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Abstract

In this thesis, the end-to-end rate optimization problem in the 802.11 wireless

network protocol is addressed with the use of Multi-Objective Optimization

(MOO), Cross-Layer Design (CLD) and Particle Swarm Optimization (PSO).
The approach includes getting the cost functions of the first two layers of

the Open Systems Interconnection model (OSI model). These are the phys
ical layer and the Data link layer with its corresponding sub-layers Logical
link control sub-layer (LLC) and Media access control sub-layer (MAC). With

these cost functions we use Optimization Theory to improve network perfor
mance and optimize the throughput of the Network. The Particle Swarm

Optimization algorithm (PSO) is an algorithm extensively used in various

fields of science that optimizes a problem by iteratively trying to improve a

candidate solution with regard to a given measure of quality.
PSO optimizes a problem by having a population of candidate solutions,

called particles, and moving these particles around in the search-space ac

cording to a mathematical formula over the particle's position and velocity.

Additionally, the obtained results by the PSO, are verified using the net

work simulator (NS-2), Relevant changes are made for the implementations
of the proposed model and a comparison with the original model.
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Resumen

Esta tesis tiene como objetivo ayudar a optimizar la entrega de paquetes fin a fin,

haciendo uso de la teoría de optimización. Las redes inalámbricas se caracterizan por
el uso de un medio de transmisión dinámico, en el que las condiciones de transmisión

cambian continuamente. Esta tesis trabaja con el protocolo IEEE 802.11 (WiFi).

El trabajo incluye obtener las funciones de costo de las 2 primeras capas del modelo

de interconexión de sistemas abiertos (modelo OSI) incluyendo la capa física y la capa

de enlace de datos con sus subcapas control de enlace lógico (LLC) y subcapa de

control de acceso al medio (MAC). Con estas funciones de costo hacemos uso de la

teoría de optimización, para optimizar el rendimiento de la red. El algoritmo de

optimización de enjambre de partículas (Particle Swarm Optimization, PSO) es un

algoritmo de optimización heurístico que optimiza el problema iterativamente

tratando de mejorar una solución candidato con respecto a una determinada medida

de la calidad. PSO optimiza un problema al tener una población de soluciones

candidatas (partículas) y moviéndose alrededor de estas partículas.

Después para comprobar los resultados obtenidos por el PSO, se hace uso del

simulador de redes NS-2, donde se hacen las modificaciones pertinentes en el

simulador para realizar las implementaciones del modelo original y del modelo

propuesto.
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Chapter 1

Introduction

1.1 Index Terms

Multi-Objective Optimization (M00), Cross-Layer Design (CLD), Parti

cle Swarm Optimization (PSO), Open Systems Interconnection model (OSI

model), Logical link control sub-layer (LLC), Quality of Service QoS, (CSMA/CA),
Automatic Repeat Request protocol (ARQ), Hybrid Coordination Function

(HCF), Simple Multi-Objective Particle Swarm Optimizer (SMOPSO), Dis

tributed Coordination Function DCF, Time DivisiónMúltiple Access (TDM),

Multi-Objective Optimization Problem (MOOP), Quadrature AmplitudeMod

ulation (QAM), Signal Noise Ratio (SNR), Signal to Interference plus Noise

Ratio (SINR), Bit Error Rate (BER), Crossing Variables (CV), Packet Suc

cess Rate (PSR), Media access control sub-layer (MAC), Network Simulator

2 (NS-2), Tel (Tool Command Language, physical layer (PHY), Wireless

LAN (WLAN).

The IEEE 802.11 standard is one of the most developed wireless tech

nologies and it plays a major role in communication networks around the

world [ ], [ ]. The main attributes of the 802.11 networks are its flex

ibility, simplicity, cost effectiveness, and others. This technology provides

people with a ubiquitous communication in computing environments: in of

fices, hospitals, universities, faetones, airports, almost anywhere. Simultane

ously, multimedia applications have experienced an explosive growth. More

than ever, people are now requiring high-speed video, audio, voice and above

all, web services. This is true even when they are moving in their offices

or universities using a dynamic transmission médium, in which transmission

15



16 CHAPTER 1. INTRODUCTION

conditions change continuously. For this, multimedia applications require a

certain level of Quality of Service (QoS) support such as: guaranteed band

width, guaranteed delay, minimum jitter and transmisión error. Providing

these QoS requirements, in the 802.11 networks is still a challenge due to the

QoS-unaware functions of its Médium Access Control (MAC) sub-layer, the

noisy and variable physical (PHY) layer characteristics and variable traffic

load conditions.

Therefore, QoS is a key problem for today's IP networks. Many frame

works (IntServ, DiffServ, MPLS, etc.) have been proposed to provide service

differentiation in the Internet [ ], [ ]. At the same time, the Internet is

becoming a heterogeneous médium due to the recent explosión in the use of

wireless networks. In addition, in wireless environments, bandwidth is scarce

and channel conditions are time-varying and sometimes highly loss. Although
IEEE 802.11 Wireless LAN (WLAN) is the most widely used WLAN stan

dard today, it cannot provide QoS support for the increasing number of

multimedia applications. Thus, a large number of 802.11 QoS enhancement

schemes have been proposed, each one focusing on a particular mode.

For example, a possible way to overeóme problems of QoS is the use of

cross layer optimization, which has become a very active research area over

the last few years [ , ]. Although, there are several works that implement
diverse algorithms to improve the Quality of Service (QoS) [ ], there is

still a lot of development that could be done to improve network bandwidth,

reliability and quality of the networks in general.

Moreover, nowadays, traffic carried by wireless networks is a mix of real-

time traffic such as voice, multimedia conferences, games, web browsing,

messaging and file transfer. All of these applications require varying and di

verse standards of QoS because it is desirable to obtain the best throughput
under different types of traffic. Additionally, this topic has received signif
icant attention from both academy and industry over the last few years.

]. For example, one of the main problems is the scheduling task, which

is motivated by the unique features of wireless networks: scarce resources,

mobile users, interference from other users in the network, and time-varying
channel conditions (due to mobility). Therefore, good scheduUng schemes in

wireless networks should opportunistically seek to exploit channel conditions

to achieve better network performance. Another problem is the multi-hop in

wireless networks.

In addition to the previous problems, other difficulties that need to be

addressed are: How should one determine the end-to-end data rates for the
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users? Or when should a given link be activated in the network? How can

one ensure that the rate provided by the links is enough to support the end-

to-end rate of all users? Perhaps, most importantly, can we develop efficient

distributed solutions to these problems?

In addition to all these questions, the wireless médium is a multi-access

médium, where the users' transmissions interfere with each other, and where

the channel capacity is time-varying due to user's mobility, multi-path, etc.

This causes dependencies across users and network layers that simply are not

present in their wired counterpart. Despite such difficulties, there have been

significant advances that demónstrate that wireless resources across múltiple

layers, such as frequency, power, link data rates and end-user data rates, can

be incorporated into a unified optimization framework [ ].
For example, in [ ] R. Madan et al. present a technique to maximize the

hfetime of the network using a convex optimization. In addition, they pro

posed an iterative algorithm which alternates between adaptive link schedul

ing, computation of optimal link rates and transmission powers for a fixed

link schedule. In [ ] Yayu Gao et al. presented a throughput analysis of an

M-group IEEE 802.11 DCF network. For this, they considered a noiseless

channel and assumed that the buffer size of each node and the máximum

number of retransmission attempts of each head-of-hne packet are infinite.

Clearly, this constraint was not very realistic, and it is a drawback at the

time of implementation.

On the other hand, the MOO optimization framework has been used

successfully in trying to model the multilayer structure of the network proto
cols [ ]. For this reason, this work presents a method for optimizing
the throughput and delay of the networks 802.11 with the use of MOO al

gorithms. For this purpose, a model of the physical MAC and Logical Link

Control (LLC) layers is used to model the performance ofthe network. Then,
PSO is used to obtain the global solutions. Three case studies were proposed
to achieve this, and the non-dominated solutions [ ] were taken into account.

1.2 Motivation

As previously mentioned, the 802.11 protocol is a very popular, and the main

motivation in this work is to evalúate the intersection between the fields of

optimization theory and networking area, see (Fig. 1.1). There are a very

few studies in which these two fields converge. The aim of this thesis is
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develop a 802.11 performance model from which the features to be used in

an optimization algorithm derived, to obatain the results using a network

simulator.

Figure 1.1: Fields of intersección of the tesis.

1.3 Organization

The remainder of this thesis is organized as follows, (Chapter. 2) includes

a brief description of the theoretical framework: the OSI Model, (Section

2.1), the standard 802.11 (Section 2.2), Quality of Service (Section 2.3),

Cross-Layer Design (Section 2.4), some related works in (Section 2.5) and

Multi-Objective Optimization (Section 2.6).

(Chapter 3) provides the definition of the Multi-Objective functions, that

are divided as follows: (Section 3.2) it explains in detail de physical layer;
in (Section 3. !) the Signal to Interference plus Noise Ratio is explained; in

(Section '5.4) the bit error rate is present; in (Section 3.5) the automatic

repeat request protocol is described and in the last section of this chapter

(Section 3.6), an explanation of the media access control is given.
In (Chapter 4), the proposed Multi-Objective model is described. Next,

simulation results and a benchmark performance of the proposed algorithm
are discussed in (Chapter 5). Finally, concluding remarks are given in (Chap
ter fi).



