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Introduction

The dependency of the performance of a Flexible Manufacturing System (FMS) on the

equipment efficiency and the process control, join with the constant increasing of the com

plexity of control systems leads to a higher demand on reliability and safety.

One of the most important tasks to improve reliability, safety and economy is the fault

diagnosis and error recovery, which if they are accurate and on time can help to avoid system

shutdown, breakdown, and even dangerous operations concerning human losses and material

damage.
Fault analysis has been, and still is, a very active área of research both in industry and

in academy. Therefore, several modelling methods and a variety of techniques to perform

diagnosis have been proposed.

In the Discrete Event Systems (DES) context, Finite Autómata (FA) has been used as

modelling formalism and many results on diagnosis have being obtained for DES represented
as FA. In [25] [26], Lin uses a nondeterministic Mealy automaton and a deterministic Moore

automaton as models for off-line and on-line diagnostics respectively; the author proposes
two algorithms, one to find a minimal observable event set and an algorithm to find a

control string that diagnoses the system. However, this last algorithm has an exponential

complexity. In [31], Magni, et al. propose a technique describing the components as Finite

State Machine (FSM) models, but they use composition rules that lead in a state explosión,
even when they consider temporal information. In [40] [41], Sampath et al. also use FSM as

component modelling incorporating the sensor maps for off-line and on-line diagnosis with a

finite delay, but the analysis is comparable in complexity with the reachability tree search.

In [17], Garcia et al. apply the concepts in [40] [41] to introduce a centralized modular

diagnoser using FSM as modelling technique.

Nevertheless, when the size of the system increases and its behaviour is complex, the size

of FA models make the analysis prohibitive, for this reason, the study of diagnosis with an

observability approach using Petri Nets (PN) as modelling formalism has emerged in the late

years. In [18], Giua defines an observer based on the observation of a word of events using
PN and he also presents algorithms for estimating the state considering two cases, then;
from this estimate, he shows how to design a controller to ensure that forbidden markings
are not reached but it is not optimal. In [14], Fanni et al. use the algorithms presented in

[18] to estimate the actual marking of the system and to design the controller; though this

controlled system may result blocked, henee the authors show with an example, but only
with an example, how to introduce time-out mechanisms to recover from this blocking.

This thesis addresses the diagnosis problem in Flexible Manufacturing Systems (FMS),
using Interpreted Petri Nets (IPN) as modelling formalism. This allows, in one hand, repre
senting both measurable and non-measurable internal states, and on the other hand, provides

vü



VIH INTRODUCTION

representations that are more compact. Besides the characterization from a language point

of view of the diagnosability property, it is also presented a structural characterization, which

reduces the complexity in the diagnosability analysis.
In addition, it is presented an extensión of the modelling methodology that obtains

binary IPN models presented by [38] to include faulty markings; it is a bottom-up modular

construction technique. The study of diagnosability, the design of the diagnoser and the

error recovery approach take advantage of this modelling technique.
Another contribution of this thesis is a fault recovery approach to complement the di

agnosis approach modelled with Interpreted Re-Writing Nets (IRWNets), an extensión of

Re-Writing Nets (RWNets) [10] [11] based on IPN, a formalism introduced here that also

helps in task reprogramming.
This thesis is organized as follows. Chapter I presents an overview of FMS, the concepts

in the context of fault tolerance, and fault tolerance in DES. Chapter II presents the PN

fundamentáis, the IPN formalism and the extended modelling methodology. Chapter III

defines the diagnosability property, its characterization from a language point of view and its

structural characterization. Moreover, the design of a diagnoser net and the general scheme

for diagnosis are also presented. Finally, chapter IV introduces the IRWNets definition

and their dynamics in order to illustrate a fault recovery approach. Two cases of study to

illustrate this approach and the task reconfiguration as a feature of the IRWNet formalism.



Chapter 1

Fault Tolerant Manufacturing

Systems

Summary. This chapter presents an overview of manufacturing systems, in particular, flex
ible manufacturing systems and their levéis, components, processes and goals. It also presents
some concepts in the context offault tolerance as dependability, fault, error, failure concepts,

fault types, fault attributes and fault tolerance goals. Finally, this chapter is focused in fault
tolerance in discrete event systems, specially the diagnosis methods and related work.

1
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Figure 1.1: A DES Example

1.1 Manufacturing Systems

In Discrete Event Systems (DES), the state space of a system is described by a discrete set

{0, 1, 2, 3,..}, and transitions are observed only at discrete points in time. These transitions

are associated with "events" Informally, an event can be considered as an occurrence that

produces a change from one state to another. The initial and final states may be the same

or not.

The Discrete Event Dynamic Systems (DEDS), widely recognized by Discrete Event

Systems, satisfy two main properties:

1) The state space is a discrete set.

2) The state transition mechanism is event-driven.

A formal definition of DES is presented in the following, and in Figure 1.1 a DES is

shown:

Definition 1. A Discrvte Event System (DES) is a discrete-state, event-driven system,
that is, its state evolution depends entirely on the occurrence of asynchronous discrete events

over time [12].

DES are common in the real world. Examples of DES are: Queuing Systems, Com

puter Systems, Communication Systems, Manufacturing Systems, Traffic Systems, Datábase

Systems, Software Systems: Telephony, Monitoring and Control of Complex Systems, etc.

Flexible manufacturing systems, a specific type of manufacturing systems, is one form of

automation which is an important solution to meet the three main goals managers look for

in their enterprises: to increase productivity, to increase quality, and to reduce costs.
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1.1.1 Manufacturing Systems Classifícation

In order to visualize Flexible Manufacturing Systems (FMS) with respect to all different

types of Manufacturing Systems, the Manufacturing System Classification with respect to

the shop architecture is presented below [43]:

• Transfer Lines. The process is a sequence of operations that take similar amounts of

time to complete. Each workstation performs repetitively the same task. The main

optimization problem is balancing, which means to make all the operation times in

different workstations as similar as possible to reduce inactive times and to balance

the workload of stations.

• Production Lines. There is some variability required in the workstations. Some in-

termediate buffers are introduced to filter out the variations. The buffer problem is

critical, because large buffers intend to avoid blocking and starvation, but enhance the

work in progress with the resulting economical problems.

• Flow Shop. There are some produets which may be processed in a different way or

pursue altemative paths. The sequencing problem tries to minimize inventory and

production costs by finding a proper sequence of parts or lots, naturally controlled to

satisfy the production demand.

• Job Shop. The variety of produets in this kind of plant is greater. A production route is

defined for each product. However, a greater flexibility results in a lower efficieney. The

decisión problem addresses the optimization while satisfying the production demands.

• Flexible Manufacturing. Capture the main advantages offered by the past production

systems. Because this is a very important theme in this thesis, these systems will be

widely described in the following.

1.1.2 Flexible Manufacturing Systems

In the middle of the 1960's, competition in the market became more intense and the main

concern was cost. Later, the priority was quality. During the passing of time, the market

became more and more complex, and speed of delivery became an extra concern customer

also needed.

Therefore, companies had to look for a new strategy. This new strategy was called

customizability, where companies have to adapt to the environment in which they opérate,
to be more flexible in their operations and to satisfy different market segments.

Thus, FMS is related to the effort of gaining competitive advantage.
The idea of an FMS was proposed in England in the 60's under the ñame System 24. It

was named System 24 referring to a flexible machining system that could opérate without

human operators 24 hours a day under computer control. Automation was the main goal of

System 24.

Today, Flexible Manufacturing Systems (FMS) is a very interesting área and of great

importance. Nevertheless, there is not an agreed definition of the term, but the following
definition can be considered.
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Definition 2. The FlexibleManufacturing System (FMS) is a configuration of computer-

managed numerical work stations where materials are automatically handled and loaded by
machines [45].

The word that makes the difference between FMS and traditional manufacturing systems
is "flexible" which means that FMS has the flexibility to switch between two or more

different parts for their process with little time lost.

1.2 Fault Tolerant Concepts

1.2.1 Dependability Concept

The dependability of a computer system characterizes its trustworthiness.

Definition 3. A system is said to be dependable if the reliance can be placed on the service

it delivers [24].

The dependability attributes are: availability (readiness for usage), reliability (conti-
nuity of services), safety (non-occurrence of catastrophic consequences) and security (pre-
vention of unauthorized access). These attributes can be considered in isolation but they
can be interdependent. For example: if not reliable then not available, if unreliable then

probably not safe, and so on.

In order to achieve the goal of dependability, an effort in all the phases of the system's

development must be done [19] . At design time, the dependability can be increased through
fault avoidance techniques. At implementation time, the dependability can be increased

through fault removal techniques. At execution time, fault tolerance and fault evasión tech

niques are required.

1.2.2 Fault, Error and Failure

It is of great importance to have knowledge about the terminology used in the problem

context, moreover, to make distinction among them. Therefore, the following basic concepts
are presented [28].

Definition 4. A fault is the original source of any problem. It may lead to an error directly
or indirectly.

Definition 5. An error is the difference between what is specified and what is actually
there. In a control system, an error is an observable difference between the actual state and

the representation of the pretended state.

Definition 6. A failure occurs when an error affect the service delivered from a system.

If the component that has the failure is part of a system, the result is a fault in the system

which contains the failing component.
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Figure 1.2: Fault Types

1.2.3 Fault Types

Since it is not possible to consider all existent faults, it is preferred to classify them based

on locality, effect, cause, duration, among others [19]. This classification is shown in Figure
1.2.

1.2.4 Fault Attributes

Fault Observability

Definition 7. A fault is said to be observable if the system interface shows a symptom.

Definition 8. A symptom is information indicating the existence of a fault. A symptom

may be an observed fault or failure, or it may be a change in the system behaviour although
it still meets its specification [19].

Definition 9. If a fault is found by a fault tolerant mechanism (described later), this fault
has been detected, otherwise is latent, whether it is observable or not.

Fault Propagation

Definition 10. A favlt is said to be active if its propagation generates more faults or

failures, otherwise, it is said to be dormant.

When a fault is detected in the system, it is very important to block its propagation,
because if not, it may conclude in a chain reaction causing a catastrophe.

1.2.5 Fault Tolerant System Concept

Fault toleranc-3 is one way to achieve dependability, which means that it is one way for the

system to become available, reliable, safe, and secure. cFault tolerance can be applied in
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three levéis [19]:

• Hardware Level, where fault tolerance has been used to compénsate for faults in com

puting resources.

• Software Level, where Software fault tolerance compensates for faults such as changes
in program or data structures due to transients or design errors.

• System Level, where the computer subsystem may provide functions that compénsate
for faults in other systems components that are not computer-based.

Definition 11. Fault Tolerant Systems are systems which are able to handle an error or

fault mthout affecting the service delivered [28].

Fault tolerance involves:

1. Fault detection. A fault has occurred.

2. Fault diagnosis. What caused the fault.

3. Fault isolation. Prevents the propagation of faults.

4. Fault masking. Insuring that only correct valúes are passed to the system boundary.

5. Fault compensation. Provide a response to compénsate for output of the faulty system.

6. Fault Rcpair. Faults are removed from a system. (Recovery process).

These steps may be covered or synthesized by the following:

1. Fault Detection. The process of observing the actual state of the controlled sys

tem and comparing it with its specifications in order to find discrepancies as early as

possible.

2. Fault Diagnosis. The process of finding the original fault which caused the error or

which can cause an error.

3. Fault Recovery. The process of applying proper corrective actions in order to prevent
a possible future error, or reach and error free state.

In each of these subfields there are several principies to achieve these objectives, as well

as different methods for representing the information needed. It will be discussed below.
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1.2.6 Redundancy Management

Fault tolerance is sometimes called Redundancy Management; it is because Redundancy is

the provisión of functional capabilities that would be unnecessary in a fault-free environment.

The measure of success of fault tolerance is coverage (the probability of a system failure

given that a fault occurs). Simplistic estimates measure redundancy by counting the number

of redundant success paths in a system, which can be modelled by Markov models, or Petri

Nets.

