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Directores de la Tesis:

Dra. Sabine Mondié Cuzange
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Resumen

Para el análisis de estabilidad de sistemas no lineales con retardos, se introduce el concepto
de homogeneidad como una opción alternativa para aquelllos sistemas que admiten la solución
trivial pero cuya estabilidad asintótica falla para un sistema aproximado de estos. Este doc-
umento se centra en el análisis de sistemas homogéneos con retardo a través del enfoque de
Lyapunov-Krasovskii, basado en un funcional introducido en una reciente investigación. El
análisis se divide en dos casos. El primero está dedicado a la dilatación ponderada, donde
presentamos condiciones de estabilidad para esta clase de sistemas no lineales y su región de
atracción, aśı como el análisis de robustez y la estimación de soluciones. El segundo caso, que
es un caso particular del primero cuando las ponderaciones son iguales a uno, hace referencia
a la dilatación estándar, donde encontramos cotas de robustez para el sistema perturbado y
presentamos la estimación de las soluciones. En ambos casos, se presentan y discuten algunos
ejemplos para validar los resultados encontrados.
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Abstract

For stability analysis of non-linear systems, the homogeneity concept is introduced as an alter-
native option to systems that admits the trivial solution whose asymptotic stability fails for the
linear approximation. This document focuses on analysing homogeneous time-delay systems
via Lyapunov-Krasovskii framework, based on a recently introduced functional. The analysis is
divided into two cases. The first one is devoted to weighted dilation, where we present stability
conditions for this class of nonlinear systems and its attraction region as well as robustness
analysis and the estimate of solutions. The second one, which is a particular case from the first
one when weights are equal to one, is concerned to standard dilation and we find robustness
bounds for the perturbed system and present the estimate of the solutions. In both cases, some
examples are presented and discussed to validate the results found.
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Chapter 1

Introduction

Homogeneous systems have received sustained attention from the systems and control com-
munity. The homogeneous or weighted homogeneous concept [1] may indeed be useful in the
study of the stability of the trivial solution of systems with zero linear approximation [2]. The
homogeneous first approximation has the important property that the state of the system can
be analysed on a sphere around the trivial solution by re-scaling it. This transformation which
does not change the system behaviour, simplifies the analysis. Recently addressed topics in-
clude the stability analysis [3], [4], robustness analysis [5] as well as observers and controllers
design [4].

A phenomenon that appears in many physical dynamic systems is the presence of time
delays. Some well known examples are biological systems [6], communication networks, trans-
ports phenomenons, dynamic population growth [6] and mechanical systems [7], among others.
The previous observations have lead to the extensions of the concept of homogeneity to time-
delay systems. The main contributions in this direction include delay-independent stability
conditions [8], [9], estimates of the solutions [10] and robustness analysis [11]. The homogene-
ity concept allowed establishing a remarkable result: if the delay-free system is asymptotically
stable, then the homogeneous delay system is locally asymptotically stable for all delays. It
is worth mentioning that the above mentioned result is proved for homogeneous systems with
standard dilation in the Lyapunov-Razumikhin framework.

1.1 Problem Statement

The stability analysis of dynamic systems with homogeneous and delayed right hand side is
usually studied in the Lyapunov-Razumikhin framework. To carry out this study, a Lyapunov
function (which is often the one found for the delay free system) is proposed and differentiated
along the system trajectories. Then, sufficient conditions are obtained from the Razumikhin
condition. Motivated by the complete type functional for homogeneous time-delay systems
with standard dilation presented in [12] in the Lyapunov-Krasovskii framework, our aim is to
generalise this functional to the context of systems having weighted homogeneous right-hand
side and to use it to solve some problems of interest.

1.2 Thesis Objectives

The main purpose of this work is to introduce the complete type functional for homogeneous
time-delay systems with weighted dilation and to study its properties.

1



2 Chapter 1

More precisely, our specific objectives are:

• To determine the robustness bounds of systems submitted to additive perturbations.

• To find estimates of the solutions.

• To present estimates of the domain of attraction of weighted homogeneous time-delay
systems.

• To present the detailed constants involved in existing results in the Lyapunov-Razumikhin
framework [10, 13].

• To compare the Lyapunov-Krasovskii and Lyapunov-Razumikhin approaches.

1.3 Methodology

Our work combines the concepts and results from nonlinear systems analysis, in particular those
for the special class of homogeneous systems with the well known tools for the time domain
study of time delay systems, namely, the Lyapunov-Razumikhin approach which is based on
Lyapunov functions plus the Razumikhin conditions, and the Lyapunov-Krasovskii framework,
which relies on functionals.

1.4 Thesis structure

This document is organised as follows. The second chapter starts with a review of the theoretical
preliminaries on homogeneous systems. It is followed by a review of recent results on the study
of systems with homogeneous right-hand side with delay both in the Lyapunov-Razumikhin
framework and in the Lyapunov-Krasovskii one. In Chapter 3, we introduce the Lyapunov-
Krasovskii functional for time-delay systems with weighted dilation via Lyapunov-Krasovskii
framework and we apply it to the problem of robustness with respect to disturbances and to
the estimates of the solutions. In Chapter 4, we revisit the stability analysis in the Lyapunov-
Krasovskii framework presented in [12]. We extend it to the robustness analysis and we also
complete the contribution on estimates of the solutions, by fully characterising all constants
involved in the estimates. Finally, Chapter 5 is devoted to concluding remarks and future
research directions.

1.5 Publications

The main results of our work on the analysis of systems with homogeneous and delayed right
hand side are currently submitted to international journals:

• Gerson Portilla, Irina Alexandrova, Sabine Mondié and Aleksei Zhabko. Estimates for
solutions of homogeneous time-delay systems: Comparison of Lyapunov-Krasovskii and
Lyapunov-Razumikhin techniques. System and Control Letters, Submitted.

• Gerson Portilla, Irina Alexandrova, and Sabine Mondié. A Lyapunov-Krasovskii func-
tional for weighted homogeneous time-delay systems. Developing.

Cinvestav Deparment of Automatic Control



Chapter 2

Theoretical preliminaries

In this chapter, we present theoretical preliminaries concerning homogeneous systems and their
properties. Besides, we recall two fundamentals theorems of time-delay systems analysis and
some previous results for homogeneous time-delay systems via the Lyapunov-Krasovskii and
Lyapunov-Razumikhin approaches.

2.1 Homogeneous systems

To put into context the terminology that will be used by this document, we present a short
review of homogeneous systems.

Definition 1. [1]. The dilation linear operator is defined as

δrε(x) := (εr1x1, . . . , ε
rnxn), ∀ε > 0, (2.1)

where x ∈ Rn is a set of coordinates. The constants ri > 0 are the weights of the coordinates.

Definition 2. [1]. For any ri > 0 for all i ∈ 1, n and x, y ∈ Rn, a function V (x) : Rn → R is
called δr-homogeneous if

V (δrε(x)) = εkV (x) (2.2)

holds for some k ∈ R and all ε > 0. The vector function f(x, y) = (f1(x, y), . . . , fn(x, y)) :
Rn × Rn → Rn is called δr-homogeneous if every component fi satisfies the relation

fi(δ
r
ε(x), δrε(y)) = εk+rifi(x, y) (2.3)

for some k ∈ R. In both cases, the constant k is called the degree of homogeneity.

Definition 3. [1]. A δr-homogeneous norm is a map x 7→ ‖x‖r,p defined by

‖x‖r,p :=

(
n∑
i=1

|xi|
p
ri

) 1
p

, ∀x ∈ Rn, p ≥ 1. (2.4)

The set Sr,p = {x : ‖x‖r,p = 1} is the corresponding δr-homogeneous unit sphere.

An important property of the homogeneous norm is that ‖δrε(x)‖r,p = ε‖x‖r,p, in other
words, it is an homogeneous function of degree one. Furthermore, it is not a norm in the usual
sense, since it does not satisfy the norm properties of scalability and the triangle inequality.

3



4 Chapter 2

If all ri = 1, we write δ1. This case is called standard dilation [1]. Thus, equation (2.3) is
reduced to

fi(δ
1
ε(x), δ1ε(y)) = εµfi(x, y), (2.5)

where µ = k+ 1 > 0 and since this value is the same in every component fi, then this is called
the degree of homogeneity for the standard dilation. Additionally, it is straightforward to see
that in this case, the homogeneous norm reduces to the euclidean norm with p = 2.

Lemma 1. Every component of the vector function f(x, y) in (2.3), x, y ∈ Rn, admits a bound
of the form

|fi(x, y)| ≤ mi

(
‖x‖k+rir,p + ‖y‖k+rir,p

)
(2.6)

mi = max
‖x‖k+rir,p +‖y‖k+rir,p =1

|fi(x, y)| > 0.

Proof. Due to homogeneity, we can work in the unit sphere. With the dilation constant ε =
1

‖x‖r,p , we have

‖δrε(x)‖r,p = ε‖x‖r,p = 1. (2.7)

Now, consider the function g(x), whose components admit a bound in the unit sphere of the
form

|gi(δrε(x))| ≤ Ci, Ci = max
‖x‖r,p=1

|gi(x)|,

and this maximum value Ci exists due to continuity of g(x). By homogeneity, we have

|εk+rigi(x)| ≤ Ci,

with homogeneity degree k. Taking ε as in (2.7), we get

|gi(x)| ≤ ‖x‖k+rir,p Ci. (2.8)

Consider now two vector arguments in the function fi(x, y), and take

ε =
1

(‖x‖k+rir,p + ‖y‖k+rir,p )1/k+ri
. (2.9)

It is readily seen that if ‖y‖ = 0 or ‖x‖ = 0, (2.9) satisfies the upper bound of a function with
one vector argument as in (2.8). Then, fi(x, y) admits a bound of the form

|fi(δrε (x), δrε (y))| ≤ mi,

where

mi = max
‖x‖k+rir,p +‖y‖k+rir,p =1

|fi(x, y)| .

By homogeneity, we have ∣∣∣∣ 1

‖x‖k+rir,p + ‖y‖k+rir,p

fi(x, y)

∣∣∣∣ ≤ mi,

equivalently,

|fi(x, y)| ≤ mi(‖x‖k+rir,p + ‖y‖k+rir,p ).

Cinvestav Deparment of Automatic Control



Theoretical preliminaries 5

Since the derivative is also δr-homogeneous [3], of homogeneity degree k + ri − rj, there
exists a constant ηij > 0 such that∣∣∣∣∂fi(x, y)

∂xj

∣∣∣∣ ≤ ηij
(
‖x‖k+ri−rjr,p + ‖y‖k+ri−rjr,p

)
, (2.10)

whose proof follows from Lemma 1. It follows from the standard dilation that (2.6) and (2.10)
can be reduced to

‖f(x, y)‖ ≤ m (‖x‖µ + ‖y‖µ) (2.11)

m = max
‖x‖µ+‖y‖µ=1

‖f(x, y)‖ > 0,

and ∥∥∥∥∂f(x, y)

∂x

∥∥∥∥ ≤ η
(
‖x‖µ−1 + ‖y‖µ−1

)
, η > 0, (2.12)

respectively.
Consider the delay-free system

ẋ = f(x(t), x(t)), x(t) ∈ Rn, (2.13)

where the vector function f(x(t), x(t)) is continuously differentiable and δr-homogeneous of
homogeneous degree k > 0, for every ri > 0. In the sequel, the following assumption is made.

Assumption 1. The trivial solution of system (2.13) is asymptotically stable.

Next, we remind an important theorem on systems of the form (2.13) satisfying Assumption
1.

Theorem 1. [1]. Let system (2.13) be such that the origin is a locally asymptotically stable
equilibrium. Assume that the vector function f is δr-homogeneous of degree k for some ri > 0.
Then, for any z ∈ N and any γ > z ·maxi{ri}, there exists a positive definite δr-homogeneous
of degree γ and of class Cz Lyapunov function V , whose negative definite derivative along the

solutions of (2.13), V̇ =
(
∂V (x)
∂x

)T
f(x, x), is δr-homogeneous of degree k + γ.

Theorem 1 establishes that is possible to find a positive definite δr-homogeneous Lyapunov
function V (x) for (2.13). It is assumed that this function V (x) has a homogeneity degree
γ ≥ 2 ·maxi{ri}, thus this function admits a lower and upper bound [1], i.e. there exists values
α0, α1 > 0 for i, j = 1, n such that

α0‖x‖γr,p ≤ V (x) ≤ α1‖x‖γr,p. (2.14)

Since V (x) is δr-homogeneous, ∂V (x)
∂xi

and ∂2V (x)
∂xi∂xj

are also δr-homogeneous of degree γ − ri ≥ 0

and γ − ri − rj ≥ 0 [3], respectively. Hence, there exists values βi, ψij > 0 for i, j = 1, n such
that ∣∣∣∣∂V (x)

∂xi

∣∣∣∣ ≤ βi‖x‖γ−rir,p ,

∣∣∣∣∂2V (x)

∂xi∂xj

∣∣∣∣ ≤ ψij‖x‖γ−ri−rjr,p . (2.15)

It also follows from Theorem 1 that the time derivative of V (x) along the solutions of system
(2.13) satisfies, for a constant w > 0 [3], the equation

dV (x(t))

dt
=

(
∂V (x)

∂x

)T
f(x, x) = −W (x) ≤ −w‖x‖γ+kr,p . (2.16)

Cinvestav Deparment of Automatic Control



6 Chapter 2

For standard dilation, let the right-hand side of (2.13) and V (x) be δ1-homogeneous. Assume

that γ ≥ 2, then the relation (2.14) holds for some α0, α1 > 0 and ∂V (x)
∂x

and ∂2V (x)
∂x2

are δ1-
homogeneous of homogeneous degree γ − 1 ≥ 0 and γ − 2 ≥ 0, respectively. Hence there exists
values β, ψ > 0 such that∥∥∥∥∂V (x)

∂x

∥∥∥∥ ≤ β‖x‖γ−1,
∥∥∥∥∂2V (x)

∂x2

∥∥∥∥ ≤ ψ‖x‖γ−2. (2.17)

Moreover, the time derivative of V (x) along the solutions of system (2.13) satisfies, for a
constant w > 0, the equation

dV (x(t))

dt
=

(
∂V (x)

∂x

)T
f(x, x) = −W (x) ≤ −w‖x‖γ+µ−1. (2.18)

2.2 Time-delay systems

In the present document, we study a special class of nonlinear systems with delays, those that
are called weighted homogeneous. More precisely, we analyse systems of the form

ẋ(t) = f(x(t), x(t− h)), (2.19)

with initial function
x(θ) = ϕ(θ), ϕ ∈ PC([−h, 0],Rn).

Here, x(t) ∈ Rn and h > 0 is a constant delay, the vector function f(x, y) is continuously
differentiable and δr-homogeneous of homogeneity degree k > 0 for all x, y ∈ Rn. The space of
Rn valued piecewise continuous functions on [−h, 0] is denoted PC([−h, 0],Rn). This space is
endowed with the norm

‖ϕ‖h = sup
θ∈[−h,0]

‖ϕ(θ)‖,

where ‖ϕ(θ)‖ stands for the euclidean norm. In computations it turns out to be more convenient
to use the following homogeneous norm

‖ϕ‖H = sup
θ∈[−h,0]

‖ϕ(θ)‖r,p,

where ‖ϕ(θ)‖r,p stands for the typical homogeneous norm. The solution of system (2.19) and
the restriction of the solution to the segment [t−h, t], corresponding to the initial function ϕ are
respectively denoted as x(t) and xt. If the initial condition is important, we write x(t, ϕ) and
xt(ϕ) := x(t+θ, ϕ), respectively. Next, we remind two of the fundamental results of time-delay
systems stability analysis.

Theorem 2. (Lyapunov–Krasovskii Theorem)[14]. Suppose that the right-hand side of (2.19)
is continuous and bounded. If there exists a continuously differentiable functional v(ϕ), such
that

u1(‖ϕ(0)‖) ≤ v(ϕ) ≤ u2(‖ϕ‖h), (2.20)

dv(xt)

dt
≤ −w(‖x(t)‖), (2.21)

in the neighbourhood ‖ϕ‖h < H1 and ‖xt‖h < H2, respectively. Here, u1, u2 and w are continu-
ous non-decreasing functions, where additionally u1(s) and u2(s) for s > 0 and u1(0) = u2(0) =
0, furthermore, if w(s) > 0 for s > 0, then the trivial solution of (2.19) is asymptotically stable.

Cinvestav Deparment of Automatic Control



Theoretical preliminaries 7

Theorem 3. (Lyapunov-Razumikhin Theorem)[14]. Suppose that the right-hand side of (2.19)
is continuous and bounded. If there exists a continuous function V (x), such that

u1(‖x‖) ≤ V (x) ≤ u2(‖x‖), (2.22)

in the neighbourhood ‖x‖ < H, and

dV (x(t))

dt
≤ −w(‖x(t)‖) if V (t+ θ, x(t+ θ)) ≤ p(V (t, x(t))) ∀θ ∈ [−h, 0], (2.23)

where u1(s), u2(s) and w(s) are positive for s > 0 and p(s) > s for s > 0, then the trivial
solution of (2.19) is asymptotically stable.

We will recall some important results of homogeneous time-delay systems from Lyapunov-
Krasovskii and Lyapunov-Razumikhin approaches. For the sake of completeness and for com-
parison purposes, we remind the detailed proofs in the appendices, including explicit formulas
for the involved constants.

2.2.1 Previous results in the Lyapunov-Razumikhin framework

The vast majority of the current results dealing with homogeneous time-delay systems uses
stability analysis tools based on the Lyapunov-Razumikhin approach. Thus, we recall next
some of the main results.

Theorem 4. [11]. Let k > 0. If system (2.13) is asymptotically stable, then the trivial solution
of delay system (2.19) is also asymptotically stable for any delay h ≥ 0.

Theorem 5. [13]. Let the right-hand side of (2.13) and (2.19) be δ1-homogeneous and µ > 1.
If system (2.13) is asymptotically stable, then the trivial solution of delay system (2.19) is also
asymptotically stable for any delay h ≥ 0.

The estimates of the domain of attraction and of the system response obtained in the
Lyapunov-Razumikhin framework in [11, 10, 15] for standard dilation, where the Lyapunov
function of the delay free system (2.13) is used.

Given α > 1, introduce the Razumikhin condition

V (x(ξ)) < αV (x(t)), ξ ∈ [t− 2h, t], t ≥ h. (2.24)

It is shown in [11] that there exists δ > 0 and k5 = k5(δ) > 0 such that the time derivative of
V (x) satisfies

dV (x(t))

dt
≤ −k5‖x(t)‖γ+µ−1 (2.25)

along the solutions of system (2.19) which obey the Razumikhin condition (2.24) and ‖xt‖h ≤ δ.
Define the values

κ =

(
α0

α1

) 1
γ

, K =
(

1 + (µ− 1)mh(κδ)µ−1
) 1
µ−1

.

Theorem 6. [11]. Let ∆ be the root of the equation

∆ +mh∆µ =
κδ

K
. (2.26)

If system (2.13) is asymptotically stable, then the set of initial functions satisfying ‖ϕ‖h < ∆
is contained in the region of attraction of the trivial solution of system (2.19).