Chapter 2

Literature Review

The study of the state of the art will be explained in the following five

subsections: The OSI model (Sec. 2.1), the standard IEEE 802.11 (Sec.

2.2), QoS (Sec. 2.3), CLD (Sec. 2.4), some works of optimization in wireless

networks (Sec. 2.5) and Multi-Objective Optimization (Sec. 2.6).

2.1 The OSI Model

The model that is going to be used through this thesis is based in the Open

Systems Interconnection model (OSI model), which is a product of the Open

Systems Interconnection effort at the International Organization for Stan

dardization. Specifically, the model is taking as reference the physical layer
and data link layers [ ] described in 802.11. This is a description of charac

terized and standardized the functions of a communication system in terms

of abstraction layers. An example of the first layers of the OSI model can be

seen in (Fig. 2.1), and a general descriptions of which task are performed at

each layer is given in the following paragraphs.

• Physical layer, in which data is handled in the form of bits, and the

performed functions are: bit-by-bit or symbol-by-symbol delivery, the

modulation and multiplexing.

• Data link layer, in which the data is in the form of frames. It uses

the packet success rate the bit error rate, average number of frames

sent and the probability of sending a frame, through a two sub-layer

architecture, LLC sublayer manages in the Error control by using the

19
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♦ N.twork

Path Determination & logical
Adressing (IP)

• Data Unk

Physical Adressing (MAC & LLC)

• Physical
Media. Signal andElinarv

Transmission

Figure 2.1: The first 3 layers of the OSI model.

Automatic Repeat Request (ARQ) protocol. The MAC sublayer fo

cuses in Múltiple access protocols (CSMA/CA) and QoS control.

Finally, because of the evolution of the IEEE 802.11, an overview of the

protocol is given in the following section.

2.2 IEEE 802.11

Over the last decade the protocol IEEE 802.11 has become the most widely
used protocol around the world. IEEE 802.11 is a set of physical layer and

médium access control specifications for implementing wireless local area

network computer communication. They were created and maintained by

the IEEE Standards Committee (IEEE 802). The original versión of the

standard IEEE 802.11 was released in 1997 and clarified in 1999. It specifies
network bit rates of 1 or 2 megabits per second (Mbit/s), plus forward error

correction code [ ]. In addition, it specifies a three altemative physical

layér architectures: a diffuse infrared, operating at 1 Mbit/s; a frequency-

hopping spread spectrum, operating at 1 Mbit/s or 2 Mbit/s; finally, a direct-

sequence spread spectrum, operating at 1 Mbit/s or 2 Mbit/s. The two latest

radio technologies use microwave transmission over the Industrial Scientific

Medical frequency band at 2.4 GHz. Some earlier WLAN technologies used

lower frequencies, such as the U.S. 900 MHz ISM band.

The proposed Multi-Objective model uses as a basis the IEEE 802.11 [ j
and IEEE 802.Un [ ] protocols. The IEEE 802.11n is a wireless networking
standard that uses múltiple antennas to increase data rates, and it is one of

the most used versions around the world. It is an amendment of the IEEE

packets

frames
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802.11-2007 wireless networking standard [ ]. Its purpose is to improve net

work throughput over the two previous standards with a significant increase

in the máximum net data rate from 54 Mbit/s to 600 Mbit/s with the use of

four spatial streams at a channel bandwidth of 40 MHz. In addition 802.Un

standardizes support for multiple-input, multiple-output, frame aggregation,

security improvements, and it can be used in the 2.4 GHz or 5 GHz frequency

bands, among other features.

2.3 Quality of Service

QoS is becoming an increasingly important element of any Communications

system, and refers to several related aspects of computer networks that allow

the transport of traffic with special requirements, for instance providing a

consistent and predictable data delivery service [ ] .

The IEEE 802.11 QoS facility provides MAC enhancements to support

LAN applications with QoS requirements. The QoS enhancements are avail

able to QoS stations associated with a QoS access point in a QoS BSS [ ]. A

subset of the QoS enhancements is available for use between a set of stations

(STAs) which are members of the same QoS IBSS. Similarly, a subset of the

QoS enhancements is available for use between neighbor peer mesh STAs. In

wireless networks, the capacity of each link depends on the signal and inter

ference levéis. Thus, it depends on the power and transmission schedule at

other links. This relationship between the link capacity, power assignment,

and the transmission schedule is typically non-convex [ ].

Essentially, all this information is saying that in networks, QoS is affected

by various factors, which can be divided into human and technical factors.

Human factors include: stability of service, availability of service, delays, user

information. Technical factors include: reliability, scalability, effectiveness,

maintainability and grade of service.

QoS refers to meeting traffic transmission special requirements, for in

stance providing a consistent and predictable data delivery service. The

IEEE 802.11e/g QoS facility provides MAC enhancements to support LAN

applications with QoS requirements. However, the initial IEEE 802.11 did

not support QoS and several challenges had to be addressed as a consequence.

Some of the issues that have been studied include: service differentiation in

the MAC layer, admission control and bandwidth reservation in MAC and

higher layers, and link adaptation in the physical layer.
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For instance, Zhai et al. [ ] studied how well the 802.11 protocol sup

port QoS. They analyzed packet delay and throughput under non-saturation

conditions. The results showed that if the network is tuned to work at op

timal point it is then possible to achieve máximum throughput, low delay

and packet loss rate. A drawback in their work is that they assume that

the traffic is uniformly distributed among the nodes, that in the real life this

assumption is not very useful.

In [ ] Stefan Mangold et al. they analyzed the IEEE 802. lie protocol
for QoS support they mentioned that the médium access control protocol is

the standard for wireless networks to provide QoS. They analyzed possible

enhancements as the Hybrid Coordination Function (HCF) for QoS support

in 802. lie, and they compared its performance to the legacy 802.11 stan

dard. A drawback in their work is that they used event-driven stochastic

simulations to evalúate the performance of the MAC and the physical layer,

which limited the simulation size of the network.

Another interesting paper of modeling is [ ] in which Bianchi proposed
a system model of Markov chain to analyze and optimize the performance

of IEEE 802.11 DCF and this model is extensively in works of modeling

in the literature (Most of them focused on homogeneous IEEE 802.11 DCF

networks) he prove that some stations suffer of throughput degradation when

they access to the shared channel and when the load of the channel is high.

He used a two-dimensional Markov chain of m backoff stages in which each

stage represents the backoff time counter of a node. A transition takes place

upon collision and successful transmission, to a higher stage and return to

the first stage. A drawback is that in networks, the nodes may have changing

traffic rates and several QoS requirements.

In [ ] Felemban et al. they introduced two models for IEEE 802.11 DCF

protocol in a single hop setting under both saturated and unsaturated traffic

loads. They presented a precise analytical model of the DCF extended from

Bianchi, which takes the freezing probability of the Backoff Counter into

account, if the channel is sensed as busy. In their work they assumed that a

general buffer network for each node with a buffer of infinite size. They took

the freezing probability of the Backoff Counter into account, if the channel

was sensed as busy.

In [ ] Pourmohammad et al. propose an analytical model to estimate

QoS. Their model is based on the queuing theory and investigates the stochas

tic behavior of data transmission in wireless ad hoc networks. They include

network layer processing time and advanced queue management schemes in
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the modeling process. A drawback is that their queue management scheme

is not suitble for real life networks.

2.4 Cross-Layer Design Optimization

There have been a large number of studies on the use of the CLD methodology

in order to optimize error rate, throughput, delay and latency. The most

general Cross-Layer solutions for joint optimization congestión control and

scheduling have recently been developed by several researchers [ *, , ,
- ].

[Fig. 2.2] shows the most general ideas that are used for the implemen

tation of the CLD. In the left OSI stack the first approach, in red, shows

upward information flow. Basically data is taken from a lower layer to a

higher one. The second one in green shows down forward information flow

i.e. it takes data from a higher layer to a lower layer. Finally, the third is

the combination of the previous two. In the right side of the design, three

different approaches are shown: the first design couples, without new inter

faces, a super layer and the third in brown vertical calibration, which avoids

using any formal knowledge of the layers.

For example, according to [ ] the traffic in wireless networks is a mix of
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real time multimedia and non-real time file transfers. Vinet et al. mention

that wireless networks misinterpret the packet loss due to collision as a route

failure and this triggers a route maintenance phase. This causes unnecessary
overhead resulting in low throughput. In their work, they present a service

driven CLD model for the purpose of increasing the throughput by dynam

ically adjusting the limits of Request to Send retransmissions of the MAC

sublayer for different flows in the network according to a given priority.

Next, in [ ], Choi et al. present a framework for analyzing complex Cross-

Layer interactions in 802.11 WLANs. Although, it is well known that imple

menting a tool for correct performance measurement of Cross-Layer design
is extremely difficult, the authors propose a framework for analyzing com

plex Cross-Layer interactions in 802.11 WLANs, with the aim of providing
effective tools for understanding and improving WLAN performance. Their

model is based on the Bianchis IEEE 802.11 DCF model [ ], and it is pre

sented in (Eq. 2.1):

T =

2(l-2pQ
1

(1
-

2Pi) (WQ + 1) + PiW0 (1
- (2Pi)m)

' lZ-i;

where the number m is the máximum backoff stage and Wq is the minimum

backoff window size, and the conditional frame failure probability p¿.

