

^OJO.VOlé

Centro de Investigación y de Estudios Avanzados

del Instituto Politécnico Nacional.

"^ ^
Unidad Guadalajara

Estabilidad de Sistemas de Eventos

Discretos Concurrentes modelados con

redes de Petri.

Tesis que presenta:

Alberto Lutz Ley

Para obtener el grado de:

Doctor en Ciencias

En la especialidad de:

Ingeniería Eléctrica

Director de Tesis:

Dr. Luis Ernesto LópezMellado

CINVESTAV
IPN

ADQUISICIÓN
LIBROS

CINVESTAV del IPN Unidad Guadalajara, Guadalajara, Jalisco,Julio 2015.

[CLasíf?. s!zocFFcíT^

PROCED., Q«iL-___2fi_4

Estabilidad de Sistemas de Eventos

Discretos Concurrentes modelados con

redes de Petri.

Tesis de Doctor en Ciencias

En Ingeniería Eléctrica

Por:

Alberto Lutz Ley
Maestro en Ciencias Computacionales

CINVESTAV Unidad Guadalajara 2009-201 1

Beca otorgada por CONACYT, No. 234687

Asesor de Tesis:

Dr. Luis Ernesto LópezMellado

CINVESTAV del IPN Unidad Guadalajara, Julio, 2015.

Centro de Investigación y de Estudios Avanzados

del Instituto Politécnico Nacional.

Unidad Guadalajara

Stability of Concurrent Discrete Event

Systems modeled as Petri nets.

A thesis presented by:
Alberto Lutz Ley

To obtain the degree of:

Doctor of Science

In the subject of:

Electrical Engineering

Thesis Advisor:

Dr. Luis Ernesto López Mellado

CINVESTAV del IPN Unidad Guadalajara, Guadalajara, Jalisco, July 2015.

Stability ofConcurrent Discrete Event

Systems modeled as Petri nets.

Doctor of Science Thesis

In Electrical Engineering

By:
Alberto Lutz Ley

Master in Computer Science

CINVESTAV Unidad Guadalajara 2009-201 1

Scholarship granted by CONACYT, No. 234687

Asesor de Tesis:

Dr. Luis Ernesto López Mellado

CINVESTAV del IPN Unidad Guadalajara, July, 2015.

Estabilidad de Sistemas de Eventos Discretos

Concurrentes modelados con redes de Petri

Resumen

Esta tesis trata acerca del problema de estabilidad en sistemas de eventos discretos concurrentes modelados

con redes de Petri (RP). En particular, el trabajo se enfoca en determinar si un sistemamodelado con RP 1-

acotadas tiene la propiedad de estabilidad; esta propiedad se refiere a que está garantizado que el sistema

regresa, en un número fínito de pasos, a un conjunto de estados que ha sido determinado como el

comportamiento deseado del sistema.

Primero, la literatura relevante al problema es revisada incluyendo la definición del problema de estabilidad.

Un método eficiente basado en la estructura de la red para determinar la estabilidad de una subclase de redes

de Petri 1 -acotadas es presentado.

Además, un procedimiento para determinar la propiedad en la clase de redes de Petri 1 -acotadas es propuesto;
esta aproximación está basada en el análisis del unfolding de la red y el algoritmo tiene una complejidad en

tiempo polinomial con respecto al número de nodos en el unfolding.
Éste método ha sido implementado como una herramienta de software y ha sido comparado con un algoritmo
basado en el grafo de alcanzabilidad de la red. La aplicación de ambos métodos es ilustrada mediante un caso

de estudio.

Stability ofPetri-net modeled

Concurrent Discrete Event Systems

Abstract

This thesis deals with the stability problem on discrete event systems modelled as Petri nets. Particularly, this

work focuses on determining ifa system that has been modelled as a 1 -bounded Petri net has the property of

stability; this property indicates that it is guaranteed that the system will return to a subset of states that has

been determined to be the desired behaviour ofthe system. This subset is to be reached within a finite number

of event occurrences.

First, the relevant literature is reviewed and then the problem of state stability is presented. A polynomial time

method based on the structure ofthe net for the decisión of stability on a subclass of 1 -bounded Petri nets is

introduced.

Also, a procedure for the decisión ofthe problem on the class of 1 -bounded nets is proposed; this approach is

based on the analysis ofthe net unfolding and the introduced algorithm has a polynomial time complexity
with respect to the size ofthe unfolding.

The proposed unfolding-based method has been implemented as a software tool and it has been compared
with an algorithm that decides the property by analysing the reachability graph. The execution of both

methods is illustrated through a study case.

Acknowledgement

This research work was developed at CINVESTAV IPN, Guadalajara Unit and was

possible thanks to the support ofCONACYT (National Science and Technology Council of

México). I want to thank both institutions because they gave me the opportunity to do

research and find interesting results.

I am grateful with my advisor, Dr. Luis Ernesto López Mellado, for his aid, support and

guidance during the development ofthis research work. Also, I wish to thank Dr. Francesco

Basile for allowing me to do a research stay at the University of Salerno, and for giving me

useful comments regarding my work.

I really appreciate the enormous work that my parents Arturo and Guadalupe did so I could

continué studying. I thank my siblings, Arturo and America for their support. I also thank

my girlfriend, Ana Paula, for her continuous support and encouraging words. I am also

grateful for the help that my aunt RosaMaria kindly offered during my studies.

Index

Introduction 1

Chapter 1 Stability ofDiscrete event systems 3

1.1. Discrete event systems 4

1.2. Stability 4

1.2.1. Lyapunov stability on discrete event systems 4

1.2.2. Stabilization using Lyapunov methods 5

1.2.3. Input-output stability 6

1.2.4. Stability on Computer science 7

1.2.5. State stability on finite autómata 7

1 .2.6. Attractor state sets 9

1.2.7. Closure and convergence: a basis for fault tolerance 10

1.2.8. General self-stabilization of transient faults 10

1.2.9. P-Convergence 1 1

1.3. Fault tolerance 12

1.3.1. Stabilizability of finite autómata 12

1.3.2. A framework for fault recovery on finite autómata 14

1.3.3. Stabilizing controllers on finite autómata 14

1.3.4. Active fault tolerant control using online diagnosis 15

1.3.5. Redundancy based controller reconfiguration 15

Chapter 2 Background 17

2.1. Petri Nets 18

2.1.1. Definition 18

2.1.2. Interpreted Petri Nets 20

2.1.3. Petri net model compositions 22

2.2. Petri net Unfoldings 24

2.2.1. Ocurrence nets 24

2.2.2. Branching processes 25

2.2.3. Configurations 26

2.2.4. Finite complete prefixes 27

2.2.5. Adequate orders 28

2.2.6. Cut-off event 28

Chapter 3 Stability on Petri nets 31

3.1. Problem statement 32

3.2. Stability on CLSM nets 33

3.2.1. CLSM nets 33

3.2.2. Controller and plant components 34

3.2.3. Example 36

3.2.4. Checkpoint markings 37

3.2.5. Interruptible T-components 38

3.2.6. Transition causal relations 38

Chapter 4 Stability of 1-Bounded Petri nets using unfoldings 41

4.1. Problem statement 42

4.2. Cyclic behavior on branching processes 43

4.3. Cyclic behavior on a Finite Complete Prefix 43

4.4. Deciding stability from the finite complete prefix 45

4.5. Example 50

4.6. K-Stability Analysis 53

4.6.1. The K-stability problem 54

4.6.2. Finding the longest path to the desired states 54

Chapter 5 Implementation and testing 59

5.1. Software implementation ofthe stability analysis algorithms 60

5.2. Case study: The 2-Phase commit protocol 61

5.2.1. Petri net model for a Two-phase commit implementation 62

5.3. Testing the tool through the 2-phase commit model 64

Chapter 6 Conclusions 67

6.1. Concluding remarks 68

6.2. Finding the minimum valué ofk so that the system is k-stable 68

6.3. Finding Stabilizing Controllers 69

6.4. Publications 70

Introduction

On very recent years, the size and complexity ofman-made systems, namely computer
networks

and automated manufacturing processes have been increased at a very fast pace. Also, the

importance ofa robust implementation of those systems has become crucial for many aspects
of

our current lives. As technology advances, we are being increasingly surrounded by autonomous

systems whose correct operation has a great influence on fundamental aspects, such as our own

safety, or the huge losses related to manufacturing downtimes.

In particular, the issue of developing systems that behave predictably and correctly, under the

occurrence of undesired and unavoidable events is of high importance. However, the size and

complexity of current information systems has made this objective difficult and costly to reach,

both in time and resources.

There have been several proposals that address these issues from computer science, control and

particularly, discrete event systems (DES) communities. Among them, the concept of stability of

DES, modeled as finite autómata, stands out; it guarantees that once a system deviates from some

ideal behavior, it returns to a correct functioning after a finite number of steps.

Stability is to be understood as a property related to the robustness or resilience of a system; a

stable system can opérate in the presence of abnormalities and return to a normal or desired set of

states in a finite number of steps. In this way, stability guarantees that all undesired behaviour is

transient; if errors or exceptions are not frequent, a stable system can cope with these occurrences

while exhibiting a desired behaviour most of the time. The stability of DESs has been already

studied and addressed under different approaches. Most ofthe published works deal with stability

as a property analogous to that studied on continuous systems; The concept of stability in the

sense of Lyapunov to DESs theory was introduced in [Passino, 1994] [Passino, 1998]. More

recently, a technique based on Lyapunov stabilization to design Petri net controllers that keep the

net bounded was presented in [Retchkiman, 1999], [Retchkiman 2000] and [Retchkiman, 201 1].

In contrast to the works of Lyapunov stability for DESs, our research focuses in the analysis of

a behavioural property of discrete event systems (DESs) in presence of unavoidable, undesired

events. Specifically, the issue of determining if a system is guaranteed to return to normal

behaviour in a finite number of steps after an undesired event has occurred is the aim of this

work.

This property has been studied first in [Dijkstra, 1973], who introduced the concept of self-

stabilization. This work motivated research in computer sciences [Arora 1993], [Schneider, 1993]

and automatic control communities [Brave, 1990] , [Ózveren, 1991].

Other works addressing fault tolerance are based on notions closely related to those introduced

in [Ózveren, 1991]. First, the synthesis of stabilizing controllers for failure recovery was

presented in [Khatab, 2002], and more recently, fault tolerant supervisory controllers were

studied in [Wen, 2007] [Wen, 2008] [Wen, 2009]. In these proposals DESs are modelled with FA.

While finite autómata have been widely used as modelling and control formalism for DES, Petri

nets have an undeniable advantage in terms of representation size, especially when modelling

complex behaviour as concurrency, synchronization, resource allocation, etc.

1

At first glance, it may seem that deciding if a Petri net is stable with respect to a desired

marking subset is equivalent to the problem of determining if a given subset of markings is a

Home Space [Esparza, 1994], however these properties are different: ifa subset ofmarkings is a

Home Space, the reachability set of any marking in the system has to include at least one marking
in the Home Space (it is always possible to reach the Home Space), while if a system is stable

with respect to a subset ofmarkings, this subset is required to be reached in a finite number of

steps.

With the aim of taking advantage of Petri nets (PN) for specifying concurrent DESs, stability is

studied. In a previous work, recoverability has been studied on interpreted PN (IPJNf) models; in

[Lutz-Ley, 2012a] recoverability is defined and characterized as a property based on the stability

concept including a useful distinction of uncontrollable events. The derived algorithms are based

on the analysis ofthe reachability graph ofthe IPN model. However, the state space ofa given
Petri net could grow exponentially with respect to the structure of the net; this is known as the

state space explosión problem. Also, the stability analysis presented in literature is based in the

state space of a DES, so an important issue arises: analyzing the stability of a Petri-net modeled

DES with traditional methods requires the study ofthe reachability graph ofthe net.

In this thesis the stability of concurrent DES modeled by 1 -bounded Petri-net is analyzed from

the structure ofthe model instead from the reachability graph. Two methods have been proposed.

First, the stability ofa subclass of 1 -bounded Petri nets is analyzed: in [Lutz-Ley, 2012b] the

stability of the CLSM class of Petri nets is tested by making use of the net structure only; the

resulting procedure is polynomial in time with respect to the size ofthe net. Later, the stability of

the class of 1 -bounded Petri nets is studied in [Lutz-Ley 2013b]; this proposal analyzes the

unfolding of the net to determine if the system is stable. Then, the unfolding-based method is

compared with an intuitive approach: obtaining the Reachability Graph ofthe net and testing if it

is stable using a well-known method in the literature for state machines. This comparison is done

for an easily-scalable Petri-net model example. The proposed algorithm is more efficient than the

intuitive approach.

The remainder of this document is organized as follows. Chapter 1 gives an overview of

relevant literature about stability on DES, as well as interesting works about fault tolerance. In

Chapter 2, the technical background necessary to understand the rest ofthe document is recalled.

In Chapter 3, a first method for deciding the stability property on a CLSM nets is presented. In

Chapter 4 the proposal of stability analysis for 1 -bounded Petri nets is introduced. Chapter 6

overviews software implementation and describes the application to a case study. Finally, in

Chapter 6 current research and perspectives are pointed out.

2

Chapter 1

Stability ofDiscrete event systems

In this chapter, different notions of stability for DES are reviewed; some of them are adapted

from the continuous systems theory, while others have been originated from DES concepts. Also,

relevant fault tolerance works that are related to stability are revised.

3

1.1.Discrete event systems

Discrete event systems (DES) are those systems whose behavior can be described by a finite or

infinite set of possible states that are numerable and distinct between them. Also, they have a set

of events that make the system evolve from one state to another; the events occur in an

asynchronous fashion.

The objective of DES supervisory control is to enforce some specification on a system while

trying to keep its behavior as unrestricted as possible. However, this is not always possible,
because there are some events like faults, errors, and exceptions which can disturb the behavior

ofthe system; this provokes that the DES reaches some state or states that are not expected to be

reached in the normal operation. In this context there are two interesting problems: a) to know

whether or not the system is going to eventually reach a state of no failure and b) to know if it is

possible to lead the system to a state of no failure by means of control. These two problems are

intrinsically related to the concept of stability.

1.2.STABILITY

There have been some different approaches for stability of DES. Some authors have adapted

concepts from continuous systems theory, while others have defined stability concepts based on

DES notions only.

1.2. l.LYAPUNOVSTABILITYONDISCRETE EVENTSYSTEMS

In his work, K. Passino presents in [Passino, 1994], [Passino, 1998] the concept of Lyapunov

stability adapted to DES from continuous systems. According to this approach, a discrete event

system is the 5-tuple G = (X, E, fe, g, __„) where

X is the set of states ofthe system

E is the set of events

fe: X -* X, is the state transition function

g:X -» P(E) -

{0} is the enabling function, which indicates the events enabled in some

state

Ev denotes the possible event sequences

Ea c Ev denotes the permitted event sequences

Also, p(x,y) represents the distance between states x, y, and S(Xz;r) represents the set of states
which have a distance less or equal than r to the set of states Xz.

The function X(x0, Ek, k) is used to denote the state reached after the event sequence Ek in step k

starting from x0. For some x0, functions X (x0, Ek, k) are called motions.

An invariant state set Xm is stable in the sense ofLyapunov with respect to Ea ,
iffor every e > 0

it is possible to find S > 0 such that:

4

lfp(x0,Xm) < S thenp(X(x0,Ek,k),Xm) < e holds

For all Ek such that EkE c Ea(x0) yk>0.

In other words, according to Passino, an invariant set of states is stable in the sense ofLyapunov

if it is possible to find a neighborhood of radius 6 such that starting from any state in that

neighborhood, the system will end in a state with a distance shorter than e, for any e > 0. This is

shown in figure 1.1.

State space

*

_
,

/ f r •

*»-*o

Figure 1.1. Lyapunov stability on DES

If p(X(x0,Ek,k),Xm) -» 0 when -» oo
. the system is said to be asymptotically stable. Sufficient

conditions for these properties are presented by K.Passino. The author also introduces the

concept of Lagrange Stability for DES, which refers to the boundedness of the máximum

distance achieved by motions.

In short, Passino presents the concepts of Lyapunov stability and asymptotic stability that are

adapted to DES from continuous systems theory. These concepts express the notion of staying

within the vicinity of a defined state set, and while being related to the idea of going back to a

desired state, it does not exactly capture the concept of stability that is of interest for this work

(convergence to a desired state rather than staying near the state).

