

CENTRO DE INVESTIGACIÓN Y DE ESTUDIOS AVANZADOS DEL INSTITUTO POLITÉCNICO NACIONAL

UNIDAD ZACATENCO

DEPARTAMENTO DE INFECTÓMICA Y PATOGÉNESIS MOLECULAR

"Caracterización funcional del inhibidor endógeno de cisteína proteinasas tricocistatina-3 (TC-3) de *Trichomonas vaginalis*"

TESIS

Que presenta

M. en C. Diana Belén Sánchez Rodríguez

Para obtener el grado de

Doctora en Ciencias en Infectómica y Patogénesis Molecular

Directora de tesis

Dra. Rossana Arroyo Verástegui

Ciudad de México

AGOSTO, 2018

Asesores de tesis:

Dra. Claudia G. Benítez Cardoza Dr. Jaime Ortega López Dr. Mario A. Rodríguez Rodríguez Dra. Patricia Talamás Rohana Este trabajo de investigación se realizó en el laboratorio No. 11 del Departamento de Infectómica y Patogénesis Molecular del Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), bajo la dirección de la Dra. Rossana Arroyo Verástegui.

Este trabajo fue posible gracias al apoyo financiero del CONACYT donativos 152023 y 162123 (a R.A.V.), y 269657 (a J.O.L.) y del Premio UNESCO-Guinea Equatorial, 2012 Becaria de CONACYT No 243457

Dedicatorias

A mis padres

Guadalupe Rodríguez Castañeda y *Jaime Horacio Sánchez Silva*, siempre han sido un gran ejemplo para mí, gracias por su apoyo, cariño y compresión. Esta meta alcanzada es gracias y por ustedes, les debo mi eterno agradecimiento, los amo mucho.

A mis hermanos

Yeni Maciel, Horacio y Christian Roberto Sánchez Rodríguez, gracias por compartir fracasos, éxitos y aventuras, deseo que el camino que cada uno decida emprender este lleno abundancia, amor, salud y éxito, los amo mucho, esto incluye a los nuevos integrantes Gael, Liam y las gemelas.

A la familia Morales Mora

Realmente es un placer haberlos conocido y que me hayan echo sentir como parte de su familia, gracias por su incondicional apoyo, cuidados y consejos, se los agradezco profundamente.

A Jose Daniel Morales Mora

Gracias por aparecer en mi vida, por estar conmigo en las buenas y en las malas, por tu apoyo por creer en mí, pero sobre todo cuidarme, hacerme reir, por tu cariño. Te amo more.

A *Rous* y *Olivia*, gracias niñas por estar conmigo, por su amistad y cariño, por los buenos momentos, las quiero mucho y deseo simpre que tengan éxito en lo que decidan empender.

"El corazón sabio hace que su boca muestre perspicacía, y a sus labios añade persuasíva." (Proverbios 16:23).

Agradecimientos

A la **Dra. Rossana Arroyo Verástegui**, por darme la oportunidad trabajar en su laboratorio, por sus consejos, su apoyo para la realización y finalización de este proyecto.

A mis asesores *Dra. Patricia Talamas, Dra. Claudia Benitez, Dr. Mario A Rodríguez y el Dr. Jaime Ortega*, por sus consejos y observaciones a lo largo de este proyecto.

A **QFB.** Leticia Ávila González por su asistencia en el seguimiento de cultivos celulares y en la producción de anticuerpos policionales.

Al *Dr. Gerardo Resndiz Cardiel y la IB. María Fernanda Solis Castro* por su apoyo en la producción y purificación de proteína recombiante.

A la *Dra. Bibiana Chávez Munguía* por su apoyo en el análisis de las microscopías electrónicas de transmisión.

Al *M. en C. Emmanuel Ríos Castro* por su apoyo en el análisis por espectrometría de masas en la Unidad de Genómica, Proteómica y Metabolómica (UGPM) LaNSE, CINVESTAV-IPN.

Al *M. en C. Luis Alberto Rivera Rivas* por su apoyo en el análisis de microscopía confocal.

Al *Biólogo. Jose Daniel Morales Mora y al C. Victor Hernández Pinales*, por su apoyo técnico en el laboratorio.

A *Martha Aguilar Romero y Marcela Guzman*, gracias por su asistencia administrativa y secretarial.

A mis compañeros de laboratorio gracias por su apoyo y compañía, *Mar, Ilse, Sarahí, Liz, Jesus y Luis*.

ÍNDICE

ÍNDICE DE FIGURAS	
ÍNDICE DE TABLAS	
ABREVIATURAS	
Abstract	
Resumen	
I. INTRODUCCIÓN	1
1.1 Tricomoniasis	1
1.2 Epidemiología	1
1.3 Manifestaciones clínicas	2
1.4 Consecuencias de la infección por Trichomonas vaginalis	3
1.5 Trichomonas vaginalis	4
1.6 Patogenia	6
1.6.1 Adhesión	7
1.6.2 Citotoxicidad	9
1.6.3 Fagocitosis	10
1.6.4 Hemólisis	10
II. ANTECEDENTES DIRECTOS	11
2.1 Cisteína proteinasas.	11
2.2 Cisteína proteinasas en <i>T. vaginalis</i>	12
2.2.1 Cisteína proteinasa 65 (TvCP65)	13
2.2.2 Cisteína proteinasa 39 (TvCP39)	13
2.2.3 Cisteína proteinasa 12 (TvCP12)	14

2.2.4 Cisteína proteinasa 4 (TvCP4)	14
2.2.5 Cisteína proteinasa Legumaína-1 (TvLEGU-1)	14
2.2.6 Otras cisteína proteinasas	15
2.3 Mecanismo de inhibición de cisteína proteinasas.	15
2.4 Superfamilia de las cistatinas	16
2.4.1 Inhibidores tipo cistatinas	17
2.4.2 Características de las cistatinas	18
2.4.3 Cistatinas proteínas amiloidogénicas	19
2.5 Cistatinas de organismos parásitos	22
2.6 Cistatinas en <i>T. vaginalis</i>	23
III. JUSTIFICACIÓN	27
IV. HIPÓTESIS	28
V. OBJETIVOS	29
5.1 Objetivo general	29
5.2 Objetivos particulares	29
VI. ESTRATEGIA EXPERIMENTAL	30
VII. METODOLOGÍA	34
7.1 Construcción del árbol filogenético y predicción de la estructura	34
tridimensional	04
7.2 Cultivo de <i>T. vaginalis</i>	34
7.3 Extractos de proteínas de <i>T. vaginalis</i> con detergentes	34
7.4 Extractos de proteínas de membrana de <i>T. vaginalis</i>	35
7.5 Extractos totales de <i>T. vaginalis</i> por 2-Dimensión (DE)	36

7.6 Extractos de T. vaginalis resistentes a proteinasas (ERP) por 2-DE pH 4-7	, 27
у рН 7-10	57
7.7 Electroforesis en Tris-Tricina/PAGE	38
7.8 Transferencia de proteínas	38
7.9 Ensayo de Western blot (WB)	39
7.10 Ensayo de inmunoprecipitación (IPP) con anticuerpos anti-TC-3r	39
7.11 Inhibición de la actividad proteolítica con sustratos fluorogénicos	40
7.12 Inhibición de la actividad proteolítica en zimografía por 1-DE y 2-DE	41
7.13 Ensayo de "Pull-down" con la proteína TC-3r	42
7.14 Ensayo de inmunofluorescencia indirecta (IFI)	43
7.15 Inmunomarcaje con oro y microscopía electrónica de transmisión (MET)	45
7.16 Ensayo de citotoxicidad in vitro	46
7.17 Identificación de proteínas por espectrometría de masas (EM)	46
7.18 Construcción de interactomas	48
7.19 Análisis estadístico	48
VIII. RESULTADOS	49
8.1 Análisis filogenético	49
8.2 Predicción de la estructura tridimensional (3-D) y motivos de cistatina	49
8.3 Detección del TC-3 nativo con anticuerpo α -TC-3r en diferentes tipos de	51
extractos de <i>T. vaginalis</i>	54
8.3.1 Extractos totales por 2-DE (pH 3-10)	54
8.3.2 Extractos resistentes a proteinasas por 2-DE (pH 4-7 y pH 7-10)	57
8.3.3 Extractos de proteínas con detergentes e inhibidores	63

8.3.4 Extractos de proteínas de membrana	65	
8.4 Inmunoprecipitación con el anticuerpo anti-TC-3r	68	
8.5 Efecto del inhibidor TC-3r en la actividad proteolítica de catepsinas L y		
legumaínas	00	
8.6 Inhibición de la actividad proteolítica de extractos resistentes a	le la actividad proteolítica de extractos resistentes a	
75 Pinasas (ERP) en zimogramas de 1-DE y 2-DE con TC-3r		
8.7 Identificación de las proteinasas blanco de TC-3	79	
8.8 Localización del inhibidor TC-3	86	
8.9 Co-localización de TC-3 con sus proteinasas blanco	92	
8.10 Efecto de TC-3r en la citotoxicidad de T. vaginalis sobre células HeLa	07	
ependiente de CPs		
8.11 Modelo de la participación de TC-3 en <i>T. vaginalis</i>	97	
IX. DISCUSIÓN	101	
X. CONCLUSIONES	111	
XI. PERSPECTIVAS	112	
XII. REFERENCIAS	113	
XIII. ANEXOS	125	
13.1 Preparación del gel separador y concentrador para el sistema Tris-	125	
Tricina	123	
13.2 Producción del anticuerpo policlonal de ratón anti-TC-3r	125	
13.3 Identificación de proteínas en extractos totales por 2-DE pH 3-10	126	
13.3.1 Lista de proteínas identificadas en la mancha 1	126	
13.3.2 Interactoma de las proteínas de la mancha 1	127	

	13.3.3 Lista de proteínas identificadas en la mancha 2	128
	13.3.4 Interactoma de las proteínas de la mancha 2	131
	13.3.5 Lista de proteínas identificadas en la mancha 3	132
	13.3.6 Interactoma de las proteínas de la mancha 3	134
	13.3.7 Lista de proteínas identificadas en la mancha 4	135
	13.3.8 Interactoma de las proteínas de la mancha 4	137
	13.3.9 Lista de proteínas identificadas en la mancha 5	138
	13.3.10 Interactoma de las proteínas de la mancha 5	139
	13.3.11 Lista de proteínas identificadas en la mancha 6 y 7	140
	13.3.12 Interactoma de las proteínas de la mancha 6 y 7	142
	13.3.13 Lista de proteínas identificadas en la mancha 8 y 9	143
	13.3.14 Interactoma de las proteínas de la mancha 8 y 9	144
13.	4 Lista de proteínas identificadas en ERP por 2-DE (pH 4-7)	145
13.	.5 Lista de proteínas identificadas en ERP por 2-DE (pH 7-10)	153
13.	.6 Lista de proteínas identificadas e interactoma de la banda de 30 kDa de	157
la f	racción acuosa de extractos de proteínas de membrana	107
	13.6.1 Lista de proteínas de citoesqueleto identificadas	157
	13.6.2 Interactoma de proteínas de citoesqueleto	158
	13.6.3 Lista de proteínas ribosomales identificadas	159
	13.6.4 Interactoma de proteínas ribosomales	160
	13.6.5 Lista de peptidasas identificadas	161
	13.6.6 Interactoma de peptidasas	162
	13.6.7 Lista de proteínas metabólicas identificadas	163

	13.6.8 Interactoma de proteínas metabólicas	165
	13.6.9 Lista de proteínas de señalización identificadas e interactoma	166
	13.6.10 Lista de proteínas de tráfico vesicular identificadas e interactoma	167
	13.6.11 Lista de proteínas cinasas-fosfatasas identificadas	168
	13.6.12 Interactoma de proteínas cinasas-fosfatasas	169
	13.6.13 Lista de proteínas de plegamiento identificadas e interactoma	170
	13.6.14 Lista de proteínas identificadas clasificadas en el grupo "Otras"	171
	13.6.15 Interactoma de proteínas clasificadas en "Otras"	173
	13.6.16 Lista de proteínas identificadas como hipotéticas o putativas	174
	13.6.17 Interactoma de proteínas hipotéticas o putativas	178
1	3.7 Lista de proteínas identificadas e interactoma de la banda de 37 kDa de	179
la	a fracción detergente de extractos de proteínas de membrana	175
1	3.8 Lista de artículos	180

ÍNDICE DE FIGURAS

Figura 1. Trichomonas vaginalis transformación morfológica	5	
Figura 2. Estructura e interacción de las cistatinas	20	
Figura 3. Localización de los inhibidores TC-3 y TC-2 por	20	
inmunofluorescencia indirecta	26	
Figura 4. Análisis filogenético de las cistatinas de <i>T. vaginalis</i>	50	
Figura 5. Predicción y compración de la estructura 3-Dimensional teórica	E 2	
de TC-3 con cistatinas de la familia 1 y 2	52	
Figura 6. Patrón de proteínas y reconocimiento del anticuerpo anti-TC-3r	55	
en extractos totales de <i>T. vaginalis</i> en dos dimensiones (pH 3-10)		
Figura 7. Patrón de proteínas y reconocimiento del anticuerpo anti-TC-3r en	59	
extractos resistentes a proteinasas (ERP) de <i>T. vaginalis</i> en 2-DE (pH 4-7)	58	
Figura 8. Patrón de proteínas del degradoma activo de la región básica del	61	
aislado CNCD 280 de <i>T. vaginali</i> s en 2-DE (pH 7-10)	01	
Figura 9. Reconocimiento del anticuerpo anti-TC-3r en extractos de	64	
proteínas de <i>T. vaginalis</i>	04	
Figura 10. Reconocimiento del anticuerpo anti-TC-3r en extractos de	67	
proteínas de membrana de T. vaginalis con Triton X-114	67	
Figura 11 Inmunoprecipitación con el anticuerpo anti-TC-3r y extractos de	70	
T. vaginalis	70	
Figura 12. Efecto de TC-3r en la actividad proteolítica de CPs de tipo Cat-L	70	
y AEP.	١Z	

Figura 13. Inhibición de la actividad proteolítica de ERP de T. vaginalis en	76	
zimogramas de 1-DE y 2-DE con TC-3r	70	
Figura 14. Identificación de las proteinasas blanco de TC-3.	81	
Figura 15. Localización del inhibidor TC-3 en diferentes condiciones de	87	
hierro por inmunofluorescencia indirecta (IFI)		
Figura 16. Localización y co-localización del inhibidor TC-3	90	
Figura 17. Co-Localización del inhibidor TC-3 con TvCP2	93	
Figura 18. Co-Localización del inhibidor TC-3 con TvCP3	95	
Figura 19. Efecto protector de TC-3r de la citotoxicidad causada por CPs de		
<i>T. vaginalis</i> en células HeLa	98	
Figura 20. Modelo de la participación de TC-3 en <i>T. vaginalis</i>	100	

ÍNDICE DE TABLAS

Tabla 1. Lista de proteínas identificadas en el degradoma del aislado CNCD	
280 de <i>T. vaginalis</i> y CPs afectadas por el inhibidor TC-3r	78
Tabla 2. Identificación por EM de proteínas contenidas en la banda de 30	
kDa de la fracción de elución del ensayo de pull-down con TC-3r	84

ABREVIATURAS

Ac: Anticuerpo

- BSA: Albúmina Sérica Bovina (Bovine Serum Albumin)
- CFC: Contraste de fases diferencial
- CNCD: Centro Nacional de Clínicas de Displasias del Hospital General de México
- CP: Cisteína proteinasa

DIL: Perclorato de 1,1'-Dioctadecil-3, 3, 3 ', 3'-Tetrametilindocarbocianina (' Dil '; DiIC18 (3))

- **DTT:** Ditiotreitol
- EPC: Extracto de proteínas clarificado
- ER: Retículo endoplásmico
- ERP: Extractos resistentes a proteinasas
- FA: Fracción acuosa
- FD: Fracción detergente
- G: Aparato de Golgi
- H: Hidrogenosoma
- ICP: Inhibidor de Cisteína Proteinasas
- IFI: Inmunofluorescencia indirecta
- ITS: Infección de Transmisión Sexual

LC-ESI-MS/MS: Cromatografía de líquidos acoplado a espectrómetro de Masas/Masas con fuente de ionización por electrospray

- Ma-TC-3r: anticuerpo policional de ratón anti-TC-3r
- MET: Microscopía electrónica de transmisión
- **MP:** Membrana plasmática
- N: Núcleo

OMS: Organización Mundial de la Salud

- PD: "Pull-down"
- **PI:** Preinmune
- Ra-TC-3r: Anticuerpo policional de conejo anti-TC-3r
- SDS-PAGE: Electroforesis en geles de Poliacrilamida-Dodecil Sulfato de Sodio
- SFB: Suero Fetal Bovino
- TC-2: Tricocistatina-2
- TC-3: Tricocistatina-3
- TLCK: p-Tosil-L-lisina clorometilcetona
- TvCP2: Trichomonas vaginalis Cisteína Proteinasa 2
- TvCP3: Trichomonas vaginalis Cisteína Proteinasa 3
- TvCP4: Trichomonas vaginalis Cisteína Proteinasa 4
- TvCP39: Trichomonas vaginalis Cisteína Proteinasa de 39 kDa
- TvCP65: Trichomonas vaginalis Cisteína Proteinasa de 65 kDa
- TvLEGU-1: Trichomonas vaginalis Cisteína Proteinasa Legumaína-1
- TVV: Trichomonas vaginalis Virus
- TYM: Triptona-Extracto de levadura-Maltosa
- V: Vesículas
- V: Voltaje

ABSTRACT

Trichomonas vaginalis is a flagellated protist responsible for human trichomoniasis. T. vaginalis has three genes encoding for endogenous cysteine proteinase (CP) inhibitors, known as trichocystatin-1 through trichocystatin- 3 (TC-1, TC-2, and TC-3). These inhibitors belong to the cystatin super family. In this study, we characterized trichocystatin-3 (TC-3), an endogenous cysteine proteinase (CP) inhibitor of T. vaginalis. Although the TC-3 possesses a signal peptide in the N-terminus and two putative glycosylation sites (typical of family 2, cystatins) and lacks the PW motif and cysteine residues to form disulfide bridges (typical of family 1, stefins), it was classified in the family 1 (Stefin) like an atypical stefin. By Western blot using different extracts of T. vaginalis and an anti-TC-3r antibody, the native TC-3 was recognized in the 30 kDa region and as an ~18 kDa protein band. This recognition is not in the 12 kDa expected size, suggesting that the endogenousTC-3 could be associated with proteins in the 30 kDa band, or that it could be glycosylated in the 18 kDa band. By confocal microscopy, the endogenous TC-3 was found in the Golgi complex, cytoplasm, large vesicles, and on the plasma membrane. These localizations are consistent with an *in silico* prediction. In addition, the purified recombinant protein (TC-3r) functions as an inhibitor of cathepsin L CPs, such as human liver cathepsin L and trichomonad CPs, present in a proteinase-resistant extract (PRE). Via a pull-down assay using TC-3r as a trap and PRE as a CP source, we identified several trichomonad CPs targeted by TC-3, primarily TvCP3; its association was confirmed by mass spectrometry identification. In addition, by indirect immunofluorescence and transmission electro microscopy, we demonstrated that the CP-TC-3 interaction occurs in vesicles, in the cytoplasm, and on the parasite surface. In addition, TC-3r showed a protective effect on HeLa cell monolayers by inhibiting trichomonad surface CPs involved in cellular damage. Our results show that the endogenous inhibitor TC-3 plays a key role in the regulation of endogenous CP proteolytic activity.

RESUMEN

Trichomonas vaginalis es el protista flagelado responsable de la tricomoniasis. T. vaginalis posee tres genes que codifican para inhibidores endógenos de cisteína proteinasas (CPs): Tricocistatina-1 a Tricocistatina-3 (TC-1, TC-2 y TC-3) que pertenecen a la super familia de las cistatinas. En este estudio se caracterizó a uno de estos inhibidores endógenos, la tricocistatina-3 (TC-3). El inhibidor TC-3 presenta características de las familias 1 y 2 de las cistatinas, ya que posee un péptido señal en el N-terminal y dos sitios putativos de glicosilación (típicos de la familia 2), además carece del motivo conservado PW del C-terminal y de residuos de cisteína para formar puentes disulfuro (típicos de la familia 1); sin embargo, por medio de un análisis filogenético el TC-3 se clasificó en la familia 1 de las estefinas, como una estefina atípica. El inhibidor nativo TC-3 se encontró por Western blot en la región de 30 kDa y como una banda de 18 kDa en diferentes tipos de extractos. Aunque estos reconocimientos no corresponden al tamaño esperado de 12 kDa, se sugiere que la banda de 30 kDa podría corresponder al TC-3 nativo asociado a sus proteasas blanco, o bien se encuentre glicosilado como una banda de 18 kDa.

El inhibidor TC-3 mostró localización en el aparato de Golgi, en citoplasma, en vesículas y en la membrana plasmática lo que concuerda con las predicciones del análisis *in silico* de TC-3. Además, la proteína recombinante TC-3r purificada mostró actividad inhibidora contra CPs del tipo catepsina L, al reducir la actividad proteolítica de la catepsina L de humano y catepsinas L-like de extractos de tricomonas. Mediante un ensayo de "pull-down" usando a la proteína TC-3r como ligando se detectaron varias CPs de extractos resistentes a proteinasas de *T. vaginalis* como blancos

proteolíticos de este inhibidor, principalmente la TvCP3, cuya asociación con el inhibidor TC-3 se confirmó con la identificación por espectrometría de masas. Además, por inmunofluorescencia indirecta y microscopía electrónica de transmisión se encontró que la interacción de las CPs-TC-3 ocurre principalmente en vesículas, además de citoplasma y en la superficie de los parásitos. Asimismo, el inhibidor TC-3r mostró un efecto protector al prevenir el daño a la monocapa de células HeLa por las CPs de tricomonas involucradas en el daño celular. Nuestros resultados muestran que el inhibidor TC-3 tiene un papel importante en la regulación de la actividad proteolítica de CPs endógenas de *Trichomonas vaginalis*.

I. INTRODUCCIÓN

1.1. Tricomoniasis

La tricomoniasis es la infección de transmisión sexual (ITS) causada por el protista flagelado *Trichomonas vaginalis*, parásito que se aloja en la cavidad genitourinaria del humano. Esta es la infección no viral más frecuente en el mundo que produce serias consecuencias en la salud de los individuos infectados (Organización Mundial de la Salud (OMS), 2012).

1.2. Epidemiología

La OMS reportó 276. 4 millones de casos de tricomoniasis por año en el mundo hasta el 2008, de los cuales 85.4 millones ocurren en el continente americano (OMS, 2008). En México se reportaron 47,004 casos hasta la semana 52 del 2017 de acuerdo al Boletín Epidemiológico del Sistema Nacional de Vigilancia Epidemiológica (SINAVE). Actualmente, la tricomoniasis está reconocida como un factor de riesgo para la morbilidad reproductiva y para la adquisición del virus de la inmunodeficiencia adquirida (VIH) debido al incremento de 1.3 % en los partos prematuros, 4.7 % en enfermedades pélvicas inflamatorias y 2.7% en infecciones por VIH. Además, la tricomoniasis se ha detectado con mayor frecuencia en mujeres VIH⁺ que experimentan periodos repetidos de reinfección por *T. vaginalis* que en mujeres VIH⁺ (Conrad y col., 2013; Kissinger, 2015; Poole y McClelland, 2013).

La prevalencia de tricomoniasis en mujeres es de 22% contra 2% en hombres en toda América (OMS, 2008). Las diferencias biológicas entre el sexo masculino y femenino contribuyen a las diferencias de prevalencia e incidencia entre ambos sexos.

Al respecto, las hormonas sexuales pueden estar relacionadas con la susceptibilidad a *T. vaginalis*, ya que al regular la disponibilidad de hierro durante el ciclo menstrual, éstas propician las condiciones para el crecimiento y persistencia de las tricomonas (Poole y McClelland, 2013). Por el contrario, un medio rico en Zinc de la próstata del hombre inhibe la persistencia de infecciones (Poole y McClelland, 2013). En resumen, el hierro, el ciclo hormonal y algunos anticonceptivos hormonales pueden estar asociados a la adquisición y persistencia de infección por tricomonas. Estos factores contribuyen a la epidemiologia sexo-dependiente de la infección por *T. vaginalis* (Poole y McClelland, 2013).

La tricomoniasis también puede ser transmitida por mujeres embarazadas a neonatos a través del paso por el canal de parto infectado. Esta constituye la única forma de transmisión no sexual. Entre 2-5% de los productos femeninos nacidos de madres infectadas desarrollan vaginitis, habitualmente asintomática (Uribarren-Berrueta, 2011), neumonía (Trintis y col., 2010) y pueden llegar a presentar retraso mental (Mann y col., 2009). Sin embargo, en la mayoría de los casos la resolución de la infección en infantes se produce en las primeras seis semanas de vida (Poole y McClelland, 2013), una vez que se eliminan las hormonas maternas.

1.3. Manifestaciones clínicas

El 85% y 77% de casos de tricomoniasis en mujeres y hombres, respectivamente suelen ser asintomáticos (Kissinger, 2015). El 42% de las mujeres presentan secreción vaginal olorosa que pueden ser de escasa a abundante, debido a la infiltración de leucocitos. Además, se presentan casos de pared vaginal y cervical eritematosa, conocido como "colpitis macularis" o "cérvix de fresa" debido a la erosión del epitelio

(Lehker y Alderete, 2000). Tambien se puede presentar prurito e irritación en el área genital y molestias en el tracto urinario y en algunos casos puede haber dolor en la parte baja del vientre (Harp y Chowdhury, 2011; Kissinger, 2015).

En hombres, *T. vaginalis* infecta la uretra y la glándula prostática, provocando inflamación, irritación y secreciones uretrales leves; también reduce la movilidad y viabilidad de los espermatozoides, lo que ocasiona infertilidad (Harp y Chowdhury, 2011).

1.4. Consecuencias de la infección por tricomonas

La tricomoniasis es un factor que aumenta el riesgo de infección por VIH y por virus del papiloma humano (VPH), promueve partos prematuros y nacimiento de infantes con bajo peso, provoca infertilidad en el humano y predispone a cáncer cérvico-uterino; recientemente, también se ha asociado con cáncer de próstata y endometriosis aguda (Hirt y Sherrard, 2015). Sin embargo, aún se desconoce como se produce esta serie de padecimientos. Al respecto, se ha propuesto que el riesgo de infección por VIH se debe a que T. vaginalis puede internalizar a algunos virus como VIH vía endocitosis, VPH y algunas bacterias como mycoplasma (Hirt y Sherrard, 2015; Rendón-Maldonado y col., 2003). Por lo que se propone que tricomonas sea utilizado como un vector o vehículo por estos agentes patógenos que aunado a la erosión de la mucosa provocada por el propio parásito facilita su co-infección (Hirt, 2013). El influjo de leucocitos e inflamación crónica en el área genital provocada por tricomonas, induce la expresión de citocinas proinflamatorias involucradas en el reclutamiento de neutrófilos (Sutcliffe y col., 2013) y de linfocitos T CD4+ que son las células blanco del VIH, en el incremento en la secreción de citocinas (IL-1, IL-6, IL-8 e

IL-10) y prostangladinas (PGE2 y PGE2α) (Lehker y Alderete, 2000; Mielczareck y Blaszkowska, 2016). Esto se ha relacionado con el nacimiento de bebes prematuros, pues se sugiere que disparan la liberación de moléculas que tal vez estén involucradas en el inicio de trabajo de parto (Schwebke y Burgess, 2004). La liberación de todos estos compuestos proinflamatorios contribuye a la carcinogénesis debido a la secreción de moléculas reactivas de oxígeno y nitrógeno que son capaces de dañar el DNA. Además, la adhesión del parásito con la célula huésped activa cascadas de señalización a través de proto-oncogenes como PIM, c-MYC y HMGA1 (Mielczareck y Blaszkowska, 2016; Sutcliffe y col., 2013).

1.5. Trichomonas vaginalis

T. vaginalis es un protista flagelado parásito del humano que posee uno de los genomas más grandes entre los protistas, con 176 Megabases organizados en 6 cromosomas haploides y 60 000 genes que codifican para proteínas (caracterizado del aislado G3) (Carlton y col., 2007; Harp y Chowdhury, 2011). Tricomonas es un protozoario típicamente piriforme que se transmite de persona a persona por contacto sexual y que al adherirse al epitelio vaginal (Figura 1) cambia a una forma ameboide que brinda mayor superficie de contacto con la célula hospedera (Arroyo y col., 1993). También, se ha descrito una tercera forma, el pseudoquiste, cuando los parásitos son sometidos a frío u otras condiciones de estres *in vitro* (Benchimol, 2004; Hirt, 2013).

Figura 1. Transformación morfológica de *T. vaginalis* al contacto con células del epitelio vaginal (Carlton y col., 2007).

T. vaginalis presenta un tamaño de ~9 por 7 µm de diámetro, es anaeróbico aerotolerante y tiene un periodo de incubación de 4-28 días, posee cuatro flagelos anteriores libres derivados de un complejo cinetosomal y un quinto flagelo posterior que se encuentra formando la membrana ondulante asociado a una estructura denominada costa, y que está involucrada en la locomoción del parásito. En su citoplasma se observan varios organelos: núcleo, cuerpo parabasal, retículo endoplásmico, aparato de Golgi, axostilo central, costa, pelta y un citoesqueleto formado por actina, tubulina, kinesina y dineina (Harp y Chowdhury, 2011). *T. vaginalis* es un miembro del linaje de los parabasálidos de eucariotas microaerofílicos que poseen un único organelo de doble membrana que produce energía, el hidrogenosoma. Este organelo carece de citocromos, de DNA y de una cadena respiratoria mitocondrial, pero metaboliza carbohidratos y produce hidrógeno

molecular como aceptor de electrones (Harp y Chowdhury, 2011; Schwebke y Burgess, 2004).

Recientemente, se reportó la existencia de dos poblaciones de T. vaginalis, el tipo 1 y el tipo 2 que presentan diferencias que pueden estar implicadas en la virulencia y patogenicidad de este parásito. T. vaginalis puede estar infectado por un virus de RNA de doble cadena y/ó cadena sencilla, que se conoce como Trichomonas vaginalis Virus (TVV). La presencia de TVV en tricomonas afecta la expresión de cisteínas proteinasas (CPs) y de una proteína (P270) altamente inmunogénica, sobre la superficie del parásito (Conrad y col., 2012). La población de tricomonas tipo 1 es en su mayoría TVV positiva, se presentan con frecuencia en mujeres mayores de 36 años, con un pH vaginal ~5.5, son más virulentas y realizan recombinación genética (Conrad y col., 2012). La población de tricomonas tipo 2 presenta mayor resistencia a metronidazol hasta 200 µg/ml y tiene poca diversidad y recombinación genética (Conrad y col., 2012). Ambos tipos de tricomonas se encuentran distribuidas en todas las regiones del mundo; sin embargo, en el sur de África se han encontrado principalmente tricomonas del tipo 1 y en México tricomonas del tipo 2 (Conrad y col., 2012, Hirt, 2013).

1.6. Patogenia de *T. vaginalis*

La colonización de la mucosa del hospedero por *T. vaginalis* es un proceso complejo en el que participan varios mecanismos de virulencia como la adhesión a las células del huésped (células del epitelio vaginal, CEV), células cervicales, degradación de los componentes de la mucosa y proteínas de la matriz extracelular, efecto citotóxico, inducción de apoptosis, hemólisis, fagocitosis y evasión de la respuesta

inmune que incluye degradación de inmunoglobulinas (Ig) tipo IgG e IgA y de componentes del complemento (Hirt y col., 2007; Mielczareck y Blaszkowska, 2016).

1.6.1. Adhesión

La adhesión de *T. vaginalis* es un proceso multifactorial que depende del patógeno, del huésped y de condiciones ambientales como temperatura, pH, concentraciones de hierro, glucosa, zinc y poliaminas, entre otros (Figueroa-Angulo y col., 2012; Harp y Chowdhury, 2011; Kusdian y Gould, 2014). Además, cuando *T. vaginalis* se adhiere a las CEV se genera un cambio morfológico importante en el parásito, de su forma ovoide a ameboide, brindandole mayor superficie de contacto (Arroyo y col., 1993). Durante el proceso de adhesión se ha descrito la participación de diversas moléculas y actualmente se han clasificado en tres grupos: 1) Un controversial grupo de proteínas metabólicas que presentan doble función o función "moonlighting". 2) Lipoglicanos y 3) Proteínas de membrana (Kusdian y Gould, 2014; Ryan y col., 2011).

Proteínas metabólicas multifuncionales. En este grupo de proteínas se encuentran las denominadas adhesinas que incluyen a la AP65, AP51, AP33, AP23 y AP120 (Alderete y col., 1995, 1998; Arroyo y col., 1992, 1993, 1995; Moreno-Brito y col., 2005; Meza-Cervantez y col., 2011). Cuatro de ellas presentan homología con enzimas metabólicas y presentan una localización en hidrogenosoma, además de la de superficie del parásito. También se han incluido algunas enzimas de la vía glicolítica como la gliceraldehído-3-fosfato deshidrogenasa (GAPDH) (Lama y col., 2009) y la triosafosfato isomerasa (TIM) (Miranda-Ozuna y col., 2016) que presentan localización

en la superficie del parásito y unión a fibronectina y laminina por lo que podrían estar participando en el proceso de adhesión del parásito a matriz extracelular.

Lipoglicanos. El glicocálix de *T. vaginalis* se encuentra formado mayoritariamente de lipoglicanos (LG) ricos en repetidos de poli-N-acetilglucosamina que participan en adhesión y se unen fuertemente a la galectina-1 (Bastida-Corcuera y col., 2008). Además, los LG estimulan la producción de proteínas inflamatorias y factores de transcripción pro-inflamatorios en células epiteliales y macrófagos (Fichorova y col., 2016; Ryan y col., 2011).

Proteínas de membrana. Se conoce que *T. vaginalis* es el primer eucariota que no genera proteínas de membrana con anclaje a glicofosfatidilinositol (GPI) típico (Kusdian y Gould, 2014), por lo tanto, las proteínas con dominios transmembranales despiertan interés. Por medio de estudios de genómica y proteómica se han encontrado ~ 411 proteínas que incluyen: GP63-like (metaloproteinasa), subtilisina-like, serina y cisteina proteinasas (CPs) (Ryan y col., 2011). También se han identificado proteínas inmunoreactivas de superficie como la P270 y la proteína variante de superficie (VPS-like) que podrían unirse fuertemente a los carbohidratos de la célula huésped. Además, en tricomonas se han identificado 911 genes que codifican para un grupo de proteínas ricas en leucina similar a la proteína A de superficie de *bacteriodes* (BspA) que participan en la adhesión a la célula huésped (Kusdian y Gould, 2014; Ryan y col., 2011).

Además de toda esta gama de proteínas que se encuentran en la superficie del parásito, *T. vaginalis* secreta pequeñas vesículas llamadas exosomas que contienen diversas proteínas y RNA. Estas microvesículas pueden fusionarse o liberar contenido

en la célula huésped. Las tetraspaninas (TSP), un grupo de proteínas con cuatro dominios transmembranales se identificaron en los exosomas de tricomonas; si bien no participan en adhesión directamente, están involucradas en la señalización para adhesión y movilidad de tricomonas, por lo que estas moléculas constituyen importantes factores de virulencia (Hirt y Sherrad, 2015; Hirt 2013; Mielczareck y Blaszkowska, 2016; Twu y col., 2013).

