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RESUMEN 
 En esta tesis se reportan los procesos para analizar las señales sEMG multicanal a través del uso 

de las transformaciones Wavelet y Hilbert-Huang, así como de otros métodos de análisis de señales, tales 

como filtros Kalman y Göertzel, como técnicas para detectar, medir, filtrar y descomponer esas señales 

sEMG para identificar los patrones en tiempo, frecuencia, espacio o su combinación, para movimientos de 

flexión y extensión de los dedos de la mano usando los músculos superficiales del antebrazo asociados a 

ellos para la predicción de sus movimientos y reducir el tiempo de cómputo de las características. El 

objetivo de la investigación es mejorar el tiempo de cálculo de las señales electromiográficas para el 

control de dispositivos protésicos usando sólo sensores superficiales. La hipótesis tiene como base que 

todos los movimientos de la mano son respuesta de la actividad mioeléctrica de músculos en específico del 

brazo y antebrazo, esta actividad eléctrica puede ser medida como una señal electromiográfica 

relacionada a una secuencia de movimientos de los elementos de la mano, los dedos. Cada dedo realiza 

una trayectoria desde la posición relajada hasta la última posición deseada, esta trayectoria no es un trazo 

instantáneo, por lo que, la señal mioeléctrica no es instantánea. La actividad eléctrica del músculo está 

presente en las señales registradas, entonces esta puede ser definida como un grupo de frecuencias o un 

trazo de energía. Esta actividad eléctrica puede ser reconocida por un algoritmo dentro de una base de 

datos de sus patrones, comparar la actividad eléctrica de los músculos en tiempo real contra estos datos 

para crear una tendencia del comportamiento de la mano y, posiblemente, predecirla para reducir el 

tiempo de cómputo para encontrar el moviemiento específico antes o al mismo tiempo de su ejecución. 

El objetivo general es la propuesta de un método y sus algoritmos para predecir y corregir los movimientos 

de la mano por medio de la identificación de los patrones y características de la señal mioeléctrica en 

músculos del antebrazo en un tiempo de procesamiento menor a los 100 ms. Los objetivos específicos se 

dividen en tres etapas : Adquisición, Análisis Estacionario de la Señal (SSA) y Análisis No-Estacionario 

de la Señal (NSA). La etapa de adquisición es común para las etapas SSA y NSA. Para la etapa de 

adquisición, las señales son adquiridas colocando electrodos superficiales Ag/AgCl sobre cinco músculos 

del antebrazo ligados a los dedos. Usando un arreglo configurado de 4 canales, las señales fueron 

muestreadas y registradas. Enseguida, las señales fueron normalizadas y recortadas dentro de una ventana 

cuadrada antes de ser analizada. Una base de datos de los seis movimientos de los dedos fue obtenida. El 

análisis estacionario consta de los métodos y procesos propuestos para analizar los datos registrados 

usando las transformadas Wavelet y Hilbert-Huang. Del uso de éstas, características particulares y 

específicas, así como patrones, fueron encontrados. Los escalogramas y las características estadísticas  

son reportadas. Los patrones de tiempo y frecuencia son descritos como modelos matemáticos. Una 

característica intrínseca de la actividad muscular que está asociada a la intensidad muscular de la señal 

mioeléctrica, también se muestra. Los resultados son de utilidad para la propuesta de procesos de filtrado 

e identificación de características en tiempo real. Por otro lado, en el análisis no estacionario de las 

señales, se proponen las condiciones, métodos, técnicas y procesos para realizar en un corto tiempo, un 

periodo de menos de 100 ms, la identificación de las características y patrones de las señales mioeléctricas. 

El filtro Kalman mejora la eliminación de ruido y la reconstrucción de la señal para predecir la señal de 

entrada, la señal mioeléctrica. La señal de salida del filtro Kalman entra al filtro Goertzel, que detecta 

señales específicas usando la transformada de Fourier discreta con base en los patrones y características 

modelados. Los resultantes de estos filtros pueden ser aplicados directamente a un sistema protésico como 

señal de control o introducidos a un sistema de clasificación, dependiendo de la complejidad del sistema 

de adquisición, los canales o movimientos. 

El sistema de predicción propuesto se adapta a aplicaciones de tiempo real usando sólo las señales 

mioeléctricas como entrada. La naturaleza dinámica del filtro Kalman  provee para la variación de tiempo 

una fusión óptima de la información mioeléctrica, intensidad muscular y estadística de los movimientos. 

Usando el filtro Kalman es posible reducir el ruido y reconstruir rápidamente la forma de onda deseada. 

El filtro Goertzel reconoce de forma simple las frecuencias deseadas en un periodo cercano a 5 ms. El 

patrón de tiempo establece una señal de activación de 24.5 ms, un periodo de 30 ms de reconstitución y 

otro de 24.5 ms de desactivación. Éstos periodos sugieren que la ventana óptima de análisis es de 30 ms 

para aplicar cualquier método utilizado en este trabajo. Con una ventana de 30 ms, en 15 ms se podría 

realizar la predicción y 5 ms para detectar el tono ; por tanto el tiempo para la identiciación, detección, 

predicción y corrección de la señal mioeléctrica puede ser realizada en un tiempo menor a 100 ms.   
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RÉSUMÉ 
Cette thèse rapporte les processus pour analyser l’signal sEMG multicanal à l’aide de la transformée 

en ondelettes, transformation de Hilbert-Huang et d’autres méthodes d’analyse des signaux, tels que les 

filtres de Kalman et Goertzel, comme techniques pour détecter, mesurer, filtrent et décomposent ceux les 

signaux sEMG pour identifier des tendances dans le temps, fréquence, espace ou combinaison des 

mouvements de flexion-extension des doigts de la main à l’aide de muscles superficiels lien-doigts afin de 

prédire le mouvement de la main et de minimiser le temps de calcul. Le but de notre recherche est 

d’améliorer le temps de calcul pour les caractéristiques des signaux myoélectrique pour contrôler des 

prothèses à l’aide de capteurs superficiels. L’hypothèse est fondée par l’idée que tous les mouvements de 

la main sont une réponse active à l’activité myoélectrique des muscles spécifiques, que l’activité électrique 

peut être mesure comme un signal associé à une séquence de mouvement des éléments de la main, 

doigts. Chaque doigt peut effectuer une trajectoire de la position de repos à la position finale, cette 

trajectoire n’est pas un chemin d’accès instantané, le signal myoélectrique n’est donc pas une activité 

instantanée. L’activité électrique du muscle est présente sur les signaux enregistrés, alors cela pourrait être 

définie comme un groupe de fréquences. Cette activité électrique pourrait être reconnu pour un algorithme 

à partir d’une base de données de ses modèles, comparer l’activité électrique des muscles en temps réel par 

rapport à ces données pour créer une tendance du comportement de la main et prévoir pour réduire les temps 

de calcul pour trouver le mouvement spécifique avant ou en même temps. 

L’objectif général est de proposer une méthode et ses algorithmes pour prévoir et corriger les 

mouvements de la main par l’identification des caractéristiques des signaux myoélectriques et patterns dans 

les muscles de l’avant-bras en moins de 100 ms temps de traitement. Les objectifs spécifiques se compose 

de trois étapes : analyse de signal stationnaire (SSA), Acquisition et analyse de Signal stationnaire 

(NSA). La phase d’acquisition est commune pour SSA et NSA. Pour l’étape de l’acquisition, les signaux 

sont acquis en plaçant des électrodes de surface, Ag/AgCl, sur cinq muscles lien-doigt avant-bras des 

sujets. Utilisez une configuration de matrice 4 canaux électrode, ces signaux ont été échantillonnés et 

enregistré. Ensuite, les signaux ont été normalisés et fenêtré avant les étapes de l’analyses. Base de données 

pour six mouvements des doigts ont été obtenus. L’analyse stationnaire consiste dans les méthodes et 

procédés proposés pour analyser les données enregistrées en utilisant les ondelettes et transforme de 

Hilbert-Huang. Les caractéristiques et les modèles ont été trouvés à l’aide de ces techniques. Scalogrammes 

et caractéristiques statistiques sont rapportés. Les patrons temporels et fréquentiels sont décrits comme des 

modèles mathématiques. Une caractéristique intrinsèque de l’activité musculaire liée à l’intensité du signal 

sEMG est également montrée. Les résultats sont utiles à proposer un processus de filtrage en temps 

réel. L’analyse de signaux non stationnaires, est une proposition pour les conditions, les méthodes, les 

techniques et les procédés d’accomplir en temps réel ou courte durée, moins de 100 ms de fente de 

traitement, à l’aide de filtres de Kalman et Goertzel pour identifier les fonctions, les caractéristiques ou les 

patrons des signaux myoélectriques. Filtre Kalman améliore le débruitage et à la reconstruction pour 

prédire le signal d’entrée, le signal myoélectrique. Le signal de sortie du filtre de Kalman va au filtre 

Goertzel, qui détecte les signaux spécifiques à l’aide de la transformée de Fourier discrète basée sur les 

modèles modélisés. Les résultats de ces filtres peuvent être appliquées directement sur le système de 

prothèse comme un signal de commande ou être appliquées à un système de classification. 

La méthode de prédiction proposé est adaptée aux applications en temps réel en utilisant uniquement 

les signaux myoélectrique comme entrée. La nature dynamique du filtre Kalman prévoit la fusion optimale 

de l’information de variable dans le temps et permet d’appréhender l’activité myoélectrique, 

caractéristiques de l’intensité musculaire et statistiques des mouvements. À l’aide de filtre Kalman est 

également possible réduire le bruit et fournir une reconstruction rapide de la forme de la forme désirée des 

modèles signalés. Le filtre Goertzel fournit une méthode simple d’identification des fréquences motif dans 

une période de presque 5 ms ou plus, juste pour repérer les fréquences souhaitées. Le patron de temps établit 

une période de 24,5 ms pour signal d’activation, une période de 30 ms de réversibilité et 24,5 ms du délai 

accordé pour signal de désactivation. Ces temps suggèrent que le fenêtrage durée minimale est de 30 ms 

pour appliquer la l’analyse utilisée pour ce travail. Avec une fenêtre de 30 ms, presque 15 ms à exécute 

prédiction et 5 ms pour effectuer la détection de tonalité ; puis le temps consommation pour l’identification, 

prédiction, la détection et la correction du signal myoélectrique pouvaient être pratiquées à moins de 100 

ms. 
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ABSTRACT 
This thesis reports the processes to analyze multichannel sEMG signals using Wavelet transform, 

Hilbert-Huang Transform, and other analysis methods, such like Kalman filter and Goertzel filter, as 

techniques to detect, measure, filter and decompose those sEMG signals to identify patterns in time, 

frequency, space or combination for flexion-extension movements of the fingers of the hand using link-

fingers superficial muscles in order to predict the movement of the hand and minimize the time computing. 

The aim of our research is to improve time computing for EMG signals characteristics to control prosthetic 

devices using superficial sensors and not indwelling, last one has inherent limitations. The hypothesis is 

based by the idea that all hand movements are an active response to the myoelectric activity of specific 

muscles present in the arm and forearm, that electric activity can be measure as an EMG signal related to a 

sequence of movement of the elements of the hand, fingers. Each finger can perform a trajectory from doss 

position to last position, this trajectory is not an instantaneous path, therefore, the myoelectric signal is not 

an instantaneous activity. The electric activity of the muscle is present on the recorded signals, so then this 

could be defined as a group of frequencies or path of energy. This electric activity could be recognized for 

an algorithm from a database of its patterns, compare the electric activity of the muscles in real time versus 

this data to create a trend of the behavior of the hand and, possibly, predicting to reduce time computing to 

find the specific movement before or at the same time. 

The general goal is to propose a method and its algorithms to predict and correct the movements of 

the hand by the identification of the myoelectric signal characteristics and patterns in the forearm muscles 

in under 100 ms time of processing. The Specific goals is composed by three stages: Acquisition, Stationary 

Signal Analysis (SSA) and Nonstationary Signal Analysis (NSA). The Acquisition stage is common for 

SSA and NSA. For the acquisition stage, the signals are acquired by placing Ag/AgCl surface electrodes 

over five forearm link-finger muscles of the subjects. Using a 4-channel electrode array configuration, these 

signals were sampled and recorded. Then, signals were normalized and windowed previous to the analyzing 

steps. Database for six movements of the fingers were obtained. The stationary analysis consists in the 

methods and processes proposed to analyze the recorded data using Wavelet and Hilbert-Huang 

Transforms. Features, characteristics and patterns were found using these techniques. Scalograms and 

Statistical features are reported. Time and frequency patterns are described as mathematical models. A 

intrinsic characteristic of the muscular activity related with the intensity of the sEMG signal is also showed. 

Results are useful to propose a real-time filtering processes. The nonstationary signal analysis, is a proposal 

for the conditions, methods, techniques and processes to perform in short-time, or real-time under 100 ms 

of processing slot, using Kalman and Goertzel filters to identify the features, characteristics or patterns of 

the myoelectric signals. Kalman filter improves the denoising and reconstruction to predict the input signal, 

myoelectric signal. The output signal from Kalman Filter goes to the Goertzel filter, that detects specific 

signals using the Discrete Fourier Transform based on the modeled patterns. Results from these filters could 

be applied directly to the prosthetic system as a control signal or be applied to a classifier system, depending 

on the complexity of the acquisition system, channels or movements. 

Proposed prediction method is suitable for real-time applications using only the EMG signals as 

input. The dynamical nature of the Kalman filter provides for the time varying optimal fusion of the 

information and allows to consider myoelectric activity, muscular intensity features and statistical of the 

finger movements. Using Kalman filter is also possible to reduce the noise and provide a quick 

reconstruction of the desired shape form of the patterns reported. Goertzel filter provides a simple 

identification method of the pattern frequencies in a time of almost 5 ms or above, just to locate the desired 

frequencies.  The time pattern establishes a period of 24.5 ms for activation signal, a period of 30 ms for 

reversibility and 24.5 ms of period for deactivation signal. This time slot suggest that the minimum time 

windowing is 30 ms to apply any of the analyzing method used for this work. With a window of 30 ms, 

almost 15 ms to performs prediction and 5 ms to perform tone detection; then time consumption for the 

identification, detection, prediction and correction of the myoelectric signal could be performed in under 

100 ms. 
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GENERAL INTRODUCTION 

 

The main function of the hand is grasp. The elements that are responsible of grasping are the fingers, 

which coordinated can do more than 27 combinations. By the way, the main function of a prosthetic hand 

is to grasp and object (Altamirano-Altamirano, et al., 2013). Primary functions of the prosthetic hand are 

based on electromechanical devices that are activated by instructions, those came from a control system. 

Control system is operated and monitored by a program constructed over an algorithm that guide and 

execute tasks to perform each operations of the hand.  

Human movement control system is in the central nervous system and downwards over the peripheral 

nervous system, a complex communication web with its own language. Each action of the body is ruled by 

the central nervous instructions (Basmajian & De Luca, 1985). Also, human body signals of activation, 

control and monitoring have special codification that are very different from the programming languages 

such as C++, assembly language and others. The interpretation of the instructions that muscles receive from 

nervous system to perform movements are useful for the development of artificial elements like prostheses 

or orthoses. 

Prosthetic hands are tools for user assistance, must be quick and precise in response. These devices 

should fit to daily life. Time computing improvement of the calculations of the signals and their 

characteristics could decrease the requirements of the prosthetic system in electronic, mechanic and energy 

devices. 

Superficial myoelectric signals provide enough data about muscular activity in a non-invasive way, 

this information came in patterns that can be used as a very effective source of control (Boostani & Moradi, 

2003) (Chu, et al., 2005) (Castellini & van der Smagt, 2009) (Rafiee, et al., 2010).  

sEMG signals are motor unit action potentials (MUAPs) combination of muscle fibers that surround a 

superficial electrode placed over skin surface, then position of the electrode is very important to get MUAPs 

form one, two or more muscle at the same time. The shapes and firing rates of MUAPs are an important 

source of information (Adam, et al., 1998)(Adam & De Luca, 2003). sEMG signals are capable of provide 

enough information about muscular activity in a non-invasive way becoming an effective source for 

prosthetic control (Boostani & Moradi, 2003) (Chu, et al., 2005) (Castellini & van der Smagt, 2009)(Rafiee, 

et al., 2010). 

sEMG signals are very noisy (Loren & Wilkins, 2011) (Naït-Ali, 2009), this noise could be produced 

by the electronic system, be inherent to the body or be interfered by EM sources (Pallás-Areny & Webster, 

1999). Common noise is provided by tissues that surround muscles or the muscles themselves, as MUAPs 

by movements of the users, artifacts, and electric EMG interference (Chowdhury, et al., 2013) such as line 

power sources or wireless devices such as Bluetooth, Wi-Fi, IR, etcetera. It’s important to clean the sEMG 

signals to take out the MUAP signal without noise and then analyze it to obtain information available into 

the sEMG signal as timing, firing rates, synchronization, intervals, and morphology of the MUAPs to 

known health and anatomy of muscle fibers (De Luca, et al., 2006).  

Several algorithms have been proposed to clean, denoise or filter the sEMG signals , however, the 

latest methods in recent years, worked under the decomposition basis to extract all possible sinusoids and 

non-sinusoids components into a MUAP, these methods perform decomposition in order to detect 

differences in shapes, tack changes and, even, solve superposition (Lesser, et al., 1995) (Fang, et al., 1997) 

(Yamada, et al., 2003) (Zennaro, et al., 2003) (De Luca, et al., 2006) 

For sEMG or iEMG signals it is not enough to identify the presence of a certain frequency in the 

signal, it is necessary to localize this frequency in time-space, thus to provide more information about 
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muscle’s behavior related to specific movements, pattern contraction and pathological disorders (Pinzon-

Morales, et al., 2011). 

In recent years, methods like Wavelets and Hilbert-Huang transform have been proposed to 

denoise, filter, decompose, detect, analyze and predict non-stationary and non-linear signals to achieve their 

characteristics and patterns in time, frequency, energy and intensity (Flanders, 2002) (Meeson, 2005) 

(Tsolis & Xenos, 2011) (Chung & Dong-ling, 2004)  (Phinyomark, et al., 2011) (Zhang & Zhou, 2014) 

(Yan & Lu, 2014). Works developed by Carlo De Luca and Hamid Nawab, are focused on sEMG and 

iEMG decomposition and improving methods to solve accuracy and consistency of the MUAPs achieved 

by using knowledge-based Artificial Intelligence framework (De Luca, et al., 2006) (Nawab, et al., 2002).  

Raw sEMG signal is a source of information with many noise. This information could be useful if 

is well analyzed, quantified, classified (Basmajian & De Luca, 1985). Recent research support the 

hypothesis that EMG signals could be used to anticipate movements of the muscles (Hoffman & Herr, 

2002) (Hou, et al., 2004) and then to take decisions in advance to control orthotic or prosthetic devices 

(Park, et al., 2012)(Hoozemans & van Dieën, 2005)(Altamirano-Altamirano, et al., 2014) (Altamirano-

Altamirano, et al., 2013).  

One of the primary goals of our research is to improve time computing for EMG signals 

characteristics to control prosthetic devices using superficial sensors and not indwelling, last one has 

inherent limitations (Munoz, et al., 1997) (De Luca, et al., 2006). A prosthetic user needs to use easy-built 

systems for day-life in good or worst conditions such as no skin preparation, fixed sensors, quick response 

systems, and etcetera. 

This works reports the processes to analyze multichannel sEMG signals using Wavelet transform, 

Hilbert-Huang Transform, and other analysis methods as techniques to detect, measure, filter and 

decompose those sEMG signals to identify patterns in time, frequency, space or combination for flexion-

extension movements of the fingers of the hand using link-fingers superficial muscles. 

The EMG signals are biomedical signals that measures electrical activities in the muscles during a 

contraction or relaxation process, this represents the neuromuscular activity. EMG signal is a complex 

signal, this is a signal control from the neural system to the muscles, and this also depends of the anatomical 

and physiological properties of muscles. 

The main reason for the interest in EMG signal analysis is in clinical diagnosis, biomedical 

applications and rehabilitation area. The shapes and firing rates of Motor Unit Action Potentials (MUAPs) 

in EMG signals provide an important source of information for the diagnosis of neuromuscular disorders. 

Once appropriate algorithms and methods for EMG signal analysis are readily available, the nature and 

characteristics of the signal can be understood and hardware implementations can be made for various EMG 

signal related applications. 

There are limitations in detections and characterization of existing non-linearity in the surface 

electromyography (sEMG) signal, estimation of the phase, acquiring exact information due to derivation 

from normality (Sahid, 2004). Recent advances in technologies in signal processing and mathematical 

models have made in practical to develop advanced EMG detection and analysis techniques. Various 

mathematical techniques and Artificial Intelligence (AI) have received extensive attraction. Mathematical 

models include Wavelet Transform (WT), time-frequency approaches, Fourier Transform (FT), Wigner-

Ville Distribution (WVD), statistical measures, higher order statistics and Hilbert-Huang Transform 

(HHT). Artificial Intelligence approaches toward signal recognition include Artificial Neural Networks 

(ANN), Dynamic Recurrent Neural Networks (DRNN), and Fuzzy Logic System (FLS). Genetic Algorithm 

(GA) has also been applied in evolvable chip for the mapping of EMG inputs to desired hand actions. In 

the other hand, methods like Mean Frequency (MNF), Median Frequency (MDF), Mean Peak Frequency 

(PKF), Mean Power (MNP), Spectral Moments or Central Frequency Variance are not good to classify 

EMG signals (Phinyomark, et al., 2011). 

Wavelet transform is well suited to non-linear signals like EMG. Time-frequency approach using 

WVD in hardware could allow for some real-time instruments that biofeedback situations. Higher-order 
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statistical (HOS) methods may be used for analyzing the EMG signal due to the unique properties of HOS 

applied to random time series. 

Hilbert-Huang transform was developed by Huang in 1999 for time-frequency analysis that 

simultaneously offers a good resolution. This analysis consists in two main processes: Empirical Mode 

Decomposition (EMD) and Hilbert transform (HT) (Huang, et al., 1998) (Huang, 2005). EMD is a method 

to decompose nonlinear signals into fundamental signals called Intrinsic Mode Functions (IMFs). Result of 

these processes are symmetric signals described in time and frequency also in energy.  

Myoelectric signals are set of several signals from the muscle fibers in addition with intrinsic noise 

components. These signals have specific time slots and frequencies, patterns. Mathematical models could 

be proposed to describe myoelectric activity. These models can be used to identify the behavior of the 

muscle for specific movements, i.e. for finger flexion and extension.   

Recent investigations (Hoffman & Herr, 2002) support the hypothesis that EMG peripheral neural 

signals can be used to anticipate human movements approximately 100 ms in advance. These results suggest 

that EMG sensory data could be used to foresee the future biomechanics of a human, thereby making it 

possible to anticipate the movement intent of the Orthosis & Prosthesis (O&P) user. 

Predictive and filtering algorithms were applied as methods to improve the myoelectric signal 

analysis to obtain their patterns and characteristics. Kalman filter provides trajectory correction of an input 

signal to avoid noise and artifact interference, also an approximation of the desired signal. Then, a Goertzel 

filter, related to Discrete Fourier transform filter, is applied to the output of Kalman filter to identify the 

desired signal and result into a false or true unique signal. 

Systems based on myoelectric signal control require specific features inputs according to the process. 

For prosthetic systems, it is necessary to define the kind of prosthesis and its capability just to select the 

activation mode, the controlling parameters and variables to consider. It seems, then, that the problem of 

control by the patient is going to be a major issue in the next years. As the prosthetic hand becomes more 

flexible; how is the patient supposed to precisely command the prosthesis what to do? Operating hand 

requires a fine and quick control, possibly down to the level of the single fingers:  

 

1. Presented with a certain task such as turning a door handle or grabbing a car key, the patient must 

be able to enforce the correct grasping type; this involves the activation of some join 

2. Each person is different from each other. The EMG signals are not the same for all persons. We 

need a common signal, pattern or behavior for all. 

3. Electronic devices always perform tasks in time. When you process an EMG signal there will be a 

delay in time to get the answer or the solution. 

4. Acquisition systems always will have noise, inherent or induced, there is not ideal signals. We 

should improve denoising, mostly, from the first stage of acquisition: electrodes. 

The characteristics of ideal upper limb myoelectric control system should satisfy following criteria: 

1. The control should be intuitive for user, as natural movements. 

2. The system should be robust to doffing and donning. 

3. It should be able to adapt to physiological changes, such as sweating, fatigue or neurological 

disorders. 

4. Easy and short training/calibration. 

5. Quick response systems as possible embedded, not have big devices. 

6. Quick response algorithms, under 300 ms. 

7. Analysis and time computing versus complexity to perform real-time applications (Chu, et al., 

2005) (Huang & Chen, 1999).  