There exist several types of redundancy:

• Space redundancy, provides sepárate physical copies of a source, function, or data item.

• Time redundancy, if the expected faults are transient, a function can be rerun with a

stored copy of the input data, and if information shifted in time can be analyzed for

unwanted changes, it can be corrected to its original valué.

• Fault containment regions, with few or no common dependencies between them, to

prevent propagation.

1.2.7 Fault tolerance goals

The main goal of fault tolerance is to prevent faults from propagating to the system bound

ary, where it becomes observable and, henee, a failure. In general, the further a fault has

propagated, the harder it is to deal with. Since fault tolerance is redundancy management,

however it becomes a matter of the degree of redundancy desired. Finally, it is important

to note that dealing with faults earlier rather than later may be the difference in the service

the system delivers.

1.3 Fault Tolerance in Discrete Event Systems

1.3.1 Diagnosis Methods

The problem of fault diagnosis has received considerable attention in the literature of relia

bility engineering, control, and computer science, and several methods and techniques have

been proposed.

The system is usually modelled using artificial intelligence and mathematical methods.

These artificial intelligence methods are those knowledge-based [4], and agent-based [42],
where the system behaviour is specified in form of rules and faets, obtained from empirical
human observation. Mathematical methods are those process-model-based where the system
behaviour is represented as amathematical model such differential equations [21], state space
models [21], FA-model [22] [25] [26], FSM-model [31] [40] [41], PN-model [14] [18] [34], CPN-

model [7], and so on.

There exist a variety of studied techniques to perform diagnosis on the modelled sys

tem, which can be classified in two main groups: artificial intelligence and mathematical

techniques. Artificial intelligence techniques are expert systems for inference [4] [27], neural
network classifier [27], fuzzy logic for inference [27], and adaptivqor neurc-fuzzy system for
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inference [27]. Mathematical techniques are signal models [20] [21] [30], parameter estima
tion [20] [21], state estimation [18] [20] [21] [22], observers [14] [21] [40] [41], parity equations

[21], change detection [21] [34], symptom generation [21], modularity [17], fault trees [21],
statistical classifiers [27], geometric classifiers [27], polynomial classifiers [27] and fuzzy

logic for inference [27].

1.3.2 Related Work

The problem of diagnosis has been investigated by several researchers since different points
of view.

Diagnosis approaches

• In [25], Lin studies off-line and on-line diagnostics. On-line diagnostic properties are

state changing, events not all controllable, observation restricted to outputs, and con

straint test sequence. While off-line diagnostic properties are state not changing, events

all controllable, observation not restricted to outputs, and not constraint test sequence.
He uses a nondeterministic Mealy automaton and a deterministic Moore automaton as

models for off-line and on-line diagnostics, respectively, as first component, and a set

of controllable events as second component. In addition, he partitions the state space
into disjoint subsets, as desired. For off-line diagnostics, Lin assumes that the outputs
are events observed and that all events are controllable. Based on the observable events

and the desired partition, the state space is partitioned under every possible event. The

conjunction of all these partitions must be finer than or as fine as the desired partition
in order to determine a positive diagnosability. For on-line diagnostics, not all events

are controllable. Lin says that a string of controllable events diagnoses a system with

respect to a desired partition, if every pair of reached states having the same outputs

belongs to the same desired partition. Therefore, if there exists such string then the

system is on-line diagnosable. In [26], this theory is applied to an electronic engine
control circuit. Advantages: Lin studies on-line and off-line diagnostic, and proposes

an algorithm to find a minimal observable event set and an algorithm to find a con

trol string that diagnoses the system. Disadvantages: Lin studies on-line and off-line

diagnostics separately. For on-line diagnostics, he uses partial state observation and

no event observation. For off-line diagnostics, he uses no state observation and partial
event observation. The algorithm to find a control string has complexity of O (2*^*)
(Q is the set of states) in its worst case because is a reachability search.

• In [31], Magni et al. present a methodology for the development of a diagnostic system
for complex industrial plants. The proposed technique consists in describing all the

elements of the plant and the diagnostic system (plant, devices, sensors, actuators,

diagnostic tests, hardware and analytical redundancies) as FSM models represented as

event/state and output matrices. Then, they present a formal composition rule under

the assumption that faults can occur only one at a time limiting the dimensión of

the resultant FSM model. This resultant output matrix, called matrix of residuals or

fault signature, shows if faults are not distinguishable. If so, authors consider temporal
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information and present an algorithm to diagnose the system using the minimum and

máximum times of the event or fault to occur and its detection by an alarm.

Diagnosability and observability approaches

• In [40] [41], Sampath et al. propose a DES approach to the problem of failure diagnosis,
where the system is modelled as a FSM that describes normal and failed behaviour,

which belong to the event set. If the system has more than one component, first, they
build the model of every component and then, they compose these models. With the

composite model and sensor maps, they genérate the final composite system model

including interactions among components and incorporating the sensor maps. Authors

introduce the notion of diagnosability and I-diagnosability of DES. Roughly speaking,
a system is diagnosable if it is possible to detect with a finite delay occurrences of

failure events using the record of observed events. In addition, a system is said to be

I-diagnosable if it is possible to diagnose failures, not always, but whenever the failure

events are followed by certain observable indicator events that are associated with the

failures. They also introduce the diagnoser which is a FSM built from the system

model. They first assume that the system starts in a normal state, so they add a label

N (Normal). They use the next observed event to make the transition to another state

which it includes all possible states every one with its own label (N-=Normal, F+#of

fault=Fault, and/or I+#of indicator=Indicator) and so on. They use the diagnoser
to perform on-line diagnosis. Moreover, they present additional modifications on the

diagnoser in order to perform off-line diagnosis.

• In [17], García et al. present a modular decomposition as an approach for failure diag
nosis based on DES. The methodology presented is based on DES and on the diagnoser

concepts introduced by [40] [41], and starts with the individual modelling as FSM of

all components that form the system. In order to introduce modular decomposition,
authors present a new architecture, where the system is decomposed in subsystems,
each one with its minimum local controller, which send information to a centralized

modular diagnoser. This modular composition must consider the functional interre-

lation and the dimensión of the models in order to have as low dependability [19] as

possible. Authors also present a solution for the coupling problem of diagnoser that

consists of including a conjunction function working only in coupling situations. This

function uses non local information coming from the subsystem where a failure has

taken place.

Observability and state estimation approaches

• In [18], Giua defines an observer as the system that computes the estimate ofthe actual

marking of the net based on the observation of a word of events. Two algorithms are

presented for estimating the state of the system assuming that only the net structure

is known and considering two cases: when the initial marking is unknown and when

the initial marking is a macromarking. The estimate computed as a result of these

algorithms is always a lower bound on the actual marking of the net. Giua shows

how this resultant estimate may be used to design a controller. This controlled is
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called state feedback control loop with observer which ensures that the system never

enters a set of forbidden states, assuming complete controllability. The controller uses

an algorithm to ensure that forbidden markings are not reached. Advantages: It is

possible to estimate the actual marking event when the initial marking is unknown or

it is a macromarking. Disadvantages: The algorithm used by the controller to ensure

that forbidden markings are not reached is not optimal; it may also prevent transition

firings that lead from legal markings to legal markings.

• In [14], Fanni et al. use the algorithms presented in [18] to estimate the actual marking
of the system based on event observations. Therefore, they use this estimate to de

sign a state feedback controller as described in [18]. The controlled system may result

blocked. as a result of the estimate, henee the authors show with an example how to

introduce time-out mechanisms to recovery from this blocking. This time-out mecha

nism consists in adding a place and a time-out transition. Thus, the timed transition

will fire only if no other transition is enabled. Then, the observer, regardless of its

previous marking, reconstruets its marking. Advantages: The consideration of mutual

exclusión constraints as state specifications of the desired behaviour. Disadvantages:
The authors do not present a general approach to automatically construct the time-out

structure, they describe only an example.



Chapter 2

Modelling FMS with PN

Summary. This chapter presents the PN fundamentáis: the PN definition, their properties,
and their implication in FMS. The IPN definition is also presented, an extensión ofPN, used

as modelling formalism allowing the representation ofmeasurable and non-measurable states

and providing more compact representations than other formalisms. Finally, an extensión of
a modelling methodology forDES that obtains binary IPNmodels with faults is also presented.

11
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2.1 Petri Net Fundamentáis

2.1.1 PN Definition

Definition 12. A Petri Net structure G is a bipartite digraph represented by the 4-tuple
G = (P, T, I, O) where [29] [39].

• P — {p\,P2, ■■■,Pn} is a finite set of vértices called places,

• T = {íi,-2- •■•,tm} is a finite set of vértices called transitions,

• I : P x T —► Z+ is a function representing the weighted ares going from places to

transitions, and

• O : P x T —► Z+ is a function representing the weighted ares going from transitions

to places. Z+is the set of nonnegative integers.

Usually -tj denotes the set of all places p¿ such that I(pi,tf) ^ 0 and tj- the set of all

places pi such that 0(pi,tf) ^ 0. Analogously, -p¿ denotes the set of all transitions tj such

that 0(pi:tj) t¿ 0 and p¿* the set of all transitions tj such that I(pi,tj) ^ 0. Graphically,

places are represented by circles, transitions by rectangles, and ares are depicted as arrows.

The incidence matrix of G is C — [cy], where c^*
= 0(p¿, tf)

—

I(pi, tj). The marking
functionM : P —► Z+ is amapping from each place to the nonnegative integers representing
the number of tokens (depicted as dots) residing inside each place. The marking of a PN is

usually expre_sed as an n—entry vector.

Definition 13. A p-invariant Y of a PN is a rational-valued solution of equation YTC =

0. The support of a p-invariant Yi is the set ||Y¿|| — {p \ Yi(p) ^ 0}.

Definition 14. A Petri Net system (PN) is the pair N = (G,M0), where G is a PN

structure and Mq is an initial token distribution.

In a PN system, a transition tj is enabled at marking Mk if Vp» G P, M*-(p¿) ^ I(pi,tj).
An enabled transition tj can be fired reaching a new marking Mfc+i which can be computed
as Mk+\ = Mk +Cvk, where Vk(i) = 0,i^ j, Vk(j) — 1, this equation is called the PN state

equation. The reachability set of a PN is the set of all possible reachable marking from

Mq firing only enabled transitions; this set is denoted by R(G, M0).

Example 15. Consider the PN of figure 2.1. For this net the PN System N = (G,M0),
where G = (P,T,I,0) and M0 are given below:

• P= {Pl,P2,P3,P4,P5}]

* T = {ti,t2,t3,t4,t5}\

• HpiM) = 1, I(P5,h) = 1, /(ft.ía) = 1, Hps.tg) = 1, I(P5,h) = 1, I(paM) = 1,

I(Pz,ti) = 1, and I(pi,tj) = 0 for the rest of pairs (pi,tj), with i,j = 1, ..,5;

. ufe, h) = 1, 0(p3,t2) = l, 0(p5,t2) = l, 0(p4,t3) = 1, Oipx.U) = 1, 0(p5,t4) = 1,

0(pi,t5) — 1, and 0(p,,tj) = 0 for the rest of pairs (p^tf), with i,j = 1, ..,5;
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Pz

tóc

Figure 2.1: A Petri Net

M0(pi) = 1, M0(p5) = 1 and M0(p2) = MQ(p3) = M0(p4) = 0.

The input function matrix is I =

The output function matrix is O

The incidence matrix is C =

-1

1

0

0

-1

The initial marking is M0 = [l 0

0

1

0

0

0

b
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1
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o
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1
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'
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o
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1

1

o

o

There is only one enabled transition, which is transition ti

sition ti, the resulting PN marking is Mi = [O 1 O O 0]
sition is ¿2 • If transition t2 is fired, the resulting PN marking is M2

After the firing of the tran-

where the next enabled tran-

T

[0010 1]'

2.1.2 PN Properties

Petri nets models may exhibit several properties: Behavioural properties that depend on the

initial marking of a PN, and Structural properties that do not depend on the initial marking
of a PN, but they do depend on the PN topology.
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Let us review the most important properties.