1.2.2.STABILIZA TION USINGLYAPUNOVMETHODS

Retchkiman presents the problem of stabilization of Petri nets in the sense of Lyapunov in

[Retchkiman, 1999], [Retchkiman, 2000]. In this proposal, the problem is stated as the synthesis

ofa control law for manipulating the firing sequences to keep the system bounded.

A Petri net is said to be stabilizable if there exists a firing sequence with a vector of firing number

per transition u such that the next equality is true:

Av = ATu < 0

where A represents the incidence matrix ofthe Petri net.

5

Intuitively, for the net to be bounded, the effect ofthe firing sequence u on the marking reached

should be non-incrementing. This happens when the equality presented before holds, because the

state equation for Petri nets is given by:

M' = M + ATu

Then, ifthe expression ATu is equal to or lower than zero, the effect on the net is that the number

of tokens does not increase.

I
—O-H
tl pl t2

Figure 1.2. Stabilization by firing vector example

The net of figure 1.2 is an example of an unbounded net because the transition tl can occur

infinitely often, so place pl could have an infinite number of tokens. However, ifthe firing of

transition tl is restricted with the firing count vector u = [k, k] with k > 0, this is, tl occurs the

same number of times as t2, the system keeps bounded.

In a more recent work, Retchkiman approaches the same stabilization problem using the concepts

ofthe Max-plus algebra [Retchkiman 2011]. The author conceives stabilization as a way of

making a system bounded, following the concepts presented before by Passino. While keeping

the system bounded can be seen as keeping the system in a set of states, this property does not

capture the notion of stability that is preferred for this research, because in many cases the

desired system behavior cannot be defined using boundedness only.

1.2.3.INPUT-OUTPUT STABILITY

Similarly to Passino, Tarraf adapted concepts from continuous systems to DES theory, but the

concept he approached is different from Lyapunov notions [Tarraf, 2006]. The author defines a

finite state machine as the 3-tuple {U,Y, Q}, and a set of mappings (f:QxlI -» Q,h:Q -* Y)
where:

Q isthe set of states

U is the finite alphabet of input symbols
Y is the alphabet ofpossible output valúes

f is the state transition function

h is the output function

It is assumed that the input and output alphabets are subsets of integer numbers.

Then, a finite state machine is said to be finite-gain input/output stable if there exist non-negative
constants C,y such that the inequality:

6

T T

2V(*0|£ C +y£ |CT(OI

t=o t=o

holds for every time t > 0 . This can be understood as follows: A system is finite gain

input/output stable when the output of such system is a linear function of the input at all times.

The output is then proportional to the input.

A finite state machine S is externally stable if:

S is finite-gain input/output stable

There exists a finite time t > 0 such that for every input signal [u(t)}f=0 (infinite

sequence of input symbols) and two arbitrary initial conditions ofthe system q^O), 92(0)
the corresponding outputsíy^t)}?!,, y {y2(0}?=o satisfy yx

=

y2 for all t > t

This is, starting from two different initial conditions the system eventually produces the same

output for a given input.

Also, conditions for a state machine to hold the properties reviewed here are presented in [Tarraf

2005] and in [Tarraf2006]; the author continúes studying these notions, and results regarding the

interconnection of stable systems are presented. In addition, practical examples ofthe properties
are shown. These notions are more related to the output response of a system and are not

adequate to our purposes.

1.2.4.STAB1LITYON COMPUTER SCIENCE

In 1973 Dijkstra introduced to the computer science community the notion of self-stabilization as

a property that could be present on distributed systems. He defined a system as self-stabilizing

when, regardless of its initial state, it is guaranteed to arrive at a legitimate state in a finite

number of steps. A system which is not self-stabilizing may stay in an ¡Ilegitímate state forever.

This notion of self-stabilization encompasses a formal and unified yet general approach to fault-

tolerance for distributed systems. Dijkstra' s work motivated research on computer science and

discrete event systems regarding stability. Many of these proposals are reviewed here.

/.2. 5.STATE STABILITY ON FINITEAUTOMA TA

Based on Dijkstra's ideas, in [Ózveren, 1991] the authors define state stability as a property of

finite autómata. A finite state non-deterministic automaton is defined as the tupie:

G = (X,Y)

Where X is the finite set of states, and S is the finite set ofposible events. The dynamic behavior

ofthe system is given by functions / and d:

x[k + 1] G f(x[k],(T[k + 1])

a[k + 1] G d(x[k])

7

In this notation, x[k] G X is the state reached after the k-th event and a[k + 1] G S is the (k+1)-

th event. The d function specifies what events can occur in each state. The / function tells us

which is the next state and returns a set of states, being a non-deterministic automaton.

According to [Ózveren, 1991] the ideal behavior is assumed as a set of event sequences that are

preferred to be seen in the system behavior. For example, for a manufacturing system, such

sequences could consist in the concatenation of subsequences so that the occurrence of each

corresponds to the production ofan individual component and a return to an idle state.

However, because of the possibility of unavoidable events like faults or errors, the actual

behavior ofthe system could deviate from this ideal and then a successful recovery is a necessity.
In order to capture this notion, a subset E <= X needs to be identified, such that returning to E

means being in a state where normal or desired behavior is followed again from that point on.

The stability notion then corresponds to a return to E in a finite number of steps after the system

deviates from E.

This is captured in two stages. A state x is said to be pre-stable if every path starting from x EX

arrives at a state in E in a finite number of transitions. A state x G X is then stable if every state in

its reachability set is pre-stable.

A set of states is pre-stable with respect to E if every element on the set is pre-stable. A system is

pre-stable if every primary cycle ofX includes at least one state in E.

The algorithm that determines the biggest set of pre-stable states with respect to a given E is

presented next:

Algorithm 1.1: findPrestableSet

Input: Autómata G

Output: Xk (Maximal iset of pre-stable states ofG).

Let X0 = E
,
itérate:

Xk+i = {x\f(*'■d(x))c Xk}VXk

Until Xk+1= Xk.

A state x G X is stable with respect to E if and only if every primary cycle in the reachability set

of x includes at least one state in E. A system is stable with respect to E if and only if every

primary cycle ofX includes at least one state in E .

8

Figure 1~3. Stability with respect to E example

On the example of figure 1.3, states 0,2,3 and 4 are pre-stable with respect to E = {0,3} but only
states 2 and 3 are stable with respect to E. The state 0 is not stable because state 1 has a self-loop,
this is a cycle with no states in E, and state 1 is reachable from state 0.

The property presented by Ózveren does match our notion of a stable system. Also it has the

advantage of being formally defined on finite autómata. However, the authors do not consider

Petri nets in their study.

1.2.6.ATTRACTOR STATE SETS

Brave and Heymann [Brave, 1990] studied the ability ofa discrete event process to reach a set of

target states from any arbitrary initial state and then remaining there indefinitely.

Let Z be a finite alphabet. A process over S is modeled as a finite directed graph G = (V, E)

where V is the set of states and E Q VxZxV is the set of edges. Then an edge is a triple e =

(y, a, u) where v is the start state, u is the end state and a is the event associated to e.

Given a state set A _= V and an edge set E' QE. A is E'-invariant iff:

(V(u, a, u) G E ') v G A -> u G A

Let G = (V, E) be a process and let A, B Q V such that 0 * A Q B.Aisa. strong attractor for B

with respect to G iff the following conditions are satisfied:

1) _4 is i. '-invariant.

2) For each state v reachable from B there is a path that starts at v and ends in A.

3) There are no cycles of G in RG(B)\—A (RG(B) are the states reachable from B)

This notion is very similar to the one presented in [Ózveren, 1991]; the only difference is that

once the system reaches the set A it stays there indefinitely, contrary to the concept presented by

Ózveren et al. where the system can deviate from the desired states again.

9

1.2. 7.CLOSVREAND CONVERGENCE: A BASIS FOR FAULT TOLERANCE

According to Arora and Gouda [1993], self-stabilization is related to fault tolerance; however

self-stabilizing systems have been designed to tolérate transient faults only whereas they can be

designed to tolérate a variety of fault types. The authors considered that there is a need for a

uniform definition of fault tolerance that is independent of technology, architecture and

application. For this reason they introduce the notions of closure and convergence.

Observe that a well-established method for verification of systems is to define a predicate (a

Boolean expression) that is true during the desired or "legal" behavior. This predicate S identifies

the legal system states. Also, faults of many types can be represented as actions or events

perturbing the system state.

The authors require that there exists a predicate T that is weaker than S and holds during the

execution of system or faults actions (T holds even in illegal states). This is, starting from a legal

state (a state where both S and T are true) when a fault occurs, the next state reached must at least

hold T. This constitutes the closure condition for fault tolerance.

Once the fault events stop occurring, the system can be considered recovered only if it is restored

to a state where S holds. Therefore is required that every fault-free system execution upon

starting from any state where T holds, eventually reaches a state where S holds. This requirement

constitutes the convergence condition.

While these properties may seem similar to those presented by Ózveren et al., the convergence

requirement is weaker in the sense that the system is expected to return to a desired behavior once

fault events stop occurring. Although the property presented by Ózveren et al., is more general, it

is also more restrictive in the sense that convergence should be guaranteed regardless of faults

continuing to occur. Then, the concepts of stabilization presented by Arora and Gouda seem to be

more appropriate for fault tolerance analysis of real-life systems.

1.2. 8.General self-stabiliza tion of transient faults

Marco Schneider [1993] follows the concepts presented in [Arora and Gouda, 1993]. The author

presents a generalization of the concept of self-stabilization.

This concept is defined for a system 5 with respect to predicates P and Q over its set of global

states. 5 satisfies Q ■*» P (read as Q stabilizes to P) if it satisfies the following two properties:

1) Closure: P is closed under the execution of S. That is, once P is established in S it cannot

be falsified.

2) Convergence: Starting from any global state satisfying Q, S is guaranteed to reach a

global state satisfying P within a finite number of state transitions.

According to [Schneider, 1993] if _> is self-stabilizing with respect to P this may be restated as

true -*■> P in S. The model of failure that is discussed in this proposal considers transient failures,

10

which may change the global state of a system by corrupting the local state of a process or by

corrupting message channels or shared memory. This proposal is similar to that ofArora et al.

1.2. 9.P-CONVERGENCE

Astuti and McCarragher [1995] [1996a] [1996b] present a convergence concept using Markov

Chains. It is based on the Stability notion proposed by [Brave,Heymann 90], yet, according to the

authors, is less restrictive. Such concept is called P-Convergence. First, the notion of weak

stability from [Brave,Heymann 90] is introduced using a probabilistic framework:

S/G
Let G = (Af , E) be a DES, Af0 c M, and S be a Discrete event controller for G. Then Af —* Aí0

(G weakly converges to Aí0) if

i. Aí0 is EMnvariant (sequences of events starting in Aí0 end in M0 on the closed loop

system)

ii. There exists n > 1 such that for every <?¿ G Af :

Ps = (q(n) r=M0\q0 = q_) = l

That is, the probability of reaching Af0 in a finite number of steps n, starting from state tfa, is

equal to 1 (its certain) for every <?■ G M. In other words, there is a guarantee that starting from

any state in M ,
the system will reach M0 in a finite number of steps.

Then, P-Convergence is defined, based on the notion described above:

S/G,p
Let G = (Af , E) be a DES, Aí0 c M, and S be a Discrete event controller for G. Then Af » Aí0

(G is P-Convergent to Aí0) if

i. Af0 is E5-invariant (sequences of events starting in Aí0 end in Aí0 on the closed loop

system)

ii. There exists n > 1 such that for every q¡ G Ai:

Ps = (q(n) EM0\q0 = qi)>p

This concept is useful for the analysis of robustness of DES when a successful return to the

desired behavior is not guaranteed but it can be argued that the recovery is the most likely

outcome. This concept is less restrictive than those presented by Ózveren et. al. and as such is

well suited for the analysis of real-life systems. However, the stability concepts presented in

[Ózveren 1991] [Brave 1990] are stronger because they imply that the return to the desired or

normal behavior is guaranteed.

11

1.3.FAULT TOLERANCE

Other very important problem that arises when studying the fault tolerant capabilities ofDES, is

determining whether a system can become fault tolerant with the help of control procedures. In

this subsection, the main results dealing with this problem from the stabilization framework are

reviewed.

1.3. 1. Stabilizabilityof finiteautomata

In [Ózveren, 1991], a system is said to be stabilizable when there exists a control law such that

when the system is working in closed-loop over that control law it becomes stable. In order to

consider controllable inputs, the automaton definition is extended as follows :

G = (X,\Z,U)

Where U is the set of admissible control inputs. The system is controlled by disabling certain

controllable events. The system dynamic is given by:

x[k + l]ef(x[k],<r[k + l])

a[k + 1] G (d(x[k]) n u[k]) U e(x[k])

Where u[k] G U is the control input after the kth-event, e:X -* 2S specifies the set of events

which cannot be prevented to occur in a given state, and d(x) represents every event that could

occur in some state x.

A state feedback law is a mapping K:X -* U that determines which controllable events are

enabled at a certain state.

A state x G X is said to be prestabilizable with respect to E c X if there exists a state feedback

law K such that x is prestable with respect to E. A system is prestabilizable if every state of the

system holds this condition.

According to [Ózveren, 1991] there exists a maximal set of states which are prestabilizable with

respect to E and this set is denoted by (E) . The following algorithm calculates P(E):

Algorithm 1.2: find_P(E)

Input: Automaton G

Output: State feedback law K, maximal set ofprestabilizable states.

Let X0 = E, itérate:

0 -Pfc+i = {x\e(x) ± 0 and f(x,e(x)) c Xk or

e(x) = 0 and 3a G d(x) such that f(x,a) cXk}

2) K(x) = {0 if e(x)=£0 or some a such that f(x, a) c= Xk in other case}

12

V *^k+l ~ Xk u Pk+1

Until Xk+1 = Xk
__^_

The obtained state feedback law is maximally restrictive in the sense that activates the least

amount of events. The authors also show how to obtain a maximally permissive law.

A state x G X is said to be stabilizable with respect to E c X if there exists a state feedback law

such that x is stable with respect to E. A system is stabilizable if this condition holds true at every

state.

In order to find the maximal set of stabilizable states (S(E)), P(E) has to be obtained first. If

every event starting from a state inside P(E) would evolve into another state of P(E), the

calculation would be done. However, in general it is possible to have event trajectories which

lead the system out of P(E). As every element of P(E) is prestabilizable, those problematic

trajectories must start from a state in E . Then, E has to be reduced to a new set £" that does not

contain these states. However it is possible that some states in P(E) that were prestabilizable
with respect to E are not so with respect to £". For this reason, the maximal prestabilizable set

must be calculated again.

A subset Q ofX is said to be (f, u)-invariant if there exists a state feedback law K such that any

event occurring from a state in Q leads the system into another state of Q under closed loop with

K. Given a state set Y there exists a maximal subset ofy which is (f,u) -invariant, and is

denoted by T(Y).

A subset Q ofX is sustainable (f, u)-invariant if it is (f, u)-invariant and every state of Q is live.

Given a set Q, I(Q) denotes the maximal subset ofQ which is sustainable (f,u) -invariant.

The next algorithm determines the maximal subset of Q which is (f, u)-invariant:

Algorithm 1.3: findl(Q)

Input: state set Q

Output : I(Q)

LetX0 = Q, itérate:

%k+i = {x£Xk ¡exists a G d(x) such that f(x, cr) ^Xk)

Until Xk+1=Xk

Finally, the algorithm to find S(E) is presented:

Algorithm 1.4: findS(E)

Input: Autómata G.

Output: S(E)

Let X0 = X, itérate:

13

Xk+1 = I(P(EnXk))

Until Xk+1 = Xk

1.3.2.A framework for faultrecovery onfiniteautómata

An application ofthe state stability concepts presented by [Ózveren 1991] and [Brave 1990] is

presented in [Wen 2007], [Wen, 2008], [Wen, 2009]. In this work, supervisory control is used not

only to enforce a control specification, but also to ensure that a correct recovery takes place after

a fault occurrence. The authors understand recovery as a return to a state which is equivalent to a

legal behavior in a bounded number of steps.