También las CPs tienen un papel importante en la adhesión, donde se ha visto la participación de la TvCP30 (Arroyo y Alderete, 1989, 1995; Mendoza-López y col., 2000), TvCP62 (Hernández y col., 2004) y la TvLEGU-1 (Rendón-Gandarilla y col., 2013).

1.6.2. Citotoxicidad

El efecto citopatogénico de *T. vaginalis* sobre las células del epitelio vaginal se debe al efecto citotóxico que desencadena la citólisis, la fagocitosis y la alteración del epitelio vaginal (Figueroa-Angulo y col., 2012). Las CPs son las moléculas que están principalmente involucradas en el daño a la célula del huésped, como la TvCP12 (Cuellar-Silva, Tesis de Maestria, 2011), TvCP39 (Hernández-Gutiérrez y col., 2003, 2004; Ramón-Luing y col., 2011; Vázquez-Carrillo y col., 2011) y TvCP65 (Álvarez-Sánchez y col., 2000, 2007, 2008). Además de las CPs, tricomonas produce moléculas con actividad de perforina que provocan daño en la membrana plasmática de los eritrocitos y secreta un factor lítico con actividad de fosfolipasa A2 que destruye células nucleadas, eritrocitos y que puede degradar fosfatidilcolina, por lo que se ha sugerido la presencia de una fosfolipasa A2 en tricomonas (Schwebke y Burgess, 2004; Mielczareck y Blaszkowska, 2016).

1.6.3. Fagocitosis

T. vaginalis es capaz de fagocitar diferentes tipos celulares como lactobacilos, levaduras, células vaginales y cervicales, leucocitos, eritrocitos, células prostáticas y espermatozoides, proporcionando nutrientes al parásito (Figueroa-Angulo y col., 2012). Aunque el mecanismo por el cual realiza la fagocitosis no está descrito, se han observado dos vías de fagocitosis en estudios *in vitro* con levaduras (Pereira y Benchimol, 2007). También se cree que la fagocitosis puede funcionar como una ruta de transferencia horizontal de genes entre bacterias y tricomonas, lo que probablemente esté relacionado con la diversidad genética de este parásito (Edwards y col., 2014).

1.6.4. Hemólisis

Los eritrocitos son una fuente esencial de nutrientes, lípidos y hierro para tricomonas. Por lo tanto, Tv fagocita y lisa eritrocitos a través de la participación de diversas moléculas como CPs, perforinas y fosfolipasa A (Figueroa-Angulo y col., 2012; Fiori y col., 1999; Lubick y Burgess, 2004). También se ha encontrado una alta expresión de la triacilglicerol lipasa (TvLIP) en presencia de hierro que podría funcionar como un factor hemolítico (Carvalho y col., 2005). Además, se demostró la participación en hemólisis de la TvCP4, una CP de tipo catepsina L que se regula positivamente en presencia de hierro (Cárdenas–Guerra y col., 2013; Figueroa-Angulo y col., 2012).

II. ANTECEDENTES DIRECTOS

2.1. Cisteína Proteinasas

Las proteinasas o péptido hidrolasas catalizan la hidrólisis del enlace peptídico en proteínas y péptidos. La catálisis puede realizarse dentro de la cadena polipeptídica (actividad de endoproteasa o proteinasa), o en el extremo amino o carboxilo del péptido (actividad de exopeptidasas) (Sajid y McKerrow, 2001). Las proteasas se dividen en grupos con base al mecanismo catalítico utilizado durante el proceso de hidrólisis, pH óptimo en el cual son activas y por los residuos de aminoácidos (aa) en su centro catalítico, por lo tanto se dividen en: serina, treonina, aspártico, metalo y cisteína proteinasas (CPs) (Sajid y McKerrow, 2001).

Con base en la homología de su secuencia, las CPs se han divido en clanes (clanes: CA, CB, CC y CD) cada uno formado por una o más familias (Sajid y McKerrow, 2001). Las más abundantes entre las CPs son las del clan CA que incluye a la familia de las papaínas y calpaínas. Las segundas más abundantes son las del clan CD que incluye a la familia de las caspasas, gingipaínas, clostripaínas, separasas y legumaínas. La característica común entre las CPs es un residuo de cisteína (Cys) que actúa como nucleófilo y un residuo de histidina (His) que actua como base general para transporte de protones. En las CPs del clan CA los residuos catalíticos del extremo amino al carboxilo se encuentran en el orden Cys-His y en el clan CD se invierte en el orden His-Cys (Sajid y McKerrow, 2001; Turk y col., 2002).

La mayoría de las CPs son sintetizadas como precursores inactivos que contienen un pro-dominio y un dominio maduro. Para su activación requieren de la escisión del pro-dominio. El pro-dominio es principalmente una α-hélice que bloquea

estéricamente el sitio activo y está involucrada en varias funciones como: chaperona intramolecular que ayuda al plegamiento de las proteínas, como inhibidor endógeno que regula la actividad de proteasa y en algunos casos funciona como una señal de localización intracelular (Sajid y McKerrow, 2001).

La mayoría de las proteasas de los parásitos pertenecen a la familia C1 del clan CA (Sajid y McKerrow, 2001). Las catepsinas L se encuentran generalmente en parásitos protozoarios (Sajid y McKerrow, 2001), presentan el dominio conservado "ERFNIN" el cual se ha sugiriendo que inhibe la actividad de la proteasa y que al ser removido la proteína se vuelve enzimáticamente activa (Oliveira y col., 2003). Las catepsinas B que carecen de este dominio presentan un asa de aa insertados en el dominio catalítico, denominada asa ocluyente porque obstruye el sitio activo. Las catepsinas B se encuentran ampliamente distribuidas entre parásitos helmínticos y protozoarios, los cuales también conservan esta asa, a excepción de las proteasas de *Giardia* que no la conservan (Sajid y McKerrow, 2001).

2.2. CPs en T. vaginalis

El genoma de *T. vaginalis* posee más de 440 genes que codifican para peptidasas, la mitad corresponden al tipo CP, de las cuales 48 son de tipo papaína y 10 son de tipo legumaína (Carlton y col., 2007). Sin embargo, solo 23 CPs principalmente del tipo papaína y dos del tipo legumaína se han identificado por geles en 2-Dimensiones (2-DE) (Ramón-Luing y col., 2010). Las CPs de *T. vaginalis* participan en diversos mecanismos y se localizan en varios compartimentos: vacuolas, lisosomas, membrana plasmática, aparato de Golgi, hidrogenosomas y algunas son liberadas al medio; solo TvCP65, TvCP39, TCP12, TvCP4, TvCP3 y TvCP2 del tipo

papaína y TvLEGU-1 del tipo legumaína se han caracterizado y se conoce su participación en la virulencia de tricomonas (Arroyo y col., 2015; Álvarez-Sánchez y col., 2000; Cárdenas-Guerra y col., 2013; Hernandez y col., 2014; Hernández-Gutiérrez y col., 2003, 2004; Ramón-Luing y col., 2010, 2011; Rendón-Gandarilla y col., 2013).

2.2.1. Cisteína proteinasa 65 (TvCP65)

Álvarez-Sánchez y col., (2000) caracterizaron a la TvCP65, como la región de actividad proteolítica en 65 kDa por zimografía. Esta CP se regula negativamente por hierro y zinc y para su expresión requiere de poliaminas. Ensayos de inmunofluorescencia indirecta (IF) usando anticuerpos (Ac) policionales contra la proteína mostraron que la TvCP65 se localiza tanto en membrana como en citoplasma. También se demostró su participacion en el daño celular (Álvarez-Sánchez y col., 2000, 2007, 2008).

2.2.2. Cisteína proteinasa 39 (TvCP39)

La TvCP39 es otra CP que se localiza en la superficie del parásito y se secreta durante la infección (Ramón-Luing y col., 2011). Esta CP se regula negativamente por hierro y zinc y de acuerdo a la condición de estudio se ha identificado en diferentes tamaños moleculares 39, 45, 37.5, 28, 27 y 24 kDa (Arroyo y col., 2015). Por inmunoproteómica se demostró que la TvCP39 es inmunogénica en pacientes con tricomoniasis y se propuso como un biomarcador potencial para el diagnóstico de la tricomoniasis (Ramón-Luing y col., 2010) y se demostró su participación en citotoxicidad. Además, TvCP39 es una CP glicosilada en *T. vaginalis* (Ramón-Luing y col., 2011).

2.2.3. Cisteína proteinasa 12 (TvCP12)

La TvCP12 es una de las CPs de la región de 30 kDa. El gen de esta CP codifica para una proteína precursora de ~35 kDa. Esta CP se regula negativamente por hierro debido a una regulación a nivel post-transcripcional por medio del mecanismo de regulación tipo IRE-IRP, proceso que se da a través de interacciones RNA-proteína (León-Sicairos y col., 2003; 2004; 2007; Torres-Romero y Arroyo, 2009). Ensayos de inmunocitoquímica utilizando un Ac contra un péptido divergente de la proteína mostraron que esta proteasa se localiza en citoplasma y en la superficie de los parásitos (León-Sicairos y col., 2004). Cuellar-Silva en su tesis de Maestría (2011) demostró la participación de la TvCP12 en citotoxicidad en bajo hierro, con un Ac α -TvCP12r que redujo esta propiedad de virulencia.

2.2.4. Cisteina proteinasa 4 (TvCP4)

La TvCP4 es una CP regulada positivamente por hierro a nivel posttranscripcional por el mecanismo tipo IRE-IRP al igual que la TvCP12 (Solano-González y col., 2007). La TvCP4 usualmente presenta un tamaño de ~24 kDa; sin embargo, también se ha encontrado en la región de 65 kDa junto con otras proteinasas (Ramón-Luing y col., 2010). La TvCP4 en alto hierro se localiza en la superficie del parásito, en lisosomas y citoplasma y participa en hemólisis. Además, la TvCP4 se secreta activamente durante la infección e *in vitro* (Cárdenas-Guerra y col., 2013).

2.2.5. Cisteina proteinasa Legumaina-1 (TvLEGU-1).

La CP TvLEGU-1 es una asparaginil endopeptidasa o Legumaína del clan CD de 30 kDa que se regula positivamente por hierro (Rendón-Gandarilla y col., 2013).

TvLEGU-1 es una proteinasa que se localiza en lisosomas, aparato de Golgi y en la superficie de los parásitos, además es una CP inmunogénica que se secreta durante la infección por tricomonas y es una de las proteasas que participan en la citoadherencia (Arroyo y col., 2015; Rendón-Gandarilla y col., 2013). Además de que presenta modificaciones postraduccionales de tipo glicosilación y fosforilación.

2.2.6. Otras cisteina proteinasas

Sommer y col., (2005) mostraron que una fracción de CPs secretadas de la región de 30 kDa inducen apoptosis en células del epitelio vaginal e identificaron por espectrometría de masas diferentes CPs en esta región, entre estas TvCP2 y TvCP3, TvCP4 y TvCP39 (también reportada como TvCPT). Aunque no se han caracterizado completamente estas CPs, la TvCP2 se regula negativamente por hierro, se localiza en el citoplasma y en la superficie de tricomonas, además participa en citotoxicidad (Lorenzo-Benito, Tesis de Maestría, 2012; Rivera-Rivas, Tesis de Maestría, 2016). En cuanto a la TvCP3, aunque no se ha empezado su caracterización podría tener una participación en citotoxicidad similar a la TvCP2.

2.3. Mecanismos de inhibición de CPs

Las proteinasas participan en diversos procesos biológicos en todos los organismos. Sin embargo, es esencial una estricta regulación de su actividad para el adecuado funcionamiento de las células y en general de los organismos. La actividad proteolítica puede ser regulada en diferentes niveles: por regulación de su expresión, modificaciones post-traduccionales, compartamentalizacion, activación del zimógeno, pH o por inhibidores endógenos o exógenos (Turk y col., 2012; Stoka y col., 2016).
Existen varios mecanismos de acción utilizados por inhibidores endógenos contra las CPs, entre los que se encuentran:

- Profragmentos o zimógenos. Tipo de inhibición reversible, donde la proregión situada en el N-terminal de la proteinasa precursora bloquea su sitio activo (Rzychon y col., 2004).
- Distorsión del sitio activo (serpinas). Tipo de inhibición irreversible, que provoca la alteración del sitio catalítico de la proteinasas de tipo serina y cisteína (Rzychon y col., 2004; Turk y col., 2012).
- Impedimento estérico. Tipo de inhibición irreversible covalente, que resulta en la inactivación de la proteasa, la proteína P35 de baculovirus es un ejemplo de este tipo de inhibición (Rzychon y col., 2004).
- Inhibidores tiropinas. Nombrados también como tiroglobulinas dominio tipo-1 son un grupo pequeño de inhibidores de CPs (Rzychon y col., 2004; Turk y col., 2012).
- Inhibidores de unión exocítica (cistatinas). Tipo de inhibición reversible que bloquea el sitio activo de las proteinasas del tipo papaína y legumaína (Rzychon y col., 2004; Turk y col., 2012).

2.4. Superfamilia de las cistatinas

La superfamilia de las cistatinas comprende un grupo de proteínas de bajo peso molecular que actúan como inhibidores endógenos de CPs del tipo papaína principalmente y algunas también inhiben CPs del tipo legumaína (Turk y col., 2008). Estos inhibidores están ampliamente distribuidos entre los vertebrados, invertebrados y plantas, participan en la homeostasis y en los mecanismos de defensa contra CPs endógenas y exógenas. La clasificación de la superfamilia de las cistatinas está basada en la similitud de secuencia, masa molecular, número de puentes disulfuro y localización subcelular. Por lo que las cistatinas se agrupan en la familia 125 que incluye a las subfamilias 125A (Estefinas), 125B (Cistatinas) y 125C (otras) de la base de datos MEROPS (<u>http://merops.sanger.ac.uk</u>) (Oliveira y col., 2003; Turk y col., 2008).

2.4.1 Inhibidores tipo cistatina

- Familia I estefinas, son polipéptidos pequeños de alrededor de 100 aa, no contienen puentes disulfuro o grupos carbohidratos, son proteínas citoplásmicas con una masa molecular -11 kDa. La mayoría son proteínas intracelulares citoplasmáticas, aunque algunas se han encontrado en forma extracelular (Turk y col., 2008).
- Familia II cistatinas son péptidos de alrededor de 120 aa, contienen un péptido señal de ~ 20-26 aa, poseen dos puentes disulfuro cerca del C-terminal y pueden ser glicosiladas o no; se caracterizan por ser proteínas de secreción con una masa molecular ~12-24 kDa (Turk y col., 2008).
- Familia III quininógenos son un grupo de glicoproteínas multifuncionales de secreción de dos tipos H-quininógenos (de alto peso molecular) y L-quininógenos (de bajo peso molecular), formados por una cadena pesada en el N-terminal, un segmento de quinina y una cadena ligera en el C-terminal. Ademas, presentan tres dominios tipo cistatina: el dominio 1 (D1) (G—Q-V-G—PW), el D2 (G—Q-V-G) y el D3 (G—Q-V-G—PW); S-S. Sin embargo, el D1 no

muestra actividad inhibitoria y solo los domios D2 y D3 muestran inhibición contra CPs del tipo papaína (Ochieng y Chaudhuri, 2010; Turk y col., 2008).

- Fitocistatinas son inhibidores de CPs en plantas, presenta características de la subfamilia I y II, no poseen puentes disulfuro y presenta dos dominios tipo cistatina (G—Q-V-G—PW) y un motivo LARFAV (Oliveira y col., 2003; Turk y col., 2008).
- CRES-Cistatinas encontradas en el epidídimo de ratón muestran homología sustancial con los inhibidores cistatina. El gen CRES ("cystatin-related epididimal spermatogenic") presenta el domio (Q-X-X—PW); S-S), ya que solo conserva el motivo PW, no presenta los motivos cistatina necesarios para llevar la inhibición de CPs del tipo papaína; sin embargo, inhibe selectivamente la prohormona convertasa-2 (Serina proteasa) (Ochieng y Chaudhuri, 2010; Oliveira y col., 2003; Turk y col., 2008).

2.4.2. Características de las cistatinas

Las cistatinas son inhibidores reversibles competitivos de unión fuerte a CPs, no son selectivos de algún tipo de CP, pero son capaces de discriminar entre endo y exopeptidasas (Turk y col., 2008). Estructuralmente, las cistatinas se caracterizan por presentar cinco cadenas plegadas β antiparalelas alrededor de una cadena central de α -hélice. El plegamiento de la molécula adquiere una forma de cuña que resulta conveniente para unirse al surco de unión al sustrato de la papaína (Rzychon y col., 2004; Turk y col., 2008) (Figura 2). El extremo N-terminal de la cuña es parcialmente flexible, contiene los residuos de aa Gly-8 y Ala-10 característicos. Además las cistatinas poseen dos asas con motivos altamente conservados **QXVXG** y **PW**, la región central **QXVXG** se posiciona en el extremo de la primera asa, interactuando con la parte inferior del sitio activo cerca de la cisteína catalítica; mientras que el motivo **PW** se localiza en el extremo C-terminal (Turk y col., 2008). Estos motivos forman asas típicas de las cistatinas que interactúan con la superficie de la enzima en los sitios de unión al sustrato S1´ hasta S4´, mientras que la porción del N-terminal de la molécula de cistatina recorre los subsitios de la S3 a la S1 (Rzychon y col., 2004).

Algunas cistatinas poseen un motivo distinto conservado **SND/S** localizado entre la glicina conservada y el motivo central, este motivo es responsable de la inhibición de la familia C13 de las asparaginil endoproteinasas (AEP) (Klotz y col., 2011). Cistatinas como C, E/M y F de humano presentan este motivo y muestran capacidad inhibitoria contra AEP o legumaínas (Alvarez-Fernandez y col., 1999). Por medio de la estructura cristalizada de la legumaína de humano con la cistatina E se determinó que en esta interacción es necesaria la participación de dos asas (Figura 2A) de la cistatina para formar una interacción estable con la legumaína, el asa reactiva central (RCL) y el asa externa de legumaína (LEL) se unen en el área donde previamente se encontraba el prodominio de la legumaína (Dall y col., 2015).

2.4.3. Cistatinas proteínas amiloidogénicas

La formación de depósitos amiloides se debe a proteínas que presentan un comportamiento anormal que involucra la agregación de la proteína soluble o péptido en un material fibrilar insoluble. Estos agregados estan compuestos de fibrillas extendidas, ricas en hojas β estructuras que comparten varias propiedades bioquímicas/biofísicas, factores como mutaciones, altas concentraciones, estres

ambiental, o envejecimiento, pueden desencadenar la agregación de proteínas (Lotz y Legleiter, 2013).

Figura 2. Estructura e interacción de las cistatinas. A) Estructura cristalizada de la cistatina E de humano. El círculo rojo marca las asas y los aa para la de inhibición de papaínas, el círculo verde marca las asas y los aa para la inhibición de legumaínas. En morado y azul se marcan las asas (LEL y RCL) que participan en la interacción con legumaínas. Figura tomada y modificada de Dall y col., 2015. B) Estructura cristalizada de la cistatina AI-CPI de *Ascaris lumbricoides,* se representa la unión de la cuña de la cistatina con el surco de la proteasa. Figura tomada y modificada de Mei y col., 2014.

Una característica inusual de algunas cistatinas es la existencia de estructuras diméricas u oligoméricas. La causa de la agregación de estas proteínas se debe a muchos factores como mutaciones, incremento en la concentración, concentraciones

ambientales de estres, como pH extremo, temperaturas elevadas, desnaturalización química, etc. (Janowski y col., 2005).

Las cistatinas generalmente se expresan como proteínas monoméricas, a excepción de la cistatina F de humano; la cual se sabe que produce un dímero inactivo con puentes disulfuro intermoleculares. Esta cistatina se activa por mecanismos de reducción (Othsubo y col., 2007). Algunos miembros de las cistatinas forman homodímeros no covalentes bajo condiciones de estres. La dimerización provoca la pérdida de la reactividad contra las CPs (Östner y col., 2013). Estudios de resonancia magnética nuclear (RMN) y cristalografía indican que la cistatina C de humano (CCH) forma dímeros a través de un mecanismo por dominios "swapping" (intercambiadores) en el cual se entrecruzan las cadenas plegadas β entre un monómero y otro (Sanders y col., 2004). La CCH se encuentra en todos los fluidos del humano principalmente en la médula espinal y plasma seminal. Sin embargo, también se ha asociado a la CCH con la angiopatia amiloide cerebral (CAA), enfermedad en la cual se forman depósitos amiloides en los vasos sanguíneos que conducen a hemorragias recurrentes (Abrahamson y col., 2003). La CAA es el resultado de la mutación L68Q en el centro de la cistatina, esta mutación es suficiente para que la cistatina C se dimerize a través del "swapping" de dominios (Sanders y col., 2004).

Otro ejemplo de dimerización es el de la oryzacistatina-II (OC-II) una fitocistatina del arroz, la cual forma homodímeros cuando se incuba a altas temperaturas. La forma dimérica de la OC-II, al contrario de la cistatina C de humano, muestra una afinidad igual por las papaínas que la forma monomérica. Además la OC-II forma dímeros no

covalentes en condiciones no estresantes que pueden ser revertidos a la forma monómerica (Othsubo y col., 2007).

2.5. Cistatinas de organismos parásitos

Los patógenos parásitos expresan una gran cantidad de CPs que participan en los mecanismos de virulencia que ejecuta un parásito para lograr su sobrevivencia. Sin embargo, es vital la regulación de estos factores de virulencia a través de inhibidores endógenos como las cistatinas. Las cistatinas de organismos parásitos no solo participan como reguladores proteolíticos, sino también presentan funciones intrínsecas que aseguran la sobrevivencia del parásito (Klotz y col., 2011; Turk y col., 2008). Estos inhibidores predominan en parásitos nematodos, trematodos y en artrópodos, aunque también se han caracterizado en protozoarios, ejemplo de ellos son:

- Onchocerca volvulus. Su Oncocistatina-1 (Ov-CPI-1) participa en cambio del estadio larval L3 al L4, inhibe las catepsinas L y S, la proliferación de linfocitos T, reduce la regulación del complejo principal de histocompatibilidad clase II, importante en la presentación antigénica, y puede inducir una repuesta anti-inflamatoria por óxido nítrico (NO) e IL-10 (Klotz y col., 2011).
- Brugia malayi. Posee tres inhibidores tipo cistatina Bm-CPI-1, Bm-CPI-2 y Bm-CPI-3, importantes en la transmisión del parásito del mosquito al huésped mamífero y en la inhibición de la presentación antigénica, inhiben catepsinas S, L y B y solo la Bm-CPI-2 es capaz de inhibir legumaínas (Klotz y col., 2011; Murray y col., 2005).

- Angiostrongylus cantonensis. Su cistatina (AcCistatina) se expresa en todos los estadios larvarios de este nematodo, inhibe catepsinas B e induce la producción de óxido nítrico en macrófagos (Liu y col., 2010).
- Fasciola gigantica. La Fg-estefina 1 es el principal antígeno secretado e inhibe catepsinas S, B y L (Tarasuk y col., 2009).
- Clonorchis sinensis. Este trematodo posee dos inhibidores la Cs-estefina-1 y Cs-estefina-2. Ambos se expresan durante el desarrollo del parásito e inhiben catepsinas B y L de humano, papaína y regulan la activación de su catepsina endógena Fs (Kang y col., 2011, 2014).
- Schistosoma mansoni. Su cistatina tipo 1 Sm-cistatina regula la degradación de hemoglobina como fuente de aa (Klotz y col., 2011).
- Acanthamoeba castellanii. Este protozoario expresa una cistatina, la AcEstefina que regula la etapa de enquistamiento y se expresa en los lisosomas de esta amiba, además inhibe catepsinas B y L de humano y papaína (Lee y col., 2013).

2.6. Cistatinas en T. vaginalis

En el genoma de *T. vaginali*s se identificaron tres genes que codifican inhibidores endógenos tipo cistatina, nombrados tricocistatina 1, 2 y 3 (TC-1, TC-2 y TC-3). La primera evidencia de la expresión de estos inhibidores se encontró en un análisis de proteómica en geles de 2-DE y espectrometría de masas, identificando a la tricocistatina-2 (TC-2) asociada a la TvCP39 (una proteinasa de 39 kDa que participa en la citotoxicidad y en la adquisición de nutrientes para *T. vaginalis*) (Hernández-Gutiérrez y col., 2004; Ramón-Luing y col., 2010, 2011; Puente-Rivera y col., 2014).

La caracterización del inhibidor TC-2 de *T. vaginalis* mostró que este inhibidor presenta un tamaño molecular de 10 kDa en extractos totales de tricomonas y por ensayos de IFI se mostró que TC-2 se localiza principalmente en citoplasma, lisosomas y colocaliza en citoplasma con la TvCP39 (Fig. 3B) la CP con la que se identificó en el degradoma. Además, TC-2 inhibe papaína, catepsina L de humano y catepsinas L-like de extractos de tricomonas. Sin embargo, no mostro inhibición contra legumaínas. La regulación de la TvCP39, una CP involucrada en citotoxicidad, supuso la participación del TC-2 en este mecanismo. El tratamiento de parásitos con la proteína recombinante TC-2 mostró una reducción del daño celular de tricomonas a las células HeLa. Por lo que se propuso que el inhibidor TC-2 podría regular las CPs involucradas en este mecanismo de patogenicidad (Puente-Rivera y col., 2014).

En cuanto a los inhibidores TC-1 y TC-3, durante mi trabajo de maestría (Sánchez- Rodríguez, 2012) se inició el estudio de estos inhibidores. En el análisis de expresión de los genes *tvicp-1* y *tvicp-3* por ensayos de RT-PCR se encontró que ambos genes se expresan de forma dependiente del tipo de aislado. TC -3 la molécula de estudio en este trabajo, es una proteína pequeña de ~12 kDa con un punto isoeléctrico (p*I*) de 9 (datos tomados de la base de datos de *T. vaginalis* TrichDB). Además, presenta un péptido señal y conserva dos de los motivos cistatina, la Glicina del N-terminal y el motivo central QxVxG; sin embargo, los aa del motivo PW cambian por dos aa de L e *in silico* muestra dos probables sitios de O-β-glicosilación. La proteína TC-3r (TC-3r) se expresó y se purificó para producir anticuerpos policionales anti-TC-3r. En extractos totales de *T. vaginalis* del aislado CNCD 280 (Tipo 1) el anticuerpo anti-TC-3r mostró reconocimiento de dos bandas con pesos moleculares de ~ 30 kDa

y 60 kDa, pero no se observó el reconocimiento en el tamaño esperado de 12 kDa (Sánchez-Rodríguez, 2012; Tesis de Maestría).

Por medio de ensayos de IFI se encontró que TC-3 se localiza principalmente en la membrana de los parásitos y escasamente en citoplasma, a diferencia del TC-2 que se localiza principalmente en citoplasma y vesículas (Puente-Rivera y col., 2014) (Fig. 3). Estas diferencias entre los inhibidores sugieren que TC-3 podría tener un blanco proteolítico distinto a TC-2. Por lo tanto, en este trabajo se realizará la caracterización completa del inhibidor TC-3 para determinar si presenta actividad inhibitoria, identificar sus proteasas blanco y su función en el parásito. Al igual que en otros parásitos que expresan dos o más inhibidores de cisteína proteasas con diferente función y localización en el parásito, las tricocistatinas de tricomonas podrían tener diferentes blancos proteolíticos.

Figura 3. Localización de los inhibidores TC-3 y TC-2 en *T. vaginalis*. (A) Localización del inhibidor TC-3 en parásitos permeabilizados. En verde se muestra la localización del TC-3 (panel a), en rojo la membrana marcada con DIL (panel b) (Sánchez-Rodríguez, 2012; Tesis de maestría). (B) Localización y colocalización del inhibidor TC-2 en parásitos permeabilizados. En verde se muestra la localización de TC-2 (panel a), en rojo la localización de TvCP39 (panel b) y la colocalización de TC-2 con TvCP39 en el panel d (Puente-Rivera y col., 2014). Los núcleos en color azul se tiñeron con DAPI en ambos ensayos.

III. JUSTIFICACIÓN

La presencia de tres inhibidores endógenos de CPs en *Trichomonas vaginalis* sugiere que el parásito necesita de mecanismos que regulen la actividad proteolítica propia, al tener uno de los degradomas más complejos con múltiples CPs. Por lo que es necesario determinar cuáles proteinasas se regulan por estos inhibidores y el impacto de este tipo de regulación en la patogénesis de este parásito. Este trabajo está enfocado en la caracterización funcional de TC-3, para determinar la actividad inhibitoria, identificar sus blancos proteolíticos y determinar el mecanismo de virulencia que podría regularse por la participación del inhibidor TC-3.

IV. HIPÓTESIS

La tricocistatina-3 (TC-3) es un inhibidor endógeno localizado en la membrana del parásito que inhibe cisteína proteinasas de tipo catepsina-L y legumaínas y modula los niveles de citotoxicidad del parásito.

V. OBJETIVOS

5.1 Objetivo general

Caracterizar funcional y bioquímicamente al inhibidor endógeno tricocistatina-3 (TC-3) de *Trichomonas vaginalis.*

5.2 Objetivos particulares

- 1. Identificar el inhibidor TC-3 y el degradoma del aislado CNCD 280 de *T. vaginalis.*
- 2. Evaluar la función inhibidora de TC-3 recombinante (TC-3r) sobre cisteína proteinasas.
- 3. Identificar las proteasas blanco de TC-3 en *T. vaginalis.*
- 4. Evaluar el efecto de TC-3r en la citotoxicidad del parásito.

VI. ESTRATEGIA EXPERIMENTAL

Objetivo 1. Identificar el inhibidor TC-3 y el degradoma del aislado CNCD 280 de *T. vaginalis.*

Objetivo 2. Evaluar la función inhibidora de TC-3r sobre cisteína proteinasas.

Objetivo 3. Identificar las proteasas blanco de TC-3 en *T. vaginalis*

Objetivo 4. Evaluar el efecto de TC-3r en la citotoxicidad del parásito

VII. METODOLOGÍA

7.1. Construcción del árbol filogenético y predicción de la estructura 3-Dimensional (3-D)

Para la construcción del árbol filogenético se utilizó la secuencia de aa de inhibidores endógenos de la superfamilia de las cistatinas de organismos parásitos, artrópodos y mamíferos. El programa "Molecular Evolutionary Genetic Analysis 7" (MEGA 7) (<u>http://www.megasoftware.net/</u>) se utilizó y la deducción del análisis filogenético se realizó con el método "neighbor-joining" con 1000 repeticiones de "bootstrap".

La predicción de la estructura 3-D se realizó en el programa I-TASSER (<u>https://zhanglab.ccmb.med.umich.edu/I-TASSER/</u>) (Zhang., 2008), donde se introdujo la secuencia completa de aa del inhibidor TC-3 (TVAG_034880), estefina B de humano (NP_000091) y cistatina C de humano (AAH13083) y mediante el programa PyMOL (TM) Version 1.3 se analizó la estructura 3-D predicha.

7.2. Cultivo de T. vaginalis

En todos los ensayos se utilizaron parásitos del aislado CNCD 280 (tricomonas tipo 1; Conrad y col., 2012) en cultivo *in vitro* durante dos semanas a 37°C en medio TYM (triptona-extracto de levadura-maltosa) suplementado con 10 % de suero bovino adulto (SBA) inactivado por calor (Diamond, 1957). En todos los experimentos se utilizaron parásitos en fase logarítmica.

7.3. Extractos de proteínas con detergentes de T. vaginalis

Parásitos del aislado CNCD 280 (2×10^7) se lisaron con el amortiguador de lisis: Tris 50 mM pH 8, NaCl 150 mM, (Octilfenoxipolietoxietanol) IGEPAL CA-630 1% (SigmaAldrich, USA), CHAPS 0.5% (Hidrato de 3-[(3-Cholamidopropil) dimetilamonio]-1propanosulfonato) con 1× del coctel de inhibidores (cOmplete easy-pack; Roche-Mannheim Germany) y 1 mM de TLCK (Clorhidrato de Tosyl-L-lisil-clorometil cetona) (Sigma-Aldrich) por 40 min a 4°C y se centrifugaron a 18 800 × g por 15 min at 4 °C. Las fracciones obtenidas se separaron; la fracción soluble se colocó en un tubo Eppendorff limpio, ambas fracciones se resuspendieron en amortiguador de muestra $1 \times y 2 \times$ respectivamente y se analizaron en geles Tris-tricina SDS-PAGE.

7.4. Extractos de proteína de membrana de T. vaginalis

Para la extracción de proteínas de membrana 2×10^7 parásitos (CNCD 280) se lisaron en el amortiguador Tris-HCI 10 mM pH 7.4, NaCI 150 mM, EDTA 1 mM, 1% Triton X-114 en presencia de 1× del coctel de inhibidores (cOmplete easy-pack) (Pavic y Gornic, 2017). La lisis se realizó durante 30 min a 4 °C, posteriormente se centrifugaron a 18 800 × g por 15 min at 4 °C, se tomó el sobrenadante y se colocó en un tubo Eppendorff limpio, se incubó a 37 °C por 5 min y se centrifugó a temperatura ambiente (TA) o a 27 °C a 2,400 \times g por 1 min. Al término se obtuvieron dos fases: fase acuosa (FA) y fase de detergente (FD). La FA se colocó en otro tubo y para precipitar las proteínas se adicionó TCA al 10% a 4 °C. A la FD (fondo del tubo inicial) se adicionaron 500 µl de TBS-Triton X-114 0.06% (Tris-HCI 10 mM pH 7.4, NaCl 150 mM, 1% Triton X-114) se mezcló en vortex y se colocó en hielo 10 min y a 37 °C por 5 min, se centrifugó a 2,400 \times g por 1 min, se obtuvieron dos fases. En este paso se retiró el sobrenadante y conservamos la FD para repetir tres veces el procedimiento antes mencionado al adicionar TBS-0.06% Triton X-114. Las proteínas de la FD obtenida, se precipitaron con metanol-cloroformo en frío. Una vez precipitadas la proteínas de la FA y FD se

resuspendieron en amortiguador de muestra 1×. El perfil de proteínas se analizó por SDS-PAGE en geles de poliacrilamida al13%.