Cinvestav Deparment of Automatic Control



8 Chapter 2

Remark 1. It follows from the proof of Theorem 6 that if ‖ϕ‖h < ∆, then ‖x(t, ϕ)‖ < δ for
any t ≥ 0.

Theorem 7. [10, 15]. If system (2.13) is asymptotically stable, then there exist c̃1, c̃2 > 0 such
that the solutions of system (2.19) with ‖ϕ‖h < ∆, where ∆ is the root of equation (2.26), admit
an estimate of the form

‖x(t, ϕ)‖ ≤ c̃1‖ϕ‖h
(1 + c̃2‖ϕ‖µ−1h t)

1
µ−1

, t ≥ 0. (2.27)

The constants k5, δ, c̃1, c̃2 are specified in Appendix A.

2.2.2 Previous results in the Lyapunov-Krasovskii framework

In recent research, a functional for analysing the stability of homogeneous time-delay systems
in the Lyapunov-Krasovskii framework for standard dilation was presented. This functional is
of the form:

v(ϕ) = V (ϕ(0)) +

(
∂V (x)

∂x

)T ∣∣∣∣∣
x=ϕ(0)

×
∫ 0

−h
f(ϕ(0), ϕ(θ))dθ

+

∫ 0

−h
(w1 + (h+ θ)w2)‖ϕ(θ)‖γ+µ−1dθ. (2.28)

Here w1,w2 > 0 are such that w0 = w−w1−hw2 > 0. It was shown in [12] that the functional
(2.28) admits a lower and an upper bound.

Lemma 2. [12]. There exist a1, a2 > 0 such that functional (2.28) admits a lower bound of the
form

v(ϕ) ≥ a1‖ϕ(0)‖γ + a2

∫ 0

−h
‖ϕ(θ)‖γ+µ−1dθ (2.29)

in the neighbourhood ‖ϕ‖h ≤ δ. Here, δ ∈ (0, H1),

H1 =

(
α0

hβm(1 + χ−2µ)

) 1
µ−1

,

a1 = α0 − hβm(1 + χ−2µ)δµ−1,

a2 = w1 − k2mχ2(γ−1).

The constant χ > 0 is chosen in such a way that a2 > 0.

Now, we present an upper bound for v(ϕ).

Lemma 3. There exist b1, b2 > 0 such that functional (2.28) admits an upper bound of the
form

v(ϕ) ≤ b1‖ϕ(0)‖γ + b2

∫ 0

−h
‖ϕ(θ)‖γdθ, (2.30)

if ‖ϕ‖h ≤ δ, with

b1 = α1 + 2hmβδµ−1,

b2 = (mβ + w1 + hw2)δ
µ−1.
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It also holds that

v(ϕ) ≤ b

(
‖ϕ(0)‖γ +

∫ 0

−h
‖ϕ(θ)‖γdθ

)
, b = max{b1, b2}. (2.31)

It follows from Lemma 3 that v(ϕ) also admits an upper bound of the form

v(ϕ) ≤ α1‖ϕ(0)‖γ + b3‖ϕ‖γ+µ−1h , (2.32)

where b3 = (2βm+ w1 + hw2)h.
With the help of the previous Lemmas, we have established that the functional (2.28)

satisfies bounds of the form (2.20) required in Theorem 2 in the neighbourhood H1. In view
of Theorem 2, the time derivative of functional v(ϕ) along the system trajectories satisfies the
derivative condition (2.21) [12].

Lemma 4. [12]. There exist c1, c2, c3 > 0 such that the time derivative of functional (2.28)
along the solutions of system (2.19), admits a bound of the form

dv(xt)

dt
≤ −c1‖x(t)‖γ+µ−1 − c2‖x(t− h)‖γ+µ−1 − c3

∫ 0

−h
‖x(t+ θ)‖γ+µ−1dθ, (2.33)

in the neighbourhood ‖ϕ‖h ≤ δ. Here, δ ∈ (0, H2),

H2 =
(

min
{ w0

4hL
,

w1

2hL
,

w2

2L

}) 1
µ−1

,

where L = mηβ +m2ψ, c1 = w0 − 4hLδµ−1, c2 = w1 − 2hLδµ−1 and c3 = w2 − 2Lδµ−1.

It follows from (2.33) that

dv(xt)

dt
≤ −(w0 − 4hLδµ−1)‖x(t)‖γ+µ−1 − (w2 − 2Lδµ−1)

∫ 0

−h
‖x(t+ θ)‖γ+µ−1dθ,

equivalently, taking c1 = w0 − 4hLδµ−12 and c3 = w2 − 2Lδµ−12 , in such a way that c1 and c3 be
positive, we have

dv(xt)

dt
≤ −c1‖x(t)‖γ+µ−1 − c3

∫ 0

−h
‖x(t+ θ)‖γ+µ−1dθ.

Defining c = min{c1, c3} we obtain

dv(xt)

dt
≤ −c

(
‖x(t)‖γ+µ−1 +

∫ 0

−h
‖x(t+ θ)‖γ+µ−1dθ

)
. (2.34)

The following result on the estimate of the domain of attraction is established in [12].

Theorem 8. [12]. Let ∆ be a positive root of equation

α1∆
γ + b3∆

γ+µ−1 = a1δ
γ. (2.35)

If system (2.13) is asymptotically stable, then the set of initial functions ‖ϕ‖h < ∆ is the
estimate of the attraction region of the trivial solution of (2.19).

Remark 2. It follows from the proof of Theorem 8 that if ‖ϕ‖h < ∆, then ‖x(t, ϕ)‖ < δ for
any t ≥ 0.
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10 Chapter 2

Scalar Case

Consider a scalar equation of the form

ẋ(t) = η1x
µ(t) + η2x

µ(t− h), (2.36)

where the constants η1, η2 ∈ R, x ∈ R, h ∈ R+ and µ > 1 is an odd entire number. Assume
that η1 + η2 < 0 which implies the asymptotic stability of the trivial solution of (2.36). Take
w = −2(η1 + η2) > 0, V (x) = x2, and use the following modification of functional (2.28)
presented in [12]:

v(ϕ) = ϕ2(0) + 2η2ϕ(0)

∫ 0

−h
ϕµ(θ)dθ (2.37)

+η22

(∫ 0

−h
ϕµ(θ)dθ

)2

+

∫ 0

−h
(w1 + (h+ θ)w2)ϕ

µ+1(θ)dθ.

Here, w1,w2 > 0 are such that w0 = w−w1− hw2 > 0. For functional (2.37), the lower bound
(2.29) takes the form

v(ϕ) ≥ a1ϕ
2(0) + a2

∫ 0

−h
ϕµ+1(θ)dθ, (2.38)

where |ϕ|h ≤ δ. Here, δ ∈ (0, H1), and

H1 =

(
w1χ

2

|η2|

) 1
µ−1

, 0 < χ <

√
1

h|η2|
,

a1 = 1− χ2h|η2| > 0, a2 = w1 − |η2|χ−2δµ−1 > 0.

The upper bound (2.31) for functional (2.28) is of the form

v(ϕ) ≤ b

(
ϕ2(0) +

∫ 0

−h
ϕ2(θ)dθ

)
, |ϕ|h ≤ δ,

where b = max{b1, b2},

b1 = 1 + |η2|h,
b2 =

(
|η2|(1 + |η2|h)δµ−1 + w1 + hw2

)
δµ−1.

The functional admits also an upper bound

v(ϕ) ≤ ϕ2(0) + b3|ϕ|µ+1
h ,

where b3 = (2|η2|+η22hδ
µ−1 +w1 +hw2)h. Finally, the time derivative of functional (2.37) along

the solutions of equation (2.36) satisfies

dv(xt)

dt
≤ −c

(
xµ+1(t) +

∫ 0

−h
xµ+1(t+ θ)dθ

)
in the neighbourhood |xt|h ≤ δ, where δ ∈ (0, H2),

H2 =
(

min
{w0

hL
,
w2

L

}) 1
µ−1

, L = |η2||η1 + η2|,

c1 = w0 − hLδµ−1 > 0, c2 = w2 − Lδµ−1 > 0,

c = min{c1, c2}.
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Similarly to Theorem 8, if ∆ is a positive root of equation

∆2 + b3∆
µ+1 = a1δ

2, (2.39)

then the set of initial functions |ϕ|h < ∆ is the estimate of the region of attraction of the trivial
solution of (2.36).
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Chapter 3

Analysis of time-delay systems with
weighted dilation

As discussed in Chapter 2, there exists two approaches to analyse time-delay systems in the
time domain. The first one is the Lyapunov-Razumikhin approach, which has allowed getting
some important results concerning delay-independent stability conditions. This approach is
based on a Lyapunov function satisfying the Razumikhin condition. Since only the delay-free
system fulfils a Lyapunov function, it makes this condition strong enough. The second one
is the Lyapunov-Krasovskii approach based on functionals, which allows taking into account
the whole state of the time-delay system. Thus, taking advantage of this feature, this chapter
is devoted to extending the analysis for weighted homogeneous time-delay systems using the
Lyapunov-Krasovskii approach, especially leading on applications as perturbation analysis and
estimates of the solutions.
The bounds of the functional and the region of attraction to ensure asymptotic stability for
the homogeneous time-delay systems and a particular case are the topics of Section 3.1. In
Section 3.2, we restrict our attention to the case when we consider the effect of an additive
perturbed term. We give some conditions on the parameters for the perturbed term to preserve
asymptotic stability. In Section 3.3, we present the estimate of the solutions for homogeneous
time-delay systems with weighted dilation with the help of the bounds of the functional found
in the previous sections. The last section deals with an illustrative example.

3.1 Weighted Homogeneous System

In this section, we extend the results on the Lyapunov-Krasovskii functional for the standard
dilation introduced in [12] to the case of systems with weighted homogeneous right-hand side
with delay. The expression of the functional is now:

v(ϕ) = V (ϕ(0)) +

(
∂V (x)

∂x

)T ∣∣∣∣∣
x=ϕ(0)

×
∫ 0

−h
f(ϕ(0), ϕ(θ))dθ

+

∫ 0

−h
(w1 + (h+ θ)w2)‖ϕ(θ)‖γ+kr,p dθ. (3.1)

Here w1,w2 > 0 are such that w0 = w−w1−hw2 > 0. As a preliminary step, we compute bounds
on the functional v(ϕ) and its time derivative. For the sake of clarity, the three summand of
(3.1) are denoted as I1(ϕ), I2(ϕ) and I3(ϕ).

12
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Lemma 5. There exist a1, a2 > 0 such that functional (3.1) admits a lower bound of the form

v(ϕ) ≥ a1‖ϕ(0)‖γr,p + a2

∫ 0

−h
‖ϕ(θ)‖γ+kr,p dθ, (3.2)

in the neighbourhood ‖ϕ‖H ≤ δ. Here, δ ∈ (0, H1),

H1 =

(
α0∑n

i=1 hβimi (1 + χ−2(k+ri))

) 1
k

,

a1 = α0 −
n∑
i=1

hβimi

(
1 + χ−2(k+ri)

)
δk,

a2 = w1 −
n∑
i=1

βimiχ
2(γ−ri).

The constant χ > 0 is chosen in such a way that a2 > 0.

Proof. In order to determine a lower bound, we analyse each summand of (3.1). The lower
bound of I1(ϕ) is

I1(ϕ) ≥ α0‖ϕ(0)‖γr,p. (3.3)

We now look for a lower bound of I2(ϕ). We first seek an upper bound of |I2(ϕ)|

|I2(ϕ)| ≤
n∑
i=1

βi‖ϕ(0)‖γ−rir,p ×
∫ 0

−h
mi

(
‖ϕ(0)‖k+rir,p + ‖ϕ(θ)‖k+rir,p

)
dθ

≤
n∑
i=1

hβimi‖ϕ(0)‖γ+kr,p + βimi‖ϕ(0)‖γ−rir,p

∫ 0

−h
‖ϕ(θ)‖k+rir,p dθ.

Now, we introduce a parameter χ > 0 in the second summand of the previous inequality

|I2(ϕ)| ≤
n∑
i=1

hβimi‖ϕ(0)‖γ+kr,p + βimiχ
γ−k−2ri

(
‖ϕ(0)‖r,p

χ

)γ−ri ∫ 0

−h
(χ‖ϕ(θ)‖r,p)k+ridθ.

Using inequality |d|z|e|g ≤ |d|z+g + |e|z+g for any z, g > 1 and d, e ≥ 0, we get

|I2(ϕ)| ≤
n∑
i=1

(
hβimi +

hβimi

χ2(k+ri)

)
‖ϕ(0)‖γ+kr,p + βimiχ

2(γ−ri)
∫ 0

−h
‖ϕ(θ)‖γ+kr,p dθ,

which implies that a lower bound for I2(ϕ) is

I2(ϕ) ≥ −|I2(ϕ)| ≥ −

(
n∑
i=1

(
hβimi +

hβimi

χ2(k+ri)

)
‖ϕ(0)‖γ+kr,p + βimiχ

2(γ−ri)
∫ 0

−h
‖ϕ(θ)‖γ+kr,p dθ

)
.

(3.4)
Finally, the lower bound of I3(ϕ) is given by

I3(ϕ) ≥ w1

∫ 0

−h
‖ϕ(θ)‖γ+kr,p dθ. (3.5)

Then, in view of (3.3), (3.4) and (3.5), v(ϕ) admits an estimate of the form

v(ϕ) ≥

(
α0 −

n∑
i=1

hβimi

(
1 + χ−2(k+ri)

)
‖ϕ(0)‖kr,p

)
‖ϕ(0)‖γr,p
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14 Chapter 3

+

(
w1 −

n∑
i=1

βimiχ
2(γ−ri)

)∫ 0

−h
‖ϕ(θ)‖γ+kr,p dθ.

We choose χ > 0 such that
(
w1 −

∑n
i=1 βimiχ

2(γ−ri)
)
> 0. Next, we need to define the neigh-

bourhood, where v(ϕ) has a positive definite lower bound. Clearly, this bound is positive in
the neighbourhood

‖ϕ‖H ≤ δ <

(
α0∑n

i=1 hβimi (1 + χ−2(k+ri))

) 1
k

= H1.

It follows that

v(ϕ) ≥ a1‖ϕ(0)‖γr,p + a2

∫ 0

−h
‖ϕ(θ)‖γ+kr,p dθ,

with a1 = α0 −
∑n

i=1 hβimi

(
1 + χ−2(k+ri)

)
δk and a2 = w1 −

∑n
i=1 βimiχ

2(γ−ri).

It is worthy of mention that v(ϕ) also admits a bound of the form

v(ϕ) ≥ a1‖ϕ(0)‖γr,p. (3.6)

Lemma 6. There exist b1, b2 > 0 such that functional (3.1) admits an upper bound of the form

v(ϕ) ≤ b1‖ϕ(0)‖γr,p + b2

∫ 0

−h
‖ϕ(θ)‖γr,pdθ, (3.7)

if ‖ϕ‖H ≤ δ, with

b1 = α1 +
n∑
i=1

2hβimiδ
k,

b2 =

(
w1 + hw2 +

n∑
i=1

βimi

)
δk.

Proof. Now, we seek an upper bound for v(ϕ). Observe first that

I1(ϕ) ≤ α1‖ϕ(0)‖γr,p. (3.8)

It follows from (2.6) and (2.15) that

I2(ϕ) ≤
n∑
i=1

βi‖ϕ(0)‖γ−rir,p ×
∫ 0

−h
mi

(
‖ϕ(0)‖k+rir,p + ‖ϕ(θ)‖k+rir,p

)
dθ

≤
n∑
i=1

hβimi‖ϕ(0)‖γ+kr,p + βimi‖ϕ(0)‖γ−rir,p

∫ 0

−h
‖ϕ(θ)‖k+rir,p dθ.

Using inequality |d|z|e|g ≤ |d|z+g + |e|z+g for any z, g > 1 and d, e ≥ 0, we have

I2(ϕ) ≤
n∑
i=1

2hβimi‖ϕ(0)‖γ+kr,p + βimi

∫ 0

−h
‖ϕ(θ)‖γ+kr,p dθ. (3.9)

Finally, we estimate the term I3(ϕ). Indeed,

I3(ϕ) ≤ (w1 + hw2)

∫ 0

−h
‖ϕ(θ)‖γ+kr,p dθ. (3.10)
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It follows from (3.8), (3.9) and (3.10) that

v(ϕ) ≤

(
α1 +

n∑
i=1

2hβimi‖ϕ(0)‖kr,p

)
‖ϕ(0)‖γr,p +

(
w1 + hw2 +

n∑
i=1

βimi

)∫ 0

−h
‖ϕ(θ)‖γ+kr,p dθ.

If we take a neighbourhood ‖ϕ‖H ≤ δ, we arrive at

v(ϕ) ≤

(
α1 +

n∑
i=1

2hβimiδ
k

)
‖ϕ(0)‖γr,p +

(
w1 + hw2 +

n∑
i=1

βimi

)
δk
∫ 0

−h
‖ϕ(θ)‖γr,pdθ,

or,

v(ϕ) ≤ b1‖ϕ(0)‖γr,p + b2

∫ 0

−h
‖ϕ(θ)‖γr,pdθ,

where b1 = α1 +
∑n

i=1 2hβimiδ
k and b2 = (w1 + hw2 +

∑n
i=1 βimi) δ

k.

It also holds that

v(ϕ) ≤ b

(
‖ϕ(0)‖γr,p +

∫ 0

−h
‖ϕ(θ)‖γr,pdθ

)
, b = max{b1, b2}. (3.11)

It follows from the proof of Lemma 6 that v(ϕ) also admits an upper bound of the form

v(ϕ) ≤ α1‖ϕ(0)‖γ + b3‖ϕ‖γ+kH , (3.12)

where b3 = (w1 + hw2 +
∑n

i=1 2hβimi)h.
We will provide an alternative proof to the stability result achieved in the Razumikhin

framework (Theorem 1 in [13]). The new proof is possible thank to the above Lyapunov-
Krasovskii functional. In addition to the functional bounds (3.2) found in the neighbourhood
H1, we must now find a neighbourhood where the time derivative of v(ϕ) along the solutions
of system (2.19) satisfies the derivative condition (2.21).

Lemma 7. There exist c1, c2, c3 > 0 such that the time derivative of functional (3.1) along the
solutions of system (2.19), admits a bound of the form

dv(xt)

dt
≤ −c1‖x(t)‖γ+k − c2‖x(t− h)‖γ+k − c3

∫ 0

−h
‖x(t+ θ)‖γ+kdθ, (3.13)

in the neighbourhood ‖ϕ‖h ≤ δ. Here, δ ∈ (0, H2),

H2 =
(

min
{ w0

4hL
,

w1

2hL
,

w2

2L

}) 1
k
,

where L =
∑n

i=1

∑n
j=1 (βimjηij +miψijmj), c1 = w0 − 4hLδk, c2 = w1 − 2hLδk and c3 =

w2 − 2Lδk.

Proof. We differentiate each of three summands of (3.1). Observe that

dI1(xt)

dt

∣∣∣∣
(2.19)

=
d

dt
V (x(t)) =

(
∂V (x(t))

∂x(t)

)T
f(x(t), x(t− h)).