Initially it is assumed that a model G (finite automaton) describes the whole behavior of a plant
and a model GN (which is a subgraph ofG) represents the legal behavior only. The notion of fault

tolerance characterized by [Wen 2007], [Wen, 2008], [Wen 2009] consists on a return to a non-

faulty state. This is based on state stability. Also, a notion of weak fault tolerance is introduced;
this does not require a return to a desired state, rather the normal behavior of the system can

continué from a faulty state, keeping in mind that the performance is not going to be optimal but

tolerable.

m^)

Figure 1.4. Plant G

On figure 1 .6, the depicted automaton has states 1 and 2 defined as the legal or desired behavior
states. There is also an event/that can occur from state 2 that represents a fault. As it can be seen

there is no guarantee that the system will return to states 1 or 2 once the system leaves such

states; however, the behavior after the fault is the same than that before faults, so this system is

an example ofa weakly fault tolerant system.
In [Wen 2008], sufficient and necessary conditions that guarantee the existence of supervisors for

these notions are introduced. This work was based on finite autómata.

1.3.3.Stabilizing controllers on finite autómata

In [Khatab 2002] fault recovery is studied on systems modeled as finite autómata. A fault is an

incontrollable event that drives the system out ofthe desired behavior.

14

According to the authors, it is assumed that two modes of operation are possible in the system:

the nominal operation mode NOM and the degraded operation mode DOM. The NOM

characterizes the desired behavior of the system while the DOM represents an acceptable
behavior ofthe system after the occurrence ofa permanent fault.

Two fault recovery techniques are proposed. The first consists on synthesizing a state feedback

controller that guides the system back to its nominal operation mode. This procedure is

strongly linked to the concept of stabilization. If it is not possible for the system to

continué exhibiting the nominal behavior, the second technique is to guide the system to a

degraded operational mode by restricting its behavior by means of control.

1.3.4.ACTIVE FAULT TOLERANT CONTROL USING ONLINEDIAGNOSIS

Paoli et al. consider the problem of fault tolerant control of DES modeled as autómata [Paoli

2008][Paoli 201 1]. In their work they present an integrated solution including fault diagnosis and

recovery. They focus on permanent faults that alter the normal functioning of a system so that

after a fault occurrence, a degraded behavior must be tolerated.

A central notion in the proposal of Paoli et al. is the concept of safe diagnosable DES; this refers

to the fact that the faults of a given DES can be diagnosed and isolated before an illegal or

irrecoverable event (from a previously defined set) occurs. A safe diagnosable DES is also safe

controllable when the system can be steered away from the occurrence of illegal events after a

fault event by means ofcontrol.

In [Paoli 201 1] the authors present necessary and sufficient conditions for these notions along

with methods to find fault tolerant controllers.

1.3.5.REDUNDANCYBASED CONTROLLER RECONFIGURATION

M. Alcaraz et al. introduced a notion of fault recovery relying on system hardware redundancies

[Alcaraz 2006] [Alcaraz 2007]. The authors present a method to identify hardware redundancies

on Petri net modeled systems and an algebraic technique that is used to reconfigure the controller

ofthe system when permanent faults occur.

These procedures are designed for a class of Petri nets that have a defined structure. More

specifically, the models are composed by a plant and a specification sub models which are

composed between them as a closed loop system, according to the theory of output regulation

control presented in [Santoyo 2008].

In this proposal, the authors model independent plant processes as state machines with resource

places (SMR). Basically, when a resource is not available due to a fault, the presented procedure

works by searching and identifying component redundancies and then reconfiguring the

controller to use these redundancies.

15

In this chapter the most important works on stability for DES were reviewed. While some of

these approaches are adapted from continuous systems theory, the notions that are the most

relevant for this research are those related to the convergence ofa discrete event system to a

defined state set representing the desired behavior. In this way, if faults or exceptions are of

uncommon occurrence, the system would exhibit correct behavior most ofthe time. The concepts

and background required for the study of stability on Petri nets are presented in the next chapter.

16

Chapter 2 Background

In this chapter, the basic notions of the Petri net formalism as well as a well-known extensión:

Interpreted Petri nets are introduced. Also, the branching process representation of a Petri net is

explained.

17

2.1.Petri Nets

In addition to finite autómata, there are other formalisms that have been widely used on the task

ofmodeling and analyzing discrete event systems. Among them, Petri nets stand out as a

powerful graphical tool that unlike finite autómata, allows a clear and compact representation of

complex behavior like concurrency, parallelism, synchronizations, etc.

2.1.1.Definition

Definition 2.1. A Petri net structure G is a bipartite graph represented by the 4-tuple G =

(P, T, 1, 0) where:

P = ÍPi. Vi, - Pn) and T = {t__, t2, ... tm} are finite sets ofnodes referred as places and transitions

respectively.

I (O): PxT -> Z+ is a function that represent the weighted ares going from places to transitions

(transitions to places), where Z+ are the nonnegative integers.

Pictorially, places are represented by circles and transitions by bars, as shown in figure 2. 1 . The

places are pl and p2 ,
transitions are tl and t2. For this example, it can be seen that I(pl,tl)=l

(there is a directed are from pl to tl), 0(p2,tl)=l (there is a directed are from tl to p2) but

I(p2,tl)=0 and so on.

tl

t2

Figure 2.1 : A simple Petri net

Notation. • t¡ denotes the set of places p* such that 7(p*t/)>0 and t¡
• denotes the set of places

Pi such that 0(p¿ t;)>0. Similarly, • p* denotes the set of transitions tj such that 0 (p¿,íy)>0 and

Pi
• denotes the set of transitions t¡ such that /(p£t;)>0.

For the PN in figure 2.1, • tl = {pl}, tl • = {p2}, also, • pl = {t2}, pl • = {rl}.

18

Definition 2.2. The incidence matrix of G is C = [cy], where cy = 0{jpit¡)
—

l(jp_tj). The

marking function Af : P -» Z+ is a mapping from each place to the nonnegative integers, which

represents the number of tokens on each place. The marking of the net on fig 2.1 can be

expressed with the vector [1 0] where the first entry shows the marking of place pl and the

second entry refers to the marking ofplace p2.

Definition 2.3. A Petri Net system (PN) is a tupie (G, Af0) where G is a PN structure and M0 is

the initial marking. The transition t¡ is enabled at marking Aík ifVp¡ G P, Aík(p¿)>/(piit/), the

firing of this transition will make the system reach a new token distribution given by Afk+1 =

Afk + Cvk, where vk(í) = 0, i =?■= ;, vk(j) = 1.

Definition 2.4. The Reachability set R(G,M0_) of a PN is the set of every possible marking

reachable from Af0 when firing enabled transitions only. The reachability graph is a graphical

representation ofthe reachability set where every reachable marking is represented by a node and

there exists an are from node A to node B if and only if the marking represented by node A

enables a transition T such that after the firing of T, the marking represented by node B is

reached. The reachability graph for the net of figure 2.1 is shown on figure 2.2.

[10]

tl t2

[01]

Figure 2.2: Petri net Reachability graph

Definition 2.5. Let G = (P, T, I, O) be a PN structure. The induced subnet given by X, X £ P

and denoted as [X], is the structure [X] = (X,T0,I°,O0) where I°QI,0°Q0 such that

Io: X x T° ni, 0°:X x T° n 0, and T° =• X U X «.Similarly, the induced subnet given by Y,

Y _= T and denoted as [Y] is the structure [Y] = (P°, Y, Io, 0o) where Io Q 1,0° Q O such that

/°: P° x Y n /, 0o: P° x Y n 0, y P°
=• Y U V =. On figure 2.3 a Petri net is depicted on the

left while the subnet induced by {tl,t2}is depicted on the right.

Definition 2.6. Let (G, M0) be a PN system where G = (P, T, l,0).lí\»tj\ = \tj •{ = 1, Vt¡ G T,

then (0,AÍO) is a state machine. If I» Pil = |p¿ •! = L Vp¿ G P, then (G, Aí0) is a marked graph.

19

If (0,Afo) is a marked graph and a state machine simultaneously, then it is a simple cycle. The

net on figure 2.1 is both a state machine and a marked graph, so it is a simple cycle.

tl t3 tl

t2 t4 t2

Figure 2.3: PN structure and one of its subnets

Definition 2.7. Let (G, Aí0) be a PN system. A P-invariant Y (T-invariant X) of a PN is a rational

solution to the equation YTC = 0 (CX = 0). An invariant is said to be semipositive if every

entry on the vector is greater or equal than zero. The support of a vector Y denoted as < Y >

represents a set of transitions or places and is defined as < Y >= {y¿ | Y [i] > 0}. Let Y be a P-

inyariant (T-invariant X), [< Y >] ([< X >]) is called P-Component (T-Component). On figure

2.3 there is only one minimal P-Invariant, which support is {pl,p2,p3} and there are two minimal

T-Invariant with supports {tl,t2} and {t3,t4} respectively. The subnet appearing on the right of

figure 2.3 is a T-Component.

2.1.2.INTERPRETED PETRINETS

Like finite autómata, Petri nets can be extended to take into account the existence of controllable

and incontrollable events and to distinguish between the different input and output events. This

extensión is generally known as Interpreted Petri nets (IPN) and its definition is detailed next.

Definition 2.8. An IPN is a 4-tuple Q = (N, I, X, <p) where:

N = (G, Af0) is a PN system.

I = {a__, a2, ... ar) is the input symbol alphabet, where cr¿ is an input symbol.
A: T -» S U {é} is the transition labeling function with the following restriction:

Vt;, tk G TJ *3t k, if Vp* , ¡(pt, tfe) = l(pi, t¡) * 0 and A(tfc) * e,X{t}) ± e, then Á(tk) *

l{tj).
<p:R(Q, Aí0) -» {Z+}q is the output function which maps an output vector to every reachable

marking and q is the number of outputs available on the places.

If Á(t_) * e, the transition t£ is said to be controllable. Otherwise, it is uncontrollable. On

Interpreted Petri nets any uncontrollable event is represented by e.

A place Pi is measurable ifthe ith column vector ofmatrix cp is different from nuil, otherwise is

not measurable.

20

¿4<&
Robotl Robot2

Almacén

Figure 2.4: Discrete event system example

A small system with two robotic arms and a storage box is depicted in figure 2.4. One of the

robotic arm handles the load operation while the other handles the unload operation, these events

are controllable. The corresponding IPN model is shown on figure 2.5. There is a place that

represents the storage box occupation which is measurable. Also, there are two "working" places

that represent that there is a load or unload operation taking place respectively, the events of

finishing an operation are uncontrollable.

cargar-Rl

O
almacén descargar-R2

■HCH

Figure 2.5: PN model for system on fig. 2.4

However, the model presented does not have any means of control, so, the storage box could be

overloaded and a collision between the robotic arms is possible. Figure 2.6 shows the same

system in closed-loop (controlled), where the control restricts the load and unload operation to

avoid going over the storage capacity (3 objects) and avoid collisions.

capacidad

cargar

usandoA

Figure 2.6: Controlled system model

21

2.1.3.Petrinetmodel compositions

In DES models it is common that two or more state variables are related; their behavior is not

completely independent from each other. In Petri nets this relation can be represented by merging

the individual models of the state variables; this results in a model which shows how those

variables are related. In this subsection, two different ways to merge nets are presented. An

example ofa system with many variables is represented on figures 2.4-2.6
which is composed of

two state variables: the remaining storage capacity and the availability
to do some action over the

storage área.

When two state variables have transitions which represent the occurrence ofthe
same event, there

is a synchronic relation or synchronization between these
variables. In figure 7 the state variables

of the load-unload system are shown. It can be seen that there are transitions representing the

same event in both models. The complete model that results from the synchronic composition is

the model on figure 2.6 (symplified, some duplicated non-measurable places
were deleted).

A permission relation exists between two state variables A, B when there is some event that

changes the valué of variable A but this event needs that variable B has a specific valué to occur,

and this occurrence does not modify the valué of variable B at all. A very simple system is

depicted in figure 2.8. There is a liquid container having only two measurable states, empty and

full and can go from one state to the other only when the valve state variable is on valué "Open"

cargar

capacidad

almacén

cargaHOH
descargar

HO

usandoA

\-H£

Figure 2.7: State variables for system on fig. 2.4: capacity(up) and storage
use (down).

Intuitively, on a synchronic composition, the transitions representing
the same event fuse m one

transition. On a permission composition, where the state variable
A requires the state variable B

22

to be in a specific state, a bidirectional are from the transition on variable A model to the

corresponding place of variable B model is included. Synchronic and permissive relations are

defined below according to [Rivera, 2004], [Rivera 2005].

cerrarValvula

abierta cerrada

vacio

Figure 2.8: Permission relation example

Definition 2.9. Let (G, Aí0) be a PN and LABELS = [l__, l2, ... lw} be a set of arbitrarly defined

labels. (G, Af0) is a labelled PN if there exists a function tLab: T -* LABELS mapping a

transition to some label and a function pLab: P -* 2lABELS that maps a place with a set of labels.

In order to complete a synchronic composition, those transitions that represent the occurrence of

the same event should have the same label. For establishing a permission composition, the places

that will allow some transition t to fire when marked should have the same label than transition t.

Definition 2.10. Let (G1, Aí¿) y (G2, Aí£) be two labelled PN where LABELS'__ is not necessarily

different from LABELS2 . The synchronic composition of the two PN is the labelled net

(G1--2,^"2) given by:

pi\\z
= Pi U P2

■Tinz
= (Ti

-

cTt) U (T2
-

cT2) U cTAÍ01112 = M¡ U Aí02

/i||2
=

/il{(pí,t;)|tJ*e7-1-cT1} u I2\((pi,tJ)\tJer2-cT2} u

{({.Pi, tj), l)\(tj G cT__ A l_.{Vi, t¡) = 1) V (t¡ G cT2 A I2(Pil tj) = 1)}

Oi||2
=

0il{(pí,t7*)|t/er1-cr1} u °2l{(Pl,ty)|t;GT2-cr2} u

{((.Pí, tj), í)\(tj G cT__ A O^pu tj) = 1) V (tj G cT2 A 02(p-, tj) = 1)}

where:

cTx = [tk G Tt\Sti G T2,tLab_(tk) = tLab2(ti)},

cT2 = {tk G T2|3t£ G Tx,tLab2(tk) = tLab^U)},

23

cT = tk\Bti G cTx,3tj G cT-i.tLab^ti) = tLab2(t¡), y

f\ is the f function restricted to some subset.

Definition 2.11. Let (G1, Af¿) , (G2, Aíf) be two labelled PN, where LABELSX is not necessarily

different from LABELS2 . The permissive composition of the two PN is the labelled PN

(G1<2,AÍ¿°2) given by:

PU2 = Pi U P2

TU2 = TXVT2

Mi'2 = Mi U Mi

lU2 = I1UI2 U

{({Pk, t¡), l)|(pk G PU2, tj G Tlí2) A (tLabx(tj) G pLab2(pk) V tLab2(t}) G pLabx(pk))}

0U2 = Oj U 02 U

{(.(Pk.tj), 1)| (pk G P__,2,tj G TU2) A (tLab__(tj) G pLab2(pk) V tLab2(tj) G pLafc^))}

2.2.Petri netUnfoldings

While complex behavior like concurrency can be expressed in a compact way with Petri nets, the

actual number of states represented by the net can be huge. In other words, the number of

reachable markings ofa net could possibly grow exponentially with the size ofthe model. This is

generally known as the state explosión problem, and has been one of the most important issues

on Petri nets. In [McMillan, 1993] a new technique to avoid this problem has been proposed,
which is based on the concept of Petri net unfoldings. This method is summarised in the next

subsections.

2. 2. 1.Ocurrencenets

The following notions have been taken mainly from [Esparza, 2002]. First, the causal, conflict
and concurrency relations between nodes ofa net are recalled.

Definition 2.12. Two nodes x, y are in causal relation, denoted by x < y, ifthe net contains a

path from x to y; they are in conflict relation, denoted by x#y, if the net contains two paths
st__...x and st2. . . y starting at the same place s, and such that tx ■*= t2; they are in concurrency

relation, denoted by x co y, if neither x < y ñor y < x ñor x#y.

These relations are shown in figure 2.9. In 2.9.a the example net shows that there exists a directed

path between places A and B; this means that A and B are in a causal relation. Next, on 2.9.b

places A and B are in a conflict relation because they are on mutually excluding execution paths

starting from the same place. Finally, on 2.9.c places A and B are concurrent.

24

Figure 2.9. a) Causal relation. b) Conflict relation. c) Concurrent relation.