The hypothesis is because all hand movements are an active response to the myoelectric activity of 

specific muscles present in the arm and forearm, that electric activity can be measure as an EMG signal 

related to a sequence of movement of the elements of the hand, fingers. Each finger can perform a trajectory 

from doss position to last position, this trajectory is not an instantaneous path, therefore, the myoelectric 
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signal is not an instantaneous activity, such as Dirac function, it has a trajectory too. The trajectory of the 

electric activity of the muscle is present on the EMG signal(s) recorded, so then this trajectory could be 

defined as a group of frequencies, a path of energy or have another shape. So, this trajectory could be 

recognized for an algorithm and, first, create a database of this patterns, and then, compare the electric 

activity of the muscles in real time versus this data to create a trend of the behavior of the hand and, possibly, 

take decisions in advance to reduce time computing to find the specific movement before or at the same 

time of performing by the muscle. This is to control a prosthetic hand prosthesis with five fingers. 
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STATE OF THE ART 

In 2004, Hou, Zurada and Karwowski (Hou, et al., 2004) proposed a novel structure of feed-forward 

neural network to obtain better accuracy of prediction. The task was to predict the magnitude of ten trunk 

muscles during manual lifting tasks. In this basic model, they predict EMG signals point by point. Each 

input vector consists of 12 kinematics variables of one sampling point of one subject, as well as the 

corresponding 15 subject variables. The timing variables the sampling point of the current input. The 

kinematics variables are time series, while the subject variables of each subject are constants. All sampling 

points of all subjects in a same motion were used to train the network one by one. By adding regional 

connections between the input and the output, this architecture of the neural network van has both global 

features and regional features extracted from the input. the global connections put more emphasis on the 

whole picture and determine the global trend of the predicted curve, while the regional connections 

concentrate on each point and modify the prediction locally. Back-propagation Algorithm is used in the 

modelling. A basic structure of neural network designed for this problem was discussed. Then overcome 

its dear backs, they propose a new structure. 

In 2005, Hoozemans and Van Dieën (Hoozemans & van Dieën, 2005) presented a study to predict 

handgrip forces, their work consists on determine the validity of linear regression models using the surface 

electromyography (sEMG) of up to 6 forearm muscles. In the report, they used ideal conditions for 

isometric gripping tasks and normalized EMG to grip force calibrations. In the results, the predicted grip 

forces were close compared with the observed; they report that the EMG-hand force model appeared to be 

minimal affected by grip with, they also report that only 3 of 6 muscles should be assessed to arrive at 

sufficient level of validity. 

In 2009, Castellini and van der Smagt (Castellini & van der Smagt, 2009) dealt with advanced robotic 

hand control via surface electromyography. They show that machine learning, together with a simple down-

sampling algorithm, can be effectively used to control on-line, in real time, finger position as well as finger 

force a highly dexterous robotic hand. The system determines the type of grasp a human subject is willing 

to use, and the required amount of force involved, with a high degree of accuracy. This represents a 

remarkable improvement with respect to the state-of-the-art of feed-forward control of dexterous 

mechanical hands, and opens a scenario in which amputees will be able to control hand prostheses in a 

much finer way. 

In 2010, Rafiee and his team (Rafiee, et al., 2010) worked on a system based on CWC, they report 

that in classification, feature vector is defined as a compressed, meaningful vector/matrix possessing the 

significant information of different classes. In this research, CWC was used for the calculation of feature 

vectors for EMG signals. The CWC of the signal, itself, is not appropriate as a feature vector because it is 

computationally expensive.  

In 2011, Pinzon-Morales and his team (Pinzon-Morales, et al., 2011) proposed a method for hand 

movement pattern recognition from electrography (EMG) biological signals. The signals were recorded by 

a three-channel data acquisition system using surface electrodes placed over the forearm, and then 

processed to recognize five hand movements: opening, closing, supination, flexion and extension. Their 

proposal is based the combination of Hilbert-Huang Analysis with a fuzzy clustering classifier. A set of 

metrics, calculated from the time contour of the Hilbert Spectrum, was used to compute a discriminating 

three-dimensional feature space. Empirical analysis of the proposed method reveals an average accuracy 

rate of 96% in the recognition of surface EMG signals. This method introduces: 1) assumptions about 

linearity or stationary were not needed; 2) previous knowledge about the data in the feature extraction was 

not required to analyze the signal; and 3) high classification accuracy was achieved. 
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In 2013, Wang, Chen and Zhang (Wang, et al., 2013), presented a work of the prehensile hand 

gestures role in daily living for seizing of holding subjects stably. In order to realize the accurate recognition 

of eight prehensile hand gestures with a minimal number of electrodes, an off-line myoelectric control 

system with only two electrodes was developed. They used the mean absolute value, variance, the fourth-

order autoregressive coefficient, zero crossings, mean frequency and middle frequency as original EMG 

feature set. The extent of dimension reduction was investigated and on the premise of it, the average 

accuracy can achieve 97.46% in the recognition of six hand gestures. An average method was proposed to 

improve the accuracy further, resulting in the average accuracy in eight gestures being 98.12% and the best 

individual accuracy of some hand gestures being 100%. 

In 2014, Amsüss, Farina and their team (Amsuss, et al., 2014)proposed a self-correcting pattern 

recognition system of surface EMG signals for upper limb prosthesis control. This proposal is a 

postprocessing algorithm, aiming to detect and remove misclassifications of a pattern recognition system 

of forearm and hand motions. Various nonstationarities were included in the experimental protocol to 

account for challenges posed in real-life settings, such as different contraction levels, static and dynamic 

motion phases, and effects induced by day-to-day transfers, such as electrode shifts, impedance changes, 

and psychometric user variability. The system significantly reduced misclassifications to wrong active 

classes and is this a promising approach for improving the robustness of hand prosthesis controllability. 

In 2014, Xing et al (Xing, et al., 2014), reported a real-time classifier system to recognize patterns 

to control a virtual myoelectric hand using a four-channel acquisition system with high-level classifiers to 

detect seven movements of the wrist. 

In 2012, Park and his team (Park, et al., 2012), developed a model to describe a real-time thumb-tip 

force prediction using sEMG signals. The Hill-based muscle model was used to predict the thumb-tip force 

under four different angle configurations. They used a mapping model from the literature to estimate the 

thumb-tip force from the muscle forces without considering complex thumb biomechanics. They compare 

the prediction performance using the linear regression and ANN methods. This method is feasible for the 

thumb-tip force prediction. The possible applications of this research include the control of finger-tip forces 

from noninvasive neuro-signals in robotic hand parts. 

PREVIOUS RELATED WORKS 
In 2016, J. Antonio Barraza Madrigal, PhD. presented the doctoral thesis named “Design and development 

of an ambulatory system for movement analysis: monitoring, reproduction and tracking of the shoulder 

movement.” CINVESTAV-IPN, Mexico. 

In 2015, J. Antonio Ruvalcaba Granados, MSc. Presented the master thesis named “Design and 

development on an embedded electrode for superficial EMG signals acquisition.” CINVESTAV-IPN. 

In 2012, Alvaro Altamirano Altamirano, MSc. Presented the master thesis named “Proposal of a 

anthropomorphic hand prototype to use as prosthesis.” CINVESTAV-IPN, Mexico. 

In 2012, Moisés León Ponce, PhD. presented the doctoral thesis named “Classification of myoelectric 

patterns for the operation of anthropomorphic device.” CINVESTAV-IPN, Mexico
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WORK & AUTHORS CHARACTERISTICS RESULTS 

Self-correcting Pattern Recognition System of 

sEMG Signals for Upper Limb Prosthesis 

Control. Amsüs, Farina, et al. 2014 

Self-correcting EMG 

pattern  

Real-time movements of 

the hand. 

Contraction levels, 

misclassification, 

motion phases 

Algorithm that corrects the external 

parameters that affects the prediction 

conditions of the system 

Prediction of EMG signals of trunks muscles in 

manual lifting using a Neural Network Model. 

Hou, et al., 2004 

Cinematic variables Artificial Neural 

Networks 

Real-Time Analysis Algorithm that predicts cinematic curves of 

the movements. 

Prediction of handgrip forces using Surface EMG  

of forearm muscles. Hoozemans, et al. 2005 

6 forearm channels with 

force feedback 

Fuzzy Logic Systems Stationary and 

Nonstationary 
analysis 

Prediction of isometric grasping 

Decomposition of Surface EMG Signals. De Luca, 

et al., 2006 

4 channels over ocular 

muscles 

Artificial Intelligence 

Decomposition 

30 ms segmentation Neuromotor signals and their firing rates 

Mean frecquency derived via Hilbert-Huang 

transform with application to fatigue EMG signal 

analysis. Xie & Wang, 2006 

1 channel in  arm 
muscle 

Hilbert-Huang and 
Wavelet decomposition 

500 ms segmentation Hilbert-Huang analysis is optimal for short 

period analysis 

Surface EMG in advanced hand prosthetics. 

Castellini, et al., 2009 

6 channels EMG characteristics Real-Time analysis 
using Neuronal 

Networks 

Direct EMG control in real-time 

Pattern Recognition of Surface EMG Biological 

Signals by Means of Hilbert Spectrum and Fuzzy 

Clustering. Pinzon-Morales, et al., 2011 

3 forearm channels Empirical Mode 

Decomposition 

Stationary signal 

analysis algorithms 

EMG pattern classification for five 

movements of the hand 

Real-time thumb-tip force predictions from 

noninvasive biosignals and biomechanical models. 

Park, et al., 2012 

Prediction Biomechanic feedback Stationary analysis Thumb force prediction 

Emg Pattern Prediction For Upper Limb 

Movements Based On Wavelet And Hilbert-

Huang Transform.  

 

Alvaro ALTAMIRANO ALTAMIRANO 

MSc. PhD Candidate 

4, 8, 16 – 

Multichannel 

Hilbert-Huang and 

Wavelet decomposition 

30 ms segmentation 

Under 100 ms 

analysis 

EMG characteristics for individual 

Time and Frequency patterns. 

Noise reduction 

Predictive basis of EMG model 

Real-time pattern identification 

Real-time prosthetic control 
EMG pattern 

prediction 

Real-time filtering using 

mathematical models of 

comparison 

Hand prosthetic 

prototype 

reconfigurable 
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GOALS 

GENERAL GOAL 
 

Propose a method and its algorithms to predict and correct the movements of the hand by the 

identification of the myoelectric signal characteristics and patterns in the forearm muscles in under 100 ms time 

of processing.  

SPECIFIC GOALS 
The method is composed by three stages: Acquisition, Stationary Signal Analysis (Non-linear & 

Stationary Signals) and Nonstationary Signal Analysis (Non-linear and nonstationary Processes).  The 

acquisition stage is common for SSA and NSA. 

Acquisition stage 
• Propose an acquisition protocol to obtain the myoelectric signals related to six movements of the 

fingers using the forearm muscles using superficial electrodes over the forearm muscles using a four 

channels acquisition system. 

• Set a standard normalization and windowing settings to adapt input signals to the Stationary and 

Nonstationary analyses.  

Stationary Signal Analysis 
• Filter and decompose the acquired signals into Intrinsic Mode Functions (IMFs) of the signal using the 

Empirical Mode Decomposition (EMD) method. 

• Obtain the spectrum data and the instantaneous frequencies of the IMFs using Hilbert transform. 

• Obtain and model the characteristics and patterns of the myoelectric signals using mathematical 

methods.  

• Analyze the myoelectric signal records using Wavelets and compare method with Hilbert-Huang 

Transform results. 

Nonstationary Signal Analysis 
• Propose the mathematical models of the patterns and the intrinsic characteristics as a basis. 

• Propose a method using Kalman filter to predict and correct the input myoelectric signal using the 

mathematical model of the pattern.   

• Propose a method using Goertzel filter to identify the predicted and corrected pattern as single tones. 
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GENERAL BLOCK DIAGRAM ABOUT PREDICTION SYSTEM 
 

 

 
Figure 1. EMG prediction system block diagram. 
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CHAPTER 1  

 

MUSCLES AND BIOPOTENTIALS 

 

The aim of this chapter is to provide some basic and general information related to the physiology of the 

muscles and the biosignals, in particular the EMG signals. This chapter is divided in three main sections. First, 

is about the anatomy and physiology of the muscles. In the second section, the basis of biopotential recording, 

i.e. electrodes, artifacts and safety. In the third section, some general properties of EMG signals.  

1.1 MUSCLE ANATOMY AND PHYSIOLOGY 
In electrodiagnostic, to understand the events that occur at molecular level it is important to understand 

the basic anatomy and physiology. Knowledge of gross nerve and muscle anatomy is required to know the 

locations of each of these. 

1.1.1 Anatomy 
The strict definition of the peripheral nervous system includes that part of the nervous system in which 

the Schwann cell is the major supporting cell, as opposed to the central nervous system in which glial cells are 

the major support cells. The peripheral nervous system is a group of nerve roots, peripheral nerves, primary 

sensory neurons, neuromuscular junctions (NMJs), and muscles (Figure 2).  

1.1.2 Physiology 
The primary role of nerve is to transmit information reliably from the anterior horn cells to muscles for 

the motor system and from the sensory receptors to the spinal cord for the sensory system. Although 

functionally nerves may seem like electrical wires, there are vast differences between the two. At the molecular 

level, a complex set chemical and electrical events allows nerve to propagate an electrical signal. 

The axonal membrane of every nerve is electrically active. This property results from a combination 

of a specialized membrane and the sodium/potassium (Na+/K+) pump (Figure 3). 

The specialized axonal membrane is semipermeable to electrically charged molecules (anions and 

cations). The membrane is always impermeable to large negatively charged anions, and it is relatively 

impermeable to sodium in the resting state. This semipermeable membrane, is conjunction with an active 

Na+/K+ pump that moves sodium outside in exchange for potassium, leads to concentration gradients across the 

membrane. The concentration of sodium is larger outside the membrane, whereas the concentration of 

potassium and larger anions is greater inside. The combination results in forces that create a resting equilibrium 

potential. At the nerve cell soma, this resting membrane potential is approximately 70 mV negative inside 

compared with the outside; distally in the axon it is approximately 90 mV negative. 
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Figure 2. Elements of the peripheral nervous system. The peripheral nervous system includes the peripheral motor and 

sensory nerves their primary neurons, the anterior horn cells, and dorsal root ganglia; the neuromuscular 

junctions (NMJs); and muscle. The dorsal root ganglion, a bipolar cell located distal to the sensory root, is 

anatomically different from the anterior horn cell. Consequently, lesions of the nerve roots result in abnormalities 

of motor nerve conduction studies but do not affect sensory conduction studies, as the dorsal root ganglion and its 

peripheral nerve remain intact (Preston, 2013).  

 

Figure 3. Resting membrane potential. At rest, the axonal membrane is negatively polarized, inside compared to outside. This 

resting potential results from the combination of a membrane that is semipermeable to charged particles and an 

active Na+/K+ pump. At rest, the concentration of Na+ and large anions A- greater inside the axon (Preston, 2013). 

 

Figure 4. Voltage-gated sodium channel. The axonal membrane is lined with voltage-gated sodium channels. These channels 

are molecular pores with gates that open and close; when open, gates are selective for sodium A (Preston, 2013). 
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The membrane of the axon is lined with voltage-gated sodium channels, as shown in Figure 4. These 

structures are essentially molecular pores with gates that open and close. For many ion channels, gates open in 

response to molecules that bind to the channel. In the case of the voltage-gated sodium channel, the gate is 

controlled by a voltage sensor that responds to the level of the membrane potential. If current is injected into 

the axon, depolarization occurs, i.e. the axon becomes more positive internally. Voltage sensors within the 

sodium channel respond to the depolarization by opening the gate to the channel and allowing sodium to rush 

into the axon, driven, both by concentration and by electrical gradients.  

Every time a depolarization of 10 mV to 30 mV occurs above the resting membrane potential, 

threshold, it creates an action potential and a cycle of positive feedback; further depolarization occurs and more 

sodium channels open. 

Action potentials are always all-or-none responses, which then propagate away from the initial site of 

depolarization. The axon does not remain depolarized for ling, however, because the opening of the sodium 

channels is time limited.  

Sodium channels have a second gate, known as the inactivation gate. The inactivation of the sodium 

channel occurs within 1 ms to 2 ms. During this time, the membrane is not excitable and cannot be opened, i.e. 

refractory period. The refractory period limits the frequency that nerves can conduct impulses. It also ensures 

that the action potential continues to propagate in the same direction. The area of nerve behind the 

depolarization is refractory when the area ahead is not, so that the impulse will continue forward and will not 

return backwards. 

In addition to sodium channel inactivation, depolarization also results in the opening of potassium 

channels, which also then drives the membrane voltage more negative. These factors, along with the Na+/K+ 

pump, then reestablish the resting membrane potential. 

The conduction velocity of the action potential depends on the diameter of the axon: the larger the 

axon, the less resistance and the faster the conduction velocity. For axons, typically the conduction velocity is 

in the range of 0.2 m/s to 1.5 m/s, also conduction velocity could be increased in addition of myelin. Myelin 

insulation is present on all fast-conducting fibers and is derived from Schwann cells. 

Myelinated human peripheral nerve fibers typically conduct in the range of 35 m/s to 75 m/s, far faster 

than could ever be achieved by increasing the diameter of unmyelinated fibers. Not all human peripheral nerve 

fibers are myelinated. For unmyelinated fibers, typically, conduction is between 0.2 m/s to 1.5 m/s. When an 

individual axon is depolarized, an action potential propagates down the nerve. Distally, the axon divides into 

many embranchments, each of which goes to an individual muscle fiber.  

An axon, along with its anterior horn cell and all muscle fibers with which is connected, is known as a 

motor unit, which is shown in Figure 5. Depolarization of all muscle fibers in a motor unit creates an electrical 

potential known as the Motor Unit Action Potential (MUAP).  
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Figure 5. Motor unit is defined as one axon, its anterior horn cell, and all connected muscle fibers and neuromuscular 

junctions. A nerve fiber action potential normally always results in depolarization of all the muscle fibers of the 

motor unit creating an electrical potential known as the motor unit action potential (MUAP) (Preston, 2013). 

 

When an action potential is generated, all muscle fibers in the motor unit are normally activated, again 

an all-or-none response. Before a muscle fiber can be activated, the nerve action potential must be carried 

across the NMJ.  

 

Figure 6. Neuromuscular junction. The neuromuscular junction is a specialized junction between the terminal axon and 

muscle fiber (Preston, 2013).  
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1.2 BIOPOTENTIAL RECORDING 
Near-fields potentials can be recorded only close to their source, and the characteristics of the potential 

depend on the distance between the recording electrodes and the electrical source. With near-field potentials, a 

response generally is not seen until the source is close to the recording electrodes. The closer the recording 

electrodes are to the current source, the higher the amplitude. Compound muscle action potentials, sensory 

nerve action potentials, and motor unit action potentials recorded during routine motor conduction, sensory 

conduction, and surface myoelectric analyses, respectively, are essentially all volume-conducted near-field 

potentials. Volume-conducted, near-field potentials produce a characteristic triphasic waveform as an 

advancing action potential approaches and then passes beneath and away from a recording electrode.  

 

Figure 7. Volume conduction and waveform morphology. In upper image, an advancing action potential recorded by volume 

conduction will result in a triphasic potential that initially is positive, the is negative, and finally is positive again. 

In lower image, the depolarization occurs directly beneath the recording electrode, the initial positive phase is 

absent, and a biphasic, initially negative potential is seen. By convention, negative is up and positive is down in all 

nerve conduction and electromyographic traces (Preston, 2013). 

 

The electrical correlate of an action potential traveling toward, under, and then away from the recording 

electrode is an initial positive phase, followed by a negative phase and then a trailing positive phase, 

respectively. In Figure 7 upper shows that the first positive peak represents the time that the action potential is 

beneath the active electrode; this is the point at which the onset latency should be measured for nerve action 

potentials. The initial positive peak may be very small or absent with some sensory responses. In this case, the 

initial negative deflection best marks the true onset of the potential. 

If a volume-conducted, near-field action potential begins directly under the recording electrode, the 

initial deflection is negative as seen in Figure 7 (lower).   
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1.2.1 The Ag/AgCl Electrode 
To measure potential in solution, the Ag/AgCl electrode has become the standard system. The principle 

of this electrode is illustrated in Figure 8.  

The charge carriers in wire are electrons e-, in solution the chloride ion Cl-. The electrode reaction is: 

𝐴𝑔𝐶𝑙 + 𝑒− ⇄ 𝐴𝑔+ + 𝐶𝑙− + 𝑒− ⇄ 𝐴𝑔 + 𝐶𝑙− 

Due to the low solubility product 𝐾𝐿  of AgCl (𝑎𝐴𝑔
+ ∙ 𝑎𝐶𝑙

− = 1.7 × 10−10), the KCl solution will be 

saturated but will have a very low activity of 𝐴𝑔+(𝑎𝐴𝑔
+ ). The Ag/AgCl electrode will show a potential 

difference of: 

𝐸𝑒𝑙 = 𝐸0 +
𝑅𝑇

𝐹
ln 𝑎𝐴𝑔

+ = 𝐸0 +
𝑅𝑇

𝐹
(ln𝐾𝐿 − ln 𝑎𝐶𝑙

− ) = 𝐸0
∗ −

𝑅𝑇

𝐹
ln 𝑐𝐶𝑙

−  

with 𝐸0
∗ = 0.2222 𝑉 under standard conditions (25°C). The last equation shows that the Ag/AgCl electrode 

acts like a 𝐶𝑙−selective electrode. This is an important characteristic, which has severe consequences if the 

surrounding 𝐶𝑙−concentration is altered. 

 

 

Figure 8. Arrangement of a Ag/AgCl microelectrode (Rettinger, et al., 2016) 

1.3  SEMG SIGNALS 
The myoelectric signal analysis requires advanced methods for detection, decomposition, processing, 

and classification, even when these signals will be used into basic or simple systems. To measure myoelectric 

signals, it is common to use detectors. These detectors are usually put over the skin, if this is the case; different 

signals from other motor units are collected at a time which may generate interaction between them. This is 

called superficial electromyographic signal (sEMG) 

Electromyography is the study of muscle electrical signals. EMG is sometimes referred to as myoelectric 

activity. Muscle tissue conducts electrical currents like the way nerves do and the name given to these electrical 

signals in the muscle action potentials. For recording and detecting, there are two main issues of concern that 

influence the fidelity of the signal: Signal-to-noise ratio and distortion of the signal. The first one is the ratio of 

the energy in the EMG signals to the energy in the noise signal1. The other issue is the distortion of the signal, 

meaning that the relative contribution of any frequency component in the EMG signal should not be altered. 

For EMG muscle signals acquisition, two types of electrodes have been used: invasive electrode and 

non-invasive electrode. The combination of the muscle fiber action potentials from all the muscle fibers of a 

single motor unit is the motor action potential (MUAP) which can be detected by a skin surface electrode (non-

invasive) located near this field, or by a needle electrode (invasive) inserted in the muscle (Basmajian & De 

Luca, 1985). When EMG is acquired from electrodes mounted directly on the skin, the signal is a composite of 

                                                      
1 Noise signal: Is defined as electrical signals that are no part of the desired EMG signal, for this case. 
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all the muscle fiber action potentials occurring in the muscles underlying the skin. These action potentials occur 

at random intervals. So, at any moment, the EMG signal may be either positive or negative voltage. Individual 

muscle fiber action potentials are sometimes acquired using wire or needle electrodes placed directly in the 

muscle. Equation 24 shows a simple model of the EMG signal: 

 
𝑥(𝑛) = ∑ ℎ(𝑟)𝑒(𝑛 − 𝑟) + 𝑤(𝑛)

𝑁−1

𝑟=0
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where x(n), modelled EMG signal, e(n)m point processed, represents the firing impulse, h(r), represents the 

MUAP, w(n), zero mean addictive white Gaussian noise and N is the number of motor unit firings. 

The signal is picked up at the electrode and amplified. Typically, a differential amplifier is used as a 

first stage amplifier. Additional amplification stages may follow. Before being displayed or stored, the signal 

can be processed to eliminate low-frequency or high-frequency noise, or other possible artefacts. Consequently, 

the signal is frequently rectified and averaged in some format to indicate EMG amplitude. 

A schematic representation of a general acquisition system is shown in Figure 9. Several physical 

magnitudes are usually measured from biologic systems. They include electromagnetic quantities (currents, 

potential differences, fields strengths etc.), as well as mechanical, chemical, or generally nonelectrical variables 

(pressure, temperature, movements, etc.). (Mainardi, et al., 2000) 

 

 

Figure 9. General block diagram of the acquisition procedure of a digital signal 

. 

An EMG signal is the train of Motor Unit Action Potential (MUAP) showing the muscle response to 

neutral stimulation. The EMG signal appears random in nature and is generally modelled as a filtered impulse 

process where the MUAP is the filter and the impulse process stands for the neuron pulses, often modelled as 

a Poisson process (Basmajian & De Luca, 1985). Figure 10 shows the process of acquiring EMG signal and 

the decomposition to achieve the MUAPs. 
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Figure 10. EMG signal and decomposition of MUAPs. (De Luca, et al., 2006) 

1.3.1 EMG Features 
To improve the performance of the classifier, researchers have been using different types of EMG 

features as an input to the classifier. To achieve optimal classification performance, the properties of EMG 

feature space, such as computational complexity, should be taken into consideration. There are three types of 

EMG features: time domain, frequency domain and time-frequency domain features. A carefully selected set 

of input features provides a higher classification rate than the raw EMG signal (Reddy, et al., 2009). 