Next, we differentiate the term I2(ϕ)

dI2(xt)

dt

∣∣∣∣
(2.19)

=
d

dt

((
∂V (x(t))

∂x(t)

)T ∫ 0

−h
f(x(t), x(t+ θ))dθ

)
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=

(
∂V (x(t))

∂x(t)

)T
(f(x(t), x(t))− f(x(t), x(t− h))) +

2∑
j=1

Λj,

where

Λ1 =

(
∂V (x(t))

∂x(t)

)T ∫ t

t−h

∂f(x(t), x(s))

∂x(t)
ds× f(x(t), x(t− h))

Λ2 = (f(x(t), x(t− h)))T ×
(
∂2V (x(t))

∂x2

)∫ 0

−h
f(x(t), x(t+ θ))dθ.

Finally, we address the term I3(ϕ),

dI3(xt)

dt

∣∣∣∣
(2.19)

=
d

dt

(∫ 0

−h
(w1 + (h+ θ)w2)‖x(t+ θ)‖γ+kr,p dθ

)

= (w1 + hw2)‖x(t)‖γ+kr,p − w1‖x(t− h)‖γ+kr,p − w2

∫ 0

−h
‖x(t+ θ)‖γ+kr,p dθ.

Adding the three summands of the derivative, we obtain

dv(xt)

dt

∣∣∣∣
(2.19)

= −w0‖x(t)‖γ+kr,p − w1‖x(t− h)‖γ+kr,p − w2

∫ 0

−h
‖x(t+ θ)‖γ+kr,p dθ +

2∑
j=1

Λj.

Using (2.6), (2.10), (2.14), (2.15) and (2.16), we get the following upper bounds

Λ1 ≤
n∑
i=1

n∑
j=1

βimj‖x(t)‖γ−rir,p (‖x(t)‖k+rjr,p + ‖x(t− h)‖k+rjr,p )

×
∫ 0

−h
ηij(‖x(t)‖k+ri−rjr,p + ‖x(t+ θ)‖k+ri−rjr,p )dθ

≤
n∑
i=1

n∑
j=1

βimjηij(4h‖x(t)‖γ+2k
r,p + 2h‖x(t− h)‖γ+2k

r,p + 2

∫ 0

−h
‖x(t+ θ)‖γ+2k

r,p ),

Λ2 ≤
n∑
i=1

n∑
j=1

miψij(‖x(t)‖k+rir,p + ‖x(t− h)‖k+rir,p )

× ‖x(t)‖γ−ri−rjr,p

∫ 0

−h
mj(‖x(t)‖k+rjr,p + ‖x(t+ θ)‖k+rjr,p )dθ

≤
n∑
i=1

n∑
j=1

miψijmj(4h‖x(t)‖γ+2k
r,p + 2h‖x(t− h)‖γ+2k

r,p + 2

∫ 0

−h
‖x(t+ θ)‖γ+2k

r,p dθ).

In this way, we obtain the inequality

dv(xt)

dt
≤ −(w0 − 4hL‖x(t)‖kr,p)‖x(t)‖γ+kr,p − (w1 − 2hL‖x(t− h)‖kr,p)‖x(t− h)‖γ+kr,p

− (w2 − 2L‖xt‖kH )

∫ 0

−h
‖x(t+ θ)‖γ+kr,p dθ, (3.14)
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where L =
∑n

i=1

∑n
j=1 (βimjηij +miψijmj). This bound is positive in the neighbourhood

‖xt‖H ≤ δ <
(

min
{ w0

4hL
,

w1

2hL
,

w2

2L

}) 1
k

= H2.

It follows from (3.14) that

dv(xt)

dt
≤ −(w0 − 4hLδk)‖x(t)‖γ+kr,p − (w2 − 2Lδk)

∫ 0

−h
‖x(t+ θ)‖γ+kr,p dθ,

equivalently, taking c1 = w0−4hLδk and c2 = w2−2Lδk, in such a way that c1 and c2 positive,
we have

dv(xt)

dt
≤ −c1‖x(t)‖γ+kr,p − c2

∫ 0

−h
‖x(t+ θ)‖γ+kr,p dθ.

Defining c = min{c1, c2} we obtain

dv(xt)

dt
≤ −c

(
‖x(t)‖γ+kr,p +

∫ 0

−h
‖x(t+ θ)‖γ+kr,p dθ

)
. (3.15)

Summarizing, we have proved that the functional v(ϕ) admits the lower and upper bounds
(3.6), (3.11), and that its time derivative along the solutions of system (2.19) is such that (3.15)
holds. Functional (3.1) meets the conditions (2.20) and (2.21) of Theorem 2 and we conclude,
as previously done in the Razumikhin framework (Theorem 1 in [13]), that the trivial solution
of the homogeneous system with delay (2.19) is asymptotically stable for all delays h > 0
and k > 0. This alternative proof via Lyapunov-Krasovskii techniques allows us to present
straightforwardly estimates of the domain of attraction of the trivial solution of system (2.19)
on the basis of bounds (3.6) and (3.12) in the neighbourhood δ, which is any value less than
min{H1, H2}.

Theorem 9. Let ∆ be a positive root of equation

α1∆
γ + b3∆

γ+k = a1δ
γ.

If system (2.13) is asymptotically stable, then the set of initial functions

Ω = {ϕ ∈ PC([−h, 0],Rn) : ‖ϕ‖H < ∆}, (3.16)

is the estimate of the attraction region of the trivial solution of (2.19).

Proof. We need to prove that Ω is an invariant set such that every trajectory starting in Ω
stays in Ω. Hence, we choose

v0 = inf
‖ϕ(0)‖r,p=δ

v(ϕ) ≥ a1δ
γ, (3.17)

where v0 is an estimate of an inner Lyapunov surface. Using bounds (3.12) and (3.17), let
‖ϕ‖H < ∆, where ∆ is a positive real root of the following equation

α1∆
γ + b3∆

γ+k = a1δ
γ.

Then,
v(ϕ) ≤ α1‖ϕ(0)‖γr,p + b3‖ϕ‖γ+kH < a1δ

γ ≤ v0.
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Notice that ∆ < δ and prove that ‖xt(ϕ)‖H < δ holds ∀t ≥ 0. Assume that this is false,
then there exits a time t such that ‖x(t, ϕ)‖r,p = δ, hence v(xt(ϕ)) ≥ v0. For t ∈ [0, t) we

have ‖xt(ϕ)‖H < δ and due to (3.15), then dv(x(t))
dt

< 0, hence v(xt(ϕ)) is decreasing, and
consequently v(xt(ϕ)) ≤ v(ϕ) < v0. Since we consider the continuity of the solution, it is a
contradiction in time t. Therefore, Ω is the attraction region for (2.19) and ‖xt(ϕ)‖H < δ for
t ≥ 0. As a consequence, if v(ϕ) is decreasing in this region, then the solution of the system is
asymptotically stable.

Remark 3. It follows from the proof of Theorem 9 that if ‖ϕ‖H < ∆, then ‖x(t, ϕ)‖ < δ for
any t ≥ 0.

Now, consider a particular case of system (2.19) of the form

ẋ(t) = F (x(t)) +G(x(t− h)), (3.18)

where F (x(t)) and G(x(t− h)) are continuous, δr-homogeneous of homogeneous degree k > 0
and additionally, admit bounds of the form

|Fi(x(t))| ≤ fi‖x(t)‖k+rir,p , |Gi(x(t− h))| ≤ gi‖x(t− h)‖k+rir,p . (3.19)

In this case, functional (3.1) can be reduced to:

v(ϕ) = V (ϕ(0)) +

(
∂V (x)

∂x

)T ∣∣∣∣∣
x=ϕ(0)

×
∫ 0

−h
G(ϕ(θ))dθ

+

∫ 0

−h
(w1 + (h+ θ)w2)‖ϕ(θ)‖γ+kr,p dθ. (3.20)

This functional admits a lower and an upper bound. The fact that the second summand,
G(x(t− h)) possess only one argument helps in reducing conservatism of the estimates.

Lemma 8. There exist a1, a2 > 0 such that functional (3.20) admits a lower bound of the form

v(ϕ) ≥ a1‖ϕ(0)‖γr,p + a2

∫ 0

−h
‖ϕ(θ)‖γ+kr,p dθ, (3.21)

in the neighbourhood ‖ϕ‖H ≤ δ. Here, δ ∈ (0, H1),

H1 =

(
α0∑n

i=1 hβigiχ
−2(k+ri)

) 1
k

,

a1 = α0 −
n∑
i=1

hβigiχ
−2(k+ri)δk,

a2 = w1 −
n∑
i=1

βigiχ
2(γ−ri).

The constant χ > 0 is chosen in such a way that a2 > 0.

Proof. Using (2.14), (2.15), (3.1) and adding a parameter χ > 0 in the second summand as in
Lemma 5, functional (3.20) admits an estimate of the form

v(ϕ) ≥

(
α0 −

n∑
i=1

hβigiχ
−2(k+ri)‖ϕ(0)‖kr,p

)
‖ϕ(0)‖γr,p
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+

(
w1 −

n∑
i=1

βigiχ
2(γ−ri)

)∫ 0

−h
‖ϕ(θ)‖γ+kr,p dθ.

We choose χ > 0 such that
(
w1 −

∑n
i=1 βigiχ

2(γ−ri)
)
> 0. Next, we need to define the neigh-

bourhood, where v(ϕ) has a positive definite lower bound. Clearly, this bound is positive in
the neighbourhood

‖ϕ‖H ≤ δ <

(
α0∑n

i=1 hβigiχ
−2(k+ri)

) 1
k

= H1.

It follows that

v(ϕ) ≥ a1‖ϕ(0)‖γr,p + a2

∫ 0

−h
‖ϕ(θ)‖γ+kr,p dθ,

with a1 = α0 −
∑n

i=1 hβigiχ
−2(k+ri)δk and a2 = w1 −

∑n
i=1 βigiχ

2(γ−ri).

Lemma 9. There exist b1, b2 > 0 such that functional (3.1) admits an upper bound of the form

v(ϕ) ≤ b1‖ϕ(0)‖γr,p + b2

∫ 0

−h
‖ϕ(θ)‖γr,pdθ, (3.22)

if ‖ϕ‖H ≤ δ, with

b1 = α1 +
n∑
i=1

hβigiδ
k,

b2 =

(
w1 + hw2 +

n∑
i=1

βigi

)
δk.

Proof. It follows from (2.14), (2.15) and (3.1) that

v(ϕ) ≤

(
α1 +

n∑
i=1

hβigi‖ϕ(0)‖kr,p

)
‖ϕ(0)‖γr,p +

(
w1 + hw2 +

n∑
i=1

βigi

)∫ 0

−h
‖ϕ(θ)‖γ+kr,p dθ.

Taking a neighbourhood ‖ϕ‖H ≤ δ, we have

v(ϕ) ≤

(
α1 +

n∑
i=1

hβigiδ
k

)
‖ϕ(0)‖γr,p +

(
w1 + hw2 +

n∑
i=1

βigi

)
δk
∫ 0

−h
‖ϕ(θ)‖γr,pdθ,

or,

v(ϕ) ≤ b1‖ϕ(0)‖γr,p + b2

∫ 0

−h
‖ϕ(θ)‖γr,pdθ,

where b1 = α1 +
∑n

i=1 hβigiδ
k and b2 = (w1 + hw2 +

∑n
i=1 βigi) δ

k.

It also holds that

v(ϕ) ≤ b

(
‖ϕ(0)‖γr,p +

∫ 0

−h
‖ϕ(θ)‖γr,pdθ

)
, b = max{b1, b2}. (3.23)

Furthermore, it follows from (3.7) that v(ϕ) also admits an upper bound of the form

v(ϕ) ≤ α1‖ϕ(0)‖γ + b3‖ϕ‖γ+kH , (3.24)

where b3 = (w1 + hw2 +
∑n

i=1 hβigi)h. For the sake of satisfying Theorem 2, we differentiate
functional (3.20) along the solutions of system (3.18), thus we get the following result.
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Lemma 10. There exist c1, c2, c3 > 0 such that the time derivative of functional (3.20) along
the solutions of system (3.18), admits a bound of the form

dv(xt)

dt
≤ −c1‖x(t)‖γ+k − c2‖x(t− h)‖γ+k − c3

∫ 0

−h
‖x(t+ θ)‖γ+kdθ, (3.25)

in the neighbourhood ‖ϕ‖h ≤ δ. Here, δ ∈ (0, H2),

H2 =

(
min

{
w0

hL1

,
w1

hL2

,
w2

L1

}) 1
k

,

where L1 =
∑n

i=1

∑n
j=1 gjψij(fi+gi), L2 =

∑n
i=1

∑n
j=1 gjψijgi, c1 = w0−hL1δ

k, c2 = w1−hL2δ
k

and c3 = w2 − L1δ
k.

Proof. Differentiating (3.20), we obtain

dv(xt)

dt

∣∣∣∣
(3.18)

= −w0‖x(t)‖γ+kr,p − w1‖x(t− h)‖γ+kr,p − w2

∫ 0

−h
‖x(t+ θ)‖γ+kr,p dθ + Λ.

where

Λ = (F (x(t)) +G(x(t− h)))T ×
(
∂2V (x(t))

∂x2

)∫ 0

−h
G(x(t+ θ))dθ.

Using (2.14), (2.15), (2.16) and (3.1), we get the following upper bound

Λ ≤
n∑
i=1

n∑
j=1

gjψij(fi‖x(t)‖k+rir,p + gi‖x(t− h)‖k+rir,p )‖x(t)‖γ−ri−rjr,p

∫ 0

−h
‖x(t+ θ)‖k+rjr,p dθ

≤
n∑
i=1

n∑
j=1

gjψij(h(fi + gi)‖x(t)‖γ+2k
r,p + hgi‖x(t− h)‖γ+2k

r,p + (fi + gi)

∫ 0

−h
‖x(t+ θ)‖γ+2k

r,p ).

In this way, we get the inequality

dv(xt)

dt
≤ −(w0 − hL1‖x(t)‖kr,p)‖x(t)‖γ+kr,p − (w1 − hL2‖x(t− h)‖kr,p)‖x(t− h)‖γ+kr,p

− (w2 − L1‖xt‖kH )

∫ 0

−h
‖x(t+ θ)‖γ+kr,p dθ, (3.26)

where L1 =
∑n

i=1

∑n
j=1 gjψij(fi + gi) and L2 =

∑n
i=1

∑n
j=1 gjψijgi. This bound is positive in

the neighbourhood

‖xt‖H ≤ δ <

(
min

{
w0

hL1

,
w1

hL2

,
w2

L1

}) 1
k

= H2,

and the lemma is proved.

It follows from (3.25) and defining c = min{c1, c3} that

dv(xt)

dt
≤ −c

(
‖x(t)‖γ+kr,p +

∫ 0

−h
‖x(t+ θ)‖γ+kr,p dθ

)
. (3.27)

The estimate of the attraction region of the trivial solution of system (3.18) uses a procedure
similar to the one used to prove Theorem 9. Let ∆ be a positive root of equation

α1∆
γ + b3∆

γ+k = a1δ
γ,

then, the set of initial functions such that ‖ϕ‖H ≤ ∆ is the estimate of the attraction region
of system (3.18). Here, a1 comes from (3.21) and b3 comes from (3.24).
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3.2 Perturbed Systems

Consider the perturbed system

ẋ(t) = f(x(t), x(t− h)) +R(x(t), x(t− h)), (3.28)

where the vector function f(x(t), x(t − h)) is continuously differentiable and δr-homogeneous
of homogeneous degree k > 0 and R(x(t), x(t− h)) is continuous. System (3.28) is viewed as a
perturbation of the nominal system (2.19), where the bounded term R(x(t), x(t−h)) describes
model errors, nonlinear approximations, uncertainties or disturbances. It is assumed that

|Ri(x(t), x(t− h))| ≤ pi‖x(t)‖σ+rir,p + qi‖x(t− h)‖σ+rir,p , (3.29)

σ > k, pi, qi > 0.

For the analysis of system (3.28), we use functional (3.1) which satisfies the lower and upper
bounds of Lemma 5 and Lemma 6, respectively. We focus on finding the neighbourhood where
its time derivative is negative definite, and show that this functional is suitable for the stability
analysis of time-delay systems under perturbations satisfying Theorem 2.

Lemma 11. There exist c1, c2, c3 > 0 such that the time derivative of functional (2.28) along
the solutions of system (3.28), admits a bound of the form

dv(xt)

dt
≤ −c1‖x(t)‖γ+kr,p − c2‖x(t− h)‖γ+kr,p − c3

∫ 0

−h
‖x(t+ θ)‖γ+kr,p dθ, (3.30)

in the neighbourhood ‖xt‖H ≤ δ, where δ ∈ (0,min{H2, H3, H4}), H2, H3 and H4 are the real
positive roots of the following polynomials

w0 − 4hLHk
2 − 2hL1H

σ
2 − L2H

σ−k
2 = 0,

w1 − 2hLHk
3 − 2hL3H

σ
3 − L4H

σ−k
3 = 0,

w2 − 2LHk
4 − L1H

σ
4 = 0.

(3.31)

Here, L =
∑n

i=1

∑n
j=1 (βimjηij +miψijmj), L1 =

∑n
i=1

∑n
j=1(βiηij(pj + qj) + mjψij(pi + qi)),

L2 =
∑n

i=1 βi(pi + qi), L3 =
∑n

i=1

∑n
j=1(βiηijqj +mjψijqi), L4 =

∑n
i=1 βiqi, c1 = w0 − 4hLδk −

2hL1δ
σ − L2δ

σ−k, c2 = w1 − 2hLδk − 2hL3δ
σ − L4δ

σ−k and c3 = w2 − 2Lδk − L1δ
σ.