7.5. Extractos totales de *T. vaginalis* para 2-Dimensiones (2-DE pH 3-10)

Parásitos (CNCD 280, 2×10^7) se resuspendieron en 1 ml de PBS con TCA (Ácido tricloroacético) al 10% en frío para precipitar las proteínas totales durante 18 h a 4 °C. Las proteínas se centrifugaron a 16,200 × g por 5 min para realizar tres lavados con 1 ml de PBS pH 7 frío y dos lavados con 500 µl de acetona fría, se dejó secar la pastilla al aire y se resuspendió en 150 µl de amortiguador de rehidratación (Bio-Rad, Lab, EUA) por 20 min a para solubilizar las proteínas. La muestra se centrifugó a 16,200 × g por 10 min a 4 °C, se tomó el solubilizado y se colocó en la cámara para 2-DE, la tira IPG pH 3-10 y 1.5 ml de aceite mineral, para la rehidratación activa durante 14 h a 20 °C en el equipo PROTEAN IEF Cell (Bio-Rad). Terminada la rehidratación se limpió la cámara con SDS 10%, se colocaron los "wicks" con 10 µl de agua inyectable en cada polo de la cámara, las tiras previamente rehidratadas se colocaron sobre los "wicks" y se adicionaron 1.5 ml de aceite mineral para realizar el isoelectroenfoque de acuerdo al protocolo de Ramón-Luing y col., (2010). Finalmente, las tiras se incubaron con 1 ml de amortiguador de Equilibrio I y II durante 10 min por separado. La segunda dimensión se realizó por SDS-PAGE en geles de policarilamida preparativos al 13%, y se tiñeron con azul de Coomassie (CBB) o se transfirieron a membranas de nitrocelulosa (NC) para ensayos de Western blot (WB).

7.6. Extractos resistentes a proteinasas (ERP) de *T. vaginalis* por 2-DE pH 4-7 y pH 7-10.

Para obtener extractos resistentes a proteasas (ERP), los parásitos (CNCD 280, 60 x 10⁶) se lisaron en 150 µl de amortiguador de rehidratación (Bio-Rad) durante 20 min a TA. Para tiras IPG pH 4-7 se continuó el procedimiento estándar, el lisado se centrifugó a 16,200 × g por 10 min a 4 °C y se colocó en la cámara de 2-DE y sobre ésta se colocaron las tiras IPG pH 4-7 y las muestras se pusieron en rehidratación activa por 14 h a 20 °C. Para el 2-DE en rango básico, una vez obtenido el lisado una muestra fue tratada con el protocolo estándar antes mencionado usando tiras IPG pH 7-10 y otra muestra fue tratada con el Kit de reducción-alquilación (Bio-Rad, # 163-2090), de acuerdo a las especificaciones de la hoja técnica. A 130 µl del lisado se adicionó 4 µl de amortiguador de alguilación y se mezcló por vortex, se adicionó tributilfosfina (TBP) a una concentración final de 5 mM y lodoacetamida a 15 mM se mezcló y se incubó por 1 h a TA. La muestra se centrifugó a $16,200 \times g$ y se recuperó el sobrenadante utilizado para realizar el proceso de rehidratación 14-16 h con tiras de pH 7-10. En todos los casos se continuó con el protocolo reportado (Ramón-Luing y col., 2011; Cárdenas-Guerra y col., 2015). Terminado el isoelectroenfogue, las tiras se incubaron por 10 min a TA con 1 ml de amortiguador de Equilibrio I y II. En el caso de las tiras asignadas para zimograma no se dio tratamiento con el amortiguador II. El análisis se realizó por SDS-PAGE en geles de poliacrilamida al 13% y al 10% copolimerizado con gelatina al 0.2 % para zimografía.

7.7. Electroforesis Tris-tricina-PAGE

Para los geles de tricina se utilizaron los siguientes componentes: amortiguador Tris-HCI-SDS pH 8.45 (Tris-HCI 3 M que contiene SDS 0.3%), acrilamida 30%-bisacrilamida 0.8%, glicerol, persulfato de amonio 10% y TEMED para la preparación del gel separador y concentrador (Anexo 13.1), las proporciones de cada componente se adicionaron de acuerdo al protocolo del "Current Protocols in Immunology" (2006) en la sección III: "Separación de proteínas por electroforesis". También se preparó un amortiguador de muestra que contiene: Tris-HCI 200 mM pH 6.8, glicerol 30%, SDS 1.5%, CBB-R 250 (0.04%) y 2-mercaptoetanol (BME) 4%. Para la electroforesis se utilizaron dos amortiguadores de corrida: amortiguador ánodo (Tris 0.2 M pH 8.9) y cátodo (Tris 0.1 M, Tricina 0.1 M, SDS 1%) durante 1 h a 40 V y 1 h 20 min a 120 V.

7.8. Transferencia de proteínas

En un recipiente con amortiguador de transferencia frío (Tris 25 mM, glicina 192 mM, metanol 20%) se montó la unidad de transferencia en este orden: esponja, papel filtro Whatman No 3, gel de poliacrilamida a transferir, membrana de NC de 0.2 µm (Bio-Rad), papel filtro y esponja. La unidad se colocó en la cámara para electroforesis con suficiente amortiguador de transferencia, en frío. La transferencia se realizó en agitación constante a 20 V por 30 min, y luego a 100 V por 1 h. Las membranas se tiñeron con rojo de Ponceau al 100% para verificar la transferencia de las proteínas a la membrana de NC. La membrana se destiñó con cinco lavados de PBS-Tween al 0.1% pH 7 por 5 min. La membrana se bloqueó con 10% leche-PBS-Tween 0.1% toda la noche en agitación a 4 °C.

7.9. Ensayos de Western Blot (WB)

Membranas de NC previamente bloqueadas se incubaron con el anticuerpo (Ac) primario policional anti-TC-3r generado en conejo (R α -TC-3r) (Sánchez-Rodríguez, Tesis de Maestría, 2012) o en ratón (M α -TC-3r) (Anexo 13.2) a una dilución 1:200 en PBS-Tween 0.1% durante toda la noche a 4 °C en agitación. El mismo tratamiento se realizó para el control con suero preinmune (PI) dilución 1:200. Las membranas se lavaron 7x cada 10 min con PBS-Tween 0.1%, se incubaron con el Ac secundario cabra anti-conejo o anti-ratón acoplado a HRP (Bio-Rad) en una dilución 1:3000 en leche al 2.5%-PBS-Tween 0.1% por 2.5 h a TA cubierto de la luz, se hicieron 7 lavados cada 10 min con PBS-Tween 0.1%. Las membranas se revelaron por quimioluminiscencia en el fotodocumentador Chemi-Doc XRS (Bio-Rad) o por placa radiográfica, con una mezcla 1:1 de la soluciones A y B de SuperSignal West Pico (Thermo Fisher Scientific, Rockford, IL, USA). Los Acs control recibieron el mismo tratamiento (R α -TvCP2r, R α -TvCP3r, R α -TvCP4r, R α -TvCP39r, R α -TvLEGU-1r y R α -TvTIMr).

7.10. Ensayo de inmunoprecipitación (IPP) con el Ac α-TC-3r

Para preparar el extracto de proteína clarificado EPC, los parásitos (CNCD 280, 2 × 10^7) se lisaron en un amortiguador no desnaturalizante: Tris-HCl 20 mM pH 7.4, NaCl 137 mM, EDTA 2 mM, IGEPAL CA-630 1% (Sigma-Aldrich) por 30 min a 4 °C y se centrifugó a 18,800 × g por 15 min a 4 °C. El sobrenadante se colocó en otro tubo y se centrifugó nuevamente. El lisado obtenido se colocó en un tubo Eppendorf con perlas de proteína G previamente lavadas, para esto 100 µl de la suspensión de proteína G agarosa (rProtein G Agarose; Invitrogen Technology, CA, EUA) se colocó en un tubo

Eppendorff y se centrifugó a $18,800 \times g$ por 3 min a 4 °C para retirar el "slurry". Las perlas se agarosa se lavaron con 300 µl de PBS pH 7 por centrifugación a 18,800 × g por 3 min a 4 °C en agitación constante. En este paso se adicionó el lisado de T. vaginalis y se dejó interaccionando con la proteína G-agarosa por 30 min a 4 °C, para obtener el EPC, la muestra se centrifugó a 18,800 \times g por 10 min a 4 °C. Posteriormente, se permitió que el Ac reconociera a su antígeno en el EPC, en 300 µl del EPC se adicionó 5 µl del Ac Rα-TC-3r y se dejó en interacción durante 12 h a 4 °C en agitación constante. Se añadió 100 µl de proteína G-agarosa previamente lavadas, para permitir la unión del Ac a la proteína G, durante 4 h a 4 °C en agitación. Para recuperar el complejo de IPP, la mezcla se centrifugó a 18,800 \times g por 5 min a 4 °C, se retiró el sobrenadante (proteínas no unidas) y la pastilla que contiene el complejo de IPP se lavó suevemente 3 veces. Para liberar el complejo antígeno-anticuerpo se adicionó 60 µl de amortiguador de elución (Glicina-HCl 0.1 M pH 2.6) y se resuspendió en amortiguador de muestra 2× para su análisis por SDS-PAGE y WB. El mismo tratamiento se realizó con el control de suero PI.

7.11. Inhibición de la actividad proteolítica de CPs con TC-3r

El efecto inhibitorio de la proteína TC-3r se probó en CPs como catepsina L de humano (Cat-Lh, Sigma-Aldrich), legumaína de humano (Legu-h, R&D Systems), ERP de *T. vaginalis* y la legumaína-1 recombinante (TvLEGU-1r; producida en *Pichia pastoris*; Reséndiz-Cardiel y col., 2017) de *T. vaginalis*. Cat-Lh (1 ng/µl) y ERP (20 µg) se probaron con concentraciones crecientes del inhibidor TC-3r (1-80 µM) en el amortiguador NaOAc 100 mM pH 5.5, EDTA 1 mM, NaCl 50 mM, β -ME 2 mM. Para probar la actividad sobre legumaínas, 35 µg de ERP de *T. vaginalis* se probaron con

las mismas concentraciones de TC-3r para Cat-L (1-80 μ M), en el amortiguador NaOAc 100 mM pH 5.5, EDTA 1 mM, NaCl 50 mM, BME 2 mM. La reacción con la Legu-h se probó en el amortiguador de fosfatos-citratos (Ácido cítrico 39.5 mM, Na₂HPO₄ pH 5.8, 121 mM, ditioteitrol (DTT) 1 mM, EDTA 1 mM y CHAPS 0.01% y la TvLEGU-1r se probó de acuerdo a las condiciones reportadas por Reséndiz-Cardiel y col., (2017), en presencia del TC-3r (40-120 μ M). La actividad proteolítica se inició al adicionar los sustratos fluorogénicos Phe-Arg-MCA para catepsinas L (Sigma-Aldrich) y Z-Ala-Ala-Asn-MCA para legumainas (PEPTIDES INSTITUTE. INC., Osaka, Japón) en un volumen final de reacción de 150 μ l en placas de 96 pozos con fondo oscuro (Nunc). La fluorescencia liberada por la hidrólisis del sustrato se midió a una longitud de excitación y emisión de 355 y 460 nm, respectivamente en el espectrofluorómetro Gemini EM Fluorescence. Como controles positivos de inhibición se utilizó E-64 1 μ M (Sigma-Aldrich) para catepsinas L y TLCK 1 mM (Sigma-Aldrich) para legumaínas.

7.12. Inhibición de la actividad proteolítica de CPs por zimografía en 1-DE y 2-DE

Extractos resistentes a proteinasas (ERP) se obtuvieron de 2×10^7 parásitos (CNCD 280) para el análisis por zimografía por 1-DE, el ERP obtenido se analizó por SDS-PAGE en geles de poliacrilamida al 10 % copolimerizados con gelatina al 0.2% (Bio-Rad). En el caso de la 2-DE se siguió el protocolo que se describió anteriormente en el punto 7.6. La electroforesis se realizó en geles preparativos SDS-PAGE de poliacrilamida al 9% copolimerizados con gelatina al 0.2%. Después de la electroforesis, los geles se incubaron 1 h a TA con Triton-X100 al 2.5%. Para la activación de las proteasas, los geles se incubaron en amortiguador de activación pH 4.5 con β -ME 0.01% para obtener el patrón de actividad total. Para probar el efecto del

inhibidor TC-3r, en el amortiguador de activación se incluyó la proteína TC-3r a una concentración de 100 µM para 1-DE y 120 µM para 2-DE. La activación en 1-DE se realizó durante 17 h a 37 °C; para el gel 2-DE antes de la activación el gel se cortó por la mitad, la parte superior del gel se incubó 20 min a TA y la inferior 1 h a TA. Como control positivo en 1-DE se probó 50 µM de E-64. Para 2-DE también se preparó un zimograma sumergido con y sin inhibior (TC-3r) para obtener una copia con actividad del patrón de ERP teñido con plata. Estos zimogramas fueron analizados por SDS-PAGE en geles de poliacrilamida al 10% y recibieron el mismo tratamiento que los copolimerizados antes de adicionar el amortiguador de activación. Durante la activación se adicionó 10 mg/ml de gelatina disuelta en el amortiguador de activación. Para el zimograma con TC-3r, el gel se preincubó durante 1 h a TA con 120 µM del inhibidor antes y durante la activación. La actvacion se realizó 30 min y 1 h 15 min para la parte superior del gel, respectivamente.

7.13. Ensayo de "Pull-down" con la proteína TC-3r

Lisados de *T. vaginalis* se obtuvieron de 2×10^7 parásitos (CNCD 280) con el amortiguador de lisis que contiene el kit "Pierce Pull-Down PolyHis protein: protein interaction" (Thermo Scientific). De acuerdo con la hoja técnica se preparó una columna con 50 µl de resina His Pur Cobalto, y se adicionó 700 µl del lisado de tricomonas. La interacción se realizó durante 16 h a 4 °C en agitación para obtener un extracto de proteínas clarificado (EPC). Posteriormente, la proteína ligando (150 µg de TC-3r) se inmovilizó en columna previamente preparada con 50 µl de resina His Pur Cobalto, la interacción se realizó por 30 min a 4 °C en agitación. Al término, la columna se centrifugó 1,250 × g por 1 min, se recolectó al TC-3r que no se unió a la columna y

la unida se lavó 5x con amortiguador de lavado que contiene el kit de "pull-down" (PD). Para la interacción se adicionó 600 µl de EPC a la proteína ligando TC-3r y se incubaron a 4 °C por 16 h. La columna se centrifugó a 1,250 × g por 1 min y con amortiguador de lavado se realizaron 7 lavados para eliminar uniones inespecíficas de proteínas. El complejo TC-3r-Proteina se liberó con amortiguador de elución (que contiene el kit de PD). Las fracciones recolectadas en cada paso se analizaron por SDS-PAGE en geles de poliacrilamida al 13% para tinción con CBB, zimograma y WB. El mismo tratamiento se realizó con BSA y la proteína recombinante HSP70 (HSP70r) como control negativo y no relacionado, respectivamente. Para el ensayo de WB se utilizó una serie de Acs anti-CPs (Rα-TvCP2r, Rα-TvCP3r, Rα-TvCP4r (Cárdenas-Guerra y col., 2013), Rα-TvCP39r (Ramón-Luing y col., 2011) y Rα-TvLEGU-1r (Rendón-Gandarilla y col., 2013) y como controles se utilizó el suero PI y el Ac α-TvTIMr (Miranda-Ozuna y col., 2016).

7.14. Ensayo de inmunofluorescencia indirecta (IFI)

Sobre laminillas (Corning) estériles en una caja de Petri se incubaron 3×10^6 parásitos en medio TYM con 10% de suero durante ~18 h a 37 °C. Las laminillas cubiertas de parásitos se lavaron 3 veces con PBS pH 7 tibio y se fijaron con paraformaldehído-PBS al 2% durante 10 min a TA. Para el protocolo estándar se utilizó la siguiente metodología, después de la fijación se realizaron 3 lavados con PBS, para parásitos permeabilizados se incubaron por 5 min con Triton X-100 al 0.1%, se realizaron 5 lavados con PBS-BSA al 1%, se realizó un bloqueo con PBS-glicina 0.5 M por 30 min a TA y 3 lavados con la misma solución; se realizó un segundo bloqueo con suero fetal bovino al 1% en PBS durante 15 min a TA y se realizaron 3 lavados con PBS. Se

incubó el Ac primario Rα-TC-3r o Mα-TC-3r (dilución 1:100) toda la noche a 4 °C en cámara húmeda, se realizaron 5 lavados con PBS y se incubó con el Ac secundario (dilución 1:100) anti-conejo o anti-ratón IgG acoplado a FITC (Thermo Fisher Scientific) y se realizaron 5 lavados con PBS. Para marcar la membrana de los parásitos se utilizó DIL (1,1'-Dioctadecil-3, 3, 3',3'-Tetrametilindocarbocianina Perclorato ('Dil'; DilC18 (3)) (Invitrogen) a una dilución 1:2,500 en agua estéril, se incubó durante 1 h a TA, Se realizaron varios lavados con PBS y las preparaciones se montaron sobre portaobjetos con DAPI-Vectashield (Vector laboratorios) para marcar los núcleos y para fijar las laminillas sobre el portaobjetos se utilizó barniz de uñas.

Para la segunda metodología de IFI por doble paso, después de la fijación de los parásitos se realizó una serie de lavados por dos tiempos con PBS pH 7, NH₄Cl 20 mM en PBS y PBS-BSA al 0.2%, respectivamente. Las laminillas se incubaron con el anticuerpo primario Rα-TC-3r o Mα-TC-3r (dilución 1:100) toda la noche a 4 °C en cámara húmeda. Posteriormente, se realizaron 5 lavados con PBS-BSA y se incubó con el Ac secundario (dilución 1:100) anti-conejo o anti-ratón IgG acoplado a FITC (Thermo Fisher Scientific) o Alexa fluor-594 (InvitrogenTM) durante 1 h a TA en cámara húmeda, se realizaron 3 lavados con PBS-BSA y luego 2 lavados con PBS. Los parásitos se fijaron nuevamente con paraformaldehído al 2% en PBS por 10 min y se lavaron con NH₄Cl, PBS-BSA y PBS por dos tiempos cada uno. Los parásitos se permeabilizaron con Triton X-100 0.07% durante 10 min a TA, se realizaron 3 lavados con PBS-BSA y se incubaron con el Ac secundario. Las laminillas se lavaron 5 veces con PBS-BSA y se incubaron con el Ac secundario en cámara húmeda durante 1 h a TA, se realizaron 3 lavados con PBS-BSA y se incubaron con el Ac secundario.

con PBS. Para marcar la membrana de los parásitos se utilizó DIL (Invitrogen) a una dilución 1:2,500 en agua estéril y se incubó durante 1 h a TA. Finalmente, las laminillas se lavaron 5 veces con PBS y se montaron en portaobjetos con DAPI-Vectashield (Vector laboratorios) para marcar los núcleos. Las laminillas se fijaron sobre el portaobjetos con barniz de uñas. Para las co-localizaciones, los anticuerpos anti-CPs (R α -TvCP2r, R α -TvCP3r y R α -TvLEGU-1r) se incubaron 3 h a TA y se siguieron con Alexa fluor-594.

7.15. Inmunomarcaje con oro y microscopía electrónica de transmisión (MET)

Una pastilla de ~ 60 x 10⁶ parásitos se fijó con glutaraldehido al 0.5% y paraformladehido 4% en PBS durante 1 h a TA en agitación constante, se realizaron 3 lavados con PBS pH 7, los parásitos se deshidrataron con concentraciones crecientes de etanol (50, 70, 90 y 100 %) durante 30 min. La pastilla de parásitos se preincluyó en una relación 1:1 etanol-resina LR-White (London Resin Co) durante toda la noche. Posteriormente, se realizó una serie de preinclusiones 1:1, 2:1 y por último en la resina pura, la pastilla se dejó polimerizar a 56°C toda la noche. Para realizar el inmunomarcaje con oro se realizaron cortes finos de la pastilla (60 nm) y se incubaron toda la noche a TA con los anticuerpos primarios (conejo o ratón) α -TC-3r (dilución 1:10), R α -TvCP2r, R α -TvCP3r y R α -TvLEGU-1r (dilución 1:20). Posteriormente, se incubaron con los Ac secundarios anti-conejo o anti-ratón IgG conjugados con partículas de oro de 15, 20 y 30 nm (Ted Pella Inc), las rejillas se contrastaron con acetato de uranilo y citrato de plomo. Como control negativo se utilizó el anticuerpo secundario unicamente. Las muestras se analizaron en el MET (JEM-1011).

7.16. Ensayo de citotoxicidad

El ensayo de citotoxicidad se realizó como se reportó previamente (Álvarez-Sánchez y col., 2000). Brevemente, parásitos tratados durante 1 h a 37 °C con concentraciones crecientes del inhibidor TC-3r (20, 40 y 80 µM) y con 20 µM de BSA (control negativo) se agregaron a la monocapa confluente de células HeLa en una microplaca de 96 pozos. A cada pozo se adicionaron 2 × 10⁵ parásitos tratados y no tratados en medio DMEM-TYM (relación 2:1) sin suero. La interacción parásito-célula se realizó durante 3.5 h a 37 °C en una atmosfera de CO₂ al 5%. La destrucción de la monocapa se capturó en el microscopio invertido (Nikon TMS; Japan) y se cuantificó colorimétricamente con cristal violeta al 0.13%. La liberación de colorante de la células HeLa intactas se midió a 570 nm en el lector de microplacas VersaMax ™ ELISA (Molecular Devices).

7.17. Identificación por espectrometría de masas (EM)

Las manchas de proteínas seleccionadas para su identificación por EM se cortaron de geles de 2-DE pH 4-7 de extractos totales y ERP de pH 4-7 y 7-10. El análisis se realizó utilizando "nano-flow" por Cromatografía de Líquidos (Waters) acoplado al Espectrómetro de Masas (Ion Trap) con ionización por electrospray (LC-ESI-MS/MS) (Thermo Fisher Scientific, Bremen, Alemania). Los péptidos se identificaron usando el "software" SEQUEST contra la base de datos de tricomonas Trichdb (www. Trichdb) en el laboratorio de proteómica del CINVESTAV, Unidad Irapuato, Gto.

En cuanto a las bandas proteicas de geles en 1-DE de extractos de *T. vaginalis* obtenidos con detergentes y de membrana se cortaron y se realizó el siguiente tratamiento: las bandas de interés se digirieron enzimáticamente de acuerdo al

protocolo modificado por Shevchenko y col., 2007, los péptidos obtenidos se concentraron en un volumen ~20 µl. Previo al análisis, las muestras se desalaron mediante columnas Symmetry C18 Trap V/M precolumn (Waters, Milford, MA), los péptidos se separaron en una columna HSS T3 C18 Column (Waters, Milford, MA) usando un UPLC ACQUITY M-Class para analizarlos en el Espectrómetro de masas (QTOF) con separación por mobilidad iónica (IMS) SYNAPT G2-Si de Waters. Además, se realizó el método de identificación por monitoreo de reacciones múltiples (MRM), donde se utilizó a TC-3r como estándar para realizar la búsqueda de TC-3 nativo en una muestra determinada. Para esto, la proteína TC-3r se trató como se mencionó anteriormente. Los péptidos resultantes se inyectaron en el equipo y 3 iones con mayor intensidad relativa fueron seleccionados y fragmentados. Utilizando los iones fragmento generados se seleccionaron las transiciones más representativas y se diseñó un método de EM usando el enfoque del monitoreo de reacciones múltiples (MRM), para buscar exclusivamente las transiciones seleccionadas en la muestras problema. En este caso, se utilizaron bandas de extractos de T. vaginalis que fueron digeridas de igual forma que el estándar. Los péptidos generados se analizaron mediante los métodos MRM previamente creados. Los resultados se analizaron con el software ProteinLynx Global SERVER (PLGS) v 3.0.3 software 2 (Waters, Milford, MA) contra la base de datos Uniprot usando el genoma de T. vaginalis. Este análisis se llevó a cabo en la Unidad de Genómica, Proteómica y Metabolómica (LaNSE) CINVESTAV-IPN, Unidad Zacatenco, Ciudad de México.

7.18. Construcción de Interactomas

Con la información obtenida de la identificacion por EM se realizaron interactomas con la base de datos "STRING" (Search Tool for the Retrieval of Interacting Genes/Proteins) versión 10.5, donde se introdujeron los ID (TVAG) de las proteínas identificadas de cada mancha o banda con el propósito de determinar si existe alguna relación entre éstas.

7.19. Análisis estadístico

Las diferencias significativas de los ensayos se determinaron con la prueba estadística de T-STUDENT usando el programa IBM SPSS versión 25, con un nivel de confianza de 95% (P<0.05). Las gráficas se realizaron en el software SigmaPlot versión 11.

VIII. RESULTADOS

8.1. Análisis filogenético de la cistatinas de T. vaginalis

El análisis filogenético mostró que los inhibidores endógenos de *T. vaginalis* se agruparon en la familia 1 de las estefinas y presentaron mayor relación con las fitocistatinas. En cuanto al inhibidor TC-3, muestra mayor divergencia en comparación con las cistatinas (TC-1 y TC-2) de *T. vaginalis* (Figura 4).

8.2. Predicción y comparación de la estructura tridimensional (3-D) teórica de TC-3 con cistatinas de la familia 1 y 2

La estructura 3-D predicha del inhibidor TC-3 correspondió con la estructura típica de los inhibidores tipo cistatina, de 5 cadenas beta-plegadas anti-paralelas alrededor de una alfa hélice (Fig. 5A). Además, TC-3 presenta un N-terminal extendido que incluye un péptido señal (color rosa), similar a la cistatina C de humano (Fig. 5C). La estructuta 3-D de TC-3 de *T. vaginalis* y estefina B de humano (Figs. 5A y B) son muy similares entre sí y presentan una estructura menos compleja en comparación con los inhibidores de la familia 2 (Figs. 5C y D), lo que concuerda con el análisis filogenético (Fig. 4), donde se mostró que las tricocistatinas tienen mayor relación con la familia 1 de las estefinas que con la familia 2 de las cistatinas.

Figura 4. Análisis filogenético de las cistatinas de T. vaginalis.

Árbol filogenético construido con la secuencia de aminoácidos de cistatinas de diversos organismos. T. vaginalis: TC-1 (XP_001323421), TC-2 (XP_001303223) y TC-3 (XP_001583451); Fasciola gigantica: FgStefin1 (ACS35603); Clonorchis sinensis: CsStefina-1 (ABR68548) y CsStefina-2 (ABR68549); Brugia malayi: Bm-CPI-1 (AAC47623) y Bm-CPI-2 (AAB69857); Caenorhabditis elegans: Ce-CPI-1 (NP_500915) y Ce-CPI-2 (NP_504565); Onchocerca volvulus: Ov-CPI-1 (AAD51087) y Ov-CPI-2 (P22085); Acanthamoeba castellanii: AcStefina (AET79741); Ascaris lumbricoides: AI-CPI (ADR51550); Ornithodoros moubata: Cistatina-1 (Q6QZV5) y Cistatina-2 (Q6QD55); Ixodes scapularis: CPI (AAM93646); Mus musculus: Cistatina-A (NP_001028411); Rattus norvegicus: Cistatina-A (NP_001099346); Gallus gallus: Cistatina-C (P01038); Homo sapiens: Cistatina-A (NP_005204), Cistatina-B (NP_000091), Cistatina-C (AAH13083), Cistatina-D (NP_0010891), Cistatina-F (AAC35747) y Cistatina-M (AAB06566); Arabidopsis thaliana: Cistatina-A (NP_181620); Oryza sativa: CPI-1 (P09229). La deducción del análisis filogenético se realizó con el método "neighbor-joining" con 1000 repeticiones de "bootstrap" con el 7" programa "Molecular Evolutionary Genetic Analysis (MEGA 7) (http://www.megasoftware.net/).

0.2
Figura 5. Predicción y análisis de la estructura tridimensional (3-D) de TC-3 con la familia 1 y 2 de las cistatinas.

(A) Predicción de la estructura 3-D de la Tricocistatina-3 (TC-3) con número de acceso XP_001583451. (B) Predicción de la estructura 3-D de la estefina B de humano (familia 1), número de acceso NP_000091. (C) Predicción de la estructura 3-D de la cistatina C de humano (familia 2), número de acceso AAH13083. (D) Estructura de la cistatina E/M de humano (familia 2) determinada por cristalografía de rayos X, PDB ID: 4N6M (Dall y col., 2015). En color rosa se encuentra marcado el péptido señal. Los motivos cistatina se marcaron en: magenta para el residuo de Glicina en el N-terminal, amarillo para el motivo QxVxG, rojo para los residuos PW y verde para el motivo SND. En color naranja se marcaron los residuos de cisteína y puentes disulfuro. El sitio de inhibición para papaínas incluye el N-terminal y las asas 1 y 2 (L1 y L2) señalado con círculo naranja. El sitio de inhibición para legumaínas incluye el asa reactiva central (RCL) que cubre el motivo SND hasta la región marcada en morado, y el asa exocítica de legumaína (LEL) que cubre los puentes disulfuro hasta la región marcada en azul. La predicción de la estructuras se realizó con el servidor I-TASSER y con el "software Pymol" se visualizaron las estructuras.

8.3. Identificación del TC-3 nativo con el anticuerpo α -TC-3r en diferentes tipos de extractos de *T. vaginalis*

8.3.1. TC-3 en extractos totales separados por 2-DE pH 3-10

En la primera búsqueda del inhibidor TC-3 nativo por WB con el Ac α -TC-3r en extractos totales de *T. vaginalis* se encontró el reconocimiento de una banda proteíca ~30 kDa en lugar del tamaño teórico esperado de 12 kDa (Tesis de Maestría, Sánchez-Rodríguez, 2012). Este resultado sugería que el inhibidor podría encontrarse en forma de dímero o con alguna otra proteína. Para explorar estas posibilidades el siguiente paso fue realizar una electroforesis bidimensional de extractos totales de *T. vaginalis* (Fig. 6A). El Ac α -TC-3r mostró varios reconocimientos de manchas en la región ~50-62 kDa, 30 kDa y de bajo peso molecular ~7-12 kDa y de punto isoeléctrico (*p*I) 9.2 (Fig. 6B), éstas ultimas podrían corresponder a TC-3 por el PM y *p*I. Estas manchas se ubicaron en el gel teñido con CBB señaladas con flechas blancas (Fig. 6A), se cortaron y se enviaron para su identificación por EM.

El resultado de la identificación mostró principalmente la presencia de un gran número de proteínas metabólicas. También se encontraron algunas metalo proteinasas y CPs como TvCP2 y TvCP3, proteínas de citoesqueleto y ribosomales. Sin embargo, en esta lista de proteínas (Anexo 13.3) no se encontraron péptidos del inhibidor TC-3. Para aprovechar la información obtenida por EM acerca de las proteínas identificadas y determinar si existe alguna relación entre éstas, se realizaron interactomas de las proteínas identificadas por mancha (Anexo 13.3) con la base de datos STRING. Los interactomas mostraron que existe relación entre las proteínas metabólicas y que por medio de proteínas intermediarias pueden tener relación con proteínas del citoesqueleto. Por otro lado, las CPs TvCP2 y TvCP3 también pueden relacionarse con proteínas como la triosa fosfato isomerasa (TIM), aldolasa y actina, donde la TIM es responsable de orquestar diferentes interacciones (Anexo 13.3.8, 13.3.10 y 13.3.12), además de que estas dos CPs podrían ser algunas de las CP inhibidas por TC-3.

Los controles de WB se realizaron con el anticuerpo α-TvCP2r que mostró reconocimiento de manchas de proteínas de ~ 27.5 kDa en el tamaño esperado y de ~32 kDa (Fig. 6D). La identificación por EM mostró péptidos correspondientes a la TvCP2 en esta zona (Anexo 13.3.7-13.3.11), confirmando el resultado por WB. El control de suero PI (Fig. 6C) no mostró reconocimiento alguno como se esperaba.

Figura 6. Patrón de proteínas y reconocimiento del Ac anti-TC-3r en extractos totales de *T. vaginalis* por 2-DE pH 3-10.

(A) 2-DE pH 3-10 de extractos totales de *T. vaginalis* analizados en geles de poliacrilamida al 13% teñido con azul de Coomassie. Las flechas blancas indican las manchas que se cortaron para identificación por espectrometría de masas. Geles duplicados de (A) se transfirieron a membranas de nitrocelulosa y se incubaron con diferentes anticuerpos en ensayos de WB: (B) WB con con el Ac Rα-TC-3r. (C) WB con suero preinmune (PI), utilizado como control negativo. (D) WB con el Ac α -TvCP2r.

8.3.2. Extractos resistentes a proteinasas (ERP) por 2-DE pH 4-7 y pH 7-10

La búsqueda del inhibidor TC-3 también se realizó en ERP por 2-DE, esperando encontrar al inhibidor con su proteasa blanco como se identificó al inhibidor TC-2 (Puente-Rivera y col., 2014). El patrón del degradoma activo del aislado CNCD 280 teñido con plata (Fig. 7A) mostró un patrón similar al degradoma activo del aislado CNCD 147 (Ramon-Luing y col., 2010). El WB con el Ac a-TC-3r mostró un reconocimiento en la región de 30 kDa (Fig. 7B). Los controles mostraron reconocimiento esperado de manchas de ~28 kDa y ~30 kDa con los Ac α -TvCP39 y α-TvLEGU-1r, respectivamente (Figs. 7C y D). Para determinar la presencia del inhibidor TC-3 en la mancha de 30 kDa y conocer el perfil de proteínas del ERP del aislado CNCD 280, se cortaron 22 manchas del gel teñido con plata (señalado con flechas) y se enviaron a su identificación por EM. El resultado de la identificación de proteínas del aislado CNCD 280 en el degradoma activo (Anexo 13.4, Lista de proteínas identificadas) mostró en su mayoría el mismo perfil de CPs del aislado CNCD 147 (Ramón-Luing y col., 2010), pero con diferente distribución. Estos datos confirmaron el resultado de WB con los Ac α -TvCP39r y α -TvLEGU-1r. Sin embargo, aunque en este perfil de proteínas no se encontraron péptidos del inhibidor TC-3, el reconocimiento del Ac α -TC-3r en la región de 30 kDa, misma zona donde se identificó en varias manchas a TvLEGU-1 nativa por EM (Anexo 13.4) y WB (Fig. 7D) de T. vaginalis, sugiere una posible relación entre el inhibidor nativo TC-3 y TvLEGU-1 como probable proteinasa blanco del TC-3, o bien, que TC-3 pueda ser sustrato de la TvLEGU-1 (Dall y col., 2015) como un mecanismo de regulación de inhibidores endógenos de CPs.

Figura 7. Patrón de proteínas y reconocimiento del Ac anti-TC-3r en extractos resistentes a proteasas (ERP) de *T. vaginalis* por 2-DE-WB pH 4-7.

(A) Degradoma activo del aislado CNCD 280 de *T. vaginalis* en 2-DE pH 4-7 teñido con plata. Las flechas señalan las manchas que se cortaron y se enviaron para su identificación por espectrometría de masas. (B) WB con el Ac α -TC-3r. (C) Controles de WB con el Ac α -TvCP39r y (D) con el Ac α -TvLEGU-1r.