Time-frequency domain features are effective feature sets especially for transient myoelectric signal 

pattern classification.  

1.3.2 On MUAP shape and its properties 
The shape of the observed action potential will depend on the orientation of the recording electrode 

position with respect to the active muscle fibers. Electrodes must be placed in parallel to the muscular fibers, 

so then a biphasic shape and the sign of the phases will depend on the depolarization direction. From the right 

side, a depolarization is reflected as a negative phase and vice versa. 

The amplitude of the MUAP depends on the diameter of the muscle fiber, distance of the electrodes and 

the electrode properties.  

There can be even more than four phases on a MUAP, but one, two or three phases are considered normal 

into a healthy muscle, four phases appears in abnormal muscle tissue. 

As a part of the MUAP, its electrical manifestation comes together with a shudder of the muscle fibers, 

this resulting sequence of MUAP’s is known as Motor Unit Action Potential Train (MUAPT). There is a delay 

of few milliseconds between them, usually time duration of MUAP’s is ranging from 1 ms to 24 ms. 

1.3.3 EMG description over voltage dimension 
We describe the EMG statistics regularity over voltage dimension by means of Frequency distribution 

on voltage. These are obtained by counting the number of signal samples, belonging to a long interval 

recording, occurring on each class in which arbitrarily we divided the range of the signal voltages. 

Different segments of the same EMG have randomly shapes, histograms built from them are very 

similar, it means, statistical trend is maintained, regardless of the random fluctuation of the instantaneous 

values. This stationary effect is present only in short ranges, just until the muscle fatigue. 
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Figure 11 Histograms built from two different EMG signals (A, C) showing that statistical trend is maintained, 

 regardless of the random fluctuation (B, D) 

To describe distribution of the frequencies from voltage values were measure three parameters: 

• Average: Indicate certain values tend to occur frequently. 

• Variance: To indicate the instantaneous data variation from the average. 

• Kurtosis: Indicating the degree of symmetry around the average. 

For EMG signals the distribution is symmetric, null kurtosis, and average is zero (it is an AC signal). 

Also, the variance equation is: 

 𝑆2 =
∑(𝑣𝑖 − 𝑣̅)

2

𝑁
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if the average (𝑣̅) is zero, equation 15 is reduced to a simple arithmetic average of the signal instantaneous 

values, squared. 

In turn, Standard deviation (𝑆), that is the Variance's root square and it serves to express the dispersion in the 

same dimension of the random variable, it is equally simplified, for this case is indicated as the Root Medium 

Square (RMS): 

 𝑅𝑀𝑆 = √
∑(𝑣𝑖)

2

𝑁
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Increased electrical activity of muscle is expressed by a higher standard deviation (R.M.S.); but the Average 

doesn't change, it remains at zero value. 
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Figure 12 Increased electrical activity of muscle is expressed by a higher standard deviation, average didn't change.  

A & C Images showed are the same EMG signal, but with different amplification. 

A) EMG signal amplified 330 times, B) Histogram of EMG signal A. 

C) EMG signal amplified 1000 times, D) Histogram of EMG signal C. 

To refine statistical description of the random signal is necessary to fit the calculated histogram, 

computed from experimental data, with a mathematical model of frequency distribution. Gauss model, normal 

distribution, consists on a wrapped histogram bell shaped, with the symmetry axis over Average value and 

inflexion points separated by a distance equal to Standard Deviation (R.M.S. value). 

 

Figure 13 Normal Distribution or Gauss Model. Symmetry axis over Average value and inflexion points separated by a 

distance equal to RMS value. 

The Normal model is defined by the following equation that predicts Relative Density Frequency 

(𝐷𝐹(𝑉)) with which signal samples of a given value (V) must occur: 

 𝐷𝐹(𝑉) =
1

𝑆√2𝜋
exp [

1

2
(
𝑉̅

𝑆
)

2

] 
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In the last equation, Standard Deviation (S) is the only parameter, so that, having calculated this on a long EMG 

segment, fitting Normal model to experimental frequency distribution is too easy. This is a mathematical 

description for the behavior of a huge number of instantaneous values from EMG signal, it is not the value of 

a certain moment, and it is unpredictable because it is random. 
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1.3.4 EMG description on time dimension 
There are two ways to characterize the statistical sequence regularity from voltage samples with the same 

value and sign: autocorrelation and spectrum. 

1.3.4.1 Frequency Spectrum 
Its visualization is not direct by the calculation mode, but physiological meaning is clearest. Both EMG 

representations have a relationship between each other through the Fourier direct and reverse transform. 

The main mathematical concept of the spectral analysis is that all periodic signal could be constructed 

by the algebraic sum of sinusoidal functions series, each one with multiple frequencies (harmonic series), the 

first one is equal to the lower value present in the signal. Then, we assume that an EMG signal could be 

represented by harmonic series. This is considering that the complexity is of a higher level, so its spectrum too. 

In the next figure, we could see the spectrum of an EMG signal captured over the skin surface. 

 

Figure 14 EMG spectrum contains significate frequency components, from 10 Hz to 450 Hz 

The highest spectral peak occurs in the lower frequencies gamma, surrounding the 40 Hz to 120 Hz; 

these corresponding to moto-neurons discharge frequency that controls the muscle activation. 

1.3.5 Electrical noise and factors affecting EMG signal 
The amplitude range of EMG signal is 0 mV - 10 mV (±5 mV) prior to amplification. EMG signals 

acquire noise while travelling through different tissue. It is important to understand the characteristics of the 

electrical noise. Electrical noise, which will affect EMG signals, can be categorized into the following types 

(Reaz, et al., 2006) - Verbatim et literatim: 

1. “Inherent noise in electronics equipment: All electronics equipment generate noise. This noise cannot 

be eliminated; using high quality electronic components can only reduce it. 

2. Ambient noise: Electromagnetic radiation is the source of this kind of noise. The surfaces of our bodies 

are constantly inundated with electric-magnetic radiation and it is virtually impossible to avoid 

exposure to it on the surface of earth. The ambient noise may have amplitude that is one to three orders 

of magnitude greater than the EMG signal. 
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3. Motion artefact: Motion artefact cause irregularities in the data. There are two main sources for motion 

artefact: 1) electrode interface and 2) electrode cable. Motion artefact can be reduced by proper design 

of the electronic circuitry and set-up. 

4. Inherent instability of signal: The amplitude of EMG is random in nature. EMG signal is affected by 

the firing rate of the motor units, which, in most conditions, fire in the frequency region of 30 Hz to 60 

Hz. This kind of noise is considered as unwanted and the removal of the noise is important.” 

The factors that mainly affect the EMG signal can also be classified. This kind of classification is set 

so that EMG signal analysis algorithms can be optimized and equipment can be designed in a consistent 

manner. Factors affecting EMG signal falls into three basic categories (Reaz, et al., 2006) verbatim et literatim: 

1. “Causative Factors: This is the direct affect in signals.  

Causative factors can be divided into two classes: 

i. Extrinsic: This is due to electrode structure and placement. Factors like area of the detection 

surface, shape of electrode, distance between electrode detection surface, location of electrode 

with respect to the motor points in the muscle, location of the muscle electrode on the muscle 

surface with respect to the lateral edge of the muscle, orientation of the detection surfaces with 

respect to the muscle fibers mainly influence EMG signal. 

ii. Intrinsic: Physiological, anatomical, biochemical factors take place due to number of active 

motor units, fiber type composition, blood flow, fiber diameter, depth and location of active 

fibers and amount of tissue between surface of the muscle and the electrode. 

2. Intermediate Factors: Intermediate factors are physical and physiological phenomena influenced by 

one or more causative factors. Reasons behind this can be the band-pass filtering aspects of the 

electrode alone with its detection volume, superposition of action potentials in the detected EMG 

signal, conduction velocity of the action potential that propagate along the muscle fiber membrane. 

Even cross talk from nearby muscle can cause Intermediate Factors. 

3. Deterministic Factors: These are influenced by Intermediate Factor, the number of active motor units, 

motor firing rate, and mechanical interaction between the muscle fibers have direct bearing on the 

information in the EMG signal and the recorded force. Amplitude, duration, and shape of the motor 

unit action potential can also be responsible.” 

There are different ways to get the maximum quality of EMG signals, two of this are showed: 

1. Signal-to-noise ratio should contain the highest amount of information from EMG signal and the 

minimum amount of contamination. 

2. EMG distortion must be minimal without filtering.2 

To analyze EMG signal, only the positive values are analyzed. The absolute value of each data point is 

used during full-wave rectification, this one is the most recommended to perform. (Reaz, et al., 2006). 

1.4 SEMG SIGNAL DETECTION AND ACQUISITION 
To detect the signal, a surface sensor array is put in over the skin above the muscle of interest3. The 

electrode must be placed with sufficient pressure to provide good electrical contact as evidence by the best 

signal-to-noise ratio of the detected signals (De Luca, et al., 2006). An important issue in EMG signal 

classification is the optimal sensor selection (Rafiee, et al., 2010).  

1.4.1 sEMG Normalization 
The voltage potential of the sEMG signal detected by the electrodes strongly depends on several 

factors, varying between individuals and over time within an individual. 

                                                      
2 Notch Filters are not recommended (Reaz, et al., 2006) 
3 No skin preparation or conductive gel is needed. 
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Thus, the amplitude of the sEMG itself is not useful in group comparisons, or to follow events over a 

long period of time (Mathiassen, 1997). The fact that the recorded EMG amplitude is never absolute is mainly 

because the impedance varies between the active muscle fibers and electrodes. 

Therefore, when comparing amplitude variables measurements, normalization of some kind is required, 

i.e. the sEMG converted to a scale that is common to all measurements occasions.  

1.4.2 EMG Filtering 
Noise is the main issue into EMG signal, without it, characteristic quantification of the signal is more 

standard. There are many kinds of noises intrinsic to EMG signals caused by other muscles, interferences or 

artifacts. 

The main challenges in analyzing the EMG signals are the inherent noise in the electrode, movement 

artifact, electromagnetic noise, cross talk, internal noise related to physiological and biochemical actions, 

inherent instability of the signal and electrocardiographic (ECG) artifacts (Chowdhury, et al., 2013).  

1.4.3 EMG De-noising using Wavelets 
The time-frequency plane is one of the most fundamental concepts in signal analysis. The Wavelet 

transform can essentially be divided into discrete and continuous forms. It transforms the signal in both time- 

and frequency domains. The Discrete Wavelet transform method has been successful in analyzing non-

stationary signals, such as surface EMG (sEMG) signals. 

Hussain and Mamun in 2012, proved that the wavelet Db45 shows the best contrast when they analyzed 

the sEMG signal using both power spectrum and bi spectrum compared to the other four wavelets (Haar, Db2, 

sym4 and sym5) within the range 50 Hz to 70 Hz over rectus femoris muscle during high speed walking 

(Hussain & Mamun, 2012). 

Wavelet transform is traditionally used on de-noising process. Based on multi-resolution and multi-

scale features of wavelet transform, we can use different energy distribution and the signal spectrum to 

eliminate the illusive components which corresponding to the noise in specific wavelet scale. The wavelet 

transform is used to reconstruct EMG pattern. The whole process could eliminate the noise of the signal (Jing-

tian, et al., 2007).  

Wavelet transform is widely used as a traditional method to eliminate noise of ECG. But wavelet 

transform is based on Fourier transform theory. And Fourier transform is applied to the time-domain signal 

which is stationary or periodic. Therefore, using wavelet transform to do non-linear and non-stationary signal 

analysis is limited. Local parameter and basic local function are required to analyze non-stationary signal. 

Instantaneous frequency is the basic concept. The application of this algorithm needs the selection of five 

processing parameters (Phinyomark, et al., 2009):  

1. Type of wavelet function 

2. The scale 

3. The threshold selection rule 

4. The threshold rescaling method 

5. The thresholding functions 

Selecting the right wavelet function is the most crucial part of wavelet denoising, which in turn depends on 

a number of the factor, such as application and signal characteristics. 
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1.4.4 EMG De-noising using Hilbert-Huang Transform  
The HHT method learn many advantages of wavelet transform like multi-resolution and overcome the 

difficulties like what wavelet transform need choose basic function (Jing-tian, et al., 2007).  

Empirical Mode Decomposition has into its advantages that with a low level of SNR of the processed 

signal, method provided the best surface EMG de-noising performance compared to other methods  

By studying the sEMG signals analysis using EMD technique, this offers the most successful results 

for attenuation of specific noises of sEMG signals, especially in cases of power-line noises, white Gaussian 

noise, baseline wandering and artifacts. 

The noise filtering and the de-noising can be solved with HHT (Huang, et al., 1998), especially for the 

real-time analysis (Meeson, 2005). We will apply this method to the EMG de-noising in this thesis. 

Signal de-noising in one dimension can be divided into three steps. That is decomposition, threshold and 

signal reconstruction. Here, HHT is adapted to EMG de-noising. Three steps are similar with traditional 

method. The clincher of this process is the EMD. The time-space filtering is constructed by using multi-

revolution analysis and multi-scale filtering of EMD (Chung & Dong-ling, 2004). The advantage of the time-

scale filtering is that can retain inherent characteristics of the non-linear and non-stationary. We will use EMD 

method to break down EMG signal into different time scale; it shows different information of signal and noise. 

1.4.5 EMG signal decomposition 
EMG signals are the superposition of activities of multiple motor units. It is necessary to decompose 

the EMG signal to reveal the mechanisms pertaining to muscle and nerve control. Decomposition of EMG 

signals has been done by wavelet spectrum matching and principle component analysis of wavelet coefficients.  

According to Jianjung Fang (Fang, et al., 1997), more than one single motor unit (SMU) potential will 

be registered at same time overlapping with each other, especially during a strong muscle contraction.  In 1997, 

they develop a technique using wavelet transform to classify SMU potentials and to decompose EMG signals 

into their constituent SMU potentials. The distinction of this technique is that it measures waveform similarity 

of SMU potentials from wavelet domain, which is very advantageous. This technique was based on spectrum 

matching in wavelet domain. Spectrum matching technique is sometimes considered to be more effective than 

waveform matching techniques, especially when the interference is induced by low frequency baseline drift or 

by high frequency noise. The technique, developed for multi-unit EMG signal decomposition, consists of four 

separate procedures: signal de-noising procedure, spike detection procedure, spike classification procedure and 

spike separation procedure. 

According to Daniel Zennaro (Zennaro, et al., 2003) - verbatim et literatim "Only wavelet coefficients 

of lower frequency bands are more important in the differentiation of action potential (AP) characterization 

than higher bands". This concept is a subjective one which was designed empirically. 

On the other hand, Rie Yamada (Yamada, et al., 2003), showed that high frequency information, which 

were not considered, are also important for MUAP's classification. Their experiments were made proposing 

another method using principle components analysis (PAC) for wavelet coefficients. The decomposition 

algorithm consists of four processing stages: segmentation, wavelet transform, PCA, and clustering. The 

advantage of this method is that it does not require manual selection of coefficients, and takes all frequency 

information in account. 

According to De Luca (De Luca, et al., 2006) - verbatim et literatim, a technique named Precision 

Decomposition I (PDI) was designed to enable physiological experiments and it was described by De Luca. 

“The technique has been useful for decomposing indwelling EMG (iEMG) signals detected by needle sensors 

during isometric contractions and has been used in various physiological studies (Adam & De Luca, 2003) 

(Adam, et al., 1998) (Masuda & De Luca, 1991). This technique consists of identifying action potentials in the 

iEMG signal and assigning them to specific motor units by classifying the shapes and amplitudes of the action 
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potentials. The assignments of the action potentials are based on template matching and the probability of firing 

of the individual motor units being tracked.  Superposition of action potentials are resolved. 

The decomposition accuracy for the ith decomposable motor unit train is defined as 

 
𝐴(𝑖) =

𝑁𝐹𝐼𝑅(𝑖) − 𝑁𝐹𝑁(𝑖) − 𝑁𝐹𝑃(𝑖)

𝑁𝐹𝐼𝑅(𝑖)
 ×  100 
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where 𝑁𝐹𝐼𝑅(𝑖) is the number of the firings of the MU and 𝑁𝐹𝑁(𝑖) and 𝑁𝐹𝑃(𝑖) are respectively the number of 

false positives produced by the decomposition algorithm for that motor unit (MU). The term “true firings” 

refers to the firings that we obtained by an expert operator using a manual or automatic decomposed data. 

The overall decomposition accuracy for a signal with N decomposable MU trains is then obtained as 

 𝐴 =
1

𝑁
∑𝐴(𝑖)

𝑁

𝑖=1

 19 

The rationale behind this unweighted average is that the accurate decomposition of any MU train is of 

the same significance as that of any order MU train regardless of its duration, number of firings, and so forth.” 

1.4.5.1 Challenges of sEMG decomposition  
(De Luca, et al., 2006) Verbatim et literatim 

Any approach for decomposing EMG signals must be able to deal with four major complexities that occur 

within the signal. These complexities are shown in Figure 15:  

1) Superposition of action potentials from different MU’s, 

2) Large dynamic range of the amplitudes among the action potentials of different MUs of interest, 

3) Shape changes across the different action potentials of each MU (arising from slight movement 

between the sensor and muscle fibers and/or intracellular process), and 

4) Similarity of shape at various times among the action potentials of different MUs. These phenomena 

may also act in concert with each other to make the decomposition task more difficult. 

 

 

Figure 15. Stylized examples of the various challenges presented by the realistic behavior of EMG signals detected with 

indwelling sensors with small detection volume and susceptible to movement (De Luca, et al., 2006). 
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CHAPTER 2 

 

MATHEMATICAL FRAMEWORK 

 

2.1 SIGNALS 
The term signal refers to a physical quantity that carries certain type of information and serves as a means 

for communication. 

2.1.1 Classification of signals 
In general, any signal can be broadly classified as being either deterministic or nondeterministic. 

Deterministic signals are those that can be defined explicitly by mathematical functions. Nondeterministic 

signals are random in nature and are described in statistical terms. A signal that can be generated repeatedly 

with identical results is deterministic, otherwise it is nondeterministic. 

2.1.1.1 Deterministic Signal 
There are two types of deterministic signals: periodic and transient. Periodic signal is defined as a 

function that repeats itself exactly after a certain period, or cycle. Transient signal is defined as a function that 

lasts a short period of time. 

2.1.1.2 Nondeterministic Signal 
Nondeterministic signals, also called random signals, do not follow explicit mathematical expressions. 

They are divided in two categories: stationary and nonstationary. 

Stationary signal is considered when none of its statistical properties change with time. Generally, 

wide-sense stationary is used to characterize the signal. This requires that it satisfies the following conditions 

on its mean function: 

𝐸{𝑥(𝑡1)} = 𝑚𝑥(𝑡1) = 𝑚𝑥(𝑡1 + 𝜏)   𝜏 ∈ ℤ 

and the correlation function 

𝐸{𝑥(𝑡1), 𝑥(𝑡1 + 𝜏)} = ℛ𝑥𝑥(𝑡1, 𝑡1 + 𝜏) = ℛ𝑥𝑥(0, 𝜏)          𝜏 ∈ ℝ 

Symbol 𝜏 is the real number, ℛ𝑥𝑥 is the autocorrelation function of the signal 𝑥(𝑡). The mean function 

and autocorrelation function of a signal can be obtained by time-averaging over a short time interval 𝑇 as 

follows: 

𝐸{𝑥(𝑡1)} =
1

𝑇
∫ 𝑥(𝑡)𝑑𝑡
𝑡1+𝑇

𝑡1

 

and  

𝐸{𝑥(𝑡1), 𝑥(𝑡1 + 𝜏} =
1

𝑇
∫ 𝑥(𝑡)𝑥(𝑡 + 𝜏)𝑑𝑡
𝑡1+𝜏

𝑡1
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A signal whose statistical properties change with time is called a nonstationary signal.  Also, does not 

satisfy the conditions specified above. 

2.2 WAVELET AND HILBERT-HUANG TRANSFORMS 
All transforms of the signal 𝑓(𝑡) described in this section share a common computation principle: The 

signal is multiplied with a certain “analysis function” and integrated about the domain. In a symbolic notation, 

the description for performing a transform is: 

𝑓(𝑡)
𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚
→        ∫ 𝑓(𝑢)𝑔(𝑢)̅̅ ̅̅ ̅̅

+∞

−∞

𝑑𝑢 

The analysis function g(u) characterizes the chosen transform. In general, it may be a complex function, 

the overline denotes the complex conjugate entity. 𝑔(𝑢) in a certain way depends on the parameters, i.e. 

frequencies or detail sizes, to be measured. Thus, by the computation principle given above the transformed 

entity will depend on these parameters. In other words: the transformed entity again will be a function. These 

functions we shall denote with transformed signal. 

2.2.1 Wavelet Transform 
The wavelet transform has such a zooming property. In contrast to the Fourier transform, the wavelet 

transform does not look for circular frequencies but rather for detail sizes S at a certain time 𝜏 (Stark, 2005).  

High frequencies correspond to small details and vice versa, thus, when comparing wavelet with 

Fourier transforms there is an inverse proportion between frequencies and detail sizes, so then, there is a 

constant 𝛽 such that 

𝑆 =
𝛽

𝜔
 

We shall now briefly indicate, how the wavelet transform is computed. 

Consider a, real or complex, analysis function 𝜓, oscillating around the t-axis 

∫ 𝜓(𝑡)𝑑𝑡 = 0
+∞

−∞

 

and decreasing rapidly for 𝑡 → ±∞. Such a function is called a Wavelet. Whereas relating scale factors with 

frequencies, the constant 𝛽 depends on 𝜓. 

Wavelet transform is generally divided into either a discrete and or continuous form. The continuous 

wavelet transform (CWT) of a signal 𝑠(𝑡) and the daughter wavelets, which are the time translation and scale 

expansion/compression versions of a mother wavelet function 𝜓(𝑡). Equivalent to a scalar production, this 

calculation generates continuous wavelet coefficients CWC (a,b), which determine the similarity between the 

signal and the daughter wavelets located at position b (time shifting factor) and positive scale a: 

𝐶𝑊𝐶(𝑎, 𝑏) = ∫ 𝑠(𝑡) 
1

√𝑎
𝜓∗ (

𝑡 − 𝑏

𝑎
)𝑑𝑡

+∞

−∞

 

where * stands for complex conjugation and 𝜓 ∈ 𝐿2. 
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Figure 16. Representation of Wavelet transform (Gao & Yan, 2011) 

2.2.1.1 Meyer Wavelet 
The Meyer wavelet is orthogonal and symmetric. However, it does not have a finite support. The Meyer 

wavelet has explicit expression and is defined in the frequency domain as follows: 

Ψ𝑀𝑒𝑦𝑒𝑟(𝑓) =

{
 
 

 
 √2𝜋 𝑒𝑖𝜋𝑓 sin [

𝜋

2
𝑣(3|𝑓| − 1)]       

1

3
≤ |𝑓| ≤

2

3

√2𝜋 𝑒𝑖𝜋𝑓 cos [
𝜋

2
𝑣 (
3

2
|𝑓| − 1)]    

2

3
≤ |𝑓| ≤

4

3

0                                                          |𝑓| ∉ 〈
1

3
,
4

3
〉 

 

where 𝑣(∙) is an auxiliary function, expressed as: 

 

𝑣(𝛼) = 𝛼4(35 − 84𝛼 + 70𝛼2 − 20𝛼3),            𝛼 ∈ 〈0,1〉 

 

The Meyer wavelet with its magnitude spectrum is shown below in Figure 17. Typical applications of 

Meyer wavelet are signal denoising and MUAPs detection (Chowdhury, et al., 2013). 
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Figure 17. Wavelet Meyer (left) and its magnitude spectrum (right) 

2.2.1.2 Daubechies Wavelet 
The family of the Daubechies wavelets is orthogonal, however, asymmetric, which introduces a large 

phase distortion. This means that it cannot be used in applications where a signal’s phase information needs to 

be kept. It is also a compactly supported base wavelet with a given support width of 2N-1, in which N is the 

order of the base wavelet. In theory, N can be up to infinity.  

The Daubechies wavelets do not have explicit expression except for the one with N=1, which is the 

Haar wavelet. With an increase of the support width, i.e., an increase of the base wavelet order, the Daubechies 

wavelet becomes increasingly smoother, leading to better frequency localization. Therefore, the magnitude 

spectra for each of the Daubechies wavelets decay quickly, as shown in Figure 18, where the Daubechies 2 

base wavelet and Daubechies 4 base wavelet are used as examples. 

 

Figure 18. Daubechies wavelet (left) and its magnitude spectrum (right). a) Daubechies 2 base wavelet and b) Daubechies 4 

base wavelet. 

2.2.2 Hilbert-Huang Transform 
In 1996 Norden E. Huang proposed the Hilbert Huang Transform (HHT), HHT can be used for 

processing non-stationary and non-linear signals, such as noise filtering and de-noising (Huang, et al., 1998). 
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Is an empirically based data-analysis method. Its basis of expansion is adaptive, so that it can produce physically 

meaningful representations of the data from non-linear and non-stationary processes. 