Proof. As in Lemma 10, we find estimates for each of the three summands of (2.28). We obtain

dv(xt)

dt

∣∣∣∣
(3.28)

= −w0‖x(t)‖γ+kr,p − w1‖x(t− h)‖γ+kr,p − w2

∫ 0

−h
‖x(t+ θ)‖γ+kr,p dθ

+

(
∂V (x(t))

∂x(t)

)T
R(x(t), x(t− h)) +

2∑
j=1

Λj.

where

Λ1 =

(
∂V (x(t))

∂x(t)

)T ∫ t

t−h

∂f(x(t), x(s))

∂x(t)
ds× (f(x(t), x(t− h)) +R(x(t), x(t− h)))

Λ2 = (f(x(t), x(t− h)) +R(x(t), x(t− h)))T ×
(
∂2V (x(t))

∂x2

)∫ 0

−h
f(x(t), x(t+ θ))dθ.
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Using (2.6), (2.10), (2.14), (2.15), (2.16) and (3.29), we get the following upper bounds

Λ1 ≤
n∑
i=1

n∑
j=1

βimjηij

(
4h‖x(t)‖γ+2k

r,p + 2h‖x(t− h)‖γ+2k
r,p + 2

∫ 0

−h
‖x(t+ θ)‖γ+2k

r,p dθ

)

+
n∑
i=1

n∑
j=1

βiηij‖x(t)‖γ−rir,p (pj‖x(t)‖σ+rjr,p + qj‖x(t− h)‖σ+rjr,p )

∫ 0

−h
(‖x(t)‖k+ri−rjr,p + ‖x(t+ θ)‖k+ri−rjr,p )dθ

Λ1 ≤
n∑
i=1

n∑
j=1

βimjηij

(
4h‖x(t)‖γ+2k

r,p + 2h‖x(t− h)‖γ+2k
r,p + 2

∫ 0

−h
‖x(t+ θ)‖γ+2k

r,p dθ

)

+
n∑
i=1

n∑
j=1

βiηij

(
2h(pj + qj)‖x(t)‖γ+k+σr,p + 2qjh‖x(t− h)‖γ+k+σr,p + (pj + qj)

∫ 0

−h
‖x(t+ θ)‖γ+k+σr,p dθ

)

Λ2 ≤
n∑
i=1

n∑
j=1

miψijmj

(
4h‖x(t)‖γ+2k

r,p + 2h‖x(t− h)‖γ+2k
r,p + 2

∫ 0

−h
‖x(t+ θ)‖γ+2k

r,p dθ

)

+
n∑
i=1

n∑
j=1

mjψij‖x(t)‖γ−ri−rjr,p (pi‖x(t)‖σ+rir,p + qi‖x(t− h)‖σ+rir,p )

∫ 0

−h
(‖x(t)‖k+rjr,p + ‖x(t+ θ)‖k+rjr,p )dθ

Λ2 ≤
n∑
i=1

n∑
j=1

miψijmj

(
4h‖x(t)‖γ+2k

r,p + 2h‖x(t− h)‖γ+2k
r,p + 2

∫ 0

−h
‖x(t+ θ)‖γ+2k

r,p dθ

)

+
n∑
i=1

n∑
j=1

mjψij

(
2h(pi + qi)‖x(t)‖γ+k+σr,p + 2qih‖x(t− h)‖γ+k+σr,p + (pi + qi)

∫ 0

−h
‖x(t+ θ)‖γ+k+σr,p dθ

)
(
∂V (x(t))

∂x(t)

)T
(R(x(t), x(t− h))) ≤

n∑
i=1

βi(pi + qi)‖x(t)‖σ+γr,p + βiqi‖x(t− h)‖σ+γr,p .

Then, we obtain the inequality

dv(xt)

dt
≤ −(w0 − 4hL‖x(t)‖kr,p − 2hL1‖x(t)‖σr,p − L2‖x(t)‖σ−kr,p )‖x(t)‖γ+kr,p

−(w1 − 2hL‖x(t− h)‖kr,p − 2hL3‖x(t− h)‖σr,p − L4‖x(t− h)‖σ−kr,p )‖x(t− h)‖γ+kr,p

−(w2 − 2L‖xt‖kH − L1‖xt‖σH )

∫ 0

−h
‖x(t+ θ)‖γ+kr,p dθ

(3.32)

where κi,j = βiηij + ψijmi, L =
∑n

i=1

∑n
j=1 κi,jmj, L1 =

∑n
i=1

∑n
j=1 κi,j(pj + qj), L2 =∑n

i=1 βi(pi + qi), L3 =
∑n

i=1

∑n
j=1 κi,jqj and L4 =

∑n
i=1 βiqi. This bound is positive in the

neighbourhood ‖xt‖H ≤ δ, where δ ∈ (0,min{H2, H3, H4}), H2, H3 and H4 are the real posi-
tive roots of the following polynomials

w0 − 4hLHk
2 − 2hL1H

σ
2 − L2H

σ−k
2 = 0,

w1 − 2hLHk
3 − 2hL3H

σ
3 − L4H

σ−k
3 = 0,

w2 − 2LHk
4 − L1H

σ
4 = 0.
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Finally, we have a negative bound of the time derivative of v(ϕ)

dv(xt)

dt
≤ −c1‖x(t)‖γ+kr,p − c2‖x(t− h)‖γ+kr,p − c3

∫ 0

−h
‖x(t+ θ)‖γ+kr,p dθ,

where c1 = w0 − 4hLδk − 2hL1δ
σ − L2δ

σ−k, c2 = w1 − 2hLδk − 2hL3δ
σ − L4δ

σ−k and c3 =
w2 − 2Lδk − L1δ

σ.

It follows from (3.30) and defining c = min{c1, c3}, that the following bound

dv(xt)

dt
≤ −c

(
‖x(t)‖γ+kr,p +

∫ 0

−h
‖x(t+ θ)‖γ+kr,p dθ

)
also holds.

In Lemma 11 the neighbourhood where the time derivative is negative definite was found,
thus setting conditions pi and qi of the perturbed term. However, we can be interested in
knowing how large the perturbations can be to guarantee that all solutions are in a certain
neighbourhood, i.e give conditions on pi and qi to ensure a negative time derivative. Thus, we
take a neighbourhood such that

‖xt‖H ≤ δ <
(

min
{ w0

4hL
,

w1

2hL
,

w2

2L

}) 1
k
.

Reorganising (3.32) and separating terms that depend on the perturbation, we obtain

dv(xt)

dt
≤ −(w0 − 4hLδk)‖x(t)‖γ+kr,p + (2hL1δ

σ + L2δ
σ−k)‖x(t)‖γ+kr,p

−(w1 − 2hLδk)‖x(t− h)‖γ+kr,p + (2hL3δ
σ + L4δ

σ−k)‖x(t− h)‖γ+kr,p

−(w2 − 2Lδk)

∫ 0

−h
‖x(t+ θ)‖γ+kr,p dθ + L1δ

σ

∫ 0

−h
‖x(t+ θ)‖γ+kr,p dθ.

Now, we can establish some conditions on pi and qi, satisfying the following inequalities to get
a negative time derivative for v(ϕ)

2h

(
n∑
i=1

n∑
j=1

(βiηij(pj + qj) +mjψij(pi + qi))

)
δσ +

(
n∑
i=1

βi(pi + qi)

)
δσ−k < w0 − 4hLδk,

2h

(
n∑
i=1

n∑
j=1

(βiηijqj +mjψijqi)

)
δσ +

(
n∑
i=1

βiqi

)
δσ−k < w1 − 2hLδk,(

n∑
i=1

n∑
j=1

(βiηij(pj + qj) +mjψij(pi + qi))

)
δσ < w2 − 2Lδk.

(3.33)

Thus, we can ensure the negative time derivative of v(ϕ). Hence,

dv(xt)

dt
≤ −c1‖x(t)‖γ+kr,p − c2‖x(t− h)‖γ+kr,p − c3

∫ 0

−h
‖x(t+ θ)‖γ+kr,p dθ,

where c1 = w0 − 4hLδk − 2hL1δ
σ − L2δ

σ−k, c2 = w1 − 2hLδk − 2hL3δ
σ − L4δ

σ−k and c3 =
w2 − 2Lδk − L1δ

σ.
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3.3 Estimates of the solutions

The purpose of this section is to provide estimates of stable solutions, by mean of the Lyapunov-
Krasovskii functional (3.1) introduced at the beginning of this chapter. To do so, we need to

connect the functional v(xt) to its derivative dv(xt)
dt

through the bounds for v(xt) and dv(xt)
dt

found
in the previous section. This is achieved with the help of the following technical results whose
proofs are presented in Appendix B.

Lemma 12. Let u and q be natural numbers such that u, q ≥ 1 and u > q. Then, the following
inequality is satisfied(

‖x(t)‖qr,p +

∫ 0

−h
‖x(t+ θ)‖qr,pdθ

)u
q

≤ L1

(
‖x(t)‖ur,p +

∫ 0

−h
‖x(t+ θ)‖ur,pdθ

)
, (3.34)

where L1 =
(
2 max{1, h}

)u
q
−1

.

Lemma 13. Let u ≥ 2 be an entire number. Then,(
‖x(t)‖2r,p +

∫ 0

−h
‖x(t+ θ)‖2r,pdθ

)u
≤ L1

(
‖x(t)‖2ur,p +

∫ 0

−h
‖x(t+ θ)‖2ur,pdθ

)
, (3.35)

where L1 = 2u−2(1 + h)u−1.

The connection between functional (3.1) and its derivative is as follows.

Lemma 14. The following inequality is satisfied

dv(xt)

dt
≤ −L2v(xt)

γ+k
γ , t ≥ 0, (3.36)

along the solutions with ‖xt‖H ≤ δ. Here,

L2 =
c

b
γ+k
γ L1

,

where b is defined in (3.11), c in (3.15) and L1 comes from Lemma 12 with u = γ + k and
q = γ.

Proof. From (3.15) we have that

dv(xt)

dt
≤ −c

(
‖x(t)‖γ+kr,p +

∫ 0

−h
‖x(t+ θ)‖γ+kr,p dθ

)
.

Taking u = γ + k and q = γ, Lemma 14 implies that

dv(xt)

dt
≤ −c

(
‖x(t)‖γ+kr,p +

∫ 0

−h
‖x(t+ θ)‖γ+kr,p dθ

)
≤ − c

L1

(
‖x(t)‖γr,p +

∫ 0

−h
‖x(t+ θ)‖γr,pdθ

) γ+k
γ

,

equivalently,

dv(xt)

dt
≤ − c

L1b
γ+k
γ

[
b

(
‖x(t)‖γr,p +

∫ 0

−h
‖x(t+ θ)‖γr,pdθ

)] γ+k
γ

.
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In view of the upper bound (3.11) for v(xt), we conclude that

dv(xt)

dt
≤ − c

L1b
γ+k
γ

v(xt)
γ+k
γ .

Now, we can tackle the final step in our pursuit of estimates of the solution. Since v(xt) fulfils
the differential inequality (14), we use the Comparison Lemma [16]. We define the comparison
function u(t) such that

du(t)

dt
= −L2u

γ+k
γ (t), (3.37)

and, in view of (3.12), we chose

u(0) = u0 = (α1 + b3∆
k)‖ϕ‖γH .

The solution to this differential equation is obtained via the separation of variable technique.
It follows from (3.37) that

u(t) = u0

[
1 + L2

(
k

γ

)
u
k
γ

0 t

]− γ
k

.

Then, by the Comparison Lemma,

v(xt) ≤ u0

[
1 + L2

(
k

γ

)
u
k
γ

0 t

]− γ
k

.

Finally, using the bound (3.6), we have the following estimate of the solutions of the homoge-
neous system with delay (2.19)

‖x(t, ϕ)‖r,p ≤
1

a
1
γ

1

u
1
γ

0

[
1 + L2

(
k

γ

)
u
k
γ

0 t

]− 1
k

or,

‖x(t, ϕ)‖r,p ≤ ĉ1‖ϕ‖H
[
1 + ĉ2‖ϕ‖kH t

]− 1
k

ĉ1 =

(
α1 + b3∆

k

a1

) 1
γ

=
δ

∆
,

ĉ2 =
c

b

(
k

γ

)(
α1 + b3∆

k

2bmax{1, h}

) k
γ

.

In view of the above, we can state the following result.

Theorem 10. Let the trivial solution of system (2.19) be δr-homogeneous and asymptotically
stable. The solutions of system (2.19) with initial functions satisfying ‖ϕ‖H < ∆, where ∆ is
defined in (3.16), admit an estimate of the form

‖x(t, ϕ)‖r,p ≤ ĉ1‖ϕ‖H
[
1 + ĉ2‖ϕ‖kH t

]− 1
k

where

ĉ1 =

(
α1 + b3∆

k

a1

) 1
γ

=
δ

∆
,

ĉ2 =
c

b

(
k

γ

)(
α1 + b3∆

k

2bmax{1, h}

) k
γ

.

Here, a1 comes from (3.6), b from (3.11), b3 from (3.12) and c from (3.15).
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Remark 4. As ‖ϕ‖H < ∆, the solution satisfies ‖xt‖H ≤ δ, hence the estimate is valid.

Remark 5. Repeating the steps of Theorem 10, we arrive at the same estimates for solutions of
the particular case (3.18) and the perturbed system (3.28), taking their respective values a1, b, c
and β1 and computing their estimate of the attraction region.

3.4 Illustrative Examples

3.4.1 Example 1

Consider the following system, which is widely used to model complex interactions, either
instantaneous or delayed, occurring amongst transcription factors and target genes [17]:

ẋ1(t) = −κ1x1(t)(x1(t) + u1(t)) + ρ1x2(t− h) + u2(t), (3.38)

ẋ2(t) = −κ2x
3
2
2 (t) + (ρ2x2(t) + u3(t))x1(t− h).

Here x1(t), x2(t) ∈ R+ represent interactions occurring in a genetic network, the inputs ui(t) ∈
R+, i ∈ 1, 3 are the model uncertainties, h > 0 is the transition delay in the network, and
κ1, κ2, ρ1, ρ2 are positive parameters. For ui(t) = 0, i ∈ 1, 3, system (3.38) reduces to

ẋ1(t) = −κ1x21(t) + ρ1x2(t− h), (3.39)

ẋ2(t) = −κ2x
3
2
2 (t) + ρ2x2(t)x1(t− h),

which is δr-homogeneous for (r1, r2) = (1, 2) with degree k = 1. For system (3.39), we set γ = 4
and consider the Lyapunov function

V (x) = x41 + x22, (3.40)

which is positive definite. Its derivative along the trajectories of system (3.38) when h = 0
yields

V̇ (x) = −4κ1x
5
1 + 4ρ1x

3
1x2 − 2κ2x

5
2
2 + 2ρ2x

2
2x1,

with homogeneous degree γ + k = 5, satisfying Theorem 1 in Section 2.1. Moreover, choosing
p = 1 in Definition 3 in Section 2.1, we get an upper bound of the form

V̇ (x) ≤ −
(

1

8
min{2κ1, κ2} − 4 max{2ρ1, ρ2}

)
‖x(t)‖5r,1 = −w‖x(t)‖5r,1.

Then, we obtain the following stability condition for the delay-free system (3.38)

w =

(
1

8
min{2κ1, κ2} − 4 max{2ρ1, ρ2}

)
> 0. (3.41)

Taking p = 5, this condition turns out to be

w = (2 min{2κ1, κ2} − 4 max{2ρ1, ρ2}) > 0. (3.42)

It is worth mentioning that if the value p increases the asymptotic stability condition (3.42) is
less conservative than (3.41) since the set of parameters for which it holds is wider.
The constants associated to system (3.38) and the Lyapunov function of the delay-free sys-
tem (3.40) are m1 = max{|κ1|, |ρ1|}, m2 = |κ2| + |ρ2|, η11 = 2|κ1|, η12 = η21 = 0, η22 =
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max{3/2|κ2|, |ρ2|}, β1 = 4, β2 = 2, ψ11 = 12, ψ12 = ψ21 = 0, ψ22 = 2. For p = 1 we have
α0 = 1 and α1 = 1, and for p = 5, α0 = 1 and α1 = 21/5.
For a given set of system parameters (κ1, κ2, ρ1, ρ2) = (9, 18, 0.25, 0.5) satisfying (3.41) and
(3.42) when h = 0, we compute the constants shown in Table 3.1 for the delay h = 10.

Table 3.1: Constants for the estimates of solutions of Example 1

p δ H1 H2 ∆ ĉ1 ĉ2 χ w w0 w1 w2

1 1 · 10−9 1.6 · 10−8 1.8 · 10−7 9.8 · 10−10 1.0162 0.002 0.135 0.25 0.07 0.012 0.016
5 1 · 10−9 1.6 · 10−5 2.5 · 10−5 9.6 · 10−10 1.035 0.23 0.44 34 9.63 1.7 2.26

Then, according to Theorem 10, the solution of system (3.38) admits the estimates:

‖x(t, ϕ)‖r,1 ≤ 1.0162‖ϕ‖H [1 + 0.002‖ϕ‖H t]−1

and

‖x(t, ϕ)‖r,5 ≤ 1.035‖ϕ‖H [1 + 0.23‖ϕ‖H t]−1 . (3.43)

For the initial function ϕ(θ) = [2 ·10−19, 2 ·10−19], θ ∈ [−10, 0], the system response (continuous
line) and its estimates (dashed line) for p = 1 and p = 5 are depicted in Figure 3.1 and
Figure 3.2, respectively. As shown in Figure 3.2, if we take a greater value for p, we also get
a less conservative bound of the estimate of the solutions since the bounds of the Lyapunov-
Krasovskii depend on w, which increases if the value p increases as also shown in Table 3.1.
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Time t 1010
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1
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||x
e
(t)||

r,1

Figure 3.1: Estimation of the solution of system (3.39) with p = 1
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Figure 3.2: Estimation of the solution of system (3.39) with p = 5
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Figure 3.3: Estimation of the solution of system (3.44)

For the perturbed system (3.38), we take u1(t) = x21(t), u2(t) = κ3x2(t)
3
2 and u3(t) = ρx31(t).

where κ3 and ρ3 are positive parameters and κ3 > κ1. Thus, we get the following perturbed
system:

ẋ1(t) = −κ1x21(t) + ρ1x2(t− h)− κ1x31(t) + κ3x
3
2
2 (t),

ẋ2(t) = −κ2x
3
2
2 (t) + ρ2x2(t)x1(t− h) + ρ3x

3
1(t)x1(t− h).

(3.44)
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The perturbed terms R1 = −κ1x31(t)+κ3x
3
2
2 (t) and R2(t) = ρ3x

3
1(t)x1(t−h) are δr-homogeneous

of homogeneity degree σ = 2 and σ > µ, hence they satisfy Lemma 11 in Section 3.2 and the
trivial solution of perturbed system is asymptotically stable. Taking κ3 = ρ3 = 1 · 102, we
obtain approximate values as in Table 3.1. The response of system (3.44) and estimate (3.43)
for the initial function ϕ(θ) = [2 · 10−19, 2 · 10−19], θ ∈ [−10, 0], are depicted in Figure 3.3 as a
continuous and dashed line, respectively.

3.4.2 Example 2

Consider the system

ẋ1(t) = −0.5x31(t) + x2(t)− x2(t− h), (3.45)

ẋ2(t) = −1.5x
5
3
2 (t)− x21(t)x2(t) + x51(t− h) + x21(t− h)x2(t− h).

where x1(t), x2(t) ∈ R and h ∈ R+. It is straightforward to verify that system (3.45) is δr-
homogeneous for (r1, r2) = (1, 3) with degree of homogeneity k = 2. Set γ = 6 and apply the
Lyapunov method for the delay-free system (3.45) with

V (x) = x61 + x22.

Its time derivative along the trajectories of system (3.45) when h = 0 is

V̇ (x) = −3x81 − 3x
8
3
2 + 2x2x

5
1,

which admits a negative bound of the form

V̇ (x) ≤ −‖x(t)‖8r,8 = −w‖x(t)‖8r,8.

Hence, the free-delay system is asymptotically stable. Due to its special structure, this can be
analysed through the particular case (3.18) presented in Section 3.1.

In this example, we proceed to compute the estimate of the solutions for system (3.45) with
the help of the right-hand side bounds of the general case (2.19) and the particular case (3.18).
The constants involved for the general case and the particular case are f1 = 1.5, f2 = 2.5,
g1 = 1, g2 = 2, m1 = 1.5, m2 = 2.5, η11 = 3/2, η12 = 1, η21 = 2, η22 = 7/2, β1 = 6, β2 = 2,

ψ11 = 30, ψ12 = ψ21 = 0, ψ22 = 2, α0 = 1 and α1 = 2
1
4 . For h = 10, the parameters of the

estimate of the solutions and some important constants for their computations are shown in
Table 3.2.