Another example is given by Cui et al. [ ] where a joint routing, MAC,

and link layer optimization are proposed to address the problem of the en

ergy consumption in Sensor Networks. In this work, the authors consider

a variable-length Time División Múltiple Access (TDMA) scheme and a

Quadrature Amplitude Modulation (QAM) for the optimization problem.
For this reason, the energy consumption cost function includes both trans

mission energy and circuit processing energy. Therefore, based on their anal

ysis, it is shown that a single-hop communication could be the optimal in

some cases in which the circuit energy dominates the energy consumption
instead of the transmission energy. Although, the optimization problems

presented in that paper are quite interesting, no communication protocol for

practical implementation is proposed. Moreover, the issues at the transport

layer, such as congestión and flow control, are not taken into consideration.

In [ ], Madan et al. proposes an optimization involving the transmis

sion power, transmission rate, and link schedule for TDMA-based WSNs. In

this work, the optimization is performed to maximize the network lifetime,
instead of minimizing the total average power consumption. their work is
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based on convex optimization. In addition, they proposed an iterative al

gorithm that alternates between adaptive link scheduling, computation of

optimal link rates, and transmission powers for a fixed link schedule.

In [ ], Xiaojun Lin et al. present a tutorial on Cross-Layer Optimization

in wireless networks. They mention that optimization-based approaches have

been used over the past several years to study resource allocation problems in

communication networks. For example, wireless networks due to interference,

require sophisticated scheduling mechanisms to carefully select only a subset

of links to be activated at each time.

The scope of each link depends on the signal and interference levéis, and

on the power and transmission schedule at other links. We observed that

the essential features of many wireless Cross-Layer control problems are not

convex. It is deduced that convex programming is often not enough. In

addition, the authors in [ ], mention that the optimal scheduling compo

nent at the MAC layer is very complex, and thus needs simpler distributed

solutions. Therefore, the scheduling component needs to solve a difficult

non-convex problem, and it usually becomes the bottleneck of the solution.

This inherent non-convexity in the scheduling component requires advanced

techniques, in addition to convex programming, to satisfactorily solve the

Cross-Layer control problem in wireless networks.

2.5 Optimization theory related works in 802.11

There are many works in the area of optimization in wireless networks, but

in general for the case of the standard 802.11 the works do not follow the

according to the general rules of the optimization theory. By example in

], Laddomada et al. present a distributed coordination function (DCF)
and focuses in optimizing the aggregated throughput. The main idea of

their work derives from the statement that links aggregate throughput of the

network to the packet rate of the contending stations. They based their

work in the model from Bianchi [ ], however they do not present a real

optimization model, since only makes modifications in the design.
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2.6 Multi-Objective Optimization

MOO is an area of múltiple criteria decisión making that is concerned with

mathematical optimization problems involving more than one objective func

tion. MOO has been applied in many fields of science, where optimal deci

sions need to be taken in the presence of trade-offs between two or more

conflicting objectives. The Multi-Objective problems contain a collection of

objective functions that might cause conflicts between their different goals

because they must be satisfied at the same time. In this work, a MOO model

is proposed to model a CLD of the first two layers of the 802.11 protocol.

A classical notation [ ] for the MOO is the following one:

F(X) = {MX), f2{X), ..., fn{X)}, (2.2)

subject to:

(2.3)
H(X) = 0

G(X) > 0.

In this case, the functions to be optimized are the set of functions F(X),
where the Vector X is the set of independent variables. JFunctions H(X) and

G(X) are the constraints of the model. The methods used in MOO provide

solutions by using the idea of dominance (Def. 1 ).

Definition 1 (Dominated). A particle is called dominated if there exist a vec

tor x = (x\, . . .

, Xk) that is said to domínate another vector v = (vi,...,Vk)

if and only if:

Vi G {1, ... , A;}, Xi < Vi A 3¿-* G {1, . . .

, k} \xi < vi. (2.4)

Definition 2 (Non-dominated Set). In a set of solutions, the non-dominated

set of solutions X' are those that are not dominated by any member of the

set X.

The main problem ofMOO is the conflict that appears when the múltiple

functions are processed to obtain their optimal solutions. For example, this

happens when there are two functions, one to be minimized and the other to

be maximized. Because they share variables, classical methods of optimiza

tion tend to obtain feasible solutions, but they are not the optimal to fulfill

the cost function goals and constraints.
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Solving Multi-Objective optimization problems typically means finding

the most preferred solution as the final one. The best solution is a Pareto

optimal solution, which is the best option.

Definition 3 (Pareto Optimal). The main Pareto Optimal. A solution x* is

Pareto Optimal ifand only if there is not another vector v = f (x) (v__, . . . ,Vk)
that dominates to f (i*) (u-- , . . .

, u*).

Osyczka [ ] et al. comment that the Multi-Objective Optimization Prob

lem (MOOP) can be defined as the problem of finding a vector of decisión

variables that satisfies constraints and optimizes a vector function whose

elements represent the objective functions. These functions form a mathe

matical description of the performance criteria which are usually in conflict

with each other. Henee, the term optimize through finding a solution which

would give the best valúes for all the objective functions acceptable to the

decisión maker. Whether or not solving a particular multi-objective opti

mization formulation serves as a necessary and/or a sufficient condition for

Pareto optimality is central to its performance.

Although, classical optimization methods have been used to try to solve

the Multi-Objective optimization problem, they tend to obtain local solu

tions. Therefore, it has been necessary to look for new optimization algo
rithms for the Multi-Objective problem. For example, evolutionary algo
rithms have shown that they are able to obtain global solutions over time

[ ]. For example, a genetic algorithm-based Multi-Objective technique is

presented in [ ], where múltiple non-dominated solutions can be obtained

in a single run. However, the optimization problem is considerably simpli

fied. In addition, the proposed technique is computationally complex due

to the ranking process during the fitness assignment procedure. Therefore,

the need to look at more efficient techniques for optimization as the PSO is

evident.

2.7 PSO for Multi-Objective Optimization

In computer science, optimization for Particle Swarm Optimization refers

to a series of methods and heuristic optimization algorithms that evoke the

behavior of swarms of bees in nature, (Fig. 23)
The PSO has been used in a variety of works along the literature [ ],

] where the algorithm is used to solve real problems and simulations of



28 CHAPTER 2. LITERATURE REVIEW
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Figure 2.3: The PSO Algorithm.

test functions. For example, in [ ], the authors propose an approach called

Simple Multi-Objective Particle Swarm Optimizer (SMOPSO) which incor

porates an elitist policy and Pareto dominance. The authors test their al

gorithm against a series of equations and compare the results against the

ones obtained by Pareto Archived Evolution Strategy (PAES)[ ] and the

Multi-Objective Genetic Algorithm 2 (MOGA2) [ ].

First, in [ ], the authors define a vector £* = \x\,x\, . . . ,x*^ which

satisfies the m inequality constraints:

9i{x)<0 ¿= l,2,...,m.

In addition, the authors utilize p equality constraints:

hi(x) = 0 i = 1,2,.. ,p.

(2.5)

(2.6)
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With all this, they define the optimization vector function as:

f(x) = [Mx), f2(x), ... ,MS)}T- (2.7)

According to [ ] the constraints given in (Eq. 2Y>) and (Eq. 2.6) de

fines the feasible región íí, then any point in il defines a feasible solution.

The authors extend the classical PSO with the use of a Uniform Mutation

Operator that selects one dimensión of the particle with a certain probabil

ity. later changing its valué. They use an elitist policy with the objective of

maintaining the best solutions.

Figure 2.4: Examples of different áreas that the PSO has been used elabo

rated by [ ].

Furthermore, Poli et al. [ ] show an analysis of the different áreas where

the PSO has been used: biomedical, communication networks, clustering

and classification, control (one of the largest), distribution networks, finan

cia!, robotics, power systems, signal processing, etc. In addition, Poli et al.

give a canonical versión of the PSO, where each particle is moved by two

elastic forces: one attracting forcé with random magnitude to the fittest lo

cation so far encountered by the particle, and the other attracting forcé with

random magnitude to the best location encountered by any of the particle's

social neighbor in the swarm. In addition, if the problem is N-dimensional,
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each particle position and velocity can be represented as a vector with N

components. Therefore, using the velocity vector, v = (i>i, . . . ,v_\). which

represents the velocity u¿ of each particle, is given by:

Vi (í + 1) = ui<i(t) + ipiRi (xM
-

Xi(t)) + x¡.2R2 (x^
-

x, (í)) , (2.8)

where x^, is the ith component of the best point visited by the neighbors of the

particle; x-(í) is the ith component ofthe particles current location; Xpí is the

ith component of its personal best; R\ and R2 are two independent random

variables uniformly distributed in [0, 1]; u> is a constant known as the inertia

weight; u> i and t¡,2 are two constants, known as the acceleration coefficients,

which control the relative proportion of cognition and social interaction in

the swarm.

Another formula is the position of a particle (Eq. 2.9), which is updated

every time step.

xi(t + l) = xi(t)+vi(t + l). (2.9)

The previous (Eq. 2 v) has been modified into the foUowing versión:

n (í + 1) = k (r,(í) + thRi {Xsi
-

Xi{t)) +rp2R2 {Xpi
-

x¿(í))) . (2.10)

where k is a constant called the constriction coefficient. Poli et al. mention

that if cJ'i . is:2 ■ and ac are correctly chosen, the PSO is guaranteed to converge

without the need for special constraints in the model.

The PSO algorithm works by having a population of candidate solutions.

These solutions (particles) are moved around in the search-space according
to a few simple formulas. The movements of the particles are guided by their

own best-known position in the search-space as well as by the entire swarm's

best known position. When improved positions are being discovered, these

will then come to guide the movements ofthe swarm. The process is repeated
and by doing so it is hoped, but not guaranteed, that a satisfactory solution

will eventually be discovered.