Definition 16. Given a N = (G, Mq), a marking M is reachable from marking Mq if
there exists a sequence of transitions firings that transforms Mq to M . The reachability set

R(G, Mq) is formed by all the reachable markings Mi from Mq.

Reachability is considered a behavioural property, since it depends on the initial marking.

Definition 17. Given a N = (G, M0), and its reachability set R(G,Mq), a place p £ P

is B — bounded if M(p) < B, VM G R(G, Mo), where B is a positive integer. PN is

B — bounded if each place in P is B — bounded. Safeness isl — bounded. G is structurally
bounded if G is bounded given any finite initial marking Mo .

Definition 18. A transition t is live if at any markingM G R(G, Mo), there is a sequence

of transitions whose firing reach a marking that enables t or, that there is a transition firing

sequence that includes t. A PN is live if every transition in it is live. A PN is structurally
live if there is a finite initial marking that makes the net live.

Definition 19. A transition t is dead if there is an M € R(G, Mq), such that there is

no sequence of transition firings to enable t starting from M. A PN contains a deadlock

if there is an M € R(G, Mo) at which no transition is enabled. Such a marking is called a

dead marking.

Definition 20. A PN System N = (G,M0) is said to be reversible ifiM G R(G,M0),
Mq G R(G, M). That is, the fact that from every marking reached from the initial marking,
there is a transition firing sequence that ends up with the initial marking. A PN is said to

be structurally reversible if there is a finite initial marking that makes the net reversible.

The properties just mentioned (Boundedness/safeness, liveness, reversibility) are inde

pendent each other. A PN may have or not any of them.

Definition 21. A PN with an initial marking M0 is strictly conservative iff VM £

R(G,M0),

t=i ¿=i

This means that \ t\ = \t • | Vi G T.

In other words, a PN is conservative if the number of tokens in the initial marking does

not change through the firing of transitions.

Definition 22. A PN is repetitive iff there exists a marking M and a firing sequence s

such that:

• After the firing of the sequence s from M, it ends up in M. This is M —-•-» M.

• Every transition occurs in s.

Definition 23. A PN is said to be consistent if there exists a marking M, and a firing
sequence s from M that ends up with M, such that every transition occurs at least once in

s.
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Pl *1 P2 *_ P3 t3

Figure 2.2: Sequential Relation

2.1.3 PN's interpretation in FMS

According with [45], there are two interpretations of PN in the context of FMS. In the

first interpretation, places model resource status and operations, transitions model the

start and/or end of operations, directed ares model material, resource, information, and/or
control flow direction, and tokens model material, resources, or information. In the sec

ond interpretation, places model resource status and conditions, transitions model opera

tions, processes, activities, and events, directed ares model material, resource, information,

and/or control flow direction, and tokens model material, resources, or information

There exists a modelling convention with PN for FMS. For every concept in manufac

turing, a PN modelling is presented in the following [45] :

• Moving of production lot size. Weight of directed ares models the production size that

must be moved.

• Number of resources (AGVs, machines, workstation, and robots). The number of to

kens in places models quantity of the corresponding resource.

• Capacity of a workstation. The number of tokens in places models the availability of

the workstation.

• Work-in-process. The number of tokens in places models the buffers and operations of

all machines.

• Production volume. The number of tokens in places models the counter for or the

number of firings of transitions modelling the end of a product.

• The time of an operation (setup, processing, and loading). Time delays associated with
the place or transition modelling the operation.

• Conveyance or transportation time. Time delays associated with the directed are, place
or transition models the conveyance or transportation.

• System state. PN marking (plus the timing information for timed PN)

• Sequence. One operation follows the other. It is shown in 2.2.

• Concurrency. Two operations are initiated by one event forming one parallel structure

starting with a transition. It is shown in 2.3

i'

• Conflict. If any of two operations can indistinctly follows an operation. It is shown in

2.4
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ti P2 h

t_ Ps t4

Figure 2.3: Concurrent Relation

li P2 t3

Pl Va

h. P3

Figure 2.4: Conflicting Relation

• Mutually exclusive. Processes can not be performed at the same time due to a shared

resource. There are parallel and sequential mutual exclusión shown in 2.5 and 2.6,

respectively.

The PN properties have an interpretation in the context of the modelled manufacturing

systems and it is described below [45]:

• Reachability. A certain state can be reached from the initial conditions.

• Boundedness. No capacity (of buffer, storage área, and workstation) overflows.

• Safeness Availability of a single resource; or no request to start an ongoing process.

• Conservativeness. Conservation of non-consumable resources, as machines and AGVs.

• Liveness. Freedom form deadlock and guarantee the possibility of a modelled event,

operation, process or activity to be ongoing.

Figure 2.5: Parallel Mutual Exclusión Relation
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pQpi

P3 ( • )P5

Figure 2.6: Sequential Mutual Exclusión Relation

• Reversibility. Re-initialization and cyclic behaviour.

• Repetitiveness. Existence of repetitive operations/activities/events for some marking.

• Consistency. Existence of cyclic behaviour for some marking.

See [33] for a deeper revisión of properties, analysis and applications of PN.

2.1.4 IPN Formal Definition

Now, Interpreted Petri Nets (IPN) [1] [2] [32], the extensión to PN used in this work as

modelling formalism, is given. This extensión allows to associate input and output alphabets
to PN models.

Definition 24. An Interpreted Petri Net (IPN) is the 5-tuple Q = (N, E, $, A, tp) where

• N = (G, M0) is a PN system,

• E = {ati,a2, ...,aT} is the input alphabet of the net, where oti is an input symbol,

• <_>-= {Ci- C2- ■••• Cn) ¿s **^e output alphabet associated to places, where £¿ is an output

symbol,

• X : T —» E U {e1} is a labelling function of transitions with the following restriction:

-

Vtj,tk G T, j + k if I(pi,tj) = I(pi,tk) + 0 and both X(tj), X(tk) ¿ e\ then

X(tj) 7^ X(tk). In this case el represents an internal system event,

• tp : R(G, M0)
—* {$}q is an output function, where R(G, M0) is the reachability

set defined as in the PN and q is the number of available outputs associated to places.

í¡
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Remark. From now on, (Q,M0) -will be used instead of Q = (TV, E,<_>, A, <¿?) to emphasize
the fact that there is an initial marking in an IPN.

Remark. The function tp is linear and can be represented as a q x n matrix. tp
= [<fij],

where the i — th row vector tp{ is the transpose of an elemental vector ej, and n is the number

of places.

Definition 25. A transition t G T is said to be controllable, ifX(tf) ^ e%, and uncontrol-

lable, otherwise.

Definition 26. A place pi G P is said to be measurable, if 3j G {1,2, ...,r} such that

¡Pj
= ej t¿ 0, where tpj is the j-th row of tp; otherwise, pi is called non-measurable. The

set Pm = {p \ 3j G 1, 2, ...,r such that tpj
= ef ^ 0} is the set of measurable places and

Pnm — P\Pm is the set of non-measurable places.

Remark. A measurable place is depicted as an unfilled circle, while a non-measurable place
is depicted as a filled circle.

Let o — titjtk... be a firing transition sequence. The Parikh vector ~~o : T —> Z+ of o

maps every transition t of T (the transitions of the net) to the number of occurrences of t in

a. In an IPN, a transition tj G T is enabled at a marking M if Vp¿ G P, M(p¿) > I(pi,tj).
However, if tj is an uncontrollable transition then tj can be fired; otherwise, the input

symbol X(tf)
—

ai ^ e must be present in order to fire tj.Using the Parikh vector, the state

equation of an IPN can be written as:

Mk+i = Mk + C-¿ (2.1)

yk
= tpMk

This work assumes that just one transition is fired at a time.

Definition 27. Let (Q, M0) be an IPN. The firing language of (Q, M0) is £(Q, M0) =

{o\o = Utj...tk AMo^Mi^* ...
% Mfe}.

Definition 28. The input language of(Q, M0) is £in(Q, M0) = {A(í¿)A(£,)... X(tk)\titj...tk G

£(Q,M0)}. The output language of(Q,M0) is £cmt(Q,Mo) = {ip(M0)tp(Mi)...tp(Mw)... |

M0 -ÍU Mx -X ...Mw -^ Mfe A Utj...tk G ¿(Q.Mq)}

Definition 29. Let (Q,M0) be an IPN and w G £in(Q,Mo) be an input word of the

net. The set of firing sequences generated by w is Fw = {o = titj...tk G £(Q,Mq) |

X(ti)X(tj)...X(tk) = u}. The set of output words generated by w is

*w = {1- « tp(Ma)ip(Mi)...tp(Mk) | M0 -^ Mi % ...
-^ Mfc A Utj...tk G Tw).

Example 30. Consider the IPN shown in figure 2.7. For this net, the 5-tuple Q =

(N, E, <_>, A, tp) is given below:

• N is the PN System described in example 15.

• E = {Start, Stop}
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Op1,p2

Start, t, y^ 7\ Stop, t2

Figure 2.7: An Interpreted Petri Net

$ = {Opl, 0p2)

X(ti) = Start, X(t2) = Stop, A(í3) = Start, X(U) = Stop, X(t5) = e.

f

0 10 0 0

0 0 0 10

Transitions ti, t2, ¿3, í4, are controllable since A(íj) -7^ e* , 1 < i < 4. Henee, transition t5

is uncontrollable since X(ts) = e.

Places p2 and p\ are both measurable places since the transpose of the elemental vector

e2 and e4 of tp are not nuil. While places pi, P3, ps are non-measurable since e2 and e4 of

tp are nuil.

There is only one enabled transition at marking Mq, which is transition ti. If the input

symbol Start is present in the system, then t: is fired resulting in a new marking Mi and

a new output signal j/i . This dynamic is described by the state equation 2. 1 as described in

the following: Mi =

tp[0 1 0 0 0]T =

1 0 0 0 1] +G[1 0 0 0 0] = [0 1 0 0 0] andyi =

0

The firing language of (Q, Mo) is described by £(Q, Mo) = (-1-2*3*4 U ¿1*2*5)* Henee,

the input language of (Q, Mo) is described by £in(Q, M0) = (StartStop)+ and the output

language is described by £out(Q, Mq) = (OplOp2 U Opl)*
Consider w = StartStop. Then, the set of firing sequences generated by w isYw — {tit2,

*i*2*5} ond the set of output words generated by w is ^w = {Opl}.

The following definitions relate the input sequence a-oai
■ ■

an with its respective pro
duced output sequence t/o2/i

■ • ■

Vn in an IPN.

Definition 31. A sequence of input-output symbols of (Q,M0) is a sequence uj —

(o-o-yo) (a¡i,yi) • • •

(an,yn), where aj G E U {e} and ai+i is the current input of the IPN
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when the output changes from y¿ to yi+i. It is assumed that a0 = e, y0
= tp(M0) and

(ai+i,yi+i) belongs to the sequence when:

• (o-í-J/í) belongs to the sequence,

• Vi+i ¥= Vi> and

• there exists no Vj + W, % + jfc+x occ„mnS after the occurrence of jh and before the

occurrence ofyi+i.

Definition 32. Ifu = (a0,y0) («i-l/i)
■ ■ • K>2/n) is « «s?uence of input-output symbols, then

the transition sequence o G _-(Q,M0) w/wwe /ir¿nfl actea% genérate, w u denoted by

au. The set of all possible firing transition sequences that could genérate
the word

u is íí(w) = H a G _T(Q, M0)A ffte /Hng o/ a produces w).

Definition 33. Let (Q, M0) be an IPN. The set of all sequences of input-output sym

bols of (Q,M0) will be denoted by A(Q,M0). The set of all input-output sequences^
of length greater or equal than n vñll be denoted by An(Q,M0), i.e., An(Q,M0) -

{wGA(Q,M0)|M>n}.