Empirical mode decomposition (EMD) and Hilbert spectral analysis (HSA) represent a desperate 

attempt to break the suffocating hold on data analysis by the twin assumptions of linearity and stationary. The 

EMD-HSA is truly an adaptive time-frequency analysis. It does not require an a priori functional basis.  

This method is potentially viable for time-frequency-energy representations. It has been tasted and 

validated exhaustively, but not empirically (Huang, 2005). In all the cases studied, the HHT gave results sharper 

than other methods; HHT revealed true physical meanings in many of the data examined. 

Decomposition for non-stationary signal is necessary when the analysis is based on instantaneous 

frequency. Instantaneous frequency is defined as the time derivative of phase of the analytic signal and would 

be meaningful only to narrow-band signal4. The general process is the following:  

2.2.2.1 Empirical Mode Decomposition (The sifting process)  
The empirical mode decomposition (EMD) (Huang, et al., 1998) is a technique to decompose a given 

signal into a set of elemental signals called “intrinsic mode functions” (IMF´s). The EMD is the base of the so-

called “Hilbert-Huang Transform” that comprises the EMD and the Hilbert spectral analysis that performs a 

spectral analysis using the Hilbert transform (HT) followed by an instantaneous frequency computation. 

The algorithm is simple and gives good results in situations where other methods fail. However, it has 

some drawbacks, tied with some of the assumptions needed to implement the algorithm, leading to unexpected 

results (Rato, et al., 2008). 

The first step decomposes the signal to a set of intrinsic mode functions (IMF). The second step is to get 

the instantaneous frequency and spectrum. IMF is a single signal which should scarify the following conditions: 

1) The number of zero and extreme crossing must be equal or up to one in the whole data set. 

2) The mean value of two envelope curves which are defined by local maximum and minimum would be 

zero at the random time. The envelope is symmetry with time axis. 

The decomposition that any data consists of different simple intrinsic modes of oscillations. Each 

intrinsic mode, linear or nonlinear, represents a simple oscillation.  

 An IMF represents a simply oscillatory mode as a counterpart to the simple function, but it is more 

general: instead of constant amplitude and frequency, as in a simple harmonic component, the IMF can 

have a variable amplitude and frequency as functions of time. 

To decompose any function, we follow the next procedure: take the test data 𝑥(𝑡) as given in Figure 19; 

identify all the local extrema, then connect all the local maxima by cubic spline, do the same with the local 

minima. 

Cubic spline fitting is used to gain the up and down signal envelopes, this calculates the mean value in all 

envelops points as shown in Figure 20. The average value makes a new curve that is named 𝑚1 (Figure 

21). Then we must determine if ℎ1 satisfy the two conditions mentioned above. 

Ideally, ℎ1 should satisfy the definition of an IMF. The sifting process serves two purposes: 1) to 

eliminate riding waves, and 2) to make the wave profiles more symmetric (Huang, 2005). The first is achieved 

with the Hilbert transform to give instantaneous frequency, and the second purpose is achieved in case the 

neighboring wave amplitudes have too large a disparity. Toward these ends, the sifting process must be repeated 

as many times as is required to reduce the extract signal to an IMF.  

                                                      
4 Narrow-band signal: a signal who have a small bandwidth. 
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Figure 19. Test data x(t) (Huang, 2005) 

 

 𝑥(𝑡) − 𝑚1 = ℎ1 
1 

 

 

Figure 20. The data (blue), upper and lower envelops (green) defined by the local maxima and minima, respectively, and the 

mean value of the upper and lower envelopes given in red. (Huang, 2005) 
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Figure 21. The data (pink) and h1 (blue). (Huang, 2005) 

But, if ℎ1 does not satisfy the conditions, in the subsequent sifting processes, ℎ1 can be treated only as 

a proto-IMF. In the next step, ℎ1 is treated as the data, then we continue doing the sifting process.  

 ℎ1 −𝑚1 = ℎ2 2 
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Figure 22. (A, top) Repeated sifting steps with h1 and m2.  

(B, bottom) Repeated sifting steps with h2 and m3. (Huang, 2005) 

 

This process must be repeated 𝑘 times, until we find a ℎ𝑘 function that satisfy the IMF conditions. The 

general equation for this process is: 

 ℎ(𝑘−1) −𝑚𝑘 = ℎ𝑘 3 

Take ℎ𝑘 as 𝑐1, where 𝑐1 is the first IMF of the signal, i.e. as shown in Figure 23 

 𝑐1 = ℎ𝑘 4 
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Figure 23. The first IMF component c1 after 12 steps. (Huang, 2005) 

 

take 𝑐1 component out of the original data, the residue is: 

 𝑥(𝑡) − 𝑐1 = 𝑟1 5 

 

Figure 24. The original data (blue) and the residue r1 (red). (Huang, 2005) 

As the residue also includes the long-cycle information, we should take it as a “other” new signal and 

we must apply the filtering process as above. The residue of each sifting process is named 𝑟𝑖, 

 𝑟1 − 𝑐2 = 𝑟2 , … , 𝑟𝑛−1 − 𝑐𝑛 = 𝑟𝑛   
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When 𝑟𝑛 becomes a single function (or merely, we cannot extract single component as IMFs from it), 

the whole sifting process is over. Then 𝑥(𝑡) can be expressed as: 

 𝑥(𝑡) =∑𝑐𝑖

𝑛

𝑖=1

+ 𝑟𝑛 7 

The EMD is considered as a scale-filtering process, each IMF shows the characteristic of each scale, 

and in other words it shows the intrinsic mode characteristic of non-linear and non-stationary signal. 

The IMF eliminates the non-stationary components of the original data. Because each sifting process 

is based on the residue of the previous process, then the main function of the process is variable and the 

decomposition is adaptive. 

“Sifting” is the central signal separation process of the HHT algorithm. The traditional way of filtering, with 

appropriate real-time adjustments to parameters, could be substituted for Huang’s sifting process, but this 

suggestion is not supported yet (Meeson, 2005).  

2.2.2.2 Hilbert Transform 
The second part of the HHT process is the Hilbert transform.  Having obtained the intrinsic mode 

function components, one will have no difficulty in applying the Hilbert transform to each IMF component, 

and in computing the instantaneous frequency as follows (equations 12-16). 

For an arbitrary time series, 𝑥(𝑡) is given; 𝑦(𝑡) is equal to Hilbert transform of 𝑥(𝑡): 

 𝑦(𝑡) =
1

𝜋
𝑃
∫ 𝑥(𝑡′)

𝑡 − 𝑡′
𝑑𝑡′ 
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where P indicates the Cauchy principal value. This transform exists for all functions of class 𝐿𝑝 . 5  

Now with this definition, if we consider the signal 𝑧(𝑡)as an analytic signal, where 𝑥(𝑡)is the real part and 

𝑦(𝑡)is the imaginary component. 

 𝑧(𝑡) = 𝑥(𝑡) + 𝑖𝑦(𝑡) = 𝑎(𝑡)𝑒𝑗𝜃𝑡 9 

So, applying the operations to get the amplitude and phase of 𝑧(𝑡), we have: 

Amplitude 𝑎(𝑡) = √𝑥2(𝑡) + 𝑦2(𝑡) 

 

10 

 

Phase 𝜃(𝑡) = 𝑎𝑟𝑐𝑡𝑔 (
𝑦(𝑡)

𝑥(𝑡)
) 
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Whit this 𝜃(𝑡) function, we can obtain the instantaneous frequency, we just only apply the derivation 

to it: 

                                                      
5 In mathematics, the Lp spaces are function spaces defined using a natural generalization of the p-norm for finite-

dimensional vector spaces. They are sometimes called Lebesgue spaces. (Maddox, 1988). 
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Instantaneous 

frequency 
𝜔 =

𝑑𝜃

𝑑𝑡
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After performing the Hilbert transform on each IMF component, the original data can be expressed as 

the real part Re in the following form: 

 𝑥(𝑡) = Re ∑𝑎𝑗(𝑡)𝑒
𝑗∫ 𝜔𝑗𝑑𝑡

𝑛

𝑗=1
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Equation 17 shows that HHT (Hilbert-Huang Transform) is an extended form of Fourier Transform. 

 𝑥(𝑡) = Re ∑𝑎𝑗(𝑡)𝑒
𝑖𝜔𝑗(𝑡)𝑡

𝑛

𝑗=1
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 The contrast between 17 and 18 is clear: the IMF represents a generalized Fourier expansion. The 

variable amplitude and the instantaneous frequency have not only greatly improved the efficiency of the 

expansion, but also enabled the expansion to accommodate nonlinear and nonstationary data. 

Table 1. Comparison between Fourier, Wavelet and HHT analysis. 

 Fourier Wavelet HHT 

Basis a priori a priori a posteriori, Adaptive 

Frequency Convolution: global, 

Uncertainty 

Convolution: regional, 

Uncertainty 

Differentiation over local domain, 

Certainty 

Presentation Energy-frequency Energy-time-frequency Energy-time-frequency 

Nonlinearity No No Yes 

Nonstationarity No Yes Yes 

Feature Extraction No Discrete: Yes 

Continuous: Yes 

Yes 

Theoretical base Theory complete Theory complete Empirical 

 

2.3 THE GOERTZEL ALGORITHM 
The most common application of this process is to detect the presence of a single continuous wave 

sinusoidal tones produced by the buttons pushed on a telephone keypad. 

2.3.1 Summary 
Verbatim et literatim (Engelberg, 2008) 

We know that Fast Fourier Transform allows one to calculate the Direct Fourier Transform (DFT) of 

an N-term sequence in 𝑂(𝑁 ln(𝑁)) steps. As calculating a single element of the DFT requires 𝑂(𝑁) steps, it is 

clear that when one does not need too many elements of the DFT, one is the best off calculating individual 

elements, and not the entire sequence. The Goertzel algorithm calculate individual elements of the DFT. 

Consider the definition of the DFT 

𝑌𝑚 = 𝐷𝐹𝑇({𝑦𝑘})(𝑚) ≡ ∑ 𝑒−
2𝜋𝑗𝑚𝑘
𝑁 𝑦𝑘

𝑁−1

𝑘=0

 

The calculation of any given coefficient, 𝑌𝑚, takes 𝑂(𝑁) steps. Thus, if one only needs a few coefficients 

(fewer than 𝑂(ln (𝑁))  coefficients), the it is best to calculate the coefficients and not bother with more 
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coefficients of FFT algorithm, which calculates all the Fourier coefficients). The Goertzel algorithm is a simple 

way of calculating an individual Fourier coefficient. It turns calculating a Fourier coefficient into implementing 

a second-order filter and using that filter for a fixed number of steps. The Goertzel algorithm is somewhat more 

efficient than an exhaustive implementation of the DFT.   

2.3.2 First-order Filters 
Consider the solution of the equation 

𝑟𝑛 = 𝛼𝑟𝑛−1 + 𝑥𝑛 

This corresponds to calculating the response of the filter whose transfer function is 

𝑅(𝑧)

𝑋(𝑧)
=

𝑧

z − 𝛼
 

Making use of the variation of parameters idea, we guess that the solution of 𝑟𝑛 is of the form 

𝑟𝑛 = 𝛼
𝑛𝑧𝑛 

We find that we must produce a 𝑧𝑛 for which 

𝑟𝑛 = 𝛼
𝑛𝑧𝑛 

     = 𝛼𝑟𝑛−1 + 𝑥𝑛 
     = 𝛼(𝛼𝑛−1𝑧𝑛−1) + 𝑥𝑛 

     = 𝛼(𝛼𝑛−1(𝑧𝑛 + (𝑧𝑛−1 − 𝑧𝑛)) + 𝑥𝑛 

     = 𝛼𝑛𝑧𝑛 + 𝛼
𝑛(𝑧𝑛−1 − 𝑧𝑛) + 𝑥𝑛 

For equality to hold, we find that 

𝑧𝑛 = 𝑧𝑛−1 + 𝛼
−𝑛𝑥𝑛 

Assuming that 𝑟𝑛 = 𝑥𝑛 = 0 for 𝑛 < 0, implies that 

𝑧𝑛 =∑𝛼−𝑘𝑥𝑘

𝑛

𝑘=0

 

Finally, we find that 

𝑟𝑛 = 𝛼
𝑛𝑧𝑛 =∑𝛼𝑛−𝑘𝑥𝑘

𝑛

𝑘=0

 

2.3.3 Comparing FFT vs Goertzel algorithm 
If one performs a brute force calculation of 𝑌𝑚, one must multiply 𝑒−2𝜋𝑗𝑚𝑘/𝑁 by 𝑦𝑘 for 𝑁 values of 𝑘. 

As the complex exponential is essentially a pair of real numbers, this requires 2𝑁  real multiplications. 

Additionally, the sum requires that 2(𝑁 − 1) real sums be calculated. When using the Goertzel algorithm, the 

recurrence relation requires two real additions and one real multiplication at each step. The FIR filter that is 

used in the final stage requires two real multiplications and one addition. In sum, the Goertzel algorithm 

requires 𝑁 + 2 real multiplications and 2𝑁 + 1 real additions. We find that the Goertzel algorithm is somewhat 

more efficient than the exhaustive calculation. 

2.4 KALMAN FILTER 
Kalman filter is an optimal state estimation process applied to a dynamic system that involves random 

perturbations. Kalman filter gives a linear, unbiased, and minimum error variance recursive algorithm to 
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optimally estimate the unknown state of a dynamic system from noisy data taken at discrete real-time. It is used 

in a wide range of engineering and econometric applications and is an important topic in control theory and 

control systems engineering. 

The Kalman filters are based on linear dynamical systems discretized in the time domain. They are 

modelled on a Markov chain built on linear operators perturbed by errors that may include Gaussian noise. The 

state of the system is represented as a vector of real numbers. At each discrete time increment, a linear operator 

is applied to the state to generate the new state, with some noise mixed in, and optionally some information 

from the controls on the system are known. Then, another linear operator mixed with more noise generates the 

observed outputs from the hidden state. The Kalman filter may be regarded as analogous to the hidden Markov 

model, with the difference that the hidden state variables take values in a continuous space (as proposed to a 

discrete state space as in the hidden Markov model).  

In order to use the Kalman filter to estimate the internal state of a process given only by a sequence of 

noise observations, the process should model in accordance with the framework of the Kalman filter. The 

following matrices must be specified: 𝐴𝑘 , the state-transition model; 𝐶𝑘 , the observation model; 𝑄𝑘 , the 

covariance of the process noise; 𝑅𝑘, the covariance of the observation noise; and 𝐵𝑘, the control input model, 

for each step 𝑘. 

2.4.1 The Model 
Verbatim et literatim (Chi & Chen, 2009) 

Consider a linear system with state-space description 

{
𝑥𝑘+1 = 𝐴𝑘𝑥𝑘 + 𝐵𝑘𝑢𝑘 + Γ𝑘𝜉𝑘

𝑤𝑘 = 𝐶𝑘𝑥𝑘 +𝐷𝑘𝑢𝑘 + 𝜂𝑘
 

Where 𝐴𝑘 , 𝐵𝑘 , Γ𝑘 , 𝐶𝑘 , 𝐷𝑘  are 𝑛 ×  𝑛 , 𝑛 ×  𝑚 , 𝑛 ×  𝑝 , 𝑞 ×  𝑛 , 𝑞 × 𝑚  (known) constant matrices, 

respectively, with 1 ≤ 𝑚, 𝑝, 𝑞 ≤ 𝑛 , {𝑢𝑘}  a known sequence of 𝑚 -vectors, called a deterministic input 

sequence, and { 𝜉𝑘} and { 𝜂𝑘} are, respectively, (unknown) system and observation noise sequences, with 

known statistical information such as mean, variance, and covariance. Since both the deterministic input { 𝑢𝑘} 
and noise sequences { 𝜉𝑘} and { 𝜂𝑘} are present, the system is usually called a linear deterministic/stochastic 

system. This system can be decomposed into the sum of a linear deterministic system: 

𝑧𝑘+1 = 𝐴𝑘𝑧𝑘 + 𝐵𝑘𝑢𝑘
𝑠𝑘 = 𝐶𝑘𝑧𝑘 + 𝐷𝑘𝑢𝑘

 

and a linear stochastic system: 

𝑥𝑘+1 = 𝐴𝑘𝑥𝑘 + Γ𝑘𝜉𝑘

𝑣𝑘 = 𝐶𝑘𝑥𝑘 + 𝜂𝑘
 

With 𝑤𝑘 = 𝑠𝑘 + 𝑣𝑘 and 𝑦𝑘 = 𝑧𝑘 + 𝑥𝑘. The advantage of the decomposition is that the solution of 𝑧𝑘 

in the linear deterministic system is well known and is given by the so-called transition equation 

𝑧𝑘 = (𝐴𝑘−1…𝐴0)𝑧0 +∑(𝐴𝑘−1…𝐴𝑖−1)𝐵𝑖−1𝑢𝑖−1

𝑘

𝑖=1

 

Hence, it is sufficient to derive the optimal estimate 𝑥𝑘 of 𝑥𝑘 in the stochastic state-space description, 

so that 

𝑥𝑘 = 𝑧𝑘 + 𝑥𝑘 
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becomes the optimal estimate of the state vector 𝑦𝑘 in the original linear system. Of course, the estimate has to 

depend on the statistical information of the noise sequences. In this work, we will only consider zero-mean 

Gaussian white noise processes. 

 

Figure 25. Kalman filter predict, measure, correct cycle iteratively and estimates the state at each time step. 
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CHAPTER 3 

 

 METHODOLOGY 

This chapter is divided in tree main sections: Acquisition, Stationary Analysis and Nonstationary Analysis. 

In section 3, Acquisition stage, are reported the methods and techniques to acquire sEMG signals, placing 

electrodes, signal recording, normalization and windowing the signals. In section 3.2, Stationary Analysis, 

describes the methods and processes used to analyze the recorded data using Wavelet and Hilbert-Huang 

Transforms, also features, characteristics and patterns found using these techniques are described. In section 

3.3, Nonstationary Analysis, propose the conditions, methods, techniques and processes to perform a quick 

filtering, under 100 ms, using Kalman and Gortzel Filters to identify the features, characteristics or patterns 

identified in Stationary Analysis. Acquisition system is basic in both stationary and nonstationary analysis, but 

equal. Figure 26 and Figure 27 show two similar processes resulted of this work.  

 

Figure 26. Block diagram of the Stationary Analysis. For Stationary Analysis is necessary the acquisition stage that comprises 

the electrode placing, 4-channels array acquisition system, recording data base, normalization and windowing of 

the signals. After acquisition, the analysis stage is based on Wavelet and Hilbert-Huang transforms used to identify 

the features, characteristics and patterns into the myoelectric signals. Result of these processes are databases and 

mathematical models that describes myoelectric signals in time and frequency. 

 

 

Figure 27. Block diagram of the Nonstationary Analysis. For Nonstationary Analysis is necessary the acquisition stage, that 

comprises the electrode placing, 4-channels array acquisition system, sampling, normalization and windowing to 

buffer the signals in a small-time slot. After acquisition, the filtering stage is a Kalman and Goertzel filters 

algorithms matching the input signals to predict, correct and identify the feature, characteristic or pattern of the 

de the myoelectric signals, these filters use the databases and mathematical models obtained in the Stationary 

Analysis. 
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3.1 ACQUISITION 
In this section, the signals are acquired by placing Ag/AgCl surface electrodes over five forearm link-

finger muscles of the subjects. Using a 4-channel electrode array configuration, these signals were sampled and 

recorded. Then, signals were normalized and windowed previous to the analyzing steps. Database for six 

movements of the fingers were obtained. 

 

Figure 28. Block Diagram of Acquisition Stage. Acquisition of the signals consists in placing the electrodes over five forearm 

muscles of each subject using the 4-channels electrode array, signals from the muscles were sampled and recorded, 

and finally recorded signals were normalized and windowed previous to analyzing. 

Using the BIOPAC MP35 acquisition system with 4-Channels were recorded the superficial myoelectric 

signals from five volunteers aged between 21 years-old and 30 years-old, without physiological or neurological 

problems. 

The signals for the data base were recorded by BLS PRO 3.7 software under the following conditions: 2 

kHz sampling frequency and a gain of 1000. The system is restricted to maximum 4 analog channels. BIOPAC 

system has a default IIR Chebyshev 2 bandwidth 6th order filter, it was set to 10 Hz to 500 Hz. Each channel 

has differential-mode configuration based on instrumentation amplifier with an external reference. 

Obtained signals were relative to six movements of the fingers only. Considering that if finger 1, can 

reach the tip of the other four fingers, then is possible to perform 27 combinations between them (Altamirano-

Altamirano, et al., 2013). Simplifying all finger movements in just 6: 1) Index Flexion (finger II), 2) Middle 

finger flexion (finger III), 3) Ring and Little fingers flexion (fingers IV-V), 4) Thumb finger flexion (Finger I), 

5) All fingers flexion (Closing) and 6) All fingers extension (Opening). 

 

Figure 29. Finger movements. 1) Finger II flexion, 2) Finger III flexion, 3) Fingers IV-V flexion, 4) Finger I flexion, 5) All 

fingers flexion, and 6) All fingers extension. 

After reviewing the anatomical muscle distribution (Tortora & Derrikson, 2014), were determine the 

associated superficial muscles to the six movements. The muscles were 1) Pollicies brevis & Pollicies Longus, 

2) Flexor digitorium superficialis, 3) Extensor digitorium and 4) Flexor Carpi Ulnaris. Having determined 

these muscles were linked to one channel, respectively. 
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A special name codification was used to save each record. To automate the processing in the 

programmed algorithms, wavelet and Hilbert-Huang algorithms, a sequence of letters and numbers was applied 

with the following order: 𝐶𝐵𝐴4_𝑋𝑌𝑍 

Table 2. CBA4_XYZ code meaning for records names. 

C CINVESTAV   

B BIOELECTRONICS X Subject number: 1 to 6 

A Researcher: ALTAMIRANO Y Movement number: 1 to 6 

4 Number of channels Z Record number: 0 to 9 

 

3.1.1 Electrodes array 
Figure 30 shows the electrode array as a focal-vertex point distribution per channel, related to the parts 

of an ellipse. Two differential electrodes are in the focal points, one per point, and the reference electrode could 

be placed in one of the minor axis vertex (up or down). Reference electrode position depends of other channel 

position, this is to use the lowest references positions against highest number of channels, without disrupting 

the focal-vertex basis. 

 

 

Figure 30. Electrode configuration diagram with Vertex-focal distribution. Differential electrodes (V+ & V-) and Reference 

electrode placed between the muscles to reduce to 1-reference. Other reference electrode position could be in the 

other extrema between the differential electrodes. These are distributed over larger surface of the muscle. 

This array configuration allows to place each differential electrode throughout of each selected muscle, 

striving to place them on the larger surface of the muscle (Masuda & De Luca, 1991), placing 4 electrodes over 

5 forearm muscles, respectively, as shown in Figure 31. Pediatric Ag/AgCl electrodes were used.  
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Figure 31. Channel electrode array with focal-vertex basis configuration. 

3.1.2 Recording protocol 
The protocol for record the signals consisted to perform six mentioned movements, starting in relaxed 

position, this was, resting forearm into a table without any contraction, then  

1. From a doss position of the hand, the person was seated and placing the right forearm over a table with 

the palm of the hand up.  

2. Each record has a duration of eight seconds from the start to the end of the test. By movement. 

3. In second four, the subject performs a movement of flexion and extension, without hold the contraction, 

to return immediately to doss position until the second eight, end the record. 

4. For next movement, a new record starts, repeat step 3 nine times to obtain ten records per movement. 

5. Repeat steps 3 and 4 all movements. 

From this protocol were obtained 60 records per user (6 mov * 10 rec = 60 rec/u); from five users were got 

300 records. Each record is made up of signals from four channels with 4 x 16,000 elements each. These 

elements were used to perform wavelet analysis. To perform Hilbert-Huang analysis, these records were cut in 

one second length segment between 3.5 s and 4.5 s, so then 4 x 2,000 elements matrix is obtained. This segment 

corresponds to the voluntary muscular contraction and relaxation of the subjects. 

The use of a data base with different size for Hilbert-Huang analysis than data base of for wavelets has 

foundation on two parameters: characteristics of the developed Hilbert-Huang code and the location of the 

information. Hilbert-Huang code was programmed for one second length segment, but also it can be adapted 

to other lengths. Relevant data location is in muscular activation not in the doss zones.  

3.1.3 Normalization 
Normalization is fundamental in every signal processing method. For this work two normalization 

processes were used. 

The first normalization is done by obtaining the factor α, that is reciprocal to the maximum absolute 

value of the myoelectric signal in each channel, in a 1000 ms sample. 

𝑉𝑚𝑎𝑥𝑖 = 𝑚𝑎𝑥[𝑉𝑖(𝑡)];   𝑖 = 1,… ,4 
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𝛼𝑖 =
1

𝑉𝑚𝑎𝑥𝑖
;    𝑖 = 1,… ,4 

where i is channel number. 

Subsequently, each channel is amplified by its corresponding 𝛼𝑖  factor, obtaining an amplitude 

normalization with an absolute maximum value of 1 V in all channels. With this process, the inherent noise 

into the channels is also amplified, intentionally, to identify its characteristics. 

