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Modelado y computo del comportamiento de agentes interconectados
usando redes de Petri hibridas temporizadas

RESUMEN

Esta tesis trata sobre el modelado, computo y simulacién del comportamiento de sistemas de agentes
interconectados. Se propone un marco de trabajo para el analisis de sistemas multi-agentes, cuyo
enfoque esta basado en la representacion interna del estado hibrido de cada agente a través de modelos
de redes de Petri hibridas temporizadas (RPHT). La propuesta abarca tres etapas importantes: el
modelado de agentes y redes de agentes, el calculo de la evolucién del modelo de agente y la
simulacion de redes de agentes idénticos.

Para el modelado se desarrollé una metodologia que permite la estructuracién de la red y una
arquitectura para el disefio de agentes reactivos multi-rol en la cual pueden distinguirse variables de
estado continuas y discretas. Una parte de esta metodologia se enfoca en la descripcion detallada de
la evolucién del estado del agente representandolo como RPHT; siendo esta metodologia la base para
el analisis a través de simulacion de la red de agentes.

Respecto a la parte de computo, se propone una caracterizacion matematica la cual permite calcular
¢l comportamiento no lineal de la parte continua de una RPHT mediante programacion lineal mixta.
La caracterizacién permite abordar modelos con estructuras de redes ciclicas y con conflictos
estructurales; para esta ultima caracteristica dos politicas pueden ser aplicadas: prioridades y
compartimiento.

Posteriormente, se defini6 una estrategia para simulacion del modelo hibrido de una red de agentes
idénticos interconectados, la cual permite desarrollar una herramienta de software, donde se explota
Ia caracteristica de agentes idénticos para calcular fuera de linea todos los estados de un agente a
través de la contribucién antes descrita y posteriormente este calculo se utiliza en la simulacién de la
red de agentes evitando asi un computo repetitivo durante la simulacion.

Finalmente, mediante la estrategia de simulacion se desarrollé un software para un caso de estudio
relacionado con redes de intercambio de energia. El software consiste de dos mddulos: uno para el
calculo de los estados posibles de la parte continua de la RPHT implementado en Matlab y el otro
para la simulacion de la red de agentes, implementado en Javay JADE.



Modeling and computing of networked agent’s behavior
using timed hybrid Petri nets

ABSTRACT
This thesis deals with modeling, computing and simulation of networked agent systems behavior. A
framework for the multi-agent systems analysis is proposed; it is focuses on agent’s hybrid state
representation through timed hybrid Petri nets (THPN) models. The proposal has three important
stages: agent and agent network modeling, calculation of the agent model state evolution, and

identical agent network simulation.

For the modeling part, a methodology that allows structuring the network and an architecture for
designing reactive multi-role agents has been developed, in which state variables continuous and
discrete can be distinguished. One part of this methodology is focused on the description in detail the
agent’s state evolution using THPN; this methodology is the basis for the analysis through simulation

of agents network.

Regarding the computing issue, a mathematical characterization to compute the non linear behavior
of the continuous part of a THPN through mixed linear integer programming (MLIP) is proposed.
Cyclic structures and structural conflicts can be included in the characterization; on this last feature

two policy resolutions can be applied: priorities and sharing.

Thereafter, a scheme for the simulation of hybrid identical agent networked systems has been defined;
this scheme allows developing a software tool; where the characteristic of identical agents is exploited
by computing off-line all the possible states for only one agent using the contribution described above;
then this information is used in the agents network simulation, allowing avoiding the repetitive

computing through the simulation.

Finally, through the simulation scheme, a software for a case study related to energy interchange
networks has been developed. The software has two main parts: one that computes the possible states
for the continuous part of the THPN, which has been implemented in Matlab, and the other one for

the agent network simulation, which has been has been implemented in Java and JADE.
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3.1. Properties of the system
The proposed architecture is a multipurpose agent system, which is a modular representation where
the dynamics of each entity of the system is represented by the interaction of continuous and discrete
variables [Gudifio-Mendoza,2011]. Some relevant properties represented by the architecture are:
e Closed system; it is not possible to introduce additional agents. The number of agents is
fixed.
e The topology is fixed; each agent knows its neighbors all the time.
e The communication between the agents is one-hop nearest neighbors and bidirectional.
o Each agent in the system is an autonomous agent with computation, actuation, sensing,
and communication capabilities.

¢ No agent is controlled by another one.

3.2. General structure of an agent and a networked agent system
An agent 4; can be defined as a 3-tuple <P, EI,S;>. Where:
e P, is the vector of perceptions; the messages received from others agents and the signals
received from the environment are mapped into this vector, P; = [Pip | Pic], where Pip(j)
€ N and Pic(j) € R.
e EI is the vector of external information; each agent maintains and evolves the information
perceived through this vector, this information contains the outside agent’s perception, EI;
= [Elp | Elc], where EIp(j) € N and Elic(j) € R.
e ;s the vector state of the agent; it contains all the basic internal variables to describe the
agent, S; = [Sip | Sic], where Sip(j) € N and Sic(j) € R.
The networked agent system can be described as a directed graph G = {4, E}. Where:
A = {A,, A, A3, ...} is the set of agents in the system.
E c A x A defines the topology of the agent network. The pair (4, 4) € E if the agent 4; can

receive information from the agent 4.

3.3. Agent internal architecture
From an external point of view, the agent processes information coming from sensors and messages
sent from other agents; then it produces actions that may affect the environment and sends messages
to other networked agents. The scheme of Figure 3.1 describes the main components of an

autonomous agent and their relationships. Every module performs a key function in the behavior of

the agent.
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INTRODUCTION

The multi-agents based approach has been widely held for addressing complex distributed systems.
In these kinds of applications the distribution emerges naturally by conceiving the devices as agents
that interact with their neighbors in a given topology. According to the applications, the agents have
to perform complex individual tasks that involve the information exchange with other agents in order
to achieve a collective task.

In general, networked agents are reactive and multirole entitics whose reasoning is based mainly
on an internal state and the current external information about the environment and from other agents.
These agents would be identical but capable of perform different roles. State representation gathers a
set of integer and real variables that characterize the status of every cognitive process in the agent.

Several agent architectures have been proposed for representing the agent behavior; they differ
according 1o: their field of application, agents functioning, or the kind of analysis for the networked
agent system. Some works considers the agents as intentional systems [Ingrand,1992],
(Bratman,1998], [Fisher,1996]; in others works the agents are modeled as abstract machines
[Feber,1996], [Yu,2006], [Coleri,2002]; other research group considers the agents as dynamical
systems [Bos,1999], [Bosse,2007), [Fregene,2001], [Negenbom,2006]. On the other hand, several
analytical approaches have been developed focusing on the analysis and control schemes for abstract
machines such as timed hybrid Petri nets (THPN). These works are based on mixed linear integer
programming (MLIP) [Balduzzi,1999], [Balduzzi,2000], (Balduzzi,2001], [Dotoli, 2008},
[Dotoli,2009], [Nishi,2009], [Julvez,2004).

In this thesis we addressed the study of networked agents looking for an analytical framework
allowing a more formal analysis of their collective behavior. The proposal includes three
contributions regarding the modeling, computing, and simulation of identical interactive networked
agents, which exhibit a hybrid dynamics.

The modeling issue is addressed by proposing a modeling framework that includes a) guidelines
for structuring the network and b) an architecture for designing reactive agents in which the types of
state variables are distinguished [Gudifio-Mendoza,2011]|. Later, a methodology for detailing the
agents’ behavior is developed in which the agent’s state evolution is represented by timed Hybrid
Petsi nets (THPN). At difference of the above mentioned related works, our modeling proposal is
focused in establish the agent’s state behavior as THPN. where the agent’s dynamics is driven by
continuous and discrete events. [Gudifio-Mendoza,2013|. The proposed approach is illustrated

!



through a case study dealing with sensor networks. This was though as a basis for the analysis and
simulation of these kind of systems.

The computing issue is addressed by an analytical approach, it is a mathematical characterization
based on MLIP of the timed continuous Petri nets (TCPN) models issued from the switching behavior
the THPN. This proposal extends previous works by addressing TCPN models including a) a wider
set of resolution policies for structural conflicts, and b) cyclic structures [Gudino-Mendoza,2014].

Finally, the simulation issue is addressed through a simulation scheme based on the mathematical
characterization for networked identical agents. This scheme allows developing a software tool for
executing the hybrid model of a whole agent network. The off-line computation of all possible states
for one agent using the characterization for the TCPN is performed; then this information is used to
compute the overall networked agent system state's during the network simulation. Unlike the
algorithmic simulation proposed in [David,2010], the analytical characterization allows obtaining all
the needed information for one agent before the simulation is performed; this information is then used
for all the agents avoiding the repetitive computing. The simulation scheme is tested using a
distributed energy household network system case study.

This thesis is organized as follows. Chapter 1 introduces the basic concepts of networked agent
systems, Petri nets, linear representation for continuous and discrete events, and sensor networks.
Chapter 2 describes several works related to the research proposals. Chapter 3 presents a general
framework for modeling agent networked systems focusing in the agent’s hybrid state representation.
Chapter 4 presents a modeling technique based on TCPN for specifying the agent’s evolution.
Chapter 5 shows TCPN behavior characterization using MLIP. And finally, Chapter 6 presents a

scheme for the simulation of identical networked agent system.



Chapter 1
NETWORKED AGENTS, PETRI NETS, LINEAR MODELING,

AND SENSOR NETWORKS

Abstract. This section is devoted to cover all the primary notions in which is based the developed
work. Section 1.1 presents some basic concepts about networked agents in which the first two
modeling proposals presented in Chapter 3 and Chapter 4 are based on. Section 1.2 and Section 1.3
present notions in timed continuous and hybrid Petri nets for proposals from Chapter 4, Chapter 5
and Chapter 6. Section 1.4 describes how to model some discrete and continuous behaviors using
linear restrictions with continuous and discrete variables, which are used for proposal in Chapter 5.
And the last section presents notions about sensor networks, the two study cases from Chapter 3 and
Chapter 4.




1.1. Networked Agents

Agents are a suitable paradigm through which exploit the possibilities presented by massive
distributed systems. A collection of these agents seem to be a natural metaphor for understanding and
building a wide range of complex systems.

Agents [Negenborn,2004] are problem solvers that have abilities to act, sense, reason, learn, and
communicate with each other in order to solve a given problem. Agents have an information set
containing their knowledge (including information from sensing and communicating), and an action
set containing their skills.

A networked agent system [Wooldrige,2002] consists of a number of agents, which interact with
another one, typically by exchanging messages. In the most general case, the agents in a networked

agent system will be representing or acting on behalf of users or owners with very different goals.

1.2. Timed continuous Petri nets

Timed continuous Petri nets (TCPN) is a model limit case of time discrete Petri nets. An
autonomous continuous Petri net can be defined [David,2010] as 5-uple R =< P, T, Pre, Post, My >
such that: P is a set of places, T is a set of transitions, both sets finite and not empty, PNT are disjoint,
Pre:PxT—Q., Post:PxT— Q. and M, the initial marking. °T; will denote the set of input places to
Tj, m; the marking of place P;, and Matrix;; the corresponding value of Matrix in row i and column j
the same idea applies for vectors.

In a TCPN an additionally relation is added Spe: T xV where V is the maximal firing speed (mfs)
associated to each transition. The set P of places may be divided into two subsets: P*(my) the set of
places P; such that m>0 and P%(my) the set of places P; where m=0. A macro-marking is the union of
all markings my with the same P*(my) of marked places.

The evolution of a TCPN is divided is several invariant behavior states (IB-states), each one of
them has a duration (dt;) and a constant vector of instantaneous firing speeds (ifs) vy, where
0 < v, <V, and a macro-marking. The evolution marking of these nets is given as for the discrete
model by the evolution marking equation: my .+, = my + W - v, - At,, where W = Post — Pre and
m,;.1 = 0. A change of IB-State is because a place becomes empty, so the necessity of a nonnegative
marking forces to change in vector v. To compute ifs (v;) for a transition T; in a TCPN without
conflicts three conditions of enabling are necessary to consider:

» Strongly enabled, it means VP; € °T;,m; > 0 or °T; = @
o vy =V

e Not enabled, it means 3P; € °T;,m; = 0 and I; = 0, where I; = Y1, cop, POSt; ) - ),
o v=0

e Weakly enabled, it means 3P; € °Tj,m; = 0and [; > 0
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1.2 1 Corflicts in TCPN
An structural conflict in a TCPN can be defined as SC= <Pc, Tc>, where Pc={P;} is one place in
conflict, and Tc={T},T:,...,.T;} < °Pc are the transitions involved in the conflict (Figure 1.1). To
establish the resolution by priority, the notation T1<T2<...<Ts means that T is the transition with more
priority, then T and so on until Ts; the input flow from Pc must satisfy first to transition T), the
remaining flow is applied now to T2 and so on until T;. To establish the resolution by sharing the
notation [a;Ti, @2T,..., &Ts] is used, this notation indicates that the following relation must be
satisfied vi/ou= vi/o=...= vs/as, where a; is a real number. An actual conflict occurs when in a
structural conflict m.=0 and the feeding speed I is not enough for firing all its output transitions, that
is, at least one of these transitions must slow down its ifs due to Pc; this case is illustrated through an

example in section 1.2.3.

Figure 1.1 TCPN with structural conflict

Below we present some expected behaviors considering different kind of structures and conflict

resolution policies; these behaviors all fully covered by the proposal described in Chapter 5.

1.2.2 Exoectec p=raviors in TCSN with corfiicts
Table 1.1 shows three possible behaviors of a TCPN with a structural conflict. In each case the
policy to solve the conflict is indicated. The TCPN’s structure in Figure 1.2 serves for illustrating
the three cases.

Cases Examples T<Ts<Ts [T, T5,Te]

A Thereisnot | A1 M~[0m; 0], V=[231222] |v=[231221] vV=1231221]

actual conflict | A2 M~[0mz m3), V=123 1222] | v=[231222) v=[231222)
A3 M~[000], V=[292322] v=[292322) v=1292322]

B. Thereisan | B.1 Mi=[000], V=[23 122 2] v=[1231210] V231111

actual conflict.

C Thereisan | C.1 M—[000], V=[0531222] | v=[053105205] | v=[0.5310.5125125]

actual conflict. 1=~ 00}, V=23 12205] | v-1231210] v=[23112512505]
C3M~[000], V=[05304232] | v=[0.530405250] | v=[0.53 0405 2.104]

Table 1.1 Solutions for cases A-C



Figure 1.2 TCPN with structural conflict cases A-C

Case A is exhibited when the place in conflict (P) is marked (A.1 and A.2) or when the input flow
to Pc is enough to satisfy the flow for the transitions in the conflict (A.3), for these cases the solution
of ifs is the same (because the rule does not need to be applied) the ifs for the transitions in the conflict
is established according to its own mfs (A.2 and A.3) or limited by an input flow (A.1), in this case
Ve is limited by I;=1.

Case B describes a situation in which the resolution rule is in fact fully applied to all the transitions,
Pc limits the input flow to all transitions in Tc; in this case, for all transitions in the conflict, the
minimum input flow is given by L=v,=3. In the resolution by priority, T4 has the highest priority, it
goes to its mfs 2; then it remains only 1 for Ts and 0 for Te. In sharing all the transitions goes to the
same instantaneous firing speed 1, the constraint v4=vs=vs is satisfied.