Definition 2.13. An occurrence net is a net ON = (B, E, 1, 0) such that:

1)V6GB,|.(6)|<1;

2) ON is acyclic;

3) Vx G B U E, the set {y G B U E\ y < x] is finite;

4) No element is in conflict with itself.

where B and E are called conditions and events respectively; Min(ON) denotes the set ofminimal

elements of B U E that have an empty preset.

In words, an occurrence net is a Petri net model which has a simple, tree-like structure. It is easy

to see that any two nodes of an occurrence net are either in causal, conflict, or concurrency

relation. An 1 -bounded Petri net can be rewritten as an occurrence net by a process called

unfolding. The resulting nets are called branchingprocesses.

2.2.2.BRANCHING PROCESSES

Definition 2.14. A branchingprocess ofa net system I = (P, T, 1, 0, Aí0) is a labelled occurrence

net (¡ = (B, E, ¡2, 02, p), where the labelling function p satisfies the following properties:

1) p(B) _= P and p(E) Q T (p preserves the nature of nodes);

2) For every e G E, the restriction ofp to • e is a bijection between • e (in ¡1) y • p(e) (in £),
and similarly for e • and p(e) • (p preserves the environments of transitions);

3) The restriction ofp toMin(0) is a bijection between Min(ON~) and Aí0 (fi starts at Af0);

4) For every ex, e2 GE, if • ex =• e2 and p(ex) = p(e2) then ex
= e2(fi does not duplícate the

transitions of2).

A branchingprocess (BP) is a representation of a PN behavior which has a simpler structure than

the original net, and smaller size than R(G, Mo). When the PN describes repetitive behaviour, as

in figure 2.10, it has an infinite BP which is obtained by unfolding as much as possible and is

called the unfolding ofthe system. This means that branching processes ofthe same system differ

on how much they unfold; so it is natural to introduce a prefix relation between BP's.

25

b) c)

Figure 2.10: Petri net and two of its branching processes

Definition 2.15. Let _B' = (ON',p') and fi = (ON,p) be two branching processes ofa net

system. /?' is aprefix of (1 ifON' is a subnet of /? satisfying:

Min(ON) belongs to ON'

Ifa condition b belongs to ON', then its input event e G« b in ON also belongs to ON' (if
it exists)

If an event e belongs to ON', then its input and output conditions • e U e • in ON also

belong to ON'

p' is the restriction of p to ON'

The branching process of figure 2. 1 0.c is a prefix of the branching process on 2. 1 0.b.

2.2. 3.Configura tions

Definition 2.16. A configuration C of a BP is a set of events satisfying the following two

conditions:

1) // e G C =» Ve' < e ¡ e' G C (C is causally closed).

2) Ve, e' G C: -i(e#e') (C is conflict free).

26

Intuitively, a configuration is a set of transitions which can occur from the initial marking in

some order. On figure 2.10.C, the set labelled with {tl,t2,t3} is a configuration but {t2,t3} is not

(the set is not casually closed).

Definition 2.17. Mark(C) is the reached marking by firing the transitions in C. C © E is called

the extensión ofC if C U E is a configuration s.t. C r\E = 0. E is called a suffix of C.

2.2.4.FINITE COMPLETE PREFIXES

In this subsection the method for the building of the unfolding is presented along the procedure

for the construction ofa finite branching process which represents every reachable marking.

The unfolding ofa net system __ is going to be represented with a set of nodes {nx, ...nk}. A node

is either a condition (place) or an event (transition). The condition node is a pair (s, e) that

includes a place s and its only input transition e (every place has only one input transition, as in

occurrence nets). An event is also a pair (t, X) where t is a transition of2 and X represents the set

of input places tot.

Definition 2.18. A co-set is a set of places in a branching process which are pairwise in

concurrent relation.

Definition 2.19. Let /? be a branching process ofa net system __. The possible extensions of /? are

the pairs (t, X) where X is a co-set of conditions of /? and t is a transition of £ such that:

p(X) =• t and

(t,X) does not already belong to _B

The algorithm which builds the unfolding ofa net system is presented next.

Algorithm 2.1 The unfolding algorithm

Input: A net system S = (N,M0) with Aí0 = [px, ...pn}.

Output: The unfolding Unfofl

begin

Unf-{(px,0),...,(pn,0)};

pe*-PE(Unf);//PE(Unfj are thepossible extensions ofUnf

whilepe-É 0 do

add to {/«/an event e = (t,X) oípe and a condition (s, é)

for every output place s of t;

pe^PE(Unf);

endwhile

end

27

For net systems with cyclic behavior, the algorithm above never terminates. However, in order to

analyze some properties of the system a finite branching process is needed. For this reason it is

necessary to construct a finite initial part ofthe unfolding which represents the entire behavior of

the system. Such finite initial part ofthe unfolding is calledfinite complete prefix.

Definition 2.20. A BP /? is complete ifVMeR(G,M0) there is a configuration C in /? such that:

1) Mark(C) = Af;

2) For every transition t enabled by Ai there exists a configuration C U {e} s.t. e í C A p(e) =

t.

Since an 1 -bounded net has only finitely many reachable markings, its unfolding contains at least
one complete finite prefix. McMillan had the idea of identifying certain events, called cut off

events, at which the construction can be stopped without losing information. Also, McMillan

attached to each event e added by the unfolding algorithm a reachable marking of S. For this, the

local configuration [e] is computed first and then e is related to the reachable marking

Mark([e]).

Definition 2.21. The local configuration [e] ofan event e of a BPis the set of events e' such that

e' < e. For example in figure 2.10.C [t4]={tl,t2} and Mark([t4])={F,C}.

2.2. 5.ADEQUATE ORDERS

According to [Esparza, 2002] if there are events e, e' such that ([e]) = Mark([e'\) ,
it is

sufficient to continué the construction of only one ofthe two (the extensions after them are

isomorphic). The choice between [e] and [e'] is made on the basis ofa partial order. Esparza

proved that all orders satisfying the 3 properties below lead to finite complete prefixes:

Definition 2.22. A partial order < on the finite configurations ofthe unfolding ofa net system is

an adequate order if:

l) < is well-founded,

2) Cx c C2 implies CX<C2, and

3) •< is preserved by finite extensions.

In [McMillan, 1993] the author successfully used the size ofthe local configuration as an

ordering. It is clear that this is an adequate order.

2.2. 6.Cut-off event

The key concept used to build a finite complete prefix (FCP) is that ofa cut-offevent. Intuitively,
when such an event is found, there is no need to continué expanding the branching process

beyond that point, as every marking added after that transition is already represented.

Definition 2.23. Let < be an adequate order on the configurations of the unfolding of a net

system. Let /? be a prefix ofthe unfolding containing an event e. The event e is a cut-offevent of

P (with respect to <) if /? contains a local configuration [e] such that:

1) Mark([e]) = Mark^e1}), and

2) [e] < [e].

28

In figure 2.10.C an event e labelled tl could be added to the unfolding, however it is clear that

there exists another event e' labelled tl with the same final marking. Furthermore [e]

={tl,t2,t3,t4,t5,t6} and [e']=0 so e' has a smaller configuration. This means that e is a cut off

event and the depicted branching process is a finite complete prefix.

The number ofevents in the finite complete prefix depends on the adequate order used to build it;

it is possible that two events with the same final marking have local configurations of equal size,
so the adequate order proposed by McMillan is partial.

An adequate total order for 1 -bounded nets was presented in [Esparza, 2002]. In the case of a

total order, for any pair of events [e], [e] it is true that either [e] < [e] or [e] ■< [e'] so if

Afarfc([e]) = Afar/.([e1) either [e] is a cutoff event or [e] is. Then, in any finite complete

prefix obtained with respect to an adequate total order which does not include the cutoff events,

Mark([ex]_) = Afarfc([e2]) only if ex
=

e2 . In order to present this adequate order, some

concepts from [Esparza, 2002] have to be reviewed first.

Let 5_ = (N,M0) be a net system, and let « be an arbitrary total order on the transitions of I.

Given a set E of events, let <p(E) be that sequence of transitions which is ordered according to «

and contains each transition t as often as there are events in E with label t. For instance,

suppose tx « t2 « t3 « t4 ,
and also suppose that the set E contains four events labelled

by tx,t2,t2 and t3 then <p(E) = txt2t2t3 It is said that (p(Ex) « (p(E2) if <p(Ex) is

lexicographically smaller than <p(E2_) with respect to the order «. Next, the Foata Normal

Form\D'\ekeTt, 1990] ofa configuration is defined.

Given a finite configuration C, its Foata Normal Form is the list of sets of events constructed by
the following algorithm:

Algorithm 2.2. Foata Normal Form ofa configuration

Input: A configuration C of a branching process

Output: The Foata normal form FC of C.

FC<r-0;
while C ■*- 0 do

append Min(C) to FC;
C <- C\Min(C) ;

endwhile

end

Definition 2.21. Let Cx and C2 be two configurations ofthe unfolding of a net system. Cx <F C2
holds if:

1) |C1|<|C2|,or

2) ICil = |C2| and <p(Cx) « cp(C2), or

3) IGil = \C2\, <p(Cx) = cp(C2) and FCX « FC2

29

In words, in order to determine which configuration is smaller, the sizes ofthe configurations are

compared first, if they have the same size then their transitions are ordered by « and the resulting
sequences are compared lexicographically. If these sequences are equal, then the Foata Normal

Form of the configurations are obtained and compared. The demonstration that <F is indeed an

adequate total order and the complete algorithm for finding a finite complete prefix is found on

[Esparza, 2002].

In this chapter, fundamental definitions on Petri nets and one of its extensions were reviewed,
also, a method to cope with the state explosión problem called Petri net unfoldings was

presented. In the next chapter, the issue of state stability on a subclass of Petri-net-modeled

DES's is explored.

30

Chapter 3 Stability on Petri nets

In this chapter the notion of stability that is going to be used in this work is introduced. Also, a

technique for deciding the property in a class of Petri net models, named Closed Loop System

Model (CLSM) nets is proposed.

31

3.1.Problem statement

In the occurrence of non-prevented events that detour the operation out of normal or desired

behaviour states, it may be interesting to know if it is guaranteed that the system eventually
would return to the expected behaviour. This ability is referred in our study as the stability of

discrete event systems.

This property has been studied in [Ózveren, 1991] for DESs modeled with finite state autómata.

Assuming that there is a prescribed set of "good" system states S, such that, starting from these

states and in the absence of errors or anomalous events, only good event trajectories are possible,
a given state X is said to be stable iff every cycle in the automaton, whose states are reachable

from X, has at least one state in S. A system is stable if every state in the system is stable. In this

way, if errors or anomalous events are not very common, the system would exhibit legal
behaviour most ofthe time. Next, a similar property for IPN models is defined.

Definition 3.1. Let (Q,M0_) be an IPN system, and let S Q R(Q,M0) be the set of expected

markings. (Q, Aí0) is stable w.r.t. S iff VAÍk _= R(Q,Me)s.t.Me G 5 it is possible to reach a

marking in S only by the firing of finite length transition sequences.

This notion is illustrated in the finite automaton of figure 3.1 in which one can distinguish two

subsets of markings: S¡={Mo, M¡, M2, A/_} representing a normal functioning operation mode,

and Sf= {Me, M7} representing a degraded functioning mode; S=Si^jS2 is the set of expected

markings. Ares labelled with e represent uncontrollable events that detour the system form the

expected behaviour. In this system if the states A_V or M¡ are reached, the system can back to

some state in S. Instead, ifA/_*or Mg are reached, a large sequence (maybe infinite) of events may
occur before returning to Ma.

Figure 3.1 Stability notion

According to this definition, stability can be characterized in terms of the structure of the

reachability graph as follows.

Proposition 3.1. Let (Q,AÍ0) be an IPN system, and let 5 Q R(Q,M0_) be the set of expected

markings. A marking Af G R(Q,M0) is stable w.r.t. S iff every cycle in the graph representation

ofR(Q,M) contains at least one marking in S, and every node in the graph representation of

R(Q,M) enables at least one event, that is, R(Q,M) is nonblocking. Then, (<?,Af0) is stable w.r.t.

S iffVAÍk £ R(Q. M0), Mk is stable w.r.t. S.

32

Proof. It is straightforward. The conditions that constraints to include a Afe G 5 in every cycle in

the reachability graph of (<?,Aí0) and the fact that there exists no dead states assure that the

length of firing sequence to return to S is finite. ■

At first, it may seem that the problem of determining if a system is stable with respect to an

expected state set 5 is the same problem as determining if S is a home space. A set ofmarkings

M is said to be a home space if for every Ai G R(Q, Aí0), there existsMxeM such that Mx G

R(Q,M) [Esparza 1994]. According to this definition, it is true that if a system is stable with

respect to S, then S must be a home space. However it is not true that if S is a home space, then

the system is stable with respect to S as can be seen in figure 3.2:

Figure 3.2. Example showing the difference between Stability and Home Space notions.

Every reachable marking in figure 3.2 can also reach either Mx or Aí0 (both in this case) this

means that 5 is a home space. However it is not guaranteed that either Mx or M0 will always be

reached in a finite number of steps as there exists a cycle of undesired markings in the graph

(M2M3M2). This implies that the system is not stable with respect to S.

A procedure for implementing a stability test derived from this characterization has been

presented in [Lutz-Ley, 2012a]. Although the algorithm is performed in polynomial-time on the

size of R(Q,M0), in general the analysis is not efficient for large systems, because the

computation of the reachability graph is required. Then, the analysis of stability from the PN

structure instead of the Reachability graph is preferred; this study is performed on a class of

controlled Petri net models which is detailed next.

3.2.STABILITY ON CLSM NETS

3.2.1.CLSMNETS

IPN have been widely used for modeling concurrent discrete manufacturing systems. In

particular, DES's models expressed by a subclass of 1 -bounded IPN are the focus ofthis section.

In this subclass, the plant and the control specification are clearly distinguishable as components,
and their interaction is clearly stated.

33

The plant model is formed by a set of IPN modules that describe the behaviour of the process

state variables. These models are related with the controller model by means of permissive

compositions in both directions. The controller places enable, when they are marked, transitions

ofthe plant model components (through permissions). Accordingly, the places ofthe plant model

inform to the controller that a relevant situation has been reached when they are marked.

A model built in this manner preserves the appearance of modules of both plant components and

controller, and distinguishes clearly their interaction, which establishes the controller-plant

closed-loop relationship. This kind ofmodels is called Closed-Loop System Model (CLSM); this

is illustrated in Figure 3.3.

Permissive composition between

controller places and plant

controllable transitions

Safe, non-blocking marked

graph

Permissive composition between

plant measurable places and

controller transitions

Safe state machines Every plant

device has one or more state

machines related by

synchronous composition

Figure 33 General scheme ofCLSM nets

Now the IPN class CLSM is defined in terms of its components and how these components are

related.

3.2.2.Controller and plant components

The controller component is a set of synchronized repetitive sequential processes; it is recursively
defined as follows.

Definition 3.2. Controller component.

A non-blocking 1 -bounded IPN whose structure is a circuit is a controller component.
Two controller components synchronized through a single transition form a controller

component.

Property. A controller component is, in fact, a non-blocking marked graph. This is a special case

of LB-circuits compositions characterised in [Koh, 1991].

A plant component describes the behaviour of a physical device on the system. Every device can

have more than one state variables, so it could be formed by one or more state machines based on

the representation of its behaviour; these subcomponents are related between them by

synchronous composition.

The plant component is recursively defined as follows.

34

Definition 3.3. Plant component.
An 1 -bounded IPN whose structure is a strongly connected state machine is a plant component.
Two synchronized plant components form a plant component.

The CLSM is composed by one controller component and one or several plant components
related by permissive compositions.

Definition 3.4. Closed-Loop System Model (CLSM)

Let (Gc,Afc) be a controller component, with (GCk,AícJ for _r=l,2...z being the set of simple

circuits that compose it; let (Ge,Afe) for e = 1,2, ...r be a collection of plant components. If

Ve, (Ge,Me) is related with (GC,AÍC) using the permissive composition, according to the

following rules:

1) If (G¡, Af¿) is permissive-related with (GCr, AÍCr) and (GCu, AfCu), then u = r.

2) Vtr G Tc , tr is permissive related with at least one place from some plant component.

3) For every permissive relationship from place p¿ to transition t¡:

a) lf pi G Pc ,
then t¡ is manipulated

b) If p* G Pe, for e=l,2,...r ,
then p¡ is measurable.

then the resulting model is a CLSM.