The second normalization is different, first the segment of the signal is windowed with a square window 

of 150 ms and within it were identify the absolute maximum element of each signal, simultaneously, for the 

four channels, 

𝑉𝑚𝑎𝑥 = 𝑚𝑎𝑥 ||

[
 
 
 
𝑉𝐶ℎ1(𝑡)

𝑉𝐶ℎ2(𝑡)

𝑉𝐶ℎ3(𝑡)

𝑉𝐶ℎ4(𝑡)]
 
 
 

||    ∀   (𝑡, 𝑡 + 150 𝑚𝑠) 

followed by the 𝛽 factor, that is 

𝛽 =
1 𝑉

𝑉𝑚á𝑥
 

Each channel was amplified 𝛽 times, keeping original signal ratio with a maximum absolute value of 

1 V. 
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Figure 32. Normalization processes. A) and C) are original signals of four channels system. B) are the amplified signals by the 

𝜶𝒊 factors. D) shows the four channels in a 150 ms square window, as shown in figure C, amplified 𝜷 times. 
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Figure 33. Record normalized -1V to 1V, filtered between 20 Hz -500 Hz and windowed between 3.5s to 4.5s concerning to its 

8s record number 3 of the user 1 for closing hand (CBA4_153) 
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3.2 STATIONARY ANALYSIS 
Stationary analysis consists in the methods and processes proposed to analyze the recorded data using 

Wavelet and Hilbert-Huang Transforms. Features, characteristics and patterns were found using these 

techniques. Scalograms and Statistical features are reported. Time and frequency patterns are described as 

mathematical models. A intrinsic characteristic of the muscular activity related with the intensity of the sEMG 

signal is also showed. Results are useful to propose a real-time filtering processes (section 6.3). 

 

Figure 34. Block Diagram of the Stationary Analysis Stage. Stationary Analysis consist in the methods and processes used to 

analyze the recorded data using Wavelet and Hilbert-Huang Transforms. Features, characteristics and patterns 

were found, using these techniques are described, resulting in databases and mathematical models in time and 

frequency. 

3.2.1 Wavelet Analysis 
Both the time and frequency domain approaches have been attempted with diverse methods. The Wavelet 

Transform (WT) is an efficient math tool for nonstationary signals.  

If the wavelet analysis is chosen to match the shape of the MUAP, the resulting wavelet transform yields 

a very good possible energy localization in the time-scale plane (Guglielminotti & Meletti, 1992). There are 

several factors that should be considered when choosing the wavelet function (Phinyomark, et al., 2009).  

Time-frequency analysis of the acquired myoelectric signals was do it with the Continuous Wavelet 

Transform. For this analysis, two wavelet basis were used: Daubechies 44 (db44, Figure 35) and Meyer (Figure 

36), both reported for sEMG analysis (Rafiee, et al., 2011) (Reaz, et al., 2006) (Chowdhury, et al., 2013). 

Daubechies and Meyer wavelets are orthogonal, but Daubechies 44 is not symmetric. 
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Figure 35. Wavelet Daubechies. High order wavelets. Db44 (highlighted) was used in this work. (Rafiee, et al., 2011) 

 

 

Figure 36. Wavelet Meyer 
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Daubechies wavelets are a set of orthogonal and nonsymmetrical functions, however, Daubechies 44 

is almost symmetric. This characteristic allows it to be used in biomedical signal processing like in ECG, EMG, 

EEG and etcetera (Rafiee, et al., 2011). 

The Continuous Wavelet Transform was applied using the “cwt” function in Matlab with a logarithmic 

scale vector to create the spectrograms. Figure 37 shows the logarithmic scale associated to frequency 

distribution. 

 

Figure 37. Wavelet logarithmic scale vs frequency for spectrogram description 

CWT function computes the continuous wavelet transform coefficients of the real-valued signal 𝑥 at 

real, positive scales, using ‘vname’. The analyzing wavelet can be real or complex. Resulting of this function 

is a coefficients wavelet matrix 𝑙𝑎  ×  𝑙𝑥, where 𝑙𝑎 is the length of the scales and 𝑙𝑥 is the length of the input 𝑥. 

After obtaining the CWT coefficients, scalograms where plotted as shown in Figure 38. There were obtained 

1200 scalograms, 300 by channel. The best match for each mother wavelet basis were identified in the 

scalogram, related directly with the original signal, highlighted in red color. Algorithm for this process is in 

Appendix 11.2.  
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Figure 38. sEMG signal from channel 3 in 1 second timeslot (upper) with the logarithmic scalogram for meyer wavelet 

coefficients (lower). 

Using these locations for each signal and for all channels, some frequencies were identified. Frequency 

vectors were obtained to be analyzed by statistics methods, histograms and variance analysis (ANOVA). 

3.2.1.1 Histograms 
For each channel, a groups of frequencies were obtained and theirs histograms were plotted as shown 

in  Figure 39.  

As a complement to these histograms, a box plot for each were obtained. The means were calculated.
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Figure 39. Histogram of frequencies channel 4, obtained from the scalogram 
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Figure 40. Box plot of the frequencies for channel versus movement 
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3.2.2 Statistics: ANOVA, Levene & post hoc tests. 
The groups of frequencies were analyzed via variance of the means using ANOVA statistics. If 

significant difference exists between the frequencies, then data obtained could be useful to classify movements 

only with the means.  

Homogenity trial was applied to data. Levene’s test is an inferential statistic used to assess the equality 

of variances for a variable calculated for two or more groups. Some statistical procedures assume that variances 

of the populations from which different samples are drawn are equal, Levene’s test assesses this assumption. 

If the resulting a-value of Levene’s test is less than 0.05, the obtained differences in sample variances are 

unlikely to have occurred based on random sampling from a population with equal variances. Thus, the null 

hypothesis of equal variances is rejected and it is concluded that there is a difference between the variances in 

the population. If data were homogeneous then a Ratio F is used, otherwise Brown-Forsythe test were used 

(Levene, 1960).  

A final test, post-hoc, for data was performed to distinguish if there are statistical enough information 

between movements, likewise in which are not. Post-hoc analyses are usually concerned with finding patterns 

and/or relationships between subgroups of sampled populations that would otherwise remain undetected and 

undiscovered. A significant ANOVA test only reveals that not all the means compared in the test are equal. 

Bonferroni and Games Howell tests were used. Bonferroni test is used when performs many independent or 

dependent statistical tests at the same time. If data did not meet the homogeneity of variances assumption then 

Games Howell post hoc test were applied (Hochberg, 1988) (Ruxton & Beauchamp, 2008). All statistical 

analysis was calculated with IBM SPSS software6. 

 

 

  

                                                      
6 https://www.ibm.com/analytics/us/en/technology/spss/ Last access: May 29th, 2015. 
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3.2.3 Hilbert-Huang Analysis 
Time-frequency analysis is the process of determining what frequencies are present in a signal, their 

intensity and their time changing. Understanding this behavior of the frequencies respecting with time can 

explain much about the physical processes that generate or influence the sEMG signal.  

The Hilbert-Huang Transform offers higher frequency resolution and more accurate timing of transient 

and non-stationary signal events than conventional integral transform techniques. This separates the complex 

signals into simpler component signals, each of which has a single, well-defined, time-varying frequency. Real-

time HHT algorithms enable this enhanced signal analysis capability to be used in process monitoring and 

control applications (Huang & Shen, 2005). 

Raw EMG offers us valuable information into a very “noisy” form. This information is useful if is 

quantified. To achieve this, we applied on a raw sEMG the Hilbert-Huang method. 

The sEMG recognition system can be summarized as shown below, it is composed by five stages: 

1. Collected signals will be segmented and normalized in time with 150 ms width window.  

2. Decompose the segment into IMFs using Empirical Mode Decomposition (EMD) for each channel. 

3. Apply Hilbert Spectral Analysis followed by an instantaneous frequency computation for each IMF. 

4. Discrimination features will be calculated to build feature space. 

5. A classifier used to recognize the movement. 

The success of a pattern recognition system depends almost entirely on the choice of features representing 

data sequence (Huang & Chen, 1999). Although normal resting muscles show almost no change in their sEMG 

signals, when a sEMG from a contracting muscle is acquired it shows significant changes in their potentials.  

3.2.3.1 Empirical Mode Decomposition 
Empirical Mode Decomposition is a technique to decompose a given signal into a set of elemental 

signals called “intrinsic mode functions” (IMFs). The EMD is the base of the so-called “Hilbert Huang 

Transform (HHT)”. The algorithm is simple and gives good results in situations where other methods fail 

(Wavelets, Fourier and etcetera) (Huang, et al., 1998) . The EMD as proposed by Norden Huang is a signal 

decomposition algorithm on a successive removal of elemental signals: the IMFs.  

3.2.3.1.1 Algorithm to calculate IMFs, proposed by Huang. 
Given any signal, 𝑥(𝑡), the IMFs are found by an iterative procedure called sifting algorithm (Figure 

41), which is described on the following steps:  

a) Find the local maxima, 𝑀𝑖, 𝑖 = 1,2, …, and minima, 𝑚𝑘, 𝑘 = 1,2, …, in 𝑥(𝑡). 
b) Compute the corresponding interpolating signals ; (𝑡) = 𝑓𝑀(𝑀𝑖, 𝑡) , and 𝑚(𝑡) = 𝑓𝑚(𝑚𝑘, 𝑡) . These 

signals are the upper and lower envelopes of the signal. 

c) Let 𝑒(𝑡) =
(𝑀(𝑡)+𝑚(𝑡))

2
. 

d) Subtract 𝑒(𝑡) from the signal: 𝑥(𝑡) = 𝑥(𝑡) − 𝑒(𝑡). 
e) Return to step (a) – stop when 𝑥(𝑡) remains nearly unchanged. 

f) Once we obtain an IMF, 𝜑(𝑡), remove it from the signal 𝑥(𝑡) = 𝑥(𝑡) − 𝜑(𝑡) and return to (a) if 𝑥(𝑡) 
has more than one extremum (neither a constant nor a trend). 
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Figure 41. Flow chart for the sifting algorithm, basis of EMD method. 

When de IMF component is a monotonic function, the process is finalized and the original signal is 

reconstructed by adding all the IMF components along with the mean of final residue, 𝑚𝑓𝑖𝑛𝑎𝑙 . The 

reconstructed signal can be represented as: 

𝑆(𝑡) = ∑ 𝐼𝑀𝐹𝑛

𝑛

𝑘=1

+𝑚𝑓𝑖𝑛𝑎𝑙 

where n is the number of IMFs.  

The Matlab algorithm for EMD Decomposition is in Appendix 9.1. 

To show this step, for each channel were calculated their IMFs with the EMD algorithm to extract the 

symmetric components of the signal. 

For channel 1, the figure shown below contains the IMFs corresponding to it: 9 IMFs. 
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Figure 42. Intrinsic Mode Functions (IMFs) extracted from channel 1 for transitory stage of supination movement. 

 

For channel 2, the figure shown below contains the IMFs corresponding to it: 8 IMFs. 

 

Figure 43. Intrinsic Mode Functions (IMFs) extracted from channel 2 for transitory stage of supination movement. 

For channel 3, the corresponding IMFs are shown in the figure below: 10 IMFs. 



 

 

52 

 

 

Figure 44. Intrinsic Mode Functions (IMFs) extracted from channel 3 for transitory stage of supination movement. 

 

Finally, for channel 4, the corresponding IMFs are shown in the figure below: 8 IMFs. 

 

Figure 45. Intrinsic Mode Functions (IMFs) extracted from channel 4 for transitory stage of supination movement. 

 

After decomposition, we analyze each IMF according to the original data. Baseline drift is reflected in higher-

standards scales, like in IMFs 6-10. High-frequency noise is in the lower scales, like in IMF 1 and IMF 2. 
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By construction, the number of extrema should decrease when going from one IMF to the next, and the 

whole decomposition is expected to be completed with a finite number of IMFs. Conceptually, the algorithm: 

is simple; appears naturally, does not assume anything about the signal, mainly stationary and can be applied 

to a wide class of signals. For each channel, we calculated their IMFs to extract the main components of the 

signal. Figures 23 – 25 shown the AM/FM components from channels 1-4, respectively; those IMFs satisfy the 

following conditions: 

• Resolution: 45dB between Signal and Bias energy 10 log
𝑊𝑠𝑖𝑔𝑛𝑎𝑙

𝐵𝑖𝑎𝑠 𝑒𝑛𝑒𝑟𝑔𝑦
 , normally they are in 40dB - 

60dB. 

• Residual energy: 45dB between Signal/Residual 10 log
𝑊𝑠𝑖𝑔𝑛𝑎𝑙

𝑊𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙
, normally they are in 40dB-60dB. 

• With these resolution, each channel has between 8 IMFs to 10 IMFs. 

• Reconstruction of the signal with the obtained IMFs is the same as the original one.  

• Every IMF could be filtrated or treated with hard thresholds to eliminate undesirable frequencies in 

lower and higher orders. 

 

Most important steps into the algorithm is (Rato, et al., 2008): extrema locations, extrema interpolation, 

end effects, sifting stopping criterion and IMF removal. 

Some suggestions for the development of the algorithm: remove the mean and normalize the signals to 

a unit power. This last procedure is important when dealing signals with very low amplitudes as in the case of 

biomedical signals. There is interdependence between the number of IMFs and resolution. The algorithm is 

simple, does not assume anything about the signal, can be applied to a wide class of signals. 

This step was applied to all the segmented and normalized signals.  

3.2.3.2 Hilbert Spectral Analysis 
Spectral estimation is the second step of the HHT. This consists in computing the instantaneous 

frequency for each IMF using the Hilbert Transform (HT) and the analytic signal concept.  

This is another drawback of the HHT, because the HT uses the whole signal (theoretically (from −∞ to 

+∞ ). As we have finite segment of a signal, the window effect, rectangular window in this case, will distort 

its spectrum and consequently its HT. As we will show later, this may give poor frequency estimation. On the 

other hand, using HT it is not necessary to compute the instantaneous amplitude because we already have it. 

3.2.3.2.1 Demodulating the IMF  
 

Let 𝜑(𝑡) be an IMF 𝑦(𝑡) the corresponding analytic signal.  

 𝜑(𝑡) = 𝑅𝑒{|𝑦(𝑡)|𝑒𝑗 arg(𝑦(𝑡))} = |𝑦(𝑡) cos𝜃(𝑡)| 

 

20 

 

where 𝜃(𝑡) = arg[𝑦(𝑡)]. So, we obtained the instantaneous amplitude and an oscillating function that is a 

constant AM/FM signal (not necessarily a sinusoid). If |𝑦(𝑡)| is known, we can perform an amplitude 

demodulation and obtain 

 

𝑠(𝑡) = cos[𝜃(𝑡)] 21 

such that 

 

|𝑠(𝑡)| ≤ 1 

 
22 
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𝑠(𝑡) can be considered as an FM signal. Its demodulation leads us to the instantaneous frequency. 

3.2.3.2.2 Demodulated signal is an AM signal 
 

At the end of the sifting procedure leading to the referred IMF, 𝜑(𝑡), we also have its envelopes, 𝑀(𝑡)and 

𝑚(𝑡). If these were true envelopes, they would be symmetric and its difference would be the estimate of the 

amplitude modulating signal 

 

𝜑(𝑡) = 𝐴(𝑡) ∙ 𝑠(𝑡) 22 

and 

𝐴(𝑡) = |𝑦(𝑡)| = 𝑀(𝑡) − 𝑚(𝑡) 
 

23 

As 𝑀(𝑡) and 𝑚(𝑡) are not truly symmetric, we must look for a more reliable estimate of 𝐴(𝑡). This can be 

achieved by the following procedure: 

a) Make 𝑔(𝑡) = |𝜑(𝑡)| 
b) Compute the maxima of 𝑔(𝑡) and extrapolate them as described in  

c) Interpolate those maxima to obtain an estimate of 𝐴(𝑡). 
 

Now, it is enough to divide 𝜑(𝑡) by 𝐴(𝑡) to obtain an FM signal, 𝑠𝐹𝑀(𝑡). 

3.2.3.3 Instantaneous Frequency Estimation 
Assume that the instantaneous frequency of 𝑠𝐹𝑀(𝑡) is a slowly time varying signal, so that we may 

consider it to be constant over small intervals. Moreover, sample it to get a discrete-time signal that we can 

express as: 

𝑠𝐹𝑀(𝑛) ≈ cos[2𝜋𝑓(𝑛0)𝑛] 

 
24 

this for 𝑛0 −𝑁 ≤ 𝑛 ≤ 𝑛0 +𝑁.  

Then, we assume that the frequency is constant in a window with length 2𝑁 + 1, where 𝑁 is a positive 

integer. In this situation, instantaneous frequency could be obtained from 

cos[2𝜋𝑓(𝑛0)] =
∑ 𝑠𝐹𝑀(𝑛)[𝑠𝐹𝑀(𝑛 − 1) + 𝑠𝐹𝑀(𝑛 + 1)]
𝐿−1
2

2∑ 𝑠𝐹𝑀
2 (𝑛)𝐿−1

2

 

 

25 

where 𝐿 is the number of available samples. For a pure sinusoid, this formula gives the correct value, provided 

we have at least three samples. So, for a FM signal we substitute 𝐿 = 2𝑁 + 1, as referred above.  

Each IMF appears as an AM/FM signal. In Huang et al. papers a Hilbert spectral estimation is used to 

estimate the instantaneous frequency. 

Estimating the instantaneous frequencies corresponding to, almost, six hand movements, we will create a 

data base in matrix form to save corresponding numbers associated to the patterns. This will be a numerical 

model that we can use to compare the input patterns versus the saved patterns. 

To show this step, we will use the IMF’s extracted from the last procedure (EMD) for channel 1 to 4, 

corresponding to transient segment during all-fingers closing movement. 
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3.3 NONSTATIONARY ANALYSIS 
In this section, Nonstationary analysis, is a proposal for the conditions, methods, techniques and 

processes to perform in short-time, or real-time under 100 ms of processing slot, using Kalman and Goertzel 

filters to identify the features, characteristics or patterns of the myoelectric signals. Kalman filter improves the 

denoising and reconstruction to predict the input signal, myoelectric signal. The output signal from Kalman 

Filter goes to the Goertzel filter, that detects specific signals using the Discrete Fourier Transform based on the 

modeled patterns. Results from these filters could be applied directly to the prosthetic system as a control signal 

or be applied to a classifier system, depending on the complexity of the acquisition system, channels or 

movements.  

 

 

Figure 46. Block Diagram of the Nonstationary Analysis Stage. Nonstationary Analysis, propose the conditions, methods, 

techniques and processes to perform in short-time, under 100 ms, using Kalman Filter and Goertzel filter to 

identify the features, characteristics or patterns of myoelectric signals. Resulting data could be applied to a 

classifier system. 

3.3.1 Dynamical Reconstruction using Hybrid Kalman filter 
To improve reconstruction accuracy, Kalman filter were proposed, which allows to fuse two 

information sources, i.e. the finger movement intensity mapping and the activity of the finger linked muscles, 

registered by the sEMG. Applying the Kalman filter, is able to convert four channels of myoelectric activity 

recorded from the forearm muscles into defined reconstructions of MUAP shapes. The filter operates in a causal 

manner and acts as a predictor using the sEMG signals from the past only, which makes the approach suitable 

for real-time operations. 

Kalman filter is an algorithm that fuses two or more noisy signals to produce an estimate of the dynamical 

system state vector, which is optimal in the minimum squared error sense.  

The algorithm works in two steps, prediction and correction. In the prediction step produces estimates of the 

current state variables, along with their uncertainties. Once the outcome of the next measurement, tipically with 
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random noise, is observed, these estimates are updated using a weighted average. The algorithm is recursive, 

it can run in real time using only the present input measurements and the previously calculated state and its 

uncertainty matrix, no additional information is required. 

Most physical systems are represented as continuous-time models while discrete-time measurements 

are frequently taken for state estimation via digital processor. Therefore, the system model and measurement 

model are given by 

𝑥̇(𝑡) = 𝐴(𝑡)𝑥(𝑡) + 𝐵(𝑡)𝑢(𝑡) + 𝑤(𝑡) 

 
𝑧𝑘 = 𝐶𝑘𝑥𝑘 + 𝑣𝑘 

where 𝑥𝑘 = 𝑥(𝑡𝑘) 

Initialize 

𝑥0|0 = 𝐸[𝑥(𝑡0)],    𝑃0|0 = 𝑉𝑎𝑟[𝑥(𝑡0)] 

3.3.1.1 Prediction equations 
The prediction equations are derived from those of continuous time Kalman filter without update from 

measurements, i.e. 𝐾(𝑡) = 0. The predicted state and covariance are calculated respectively by solving a set of 

differential equations with the initial value equal to the estimate at the previous step. 

𝑥̇̂(𝑡) = 𝐴(𝑡)𝑥̂(𝑡)+ 𝐵(𝑡)𝑢(𝑡),    

with    

𝑥̂(𝑡𝑘−1) = 𝑥̂𝑘−1|𝑘−1 

𝑥𝑘|𝑘−1 = 𝑥(𝑡𝑘) 

 

𝑃̇(𝑡) = 𝐴(𝑡)𝑃(𝑡) + 𝑃(𝑡)𝐹(𝑡)𝑇 + 𝑄(𝑡) 

with  

𝑃(𝑡𝑘−1) = 𝑃𝑘−1|𝑘−1 

𝑃𝑘|𝑘−1 = 𝑃(𝑡𝑘) 

3.3.1.2 Update equations 
The update equations are identical to those of the discrete-time Kalman filter. 

𝐻𝑘 = 𝑃𝑘|𝑘−1𝐻𝑘
𝑇(𝐻𝑘𝑃𝑘|𝑘−1𝐻𝑘

𝑇 + 𝑅𝑘)
−1

 

𝑥𝑘|𝑘 = 𝑥𝑘|𝑘−1 + 𝐾𝑘(𝑧𝑘 −𝐻𝑘𝑥̂𝑘|𝑘−1) 

𝑃𝑘|𝑘 = (𝐼 − 𝐾𝑘𝐻𝑘)𝑃𝑘|𝑘−1 

 

3.3.2 Single tone detection with Goertzel algorithm 
The Goertzel algorithm analyses one selectable frequency component from a discrete signal. Unlike 

direct DFT calculations, this algorithm applies a single real-valued coefficient at each iteration, using real-

valued arithmetic for real-valued input sequences. For covering a full spectrum, the Goertzel algorithm has a 

higher order of complexity than fast Fourier transform algorithms, but for a computing a small number of 
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selected frequency components, it is more efficient numerically. The simple structure of the Goertzel algorithm 

majes it well suitable for embedded systems.  

The main calculation in the Goertzel algorithm has the form of digital filter, and for this reason the 

algorithm is often called a Goertzel filter. The filter operates on an input sequence 𝑥[𝑛] in a cascade of two 

stages with a parameter 𝜔0, giving the frequency to be analysed, normalized to radians per sample. 

The first stage calculates and intermediate sequence, 𝑠[𝑛]: 

𝑠[𝑛] = 𝑥[𝑛] + 2 cos(𝜔0) 𝑠[𝑛 − 1] − 𝑠[𝑛 − 2] 

The second stage applies the following filter to 𝑠[𝑛], producing output sequence 𝑦[𝑛] 

𝑦[𝑛] = 𝑠[𝑛] − 𝑒−𝑗𝜔0𝑠[𝑛 − 1] 

 The first filter stage can be observed to be a second-order IIR filter with a direct-form structure. This 

structure has the property that its internal state variables equal the past output values from that stage. Input 

values 𝑥[𝑛] for 𝑛 < 0 are presumed all equal to 0. To establish the initial filter state so that evaluation can 

begin at sample 𝑥[0], the filter states are assigned initial values 𝑠[−2] = 𝑠[−1] = 0. To avoid aliasing hazards, 

frequency 𝜔0 is often restricted to the range 0 to 𝜋; using a value outside this range is not meaningless, but is 

equivalent to using an aliased frequency inside this range, since the exponential function is periodic with a 

period of 2𝜋 in 𝜔0. The Z transform for this stage is: 

𝑆(𝑧)

𝑋(𝑧)
=

1

1 − 2 cos(𝜔0) 𝑧
−1 + 𝑧−2

=
1

(1 − 𝑒𝑗𝜔0𝑧−1)(1 − 𝑒−𝑗𝜔0𝑧−1)
 

The second stage filter can be observed to be a FIR filter, since its calculations do not use any of its 

past outputs. Z transform methods can be applied to study the properties of the filter cascade. The z-transform 

for this stage is: 

𝑌(𝑧)

𝑆(𝑧)
= 1 − 𝑒−𝑗𝜔0𝑧−1  

The combined Z transform transfer function of the cascade of the two filter stages is then 

𝑆(𝑧)

𝑋(𝑧)

𝑌(𝑧)

𝑆(𝑧)
 =
𝑌(𝑧)

𝑋(𝑧)
=

(1 − 𝑒−𝑗𝜔0𝑧−1)

(1 − 𝑒𝑗𝜔0𝑧−1)(1 − 𝑒−𝑗𝜔0𝑧−1)
=

1

1 − 𝑒𝑗𝜔0𝑧−1
 

The algorithm in Matlab for Goertzel filter is in Appendix 9.3. 