Además, se analizó la región básica de los ERP por 2-DE y zimografía en 2-DE en el rango de pH de 7-10 esperando encontrar bajo estas condiciones al TC-3 endógeno, ya que tiene un pl teórico de ~10. Para esto el ERP fue tratado con un kit de reducción-alquilación y se comparó con uno no tratado. Los patrones de ERP tratado y no tratado fueron similares con 11 manchas detectadas por tinción con plata (señaladas con flechas) (Figs. 8A y B). Sin embargo, el zimograma mostró diferencias. En el ERP tratado, la actividad proteolítica fue menor y solo aquellas proteinasas que resistieron el tratamiento de reducción-alguilación mostraron actividad en la región neutra en alto peso molecular (Fig. 8C). El ERP no tratado mostró manchas con actividad proteolítica similar al zimograma tratado y en la región más básica del gel (Fig. 8D). Como el patrón de proteínas teñido con plata no mostró buena separación y resolución de manchas en el rango básico solo en el rango neutro, se enviaron a su identificación aproximadamente 15 manchas entre el patrón de proteínas teñidas con plata y el zimograma (señaladas con números y flechas), para determinar si entre esas manchas podría encontrarse el inhibidor TC-3. El resultado de identificación de proteínas por EM (Anexo 13.5, lista de proteínas identificadas) no mostró péptidos del inhibidor TC-3; sin embargo, se identificaron algunas CPs con actividad proteolítica en condiciones básicas como TvCP2, TvCP3, TvCP4 y TvLEGU-1. Además, se identificó una metalo proteinasa de la familia M24 con actividad proteolítica (mancha 4 y 13, Fig. 8C).

Figura 8. Patrón de proteínas del degradoma activo de la región básica del aislado CNCD 280 10 de *T. vaginalis* en 2-DE pH 7-10.

(A) ERP tratados con el kit de reducción-alquilación, teñido con plata. (B) ERP sin tratamiento teñido con plata. (C) Zimograma de ERP tratados con el kit reducción-alquilación. (D) Zimograma de ERP sin tratamiento. Las flechas indican las manchas que se cortaron y se enviaron a su identificación por espectrometría de masas.

8.3.3. Reconocimiento del Ac anti-TC-3r en extractos de proteínas de T. vaginalis

De acuerdo a la serie de resultados que se han obtenido por WB con los extractos estándar de laboratorio, al no obtener el reconocimiento por el anticuerpo α -TC-3r en bandas o manchas de proteínas del peso molecular esperado, se consideró el uso de detergentes e inhibidores para la extracción de proteínas de *T. vaginalis*. Las dos fracciones obtenidas fracción soluble (FS) y fracción insoluble (FI) se analizaron en geles de Tris-tricina teñidos con azul de Coomassie (Fig. 9A). El ensayo de WB mostró el reconocimiento de una banda de ~18 kDa cercano al peso molecular esperado en la FI usando tanto el anticuerpo de ratón como el de conejo α -TC-3r (Figs. 9C y D). En las FS y FI se encontró el mismo reconocimiento de 30 kDa observado anteriormente, así como una serie de bandas de alto peso molecular usando el anticuerpo de conejo α -TC-3r (Fig. 9D). El control negativo con suero PI no mostró ningún reconocimiento, como se esperaba (Fig. 9B).

(A) Patrón de proteínas de un preparado con detergentes e inhibidores en geles de poliacrilamida teñido con azul de Coomassie. Carril 1, marcadores de amplio rango; carril 2; fracción soluble; carril 3, fracción insoluble. (B) WB con suero PI. (C) WB con el anticuerpo de ratón anti-TC-3r (M α -TC-3r). (D) WB con el anticuerpo de conejo anti-TC-3r. Los carriles 2 y 3 en los WB corresponden a la fracción soluble e insoluble, respectivamente.

8.3.4. Reconocimiento del Ac anti-TC-3r en extractos de proteínas de membrana de *T. vaginalis*

Una de las características del inhibidor TC-3 es su localización en la membrana de *T. vaginalis* (Fig. 3A). Por lo tanto se realizaron extractos de proteínas de membrana para tratar de enriquecer al inhibidor endógeno en esta fracción. Despues de la centrifugación del lisado se obtuvieron dos fracciones, la fracción acuosa (FA) y la fracción detergente (FD) (Fig. 10A). El WB con Ac α -TC-3r mostró un reconocimiento de una banda de 37 kDa en la FD que corresponde a las proteínas de membrana (Fig. 10D, carril 2). Este reconocimiento se observó anteriormente en el WB con extractos de proteínas en presencia de detergentes e inhibidores (Fig. 9D, carril 2). En la FA se observó reconocimiento de una banda en la región de 30 kDa (Fig. 10D, carril 1). Como control se realizó un WB con un anticuerpo α -PFOr que solo mostró reconocimiento de 120 kDa en la FA y no en la FD como se esperaba (Fig. 10C, carril 1), ya que esta proteína se relocaliza a la membrana de los parásitos en condiciones de alto hierro. El control negativo con suero PI no mostró ninguna reacción (Fig. 10B).

Estos extractos se utilizaron para realizar la identificación de la banda de 30 kDa en la FA y la banda de 37 kDa de la FD por EM, además del análisis de identificación por monitoreo de reacciones múltiples (MRM). La identificación se realizó en el equipo SYNAPT G2-Si (Waters) en LaNSE CINVESTAV-IPN. La identificación de la banda de 30 kDa arrojó un total de 362 proteínas de las cuales 19 corresponden a proteínas ribosomales, 13 proteínas de citoesqueleto, 19 peptidasas, 15 proteínas de señalización, 58 proteínas metabólicas, 14 proteínas de tráfico vesicular, 16 proteínas cinasas/fosfatasas, 15 proteínas de plegamiento, 137 proteínas no caracterizadas/hipotéticas y 56 fueron clasificadas en otras proteínas (Anexo 13.6). Entre estos grupos de proteínas no se encontraron péptidos correspondiente a los inhibidores cistatina. Con la información obtenida se realizaron interactomas por grupo de proteínas para determinar la organización entre ellas. Los interactomas mostraron que entre cada grupo de proteínas existe relación y solo pocas proteínas son descartadas de las interacciones, solo en el grupo de proteínas no caracterizadas se observó muy poca relación entre ellas (Anexo 13.6.17). En cuanto a la identificación de la banda de 37 kDa de la FD se identificaron 10 proteínas, 7 de ellas hipotéticas, 1 actina, 1 ATPasa y 1 ankirina (Anexo 13.7). Sin embargo, tampoco se encontraron péptidos del inhibidor TC-3. Con este juego de proteínas se realizó un interactoma que no mostró ninguna relación entre estas proteínas identificadas (Anexo 13.7). En el análisis de MRM usando como muestras la banda de 30 kDa de la FA y la banda de 37 kDa de la FD, no se encontraron las transiciones seleccionadas correspondientes al estándar en ninguna de las dos muestras analizadas.

Figura 10. Reconocimiento con el Ac α -TC-3r en extractos de proteínas de membrana de *T. vaginalis* con Tritón X-114

(A) Extractos de proteínas de membrana teñido con azul de Coomassie. Carril 1, marcadores de amplio de rango; carril 2, fracción acuosa (FA); carril 3, fracción detergente (FD). (B) WB con suero PI. (C) WB con el anticuerpo α -PFOr. (D) WB con el anticuerpo α -TC-3r.

8.4. Inmunoprecipitación con el anticuerpo anti-TC-3r y extractos de T. vaginalis

La IPP con el anticuerpo de conejo α -TC-3r mostró varias bandas entre 30, 52 y 71 kDa en la fracción de elución en el gel teñido con CBB (Fig.11A), algunas de éstas también se obtuvieron con suero PI en la fracción de elución, aunque en menor proporción (Fig. 11C). El WB con el Ac α -TC-3r mostró reconocimiento de bandas intensas en 71, 54, 43 y 30.5 kDa (Fig.11B) que pueden corresponder a las inmunoglobulinas del anticuerpo ya que estas mismas bandas se observan en la IPP y en el WB con el suero PI utilizado como control (Fig. 11D). La banda de ~30 kDa (Fig. 11B, carril 3) en la fracción de elución podría corresponder a la banda reconocida por el Ac α -TC-3r en WB de otros ensayos, ya que este mismo reconocimiento está presente en el extracto de proteínas clarificadas y no aparece en el control de IPP con suero PI (Fig. 11D).

8.5. Inhibición de TC-3r en la actividad proteolítica de Catepsinas-L (Cat-L) y Legumaínas (LEGU)

La función inhibidora del TC-3r se probó en CPs comerciales y de *T. vaginalis.* Dado que los inhibidores de tipo cistatina son fuertes inhibidores de CPs del tipo papaína, se probó el efecto del TC-3r sobre la catepsina L de humano (Cat-Lh). A la concentración de 40 µM TC-3r redujó la actividad proteolítica de Cat-Lh en 80% (Fig. 12A). También, se probó el efecto de TC-3r en la actividad de Catepsinas L-like en ERP de tricomonas. A la concentración de 40 µM TC-3r redujo ~90% la actividad proteolítica de catepsinas L-like de tricomonas (Fig. 12B).

Ademas, se probó el efecto inhibitorio de TC-3r sobre CPs del tipo legumaína/asparaginil endopeptidasas (AEP), ya que algunas cistatinas inhiben este

68

tipo de CPs. TC-3r a una concentración máxima probada de 80 µM no mostró efecto en la actividad proteolítica de las legumaínas de ERP de *T. vaginalis*. Por lo que en el siguiente paso se incrementó la concentración del TC-3r y se probó contra las legumaínas recombinantes de humano y de *T. vaginalis*. Para legumaína de humano (LEGU-h) a una concentración de 120 µM de TC-3r la actividad proteolítica solo se redujo ~20 % (Fig. 12C); por el contrario, con la TvLEGU-1r de tricomonas producida en el sistema de *Pichia pastoris* (Reséndiz-Cardiel y col., 2017) se observó una ligera variación de la actividad proteolítica (Fig. 12D). Por lo tanto, el inhibidor TC-3r mostró un efecto inhibitorio concentración-dependiente de la actividad de CPs de tipo catepsinas-L pero no sobre CPs del tipo legumaína.

Figura 11. Inmunoprecipitación (IPP) con el Ac anti-TC-3r y extractos de *T. vaginalis.*

(A) Fracciones obtenidas de la IPP con el anticuerpo α -TC-3r analizadas por SDS-PAGE en geles de poliacrilamida al 13% teñido con azul de Coomassie. Carril 1, marcadores de amplio rango; carril 2, lisado total; carril 3, extracto proteico clarificado; carril 4, proteínas no unidas; carriles 5 y 6, lavados; carriles 7 y 8, elución 1 y 2 del complejo de IPP; carril 9, vacío, carril 10; imunoglubulinas α -TC-3r antes de la IPP. (B) Ensayo de WB con el anticuerpo α -TC-3r. Carril 1, WB en extractos pre-clarificados; carril 2, WB con la IPP usando el suero preinmune (PI); carril 3, WB con la IPP usando el α -TC-3r. (C) Fracciones obtenidas de la IPP con suero PI en SDS-PAGE en geles de poliacrilamida al 13% teñido con azul de Coomassie. Carril 1, marcadores de amplio rango; carril 2, lisado total; carril 3, extracto clarificado; carril 4, proteínas no unidas; carriles 5-7, lavados; carril 8, elución del complejo de IPP; carril 8, vacío; carril 9, inmunoglobulinas del suero PI antes de la IPP. (D) Ensayo de WB con suero PI. Carril 1, WB en extractos clarificados; carril 2, WB de la IPP con suero PI; carril 3, WB de la IPP con Ac α -TC-3r.

Figura 12. Efecto de TC-3r en la actividad proteolítica de CPs de tipo Cat-L y AEP.

(A) Actividad proteolítica de la catepsina L de humano. (B) Actividad proteolítica de CPs de tipo catepsina L de ERP de *T. vaginalis.* (C) Actividad proteolítica de CPs de tipo asparaginil endopeptidasas de ERP de *T. vaginalis.* (D) Actividad proteolítica de la legumaína de humano. (E) Actividad proteolítica de la TvLEGU-1r de *T. vaginalis* producida en *Pichia pastoris* (Resendiz-Cardiel y col., 2017). En todos los casos la barra blanca representa el 100% de la actividad proteolítica en presencia del inhibidor TC-3r a una concentración de 1-80 µM para catepsinas L y legumaínas de ERP de *T. vaginalis* y de 40-120 µM para legumaínas recombinantes. La barra gris representa el control positivo de inhibición, para la inhibición de catepsinas L se utilizó 1 µM E-64 y para legumaínas se utilizó 1 mM de TLCK. Los asteriscos indican la diferencia estadísticamente significativa (**P*<0.05, ** *P*<0.01, *** *P*<0.001) al comparar con el 100% de actividad total.

8.6. Inhibición de la actividad proteolítica de ERP en zimogramas de 1-DE y 2-DE

Una vez demostrada la actividad inhibitoria del TC-3r en CPs de tipo Cat-L, el siguiente paso fue probar el efecto en zimogramas de ERP de tricomonas para identificar las proteinasas con actividad proteolítica afectadas por el inhibidor. En zimogramas de 1-DE usando 100 µM del inhibidor TC-3r se redujo la actividad proteolítica en la región de 50-97 kDa y la banda de 39 kDa (Fig. 13A, carril 3), en comparación con el control de actividad total (Fig. 13A, carril 2). Como control positivo de inhibición, E-64 (50 µM) abolió la actividad proteolítica del extracto de T. vaginalis (Fig. 13A, carril 4). En zimogramas de 2-DE, con 120 µM de TC-3r se redujó la actividad de algunas manchas en la región de alto peso molecular, de la mancha de la TvCP39 (mancha No. 16) y en la región de 30 kDa se abolió la actividad de algunas manchas (indicado con flechas; Fig. 13C), en comparación con el control de actividad proteolítica total (Fig. 13B). Para identificar las proteinasas inhibidas por TC-3r, se comparó con el patrón de ERP teñido con plata (Fig. 13D), previamente identificado (Fig. 7A, Anexo 13.4) y con un zimograma sumergido (Fig. 13E) que reveló aquellas manchas con actividad proteolítica según el patrón de plata y las manchas que no presentan actividad proteolítica bajo estas condiciones como las manchas 8, 13, 14, 15 y 17-19. El efecto del inhibidor en el zimograma sumergido (Fig. 13F) fue similar al zimograma copolimerizado y de acuerdo a estos resultados y al degradoma identificado del aislado CNCD 280, el inhibidor TC-3r redujo la actividad proteolítica de las manchas 1, 2, 3, 5, 9, 11, 12, 16 y 20 que corresponden a los TVAG de la TvCP2 (TVAG_057000), TvCP3 (TVAG 090100), TvCP4-like (TVAG_355480) V TvCP39 (TVAG 298080), respectivamente (Tabla 1, Lista de proteínas del degradoma del aislado CNCD 280).

Figura 13. Efecto de TC-3r en la actividad proteolítica de ERP en zimogramas por 1-DE y 2-DE.

(A) Zimograma de ERP por 1-DE. Carril 1, marcadores de amplio rango; carril 2, actividad total de ERP; carril 3, actividad proteolítica en presencia de 100 μM del inhibidor TC-3r; carril 4, actividad proteolítica en presencia de 1 μM de E-64. (B) Zimograma de la actividad total de ERP en 2-DE pH 4-7. (C) Actividad proteolítica de ERP en presencia de 120 μM del inhibidor TC-3r, las números y flechas señalan las manchas afectadas por el inhibidor. (D) Patrón de ERP teñido con plata en 2-DE pH 4-7, previamente mostrado (Fig. 7A); los números y flechas señalan las manchas que fueron identificadas por EM. (E) Zimograma sumergido de ERP en 2-DE pH 4-7; las flechas y números señalan las manchas correspondientes del patrón de ERP teñido con plata. (F) Zimograma sumergido en presencia de 120 μM del inhibidor TC-3r; las flechas y números señalan las manchas afectadas por el presencia de 120 μM del inhibidor.

No. Mancha	Proteínas identificadas	CPs inhibidas por TC-3r
1	TvCP2	TvCP2
2	TvPC3	TvCP3
3	Inhibidor del inicio de la traducción TvCP4-like	TvCP4-like
4	TvCP2 TvCP4-like TvLEGU-1	
5	TvCP2 TvCP4-like	TvCP2 TvCP4-like
6	TvCP4-like	
7	TvCP4	
8	TvCat-D	
9	TvCP3	TvCP3
10	TvCP4 TvCP2 Alanina deshidrogenasa 2	
11	TvCP4-like	TvCP4-like
12	TvCP39	TvCP39
13	Proteína no caracterizada TvCP39 TvCP4/TvCP4-like	
14	Proteína no caracterizada	
15	Proteína no caracterizada	
16	TvCP39	TvCP39
17	TvLEGU-1 Proteína no caracterizada	
18	TvLEGU-1	
19	TvLEGU-1 TvCP4/TvCP4-like	
20	TvCP39 TvCP2 TvLEGU-2	TvCP39 TvCP2
21	TC-2 TvLEGU-1	
22	TvCP4 TvLEGU-1	

Tabla 1. Lista de proteínas identificadas en el degradoma activo del aislado CNCD 280 de *T. vaginalis* y las CPs afectadas por el inhibidor TC-3r (Fig. 13C).

8.7. Identificación de las proteinasas blanco de TC-3r.

Para determinar los blancos proteolíticos de TC-3, se realizó un ensavo de "Pulldown" (PD) utilizando a la proteína TC-3r como ligando y extractos de proteínas de T. vaginalis previamente clarificados, como proteínas de unión al ligando. Las proteínas unidas a TC-3r se eluyeron y se analizaron por SDS-PAGE en geles de poliacrilamida al 13%, zimograma y ensayos de WB. La fracción eluida en el gel teñido con azul de Coomassie mostró bandas de 30 kDa y de 14.2 kDa, esta ultima corresponde a la proteína recombinante TC-3r (Fig. 14A). En el zimograma la fracción de elución mostró actividad proteolítica principalmente en la región de 85 y 65 kDa y una banda con poca actividad proteolítica en la región de 39 kDa (Fig. 14D). Estas regiones con actividad proteolítica corresponden a algunas CPs previamente caracterizadas (Mendoza-López y col., 2000; Alvarez-Sánchez y col., 2000; Hernández-Gutiérrez y col., 2004; León-Félix y col., 2004; Rendón-Gandarilla y col., 2013; Cárdenas-Guerra y col., 2013). El control negativo de PD con BSA como ligando, no mostró ninguna banda de proteínas ni de actividad en la fracción de elución como se esperaba (Figs. 14B y D). Como control de proteína no relacionada de PD, se utilizó la proteína recombinante HSP70r y en la fracción de elución se detectaron dos bandas de ~56-65 kDa en el gel teñido con azul de Coomassie y en zimograma mostró una ligera actividad proteolítica en la región de 85 kDa (Figs. 14C y E). Para identificar a las CPs que se encontraban en la fracción de elución del PD con TC-3r, se realizó un ensayo de WB con los anticuerpos a-TvCP2r, a-TvCP3r, a-TvCP4r, a-TvCP39r y a-TvLEGU-1r. Como controles se utilizó el suero PI y el anticuerpo α -TvTIMr. El ensayo de WB mostró la presencia de TvCP2, TvCP3, TvCP4 y TvCP39. En algunos casos se observó la presencia de dos bandas,

una ~30-31 kDa tanto en el extracto de proteínas clarificado (EPC) como en la fracción de elución. Este reconocimiento podría corresponder a un intermediario del procesamiento de estas proteinasas. El segundo reconocimiento de ~ 27-28 kDa podría corresponder a las proteinasas maduras (Fig. 14 panel F). Solo el Ac α-TvLEGU-1r mostró reconocimiento en el EPC en el tamaño esperado de 31 kDa. En cuanto a los controles, el suero PI no mostró reconocimiento como se esperaba y el Ac a-TvTIMr solo mostró reconocimiento en el EPC en el tamaño esperado de 27 kDa (Fig. 14 pánel F). En los controles de PD con BSA y HSP70r no se observó ningún reconocimiento con los anticuerpos utilizados en el ensayo de WB (Fig. 14 pánel F). Para identificar a las proteínas que se encontraban en la banda de 30 kDa de la fracción de elución del ensayo de PD con TC-3r, se cortó la banda y se envió a identificación por EM (LC-ESI-MS/MS). El resultado de la identificación mostró péptidos de tres proteínas (Tabla 2), del inhibidor TC-3, de la CP TvCP3 y de una proteína ribosomal L10a. Estos resultados confirmaron que la TvCP3 es una de las CPs blanco del inhibidor TC-3.

Figura 14. Identificación de las proteasas blanco del inhibidor TC-3r por el ensayo de pull-down (PD).

(A) PD con TC-3r como proteína ligando. Carril 2, extracto de proteínas clarificado (EPC); carril 3, proteínas no unidas; carriles 4-6, lavados; carriles 7-9, fracción de elución 1-3 del complejo PD. (B) PD con BSA como proteína ligando. Carril 2, lisado total; carril 3, proteínas no unidas; carriles 4-6, lavados; carriles 7-9, fracción de elución 1-3 del complejo de PD. (C) PD con HSP70r como proteína ligando. Carril 2, lisado total; carril 3, proteínas no unidas; carriles 4-6, lavados; carriles 7-9, fracción de elución 1-3 del complejo de PD. (D) Zimograma de las fracciones de elución del PD con TC-3r y BSA. Carril 2, actividad proteolítica total del EPC; carril 3, vacío; carriles 4-6, actividad proteolítica de la fracción de elución 1-3 del PD con TC-3r; carril 7, vacío; carriles 8-10, actividad proteolítica de la fracción de elución 1-3 del PD con BSA. (E) Zimograma de las fracciones de elución del PD con HSP70r. Carril 2, vacío; carriles 3-5, actividad proteolítica de la fracción de elución 1-3 del PD con HSP70r. El PD se analizó en SDS-PAGE en geles de poliacrilamida al 13 % teñidos con azul de Coomassie (paneles A-C) y los zimogramas en SDS-PAGE en geles de poliacrilamida al 10 % copolimerizados con gelatina al 0.2%. Carril 1, en todos los geles corresponde al marcador de peso molecular de amplio rango. (F) WB de las fracciones de elución del PD. Carril 1, EPC; carril 2, fracción de elución del PD con TC-3r; carril 3, fracción de elución del PD con BSA; carril 4, fracción de elución del PD con HSP70r.

D

82

Tabla 2. Identificación por EM de las proteínas contenidas en la banda de 30 kDa de la fracción de elución del ensayo de pulldown con TC-3r (Fig. 14A).

No Acceso ^a	ID ^b	Nombre ^c	Descripción de la proteína ^d	Score ^e	Cobertura (%) ^f	Péptidos identificados ^g	Xcorr ^h
121917693	TVAG_034880	TC-3	Clan IH, familia I25, Fitocistatina-like inhibidor de peptidasas	29.09	40.38	VLEmTSQIVSGTIWEGK	5.27
						LLNNEFEIEEFKK	4.52
						LLNNEFEIEEFK	4.41
						DLNDKDLISLmR	3.80
						DLNDKDLISLMR	3.61
452296	TVAG_090100	TvCP3	Cisteína proteinasa parcial	18.54	12.23	SYVRPTTTQNEDELKAGcAK	4.92
			•			GLWmLETDYPYTAR	4.90
						SYVRPTTTQNEDELK	4.55
121917138	TVAG_249740	L10a	Proteína ribosomal L10a	18.15	25.12	KSVAFGIPIGNVNmTER	4.60
						GWQSIGSIVLK	3.74
						ANKFPTNIKTDTVAK	3.73
						KGWQSIGSIVLK	3.57
						AIKDVLEGAK	2.51

^a Número de acceso en la base de datos GenBank.

^b ID, número de identificación de la base de datos TrichDB (<u>http://www.trichdb.org</u>).

^c Nombre de la proteína, TC-3, indica Ticocistatina-3, (TvCP) indica cisteína proteinasa de *Trichomonas vaginalis*.

^d Descripción de la proteína identificada.

^e Corresponde al valor total de Xcorr de los péptidos identificados.

^f Indica el porcentaje cubierto en la secuencia de aa de la proteína de acuerdo al número de péptidos identificados en el análisis.

^g Es el número de péptidos identificados para cada proteína. Las letras en minúscula c y m corresponden a los residuos de aa que fueron modificados para carbamidometilación y oxidación, respectivamente

^h Describe la correlación del espectro virtual con el espectro observado. Los valores por encima de 2.0 son generalmente indicativos de una buena correlación (James, 2001. Proteome Research: Mass Spectrometry (Principles and Practice).
Springer editorial (pag. 125-142); SEQUEST Tips, Innovative Solutions for Science

(http://www.enovatia.com/services/ms/ms-resources/sequest-tips/).

8.8. Localización del inhibidor TC-3

Anteriormente se mostró que el inhibidor TC-3 se localiza principalmente en la membrana de los parásitos (Sánchez-Rodríguez, 2012. Tesis de Maestría) (Fig. 3). Para confirmar esta localización con un nuevo lote de anticuerpos, se realizaron ensayos de IFI en las tres condiciones de hierro con el anticuerpo generado en ratón (Mα-TC-3r) producido recientemente (Anexo 13.2) y de conejo (Rα-TC-3r) producido durante la maestría pero que no se había probado por IFI. De las tres condiciones de hierro probadas, la condición de bajo hierro parece mostrar mayor marca de TC-3 utilizando ambos anticuerpos (Fig. 15), similar a los resultados obtenido en maestría. El anticuerpo Mα-TC-3r mostró marca en la membrana de los parásitos principalmente en la condición de bajo hierro que sugiere ser el aparato de Golgi (Fig. 15A, páneles i-I). Por el contrario, el Ac Rα-TC-3r reveló la presencia del inhibidor TC-3 principalmente en la membrana de los parásitos y en citoplasma (Figs. 15C y D), mayoritariamente en la condición de alto hierro.

Posteriormente, la localización de superficie del inhibidor TC-3 se determinó por un ensayo de IFI de doble paso en parásitos cultivados en condiciones normales. Los resultados confirmaron la localización de TC-3 en la membrana de tricomonas utilizando ambos anticuerpos. También se observó localización en citoplasma, en vesículas cercanas a la membrana y en lo que parece ser el aparato de Golgi de tricomonas (Fig. 16A). La MET con ambos anticuerpos α-TC-3r corroboró la localización del inhibidor en membrana, citoplasma, vesículas y aparato de Golgi del parásito. Ademas, se observó un poco de marca en retículo endoplásmico y núcleo

86

(Fig. 16B). Esta localización también fue observada por IFI en parásitos cultivados en condiciones de bajo hierro (Fig. 15A, páneles a-d). Para confirmar la localización en el aparato de Golgi, se realizó un ensayo de co-localización usando el anticuerpo α-TvLEGU-1r (Rendón-Gandarilla y col., 2013) como marcador de aparato de Golgi. La IFI mostró co-localización entre el inhibidor TC-3 y la TvLEGU-1 en el aparato Golgi de *T. vaginalis* (Fig. 16C). Los controles del ensayo (Fig. 16A, páneles m-o) y MET (Fig. 16D) no mostraron marca como se esperaba.

Figura 15. Localización del inhibidor TC-3 en diferentes condiciones de hierro por ensayos de inmunofluorescencia indirecta (IFI).

(A) Parásitos permeabilizados incubados con el anticuerpo generado en ratón M α -TC-3r. (B) Parásitos no permeabilizados incubados con el anticuerpo generado en ratón (M α -TC-3r). (C) Parásitos permeabilizados incubados con el anticuerpo generado en conejo (R α -TC-3r). (D) Parásitos no permeabilizados incubados con el anticuerpo generado en conejo (R α -TC-3r). En todos los casos, los páneles a-i corresponden al campo claro por contraste de fases diferencial (CFD). Páneles a-d corresponden a parásitos cultivados en bajo hierro. Páneles e-h, parásitos cultivados en condiciones normales de hierro. Páneles i-l, parásitos cultivados en alto hierro. Como anticuerpo secundario se utilizó Ac anti-ratón ó anti-conejo acoplado a FITC (marca verde). Para marcar la membrana de los parásitos se utilizó DIL (en rojo) y DAPI (en azul) para marcar los núcleos. Las IFI se realizaron con el protocolo estándar del laboratorio. La barra de escala señala 10 µm.

87

Figura 16. Localización y co-localización del inhibidor TC-3.

(A) Localización del inhibidor TC-3 en condiciones normales de cultivo. Paneles a-h corresponden a la señal de TC-3 utilizando el anticuerpo (Ac) generado en ratón (Ma-TC-3r); páneles i-l, Ac generado en conejo (Ra-TC-3r); páneles m-o, corresponden al control negativo con suero preinmune (PI). (B) Localización del inhibidor TC-3 por microscopía electrónica de transmisión (MET). La marca de oro de 30 nm corresponde al Ac Ma-TC-3r y la de 15 nm al Ac de Ra-TC-3r. (C) Co-localización del inhibidor TC-3 (pánel c, marca verde) con la Legumaina-1 (pánel b, marca roja) de *T. vaginalis.* (D) Control negativo de MET. En este caso las IFI se realizaron con la técnica de doble paso, el anticuerpo primario α-TC-3r se siguió con FITC (marca verde) o Alexa-594 (marca roja) para marcar a TvLEGU-1. Como marcador de membrana se utilizó DIL (marca roja) y DAPI (marca azul) para marcar los núcleos. El campo claro en las IFI se realizó por contraste de fases diferencial (CFD). V (Vesículas), N (Núcleo), RE (Retículo Endoplásmico), G (aparato de Golgi). Las flechas señalan la membrana plasmática de los parásitos. La barra de escala para IFI indica 10 µm y para MET 0.5 μm.

Α

В

8.9. Co-localización del inhibidor TC-3 con sus proteinasas blanco

Previo a los ensayos de co-localización con las CPs TvCP2 y TvCP3, primero se realizó el inmunomarcaje de cada CP por ensayos de IFI y MET. Por IFI, la TvCP2 mostró localización en vesículas grandes que co-localizan con el marcador de membrana DIL, y en citoplasma (Fig. 17A). Por MET, TvCP2 mostró abundante marca en vesículas (V), citoplasma, membrana y retículo endoplásmico (RE) (Fig. 17B). Posteriormente, se realizó el ensayo de co-localización por IFI entre el inhibidor TC-3 (marca verde) y la TvCP2 (marca roja), mostrando co-localización principalmente en vesículas citoplasmáticas y en el aparato de Golgi (Fig. 17C). La MET mostró la presencia de ambas proteínas (TC-3 y TvCP2) en el mismo lugar principalmente en vesículas, citoplasma y membrana. Los puntos de co-localización se señalaron con flechas blancas sobre la imagen (Fig. 17D). El análisis de 10 imágenes de MET mostró más puntos de co-localización en citoplasma, vesículas y en membrana de organelos (Fig. 17E). El control de MET no mostró marca como se esperaba (Fig. 17F).

En cuanto a la localización de TvCP3, los ensayos de IFI mostraron localización de TvCP3 en vesículas citoplasmáticas, alrededor del núcleo y en el núcleo y solo en algunos parásitos se observó poca marca en la membrana (Fig. 18A). Por MET se observó marca de TvCP3 principalmente en vesículas y un poco en membrana, RE y núcleo (Fig. 18B). Los ensayos de co-localización entre TvCP3 (marca roja) y el inhibidor TC-3 (marca verde) mostraron áreas de co-localización en algunas vesículas, en algunos puntos en la membrana y en el aparato de Golgi (Fig. 18C). Por MET se observaron más puntos de co-localización en citoplasma y en membrana (señalado

con flechas blancas) (Fig. 18D) que concuerda con el análisis de 10 imágenes de MET (Fig. 18E). El control de MET no mostró marca como se esperaba (Fig. 18F).

Figura 17. Co-localización del inhibidor TC-3 con TvCP2 en T. vaginalis.

(A) Localización de TvCP2 por IFI en condiciones normales de cultivo. Pánel a, corresponde al campo claro por contraste de fases diferencial (CFD). Pánel b, representa la señal de membrana marcada con DIL (rojo). Pánel c, corresponde a la localización de TvCP2 marcada con FITC (verde); en azul están marcados los núcleos con DAPI. (B) Localización de TvCP2 por MET, representado con partículas de oro de 20 nm. (C) Co-localización del inhibidor TC-3 y TvCP2 por IFI. Pánel a, campo claro por CFD. Pánel b, señal de TvCP2 marcada con Alexa-594 (rojo). Pánel c, señal del inhibidor TC-3 marcado con FITC (verde). Pánel d, co-localización de las dos señales. (D) Co-localización del inhibidor TC-3 y TvCP2 por MET. La partícula de oro de 30 nm corresponde al Ac M α -TC-3r y la de 15 nm al Ac R α -TvCP2r. (E) La gráfica de barras representa los porcentajes de localización de TC-3 y TvCP2 de 10 imágenes analizadas. (F) Control negativo de MET utilizando solo el Ac secundario. V (Vesículas), N (Núcleo), RE (Retículo Endoplásmico), G (aparato de Golgi), H (hidrogenosoma). Las flechas negras señalan la membrana plasmática y las flechas blancas señalan puntos de co-localización. La barra de escala en las imágenes de IFI indica 10 µm y en MET la barra representa 0.5 µm (pánel D) y 1 µm (páneles B y F).

Figura 18. Co-localización del inhibidor TC-3 con la TvCP3 en T. vaginalis.

(A) Localización de TvCP3 por IFI en tricomonas en condiciones normales de cultivo. Pánel a, corresponde al campo claro por contraste de fases diferencial (CFD). Pánel b, representa la señal de membrana marcada con DIL (rojo). Pánel c, corresponde a la localización de TvCP3 marcada con FITC (verde); en azul están marcados los núcleos con DAPI. (B) Localización de TvCP3 por MET, representado con partículas de oro de 20 nm. (C) Co-localización del inhibidor TC-3 y TvCP3 por IFI. Pánel a, campo claro por CFD. Pánel b, señal de TvCP3 marcada con Alexa-594 (rojo). Pánel c, señal del inhibidor TC-3 marcado con FITC (verde). Pánel d, co-localización de las dos señales (en amarillo). (D) Co-localización del inhibidor TC-3 y TvCP3 por MET. La partícula de 30 nm corresponde al Ac M α -TC-3r y la de 15 nm al Ac R α -TvCP3r. (E) La gráfica de barras representa los porcentajes de localización del TC-3 y TvCP3 de 10 imágenes analizadas. (F) Control negativo de MET utilizando solo el Ac secundario. V (Vesículas), N (Núcleo), RE (Retículo Endoplásmico), G (aparato de Golgi). Las flechas negras señalan la membrana plasmática y las flechas blancas señalan puntos de co-localización. La barra de escala en las imágenes de IFI indica 10 µm y para MET 0.5 µm.

8.10. Efecto del inhibidor TC-3r en ensayos de citotoxicidad con células HeLa

Para determinar si el inhibidor TC-3r afecta a CPs involucradas en el mecanismo de citotoxicidad de *T. vaginalis*, se realizó un ensayo de citotoxicidad *in vitro* con células HeLa. Parásitos vivos tratados y no tratados con concentraciones crecientes del inhibidor TC-3r (20, 40 y 80 µM) y con BSA como control negativo, interaccionaron con una monocapa confluente de células HeLa (Fig. 19A, pánel a). El tratamiento con BSA mostró una desintegración de la monocapa celular (Fig. 19A, pánel b) similar al efecto que producen los parásitos no tratados (Fig. 19A, pánel c). Por el contrario, el tratamiento con TC-3r mostró un efecto protector concentración-dependiente de la destrucción de la monocapa (Fig.19A, páneles d-f). Con una concentración de 80 µM del TC-3r se redujo el efecto citotóxico ~70% (Fig. 19B), debido a la inhibición de la actividad proteolítica de CPs que se encuentran en la superficie de tricomonas con efecto citotóxico como TvCP39 (Ramón-Luing y col., 2011) y posiblemente la TvCP2 y TvCP3 (Kummer y col., 2008; Sommer y col., 2005).