Case C illustrates a problem that arises when some transitions in the conflict are limited by other
input flow (C.1, C.3) or by its own mfs (C.2), Pc limits the input flow to some transitions in Tc; this
is because, first, the ifs for these transitions must be set beforé, and then the remaining flow must be
assigned to the other transitions in the conflict in compliance with the resolution rule. For case C.1 in
resolution by priority, the ifs for T4 is limited by I; this transition has the highest priority, thus v4=0.5.
For the remaining flow 2.5, vs=2 is assigned, and then v¢=0.5. In the same case, in the resolution by
sharing, =3 must be shared between the three transitions in the conflict, but T4 cannot consume its
part because it is limited by I;; hence v4=0.5 and the remaining flow 2.5 must be shared between the
other two transitions. The constraint to fulfill in this case must be vs=ve; then their ifs are 1.25. In case
C.2 T, is limited by its own mfs, so in this case in the resolution by priority establishes v4=2, vs=1
and v¢=0. In resolution by sharing, now Ts cannot use its part because V¢=0.5 then v¢=0.5 and the
constraint to satisfy is v4=vs; thus both transitions fires at 1.25. Finally in C.3, T, is limited by I,=0.5;
in resolution by priority it results in v4=0.5 and vs=2.5 and v¢=0, and applying resolution by sharing
the flows T, and Te are limited by the input flows I,=0.5 and 1;=0.4 respectively, consequently v4=0.5,
v6=0.4 and the remaining flow from I can be assigned to vs=2.1, here non restriction must be satisfied.

All the situations described in the above cases may appear during the evolution of a TCPN model,
then it is necessary a strategy to manage the application of the conflict resolution policies. Using some

discrete and continuous variables it is possible to represent this behavior.



1.2.3.Expected behaviors in TCPN with diverse structures

When the TCPN has circuits or a cyclic structure (Figure 1.3), sometimes there exist some
dependencies when ifs are calculated. Three cases are presented in Table 1.2 to show the main
problems faced with these structures. For Case D (Figure 1.3(a)) there is a dependency: the feeding
of T, depends on the firing of T) and also T\ needs v2>0 to be fired; in this case T cannot be fired
because P; never will be fed. This is an important consideration when ifs are calculated, in the
formulation of the solution must be established that v, cannot be fired because Ps never will be fed;
in fact P, and P; form an unmarked P-component.

In Case E.1 (Figure 1.3(b)), T is strongly enabled, then vs=1; for the resolution policy Ti<T, first
vi=1, then the remaining flow is equal to zero, so v>=0 and v4=0; for the resolution policy [T, T:]
the following behavior is observed: the strongly enabled transition T creates an input flow I,=1, this
flow is shared between T; and T3, so vi=0.5 and v,=0.5; this causes v4=0.5, now I;=1.5, again the
flow is shared and v;=0.75 and v,=0.75, so T increases its flow to 0.75; with this I;=1.75, and
v1=0.875 and v,=0.875; this behavior leads to have ifs of 1 for all the transitions. In Case E.2, for
resolution T;<T; again Ts is strongly enabled so v3=2 and I;=2, this flow allows the firing of T at its
mfs vi=1 and the remaining flow is assigned to T>, v>=1 and then v4=1; now I,=3, with this flow both
transitions in the conflict can be fired at their maximal speed. For the resolution by sharing at the
beginning the input flow I;=2 is shared between T; and T leading to v;=v,=1; it makes v4=1 and now
[;=3, with this input flow T) and T> can fire at the maximal speed. In fact in Case E.2, there is no
actual conflict.

(a). Case D. No-conflict (b) Case E. Structural conflict

Figure 1.3. TCPN with structural conflicts cases D and E



Cases Examples Solution
D. No-conflict V=[1 3} v=[0 0]
E. Structural conflict Ti<T: [T, T3]
E.1 M~[0m; 0], V=[22115] |v=[1010] v=[1111]
E2 M~[0m; 0], V=[1221] v=[1221] v=[1221]
Table 1.2. Solutions for cases D and E

1.3. Timed hybrid Petri nets

A marked autonomous hybrid Petri net (HPN) [David,2010] can be defined as a 6-uple R =<
P,T,Pre,Post,Myg,h >; h: P v T - {D, C}, called “hybrid function”, indicates for every node
whether it is a discrete node (sets P° and 7°) or a continuous one (sets P€ and 7€); and Mo: P - R.
or N is the initial marking.

In the definitions of Pre, Post, and M, its domain depends of the kind node of node, N corresponds
to the case where P; € P°, and Q- or R. corresponds to the case where P, € P°. Pre and Post
functions must meet the following criterion: if P; and 7} are such that P; € P° and T; e T€, then
Pre(P.T)) = Post(P..T) must be verified. The enabling condition for the proper evolution of the HPN
is defined for each kind of transition: A discrete transition in a HPN is enabled if each inning place
P, to T; has the following condition: m, > Pre(P, T}); a continuous transition in a HPN is enabled if
each inning place P, to 7] has the following condition: m, > Pre(P, T)), if P; € P°; and if P; € PS, the
enabling conditions described in section 1.2 for TCPN are applied.

A timed HPN (THPN) is a pair (R, tempo) where:

® Ris a marked HPN.
® lempo is a function from the set T of transitions to the set of positive or zero rational
numbers
o if T € T°, d, = tempo(T;) = timing associated with T;
o ifT, € I, U,= I/tempo(T;) = flow rate associated with ;.

The fundamental equation to evolve marking of a THPN is the same than that for a TCPN in which
vector entries elements m, . ,, M, may be positive real or integer numbers, and W may have rational
or integer numbers (It depends if elements are continuous or discrete). In a more explicit way the
fundamental equation for a THPN can be rewritten as:

A 251 [l



Where 0<t; <t, and n® is the vector whose components correspond to the number of firings of
each discrete transition from time 0 to time ¢, and v(%) is the vector whose components correspond
to the instantaneous firing speed for continuous transitions.

For the calculus of the instantaneous firing speed, first it is necessary to obtain the maximal firing
speed (¥)). It is the product of the flow rate by the D-enabling degree: V; = U; D(T), m), where

m
D(Tj.m) = P,eg;'ijgpb IPre(Pi,-,T,)
1.4. Linear constraints to represent continuous and discrete events

When we analyze the behavior of a system, the objective is to find the simplest model; for this
purpose linear models are often used because they are easier to solve. However, many systems can
exhibit complex behaviors and the use of real variables is not enough for representing such behaviors;
in this case expressions including binary variables allow representing non linear situation as linear,
At a first look, this artifice makes appear the problem as non linear; but there exist powerful
algorithms based in linear programming techniques to solve this kind of problems.

In order to compute the behavior of a TCPN, it is necessary to calculate the ifs; these velocities are
constant for periods of time, but they may change abruptly due to changes in the marking of places;
these jumps make the system non linear. Additionally, other important issue in TCPN is computing
ifs for transitions involved in a structural conflict. Every conflict has a policy resolution (sharing or
priorities), then solving the conflict requires including in the model some conditional expressions (if-
then).

The basic non-linear statements used in this work, transformed to linear constraints are listed
below. For more details the reader can consult [William,1999], [Glover,1975], [Floudas,2004] or
[Bemporad,1999].

Nonlinear Is equivalent to
A4V2, 1) 2,+1,=21
N=Y2"Ys 2) [logz(Max (¥2))]
V3 = 2 2t- 2,
i=0
=4y, () y1 <Max(y,) A

(4) y,2Min(y,) A4
(5) 1 <y:—Min(y,) -(1-41,)
(6) y12y,—Max(y;) (1—2y)

1 =%V = x,] (7 =
= A
vb’l = xn] b1 ;xl




®
;1,-1

bn<0]-[4 =1]

(9) Y1 2+ (Min(y1) - E) . Al

Where

Min(y,)) < y; < Max(y)
YuxieR
AIE{O,I}

Table 1.3. Logic statements expressed in linear constraints

1.5 Sensor networks

A generic model [Anastasi,2009] for Sensor Networks (Figure 1.4(a)) consists of sensing devices

distributed in a wide area, which are interconnected and coordinate together for transmitting sensor

data to a sink node (or base station) that will produce meaningful information. Sensor networks are

usually composed of a large number of wireless identical sensors; this characteristic facilitates the

design, analysis, and operation of this kind of systems. A basic sensor node (Figure 1.4(b)) is

composed by five main components [Holger,2005]:

A processor unit to process all the relevant data.

Some memory to store programs and intermediate data.

Sensors and actuators, which are the actual interface to the physical world: devices that

can observe or control physical parameters of the environment.

A communication device for sending and receiving information over a wireless channel.

Usually these modes operate in a mutual exclusion way.

Usually no tethered power supply is available; some form of batteries is necessary to

provide energy. Sometimes, recharging capabilities allows obtaining energy from the

environment (e.g. solar cells).

Sensor Network
Sensor Node
-
Device
'Sensor Node
{a) Sensor network (b) Sensor node

Figure 1.4. Seunsors

Each of these components has to operate balancing the trade-off between the reduction of energy

consumption as possible and the need to achieve their tasks. Energy consumption of a sensor node

must be tightly controlled. The battery has small capacity and recharging by energy scavenging is

complicated and volatile.
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The crucial observation for proper operation is that most of the time a wireless sensor node has
nothing to do. Hence, it is best to turn it off. Therefore, completely turning off a node is not possible,
but rather, its operational state can be adapted to the tasks at hand. Introducing and using multiple
states of operation with reduced energy consumption in return for reduced functionality is the core
technique for energy-efficient wireless sensor node.

The main task of a sensor node is to sense information and transmit it to a sink node. In order to
accomplish this task, one solution possible can be for each node to transmit its data directly to the
sink node. However, if the network is deployed in a wide region, this one hop transmission is costly
and nodes die very quickly. Another approach is to use multi-hop forwarding. In the common multi-
hop configuration, sensor nodes form a routing tree, each node forwards data of its own and its
children to its parent in the tree.
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Chapter 2
AGENT ARCHITECTURES AND BEHAVIORAL ANALYSIS OF

PETRI NETS

Abstract. In this chapter is presented the background and the motivation for the research addressed
in this thesis. First some important agent-based system architectures in Section 2.1 is revised; this
works correspond to the related work for proposals from Chapter 3 and Chapter 4. Section 1.2
mentions the most important works related to the proposal presented in Chapter 5 and an algorithmic

approach for the simulation of TCPN is the reference for Chapter 6.
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2.1. Agent-Based architectures
There are several proposals for agent-base systems architectures. Three approaches are addressed:
Agents as intentional systems, agents as abstract machines and agents as dynamical systems. All of
them proposes a way to model internally an agent and how interact with the environment and other

agents.

2 1.1.Agents as ntentional systems

In this approach, agents are endowed with: beliefs, desires, and intentions (BDI). Its behavior is
predicted and explained through these mental states. Three of the most important works in this are
described in the following lines.

[Ingrand,1992] presents a generic architecture: the Procedural Reasoning System (PRS). It consists
of a database containing the systems current beliefs about the world, a set of current goals, a library
of plans or procedures (Sequences of actions) and an intention structure (Plans chosen for execution
at run time).

In proposal [Bratman,1998] a high-level specification of the practical-reasoning component for a
resource-bounded rational agent is presented. This architecture has four key symbolic data structures:
a plan library, and explicit representations of beliefs, desires, and intentions. Additionally, the
architecture has: a reasoner, for reasoning about the world; a means-ends analyzer, for determining
which plans might be used to achieve the agent's intentions; an opportunity analyzer, which monitors
the environment in order to determine further options for the agent; a filtering process; and a
deliberation process.

The proposal [Fisher,1996] called INTERRAP, combines the BDI style and a layered architecture.
It models the agent’s ability to interact, react, deliver and cooperate (With other agents). INTERRAP

describes an agent by its world’s interface, control unit and a knowledge base.

Z 1.2.Agents as aostract machines

In proposal [Feber,1996] a general theory of action in networked agent systems not based on
agent’s mental states is presented. It relies on a clear distinction between influences, which are
produced by agents’ behavior, and the reaction of the environment. This theory describes complex
interactions between situated agents. It provides specific tuples and functions to describe and evolve
the internal state of an agent and a networked agent system.

In work [Yu,2006] an ADL (Architecture Description Language) for a multi-agent system
(ADLMAS) is proposed. It adopts Object-Oriented Petri nets (OPN) as a formal theory basis.
ADLMAS can visually and intuitively depict a formal framework for networked agent systems from

the agent level and society level, describe the static and dynamic semantics, and analyze, simulate
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and validate networked agent system and interactions among agents with formal methods. It studies
a networked agent system from the point of view of software architecture.

In [Coleri,2002] a modelling methodology for a sensor network is proposed. They present how to
model TinyOS (Event-based operating system for sensors) through a hybrid automata. Once an agent
is modeled, some properties like the reachability problem can be verified using HyTech (a tool for
the automated analysis of embedded systems). A simulation of a sensor network is provided and an

energy conservation analysis over this example.

2 1.3.Agents As dynamical systems

In proposal [Bos,1999] a networked agent system is seen as a collection of distributed control
system or decision makers operating on a dynamic system. A visual scheme and generic equations
are proposed to describe the internal agent state and its communication with other agents.

In [Bosse,2007] is presented and integrative approach to simulate and analyze complex systems
integrating quantitative, numerical and qualitative logical aspects within one expressive temporal
specification language: Leadsto. Also, it proposes techniques for analysis of hybrid systems.

HICA [Fregene,2001] combines concepts from hybrid control and networked agent systems to
build agents which are especially suitable for multimode control purposes, applicable to diverse
domains. The HICA agent essentially consist of an intelligent agent built around a hybrid control
system core which is intended to provide a ‘bare-bones’ structure to facilitate controller synthesis.
The HICA agent combines deliberative planning/coordination with reactivity.

In [Negenborn,2006] a networked agent model predictive control for transportation networks like
road traffic networks, power distribution networks or water distribution networks is presented. These
transportation networks are considered at a generic level, at which commodity is brought into the
network at sources, flows over links to sinks, and is influenced in its way of flowing by elements
inside the network. This work considers both continuous and discrete elements, as control goals
includes avoiding congestion of links, minimizing costs of control actions, maximizing throughput,

etc.

2.1 2. Discussicn and proposals
The most part of these works are generic tools to be used in a wide range of applications
[Ingrand,1992], [Bratman,1998], [Fisher,1996], [Feber,1996], [Yu,2006], [Bos,1999], [Bosse,2007]
and [Fregene,2001]. They can be seen as descriptive ways to formally specify an agent’s internal state
and their interrelationships with other agents and its environment. Modeling is their primary

objective, some of them go beyond and present simulations through an example.
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The first proposal of this thesis (Chapter 4) takes inspiration of the works [Ingrand,1992],
[&ml”t]md[ﬁsher,l%]indlesenseofpmsmtinamodularway,ﬂlcimemalmmrcof
mngmtmmdelhgﬁnmcwmkpopouddiﬁ'usﬁommeseworksmmemmmbnofme
evolution of an agent; it is not based in logic aspects as in them, its evolution is established through
generic functions to express continuous and discrete events.

Trying to find a way to specify formally these generic functions (second proposal Chapter 4),
several works regarding to represent an agent with continuous and discrete dynamics where study:
[Feber,1996), [Yu,2006], [Bos,1999], [Bosse,2007], ([Fregene2001], [Coleri, 2002] and
[Negenborn,2006).

Formalism like [Feber,1996] introduce its own abstract machines, and [Yu,2006] uses the
formalism of Petri nets. The advantages of use a proprietary formalism is that they can be more
suitable to the problem, and tools like Petri nets are necessary to extend and adapt; but some previews
studies in these nets, allows further analysis and simulation.

Works like [Bos,1999], [Bosse,2007] and [Fregene,2001] allows to specify an agent as a set of
variables evolving through differential equations, in the same way as the formalism of Petri nets there
is interesting theory to introduce analysis techniques in the networked agent systems. Works like
[Coleri,2002] and [Negenborn,2006] are completely focused in address a specific problem; the first
one analyzes energy consumption and the other one controls the flow between agents. In particular
[Negenbom,2006] it’s an interesting work; here the hybrid dynamic of each agent is modeled with
mixed linear integer programming The behavior of a THPN, formalism taken for the second
proposal; it is governed by discrete and continuous events and calculate the evolution of these events
is not an easy task The third proposal starts here, as a way to characterize this net’s behavior. The
developed work has been in TCPN, the continuous part of the net. Focused in this line, the following
section presents several works regarding this.