  



 

 

58 

 

  



 

 

59 

 

 

CHAPTER 4  

 

RESULTS & DISCUSSION 

This thesis reports the processes, techniques, analysis methods and results to develop prosthetic systems 

based on the use of myoelectric signals and results for the development of prosthetic devices based on 

myoelectric signals patterns and features. 

4.1 MUSCULAR ACTIVITY BY MOVEMENT 
An intrinsic result was obtained from the muscular intensity mapping in the four channels array per user. 

The level of the intensity was recorded and compared against the six movements. Three intensity levels were 

set: High Intensity (𝐼𝑛ℎ), 0.7 V to 1 V; Mean Intensity (𝐼𝑛𝑚), 0.35 V to 0.65 V; and Null Intensity (𝐼𝑁𝑈𝐿𝐿), 0 

V to 0.3 V. Figure 47 shows the intensity map for user 1. There is a hint that this is a particular characteristic, 

but a pattern. 

 

Figure 47. Muscular contraction intensity of subject 1 for four channels versus six movements of the fingers. The map shows 

the intensity present in the four channels when a movement was performed: star represents 0.7 V to 1 V level, dot 

represents 0.35 V to 0.65 V level, and circle represents 0 V to 0.3 V. Each icon represents one of nine repetitions. 
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4.2 WAVELET TRANSFORM ANALYSIS 
For EMG signal processing, the wavelet transform is an alternative to other time frequency 

representations. Wavelet transform has the advantage of being linear and yielding for multiresolution analysis. 

While discrete wavelet transform provides flexible time-frequency resolution, it suffers from a relative low 

resolution in the high-frequency region. Its difficulty in differentiating transient components. 

A comparison in the scalograms obtained with Meyer wavelet versus the scalograms obtained with 

Daubechies 44 wavelet, shows that the Meyer wavelet had better definition in time and frequency than 

Daubechies 44. Daubechies shape form does not fit the MUAP shape as well than Meyer, resolution is better. 

 

Figure 48. Scalogram of CBA4_234 obtained with Daubechies 44 wavelet 

 

Figure 49. Scalogram of CBA4_234 obtained with Meyer Wavelet 
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The mean frequencies that resulted are shown in Table 3. 

Table 3. Mean x ̅ and median x  ̃frequencies from 4 channels relative to 6 movements obtained by wavelet Meyer base 

scalogram. 

M CH1 CH2 CH3 CH4 

𝑥̅  [𝐻𝑧] 𝑥̃ [𝐻𝑧] 𝑥̅  [𝐻𝑧] 𝑥̃ [𝐻𝑧] 𝑥̅  [𝐻𝑧] 𝑥̃ [𝐻𝑧] 𝑥̅  [𝐻𝑧] 𝑥̃ [𝐻𝑧] 
1 56.63 53 60.53 57 61.43 57 65.95 64.5 
2 53.03 49 39.56 42 53.83 53 44.79 445 
3 48.63 45 49.41 45 50.48 49 50.40 51 
4 67.60 67 64.33 62 64.60 64.5 73.75 79 
5 52.68 49 51.40 59.5 59.20 62 46.49 45 
6 63.70 59.5 60.23 59.5 68.08 67 69.40 67 
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Figure 50. Scalograms for signal from channel 2 (Flexor digitorium superficialis). Meyer base (upper) and Daubechies base 

(bottom)
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Figure 51. 4-Channel Histogram of mean frequencies obtained from Wavelet Analysis. 
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Figure 52. 4-Channel Boxplot for ANOVA results of mean frequencies obtained from Wavelet analysis. 
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4.3 HILBERT-HUANG ANALYSIS 
EMD aims to decompose a multi-component signal, i.e. myoelectric signals, into a number of mono-

components called IMFs. The EMD signal processing technique is suitable for filtering EMG signals. The 

major drawback of the EMD method is that is more sensitive to the presence of noise. 

 

Figure 53. sEMG signals and their IMFs of channel 3 related to the flexion and extension of all fingers. 6 decomposition levels 

are shown. IMF 2 shows two MUAPs in 50 ms and 100 ms approximately. 

 

Figure 54. Instantaneous frequency (upper) of the Intrinsic Mode Function 2 (lower) for signal of channel 3. Drastic frequency 

changes are present in the Instantaneous frequency related with the start and end of the contraction. 
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For EMD, using the first normalization, section 3.1.3, the number of IMF obtained were between 8 

IMFs and 19 IMFs per channel; Alike, for the second normalization were obtained between 5 IMFs and 11 

IMFs. 

After decomposition, The Hilbert Transform and the Instantaneous Frequency computation was applied 

to each IMF from each channel. The resulting data are shown from Figure 56 to Figure 63. Red lines, upper 

and lower envelopes, are the Instantaneous envelops; they are useful to compute the instantaneous frequencies 

for each IMF in a short interval. The values of these frequencies were from 105 Hz to 310 Hz, and their plots 

showed changes in specific regions of the signals, particularly in the beginning and ending of a voluntary 

contraction, form doss to active and vice versa. Instantaneous frequency was useful to locate the significative 

changes in the energy signal, i.e. voluntary contraction and relaxation. The obtained IMF could reconstruct 

almost 98% of the original signal. Adding the three first IMFs could reconstruct up to 92% of the original 

signal.  

Main frequencies of the IMFs are in order of 200 Hz +/- 20 Hz, detected into the first IMFs. Low 

frequencies detected in the last IMFs were 12 Hz, 8 Hz and 6 Hz.  High energy detected frequencies are groups 

of AM/FM signals with average frequencies of 83.3 Hz (73.57 Hz – 85.9 Hz), 96.7 Hz (94.35 Hz – 99.82 Hz), 

59 Hz (58.5 Hz – 61.3 Hz) and 113.3 Hz (111 Hz – 117.04 Hz). These frequencies were approximated using 

Fourier series, 1 term to 8 terms, with 𝑅2 of 0.98 and 0.99. 

 

Figure 55. Time patterns associated to MUAP. Period of 24.5 ms average of MUAP.   

In the 87% of the IMFs, three patterns were founded: Two MUAPs with the same period and, time slot 

between the these MUAPs and size ratio. First, two oscillations with frequencies of 83.3 Hz, 96.7 Hz or 113.3 

Hz into a period of 24.5 ms in average. Second pattern is a 30 ms average period in the middle of these two 

oscillations. Finally, the size ratio 2:1 between first MUAP and second MUAP. 

 

 

 

For IMFs extracted from Channel 1,  

30 

ms 

27 ms 24 ms 
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Figure 56. Hilbert transform (red lines envelops) of IMFs for Channel 1 during supination movement in transient segment. 

 

Figure 57. Instantaneous frequencies for Channel 1 during supination movement in transient segment. 
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Finally, analyzing the resulting instantaneous frequencies, it is possible to identify changes in the first 

four IMFs, those are related to the activation flexion movement.  

For IMFs extracted from Channel 2,  

 

Figure 58. Hilbert transform of IMFs for Channel 2 during supination movement in transient segment. 

 

 

Figure 59. Instantaneous frequencies for Channel 1 during supination movement in transient segment. 
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For IMFs extracted from Channel 3,  

 

Figure 60. Hilbert transform of IMFs for Channel 3 during supination movement in transient segment. 

 

 

Figure 61. Instantaneous frequencies for Channel 3 during supination movement in transient segment. 
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For IMFs extracted from Channel 4,  

 

Figure 62. Hilbert transform of IMFs for Channel 3 during supination movement in transient segment. 

 

 

Figure 63. Instantaneous frequencies for Channel 4 during supination movement in transient segment. 
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Figure 64. sEMG signal of Extensor Digitorum muscle (Channel 3) for All fingers extension (5th Movement). Upper figure 

shows 2 seconds of record with a 300 ms window between 450 ms -750 ms section. 3-Column section shows in the 

first column the IMFs, from 1st to 6th; second column shows the Instantaneous Frequencies (IFs) of the previous 

IMF; third column shows the spectrogram of the previous IF.  
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4.4 RECONSTRUCTION 
The Intrinsic Mode Functions represent something inside the original signal, a priori is impossible to 

determine in the major cases, but sometimes is easy to do it, especially if the IMFs shown some known shapes 

like those reported by Luca et al. 2006. To reconstruct most of the original sEMG signal is able with the 1st and 

2nd IMFs. To get the MUAP shape is possible with the 2nd and 3rd IMF, average. 

From Empirical Mode Decomposition, the IMFs resulted, i.e. CBA4_153_3, showed in Figure 65, were 

used to reconstruct the original signal. 

 

Figure 65. Original signal from the record CBA_153_3 windowed between 250 ms and 450 ms. 

 Each IMF was sum in combination with the others to reconstruct signals until to get the original signal 

and the MUAP shape. The equation for this is: 

𝑥(𝑡) =∑𝑐𝑖

𝑛

𝑖=1

+ 𝑟𝑛 =∑𝑐𝑖

6

𝑖=1

 

 

For signal CBA4_153_3, all the obtained functions, 6 IMFs, were used to reconstruct a signal, shown 

in Figure 66, as follows: 

𝑥(𝑡) =∑𝑐𝑖

6

𝑖=1
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Figure 66. Signal reconstruction using IMFs 1 to 6. 

Similarly, for IMFs from 1 to 5, was obtained: 

𝑥(𝑡) =∑𝑐𝑖

5

𝑖=1

 

 

Figure 67. Signal reconstruction using IMFs 1 to 5. 
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Using IMF 1 to IMF 4, the resulting signal is shown in Figure 68: 

𝑥(𝑡) =∑𝑐𝑖

4

𝑖=

 

 

Figure 68. Signal reconstruction using IMFs 1 to 4. 

For IMF 1 to IMF 3, result is shown in Figure 69: 

𝑥(𝑡) =∑𝑐𝑖

3

𝑖=1

 

 

Figure 69. Signal reconstruction using IMFs 1 to 3. 
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IMFs signal reconstruction shows that the decomposition is almost well done, using IMFs 1 to 6, 1 to 

5 and 1 to 4, and all the Intrinsic Mode Functions are part of the original signal.  

There is a decrement in the intensity of the reconstructed signals, in order of the decrement of the 

components of these.   

Using the IMF 2 and IMF 3, is possible to construct specific shapes, these forms are shown in Figure 

70 and in Figure 71, respectively.  

𝑥(𝑡) = 𝑐2 

 

Figure 70. IMF 2 from signal CBA4_153 channel 3 between 275ms to 425 ms. 

For signal with IMF 2 & 3, equation is: 

𝑥(𝑡) = 𝑐2 + 𝑐3 

 

Figure 71. Signal reconstruction using IMFs 2 and 3. 
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Figure 72. Original signal vs reconstruction in different levels, from up to down: 1. Original signal, reconstruction 2. using 

IMFs 1 to 6, 3. IMFs 1 to 5, 4. IMFs 1 to 4, 5. IMFs 1 to 3, 6. IMFs 1 and 3, 7. IMFs 2 and 3, and IMF 2. The 

sequence shows a decrement in intensity directly dependent of the number of IMFs. IMF 2 is the most defined 

shape into all signals, the IMF 3 represents only a small significance in addition with IMF 2. 
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4.5 CURVE FITTING  
Every time that a data is obtained, you can plot it into 2D or 3D graph, also you can compute many 

parameters of that result, but sometimes, these results are not useful by their selves, because the data that they 

represent is a curve that you ignore completely, it means that you don’t know what is the equation for that.  

It is useful to have an equation that describes the phenomena, then a mathematical model is stablished. 

To approximate the obtained curves in the decomposition process Fourier coefficients were used. 

The curve, i.e. IMF 2 from signal CBA4_153, there are two MUAPs. The Fourier approximation of these 

curves are a sum of sines described with the following equation: 

𝑥(𝑡) =∑𝑎𝑖

𝑘

𝑖=1

sin(𝑏𝑖𝑡 + 𝑐𝑖) 

Using Matlab reconstruction tools, the terms for every founded pattern were approximated. For CBA4_153, 

the IMF 2 in the interval between 50 ms and 75 ms, a sum of sines between 1 term and 8 terms were computed 

to find the  𝑏𝑖 terms. Also, 𝑎𝑖 weights were obtained for each sine term. In the other hand, 𝑐𝑖 phase was not 

considered7. 

Using 8 sine components, we obtained: 

Table 4. Frequencies and Intensities relatives to IMF 2 reconstruction using 8 sinusoidal terms. 

Sine Component Angular Frequency 

𝒃𝒊 [
𝒓𝒂𝒅

𝒔⁄ ] 

Intensity 

𝒂𝒊 
Frequency 

𝒇𝒊 [𝑯𝒛] 

1 599.1 0.09192 95.34 

2 415.4 0.07531 66.11 

3 472.4 0.07148 75.18 

4 745.7 0.04358 118.68 

5 309.9 0.04675 49.32 

6 534.6 0.08743 85.08 

7 367.6 0.05595 58.5 

8 693.3 0.05878 110.34 

 

Using 6 sine components: 

Table 5. Frequencies and Intensities relatives to IMF 2 reconstruction using 6 sinusoidal terms 

Sine Component Angular Frequency 

𝒃𝒊 [
𝒓𝒂𝒅

𝒔⁄ ] 

Intensity 

𝒂𝒊 
Frequency 

𝒇𝒊 [𝑯𝒛] 

1 603.4 0.1013 96.03 

2 422.6 0.065 67.25 

3 479.5 0.05196 76.31 

4 697.6 0.055 111.02 

5 320.2 0.034 50.96 

6 539.6 0.0803 85.88 

 

 

 

                                                      
7 In future work it is possible to consider this phase changing or phase shifting. 
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Using 3 terms: 

Table 6. Frequencies and Intensities relatives to IMF 2 reconstruction using 3 sinusoidal terms 

Sine Component Angular Frequency 

𝒃𝒊 [
𝒓𝒂𝒅

𝒔⁄ ] 

Intensity 

𝒂𝒊 
Frequency 

𝒇 [𝑯𝒛] 

1 530.3 4.398 84.35 

2 535.1 4.525 85.16 

3 800 0.079 127.32 

Using 2 terms: 

Table 7. Frequencies and Intensities relatives to IMF 2 reconstruction using 2 sinusoidal terms. 

Sine Component Angular Frequency 

𝒃𝒊 [
𝒓𝒂𝒅

𝒔⁄ ] 

Intensity 

𝒂𝒊 
Frequency 

𝒇𝒊 [𝑯𝒛] 

1 496.2 0.1694 78.97 

2 649.7 0.2765 103.4 

Using 1 term: 

Table 8. Frequencies and Intensities relatives to IMF 2 reconstruction using 1 sinusoidal term. 

Sine Component Angular Frequency 

𝒃𝒊 [
𝒓𝒂𝒅

𝒔⁄ ] 

Intensity 

𝒂𝒊 
Frequency 

𝒇𝒊 [𝑯𝒛] 

1 610.1 (593-627) 0.3447 97 (94.37-99.82) 

 

 

In Table 4 and Table 5 there are frequencies in the range of 50 Hz y 119 Hz, some of them are apparently 

harmonic frequencies, i.e. 58.5 Hz and its harmonic 110.34 Hz, also 66.11 Hz & 118.68 Hz.  

The frequency pattern is described as a sum of sinusoidal components of the Fourier series. The pattern 

is described as follows: 

𝑥(𝑡) =∑𝑎𝑖

3

𝑖=1

sin(𝑏𝑖𝑡) =∑𝑎𝑖

𝑘

𝑖=1

sin(2𝜋𝑓𝑖𝑡) 

where 𝑖 = 3 

𝑓1 = 83.3 𝐻𝑧        𝑎1 = 0.8 
𝑓2 = 96.7 𝐻𝑧        𝑎2 = 0.9 
𝑓3 = 113.3 𝐻𝑧      𝑎3 = 0.4 

Then, the frequency pattern for all studied subjects for this work is expressed as: 

𝑥𝑝𝑎𝑡𝑡𝑒𝑟𝑛(𝑡) = 𝑎1 ∗ sin(2𝜋𝑓1𝑡) + 𝑎2 ∗ sin(2𝜋𝑓2𝑡) + 𝑎3 ∗ sin(2𝜋𝑓3𝑡) 

 
                      = 0.8 ∗ sin(523.389𝑡) + 0.9 ∗ sin(607.584𝑡) + 0.4 ∗ sin(711.885𝑡) 

 

Figure 73 shows the plot of the 𝑥𝑝𝑎𝑡𝑡𝑒𝑟𝑛 signal in a time slot of 512 ms.  
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Figure 73. Frequency pattern plot with 83.3 Hz, 96.7 Hz and 113.3 Hz components. 

4.6 KALMAN FILTER, ESTIMATION AND PREDICTION 
After the acquisition stage of the myoelectric signals, for real-time applications, it is necessary to 

decodify the information present in the sEMG signal. Filtering the signals is the proposed way to do it. Specific 

filtering algorithms are required to take out the noise and the unwanted information. Also, to decrease the 

computational costs of the identification process is necessary to involve a prediction state system into these 

filtering process to take decisions in advance about the muscular activity behavior.   

The application of the Kalman filter assisted to approach myoelectric signal reconstruction and 

prediction. Is possible to obtain an accurate reconstruction of the MUAP shape form present in the raw sEMG 

acquired. Although the accuracy of reconstruction does not go above 90%, in terms of the coefficient of 

determination. 

4.6.1 State-Space Representation of Nonlinear Model 
For the use of Kalman Filter, a model representation in state space form is required. This model consists 

of a process equation and measurement equation. Generally, for a model (𝑙,𝑚, 𝑛), its state-space model can be 

written as: process equation and measurement equation. 

 

Process equation 𝑥𝑘 = 𝑓(𝑥𝑘−1, 𝑢𝑘−1) = 𝐴𝑥𝑘−1 +∑𝐵𝑖(𝑢𝑘−1)
𝑖

𝑛

𝑖=1

 

 

Measurement equation 𝑦𝑘 = 𝐶𝑥𝑘 

 

In the process equation, 𝑢 is the model input, 𝑥 = [𝑥1, 𝑥2, … , 𝑥𝑞]
𝑇

is the state vector, 𝑞 = max{𝑙,𝑚}. 

The 𝑞 × 𝑞 matrix 𝐴 relates the state at previous time step 𝑥𝑘−1, to the state at the current step 𝑥𝑘. The 𝑞 × 1 

matrix 𝐵𝑖 relates the model input at the previous time step (𝑢𝑘−1)
𝑖, 𝑖 = 1, 2, … , 𝑛, to the state at the current 

step 𝑥𝑘. They are represented as 
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𝐴 =

[
 
 
 
 
𝑎1 1 0
𝑎2 0 1

⋯
0 0
0 0

⋮       ⋮       ⋮ ⋱ ⋮
𝑎𝑞−1 0 0

𝑎𝑞 0 0
⋯

0 1
0 0]

 
 
 
 

,     𝐵𝑖 =

[
 
 
 
 
𝜇1,𝑖
𝜇2,𝑖
⋮

𝜇𝑞−1,𝑖
𝜇𝑞 ]

 
 
 
 

  

In the system, the matrices 𝐴 and 𝐵𝑖 change with each time step due to the time-varying property of 

muscle activation. 

The 𝑦, in measurement equation, is the measurement of the electric intensity of the muscle. The 1 × 𝑞 

matrix 𝐶 relates the state at the current step 𝑥𝑘, to the measurement at the current step 𝑦𝑘 with the following 

expression: 

𝐶 = [1 0 ⋯ 0 0] 

For online estimation and prediction, Kalman Filter is used for the recursive estimation of the model 

parameters. The Kalman Filter estimates the internal states and parameters of a discrete-time system from a 

series of noisy measurements. 

Parameter estimation with Kalman Filter is performed considering the unknown parameters. That is, the 

meta-state vector 𝑤 has the expression 

𝑤 = [𝑥𝑇 𝑔𝑇]𝑇 . 

The parameters in 𝑔 are assumed time-invariant comparing to the process, that is: 

𝑔𝑘 = 𝑔𝑘−1 

The augmented system is then: 

𝑤𝑘 = 𝐹(𝑤𝑘−1, 𝑢𝑘−1) = [
𝑓(𝑥𝑘−1, 𝑢𝑘−1)

𝑔𝑘
] 

𝑦𝑘 = 𝐻𝑤𝑘 = [𝐶   01×(𝑙+𝑚∗𝑛)]𝑤𝑘 

The recursive estimation of the state-space model using Kalman Filter consists in two stages: prediction 

and correction. The main equations are given by: 

 

Prediction Stage 
𝑤̂𝑘
− = 𝐹(𝑤̂𝑘−1, 𝑢𝑘−1) 

𝑃𝑘
− = 𝐷𝑘𝑃𝑘−1𝐷𝑘

𝑇 + 𝑄𝑘−1 

 

 

 

Correction Stage 
𝐾𝑘 = 𝑃𝑘

−𝐻𝑘
𝑇(𝐻𝑘𝑃𝑘

−𝐻𝑘
𝑇 + 𝑅𝑘)

−1
 

𝑤̂𝑘 = 𝑤̂𝑘
− + 𝐾𝑘(𝑦𝑘 −𝐻𝑤̂𝑘

−)  
𝑃𝑘 = (𝐼 − 𝐾𝑘𝐻𝑘)𝑃𝑘

− 

 

 Equations of the prediction stage project the state and error covariance estimates forward from time 

step 𝑘 − 1 to step 𝑘. 𝑤̂𝑘−1 and 𝑃𝑘−1
−  are initial estimates for the state and measurement variance, respectively. 

𝑅𝑘 is the measurement noise covariance, while 𝑄𝑘 is the process of noise covariance. 𝐷𝑘 is the Jacobian matrix 

of the plant transfer functions with respect to the involved variables at step 𝑘 , with each element 𝐷[𝑖,𝑗] 

computed. 

In correction stage, the equations adjust the projected estimates by an actual measurement at step 𝑘. 𝐾𝑘 

is the Kalman gain. 
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In Figure 74 is shown how the sEMG signal could be estimated using the Kalman filter to adjust the 

shape of the MUAP shape to the mathematical model of the pattern, 𝑥𝑝𝑎𝑡𝑡𝑒𝑟𝑛, this allows to create a predictable 

trajectory of the input signal. The output result from the Kalman filter will go directly to the Goertzel algorithm. 

 

 

Figure 74. Kalman filter responses in simulated and real sEMG signals. a) Simulated sEMG signal (red line) is fitted with the 

math sEMG model stablished in the filtering parameters. b) Real sEMG signal (black line) is fitted with the math 

sEMG model settled in the parameters. 

4.7 GOERTZEL FILTER, FREQUENCY DETECTION 
 If the specific frequencies of the pattern signal are known, then Goertzel filter is able to recognize these 

frequencies instantly. Alike, a quick identification of the myoelectric instruction is possible to detect for a 

specific and desired movement. 

Goertzel filters uses the known frequency values of the pattern signal to identify inside of a time window 

the frequencies present on an input signal. If known frequencies matched with one or more of these, then filter 

responds. Using 𝑓1, 𝑓2 y 𝑓3, of 𝑥𝑝𝑎𝑡𝑡𝑒𝑟𝑛, the Goertzel filter was applied to a 𝑥[𝑛] input.  

To show the behavior of this filter, 𝑥[𝑛] = 𝑥𝑝𝑎𝑡𝑡𝑒𝑟𝑛[𝑛] in two conditions: with noise (white and power 

line) and without noise.    
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Figure 75. Periodogram of the PSD estimated with FFT for 𝒙𝒑𝒂𝒕𝒕𝒆𝒓𝒏 signal without noise 

In Figure 75 is shown the periodogram of the 𝑥𝑝𝑎𝑡𝑡𝑒𝑟𝑛[𝑛] input signal without noise for the Power 

Spectral Density (PSD) present into the signal, this periodogram was calculated using the Fast Fourier 

Transform (FFT). The three frequency components, 83.3 Hz, 96.7 Hz and 113.3 Hz are easly detected.  

In Figure 76 is shown the periodogram of the 𝑥𝑝𝑎𝑡𝑡𝑒𝑟𝑛[𝑛] input signal with white and power line noises 

for the PSD present into the signal. This periodogram was also calculated with the FFT. Three frequency 

components are in 83.3 Hz, 96.7 Hz and 113.3 Hz, but also 59 Hz signal refered to power line is present, just 

with less density. Other signals are resulting of the white noise. 

 

Figure 76. Periodogram of the PSD estimated with FFT for 𝒙𝒑𝒂𝒕𝒕𝒆𝒓𝒏 signal with white noise and power line noise. 
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If the 𝑥𝑝𝑎𝑡𝑡𝑒𝑟𝑛  signal is filtered with the Goertzel filter, then the PSD will be calculated into a 

determined time window identifying only the settled frequencies: 83.3 Hz, 96.7 Hz and 113.3 Hz.  

Figure 77 shows the Discrete Fourier Transform (DFT) of the 𝑥𝑝𝑎𝑡𝑡𝑒𝑟𝑛  signal without any noise. 

Density of each frequency component is different, related to the weight of the sinusoidal component.  