In PSO, the choice of parameters is a determining factor in the perfor
mance of the optimization algorithm. Therefore, one of the most important

tasks is the selection of a set of parameters that promote a good performance
of the algorithm. This is due to the fact that the PSO may easily find the

local optimal solution instead of the global optimal solution [ ] . This prema-
ture convergence can be avoided by ignoring the best-known global position
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g, and taking in place the best position / known as sub-swarm "surround

ings" This sub-swarm can be defined geometrically or in a social way, i.e.

as a related d regardless of the distances between particles.

Finally, the PSO algorithm (Algorithm 2.7) is an iterative one, and each

particle moves through the fitness landscape at each iteration, according to

its current fitness valúes as well as those of nearby particles, as well as the

swarm as a whole. A pseudo-code for PSO implementatio is shown next.

Algorithm 1 Particle Swarm Optimization Algorithm

PSO{
Initiate-Pop();
Initiate Velocity();
Evalúate Pop();

Update FbestQ;

Update Pbest ();
Insert nodomQ;
fcr i = 1.2, . . . ,MAXCycles do

for j = 0, 1. 2, . . . ,MAXParticles do

Update Velocity();

Update Particle();
end for

Evalúate Pop();

Update Fbest();

Update PbestQ;
Insert nodomQ;

Gbestpos = rnd(0,nodomfileSize);
Plot iteration();

end for

}
End Program
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Chapter 3

IEEE 802.11 Optimization
Model

In this chapter, a novel MOO model is proposed for the physical and data

link layers of the 802.11 protocol. This model is solved by the PSO algorithm

using a series of crossing variables in order to have common variables between

layers.

3.1 Network Model

A model is presented of the network that represents the tasks of the physical

layer and the sub-layers MAC and LLC is presented below. This model is

divided in five subsections, and variables used are explained in more detail

in each subsection.

3.2 Physical layer

For all the network layers, the physical layer is the most difficult one to

understand and model, the basic reason is that the physical layer is an hybrid

implementation between hardware and software. For example, in a network

system, the physical layer cannot specify its channel between two connected

nodes, but must instead predict it. This can cause difficulties if the channel is

not ideal. Figure Ji. I shows the taxonomy of the physical layer. For example,

Ekpenyong et al. [ ] modeled the throughput of the physical layer with (Eq.

3.1):

33
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Figure 3.1: Snapshot of 802.11 PHY standard activities.

-tbRsPSR(L,b,%),
L +C"

--"*—"•" (3-^

where the variable L represents the payload length in bits, C is the header

and DCF the overhead corresponding to rate in bits, R is the data rate

corresponding to PHY b is the number of bits per MQAM symbol, and

PSRS is the Packet Success Rate (PSR) defined as the probability of receiving
a packet correctly. Finally, 7S is the Signal Noise Ratio (SNR) per symbol
which is represented by:

a**. P

(3.2)
N0RS

where ea represents the energy per symbol, Nq is the one-sided noise power

spectral density and P is the receiving power. C takes the CSMA/CA chan

nel access time, and the header overhead into account as specified by the



3.3. SIGNAL TO INTERFERENCE PLUS NOISE RATIO 35

IEEE 802.11 protocol.

The time delay is converted into transmited bytes periods for the purpose

of optimization by the expression:

C = Rs * Tmh, (3.3)

where Rs is the transmission rate (PHY mode s), and TOT*, is the total pro

tocol overhead.

Now, given any symbol error in the recived packet, the followed strategy

is to discard the packet. In this way, PSR is given in terms of the symbol
error rate and Packet Error Rate PER by (Eq. 3.4):

PER{L,b,i) = l-PSR(L,b,i), (3.4)

where the variable PER comes from the MQAM protocol for Additive White

Gaussian Noise (AWGN) channels. This previous equation, as various PHY

models in IEEE 802.11a, is derived in [ ].

3.3 Signal to Interference plus Noise Ratio

Signal to Interference plus Noise Ratio (SINR) is important when calculating
the BER. In order to use SINR in those calculations, the following equation

(Eq. 3.5) is used [ ]:

SNIR = %^ , (3.5)
* noise x * interference

where PSi9nai is the signal power, PnoiSe is the noise power, and Pinterference
is the interference power. In addition, SINR is expressed in dB.

SINR is commonly used in wireless communication as a way to measure

the quality of wireless connections since the energy of a signal typically fades

with distance. In wireless networks, this is commonly known as path loss.

However, unlike wired networks, a wireless communication network has to

take a lot of environmental parameters into account. Examples of these pa

rameters are the background noise and interfering strength of other simulta

neous transmission. Therefore, SINR attempts to synthesize a representation

of all these environmental parameters.
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3.4 Bit Error Rate

The BER és used in the mratti-objectíve fmmctíoii! because ít is used as a

measure of error in libe dfifferent latyers of the 88S.11 protocol. It represents
the nmmtber oí bh orces divided by the total number of transferred bits

during am observed time initervalT and it ís expressed as a percentage.

Now. ít ís necessarjr to point ont that the BER changes with respect to

bandwidth of the physical channeL For example. this work oses the 5.5Mb/s
bandwidth. whkh has (802.11 standard [ j) the following equation (Eq. .''..*•)
for the BER cakulation:

BER = **jg (l4 x Q(8 x SINR)* + Qf16 rt SINR)*} , (3.6)

where the O function (Eq. ~) ls defined as the area under the tail of the

Gaussian ppcJbalbdity denstíiy fonsetion with zero wiipiaTii and unit variance.

3.5 Selective-Repeat Model

IKKK 802.2 ís the IEEE 802 standard and it defines the Logkal I-ñnlr Control

( LLC) at the top of the link layer in local area networks. This LLC sublayer

presents a uniform interfece to the user of the data Imfe services, which is

osoaDy the network layer. In additüomi,. the protocol used in this sub-layer is

the SR-ARQ known as selective-repeaí ¡sotocoL

The seleetive-repeat protocol is a general strategy for handling frame

tranamssion ottqts when tJhe round-trip time for frame transmission and

recepción of the acknowledgment is comparable to the frame transmission

time. SR-ARQ is used by the TCP transport protocol. where the transmitter

groups the frames into. windows so that each window contains iV frames.

Now. when the sender transmits frames within a window. the receiver stores

the frames of the current window and check for errors. After a complete
window has been received or after a proper timeout period. the receiver

instruets tJhe transmitter to resend only the frames that could contain errors.

Next. it is possíbíe to calcúlate the throughput for the protocol of SL-

ARQ as the total number of frames taransmítted by using the equation ( Eq.
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N
ARQ =

. (3.8)^
N + Na

V }

where .V is the number of frames, JVa in (Eq. O) ís the average number of

frames sent due to all retransmissions, which is modeled by (Eq. i '<):

km

Na = Y,n**k (3-9)
k=\

Here. the variable n* ín (Eq. 3/i) ís the average number of frames sent at

the kfh retransmissions, which is modeled by equation (Eq. >AU):

s

nk
= Y,3r".v (31°)

where the variable a__ is the probability for the source being in the k_h retrans

mission state. Again, this probability is modeled by equation (Eq. 3.11):

iV

«* = $>*,/. (3.11)
j=i

where ín the variable r__j (Eq. '■',. \ 1), the índex k represents the states of the

sender while it is retransmitting frames for the first time due to a damaged
or lost frame. The index / is the corresponding jth error frame. where the

X ís the first error frame and 1 is the last error frame.

All these equations require the probability of transmission, which is ex

pressed as:

p^=na-?i), (3.i2)

where F, __,__\ ís the probability of transmission from node í to node d vía node

8.

From all the previous equation, it is possible to develop a throughput

measure of the packet retransmission, which ís called ARQ (Eq. '■',. lí):

ARQ=—= (3.13)
v + Efe=i nk<*k

This is the final equation that ít ís used as part of the model of the MOO

problem. due to the equation given by the throughput of the protocol ARQ.
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3.6 CSMA/CA Protocol

The protocol at the sublayer logical link control is known as Carrier Sense

Múltiple Access with Collision Avoidance (CSMA/CA). Although, it is a

popular protocol for station transmissions [ ], it has the drawback of being

unable to determine if a collision had occurred while a transmission is done

or not.

In [ , , , ], the authors develop several mathematical models of the

sublayer MAC. These models are used in this work to genérate a throughput
cost function for the multi-objective optimization.

802.11 MAC Layer

ec: :i¿-Gc va:

Enhancement-QoS

802. i: .-TSI lase*

Access Point Protocol

.-:::.- 3 tnbanced

Security Mechanisms

Figure 3.2: Snapshot of 802.11 MAC standard activities.

Before, the throughput equation is presented, it is necessary to explain
some of the particularities of the protocol CSMA/CA. In this protocol as

soon as a node receives one packet that is sent, it checks if the channel is

clear. lf the channel is available, then the packet is sent. If the channel

is not available, the node waits for a randomly chosen period of time, and

then checks again to see if the channel is available. This period of time is

called the backoff factor, and is counted down by a backoff counter. If the

channel is available when the backoff counter mark zero, the node transmits

the packet. If the channel is not available when the backoff counter mark
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zero, the backoff factor is set again, and the process is repeated until it is

successful.