2.2 “.gorithms and matnematical formulations to describe TCPN's behavior
2 2.2 >peec cacu at or algorthms

In [David,2010] five algorithms of speed calculation for one IB-state are presented, which serve
as an algorithmic tool for TCPN simulation. The calculation of the ifs must be performed by solving
a linear programming problem (LPP) in each IB-state. The set of constraints for the LPP depends on
if the net has or has not conflicts.

The constraints in the LPP are the following:

e Cl. Speed limits. mfs
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e C2. Non-negative balances. For empty places their marking must not be negative, so the
output flow must be equal or less than the input flow.

e C3. Transitions whose instantaneous speed is zero and surely firable transitions. Some
weakly enabled transitions may not be fired because all its input places could not receive
flow, so the firing velocity for these transitions must be set to zero. In nets with structural
conflicts, in order to obtain this information it is required to solve several times a LPP. This
restriction is needed as mentioned before in Section 1.2.3, Case E.1.

Solving the LPP implies maximize Yy jeT Vj given C1,C2 and C3.

If the net has not conflicts, then the set of constraints is obtained with Algorithm 1 (See below).
The following four algorithms require several passages (several computations of a LPP) in order to
obtain the ifs. All the algorithms receive as input data the incidence matrix, the mfs, and the marking
at the beginning of the IB-state. For TCPN with conflicts is necessary to provide the conflict
resolution rule. The output of each algorithm is a vector containing the ifs.

The general characteristics are summarized in Algorithms 1-5. Also an additional iterative
algorithm is used to obtain the information for all IB-states. At the beginning, this algorithm divide
the complete net according to some rules and the ifs of each subnet is calculated by one of the 5
algorithms according to its structure and conflict resolution if the subnet requires it.

Algorithm 1: Finding ifs in TCP\ without structural conflicts

IW: w: ”y"" MD
Output: ifs
1. Determine C3 for not firable transitions according to the flow propagation through the net according

to the current marking.
2. Solve the LPP.

Algorithm 2: Finding ifs in TCPN\ with structural conflicts solved by priorities

Input: W, mfs, My, conflict resolution

1. Determine C3 for not firable transitions in several passages based on the priority resolution rule
established.

2. In each passage solve a LPP to determine if a transition with less priority can be fired in the next
passage.

Algorithm 3: Finding ifs in TCPN\ with one structural conflict of two transitions solved by sharing

Input: W, mfs, My, conflict resolution
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Output: ifs

1. In a sharing between two transitions T, and T2, speed vectors are calculated successively assuming
that T)<T; and later assuming that T,<T,.

Algorithm 4: Finding ify in TCPN with structural conflicts and without a circuit solved by sharing

Input: W, mfs, M, conflict resolution
Output: ifs

1. With this kind of structure it is possible to calculate the speeds dividing the net in three subnets:
transitions and place in conflict, the upstream subnet from the transitions in the conflict and the
downstream subnet from the transitions in the conflict.

2. First, the ifs for the upstream subnet is calculated, then the ifs for the transitions in the conflict, and
finally the ifs for the transitions in downstream net. For the upstream and downstream subnets any
previous algorithm can be used. And for the transitions in the conflict a procedure iterative is given
to share the input flow between the transitions in the conflict.

Algorithm 3: Finding ifs in TCPN with structural conflicts solved by sharing and priorities

Input: W, mfs, M,, conflict resolution

Output: ifs
1. Each net is divided into groups (subnets). The ifs of each group are calculated separately using any
of the previous algorithms.

2.2.2.First order hybrid Petri nets
First-Order Hybrid Petri Net (FOHPN) is a formalism very similar to Timed Hybrid Petri Nets in
which the continuous part dynamics is piecewise constant like in TCPN. However it has two slightly
differences: a) it is used mainly to solve some optimization problems, by allowing the transitions to
take values between an interval to compute the ifs. b) the continuous part of the net is only disabled
by the discrete part.

2.2.2.1, Controlling FOHPN
In [Dotoli,2008] and [Balduzzi,2000] several linear programming models are proposed to control
the continuous part of the FOHPN when it has a fixed discrete marking (Operational mode). The
authors provide a technique to maximize flows in the continuous transitions and minimize stored
flows in the places; several examples for the manufacturing area are presented. In this work the
solution found is a piecewise optimal solution. When there are conflicts in the net a more general
schema than the resolution established in [David,2010] is proposed; furthermore the optimization

function itself gives the policy used en each IB-state.

2222 FOHPN Decomposition technique
In [Nishi,2009] a general decomposition method for transition firing sequence problems in FOHPN

is proposed. The dynamics of the net is formulated as a MLIP problem, and this problem is solved
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with a decomposition method. Regarding the modelling there are two interesting features: a) the
complete behavior is represented through linear equations, and b) the time in the model evolves in
fixed discrete time intervals; usually a small value is chosen. At the end of this stage the obtained
results, the marking evolution and the firing speeds, are numerous, and an additional procedure is

necessary to identify each IB-state. This MLIP is used to optimize time to reach a desired marking.

2.2.3 TCPN Event-Driven control
In [Julvez,2004] a strategy to control a TCPN as an event-driven mixed logical dynamical system
is proposed. The main difference with the preview work (besides of the kind of nets) is that the time
evolution is driven by the occurrence of events in the TCPN; this reduces the number of steps to reach
an optimal sequence. Also this work presents several optimization criterions, for example time to
reach a desired marking and throughput maximization. When there are structural conflicts
(<{P}.{T\, T2}>) in the net the resolution policy is equal sharing([T1,T2]). For this case an example

with two transitions is presented.

- - =.Discussion and prcoosal

In Table 2.1 a brief summary of the works described before as well as our proposal is presented.

Related Work Objective Solution | Optimization Time Class of Policy
criteria Modeling net Resolution
[David,2010] | Compute ifs, | LPP TCPN Priorities (Any
marking, IB- structure)
state Sharing 2
duration transitions any
structure, 2 or
more transitions
with a structure
without a
circuit)
[Dotoli,2008] | Optimization | LPP Optimal time, FOHPN | Ruled by the
in each IB- throughput, optimization
state. maximize function
flows
[Nishi,2009] Global MLIP Optimal time Discrete- FOHPN | Ruled by the
Optimization Time optimization
function
[Julvez,2004] | Global MLIP Optimal time, | Continuous- | TCPN Equal sharing
Optimization throughput, Time
steady state
Proposal Compute ifs, | MLIP Continuous- | TCPN Priorities
marking, IB- Time (Simple  Petri
state nets)
duration Sharing (Simple
Petri nets)

Table 2.1. Comparative: Related work and proposal

Most of the related works do not include a fixed policy resolution when there is a structural conflict,

with the exception of [Julvez,2004] where the considered policy is equal sharing for two transitions
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in conflict; however the situations in which there exist more than two transitions, such as the case C
analyzed in Section 1.2.2, are not addressed.

The proposal described in Chapter S presents a method for computing firing speed, the marking
and the [B-state duration in TCPN. It addresses a wider class of conflict resolution policies than those
handled in related works. Structurally these petri nets can be simple petri nets, in which each transition
may be involved in at most one conflict. Both sharing and priorities policies involving any number
of transitions are dealt. Although this proposal has common features with works described above,
such as the use of MLIP and time management, the proposed method copes with more general
structures that include conflict resolution policies. Furthermore, the method allows the systematic
statement of the MILP.
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Chapter 3

MODELING FRAMEWORK FOR NETWORKED AGENT

SYSTEMS

Abstract. In this chapter a general architecture [Gudifio-Mendoza,2011] for a subclass of
networked agent systems is presented. First, properties of the modeled system are presented. Then
the general structure of an agent is defined as well as the structure of the multi-agent system.
Furthermore the agent internal architecture and its internal state representation are presented. Later
communication between agents is described. And finally, a case study illustrates the proposed

schemes.
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3.1. Properties of the system
The proposed architecture is a multipurpose agent system, which is a modular representation where
the dynamics of each entity of the system is represented by the interaction of continuous and discrete
variables [Gudifio-Mendoza,2011]. Some relevant properties represented by the architecture are:
e Closed system; it is not possible to introduce additional agents. The number of agents is
fixed.
o The topology is fixed; each agent knows its neighbors all the time.
e The communication between the agents is one-hop nearest neighbors and bidirectional.
o Each agent in the system is an autonomous agent with computation, actuation, sensing,
and communication capabilities.

e No agent is controlled by another one.

3.2. General structure of an agent and a networked agent system
An agent 4; can be defined as a 3-tuple <P, E],S;>. Where:
e P;is the vector of perceptions; the messages received from others agents and the signals
received from the environment are mapped into this vector, P; = [Pip | Pic], where Pip(j)
€ N and Pic(j) € R.
e El is the vector of external information; each agent maintains and evolves the information
perceived through this vector, this information contains the outside agent’s perception, EI;
= [Elp | Elc], where Elp@) € N and Elic(j) € R.
e S is the vector state of the agent; it contains all the basic internal variables to describe the
agent, S; = [Sip | Sic/, where Sip(j) € N and Sic(j) € R.
The networked agent system can be described as a directed graph G = {4, E}. Where:
A = {A,, A, A, ...} is the set of agents in the system.
E c A x A defines the topology of the agent network. The pair (4; 4;) € E if the agent 4, can

receive information from the agent 4.

3.3. Agent internal architecture
From an external point of view, the agent processes information coming from sensors and messages
sent from other agents; then it produces actions that may affect the environment and sends messages
to other networked agents. The scheme of Figure 3.1 describes the main components of an
autonomous agent and their relationships. Every module performs a key function in the behavior of

the agent.
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Figure 3.1. Agent Architecture

Environment Information. This repository stores the information received from other agents or
from sensors. The perceived information is local; the agent cannot know the overall system state.

Perception Function. This module maps the information stored in Environment Information into a
hybrid vector P-

Evolution Rules for EI (External Information). This module contains a set of rules to update the
vision that the agent has from the outside.

Evolution Rules for S (Agent’s state). This module performs the evolution of the agent’s state S.
The state is influenced by the hybrid vectors EI’, P, and the current state S. These rules and the
Evolution Rules for EI are fixed; they do not change during the evolution of the system.

Communication Function. This function performs pertinent actions on the environment and/or
sends messages to other agents according to values of the hybrid vectors /E”, S, and P.

The interaction between the modules is performed as follows. An agent can receive information
from outside through sensors or messages. This information is stored in the repository Environment
Information. Through Perception Function, the received perceptions are mapped in a vector named
P, allowing translating the received information into continuous and discrete variables.

The module Evolution Rules for EJ, takes as input current values in £/, S and P to evolve the vector
EI to EI'. According to the new values in EI’ and the current values of S, the state evolves to S’
through Evolution Rules for S. In this new state, actions and messages can be sent to the outside
though the Communication Function module Agent internal state representation

State representation and updating is an important feature for the agent operation exhibiting

intelligent behavior, since most of the decision making functions are based on agent’s state.
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In general, the state evolves according to the dynamics of the diverse internal behaviors represented
for achieving the assigned tasks. It can be viewed as a state equation in which a complex function f
= [fo foc fep fc] computes the next state:

> (Elp.Sp,Pp)

| fcELSP
Sco | fop(ELS,P)

" (Ele,Sc,Pc)

fo : Represents the pure discrete dynamic of the agent. Fp : Elp X Sp x Pp -> Sp. Sofj) € N.

Fpc: Represents the discrete dynamic of the agent influenced by continuous and discrete variables.
Fpc: EI xS x P > Spc. Spc(f) € N.

Fcp: Represents the continuous dynamic of the agent influenced by continuous and discrete
variables. Fcp: EI X § x P -» Scp. Sco(j) € R.

F¢: Represents the pure continuous dynamic of the agent. Fc : Elc X Sc % Pc -> Sc. Sc(j) € R.

Figure 3.2 presents in more detail the module Evolution Rules for S, showed in Figure 3.1. In this
module the agent state is evolved. EI’, S and P are the inputs to the module. Each vector is
decomposed in its continuous and discrete parts. All the discrete parts (Vp) are evaluated in the
function fp to produce the discrete part of S’ (Sp ). Pre is a verification vector of the discrete elements
and Post is an output vector of the discrete elements. With the function fpc evolves all the discrete
states Spc, influenced by the continuous and discrete variables (Vc, Vp). Pre verifies the discrete part
and EVc evaluates the continuous elements to produce g, a continuous function to specify the behavior

of the continuous part.

o i Vo { If Pre(V,) is verified
= otherwise
e
Elc
VorVe | foc= {Post if (Pre(Vo)A Ev(V()) = T )
s l Spc, Otherwise rrm
So [t r So
Te SE
Vos Ve gV, if (Pre(Vp) AEv(V())
Sc,, otherwise

| | Po ?ﬂ
L {h(v

Figure 3.2. Module Evolution Rules for S
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fep updates Scp, continuous part influenced by the continuous and discrete variables (Vc, Vb).

Finally fc is a continuous function to evolve the pure continuous part of the state Sc.

3.4, Interfacing

A message sent between the agents can be specified by a 4-tuple <4;4;, TM,SI> where:

e A, is the agent who transmits the message and 4; is the agent who receives the message,

both 4, 4; € A.

e TM e {0,1}; where 0 means agent 4, request a task from agent 4;, and 1 means that agent

A; informs an status to agent 4;.

e Sl is a vector containing the information sent, SI=/SIp, SIc], where SIp(j) € N and Sic(j)

e R.

3.5. Acase study

In this section an illustrative example related to a sensor network application is dealt. This example

is based on that presented in [Franceschelli,2011]. The purpose is to solve the consensus on the

average value measured by agents in a sensor network through a gossip algorithm based on broadcast.

The network topology is fixed, thus each node knows its out-degree at any time. Each node can be

then either transmitting information, receiving information, or in an idle state during the process of

computing the average of the sensed value of sensors.

The network operates iteratively as follows:

One transmitter node I is chosen randomly and it broadcasts its state value Sxi(t) to
all neighbor nodes to whom agent I is able to communicate. Also, it broadcasts a
value Sz(t) and the number of all nodes that receive information from node I (Sout;).
The transmitter node 1 does not change its value of Sxi(t) while it resets to 0 the
companion variable Sz(t).

The receiver node j update their Sxj(t) by computing the average between their own
value and the received state value. Fur.thermore, it corrects its updated value by a
fraction of their companion variable Szj(t) by adding up several terms, designed to
preserve the average of the network at each iteration while converging to the average
of the initial measurements.

For the idle nodes that neither transmit nor receive information, both variables Sx

and Sz remain unchanged.

Besides the previous specification we consider an additional feature: the battery level of each node

is computed as a function of the agent activity (messages transmitted and received).
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Now we can define a model for the system based on the proposed framework. Two kinds of basic
agents are defined, one to model the transmitter, receiver, and idle nodes (Agent A), and other to
choose the transmitter node (Agent B).

Agent A has the vectors: Perception (P4), External Information (EI,) and State (S,). These elements

are shown in Table 3.1. In the perception vector P, the discrete variables are: Pb, Pe; and Pa.

=

\ Vector | Variable | Domain Description
‘ iPb {0,1} Perform Broadcast
\Pe; {0,1,2} Status of Agent 1
{0,1,2}
P4 Pen {0,1,2} Status of Agent n
Pa \Pa € E [Transmitter agent’s index
Px R ISxpaq value
Pd R Szpa/Agent Pa outdegree
[Eid {j|(Z;j) € E} [Neighbors of agent
[Eie; {0, 1,2} Status of agent 1 € Eid
Ela I8 {0, 1,2} , .
Eien {0, 1,2} Status of agent n € Eid
ST Sensed value (Average)
1S4 Sz Companion variable
ISb R Agent’s Battery

“Table 3.1. Vectors for Agent A

e Pb indicates if the agent is a transmitter node (it will emit the broadcast).

e Pe; indicates the received status of agent j; agents j are all the receiver nodes to whom
agent i is able to communicate. For this variable: 0 means that the agent j has not executed
the calculation, 1 means that the agent j has performed the calculation, and 2 means that
agent j is out of battery.

e Pais the index of the transmitter node, as a reference for the receiver nodes.

e The continuous variables are: Px and Pd these variables are the sent values Sx and Sz/0u;
from the transmitter to the receivers.

o External information vector EI4 has only discrete values.

e Eid maintains a list of all its neighbors (It remains unchanged during the execution since
the topology never change).

e Eie; maintains the status of agent j. This information is relevant for the transmitter node.

e The state vector Sy is composed by the continuous values Sx, Sz, and Sb for the value of
level battery.