Definition 34. The set of all input-output sequences
that leads to an ending mark

ing in the IPN (markings enabling no transition or only self-loop transitions) is denoted

by AB (Q, M0), i.e., AB (Q, M0) = w 6 A (Q, M0) | 3a G íí(w) such that M0 — Mj and if

Mj ■£* thenC(;U)=0}.

Definition 35. Let u = (a0,y0) (auyi)
■ ■ ■ (an,yn) G A(Q,M0) be a sequence of input-

output symbols. The marking sequence set corresponding to u is defined as

I,, = {MqMi
■ ■ ■ Mk\M{ G R (Q, M0) ,

^ ^

MQ-^Mi-^----^MkAou = titj---tmeQ(u)}

2.1.5 Event-Detectability property

The event-detsetability property of an IPN is definitely essential, as it will be seen in

chapter 3, in the context of the diagnosabiüty property
the focus of this thesis. Therefore,

it is important to define it.

Definition 36. An IPN given by (Q,M0) is event-detectable if any
transition firing can

be uniquely determined by the output signáis that it produces [2].

The following lemma states when an IPN is event-detectable [2].

Lemma 37. A live IPN given by (Q,M0) is event-detectable if and only if

1. Ví¿,t* it holds that tpC(;U) ¿ tpC(;tj) and

2. Vífc €T it holds that <pC(;tk) ¿ 0.

For further information about the proof of this lemma
see [2].
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Example 38. Consider the IPN (Q,M0) shown in figure 2.7. Based on lemma 37, there

are two conditions to be analyzed in order to define event-detectability:

1. VU,tj it holds that <pC(;U) ¿ ipC(;tj) and,

2. Vífc eT it holds that <pC(;tk) ¿ 0.

This means that all columns of<p»C must be not nuil and different from each other.

Let tp and C the output functions matrix and the incidence matrix described in examples

„ \l -1 0 0 0'
30 and 15, respectively. Therefore, tp • C

=
-

q i -1 0

In this case, it can be concluded by the result of<p»C that (Q, M0) is not event-detectable

because there exists one nuil column. This is because transition í5 cannot be detected when

(Q, M0) changes from p3 to pi by observing the outputs. Therefore, if the output signal OS

is added either to place pi or place p3, then transition t5 can be detected by observing the

outputs.

2.1.6 Marking-Detectability property

Another property that is useful in the design of diagnoser nets is the marking detectability

[37].

Definition 39. Let (Q,M0) be an IPN. (Q,M0) is marking detectable i/Vw G £in(Q,Mo)

3z such that ojz G £in(Q, M0), | z \< k < oo, where M0
™

M¿ and Mi can be computed.

In order to characterize an IPN exhibiting this property, the concepts of conservative

marking laws and synchronic distance are now introduced [37].

Definition 40. Let (Q,M0) be an IPN and M(pj) be any reachable marking of place Pj in

(Q, M0). The set of equations CML = {£"=1 a)
■ M(Pj) = h | i G [1, ..., s], a) G Z+} where

Vafc t¿ 0, it holds that ki/ak is an integer vahe, form a set of conservative marking laws

when all nonmeasurable places ofthe net are contained in at least one equation (i.e., ifpj is

nonmeasurable, then 3¿ such that a} 7-= 0).

The upper marking bound Kj for a nonmeasurable place Pj is defined as Kj
= min{/c¿/a* |

a) t¿ 0, i G [1, ..., s\. Note that Kj is always defined.

Definition 41. The synchronic distance of transition tit with respect to transition tj in an

IPN (Q, M0), is the máximum vahe ofthe difference between the number of firings ofU and

tj: considering all possible firing sequences. This is expressed as:

SD(Q,M0;ti,tj)= max {o (U)- o (tj)}.
<re£(Q,Mo¡

In [37], the concept of synchronic distance is extended to a set of transitions in the

following sense. If Si, S2 are sets of transitions, then SD(Q, M0; Si,S2) means the máximum

valué of the difference between the number of firings of transitions in Si and transitions S2,

considering all possible firing sequences.

The next theorem, defined in [37], characterizes the IPN exhibiting the marking de

tectable property.
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Theorem 42. Let (Q,Mq) be a cyclic, live and bounded IPN where a CML is defined. If

(Q,Mq) is event detectable andWpj nonmeasurable place it holds that SD(Q,Mq\-Pj,Pj-) >

Kj, then (Q,Mq) is marking detectable.

For further information about the proof of this theorem see [37].

2.1.7 Observability

This property definition deals with the possibility of finding out the system initial state in a

finite time using only the knowledge of the system structure, input and output.
In this work, the observability property [38] is used to characterize the diagnosability

property as described later.

Definition 43. An IPN given by (Q,M¿) is observable if there exists an integer k < oo

such that Va; G Ak (Q,M.¿) it holds that the information provided by w and (Q,M.o) suffices
to uniquely determine the initial marking Mq and the marking Mí reached by the firing of
the underlaying transition firing sequence au.

2.2 The Modelling Methodology

The model of a FMS is represented using binary IPN. This modelling methodology [3]
[38] is based on the identification of the components of the FMS, then it includes the

description of the relationships among them using two operators, synchronic and permissive

compositions, and finally, adding an interpretation with the association of input symbols to

transitions and output symbols to places. The extensión here presented is specifically to

model the probably faults that the system can have or the ones that are important for us to

know about their occurrence.

This modelling methodology includes three steps. The extensión to model faults is made

on step 1 as described in the following:

1. Set of valúes. For each state variable sv'j G STATE_variableSj, the set values„¡ in

cludes all vallJ of fault that sv%j can have.

2. Codification. Because of the existence of faulty valúes, the set of places can be

partitioned into the subsets PF< and P^vi , representing the faulty and normal valúes
i i

of the state variable svlj, respectively.

3. Event Modelling. Each place pl¿ G PF- must have only one input transition and

self-loops transitions representing all the events related with this state variable. We

denote by PF the set of all faulty places, i.e. PF = U P*\ .

su*. i

Remark. In this work, for every faulty place p¿ G PF <p(pi) = f(pk), where pk C •

-p^. This

case considers the worst one, i.e. when the system enters a fault state and the sensors do

not show it. However, this is not the only case it can be considered.

Remark. Remember that there is only one input transition to every faulty place.
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Remark. For the complete modelling methodology see [3] [38].

In order to exemplify the modelling methodology introduced by [38] with the extensión

to model faults here established, it will be presented the following case.

2.2.1 Application ofthe extended modelling methodology

Case Study 1: "Manufacturing couplers and brackets"

System Description

This FMS processes two different parts, couplers and brackets. The two original process

plans are described in the following.
The original process plan for a Coupler is:

1. Chuck the part on 0.900 diameter.

2. Face one side.

3. Turn 0.750 X 0.500 diameter segment.

The process plan for a Bracket is:

1. Mili outside dimensions ensuring a 2.300 X 0.95 X 0.950 part.

In order tn compliance with this process plans, the following components are needed:

• An engine lathe or turning machine, as generic ñame, for facing and turning processes.

• A milling machine.

• Two conveyors.

• One robot.

• A part selector.

The system layout is depicted in figure 2.8, and the process of a coupler is described as

follows:

1. Robot takes the part from the input pallet to the engine lathe.

2. Engine lathe performs the corresponding processes of facing and, then, turning on the

part.

3. Robot takes the part from the engine lathe to the output pallet.

4. The pan is finished.

The process of a bracket is described as follows:
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Facing &

Turning

Partí

Engine Lathe

Partí

Output Pallet

Part 2

Part Selector
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Robot 1

Part 2
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Milling machine

Figure 2.8: Systeml: Layout

1. Robot takes the part from the input pallet to the milling machine.

2. Milling machine performs the corresponding process of milling on the part.

3. Robot takes the part from the milling machine to the output pallet.

4. The part is finished.

System Model

The FMS model is represented by a binary IPN which it will be built up following the

modelling methodology introduced by [38] with the extensions to model faults.

Step 1: Building PN The model methodology is based on building PN modules repre

senting the behaviour of a system component

Applying algorithm Building-PN

1. System components. The identified system components are the engine lathe, the milling

machine, the robot, the buffers and the part selector. Therefore, it is defined the follow

ing set. SYSTEM_COMPONENTS-= {EngineLathe, MillingMachine, Robot, InputPallet,

OutputPallet, Selector}.

2. State variables. The state_variables EL, MM, R, IP, OP, S are associated to the

EngineLathe, MillingMachine, Robot, InputPallet, OutputPallet, Selector system

components, respectively.

3. Set of vahes. The sets valuebí, = { EL_available, EL_ facing, EL_turning, EL_fault

In_facing, EL_faultIn_turning}, VALUEmaí = {MM_ available, MM_milling, MM_
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Figure 2.9: Systeml: PN Modules

faultln_milling} , VALUEñ = {R_ available, R_operationla, R_operation2a, R_faultln

_operationla, R_faultIn_operation2a, R_operationlb, R_operation2b, R_faultln_

operationlb, R_faultIn_operation2b}, VALUÉjp
= {IP_available, IP_notavailable},

valueop = {OP_ available, OP_notavailable} , VALUEs= {S_pl, S_p2} are the val

úes that the state variables EL, MM, R, IP, OP, and S can take, respectively. Observe

that every state variable includes its own fault valúes.

4. Codification. Places pi, p2, p3, p4, Ps, Pe, Pt, Ps, P9, Pío, Pn, P12, P13, P14, P15, P16,

Pi7) Pi8> P19, P2O) P2i* P22, P23 correspond to the valúes IP_available, OP_available,

R_ available, R_operationla, R_ operationlb, R_operation2a, R_operation2b, EL_

available, EL_facing, EL_turning, MM_available, MM_milling, R_faultIn_operation-

la, R_faultln_ operationlb, R_faultIn_operation2a, R_faultIn_operation2b, EL_fault-

In_facing, EL_faultIn_turning, MM_faultIn_milling, IP_notavailable, OP_not avail

able, respectively.

5. Event modelling. Transitions ¿i, t2í Í3, £4, Í5, ¿6, *7> *8, *9, *io, *n* *i2> *i3> *i4, *i5, *i6*

*i7, *i8, 1-19, *2o, *2i, *22, *23, *24, *25, *26 are created to represent the change of valúes.

In addition, for a shorter representation of the self-loops of every p^ G Pf ■

, they will

be omitted.

6. Initial Marking. In order to obtain the initial marking of the modules, it is as

sumed that the initial state of the system is EL=EL_ available, MM=MM_ available

R—R_ available, S=S_pl, IP_notavailable, OP_notavailable. Therefore, the initial

marking is MQ(p3) = 1, M0(p8) = 1, M0(pn) = 1, M0(p20) = 1, M0(p22) = 1,

M0(p23) = 1 and Mq(pí) = 0, i =1, 2, 4,.., 7, 9, 10, 12,..., 19, 21.

7. Output. The output of this algorithm is a set of PN modules shown in figure 2.9.
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Up to now, isolated PN modules Glj for each state variable sVj have been built. Notice

that all these models are state machines.

Step 2: PN Modules Composition The state variable PN module composition is

made through two basic operators: synchronic and the permissive composition. Synchronic

composition is used to establish a relation among two or more modules containing transitions

representing the same event i.e. this composition merges two or more transitions when they
have the same physical meaning. Permissive composition is used to establish a relation

among two or more modules when the marking of a place enables the firing of a transition

without modify the marking of this places. See [38] for the formal introduction of this

operators.

Applying algorithm PN Module-composition.

1. Labelling modules. The transitions representing the start of the facing operation at

the engine lathe EL get the same label tlab(t3) = tlab(tio) = x3. Also, the transi

tions representing the start of the milling operation at the milling machine MM get

the same label tlab(t7) = tlab(ti2) =xj. The transitions representing the stop of the

turning operation at the engine lathe EL get the same label tlab(t¿) — tlab(ti3) = x4.