Using the previous ideas, it is possible to define the throughput of the

protocol CSMA/CA (Eq. 3.14) as:

m

T = /L &U,(«*0) + bw(io,0)eQ{^
~

P) = • ■ ■

t=l

, J_( Wo
-

*"<*•■«*
i -, [{1- PSR(b,Ln)) (1 - (1

- qr5)

where bw(,_o) and bw^o^ represent the waiting periods of a node in a backoff

state with waiting frames and not waiting frames respectively. Finally, the

collision probability is p, the steady state probability is b, and q measures

the relationship between the per-station.

Another useful metric is the MAC delay. For example, consider the situ

ation that arises immediately after a node í completes a transmission. Then,
the node begins a post backoff choosing a backoff k, and a packet arrives af

ter j states. Thus, the average time between the packet arrival at the MAC

sublayer and the completed transmission is:

Wb oo

A =E J¿S «í1
~ $A**. (3-15)

Jt=0 J=0

where W0 is defined as a two dimensional Markov chain for the CSMA/CA

process. Thus, W(t) is defined by (Eq. 1 16):

W(t) = {sw(t),bw(t))or(0,bw{t)), (3.16)

if the node is in a backoff period regardless of the number of waiting frames

or not. Next. Aijk is defined in (Eq. ¡17):

Ay* = (k-j)Es + (l-p)T + p (Td + Ki), (3.17)

where Ea is the expected state length if source l is silent. In addition, T0 is

the expected length of a colhsion involving source l, and K0 is the expected

time for / to transmit a frame beginning with a stage 0-backoff.
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Chapter 4

IEEE 802.11 Mutil-Objective
Solution

A Multi-Objective Optimization (MOO) problem consists of several possible
cost functions. In the proposed model, the equations defined in the previous
sections are used to derive the MOO cost function.

The first cost function corresponds to the throughput of the physical

layer. This cost function is defined as follows:

MR, L, b) = r^bRPSRib, L). (4.1)

Because this equation measures the throughput at the physical layer, this

objective function will be maximized.

For the second cost function, the ARQ throughput is used to represent

the data link layer/sub-layer LLC (Eq. 4.7).

r tu r *, ^(¿o,o)e92 / Wq \
nr

wm1-TT>1c-m«('.M))(i-Ii-,)-)J <4'2)

In (Eq. 1 _), one of the major benefits is that the message confirmation

has been reduced for better network performance. Thus, it is necessary to

minimize this objective function for the MOO problem.

The last cost function is the CSMA/CA throughput (Eq. 4.3):

tt s
N

Mnk,ak)= „fcm (4.3)
N + Lfc=i nkak

41
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In this last equation (Eq. 4.3), it is necessary to maximize the throughput of
the logical link control sublayer, since it models the throughput of the logical
link control.

At this point, the model is an abstraction of the physical layer, media

access control and logical link control sub-layers, but it is not yet ready for

the PSO stage. To achieve this, it is necessary to do some adjustments before

it is ready for the PSO algorithm, and this is done using the CLD approach

(Seq. 2,1).

4.1 The Crossing Variables

In order to use the PSO algorithm for the proposed MOO, it is necessary to

modify and introduce certain variables at the original formulations. These

are going to be called Crossing Variables (CV) in the different objective

functions, and these CV variables are a result of using the concept of PSR.

In order to derive the CV variables, at the proposed MOO, the probability
of receiving a packet correctly is given by (Eq. 4.4):

PSR(L, b, 7) - 1 - PER(L, b, 7). (4.4)

Then, it is possible to modify the /i equation by taking into account that

this equation can be seen as the expression of the physical layer performance
the previos equation 4.1 is take:

ML, b, R, 7) = j^b R PSR(L, b, 7).

Next, it is necessary to modify /3 in order to have the correct CVs. First,

(Eq. ■>.*) includes the PSR, which has the following property (Eq. if.);

l = PSR(L,b,1) + PER(L,b,1). (4.5)

This indicates that the total package rate is the total proportion of the

successful packets transmitted plus unsuccessful error packet (No matter

which ones). Then, when the original equation (Eq. 3.13) is combined with

the (Eq. 4.0) produces (Eq. 4.0);

... N(PSR(L,b,-y) + PER(L,b,y)) , s

Mb, 7, nk, ak) = -i
^ " ^-^

(4.6)
N + l^k=l nk<Xk
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A side effect of using the PSR function is that (Eq. 4. ¡ ) can be modified

in the following way:

M»,L,,)-r-^f)({1 MMr":„ „ Jdhi (^
bW{i0_0)eq \ ( Wp

P5ií(6,L,7))(l-(l-gr°)

The key in the crossing of variables is the packet success rate, which

can be manipulated to work at layer 1 and layer 2. This allows the sharing
variables in the model, thus the proposed MOO model can work with the

PSO algorithm.

Finally, but not less important, the metric of the bandwidth is a measure

of data shared between all the equation representing the layers under con

sideration. In the proposed model, a bandwidth of 5.5 Mb/s is used because

we believe it helps us in all our simulations use the same bandwidth, so this

does not have to be a factor that alters our results.

4.2 Muti-Objective Model

The final proposed model used in this work after making the necessary ad

justments for the physical layer (Eq. 4.S) is:

MR,b,Ln) = T^bRPSR(L,b,>y). (4.8)

The logical link control sublayer the equation is present in (Eq. 4.9):

Mb, L, 7) = -T_
x

[{1_pSR{btLn)Hl_{1_qr)) («)

The last cost function is the CSMA/CA throughput (Eq. 4.10):

trur \ (N(PSR(L,bn) + PER{L,b,'y))\Mb,L,*y,nk,ak) = (4.10)
V N + Lfc=i nkOtk )

4.3 Constraints definition

In Wireless Networks, the constraints play an important role in the success

of a given design. Hard constraints mean higher design effort, this deliver



44 CHAPTER 4. IEEE 802.11 MUTIL-OBJECTIVE SOLUTION

the need for automated tools to guide the designer into the critical design

decisions. In most of the cases, the constraints are the software and the

máximum available area for hardware. In this case, because it is a simulation,

the constrains are based on the restrictions on the available Network.

Constraints modeling

Now, it is necessary to formúlate the constraints that allow maximizing the

throughput of the network. Actually, the maximization of the throughput is

equal to:

(max /i, min /-*, max /3) (4.11)

subject to the following constraints based on the protocol 802.1 Ixx:

1. All the cost functions should have a lower limit for physical reasons im

plicit in each layer transmission. Thus, for the proposed multi-objective

model, each function has the following lower limits:

/i>0,/2>0,/3>0. (4.12)

2. The channel is shared among N stations according the CSMA protocol.

3. The frame arrival probability per time step is a.

4. All transmitted frames have equal lengths.

5. A p
—

persistent CSMA/CA is assumed.

6. The flow conservation equation is satisfied over each frame of N time

slots.

7. The máximum rate that can be sent over each link is (1 +KlogSINR).

Using these constraints, it is possible to use the PSO algorithm.

4.4 PSO Algorithm

This section explains the algorithm used to optimize the proposed multi

objective model in detail. This algorithm is based on the PSO [ ] by James

Kennedy and Russell Eberhat (Sec. 2.7).
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Figure 4.1: The used PSO Algorithm.
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The algorithm works in the following way: first, an initial population is

selected with an initial velocity, next, these particles are evaluated to obtain

the non-dominated ones, and finally, this is repeated at each cycle of the

PSO. A more detailed explanation can be seen in (Algorithm 4.4). as shown

below

Algorithm 2 Particle Swarm Optimization Algorithm

l: PSO {
2: Initialize the population of particles: Init-Pop();
3: Initiate the velocity of the particles: Init-Vel();
4: Identify particles that give Non-Dominated solutions in the population
and store them.

5: The appraise population of particles: Evalúate-Pop();
6: Now it is necessary to obtain and amend the particles: Update Pbest ();
7: Now it is necessary to obtain and amend the best Global particles: Up

date Gbest ();
8: Insert nodom();
9: for ¿ = 1,2,... ,MAXCycles do

10: for ji = 0, 1, 2, . . . ,MAXParticles do

11: Calcúlate the new velocity V¿ based on equation 2.10: Update

Velocity();
12: Now it is necessary to obtain and amend the particles: Update Par-

ticle();
13: end for

14: The appraise population of particles according with to the costs func

tions fi (Eq. I.n). f2 (Eq. VJ) and /3: (Eq.4. 10): Evalúate Pop();
15: Update Fbest();
16: If the new particle is non-dominated and it dominates the previous

pbest then updates pbest Update Pbest();
17: Insert nodom();
18: Gbestpos = rnd(0,nodomfileSize);
19: At the end of each iteration it is plotted: Plot-iteration():
20: end for

21: }
22: End Program

It is easy to see that the PSO basically is a search algorithm of non

dominated particles. Thus, it is necessary to look through the set of non-



4.4. PSO ALGORITHM 47

dominated particles for a possible solution. This solution should be compared
to a solution provided by the implementation of the original protocol in the

NS2.

Convergence of PSO

In order to prove the convergence of the PSO [ ], it is possible to use the idea

of the convergence of a sequence {a¿}°^j, where a- is a sequence of particles

being generated by the PSO. Then, it is possible to say that a sequence

converges, if

hm a{
= C, (4.13)

i—toa

where C is a constant particle. However, to prove convergency using this

method tends to be a difficult task, and it is easier to define convergence

through the use of the variance of the PSO's fitness function. This variance

is defined as follows:

^EÍ^^V (4.14)

where N is the total number of particles, /¿ is the fitness of the i-th. particle in

the sequence, favg represents the present average fitness of the entire swarm

of particles, and / is the normalized calibration factor to normalize o2 Now,

to obtain the valué of /, it is possible to use the foUowing equation (Eq.