Some status variables like Pe, and Eie; are not modeled in [Franceschelli, 2011], but they are
necessary to coordinate the behavior of each agent.
Table 3.2 shows the relationship between the messages and the conditions to generate the messages

sent by Agent A. The first message is sent by the transmitter to request a calculus and the two
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following messages are sent by the receivers to indicate their status to the transmitter. The last
message is sent by the transmitter to the Agent B to indicate that all the agents have performed the

computation and a new transmitter can be chosen again.

Message Condition
{i,0,{i,Sx,Sz,|Eid)}}, Wherej € Eid | Pb=1
LPa,1,{1}} Pa<>0ASbhb>0
{I:Pa’lv{z}} Pa<>0ASb=0
{LB,1,{1}} (Eie;=1|| Eie;=2) A ... A (Eies= 1) Eien=2)

Table 3.2. Message Function for Agent A

The vector perception changes according to the received messages. This relation is shown in Table

3.3. The evolution rules for El, are given in Table 3.4.

Variable | Value Condition
Pb’ 1 {B,i,0,{1}}
0 Otherwise
P |v_ (il
0 Otherwise
Pa’ a {a,i,0,{axa,za,da}}
0 Otherwise
X {a,i,0,{axa,za,da}}
K Otherwise
| za/da | {a,i,0,{axaza,da}}
10 Otherwise

l'able 3.3. Perception Function for Agent A

Variable | Value
Eid’ Eid
Eie;’ Pe,
Eien 4 Pen

Table 3.4. Evolution of External Information for Agent A

The evolution rules for § are given in Figure 3.3. Observe that the state is continuous, but the
influence is continuous and discrete. The agent’s battery level has been expressed as a function (g))

of its own battery when the agent is receiver, and as a function (g2) of its own battery level and o,

when the agent is the transmitter.
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Er_,|
Eld' X = [ (Sx+ Px)/2 + (S2/2) +(Pd/2), If Pb=0 ASb >0
Sx , Otherwise
sl
S Sz’ = | (Sx - Px)/2 + (52 /2) +(Pd/2), If Pb =0 ASb >0 o' H>
Vo, Ve 0 LifPb=1A Sb>0
Sz , Otherwise LY 4
Sb’
Sb’ = g,(Sb) LifPb=0ASb>0
g2(Sb, |Eld’[) LIfPb=1ASb>0
P — ﬂ 0 , Otherwise
| '

Figure 3.3. Evolution state for Agent A

Vector | Variable | Domain Description

Ps Pe A Transmitter agent Status

Elg Eia {jlj € A} | Set of agents system (4)

Sz Sr A Agent chosen randomly to execute broadcast

Table 3.5. Vectors for Agent B

Message | Condition
{B,Sr’,R,{1}} | Pe=1

Table 3.6. Messages function for Agent B

Vector | Variable | Value | Condition

" 1 {LB.L,{1}}
Fi ik 0 Othewise
Table 3.7. Perception function for Agent B
Vector | Variable | Value Condition
Y , Random(Eia) | Pe =1
S d Sr Otherwise

Table 3.8. Evolution State for Agent B

The purpose of Agent B is to select the transmitter agent. The agent has the vectors shown in Table

3.5. The messages function, perception function, and state evolution are shown in Table 3.6, 3.7 and

3.8 respectively.

27



Chapter 4
MODELING NETWORKED AGENT SYSTEMS USING TIMED

HYBRID PETRI NETS

Abstract. The work presented in this chapter deals with the modelling of networked identical
agents. A framework for modelling this kind of systems specified by timed hybrid Petri nets (THPN)
is presented. The state of an agent, expressed as a set of variables that can be either integer or real
valued are represented in a THPN model, as well as their updating functions. The framework is

illustrated through a case study regarding a sensor network. [Gudifio-Mendoza,2013].
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4.1. State representation
The networked agent system evolution (mA4) can be seen as a THPN where the evolution is
performed by the fundamental equation, where the marking will be the state of the system, and the

incidence matrix will establish the inner relations of each agent element (WA4') and the communication

between the agents (WR).
(10) WA 0 O
mAg =mAy+| 0 - 0 |WR|'s
0 0 wa"

According to the agent generic scheme described in Figure 3.2 the agent state evolution (m4,) can

be represented by the following equation:

11 MmSy; mSey
i _ |mEl| _ |mEly [WA‘I i]_BAi]
mAr = mP, | | mPy, + 0 WR R!

mctz mCﬂ

The marking in each agent represents its own state (mS), its knowledge about environment and
other agents (mEI), and its relations with other agents (mP and mC). The incidence matrix is divided
in two parts: WA' establishes the relation among the elements of the agent itself and WR’' its
relationships with other agents. The vector S4’ contains the number of firings for discrete transitions
and the firing velocities for continuous transitions; all these transitions are inner part of the agent. SR’
includes transitions that mark (unmark) places to transmit (receive) information between agents in
communication; also, these transitions can be related with mS or mEI, a required marking for their

firing.

4.2. Sensor networks representation

4.2.1.Generic sensor node representation
The Figure 4.1 shows the THPN model for a sensor node; it represents its basic parts:
Communication (P11-P16, T11-T18), sensor (T6), memory (P7-P10, T9-T10), and battery (P1, T1-
T6). There are also three operational modes (P2-P4). Basically, the memory part is modelled with
two places, one of them controls the capacity of the memory (P8) and the other one the stored
information (P7); this data comes from the sensor (T6) itself or from other sensors (P16, T18). This
component has also a mechanism to transmit only when there is sufficient information in the memory

(P9); similarly when there is enough space in the memory, incoming information is allowed (P10).
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Enabiing_Memory_Recelve

Figure 4.1 State representation for a Sensor node

The communication component is modelled by a mutual exclusion structure through places (P11-
P12). When there is enough information to transmit (Min_Data_T) the sensor can transmit its data
(P13). When the sensor has enough space in the memory (Min_Memory_R), it marks place (P10)
indicating that it is ready to receive (P14); places (P15) and (P16) represent the transfer of information
from one sensor to another one.

For this model three basic operational modes are considered: idle, receive, and transmit. The sensor
may switch from one operational mode to another, but this switching has a cost in time and energy
(P5-P6, T4-T5). The battery (P1) discharges according to the current operational mode (T1-T3) and
also due to the sensing operation (T6). Table 4.1 shows a summarized description of the THPN nodes;

using this notation the state evolution is described in the following section.

Component | Nat Description Node Component Nat Description Node

Battery C Battery PI(Bl) Memory C Memory P7 (M1)
C Discharging_Battery C

Transmit TI Memory_Capacity P8 (M2)
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C Discharging_Battery D Memory_Ready_
Receive 12 Transmit P9 (M3)
& Discharging_Battery D Memory_Ready_
Idle T3 Receive P10 (M4)
D Discharge_Battery_ D Enabling_Memory_
Cost_I-T T4 (dl) Ready Receive 79
D Discharge Battery D Enabling Memory_
Cost I-R TS5 (d2) Ready Transmit TI0
Sensor D Communication D Enabled_Internal_
Sensing 76 (d3) Transmission Pll (Cl)
Operational | D D Enabled_Internal _
Mode Idle P2 (©Oml) Reception Pl2(C2)
D Transmit P3 (Om2) D Allow Transmit P13 (C3)
D Receive P4 (0Om3) D Allow_Receive Pl4(C4)
D Transition Idle- C
Transmit P5(0m4) Transmitted_Data P15 (C5)
D Transition Idle- C
Receive P6 (Om5) Received Data P16 (C6)
D Change Idle- D Enabling_Internal_
Transmit 17 Transmition Tl5
D Change_Idle- D Enabling_Internal
Receive T8 Reception Tl6
D Change_Transmit_ C
Idle 111 Transmiting Data T17
D Change Receive_ C Receiving_Data TI8
Idle TI2
D Stay_Transmit_
Mode Ti3
D Stay Receive Mode | TI4

Table 4.1 Basic set of constraints for a TCPN

The making evolution for the sensor node can be described by the following marking evolution equation:

Oml,;
Om5,,
M,
M4,
Clp
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In the initial marking My, max_B and max_M define respectively the maximal battery and maximal

memory capacity for the sensor node.

S contains a count of the number of firings from T1 to T2 and the firing velocity for continuous

transitions; for this net the discrete places only can have at most one mark, so D-enabling degree

always will be 1 or 0; thus, the maximal firing speed for continuous transitions is zero or the flow rate
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associated with Tj. The flows fdt, fdr, and fdi are the battery discharging flows corresponding
respectively to the states transmit, receive, and idle; flows ft and fr are the flows to receive or transmit
data. The vector d represents the delays associated to discrete transitions, especially s, denotes the

testing frequency for the sensor node.
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Chapter 5
COMPUTING THE SWITCHING DYNAMIC BEHAVIOR OF

TCPN usING MLIP

Abstract. The behavior of timed continuous Petri nets (TCPN) can be ruled by linear equations
during certain time elapses (IB-states), but changes in the marking and conflict solving policies make
non linear the complete computation of the behavior. In this chapter the switching behavior of TCPN
is analyzed through Mixed Linear Integer Programming (MLIP); basic constraints sets for TCPN

without conflicts and with structural conflicts are considered, as well as cyclic structures.
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5.1. Characterization of the behavior of a TCPN

The MILP is stated according to parameters issued from the following data: Incidence matrix (W),
initial marking (Mp), mfs (¥), maximum time of computation (1C), minimum (sE) and maximum (bE)
durations for an IB-state, marking upper bound of places (mM), and number of IB-states (X).

The marking upper bound of places (mM) along ¢C is a necessary information regardless the
boundedness of the Petri net. The calculation is performed for a period of time (#C). At the beginning,
the number of IB-states is not known although it is at most 2!, where [P| is the number of places in
the TCPN. KX can be initialized to 2F. When the computed IB-states have the same ifs vector, they
correspond to an actual IB-state; it is illustrated in Example 2.

The examples presented in this chapter were solved by a PC i7-2600 3.4Ghz using the CPLEX
12.4 package solver running under Matlab 7.9.0. [Cplex,2013].

5.2. TCPN without structural conflicts

The Table 5.1 describes the first set of constraints in the MILP for analyzing a TCPN without
structural conflicts. Constraints (13), (14), (16), and (19) are still nonlinear, in the following section
the transformation to linear constraints is presented. The evolution marking (12) is expressed through
the vector fi (13) those entries represent the flow of every transition in an IB-state k. This bilinear
relation is transformed into a linear one using relations (2) and (3)-(6). The ifs (14) acts as a selector
between all the possible values that it may have; it considers the mfs and all the input flows from the
input places to each Tj(15). Through discrete variables (A) only one value is selected (18). If the
transition has input unmarked places, then the minimum flow is chosen according to (14) and (15),
and for the non negative marking in places (22) is used (empty places input flow must be bigger than
or equal to the output flow). If a place is marked then this flow must not be considered (Restriction
(16)). If all the input places to a transition are unmarked and its input flows are equal to zero, then
the transition must not be fired; this is stated with restriction (17), which considers case D illustrated
in Section 1.2.3. dt is discretized according to sE (Minimum duration for an IB-state); with this, it is
possible to transform the nonlinear restriction (13) into a linear one. Restriction (21) is an upper bound
of the total duration of the results. Finally, the optimization function tries to find the biggest amount

of time for each IB-state.

Evolution marking 12) myy,=m+W-f,

Flow in the interval time k (13)  fr = dtyg

Instimtaneous firing speed (14) Vs = Vi Aygjo + Z BNt
Vi = [Via - Vi) Fiet,
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(15)

- (Zrpeep, Post(P, Ty) - Vin)

I‘ Pre (P(, T])

where P, € °Tj

(16)

if [m(P,) > 0,VP, € °Tj or °T) = @] - [Ay 0 = 1]

17)

if[mP)=0 A I, =0,YP, €°Tj]| - [}, = 0]

(8

P+1

z Aypja=1
i=1

Duration of time k IB-state

19)

[logz (bE/SE)]
Aty = sE Z 28 Qe
i=0

20

[log2(bE/sE)]

Az,k,i 21
i=0

Maximum time of
computation

21)

K
Z At; < tC
i=1

S.L

22

0 <my; < mMax
0y, <V

my, v, Aty ER

A €{01}

Optimization function

23)

K
M(le= ZAti
i=1

The idea of restriction (14) is illustrated in Figure 5.1. All the places are unmarked, which means

Table 5.1 Basic set of constraints for a TCPN

that T, is weakly enabled and T) Tz and Ts are strongly enabled. The constraints used to calculate the

ifs are shown in the Table 5.2. Notice that T;-Ts fire at their maximal speed, thus the firing of T,
depends on the input flow from Pi(I;=3), P2(1=2) and P3(Is=1) and its own mfs (V4=4); flows 4, 3,

and 2 cannot be chosen because this would cause the marking of place P; become negative (its input

flow is 1), so the selected value is vs=1.

Figure 3.1. TCPN to illustrate the basic set of constraints
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Constraints
L 3 11,0! Al'o =1
VvV = 2 Az'o, Az.o =1
V3 = 1- Ag'o, 13.0 =1
Vg = 4'14,0"'3'14'1 +2'A4.z + 1'14,3
Aot +tA,,+A3=1
Solution
vy=3v,=2,13=1v,=1
Table 5.2. Constraints and solution for Figure 5.1

5.2.%.Linear constraints for ogical and nonlinear restrict:ons
The bilinear relations (13) and (14) and the logical sentences (16) and (19) are equivalent to the

linear constraints presented in Table 5.3. Variables initialized as AC are additional continuous

variables.
Nonlinear constraint Equivalent linear constraints
Flow in the interval time k (13) o fom "'"%':”""“ vk €[L.K]
=V dt ' =3 u
fe k k @5 AC1,, — Max(vy)- A2, S O
26) ACl,, —SE-v <0
N —ACLy, + SE - v, — Max(vy) - (1 —2;3,) S O
Instantaneous firing speed (14) ) Ve =V Auat ). A2y
rET)
Ukj = Vi kot Z I~ Ay i 4 ol e ¥
Pi€°T; 6y —AC2yy, +SE-I;— Max(l) - (1 —Ayu ;) SO
A 32) s(1- )-mM
I-nstantaneous firing speed (16) e/ :: = A;.:'f':)-z
if [mi; > 0] > [y =0]
Instan firing speed 69
. Caneos g (]9) z m(Py) + Z S (1= Ay )" Mnx( z m(Py) + z v,,_,)
lf [mu =0A Il' =0, VP, € 01; ] o5 peEc, TeTey ) ne,
- [Vk.l' = 0] ’ r;, m(PU) +r;¢, et e i
36) n n
DAy S(1-24) (9 +‘u'"'"(z‘w)
= J=1
6 =
Yty 2(1-20) +2a (S
08) L,_‘,s(x—z.,)w,

Table 5.3 Nonlhinear constraints for a TCP\ without conflicts expressed in linear constraints

The equivalent constraints for (13) and (14) are the same because both contain a binary variable
multiplied by a continuous variable. Chapter 2 can serve as reference for these transformations as
well as for (16).

A strongly enabled transition can be fired at its mfs because of (16) and (18). Also these constraints
allow the condition of weakly enabled; but when there is an unmarked cycle, with just these
constraints is not enough. See TCPN for Figure 3(a), Case D, it has only one IB-State where ifs is [0,
0], but without constraint (19), there are two possible solutions [0,0] and [1,1], any of them satisfy all
constraints. This is why (19) is necessary.

