert an arravList <Double> Arra>List<Arravi .ist<Doub

SimpleMatrix to a SimpleMatrix
Private Sretum SimpleMatrix

lei» Tin] convert

the ArrayList to be

converted

*n _____) _l_ J. {__ '_ ± ci "": "5

ex~er.as

ss ibState

Class to represent the IB-State information: obstóte, agent marking, dt and v.

Method Notas

existIBsO boolean Method to verify if exist an specific IB- int fin] ibs
Public State number of IB-State

@return true/false int finí Agent

80

MeAod Notes Parameters

number ofAgent

getDt() double

Public

Method to get dt

@returnrfí

int [inl ibs

number oí IB-State

int [in] Agent
number ofAgent

getM()

SimpleMatrix
Public

Method to get the marking

@return marking

int finí ibs

number of IB-State

int [in] Agent
number ofAgefit

getNextEv()

SimpleMatrix
Public

Method to get nexfEv

@return nexfEv

int finí ibs

number of IB-State

int [in] Agent
number ofAgent

getTempo ()

SimpleMatrix
Public

Method to get tempo
= duration +

instantaneous firing speed

@return tempo

int [in] ibs

number of IB-State

int [in] Agent

number ofAgent
int [in] noPc

getv()

SimpleMatrix
Public

Method to get instantaneous firing speed

@return ifa

int [in] ibs

number of IB-State

int [in] Agent
number ofAgent

getv ()

SimpleMatrix
Public

Method to get instantaneous firing speed
vector

@return ifa

int [inl ibs

number of EB-State

int [in] Agent
number ofAgent

ibState ()

Public

Constructor int [in] places
for an agent

int f in] transitions

for an agent

saveToFileCSV ()

void

Public

Method to save the information stored for

an Agent in a cvs file

int [in] ibs

number ofEB-State

int [in] Agent

number ofAgent

setlbState ()

void

Public

Method to add the information for an IB-

State agent

int [in] ibs

number of EB-State

int [in] Agent
number ofAgent

SimpleMatrix Tin] marking

marking for the Agent
double Tin] delthat

dt

SimpleMatrix Tinl ifs

instantaneous firing speeds

updateDt () void

Public

Method to update dt int [inl ibs

number of EB-State

int [in] Agent

number ofAgent
double Tin] delthat

new dt to be substituted

81

Method Notes Parameters

updateNextEv ()

void

Public

Method to update nexfEv

@param new nextEv to be substituted

double Tin] absT

int Tinl ibs

number ofEB-State

int [in] Agent

number ofAgent
SimnleMatrix [in] nE

public class ThpnAgent

extends Agent

Class Agent to simúlate a THPN

Method Notes Parameters

dEvDtOO void

Private

Method for performing initial discrete

events

Agent Tin] mvAgent

dTrFiredln ()

SimpleMatrix
Private

Method to set if a discrete transition can be

immediately fired

@param

@return enabled transitions fired

immediately

generalNodeProce

dure() void

Private

Method to perform the general node

procedure

Agent Tin] mvAeent

Object agent who is

performing the procedure
double Tin] inFlow

Incoming flow

getMindt ()

double

Private

Method to choose the smallest dt

@return

SimnleMatrix Tin] balance

vector with the balance of

each place (Who is going to

be the first empty place?)

setCdtO

SimpleMatrix
Private

Method to set the dt for continuous places

@return

SimpleMatrix Tin] balance

vector with the balance of

each place (Who is going to

be the first empty place?)

setDdt()

SimpleMatrix
Private

Method to set the dt for discrete transitions

@param

@return

SimpleMatrix Tin] balance

sendMsg () void

Private

Method to send a message to the

outNeighbors

Agent Tin] mvAgent

Object agent who is

sending the

setup () void

Protected

Initial behavior for the agent

takeDown () void

Protected

Method to perform agent clean-up
operations here

82

Method Notes Parameters

dEvDtOO void

Private

Method for performing initial discrete

events

Agent [in] mvAgent

dTrFiredln ()

SimpleMatrix
Private

Method to set ifa discrete transition can be

immediately fired

@param

@return enabled transitions fired

immediately

public class inMessages

extends Object

Class to store the messages send to each agent who has incoming flows, there is an object

for each one of them

Method Notes Pa*»meters

getCurrentlnFlows ()

SimpleMatrix
Public

Method to get the flows in the

corresponding vector

@return

double Tin] absTime

SimnleMatrix Tin] sm

getNumberOfAgents ()

int

Public

Method to get the number of agents

@return number of agents

getValueDiscFire ()

SimpleMatrix
Public

Method to get if all the discretemessages

was received

@return a vector with the fire of discrete

transitions

getValueFlows ()

double

Public

Method to get the sum of incoming flows

@return a valué for flows

reset() void

Public

Method to put all discrete fires to zero

InMessages ()