4.1.-.):
f = max {l,max {\fi

-

favg\}} . (4.15)

with i € [1, N\. The definition of o2 allows to define a convergence of the

particles in the PSO swarm. For example, a smaller a2 is a signal of a better

convergence. Then, the particles convergence in the swarm can be defined

as:

lim X(t) = ax pBest + (1
-

a) x gBest, (4.16)
t-r+OO

where X(t) denotes the position of a particle at time t, a — ^ where

.-/>! and W2 are the acceleration coefficients in (Eq. 2.10), pBest denotes the

individual extreme of this particle while gBest is the global extreme of the

particle swarm. According to theorem presented in [ ], the variance of the

populations fitness, o2 (Eq. 4.14) is zero. This is how it is possible to prove

that the PSO algorithm converges to the optimal solution.
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Chapter 5

Experimental Results

For the Multi-Objective Optimization (Sec. 2.6), the density of the non

dominated solutions (Def. 2) is directly associated to the population size.

Therefore, a large population size was required in order make an effective

search of the solution space. For this reason, the population size was se

lected to be of 1,000 particles for the physical and CSMA functions and

1,500 particles for the ARQ function 5.1. This difference, between the popu

lations at each cost function, was because each of the solution spaces at each

function had different characteristics, making it necessary to have a mini-

mal number of particles to obtain a sufficiently dense Pareto frontier. Thus,

through trial and error, it was possible to derive the previously mentioned

population sizes.

Next. the máximum number of iterations for all cases was selected to be

10,000 iterations, because at this point, the results of the algorithm started

to change the condition of dominance between particles. This is explained

because the PSO, an evolutionary algorithm, can overshoot the optimal so

lution [ ].
FinaUy. in order to obtain a correct statistical result, fifteen independent

runs have been performed for each case. After that, an average was taken

over the particle results.

In this section we want to model the throughput of the first two layers of

the OSI model.

The main objectives considered are:

1. Obtain a prediction model in wireless networks.

2. Design a prototype that implements the model.

49



50 CHAPTER 5. EXPERIMENTAL RESULTS
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Figure 5.2: Initial sampling of the particles.
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Test Cases Variables Valúes

1000 L 180

1000 7 2.5

1000 6 40

1500 L 150

1500 7 2.5

1500 b 60

Table 5.1: PSO Control Variable Settings

3. an use that model that allows comparisons between models and real

data.

The next step wiU be to use an optimization algorithm: Particle swarm

optimization (PSO)[ ].
In Fig. 72 it is presented how the optimization algorithm works. At the

begging of the algorithm the particles are totally disperse and the margins

are between aU the sample space (-100,100).

Fig. V :i show results up to 200 and the particles are plot in green, it

is shown the Pareto frontier and in blue all the non-dominated particles, in

this case due that the particles are randomly initialize, the sample space in

both the x-axis and the y-axis has negative valúes but this wiU be corrected

slowly, until aU particles are positive only, this is due to the nature of the

variables used in work, because it is known that there are no negative valúes

for any reason in the experiments.

The PSO parameters used at each experiment were:

1. The initial constants are: ci = 1, c2 = 2.

2. Vmax = 0.1(UL) where U and L are the upper and lower boundaries

for the decisión variables.

3. The inertia weight w = 0.1.

4 -^
-= 0.63, a potential solution is considered feasible when its <í> < e =

1.0 £05.

The algorithm inputs will be the specified cost functions (after editing
and put in appropriate units) from the physical layer, data link layer sub

layer MAC and data link layer sublayer LLC. The simulation results and the

performance of the algorithm are presented next.
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Figure 5.3: Results after few iterations.

Now the foUowing figures Fig. 5.4 - Fig. 5.6 present the simulation results

to iUustrate the simulated Pareto-Optimal frontier and the performance of

the algorithm, in this figures it is shown that in aU the cases it is obtained

the minimization expected, due to in the optimization problem the packet
error rate is the variable that allows to minimize the cost funtions.

For example in Fig. 5.4 shows the optimization for the physical layer

/i(Eq. IY) and to try to maximizing the packet success rate. It is possible

to see that particles non-domi are get into the Pareto frontier according with

[Def. Ji],
As early experiments changes, were made only at the physical layer. in

this case the improvement was not significant. in fact can be said that it was

minimal, as shown in the results of the table 5.2, at first view. according to

the results obtained by the PSO optimization algorithm is able to obtain an

improvement in the packets sent from an average of 1%.

Test Cases PSO IEEE 802.11

1 948 933

2 881 870

3 791 777

4 649 640

Table 5.2: Results only with the physical layer

In Fig. 5.5, it is possible to see the results by introducing the formula
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..

i á i i i i i . i ■■

Figure 5.4: Results of the PSO algorithm are shown the Pareto frontier of

the physical layer.

of the physical layer /-. (Eq. 4.«) and CSMA (4.9 f2). In this case, /-■ was

maximized and f2 was minimized.

Figure 5.5: Results of the PSO algorithm are shown in the Pareto frontier of

the protocol CSMA.

(Fig. ??) shows the results of the three cost funtions. This proves that

the proposed optimization model has no problems and was able to obtain

the Pareto frontier and that the results must now be validated in network
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simulator. In each ofthe three figures (Fig. 5.1), (Fig. 5.6) and (Fig. 5.5)
it is proven that the algorithm works and the particles that optimizes the

formulas are obtained.

Figure 5.6: Results of the PSO algorithm are shown in the Pareto frontier of

the protocol ARQ.

In the (Fig. 5 1) it is shown an example of the framework employed in

this work, we perform each iteration and we stop the algorithm until we don't

have a new non-dominated particle, or we stop in the 500 iteration to avoid

that a particle is mixing between dominated and non-dominated.

5.1 NS-2 Validation

In the results are shown that it is obtained the Pareto frontier in each of the

multi-objective formulas, which tells us that there is space for improvements
in the design pattern of 802.11.

A comparative performance between the original model and introduced

modifications in the logical link layer shows an improvement of 3 to 5% are

obtained, in (Fig. 5.9 and 5.10), that shows that the throughput in the

sample simulations is increased.

T

In the simulation in NS-2, two case studies were performed, the first case

is made with 100 nodes (Fig. 5.x) representing a normal workplace in the

real life. In the second simulation, is simulated with 1000 nodes, which was
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Figure 5.7: The evolution of the error.

made with the objective to bring the model to its "limits" and the results of

this study are presented below.

In the simulation in NS-2, two case studies were performed, in which in

the first case is made with 100 nodes representing a normal workplace in the

real life, and a second simulation, in where the result is simulated with 1000

nodes, which was made with the objective to obtain the results under stress

network conditions, and in which the results are presented below. In all the

cases the results are equivalents, this means that there not In all cases the

results obtained are equivalent, meaning that no modifications made in the

scenarios simulation, such as changing the mobility of nodes, the number of

nodes near the timeout and do not affect our results therefore is important

to focus on the variables of the PSR.

Test Cases PSO IEEE 802.11

1 1022 933

2 924 870

3 813 777

4 701 640

Table 5.3: Comparative between Standard and PSO with 1000 nodes
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Figure 5.8: Simulation in NS2 with 100 nodes

Figure 5.9: Results with 1000 nodes.

The figures (Figure 5. 1 1) and (Figure 5. 12) refer to the measurement of

the throughput obtained for the scenario where nodes 1000 are simulated to

achieve an improvement of 2-4% depending on the case. As in the previous

figures, it can be observed that the throughput increases when bandwidth

increases.
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Figure 5.10: Results with 1000 nodes.

» tií K2LY2

Figure 5.11: Resnks with 100 ao-des.
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Figure 5.12: Results with 100 nodes.

In the (Table 5.4) can be observed results of the implementation against
the 802.11 standard simulations.

Test Cases PSO IEEE 802.11

1 4128 3840

2 4734 4510

3 4912 4431

4 5226 4937

Table 5.4: Comparative between Standard and PSO with 100 nodes



Chapter 6

Conclusions and Future Work

In this thesis, a novel Cross Layer Design based on aMulti-Objective function

model was presented. This Multi-Objective model allows the representation
of the different layers in the 802.11 protocol under specific constraints. This

Multi-Objective function model naturally maps the ideas of cross layer design

through the concept of crossing variables, which were necessary to make the

model ready for the optimization algorithm. Once the model is ready, the

experiments show how the Cross Layer model was able to obtain a good
solution for the network model.

6.1 Contributions

The main contribution of this thesis are three, the fist one is the optimization

model of the 802.11 protocol. There exits differents models of 802.11, but the

importance of this model is that it had to be carried out by the standards of

the optimization theory.

The second contribution made in this work was the implementation of

the proposed algorithm for optimization in the network simulator model, this

include changes to the source code. this allow to validate the optimization

model.

59
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Appendix A

Particle Swarm Optimization
matlab Code

% Arturo Raymundo Aviles

'/. Algoritmo de Optimización

'/. Particle swarm Optimization

7, Multi Objective

7. In this work we present a framework that optimices

'/. the model of the network 802.11

'/. 2:37 347.

7. 3:18 327.

7. P(D -

Epochs between updating display, default
= 100. if 0,

7. no display

7. P(2) - Máximum number of iterations (epochs) to train, default = 2000

7o P(3) -

population size, default
= 24

7.