Table 3.2: Constants for the estimates of solutions of Example 2

Lyapunov-Krasovskii (General Case)
δ H1 H2 ∆ ĉ1 ĉ2 χ w w0 w1 w2

0.001 0.0109 0.004 9.69 · 10−4 1.0311 0.0069 0.6143 1 0.28 0.05 0.06
Lyapunov-Krasovskii (Particular Case)

δ H1 H2 ∆ ĉ1 ĉ2 χ w w0 w1 w2

0.001 0.0155 0.0115 9.7 · 10−4 1.0302 0.0069 0.64 1 0.28 0.05 0.06
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The solution of system (3.45) admits the estimate for the general case:

‖x(t, ϕ)‖r,8 ≤ 1.0311‖ϕ‖H
[
1 + 0.0069‖ϕ‖2H t

]− 1
2 ,

and for the particular case

‖x(t, ϕ)‖r,8 ≤ 1.0302‖ϕ‖H
[
1 + 0.0069‖ϕ‖2H t

]− 1
2 .

The system response and its estimates for the general case and the particular case for the initial
function ϕ(θ) = [6 · 10−10, 6 · 10−10], θ ∈ [−10, 0], are depicted in Figure 3.5 as a continuous,
dashed and dash-dot line, respectively.

We can see that the estimate of the attraction region is less conservative in the particular
case than in the general case since a1 is greater, and it is readily shown in Theorem 9 in Section

3.1 that ∆ < (a1/α1)
1
γ δ. This allows shrinking the parameter ĉ1 and gets a better estimate for

small time as shown in Figure 3.4.
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Figure 3.4: Estimation of the solution of system (3.45) for small time
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Figure 3.5: Estimation of the solution of system (3.45)
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Chapter 4

Analysis of time-delay systems with
standard dilation

Most of the results on homogeneous time-delay systems become more straightforward with
standard dilation due to reduced computations. Besides, the standard dilation is a particular
case of the weighted dilation when each weight is equal to one. In recent research, an analogue
functional to the so-called Lyapunov-Krasovskii functional of complete type for linear systems
was presented. It is necessary to remind that this type of functional allows analysing systems
under perturbations. For this reason, we devote this chapter to address this functional to
analyse perturbations and some variations of these for homogeneous time-delay systems. Also,
we compute estimates of the solution for standard dilation.
Computations for the neighbourhood of asymptotic stability of perturbed homogeneous time-
delay systems are developed in Section 4.1. Estimates of the solution for homogeneous time-
delay systems are computed in Section 4.2. In the last section, some examples with and without
perturbations are discussed.

4.1 Perturbed System

As shown in Section 2.2.2, for time-delay systems with right-hand side of the form f(x(t), x(t−
h)), a novel functional was presented in [12], which admits a lower bound (Lemma 2), an upper
bound (Lemma 3) and its estimate of the time derivative is negative with the assumption that
f(x(t), x(t)) is asymptotically stable (Lemma 4). Based on the above results mentioned, we
study the robustness on homogeneous time-delay systems with standard dilation with the help
of functional (2.28).

Consider the perturbed system

ẋ(t) = f(x(t), x(t− h)) +R(x(t), x(t− h)), (4.1)

where the vector function f(x(t), x(t − h)) is continuously differentiable and δ1-homogeneous
of homogeneous degree µ > 1 and R(x(t), x(t− h)) is continuous. It is assumed that

‖R(x(t), x(t− h))‖ ≤ p0‖x(t)‖σ + p1‖x(t− h)‖σ, p0, p1 > 0, σ > µ. (4.2)

The stability of this system is analysed through functional (2.28). The lower and upper bound
for the functional (2.28) are given in Lemma 2 and Lemma 3, respectively. We now determine
the neighbourhood where we get a negative time derivative of functional (2.28) along the
solutions of system (4.1).
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Lemma 15. There exist c1, c2, c3 > 0 such that the time derivative of functional (2.28) along
the solutions of system (4.1), admits a bound of the form

dv(xt)

dt
≤ −c1‖x(t)‖γ+µ−1 − c2

∫ 0

−h
‖x(t+ θ)‖γ+µ−1dθ − c3‖x(t− h)‖γ+µ−1, (4.3)

in the neighbourhood ‖xt‖ ≤ δ, where δ ∈ (0,min{H2, H3, H4}), H2, H3 and H4 are the real
positive roots of the following polynomials

w0 − 4hLHµ−1
2 − 2βp0H

σ−µ
2 − 2hL1(p0 + p1)H

σ−1
2 = 0,

w1 − 2hLHµ−1
3 − βp1Hσ−µ

3 − 2hp1L1H
σ−1
3 = 0,

w2 − 2LHµ−1
4 − L1(p0 + p1)H

σ−1
4 = 0.

(4.4)

Here, L = mηβ + m2ψ, L1 = βη + ψm, c1 = w0 − 4hLδµ−1 − 2βp0δ
σ−µ − 2hL1(p0 + p1)δ

σ−1,
c2 = w1 − 2hLδµ−1 − βp1δσ−µ − 2hp1L1δ

σ−1 and c3 = w2 − 2Lδµ−1 − L1(p0 + p1)δ
σ−1.

Proof. Differentiating the three summands of the functional, we obtain

dv(xt)

dt

∣∣∣∣
(2.19)

= −w0‖x(t)‖γ+µ−1 − w1‖x(t− h)‖γ+µ−1 − w2

∫ 0

−h
‖x(t+ θ)‖γ+µ−1dθ

+

(
∂V (x(t))

∂x(t)

)T
R(x(t), x(t− h)) +

2∑
j=1

Λj.

Using (2.11), (2.12), (2.14), (2.17) and (2.18), we get the following upper bounds

Λ1 ≤ βmη

(
4h‖x(t)‖γ+2µ−2 + 2h‖x(t− h)‖γ+2µ−2 + 2

∫ 0

−h
‖x(t+ θ)‖γ+2µ−2dθ

)
+β‖x(t)‖γ−1

∫ 0

−h
η(‖x(t)‖µ−1 + ‖x(t+ θ)‖µ−1)dθ × (p0‖x(t)‖σ + p1‖x(t− h)‖σ)

Λ1 ≤ βmη

(
4h‖x(t)‖γ+2µ−2 + 2h‖x(t− h)‖γ+2µ−2 + 2

∫ 0

−h
‖x(t+ θ)‖γ+2µ−2dθ

)
+βη

(
2h(p0 + p1)‖x(t)‖µ+σ+γ−2 + 2p1h‖x(t− h)‖µ+σ+γ−2 + (p0 + p1)

∫ 0

−h
‖x(t+ θ)‖µ+σ+γ−2dθ

)

Λ2 ≤ ψm2

(
4h‖x(t)‖γ+2µ−2 + 2h‖x(t− h)‖γ+2µ−2 + 2

∫ 0

−h
‖x(t+ θ)‖γ+2µ−2dθ

)
+(p0‖x(t)‖σ + p1‖x(t− h)‖σ)ψ‖x(t)‖γ−2

∫ 0

−h
m(‖x(t)‖µ + ‖x(t+ θ)‖µ)dθ

Λ2 ≤ ψm2

(
4h‖x(t)‖γ+2µ−2 + 2h‖x(t− h)‖γ+2µ−2 + 2

∫ 0

−h
‖x(t+ θ)‖γ+2µ−2dθ

)
+ψm

(
2h(p0 + p1)‖x(t)‖µ+σ+γ−2 + 2p1h‖x(t− h)‖µ+σ+γ−2 + (p0 + p1)

∫ 0

−h
‖x(t+ θ)‖µ+σ+γ−2dθ

)
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(
∂V (x(t))

∂x(t)

)T
(R(x(t), x(t− h))) ≤ 2βp0‖x(t)‖σ+γ−1 + βp1‖x(t− h)‖σ+γ−1.

In this way, we obtain the inequality

dv(xt)

dt
≤ −(w0 − 4hL‖x(t)‖µ−1 − 2βp0‖x(t)‖σ−µ − 2hL1(p0 + p1)‖x(t)‖σ−1)‖x(t)‖γ+µ−1

−(w1 − 2hL‖x(t− h)‖µ−1 − βp1‖x(t− h)‖σ−µ − 2hp1L1‖x(t− h)‖σ−1)‖x(t− h)‖γ+µ−1

−(w2 − 2L‖xt‖µ−1 − L1(p0 + p1)‖xt‖σ−1)
∫ 0

−h
‖x(t+ θ)‖γ+µ−1dθ

(4.5)

where L = mηβ+m2ψ and L1 = βη+ψm. Suppose that σ > µ > 1, thus the bound is positive
in the neighbourhood ‖xt‖h ≤ δ, where δ ∈ (0,min{H2, H3, H4}), H2, H3 and H4 are the real
positive roots of the following polynomials

w0 − 4hLHµ−1
2 − 2βp0H

σ−µ
2 − 2hL1(p0 + p1)H

σ−1
2 = 0,

w1 − 2hLHµ−1
3 − βp1Hσ−µ

3 − 2hp1L1H
σ−1
3 = 0,

w2 − 2LHµ−1
4 − L1(p0 + p1)H

σ−1
4 = 0.

Finally, we can present a negative bound of the time derivative of v(ϕ)

dv(xt)

dt
≤ −c1‖x(t)‖γ+µ−1 − c2‖x(t− h)‖γ+µ−1 − c3

∫ 0

−h
‖x(t+ θ)‖γ+µ−1dθ,

where c1 = w0 − 4hLδµ−1 − 2βp0δ
σ−µ − 2hL1(p0 + p1)δ

σ−1, c2 = w1 − 2hLδµ−1 − βp1δσ−µ −
2hp1L1δ

σ−1 and c3 = w2 − 2Lδµ−1 − L1(p0 + p1)δ
σ−1

It follows from (4.3) and defining c = min{c1, c3} that we can also establish the following
bound

dv(xt)

dt
≤ −c

(
‖x(t)‖γ+µ−1 +

∫ 0

−h
‖x(t+ θ)‖γ+µ−1dθ

)
,

As in Section 3.3, we may give some conditions on p0 and p1 defined in (4.2) instead of
giving conditions on the neighbourhood as in (4.4). Choose a neighbourhood satisfying

‖xt‖h ≤ δ <
(

min
{ w0

4hL
,

w1

2hL
,

w2

2L

}) 1
µ−1

. (4.6)

It follows from (4.5) that if p0 and p1 satisfy the inequalities

2βp0δ
σ−µ + 2hL1(p0 + p1)δ

σ−1 < w0 − 4hLδµ−1,

βp1δ
σ−µ + 2hp1L1δ

σ−1 < w1 − 2hLδµ−1,

L1(p0 + p1)δ
σ−1 < w2 − 2Lδµ−1,

(4.7)

we can get the same bound as in (4.3) in the neighbourhood (4.6).

4.1.1 Zero mean value perturbations

Let us turn now our attention to the case where we have additional conditions for the perturbed
term R(x(t), x(t−h)). In the previous section, it was shown that if condition σ > µ holds, then
the asymptotic stability of system (4.1) is preserved and consequently, we got bounds for the
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functional (2.28) and its time derivative. However, it is proved in recent research, that under
certain conditions for the perturbed term, condition σ > µ can be relaxed [18, 19, 20]. Thus,
consider the perturbed system

ẋ(t) = f(x(t), x(t− h)) +B(t)Q(x(t), x(t− h)) (4.8)

where B(t) is a matrix of size n× l whose entries are continuous and bounded, while the compo-
nents of the l-dimensional vector Q(x(t), x(t−h)) are continuously differentiable. Additionally,
there exist p0, p1, α > 0 such that the perturbed term satisfies

‖Q(x, y)‖ ≤ p0‖x‖σ + p1‖y‖σ, (4.9)

‖B(t)‖ ≤ b̂ = max ‖B(t)‖.

Since Q(x(t), x(t − h)) is δ1-homogeneous, then its derivative is also δ1-homogeneous. Hence,
there exists p2, p3 > 0 such that∥∥∥∥∂Q(x, y)

∂x

∥∥∥∥ ≤ p2‖x‖σ−1 + p3‖y‖σ−1. (4.10)

Assume that the integral

I(t) =

∫ t+h

0

B(s)ds (4.11)

is bounded on [0,∞) and furthermore, there exists α2 > 0 such that

‖I(t)‖ ≤ α2. (4.12)

In particular, the entries of B(t) may be describing periodic oscillations with zero mean values.
Notice that the integral I(t) with the upper integration limit t instead of t+ h was considered
in [10].

To determine the conditions where the trivial solution of system (4.8) remains asymptotically
stable, we use the following functional:

v(t, ϕ) = V (ϕ(0))

+

(
∂V (x)

∂x

)T ∣∣∣∣∣
x=ϕ(0)

(∫ 0

−h
(f(ϕ(0), ϕ(θ)) +B(t+ θ + h)Q(ϕ(0), ϕ(θ))) dθ − I(t)Q(ϕ(0), ϕ(0))

)

+

∫ 0

−h
(w1 + (h+ θ)w2)‖ϕ(θ)‖γ+µ−1dθ. (4.13)

Further, we set α > 1 as in the Razumikhin condition and introduce the set

Sα =
{
‖ϕ(θ)‖ ≤ α‖ϕ(0)‖, θ ∈ [−h, 0]

}
.

Since the bound for the functional v(t, ϕ) contains the terms the form∫ 0

−h
‖ϕ(θ)‖γ+σ−1,

it is questionable whether or not general lower bound of the form (2.29) exists. However, it
was shown in [12] that to analyse the stability it is enough to compute the lower bound for the
functional on the special set Sα. In the next section, we show that construction of the estimates
for solutions by means of this lower bound is also possible. We prove next that functional (4.13)
admits a lower and upper bound.
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Lemma 16. There exist a1(α) > 0 such that functional (4.13) admits a lower bound on the set
Sα of the form

v(t, ϕ) ≥ a1(α)‖ϕ(0)‖γ + w1

∫ 0

−h
‖ϕ(θ)‖γ+µ−1dθ, ϕ ∈ Sα, (4.14)

in the neighbourhood ‖ϕ‖h ≤ δ. Here, δ ∈ (0, H1), where H1 is a positive root of the following
equation

α0 − β(p0 + p1)α2H
σ−1
1 − βb̂h(p0 + p1α

σ)Hσ−1
1 − βmh(1 + αµ)Hµ−1

1 = 0, (4.15)

and a1(α) = α0 − β(p0 + p1)α2δ
σ−1 − βb̂h(p0 + p1α

σ)δσ−1 − βmh(1 + αµ)δµ−1.

Proof. It follows from (2.11), (2.17), (4.9) and (4.12) that

v(t, ϕ) ≥
(
α0 − (β(p0 + p1)α2 + βb̂h(p0 + p1α

σ))‖ϕ(0)‖σ−1 − βmh(1 + αµ)‖ϕ(0)‖µ−1
)
‖ϕ(0)‖γ

+ w1

∫ 0

−h
‖ϕ(θ)‖γ+µ−1dθ.

Now, we need to define the neighbourhood where (4.13) has a positive definite lower bound.
We take ‖ϕ‖h ≤ δ, δ ∈ (0, H1), where H1 is a positive root of the following equation

α0 − β(p0 + p1)α2H
σ−1
1 − βb̂h(p0 + p1α

σ)Hσ−1
1 − βmh(1 + αµ)Hµ−1

1 = 0,

and we arrive at the lower bound

v(t, ϕ) ≥
(
α0 − β(p0 + p1)α2δ

σ−1 − βb̂h(p0 + p1α
σ)δσ−1 − βmh(1 + αµ)δµ−1

)
‖ϕ(0)‖γ

+ w1

∫ 0

−h
‖ϕ(θ)‖γ+µ−1dθ.

Lemma 17. There exist b1, b2 > 0 such that functional (4.13) admits an upper bound of the
form

v(t, ϕ) ≤ b1‖ϕ(0)‖γ + b2

∫ 0

−h
‖ϕ(θ)‖γdθ, (4.16)

if ‖ϕ‖h ≤ δ, with

b1 = α1 + β(p0 + p1)(α2 + hb̂)δσ−1 + 2hβmδµ−1,

b2 = (w1 + hw2 + βm)δµ−1 + βb̂p1δ
σ−1.

Proof. It follows from (2.11), (2.17), (4.9) and (4.12) that

v(t, ϕ) ≤ (α1 + β(p0 + p1)(α2 + hb̂)‖ϕ(0)‖σ−1 + 2hβm‖ϕ(0)‖µ−1)‖ϕ(0)‖γ

+ (w1 + hw2 + βm)

∫ 0

−h
‖ϕ(θ)‖γ+µ−1dθ + βb̂p1

∫ 0

−h
‖ϕ(θ)‖γ+σ−1dθ.

Taking a neighbourhood ‖ϕ‖h ≤ δ, we obtain

v(t, ϕ) ≤ (α1 + β(p0 + p1)(α2 + hb̂)δσ−1 + 2hβmδµ−1)‖ϕ(0)‖γ

+ ((w1 + hw2 + βm)δµ−1 + βb̂p1δ
σ−1)

∫ 0

−h
‖ϕ(θ)‖γdθ. (4.17)
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It follows from (4.16), defining b = max{b1, b2}, that

v(t, ϕ) ≤ b

(
‖ϕ(0)‖γ +

∫ 0

−h
‖ϕ(θ)‖γdθ

)
. (4.18)

Suppose σ > 1 and µ > 1, then (4.13) also admits an upper bound of the form

v(t, ϕ) ≤ α1‖ϕ(0)‖γ + b3‖ϕ‖γ+σ−1h + b4‖ϕ‖γ+µ−1h , (4.19)

where b3 = β(p0 + p1)(α2 + hb̂) and b4 =
(
2βm+ w1 + h

2
w2

)
h.

To satisfy Theorem 2, we need to find a negative time derivative bound of v(t, ϕ), as well as
prove that functional (4.13) allows finding a neighbourhood of asymptotic stability for system
(4.8). For this reason, we present the following Lemma.

Lemma 18. There exist c1, c2, c3 > 0 such that the time derivative of functional (4.13) along
the solutions of system (4.8), admits a bound of the form

dv(t, xt)

dt
≤ −c1‖x(t)‖γ+µ−1 − c2

∫ 0

−h
‖x(t + θ)‖γ+µ−1dθ − c3‖x(t − h)‖γ+µ−1, (4.20)

in the neighbourhood ‖xt‖ ≤ δ, where δ ∈ (0,min{H2, H3, H4}), H2, H3 and H4 are the real
positive roots of the following polynomials

w0 − 4hL1H
µ−1
2 − L2H

σ−1
2 − L3H

2σ−µ−1
2 = 0,

w1 − 2hL1H
µ−1
3 − L4H

σ−1
3 − L5H

2σ−µ−1
3 = 0,

w2 − 2L1H
µ−1
4 − L6H

σ−1
4 − L7H

2σ−µ−1
3 = 0.