In Figure 78, is shown the DFT of the 𝑥𝑝𝑎𝑡𝑡𝑒𝑟𝑛 signal with white and power line noises. Density of 

each frequency component is different, associated to the weight of the sinusoidal component. Also, the 59 Hz 

DFT is different than previous, those to the fact that power line component was set in the Goertzel filter to 

prove the algorithm.  

 

Figure 77. Discrete Fourier Transform of the 𝒙𝒑𝒂𝒕𝒕𝒆𝒓𝒏 signal without noise obtained by Goertzel Algorithm. 

 

Figure 78. Discrete Fourier Transform of the 𝒙𝒑𝒂𝒕𝒕𝒆𝒓𝒏 signal with white and power line noises obtained by Goertzel Algorithm. 
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4.8 CONTRIBUTIONS 
In this work is reported the methods, techniques, algorithms and conditions under which it is possible to 

perform the identification, prediction and correction of the characteristics and patterns of the myoelectric 

signals linked to groups of the movements in the fingers of the hand. Until the conclusion of this work, there 

was no similar contributions in order to characterize, modeling, prediction or classification of the characteristics 

and patterns of the myoelectric signals of the forearm muscles related with the movements of the fingers.  

A method to reduce time computing in the analysis of the myoelectric signal to use as control source for 

prosthetic devices is proposed. This method consists in two stages of analysis: stationary and nonstationary. 

The stationary analysis aims in stablish the conditions for acquisitions of the myoelectric signals for groups of 

four channels systems, or more, throughout simple normalization, likewise the techniques and necessary 

parameters for the decomposition, identification, modeling and mapping of the characteristics and patters that 

the signal have in the performing of specific finger movements. The nonstationary analysis, or dynamic 

analysis, consists in use the characteristics and patterns as basis of comparison models via dynamic filters, that 

fit the signals and take out the undesired data and apply these to the input of a prosthetic control. 

4.8.1 Scientific contributions 
The contributions solve and simplify several challenges in myoelectric signal analysis.  

Electrode array to reduce noise from acquisition. An electrode array is proposed with an ellipsoidal 

configuration that reduce electrodes in a multichannel system, reference electrodes mainly, that improves the 

quality of the signal respect to other arrangements, also reduce artifacts. Likewise, a simple, suitable and 

sufficient pre-processing method for myoelectric signals analysis required to the application of any analyzing 

technique to reduce time computing of the basis features and patterns that compound these signals is described. 

In section 6.1 the details for these processes are described and works robustly, in stationary and dynamic 

process, for a four-channel system, also for 8, 16 or more channels.  

Hilbert-Huang Transform. The Hilbert-Huang transformation was introduced as a technique for the 

decomposition of signals, the identification of instantaneous frequencies and the calculations of the energy 

present within a myoelectric signal, in forearm muscles, associated to specific movements of the fingers. This 

method is not suitable for use in dynamic applications due to the computation time that it requires, only for 

identification in stationary processes. Compared with Wavelets, this provides an improvement in the 

identification of the actual waveforms of the signal.  

Time and Frequency patterns. The patterns of the myoelectric signals vary according to the type of movement 

performed, the type of the muscle used and the function that the muscle performs. For muscles of the forearm 

linked to the finger movements showed two patterns, in time and frequency. A period of MUAP manifestation 

of 24.5 ms and a period of 30 ms of reversibility of the contraction signal is the time pattern. A group of three 

frequencies 83.3 Hz, 96.7 Hz and 113.3 Hz compose the MUAP signal for the voluntary contraction and 

relaxation. The algorithms proposed in sections 6.2 and 6.3 are suitable for any signal and the obtained results 

will have to be analyzed in detail to establish the patterns of different muscle groups and different movements. 

It was shown that the forearm muscles associated with finger movement have similar, statistically tested, time 

and frequency patterns that are useful in dynamic identification. 

Dynamic filtering to identify, predict and correct signal in less than 100 ms. Traditional methods developed by 

many authors reported that they perform real-time processes to analyze myoelectric using complex methods 

that consume a lot of time of computing, up than 100 ms, i.e. applying traditional techniques or non-specific 

filters. Identifying the patterns of the myoelectric signal is able to determine the mathematical models that 

improves the filtering of the myoelectric signals using effective algorithms that identify, predict or correct the 

desired and known patterns of the signals. i.e. Kalman filter predicts and corrects the input signal with the 

mathematical model of the MUAP, this signal is applied to the Goertzel filter to make sure that the prediction 

is under the specific terms of the desired and known control signal.  
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4.8.2 Perspectives 
The proposed techniques contribute in many ways to the state-of-the-art for identification, modeling, 

decomposition and prediction of the myoelectric signal analysis for stationary and nonstationary processes.  

The criterion that was least considered in the developing of the analyzing algorithms was computation 

time. It is mandatory to analyze the myoelectric signal in a stationary way to describe their characteristics and 

patterns, then nonstationary signal analysis could be performed to reduce time computing. Also, one solution 

way to decrease computation time is to use parallel processors for multichannel arrays, instead of one processor 

per channel. This proposed method can easily have modified to adapt other muscles, analyzing techniques, 

algorithms and prosthetic devices, such as commercial.  

High level classifiers could be used to increase the patterns classification in order to the input signals 

increases to make a robust system of motion control of a prosthetic device. 
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CONCLUSIONS 

 

The algorithms and methodologies used to detect, process and quantify myoelectric signal features and 

some patterns were discussed in their advantages and disadvantages. This comparison helped to propose a 

method for analyze sEMG signals for prosthetic applications, but other biomedical and physiological 

applications could be considered. 

Filtering is essential in signal processing, but mandatory. If the correct and necessary filters are applied to 

the signals, then time computing, mathematical framework and electronic resources, and others, should 

decrease drastically.  

A method for treating biological signals is described on this work. Several ways to analyze myoelectric 

signals were applied to reveal the features contained in a raw EMG; those to filter, de-noise, decompose, time-

changing, frequency behavior and intensity.  

Most of the noise into myoelectric raw signals came from other muscles and surrounding tissues of the 

studied muscle. Undesired signals sources can be attenuated by using a better electrode configuration, as 

proposed in section 6.1, however this technique is not enough for the annihilation of the noise problem. Proper 

techniques and filters can improve myoelectric signal quality. Using the proposed ellipse-array electrodes 

configuration, section 6.1.1, is possible to obtain a noise reduction in almost 43.5% in the input data compare 

with traditional differential configurations. These results were compared with previous records made with the 

same acquisition system for the same users and conditions and placing the reference electrode over the closest 

bone terminal. 

Normalization process is basic for all signal processing techniques, but generalized procedure. Each 

technique needs to adapt the best algorithms to obtain the desired results. It is an important signal processing 

step for any applied technique, good pre-treating data is useful to obtain better results.  

The wavelet transform is particularly useful for MUAP detection in the presence of additive white noise. 

In this situation, the noise is located over the entire segment of the signal, independently of the wavelet used. 

The disadvantage of the wavelet proposal was that the Meyer and Daubechies 44, even others, wavelets are not 

perfectly matched to the MUAP shape. Accordingly, the obtained results are likely to be a subject to further 

improvement is a perfect matching is reached.  

The Hilbert-Huang transform method can remain more valuable detail of the signal, because it can make 

prevention of energy leak and the energy is centralized in the spectrum. Likewise, could help us to find intrinsic 

features of the EMG signals for real-time applications, but slower. To avoid all the traditional calculations, only 

identifying the main frequencies components and their features that are involved in the hand movements.  

In Hilbert-Huang algorithm it is possible to identify more frequency components of the analyzed signal if 

the normalization sets the maximum value to 1 V and the minimum value to -1 V. To reduce time computing 

of the Intrinsic Mode Functions it is not necessary to set the values to 1 V and -1 V, but it is recommendable to 

reduce the samples in a time slot of almost 50 ms. HHT algorithm is adaptive and do not requires special 

modifications to adapt the new window of samples.  
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The Empirical Mode Decomposition is very effective for noise reduction in nonstationary data because is 

a nonlinear method. This process makes no assumptions about the input data as wavelets. Also, this method 

provides better results for noise attenuation in EMG when compared with different wavelet prototypes as Meyer 

or Daubechies. This method is very effective in processes to extract symmetric components which overlap in 

time and frequency. Empirical Mode Decomposition filters cases of power-line noise, white noise and body 

artifacts. Is not recommendable to apply a decomposition method in real-time applications due to the number 

of iterations that are needed to calculate each component, maybe in parallel processors it could be work. 

sEMG signal could be filtered or denoise just taking away one or more of the IMFs. With just 2 IMFs is 

possible to detect the MUAPs. 1st, 2nd and 3rd IMFs presented the most characteristic frequency changes for the 

signals. Computing the Intrinsic Mode Functions takes a lot of time when compared with wavelets. IMF 

computing is recommended only to decompose signals to obtain inherent characteristics than the wavelets 

cannot find by their construction. HHT method could help us to find intrinsic features of the EMG signals for 

real-time analysis. These to avoid all the traditional calculations, only identifying the main frequencies involved 

the hand movements.  

Using Fourier series, a pattern of three frequencies was obtained: 83.3 Hz, 96.7 Hz and 113.3 Hz associated 

to voluntary muscular activation and deactivation, these are muscular control signals with an average period of 

24.5 ms. Also, these signals have an interval of 30 ms one respect to other. A minimum sample window for 

myoelectric signals is about 30 ms at least. This time slot could be smaller if and only if a prediction system is 

used. 

Frequency and time patterns were identified in almost 86% of the signals, in the other 14% was not 

possible to find any pattern or characteristic. Main problems in detection were by the low intensity of the signals 

or that the algorithm couldn’t decompose. A 59 Hz frequency, detected in almost 81% of the signals, is certainly 

commercial power line noise. 

For myoelectric signals, nonstationary and nonlinear, it is important to use adaptive algorithms, i.e. using 

wavelets, the scale and translation is essential to fit the wave form to the shape of the signals, with Hilbert-

Huang the result depends of the input signal. AM-FM features, frequencies and firing rates can be reliable in 

real-time control of a robotic hand, but classification methods are required. If the number of acquisition 

channels and features increases, the number of control commands increases too. There are many and different 

significant types of information into myoelectric signals that could be used as input to classifiers. For increase 

the classification accuracy, a combinations of processing methods and techniques are strongly recommended. 

Proposed prediction method is suitable for real-time applications using only the EMG signals as input. 

The dynamical nature of the Kalman filter provides for the time varying optimal fusion of the information and 

allows to consider myoelectric activity, muscular intensity features and statistical of the finger movements. 

Using Kalman filter is also possible to reduce the noise and provide a quick reconstruction of the desired shape 

form of the patterns reported. Goertzel filter provides a simple identification method of the pattern frequencies 

in a time of almost 5 ms or above, just to locate the desired frequencies.  The time pattern stablishes a period 

of 24.5 ms for activation signal, a period of 30 ms for reversibility and 24.5 ms of period for deactivation signal. 

This time slot suggest that the minimum time windowing is 30 ms to apply any of the analyzing method used 

for this work. With a window of 30 ms, almost 15 ms to performs prediction (Kalman filtering) and 5 ms to 

perform Goertzel filtering; then time consumption for the identification, detection, prediction and correction of 

the myoelectric signal could be performed in under 100 ms.  
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APPENDIX: MATLAB CODES OF THE ALGORITHMS 

HILBERT-HUANG TRANSFORM 

Empirical Mode Decomposition basis 
%*CENTRO DE INVESTIGACIÓN Y DE ESTUDIOS AVANZADO DEL IPN * 

%*INGENIERÍA ELÉCTRICA - SECCIÓN DE BIOELECTRÓNICA       * 

%*LAREMUS                                                * 

%*M. EN C. ALVARO ALTAMIRANO ALTAMIRANO                  * 

%*-------------------------------------------------------* 

% Based on the algorithm developed by Rato et al, 2008 

%“On the HHT, its problems, and some solutions”  

%Mechanical Systems and Signal Processing,vol.22,no.6,pp.1374-1394, %August 

2008. 

%------------------------------------------------------------------------ 

% 

%rParabEmd__L: Emd parabolic decomposition with extrapolated extrema 

%                                                                   

% 

%Usage: rParabEmd= rParabEmd__L(x,qResol, qResid, qAlfa); 

%       x - input signal - must be a real vector 

%       qResol - Resolution (in DBs: 10*log(WSignal/Bias energy))-                    

%                normally between 40 and 60 dB  

%       qResid - Residual energy (in DBs: 10*log(WSignal/WqResidual))-  

%                normally between 40 and 60 dB 

%       qAlfa  - Gradient step size (normally is set to 1) 

%------------------------------------------------------------------------            

 

function rParabEmd = rParabEmd__L (x, qResol, qResid, qAlfa) 

  

dbstop if warning 

if(nargin~=4), error('rParabEmd__L: Use with 4 inputs.'), end 

if(nargout>1), error('rParabEmd__L: Use with just one output.'), end 

ArgCheck_s(x, qResol, qResid, qAlfa) 

  

% Actual computation ------------------------------------- 

kc = x(:);                  % ket copy of the input signal 

Wx= kc'*kc;                 % Original signal energy 

quntN = length(kc);         % Signal length 

% loop to decompose the input signal into successive IMFs 

rParabEmd= [];    % Matrix which will contain the successive IMFs, and the 

residue 

rParabEmdCnt= 0; 

qDbResid= 0;                 %Equal energies at start 

quntOscCnt= quntNOsc_s(kc); 

while ((qDbResid<qResid) && (quntOscCnt>2) )   % c has some energy and oscilates 

    kImf = kc; % at the beginning of the sifting process, kImf is the signal 

    rPMOri= rGetPMaxs_s(kImf);     % rPM= [xM(M), yM(M)]; 

    rPmOri= rGetPMins_s(kImf);     % rPm= [xm(m), ym(m)]; 

    rPM= rPMaxExtrapol_s(rPMOri, rPmOri, quntN); 

    rPm= rPMinExtrapol_s(rPMOri, rPmOri, quntN); 

    quntLM= length(rPM);   quntLm= length(rPm); 

%    if (abs(quntLM-quntLm)>2), disp('Debug: Max-Min count 

mismatch.'),keyboard,end; 

    if (abs(quntLM-quntLm)>2), disp('Debug: Max-Min count mismatch.'),end; 
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    if(sum(abs(diff(sign(rPM(1:min(quntLM,quntLm),1)- 

rPm(1:min(quntLM,quntLm),1)))))>0) 

%        disp('Debug: Max-Min sequence mismatch.'),keyboard; 

        disp('Debug: Max-Min sequence mismatch.'); 

    end 

    if(sum(abs(diff(sign(rPm(1:min(quntLM,quntLm),1)- 

rPM(1:min(quntLM,quntLm),1)))))>0) 

%        disp('Debug: Max-Min reverse sequence mismatch.'),keyboard; 

        disp('Debug: Max-Min reverse sequence mismatch.'); 

    end 

    bTenv= spline(rPM(:,1), rPM(:,2), 1:quntN);          %  Top envelop: 

bTenv[n]; 

    bDenv= spline(rPm(:,1), rPm(:,2), 1:quntN);          % Down envelop: 

bDenv[n]; 

    bBias= (bTenv+bDenv)/2;               %  first bias estimate 

    while true(1)             % inner loop to find each IMF 

        WImf= kImf'*kImf;                %current IMF  energy 

        WBias= bBias*bBias';                  %bias energy 

        if WBias*WImf<0 , warning('rParabEmd__L: Ooops, negative energy 

detected.'), end 

        if WBias> 0, DbqResol= 10*log10(WImf/WBias); else DbqResol= Inf; end 

        if (DbqResol>qResol),  break, end %Resolution reached 

        %Resolution not reached. More work is needed 

        kImf = kImf- qAlfa*bBias';                % subtract qAlfa bias from 

kImf 

        rPMOri= rGetPMaxs_s(kImf);     % rPM= [xM(M), yM(M)]; 

        rPmOri= rGetPMins_s(kImf);     % rPm= [xm(m), ym(m)]; 

        rPM= rPMaxExtrapol_s(rPMOri, rPmOri, quntN); 

        rPm= rPMinExtrapol_s(rPMOri, rPmOri, quntN); 

        bTenv= spline(rPM(:,1), rPM(:,2), 1:quntN);          % Top envelop: 

bTenv[n]; 

        bDenv= spline(rPm(:,1), rPm(:,2), 1:quntN);          % Down envelop: 

bDenv[n]; 

        bBias= (bTenv+bDenv)/2;               %  new bias estimate 

    end % Wend true 

    % 

    rParabEmd = [rParabEmd; kImf'];          % store the extracted rParabEmd in 

the matrix rParabEmd 

    kc = kc - kImf;             % subtract the extracted rParabEmd from the 

signal 

    quntOscCnt= quntNOsc_s(kc); 

  

    rParabEmdCnt=rParabEmdCnt+1; 

    if (kc'*kc)>0 

        qDbResid= 10*log10(Wx/(kc'*kc)); 

    else 

        qDbResid = Inf 

    end 

    % 

end % Wend ((DbR... )) 

if ((kc'*kc)/Wx)>(10^-12) 

    rParabEmd=[rParabEmd; kc'];        %The residual is the last IMF 

    rParabEmdCnt=rParabEmdCnt+1; 

    NumOscqResiduais= quntNOsc_s(kc); 

end 

 rParabEmd= rParabEmd'; 
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end %main function 

  

%SubFunctions ----------------------------------------------------------- 

  

function ArgCheck_s(x, qResol, qResid, qAlfa) 

  

[qL, qC] = size(x); 

if ((qL*qC)~= max(qL,qC)), error('rParabEmd__L: Input signal must be a one dim 

vector.'), end 

if ((qL*qC)<= 1), error('rParabEmd__L: Input signal must be a vector.'), end 

  

[qL,qC] = size(qResol); 

if ( ~((qL==1)&(qC==1)) ), error('rParabEmd__L: Input resolution must be a 

scalar.'), end 

if ( qResol<=0 ), error('rParabEmd__L: Input resolution must strictly 

positive.'), end 

  

[qL,qC] = size(qResid); 

if ( ~((qL==1)&(qC==1)) ),  error('rParabEmd__L: Input residual must be a 

scalar.'),  end 

if ( qResid<=0 ), error('rParabEmd__L: Input residual must strictly positive.'), 

end 

  

[qL,qC] = size(qAlfa); 

if ( ~((qL==1)&(qC==1)) ), error('rParabEmd__L: qAlfa step must be a scalar.'), 

end 

if ( qAlfa<=0 ), error('rParabEmd__L: qAlfa step  must be strictly positive.'),  

end 

end 

  

%----------------------------------------------------------------------- 

% Returns the oscilation count, no steps 

function quntNOsc = quntNOsc_s (x) 

y=0;    qisTop= false; qisDown= false; 

for i=2:(length(x)-1) 

    if( ((x(i-1)) < (x(i))) && ((x(i+1))< (x(i))) )  %Max /-\ 

        y=y+1; 

    end 

    if( ((x(i-1)) > (x(i))) && ((x(i+1))> (x(i))) )  %min \_/ 

        y=y+1; 

    end 

%Top      

    if( ((x(i-1)) < (x(i))) && ((x(i+1))== (x(i))) ) %StepL /- 

         qisTop= true; qisDown= false; 

    end 

    if( ((x(i-1)) == (x(i))) && ((x(i+1))< (x(i))) ) %stepR -\ 

        if qisTop;     y=y+1; end; 

        qisTop= false; 

    end 

%Downs    

    if( ((x(i-1)) > (x(i))) && ((x(i+1))== (x(i))) ) %stepL \_ 

        qisTop= false; qisDown= true; 

    end 

    if( ((x(i-1)) == (x(i))) && ((x(i+1))> (x(i))) ) %StepR _/ 

        if qisDown; y=y+1; end 

        qisDown=false; 
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    end 

end % for i=2:(length(x)-1) 

quntNOsc= y; 

end % function y = quntNOsc_s (x) 

function rPMaxExtrapol= rPMaxExtrapol_s(rPM, rPm, quntL)  

rPM= sortrows(rPM); %assumes nothing on rPM sort order 

rPm= sortrows(rPm); %assumes nothing on rPm sort order 

kTopTim1= rPM(:,1); kTopVal= rPM(:,2); 

kDwnTim1= rPm(:,1); kDwnVal= rPm(:,2); 

%Start extrapolation --------------------- 

if ( (kTopTim1(1)== 1) && (kDwnTim1(1)== 1) )    

    disp ('rPMaxExtrapol_s: Poliextrema at signal''s start'); 

elseif ( (kTopTim1(1)<1) || (kDwnTim1(1)< 1) )    

    disp ('rPMaxExtrapol_s: Invalid extrema at signal''s start'); 

else 

    kTopTim1=[2-kDwnTim1(1); kTopTim1];     % New first Top at the (one based) 

specular Min 

    kTopVal=[kTopVal(1); kTopVal];          % Same Val as old first Top 

end 

% End extrapolation ----------------------- 

if ( (kTopTim1(end)== quntL) && (kDwnTim1(end)== quntL) )    

    disp ('rPMaxExtrapol_s: Poliextrema at signal''s end'); 

elseif ( (kTopTim1(end)> quntL) || (kDwnTim1(end)> quntL) )    

    disp ('rPMaxExtrapol_s: Invalid extrema at signal''s end'); 

else 

    kTopTim1=[kTopTim1; (2*quntL - kDwnTim1(end))];     % New last Top at the 

specular Min 

    kTopVal=[ kTopVal; kTopVal(end)];          % Same Val as old last Top  

end 

% return value ------------------------ 

rPMaxExtrapol= sortrows([kTopTim1, kTopVal]);  

end 

 

function rPMinExtrapol= rPMinExtrapol_s(rPM, rPm, quntL) 

%Init ------------------------------------ 

rPM= sortrows(rPM); %assumes nothing on rPM sort order 

rPm= sortrows(rPm); %assumes nothing on rPm sort order 

kTopTim1= rPM(:,1); kTopVal= rPM(:,2); 

kDwnTim1= rPm(:,1); kDwnVal= rPm(:,2); 

%Start extrapolation --------------------- 

if ( (kTopTim1(1)== 1) && (kDwnTim1(1)== 1) ) 

    disp ('rPMinExtrapol_s: Poliextrema at signal''s start'); 

elseif ( (kTopTim1(1)<1) || (kDwnTim1(1)< 1) ) 

    disp ('rPMinExtrapol_s: Invalid extrema at signal''s start'); 

else 

    kDwnTim1=[2-kTopTim1(1); kDwnTim1];% New first Dwn at the (one based) 

specular Max 

    kDwnVal=[kDwnVal(1); kDwnVal]; % Same Val as old first Dwn 

end 

% End extrapolation ----------------------- 

if ( (kTopTim1(end)== quntL) && (kDwnTim1(end)== quntL) ) 

    disp ('rPMinExtrapol_s: Poliextrema at signal''s end'); 

elseif ( (kTopTim1(end)> quntL) || (kDwnTim1(end)> quntL) ) 

    disp ('rPMinExtrapol_s: Invalid extrema at signal''s end'); 

else 

    kDwnTim1=[kDwnTim1; (2*quntL - kTopTim1(end))];     % New last Dwn at the 

specular Max 
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    kDwnVal=[ kDwnVal; kDwnVal(end)];          % Same Val as old last Dwn 

end 

% return value ------------------------ 

rPMinExtrapol= sortrows([kDwnTim1, kDwnVal]); 

  

end 

function rPMax= rGetPMaxs_s(aS)         %Get Parabolic Maxs, plateaus out 

kS= aS(:); 

quntLenS=length(kS);  

quntMaxCnt=0; 

kSMNdx1= []; kSMVal=[];         %signal S Maxima indices and values 

kSPMTim1= []; kSPMVal=[];       %signal S Parabolic Maxima times and values 

  

if (quntLenS>2)     %if signal has enough length 

    for Cnt=2:(quntLenS-1)  %search the Maxs 

        if ( ((kS(Cnt) > kS(Cnt+1))) && ((kS(Cnt) >= kS(Cnt-1))) || ((kS(Cnt) >= 

kS(Cnt+1))) && ((kS(Cnt) > kS(Cnt-1))) ) 

            quntMaxCnt=quntMaxCnt+1; 

            kSMNdx1= [kSMNdx1; Cnt];  kSMVal=[kSMVal; kS(Cnt)]; 

        end 

    end 

end 

  

% Now we have the Maxs, lets get the Parabolic Maxs 

oldxv= -Inf; oldyv= -Inf; 

intGapMax= max(kS)-min(kS); 

for jj=1:quntMaxCnt     %for all Maxs 

    %xa= -1; xb= 0; xc= 1; 

    ya= kS(kSMNdx1(jj)-1);  % Sample point before 

    yb= kS(kSMNdx1(jj));    % Sample point, == kSMVal(jj) 

    yc= kS(kSMNdx1(jj)+1);  % Sample point after 

    D= (-4*yb+2*ya+2*yc); 

    if (D==0), xv= kSMNdx1(jj); 

    else xv= kSMNdx1(jj)+(ya-yc)/D; end; % Vertix abscissa 

    D= (-16*yb+ 8*ya+ 8*yc); 

    if (D==0), yv= yb; 

    else yv= yb+ (2*yc*ya- ya*ya- yc*yc)/D; end; 