8.11 Modelo de la participación de tricocistatina-3 en T. vaginalis

De acuerdo a los resultados obtenidos por medio de diferentes ensayos, se propone que TC-3 inhibidor endógeno es modificado postraduccionalmente en el Golgi donde colocaliza con algunas CPs que tambien son modificadas. Cuando TC-3 sale de Golgi este se dirige a citoplasma, vesículas o membrana plasmática donde regula la actividad proteolítica de algunas CPs del parasito, con las puede permanecer en complejo hasta que el parasito requiera de la participación de esta CPs como un mecanismo de regulación endógena. Además, cuando TC-3 se encuentra solo en membrana podría ayudar al parasito a regular proteinasas exógenas como un

mecanismo de protección (Fig. 20), además esto permitiría que las CPs edógenas de *T. vaginali*s lleven a cabo su función y por lo tanto que el parásito tenga éxito en la colonización sobre el hospedero.

Figura 19. Efecto protector de TC-3r de la citotoxicidad causada por CPs de *T. vaginalis* en células HeLa.

(A) Morfología de las células HeLa durante el ensayo de citotoxicidad. Pánel a, monocapa de células HeLa antes de la interacción. Pánel b, células HeLa con parásitos tratados con BSA. Pánel c, con parásitos sin tratamiento. Páneles d-f, con parásitos tratados con concentraciones crecientes del inhibidor TC-3r (20, 40 y 80 μ M). La barra de escala representa 20 μ m. (B) La gráfica de barras que representa el efecto inhibitorio de TC-3r en la actividad citotóxica de tricomonas. La barra blanca representa el efecto citotóxico de los parásitos sobre las células HeLa. Las barras negras representan los niveles de citotoxicidad en presencia de concentraciones crecientes del inhibidor. La barra gris representa el nivel de citotoxicidad con BSA (control negativo). Los asteriscos indican la diferencia significativa (*** *P*<0.01) al comparar el efecto del TC-3r con el control de BSA.

Figura 20. Modelo de la participación de tricocistatina-3 en T. vaginalis.

IX. DISCUSIÓN

Las cistatinas son los principales reguladores endógenos de la actividad proteolítica causada por cisteína proteinasas (CPs) (Turk y col., 2012). Estas pequeñas moléculas protegen y mantienen la homeostasis celular. Este tipo de inhibidores se ha descrito en diversos organismos (Abrahamson y col., 2003; Klotz y col., 2011). *T. vaginalis* posee tres genes que codifican para diferentes inhibidores tipo cistatina (Carlton y col., 2007); y solo un inhibidor se ha caracterizado, la tricocistatina-2 (TC-2) (Puente-Rivera y col., 2014). Sin embargo, al ser *T. vaginalis* un organismo con abundante actividad proteolítica (Carlton y col., 2007; Ramon-Luing y col., 2010) la presencia de tres inhibidores endógenos sugiere que el parásito requiere un alto nivel de regulación de las CPs propias o exógenas provenientes del huésped. Por lo tanto, es necesario conocer que participación tienen estos inhibidores endógenos en el parásito. En este estudio se continuó con la caracterización del inhibidor endógeno tricocistatina-3 (TC-3).

Previamente se había iniciado la caracterización del inhibidor TC-3 (Sánchez-Rodríguez, Tesis de Maestría 2012). TC-3 presenta dos de los motivos cistatina, la (G) glicina conservada en el N-terminal y el motivo central formado por los residuos de aa QxVxG que en el TC-3 se encuentra como QIVSG. Esta secuencia es idéntica a la reportada en la estefina CsEstefina-2 de *Clonorchis sinesis* donde demostraron que esta secuencia no influye en la actividad inhibitoria de la estefina (Kang y col., 2014). En cuanto al motivo C-terminal, TC-3 pierde el motivo típico formado por los aa PW y en su lugar presenta dos residuos de leucina (LL). Se ha visto en algunas cistatinas de la familia 1, como las estefinas A y B de humano, que esta característica cambia,

modificando este motivo por PG y PH, respectivamente (Ochieng y Chaudhuri, 2010). El inhibidor TC-3 puede presentar dos sitios putativos de O-beta-glicosilación (O-β-GlcNAc) en treonina T17 y en la serina S62. Además de un péptido señal en el Nterminal, características de algunos miembros de la familia 2 de las cistatinas (Oliveira y col., 2003). Para complementar algunos datos del análisis in silico realizado en la maestría, se construyó un árbol filogenético para determinar a qué familia de las cistatinas pertenece el inhibidor TC-3, debido a las características previamente mencionadas. El análisis filogenético mostró que los inhibidores endógenos de T. vaginalis se agruparon en la familia 1 de las estefinas con mayor relación a las fitocistatinas; por lo que podrían tener alguna relación a nivel estructural o bien en el mecanismo de inhibición con la familia 2 y las fitocistatinas. También, el árbol filogenético mostró mayor divergencia y conservación del inhibidor TC-3 a lo largo del tiempo en comparación con la TC-1 y TC-2 (Fig. 4), lo cual se relaciona con la expresión del gen del inhibidor TC-3 en el aislado CNCD 280 (tipo 1), uno de los aislados más ancestrales de T. vaginalis (Conrad y col., 2012; Sánchez-Rodríguez, Tesis de Maestría 2012). La estructura 3-D predicha también mostró mayor relación del inhibidor TC-3 con la estefina B de humano (Figs. 5A y B), ya que presentan una estructura menos compleja en comparación con los inhibidores de la familia 2 (Cistatina C y E/M de humano) (Figs. 5C y D), ya que carecen de puentes disulfuro que ayudan al plegamiento de bucles en el sitio opuesto (círculo azul) al sitio de inhibición de las papaínas (círculo naranja) (Figs. 5C y D). Sin embargo, TC-3 muestra un N-terminal extendido debido a la presencia del péptido señal (marcado en rosa), similar a la cistatina C de humano (Figs. 5A y C). Por lo tanto, el inhibidor TC-3 podría ser una estefina atípica como la FgStefin-2 (Fasciola gigantica) y CsStefin-1

(*Clonorchis sinensis*) que presentan un péptido señal y sitios putativos de glicosilación, respectivamente (Kang y col., 2011; Siricom y col., 2012), pero carecen de puentes disulfuro y no inhiben asparaginil endopeptidasas (AEP).

A pesar de las diferentes condiciones probadas para detectar a TC-3 en el peso molecuar esperado de ~12 kDa, no logramos identificar por EM al inhibidor TC-3 nativo ni en las bandas o manchas de 30 kDa. Sin embargo, podemos rescatar dentro de esta gama de proteínas identificadas por EM que algunas CPs se encontraron repetitivamente en los diferentes ensayos, como TvCP2, TvCP3 y TvLEGU-1 (Anexos 13.3, 13.4 y 13.6.5) por lo que proponemos que estas CPs podrían ser las proteasas blanco del inhibidor TC-3 y que las proteínas metabólicas identicadas por EM como Enolasa, TIM, gliceraldehido 3-fosfato deshidrogenasa (GAPDH), etc., podrían ser los sustratos de las CPs, ya que los interactomas muestran relación entre las CPs y las proteínas metabólicas (Anexos 13.3.2, 13.3.4, 13.3.10 y 13.3.12). Por lo tanto, en la región de 30 kDa podríamos tener la regulación inhibidor-proteasa-sustrato y que bajo ciertas condiciones podríamos tener activas o inactivas a las CPs. Además, el reconocimiento del Ac anti-TC-3r constante en la región de 30 kDa en diferentes tipos de extractos (Figs. 6B, 7B, 9D y 10D) sustenta la posibilidad de que el TC-3 nativo se encuentre regulando a algunas CP de esta región como TvCP2, TvCP3 y TvLEGU-1. Esto también puede relaciónarse con la poca actividad proteolítica observada en la región de 30 kDa en zimograma de 1-DE (Fig. 13A), especialmente la TvLEGU-1 que no tiene actividad proteolítica en el degradoma sumergido de 2-DE (Fig. 13E). Además, de la región de 30 kDa, el Ac anti-TC-3r mostró un reconocimiento de una banda de 18 kDa (Fig. 9C) cercano al peso molecular esperado de 12 kDa. Lo que podría

representar la forma glicosilada del inhibidor TC-3 nativo. Esto concuerda con el cambio en la movilidad electroforética de algunas proteínas que se encuentran glicosiladas, como el caso de la cistatina E/M cuya forma glicosilada muestra un reconocimiento de 22 kDa y de 14.5 kDa cuando esta deglicosilada (Sotiropoulou y col., 1997). Si el inhibidor TC-3 nativo se encuentra glicosilado podría explicar el por qué no se ha podido identificar por EM, debido a que la O-GlcNAc es particularmente difícil de detectar mediante técnicas físicas, tales como la espectrometría de masas. Porque a menudo se produce en cantidades subestequiométricas en una proteína y se desprende fácilmente del polipéptido durante el proceso de ionización en un espectrómetro de masas (Zachara y col., 2017). Además, el inhibidor TC-3 es una proteína pequeña de 12 kDa, lo que también dificulta su análisis por EM.

Por otro lado, se demostró que el inhibidor TC-3r tiene actividad inhibitoria contra CPs como la catepsina L de humano y de tipo catepsina L de tricomonas (Figs. 12 A y B), ya que reduce la actividad proteolítica de manera concentración-dependiente ~ el 90-95 %. Sin embargo, TC-3r muestra actividad inhibitoria en el rango µM. Lo cual podría deberse al cambio en la secuencia de aa del motivo PW en el C-terminal. En algunas cistatinas mutadas en este sitio se ha visto que se reduce severamente su actividad inhibitoria (Mei y col., 2014). Además de catepsinas L, se probó la actividad inhibitoria del TC-3r sobre AEP o legumaínas. Algunas cistatinas en su secuencia presentan el motivo SND/S responsable de la inhibición de CPs de tipo AEP (Alvarez-Fernandez y col., 1999). Este motivo se encuentra en el sitio opuesto (Figs. 5C y D, círculo azul) al sitio de inhibición de las papaínas (Figs. 5C y D, círculo naranja). El inhibidor TC-3 presenta solo el residuo de aa asparagina (N) conservada dentro de la

secuencia NNT para la inhibición de AEP. Sin embargo, en las condiciones ensayadas en este estudio TC-3r no mostró actividad inhibitoria contra la legumaína de humano ni con las legumaínas de ERP y TvLEGU-1r (producida en Pichia pastoris; Resendiz-Cardiel y col., 2017) de T. vaginalis (Figs. 12C, D y E), similar a las cistatina 1 y 2 de Caenorhabditis elegans que a pesar de que conservan el residuo de asparagina en los motivos SNN y NNG respectivamente, ninguna de las dos cistatinas inhibe AEP (Murray y col., 2005). Además, en un estudio reciente de la cistatina E/M de humano (uno de los inhibidores más potentes de AEP) y que en su secuencia presenta el motivo SNS, se demostró que además del motivo para la inhibición de las AEP, participan ciertas asas (RCL y LEL, Fig. 5D) formadas por los puentes disulfuros típicos de la familia 2 de las cistatinas. Estas asas o bucles mantienen estable la interacción entre el inhibidor y la legumaína, ya que adoptan la forma del pro-péptido de la proteasa (Dall y col., 2015). No obstante, recientemente se reportó que un inhibidor de la familia 1 de las estefinas la EnEstefina (rEnStef) de Eudiplozoon nipponicum, contiene en su secuencia el motivo SNS similar a la cistatina E/M de humano. La rEnStef mostró inhibición contra AEP a una concentración máxima de 10 µM (Ilgova y col., 2017). Por lo tanto, aunque TC-3 conserva el resdiuo de N, no conserva la secuencia del motivo SND/S necesario para la inhibición de AEPs, como ocurre con la estefina de E. nipponicum. Además, TC-3 no presenta ningun asa en C-terminal necesarias para mantener estable la interacción con la proteasa, como las observadas en la cistatina E/M de humano (Figs. 5 A y D; Dall y col., 2015). Sin embargo, llama la atención que el Ac anti-TC-3r por WB en 2-DE (Fig. 7) detecta una de las manchas de la TvLEGU-1 y que se identificara a TC-3 por EM en este y otros ensayos (Fig. 10, anexos 13.4 y 13.6.5). Aunado a lo anterior, la carencia de actividad proteolítica de Tv-LEGU-1 en los

zimogramas podría sugerir que TC-3 nativo se encuentre unido a la TvLEGU-1, como sustrato de la legumaína, como un mecanismo de regulación de inhibidores endógenos de CPs, ya que se ha reportado que las legumaínas pueden degradar a las cistatinas bajo ciertas condiciones ambientales (Dall y col., 2015). Esto podría suceder con el inhibidor TC-2, ya que por EM se identificaron péptidos del inhibidor TC-2 y de la TvLEGU-1 (mancha 22 Anexo 13.4), por lo tanto no descartamos que los inhibidores endógenos de tricomonas pudieran ser degradados por la legumaína-1 de *T. vaginalis*.

Posteriormente se probó el efecto del inhibidor en zimogramas de ERP de T. vaginalis. Por 1-DE y 2-DE observamos que el inhibidor TC-3r reduce la actividad proteolítica en regiones que se han caracterizado como la región de 65, 39, and 30 kDa (Alvarez-Sánchez y col., 2000; Hernández-Gutiérrez y col., 2003; Ramón-Luing y col., 2011). Para conocer que manchas de CPs son afectadas por este inhibidor, se utilizó la identificación del degradoma de ERP pH 4-7 por 2-DE del aislado CNCD 280 (Fig. 7A, Anexo 13.4) y el zimograma sumergido (Fig. 13E) que nos ayudó a revelar a aquellas manchas de proteinasas que presentan actividad proteolítica bajo estas condiciones, ya que los zimogramas copolimerizados cambian un poco la migración del patrón de proteínas en comparación con el patrón observado en los geles teñidos con plata. De acuerdo a estas consideraciones se encontró que el inhibidor TC-3r reduce la actividad proteolítica de las manchas 1, 2, 5, 9, 11, 12, 16 y 20 que corresponden a las CPs TvCP2 (TVAG_057000), TvCP3 (TVAG_090100), TvCP4-like (TVAG_355480) y TvCP39 (TVAG_298080) (Tabla 1, Lista de proteínas del degradoma del aislado CNCD 280). Es interesante que nuevamente se encontró a las CPs TvCP2 y TvCP3 como en las identificaciones realizadas anteriormente (Fig. 6;

Anexo 13.3), lo que sugiere que estas dos CPs son fuertes candidatos para ser la CPs blanco del inhibidor TC-3, asi como la TvCP4-like y TvCP39. Para confirmar la asociación del TC-3 con algunas CPs, se realizó un ensayo de "pull-down" donde la proteína TC-3r se utilizó como ligando para atrapar a las CPs blanco presentes en un extracto de T. vaginalis. Por zimografía observamos que en la fracción de elución con TC-3r se unieron algunas proteinasas que muestran actividad proteolítica principalmente en la región de alto peso molecular. Para identificar a las proteinasas que se unieron a TC-3, se realizó un ensayo de WB utilizando diferentes anticuerpos anti-CPs, los cuales mostraron reconocimiento de la TvCP2, TvCP3 (Summer y col., 2005; Kummer y col., 2008), TvCP4 (Cárdenas-Guerra y col., 2013) y TvCP39 (Ramón-Luing y col., 2010, 2011); solo la TvLEGU-1 y los controles no mostraron reconocimiento en la fracción de elución, confirmando que el inhibidor TC-3 no parece unirse, ni inhibe CPs del tipo legumaína como se observó en el ensayo de inhibición usando sustratos fluorogénicos (Figs 12C y D), a pesar de que el Ac anti-TC-3r por WB en 2-DE (Fig. 7) reconoce una de las manchas de la TvLEGU-1. Posiblemente en este ensayo de PD no pudimos capturar a la legumaína con TC-3r debido a que las CPs de tipo catepsina L superan en número a las de tipo AEP y posiblemente a que en el sistema se haya producido un efecto de impedimento estérico que no permitiera la unión de la legumaína al inhibidor.

Por lo tanto, el ensayo de pull-down confirmó que el inhibidor TC-3r se asocia a CPs del tipo catepsina L. En el ensayo de WB del pull-down con los Ac anti-CPs se observó el reconocimiento de dos bandas proteicas una de ellas entre 27-28 kDa que podría corresponder a la forma madura de algunas de las CPs. La segunda banda de

entre 30-31 kDa se observó en los WB con los Ac α-TvCP3r, α-TvCP4r y α-TvCP39r tanto en el extracto proteico clarificado como en la fracción de elución con el TC-3r, que podría corresponder a una forma intermediaria de las CPs en proceso de maduración, ya que es un procesamiento intramolecular de múltiples pasos, como sucede en el procesamiento de la catepsina L y K, donde el pro-péptido se procesa en varios sitios durante su activación (Turk y col., 2000). Este procesamiento se ha observado con la proteinasa nativa y su respectiva recombinante en el caso de las catepsinas L y H que forman un intermediario de 34 y 30 kDa, respectivamente (Reilly y col., 1989; Rojnik y col., 2012; Wiederanders y Kirschke, 1989). Por lo tanto, estas formas intermediarias podrían presentarse en algunas CPs de T. vaginalis, ya que la forma precursora de las CPs analizadas oscila entre 34-36 kDa y su forma madura entre 25-27 kDa. Además, no podemos descartar que algunas de estas CPs también se encuentren glicosiladas y observemos esos ligeros aumentos en el peso molecular. Por lo tanto bajo estas condiciones de estudio, el inhibidor TC-3r puede unirse a la posible forma intermediaria y a la forma madura de las CPs de tipo catepsina L de T. vaginalis.

Además del ensayo de WB con anticuerpos anti-CPs, la identificación de proteínas por EM de la banda de 30 kDa observada en la fracción de elución del ensayo de PD con TC-3r (Fig. 14A) mostró la presencia de péptidos del inhibidor TC-3, de TvCP3 y de una proteína ribosomal L10a. Estos resultados confirmaron lo que se ha observado durante todo el proceso de caracterización de TC3, que la TvCP3 es una de las principales CPs blanco del inhibidor TC-3. En esta identificación se encontraron péptidos del inhibidor TC-3 que podrían corresponder al inhibidor nativo que se ha observado en varios ensayos por WB en la región de 30 kDa. Sin embargo, no descartamos que también se traten de restos de la proteína recombinante (TC-3r) que hayan quedado unidos a TvCP3 durante el proceso de interacción. En cuanto a la proteína ribosomal, no se han encontrado reportes si hay alguna relación entre proteínas ribosomales e inhibidores cistatina. Aunque probablemente mantenga una relación con la CP identificada, como una de las proteínas sustrato de la proteasa TvCP3, la cual se regula por TC-3 al nivel posttraduccional.

La asociación de TC-3 a CPs también se determinó por ensayos de IFI. Previo a determinar la co-localización entre el inhibidor y su proteasa blanco, se hicieron ensayos de IFI del inhibidor TC-3 en parásitos cultivados en las tres condiciones de hierro con un material diferente al utilizado en la maestría. Las IFI mostraron que el inhibidor TC-3 se localiza en la membrana de los parásitos y en citoplasma, confirmando los resultados obtenidos en la maestría. Además, mostró localización en el aparato de Golgi de T. vaginalis, localización confirmada por microscopía electrónica de transmisión (MET) y por IFI al co-localizar con la TvLEGU-1, que previamente se reportó en este organelo de tricomonas, la cual se encuentra glicosilada y fosforilada (Rendon-Gandarilla y col., 2013). Estas diferentes localizaciones del inhibidor TC-3 son consistentes con las características in silico putativas del inhibidor, como la presencia de un péptido señal que lo podría estar dirigiendo a la membrana de los parásitos o bien para secreción y los sitios putativos de O-β-GlcNac que permiten ver al TC-3 localizado en el aparto de Golgi, debido a que este tipo de modificación es adicionada a las proteínas en el aparato de Golgi (Zachara y col., 2017). Ensayos de IFI y MET confirmaron que el inhibidor TC-3 se encuentra asociado a las CPs TvCP2

y TvCP3, principalmente en vesículas y citoplasma. Además, estas CPs mostraron localización en el aparato de Golgi, por lo que también podrían sufrir algún tipo de glicosilación.

También, se demostró la participación del inhibidor TC-3 en la regulación de la citotoxicidad de tricomonas en la monocapa de células HeLa. El inhibidor TC-3 mostró protección a monocapas de células HeLa contra la citotoxicidad del parásito. Por lo tanto, esto sugiere que el TC-3 inhibe CPs que participan en el mecanismo de citotoxicidad como la TvCP2 y TvCP3, así como la TvCP39 que ya ha sido reportada como una CP citotóxica (Ramón-Luing y col., 2011).

Por lo tanto, el inhibidor endógeno TC-3 es una estefina atípica de la familia 1 de las cistatinas que inhibe CPs de tipo catepsina L en *T. vaginalis* y la TvCP3 es una de sus principales proteinasas blanco.

X. CONCLUSIONES

1. El inhibidor tricocistatina-3 (TC-3) se clasificó en la familia 1 (estefinas) de los inhibidores tipo cistatina, debido a sus características en la secuencia y estructura.

2. TC-3 podría ser considerado una estefina atípica, ya que presenta características de la familia 1 y 2 de las cistatinas.

3. TC-3 se localiza en la membrana de los parásitos, en el citoplasma, en vesículas y en el aparato de Golgi.

4. El inhibidor nativo TC-3 podría estar glicosilado debido al peso molecular de 18 kDa detectado por WB y por su localización en aparato de Golgi.

5. TC-3r tiene actividad inhibitoria contra CPs de tipo catepsina L.

 En condiciones *in vitro* se demostró que sus proteinasas blanco son TvCP2, TvCP3, TvCP4 y TvCP39.

7. El inhibidor TC-3 tiene un efecto protector contra la actividad citotóxica de tricomonas hacia monocapas de células epiteliales.

8. Las condiciones probadas en este estudio no permitieron una identificación favorable del TC-3, debido a las características propias de esta molécula como su bajo peso molecular y los sitios putativos de O-GlcNAc y su localización de membrana. Asimismo, TC-3 nativo puede estar en cantidades subestequimétricas y asociado en forma permanente con sus proteínasas blanco en el parásito, condiciones que pueden dificultar su análisis por EM.

XI. PERSPECTIVAS

1. Determinar si el inhibidor TC-3 se encuentra O- β -GlcNac glicosilado.

2. Determinar si el inhibidor TC-3 puede formar dímeros o multímeros.

3. Confirmar la asociación del TC-3 con la TvCP4 y TvCP39 por IFI y MET.

4. Determinar si TC-3 se puede asociar a otras CPs como la TvCP1, TvCP12 u otras no caracterizadas.

5. Determinar si la asociación y el efecto inhibidor de TC-3 con sus CP blanco cambia en diferentes condiciones de hierro.

6. Determinar el efecto del inhibidor TC-3 en otros mecanismos de virulencia como adhesión y hemólisis.

7. Buscar las condiciones adecuadas para la identificación del inhibidor TC-3 por espectrometría de masas.

8. Investigar si TC-3 tambien inhibe proteasas del huésped.

XII. Referencias

Abrahamson, M., Alvarez-Fernandez, M., Nathanson, C.M., 2003. Cystatins. Biochem. Soc. Symp. 70 (15), 79–199.

Alderete J y Garza G. 1985. Specific nature of *Trichomonas vaginalis* parasitism of host cell surfaces. Infect Immun. 50(3): 701–708.

Alderete J y Garza G. 1998. Identification and properties of *Trichomonas vaginalis* proteins involved in citoadherence. Infect Immun. 56(1):28-33.

Álvarez-Fernández M, Barrett A, Gerhartz B, Dando P, Ni J, Abrahamson M. 1999. Inhibition of mammalian legumain by some cystatins is due to a novel second reactive site. J Biol Chem. 274.19195-19203.

Álvarez-Sánchez ME, Ávila-González L, Becerril-García C, Fattel-Facenda LV, Ortega-López J, Arroyo R. 2000. A novel cysteine proteinase (CP65) of *Trichomonas vaginalis* involved in cytotoxicity. Microb Pathog. 28: 193–202.

Álvarez-Sánchez ME, Carvajal-Gamez BI, Solano-González E, Martínez-Benítez M, García AF, Alderete JF, Arroyo R. 2008. Polyamine depletion down-regulates expression of the *Trichomonas vaginalis* cytotoxic CP65, a 65-kDa cysteine proteinase involved in cellular damage. Int J Biochem Cell Biol. 40:2442-2451.

Álvarez-Sánchez ME, Solano-González E, Yañez-Gómez C, Arroyo R. 2007. Negative iron regulation of the CP65 cysteine proteinase cytotoxicity in *Trichomonas vaginalis*. Microbes Infect. 9:1597-1605.

Arroyo, R., Alderete, J.F., 1989. Trichomonas vaginalis surface proteinase activity is necessary for parasite adherence to epithelial cells. Infect. Immun. 57 (10), 2991–2997.

Arroyo, R., Alderete, J.F., 1995. Two *Trichomonas vaginalis* surface proteinases bind to host epithelial cells and are related to levels of cytoadherence and cytotoxicity. Arch. Med. Res. 26 (3), 279–285.

Arroyo, R., Cárdenas-Guerra, R.E., Figueroa-Angulo, E.E., Puente-Rivera, J., Zamudio-Prieto, O., Ortega-López, J., 2015. *Trichomonas vaginalis* cysteine proteinases: iron response in gene expression and proteolytic activity. BioMed Res. Int. 2015, 946787

Arroyo A, Engbring J y Alderete J. 1992. Molecular basis of epitelial cell recognition by *Trichomonas vaginalis.* Mol Microbiol. 6:853-862.

Arroyo R, González-Robles A y Martínez-Palomo A. 1993. Signalling of *Trichomonas vaginalis* for amoeboid transformation and adhesin synthesis follows cytoadherence. Mol Microbiol. 7; 299-309.

Benchimol M. 2004. Trichomonads under microscopy. Microsc Microanal. 10, 528–550.

Cárdenas-Guerra, R.E., Arroyo, R., Rosa de Andrade, I., Benchimol, M., Ortega-López, J., 2013. The iron-induced cysteine proteinase TvCP4 plays a key role in *Trichomonas vaginalis* haemolysis. Microbes Infect. 15 (13), 959–968.

Cárdenas-Guerra, R.E., Ortega-López, J., Flores-Pucheta, C.I., Benítez-Cardoza, C.G., Arroyo, R., The recombinant TvCP4 pre-pro region is an inhibitor of cathepsin Llike cysteine proteinases of *Trichomonas vaginalis* that inhibits trichomonal haemolysis. 2015. Internal. J. Biochem. Cell Biol. 59, 73-83.

Carlton J, Hirt R, Silva J, Delcher A, Schatz M, Zhao Q, Wortman J, Bidwell S, Alsmark U, Besteiro S, Sicheritz-Ponten T, Noel C, Dacks J, Foster P, Simillion C, Van de Peer Y, Miranda-Saavedra D, Barton G, Westrop G, Muller S, Dessi D, Fiori P, Ren Q, Paulsen I, Zhang H, Bastida-Corcuera F, Simoes-Barbosa A, Brown M, Hayes R, Mukherjee M, Okumura C, Schneider R, Smith A, Vanacova S, Villalvazo M, Haas B, Pertea M, Feldblyum T, Utterback T, Shu C, Osoegawa K, de Jong P, Hrdy I, Horvathova L, Zubacova Z, Dolezal P, Malik S, Logsdon J, Henze K, Gupta A, Wang C, Dunne R, Upcroft J, Upcroft P, White O, Salzberg S, Tang P, Chiu C, Lee Y, Embley T, Coombs G, Mottram J, Tachezy J, Fraser-Liggett C, Johnson P. 2007. Draft genome sequence of the sexually transmitted pathogen *Trichomonas vaginalis*. Science. 315: 207-212.

Carvalho SE, Freitas D, Murad AM, Franco OL, Simões-Barbosa A. 2005. *Trichomonas vaginalis*: identification of a triacylglycerol acylhydrolase. Exp Parasitol. 111(4):260-263.

Conrad M, Gorman A, Schillinger J, Luigi-Fiori P, Arroyo R, Malla N, Lal Dubey M, González J, Blank S, Secor W, Carlton J. 2012. Extensive genetic diversity, unique population structure and evidence of genetic exchange in the sexually transmitted parasite *Trichomonas vaginalis*. Plos Negl Trop Dis. 6(3): e1573.

Conrad M, Kissinger P, Schmidt N, Martin D y Carlton J. 2013. Genetic diversity of *Trichomonas vaginalis* reinfection in HIV. Sex Transm Infect. 89: 473-478.

Cuellar-Silva PA. 2011. Participación de la TvCP12 en la virulencia de *Trichomonas vaginalis.* Tesis de maestría. Departamento de Infectómica y Patogénesis Molecular. (CINVESTAV-IPN). Ciudad de México.

Dall, E., Fegg, J.C., Briza, P., Brandstetter, H., 2015. Structure and mechanism of an aspartimide-dependent peptide ligase in human legumain. Angew. Chem. Int. Ed. Engl. 54 (10), 2917-2921.

Diamond LS. 1957. The establishment of various trichomonads of animals and man in axenic cultures. J Parasitol. 43:488–90.

Edwards T, Burke P, Smalley H, Hobbs G. 2014. *Trichomonas vaginalis*: Clinical relevance, pathogenicity and diagnosis. Crit Rev Microbiol. 42(3):406-17.

Fichorova RN, Yamamoto HS, Fashemi T, Foley E, Ryan S, Beatty N, Dawood H, Hayes GR, St-Pierre G, Sato S, Singh BN. 2016. *Trichomonas vaginalis* Lipophosphoglycan Exploits Binding to Galectin-1 and -3 to Modulate Epithelial Immunity. J Biol Chem. 291(2):998-1013.

Figueroa-Angulo E, Rendón-Gandarilla F, Puente-Rivera J, Calla-Choque J, Cárdenas–Guerra R, Ortega-López J, Quintas-Granados L, Alvarez-Sánchez M, Arroyo R. 2012. The effects of environmental factors on the virulence of *Trichomonas vaginalis*. Microbes Infect. 1411-1427.

Fiori PL, Rappelli P, Addis MF. 1999. The flagellated parasite *Trichomonas vaginalis*: new insights into cytopathogenicity mechanisms. Microbes Infect. 1(2):149-56.

Harp D y Chowdhury I. 2011. Trichomoniasis: evaluation to execution. Eur J Obstet Gynecol Reprod Biol. 157: 3-9.

Hernández-Gutiérrez R, Ávila-González L, Ortega-López J, Cruz-Talonia F, Gómez-Gutiérrez G, Arroyo R. 2004. *Trichomonas vaginalis* characterization of a 39-kDa cysteine proteinase found in patient vaginal secretions. Exp Parasitol. 107: 125–135.

Hernández-Gutiérrez, R., Ortega-López, J., Arroyo, R., 2003. A 39-kDa cysteine proteinase CP39 from *Trichomonas vaginalis*, which is negatively affected by iron maybe involved in trichomonal cytotoxicity. J. Eukaryot. Microbiol. 50 (Suppl.), 696–668.

Hernandez, H., Sariego, I., Garber, G., Delgado, R., Lopez, O., Sarracent, J., 2004. Monoclonal antibodies against a 62 kDa proteinase of *Trichomonas vaginalis* decrease parasite cytoadherence to epithelial cells and confer protection in mice. Parasite Immunol. 26 (3), 119–125.

Hirt R. 2013. *Trichomonas vaginalis* virulence factors: an integrative overview. Sex Transm Infect. 89, 439-443.

Hirt RP, Noel CJ, Sicheritz-Ponten T, Tachezy J, Fiori PL. 2007. *Trichomonas vaginalis* surface proteins: a view from the genome. Trends in Parasitology. 23: 540-547.

Hirt RP, Sherrard J. 2015. *Trichomonas vaginalis* origins, molecular pathobiology and clinical considerations. Curr Opin Infect Dis. 28(1):72-79.

Ilgova J, Jedlickova L, Dvorakova H, Benovics M, Mikes L, Janda L, Vorel J, Roudnicky P, Potesil D, Zdráhal Z, Gelnar M, Kasny M. 2017. A novel type I cystatin of parasite origin with atypical legumain-binding domain. Sci Rep. 7(1):17526.

Janowski R, Kozak M, Abrahamson M, Grubb A, Jaskolski M. 2005. 3D domainswapped human cystatin C with amyloidlike intermolecular beta-sheets. Proteins. 61(3):570-8.

Kang, J.M., Ju, H.L., Lee, K.H., Kim, T.S., Pak, J.H., Sohn, W.M., Na, B.K., 2014. Identification and characterization of the second cysteine protease inhibitor of *Clonorchis sinensis* (CsStefin-2). Parasitol. Res. 113 (1), 47–58.

Kang, J.M., Lee, K.H., Sohn, W.M., Na, B.K., 2011. Identification and functional characterization of CsStefin-1, a cysteine protease inhibitor of *Clonorchis sinensis*. Mol. Biochem. Parasitol. 177 (2), 126–134.

Kissinger P. 2015. *Trichomonas vaginalis*: a review of epidemiologic, clinical and treatment issues. BMC Infect Dis.5; 15:307.

Klotz C, Ziegler T, Danilowicz-Luebert E, Hartmann S. 2011. Cystatins of parasitic organisms. In: Robinson M.W., Dalton J.P. (eds) Cysteine Proteases of Pathogenic Organisms. Advances in Experimental Medicine and Biology, vol 712. Springer, Boston, MA

Kummer, S., Hayes, G.R., Gilbert, R.O., Beach, D.H., Lucas, J.J., Singh, B.N., 2008. Induction of human host cell apoptosis by *Trichomonas vaginalis* cysteine proteases is modulated by parasite exposure to iron. Microb. Pathog. 44 (3), 197-203.

Kusdian G y Gould SB. 2014. The biology of *Trichomonas vaginalis* in the light of urogenital tract infection. Mol Biochem Parasitol.198 (2):92-99.

Lama A, Kucknoor A, Mundodi V, Alderete JF. 2009. Glyceraldehyde-3-phosphate dehydrogenase is a surface-associated, fibronectin-binding protein of *Trichomonas vaginalis*. Infect Immun. 77(7):2703-2711.

Lee JY, Song SM, Moon EK, Lee YR, Jha BK, Danne DB, Cha HJ, Yu HS, Kong HH, Chung DI, Hong Y. 2013. Cysteine protease inhibitor (AcStefin) is required for complete cyst formation of Acanthamoeba. Eukaryotic Cell. 12 (4):567.

Lehker MW, Alderete JF. 2000. Biology of trichomonosis. Curr Opin Infect Dis 13:37-45.

León-Félix, J., Ortega-López, J., Orozco-Solís, R., Arroyo, R., 2004. Two novel asparaginyl endopeptidase-like cysteine proteinases from the protist *Trichomonas vaginalis*: their evolutionary relationship within the clan CD cysteine proteinases. Gene. 335 (1-2), 25-35

León-Sicairos C, León-Félix J, Arroyo R. 2004. tvcp12: a novel *Trichomonas vaginalis* cathepsin L-like cysteine proteinase-encoding gene. Microbiology. 150, 1131–1138.

