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Resumen

Ray tracing es una técnica de renderizado que produce imágenes realistas y de alta

calidad como producto de un proceso de renderizado. Sin embargo, el costo asoci

ado a la generación de estas imágenes es computacionalmente aho. Debido a esto,

se han desarrollado diversas técnicas de optimización. Estas técnicas enfatizan

el diseño eficiente de estructuras de datos que contienen información geométrica

de una escena; se debe navegar a través de estas estructuras cuando se realizan

pruebas de intersección. Sin embargo a pesar de estas optimizaciones, existe un

balance entre el tiempo de construcción y el rendimiento de ima estructura durante

las pruebas de intersección. Este balance depende de la geometría de la escena de

entrada, y esto no se ha estudiado a profundidad.

Esta investigación propone un método eficiente para extraer características de

una escena con la finalidad de hacer una selección asertiva de una estructura de

aceleración para Ray tracing. Este método decide de forma automática el mejor

tipo de estructura para una escena específica, dada la información geométrica de

una escena. Esta tesis describe un conjunto de características que impartan en

el rendimiento de diversas estructuras de aceleración. Además, en esta tesis se

analizan algunas métricas como: tiempo de construcción, frame-rate y número de

intersecciones por caja y por primitiva con la finalidad de verificar si la estructura

seleccionada es la apropiada para una geometría dada. Como el rendimiento de las

estructuras varia drásticamente con diversas escenas, este método podrá reducir

en gran medida el tiempo de computo seleccionando una estructura que maximice

el rendimiento de Ray tracing.



Abstract

Ray tracing is a rendering technique that produces high quality and realistic im

ages as a final product to a render process. Nevertheless, the computational cost

required to generating these images is very high. Due this fact, several opti

mization techniques have been developed for Ray tracing. These optimizations

focus on design efficient data-structures that can store geometry of the scene, and

then these structures are traversed during intersection tests. Nonetheless, despite

optimizations, there exist a trade-off between build time and ray traversal perfor

mance. This trade-off depends on the geometry of the input scene, and it has not

been studied deeply.

This research proposes an efficient method to extract the characteristics of a scene

to make an assertive choice of an acceleration structure for ray tracing in real-time.

This method automatically decides the best structure type for a specific scene,

given the geometric information. This thesis describes which geometric character

istics impact directly on performance for different acceleration structures. Also,

in this thesis are analyzed some metrics as: build times, frame-rate and number

of intersections per box and per primitive in order to verify if the selected struc

ture is the most appropriate for a particular geometry. As the performance of

acceleration structures varies with different scenes, this method could save much

calculation resource by always selecting a structure that maximizes ray tracing

performance.
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Chapter 1

Introduction

1.1 Background

Ray tracing is a rendering technique that can genérate realistic and high quality

images. Ray tracing provides vivid illusion of reality; this was possible through

introduction of shading [1], this concept improves the sense of solidity and depth.

However, the computational cost required to render a model using ray tracing is

very high. Due expensive computational cost ray tracing had been considered an

offline rendering technique. Simulation of effects such as refraction and reflection

[2] [3], are the hallmark of ray tracing since its introduction.

Ray tracing has long been a method of choice for off-line rendering due to its

high computational cost. Moreover, hardware and computational improvements

allow that real-time ray tracing finally within reach. Nevertheless, with real-

time ray tracing arise new problems that did not exist with off-line ray tracing.

Principally, real-time ray tracing offers the possibility to interactively ray trace

moving animated scene content. This fact presents a challenge for current data

structures.

Acceleration structures must be rebuilt or updated as the scene changes. Selecting

the right kind of the acceleration structure that maximizes performance of ray

1
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tracing, according to the characteristics of a scene is an important issue that has

not been widely studied.

There have been several optimization techniques to decrease rendering times of

three-dimensional scenes using ray tracing. One of the most appropriate strate

gies is the use of acceleration structures. Diverse acceleration structures have

been proposed; These structures are grouped fundamentally in grids, kd-trees and

bounding volume hierarchies (BVH) [4]. These structures differ in the way that

they store primitives and on the split method that they employ; but all of these

structures are introduced to reduce the number of intersection tests that a ray

tracer must perform when visible surfaces of the scene are computed.

Dynamic scenes are scenes where movement in geometry of the scene is present

from frame to frame. When geometry of the scene changes, information related

to primitives is not consistent and then, no longer valid. Due this, to produce an

animation of dynamic geometry, it is necessary to update or rebuild from scratch

the structure on each frame. According to Wald et al. in [4], the most common

approach in dynamic scenes is to rebuilt from scratch. Thus rebuild time of the

acceleration structure is a major concern, because it represents a big percentage

of the total amount of time required to get a rendered frame as a final product.

A challenge for real-time ray tracing applied to dynamic scenes has been to get

the fastest construction times of acceleration structures. In order to get faster

constructions, there have been proposed some optimizations using parallel tech

niques for CPU and GPU architectures. Such techniques are described deeply on

Chapter 2.

In ray tracing one trade-off between build time and ray traversal performance that

has not been studied deeply yet, is the geometric complexity of scenes. Complexity

of scenes is an important issue to consider to choose an adequate acceleration

structure that provides the fastest construction time, while the structure preserves

good ray tracing performance for a particular scene. Ray traversal performance

and construction time for an acceleration structure are not constant. They depend
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on the complexity of the scene, number of primitives, density and concentration

of primitives in a surface area1

This research proposes an efficient method to extract the characteristics ofmeshes

to make an assertive choice of an acceleration structure for ray tracing in real-

time. This method automatically decides the best structure type for a specific

scene, given the geometric information. This thesis describes which geometric

characteristics impact directly on performance for different acceleration structures.

Also, in this research are analyzed some metrics as: build times, frame-rate, and

intersections to verify if the selected structure is the most appropriate for a partic

ular geometry. As the performance of acceleration structures varies with different

scenes, this method could save much calculation resource by always selecting a

structure that maximizes ray tracing performance.

In order to characterize a scene, it was necessary to:

1. Represent each primitive of the mesh. For this purpose, it was chosen a

centroid representation due to this effectiveness of representation and for

decreasing space complexity.

2. Build an auxiliary structure in order to store information related to distri

bution and concentration of primitives and then, map each Morton code to

a Z-order curve and in this way partition the scene.

3. Use statistical methods to obtain the distribution and spatial concentration

of the primitives along the surface mesh, and use information about the

geometry of the scene to select an acceleration structure.

'The surface area is the sum of the áreas for a set of given primitives.
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1.2 Objectives

1.2.1 General Objective

The general objective in this thesis is to define a method to extract geometric

characteristics of three-dimensional models. Then, using these characteristics as

a priori information to select an adequate structure that provides the best perfor

mance in construction and ray traversal operations.

1.2.2 Particular Objectives

• Use an efficient representation of primitives.

• Use an efficient structure to store information of primitives.

• Design an algorithm to characterize in real-time a scene.

• Identify important characteristics to make an assertive characterization.

• Identify desirable characteristic of the state of the art acceleration structures.

• Use statistical methods to extract the characteristics of scenes.

• Genérate an algorithm that maps the geometric complexity of the scene to

an acceleration structure according observed characteristics.

• Use parallel techniques to improve performance of the proposed algorithm.

1.3 Hypotheses

Through observation of behavior for each acceleration structurewith diverse scenes,

it was possible to identify substantial differences between construction times and

ray traversal performance. For instance, the acceleration structure that performed

well with one kind of scene did not perform well with different kinds of scene. This
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behavior means there is not an acceleration structure that performs well with all

scenes. Based on these observations, it was proposed the following hypotheses.

1. Adequate selection of an acceleration structure depends on the geometric

characteristics of a scene.

2. Minimization of construction time and maximization of ray traversal perfor

mance depends on the right kind of acceleration structure selection.

1.4 Problem Definition

Ray tracing is a rendering technique that requires compute intensive operations.

In order to show how compute intensive is ray tracing, a complexity analysis is

shown below.

Complexity2 0(N M ■ L) (Does not include secondary rays produced by effects)

N= Number of primitives (this number is given by the scene)

M= Number of pixels = Width Height

L= Number of light source

In order to illustrate the complexity of ray tracing with a typical scene, below are

shown some numbers. These numbers are from a médium complexity scene.