Analogously, tlabfa) = tlab(tu) = x% that represents the stop of the milling operation
at the milling machine MM. The transition ¿26 representing the unload of the part to

the output pallet OP has two different physical meaning, therefore it is replicated into

two different transitions, ¿26a for the unload of part 1 and ¿266 for the unload of part

2. The transitions representing the unload of the part 1 to the output pallet OP get

the same label tlab(ttf) = í/a6(¿26_) = 2-5* The transitions representing the unload of

the part 2 to the output pallet OP get the same label tlab(t<f) = tlab(t2eb) = ~-g. The

transition ¿25 representing the load of a part from the input pallet IP has two different

meaning, the load to the engine lathe EL and the load to the milling machine MM,

therefore it is replicated into two different transitions, ¿25, for the load to the engine
lathe and ¿256 for the load to the milling machine. Since x2 is associated with the

loading of a part 1 from the input pallet IP to the engine lathe EL and P20 represents

that the system is processing parts 1, then plab(p2o) — {x2}. Analogously, plab(p2i) =

{xe}. In figure 2.10, the modules after the application of the tlab and plab functions

are shown.

2. Module composition. In the synchronic composition of all modules, transitions with the

same label fusión in one transition. In the permissive composition, for every label k in

a place, an are is added from this place to every transition labelled as /» and viceversa.

3. Output. The output of this algorithm is a labelled PN, shown in 2.11, which represents
the behaviour of the FMS.

Step 3: Building IPN Finally, the next algorithm performs the task of building the

IPN.

Consider the output of th- algorithm PN Module-composition shown in figure 2.11 to

apply the algorithm IPN building.
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Figure 2.10: Systeml: tlab and plab Functions

Figure 2.11: Systeml: Labelled PN
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Figure 2.12: Systeml: IPN

Applying algorithm IPN Building

1. Input and output IPN functions. The input function A associate to each transition in

the model, the input symbol, if any, used to change the state variable valué. The set

of input symbols is £ = {Init, Load, Start, Stop, Load, Unload, FacTur, End, Ch2,

Chl}. Then, A(¿i) = Init, X(x2) = Load, X(x3) = Start, X(x^) — Stop, X(x¿) = Unload,

X(xe) = Load, X(x7) = Start, X(xs) = Stop, X(xg) = Unload, A(¿n) = FacTur, A(¿xs)
= End, X(t23) = Chl, A(¿24) = Chl and A(¿i5) = A(¿i6) = A(¿j7) = A(¿i8) = A(¿i9)
= A(¿2o) = A(¿2i) = A(¿22) = £• The set of output symbols is $ = {IPa, OPa, Opl,

Op2, ELFac, ELTur, MMop, Pl}. Therefore, the output function is represented by
the matrix tp.

"1000000000000000000000 0"

01000000000000000000000

00011000000011000000000

00000110000000110000000

00000000100000001000000

00000000010000000100000

00000000000100000010000

0 000000000000000000100 0_

2. Output. The output of this algorithm is the IPN shown in figure 2.12, which represents
the behaviour of the FMS, including the input commands and output signáis.

The complete modelling methodology consists then in the following steps:

1. Apply Building-PN algorithm.

2. Apply PN Module-composition algorithm.

tp
=

3. Apply IPN-building algorithm.



Chapter 3

Fault Detection and Diagnosis of FMS

Summary. This chapter defines the diagnosability property in IPN, its characterization

from a language point of view and its structural characterization. Moreover, it also presents

general scheme for diagnosis on line. Finally, it exemplifies the test of the diagnosability

property in IPN with both presented approaches: characterization based on its language and

characterization based on its structure.

29
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3 . 1 Diagnosability

The following definitions extend the concept of IPN previously presented 24 and these are

applied to the IPN obtained by the modelling methodology presented in 2.2 in order to

perform the analysis of the diagnosability property.

Definition 44. Let (Q, M0) be an IPN and R(Q, M0) be its reachability graph. $={M\
M(pk) > 0,M G R(Q, M0) and pk G PF¿ for every state variable sVj} is named the faulty

i

marking set and f3\=R.(Q, Mq)
—

$ is named the normal marking set.

Definition 45. Let (Q, Mo) be an IPN, Mf G -J be a faulty marking and £in(Q,Mf) be

the input language of (Q, M0) from Mf. A word oj = X (ta) X (tb) • ■ ■ X (tx) G £in(Q,Mf) is

controllable if\fts G T such that X (ts) = e it holds that üX (ts) D £in(Q, Mf) C £in(Q,Mf),
where _7 is the prefix of oj.

3.1.1 Diagnosable IPN

The following definition partitions the reachability set into faulty and normal markings and

uses the faulty states to define the diagnosability property for IPN.

Definition 46. An IPN given by (Q, Mq) is said to be weak input-output diagnosable at

k steps ifVoj G £in(Q,Mf) 3z, such that uz G £in(Q,M/), \z\ < k < oo and the information

provided by uz, the output word generated by ojz and the structure of the system (Q, M0) are

enough to distinguish any marking Mf G -5 from any other state.

Definition 47. An IPN given by (Q, M0) is said to be input-output diagnosable in a

finite k < oo steps if any marking Mf 6? ¿í distinguishable from any other state using a

controllable input word ( G £in(Q,Mf) such that |£| < A;, and the generated output word

Cue£out(Q,Mf).

3.1.2 Characterization ofthe IPN based on its language

Now, the IPN exhibiting the input-output diagnosability property are characterized from a

language point of view.

Definition 48. Two different places Pí,Pj are input-output related, denoted as (jpuPj) G

IOR if the following conditions are held:

1. Reachability: Mq -^ Mi,M0 -^> Mj where Mi (p¿) > 1,M¿ (pj) > 1, i.e. there exist

two sequences of transitions that leads to two different markings that mark places Pi

and pj .

2. Prefix equivalence: oain ± a\n and o?n, a\n G í-(w¡„), for an u G A (Q, M0)UAB(Q, Mq),
the two different sequences of transitions genérate the same input-output word.

3. Suffix equivalence: VA: > 0 there exist o^ ¿ o^ such that o^o^, obinobout G ü(u)T), for
an ojt G Ak (Q, M0)\JAB(Q, M0), i.e. there exist one input-output word generated from
two different sequences of transitions that concatenated with the sequences described in

step 2 genérate an input-output word part of the IPN .
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Proposition 49. An IPN model (Q, Mo) is weak input-output diagnosable iffforVpi G

PF $pá G (PN U PF) such that (pupj) G IOR.

Proof. (Sufficiency). Assume that (p%,Pj) G IOR and pi G PF then there exist sequences

<C<Ct, <AAt e n(uT), for uT G Afc (Q, M0)UAB(Q, M0) such that M0 **^> M -% M0 -^

Mj -^ where M¿ (p¿) > 1,Mj (p^) > 1. Then Mi G -J and cannot be distinguished from Mj
when of-.£7¡5-_t, o'inO'.ut are fired. Thus (Q,M0) is not input-output diagnosable.

(Necessity). For any p¿ G PF there exists no pj such that (pi,Pj) G /O i?. Then for no

marking M¿, such that A_i(p-¡) > 1 (i.e. M¡ G 5), there exists another marking Mj such

that both markings Mj, Mj are reached with the same input-output word and enable firing
transition sequences with the same input-output words. Thus M¿ is distinguishable from

any other marking and (Q, M0) is input-output diagnosable. D

Testing Diagnosability

In order to show how to test the diagnosability of a system off-line based on its language,
consider the case study 1 described in section 2.2.1, which IPN is shown in figure 2.12. It

is also presented a second case, which is a variant of case study 1.

Case Study 1 In order to test the input-output diagnosability property on the IPN shown

in figure 2.12 from a language point of view, the proposition 49 will be used.

Let define PN = {pi, p2, p3, p4, p5, p6, p7, p8, p9, pi0, pn, pi2, P20, P21, P22, P23} and PF =

{P13, P14, P15, Pi6, P17, Pis, Pi9}* For all pi G PF there exists no pj such that (pi,pf) G IOR.

Then, the three conditions defined in 48 must be analyzed:

For pía : ifM(pj3) = 1 and ojin= (e, Pl) (Init, IPaPl) (Load, OplPl) (e, OplPl)= (e,

Pl) (Init, IPaPl) (Load, OplPl) then there exists a sequence cr?n= ¿i:~2¿i6, ofn G ü(oJin).
Marking M(pn) — 1 can be reached with Uin— (e, Pl) (Init, IPaPl) (Load, OplPl), then
there exists a sequence o-bin= ¿xx2, o\n G íí(w¿n). Therefore, the pair (px3,p4) fulfils condition 1

and condition 2, but it does not fulfil condition 3. It is because there not exist two sequences

a%uv ahouv sucn t*13* a1naatmt, ^in^cmt genérate the same word. In fact, the next input symbol
is Start, but the output signáis are different for these two sequences.

Forpx7 : ifM(px7) = 1 andwin= (e, Pl) (Init, IPaPl) (Load, OplPl) (Start, ELFacPl)
(_, ELFacPl)= (e, Pl) (Init, IPaPl) (Load, OplPl) (Start, ELFacPl) then there exists
a sequence _■?_= tix2x3t20, cr"n G ü(ojin). Marking M(p9) = 1 can be reached with ojin= (e,
Pl) (Init, IPaPl) (Load, OplPl) (Start, ELFacPl), then there exists a sequence obin=
tix2x3, obn G Í2(a;in). Therefore, the pair (px7,P9) fulfils condition 1 and condition 2, but it

does not fulfil condition 3. It is because there not exist two sequences <r"ut, obout, such that

a%ia<l<mt, atnabout genérate the same word. The next input symbol is FacTur, but the output
signáis are different for these two sequences.

Forpxg : ifM(p18) = 1 andajin= (e, Pl) (Init, IPaPl) (Load, OplPl) (Start, ELFacPl)
(FacTur, ELTurPl) (e, ELTurPl)= (e, Pl) (Init, IPaPl) (JLoad, OplPl) (Start, ELFac

Pl) (FacTur, ELTurPl) then there exists a sequence afn^ tix2x3tut2i, oain G Q(uin).
Marking M(pxo) = 1 can be reached with ojin= (e, Pl) (Init, ItfaPl) (Load, OplPl) (Start,
ELFacPl) (FacTur, ELTurPl), then there exists a sequenc^ _■-£_= ¿x-^a^n, o\n G 0(cjin).
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Therefore, the pair (pxs,Pio) fulfils condition 1 and condition 2, but it does not fulfil con

dition 3. It is because there not exist two sequences o^, o^, such that of-a^, o-bno^mt
genérate the same word. The next input symbol is Stop, but the output signáis are different

for these two sequences.

Forp14 : ifM(p14) = 1 andc_>¿n= (e, Pl) (Init, IPaPl) (Load, OplPl) (Start, ELFacPl)

(FacTur, ELTurPl) (Stop, OplPl) (e, OplPl)= (e, Pl) (Init, IPaPl) (Load, OplPl)

(Start, ELFacPl) (FacTur, ELTurPl) (Stop, OplPl) then there exists a sequence _-?„=

¿iX2_*3¿n_:4¿i7, Pin •= íí(wtn)- Marking M(p5) = 1 can be reached with ojin= (e, Pl) (Init,

IPaPl) (Load, OplPl) (Start, ELFacPl) (FacTur, ELTurPl) (Stop, OplPl), then there

exists a sequence obn= tix2x3tnX4, obn G ü(ojin). Therefore, the pair (pi4,ps) fulfils condi

tion 1 and condition 2, but it does not fulfil condition 3. It is because there not exist two

sequences a^, o^, such that of.cr^, o\lohout genérate the same word. The next input

symbol is Unload, but the output signáis are different for these two sequences.
For p15 : if M(px5) = 1 and ojin- (e, -) (Init, IPa) (Load, Op2) (e, Op2)— (e, -)

(Init, IPa) (Load, Op2) then there exists a sequence ofn= ¿iX6*i8> ofn G Cl(oJin). Marking

M(p_) = 1 can be reached with w¿n= (e, —) (Init, IPa) (Load, Op2), then there exists

a sequence obn= hxe, ofn G íí(t.jn). Therefore, the pair (pis,P6) fulfils condition 1 and

condition 2, but it does not fulfil condition 3. It is because there not exist two sequences

aou.t, aíut, sucn that cfnC^ut, cr^o^ genérate the same word. The next input symbol is

Start, but the output signáis are different for these two sequences.
For pig : if M(pi9) = 1 and ojin= (e,

—

) (Init, IPa) (Load, Op2) (Start, MMop) (e,

MMop)— (e,
—

) (Init, IPa) (Load, Op2) (Start, MMop) then there exists a sequence

•T"n= ¿irc6x7¿22, c?„ G í2(cjí„). Marking M(pi2) = 1 can be reached with ojin= (e, —) (Init,
IPa) (Load, Op2) (Start, MMop), then there exists a sequence crbn= tiX6X7, <-*■?„ G íí(t-*in).
Therefore, the pair (pi9,Pi2) fulfils condition 1 and condition 2, but it does not fulfil condition

3. It is because there not exist two sequences 0^, ct^, such that o"fn<r°ut, of-CT^t genérate
the same word. The next input symbol is Stop, but the output signáis are different for these

two sequences.