León-Sicairos C, Pérez-Martínez I, Álvarez-Sánchez M, López-Villaseñor I y Arroyo R. 2003. Two *Trichomonas vaginalis* loci encoding for distinct cysteine proteinases show a genomic linkage with putative inositol hexakisphosphate kinasa (IP6K2) or an ABC transporter gene. J Eukaryot Microbiol. 50:702-705.

León-Sicairos C. 2007. Caracterización de la cisteína proteinasa TvCP12 de *Trichomonas vaginalis.* Tesis de doctorado. Departamento de Patología Experimental, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional. (CINVESTAV-IPN). México, D. F.

Liu YH, Han YP, Li ZY, Wei J, He HJ, Xu CZ, Zheng HQ, Zhan XM, Wu ZD, Lv ZY. 2010. Molecular cloning and characterization of cystatin, a cysteine protease inhibitor from *Angiostrongylus cantonensis*. Parasitol Res. 107:915-922.

Lotz G and Legleiter J. 2013. The role of amyloidogenic protein oligomerization in neurodegenerative disease. J. Mol Med. DOI 10.1007/s00109-013-1025-1.

Lorenzo-Benito S. 2011. Posible interacción entre las proteinasas TvCP2 y TvCP4 de *Trichomonas vaginalis.* Tésis de Maestría. Departamento de Infectómica y Patogénesis Molecular. (CINVESTAV-IPN). Ciudad de México.

Lubick KJ, Burgess DE. 2004. Purification and analysis of a phospholipase A2-like lytic factor of Trichomonas vaginalis. Infect Immun. 2(3):1284-90.

Mann J, Mcdermott S, Barnes T, Hardinn J, Bao H, Zhou L. 2009. Trichomoniasis in pregnancy and mental retardation in children. Ann Epidemiol.19: 891–899.

Mei, G., Dong, J., Li, Z., Liu, S., Liu, Y., Sun, M., Liu, G., Su, Z., Liu, J., 2014. Structural basis for the immunomodulatory function of cysteine protease inhibitor from human roundworm *Ascaris lumbricoides*. PLoS ONE. 9 (4), e96069.

Mendoza-López R, Becerril-García C, Fattel-Facenda L, Avila-González L, Ruíz-Tachiquín M, Ortega-López J, Arroyo R. 2000. CP30, a Cysteine proteinase involved in *Trichomonas vaginalis* cytoadherence. Infect Immun. 68: 4907-4912.

Meza-Cervantez P, González-Robles A, Cárdenas-Guerra R, Ortega-López J, Saavedra E, Pineda E y Arroyo R. 2011. Pyruvate: ferredoxin oxidoreductase (PFO) is a surface-associated cell-binding protein in *Trichomonas vaginalis* and is involved in trichomonal adherence to host cells. Microbiology. 157, 3469-3482.

Mielczarek E, Blaszkowska J. 2016. *Trichomonas vaginalis*: pathogenicity and potential role in human reproductive failure. Infection. 44(4):447-458.

Miranda-Ozuna, J.F.T., Hernández-García, M.S., Brieba, L.G., Benítez-Cardoza, C.G., Ortega-López, J., González-Robles, A., Arroyo, R., 2016. The glycolytic enzyme triosephosphate isomerase of Trichomonas vaginalis is a surface-associated protein induced by glucose that functions as a laminin- and fibronectin-binding protein. Infect. Immun. 84 (10), 2878-2894.

Moreno-Brito V, Yañez-Gómez C, Meza-Cervantes P, Ávila-González L, Rodríguez-Rodríguez M, Ortega-López J, Gónzalez-Robles A y Arroyo R. 2005. A *Trichomonas vaginalis* 120 kDa protein with identity to hydrogenosome pyruvate: ferredoxin oxidoreductase is a surface adhesin induced by iron. Cell Microbiol. 7(2), 245-258.

Murray, J., Manoury, B., Balic, A., Watts, C., Maizels, RM., 2005. Bm-CPI-2, a cystatin from *Brugia malayi* nematode parasites, differs from cystatins in a specific site mediating inhibition of the antigen-processing enzyme AEP. Mol Biochem Parasitol. 139(2):197-203.

Ochieng J, Chaudhuri G. 2010. Cystatin superfamily. J Health Care for Underserved. 21:51-70.

Ohtsubo S, Taiyoji M, Kawase T, Taniguchi M, Saitoh E. 2007. Oryzacystatin-II a Cystatin from rice (*Oryza sativa L. japonica*), Is a dimeric protein: Possible involvement of the interconversion between dimer and monomer in the regulation of the reactivity of Oryzacystatins-II. J Agric Food Chem. 55:1762–1766.

Oliveira AS, Xavier-Filho J, Sales PM. 2003. Cysteine proteinases and cystatins. Braz. arch. biol. technol. 46:91-104.

Östner G, Lindström V, Hjort Christensen P, Kozak M, Abrahamson M, Grubb A. 2013. Stabilization, characterization, and selective removal of cystatin C amyloid oligomers. J Biol Chem. 288(23):16438-50. doi: 10.1074/jbc.M113.469593

Pavić T., Gornik O. 2017. Analysis of N-Glycosylation of total membrane proteins. In: Lauc G., Wuhrer M. (eds) High-Throughput Glycomics and Glycoproteomics. Methods in Molecular Biology, vol 1503: 195-205.

Pereira-Neves A, Benchimol M. 2007. Phagocytosis by Trichomonas vaginalis: new insights. Biol Cell. 99(2):87-10.

Poole Danielle y McClelland Scott. 2013. Global epidemiology of *Trichomonas vaginalis*. Sex Transm Infect. 89: 418-422.

Puente-Rivera, J., Ramón-Luing, L.A., Figueroa-Angulo, E.E., Ortega-López, J., Arroyo, R., 2014. Trichocystatin-2 (TC-2): An endogenous inhibitor of cysteine proteinases in *Trichomonas vaginalis* is associated with TvCP39. Int. J. Biochem. Cell Biol. 54, 255–265.

Ramón-Luing LA, Rendón-Gandarilla FJ, Cárdenas-Guerra RE, Rodríguez-Cabrera NA, Ortega-López J, Avila-González L, Angel-Ortiz C, Herrera-Sánchez CC, Mendoza-García M, Arroyo R. 2010. Immunoproteomics of the active degradome to identify biomarkers for *Trichomonas vaginalis*. Proteomics.10: 435–444.

Ramón-Luing LA, Rendón-Gandarilla FJ, Puente-Rivera J, Ávila-González L, Arroyo R. 2011. Identification and characterization of the immunogenic cytotoxic TvCP39 proteinase gene of *Trichomonas vaginalis*. Int Biochem Cell Biol. 43:1500-1511.

Reilly, JJ Jr., Mason, RW, Chen, P., Joseph, LJ, Sukhatme, VP, Yee, R., Chapman, HA Jr., 1989. Synthesis and processing of cathepsin L, an elastase, by human alveolar macrophages. Biochem J. 15; 257(2):493-8.

Rendón-Gandarilla, F.J., Ramón-Luing, L.A., Ortega-López, J., Rosa de Andrade, I., Benchimol, M., Arroyo, R. 2013. The TvLEGU-1, a legumain-like cysteine proteinase, plays a key role in *Trichomonas vaginalis* cytoadherence. Biomed Res Int. 561979.

Rendón-Maldonado J, Espinosa-Cantellano M, Soler C, Torres JV, Martínez-Palomo A. (2003). *Trichomonas vaginalis*: in vitro attachment and internalization of HIV-1 and HIV-1-infected lymphocytes. J. Eukaryot. Microbiol. 50 (1): 43–48.

Reséndiz-Cardiel, G., Arroyo, R., Ortega-López, J., 2017. Expression of the enzymatically active legumain-like cysteine proteinase TvLEGU-1 of *Trichomonas vaginalis* in *Pichia pastoris*. Protein Expr. Purif. 134, 104-113.

Rivera-Rivas L. 2016. Caracterización functional de la cisteina proteinasa TvCP2 de *T. vaginalis.* Tesis de maestría. Departamento de Infectómica y Patogénesis Molecular. (CINVESTAV-IPN). Ciudad de México.

Rojnik, M., Jevnikar, ZR., Doljak, B., Turk, S., Zidar, N., Kos, J., 2012. The influence of differential processing of procathepsin H on its aminopeptidase activity, secretion and subcellular localization in human cell lines. Eur J Cell Biol. 91(10):757-64.

Ryan CM, de Miguel N, Johnson PJ. 2011. *Trichomonas vaginalis*: current understanding of host-parasite interactions. Essays Biochem. 51:161-175.

Rzychon M, Chmiel D, Stec-Niemczyk J. 2004. Modes of inhibition of cysteine proteases. Acta Bioquímica Polonica. 51:861-873.

Sajid M, McKerrow JH. 2001. Cysteine proteases of parasite organisms. Molecular and Biochemical Parasitology. 120:1-21.

Sánchez-Rodríguez DB. 2012. Caracterización parcial de dos inhibidores endógenos de cisteína proteinasas Tricocistatina-1 y Tricocistatina-3 (TC-1 y TC-3) en *Trichomonas vaginalis*. Tesis de Maestría. 2012. Departamento de Infectómica y Patogénesis Molecular. (CINVESTAV-IPN). Ciudad de México.

Sanders A, Craven J, Higgins L, Conroy M, Hounslow A, Waltho J, Staniforth R. 2004. Cystatin form a tetramer through structural rearrangement of domain swapped dimers prior to amyloidogenesis. J Mol Biol. 336: 165-178.

Siricoon S, Grams SV, Grams R. 2012. Efficient inhibition of cathepsin B by a secreted type 1 cystatin of Fasciola gigantica. Mol Biochem Parasitol. 186(2):126-33. doi: 10.1016/j.molbiopara.2012.10.003.

Solano-González E, Burrola-Barraza E, León-Sicairos C, Avila-González L, Gutiérrez-Escolano L, Ortega-López J, Arroyo R. 2004. The trichomonad cysteine proteinase TVCP4 transcript contains an iron-responsive element. FEBS Lett. 26; 581(16):2919-2928.

Sommer, U., Costello, C.E., Hayes, G.R., Beach, D.H., Gilbert, R.O., Lucas, J.J., Singh, B.N., 2005. Identification of *Trichomonas vaginalis* cysteine proteases that induce apoptosis in human vaginal epithelial cells. J. Biol. Chem. 280 (25), 23853-23860.

Sotiropoulou, G, Anisowicz, A., Sager, R., 1997. Identification, cloning, and characterization of cystatin M, a novel cysteine proteinase inhibitor, down-regulated in breast cancer. J. Biol. Chem. 272 (2), 903–910

Shevchenko A, Tomas H, Havlis J, Olsen JV, Mann M. (2006). In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nature protocols 1(6):2856-2860.

Schwebke RJ, Burgess D. 2004. Trichomoniasis. Clinical Microbiology Reviews. 17:749-803.

Sutcliffe Siobhan, Neace Calvin, Magnuson Nancy, Reeves Raymon y Alderete J. 2013. Trichomonosis, a common curable STI, and prostate carcinogenesis-A proposed molecular mechanism. PLoS Pathogens. (8): e1002801.

Stoka V, Turk V, Turk B. 2016. Lysosomal cathepsins and their regulation in aging and neurodegeneration. Ageing Res Rev. 32:22-37.

Tarasuk M, Vichasri Grams S, Viyanant V, Grams R. 2009. Type I cystatin (stefin) is a major component of *Fasciola gigantica* excretion/secretion product. Mol Biochem Parasitol.167:60-71.

Torres-Romero J y Arroyo R. 2009. Responsiveness of *Trichomonas vaginalis* to iron concentrations: Evidence for a post-transcriptional iron regulation by an IRE/IRP-like system. Infect Genet Evol. (6):1065-1074.

Trintis J, Epie N, Boss R, Riedel S. 2010. Neonatal *Trichomonas vaginalis* infection: a case report and review of literatura. Int J STD AIDS. 21: 606-607.

Turk, B., Turk, D., Turk, V., 2000. Lysosomal cysteine proteases: more than scavengers. Biochim Biophys Acta. 1477(1-2):98-111.

Turk B, Turk D y Salvesen G. 2002. Regulating cysteine protease activity: essential role of protease inhibitors as guardians and regulators. Curr Pharm Des. 8, 1623-1637.

Turk, V., Stoka, V., Turk, D., 2008. Cystatins: biochemical and structural properties, and medical relevance. Front. Biosci. 13, 5406–5420.

Turk, V., Stoka, V., Vasiljeva, O., Renko, M., Sun, T., Turk, B., et al., 2012. Cysteine cathepsins: from structure, function, and regulation to new frontiers. Biochim. Biophys. Acta. 1824 (1), 68–88.
Twu O, de Miguel N, Lustig G, Stevens GC, Vashisht AA, Wohlschlegel JA, Johnson PJ. 2013. *Trichomonas vaginalis* exosomes deliver cargo to host cells and mediate host:parasite interactions. PLoS Pathog. 9(7):e1003482.

Uribarren-Berrueta T. (2011). Tricomoniasis o Trichomoniasis urogenital. http://www.facmed.unam.mx/deptos/microbiologia/parasitologia/tricomoniasis.html

Vázquez Carrillo LI, Quintas-Granados LI, Arroyo R, Mendoza-Hernández G, González-Robles A, Carvajal-Gamez BI, Alvarez-Sánchez ME. 2011. The effect of Zn²⁺ on prostatic cell cytotoxicity caused by *Trichomonas vaginalis*. J I OMICS, Vol 1, No 2.

Wiederanders, B., Kirschke, H., 1989. The processing of a cathepsin L precursor *in vitro*. Arch Biochem Biophys. 272(2):516-21.

World Health Organization. Global incidence and prevalence of selected curable sexually transmitted infections. 2008.

World Health Organization. Baseline report on global sexually transmitted infection surveillance. 2012.

Zachara N, Akimoto y Hart G. 2017. The O-GlcNAc Modification, Chapter 19 of Essentials of Glycobiology 3rd edition. The Consortium of Glycobiology Editors.

Zhang Y., 2008. I-TASSER server for protein 3D structure prediction. BMC Bioinformatics. 9: 40.

XIII. ANEXOS

Soluciones Stock	Gel separador	Gel concentrador
Acrilamida 30%/Bis-acrilamida 0.8%	9.8 ml	1.62 ml
Tris-HCI/SDS pH 8.45	10 ml	3.10 ml
H2O	7.03 ml	7.78 ml
Glicerol	4 g (3.17 ml)	
Persulfato de amonio 10% (p/v)	50 μl	25 μl
TEMED	10 µl	5 µl
Volumen total	3	0 ml

13.1 Preparación del gel separador y concentrador para el sistema Tris-Tricina.

13.2. Producción de anticuerpos policionales de ratón α-TC-3r (M α-TC-3r)

Para la producción de anticuerpos policionales anti-TC-3r se utilizaron 10 ratones BALB/c de 6 semanas. Los ratones se sangraron antes de la inmunización para recolectar suero preinmune. Cada ratón se inmunizó vía subcutanea con 50 µg de antígeno (TC-3r) emulsificado con el adjuvante TiterMax Gold. Se realizaron dos inmunizaciones con un intervalo de 15 días. El suero inmune fue recolectado 15 días después de la última inmunización.

13. 3. Identificación de proteínas presentes en extractos totales por 2-DE pH 3-10 (Fig. 6A) y EM.

13.3.1. Lista de proteínas identificadas Mancha 1

# M ^a	Etiqueta ^b interactoma	TVAG ^c	No. Acceso ^d	Nombre	Descripción	Score ^e	Cobertura ^f
1	XP_001318511	TVAG_475220	121901272	GAPDH	Protéina hipotética	56.95	25.21
1	XP_001582336	TVAG_167250	121916570	Chaperonina	chaperonina	55.57	25.40
1	XP_001319087	TVAG_340420	121901862	Proteína hipotética	Protéinas hipotética	50.50	31.54
1	XP_001312753	TVAG_088050	1755053	Producto de chaperonina	chaperonina 60	48.92	21.32
1	XP_001581497	TVAG_238830	885637	Enzima málica	Enzima málica, subunidad B	48.90	23.10
1	XP_001316281	TVAG_203620	121898983	Rubisco	Chaperonina 60	47.20	23.52
1	XP_001325506	TVAG_464170	121908406	Enolasa	enolasa 4	40.44	21.91
1	XP_001330232	TVAG_324980	121896226	ATP sintetasa	Adenosin trifosfatasa	40.16	27.42
1	XP_001322532	TVAG_491670	121905380	Enzima málica	Enzima málica	30.76	20.35
1	XP_001301263	TVAG_177180	121902527	WD-repetidos	Coronina	25.00	18.35
1	XP_001311055	TVAG_300000	121888765	Aldolasa	Fructosa-1,6-bisfosfato aldolasa	22.98	12.50
1	XP_001328958	TVAG_067400	345648010	Factor de elongación	Factor de elongación 1- alfa	22.28	23.85
1	XP_001322061	TVAG_259190	2351685	Succinil CoA	adhesina AP51-1	21.96	16.13
1	XP_001325937	TVAG_371880	121908844	Actina	Actina-like proteina 3	14.77	12.38
1	XP_001305174	TVAG_164890	121886677	Acetil CoA	Proteina hipotética	14.72	10.90
1	XP_001324773	TVAG_139300 *	121897038	PEPCK	Fosfoenolpiruvato carboxiquinasa	14.00	4.51
1	XP_001317828	TVAG_263740	121900572	Enolasa	Enolasa	13.28	9.11
1	XP_001579758	TVAG_268050 *	121896506	PGK	Fosfoglicerato cinasa	10.28	8.59

# M ª	Etiqueta ^b interactoma	TVAG ^c	No. Acceso ^d	Nombre	Descripción	Score ^e	Coberturaf
2	XP_001325506	TVAG_464170	121908406	Enolasa	Enolasa 4	425.11	63.29
2	XP_001315627	TVAG_043500	58429954	Enolasa	Enolasa	372.13	59.53
2	XP_001302208	TVAG_222320	121883475	WD-repetidos	Coronina	342.69	60.32
2	XP_001301263	TVAG_177180	121882424	WD-repetidos	Coronina	337.23	65.75
2	XP_001319737	TVAG_124870	121902527	WD-repetidos	Coronina	335.99	54.13
2	XP_001322282	TVAG_329460	121905125	Enolasa	Enolasa 2	232.54	49.36
2	XP_001313305	TVAG_407250	121895183	Adenilato ciclasa	Proteína hipotética	183.21	45.90
2	XP_001318744	TVAG_358110	121901511	Enolasa	Enolasa	163.06	30.64
2	XP_001298987	TVAG_126970	121879717	Rab GDI	GDP, Inhbidor de disociación	145.23	53.99
2	XP_001324948	TVAG_117470	121907839	Disulfuro Isomerasa	Disulfuro Isomerasa, putativa	108.79	27.42
2	XP_001584099	TVAG_183500	121918344	Succinato tiocinasa	adhesina AP51-3	108.77	59.17
2	XP_001303981	TVAG_144730	121885402	Succinato tiocinasa	adhesina AP51-2	90.30	54.28
2	XP_001322061	TVAG_259190	2351685	Succinato tiocinasa	adhesina AP51-1	85.63	55.83
2	XP_001580735	TVAG_177930/T VAG_178890	121887067	Chaperonina- 60kDa	Chaperonina, putative	77.59	41.94
2	XP_001328958	TVAG_067400 *	329750811	Factor de elongación 1-α	Factor de elongación 1-o	77.44	42.57
2	XP_001308720	TVAG_354020/T VAG_354040	121890416	Centractina (dinactina)	Actina	74.79	39.23
2	XP_001317828	TVAG_263740	121900572	Enolasa	Enolasa	72.39	29.81
2	XP_001327725	TVAG_210320	121910658	Adenosil homocisteinasa	Adenosil homocisteinasa	70.09	39.09

13.3.3. Lista de proteínas identificadas en la mancha 2

2	XP_001579934	TVAG_146910 *	432487	GAPDH	Gliceraldehído 3-fosfato deshidrogenasa	57.63	49.43
2	XP_001330232	TVAG_324980/T VAG_453110	121896226	ATP sintetasa	Adenosin trifosfatasa	51.87	32.06
2	XP_001324432	TVAG_027620	121907315	Fosfoglucomutasa	Fosfoglucomutasa, dominio C-terminal	45.28	33.26
2	XP_001318848	TVAG_056190	121901617	Metalopeptidasa M20	Clan MH, familia M20, Metalopeptidasa T-like	40.51	26.67
2	XP_001316599	TVAG_350510/ TVAG_364270	10567594	Chaperonina	chaperonina subunidad α1 CCT	39.68	15.12
2	XP_001306345	TVAG_376130	121887913	Gelsolina	Proteína de unión a actina	35.59	29.27
2	XP_001314248	TVAG_383940	121896506	Fosfoglicerato cinasa	Fosfoglicerato cinasa	33.78	24.11
2	XP_001329900	TVAG_015950	121912950	Piruvato cinasa	Piruvato cinasa	32.39	21.38
2	XP_001304619	TVAG_092750	10443866	Gluocinasa	Glucocinasa	31.79	20.53
2	XP_001307535	TVAG_422780	121889169	Alcohol deshidrogenasa	Alcohol deshidrogenasa	30.26	20.20
2	XP_001579239	TVAG_253650	1054961	Malato deshidrogenasa	Malato deshidrogenasa citosólica	30.09	21.69
2	XP_001320756	TVAG_487600	121903568	Enolasa	Enolasa	29.30	20.33
2	XP_001325937	TVAG_371880	121908844	Actina	Actina-like proteína 3	29.25	24.76
2	XP_001322532	TVAG_491670	121905380	Enzima málica	Enzima málica	24.55	15.83
2	XP_001314140	TVAG_064640 *	121888855	Proteina ribosomal L5	Proteina ribosomal L5	22.64	19.16
2	XP_001281006	TVAG_519620 *	15077422	Tubulina beta	Tubulina beta-2	22.17	22.40
2	XP_001584262	TVAG_185830	121918508	Vacuolar sorting protein	Proteína vacuolar	19.03	10.76
2	XP_001324521	TVAG_161040	121907405	Molibdoterina	Proteína hipotética	15.85	16.30

2	XP_001309879	TVAG_414300	121891625	Fosfoglicerato mutasa	Metaloenzima	15.35	14.25
2	XP_001579948	TVAG_147070	121914160	Cheperonina	Chaperonina	15.27	12.34
2	XP_001321933	TVAG_098450 *	121892187	Proteina ribosomal 40s	Proteina ribosomal 40s	14.71	18.04
2	XP_001329589	TVAG_493960	121912635	WD-repetidos	Coronina, putativa	14.36	13.39
2	XP_001584128	TVAG_183790 *	885637	Enzima málica	Enzima málica, subunidad beta	14.02	8.99
2	XP_001303059	TVAG_088220	121884406	Aspartato aminotransferasa	Aspartato aminotransferasa	12.21	8.70
2	XP_001318769	TVAG_358360	121901536	РІЗК	Mio-inositol-1 fosfato sintetasa	12.17	7.83
2	XP_001318159	TVAG_087140	311303088	arp2/3, putative	putative Arp2/3	11.64	13.11
2	XP_001314419	TVAG_090100	452296	TvCP3	Clan CA, Cisteina proteinasa	8.62	12.23
2	XP_001319129	TVAG_057000	452294	TvCP2	Clan CA, Cisteina proteinasa	13.81	15.92
2	XP_001312160	TVAG_296140	121893998	Ubiquitina hidrolasa	Clan CA, familia C19	7.89	6.36
2	XP_001300494	TVAG_063330	121881543	Proteína hipotética	Proteína hipotética	7.02	6.37

AST, Aspartato amino transferasa, PGAM, Fosfoglicerato mutasa, GAPDH, Gliceraldehído 3-Fosfato deshidrogenasa, PGK, Fosfoglicerato cinasa, PI3K, Fosfoinositol 3-cinasa, ADH, alcohol deshidrogenasa, MDH, Malato deshidrogenasa, PGM, Fosfoglucomutasa, PR, proteína ribosomal, Mp, metalopeptidasa, TvCP2. *T. vaginalis* cisteína proteinasa 2, TvCP3. *T. vaginalis* cisteína proteinasa 3, FE1α, Factor de elongación 1α, PH, Proteína hipotética

# M ª	Etiqueta ^b interactoma	TVAG ^c	No. Acceso ^d	Nombre	Descripción	Score ^e	Cobertura ^f
3	XP_001301893	TVAG_054030 *	121838059	Actina	Actina, parcial	147.27	51.67
3	XP_001318511	TVAG_475220	121901272	GAPDH	Gliceraldehído 3-fosfato deshidrogenasa	143.34	56.51
3	XP_001579934	TVAG_146910/ TVAG_366380	432487	GAPDH	Gliceraldehído 3-fosfato deshidrogenasa	143.18	72.57
3	XP_001314248	TVAG_383940	121896506	PGK	Fosfoglicerato cinasa	118.76	49.16
3	XP_001322532	TVAG_491670	121905380	Enzima málica	Enzima málica	103.75	43.72
3	XP_001319737	TVAG_124870	121902527	WD-repetidos	Coronina	89.03	33.49
3	XP_001579758	TVAG_268050/ TVAG_383940	121913968	PGK	Fosfoglicerato cinasa	86.39	43.44
3	XP_001325506	TVAG_464170	121908406	Enolasa	Enolasa 4	63.24	30.02
3	XP_001304619	TVAG_092750	10443866	Glucocinasa	Glucocinasa	62.17	27.47
3	XP_001289962	TVAG_538040	121861781	Proteína hipotética	Proteína hipotética	52.14	33.23
3	XP_001579239	TVAG_253650	1054961	MDH	Malato deshidrogenasa	46.57	31.93
3	XP_001307535	TVAG_422780	121889169	ADH	Malato deshidrogenasa	43.49	28.03
3	XP_001584099	TVAG_183500	2351689	Succinato tiocinasa	adhesina AP51-3	42.31	32.35
3	XP_001303981	TVAG_144730	121885402	Succinato tiocinasa	adhesina AP51-2	38.12	36.19
3	XP_001322061	TVAG_259190	2351685	Succinato tiocinasa	adhesina AP51-1	35.43	33.50
3	XP_001301263	TVAG_177180/T VAG_222320	121882424	WD-repetidos	Coronina	33.30	31.26
3	XP_001583562	TVAG_036010	37908704	Flavoproteina	Flavoproteina tipo A	30.15	24.70

13.3.5. Lista de proteínas identificadas en la mancha 3

3	XP_001584080	TVAG_183300	121918325	Aminotransferasa	Aminotransferasa clase V	28.50	16.71
3	XP_001302401	TVAG_023840	10443868	Proteína hipotética	Proteína hipotética	26.67	16.18
3	XP_001304062	TVAG_147790	52695320	Piridoxal-5'- Fosfato	Enzimas del metabolismo de cisteína/metionina	18.33	11.48
3	XP_001300261	TVAG_345130	121881271	Proteína hipotética	Proteína hipotética	18.32	8.88
3	XP_001318649	TVAG_403830	121901413	SAM	S-adenosilmetionina sintetasa,	17.13	12.47
3	XP_001324521	TVAG_161040	121907405	Molibdoterina	Proteína hipotética	16.66	17.53
3	XP_001326531	TVAG_026290	121909447	Oxisterol	Proteína hipotética	16.64	10.70
3	XP_001580601	TVAG_228780	21217455	ADH	Alcohol deshidrogenasa 1	16.63	14.60
3	XP_001579755	TVAG_268020	121913965	Aspartato aminotransferasa	Aspartato aminotransferasa	14.21	13.82
3	XP_001580148	TVAG_190580	121914362	Metalopeptidasa M24	Clan MG, familia M24, metalopeptidasa P-like	14.21	14.36
3	XP_001308720	TVAG_354020/T VAG_354040	121890416	Centractina (dinactina)	Actina	14.02	15.38
3	XP_001316923	TVAG_474980	23095907	Dihidrolipoil deshidrogenasa	Dihidrolipoil deshidrogenasa	13.41	14.80
3	XP_001326490	TVAG_487100	121909405	Proteína hipotética	Proteína hipotética	12.73	17.79
3	XP_001328958	TVAG_067400	345648010	FE1-α	Factor de elongación 1-α	12.35	13.08
3	XP_001302740	TVAG_381690	121884058	NAD-DE	Nicotinamida Adenina Dinucleótido dependiente de epimerasa	12.21	10.92

13.3.6. Interactoma de las proteínas de la mancha 3

AST, Aspartato amino transferasa, GAPDH, GliceraldehÍdo 3-Fosfato deshidrogenasa, PGK, Fosfoglicerato cinasa, ADH, alcohol deshidrogenasa, MDH, Malato deshidrogenasa, PPD, piridoxal fosfato, SAM, S-adenosil metionina sintetasa, DLD, dihidrolipoil deshidrogenasa, NAD-DE, NAD dependiente de epimerasa, Mp, metalopeptidasa, FE1α, Factor de elongación 1α, PH, Proteína hipotética

# M ^a	Etiqueta ^b interactoma	TVAG ^c	No. Acceso ^d	Nombre	Descripción	Score ^e	Coberturaf
4	XP_001316923	TVAG_474980	23095907	Dihidrolipoil deshidrogenasa	Dihidrolipoil deshidrogenasa	376.10	58.55
4	XP_001311055	TVAG_300000	121892850	Aldolasa	Fructosa 2-fosfato aldolasa	59.05	25.61
4	XP_001303592	TVAG_142060 *	121884983	40S Proteina Ribosomal S3a	40S Proteina Ribosomal S3a	56.81	55.47
4	XP_001307577	TVAG_293770	121889214	PFK	Fosfofructocinasa	50.48	25.77
4	XP_001319737	TVAG_124870	121902527	WD-repetidos	Coronina	50.22	17.20
4	XP_001319129	TVAG_057000	452294	TvCP2	Clan CA, cisteina proteinasa	39.53	26.11
4	XP_001581375	TVAG_110010	121915602	Proteína hipotética	Proteína hipotética	34.07	32.00
4	XP_001321933	TVAG_098450 *	121892187	40S Proteina Ribosomal S4	40S Proteina Ribosomal S4	29.06	26.27
4	XP_001322091	TVAG_373750	121904931	Proteína hipotética	Proteína hipotética	28.32	27.87
4	XP_001328170	TVAG_261970	4105707	Carbamato cinasa	Carbamato cinasa	25.04	13.69
4	XP_001325414	TVAG_097610	121908313	Proteína hipotética	Proteína hipotética	24.00	26.09
4	XP_001579239	TVAG_253650	1054961	Malato deshidrogenasa	Malato deshidrogenasa	22.47	14.16
4	XP_001314419	TVAG_090100	121896732	TvCP3	Clan CA, cisteina proteinasa	20.44	15.09
4	XP_001320336/ XP_001304868	TVAG_497370/T VAG_096350	121886349	TIM	Triosa fosfato isomerasa	19.95	24.60
4	XP_001319966	TVAG_118240	121902761	Proteína hipotética	Proteína hipotética	19.94	18.57

13.3.7. Lista de proteínas identificadas en la mancha 4

4	XP_001328129	TVAG_165340	1710867	Succinato tiocinasa	Succinato tiocinasa a	19.43	27.18
4	XP_001304211	TVAG_251250	121885647	Proteína hipotética	Proteína hipotética	19.206	18.55
4	XP_001311322	TVAG_125360	121893127	Disulfuro oxidoreductasa	Disulfuro oxidoreductasa (Glutatión)	19.05	13.50
4	XP_001306738	TVAG_054130/T VAG_067980	121901118	60S Proteina Ribosomal L7	60S Proteína Ribosomal L7	19.03	21.34
4	XP_001316033	TVAG_454490	121898728	NPN	Purina nucleósido fosforilasa	18.36	26.69
4	XP_001324008	TVAG_106800 *	121915034	30S proteina ribosomal S3	30S proteína ribosomal S3	15.48	24.54
4	XP_001302860	TVAG_434970	121884190	Actina	Actina	15.245	16.99
4	XP_001306358	TVAG_104730	121887927	Proteína hipotética	Proteína hipotética	12.65	19.40
4	XP_001318159	VAG_087140	311303088	arp2/3, putative	arp2/3, putative	12.10	16.10
4	XP_001583862	TVAG_076230	121918106	Proteína de union a nt	Proteína de union a nt	12.1	16.55
4	XP_001308200	TVAG_051820	121889868	Proteína de transporte	Proteína de transporte de tricarboxilato	11.64	9.98
4	XP_001327247	TVAG_019240 *	1101021	Ubiquitina	Ubiquitina	11.32	62.93

13.3.8. Interactoma de las proteínas de la mancha 4

MDH, Malato deshidrogenasa, PUN, proteína de unión a nt, PNP, purina nucleosido fosforilasa, PTM, proteína de transporte mitocondrial, DLD, dihidrolipoil deshidogenasa, PFK, fosfofructo cinasa, TIM, triosa fosfato isomeras, PR, proteína ribosomal, TvCP2. *T. vaginalis* cisteína proteinasa 2, TvCP3. *T. vaginalis* cisteína proteinasa 3, PH, Proteína hipotética.

# M ª	Etiqueta ^b interactoma	TVAG ^c	No. Acceso ^d	Nombre	Descripción	Score ^e	Cobertura ^f
5	XP_001304868	TVAG_096350	121886349	TIM	Triosa fosfato isomerasa	334.37	70.63
5	XP_001294100	TVAG_576970	121871700	Proteína hipotética	Proteína hipotética	57.14	33.80
5	XP_001319129	VAG_057000	452294	TvCP2	Clan CA, cisteina proteinasa	40.19	27.71
5	XP_001319737	TVAG_124870	121902527	WD-repetidos	Coronina	24.52	21.79
5	XP_001324008	TVAG_106800 *	121915034	30S proteina ribosomal S3	30S proteina ribosomal S3	24.40	28.24
5	XP_001582124	TVAG_283080	121916357	Proteína hipotética	Proteína hipotética	21.42	23.65
5	XP_001325315	TVAG_212740/ TVAG_113710	121913215	PGAM	Fosfoglicerato mutasa	21.40	18.73
5	XP_001306738	TVAG_054130/ TVAG_067980	121901118	60S Proteina Ribosomal L7	60S Proteina Ribosomal L7	20.82	20.50
5	XP_001327253	TVAG_019300	121910180	Betalactamasa	Dominio bectalactamasa	19.16	23.98
5	XP_001323435	TVAG_127180	62738890	Nucleosido fosforilasa	Purina nucleoside fosforilasa	16.63	12.77
5	XP_001581104	TVAG_366260	121915328	Fosfatasa 2C	Proteína fosfatasa 2C	16.53	22.35
5	XP_001324507	TVAG_160900	121907391	O-metiltransferasa	O-metiltransferasa	14.53	21.95
5	XP_001312328	TVAG_043060 *	121888765	Aldolasa	fructosa-bisfosfato aldolasa	11.94	11.59
5	XP_001300897	TVAG_033590 *	121903557	40S proteina ribosomal S6	40S proteina ribosomal S6	11.94	13.89
5	XP_001315624	TVAG_043470	121898307	Proteína de union a RNA	Proteína de union a RNA	11.22	21.29
5	XP_001314419	TVAG_090100	121896732	TvCP3	Clan CA, cisteina proteinasa	22.80	15.09

13.3.9. Lista de proteínas identificadas en la mancha 5

PNP, purina nucleósido fosforilasa, PGAM, fosfoglicerato mutasa, OMT, O-metiltransferasa, RNApb, proteína de unión a RNA, TIM, triosa fosfato isomerasa, PR, proteína ribosomal, TvCP2. *T. vaginalis* cisteína proteinasa 2, TvCP3. *T. vaginalis* cisteína proteinasa 3, PH, Proteína hipotética.