Complexity 0(N M L)

N= 252, 000 primitives

M= 1024x1024 = 1,048,576 pixels

L= 2 light sources

(252000) (1048576) (2) = 528,482,304,000 rays.

A ray tracer must find intersection points between many rays and many primitives.

The cost of testing each ray against each polygon is prohibitive.

2This complexity means that a Ray tracer must trace (N ■ M ■ L) rays to render a scene
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In order to solve this prohibitive cost, primitives are explicitly sorted yielding

an acceleration structure such as Bounding Volume Hierarchy, KD-Tree, 3D Grid

[5]. This fact optimizes performance of traditional ray tracers because intersection

tests are faster. Nevertheless, for interactive applications such as games this is not

enough, it is necessary a further optimization to reach interactive frame rates.

Interactive applications notwithstanding, are highly dynamic in nature [6]. Thus,

the ray tracer has to either rebuild or update its internal acceleration structure

every frame, and reaching interactive frame rates requires looking at traversal

performance and rebuild/update performance [4].

Currently, there is no method or algorithm to characterize geometry of a three-

dimensional scene. This characterization is useful to select an acceleration struc

ture that guarantees a lower bound in build time and an upper bound on ray

traversal performance.

1.5 Contributions

This research proposes a new and efficient method to characterize scenes using par

allel techniques. This characterization takes primitives of the model, and groups

them in clusters, those clusters are analyzed using statistical methods to extract

certain patterns. Those patterns give some clues about performance of the in

put geometry with diverse acceleration structures, and they provide quantitative

information about distribution and concentration of primitives along the scene.

Information about the geometric complexity of the scene is useful to select the

right kind of state of the art acceleration structure. This selection guarantees that

the construction time is the minimum while this building attains good quality

that provides good ray traversal performance. Through this characterization, it is

expected a significant performance improvement. Figure 1.1 shows a flow chart of

the proposed solution.

Contributions are summarized and listed below:
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X
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Figure 1.1: Flow chart ofthe proposed contribution.

1. An automatic selection of the best type of structure for a scene.

2. A new and efficient method to characterize three-dimensional scenes.

(a) A new way to group primitives in clusters in linear time 0(n).

(b) A new partitioning scheme of primitives based on Morton codes.

(c) An efficient sort of primitives using a hash function 0(1).

(d) A statistical analysis to detect patterns in primitives.

3. A parallel implementation in GPU of proposed method.



Chapter 2

Acceleration structure strategies

The main objective of this chapter is to describe and classify each state of the art

acceleration structure. This description is useful to identify how primitives are

stored in an acceleration structure. This information can be used as a reference to

identify possible application advantages of one structure over the others. Finally,

information about acceleration structures give clues on how a structure performs

with an input geometry.

In this chapter is addressed some of the most significant improvements in accel

eration structures. It includes object bounding volumes, spatial split algorithms

and diverse optimization techniques for acceleration structures. These topics will

be discuss in subsections 2.1, 2.2, 2.3. Subsection 2.4 focuses on optimizations

related to hardware architectures.

2.1 Object Bounding Volumes

A bounding volume is a single and simple volume encapsulating one or more

objects of more complex nature [7] .

Directly testing an intersection of a ray with a primitive in ray tracing is often

very expensive, especially when three-dimensional scenes consist of thousands of

8
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primitives. Due this prohibitive cost, bounding volumes are usually employed for

intersection tests before primitives do.

The main idea is for the simpler volumes (such as boxes and spheres) to have

cheaper intersection tests than the complex objects they bound. Using bounding

volumes allows fast rejection tests1. Intersection tests are against the complex

bounded geometry (set of primitives) only when the initial intersection query for

the bounding volume gives positive. For further information about rejection tests

in ray tracing, see [8].

When a ray intersects a bounding volume, sometimes is necessary an additional

intersection test, this can increase computation time. However, this additional

intersection test depends on how well bounding volume adapts to object's shape

(see Figure 2.1).

Figure 2.1: Object Bounding Volume [7].

Bounding volumes should also be as tight fitting as possible, resulting in a trade

off between tightness and intersection test cost. Many geometrical shapes have

been suggested as bounding boxes in [7] (see Figure 2.2)

.Axis-aligned bounding box (AABB) is one of the most implemented methods to

contain a three-dimensional object in the most state of the art ray tracers [9-11].

It is because its inexpensive intersection cost.

If a ray does not intersect a bounding volume, this means either intersect the primitives that
a bounding volume contains. Rejection tests are an early exit test.
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SPHERE AAHB OKB 8-DOP CONVEXHULL

Figure 2.2: Type of bounding volumes: Sphere, axis-aligned bounding box

(AABB), oriented bounding box (OBB), eight-direction discrete orientation

polytope (8-DOP), and convex hull [7].

2.2 Split Algorithms for Ray Tracing

In order to get interactive rendering times for dynamic scenes, one important

issue to consider is the kind of split algorithm that an acceleration structure em

ploys. Construction times and ray traversal performance of a particular acceler

ation structure are directly related to the use of a specific split algorithm. This

section analyses the most important space subdivisión algorithms nowadays.

2.2.1 Surface Area Heuristic (SAH)

SAH is known as the best method to split the geometry in a scene whilemaximizing

ray traversal performance. This heuristic proposed in [12] and, generally speaking,

it partitions the scene in a recursive way until it finds the best partition. To

evalúate if a partition is efficient, is used a cost function. The main objective

of this function is to find the minimum valué in order to maximize ray traversal

performance. This heuristic is described in equation 2.1.

Given a set of N primitives contained in a sub-tree that covers a particular 3D

volume V, and assuming that a sub-tree gets partitioned into two halves L and

R with a number of triangles Nl and Nr and associated volumes V¡_ and Vr

respectively.

C(y^fi>) = AV +K,(» + §$fvs) (,i)
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Where SA is the surface area. and ít has associated a volume. K-r and K¡ are

implementation constants that represent the cost of traversal and intersection

respectively.

Tbe cost related to evaluating the cost function for every possible partition ín a

scene ís intractable. In order to restrict the number of possible partitions. Havran

suggested in [13] that only 6Ar split locations were evaluated to minimize expected

function cost. However, with this construction scheme and the evaluation of only

6N partitions is not possible to get interactive construction times.

To get ímprovements in constiuction timesWald et aL and Shevstove et aL [6, 14]

proposed a scheme using a SAH construction. In this scheme, they made some

aasomptions: first perfect splíts are ignored and second instead of evaluating au

potential split planes they only use K equidistan! space planes. This improvement

may come to lose the mínimum cost. However, ít was demonstrated through the

results obtained that there still produces binned SAH constractíons for kd-trees

that preserve its quality respect to original SAH construction.

In [6] Wald generalizes binned SAH construction for BVHs using the same ap

proaches used for kd-trees and rebuild from-scratch. Results showed that rates

obtained for BVH are np to WX higher than comparable rates of kd-trees in

[14, 15]. In Figure 2.3 can be observed how SAH spHt partitioning maxhnizes

partition of primitives.

Figure 2.3: SAH p-artrtkmíng schemeJl6].
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2.2.2 Space Median Heuristic

The space medían heuristic is a simple method to partition primitives, it was pro

posed in [17]. This heuristic algorithm ís based on divide primitives in amidpoint.

In order to select the midpoint of primitives the mínimum and ma-rímum valúes

are considered along an axis as the split plañe position (see Figure 2.4).

Wáchter et aL proposed in [18] a fast spatial median build that can decrease and

beat the fastest SAH constructions for BVH and Kd-trees. This construction is

based on space median build [17]. Nonetheless, this construction ís not good with

all kind of scenes.

This space split method is very fast for constructing acceleration structures, but

in general it has bad ray tracing traversal performance. An optimization of this

method is to use a cost function similar to SAH ín order to mini-mi****--» the expected

cost of traversíng (see equation 2.2).

/ (6) = [LSA(b) ■ L(b)\ + ¡RSA(c) (N -

L{b))}
-

[SA -

/VJ (2.2)

Where N is the number of objects in the node, L(b) is the number of objects to

the left ofthe plañe at b, and N—L(b) is the number ofthe right ofthe plañe. The

surface area of tbe left and right sub nodes are LSA(b) and RSA(b), respectively

and the surface area of the node is SA.