For pi6 : if M(pi6) = 1 and ojin— (e, -) (Init, IPa) (Load, Op2) (Start, MMop) (Stop,
Op2) (e, Op2)= (e, -) (Init, IPa) (Load, Op2) (Start, MMop) (Stop, Op2) then there exists
a sequence ofn= ¿i_;6a;7_:8¿i9, ofn G ü(ojin). Marking M(p7) = 1 can be reached with ojin=

(e,
—

) (Init, IPa) (Load, Op2) (Start, MMop) (Stop, Op2), then there exists a sequence

o\n— tix6x7xs, o~\n G £l(ojin). Therefore, the pair (pi6,P7) fulfils condition 1 and condition

2, but it does not fulfil condition 3. It is because there not exist two sequences o^t, °out>

such that ot-cr^j, oj-c^ genérate the same word. The next input symbol is Unload, but

the output signáis are different for these two sequences.

Since there not exists any pair (puPj), Pj G PF', input-output related IOR = 0, and for

every pair (pi,pj) considered takes just one more fire of a transition to notice that an error

has occurred in the system, then it can be concluded that the system is weak input-output
diagnosable in k=l.

Case Study 2 Consider the system described in case study 1, in section 2.2.1, and the

obtained IPN from the modeling methodology shown in figure 2.12, but with a change in
the output function. Instead of ELFac be the output symbol of places p9,pi7 and ELTur

be the output symbol of places picPis, now, the four places have the same output symbol
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ELop.

The sets PN and PF are the same as the sets in case 1.

The analysis for all p< G PF in order to verify that there not exists pj such that (pi,Pj) G

IOR is the same for every place except for place pi7. Then, the three
conditions defined in

48 must be analyzed for place pif.

Forpi7 : ifM(pn) = 1 andu;in= (e, Pl) (Init, IPaPl) (Load, OplPl) (Start, ELFacPl)

(e, ELFacPl)= (e, Pl) (Init, IPaPl) (Load, OplPl) (Start, ELFacPl)
then there exists

a sequence <= -ix2xst_o- <C € Ü(uin). Marking M(p9) = 1 can be reached with ojin=(e,

Pl) (Init, IPaPl) (Load, OplPl) (Start, ELFacPl), then
there exists a sequence ain=

hx2x3, <4 G n(wÍB). Therefore, the pair (p17,P9) fulfils condition 1 and condition 2, and

it does fulfil condition 3 when the next input symbol FacTur is present in the system due

the output signal is the same signal ELop for both sequences. But, when it comes the next

input symbol Stop, the pair (p17,P9) does not accomplish with condition 3. It is because

there not exist two sequences oamt, o**, such that o?n<Ct, o^o** genérate the same output

word.

Since there not exists any pair (pí,Pj), Pj G PF
, input-output related IOR

= 0, and since

there exist one pair (pn,p9) that takes two more fires of a transition
to notice that an error

has occurred in the system, then it can be concluded that the system is weak input-output

diagnosable in k-=2.

3.1.3 Structural Characterization of the IPN

Proposition 49 uses the reachability set and language information to characterize the IPN

exhibiting the input-output diagnosability property. This fact leads to NP complete algo

rithms. In the case when the non faulty part of the IPN exhibits the event detectability

property [1] [2] [38] [36], the characterization can be determined from the structure ofthe

IPN. This is proved in the following lines.

Remark. PF = -PF U PF

Definition 50. Let (Q,M0) be an IPN. The underlying normal behaviour (QN,M^)

of (Q, M0) is the IPN derived from (Q, M0) when PF and -PF are removed from the set of

places and transitions respectively and the marking is restricted to the new set of places.

Proposition 51. Let (Q, M0) be an IPN and (QN, M0W) be its underlying normal behaviour

IPN If (QN,M-f ) is event-detectable and for every pi i PF such that p¿ C ■ ■ PF there is

a transition ¿¿ G (p¿)- with X (U) ^ e, then (Q, M0) is weak input-output diagnosable.

Proof. Since (<3w,M,f) is event detectable there are not two different transition sequences

in (QN ,M0N) generating the same input-output word oj. Therefore, for every input-output

word oj the set £1(oj) is a singleton.

Assume without loss of generality that M0 -^ M -^-* Mj and M¿ Í 5, Mj G 5-

Since ¿e G 'PF then A(¿e) = e and tpC (*»,¿e) = 0, henee o,ote G íí(oj) for a given oj G

A (Q, M0) UAb(Q, M0). Thus there exist places pk £ PF, and pe G PF such that M(pfc) > 1

and Mj(pe) > 1 fulfilling conditions "Reachability" and "Prefix equivalence'' of definition

48. c >*
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However condition "Suffix equivalence" will never be satisfied. Indeed since Mj is a live

marking in (QN , M^) then there exists an enabled transition ¿m -^ ¿e enabled such that

tpC(»,tm) t¿ 0 and A(¿m) ^ e. By the modelling methodology, there exists t'm enabled

at Mj such that A(¿m) = A(¿^) and tpC (•, t'm) = 0. Then the output words are different

tp(Mo...MiMm) t¿ tp(M0...MiMjMj) and otm and cteÜm cannot belong to the same set ü(oj).
Thus pe G PF cannot be related with any other place in IOR and by previous proposition

(Q, M0) is input-output diagnosable. D

Theorem 52. Let (Q, M0) be an IPN. If(Q, Mq) is observable, then (Q, Mo) is input-output

diagnosable.

Proof. Since (QN,Mq) is observable then there exists an integer k < oo such that Vw G

Ak(Q,M0) it holds that the information provided by w and (Q,M0) suffices to uniquely
determine the marking M¿ reached by the firing of the underlaying transition firing sequence

cr_, (the initie!. marking is known). Suppose that M¿ is a faulty marking, then it can be

distinguished from any other using the input-output word u. Therefore, (Q, Mq) is input-

output diagnosable. D

Testing diagnosability

In this approach, the diagnosability property can be determined from its structure, i.e.

when the underlying normal behaviour of the IPN shown in figure 2.12 exhibits the event

detectability property, as it will be seen in the following.

Case Study 1 Based on proposition 51, there are two general conditions to be analyzed
in order to define the diagnosability of the IPN :

1. (QN ,Mq) is event detectable. In order for an IPN, in this case for the marking
evaluator (Qn,Mq) of (Q,M0) shown in figure 3.1, to be event-detectable based on

lemma 37, all columns of tp»C must be not nuil and different from each other, but if two

columns are the same, then they must have different input symbols. From the result

of tp • C shown in figure 3.2, it can be concluded that (QN,Mq) is event-detectable,
and it is not necessary to analyze the input symbols.

2. For every pi G PF such that pt C PF there is a transition U G (p¿)- with A(¿¿) ^ e.

For p13, px4, pis, pie, px7, Pía, Pi9 there exist transitions x3, x5, x7, x9, tn, x4, x8

respectively, fulfilling this condition.

Therefore, the system is weak input-output diagnosable.

Case Study 2 Based on proposition 51, there are two general conditions to be analyzed
in order to define the diagnosability of the obtained IPN for the case 2.

1. (QN,M0N) ts event detectable. In order for an IPN, in this case for the marking
evaluator (Qn,Mq) of (Q,M0) shown in figure 3.3, to be event-detectable based on

lemma 37, 6,11 columns of tp • C must be not nuil and different from each other, but

if two colurms are the same, then they must have different input symbols. From the
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Figure 3.3: System2: The underlying normal behaviour (Q^.M-f ) ofthe IPN (Q,M0)
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Figure 3.4: System2: tp
• C

result of tp • C shown in figure 3.4, it can be concluded that (QN , Mff) is not event-

detectable, because there exists one column that is nuil corresponding to transition tu
that connects places pg and pi0. This is precisely because this two places have the same

output signal, therefore, when the transition ¿n is fired, the system can be either in

state represented by P13 or in state represented by p14.

2. For every p¿ G PF such that pi C
• • PF there is a transition ¿¿ G (p¿)* with A(¿¿) ^ e.

For P13, pu, pi5, >i6, pi7, pis, P19 there exist transitions x3, x5, x7, x9, íxl, x4, x8

respectively, fulfillmg this condition.

Therefore, there not xist enough information to determine if the system is input-output
diagnosable. This point s for future work.

3.2 Design of a Diagnoser Net

In this section, a device, called diagnoser, which allows determining system faults in an

input-output diagnosable IPN model, is derived as an IPN. The diagnoser is a copy of
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the underlying normal behaviour IPN which is given the same inputs that are given to the

system. By establishing that enabled transitions U in the diagnoser, such that A (¿¿) = at 7-*- e

fire whenever the input signal «i is present, the differences in the output signáis generated

by the system and the diagnoser allows to determine the fault occurrences.

Definition 53. Let (Q, Mq) be input-output diagnosable IPN in k < 00 steps. The IPN

(Q1, Mq) is a diagnoser net for (Q, Mo) iffor all transition sequence o such that Mq —> Mf
where Mf is a fault marking, the same input word associated to o, when given to (Qf, Mq) gen

erales a transition sequence o' such that M¿ ——> Mf and for all input word C G £in (Q,Mf)
such that |C| > k, it holds that tp (Mk) -^ tp (M'k) where Mk and M'k are the markings reached

when C, is applied from Mf and M'f, respectively. i.e. When a faulty marking is reached then

the output is different.

Definition 54. The underlying normal behaviour NB = (QN , Mq) IPN is called marking
evaluator of the N = (Q, Mq) if NB fulfils the following two conditions:

1. The initial marking Mq of Nb is MQN(pi) = M0(pi),Vpi.

2. If X(tj) = a, tj is enabled in NB and a G S is given, then tj is fired.

Theorem 55. Let N = (Q, Mq) be an IPN and NB = (Q1*^^) be a marking evaluator

IPN of(Q,M0). _/(QN,M0w) is event-detectable and for every p¿ $ PF such that (p^-- G PF

there is a transition tj G (p¿)- with X (tj) 7-*- e, then marking evaluator net is a diagnoser net

for(Q,MQ).

Proof. B; '.nition of NB it holds that Mq = Mq\pn and, as long as no faulty markings

are reacheu, it holds that Mjf = Mk. Let a fault transition ¿j G (p¿)", fire in N reaching a

new marking Mk+i G 5, since is a failure state it holds that <p(Mk) — tp(Mk+i). Moreover,

since no input symbol a G £ was given in N, then NB does not change its marking, thus

there exists a difference between the marking of N and NB. This error can be computed

using the input word A (í¿) ^ e because, since Mk+i is an error state, then the marking in

N does not change. In NB, however, ¿¿ is fired and a new marking Mk+1 is reached. Being

NB event-detectable, it holds that ip(M^ ) ^ ^-(M¡^+1) and therefore <¿>(Mfc+i) ^ tp(M^+1).
Thus, the error state can be detected. D

The global diagnoser scheme is shown in figure 3.5, where the Evaluator/Selector performs
the difference between the outputs from the diagnoser net and from the system model. This

difference is represented in a vector called error vector E with a length of the number of

outputs in the IPN. The error vector determines the set oí decisión rules that are part of

the Evaluator/Selector component. A decisión rule is forníed by two parts: the condition

and the operations. The following algorithm shows how to construct the rules.