# M ^a	Etiqueta ^b interactoma	TVAG ^c	No. Acceso ^d	Nombre	Descripción	Score ^e	Cobertura ^f
6	XP_001316923	TVAG_474980	23095907	Dihidrolipoil deshidrogenasa	Dihidrolipoil deshidrogenasa	45.35	12.83
6	XP_001304868/ XP_001320336	TVAG_096350/ TVAG_497370	121886349	TIM	Triosa fosfato isomerasa	27.69	21.03
6	XP_001319737	TVAG_124870	121902527	WD-repetidos	Coronina	22.31	15.14
6	XP_001312328	TVAG_043060 *	121894172	Aldolasa	fructosa-bisfosfato aldolasa	15.46	12.20
6	XP_001306358	TVAG_104730	121887927	Proteína hipotética	Proteína hipotética	15.12	11.21
6	XP_001319129	TVAG_057000	452294	TvCP2	Clan CA, cisteina proteinasa	12.51	10.19
6	XP_001314419	TVAG_090100	121896732	TvCP3	Clan CA, cisteina proteinasa	10.18	11.95
7	XP_001304868	TVAG_096350	121886349	TIM	Triosa fosfato isomerasa	414.64	67.06
7	XP_001319129	TVAG_057000	452294	TvCP2	Clan CA, cisteina proteinasa	57.53	28.03
7	XP_001310150	TVAG_196620	121891908	Proteína hipotetica	Proteína hipotetica	28.04	25.47
7	XP_001579013	TVAG_113710 *	121913215	Fosfoglicerato mutasa	fosfoglicerato mutasa	26.28	18.73
7	XP_001314419	TVAG_090100	121896732	TvCP3	Clan CA, cisteina proteinasa	25.81	15.09
7	XP_001313356	TVAG_114310	23095909	PRX	Peroxirredoxinas	22.36	35.71
7	XP_001324008	TVAG_106800 *	121915034	30S proteina ribosomal S3	30S proteina ribosomal S3	21.50	22.69
7	XP_001306738	TVAG_054130 *	121901118	60S Proteina Ribosomal L7	60S Proteina Ribosomal L7	19.48	20.50
7	XP_001309063	TVAG_301740	121890773	DNA-pb	Reb-1 proteina de unión a DNA	19.33	26.94

13.3.11. Lista de proteínas identificadas en las mancha 6 y 7

7	XP_001323199	TVAG_446780	121906059	Deshidrogenasa de cadena corta	oxidoreductase	17.80	23.41
7	XP_001294100	TVAG_576970	121871700	Proteína hipotética	Proteína hipotética	16.93	18.78
7	XP_001307896	TVAG_205640	121889549	Proteína hipotética	Proteína hipotética	14.34	15.70
7	XP_001304820	TVAG_058050	121886298	Proteosoma sub 1-α	Treonina peptidasa, proteosoma sub-alfa	13.22	18.33
7	XP_001326926	TVAG_038090 *	121909848	Alquil hidroxiperoxido reductasa sub-C	Alquil hidroxiperoxido reductasa sub-C	12.61	24.49
7	XP_001305871	TVAG_489800	1092412	NADH-D	NADH deshidrogenasa 51 kDa	10.90	17.03

PGAM, fosfoglicerato mutasa, DNApb, proteína de unión a DNA, NADH D, NADH deshidrogenasa, PRX, peroxirredoxina, DLD, dihidrolipoil deshidrogenasa, AhpC, alquil hidroperóxido reductasa, TIM, triosa fosfato isomerasa, PR, proteína ribosomal, TvCP2. *T. vaginalis* cisteína proteinasa 2, TvCP3. *T. vaginalis* cisteína proteinasa 3, PH, Proteína hipotética.

13.3.13. Lista de proteína	s identificadas en la	s manchas 8 y 9
----------------------------	-----------------------	-----------------

# M ª	Etiqueta ^b interactoma	TVAG ^c	No Acceso ^d	Nombre	Descripción	Score ^e	Cobertura ^f
8	XP_001304868/ XP_001320336	TVAG_096350/ TVAG_497370	121886349	TIM	Triosa fosfato isomerasa	26.75	17.86
8	XP_001319737	TVAG_124870	121902527	WD-repetidos	Coronina	13.42	9.86
9	XP_001304868/ XP_001320336	TVAG_096350/ TVAG_497370	121886349	TIM	Triosa fosfato isomerasa	15.18	11.51
9	XP_001324064	TVAG_459130	121906940	Profilina	Profilina	11.78	31.15
9	XP_001319737	TVAG_124870 *	121882424	WD-repetidos	Coronina	10.02	9.89

a, Se refiere al número de mancha identificada del gel con extractos totales 2-DE pH 7-10.

b, Etiqueta de cada proteína generada en el análisis de interacciones en la base de datos STRING.

c, Número de identificación de la base de datos Trichdb (<u>http://www.trichdb.org</u>), * indica que no se encontró el péptido diferencial exclusivo de ese TVAG.

d, Número de acceso en la base de datos GenBank.

e, Corresponde al valor total de score de los péptidos identificados.

f, Indica el porcentaje cubierto en la secuencia de aa de la proteína de acuerdo al número de péptidos identificados en el análisis.

No. Accesoª	ID ^b	Nombre ^c	Descripción ^d	Mancha no. ^e	Score ^f	Cobertura (%) ^g	No. Péptidos identificados ^h	Xcorr ^c
			Clan CA, familia C1,					
Q27107	TVAG_057000	TvCP2	Catepsina L like, cisteína proteinasa	1	65.41	21.02	SNQcGIASEAILPK	4.66
							SVGLTKGYDEVKDTEAELAK	4.45
							DKSNQcGIASEAILPK	4.44
							GYDEVKDTEAELAK	4.18
							NSWGTSWGEQGYIR	4.17
							FMLTADYPYTAR	4.14
							FmLTADYPYTAR	4.11
							GYDEVKDTEAELAKAASK	4.10
			Clan CA, familia C1,					
A2EZN7	TVAG_090100	TvCP3	Catepsina L like, cisteína proteinasa	2	32.44	21.7	GLWMLETDYPYTAR	5.44
			·				GLWmLETDYPYTAR	4.94
							SYVRPTTTQNEDELKAGcAK	4.79
							SYVRPTTTQNEDELK	4.53
							ScSSTFLDHAVGLVGYGTENK	4.45
							NSWGTSWGEKGYIR	3.83
A2DAL5	TVAG_035410	NA	Inhibidor del inicio de la traducción 5A	3	76.47	45.16	cNcYLADIADFQK	4.77
							VISTPDAPAAIGPYcQAR	4.45
							cclQAGKLPAGK	4.35
							IYADYFGDHKPcR	4.05
			Clan CA, familia C1,					
A2FD35	TVAG_355480	TvCP4-like	Catepsina L like, cisteína proteinasa	3	41.67	20.66	SYVNVAEGDEKDLATK	5.41
							NNQcGEATMAcIPQDK	4.69
							DKNNQcGEATMAcIPQDK	4.68
							MIKDKNNQcGEATMAcIPQDK	4.50
							NSWGTSWGEKGYIR	4.15
							FmTEADYPYTAR	4.07
							FMTEADYPYTAR	3.81

13.4. Lista de proteínas identificadas en extractos resistentes a proteinasas 2-DE pH 4-7 aislado CNCD 280 (Fig. 7A)

			Clan CA, familia C1,					
Q27107	TVAG_057000	TvCP2	Catepsina L like, cisteína proteinasa	4	38.99	27.71	IKDQGQcGScWAFSAIQASESR	5.34
			·				SNQcGIASEAILPK	4.59
							NSWGTSWGEQGYIR	4.49
							SVGLTKGYDEVKDTEAELAK	4.48
							MIKDKSNQcGIASEAILPK	4.19
							FmLTADYPYTAR	4.03
							GYDEVKDTEAELAK	4.02
							FMLTADYPYTAR	3.79
			Clan CA, familia C1,					
A2FD35	TVAG_355480	TvCP4-like	Catepsina L like,	4	38.15	20.66	MIKDKNNQcGEATMAcIPQDK	5.80
			cisteina proteinasa				SYVNVAEGDEKDLATK	5.42
							DKNNQcGEATMAcIPQDK	5.10
							NNQcGEATMAcIPQDK	4.84
							NSWGTSWGEKGYIR	4.49
							FmTEADYPYTAR	4.31
							FMTEADYPYTAR	4.09
							DKNNQcGEATmAcIPQDK	4.06
			Clan CD, familia C13,					
A2DYT2	TVAG_426660	TvLEGU-1	Asparaginil endopeptidasa	4	33.68	16.75	HQADIFNMYQQLVK	5.44
							INYAHNSVTADQFYTVLTTLK	5.36
							AQTTGSHVcYYGDVNmK	5.35
							AQTTGSHVcYYGDVNMK	5.16
							HQADIFNmYQQLVK	4.54
							AFDTMEAKGLYGK	3.66
			Clan CA, familia C1,					
Q27107	TVAG_057000	TvCP2	Catepsina L like, cisteína proteinasa	5	58.13	27.71	IKDQGQcGScWAFSAIQASESR	4.63
			·				NSWGTSWGEQGYIR	4.49
							SNQcGIASEAILPK	4.42
							GYDEVKDTEAELAK	4.21
							SVGLTKGYDEVKDTEAELAK	4.17
							MIKDKSNQcGIASEAILPK	4.05

							FMLTADYPYTAR	3.97
							FmLTADYPYTAR	3.73
			Clan CA, familia C1,					
A2FD35	TVAG_355480	TvCP4-like	Catepsina L like, cisteína proteinasa	5	39.72	19.67	SYVNVAEGDEKDLATK	5.51
							DKNNQcGEATMAcIPQDK	4.76
							NNQcGEATMAcIPQDK	4.56
							NSWGTSWGEKGYIR	4.49
							FMTEADYPYTAR	4.29
							SYVNVAEGDEK	3.90
							FmTEADYPYTAR	3.70
			Clan CA. familia C1.					
A2FD35	TVAG_355480	TvCP4-like	Catepsina L like, cisteína proteinasa	6	72.24	19.67	SYVNVAEGDEKDLATK	5.52
							NNQcGEATMAcIPQDK	4.98
							NSWGTSWGEKGYIR	4.43
							NNQcGEATmAcIPQDK	4.39
							DKNNQcGEATMAcIPQDK	4.30
							DKNNQcGEATmAcIPQDK	4.13
							FMTEADYPYTAR	3.95
							FmTEADYPYTAR	3.78
							SYVNVAEGDEK	3.74
			Clan CA, familia C1,					
A2FD35	TVAG_355480	TvCP4-like	Catepsina L like, cisteína proteinasa	7	53.37	20.66	SYVNVAEGDEKDLATK	5.73
							MIKDKNNQcGEATMAcIPQDK	5.40
							DKNNQcGEATMAcIPQDK	5.12
							NNQcGEATMAcIPQDK	4.94
							FMTEADYPYTAR	4.47
							NSWGTSWGEKGYIR	4.23
							FmTEADYPYTAR	4.00
			Clan AA, familia A1,					
A2FIM5	TVAG_336300	TvCAT-D	Catepsina D, aspártico proteinasa	8	19.61	10	GFASQDEVQIAGITDK	5.04
							SSTYTADGREVDIQYGSGScK	4.90

			Clan CA, familia C1,					
A2EZN7	TVAG_090100	TvCP3	Catepsina L like, cisteína proteinasa	9	27.43	20.13	ScSSTFLDHAVGLVGYGTENK	5.12
			· · · · · · · · · · · · · · · · · · ·				GLWMLETDYPYTAR	5.09
							GLWmLETDYPYTAR	4.72
							SYVRPTTIQNEDELK	4.26
_			Catensina L like				NSWGISWGERGIIR	3.04
Q49P75	TVAG_467970	TvCP4	cisteina proteinasa	10	15.27	12.46	SYVNVAEGDEKDLATK	5.01
							FMTEADYPYTAR	4.10
							FmTEADYPYTAR	3.45
			Clan CA familia C1				NSWGTTWGEK	2.70
027107	T\/AG 057000	TVCP2	Catensina L like	10	11 87	12 74	SNOcGIASEAII PK	4 70
QZIIOI	14/10_00/000	10012	cisteina proteinasa	10	11.07	12.14		4.70
							GYDEVKDTEAELAK	4.18
							FmLTADYPYTAR	2.99
A2FBD4	TVAG_445130	NA	Alanina deshidrogenasa 2	10	9.52	9.92	GLAQGLNIVNGK	3.33
			_				SLPLLVPmSQVAGR	3.24
							SLPLLVPMSQVAGR	2.94
AOFDOF			Clan CA, familia C1,		04.00	40.07		5 4 7
A2FD35	TVAG_355480	TVCP4-like	Catepsina L like,	11	24.80	19.67	SYVNVAEGDEKDLATK	5.17
			cisterna proteinasa				NSWGTSWGEKGYIR	4.35
							DKNNQcGEATMAcIPQDK	4.15
							FmTEADYPYTAR	3.88
							FMTEADYPYTAR	3.63
AOFT00			Clan CA, familia C1,	10	40.44	10 70		F 70
AZETUZ	TVAG_298080	TVCP39	cisteína proteinasa	12	40.44	10.72	FIITEADTPTTAQDGSCK	5.79
							FMTEADYPYTAQDGScK	5.74
							VTGYVNVVEGDEKDLATK	4.91
							VTGYVNVVEGDEK	4.69
							NNQCGEATMACIPTDK	4.50

A2DZD8	TVAG_487100	NA	Proteína no caracterizada	13	32.07	8.59		5.00
A2ET02	TVAG_298080	TvCP39	Clan CA, familia C1, Catepsina L like, cisteína proteinasa	13	10.06	9.84	FMTEADYPYTAQDGScK	4.93 5.71
							VTGYVNVVEGDEK	4.34
Q27109	TVAG_467970/ TVAG_355480	TvCP4/ TvCP4-like	Cisteína proteinasa, fragmento	13	8.33	9.59	SYVNVAEGDEKDLATK	4.28
							FMTEADYPYTAR	4.05
A2DZD8	TVAG_487100	NA	Proteina no caracterizada	14	45.01	30.67	KAGNDDELVELAVK	5.22
							KAGNDDELVELAVKNAQK AGNDDELVELAVK FGVAFcEASGPcLIR TAQGRGVSSVIDGFAPK	4.95 4.94 4.80 4.15
A2DZD8	TVAG_487100	NA	Proteína no caracterizada	15	60.72	30.67	KAGNDDELVELAVKNAQK	5.53
							KAGNDDELVELAVK AGNDDELVELAVK AGNDDELVELAVKNAQK FGVAFcEASGPcLIR TAQGRGVSSVIDGFAPK	5.27 4.99 4.85 4.59 4.05
			Clan CA, familia C1,			~~~~		
A2ET02	TVAG_298080	TvCP39	Catepsina L like, cisteína proteinasa	16	130.67	22.95	FmTEADYPYTAQDGScK	5.99
							FMTEADYPYTAQDGScK VTGYVNVVEGDEKDLATK MIKDKNNQcGEATMAcIPTDK DKNNQcGEATMACIPTDK DKNNQcGEATMACIPTDK NNQcGEATMACIPTDK VTGYVNVVEGDEK NNQcGEATMACIPTDK NSWGTSWGEKGYIR	5.71 5.37 5.07 5.03 4.95 4.86 4.65 4.55 3.90

			Clan CD, familia C13,					
A2DYT2	TVAG_426660	TvLEGU-1	Asparaginil endopeptidasa	17	46.81	16.49	AQTTGSHVcYYGDVNMK	5.30
							AQTTGSHVcYYGDVNMKNLK	4.79
							HQADIFNMYQQLVK	4.69
							AQTTGSHVcYYGDVNmK	4.56
							VKAQTTGSHVcYYGDVNMK	4.49
							VKAQTTGSHVcYYGDVNmK	4.11
							LSDFLGTPNEVVAPK	4.08
							AFDIMEAKGLYGK	3.78
								3.72
			Drotoíno no				AFDIMEAKGLYGK	3.65
A2DZD8	TVAG_487100	NA	caracterizada	17	31.96	18.4	KAGNDDELVELAVKNAQK	5.17
							AGNDDELVELAVK	5.02
							KAGNDDELVELAVK	4.80
							AGNDDELVELAVKNAQK	4.02
							GVSSVIDGFAPK	3.57
			Clan CD, familia C13,					
A2DYT2	TVAG_426660	TvLEGU-1	Asparaginil endopeptidasa	18	27.89	14.43	AQTTGSHVcYYGDVNMK	5.35
							INYAHNSVTADQFYTVLTTLK	5.26
							AQTTGSHVcYYGDVNmK	4.86
							VKAQTTGSHVcYYGDVNMK	4.21
							AQTTGSHVcYYGDVNMKNLK	4.20
							AFDTMEAKGLYGK	3.99
			Clan CD, familia C13,					
121909613*	TVAG_426660	TvLEGU-1	Asparaginil endopeptidasa	19	21.98	11.6	AQTTGSHVcYYGDVNMK	5.46
							AQTTGSHVcYYGDVNmK	4.85
							LSDFLGTPNEVVAPK	4.31
							AFDTMEAKGLYGK	3.74
454890*	TVAG_467970/ TVAG_355480	TvCP4/ TvCP4-like	Cisteína proteinasa	19	11.68	9.59	SYVNVAEGDEKDLATK	4.98
							FMTEADYPYTAR	3.40
							FmTEADYPYTAR	3.29

			Clan CA, familia C1,					
121899120*	TVAG_298080	TvCP39	Catepsina L like, cisteína proteinasa	20	70.87	23.93	FMTEADYPYTAQDGScK	5.89
			·				FmTEADYPYTAQDGScK	5.60
							VTGYVNVVEGDEKDLATK	5.31
							VTGYVNVVEGDEK	4.95
							NNQcGEATMAcIPTDK	4.80
							NSWGTSWGEKGYIR	4.08
450004*				20	10.04	10.00		3.75
452294"	TVAG_057000	TVCP2	Cisteina proteinasa	20	10.04	10.83		4.08
			Clan CD familia C13				SNQCGIASEAILPK	4.02
121884632*	T\/AG_385340	Tv-LEGU-2	Asparaginil	20	5 50	5 36	OSHVMEYGDTSI K	3 58
121004002	11776_000040		endopeptidasa	20	0.00	0.00	QOINTINE FOD FOEK	0.00
							VTATNFYK	1.92
121884585*	TVAG_272260	TC-2	Clan IH, familia I25, Eitocistatina like	21	16.24	30.77	NGTTLEYIQLLSATQK	4.41
							VVSGYIFEGVVK	4.30
			Clan CD. familia C13.					1.00
121909613*	TVAG_426660	TvLEGU-1	Asparaginil	21	8.92	7.73	AQTTGSHVcYYGDVNMK	5.12
	_		endopeptidasa					
							AFDTMEAKGLYGK	3.80
454890*	TVAG_467970	TvCP4	Cisteína proteinase,	22	13.13	9.59	SYVNVAEGDEKDLATK	5.47
			parcial				ΕΜΤΕΔΟΥΡΥΤΔΡ	3 00
							EmTEADYPYTAR	3 67
			Clan CD. familia C13.					0.07
121909613*	TVAG_426660	TvLEGU-1	Asparaginil	22	9.70	3.35	AFDTMEAKGLYGK	4.07
			endopeptidasa					
							AFDTmEAKGLYGK	3.84
							AFDTMEAK	1.79

^a Número de acceso en la base de datos UniProt, los que poseen un * corresponde al número de acceso para GenBank.

^b ID, número de identificación de la base de datos TrichDB (<u>http://www.trichdb.org</u>).

^c Nombre de la proteína, TC-3, indica Trichocistatina-3, (TvCP) indica cisteína proteinasa de Trichomonas vaginalis.

^d Descripción de la proteína identificada.

^e Corresponde al valor total de Xcorr de los péptidos identificados.

^f Indica el porcentaje cubierto en la secuencia de aa de la proteína de acuerdo al número de péptidos identificados en el análisis.

⁹ Es el número de péptidos identificados para cada proteína. Las letras en minúscula c y m corresponden a los residuos de aa que fueron modificados para carbamidometilación y oxidación, respectivamente.

^h Describe la correlación del espectro virtual con el espectro observado. Los valores por encima de 2.0 son generalmente indicativos de una buena correlación (James P., 2001. Proteome Research: Mass Spectrometry (Principles and Practice). Springer editorial. (pag. 125-142); SEQUEST Tips, Innovative Solutions for Science (<u>http://www.enovatia.com/services/ms/ms-resources/sequest-tips/</u>).

13.5. Lista de proteínas identificadas en extractos resistentes a proteinasas 2-DE pH 7-10 del aislado CNCD 280 de *T. vaginalis* (Fig. 8).

Gelª	No. Mancha ^ь	ID۰	No. Acceso ^d	Nombre	Descripción	Score ^e	Cobertura ^f
Ρ	1	TVAG_210320	A2DVT9	Adenosil homocisteinasa	Adenosil homocisteinasa	267.97	28.60
Z	1	TVAG_369910	A2EX43	Proteína hipotética	Proteína hipotética OS=Trichomonas vaginalis	29.80	0.34
Z	1	TVAG_057000	Q27107	TvCP2	Clan CA, familia C1, Catepsina L-like cisteína proteinasa	21.55	12.74
Z	1	TVAG_127180	A2E7Y6	Nucleosido fosforilasa	Purina nucleósido fosforilasa	9.02	10.17
Z	1	TVAG_467970/ TVAG_355480	Q27109	TvCP4/TvCP4-like	Cisteína proteinasa, putative (Fragmento)	7.50	9.59
Ρ	2	TVAG_127180	A2E7Y6	Purina nucleosido fosforilasa	Purina nucleósido fosforilasa	160.03	10.17
Ρ	2	TVAG_467970/ TVAG_355480	Q27109	TvCP4/TvCP4-like	Cisteína proteinasa, putative (Fragmento)	26.73	7.88
Z	2	TVAG_057000	Q27107	TvCP2	Clan CA, familia C1, Catepsina L-like cisteína proteinasa	28.33	17.20
Z	2	TVAG_355480	A2FD35	TvCP4-like	Clan CA, familia C1, Catepsina L-like cisteína proteinasa	17.90	13.77
Z	2	TVAG_369910	A2EX43	Proteína hipotética	Proteína hipotética	11.67	0.34

Z	2	TVAG_527150	A2G842	Proteína hipotética	Proteína hipotética	3.73	1.21
Ρ	3	TVAG_210320	A2DVT9	Adenosil homocisteinasa	Adenosil homocisteinasa	175.71	12.96
Z	3	TVAG_426660	A2DYT2	TvLEGU-1	Clan CD, familia C13, Asparaginil endopeptidasa- like Cisteína proteinasa	1174.5 8	52.06
Z	3	TVAG_369910	A2EX43	Proteína hipotética	Proteína hipotética	29.42	0.34
Ρ	4	TVAG_210320	A2DVT9	Adenosil homocisteinasa	Adenosil homocisteinasa	925.05	39.92
Ρ	4	TVAG_049830	Q2PCA5	Disulfuro óxido reductasa	Disulfuro óxido reductasa	836.79	16.90
Ρ	4	TVAG_437930	A2FCF5	Metalopeptidasa M24	Clan MG, familia M24, aminopeptidasa P-like Metaloproteinasa	190.39	15.50
Z	4	TVAG_467970/ TVAG_355480	Q27109	TvCP4/TvCP4-like	Cisteina proteinasa, putative (Fragment)	6.69	9.59
Ρ	5	TVAG_049830	Q2PCA5	Disulfuro óxido reductasa	Disulfuro óxido reductasa	113.19	4.34
Ρ	6	TVAG_120340/ TVAG_337230	Q95053	Superóxido dismutasa	Superóxido dismutasa	310.80	33.60
Ρ	7	TVAG_127180	A2E7Y6	Purina nucleósido fosforilasa	Purina nucleósido fosforilasa	206.76	20.34

Ρ	7	TVAG_454490	A2EU62	Purina nucleósido fosforilasa	Purina nucleósido fosforilasa	129.61	21.61
Ρ	7	TVAG_210320/ TVAG_405240	A2DVT9	Adenosil homocisteinasa	Adenosylhomocysteinase OS= <i>Trichomonas</i> <i>vaginalis</i>	77.88	10.08
Ρ	8	TVAG_120340/ TVAG_337230	Q95053	Hierro superóxido dismutasa	Hierro superóxido dismutasa	131.04	33.60
Ρ	8	TVAG_127180	A2E7Y6	Purina nucleósido fosforilasa	Purina nucleósido fosforilasa	51.91	10.17
Ρ	8	TVAG_467970/ TVAG_355480	Q27109	TvCP4/TvCP4-like	Cisteine proteinasa, putativa (Fragmento)	48.973 91	7.88
Ρ	8	TVAG_405240	A2E342	Adenosil homocisteinasa	Adenosil homocisteinasa	43.68	8.02
Ρ	8	TVAG_049830	Q2PCA5	Disulfuro óxido reductasa	Disulfuro óxido reductasa	21.29	2.93
Ρ	9	TVAG_090100	A2EZN7	TvCP3	Clan CA, familia C1, Catepsina L-like cisteína proteinasa	216.72	13.21
Z	9	TVAG_090100	Q27108	TvCP3	Cisteine proteinasa, putative (Fragmento)	36.27	12.59
Z	9	TVAG_369910	A2EX43	Proteína hipotética	Proteína hipotética	14.42	0.34
Z	9	TVAG_057000	Q27107	TvCP2	Clan CA, familia C1, Catepsina L-like cisteína	3.85	3.82

proteinasa

Р	10	TVAG_057000	Q27107	TvCP2	Clan CA, familia C1, Catepsina L-like cisteína proteinasa	576.35	24.20
Р	11	TVAG_467970/	A2FD35	TvCP4/TvCP4-like	Clan CA, familia C1, Catepsina L-like cisteína	257.09	19.67
		TVAG_355480	7121 2000		proteinasa	201.00	
7	12	TVAG 057000	027107	TyCP2	Clan CA, familia C1, Catepsina L-like cisteína	283 46	24 20
2	12		QZIIOI	10012	proteinasa	200.10	21.20
7	13	TV/AG 437030		Metalopeptidasa	Clan MG, familia M24, aminopeptidasa P-like	18.61	7.64
2	15	5 IVAG_437950		M24	metallopeptidasa	10.01	0.34
Z	14	TVAG_369910	A2EX43	Proteína hipotética	Proteína hipotética	19.91	0.34
	14	TVAG_261170	A2FPS7	Ankirina repetidos	Ankirina repetidos	3.70	2.87
Z	15	TVAG_369910	A2EX43	Proteína hipotética	Proteína hipotética	11.94	0.34
7	45		A 0 C 41 0	Aldo-keto	Aldo koto roductoro	2.50	F F0
Z	15	15 IVAG_054660 A2G4I3 reductasa		Aldo-keto reductasa	3.56	5.59	
P	40		000045	Disulfuro óxido		200.00	40.00
Р	16	TVAG_049830	Q2PCA5	reductasa	Disulturo oxido reductasa	na hipotetica11.940.34eto reductasa3.565.59óxido reductasa300.3812.68	
_	4.0			Adenosil		000 70	40.07
Р	16	TVAG_210320	A2DV19	homocisteinasa	Adenosil homocisteinasa	239.73	16.87
				Alcohol			
Р	16	IVAG_422780	A2FKG4	deshidrogenasa	Alcohol deshidrogenasa	78.13	13.38
				-			

a, Se refiere al tipo de gel de poliacrilamida teñido con plata (P) o zimograma (Z) donde se cortó la mancha para identificación por EM.

b, Indica el número de mancha cortada de ERP 2-DE pH 7-10 (Fig. 8)

c, Número de identificación de la base de datos Trichdb (http://www.trichdb.org),

d, Número de acceso en la base de datos UniProt.

e, Corresponde al valor total de score de los péptidos identificados.

f, Indica el porcentaje cubierto en la secuencia de la proteína de acuerdo al número de péptidos identificados en el análisis.

13.6. Lista de proteínas identificadas e interactoma de la banda de 30 kDa de la fracción acuosa de extractos de proteínas de membrana (Fig. 10D, carril 1).

La identificación de la banda de 30 kDa arrojó un total de 362 proteínas, que fueron clasificadas en los siguientes grupos: citoesqueleto, ribosomales, peptidasas, metabólicas, cinasas y fosfatasas, señalización, de tráfico vesicular, chaperonas, hipotéticas o no caracterizadas y otras. De cada grupo se realizó su respectivo interactoma.

13.6.1 Lista de proteínas de citoesqueleto identificadas.

Etiqueta		Nombro ^b	TVACC	No. Accord	Saarae	Cabartural	
	interactoma ^a	NOILDIG	IVAG	NO. ACCESO	Scole	Conetrala	
1	XP_001281986	Actina	TVAG_512800	A2HNG1	11389.18	49.44	
2	XP_001308720	Actina familia	TVAG_354020	A2FH22	3645.049	26.41	
3	XP_001313305	Adenilato ciclasa	TVAG_407250	A2F422	1899.28	17.1	
4	XP_001309788	F-actina	TVAG_470230	A2FE30	1848.674	14.56	
5	XP_001581543	Actinina	TVAG_239310	A2DGG1	727.0189	16.21	
6	XP_001306345	Proteína de unión a Actina	TVAG_376130	A2FNW2	544.1611	22.87	
7	XP_001300337	F-actina	TVAG_396060	A2G611	519.2432	16.18	
8	XP_001319737	Coronina	TVAG_124870	A2EIJ3	481.1624	7.34	
9	XP_001581182	Coronina	TVAG_021420	A2DHC3	341.0083	7.92	

10	XP_001318159	Arp2/3	TVAG_087140	A2EN28	333.5916	15.31
11	XP_001325937	Actina-like	TVAG_371880	A2E0V9	208.8387	8.57
12	XP_001284522	Tubulina	TVAG_525430	A2HG75	188.5662	8.54
13	XP_001310235	Proteína de unión a GTP	TVAG_123550	A2FCT1	99.2386	9.56

13.6.2 Interactoma de proteínas de citoesqueleto identificadas.

	Etiqueta interactoma ^a	Nombre ^b	TVAG ^c	No. Acceso ^d	Score ^e	Cobertura ^f
1	XP_001324843	Ribosomal L10	TVAG_074480	A2DCH7	28703.44	62.33
2	XP_001309900	Ribosomal S3a	TVAG_414510	A2FDS0	25403.22	57.49
3	XP_001312847	Ribosomal L7	TVAG_159370	A2F592	16708.25	50.21
4	XP_001321104	60S ribosomal	TVAG_051160	A2EES5	11859.83	44.65
5	XP_001321933	40S ribosomal	TVAG_098450	A2ECC6	10193.1	53.53
6	XP_001579014	Ribosomal L5	TVAG_113720	A2DNM5	4499.35	37.34
7	XP_001324688	Ribosomal L4	TVAG_128790	A2E4D0	3783.13	38.11
8	XP_001309550	Ribosomal L15	TVAG_148950	A2ECR7	3550.606	25.98
9	XP_001582474	Ribosomal L7a	TVAG_199270	A2DDW2	2732.085	20.49
10	XP_001328502	Ribosomal L13	TVAG_423320	A2DTH0	2209.208	11.64
11	XP_001329001	Proteina 4 de renovación del mRNA	TVAG_447370	A2DS08	1762.348	23.22
12	XP_001315498	Ribosomal S14	TVAG_299380	A2EVR5	1692.885	44.1
13	XP_001318569	40S ribosomal	TVAG_066030	A2E1L5	1081.342	33.5
14	XP_001325568	60S ribosomal L4	TVAG_164550	A2E1Z6	757.9485	3.24
15	XP_001307173	40S ribosomal sa	TVAG_480600	A2FLG0	703.4358	16.41
16	XP_001328791	60S ribosomal L7	TVAG_434050	A2DSI8	426.704	8.82

13.6.3 Lista de proteínas ribosomales identificadas
17	XP_001277020	60S ribosomal L18	TVAG_121100	A2D7Q5	358.025	10.22
18	XP_001328722	Ribosomal S3A	TVAG_348090	A2DSV0	331.168	5.67
19	XP_001306738	60S ribosomal L7	TVAG_054130	A2EMI2	54.4978	12.55

13.6.4 Interactoma de proteínas ribosomales identificadas.

	Etiqueta interactoma ^a	Nombre ^b	TVAG ^c	No. Acceso ^d	Score ^e	Cobertura ^f
1	CP2	TvCP2	TVAG_057000	Q27107	12357.72	30.57
2	XP_001316414	TvCP39	TVAG_298080	A2ET02	12091.71	23.28
3	XP_001310117	TvCP4-like	TVAG_355480	A2FD35	7112.448	15.08
4	XP_001314419	TvCP3	TVAG_090100	A2EZN7	3136.91	28.93
5	XP_001323249	Catepsin-L like, familia C1	TVAG_410260	A2E8I9	2168.345	24.44
6	XP_001582315	Nudix hidrolasa 14	TVAG_167040	A2DEB1	1778.104	37.34
7	XP_001314418	Metalopeptidasa familia M20	TVAG_090090	A2EZN6	1051.238	11.16
8	XP_001328079.	Metacaspasa like familia C14	TVAG_160290	A2DUX1	828.7524	12.8
9	XP_001318848	Metalopeptidasa familia M20	TVAG_056190	A2EL72	757.8516	16.97
10	CP1	TvCP1	TVAG_202090	Q27106	743.5797	20.06
11	XP_001583673	Metalopeptidasa M24	TVAG_476160	A2DA39	590.4659	11.84
12	XP_001580148	Metalopeptidasa M24	TVAG_190580	A2DKI5	577.4671	6.81
13	XP_001300045	Serina peptidasa like familia S51	TVAG_254690	A2G6V8	383.4283	20.87
14	XP_001326005	TvCP4	TVAG_467970	A2E0N7	308.1254	6.89
15	XP_001283092	Catepsin <u>a</u> -L like, familia C1	TVAG_518810	A2HKA5	294.625	5.41
16	XP_001326695	TvLEGU-1	TVAG_426660	A2DYT2	222.9616	10.05
17	XP_001308807	Metalopeptidasa familia M1	TVAG_008880	A2FGT3	191.0013	5.29
18	XP_001276882	Metalopeptidasa familia M16	TVAG_119710	A2D7B7	159.6174	14.59
19	XP_001310345	Metalopeptidasa familia M24	TVAG_437930	A2FCF5	101.9959	4.37