■

Figure 2.4: Space medían partítkmíng scheme lf,
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2.3 Acceleration Data Structures

In general, there are three main ray tracing data structures BVH (Bounding Vol

ume Hierarchies), KD-Trees and Grids. These acceleration structures fail in two

main categories according to Wald in [4] spatial subdivisión and object hierarchy.

In spatial subdivisión each point has a spatial representation, and each primitive

can reference múltiple cells. While object hierarchy structures reference each prim

itive exactly once. Kd-trees and grids are examples of spatial subdivisión. As a

counterpart, bounding volume hierarchies (BVH) and BIH are examples of object

hierarchies.

Characteristics of each category of acceleration structures can be summarized on

Table 2.1, where are analyzed structural characteristics (construction) and ray

traversal characteristics.

Table 2.1: Characteristics to each classification of acceleration structures.

Spatial Object
Characteristics Subdivisión Hierarchy

Finer subdivisión t
No repetitive nodes t
Efficient ray traversal t
Avoid empty cells í
Faster to build t

Less memory usage t
Fewer intersections t

Easy to update t

Spatial subdivisión obtains the finest subdivisión of primitives. On this category

one primitive can be contained in more than one cell. While in object hierarchy

the minimum subdivisión unit is a primitive. Spatial subdivisión techniques can

avoid visit one node many times when make an intersection tests. Consequently

fewer tests are performed using space subdivisión techniques. This is translated

to a higher efficiency of ray traversal performance than in object hierarchy.
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Object hierarchy is faster than in space subdivisión for construction. Spatial sub

división techniques have the finest subdivisión, and then the number of references

required to store primitives is higher than in the object hierarchy. This subdivi

sión is translated to a less memory usage in object hierarchy. Updates are faster

and easier in an object hierarchy than in spatial subdivisión. When an update

occurs in object hierarchy, only the affected nodes are modified, and the structure

remains valid. As a counterpart, in spatial subdivisión updates are complex, a

little change in a split plañe modifies previous partitions.

Spatial subdivisión makes less and more efficient ray intersection tests, but the

constructions are very expensive. In object hierarchy constructions and updates

are faster and more efficient than in spatial subdivisión, but ray traversal perfor

mance are not as good as in spatial subdivisión. Thus, for dynamic scenes have

widely used object hierarchy techniques.

2.3.1 Kd-trees

A Kd-tree is a binary tree, it was proposed by Bentley in [19]. On it, every node

is a k-dimensional point. Every non-leaf node can be thought of as implicitly

generating a splitting hyperplane that divides the scene in two parts. In Kd-

trees, k represents the number of dimensions subdivided, which does not have to

match the dimensionality of the space used. Kd-trees divide the space along one

dimensión at a time as is shown in Figure 2.5.

Kd-tree is a spatial subdivisión acceleration structure. It has been widely used for

static scenes where no change in primitives is present from frame to frame. Con

struction times for kd-trees are greater than other acceleration structures notwith-

standing, the main advantage on using kd-trees is the highest quality of structures

that this expensive construction produces. This quality translates to a great ray

traversal performance.

Due the expensive construction time of this structure using it for dynamic scenes

and getting interactive frame rates is unfeasible because any little change in the
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Figure 2.5: Kd-tree structure representation [20].

X

geometry of the scene invalidates the entire structure. In order to face this disad

vantage, there have been developed some strategies to accelerate construction for

kd-trees. Relevant strategies optimize construction by using parallel techniques

[14], explode coherence of motion in animations and dynamic scenes (see Figure )

[15] and use lazily rebuilds2 [21].

There exist some optimizations for construction of kd-trees. In [22, 23] was pro

posed optimizations for SAH heuristic to build kd-trees. These optimizations were

described in section 2.2.1. In [14] are also included optimizations for SAH algo

rithm and proposes a high parallel construction that builds a kd-tree from scratch

each frame.

\n^ ^^ ^^
Figure 2.6: Motion decomposition together with fuzzy kd-trees allow for ray

tracing animated models with continuous deformation by decomposing the mo

tion of the mesh into an affine transformation plus some residual motion [15].

■■■Lazily rebuilds consist in restricting the construction only to subtrees that are traversed by

rays.
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2.3.2 Bounding Volume Hierarchies

BVHs are part of object hierarchy structure classification, so BVHs are built over

the primitives of the scene, and they are delimited by bounding volumes. BVH

have been widely implemented in dynamic scenes due their flexibility during con

struction and consequently in updates [24, 25]. In BVHs incremental updates are

allowed [26, 27].

The original set of bounding volumes forms the leaf nodes ofthe tree. These nodes

are grouped as small sets and enclosed within larger bounding volumes. These,

are also grouped and enclosed within other larger bounding volumes in a recursive

fashion, eventually resulting in a tree structure with a single bounding volume at

the top of the tree (see Figure 2.7).

N.

CU •( Ni

Os

N-

hm nnn T.
Oz Oi Oí Oí Ds Os O? Oí

FIGURE 2.7: Tree representation of Bounding Volume JHierarchy [28].

BVH considered by many as an acceleration structure that cannot be competitive

in ray tracing traversal performance respect to other acceleration data structures,

as kd-trees or grids [4]. Notwithstanding, it has been shown that well-constructed

BVH have competitive performance respect to other structures [21, 25-27]. The

success of BVH depends on the construction of this structure because this fact

determines ray traversal performance. The best known method to construct aBVH

is the surface area heuristic. Optimizations for BVHs are focused on: using binned

SAH construction [6], using packets for BVH traversal [29, 30] and using parallel

techniques for construction of BVH [29]. Wald in [6] proposes a method where

BVH can be rebuilt up to 10X faster than competing kd-tree implementations.
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In [30] Wald et al. proposed a traversal Algorithm that reduces the number of

rav-box tests by an order of magnitude compared to a puré packet tracer.

2.3.2.1 Bounding Interval Hierarchy (BIH)

One ofthe variants of BVH is BIH [18]. This variant is one of the fastest methods

to build BVH. It uses a fast spatial median split approach.

Unlike classic bounding vohime hierarchieswhich store a full axis-aligned bounding

box fbr each child. the idea of the bounding interval hierarchy is only to store two

parallel planes perpendicular to dther one ofx, y and x
— axis. Given a bounding

box and the axis, the left child L results from replacing the máximum valué along

that axis of tbe first plañe. In an analogue -«ay tbe right child R, results from

replacing the minimum vame of the second plañe (see Figure 3.8).

BIH-sfyle builds works only on the centroids, not on actual primitives, but instead

of building with an expensive cost. function, it successivehr sphts along the spatial

median until less than a threshold number of primitives per leaf is reached.

Í7~"V

__ _»*-u*k*>-

l/Y"-
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V
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FIGURE 2.8: Bounding istea-vals hkawchy represesnijuicm Goometric ¡simitives

overiapping the spürtiag piase have ro be refe-eaced in both c&ild -cahime ele

ments: a) show overlapping j-phtting plañe, b) bounding int«sv*l hks-archy :V:

overiapping spütiing plan*-?, c) shows assagnatkn of an object to kfi L or right
R child. d) shows the case wfaesv a ray traverse an esnpíY v\ahirx>e el and f ) are

introduced ia arder to show ho** allowing splitung planes to tighten tbe node

vah-ane inst-aad of parñrxming il ]1S].
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2.3.2.2 Linear Bounding Volumes Hierarchies (LVBVH)

Lauterbach et al. in [29" proposed an efficient parallel method for constructing

BVH. This method is called Linear Bounding Volume Hierarchies (LBYH). lms

efficient parallel algorithm uses spatial Morton codes3 to reduce the BYH con

struction problem to a simple sorting problem.

This algorithm focuses on min.rnmng the cost of construction while it still pro

duces BYHs of good quality. One of the strongest contributions is a breadth-first

queue-based algorithm fbr construction of BYH. This algorithm incorporates a

novel and very fast method to performs the initial sphts of the hierarchy in paral-

Id. This algorithm removes many of the existing bottknecks during the construc

tion. Another contribution ofthis algorithm is a hybrid construction which buüds

the highest levéis of the tree with LBYH algorithm and makes the rest with SAH

algorithm.