Controller

lí 1 í
Circuit arcuit Circuit

1 lll 2 m* ■■■»_, n

.) \) \

1) Every plant component can be

related with only one simple
circuit from controller

7

Figure 3.4. CLSM first condition

Condition 1 limits the permissions of every plant component such that they relate with only one

simple circuit ofthe controller, allowing a simpler analysis later.

35

Controller

< - Af\

3) Controllable tran sition)h
•s

2) Every transition is permissive-
relatedwith at least one

measurable plant place

>i
Plant

3) Measurable place

Figure 3.5. CLSM conditions 2 and 3

Condition 2 express that every transition of the controller needs permission from at least one

place of a plant component; in this way, the controller goes to the next state only after the plant
reaches a given state, and thus a desired output.

Conditions 3a and 3b represent basic consistency restrictions: only controllable transitions can be

disabled by permissions, and only measurable places can be read by the controller component,
also using ares in both directions (permission self-loops).

In other words, in a CLSM the controller strategy can be represented by a non-blocking marked

graph and each simple circuit ofthe controller interaets with a part ofa complete process. Each of

these parts is represented by one or more plant components, in which every plant component is

permissive-related with only one of the simple circuits of the controller component and vice

versa. The obtained model is 1 -bounded, which is a property well adapted for actual

manufacturing systems.

3.2.3.EXAMPLE

Consider the pick and place system showed in figure 3. The magnetic grip is used for

transferring metallic parts from location 1 to location 2. The corresponding CLSM model is

depicted in figure 3.7; it explicitly shows the modules and their interactions. It consists of the

controller component and two plant components, one for describing the gripper displacement and

position (Plant Component 2), and the other one for representing the gripper state (Plant

Component 1). Permission ares between the controller and the plant components are depicted by
ares in both directions (which are depicted as dotted bidirectional ares), non-measurable plant

places are depicted as gray circles, and uncontrollable transitions are labelled with e.

36

Figure 3.6. A simple pick and place system.

Controller

Figure 3.7. CLSM for the example of figure 3.5.

3.2.4. Checkpointmarkings

In CLSM, the controller places enable transitions in the plant components, and then these

components evolve until the marked places inform to the controller a given situation (feedback)
which is taken into account to advance the controller operation.

Definition 3.5. The markings that enable the transitions ofthe controller component (Qc, Mc) are

called checkpoint markings. They are composed by the marking of (Qc, Mc) and the markings of

the plant components (GCk,MCk).

37

Checkpoint markings represent the set of expected markings S. This set can be obtained from a

CLSM (0,AÍO) by inspection of those places in % Vt¡ G Tc of (QC,MC) (places ofthe controller

component), which are related by permissive composition with the plant components. For

example, consider the CLSM in figure 3.7; for the controller transition whose input place is A,

the preconditions that allow the firing of the transition are {A, PosLl, gripOff} and for this

reason the marking {A, PosLl, gripOff} is in the set of checkpoint markings, which are showed

in figure 3.8 in the form ofa graph that represent the output evolution ofthe plant to complete a

correct cyclic operation.

^»({A, PosLl,gripOff})*s.

({D, PosL2/gripOff}) HB, PosLl.gripOn})

^■MC, PosL2,gripOnL)*

Figure 3.8. Checkpoint markings of CLSM in figure 3.7.

3.2.5.INTERRUPTIBLE T-COMPONENTS

Definition 3.6. Let Xe be a T-component of some plant component (Ge, Me) in a CLSM IPN

with a controller component (Gc, Afc), with (GCfc, AfCfc) being one of simple cycles that compose

it. If there exists tj, t¿ G Te,j =t l such that they have a permissive relationship with Pi,pr G

PCk, i *- r , respectively, then Xe is said to be interruptible. In words, a T-component is

interruptible if at least two transitions in the component need permission from different places of

the controller. In the CLSM of figure 3.7 the T-component (in the plant component 1) whose

support is {gripOn, gripOff} is interruptible, because both transitions need a permission from

different places ofthe controller.

Notice that if only one transition is enabled by a controller place, the t-component could be

executed infinitely often while the controller place is marked; thus two transitions assure the

controlled evolution ofthe t-component.

3. 2. 6.Transition causal rela tions

For CLSM nets, it has been proved that if every t-component on the plant model is interruptible,
then every cycle in the reachability graph ofthe system must contain at least one occurrence ofa

transition from the controller component [Lutz-Ley, 2011],[Lutz-Ley, 2012b]. This is possible

only ifthe system reaches one checkpoint marking, thus ensuring that each cycle of states has at

least one desired state.

An algorithm to decide this problem was presented in [Lutz-Ley, 2011],[Lutz-Ley, 2012b].

However, the algorithm proposed in these papers is computationally demanding since it requires
the set of minimum t-components of the system. For this reason, an altemative method of

calculation based on causal relations between transitions is presented below.

Definition 3.7. In an 1 -bounded Petri net, a transition tx depends on transition ty if after one

occurrence oft,., one occurrence of ty is needed in order for tx to fire again. For example, in

38

figure 3.6, it can be seen that after the occurrence ofmoveToLl, the event moveToCenter must

occur in order for moveToLl to occur again, so it can be said that moveToLl depends on

moveToCenter.

Proposition 3.2. Ifa transition tx depends on transition ty , every transition included in any T-

component also including tx depends on ty.

Proof. It is straightforward; it follows from the definition ofa t-component.■

Proposition 3.3. If a transition tx depends on transition ty and tz where ty, tz are transitions

which require permission from different places on the specification, every t-component that

includes tx is interruptible.

Proof. It follows straightforward from proposition 3.2.■

An example ofproposition 3.3 can be seen on figure 3.7, specifically on plant component number

2, on the right part ofthe model. Transitions marked with e depend on transitions moveToCenter

and moveToL2, which require permissions from different places of the controller. Notice that

every T-component including these s transitions will be interruptible.

Proposition 3.4. Let Tt be the set of transitions which depend on transition ty. tx e T, if :

1) tx=tyor

2) 3pa G tx» such that pa» c Tt

Proof.

1) Straightforward

2) Once tx fires, there is a token on pa. Before tx fires again, pa must unmark as the net is 1-

bounded (otherwise there would be two tokens on pa). pa only unmarks by the firing of

some transition in Tt .

as these fire again only after the firing of ty (Definition 3.7) then

pa could unmark again only after the occurrence of ty. It can be concluded that tx

depends on ty (tx e Tt). ■

The above result and proposition 3.3 allows us to deduce an algorithm that determines whether

all t components in the plant are interruptible. The pseudo code for the algorithm is presented in

Algorithm 3.1.

Note that proposition 3.4 presents a sufficient condition only. In order to have a sufficient and

necessary condition every plant component must be a strongly connected graph. It is easy to see

that the execution complexity ofthe algorithm is bounded by 0(|T|3) (the main body ofthe

algorithm is a double nested loop that runs at most |T|3 times).

39

Algorithm 3.1. determinelnterruptible

Input: I = (P, T, 1, 0): CLSM net where Pc <= P are the controller places

Output: true orfalse.
startset<- 0

for each p G Pc{

tag every transition tp which requires permission from p with a label { p } (tp is in the

plant model)
startset«-startset U {tp}

}
for each t G startset{

do{

setChanged*-false

dependentSet<- {t}
for each e G T{

if(3pa G e» such that pa» c dependentSet) then{

tag e with the same tag as t if it does

not have that tag already (e can have many tags);

dependentSet«-dependentSet U e

setChanged-f-true

}
}

}

}

if (Every transition on the plant model has at least two distinct tags) then return true

else return false

In this chapter, the state stability problem was analyzed for a class of Petri net models. More

specifically, a technique to determine whether every cycle in a CLSM-modeled system includes

at least one desired state has been developed. This technique is polynomial in time complexity. In

the next chapter, the stability ofa more general class ofmodels, namely 1-bounded Petri nets, is

studied.

40

Chapter 4 Stability of 1-Bounded Petri

NETS USING UNFOLDINGS

A method for determining stability on a class of Petri nets was presented in the previous chapter.

In order to find a method that is useful in a more general class ofDiscrete event systems, in this

chapter the issue of stability of 1 -bounded Petri nets is addressed by analyzing the Petri-net

unfolding representation ofthe system.

41

4.1.Problem statement

In chapter 3, the stability property has been defined on Petri nets. Also, a method to decide if

every cycle of states in the system goes through a desired state has been presented. This approach

works for a class called CLSM which is useful for the modeling and simulation ofmanufacturing

processes and the algorithm has a polynomial-time complexity.

This chapter is devoted to address a more general problem: determining if an 1 -bounded Petri net

is stable with respect to some specified correct behavior. For this purpose, the Petri-net unfolding

representation ofthe original net is going to be very useful.

Given an IPN model Zn describing the normal behaviour and an IPN model Ef including the

normal and unwanted behaviour such that EnaEf, it must be determined if every cycle of the

complete model includes at least one marking reachable on the normal behaviour submodel. This

is stated below.

Let Zf
= (P, T, I, O, Aí0) = {Qf, Ai0) be an 1 -bounded Petri-net model where undesired

transitions can occur, and En = (P, Tn, /„, 0n, Aí0) = (Qn,Mo) be a submodel ofthe same system

that is free from undesired transitions, where TncT,Tf
= 7 -Tn where Tf are the undesired

transitions, and /„(0n) is the restriction of the input(output) function to transitions in Tn. The

problem is determining if every cycle ofmarkings on R(jQf,M0) includes at least one marking
Ai G R(Qn,M0). Notice that R(Qn,M0) c R(Qf,M0) and S = R(Qn,MQ) includes all markings

that are reachable without the firing ofundesired events.

tl B B

Figure 4.1. a) Complete behavior model, b) Desired behavior model.

This idea is illustrated in figure 4.1. In the model of figure 4.1.a there exists an undesired

transition event fx, which makes the system reach a marking {C}. In the model of figure 4.1.b the

normal behavior submodel is represented and marking {C} is unreachable. It should be verified

that every cycle of the complete model (4. 1 .a) goes through at least one state in the normal

behaviour submodel (4. l.b) which is fullfiled in this example.

42

4.2.CYCLIC BEHAVIOR ON BRANCHING PROCESSES

In order to use branching processes to check for undesired state cycles, it is necessary to know

how a cyclic behaviour can be detected in the branching process ofa net. Since a 1 -bounded net

has a finite number of reachable markings, the unfolding ofa cyclic 1 -bounded net must contain

events with repeated final markings. This idea is further developed next.

Proposition 4.1. Let (Q,AÍ0) be an 1 -bounded net and Unf = (0Q,p) be its unfolding (infinite

branching process). Then there exists a cycle in R(Q,M0) if and only if there are local

configurations [e_], [e2] in Unf with [ex] c [e2] andMark([ex]) = Aíarfc([e2]).

Proof: (->) Let tx ... tn be a sequence such that Ai -^-5 M Since tx ... tn is a cyclic sequence,

there is an infinite sequence of events exX < ex2 <
■•■ in Unf such that p(exk) E{tx ... tn}. As

(Q-Afo) is 1-bounded, then R(Q,M0) is finite and 3e!,e2 G [exX, ex2, ... } with Mark([ex_) -

Mark([e2]) and [ex] c [e2].

(«-) If there are [ex], [e2] in fi with [ex] c [e2] andMark([ex]) = Mark([e2]) it is evident that

there is a cycle starting and ending in Mark([ex]) whose transitions are [e2]\[ei]. ■

Notice that e2 would be a cut-off event with respect to any adequate order that considers

configuration size, so by Proposition 4.1 if there is a cycle on a system, a cut-off event is

guaranteed to be reached when constructing a finite complete prefix.

Given that the unfolding of a net system with cyclic behavior is infinite, researchers have been

using finite complete prefixes (FCP) of branching processes, as a valuable tool to deal with the

complexity involved in the analysis of the reachability graph of a net system. Unlike the results

presented in [McMillan 1993] and [Esparza 2002], the cutoff events are included (without their

output conditions) as a part ofthe finite complete prefix to be analyzed. This is done because the

presented properties are easier to evalúate ifthe cutoff events are added.

4.3.CYCLIC BEHAVIOR ON A FlNITE COMPLETE PREFIX

Given that the finite complete prefix for a given unfolding Unf is just a finite initial part ofUnf,

it does not contain every event in Unf Then, a technique that allows detecting cyclic behavior on

the FCP is needed. The following notions are useful to address this issue.

Definition 4.1. Let Unf = (B',E',í,0',p') be the unfolding of an 1-bounded PN system. Unf
contains a FCP ¡3 = (B, E, I, O, p) obtained w.r.t. an adequate total ordering of the events. Let

e G E be an event in ¡i, the set of overall causal precedence of e, denoted as e«, is defined as

follows:

1) e G e«.

43

2) If e,*,efc G E and Mark([ek]) = Mark([ej\) * Aíarfc([e]), withek G e« then e¡ G

e«.

3) If ej, ek G E and (e,* < ek) where ek G e« ,then e;* G e«.

In words e« is the set of events in E that have a directed path to the event e or they have a

directed path to an event ek such that ek has the same final marking as another event which is

already in e«.

Remark 4.1. Notice that every event e;* in e« has a directed path starting from e¡ to some event

in Unf whose final marking is the same than that of e.

For example let e be the event 7 representing tx in figure 4.2. According to the definition, every

event which has a path to event 7 is included in e«, so events 4 and 1 are included. Also, every

event in e« has a path to an event having the same local marking as event 7 (in this case, they

have a path to event 7 itself).

Figure 4.2. Overall causal precedence example.

Proposition 4.2 Let Unf = (B',E',I',0',p') be the unfolding ofan 1-bounded PN (Q,M0). Unf
contains a FCP fi — (B, E, l, 0, p) w.r.t. an adequate total order. There is a cycle in (Q, Af0) ifand

only if there is a pair of events e, e¡ G E such that e is a cutoff event, e¡ G e«, and Afarfc([e;*]) =

Mark([e\).

Proof. (->)Suppose that there is a cycle in (Q,AÍ0). By Prop 4.1 there are local configurations

[ex], [e2] in Unf with [ex] c [e2] and Mark([ex]) = Mark([e2_). Suppose that ex G E and ex

is not a cutoff event. If e2 G E, e2 is a cutoff event (Cx c C2 implies Cx < C2) and ex G e2<< (by

the subsequent application of condition 3), then the property holds. If e2 í E, 3e3 G E such that

[e3] <= [e2] and e3 is a cutoff event (e3 being a cut off is the reason why e2<ÍE) with

Mark_e'__\
=

Aíar/.[e3] where e'3 is not a cutoff event, ek. and e3 have isomorphic finite

44

extensions, then 3e2 G E' such that Mark([e2]) = Afarfc([e2]) = Mark([ex]) and [e3] cz [e2].

Similarly to e2, if e2 G E the condition holds (ex G e2<< by subsequent application of 2 and 3,

also e2 is a cut off event because it is supposed that ex is in E and the adequate order is total).

Otherwise, 3e4 G E such that [e4] c [e2] and e4 is a cutoff event and the same argumentation

used for e3 can be applied for e4. Eventually, a cutoff event ex is going to be found, such that

Mark([ex\) = Mark([ex]) or Mark([ex]) = Mark([ey]) with ey < ex (because the FCP was

obtained w.r.t an adequate total order); then ex G ex<< or ey G ex<< (by subsequent application of 2

and 3) so in any case there is a pair of events e, e¡ G E such that e is a cutoff event. Then e¡ G e«,

and Afarfc([e,*]) = Afarfc([e]).

(«-) Suppose that there is a pair of events e,e;* G E such that e is a cutoff event, e;- G e«, and

Aíarfc([e;]) = Afarfc([e]) (fi is obtained with respect with an adequate total order so e must be a

cutoff event). If e;* < e then \e¡\ c [e] and by Prop. 4.1 there is a cycle in (Q, A_0). If e;* < e
, by

the way e« is constructed, then there must exist pairs of events (ex, e'x) ... (em, e'm) in fi such

that Mark([eh]) = Mark([e'h]) for all ft = 1 ...m, e¡ < em, e'x < e and e'i < e*-;-. for all

i = 2..m. Since e'x < e, it is true that [e'x] c [e]. Also, [e'x] and [ex] have isomorphic finite

extensions so 3exX G B' (in Unf) such that e'2 <ex< exX and Mark([exX\) = Mark([e]) As

[e'2] and [e2] also have isomorphic finite extensions the same argumentation can be applied. In

this way, Ve„ G ex ... em there exists in Unf an event exn such that en < e,___ and

MarkQexnW) = Aíarfc([e]). In particular, there exists an event e^ with e¡ <em< exm so in

Unf it holds that \e¡\ c [e^] and Afarfc([ey]) = Mark([exm]_). Then by Prop. 4.1 there is a

cycle in (<2,Af0). ■

The above property can be used to determine if there is a cycle in (Q, Af0) only by analyzing the

FCP (no reachability graph calculation is needed). In the next subsection, this result is used to

detect undesired state cycles from the finite complete prefix ofa Petri net system.