The transformation of (19) requires some definitions [Desel, 1995]. Let F a flow relation on P U

T, based on the incidence matrix. A circuit of a Petri net is a nonempty sequence x; ... x; of nodes
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which satisfies(x;, X2), ..., (Xn, X1) € F and no elements (except x;) occurs more than once in it. Let
C,and G, the sets containing the elements of two circuits, if C; & C3, C; is called maximal circuit.
Let T, a transition in a relation Pre(P, Ti), where P; € C; and Ty, & C;, then T, € TC;. Where T(;
represent the set of all transitions connected to the circuit C; that eventually could mark it.
In order to establish the transitions whose ifs will be zero, it is necessary to find all the maximal
circuits in the net. And for each transition included in a maximal circuit the following clause must be
added:

Zmu+ v._,—O]v v[z my;+ ij= ]—»[vm=0].where1‘,eC,,...,and1}EC,.
PE€G,

This is equivalent to (19); in other words it means: For each maximal circuit (Cy, C3, ..., C)
containing transition 7, it is necessary to verify if the circuit is unmarked (the term Xp.ec, my; in (45)),
and if it does not receive any other incoming flow that could mark the circuit (the term Zr,erc, vi; in
(45)). If this is true for at least one circuit in which 7} is involved, then its ifs must be zero.

Let’s see an example. Figure 5.2 shows a TCPN with two maximal circuits C; = {P,T5,P,,T3 }
and C; = {Ps, T,, P, Ts }, all the places are unmarked and V=[3 3 1 2 1]; circuit C; can be marked by
T,, so TC, = {T,}. Adding these constraints to the MILP, the solution shown in Table 5.4 can be
obtained. In spite of the unmarked places in C,, through T;; v,, v, and v3 acquire velocity; which
does not occur with v, and vs, C, is unmarked and it will remain like that.

Constraints Solution
[ml+m2+v‘l =0]—>[v1=0]; [m1+mz+v1=0]—)[v3=0]; 7" =3,Vz = 3,173 = 1,1’4=0,75 =0
[ms + my = 0] - [v, = 0]; [ms +m, =0] > [vs =0]

Table 5.4 Constrains for Figure 11
Constraint (39) is still nonlinear; it is transformed to the basic constraints shown in Table 5.5.
Constraint (40) associates an additional binary variable to each marking and velocity involved in a
circuit; the results of the disjunctions are assigned to other logical variable A, (41); and it only remains
to verify: if A4 is true then ifs for 7; must be equal to 0 (42).
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Figure 5.2. TCPN with two maximal circuits

Basic logical sentences Linear constraints
(40) [ (34) and (35)
Z m(Py) + Z Vii = 0| & [A3p; = 1]
P{EC; T(ETC;
@A) [k =1]v.vise; = 1] o e =1] (36) and (37)
42)  [Ax=1] > [, =0] (38)

Table 5.5 Equivalent logical sentences for (39)

5.2.2.Examples

These examples are based on the same structural model without conflicts (Figure 5.3). Its behavior
is stated using the basic constraints (12)-(22) and the optimization function (23). The information that
represents each IB-state is computed and listed in the Table 5.6: (IB-S) is the number of the IB-state,
dt is the duration of the IB-state, v is the ifs, and m is the marking at the end of the IB-state. The value
between parenthesis in each case is the time required to compute the results.

Example 1 shows the information of the two IB-states covered in 20 units of time. In Example 2,
K was increased to show how two consecutive IB-states (1 and 2) have the same ifs; this information
must be interpreted as one IB-state. In Example 3 the initial marking was modified to show what

happen if the time of computation cannot be covered by the given number of total IB-states (K); in
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the last IB-states (In this case is 2) the ifs will be 0 and the marking will remain the same as in the

previous one.

P1 gy

Figure 5.3. Basic TCPN without conflicts

. Results

Initial data 1BS [at | v [ m
Example 1 (0.2001 s)
M~[60000010) 1 6 [221020] [[006600190]
V=(331221]
1C=20, sE=1, bE=20, mM=50,K=2 |2 14 [111020] [[00620014330]
Example 2 (0.1930s)
M~[60000010) 1 1 [221020] [[50110040]
V=[331221] 2 5 [221020) [[006600190]
1C=20, sE=1, bE=20, mM=50,K=3 |3 14 [111020] [[00620014330)]
Example 3 (0.0470s)
Mo=[00000010] 1 0.5 [000020] [[00000100]
V=[331221] 2 195 [000000] |[00000100]
tC=20, SE=0.1, bE=20, mM= 50, K=2

Table 5.6. Several examples for TCPN of Figure 5.3
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5.3. TCPN with conflicts
In the following two sections some additional constraints are presented in order to compute the ifs
for transitions in a conflict SC= <Pc, Tc>. The TCPN can have several conflicts in its structure but
only one place can be involved in just one conflict as well as the transitions. This means that for a
TCPN with the following conflicts SCy,SCy, ..., SCs the sets Pc; N Pc;...NPcg =0 and Tcy N
Tcy..NTcg = 0.

5.3.1.Resolution by priorities
For a TCPN with a conflict SC= <Pc, Tc> where the conflict is solved by priority (T:<T2<...<Ty),
constraints (43)-(45) replace restriction (14).

L Vi,j = ViAo + Z Ici* A i
PiE°T;

(44) [P, & Pc] - [Ic; = L]

(45)

[Pie Pc] = |Ic; = 1; — Z vy

| ThETc and Th<T;
Table 5.7. Set of constraints for a TCPN with resolution by priority

The basic idea is illustrated through the example of Figure 5.4. This net has the resolution rule
T,<T3. The constraints that determine the ifs for T, are (43) and (16); this value only depends on the
mfs, there is no place restricting the flow. For transitions T; and T; the constraints (43) and (45) are
applied. The ifs of T2 (with the highest priority) is computed by consideringjits maximal speed and
the incoming flow from P;. The ifs of T3 (with low priority) is computed by considering its own mfs
and the remaining flow in P; after satisfying v»; thus vs=0.

T

P1

T2 T3

Figure 5.4. Basic TCPN without conflicts

Constraints Solution
"= 1- 11‘0
V2=2'12,D+1'2.2'1 V1=1,172=1,‘|I3=0
v3=1-230+ (1 —2) A3

Table 5.8. Constraints and solution for Figure 5.4.

53.1.1. Examples
For examples 4 and 5 the resolution rule T4<Ts is applied (Figure 5.5). In order to solve this model,
constraints (12), (13), (15)-(22), (43)-(45) and optimization function (23) are considered. In Example

4, conformed by only one IB-state, there is not actual conflict; this is because the flow of the two
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places in conflict is limited by places P, and P; respectively. For Example 5, the two possible
behaviors for a transition in conflict are shown. Three parameters have been modified Mo, ¥ and k.
Each IB-state shows different characteristics; the first one with all places marked, all the transitions
go at the mfs; in the second, P; becomes empty and it makes Ts weakly enabled, then P; limits the
flow of Ts to vs=2. After 8 units of time, place P, becomes empty and the resolution rule is applied;
Ts must reduce its ifs to 1, satisfying first the flow v4=5 for Ts.

Figure 5.5. TCPN with a conflict resolution by priorities

.. Results

Inltlal duta BS [at] v [ m
Example 4 (0.0630 s)
Mo=[000] 1 20 | [26222] | [0400]
V=[26253]
tC=20, sE=1, bE=20, mM= 50, K=1
Example 5 (0.0310 s)
M~[6101] 1 1 [56253] [[680]
V=[56253] 2 [] [56252] [[600]
tC=20, sE=1, bE=20, mM=50,K=3 |3 11 [ [56251] [[6011]

Table 5.9. Several examples for Figure 5.5,
§.3.2.Resoiution by priorities ir a cyclic TCPN

These nets are similar to that in case E.2 in Section 1.2.3 and the calculation of ifs requires some
additional constraints. The idea is based in the iterative Algorithm 2 presented in Section 2.2.1. The
calculation of the ifs for one IB-state is performed in several passages | = 1, 2, ..., s. Fora TCPN with
a conflict SC= <Pc, Tc> where it is solved by priority (7:<72<...<T), s passages will be required.
In the first passage | = 1, all the transitions in the conflict are forced to fire at 0 except T1 (53), v, =
0,v;, =0,v3=0,..,v, = 0. For passage | =2,v3 =0,v, =0,...,vs, = 0 and so on; in the last
passage | = s no transition is limited. In each passage, the ifs is computed as for a TCPN with conflicts
solved by priority (46)-(48); an additional variable called balance Bc of the place in conflict Pc is
calculated (49)-(51); this value represents the remaining flow in Pc after the firing all the transitions
in the conflict that are allowed to fire. If Bc >0, then T is allowed to fire in the next passage. In each
passage one transition in the conflict having the highest priority may be fired (53), but their ifs always
will be limited by Bc (52). The remaining flow after fire the transitions with the highest priority. The
ifs of the last passage will be the ifs of the IB-state (55).
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(46) vlk,] = Vj . Al,k.o + z Ilcl ' Al,k,].i

P(€E°T;
(47) [P ¢ Pc] > [l'cg=1)]
@3 '
[P[E PC]—) IlCl' =ll(— Vlh
ThETC and Typ<T;
49  B'.=1I'¢;—0'q
L Erer PostPuT) wen) peeT,
Pre(P,T))
1)
OlCi = Z ‘Iilh
VRETC
(52) s S
B'c + Z V‘k.j = z V“ik'j
j=2 j=2

(53 Vvj>l, v, =0
(54) Wherel=1.2,..s
(55) ‘Ilk'j = 'I’Sk‘j

Table 5.10. Set of constraints for a TCPN with a circuit and resolution by priority

3.8.2:1 Example
Example 6 (Figure 5.5) shows the results of the computation of the MLIP with constraints (12),
(13), (16)—(22), (46)-(55) and the optimization function (23). This net has the resolution rule
T1<T»<Ts. In the first two IB-states there is no actual conflict the ifs for the transitions in the conflict
are the mfs. In the IB-state 3 the incoming flow I; only allows firing T; at maximum. The last IB-state

v is restricted to 1.

Figure 3.6. TCPN with a conflict and a circuit, resolution rule by priorities

. Results
Initial data 18-S ] At l " | =
Example 6(0.3280)
Me=[00212] 1 [231115] [[3380]
V=[231115] 2 [231111] {[04100]
3 10 [200110] | [01400]
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1C=20, sE=1, bE=20, |4 6 [100100] | [01400]
mM-= 14, K=4

Table S.11. Example for Figure 5.5
5.3.3.Resolution by sharing
In a TCPN with a conflict SC= <Pc, Tc> which is solved by sharing ([ouT), 02T3,...< asT5),
restriction (14) is substituted by (56)-(57). The idea is to characterize the three possible cases
presented in Section 1.2.2. Restriction (56) is in fact the same than (14); it means that for all the

transitions not involved in a conflict the calculation of vj remains the same.

68 if [Tj € Tc] o ve; =V Ayp o+ Z I A e

P(E°T;
GV if [Tj eTc] = pevyj =V Aygjo + Z Isg = Ay g
P(€°T;
(58) o (Zr,eop, Post(Pu ) - viep)

Is; where P, € °Tjand P, # P,

Pre(P,T))

(59) N
if [ pevy; < ’C] vIme > 0] - [vy, = pevy, ]
(60) elsei=1 o vi=1]

(61) lf [vk,i = pCVk‘j] - [3 ApVp 2 dle‘]

(62) else lf [Vk.i < pCVk’i] A [vk,h < pcvk,h] 4 [dj‘l’] = ahvh]
where Tpe Tc
Table 5.12. Set of constraints for a TCPN with a circuit and resolution by sharing

In this solution policy it is introduced a new variable called previous calculus of v; , pcv; (57). It
stores the limit flow of v;without considering the input flow from the place in conflict (58). The block
if...then (59)-(62) represents the constraints that must be considered according to some conditions.
As mentioned before, the assignation to v; must be restricted differently when one of three cases is
presented:

e There is no actual conflict (Case A from Section 1.2.2), v; = pcvj, (59)

e There is an actual conflict no matter how the input flow /c is shared among all the transitions
in Tc, the total flow must be assigned to all of them (60), similarly to Cases B and C (Section
1.2.2). I, = vy + v5 + vg = 3 . And then:

o If some transition in Tc is restricted by other flow different from Pc, this is because
there exist at least other transition taking more than its corresponding portion. See
Case C.1. [v, = pcvy] = [vs 2 v4],v4 =1, = 0.5, vg = 1.25; recall that in this
casea; = a; =az = 1.

o If there are two transitions in the conflict taking less flow than the previously
calculated, then the portion taking from Ic must be shared according to the resolution
rule. In Case C.1 [vs < pcvs] A [vg < pcvg] = [asvs = agg), vs = vg = 1.25.
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For case C.3, the constraints apply in the following way: pcv, + pcvs + pcve = 0.5+ 3 + 0.4 =
3.9 > I; so there is an actual conflict, constraints (60) and (61) must be considered. T4 and Ts cannot

consume its corresponding flow from I (the shared place), since both are restricted by other input

’
places. The restriction (61) applies for both [v, = pcv,] = [vs 2 v, ], v, =1; =05, v5 = 2.1

and[ve = pcvg] = [vs = Ve ], v4 = I; = 0.4, vs = 2.1; in this case restriction (62) does not apply

because there are not two transitions taking less flow than the previously calculated pcv. Restriction

(60) assigns the value 2.1 to vs.

5.3.4.Linear constraints for :ogical restrictions

Table 5.13 summarizes the equivalent constraints for each nonlinear equation presented in the

previous section.

Nonlinear constraint Equivalent linear constraints
No actual conflict (59) (63)

s e = Z pevg 2 Min z pevy | Asey
- T/€Tc T/€T¢
if Z pevy; < lk.c] V[me > 0] - [vi; = pevy] (64)

= Ie= Y. povey < —mM+ | Max| Y pevy, | +mM |- (1= 2eu)
Tj€Tc Tj€Tc
(65) My < (1= Apc) - mM
(66) me = (Aguc—1)- ¢
(67) —15*, + 17_.,,1 <0
(68) “Anc +Azxy SO
(69) Asuy +Aene = Aray S 1
79 Vi S PCU
ay Vig—peviy 2 —E+ (Vi + ) - Ayuy
- 1) T 5
Actual con?lct (60) Y o= 1o £ (1= ) Max (Z = ,‘)
else [Xi,vi=1] = =
) = =
ZV,—I, 2 (1-245,) ~Max Zv, =1,
=1 AYET N
Partial rule application (61) 74) Pevgy = Vi 2 Vi Ague t 20 (1= Agy,c)
5 _ - 1s) PeViy — Uiy S (1 - Ague) " Vi
'f [Vk,)' = pa’k,j] =2 [3 ApVgp 2 ajvk.i] () O Vi = By Vi 2 Vi  Agque + € (1= Aggue)
) @ Vi = @y Vip S Vi (1 — Agque)
) i
D done SECHD Ao,
) H;-cl
z Aogre Z hoxe
q=1
B0 =2y ) + (1= Do) FApone 2 1
Rule application(62) :Z BV — By Uy S (1— Ali.k.(l.p) * Max(a, - vy, ; " vyy)

3 _ Vg — B Vg 2 €+ (Min(a; v —apvyp) — €) - Ay
else lf [vk,]' < Pcvk,j] A [vk.h < pcvk,h] - [a]'vk,l' - (83) = Vg + @y Uy S (1= Agppgp) Mﬂx(’“( 5 ":.( —ay* vk.y)-'
ahvk,h,]- where TheTc (34) =@y Vg + @y Ve 2 £+ (Min(ag v — @ Vip) — ) Apap

(85) Vis = PV 2 Min(veg = pevi)  Auags + €1 = i)
36) Vit = PCViy S Mﬂ-"("k.l —pevi) - (1— Azes)
87 (Arie = 1) + (oot = 1) + (yzap = 1)+ A 21

Table 2.13 Nonlincar constraints for a TCPN with conflicts solved by sharing expressed as linear

constraints

The constraints are described for TCPN with one conflict SC= <P¢, Tc> which is solved by

sharing ([ou 7y, o273 ...< asTs), but it can be easily extended to cases where there is more than one

conflict.