The simplest approach to paraUehxe aBYH construction. is to reduce it to a sorting

problem. This approach was taken by LBYH construction. It begins by ordering

all n input primitives along a space-filling curve, thus ^linearizing' them into a

single fixed sequence of length .Y. Given this proposed sequence the next step is

to construct the tree recursively splitting interval of this sequence and creating

corresponding nodes. The root corresponds to tbe interval |0. n). its children to

a partition 0, i?.).Fm. n) of the root interval and so on. Thus. every node in the

BYH will correspond to a range of índices jf,. r_) in the sequence of primitives.

The correct ordering of primitives can be computed simply by sorting them with

their Morton codes as the sort keys vsee Figure 2.9\ The Morton codes themselves

encode aQ the necessary infonnation about where in the tree a particular primitive

wiügo-

^fortoa Code is a fim-roan *«***k:*di jejos ns-'fcxEiEiesssonal ¿x;& «o ¿oe -SraeossaEi winie it

preserves loeafitr of dw data points. The Monea code ot a point ia c:*¿adiir*a^scaat space is

«firecth* calculated by interkanring the bmarr represerMñocs of :ts cccrcirsase vaaaes. Ib tk**s

van* can be represented nioteidiBiensaonal data in a sc-p? v-iV^-e
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Figure 2.9: Morton code ordering of triangles [29].

This algorithm uses parallel techniques during construction. On it, each block i

reads in its split item from the input queue and processes it and then, either writes

out new splits or a nuil split to the output queue at positions 2i and 2i 4- 1 (see

Figure 2.10). After that, the output work queue may have several nuil splits. It

is necessary to eliminate these nuil splits through a compaction kernel and write

the result into the input queue. Then again, run the split algorithm on the new

input queue as long as there are still active splits left.

2.3.2.3 Hierarchical LBVH Construction (HLBVH)

Based on the work of Lauterbach, Pantaleoni et al. in [31] extended this work

through the introduction of a hierarchical algorithm (HLBVH) that reduces the

amount of computations and the memory traffic required to build a (LBVH). Their

three main contributions are:

The introduction of more efficient reformulation of the Morton curve-based prim

itive sorting, in order to reduce work and memory traffic. This sorting scheme

is up to SX more efficient than state of the art global radix sort procedure until

publication of [31].
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Figure 2.10: Work queue construction where all active splits are running in

parallel [29].

The implementation of novel node hierarchy emission procedure that improves on

the technique proposed by Lauterbach in [29], in order to improve computational

and memory efficiency (see Figure 2.11) consults [31] for detailed information.

Morton cotle segment

OOOOllllll
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Block descnptor
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Treelet

[1:1) [2:3] 16:7] (8:9)

Figure 2.11: Treelet emission process [31].

A new proposal of a hybrid algorithm that uses the surface area heuristic to build

the top BVH levéis, and uses their fast Morton curve-based partitioning within

cluster sub trees (see Figure 2.12).
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Figure 2.12: Hybrid construction of HLBVH [31].

Finally, Garanzha et al. in [32] made some improvements of HLBVH, proposing

an algorithm that employed work queues. With this approach was possible to

accelerate the overall construction speed by a factor of 5 to 10X respect original

propose of HLBVH in [31].

The main contribution focused on replacing breadth-first tree traversal primitives

used to perform the object partitioning with a single pipeline based on efficient

work-queues. This optimization offers superior speeds than originally propose of

HLBVH (see Figure 2.13). An additional contribution is the parallelization of the
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Figure 2.13: Assignment of the morton codes to the primitive centroids (a 2D

projection and 4-bit morton codes are shown). Bottom: sorted sequence of the

primitives where morton codes are used as keys [32] .
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Surface Area Heuristic (SAH) that combines advantages on using a task-based

pipehne with the parallel efficiency of the binning scheme [6].

2.3.3 Grids

A Grid is an acceleration structure that gubdivides the space in a scene uniformly

(see Figure 2.14), as a consequence grids are not useful with complex scenes where

concentration of primitives in a surface area is high. Moreover, it is considered

that construction of grids is faster and easier than the construction of kd-trees and

BVH.

<7

t

FIGURE 2.14: Assignment of themorton codes to the primitive centroids (a 2D

projection and 4-bit morton codes are shown). Bottom: sorted sequence of the

primitives where morton codes are used as keys [32].

Grids can be useful for static and dynamic scenes with uniform distribution of

primitives. For this structure, some optimizations have been developed: To avoid

duplícate intersection tests is proposed a technique called mailboxing [33]. In this

technique, every projected ray has a unique ID, and every object has a mailbox

that stores the rays IDs. In this way before to do an intersection test, the mailbox

of the object is checked in order to verify if a previous intersection was made.

Ize et al in [34] proposed a linear construction where insertions are parallel. First,

buckets are divided by the number of threads, and then each thread takes a set of

buckets and writes the triangles on it (see Figure 2.15).
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FIGURE 2.15: Given 4 processors, in the sort-middle build, the T triangles are

equally divided among the 4 threads. Each thread has 4 buckets which are used

to sort its ? triangles, based on the z cell index modulo 4. After all 4 threads

have finished sorting, the threads regroup the buckets and fill in the grid [34].

A coherent grid traversal is proposed by Wald et al. in [35] ,
where an algorithm is

used to traverse a grid slice by slice instead of doing it cell by cell (see Figure 2.16).

This algorithm evaluates vertical slices in order to find cells that a ray intersects.

With this scheme, the grid traversal is accelerated by more than a factor of 10

and is achieved ray traversal performance competitive with fastest known kd-tree

implementations .
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Figure 2.16: Coherent grid traversal. Evalúate vertical slices (blue) in order

to find cell that a ray intersects [35] .

2.4 Hardware Architectures

Make a direct comparison between many acceleration structures is complex, due

effectiveness of each structure depends on the complexity of the scene and effi

ciency of current optimization techniques for a particular acceleration structure.

The software optimizations for acceleration structures were discussed in previous

sections. Nevertheless, in most of the cases each software optimization is oriented

mostly to a specific hardware GPU or CPU architecture.

Construction of acceleration data structures is pretty compute intensive. To affront

this challenge and to decrease construction times, diverse parallelization techniques

have been proposed. It has been observed that these techniques scale well on

parallel architectures [9, 10, 36, 37]. Some optimizations for hardware architecture

will be analyzed below. These architectures developed for a specific hardware.

2.4.1 T&I Engine

Nah et al. in [36] proposed the T&I engine. It is a hardware architecture for

efficient tree traversal and intersection tests. This architecture includes three

concepts: The tree traversal unit with ordered depth-first layout, the three-phase

intersection test unit and the ray accumulation unit for hiding memory latency.

Figure 2.17 illustrates the system organization of T&I engine that includes a ray

dispatcher (RD), traversal units (TRVs), list units (LISTs), the first intersection
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unit(ISTls), and the second intersection unit(IST2s). In this architecture, each

unit is connected by buffers. These buffers pass a ray from one unit to others.
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FIGURE 2.17: Overall system architecture of the T&I engine [36].

2.4.2 Intel Many Integrated Core(MIC) Architecture

Wald in [9] designed a framework for the fast construction of SAH BVH which

uses an architecture designed by Intel, Many Integrated Core (MIC) Architecture

to achieve performance improvements that can compete and improve best imple

mentations nowadays in GPU and CPU architectures [6, 31, 34]. Optimizations

of this hardware architecture can be generalized to other acceleration structures

as: grids or kd-trees.

Figure 2.18 shows how a job is divided and dispatched to different threads of the

framework. Wald uses a structure-of-array-of-structures (AoSoA) as data layout

to manage storage of his framework (see Figure 2.19).
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Figure 2.18: Horizontal merging: In this hypothetical but plausible example,

five threads (A-E) are collaboratively binning a task consisting of 10 subjobs

(0-9) [9].
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FIGURE 2.19: AoSoA data layout with 10-bit quantization per coordinate.

Each chunk of 16 fragments requires only three consecutive cache lines, this

representation allows very efficient SIMD processing. Each [begin . end)

región of chunks is contiguous, and can be addressed with a single scalar register

[9].
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2.4.3 SpecializedMicroarchitecture for construction ofBVH

Doyle in [37] designed the first specialized micrc-architecture for the construction

of binned SAH BVH for ray tracing. Figure 2.20 and 2.21 show the overall sys

tem micro-architecture, and it shows the central units of the micrc-architecture.