    % Lets check for double maxima 

    if ( (xv==oldxv)||(abs(yv-oldyv)/abs(xv-oldxv))> (2*intGapMax) )        

        xv= (xv+ oldxv)/2; yv= max(yv,oldyv);   %Double found 

        kSPMTim1(length(kSPMTim1))= xv; kSPMVal(length(kSPMVal))= yv; 

    else 

        kSPMTim1= [kSPMTim1; xv];  kSPMVal=[kSPMVal; yv]; 

    end  

    oldxv= xv; oldyv= yv; 

end % for jj=1:quntMaxCnt 

  

if quntMaxCnt>0 

    if ( kS(1) >= kSPMVal(1) ) 

        kSPMTim1= [1; kSPMTim1];  kSPMVal=[kS(1); kSPMVal ];    %Start must be 

included as a Max 

    end 

    if ( kS(end) >= kSPMVal(end)) 

        kSPMTim1= [kSPMTim1; quntLenS];  kSPMVal=[kSPMVal; kS(end)];   %End must 

be included as a Max 

    end 
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end 

  

if quntMaxCnt==0 

    if ( kS(1) > kS(2) ) 

        kSPMTim1= [1; kSPMTim1];  kSPMVal=[kS(1); kSPMVal ];    %Start must be 

included as a Max 

    end 

    if ( kS(end) > kS(end-1)) 

        kSPMTim1= [kSPMTim1; quntLenS];  kSPMVal=[kSPMVal; kS(end)];   %End must 

be included as a Max 

    end 

end 

if quntMaxCnt<0 

    error('rGetPMaxs_s: Invalid MaxCnt value'); 

end 

  

rPMax= sortrows([kSPMTim1, kSPMVal]); 

end 

%---------- make at 17-Jul-07 10:16:59.44  

function rPMin= rGetPMins_s(aS)         %Get Parabolic Mins, plateaus out 

%                                       build 20070612001 

kS= aS(:); 

quntLenS=length(kS);  

quntMinCnt=0; 

kSMNdx1= []; kSMVal=[];         %signal S Minima indices and values 

kSPMTim1= []; kSPMVal=[];       %signal S Parabolic Minima times and values 

  

if (quntLenS>2)     %if signal has enough length 

    for Cnt=2:(quntLenS-1)  %search the Mins 

        if ( ((kS(Cnt) < kS(Cnt+1))) && ((kS(Cnt) <= kS(Cnt-1))) || ((kS(Cnt) <= 

kS(Cnt+1))) && ((kS(Cnt) < kS(Cnt-1))) ) 

            quntMinCnt=quntMinCnt+1; 

            kSMNdx1= [kSMNdx1; Cnt];  kSMVal=[kSMVal; kS(Cnt)]; 

        end 

    end 

end 

  

% Now we have the Mins, lets get the Parabolic Mins 

oldxv= -Inf; oldyv= -Inf; 

intGapMax= max(kS)-min(kS); 

for jj=1:quntMinCnt     %for all Mins 

    %xa= -1; xb= 0; xc= 1; 

    ya= kS(kSMNdx1(jj)-1);  % Sample point before 

    yb= kS(kSMNdx1(jj));    % Sample point, == kSMVal(jj) 

    yc= kS(kSMNdx1(jj)+1);  % Sample point after 

    D= (-4*yb+2*ya+2*yc); 

    if (D==0), xv= kSMNdx1(jj); 

    else xv= kSMNdx1(jj)+(ya-yc)/D; end; % Vertix abscissa 

    D= (-16*yb+ 8*ya+ 8*yc); 

    if (D==0), yv= yb; 

    else yv= yb+ (2*yc*ya- ya*ya- yc*yc)/D; end; 

    % Lets check for double minima 

    if ( (xv==oldxv)||(abs(yv-oldyv)/abs(xv-oldxv))> (2*intGapMax) )      

        xv= (xv+ oldxv)/2; yv= min(yv,oldyv);   %Double found 

        kSPMTim1(length(kSPMTim1))= xv; kSPMVal(length(kSPMVal))= yv; 

    else 
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        kSPMTim1= [kSPMTim1; xv];  kSPMVal=[kSPMVal; yv]; 

    end  

    oldxv= xv; oldyv= yv; 

end % for jj=1:quntMinCnt 

  

if quntMinCnt>0 

    if ( kS(1) <= kSPMVal(1) ) 

        kSPMTim1= [1; kSPMTim1];  kSPMVal=[kS(1); kSPMVal ];    %Start must be 

included as a Min 

    end 

    if ( kS(end) <= kSPMVal(end)) 

        kSPMTim1= [kSPMTim1; quntLenS];  kSPMVal=[kSPMVal; kS(end)];   %End must 

be included as a Min 

    end 

end 

  

if quntMinCnt==0 

    if ( kS(1) < kS(2) ) 

        kSPMTim1= [1; kSPMTim1];  kSPMVal=[kS(1); kSPMVal];    %Start must be 

included as a Min 

    end 

    if ( kS(end) < kS(end-1)) 

        kSPMTim1= [kSPMTim1; quntLenS];  kSPMVal=[kSPMVal; kS(end)];   %End must 

be included as a Min 

    end 

end 

if quntMinCnt<0 

    error('rGetPMins_s: Invalid MinCnt value'); 

end 

  

  

rPMin= sortrows([kSPMTim1, kSPMVal]); 

end 

 

Empirical Mode Decomposition for 4 Channels 
%*CENTRO DE INVESTIGACIÓN Y DE ESTUDIOS AVANZADO DEL IPN * 

%*INGENIERÍA ELÉCTRICA - SECCIÓN DE BIOELECTRÓNICA       * 

%*LAREMUS                                                * 

%*M. EN C. ALVARO ALTAMIRANO ALTAMIRANO                  * 

%*-------------------------------------------------------* 

clc; clear all; close all; 

%Select the Recorded data, these are matrix array of 20480 x 4 & 

%20480x 8 

[FileName,PathName]=uigetfile('*.*','Select the Matrix to 

import','D:\Documents\PhD\MATLAB Codes\EMG_DATA'); 

if isequal(FileName,0) 

    disp('User selected Cancel') 

else 

    disp(['User selected ', fullfile(PathName,FileName)]) 

end 

filefullpath=[PathName, FileName];  %Full path address 

recfileoriginal=load(filefullpath);  %load the file that contains the matrix 

array 

%------------------------------------------------------------------------ 

%             Plot four Channels from the Input Matrix 
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for a=1:4 

    figure(1); 

    subplot(4,1,a) 

    plot(recfileoriginal(:,a),'LineWidth',1.5); 

    %ylim([-5 5]);  

    xlim([0 2000]);  

    ylabel(['EMG Channel ' num2str(a)],'FontSize', 13); xlabel('Time 

(ms)','FontSize', 13); 

end 

%----------------------------------------------------------------------- 

amp=input('Please, enter the scale factor: '); 

recfile=amp*recfileoriginal; 

% Ask for the interval to analyze 

%longinicial=; 

%longfin=1200; 

 interval=input('Select the window 1:450-750  2:550-850   3:750-1050   4:850-

1150  5:1100-1400 : '); 

 switch interval 

     case 1 

         longinicial=450; 

         longfin=750; 

         disp('450'); 

     case 2 

         longinicial=550; 

         longfin=850; 

         disp('550'); 

     case 3 

         longinicial=750; 

         longfin=1050; 

         disp('750'); 

     case 4 

         longinicial=850; 

         longfin=1150; 

         disp('850'); 

     case 5 

         longinicial=1100; 

         longfin=1400; 

         disp('1100'); 

     otherwise 

         disp('That window is incorrect, please select another one') 

 end 

%----------------------------------------------------------------------- 

%             Plot selected window 

for b=1:4 

    figure(2); 

    subplot(4,1,b) 

    plot(recfile(:,b),'LineWidth',1.5); 

    ylim([-1 1]); xlim([longinicial longfin]); ylabel(['EMG Channel ' 

num2str(b)],'FontSize', 13); xlabel('Time (ms)','FontSize', 13); 

end 

%----------------------------------------------------------------------- 

pause; 

 

qResol=45; 

qResid=45; 

qAlfa=1; 
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     x1=recfile(longinicial:longfin,1); 

     x2=recfile(longinicial:longfin,2); 

     x3=recfile(longinicial:longfin,3); 

     x4=recfile(longinicial:longfin,4); 

      

     rParabEmd1= rParabEmd__L(x1,qResol, qResid, qAlfa); 

     rParabEmd2= rParabEmd__L(x2,qResol, qResid, qAlfa); 

     rParabEmd3= rParabEmd__L(x3,qResol, qResid, qAlfa); 

     rParabEmd4= rParabEmd__L(x4,qResol, qResid, qAlfa); 

  

 [c1,d1]=size(rParabEmd1); 

 [c2,d2]=size(rParabEmd2); 

 [c3,d3]=size(rParabEmd3); 

 [c4,d4]=size(rParabEmd4); 

  

 e1=round(d1/2);   

 e2=round(d2/2); 

 e3=round(d3/2); 

 e4=round(d4/2); 

  

for i=1:d1 

    figure(3); 

    subplot(e1,2,i) 

    plot(rParabEmd1(1:c1,i),'LineWidth',1.7); 

    xlim([0 300]); ylabel(['IMF ' num2str(i)],'FontSize', 14); xlabel('Time 

(ms)','FontSize', 12); 

end 

for i=1:d2 

    figure(4); 

    subplot(e2,2,i) 

    plot(rParabEmd2(1:c2,i),'LineWidth',1.7); 

    xlim([0 300]); ylabel(['IMF ' num2str(i)],'FontSize', 14); xlabel('Time 

(ms)','FontSize', 12); 

end 

for i=1:d3 

    figure(5); 

    subplot(e3,2,i) 

    plot(rParabEmd3(1:c3,i),'LineWidth',1.7); 

    xlim([0 300]); ylabel(['IMF ' num2str(i)],'FontSize', 14); xlabel('Time 

(ms)','FontSize', 12); 

end 

for i=1:d4 

    figure(6); 

    subplot(e4,2,i) 

    plot(rParabEmd4(1:c4,i),'LineWidth',1.7); 

    xlim([0 300]); ylabel(['IMF ' num2str(i)],'FontSize', 14); xlabel('Time 

(ms)','FontSize', 12); 

end 

%---------------------%HILBERT TRANSFORM--------------------------- 

t=linspace(0,300/Fs,301)'; %separation between points. 

channeltocalculate=input('Enter a channel´s number, between 1-4, to calculate HT 

& IF: '); 

switch channeltocalculate 

    case 1 

        x=rParabEmd1; 

        disp('Channel 1'); 
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    case 2 

        x=rParabEmd2; 

        disp('Channel 2'); 

    case 3 

        x=rParabEmd3; 

        disp('Channel 3'); 

    case 4 

        x=rParabEmd4; 

        disp('Channel 4'); 

    otherwise 

        disp('That channel doesn´t exist, please select one or type ´0´ to 

exit') 

end 

 

Fs=2000; %sampling frequency 

[vectors, columns]=size(x); 

for i=1:columns 

    [env(:,i),freq(:,i)]=hilbert2(x(:,i),Fs); 

end 

p=round(columns/2); 

for j=1:columns 

    figure(7); 

    subplot(p,2,j) 

    plot(t,x(1:vectors,j),'LineWidth',1.5);hold on; 

    plot(t,[env(:,j) -env(:,j)],'LineWidth',1.5,'Color',[1 0 0]); 

    xlim([0 301]); ylabel('Signal amplitude','FontSize', 10); 

    title(['IMF ' num2str(j),  ' with instantaneous envelope'],'FontSize',10); 

end 

for k=1:columns 

    figure(8) 

    subplot(p,2,k) 

    plot(t,freq(1:vectors,k),'k','LineWidth',1.5); 

    xlabel('Time (s)','FontSize',10); ylabel('Frequency (Hz)','FontSize',10); 

    ylim([-100 300]); 

    title(['Instantaneous frequency of IMF ' num2str(k)],'FontSize',10); 

end 

  

for l=1:columns 

    figure(9) 

    subplot(p,2,l) 

    xcenters=0:300; 

    %hist(freq(1:vectors,l),xcenters); 

    hist(freq(1:vectors,l)); 

    [vecfreq(l,:), vecpos(l,:)]=hist(freq(1:vectors,l),300); 

    xlim([0 300]); 

    xlabel('Frequency (Hz)');ylabel('Elements'); 

    title('Histogram of frequecies'); 

end 

for m=1:columns 

    fmaxima(m)=max(vecfreq(m,20:280)); 

    for n=1:300 

        if vecpos(m,n) == fmaxima(m) 

            freqfundamental(m)=vecfreq(m,n);  

        else 

        end 

    end 

end 
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Hilbert Transform and Instantaneous frequency 
%*CENTRO DE INVESTIGACIÓN Y DE ESTUDIOS AVANZADO DEL IPN * 

%*INGENIERÍA ELÉCTRICA - SECCIÓN DE BIOELECTRÓNICA       * 

%*LAREMUS                                                * 

%*M. EN C. ALVARO ALTAMIRANO ALTAMIRANO                  * 

%*-------------------------------------------------------* 

clc; clear all; close all; 

%Get the file to compute 

[FileName,PathName]=uigetfile('*.*','Select the data to import','C:\Users\Dr. 

ALTAMIRANO\OneDrive\PhD\MATLAB Codes\HHT Matlab\Registros EMG\USER 1'); 

if isequal(FileName,0) 

    disp('User selected Cancel') 

else 

    disp(['User selected', fullfile(PathName,FileName)]) 

end 

filefullpath=[PathName, FileName]; 

%Define the numbers to save the images, record is more easy to define, even 

%to prevent errors. 

user=1; movement=5;record=input('Number of record:');channel=1; 

%--------------------------------------------------- 

%-----Import the file----Convert .mat to vars------- 

recfileoriginalmat=load('-mat',filefullpath); 

%create new variables in the base workspace from those fields. 

vars=fieldnames(recfileoriginalmat); 

for i=1:length(vars) 

    assignin('base', vars{i}, recfileoriginalmat.(vars{i})); 

end 

%--------------------------------------------------- 

recfileoriginal=100*rParabEmd1; 

[elementos, imf]=size(recfileoriginal); 

z=zeros(elementos,imf); 

instfreq=zeros(elementos-1,imf); 

Fs=2000; % Sample frequency determited by the BIOPAC system 

t = 0:1/Fs:0.15; % Time of  the signal into the segment of 1 second. 

%--------------------------------------------------- 

%SPECTROGRAM 

for s=1:imf 

    figure(1); 

    subplot(round(imf/2),2,s) 

    spectrogram(recfileoriginal(:,s),32,16,4096,Fs,'yaxis');  

    % spectrogram=(x, window, noverlap,nfft,fs,'yaxis') 

    % To avoit the issues to how code attempts to analyze and visualize the 

signal using the spectrogram function is 

    % Fs=2000 samples per second, while the number of samples in each FFT 

    % is 4096 samples, as a result, the frequency resolution of the 

    % spectrogram is nearly 0.5 Hertz, 

    % dF= Fs/NFFT = 2000/4096 = 0.4882 

    view(-40,60) 

    title(['Spectrogram of IMF ', num2str(s)],'FontWeight','bold') 

    hold on; 

end 

print('-f1',['CBA4_',num2str(user), 

num2str(movement),num2str(record),'_',num2str(channel),'_',num2str(imf),'_Spectr

e'],'-djpeg') 

%---Plot the original signal------------------------ 
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for a=1:imf 

    figure(2); 

    subplot(round(imf/2),2,a) 

    plot(t,recfileoriginal(:,a),'LineWidth',1.5,'color','blue'); 

    hold on; 

    xlim ([0 0.15]); 

    ylabel(['IMFs ' num2str(a)],'FontSize', 14); xlabel('Time (ms)','FontSize', 

14); 

    hold on; 

    title('IMFs','FontWeight','bold') 

end 

print('-

f2',['CBA4_',num2str(user),num2str(movement),num2str(record),'_',num2str(channel

),'_',num2str(imf),'_IMF'],'-djpeg') 

%------------------------------------------------------------------------ 

%.... INSTANTANEOUS FREQUENCY.... 

for b=1:imf 

    z(:,b) = hilbert(recfileoriginal(:,b)); 

    instfreq(:,b)= Fs/(2*pi)*diff(unwrap(angle(z(:,b)))); 

    figure(3); 

    subplot(round(imf/2),2,b) 

    plot(t(2:end),instfreq(:,b)); 

    xlim([0 0.15]); 

    xlabel('Time') 

    ylabel('Hz') 

    grid on 

    title('Instantaneous Frequency') 

end 

print('-

f3',['CBA4_',num2str(user),num2str(movement),num2str(record),'_',num2str(channel

),'_',num2str(imf),'_IF'],'-djpeg') 

WAVELET TRANSFORM ALGORITHM 
%*CENTRO DE INVESTIGACIÓN Y DE ESTUDIOS AVANZADO DEL IPN * 

%*INGENIERÍA ELÉCTRICA - SECCIÓN DE BIOELECTRÓNICA       * 

%*LAREMUS                                                * 

%*M. EN C. ALVARO ALTAMIRANO ALTAMIRANO                  * 

%*ING. ALAN BELTRAN 

%*-------------------------------------------------------* 

function [ ] = escalograma( archivo,canal ) 

 

close all; 

%% EMG signal parameters  

fs  = 2000;              % Sample frequency 

Ts  = 1/fs;              % Period 

t   = 0:Ts:1-Ts;         % time slot 

tm  = t*1000;            % time (ms) 

%Channel selection 

m = load(archivo); 

ch1 = m(:,1)';   

ch2 = m(:,2)'; 

ch3 = m(:,3)'; 

ch4 = m(:,4)'; 

% Normalization 

max1 = max([abs(max(ch1)) abs(min(ch1))]); 

max2 = max([abs(max(ch2)) abs(min(ch2))]); 
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max3 = max([abs(max(ch3)) abs(min(ch3))]); 

max4 = max([abs(max(ch4)) abs(min(ch4))]); 

  

ch1 = ch1/max1; 

ch2 = ch2/max2; 

ch3 = ch3/max3; 

ch4 = ch4/max4; 

  

figure('OuterPosition',[10,500,1100,580]);  

subplot(4,1,1); 

plot(tm,ch1); 

title('Canal #1 - Extensor breve del pulgar'); 

subplot(4,1,2); 

plot(tm,ch2); 

title('Canal #2 - Flexor superficial de los dedos'); 

subplot(4,1,3); 

plot(tm,ch3); 

title('Canal #3 - Extensor de los dedos'); 

subplot(4,1,4); 

plot(tm,ch4); 

title('Canal #4 -Flexor cubital del carpo'); 

  

switch canal 

    case 1 

        ch = 'Canal #1 - Extensor breve del pulgar'; 

        disp(ch) 

        y = ch1; 

    case 2 

        ch = 'Canal #2 - Flexor superficial de los dedos'; 

        disp(ch) 

        y = ch2; 

    case 3 

        ch = 'Canal #3 - Extensor de los dedos'; 

        disp(ch) 

        y = ch3; 

    case 4 

        ch = 'Canal #4 -Flexor cubital del carpo'; 

        disp(ch) 

        y = ch4; 

end 

%% Scalogram 

% Bandwith  

freqrange = [5 300]; 

% Scale-frequency ratio 

fc         = centfrq('meyr'); 

scalerange = fc./(freqrange*Ts); 

 

% Logarithmic scale vector 

scalerange = log10(scalerange); 

scales     = logspace(scalerange(end),scalerange(1),30); 

  

% Frequency vector 

freqs = scal2frq(scales,'meyr',Ts); 

  

% CWT function 

coefs = cwt(y,scales,'meyr'); 
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% Scalogram 

S = abs(coefs.*coefs);  

SC = 100*S./sum(S(:)); 

  

% Umbral 

V  = SC'; V = V(:)'; 

V = V/max(V); 

for i = 1:length(V) 

    if V(i) <= 0.3 

        V(i) = 0; 

    end 

end 

c  = size(SC,2); 

SC = vec2mat(V,c); 

SC = mat2gray(SC); 

  

%% Scalogram Plot 

 positionVector1 = [0.09, 0.85, 0.835, 0.1]; 

 positionVector2 = [0.09, 0.08, 0.9, 0.65]; 

  

figure('OuterPosition',[10,50,1100,900]);  

  

% Analyzed signal 

subplot('Position',positionVector1); 

plot(tm,y); 

xlabel('Tiempo [mseg]','fontweight','bold');  

ylabel('Amplitud','fontweight','bold');  

title(ch,'fontweight','bold'); 

subplot('Position',positionVector2); 

[C,h] = contour(tm,scales,SC); 

set(gca, 'YScale','log'); 

colorbar; 

grid on; 

title({'Escalograma';'Porcentaje de energía de cada coeficiente'},... 

    'fontweight','bold'); 

xlabel('Tiempo[mseg]','fontweight','bold');  

ylabel('Escalas','fontweight','bold'); 

  

%% Scale vs frequency plot 

figure('OuterPosition',[1150,50,570,510]); 

semilogy(freqs,scales); 

axis([freqs(end) freqs(1) scales(1) scales(end)]) 

title('Escalas Vs Frecuencias','fontweight','bold');  

xlabel('Frecuencias','fontweight','bold');  

ylabel('Escalas','fontweight','bold'); 

end 
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KALMAN FILTER ALGORITHM 
function [k,s] = kfilter(A,C,V1,V2,V12) 
 %*CENTRO DE INVESTIGACIÓN Y DE ESTUDIOS AVANZADO DEL IPN * 

%*INGENIERÍA ELÉCTRICA - SECCIÓN DE BIOELECTRÓNICA       * 

%*LAREMUS                                                * 

%*M. EN C. ALVARO ALTAMIRANO ALTAMIRANO                  * 

%Kalman Filter can have arguments: (A,C,V1,V2)  
%     KFILTER calculates the kalman gain, k, and the stationary 
%     covariance matrix, s, using the Kalman filter for: 
%   
%       x[t+1] = Ax[t] + Bu[t] + w1[t+1] 
%               y[t] = Cx[t] + Du[t] + w2[t] 
% 
%               E [w1(t+1)] [w1(t+1)]' =  [V1   V12; 
%                 [ w2(t) ] [ w2(t) ]      V12' V2 ] 
% 
%  where x is the mx1 vector of states, u is the nx1 vector of controls, y is 
%  the px1 vector of observables, A is mxm, B is mxn, C is pxm, V1 is mxm, 
%  V2 is pxp, V12 is mxp. 
% 

%*-------------------------------------------------------* 

  
m=max(size(A)); 
[rc,cc]=size(C); 
if nargin==4; V12=zeros(m,rc); end; 
if (rank(V2)==rc); 
  A=A-(V12/V2)*C; 
  V1=V1-V12*(V2\V12'); 
  [k,s]=doubleo(A,C,V1,V2); 
  k=k+(V12/V2); 
else; 
  s0=.01*myo(m); 

  
  dd=1; 
  it=1; 
  maxit=1000; 

  
  while (dd>1e-8 & it<=maxit); 
    k0= (A*s0*C'+V12)/(V2+C*s0*C'); 
    s1= A*s0*A' + V1 -(A*s0*C'+V12)*k0'; 
    k1= (A*s1*C'+V12)/(V2+C*s1*C'); 
    dd=max(max(abs(k1-k0))); 
    it=it+1; 
    s0=s1; 
  end; 

  
  k=k1;s=s0; 
  if it>=maxit;  
    disp('WARNING: Limit iteration');  
  end; 
end; 
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GOERTZEL ALGORITHM 
%*CENTRO DE INVESTIGACIÓN Y DE ESTUDIOS AVANZADO DEL IPN * 

%*INGENIERÍA ELÉCTRICA - SECCIÓN DE BIOELECTRÓNICA       * 

%*LAREMUS                                                * 

%*M. EN C. ALVARO ALTAMIRANO ALTAMIRANO                  * 

%*-------------------------------------------------------* 

Fs = 1024; %Sampling Frequency 

Ts = 1/Fs; %Period 

f1 = 83.3;  % 1st Pattern 

f2 = 96.7;  % 2nd Pattern 

f3 = 113.3; % 3th Pattern 

f4 = 59;    % Line signal 

f5 = 125;   % Extra signal 

f = [59 83.3 96.7 113.3 125]; % Patterns and Signals 

N = 512;  

t = Ts*(0:N-1)'; 

x = 

0.8*sin(2*pi*f1*t)+0.9*sin(2*pi*f2*t)+0.4*sin(2*pi*f3*t)+0.2*sin(2*pi*f4*t)+0.1*

wgn(N,1,-10); %Signal 

figure(1); 

plot(t,x); 

%title(''); 

xlabel('Time (ms)'); 

ylabel('Intensity (mV)'); 

figure(2); 

periodogram(x,[],[],Fs);          % PSD with FFT 

                                  % (computed with all N points of signal) 

X = goertzel(x,round(f/Fs*N+1));  % PSD with Goertzel Algorithm only in the 

region of interest 

figure(3);                         

stem(f,abs(X)); 

ax=gca; 

ax.XTick=f; 

title('DFT Magnitude') 

xlabel('Frequency (Hz)'); 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