(4.21)

Here, κ1 = b̂(ψ(p0 + p1) + β(p2 + p3)), κ2 = b̂(βη + ψm), L1 = βmη + ψm2, L2 = 2hκ2(p0 +
p1) + 2mα3 + 2hmκ1, L3 = b̂(p0 + p1)α3 + hb̂(p0 + p1)κ1, L4 = 2hp1κ2 + mα3 + hmκ1, L5 =
b̂(p1α3 + hp1κ1), L6 = κ2(p0 + p1) + 2b̂m(βp3 + ψp1), L7 = b̂2(p0 + p1)(βp3 + ψp1), c1 =
w0 − 4hL1δ

µ−1 − L2δ
σ−1 − L3δ

2σ−µ−1, c2 = w2 − 2L1δ
µ−1 − L6δ

σ−1 − L7δ
2σ−µ−1 and c3 =

w1 − 2hL1δ
µ−1 − L4δ

σ−1 − L5δ
2σ−µ−1.

Proof. Differentiating each of the three summands of (4.13) along of solutions of (4.8), we
obtain

dv(t, xt)

dt

∣∣∣∣
(4.8)

= −w0‖x(t)‖γ+µ−1 − w1‖x(t− h)‖γ+µ−1 − w2

∫ 0

−h
‖x(t+ θ)‖γ+µ−1dθ +

4∑
j=1

Λj

−(f(x(t), x(t− h)) +B(t)Q(x(t), x(t− h)))T
∂

∂x(t)

((
∂V (x(t))

∂x(t)

)T
I(t)Q(x(t), x(t))

)
where

Λ1 =

(
∂V (x(t))

∂x(t)

)T ∫ t

t−h

∂f(x(t), x(s))

∂x(t)
ds× (f(x(t), x(t− h)) +B(t)Q(x(t), x(t− h)))

Λ2 = (f(x(t), x(t− h)) +B(t)Q(x(t), x(t− h))T ×
(
∂2V (x(t))

∂x2(t)

)∫ 0

−h
f(x(t), x(t+ θ))dθ.

Λ3 =

(
∂V (x(t))

∂x(t)

)T ∫ t

t−h
B(s+ h)

∂Q(x(t), x(s))

∂x(t)
ds× (f(x(t), x(t− h)) +B(t)Q(x(t), x(t− h)))
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Λ4 = (f(x(t), x(t−h))+B(t)Q(x(t), x(t−h))T×
(
∂2V (x(t))

∂x2(t)

)∫ 0

−h
B(t+θ+h)Q(x(t), x(t+θ))dθ.

Using (2.11), (2.12), (2.14), (2.17), (2.18) and (4.9) we get the following upper bounds

Λ1 ≤ βmη

(
4h‖x(t)‖γ+2µ−2 + 2h‖x(t− h)‖γ+2µ−2 + 2

∫ 0

−h
‖x(t+ θ)‖γ+2µ−2dθ

)
+b̂βη

(
2h(p0 + p1)‖x(t)‖µ+σ+γ−2 + 2p1h‖x(t− h)‖µ+σ+γ−2 + (p0 + p1)

∫ 0

−h
‖x(t+ θ)‖µ+σ+γ−2dθ

)

Λ2 ≤ ψm2

(
4h‖x(t)‖γ+2µ−2 + 2h‖x(t− h)‖γ+2µ−2 + 2

∫ 0

−h
‖x(t+ θ)‖γ+2µ−2dθ

)
+b̂ψm

(
2h(p0 + p1)‖x(t)‖µ+σ+γ−2 + 2p1h‖x(t− h)‖µ+σ+γ−2 + (p0 + p1)

∫ 0

−h
‖x(t+ θ)‖µ+σ+γ−2dθ

)

Λ3 ≤ βb̂2
(
h(p0 + p1)(p2 + p3)‖x(t)‖γ+2σ−2 + hp1(p2 + p3)‖x(t− h)‖γ+2σ−2)

+βmb̂

(
2h(p2 + p3)‖x(t)‖µ+σ+γ−2 + h(p2 + p3)‖x(t− h)‖µ+σ+γ−2 + 2p3

∫ 0

−h
‖x(t+ θ)‖µ+σ+γ−2dθ

)
+βb̂2p3(p0 + p1)

∫ 0

−h
‖x(t+ θ)‖γ+2σ−2dθ

Λ4 ≤ ψb̂2(p0 + p1)

(
h(p0 + p1)‖x(t)‖γ+2σ−2 + hp1‖x(t− h)‖γ+2σ−2 + p1

∫ 0

−h
‖x(t+ θ)‖γ+2σ−2dθ

)
+ψb̂m

(
2h(p0 + p1)‖x(t)‖µ+σ+γ−2 + h(p0 + p1)‖x(t− h)‖µ+σ+γ−2 + 2p1

∫ 0

−h
‖x(t+ θ)‖µ+σ+γ−2dθ

)
Since I(t) is assumed to be bounded, there exist α3 > 0 such that

(f(x(t), x(t− h)) +B(t)Q(x(t), x(t− h)))T
∂

∂x

((
∂V (x)

∂x

)T
I(t)Q(x(t), x(t))

)
≤

≤ (m(‖x(t)‖µ + ‖x(t− h)‖µ) + b̂(p0‖x(t)‖σ + p1‖x(t− h)‖σ))α3‖x(t)‖γ+σ−2

≤ 2mα3‖x(t)‖γ+µ+σ−2 + b̂(p0 + p1)α3‖x(t)‖γ+2σ−2

+mα3‖x(t− h)‖γ+µ+σ−2 + b̂p1α3‖x(t− h)‖γ+2σ−2.

Finally, adding each estimate, we obtain the following bound for the time derivative of
(4.13) along the trajectories of system (4.8)

dv(xt)

dt
≤ −(w0 − 4hL1‖x(t)‖µ−1 − L2‖x(t)‖σ−1 − L3‖x(t)‖2σ−µ−1)‖x(t)‖γ+µ−1

−(w1 − 2hL1‖x(t− h)‖µ−1 − L4‖x(t− h)‖σ−1 − L5‖x(t− h)‖2σ−µ−1)‖x(t− h)‖γ+µ−1

−(w2 − 2L1‖xt‖µ−1 − L6‖xt‖σ−1 + L7‖xt‖2σ−µ−1)
∫ 0

−h
‖x(t+ θ)‖γ+µ−1dθ,

where, κ1 = b̂(ψ(p0 + p1) + β(p2 + p3)), κ2 = b̂(βη + ψm), L1 = βmη + ψm2, L2 = 2hκ2(p0 +
p1) + 2mα3 + 2hmκ1, L3 = b̂(p0 + p1)α3 + hb̂(p0 + p1)κ1, L4 = 2hp1κ2 + mα3 + hmκ1, L5 =
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b̂(p1α3 + hp1κ1), L6 = κ2(p0 + p1) + 2b̂m(βp3 +ψp1) and L7 = b̂2(p0 + p1)(βp3 +ψp1). Suppose
that 2σ > µ + 1, then this bound is negative in the neighbourhood ‖xt‖h ≤ δ, where δ ∈
(0,min{H2, H3, H4}), H2, H3 and H4 are the real positive roots of the following polynomials

w0 − 4hL1H
µ−1
2 − L2H

σ−1
2 − L3H

2σ−µ−1
2 = 0,

w1 − 2hL1H
µ−1
3 − L4H

σ−1
3 − L5H

2σ−µ−1
3 = 0,

w2 − 2L1H
µ−1
4 − L6H

σ−1
4 − L7H

2σ−µ−1
3 = 0.

Hence, taking the neighbourhood ‖xt‖h ≤ δ, we arrive at

dv(xt)

dt
≤ −(w0 − 4hL1δ

µ−1 − L2δ
σ−1 − L3δ

2σ−µ−1)‖x(t)‖γ+µ−1

−(w1 − 2hL1δ
µ−1 − L4δ

σ−1 − L5δ
2σ−µ−1)‖x(t− h)‖γ+µ−1

−(w2 − 2L1δ
µ−1 − L6δ

σ−1 − L7δ
2σ−µ−1)

∫ 0

−h
‖x(t+ θ)‖γ+µ−1dθ,

and the lemma is proved.

Defining c = min c1, c3, it also holds that

dv(xt)

dt
≤ −c

(
‖x(t)‖γ+µ−1 +

∫ 0

−h
‖x(t+ θ)‖γ+µ−1dθ

)
,

Remark 6. If
µ > 1, 2σ > µ+ 1, (4.22)

(4.21) gets real positive roots and the trivial solution to (4.8) is asymptotically stable for all
h > 0.

Similarly to Theorem 8, if ∆ is a positive root of equation

α1∆
γ + b3∆

γ+σ−1 + b4∆
γ+µ−1 = a1(α)δγ, (4.23)

then the set of initial functions ‖ϕ‖h < ∆ is the estimate of the region of attraction of the
trivial solution of (4.8).

4.1.2 Almost periodic perturbations

Consider system (4.8) and assume now that (4.11) is unbounded on [0,∞). Assume again that
the entries of B(t) have zero mean value and that the limit relation

1

T

∫ t+T

t

B(s)ds −→ 0 as T −→ +∞ (4.24)

holds uniformly in t ≥ 0. Also, consider the integral

L(t, ε) =

∫ t+h

0

e−ε(t+h−s)B(s)ds. (4.25)

Notice that the integral L(t, ε) with the upper integration limit t instead of t+h was considered
in [10]. This term is constructed under a reasonable approximation for the integral term in
B(t). Let us explain this approximation considering the scalar system

ẋ(τ) = b(τ), (4.26)
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where b(τ) satisfies (4.24). The solution of this system may be unbounded due to the assumption
on (4.11). But if we introduce a second term of such a way that

ẋ(τ) = −εx(τ) + b(τ), ε > 0, (4.27)

this new system has a bounded solution. Then, we try to take ε→ 0 in (4.27) to study (4.26).
In fact, (4.25) is a solution of (4.27) for τ = t + h. As shown in [21], (4.25) also satisfies the
following properties:

‖L(t, ε)‖ ≤ α(ε)

ε
and

α(ε)→ 0 as ε→ 0,

for all t ≥ 0. In particular, the limit relation (4.24) holds uniformly in t ≥ 0 in the case that
the entries of B(t) are almost periodic functions with zero mean value.

As in our previous analysis for almost periodic perturbations, let us modify functional (4.13).
In this case, we will use L(t, ε) instead of I(t) for analysing the perturbed system (4.8):

v(t, ϕ) = V (ϕ(0))

+

(
∂V (x)

∂x

)T ∣∣∣∣∣
x=ϕ(0)

(∫ 0

−h
(f(ϕ(0), ϕ(θ)) +B(t+ θ + h)Q(ϕ(0), ϕ(θ))) dθ − L(t, ε)Q(ϕ(0), ϕ(0))

)

+

∫ 0

−h
(w1 + (h+ θ)w2)‖ϕ(θ)‖γ+µ−1dθ, (4.28)

We need to find the neighbourhood where this functional satisfies the first condition of Theo-
rem 2. It is done through the following two lemmas.

Lemma 19. There exist a1(α) > 0 such that functional (4.28) admits a lower bound on the set
Sα of the form

v(t, ϕ) ≥ a1(α)‖ϕ(0)‖γ + w1

∫ 0

−h
‖ϕ(θ)‖γ+µ−1dθ, ϕ ∈ Sα (4.29)

in the neighbourhood ‖ϕ‖h ≤ δ. Here, δ ∈ (0, H1), where H1 is a positive root of the following
equation

α0 − β(p0 + p1)(α(ε)/ε)Hσ−1
1 − βb̂h(p0 + p1α

σ)Hσ−1
1 − βmh(1 + αµ)Hµ−1

1 = 0, (4.30)

and a1(α) = α0 − β(p0 + p1)(α(ε)/ε)δσ−1 − βb̂h(p0 + p1α
σ)δσ−1 − βmh(1 + αµ)δµ−1.

Proof. Using the estimates (2.11), (2.17) and (4.9), we obtain

v(t, ϕ) ≥(
α0 − (β(p0 + p1)(α(ε)/ε) + βb̂h(p0 + p1α

σ))‖ϕ(0)‖σ−1 − βmh(1 + αµ)‖ϕ(0)‖µ−1
)
‖ϕ(0)‖γ

+ w1

∫ 0

−h
‖ϕ(θ)‖γ+µ−1dθ.

This lower bound is positive, if we take ‖ϕ‖h < δ, where δ ∈ (0, H1) and H1 is a positive real
root of the following equation

α0 − β(p0 + p1)(α(ε)/ε)Hσ−1
1 − βb̂h(p0 + p1α

σ)Hσ−1
1 − βmh(1 + αµ)Hµ−1

1 = 0,
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Then, we arrive at

v(t, ϕ) ≥
(
α0 − β(p0 + p1)(α(ε)/ε)δσ−1 − βb̂h(p0 + p1α

σ)δσ−1 − βmh(1 + αµ)δµ−1
)
‖ϕ(0)‖γ

+ w1

∫ 0

−h
‖ϕ(θ)‖γ+µ−1dθ.

Lemma 20. There exist b1, b2 > 0 such that functional (4.28) admits an upper bound of the
form

v(t, ϕ) ≤ b1‖ϕ(0)‖γ + b2

∫ 0

−h
‖ϕ(θ)‖γdθ, (4.31)

if ‖ϕ‖h ≤ δ, with

b1 = α1 + β(p0 + p1)(α(ε)/ε+ hb̂)δσ−1 + 2hβmδµ−1,

b2 = (w1 + hw2 + βm)δµ−1 + βb̂p1δ
σ−1.

Proof. According to (2.11), (2.17), (4.9), we have

v(t, ϕ) ≤ (α1 + β(p0 + p1)(α(ε)/ε+ hb̂)‖ϕ(0)‖σ−1 + 2hβm‖ϕ(0)‖µ−1)‖ϕ(0)‖γ

+ (w1 + hw2 + βm)

∫ 0

−h
‖ϕ(θ)‖γ+µ−1dθ + βb̂p1

∫ 0

−h
‖ϕ(θ)‖γ+σ−1dθ.

Taking a neighbourhood ‖ϕ‖h ≤ δ, we obtain

v(t, ϕ) ≤ (α1 + β(p0 + p1)(α(ε)/ε+ hb̂)δσ−1 + 2hβmδµ−1)‖ϕ(0)‖γ

+ (w1 + hw2 + βm)

∫ 0

−h
‖ϕ(θ)‖γ+µ−1dθ + βb̂p1

∫ 0

−h
‖ϕ(θ)‖γ+σ−1dθ.

It also holds that

v(t, ϕ) ≤ b

(
‖ϕ(0)‖γ +

∫ 0

−h
‖ϕ(θ)‖γdθ

)
, (4.32)

where b = max{b1, b2}. Furthermore, it follows from the proof of Lemma 20, assuming σ ≥
µ > 1, that

v(t, ϕ) ≤ α1‖ϕ(0)‖γ + b3‖ϕ‖γ+σ−1h + b4‖ϕ‖γ+µ−1h , (4.33)

where b3 = β(p0 + p1)(α(ε)/ε+ hb̂) and b4 =
(
2βm+ w1 + h

2
w2

)
h.

Next, we find the neighbourhood where functional (4.28) satisfies condition (2.21) of Theo-
rem 2.

Lemma 21. There exist c1, c2, c3 > 0 such that the time derivative of functional (4.28) along
the solutions of system (4.8), admits a bound of the form

dv(t, xt)

dt
≤ −c1‖x(t)‖γ+µ−1 − c2

∫ 0

−h
‖x(t + θ)‖γ+µ−1dθ − c3‖x(t − h)‖γ+µ−1, (4.34)
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in the neighbourhood ‖xt‖ ≤ δ, where δ ∈ (0,min{H2, H3, H4}), H2, H3 and H4 are the real
positive roots of the following polynomials

w0 − 4hL1H
µ−1
2 − α4α(ε)Hσ−µ

2 − L2H
σ−1
2 − L3H

2σ−µ−1
2 = 0,

w1 − 2hL1H
µ−1
3 − L4H

σ−1
3 − L5H

2σ−µ−1
3 = 0,

w2 − 2L1H
µ−1
4 − L6H

σ−1
4 − L7H

2σ−µ−1
4 = 0.

(4.35)

Here, κ1 = b̂(ψ(p0 + p1) + β(p2 + p3)), κ2 = b̂(βη + ψm), L1 = βmη + ψm2, L2 = 2hκ2(p0 +
p1) + 2m(α(ε)/ε)α3 + 2hmκ1, L3 = b̂(p0 + p1)(α(ε)/ε)α3 + hb̂(p0 + p1)κ1, L4 = 2hp1κ2 +
m(α(ε)/ε)α3 + hmκ1, L5 = b̂(p1(α(ε)/ε)α3 + hp1κ1), L6 = κ2(p0 + p1) + 2b̂m(βp3 + ψp1),
L7 = b̂2(p0 + p1)(βp3 + ψp1), c1 = w0 − 4hL1δ

µ−1 − α4α(ε)δσ−µ − L2δ
σ−1 − L3δ

2σ−µ−1, c2 =
w2 − 2L1δ

µ−1 − L6δ
σ−1 − L7δ

2σ−µ−1 and c3 = w1 − 2hL1δ
µ−1 − L4δ

σ−1 − L5δ
2σ−µ−1.

Proof. Differentiating (4.28) along of solutions of (4.8), we get

dv(t, xt)

dt

∣∣∣∣
(4.8)

= −w0‖x(t)‖γ+µ−1 − w1‖x(t− h)‖γ+µ−1 − w2

∫ 0

−h
‖x(t+ θ)‖γ+µ−1dθ

−(f(x(t), x(t− h)) +B(t)Q(x(t), x(t− h)))T
∂

∂x(t)

((
∂V (x(t))

∂x(t)

)T
L(t, ε)Q(x(t), x(t))

)

+
4∑
j=1

Λj + ε

(
∂V (x(t))

∂x(t)

)T
L(t, ε)Q(x(t), x(t)),

where

Λ1 =

(
∂V (x(t))

∂x(t)

)T ∫ t

t−h

∂f(x(t), x(s))

∂x(t)
ds× (f(x(t), x(t− h)) +B(t)Q(x(t), x(t− h)),

Λ2 = (f(x(t), x(t− h)) +B(t)Q(x(t), x(t− h))T ×
(
∂2V (x(t))

∂x2(t)

)∫ 0

−h
f(x(t), x(t+ θ))dθ.

Λ3 =

(
∂V (x(t))

∂x(t)

)T ∫ t

t−h
B(s+ h)

∂Q(x(t), x(s))

∂x(t)
ds× (f(x(t), x(t− h)) +B(t)Q(x(t), x(t− h)))

Λ4 = (f(x(t), x(t−h))+B(t)Q(x(t), x(t−h))T×
(
∂2V (x(t))

∂x2(t)

)∫ 0

−h
B(t+θ+h)Q(x(t), x(t+θ))dθ.