DRAM interface consists of a number of RAM pairs. Each RAM pair consists

of two memory channels. Primitives are divided over the RAM pairs. The upper

builder reads and writes directly to DRAM and is responsible for constructing the

upper levéis of the hierarchy. The sub-tree builders are responsible for constructing

the lower levéis of the hierarchy.
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FIGURE 2.20: A top level overview ofthe binned SAH BVH construction hard

ware, showing memory interfaces, upper and subtree builders [37]
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This micro-architecture offers: Acceleration of up to 10X for binned SAH BVH

compared to manycore platforms, low memoiy bandwidth consequently a low

memory footprint and minimal hardware resources consumption. This micro

architecture offers construction times lower than software implementations [6, 31,

32].



Chapter 3

Characterization of Scenes

There are several optimization techniques for acceleration structures. However,

despite all these proposed optimization techniques, there exist a trade-off between

build time and ray traversal performance of acceleration data structures that de

pends on geometric complexity of the scene. This geometric complexity is related

to spatial distribution of primitives in the scene. Performance of acceleration

structures varies greatly according to the complexity of scenes, and it is necessary

to use knowledge about spatial distributions of primitives to use this information

to increase performance of acceleration structures.

In this chapter is addressed a new method to analyze the geometric complexity

of scenes. This method implements statistical methods during the analysis to get

the geometric complexity. This method analyzes how the complexity of scenes is

related to construction times and ray traversal performance for each acceleration

structure. As a product of this analysis, it is obtained a lower bound. A lower

bound guarantees that a selected structure has the fastest construction times and

produces the highest frame-rate.

29
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3.1 Contributions

Geometric complexity of the scene is obtained by looking how primitives are dis

tributed and spatially concentrated along the scene. In order to get these proper

ties was necessary to: represent each primitive of the mesh, genérate a structure

to store information of concentration and distribution of primitives and extract

relevant characteristics of the geometry.

3.1.1 Representation of primitives

In order to represent primitives, it was selected the simplest and inexpensive way

to do it; a centroid representation due the effectiveness of representation and to

decrease space complexity. A centroid representation can be computed by using

Equation 3.1. This representation preserves physical locality of primitives while it

is possible decrease space complexity reducing a primitive to a single representative

point.

Centroid = (Skfl,Ek^i, ELlIi) (3.1)
\ n n n J

Figure 3.1 shows how a primitive can be represented by a centroid. In this figure

is shown how this representation maintains the locality of primitives.

(a) (b)

FIGURE 3.1: Centroid representation of a primitive. a) Shows a primitive

representation that in this case is composed by three vértices b) Shows how a

primitive can be represented by compute a centroid.
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Figure 3.2 shows how centroids represents a three-dimensional model. This figure

shows how this representation maintains and preserves details of the model.

(a)

(b) (c)

FIGURE 3.2: Centroid representation of Stanford Bunny model composed by
69,451 primitives a)Shows a complete model representation b) Shows a close-up
of the model where some details can be observed c) Shows a close-up of the

model where individual centroids can be observed.

Once the algorithm compute the centroids of primitives. It is necessary to obtain

information about spatial location of primitives. In order to compress the repre

sentation of primitives, it was used the z-order curve see Figure 3.3. The z-order

curve defines a Morton code representation [38].

For each centroid that represents a primitive, it was calculated a spatial Morton

code to transíate three-dimensional coordinates in one-dimensional valué. This

transformation is obtained taking bits of each valué of the centroid's coordinate
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Figure 3.3: Implicit Z-order curve of morton codes.

axis and then interleaved it to produce a single valué see Figure 3.4. Lauterbach

used this way of represent primitives in [29].

1 i 1 2

(a)

lolol 0 0 0 0 0 10 0 ooo oh OÜÜOMoo OU 1

(b)
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(c)

JFlGURE 3.4: Morton code representation of three-dimensional coordinates. a)
Shows a centroid's three-dimensional coordinates C=(1,2,3). b) Shows a bi

nary representation of each axis, c) Shows a computed Morton code that was

obtained by interleaving bits of binary representation of each axis.

3.1.2 Auxiliary Structure for Characterization

In order to observe how primitives are distributed and concentrated, it is necessary

to build a structure that allows store this information. It was selected a histogram

as an auxiliary structure to store spatial information related to primitives. Each

bucket in the histogram represents an equivalence class.

An equivalence class is a spatial range given by the number of classes and the min

imum and máximum valúes ofMorton codes. The number of equivalence classes is
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given by the formula of Doane [39], which is a modification of the Sturges' formula

[40]. The Sturges' formula assumes that the input data is normally distributed,

and this assumption is not applicable to primitives of all scenes. For this reason,

it is better to use the formula of Doane. and additionally this formula is better

than the Sturges for large samples as is the case of primitives.

k = 1 + l0g2(N) + Zopa ( 1 + J-^-H (3.2)

Where <?- is the estimated third-moment-skewness of the distribution and o is the

sample standard deviation.

Once the algorithm calculates the number of classes, is necessary to define the

width of the classes in order to define the membership of a primitive to a class.

maxValue — minValue . .

width = (o.d)

Finally, in order to verify membership of a primitive to an equivalence class, it

must be computed the next equation.

t

J\{x\ i ■ xvidth < x < (i + 1) • width} (3.4)

An equivalence class denotes affinity between primitives, this affinity, indicates

that primitives are physically cióse to each other. Thus, primitives in the same

equivalence class are next to each other. Given a set of input primitives P that

belong to a scene is necessary to map each Morton code that represent a primitive

to an equivalence class. For this propose, there exist two approaches:

• Sorting Morton codes [41] and then, distribute them to classes (Radix Sort).

Complexity 0(nlogn).

• Looking for a position in the histogram for each Morton code. Complexity

0(n ■

Jt).
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FIGURE 3.5: Partition scheme of equivalence classes. a) Shows implicit order

of Morton codes. b) Shows how the method groups primitives by affinity. c)

Shows the proposed method partition primitives in equivalence classes.

Both methods are quite expensive. To decrease complexity, in this thesis is pro

posed a method to map a Morton code to an equivalence class in constant time

0(1). This method uses a hash function, and this function performs an arithmetic

operation and returns the position on the histogram for a given Morton code see

Figure 3.5.

Finally, a scene is partitioned in equivalence classes, those equivalence classes

group primitives by affinity as is shown in Figures 3.6.

Pseudocode of the algorithm 1 describes the process to construct an auxiliary

structure that stores information related to input geometry for a specific scene.
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Figure 3.6: Hash function that maps a spatial Morton code to an equivalence
class.

i nap<int,vector<int>>hlstogram;
a main()
s foreach primitive do

4 calculateCentroid(prtm.tiue.vértices);
s calculateMortonCodc(prirmttue.centrotd) ;

j end

r calculateBoundsQ;
• generateEquivalenceClasses( ) ;

a generateHistogram();

io end

n Function generateEquiv&lenceClassesO
ia k= 1 + log2(numPrimitives) + 1003 (1 + (ffi/a-n));
is width=6ourux/fc;
14 map<int , vector<int»histogran(k) ;

is end

is Function generateHistogramO
ir foreach primitive do

is pos*=hashFunction(primitive.mortonCode);
10 hÍ8togram[pos]+=l;
ao end

ai end

aa Function hashFunct ion (valué)

as pos=ceil(abs(minVal)+val/width);
34 return pos;

as end

Algorithm 1: Pseudo-code to construct a structure that contains in-

formation about concentration and distribution of primitives.

3.1.3 Analysis of scenes

Performance of acceleration structures varies considerably depending on the input

geometry. The main objective of this paper is to find out which characteristics
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are strictly related to performance of acceleration structures. For this reason, this

paper proposes a statistical analysis of the geometry for scenes. The information

that the analysis produces ought to be useful to know which structure is the best

suited for a given geometry.

Generally speaking, the performance of an acceleration structure is given by its

construction. Using this premise, the first step was to use this knowledge in

order to search specific patterns in a scene. This patterns or characteristics give

some clues about performance of a specific acceleration structure with an input

geometry. The analysis presented in this paper focuses on detect those patterns

in a single pass 0(n).