7. P(4)
- acceleration const 1 (local best influence), default = 2

7. P(5) - acceleration const 2 (global best influence), default = 2

'/, P(6)
- Initial inertia weight, default

= 0.9

7. P(7)
- Final inertia weight, default

= 0.4

7, P(8)
-

Epoch when inertial weight at final valué, default = 1500

7o P(9)- minimum global error gradient,

'/_ if abs (Gbest (i+1) -Gbest (i)) < gradient over

7. certain length of epochs, terminate run, default
= le-25

7. P(10)- epochs before error gradient criterion terminates run,

% default = 150, if the SSE does not change over 250 epochs

61
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7o then exit

7o P(ll)- error goal, if NaN then unconstrained min or max, default=NaN

7. P(12)- type flag (which kind of PSO to use)

7o 0 = Common PSO w/intertia (default)

7. 1,2 = Trelea types 1,2

7. 3 = Clerc's Constricted PSO, Type 1"

7. P(13)- PSOseed, default=0

7. = 0 for initial positions all random

7o = 1 for initial particles as user input

function [OUT , varargout] =pso3b (functname ,
D
, varargin)

x =[ 9 1 ;23 34; 16 28 ; 12 33 ;5 7; 9 4 ;12 34 ;5 14 ;43 6 ;3 6 ; 12 9; 2 30

plot (x)

t =

linspace(0,2*pi) ;

y
=

sin(2*pi*t) ;

x
=

cos(2*pi*t) ;

plotini=0

plot(x,y)

randC state' ,sum(100*clock))

disp (sprintf ('the mimbre of 7od\n' nargin));

if nargin < 2

error ('Not arguments enough.');
end

if nargin
== 2 7o]

VRmin=ones(D,l)*-100

VRmax=ones (D ,
1 ) * 100

VR=[VRmin,VRmax]

minmax = 0;

P = []

mv
= 4

plotf cn=
'

goplotpso
'

else

error ('Wrong Number of input arguments!!!');
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Pdef = [100 2000 1050 2 2 0.9 0.4 1500 le-25 250 NaN 0 0] ;

Píen =

length (P)

P = [P, Pdef (Plen+1: end)]

df = P(D

me •= P(2);

ps
= P(3) 7,number of particles

acl =P(4);

ac2 = P(5)

iwl = P(6);

iw2 = P(7);

iwe = P(8)

ergrd
= P(9)

ergrdep
= P(10)

errgoal
= P(ll);

trelea = P(12)

PSOseed = P(13)

7o checking errorr

if ((minmax==2) & i snan(errgoal))
errorCminmax= 2, errgoal= NaN: choose an error goal or set minmax to 0 or

end

if ( (PS0seed==l) & "existí 'PSOseedValue') )

error ('PSOseed flag set but no PSOseedValue was input');
end

if exist ('PSOseedValue')

tmpsz=size (PSOseedValue) ;

if D < tmpsz(2)
error ('PSOseedValue column size must be D or less');

end
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if ps < tmpsz(l)
error ('PSOseedValue row length must be # of particles or less');

end

end

7o set plotting flag poner a 1

if (P(l))-=0

plotflg-1;
else

plotflg=0;
end

7o preallocate variables for speed up

7o variable

tr = ones(l,me)*NaN;

7o Cuidado of setting max velocity and position params

if length (mv)==l

velmaskmin = -mv*ones(ps,D) 7o min vel, psXD matrix

velmaskmax = mv*ones(ps,D) 7o max vel

elseif length (mv) ==D

velmaskmin =

repmat (forcerow(-mv) ,ps,l) 7o min vel

velmaskmax =

repmat (forcerow( mv),ps,l) 7o max vel

else

errorCMax vel must be either a scalar or same length as prob dimensión D')

end

posmaskmin
=

repmat (VR( 1 : D, 1)
'

,ps,l) 7o min pos, psXD matrix

posmaskmax
=

repmat (VR(1:D, 2) ,ps,l) 7o max pos

posmaskmeth =3; 7o 3=bounce method (see comments below inside epoch loop)

7, PLOTTIN

message
=

sprintf ('PSO: 7.7.g/7.g iterations, GBest = 7.7.20. 20g. \n ',me) ;

7. INITIALIZE

7. INITIALIZ! !!!!!!

pos(l:ps,l:D)
= normmat(rand( [ps,D] ) ,VR' ,1) ;
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if PSOseed == 1

tmpsz
= size (PSOseedValue) ;

pos(l:tmpsz(l) ,l:tmpsz(2)) = PSOseedValue;

end

vel(l:ps,l:D) = normmat(rand( [ps,D]) , [forcecol(-mv) ,forcecol(mv)]
'

,1) ;

7o pbest is initial to positions vals

pbest
=

pos;

7. VECTORIZE THIS, or at least vectorize cost funct cali

out = feval (functname, pos) ; 7o returns column of cost valúes (1 for each particle)
y,

pbestval=out ; 7o initially, pbest is same as pos

7o assign initial gbest here also (gbest and gbestval)
if minmax==l

7o this picks gbestval when we want to maximize the function

[gbestval, idxl] =
max (pbestval) ;

elseif minmax==0

7o this works for straight minimization

[gbestval, idxl]
=

min(pbestval) ;

elseif minmax==2

7o this works when you know target but not direction you need to go

7o good for a cost function that returns distance to target that can be either

7o negative or positive (direction info)

[temp, idxl] = min ( (pbestval-ones (size (pbestval))*errgoal) "2);

gbestval
= pbestval(idxl) ;

end

7o preallocate a variable to keep track of gbest for all iters

bestpos
= zeros (me,D+l)*NaN;

gbest =

pbest (idxl, :) ; 7o this is gbest position

7o used with trainpso, for neural net training

7. assign gbest to net at each iteration, these interim assignments

7o are for plotting mostly
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if strcmp (functname, 'pso_neteval')
net=setx (net, gbest) ;

end

7.tr(l) =

gbestval; 7. save for output

bestpos(l,l:D) =

gbest;

7o this part used for implementing Carlisle and Dozier's APSO idea

7o slightly modified, this tracks the global best as the sentry whereas

7o their 's chooses a different point to act as sentry

7o see "Tracking Changing Extremea with Adaptive Particle Swarm Optimizer"
7. part of the WAC 2002 Proceedings, June 9-13, http://wacong.com

sentryval
=

gbestval;

sentry
=

gbest;

if (trelea == 3)

7. calcúlate Clerc's constriction coefficient chi to use in his form

kappa =1; 7. standard val = 1, change for more or less constriction

if ( (acl+ac2) <=4 )

chi =

kappa;

else

psi
= acl + ac2;

chi_den =

abs(2-psi-sqrt(psi"2
-

4*psi));

chi_num =

2*kappa;
chi = chi_num/chi_den;

end

end

7. INITIALIZE END INITIALIZE END INITIALIZE END INITIALIZE END

rstflg
= 0; 7. for dynamic environment checking

7. start PSO iterative procedures

cnt =0; 7. counter used for updating display according to df in the opti

cnt2 =0; 7. counter used for the stopping subroutine based on error conve

iwt(l) =

iwl;

7. start epoch loop (iterations)

7.

for i=l:me

pantalla= get(0, 'Screensize') ;

out = feval (functname, [pos; gbest] )
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y_pareto=pos(: ,1) ; 7.obtengo column 1

x_pareto=pos(: ,2); 7.obtengo column 2

7ograficamos la frontera de pareto

7. if plotini==0

7o hplot
=

figure ()

7o plot (x_pareto , y_pareto ,'*');

7o plotini=plotini+l;

7. else

7. figure (hplot)
7. plot (x_pareto ,y_pareto ,'*'); 7oMarkersize

7. figure (hplot+1)
7. end

7. figure (1)

7o hold on;

y_paret=gbest(: ,1) ; 7.obtengo la column 1

x_paret=gbest ( : ,2) ; 7.obtengo la column 2

7. plot3(pbest(: ,l),pbest(: ,D) .pbestval, 'g. 'Markersize' ,7) ;

7o plot(x_pareto,y_pareto,
'
+ ') ;

7. hold off;

7o plot (pos , feval (functname , [pos ; gbest] ) )

outbestval = out(end,:)

out = out(l:end-l, :)

tr(i+l) =

gbestval 7o keep track of global best val

te = i 7o returns epoch number to calling program when done

bestpos(i,l:D+l) =

[gbest, gbestval]

7oassignin('base' 'bestpos' ,bestpos(i,l :D+D) ;

%

7. this section does the plots during iterations

if plotflg==l
if (rem(i.df) ==0)1 (i==me) I (i==l)

fprintf (message, i, gbestval) ;

cnt = cnt+1; 7. count how many times we display

eval(plotfcn) ; 7o we use that for plotting
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end % end update display every df if statement

end % end plotflg if statement

y. check for an error space that changes wrt time/iter

7. threshold valué that determines dynamic environment

7. sees if the valué of gbeat changes more than some threshold valué

7. for the same location

chkdyn
- 1;

rstflg ■ 0; 7o for dynamic environment checking

if chkdyn**l
threshld * 0.05; 7o percent current best is allowed to change, .05 = S%

letiter « 5;

7. # of iterations before checking environment, leave at least 3 so PSO

outorng
* abs( 1- (outbestval/gbestval) ) >- threshld;

samepos
= (max ( sentry

==

gbest ) ) ,

if (outorng t samepos) k rem(i,letiter)==0

rstflg-1;
7. disp ('New Environment: reset pbest, gbest, and vel');

VI. reset pbest and pbestval if warranted

7. outpbestval
= feval ( functname, [pbest] );

% Poutorng « abs( 1- (outpbestval. /pbestval) ) > threshld;

7. pbestval
=

pbestval. *"Poutorng + outpbestval. *Poutorng;
7o pbest

■=

pbest. *repmat( "Poutorng, 1,D) +
pos. *repmat (Poutorng, 1

pbest
=

pos; 7. reset personal bests to current positions
VI.