These nonlinear constraints can be translated in two steps:
1. Associating to each clause an additional logic variable and creating a dependency relation

between these statements.
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2. Translating these more basic logical relations using Table 4 into linear constraints.

Table 5.14 summarizes the conversion for constraints (59) and (60). 4s is true when the input flow
in the place in conflict is not enough to satisfy the flows for all the transitions in the conflict (93); s
is true when the place in conflict is unmarked (94); 4 is true when there is an actual conflict (95); v,
will always be at most pcv, (96) whether or not there is a conflict, but when there is no conflict the
flow chosen must be pcv, and this is achieved with constraint (97). Additionally, when there is a
conflict the incoming flow L. must be shared among the transitions in the conflict (98).

Basic logical sentences Linear constraints

(38) £ (63) and (64)

ZWUSIC © [Asy,; = 0]
@) [m> 0] o [ere = 0] (65) and (66)
%0) Arxc =11 © [Ask; = 1] A [Aepc = 1] (67)-(69)
O) v <pwy; (70) and (71)
92 [17.&4: = 0] -> [Vk.i = PCV.J]
3) s (72) and (73)

[171‘ = 1] - Zﬂi = ’C]

i=1

Table 5.14 Equivalent logical sentences for (59) and (60)

Table 5.15 summarizes the conversion for (61) into logical sentences. In (94) the equality vy ; =
PCv,; is associated to a binary variable As; (95) allows to associate a binary variable for each pair of
transitions in the conflict; ,0=1 means there exist at least one [ahvu, = ajvy, ,—]; now only it remains
(97), which means: if there is a conflict (i,=/) and the transition is taken the flow previously
calculated (vy; = pcvy;), then there exist at least one transition taking more flow than it is allowed

(a,,vu, = a,-v,u-).

Basic logical sentences Linear constraints
6y Asxe = 1] © [k = pevi] (74) and (75)
25 Aoyip=1] & [a; vh; —ap-vip < Of;where T, # T, (76) and (77)
6) 2 (78) and (79)
Mrose =1] = [Z Aoxip Z ll
q=1
o) M7 = 1] Al ke = 1] = [Aaonc = 1] (30)

Table 5.15 Equiv alent logical sentences for (61)

In Table 5.16 it can be found three equivalent logical sentences for (62). In (98) a true value is
assigned to 4;; when the sharing policy applies to two transitions in the conflict. In (99) 4, is true
when the ifs for a transition is lower than the previously calculated. Finally, in (100) if there is a
conflict (A7=1) and two transitions are taking less flow than the previously calculated (4;,=1) then its
flows must accomplish with the sharing policy established.
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Basic logical sentences Linear constraints
98) Aakip = 1] A [al ‘Vgi = QpVkp = 0];Where T #Tp (81)-(34)
%9 Aapi = 1] © [vied <pevy, (85)(86)
(100) Apre = Y A fAizpes = 1] A [higpep = 1] = [Aiapip = 1] t1))

Table 5,16 Equivalent logical sentences for (62)
5.34.1. Examples

In the model of Example 7 (Figure 5.7), the set of constraints (12), (13), (16) -(22), (56)-(62) and
optimization function (23) are considered. The resolution rule [Ts,Ts,Ts] is applied. In the first IB-
state, T\, T2, and T go at their mfs, then Is=9 must be shared among T4, Ts and Ts, but there are other
considerations: T is limited by Is=2 and Ts is limited by its own mfs (Vs=1), which causes v4=2 vs=1
and the remaining flow from Is ve=6; at the end of the IB-state P; becomes zero and Ps has increased
its marking. In the second IB-state, these events disable T; and the vector ifs for the transitions in the
conflict remain unchanged. In the third IB-state, P; and Ps become empty, which disables T, T3, T4
and T; only T> and Ts goes at their mfs. At the beginning of the last IB-state only Ps is marked, Ts is
strongly enabled (vs=1), and all the other transitions are disabled; this period ends after 40 time units.

Figure 5.7. TCPN with a conflict and resolution by sharing

. Results
Initial data 1B-S I At l 5 I 0
Example 7 (0.0780)
Mp=[109030000] 3 [2910216] [46300012]

V=[2910319]
tC=50, sE=1, bE=50, mM= 90, K=4

2 [290216] [0450000]
5 [090010] [0000400]
40 | [000010] [000000]
Table 5.17. Example for Figure 5.8

W N -

Example 8 (Figure 5.8) deals with a TCPN that includes a circuit in its structure; this case it is not
considered by the algorithms proposed in the related works presented in Section 1.2.3. This is a net
where the resolution of the conflict (<{P2},{T4,Ts,T¢}>) depends on the computation of some other
transitions (T1,T2,T3) and this calculation, at the same time, depends on the computation of the ifs for
the transitions in the conflict. This behavior is calculated using the same set of constraints as in

Example 6. The flow propagation in this net is as follows. At the beginning only Ps is marked at this
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point, then only Ts can be fired at 4 (its mfs), P;, P, and P; are fed, then Ty, T2 and T3 can be fired at
v1=3, v;=4 and v3=3 respectively; now P4 and Ps are fed at 3, allowing the firing of T4 and Ts. Now,
there is not actual conflict Ts, Ts and Ts go at the mfs; with these flows T can go at its mfs 6. This
final result it is correctly calculated by the MLIP model. After 1 time unit, Ps becomes empty and

then there is a conflict; the places marked are P,,P; and P3, 50 vi, vz and v3 go at the mfs, and then the

flow Is must be shared among the transitions in the conflict, thus v4=vs=vs=2. At the end of the IB-

state, Py and P; become empty and P4 and Ps become marked; so in the following IB-state, the

transitions in the conflict again share the incoming flow I;=6 (va=vs=vs=2); now T and T are weakly

enabled, so its ifs depend on /; and I; respectively, thus vi=vs=2. As it can be noticed the fourth IB-

state presents the same values for v and m; this means that the TCPN has reached an equilibrium state.

T4 C——O

P2
O

Figure 5.8. TCPN with a conflict and resolution by sharing

o Results
Sniisl d 1B-S | At | v m
Example 8 (0.3580)
M~[000040] 1 1 [[363343] [[141000]
V=[363343] 2 1_[[363222) |[[040101)
tC=10, sE=1, bE=10, mM=5,K=4 |3 6 [[262222] |[04010]]
4 2 [[262222] [[040101]

Table 5.18. Example for Figure 5.8
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Chapter 6

SIMULATION OF NETWORKED AGENT SYSTEMS MODELS

Abstract. This chapter presents a scheme for executing the model of a networked agent system
modeled as a THPN. It is based on the modeling presented in Chapter 3, 4 and also in the MLIP
solution presented in Chapter 5. At the end, a study case about distributed energy household networks

is presented.
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6.1. Overview
Modeling a networked agent system as a THPN can result in a huge net; thus performing the

calculation of the ifs for the continuous transitions is a complex task whose computational time
increases exponentially with the number of places and transitions. The herein proposed scheme allows
developing systematically the necessary software to simulate a networked agent system modeled as
a THPN. This scheme is composed by two main parts; the first one is the computation of ifs for all
possible macro-markings in a THPN, which is implemented in Matlab using the solver Cplex. The
second one is a procedure to compute the agent’s IB-states implemented in Java using the
development framework JADE.

This simulation is based on the assumption that all the agents are identical; consequently, the
complete THPN model will result in several identical structures interconnected. Then the calculation
of the ifs can be performed over the THPN model of one agent, and later considering the agent
interactions; thus the number of equations to solve the state’s networked agent system will be reduced.

Several considerations must be taken into account for creating a simpler way to compute the state
of the agent’s system:

e Referring to the networked agent system:
o The number of agents is fixed
o The agent network topology is known and does not change during the system’s operation
o The continuous interactions between agents are performed only in one direction,
meanwhile the discrete interaction can be in both ways
o Regarding the agents:
o They are identical
o In the THPN, the continuous part is ruled by linear equations and the discrete part
enables/disables the continuous part
¢ and regarding the Petri net:
o The Petri net structure is a simple Petri net, it means that each transition can only be
concerned by one conflict at the most

o The discrete part is 1-bounded

6.2. General description system
This section presents a general description of the proposed scheme, starting with the explanation
of the main functional units, following with the detailed activities performed by these units, the class

design for the Java part, and a small example to illustrate a particular implementation, where it can
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be seen from the modeling part, the input information to the system, the generated ifs table for an

agent, and the agent action and interaction with other agents to perform the simulation.

6.2.1.Functional units
As mentioned before, the general objective of the scheme is to perform the simulation of a THPN

model as a networked agent system; the input data includes only THPN matrix information; then a
csv file with the IB-State information for the complete system is obtained.

The use case diagram from Figure 6.1 shows the main functional units of the system. It can be
divided in two main parts: one of them, represented at the leftside, is performed in Matlab

environment (Instantaneous Firing Speed for macro-makings) and the other one in Java (THPN

Simulation).
s THPN Simulation
for macro-markings
MLIPP formutation ] %
Modeler
Problem solution
<<include>>
ifs table Upload information

Figure 6.1, Use case diagram

In order to perform an agent networked system simulation, the modeler can use the methodology
from Chapter 3 and 4 to represent the system as a THPN; this information is uploaded into the
simulation environment. The ifs for macro-markings perform the functions described in Table 6.1 to

obtain an ifs table, this table contains all the possible ifs for a THPN.

Use Case Description

MLIPP formulation | With Pre and Post matrix, My, maximal firing speeds V, and policy resolution data
given by the modeler, the system can construct a set of constraints according to the
structural characteristics of the net.

Problem solution Using CPLEX solver, the solution from the MLIPP is found.

ifs table With the solution given, the ifs table is stored in a csv file.
construction

Table 6.1. Functional uuits from ifs for macro-markings
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The simulation of each agent can be performed through a Java program. Table 6.2 describes the

necessary functions to run this simulation.

Use Case

Description

Upload information

In order to perform a simulation, the following information is needed: ifs table, Pre
and Post (Representing one generic agent), WA = Pre-Post, WR (incidence matrix that
represents agent communication), dTiming (timing associated to each discrete
transition), My (Initial marking), the hybrid function and also the simulation time. This
information is represented in an internal form.

Agent simulation

All the necessary agents are created; each one of them is going to perform a part of the
simulation for the agent system. At the beginning, all of them receive the same input
information (since they have the same structure), but the initial marking; this can lead
the agents behaving differently, in despite of be identical.

Each agent can operate in two ways according to its operation mode (Leaf or no leaf).
In both operation modes they deliver at the end of simulation the IB-state information:
initial marking, ifs, and the IB-state duration d¥.

Initial events This process is executed at the beginning for all agents; it performs initial immediate
discrete events.

Leaf behavior This behavior is performed by agents who do not receive input communication; they
can independently obtain its own IB-state information.

No leaf behavior This other behavior is performed by agents receiving input communication. They must

always be listening for changes in the input flows from incoming neighbors.

i 2

Table 6.2. Functional Units from THPN simulation

2.2, Activities step oy step

Figure 6.2 shows the general activity diagram of the complete software. This diagram details the

activities and actions performed in each use case described before; the name of activities that appear

underlined will be described later. The ifs macro-makings procedure performs the following steps:

reads the input information, represents it in an internal form, creates the necessary information for

each variable in the problem, constructs the equations, solves the problem, and finally the information

is presented to the user in a csv file. For the THPN simulation, after the input information is read, all

the agents are created, each agent perform the simulation of its part, and when all the agents are finish,

the simulation ends, and the IB-state information is obtained.
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ifs macro-markings

Load and represent

internally
Pre matrix
Post matrix
MO
v
policy resolution

Creata information for
each varisble Name

Type {continous,
discrete). Upper bound

==
(==

THPN Simulation

Load snd rapresent
internally
Pre matrix
Post matrix
WA = Post-Pre
WR
ifs table
dTiming
MO

[There is no
more agents
to create]

{There are more
agents to create)

:

[Not all the
agents have
been killed]
[All the agents
have been
killed)

Store ifs table

Figure 6.2. General activity diagram

The activity Agent Setup establishes agent’s initializations; the activities performed in this part are

shown in Figure 6.3.
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Agent Setup

4

rIrmrrully store wt]

arguments
\_

( Setinitisl values:

dt=infinite
#ibstate=0
\ abstime=0
fin neighbors >0]
Modify WA acoording to
WR

:

Create incoming
nd] neighbors' names

v

Add Initial events and
no leaf behavior

I

Add Initial events s
leaf behavior

- A

[Out neighbors >0}

Figure 6.3. Setup Agent activity diagram

When an agent is created, at the beginning, all the information regarding to its THPN is stored in
an internal representation, also the variables df, #ibstate and abstime are set at their initial values,
abstime makes reference to its own time. In the first [B-state when the information is still not
calculated, the duration of the IB-state, is considered as infinite. For agents with incoming neighbors;
it is necessary to modify WA matrix to add the corresponding incoming transitions, this information

is obtained through WR. A list with all the incoming neighbors is created and also the procedures
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Initial events and noleaf node behavior are set. For agents with no incoming neighbors the procedures

Initial events and leaf behavior are added. At the end, if the agent has outgoing neighbors, a list with

their names must be constructed for future communication.

The underlined procedures Initial events, leaf behavior and no leaf behavior are described in

Figures 6.4, 6.5 and 6.6 respectively. Initial events performs any discrete event occurring in time 0

and send a message to all outgoing neighbors with discrete communication.

Initial events

disoete events

.
()
:

Send a messngetoall]

Determine initial ]

outNeighbors with
disorete communication

Figure 6.4. Initial events activity diagram

Leaf behavior is for those agents with no incoming neighbors. The main activities are made in a

General Node Procedure, it performs the necessary steps to construct the information for the IB-state.

After this procedure is done, if it is not the end of simulation, its time is updated (abstime) and the
agent behavior is blocked until df has passed, otherwise dt is updated to accomplish with the time of

end of simulation, and the agent is killed.

54



Leaf behavior

?

8

(..,..mm,..

[tis notthe end
of simulation]
[itis the end of simulation]
Bloaﬂh:wutld] ~ g
IB-state, at the end of
\ simulation )
N 4 ~
Save IB-state
Lil't:!luiuniﬂ(:wﬁle
~ v =)
Kill Agent
\. J

Figure 6.5 Leaf bebavior activity diagram

No leaf behavior starts getting the incoming messages; all the messages are stored. For the first IB-
state it is necessary to receive all the incoming messages (Discrete and continuous ones) in order to
obtain IB-state information, when it does not occur, the agent is blocked until it receives a new
message. If it is not the first [B-state or all the incoming flows were received, then the General Node
Procedure can be performed; if it is not the end of simulation the agent is blocked until it receives a
message or df has passed. Otherwise, as stated for leaf behavior. df is updated to the time of end of
simulation, and the agent is killed.
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No Leaf behavior

[Messages received]

Store messages

[dt has passed)

N

[itis notthe first IB-state or
all incoming messages
were received]

Update abstime and dt
acoording to the
message received

[itis the end of
Update dt from the last

|B-state, at the end of

simulation

[itis notthe end of
simulation}

Seve |B-state

information in v file abstime = abstime + dt

[itis the first IB-state and not all
incoming messages were received]

Blook until the agent
receives a r ge or dt

has passed

Figure 96. No Leaf behavior activity diagram

Notice that both behaviors, leaf and no leaf, share a common procedure: General Node Procedure.