In concordance with (2.11), (2.12), (2.17) and (4.9) we get the following estimates

Λ1 ≤ βmη

(
4h‖x(t)‖γ+2µ−2 + 2h‖x(t− h)‖γ+2µ−2 + 2

∫ 0

−h
‖x(t+ θ)‖γ+2µ−2dθ

)
+b̂βη

(
2h(p0 + p1)‖x(t)‖µ+σ+γ−2 + 2p1h‖x(t− h)‖µ+σ+γ−2 + (p0 + p1)

∫ 0

−h
‖x(t+ θ)‖µ+σ+γ−2dθ

)

Λ2 ≤ ψm2

(
4h‖x(t)‖γ+2µ−2 + 2h‖x(t− h)‖γ+2µ−2 + 2

∫ 0

−h
‖x(t+ θ)‖γ+2µ−2dθ

)
+b̂ψm

(
2h(p0 + p1)‖x(t)‖µ+σ+γ−2 + 2p1h‖x(t− h)‖µ+σ+γ−2 + (p0 + p1)

∫ 0

−h
‖x(t+ θ)‖µ+σ+γ−2dθ

)
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Λ3 ≤ βb̂2
(
h(p0 + p1)(p2 + p3)‖x(t)‖γ+2σ−2 + hp1(p2 + p3)‖x(t− h)‖γ+2σ−2)

+βmb̂

(
2h(p2 + p3)‖x(t)‖µ+σ+γ−2 + h(p2 + p3)‖x(t− h)‖µ+σ+γ−2 + 2p3

∫ 0

−h
‖x(t+ θ)‖µ+σ+γ−2dθ

)
+βb̂2p3(p0 + p1)

∫ 0

−h
‖x(t+ θ)‖γ+2σ−2dθ

Λ4 ≤ ψb̂2(p0 + p1)

(
h(p0 + p1)‖x(t)‖γ+2σ−2 + hp1‖x(t− h)‖γ+2σ−2 + p1

∫ 0

−h
‖x(t+ θ)‖γ+2σ−2dθ

)
+ψb̂m

(
2h(p0 + p1)‖x(t)‖µ+σ+γ−2 + h(p0 + p1)‖x(t− h)‖µ+σ+γ−2 + 2p1

∫ 0

−h
‖x(t+ θ)‖µ+σ+γ−2dθ

)
Since Q(x, x) is assumed to be bounded, there exists α3, α4 > 0, such that

(f(x(t), x(t− h)) +B(t)Q(x(t), x(t− h)))T
∂

∂x(t)

((
∂V (x(t))

∂x(t)

)T
L(t, ε)Q(x(t), x(t))

)
≤

≤ (m(‖x(t)‖µ + ‖x(t− h)‖µ) + p̂(p0‖x(t)‖σ + p1‖x(t− h)‖σ))(α(ε)/ε)α3‖x(t)‖γ+σ−2

≤ 2m(α(ε)/ε)α3‖x(t)‖γ+µ+σ−2 + b̂(p0 + p1)(α(ε)/ε)α3‖x(t)‖γ+2σ−2

+m(α(ε)/ε)α3‖x(t− h)‖γ+µ+σ−2 + b̂p1(α(ε)/ε)α3‖x(t− h)‖γ+2σ−2,

ε

(
∂V (x(t))

∂x(t)

)T
L(t, ε)Q(x(t), x(t)) ≤ α4α(ε)‖x(t)‖γ+σ−1.

Therefore, we get an estimate of the upper bound of the time derivative of v(ϕ)

dv(xt)

dt
≤ −(w0 − 4hL1‖x(t)‖µ−1 − α4α(ε)‖x(t)‖σ−µ − L2‖x(t)‖σ−1 − L3‖x(t)‖2σ−µ−1)‖x(t)‖γ+µ−1

−(w1 − 2hL1‖x(t− h)‖µ−1 − L4‖x(t− h)‖σ−1 − L5‖x(t− h)‖2σ−µ−1)‖x(t− h)‖γ+µ−1

−(w2 − 2L1‖xt‖µ−1 − L6‖xt‖σ−1 + L7‖xt‖2σ−µ−1)
∫ 0

−h
‖x(t+ θ)‖γ+µ−1dθ,

where, κ1 = b̂(ψ(p0 + p1) + β(p2 + p3)), κ2 = b̂(βη + ψm), L1 = βmη + ψm2, L2 = 2hκ2(p0 +
p1) + 2m(α(ε)/ε)α3 + 2hmκ1, L3 = b̂(p0 + p1)(α(ε)/ε)α3 + hb̂(p0 + p1)κ1, L4 = 2hp1κ2 +
m(α(ε)/ε)α3 + hmκ1, L5 = b̂(p1(α(ε)/ε)α3 + hp1κ1), L6 = κ2(p0 + p1) + 2b̂m(βp3 + ψp1) and
L7 = b̂2(p0 + p1)(βp3 + ψp1).

Suppose that σ ≥ µ > 1 and choose a small enough ε > 0. We can take the neighbourhood
‖xt‖h ≤ δ. Here δ ∈ (0,min{H2, H3, H4}), and H2, H3 and H4 are positive real roots of the
following polynomials

w0 − 4hL1H
µ−1
2 − α4α(ε)Hσ−µ

2 − L2H
σ−1
2 − L3H

2σ−µ−1
2 = 0,

w1 − 2hL1H
µ−1
3 − L4H

σ−1
3 − L5H

2σ−µ−1
3 = 0,

w2 − 2L1H
µ−1
4 − L6H

σ−1
4 − L7H

2σ−µ−1
4 = 0.

Cinvestav Deparment of Automatic Control



44 Chapter 4

Therefore, we arrive at

dv(xt)

dt
≤ −(w0 − 4hL1δ

µ−1 − α4α(ε)δσ−µ − L2δ
σ−1 − L3δ

2σ−µ−1)‖x(t)‖γ+µ−1

−(w1 − 2hL1δ
µ−1 − L4δ

σ−1 − L5δ
2σ−µ−1)‖x(t− h)‖γ+µ−1

−(w2 − 2L1δ
µ−1 − L6δ

σ−1 − L7δ
2σ−µ−1)

∫ 0

−h
‖x(t+ θ)‖γ+µ−1dθ,

It is possible to choose ε so that α4α(ε)δσ−µ < w0/2. Hence, we get

dv(xt)

dt
≤ −(w0/2− 4hL1δ

µ−1 − L2δ
σ−1 − L3δ

2σ−µ−1)‖x(t)‖γ+µ−1

−(w1 − 2hL1δ
µ−1 − L4δ

σ−1 − L5δ
2σ−µ−1)‖x(t− h)‖γ+µ−1

−(w2 − 2L1δ
µ−1 − L6δ

σ−1 − L7δ
2σ−µ−1)

∫ 0

−h
‖x(t+ θ)‖γ+µ−1dθ.

Remark 7. If

σ ≥ µ > 1, (4.36)

(4.35) has real positive roots and the trivial solution to (4.8) is asymptotically stable for all
h > 0.

Similarly to Theorem 8, if ∆ is a positive root of equation

α1∆
γ + b3∆

γ+σ−1 + b4∆
γ+µ−1 = a1(α)δγ, (4.37)

then the set of initial functions ‖ϕ‖h < ∆ is the estimate of the region of attraction of the
trivial solution of (4.8).

4.2 Estimates of the solution

In this section, we present estimates of the solutions for the standard dilation. These estimates
are indeed a special case of the results presented in Section 3.4. The connection between func-
tional (2.28) and its derivative is through Lemma 14. It is important to notice that Lemma 12,
Lemma 13 and Lemma 14, proved in the weighted homogeneity framework in Chapter 3, are
also satisfied for the standard dilation since they do not depend on the norm, only on the
degrees of the inequalities. Hence, the following inequality is satisfied

dv(xt)

dt
≤ −L2v(xt)

γ+µ−1
γ , t ≥ 0, (4.38)

along the solutions of (2.19) for standard dilation with ‖xt‖h ≤ δ. Here,

L2 =
c

b
γ+µ−1
γ L1

,

where b is defined in (2.31), c in (2.34) and L1 comes from Lemma 12 in Chapter 3 with
u = γ + µ− 1 and q = γ.
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We define the comparison function u(t) taking, without loss of generality, t0 = 0,

du(t)

dt
= −L2u

γ+µ−1
γ (t), u(0) = u0 = (α1 + b3∆

µ−1)‖ϕ‖γh,

where we choose u0 as the upper bound of v(ϕ) in (2.32). The solution to this differential
equation obtained by separation of variable is

u(t) = u0

[
1 + L2

(
µ− 1

γ

)
u
µ−1
γ

0 t

]− γ
µ−1

.

Then, by the Comparison Lemma,

v(xt) ≤ u0

[
1 + L2

(
µ− 1

γ

)
u
µ−1
γ

0 t

]− γ
µ−1

, u0 = (α1 + b3∆
µ−1)‖ϕ‖γh.

Finally, using the bound (2.29), we have the following estimate of the solutions of the
homogeneous system with delay (2.19)

‖x(t, ϕ)‖ ≤ 1

a
1
γ

1

u
1
γ

0

[
1 + L2

(
µ− 1

γ

)
u
µ−1
γ

0 t

]− 1
µ−1

.

In view of the above, we can state the following result:

Theorem 11. Let the trivial solution of system (2.19) be δ1-homogeneous and asymptotically
stable. The solutions of system (2.19) with initial functions satisfying ‖ϕ‖h < ∆, where ∆ is
defined in (2.35), admit an estimate of the form

‖x(t, ϕ)‖ ≤ ĉ1‖ϕ‖h
[
1 + ĉ2‖ϕ‖µ−1h t

]− 1
µ−1

where

ĉ1 =

(
α1 + b3∆

µ−1

a1

) 1
γ

=
δ

∆
,

ĉ2 =
c

b

(
µ− 1

γ

)(
α1 + b3∆

µ−1

2bmax{1, h}

)µ−1
γ

.

Here, a1, b, b3 and c are defined in (2.29), (2.31), (2.32) and (2.34), respectively.

Remark 8. As ‖ϕ‖h < ∆, the solution satisfies ‖xt‖h ≤ δ, hence the estimate is valid.

Using Lemma 13 in Chapter 3 with u = (µ+ 1)/2 ∈ Z instead of Lemma 12 and repeating
the steps of the previous section, we arrive at the estimates for the solutions of system (2.36).

Theorem 12. If η1 + η2 < 0, then the solutions of equation (2.36) with initial functions
satisfying |ϕ|h < ∆, where ∆ is a positive root of (2.39), admit an estimate of the form

|x(t, ϕ)| ≤ ĉ1|ϕ|h
[
1 + ĉ2|ϕ|µ−1h t

]− 1
µ−1 , (4.39)

where

ĉ1 =

(
1 + b3∆

µ−1

a1

) 1
2

=
δ

∆
,

ĉ2 =
c (µ− 1)

b

(
1 + b3∆

µ−1

2b(1 + h)

)µ−1
2

.
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Now, we present the estimates for solutions of the systems with zero mean value perturba-
tions. Peculiarity of the approach lies in the fact that the lower bound for the functional on
the set Sα (see Lemma 16 and Lemma 19) instead of the set of all piece-wise continuous initial
functions is used. The inequality

dv(t, xt)

dt
≤ −L2v(t, xt)

γ+µ−1
γ , t ≥ 0,

holds along all solutions and does not depend on the lower bound. Next, we take another
constant L̃ < L2 for the comparison equation

du(t)

dt
= −L̃u

γ+µ−1
γ (t), u(0) = u0 = (α1 + b3∆

σ−1 + b4∆
µ−1)‖ϕ‖γh,

The solution for the comparison equation is

u(t) = u0

[
1 + L̃

(
µ− 1

γ

)
u
µ−1
γ

0 t

]− γ
µ−1

.

Notice that v(t, ϕ) < u0 due to ‖ϕ‖h < ∆ and L̃ < L2, hence we are able to conclude the
following.

Lemma 22. The strict inequality

v(t, xt) < u(t), t ≥ 0, (4.40)

holds.

Proof. Inequality (4.40) is true for t = 0. Assume that there exists a point t? > 0 such that
(4.40) holds for t < t?, and v(t?, xt?) = u(t?). Then,

v(t, xt)− v(t?, xt?) < u(t)− u(t?), t < t?,

v(t, xt)− v(t?, xt?)
t− t?

>
u(t)− u(t?)

t− t?
, t < t?.

Taking the limit with respect to t→ t? − 0, we arrive at

dv(t, xt)

dt

∣∣∣∣∣
t=t?

≥ du(t)

dt

∣∣∣∣∣
t=t?

.

On the other hand,

dv(t, xt)

dt

∣∣∣∣∣
t=t?

≤ −L2v(t?, xt?)
γ+µ−1
γ = −L2u(t?)

γ+µ−1
γ < −L̃u(t?)

γ+µ−1
γ =

du(t)

dt

∣∣∣∣∣
t=t?

.

The contradiction proves the lemma.

Now, we choose L̃ in accordance with the following lemma.

Lemma 23. If

1 + L̃h

(
µ− 1

γ

)
(α1 + b3∆

σ−1 + b4∆
µ−1)

µ−1
γ ∆µ−1 ≤ αµ−1, (4.41)

then
u(t+ θ) < αγu(t) (4.42)

for all t ≥ 0 and θ ∈ [−h, 0] such that t+ θ ≥ 0.
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Proof. Denote

K = L̃

(
µ− 1

γ

)
u
µ−1
γ

0 .

The inequality (4.42) is equivalent to

1 +Kt

1 +K(t+ θ)
< αµ−1.

Since t+ θ ≥ 0, we have

1 +Kt

1 +K(t+ θ)
= 1 +

(−Kθ)
1 +K(t+ θ)

≤ 1 +Kh.

It is easy to see that (4.41) implies 1 +Kh < αµ−1, and hence implies (4.42).

The following theorem is the key step to prove the main result. Here, the constant a1(α) is
taken from the lower bound for the functional on the set Sα. However, we state that the final
estimate holds for all solutions.

Theorem 13. If inequality (4.41) holds, then the following bound is true

a1(α)‖x(t, ϕ)‖γ < u(t), t ≥ 0.

Proof. Notice that a1(α) < α1 + b3∆
σ−1 + b4∆

µ−1. Hence, the required bound holds at t = 0.
Assume that there exists a point t? > 0 such that

a1(α)‖x(t?, ϕ)‖γ = u(t?),

a1(α)‖x(t, ϕ)‖γ < u(t), t < t?.

We verify that xt? ∈ Sα. Indeed, if t? + θ ≥ 0, θ ∈ [−h, 0], then

a1(α)‖x(t? + θ, ϕ)‖γ ≤ u(t? + θ) < αγu(t?) = αγa1(α)‖x(t?, ϕ)‖γ.

Here, the previous step is due to Lemma 23. Hence, ‖x(t? + θ, ϕ)‖ < α‖x(t?, ϕ)‖. If t? + θ ∈
[−h, 0), then

a1(α)‖x(t? + θ, ϕ)‖γ ≤ a1(α)‖ϕ‖γh < (α1 + b3∆
σ−1 + b4∆

µ−1)‖ϕ‖γh = u(0)

< αγu(t?) = αγa1(α)‖x(t?, ϕ)‖γ.

It follows again due to Lemma 23. Hence,

‖x(t? + θ, ϕ)‖ < α‖x(t?, ϕ)‖, θ ∈ [−h, 0],

and we arrive at xt? ∈ Sα. This implies

v(t?, xt?) ≥ a1(α)‖x(t?, ϕ)‖γ = u(t?),

which contradicts to Lemma 22.

The main result with the constant a1(α) in the lower bound follows from here immediately.
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4.3 Illustrative Examples

4.3.1 Example 1

Consider a scalar equation of the form

ẋ(t) = κ1x
3(t) + κ2x

3(t− h), (4.43)

where the constants κ1, κ2 ∈ R, x ∈ R and h ∈ R+. In this case the homogeneity degree is
µ = 3. It can be shown with the help of the Lyapunov function V (x) = − w

2(κ1+κ2)
x2, that when

h = 0 the equation (4.43) is asymptotically stable for κ1 + κ2 < 0. For system parameters
(κ1, κ2) = (−1, 0.5), w = 1 and delay h = 10, the constants in the bounds for the system
right-hand side and Lyapunov function are m = max{|κ1|, |κ2|}, m1 = 3|κ1|, m2 = 3|κ2|, k0 =
k1 = − w

2(κ1+κ2)
and k2 = k3 = − w

κ1+κ2
.

First, we find the estimate of the region of attraction using both approaches. We apply Theo-
rem 6 in Section 2.2 with δ = H for the Lyapunov-Razumikhin framework, and use inequality
(2.39) and tune some parameters for the Lyapunov-Krasovskii one. The parameters and the
obtained estimates for the attraction region are shown in Table 4.1, where we can observe that
the attraction region described by ∆ is less conservative in the Lyapunov-Krasovskii approach
than in the Lyapunov-Razumikhin one.

Table 4.1: Constants for the estimates of attraction region of Example 1 for the standard
dilation

Lyapunov-Krasovskii
∆ H1 H2 δ χ a1 β w0 w1 w2

0.067 0.1012 0.3 0.1011 0.32 0.48 17.7 0.25 0.05 0.07
Lyapunov-Razumikhin

∆ H κ K
0.0427 0.0443 1 1.001

Next, we turn our attention to the estimates of the solutions. In spite of the fact that the
estimate of the region of attraction is found to be less conservative in the Lyapunov-Krasovskii
framework, for comparison of the two approaches, we take the same δ in Theorem 7 in Section
2.2 and Theorem 12 in Section 2.3. The constants characterising the estimates are shown in
Table 4.2.

Table 4.2: Constants for the estimates of solutions of Example 1 for standard dilation

Lyapunov-Krasovskii
δ H1 H2 ∆ ĉ1 ĉ2 χ w0 w1 w2

0.01 0.015 0.26 0.0099 1.0014 4.2 · 10−5 0.015 0.33 0.5 0.017
Lyapunov-Razumikhin

δ H ∆ c̃1 c̃2 α ρ
0.01 0.0443 0.009 1.002 0.95 2 0.94
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The estimate of the system response obtained via the Lyapunov-Krasovskii approach is then

|x(t, ϕ)| ≤ 1.0014|ϕ|10
[
1 + 4.2 · 10−5|ϕ|210t

]− 1
2 ,

whereas using the Lyapunov-Razumikhin framework we arrive at

|x(t, ϕ)| ≤ 1.002|ϕ|10
[
1 + 0.95|ϕ|210t

]− 1
2 .

For the initial condition ϕ(θ) = 0.009, θ ∈ [−10, 0], the system response and the estimates
(2.27) and (4.39) are depicted in Fig. 4.1 and Fig. 4.2 as a continuous, dashed and dashed-dot
line, respectively.

10-3 10-2 10-1 100 101 102 103

Time t

8

8.2

8.4

8.6

8.8

9

9.2

9.4

9.6

9.8

10
10-3 Estimation of the solution

|x(t)|

|x
er

(t)|

|x
ek

(t)|

Figure 4.1: Estimation of the solution of system (4.43) for small time
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Figure 4.2: Estimation of the solution of system (4.43)

As shown in Figure 4.2, the estimate via the Lyapunov-Razumikhin approach, in general,
is less conservative. Comparing values ĉ1 and A both have the same structure δ/∆, i.e., they
depend on ∆, of this way we conclude that ĉ1 is better due to the attraction region for the
Lyapunov-Krasovskii is less conservative. Therefore, the estimate is better at the beginning.

Now, consider ĉ2 and B :

ĉ2 =
c

bL1

(
µ− 1

γ

)(a1
b

)µ−1
γ

(
δ

∆

)µ−1
,

B = ρ

(
µ− 1

γ

)
k
µ−1
γ

0

(
δ

∆

)µ−1
.

The practical experiments show that to get a better estimate in the Lyapunov-Razumikhin
approach, ρ must be close to d. With such choice the value B is close to

k5
k1

(
µ− 1

γ

)(
k0
k1

)µ−1
γ
(
δ

∆

)µ−1
.