The most common patterns or characteristics detected in scenes, and they have a

positive or negative influence in construction of acceleration structures are:

1. Distribution of primitives in the scene.

2. Concentration of primitives in the scene.

3. Empty classes

4. Kind of scenes.

5. Adjacent primitives.

Distribution of primitives in the scene. This pattern affects performance

of structures. A well behaved uniform triangle distribution favors all structures,

but particularly a grid structure is the less adaptive of all structures. Since a grid

structure subdivides the space uniformly, if the geometry is not uniform ray traver

sal performance of grids is poor. Nevertheles, Kd-trees and BVHs, are structures

more adaptive to non uniform geometry.

In order to measure quantitatively if a given geometry is uniform, the Chi-Square

goodness of fit test is used.

V-tf!-^) ,3,,
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Once the algorithm calculates the Chi-Square goodness of fit test, the next step is

to verify if the current valué of Chi-Square is less than the critic valué. If it is less

or equal, the observed distribution of the histogram fits a probability distribution,

in this case an uniform distribution. To calcúlate the critic valué is necessary to

provide the degrees of freedom (fc - 1) and probability.

I I
#

i l > * i f, t 'r is :¡ - is i*

Figure 3.7: Chi-Square goodness of fit test measures how different are two

probability distributions.

Concentration of primitives in the scene. The concentration of primitives

focused in a defined area is a pattern that influences performance of scenes, this

kind of concentration presents a disadvantage to some structures that employ

uniform partition schemes.

To analyze this pattern its necessary to observe if there exist a significant difference

in the number of primitives in an equivalence class respect the others. in other

words is necessary to detect the mode or modes in the input data. To determine

a class has a high concentration of primitives, It is proposed a threshold, this

threshold is the arithmetic mean of all classes.

X =

ci + c2 + c3 +
• • • + cfc

(3.6)

A class with a higher number of primitives than the other classes denotes a high

concentration of primitives in a determined región. This concentration affects

some structures that cannot handle this type of geometry.
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Figure 3.8: Figure shows a high concentration of primitives in classes 5-10.

Empty classes. When equivalence classes are empty or poorly populated, this

means structures that allow empty nodes can perform unnecessary tests when

rays traverse nodes of the structure. An empty class generates invalid nodes in

the structure, and it also decreases ray traversal performance.

Figure 3.9: Figure shows empty classes in the histogram classes 6-8.

Kind of scenes. One important characteristic to consider is the kind of the input

geometry for a given scene. If the geometry of the scene transforms from frame to

frame, a structure must be rebuilt or regularly update. Thus, the main objective

for this kind of scenes is to choose a structure that can be rebuild from scratch

or update efficiently rather than select a structure that has the most efficient ray

traversal performance, but has higher construction times.

For scenes where geometry does not change, the construction time is not signifi

cant. The most important aspect for this type of scenes is an efficient ray traversal

performance. For this scenes, high construction times can be amortized by ren

dering many frames.
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W O) (c)

(d) (e) (f)

FIGURE 3.10: Figures a, b and c are three frames of a dynamic model Exploding

Dragón and Bunny (252K). Figures d, e and f are three frames of a static

Daemon model (935K).

Adjacent primitives. When primitives are adjacent to each other and constitute

an object (rigid objects) there exist a coherence between primitives that form a

particular object, and consequently there exist a coherence in rays that traverse

these primitives. Is more efficient traverse primitives that have coherence than

primitives that do not have it.

Pseudocode of the algorithm 2 describes the process to extract characteristics and

to detect patterns in the input geometry for a specific scene.

All these cited characteristics must be taken into account to select an acceleration

structure. This prior knowledge of geometric complexity of the scene can be used

properly to select an acceleration structure that minimizes construction times and

maximizes ray tracing traversal performance.
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i expFreq=numPrim/k;
a XSquare=0;
s main()
4 for obsFreq in equivalenceClasses do

s | XSquare+=pow(obsFreq-expFreq,2)/expFreq;
6 end

7 mean=calculateMean(numPrimitives) ;
8 stdDev=calculateStdDeviation(mean,numPrim);
9 isUniformDistributed(XSquare,mean,stdDev);
10 hasEmptyClasses(histogram) ;
11 end

ia Function calculateMean(n)

13 mean=0;
14 for m tn mortonCodes do

15 ¡ mean-r-*=m;

16 end

17 return mean/n;
is end

19 Function calculateStdDeviat ion (mean, n)

30 stdDev=0;

31 for m tn mortonCodes do

33 | stdDev+=pow((m-mean),2);
33 end

34 stdDev=sqrt (stdDev/n) ;
35 return stdDev;

36 end

37 Function isUnifDistributed(chiSquare, stdDev)

38 cVal=computeCriticVal(k-l ,0.005) ;

29 if XSquare>cVal and stdDev is near to 0 then

30 return true;

31 end

32 else

33 return false;
34 end

35 end

36 Function hasEmptyClasses (histogram)
37 for h in histogram do

38 if h is empty then

39 | return true;

40 end

41 else

42 | return false;
43 end

44 end

45 end

Algorithm 2: Pseudo-code of proposed algorithm to verify how well ob

tained data fits to a uniform probability distribution.
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Parallel Characterization

This chapter addresses the method described in chapter 3 as an implementation

on a modern programmable GPU. It describes optimization techniques used to

ensure maximal utilization of GPU resources. Figure 4.1 shows a general overview

of the interaction between diverse components during characterization, and it also

describes which operative unit do a particular task. As a result of characteriza

tion, it is selected an acceleration structure. This method amortizes its complexity

preloading geometric information ofthe model on the GPU. This preload substan-

tially decreases memory latency avoiding communication between CPU and GPU.

See Apendix for detailed information of graphic card.

CPU GPU

Figure 4.1: Architecture of parallel implementation

41
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4.1 Parallel construction

The construction of the histogram is fully parallelized in GPU in order to decrease

construction time, and guarantee a fastest construction time. This construction

has different parallel phases: 1) Calcúlate a centroids and a Morton codes. 2)

Calcúlate the standard deviation of the sample. 3) Map each Morton code to a

histogram position.

4.1.1 Calcúlate centroids and Morton codes

This task is completed by launching many threads through a kernel that calculates

for each primitive a centroid. A thread sums the valúes of each vértex by axis and

then the result is divided by the number of vértices see Figure 4.2. When a thread

calculates a centroid it needs to compute equation 4.1.

Vi.axis + Vz-axis + V_..axis

\V\
(4.1)

Input:Primitives

1 ! 2 3 K

X | Y 1 Z I Centroid

____^

y

0 1 0 1 i 0
!

'

i

o¡i!

Output: Morton Code

Figure 4.2: Parallel calculation of centroids and Morton codes.

Threads must perform the operation by each axis in a scatter pattern. For instance,

threads take X-axis of each vértex and then, they sum those valúes in a reduction
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process. The result is divided by the number of vértices. This process must be

repeated in each axis.

4.1.2 Calcúlate the standard deviation ofthe sample

This statisticalmetric is necessary in order to determine the number of equivalence

classes. Ib calcúlate the standard deviation of the sample is necessary to obtain

the arithmetic mean, the mean can be obtained by a parallel reduction. In this

reduction, each thread takes two numbers and then makes an addition. Then a

thread uses the results of previous additions and sums them in a recursive process,

as a product of the end of the process it finally obtains a single valué, the sum

of all input elements see Figure 4.3. Then, to get the mean the obtained valué

is divided by the number of input elements. The overall process of compute the

arithmetic mean is given by equation 4.2.

N

inputMtrrtou codes m € M

'

^*l ^3 ¡ "*S I "*4 "*J "^ "** I "**

SUM SUM SUM
,

SUM

i"m1.m.-) kms.ma) '(**ta.m.) km-.m»)

SOM SUM

"..mIB) t-m-H «tul

SUM

km„,m,.1

ampia.Svm of ¡Ul elements

FIGURE 4.3: Parallel sum reduction.
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4.1.3 Map each Morton code to a position in the his

togram.

This process is completed by assign a thread for each input Morton code. Each

thread executes an arithmetic operation. This hash function assigns a Morton

code to a position in the histogram see Figure 4.4. It is necessary to employ

atomic memoiy operations in order to guarantee that only a single thread at the

same time can access and modify a memory location. Employing this technique

the algorithm get consistent valúes in the histogram.