Figure 6.7 presents its steps. First the marking at the current IB-state is calculated, the last [B-state
information is used to do that (marking, ifs and discrete events); of course, if it is the first IB-state,
the initial marking is considered; from here, ifs can be obtained. Now, it is necessary to determine the
following discrete and continuous events and then d# is set to the value of the minimum event. Finally,
if the agent has outgoing neighbors and there is a change to communicate, like a change in the
outgoing flow from a continuous transition or the firing of a discrete transition, then a message is sent

to the outgoing neighbors; otherwise the number of IB-state is increased.
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General Node Procedure

5\

[itis the first

[itis notthe first
I1B-state]

the begining of the
current |B-state

I

Iculate the marking -j

IB-state]
v v

[ Get v from ifs table

[Out neighbors = 0]

[Out neighbors=0]

Update v with
incomming flows

Determine the follwina
continuous and discrete

\ events Y,
' \
Calculate dt
. J

v

Store the |B-state W
information: m, v, the
next disaete events and
dt

-

J

[No out neighbors or
there is nothing to

[The agent has out neighbors and there was

a change to communicate]

Send a message to all
outgoing neighbors

]

communicate

E‘IB«State = #IB-Stste-»q

Figure 107. General node procedure activity diagram
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6.2.3.Class diagram
Figure 6.8 shows the class diagram including the classes implemented for the THPN simulation.
The main class Init begins with the simulation, InputDataGui provides a user interface to introduce
the routing information, Simulation performs the agents simulation by creating the ThpnAgents
through class AgentContainer. This class includes: initialEvents, leafNode and noleafNode. For

further information about these classes and its methods please refer to Appendix A at the end of this

document.
Fow) [ & Simutatan™ ) [ G Rgentcantainer |
«Cal, ingiantnizs ik iiian e wrappor
& mang T O e 0 |—scot>
® showou) pp— & AgeniContoner()
- (oSmpleMatrix) © osiPattomListener()
© getName()
T ) / h fooer
v | e /| @ removePtattormLisiener()
,./ @ resume()
@ exstiBe) einstantistes 4 ° ste()
® pettt) L,’ < o suspend)
® get) P
@ geiNextEv()
® getTempo) :
° g0
® getv) : [FQTitalEvans |
& este) B Thersgers
@ saveToFleCSV) (
o sy A, iy B
® updatedt)) sy |
® updateNedEv() . dEVDO0
» dTrFiredn)
& genersiNodeProcedure() i
H vetAgertContaner) Themagent
- © action()
TS i o w0
P setagertContaner()
bbb S g M)
© getCurentinFlows() u setDA()
54 ! 0.1 ° dnstantistes Trenagent
© getValueDiscFre) ° o acton)
@ getValieFlows() ® done))
© reset()
@ setCurentinFlows()
@ storeMessages()

Figure 6.8. Class diagram for THPN simulation
6.2.4. 1llustrative example
This section presents a simple example to explain in detail the procedure described before. This
agent network is composed by four identical agents and its topology is shown in Figure 6.9(a). The

internal dynamics of each agent is represented by the TCPN in Figure 6.9b.

(a) Agent network topology (b) TCPN agent
representation

Figure 6.9, Networked Agent system
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Formally this networked agent system can be described by the directed graph G = {{A,A3,A3,
As},{(A2,Aq4), (A3,A4),(As,A1)}}. Figure 6.10 shows the connection nodes between the agents.

Figure 6.10. Networked Agent system

This configuration can be expressed by Matrix WR:

WR =

[l == =

0 01
0 00
0 00
0 10
In this example one place (P3) and one transition (T4) of every agent model will receive/transmit

flow from/to other(s) agent(s). Each column corresponds to T4 and each row to P; from each agent

respectively.
The incidence matrix WA’ for one isolated agent is:
-1 0 0 1
i_l0 -1 0 O
wa = 0 0 -1 0
1 1 1 -1

The perception and communication parts are unique, because of this, only one kind of message is
necessary <A, Aj,abstime, v;>. The complete networked agent system modeled with TCPN is shown
in Figure 6.11.

Once the system is modeled, it is necessary to compute all the possible ifs for each macro-marking.
For this, consider a TCPN generic agent. This piece of net must represent any agent in the networked
system. In order to determine all the ifs for the possible macro-markings, it is necessary to know all
possible incoming flows. The agent that receives more incoming flows is A4, so this agent will serve
as generic agent (Figure 6.12). The transitions I; and I, will represent all the possible incoming flows

that an agent of this net can receive.
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Figure 6.11. Networked Agent system modeled with TCPN
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Figure 6.12. TCPN Qenenc agent

Let us suppose V=[4 2 3 9] and the following initial marking
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e mA~=[100050]

e mA;={02000]"
e mAs=[01000]7
e mA=[0000]T

The sequence for simulating this scenario will be presented for clarity in several sequence
diagrams. Figure 6.13 shows the interaction with ifs macro-markings, to obtain ifs table.

BE=E #s macro-mankings

getifsTable(): o files

[ —

Figure 6.13. Ifs macro-marking sequence diagram

This piece of net has not conflicts so basic constraints (12)-(22) can be selected to obtain Table
6.3. The first 16 rows consider the incoming flow 0. From here, now it is possible to know a{l the
values for vs (the outgoing flow, that at the same time will become the incoming flow for other
agents), these possible values can be 0, 4, 6, 7 and 9. A new computation is needed, considering all
the 2-combination, but in this particular case considering only I;=4, ,=0 and 1,=0, =4 is enough to
cover all the cases because V3=3, and any incoming flow bigger than 3 will not generate a different
table than the one presented in the rows 17-32.

# Macro- Incoming ifs Outgoing
7 Flow Flow
P | P2 | Ps | Ps L+Lk vi | v2 | vi | vs V4
1 0 0 0 0 0 0 0 0 0 0
2 0 0 0 1 0 4 0 0 9 9
3 0 0 1 0 0 4 0 3 7 7
4 0 0 1 1 0 4 0 3 9 9
5 0 1 0 0 0 4 2 0 6 6
6 0 1 0 1 0 4 2 0 9 9
7 0 1 1 0 0 4 2 3 9 9
8 0 1 1 1 0 4 2 3 9 9
9 1 0 0 0 0 4 0 0 4 4
10} 1 0 0 1 0 4 0 0 9 9
11 1 0 1 0 0 4 0 3 7 7
12] 1 0 1 1 0 4 0 3 9 9
131 1 1 0 0 0 4 2 0 6 6
141 1 1 0 1 0 4 2 0 9 9
15] 1 1 1 0 0 4 2 3 9 9
16| 1 1 1 1 0 4 2 3 9 9
17{ 0 0 0 0 4 4 0 3 7 7
18] 0 0 0 1 4 4 0 3 9 9
191 0 0 1 0 4 4 0 3 7 7
201 0 0 1 1 4 4 0 3 9 9
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21| O 1 0 0 4 4 2 3 9 9
221 0 1 0 1 4 4 2 3 9 9
23|/ 0 1 1 0 4 4 2 3 9 9
24/ 0 1 1 1 4 4 2 3 9 9
25| 1 0 0 0 4 4 0 3 7 7
26 | 1 0 0 1 4 4 0 3 9 9
271 1 0 1 0 4 4 0 3 7 7
28| 1 0 1 1 4 4 0 3 9 9
29[ 1 1 0 0 4 4 2 3 9 9
30 1 1 0 1 4 4 2 3 9 9
3t 1 1 1 0 4 4 2 3 9 9
32( 1 1 1 1 4 4 2 3 9 9

Table 6.3. ifs Table

Once the ifs table is obtained, the THPN simulation can be performed. Figure 6.14 shows the first
steps; the initial procedure Init begins creating an user interface usrlnterface to obtain the location of
the files: Pre, Post, WA, WR, My, ifs table, dTiming, and the simulation time. Now the simulation
can be performed through the object sim. An object ibs from the class ibState is created to store the
IB-state information; the agents are created through the object mc (the agentController). For this
process each agent is created and startedby the object sim; the controller agent manages the interaction
with the objects Agents of the class ThpnAgent (“Create new agent” and “Start Agent™); this process
is not specifically described here because class AgentController is provided by JADE; for further
information the reader can consult JADE’s documentation [JADE,2014].

l Moceler l l “Init '

T Init) T

InputDataGui J I sim: Simulation i I ibs : ibState k | ler IAanL ThpnAgent
T

H InputDataGui() q!
L “Request filgfs location” | "Receiy i lorm the:
H
Simulstion{) ibStateq)
Aoenﬁo]:muevo
T1
Loop ) [Thre are more sgents to drefite]
G rgent)
return age ntroller . “Creste new agent”
Lo .
; "Start agent™
T T r T T T T

Figure 6.14. Initial steps THPN simulation sequence diagram
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For leaf nodes the agent must acquires leafNode behavior, otherwise it acquires noleafNode behavior
and create an inMsg object (Figure 6.15). For this example, procedure InicialEvents is not performed;
this is because the Petri net only contains continuous nodes. Following the example, leaf nodes are

Agents 2 and 3; and no leaf nodes are Agents 1 and 4.

Agent: ThpnAgent I "i‘:ﬂm1 : ' :noleafNode I :leafNode '
— = = —_— ——— e
att [ Agent is a leaf node ]
leafNode() .
inMessages() [else]

P

noleaf le()

|

Figure 6.15. Setup for agents sequence diagram

Each leafNode performs the following sequence (Figure 6.16): In the first IB-state v is obtained,
the next continuous event is calculated, the information is stored (#ibstate, Agent, marking, dt, ifs),
and if the agent has outgoing neighbors, a message to each one of them is sent. As mentioned before
the message contains <4, 4;,abstime, outputflow>. After the first IB-state, it is necessary to know the
last information stored, then v is obtained again, the following continuous event is calculated, and the
new IB-state information can be stored and sent to the outgoing neighbors as long as the outgoing
flow has changed. This process is performed until the end of simulation or when the last IB-state is
infinite. Finally, the last dt IB-state is updated at the end of simulation and all the IB-states

information are stored in a csv file. The agent is killed and this is notified to the AgentController.
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Agent lesfiode ' ibs - ibStste Agent nolesflode mc A Controlier
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Loop ' [ lbwﬂ‘@'dSvmulTAr or dt=infinite |
opt J [ 1t is not the fifst JB-state |
’f

gethiisiosiate- 1 ) Simpledlatix
getvi@iostate- 1 ) Simplehistrix
getCumiosiste- 1 Emclel.!r_n‘
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retum M. v. &t

setioSiste s, Agent m, ot 41

opt ) [ outtieigh>0 and ou w hes changed |

Senaly €

-poselusiBsisle- | Agent 3t

i

Figure 6,16 Action for leaf nodes sequence diagram

saveT oFileCSV i Agert)

Figure 6.17 shows the sequence of actions of no LeafNodes. There is a loop and it is performed
until the end of simulation. This loop is composed by two optional procedures: storage received
messages, when a message is received; or determine IB-state information, when d¥ has passed.

In the first [B-state dt is set at infinite, because it is necessary to receive all the information from
the incoming neighbors (Incoming flows or discrete fires). When all the incoming messages were
received and stored, then dt is updated at 0 and the second procedure can be performed: v is obtained,
the following continuous event is calculated, the information is stored (ibs, Agent, m, dt, ifs) and if
the agent has outgoing neighbors, a message to each one of them is sent.

In a posterior IB-state if a message was received it is stored, the last IB-state is updated, because
the end of this IB-state is going 10 be due to an external event, not because an internal event as
previously calculated. Then the second procedure can be performed. At the end of simulation, the
last dr IB-state is updated at the end of simulation and all the [B-states information are stored in a csv
file. The agent is killed and this is notified to the AgentController.



In figures 6.18 and 6.19 the marking evolution of each place and the ifs evolution are shown. The

data omitted is because it remains in zero.
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ifs evolution
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Ficure 6.19. ifs evolution

6.3 Case study

In this section a networked agent system for simulating energy households is considered. This is
academic example is based on the system functioning described in [Negenborn,2007]

The electricity systems of many countries are currently undergoing a process of transformation,
due to market liberalization and environmental regulations. New technologies such as renewable
energy and micro combined heat and power (0.CHP) are emerging [Pehnt,2006]. In particular uCHPs
allow becoming a household in a distributed energy resource, comprising power and heat generators
with its corresponding storage units. Households can operate independently of energy suppliers, and
they can buy and/or sell power among them.

Figure 6.20 shows an overview of the system under study. A pCHP can produce both electricity
and usable thermal energy. This uCHP consists of a conversion unit 1 which converts gas into

electricity and heat, and a conversion unit 2 acting as an auxiliary burner, producing only heat. Both

67



conversion units are equipped with built-in fixed controllers that are designed to keep the level of

heat storage between predefined upper and lower bounds.
The electricity is stored in a battery and it can be used directly by the household or it can be sold;
also it can be imported from another household. The generated heat is supplied to a heat storage unit

in the form of hot water, which is used for the own household.

Figure 6.20. Conceptual overview of the svstem

The network under study consists of five households with the topology shown in Figure 6.21. Each
one of them have a pCHP installed, this allows them produce, store, consume and interchange energy.
The arrows indicate the allowed electricity flows between households, but also discrete

communication is performed in both directions between them, for the electricity interchange.

Fiourc 6.21. Action for no leaf nodes sequence diagram

The internal dynamics of each agent is modeled with the THPN shown in Figure 6.22; the named
elements Td and Pd represent discrete nodes, and the elements Tc and Pc are the continuous ones.

This THPN models the four functionalities: Production, storage, consumption, and interchange of
energy between households.
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V10=0.05

Figure 6.22 Action for no leaf nodes sequence diagram

Electricity production (Unit 1) is modeled by Tci, and the heat production by Tc; (Unit 1) and Tc;
(Unit 2). The nodes Pds, Pds and Tds-Tds, turn on and off units 1 and 2. When the heat storage is
lower than 5, both units are turned on (Tds fires), when the level arrives at 7, unit 2 is turned off (Tds
fires); and when it arrives at 9, unit 1 is now turned off (Td- fires).

Electricity storage is modeled by Pc; and Pc;, fhese two places allow limiting the storage capacity
(For this example it is 6); in the same way Pc3 and Pcs model the heat storage (The heat limit capacity
for this example is 9).

Three different type electricity consumptions are considered through the day: at afternoon Tcs, at
night Tcs and at moming Tcs. For heat consumption, only one type of consumption is considered
during the morning Tc7. The discrete nodes Pdi-Pds and Td;-Tds, perform these changes.

Electricity can be exported using transitions Tcs and Tcy, and imported through transition Tco. The
discrete nodes Pds, Pdy, Pdio and Tds-Tdi2, allow interchanging energy. Figure 6.23 shows the
interconnection of agents between these nodes; for every agent only the interacting nodes of their

models are depicted.
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The purchase request from a household is modeled with Pds and Tds; when the place is marked
and the storage energy level is lower than 2, Td, is fired; this event marks the place Pds or Pdio from
another agent. For example: firing Tds from Agent 2, marks Pds in Agent 1 and Tds from Agent 3
marks Pdio in Agent 1. These events allow exporting electricity, enabling Tcs and Tcs in Agent 1.
After 4 units of time Tdy and Tds are fired, marking the places Pds in Agents 2 and 3.

Ay A,

- Az )
\ / 7—_\‘
—— " Sgu o Dl T ~
o1 / p P
/[ Pd4
Teo
Pd10, Tod

\é Td8 pyg \OPC’

TaE 2 !

Figure 6.23 Communication nodes in the networked agent system

Pd; share the enabling of two continuous transitions, Tcs and Tc;. When the continuous transitions
are enabled at the same time, the marking of Pd; influences the firing velocity of these transitions as
if the marks were split, by reducing their firing velocities by half (Refer to one server semantics in
[David,2010]). With the aim of do not increase the complexity to the presented model, the
instantaneous firing speeds of Tcs or Tc7 are never reduced, as if Pds was duplicated, just connected
to one continuous transition. These duplicated nodes are omitted. The same case applies to Pds, Tc,
and Tc,.