The aim of these values is analogous to a decay constant in a function. Thus, if ĉ2 and B
increase, we get a better estimate of the system response. Clearly, the values k5, α1, α0 have a
similar meaning for the Lyapunov function as the values c, b, a1 for the Lyapunov functional.
Multiplier L1 is a source of conservatism in the Lyapunov-Krasovskii approach. In other words,
L1 leads to a slow response for the estimate of the Lyapunov-Krasovskii approach.

4.3.2 Example 2

Consider the system

ẋ1(t) = xµ2(t), (4.44)

ẋ2(t) = −xµ1(t)− xµ2(t− h).
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where x1(t), x2(t) ∈ R and h ∈ R+. System (4.44) is δ1-homogeneous of homogeneity degree µ
odd. Consider the Lyapunov function introduced in [22], which is δ1-homogeneous:

V (x) =
1

µ+ 1

(
xµ+1
1 + xµ+1

2

)
+ ζxµ1x2

where ζ is a positive constant. For the proof of asymptotic stability of the delay-free system
(4.44), condition

ζ < min

{
1

µ+ 1
,

4

(µ+ 1)2

}
has to be satisfied. Furthermore, its derivative along the trajectories of system (4.44), when
h = 0, is

V̇ (x) = −ζx2µ1 − x
2µ
2 + ζµxµ−11 xµ+1

2 − ζxµ1x
µ
2 ,

equivalently,

V̇ (x) = −x2µ1 f(z), f(z) = z2µ − ζµzµ+1 + ζzµ + ζ, z =
x2
x1
.

Due to the condition on ζ, f(z) is a positive function. Furthermore, f(z) also admits a lower
bound of the form

f(z) ≥ κ
(
z2µ + 1

)
, κ = min

{
1− ζ(µ+ 1), ζ,

ζ

1 + ζ

(
1− ζ(1 + µ)2

4

)}
Hence, it holds that

V̇ (x) ≤ −κ
(
x2µ1 + x2µ2

)
≤ − κ

2µ−1
‖x‖2µ = −w‖x‖2µ.

The constants involved, characterising the bounds of the right-hand side of system (4.44) and

the Lyapunov function, are α0 = (1/2)
µ−1
2

(
1−ζ(µ+1)
µ+1

)
, α1 =

(
1+ζ(µ+1)
µ+1

)
, m =

√
2, η = µ,

β = 2((1 + ζµ)2 + 1)0.5 and ψ = 2(µ + µ2ζ). In order to validate the results achieved in
Example 1, we compare the estimate of the solutions obtained via the Lyapunov-Krasovskii
and Lyapunov-Razumikhin approaches, for system (4.44). For system parameters µ = 5,
ζ = 0.0001, w = 6.2 · 10−6 and h = 10, the constants characterising the estimates of the
solutions are shown in Table 4.3.

Table 4.3: Constants for the estimates of solutions of Example 2 for the standard dilation

Lyapunov-Krasovskii
δ H1 H2 ∆ ĉ1 ĉ2 χ w0 w1 w2

0.001 0.0062 0.0023 7.934 · 10−4 1.2603 2.4 · 10−8 0.26 4 · 10−8 5 · 10−6 5 · 10−8

Lyapunov-Razumikhin
δ H ∆ c̃1 c̃2 α ρ

0.001 0.048 7.935 · 10−4 1.2602 2.49 · 10−5 2 1.23 · 10−4

Thus, the system response of system (4.44) admits an estimate of the form

‖x(t, ϕ)‖ ≤ 1.2603‖ϕ‖10
[
1 + 2.4 · 10−8‖ϕ‖410t

]− 1
4
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via Lyapunov-Krasovskii approach and

‖x(t, ϕ)‖ ≤ 1.2602‖ϕ‖10
[
1 + 2.49 · 10−5‖ϕ‖410t

]− 1
4

via Lyapunov-Razumikhin. For the initial condition ϕ(θ) = [5.1 · 10−4, 5.1 · 10−4], θ ∈ [−10, 0],
the system response and the estimates via Lyapunov-Razumukhin and Lyapunov-Krasovskii
approaches are depicted in Fig. 4.3 as a continuous, dashed and dashed-dot line, respectively.
Observe that for the multi-variable system (4.44), the observations presented in the previous
example remain valid.
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Figure 4.3: Estimation of the solution of system (4.44)

Now, consider system (4.44) with perturbations of zero mean value:[
ẋ1(t)
ẋ2(t)

]
=

[
xµ2(t)

−xµ1(t)− xµ2(t− h)

]
+B(t)Q(x(t), x(t− h)) (4.45)

where

B(t)Q(x(t), x(t− h)) =

[
cos(t) + sin(

√
2t) 0

0 cos(t) + cos(
√

2t)

] [
xσ1 (t− h)
xσ2 (t)

]
Suppose that σ = µ = 5. Then, the constants characterising the perturbed terms are p0 = 2,
p1 = 1.98, p2 = 5, α3 = ψ(p0 + p1) + β(p2 + p3), α4 = β(p0 + p1) and equation (4.25) admits a
bound

‖L(t, ε)‖ ≤ α(ε)

ε
=

3
√

(ε+ 1/4ε2)− ε/2
ε

,

where α(ε) → 0 as ε → 0. The constants characterising the estimates of the solutions of the
perturbed system (4.45) for ζ = 1.0001 are shown in Table 4.4.
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Table 4.4: Constants for the estimates of solutions of perturbed Example 2 for the standard
dilation

δ H1 H2 H3 H4 ∆ ĉ1 ĉ2 ε L̃
1 · 10−4 0.0033 1.4 · 10−4 1 · 10−4 0.0044 7 · 10−5 1.41 6.7 · 10−8 1 · 10−14 3.3 · 10−7

Then, the solutions of the perturbed system (4.45) admits an estimate of the form

‖x(t, ϕ)‖ ≤ 1.41‖ϕ‖10
[
1 + 6.7 · 10−8‖ϕ‖410t

]− 1
4 .

For the initial condition ϕ(θ) = [3.9 ·10−5, 3.9 ·10−5], θ ∈ [−10, 0], the system response and the
estimates of the perturbed system (4.45) are depicted in Fig. 4.4 as a continuous and dashed
line, respectively. Even though system (4.44) is submitted to perturbations, the new estimate
manages quite well to keep itself close to the system response.
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Figure 4.4: Estimation of the solution of system (4.45)
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

The research in this document focused on the analysis of homogeneous time-delay systems,
which are a class of non-linear system, via the Lyapunov-Krasovskii approach. With the help
of a novel functional introduced in recent research, we could extend some result founded via
Lyapunov-Razimikhin framework for standard dilation, to the case for weighted dilation as well
as the robustness analysis. The main contribution in this work was the estimate of the solutions
for homogeneous time-delay systems with weighted dilation. It was showed that this estimate
holds for systems submitted to perturbations.

The estimate of the solutions is based on functional bounds. For that, first and second
sections in Chapter 3 were devoted to finding the upper and lower bound estimates of the
functional and a negative bound of its time derivative along of the solutions of homogeneous
time-delay system and this same submitted to perturbations. As an extra result, we estimate
the attraction region for homogeneous time-delay systems with weighted dilation.

The robustness analysis for time-delay systems with standard dilation was studied in Chap-
ter 4. It is presented the neighbourhood for asymptotic stability for perturbed systems and
given some remarks to some modifications on this perturbations. It was carried out through
a modification to the Lyapunov function for the free-delay system, which is used in the func-
tional implemented throughout this work. Also, it obtained the estimate of the solution for the
multi-variable case and the scalar case.

All the theoretical results were validated using some examples in each section, and some
cases were compared with results found in the literature.

5.2 Future Work

The most evident is the necessity of a practical validation of the results, beyond the simulation.
On the other hand, It is necessary to address other topics as nonlinear observers and output
feedback control laws for asymptotically stabilising for homogeneous time-delay systems.
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Appendix A

Proof of Theorems

In this appendix, we present the proofs of Theorems 6 and 7 from [10, 11] and [15] with a slight
modification. The main feature, distinguishing the proofs from those in [10, 11, 15], is that all
the constants are computed explicitly. We begin with an auxiliary lemma, which can be found
in [11] in an implicit form.

Lemma 24. If ‖ϕ‖h < ∆, then

‖x(t, ϕ)‖ ≤ K(‖ϕ‖h +mh‖ϕ‖µh), t ∈ [0, h].

Proof. Denote S(ϕ) = ‖ϕ‖h +mh‖ϕ‖µh,

u(t) = S(ϕ) +m

∫ t

0

‖x(s)‖µds,

and observe that ‖x(t)‖ ≤ u(t), t ∈ [0, h]. Further,

u̇(t) = m‖x(t)‖µ ≤ muµ(t), u(0) = S(ϕ) <
κδ

K
.

Integrating the last inequality, we obtain

u(t) ≤ S(ϕ)(
1− (µ− 1)mSµ−1(ϕ)t

) 1
µ−1

, (A.1)

if t < 1/
(
µ− 1)mSµ−1(ϕ)

)
. Now, verify that

1

(µ− 1)mSµ−1(ϕ)
> h.

Hence, bound (A.1) holds for t ∈ [0, h]. Next,

‖x(t)‖ ≤ u(t) ≤ S(ϕ)(
1− (µ− 1)mh

(
κδ

K

)µ−1) 1
µ−1

= KS(ϕ), t ∈ [0, h],

and the lemma follows.
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Proof of Theorem 6 [11]. The Razumikhin condition (2.24) implies

‖x(ξ)‖ <
(
αα1

α0

) 1
γ

‖x(t)‖, ξ ∈ [t− 2h, t], t ≥ h.

Differentiating V (x(t)) along the solutions of system (2.19) satisfying the Razumikhin condition
and applying the mean value theorem, one gets

dV (x(t))

dt
=

(
∂V (x)

∂x

)T
f(x(t), x(t))− h

(
∂V (x)

∂x

)T
×
∫ 1

0

∂f(x(t), x(t− θh)

∂x(t− θh)
f(x(t− θh), x(t− θh− h))dθ

≤ −w‖x(t)‖γ+µ−1 + k4‖x(t)‖γ+2µ−2,

where

k4 = 2hmηβ

(
αα1

α0

)µ
γ

(
1 +

(
αk1
k0

)µ−1
γ

)
.

Taking H = (w/k4)
1

µ−1 and an arbitrary δ ∈ (0, H), we arrive at (2.25) with k5 = w − k4δµ−1.
Consider an arbitrary solution x(t) of system (2.19) with initial condition ‖ϕ‖h < ∆. It follows
from equation (2.26) that ∆ < κδ, hence

V (ϕ(θ)) ≤ α1∆
γ < α0δ

γ, θ ∈ [−h, 0].

Lemma 24 implies V (x(t)) ≤ α1‖x(t)‖γ < α0δ
γ, t ∈ [0, h]. Formula (2.25) guarantees V (x(t)) <

α0δ
γ for any t ≥ −h, which implies that ‖x(t)‖ < δ for any t ≥ −h. The result now follows

from (2.25).

Proof of Theorem 7. [10], [15] Equations (2.14) and (2.25) imply that along the solutions
of system (2.19) satisfying (2.24) and ‖xt‖h ≤ δ the following differential inequality holds

dV (x(t))

dt
≤ −dV

γ+µ−1
γ (x(t)), d = k5α

− γ+µ−1
γ

1 . (A.2)

Lemma 24 provides an initial condition for this inequality:

V (x(h)) ≤ α1K
γ(‖ϕ‖h +mh‖ϕ‖µh)γ.

Introduce a parameter ρ, which satisfies the following three conditions:

0 < ρ < d,

1 + 2hρ
µ− 1

γ
α
µ−1
γ

0 δµ−1 < α
µ−1
γ , (A.3)

1− ρµ− 1

γ
α
µ−1
γ

1 Kµ−1h∆µ−1 > 0. (A.4)

Then, the differential equation

ż(t) = −ρz
γ+µ−1
γ (t) (A.5)

with the initial condition z(h) = z0, where

z0 = α1K
γ(‖ϕ‖h +mh‖ϕ‖µh)γ, z0 < α0δ

γ,
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can be treated as a comparison equation for (A.2), if t ≥ h. A solution to this initial-value
problem is

z(t) =
z0(

1 + ρ
µ− 1

γ
z
µ−1
γ

0 (t− h)

) γ
µ−1

.

Let us show that the solution z(t) satisfies the Razumikhin condition (2.24). Consider t ≥ h
and ξ such that −2h ≤ ξ ≤ 0 and t+ξ ≥ h, then condition (2.24) requires that z(t+ξ) < αz(t),
equivalently,

g(t) =
1 + k(t− h)

1 + k(t+ ξ − h)
< α

µ−1
γ , (A.6)

where k =
ρ(µ− 1)

γ
z
µ−1
γ

0 . Note that

0 ≤ g(t) = 1− kξ

1 + k(t+ ξ − h)
≤ 1− kξ ≤ 1 + 2kh.

Since k < ρ
µ− 1

γ
α
µ−1
γ

0 δµ−1, we have that condition (A.3) implies (A.6). Hence, function z(t)

satisfies the Razumikhin condition for all t ≥ h.

The general idea in the Razumikhin framework is that to obtain a contradiction in the proof
of comparison lemma, the solution which satisfies the Razumikhin condition is taken. Hence,
the fact that the solution of comparison equation also satisfies the Razumikhin condition guar-
antees that V (x(t)) ≤ z(t), t ≥ h, for all solutions x(t) with ‖ϕ‖h < ∆, and not only for the
solutions satisfying the Razumikhin condition. This implies that the solutions with ‖ϕ‖h < ∆
admit the following bound:

‖x(t, ϕ)‖ ≤ A‖ϕ‖h
(1 +B‖ϕ‖µ−1h (t− h))

1
µ−1

, t ≥ h,

where

A =
K(1 +mh∆µ−1)

κ
, B = ρ

µ− 1

γ
α
µ−1
γ

1 Kµ−1.

Further, since 1−Bh∆µ−1 > 0 due to condition (A.4), we have

‖x(t, ϕ)‖ ≤ A‖ϕ‖h
(1−B‖ϕ‖µ−1h h+B‖ϕ‖µ−1h t)

1
µ−1

≤ A1‖ϕ‖h
(1 +B1‖ϕ‖µ−1h t)

1
µ−1

, t ≥ h,

where

A1 =
A

(1−Bh∆µ−1)
1

µ−1

, B1 =
B

1−Bh∆µ−1 .

It remains to obtain the estimate for t ∈ [0, h]. According to Lemma 24,

‖x(t, ϕ)‖ ≤ A2‖ϕ‖h, t ∈ [0, h],

where A2 = K(1 +mh∆µ−1). Notice that

(1 +B1∆
µ−1h)

1
µ−1A2

A1

= κ ≤ 1.
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Hence,

‖x(t, ϕ)‖ ≤ A1‖ϕ‖h
(1 +B1∆µ−1h)

1
µ−1

≤ A1‖ϕ‖h
(1 +B1‖ϕ‖µ−1h t)

1
µ−1

for t ∈ [0, h]. Hence, the required bound (2.27) holds with c̃1 = A1, c̃2 = B1 for all t ≥ 0, and
the proof is complete.

Remark 9. In Theorem 6, the value H can be taken instead of δ in equation (2.26) and in K,
as in [11], whereas in Theorem 7 it is important that the solutions satisfy ‖x(t, ϕ)‖ < δ for any
t ≥ 0.
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Appendix B

Inequalities

In this appendix, we present the proof of some inequalities that are instrumental in the proofs
of our results.

Lemma A.1 Let a, b, ν ∈ R, a, b ≥ 0 and ν ≥ 1, then the following inequality is satisfied

(a+ b)ν ≤ 2ν−1(aν + bν)

Proof. The mapping f : x→ xν , for x ≥ 0, is convex since f ′′(x) ≥ 0, indeed

f ′′(x) = ν(ν − 1)xν−2 ≥ 0.

Now, using the convexity property for a, b > 0, we get

f(λa+ (1− λ)b) ≤ λf(a) + (1− λ)f(b), λ ∈ [0, 1].

For λ = 1/2 (
a

2
+
b

2

)ν
≤ aν

2
+
bν

2
.

Equivalently,
(a+ b)ν ≤ 2ν−1(aν + bν). (B.1)

Next, we prove Lemma 1 introduced in Chapter 3.
Proof of Lemma 12. Using (B.1) and taking ν = u

q
, a = ‖x(t)‖qr,p, b =

∫ 0

−h ‖x(t + θ)‖qr,pdθ,
we get(

‖x(t)‖qr,p +

∫ 0

−h
‖x(t+ θ)‖qr,pdθ

)u
q

≤ 2
u
q
−1

(
‖x(t)‖ur,p +

(∫ 0

−h
‖x(t+ θ)‖qr,pdθ

)u
q

)
. (B.2)

To conclude the proof, we use Holder’s inequality,∣∣∣∣∫ 0

−h
f(xt)g(xt)dθ

∣∣∣∣ ≤ (∫ 0

−h
|f(xt)|rdθ

) 1
r
(∫ 0

−h
|g(xt)|sdθ

) 1
s

, (B.3)

for r, s ≥ 1 such that 1
r

+ 1
s

= 1. For s = u
q
, r = u

u−q , f(xt) = 1 and g(xt) = ‖x(t + θ)‖qr,p, we
have (∫ 0

−h
‖x(t+ θ)‖qr,pdθ

)u
q

≤ h
u−q
q

∫ 0

−h
‖x(t+ θ)‖ur,pdθ.
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Then, it follows from (B.2) that(
‖x(t)‖qr,p +

∫ 0

−h
‖x(t+ θ)‖qr,pdθ

)u
q

≤

2
u
q
−1
(
‖x(t)‖ur,p + h

u−q
q

∫ 0

−h
‖x(t+ θ)‖ur,pdθ

)
≤

2
u
q
−1 max

{
1, h

u−q
q

}(
‖x(t)‖ur,p +

∫ 0

−h
‖x(t+ θ)‖ur,pdθ

)
and the lemma is proved.

Proof of Lemma 13. The proof is carried out by mathematical induction. It is easy to
verify (3.35) for k = 2 taking into account that(∫ 0

−h
‖x(t+ θ)‖2r,pdθ

)2

≤ h

∫ 0

−h
‖x(t+ θ)‖4r,pdθ.

Assume that (3.35) holds for a u ≥ 2, then(
‖x(t)‖2r,p +

∫ 0

−h
‖x(t+ θ)‖2r,pdθ

)u+1

≤ 2u−2(1 + h)u−1

×
(
‖x(t)‖2ur,p +

∫ 0

−h
‖x(t+ θ)‖2ur,pdθ

)(
‖x(t)‖2r,p +

∫ 0

−h
‖x(t+ θ)‖2r,pdθ

)
.

Transforming the right-hand side of this inequality with the help of dgez ≤ dg+z + eg+z, we get(
‖x(t)‖2r,p +

∫ 0

−h
‖x(t+ θ)‖2r,pdθ

)u+1

≤ 2u−1(1 + h)u
(
‖x(t)‖2(u+1)

r,p +

∫ 0

−h
‖x(t+ θ)‖2(u+1)

r,p dθ

)
.

The lemma is proved.
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