4.4. Deciding stability from the finite complete prefix

The objective of this section is to explain a method that allows detecting the existence of

undesired state cycles. First, the events have local configurations with desired final markings

have to be found. Then, those events that have a desired final marking which are concurrent with

another event whose final marking is undesired have to be identified. The first problem is

handled next.

Definition 4.2. Let/? = (B,E,I,0,p) be a FCP branching process obtained w.r.t some adequate

order. The set normalNodes Q B U E is defined as follows:

45

1) Min(fi) G normalNodes

2) If e G E with p(e) g 7} and »e £ normalNodes then {e U e»} £ normalNodes.

3) If e,e2e£ with Mark[e] = Mark[e2] and e2 G normalNodes then {e U e«} £

norma/A/odes.

Note that undesired events are not added directly when their inputs belong to normalNodes.

The only case in which they could be added to normalNodes is when there is already an event

in normalNodes which has the same final marking as some undesired event (by condition 3).

Also, if there are events with undesired final markings they are not in normalNodes, this means

that a configuration that includes events from normalNodes only must have a desired final

marking. The algorithm for finding the set normalNodes can be easily deduced from the

definition and is presented below.

Algorithm 4.1. findNormalNodes

Input: _B = (B,E,l, 0,p): FCP BP ofthe system.

Output: normalNodes: JNodes that are reachable without the occurrence ofundesired events.

normalNodes *- Min(fi)

do{

setChanged-e-false
for each e G E{
if ((»e c normalNodes A p(e) ? Tf) V (Aíar/c[e] = Mark[e2]\e2 EnormalNodes))

then{

normalNodes<-normalNode&<j{e} U e»

setChanged*<—true

}

}

}while(setChanged)
return normalNodes

In figure 4.3.a a 1-bounded Petri net is shown. The FCP obtained from 4.3.a is shown in 4.3.b

and finally the normalNodes set is shown full colored in 4.3.C. Note that every event in

normalNodes has a final marking which is reachable without the occurrence of the undesired

event /x .

Definition 4.3. Let /? = (B, E, l, O, p) be a FCP branching process obtained w.r.t some adequate

order. The set undesiredNodes £ B U E is defined as follows:

undesiredNodes =-{yG£?U__| yí normalNodes)

46

b)

a) -£■2
Figure 43. a) 1-bounded Petri net, b) a finite branching process representing its reachable markings. c) the normalNodes

set.

If there are any events with undesired final markings, by definition they must be included in

undesiredNodes. The next definition deals with identifying those events that can occur

concurrently with an event having an undesired final marking.

Definition 4.4. Let /? = (B, E, l, 0, p) be a FCP branching process obtained w.r.t some adequate

order. The set concurrentToUndesired £ B U E is defined as follows:

concurrentToUndesired = {x E B U E \ x co y,with y E undesiredNodes)

Note that every event whose occurrence ends in an undesired state in (Q, Aí0) must either be in

undesiredNodes set or in concurrentToUndesired set. The purpose ofthe next algorithm is to find

the set concurrentToUndesired; first, for every node x in the undesiredNodes set, the nodes that

are either causally related or conflicting with x are found. Since any pair of nodes are in a causal,

conflict or concurrent relation, the concurrent related nodes are indirectly found.

Algorithm 4.2. findConcurrent:

Input: /? = (B, E, I, O, p) : FCP of the system, normalNodes

Output: concurrentToUndesired set.

tempConcurrent <-preNodes<-posNodes«- 0

undesiredNodes = (B U E) - normalNodes

for each x G undesiredNodes {

preNodes«-posNodes<- x. (nodes in causal relation w/ x)

do{

setChanged«- false

foreachnGBU_i{

if (3n2 G preNodes:n2 G n«)

then{preNodes<-preNodes U {n}

setChanged<-true

}

47

}

}while(setChanged)
confNodes*- t G (b»\preNodes): b E B Cx. preNodes (nodes in conflict with x)

do{

setChanged*- false

for each n G B U E {
if (3n2 G posNodes:n2 G »n)

then { posNodes<-posNodesU {n}

setChanged«-true

}
if (3n2 G confNodes:n2 G »n)

then{ confNodes«-confNodesU {n}

setChanged<-true

}

}

}while(setChanged)

}
return (B U E)\(preNodes U posNodes U confNodes)

An example ofthis set is shown in figure 4.4. First an 1-bounded net is displayed in figure 4.4.a;

in figure 4.4.b, the finite complete prefix is shown, but only those nodes in the set

undesiredNodes are shown with solid lines. Finally, in 4.4.c the nodes in the set

concurrentToUndesired are shown with solid lines. Note that in the original net the transitions

t3,t4 can occur while there is a token in place C. Accordingly, events labeled t3,t4 in _6 have a

concurrent relation with the condition labeled C.

a)

P

i ¿1
. ;-4-.:s

.x.

'•«F r::r:>

'-r x

...J. 3 ':,; ~L eJ^L, i

b)

Figure 4.4. a) 1-bounded net, b) the undesiredNodes set and c) concurrentToUndesired set.

Definition 4.5. Let (i = (B,E,I,0,p) be a FCP branching process obtained w.r.t some adequate

order. The graph /?" = (Bu,Eu,Iu,Ou,pu) is a subnet of fi which is induced by the subset of

48

nodes (undesiredNodes U concurrentToUndesired) where Iu,Ou,pu are similar to l.O.p

but are restricted to BU,EU Also, given an event

e G (undesiredNodes U concurrentToUndesired), e« is the overall causal precedence set of

e restricted to nodes in f¡u

If there is an event representing a transition that could occur in an undesired marking in the

original net whose firing also ends in an undesired marking, then it must be in /?" The nodes in

the set /?
u
for the net shown in figure 4.4. are depicted with solid lines in figure 4.5.

Figure 4.5. fi" for the PN in figure 4.4.

Proposition 4.3 Let Unf = (B',E',I',0',p') be the unfolding ofan 1-bounded PN (Q,Af0). Unf

contains a FCP /? = (B, E, I, O, p) w.r.t an adequate total order. Also /?" = (Bu, Eu, Ia, 0U, pu) is

a subnet of fl obtained as described in definition 4.5. A necessary condition for the existence ofa

undesired marking cycle in (Q, M0) is that there exist a pair of events e, e¡ E E" such that e is a

cutoffevent, e,* G e£, and Afarfc([e,*]) = Aíarfc([e]).

Proof. Suppose that there is a cycle of undesired markings in (Q, M0) but there is no pair of

events e,e,* G Eu such that e is a cutoff event, e;* G e«, and Afarfc([e,]) = Afarfc([e]). Since

(Q,M0) is cyclic, there is a cutoff event e EE such that 3e2 G e« with Mark[e] = Afark [e2]

(Proposition 4.2). Also, both p(e) and p(e2) must be able to occur while (<?,Af0) is in an

undesired marking; this is only possible if these events are in the undesiredNodes or

concurrentToUndesired subsets, thus they can be found in /?". However e2 g e« (by

supposition); so there exists e3 G e« such that e3 G Eu and also it prevents e2 from being in e«.

Then there must exist events e'3, e' G B' (in Unf) with Aíarfc[e3] = Marfc[e'3],Aíarfc[e] =

Mark[e') and e2 < e'3 < e' such that e'3 is in normalNodes and is not concurrent to any node in

undesiredNodes. This means that p(e'3) is not able to occur from an undesired marking, so there

is no cycle of undesired markings and a contradiction is obtained. ■

49

Based on the previous result, a strategy for deciding if a 1-bounded net is free from undesired

state cycles is obtained and is described next. First, fiu is obtained. After that, for every cutoff

event e in _BU, e% is obtained. If for every event e in fiu, e£ does not contain an event e¡ with

Aíarfc[e] = Aíarfcfe,*] then the original net is free from undesired state cycles. This procedure is

detailed in pseudo code in the following algorithm.

Algorithm 4.3. checkNoCycle:

Input: /?" = (Bu,Eu,Iu,Ou,pu) : FCP ofthe system.

Output: true or false.

for each e E Eu such that e is cutoff{
causalSet «- {e};
for each n G (flu U Eu) {

if ((3n2 G causalSet:n2 E n«) V

(n G Eu AMark[n] = Mark[n2],n2 E causalSet, n2 =?■- e))

then{
causalSet«-causalSetU [n)

if(n G E A Mark[n] = Aíarfc[e])

then{
return false

}

}

}

}
return true

4.5.EXAMPLE

Simpleprocess communication

In the following example, it is verified that the system has no undesired-state cycles using the

results previously obtained. As depicted in figure 4.6, there are two simple processes that

communicate by messages. Each process can have an undesired occurrence; the undesired events

are labeled as fx and f2.

50

Figure 4.6. Two Simple communicating processes.

Making use of the adequate total order presented by (Esparza et. al. 2002) the finite complete

prefix B = (B,E,I,0,p) obtained with respect to such order is depicted in figure 4.7. Every

event is tagged using its identifier on _B first, followed by ":" and the transition identifier that it

represents. The cut off events are 3,9 and 11.

i* /_ i

6:t6 G) H
J 10:_10F

f 7:t7 8:t8

/O^1 m Q*
A

B
2: t2 c ¿

■'

D 5: ts

E 3:t3

Figure 4.7. Finite complete prefix of system in figure 4.6.

First, /? has to be analyzed to determine which events have configurations with desired final

markings (markings in R(Qn, Aí0)). This can be done by using the algorithm 4.1 which computes

the normalNodes set. The result ofthis analysis is graphically shown in figure 4.8.

51

14: h J..
tW_\-r4. }**>|9:£«

6-Í6 G J
' '

H

""'

J 10:t10 F

<^1 rl *f^Ul tPl J ■u/O J tPl

7:t, 8:tB

^y* ^ o*
A

b 2:tzc y" D 5:ts
a

(MO+O+OfOl
l:ti \ *?:/, •. . 4:t4 U_tt

"•*il r*. 5-J

l 3: t3

Figure 4.8.Transitions having desired final markings are shown with solid lines.

Once the undesiredNodes set is obtained (shown with dashed lines in figure 4.8), the next step is

to obtain the nodes which are concurrent to undesiredNodes. This is done by algorithm 4.2 and

the resulting set, concurrentToUndesired is depicted in solid lines in figure 4.9. As the

undesiredNodes set is already included in the concurrentToUndesired set, figure 4.9 also shows

(iu in solid lines.

9:t9

KHOK)

¿O'mi M2 O"

i 10: ho F

7:t, 8:t8

E 3:t3

Figure 4.9. concurrentToUndesired set is shown (in this case fi" is also shown).

Finally, for every cutoff event e in /?u, it should be checked that 3e;* G e£ such thatMark[e] =

Mark[ej]. In figure 4.10, the two cutoff events 9 (4.10.a) and 3 (4.10.b) are shown in solid lines

with their respective overall causal sets. As can be verified on the figure, there is no event e;* in

the overall causal set of event 9 (event 3) such that e¡ has the same final marking than event 9

52

(event 3). For this example it can be concluded that the original net is free of undesired state

cycles.

A

(o'

(V

b)
14:/_ I

/HlK
11

J!9:tq

...... f6 £~J * V- « ..-■■•,10;i101---.

Finalmarking: p

Figure 4.10. The FCP is undesired-state cycle free. 9« and 3« are shown in solid lines in a) and b) respectively.

4.6. K-StabilityAnalysis

Once it is known that a system is returning to a desired state in a finite number of steps, it is

useful to determine the máximum number of steps required to return to a desired state; this is

especially important in critical fault-tolerant systems, where a fast return to the desired behaviour

is required. In this sense, the property of k-stability is very useful. Given a complete 1-bounded

IPN model Ef (free from undesired marking cycles) including the normal and unwanted

53

behaviours and a IPN submodel E, describing the normal behaviour only, such that EjzEf, it

should be verified that starting from any marking of the complete model, at least one marking
reachable on the normal behavior submodel (a desired state) is reached within at most k steps.

This is stated below.

4. 6. 1.TheK-stability problem

Let 1f
= (P, T, I, O, MQ) = (Qf,M0) be a 1-bounded Petri-net model where undesired transitions

can occur and it is free from undesired marking cycles, and Zn = (P, Tn, In, On,M0) = (Qn, MQ)

be a submodel of the same system which does not include undesired transitions, where Tn c T,

T -Tn =

Tf where Tf are the undesired transitions, and /n(0„) is the restriction of the

input(output) function to transitions in Tn . The problem is determining if starting from any

marking on /?((?/•■ Aí0) the system is guaranteed to reach a marking on M E R(Qn, Aí0) within at

most k steps.

For example, for the Petri net model of figure 4.6, when the net reaches an undesired marking by

the firing of either fx or f2, the máximum number of firings that can occur before the system

reaches a desired state is 4 (after fx: t6t7t8t10 ,
in case that the net reaches an undesired marking

by the firing of f2, the number of firings is smaller). Then it can be said that the Petri net system

of figure 4.6 is 5-stable.

4. 6. 2.Finding the longestpa th to the desired sta tes.

In order to find the valué of k such that a Petri net system is k-stab\e, the longest event sequence
that reaches undesired markings only has to be found. Furthermore, this has to be done by

analysing the finite complete prefix instead of the unfolding. Fortunately, the definitions

presented in the above paragraphs are useful for this task; as it has been noted, if the system

reaches an undesired marking after the firing of some transition t, then there must exist an event

in _BU that has the label t. This implies that the size ofEu (events of/iu) is an upper bound ofthe

number k (system is k — stable for k > \EU\). The next concepts are useful for finding a bound

that is closer to the valué of k.

Definition 4.6. Let Unf = (B',E',l',0',p') be the unfolding of an 1-bounded PN system. Unf
contains a FCP /? = (B, E, 1, 0, p) obtained w.r.t. an adequate total ordering of the events. Also

/?" = (Bu,Eu,Iu,Ou,pu) is a subnet of /? obtained as described in definition 4.5 such that

2e,e; G Eu with e being a cutoff event, e¡ E e«, and Mark(\e¡\) = Aíarfc([e]). Letn G (Bu U

Eu) be a node in f¡u The maximal event set following n in fiu, denoted as n», is defined as

follows:

1) Ifn G B then n% =

ex^ where ex E n« and |ex" | > \ex»\> Vex E n» (If n is a place, its

maximal event set following n is ex>>, where ex is the successor of n with the biggest
maximal event setfollowing the event).

2) If n G E is not a cut off event then n_% = (U™ 0 &"») U {"} where {b0 ... bm) = n» (If n is

an event that is not a cut off, its maximal event set following n is the unión of those

maximal event setsfollowing its succesors plus n itself)

54

3) Ifn G E is a cut off event withMark([n]) = Mark([e]) where e is not a cut off event,
then n»

= (U{!_o *^i>>) u (n) where {¿0 ... bm) = e« (If n is a cut off event, its maximal

event set following n is equal to the unión of the maximal event sets following the

successors of the event e which has the same final marking of n and it is not a cut off

event) .

14»:{10,9,14} 9>>:{10,9}

JJ*

MI»: {10, 8, 7,o-

K>K>hO
7»: {10, 8, 7} 8»: {10, 8} 1<V{10}

"O

K>K>K>C
4.I.,

13»: {13, 3} 3»: {3}

Figure 4.11. Computation of fl», Afl» and Fx

11:1

In words, n» includes the longest possible sequence of events that can occur after n in /?u. For

example, the maximal sequence set was calculated for the nodes B,M1 and F from the fiu graph
shown in figure 4.9 and the results are shown in figure 4.1 1; For the place B, B» is defined as

being equal to 13» because 13» is larger than 2» .Note that the restriction of that 3e, ey G Eu

such that e is a cutoff event, ey G e«, and Aiarfe ([e,*]) = Mark([e]) (the system does not have

the necessary condition for the existence of undesired cycles) ensures that n» is finite for

n G (Bu U Eu). This claim is further formalised in the next proposition.