VI.

pbestval
* out;

vel • vel*10; 7. agitate particles a little (or a lot)

7. recalculate best vals

if minmax ■* 1

[gbestval, idxl]
= max (pbestval ) ;

elseif minmax"0

[gbestval, idxi] = min (pbestval ) ;

elseif minmaxM2 7. this section needs work
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[temp, idxl]
= min ((pbestval-ones (size (pbestval) ) *errgoal) . ~2) ;

gbestval
=

pbestval (idxl) ;

end

gbest
=

pbest (idxl, :) ;

7o used with trainpso, for neural net training

7o assign gbest to net at each iteration, these interim assignments

7o are for plotting mostly
if strcmp (functname, 'pso_neteval')

net=setx (net, gbest) ;

end

end 7o end if outorng

sentryval
=

gbestval;

sentry
=

gbest;

end 7o end if chkdyn

7o find particles where we have new pbest, depending on minmax choice

7. then find gbest and gbestval

70[size(out) ,
size (pbestval)]

if rstflg
== 0

if minmax == 0

[tempi] = f ind(pbestval>=out) ; 7o new min pbestvals

pbestval (tempi,l)
= out (tempi); 7o update pbestvals

pbest (tempi ,: )
=

pos (tempi, :) ; 7o update pbest positions

[iterbestval,idxl] = min(pbestval) ;

if gbestval >= iterbestval

gbestval
= iterbestval;

gbest
=

pbest (idxl, :) ;

7o used with trainpso, for neural net training

7o assign gbest to net at each iteration, these interim assignments

7. are for plotting mostly

if strcmp (functname, 'pso_neteval')
net=setx (net, gbest) ;
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end

end

elseif minmax == 1

[tempi, dum] = f ind(pbestval<=out) ; 7o new max pbestvals

pbestval (tempi, 1) = out (tempi, 1) ; 7o update pbestvals

pbest (tempi, :) =

pos (tempi, :) ; 7o update pbest positions

[iterbestval, idxl] =
max (pbestval ) ;

if gbestval <= iterbestval

gbestval
= iterbestval;

gbest
=

pbest (idxl, :) ;

7o used with trainpso, for neural net training

7« assign gbest to net at each iteration, these interim assignmen

7o are for plotting mostly
if strcmp (functname ,

'

pso_neteval
'

)

net=setx (net, gbest) ;

end

end

elseif minmax == 2 7o this won't work as it is, fix it later

egones
=

errgoal*ones(ps,l) ; 7o vector of errgoals

sqrerr2
=

((pbestval-egones) "2);

sqrerrl
=

((out-egones) ~2) ;

[tempi, dum] = find(sqerrl <= sqrerr2) ; 7o find particles closes

pbestval (tempi, 1)
= out (tempi, 1) ; 7o update pbestvals

pbest (tempi ,: )
= pos(tempi, : ) ; 7o update pbest positions

sqrerr
=

((pbestval-egones) "2); 7. need to do this to ref

[temp, idxl]
= min(sqrerr) ;

iterbestval =

pbestval (idxl) ;

if (iterbestval-errgoal)~2 <= (gbestval-errgoal)"2

gbestval
= iterbestval;

gbest
=

pbestddxl, :) ;

7o used with trainpso, for neural net training

7o assign gbest to net at each iteration, these interim assignmen

7o are for plotting mostly
if strcmp (functname ,

'

pso_neteval
'

)

net=setx (net, gbest) ;
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end

end

end

end

7oBegin of the setings

7. get new velocities, positions (this is the heart of the PSO algorithm)
7o each epoch get new set of random numbers

rannuml = rand( [ps,D] ) ; 7. for Trelea and Clerc types
rannum2 = rand( [ps,D] ) ;

if trelea == 2

7. from Trelea 's paper, parameter set 2

vel = 0 . 729 . *vel . 7, prev vel

+1 . 494 . *rannuml .
* (pbest-pos) . 7. independent

+1. 494. *rannum2.* (repmat (gbest, ps,l) -pos) ; 7. social

elseif trelea == 1

7. from Trelea 's paper, parameter set 1

vel = 0.600.*vel. 7. prev vel

+1 . 700 . *rannuml .
* (pbest-pos) . 7. independent

+1. 700. *rannum2.* (repmat (gbest, ps,l) -pos) ; 7. social

elseif trelea ==3

7. Clerc 's Type 1" PSO

vel = chi* (vel. . . 7o prev vel

+acl.*rannuml .* (pbest-pos) . 7. independent
+ac2.*rannum2.* (repmat (gbest, ps, l)-pos)) ; 7o social

else

7o common PSO algo with inertia wt

7o get inertia weight, just a linear funct w.r.t. epoch parameter iwe

if i<=iwe

iwt(i) = ((iw2-iwl)/(iwe-l))*(i-l)+iwl;

else

iwt(i) = iw2;

end

7o random number including acceleration constants

acll = rannuml . *acl; 7. for commonn PSO w/inertia

ac22 = rannum2 . *ac2 ;

vel = iwt(i) *vel. 7. prev vel



72APPENDIX A. PARTICLE SWARM OPTIMIZATIONMATLAB CODE

+ac 11.* (pbest-pos) . . 7o independent

+ac22. * (repmat (gbest, ps,l) -pos ) ; 7o social

end

7o limit velocities here using masking
vel = ( (vel <= velmaskmin) .*velmaskmin ) + ( (vel > velmaskmin) *ve

vel = ( (vel >= velmaskmax) . *velmaskmax ) + ( (vel < velmaskmax) *ve

7o update new position (PSO algo)

pos
=

pos + vel;

7o position masking, limits positions to desired search space

7o method: 0) no position limiting, 1) saturation at limit,

7. 2) wraparound at limit 3) bounce off limit

minposmask_throwaway
=

pos <= posmaskmin; 7o these are psXD matrices

minposmask_keep
=

pos > posmaskmin;

maxposmask_throwaway
=

pos >= posmaskmax;

maxposmask_keep
=

pos < posmaskmax;

if posmaskmeth
== 1

7. this is the saturation method

pos
= ( minposmask_throwaway *posmaskmin ) + ( minposmask_keep . *po

pos
= ( maxposmask_throwaway *posmaskmax ) + ( maxposmask_keep . *po

elseif posmaskmeth
== 2

7o this is the wraparound method

pos
= ( minposmask_throwaway.*posmaskmax ) + ( minposmask_keep.*po

pos
= ( maxposmask_throwaway . *posmaskmin ) + ( maxposmask_keep.*po

elseif posmaskmeth
== 3

7. this is the bounce method, particles bounce off the boundaries wi

pos
= ( minposmask_throwaway *posmaskmin ) + ( minposmask_keep . *po

pos
= ( maxposmask_throwaway *posmaskmax ) + ( maxposmask_keep . *po

vel = (vel.*minposmask_keep) + (-vel.*minposmask_throwaway) ;

vel =

(vel.*maxposmask_keep) + (-vel.*maxposmask_throwaway) ;

else

end
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7.END OF

7o check for stopping criterion based on speed of convergence to desired

7o error

tmpl
= abs(tr(i) -

gbestval);
if tmpl > ergrd

cnt2 = 0;

elseif tmpl <= ergrd

cnt2 = cnt2+l;

if cnt2 >= ergrdep
if plotflg

== 1

fprintf (message ,
i

, gbestval) ;

dispC ');

disp(['
—> Probably Solution GBest hasn''t changed by at least

num2str (ergrd) ,

'
for

'

num2str(cnt2) , epochs.']);

evaKplotf cn) ;

end

break

end

end

7o this stops if using constrained optimization and goal is reached

if
"

i snan(errgoal)
if ((gbestval<=errgoal) & (minmax==0)) I ((gbestval>=errgoal) & (minmax

if plotflg
== 1

fprintf (message, i,gbestval) ;

dispC ');

disp(['
—> Error Goal reached, successful termination!']);

eval(plotfcn) ;

end

break

end

7. this is stopping criterion for constrained from both sides

if minmax == 2

if ((tr(i)<errgoal) & (gbestval>=errgoal)) I ((tr(i)>errgoal) ..

& (gbestval <= errgoal))



74APPENDIX A. PARTICLE SWARM OPTIMIZATIONMATLAB CODE

if plotflg
== 1

fprintf (message , i , gbestval) ;

dispC ');

disp(['
—> Error Goal reached, successful termination!'])

eval(plotfcn) ;

end

break

end

end 7. end if minmax==2

end 7o end "isnan if

7. 7o convert back to inertial frame

7. pos
=

pos
-

repmat (gbestoffset,ps,l) ;

7. pbest
=

pbest
-

repmat (gbestoffset,ps,l) ;

7. gbest
=

gbest + gbestoffset;

end 7o end epoch loop

7.7o clear temp outputs

7o evalin( 'base' . 'clear temp_pso_out temp_te temp_tr;');

7. output & return

0UT= [gbest
'

; gbestval]

varargout{l}=[l:te] ;

varargout{2>= [tr (f ind ( "isnan (tr) ) ) ] ;

return
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