Public

Constructor ArravList <Integer> Tinl

Agents

List ofall In Neighbors

setCurrentlnFlows ()

void

Public

Method to update at the current inflow

from a received messages

storeMessages ()

double

Public

Method to store the messages sent by In

neighbors

String Tin] msg

Message sent by a In

neighbor

private class InitialEvents

extends Beahavoir

Class to perform the initial behavior for agents with discrete elements

83

Method Notes Parameters

action () void

Public

Initial procedure

done() boolean

Public

Method for checking stop conditions

private class leafnode

extends Beahavoir

Class to perform the behavior for leaf nodes

Method Notes Parameters

action () void

Public

Perform the cyclic procedure until the end

of simulation for agents without

communication.

done() boolean

Public

Method for checking stop conditions

private class noleafnode

extends Beahavoir

Class to perform the behavior for no leafnodes

Method Notes Parameters

actionO void

Public

Perform the cyclic procedure until the end

of simulation for agents with

communication.

done () boolean

Public

Method for checking stop conditions

84

References

[Anastasi,2009]

[Balduzzi,1999]

[Balduzzi,2000f

[Balduzzi,2001]

[Bemporad,1999]

[Bos,I999]

[Bosse,2007]

[Bratman, 1998]

[Cplex,2013]

[David,2010]

[Dotoli,2008]

[Dotoli,2009]

[Feber,1996]

[Fischer,1996]

[Floudas,2004]

[Franceschelli,2011]

Anastasi, G, Conti, M, Di Francesco, M„ Passarella, A. (2009). Energy

conservation in wireless sensor networks: A survey. AdHoc Networks, 7(3),

537-568.

Balduzzi, F.. Menga, G, Giua, A., Seatzu, C. (1999). "A Linear State

Variable Modelfor First-Order HybridPetri Nets
"

Proc. Nth IFAC World

Congress (Beijing, China), Vol. J, pp. 205-210.

Balduzzi, F, Menga, G, and Giua, A. (2000).First-order hybrid Petri nets:

a model for optimization and control. IEEE Trans. on Robotics and

Automation, 16(4):382-399.

Balduzzi, F, Di Febbraro, A., Giua, A., Seatzu C. (2001). "Decidability
Results in First-OrderHybridPetriNets,

"

Discrete EventDynamic Systems,
Vol. ll,No.l&2,pp. 41-58.

Bemporad, A., Morari, M. (1999). Control of systems integrating logic,

dynamics, and constraints. Automática. Vol. 35, no. 3, pp. 407-427.

Bos, A., Weerdt, M.D., Witteveen, C, Tonino, H, Valk, J. (1999). A dynamic

systemsframeworkfor multi-Agent experiments. European Summer School

on Logic, Language, and Information, Foundations and Applications of
CollectiveAgent Based Systems workshop.
Bosse, T, Sharpanskykh, A., Treur, J. (2007). Integrating agentmodels and

dynamical systems. Proceedings qf the 5'h international conference on

Declarative agent languages and technologies V, 50-68.

Bratman, M. E., Israel, D. J, Pollack, M. E. (1988). Plans and resource-

bounded practical reasoning. (R Cummins & J. L. Pollock

Eds.)Computational Intelligence, 4(3), 349-355.

http://www-01.ibm.com/sqfiware/commerce/optimization/cplex-optimizer/
David, R, Alia, H. (2010). Discrete, continuous, and hybrid Petri nets.

Springer.

Dotoli„M.,Fanti, M.P., Giua, A., Seatzu, C. (2008), First-order hybridPetri

nets. An application to distributed manufacturing systems. Nonlinear

Analysis: HybridSystems Vol. 2., No. 2, pp. 408-430.

Dotoli, M., Fanti, M.P., Iacobellis, G, Mangini, A.M.. (2009). "A First

Order Hybrid Petri Net Model for Supply Chain Management", IEEE

Transactions on Automation Science and Engineering, vol. 6, no. 4, New

York, USA, ISSN 1545-5955.

Ferber, J, Müller, J.-P. (1996). Influences and reaction: amodelofsituated

multiagent systems. (M. Tokoro, Ed.)Td International Conference on

Multiagent Systems Japan AAAIPress, 72-79.

Fischer, K„ Müller, J. P., Pischel, M. (1996). A Pragmatic BDI

Architecture. (M. N. Huhns & M. P. Singh, Eds.)Environment, 1037, 203-
218.

Floudas, CA. and X. Lin. (2004). "Mixed Integer Linear Programming in

Process Scheduling: Modeling, Algorithms, and Applications", Annals of
Operations Research

Franceschelli M, Giua A., Seatzu C. (2011). "Distributed Averaging in

SensorNetworks Based onBroadcastGossipAlgorithms,
"

Sensors Journal,
IEEE, vol. 11, pp. 808-817.