Proposition 4.4. Let Unf = (B',E',I',0',p') be the unfolding of an 1-bounded PN (Q,AÍ0).

Unf contains a FCP /? = (B, E, 1, 0, p) w.r.t an adequate total order. Also

/?" = (Bu,Eu,lu,Ou,pu) is a subnet of fi obtained as described in definition 4.5 such that

2e,ey G Eu with e being a cutoff event, e¡ E e«, and A_arfc([ey]) = Mark([e]). Then n» is

defined and finite for all nodes n in /?".

Proof. Suppose that 3e, e¡ E Eu such that e is a cutoff event, e¡ E e\, and Aíar/c([ey]) =

Mark([e]).

In particular, it should be verified that e» is defined and finite for all cut off events e in f¡u

because if this is true then it is also true for every other node. Also, this is true only if for every

cut off event e with Mark(e) = Mark(ex),where ex is not a cut off event, e G e"». Suppose

that ex is a cutoffmarking and also suppose thatMark(ex) = Mark(e2) where e2 is not a cut off

55

event. It is evident that e2 < ex (by supposition e2 G ex<<) also there is no set of events

{e3, e'3, e4, e'4 ...ej.e'j] so that e2 < e3 e'¡ < ex eh is a cut off event with Mark(eh) =

Mark(e'h) where e'h is not a cut off and e'h<eh+x for h = {3 ...j
—

1} (if this were true, then

e2 e ei«)- Then there is no way that ex can be added to e"». Then e2» is defined and finite and

does not contain ex (for any ex, e2), this means that e» is defined and finite for all cut off events

e, finally n» is defined and finite for all nodes n in /?". ■

When n is a cut off event, nif> = (U£_(A">) u ín) where {b0 ...bm) = e« with Mark([n]) =

Aíarfc([e]), this is because e and n have isomorphic finite extensions, then whichever event that

could be fired after the occurrence of e must also be possible to fire after the occurrence of n,

however this information is not present in the FCP (n is a cut off event). For example, in figure
4.1 1, although the event 9 is a cutoff event, 9» includes the event 10 because after the firing of 9,
an occurrence of event 10 is possible in the original Petri net (refer to figure 4.6).

Definition 4.7. Let Unf = (B',E',I',0',p') be the unfolding of an 1-bounded PN system. Unf
contains a FCP fi = (B, E, I, O, p) obtained w.r.t. an adequate total ordering of the events. Also

Bu = (Bu,Eu,Iu,Ou,pu) is a subnet of /? obtained as described in definition 4.5 such that

2e,ey G Eu with e being a cutoff event, e¡ E e£, and Aíar/c([e,*]) = Mark([e]). The Maximal

Sequence Set represented by MSS is defined as AÍSS = U[=o"!>> where {n0 ...n,.} cBuu_'u

are the nodes in fiu with an empty preset.

For example, the AÍSS that is obtained from the /?" graph of figure 4.9 is the unión of fi», Aíl»
and F». These sets are shown enhaced in figure 4.1 1. Then AÍSS = {13,10,8,7,6,3}.

Proposition 4.5. Let Unf = (B',E',I',0',p') be the unfolding of an 1-bounded PN (Q,M0).

Unf contains a FCP B = (B,E,l,0,p) w.r.t an adequate total order. Also

/?" = (Bu,Eu,Iu,Ou,pu) is a subnet of/? obtained as described in definition 4.5 and MSS is the

Maximal Sequence Set as described in definition 4.7. Also, suppose that \te, e¡ E Eu such that e

is a cutoff event, e} E e£, and Aíarfc([ey]) = Mark([e]). Then (Q,M0) is fc- stable for

k > \MSS\.

Proof. Let L = \MSS\. Suppose that (Q,M0) is not k -stable for k > \MSS\. This means that

there exists some event firing sequence a
- txt2 ... tL of length L such that mj

4
mj+x

4
mj+2

t3 tL
-*

...
-»

mj+L where my+É is an undesired marking for i G {0, ... L) (there are L+l undesired

markings). Then, there are configurations C'j,C'j+x,C'j+2_...C'j+l in Unf (infinite unfolding)

such that Mark[C'j+i] = mJ+i and C'j+V+X = C'J+V U e'v+1 where the label of e'v+x is tv+x for

for i E {0, ... L), v E {0, ... L
-

1). Also, as fi was obtained w.r.t. an adequate order, it is complete

and it contains configurations Cj,Cj+x,Cj+2, ...Cj+L such that Mark[CJ+i] = mj+i and Cy+V can

be extended with event ev+x for i G {0, ...L), v E {0, ...L
-

1}. Note that for all ev+x with

56

v E {O, ... L
—

1} their firing results in an undesired marking so they are in f¡w Also, as

configuration Cy has an undesired final marking it must contain an event e0 from /?u

If flu is conflict free, then all of the events of /?" are in AÍSS (events are only discarded in

conflict places when constructing AÍSS) but \{ev\ v E 0, ... L)\ = L + 1 so /?" has to have conflict,

otherwise a contradiction is found (all ofthe events e* are in /?" and all ofthe events in /?" are in

AÍSS so the number of events e¡ should be less or equal than L).

As |{ev| v E 0, ... L)\ = L + 1 is greater than |AÍSS|, at least one event in [ev\ v EO, ... L) is not in

AÍSS. Let eq be such an event. It is possible that eq E ex>> with |ey»| > \ex>>\ and so for the

predecessor conflict place ni, ni» =

ey» (from Definition 4.6 number 1) and then eq is not in

AÍSS but also |ey»| > |ex»| and in this case it should be true that L > \{et\ i E 0, ...L)\ which is a

contradiction.

Finally, note that in /? it is true that C¡+v can be extended with event ev+x for v E {0, ...L-l}

but this does not necessarily mean that if C¡+v+x
=

Cj+V U ev+1 then C¡+v+2
=

C¡+v U ev+x U

ev+2 (as was true in Unf for C'y+v+i an<^ C'j+v+2) because ev+x could be a cut off event.

However this has already been considered in (Definition 4.6 number 3) so for a cut off event e,

e» has at least the same number of elements it would have had if e was not a cut off event. So the

contradiction found in the above paragraph still holds for branches in conflict that include cut off

events. Then, (Q, Aí0) is k -stable for k > \MSS\.u

The last proposition is useful for finding an upper bound on the valué ofK; (Q,M0) is k —stable

for k > |AfSS|. For example, in the case of the fiu graph shown in figure 4.9 and 4.1 1, AiSS =

{13,10,8,7,6,3}, |AÍSS| = 6 and then the system should return to a desired state in at most 6

steps. Since it has been determined that, for the analyzed system, the máximum number of event

occurrences that end in an undesired marking is 4, the obtained result holds true.

In this chapter, the stability ofDESs modelled with Petri nets is studied avoiding the reachability

analysis. The property has been defined and characterized for systems expressed by 1-bounded

IPN. The proposed sufficient condition for the stability of 1-bounded nets provides a more

efficient procedure by making use ofthe branching processes; this algorithm has polynomial-time

complexity on the number of nodes of the branching process. Also, a method to determine a

bound on the valué ofk such that a Petri net system is k-stable was presented.

57

58

Chapter 5 Implementation and testing

This chapter presents the application ofthe method described in chapter 4. First, the algorithm

presented in chapter 4 was implemented as a software tool that is able to verify a Petri net in the

PNML format. Also, the Petri net model for the two-phase commit protocol was obtained. The

model is easily scalable by including more processes. Finally, the resulting Petri net was analyzed

by the implemented method.

59

The algorithms for verifying stability from the reachability graph and from the Petri net unfolding

were implemented as a software tool. In this chapter, some of the results of the use of these

methods and a comparison of their execution times are presented.

5.1.SOFTWARE IMPLEMENTATION OF THE STABILITY ANALYSIS ALGORITHMS

The main interface ofthe software is depicted in figure 5.1. In order to be able to analyze the

stability of a Petri net, the user has to open a PNML (Petri Net Markup Language)[Hillah 2009]

file first using the Select button. This prompts the software to show an open file dialog. When the

user correctly selects a PNML file, the information of the selected PNML is shown in the text

box ofthe main window. Also, the buttons Verify Stability using Reachability Graph and Verify

Stability using Petri net Unfolding which were initially disabled are enabled at this point (after

selecting a PNML file), allowing the user to choose an analysis method and start the verification

process.

Lid

Select 3 new Petri net fbr andyss: , Select

'-'^h^H

No Petri nec is selected

nfy StabAty usng Reachabéty Graph I \ venfy Stabéty usng Petri net Unfotóng

Figure S.l. The main interface ofthe software tool.

An overview ofthe architecture ofthe software tool is shown in figure 5.2. Once the user has

selected a PNML file, the method createFromFile creates a PetriNet Object from the PNML file.

This is the PetriNet object used for the analysis. When the user clicks on Verifly Stability using

Reachability Graph, the PetriNet object is passed as an argument to construct a

ReachabilityGraph object, which is passed as an argument to the method

StabilityChecker.isStable(ReachabilityGraph object). This method returns true when the analyzed
Petri net is stable and false otherwise. If the user clicks the Verify Stability using Unfolding

60

button, then the PetriNet object is passed as an argument to construct a BranchingProcess object
which is passed as an argument to the method StabilityChecker.isStable(BranchingProcess

object) (the method is overloaded). This method returns true if the analyzed Petri net is stable,

and false if the sufficient condition for stability presented in chapter 4 does not hold for the

analyzed Petri net.

_t¡

User Interface -Select button

1
pnF.le. PNMLF.Ie

OneBoundedPNMUteader.

createFromFile(pnñle)

User i nt er face -

Analyze using

reachability button

stabilityChecker.l-stable'RG)

__

RG: Reachabiliti

pn: PetriNet cb)ect
ReachabilityGraph(pn]

(class constructor)
■

. __ . '

User interface -

Analyze using

unfolding button

pn: PetriNet object

►
BranchlngProcessfpn)

(class constructor)

.

BP: BranchingProcess object

StabilítyChecker.isStabie(BP)

i ■■ .■■—— ■— i, i..

T
Figure 5.2. System's architecture overview.

5.2. Case study: The 2-Phase commit protocol

A transaction is a set of operations that by definition has the following properties: Atomicity,

Consistency, Isolation and Durability. A distributed transaction is a transaction in which the set

of operations is to be executed by two or more hosts. Like any other transaction, a distributed

transaction must have the four properties mentioned above. A common algorithm for the correct

completion ofa distributed transaction is the two-phase commit protocol.

The basic algorithm for the two-phase commit protocol is shown in figure 5.3. It is assumed that

one ofthe hosts has the role ofa Coordinator. The algorithm starts when the coordinator sends a

query to all other processes involved in a transaction to solve if they are going to commit the

changes made. After the processes answer this query, the coordinator confirms the commitment

to all other processes only if all processes voted yes, and instruets a full transaction rollback

otherwise. Finally, the Coordinator waits for the confirmation ofthe completion ofthe requested
actions.

61

Coordinator Process

4.Commitonly

when all voted

yes, rollback

otherwise

8.End

l.Query to commit

3.Vote yes or no

5.Comm¡t/Rollback

7.Acknowledgment

2.Decide vote

6.Commit/Rollback

Figure 53. Two-Phase commit protocol.

The normal execution of the protocol is typically the most frequent; All processes vote Yes and

the coordinator confirms the commitment of changes; this is the desired behavior. In the case that

a process has a problem with its local portion of the transaction and it votes No, the coordinator

should start a series of actions to reverse the changes. When the transition has to be aborted and

the rollback of changes is complete, the system should reach a global state that allows resuming

the normal behavior in a finite number of steps.

5.2.1. Petrinetmodel for a Two-phase commit implementa tion

The Petri net model for an implementation ofthe Two-phase commit protocol is shown in figures

5.4 and 5.5. These are the models for a Coordinator and a single process respectively and are

shown in different images for reasons of clearness and size. The model is scalable; there is only

one coordinator but several processes can be added. The composition ofthe coordinator with the

processes is performed through places that act as message mailboxes.

The coordinator starts in place idleCoordinator where the transition queryToCommit can be fired.

This puts a token in each ofthe queryToCommitMSG(i) places, one for each process /'. After this

is done, the coordinator waits to receive the votes ofthe processes. The transition commitReached

is enabled only when all processes vote to commit the transaction. After commitReached occurs,

the transition sendCommitAlert puts one token in each of the commitAlert(i) places. When all

processes have sent their acknowledgement, the transition complete is enabled and after its firing

the coordinator returns to its starting place. If some process k votes to abort the transaction, the

transition pkAbort is fired. Then sendRollbackAlert puts one token in each ofthe rollbackAlert(i)

places. After receiving the acknowledgement, the coordinator enters the clearChannels place,

where the tokens (messages) that were not consumed (as a result of the coordinator only

consuming the abort token of process it) are consumed by transitions clearVoteA(i) and

clearVoteC(i), to clear either a vote abort or a vote commit generated by process /. This serves the

62

purpose of keeping the net 1-bounded. After all messages are cleared, the transition clearOk is

activated, enabling the coordinator to return to its starting place.

idleCoordinator

To Processes

(recvQueiy event)

To Processes

(recvRoIlbackAk-rt event)

To Processes

(recvCommitAlert event)

Figure 5.4. Coordinator model ofthe two phase commit protocol.

The process i starts in the place idlePfi). The event recvQuery is enabled after the Coordinator

fires the queryToCommit event. When the decide place is marked, the process has the choice to

fire either the voteAbort or the voteCommit event; this sends the corresponding message to the

Coordinator. In particular, the voteAbort event is modeled as an abnormal event. After the vote

has been generated, the process waits until the coordinator makes the final decisión and sends a

rollbackAlert or a commitAlert. In either case, the process sends an acknowledgement to the

Coordinator and returns to its initial place.

63

idleP(i)

To Coordinator

(p(i)Abort event)

To Coordinator

(recvAllRAck event, only
when Rack(i) is marked for

aD process x)

¡To Coordinator

(commitReached event,

only when voteComm_t(i)
is marked for all process 0

To Coordinator

(complete event, only
when Cack(i) is marked

for all process í)

Figure 5.5. Process ofthe 2-phase commit protocol.

5.3.TESTING THE TOOL THROUGH THE 2-PHASE COMMIT MODEL

The stability of the 2-phase commit Petri net model was verified using the software tool

presented in section 5.1. The stability ofthe Petri net was verified using both methods (using the

reachability graph and using the method presented in chapter 4) for systems of 2 to 8 processes.

The testing environment is described below:

Hardware Environment:

Intel Core 2 Dúo CPU T6500 at 2.10 GHz.

RAM: 4GB.

Software Environment:

Windows 7 Home Premium 64 bit.

Java SDK 6 Update 20.

Java 6 Update 20.

NetBeans 7.2.

PIPE [Dingle 2009] (for the creation ofthe PNML files)

64

Figure 5.6. Two-phase commit protocol example with one coordinator and two processes.

All tests were made running the source code within NetBeans. The performance of the tests

results are shown in figure 5.7.

Note that the vertical axis (execution time) has a logarithmic scale. With the exception of the

results for a model with 2 processes, the algorithm proposed in this document has a shorter

running time than obtaining and using the reachability graph to employ algorithms for finite

autómata stability.

65

Number of Processes in the model

-Reachability'Autómata algorithm

-Unfolding* Proposed Algorl-im

Figure 5.7. Graph showing the differences in execution time between both algorithms. The horizontal axis represents the

number of processes in the model while the vertical axis is the execution time in seconds.

Moreover, the advantage in time efficiency appears to grow as the number of processes in the

Petri net model increases. For example, for a model of 6 processes the proposed algorithm takes

1.386 seconds while using the finite autómata algorithm over the reachability graph takes more

than 326 seconds. Unfortunately it is also true that the execution time of the proposed algorithm

grows exponentially as the number of processes increase for this particular Petri net model.

Finally, it is worth noting that the proposed algorithm verifies a sufficient condition for the

stability, while the finite autómata approach verifies a sufficient and necessary condition.

In this chapter, a software tool that implements both the unfolding-based algorithm presented in

chapter 4 and an algorithm that works over the reachability graph is presented. Also, a case study
is described; it consists of a Petri net model for an implementation of the 2-phase commit

protocol. The software tool was used to verify the model for up to 8 processes. The results show

that for this particular case, the proposed unfolding-based algorithm is much faster than the

analysis ofthe reachability graph.