For the simulation, the flow rate and the timing associated to each transition are those shown in
Figure 5.23. The initial marking considered for each agent is:

e mA=[01000011003390]
mA>={0101000110024454.5]T
mA;=[010100011002.53.5454.5]T

e mA=[010100011004281]T
mAs=[010100011002481]T
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The following policy resolutions are considered: [Tc4, Tc5, Tc6] < [Tc8 Tc9], Tel0 < Tel and
Tc2 < Tc3. The energy units considered are kWh and the time for simulation is 24 hrs.
The simulation results are presented in the following graphs. Figures 6.24-6.28 show the energy

level storage for all agents.
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Figure 6.25 Levels of energy storage, Agent 2
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Agent 3
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Figures 6.29-6.31 present the energy production of units 1 and 2. The production only depends on
the level of the heat storage, influenced by the heat production and heat consumption both flows do
not depend of external events, only internal. Agents 2 and 3 start with the same initial marking for
heat storage, thus the graphs for Agents 2 and 3 are the identical; similarly this situation occurs for
Agents 4and 5.
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Agents4 and 5
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Figure 6.31 Levels of energy storage, Agents 4 and 5

Figures 6.32 and 6.33 present the exported electricity from agents 1 and 2, these corresponding
flows are the imported electricity from agents 2, 3, 4 and 5.
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Agent 2
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Figure 6.33 Exported electricity, Agent 2

The table 6.5 describes the events generated in each agent, the information is organized in the
columns: simulation time, agent, event occurred in the THPN, its meaning in the household system,
and the graphs where this event can be observed. Notice that the three first events are performed in

all agents, the electricity consumptions.

Time Agent Event in Meaning in the system Graphs
THPN
6 All Tds From afternoon to night Figures 6.24-6.28, data: Electricity
12 All Td: From night to morning Figure 6.24-6.28, data: Electricity
24 All Tda From morning to afternoon Figure 6.24-6.28, data: Electricity
16 Agent 1 Tds Storage heat level less or equal to 5. | Figure 6.24, data: Heat
It switches on unit 1 and 2. Figure 6.29
0 Agent 2 Tda Storage electricity level less or equal | Figure 6.25, data: Electricity
to 2. It starts importing. Figure 6.32, data: Agent 2
4 Agent 2 Tdiz Importation electricity ends Figure 6.25, data: Electricity
Figure 6.32, data: Agent 2
6.79 Agent 2 Tds Storage electricity level less or equal | Figure 6.25, data: Electricity
to 2. It starts importing. Figure 6.32, data: Agent 2
10.79 | Agent2 Tdiz Importation electricity ends Figure 6.25, data: Electricity
Figure 6.32, data: Agent 2
10.79 | Agent2 Tds Storage electricity level less or equal | Figure 6.25, data: Electricity
to 2. It starts importing. Figure 6.32, data: Agent 2
14.79 | Agent2 Tdiz Importation electricity ends Figure 6.25, data: Electricity
Figure 6.32, data: Agent 2
14.79 | Agent2 Tda Storage electricity level less or equal | Figure 6.25, data: Electricity
to 2. It starts importing, Figure 6.32, data: Agent 2
18.78 | Agent2 Tdiz Importation electricity ends Figure 6.25, data: Electricity
Figure 6.32, data: Agent 2
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18.78 | Agent2 Tds Storage electricity level less or equal | Figure 6.25, data: Electricity
to 2. It starts importing. Figure 6.32, data: Agent 2
22.79 | Agent2 Tdi2 Importation electricity ends Figure 6.25, data: Electricity
Figure 6.32, data: Agent 2
0 Agent2and3 | Tds Storage heat level less or equal to 5. | Figure 6.25 and 6.26, data: Heat
It switches on unit 1 and 2. Figure 6.30
2.27 Agent2and3 | Tds Storage heat level has reach 7 units. It | Figure 6.25 and 6.26, data: Heat
switches off unit 2. Figure 6.30: Heat Unit 2
46 Agent2and3 | Tdy Storage heat level has reach 9 units. It | Figure 6.25 and 6.26, data: Heat
switches off unit 1. Figure 6.30; Electricity, Heat Unit 1
16 Agent2and3 | Tds Storage heat level less or equal to 5. | Figure 6.25 and 6.26, data: Heat
It switches on unit 1 and 2. Figure 6.30
14.53 | Agent3 Tda Storage energy level less or equal to | Figure 6.26, data: Electricity
2. It starts importing. Figure 6.32, data: Agent 3
18.53 | Agent3 Tdi2 Importation energy ends. Figure 6.26, data: Electricity
Figure 6.32, data: Agent 3
15 Agent4and5 | Tds Storage heat level less or equal to 5. | Figure 6.27 and 6.28, data: Heat
It switches on unit 1 and 2. Figure 6.31
0 Agent 5 Tda Storage energy level less or equal to | Figure 6.28, data: Electricity
2. It starts importing. Figure 6.33, data: Agent 5
4 Agent 5 Tdi2 Importation energy ends. Figure 6.28, data: Electricity
Figure 6.33, data: Agent 5
4 Agent 5 Tds Storage energy level less or equal to | Figure 6.28, data: Electricity
2. It starts importing. Figure 6.33, data: Agent 5
8 Agent 5 Tdiz Importation energy ends Figure 6.28, data: Electricity
Figure 6.33, data: Agent 5
8 Agent 5 Tda Storage energy level less or equal to | Figure 6.28, data: Electricity
2. It starts importing. Figure 6.33, data: Agent 5
12 Agent 5 Tdi2 Importation energy ends Figure 6.28, data: Electricity
Figure 6.33, data: Agent 5
12 Agent 5 Tda Storage energy level less or equal to | Figure 6.28, data: Electricity
2. It starts importing. Figure 6.33, data: Agent 5
16 Agent 5 Tdi2 Importation energy ends Figure 6.28, data: Electricity
Figure 6.33, data: Agent 5
16 Agent 5 Tds Storage energy level less or equal to | Figure 6.28, data: Electricity
2. It starts importing. Figure 6.33, data: Agent 5
20 Agent 5 Tdi2 Importation energy ends Figure 6.28, data: Electricity
Figure 6.33, data: Agent 5
20 Agent 5 Tda Storage energy level less or equal to | Figure 6.28, data: Electricity
2. It starts importing. Figure 6.33, data: Agent 5
24 Agent 5 Tdi2 Importation energy ends Figure 6.28, data: Electricity
Figure 6.33, data: Agent 5

Table 6.5 Generated events in the networked system

Through the simulation the following behavior was observed. Agent 1 attends the exporting energy
request from Agent 2 at the beginning of the simulation and again in time 6.79. From this time until
22.79, the electricity level from Agent 2 remains lower or equal than 2 units; every 4 units of time
(Delay from transition Tds, in Agent 1) Pds in Agent 2 is marked and immediately Td, is fired
requesting electricity from Agent 1. For Agent 3, only in time 14.53 an electricity request is made.
Agent 4 never requests electricity because its electricity level always is bigger than 2. And for Agent
5 occurs something similar to Agent 2, its electricity level is lower or equal than 2 all the time, except

at the end of simulation, at time equal to 24, and every 4 units of time, an electricity request to Agent
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2 is made. As it can be seem in Figures 6.24-6.28 the electricity level storage is never empty for any
agent. It means that the consumptions and the interchange of electricity is satisfied all the time.
Simulating continuous and discrete events systems is not an easy task; the described scheme
removes a part of its complexity by computing off-line all the possible ifs for one agent, and latter
using this information in the simulation part. The software allows to simulate each agent, giving them
calculation autonomy of its own IB-state information. Only when there is a change in an Agent on
the continuous flows or a discrete event occurs affecting their neighbors, communication is
performed, interrupting the simulation of each neighbor agent; then the other agents must consider
these new events, allowing them to build together the correct computation of the overall networked

agent system.
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CONCLUSIONS

A general framework for the analysis of networked agent systems has been presented; it addressed
modeling, computing and simulation of networks of identical interactive multi-role agents. It supports
the design process and analysis of networked agent systems. The main feature of this approach is the
possibility to address agent applications in which a hybrid state representation and updating is
required. The identical characteristic of these agents does not restrict them of performing different
activities, since a multirole execution can be performed by them through the interaction of discrete
and continuous events; several operational modes can be set in the agent’s model.

The proposed modeling methodology allows describing the agent’s internal state where the discrete
and continuous components may be distinguished and their interactions may be clearly established.
In the methodology an important stage is focused on the agent’s state representation as THPN. It
provides a support for the analysis of agent network systems through simulation. Two study cases
about sensor networks illustrate this part.

In order to cope with the non linear computation of TCPN models, a mathematical representation
based on MILP has been proposed. It allows building systematically MILP problems allowing the
computation of IB-state information: marking, transition firing speeds and duration. In the
representation both structural conflicts and cycles are included; resolution policies known as sharing
and priorities have been addressed. The tests performed on models of diverse complexity using
Matlab and CPLEX demonstrated the feasibility of the mathematical representation and its efficiency.

Finally, a scheme for the simulation of identical networked agent system is presented. An off-line
procedure based on the mathematical representation mentioned above, obtains all the possible IB-
states for one agent. Using this information a simulation of the overall networked agent system is
performed, where the continuous and discrete parts of the agents are included. The developed
software for the simulation was implemented in Java, using the framework JADE. This approach
overcomes the performance of algorithmic procedures, proposed in literature, since the instantaneous
firing speeds for one agent are off-line computed; this avoids the necessity of repeat this computation
for the overall network. A case study about distributed energy household networks was presented.

The work herein presented goes ahead the current research in literature on the addressed problems.
However, there is a lot of challenges regarding such problems; for example it could be useful to study
more complex agent interconnections, even the possibility to include in the system different kind of
agents. This is absolutely possible since the computation of all IB-states for one agent can be

performed by knowing all the possible incoming entrances through the time for one agent. Also,
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regarding the simulation issue, the scheme has the bare bones for a distributed simulation, but new
communication protocols must be developed to cope with the asynchronous independent processing

of each agent and the absence of a global clock.
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APPENDIX A° DOCUMENTATION OF JAVA CLASSES FOR

THPN SIMULATION
public class Init
extends Cbject
Main initial class, creates an InputDataGui
Static main() Shows Gui in the screen String{] [in] args
void args
|Public ‘

public class InputDataGui

extends JFrame
This class shows the GUI interface for the input csv files: WA, M0, WR, ifs Table and time
for simulation
Method Notes Parameters
InputbDataGui () Constructor ‘
| Package
|showGui () void Method to show Gui
|Public |

public class Simulation
extends Ctject

Class to perform the simulation
Method Notes Parameters
|performSimulation |Method to store all the cvs files in to
| () void SimpleMatrix and creates all the agents |
Public |

readFile () void | Creates and internal ArrayList for each cvs | String [in] file

Private |file the csv file's name
| String [in] var
kind of variable to be store |
toSimpleMatrix ()  Method to convert an arrayList <Double> |ArrayList<ArrayList<Doub |
SimpleMatrix 'to a SimpleMatrix | le>> [iin] convert \
Private @return SimpleMatrix ‘the AmayList to be
| converted

'Method | Notes [Parameters

existIBs() boolean Method to verify if exist an specific IB- it [in] ibs

Public ‘State ' numbser of IB-State
(@return true/false int [in] Agent

80




Method Notes Parameters
number of Agent
getDt () double Method to get dt int [in] ibs
Public @return dt number of IB-State
int [in] Agent
number of Agent
getM() Method to get the marking int [in] ibs
SimpleMatrix @return marking number of IB-State
Public int [in] Agent
number of Agent
getNextEv () Method to get nextEv int [in] ibs
SimpleMatrix @return nextEv number of IB-State
Public int [in] Agent
number of Agent
getTempo () Method to get tempo = duration +|int[in] ibs
SimpleMatrix instantaneous firing speed number of IB-State
Public @return tempo int [in] Agent
number of Agent
int [in] noPc
getv () Method to get instantaneous firing speed | int [in] ibs
SimpleMatrix @return ifs number of IB-State
Public int [in] Agent
number of Agent
getv () Method to get instantaneous firing speed |int [in] ibs
SimpleMatrix vector number of IB-State
Public @return ifs int [in] Agent
number of Agent
ibState () Constructor int [in] places
Public for an agent
int [in] transitions
for an agent
saveToFileCsV () Method to save the information stored for|int [in] ibs
void an Agent in a cvs file number of IB-State
Public int [in] Agent

number of Agent

setIbState ()
void
Public

Method to add the information for an IB-
State agent

int [in] ibs

number of IB-State

int [in] Agent

number of Agent
SimpleMatrix [in] marking
marking for the Agent
double [in] delthat

dt

SimpleMatrix [in] ifs
instantaneous firing speeds

updateDt () void
Public

Method to update dt

int [in] ibs

number of IB-State

int [in]_Agent

number of Agent
double [in]_delthat

new dt to be substituted
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Method Notes Parameters
updateNextEv () Method to update nextEv double [in] absT
void @param new nextEv to be substituted

Public int [in]_ibs

number of IB-State

int [in] Agent
number of Agent

SimpleMatrix [in] nE

public class ThpnAgent

extends Agent

Class Agent to simulate a THPN

Method Notes Parameters

dEvDt0 () void Method for performing initial discrete|Agent [in] myAgent

Private events

dTrFiredIn() Method to set if a discrete transition can be

SimpleMatrix immediately fired

Private @param

@return  enabled  transitions  fired
immediately

generalNodeProce |Method to perform the general node|Agent[in] myAgent

dure () void procedure Object agent who is

Private performing the procedure
double [in]_inFlow
Incoming flow

getMindt () Method to choose the smallest at SimpleMatrix [in] balance

double @return vector with the balance of

Private each place (Who is going to
be the first empty place?)

setCdt () Method to set the dt for continuous places |SimpleMatrix [in] balance

SimpleMatrix @return vector with the balance of

Private each place (Who is going to
be the first empty place?)

setDdt () Method to set the dt for discrete transitions |SimpleMatrix [in] balance

SimpleMatrix @param

Private @return

sendMsg () void Method to send a message to the|Agent [in] myAgent

Private outNeighbors Object agent who s
sending the

setup () void Initial behavior for the agent

Protected

takeDown () void |Method to perform agent clean-up

Protected operations here
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Method Notes Parameters
dEvDtO () void Method for performing initial discrete | Agent [in] myAgent
Private events
dTrFiredIn() Method to set if a discrete transition can be
SimpleMatrix immediately fired
Private @param

@return  enabled  transitions  fired

immediately

public class inMessages

extends Object

Class to store the messages send to each agent who has incoming flows, there is an object

for each one of them

Method

Notes

[ers

getCurrentInFlows ()

Method to get the flows in the

double [in] absTime

transitions

SimpleMatrix corresponding vector

Public @return SimpleMatrix [in] sm
getNumberOfAgents () | Method to get the number of agents

int @return number of agents

Public

getValueDiscFire() |Method to getifall the discrete messages

SimpleMatrix was received

Public @return a vector with the fire of discrete

getValueFlows ()

Method to get the sum of incoming flows

double @return a value for flows

Public

reset () void Method to put all discrete fires to zero

Public

InMessages () Constructor ArrayList <Integer> [in]
Public Agents

List of all In Neighbors

setCurrentInFlows ()
void

Method to update at the current inflow
from a received messages

Public

storeMessages () Method to store the messages sent by In | String [in] msg

double neighbors Message sent by a In
Public

neighbor

private class InitialEvents

extends Beahavoir

Class to perform the initial behavior for agents with discrete elements

83




Method Notes Parameters
action() void Initial procedure
Public
done () boolean |Method for checking stop conditions
Public
private class leafnode
extends Beahavoir
Class to perform the behavior for leaf nodes
Method Notes Parameters

action() void
Public

Perform the cyclic procedure until the end
of simulation for agents without
communication.

done () boolean
Public

Method for checking stop conditions

private class noleafnode

extends Beahavoir

Class to perform the behavior for no leaf nodes

Method

Notes

Parameters

action() void
Public

Perform the cyclic procedure until the end
of simulation for agents with
communication.

done () boolean
Public

Method for checking stop conditions
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