Algorithm 56. Construction of rules.

1. For every Ei\j) ^ 0 do

(a) condition: where tp(j, •) = Et\j],

(b) operation: where FAULTTYPE is in the component associated to the output tp(j, •).
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Case Study 1 Consider the case study described in section 2.2.1. The set of rules derived

from the algorithm 56 to decide^ the type of failure are the following:

1. If Opl = 1 and ELFac - -1 then FaultType = Robot_errorJDpl .

2. If Op2 = 1 and MMop = -1 then FaultType = Robot_error_Op2.

3. If ELFac = 1 and ELTur = — 1 then FaultType = Engine_lathe_error_Fac.

4. If ELTur = 1 and Opl = — 1 then FaultType = Engine_lathe_error_Tur.

5. If MMop = 1 and Op2 = —1 then FaultType = Milling_machine_error.

6. If Opl = 1 and Opa = —1 then FaultType = Robot_error_Opl_2.

7. If Op2 = 1 and Opa = -1 then FaultType = Robot_error_Op2_2.

Case Study 2 For this case the set of if-then rules to decide the type of failure are the

following:

1. If Opl = 1 and ELFac — —1 then FaultType = Robot_error_Opl.

2. If Op2 = 1 and MMop = -1 then FaultType = Robot_error_Op2.

3. If ELop = 1 and Opl = —1 then FaultType = Engine_lathe_error.

4. IfMMop = 1 and Op2 = —1 then FaultType = Milling_machine_error.

5. If Opl = 1 and Opa = — 1 then FaultType = Robot_error_Opl_2.

6. If Op2 = 1 and Opa = -1 then FaultType = Robot_error_Op2_2.

In order to build the complete diagnoser scheme for an specific system consider the

following algorithm.

Algorithm 57. Building Diagnoser
_

Scheme

1. Make a copy of the underlying normal behaviour of the system, i.e. diagnoser net.

2. Connect the input commands to the diagnoser net and to the system.

3. Connect the outputs of the diagnoser net and of the system to the evaluator/selector.

4- Construct the rules.

Case Study 1 The final diagnoser scheme derived from the algorithm 57 is shown in figure
3.6.
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Figure 3.5: Global diagnoser scheme
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Input Command

Inout Pallet

Output Y

1. lfOpl
= l and tLFac=-l then FaultTypc=robot_crT0r_Opl.

2. lfOp2=l and MMop=-l then FaultTypc=robot_crror_Op2.

3 lfELFacPl and ELTui=-l then FaultTypc=enginc_lathc_eiTor_Fac.

4. lfELTur=l andOpl=-l then FaultType=cnginclalhecrrorTur.

5 lfMMop=l andOp2---l then FauliTypc=milling_machinc_crTor.

6. If Op 1 = 1 and Opa=-l ihcn FaultTypc=robot_crror_Opl_2.

7. lfOp2=l and Opa-****-! Üicn FaultTypc=robot_crror_Op2_2.

-+■ Fault Type

Output X

Figure 3.6: Diagnoser Scheme of Case 1



Chapter 4

Fault Recovery in FMS

Summary. This chapter presents the definition of Interpreted ReWriting Nets (IRWNets)

and their dynamics. The IRWNets formalism is an extensión of the RWNets formalism

that this chapter also presents. Finally, a study of the application of IRWNets to task

reconfiguration for addressing a fault recovery approach is presented.

41
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4.1 Error Recovery Review

There exist several techniques addressing different types of failures presented by diverse

authors.

Fanni et al. in [14] use the algorithms presented in [18] to estimate the actual marking
which is used to design a state feedback controller. The controlled systemmay result blocked,

as a result of the estimate, henee the authors show with an example how to introduce time

out mechanisms to recovery from this blocking. This time-out mechanism consists in adding
a place and a time-out transition. Thus, the timed transition will fire only if no other

transition is enabled. Then, the observer, regardless of its previous marking, reconstruets

its marking.

Heimerdinger et al. in [19] present the two common mechanisms for fault recovery which

are acceptance test techniques and comparison techniques. Acceptance tests usually uses

recovery blocks, which provide backward fault recovery by rolling back to the state before

the fault occurred repairing the state and the result. Comparison-based technique uses

múltiple pairs of threads or processors performing the same task. When an error occurs, the

recovery uses the valúes from the "good" pair usually by voting.

Khatab et al. in [22] uses an automaton augmented by data variables to control the

system and by time information to model timed discrete event systems. They present two

types of failure recovery procedures, one that takes the system back to its normal functioning

mode, and one that takes the system back to a degraded functioning mode. The first

procedure consists on driving the system from a failure state back to a previous normal

state. The second procedure assumes that the system reaches a failure state and there is

no way to return the system back to its normal functioning without loss of performance.

Therefore, for every failure, a degraded behaviour is specified as a set of states to which the

system is taken back from a fault state. The system evolves in this specified set until the

return to the normal behaviour is possible that naturally occurs after the failure disappears.

Loborg in [28] presents a basic categorization for fault recovery. One is the backward

error recovery that consists on find a previous error free state of the system and return

there, by undoing what has been done since then. The other is the forward error recovery

that consists on find an error free state that the system is supposed to eventually reach,

and perform actions to reach that state, by predefined altemative actions or replanning of

actions.

Zhou et al. in [44] propose the concept of a controller modelled by PN for automatic

error recovery, and present four basic augmentation methods for different types of error

recovery guaranteeing the properties of the controller when the PN augmentation methods

are applied. The first construct is the Input Condition, which if this condition is satisfied

will favour the selection of a specific transition in the case when several transitions leave a

place, otherwise rejeets that transition. The second construct is the Altemative Path, which

uses the input condition to define an altemative path through the PN. The third construct

is the Backward Error Recovery, which uses the input condition and the altemative path to

trap an error and execute corrective actions returning to a previous state in the PN. Finally,
the fourth construct is the Forward Error Recovery, which is analogous to backward error

recovery but the corrective action will solve the problem and return the control to the same

place as it was when the error was originated or detected.
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Figure 4.1: Production Reprogramming

4.2 An Approach for Fault Recovery

The fault recovery approach here proposed uses the Interpreted Re-Writing Nets (IRWNets)
formalism which is an extensión of the Re-Writing Nets (RWNets) formaüsm [10] [11]. The

RWNets formalism is an extensión of Mobile nets [9], Dynamic nets [5], and Reconfigurable
nets [6], which are classes of high level Petri nets. The IRWNets formalism will be used

for the reconfiguration of the IPN model by adding, deleting, and replacing subnets. This

reconfiguration can be applied to changes imposed by modifications on the production re

quirements (production reprogramming) or changes inherent to recovery actions from failure

situations (fault recovery).

Figure 4. 1 shows the case in which a piece of a task execution model must be modified:

the operations A and B that were sequentially performed must be now executed in parallel.

Figure 4.2 shows the case in which a failure during the execution ofthe activity A leads to an

unknown state from which a recovery operation R must be performed to bring the controller

back to an operational state into the original workflow; then, the new path is added to the

model. This process can be considered as an adaptation mechanism.

The RWNets allow realizing dynamic changes within a PN structure [10], as shown in

figure 4.3. The firing of transition r consumes the left side PN, which involves four activities,

Notify, Take_Left, Take_Right and Eat, within a causal relationship. The firing of

transition r produces the right side PN, which establishes the change of the Take_Left
and Take_Right sequential activities into two parallel ones.
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Figure 4.2: Failure Recovery
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Figure 4.3: Dynamic Changes within a PN model
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4.3 Interpreted RWNets

4.3.1 IRWNets Formal Definition

In this section, the Interpreted Marked Re-Writing Nets (IRWNets) are introduced provid

ing similar modelling capabilities of IPN. The definition of a IRWNet uses the definition

of a RWNet, therefore it will be defined below.

Definition 58. The set of Re-Writing Nets (RWNets) is defined recursively as follows

[10]:

1. A marked PN is a RWNet

2. The pair (N, MQ), where N = (P, T, I, O) such that:

• P is a finite set of places or RWNets,

• T is a finite set of transitions,

• 1,0 : P xT —> Z+ are the Pre and Post functions, respectively,

• Mo : P \piaces—* Z+ is the initial marking, restricted to places.

Now, the definition of a IRWNet can be now introduced.

Definition 59. The set of Interpreted Re-Writing Nets (IRWNets) is defined as fol
lows:

1. A marked IPN is a IRWNet

2. The pair (Q, M0), Q is 5-tuple Q = (N, X¡, ■*_>, A, tp) where

• N = (P, T, I, O) is a RWNet,

• S = {ai,a2,...,ar} is the input alphabet of the net, where ai is an input

symbol,

• «í> = {Ci)C2»--->Cn} *s the out'Pvt' alphabet associated to places, where Q is an

output symbol,

• A : T —

. £ U {e1} is a labelling function of transitions with the following
restriction:

-

V¿j,¿fc G T, j y¿ k, ifpi G I(tj) andpi G I(tk) and both X(tj), X(tk) -^ e\ then

X(tj) t¿ A(¿fc). In this case el represents an internal system event,

• tp :R(Q, M0) —. {<_>}9 \piaces is an output function restricted to places, where

R(G, Mq) is the reachability set defined as in the PN and q is the number of
avadlable outputs associated to places.

• M0 : P \ piace,,—* Z+ is the initial marking, restricted to places.
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4.3.2 Dynamics of IRWNets

Definition 60. An IRWNet (Qs, M0S) is a subnet of another IRWNet (Q, Mq), denoted

(Qs,M^)C(O,M0),iff:

1. Ps C P,

2. Ts C T,

3. PC I\Ts,

4- Os C O |T»,

5. A(TS) C A(T),

£. ¥?(PS) |piaces_- <f(P) ¡Places

7. And, recursively, Vt¿ G Ts {Up{ | (putj) G Is} C {Upfe | (pk,tj) G í} and {Up¡ \

(pi,tj) G Os} C {Upm | (p-»,*,-) G O}.

Definition 61. T_;o IRWNets, (Q, M0) and (Q', Mq) are isomorphic, denoted (Q, M0) ~

(Q', Mq), iff there exists a pair of isomorphism < f,g >, where f :T —.T1', g : P —> P, such

that I'°f = gT 0'°f = g°0' and, recursively, g(W) __ W, W and I'°f(t) SÉ W \ (W,tj) G

/, Vtj G T.

Definition 62. Let (Q, M0) G IRWNets. A binding b for W G RWNets is a function
b : iW7Ve¿s -> i?^A^e¿s, aucA íftoí W E_ 6(W), A(¿) S 6(A(t)), and <p(W) E_ 6(¥>(W)),
Vi G T, Vp G P |p¡aces

Definition 63. Substitution. Let b be a binding. Let < f,g > be the pair isomorphism

defined by b. For a (Q,M0) G IRWNets, (Q,M0)[b] denotes (Q,M0) < f,g >, i.e., the

application of the pair isomorphism < f,g > to (Q, Mo).

Definition 64. Transition enabling. Let (Q,M0) G IRWNets. Let t ET; t is enabled

in a marking Mi under the binding b, denoted (N,Mi)[t >&, iff there exists a binding b for

the pre of t, namely W, such that b(W) C N However, if t is an uncontrollable transition

then t can be fired; otherwise, the input symbol A(¿) = a¿ ^ e must be present in order to

fire t.