Each thread performs the arithmetic operation defined in equation 4.3 in order to

assign a position to a Morton code.

Pos
m€ M

width
(4.3)

input:Morton codesm € M

m, ~^_

m_. 0

1

.-

...
■-

'»!

*

m„

Morían

Codes

Hash

Function
Histogram

Figure 4.4: Parallel map a Morton code to a histogram.

4.2 Parallel Characterization

The characterization of the input geometry is fully parallelized in GPU. The most

compute demanding calculation during characterization is the Chi-Square metric.

In order to compute this metric, the implementation uses parallel techniques.
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4.2.1 Chi-Square Metric

To compute the Chi-Square valué is necessary make it in two phases. The first

phase (blue rectangle) makes a subtraction between observed frequency and ex

pected frequency, and then the result to the square is divided by the expected

frequency see equation 4.4. The second phase (red rectangle) takes all valúes, and

it makes a parallel sum reduction see equation 4.5. The parallel calculation of a

Chi-Square valué is illustrated on figure 4.5, in this figure each color of the lines

represents a thread.

(Oí - -Ej)2
(4.4)

^¿((«-«r
i=l

Ei
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FIGURE 4.5: Parallel calculation of Chi-Square metric. This calculation is

divided in two phases
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4.3 Generation of Equivalence Classes

Each bucket in the histogram represents an equivalence class, and the number of

elements in each bucket represents the cardinality of an equivalence class. Every

primitive grouped in an equivalence has the properties described below:

• Primitives in the same equivalence claas are cióse to each other.

• Primitives in the same equivalence class are part of the same object.

• Primitives in the same equivalence class preserve coherence during traversal.

• Primitives in the saine equivalence class are stored in contiguous segments of

memory, this property allows a coalcscc access pattem; this pattern improves

access performance.

These properties are pretty useful to know the distribution of geometry ior a

particular scene. Nevertheless these features also give information about coherence

of primitives during traversal. This information can be used to build a structure

and maximize coherence in rays during intersection tests.

The parallel construction completes the histogram. It contains references to prim

itives in order to minimize memory footprint. Graphically the partition method

gubdivides primitives in equivalence classes. Figure 4.6 shows equivalence classes

of the Stanford Bunny model (69K). On ít, each color represents an equivalence

class. ln this figure is observed how primitives are spatially located near to each

other in the same equivalence class.
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Figure 4.6: Proposed partitioning scheme. Equivalence classes in a Stanford

Bunny model (69K). In these images each color represents an equivalence class.
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Results

This section exhibits the results of characterize diverse scenes. These scenes varies

in the number of primitives and complexity. It also differs in the kind of motion

in scenes. The models used are Stanford Bunny (69K primitives), Crytek Sponza

(279K primitives), Happy Budha (IM primitives), Welsh Dragón (2M primitives)

and Exploding Dragón and Bunny (252K primitives) this last scene is dynamic,

and it has 16 raw sequences.

The metrics used in order analyze how efficient is an acceleration structure with

the input geometry are construction time, frame rate and intersections. These

metrics acts as a reference in order to verify if the characterization selects the best

suited structure for a specific geometry.

The construction times and frame rates were obtained from the implementation

in Compute Shader proposed by Garicía et al. [10]. In order to execute the tests

of proposed method, and to take construction times, it was used a 3.30 GHz Intel

core i5 2500, with 4Gb of 1333 MHz DDR3 RAM (2x 2GB) compiled as a 64-bit

application, the GPU is an NVIDIA Geforce GTX590 video card. To get the frame

rate the scenes are rendered ad 1024 x 1024 pixels.

The proposed method groups primitives in equivalence classes. These classes have

a number of primitives given by the Z-order of Morton codes. This way of group

primitives allows to do a statistical analysis to get information of geometry. In

48



Chapter 5. Results 49

Figure 5.1 are shown diverse scenes, where each color represents an equivalence

class.

W (b) (c)

(g)

Figure 5.1: Primitives are grouped in clusters of equivalence classes; each

equivalence class represents a color, a) Stanford Bunny Model (69K). b) Crytek
Sponza Model (279K). c) Stanford Budha Model (IM). d) Welsh Dragón Model

(2M). e), f) and g) Represents a Dynamic Scene Exploding Dragón and Bunny
model (252K).
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5.1 Static Scenes

Iable 5.1 shows the product of diaracterization for each scene that the proposed

method gives as output.

Table 5.1: Best acceleration structure for each scene according characteriza-

taoo-

Scene Selected Structure

Stanford Bunny(69 K) BVH

Crytek Sponza(279 K) Kd-Tree

Happy Buddha(l M) BVH

Welsh Dragon(2.2 M) BVH

Figure 5.2: Rendered ñames of static three-dimensional models.

In <>Tder to verify if this characterization is assertive, Figures 5.3-5.8 show some

metrics to measure quantitatively advantages of one acceleration structure over

the others.
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Construction

25

20

10

I
BVH Kdtree Grid BIH

■ budha 2.68039 9.120627 1.078338 1 056977

■ bunny 0.150344 0619919 0 373139 006646S

sponza 0.676935 3.807539

22.572885

1.839558

1.306839

0.331353

■ welsh dragón 5.358588 2.002592

FIGURE 5.3: Construction times in seconds for diverse static scenes.

Framerate

25

20

15

I I
budha bunny sponza welsh dragón

■ BVH 4.55 7.94 14.35 3.51

Kdtree 4.69 7.34 22.8 366

■ Grid 133 2.84 1.99 0.67

BIH 1.59 2.6 1.75 1.55

Figure 5.4: Frame rate in frames per second for diverse static scenes.
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BVH Intersections
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Figure 5.5: Intersection tests for BVH with diverse static scenes.

KDtree Intersections

FIGURE 5.6: Intersection tests for KD-TVees with diverse static scenes.

Grids Intersections

• Primitive

■■

mi ^^a_ ||
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budha

ll
bunny sponza welsh dragón

3.17922 3.424321 6.497585
1

3.052433

26.220366 23.47987 12.361378 45.379295

Figure 5.7: Intersection tests for grids with diverse static scenes.
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BIH Intersections
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■ ■ ■ |
budha bunnv sponza welsh dragón

Primitive 1.597294 2.059953 1.088683 1.892679

[ 43.132248■ Box 39.296547 29.775337 35.539097

Figure 5.8: Intersection tests for BIH with diverse static scenes

As this scenes are static, the most important thing is the ray traversal performance,

since a ray tracer builds only once the structure, expensive constructions do not

impact in every frame, and the time spent in construction amortizes over the

frames. Based on results ofmetrics, it is important to observe that characterization

takes good approximations of the best suited structure for a scene by selecting the

structure that in most of the cases has lower construction times and good ray

traversal performance.

5.2 Dynamic Scenes

The exploding dragón and bunny scene is a dynamic scene that has 16 raw se

quences. Nevertheless in order to show succinct results in this paper, Only three

representative sequences of the scene were analyzed. Information of geometry of

the scene changes from frame to frame and the consequent performance of accel

eration structures changes as te geometry varies. Table 5.2 shows the product of

characterization for each scene that the proposed method gives as output.
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Table 5.2: Best acceleration structure for Bunny and Exploding Dragón

(252K) according characterization.

Scene Selected Structure

Frame 1(252 K) BVH

Frame 3(252 K) BVH

Frame 7(252 K) BVH

Jfcfl

FIGURE 5.9: Rendered frames of a dynamic three-dimensional model.

Construction

2.5

1.5

05

I BVH

Kdtree

i Grid

i BIH

Frame 0

0.596156

2.145582

0852859

0.274159

Frame 4

0.63402

2.088311

0.656666

0.219315

Frame 7

0.657821

1.941486

0.384423

026331

Figure 5.10: Construction times in seconds for diverse dynamic scenes
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Framerate

FIGURE 5.11: Frame rate in frames per second for diverse dynamic scenes

BVH intersections

Figure 5.12: Intersection tests for BVH with diverse dynamic scenes.



Chapter 5. Results 56

KDTree intersections

Figure 5.13: Intersection tests for KD-Trees with diverse dynamic scenes.