66

Chapter 6 Conclusions

67

6.1.Concluding remarks

On the topic of fault tolerant systems, the concept of state stability has been explored; it is a

property related to the ability ofa discrete event system to return to a desired state set in a finite

number of steps.

While this property has been studied on finite autómata, the issue has not received much attention

on the Petri net community. However, in the case that the net structure can be used directly for

analysis, greater efficiencies could be achieved.

In this thesis, research results regarding this issue were presented. In particular, a method to

analyze the stability ofa subclass of 1-bounded Petri nets has been proposed. The analysis

algorithms are performed in polynomial time. Furthermore, an altemative method that determines

the stability of 1-bounded Petri nets making use ofthe branching process representation ofthe net

has been introduced. Finally, a bound to the number of steps required to return to the desired state

set has been obtained; this bound is easy to calcúlate from a previously obtained subset.

Current and future research paths include finding the exact number of steps that are required for a

system to go back into the desired state set and defining a method to synthesize controllers

allowing recovering from unexpected events like faults.

6.2. Finding the mínimum valué of k so that the system is k-stable

Once it is known that a system is returning to a desired state in a finite number of steps, it is

useful to determine the máximum number of steps required to return to a desired state. In this

sense, the property of k-stability is very useful: Given a complete 1-bounded IPN model ¿/(free
from undesired marking cycles) including the normal and unwanted behaviors and a IPN

submodel E„ describing the normal behavior only, such that En<zEf, Ef\sk
— stable if starting

from any marking oíEf a marking also reachable on E„ is obtained within at most k steps.

A method to find a valué ofm such that the system is k — stable for fc > m is presented in

Chapter 4, section 5 ofthis document. It makes use ofa subset MSS ofthe /?u subgraph

(\MSS\ = m). While the obtained valué is useful as a bound for k —

stability, it is possible that

the system is k — stable for some k < m; in other words, the obtained valué is not the minimum

valué possible for which the system is k — stable.

One ofthe reasons why the obtained valué is not the minimum is because the subset MSS used to

calcúlate the valué can be bigger than the set of events that is actually fireable on the original net.

This is because MSS is not necessarily causally-closed or conflict-free (Def. 2.16),
which are

necessary restrictions for a set of events that is fireable from the initial marking.

68

When calculating the set ,
the size ofthe MSS that contains a cutoff event e also includes the size

ofthe set of events that wouldfollow e if it was not a cutoff event, this makes the size ofMSS

useful as a bound for k -

stability. Of course, this size does not take into account that the set

must be causally-closed and conflict-free. In other words, by adding the size ofthe set of events

following a cutoff event to the size ofMSS it is assumed that the events following the cutoff

event are able to be fired without paying attention to additional preconditions needed by some of

the events to fire. Unfortunately, it is not possible to obtain this information from the finite

complete prefix; the nodes that follow the cutoff event are omitted from the FCP thus it is not

possible to determine which nodes must be added to MSS for it to be causally-closed or if it is

conflict free). One solution for this problem is to extend the finite complete prefix to include the

events following a cutoff event as long as the new included events have the same marking as an

event in /?u. Ifthe system is stable, this extensión operation should be finite. However, this

approach is not necessarily more efficient than determining the property from the reachability

graph. For this reason, the unfolding approach may not be the best way to solve the problem if

the minimum valué of k is required.

6.3.Finding Stabilizing Controllers

In this work we focused on methods for deciding if a system is stable. Other very important

problem to address is finding a controller that makes a system stable when working in closed

loop. Several approaches have been presented for finite autómata modeled systems, the most

important were presented in chapter 1.

LetZ¿-
= (P,T,I,O,(T,A,<p,M0) = (Qf,M0) be an 1-bounded IPN model where undesired events

can occur, and Zn = (P, Tn, In, 0n, a, X^., <pn,M0) = (Qn,M0) be submodel ofZy- that is free from

undesired occurences, where TncT T —

Tn = Tf such that Tf represents the undesired

transitions, and In(On) , A„, <pn are the restrictions ofthe corresponding functions to transitions in

Tln-

Recall from 1.3.1 that a state feedback law is a mapping K:R(Q,MQ) -> U where a reachable

marking is mapped to an admissible control input (set of controllable events to disable in that

marking), this mapping determines which controllable events remain enabled at a certain state.

Then, the objective is to find a control law K:R(Qf,M0) -> U so that (Qf,M0) is stable with

respect to R(Qn,M0) while being working in closed-loop with K.

As a first approach to this problem, a method to enable an already controlled system to recover

from a simple type of faults was presented in [Lutz-Ley, 2013a]. In this proposal, the control

technique is based on an output tracking regulation approach similar to that of [Santoyo, 2008].
Basically, the system model is composed of a plant and a specification that are related between

69

them with bidirectional ares as shown in figure 5.2. The strategy used in this method is to

augment the specification to take ¡nto account fault occurrences.

Event enabled wh.n

required to reach

stated output. J p|ant:Has (un)controllable events and (unjmeasurable places.
v y

Figure 6.1. Controlled Petri net class analyzed in a first approach.

6.4.PUBLICATIONS

[Lutz-Ley, 2012a] A. Lutz-Ley, L.E. López-Mellado, "Stability-based Characterization of Fault

Tolerance in Petri Net Models ofDiscrete Event Systems", Proc. of IEEE Conf. on

Computational Engineering in Systems Applications (CESA'2012) pp.1 9-24. Santiago, Chile.

April 2012.

[Lutz-Ley, 2012b] A. Lutz-Ley, L.E. López-Mellado, "Recoverability Analysis ofControlled

Discrete Event Systems Modelled by a Class ofPetri Nets", Int. Workshop on Discrete event

systems (WODES'2012). Guadalajara, México. Oct. 2012.

[Lutz-Ley, 2013a] A. Lutz-Ley, L.E. López-Mellado, "Synthesis of Fault Recovery Sequences

in a Class of Controlled Discrete Event Systems Modelled With Petri Nets", 3rd Iberoamerican

Conference on Electronics Engineering and Computer Science (CIIECC 2013) S.L.P, México.

April 2013.

[Lutz-Ley, 2013b] A. Lutz-Ley, L.E. López-Mellado, "State-Stability Analysis ofDiscrete Event

Systems using Petri-net Branching Processes", 4th IFAC Workshop on Dependable Control of

Discrete Systems (DCDS 2013). York, United Kingdom, Sep. 2013.

[Lutz-Ley, 2015] A. Lutz-Ley, L.E. López-Mellado, "Stability Analysis ofDiscrete Event

Systems Modeled by Petri Nets Using Unfoldings", Submitted to: IEEE Transactions on

Automation Science and Engineering. 2015.

70

References

[Alcaraz 2006] M. Alcaraz-Mejia, E. Lopez-Mellado, A. Ramirez-Treviño ,
"Fault recovery of

manufacturing systems based on controller reconfiguration,'' System of Systems
Engineering, 2006 IEEE/SMC International Conference on vol., no., pp.6 pp., 24-26

April 2006

[Alcaraz 2007] M. Alcaraz-Mejia, E. Lopez-Mellado, A. Ramirez-Treviño, "A redundancy based
method for Petri net model reconfiguration," Systems, Man and Cybernetics, 2007. ISIC.
IEEE International Conference on

, vol., no., pp.1382-1387, 7-10 Oct. 2007

[Arora, 1993] A. Arora, M. Gouda, "Closure and Convergence: A Foundation of Fault-Tolerant

Computing", IEEE Transactions on software engineering Volume 19, No. 1 1, 1993.

[Astuti, 1995] Astuti P., McCarragher Brenan J., "The Convergence ofAssembly Discrete Event

Systems Using Markov Chains", Robotics and Automation, 1995. Proceedings., 1995

IEEE International Conference on, pp 1751-1756, May 1995.

[Astuti, 1996a] Astuti P., McCarragher Brenan J., "Discrete event controller synthesis for the

convergence of an assembly process," Robotics and Automation, 1996. Proceedings.,
1996 IEEE International Conference on , vol.2, no., pp.1 153,1 158 vol.2, 22-28 Apr 1996.

[Astuti, 1996b] Astuti P., McCarragher Brenan J., "The stability of a class of discrete event

systems usingMarkov Chains", International Journal ofControl , vol.64, Issue 3, 1996.

[Brave, 1990] Y. Brave, M. Heymann, "Stabilization of discrete-event processes", International
Journal ofControl Volume 51, Issue 5, 1990.

[Diekert, 1990] Diekert, V., "Combinatorios on Traces". LNCS, Vol. 454, Springer 1990.

[Dijkstra, 1974] E. W. Dijkstra, "Self-stabilizing systems in spite of distributed control",
Commun. ACM 17, 1 1

,
643-644.

[Dingle, 2009] NJ. Dingle, WJ. Knottenbelt, T. Suto., "PIPE2: A Tool for the Performance

Evaluation of Generalised Stochastic Petri Nets", ACM SIGMETRICS Performance
Evaluation Review (Special Issue on Tools for Computer Performance Modelling and

Reliability Analysis), Vol. 36(4), pp. 34-39, March 2009.

[Esparza, 1994] Esparza J., Nielsen M., "Decidability issues for Petri nets" Basic research in

computer science BRICS 1994.

[Esparza, 2002] J. Esparza, S. Romer, W. "An improvement of McMillan's unfolding

algorithm", Formalmethods in system design, 20.

[Hillah, 2009] L.M. Hillah, E. Kindler, F. Kordon, L. Petrucci and N. Tréves, "A primer on the

Petri Net Markup Language and ISO/IEC 15909-2" Petri Net Newsletter 76:9-28,
October 2009. (originally presented at the lOth International workshop on Practical Use of

Colored Petri Nets and the CPN Tools - CPN'09)

[Khatab, 2002] A. Khatab, E.Niel, "State feedback stabilizing controller for the failure recovery
of Timed Discrete Event Systems", International Workshop on Discrete Event Systems,
2002.

71

[Koh, 2009] I. Koh, F. DiCesare: "Modular transformation methods for generalized Petri nets

and their application to automated manufacturing systems" IEEE Transactions on

Systems, Man, andCybernetics 21(6): 1512-1522 .1991

[Lutz-Ley, 2012a] A. Lutz-Ley, L.E. López-Mellado, "Stability-based Characterization of Fault

Tolerance in Petri Net Models of Discrete Event Systems", Proc. of IEEE Conf. on

Computational Engineering in Systems Applications (CESA'2012) pp. 19-24. Santiago,
Chile. April 2012.

[Lutz-Ley, 2012b] A. Lutz-Ley, L.E. López-Mellado, "Recoverability Analysis of Controlled

Discrete Event Systems Modelled by a Class of Petri Nets", Int. Workshop on Discrete

event systems (WODES'2012). Guadalajara, México. Oct. 2012.

[Lutz-Ley, 2013a] A. Lutz-Ley, L.E. López-Mellado, "Synthesis of Fault Recovery Sequences
in a Class of Controlled Discrete Event Systems Modelled With Petri Nets", 3rd

Iberoamerican Conference on Electronics Engineering and Computer Science (CIIECC

2013) S.L.P, México. April 2013.

[Lutz-Ley, 2013b] A. Lutz-Ley, L.E. López-Mellado, "State-Stability Analysis ofDiscrete Event

Systems using Petri-net Branching Processes", 4th IFAC Workshop on Dependable
Control ofDiscrete Systems (DCDS 2013). York, United Kingdom, Sep. 2013.

[McMillan, 1993] K.L McMillan, "Using unfoldings to avoid the state explosión problem in the

verification of asynchronous circuits", Lecture Notes in Computer Science Volume 663,
1 993, pp 164-177

[Ózveren, 1991] CM Ózveren, A.S. Willsky, PJ. Antsaklis, "Stability and Stabilizability of

Discrete Event Dynamic Systems", Journal ofthe Association for Computing Machinery,
Vol.38, No.3, 1991.

[Paoli, 2008] A. Paoli, M. Sartini, S. Lafortune, "A fault tolerant architecture for supervisory
control of discrete event systems", Proceedings of the llth World Congress The

International Federation ofAutomatic Control Seoul, Korea, July 6-11, 2008

[Paoli, 2011] A. Paoli, M. Sartini, S. Lafortune, "Active fault tolerant control of discrete event

systems using online diagnostics", Automática, N.47 201 1

[Passino, 1994] K.M. Passino, A.N. Michel, PJ. Antsaklis, "Lyapunov Stability of a Class of

Discrete Event Systems", IEEE Transactions on Automatic Control, Vol.39, No.2, 1994.

[Passino, 1998] K.M. Passino, K.L. Burguess, "Stability Analysis of Discrete Event Systems",
Wiley-Interscience publication, 1 998.

[Retchkiman, 1999] Z. Retchkiman, "From Stability to the Stabilization problem of Discrete

event systems modeled by Petri nets using Lyapunov methods", American Control

Conference, 1999.

[Retchkiman, 2000] Z. Retchkiman, "A vector Lyapunov function approach for the stabilization
ofDiscrete event systems", American Control Conference, 2000.

[Retchkiman, 2011] Z. Retchkiman, "The Stability Problem for Discrete Event Dynamical

Systems Modeled with timed Petri Nets Using a Lyapunov-Max-Plus Algebra Approach",
InternationalMathematical Forum, Vol. 6, 541-556, 201 1.

72

[Rivera, 2004] I. Rivera, "Observability and modular synthesis of Petri net models of Discrete
Event Systems", Tesis Doctoral, CINVESTAV-IPN Unidad Guadalajara, 2004.

[Rivera, 2005] I. Rivera, A. Ramirez, E. López "Building Reduced Petri Net Models ofDiscrete

Manufacturing Systems", Mathematical and Computer Modeling, Vol. 41, p923-937,
2005.

[Santoyo, 2008] A. Santoyo-Sanchez, A. Ramirez-Treviño, C. De Jesús-Velásquez, LX Aguirre-
Salas, "Step State-feedback Supervisory Control of Discrete Event Systems using

Interpreted Petri Nets", IEEE International Conference on Emerging Technologies and

FactoryAutomation, (ETFA 2008). 2008

[Schneider, 1993] Y. Brave, M. Heymann, "Self-Stabilization", ACM Computing Surveys
Volume 25, No. 1,1993.

[Tarraf, 2005] D.C. Tarraf, M.A. Dahleh, A.Megretski, "Stability of Deterministic Finite State

Machines",American Control Conference, 2005.

[Tarraf, 2006] D.C. Tarraf, M.A. Dahleh, A.Megretski, "Input/Output Stability of Systems Over

Finite Alphabets", American Control Conference, 2006.

[Wen, 2007] Q.Wen, R. Kumar, J.Huang, H.Liu, "Weakly Fault-Tolerant Supervisory Control of

Discrete Event Systems", American Control Conference, 2007.

[Wen, 2008] Q. Wen, R. Kumar, J.Huang, H.Liu, "A Framework for Fault-Tolerant Control of

Discrete Event Systems", IEEE Transactions onAutomatic Control, Vol.53, No.8, 2008.

[Wen, 2009] Q. Wen, "Fault-tolerant supervisory control of discrete-event systems", Tesis

doctoral, Iowa State University, 2009.

73

CENTRO DE INVESTIGACIÓN Y DE ESTUDIOS AVANZADOS DEL I.P.N.

UNIDAD GUADALAJARA

El Jurado designado por la Unidad Guadalajara del Centro de Investigación y de

Estudios Avanzados del Instituto Politécnico Nacional aprobó la tesis

Estabilidad de Sistemas de Eventos Discretos Concurrentes

modelados con redes de Petri. Stability of Concurrent Discrete
Event Systems modeled as Petri nets.

del (la) C.

el día 03 de Julio de 2015.

Alberto LUTZ LEY

Dr. Félix Francjsort&fqos Corchado

InvestigáSortXINVEStAV 3C

CINVESTAV Unidad Guadañara

Dr. Luis Ernesto López Mellado

Investigador CINVESTAV 3C

CINVESTAV Unidad Guadalajara

^j^W¿
'Vfc^J

Dr. Antonio Ramírez Treviño

Investigador CINVESTAV 3A

CINVESTAV Unidad Guadalajara

"^
Dr. Mario Ángel Siller González

Pico

Investigador CINVESTAV 3A

CINVESTAV Unidad Guadalajara

Dra. María Elena Meda Campaña

Profesor Titular

Universidad de Guadalajara CUCEA