Definition 65. Firing Rule. Let
_ [>b, _

G IRWNet x IRWNet, be the smallest substi-

tutive relatior generated by:

(N,M0)[t > b =* (N',M'q), where (N',M0) G _[>b,(W\t) G I \ W1 = (Q\Mf), and

(W\t)eO\ W2 = (Q2,Mf),

Therefore,

Mí = Mo\(Mf\Mf) © (Mf\Mf) and N' = N^W^WW^b]) © (W^[6]\W^[6]).
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Figure 4.4: System3: Layout

4.4 Case Study 1: Fault Recovery in FMS

For the application of IRWNets to fault recovery, IRWNets can model the following and

other mechanisms:

a) IPN rewriting system. In form of rules, pieces of IPN can be replaced by other IPN.

The pre and the post conditions of a transition are both IPN structures.

b) IPN recovery system. The Pre is a reachable marking of an IPN describing a task;
the Post is an IPN structure and/or a marking that must be added to the original net for

recovery purposes.

System Description

The system consists of one robot, two milling machines, and two pallets, one input pallet
and one output pallet. As shown in figure 4.4, the process plan for a part is the following:

1. The robot takes a raw part from the input pallet, and loads it at the milling machine.

2. A milling machine performs its tasks on the part. There are two milling machines,
therefore there exist two ways to accomplish the process plan.

3. The robot unloads the part from the milling machine and moves it on to the output

conveyor.
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Figure 4.5: System3: IRWNet

System Model

The IPN shown in figure 4.5 is the system model corresponding to the system description

presented before using the extended modelling methodology presented in this work. This

IPN has been tested for diagnosability property and it is input-output diagnosable in k=l.

Remark. Cali that an IPN is an IRWNet. See definition 59.

IRWNet and RW Rules

In the proposed system, several faulty states could exist. For example, in place p9 where

the milling machine MI is supposed to perform certain task on the part, for any reason, the

MI task cannot be completed causing a fault on the system, represented by pi2. In order

to implement error recovery in the system due to this case, a few changes are made to the

system model for converting it into an IRWNet named W = (Q, Mq).

Definition of W The IRWNet W = (Q, Mq), where Q = (N, E, <_>, A, tp), is defined as

below:
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N = (P,T, 1,0), where:

P = {Pi, P2, P3, Pa, Ps, Pe, Pt, Ps, Pd, Pío, Pll, Pi2, Pi3, Pi4, Pi5, W1}.

T = {¿i, ¿2, ¿3, 2*4, %5, X6, 3-*7- h, *9, ¿10, ¿11, ¿12, Ti}.

'0 11000000000 0"

0110010010000

0001000000000

0000100000000

0000000100000

0000001000000

/ =

0000000001000

0001000000000

0000010000100

0000100000000

0000001000010

0000000000000

0000000000000

0000000000001

1000000000000

0000000110000

o

1 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 1 1 0 1 1 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0

E = {Init, Load, Start, Stop, Unload, End, Milling_machine_ error}.

<_> = {IPa, Rop, Mlop, M2op, Opa}.

\(tf) = Init, X(t2) = X(t3) = Load, X(xi) = X(x5) = Start, X(x6) = X(x7) = Stop,

A(¿8) = A(¿g) = Unload, X(tw) = End, A(¿n) = X(ti2) = e, A(rx) = Milling_machine_
error
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100000000000 0'

0000001000000

• ^=0011110000000

0000000010010

0 000000000101

• M0 = [0 1 0 0 0 0 0 1 0 1 0 0 0]T
Because the definition of an IRWNet is recursive, see definition 59, it is necessary to

define W1.

Let W1 = (Q\Ml), where Q1 = (AT1,E1.--_'\ A1,-/-1), is defined as below:

• iV1 = (P1,r1,/1,01),where:

- P1 - {Pi, P3, Ps, Ps, Pq, Pu}-
T1 = {¿2, -r4, x6, ¿s, ¿n}.

"00000"

0 10 0 0

0 0 0 10

0 10 0 0

0 0 10 1

0 0 0 0 0_
"00000'

10 0 0 0

0 0 10 0

0 0 10 0

0 10 0 0

0 0 0 0 1

p =

o1

• E = {Load, Start, Stop, Unload}.

• <_> -= {IPa, Rop, Mop}.

X(t2) = Load, A(x4) = Start, X(xq) = Stop, X(t$) = Unload, A(¿n) = £•

tp
=

10 0 0 0 0'

0 110 0 0

0 0 0 0 11

• M0 = [0 0 0 0 0 l]T

Transition n (shown in figure 4.6) is enabled when a token is present in place pJ2 and

when the input command Milling_machine_error is emitted from the diagnoser system
as a fault type, then ri is fired and Q1 is deleted from Q resulting in a new IRWNet, as
shown in figure 4.7. This means that if the system is working properly, and suddenly a fault
occurs in the system detected by the diagnoser, the evaluator/selector component issues a
command to £re the corresponding transition in order to recover the system to a fault free

state.
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4.5 Case Study 2: Production Reprogramming in FMS

The IRWNets formalism is also used to production reprogramming in FMS.

System Description

The process plan for a Bracket is the following:

1. Mili outside dimensions ensuring a 2.300 X 0.95 X 0.950 part.

2. Clamp on Two smooth sides.

3. Face top and one end.

4. Face opposite end and cut to length.

In order to compliance with this process plan, the following components are needed:

• A milling machine.

• An engine lathe for facing process.

• Three conveyors.

• Two robots.

The system layout is depicted in figure 4.8, and the process of a part is described as

follows:

1. Robot 1 takes the part from the input pallet to the milling machine.

2. Milling machine performs the corresponding process of milling on the part.

3. Robot 1 takes the part from the milling machine to the buffer pallet.

4. Robot 2 takes the part from the buffer pallet to the engine lathe.

5. Engine lathe performs the corresponding processes of facing both sides on the part.

6. Robot 2 takes the part from the engine lathe to the output pallet.

7. The part is finished.

System Model

The IPN shown in figure 4.9 is the system model corresponding to the system description

presented before. This IPN has been tested for diagnosability property and it is input-

output diagnosable in k=l.
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IRWNet and RW Rules

Suppose the system requirements have changed. The actual system layout is shown in figure
4.10. Therefore, it is needed to reconfigure the system, and the IRWNets can support it.

Definition of W The IRWNet W = (Q,M0), where Q = (N,E,$,X,tp), is defined as

below:

N = (P.T, 1,0), where:

P = {Pl* P2, PZ, P&, Pl, P8, P9, Pl2, Pl3, Pl5, Pl8, Pl9, P23, P24, P26, W1
, W2}.

T = {¿l, ¿2, X4, X6, ¿8, ¿10, ¿11, ¿13, 2-15, ^17, ¿19, ¿21, J"l}-
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0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1

• E = {Init, Load, Start, Stop, Unload, End, Reprogramming}.

• *-_• = {IPa, Ropl, Rop2, Map, ELop, Bla, Opa}.

• X(ti) = Init, X(t2) = A(¿j3) = Load, X(x4) - X(xi5) -= Start, X(x6) = X(xu) = Stop,

X(ts) = A(¿i9) = Unload, X(tw) = End, X(tn) = A(¿2i) = £, A(rx) -= Reprogramming.
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1000000000000000 0'

00110000000000000

00000000110000000

*v- 00000010000001000

00000000000100100

00001000000000000

0 000000000001000 0

• M0 = [0 1 0 0 0 1 0 1 0 0 1 0 0 0 0]T

Because the definition of a RWNet is recursive, see definition 59, it is necessary to define

W1 and W2.

The IRWNet W1 = (Q\M¿), where Q1 = (_V1,E1,«-_'1, A1, y»1), is defined as below:

• Nx = (P\T\I\ O1), where:

- P1 -= {p2, p3, P5,Pl2, Pl3, Pl5, P23>*

T1 = {¿2, ¿8, ¿10, ¿13, ¿19}*

10 0 0 0"

00000

01000

f1 = o o o 1 o

0 0 0 0 0

0 0 0 0 1

0 0 10 0

"01000^

10 0 0 0

0 0 0 0 0

o1 = o o o o 1

0 0 0 10

0 0 0 0 0

0 0 0 0 1_

• E1 = {Load, Unload, End}.

• *Í>J = {Ropl, Rop2, Opa}.

• A1 (¿2) = A1 (¿13) = Load, Ax(¿8) = A1 (¿19) = Unload, X\tw) = End.

<P
=

0 110 0 0 0

G O O O 1 1 O

0 0 0 0 0 0 1

• MJ = [1 O O 1 O O 0TT

The IRWNet W2 = (Q2,M02j. where Q2 = (N2,T,2,$2,X2,tp2), is defined as below:
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• JV2 = (P2,r2,/2,02),where:

- P2 = {p2> p3, p4, p5, p6, pío, Pu, P12, P13, P14, P15, Pie, P17, P20, P21, P22,
P23, P25,

P27}*

T2 - {¿2, ¿3, Xs, X7, ¿8) ¿9, ¿10, ¿12, ¿13, ¿14, X16, x18, ¿19, ¿20, ¿22}*

"1 1 0 0 0 1 0 0 0 0 0 0 0 0 0"
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0 0 0 0 0 0 0 0 0 0 1 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

'0 0 1 1 1 0 0 0 0 0 0 0 0 0 0"

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
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0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

= 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

• E2 = {Load, Start, Stop, Unload, End}.
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Reprogramming

Figure 4.11: System4: Re-Writing Transition rl

. $2 __ {Ropl, Rop2, Gop, Dop, B2a, B3a, Opa}.

• A2(¿2) = A2(¿i3) = Load, A2(¿8) = A2(¿i9) = Unload, X2(tw) = End, A2(¿9) = A2(¿20) =

Load, X2(x7) = X2(xi8) = Start, X2(x5) = X2(xí6) = Stop, A2(t3) = A2(¿i4) = Unload,

A2(¿io) = End, A2(¿i2) = A2(¿22) = e.

0 11110000000000000 0'

0000000011110000000

0000000000000100001

yy= 0000010000000000010

0000000000001000000

0000000000000001000

0 00000000000000010 0

• M02= [1000001 10000001000 o]r

Transition rx (shown in figure 4.11) is enabled in the particular case there exists a repro

gramming ofthe system. Henee, there is emitted an input command named Reprogramming,
then ri is fired and Q2 is added to Q through Q1 resulting in a new IRWNet, as shown in

figure 4.12.
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Figure 4.12: System4: Q after de firing of ri
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Conclusions

This thesis presented an extensión of a modelling methodology for DES that obtains binary
IPN models that includes the faulty markings of the system. The advantage of the use of

this modelling methodology is to provide the necessary models to analyse the property of

diagnosability, which this thesis also introduces. Specifically, the advantage of the use of

IPN in the diagnosis problem is the structural manipulation that this formalism provides.

The concept of diagnosability of IPN models is a novel contribution in the context of PN

since this concept has been applied only for AF in the DES. In order to test the diagnosability
of the IPN two characterizations are introduced. The first characterization uses the reacha

bility set and the language information to characterize the IPN exhibiting the input-output

diagnosability property. This fact leads to NP complete algorithms. Therefore, a second

characterization was introduced. In this characterization, in the case when the non-faulty

part of the IPN exhibits the event detectability property, the diagnosabiüty of the IPN can

be determined from its structure leading to a P algorithm.

It is also proposed the general scheme to perform on-line diagnosis. This scheme is formed

by the system, the diagnoser net, and an evaluator/selector, which performs the difference

between the system and the diagnoser outputs and decides the type of fault or localization of

the fault through a set of if-then rules. This scheme is important because it is structured to

dynamically add a fault recovery block. As an example, a first approach for fault recovery is

proposed, which its input is the output of the diagnoser scheme. This fault recovery scheme

is based on IRWNets formalism, another contribution of this thesis, which its application is

to task reconfiguration, in this case, for addressing fault recovery. Even when this recovery

scheme is a first approach, it promises to be a good formalism for this proposal.

The study of the diagnosability as a property is an área very slightly exploited in the

context of PN since this work presents the first approach in IPN. Therefore, it could be more

deeply studied.

The fault recovery issue is another important matter that merits a deeper study, because
the approach here presented promises to be a good technique to focus in fault recovery due

the use of IRWNets that seems to be well adapted to support on-line task reconfiguration.
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