Grids intersections

Figure 5.14: Intersection tests for grids with diverse dynamic scenes.

BIH intersections

Figure 5.15: Intersection tests for BIH with diverse dynamic scenes
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In this kind of scenes where geometry changes constantty, the most important

is to build or update the structure as fast as possible for this reason, during

the characterization this an important aspect to take in account. Metrics are

important to realize how an acceleration structure behaves when the geometry

changes. Results of the characterization are consistent with data obtained ou the

characterization. An in this way is demónstrate that the characterization was

assertive in all the cases.

5.3 Performance of the proposed algorithm

Overall Complexity of the proposed algorithm is linear 0(n). Moreover, the total

amount of work performed by the algorithm is fully parallelized. Table 5.3 shows

execution times of the proposed algorithm, in this table can be observed a Speed

up factor from 18 to 49 X in characterization time. Figure 5.16 shows a linear

behavior in execution times with scenes from 6K to 2.2M number of primitives.

FinaUy, Figure 5.16 show a comparative between the naive method of characteriza

a scene and the current proposal.

Table 5.3: Execution times of the proposed algorithm.

Scene Number of Naive Current Speed-Up
Primitives Implementation Proposal Factor

Ring 6446 0.037 sec 0.002 sec 18aV

Diamond 20,482 0.097 sec 0.004 sec 24X

Stanford Bunny 69,451 0.446 sec 0.009 sec 49*

Crytek Sponza 279,163 1.346 sec 0.033 sec 40X

Mmicooper 304,197 1.642 sec 0.035 sec 46X

Demon 935,236 4.786 sec 0.107 sec MX

Happy Buddha 1,087,716 5.642 sec 0.126 sec UX

Welsh Dragón 2,210,673 11.179 sec 0.256 sec 43X
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Figure 5.16: Linear behavior of execution times of the proposed algorithm.
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Figure 5.17: Naive method vs current implementation.



Chapter 6

Conclusions and Future Work

This chapter summarizes the thesis, discusses its findings and contributions, points

out some contributions to the area with the current work, and also outlines direc

tion for future research in the area.

The work described in the entire thesis has been concerned with the development

of a new method to extract geometric complexity of scenes. This new method

consisting of statistical analysis was proposed to explode a priori knowledge of

geometry in scenes. A number of interesting features of the proposed algorithm

have been described, and the method was shown to be efficient on dynamic scenes.

6.1 Summary of the Thesis

A general introduction of the challenges of Ray Tracing was first presented in

Chapter 1. With Ray Tracing becoming one of the most implemented rendering

techniques, the problem of rendering complex three-dimensional models in real-

time has become important. This chapter also presented the general direction of

this thesis and pointed the initial hypotheses, main objectives and contributions.

A review of common acceleration structures and architecture improvements for

Ray Tracing was given in Chapter 2. This chapter also reviewed bounding volume

59
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techniques. This kind of techniques acts as early exit tests; if a ray does not in

tersect a bounding volume neither intersects a primitive contained in a bounding

volume. Generally, the acceleration structures can be divided into two main cate

gories as a) space subdivisión structures, and b)object hierarchy structures. The

first kind of structures subdivides the scene spatially using axis while the second

technique subdivides primitives of the scene. There exist three main structures

types: Bounding Volume hierarchies, Kd-Trees and Grids. In this chapter were

discussed the most relevant optimization for each structure and finally, this chapter

review some optimizations related to hardware architectures improvements.

Chapter 3 shows a method to characterize scenes. In this chapter is divided into

three parts. The first part presents an optimal representation of primitives, the

second part describes the construction of an auxiliary structure and finally, the

third part describes which patterns are important to select a structure and the

characterization process.

A parallel implementation of the proposed method is described in Chapter 4, This

chapter is divided into three parts. The first part is related to parallel construction

of an auxiliary structure (histogram), this section describes parallel calculation of

centroids and Morton Codes and the process to map a Morton code to a histogram

position. The second part describes the parallel characterization, and finally the

third part describes the generation of equivalence classes for the model.

Chapter 5 showed obtained results. In order to get these results were used two

varieties of scenes, static and dynamic scenes. This chapter shows the selection

of the proposed method and additionally, shows some metrics for each scene as

construction times, frame-rate and intersections per box and primitive.

6.2 Thesis Conclusions

This dissertation has investigated how to characterize surface meshes of three-

dimensional models using statistical methods. This information is used as a priori
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knowledge of geometric complexity of the scene to evalúate which acceleration

structure is the best suited for a specific scene. It can be concluded that this

characterization is pretty useful in dynamic scenes where an acceleration struc

ture must be rebuilt from scratch (in most of the cases) every time the geometry

in the scene changes. Then, if for each frame is selected a lower bound, It is trans

lated to decrease construction times and increase ray traversal performance and

consequently in a higher frame-rate.

This research proposed an efficient method to extract patterns (characteristics)

from three-dimensional models. It also presents an efficient parallel process to

complete characterization in the minimum amount of time. It is pretty useful

for ray tracing in real time, as performance of acceleration structures varies con

siderably with a diversity of geometry, and the proposed method can save much

calculation time and resources by always selecting the most appropriate structure

for a given geometry.

This method can be useful, to give information about how to deal with a particular

geometry focused to acceleration structures. Also, it can be generalized to segment

a scene by coherent primitives (distributed ray tracing).

As a result of this research, it was demonstrated that there exist significant char

acteristics in a scene that impact directly on construction times (concentration

and distribution of primitives in a surface area). It is demonstrated through ob

tained results that is possible, take advantage of a priori knowledge about the

geometric complexity of the scene to select an acceleration structure. Also, It was

demonstrated that initial hypotheses were true.

Finally, complexity ofthis proposed method can be amortized, the auxiliary struc

ture can be considered as a low quality structure that maintain memory coherence

on its construction and valúes of primitives can be relocated or operated on GPU

avoiding memory latency.
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6.2.1 Publications

The results in this thesis have previously appeared in the following publications:

• U. Olivares, A. García and F. Ramos "Surface Mesh Characterization of

Scenes for Ray Tracing in Real-time" . proceeding of the Computer Graphics

International, 2014 [42]. Status: Accepted

• U. Olivares, A. García and F. Ramos "Surface Mesh Characterization of

Scenes on GPU for Ray Tracing in Real-time", Pacific Graphics 2014 [43].
Statusdn review phase.

6.3 Future Work

Although the results presented in this thesis have demonstrated the effectiveness

of our approach to characterize three-dimensional scenes, it could be further de

velopment in some ways, and there are many avenues for future work to improve

the algorithms and the statistical analysis proposed in this thesis.

One direction on future work could be the prediction in ray tracing. This prediction

can be possible due primitives are sorted in equivalence classes, and in each class

there exist a coherence between primitives. This information about coherence

could be useful during intersection tests.

One interesting application would be to investigate allowing automatic learning

of the method. Another possible direction is to investigate about distributed ray

tracing. As primitives are grouped in equivalence classes, and there exist coher

ence between primitives of the same class. It can be used a hybrid construction,

this construction allows the creation of specialized acceleration structures for each

object that has coherence on its primitives. This application can improve perfor

mance of complex scenes.
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Finally, in terms of application the proposed method can be applicable in a lot of

potential áreas in computer graphics. Due information provided by the proposed

method is useful to know the geometric complexity of the input scene.



Appendix A

Graphic Card Specifications

This appendix shows specifications ofthe NVIDIA GeForce GTX 780 3GB graphic

card. This card was used to obtain the results on chapter 5. Tables A.l A.3

summarize all specifications for this graphics card.

Figure A.l: NVIDIA GTX780 graphic card

Table A.l: GPU Engine Performance Specifications.

Description Unit

CUDA CORES 2043

Base Clock(MHz) 976

Boost Clock(MHz) 976

Texture Ful Rate (MHz) 185.6 GT/s

64
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Table A.2: GPU Memory Performance Specifications.

Description Unit

Memory Speed 6.0 Gbps

Standard memory config 3072MB

Memory interface GDDR5

Memory interface width 384-bit

Memory bandwidth 188.4

Table A.3: GPU Resolution and Refresh Performance Specifications.

Description Unit

Max Refresh 240Hz

Max Analog 2048 x 1536

Max Digital 4096 x 2160
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