13.6.5 Lista de proteínas peptidasas identificadas

I

13.6.6 Interactoma de proteínas tipo peptidasa identificadas

	Etiqueta interactoma ^a	Nombre ^b	TVAG ^c	No. Acceso ^d	Score ^e	Cobertura ^f
1	XP_001305871	NADH deshidrogenasa	TVAG_489800	A2FQ69	17057.69	50.22
2	XP_001579239	Malato deshidrogenasa	TVAG_253650	A2DMN2	16760.32	50.9
3	XP_001320336	TIM	TVAG_497370	A2EGX9	16328.73	51.98
4	XP_001298944	Gliceraldehído 3-fosfato deshidrogenasa	TVAG_412780	A2GA05	12198.53	50.97
5	maeB	Enzima málica	TVAG_238830	Q27090	9006.382	43.21
6	XP_001325315	Fosfoglicerato mutasa	TVAG_212740	A2E2R4	8388.25	36.25
7	XP_001313822	O-metiltransferasa	TVAG_265960	A2F2J3	6669.3	34.15
8	XP_001325506	Enolasa	TVAG_464170	A2E269	4634.259	25.35
9	XP_001327846	Fosfoglicerato mutasa	TVAG_209020	A2DVE4	4336.946	24.7
10	XP_001308150	Malato deshidrogenasa	TVAG_171090	A2FIP8	4091.967	21.86
11	XP_001303981	Succinato tiocinasa	TVAG_144730	A2FVK7	3980.147	26.16
12	trxp	Peroxiredoxina	TVAG_114310	Q8IEV2	3921.82	34.69
13	XP_001323199	Deshidrogenasa cadena corta	TVAG_446780	A2E8N7	3764.957	35.71
14	XP_001326979	ATP sintasa	TVAG_038640	A2DY20	3285.416	26.02
15	XP_001302854	NADH Dehidrogenasa	TVAG_072700	A2FYU1	3176.436	30.41
16	XP_001307153	Fructosa 2-fosfato aldolasa	TVAG_360700	A2FLK9	3025.913	28.05
17	XP_001324507	O-metiltransferasa	TVAG_160900	A2E4U5	2813.741	32.2
18	XP_001579934	Gliceraldehído 3-fosfato deshidrogenasa	TVAG_146910	A2DHT2	2254.911	7.48
19	XP_001322532	Enzima málica	TVAG_491670	A2EAJ8	2148.372	27.14
20	ap33-1	Succinato tiocinasa	TVAG_318670	O15568	1666.141	19.42
21	XP_001324937	Glucosa-6-fosfato	TVAG_117360	A2E3S6	1653.306	33.63
22	XP_001320475.	Superóxido dismutasa	TVAG_404200	A2EGG9	1508.72	22.12
23	XP_001314248	Fosfoglicerato cinasa	TVAG_383940	A2F093	1482.968	19.09
24	XP_001308024	Malato deshidrogenasa	TVAG_204360	A2FJ30	1284.208	17.77
25	XP_001318511	Gliceraldehído 3-fosfato deshidrogenasa	TVAG_475220	A2EM29	1268.079	6.37
26	XP_001319074	Enzima málica	TVAG_340290	A2EKE3	1219.966	12.87

13.6.7 Lista de proteínas metabólicas identificadas

27	XP_001318744	Enolasa	TVAG_358110	A2ELB9	1218.039	20.08
28	XP_001301245	Ribulosa 5-Fosfato	TVAG_158280	A2G3F8	1169.106	16
29	XP_001314925	Glucosa-6-fosfato	TVAG_440810	A2EXA3	1012.94	26.5
30	XP_001580736	Fosfatasa 2C	TVAG_177940	A2DIE6	990.6951	13.43
31	XP_001305512	Fosfofruto cinasa	TVAG_496160	A2FR66	793.4889	23.15
32	XP_001323512	Glucosa 6-fosfato	TVAG_061930	A2E7V8	691.93	13.1
33	XP_001311411	Enzima málica	TVAG_477550	A2F9G2	688.5951	20.94
34	XP_001318961	Fosfoenol piruvato carboxicinasa	TVAG_310250	A2EKU1	639.0914	10.83
35	XP_001299351	Fosfomanomutasa	TVAG_111700	A2G8U4	629.1556	15.45
36	XP_001583562	Flavoproteina A	TVAG_036010	Q6XKE2	598.0793	13.67
37	XP_001309825	Glucosa-6-fosfato	TVAG_133950	A2FDX7	579.3094	7.52
38	XP_001330232	ATP sintasa	TVAG_324980	A2F133	562.0237	16.73
39	XP_001321243	Fosfoenol piruvato fosfotransferasa	TVAG_073860	A2EEC2	520.8571	18.43
40	XP_001579755	Aspartato aminotransferasa	TVAG_268020	A2DLF1	468.4116	12.81
41	XP_001322334	G-proteina	TVAG_274750	A2EB65	455.6738	19.01
42	XP_001328129	Succinato tiocinasa	TVAG_165340	A2DUL5	422.2683	3.88
43	XP_001584099	Succinato tiocinasa	TVAG_183500	A2D987	414.7308	4.89
44	XP_001324773	Fosfoenol piruvato carboxicinasa	TVAG_139300	A2E4A4	408.3435	4.34
45	ap33-2	Succinato tiocinasa	TVAG_047890	Q65ZG5	402.6606	11
46	XP_001323329	Fosfolipasa A2	TVAG_358850	A2E888	397.2072	7.16
47	XP_001308434	Fosfoglucomutasa	TVAG_054830	A2FHW2	388.7139	11.43
48	XP_001325459	Glucosa-6-fosfato	TVAG_463690	A2E222	386.6227	25.11
49	XP_001321510	Glucosa-6-fosfato	TVAG_133450	A2EDM2	360.827	20.54
50	XP_001323921	Glucosa-6-fosfato	TVAG_488000	A2E6J3	277.985	11.66
51	XP_001330346	Transaldolasa	TVAG_272910	A2F0H0	275.8264	12.38
52	XP_001294582	Treonina sintasa	TVAG_547520	A2GMG5	244.6505	10.03
53	XP_001580601	Alcohol deshidrogenasa	TVAG_228780	A2DJ40	199.524	16.99
54	XP_001305381	Citidiltranferasa	TVAG_327610	A2FRN2	198.4352	5.87
55	XP_001313115	Glucosa-6-fosfato	TVAG_007160	A2F4H7	185.4884	14.54

56	XP_001320300	Citidiltranferasa	TVAG_463570	A2EH29	177.871	8.4
57	XP_001581164	N-miristoil transferasa	TVAG_021230	A2DHA5	157.6273	6.44
58	XP_001314029	Enzima málica	TVAG_412220	A2F1M8	110.1956	7.95

	Etiqueta interactoma ^a	Nombre ^b	TVAG ^c	No. Acceso ^d	Score ^e	Cobertura ^f	XP_001582391.1
1	XP_001579594	14,3,3	TVAG_462940	Q4KXQ3	18120.06	63.71	XP_001304212.1
2	XP_001304212	14,3,3	TVAG_251260	A2FUZ1	14457.9	56.3	XP 001579594.1
3	XP_001299588	Rab 6	TVAG_580280	A2G856	7286.951	40.31	
4	XP_001316022	14,3,3	TVAG_454380	A2EU51	5457.663	26.05 🧲	XP_001302410.1 XP_001317420.1
5	XP_001578929	14,3,3	TVAG_225690	A2DNU8	5042.053	21.78 🦳	
6	XP_001582391	14,3,3	TVAG_198430	A2DDM9	3749.969	6.67	XP_001317691.1 XP_001299588.1 XP_001578929.1
7	XP_001302410	14,3,3	TVAG_469400	A2G036	3052.638	27.2	
8	XP_001317691	Rab 1	TVAG_286460	Q3LS71	2274.331	32.84	XP_001579068.1 XP_001297766.1
9	XP_001309474	14,3,3	TVAG_256840	A2FEZ0	1471.015	34.38 🤍	
10	XP_001297766	RhoGTPasa	TVAG_022370	A2GDD4	711.0193	8.85	XP_001311868.1
11	XP_001579068	14,3,3	TVAG_306020	A2DN94	587.2133	9.09	XP_001316022.1
12	XP_001311868	14,3,3	TVAG_320980	A2F806	301.5919	16.39	XP_001309474.1 XP_001325490.1
13	XP_001581254	Small	TVAG_192440	Q4G2A0	257.8265	10.63	
14	XP_001317420	RhoGTPasa	TVAG_473760	A2EQ22	249.1684	14.97	
15	XP_001325490	Calreticulina	TVAG_464010	A2E253	240.4346	9.16	

13.6.9 Lista de proteínas de señalización identificadas e interactoma.

	Etiqueta interactoma ^a	Nombre ^b	TVAG ^c	No. Acceso ^d	Score ^e	Cobertura ^f		
1	XP_001581846	Dinamina	TVAG_436840	A2DFD2	4352.272	24.29	-	
2	XP_001580508	Adaptina	TVAG_136530	A2DJD5	2011.45	14.6	XP_001304816.1	
3	XP_001326085	Adaptina	TVAG_044240	A2E0I2	1982.249	13.02	XF	_001299484.
4	XP_001302514	Sinaptogami na	ⁱ TVAG_485580	A2FZS0	1846.936	18.3	XP_001579617.1	
5	XP_001317045	Clatrina	TVAG_226350	A2ER69	1798.341	26.79	XP 001581146.1	- A
6	XP_001299484	Clatrina	TVAG_450230	A2G8G2	749.4308	9.18	XP 001326085.1	508.1
7	XP_001308653	Dinamina	TVAG_123140	A2FH85	404.4308	18.26	XP 0012951921 XP_0/	01326409.1
8	XP_001326409	Adaptina	TVAG_373190	A2DZI2	353.3283	8.66	XP 001581846.1	
9	XP_001305587	Dinamina	TVAG_350040	A2FR27	246.5692	15.88	XP_001317045.1	
10	XP_001579617	Dinamina	TVAG_062360	A2DLJ8	193.5642	8.18		XP_001308
11	XP_001583081	AP-3 complejo	TVAG_457300	A2DC54	192.6738	4.56	XP_001305587.1-	
12	XP_001304816	AP-3 complejo	TVAG_058010	A2FT75	157.9397	3.46		
13	XP_001581146	AP-2 complejo	TVAG_021050	A2DH87	142.7804	6.5		
14	XP_001295192	Adaptina	TVAG_547230	A2GKQ5	133.4208	8.48		
							-	

13.6.10 Lista de proteínas de tráfico vesicular identificadas e interactoma

ee Cobertura ^f
.31 55.93
993 49.15
937 42.72
598 18.47
325 37.16
077 6.93
836 22.34
137 9.08
331 8.5
392 29.03
179 11.99
924 12.24
254 8.27
498 19.81
601 1.13
79 2.39
598 329 07 830 13 33 33 39 17 92 25 49 60

13.6.11 Lista de proteínas cinasas-fofatasas identificadas

13.6.12 Interactoma de proteínas cinasas-fosfatasas identificadas

	Etiqueta ^a interactoma	Nombre ^b	TVAG ^c	No. Acceso ^d	Score ^e	Cobertura
1	XP_001314691	HSP70	TVAG_044510	A2EY23	3982.739	29.74
2	XP_001316599	Chaperonina	TVAG_350510	A2ESJ6	3733.339	18.05
3	XP_001307238	Chaperonina	TVAG_466660	A2FL92	3062.915	23.09
4	XP_001317545	HSP, putativa	TVAG_153560	A2EPR1	1387.018	22.22
5	XP_001329364	Chaperonina	TVAG_303600	A2DR42	1353.513	16.29
6	XP_001580735	Chaperonina 60	TVAG_177930	A2DIE5	960.1389	20.3
7	XP_001312953	Chaperonina	TVAG_029280	A2F520	936.6686	18.67
8	XP_001312123	HSP70	TVAG_092490	A2F7C5	932.7773	17.77
9	XP_001583987	Chaperonina	TVAG_182370	A2D8X5	635.3651	16.04
10	XP_001579039	Chaperona DNAj	TVAG_305730	A2DN65	494.9336	11.06
11	XP_001302082	Prefoldina	TVAG_409350	A2G115	377.5699	6
12	XP_001313363	Prefoldina	TVAG_084710	A2F3R2	307.8336	29.66
13	Cctd	Chaperonina	TVAG_137820	Q9GU08	286.0556	12.5
14	XP_001579948	Chaperonina	TVAG_147070	A2DL09	203.936	5.23
15	XP_001581590	HSP, putativa	TVAG_163000	A2DFX7	113.2415	1.83

13.6.13 Lista de proteínas de plegamiento identificadas e interactoma

	Etiqueta interactoma ^a	Nombre ^b	TVAG ^c	No. Acceso ^d	Score ^e	Cobertura ^f
1	XP_001304820	Proteosoma subunidad	TVAG_058050	A2FT79	15173.92	41.83
2	XP_001325659	Proteosoma subunidad	TVAG_206040	A2E1I9	8329.44	34.33
3	XP_001328403	Proteosoma subunidad	TVAG_340740	A2DTN3	6237.992	34.04
4	XP_001305428	Mob1	TVAG_344540	A2FRG8	5317.475	32.23
5	XP_001313725	Proteosoma subunidad	TVAG_231360	A2F2T6	4689.206	24
6	XP_001328958	Factor de elongación 1α	TVAG_067400	A2DSF6	4674.189	27
7	XP_001310279	Proteosoma subunidad	TVAG_293540	A2FCM7	4575.016	56.97
8	XP_001583582	NAC	TVAG_036210	A2DAU3	4318.262	47.9
9	XP_001312891	Proteosoma subunidad	TVAG_267300	A2F568	4225.929	38.17
10	XP_001584200	Proteosoma subunidad	TVAG_185200	A2D8G5	4217.029	44.58
11	XP_001312251	Proteosoma subunidad	TVAG_152400	A2F716	3980.398	17.86
12	XP_001313488	Proteosoma subunidad	TVAG_286960	A2F3H9	3859.849	16.5
13	XP_001329892	TPR	TVAG_015860	A2DP57	3261.616	21.97
14	XP_001579002	RNA polimerasa	TVAG_113600	A2DNL3	2788.784	22.77
15	XP_001307739	Proteosoma subunidad	TVAG_103780	A2FJV7	2027.061	37.07
16	XP_001584188	Ran	TVAG_185080	A2D8F3	1858.832	39.07
17	XP_001317083	Complejo de Exosoma RRP46	TVAG_287740	A2ER41	1611.838	35.47
18	XP_001326306	Plastina	TVAG_351310	A2DZL5	1254.879	16.89
19	XP_001326726	ATP asa	TVAG_388330	A2DYG8	1028.285	13.15
20	XP_001318809	N-acetilglucosamins	TVAG_069560	A2ELA9	926.2941	18.86
21	XP_001306639	Ebna-2 proteina de unión a P100	TVAG_458470	A2FN11	922.3452	18.6
22	XP_001305564	Clatrina	TVAG_421580	A2FR45	883.5562	14.55
23	XP_001315505	Alanil tRNA	TVAG_299450	A2EVS2	828.251	18.04
24	XP_001581110	Nicotinaminidasa	TVAG_366320	A2DHS6	726.1619	11.76
25	XP_001312834	Ankirina	TVAG_159240	A2F579	720.644	15.75
26	XP_001305491	Treonina dehidratasa	TVAG_362020	A2FRC0	695.5252	20.1

13.6.14 Lista de proteínas identificadas clasificadas en el grupo Otras

27	XP_001308534	SNF7	TVAG_459530	A2FHL3	657.5981	18.63
28	XP_001319206	Factor de diferenciación	TVAG_174520	A2EJZ9	655.2336	16.67
29	XP_001309666	Aquil hidroperóxido reductasa	TVAG_075420	A2FEE9	609.6602	11.34
30	XP_00132712	Fibrilarina	TVAG_380100	A2DXE8	572.4082	25
31	XP_001299927	Ubiquitina	TVAG_441950	A2G770	539.5556	22.88
32	XP_001321413	Sintaxina	TVAG_364050	A2EDX4	514.0098	9.37
33	XP_001323619	Factor del inicio de la traducción	TVAG_379780	A2E7K3	478.192	6.86
34	XP_001306667	Manosil transferasa	TVAG_455070	A2FMW9	469.9112	21.83
35	XP_001321790	Cisteinil tRNA	TVAG_276400	A2ECS1	460.6222	15
36	XP_001315303	HIV-1 proteína de unión	TVAG_171780	A2EWA3	459.1013	6.71
37	XP_001318335	Rcd1Proteína de diferenciación celular	TVAG_349650	A2EMP2	411.7906	17.76
38	XP_001580988	Ribonucleósido 2-fosfato reductasa	TVAG_402580	A2DI13	389.245	10.42
39	XP_001580284	GTP proteina de unión	TVAG_452120	A2DJT4	326.4822	4.48
40	XP_001296939	Uracil-DNA glicosilasa	TVAG_320720	A2GFQ7	324.2997	10.37
41	XP_001580057	Proteína de cuerpos multivesiculares	TVAG_247500	A2DKT8	323.1429	12.15
42	XP_001583401	Proteína vesicular	TVAG_378940	A2DB85	315.859	15.45
43	XP_001320664	Proteina Killer 16	TVAG_355000	A2EFY5	273.2413	14.1
44	XP_001579579	Factor de traducción	TVAG_462790	A2DLZ0	269.007	14.22
45	XP_001330618	Triptofanasa	TVAG_054490	BELY	215.8298	10.7
46	XP_001326864	ATPasa	TVAG_460580	A2DY32	208.3201	5.05
47	XP_001583332	DEAD/helicasa	TVAG_378250	A2DB16	197.5958	6.24
48	XP_001326199	Werner helicasa	TVAG_491140	A2E057	184.4399	16.92
49	mgl2	Piridoxal 5-P	TVAG_147790	O15565	173.6694	8.29
50	XP_001581944	Peptidil-Prolil isomerasa	TVAG_172150	A2DEW6	165.0304	1.44
51	XP_001309408	ATP asa	TVAG_277590	A2FF20	151.2738	3.31
52	XP_001321477	Adenilil transferasa	TVAG_133120	A2EDI9	149.7829	4.14
53	XP_001323446	DEAD/helicasa	TVAG_127300	A2E7Z7	133.2059	5.3
54	XP_001325781	GTP proteina de unión	TVAG_389550	A2E157	123.9931	6.28

55	XP_001321190	26S proteosoma	TVAG_486140	A2EEG1	110.0447	7.64
56	XP_001312792	RNA helicasa	TVAG_424990	A2F5E9	54.0332	2

13.6.15 Interactoma de proteínas identificadas clasificadas en el grupo Otras

	Nombre ^b	TVAG ^c	No. Acceso ^d	Score ^e	Cobertura ^f
1	Hipotética	TVAG_119450	A2D791_TRIVA	11795.28	43.75
2	Hipotética	TVAG_205640	A2FJF3_TRIVA	11586.45	44.39
3	Hipotética	TVAG_476350	A2DA58_TRIVA	10679.58	55.98
4	Hipotética	TVAG_196620	A2FCY2_TRIVA	10622.58	50.47
5	Hipotética	TVAG_438870	A2FZ87_TRIVA	10206.36	49.75
6	Hipotética	TVAG_263320	A2FA79_TRIVA	9703.836	29.55
7	Hipotética	TVAG_493040	A2F2B2_TRIVA	8763.479	37.4
8	Hipotética	TVAG_576970	A2GNU7_TRIVA	8145.45	55.87
9	Hipotética	TVAG_468210	A2E0R0_TRIVA	7831.481	47.39
10	Hipotética	TVAG_233330	A2ES02_TRIVA	7037.981	40.08
11	Hipotética	TVAG_389730	A2E175_TRIVA	6527.729	45.34
12	Hipotética	TVAG_379120	A2DBA3_TRIVA	5873.305	50.42
13	Hipotética	TVAG_125550	A2F9N0_TRIVA	5761.689	21.69
14	Hipotética	TVAG_263820	A2EP08_TRIVA	5442.632	47.48
15	Hipotética	TVAG_267950	A2DLE4_TRIVA	5103.935	45.44
16	Hipotética	TVAG_144070	A2G0G2	5059.67	39.57
17	Hipotética	TVAG_256720	A2FEX8_TRIVA	4744.406	31.76
18	Hipotética	TVAG_360810	A2FGN9_TRIVA	4704.631	36.62
19	Hipotética	TVAG_172060	A2DEV7_TRIVA	3977.648	40.08
20	Hipotética	TVAG_440200	A2FDM3_TRIVA	3864.143	30.83
21	Hipotética	TVAG_142440	A2EHK3_TRIVA	3732.003	39.71
22	Hipotética	TVAG_406950	A2F3Z2	3420.59	35.71
23	Hipotética	TVAG_121530	A2E964_TRIVA	3393.775	26.74
24	Hipotética	TVAG_109640	A2EAF3_TRIVA	3347.632	34.88
25	Hipotética	TVAG_360920	A2FGP9_TRIVA	2711.693	30.18
26	Hipotética	TVAG_184300	A2E9W6_TRIVA	2694.307	13.3
27	Hipotética	TVAG_090070	A2EZN4_TRIVA	2632.097	20.33
28	Hipotética	TVAG_043550	A2EV95_TRIVA	2438.516	38.33
29	Hipotética	TVAG_093810	A2DBK4_TRIVA	2403.439	30.7
30	Hipotética	TVAG_006790	A2FC02_TRIVA	2255.946	22.12
31	Hipotética	TVAG_107080	A2FE49_TRIVA	2121.239	33.33
32	Hipotética	TVAG_202570	A2END0_TRIVA	2047.548	38.14
33	Hipotética	TVAG_171960	A2DEU7_TRIVA	2045.185	11.63
34	Hipotética	TVAG_140400	A2EJS8_TRIVA	2040.51	46.73
35	Hipotética	TVAG_353290	A2EN52_TRIVA	2023.036	42.06

13.6.16 Lista de proteínas identificadas como hipotéticas

36	Hipotética	TVAG_182190	A2D8V7_TRIVA	1856.471	20.65
37	Hipotética	TVAG_092750	A2FTT2_TRIVA	1854.024	29.33
38	Hipotética	TVAG_360000	A2DTB9_TRIVA	1836.061	36.88
39	Hipotética	TVAG_283080	A2DEL1_TRIVA	1828.814	29.46
40	Hipotética	TVAG_119970	A2D7E3_TRIVA	1673.159	14.57
41	Hipotética	TVAG_539120	A2HXI6_TRIVA	1603.422	28.47
42	Hipotética	TVAG_245900	A2E4P8_TRIVA	1523.356	17.52
43	Hipotética	TVAG_010220	A2FA37	1456.82	17.81
44	Hipotética	TVAG_473460	A2EUG3_TRIVA	1426.006	52.38
45	Hipotética	TVAG_079750	A2EFA5	1400.27	12.88
46	Hipotética	TVAG_127240	A2E7Z1_TRIVA	1389.601	36.36
47	Hipotética	TVAG_150230	A2DRS5_TRIVA	1363.181	15.91
48	Clathrin	TVAG_062930	A2DLQ5_TRIVA	1326.28	25.84
49	Hipotética	TVAG_167830	A2FLC1_TRIVA	1292.444	15.04
50	Hipotética	TVAG_351760	A2DZR0_TRIVA	1233.297	13.25
51	Hipotética	TVAG_393280	A2DYC4_TRIVA	1111.815	16.47
52	Hipotética	TVAG_246700	A2DKK9_TRIVA	1036.691	23.56
53	Hipotética	TVAG_091590	A2FYP7_TRIVA	1023.283	13.73
54	Hipotética	TVAG_100720	A2ENP9_TRIVA	1013.65	24.04
55	Hipotética	TVAG_276410	A2ECS2_TRIVA	1005.557	22.47
56	Hipotética	TVAG_166770	A2DE84_TRIVA	992.4458	21
57	Hipotética	TVAG_015930	A2DP63_TRIVA	976.3595	14.2
58	Hipotética	TVAG_465160	A2DTY1_TRIVA	954.0232	18.58
59	Hipotética	TVAG_494470	A2DQ78_TRIVA	898.6263	18.96
60	Hipotética	TVAG_313930	A2EKJ1_TRIVA	886.9788	5.67
61	Hipotética	TVAG_447000	A2E8Q8	857.197	11.87
62	Hipotética	TVAG_336920	A2EPW2	816.762	46.2
63	Hipotética	TVAG_131160	A2EPN9_TRIVA	813.7321	40.8
64	Hipotética	TVAG_486970	A2DZC5	809.853	14.06
65	Hipotética	TVAG_170260	A2DPG8_TRIVA	776.936	8.67
66	Hipotética	TVAG_251250	A2FUZ0_TRIVA	746.9871	24.19
67	Hipotética	TVAG_487770	A2EFQ5_TRIVA	740.2255	19.59
68	Hipotética	TVAG_044140	A2E0H4_TRIVA	725.5529	12.78
69	Hipotética	TVAG_067440	A2DSG0_TRIVA	719.1059	20.19
70	Hipotética	TVAG_040310	A2F1S6_TRIVA	669.9735	17.97
71	Hipotética	TVAG_527170	A2G844_TRIVA	656.369	14.41
72	Hipotética	TVAG_197940	A2EJL0_TRIVA	608.2252	11.68
73	Hipotética	TVAG_072120	A2D8B6_TRIVA	568.3315	12.07

74	Hipotética	TVAG_222490	A2F5C5_TRIVA	566.4669	14.48
75	Hipotética	TVAG_433510	A2FJH2_TRIVA	542.09	11.21
76	Hipotética	TVAG_022920	A2GL83_TRIVA	540.5181	6.58
77	Hipotética	TVAG_043470	A2EV87_TRIVA	485.286	12.38
78	Hipotética	TVAG_027870	A2E526_TRIVA	478.798	16.02
79	Hipotética	TVAG_495100	A2FWP5_TRIVA	418.6846	12.66
80	Hipotética	TVAG_350520	A2ESJ7_TRIVA	412.1693	17.73
81	Hipotética	TVAG_154680	A2F259_TRIVA	401.6819	9.14
82	Hipotética	TVAG_321570	A2FXY1_TRIVA	383.2725	11.02
83	Hipotética	TVAG_212500	A2E2P0_TRIVA	337.2638	10.32
84	Hipotética	TVAG_421570	A2FR44_TRIVA	334.3505	8.62
85	Hipotética	TVAG_313040	A2FUL0_TRIVA	328.9114	13.55
86	Hipotética	TVAG_490140	A2FB51_TRIVA	320.8237	16.97
87	Hipotética	TVAG_176390	A2G661_TRIVA	306.8865	9.01
88	Hipotética	TVAG_243590	A2FJ92_TRIVA	303.471	7.14
89	Hipotética	TVAG_013720	A2DDC8_TRIVA	299.5258	10.19
90	Hipotética	TVAG_110010	A2DGK2_TRIVA	298.1017	16.4
91	Hipotética	TVAG_081570	A2E6U9_TRIVA	292.9257	22.89
92	Hipotética	TVAG_003660	A2E580_TRIVA	291.9506	19.17
93	Hipotética	TVAG_285070	A2G4N7_TRIVA	290.4824	15.02
94	Hipotética	TVAG_081600	A2E6V2_TRIVA	279.7083	3.55
95	Hipotética	TVAG_040430	A2F1T8_TRIVA	273.6895	4.44
96	Hipotética	TVAG_161630	A2EUN6_TRIVA	260.3654	7.35
97	Hipotética	TVAG_346330	A2FK22_TRIVA	259.0864	14.42
98	Hipotética	TVAG_367410	A2F5P9_TRIVA	259.0088	9.74
99	Hipotética	TVAG_254090	A2DMS6_TRIVA	248.9889	6.69
100	Hipotética	TVAG_265880	A2F2I5_TRIVA	246.5591	6.7
101	Hipotética	TVAG_119180	A2D765_TRIVA	239.8589	2.89
102	Hipotética	TVAG_229460	A2FVJ9_TRIVA	234.8964	19.82
103	Hipotética	TVAG_230600	A2EDY8_TRIVA	234.8876	6.83
104	Hipotética	TVAG_070810	A2D7Y4_TRIVA	225.5401	8.58
105	Hipotética	TVAG_410890	A2DXJ4_TRIVA	217.8775	8.26
106	Hipotética	TVAG_309010	A2EDP7_TRIVA	194.5877	11.3
107	Hipotética	TVAG_178620	A2DIL4_TRIVA	191.1482	6.44
108	Hipotética	TVAG_311750	A2EJY2_TRIVA	186.6039	7.36
109	Hipotética	TVAG_022230	A2FFU1_TRIVA	177.3041	4.06
110	Hipotética	TVAG_262750	A2FS41_TRIVA	171.9367	4.85
111	Hipotética	TVAG_468220	A2E0R1_TRIVA	167.437	13.85

112	Hipotética	TVAG_436860	A2DFD4_TRIVA	160.4754	4.35
113	Hipotética	TVAG_009330	A2FYV1_TRIVA	157.7198	4.4
114	Hipotética	TVAG_047990	A2EZH8_TRIVA	154.0437	10.42
115	Hipotética	TVAG_196310	A2F4W3_TRIVA	150.6283	8.28
116	Hipotética	TVAG_361160	A2FNF3_TRIVA	148.5383	12.85
117	Hipotética	TVAG_266630	A2DQL6_TRIVA	135.058	5.35
118	Hipotética	TVAG_298130	A2ET06_TRIVA	134.5656	12.77
119	Hipotética	TVAG_257450	A2ELH9_TRIVA	134.2895	9.65
120	Hipotética	TVAG_157940	A2FBC9_TRIVA	127.4002	3.54
121	Hipotética	TVAG_420260	A2ED49_TRIVA	124.4925	6.07
122	Hipotética	TVAG_261260	A2G187_TRIVA	115.4738	2.66
123	Hipotética	TVAG_232800	A2FVZ4	111.163	3.67
124	Hipotética	TVAG_474360	A2ESX2_TRIVA	107.0978	2.69
125	Hipotética	TVAG_387850	A2E112_TRIVA	106.8815	3.63
126	Hipotética	TVAG_083540	A2DM81_TRIVA	105.4218	4.48
127	Hipotética	TVAG_038420	A2DXZ9_TRIVA	99.9998	3.08
128	Hipotética	TVAG_451030	A2EYQ6_TRIVA	98.388	4.07
129	Hipotética	TVAG_195290	A2FLX9_TRIVA	92.4473	1.54
130	Hipotética	TVAG_121150	A2D7R0_TRIVA	85.4965	0.74
131	Hipotética	TVAG_068800	A2EZK6_TRIVA	73.7345	2.01
132	Hipotética	TVAG_444970	A2FZT7_TRIVA	73.1943	0.96
133	Hipotética	TVAG_130180	A2DIB4_TRIVA	68.4791	3.36
134	Hipotética	TVAG_097960	A2E2C6_TRIVA	62.8044	3.2
135	Hipotética	TVAG_298320	A2ET23_TRIVA	58.5328	1.4
136	Hipotética	TVAG_365430	A2DHI7_TRIVA	55.0984	0.79
137	Hipotética	TVAG_278550	A2DU96_TRIVA	47.2304	1.44

a, Etiqueta de cada proteína generada en el análisis de interacciones en la base de datos STRING.

b, Nombre de la proteína de acuerdo a la información de su TVAG

c, Número de identificación de la base de datos Trichdb (http://www.trichdb.org),

d, Numero de acceso en la base de datos UniProt.

e, Corresponde al valor total de score de los péptidos identificados.

f, Indica el porcentaje cubierto en la secuencia de aa de la proteína de acuerdo al número de aa identificados en el análisis.

13.6.17 Interactoma de proteínas identificadas como hipotéticas

13.7. Lista de proteínas identificadas e interactoma de la banda de 37 kDa de la fracción detergente de extractos de proteínas de membrana (Fig. 10D, carril 2).

	Etiqueta ^a interactoma	TVAG ^b	No. Acceso ^c	Nombre ^d	Score ^e	Cobertura
1	XP_001317864	TVAG_216170	A2ENV1	Proteína hipotética	1584.037	32.72
2	XP_001304674	TVAG_104250	A2FTN9	Proteína hipotética	760.4976	27.99
3	XP_001315910	TVAG_031860	A2EUI5	Proteína hipotética	160.6698	20.19
4	XP_001322867	TVAG_157210	A2E9J3	Proteína hipotética	115.8267	6.45
5	XP_001281986	TVAG_512800	A2HNG1	Actina	111.146	8.89
6	XP_001326726	TVAG_388330	A2DYG8	ATPasa	100.4719	7.44
7	XP_001310347	TVAG_437950	A2FCF7	Proteína hipotética	92.4614	5.73
8	XP_001326512	TVAG_026100	A2DZ13	Proteína hipotética	90.2725	13.76
9	XP_001316361	TVAG_125780	A2ET85	Ankirina	77.3157	1.94
10	XP_001326835	TVAG_393390	A2DYD5	Proteína hipotética	67.6146	5.68

a, Etiqueta de cada proteína generada en el análisis de interacciones en la base de datos STRING.

b, Nombre de la proteína de acuerdo a la información de su TVAG

c, Número de identificación de la base de datos Trichdb (http://www.trichdb.org),

d, Número de acceso en la base de datos UniProt.

e, Corresponde al valor total de score de los péptidos identificados.

f, Indica el porcentaje cubierto en la secuencia de aa de la proteína de acuerdo al número de aa identificados en el análisis.

13.8. Lista de artículos

Artículo de primer autor

International Journal of Biochemistry and Cell Biology 102 (2018) 87-100

Contents lists available at ScienceDirect

International Journal of Biochemistry and Cell Biology

journal homepage: www.elsevier.com/locate/biocel

Characterization of a novel endogenous cysteine proteinase inhibitor, trichocystatin-3 (TC-3), localized on the surface of *Trichomonas vaginalis*

Diana Belén Sánchez-Rodríguez^a, Jaime Ortega-López^b, Rosa Elena Cárdenas-Guerra^a, Gerardo Reséndiz-Cardiel^b, Bibiana Chávez-Munguía^a, Anel Lagunes-Guillen^a, Rossana Arroyo^{a,*}

^a Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN 2508, Col. San Pedro Zacatenco, Delg. Gustavo A Madero, CP 07360, Mexico City, Mexico

^b Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN 2508, Col. San Pedro Zacatenco, Delg. Gustavo A Madero, CP 07360, Mexico City, Mexico

Artículo de colaboración

- 1 A novel immunogenic cysteine proteinase TvCP2 is down-regulated by iron and plays a
- 2 key role in Trichomonas vaginalis cytotoxicity by apoptosis induction in HeLa cells
- 3
- 4
- 5 Luis Alberto Rivera-Rivas^a, Sebastián Lorenzo-Benito^a, Diana Belén Sánchez-
- 6 Rodríguez^a, Jesús FT Miranda-Ozuna^a, Jaime Ortega-López^b, Bibiana Chávez-
- 7 Munguíaª, Anel Lagunes-Guillénª, Rossana Arroyoª*
- 8
- 9 ^aDepartamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de
- 10 Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av IPN 2508,
- 11 Col. San Pedro Zacatenco, Gustavo A Madero, CP 07360, Mexico City, Mexico.
- 12 ^bDepartamento de Biotecnología y Bioingeniería, CINVESTAV-IPN, Av. IPN 2508, Col.
- 13 San Pedro Zacatenco, Gustavo A Madero, CP 07360, Mexico City, Mexico.