85

[Fregene.2001]

[Glober.1975]

[Gudiño-Mendoza2011]

[Gudiño-Mendoza.2013]

[Gudiño-Mendoza, 2014]

[Holger.2005]

[Ingrand.1992]

[JADE.2014]

[Juhez.2004]

[Negenborn,2004]

[Negenborn.2006]

[Negenborn.2007]

[Nishi,2009]

[Pehnt.2006]

[WUliam,1999J

[Wooldrige,2002]

[Yu.2006]

Fregene.K..Kennedy, D., WangD. (2001). HICA: A framework far

distributed multiagent control, bt: Proceedings cf IASTED International

Conference an Intelligent Systems andControl. 187-192.

Glover, F. (1975).
"

Improved Linear IntegerProgrammingFormulations qf

Nonlinear Integer Problems.
"

Management Science 22, 455-460.

Gudiño-Mendoza, B., López-Mellado. E (2011). A Modeling Framework

for Developing Networked Agents AppUcations. 8* International

Conference on Electrical Engineering, Computing Science andAutomatic

Control (CCE).

Gudiño-Mendoza, B.. López-Mellado. E (2013). Modelling networked

agents
'

behaviour using timed hybrid Petri nets. The 2013 Iberoamerican

Conference on Electronics Engineering andComputer Science.

Gudiño-Mendoza, B., López-Mellado, E, Alia, H. (2014). A Linear

Characterization ofthe Switching Dynamic Behavior afTimedContinuous

Petri Nets with Structural Conflicts. Nonlinear Analysis: Hybrid Systems.

Submitted

Holgó-, K, Willig A. (2005). Protocols cmd Architectures for Wireless

SensorNetworks. Wüey.

Ingrand, F. F., Georgeff, M P.. Rao, A. S. (1992). An archilecturefor real-

time reasoning and sysiem control. Ieee Expert Intelligent Systems And

TheirApplications, 7(6), 34-44. IEEE EducationalActivitiesDepartment

http://fade.tilab.com/doc/api/
Julvez, J., Bemporad, A, Recalde, L, Silva, M, (2004). Event-driven

optimal control ofcontinuous Petri nets. 43f* IEEEConference onDecisión

andConlrol.

Negenborn, RR, De Schutter, B., Hellendoorn, J. (2004).Multi-AgentModel

Predictive Control: A survey. Delft Centerfor Systems and Control, Delft

University afTechnology.

Negenborn, R R, Schutter, B. D.. Hellendoorn, H. (2006). Multi-agent
modelpredictive controlfor transportation networks with continuous and

discrete elements. Tech Rep 06014 Delft Centerfor Systems and Control

Delft University qfTechnologyDelft, 19.

Negenborn, R R (2007) Multi-Agent model predictive control with

applications to power networks. TRA1L Thesis Series T2007/I4, The

Netherlands TRAIL Research School.

Nishi, T, Shimatani, K, & Inuiguchi, M. (2009). "A decompositionmethod

for optimal firing sequence problems for first-order hybrid Petri nets".

IEEE International Conference on SystemsMan andCybernetics.
Pehnt, M, Carnes, M, Fischer, C, Praetorius, B., Schneider, JL,

Schumacher, K., Vob, J. (2006). Micro Cogeneration: Towards

DecentralizedEnergy Systems. Springer.
William, H.P.(1999). Model building inmathematicalprogramming fourth
Edition, John Wiley& Sons, Ltd.

Wooldridge,M (2002).An Introduction toMultiAgentSystems. (W. Edition,

Ed) Computer (Vol 86, p. 348). John Wiley & Sons.

Yu, Z„ Coi, Y. (2006). Object-Oriented Petri nets architecture description
languageformulti-agent systems. IJCSNS, 6(1), 256-260.

86

CENTRO DE INVESTIGACIÓN Y DE ESTUDIOS AVANZADOS DEL I.P.N.

UNIDAD GUADALAJARA

El Jurado designado por la Unidad Guadalajara del Centro de Investigación y de

Estudios Avanzados del Instituto Politécnico Nacional aprobó la tesis

Modelado y cómputo del comportamiento de agentes interconectados
usando redes de Petri híbridas temporizadas

del (la) C.

Gema Berenice GUDIÑO MENDOZA

el día 22 de Agosto de 2014.

Dr. btíis Ernesto López Mellado

Investigador CINVESTAV 3C

CINVESTAV Unidad Guadalajara

Dr. Félix Francis&Bsftámos Corchado

Investigador ^INVSSTAV 3B

CINVESTAV Unidad Gu^alajara

\Ste&
Dr. Antonio Ramírez Treviño

Investigador CINVESTAV 3A

CINVESTAV Unidad Guadalajara

^
Dr. Mario Ángel Siller González

Pico

Investigador CINVESTAV 3A

CINVESTAV Unidad Guadalajara

Dr. CarloXReirattrvazquez Topete
Profesor Investigador

Centro Universitario de los Valles,

UdG

